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Foreword

It is a distinct pleasure to have the opportunity to introduce Professor
Malliavin's book to the English-speaking mathematical world.

In recent years there has been a noticeable retreat from the level of ab-
straction at which graduate-level courses in analysis were previously taught
in the United States and elsewhere. In contrast to the practices used in the
1950s and 1960s, when great emphasis was placed on the most general
context for integration and operator theory, we have recently witnessed
an increased emphasis on detailed discussion of integration over Euclidean
space and related problems in probability theory, harmonic analysis, and
partial differential equations.

Professor Malliavin is uniquely qualified to introduce the student to anal-
ysis with the proper mix of abstract theories and concrete problems. His
mathematical career includes many notable contributions to harmonic anal-
ysis, complex analysis, and related problems in probability theory and par-
tial differential equations. Rather than developed as a thing-in-itself, the
abstract approach serves as a context into which special models can be
couched. For example, the general theory of integration is developed at an
abstract level, and only then specialized to discuss the Lebesgue measure
and integral on the real line. Another important area is the entire theory
of probability, where we prefer to have the abstract model in mind, with
no other specialization than total unit mass. Generally, we learn to work
at an abstract level so that we can specialize when appropriate.

A cursory examination of the contents reveals that this book covers most
of the topics that are familiar in the first graduate course on analysis. It also
treats topics that are not available elsewhere in textbook form. A notable
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example is Chapter V, which deals with Malliavin's stochastic calculus of
variations developed in the context of Gaussian measure spaces. Originally
inspired by the desire to obtain a probabilistic proof of Hormander's theo-
rem on the smoothness of the solutions of second-order hypoelliptic differ-
ential equations, the subject has found a life of its own. This is partly due
to Malliavin and his followers' development of a suitable notion of "differen-
tiable function" on a Gaussian measure space. The novice should be warned
that this notion of differentiability is not easily related to the more con-
ventional notion of differentiability in courses on manifolds. Here we have
a fancily of Sobolev spaces of "differentiable functions" over the measure
space, where the definition is global, in terms of the Sobolev norms. The
finite-dimensional Sobolev spaces are introduced through translation op-
erators, and immediately generalizes to the infinite-dimensional case. The
main theorem of the subject states that if a differentiable vector-valued
function has enough "variation", then it induces a smooth measure on Eu-
clidean space.

Such relations illustrate the interplay between the "upstairs" and the
"downstairs" of analysis. We find the natural proof of a theorem in real
analysis (smoothness of a measure) by going up to the infinite-dimensional
Gaussian measure space where the measure is naturally defined. This in-
terplay of ideas can also be found in more traditional forms of finite-
dimensional real analysis, where we can better understand and prove for-
mulas and theorems on special functions on the real line by going up to the
higher-dimensional geometric problems from which they came by "projec-
tion"; Bessel and Legendre functions provide some elementary examples of
such phenomena.

The mathematical public owes an enormous debt of gratitude to Leslie
Kay, whose superlative efforts in editing and translating this text have been
accomplished with great speed and accuracy.

Mark Pinsky

Department of Mathematics
Northwestern University
Evanston, IL 60208, USA



Preface

We plan to survey various extensions of Lebesgue theory in contemporary
analysis: the abstract integral, Radon measures, Fourier analysis, Hilbert
spectral analysis, Sobolev spaces, pseudo-differential operators, probabil-
ity, martingales, the theory of differentiation, and stochastic calculus of
variations.

In order to give complete proofs within the limits of this book, we have
chosen an axiomatic method of exposition; the interest of the concepts in-
troduced will become clear only after the reader has encountered examples
later in the text. For instance, the first chapter deals with the abstract inte-
gral, but the reader does not see a nontrivial example of the abstract theory
until the Lebesgue integral is introduced in Chapter II. This axiomatic ap-
proach is now familiar in topology; it should not cause difficulties in the
theory of integration.

In addition, we have tried as much as possible to base each theory on the
results of the theories presented earlier. This structure permits an econ-
omy of means, furnishes interesting examples of applications of general
theorems, and above all illustrates the unity of the subject. For example,
the Radon-Nikodym theorem, which could have appeared at the end of
Chapter I, is treated at the end of Chapter IV as an example of the theory
of martingales; we then obtain the stronger result of convergence almost
everywhere. Similarly, conditional probabilities are treated using (i) the
theory of Radon measures and (ii) a general isomorphism theorem show-
ing that there exists only one model of a nonatomic separable measure
space, namely R equipped with Lebesgue measure. Furthermore, the spec-
tral theory of unitary operators on an abstract Hilbert space is derived from
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Bochner's theorem characterizing Fourier series of measures. The treatment
in Chapter V of Sobolev spaces over a probability space parallels that in
Chapter III of Sobolev spaces over R".

In the detailed table of contents, the reader can see how the book is
organized. It is easy to read only selected parts of the book, depending on
the results one hopes to reach; at the beginning of the book, as a reader's
guide, there is a diagram showing the interdependence of the different sec-
tions. There is also an index of terms at the end of the work. Certain parts
of the text, which can be skipped on a first reading, are printed in smaller
type.

Readers interested in probability theory can focus essentially on Chap-
ters I, IV, and V; those interested in Fourier analysis, essentially on Chap-
ters I and III. Chapter III can be read in different ways, depending on
whether one is interested in partial differential equations or in spectral
analysis.

The book includes a variety of exercises by G6rard Letac. Detailed solu-
tions can be found in Exercises and Solutions Manual for Integration and
Probability by G6rard Letac, Springer-Verlag, 1995. The upcoming book
Stochastic Analysis by Paul Malliavin, Grundlehren der Mathematischen
Wissenschaften, volume 313, Springer-Verlag, 1995, is meant for second-
year graduate students who are planning to continue their studies in prob-
ability theory.

March 1995 P" M"
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Prologue

We recall briefly the definition and properties of the usual integral of con-
tinuous functions on R.

The concepts involved are elementary and well known. However, since
this integral will be used to construct the Lebesgue integral, we sketch a
few facts for convenience.

Given the segment [0, 1] C R, a partition of [0,1] is a finite subset it of
[0, 1] containing 0 and 1. The partition ir' is said to be finer than IF if 7r' D IF.
Let 0 = tl < t2 < ... < tr_1 < tr = 1 (r = card(ir)) be an enumeration
of the points of 7r. With every function f continuous on [0, 11, we associate
the sum r-1

sa(f) = F,(tk+l - tk)f(tk)
k=1

This is a positive linear functional:

and s,(f)?0 if f >0.

The number b(ir) = sup(tk+1 - tk) is called the diameter of the partition
ir. We have the following statement.

Given a continuous function f, for every e > 0 there exists i such that

Is-(f) - s-'(f)I < E

for any partitions IF and 7r' satisfying b(7r) < 77 and b(rr') < 77.
Indeed, since f is continuous on the compact set [0, 11, it is uniformly

continuous. Hence we can find 77 such that If (x) - f (x') l <
2

if Ix - x' I < rt.
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Let ir" = n U ir'. Then, writing ark = 7r' u [tk+1 - tk], where t1,. .. , t, denote
the points of the subdivision of ir,

r-1

?r" = U7rk and sx" (f) _ sxk (f )
k=1

Moreover,

whence

and

Igxk (f) - (tk+1 - tk)f(tk)I < 2(tk+1 - tk),

Isx(f) - j:(tk+1 - tk) = 2

Isx(f)-s,'(f)I <-+-=E.
2 2

Choosing a sequence Irk of partitions such that 6(7rk) 0, we find that
sx,. (f) is a Cauchy sequence whose limit is independent of the choice Irk.
Set

I 1 f(x)dx=limsx,,(f).

Then the integral is a positive linear functional. In particular,

o
f If(x)dxl <- f 1If(x)Idx <maxIf(x)I.

o

The change of variable x = a + t(b - a) reduces the integral over [a, b) to
the preceding case:

jb

Jof(x)dxb-a f(a+t(b-a))dt.

Differentiation. Let f be continuous. Set

F(x) = J f (t) dt.
0

Then F is differentiable and F'(x) = f (x). Evaluating integrals of contin-
uous functions is reduced to finding primitives.
Improper integrals. Integrals will be evaluated either on all of R or on (0, 11.
The functions we integrate on R will be continuous; those we integrate on
[0, 1] will be continuous on (0, 1). The elementary procedure consists of
passing to the limit:

n

f- n liof ' f 1= *+ li° J i

n

r
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We have the concepts of convergence and of absolute convergence. The
Lebesgue theory will be developed in the second setting: every Lebesgue
integrable function will have Lebesgue-integrable absolute value. For this
reason, we consider here only absolutely convergent improper integrals. The
following results can easily be proved by calculating primitives.

If f is continuous and positive on R and if f (x) N Ixi-4 as jxi -+ +oc,
then the integral of f on R exists if and only if a > 1.

If f is continuous and positive on (0, 1] and if f (x) ' jxI-13 as x -' 0.
then fo f exists if and only if /3 < 1.

These results generalize to R" by passing to polar coordinates. We find
in the first case that a > n, and in the second that 13 < n. (In the second
case, we integrate a function continuous on R" and zero outside a compact
set.)





I
Measurable Spaces
and Integrable Functions

Introduction

In this chapter, we follow an axiomatic method of exposition. The interest
of the concepts introduced will not appear until Chapter II. We introduce
the notion of a measure space, a space endowed with a family of measurable
subsets satisfying the axioms of a a-algebra. This approach parallels that
of the theory of topological spaces, where a topological space is a space
endowed with a family of open subsets. As we will see in Chapter IV, a
peculiarity of the concept of a a-algebra is that it is adapted to the propo-
sitional calculus (Boolean algebra). Since negation is an operation of this
calculus, this leads to the axiom that the complement of a measurable set is
measurable. The fact that a-algebras are closed under taking complements
is an essential difference between the family of open sets of a topological
space and the family of measurable sets of a measure space. In order to
be able to take limits of sequences, we impose another axiom: A countable
union of measurable sets is measurable.

Having defined the concept of a measurable space, we introduce a class of
morphisms adapted to it: the measurable mappings. We introduce a natural
measurable structure on a topological space: the Borel structure. Continu-
ous mappings are thus special cases of measurable mappings. A remarkable
result is that the limit of a pointwise convergent sequence of measurable
mappings is itself measurable. Thus all the functions appearing in prac-
tice in mathematical analysis are measurable functions. A measure space
is a measurable space which is given a "mass distribution". The concept
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of negligible sets, or sets of measure zero, is introduced; two measurable
mappings are considered equivalent if they differ on a negligible set.

We introduce the concept of convergence in measure, which gives a com-
plete metric space structure to the space M of equivalence classes of mea-
surable mappings from a measure space to a complete metric space. When
we consider functions on a measure space, i.e. mappings with values in R,
we introduce simple functions, those that assume finitely many values. The
integral, defined trivially on certain simple functions, extends to an appro-
priate completion, which defines the space L' of integrable functions. The
theorems on passage to the limit under the integral sign are then an easy
consequence of the fact that L' is a complete space. The chapter concludes
with Fubini's theorem and the duality between LP spaces.

1 Q-algebras

Let X be an abstract set. A a-algebra on X is a family A of subsets of X
satisfying the following three axioms:

1.0.1 The set X belongs to A.

1.0.2 If A E A, its complement A` E A.

1.0.3 Every countable union of sets in A belongs to A; i.e., if An E A
Vn E N, then (u,,ENAn) E A.

A Boolean algebra on X is a family B of subsets of X satisfying 1.0.1,
1.0.2, and

1.0.4 Every finite union of sets in the algebra B is in B.
Every a-algebra is thus a Boolean algebra. By using Axiom 1.0.2 and

passing to the complement, we find that 1.0.3 implies

1.0.5 If An E A, then (f1nEN An) E A.
An analogous statement is obtained for Boolean algebras by restricting

to finite intersections. In what follows, we will not pursue the parallels
between Boolean algebras and a-algebras, but the reader should note that
most theorems involving passage to the limit are false for Boolean algebras.

1.1 Sub-a-algebras. Intersection of o -algebras

Given two a-algebras A and A' on the abstract set X, we say that A' is
a sub-a-algebra of A if A E A' implies A E A. More formally, let P(X)
denote the set of subsets of X. We may view a a-algebra A on X as a
subset of P(X). The "order relation" between a-algebras corresponds to
the relation of inclusion between the subsets of P(X).

1.1.1 More generally, if 9 is an arbitrary family of subsets of X and A is a
a-algebra on X, we say that A D 9 if A E 9 implies A E A.
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1.1.2 Intersection of a-algebras

Definition. Let {Aa, a E 11, be a family of a-algebras on X. We denote
by A' = f1OEIAa the family of subsets of X defined by A E A' if and only
if A E AQ for all a E I. A' is a a-algebra called the intersection of the A0.

We verify only 1.0.3, the other axioms being even more obvious. Let
AnEA',set

Z = UnENAn,
and fix ao. Since An E A00 and App satisfies 1.0.3, it follows that Z E A.
As this is true for all ao, we conclude that Z E X.

1.2 a-algebra generated by a family of sets

1.2.1 Theorem. Let be a family of subsets of X. Then there exists on
X a smallest a-algebra containing g.

PROOF. Consider the a-algebras B on X such that

(P) BDQ.

Let I denote the family of a-algebras B satisfying (P), and set Ao =
f1BEIB. Then A0 is a a-algebra by 1.1.2, and it is the smallest a-algebra
of the family I. 0

1.2.2 Definition. Ao is called the a-algebra generated by 9. We say that
9 is a system of generators of A0.

1.2.3 Fundamental example: Borel algebras

Let X be a topological space and let Ox be the family of open subsets of
X. The a-algebra generated by Ox is called a Borel algebra, and written
Bx.

An element of Bx is called a Bored set. Open sets are Borel sets, as are
closed sets (as complements of open sets). The family of closed sets could
equally well be taken as a system of generators of tax.

1.3 Limit of a monotone sequence of sets
1.3.1 Definition. Let An be an increasing sequence of subsets of X. We
call the union of the An the limit of the sequence An, and we set

A ,,,= lim I An = UAn, where A, C Ai+i.
n

Similarly, given a decreasing sequence Bn of subsets of X, we call the
intersection of the Bn its limit.

B. = lim J. Bn = n Bn, where B. D Bn+i .

n



4 I. Measurable Spaces and Integrable Functions

A sequence of subsets of X is monotone if it is either increasing or de-
creasing.

1.3.2 A monotone class is a family M of subsets of X such that if (An} is
a monotone sequence for which An E M for each n, then its limit is in M.

1.3.3 Proposition. A a-algebra is a monotone class.

PROOF. Let {A,,} be an increasing sequence of sets in the a-algebra A.
Then by 1.0.3

limIA.=UAnEA.
Similarly, 1.0.5 proves the statement for decreasing sequences.

1.3.4 An arbitrary intersection of monotone classes is a monotone class.
Thus, given a family Z of subsets of X, there exists a smallest monotone

class Mo containing Z. Mo is called the monotone class generated by Z.

1.4 Theorem. Let 86 be a Boolean algebra of subsets of X, M the mono-
tone class generated by'3b, and B the a-algebra generated by 13b. Then
B=M.
PROOF. By 1.3.3, B is a monotone class. Since B contains Bb, it contains the
smallest monotone class containing Bb; thus B D M.

Conversely, for all A E P(X), let

1.4.1 4;(A)={BEP(X):AUB,A-B,B-AEM}.
Then the assertions B E 4'(A) and A E 4i(B) are equivalent.
Fixing A, we show that 4i(A) is a monotone class. Indeed, if B. is an increasing

sequence of elements of then

A U B is an increasing sequence of elements of M,
Bn - A is an increasing sequence of elements of M,
A - B is a decreasing sequence of elements of M,

and their limits are elements of M. Furthermore,

lim T (A U Bn) = A U lim 1 Bn,

whence lim T B. E 4'(A).
Let Ao E Bb; then Bo E 4'(Ao) for all Bo E Bb. Hence 4'(Ao) is a monotone

class containing Bb. Thus -b(Ao) M, or B E 4'(Ao) for any Ao E Bb, B E M.
Conversely, Ao E 4'(B); i.e., 4+(B) D Bb for any fixed B E M.
Since 4+(B) is a monotone class, it follows that O(B) D M.
We have proved that

1.4.2B-B',B'-B,BUB'EMwhenever B,B'EM.
Taking B' = X shows that B` E M if B E M, and thus

1.4.3 M is a Boolean algebra.

The following lemma, 1.4.4, implies that M is a o-algebra. Since M D Bb, M
contains the a-algebra generated by Bb; hence 8 C M.
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1.4.4 Lemma. Let Z be a Boolean algebra which is closed under increasing
limits. (That is, if Z is an increasing sequence of elements of Z, then
lim j Z,, E Z.) Then Z is a a-algebra.

PROOF. Let An E 2 and set Zn = U1 <p<nAp; then

UnAn=UnZn=limIZ, Z,
and Axiom 1.0.3 is satisfied.

1.5 Product a-algebras

Definition. Let X1, X2 be abstract sets equipped with a-algebras Al, A2,
and let the Cartesian product X1 x X2 be denoted by X.

1.5.1 A rectangle R is a subset of X of the form

R = Al x A2 with A; E A; (i=1,2).

The set of all rectangles is denoted by R.

1.5.2 The a-algebra generated by 1Z is called the product or-algebra and
denoted by Al ® A2-

1.5.3 The union of a finite number of disjoint rectangles is called an ele-
mentary set. The family of elementary sets is denoted by E.

1.5.4 Proposition. The elementary sets form a Boolean algebra.

PROOF. Note first that the union of a finite number of disjoint elementary sets
is an elementary set.

Let R = Al x A2, R' = A'1 x A'2 be two rectangles; then

(R)` = (A1 x X2) n (Xi x Aa).

Hence
R' - R= R1uR2UR3,

where Ri = (Ac n A') x (A2 n AZ), R2 = (A1 n A') x (A' n A2), and Ra =
(A; nA;) x (A12 nA'2). Thus

(i) R' - R is an elementary set.

Let E = RUR4 be an elementary set that is the union of two disjoint rectangles.
(We restrict to two in order to simplify notation.)

R'-E _ (R'-R)-Ra = (R1UR2UR3)-Rd = (R1-Ra)U(R2-Rd)U(R3-R4).

Applying (i), we obtain

(ii) R' - E is an elementary set if E E E, R' E R.

If E' E E then E' = UR; (R, disjoint) and E' - E = u(R, - E), whence

(iii) (E' - E) E E for any E, E' E E.
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Taking E' = X 1 x X2, we obtain 1.0.2. Furthermore,

(A1 xA2)n(A; xA2)_(A1nA;) x (A2nA2).
Hence the intersection of two rectangles is a rectangle and, more generally,

(iv) En E' E E if E, E' E E.

Indeed, if E = UR, and E' = UR' , then E n E' = u,,, (R, n Jr,). (Note that
the sets R, n R' are disjoint.)

Finally,

(v) EuE'=(E-E')U(E'-E)U(EnE').
The three quantities in parentheses on the right-hand side are elementary sets

by (ii) and (iv); since they are disjoint, E U E' E E and 1.0.4 is satisfied.

1.5.5 Corollary. The a-algebra Al ® A2 is the monotone class generated
by the elementary sets.

PROOF. 1.5.4 and 1.4.

2 Measurable Spaces

2.1 Inverse image of a a-algebra

Let X, X' be abstract sets and let f be a mapping from X to X'. Let g'
be a family of subsets of X'. We write

f-'(cc')_ {AEP(X):A= f-1(A') with A'Ec'}.
2.1.1 Proposition. Let A' be a a-algebra on X'; then f-1(A') is a a-
algebra on X. It is called the inverse image of A' under f and denoted by
A = f-1(A').
PROOF. The inverse image of X' is X. In addition,

U8 f -' (A'8) = f -1(U8A'') (Axiom 1.0.3 is satisfied);
[ f -1(A')] c = f -1(A'°) (Axiom 1.0.2 is satisfied).

2.1.2 Taking the inverse image preserves inclusion between a-algebrs:
f-1(A') D f-'(A2) whenever A' DA'.
2.1.3 EXAMPLE. Let Y be a subset of the set X', let i be the canonical
injection of Y into X', and let A' be a a-algebra on X'. Then

i'1(A') = {BEP(Y):i-1(B)EA')
= {BEP(Y):3A'EA'such that A'nY=B}.

In this special case, i(A') is called the trace or-algebra of the a-algebra
A' on the subset Y.

Since Y is a subset of X', every subset of Y can be identified with a
subset of X'. It is easy to verify that

(i) i-'(A') cA' . YEA'.
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2.1.4 Transitivity of inverse images

Suppose that X, X', and X" are three abstract sets, f and h are mappings
such that X f X' -h-+ X", and G" is a family of subsets of X". Then

f_'(h_'(g")) = (hof)-' (9").

2.2 Closure under inverse images of the generated a-algebra

2.2.1 Theorem. Suppose that X and X' are abstract sets, f is a mapping
from X to X', g' is a family of subsets of X', and A' is the a-algebra
generated by G'. Then f-'(A') is the a-algebra generated by f

PROOF. Let B denote the or-algebra generated by f'1(a').
B C f-'(A') since f(9') C f-'(A').
To prove that B D f (A'), we let

8'= {B'CX': f-'(B) EB}

and prove that 8' is a a-algebra.

(i) f -1(X') = X E B; hence X' E B'.
(ii) Let B' B'; then f-'(X'-B') =X-f'1(B')EBsinceBis

a a-algebra .
(iii) Let Bn E B'; then f -' (U B;,) = U. f -'(BI) E B.

B' D c'; hence B' contains A', the a-algebra generated by G'. Let A' E A'.
Then A' E B' since B' D A'. Hence f -' (A') E B. 13

2.3 Measurable spaces and measurable mappings

2.3.1 Definition. The pair (X. A) consisting of a set X together with a
a-algebra A of subsets of X is called a measurable space.

2.3.2 Definition. Given two measurable spaces (X. A) and (X', A'), a map-
ping f of X to X' is called measurable if f -(A') C A.

M((X, A); (X', A')) will denote the set of measurable mappings of (X, A)
into (X', A').

2.3.3 Proposition. The composition of measurable mappings is measur-
able.

PROOF. Let fl E M((X, A); (X', A')), f2 E M((X', A'); (X", A")). Then
by 2.1.4 f = f2of1 satisfies (f2ofl)-'(A") = f1 1(f2 '(A")) C fl '(,4') C
A, and hence f2 o f, is measurable. 0
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2.3.4 Proposition (Measurability criterion). Let (X, A) and (X', A')
be measurable spaces, let A' be the a-algebra generated by 9, and let 9' C
A'. Then the following are equivalent:

(i) f E M((X,A);(X',A'))
(ii) f-1(G') C A.

PROOF. Let Al be the a-algebra generated by f -1(G'). Then (ii) is equiv-
alent to Al C A. Furthermore, Al = f-1(A') by Theorem 2.2.1; hence (ii)
is equivalent to (i).

2.3.5 Measurable mappings into a product

Let (X, A), (Y1, B1), and (Y2, B2) be measurable spaces. Let Y, x Y2 be
given the product a-algebra B1 82, defined in 1.5.2, and let Sri (i = 1,2)
be the natural projection of Y1 x Y2 onto Y.

Lemma. ir1 E M((Y, X Y2, B1(9 B2); (Y1, B1)).

PROOF. We must consider 7ri 1(B1), where B1 E B1. But 7ri 1(B1) = B1 x Y2
is a rectangle, and hence an element of B1 (& B2.

Proposition (Measurability criterion for a mapping into a prod-
uct). Let f be a mapping of X into Y1 x Y2. Then f is measurable if and
only if its components fi = iri o f (i=1,2) are measurable.

PROOF. Suppose that f is measurable. Then, by the preceding lemma,
7r1 o f is a composition of measurable mappings and hence measurable.
Conversely, suppose that f1 and f2 are measurable and let R = B1 x B2
be a rectangle. Then f-1(R) = fj 1(B1) n fz 1(B2). Each f= 1(B4) is in
A, hence so is their intersection, and the measurability criterion 2.3.4 then
shows that f is measurable.

2.4 Borel algebras. Measurability and continuity.
Operations on measurable functions

2.4.1 Separability and measurability

Separability of topological spaces

Let Y be a Hausdorff space.

(i) Y satisfies the first separability axiom if there exists a subset D of Y which is
countable and dense in Y (closure of D = Y).

(ii) Y satisfies the second separability axiom if there exists a countable family of
open subsets H, such that every open set in Y may be written as a union of the
H, that it contains. The family Hi is called a basis of open sets for Y.

(iii) EXAMPLE. Let Y = R and let Q be the set of rational numbers. Setting
Hg1,47 = (qt, Q2), we obtain a countable family of intervals. Then every interval
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(x1, x2) can be written as a union of the Hi that it contains. The same holds for
any open set.

(iv) Proposition. Let Y be a metric space satisfying the first separability axiom.
Then it satisfies the second.

PROOF. Let {yi} be a dense sequence in Y. We denote by d the distance on Y
and set Hi,m = {y E Y : d(y, y,) < m-' }, where m E N. For each open set 0 in
Y, let 0' be the union of the Him contained in 0. Then 0' is an open subset of
0. Let z E 0. Then there exists mo such that the ball with center z and radius
mo' is contained in O. Let j be such that d(y z) < (2mo)-'. Then z E Hj,2mo,
and hence 0 C 0'.

(v) The space R" satisfies the first separability axiom and hence the second.

(vi) The second separability axiom implies the first. It suffices to choose a
point y in each Hi to obtain a dense sequence.

Because of (vi) and (iv), we refer to a metric space which has a dense
sequence as a separable metric space.

(vii) Let Y, Y' be two separable metric spaces. Then their product Y" is
separable. Set y'J,k = (yj, yk); then the {yi'k} form a countable dense subset
of Y".

(viii) Proposition (Measurability criterion). Suppose that (X, A) is a
measurable space, Y is a topological space satisfying the second separability
axiom, and Hi is a basis of open sets of Y. Then a mapping f : X - Y is
measurable if and only if

f-'(Hi)EA, i E N.

PROOF. This follows immediately from the measurability criterion 2.3.4. It
must be shown that, for every open set 0, f (O) E A. Let 0 = U, Hi.;
then f`'(O) = U8f-'(Hi,) E A. 0

REMARK. (viii) provides an explicit criterion for the measurability of a
function.

2.4.2 Product of Borel algebras

Proposition. Consider two separable metric spaces X1 and X2 and their
product Y = X1 x X2. Let Y be equipped with the product topology. Denote
by BI, B2i and By the associated Borel algebras. Then By = BI ® B.

PROOF. Y is separable by 2.4.1. The family of open sets of the product
topology is generated by the countable unions of open rectangles: Ro =
01 x 02, where 0; E Ox; . Hence Ro E BI ®B2; that is, Oy C BI 0B2. It
follows that By C Bi ®B2.

Let 1r1 be the projection of Y onto X1. Then 1r1 E M((Y, By); (XI, BI))
since aj I (Oxl) C By.
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It follows from 2.3.5 and the fact that Tri o j (j = 1, 2) is measurable
that the identity mapping j : (Y, By) F-' (Y, BI (9 B2) is measurable. Thus
j-'(B1®B2)CBy,or B1®B2CBy.

2.4.3 Measurability and continuity

Let X and X' be topological spaces. Equipping them with their Borel
algebras Bx and Bx,, we obtain measure spaces (X, Bx) and (X', Bx').

Proposition. Every continuous mapping f from X to X' is a measurable
mapping from (X,Bx) to (X',Bx').

PROOF. We use the measurability criterion 2.3.4. It must be shown that
f -'(Ox,) C Bx. But since f is continuous, the inverse image of an open set
is open, whence f-1(Ox,) C Ox. Since Ox C Bx, the conclusion follows.
0

2.4.4 Algebraic operations on measurable functions

Consider the field of real numbers R with its Borel algebra BR. Given
a measurable space (X, A), we denote by G°(X, A) the set of measurable
mappings from (X, A) to (R, BR). Elements of G°(X, A) are called measur-
able functions. When X is a topological space with its Borel algebra Bx,
elements of G°(X, Bx) are often called Borel functions.

Proposition. The absolute value of a measurable function f is measurable.
The sum and product of two measurable functions are measurable. The
multiplicative inverse of a measurable function which is everywhere nonzero
is measurable.

PROOF. Let u be the mapping from R to R defined by the absolute value:
u(C) = 1(j. Then u is continuous, hence measurable, and 2.3.3 implies that
If I= u o f is measurable.

Let 4' be the continuous mapping of R2 R defined by 4 (t;1, (2) _
(1 + (2. Similarly, let 'D (C1, (2) = (1(2

Let f1 and f2 be measurable functions on X, and let F(x) = (f, (x), f2(x)).
Then F : X - R2 and, by 2.3.5,

F E M((X, A); (R2, BR (9 BR)).

By 2.4.2, BR ® BR = BR2; hence F E M((X, A), (R2, BR2)). Since 4i is
continuous, 4i E M((R2, BR2); (R, BR)). Thus, by 2.3.3,

4) o F E M((X, A); (R, BR)) = G°(X, A).

But (4) o F)(x) = fi (x) + f2(x).
Similarly, W o F E G°((X, A)) and (IF o F)(x) = f1(x) f2(x).
We denote R - {0} by R'. Let rl be the continuous mapping of R' -, R'

defined by q(() = s and let f E G°(X, A), f (x) 54 0 for all x E X. If 0 is
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an open set in R, then o, = O n R' is an open set in W. Set g(x) = f
Then g-1(O) = g-1(O') = Since'r-'(O') is an open set
in R' and R' is open in R, 17'1(O') is open in R. Since f is measurable,
f-'(rl-'(O')) E A.

2.5 Pointwise convergence of measurable mappings

In this section, (X, A) denotes a measurable space, Y a metric space, and
By the Borel algebra of Y. We say that a sequence of mappings fn : X '--- Y
converges pointwise to fo if lim fn(x) = fo(x) for every x E X.

2.5.1 Theorem. Let fn be a sequence of measurable mappings which con-
verge pointwise to fo. Then fo is measurable.

REMARK. It is well known that the pointwise limit of a sequence of contin-
uous functions is not necessarily continuous. This theorem shows the great
stability of the property of measurability.

PROOF. Let fn E M ((X, A); (Y, B)). Let d denote the distance in Y and
let 0 be an open set in Y. For every k > 0, let

Ok={xE0:d(x,Oc)>k}.

Then Ok is an increasing

`sequence

of open sets in 0 and 0 = UkENOk.
Moreover, denoting by Ok the closure of Ok, we have Uk c 0k+1

Since d(fo(x), f,n(x)) -p 0, it follows that

fo(x) E Ok fq(x) E Ok if q is large enough, say q > ma.

Set Hn,0 = flq>,na fy ' (Ok ). Since fq is measurable, each fq 1(Ok) E A,
whence H E A. Let Gk = U,noHk,,0; then Gk E A.

We have thus shown that fo(x) E Ok x E Gk+1 or, taking the union
over k, fo(x) E 0 = x E UTEN G', which may be written as

(i) fo 1(O) C TV, where W = UTENGr E A.

We now prove the reverse inclusion. Let x1 E G'. Then there exists m1
such that x1 E Hn,,, or xi E fq (0r) if q > ml. Thus lim fq(xl) E Or C
Or+1 C 0 and therefore

(ii) fo 1(O) D W.

From (i) and (ii) it follows that fo 1(O) = W, or W E A, whence fo is
measurable.

For emphasis, we restate (i) and (ii) in the following form.
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2.5.2 Fundamental lemma. Let { f,J be a sequence of mappings from X
to the metric space Y that converges pointwise to fo. Then for every open
set 0 in Y,

f°'(0) = V I 1 f9'(Or)
r,m q>m

where Or = { x E O : d(x, 0`) > 1 } .

ll
r111)

2.6 Supremum of a sequence of measurable functions

For convenience of notation, we introduce in this section the set R of real
numbers completed by adjoining the two elements +oo and -oo.

Addition and multiplication in R are defined in the elementary way,
except for the "indefinite forms" +oo - -oo and 0 oo.

R is given the obvious order relation, with +oo the largest and -oo the
smallest element. A distance is defined on R by setting

d(x, x') = IArctan x - Arctan x 'J.

Every subset of R has a supremum, or least upper bound. The empty
set is assigned the supremum -oo.

2.6.1 Proposition. Let { f,a} be a sequence in M((X, A); (R, Bk)) and let
W = sup f,,. Then V E M((X, A); (R, B -R)).

PROOF. Since {+oo} is a closed subset of R, fn 1({+0o}) E A. Set G =
Un fn 1({+oo}). Then G E A and V(x) = +00 if x E G.

Let X' = Gc, equip X' with the trace A' of the o-algebra A, and denote
by fn the restriction of f to X. Then

fn E M((X',A'); (R,BR)) = C0(X',X)

Moreover, by 2.4.4, sup(fi, f2) E G°(X, A')
More generally, let the sequence be defined by recursion: g1 = fl'

and gk = sup(fk, gk-1) if k > 1.
An induction argument shows that gk+1 E G°(X', A'). Moreover, gk <

9k+1. Thus {gk} is an increasing sequence, hence convergent in R. Set
sp1(x') = limgk(x'), x' E X'. Then, by 2.5.1, cp1 E M((X', A'); (R, BR)).
Furthermore, V(x) = p, (x) if x E X' and o(x) = +oo if x V X'.

Let K be a closed subset of R. Then

W-1(K) = (pi 1(K) if +oo 0 K
cp1(K)=wi1(K)UG if +OOEK.

Since cpi 1(K) = X' fl A with A E A and X' E A, it follows that co 1(K) E
A.

2.6.2 Corollary. Let f E .M((X,A); (R,%)). Then (limsup E

M((X, A); (R, Bk)).
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PROOF. Let (Pn = supp>n fp. Then Vn is measurable. The sequence fVn(x)}
is decreasing, hence convergent in A, and 2.5.1 gives the result.

3 Measures and Measure Spaces

Definition. Let A+ = {( E R : C > 0) U {+oo}. Given a measurable
space (X, A), a measure on (X, A) is a mapping it : A -' A+ satisfying the
following two axioms:

Countable additivity (a-additivity) axiom
3.0.1. Let Ak E A, k E I, be a finite or countable family of measurable sets
that are pairwise disjoint; that is, Ak n At = 0 if k i4 1. Then

(i) µ U Ak = Ep(Ak).
kEI kEI

In particular,

(ii) #(A1 U A2) = µ(A1) + µ(A2) if Al n A2 = 0 (finite additivity).

a-finiteness axiom
There exist An E A such that

3.0.2 X = UnAn and p(An) < +oo Vn.

The sequence { An } is called an exhaustion sequence for X. If p(X) <
+oo, X is said to have finite measure (or finite total mass) and it itself is
called a finite measure. It is possible to develop part of the theory without
using 3.0.2, the a-finiteness axiom. However, the axiom will always be sat-
isfied for the applications we have in mind, and we take this point of view
for ease of exposition.

Definition. A measurable space (X, A) equipped with a measure p defined
on A is called a measure space and is denoted by (X, A, p).

EXAMPLE. Let {xi} be a countable sequence of points of X and let {ai}
be a sequence of positive real numbers. For A = P(X) and A E A, set

p(A) = E ai
xtEA

Then (X, A, p) is a measure space. If a, = 1, i E N, this measure p is
called the counting measure associated with the sequence {xi }; µ(A) equals
the number of points of the sequence {xi} which lie in A.

This example is trivial and does not reveal the complexity of the theory.
In fact, we will not obtain nontrivial examples of measure spaces until
Chapter II.
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3.1 Convexity inequality

Proposition. Let (X, A, p) be a measure space. Then

3.1.1 p is increasing; that is, if Al and A2 E A and Al C A2, then µ(A1) <
µ(A2)
3.1.2 p is convex; that is, if Bl, ... , Bn E A (not necessarily disjoint), then

n n

p U Bi < Ep(Bi).
i=1 i=1

PROOF. Let Al C A2 and let B = Ai fl A2; then B E A and A2 = Al U B.
The finite additivity axiom gives

p(A2) = p(A1)+p(B)

Since p(B) > 0, we conclude that µ(A2) > µ(A1).
Similarly, let the sequence B1, ... , B,,, ... be defined recursively:

B1 = B1 and Bq = Bq fl (Uj<gBj)", q > 1.

Then Bq E A, Uy=1Bj = Ujyj 1B., and by finite additivity

m _
(Ujm1B,) = Eµ(BJ

3=1

Bj C Bj implies p(Bj) < p(B,), and the desired inequality follows. 0

3.2 Measure of limits of monotone sequences

Theorem. Let A1, A2, ..., An, ... be an increasing sequence of measurable
sets. Let +x

limIA2=UAj.
i=1

Then

3.2.1 p(lim j Ai) = lim p(Ai ).

Theorem. Let B1, B2, ..., Bn, ... be a decreasing sequence of measurable
sets. Let

+M
limj.B,=nB,.

i=1

3.2.2 Suppose that there exists ko such that p(B,) < +oo. Then

3.2.3 p(lim j Bk) = limp(Bk).
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REMARK. The properties described by these two theorems are sometimes
called continuity on increasing sequences and continuity on decreasing se-
quences.

PROOF. Consider the measure space (X, A, µ). For An E A, set Al = Al
and An+1 = A;, fl An+1 if n > 1. _

Then An+1 E A, the An are disjoint, and Aj = UQ<jAQ. Hence, by finite
additivity,

p(A,) = Ep(A9)
q<j

Moreover, uj'_ 1 Aj = U, _ 1 Aj and, by a-additivity,

00

too _

UA, =>p(A,)
j=1 j=1

Hence, for increasing sequences, 3.2.1 reduces to the simple observation
that the sum of a series of nonnegative terms is the limit of its partial
sums; that is,µ(AJ) = lim,. Eq=1µ(A,.). This limit always exists,
whether it is finite or infinite.

In order to prove 3.2.3, we set Ak = Bko f1 Bk, k > ko. Then Ak is
an increasing sequence. The relation Bko = Bk U A,, Bk and Ak disjoint,
implies p(Bko) = p(Bk)+p(A,). Hence p(Ak) < p(Bk0) and µ(lim T Ak) _
limp(Ak) = /3 < µ(Bk0). We have

(lim I Bk)` U (lira T A') = Bko,

whence

p(lim j Bk) + p(lim T A') = p(Bko ),

or finally

p(lim j Bk) = µ(Bk0) - limp(A,) = lim[p(Bk0) - µ(Ak)J = limµ(Bk).o

3.2.4 Application - Exhaustion principle

We now roughly sketch a principle that will often be used. Let (P) be a
property that is true for all finite measures. Let (X, A, p) be a measure
space with an exhaustion sequence A. Let Xn = A, equipped with the
trace o-algebra An of the a-algebra A, and let pn be the restriction of it
to A. Then each µn is finite and therefore satisfies (P).

To conclude that p satisfies (P), it suffices to show that "the limits of
values of p,, appearing in (P) are finite".



16 I. Measurable Spaces and Integrable Functions

3.2.5 REMARK. Let a be a mapping from A to R+ satisfying the finite
additivity axiom 3.0.1(ii) and property 3.2.1 of continuity with respect to
increasing sequences. Then or satisfies 3.0.1(i), since

n +00

a(Ui°Ap) = a(lim(UI Ap)) = lim a(Ui Ap) = lim o,(Ap) _ o,(Ap),
1 1

where the third equality follows from finite additivity.

3.3 Countable convexity inequality

Proposition. Let (An) be a sequence of (not necessarily disjoint) elements
of A. Then

(3.4)n F
+oo

l.&(An)-
1 n=1

PROOF. Set Bq = Un=1 A. Then Bq is an increasing sequence, and by
3.2.1 we have

(i3A)µn = l im µ(Bq).
n=1

Furthermore, by the finite convexity property 3.1.2,

q +00

n=1 n=1

4 Negligible Sets and Classes
of Measurable Mappings

The concept of measurable mappings is extremely easy to work with. In
particular, the theorem that a pointwise limit of measurable mappings is
measurable makes the operations of analysis very convenient. The drawback
of this convenience is that the space of measurable functions is enormous,
and therefore hardly usable. We will work on a quotient space.

4.1 Negligible sets

Definition. Let (X, A, p) be a measure space. A subset Z of X is called
negligible if there exists A E A such that µ(A) = 0 and A D Z.

4.1.1 Proposition. A countable union of negligible sets is negligible.
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PROOF. This follows from countable convexity:

(uA)i < p(Ai)
i i

Since every term on the right-hand side is zero, the sum of the series is
zero. 0

Definition. A property (P) is said to be true p-almost everywhere (denoted
p-a.e.) on the measure space (X, A, p) if

{x : (P) does not hold at x} is contained in a negligible set.

4.1.2 Let (P1) be a proposition implying the proposition (P2). Then (P1)
true p-a.e. (P2) true p-a.e.

4.1.3 Theorem. Let (PI), ..., (Pa), ... be a sequence of properties defined
on (X, A, p). Suppose that each of the properties (Pi) is true p-a.e. Then
their conjunction is true it-a. e.

PROOF. Let A; be a negligible set that contains {x : (Pi) does not hold at x}.
Then A = U;Ai is negligible. If x 0 A,,, then all the (Pi) hold at x. 0

4.2 Complete measure spaces

4.2.1 Definition. Given the measure space (X, A, p), the a-algebra A is
called p-complete if every subset of a negligible set is measurable.

The measure space (X, A, p) is called complete when A is p-complete.
The space is complete if and only if every subset of a negligible set is

negligible.
On a complete measure space, a property P is true p-a.e. if the set

{x : (P) does not hold at x} is negligible.

4.2.2 Completion theorem. Let (X, A, p) be a measure space. Then
there exist a a-algebra A' D A and an extension p' of p to A' such that
(X, A', p') is complete and, for all A' E A', there exist A1, A2 E A' with
Al C A' C A2, 14(A2 - Al) = 0. This o-algebra A' is unique and will be
called the completion of A.

PROOF. Define

A'={ZEP(X):3A1,A2EAsuch that A1cZCA2andp(A2-A1)=0}.

Clearly A' D A. We show that A' is a a-algebra. If Z E A', then Az C Z° C Ai
and Ai - Az = A2 - Al, whence Z° E X. Hence Axiom 1.0.2 is satisfied.

Let Zn E X. Then there exist Ai and AZ such that Ai C Zn C A. Set
Z°° = UZn, A010 = UA', and A020 = UAa. Then

A010 C Z°° C AZ and AZ - Ai° C U(A2 - Ai ).
n
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The right-hand side, as a countable union of negligible sets, is negligible,
whence Z E A' and A' is a o-algebra.

To extend y to A', we first note that µ(A2) = µ(A1) + µ(A2 - A1) = µ(A1).
For Z E A', let µ'(Z) be defined by µ'(Z) = µ(A1).

We now show that this is independent of the choice of Al C Z C A2. Let
A, -c Z C A2; A,, A2 E A, p(A2 - A1) = 0. Then A2 D Z D A1, whence
µ(A2) ? µ(A1) = µ(A2). Similarly µ(A2) ? µ(A2), whence µ(A2) = µ(A2).
Moreover, if Z" is a sequence of disjoint sets, then so is An ; hence u(UA") _
E µ(A1 ), and we have shown that µ' is countably additive.

Finally, p' is complete: letting Z E A' with t<(Z) = 0, there exists A2 E A
satisfying Z C A2 and µ(A2) = 0. Let Z1 C Z. Then 0 C Z, C A2, where 0, A2
E A and µ(A2 - 0) = 0. Therefore Z1 E A'. 0

4.3 The space 1Vj,((X,,A); (X', .0
(i) On M((X, A); (X', A')), let the equivalence relation be defined by

f - f' if f (x) = f'(x) µ-a.e.

The equivalence class of f is denoted by 7.

(ii) The transitivity of this relation follows from 4.1.3.

4.3.1 Definition. The quotient of M by this equivalence relation is denoted
by Mµ((X, A); (X', A')).

An element f E M,, is a mapping f : X -+ X', defined "up to a set of
µ,-measure zero".

4.3.2 Let E be a negligible set and let p: X - E V.
Suppose that cp is a measurable mapping when X - E is given the trace

a-algebra induced by A. Define f : X -' X' by setting

f (x) _ p(x) if x E X- E
f(x)=x'0 if xEE,

where x' is an arbitrarily chosen element in X'.0
Then f E M((X, A); (X', A')), and o determines the equivalence class

off in Mµ((X,A);(X',A')).

4.3.3 REMARK. When X' = R and A = BR, the operations defined on
measurable functions (sum, product, sup) are compatible with the equiva-
lence relation. The quotient of L°(X,A) = M((X,A); (R, HR)) is denoted
by L°,(X, A).

Thus the operations sum, product, and sup are defined on LI (X, A).
Moreover, any element of LO(X,A) with a representative that is nonzero
almost everywhere has a well-defined inverse. L° (X, A) is called the space
of equivalence classes of measurable functions.



5 Convergence in MM((X, A); (Y, By)) 19

5 Convergence in M,((X,A); (Y,BY))

Throughout this section (X, A, µ) denotes a measure space, Y a
separable metric space, and By the Borel algebra of Y.

5.1 Convergence almost everywhere

5.1.1 Definition. Let 7. E Mp ((X, A); (Y, By)). { fn} is said to converge
almost everywhere if, when representatives fn of fn are chosen, { fn(x)} is
convergent p-a.e.

We first show that this definition is independent of the choice of rep-
resentatives. Let gn = fn µ-a.e. Denote by (Pn) and (F) the following
propositions:

(Pn) 9n(x) = fn(x)

(F) lim fn (x) exists.

Let (G) be the conjunction of (F) and the (P,,). Then, by 4.1.3, (G)
is true µ-a.e. Since (G) implies the convergence of the gn, 4.1.2 gives the
result.

5.1.2 Proposition. Let 7n E Mµ ((X, A); (Y, By) ). Suppose that 17n } con-
verges almost everywhere. Then

lim f" (X)

defines an element go E M, ((X, A); (Y,By)).

PROOF. Choose an arbitrary yo E Y, let (F) be defined as in 5.1.1, and let
K be a negligible set such that K D {x : (F) is not satisfied at x}. Let

9n(x) = fn(x) X E K
9n(x) =yo SEK`.

Then, by 4.3.2, gn E M((X, A), (Y, By)) and gn = 7n
Moreover, if x E K then {gn(x)} converges by 5.1.2; if x f K, then

gn (x) = yo and hence the sequence converges.
Thus {gn(x)} converges for all x E X, and Theorem 2.5.1 shows that

go = lim gn satisfies
9o E M((X,A);(Y,By))

Hence
lim fn = To- E MI,((X,A); (Y, By)).D

5.1.3 Lemma. Given f,g E M((X,A);(Y,By)), let qf,9 be defined by
q1.9(x) = d(f (x), g(x)). Then qf,9 is a measurable function and Vq E R+
(x: gf,9(x) > g} is measurable.
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PROOF. Let Y2 = Y x Y and let 0 be the mapping from y2 into R+
defined by the distance: i 1(yl, y2) = d(yi, y2).

Let H : X -' Y2 be defined by x (f (x), g(x)); then, by 2.3.5, H E
M((X, A); (1'2, By.)).

Since 0 is continuous, 0 o H E M((X, A); (R, Bit)).
Moreover, since ('i, +oo) is an open set in It, gj9((Tl, +oo)) E A. 13

5.1.4 Egoroff's theorem. Let (X, A, p) be a measure space and suppose
in addition that p(X) < +oo.

Then fn E MM((X,A),(Y,By)) converges p-a. e. to fo if and only if,
choosing representatives fn, fo of the classes f,,, fo,

de > 0 3K, E A such that p(KE) < e

and f, (x) converges uniformly on K, to fo.

PROOF. Necessity is clear. Set e = m-1, m a positive integer. Then f,,
converges to fo on UK,,,-, = G. Since p(G`) < p(KK_,) for every m,
µ(G`) = 0.

We now prove sufficiency. Set

An,q = {x: d(f(x), fo(x)) >

Then A,,,q E A by 5.1.3.
Let B,,,,q = Un>mAn,q. Since Bm,q is a decreasing sequence for fixed q,

the hypothesis of convergence p-a.e. together with the limit theorem 3.2
imply that p(Bm,q) -- 0 for every fixed q as m +oo.

Fix an increasing sequence Mk such that p(Bm,k,k-i) < e 2-k. Set K,, _
U01 Bm,,k-1 Then

p(K,) < e and d(fm, (x), fo(x)) < if j > mk, x E K,.

5.2 Convergence in measure

Convergence almost everywhere allowed us to introduce a notion of conver-
gence of sequences in M. We now define a metric on the space M., and
thus a new notion of convergence.

Let (X, A, p) be a measure space and let (Y, By) be a metric space
equipped with its Borel measure. We denote by d the distance on Y.

5.2.1 Construction of an extended distance on M.((X,A), (Y,By))

Let f, g E M and let q1,9 be as defined in 5.1.3. With the pair of functions
(f, g) we associate the subset of (R+)2 defined by

K(f,g) = {(e,rl) E (R+)2: A(gl,l(rl,+oo)) S e).
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Set
e(f, g) = inf(e + 17) where (e, q) E K(f, g).

If K(f, g) is empty, we set e(f, g) = +oo.

5.2.2 An equivalent extended distance

Set
e(f, g) = 2 inf(A) where (\,A) E K(f, g).

Then we have
e(f,9) e(f,9) <- 2e(f,g).

The first inequality is proved by writing e(f, g) = inf(A+A), with (A, A) E
K(f, g). Note, moreover, that if (e, 71) E K(f, g), then (e+a,'7+$) E K(f, g)
for any a,)3 > 0. If e > rl, we take a = 0 and 3 = e - n to obtain
e(f, g) < 2e < 2e(f, g). The case e < 17 is treated in the same way.

5.2.3 Lemma. Let f,g,h E M((X,A);(Y,By)). Then

e(f,g) = e(g, f ),
e(f,g) = 0 is equivalent to f (x) = g(x) ti-a. e., and
e(f, h) < e(f, g) + e(g, h).

PROOF. The first statement is clear, and we prove the second. If e(f, g) = 0,
then there exists a pair

(en, 17n) E K(f, 9), - - + 17n 0.

We may assume that rl,, is a decreasing sequence. Then q-1((1ln,+oo)) is an
increasing sequence and, by the limit theorem 3.2.1,

p(lim T gf.s((nn,+oo))) = limp(gf.9((17n,+oo))) < lime,, = 0,

whence
µ({x : d(f (x), 9(x)) > 0}) = 0, i.e. f(s) = 9(x) µ-a.e.

Conversely, if f (x) = g(x) p-a.e., then

,u(gj.9((rl, +oo))) = 0 d17 > 0.

It remains to show that the triangle inequality holds. By the triangle inequality
on Y,

of h(x) :5 g1,9(x) +gg.h(x)
Let (fl, rl,) E K(f, g) and (C2,172) E K(g, h). Then qj.h (x) > 171 + 172 implies that
gj.9(x) > 171 or gg,h(x) >, M. Hence

gJ.h((1l1 +112,+00)) gj.g((111,+oo)) <Jgg h((/)2,+00))

and, by the convexity inequality,

14(g7.h((1?1 +172,+00))) Gel +e2.
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We have thus shown that (El, i i) E K(f, g) and (E2, m) E K(g,h) imply that
(E1 +62,771 +T)2) E K(f,h)

Set
G = K(f, g) + K(g, h)

{(E, TI) E (R+)2 : E = E1 + E2, n = q1 +'T)2,
with (E1,n1) E K(f,g), (C2, n2) E K(9,h)}.

Then G C K(f, h), and we obtain

e(f, h) = inf (F. + q) <_ inf (E + T)) = inf(E1 + E2 +'g1 + 172)
(e.n)EK (c.n)EC

with

Thus

(E1,T)1) E K(f,g) and (C2, q2) E K(g,h).

e(f, h) < inf(E1 + nl) + inf(E2 + q) = e(f,g) + e(g,h).

5.2.4 Corollary. If f = f and g = g' i -a. e., then e(f,g) = e(f', g') .

PROOF. Since e(f, g) e(f, f') + e(f', g') + e(g', g) and the hypotheses
imply that the first and third terms on the right-hand side are zero, it
follows that e(f,g) < e(f',g').

The opposite inequality is proved in the same way. 0

REMARK. e(f, g) depends only on the equivalence classes f and
Abusing notation, we set e(7, 9) = e(f, g), where f and g are chosen in

the classes of f and 9.

5.2.5 Proposition. Suppose that (X, A, p) is a measure space and Y is
a metric space. Let M,,((X, A); (Y, By)) be the space of equivalence classes
of measurable mappings from X to Y and let e be as defined in 5.2.2. Set

4 (f,9) e(f, 9)
= 1+e(f,9)

Then d,, is a distance on M,,.

PROOF. Lemma 5.2.3 shows that e satisfies the axioms for a distance, except
that e may assume the value +oo. We use a construction common in topology;
let

k(t) 1 + t'
t E R+, k(+oo) = I.

It is elementary to verify that the function t i-+ k(t) satisfies

k(t1 + t2) < k(ti) + k(t2), t1, t2 > 0.

It follows that d,, satisfies the triangle inequality and thus defines a distance
on M,,.0

REMARK (1). If p(X) < C, then it is always true that (C, 0) E K(f, g) and
hence that e(f, g) < C. In this case it is unnecessary to use d,,; e may be
taken as a distance.
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REMARK (ii). A sequence fn E M1, is a Cauchy sequence with respect to
the distance dµ if and only if e(f,,,, fn) - 0 whenever m and n - +oo.

5.2.6 Definition. A sequence fn is said to converge to fo in measure if
e(fn, fo) --* 0.

Proposition. The sequence fn converges to fo in measure if and only if,
for every fixed g > 0,

µ({x : d(fn(x), fo(x)) > 77}) -+ 0 as n --* +oo.

PROOF. (4--) Let no be such that

p({x : d(fn(x), fo(x)) > 71}) < 71 if n > no.

Then (71,71) C K(fn., fo), whence

e(fn,fo) < 271 if n > no.

(=o-) Let 711 < 71 be given. Using 5.2.2, we can find n1 such that e(fn, fo) <

2ri1 if n > n1; i.e., (711,771) E K(fn, fo). Hence

p({x : d(fn, fo) > 77}) < 711.

Since {x : d(fn, fo) > 771 } C {x : d(fn, fo) > 71}, it follows a fortiori that

Ft({x : d(fn, fo) > 7J}) < 71, if n > n1.O

5.2.7 Theorem (Comparison of convergence in measure and con-
vergence almost everywhere). Suppose that (X, A, p) is a complete
measure space, Y is a metric space, fo E M,, ((X, A), (Y, By)), and { fn} is
a sequence in M,,,((X, A), (Y, By)).

(i) If dµ(fn, fo) -* 0, then there exists a subsequence {fn,, } of { fn }
such that fnk --+ fo p-a.e.

(ii) Suppose in addition that It is a finite measure. Then the µ-a. e.
convergence of fn to fo implies that dµ(fn, fo) 0.

The proof depends on the following important lemma:

5.2.8 Lemma (Borel-Cantelli). Let {An} be a collection of elements of
A such that

1: p(An) < +oo.

Then p-almost every x lies in at most a finite number of A.
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PROOF. Set Bm = Un>mAn Then En>m p(An) by the con-
vexity inequality; hence limn-. p(Bm) = 0. But since Bn is a decreasing
sequence, it follows from the continuity theorem (3.2.3) that p(nnBn) =
limp(B,,) = 0. Note finally that x 0 nnBn . x is in only finitely many
An. O

PROOF OF THE THEOREM (PART (i)). Let ak be the general term of a
convergent series (for example, ak = 2-k). Fix an increasing sequence {nk}
such that e(fm, fo) < 2ak if m > nk. Set

Ak = {x : d(fn,t(x),fo(x)) > ak}; then p(Ak) < ak.

The Borel-Cantelli lemma implies that, p-almost everywhere, x belongs
to only finitely many Ak. Thus

for /4-almost every x, there exists an integer s(x) such that d(fn,k (x), fo(x))
< ak if k > a(x).

Hence fnk converges p-a.e.to fo. 0

PART (ii). Fix c > 0. Set

G = S x : supd(fq(x), f. (x)) > ET
t q>n

Then {Gn} is a decreasing sequence and, by 5.1.3 and 2.6.1, Gn E A. Since
Gn C X implies that a(G,,) < +oo, we can use the limit theorem 3.2.3 to
conclude that p(rj, Gn) = limp(Gn).

The hypothesis of convergence p-a.e. implies that the left-hand side is
zero. Let no be such that E; then we have e(fn, fo) < 2E if n > no.

5.2.9 Theorem. Suppose that (X, A, p) is a measure space and Y is a
complete metric space. Then M,, ((X, A); (Y, By)), equipped with the metric
dµ, is a complete metric space.

PROOF. Our approach parallels that of the proof of 5.2.7(ii). Let {f,} be a
Cauchy sequence in M,,,; using a result from topology, we need only show
that the sequence (f,,} has a subsequence that is convergent with respect
to the distance dµ. Let ak be the general term of a convergent numerical
sequence. Fix an increasing subsequence {nk} such that e(fnk, fn) < 2ak
for all m > nk. Set

Ak = {x : d(fnk(x),fnk+t(x)) > ak};

then p(Ak) < ak, or

d(fnk (x), fnk+t (x)) < ak if x f Ak.
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Let e > 0 be given, fix k° such that Ek>ko ak < e, and set Dko
Then

(i) p(Dko) < E and d(fnk (x), fnk+l (x)) < e if x o Dko.
k>ko

Hence {yk} = {fnk(x)} is a Cauchy sequence if x f Dko.
As this is true for every ko, it follows that {fnk(x)} converges if x

nkDk; but µ(nkDk) = 0, i.e. {fnk } converges p-a.e. to fo E MA.
By inequality (i) and the triangle inequality,

(ii) d(fnk (x), fnk, (x)) < c if k, k' > ko and if x f Dko.

Fixing nk and letting k' go to infinity, we obtain

(x), fo(x)) < e if k > ko and x 0 D,, ,

whence

or

e(fnk,fo) < 2e

d,t(fnk, fo) 5 2c

if

if

k > ko,

k > k°.

6 The Space of Integrable Functions

0

In this section, we exhibit a vector subspace of M,, ((X, A); (R, BR)) =
L°(X, A) which will be provided with a Banach space structure. The dis-
tance defined by this norm will be an upper bound for the distance d,,, and
will thus define a finer topology than that associated with dµ.

6.1 Simple measurable functions

Let (X, A) be a measurable space. A simple function is a measurable map-
ping from X to R such that cardinal (f (X)) < +oo. We denote by 6°(X, A)
the set of simple functions.

Let (X, A, ie) be a measure space. We denote by Eµ (X, A) the subset
of L° (X, A) consisting of those equivalence classes of measurable functions
which contain a simple function.

If f, g E E°(X, A), then

card((f + g)(X)) < card(f(X))card((g(X))

and

card((fg)(X)) < card(f (X))card(g(X)),

so that E°(X, A) is a vector space equipped with a product. The same holds
for E A) so is If 1; hence the operation sup
is defined on e° and E.
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6.2 Finite Q-algebras

Let Y be an abstract set and let B be a a-algebra on Y. B is called finite
if it has only a finite number of elements. Note that the finite Boolean
algebras coincide with the finite a-algebras: the countable union property
reduces to the finite union property in this case. Sets B E B such that

B' C B, B' E B implies either B' = B or B' = 0

are called atoms.
Atoms are the minimal elements with respect to the inclusion relation in

a a-algebra. If B and b are distinct atoms, then B n b = 0.

6.2.1 Proposition. Let B be a finite a-algebra. Then every nonempty set
in B is the union of the atoms it contains.

PROOF. Let A E B. Either A is an atom or 3A1 C A, Al 34 A, Al E B.
Repeat the argument, starting from A1: either Al is an atom, or 3A2 C A1,
A2 34 A1, A2 E B. This produces a sequence of subsets of Y, each strictly
contained in the preceding one. Since B is finite, the process must terminate
after finitely many steps, yielding an atom. We have thus shown that

every nonempty set A E B contains at least one atom of B.

Let H1, ..., H. be the atoms of B contained in A and let A = U,jHj. Then
A C A. Moreover, A, n A E B. If Ac n A were nonempty, Ac n A would
contain an atom; but all the atoms contained in A are contained in A,
whence A = A.

6.2.2 Corollary. Let B be a finite a-algebra of subsets of Y. Then there
exist a finite set SB and a bijection between B and P(SB), the set of all
subsets of SB, such that the bijection respects the Boolean algebra structure
(the operations of union and intersection).

PROOF. We take for SB the set of atoms of B. The bijection between B and
SB is obtained by associating with each set B E B the atoms it contains.
0

6.2.3 Partitions

Definition. A partition of X is a finite family of pairwise disjoint subsets
of X, say K1, ... , Kn, whose union is X. The a-algebra B generated by
the K;, 1 < i < n, consists of sets B of the form B = U,Kj,.

The atoms of B are precisely the Ki. Conversely, given a finite a-algebra B
on X, its atoms form a partition of X.



6 The Space of Integrable Functions 27

6.2.4 Finite a-algebras and simple mappings

Let (X, A) be a measurable space and let Y be a metric space. A function
f E M((X, A); (Y, By)) is called simple if card(f (X)) is finite.

Proposition. A mapping f is simple if and only if f -'(By) is a finite
a-algebra .

PROOF. (=) Let x1, ... x'q be an enumeration of the image f (X). Then
f-1({xk}) are the atoms of f(By).

(=) Let U be an atom of f-1(By). Suppose that f assumes two distinct
values on U, say yi and y2. Let 01 and 02 be disjoint open sets in Y,
yi E Oi (i = 1, 2).

Set Un f-1(0i) = Ui (i = 1,2). Then U, E f-1(By), U1 36 0, U1 C U,
and U1 34 U, contradicting the hypothesis that U is an atom.

6.3 Simple functions and indicator functions

Given a subset A of X, the indicator function of A, written 1A, is the
function equal to 1 on A and zero on Ac: 1A(x) = 1 if x E A and 1A(x) = 0
otherwise.

The next proposition is easily verified.

6.3.1 Proposition. 1A 1B ='AnB and 1A + 1c = lAuC + lanC. More-
over, A is measurable if and only if 1A E t=°(X, A).

6.3.2 Proposition. Suppose that f assumes only finitely many values. Let
B be a finite such that B J f -1(BR,). Then f can be written
uniquely in the form

f = ai 1N, with ai E R, where the Hi range over the atoms of B.

PROOF. Let Ho,..., H. be the atoms of B. Let E f (X); then the hypoth-
esis f -1(t;) E B implies that f -1(t) can be written as a union of atoms.
Hence f has constant value, say ai, on Hi. The two sides of the identity co-
incide on Hi for every i, and since UiH2 = X the identity holds everywhere.
0

6.3.3 Corollary. The measurable indicator functions generate the vector
space of simple functions.

PROOF. Let f be a simple function and let B = f -'(BR) C A. Then B is
a finite a-algebra by 6.2.4.

6.4 Approximation by simple functions

6.4.1 Proposition. Let f E G°(X,A) be bounded. Then there exists a
sequence of simple functions g converging uniformly to f.
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PROOF. Consider the half-open interval

Jk = (kn-1, (k+ 1)n-1).

We may write it as a countable union of closed sets in the following way:

Jk=ULkn-',f k+(1-qn-1J

Hence Jk is a Boret subset of It, and Ii. E G°(X, BR).
Let C and k° be such that If (x)[ < C and

+ko

U Jk D [-C, +C].
k=-ko

Set
Gn = L kn-11.1k.

-ko<k<+ko

Since the Jk fl [-C, +C] form a partition of [-C, +C], we have t - n-1 <
Gn(t) < t if ItI < C.

Moreover, Gn takes only finitely many values and

Cl E M((R, BR), (R, BR))

Set gn = G o f; then gn E 6°(X,A) and

Ign(x) - f(x)I < n-1.0

6.4.2 Corollary. Let f E G°(X, A). Then there exists a sequence {Wn} of
simple functions converging pointwise to f.

PROOF. Let An = {x : If (x)i < n}. Then fn = 1A f is a bounded
measurable function. Let Wn be a simple function, constructed (as in 6.4.1)
so that

Ifn(x) - pn(x)i <- n-1 for all x.

Then
lim cpn(x) = f (x) dx E X.O

6.4.3 Corollary. Let (X, A, p) be a measure space and let (X, A', p') be
its completion (in the sense of 4.2.3). Let f' E G°(X, A') be given. Then
there exists f E G°(X, A) such that f (z) = f(x) p-a.e.

In particular, L°(X, A) can be identified with Lµ, (X, A').

PROOF. Consider first the indicator function of a set A' E A'. There exist B, C E
A such that B C A' C C and p(C - B) = 0. In particular, 1s = la' p'-a.e.
Hence the corollary is true for A'-measurable simple functions.
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Now let f' E £°(X, A') be given. By 6.4.2 there exist <p;, E £°(X, A') such
that lira V;,(x) = AX) V ."EX. By the argument above, there exist n E £°(X, A)
such that An = {x : ep,,(x) A V',(x)} satisfies µ'(A;,) = 0.

Let A. = UnA;,; note that A. E A and p(A.) = 0. Define tpn(x) = ipn(x) if
x f A. and tpn(x) = 0 otherwise. Then tpn E £°(X,A) and {W. (x)) converges
for every x. Moreover, setting lira Wn (x) = f (x), we see by 2.5.1 that f E £°(X, A)
and f'(x) = f(x) p-a.e. 0

6.5 Integrable simple functions

6.5.1 Definition. Simple functions f such that µ({x : f(x) 3& 0)) < +oo
are called integrable simple functions. We denote by £µ(X, A) the integrable
simple functions and by E, (X, A) the equivalence classes in £°(X, A) gen-
erated by the integrable simple functions.

61 (X, A) is a vector subspace of £° (X, A) which is closed under multi-
plication and absolute value.

6.5.2 Definition of the integral on 6,' (X, , A)

Let f E 6(X, A) be written in the unique form associated with the
o-algebra f -1(BR), as in 6.3.2:

f = Eai1H, (where ai # 0 `di).
i

The integral off is defined by the formula

I(.f) = Eaill(Hi)
i

If f j E £'(X, A), fi = f a.e., then it is easily verified that I (f) = I(fl ). It
follows that the function I(.) is defined on EI (X, A).

6.5.3 Lemma (Evaluating the integral on certain finite o-algebras).
Let f be an integrable simple function and let B be a finite a-algebra such
that B D f-1(BR). Denoting by K1, ..., K, the atoms of B, let

f =FAg1Ka (where /3q 00Vq)
q

be the decomposition off given by 6.3.2. Then

I(f) _ Aqu(Kq)
q

PROOF. Let {H3} be the set of all atoms of f-I(BR). Since each H,, is in
B, H. can be written as a union of atoms of B: H. = Kq, where I,
is a finite set.
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On each Kq (q E I,), f = a,; thus a, = Qq if q E I, and/

a, IA(Kq)Q9µ(K9) = L L aeµ(K9) =
9 $ 9EIe s 9EI.

But µ(H8) = EgEI, µ'(K9)

6.5.4 Theorem (Properties of the integral on simple functions).

(i) The integral defines a positive linear functional on E, (X, A).
(ii) Setting q(f) = 1(I f I) defines a norm on Eµ (X, A). Moreover,

I1(f)I q(f).
(iii) p({x Ifl(x) - f2(x)I > r1}) < n'q(fl - f2) (Chebyshev's

inequality).
(iv) e(fl, f2):5 2q(fl - f2)#
(v) Every Cauchy sequence in the normed space E,(X, A) is a

Cauchy sequence with respect to the distance of convergence in
measure. Convergence in norm implies convergence in measure.

PROOF OF (i). Let y be a constant. Then I(yf) = y1(f) for every f E
Ell, (X, A).

Now let fl, f2 E E(X,A). Let F be the mapping from X to R2 defined
by setting F(x) = (fl(x),f2(x))

Then F is a simple mapping and F-1(BR2) = B is a finite sub-a-algebra
of A containing fi 1(BR) (i = 1, 2). The decomposition of fi on the a-alge-
B gives

fl = E1381K. and f2 = Eba1K9,

where the K, range over the atoms of B. Then fl + f2 can be decomposed
in the a-algebra B as fl + f2 = E(Q8 + 6,)1K,, whence

1(fl+f2) _ EQeµ(K3)+j: 68µ(K8) = I(fl)+I(f2)

If f (x) > 0 µ-a.e., the only coefficients appearing in the sum are the non-
negative Q,. Thus

(vi) f (x) > 0 µ-a.e. implies 1(f) > 0 (positivity of the integral).

PROOF OF (ii). By the positivity of the integral, the inequality if + hl <
III + I h I implies that q(f + h) < q(f) + q(h).

That q(a f) = Ialq(f) is trivial. It remains to show that q(f) > 0 and
that q(f) = 0 implies f = 0 p-a.e.

The first inequality follows from the positivity of the integral. Moreover,
in a a-algebra adapted to f,

1(If1) = E Iaslµ(Ki),
a;#o
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and this sum of nonnegative terms can be zero only if all the terms are
zero.

Finally, -If I <- f If I implies the same inequality for the integrals:
-'(If 1) <- I(f) <- I(If1)

PROOF OF (iii). We use the same finite a-algebra B as in the proof of
(i) and the same decompositions of f1 and f2 on the atoms of B. Then
f1-fz = (p8-be)1K, and q(f1-f2) %IL(KR), where 'Y8 =Ids-bsl-

Ii({x : 1f1 (X) - f2(x)I > n}) = Ep.(KA),
sEJ

and

where J = {s:yr>n},

4(f, - f2) >- E7sp(Ks) > 17Ep(Ks).
sEJ sEJ

It follows that

q(f1- f2) > ills({x : Ifi(x) - f2(x)I > n}).

PROOF OF (iv). Consider the subset K(fl, f2) of (R+)2, which was used
to define e(fl, f2):

K(f1,f2) _ (c, 77) : I6(Ifl - PP21 > n) <_ a}.

Then, by (iii),

Hence

(n-1q(f1 - f2), n) E K(f1, f2) for all i)> 0.

e(f1, f2) = inf(e + n) < inf(n + n-1q(f1 - f2))-
n

Taking n = [q(f1 - f2)] i shows that 2[q(f1 - f2)] 1. 0

PROOF OF (v). It follows immediately from (iv) that a Cauchy sequence in
the normed space Eµ is a Cauchy sequence with respect to the distance of
convergence in measure. Similarly, a sequence that converges to fo in norm
also converges in measure. O

6.6 Some spaces of bounded measurable functions

6.6.0 Definitions

,C-(X, A) = f f E c°(X, A)) : 3M < oo such that I f(x) I < M}.
,C ,1(X,A) = {f E C-(X,A) : µ({x : f(x) # 0)}) < oo}.
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6.6.1 Proposition. For every f E Gµ .1(X, A), there exist cpn E Eµ (X, A)
such that

(i) { on } converges uniformly to f , and
(ii) {x : fpn(x) 96 0} = {x : f (x) 5& 0)}.

PROOF. Cf. Proposition 6.4.1.

6.6.2 Proposition. If {cpn} satisfies 6.6.1, then {I(cpn)} is a Cauchy
sequence.

PROOF. Let K = {x : f(x) 0 0)}. Then Vn = con1K and

I ('Pn - Wm) = I (('pn - V.) 1K) < p(K) sup jVn - WmI - 0

by the uniform convergence of {lpn}.

6.6.3 Definition. I(f) = 1im I (cpn) V f E C',', where {con } is the sequence
of Proposition 6.6.1.

This is independent of the choice of sequence. Let {con) be another sequence
satisfying 6.6.1(i). Set

(PIm

= 'Pm/2
(PM = 4'(m_1)/2

if m is even, and
if m is odd.

Then cp;n satisfies 6.6.1(i) and hence lira I(p) exists. But this implies that
lim I(con) = Iim I(cpn).

6.6.4 Proposition. Let f E L', 1 . Then the following statements are true:

(i) 1(fl + f2) = 1(h) + 1(12)
(ii)

11 =12 a.e. 1(1,)=1(12).

6.7 The truncation operator
For a fixed positive integer n, let tpn be the continuous function defined on
R by

cen(t)=t if -n<t<+n
cen(t) = n if t > n
cen(t) = -n if t < -n.

Let Al C A2 ... C An ... be an exhaustion of X, i.e. µ(Ak) < +oo Vk
and X = UkAk.

We define Tn, the truncation operator of order n on G°(X, A), as follows:

6.7.1 Tn(f) = fn1Ar, where fn = Vn 0 f.
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fn is bounded and (since cn is continuous) measurable. Furthermore,
since the set {x : (Tn f)(x) j4 0} C An, it has finite measure. Hence, by the
definition of C',

006.7.2 TT(f) E C '1(X,A) for any f E G°(X,.A).

6.8 Construction of L'
6.8.1 Definition of LI (X, A)

(i) Definition. £ (X, A) = if E G°(X, A) : limn-ov I (I Tn (f) I) < +oo}.

Proposition. If fl E Gµ and f2 = fl a.e., then f2 E C1 (X, A). This
justifies the notation

L A' (X, A) _ {equivalence classes o f £ (X, A) }.

(ii) IIfIILI = liml(ITn(f)I)
(iii) If f E L° and If 1 .,5 I hi, where h E L', then f E L.
(iv) If f E GC-" (X, A), then f E C1 (X, A)

6.8.2 Proposition. If f E Lµ, then limn-,,.,, I (Tn (f )) exists.

PROOF. Let f + = sup(f, 0) and let f - = sup(-f, 0). Although Tn is not a
linear operator, it is elementary to verify that, for all x E X,

Tn(f)(x) = T. (f+)(x) - Tn(f )(x)

and

whence

ITn(f)I = Tn(f+) +Tn(f ),

I(Tn(f+)) < I(ITn(f)I) <_ IIAAIL=

{I(Tn(f+))} is thus an increasing sequence which is bounded above, and
therefore converges.

JfDefinition. For f E Lµ, the integral off is defined by = lim I(Tn(f )).

6.8.3 Proposition. Lµ is a vector space with the following properties:

(i) f(fl+f2)=f f1+ff2
(ii) If f > 0, then f f > 0.

Set IIf IIL- = f If I. Then

(iii) I f fl <- IIflIL!
(iv) i.({x : f(x) > c}) < IIfIILI.
(v) II.fIIL' is a norm.

PROOF. The statements clearly hold for C " and pass to L. 13
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7 Theorems on Passage to the Limit
under the Integral Sign

7.1 Fatou-Beppo Levi theorem. Let I fn} be an increasing sequence of
integrable functions such that f fn < C, where C is a constant independent
of n. Then

(i) lim fn = f,,. exists and is finite µ-a. e.,
(ii) f,,. E Lµ, and
(iii) Il fn - fo II L' 4 0

PROOF. By setting fn = fn - f1, we may assume that fn > 0. Then f fn =
IIfnhIL', Tq(ff) = limnTq(fn), and f Tq(fn) < f fn < C. It follows that
IIT9(foo)IILI <_ C, whence µ({x : (Tq(ff))(x) > n}) < Cn-1. Furthermore,

{x : fi(x) > n} = lim I In: (Tq(f,,.))(x) > n}.

Thus
µ({x : fi(x) > n}):5 C and IITq(WIILI < C-

n
Hence f,,. E V.

We now show that IIf, - Ally 0. Let un = f,., - fn. Then

Tq(u1) - Tgo(u1) ? T9(un) - T9o(un), where qo < q.

Let qo be chosen so that f Tq(u1) - f Tg,(u1) < 2. Then

IIunII < + IITq°(un)IILL.

Let vn=Tqo(un).Then 0<vn<go,vn(x)=0if xEAga,and vn-'0
a.e. Recall, from 6.7, that µ(Aga) < +00.

By Egoroff's theorem, there exists K such that µ(Kc) < and vn
490

converges uniformly to zero on K. Hence

Ilu+tll <
e

+
e

+ µ(A9.) SUP(vn(x)) - 0 as n -> oo.0
2 4 xEK

7.2 Lebesgue's theorem on series. Let {un}0°_1 be a sequence of el-
ements of L' such that E IIunIILI < oo. Then E00 un converges abso-
lutely a.e. Let s,, = u1 + ... + un and let s00 = limn sn. Then s.. E L',
f sm = lim f sn, and Ils00 - SnllLi 0.

PROOF. Set fn(x) = Ek=1 Iuk(x)I. Then {fn} is an increasing sequence
and f fn <_ Ek_°i IlukIILv < +oo. By the theorem of Fatou-Beppo Levi, this
implies that lim fn = fm exists, f,,. E L', and f,,,, < +oo a.e. Thus s00 E L'
since I s i < f,,, and 11s. - en II L' <- IV, - fn (l Ll , which approaches zero
by Fatou-Beppo Levi.
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7.3 Proposition. The truncation operator is a contraction on Lµ (X, A),
that is,

IITn(f) -Tn(f)IIL< < IIf - fllLl, df,f E L'(X,A).

PROOF. Assume first that f and l are simple functions. Let B be the
a-algebra generated by f-'(BR), f-1(BR), and {An}, and let S denote
the atoms of B. Then

f = Eak1Hk and f = Eak1Hk,

Let I= (HES:HnAn 001. Then

Tn(f) =

Tn(f) =

IT-(f) -Tn(f)I =

where Hk E S.

E(Pn(01k)1Hk,
kEI

EtPn(ak)1Hk,
kEl

>I'Pn(ak) - 0n(ak)I1Hk.
kEI

Using the elementary inequality I Vn (t) - wn (t') I < It- t', dt, t' E R,

IITn(f)-Tn(f)IILI < j:p(Hk)Iak-akI <- 1: IA(Hk)lak-akl = IIf-fIIL1-
kEl keS

Now let f and f E V. We can find two sequences hq, hq of simple
functions converging in the L' norm to f and f. Passing if necessary to a
subsequence, we may suppose in addition that hq and hq converge a.e. Then
IITn(hq) - Tn(hq)IIL1 < II hq - hell LI; hence Tn(hq) is a Cauchy sequence in
the L1 norm. Let k be its limit. Then k = Tn(f) since hq converges a.e. to
f, and hence

IITn(hq) - Tn(f)IILI 0.

It follows that.

IITn(f)-Tn(f)IILI =1 Qm IITn(hg)-Tn(hq)IILI < l 9m Ilhq-hgllL1 = IIf-fIILI

0

7.4 Integrability criteria

7.4.1 Theorem. Let f E L° (X, A). Then f E (X, A) if and only if
there exists a constant C such that, for all n, IITn(f)IIL1 < C.

PROOF. (G) Applying 7.3 with f = 0 yields IITf(f) II tt < 11f 1k' .
(=:-) We prove this first in the special case that f > 0, where T.(f) Tn+1(f).

By the Fatou-Beppo Levi theorem, there exists g E L' such that litn Tn(f) = g
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a.e. Moreover, a direct calculation shows that limTT(f)(x) = f(x) for all x E X.
Hence f = g, and therefore f E L'.

For the general case, set f + = sup(f, 0) and f sup(-f, 0). Then f +, f - E
L°, f +, f - are positive, and f = f + - f -.

Since ITT(f)I = Tn(f+) +T.(f-) (cf. the proof of Proposition 6.8.2),

IITn(f)II L1 = f IT-WI = f Tn(f+) + fTn(f ).

It follows that
IITn(f+)IIL1 < C and IITn(f )IILI < C.

Since f + and f - are nonnegative, this implies that f + and f- E L' and hence
that fEL'.
7.4.2 Corollary. Let f E L° (X, A). Then f E L' (X, A) if and only if
IfI E L'(X,A).

PROOF. The direct implication follows from 2.4.4 and 6.8.1(iii).
Conversely, assume that If I E Lµ (X, A). It is easy to see that I Tn (f) I =

fI), whence IITn(f)IIL1 = IITn(IfI)IILI. The conclusion follows by ap-
plying Theorem 7.4.1.

7.4.3 Corollary. Let f E L°,(X, A) and suppose that there exists u E
L' (X, A) such that If 1:5 u. Then f E L11, (X, A).

PROOF. IITn(f)IIL1 <- IITn(u)IIL- <- IIuIIL'

7.5 Definition of the integral on a measurable set

Let (X, A, µ) be a measure space and let Y be a fixed element of A. We
denote by A' the trace on Y of the o-algebra A and by p' the restriction
of u to the elements of A', thus obtaining a measure space (Y, A', p'). Let
j be the canonical injection of Y into X. The restriction operator defines
a mapping L° (X, A) '- LO, (Y, A') by f -+ f o j.

Let f E LI (X, A, µ). We denote by fl, f the integral of f o j evaluated
on the measure space (Y, A', p'), and call fy f the integral of f on Y.

7.5.1 Proposition. Let f E L' (X, A). Then fly E L' (X, A) and f fly
= fy f.

I

PROOF. Since If ly I < If I, Corollary 7.4.3 implies that fly E LL(X, A).
The result follows by verifying that the integrals agree on simple functions
and passing to the limit.

7.5.2 Proposition. Let f > 0, f E LI (X, A), and set p(A) = fA f VA E
A. Then p is a measure on X and p(X) < +co.

PROOF. Finite additivity follows from the fact that

'A, + lA2 = 1A,UA2 if Al n A2 = 0.



7 Theorems on Passage to the Limit under the Integral Sign 37

The theorem of Fatou-Beppo Levy implies that p is continuous on in-
creasing sequences; this gives countable additivity. 0

7.5.3 Proposition. Let An be an increasing sequence of elements of A
such that UAn = X. Let f E Lµ (X, A). Suppose that fAn If I is bounded
above by a constant C independent of n. Then f E Lµ (X, A).

PROOF. Since IlTn(f )ILL, < fA. If 1, the result follows from 7.4.1. 0

7.6 Lebesgue's dominated convergence theorem

Theorem. Let f E LI (X, A). Suppose that

(i) fn converges to h p-a. e.

and that

(ii) 3g E L' (X, A) such that Ifn ) < g Vn (domination hypothesis).

Then h E L',

(iii) IIfn - hllLI - 0.

and

(iv)

PROOF. It follows from 5.1.2 that h E L°(X, A). By (ii) and 7.4.3, h E V.
As in 7.5.2, we introduce the measure p associated with g:

P(A) = j g.

Let (An) be an exhaustion sequence for X: An C An+i and p(An) < +00-
Then p(An) -- p(X) < +oo. Fix m such that

P(A7n <6

For this fixed m, we will apply Egoroff's theorem (5.1.4) to Am. We can
find a sequence {Kq} of sets in A such that K. C Kq+i, fn fo uniformly
on Kq, and p(KQ fl Am) < q '.

Set Gq = KQfAm. Then {Gq} is a decreasing sequence; setting H = f1Gq,
we have limp(Gq) = p(H). But µ(H) = 0, whence g 1H = 0 P-a.e.; i.e.,
g 1H = 0 in Lµ and p(H) = 0. Fix qo such that

P(Ggo)<6

The identity
1X = IA:,, + 1Kg0 + 1Ggo
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gives

J Ifn - hi=L
+ 1 +J,aulfn-hl.

Using the upper bound 2g for the function If,, - hi in the first and last
integrals, we obtain

Ilfn - hlll., < 2p(An,) + 2p(Ggo) + fK If- hl.
a

Each of the first two terms is bounded above by a/3. Furthermore,

If,. - hl < ( sup If,,(x) - h(x)I) u(Kgo)-
fK ,,0 sE Kq0

JJJ

The last term tends to zero as n - +oc, proving (iii). Finally, (iv) follows
from the continuity of the integral with respect to the norm II - IIL= (ef.
6.8.3(ii)). 0

7.7 Fatou's lemma. Let f E Lµ(X, A). Suppose that

(i) II f z II t' < C. where C is a constant independent of n, and
(ii) f converges p-a.e. to h.

Then

(iii) h E L' and IIhIILv < C.

PROOF. We prove this first with the additional hypothesis

(iv) µ(X) < +00-

In this case, convergence a.e. implies by Egoroff's theorem that, for every
integer q > 0. there exists K. C X such that f converges uniformly on
Kq to hand µ(Kq)<'-g.Thus

IhIf Ifnl - 1KgA ,

Since converges uniformly to h(x) on Kg, the last expression tends
to zero, whence

1K9
ihi < C.

Set hq = Ihi 1K,. Then {hg} is an increasing sequence since Kq C Kg+l,
and the Fatou-Beppo Levi theorem implies that

limhg = h0 E Lt and IIho1IL, < C.
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If X does not have finite measure, take an exhaustion sequence for X:

X = UA,, Ar C A,+i, µ(A,.) < +oc.

For each fixed r, set f; = fn1Ar; then Hf' IIL1 <_ C. Fatou's lemma for finite
measures can be applied to Ar, giving

hT = lim A' = HA, E L' and I I h' I I L < < C.

The conclusion follows by applying the Fatou-Beppo Levi theorem to the in-
creasing sequence Kr = IhI1A,.. 0

7.8 Applications of the dominated convergence theorem
to integrals which depend on a parameter

7.8.1 Integral notation in which the measure u appears

Up to now, we have dealt only with functions defined on the measure
space (X,A,,u). When we consider functions defined on different spaces.
the integral notation used earlier can lead to confusion, and we denote

fi by Jf(x)dL(x) for all f E L' (X. A).

7.8.2 Integrals depending on a parameter

Let (X, A, p) be a complete measure space. Consider a metric space Y and
let

u(y) = f k(x,y)dp(x)
x

be an integral depending on the parameter y. Suppose that

(i) for each fixed y the function ky(x) = k(x, y) satisfies ky E
L11 (X, A).

Then u(y) is a well-defined function for every y.

7.8.3 Proposition (Continuity of an integral depending on a pa-
rameter). Assume condition (i) of 7.8.2. Let yo E Y and assume in addi-
tion that

(ii) for every sequence y - yo,

k(x, -k(x, yo) y-a.e.; and

(iii) there exist g E LN (X, A) and f > 0 such that

Ik(x,y)I :5g(x) if d(y,yo) < e.

Then the function u is continuous at yo.
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PROOF. Since u is defined on a metric space, in order to show continuity at
y it suffices to prove that u(yn) --> u(yo) for every sequence {yn} converging
to yo. Set fn (x) = k(x, yn). Then the dominated convergence theorem (7.6)
can be applied and

fr r
fn Jfo.

7.8.4 Proposition (Differentiability of an integral depending on a
parameter). Let Y = (yo -E, yo+E) be an open interval in R, and suppose
that the following three conditions hold:

(i) 7.8.2(i) is satisfied Vy E Y.
(ii) For p-almost every x, (x, yo) exists Vy E Y and is continuous

at yo as a function of y.
(iii) 3g E Ly1,(X, A) such that, for p-almost every x, 10'(x, y)I <

g(x) for every y E Y.

Then u is differentiable at yo and

Ilk
(iv) u'(yo) =

f
5j (x,yo)du(x)

PROOF. In order to show that u is differentiable, we must show that there
exists I such that

lim E-1 [u(yo +.F) - u(yo)J = 1.
e40

Since R is a metric space it suffices to show that there exists l such that,
for every sequence {En} tending to zero,

lim fn 1 [u(y0 + En) - u(yo)] = 1.

Making this detour lets us apply Lebesgue's theorem, which was stated
for sequences of functions. Fixing the sequence {en}, set

fit 1 My0 En) - u(y0)J = I fn(x)dp(x),K
where

fn(x) = En 1 [k(x, 3J0 +f) - k(x, y0)1

Let K be the negligible set such that (ii) and (iii) are satisfied in K`.
Then, for x E K°, fn can be calculated using the mean value theorem:

fit(x) = ay (x, y0 + 9 (x)), where IBn(x)I < En if x Kc.

Thus it follows from (ii) that

t9k
(X, yo) if x E K`.fn (x) -
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Furthermore, by (iii), I g(x), x E K°; thus

Ifn(x)I <_ 9(x) a.e. and lim f,1(x) _ Ty(x,yo) a.e.

Applying the dominated convergence theorem gives

fX f, (x)dp(x) -' f ay (x, y)dp(x).O

8 Product Measures
and the Fubini-Lebesgue Theorem

8.1 Definition of the product measure

Let (X1, Al, µl) and (X2, A2, µ2) be measure spaces, let X = X1 x X2 be
the product space, and let A = Al ® A2 be the product a-algebra (see
1.5). The product measure is a measure p defined on the measurable space
(X, A) and satisfying

(i) µ(A1 x A2) = µ1(A1)µ2(A2) if µ1(A;,) < +oo (i=1,2).

8.2 Proposition (Uniqueness). There exists at most one product mea-
sure.

PROOF. Let p and µ' be two measures satisfying 8.1(i). Then they coincide
on rectangles and hence, by finite additivity, on disjoint unions of rectan-
gles, that is on the Boolean algebra £ of elementary sets. Let

M={ZEA:µ(Z)=µ(Z)}; then Mj£.
Let {Z,a} be an increasing sequence of sets in M. Then, by 3.2.1,

µ(U.Zn) = lim p(ZZ) = ANZ.).

Thus M is closed under increasing limits.
If we further assume that

(i) p1(X1) < +00 and u2(X2) < +oo,

then

µ(X) = µ1(X1)p2(X2) < +00-

3.2.3 can be applied to prove that M is closed under decreasing limits.
Hence M is a monotone lass that contains £, and it follows by 1.5.5 that
M=AI®A2.
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To complete the proof, it remains to lift the restriction (i). Let [Y,,} and JZ.J
be exhaustion of X, and X2, and let {z, and µn denote the restrictions of u and
µ to Y. and Zn. Then, by the result above,

A. = ldn.

Furthermore, µ.(Y. x Zn) < +oc and U,,(YY x Zn) = X. Thus Y. x Zn is an
exhaustion of X with respect to both p and µ. By 3.2.1, for all A E A

p(A) = lim tzn(A n (Xn x Zn))
n

and

µ(A) = limµn(A n (X,, x Zn)).
n

Since the two right-hand sides are equal, u(A) = j(A). 0

Sections

For fixed x1, let ix, denote the injection of X2 into X defined by x2 H
(x1,x2). For Z E P(X), let Zx, = i;l (Z). ZZ, is called the section of
Z over x1. Letting 7ri be the projection of X onto X1, we have Zx, _
ir2(iri ' (xl) n Z).

8.3 Fundamental lemma. Let A E A = Al ® A2. Then

(i) Ax, E A2 Vx1 E X1.
(ii) Suppose that µ2(X2) < +oo and set kA(x1) = µ2(Ax,).

Then

(iii) kA E L°((X1, A1)) VA E A.

PROOF. Since A is generated by the rectangles R, Theorem 2.2.1 implies
that iz1(A),, is generated by {i;1(R)}. But {ix 1(R)} = A2; since A2 is a
o-algebra, it coincides with the a-algebra it generates, whence (i). Let

M = {B E A: kB(x1) is a measurable function of xl}.

The rectangles are in M, as are finite unions of disjoint rectangles; thus
the Boolean algebra of elementary sets is contained in M. We now show
that M is a monotone class.

Let B be an increasing sequence of elements of M. By the limit theo-
rem (3.2.1), kA,, (X1) = satisfies kB. (x1), where

UB,,. Hence kA. (x1) is measurable with respect to x1 by 2.5, which
implies that Ax E M.

Since u2(X2) < +oo, Theorem 3.2.3 on the limits of decreasing sequences
can also be applied, and it follows that M is a monotone class. Since M
contains the Boolean algebra of elementary sets, M = A by 1.5.5.0
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8.4 Construction of the product measure

8.4.1 Theorem. Let (X1 , A1, pl) and (X2i A2, p2) be measure spaces.

(i) Suppose that p1(X1) < +oo and 1A2(X2) < +00.

For every A E A = Al ® A2, set

(ii) p(A) = fx, kA(xl)dpl (x1) where kA(xl) = µ2(A.,)
(p(A) is well defined by Lemma 8.3.)

(iii) Then p is a measure on A, of total mass pI(XI)p2(X2) < +00.

Moreover,

(iv) p(A1 x A2) = pi(Ai)p2(A2) if A, E A;.

PROOF. Since p is a finite measure, it suffices to prove that the a-additivity
axiom is satisfied. We begin by proving finite additivity. Suppose that

A =A'UA" and A'nA"=0.

Then A's, fl A", = 0, whence kA' (x 1) + kA" (x 1) = kA (x 1) and

p(A) =
p(A') + p(A").

Now let AP C Ap+I C ... be an increasing sequence of elements of A. Set
A°O = UAp; then lim T (A,,,) = (A°°).,, and, by 3.2.1, kAp(xl) -, kA-(XI)
for all x1. Next, kAp < kAp+I. Applying Theorem 7.1, the theorem of Fatou-
Beppo Levi,

lim J kAP(xl)dpl(xl) -. JkAoo(xl)dlLl(xl). i.e. lim p(AP) = p(lim A7').

This property, together with finite additivity and 3.2.4, gives o-additivity;
hence p is a measure. It is trivial to see that (iv) is satisfied.

8.4.2 Theorem on reversing the order of integration

Theorem. Let (XI,A,,pl), (X2,A2,p2) be measure spaces. Suppose that
pl (X) < +oo and p2(X) < +oo. Then, if A E Al o A2,

Ix dp1(xi) [42 1A(x1, x2)dp2(x2)J
l

{J1
1=f dp2(x2) 1A(xix2)dpl(xl)J.

,

PROOF. Although the hypotheses in 8.4.1 are symmetric in X1 and X2, the
construction is not.

Set IA(x2) = p,(Ax,). Then a(A) = f IA(x2)dp2(x2) exists and defines
a product measure by 8.4.1. By 8.2, a(A) = p(A) VA E A.
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NOTATION. The product measure is denoted by 1110 µ2. By definition, for
all AE A1® A2,

8.4.3
Ix IA(x)d(µi (&µ2)(x) = f d i(xi) J IA(XI,x2)dp2(x2)

, x,

ZX12
dµ2(x2)1XI IA(x1,x2)dµl(xl)

.4.4 Construction of the product measure in the general case8

If µl and µ2 are not finite measures, let Xl and X2 be exhaustions of X1
and X2. Set pn = 1xnpi. Then p; (Xi) < +oo, i = 1,2. We can define
µi ®p2 and set

(Al ® 142)(A) = lim(pi 0 pa)(A)

8.5 The Fubini-Lebesgue theorem

Theorem. Suppose that (XI, A1, pi) and (X2, A2, p2) are measure spaces.
Set X = XI x X2, A = Al®A2, and p =1®2, and let (X, A, p) be the
product measure space. Suppose that

(i) f E C°(X,A).
(ii) Then fx, : X2 F-+ f (X 1, x2) satisfies f.,, E Lo (X2, A2) bx1 E X1.

Now suppose that

(iii) f E L'(X,A).

Then the following two properties are satisfied:

(iv) k f(x1,x2)dp2(x2)E Lµ,(X1,A1), where k(xl)=
fX

fZ, E Lµ,(X2,A2) µi-a.e. in xl, and

f(xl,x2)dp(xl,x2) =
J

dp1(xi) I

X
I f(xi,x2)dp2(x2)J

x ,

(v)

Conversely:

{

JxP22)
VX1

f(xix2)dP1(xi)] .

,

ppose that (i) holds, fy, E Lµ,(X2,A2) µl-a.e.,Su
and there exists k' E Lµ, (X1, Al) such that

If(xl,x2)Idp2(x2) k*(xi).
,

Then (iii) is satisfied, and hence (iv) and (v).
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REMARK. Denote the functions satisfying (ii) by Q and the functions sat-
isfying (ii), (iii), (iv), and (v) by R. Then Q and R are vector spaces. Since
the indicator functions of measurable sets are in Q by 8.3, so are finite
linear combinations of indicator functions: E(X, A) C Q.

PROOF. First assume the following stronger hypothesis:

(i)' f E G°(X, A) and f is bounded.

Then, by 6.4.1, f is the uniform limit of a sequence of simple functions v,":

,on = ai lA^

By the remark, ipn E Q for each n; that is,

(,Pn)xi E £°(X2,A2), Vxi E X1.

Since (f)xi = 2.5.1 shows that (i)' (ii).
Similarly, using 6.8.1(iv), hypothesis (iii) can be replaced by this stronger hy-

pothesis:

(iii)' f satisfies (i)' and {x : f (x) qb 0} C Al X A2, with µ,(A,) < +00.

Let {Vn} be a sequence of simple functions which converge uniformly to f and
for which cp'(x) = 0 if x V A, x A2. Then cpn satisfies (iv) and (v).

Since n -+ f uniformly, there exists a sequence {en} such that en j 0 and

If -IpnI <En1A,xA2

Thus
f If -cpnIdI< n

JAIX xA2
dlz = En112(A2)

Similarly,

fX2 IWx, - fx, Idp2 < En IA2 d/i2(x2) =

whence f is 1dµ2 converges uniformly to f fx, dµ2. It follows from 2.5.3 that the
left-hand side of the formula in (iv) is measurable. Repeating the same argument
a third time for the integration in x1 gives (iv) and (v). Summarizing, we have
shown that (iii)' (v).

Let {Ai} and {Az} be exhaustion sequences for X1 and X2. Then {A"} _
(AP x AP) is an exhaustion sequence for X. Let Tp be the truncation operator
defined in 6.7. Then Tp(f) satisfies (iii)'.

Suppose now that (iii) holds and that

(vii) f > 0.

{Tp(f)} is an increasing sequence of functions in L,', and IITr(f)IILi <_ Ilf1IL1
Since Tp(f) satisfies (iii)', (v) holds and

f kp(xl)dµl(xi) = IITpfIILI, where kp(x1) = J
x, x2
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As the sequence {kp} is increasing, the Fatou-Beppo Levi theorem (7.1) applied
to X, shows that

limkp = k, E L,',,(X,,A,) and j k = limIITrfIIc1 = IIfIIzi,
,

where the limit of the kp(xi) is finite if xi V B for some B E A1, µ1(B) = 0.
Fix xl §E B and apply Fatou-Beppo Levi on the space X2:

ko(x1) = lim
x,

(TT(f)):1dµ2 =[
x,

lim(TP(f))=,dp2 = f
X2

(f)x,4112 -

We have thus proved (iv) and (v) when f satisfies both (iii) and (vii). If (vii)
is not satisfied, write f = f ' - f -; then f +, f - E R, and by the remark f E R.

It remains to prove the converse. Letting f satisfy (i), set f' = If I. Using the
truncation operator Tp, we have

f(Tf')zid#i2 < JIf(xiix2)Idit2(x2) k*(x2)

Moreover, since Tp f' E L,'t1 we may use the identity (v) to obtain

fTfId/.L = J dµ1 J (T(f'))idµ2 5Jk*(x2)d2(x2).

Hence the norm of Tp(f') is bounded, with a bound independent of p, and the
integrability criterion 7.4.1 implies that f' E L. Since f E L°(X, A), 7.4.3
implies (iii).

9 The I? Spaces

9.0 Integration of complex-valued functions

Let f (x) = u(x) + iv(x) be a complex-valued function. Then f is a mea-
surable mapping from X to C if and only if u and v are measurable.
Furthermore, we say that f is integrable if u and v are integrable, and set

(i) Ji=Ju+ i fv.

The integral f '-+ f f is a C-linear functional on the space L' (X. A, µ; C)
of complex-valued integrable functions. Moreover, setting

Zf={xEX:f(x)00)},
Z f E A and the function arg f (x) is well defined for x E Z1. The argument
is defined to be zero on Z. Thus, if f E MM(X, A; C), we can write

(ii) f(x) = w(x)e'B(=),

where w E M,(X, A; R'), 0 E Afm(X, A; [0. 21r)), and If (x)I = w(x).
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(iii) Lemma. Let f be a complex-valued integrable function. Then If I is
integrable and

If f1:5 f if I.

PROOF. If I < Jul + lvl and is thus dominated by two integrable functions,
hence integrable. Set

Ji =re"p,

then

IfI =e-'vJ f =J fe '°.

Using the decomposition (ii),

r

Iffl = Re J w(x)cos(9(x) - cp)dµ(x).

Since Icos(9 - p)I < 1, we obtain

if < fw(x)di4x).D

NOTATION. The complex-valued integrable functions will be denoted by
L1, (X, A; C).

9.1 Definition. Let (X, A, µ) be a measure space. Let p be a real number,
1<p<+00.

Let
Lµ(X,A) = If E LO(X,A) : Iflp E

Set
1/p

IlfllLP = (Jiii)
It is clear that Ill IILP = 0 implies f = 0 and that IIaIILP = Ial Ill IIL, for
every constant a.

Complex-valued functions with integrable pth power can be defined sim-
ilarly:

Lµ(X,A;C)={f EM,(X,A;C):IflpEL'}.

Writing f = u + iv or f = weie, we obtain the equivalences

f E Lµ(X,A;C) e' u E LP(X,A) and v E Lµ(X,A)

f E Lµ(X,A;C).* w E Lµ(X,A) and 0 E LO(X,A).
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9.2 Convexity inequalities

9.2.0 This section is devoted to proving the inequalities of Holder and
Minkowski. When p = 2 these inequalities become very easy. (Cf. Exer-
cises, Cauchy-Schwarz inequality.)

9.2.1 Definition. A continuous function p defined on [a, b] C R is called
convex if p.(x) = lim, jo(cp(x + e) - cp(x))e-1 exists Vx E [a, b) and c4(x)
is an increasing function. In particular, if cp is twice differentiable, then p
is convex if and only if cp" > 0.

9.2.2 Lemma (Jensen's inequality). Let V be a convex function on
[a, b] C R. Let ak (1 < k < n) be positive numbers such that E ak = 1.
Then

' 1: < > atp(tk) dtk E [a, b].(oktk)
k=1 k=1

REMARK. This inequality may be taken as a definition of convex functions.

PROOF. We prove the lemma for the case n = 2. Let a and b be constants
and set

ip(t) = cp(t) + at + b.

Then ;i is convex. Choose a and b so that p'(t1) = cp(t2) = 0. Jensen's
inequality reduces to showing that

cp(t) < 0 for t1 < t < t2.

Otherwise the maximum of would be strictly positive and would be at-
tained at a point t3 E (tI, t2), and we would have

17'+ 03) = 0, At3) > 0.

Since cp'+ is increasing, p+(t) > cp+(t3) = 0 if t E [t3i t2), whence (702) >
cp(t3), a contradiction. We proceed by induction on n. Assuming that the
inequality holds for n < p, we prove it for n = p + 1.

Set = Q-1 (En=1 aiti), where 3 = EP 1 a,.
Then, by the result for n = 2, cp(/31;+ap+ltp+l) <- Q'G(0 +ap+1'G(tp+1)
The first term on the right-hand side can be bounded above by using the

induction hypothesis, which gives cp(1;) < Ep 1,Q-la1'(t;). 0

9.2.3 Corollary. Let 1, C2 > 0 and let a, (3 > 0 satisfy a +,3 = 1. Then
Vi :S C16 i + 06-

PROOF. If 1;1 = 0, the left-hand side is zero and the inequality is obvious.
Suppose that li > 0 (i = 1, 2), and set qi = log li. The exponential function
exp(t) satisfies the hypotheses of 9.2.1, whence

exp(ai 1 + ant) S aexp(nl) +

9.2.4 Lemma. Let (X, A, µ) be a measure space, let a, 3 > 0 be such that
a +,3 = 1, and let f and g be nonnegative functions in L',(X, A). Then
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(i) f °g$ E Lµ (X, A) and

(ii) f f°gf<(ff)a(f9)R

PROOF. If f = 0 a.e., both sides of the inequality (ii) are zero. Hence we
may assume that II!IIL' > 0 and IIgIIL' > 0. Setting

1= IIfIIjif, 9= I19IIL19,

we reduce the proof of (ii) to showing that

f f°_<1.

We will use 9.2.3. For every x, 1° (x)9p(x) < of (x) + /(x).
The right-hand side is an integrable function; hence (i) follows from 7.4.3.

Integrating both sides of this inequality gives

Since f f = f g = 1,

J f°9Q<aff+Qf9

f f°gQ<a+A=1.0

9.2.5 Definition of conjugate exponents

Definition. Let 1 < p < +oo and 1 < q < +oo. We say that p and q are
conjugate exponents if

1+1=1.
p q

REMARKS. p is conjugate to itself if and only if p = 2.
Ifl<p<2,then q>2.

9.2.6 Theorem (Holder's inequality). Let (X, A, µ) be a measure space,
let p and q be conjugate exponents, and let f E LP, g E L9. Then

(i) fg E L' and
(ii) If fgl <_ IIfIIL,II911L4

PROOF. Since the theorem is clear when p = oo or q = oo, we may assume
that 1 < p < oo. We first consider the case where f and g are nonnegative.

Set u = fP, v = g9, a = p, ,3 = v. Then fg = 00, and applying 9.2.3
gives the theorem.

In the general case, set IfI = fi, I9I = 9i. Then f191 E L' by the
argument above; hence by 7.4.2 fg E L' and

Ji <ffit.o
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9.2.7 Theorem (Minkowski's inequality). Let (X, A, µ) be a measure
space and let f, g E LP, where 1 < p < +oo. Then

(i) (f + g) E LP and
(ri) IIf + 91I LP < IIfIILP + I191ILP.

PROOF. The theorem is true for p = 1 by Proposition 6.8.3. Note that the
function ap(t) = tp is convex on [0, +oo). Using Jensen's inequality, we have

(l:l +1;2 P I p I p
2 /<2£'+2t2

whence

If(x) + 9(x)IP <- (If(x)I + 1g(x)1)P < 2p-' If(x)Ip + 2p-' I9(x)IP.

Hence the integrability criterion 7.4.3 implies (i). It suffices to prove (ii) in the
case that f and g > 0. We then have

J (f + 9)P =
J

f(f +
9)P-1

+ J(f + 9)P-1.

Letting q be the conjugate exponent and using Holder,

r r 1/P

(J(f
J

f(f +g)P1 (f +9)(P-1)9

but, since p and q are conjugate, p+q = pq, or (p- 1)q = p. Writing the analogous
integral for g, we obtain

J(f+g)P fP
1/P

+ (Ji)
1/P

(J(f + 9)P)
1/9

< [(J) ,

or

IIf +9IIiP <- (IIfIILP + II9IILP)IIf +9IIi

If IIf + 9IILP = 0, Minkowski's inequality holds trivially. Otherwise we can
divide both sides by Ill + 9IIi 9 to obtain

,If +9IILPP/9 <- IIfIILP + II9IILP,

and the conjugacy relation gives p - v = 1 - p [1 - p] = 1. O
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REMARK. Writing f (x) = w(x)e'o(x) shows that the Holder and Minkowski
inequalities remain true for complex-valued functions.

9.2.8 Theorem. Let (X, A, p) be a measure space and let 1 < p < +oc.
Then LP(X, A, p) is a vector space on which a norm is defined by the func-
tion f H 11f 11 LP.

PROOF. It follows from 9.2.7(i) that LP is a vector space. Moreover, 9.2.7(ii)
and 9.1 show that II - II Lp is a norm.

9.3 Completeness theorem. Let (X, A, p) be a measure space and let
1 < p < +oo. Then L,.(X, A) is a complete normed space.

REMARK. For p = 1, Lebesgue's theorem (7.2) implies that every normally
convergent series in L' is convergent, and hence that L' is complete.

PROOF. We proceed as in 6.5.4(v) by proving the following lemma:

9.3.1 Lemma. Let {fn} be a Cauchy sequence in L. Then {fn} converges
in measure.

PROOF. Fixing e, set

{x : I fn(x) - fi+'(x)I > e} = An.n'.

Then

f I J n - Al I" >_ j I fn - fn' I > FPp(A.,n' ),

implying the Chebyshev-type inequality

2(Af,n') < e-PIIfn - f.,111LP'

Fix no such that Ilfn - fn' II Lp < el+P-' if n, n.' > no. It follows that

9.3.2 PROOF OF THE THEOREM. Since LA is a complete space, {fn} con-
verges in measure (by 5.2.9) to fo. By 5.2.7, we can extract a subsequence
such that

(i) fna converges to fo /-a.e.

Since fn is a Cauchy sequence in LP, we have

(ii) IlfnIILP < C, or II IfnIP IIL' < C.

By Fatou's lemma (7.7), Ifol' E L'.
Fixing k, consider the sequence {us } = { I fn. - fnk I P 1. Fatou's lemma

can be applied since us converges a.e. to I fo - fn,, IP. We obtain

II limudllL' < SUP llusllLi.
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Fix mo such that II f n - f n' II LP < E if n, n' > mo. Take k such that
nk > m0i then

IIfO - fnkIILP < E if n>mo
and

Ilfo - fnIIL. <- Ilfo - fnkIILp+Ilfnk -fnllL' < 2E.

REMARK. Writing f = u + iv, we see that 9.3 implies that L? (X, A; C) is
complete.

9.4 Notions of duality

Given a normed vector space E, the vector space E' of continuous linear
functionals 1 on E is called the dual of E. For I E E', we set

11111 = sup Il(x)I where IIxII < 1, x E E.

It can be shown that E' is a Banach space.

9.4.1 Theorem. Let (X, A, p) be a measure space. Then L2 (X, A) is a
Hilbert space when the scalar product is defined by

(i) Jf(fI).
The scalar product for the complex-valued functions L' (X, A, µ) is defined
by f f9 = (fig).
PROOF. (f if) = 11f 11L2,, and Holder's inequality becomes

(ii) V19)1 :5 ill IIL2119llL2

This is just the Cauchy-Schwarz inequality, which can be proved directly.
Moreover, L2 is complete, and hence is a Hilbert space.

9.4.2 Corollary. The dual of the space L2 can be identified with L2; the
dual pairing is given by 9.4.1(1).

PROOF. In a Hilbert space, by Riesz's theorem' every continuous linear
functional can be expressed by a scalar product.

9.4.3 Proposition. Let (X, A, p) be a measure space and let p and q be
conjugate exponents, 1 < p < +oo. Then there is an isometric injection u
from Lµ into (Lµ)'.

'See, for example, W. Rudin, Real and Complex Analysis (New York: McGraw-
Hill, 1974).
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PROOF. Define a mapping u : Lq -* (LP)' by associating with g E Lu the
linear functional

19(f)=f f9
Then by Holder

(Z) Il9(f)l <- II9IIL9IIf IILP = G'IIf IILP,

which shows both that l4 is a continuous linear functional and that u is a
contraction:

IIu(9)II(LP)' <- II9llL4-

In order to show that u is an isometry,we introduce fo = (signum(9))IgI9/P
Then IfolP =1819, Ilfolli, = II911LQ, and

f fog = f f 191° =
II911q

Hence
l9(fo) = 11911919-

Furthermore,

whence

Ilg(fo)I < 111g1I(LP)'llfollLP = Illgll(LP)'IlOllLq

Illgll(LP)'
>-11911L99/P.

But q - q/p = 1, and hence u is an isometry.
It follows that u is an injective mapping of L9 into (LP)'. O

REMARK. It will be shown in Section IV.6 that u is surjective, and thus
identifies (LP)' with LQ (1 < p < +oo).

9.5 The space LOO

9.5.1 Definition. 7 E Lµ (X, A) is said to be essentially bounded if there ex-
ists a bounded representative f of f. The space of essentially bounded mea-
surable functions is denoted by LO (X, A). We define Ag,f = {x : l9(x)I >
C1 and K(g) E R+ : µ(A.9,4) = 0).

IfgEL°, then K(g)36 0 and we set

11911L- = inf K(g).

9.5.2 Lemma. µ(A9,4) > 0 if and only if f < II9IILN

PROOF. The only case that is not obvious occurs when l; = 11911 L- We then
apply the continuity theorem for increasing sequences of measurable sets.
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Setting 0 = IIgII L°O gives µ (U°°_ 1 A9,fo+n- ,) = 0. But Un1 Ag,Fo+n- _
A9,E0. 0

9.5.3 Proposition. L°(X, A, µ) is a complete normed vector space.

PROOF. We first prove the triangle inequality for II' II L°° Let f, g E Lµ and
set h = f +g; then Ih(x)I 5 If(x)I +I9(x)I implies that Ah,{+, D A ftnA9q.
Taking complements, we obtain

µ(Ah,E+n) 5 µ(AI,F) + µ(A9,,),

IIhIILµ <_ IlfIIL4 + 11911L--

If IIhIIL- = 0, then h(x) = 0 a.e. by 9.5.2, and hence II IILµ is a norm.

Let fn be a Cauchy sequence in the norm II ' II LM . Choose representatives fn of
the class fn and set u,,,n' = fn - fns. Let An,n _ (X: Iun.n'(x)I > 3llun.n'IIL, };
then, by the definition, 0.

Set Z = Un.n,An,.'. Then u(Z) = 0 and

Ifn(x) - fn'(x)I 5 3IIfn - fn'IILµ if x E Z

The sequence fn converges uniformly on Z`. Set fo(x) = lim f. (x) if x E Z` and
fo(x) = 0 if x E Z. Then fo E Lµ and Iifn - foJIL°O 0. 0

9.6 Proposition. Let (X, A, µ) be a measure space. Suppose that jA(X) <
+oo. Then LP (X, A) Lµ (X, A) if 1 < p < p' <_ +oo.

PROOF. Use Holder's inequality to write

fx IflPdµ(x) = f Iflp1Xdµ(x) <_ II IfIP IILM ll1XIILM,

where r and s are conjugate exponents. If p' < +oo, note that

1/r
II Iflp IIL' _ (f If11"p)

and take r = P > 1. Then
p

(i) IIfIILP <_ [µ(X)1°IIflILP', where a=

This shows that every function in LP is in LP. If p' = oo, note that

Jii i p 5 IIfIIL.µ(X).O



II
Borel Measures
and Radon Measures

Introduction

The preceding chapter dealt with abstract measure theory; given an ab-
stract set X, we rather arbitrarily prescribed the o-algebra B of its meat
surable subsets. In this chapter, we work in a space X which is locally
compact and can be written as a countable union of compact sets. A natu-
ral a-algebra in this context is the Borel algebra BX. A locally finite Borel
measure is a measure defined on BX such that every compact set has finite
measure. For X metrizable, we prove Lusin's theorem: If p is a locally finite
Borel measure and A E Bx, then for every e > 0 there exist an open set
O and a closed set F such that F c A c O and p(O - F) < E. Thus an
arbitrary Borel set can be approximated to within a by both an open and
a closed set.

A natural vector space on X is the space CK (X) of continuous functions
with compact support. A linear functional I on CK(X) is called positive
if I (f) >_ 0 for every nonnegative function f. We prove the Radon-Riesz
theorem, which constructs a bijection between the positive linear function-
als on CK (X) and the locally finite Borel measures. In the Prologue, we
showed that the Riemann integral on R defines a positive linear functional
on CK(R). In this chapter, we apply the Radon-Riesz theorem to obtain a
canonical translation-invariant Borel measure on R, the Lebesgue measure.
The theory of the Lebesgue integral appears as a special case of the theory
of the abstract integral developed in Chapter 1. We obtain the Lebesgue
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integral on Rn by constructing the product measure, and prove the change-
of-variables formula for multiple integrals.

When Y is compact, the space of continuous functions on Y is a Banach
space. We consider the dual vector space (C(Y))* of continuous linear func-
tionals on Y, and show that every linear functional can be written as the
difference of two positive linear functionals. This leads us to the concept of
signed Radon measures.

Given a locally compact space X, we consider the Banach space Cb(X)
of bounded continuous functions on X and the closed subspace Co(X) of
functions which vanish at infinity. (Co(X))' is identified with the space
M 1(X) of finite signed Radon measures. Three topologies can be defined
on this set by using the pairings with CK(X), Co(X), and Cb(X). We
compare the three corresponding notions of convergence.

The first section of this chapter is devoted to the construction of parti-
tions of unity, which allow the passage from local to global considerations
on X. It is purely topological, while the rest of the chapter describes mea-
sure theory on locally compact spaces.

1 Locally Compact Spaces and Partitions of Unity

1.0 Definition of locally compact spaces which are countable
at infinity

Let X be a Hausdorff topological space which satisfies the following hy-
potheses:

1.0.1 X is locally compact, i.e. every point xo E X has a compact neighbor-
hood.

1.0.2 X is countable at infinity, i.e. there exists a sequence {Kn} of compact
subsets of X such that

Kn C Kn+1 and U Kn = X.
n

1.0.3 Proposition. There exists a sequence 11m of compact sets such that

C Im+1 (where A denotes the interior of A)

and
00

U Hm=X.
m=1

PROOF. The proof is by induction. Set H1 = K1 and, assuming that Hq
has been constructed, set Gq = Hq U K. Each x E Gq has a compact
neighborhood V(x); from the open cover of Gq formed by { 0(x)}, extract
a finite subcover.
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This procedure gives points xq,j E Gq, 1 < j < Mq, such that Hq C
Ul<j<mq *(x9j) Set Hq+i = U1<j<mq V(xq,j). As the finite union of
compact sets, Hq+1 is compact. Furthermore,

a9+1 D U O(x9,j) 3 H9
1<j<mq

and

UHgDUKq=X.o

1.1 Urysohn's lemma

Lemma. Let Fl and F2 be disjoint closed subsets of a locally compact space
X. Then there exists a continuous function f on X such that

f (x) = 1 if and only if x E Fl;
f (x) = 0 if and only if x E F2i

0< f(x)<1 for all sEX.
PROOF. We restrict the proof to the relatively trivial special case where X
is a metric space.

Let
fi(x) = d(x, F;) = min(d(x, y;)), where yi E F1.

Then f; (i = 1,2) is a positive continuous function and f=(x) =0 a x E
Ft.

Let a function be defined on Z = ([0, +oo) x 10, +oo)) - (0, 0) by setting

O(Cr!) _ t+17*Then

0 is continuous since (0, 0) is not in the domain of definition Z of 0.
Furthermore,

0«<1,
'F(C, 0) = 1 if f > 0, and

rl) = 0 if rl > 0.

Let f(x) = 4'(fl(x), f2(x)). Since F1 f1 F2 = 0, the mapping into (R+)2
defined by x '- (fl (x), f2(x)) actually maps into Z. Thus f is the compo-
sition of continuous mappings and hence is continuous. 0

1.2 Support of a function
Definition. Let f be a continuous function on X. The support of f, de-
noted by supp (f ), is the closed set

supp (f) = closure {x : f (x) 36 0}.

1.2.1 Proposition. The following statements are equivalent:
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(a) z 0 supp (f)
(ii) There exists a neighborhood V (z) such that f (x) = 0 Vx E V (Z).

PROOF. Let 0 = (supp (f ))`; then 0 is an open set and

{x: f(x) 54 0}n0csupp(f)n0=0,
whence, setting 0 = V(z), we have shown [that] (ii) (i).

Conversely, if V(z) n {x : f (x) 0 0} = 0, then

V(z) n {x: f(x) 96 0} = co

1.2.2 Proposition. Suppose that X is a locally compact space, F is a
closed subset of X, and 0 is an open subset of X such that F C O. Then
there exists a continuous function g such that

0<g(x)<1 for any xEX;
g(x) = 1 if and only if x E F; and

supp (g) C O.

PROOF. Set F' = O`. Applying Urysohn's lemma (1.1), let f be the function
associated with the pair of closed sets (F, F'). Set

F" = f([0, 2])
Then F" is a closed set since f is a continuous function. Let g be the function
associated by Urysohn's lemma with the pair (F, F"). Then g(x) > 0 implies
x 0 F", or f (x) > 1, which may be written as

Ix: g(x) # 0} C f1]).

Hence supp (g) C closure (f-')((z,1]).
Since f ' ( [ , 1]) is closed, we have a fortiori

supp(g) C f([1]) C 0.0

1.3 Subordinate covers

1.3.0 Definition. Let J U,,) be an open cover of X. An open cover { Vn } is
said to be subordinate to {U,,} if, for any n, there exists a(n) such that

Vn C U.(n).

A cover { Hj } is said to be locally finite if, for every compact set K,

card {y : H.. n K e O} is finite.

1.3.1 Theorem. Let X be a locally compact space which is countable at
infinity. Then every open cover has a locally finite subordinate open cover
{Vn} such that the V are compact.
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PROOF. Let {U.} be an open cover of X and let {Hm} be the sequence of
compact sets defined in 1.0.3. Set

G1 = H1 and Gm = (Hm - H.- I).

Then

But

so that

Cm=Hmn(Hm_,)cCHmn

0 \ C(Hm_1)f.

D H-c,_1, whence (Hm_1) D Hc

\1 f.

GmCHmn(Hne-1)

H,,,_1 = 0. Using 1.0.3,

GmnHm-2=0.

0
Ua,m = Ua n Hm+1 n Hm-2.

Then is an open cover of Gm.
For each x E Gm, there is an open set Wm(x) such that

(iii) Wm(x) C U., where a = a(x).

The W,,,(x) form an open cover of the compact set Gm: from this cover we can
extract a finite subcover, say Wm(xi),...,Wm(x,).

The family {Wm(xk)} is a countable family of open sets, which we denote by
{V, }. We have V C U,,, where a = a(n). The {Vn} cover Gm for every m,
hence cover X. For fixed m, (i), (ii), and (iii) imply

(iv) card {n : Vn n Gm # 0} < +oc.

We now prove a lemma.

1.3.2 Lemma. Let K be a compact subset of X. Then there exists q such
that KC Hq.

PROOF. Set Fr = (Hr) n K; then nrFr = 0.
The Fr form a decreasing sequence of closed subsets of the compact set K.

Since their intersection is empty, there exists q such that

0=F9 =(Hq)CnK.o

1.3.3 CONCLUSION OF THE PROOF OF THEOREM 1.3.1.Given the compact
set K, let q be determined by 1.3.2. Then (ii) and (iii) show that

W,n(x)nK=O if m>q-2,
whence

card {n:VnnK#0} <+oo.0
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1.4 Partitions of unity
1.4.0 Definition. A partition of unity on the space X is a sequence of
continuous functions Vn such that

(i) 0 S `pn < 1,
(ii) supp compact,
(iii) card {n : K n supp (cpn) 0 0} < +00 for every compact set K, and
(iv) >Vn(x) = 1.

REMARK. Condition (iii) is called a local finiteness condition. It implies
that, for fixed x, the series (iv) contains only finitely many nonzero terms.

The partition of unity is said to be subordinate to the open cover U. if

(v) for every n, there exists a(n) such that supp (cpn) C U,,(,,)-

1.4.1 Theorem. Suppose that X is a locally compact space which is count-
able at infinity and {U,,) is an open cover of X. Then there exists a parti-
tion of unity subordinate to {U.}.

PROOF. Let {Vn} be the locally finite cover subordinate to {U0} con-
structed in Theorem 1.3.1.

Since the V form a cover, by another application of 1.3.1 there is a
locally finite cover {L,} subordinate to {Vn} which satisfies

L, c Vn, where n = n(s).

Applying 1.2.2 to the pair (L Vn(3) ), there is a function g, such that
supp (9s) C Vn and g. (x) = 1 if x El.. Since each V,, is compact and
the cover {L,} is locally finite, only finitely many of the elements L. are
contained in any Vn. Since the cover { Vn } is locally finite,

card {n: VnnK34 0} <+oo

for any compact set K. Hence, setting I(K) = {s : supp (g,) n K 96 0}, we
obtain

card (I(K)) < +oo.

Thus the sequence {9, } satisfies condition (iii). Set

D(x) _ (x).
0

To calculate D(x) on a given compact set K, it suffices to let s range
over I(K). As this set is finite, D(x) can be written on K as a sum of
continuous functions; hence D(x) is continuous on K. Together with the
local compactness of the space X, this implies that D is continuous.

Furthermore, {L,} covers X. For every x, there exists s such that x E L,;
that is,

D(x) >_ 1 for every x E X.
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Setting

$(x) =
D1

gives a continuous function on X. Finally, set pp,, = f3g,,.

2 Positive Linear Functionals on CK (X )
and Positive Radon Measures

2.0.1 Notation

Given a locally compact space X, CK (X) denotes the vector space of con-
tinuous functions with compact support. We write

f > 0 if f (x) > 0 for every x.

2.0.2 Definition. A positive linear functional is a linear mapping I
CK (X) - R such that 1(f) > 0 for every f > 0.

2.1 Borel measures

Let Bx denote the Borel algebra on X. A measure defined on Bx is called
a Borel measure, and is said to be locally finite if

2.1.1 p(K) < +oo for every compact set K.

REMARK. Since K is closed, K E Bx.

2.1.2 Proposition. Let p be a locally finite Borel measure on X. Then
every continuous function with compact support is integrable. Setting

I,,(f)=Ifdp

defines a positive linear functional on CK(X).

PROOF. Since f is continuous, it is Bx-measurable. Furthermore, If f is
bounded by a constant M, and setting K = supp (f) yields

Ifl <_ M1K.

By 2.1.1, 1K is integrable; by 1-7.4.2, so is f. The positivity of I follows
from 1-6.8.3.

2.2 Fundamental theorem of Radon-Riesz. Let X be a metrizable lo-
cally compact space which is countable at infinity. Then the correspondence

IL --+ It,
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of 2.1.2 defines a bijection which allows the locally finite Borel measures to
be identified with the positive linear functionals on CK(X).

PROOF. This statement contains both an existence and a uniqueness theo-
rem: Every positive linear functional is represented by an integral with re-
spect to a locally compact Borel measure, and this representation is unique.

The proof of Theorem 2.2 occupies the rest of this section.

2.2.1 Approximation lemma. Let X satisfy the hypotheses of 2.2. Then
for every open set 0 in X there is an increasing sequence of compact sets
Kn such that

(i) O = UKn and Kn c n+1

For every compact set K in X, there is a decreasing sequence of open
sets On such that On is compact,

(ii) K = nOn, and On C On-1

PROOF. Set Gn = {x : d(x, O°) >
n

}; then On is closed. Let Kn = GnnHn,
where {H} is the sequence of compact sets of 1.0.3.

Then kn D 6n n n 3 Gn-1 n Hn-1i and (i) is satisfied.
To prove (ii), let m be determined as in 1.3.2 so that K C tl m, and set

On = h,nn{x:d(x,K)< 1 I .
l n

2.3 Proof of uniqueness of the Riesz representation

Let p and v be locally finite Borel measures such that

2.3.0. Jf(x)dP(x) = 1 f E CK(X ).

2.3.1 Proposition. Suppose that 2.3.0 is satisfied. Then the measures
p and v coincide on open sets and on sets which can be written as the
intersection of an open set and a closed set.

PROOF. Using the approximation lemma 2.2.1(i), we can write 0 = UKn.
For every pair (Kn, kn+1), let gn be determined as in 1.2.2:

gn(x) = 1 if x E Kn,
supp (gn) C Kn+1, and 0 < gn < 1.

Then 1K < gn < 10, whence

1i(Kn) 5 Jgndl4 S µ(O)
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Since, by 1-3.2.1,
limit(Kn) = µ(O) < +oo,

it follows thatr
r

(i) lim J gndp = µ(O) and similarly lim J g,,dv = v(O).

Since g,, E CK (X ), 2.3.0 implies that the left-hand sides of the two equa-
tions are equal; thus v(O) = µ(O) < +oc.

Let A = F n 0, where 0 is open and F is closed. Using the exhaustion
principle (1-3.2.4) and setting

Fn = F n H,, (H defined as in 1.0.3),

we have
p(F n 0) = lira p(F n 0),

whence it suffices to show that

µ(K n 0) = v(K n 0)

for every compact set K.
By the approximation lemma, 2.2.1(ii), there exists a sequence 10,,j of

open sets with compact closures such that K = lim 1 0,,. Since the O are
compact, µ(O1) < +oo; it follows from the principle of decreasing sequences
(1-3.2.3) that

,u(K n O) = lim u(O n On),

and from the first half of the proof that

µ(O n On) = v(O n On).o

For convenient reference, we restate the first part of the proof of 2.3.1 in
a more organized form.

2.3.2 Constructive definition of µ(O)

Let 0 be an open set in X and let

T(O)=(f ECK(X):supp(f)COa.nd0 f <1}.

Then r
µ(O) = supj f dit where f E T(O).

PROOF. Set L = J fdµ, where f E T(O). Since f E T(O) implies f < 10,

we have

J
fdp < p(0), whence L < µ(O).

Furthermore, the g,, constructed in the proof of 2.3.1 satisfy gn E T(O).
Thus

lim f gndµ < L, whence by 2.3.1(i) µ(O) < L.O
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2.3.3 Terminology

Subsets of X which can be written as the intersection of an open set and a
closed set are called sets of type o.c. Open sets and closed sets are special
cases of o.c. sets. (Take their intersection with X.) A subset of X which can
be written as a finite union of disjoint o.c. sets is called an elementary set.
It follows from the additivity of p and v and from 2.3.1 that µ(E) = v(E)
for every elementary set E.

Lemma. The elementary sets form a Boolean algebra of subsets of X.

REMARK. Compare 1-1.5.4.

PROOF.

(I) Let R be an o.c. set. Then R' is an elementary set, for if R = On F,
then R' = O` U F` and we can write

R`= (O`nF`)u(O`nF)u(0nF`).

The three sets in parentheses are disjoint and each is of type o.c.

(ii) The intersection of two elementary sets is elementary. Indeed, let
E=U, R. and E'=U, R',where R, =O;nF; and R; =0,'1nF,.
Then

Ene'=U;,jR,nR,.
Since the R,, Rj are disjoint, so are the R,nR;. Moreover, R, nR; =
(O; n 0,) n (F; n F;) and hence is of type o.c.

(iii) The complement of an elementary set is an elementary set. If E =
UR, then E` = nR;. By (i), each R; is an elementary set. By (ii), E`,
as the intersection of finitely many elementary sets, is elementary.

(iv) X is of type o.c. (hence elementary).

(v) A finite union of elementary sets is elementary. By (iii), it suffices
to prove the statement for complements of elementary sets; but this
follows from (ii). C3

2.3.4 Proof of the Radon-Riesz theorem (uniqueness)

PROOF. Let B = {A E Bx : v(An µ(An dn} (where H,, was defined
in 1.0.3).

We first show that B is a monotone class. This is immediate for increasing
sequences, by I-3.2.1. Now let {A.} be a decreasing sequence, A. E B. Then, by
the compactness of

A(A. n +oo and v(A, n H.) < +oo.

Applying 1-3.2.3,

limµ(A, n H,,) = p((lim 1 A.) n
e
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whence
µ((lim I A,) n H,,) = v(lim(j A,) n

As this is true for any n, we have (lim I A.) E B.
Furthermore, B contains the Boolean algebra of the elementary sets of X by

2.3.1. Therefore, by 1-1.4, B coincides with the a-algebra generated by the open
sets and the closed sets; that is, B = Bx. 0

2.4 Proof of existence of the Riesz representation

Given a positive linear functional I on CK (X ), we would like to represent
it in integral form. We begin by using a construction that appeared in the
proof of uniqueness.

2.4.1 Measure of open sets

As in 2.3.2, we set

T(O)={f ECK(X):supp(f)CO and O< f <1}.

Given a positive linear functional I, we define

(i) 1(0) = sup I (f ), where f E T (O).

1(0) is called the measure of the open set 0 relative to the linear form I.
Note that

(ii) I(Ol) < I(02) if 01 C 02.

(iii) Proposition (Convexity inequality). Let {On} be a sequence of
open subsets of X. Then

I UOn < 1: I(On).
n n

PROOF. Set W = UnOn. Let f E T(W) and set

12 = (supp (f ))`.

Then 11, {On} form an open cover of X. Let cpq be a partition of unity
subordinate to this cover. Set

fq = fcPq.

Let S = {q : cpq f 34 0}. Since f has compact support, card(S) < +oo. If
q E S, let q'- 0(q) be a mapping from S to N such that

supp(ccq) C Oe(q)
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Set

S(n) = 0-1(n).

The nonempty S(n) form a partition of S. Set

On= i 'Pq.
gES(n)

Set J = B(S) and fn = f',n. Then f <- EnEJ fn and, since fn E T(On),
I(fn) < I(On) and

1(f) <_ E1(On) 5 >1(On).0
nEJ n

(iv) Proposition (Additivity of I). Let Oi be a sequence of disjoint
open sets, and set 0 = UOi. Then

I(O) = 1(Oi).

PROOF. Given n and e, consider the nth partial sum of the series on the
right-hand side and choose f, E T(O,) such that

1(L) ? I(Oi) - e2-'.

Then f = 1 f; satisfies f E T(O), whence

n n

I(0)>-I(f)1(f=)I(O:)-e.

Since n and a are arbitrary, we obtain

+00

1(0) > > I(Oi),
n=1

which together with the convexity inequality gives (iv). 0

2.4.2 Measure of compact sets

Let K be a compact subset of X and set

I(K) = inf 1(0), 0 open, 0 D K.

Then

(i) K1 C K2impliesl(Kl) < 1(K2); and
(ii) if K is compact, 0 is open, and K C 0, then I(K) < 1(0).
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(iii) Proposition (Finite additivity). Let K1, K2, ..., Kn be a finite
collection of compact disjoint sets. Then

1

n

Ki =
n

I(K;).
i 1

PROOF. Let 2e denote the infimum (minimum) of the distances from K. to K3
and let

U, = {x: d(a, K;) < e}.
Then the U, are disjoint open sets.

Choose Oi such that Oi D Ki and 1(0i) < I(Ki) -e2-', and set O; = U; nOi.
Let K = UK. and choose 0 such that I(K) > 1(0) - e. Set O; = O n O,;

then K C UO'J C 0, which implies that

1(UO;)-e<I(K)<I(U0,") .

Since the O, are disjoint, 2.4.1(iv) implies

Since

we have

and thus

I(U0)=E1(O;).

K,C07C0,

I(O;)-e2-' <1(K,) <1(O;),

1(O') < I(K,) < I(O;).O

2.4.3 Inner measure and outer measure

We would like to define set functions for arbitrary subsets A of X. We set

µ'(A) = inf 1(0), 0 open, 0 D A, and
µ.(A) =sup1(K), K compact, K C A.

Then by 2.4.2(ii)

W 5 p* (A).

µ.(A) is called the inner measure of A and u* its outer measure.

(ii) Proposition (Convexity inequality for µ`). Let {An} be a sequence
of subsets of X. Then
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PROOF. Choose a sequence of open sets (Oil such that

Ai C Oi and I(Oi) < µ`(Ai) + E 2-4.

Let A = U,Ai and let 0 = UOi; then A C 0, whence µ'(A) < 1(0).
By 2.4.1(iii),

1(0) < 1: I(Oi) < Eµ'(Ai) +e.0

(iii) Proposition (Concavity inequality for µ.). Let {Ail be a se-
quence of disjoint subsets of X. Then

(t3A)i ? E/ 2.(Ai)
i=1 i=1

PROOF. Consider the nth partial sum of the series on the right-hand side.
Fix compact sets Ki such that

Ki C Ai and I(Ki) > µ.(Ai) - e 2'.

Let K = U;` 1 Ki; then K is compact. Since the Ai are disjoint, so are
the Ki, and finite additivity (2.4.2(iii)) gives

n n

I(K) _ E1(Ki) > µ.(Ai) -
i=1 i=1

Since K is compact and K C A = UiA1, we conclude that µ.(A) > I(K).
0

2.4.4 Construction of the measure (compact case)

Throughout this section, we assume that

(H) X is compact.

Let

(i) B = {AEP(X): *(A)=µ.(A)}.

If A E B, we set

(ii) u(A) = (A) =

(iii) Proposition. A E B if and only if for every e > 0 there exist a
compact set K and an open set 0 such that

KCACO with I(O)-E<I(K)<I(O).
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PROOF. We prove sufficiency; the proof of necessity is similar. If A E B,
there exists a compact set K such that K C A and I(K) + 2 > p.(A).

There exists an open set 0 such that 0 K and A* (A) > 1(0) - L2*
Hence the fact that p.(A) = p'(A) implies that

1(0) - e < 1(K) < I(O).

(iv) Proposition. Every closed set is in B.

PROOF. Let K be closed (hence compact). Then p.(K) = I(K) by defini-
tion, and

(K) = inK 1(0) I(K)

by definition of I(K).

(v) Proposition. Every open set is in B.

PROOF. Let 0 be an open set. Formally, it* (0) = 1(0).
Furthermore, given e > 0, by the definition of 1(0) there exists g E T(O)

such that I(g) > 1(0) - E.
Let K be the support of g. Then g E T(SB) for every open set f D K.

Hence I(g) < 1(St) dit D K; that is,

1(g) < inf I(Q) = 1(K).

Thus
1(K) > 1(g) > 1(0) -,E

and therefore
1A.(0) >- W(0) - E.

(vi) Proposition. Let {An} be a sequence of disjoint elements of B. Then

UnAn E B and p (UnAn) = A(An)-
n

PROOF. p' (UAn) < En p(An) by the convexity inequality, and p. (UAn) >
En p(An) by the concavity inequality.

Setting Z = UAn, we thus have p.(Z) > p'(Z), whence Z E B and

Ep(An) <- /,t. (Z) = F1(Z) = M* (Z) < E p(An).
n n

We now refine criterion (iii).

(vii) Lusin's criterion. Let A E P(X). Then A E B if and only if for
every e > 0 there exist a compact set K and an open set 0 such that

KCACO and p(O-K)<E.
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PROOF. By (iii), we can find K C A c 0 such that

µ(O) < µ(K) +,E.

But (0 - K) and K are disjoint and belong to B (because (0 - K) is
open and K is closed), whence by (vi)

p(O - K) + p(K) = A(O), or p(O - K) = p(O) - p(K) < E.

(viii) Proposition. B is a Boolean algebra.

PROOF. We will use Lusin's criterion (vii). We first show that A" E B if
A E B. There exist a compact set K and an open set 0 such that

KcAcO with p(O-K)<E.
Then

O`CA`CK` and K`-O`=O-K, whence
µ(K° - OC) = p(O - K) < E.

Similarly, let A, A' E B; then K U K' C A U A' C 0 U 0' and

(O u 0') n (K U K')' = (O n (K U K')c) u (O' n (K U K')c)
c (O n Kc) u (O' n K'c).

Hence, by the convexity inequality for the outer measure,

p"((OUO')n(KuK')°) < p"(0-K)+p"(0'-K').

Since all the sets in this expression are in 8, we can replace p" by p to
obtain that A U A' satisfies (vii); hence A U A' E B.

(ix) Theorem. Suppose that X is a compact space and B is the family of
sets defined in (i). Then B is a a-algebra containing the Borel algebra and
p defined in (ii) is a measure on B. The a-algebra B is p-complete.

PROOF. It must be shown that a countable union of sets An E 13 is in B.
Set

B1 =At,

Then UBn = UAn and, since B is a Boolean algebra, Bn E B.
Since the Bn are disjoint, it follows from (vi) that their union is in B.

Thus B is a a-algebra. By (vi), p is a measure on B. By (iv), B contains
the closed sets; therefore B contains the Borel algebra BX. Next, let

YcA, where AEB and p(A)=0.

Then
p"(Y) < M* (A) = 0.
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Furthermore, by 2.4.3(1),

µ.(Y) 5 µ*(Y),

whence
µ.(Y) = µ'(Y) = 0.

Thus Y E B, and hence B is p-complete. 0

(x) Definition. The measure µ constructed in Theorem 2.4.4(ix) is called
the Radon measure associated with the positive linear functional I. The
a-algebra B on which the Radon measure p is defined contains the Borel
algebra BX. By restricting µ to BX, we can associate a Borel measure µ'
with µ. The a-algebra B is the completion of Bx with respect to the measure
p'; this will be proved in 3.4.2.

2.4.5 Proof of the representation theorem (compact case)

Theorem. Let X be a compact space, let I be a positive linear functional
on C(X), and let µ be the Borel measure associated with I by 2.4.4(ix) and
(x). Then

f fdp = I(f).

PROOF. We will show that

(i) I(f) < f fdµ for every f E C(X).

For a given e > 0, let

Ak = f -' ([ke, (k + 1)e)), where IkI < N,

with N chosen so that M = max if I < Ne. Set

ok = f-1

Then Ok is open since f is continuous. flOn = Ak, and hence the theorem
on decreasing sequences gives

lim µ(O') = µ(Ak)n

Fix n so large that

(ii) (k + 1)[µ(0k) - u(Ak)] < 1.
Ikl<N

Since the Ak form a partition of X, the Ok form an open cover of X. Let
'pk be a partition of unity subordinate to this cover. Set fk = Pk f ; then
f = E fk and moreover fk < (k + 1)ecpk, whence I(fk) < (k + 1)eI(Wk).
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Since 0 < Wk < 1 and supp (cpk) C Ok, we have I(cpk) < 1A(01), whence

I(f) _ I(fk) 5 F(k+1)eµ(Ok).

Using (ii),

Furthermore,

I(f) < E(k + 1)eµ(Ak) + E.

J fdµ=EfAkf.
But f (x) > ke if x E Ak, whence

f fdµ > > keµ(Ak)

and therefore

I(f) 5 f fdµ+e 1+E µ(Ak)
k

Since Ak is a partition of X, Eµ(Ak) = µ(X). Thus

I(f) < f fdµ+e(1 +µ(X)).

As a is arbitrarily small, we have proved (i).
Now, applying (i) to f' = -f, we obtain the opposite inequality to (i);

the two inequalities imply equality.

2.4.6 Proof of the Radon-Riesz theorem (noncompact case)

Let X be a locally compact space which is countable at infinity. Let { Hn }
be the exhaustion sequence constructed in 1.0.3 and let u,n be the function
associated by Urysohn's lemma with the pair (H,n_1i (H;1)).

(i) Lemma. Let C(H,) denote the functions defined and continuous on
H,n. For f E C(H,n), define u,,,. f by

f if x E Hm;
0 if x f H..

Then u,n. f is a continuous function on X.

PROOF. Only the behavior at the boundary of H,n must be checked. Let
xo be a point in the boundary of H,n; then u,n(xo) = 0 and there exists a
neighborhood U of xo such that Iu,n(x)I < e if x E U. Hence

<emaxIf 1.
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(ii) Corollary. Let I be a positive linear functional on CK(X). Set

Im(f) = f E C(Hm)

Then In is a positive linear functional on Hm.

(iii) By the compact case of R.iesz's theorem, proved in 2.4.5, there exists
a measure it.. defined on the Borel algebra BHm of H,n such that

Im(f) = ffd14m ,df E C(Hm).

(iv) Let f E CK(X); then there exists p such that

supp (f) C l1p.

Hence u,,,. f = f if m r> p and I (u,n. f) = I(f), and thus

J f dµ,n = I (f) if m > p.

(v) Let 0 be an open subset of X such that O is compact; then there exists
p such that 0 C Ap.

Hence, letting

T (O) = If E CK (X) : supp (f) C 0},

we have

By (iv),

whence

A.(O)=supIn(f), where f ET(O).

I,. (f) = I (f) if m > p,

µm(O)=sup1(f)=µm'(O) if mandm'>p.

(vi) The measures u n and p n, coincide on the Borel algebra BHp if m,
m'>p.
PROOF. Let

Z=(AEBH,,:µm(A)=Am'(A)}.
Let Oq be a decreasing sequence of open sets such that

nOq = Hp and Oq C Ap+i

Then p,n(Oq) = pm'(Oq) by (v). Hence

t4n(Hp) = A., (Hp).
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Let B E Z; then, since B° = Hp - B,

lAm(B') = µm(Hp) - Itm(B) = Mm'(Hp) - l1m'(B) = I1m'(B`).

Hence B E 2 implies B` E Z.
Let C be an open subset of Hp. Then there exists G' C .4p+1 such that C' is

open in X and
G'nH,=G,

whence

By (v),

G=limG'nO,.

µ,,,(G' n Oq) = a,,,'(G' n Oq)-

Hence Z contains the open subsets of Hp. Taking complements shows that Z
contains the closed subsets.

We now use 2.4.4(vii) (Lusin's criterion) and 2.4.4(ix). Given a Borel set A
and an F > 0, there exist a closed set K and an open set 0 such that K C A C 0
and /i0(0) < e.

Since µm (O) = (O) and um (K) = u,,,, (K), it follows that

IL., (K) < lim'(A) < u., (0) = A. (0) < fdm(K) +
Ibm(K) C I{m(A) < p. (0) < g. (K) +E.

Hence
1p .(A) - p.,,,,(A)I <.e.

Since a is arbitrarily small, µm(A) = µ,,,'(A).

(vii) Definition of Borel measure.
Let {Hm} be the exhaustion sequence defined in 1.0.3. For A E Bx, set

p(A) = limµm+2(A n Hm).

By (vi),
hm+2(A n H,1) = pm+i (A n Hm_1),

whence the inclusion A n H,,,_1 C A n Hm implies that the sequence
{µm+2(A n H,,,)} is increasing. Hence its limit exists and is finite or equal
to +0G.

We first prove finite additivity. Let Al i A2 E Bx, Al n A2 = 0. Then,
setting A = Al U A2,

{dm+2(A n Hm) = µ.+2(A1 n Hm) + Fim+2(A2 n Hm).

Hence, passing to the limit,

µ(A) = F1(Al) + A(A2)-

To prove o-additivity, it suffices to show that µ is continuous on increas-
ing sequences.
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LetB1 CB2C...CBq,...,where BgEBx,andsetB00=UBq.
Suppose first that µ(B00) = +oo. Let M be a positive real number; then there

exists m such that
µ(B00 n Hm) > M.

By (vi),
µ(B00 n Hm) = µm+2(B0p n Hm).

Since µm+2 is continuous on increasing sequences, there exists q such that

µm+2(Bq n Hm) > M,

whence
µ(Bq) > M.

As this is true for all M, limµ(Bg) _ +oo.
We now consider the case µ(B00) = a < +oo. Let e > 0 be given. There exists

m such that

By (vi), µ(B00 n H.) = 11m+2(Boo n H.). Since µ,,,+2 is continuous on increasing
sequences, we have

limµm+2(Bq n Hm) = µm+2(Boo n H,,,).
q

Hence there exists r such that

µ.+2(B,- n Hm) > µm+2(B0o n Hm) - e,

and thus p(Br) > µ(Br n Hm) implies that µ(Br) > µ(B00) - 2e. 0

(viii) Representation formula.
Let f E CK (X ); then there exists m such that supp (f) C ut m. By (iv),

I(f)=f fdµm+2

But dµ,,,+2 is equal to dµ on Hm, whence

I(f) = Jfd.
(ix) Definition of the associated Radon measure.

Completing the measure space (X, Bx, µ) yields a measure µ, called the
Radon measure associated with the linear functional I.

3 Regularity of Borel Measures
and Lusin's Theorem

3.0.1 Hypothesis. We assume that the space X is locally compact, metriz-
able, and countable at infinity.
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3.0.2 Definition. A measure a defined on a a-algebra B containing the
Borel algebra Bx of X is called regular if for every A E B and for every
e > 0 there exist an open set 0 and a closed set F such that F C A C 0
andu(O-F)<e.
3.1 Proposition. Let X satisfy 3.0.1 and let p be a locally finite Borel
measure on BX. Then there exists a Radon measure v such that p(A) _
v(A) for every A E Bx.

PROOF. Let f E CK(X). Since the indicator function of any compact
set is integrable, the inequality If < MILK, where K = supp (f) and
M = max If 1, implies that f is integrable (see 1-7.4.3).

Hence a positive linear functional can be defined on CK(X) by setting

I(f) = Jfdp.

By the uniqueness theorem (2.3.4), the linear functional I determines
the measure; that is, if v denotes the Radon measure associated with the
form I by Riesz's theorem, then

p(A) = v(A) for any A E BX.

3.2 Theorem. Let X be a locally compact space satisfying the hypothesis
of 3.0.1. Then every Radon measure p on X is regular.

PROOF. If X is compact, regularity follows from Lusin's criterion, 2.4.4(vii).
If X is only locally compact, let A be a measurable subset of X and let Hn

be the exhaustion of the space constructed in 1.0.3. Set An = GnflA, where
G. = (Hn - Hn_1). Using Lusin's criterion on the compact set H,,+,, fix
a closed set Fn and an open set On of X such that

Fn C H.+1, Fn C An C On, and p(On - Fn) < e2-n.

Note that Fn is compact. Set 0 = UOn; then 0 is open and 0 D A.
Similarly, set F = UFn. By 1.3.2, this union is locally finite (that is, any
compact set meets only a finite number of Fn); hence F is closed. Clearly
FCAandµ(O-F)<e.
3.3 Theorem. Let X satisfy the hypothesis of 3.0.1. Then any locally finite
Borel measure p on X is regular.

PROOF. By 3.1, p is the restriction to the Borel algebra of a Radon measure
v. Since v is regular by 3.2, a fortiori so is p.

3.4 The classes G6(X) and.FQ(X)

3.4.0 Definition. The class of subsets of X which can be written as a
countable intersection of open sets is called C5(X).
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A countable intersection of elements of 96(X) is in 96(X).

The class of subsets of X which can be written as a countable union of
closed sets is called F, (X).

A countable union of elements of .F, (X) is in .F, (X).

Clearly 96 (X) and .F, (X) are subclasses of the Borel algebra.

3.4.1 Proposition. Let p be a regular measure defined on the a-algebra B
of the locally compact space X. Then for every A E B there exist

1, E 96(X) and 4 E Fr (X)

such that
4 CACI' and µ(I'-'F)=0.

PROOF. By 3.0.2, we can find a sequence {Fn} of closed sets and a sequence
{0,', } of open sets such that

FncACO, and p(On-Fn)<n-1.

Set
on = flq<nO'q and Fn = Uq<nF .

Then Fn C A C On and {On - Fn} is a decreasing sequence. Furthermore,
On - F. C On - Fn, whence 0 = lim p(On - Fn) = lim µ(j. (On - Fn)). Set
r=limIOn and A=limTFn.

Then 1' - = lim j. (On - Fn), whence .t(1' - t) = 0. Finally,

lim j On E 96(X) and lim T Fn E .F, (X ).O

3.4.2 Corollary. Let p be a regular measure defined on a a-algebra B on
X, let p' be the restriction of µ to the Borel algebra BX, and let jr denote
the measure defined by extending p' to the completion BX. Then BX D B
and p equals the restriction of i to B.

REMARK. Cf. 1-4.2.2.

3.4.3 Lusin's theorem. Suppose that X is a locally compact space, v is a
regular measure defined on the a-algebra B J BX, and f is a B-measurable
function. Then for every compact set H and every e > 0 there exists a
compact set K such that K C H, v(H - K) < e, and the restriction of f
to K is continuous.

PROOF. Set Gn = {x : if (x)I > n}f1 H. Then {Gn} is a decreasing sequence
and v(Gn) < +oo, whence

lim v(Gn) = v(f1G,n) = 0.

Hence we can find m such that v(G,n) < 2-lE.
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Considering f' = f 1Gm reduces the proof to the case of bounded f . In
this case, f is the uniform limit of a sequence {gn} of simple functions (cf.
I-6.4.1, of which we follow the notation). Let mo be such that If (x) I < mo
for all x. Setting

Jk,n = {x E H : f (x) E [kn-1, (k + 1)n-1]},

we may take

9n = kn-11jk,,,, where - nm,o < k < nmo.
k

Using the regularity of v, we can find a compact set Kk,n such that

Kk,n C Jk,n and >2 v(Jk,n - Kk.n) < 2-n-'e.
k

Let Vn = UkKk,n, where IkI < nmo.
Then Vn is a finite union of compact sets and hence compact. Further-

more, v(H n 2-n-le. Let W = n H.
The convexity inequality (1-3.3) gives

(2) v(W) < e and W` n H = nVn.

Set Vc,,, = n,,. Then V00 is compact, whence

(ii) Kk,n = V n Kk,n is compact.

Moreover,

(iii) Kk,n is open in Vn

since Kk n n Vn = Uj#kKj,n, Iii < nma.
By (iii , there exists an open subset fl of X such that On Vn = Kk,n and

hence Kk,n = S1 n V0,; it follows that

(iv) Kk,,, is open in V.

It follows from (ii) and (iv) that the indicator function of Kk n is contin-
uous on V00. This, with the fact that Jk,n n V00 = Kk.n n V00, gives

(v) The restriction of gn to V00 is continuous. Since gn converges uniformly
on V00 to f, the restriction of f to V> is continuous.

Furthermore, (i) shows that v(H - V00) < e.

3.5 Density theorem. Let X be a locally compact space satisfying the
hypothesis 3.0.1 and let v be a Radon measure on X. Then for every p,
1 < p < +oo, CK(X) is dense in LP(X, v).
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PROOF. Let {Hn} be the exhaustion of X defined in 1.0.3 and let T,a be the
truncation operator, defined in 1-6.7, associated with this exhaustion. Let f E L"
be given. Then

and

(TT)(f)(x) - f(x) for every x E X

ITnf-fIp<<-IfI'.
By the dominated convergence theorem (1-7.6),

IITnf - fIILP 0.

Let m be such that
IITmf - fIILP < e.

Set fm = f ; then f,n is bounded by m and its support is contained in the
compact set Hm. Set r) = (m-'e)'.

Let K be a compact set, depending on m, such that the restriction t0,n of fm
to K is continuous and such that v(H,n - K) < Let 0 be an open set such
that 0DHmand v(O-Hm)< 2.

By a theorem of Urysohn,' we can find u E CK(X) such that supp (u) C 0,

u(x) = V,n(x) if x E K, and u(x) < m for all x.

On K, fm = <pm = u, whence f,. - u = (fm - u)lKc lO. Since If,. - ul : 2m,

II fm - ull', < (2m)pv(O n K`) < (2m)7 (m-'E)°.

Hence 11f,. - uIILP < 2e, and finally IIf - UIILP 5 3e.

3.6 REMARK. The regularity of Radon measures allows us to approximate
U° functions by continuous functions, and measurable sets by open or closed
sets.

4 The Lebesgue Integral on R and on Rn

4.1 Definition of the Lebesgue integral on R

We first consider CK (R), the continuous functions on R with compact
support. The Riemann integral (see the Prologue) defines a positive linear
functional on CK(R) by

1(f) = f f(t)dt.

Hence there exists by II-2 a Radon measure p such that

I(f) = Jf(t)d(t).
This µ is called the Lebesgue measure on It, and functions measurable

in this sense are called Lebesgue measurable.

' See, for example, N. Bourbaki, General Topology (New York: Springer-Verlag,
1989), IX.4.2.
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4.2 Properties of the Lebesgue integral

We include here only properties specific to the Lebesgue integral. Its most
important properties are common to all Radon measures, and were estab-
lished in Sections 2 and 3 of this chapter.

4.2.1 Proposition. Let a, b E R, a < b. Then

µ([a, b]) = µ((a, b)) = b - a.

PROOF. µ((a, b)) = sup I (f) where 0:5 f < 1 and supp (f) C (a, b). Setting

f = 1 on [a + 2e, b - 2e],
f=0 if t<a+e or t>b-e,

and f linear on [a + e, a + 2e] and [b - 2e, b - e], we obtain

µ((a, b)) > b - a - 3e.

Hence, since a is arbitrary,

µ((a, b)) > b - a.

The opposite inequality follows from the mean value theorem for the Rie-
mann integral. 0

4.2.2 Theorem. Let 0 be an open subset of R. Then 0 is a countable
union of disjoint intervals:

(i) 0 = Uk(ak,bk); and

(ii) L(O) = E(bk - ak).

PROOF. Let X E 0 and set

a(x) = sup{y : y < x, y O},

p(x)=inf{y:y>x, yO}.

Since O' is closed, a(x) E O' if a(x) is finite and ,0(x) E O' if 13(x)
is finite. It follows that (a(x), 13(x)) C 0 and that there exists no open
interval which strictly contains (a(x), 3(x)) and is itself contained in O.
Moreover, x E (a(x), /3(x)), whence

o = U («(x), a(x)).
xEO

Define an equivalence relation on 0 by

x - x' if («(x),$(x)) _ («(x'),Q(x'))
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Since every open interval in R contains at least one rational number, the
set of equivalence classes is countable and (i) follows. We obtain (ii) by
using the a-additivity of it and 4.2.1. 0

4.2.3 Corollary. Every open set has strictly positive Lebesgue measure.

4.2.4 Theorem (Characterization of negligible sets). A subset E of
R is negligible with respect to Lebesgue measure if and only if, for every
e > 0, there exists a sequence of intervals (ck, dk) such that

U(ck, dk) J E and E(dk - ck) < E.
k

PROOF. The sufficiency of the condition follows from 4.2.1 and the con-
vexity inequality (1.3.3). Its necessity follows from the regularity of Radon
measures (3.2) and from 4.2.2. 0

4.2.5 Corollary. Let x E R and let A = {x}. Then p(A) = 0.

PROOF. O = (x - -, x + n) satisfies 2n-1. 0
REMARK. We can summarize 4.2.5 by saying that a "point" of R has
Lebesgue measure zero.

4.2.6 Translation invariance

For fixed a E R, translation by the vector a is the mapping ra of R into R
defined by

ra:x'-+x+a.
Proposition. Let B be a Lebesgue-measurable subset of R. Then 7-a(B) is
Lebesgue measurable and p(ra(B)) = µ(B).

PROOF. It follows from the definition of the integral I in 4.1 that I(ra(f )) _
I(f ), where (ra f) (x) = f (x - a). The uniqueness of the Radon measure
associated with a positive linear functional implies the result. 0

4.2.7 Notation

By abuse of language, we write

JRJR
f (t)dt for f (t)dp(t).

We thus use the same notation for the Riemann integral and the Lebesgue
integral that extends it. Translation invariance is written

(i) JR f (t - a)dt = J f (t)dt.
R

The vector space of Lebesgue-integrable functions defined on R will be
denoted by L1(R). The next statement follows from the translation invari-
ance of Lebesgue measure.
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(ii) If f E L"(R), then TQ f E LP(R) and

IITO/IILP
= 11A LP, 1 < p < +00-

4.3 Lebesgue measure on Rn

4.3.1 Definitions and notation

To simplify notation, we begin by constructing Lebesgue measure on R2.
We denote by (R, A, µ) the real numbers equipped with Lebesgue mea-

sure tc and the a-algebra of Lebesgue-measurable subsets. Let (R, A, µl )
and (R, A, 112) be two copies of the measure space (R, A, p).

Let R2 = R x R and let B denote the tensor product o-algebra :

B=Al®A2.

Then B contains the Borel algebra of R2 (1-2.4.2). Let Al ®µ2 be the
product measure defined on B by 1-8.4.1.

Lebesgue measure on R2 is the measure v obtained by completing j ®µ2
(cf. 1-4.2.3). The completion of B is the a-algebra of Lebesgue-measurable
subsets of R2. We denote by L' (R2) the space of Lebesgue-integrable func-
tions on R2.

If f E L'(R2), we write

JR2 fdv =
f ffl2 P h, t2)dtldt2.

Then, by Fubini's theorem (1-8.5),

11

1R2
f(t1, t2)dtldt2 =

JR [R f (t1, t2)dtl]

ebesgue measure on R" is constructed recursively, by writing R" = R xL
R"-'. For f E L'(R"), the integral thus obtained is written as

JR"

and Fubini's theorem reduces the calculation of this integral to the calcu-
lation of n successive integrals on R.

4.3.2 Lebesgue measure on R" and the Radon-Riesz theorem

To simplify notation, we restrict to the case where n = 2. Let a positive
linear functional be defined on CK(R2) by

(i) 160) = f dt2 {J(tit2)dti]. cp E CK(R2).
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By the Radon-Riesz theorem, there exists a Radon measure p such that

4P) = fdp.
By the uniqueness part of the Riesz representation theorem,

p(A) = v(A) for every Borel set A.

Furthermore, since

v([-R, +R] x [-R,+R]) = 4R2,

Lebesgue measure is locally finite and hence regular by 3.2.
The measures p and v are complete regular measures defined on the Borel

algebra.

Lebesgue measure on R2 may be regarded as the Radon measure associated
with (i).

4.3.3 Translation invariance

This is proved as in 4.2.6, by using 4.3.2.

4.3.4 Proposition. Every open set in R" has strictly positive Lebesgue
measure.

PROOF. We restrict to the case where n = 2. Let 0 be a nonempty open
set and let (t1, t2) E O. Then there exists e > 0 such that

Q = (t1 -e,t1 +e) X (t2 -e,t2+E) C O.

The product measure of the square Q is the product of the measures of its
components (1-8.1(i)), whence

v(Q) = 4e2 > 0 and v(O) > v(Q).o

4.4 Change of variables in the Lebesgue integral on Rn

4.4.0 Some facts from differential calculus

Let 0 be an open set in R". A mapping f = (f 1, ... , f n) is said to be a
diffeomorphism if

(i) f (O) is an open subset 0' of R' and f is a homeomorphism of
0 onto 0' (i.e. a bicontinuous bijection); and

(ii) f and g have continuous first partial derivatives, where g de-
notes the inverse homeomorphism. The Jacobian matrix of f is
the matrix

if =afk, 1<i<n, 1<k<n.



84 II. Borel Measures and Radon Measures

We then have the following composition law:
If f and h are diffeomorphisms for which the composition h o f = q is

defined, then q is a diffeomorphism and the Jacobian matrix of q is the
product of the Jacobian matrices,

(iii) Jq = JhJf.

In particular, J9 = J-1 .

Thus the Jacobian matrix of a diffeomorphism is invertible: det(Jf(x))
is a continuous function that is nowhere zero, and hence has constant sign
on a connected component of O.

4.4.1 Change-of-variables theorem

Theorem. Let 0 and O' be open subsets of R" and let f be a diffeomor-
phism from 0 onto O'.

Let CK (O') denote the continuous functions which have compact support
contained in 0'. Then

(i) J p(f(x))Idet Jj(x)Idx
=

fofp(X')dx' if 'PECK(O').

REMARKS.

(ii) Since f is a homeomorphism, W E CK(O') implies (cp o f) E
CK(0). Since det(Jf(x)) is a continuous function, the inte-
grands on both sides of (i) are continuous functions with com-
pact support and therefore integrable.

(iii) Using a partition of unity on 0', we can write W _ cps, where
the V,, are supported in arbitrarily small open sets. It thus suf-
fices to prove the theorem for each ape. This means that we may
assume throughout that W has sufficiently small support.

(iv) Functoriality. Suppose that f = g o h, where g and h are dif-
feomorphisms. If the change-of-variables formula is proved for
the diffeomorphisms g and h, then the result will hold for f in
view of the identity

Idet J1I = Idet J9I Idet JhI.

4.4.2 Lemma. The change-of-variables formula holds when n = 1.

PROOF. In this case, the formula becomes

fw(f(x))If'(x)Id.x = f co(Xl)dx'.

Using (iii), we can reduce the proof to the case where the support of W is
small enough that f'(x) has constant sign. By the mapping x -+ -x, this
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can be further reduced to the case f'(x) > 0. Then the formula is

Set

Jc(f(x))f'(x)dx = Jco(x')dx'.

rF(t) = jso(f(x))f'(x)dxif

(1)

G(t) =
J

lp(x')dx'.
/(0)

Then, differentiating the integrals, we obtain

G'(t) = v(f(t))f'(t),
F'(t) = sv(f(t))f'(t)

Hence F(t) - G(t) is a constant.
Setting t = 0 shows that this constant is zero. 0

4.4.3 Proof of the change-of-variables theorem

We proceed by induction on n. Assume that the result holds for m < n.
Writing x E Rn in the form x = (t', y), where C E R, Y E R"-1, set

h(x) = (C', y'), where t' = f 1(S, y), y' = y, and

g(x') = W,O(x')), where 0 = (f (t, y'), ... , y))
The notation P (t, y) means that t has been replaced in this expression by
t:', by inverting the relation t' = f 1(S, y).

By the implicit function theorem, this inversion is possible in a neigh-
borhood of x0 if

(ii) f
1

o 1(xo) 0 0-

But 'But the fact that det Jf 0 0 implies that the column vector (N
1<k<n

is nonzero, and we can renumber the coordinates so that (ii) holds. Thus
g(x') can be defined, and it follows from (i) that

f =go h.

Using 4.4.1(iv), it suffices to prove the theorem for g and for h. Next, we
calculate

(', B(x'))(det J9)f xR' 1

By Fubini's theorem, this equals

JR
' JR_1 co(t',y')(det J9)dy'.
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Note that the Jacobian matrix J9 has some row for which all entries are
zero except the diagonal entry, which equals 1.

Thus det J9 = det J9,, where 88, : y' --# y').
By the induction hypothesis,

J
(y")dy",JR'' (', y')det(Jq, )d =

R n-1

and substituting this into (iii) proves the theorem for the change of variables
defined by g.

It remains to prove the theorem for h. Note that, by Fubini,

(iv) J v(f y), y)det(J11)Ad31= fn-1
dy JR

ww(f' y), y)det Jhdd'.

But det. J,, . = and, by 4.4.2,

=
JRJR8

The result follows by substitution into (iv). 0

REMARK. This proof can be given the following geometric interpretation.
Let p : R" - R, where p is differentiable and Vp 96 0 everywhere. Then
the volume element dvfn can be written locally as the volume element
on the hypersurface p = constant, "multiplied" by

11nIT
The induction

hypothesis allows us to treat the change of variable on the hypersurface;
the other change of variable occurs in one dimension.

5 Linear Functionals on CK (X )
and Signed Radon Measures

In Section 2 we studied positive linear functionals on CK(X). We now drop
the hypothesis of positivity and substitute the more general hypothesis of
continuity.

5.1 Continuous linear functionals on C(X) (X compact)

Throughout this section, X is a compact space. Then CK(X) is the space
C(X) of all continuous functions. A norm is defined on C(X) by setting

Ii.flic =
xIf(x)IxEX
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Convergence in this norm corresponds to unifonn convergence. C ' (X )
denotes the Banach space of continuous linear functionals l on C(X); that
is, those for which there exists a constant a such that

11(f)1 <- allflIc.

Setting 11111c = sup il(f)l yields 11(f)1 <-
Iltllc<1

5.1.1 Proposition. If 1 is positive, then l is continuous.

PROOF. Indeed,
-Ilfllc <- f(x) <- 11f 11C

implies

whence

(i)

-11f HOW <-1(f) < 11f 1104).

II1Ilc =1(1x).0

5.2 Decomposition theorem

Theorem. Let X be a compact space and let l E C` (X ). Then there exist
positive linear functionals 1+ and 1+ such that

5.2.1 1=1+-1- and
5.2.2 II1IIc = II1+IIc + 111-I1c-

and such a decomposition is unique.

PROOF. For each nonnegative f in C(X), let

H(f)={uEC(X):0<u< f}
and let

(i) l+(f) = sup 1(u), where u E H(f ).

Let fl, f2 > 0. Since u1 E H(f1) and U2 E H(f2), u1 +u2 E H(f1 + f2);
hence H(f1) + H(f2) C H(f1 + f2).

We now prove the opposite inclusion. Let u E H(f1 + f2) be given. Set
v = min{u, f1} = 2(u + f1 - Iu - f11); then v E C(X), v E H(f1), and
w = u - v E H(f2).

Thus u = v + w with v E H(f1), w E H(f2), and we have shown that

H(fl + f2) = H(f1) + H(f2)

l+(f1 + f2) =1+(f1) + 1+(f2), f142> 0.
Any g E C(X) can be written as

(iv) 9 = 91 - 92 with 91,92->O.

(For example, we can take g1 = max(g, 0).)
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Define

(v) 1+(9) = l+(91) - l+(92)

We will justify this definition by showing that the right-hand side is
independent of the choice of the decomposition (iv). Let

9 = 93 - 94, 93,94 >> 0

Then gl - 92 = 93 - 94, or 91 + 94 = 93 + 92 Using (iii),

1+(91) + l+(94) = l+(93) + l+(92),

or

1+(91) - l+(92) = t+(93) - l+(94),
which justifies definition (v).

It therefore follows from (iii) and (v) that

l+(9 + l+(9) + l+(9')

Similarly, it follows from (i) that

1+(af) = al+(f) if a>0, f >0.
Since 0 E H (f ), we have l+(f) > 0 if f > 0, whence

(vi) 1+ is a positive linear functional on C(X).

Setting l- = l+ - 1, we have I- E C'(X). Furthermore, let f E C(X),
f > 0. Then

1(f) = (sup1(u)) - l(f) = sup(l(u - f)), where u E H(f)

For f 20, setG(f)={vEC(X):-f <v<0}. Then the mapping
u u - f defines a bijection of H(f) onto G(f); hence l-(f) = supl(v),
where v E G(f).

Since 0 E G(f ), I - (f) > 0 and we have thus obtained the decomposition
5.2.1.

Let 1 denote the indicator function of the full set X; then, by 5.1(i),

l+(1) and III-11C-(x)=I-(1).

There exist u,, E H(1) and v, E G(1) such that

1+(1) = and l-(1) = liml(vn).

It is straightforward to show that

III+IIC + III- 11C. = lim(l(u,,) + l(vn))
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We have 0 < u,i < 1, -1 < v,, 0, and -1 < un(x) + vn(x) S 1, or

Ilun + VnflC < I.

Hence

and we have shown that

I1(un + vn)I <-

III+IIc + IIl-11c <- II11Ic

Since the opposite inequality follows from the triangle inequality, this
proves 5.2.2.

5.2.3 Uniqueness of the decomposition

Let

(i) I = cp - ip where gyp, /5 are positive linear functionals.

Then
l+(f) = sup{cp(u) - il,(u)} with u E H(f).

But
W(u) -'G(u) <- W(u)

since u > 0, and thus

sup{cp(u) - O(u) } < sup p(u) = W(f ).

That is,
1+(f) < p(f) for every f > 0.

Set W - I+ = 9; then 9 is a positive linear functional, and it follows from (i)
that

(ii) v=1++6 and *=1-+8.
Then IIwIIc = w(1) = l+(1) + 0(1) = III+IIc + similarly 11011c-

III- IIc' + IIBIIc
Suppose that the decomposition cp - t/' satisfies 5.2.2; then

IIIIIc = II'IIc = III c. + III IIc'

Furthermore, by 5.2.2, IIIIIc =111+IIC +III- 11c . Subtracting these two equations
shows that 211911c = 0; thus 0 = 0.

5.2.4 Corollary. Given I E C*(X), there are two Borel measures µl and
µ2 uniquely determined by

1(f) = Jfdi - f dµ2 and

11111 C- = Al (X) + µ2(X) -

PROOF. By the decomposition theorem (5.2) and the Radon-Riesz theorem.
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5.3 Signed Borel measures

In this section, we establish the equivalent of Theorem 5.2 for Borel mea-
sures.

5.3.1 Definition. A signed Borel measure on the compact space X is a
mapping

v:BX -' R
that can be written in the form

(i) v(A) = pi (A) - p2(A),

where pi, p2 are finite Borel measures. The decomposition (i) is clearly not
unique; adding the same Borel measure 0 to pl and p2 will not change the
mapping v.

5.3.2 Mutually singular measures

Two Borel measures vi and v2 are said to be mutually singular if there
exists a Borel set A E Bx such that

(i) vl(A) = vl(X) and v2(A)=O.

The relation is symmetric, for A' carries all the mass of v2 and has vj-
measure zero.

5.3.3 Theorem. If X is a compact space, there exists a bijection between the
continuous linear functionals on C(X) and the signed Borel measures. The de-
composition of a linear functional given in Theorem 5.2 corresponds to the de-
composition of the signed Borel measure as a difference of two mutually singular
Borel measures.

PROOF. We use 5.2.4. The only statement still needing proof is the equivalence
of the following two properties:

(i) I1lIIc = P1 (X) +p2(X).
(ii) pl and p2 are mutually singular.

We first show that (ii) . (i). If pl and p2 are mutually singular, let A be an
element of BX such that

Set

Then

pi(A)=pi(X) and p2(A)=0.

p=1A-lAc.

J
iadpi = pi (X) and Jcod p2 = -p2(X),
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whence

J
'p(dpi - dp2) = P1 (X) + P2(X)-

By Theorem 3.5, we can find f E C(X) such that

IIf - VIII,, < E, where L' = L' (X, Bx, pi + p2).

Set
f(x) = f(x) if If(x)I < 1;
f(x) = signum f (x) if If(s)I> 1.

Then IIf - caIIL < 2E and

f j (dpi - dp2) > pi (X) + p2(X) - 2E, where f E C(X), IIJIIc <-1.

Conversely, we show that (i) (ii). There exists a sequence {can} in the closed
unit ball of C(X) such that 1(V,,) --+ IIIIIc.. Set W,, = Vn - V-; then

1(cpn) = [JcantdPi + Jscdm] - [Jw;di + JcodP2].

Since can < 1 and cp- < 1, the first term in brackets is at most equal to pt (X) +
p2(X) = II1IIc by (i). Hence the convergence of 1(W,) to II1IIc implies that

f <andpi - pi (X) and Jsodi --. 0.

Since

we conclude that

III _' cant lltl(Pt) = f(1 - cant)dpt,

and

Passing to a subsequence {cp,,, }, we may replace the convergence in L' (ps) of
{1-cant} by convergence pi-a.e. Passing to a new subsequence IV,,, } reduces the
proof to the case where r/,, = V n+1 satisfies

*a

01

Let

converges to 1 pl-a.e.;
converges to 0 p2-a.e.

A = Ix: lim V)a (x) = 11.

Then
III 0 and IIIAIIL1(,,,) = 0,

or
pi(A) = pi(X) and p2(A)=0.11

5.3.4 Proposition. Let v be a signed Bore! measure. Then there exists a
decomposition

v=Pi-P22
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such that p° and p2 are mutually singular. Such a decomposition is unique.
We set

IuI = P° + Pz

and call Jv1 the absolute value of v.

PROOF. Let a continuous linear functional on C(X) be defined by setting

1(,P) = J cpdv = J codpi - JcodP2.

Then, by 5.3.3, the decomposition of v as a difference of mutually singular
Borel measures corresponds to the decomposition of 1 given by 5.2.4. This
decomposition exists and is unique by 5.2.4.

5.3.5 Signed Radon measures

Given a signed Borel measure v on the compact space X, let p° - pa be its
canonical decomposition. Let B be the completion of the Borel algebra BX
with respect to Ivt. We define a signed measure on B by setting

µ(B) = P° (B) - Po2(B), 'dB E B.

,u is called the signed Radon measure associated with the signed Borel
measure v.

If X is a locally compact space, a signed Radon measure v on X is given
by two mutually singular Borel measures vl and v2. We set Ivi = vl+v2 and
define the o-algebra B by completing the Borel algebra Bx with respect
to IvI. Then, if A E B and JvJ(A) < +oo, we define v(A) = vi(A) - v2(A).

5.3.6 Important remark on terminology

Let X be a locally compact space. We denote by M(X) the vector space of
signed Radon measures and by M+(X) the Radon measures on X; that is,
the measures associated with positive linear forms. In the usual terminol-
ogy, M (X) is called the space of Radon measures and M+(X) the space
of positive Radon measures. From the point of view of grammatical accu-
racy, this terminology is better than ours; a noun modified by an adjective
should describe a narrower class of objects than the noun alone. Our use
throughout Chapter I of the word "measure" to mean a positive measure
may justify our ignoring this rule now.

5.3.7 Complex measures

We denote by C(X; C) the space of continuous complex-valued functions on
the compact space X. Separating real and imaginary parts, we can write

C(X; C) = C(X) 9 C(X).
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A C-linear functional l on C(X; C) is determined by restricting Re(l) to
each summand of the direct sum. Since X is assumed compact, specifying
I is equivalent to specifying two signed Radon measures µl and p2. Setting
flisV _ µl + 11p211 and l

Jfdii

= l j + i µ2, we have

rl(f+ih)=-1hdµ2+i f fdµ2+hdpI.

µi + iµ2 is called the complex measure associated with this form.

5.4 Dirac measures and discrete measures

5.4.1 Dirac measures

Let X be a locally compact space X and let xo E X. The Dirac measure
at xo is the linear functional

lxo(f) = f(xo), b'f E CK(Xo)

This positive linear functional is represented by a Borel measure bso whose
completion is defined on the a-algebra P(X) consisting of all the subsets
of X. We have

6zp(A)=1 if xoEA
b,o (A) = 0 if xo 0 A.

5.4.2 Discrete measures

Now let xu, ... , xj,... E X and a3 E R. Suppose that, for every compact
set K,

(i) lail < +oo, where SK = 1j: xj E K}.
JESK

A locally finite signed Borel measure v is defined by setting, for B E B,x,

v(B)=F,aj, where j ESB={j:xjEB}.

This series is absolutely convergent by (i). Let v+ = E.J>o a1bx, and let
v- = E.. ,,o -offbz, . Then v+ and v- are locally finite Bore] measures.
Completing the Borel algebra with respect to jvj = v+ + v-, we recover
the a-algebra of subsets P(X); hence

IvI(C) < +oc is defined 'C E P(X).

In contrast, v(C) is defined only for those C E P(X) which also satisfy
I uI (C) < +00.

We denote by Md(X) the discrete measures on A and by MM (X) the
finite discrete measures: MM(X) = M'(X) fl Md(X).
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5.5 Support of a signed Radon measure
5.5.1 Definition. Let p E M(X). The support of p, written supp (p), is
the smallest closed set F such that IpI(F`) = 0. Let us show that this set
exists. Taking complements, finding F is equivalent to finding the largest
open set H such that I pI (H) = 0.

The hypothesis 3.0.1 implies that X satisfies the second separability ax-
iom of 1-2.4.1. Therefore we can find a countable family of open sets On
which forms a basis for the open sets. Set

S = in: IµI(On) = 0} and H = UnETOn

Then H, as a countable union of sets of measure zero, has measure zero:
Ip4(H)=0.

Let 0' be an open set such that Iµ4(O') = 0; then 0' = UnETOn (since
{On} is a basis for the open sets). The hypothesis I,I(O') = 0 implies that
IIII(On)=0,whence TCSandO'CH.
5.5.2 Proposition. Suppose that X is a locally compact space, f E CK(X),
and ,u E NI(X). Then

J f dp = 0 if supp (f) n supp (p) = 0.

PROOF. Let p = AI - P2 with IµI = AI + P2, and let H = (supp (p))`.
Then f = 0 IpI-a.e., whence f = 0 a.e. pi, i = 1, 2, which implies that
f fdpi=0,i=1,2.

6 Measures and Duality with Respect
to Spaces of Continuous Functions
on a Locally Compact Space

6.1 Definitions

We consider the following three vector spaces of continuous functions on
X:

CK(X), the continuous functions with compact support;
Co(X), the continuous functions which vanish at infinity; and
Cb(X), the bounded continuous functions.

(i) Recall that a function f is said to vanish at infinity if, for every e > 0,
there exists a compact set K such that if (x) I < e for x V K. We have the
following inclusions:

(ii) CK(X) C C0(X) C Cb(X).
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If X is compact, these three spaces coincide; if X is not compact. each
of the inclusions is strict. A norm is defined on Cb(X) by setting, for f E
Cb(X),

IIf1ICb = "up If(x)I, xEX.

This norm defines, by restriction, norms on Co(X) and CK(X). The re-
striction of II Ilcb to Co(X) will sometimes be denoted by II Ilco. We then
have

(iv) max Ih(x)I, x E X.

The difference between (iii) and (iv) is that, although the supremum may
not be attained in (iii), it is attained in (iv) and gives a maximum.

6.2 Proposition. The space Cb(X) equipped with the norm (iii) is com-
plete. The space Co(X) is a closed subspace of Cb(X) and is therefore com-
plete. The space CK(X) is a dense subspace of C0(X).

PROOF. Only the third (and hardest) assertion will be proved here.2
Let {Hn) be the exhaustion sequence of compact sets constructed in

1.0.3. Recall that Hn C L+i. For each n, let cpn, *n be a partition of
unity subordinate to the open cover consisting of the two sets tin+l and
H Then, since cp + i = 1 on X,

Vn =I on H,,.

Given h E Co(X), set hn = hgpn. Then hn E CK(X) and Ilh -
Ilh7inllco - 0 as n oo, since supp (ryn) C Hi and h(x) - 0 as x tends
to infinity. 0

6.3 The Alexandroff compactification

Given a locally compact space X, we can associate with it a compact space
Y and a homeomorphism ' of X onto Y with one point removed. Y is
called the Alexandroff compactification of X. The construction consists of
adjoining a point at infinity to X by setting Y = X U {oo}, where oo is
a new element. The complements of compact subsets of X are taken as a
system of open neighborhoods of oo.

Having thus defined Y from the set-theoretic point of view, we now construct
a topology on Y in a more precise way by specifying its closed subsets.

2For the first two, see for example E. Hewitt and K. Stromberg, Real and
Abstract Analysis, 3rd ed. (New York: Springer-Verlag, 1975).
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A subset F of Y is closed if and only if it satisfies the following conditions:

(i) F fl X is closed; and
(ii) if F fl X is not compact, then oo E F.

Let p be the injection of X into Y; then, by (i), p 1 (F) is closed in X if F is
closed in Y. Let H be closed in X; then, by (ii), H or H U {oo} is closed in Y.
Intersecting with {oo}` shows that H is a relatively closed set in {oo}`. Thus p
is a homeomorphism of X onto {oo}

The open neighborhoods of oo are the complements of closed sets that do not
contain oo; that is, the complements of compact subsets of X. It follows easily
that the topology of Y is Hausdorff.

We now show that Y is compact. Let Oy be an open cover of Y. There exists
-yo such that oo E O-,o; hence there exists a compact set K such that OOo = K`.
The sets O., fl K form an open cover of K. Let 0,., fl K, ..., 0.,. fl K be a finite
subcover. Then 0,0, ..., 0.,,, form a finite subcover of Y.

6.4 Proposition. Let X be a locally compact space and let Y be its Alexan-
droff compactification. Set

V={ if E C(Y) : f (oo) = 0}.

For every function f E V, let f denote its restriction to X. Then

f -if
is a linear mapping which is an isometry of V onto C0(X).

PROOF. Let f E V; then the restriction f of f to X defines an element
f E Cb(X). Furthermore, since f is continuous at co, for every e > 0 there
exists a compact set K such that If (x) - f (oo)h < e if x V K. Hence
f E Co(X).

Conversely, let h E Co(X). Then h can be extended to Y by setting
hi(oo) = 0 and setting hl(x) = h(x) if x E X. Since h E Co(X), hl is
continuous at the point oo and hence continuous everywhere. 0

6.5 The space M' (X )

(i) We denote by M'(X) the set of signed Radon measures v on X such
that Ivy is finite, and define a norm on M'(X) by setting

II"IIM' = fdIvI = IvI(X)

Moreover, for every Borel set A of X, v(A) = vl (A) - v2(A) is well defined.
(See 5.3.5.)

(ii) Proposition. Let Y be the compactification of X and let

W = {v E M(Y) : v({oo}) = 0}.
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Let a mapping v -+ v

be defined by setting

W'-' M'(X)

P(A) = v(A) VA E Bx c: By.

This mapping is an isometric bijection of W onto MI(X).

PROOF. It suffices to note that every B E By can be written either as
B = A U {oo} or as B = A, for some A E Bx. In the first case, the
additivity of v gives v(B) = v(A) + v({oo}) = v(A) since v({oo}) = 0. 0

6.6 Theorem. M'(X) is the Banach space dual of Co(X).

PROOF. With the notation of 6.4, Co(X) ^_- V C C(Y). Let I E C*(Y);
then its restriction to V defines a continuous linear form on V. By the
Hahn-Banach theorem, every linear functional on V can be written in this
way. Thus

(V)` ^- C*(Y)/H,

where H is the space of linear functionals which vanish identically on
V. Since V has codimension 1, H has dimension 1 and is therefore the
vector subspace generated by the Dirac measure at infinity. But, in
the notation of 6.5(ii), W ^_- M(Y)/H, whence (Co(X))' c- M(Y)/H ^_-
W M'(X). All these identifications are isometric. In particular, for every
p E M1(X), sup= 1.OIlfllcaJfd

1

6.7 Defining convergence by duality

The following three spaces of continuous functions are associated with a
locally compact space X:

CK(X) C C0(X) C Cb(X).

Convergence in M(X). A sequence {µn}, p E M(X), is said to converge
vaguely to µo E M(X) if

(i) Jfd l ffdpo, df E CK(X).

Convergence in MI(X). Given a sequence {vn}, vn E M1(X), we have
two new concepts of convergence.

vn is said to converge weakly to vo if

(ii) Jhdun -+ f hdvo, 'h E Co(X).
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v is said to converge narrowly to vo if

(iii) ,bk E Cb(X).

Since Dl'(X) C M(X), vague convergence can be defined on M'(X) as
well. Thus M' (X) is provided with four notions of convergence, which
imply each other according to the following diagram:

(convergence in norm) = (narrow convergence) = (weak convergence)
(vague convergence).

6.8 Theorem. Let µn E M'(X). Consider the following statements:

(i) {µ,i} converges weakly.
(ii) {µn} converges narrowly.

(iii) There exist a constant c and a dense set D C C0(X) such that

1Ipn II si' S c and J9d,.zn converges for every g E D.

(iv) For every e > 0. there exists a compact set K such that

If nj(K`) < e for all sufficiently large n.

(v) Each µn is positive, {µn} converges weakly to µ, and f du,, -
f dµ < +oo.

Then
NO a (i),

(i) and (iv) e* (ii),
(v) * (ii).

REMARK. To simplify the exposition, we prove only the direct implications,
which are the easiest; these are practically the only ones used in what
follows.

PROOF THAT (iii) (i). The family of linear functionals on C0(X)

ln(f) = Jfdiin

satisfies
1In(f - J ')I clif - f'lIco.

It is thus an equicontinuous family. Since it converges on a dense subset
D. by Ascoli's theorem3 it converges on all of Co. Let l,,,r,(f) = lim In (f ).
Using 6.6, we find that lx is defined by a Radon measure 1A... E M' (X )
and that {p,,} converges weakly to Aoo. 0

3See Bourbaki. General Topology, X.2.5.
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PROOF THAT (i) AND (iv) = (ii). Let f E Cb(X). Let K be the compact
set determined by (iv), and let p denote a function with compact support
such that W(x) = 1 if x E K. Then f = f W + u, where supp (u) C K`;
hence

f f dµn = Jfdn + f udltn.

By (i), the first integral converges to f Wf dµ., where dµ,, is the weak
limit of {dµn}. Moreover,

if 1< Ilu'IIC6IPnl(Kc) < EIIfII.O

PROOF THAT (V) . (ii). It will suffice to prove that v implies (iv). Given
e > 0, let K be a compact subset of X such that u((Kc)) < e. Let f be a
function with support contained in K such that 0 < f < 1 and

f fdµ>Ilµll-E.

Let no be such that, if n > no,

if and

Then

An((Kc)) Ilµnll - f f dpn,

l<F.fi dp - Ji dp

whence µn((Kc)) < 3E if n > no.

0
6.9 Theorem. Let X be a locally compact space and let 1114 f(X) denote
the finite linear combinations of the Dirac measure on X. Then, for any
li E M'(X), there exists a sequence {µn}, An E Rla f(X), such that {µn}
converges narrowly to p.

PROOF. Let {V ,j be an increasing sequence of functions with compact support
such that 0 < cpn < 1 and limVn = 1. Then IIcpnµ - µ11A/1 0 by Lebesgue's
dominated convergence theorem. Hence it suffices to prove the theorem when µ
has compact support K. Let {On,, : j E [1, sn1 } be a finite cover of K by balls of
radius n. Let An,, = On,1, A,2 = On,2 fl 0',,, and set An,9 = An.,, fl K. Then
each An,q has diameter < n and the An,, form a partition of K. Restricting to
A,,9 A 0, choose xn,q E A..9-

IA. is constructed by setting

Let f E C6(X); then

f f dµ.
A
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Since f is uniformly continuous on the compact set K, there exists a sequence
which tends to zero as n -+ oa and satisfies

f (x) - f (x')V < nn if d(x, x') < n.

Hence

f lAn.gf dµ = f(x,,,a) f lAn.gdµ + Oq I.Iu!(An,g),

where 10q < 1. Summing over q gives

< n jpj(K).Ji dµ -Ji dlln

1



III
Fourier Analysis

Introduction

Fourier analysis can be illustrated by analogies from optics. Given a light
beam, the goal of spectral analysis is to determine the monochromatic
beams it contains; that is, the beams of the form exp(2a t). Once a spec-
tral analysis has been carried out, one can ask whether the analysis is
exhaustive: is all the energy of the beam really concentrated in the band of
frequencies where the spectral analysis was done? One can also ask whether
the beam can be reconstructed from its monochromatic components: can
spectral synthesis be performed?

It is well known that quantum mechanics determines the possible energy
levels of a system as the eigenvalues of a hermitian operator defined on
a Hilbert space 9{. More generally, given a system of pairwise-commuting
hermitian operators, the eigenvalues of the system are the possible values
of the associated "observables".

In the general setting of spectral theory, the problems of spectral analy-
sis, conservation of energy, and spectral synthesis remain completely mean-
ingful. Taking the space LZ(R") as a Hilbert space fl and the hermitian
operators generated by the translations as a family of operators, one nat-
urally recovers Fourier analysis as a special case; what is more surprising
is that general spectral theory can be obtained as a classical theorem of
Fourier analysis, Bochner's theorem. This will be done in Appendix I.

Since differentiation operators on LZ(R") appear as limits of translation
operators, Fourier analysis realizes their spectral decomposition as well.
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Thus partial differential equations with constant coefficients are subject to
the methods of real Fourier analysis (or complex Fourier analysis, but we
will not pursue this point).

Studying the domains of definition of the Laplace operator and its iter-
ates in L'2(R") leads to the construction of Sobolev scales, a theory that
is stable under local diffeomorphisms and thus well suited to the local the-
ory of partial differential equations with variable coefficients. In dealing
with the theory of distributions, we use the approaches of Sobolev and
Schwartz simultaneously. The chapter ends with the local inversion of el-
liptic operators with variable coefficients, by means of Calderon's theory of
pseudo-differential operators.

1 Convolutions and Spectral Analysis
on Locally Compact Abelian Groups

1.1 Let G be an abelian (commutative) group . The group
operation will usually be written additively:

(91,92)'-'91+92-

With this notation, the identity element will be denoted by 1 and the
inverse of g by -g.

A locally compact abelian group is an abelian group which is given the
structure of a locally compact topological space compatible with the group
operation. That is, the mapping from G x G to G defined by

(i) (91,92) - 91 - 92

is continuous. It can be shown that a metrizable group G has a translation-
invariant metric d; that is, d satisfies

d(9o +9,go +g') = d(g,g')

1.2 Examples

1.2.0 The integers Z form a group under addition. Given the distance de-
fined by d(n, m) = In - rnI, they form a locally compact group.

1.2.1 R", with vector addition, is a locally compact group.

1.2.2 The one-dimensional torus

Let
T = {zEC:Izl=1}.
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T is the set of complex numbers of modulus 1. (From the set-theoretic
point of view, T is a circle.) T is given the group operation defined by
the multiplication of complex numbers. If z1, z2 E T, then x122 E T and
zi 1 = z1 E T. Thus T is an abelian group; when endowed with the topology
induced by C, it is compact.

1.2.3 The n-dimensional torus

We denote by T" the product of n copies of T, endowed with the product
topology and the product group operation.

1.2.4 A homomorphism from R onto T

With 0 E R, we associate the element

u(9) = eie E T.

Then u(9 + 0') = u(9)u(9'), i.e. u is a homomorphisrn of R onto T. The
kernel of u is

u-1(1)={0:ese=1}=27rZ,
where Z is the subgroup of R consisting of the integers. Let C(T) denote the
functions defined and continuous on T and let Cb(R) denote the bounded
continuous functions on R. Let u' be the map from C(T) into Cb(R)
defined by

(u` f)(9) = f (u(9)). b'9 E R.

Then the image of u` consists of those functions h E Cb(R) that are periodic
with period 27r; that is, functions satisfying

h(9 + 27r) = h(9).

1.2.5 A homomorphism from R" onto T"

With x = (x1, ... , x") we associate

v(x) = (e",,.. ..e'I").

The kernel of v is 21rZ". The operation

f- foV=v'f
maps C(T") onto the n-fold periodic functions on R"; that is, functions h
satisfying

h(x + y) = h(x), dy E (21rZ)".

1.3 The group algebra

M1(G) denotes the Banach space of signed Radon measures on G which
have finite total mass.
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1.3.1 Discrete measures

Let by denote the Dirac measure at the point g and let

+cc
A'ld (G) = fit E M' (G) :,u = E Qkbsk, where QkI < +oc

k=1

1.3.2 Convolution in Ma (G)

The convolution of two Dirac measures 6g, and by, is defined by

691 * 69. = 69, +9s-

That is, the convolution product is the Dirac measure at the point g1 + g2.
This definition is extended to Md (G) by bilinearity. Given A = E Qk69k
and p' _ Qk69k in Md, we set

1A * Il, = EQkQ,6sk+9k
k,s

Note that the convolution product is commutative, associative, and bi-
linear:

p*Y, =A *1A,(p*p')*pn=p*V
*JA

( JA +v*p'.

Moreover,

p * µ Af'(G) QkQA _ E IQkI FINsI = opu 111 4,11.

k.s k s

(Strict inequality can occur only if gk+g', = gk, +g,, with (k, s) 0 (k', s').)
We would like to extend the convolution operator from Md (G) to all of
M' by an explicit formula realizing this extension. Let Co(G) denote the
continuous functions on G which vanish at infinity.

1.3.3 Fundamental lemma. Let it, p' E Md (G) and let p = p * p'. Then

f, f (z)dp(z) = J
f f(x + y)dp(x)dp'(y), Vf E Co(G).

G G

PROOF. The right-hand side, which we denote by II, can be written as

II = E f (9k + 900k/k
k,k'
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Grouping together all terms such that gk + gk, =rgk,,, we obtain

II = f (g") I3kOk, f (z)dp(z).
9k+9k, =9k

1.3.4 Definition of the convolution product on MI (G). Given v, v' E
M1(G), we define a linear functional on Co(G) by setting

1(f) = f J
f (x + y)dv(x)dv'(y)c c

This integral converges, since

da®da,I1(f)I <_ fGfC If(x+y)I Idv(x)I Idv'(y)I <Ilfllco JGf
C

where A = IvI, A'= Jill. By Flubini,

jfdA®dA' = A(G)A'(G) = IIvIIMI IIV'HM

and hence

(z) 11(f)15 IIfIICo(G)II"IIM1Ily IIM1.

Thus l is a linear functional on C0(G) which is continuous in the norm
topology. By 11-6.6, there exists a measure a E M' (G) such that f f da =
1(f). We set a = v * v', and call a the convolution product of v and V.

1.3.5 Theorem (Properties of the convolution product). Let G be a
locally compact group and let M1 (G) be the Banach space of finite Radon
measures on G. The convolution product is defined on M' (G) by the for-
mule

(Z) j f (z)dA(z) = j f f (x + y)dv(x)dv'(y), Vf E Co(G),

where v, v'EM1(G) andA=v*v'.
It has the following properties.

(ii) IIv * v'II <_ IIlII IIz'II
(iii) v * v' = v' * v (commutativity)

(iv) (ii * 1/') * v" = v * (v' * v") (associativity)

(v) (v+v')*v"=v*v'+v*v" (linearity)

Furthermore,

(vi) if { vn } and {v;' } converge narrowly to vo and vo, then vn * v'n converges
narrowly to vo * v'o.
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PROOF. Formula (ii) follows from 1.3.4(i). In order to prove (vi), note that
the narrow convergence of v and v;, and F ubini's theorem imply that
v,, ® v,, converges narrowly to vo ®vo. Let f E Cb(G) and set u(x,y) _

uECb(GxG),and

limJ u dv ®dvn = J u dvo ® dvo
GxG GxG

can be written as

limf ff(x + y)dvo(x) ® f jf(x + y)dvo(x) ® dvo(y),

Vf E Cb(G).

Thus (vi) is proved.
The algebraic properties (iii), (iv), and (v) can be proved by passing to

the limit and using (vi), since these properties hold on Md (G) by 1.3.2. By
11-6.9, Ma (G) is dense in the topology of narrow convergence on M1(G).
(Or this could easily be proved directly.)

1.3.6 Support of the convolution product

If F1 and F2 are subsets of G, we set

F1+F2={g:g=gl+g2 with g;EF;}.

Proposition. Let v1, v2 E MI (G). Then supp (vl*v2) C supp(v1) +supp (v2

PROOF. J(x + y)dv1(x)dv2(y) = 0 if cp is zero on supp (vi) + supp (v2).
0

Equality holds if both measures are positive.

1.4 The dual group. The Fourier transform on M'
1.4.1 Characters

Let G be a locally compact abelian group and let T be the multiplicative
group of complex numbers of modulus 1 considered in 1.2.2. A character
on G is a mapping

X:G-T
such that

(i) X is continuous, and
(ii) X is a homomorphism: X(g + g') = X(g)X(g').
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1.4.2 The dual group

The set of characters of G is denoted by G, and is given a group structure
by defining the product X3 of two characters X1 and X2 as follows:

X3(9) = XI(9)X2(9), Vg E G.

The inverse X4 of X 1 is defined by the formula

X4(9) = x1(9) =
X1(9)

Thus G is an abelian group. The identity element is the trivial character
Xo defined by

Xo(9) = 1, d9 E G.

1.4.3 The Fourier transform on M '(G)

Given µ E M1(G), we assign to it a function defined on G by

A(x) = f X(9)di(g).

µ is called the Fourier transform of µ.

1.4.4 Fundamental theorem (Trivialization of the convolution
product). Let µ, v E M1(G). Then

JA *v=µv;

that is, the Fourier transform maps the convolution product of measures to
the usual product of functions.

PROOF. Let p = p * v. Then

jx(z)dP(z) = j jx(x + y)dp(x)dv(y)

IC
jx(x)x(v)d(x)dv(Y)

(jxcx)dx) (Lx(yy))
=

The first equality follows from 1.3.5, the second from the identity X(x+y) _
X(x)X(y), and the third from Fubini's theorem.

REMARK. Let bo denote the Dirac measure concentrated at 0. Then

bo(X) = X(0) = 1, dX E G.

Moreover,

1

bo*µ=µ, VAEM'(G);
that is, bo is the identity element of the algebra M1(G).
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1.5 Invariant measures. The space L'
1.5.1 Translation-invariant measures

A measure p E M' (G) is said to be translation invariant if

(i) f f(9 + go)dp(g) = f f(9)dp(9), Vgo E G.

1.5.2 Proposition. Suppose that p satisfies (i) and that G is compact.
Then

(ii) µ(X) = 0 for every nontrivial character.

PROOF. Let X be a nontrivial character. Then there exists go E G such
that X(go) 3& 1. Condition (i) can be written in the form

bgo*µ=µ.

(iv) Since G is compact, p(G) < oo and thus µ E M1(G). Under these
conditions, 1.4.4 can be applied:

(bgo * A)"(x) = 40(x)µ(x) = x(9o)u(x),

whence
X(9o)P(X) - p(X) = 0 * p(X) = 0.0

1.5.3 Corollary. Suppose that G is a compact group, p is a translation-
invariant Radon measure on G, and L2 (G; p) is the associated Hilbert space.
Then any two distinct characters of G are orthogonal. If the measure p is
also normalized by the condition

fdµ = 1,

then the characters of G form an orthonormal system.

PROOF. Given Xi, X2 E G, we evaluate

(Xi IX2)L2 = JGX1(9)X2(9)dP(9).

Xi(9)X2(9) = Xt(9)(X2(9))-' = X3(9),

where X3(g) E G. By 1.5.2, the integral f X3(g)dp(g) is zero if X3 is not
identically equal to 1, that is if Xl 96 X2. Finally, if u is normalized,

11Xi112
L2 = j Xi(9)Xi(9)dp(9) = jd() = 1.0
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1.5.4 Haar's theorem. Let G be a locally compact abelian group. Then
there exists a translation-invariant positive Radon measure po on G, and
this measure is unique up to a multiplicative constant.

REMARK. If p0 is an invariant measure and c is a positive constant, it is
clear that cpo is an invariant measure.

We assume without proof this general theorem of Haar, and restrict
ourselves to constructing invariant measures in the special cases of the
groups R, T, and Z.

1.5.5 Examples of Haar measure

(i) Counting measure on Z

Let Z be the set of integers. Consider the measure po such that

po({n}) = 1 for every n E Z.

Then po is translation invariant.

(ii) Lebesgue measure on R

Let R be the additive group of real numbers. The Lebesgue measure po
is translation invariant (11-4.2.6) and hence a Haar measure.

(iii) Haar measure on T

Let <p : R -- T be defined by setting

AP(O) = e'6

Let a mapping v : T -' R be defined by

a(() = arg S, where arg ( E [0, 27r).

Then a(() is a Borel mapping from T into R. Set

vo(A) 27rpo(a(A))'

then vo is a Borel measure on T. Moreover,

2a
jfdvo =

J
f(ee) and

J
dvo = 1.

0

Lemma. The measure vo is translation invariant.

PROOF. Let 9o E [0, 27r) and set

p2a 9o+2a d 2,r 2,r+6o
Jf f (eiie+eol/

Iso f (e }
=o 21r eo 21r 10+10 n
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Setting A - 27r = u in the last integral yields

J
eo+2w du

f (era) 27r -
f (eiu) 27r'

whence

IT f dvo = Iao.0

Uniqueness of the Haar measure in (i) is clear. For case (iii), it will be
proved in 2.2.8.

(iv) The product structure

The measures on Z', R", and T" are the products of the Haar measures
on each factor.

1.5.6 Notation

The Haar measure of the group C will be denoted by dg. If G is locally
compact, this measure is defined up to a normalizing factor. If G is compact,
the factor is chosen so that G has measure 1.

1.6 The space L' (G)

1.6.1 Identification of L' (G) with a vector subspace of M' (G)

We denote by L1 (G) the space of functions integrable with respect to Haar
measure on G, and define an injection

j : L' (G) - M'(G)

by associating with the function f E L' (G) the Radon measure

(1) of = f(g)dg.

1.6.2 The convolution product on L1(G)

Proposition. Let f, h E L' (G) and let l if and µh be the Radon measures
associated with them by 1.6.1(i). Then there exists k E L1(G) such that

(i) Of * µh = µk (L' (G) is a subalgebra of M1(G)).

k is defined by

(ii) k(go) _ f f(go - g)h(g)dg =
J

h(go - g)f(g)dg,

where the two integrals converge almost everywhere in go with respect to
Haar measure. We write

k=f*h.
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(iii) REMARK. Since the convolution product on L1 (G) is the restriction of
the product on M'(G), it satisfies the identities 1.3.5(ii) to (v).

PROOF. Let V E Co(G); then

Af * Ph) = f jco(i + g2)f (g1)h(92)d91dg2

Using Fubini's theorem yields

ll

Af * Ph) = j h(g2)dg2 [J' + 92)f (91)dg1J .

Set gl = g3-92 inside the brackets. Since d91 is invariant under translation,
dg1 = dg3 for fixed g2i whence

co(93)f(93 - 92)4931W Af * Ph) = f
G h(g2)dg2 VC

Using Fubini again, we obtain

(g2)f (93 - 92)492](tP, Af * Ph) = f P(93)d93 VG h
c

Fubini's theorem implies that the integral in brackets converges for almost
every g3 and is an integrable function k E L' (G). We have thus shown that

('P, Al * P2) = f W(93)k(93)493.13

1.6.3 The Fourier transform on L 1

The Fourier transform on L' is obtained by restriction from the Fourier
transform on M1 and thus is written

(i) f (x) = f f (9)X(g)dg, dX E G.

Theorem 1.4.4, on the trivialization of the convolution product, gives by
restriction

(ii) f * h(X) = f(x)h(x)

1.6.4 Bessel's inequality. Let G be a compact abelian group and let
f E L2(G). Then f E LI(G) and

IIfIIL2(G) - If(X)I2
XEG
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PROOF. Since µ(G) < +oo, 1-9.6 implies that L'(G) D LZ(G). Moreover,

f(X) = (fIX)L--

Let S be a finite subset of G, let Vs denote the vector subspace generated
in L2(G) by {X : X E S}, and let Is denote the orthogonal projection of f
onto Vs. Then f = Is + f - Is, where f - fs is orthogonal to Is. Hence

IIfIIL2 = IIfSIILI+IIf -fSIIL2,

and therefore
IIfIIL2 - 11fS112

But it follows from 1.5.3 that

fsX(fIX)=>2f(X-1)X and
XES XES

IIfsIIL. _ il(X-1)I2.0

XES

1.7 The translation operator
1.7.1 The translation operator on LP(G)

Given a function f defined on G and a fixed go E G, we denote by r9o f the
function defined by

(i) (r9of)(9) = f(9 - go)-

By the translation invariance of dg, f E LP(G) implies (r9 f) E LP(G), and
moreover

(ii) IIr9IIILn = IllIILy

Furthermore,

(iii) r91 0 'r., = 791 +92

We summarize the last identity by saying that g i- r9 is a representation of
C in LP(G); that is, the mapping is a homomorphism of G into the group
of linear automorphisms of LP(G). We define the translate of a set A by an
element go of G to be -r9, (A) = A + go.

If UA is the indicator function of the set A (uA(x) = 1 if x E A and
UA(x) = 0 if x 0 A), then r9o(uA) = cargo(A)

1.7.2 Fundamental theorem (Trivialization of the translation op-
erator on L1(G) under the Fourier transform). Let f E L'(G). Then

rgof(X) = X(9o)l(X) dX E G.
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PROOF.

7-'9. = f f(9 - 9o)X(9)dg.
0

The change of variables g " g - go = g' leaves the Haar measure invariant:
dg = dg'. Making this change of variables gives

f f(9 - 9o)X(9)d9 = f f(9')X(9' + go)dg' = X(9o) f

1.7.3 Continuity of the translation operator

Let CK(G) denote the compactly supported continuous functions on G,
with the norm

II!lIcK = maxIf(9)I, g E G.
Continuity theorem. (i) Let f E CK(G). Then the mapping from G to
CK (G) defined by g '- rg f is uniformly continuous.
(ii) Similarly, let u E LP(G), where 1 < p < +oo. Then the mapping from
G to LP(G) defined by g '- rgu is uniformly continuous.

PROOF.(i) Since f is continuous and compactly supported, f is uniformly
continuous. Given E > 0, there exists vl such that

If(9i)-f(92)I<E if d(gj,92)<r.

Hence

Ir9b(f)(g)-r9o(f)(9)I = If(9-go)-f(9-90')I < E if d(9-9o,9-g0) <'i.
But it follows from the invariance of the distance under translation (cf.
1.1(ii)) that d(g - go, g - go) = d(go, go), whence

IIr9o(f) - r9p(f)IIc, < E if d(go,90) < r/.D

(ii) We now consider the case where u E LP. Since p < +oo, by 11-3.5 there
exists f E CK(G) such that Ilf - uIILP < '. Let us write

Tgu-T9'u=T9f -ref +T9,(f -u)-T9(f - u).
Using 1.7.1(ii),

IIr9(f - u)IILP = Ilf - ull Lp < 3,

whence

IITgu - Tg,uIILp < 3E+IITgf - rg,fhILp

Let A = supp (f ). Then

supp(r9f -Tg'f) C rg(A)Urg:(A),
mess (supp (r9 f - rg f)) < 2 meas (A),

IIrgf -T9'fIIL' <- IIr9f -r9'fllc,(2 mess (A))'/P.
The right-hand side of the last inequality tends to zero as d(g, g') - 0 by
the first part of the theorem.



114 M. Fourier Analysis

1.8 Extensions of the convolution product

In this section, we give other cases where formula 1.6.2 converges.

1.8.1 The convolution product and the dual pairing

Let f denote the function defined by

f(9) = f(-g).

Formula I.6.2(ii) can be written formally as

(i) k(9o) = (Tgof,h) = (f,Tg(,h).

Lemma. Let f E LP(G) and h E LQ(G), where 1 < p < +oo and p and q
are conjugate exponents. Then, for every go E G, the integral

(ii) f f (go - 9)h(9)d9

converges and defines a function k(go) which is uniformly continuous and
bounded and which satisfies

(iii) IIkIIce :5 II!IILPIIhIILa.

PROOF. By symmetry, we may assume that p!5 q; then, since p and q are
conjugate, 1 < p < 2.

Using (i), we have

Ik(9)I = I(Tgf,h)I < IITgfIILPIIhIILQ = IIfIILPIIhIIL-,

and moreover

Ik(9o) - k(9i)I = I (Tgof -Tg,f,h)I IlTgof - rg,ALPIIhIILa.

Since p < +oo, it follows from 1.7.3(ii) that the first term tends to zero
when d(go, gj) -' 0. 0

1.8.2 Theorem (Action of M1(G) on LP(G) (1 < p < +oo)). Let
it E M1(G) and let f E LP(G). Then the integral

(i) h(go) = f f(go - g)dp(g)

converges almost everywhere in go with respect to Haar measure and defines
a function in L. Furthermore,

(ii) IIhIILP 5 IIfIILPIIPIIMI.
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PROOF. Let f' = If I and let µ' = IµI. Let u E L9, u > 0, and consider the
double integral

I = fff'(go - g)u(go)dgo df'(9)

Choose a Borel representative of the equivalence class of f in GP(G). For
this fixed choice, f'(go - g) is a Borel function and hence measurable with
respect to the product measure dgo ® dµ(g). Thus Fubini's theorem can be
applied once we have shown the convergence of

f dµ(9) [ff'(9o_)u(o)d9o].

By 1.8.1, the integral in brackets is convergent and bounded above by
IIfIIL" IIuIILa, whence

(iii) III <- II/IIM'IllIILPIIUIILa

Letting u equal the indicator function of a compact set K, it follows from
Fubini's theorem that the integral (i) converges dg-almost everywhere on
K. Since K is arbitrary, (i) converges dg-a.e. on G. Let h(g) be the function
thus obtained. By (iii),

if h(9)u(9)dg 5 II IIatw IIlIILPIIuIILQ, VU E V.

If p > 1, then q < +oo and we define a linear functional on L9(G) by

1(u) = f h(g)u(g)dg.

This form is bounded, since IZ(u)I 5 CIIuIILq. By the duality theorem (IV-
6.3), it follows that h E L. If p = 1, take u(g) = sign(h(g)) if h(g) 0 0 and
u(g) = 0 otherwise. Then (iii) implies that

f Ih(9)Id9 5 II!IIM= IIf IIL' < +00-

Thus h E L'.

1.8.3 The translation operator as a convolution operator

Note that if µ = by, , then

f f (go - 9)dµ(9) = f (go - 9i) = (,rg, f)(9o)
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In particular, rof = f . Thus the action of Ml (G) on LI (G) is a general-
ization of the translation operator. More generally, if µ E Ma (cf. 1.3.1),
then µ = E $kbg,. and

f f (9o - 9)dµ(9) i3 r9k f) (go)

NOTATION. Let p E M1(G) and f E LP(G) (1 < p < +oo). We make the
notational convention that

(r><f)(go) = Jf(oo - 9)dµ(9)-

Then
Ilrµ(f)IILP < IIµIIM1IllIILP

1.9 Convergence theorem. Let {µn } be a sequence of measures in Ml (G)
satisfying hypotheses (iii) and (iv) of Theorem 11-6.8 and converging nar-
rowly to v. Then

II rµ,. f - rv f II LP - 0, V f E LP, 1 <p< +oo.

If in addition f E C0(G), then Ilrµn f - r f Ilco - 0.

REMARK. Using the converse of Theorem 11-6.8, it would suffice to assume
that {µn } converges narrowly to v. Because this converse was not proved,
we prefer to give the rather awkward statement above.

PROOF. Since p < +oo, we can find h E CK(G) such that

IIf - hIILP<E.

By hypothesis II-6.8(iii), sup IIµnIIM1 = c < +oo, whence

Ilrvn(f -hIILP :5 IIµnIIM'IIf - hIILP < -cllf - hIILP

It thus suffices to show that

(i) Ilr,,nh-r,,hlILP -0.

Hypothesis II-6.8(iv) implies that for every e > 0 there exists a compact
set H such that, for sufficiently large n,

JHC
and

JHC

Let cp be an element of CK (G) such that supp (gyp) C KI and Sp = 1 on H.
Set

µn=Vµn, v' =tpv, µn =(1-0µn, t/'=(1-tp)v.
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Then IIv"II < e, IIµnII < e, and the proof is reduced to proving (i) for pn
and . Furthermore, since µ;, converges narrowly to v', it suffices to show
that (i) holds when the An are supported in a fixed compact set K1. Let
K2 be the support of h; then the support of rµn h lies in K3 = K1 + K2.

But K3 is a compact subset of G. Moreover, by the definition of narrow
convergence, for every fixed g

f h(9 - 9)dAn(9) - f h(9 - 9')dv(9')

That is, un(g) = (7µnh-'r h)(g) satisfies un(g) - 0 everywhere. It follows
from the bound Irµnhl < cIIhIIcb1K3 that

Iun(9)I : 2cIIhIICb1K3 = C11K3

Hence, by Lebesgue's dominated convergence theorem,

f Iun(9)IPdg - 0.13

If f E Co(G), we now determine h E CK(G) by the condition IIh - f Ilea < e.
As above, we reduce the proof to showing the result when the An are supported
in a fixed compact set K3. Setting h(C) = h(-t), we write

f h(9 - f)dun(t) = f
The mapping 4 : g r9h from G to Co(G) is continuous. Hence the image under

of the compact set K3 is a compact set H C Co(G). By hypothesis II-6.8(iii),
there exists a constant c such that IIAn II M a < c. Consider the functions un defined
on Hby

un(y) = f y(t)dµn(O, y E H.

Since IIpnhIM' < c, these functions are equicontinuous. By the definition of narrow
convergence,

un(y) - I y(C)dv(C), Vy E Co(G)

Since the functions un are equicontinuous and converge for every y E H, the
compactness of H implies that they converge uniformly.

1.9.1 Corollary. Let {µn} be a sequence of measures which converge nar-
rowly to 6o and satisfy hypotheses (iii) and (iv) of 11-6.8. Then II TM f -
f IILP 0.

/1.9.2 Corollary. LP(G) is an M'(G)-module; that is,

(Z) (rµ orr)(f) = r (rv oTµ)(f)

In particular, if go E G,

(ii) 7-90 (7-,.f) = rµ(r9of) = rp.69p(f)-
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PROOF. It suffices to verify (i) in the case of discrete measures, where
everything is obvious; the general case follows from the narrow density of
Md (G) in M' (G) combined with Theorem 1.9.

For (ii), we note that

(iii) T9ou = b9o * u,

where b9o denotes the Dirac measure at go, and use (i).

2 Spectral Synthesis on T" and Rn

In Section 1 we introduced the Fourier transform, defined on the dual group
G. We were not concerned with whether the dual group of G contained
other elements than the trivial character, everywhere equal to 1. If G were
trivial, Fourier transform theory would have a very limited scope. We now
exhibit the characters on T" and R" and use them to prove the injectivity
of the Fourier transform. In certain cases, we will be able to characterize
its image and give an explicit inversion formula.

2.1 The character groups of R' and T"

(i) The characters on R are of the form

Xt(x) = e:tx, where t E R, t fixed

Hence R = R.

PROOF. It is clear that an imaginary exponential satisfies the equation e't(s+v) _
e't=e'tV and is a complex number of modulus 1. What must be proved is the
converse. Let x X(x) be a character of R; then, since X(0) = 1 and a is
continuous, there exists an interval [-a, a] such that

Re(X(x)) > 0 if x E [-a,a].

Hence we can define a function i(x) without ambiguity by

log X(x) = il(x), < l(x) < 2 , x E [-a, a].

Then l(x) is continuous and

l(x + y) = l(x) + l(y) if x, y, and x + y E [-a, a].

It follows from this equation that l(mx) = ml(x) if m is an integer such that
ImxI < a, and similarly that I (m) = ml(y) if jyI < a. Hence l(ra) = ri(a) for
every rational number r such that Iri < 1.

By continuity, l(xa) = x1(a) if x E R, lxi < 1. Hence

X(y) = e'°", where a = 11(a) and IyI < a.
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For any yi E R there exists an integer m such that yl = my with jyi < a; thus

x(yi) = (X(y))m = eiovm = eia' .0

(ii) The characters on Rn are of the form

n

Xt(x) = exp i E tkxk ,

k=1

where x = (x"..., xn) E R" and t = (tl, ... , tn) E Rn. Hence fin = Rn.

PROOF. The imaginary exponentials are obviously characters. It must be shown
that every character is of this form. Let ek = (0, 0, 1, 0, ...) be the kth element
of the canonical basis of R". Then A H .1ek is a homomorphism from R to R"
and hence A .- X(Aek) is a character on R. By (i), we can write

X(Xek) = eitk.\.

Writing x = Ek xkek, it follows that

X(x) = [ X(xkek) = fl e'tk=k .0
k

(iii) The characters on Tn are of the form

X. (O) = exp i ."9k)
k=1

where m = (m1, ... , mn) E Zn and (e°',. .. , ete") E Tn. Hence T" = Zn.

PROOF. The numbers B") are each defined only up to a multiple of 27r;
this indeterminacy has no effect on the value of Xm(0) since m E Z", and thus
Xm(0) is indeed a character on T".

Conversely, let X be a character on T". We define (cf. 1.2.5) a homomorphism

v : R" -+ T" by setting v(x) = (e'',. .. , etz" } . Then X o v is a character on R"

and hence, by (ii), is of the form

X(v(x)) = exp(iEt),xk) .

Suppose that v(x) = 1. Then X(v(x)) = 1; hence

E tkxk = 0 modulo 27r.
k

Setting x equal successively to 2,re1, 27re2, ... , 21re" shows that t1, t2, ... , t" E Z.
0
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2.2 Spectral synthesis on T
2.2.1 The Poisson kernel

Given a number r E [0,1), the Poisson kernel on T is the function defined
by the series

(i) PP(9) = 1 rInleine.

nEZ

Not only is this series uniformly convergent, but its sum can be calculated:

+00 +oo

Pr(B) = E(reie)" + E(re ie)P.

n=0 p=1

Using the formula for the sum of a geometric series, we obtain

_ 1 re-to
P"(0) 1 - reie + 1 - re-ie

Thus

_ 1 - r2 _ 1 - r2 ie(ii) P"(9)
1 - 2r cos 0 + r2 (1 -

where er()' = .

2.2.2 Proposition. Let e = 1 denote the identity element of T and let
dv(() denote the Haar measure on T defined in 1.5.4. Then

Pr(C)dv(() - 6e narrowly as r -' 1

and, moreover, satisfies hypotheses (iii) and (iv) of 11-6.8.

PROOF. Let f be a continuous periodic function, with period 2ir. We must
show that

(i) f R Pr(0)f (B) 2e -f (0) as r -' 1.

(ii) Note that, by 2.2.1(ii), PP(0) > 0.
Integrating the uniformly convergent series 2.2.1(i) term by term shows

r+* d8that / Pr(0) 2- = 1. Hence, since Pr(0) > 0,f
(iii) III-11V = 1.

(iv) For fixed n > 0, max+l<1e1<A Pr(8) = Pr(q), which approaches zero as
r-.1.

Set fj(B) = f(6) - f(0). Since

f
*W

f(0)Pr(B) = f(0),
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it suffices to show that

J
W
fl(0)Pr(0)dO -0.

Let e > 0 be given. Then there exists t such that If, (e) I < 2 if 101 < rl.
Fixing q, we split the integral in two:

++7r

fi(e)Pr(e)- = Jfi(9)Pr(O)+J fi(e)P(e)4 .f 2a 2ir -n.+ni`n(-+r,

The first integral is bounded above by 211PrIIL1, which equals 2 by (iii),
and the second by IIfIIc(T)PE(n), which approaches zero by (iv).

Hypothesis (iv) of 11-6.8 clearly holds since T is compact, and hypothesis
(iii) since Pdv has total mass 1. 0

(v) Corollary. Let dip denote the measure on M1(T) defined by
Pr(6)de/27r.
If f E LP(T) (1 < p < +oo), then II Tprf - f II La - 0 as r - 1.
If f E C(T), then IITI.rf - IIIC(T) - 0.

PROOF. By 2.2.2 and 1.9.1.

2.2.3 Proposition. Let f E L' (T) and let f (n), n E Z, be its Fourier
transform. Then

(f * P,.)(9) = E f (m)rlml
E

ime.

mEZ

PROOF.

(f * Pr)(0) = J W)
27r

=
J f (,P) E rlnlein(B-jv) dP

'r nEZ 2r
The uniformly convergent series EnEZ r1nlein(e-jp) can be integrated term
by term, giving

(f * P'-)(0) =
[: rInlein(9) je_i')f()

a 21r

E rInlein(B)f(-n).
nEZ

The result follows by setting -n = m. 0

2.2.4 Spectral synthesis theorem.
(i) Let f E LP(T), 1 < p < +oo. Set

g,_(e) = rjnjf(n)e in9.

nEZ
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Then llf-9r11Lo-'0as r-'1.
(ii) Let f E C(T). Then llf - 9rhIC(T) -- 0 as r - 1.

REMARK. Since gr is defined in terms of the Fourier transform of f, the
theorem shows that f can be reconstructed from its Fourier transform.

PROOF. By 2.2.2(v) and 2.2.3.

2.2.5 Theorem on conservation of energy. Let f E L2(T). Then

(Z) IIfIIL2(T) _ If(n)I2
nEZ

f(0) - E f(n) e-
inO

n=-P L2

and

0 as p - +oo.

Plancherel's theorem. Let e2(Z) denote the set of sequences such that
E Ian 12 < +00.

(iii) The mapping f -, f defines an isometric isomorphism from L2(T)
onto e2(Z).

PROOF. Since the characters on T are mutually orthogonal,

II9rIIL2 = Er21nllf(n)I2

By Bessel's inequality,

Ilflli2 > E 1f(n)12
nEZ

For a proof by contradiction, assume that the inequality is strict. Since
Of - 94LZ 0 by 2.2.4, I19r11L2 - IIf IIL2 Hence

I f ( n ) E 1f(n) 12,
rtl nEZ nEZ

a contradiction; Bessel's inequality is in fact an equality and (i) is proved.
Let VP denote the vector subspace of L2 generated by those ein9 for which

-p < n < p. Then (cf. 1.6.4 and 1.5.3) the orthogonal projection of f onto
VP can be written as

sp(0) _ f(o)e-ine

lnl<p

By the Pythagorean theorem,

Ilf - 8PIIL2 + JI8PI1L2 = IIf11L2'

whence _
Ill - 3PIIL2 = IIf!IL2 - IISPIIL2 = E If(n)12,

lnl>P
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where the second equality follows from (i). Since the last expression tends
to zero, (ii) is proved.

To prove (iii), let U : L2(T) -+ e2(Z) be defined by U(f) = {f(n)}.
Then U is an isometry by (i). It follows that the image of U is a complete
subspace of 12(Z) and hence is closed.

Let W = {{an} E e2 : an = 0 except for finitely many n}. The function
that maps {an } E W to the trigonometric polynomial E ane-ine is con-
tinuous, since the sum is finite. Because the function is continuous, it lies
in L2; thus U(L2) J W. Since W is dense in e2 and U(L2) is closed, we
conclude that U(L2) = e2. 0

2.2.6 The Fourier inversion formula

If we are given f and want to evaluate the function f at a point, the only
result at our disposal so far is 2.2.4(ii). The drawback of this formula is
that it involves a double limit: we must first sum a series, then let r tend
to 1.

We would like to obtain results on the convergence of the partial sums
of the Fourier series of f, that is the sums

n=+p
sp(O) _ f(n)e-in9

1 n=-p

Theorem 2.2.5(ii) is a convergence theorem for the L2 norm.
Lennart Carleson showed in 1965 that the partial sums of the Fourier

series of a function f in L2(T) converge almost everywhere to f. He thus
resolved a problem that had remained open for fifty years. The following is
an elementary result.

2.2.7 Fourier inversion theorem. Let f E L' (T). Assume

(i) > I f (n)I < +oo.

Then

(ii) f(8) _ > f(n)e in6
for almost every 0.

nEZ

If f is also continuous, equality holds everywhere.

PROOF. Set

9r = f * Pr = f (n)rlnle-ine and ww(O) = E
f(n)e-"O.

nEZ

Then cp E C(T) since the series converges uniformly. We now show that

(iii) IIV - 9r1IC(T) -- 0
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Clearly

II'P - 9rIIC(T) <- E If(n)I(1- rlnl).
n

Given e, fix p so that EInl>p If (n) I < e/2. Then Elnl<p If (n)I(1 - rlnl)
is the sum of 2p + 1 terms, each of which tends to zero. This proves (iii).

It follows from the inequality II9r-VIILI 5 II9r-SOIIC(T) that limy-o II9r-
cWIlLl = 0. By 2.2.4,

Ilf -OIIL- =0

Thus f and SD are equal a.e., and (ii) is proved.
Suppose that f is continuous; then, since W is continuous, so is f - V = u.

If u were not identically 0, {u 96 0} would contain an interval, contradicting
(ii); hence u = 0 everywhere. 0

(iv) REMARK. As an element of L', f is defined only up to a set of measure
zero. (ii) means that the equivalence class of f under the relation of equality
almost everywhere contains a continuous function, namely W. It is reasonable to
take this continuous function as a representative of the equivalence class of f.

2.2.8 Density of the trigonometric polynomials

A finite linear combination of exponentials is called a trigonometric poly-
nomial.

Proposition. The trigonometric polynomials are dense in the normed
spaces LP(T) (1 < p < +oo) and C(T).

PROOF. Since C(T) is dense in LP by 11-3.5, it suffices to prove density in
C(T), recalling that II IILP <- II IIC(T)

Let h E C(T) and let e > 0 be given. Using 2.2.4(ii), fix r such that
IIh - hrIIC(T) < Z. Decompose hr as

hr(O) = h(n)rlnle-inB + E h(n)rlnle-inB

InI5p InI>p

Note that Ih(n)I 5 IIhIIL=(T) 5 IIhIIC(T); this implies

E h(n)rlnle-in9

InI>p

Since r is fixed, this expression is less than z for sufficiently large p. Thus

h - E h(n)rInIX-nll < e.D
InI<p
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Corollary (Injectivity of the Fourier transform on measures). Let
p, v E M '(T) satisfy

µ(n) = v(n) if n E Z.

Then At = v.

PROOF. Let Q be a trigonometric polynomial. By linearity, f Qdv = f Qdp.
Since the trigonometric polynomials are dense in C(T), it follows that

J
fdv = ffdp df E C(T).o

Corollary (Uniqueness of Haar measure on T). Let p be a Haar
measure on T. Then there exists a constant c such that p = cA .

PROOF. By 1.5.2, p(n) = 0 if n 36 0. It thus suffices to use the preceding
corollary. El

2.3 Extension of the results to T"

The Poisson kernel is defined on Tn by

n

Pr(C) Pr((k), (=((1'...,(n) E T".
k=1

Since the Haar measure dv(() = dv((1)® ®dv((n) is a product measure,

Pr(()dv(() = Pr((1)dy((1) ®... 0 Pr((n)dv((n).

By 2.2.2 each term converges narrowly to behence Pr(()dv(() converges
narrowly to 5e.

It can be shown as in 2.2.3 that, for all f E L1(Tn),

2.3.1 (f * Pr)(0) _ f (m)rimlle-

mEZ"

where IImOI = Im1I + Im21 + ... + ImnI and M.0 = Ek=1 Mk
0k.

The following theorems are proved as in 2.2.

2.3.2 Spectral synthesis theorem. Let f E LP(T) (1 < p < +oo). Set
9r(O) = E f (m)rllmp a `m.e. Then

11f - 9r1ILo(T") 0.

If f E C(T), then
11 f -gr1IC(T) 0
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2.3.3 Theorem on conservation of energy. Let f E L2(Tn). Then

(z)
11f 112L2 = E If(m)12.

mEZ"

Set sp(0) = EmES, f(m)e m.B, where Sp = {m E Zn : Imkl < p dk}.
Then

IIf - sp 11 L2 (T") -+ 0 as p --+ +oo.

(iii) (Plancherel) The mapping f -+ f is a bijection of L2(Tn) onto t2(Zn).

2.3.4 Fourier inversion theorem. Let f E L1(Tn). Suppose that

(i)

Then

I f (m) I < +oo.
mEZ"

(ii) f (0) = f (m)e-ii'e for almost every 0.
mEZ"

(iii) If f is continuous, equality holds everywhere.

2.4 Spectral synthesis on R

2.4.0 Regularity of the Fourier transform on Rn

Let µ E MI (Rn). Its Fourier transform is defined by

µ(t) = J e`t.tdµ(x)
"

2.4.0.1 Proposition. The Fourier transform µ(t) is a bounded continuous
function and

(z) IIAIICb(R") :5 IIPIIM'

PROOF. Set p = klµl with k E L. Then

µ(tn) =

If the sequence {tn} converges to to, the sequence of functions
converges everywhere to e`to xk(x). Since it is bounded in modulus by
1 E L,'µI , Lebesgue's dominated convergence theorem implies that µ(tn) -
µ(to). Finally,

Iµ(t)I < JdhI = Ipl(R') = IIIIIMI.O
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2.4.0.2 Theorem (Lebesgue). If f E LI (R"), then its Fourier transform
f (t) = fR" eit.2 f (x)dx is a continuous function that vanishes at infinity,
and

(i) IIfIICo(R") <- IIfIILI(R")

PROOF. Since f (x)dx E M' (R"), the only new property to be proved is
that

f (t) 0 as Iltll - +oo.
Let E > 0 be given. Since the translation operator is continuous on

L'(R"), there exists y such that

(ii) IITyf - f IILI < e if IIlII < 77-

It follows from the property ry f (t) = ety.t f (t) that (7-y f - f)"(t) _
(eiy.t -1)f(t).

Using (i) and (ii),

(iii) I(e:y.t -1)f(t)I <.E if IIyll < ri.

If t satisfies Iltll > lry-', we can find y such that y.t = it and Ill/Il < y
Hence, by (iii),

21f(t)I <c if 11t1l > iry-'.0

2.4.1 Dilations and the Fourier transform

A dilation on R is multiplication by a positive number A:

xHAx `dxER, Afixed,A>0.

Given a function u defined on R, let

(i) ua(x) = \-'u(a-lx).

Take u E L'(R) and set A-1x = y. Then f ua(x)dx = f u(y)dy. In partic-
ular,

(ii) IIUAIILI = IIUIIL=.

Similarly, again setting A-lx = y,

r
(iii) ua(t) = J ua(x)ettxdx = J u(y)eitaYdy = u(At).

2.4.2 Lemma. Let u E L' (R) and assume that f u(x)dx = 1. Then, as
A - 0, ua(x)dx converges narrowly to the Dirac measure at 0 and satisfies
hypotheses (iii) and (iv) of Theorem 11-6.8.
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PROOF. Let f E Cb(R) and set f1(x) = f(x) -f(0). Then

1(x)u.\(x)dt:.f ua(x)f (x)dx = f (0) f ua(x)dx +Ji
Since the first integral on the right-hand side equals 1, it suffices to show

that the second tends to zero. Setting A-1x = y, we can write this integral
as f f 1 (Ay)u(y)dy. Fix A so that fyl>A u(y)dy < 2IIfi IIc; Then

IvI<_A f Ivl>A

IIf1IICe J Iu(y)ldy <
Ivl>A

< maxItl<AA If1(t)I IIUIILI.

and

Since A is fixed, AA -+ 0 as A -+ 0. Since f j(0) = 0 and f, is continuous,
the last expression will be less than z for A sufficiently small.

2.4.3 Proposition. For every p > 0,

(4)
(_'A X2

exp
t2

/ - (2px)112 J (
It) eitxdx.

PROOF. Cf. IV-4.3.2(ii), where this formula is proved for it = 1. The general
case is obtained by applying 2.4.1(iii).

2.4.4 Proposition. Set

2

Gtl(x) _ (2px)1/2 exp(-21 .

Then. as it -' 0, G,(x)dx satisfies the conclusions of 2.4.2.

PROOF. It follows from 2.4.3(i), with t = 0 and s = 1, that

(27r)1/2 do = 1.

It now suffices to apply 2.4.2.
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2.4.5 Spectral synthesis theorem. Let f E L'(R), let f be its Fourier
transform, and set

(i) gi.(x) = r e itx f(t) exp dt

JR 2
2r.

If f E L1 n L" (1 < p < +oo), then

(ii) IIf -gi.IILP -0 as 14 -0.

REMARK. We must assume that f E L', since otherwise the integral defin-
ing the Fburier transform f does not converge. Moreover, since IIf IIL- <
11f II L' , this assumption implies the convergence of the integral defining gµ.

PROOF. By 2.4.2 and 1.9,

(iii) Ilf * Gµ - f IIL" -. 0.

Furthermore, since G, is an even function,

(f * G.)(x) = f G,.(y - x)f (y)dy

An integral expression for G,,(x) is obtained by interchanging t and x, writing
µ-' for µ, and multiplying by -2- 1 in 2.4.3(i). Substituting this into the
integral above yields

(f * G,,)(x) = L'° [JRe(_) et-y) J dy.
J

The hypothesis f E L' implies the convergence of the double integral

I 1R2(2) If(y)I dy dt.

Hence Fubini's theorem can be applied; reversing the order of integration gives

(f *Gµ)(x) = Jftex1(_) e itx [fti](y)dy dt
Z

Recognizing the quantity in brackets as f (t), we have shown that

a

(f *G,.)(x) =f f(t)eXP -t2 a-.ex d df E L'.
R

Now (iii) and (iv) imply (ii). O

2.4.6 Fburier inversion theorem. Let f E L'(R). Suppose that

(i) f E L'(R).
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Then

(ii) f (x) = JRI e`tx f (t)
dt

for almost every x.

(iii) If f is also continuous, equality holds everywhere in (ii).

PROOF. Let g be defined as in 2.4.5(i). Then, as p -, 0, the integrand in
2.4.5(1) tends everywhere to e-`tx f (t). Furthermore, it is dominated by the func-
tion I f (t)l E L'. By Lebesgue's dominated convergence theorem,

gv(x) - Je_'i(t)! ='G(x)2ir

Next, since 11f - --a 0, we can extract a subsequenceµk such that

f(x) = lim gµk (x) almost everywhere.

This implies (ii).
To prove (iii), note that W(x) is continuous by 2.4.0.2. Thus V(x) - f (x) = u(x)

is continuous. By the same reasoning as in 2.2.7, u(x) = 0 a.e. u(x) _- 0. 0
In the next section, we will study the space of those functions f to which the

Fourier inversion formula applies.

2.4.7 The Wiener algebra A(R)

Let
A(R) _ (f E L' (R) : f E L' (R) }.

It follows from 2.4.6(ii) that the equivalence class (for equality almost ev-
erywhere) of every f in A(R) contains a continuous function. From now
on, we will take this function as the representative of f. Thus the Wiener
algebra is contained in the Banach space of continuous functions.

The Fourier inversion formula can be applied to f if and only if f E A(R).
We set I'fIIA(R) = 11f 11V +IIfIIL'

(i) f E A(R) is equivalent to f E A(R).

PROOF. By the Fourier inversion theorem,

P X) = J2v
Set f (-x) = u(x). Then u(x) = f ?(t)e'`= zl ; that is,

(ii) u = (f )".

Hence
(f)" E L' s. u E L' a f E L'.

(iii) If f E A(R), then f E C0(R) and IIfIIco(R) 5 IIfIIA(R)
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PROOF. By the inversion formula and 2.4.0.1.

(iv) If f E A(R), then f E LP Vp 1 < p < +oo.

PROOF. f <- IIfIIco'IIfIILI

(v) If f, h E A(R), then f * h E A(R).

PROOF. Ilf * hII LI < 11f 11L- IIhIILI and (f * h)^ = f h, whence

11(f * h)AIILI = llf hfILI <- IlftIL°D IIhIILI <_ Ilf Ov IIhIILI

Thus f * h E A(R).

(vi) Let f, h E A(R). Then (f h)^ = f * h and f h E A(R).

PROOF. By (ii),

(fh)(-x) = (f * h)^(x).

By (i) and (v), f * h E A(R). The inversion formula can be applied, and

f (fh)(-x)e-,:ad,- = (f * h)(t).

Hence, replacing x by -x, we see that (f h)^ = f * h E A(R); by (i), fit E A(R).

(vii) A(R) is dense in LP, 1:5 p < +oo. A(R) is dense in Co(R).

PROOF. Let LK denote the L' functions which are zero a.e. outside a compact
set. Then LK is dense in U. Let It E L. Set hn = It * Gn-I, where G, was
defined in 2.4.4; then Ilhn - hIILP - 0.

We now show that h" E A(R). Let K be a compact set such that h(x) = 0
a.e. on K`. By Holder's inequality,

1/q

IIhIILI 5 [fix] IIhIILP,

where p and q are conjugate exponents. Thus h E L) and hn E Ll. Moreover,

Ihn(t)I = h(t)eXP(-2n) I <- IIhIILI exp(-2n) ,

whence hn E L' and h E A(R).
If h E CK (R), then h" = h * Gn-I E Co(R), h" EA(R), and IIh - hn IIc -0-

C3
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2.4.8 Theorem on conservation of energy. Let f E Ll fl L2. Then

lIfI12 _
PROOF. Let f E L' f1 LZ. Set f = f * Gn-t. Then

(i) fn E L' and fn(t) = exp (-2n) f(t).

The Fourier inversion theorem can be applied to fn, giving

fn(x) = JRt)etx.
27r

Replace f, (x) by this expression in the scalar product:

(fIfn)L2 = JR = JR f(x)
[JR

it=Z
]

.T

1

Since f E L' and fn E V, the double integral converges and, applying Fubini's
theorem, we can reverse the order of integration:

(fIfn)L = JR fn (t) [Lf*1x1 2 =
JR21'fn(t)f"(t)

Let n -' oo; then, by 2.4.5, Ilfn - f111,2 -' 0, and the left-hand side thus tends
to II f II L'2. Using (i) on the /right-hand siide, we obtain

Inn 2- = IlfII .n 0C

The sequence j exp (-
»
1-2 ) } is increasing. Applying the theorem of Fatou-Beppo

Levi shows that If(t)12 is integrable and that

f If(t)12 dt = IlfI12.

2.4.9 Plancherel's extension theorem. The Fourier transform has an
extension

(i) U : L2(R) - L2(R).

(ii) (27r)-IU is an isometric mapping of L2(R) - L2(R).
(iii) U is a continuous bijection of L2(R) -' L2(R).
(iv) The inverse of U is given by
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PROOF. Consider the mapping u : f from V = L' n L2 to L2. Then,
by 2.4.8,

(v) IIu(v)II2 = 27rIlvII 2, Vv E V.

Hence u is a uniformly continuous mapping into the complete space L2.
It thus has an extension to the closure of L1 n L2 in L2, which is just L2.
Moreover, 2.4.8 extends by continuity and gives (ii). In particular, U is
injective. It remains to prove (iii) and (iv). By 2.4.7(iv),

A(R) C L1(R) n L2(R).

Hence, by 2.4.7(i),

U(L' n L2) D U(A(R)) = A(R) = A(R), whence

(vi) U(L' n L2) is dense in L2 by 2.4.7(vii).

Next, since (27r)-'U is an isometry, the image of L2 is a complete, hence
closed, subspace of L2. Thus (vi) implies that U is surjective. Finally, the
inverse mapping of U is, up to a factor of 27r, an isometry. It follows from
(v) that it is determined by its restriction to A(R). The restriction is given
by the Fourier inversion formula, and can be written as

f (x) = 2rr a
ltx f(t)dt

= 2a a=txf (t)om = 2x U(f) -

IR JR

This expression for U-1 on a dense set is valid everywhere, since U-1 is

continuous. 0

(vii) REMARK. What is striking in Plancherel's theorem is that it gives an
isomorphism of spaces. Thus a problem posed in L2 is equivalent under the
Fourier transform to another problem posed in L2.

2.5 Spectral synthesis on R"

We now generalize the results of the last section to Rn. Let

G,, (x) = (2pir)n/2 exp(-2-1 IIxII2)

where IIXI12 = (x1)2 +... + (xn)2. Then G,,(x) = ! ik-1 G,,(xk).

By (2.4.4), G,,(xk)dxk converges narrowly in M1 (R) to the Dirac mea-
sure at zero. When p -+ 0, p > 0, we find that

G,,(x)dx = 0G,,(xk)dxk
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converges narrowly to the Dirac measure at zero in M' (R' ). Moreover, by
(2.4.3),

GI'(x) =
21r f . eXp

(ulltll2) eit.xdt.
( )'i R 2 J

Spectral synthesis theorem. Let f E L'(R) and set

t 2
91,(x) = f * G,. (x) = JR" a

it.x f(t) exp(-isl2ll

/ (27r)-

Then Il f - 9µll L' -' 0. If, in addition, f E L' n LP (1 < p < +oo), then
Ilf-9µIILn- 0.
Fourier inversion theorem. Let

A(R') = if E L'(R") E L'(Rn)}.

Then A(R") is dense in LP(R"), 1 < p < +oo, and in Co(R").
Furthermore, almost everywhere in x (with equality everywhere if f is con-
tinuous),

P x) = fR^ f
(t)e-it.x

dt
(27r)n'

Vf E A(R").

Plancherel's extension theorem. There exists a bijective mapping U of
L2(R") onto L2(R") such that

IIU(f)lllz = (21r)nJ2llfIIL2 and U(f) _ .f. Vf E L' n L2.

Moreover,

U-1(h)
= (2ir)n U(I

The proofs of these results are identical to those already given for the
case where n = 1. We end this section with a new result.

2.6 Parseval's lemma. Let f E A(Rn) and let p E M'(Rn). Then

fR' f(x)dp(x) = f(t)2(-t)dt.

PROOF. The Fourier inversion theorem,

I. f (t)e-t.xdt,Ax) =
JR

can be used to write f as a function of f on the left-hand side of the
assertion of the lemma. Since f E L', Fubini's theorem can be applied to
the resulting double integral. We obtain

\
J" f(x)dlp(x) = fR f (t)dt U e-it zdp(x) 1 x (27r)'e.0

n J
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Corollary. Let p, p' E M'(R") such that µ(t) = µ'(t). Then µ = µ'.

PROOF. For all f E A(R'),

fR f(x)d1(x) = JR' f(x)d (x)

ince A(R") is dense in Co(R"), µ' = Y.S

3 Vector Differentiation and Sobolev Spaces

3.1 Differentiation in the vector sense. The spaces Ws

The goal of this section is to interpret the notion of derivative in terms of
translation operators. The advantage of this point of view is that, since the
Fourier transform realizes the spectral analysis of translation operators, the
same will be true for differentiation operators.

Given f E LP(R") and a E R", we say that the derivative of f in
the direction of a exists in the LP sense and equals Daf if, when a 0,
lime' 1(rfaf - f) exists in LP(R") and equals -Daf .

We then have
II Daf + e-1(TEaf - f)IIL" 0

Let

Wi = If E LP(R") : Daf exists in the LP sense for every a E R"}.

Decomposing a = a1e1 +... + an en with respect to the canonical basis of
R°, we write Daf = E akD,;,..f if f E WP. Given an integer s > 1, we
define

WT ={f EWi :Daf EW8 1 Vf ER"}.

If f E WP, Da, Da, . . . Dar f is defined recursively.

3.1.1 Theorem (Spectral analysis of differentiation operators). Let
f E Wi. Then

Daf (t) = -i(a.t) f (t).

PROOF. Dj E L1, and hence Daf is well defined. Since the convergence
occurs in L', the order of integration in the following expression can be
reversed:

Daf(t) = Ilim Of-1(rEaf - f)(x)eix.tdx = urn E-1(rcaf - f)(t)

By 1.7.2,

-Daf (t) = limo (
e

) f (t) = i(a.t) f (t).
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3.1.2 Corollary. If f E W,,', then

0

(Da1Das ... D..f)'(t) = 11 (-i(ak.t))f(t)
k=1

3.1.3 Theorem. If f E W,, then

f(t) =o(Iltll-') as IIt1l --oo.

PROOF. Da E V. By 2.4.0.2, DQ f tends to zero at infinity. Hence (t)
tends to zero at infinity, and this is true for every fixed a.

3.1.4 Corollary. W1,+1 C A = If E L' : f E V).

PROOF. Since f(t) = o(IItII-"-1) and f E Co, it follows that j E V.

3.1.5 Proposition. Let it E Ml(R") be a finite measure and let f E WP
(where 1 < p < +oo). Then 7-1,f E Wr and

Da(rpf) =Tµ(Daf)

PROOF. T a T p f = T , T a f and E-1(Tca - I)T,.f = T IE-1(Tea - Of]-
Since Tµ is a bounded operator on LP, the convergence of the right-hand

side implies the convergence of the left-hand side.

3.2 The space D(R")

3.2.0 Definition. Let D(R") denote the space of infinitely differentiable
functions on R" with compact support. We show that D(R") contains
functions that are not identically zero. Let

f(r) = exp(i *) if 0<r<1
= 0 if r<1.

Set

(i) F(x) = f (IIxl12), where IIx112 = (x1)2 +... + (x")2.

Then F is infinitely differentiable. Since F > O on R" and F > 0 on a
nonempty open set, f F(x)dx > 0. Let F(x) = aF(x), where the constant
a is determined so that f F(x)dx = 1. Then, setting

(ii) Fa(x) = A-"F(A-lx),

it follows from 2.4.2 that F, (x)dx - bo narrowly.
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3.2.1 Proposition. If W E D, then W E W; (1 < p < +oo) for every
positive integer s. In particular, 3.1.2 holds. Furthermore,

Daipak 09W
IgXk

PROOF. We use Taylor's formula with integral remainder:

If
1-E-1(Tea - 1)v + Da(p)(x) =

J f E ak (ix - al,) -
C7x (x)) d(.k

The right-hand side tends to zero uniformly in x when e - 0. As its
support lies inside a fixed compact set, we obtain convergence in all LP
(1 <p<+oo). 0
3.2.2 Corollary. If f E LP and cp E D, then f * cp E W; for every integer
s>0.
PROOF. E-1(Tea - I)(f * ) = f * (rea - I)E-1co.
The last term on the right-hand side converges in L1 by 3.2.1 applied to cp,
with p = 1,s = 1. 0

3.2.3 Proposition. Let p E M' and assume that p has compact support.
Then (TV) E D for every W E D.

PROOF. Let K1 be the support of p and let K2 be the support of V. Then
the support of r, p lies in the compact set K1 + K2.

Moreover,

(r )(x) = JK(x - y)da(y)
,

Differentiating with respect to x1 under the integral sign is legitimate since
is continuous and the integral is taken on a compact set. Hence

axl (TOM _ Tp (ax) .o

3.2.4 Proposition. The space V is dense in L' (1 < p < +oo).

PROOF. Let f E Lf. Using the truncation operator, we see that there exists
f E L" such that f is zero outside a compact set and

IIf - fiILa <E.

Set f * FA = ua. Then, by 3.2.0(ii),

Ilua - A LP 0 as A -' 0.

Since f E LP and .1 has compact support, it follows a fortiori that f E L1.
Hence, by 3.2.3, f * Fa E D. 0
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3.3 Weak differentiation

3.3.1 Definition. We denote by Lip the functions which are integrable on
every compact set. Given f E Lj. , the Radon measure f(x)dx is called the
measure associated with f.

f E Liar is said to have a derivative in the direction of the vector a in

the weak sense, or a weak derivative, if there exists ua E LL such that

f fDaiP=-f UaCp, 11cPED.

The reader familiar with the distribution theory of Laurent Schwartz will
recognize a special case of differentiation in the sense of distributions.

3.3.2 Theorem. Let f E LP. Then the following statements are equivalent:

(i) f E i4i.
(ii) For every a E R", Da f exists in the weak sense and Da f E LP.

PROOF. (i) (ii). The identity f (-r. f )h = f f (7-_ah) implies

(iii) J(c1(ra - 1) f )h = f f (7--,.h - h)e-1 Vf E LP, h E LQ

Writing (iii) with h = gyp, we can pass to the limit on the left-hand side
since E D C L9, and on the right-hand side since W E W1 by 3.2.1. This
yields the formula for integration by parts:

f Daf co = - f f (Dap) Vf E WI P, W E D.

Hence ua = Da f , and (iii) follows since Daf E LP.
The proof that (ii) (i) uses the following version of Taylor's formula

with integral remainder.

3.3.3 Lemma. Let f E Liar and suppose that f has a weak derivative in
the direction of a, say ua. Let pE be the Radon measure defined by

g(-(a)d, Yg E Cb(R' ).(g, pE) = j

Then
-E-1[Teaf - f] = Tp.aa

PROOF. Let W E D. Using formula 3.3.2(iii), Taylor's formula with integral
remainder for cp, and Fubini's theorem, we have

f E-1 [Tcaf - f]1o = Jf(r_u - AE-1

JR, f (a)dx f E E ak XT (x + a)dC
k

ltdJRfl E ak
4 Pk

(x + f a)f (x)dx.
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Since f is weakly differentiable in the direction of a,

E ak
8pz F (x + Sa)f (x)dx = -J (T-(aco)(x)ua (x)dx

= -fcO(x)(Tfaua)(x)dx,

whence

1 - f] +TP.ua}(x)v(x)dx = 0, VW E D.

As we saw in 3.2.4, D is dense in L9; this implies that the quantity in braces
is the zero function of LP:

(*) -E-1[Tcaf -f)=TP.ua.D

3.3.4 Proof that (ii) (i) in Theorem 3.3.2

The result follows from considering the limit of the right-hand side of (*)
and using 1.9.1. 0

3.3.5 Corollary. Let {ej,... , en } be a basis for Rn and let I fn } be a
sequence of functions in WW such that II fn - f II LP 0 and, for all k,
Dek fn converges in LP. Then f E Wi and, for any a in Rn,

IIDaf - DafnIILP 0.

PROOF. It suffices to prove that f is weakly differentiable in the direction
of a. The hypotheses allow us to write

f fnDekW = -
J

Dek

fn fn converge in LP and since De*T and V are in L9, we
can pass to the limit in this equation, obtaining

J fDe, = - f plim(Dekfn)

That is, f is weakly differentiable in the direction of ek and its weak deriva-
tive is

lim(Dek fn) E LP.

Let a E Rn, say a = E akek. Then Dafn = E a'Dek fn, and hence f has a
weak derivative in the direction of a which is equal to E ak lim Dek fn. By
Theorem 3.3.2, f E Wp and Da f = E ak lim Dek fn =live Da fn. O

3.3.6 Corollary. Let WP be given the norm

IIfIIW; = IIfIILP+EIIDekfIILP,
k
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where {el,... , en } is the canonical basis of Rn. Then Wi is a complete
normed vector apace and D. is a continuous mapping from WI" into LP.

PROOF. The only statement that is not obvious is that Wi is complete. If
{ fn} is a Cauchy sequence in the Wi norm, then both { fn} and {De, fn}
are Cauchy sequences in the LP norm.

Since LP is complete, fn converges to some f E LP. Moreover, f E Wi
by 3.3.5. By definition,

Ilfn - fllw= I1fn-f1ILP+LIIDekfn-DekfIILp.
k

Since II Dek fn - Dek f II LP - 0 by 3.3.5,
In

converges to f in WP. 0

3.4 Action of D on WP. The space We lac

3.4.1 Proposition. Let p E D and let the operation of multiplication by
cp, written m,, be defined by (mp f)(x) = cp(x) f (x). Then

MW : We --+ WP for every p E [1, +oo] and for every integer a.

PROOF. We prove the proposition when a = 1. First we show that

(i) Da(°of) = (D&W)f +,pDaf.

This formula is proved by passing to derivatives in the weak sense. Let Da denote
the weak derivatives. Then

J
&(cpf)i = -J Wf(Da(ib)) Yi,b E D.

Furthermore, by Leibnitz's formula for continuously differentiable functions,
-tQDa(b) = ODa(V) - Da(,P+G), whence

JDa(4of)iL = - J,fDa('PP)+ Jf1PDa(c)

= Ja(f) + J1bfDa((1O).

Let
G = [5 (vf) -,pDa(f) - fDa(,p)).

Then G is orthogonal to every 10 E D. Since V is dense in L' if q < +oo, it
follows that G is zero. If p = 1, the fact that G = 0 follows from the density of
V in Co(R"). Thus (i) is proved for weak derivatives:

Da(fco) = SoDaf +fDa(rp)

Since W and Daip are in Laa, the right-hand side is in LP if f E WP. Theorem
3.3.2 then gives the result.
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3.4.2 Differentiable partitions of unity

Theorem. Let Ua be an open cover of an open subset 0 of Rn. Then there
exists a partition of unity W, such that

0<_(Pn<1,
W. E D(Rn),

8UPP((Pn) C Ua(n) C 0,

and

w(x)=1, Vx E 0.

The series is locally finite; that is, for every compact subset K of 0,
supp(wn) f1 K = 0 except for a finite number of indices.

PROOF. Let

Kn = { x E 0: dist(x, Oc) > 1 and lixil < n I
l n

Then each Kn is a compact set contained in 0, and the union of all the
Kn equals 0. By Theorem 11-1.4.1 we can find a partition of unity with
continuous functions fn. We may also assume that Ua is a locally finite
cover. Set

2En = dist(supp (fn), Ua(n))-

Let On = FE,, * fn, where FA was defined in 3.2.0(ii). Then

supp (On) C supp (.fn) + B(0, En) C U0(n).

By 3.2.3, On E D since FE E D.
Next, writing out the integral expression for ?pn,

J
fn(x - y)FE (y)dy = Mx),

we see that Jin(x) > 0 whenever fn(x) > 0. Hence

EOn(x)>0forevery x E 0.

Set

r(x) = 'On(X)-

Then r-1 is an infinitely differentiable function and Wn = r-111in satisfies
the conditions of the theorem.
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3.4.3 The spaces W; IOC

(i) Let 0 be an open set in R". We denote by D(O) the infinitely differ-
entiable functions defined in 0 which have compact support. A function cp
in D(O) can be extended to R' by setting v(x) = 0 for x O.

Writing cp for the extension of cp to R", we note that cp' is infinitely
differentiable: given a point xo on the boundary of 0, there exists an open
neighborhood V of x0 in R" which does not meet the support of W. Hence
cP vanishes identically in V and is therefore infinitely differentiable. Thus

(ii) D(O) ^- {cp E D(R") : supp (cp) C O}.

We define

W; to,(O) = If defined and measurable on 0:
fcp E W; (R") for any cp E D(O)}.

(iii) Proposition. f E W;, ,(O) if and only if for every x0 E 0 there
exists an open neighborhood Vxo of x0 in 0 such that

cpf E W,, (R") VV E D(R") with Supp(cp) C Vxo.

PROOF. The forward implication is trivial. The reverse implication is proved
by using a partition of unity subordinate to the cover {Vxo }, where xo E O.
O

3.5 Sobolev spaces

We now study the spaces W,2. Since Wg is a subspace of L2 for every s,
Plancherel's theorem allows us to characterize its image under the Fourier
transform. The space We is written H8 and called the Sobolev space of
order s. The isomorphism of L2(R") onto L2(R") defined by Plancherel's
extension of the Fourier transform in 2.5 is denoted by F.

3.5.1 Theorem. Let f E L2(R") and let h = Y (f) be its Fourier-Plan-
cherel transform. Then the following two statements are equivalent:

(i) f E H'.

(ii) J jh(t)12(l + 11t112)'dt < +oo.
^

PROOF. Restricting to the case where s = 1, we first show that (i) (ii).
For f E H', we have the following extension of Theorem 3.1.1:

(iii) .T(Dekf) = -itk.F(f)(t)

To prove this, note that .F(r,ek f) = ei°tk.F(f) and

E-1 F(Teekf - f) = e-1(eictk - 1)h(t).
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Since the left-hand side converges in L2 to -.F(Dek f ), the right-hand side
also converges in L2. Passing to a subsequence Ek, convergence in L2 implies
convergence a.e.; (iii) follows since the right-hand side converges everywhere
to (itk)h(t). Hence

f hEL2and(tkh(t))EL2,

and therefore

Ih(t)I2(1 + ti + ... + tn) E L1.
We now prove that (ii) =*- (i). Let cp E D; then, by Plancherel,

By

(f)f
f De, = (27r)-

By (iii) (or 3.1.1), F(Dekcp)(t) =-itk.F(cp)(t), whence

f f Dekt.p _ (2ir)n
J(itk)F(f)(t)F(co)(t)dt.

By (ii), tk.F(f)(t) E L2. The inverse Plancherel isomorphism .F-1 can now
_be used to show that there exists a function Uk E L2 such that F(Uk)(t)

-itk(.Ff)(t). Thus

f .f Dek cp = fukso;

that is, the weak derivative of f in the direction ek is the function uk E L2.
Theorem 3.3.2 shows that f E W1 = H'. 0

3.5.2 Definition of H' for s not an integer

Let s be a positive real number that is not an integer. Set

H" = E L2 : f (1 + IItII2)'I(Ff)(t)I2dt < +oo
R" 1JJ

We define a norm on H' by

R.
W IIfIIH = f (1 + IItII2)sI(yf)(t)I2dt.

For s = 1, this norm is different from the W1 norm introduced earlier,
but the two are equivalent. The advantage of the present norm is that H8
becomes a Hilbert space with scalar product

(f1I f2)H" = f (hlh2)(t)(1 + IItII2)'dt, where hk = F(fk), k = 1, 2.

3.5.3 Proposition. Let f E H'. Then

(i) rN f E H' for every measure µ E M1.

PROOF. .F(T f)(t) = µ(t).F(f)(t). Hence, since Ij(t)I < IIPAIIMI, 3.5.2(i) implies
that

IlrµfIIH" < IIPIIM1 IIf IIH" < +00.0
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3.5.4 Differential characterization of H'

Proposition. Let f E L2(Rn) and let 0 < s < 1. Then the following two
statements are equivalent:

(i) f E H"(Rn)
(ii) la(f) = fL '

IIxIIn+2"
dx < +oo, where n = dim(E).

PROOF. We use the Fourier-Plancherel isomorphism. Let u = .F(f ). Then

I'M = JR^ IIXII
28 fR^

Ie-'x.f -

Next, we set

A(0 = Ie-ix.t - 112 dx

JR' IIxIIn+2" '

This integral is invariant under the mapping x -' A.x, where A is an
orthogonal matrix. Hence A(tA.t) = A(t); that is, there exists a function
,i:R+-'R+ such that A(t)= '(IItII)

Note that, under the dilation t: o.- at (a > 0),

z'(aII II) = JR Ie
ix.at - 1I2

IdxIIx n+2" '

Setting ax = y gives

V0,110) = Ie-'s-F - 112 a-ndy n+2" _'(aIItII) = a2a,0(IItII)f
R" II y II

n+2"

Setting IItII = 1, this shows that '(a) = a2"j'(1). Hence A(t) = cIICII2",
where c is a strictly positive constant. Finally,

1,(u) = c f
R"

Since f is assumed to be an L2 function, f I u(t;) I2dd < +oo. Hence the
finiteness of 1,(u) is equivalent to that of

u()I2(1 + IIeII2)"d .oJR" I

Corollary. Let f E L2(E), where s is a positive real number. Let s be
decomposed ass = p + s', with 0 < s' < 1 and p an integer. Then the
following statements (iii) and (iv) are equivalent:

(iii) f E H"(Rn).
(iv) (DejL ... Dm" f) E V m such that Iml < p.



3 Vector Differentiation and Sobolev Spaces 145

REMARK. If s' = 0, then H°" = L2 and this is the definition of H" for
integer s given in 3.1.

If s' > 0, then 0 < s' < 1 and membership in H° is characterized by
convergence of the integral (ii).

PROOF. Set Ff = u; then (iii) becomes

[tm'{z' ...tn "(1 + IIfII)'']u E L2, `dm such that Iml < p.

This is equivalent to
(1+U lI)'uEL2.0

3.5.5 Operator of multiplication by a differentiable function

Proposition. Let cp E D(R") and let f E H". Then ipf E H".

PROOF. The result was proved for integer n in 3.4.1. Using 3.5.4(iii) reduces
the proof to the case where 0 < s' < I.

We begin by writing

(L) 'r.(cof) - cof = co(r f - f) +T:(cPf) -Vr=(f)

Then, since W is bounded,

(ii) IIW(T=f - AIL- < II'PIIL°°IIT-f - fIILV-

Set x - xo = y; then f_. I rxo (Vf) - ccT=o f l2dx = f I Vf - (T-=o'P)f I2dy. Thus

Ilrx((Pf) -crxo(f)IIL2 =
II(7--=o'P-w)fIIL2

<- IIfIIL2IIr-xoc-WIILm

By the mean value theorem,

(iii) IIT-xoca - ,PIIim < CIIxo112.

Substituting inequalities (ii) and (iii) into (i), we obtain the integral convergence
criterion 3.5.4(ii). 0

3.5.6 The spaces Hioc(O)

Let 0 be an open set in R. We say that f E L L(O) if flK E L2(R")
for every compact subset K of R. For s > 0, we say that f E Hf,c (0) if
Wf E H"(R") VV E D(O). The next proposition follows essentially from
3.5.5.

Proposition. Let f E L, C(O) and suppose that, for every xo E 0, there
exists a function W E V(0) such that cp(xo) 34 0 and pf E H"(R"). Then
f E H,8,.(O).

PROOF. Let v E D(O) be such that v = 1 on a neighborhood of xo; assume that
its support supp (v) is small enough that V(x) # 0 on supp (v). Multiplying by
,,(7.v(x), we obtain

dxo E 0 30 E D(O) such that Bsp E H(R") and 0 = 1 on a neighborhood of xo.
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Let U= = interior of 0-'(1). Then, for xo E 0, the collection {U=o} is an open
cover of O. Let x ' . .. , X. E D(O) be a partition of unity subordinate to this
cover. Then X, ,f = Xn8 f , where B corresponds to the open set U containing
supp (X,,). By 3.5.5, X. (Of) E H'; that is, X. f E H' for every s.

Let cp E D(O). Then the identity f = E Xn f gives Wf = E spXn f . This sum
is finite and all the terms are in H'; hence ipf E H'.

3.5.7 Invariance under diffeomorphism

Theorem. Let 0 be an open set in R" and let ggbe an infinitely differ-
entiable diffeomorphism from 0 onto an open set O. If f E H1oc(O), then

(fog) E H1oc(O)
PROOF. We use the criterion in 3.5.6. If s is an integer, it suffices to compute
the derivatives of the composite function ' o g (where 10 E D(O)) and to use the
characterization of H' by means of weak derivatives. _

By using 3.5.4, we may assume that 0 < s < I and that f and f have compact
support. Then the integral 3.5.4(ii) becomes

Ia(f)
= fRxR

I T(& + y)) - f(9(y))1211Il dy.^ ^ x n+2,

Consider the mapping of x defined by

PV(x) = 9(x + y) - 9(y)

Then p is a diffeomorphism ffRor" fixed y. Let

I,(f) = J dy J If(9(y) + py(x)) - f(9(y))12IIxl 2,
^

Setting g(y) = y and pf,(x) = z gives dy = (det g-')(y)dy` and dx = det(p;')dz.

By the change-of-variables formula for multiple integrals,

fR.
dy(det 9-1) J If(y+z) - f()I2(det p-') dz < +00.

Ilxlln+2a

Since g is a diffeomorphism and all that matters is its restriction to a compact
set, there exists a constant Cl such that IIxil ? clllzll Similarly, there exists an
upper bound c2 for the functional determinants, and

I,(f)<Cf d If(y+z)-f( )12II <+00.
zll +28

The integral is finite because f E H'(15).

3.5.8 Trace theorem. Let f E H'(R"), and consider Rn-p C Rn. Then
the restriction operator

pp : D(Rn) D(Rn-p)
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has a continuous operator extension

H8 . H"-p12 if s > .

PROOF. Let cp E 7)(R") and write x = y + z, where y E R"_p
and z E RP.

Then, by the inversion formula,

/
+P(y + z) =

JR
e-i(v+:)

Similarly, writing C = 71 + (,

V(y) = J C)dld(.
PxR"-P

Letting p(W) denote the operator of restriction to R"-p, we obtain

(i) (P(AP))^(71) = fRP Arl + C)d(.

Moreover,

IIPGP)IIH,_j
J

I (p(V))"(n)I2(1 + 1171112)8-p/2d71

J I J
P(Y7 + ()d(

12(1

+ 11,7112)s -p/2
d71

R^-P

By the Cauchy-Schwarz inequality,

2

IRP
+ ()(1 + Ill + (112)3/2(1 +

117, + (112)-'/2d(I
R°

U-1
< (1 + 1117 +

(112)8l) (fRP1P(71 +() Il(1 + 1171 + (112)'d()

The first integral on the right-hand side, say J(71), converges since s > p/2.
Moreover,

(1 + 1171 + (112)8 = (1 + 11+ 112 + 1)(112)3

and
d(

J(71)
= JRP (1 + 1171112 + 11(112)8 = f1101<117A +

The first integral is bounded above by

vol({II(I) <_
C(1 + 1)71112)°/2-e

(1 + 1171112)8

and the second by

d(
< (1 + 1171112)°/2-e,

II<II>Ilnll (1 + II(112)'
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whence J(n) < C(1 + IInll2)p/2-9 and

cJR^-Pdn(I + IInIl2)p/2 8(1 + ilnll2)8-p12

x [J Is+ ()I2(1 + IIn + (II2gd(,

<- c J - do [ f Ip(n + ()I2(1 + IIn + (II2)sd(] = cII9PII2 .
R^ P RPP

Thus

(ii) cIIcIIH. if s > 2.

The existence of the desired extension follows from the density of D(R")
in He(R").

3.5.9 Corollary (Serge Bernstein). Let s > n/2. Then H8(R") C
Cb(R"), where Cb(R") denotes the bounded continuous functions.

PROOF. The inequality 3.5.8(ii), with p = n, gives

IPn(V)(0)I <- V V E D(R").

Since the H° norm is translation invariant, Ip"(w)(x)I < cII'IIH- for every
x E R", whence, taking the sup over x,

(i) IIPn(V)Ilcb(R") < cIIWIIH

Let f E H8(R"). There exists a sequence Pv E D(R") such that II f -V'IIH.
0. Then

Pn(coq) = u4 E Cb(R").

The u, converge uniformly by (i); hence

limuq(x) = u E Cb(R").o

3.5.10 Theorem. Let 0 be an open set in R" and let V be an (n - p)-
dimensional submanifold of R" such that V C 0. If a > z, then them
exists a continuous restriction operator

Hf.(C) Hf (V), where s' = s - 2

PROOF. HH,,(V) is defined via an atlas of charts on V. This definition is indepen-
dent of the choice of atlas, since passage from one atlas to another is accomplished
by local diffeomorphisms.1 The result follows from Theorem 3.5.7.

Given vo E V, there is a local diffeomorphism from a neighborhood U of vo
to 0 such that the image of V n U is the space R"-y C R", and 3.5.9 can be
applied.

'See, for example, W. Boothby, An Introduction to Differentiable Manifolds
and Riemannian Geometry (New York: McGraw-Hill, 1987).
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4 Fourier Transform
of Tempered Distributions

Plancherel's theorem, characterizing the image of L2 under the Fourier
transform, played a major role in the last section. Although we hardly
considered the spaces W,, (s integer, p 54 2), the systematic use of the
Plancherel isomorphism enabled us to study the spaces H8 = W.2. In Sec-
tion 5, we will study pseudo-differential operators by restricting our atten-
tion to their action on the classes H8, where we will again use the Plancherel
isomorphism.

In this section, we characterize the image under the Fourier transform of
the space S(R) of infinitely differentiable functions which, together with
all their derivatives, are of rapid decrease. The Fourier transform is an
isomorphism from S(R) onto itself, and S(R) will be given a topology
in which this isomorphism is continuous. The dual of S(R") is the space of
tempered distributions S'(R") of Laurent Schwartz; the Fourier transform
induces, by transposition, an isomorphism from S'(R") onto itself.

Our study of the Sobolev spaces of negative order will parallel that of
S(R") and S'(R").

4.1 The space S(R)
(i) Functions of rapid decrease

Definition. A continuous function f on R" is said to be of rapid decrease
if, for any integer m,

(1 + 11x112)'f(x) 0 as IIxiI -- oo.

The space of functions of rapid decrease is denoted by C0,o(R") and
equipped with the following sequence of norms:

lifII"iA = ER"(' + IIxII2)"If(xWI

C0,o(R") is thus a vector subspace of Co(R"), the space of continuous
functions which vanish at infinity. Moreover,

Co,o(R") = { f E Co(R") : 11f 1Im,o < +oo b'rn}.

We define

(ii) S(R") _ { f E Co,o(R") : 8Q f E Co,o(R"), Vq = (41, ... , 9"),

where
8I I f(x)

((gx1)91 ... (ex")9n'

and this derivative is assumed to exist in the elementary sense. In other
words, f is infinitely differentiable and all its derivatives are of rapid de-
crease.
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(iii) Norms on S(R")

A countable family of norms is defined on S by

IIfIIm,r = sup 1181f 16,0.
191<r

These norms can be used to give S(R") a metrizable topology, with
distance defined by

d(f, 0) = r2-(r+m) IIf Ilm,r
lr,mm 1 + If Iim,r'

d(f,f') = d(f -f',0).
(iv) D(R") is a dense subset of S(R")

Let W be an element of D(R) such that cp = 1 on a neighborhood of zero.
Set W,, (x) = W(n ). If f E S(R"), then d(f, f W.) -- 0 and f co E D.

A linear functional I on S(R") is continuous if and only if there exist m,
r, and a constant c such that

II(f)I <- CIIfIIm,r

4.2 Isomorphism of S(R") under the Fourier transform
Theorem (Laurent Schwartz). Let f E S(R"). Then

(i) f E L' and the Fourier inversion theorem can be applied:

1(x) = J f (t)e ix.t t
(27r)-'

(ii) f E S(R") and there exist constants cr,, such that

IlfIIr.a <_ where m> n.

(iii) The mapping f - f defines a topological isomorphism of S(R")
onto S(R").

(tv) (xkf)"(x) = Zetkf(t))
(v) (x F

f) A
(t) = -itkf (t)

(vi) If f, g E S(R"), then fg E S(IV) and (fg)A
(vii) If f, g E S(R"), then f * g E S(R") and (f * 9)n = f9

REMARKS. From now on, whenever there is no possibility of confusion,
S(R") will be abbreviated by S. The Fourier transform on S has all the
right properties: it maps differentiations to multiplications (by -i times the
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variable of differentiation) and vice versa, and convolutions to products and
vice versa.

PROOF. If f E S,

r f(x)eiz.tdx
= f C ' f)

(ext) lix.

This identity cant be checked by an integration by parts on the right-hand
side; the variation of the integrated term vanishes because f is of rapid

decrease. It follows that (/-)" (t) = -it I If (t), and (iv) is proved. More-
over,

since m > n.1t11 If(t)I < 11'9XI IIL1
< llama 11.1,0

(The last inequality uses the fact that (1 + 11x112)-m/2 E L'(R').)
In general, it follows from repeated integrations by parts that (OQ)^ f (t) _

(_i)Ivltgf(t), whence Itgf(t)I 5 cli&fllrn,o, and finally

(viii) IllIIr,O <- cmIlfllrn,r

Hence f E S implies f E Co.. C V.
Thus the Fourier inversion formula can be applied, and (i) is proved.
Let 8, be a derivative of order q in t. It can be computed by differentiating

the Fourier integral under the integral sign:

Of(t) = J (t'e`t)f(x)dx = Jet(_i)MxQf(x)dx.

Since x9 f (x) E S, it follows from (viii) that

Ilaifll <_ cllxgf(x)Ilm,r.

Writing out in detail the norm on the right-hand side gives

IIx9f(x)llm,r = E 118'(x°f(x))IIm,O.

IlI<r

By Leibnitz's formula for the derivative of a product,

-I(Xgf) = Ecr(arx4)(a'-'f) (x)'

It follows that Ilxgf(x)Ilm,r <_ cm.gllfllm+q,r, whence

IIlIr,s <_ G,allfllm+e,r.

This proves (ii).
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To prove (iii), we must show that the mapping f - f is surjective. Let

h E S be given, and set hl(x) = J (27r)
n. Then

(ix) hl (x) = (2r)' h(-x),

and hl E S by (ii). We now compute its Fourier transform.

hl (.\) = Je1'hi(s)dx = (2Ir)n Ji(_x)eitAdx =
(21r)n

J(x)e_dx.

By (i), hl = h. This shows that the Fourier transform is surjective. The
inverse transform, given by (ix), is continuous by (ii). Both the isomorphism
S -- S and its inverse are continuous: it is thus a topological isomorphism.

Applying the Fourier isomorphism to formula (iv), which has already
been proved, gives (v).

Since f, g E S C L1, 1.6.2 can be applied and (f *g)^ = fg. It is clear
that the product of two functions in S is in S: if f E S and g E S, then
f g E S. It follows that f * 9 E S. This proves the first part of (vii), and the
second part follows from (vi) by the Fourier isomorphism. 0

4.3 The Fourier transform in spaces of distributions

4.3.1 Notation

Using the notation of Laurent Schwartz, we write S' for the vector space of
continuous linear functionals on S. S' is called the vector space of tempered
distributions on Rn. For example, let µ E M(Rn) be such that there exist
I and C for which

(i) III ({x : Ilxll < R}) <- C(IIxiI2 + 1)1.

Then f f (x)d1c(x) converges Vf E S and defines a distribution in S'.

4.3.2 Operations on S'

These are derived by transposition from continuous linear operations on S.

(i) Differentiation is a continuous linear operation on S. Since

II 07x1 Ilm.r < IIJ Ilm.r+l,

differentiation on S' can be defined by

-`axlf,1)=(f,awl), VIES'.

The left-hand side clearly defines a continuous form on S'.



4. The Fourier Transform on S 153

(ii) Multiplication by a polynomial P of degree k is a continuous operation on S.
Since

IIP(z)f(x)II,n,r <- clIf II.n+k.r, where c = c(P),

multiplication by a polynomial on S' can be defined by

(Pf,I) = (f,P1).

(iii) S is an algebra: the product of two functions in S is a function in S. That
S' is an S-module follows from the formula

(hf,1) = (f, hl), df E S,

where 1 and h are fixed elements of S' and S, respectively.

4.3.3 The weak topology on S'

Definition. A sequence In E S' is said to converge weakly to to if

(f,1n) converges to (f, to), V f E S.

Proposition. The operations defined in 4.9.2 are continuous in the weak topology
on S'.

In particular, if In to weakly, then

Ox1In
8x1!0.

In other words, the differentiation operator is a continuous operator on S in the
topology of weak convergence of sequences.

PROOF. We prove this for differentiation:

/ \
\Or ln/

Since 4 E S if f E S, the right-hand side converges toC- fl , to>. o

4.3.4 Theorem (Laurent Schwartz). Let a mapping FS' : S' - S' be
defined by setting

(f, rs'l) = (1,1).
Then FS' is an isomorphism from S' onto S', mapping weakly convergent
sequences to weakly convergent sequences.

Moreover, FS' can be restricted to L' and L2 by means of the inclusions
Ll C S', L2 C S'. The restriction of FS' to L' gives the Fourier integral;
the restriction of FS' to L2 gives the Fourier-Plancherel transform.

Finally, the inverse of FS' is given by

YS" (u) = FS' (u), du E S'.

REMARK. If A is a positive measure satisfying 4.3.1(1), YS, (A) is defined
even though the integral µ(t) might diverge for every t.
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PROOF. Fixing I E S' and setting

'P(f) = (f,1),

we obtain a linear functional on S which, as the composition of continuous map-
pings, is itself continuous. Hence there exists ii E S' such that ap(f) = (f,11).
Let

11 = FS'(1).

Since f - f is an isomorphism of S onto S, its transpose FS' is an isomor-
phism from S' onto S'. Moreover, by Parseval's relation (cf. 2.6),

(f,u) _ (f, u), df E S, Vu E L1.

Hence FS, is an extension of the Fourier integral on L'. The same result holds
on L2.

Finally, the inversion formula for FS, is proved by transposing the inversion
formula on S.

4.3.5 Support of a distribution

Let 1 E S'. We say that l is zero on the open set 0 if l(w) = 0 for any
cp E S(Rn) such that supp (W) C 0. Differentiable partitions of unity can
be used to show that there exists a largest open set ci on which I is zero.
The complement of f is called the support of 1.

4.3.6 Sobolev scales of distributions

For a fixed positive real number s, let D(R') be given the H-' norm
defined by

II'PIIH- =sup JR
cpfdx, where f E H', IIlIIH° <_ 1.

Since V is dense in H', hPIIH- = 0 implies that io = 0.
Using the notation of Sobolev, we let H-'(R') denote the completion

of the space V with respect to the H-' norm.

Theorem (Sobolev). The Fourier transform extends from V to H-' and
realizes an isometric isomorphism from H-' onto L2(Rn, µe), where d148 =
(1 + IItII2)-8dt.

PROOF. If f E H8, then f E L2 and the Fourier-Plancherel isomorphism gives

f c fdx = J i (t)Tf(t)dt.
R° R^

Hence

IIWIIH = supj'ca(t)v(t), with J Iv(t)I2(1 + IItII2)'dt < 1.
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By the Cauchy-Schwarz inequality,

L1(t)(1 + IItII2)-°/2(1 + IItIi2)'/2v(t)dt

L

/ 1 (t)12

Lf (1 + llt112)8 JJ

whence

r l[J ,v(t)2
1 /2

(1 + 11t112)'J

Equality occurs when v(t) = ccp(t)(1+lltll2)-', with the constant c determined
so that IIvIIH. = 1. 0

4.3.7 Comparison of the two theories

(i) Proposition. For every s > 0, H-'(R) C S'(R°).
PROOF. S(R") C H'(R"). Moreover,

IIflIm.r ? IllIIH" if r > 8, m> 2

Let 0 E H-'. Then 0 defines a linear functional on H' and

10(/)1 <_ CIIIIIH" <_ CIIfIIm.r Vf E H.

Hence 8 is continuous on H' if H' is given the topology induced by that of S.
Restricting 8 to S gives a continuous linear functional 0 on S and 0 H 01 defines
the desired map H-' - S'.

This map is injective: V is dense in H'; a fortiori, so is S; thus a linear func-
tional on H' that vanishes on S is identically zero. E3

(ii) Proposition. Let 1 E S' and suppose that l has compact support. Then
there exists p such that I E H-p(R").

PROOF. There exists a pair of integers m, r such that

Il(f)I < CIIfIIm,r Vf E S(R' ).

Let W E D(R") such that 'p = 1 on the support of 1. Then I(f) = I(f),
whence I1(f)I <_ dlVfllm.r. But

IIcoflim,r <_ CI10IIm,rDfIIw20.

Moreover, by the wrollary to the trace theorem, Ill II L W _ cll f f l H. if
s > 2 and IIfIIw <_ Hence

II(f)I <_

Thus l extends to a continuous linear functional on H'+', whence l E
H-'-r. o
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5 Pseudo-differential Operators

The Fourier transform on R" diagonalizes linear differential operators with
constant coefficients. This property leads to representation theorems for the
solution of the homogeneous equation as a limit of sums of complex expo-
nentials, as well as existence theorems for the nonhomogeneous equation.
These theorems, due to Leon Ehrenpreis and Bernard Malgrange, use the
Fourier transform in C" as a fundamental tool.

Complex-analytic methods are needed to prove these theorems, which
are naturally formulated in the context of Laurent Schwartz's theory of
distributions.

To obtain such general results, we would need not only to study locally
convex topologies on spaces of distributions and duality between locally
convex spaces, but also to prove minimum modulus theorems for holomor-
phic functions of several complex variables. All these methods originate in
different currents of thought from those we have followed up to now.

We will study differentiable operators with variable rather than constant
coefficients, and on bounded open subsets of R" rather than on all of R". In
physics, differentiable operators with variable coefficients invariably appear
when an inhomogeneous medium is considered.

At first glance, Fourier analysis seems to have no means of obtaining re-
sults in this setting. It was thus a striking result when Alberto Calderon, in
1957, introduced an "infinitesimal Fourier transform on the tangent space",
which assigns a "symbol" to an operator and thereby embeds differential
operators in the wider class of pseudo-differential operators. In this class,
one introduces an infinitesimal symbolic calculus which consists of multiply-
ing symbols. Calderon's symbolic calculus theorem states that the symbolic
calculus corresponds to the composition of operators modulo regularizing
operators, i.e. with the gain of one derivative.

The pseudo-inverse of a differential operator can be explicitly constructed
in integral form.

This section ends with an application of the pseudo-inverse, in the proof
of the elliptic regularity theorem.

Pseudo-differential operators are a basic tool of the theory of partial
differential equations. The spectral pseudo-decomposition they effect, and
the integral estimates they entail, make up, to some degree, the extension
of Sections 1 to 4 of this chapter.

5.1 Symbol of a differential operator

5.1.0 Notation

In order to distinguish clearly between the variables x E R" and t E R" of
the function f (x) and its Fourier transform f (t), we set R" = E, where E
is an n-dimensional vector space over R, and write its dual as E. The dual
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pairing is denoted by

(x, ') or x.e, where x E E, L E E.

For a fixed choice of volume measure on E, the Fourier transform is written

f (£) = J f (x)etx dx, where f E L' (E).
E

The volume measure df on E is fixed so that, on L1(E) fl L2(E),

If(x)I2dx = J^ If(C)124.
E

Similarly, if P E A(E), the Fourier inversion formula is written

(i) P(x) = f 'P(i)e
'x.f

E

The two measures dx and dd are called associated. The Fourier-Plancherel
transform is an isometry of L2(E) onto L2(E). We observe the convention
of choosing a basis for E in such a way that the associated volume element
is equal to 1._ Under these conditions, we are led to define two bases ek of
E and ek of E as Fourier-dual if

ek) = 2ir if k = j,
(ej, ek) = 0 if k 34 j.

Let E(E) be the vector space of infinitely differentiable functions on E,
and let D(E) be the subspace of E(E) consisting of functions with compact
support. We will consider differential operators of the form

(ii) L = a,r,(x)a"`,

m = (mi, ... , m") denotes a multi-index, that is a system of n non-
negative integers. Let ml = m1 +...+m,,, let a1 = a/ax1, ... , 8,a = a/ax",
and let am = a;"' ...8n ". The coefficients am(x) will be "sufficiently dif-
ferentiable" functions of x. If L is not the zero operator, the largest Imp
such that am # 0 is called its orrder.

Given P E E(E), we define

(Lcp)(x) _

am a linear operator from E(E) to E(E). The
symbol of the operator L is the function defined on E x E by

(iii) oL(x,C) = e'x.f LW&), where tPt(x) = e-`z..
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Writing this out in a basis,

(iv) cL(x, ) = E a.n(x)(-iC1)ml ... (-ibn)mn.

The symbol is thus a polynomial in t; for every fixed x. The advantage
of (iii) is that it is independent of the choice of basis, while (iv) appears to
depend on the choice of basis.

A differential operator can evidently be reconstructed from its symbol;
it suffices to write the symbol, in a basis, as a polynomial in C, and to
substitute Ok for i;k in the monomials. This elementary calculation can be
replaced by an integral expression, which has the immense advantage of
being applicable to functions a(x, t;) more general than polynomials in C.

5.1.1 Theorem. Let L be a differential operator on E with symbol aL (x, t;).
Then

(i) (Lp)(x) = L is.tdf, V e E D(E),

where ip(t) = f cp(x) e'x'f dx denotes the Fourier transform of cp.

PROOF. By 4.1(iv), D(E) c S(E) = S( ), whence cP is of rapid decrease.
Thus oL(x,l;)ip(0 is of rapid decrease and the integral in (i) is convergent.
Moreover, by differentiating the inversion formula

cp(x) =f
with respect to al, we obtain

(alip)(x) -
and more generally

= f (-it 1)ml ...(81 ' ... 19n" V) (X)

The theorem follows by multiplying both sides by am(x), pulling a,,,(x)
through the integral sign, and summing over m. 0

5.2 Definition of a pseudo-differential operator on D(E)

5.2.1 The class of symbols C($, r, 0)

Let 0 be a real number and let r be a positive integer. We define a class
C(0, r, 0) of measurable functions q on E x f which satisfy the following
two conditions.
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(i) q has compact support in x; that is, there exists a compact subset K of
E such that

q(x,t:)=0 if xVK, for any C EE.

Derivatives with respect to x in E x E are denoted by Ox'. The functions
q are required to satisfy the following regularity condition.

(ii) +oo for every multi-index n such that
InI < r.

5.2.2 EXAMPLE. Let L be the differential operator of order s considered in
5.1.0(ii). If the coefficients of L are in WT°, then

aL(x,t;) EC(-s,r,0).

It is clear from this example that, in the class C(,3, r, 0), the integer r
corresponds to the regularity of the coefficients and the number -/3 to the
order of the operator.

5.2.3 Pseudo-differential operators defined on D(E)

With a given symbol g E C(/3, r, 0) and function cp E D(E), we associate
the function

(i) (A9`p)(x) = fg(x,

The integral converges since, for fixed x, ip is of rapid decrease in t; and
g is of polynomial growth in t;. Differentiating under the integral sign with
respect to x shows that Agcy E WT°, and it follows from 5.2.1 that Aycp has
compact support. All these observations are trivial; the following theorem
is not.

5.3 Extension of pseudo- differential operators
to Sobolev spaces

5.3.0 Theorem. Let g E C(/3, r + 1, 0) and let n = dim(E). Assume that
s > -/3 satisfies

(i) 0<s<r-n.
Then there exists a constant c such that

(ii) II H. < C. lkaIIHa+a, Vcp E D(E).

(iii) There exists a unique extension of Ag to a bounded operator Ay from
H8(E) to HB+p(E).
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PROOF. Statement (iii) follows from the density of D(E) in H5(E) and
from inequality (ii).

Since the H' norms can be computed in terms of the Fourier transform,
(ii) can be expressed as an inequality between Fourier transforms. Since

is a bounded function with compact support, its Fourier transform
can be computed. This computation leads to the following lemma.

5.3.1 Lemma.

(i) AgV(r!) = fK9(rl,t)'p(t)dC,

where

(ii)
JE

PROOF.

eix.ndxr
E E

(AgW)'(rl) _ J e`x n(A9co)(x)dx = fE

The double integral 'E x E I g(x, I dedx converges: it is bounded above
by

11(1 + II II)A9(x, meas (K') fE IIf II)-Rd,

where K' denotes the support in x of the symbol, and the integral on E
converges because cp is of rapid decrease. Hence Fubini's theorem can be
applied to reverse the order of integration:

Agw(rl) = L `p(f )d f g(x,

C)e'x.(n-t)dx.

Fubini's theorem guarantees that the integral on E converges for almost
every . Since g has compact support in x, it actually converges for every
, and there exists a constant c such that

(iii) IK9(ii,ty)I < c(1 + IIiiI)-Ameas(K').

5.3.2 Estimating the kernel K.

Lemma. Suppose that g E C(p, r + 1, 0) and let r' be the integer defined
by r < 2r' < r + 1. Then

(i) IK9(ii,t)I < (1 + IItII)-,1(1 + IIe - iII2)-r'.

PROOF. Let {xk} be an orthonormal basis with respect to the metric IIxH .

In terms of this basis, the Laplace operator on E is defined by
n

A. = E(exk )2.
k=1
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Then
Qxeix.f = -g112eix.F.

Let A? be the differential operator on E with constant coefficients de-
fined by

Ai =(1-Ox)r =1-r'0+...+(-1)rAr.
Then A eix.(n-tl = (1 + 1117 - II2)r e.x.07-0, whence

K9(71, 4)(1 +
III? - t112)r = f 9(x, t)Ax esx.(+7-f)dx.

E

Since g(x,l;) has compact support, we can integrate by parts and turn
derivatives of the exponential into derivatives on g. Thus

(1 +
1117 - II2)r K9(17, ) = f (A. 9(x, t))e`x.('1-0dx,

and (i) follows by 5.2.1(ii).

5.3.3 Proof of the extension theorem

(i) Lemma. Let f E L2(E) and let.F(f) denote the Fourier transform of
f. Then f E H' if and only if F(f)(t;) = (1 + IICII)-ek(l;) with k E L2(E).

PROOF. Cf. 3.5.1. 0

(ii) Lemma. Let K9(r1,1) = K(i7,.) (i+
E )8 (1 + IItII)-Q Let

(G9f)(17) = fkg(tl)f()d.

Then 5.3.0(ii) is equivalent to the inequality

IIG9f IIL2(E) < CII f IILI(E), Vf E L2(E)

PROOF. By 5.3.3(i) and 5.3.1(ii). 0

(iii) Lemma.
I K9(17, e)I <_ c(1 + III -17112)-r'+f

PROOF. This follows from the inequality

1+111711
8

<28(1+1117-e118),
+ U11 )

which is proved by considering the following two cases:

(a) II17II <_ 21ICII. Observe that the left-hand side is less than or equal to 2'.

(b) 111711 > 211eII. Observe that 1 + II'II 5 1 + 2110 -1711. 0
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(iv) CONCLUSION. To prove 5.3.0(ii), note that I G9 f I is bounded above by
replacing K9 with an upper bound for 1 K91. Using 5.3.3(iii), it must be
shown that

u r e/2 IIL2(E) <- CII f 1I L2(E)f (1 + III
I

-
f

( I7)II2 `

The left-hand side can be written formally as If I * u, where u(t;) _ (1 +
IIE112)-r'+8/2

Next, -2r' + s < s - r < -n by 5.3.0(i), whence u E L. Finally, using
1.8.2,

11 1f1 * U I1L2 <-

5.4 Calderon's symbolic pseudo-calculus

5.4.0 Motivation

The Fourier transform maps a differential operator L° with constant coeffi-
cients to multiplication by the symbol QLo(c). (The hypothesis of constant
coefficients is reflected in the fact that the symbol no longer depends on x.)
Thus the composition of constant-coefficient differential operators L° and
Al° - that is, the differential operator Q° = L°M° - corresponds to the
product of symbols oQo = QLOQMO. The differential operators with constant
coefficients form a commutative algebra for which the Fourier transform
makes possible, to some extent, a spectral theory.

The differential operators with variable, but infinitely differentiable, co-
efficients also form an algebra: two such operators can be composed. But
this algebra is no longer commutative.

For example, consider the differential operators L = x1 r and M =
TX_r

on R. Then
/ \2 / )2'

LM = xl I 1 I , ML axe +xl 1 xl and LM-ML = axl

Commutativity has been lost. Nevertheless, the commutator LM - ML
is an operator of order 1, while the product is an operator of order 2.
One might say that commutativity is preserved, modulo operators of lower
order.

5.4.1 Introduction to the classes C(,3,r,1)

A subclass C(/i, r, 1) of the symbols C(/3, r, 0) is defined by imposing the
following additional axiom:

(i) 11(1 + +oo, b'm such that Im1 < r.

Similarly, a class C(p, r, s) could be defined by differentiating s times with
respect to t; instead of once, and replacing Q by /3 + s. These classes would
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appear in computing multiple commutators; such computations would arise
from taking limits that we have held fixed.

Pseudo-products

Let p and q be the symbols of the pseudo-differential operators AP and
Ag. The pseudo-product of AP and A. is the operator whose symbol is the
product of the symbols. This operator is written A,OAP and, by definition,

Aqp = AgOAp.

With the formula for the derivative of a product, it is easy to verify that

(ii) if g E C(/3, r, 0) and h E C((3', r, 0), then gh E C(O + a', r, 0).

The pseudo-product is a commutative operation and therefore cannot cor-
respond to the composition of operators. However, it does give an approx-
imation.

5.4.2 Calderon's commutation theorem. Let p E C(8, 2r + 2, 0) and
let q E C(Q', r + 1,1). Suppose that r > p' + 1. Set

R = AgAp - AgOAp.

Then, for s such that 0 < s < n - r,

(i) R : H8(E) -, H8+0+R'+1(E)

and there exists a constant c8 such that

(ii) IIRfIIH.+s+a'+, <- C-11ff1H.

PROOF. Since D(E) is dense in H8, it suffices to prove (ii) when f E D(E).
As in the extension theorem, we take the Fourier transform of both sides
of the inequality. For f E D(E), let

4Apf(71) = APf = fKp(i7)i()d.

The kernel Kp was computed in 5.3.1.
The proof of this theorem will require several lemmas.

5.4.3 Lemma.

(i) (Aq(Apf))(\) = faq.p()t)1()d, where

f{ii) G9,n( t;) = df f p(z +h,)q(z,- P)eipet2-dh dz.
E

PROOF. Composing the kernels gives

G9,P(,\+C) = jiKq(A.71)Kp(11i)d71.
E
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Replacing Kp and K. by the expressions given in Lemma 5.3.1,

Gq,n = 1 dofdz.
E Z

Setting x = z + h and z = z in E2, and r/ = . -,a in E, we obtain

Gq,p = Ldp4 p( z + h, e)q(z,
u)e:µh+:z(f-a)dz dh.0

5.4.4 Lemma. Let 0 be a compact subset of E containing the supports of
p(x,.) and q(x,.). Then there exists an even function u E D(E) such that
u(x1 - x2) = 1 if Si, x2 E 0,

(i) f dAJ
f p(z + h,t)q(z,t - p)eiz(E-a)u(h)eaµhdh dz,

and
r r 1

(ii) 1 = J dµ u(h)e{µhdh] .
E E

PROOF. Let
01={yEE:y=x1-x2, x,E0}.

Then 01 is a compact subset of E containing the origin. There exists a
function u E D(E) equal to 1 on 01.

The right-hand side of formula 5.4.3(ii) is nonzero if z+h E 0 and z E 0;
that is, if h E 01. Multiplication by u(h) is multiplication by 1; this proves
formula (i).

The second formula is obtained by applying the Fourier inversion formula
to u E D(E) and noting that, since the origin is in 01i u(O) = 1.0

REMARK. We must be careful not to write a double integral in (ii), since Fubini's
theorem does not apply. Similarly, 5.4.3(ii) cannot be written as a triple integral.

5.4.5 Lemma. (Gq,,p - K9p)(J1,C) = I(1(, + J(A,la), where

(i) I(A,0 = JfXEi(p)p(z,E)[q(z, IA)

(ii) J(\, ) = f di f q(z, - µ)a=z(E-a)dz {j. .. dhl and
E E11 J

[JE .. dh] = f((z + h, ) - p(z, ))eu(h)dh.

PROOF. Formulas (i) and (ii) of Lemma 5.4.4 and 5.4.3(i) imply that

Gp.Q - Kp4 = f f,. e`=(C-a)dzdp f e`Nh[ ]u(h)dh, where

[ ) = p(z + h,.)q(z,t - µ) - p(z,4)q(z,f) _ [ )1 + [ )2 with

[ )1 = p(z,4)(q(z,t - IA) - q(z,f)) and

1 12 = q(z,C - A) (p(z + h,t) - p(z,.))
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Note that the first term no longer contains h; hence the integration in h affects
only e'phu(h), which, since u is even, gives u(p). Thus we have

1(1\10 = fdlAfui(1)( )i exp((iz( - A))dz.

Since u E L', Fubini can now be applied to obtain (i). Integrating the expression
I la and applying Fubini to the integral f fEZ yield (ii).

5.4.6 Lemma. Set

9(z,O = J(q(z- - 9(z,))u(p)d,

and let
l(z, ) = P(z, )9(z, 0

Then I = K1.

PROOF. Integrate 5.4.3(i) with respect to it, then use Lemma 5.3.1.

5.4.7 Estimating the integral I

We use the extension theorem 5.3.0 to show that

(i) g E C(Q' + 1, r + 1, 0).

5.4.1(ii) will then imply that pg E C(p + Q' + 1, r + 1, 0).
We first use Taylor's formula with integral remainder on k to obtain

9(z, ) =fE (Ekgk(z,.,p)pk) u(p)dp, where

4k(z,., p)=- f0 (afk4(z, l; - tp))dt.

Differentiating with respect to z gives

p))ii(p)pkdp,8Z (9(z, 0) =

whence, by 5.4.1(i),

1IOZ`(9(z,VI < cf f (1 + III - tpll)-0'-1 IIpII u(p)dtdp.(ii)
E 0

Let v(p) = IIzII 11(p)I. Then v is of rapid decrease. Set

F(t, ) = f(i + III - tpll)-13 -'v(p)dp = f + IA
A
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where A = {Ii: 111411 > ). For any integer in,

Moreover,

<J 1AV<c'rnll+44
1-n,

<_ CO + RID-"'-' IIVIILI.j''
Hence, taking in > 11'+ 1,

(iii) C,(1 + IKK

where the constant C1 is independent of t. Integrating with respect to t
gives (i). 0

5.4.8 Estimating the integral J

We now use Taylor's formula with integral remainder on E. Set

yPk(z,h,f) = J (O
i

Then p(zf(P(z+ h,{) - E hkwk. Writing ih* - f1µke,'` h gives

- + h,4) - u(h)dh = fF

Since µ appears only in the exponential terms and we can differentiate under
the integral sign,

f((z + h,) -_

(i) -.'k(z,p.0 = i J vL(z,h,F)e"'u(h)dh.

Z.
Since 'Pk and u are sufficiently differentiable in It and u has compact support, it
follows that cfik, which can be regarded as a Fourier transform in It, vanishes at
infinity together with its first derivative. Substituting into 5.4.5(ii) and reversing
the order of integration, we can thus integrate by parts on E with respect to hk,
and we obtain

J(x,f) e"((-a)dz J (0nk9)(z,f
E

Let

gk(z,.) = f (01,k4)(z,t - µ)0t,(z,p,t)du.
E
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Then J = >k K9k. We now show that

(ii) gk E C(,0+r3' + I, r+ 1,0)

by finding an upper bound for

f(8TbOPk)(z-
MIm2

with Imi I + Im2I < r + 1. Since q E C($', r, 1),

(iii) cEJ^(1 + III -µII)-O'-'I0= 2 Y'k(z,.U, S)Idp.
E

M2

(iv) Lemma. There exists a constant c, independent of t, such that

(1 +
(1 +

11µ112)r''

where r' is the integer such that r < 2r' < r + 1.

PROOF. Using (i),

JE
((-fin + 1)r' Iu(h)8Z "dh = (1 +

II,,II2)r 8: 2 ,k(z,p,h)

The inequality follows, with

c = meas(K)II(-oh + 2wk(z,p,h)Iltm(E.2).

Here K is the support of p in x.
The following lemma, 5.4.9, together with (iii), (iv), and the hypothesis that

r >,3' + 1, imply that

c(1 + IItlI)-s'-'.

That is, (ii) is proved, and with it the commutation theorem 5.4.2.

5.4.9 Lemma. Let r be a positive number and let

hr(77) = (1 + IIrlHH)-r, where 77 E E, dim E = n.

Then, ifr>n ands>0,

hr * h, < c(r, s)ht, where t = inf (r, s).

PROOF. Let

(hr*ha)(n) = f
(1+IIaII)r lla-7111+1)°dA . +J 'A`(n) A(o)
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where A(Y7) = {A : 2111!11 5 Hall < 211x!11}. Then

-+ 1)°) IIhr1ILt + 1111)and

JAC()

<maXAEA(q)
(1 + IIaII)r lI1A(q)rq(hs)I1L1+

JA(v)

where r denotes the translation operator.
(i) Ifs > n, then II1A(q)ro(hs)IILt < IIhsIILi < +oo. Hence

1

A(q) < c(1 + IIAII)r

and
hr * hs < c(hr + h°) < cht.

(ii) If a < n, then II1A(q)rq(hs)IIL1 < f
lgl1<211E11

hs = c(1 + IItII)n and

hr * hs < Ch. + C(1 + IIF,II)n-°-r < c(hs + h°+r-n).

The conclusion follows by noting that s + r - n > s, whence hr * h° < ch°. Since
s < n < r, the lemma is proved. O

5.5 Elliptic regularity

5.5.0 Definition. Let L be a differential operator defined on an open subset
O of Rn:

L = E am(x)am.
ImI<d

Let aL (x, l;) be its symbol. L is said to be an elliptic operator if, for every
compact subset K of 0, there exist two constants c1, c2 depending on K
such that

(i) I0'L(x,0I?clI1t11difxEKandifII I1>c2

(ii) EXAMPLE. Consider the Cauchy-Riemann operator on R2,

Lo = ax' + i ax2 (where i = vi).

Then
QLo(t) _ -itt +1;2 and ICLoWI = IIEII

(iii) EXAMPLE. On R", consider the operator

L1 = - akj(x)akaj + Ck(x)a=4 + q(x),

where the matrix a;., is symmetric and positive definite. Then

QLt(x+0 = F, akj(x)Gsj - iCk(x)4 + 9(x).
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For 1jt; 11 sufficiently large, the quadratic form dominates the first-order
terms and L1 is elliptic.

5.5.1 Theorem. Let L be an elliptic operator of order d defined on the
open set O. Suppose that the coeicients of L are functions in W +2,
where r > d + 1, r > n. Let f E Hi (O); then Lf is well defined and
Lf E Under these hypotheses, the following two statements are
equivalent:

(i) Lf EHO,(O), where 0<s<n-r.
f E Hio d(O), where 0 < s < n - r.(ii)

PROOF. It is trivial that (ii) (i).
In order to prove that (i) (ii), we construct a local pseudo-inverse of L.

Here pseudo-inverse means an inverse in the sense of Calderon's symbolic
pseudo-calculus, and local means on a compact subset of O. Let 01 be an
open set such that O1 C O. Let V and V; be elements of D(O) such that
cp = 1 on 51 and 0 = 1 on the support of W. Let L1 = cpL, u = L f , ul = ppu,

and fi = ip f. Then ul E H- (E), fl E Hd(E), and cpL(t f) = wL(f) since
0 = 1 on the support of V. Hence

(i) L1f1 =u1.

Let CL, (x, t;) be the symbol of L1. Then oL, has compact support in x
(since its support is contained in the support of gyp). Let 8 E D(E) be equal
to 1 if 11t1i :5 c2(01). Set

9(X, C) = V(x)(1 - eW)[0`L(x,0]-1-

Then it follows from 5.5.0(i) that g E C(d, r, 1).
Moreover, let g°L, = p, where p(x,4) = 02(x)(1-8(e)). Multiplying the

two sides of (i) by A9 gives

A9 L 1 f 1= A9u1 = v, where v E H'+d

Set 8(x) = 8(-x). Then

(A9f1)(x) _ (x)[fl(x) - (8 * fl)(x)].

By the commutation theorem (5.4.2),

A9L1 = A9 + R, where R : H' - H"'+1.

Since p2(x)(0 * fl)(x) E D(E), it follows that

(ii) W
2fl + Rf1 =W, with W E H'+d(E).
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Rfl E Hd+1 since f1 E Hd; thus cp2f1 E Hd+1 if s > 1. As this is true for
every cp E D(O),

fl E H oc 1(O), or f E H!
a

1(O).

This last relation holds for every 0; hence f E H'(0), and we have
gained a degree of differentiability. Working backwards, we conclude that
f1 E Hd+1 and therefore Rf E Hd+2.

Substituting into (ii) gives

cp2 f = W - Rf, with W E H'+d and Rf E Hd+2.

Hence, if s > 2, f E Hd+2(01); as this is true for all 01i we conclude that
f E Ho+2(O).

Substituting again into (ii), we find that pf,, E Hd+3(E) for a > 3,
and hence that f E As this is true for all 01, it follows that
f E H oC3(0). Hence

(,V f) E Hd+3(E) and R(1i f) E Hd+4(E).

Substituting a third time into (ii) gives, as before,

p2f E Hd+4(E) if s > 4.

We continue this procedure until forced to stop, when d + j > s + d. The
last possible step gives

cp2 f E H'+d(E), whence f E

REMARK. With appropriate hypotheses on the differentiability of symbols,
it is possible to let pseudo-differential operators act on Sobolev spaces of
negative order and obtain the following improvement of the elliptic regular-
ity theorem (5.5.1). Let L be an elliptic operator of order d with infinitely
differentiable coefficients, and let s be a real number. Then L f E Him, im-
plies that f E HH.d



IV
Hilbert Space Methods
and Limit Theorems
in Probability Theory

1 Foundations of Probability Theory

1.1 Introductory remarks on the mathematical representation
of a physical system

Before we introduce the notion of probability, it seems advisable to describe
the type of mathematical model used to represent a physical system.

Representations can be given from two distinct points of view:

the point of view of essences, or

the point of view of phenomena.

The point of view of essences, generally that of the pure mathematician,
consists of thinking that the physical system can be perfectly known. The
space of all possible states is introduced, and a state is a point in the space
of states. This point of view is, for instance, that of rational mechanics: the
state of a system of n physical points is completely determined by a point
in Rg" (position and velocity of each of the particles).

The point of view of phenomena, generally that of the experimental
physicist, consists of observing a few facts which occur in a physical system
so complex that the physicist, at the outset, concedes that he will never
understand its basic structure. For example, the physicist can use thermo-
dynamics to analyze the phenomena of a gas without having to determine
the state of all its molecules.
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The mathematical model corresponding to a phenomenological represen-
tation is based on a logical calculus. The physicist introduces the set B of
all events that he will be in a position to observe in studying the physical
system. B is given the structure of the logical calculus, in which

Al + A2 denotes the occurrence of the event Al or the event A2;

A1.A2 denotes the occurrence of both the event Al and the event A2;
and

0 denotes the impossible event and 1 the sure event.

The set B of all events thus forms an abstract Boolean algebra. (See 1-1
for the definition of Boolean algebras of sets.)

The phenomenological point of view, initially of more modest scope than
the point of view of essences, is much more adaptable to describing gains
in knowledge. Indeed, a physical system described twenty years ago by a
Boolean algebra Bo of events can be described today, after a more detailed
analysis, by a Boolean algebra B1. All the events that appeared twenty
years ago in Bo will appear in B1. Thus there is an injective mapping

which commutes with the operations of the logical calculus and permits
Bo to be identified with a subalgebra of B1. Progress in understanding the
system is described by a sequence of Boolean algebras,

So -BI B2-B3-...,
where the arrows are injective homomorphisms of Boolean algebras. This
sequence will give progressively more detailed representations of the phys-
ical system, although it may never arrive at a final representation that
would correspond to complete understanding, beyond the reach of the ex-
perimenter.

1.2 Axiomatic definition of abstract Boolean algebras

A Boolean algebra is a set B together with two commutative and associative
operations, written

AuA' and AnA'.
Each of the two operations is assumed to be distributive with respect to
the other; that is,

Au(BnC) = (AuB)n(AuC) and

A n (B u C) = (A n B) u (A n C).
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We assume further that there exist two elements 0 and 1 in B such that

AuO=A, An0=0, Aul=1, and Anl=A,

and that there exists a mapping A -' A' of B into B such that

AUA`=1, AnA'=O, and (A')'=A.

Using the commutativity and associativity of U and n and the distributivity
of each of these relations with respect to the other, it is easy to verify that

(AUB)` = A`nB`, (AnB)c = A°UB`.

Finally, 1c = 0 and 0` = 1.

Associated order relation

Given a Boolean algebra B and A, B E B, we say that A implies B, and
write A < B, if A n B = A.

It is easily verified that < is an order relation on B. With respect to this
ordering, 1 is the largest element and 0 the smallest element; that is, for
any AEB,0<A<1.

Using the commutativity of U and n, we note that A U B and A n B are,
respectively, an upper and a lower bound of A and B. In fact, A U B is the
least upper bound of A and B and A n B is the greatest lower bound of A
and B. Let us show this, for example, for A U B. Let C be an element of B
such that A < C and B < C; then, by definition of the order relation,

(AuB)nC=(AnC)u(BnC)=AuB, and AuB<C.

1.3 Representation of a Boolean algebra

How to pass from the point of view of essences to that of phenomena is
clear.

If Sl is the space of states of the physical system being studied, we asso-
ciate with an event A of this system the following subset of St:

A' = {w E St : the event A is satisfied by w}.

The operations of the logical calculus correspond to taking unions and
intersections in the set P(I) of subsets of S2. With these two operations,
P(1l) is a Boolean algebra. The following statement summarizes our obser-
vations.

1.3.1 The data of a phenomenological representation of a physical system
of which the space of states S2 is known are equivalent to the data of a
Boolean subalgebra of P(SZ).
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The converse, that every abstract Boolean algebra can be represented as
a subalgebra of P(Q), is proved in the following fundamental theorem.

1.3.2 Stone's theorem. Let B be an abstract Boolean algebra. Then there
exist a compact space SZ and a representation identifying B with a Boolean
subalgebra of P(1l) of subsets that are both open and closed in Q.

PROOF. The proof of Stone's theorem is clear when card(B) < oo. In this
case, we define atomic events as those that are minimal in B with respect
to the relation <; then f is the set of atomic events.

In the general case, we introduce the notion of a filter on B. A filter F is a
nonempty subset of B such that

A,, A2 E Y implies Al n A2 E.F;
Ai E Y, A, < A2 implies A2 E Y;

and

0¢.F.
The inclusion relation on the set of subsets of B defines an order relation on

the set of filters:

Fj > .F2 if A E .F2 implies A E Fi. (.F1 is then called finer than F2).

An ultrafilter is a filter U of B such that F = U for every filter F such that
.F > U. Zorn's lemma shows that, given a filter Fo, there always exists an ultra-
filter U finer than .Fo.'

1.3.3 Lemma. Let F be a filter on B and let Ao E B. Suppose that A n Ao 54 0
for any A E T. Set

.FA0 = {Z E B : Z contains a set of the form A n Ao with A E .F}.

Then .FAO is a filter.

PROOF. Clear.

1.3.4 Lemma. A necessary and sufficient condition that a filter U be an
ultrafilter on B is that, for any Ao E B, either Ao E U or Ag E U.

PROOF. Suppose that U is an ultrafilter. If Ao 0 U, then it is impossible that
AnAo 76 0 for every A E U. Otherwise 1.3.3 would imply that UAO is an ultrafilter,
necessarily finer than U since Ao E UA,,; but this is a contradiction. Hence, if
Ao ¢ U and Ao ¢ U, there must exist X, Y E U such that

AonX =0 and AonY=O.

From this it would follow that X n Y = 0, a contradiction.
Conversely, let F be a finer filter than U. Let Ao E.F. It is impossible that

A$ E U, since this would imply A$ E F, a contradiction. Hence Ao E U and
F = U.

'See Bourbaki, General Topology, 1.6.4.
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1.3.5 PROOF OF STONE'S THEOREM. Let Sl be the space of ultrafilters on the
Boolean algebra B.

Let a mapping cp from B into P(Sl) be defined by setting

p(A)={UES1:AEU}, AEB.

If Al > A2 and A2 E U, then Al E U; hence V is compatible with the order
relations, and is thus a Boolean algebra homomorphism. Let us show that V is
injective. Suppose that A 54 B; then either A n B` $ 0 or A` n B 0 0. Suppose,
for example, that A n B' $ 0, and consider the filter

.F={XEB:X>AnB`}.
Let U be a finer ultrafilter than Jr. Then U E o(A) and U p(B).

To endow Sl with a topology, consider ii = 2B, the product of infinitely many
sets of two elements with the factors indexed by the set B. Then Sll is the product
of compact spaces and hence is compact. Let a mapping 0 : Sl -- Sli be defined
by setting

4(U) = {lU(A)}AEB,
where 1U(A) = 1 if A E U and is zero otherwise. + is clearly injective; thus fl
can be identified with a subset of Sll. We now prove that

1.3.6 4'(0) is a closed subset of fll.

PROOF OF 1.3.6. Let fl, be identified with the set of functions f defined on B
and with values in {0,1}. We will need the following lemma.

1.3.7 Lemma. f E 0 (fl) if and only if the following conditions are satisfied for
any A, A',A",A"'E B:

f (0) = 0,
f(A) < f(A') if A < A,'

f(A"nA"') =
f(A)+f(Ac) = 1.

PROOF. The first three conditions simply restate the fact that 4(U) is a filter,
and the fourth that U is an ultrafilter.o

Now let
LA={f ESli :f(A)+f(A`)=1}.

Then LA is a closed subset of SZI, and f1AE13LA is a closed subset of SZI.
Proceeding similarly with the other conditions of 1.3.7 completes the proof
of 1.3.6.

With the topology induced by Ill, is compact; pulling back this
topology makes Sl a compact space.

Fix Ao E B and define fo(U) = lU(Ao). Then

<,(Ao) = {U E SZ : fo(U) = 1}.

Since fo is continuous, V(A0) is a closed subset of Sl. But (W(Ao))c = W(Ao)
is also closed, so W(A0) is an open and closed subset of fl. This completes
the proof of Stone's theorem.
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1.4 Probability spaces

1.4.1 Definitions

A probability space is a measure space (X, A, p) for which the measure it
has total mass 1: u(X) = 1.

Following the usual practice in this field, we denote X by ft and p by P.
Thus a probability space is written in the form (fl, A, P).

A measurable set A E A is sometimes called an event. The measure of the
measurable set A is called the probability of A and written P(A). Clearly
0<P(A)<1.

P is called the probability measure.
A property that is true a.e. on f2 is called an almost sure (or a.s.) property.

1.4.2 Transporting a probability measure

Let (f2, A, P) be a probability space and let (Y, B) be a measurable space.
Let -k be a measurable mapping from 11 to Y:

lb E M((Q, A); (Y B))

Then a probability measure P1 is defined on (Y, B) by setting

1.4.3 P1(B) = P(4,-'(B))-

Axioms 1-1.0.1 to 1.0.3 are easily verified. Moreover, P1(Y) = P(f) = 1.
P1 is written

1.4.4 Pl = Z.(P)

and called the direct image, or simply the image, of the probability measure
P under the mapping 4b. ('.P is sometimes called the measure induced by
'FonY.)

1.4.5 Proposition. Let (il, A, P) be a probability space, let (Y, B) be a
measurable space, and let 0, 0' E M((fl, A)); (Y, B)). If 'F(w) = 0'(w)
a. s., then 4'.P = V. P.

PROOF. Let A0 = {w E fl :'F(w) 0 fi'(w)).
Then P(Ao) = 0 and P(A) = P(A n VA E A.
In particular, P(4i-'(B)) = P('F (B) n Ao) for any B E B. If w E

'-'(B) n Ao, then 01(w) = 4'(w) E B, whence 0-1(B) n Ao c ('F')-'(B),
or

P(4;-1(B)) 5 P((4'')'1(B))
Since the argument is symmetric in 4i and 'F', the opposite inequality

also holds. 0

1.4.6 Corollary. The direct image 'F.P depends only on the equivalence
class of fi in A1p((f1, A); (Y, B)).
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1.4.7 REMARK. In Chapter I, we never found it necessary to change the
measure space, which was fixed once and for all. In probability theory,
however, two operations will play a fundamental role:

(i) transporting a probability by a measurable mapping; and
(ii) restricting a probability to a sub-o-algebra .

1.5 Morphisms of probability spaces

1.5.1 Definition. Let (fI, A, P) and (cl', A', P') be probability spaces and
let

41 E Mp((SZ, A); (0', A')).

If O. P = P', 0 is called a morphism of probability spaces and is said to
preserve probabilities.

1.5.2 The inverse image operation

Let 4) E M((n, A); (0', A')) and let (Y, B) be a measurable space. With

u' E M((1l', A'); (Y, B))

we associate 4'u', its inverse image under 4', defined by

(Vu')(w) = (u' o 4>)(w)

Then
(4'u) E M((Sl, A); (Y, B)).

(4'u' is sometimes called the pullback of u'.)
If we also assume that (0, A) and (ST, A') are equipped with probability

measures P and P and that 4) is a morphism of probability spaces, then

(i) The equivalence class of (4'u') in Mp((S2, A); (Y, B)) depends only on
the class of u' in Mp-((SI', A'); (Y, B)).

Let u', ui E M((S2', A'); (Y, B)) and set

(ii) A = {w : (4'u')(w) # (4'ui)(w)} and A' = {w' : u'(w') 34 ui(w')}.
Then A = 0-1(A').

P(A) = P(A') = 0 since P = 4'.P.
By abuse of language, 4'' will denote the inverse image mapping induced

by 0 between the spaces Mp and Mp,.

(iii) Let -0, 01 E M((Sl, A); (SZ', A')) and suppose that 4' = 4)1 a.s. Then V
and 'F define the same mapping from Mp,((Sl',A'); (Y, B)) to Mp ((Q, A);
(Y, B))
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If not, there would exist u' E Alp, such that

A = {w: 4i*u' 4ilu'} and P(A) > 0.

Let
Al={wEft:4i(w)#4i(w)}.

Then A C A, and P(Al) = 0. But this implies that P(A) = 0, a contra,
diction.

(iv) Functoriality. Let 4i3 = 02 o iV1. Then (4)3). = (02). o (4i1). and
4i=V

1
o4i2.

The proof is trivial. It suffices to recall that the composition of inverse
images occurs in the opposite order to that of mappings.

1.5.3 Injectivity proposition. Let 40 be a morphism of the probability
space (Sl, A, P) into (a', A', P) and let (Y, B) be an arbitrary measure
space. Then 4i* defines an injective mapping

(Y,B)) -- Mp((IZ,A);(Y,B))

PROOF. Let u', ui E Mp,((St, A'); (Y, B)). Define u = 4'*u', ul = 4i*ui,

A={w:u36ui}, and A'={w':u'.&u ).

Then t-'(A') = 4>(A) by 1.5.2(ii), whence P'(A') > 0 P(A) > 0.

1.5.4 Dynkin's theorem (Measurability and functional depen-
dence). Let (ft, A, P) and (fI', A', P) be two probability spaces, let +
be a morphism from the first to the second, and let B = +'' (A'). Then
u E L" (Q, A) can be written in the form

(i) u = u' o 4i, with u' E LP, (St', A')

if and only if the class of u contains a 8-measurable function.

PROOF. The forward implication is clear. Conversely, suppose that u is
B-measurable. Then, by 1-6.4.2, there exists a sequence { fn } of simple B-
measurable functions that converges pointwise to u. If B E B, then there
exists A' E A' such that B = lb-' (A'); hence 1B = VIA.

This implies that every simple B-measurable function satisfies (i). Hence
U,,04i,with A').

(ii) We show that u;, converges as. on 12'.
If not, there would exist e > 0 and A' E A', with P'(A') > 0, such that

sup lu'(w)-u;,(w)I>e, Vp`dwEA'.
man>p

Then u,, would satisfy the same inequality on 4' ' (A'). But this would
contradict the a.s. convergence of f,,, since P(4i''(A')) = P'(A') > 0.
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Thus (ii) is proved. Let u' = lim un E Lp, (11', A'); then u = lim f _
u'o4t. o
1.5.5 Corollary. Let 4? be a probability space morphism from (11, A, P) to
(Q', A', P) and let B = 41-1(A'). Using V, one can identify LOP, (Q', A')
with the subalgebra of LP(1l,A) consisting of the 5-measurable functions.

PROOF. By 1.5.3 and 1.5.4.

1.6 Random variables and distributions of random variables

1.6.1 Definition. Given a probability space (SZ, A, P), a random variable
X is a class of measurable functions, that is an element of L p(1, A). We
will often write simply r.v.

1.6.2 Definition. The distribution of the random variable X is the direct
image of P under X.

Thus X. P is a Borel measure on R of total mass 1. Hence, by II-3.1,

(i) (X.P) defines a Radon measure of total mass 1.

1.6.3 Definition. Given a finite set X1, ... , Xk of r.v. defined on the proba-
bility space (Sl, A, P), their joint distribution is the direct image of P under
the mapping 4i : w - Rk defined by the Xp(w), 1 < p:5 k.

It follows from 1-2.4.2 and 1-2.3.5 that It E M((St,A);(Rk,BR")).
Hence 4i.P is a finite Borel measure on Rk and, by 11-3.1,

(ii) 4?.P defines a Radon measure on Rk of total mass 1.

1.6.4 Let pl be the projection of an element of Rk onto its first component,
let p be the joint distribution of X1, ... , Xk, and let it, be the distribution
of X1. Then pl = (pl).p.

This follows from functoriality, 1.5.2(iv).

1.7 Mathematical expectation and distributions

1.7.0 Notation for expectations

Let (ft, A, P) be a probability space and let X E LP' (11, A). Then the
mathematical expectation of X is written E(X) and defined by

E(X) = JX(w)dP(w).

The reader should note that the measure P, and the probability space
n itself, are implicit in the notation E.

In this notation, the L9 norm is written

IE(Iylq)]1/4 = IIYIILg.
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1.7.1 Change of variables

Let (11, A, P) and (11', A', P') be probability spaces, let t be a morphism
from the first space to the second, and let V : L°()', A') , L°(11, A) be
as defined in 1.5.3.

Proposition. Let u' E LP, Then u = (k'u') E LP(11, A) and
E(u) = E(u').

PROOF. Suppose that u' is a simple function, say u' _ E ak IA'. Then

u = I:ak1A,k, where Ak = t-1(Ak)

By 1.4.3, P(Ak) = P'(A' ), whence E(u) = E(u').
Let V E LP,; then there exists a sequence {u' } of simple functions such

that
E(Iv'-unl) = Ilv'-unlit,, ' 0.

Let u,, = Vun. Then

=E(lun-umI)=E(Iun-uml)- 0 as

Thus {un} is a Cauchy sequence in LP. Let v be its limit; then v E LP.
There exists a subsequence {u, : n E a} of fun' } that converges a.e. on
11'. Similarly, there exists a subsequence {un : n E T} of {un : n E a} that
converges a.e. on Sl to v. Then the relation un = un o' passes to the limit,
and v = v' o 4P. Moreover, since

E(v) = lim E(un) and E(v') = lim E(un),

the fact that E(un) = E(un) implies that

E(v) = E(v').o

1.7.2 Computing expectations by means of distributions

Let (11, A, P) be a probability space and let Xl,... , Xk be a finite set of r.v.
defined on 11. Let p be the Radon measure on Rk that is the distribution
of X1,...,Xk.
Proposition. Let W E Lµ and let Y(w) = cp(Xi(w), ... , Xk(w)). Then

cpdp.YELP and E(Y) = JRk

PROOF. By 1.7.1.

1.8 Various notions of convergence in probability theory

This section consists of two subsections. In the first, we introduce the vocab-
ulary used in probability theory to study concepts that are already familiar.
In the second, we study the new concept of convergence in distribution.
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1.8.1 Vocabulary of probability theory

Let {Xn} be a sequence of r.v. defined on the probability space (1z,A, P),
and let Y be another r.v. defined on the same probability space.

Definitions

(i) Xn converges to Y almost surely (abbreviated a.s.) if Xn(w) converges
a.e. to Y(w).

(ii) Xn converges to Y in mean if

IIXn - YIILi - 0, or E(IXn - YI) -, 0.

(iii) Xn converges to Y in mean square if

IIXn-YIIL2- 0, or E(IXn-YI2)-.o.

(iv) Xn converges to Y in probability if Xn converges to Y in measure.

(v) The relations among these different kinds of convergence were studied
in Chapter I.

1.8.2 Convergence in distribution

Let (Stn, An, Pn) be a sequence of probability spaces and let (St', A', P) be
another probability space.

Let Xn E LO (0., An, Pn) and Y E L°(1', A', P) be given. We say that
the sequence of distributions of Xn converges to the distribution of Y if,
writing

(i) (Xn).Pn=µn and Y.P'=v

for the respective distributions,

(ii) An converges narrowly to v.

A sequence An such that

(iii) An converges narrowly

is commonly, though rather ambiguously, described by saying that

(iv) the r.v. Xn converge in distribution.

1.8.3 Criterion for convergence in distribution

Theorem. The r.v. Xn converge in distribution to the distribution of Y if
and only if

(i) limE(W(Xn)) = E(SP(Y)), E CK(R).
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PROOF. By 1.7.2, in the notation of 1.8.2(1),

Thus

E(v(Xn)) = JR and E((Y)) = JR

J cpdµn -+ ftodv, V E CK (R).

That is,

(ii) un converges vaguely to v.

By 1.6.2(i),
Iln(R) = 1 and v(R) = 1;

hence limtin(R) = v(R), and 11-6.8 shows that (ii) is equivalent to narrow
convergence. 0

1.8.4 Extension to r.v. with values in Rm

An ordered m-tuple of r.v. X1,..., XI is called an r.v. with values in R'",
or an Rm-valued r.v. Such a r.v. is sometimes denoted by X E Mp((1l,A);
(Rm, L3Rm ))

Given a r.v. X with values in Rm, its distribution is the joint distribution
of the Xk considered in 1.6.3; it is thus a Radon measure on Rm.

A sequence of r.v. with values in Rm, s a y X 1 i ... , X, , ... , is said to
converge in distribution to X0 if the sequence of distributions converges
narrowly to that of Yo. We have the following propositions.

(i) The sequence of r.v. Xn with values in Rm converges to the distribution
of Yo if and only if

lim E CK(Rm).

In this criterion, a compactly supported cp can be replaced by a bounded
continuous ,j,. The next statement results from letting ' be a function that
depends only on the first coordinate of Rm and applying 1.8.3.

(ii) If Xn converges in distribution to Yo, then each component Xn con-
verges in distribution to Xo .

The converse of this statement is false.

1.8.5 Comparison of convergence in distribution
with other types of convergence

Proposition.

(i) A.s. convergence implies convergence in distribution.
(ii) Convergence in probability implies convergence in distribution.

(iii) Convergence in LP implies convergence in distribution.
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PROOF. Let the probability space 0 be fixed and let X,,, Y E L°(0, A, P).
Assume first that X,, converges a.s. to Y. Then V p E CK(R), cp(X,,(w))
converges a.s. to cp(Y(w). Since cp is bounded, Lebesgue's dominated con-
vergence theorem can be applied to show that E(cp(Xn)) -> E(cp(Y)). This,
with 1.8.3, gives (i).

Assume now that X,, converges in probability to Y. By 1-5.2.7, every
subsequence {Xn}n itself contains a subsequence {Xn}ne0, such that
{ X } nE converges a.s. Hence, if 0 E CK (R), it follows from (i) that

lim E((p(Xn)) = E(,p(Y))nEa'

Let Qn = E(cp(Xn)) and let y = E(cp(Y)). Then every subsequence
{13n }nE' of (On j contains a subsequence {/3n }nEa' that converges to y.
This implies that lim,3n = y, and (ii) now follows from 1.8.3.

Finally, by 1-9.3.1, convergence in LP implies convergence in probability;
thus (iii) follows from (ii). 0

2 Conditional Expectation

2.0 Phenomenological meaning

We now resume the discussion of the principles of probability theory begun
in 1.1.

From the phenomenological point of view, the set of all measurements
an experimenter can possibly make on a physical system is represented by
a Boolean algebra B. The physicist is interested in exhibiting the "laws of
nature" in the context of 8; given certain measurements, he would like to
predict the values of others.

There are two kinds of predictions. The first involves a functional depen-
dence. For example, in Ohm's law (that V = RI), the measurement of two
quantities completely determines the third. The second involves a "corre-
lation" without necessity; for example, a substantial drop in barometric
pressure makes it "likely" that a cyclone is approaching.

The experimenter represents the known information about the physical
system by a subalgebra B' of B. Given a physical quantity X, he asks himself
the following questions.

(a) Is X determined by the information B'? That is, in terms of 1.5.4, is X
measurable with respect to the a-algebra generated by B'?

(b) If not, the experimenter will try to extract from the information B'
all it implies about X. What is the most likely value of X? Does he risk
making a major error by taking this most likely value as the value of X?
And so on.
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Passing to o-algebras generated by Boolean algebras allows the problem
to be posed as follows:

Given a probability space (Sl, A, P), a sub-a-algebra A' of A, and X E
L°(Q, A, P), can X be approximated by Y E L°(Sl, A', P)? (We abuse lan-
guage by writing P for the restriction of P to A'.)

In the next section, we will try to solve this problem by using an ap-
proximation that minimizes the L2 norm, i.e. an orthogonal projection on
L2.

2.1 Conditional expectation as a projection operator on L2

Let (St, A, P) be a probability space and let B be a sub-a-algebra of A.
La(fl, B, P) is abbreviated as LP(B), and so on.

2.1.1 Lemma. Let 1 < p < +oo. Then LP(B) can be identified with a
closed vector subspace of LP(A).

PROOF. A B-measurable function is A-measurable: G°(B) C C°(Sl, A). The
same holds for simple functions: C(B) C C(A). Since the probability mea
sure on B is the restriction of that on A, the integral on the integrable
simple functions E1(B) is given by restriction of the integral defined on
E' (A). Endowing E' (B) with the norm II IIi v, we obtain an isometric
mapping from El (B) to El (A).

Since El (B) is dense in LP(B) and LP(Sl, A, P) is complete, this isometry
extends to an isometry

LP(B) -+ LP(A).

The image of a complete space under an isometry is complete; hence the
image of LP(B) is complete and, in particular, closed in LP(A).

2.1.2 Definition. EB denotes the orthogonal projection operator from
L2(A) onto L2(B). Given f E L2(A), EB(f) is called the conditional ex-
pectation of f given B.

2.1.3 Theorem (Properties of the conditional expectation).

(i) EB(f) E L2(B)

(ii) IIE5(f)IIL2 <_ IIIIIL2.

Let B and C be sub-a-algebras of A such that B D C. Then

(iii) ECEB = EC and

(iv) E(EB) = E.
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(v) Let SP E L°°(B). Then EB(cp f) = VE8(f ), V f E L2(A).

PROOF. Properties (i) and (ii) follow from properties of the orthogonal
projection.

The inclusion between u-algebras 8 D C implies, for functions, that
L2(B) D L2(C).

Let f E L2(A) be decomposed as

f = u + v, with v E (L2(8))1 and u = E8(f) ).

Then u = w+h, with h E (L2(C))1 and to = EC(u). Substituting this into
the last line gives

(vi) f = w + (h + v).

By definition, to E L2(C), and since

L2(8) D L2(C) (L2(8))1 C (L 2(C))1,

v E (L2(C))1. Hence h + v E (L2(C))1. The decomposition (vi) implies
that w = E" (f ). Thus (iii) is proved.

Let .4 denote the coarse u-algebra containing only the two sets Cl and
0. A function V is Ao-measurable if and only if it is constant. (L2(Ao))l
consists of the functions with zero expectation. Any function f E L2 can
be written as

f = E(f )1n + h, where E(h) = 0,

and thus

(vii) EA0 (f) = E(f)In.

By abuse of language, we identify the conditional expectation relative to
A° with the expectation. Then (iv) becomes a special case of (iii).

It remains to prove (v). Let M. denote the bounded operator defined on
L2(A) by multiplication by V. Thus M. : f '- tp f. Since W E L°(B) and
L°(B) is an algebra,

MV(L2(B)) C L2(B).

Note that Mp is a hermitian operator, that is,

(MW(f)I9)L2 = (IJMjp(9))L2.

This is just a restatement of the fact that

E((co/)9) = E(f(cog)), Vf,9 E L2(A)
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Since L2(B) is invariant under the hermitian operator M., its orthogonal
complement is invariant under M,e. Thus, if f = u + v with u E L2(B) and
v E (L2(B)) -, then

M, ,f = M,pu + Mpv, where (M,,u) E L2(B), (M,,v) E L2(B)-L.

That is, EB(M,o f) = M,0Eg(f ), and (v) is proved.

2.2 Conditional expectation and positivity

2.2.1 Proposition. Let f E L2(A), f _> 0, and let B be a sub-a-algebra of
A. Then EB(f) > 0.

PROOF. Let B E B. Then, by (v),

E(EB(f)1s) = E(EB(f1B)) = E(flB) > 0,

where the second equality follows from (iv). Setting v = EB f, we have just
shown that

(i) E(v1B)>0, VBEB.

Let Bn = {w : v(w) < -n-'J. Since v E L°(B), B E B; it follows from (i)
that

0.

Moreover, -n-'P(B,,). Hence P(B,,) = 0 for all n, and thus
P(UBn) = lim P(Bn) = 0.

2.2.2 Corollary. Let f, g E L2(A). Then

(i) f > g = EB(f) >- EB(g)

and

(ii) IEB(f)I <- EB(IfI).

PROOF. Since f - g > 0, we have EB(f _g) > 0. Furthermore, -If I < f S
If I implies (ii).

2.3 Extension of conditional expectation to L'

Theorem. The operator EB defined on L2(A) in 2.1 has a continuous
extension EB, defined on L' (A) and with values in L' (B). This extension
has the following properties:

(i) EB(f) = f for every f E L' (B).
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(i_) IIe8(f)IIL1 <- IIfIIL-
(iii) If B J C, then ECEB = EC; in particular, ELB = E.
(iv) If cp E L°°(B), then EB(4) = cpEB(f).

PROOF. Let f E L2. Then I EB f 1:5 EB(I f 1) by 2.2.2(ii), and hence E(IEBf I)

< E(EB(IfI)). It follows from 2.1.3(iv) that

E(EB(If1)) = E(IfI) = IIf11L,.

That is,

(v) IIEBfIILI 5 Of 11L-, Vf E L2(A).

Thus EB is a bounded operator when L2(A) is equipped with the L' norm.
Since L' (B) is complete and L2(A) is dense in L'(A), EB can be extended
to an operator from L1(A) to L' (B). This extension is denoted by EB

Since EB(f) = f if f E L2(B) and since L2(B) is dense in LI(B), the
operator extended by continuity has the same property; this implies (i).
Assertion (ii) follows from (v).

(iii) and (iv) are obtained from 2.1.3(iii), (iv) and (v), which we extend
by continuity. 0

(vi) ABUSE OF LANGUAGE. From now on we use the same notation, namely

EB, for both EB and EB.

2.4 Calculating EB when B is a finite o -algebra

Let B be a finite sub-a-algebra of A and let e1 i ... , e be the atoms of B
with strictly positive probability.

2.4.1 Proposition. EB(f) _ E aklej,, where ak = p ek E(f 1e4 ).

PROOF. Since EB(f) E L°(B), it suffices to check that f - EB(f) is or-
thogonal to L°(B). Since the 1e, form a basis for L°(B), it suffices to show
that

E((f - EB(f))le.) = 0.
But

E(flej = asE(le.) = ae(P(es)).O
2.4.2 Definition. Let a measure /`k be defined on A by setting

Itk(A) = P(ek)
P(A fl ek).

Note that µk(I) = 1.
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µk is called the conditional probability given the atom ek. With the no-
tation of 2.4.1,

ak = JfdiLk.

2.4.3 Propositioi. Let B be a finite a-algebra of A, let co be a convex
function, and let f E L' (A), f > 0. Then

P(EB(f)) <

PROOF. Retaining the notation of 2.4.1 and letting /`k denote the condi-
tional probabilities, we have

EB(SP(f)) =
v(EB(f)) =

E /3klek, where Qk = ,1 W(f )dµk,

E cp(ak)1ek, where a k = f fdlck.
and

Since µk has total mass 1, Jensen's inequality (1-9.2.2) can be applied,
and shows that cp(ak) :5,6k- 0

2.5 Approximation by finite a-algebras

2.5.1 Proposition. Let fl, ... , fn E Ll (A). Then there exists an increas-
ing sequence Bl C ... Bk C ... C B of finite a-algebras such that

IIEBkfj-EBfjIIL1 0 ask- oo, j=1,2,...,n.

PROOF. We first consider the case where n = 1, and write f for fl. Let
u = EB(f ); then u E L' (B), and hence u is the limit in Ll of a sequence
NO of simple functions in L'(B). Let Bk be the a-algebra generated by
the u8, s < k; then Bk C B and Uk is Bk-measurable. EBk(uk) = uk and

HEB, (uk - u) II <- Iluk - UIIL1, whence

HEBku - UIILI <- IIEBk(u) - EBk(uk)IILI + IIEBk(uk) - UIIL1
< HEB, (u - Uk)11L1 + Iluk - UIILI < 21lu - uk11Ll .

Moreover, Ed3k U = EBk (EB f) = EBk (f) by 2.3(iii). Thus

IIEBkf -EBfIILI

This ends the proof for n = 1.

The general case is treated by induction on n. Letting {B'k} be a sequence of
finite a-algebras adapted to f2,.. ., fn, we take BA' to be the o-algebra generated
by B and Bk. C
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2.5.2 Corollary (Jensen's inequality). Let B be a sub-o-algebra of A,
let f E L' (A), f > 0, and let W be a nonnegative convex function such that
E&(f)l) < +oo. Then

p(EB(f)) 5 EB(V(f)).

PROOF. By 2.5.1, there exists a sequence of finite a-algebras BA; such that

IIEBkf - fill, - 0 and IIEBk(cw(f)) - P(f)II L' -' 0.

By 2.4.3, co(EBk (f)) 5 EBL (w(f )), or EBk (V(f )) - W(EBk (f)) 0.
Since L1 convergence preserves positivity,

EBMf)) - W(EB(f)) > 0.0

2.6 Conditional expectation and LP spaces

Let 1 < p < +oo. Then, since L"(A) C L' (A), the conditional expectation
operator EB is defined on LP(A).

2.6.1 Proposition. Let 1 < p:5 +oo. If f E LP(A), then EB(f) E LP(B)
and

(t) IIEB(f)IILP 5 IIfIIL".

Let p and q be conjugate exponents. Then

(ii) EB(fg) = 9EB(f), df E L1(A), g E Lq(B).

(iii)

E((EB9)(EBf)) = E(9EB(f)) = E(fEB(9)), Vf E L1(A), g E LQ(A).

PROOF. If 1 < p < +oo, the function cp(t) = tP, t > 0, is convex. Hence (i)
follows (except when p = oo) from 2.5.2 (Jensen's inequality).

It remains to prove (i) if p = oo. Given f E L°°, we can find a sequence
Bk of finite sub-a-algebras such that

IIEBkf - EBfIILI - 0.

Using the expressions given in 2.4.1 and 2.4.2,

IIEBkfIIL-
= SUP if fd1k15 11f IILa.

Let vk, be a subsequence of vk = EBk f such that vk, EBf a.s. Then,
since

IVk.(W)l 5 IllIIL°O,
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(i) holds for p = oc.
Note that (ii) holds for bounded functions by 2.3(iv). Using the truncation

operator (1-6.7), we can find sequences f E L°°(A) and g E L°°(B) such that
Ilfn - f IIL" - 0 (whence, by (i), IIE8f° - EBf IILP -' 0) and II9n - glILq 0.

Hence, by 2.3(iv), EB(fngn) = g-EB(fn).
Since llfn9n-f9IIL1 -. 0 by Holder's inequality, 1IEB(f.19n)-EB(f9)IIL1 0.

Similarly, g.EBfn converges to gEBf in L', and (ii) follows.

When f, g E L2(A), we consider the scalar product

(fl9)L2 = E(f9)-

By the properties of the orthogonal projection,

(Of19) = (f JEB9) = (EBf IEB9)

Since L' C L2, this proves (iii) for the special case where f, g E LO°(A).
The general case is proved by using the truncation operator as above. 0

3 Independence and Orthogonality

3.0 Independence of two sub-v-algebras

3.0.1 Definition. Let B and C be two sub-a-algebras of the probability
space (St, A, P). B and C are said to be independent (relative to P) if L2(B)
and L2(C) are orthogonal on the constant functions; that is, if

f E L2(B), g E L2(C), and E(f) = E(g) = 0 imply E(fg) = 0.

REMARKS.

(i) The notion of independence involves the L2 norm, and thus the proba-
bility measure P. To be precise, we should speak of independence relative
to P. Since we have considered P as given once and for all, by abuse of
language we say simply independent.

(ii) Since both L2(B) and L2(C) contain the function In, they can never be
orthogonal; independence corresponds to the strongest notion of orthogo-
nality that can be expected.

(iii) Consider the codimension-1 subspace N composed of functions orthog-
onal to the constant functions:

7l={f EL2(A):E(f)=0}.

The relation E = EEB implies EB(?t) C W. Moreover, 3.0.1 can be
written as

% fl L2(B) is orthogonal to N f1 L2(C).
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(iv) It follows from 3.0.1 that L2(B) n L2(C) reduces to the constant func-
tions.

Since L2(B) n L2(C) = L2(B n c), where s n c is the a-algebra of those
functions in 92 that belong to both B and C, we conclude that if B and C
are independent, then BnC reduces to the sets of probability zero and their
complements. Up to sets of probability zero, B n C is thus equivalent to the
coarse a-algebra.

3.0.2 Mutual independence of n sub-a-algebras

Let B1,.. . , B be n sub-a-algebras of A, let H be a subset of [0, 11, and let
BH be the a-algebra generated by {B= : i E H}. Then B1, ... , B are said
to be mutually independent if

BH and BH.r are independent a-algebras for every H E P([0,1]).

3.1 Independence of random variables and of o -algebras

(i) Let (S2, A, P) be a probability space and let B and C be two sub-
a-algebras that are independent on this space. Let B' and C' be two other
sub-a-algebras such that B' C B and C' C C. Then

B' and C' are independent.

Indeed, L2 (B) n 1-I D L2(B') n R and L2(C) n R D L2 (C') n 1-I. Hence the
orthogonality of the first pair of subspaces implies the orthogonality of the
second pair.

(ii) Let X1i ... , X be n random variables and let Bk = Xk 1(BR). Then
X1,. .. , X are said to be mutually independent if the Bk are mutually
independent a-algebras.

(iii) Let *D1, . . . , Dn be mutually independent sub-a-algebras of the proba-
bility space (11, A, P). Let Xk be a Dk-measurable r.v. defined on (S2, A, P).
Then the r.v. Xk are independent.

This follows from (ii) and the fact that Xk1(BR,) C Dk.

(iv) Stability of independence under a change of variables. Let Xl,... , X,
be independent r.v., let cp1, ... , cp,+ be Borel functions from R to R, and
let Yk = Pk(Xk). Then the Yk are mutually independent r.v.

Yk 1(BR) C Xk '(Wk 1(BR)) C Xk 1(BR), where the second inclusion
holds since W is Borel. (i) now implies the result. 0

3.2 Expectation of a product of independent r. v.

3.2.1 Theorem. Let B and C be two sub-a-algebras of the probability space
(1, A, P). Then the following statements are equivalent:
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(i) B and C are independent.
(ii) E(fg) = E(f)E(g) Vf E L2(B), g E L2(C).

PROOF. Decompose f and gas f = u+E(f)1ji and g = v+E(g)ln. Then
u E it n L2(B) and V E it n L2(C). Moreover,

(iii) E(fg) = E(uv) + E(f)E(g),

since E(u In) = 0 and E(v In) = 0 if u, v E W. In view of (iii), (ii) is
equivalent to

E(uv) = 0, Vu E L2(B) n x, V E L2(C) n?{;

that is, to the orthogonality of L2(B) n l and L2(C) n f.O

3.2.2 Proposition. Let !3 , ... , Bn be mutually independent sub-a-algebras
of the probability space (1, A, P). If fi E L°O(Bi), i = 1, ... , n, then

n n

E I1 fi = H E(fi)

REMARK. The converse will be proved in 3.6.1.

PROOF. We proceed by induction on n. Assume that the theorem has been
proved for q < n and let rj 2 fi = h.

Let BH denote the o-algebra generated by { fi ' (BR) : 2 < i < n}. Then
h E L°°(BH) and, since fl-I(BR) and BH are independent by 3.0.2, it
follows from 3.2.1 that

E(hfi) = E(h)E(fi )

We conclude by using the induction hypothesis E(h) = fl 2 E(fi). 0
i3.2.3 Corollary. Let fl, ... , fn E L (Il, A, P) and let h fi. If thei-1

fi are independent, then
n

h E L' (1, A, P) and E(h) _ [I E(fi).
i=1

PROOF. W e first prove the corollary under the hypothesis f > 0, i = 1, ... , n.
Let Tq be the truncation operator. By 3.1(iv), the TT(fi) are independent;

by 3.2.2,

E (flT(fi)) _ HE(Tq(f.)) <_ [[E(fi) = M.
i

Set Uq = fl Tq(ft). Then {uq} is an increasing sequence and E(uq) < M;
hence Fatou-Beppo Levi implies that limuq = h E L' and limE(uq) = E(h).

The general case is reduced to this special case by writing

ft = fo - fl, where f° = fi = sup(ft,0) and f' = f. = sup(-f.,0),
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and expanding the product

flit = E(-1)''+...+On fl fti.

Since the 401 are nonnegative,

E llf' = f E(f;').
i

As the sum of 2" functions in L', fi fi is in V.

3.3 Conditional expectation and independence

3.3.1 Theorem. Let (f', A, P) be a probability space and let B and C be
two sub-a-algebras. Then the following two statements are equivalent:

(i) The o-algebras B and C are independent.

(ii) EB(f) = E(f) Vf E L'(C)

REMARK. The roles of B and C can be interchanged for a different formu-
lation of (ii).

This statement can be given the following concrete interpretation. If B
and C are independent, then "knowledge of the events in the a-algebra 13"
in no way improves the "mean value" of a C-measurable r.v.

PROOF. (i) (ii). Assume that f E L2(C). Set

f = f - E(f)ln
Then f E It and

EC(f) = EC(f) - E(f)ln = f - E(f)ln = f,
whence f E L2(C) fl 7.t.

By (i), f is orthogonal to L2(B); thus EB(f) = 0, or

EB(f) = E(f)ln,
implying (ii).

When f E L1, we use the truncation operator and pass to the limit.
(ii) (i). Let f E L2(C) fl N. Then, by (ii), EB(f) = 0. That is, every
f in L2(C) fl 7{ is orthogonal to L2(B), and it follows that B and C are
independent.

3.3.2 Corollary. Let B and C be independent sub-a-algebras of the proba-
bility space (fl, A, P). Then

EBEC = E.
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PROOF. Let f E L1(11, A, P). Then EC f E L' (C). Set u = EC (f ); then

E(u) = E(EC(f)) = E(f).

Since U E L'(C), it follows from 3.3.1 that EB(u) = E(u) = E(f).

3.4 Independence and distributions
(case of two random variables)

3.4.1 Theorem. Let X1 and X2 be two r. v. defined on the probability space
(St, A, P). Let pi and 142 denote the distributions of Xl and X2, respectively,
and let p denote their joint distribution. Then the following statements are
equivalent:

(i) X1 and X2 are independent r.v.
(ii) For all bounded Borel functions W1, cp2 defined on R,

E(Wl(X1)IP2(X2)) = E(1

(iii) p=p1®p2
PROOF. (i) q (ii). Let B; = X-'(BR). Then the independence of the
a-algebras B1 and B2 is equivalent to that of the r.v. X1 and X2.

Let fi E L2(Bi). By 1.5.4, the functional dependence theorem, there exist
Borel functions 0i : R - R such that

O1(X=) =1i (i = 1, 2).

Hence (i) is equivalent, by 3.2.1, to

E(tP1(X1))E(t2(X2)) = F'(01(X1)02(X2))

for all Borel functions r', 1such that rj&2(X2) E L2.
Using the truncation operator shows that this last condition is equivalent

to the more restrictive condition that tpi be a bounded Borel function; that
is, to (ii).

(ii) * (iii). Let C, D E BR. Set W = 1c and ti = 1D. Then, computing
the expectations by means of the distributions,

f2 1cxDdp = E(1c(Xl)1D(X2)).
R

But

whence, using (ii),
fR

1cdp1 = E(1c(X1)),

p(C x D) = p1(C)112(D).



3 Independence and Orthogonality 195

Since p is a Borel measure on R2 and Biz = BR ® BR,, this last relation
shows by 1-8 that p = p 1 ®p2

(iii) . (ii). Again using the distributions to compute the expectations,
we have

®dp2(2)
JR2

By Fubini's theorem, this is equal to

fit V [J PAOdp2( 2)J ,

and (ii) is proved. O

3.5 A function space on the a-algebra
generated by two Q-algebras

3.5.1 Theorem. Let B and C be two sub-a-algebras of the probability space
(11, A, P) and let D denote the a-algebra they generate. Let V be the vector
subspace of L'°(A) defined by

n

V = h E LO0(A) : h = figi, with fi E L0O(B), gi E L°°(C)
i=1

Then L2(V) D V and V is dense in L2(D).

PROOF. We prove the theorem in the special case that there exist two
mappings u :11 -, R' and v :1Z -+ R" such that

(i) u-1(BRn)=B and v-' (BR,p) = C.

Let w : Cl Rn 'p be defined by w(w) = (u(w), v(w)). Then w-1(BR,n+p )
is a a-algebra containing B and C.

Moreover, by 1-2.4.2,

BRn+P = BR" 0 Bp,

Hence BRn+p is generated by the rectangles R = X x Y, with X E BR-,
Y E BRP. We have

w'1(R) = {w : u(w) E X and v(w) E Y}
= u-1(X)nv-1(Y).

That is, w-1(R) E V. With the hypothesis (i), we have thus shown that

(ii) V = w-1(BRn+p).
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Let p be the distribution of w and let w' be the inverse image mapping.
Then it follows from 1.7.2 that

(iii) w' : L2(Rn+n,p) --+ L

and the mapping is a surjective isometry.
The continuous functions with compact support, Cx(Rn+P), are dense

in L2(Rn+P; p). (See II-3.)
Let p E CK (Rn+P). Then, by the Stone-Weierstrass theorem, there exists

a sequence of polynomials Pr converging uniformly to cp on a compact set
K1 x K2 which contains the support of V. Let gr = Pr'K1 x K2 Then

(iv) Ilgr - W11 0(p) --, 0-

We now show that

(v) W* (gr) E V.

This follows since the polynomial Pr is the sum of monomials of the form

(Ui)ml ... (11n)m..(vl)" ... (vP)gn

and, setting

I = 1K1(Ul )ml ... (Un)m.. and g = IK.(vl)" ... (v")9D,

we can write w* (g,) as a linear combination of functions of the form f g.
Thus (v) holds.

Since w' is an isometry, w'(CK(Rn+P)) is dense in L2(D), and to the
convergence of gr to cp in L2(p) there corresponds a convergence in L2(D).

(vi) REMARK. To prove the theorem without the hypothesis (i), we would con-
sider finite systems of B-measurable functions ul,... , u and C-measurable func-
tions vi,.. . , v4. Then B could be viewed as the o-algebra generated by all the
u -' (BR- ), and similarly for C. We would then "pass to the limit". This passage
to the limit will be carried out in detail for closely related cases in Section 6 of
this chapter.

3.5.2 Corollary. Let B1,. .. , Bn be a finite collection of sub-a-algebras of
the probability space (fl, A, P) and let D be the a-algebra generated by

Set

Wn= withfyEL°°(Bi) .

P=l

Then Wn C L2(D) and Wn is dense in L2(V).

PROOF. We proceed by induction on n. Let C be the a-algebra generated by
B2, ... , B,,. Then, by the induction hypothesis,

(i) is dense in L2(C).
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The a-algebra generated by B, , ... , B. equals the a-algebra generated by B1
and C. Let

V = {h : h = E figi, with fi E L°O(B1 ), 9i E Loo (C)}.

Then, by 3.5.2, V is dense in L2(D). Let

(ii) V = {h h = > f,gi, where fi E L°°(B1), g, E L2(C)}.

Then V' C L2(D), and V' is dense in L2(D) since V' D V. By (i), each g, can
be approximated by elements of W. _ i . Hence there exists a sequence k, E Wn
such that IIk - 9i II L2 0, and

IIEAMi -Efik:lIL2 <- EIIfiIIL°ll9i -k:IIL2.

The right-hand side tends to zero, and we conclude by noting that f, k, E W,,.

3.6 Independence and distributions
(case of n random variables)

Theorem. Let B1i ... , Bn be n sub-a-algebras of the probability space
(S), A, P). Then the following statements are equivalent:

(i) B1, ... , Bn are mutually independent.
(ii) E (fi=1 fi) = fi-1 E(fi) for any fi E L°O(Bi)

PROOF. Recall that the direction (i) * (ii) was proved in 3.2.2. We now
prove that (ii) (i). Let H be a subset of { 1, ... , n}, let H' be the
complement of H, and let C and C' denote the a-algebras generated by
{B, : i E H} and {Bj : j E H'}, respectively. We must prove the indepen-
dence of C and C'. By 3.2.1, this will follow from the identity

(iii) E(gg') = E(g)E(g') Vg E L2(C), g' E L2(C').

Using (ii), the function space constructed in 3.5.2 on the a-algebra gener-
ated by C and C', and bilinearity, it suffices to calculate

E jj f' jj f' = jj E(f`) Ij E(fi).
iEH jEH' iEH jEH'

Using (ii) again and setting fi = 1 if i E H', we find that the first term on
the right-hand side is E(g), and similarly the second is E(g'). This proves
(iii).

3.6.2 Theorem. Let X1, ... , X be n r. v. on the probability space (SZ, A, P).
Then the following statements are equivalent:
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(i) The r.v. Xk are mutually independent.
(ii) For all bounded Borel functions WPk on R,

n n

E H SPk(Xk)
=

fl EG0k(Xk))-
k=1 k=1

(iii) Let µ denote the joint distribution of X1,... , Xn and let
denote the distribution of Xi. Then

µ(A1 xA2x...xAn)_flpi (A1)
i=1

Pi

for any Ai E BR,. In other words, µ = ®µi.

PROOF. The theorem was proved in 3.4.1 for n = 2. The general case is
proved in the same way, with Theorem 3.2.1 replaced by Theorem 3.6.1.

4 Characteristic Functions and Theorems
on Convergence in Distribution

4.1 The characteristic function of a random variable

Let (S1, A. P) be a probability space on which the R"-valued r.v.

X = (X1,...,X")

is defined. The characteristic function of the r.v. X is the function defined
on Rn = by

(px(ti. t2, ... , tn) = E(exp[i(t.1 X 1 + t2 X2 + ... + tnX")]),

where i = Since the imaginary exponential is a function with modulus
1, the expectation of the right-hand side exists for every t E R".

4.1.1 Determining the distribution from its characteristic function

Proposition. Let (SZ, A, P) and (a', A', P') be probability spaces and let
X and X' be R"-valued r.v. Then statements (i) and (ii) are equivalent.

(i) ox(t) = six- (t), Vt E R.
(ii) X and X' have the same distribution.

PROOF. Let p and µ' be the distributions of X and X'.
Calculating the expectations by means of the distributions, we obtain

dp'(x).
VX(t) = J e" 'dp(x) and Px'(t) = JRfl el

R
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That is,

(iii) cpx(t) = µ(t),

where µ denotes the Fourier transform of p.
But it was shown in 111-2.6 that two measures with the same Fourier

transform coincide. 0

4.1.2 Convergence in distribution and characteristic functions

Theorem (Paul Levy). Let {Xp} be a sequence of Re-valued r.v. defined
on different probability spaces. Then the following statements are equiva-
lent:

(i) {Xp} converges in distribution.
(it) The functions cpx,(t) converge uniformly on compact sets.

Moreover, if (ii) holds, let

4'(t) = lim+pxp(t).

Then there exists a positive Radon measure v of total mass 1 on Rn such
that I(t) = V,(t) and the distributions of the Xp converge to v.

PROOF. We first prove that (ii) = (i). Let µp denote the distribution of
Xp.

(iii) Vague convergence of the lip.

Consider the linear functionals lp on C0(Rn) defined by

lp(µ) = Judlzp.

Then Ilp(u)I < Ilulico. Moreover, by Parseval's lemma (111-2.6),

lp(f) = (2ir)n JJ(t)xp(_t)dt, Vf E A(Rn).

Since f E L', we can apply the dominated convergence theorem to obtain

lim(lp(f)) = (2ir)n f f(t)ai(-t)dt.

Since A(Rn) is dense in CO(Rn) (cf. 111-2.5), II-6.8(iii) can be applied to
show that there exists v E M. (Rn) such that the µp converge weakly to
v; that is,

limf udj4p = f udv, Vu E Co(Rn).
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Furthermore,

f f(t)v(-t)dt = Ji(t)tP(_t)dt.

Since (A(R"))^ = A(R") is dense in Co(R"), it follows that v(t) = rli(t).

(iv) Narrow convergence of the pp.

Only the pointwise convergence of Wx,(t) was used to prove (iii). We
must now exploit uniform convergence. Let

G,\ (x) =

Then

1 IIxIl2
(2rrA)"/2

exp(- 2r ) .

A
(G,,)^(t) = exp(-2IItII2)

Consider the following integral of the nonnegative function (1- Ga) with
respect to the positive measure dµp:

Ia.p = J(i - GA(x))dlp(x)

Writing Parseval's relation and taking into account that (GA )^(t)
= GA(-t) = GA(t) and that µp(0) = 1, we obtain

Ia,p = 1 - f µp(t)GA(t)dt.

Since f G,\ = 1, this can be written

Ia,p = J(i - )2p(t))GA(t)dt = f + f ,
IItII<n IIthI>n

where q is determined by first fixing q such that lµp(t) - µq(t)I < e if p > q
and 11tll < 1, then choosing q < 1 such that 1µq(t) - µq(0)I < e if 11t1l S q
Then

(v) I)2p(t) -11 < 3e if 11t1l < q,

whence

0<IA,p<3ef"
II

Ga+2 fthI>n GA.
R

The first integral equals 1; the second tends to zero as A tends to zero, for
fixed q. Hence there exists A0 such that IIao,pl < 4e for every p > q. Let
h E C6(R) and set u = hGao; then u E Co(R") and, by (iii),

f udup -+ fudv.
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Since 1- Ox,, is normegative,

If(u - h)dIL < IIhllcelll - GA0IILµ = IIhIIcb J(i - dpp < 4EIIhIIcb.

Moreover, iv(t) = rli(t), the limit of the ji (t), satisfies (v). Similarly,

11(u - v)dvI < 4eIIhIIcb,

and finally

lim f hdpp = f hdv, Vh E Cb(RR).

In particular, taking h = 1 shows that v(R") = 1; that is, v is a prob-
ability measure and the Xp converge in distribution to the distribution v.
This proves (i).

PROOF OF (i) (ii). By the definition of narrow convergence,

JeUxdp(z) - JettEdv(x)

for every fixed t. We must now prove uniform convergence in t. By II-6.8((ii)
(iv)), given e > 0 there exists M such that pp([-M, M]`) < e for p sufficiently
large. Then

'px,(t) = f eit.mdfzp(x) + 9e, where 191 < e.+m
M

Differentiating with respect tot under the integral sign shows that the first partial
derivatives of cpxa are bounded by M. Hence the pxa(t) are equicontinuous
functions, and the result follows by Ascoli's theorem that pointwise convergence
on a compact set implies uniform convergence. 0

4.1.3 Differentiability of characteristic functions

Proposition. Let X be a r.v. with values in W. Suppose that

E(IlXllpnn) < oo, where p _> 1.

Then cpx is r times continuously differentiable in t for r <p and

(t)
((a)1 ...

()tn
tpXl) (t) = E[(iX1)rt ...

NT Nn-

PROOF. Using the criterion for differentiation under the integral sign (1-7),
we have

1
E(exp[i(t1X1 + ... + tnXn)]) = E(iX' exp[i(t1X1 +... + t,Xn)J).

N-

2 See Bourbaki, General Topology, X.2.4.
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The result follows by noting that

IIXII E LP =:>. (X1)rl(X2)12...(X")rn E Ll if rl +r2+...+rn <p.0

4.1.4 Taylor series expansion of a characteristic function at the origin

Proposition. Let X be a r.v. with values in Rn and suppose that IIXIIR- E
L2. Then

(i) Wx (t) = 1 + iE(X).t - I qX (t) + o(IIt1I2),

where qx(t) = Eak'jtktj and ak,9 = E(XkXj).
The matrix akj is symmetric and nonnegative; that is,

(ii) qx (t) > 0 for every t E Rn.

PROOF. Since IIXIIRn E L2, 4.1.3 implies that 'Px is twice continuously
differentiable. The derivatives at the origin can be computed using 4.1.3(i),
and (i) follows by using Taylor's formula with remainder.

Moreover,

2

qx(t) = >2 tktjE(XkXj) = E tsX' > 0.0
k j

4.1.5 Definitions. X is said to be centered if E(X) = 0.
If X is not centered, a centered r.v. is obtained by setting Y = X -

E(X)1n. The quadratic form qy(t) associated with the centered variable
is called the covariance of X and written ax (t).

4.2 Characteristic function of a sum of independent r.v.

4.2.1 Proposition. Let X1,. .. , XP be mutually independent R"-valued
r. v. on the probability space (fl, A, P). Let

(i) coxk (t) =
E(eit.xk

)

be their characteristic functions, and set

(ii) S = X1 +... + XP.

Then

P

(222) WS(t) = II (PXk(t)
k=1

PROOF. cps(t) = E(e't.x1eit.x2 ...e't.xp)
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Using 3.2.2 with fk = eit.xk, we obtain

Ps(t) = H E(e't.xk) = H Wxk (t).
k k

4.2.2 Corollary. With the notation o f 4.2.1, let p1, ... , pp be the distri-
butions of X1,. .. , Xp and let v be the distribution of S. Then

v=pl*p2*...pp,

PROOF. Using 4.1.1(iii), we may write 4.2.1(iii) in the form

P = {L1(t)A2(t) ... pp(t).

By 111-1.4.4, the convolution product of measures corresponds to the prod-
uct of the Fourier transforms.

4.2.3 Proposition. Let X1,. .. , Xp be independent R"-valued r.v. Suppose
that IIXkIIR^ E L2, 1 < k < p, and let S = X1+ Xp. Then the covariance
forms are related by

p

os(t) = E vxk(t).
k=1

PROOF. Setting Xk = Xk - E(Xk)1n, we can reduce the proof to the case
where the Xk are centered; then S is centered. We must verify the identity
9s (t) = Lk=1 qx, (t), or

E rtjSj
)2)

=E
2

tkt1E Z XjkX;,,
k j k,I (I'm

But, for j 0 m, Xk and X;,, are independent r.v. by 3.1(iv). Hence, by
3.2.1,

E(XJ X,t,a) = E(X?)E(Xm) = 0.

Thus

4s(t) = E tkt, 4x, (t).
kj j j
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4.3 Laplace's theorem and Gaussian distributions

4.3.1 Laplace's theorem. Let X1, X2,..., Xp,... be a sequence of inde-
pendent R"-valued r. v. defined on the probability space (el, A, P).

Suppose that the Xp all have the same distribution, that IIXIIIR" E L2,
and that E(X1) = 0. Set

(X l
+ + Xn).Gn = 1

Vn-

Then the sequence of r.v. Gn converges in distribution to a r.v. G with
characteristic function

(PG(t) =exP -2gx,(t) I .

PROOF. Since Gn = .'n,
WC (t) = E (exp(it.

E (exp ( Sn)) = cos ().it
=

By 4.2.1, Vs (t) _ (Vx, (t))". Hence

VG(t) =
X, ( t )]n,

1W '7n=

or

=expl nlog(soxi (=))).
(Note that cpx, (0) = 1. By continuity, there exists e > 0 such that, for
It! < e, I wx, (t)I # 0 and -

z
< arg cpx, (t) < 2 . Thus log px, (t) is well

defined for Itl < e.) Furthermore,

t=) =fix' \ n 1 - Yngxl(t) + o \n/7
uniformly in t, when t ranges over a compact subset of R". Hence

logVx,(=) 2ngx, (t)+o' n),

and VG (t) - exp(-1qx, (t)) uniformly on compact sets. 4.1.2 implies the
result. 0

4.3.2 Gaussian distributions

With the next few results, we make Laplace's theorem more explicit by
computing the distribution of G.
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f 2

(i) Lemma.

PROOF. We prove this well-known result by using a trick from real variables.
Let I = fR exp (- 2) dt. Then, by Fubini's theorem,

r
I2 = I exp (- u2

2 exp - v2a dude.

Passing to polar coordinates, let u = r sin 0 and v = r cos 0, with r > 0 and
0<0<21r.

This change of coordinates defines a diffeomorphism of R2 with Jacobian ma-
trix

Since Idet 31 = r dr d9,

_ sin O cos 8
rcos9 -rsin8

2w / too 2 / +00 2

J J exp- r r dr d8 = 27r J exp(- r) r dr.
o 0 2 0 2

The last integral can be computed by setting r2 = w. Thus

r dr = J exp(-w)dw = 1.0
0

fR

/ t2 x2
(ii) Lemma. (2 )2 exp \(itx - dt = exp(-

III

PROOF. Let r be an auxiliary parameter defined by pr(t) _ (2wr)t 2 exp - 2r '

It is straightforward to verify that

(i)
apt. = 1 02pr

Or 2 ate

Note that x *-. p.(x) is an element of the space S(R). By III-4.2, differentiation
with respect to x is mapped to multiplication by -it of the Fourier transform:

pr(t) = fRpr(x)exp(itx)dx.

By 1-7.8.4, we can differentiate under the integral sign; thus (i) can be written

_ti.'(t) =
-

22pr(t)

Note that, as r 0, pr(t)dt converges narrowly to the Dirac measure at zero.
Hence pr(t) 1 for each fixed t as r -+ 0. The differential equation (ii) thus
g i v e s A. (t) = exp (- z r) ; the lemma follows by setting r = 1. o
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(iii) Lemma. Let

J

Q(t) = (t1)2 + Then

r 11

(2ir)n/2 n exp L- 2Q(x) + it.x] dx = exp L- 2Q(t)J .

PROOF. Since exp[-ZQ(x)] = fl .1 exp -2(xk)2], the conclusion follows
from (ii) and Fubini's theorem.

4.3.3 Definition. A Gaussian distribution is a measure p on R" with
Fourier transform u of the form

(_h(t)),(i) µ(t) =exp

where h(t) is a positive quadratic
form.

4.3.4 Proposition. Let p be a Gaussian distribution given by 4.3.3(1).
Suppose that h is positive definite. Then

dp = cexp[-2hi(x)J dx,

where c is a normalizing constant `such that f dp = 1 and h1(x) is the
adjoint of h, defined by

(ii) hi(x) = sup{t.x : h(t) < 1}.

PROOF. Let a basis be chosen such that h(t) _ tk; then 4.3.2(iii) implies
(i) with hi(x) = x2. Using formula (ii), hi(x) can be defined without
changing bases.

4.3.5 Proposition. Let p be a Gaussian distribution of the form 4.3.3(i).
Let

V = ft: h(t) = 0} and Vl = {x : t.x = 0 dt E V).
Then p is a measure with support Vl. Let y E Vl and let dy be the volume
measure on V j-. Then

dp = c exp
1

-2h1(y) dy,

where h1 is the quadratic form defined for y E V1 by

h1(y) = sup{t.y : h(t) < 1}.

REMARK. The quadratic form h1 is positive definite.

PROOF. Let x, t E Rn be decomposed as

x=y+z, where yEV1, zEV;
t=ij+(, where 77EV1, CE V.

Then
it(y+z) =

r
iq.y 1

J
e dp - cJV.L e exp -2h1(y) dy.
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5 Theorems on Convergence of Martingales

5.1 Martingales

5.1.1 Definition of a filtration

Let (SZ, A, P) be a probability space. A filtration of the space is an increasing
sequence {An} of sub-o-algebras of A such that

A°CA,c...cAnC....
Let A... be the a-algebra generated by all the An; we write A,,. = lim An.

The filtering sequence is said to converge to A if A,,. = A.
The phenomenological meaning of an increasing sequence of a-algebras is

clear. Let 0, 1, 2, ... , n be the various instants of an "experiment".
Let At,, be the Boolean algebra generated by all the observations made

up to time n (in the sense of 1.1). Then A;, encapsulates all the experi-
menter's knowledge of the system at time n. The a-algebra generated by
A;, is written An, and might be called the o-algebra of the past at time n.

5.1.2 Sequence of r.v. adapted to a filtration

Let (f', A, P) be a probability space equipped with a filtration An. A se-
quence of r.v. {Xn} in L°(SI,A) is said to be adapted to the filtration if
Xn E LO (0, An).

5.1.3 Given a sequence {YK } in Lo (Q, A), let AY
k

be the a-algebra generated
by Y,, 1(BR.), where s < k.

Then the AY form a filtration of (Sl, A, P). Moreover, the sequence of
r.v. Yn is adapted to the filtration An if and only if An D An for any n.

5.1.4 REMARK. An might be called the a-algebra of the past corresponding
to the "experiment" that consists of observing the values of Yl (w), ... , Yn(w).

5.1.5 Definition of a martingale

Definition. Let (fl, A, P) be a probability space equipped with a filtration
(An). A sequence {Xn} of r.v. is called a martingale if

(i) the Xn are integrable: Xn E L' (S2, A);
(ii) the sequence {Xn} is adapted to the filtration {An}; and

(iii) EA"(Xn+1) = Xn, n > 1.

5.1.6 Proposition. If {Xn) is a martingale, then

EA" (Xn+p) = Xn, Vn and dp > 0.

PROOF. Since A. C An+1 C An+2 C ... C An+p-1, it follows from 2.3(iii) that

EAn = EA" E 4. +, ... E'4n+p-1.
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By 5.1.5(iii), EA^+p-1(Xn+P) = Xn+P-1, EAn+P-2 (Xn+P-1) = Xn+P-2, ...
and finally

EA' (Xn+1) = Xn.

5.2 Energy equality

5.2.1 Proposition. Let {Xk} be a martingale relative to the filtration
{Ak}, and assume that Xk E L2 (0, A) (1 < k < n). Then, for n > p,

n-1

E(X.2) - E(X2) _ E E((X7+1 - X7)2).
7=P

PROOF. Set ej = Xj+1 - Xj. Then, for m < j,

(i) EA- (ej) = EA-EAj (Xj+1 - Xj) = EA- (Xj - Xj) = 0.

n- 1Writing Xn = XP + r,=
i

ej and expanding X,21, we obtain

n-1 n-1

E(Xn2) = E(XP) + E E(el) + E(ejej,) + 2 E(XPei).
7=P 7,9' 7=P

j#j,

We now show that all the terms appearing in the last two sums are
zero. Assume that j < j'. By 2.1.3, E(ejey) = E(EAJ+'(ejej,)). We now

use the fact that EAi+'(ejej,) = Since j < j', (i) implies
that EAi+'(ey) = 0, whence EAR+'(ejej,) = 0. Similarly, E(XPej) _
EEA'(XPe7) = E(XPEAi(ej)) = 0.

5.2.2 Corollary. Let {Xn} be a martingale. Then E(X2) is an increasing
sequence.

PROOF. Apply the energy equality with p = n - 1.

5.3 Theory of L2 martingales

5.3.1 Definition. {Xk} is called an L2 martingale if

supE(XX) < +oo.

It follows from 5.2.2 that

5.3.2 limE(Xk2) exists and is finite.
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5.3.3 Structure theorem. Let {Xk} be an L2 martingale. Then there
exists X00 E L2(ct,A,,.) such that

(i) IIXk - XrJL2 4 0 and

Xk =
EAk(X,,,, )

X,,, is called the final value of the martingale.
Conversely, let ... Qn C Cln+1 C ... be an increasing sequence of

a-algebras on (11, A), let 9,,,, be the a-algebra generated by all the gn, let
f E L2(0, g , P), and let Yk = E9k (f ). Then

(iii) Yk is an L2 martingale

and

(iv) IlYk - f AIL' - 0.

PROOF. We first prove the following lemma.

5.3.4 Lemma. E((Xn+P - Xn)2) = E(Xn+p) - E(Xn).

PROOF.

L' ((Xn+P - Xn)2) = E(Xn+p) + E(Xn2) - 2E(Xn+pXn) and

E(Xn+pXn) = EEA°(Xn+pXn) = E(XnEA-(Xn+P)) = E(Xn2).

PROOF OF THE THEOREM. Since the sequence an = E(Xn) is convergent
by hypothesis, Ve > 0 3no Vp > 0 an+p - an < E. By 5.3.4,

IlXn+P - XnI1L2 < E, `dn ! no and dp > 0.

Thus Xk is a Cauchy sequence, which converges since L2 is complete. More-
over, Xk = E''ak (Xk+,.) for all r > 0 by 5.1.6.

Let r -' +oo. Then Xk+,. -' X,, in L2; hence EA. (Xk+,) - E ak
and (ii) follows.

We now prove the converse. By 2.3.3(iii),

EG^EQ°+k = EG.

Applying this to f, we obtain

EG^ (EG°+k (f)) = EG" (f ),

or

E''CJ" (Yn+k) = Y. .
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Furthermore, since the projection operator E9^ has norm < 1,

IIYn11L2 = 11Eg°(f)IIL2 <- IllIIL--

The sequence {Yn} is an L2 martingale. By the first part of the theorem,
3f,,. E L2 such that

IN ' - fxIIL2 0
By the lemma, f = f, and this completes the proof of the theorem.

5.3.5 Lemma. Let (0, A, P) be a probability space filtered by {An}. Set
A = lim An (in the sense of 5.1.1). Then

IIEAn f - EA- A L2 -' 0 for every f E L2.

PROOF. We write V. for L2(fl, A.), a closed subspace of L2(fl, A). Let V _
UnVn and let vn and fv,o denote the respective orthogonal projections. Then
Hilbert space theory shows that

Ilfly. - IlvvJ IIL2 - 0.

Moreover, L2 (1, A,o) V. for all n. Since V is the smallest closed subspace of
L2 that contains all the Vn, L2(f2,AC) D V,,.

Now let B E A. If we show that la E V,,, the density of the simple functions
in L2(0,A,.) will imply that C V,o and hence that

W Vim.

To prove this, let B denote the set of subsets B of 11 such that B E A. for some
s. From the set-theoretic point of view in P(fl), B = U,A,.

Then B is a Boolean algebra and B C A. By 1-1.4, A,o is the monotone class
generated by B.

If B E B, then 1a E V.. Let M denote the class of subsets D of Cl with
indicator function satisfying 1D E V,0.

We now show that M is a monotone class. Let Dn be an increasing sequence
of elements of M, with limit D. Then 1D, - 1j, everywhere, and by the
dominated convergence theorem 11 1 D. - 1 D 11 1.2 0.

Since P(11) = 1, the analogous result for decreasing sequences follows by taking
complements. Thus M is a monotone class and M = A,,, so (i) is true and the
lemma is proved.

5.4 Stopping times and the maximal inequality

5.4.1 Definition of stopping time

Let {Xn } be a martingale defined on the space (11, A, P) filtered by {An }.
A stopping time T(w) is a function on Cl, with strictly positive integer

values, such that

(i) AT.p={w:T(w)>p}EAp VpEN.
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(ii) Proposition. If T' and T2 are two stopping times, then

T3(w) = inf(T`(w),T2(w)) =Dcf (T' AT2)(w)

is a stopping time.

PROOF. AT3,p = ATi,p n ATs p E Ap.

(iii) Any given time q can be thought of as a stopping time.

5.4.2 Truncated martingales

Definition. Given a martingale {Xn} and a stopping time T, the truncated
martingale is defined by

Xn (w) = XT(,)nn(w)

We proceed to justify this terminology by showing that {X,'} is a mar-
tingale. Since

(i)

m-1
XT
m = (X.i+1 - X3)1Ar., + Xl

i=1

and all the functions on the right-hand side are A,n-measurable, XTn is Am-
measurable. Moreover, EAn (X +1) can be computed by observing that, on
the right-hand side of (i), all the functions except Xn+1 are An-measurable.
Thus

EAn(X +1) = (EAn(Xn+1) - Xf)1AT.l +Xn.

But
EA- (Xn+1) = Xn,

whence

EA.(X +1) = Xn.o

5.4.3 Definition of the maximal function

Let {Yn } be a martingale, let

Yn = sup IYpI,
1<p<n

and let
Y` = lira Y, .n-+oo

Y' is called the maximal function of the martingale {Yn}.
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5.4.4 Doob's maximal inequality

Proposition. Let {Y,, } be a martingale on the space (0, A, P} filtered by
{An}. Then, for every constant y > 0,

W P(Y, > 7) _< -[E(IYnI) +E(IYI)I (n = 0,1,...)

and

P(Y* > i') : 44 supE(IYnl)
-1 n

P1tooF. Let Ary = {w : sup,<n YY(w) > y} and let

T(w) = inf{p : Yp(w) > y} if w E Ay
T(w) = n if w V A;.

Then T (w) < n. Moreover,

{w : T(w) > q} = Up<q{w : Yp(w) < y} E Aq if q < n

and

{w:T(w)>n}=0.
Thus T is a stopping time; let {YT) be the martingale truncated by T.
Then E(YT) = E(Y1) (since YT = Y1) and

E(Yn) = lT<n) +E(Y,T 1T=n)

Y,T > y on the event {w : T(w) < n} and Yn,T = Yn on {w : T(w) = n};
hence

E(Yn 1T<n) > )'E(1T<n) ='YP(A.ny)

Thus E(Y1) - E(Yn1T=n) > yP(A.nI), and

yP( ) <- E(IYnI) + E(IY1I).

(i) follows by observing that

{w:Yn(w)>y}=AyU{w:sup[-Y,]>y}.
ll p<n JJJ

To prove (ii), it suffices to note that is an increasing sequence with
limit Y*. Hence Y* > y dE > 0 3n such that P(Yn > y - e). Thus, by
(i),

P(Y* > -Y):5 y 4
e

supE(IS'nI)o
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5.5 Convergence of regular martingales

5.5.1 Definition of regular martingales

Let {Y} be a martingale relative to the filtration An on (St, A, P). {Yn }
is called regular if there exists Z E L' (St, A, P) such that

Yn = EA° (Z) Vn.

EXAMPLE. Every L2 martingale is regular by 5.3.3.

5.5.2 Final value of a regular martingale

Let A , denote the v-algebra generated by the union of the a-algebras An,
and set

Y,, = E'A- (Z).

Y,,.r is called the final value of the martingale {Yn}.

5.5.3 Theorem on L' convergence. Let f,,} be a regular martingale
and let YY be its final value. Then

W Yn = EA (Y) and
(ii) E(IYn - ,,.I) - 0 as n - +oo.

PROOF. Let cpM(t) be the function introduced in 1-6.7 to define the trun-
cation operator and set ZM = cpM(Z). Then

(iii) IIZM - ZIILI - 0 as M -- 0.

Set Yn M = EA^(ZM). Then

IIYn,M - YnIIL1 S IIZM - ZII LI.

Thus IIYn.MIIL- :5 M, and hence {Yn,M} is a martingale. Using 5.3.3 and

5.3.5 and setting Y,,.,M = EA- (ZM ), we obtain

(iv) Yn,M = EA^ (Y,,M) and IIYn,M - Yeo,M II L - 0.

(i) is proved by using (iii) and the first formula of (iv), then letting M tend
to infinity. Similarly, since the L2 convergence in (iv) implies L' convergence
by the Cauchy-Schwarz inequality, (ii) follows for Yn,M. Letting M - 00
shows that (ii) holds for Yn. 0

5.5.4 Proposition (Almost sure convergence). Let {Yn} be a regular
martingale and let Y,,, be its final value. Then

Yn(w) - Ye(w) almost surely.
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PROOF. Let /3q(w) = IYn(w) -Yq(w)I and let /(w) = limq-oo I3q(w).
For fixed q, let

Z. = Yq+m - Yq (m > 0).

Then { Zn1} is a regular martingale relative to the filtration {Aq+m} and

SUP IIZ+nIILI < IIYO - Y9IILi + sup IIY,, - Yq' II Lz -
m 9'>9

By 5.5.3(ii), the right-hand side is less than a if q > qo. Hence, using the
maximal inequality 5.4.4(ii),

P({w:/3q(w)>y})< 2E if q>qo.

Fixing y, let q -+ oo. Since { 43q } is a decreasing sequence of functions,

P({w : f3(w) > y}) = 0, whence /3(w) = 0 a.s.

{Y,,(w)} converges a.s. Let Z be its limit. Since {Yn} converges in Ll to Y,,, it
has a subsequence {Y,,,, } that converges a.s. to Y,,; hence Z. = Y. o

5.6 L' martingales
5.6.1 Definition. A martingale I,,} is called an L1 martingale if

sup IIYnhILl < +00,
n

EXAMPLE. Every regular martingale is an L' martingale.

5.6.2 Proposition. Let {Yn} be an L' martingale. Let T1 < T2 < ... <
T' < ... be an increasing sequence of stopping times such that, for every j,
T, (w) < +oo a.,s. Let YT, (w) = YT,(, )(w).

Then
00

E(YT,+1(w) - YT, (w))2 < +00 a.s.
3=1

PROOF. Set a = sup IIYnIIL1 and let Y' be the maximal function. Then, by 5.4.4,
P(Y' > p) < 4ap 1, whence

(i) Y'(w) < +oo a.s.

Fix p and let f be the continuously differentiable convex function defined by
f (t) = t2 if Iti < p and f (t) = 2pItI - p2 if Itl > p. Let g be the nonnegative
function defined by

g(vl,v2) = f(v2) - f(vl) - (v2 - vl)f'(vi).

Then g(vl, v2) = (t12 - v1)2 if Ivil 5 p (i = 1,2).

(ii) E[f(Y.)] < 2pE(IYYI) < 2pa
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(iii) EI(Yj+1 - Y.1)f'(Y, )J = EEA' = E[f'(Yj )EA, (Yj+i - Yj )] = 0;
n-1

E(f(Yn)-f(Y1)) = E [(f(Y+ - f(Y,))
9=1

n-1

EE(9(Yj+1, Yj ));
j=1

E ((Y+i -Y,)21{Y.<p} < 2pa.
3=1

Hence, letting p - +oo and using (i),

+00

(iv)
E(YJ+1(w) - Yj(w))2 < +oo a.s.
J=1

We now generalize this "local version" of 5.2.1 to an increasing sequence of
stopping times Ti < T2 < ... < Tj < .... Set YT, (w) = YT (w). We would like
to show that

+oo

(v) (YT2+1 (W) - YT (W))2 < +00 &_S.
j=1

Once (ii) and (iii) have been generalized, the same calculation will give (v).
Letting AT,,,, = {w : T, > q}, we have, as in 5.4.2,

f(Yr,) - f(Y1) _

E(f(Yr,)-f(Yi)) _

whence

00

E(f(Yq+1) - f(Yq))lAr, q
q=1
+`00

1 ,E(9(Yq+1,Yv)1AT.,,) < E9(Yq+1,Yq):2ta,
q=1 q

(ii),
E(f (YT; )) < 4pa.

Let AT, denote the a-algebra generated by the Aq f1 Ta 1(q), where q E N. Then

(iii)' EAT., ((YT,_, -Yr,)f'(YT,))=0.

This proves (v). O

5.6.3 Fatou's theorem. Let Y. be an L1 martingale. Then limn.,o Yn(w)
exists a.s.

PROOF. For a proof by contradiction, assume that Fatou's theorem fails; then
there exists b > 0 such that

(vi) G= I w : limsup IY, (w) - Y,,'(w)I > 2b satisfies P(G) > 0.
n.nI-*o

JJJ
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Let TT (w) = 1 and let the later stopping times be defined recursively by

T,+1(w) = inf{q : q > T,(-,) and IYT,(w) - Yq(w)I > b}.

Since the sequence T, (w) is increasing, I YT,.,., (w) - YT, (w) I > b. This contradicts
5.6.2. 0

IMPORTANT REMARK. Nonzero L' martingales can be constructed with
0 a.s. It is thus impossible to reconstruct the martingale from

this limit, as was done for regular martingales. Hence the importance of
the regularity criterion that will be given in Section 5.8. In Section 5.7, we
will develop a concept that is both interesting for its own sake and crucial
for stating the regularity criterion.

5.7 Uniformly integrable sets

5.7.1 Definition. A subset H of L' is called uniformly integrable if for
every e > 0 there exists i7 > 0 such that E(jhI 1A) < E for all h E H and
for every A E A with P(A) < n.

5.7.2 Proposition. Let H be a subset of L'. Then the following two state-
ments are equivalent:

(i) H is uniformly integrable.

(ii) lim
q-oo

sup J IhI dP = 0.
hEH 1hj>q

PROOF. To prove that (i) (ii), we first show that (i) implies

(iii) 3M < +oo such that IIhilL1 < M dh E H.

Let v > 0 be the number associated with e = 1 by Definition 5.7.1. Then (iii)
follows from setting M = n + 1.

By Chebyshev, P(Ihj > q) < q-1 M. Since this expression tends to zero as
q - oo, (i) implies (ii) formally.

We now prove that (ii) * (i). For a proof by contradiction, suppose that there
exist Eo > 0 and sequences {hn} in H and {An} in A such that

co and P(An) 0.

Let qo be chosen so that

hdP< 2 dhEH.Jhl>qo

Set B. = {w : Ihn(w)I > qo}. Then

co < E(hn1A,.(le.. +lsg)) 5 E(hn1s)+goP(An).
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Since the first term on the right-hand side is less than z and the second tends
to zero as n -, oo, this gives a contradiction. 0

5.7.3 Proposition. Let H be a uniformly integrable subset of Ll and let
Hl be the closure of H in the topology of almost sure convergence. Then
Hl is uniformly integrable.

PROOF. Set

ap(e) = supE(IhI iA), where h E H and P(A) < e.

Let {hn} be a sequence of elements of H which converges almost surely to
he. Fatou's lemma implies that

cp(e) > lim inf E(IhI 1A) > E(Ihol IA),

whence

supE(IhJ 1A) < ap(e), dhl E Hl, VA such that P(A) < e.

5.7.4 Theorem (Generalization of Lebesgue's dominated conver-
gence theorem). Let {un} be a sequence of integrable functions on a
measure space (X, A, ie), µ(X) < +oo, such that

(i) the family {un} is uniformly integrable and
(ii) u,, converges a.s. to uo.

Then

Hun - uollLl 4 0.

PROOF. By Egoroff's theorem, there exist e > 0 and B E A such that
µ(B') < e and u converges uniformly to uo on B.

Then

Ilun - uollLl < E(Iun - uol lB) + E(Iunl lsc) + E(IIuoII 1B-)-

The first term on the right-hand side tends to zero by uniform convergence,
the second by uniform integrability, and the third by the same reasoning
as in 5.7.3. 0

5.8 Regularity criterion

5.8.1 Theorem. Let {Xn} be an Ll martingale. Then the following con-
ditions are equivalent:

(i) {Xn} is regular.
(ii) {Xn : 1 < n < oo} is uniformly integrable.
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PROOF THAT (ii) (i). We know by Fatou's theorem (5.6.2) that Xq(w)
converges almost surely to Z. By 5.7.4, this implies that IIXq - ZIIL1 - 0.
Hence, using the identity

Xn_EA"(XQ) q>n,
fixing n, and letting q go to infinity,

X. = EAn (Z).

PROOF THAT (i) (ii). For a c to be fixed later, set B. = (w: I X,(w)I > c}.
Then, since B,, E A. and IXnI < EAn(IZI),

E(IX,I 1Bn) < E((1BnEAn(IZI)) = E(EAn(IZI)1Bn)) = E(IZI 1Bn)

Hence, with b also to be fixed later,

IXnI dPJI X,, I>c

IZI dP

r J
J{IXnI>c}n{IZI>b}

IZI dP +
{IXnI>c}n{IZI<b}

IZI dP

IZI dP + bP(IXnI > c).

But, by Chebyshev's inequality, P(IX,I > c) < !E(IXnI) < !E(IZI), whence

+ bE(IZI)f IXnI dP <
flzl>b

IZI dP
IXnI>c

Let b = ql/2 and c = q; then the right-hand side tends to zero as q -+ oo, and
the conclusion follows by 5.7.2.

6 Theory of Differentiation

If f is a continuous function defined on [0, 1] C R and F(x) = fo f, then
F is differentiable for every x and F(x) = f (x). The same result holds for
f E L', provided that "for every x" is replaced by "almost everywhere";
this is another theorem of Lebesgue.

The derivative is computed as the limit of quotients of the form

(i) a [F(x + e) - F(x)] = v(Ac) p(AE),

where v is Lebesgue measure, p(A) = fA f, and AE = [x, x + e].
In this section, we study the limits of quotients of the form (i) on an ab-

stract measure space. A.s. convergence will be obtained for an appropriate
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choice of the A,: the A, will be the atoms of an increasing sequence An of
finite sub-a-algebras of A, "converging to A".

Quotients of the form (i), which thus form a martingale for the filtration
A,,, will be used to prove the Radon-Nikodym theorem.

Conditional probabilities can immediately be defined for conditionings by
finite a-algebras; the existence of conditional distributions in the general
case will depend essentially on a convergence theorem for vector-valued
martingales. The convergence of such martingales will be clear for Radon
measures. A structure theorem will allow all separable measure spaces to
be realized by means of Lebesgue measure on R.

6.0 Separability

The measure space (X, A, it) is called separable if there exists a sequence
that is dense in Lu; in other words, if Lµ satisfies the first separability
axiom 1-2.4.1(i).

Consider the case of Radon measures on a compact space Y. If Y is metrizable,
then C(Y) satisfies the first separability axiom and, since C(Y) is dense in L,l,
the same holds for L. The same result is true if Y is locally compact, metrizable,
and the countable union of compact sets.

6.1 Separability and approximation by finite a-algebras

Proposition. A measure space (11, A, P) is separable if and only if there
exists an increasing sequence of a-algebras Al C A2 C ... C A,,... such
that each a-algebra A is finite and

EAn (f) f for every f E L1(S1, A, P).

The sequence of a-algebras An is said to P-generate A.

PROOF. Assume that (S2, A, P) is separable, and let I',. .. , fn, ... be a
dense sequence in V. Approximating each fn by a sequence of simple
functions gives a countable family -0 of simple functions which is dense in
TiP.

Let gl, ... , gn,... be an enumeration of this sequence and let A; be the
a-algebra generated by gk 1(A), 1 < k < i.

With each f E L1 we now associate a sequence {Xk} defined by

EA.f =Xk.

Then {Xk} is a regular martingale, which converges in L' by 5.5.3. Let
X,, = limXk. Since 11XOCIILI < 11f11L1, a bounded operator 7r : L1 Ll
can be defined by setting 7r(f) = X,., and

EA,X,o = lim EAkEAQ f = EAk f = Xk.
Q-oo
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That is, 7r2 = ir. The image V of 7r is closed, for if un = 7r(fn) and un - uo,
then since irun = un and 7r is continuous it follows that 7ru° = u°. V is
thus a closed vector subspace of L1(X, A, µ).

Let fo be a simple function in C Then fo E L°(Ak) for k sufficiently
large, and hence EAk (f0) = f0. Thus fo E V. Since the family 0 of simple
functions is dense in L', it follows that V = L'.

The proof in the other direction is clear. For each k, EAk (L') is a finite-
dimensional subspace of L' and hence separable. The union of these spaces
is separable and dense in L'. 0

6.2 The Radon-Nikodym theorem

6.2.1 Theorem. Let (Sl, A, p) be a separable measure space and let p and
v be finite measures defined on A. Then the following statements are equiv-
alent:

(i) For every A E A, ti(A) = 0 = v(A) = 0.
(ii) There exists k E L1, k > 0, such that v(A) = fA kdp.

REMARK. The function k is called the density of v with respect to p and
is sometimes written k = dµ .

PROOF. It is trivial that (ii) (i). Indeeed, if k1A is a function that is
zero a.e., then its integral is zero. To prove that (i) (ii), assume that

(iii) µ(X) < +00.

This hypothesis can easily be dropped later, by taking an exhaustion se-
quence {An} for X.

Multiplying by a constant reduces the proof to the case where

(iv) µ(X) = 1 and (X, A, p) will be considered as a probability space.

We now prove that hypothesis (i) implies the following quantitative ver-
sion.

6.2.2 Lemma. Assume that 6.2.1(i) holds. Then, for every e > 0, there
exists 6 > 0 such that

p(A) < 6 implies v(A) < e.

PROOF. Otherwise there would exist co and Ak such that

µ(Ak) < 2-k and v(Ak) 2 co.

Set Gn = Uk>nAk; then u(Gn) < 2-n+i. Since Gn is a decreasing se-
quence,

(i) p (nnGn) = 0.
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Furthermore, since

v lim 2: co.

But (i) and (ii) contradict 6.2.1(1).

6.2.3 Associated martingales

Let A1,.. . , A,,... be the increasing sequence of finite a-algebras construct-
ed in 6.1.

Let Cp = {e 1 i ... , e.) be the atoms of Ap, and let a function Yp E L°(Ap)
be defined by setting

Yp(er) = er)
if er E Ep and p(er) # 0,

p(er
Yp(er) = 0 otherwise.

Then E(Yp) = E'Yp(er)p(ek), where the sum E' is restricted to those
atoms such that p(er) 0 0. Since p(er) = 0 v(er) = 0, it follows that
E(Yp) = Ev(er) = v(X).

More generally, let Ap+1 be the a-algebra following Ap. An atom er of
Ap can be decomposed into atoms of Ap+1: er = 9r.i U 9r,2 U ... U 9r,s

Since the function Yp+l is constant on each atom g,

EA°(YP+i)(er) = 1 tYP+1(gr,j)P(gr,j)-A(er)
=1

But Yp+1(gr,j)p(gr, j) = by the definition of Yp+1. Since E v(gr, j) _
v(er),

EA°(YP+1) = 1'p,

and we have proved the following result:

The Yp form a martingale.

6.2.4 Lemma. The martingale {Yp} constructed in 6.2.3 satisfies the uni-
form integrability condition.

PROOF. Let p be fixed. Given e > 0, we must show that there exists i such
that

(i) J Ypdp = E(Yp IA) < e for any A E A such that p(A) < rl.
a

By 2.6.1(iii),

E(YP IA) = E(EA°(YP IA)) = E(YPEA°(lA))
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Set V = EA,(lA); then 0 _< <p < 1 and E(V) = p(A).
Introducing the atoms e, of .Ap, we have 2.4.1. Since V is Ap-measurable,

cp is constant on each atom e, of Ap; thus

E(Ypv) = p(er)v(er) and E(v) _ So(e.)µ(e.,)

Define a partition 0, of £p by e,. E 1', if cp(er) E [2-8-', 2-']Then

E(Ypcp) < E 2-'v(H,), where H, = U e,.,

E 2_,+1µ(H8)

Let so be chosen so that 2_80+lv(X) < 2. Then

E(Ypcp) < E 2-8v(H8) +
2

0<8<80

Let rI' be the number associated by Lemma 6.2.2 with e' = a , and let
= 2-10-117'. Then, if µ(A) < t], we have µ(H8) < 17' for 0 s < so. It

follows from 6.2.2 that v(H,) < e', and thus

<22=e.E(Ypcp) +

This proves (i). 0

6.2.5 Proof of the Radon-Nikodym theorem

Since (Yp) is an L' martingale and is uniformly integrable, there exists a
function k E Li such that Yp = EA, (k).

We begin by showing that

v(A) = E(k 1A).

By the construction of {Yp},

J
1/'dv = E(Ypii) if 1/I E Go(Ap).

In particular,

E(EAPkEAP lA) = f(EA,, 1A)dv.

Set spp = EA,(1A); then 0 < <pp < 1. The martingale EAP(1A) converges
p-a.e. to 1A by 5.5.4, and convergence µ-a.e. implies convergence v-a.e. by
6.2(i). Hence, by Lebesgue's dominated convergence theorem,

r EAP (1A)dv -. v(A).
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Since {Yp} is uniformly integrable, so is {Ypcpp}. Moreover, Ypwp con-
verges p-a.e. to k1A, and Theorem 5.7.4 implies that

rYpcppdp - jkd.

Thus

JA
k dp = v(A).O

6.3 Duality of the LP spaces

Theorem. Let (X, A, p) be a measure space, let 1 <_ p < +oo, and let q be
the conjugate exponent top. Then the space of continuous linear functionals
on LP can be identified with V. As in 1-9.4.3, the dual pairing is written

(f, g) = 1 f g dp, where f E LP, g E LQ.

PROOF. Using an exhaustion sequence { An } of X, we can reduce the proof
to the case where (S2, A, p) is a probability space.

A positive linear functional I on LP is a linear functional such that i(f) >
0 for every f > 0, f E LP. As in 11-5, it can be shown that every linear
functional on LP can be written as the difference of two positive linear
functionals. It thus suffices to prove the theorem when I is positive.

Since p(X) < +oo, L°° C LP and we can define

v(A) = 41A) > 0.

Let C = U1<t<,Ai and let C,,, = U°_1A1. Since the Ai can be assumed to
be disjoint, 1<i<n 1A, = 1C,,. Thus

v(Cn) = 1: l(Ai) _ v(Ai)

1c., 1C everywhere and 1c < 1; hence, by Lebesgue's dominated
convergence theorem, 11 1C. - 1c IILP - 0. It follows that v is a measure
defined on A. Furthermore, p(A) = 0 implies 1A = 0 in L. whence v(A) =
41A) = 0. Thus hypothesis 6.2.1(i) is satisfied, and the Radon-Nikodym
theorem implies the existence of a nonnegative k E Lµ such that

JA
k dp = v(A).

Using linear combinations of characteristic functions, we see that

(i) I(V) = I kyp dp
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for all simple functions. If we show that

(ii) k E L4,

each side of (i) will define a continuous linear functional on LP; since they
coincide on the dense set of simple functions, they will be equal everywhere.

Let Bn = {x : k(x) < n} and let kn = k1Bn; then kn E L. If q < +oc, by
Fatou-Beppo Levi the negation of (ii) is equivalent to the assertion that Ilk,, IIL9
ooasn -'oo.

Let a = p i q and let
_ 1 a

un
IIkn1ILo

kn.

Then IIunIILo = 1 and

funknt(un) = = = IlknIIL9 -i 00 as n - 00,

contradicting the inequality

Il(un)I <-11111 IIunIILo.

The case q = oo is treated in the same way, using the inequality

1(1 - 1Bn) > nIII - 1B,IILI.0

6.4 Isomorphisms of separable probability spaces

6.4.1 Atoms of a measure space

Let (fl, A, P) be a measure space. A E A is called a P-atom if P(A) > 0 and
if, for any B E A such that 1B < 1A a.e., either in = 0 a.e. or in = 1A
a.e. This notion of atom corresponds to the one introduced in 1-6.2, except
that we now consider the classes defined by equality a.e.

6.4.2 Structure theorem (nonatomic case). Let (1k, A, P) be a sepa-
rable probability space which is complete and has no P-atoms. Then there
exists f E L°°(11, A) such that 0 < f < 1 and f is a probability space
isomorphism from (0, A, P) onto [0, 1] equipped with Lebesgue measure.

PROOF. Let {An} be the increasing sequence of finite sub-o-algebras of A
constructed in 6.1. Note that we could regroup the atoms of An that have
measure zero with an atom of strictly positive measure, to produce a new
sub-v-algebra A, such that P(A) > 0 if A E An and A A 0. Assume that
this has been done.

We next enumerate the atoms of A1, say e11,.. .,e1,3, where s = s(1),
and then the atoms of A2, consistently with the enumeration for A1. That
is, all the atoms into which e1,1 is decomposed appear first, then the atoms
into which el.2 is decomposed, and so on.
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With the atoms of A. listed as eq,i, ... , eq,,, s = s(q), there exists a
strictly increasing integer-valued function cP such that

eq,, is decomposed into the atoms eq+i,j, with V(s) < j < p(s + 1).

Having defined this coherent enumeration of the atoms of An, we set (3q,r =
P(eq,r) and define

fq(x) =
21

/3q,i + Qq,r, where x E eq,:.
r<1

Then fq E LOO (A.) and

EAQ(fq+i)(eq,,) = E (3q+l,r
r< '(a)

") 1 P(eq+i,j) 1"3"1,j + 13q+l,m

I

.

P(eq,,) m<3

In the second sum, observe that

2

2 oq+i,j = 2 [P(eq,,))2.
yp(a)<j<<p(a+1)

Similarly, the first sum can be written Et<, /3q,t, whence

EA, (fq+1) = fq.

The fq form a martingale; since 0 < fq < 1, they form an L2 martingale.
This martingale converges a.s. to its final value f E LO (A), and fq
EA.(f)

Furthermore, let
rlq = sup/3q,,.

r
Then {rlq} is a decreasing sequence. Assume for contradiction that

(E) lim7lq=E>O.

Then there exists a decreasing sequence of atoms an E An such that

P(lim I an) = lim P(an) = e > 0.

Let C = lim I a,,. Since the probability space (Q, A, P) has no P-atoms, we can
find DEAsuch that DCCandP(D)>0,P(C-D)>0.

Since the v-algebras An P-generate A,

(ii) EA"(1D) -+ 1D a.s.
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But, since 1D < 1C, EA°(1D) is constant on the atom an; that is,

(iii) limE''4"(1D) = 7n1C, where 7n is a constant.

This contradicts (ii). Hence (i) cannot hold, and

(iv) lim'7q = 0.

(v) The distribution off is Lebesgue measure.
Since the functions f,, converge as. to f, their distributions converge to the

distribution of f. Let U E C([0,11) and consider

E(u(fn(w))) _ j>q.,-u (ar +EQq.i
r I<r

The right-hand side is a Riemann sum for u, and since the mesh of the parti-
tions tends to zero by (iv), the Riemann sums converge to f u dx, whence (v).

(vi) Let A' = f -'(BR), where SR, is the Borel algebra of R. Then LP (A) _
LP (A').

Let ,(3q,t = <e Then, by the construction of the fj,

1 yfj ((Qq,r,i3 ,r+1)) = eq.r if j > q.

By the a.s. convergence of the f.?,

f_'([Nq.r,09,r+1]) D eq.r D f_1 (((3 .r,i3q,r+1))

Since P(f = Lebesgue measure of {/3q,,. } = 0, the two inverse images
above differ by sets of probability zero. Hence LP (A') J LP (A), and (vi) follows.
0

6.4.3 Structure theorem (general case). Let (Il, A, P) be a separa-
ble complete probability space. Then there exists a discrete measure 7 =
E ckb k on [0, 1] satisfying the following two conditions:

(i) 11711=Eck<1.

(ii) Setting
d,u =d7+(1-II71I)dC,

there exists a function f in L'(11, A) which is an isomorphism from
(11, A, P) onto [0, 1] equipped with the completion with respect top of its
Borel algebra.

PROOF. Let &..., AQ, ... denote the P-atoms of A. Since Ea P(AQ) < 1,
the set of P-atoms is countable. Let ek = P(Ak) and let l k =

F;
then the

measure 7 is well defined. If 11711 = 1, the desired isomorphism is clear. If
11711<1,set

S1 = St - UkAk,
A = Ann,
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and

P(A) = 1 P(A) for A E A.
p(n)

Applying Theorem 6.4.2 to (fl, A, P) shows that f E L' (f?, A). Now let

f=

6.5 Conditional probabilities

We would like to express conditional expectation by an integral. This has
already been done in 2.4.2 in the case of conditioning relative to a finite
sub-or-algebra.

6.5.1 Theorem. Let (Sl, A, P) be a separable complete probability space,
let (X, B) be a measure space, let f E Mp((Sl, A); (X, B)), and let µ = f.P
be the distribution of f. For a a-algebra A' on f?, let ir(Sl, A') be the set of
probability measures defined on A'.

Then there exist

(i) a a-algebra A' C A such that LP (A') = LP (A) and
(ii) a mapping x H vx from X to 7r(Sl,A') that is defined p-a.e.

and satisfies

E(u(f (w))h(w)) = f u(x)dµ(x)
LJ

h(w)dvx(w)J
x rt

for any u E Lµ (B), h E C' (A').

(The expression in brackets on the right-hand side is a function in L'(B).)

PROOF. Using Theorem 6.4.2 on isomorphisms of probability spaces and
noting that the "atomic set" appearing in 6.4.3 can be handled easily,
we reduce the proof to the case where St = [0, 1], A is the a-algebra of
Lebesgue-measurable sets, and P is Lebesgue measure. Taking A' = BR,
this reduction to [0, 11 allows us to use the theory of Radon measures.

Let g = x', x E [0, 1]. Let W denote the finite linear combinations of g
with rational coefficients, that is the polynomials with rational coefficients.
For every w E W, the conditional expectation of w given f is defined in
the complement of a A-negligible set. Taking a countable union of such
negligible sets, we can find Bo E B such that µ(Bo) = 0 and

lx(w) = E(w(w)I f(w) = x) is defined Vx E B.

Then lx is a linear functional on the Q-vector space W. Since 1lx(w)I <
IIwIIc, the Hahn-Banach theorem implies that lx extends to a linear func-
tional l' defined on C([0, 1J).
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Hence, by 11-5.2, there exists a Radon measure v., on [0,1] such that

t'' (h) = Vh E C((0,1)).

In particular,

E(w(w)I f (w) = x) = fw(w) dvs(w).

This formula extends by continuity from W to LP 00(0).
Note finally that l'' (w) > 0 if w > 0; whence v, is positive. Taking

f = 1B shows that vx(St) = 1. O

6.6 Product of a countably infinite set of probability spaces

Theorem. Let (Stn, An, Pn) be a countably infinite set of probability spaces.
Then there exists a unique probability space (ft, A, P) with the following two
properties:

(i) For every q, them exists a morphism from the product of the first q
probability spaces (Stn, A, Pn) to (ft, A, P).

(ii) Furthermore, (11, A, P) is the smallest probability space satisfying (i).
More precisely, if (St', A', P') is a probability space satisfying (i), then there
exists a morphism of probability spaces -6 : (ft', A', P') -+ (ft, A, P).

PRooF. By the structure theorem (6.4.3), we can reduce the proof to the
case where Q. = 10, 11, An is the Borel algebra, and P is a Radon measure
pn which is the sum of a discrete measure and a multiple of Lebesgue
measure. Let

it = (0,1]N.

Then St is a compact space, which will be equipped with its Borel algebra.
Define an injection

by setting

Let

fq
:10,1]Q - (0,1]N

fq(c ...,W _ V, - ..' C9, 0, 0 .... ).

®µ2 ®... (9 µq) = Pq.

Then Pq converges vaguely to a Radon measure P.., and (St, Bn, P,,) is
the desired probability space.



V
Gaussian Sobolev Spaces
and Stochastic Calculus
of Variations

Introduction

In Chapter IV, we began by basing probability theory on the theory of
abstract measure spaces of Chapter I. We then studied convergence in
distribution by means of the Fourier transform on Rd. Thus both abstract
integration theory and classical analysis were necessary to obtain the limit
theorems of probability theory. These two sources of Chapter IV derive
from the dual nature of distributions. Although a distribution is attached
to a very abstract object, a random variable on a probability space, it can
also be thought of as given by a Radon measure on R. Borrowing an image
from Plato, we might say that distributions have a daemonic nature: they
come simultaneously from celestial objects (the abstract theory of measure
spaces) and terrestrial objects (analysis on R).

In this chapter, we study the "regularity of distributions". The concept
of regularity is based on the existence of a standard Radon measure on R,
Lebesgue measure. A distribution is called regular if it has a density k with
respect to Lebesgue measure, very regular if k is a C°° function, and so on.
Lebesgue measure is defined in terrestrial terms as the translation-invariant
Radon measure on R.

To study the regularity of distributions, we will have to go up to the
celestial level of quasi-invariant measures. A Gaussian probability space
is a probability space equipped with a sequence of independent Gaus-
sian random variables that generates the underlying o-algebra. On such
a space, the probability measure is quasi-invariant under the action of
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distinguished translations, those of Cameron-Martin. The action of trans-
lations on L2(Rd) led in Chapter III to the definition of the Sobolev spaces
H9(Rd).

Proceeding similarly here, we will define further celestial objects, spaces
of infinitely differentiable random variables. We can then use differential
calculus on both R and the probability space. The interaction, through
a random variable, of these two kinds of differential calculus will make it
possible to study the regularity of distributions.

The use on an abstract probability space of a natural underlying differ-
ential structure, as developed here, is commonly called "stochastic calculus
of variations".

1 Gaussian Probability Spaces

1.1 Definition. Let (f), A, P) be a probability space and let X be an R"-
valued random variable defined on fl. X is called a Gaussian random vari-
able if the distribution of X is a Gaussian measure on Rn. (See IV-4.3.3.)
Gaussian measures and Gaussian random variables are sometimes called
normal.

REMARK. If X is Gaussian, X is in LP Vp < +oo.

1.2 Definition. Let (fZ, A, P) be a probability space and let {X" } be a
sequence of independent normal random variables. (ft, A, P) is said to be
a Gaussian space if the a-algebra generated by all the Xn is equal to A.

We intend to construct a basis for L2(1l, A, P).

1.3 Hermite polynomials

On R, we define the Gaussian measure vi (A) = fA exp(- 2) d2 .

1.3.1 On L2(R, v1), we consider the scalar product

(w10) = f o(x)',(x)dv1,

the differentiation operator d = d , and the operator b defined by

bcp(x) LW + xcp = -ex'12 dx
(e_x2/2W)

1.3.2 Lemma. When W and T/i are C' functions with compact support,

(i) (d'PI ) _ ('Ib )
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(ii) Moreover, (i) remains true if cp and TP are absolutely continuous and
in L2(R, v,), with dcp and b& in L2.

(iii) db - 6d = Identity.

PROOF. (i) follows from an integration by parts, and (ii) from approximat-
ing 'p and V) by compactly supported C' functions. A different proof will
be given later, in 2.2.3.

1.3.3 Definition. The Hermite polynomials are defined by setting Ho = 1
and Hn = V1 for n > 1. Here 6' = b o ... o 6, n times. It is immediate that

H1

H2
H3

61 = x,
661 = x2 - 1, and
631 = x3 - U.

1.3.4 Proposition. Hn is a polynomial of degree n whose highest-degree
term is xn. The following relations hold:

(¢) Hn+1;

(ii) dHn = nHn-1;
(iii) (6 + d)Hn = xHn;
(iv) 6dHn = nHn.

PROOF.

(i) follows immediately from the definition.
(ii) is proved by induction, using 1.3.2.(iii):

dHn = d 6Hn-1 = 6 dHn_ 1 + Hn_, = (n - 1)6Hii-2 + Hn_,.

(iii) follows from the definition of the operator 6 (1.3.1).
(iv) follows from (ii) and the definition of Hn.

1.3.5 Corollary. Let .F(g(x))(l;) = f + e' g(x)dx be the Fourier trans-

form of g at the point l;. Then .F'(H,,(x)e x212) = (s/2.

PROOF.

(e'{1I6n1) = (d"e'tx11) = inl;n(e1 11)

e
f
+xnn e'{x-x2/2 dx = inCne-t2/2.
,0 27rr

1.3.6 Theorem. { 1 Hn } is an orthonormal basis of L2(R, v1).
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PROOF. (i) We show that the polynomials Hn are dense in L2(R, vj). Oth-
erwise there would exist p E L2 such that (<pl xk) = 0 Vk = 0, 1, .. .

Let

F(t) _ f 0(v)eity-o2/2dv.

Setting t = a + ir, we have

f
V

1l
1/2 i/2

J
Iv(v)Ie-,2

/2e-1vdv < {Je_2te_t?2/2dv] .

Thus 1-7.8.4 can be used to differentiate under the integral sign, showing
that F is an entire function of t. Since

F(k) (0) = ill f vkcp(v)e-92/2dv = 0

for every k, F = 0. Applying the inverse Fourier transform, we see that
p = 0.

(ii) The polynomials Hk are linearly independent since the coefficient of rk
in Hk is 1.

(iii) We show that the functions (k!)' 2 Hk form an orthonormal system. If
s > k, then

(HkI Ha) = (d8bklll) = 0,

since d'bkI = 0. Ifs = k, then d'b'1 is the product of s! and the coefficient
of the highest-degree term of H,; that is, d'b'l = s!.

1.4 Hermite series expansion

1.4.1 Theorem. Let g be a COO function on R such that g and all its
derivatives are in L2(R, vl ). The expansion of g with respect to the basis

(nt) H. is
00

9(x) _ W'L,.[g(n)]Hn(x),

n=0

where E(g(n)) = (g(n) 11) and g(n) is the nth-order derivative of g (g(O) = g).

PROOF. Let g(x) _ En 0 be the Hermite series expansion of g.
Integrating term by term and using the orthogonality of the polynomials
Hk, we have

f+* x
= Ckk!

Moreover, (Hkig) = (bkllg) = (lldkg). Hence Ck E= .
k!
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1.4.2 EXAMPLE. eXp(- 2 + tx) =E' (x).n=0 n! r+

PROOF.

and

exp + tx 1 = t° exp I - +
tx\

1(-2
2 2

jO0 (-2
x2

to exp + tx I exp (- 2) 2. to
0

1.4.3 Corollary. X2#1S x =tai Jti z-(n+') exp(_ 2 + zx)dz, where -y
simple closed curve around the origin in C.

PROOF. This follows from 1.4.2 and the Cauchy formula.

is a

1.5 The Ornstein- Uhlenbeck operator on R

1.5.1 Definition. G = 6d = - d + x d is called the Ornstein-Uhlenbeck
operator on R-

1.5.2 Lemma. GHn = nHn.

PROOF. By 1.3.4(iv).

1.5.3 Definition. Let Pe be the operator defined by

Pof(y) = f f(xcos0+ysin0)e-x2/2
J J 00 27[

REMARK. The integral above takes the same value for 0 and 7r - 0; it
depends only on sin 0.

1.5.4 Proposition.

(i) (Pawl') = (VI Poi');
(ii) dPe =sin OPed;

(iii) Pe6 =sin 0 Me;
(iv) GPO = PeG;
(v) PeHH = (sinO)'HH.

PROOF. The measure exp(-
x2 +0)# d is rotation invariant. (i) follows

from this; (ii) is immediate; (iii) follows from (i) and (ii) and the fact that
(6&) = (WId7'). (ii) and (iii) imply (iv).

(v) is proved by alternately using (iii) and the fact that 6Hn = H,,+1:

POHn = PO6Hn-1 = sinO 6POHn_1 = sine 6Pe6Hn_2 = sine 0 62POHn_2.

Iterating this gives

(sin@)nonPOHo = (sin0)n&n1 = (sinO)nHn.

1.5.5 Proposition. Let 0(t) = aresin(e t), where t > 0. Then
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(i) dt (Pe(t) f) = -G(Pe(t) f ), and
(ii) Po(t) o Pe(r) = Pe(t+t')

PROOF. Since Pe depends only on sin 0, we can set 0(t) = aresin(e-1). Then

d +oo
x sin o+ y cos 8 f' (x cos 9+ y sin 0

a-z2/2dX
(Pef)(y) = f

oo
(- ) )

2ir
= ycos9Pe(df)(y) -sin OcosMe(d2f)(y),

where the second term comes from an integration by parts. Using 1.5.4(ii),

d (Pef)(y) = (ydPef (y) - d2Pof (y)) s 0 .

Since d9 = - sin B
dt cos e ,

d = -IPe(t)f.
(PO(t)f) =

d9(Pef)de

This proves (i).
We now prove (ii). By 1.5.4(v), Pe o Pe, Hn = sin(n9) sin(n9')Hn. Since

sin 0(t) sin 0(t') = sin 0(t + t') = e-(t+t'), this implies (ii) for finite linear
combinations of Hermite polynomials and hence, passing to the limit, for
L2.

1.5.6 Lemma. (Pe f)(y) = f+' f (x)Ko(x, y)e z'/2 d, where00 2

Ke(x,
y) - 1

cos 9 (
exp

2 cost 9 .[2xysino-sin2o(x2+y2)I

PROOF. This follows from the change of variables u = x cos 0 + y sin 0 in
1.5.3.

1.5.7 REMARK. Since the operator Pe is self-adjoint with respect to the
scalar product (see 1.5.4(i)), the kernel Ke is symmetric in x and y.

1.5.8 Examples of expansion in Hermite series

(i) Hn(x cos 9 + y sin 9) = Ep=o (p) (cos 9)p(sin 9)n-pHp(x)Hn_p(y)

(ii) Ke(x, y) = E 0 N'n8 ° Hn(x)Hn(y) = exp(sinOblb2)1(x)1(y), where

b1=-/+xdd-.- and b2=- +y y.
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PROOF.

(i) ysinB) = n!Hn-p(xcos0 + ysinB) if
p < n. To evaluate P9Hn-p, use 1.5.4(v) followed by Theorem
1.4.1.

(ii) Expand y - Ke(x, y) in a Hermite series, using Theorem 1.4.1:

+oo r d \\ n +oo
sf I (-1 K9(x, y), a-v2/2 dy r Ko(x, y)(b"1)e-v /2

dy

00 dy 21r f. 2z

f
- r+00

J Ke(x, d2 .

00

By 1.5.4(v), this equals (sinO)nHn(x).

1.6 Canonical basis for the L2 space
of a Gaussian probability space

1.6.1 Notation. Let RN be the set of real-valued sequences and let 800
be the Borel algebra on RN. Projection onto the first n coordinates is
denoted by irn : RN Rn. It follows from the structure theorem (IV-6.6)
that there exists a measure v on RN such that the direct image (irn). v of v

under 7r satisfies (7rn)iv = vn, where vn = rJ" e- ?/2 dxi. Bn denotesi-1 2a

the inverse image under irn of 800.

1.6.2 Proposition. The increasing sequence {8n} of a-algebras is a fil-
tration of the space (RN, B00, V).

The space (RN, B00, v) is a Gaussian probability space and B00 is the
a-algebra generated by the Gaussian variables Xn of projection onto the
n th coordinate.

PROOF. Follows from the definitions.

1.6.3 Proposition. Let f E L2(fl, A, P) There exists f : RN -' R such
that

f(w) =

PROOF. By Dynkin's theorem, IV-1.5.4.

1.6.4 Lemma. If (11, A, P) is a Gaussian space and {Xn } is a sequence of
Gaussian random variables that generates A, then Xn E L2P(), A, P) for
1 <p<00.

PROOF. The integral Jx2Pe_t2/2dx converges.

1.6.5 Definition. Let E be the set of sequences of integers (n I, n2i ... , 0, ...)
for which all but finitely many terms are zero. For p = (n1, . . . , nk, 0 , ...) E
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£andwE 1, let
k

7 ip(w) _ H..(Xi(w)),
i=1

where H,,, are the Hermite polynomials on R. We write p! _ f 1 nil.

1.6.6 Theorem. {(p!)-1/211 (w)} is an orthonormal basis of L2(i2, A, P).

PROOF. We prove the theorem for R2. By N-3.5.1, linear combinations
of the form f = E fihi, where fi(S1), hi(t2) E L2(R,vl), are dense in
L2(R2, v2). Approximating the functions fi, hi by their expansions in Her-
mite polynomials shows that the set of functions of the form

Hk (WHk, (b)

generates L2 (R2, exp(- -{el) 2 ).

Moreover,

k1

1

1.6.7 Theorem (Taylor-Stroock formula). Set

E(apf)= f 81I8a2...8k4f(x1,...,xk)vk(dx)

f o r p = (n1, n2, ... , nk, 0, - , 0, 0, ...). If E(8p f) exists for every p, then

f (w) = E P! E(apf)xp()
PC-6

, E(8PJ)Hp(x1, ... , 2n).
I

pE£
P!

The proof proceeds as in 1.4.1. 13

1.7 Isomorphism theorem. There exists an isomorphism
L2 (0, A, P) and L2(RN, V).

W between

1.8 The Cameron-Martin theorem on (RN, B,,., v):
quasi-invariance under the action of .tn

1.8.1 Proposition. Let (fl, A, P) be a probability space and let {Mn} be
a sequence of integrable random variables such that supra E(IMnIP) = Cp <
+oo for p > 1. Then is uniformly integrable.
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PROOF. fA IIMnIILPIIIAIILQ < CpP(A)1/4 for A E A (cf. IV-
- -5.7.1).0

In what follows, we consider the Gaussian probability space (RN, B v)
(cf. 1.6.1 and 1.6.2).

1.8.2 Notation. Let 0 be the space of sequences x = (xl,...,xn.... ) E
RN such that E001 x; < +oo. The scalar product (xly) = E°_1 x;y; is
associated with the norm IxI = E x; on t2. Let ry : RN -+ RN denote
the mapping defined by ry(x) = x + y and let (ry).v denote the image of
the measure v under ry. (See IV-1.4.3.)

1.8.3 Theorem (Cameron-Martin). If y E P2, then the image measure
(ry).v is absolutely continuous with respect to v and the density is given by

00 00
d((

dv
v) (z) = exP > ykzk - 1

> yk2)
(k=1 k=1

PROOF. Let Sn(z) _ Ek_1 ykzk

(i) The sequence {Sn} on (RN, Bao, v) is an L2 martingale relative
to the filtration {Bn}. Hence {Sn} converges a.s. Let Sao _
limn_.ao Sn. Then Sao < +oo a.s.

(ii) The a.s. convergence of Sn implies its convergence in distribu-
tion. This follows from N-1.8.5.

(iii) Set Mn(z) = ykzk 2
Ek=1

yk)
The sequence {Mn} is a martingale relative to the filtration {Bn} and,

for all n, E(Mn) = 1. By Fatou's theorem (IV-5.6.3), the limit Mao _
limn-,c Mn exists a.s.

(iv) E(MM) = E exP Pykzk - 2P2 > yk
k=1 k=1

But

Hence

k=1

Mn is therefore bounded in LP and hence uniformly integrable. By IV-
5.8, Mn converges in LP to Mao. Thus Mn is the conditional expectation
of Mao. Given a function f depending on the first r coordinates, we have

E [exP((PYk)zk - 2P2 yk = 1.

k=1

n

E[MMJ = exP 2 (P2 - P) > yk

E((ry).f) = E(Mrf) = E(Maof)

The equality E(Mr f) = E(M00 f) extends by continuity to all f in LP. 0
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REMARK. Although v is not invariant under the Cameron-Martin trans-
lations ry, the measure (rry).v is absolutely continuous with respect to v.
This property of (rrr).v is called quasi-invariance.

2 Gaussian Sobolev Spaces

2.1 Finite-dimensional spaces

2.1.1 Notation

Let f E L2(Rk, vk). We write E(f) = f f (x1, ... xk)dvk. By 1.5.8(iii), f
can be expanded in a Hermite series. If p = (P1, ... , pk) E Nk, we set
p! = PI!P2! ... Pk! and IPI = P1 + P2 + ... + Pk.

Then

HP, (x1) ...Hpk (xk)

P1...pk
pl

Let

Then

/' Hp. (x1) ... Hpk (xk)
fP1...Pk (xl, ... , xk) = CPl...Pk (f )

P!

{
IIJ IIL2(vk> IlfpI...Pk II

Ir kiz

P

For a C' function o: Rk -, R, we have the partial differential operators

19;w = aw and bow = (-81 +

2.1.2 Operators on L2(Rk)

An operator T defined on the polynomials can be extended to a formal
operator on L2(Rk) as follows: for f E L2(vk), let

Tf = (x1)...HPk(xk))
Pi Pk

The domain of T consists of those f E L2 such that T f E L2.
Restricting our attention to differential operators, we consider 8;, b,, and

G = F,*=, 6,8j. Let

(i) Gf=Eb38,f
= E CP1...Pk(f)IPI

Hp.(xi).HPk(xk)

9 P1...Pk
p!
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and let the gradient operator be defined by V f = (8f,. .. , 8k f ). For z =
(zl,... , z3,. .. , zk), with z3 E L2(vk), j = 1, ... , k, we set

k

bz = ?oJZi.
1

When 8; f E L2(vk) for j = 1, ... , k, we set

k 1/2

(iii) IIVfII =
E(a,f)L2(vk)

]=1

Similarly, if 8;, ... 8,2f E L2(Vk) djl i ... 'j,' we set

1/2

(iv) IIo2ffI = ((qsla)2f)2

j 1 .)7

IIv'fII = ((93, ..a;.f)2
.iI,...)1

We intend to determine the domains of the operators V, V2, and G; that
is, the set of functions f E L2(vk) whose images under these operators are
in L2(vk). Recall that the Sobolev space W,!10 was defined in 111-3.4.3.

2.1.3 Definition.

Dp(Rk) = f E W,!z0 (Rk) : IIV'IIILP(vk) < +oo

s=o

2.1.4 Theorem. Dp(Rk), with the norm OfIIDa = Ek=o IlokfIILp(vk), is
a complete space.

PROOF. By 111-3.3.6.

2.2 Using Hermite series to characterize D8 (R)
in the Gaussian L2 space
Let f E L2 = L2(R, vi) and let En o cn(f) o fn be its Hermite
series expansion.
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2.2.1 Definition. On L2, the formal operators d, b, and C are defined by

4 =>2Cn(f)_H_

= Cn+l(f)Hj i

n>1
n.

n>O
n.

bf =ECn(f)Hnj 1 = Jcn(f)(n+ 1)(n+
Hn+I

1)!'
n>0 n>0

n>1

The reader can easily verify that C = bd.

2.2.2 Lemma.

(i) Icn(f)I2=n!IIfn1I2L2.

For an integers > 1,

(ii) cn(d'f) = cn+a(f);
(iii) cn(b' f) = 0 if n/ < s and ca(b' f) = (nn_s Cn-e(f) if n > s;

(iv) cc(G'f) = n'c.(f)
PROOF. (i) follows from 1.3.6, since fn = c(f)1.

The other identities follow from the definitions and from the relations
dHn = nHn_1 and 6Hn = Hn+i.

2.2.3 Proposition. Let f E L2 and let En>0 fn be its Hermite series
expansion. Then for s an integer, s > 1, properties (i) through (iv) below
are equivalent.

(i) d8 f E L2.

(ii) n'llfn11L2 < +00-
n>1

(iii) f E D, (R).

(iv) b8f E L2.

In particular, D; (R) is the domain of the operators d" and b8 on L2. If
both f and g are in D2(R), then

(v) (df 19) L2 = (f 169)L2.

PROOF. (i) (ii). d8 f = En>o cn+e (f) If since dHn = nHn-1. Hence, by
2.2.2,

IId'f II2 = E lCn+8(f)I2 1 = n n
S)'

Ilfn+.112
n>0 n>O

This proves (ii), since n+' t (n + s)8 as n -, oo.nl
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(ii) (i). If (ii) holds, the series En>0 (f) jf converges in L2 and
d° f E V.

(iv) (ii). By 2.2.1, b8 f = En>o cn(f)(n + 1)(n + 2) ... (n + s)
Hence, by 2.2.2,

II6'fIIL2 _
EICn(f)I2(n+l)(n+2) ... (n + s)

n>o
nt

1:(n + 1)(n + 2)...(n + s)IIfnII2.

n>O

(ii) (iii). We give the proof for the case s = 1. Let W E D; then

f p'(x)f (x) dx = E f '(x)Cn(f) H
x) dx

n>0

-E f V(x)cn(f)nHn!l(x)dx
n>O

-fco(x)df (x)dx.

Hence f E W,2,,.,,. Since df E L2, it follows that f E D2(R).

(iii) (ii). As above, we give the proof only when s = 1. Let c#f be the
weak derivative of f. Then c#f E L2 and df = En>0 cn(df) If for cp E D,
and hence

f <,'(x)f(x)ds = - f cp(x)a '(x)dx.

This implies that cn+i (f) = and (ii) follows.

(v) is proved by using the orthogonality of the Hermite polynomials. 0

2.2.4 Proposition. If s = 2p, then (i), (ii), (iii), and (iv) of 2.2.3 are
equivalent to

(vi) Of E L2.

PROOF. We verify only that (ii) =*- (vi). Since Gf = En>0 C" (f )nom,

IIGfII2Cn(f)2f! n2IIfnII2
n>0 n>0

This implies equivalence when s = 1. The proof for s > 1 is similar. O

2.2.5 Lemma. The following identities hold:

(i) IIaflIL2 = IId1IIL2 + IIfIILa
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and if k is an integer, k > 1,

(ii) Ildkbf11 L. = IIdk+1 fII L. + (2k + 1)IIdkfIIL2 + k2Ildk-1f112

PROOF OF (i).

11611lL2 _ (n + 1)IIfnIIL. = IIfoIIL. + E(n + 2)Ilfn+l IILT`
n>0 n>0

IIdfIIL2 (n+1)Ilfn+1IIL3.
n>0

Hence

IlbfIILz - IIdfIIL. = IIfOlIL2 + IIfn+111L. = IIfIIL2.
n>0

PROOF OF (ii). Since ci+1(bf) = (n + and Icn(f)12 = n!llfnlliz.

Ildkbf112 _

Since

n>O

we can compute II dkbf 11 L2 - Ildk+1 fII L, by observing that

(n + k + 2)!(n + k + 2) (n+k+1)! _ (n+k+l)!
[(2k+1)n+k2+4k+2].

(n + 2)! n! (n + 2)!
0
2.2.6 Lemma (Differentiation of composite functions). Let g E
D4(R) and let µ = g.v1 be the image of v1 under g. If p E L4(µ) and
dcp E L4(µ), then p o g E D2(R) and d(W o g)(x) =

PROOF. d is the extension of the differentiation operator . By Holder's
inequality, if f1 E L4 and f2 E L4, then fl f2 E L2.

2.2.7 Lemma. If f E D4(R) and g E D4(R), then fg E D2(R) and

(i) d(fg) = fdg + gdf.

If f ED4 (R) and g ED4 (R), then fg E D2(R) and2 2 2

(ii) G(fg) = L(f)g + G(g)f + df dg.

PROOF. (i) and (ii) follow from identities obtained when f and g are dif-
ferentiable, since d (respectively C) is the extension of the operator d
(respectively bd - see 1.5.1). Holder's inequality implies that d(fg) E L2
andC(fg)EL2.

F,Icn+k(6f)I2 x 1 = >I cn+k-1(f)I2(n + k)2
11

n>0
n

n_>0 n
(n +k)1.

112(n + k)Ilfn+k-1
n>0

I1dk+1 fII L. _ (n +n!+ 1)1
IIfn+k+1112,
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2.3 The spaces D;(Rk) (k > 1)
2.3.1 Proposition. Let f E L2(vk) and let f = EP,

Pk
fp,...p,, be its

Hermite series expansion. Then the following statements are equivalent:

(i) Ilof II E L2(Rk, vk)
(ii) IPllIfpl...Pk11L2(vk) < +00.

PI...Pk

(iii) f E D2(Rk).

PROOF. Note that
tCp1...pi-,PJP,+1...Pk (f) = Cp1...p,-1P,-1P,+1...pk (ajf)

Hence

2

IIa3f11L2(vk) = E
pjJCPJ...Pk(f = E Pjllfpl...pk112

P,...pk P p1...Pk

(i) a (ii) then follows from the relation II Vf I112 = E;1 II aj f ll L2(Vk) For
(ii) q (iii), see Proposition 2.2.3.

2.3.2 Proposition. Let f = EPl Pk f ,1 ... Pk be the Hermite series expan-
sion off E L2(vk). The following properties are equivalent:

(i) Gf E L2(Vk)

(2i) IPl llIPI...Pk 112 < +00.

(iii) f E D2(Rk).

PROOF. See Proposition 2.2.3.

2.3.3 Definition. Let Vrf = (8j1aj2...8jrf)j,...jr.
If aj18j2 ... 8jr f E L2(vk) for every j1 ... ,3r, then

11VrfI12 f112
_ 1119j, ... ajr L2(vk)'

jl...jr

2.3.4 Proposition. If f E D2(Rk), then

II' I1112 =
11V21IIL2

+ IIof 1112.

PROOF. It suffices to check the formula for differentiable functions. In this
case, C = Ej b,8j, where bj = -aj + xjaj.

Hence

Il,CfllL =
(bjlajlflbjza,2f)_ 1

1=1.....k jl.32 j
jz=1.....k

where we have used 1.3.2(i) and (ii).



244 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations

2.4 Approximation of LP(RN, v) by LP(R", v)

Let X,: RN -+ R denote projection onto the ith coordinate and let Bn be
the a-algebra generated by the random variables {X1}1<1<" Then {Bn}n
is a filtration (see 1.6.2).

2.4.1 Lemma. Let f E LP(RN, v). Then

(i) f" = EB" (f) ista martingale in LP(RN, v) and
(ii) n-.oo Ilfn - J IILP(RN) = 0. Thus f is the final value of a

martingale in LP(RN) relative to the filtration {8n} (see IV-
5.5.2).

PROOF.

(i) By IV-5.1.5.
(ii) By V-1.8.1 and IV-5.8.1.

2.5 The spaces Dp(RN)

Next, starting with the Gaussian Sobolev spaces Dr(Rk) on the finite-
dimensional space Rk and using the martingale approximation of Lemma
2.4.1, we will study the Gaussian spaces DT(RN). If f E LP(RN, v), the
function fn = EB" (f) depends only on the first n variables:

n(xl,...,xn).f"(x) = SPn\X1(x),...,X"(x)) =

2.5.1 Definition. We say that f E DPr(RN) if fn = On (f) E DT(RN) for
all n and sup" IIfnIID'(RN) < +00.

In this case, we set IIfIIDP(RN) = sup,. IIf,IID'(RN)

2.5.2 Operators on L2(RN, V)

Let f E L2(RN, v) and let its Hermite series decomposition (see 1.6.7) be

1
f (x) = E 1 cp(f II HP; (xt),

PE6 1=1

where p = (pl,...,pk,0,...,0).

As in 2.1.2, we set

1k
8tf(x) = F 1icP(f)8j (HH(x2))

PEE
p! z=1
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and

r 1 k
Gf(x) = L.. plc (f)'C (HHP.(xz)).

PEE i=1

2.5.3 Lemma. Let f E D2(RN). Then

(i) 8jEB"(f) = EB"(8if) if j<_ n;

(ii) BLEB-(f) = 0 if j > n.

PROOF. Let f E L2(RN, v) and let its Hermite series expansion be

f = CP,...P1(f) 1WHP,(xl)...HPk(xk)
P, ,....P1.

Then

PBIE "(f) _ cP,...Pk(f) ;;-, HP,(x1)...Hp.(xk),
P, .....Pk
1<k<n

P

245

since the variables Xi are independent and EB" (HP(xk)) = 0 if k > n. (i)
and (ii) follow immediately. 0

2.5.4 Lemma. Let f E D2 (RN) and let fn = EB" (f ). Then, fork E N,
the sequence {8kfn}FEN converges in L2(RN) and

(i) 80 = lim OkEB"(f).

PROOF. Let k be fixed. Then {8kfn} is a martingale by 2.5.3(i); by 2.5.1
it is an L2 martingale, which converges by IV-5.3.3

To pNrove (i), note that 8kf - limn 8kfn is a continuous linear map from
Di (R ) to L2(RN) which vanishes on the set of functions depending on a
finite number of coordinates. O

2.5.5 Lemma. Let f E D2 (RN). Then L f = limn- , EB" (G f) .

PROOF. Check that EB" (G f) = CEB" (f) on the Hermite series decompo-
sition of f. 0

2.5.6 Theorem. Let f E L2(RN, v). Then the following statements are
equivalent:

(i) f E D2(RN).
(ii) For every k, k > 1, 8kf E L2(RN, v) and Ek IIBkf III, < +00.

Furthermore, the space D2(RN) is complete in the metric given by the
norm IIfIID = Ilf1I2+EkII8kf112 .
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PROOF. (i) (ii): By 2.5.1,

n

IIfnIID; = II fnIIL2 + IlajfnllL2
<- C,

j=1

where c is a constant independent of n.
Thus

E,=1 118j fn II L. < c for p < n. As n --- co, this inequality persists:
FP'j=1 II ajf II L < c. Letting p - oo gives (ii).

(ii) = (i): The same procedure as for (i) (ii).
To show that Di (RN) is complete, let {f (9) } be a Cauchy sequence in

D2(RN) and set fn(9) = EB,. (f (Q)). Then

II44) - fnk)IID-(RN) - 11f (q) - f(k)IID,(RN).

Since D2(Rn) is complete, the sequence {fn(q) }qEN converges in D2(Rn) to
fn. It is straightforward to show that {fn}nEN is a martingale associated
with the filtration {Bn}; it converges to f E Di(RN). O

3 Absolute Continuity of Distributions

3.1 The Gaussian Space on R

Let g : R - R, g E L2(R). We seek sufficient conditions on g for the direct
image measure g.v1 to be absolutely continuous with respect to Lebesgue
measure on R.

3.1.1 Lemma. Let 0 be a finite positive Borel measure on R. Suppose that,
for every cp which is C' and bounded on R,

(i) I Jo'(.)d0() <I csup l'(0I
fER

Then 0 is absolutely continuous with respect to Lebesgue measure dl; on R,
and its density k is in L2(de) and satisfies

J
k2dl; < cO(R) and k(l:) < cdC a.e.

PROOF. Let cp be a bounded increasing C' function such that cp(-oo) = 0.
Then W(C) = f {. cp'(u)du.

It follows from (i) that, for every nonnegative continuous function gyp',

+00f < c f
00
0 Vp (u)du.

(ii) extends to nonnegative Borel functions.
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Hence, for every nonnegative Borel function, f f du = 0 implies 9(f) = 0.
By the Radon-Nikodym theorem (IV-6.2.1), 9 is absolutely continuous with
respect to Lebesgue measure. Let k(C) _ 42. Then k(1;) > 0 and, since

I Csup ko(0I,if (C)k(C)A <
CER

k(1;) < c 4 a.e.
It remains to check that the density k = de is in L2(de). This follows

from the inequality

f cf c9(R).

3.1.2 Corollary. If g E L2(v1), IIdgII' i E L2(vi ), and 6(3'g-) E L1(vi ),
then F1 = g.vi is absolutely continuous with respect to Lebesgue measure,
and its density k = dji/dl; is in L2(dty).

PROOF.

Jw'()d(.vi)() = Jd(g(z))dz/i = (" (9(x))I1)

and

fd(wp o 9)(x) x
dg(1x)

dvi

(`Po9Ib(d9)) <sup(ERkP(0If b(dgI dvi.

The result follows from Lemma 3.1.1.

3.1.3 Let g E D2(R), the Sobolev space of order 2. Let A = {x E R
dg(x) # 0}, let 1A denote the indicator function of A, and let lAV1 be the
density measure 1A with respect to vi.

3.1.4 Theorem. The image measure g.1AV1 is absolutely continuous with
respect to Lebesgue measure.

PROOF. Let f(x) = 1 + Since g E D2(R), we have dg E D2(R)

and 5f EL2(R).LetA,={x:dg(x)>e}. When x E A, and0<e<1,
d9(x)f(x) > 2

Let ip be a nonnegative function defined on R. Then

J'()g*(dg(x)f(x)vi) = J(iI o 9(x))d9(x)f(x)dvi(x)

2

f(0
o 9(x))dvi(x) =

2
JO(C)(9- (IA V1)) -



248 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations

Suppose that PA = g.(lAV1) is not absolutely continuous with respect to
Lebesgue measure; then there exists a compact subset K of R such that

fKdd=0andPA(K)>0.

Since A =

PACK) = J1K(9(x))1A(x)dvl(x) = n mof 1K(9(x))1An (x)dz1(x) > 0.

Hence there exists a such that PA. (K) > 0. Let {un} be a sequence of
continuous functions on R such that (i) 0 < u, < 1, (ii) limn_.00 u, ) _
1K(Z), and (iii) for some R, un(C) = 0 if ICI > R.

Set f-R un(a)dA. Then, by the dominated convergence theorem,

UM <pnW =1 1K(A)dA = 0.
R

Moreover,

((Pn o 9I6f) _ o 9)dgl.f) >_
2

J 6Pn o 9) ' 1A. V1

Since ((Pn o 916f ) -, 0 and f cpn (dc) -' PA. (K), this gives a contra,
diction.

3.2 The Gaussian space on RN

Let 9 = (91, ,gd) E L2(RN, v) be a function with values in Rd. We now
seek sufficient conditions for the direct image measure g. v to be absolutely
continuous with respect to Lebesgue measure on Rd.

3.2.1 Notation. If g = (gl, ... , gd) is such that 9k E Di (RN) for k =
1,...,d, we set

V9k = (a19k, a29k, , 19j9k. )
By 2.5.6, El=1 Ilaj9klf +00-

3.2.2 Lemma. If

00 00

+oo and +00,
j=1 j=1

then
010

E(aj9klaj9P)L2(,,) < +00.
j=1

PROOF. This follows immediately from Holder's inequality.
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3.2.3 Notation. We set
W

(i) IV9kI2(x) = EIojgkl2(x),
j=1

00

(ii) (VgklVgp)(x) = 1:8jgk(x)8jgp(x)
j=1

The series (i) and (ii) are convergent in L1 (v).

3.2.4 Definition. The matrix aik = ((VgiIV9k)(x)) i= 1,...,d is called the
k=1,...,d

covariance matrix associated with g.

3.2.5 Lemma. If g = (91, ... , gd) : RN -> Rd and, for k = 1, ... , d,

9k E D2(RN), then
Qik E Ll (RN, v).

PROOF. This follows from Holder's inequality. 0

3.2.6 Notation. Let g = (91, , 9d) : Rd. Suppose that gi E
Di (RN) for i = 1,... , d and that the inverse matrix orik1 exists v-a.e. We
set

d 1

(1) zjk = Ei=1 0ik 8j9i,
(ii) zk = (zlk, z2k,... , zjk,...).

Lemma. If gi E D4(RN) for i = 1,. .. , d and o,-1 E L4(RN), then
Ej Ilzjkllil(,,) < +oo and, for every C' function p: Rd R,

(i) E 9 AP o 9)(x)zjk(x) = 9(x))86j
PROOF. 8j(sp o 9)(x)

= Fp=1 (9(x))8jgp(x), and hence

o 9)(x)zjk(x) = ap(9(x)) aik18j9iOjgp-
p-

This implies (i). 0

3.2.7 Definition. When gi E D4(RN) for i = 1, ... , d and °ik1 E D4 (RN),
we set

d d

bzk = d(Lgi)oikl -
i=1 i=1

3.2.8 Theorem. For every function b E DI(RN),

E(8jI0Izjk)L2(v) = (0Ibzk)L2(v)
j
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PROOF. Ej(ajlI4zjk)L2 = (*I F_d 1 bj(oik'ajgi)) and, recalling that a, _

z and b. dam, + x3, one can easily show that

6 (fa;9i) = fb,939i - a;fa;9i
The relation follows by summing over j. 0
3.2.9 Proposition. Let w: Rd -> R and let g be such that gi E DZ(RN)
for i = 1, ... , d and oikl E D1(RN). Then

d(9v) =
J

(coo 9)(x)bzk(x)dv(x).
fRd 09G

PROOF.

f 27 J f(g(x))dv(x) = E(Oj(CpO9)I Zjk)L2(i) = (po9lb=k)
j

The last equality follows from 3.2.8. 0

3.2.10 Lemma. Let 9 be a finite measure on Rd. Suppose that there exists
a constant C such that

(i)
I

-< C sup i = 1,...,d,
CERd

for every bounded Cl function W on Rd.
Then 9 is absolutely continuous with respect to Lebesgue measure dt' on

Rd.

PROOF. For the case d = 1, see 3.1.1. We prove the lemma when d = 2.
Let W be a compactly supported Cl function on R2. We first show that

(ii) (Jfk2
IWI2dxldx2) <

2 \J I axl dx1dx2 + J I ax dX1dX2
1/2

To see this, let

v(xl) = sup Ic0(xl,x2)I and w(x2) = sup Ip(xl,x2)I
x2ER x, ER

Then

(iii)

Since

(iv)

and

(v)

IwI2dxldx2 < J v(xl)dxl fw(x2)dx2.
fR2

a
a (x1,x2) dx2

w(x2) < I I. x (xl,x2)I dxl,
-00 a

(ii) is proved.
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Let u be a nonnegative continuous function with compact support such
that

(vi)
Jfu(xi,x2)dxidx2 = 1.

For f > 0, we set uE (x) _ i u (f) and

cpf(x) =
JRZ

uE(x - A)9(dA).

For every continuous compactly supported function Vi,

J
J4 u(z)iP(A + fz)dz B(dA).

Since V' is continuous, ip(A + fz) tends to iI'(A) as e - 0. It follows that

limo l pE(x)z/J(x)dx = Jib(A)9(dA).

The measures <pE(x) thus converge vaguely to 0(dx) as f - 0.
If iisC',

If aE v5dx j _axi

It follows from (i) and (vii) that

if
Hence

f APE a dx l .

ax, Odx < C sup IV(A)I
AER2

2dx<C.I.2axi
For every f, by Holder's inequality,

ifI <_ [JII2]If 1/2

L

If IV2I2] 1/2 .

It follows that

l ifl = if /'B(dA)1 C (f I,012)1/2
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The mapping 0 H f 0(A)9(da) is thus a continuous linear functional on
L2(dx). This implies the existence of k E L2(dx) such that

r 0(A)9(da) = I ti(x)k(x)dx.o

3.2.11 Principal theorem. Let g = (gl, ... , gd) : RN - Rd be such that
g: E D2(RN) for i = 1, ... , d.

Let a{k = (Vgilogk) be the covariance matrix. Suppose that Q-1 E
D4(RN). Then the image measure g.v is absolutely continuous with re-
spect to Lebesgue measure on Rd.

PROOF. By 3.2.9,

f d 9W
sup I'(t)I.1lbzk(x)Idv(x).

fERd

Let C = supk f Iazk(x)ldv(x); then C < +oo and hypothesis 3.2.10(i) is
satisfied. 0



Appendix I

Hilbert Spectral Analysis

The spectral theorem in finite dimensions makes it possible to write a
Hilbert space as a direct sum of eigenspaces of a hermitian endomorphism
u. If the dimension is infinite, direct sums are replaced by "continuous
sums". We will apply Bochner's theorem to obtain the spectral theorem by
Fourier analysis.

1 Functions of Positive Type

Let f be a function defined on an abelian group G. f is said to be of positive
t y p e if, f o r any given g1i ... , ga E G, the matrix

(f(9: - gj)), 1 < i, j < n,

is positive hermitian. That is,

EAj)kf(9j -9k) >O, VA1i...,An E C.
j,k

In particular, taking a single element, we find that the matrix

C f (0) f (9)
f(-g) f(0)

is positive hermitian. That is,

1.1. f(0) > O, 7(g)=f(-g), and 1f(9)12 < f(°)
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Let P(G) denote the set of functions of positive type on G. Observe that
P(G) is a cone:

A f+ ph E P(G) V f, h E P(G) and A, p E R+.

1.2 Proposition. Let r be an abelian group and let r be its dual. Then

(M+ (r)) ' C P(f ).

PROOF. Let p E M+ (r), A) E C. Then, writing (-y, j) for j(-y),

q(A) = Fµ(7) - 7k)A)Ak = 7i-

AjAk(?i,'Y) -7k) = EAiAi('y,'Y))(7,'Yk) =

whence

9(A) =
J

IEA)(7,7,)IZdp(7) >_ 0.0

Algebra structure of the cone of functions of positive type

Proposition. Let f and h be functions of positive type on the abelian group
G. Then their product f h is of positive type.

PROOF. Set k = f h and let g',. .. , g E G be given. We consider the matrix

k(gi - gi) = f(gi - gi)h(gi - gi)
and apply the following lemma.

1.4 Lemma. Let (A') and (B,), 1 < i, j < n, be positive hermitian matrices.
Let

Cj=A;B;, 1<i,j<n.
Then C, is a positive hermitian matrix.

PROOF. Let X (respectively YY) be an orthonormal system of eigenvectors of
A (respectively B), and let pe (respectively -ya) be the corresponding eigenvalue.
Then

A ) = EµQXQXQ and B; _ 7QYQYa.
Q a

E p.-faXIYaXQYa-
a.a

and po,a =µo-yo. Then

C; = EP.,04,04.0.

I E A+Zo.sI2,

the matrix ZQ aZQ a is positive. C is thus a linear combination, with positive
coefficients, of positive matrices, and therefore is positive.
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2 Bochner's Theorem

Bochner's Theorem. Let Z be the group of integers. A function f on Z is
of positive type if and only if there exists p E M+(T) such that µ(n) = f (n).
PROOF. (G) This follows from 1.2.
(=) Consider

gr(n) = rlnl where r E [0, 1).

Then P.(n) = gr(n), where Pr(9) denotes the Poisson kernel (see III-2.2.1),
and thus gr E P(Z). By 1.3, kr = fgr E P(Z). Moreover, by 1.1,

Ikr(n)I 5 If(0)Irlnl

Set

(i) kr(O) = E kr(n)e 'nB

n

The right-hand side is an absolutely convergent series and kr(9) E C(T).
Next, let Ap = e-'8 if IpI < N and Ap = 0 otherwise. Then, since

kr E P(Z),

(ii) 0 < GN(O) =
2N

1

- 1 Apagkr(P - q), b'N E Z.

We now rewrite GN (9) in a slightly different form by noting that Apaq =
n:e'(9-P)o and summing over p - q

(1_2)1)e't°kr(n).GN(9) _ E
nl<2N-1

Letting N - +oo, the absolute convergence of (i) and inequality (ii) show
that

(iii) kr(9) > 0.

A positive linear functional can thus be defined on C(T) by setting

lr(u) =
J

27r

u(8)kr(B)d
0

Integrating the series in (i) term by term yields

(iv) 0411 = 110) =
j21

kr(O) = f(0)

Moreover, lr(e`9B) = f(q)r1gl -- f(q) as r -. 1.



256 Appendix I. Hilbert Spectral Analysis

Hence, if Q(9) is a trigonometric polynomial,

(v) lim lr(Q) exists.r-1

Since the trigonometric polynomials are dense in C(T) (111-2.2.8) and
the lr are equicontinuous by (iv), it follows that

lim lr(u) exists for every u E C(T)

andand defines a positive linear functional, that is a Radon measure p E
M+(T). In particular,

µ(n) = lim lr(eiie) = f (n).O

3 Spectral Measures for a Unitary Operator

Let H be a complex Hilbert space, with hermitian inner product (h1Ih2)
and norm (hlh) = Ih112. A linear operator U is called unitary if it is invert-
ible and U* = U-1. Recall that the adjoint A' of a linear operator A is
defined by the identity

(Ahi Ih2) = (h, IA*h2)

Theorem on existence of spectral measures. Let U be a unitary op-
_erator on the Hilbert space H. For a trigonometric polynomial P(O)

E Cm e'-", let

(z) P(U) _ >2 CmUm.

Given h E H, there exists a unique µh E M+(T) such that, for any trigono-
metric polynomial P,

(ii) (P(U)hlh) = f P(9)dµh(O).

Ah is called the spectral measure of U relative to h.
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PROOF. To prove the uniqueness of µh, write (ii) for a trigonometric poly-
nomial consisting of a single monomial. This gives

µ(m) = 'y(m), where 7(m) = (Umhlh),

and uniqueness follows from 111-2.2.8. To prove existence it suffices, using
Bochner's theorem, to prove that 7(m) is a function of positive type on Z.
We must therefore consider the sign of

I = > Ap)g7(p - q).
p.q

Since U is unitary, U-1 = U', whence 7(p - q) = (UphIUgh). Thus
4Ag7O - q) = (ApUphlAgUgh) and

I = E(ApUphl AgUgh).
Rq

But this can be written

I = (>.'tPU1hI>AU1h) = L..: ArUrh
p q r

2

>0.0

4 Spectral Decomposition Associated
with a Unitary Operator

Theorem. Let U be a unitary operator on the Hilbert space H. Let £ (BT)
be the algebra of bounded complex-valued functions which are measurable
with respect to the Borel algebra of T. Then there exists an algebra homo-
morphism

f :,C'(T) -' End(H)

that associates the operator U with the function eie and preserves conjuga-
tion. That is,

(WW = 0(f)
PROOF. Recall that the scalar product on H can be obtained from the
norm by the following polarization identity:

4(h1Ih2) = IIh1 + h2
112 - IIh1 - h2 112 + IIih1 + h2 112 - Ilihi - h2 112.

Polarized spectral measures are defined by setting

47hl,hs = µh1+h2 - µh1-h2 + µihl+ha - Ashl -hs
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Thus, for every trigonometric polynomial P, it follows from polarizing 3(ii)
that

(i) (P(U)hi I h2) = JP(8)dlfht,h3(8).

Fixing f E G°°(BT), we define a sesquilinear functional of by

gf(hi,h2) = JTf(9)d1,h2(0)

This integral is well defined since f is a bounded Borel function. We have
the following upper bound:

Igf(hi,h2)I <_ 411hi1I Ilk 11 IIfIIG°

Hence fixing hl gives a conjugate linear functional in h2, and this form is
represented by a scalar product. There exists a bounded linear operator
4 (f) such that

(ii) (4'(f )hi Ih2) = LfhI.h2dhl, h2 E H.

Moreover, when fn converges to f while remaining bounded, Lebesgue's
dominated convergence theorem shows that

(iii) (4'(fn)hllh2) - (4'(f)hilh2)
In order to show that is an algebra homomorphism, it suffices, using (iii),
to check the assertion for trigonometric polynomials. In this case, (ii) and
(i) show that 4 (P) = P(U), and the formula

(PIP2) = 4t(P04(P2)
clearly holds. Finally, by the polarization identity, 7h,,h2 = 7h,,h,, which
implies that

(4?(f )hi Ih2) = (hi I4'(f )h2).O

Corollary. Let A E BT. Then 04A) is an orthogonal projection and

0(lA)4'(1B) = 4 (lAnB)

PROOF. (4'(1A))* = 40A) = 4'(lA) and (O(1A))2 = 4'(12) = 4'(IA).
These properties characterize orthogonal projections. 0

Corollary (Spectral decomposition). Let I'(H) denote the set of closed
vector subspaces of H. Let r(H) be given the structure of an abstract
Boolean algebra, with products given by intersections and complements by
orthogonal complements. Then 1 defines a homomorphism p from the
Boolean algebra BT to r(H) by setting

cp(A) = Image of 40A)-

Moreover,
C p(A).
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5 Spectral Decomposition
for Several Unitary Operators

Let Ui, ... , U be n pairwise-commuting unitary operators on the same Hilbert
space H:

UkUi=UIUk, 1<k,l<n.
With every trigonometric polynomial

imbel

on T", we associate the operator

cm,... ...U ".

5.1 Theorem on existence of spectral measures. To every h E H there
corresponds a positive measure µh on T" such that

f P(9)dsh(e).T^

This is proved by generalizing Bochner's theorem from Z to Z". Theorem 5.1
leads to the simultaneous spectral decompositwn of the operators Uk, 1 < k < n,
i.e. a representation of £ in End(H).





Appendix II

Infinitesimal and Integrated Forms
of the Change-of-Variables Formula

In this appendix, we give a new proof of Theorem 11-4.4. The variational
method used here, coupled with the ideas of Chapter V, yields a proof in
the setting of Gaussian spaces.

1 Notation

Let tL be a Borel measure on Euclidean space R". Let {T1 : t E [0,11} be
a family of R"-valued measurable mappings, defined on an open set D of
R" and with the following properties:

(i) Tt : D -+ D' C R' is a diffeomorphism. The inverse diffeomor-
phism is denoted by At.

(ii) Vx E D the mapping t -+ Ttx is differentiable. The differential
is denoted by (3dt-T) (x).

(iii) Vt E [0,1] the direct image (At).p under At of the measure p is
absolutely continuous with respect to p. The density is denoted

by Gt = d((At)+p)
dµ

Let f : R" -- RP be differentiable. Jj(x) denotes the Jacobian of f at the
point x.
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1.1 Definition. The vector fields

Z,(y) _ (T) (Aty)

are called velocity fields associated with (Tt)telo,ll

REMARK. y .--+ Z, (y) defines not only a vector field on D' but also a differ-
entiable trapping from D' to R".

1.2 Definition. Let Zt be a vector field defined on D. Z is said to admit
a divergence with respect to IL if there exists a function 6,,Z : D -+ R such
that

J JJ(x)(Z(x))dx = -J f(x)bt,Z(x)dx

for every differentiable function f : R" - R with support contained in D.

2 Velocity Fields and Densities

2.1 Theorem. Let Z, be the velocity field associated with Ti . Then the
d((At)«µ)density Gt (x) = dIi is given by

'Gt(x) = Go(x) exp [it, bµ(Zs)(Tsy)ds]
0

PROOF.

(i)

a. e. dµ.

11) f
(x)Gt(x)dll(x) = IDt f(Aty)dpt(y)

Differentiating with respect to t gives

dtf (Aty) = Jf(Aty) rAt(y)

Furthermore,

(ii)

and hence

(iii)

Since

(iv)

J(f.A,)(y) = J!(Aty)JA,(y)

dtf(Aty) = J(f.A,)(y)JAt(y)-IdAt(y)

(TtoA,)y=y
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we have
JTT(Aty)JA,y = Id,

whence (JA,y)-1 = JT,(Aty). Differentiating (iv) with respect to t gives

(v) (jTt) (Aty) = -JT,(Aty)dtAty

Substituting into (iii), we find that

and

dtf(Aty) _ -J(foA.)(Y) (T) (Aty)

JD
(f o At)(y)(6,,Zt)(y)dµ(y)

Jf(x)(ozt)(Ttx)Gt (x)dp(x),

where the first equality follows from Definition 1.2 and the second from (i).
Differentiating (i) with respect to t shows that

dtGt(x) = (6,.Zt)(Ttx) . Gt(x) p-a.e.

O

2.2 Corollary. Let p = dx be Lebesgue measure on R" and suppose that
To = Id. Then Vt E [0,1]

ID
f(Ttx)Idet JT,xldx = f(x')dx', where D' = T(D).

PROOF. It suffices to verify the relation

dt
logdetJTx = 6(Zt)(Ttx),

where
d

Zt(y) _ (dtTt) (Ary)

and 6Z is the divergence of Z with respect to dx. To do this, we use the
following two lemmas.

2.3 Lemma.

PROOF.
d (JTt)(y) = (Jzt)(Tty) o JTey

dt(JT')(y) = J(f, T') (Y) = J(Z'oTT)(Y) = (Jz )(Tty) o JTeyO
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2.4 Lemma. Let (Bt) be n x n matrices such that aBt = MtBt, wheret
the (Mt) are also n x n matrices. Then A log Idet BtI = trace M.

PROOF. Let 4,(t) be the ith column of Bt. It follows from

d 40i(t)i = r,(Mt.)ik0k(t).l
k

that

Hence

t

det (I + tM) = exp r trace (M(I + sM)-1)ds.

dtdc*bi (t), ... , 4)n(t)] = E(Mt)iidet['t1(t), ... , 4n(t)].
i

CONCLUSION OF THE PROOF OF COROLLARY 2.2.

b(Zt)(Tt) =

REMARKS. (1) Compare 2.2 with 11-4.4.1, the change-of-variables theorem.

(2) Let Tt = I + tM, where M is an n x n matrix. Suppose that I + tM is
invertible for every t E [0, 1]. Then A (I + tM) = M(I + tM)-1(I + tM).
Letting A denote the exterior product, we can express the determinant of
A + I as A(t) = det(I + W) = Ek=Q(traceAkM)tk. By 2.4,

Q (t) = trace M(I + tM)-1.

Thus

2.5 Corollary.

PROOF. By 2.2,

and

dt-k:(t) = (Mt)ikqkk(t)-
k

t
d

[vol (Tt(D))] = JT(D) bZt(?l)dy

d [vol (TT(D))] = L I dt logdet JT,(x)J x Idet JT,(x)fdx
L

JT,(x)Idx.=
ID

Applying 2.2 once more proves the assertion. 13
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3 The n-dimensional Gaussian Space
2

Let R" be given the measure p = rl 1 2n and let (xIy) _
Fn

j=1 xiyi denote the scalar product of two vectors x, y E R".

3.1 Lemma. Let Z be a differentiable vector field on 0 C R". Then `dx E 0

bµZ(x) = trace Jz(x) - (Z(x)Ix).

3.2 Theorem. Let (Tt)tEIo,11 be the mappings defined in Section 1 and let

Ht(x) = d((`41).µ)
d

. Then
µ

Ht (x) = Ho(x)det IJTt(x)IeXP[-1 (Z8(T8x)ITsx)] ds.t
0

PROOF. This follows from Lemma 3.1 and Theorem 2.

EXAMPLE. Translations of the Gaussian space.

For a differentiable mapping h : R" - R", set Tx = x - h(x) and
Ttx = x - th(x). Let At be the inverse of Tt. Then Atx = x + th(Atx).

The velocity fields associated with Tt are

Zt(x) = I JiTt) (Atx) = -h(Atx).

We have

and

(Z8(Tax)ITax) = -(h(x)Ix) + s(h(x)Ih(x))

exp[-
J

t(Z8(T.x)ITax)ds] = exp[t(h(x)Ix) - 2 (h(x)Ih(x))]
0

Compare this with the Cameron-Martin theorem (V-1.8.3). In particular,
ifTx=x - y andTtx=x - ty, then Atx = x + ty, det(JTT(x))= 1, and

d(( )
tz

d
µ) = exp t C` xiyi - 2 Vi

p i=1 i=1

REMARK. This method can be extended to the infinite-dimensional Gaus-
sian space.





Exercises for Chapter I

Problem I-1. If Q is a family of subsets of a set X, we denote by a(g)
the Boolean algebra generated by Q and by o(Q) the o-algebra generated
by Q. A partition of X is a family P = {P,,}JEJ of nonempty subsets of X
such that PinP;=0 ifi34 jandUiEJ=X.
(1) Let P = {Pj}jEJ be a partition of X. Characterize

(a) a(P) if J is finite,
(b) a(P) if J is infinite,
(c) a(P) if J is finite or countable, and
(d) o(P) if J is uncountably infinite.

(2) Show that the family A of subsets of X is a Boolean algebra generated
by a finite number of elements if and only if there exists a partition P =
{ PJ } jE J, with J finite, such that A = a(P).
(3) Let A be a a-algebra on a countable set X. Show that there exists a
partition P of X such that A = Q(P).
(4) Show that a a-algebra never has a countable number of elements.

Problem 1-2. Let Q be a family of subsets of a set X such that X E Q and
Q is closed under finite intersections. An r -family is a family R of subsets
of X which is closed under finite intersections of pairwise disjoint sets and
such that, if BI and B2 E 7 . with BI C B2, then B2 \ BI E R. Let r(Q)
be the smallest r-family containing Q. Show that r(Q) equals the Boolean
algebra a(Q) generated by Q.
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METHOD. Consider the families

Rl = {B : B E r(g) and A n B E r(Q) VA E Q} and
R2 = {B: B E r(Q) and An B E r(g) VA E r(Q)},

and show that they are r-families.

Problem 1-3. Let Q1 and Q2 be two nonempty families of subsets of a set
X which are closed under finite intersections. Let Al, A2, and A denote
the o-algebras generated by 91, 92, and 91 U 92, respectively. Let P be a
measure of total mass 1 on (X, A). Show that if

P(A1 n A2) = P(A1)P(A2) for all Al E 91 and A2 E 92i

then the same equality holds for all Al E Al and A2 E A2.
METHOD. Consider the families

M1 = (A: A E A and P(A n A2) = P(A)P(A2) VA2 E 92} and
M2 = JA: A E A and P(A1 n A) = P(A1)P(A) VA1 E Al },

and apply the theorem on monotone classes, using Problem 1-2.

REMARKS. 1. This result is especially useful in probability theory. Thus, if
X = R2, A, (x) = {(xl,x2) : x1 < x}, and A2(y) _ {(xl,x2) : x2 < y},
then 91 = {A1(x) : x E R} and 92 = {A2(y) : y E R} are closed
under finite intersections and A is the set of Borel subsets of R2. If P is a
probability measure on (R2, A), it is the distribution of a pair (Xi, X2) of
real random variables. By Problem 11-3, (X1, X2) is a pair of independent
random variables if and only if

P[X1 < x; X2 < yJ = P[X1 < xJ P[X2 < yJ

for all (x, y) E R2.
2. The result can be extended from two factors to n factors by constructing
monotone classes .Mk for k = 1, 2, ... , n and using induction on k.

Problem 1-4. Let x = {xn}°_o and let

QO°={x:xnER bnEN and 11x1100=suplxnl<00I
111

n

efine T : P°O -i P°° by (Tx)o = xo and (Tx)n = xn - xn_1 if n > 0.D
(1) If e = (1,1, ... ,1, ...), show that the equation Tx = e has no solution
x in Q°°.
(2) Let F = be the image of T. Assume without proof that there exists
a continuous linear functional f on f" such that f (x) = 0 for every x in
F, f(e) = 1, and sup{If(x)I : 11x110 S 1} < +oo (Hahn-Banach theorem).
Show that if x = {xn}n__o is such that xn > 0 for every n, then f(x) > 0.
(3) Let S : to' - e°° be defined by (Sx)n = xn+1 if n > 0. Show that
f (x) = f (Sx) for every x in Q°°.
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(4) Show that lim infn_+o0 xn > 0 implies that f (x) > 0. Conclude that
lim infn-+. xn < f(x) < lim sup,,-+. xn for every x E t°°.
(5) Let Ac Nandlet 'A Et°°bedefined by1A(n)=0ifn3& Aand
1A(n) = 1 if n E A. If P(A) = f (1A), show that P(AU B) = P(A) + P(B)
if A fl B = 0 and that P does not satisfy the countable additivity axiom.

REMARKS. The linear functional f above is called a Banach limit; it cannot
be written down explicitly since it is constructed by means of the Hahn-
Banach theorem and the axiom of choice. Similarly, it is impossible to
give an explicit example of an additive but not a-additive measure on a
a-algebra.

Problem 1-5. Let X be an uncountable set and let A be the a-algebra
generated by the family of 1-element subsets of X. (See Problem 1, question
(ld).) Let P : A -- [0,1] be defined by

P(A) = 0 if A is finite or countable
P(A) = 1 if A is cocountable.

(A is cocountable if A° is finite or countable.) Show that P is a probability
measure on (X, A).

Problem 1-6. Let (X, A, tz) be a measure space and let f be a nonnegative
measurable function on X. For every t > 0, set

F(t) = µ{x : f (x) > t} and G(t) = µ{x : f (x) > t}-

(1) Assume that f(X) C N and that f is integrable. Prove that

Ix

00 00

f (x)dp(x) = E F(n) _ G(n)
n=0 n=1

METHOD. Set Ecn = µ{x : f (x) = n} and show that f x f (x)p(dx) _
En00=0

nPn-
(2) Assume that f ° is integrable for a > 0. Prove that

+oo +oo
= a tc-1G(t)dt.Ix f°(x)du(x) = a f

to-1F(t)dt f
METHOD. Show that (2) holds for a = 1 by considering the functions

n
fn(x) = 2 2, (zll, where [a] means "the greatest integer <_ a", and using the
monotone convergence theorem. The general case can then be reduced to
the case a = 1.

Problem 1-7. If 0 < r < 1, we write the Poisson kernel as

P,.(8) = 1+2rncosn8= I-r2
1 - 2r cos 0 + r2n=1
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(1) Show that r2+cos8(1-2r)>0if0<0<7rand1_ r < 1. Deduce
that O2Pr(9) < 1_-_B2 and evaluate limr.l fo 92Pr(9)de.
(2) Show that f0 O2Pr(B)dO = 3 + 41r n1

and use this to derive
another expression for limr,1 f0 82Pr(6)d0.
(3) Use (1) and (2) to find the sums of the series °_1 i--, n 1 zn 11 ,

and 1 : 0 0'n = 1 nj'
(4) Express fo (log(1- x))23 as the sum of a double series and show that
fo (log(1 -x2))2 3 =2E-1 n
Problem 1-8. Evaluate E- 1

i by using the integral fo 1d-+X and
the monotone convergence theorem.

Problem 1-9. Let (X, A, µ) be a measure space and let x - f (x) _
(f1(x), f2(x), ... , f"(x)) be a measurable mapping from X to Rn. Suppose
that R" is equipped with a norm 11 11 such that x '-+ 11f (x)II is integrable.
(1) Show that ff is integrable for every j = 1, 2, ... , n.
(2) Defining fx f (x)dµ(x) in Rn by

f 1(x)ji(dx), ... , f f1(x)lL(dx))( x x

show that II fx f(x)p(dx)II < fx Ilf(x)II ,(dx).

METHOD. On the dual space (R")* consisting of linear functionals a : v
(a, v) on R", introduce the dual norm IIaII* = i a" and use the

fact that IIvII = sups 0
no

REMARKS. 1. The shortest path between two points is a straight line. Con-
sider R" with the Euclidean norm Ilvll = [v1 + v2 + vn]

1/2 Let X =
[0, 1] with Lebesgue measure. (See Chapter II.) Let F be a function from
[0, 1] to R" such that the derivative f = F' exists everywhere and is con-
tinuous. Then fo II f (x) II dx can be interpreted as the Euclidean length of
the curve described by F, and II fo f (x)dxll = 11 F(1) - F(0) II is the length
of the line segment with endpoints F(0) and F(1).
2. Case of equality. It can be shown that, when the unit ball B is strictly
convex (that is, when IIv1II = lIv2II = IlAv1 + (1 - A)v2li = 1 for A E [0,1]
holds only for A = 0 or 1), the inequality is strict unless there exist v E R"
and a function g(x) > 0 such that f (x) = g(x)v µralmost everywhere. The
application to the Euclidean length of a curve is immediate.

Problem I-10. Let X, X1,. .. , X", ... be measurable functions from a
space (E, E, µ) to an open set fl of Euclidean space Rd such that

Ve>0 µ({IIXn-XII >E})--+0 asn -+oo.
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(1) Show that Vc > 0 there exists a compact set K C 12 such that p({X f
K}) < E and, for every n, µ({X 0 K}) < E.
(2) If f :12 Rm is continuous, then YE > 0

/L({IIf(X,) - f(X)II > E}) -10 as n -- oo.

Problem I-11. Let (X, A, p) and (Y, B. v) be measure spaces such that
µ(X) and v(Y) > 0. Let a : X -+ C and b : Y -p C be functions, respec-
tively A and B measurable, such that

a(x) = b(y) u 0 v-almost everywhere on X x Y.

Show that there exists a constant A such that a(x) = A µ-a.e. and b(y) = A
v-a.e.

Problem 1-12. On a measure space (X, A, µ), let f and g be complex
functions such that If IZ and I9I2 are p-integrable and consider the function

h(x, y) = If (x)9(y) - f (y)g(x)I2.

(1) Show that 0 < fxxx h(x, y)dµ(x) dµ(y), and use this to prove the
Cauchy-Schwarz inequality:

U, f(x)9(x)dp(x) Z < f If(x)I2dp(x)
I.

Ig(x)I2dp(x)x x
METHOD. Consider first the case where f > 0 and g > 0.
(2) Show that equality holds in Schwarz's inequality if and only if either
g(x) = 0 p-a.e. on X or there exists a constant A E C such that f (x) -
Ag(x) = 0 µ-a.e. on X.

METHOD. Problem I-11 can be used.

Problem 1-13. If X and Y are measurable real-valued functions defined
on the measure space (Sl, A, u) such that µ((Y < x < X)) = 0 for all real
x, show that µ({Y<X})=0.

Problem 1-14. Let (X, A, p) be a measure space, where µ(X) is not nec-
essarily finite, let (Y, B) be a measurable space, and let f be a measurable
mapping from X to Y. Suppose that there exists a sequence { B } in B
such that Un 1Bn = y and µ(f-1(Bn)) < oo for every n.
(1) Show that v(B) = µ(f (B)) defines a measure v on (Y,B) (called the
image of p under f).
(2) Show that if g E L'(v), then

f 9(f(x))µ(dx) = f 9(y)v(dy)
X Y

REMARKS. 1. The image measure always exists when p is bounded; this is
used extensively in probability theory, in Chapter IV. It does not always
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exist if µ(X) = +oo. For example, if X = R2 is equipped with Lebesgue
measure p = dx dy and f : R2 -' R = Y is the projection f (x, y) = x, the
image of p does not exist.
2. If X and Y are metrizable locally compact spaces which are countable at
infinity and it is a Radon measure on X, a sufficient condition for existence
of the image measure is that, for every compact set K in Y, f -1(K) should
be relatively compact. See problems II-11, 12, and 13 and 111-3.

Problem 1-15. (1) Let f be square integrable on 10, 1] and let F(x) _
fo f (t)dt. Applying the Cauchy-Schwarz inequality to the product f x 1
on [0, x], show that limxlo x-1/2F(x) = 0.
(2) Let g be square integrable on [0, +oo) and let G(x) = fox g(t)dt. Ap-
plying the Cauchy-Schwarz inequality to the product g x 1 on [a, x], with
a sufficiently large, show that limZ....+eo x-1/2G(x) = 0.

REMARK. It is easy to replace L2 by LP, with p > 1. If .1 + a = 1, we find
that x-+0and x-1/QG(x)-+0 as x-'+oo.
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Problem 11-1. Let I be an open interval in R, equipped with the Borel
algebra B. A function F : I -+ R is called increasing if x < y implies that
F(x) <- F(y). We set F(x - 0) = limyl . F(y), F(x + 0) = limyl,, F(y), and
DF = {x : F(x - 0) 0 F(x + 0)1.
(1) If F : I - R is increasing, prove that DF is finite or countable.

METHOD. If [a, b] C I, show that D(n; [a, b]) = {x E (a, b) : F(x + 0) -
F(x - 0) > n!} has a finite number of elements.

(2) If F : I - R is increasing, prove that there exists exactly one measure
µ >- 0 on (I, B) such that

F(y) - F(x) = lA([x,y])

for all x, y such that [x, y] C I and x, y 0 Dp.
Prove that µ({a}) = F(a + 0) - F(a - 0) for every a in I.

METHOD. Uniqueness: Use the fact (11-3.2) that a Borel measure that is
locally finite on an interval is regular, and hence determined by its values
on open sets.
Existence: Imitate the construction of the Riemann integral. For every con-
tinuous function f with support contained in I, define the integral f f dµ
as the limit of integrals of step functions

j:g(x;)(F(x;) - F(x;-i)).
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(3) Let p be a locally finite nonnegative measure on (I, B) and let xo E I.
Set F(x) = p([xo, x)) if x > xo and F(x) = -p([x,xo)) if x < xo. Show
that F is increasing and that F(y) - F(x) = p([x, y]) if y 0 DF.
(4) Let a relation on the set of increasing functions on I be defined as
follows: F1 - F2 if there exists a finite or countable subset D1.2 of I such
that F1(y) - Fi(x) = F2(y) - F2(x) for all x and y E I \ D1,2. Show that
this defines an equivalence relation on the set of increasing functions on I.
Characterize the equivalence classes in terms of measure.

REMARKS. 1. Since perhaps as many as 90 per cent of the measures used
in practice are measures on R, a description of all the Radon measures _> 0
on an open interval is important. Historically, the first measures > 0 were
considered by Stieltjes, precisely by means of increasing functions.
2. With every increasing function F on an open interval I, we can thus
associate a measure p(dx), which is often written dF(x) or F(dx). Con-
versely, given a measure p > 0 on I, an increasing function F satisfying the
hypotheses of part (2) is called a distribution function for p. As we have
seen, a distribution function for p is not unique; we can modify (slightly)
its value at points of discontinuity (the atoms of p) and add an arbitrary
constant. When it is a probability measure on R, there are three traditional
choices for distribution functions:

Fi(x) = u((-oo,x)), F2(x) = p((-oo,x]), and F3(x) = 1[Fi(x)+F2(z)]

The third appears in the inversion formula for a characteristic function.
3. If we consider a measure p > 0 on a closed interval of the form (-oc. b],
[a, +oo), or [a, b], we can define its distribution function as above. However,
two measures can then have the same distribution function but different
masses at the endpoints of the interval.
4. Many identities and inequalities use increasing functions on an interval. It
is essential to express the latter in terms of measures in order to understand
the former; this also gives a systematic method of proof, although not
necessarily the shortest.

Problem 11-2. Specify for which measure on the open interval 1 each of
the following increasing functions is the distribution function (see Problem
11-1).

(1) 1 = R
(a) F(x) = x (b) F(x) = [x] (c) F(x) = arctan z

(2) 1 = (-1,+1)
(a) F(x) = tan 2 (b) F(x) = (signx)lxl1/2 (c) F(x) = aresin x

(3) 1 = (0 +oo),

(a) F(x) = logx (b) F(x) = -[T] (c) F(x) = (x - 1){'

(Notation: [a] = sup{n : n E Z and n < a}, a+ = sup{0, a}, and sign a =
+1 if a > 0, sign 0 = 0, and sign a = -1 ifa<0.)
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Problem 11-3. Let I be an open interval in R. A function G is called
convex if its right derivative lim(to[G(x + e) - G(x)] = G:}(x) exists for
every x in I and the function x ' G+(x) is increasing. (See 1-9.2.1.)

Prove that G is convex if and only if there exists an increasing function
F on I such that, for every xo in I,

X

G(x) - G(xo) =
J

F(t)dt.
xa

METHOD. For one direction, show that G' (x) = lim(lo F(x + e). For the
other, consider H(x) = f o G' (x)dt and use without proof the fact that,
if a function has a right derivative that is zero in an open interval I, it is
constant in I.

REMARK. It can be shown that the definition of convex functions given
here is equivalent to the following property:

G[(Ax + (1 - A)y] < AG(x) + (1 - A)G(y) if x, y E I and A E [0, 1].

For a proof of this equivalence and further details of convex functions, the
reader may consult Artin' or Zygmund2.

Problem 11-4. Let I be an open interval in R. Recall (see Problem 11-3)
that a function G : I - R is called convex if there exists an increasing
function F on I such that, for every xo in I,

X

t)dt.G(x) - G(xo) = Ix: F(

If it is the measure on I given by the distribution function F (see Problem
11-2), prove the following assertions.
(1) Ifxo<x,with xandxoEI,then

r
G(x) - G(xo) = (x - xo)F(xo + 0) + J 1ixo,xi(u)(x - u)p(du)

t

= (x - xo)F(xo - 0) + J 1ixp,xi(u)(x - u)i(du).
t

(2) If xo > x, with xo and x E I, then

j1[z,x01(u)(xG(x) - G(xo) = (x - xo)F(xo + 0) - - u)A(du)/=
(x - xo)F(xo - 0) -

J
1[x,xo)(u)(x - u)µ(du).

t

'E. Artin, The Gamma Function (New York: Holt, Rinehart and Winston
1964), 1-6.

2A. Zygmund, 7hgonometric Series (Cambridge: Cambridge University Press
1959), 21-26.
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REMARKS. If p has no atoms and xo < x, we can replace the notation
g(u)p(du), since the lat-fi 1(x0,J(u)g(u)du = f! 1[..,.j(u)g(u)du by f."

g(u)p(du) _ter is unambiguous in this case. If x < xo, we write f,'
- f 1[,.,..l(u)p(du), which permits us to state the relation of Chasles:
fQ = fQ + fe for arbitrary a, b, and c in I. However, this relation does
not hold if p has atoms.

Problem 11-5. Let Ml be the set of measures p > 0 on (0, +oo) equipped
with its Borel algebra, such that fo 1[x,+.)(u)up(du) < oo for every x > 0.
(1) Let G be a convex function on (0, +oo) (see Problem 11-4) such that
limx_+, G(x) = 0. Prove that there exists a unique p in Ml such that

+00

W G(x) (u - x)+p(du) for every x > 0,
0

where a+ = max(O, a), and that f0+00 up(du) = limx.o G(x) < +oo.
(2) Conversely, let p E Ml. Show that (i) defines a convex function G on
(0, +oo) such that lim=es+,,. G(x) = 0.

METHOD. Let F(x) be as in Problem 11-4 and show that F(x) < 0 and
that limx-+, a xF(x) = 0. Then use Problem 11-4.

REMARK. The measure xp(dx) is not necessarily bounded: G(x) = x gives

p(dx) = z
Problem II-6. Let M be the set of measures v > 0 on (0, +oo) equipped
with its Borel algebra, such that v([x, +oo)) < +oo for every x > 0. If
k is a positive integer, we denote by Ck the set of functions g defined on
(0,+oo) such that G(x) = (-1)k-ig(k-r)(x) exists and is convex and also
that lime-+co g(x) = limx,+oo G(x) = 0.
(1) If g E Ck, show that rthere exists a unique v in M such that

(a) g(x) _ 0QI (1 - u)+]
k

v(du) for everyx > 0.
o LL

(2) Conversely, let v E M. Show that (i) defines an element of Ck.

METHOD. (1) First use Taylor's formula to show that lima.+0 g(l(x) = 0
for j = 0,1, ... , k - 1, then use Problem 11-5.

REMARK. It is clear that the functions fu(x) _ [(1 - u)+] k play the role of
extremals in Ck; formula (i) shows that the functions in Ck are "barycen-
ters" of the fu. Formula (i) plays a role in the probability distributions of
Polya and Askey. (See Problem 111-5.)

Problem II-7. Let u be a decreasing function defined on (0, +oo) such
that u 0 as x -+ +oo and fo x2u(x)dx < oo. Show that, for every
y>0,

f+oo 4 +oo
y2 J u(x)dx <

9
- x2u(x)dx (K.F. Gauss).

v 0
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Describe in detail the case of equality.

METHOD. Consider a measure p on (0, +oo) for which -u is a distribution
function.

Problem 11-8. Let u be a decreasing function defined on (-a, +oo), with
a > 0, such that u 0 as x +oo and f aO' u(x)dx < +oo. Show that

JO u(x)dx < y + a ,/-a
u(x)dx Vy > 0,

and describe in detail the case of equality.

METHOD. Consider a measure µ on (-a, +oo) for which -u is a distribution
function.

Problem II-9. Let F be an increasing function on [a, b] and let f be an
integrable function on [a, b]. Show that there exists a number in [a, b] such
that

rr r

J b

t
bf (x)F(x)dx = F(a) / f (x)dx + F(b) J f (x)dx.

a a

(Second mean value theorem for integrals)

METHOD. Show that this can be reduced to the case where F(a) = 0
and F(b) = 1, and consider a probability measure it on [a, b] such that
F(x)=p([a,x])forxV DF={x:a<x<b and F(x-0)<F(x+0)}.
Problem II-10. Let p be a probability measure on [0, 1]. Set m = fo xp(dx)
and o2 = fo x2u(dx) - m2. Show that a2 < 4. Describe in detail the case
of equality.

Problem II-11. Let f be a positive decreasing function on (0,1] such that
fo f (x)dx = 1, and let A E [0, 1]. Let P(dx) = Abo(dx) + (1 - A) f (x)dx,
where bo is the Dirac measure at the origin, let m(A, f) = fa xP(dx), and
let a2(A,f) = fo x2P(dx) - m2(A,f)
(1) Show that a2 (A' f) < 1/9. Describe in detail the case of equality.
(2) Show that a2 (0, f) < 1/9. Is this inequality the best possible?

METHOD. If Df is the set of points of discontinuity of f in (0, 1], consider
the measure v on (0, 1] such that f (x) = v([x,1]) if x V D f and show that
µ(dt) = tv(dt) is a probability measure on (0, 1].

REMARK. If G is a convex function from (0, 1) to [0, 1), it can be shown that
the measure P on [0,1) which is the image under G of Lebesgue measure
on (0, 1) is of the type considered in the problem. Hence

2

1 G2(x)dx = f
J 1

G(x)dxl < g.
0 0
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Problem II-12. Let n be a positive integer and let a, a1,. .. , an, c1, ... , cn
be real numbers such that a1 < a2 < ... < an and cj > 0 for j = 1, ... , n.
Let C and R denote the complex and the real numbers completed by a
point at infinity oo. Consider the function f : C - C defined by f (x) = oo
if x E {oo, al, ... , an} and

n

f(x) = x + a - c' if x O {oo,al,...,an}.x-aj
j=1

The function T : R - R is the restriction of f to R. Lebesgue measure on
R is the measure m such that m({oo}) = 0 and the restriction of m to R
is the usual measure.
(1) Let y E R. Show that the equation in x given by f (x) = y has exactly
n + 1 real roots {xj(y)}? o such that aj < xj(y) < aj+1 (with the con-
vention that as = -oo and an+1 = +oo). Show that Fn,j=0 x'j (y) = 1 and
conclude that T preserves m. That is, for every F in L1(m),

f_R
F(T(x))m(dx) = LF(x)m(dx).

(2) Prove by induction on the integer k > 0 that, for every z E C,

j=o

(3) Let g be a nonnegative rational function such that fR g(x)m(dx) < oc.
Prove that there exists a rational function gl with the same properties and
such that the image g(x)m(dx) under T is gl (x)m(dx). Conclude from (2)
that, if z1 is a pole of gl with multiplicity m1 > 0, there exists a pole z of
g with multiplicity m such that f (z) = z1 and m1 < m. Calculate gl when

f(x) = x -

x

and g(x) _ (x2
2

+
1)2.

(4) Let z = a+ib E C, with b > 0. The Cauchy measure yz on R is defined
by 7 (dx) _ 6)

+6 . Prove, using (3), that the image of -y, under T is
Yf(z)

REMARKS. 1. A Cayley function is a function of the form

f(x) =Cox+a-

[xj(y) - Z]-k-1 xj(y) = k Caz
Jk [y - f

(z)]

n
cjx - aj'

j=1

where c j > 0, j = 0, 1, ... , n and a, al, ...,an are real. If co = 0 and n = 1,
it is a positive linear fractional transformation; that is, f (x) = Cz+d with
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a, b, c, and d real and ad - be > 0. It is easy to see that all Cayley functions
can be obtained by composing positive linear fractional transformations
with the Cayley functions corresponding to co = 1.
2. It is easy to see that if f is a positive linear fractional transformation
and T is its restriction to R, then the image of yz under T is yf(z). This
observation, the remark above, and result (4) of the problem show that the
property holds for all Cayley functions.
3. Conversely, let T : R - R. be a rational function such that, for every z
with positive imaginary part, the image of yz under T is a Cauchy distribu-
tion yzi (where zl depends on z). It can be proved that T is the restriction
to the real axis of a Cayley function.
4. On the other hand, a Cayley function with co > 0 maps Lebesgue mea-
sure m to com. If co = 0, the image measure is no longer a Radon measure
on R. For example, f (x) y maps m(dx) toV .

Problem 11-13. The half-plane R. = {(x, y) : x E R and y > 0} is
equipped with the measure µ(dx, dy) = d What is the image v on
[1, +oo) of this measure under the mapping (x, y) -- v(x, y) = 2y (1 + x2 +
y2) (in the sense of Problem 1-14)?

Problem 11-14. Let {µn}n>o be a sequence of positive measures on It,
each with total mass < 1. Suppose that An converges weakly to #o as
n oo and that

r+00
M = sup

J
x2µn(dx) < 00.

n

(1) Show that An converges narrowly to po as n -> oo.
r+00 +00

(2) Show that f IxIµn(dx) - j jxjpo(dx) as n oo.

00 00

j(3) Show by a counterexample that x2An(dx) does not necessarily
00

+00
tend to f x2po(dx).

00

METHOD. Use Theorem 11-6.8.

Problem 11-15. If g is a measurable function on (0, +oo) which is locally
integrable, and if A = limT.+,,. fi g(x)dx and B = limf-o f' g(x)dx
exist, we say that fo °° g(x)dx exists and equals A + B.

Let f be measurable and locally integrable on (0, +oo) and suppose that
limT.+00 f i f (x) !Lx exists. Let a and b be positive.

Md'(1) Suppose that K = f0'00 f (x) 4 exists and let F be defined by F(x) _
f; f (t)dt. Show that fo [F(ax) - F(bx)) r exists and express the integral
in terms of a, b, and K.
(2) Suppose that L = lim,-o f (x) exists. Show that fo (f (ax) - f (bx))
exists and express the integral in terms of a, b, and L.
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Problem II-16. Writing x-1 = fo e'IIxdy for x > 0 and applying Fubini's
theorem, show that the integral fo sin x exists (in the sense of Prob-
lem 11-15) and compute it. Use this to evaluate the integrals f -(cosax -
cos bx) d' and ff (cos ax - cos bx)4 if a, b > 0. (See Problem 11-15.)

Problem II-17. For an interval I in R, LP(I) denotes the set of real-
valued functions (rather, equivalence classes of functions) whose pth power
is integrable with respect to Lebesgue measure on I.
(1) Show that 17'([O, 11) C Lp([0,1]) if 0 < p < p' < oo. Give an example
of a function in L1([0,11) \ L2([0' 1]).
(2) Give examples of functions in L1(R) \ L2(R) and in L2(R) \ L'(R).
(3) ep is the set of real-valued sequences a = {a"}">o such that > Ia"Ip <
oo. Show that ep (N) D PP(N) if 0 < p < p' < oo. Give an example of a
sequence in e2 \ £'(N).

Problem 11-18. Let R++1 denote the set of pairs (a,p) with p > 0 and
a E R". Euclidean space R" is equipped with the scalar product (a, t) and
the norm IIail. Let

K(a, p) = Knp [IIail2 +
p2] -(n+1)/2

,

where K" is the constant such that fR, K(x,1)dx = 1. The goal of this
problem is to calculate

It (a, p) = J expi (x, t) K(x - a, p)dx,

where t E R".
If f : R++1 - C, we write Do f = -L f and Djf = f for j = 1, ... , n.

f is said to be harmonic in R+}1 if

(Do+---+Dn)f(a,p) =0 for every (a,p) E R.+1

(1) Show that K is harmonic in R++1 Show that, if po > 0 and V =
(21, -2s ), there exists a constant C such that I D;K(a, p)I and I DDDj K(a, p) I

are less than C(1 + IIaiI2)- V for all (a, p) E R" x V and i, j =0,l,---,n-
(2) Let u be a Radon measure on R" such that

JR"
(1 + IIxhh2)-.("+1)/2I,I(dx) < 00

and let F, (a, p) = fR" K(x - a, p)p(dx). Show that F. is harmonic and
that limp-+,. F,(a, p) = 0.
(3) Show that there exists a function g : R" - C such that It(a, p) _
g(pt) exp(i(a, t)).
Use (2) to calculate g.
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REMARKS. 1. In n dimensions, K(x - a, p) is sometimes called the Poisson
kernel; in R", it is sometimes called the Cauchy distribution.
2. The calculation giving Kn = f("2 ).-(n+1)/2 is carried out in Problem
111-4.

Problem 11-19. (1) Let p and v be positive measures on R such that there
exists an interval [a, b] c R with p([a, b]) = p(R) and v([a, b]) = v(R).
Show that p = v if and only ifJRJR

Vn = 0,1, 2, ... .

(2) Let p be a positive measure on [0, +oo) (not necessarily bounded). Its
Laplace transform is the function from R to [0, +oo] defined by

s'-' (Lp)(s) =
00

0
f e'sp(dx)

(a) If Eµ = {s : (Lp)(s) < oo}, show that EM is an interval which, if
nonempty, is unbounded on the right. Give examples where E. = R, 0,
(0, +oo), and [0, +oo).
(b) Use (1) to show that if there exists a number a such that Lp = Lv <
+oo on [a7 +00), then p = v.

Problem 11-20. Give examples of sequences 1 of positive Radon
measures on R such that there exists a positive Radon measure p with

An = p
(1) vaguely but not weakly;
(2) weakly but not narrowly; and
(3) narrowly but not in norm.

REMARK. If the sequence of positive measures i converges vaguely
top and p(X) < oo, then An p weakly, since CK(X) is dense in C0(X).
It should also be noted that narrow and weak convergence coincide when
X is complete.

Problem 11-21. Let X be a locally compact space which is countable
at infinity and let M1(X) be the set of signed Radon measures v on X
such that [vj has finite total mass jjv[j. If is a sequence in M'(X)
such that r = Sup, 11Vn11 < oo, show that there exist v in M1(X) and an
increasing sequence of integers {nk}k 1 such that vf,, v as k -. oo. Show
also that v > 0 if v > 0 for every n.

METHOD. Use Theorem 11-6.6.

REMARK. When X = R, v, > 0, and r = 1, this property is often called
Helly's theorem.

Problem 11-22. On a locally compact space X which is countable at infin-
ity, let p and {p, }n l be positive Radon measures such that p,a converges
vaguely to p as n -' oo.
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(1) If 0 is an arbitrary open set, show that µ(O) < liminfn.,,. µn(0).
(2) Suppose that 0 is an open set with compact closure K and such that
its boundary 80 = K \ 0 has µ-measure 0. Let {Ok}k 1 be a decreasing
sequence of open subsets of X such that flk 1Ok = K. Let fk be a function
equal to 1 on K and to 0 on 0k and satisfying 0 < f(x) < 1 for x in Ok.
(Such a function exists by Urysohn's lemma, 11-1.1.) Show that

fk(x)µ(dx),lim sup µn(0) < Ix
n-oo

and conclude that µn(O) p(O) as n - oo.
(3) If µ and {pn}°O_1 are Radon measures on R, positive and with total
mass less than or equal to 1, show that An converges weakly to µ as n - 00
if and only if

µn((a, b)) -+ µ((a, b)) as n -+ oo

for all points of continuity of the distribution function x '--+ µ((-oo, x)).
If, moreover, µn(R) =p(R) = 1, show that An - µ narrowly if and only

if
µn((-o0, x)) -µ((-oo, x)) as n -' oo

for every point of continuity of the right-hand side.

METHOD. Use Problems II-1 and 11-21 together with Theorem II-6.8.

REMARK. In practice, (3) gives a necessary and sufficient condition for
the convergence of probability distributions on R; it is often taken as a
definition in elementary texts.

Problem 11-23. Let X be a locally compact space which is countable at
infinity, and let µ and {jin}n 1

be Radon measures on X such that An
converges vaguely to A.
(1) If 0 is an open set in X and µ` is the restriction of it to 0, show that
µn converges vaguely to µ' as n - oo.
(2) Show by an example that the statement is false if 0 is replaced by a
closed set.
(3) Suppose that X = R and that An > 0, n = 1,2,.... Let a and b
be real numbers with a < b. Show that there exist numbers p and q and
an increasing sequence of integers {nk}k 1 such that, for every continuous
function f on [a, b],

f fu.,, -' Pf (a) + of (b) + J fit as n -+ oo.
a,bl ia,bi

METHOD. Use Problem 11-21.

Problem 11-24. (1) Let 0 and 0' be two open sets in Rn, let f be a
diffeomorphism from 0 onto 0', and let cp be a measurable function on 0'
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such that fo, cp(x')dx' < oo. Show that

fo v(f(x))IdetJf(x)Idx = j co(x')dx',

where IdetJf(x)I is the Jacobian.
(2) Let a E R U {-oo}. Let f and g be functions satisfying the following
conditions: (i) f is continuously differentiable for x > a; (ii) g is defined
and integrable on [0, +oo); (iii) I f'(x + 2 )I < g(u) for all x > a; and
(iv) both u i. -' ug(u) and u '- f (x + 2) are integrable on [0, +oo). If
F(x) = f f (x+ z )du, show by a change of variables in polar coordinates
that

1 +00 2
AX)(x)

27r
F'(x + 2 )du.

REMARK. The case f (x) = e_x is well known and is used in IV-4.3.2(i).

Problem 11-25. Consider a subset X of R' with positive measure, a
measurable function f : X - R, and a nonnegative locally integrable
function h on X. Let p denote the image in R" of the measure h(x)dx on
X under f (in the sense of Problem 1-14) if this image measure exists.
(1) If X and U are open sets and f is a diffeomorphism from X to U, show
that

p(du) = h(f'1(u))IdetJf-i(u)Idu.

(2) If there exist an open subset U of R' and disjoint open sets X1,
X2,. .. , Xd contained in X such that the restriction fj of f to X3 is a
diffeomorphism on U, and if X \ X3 has Lebesgue measure zero,
show that

d

p(du) = E h(f., 1(u))IdetJf-i (u)I1U(u)du.

.i=1

(3) If X = (0, +00)2, c(x) = x-3/2 exp[-(ax + b/x)J, h(x, y) = c(x)c(y),
and f (x, y) = (u, v), with u = x + y and v = 1/x + 1/y, calculate p.
Conclude from the result that the image of hdxdy under the map (x, y) s-
(x + y, l/x + 1/y - 4/(x + y)) is also a product measure.

REMARKS. 1. The use of the change-of-variables theorem (11-4.4.1) to cal-
culate the image of a measure is important in practice, especially in prob-
ability theory.
2. Problem 11-12 treats a special case of (2) for n = 1.
3. (3) shows that if X and Y are independent random variables of density
Kc(x)dx (a distribution called "inverse Gaussian"), then X +Y and 1/X +
1/Y - 4/(X + Y) are independent. It seems difficult to justify this result
by Fourier analysis.
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Problem III-1. Let G be the group Od of d x d orthogonal matrices, acting
on the Euclidean space Rd. The scalar product and the norm are denoted
by (x, t) and 11thI, respectively. Let u be a bounded complex measure on
Rd, with Fourier transform

µ(t) = JRd exp(i(x, t))p(dx) (t E Rd).

Prove the equivalence of the following three properties:
(1) p is invariant under every element of G.
(2) There exists cp : [0, oo) -- C such that µ(t) = W(IItII) for every t.
(3) The image P. in R of p under the mapping x " (a, x) does not depend
on a when a ranges over the unit sphere Sd_1 of Rd.

REMARK. Naturally, if p is real, then µ(t) = µ(-t) implies that cp is real.
But p > 0 does not imply that cp > 0. Thus, if a is the uniform probability
measure on S2, the unit sphere in R3, o(t) = 9 t
Problem 111-2. Let T be a compact space, let G be a compact topological
group, and let (g, t) '- gt be a continuous map from G x T to T such that
g -+ {(g, t) - gt} is a homomorphism from G to the group of bijections
of T. Finally, suppose that (G, T) is a homogeneous space; that is, for
every tl and t2 in T there exists g such that gtj = t2. Let dg denote the
unique measure of total mass 1 on G which is invariant under left and right
multiplication. (We accept without proof the existence and uniqueness of
dg.)
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(1) If f is continuous on T, show that t F--+ fG f(g-'t)dg is a constant a[f].
Conclude that a[f] defines a probability measure on T which is invariant
under the action of G.
(2) If u is a probability measure on T which is invariant under the action
of G, show that g F--+ fT f [g-1t]µ(dt) is a constant. Integrate with respect
to dg and conclude that p = a.
(3) If (X, A) is an arbitrary measurable space and T is equipped with its
Borel algebra, let T x X be given the product a-algebra. Suppose that G
acts on T x X by g(t, x) = (gt, x). Show that every positive measure µ on
T x X which is invariant under the action of G has the form a(dt) ® v(dx),
where v is a measure > 0 on (X, A). Converse?

METHOD. If A E A is such that pc(T x A) E (0, +oo), show that PA(B) _

o (TI A) defines a probability measure on T which is invariant under G.
(4) Apply the preceding results when T = Sd is the unit sphere of the
Euclidean space Rd+l, where G = Od+1 is the group of (d + 1) x (d +
1) orthogonal matrices and X = (0, +oo). Conclude that a probability
measure P on Rd+l \0 is invariant under G if and only ifs and IIxII are
independent and >rli has the uniform distribution on Sd.

Problem 111-3. In the Euclidean space Rd equipped with the norm IIxII,
let m be Lebesgue measure.
(1) If vo and v1 are the images of m in [0, +oo) under the mappings x F-+ IIxII

and x F--+ 112 (see Problem 1-14), show that

2

where r is the usual Euler function (see, for example, Problem IV-11). Use
this to find vo(dp).

METHOD. Use the formula

/ s

mod( 127r)d frt
expl - I2a2 I dx - 1,

which holds for all a > 0, to calculate the Laplace transform (Lv1)(s)
defined in Problem 11-19.
(2) Keep the same notation m and vo for the restrictions of m and vo to
Rd \ {0} and (0, +oo). If it is a measure > 0 on Rd \ {0} which has density
f with respect to m, use Problem 111-2 to show that the image of it on
(0,+o0) under the map x F--+ IIxII is of the form fi(p)vo(dp) and calculate
the function f, in terms of f. If u is rotation invariant, show that there
exists a function fi : (0, +oo) - [0,+oo) such that fl(IIxII) = f(x) m-a.e.

Problem 111-4. Euclidean space Rd is equipped with the scalar product
(x, t) and the norm lit ii. r is the usual Euler function.
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(1) Use Problem 111-3 to evaluate I =
dx

d+, . If a and t are infd (1 + llxIl2)
Rd and p > 0, use Problem 11-18 to conclude that

r( ) ei(at) pdx = e_1 tll+i(a.t)
7r ip JRd (p2+llx-all2)-s-'

(2) Show that, if x E Rd and p > 0,

2d
d+ 1

)7r
d-1 p - r e-nlltll++(x.t)dt.z J

2 (p2 + IIxIl2)dd Rd

Problem 111-5. Let k be a positive integer. In the Euclidean space R2k-1,

the norm is written lit II and the scalar product (x, t). Consider the map
cp : R2k-1 i-+ [0,11 defined by

ap(t) = [(1 - PItHI)+]k.

(1) Using Problem III-1, show that there exists a continuous function f
[0, +oo) R such that

f(llxlD = J
sk- i

exp(i(x,t))ap(t)dt.
R

(2) Use Problems 111-3 and 111-4 to show that, for every s > 0,

1
I = e-auu3k-'f (u)du = Ck

[foc
e-81(1 - cosu)duJ

0 1

where Ck is a constant.
(3) Show that f _> 0 and that f(x)dx < oo by using Problem II-19
and the sequence of functions f : [0, +oo) R defined by f, (u) = 1 -cos u
and fn+1(u) = ffl f. (u - p)fl (p)dp.

Conclude that cp is the Fourier transform of a probability measure on
R2k-1. Compute it for k = 1 and k = 2.
(4) Suppose that g : [0, +oo) R is continuous and satisfies the follow-
ing conditions: (i) g(0) = 1; (ii) (-1)k-lg(k-1)(X) exists and is convex on
(0, +oo); and (iii) lim=es+ g(x) = limt...+,o g(k-1)(x) = 0. Use Problem
11-6 to show that g(Iltll) is the Fourier transform of a probability measure
on R2k-1



288 Exercises for Chapter III

REMARK. The result of (4) for k = 1 is due to G. Polya (1923), and the
general case to R. Askey (1972).

Problem 111-6. Let C denote the complex numbers. A function p : C -
[0, +oo) is called a seminorm if

(i) p(Az)=IAIp(z)for all AERand zEC,and
(ii) p(zl + z2) < p(zi) + p(z2) for all zl and z2 in C.

(1) Let p : C -+ [0, +oo) satisfy (i). Prove the equivalence of the following
properties:

(a) p is a seminorm.
(b) {z : p(z) < 1} is a convex subset of C = R2.
(c) For all al, a2, a3 such that al < a2 < a3 and a3 - al < ir,

(iii) p(e1°3) sin(a2 - al) + p(et ,) sin(a3 - a2) - p(ea°2) sin(a3 -a 0 > 0-

(2) Let ji be a bounded positive measure on [0, ir). Show that

(iv) pµ(x+iy) = J Ixsina - ycosalµ(da)
0

defines a seminorm. Show that pp = pµ, implies µ =µl.

METHOD. Observe that p(e'o) is the convolution of p and I sin 81 in the
group R/7rZ. (See 111-1.8.)
(3) Let 0 < al < a2 < ... an < 7r, with the convention that ao = an - 7r
and an+1 = a1 + it. The matrices A = (ai.i) =1, B = (b13)n-=1, and
D = (dij); i=1 are defined as follows:

ai.3 = I sin(ai - aj) for all i, j = 1'...,n.
bii = - sin(ai+l -ai-1), bi,i+1 = sin(ai -ai_ 1) (with the convention that

bn,n+1 = bn,1), bi,i-1 = sin(ai+1 -a,) (with the convention that b1,0 = b1,n)
f o r i = 1, ... , n, and bi3 = 0 otherwise.

dii = 2 sin(ai+1-ai) sin(ai -ai _ 1) for i = 1, ... , n and did = 0 otherwise.
Verify that AB = D. If µ = Fn

1
mob°3, where mj > 0 and b,, is the

Dirac measure at aj for j = 1, 2, ../. , n, calculate p(e'B) and verify that

(v) [ml , m2, ... , mn]A = [pµ (ei't) a pµ
(eia2)r ... , p, ,(e'- )] .

(4) If p is a seminorm, show that there exists a bounded positive measure
p on [0,1r) such that p = pp.

METHOD. Let T = {al,---,an) with ao = an - 7r < 0 < al < ... < an <
it < an+1 = a1 + it. Show that there exists a seminorm pT such that, if
0<A<1andj=1,...,n,

(vi) pT [Ae'Q, + (1 - A)ei'j+il = ApT [e'',] + (1 - )t)pT [e'°i+i] ,

and show by using (3) that there exists AT concentrated on T such that
PT = pµr
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Next, let aj = (1-111 and set p" = pr and u.,, = uT. Show that p =
lim,,-,o p,, and that there exists a bounded positive measure it on [0,W)
such that Ec,s converges vaguely to u as n -' oo.

REMARKS. A consequence of (4) is that every seminorm on R2 can be
approximated by finite sums of the type E l ajx + bjyl, and not only by
supj Iajx+bjyl. For R" with n > 2 this is fa?se; in general, a seminorm can
be approximated only by suprema of absolute values of linear functionals.

Problem III 7. Let C be the set of complex numbers, identified with
R2, and let p be a seminorm on C. Show that exp(-p(t)) is the Fourier
transform of a probability measure on R2.

METHOD. Use the fact, proved in Problem III 6, that there exists a sequence
of measures µ" > 0 on [0, ir), concentrated at a finite number of points,
such that

p(x+iy)= lim JPxsina_vcosaII(da).n-oo

Also use the formulae 01 = +00o eicx
x

1+1 , which appeared in Problem
111-4.

REMARKS. This result is due to T. Ferguson (1962). It is false in higher
dimensions; only for certain norms (like the Euclidean norm) is exp(-p(t))
the Fourier transform of a probability measure. See Problem 111-8 for a
counterexample.

Problem III-8. (1) What is the image v in R, under the projection
(xo, ... , x") - xo, of the measure exp(- maxj=0.... " I x j I )dxodxl ... dx"
in R"? (See Problem 1-14.)
(2) Compute the Fourier transform of v.

METHOD. Show that k!(1 - it)-(k+l) = fOO xk exp(-x + itx)dx for t real
and k a nonnegative integer.
(3) Conclude that V,,+, (t) = exp(-maxj=o,...,"Itjl) is not the Fourier
transform of a probability measure on R"+1 when n >_ 2.

REMARK. (3) is due to C. Herz (1963).

Problem 111-9. Let E be n-dimensional Euclidean space.
(1) If a > 0, # > 0, and a + /3 < n, show that there exists a constant
K(a, 0) such that I(y) = fE IIxII" "IIy - xllO-"dx = K(a, a)IJyIIa+A-"

METHOD. Use Problem 111-3.
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(2) Let 0 < y < n and let My be the set of positive measures p, not
necessarily bounded, such that f (p) = fEx E 11X - yll y-np(dx)p(dy) < OC.
Show that, if p and v are in M.,,

IjExE
Ilx - yll y np(dx)v(dy) I

<- f (p)f

Problem III-10. Let M be the space of real Radon measures on U =
f z : z E C and I z i = 11 and let F+ (respectively F-) be the vector
space over R of complex functions defined in {z : Izl > 1) = D+ (resp. in
{z:Izl<1}=D-).For pEM, we define

fµ (z)
=

J(et8 - z)-ldp(ece) for z E D+,

f,, (z) =
J(etO - z)-1dp(e`e) for z E D-.

(1) Show that the linear mapping it 1-4 f, from M to F+ is injective.

METHOD. Expand f+ in a power series in 1/z.
(2) Find the kernel of the linear mapping p '- fµ from M to F-.

REMARKS. 1. Although fµ determines p, fµ does not.
2. The situation is completely different if p is complex, since there exist
complex measures, like dp(eie) = e-ied9, for which µ(n) = 0 for all n > 0.

Problem III-11. Let P(x1i ... , xn) = P(x) be a homogeneous polynomial
of degree m in n variables which is harmonic; that is, Ek=1 a (x) = 0 for
all x in Rn. For a fixed a < 0, let

f (x) = (a 27r)-n
exp

(_flxli2)
P(x), with Ilxll2 =

En
k=1 xk-

Show by induction on m that there exists a number Km(a) such that

f(t) = K.(a)P(t)exp (_alitil2)
2

METHOD. mP = Ek xk axk
.

Problem 111-12. The goal of this problem is to prove the following in-
equality of S. Bernstein: If p is a complex measure on [-a, +a], then
I2'(t)I < aSUp8ER 12(s)I-
(1) Consider the odd function h(O) of period 27r defined by h(O) = 0 if
0<0<7r/2andh(9)=7r-9if7r/2<9<7r.

(a) Compute v, = (2i7r)-1 f, h(0) exp(-in9)d9 for n in Z.
(b) If v is the measure defined on R by v = _. vnbn, where

bn is the Dirac measure at n, show that v is bounded and that h(9) _
i f ± exp(ix9)v(dx).
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(2) If p is a complex measure on [-ir/2, zr/2], let

a/2
f (t) =

f 7r/2
exp(it0)p(d6).

(a) Show that f (t) = (f * v)(t) for all real t.
(b) If it = pj = (2i)-1(6j - b_.), deduce from (a) that Ek_O ,(2k -

1)-2 = 7x2/4.
(c) Returning to the general case, deduce from (a) and (b) that

-supif'(t)I ` 2 sEpIf(s)I for all tin R.

Show that equality holds if and only if it is concentrated at the points
±7r/2.
(3) Prove Bernstein's inequality and discuss in detail the case of equality.

Problem 111-13. Let f : (0, +oo) --- R be measurable and satisfy

f (x + y) = f (x) + f (y) for all x and y > 0.

(1) If cp(t) = fo exp[it f (x)]dx for t E R, show that y ~-+ tp(t) exp[it f (y)] is
continuous on (0, +oo) and conclude that f is continuous.
(2) Show that f (x) = x f (1) for x > 0.

Problem 111-14. Let E be a real vector space of finite dimension n and let
k be its dual. Let e1, ... , en be a basis of E. The dual basis ei , ... , e;, of k
is defined by (ej, e;) = 0 if j iand 1 if j = i, where ( , ) is the canonical
bilinear form on E x E. E and f are equipped with Lebesgue measures dx
and dt, respectively, such that, if f E Ll (E, dx) implies f E L1(E), where
f (t) = fE exp(i(x, t)) f (x)dx, then f (x) = (2a)_n fE exp(-i(x, t)) f (t)dt.

Let Z denote the set of points z = 1 zie; of E such that the z; are
integers and let Z' denote the set of points E 1

t;;e, of k such that
the (, are integers.
Prove Poisson's formula:

If f is in the space S of infinitely differentiable functions of
rapid decrease, then for every t in E

f (27r( + t) = [vol(ei, ... , e ,)] f (z)e`Z'ti .
(EZ. zEZ

METHOD. Show that >zEZ If(z)l < oo and use Theorem 111-4.2 to see
that the left-hand side ?P(t) of the equation exists. Observing that the set
of periods of 0 contains 21rZ`, compute the Fourier coefficients of ip.

REMARKS. 1. With the above hypotheses on the choice of dt on E, it can
be shown that

vol(el,...,e,) x vol(e*,,...,e,,) = 1.
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Without loss of generality we may assume that vol(el,... , en) = 1. Let
E be given the Euclidean structure such that (el,... , e,) is orthonormal;
then f can be identified canonically with E, ej* = ej, and dx and dt are
identical.
2. Poisson's formula is also valid in some situations that differ slightly from
that where f E S(E). One of these occurs when f E L1(E), f > 0, and f
has compact support.
3. A striking application of Poisson's formula is that if

+oo

g(a) = exp(-a27rn2),va- 1:
n=-oo

then g(a) = g(a-1). To prove this, it suffices to take E = R, el = 1, and
f (x) = exp(-27r2x2/0,2).

Problem 111-15. Let E be a real vector space of dimension n > 0, let E
be its dual, and let E be equipped with Lebesgue measure dx. It is always

true that E = E. The canonical linear form on E xE is written (, ). We
consider the following operators, where a E E, b E E, c (respectively d) is
an invertible linear mapping from E into E (resp. from E into E), and tc

(resp. td) is the transpose of c (resp. d).
For f E L2(E),

Taf (x) = f (x - a), Mbf (x) = e'i=,b> f (x), HHf (x) = f (c-`x),

and Uf E L2(E) is the Fourier-Plancherel transform described in 111-2.4.9.
For g E L2(E),

Tbg(t) = g(t - b), Mag(t) = e'(a't>g(t), Hdg(T) = g(d-t),

and V9 E L2(E) is the Fourier-Plancherel transform.
Prove the following formulas:

(1) UTaMaU (1') VTb = MbV
(2) UMb = TbU (2') VMa =T0V
(3) UHc _ Idet cjH U (3') VHd = Idet dIH(td)-1V
(4) (H-iEU)(f) = U(7) (4') (H-1..V)(g) =V(p)
(5) U-' = (5') V-' _ (27r)-'H_lEU.

(Here lE and 1E are the identity operators on E and E, respectively.

Problem 111-16. Use the result of Problem IV-12,

0

00
x°-ie-x+::e dx _

r(a)
(1 - it)-" for t E R and o > 0,-
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with the convention for za with Rez > 0 made in Problem IV-12, to com-
pute the Fourier-Plancherel transforms of the following functions in L2(R):
(1)
(2)

IxI.-lex1(-oo,o)(x)

(3) IxI.-ie-s

(4) -i sign(x)jxja-le-I-I
(5) (x - a - ib)-', with n a positive integer, a and b real, and b j4 0
(6) b(x2 + b2)-1

(7) x(x2 + b2)-i
(8) f (x), where f (x) is a rational function with no real poles and without
entire part.

METHOD. For (5), use (1) and problem 111-15.

Problem 111-17. Compute the Fourier-Plancherel transforms of the fol-
lowing functions:
(1) 11-i,+i)(x)

(2) 11.,,1(x)
(3) sin x/x
(4) sin 2 x/x2
(5) (1 - IxI)+
(Here a+ = max{0, a}.)

Problem 111-18. If f E L2(R) and (Ua f)(t) = f as e'xt f (x)dx, show that
lima. Ua(f) = U(f), where U denotes the Fourier-Plancherel transform
of f.

Problem 111-19. If f and g are in L2(R), show that

J
f(x)9(x)dx = f f(x)g(x)dx.

METHOD. Use the fact that L' f1L2(R) and A(R) are dense in L2(R). (See
111-2.4.7.)

Problem 111-20. Let gb(x) = i(signx)e-bInI for b > 0, let U be the Fourier-
Plancherel transform in L2(R), and let M9, be the operator on L2(R)
defined by Mg, f (x) = gb(x) f (x). Set

lib = U-' Mg, U.

(1) Show that 7{b f (x) _ f + f (x - y)dy for almost every x, if
f E L2(R) and b > 0.

METHOD. Use Problem 111-16(7) to compute U(gb), then apply Problem
111-19.
(2) If f E L2(R), show that 7{o f = limblo f+0f (x - y)dy exists in
L2 and give its Fourier transform. Also calculate 7{o f .
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REMARK. ?io f is called the Hilbert trunsform of f .

Problem 111-21. Suppose that f E L2(R) and g E L1(R). Show that

+«h(x) = f

f(x - y)g(y)dy

exists for almost every x and defines a function h in L2(R) such that
IIhIIL2 <- IIfIIL2II9IILI and h = ggf (where g is the Fourier transform of
g E L' and h and f are the Fourier-Plancherel transforms in L2).

METHOD. Apply the Cauchy-Schwarz inequality to If (x-y)I I9(y)I1/2 (con-
sidered as a function of y) and lg(y)I1/2 and use Problem 111-18.

Problem 111-22. Let 0 < c < a and let gf,a(y) = (7r0-11{f<I I<a}(y).
(1) Compute limf_olima..+,,, gf,a(t), where gf,a is the Fourier transform
on L1(R) Of 9f,a. (Use Problem II-16.)
(2) For f E L2(R), we set

1.( (f) =
J

f(y)dy

fly-xl<<a x - y

(This equals f * gf,a in the sense of Problem 111-21.) Using Problems 111-20
and 111-21, show that limf .o lima.+a, xc,a (f) exists and coincides with
the Hilbert transform of f (Problem 111-20).

Problem 111-23. A function f in L2(R) is called hermitian if f (x) _
f (-x) and skew hermitian if f (x) + f (-x) = 0. Let f denote the Fourier-
Plancherel transform of f and let Wo f denote the Hilbert transform of f.
(See Problems 111-20 and 111-22.) Prove the following statements:

f is Hermitian Skew- Real Purely Even Odd
iff hermitian imaginary
f is Real Purely Hermitian Skew- Even Odd
if imaginary hermitian

(fo f)is Purely Real Hermitian Skew- Odd Even
if imaginary hermitian

(Ro f) is Skew- Hermitian Real Purely Odd Even
hermitian imaginary

Problem 111-24. Compute the Hilbert transform (see Problem 111-20) of
each of the following functions:

f, (X) _ 1 f2 (x) = -71 + T

f3(x) = 211-1.11(x), f4(x) =
n

10g

15(x) = (I - Ixl)+, f6(x) =
n

log

,

X 2_1+ * logl I.
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METHOD. Use Problem 111-16 for f2 and Problem 111-22 for fa.
For f5, a+ = max{O. a}.

Problem 111-25. Let S be the vector space of C°° functions on R which,
together with all their derivatives, are of rapid decrease.
(1) Show that if f E S, then limf.o fxl>, idz exists and defines a con-
tinuous linear functional (or "tempered distribution") on S.
(2) Show that the Fourier transform of the distribution defined in (1) is
the Radon measure p(dt) = irr(sign t)dt.

METHOD. Split the first integral into {e < IxI < 1) U {IxI > 1}. Also use
the fact, proved in Problem 11-16, that ZOO y dx = 2 .

Problem 111-26. Let I = (a,b) and let f E L'(I).
(1) If F(x) = fa f (t)dt for x E I, show that F'(x) = f (x) in the weak
sense (111-3.3.1).
(2) If F E La (I) and F' = f in the weak sense, show that, for a < a < /3 <
b,

pJ3

J f (t)dt = F(/3) - F(a).
a

(3) Let s be a positive integer. Show that F is in Hj , the local Sobolev
space (see 111-3.5.6), if and only if there exists f E LL (1) such that the
weak derivative of order s -1 of F exists in the ordinary sense and satisfies

:Fib-il(x) = F(8-1)(a) + f f(t)dt
a

for all a and x in I.

Problem 111-27. Let f E L2(R), with Fourier-Plancherel transform f.
Prove Hermann Weyl's inequality,

I

+°c 2 +oc +30

- -f x21f(x)12dx x f t21!(t)I2dt,
J-

If(x)I2dx, <
2

x x

and analyze the case of equality.

METHOD. Without loss of generality, assume that f is in the Sobolev space
Ha (R). Show that f If (x) I2dx = -2,e f +0 x f (x) f'(x)dx, with the
help of Problem 1-15(2). Conclude by using the Cauchy-Schwarz inequality
(Problem 1-12).

REMARK. This inequality has an interpretation in quantum mechanics,
where it is known as Heisenberg's uncertainty principle. 3

3H. Weyl, The Theory of Groups and Quantum Mechanics (London: Dover,
1931).
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Problem IV-1. The points marked on the faces of two dice are, respec-
tively, for the first: 1, 2, 2, 3, 3, 4; for the second: 1, 3, 4, 5, 6, 8.
If X is the sum of the points obtained by throwing the two dice, compute
P[X = k] for integer k. Answer the same question for ordinary dice.

Problem IV-2. The random variable X is called a geometric distribution
with parameter p, 0 < p < 1, if

P[X = k] = (1 - p)k-lp, k = 1, 2, 3....

Compute E(X) by using Problem I-6(1).

Problem IV-3. Suppose that e, is the Dirac measure at a, p E (0,1), and
A > 0. Consider the following two probability measures on N:

VP = (1 - p)ao + pal (Bernouilli distribution with parameter p)

Ax = Ek oe'-\ak (Poisson distribution with parameter A)

(1) Show that the vague limit of the sequence {va }n>a is µa and that
AA 1 * /3)3 = 1LA1+A2.
(2) Let 0 < p < 1. Consider the measure mp on N2 concentrated at the
points (0, 0), (0,1), (1,1), and (k, 0) with k > 2 (note the absence of (1, 0)),
such that X has distribution µp and Y has distribution vp if (X, Y) has
distribution mp. Compute mp and conclude that P(X 36 Y) < 2p2. (Use
the fact that e_p > 1 - p.)
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(3) If (X, Y) is an arbitrary variable in N2 and A C N, show that

IP(X E A) - P(Y E A)I < P(X 34 Y).

(4) Let (X1, Y1), ... , (X,,, be n independent random variables with val-
ues in N2 and with distributions rn,,,, rnp,,... , n&p,, . Let A C N. Use (2)
and (3) to show that

m

IP(Xl E A) - P(YI +---+Y E A)I < 2>pp.
?=1

(5) If n > A and A C N, show that
2

I v%n(A) - rt (A)I <
2A

REMARKS. The approximation of the binomial distribution by the Poisson
distribution is both elementary and essential for applications. (5) gives an
upper bound for the error committed by replacing a binomial distribution
v1, by a Poisson distribution and (4) treats the case of experiments
that are independent but not identical. This result is due to J.L. Hodges
and L. Lecam (1960).

Problem IV-4. On a probability space (fI, A, P), we define a random
variable N with positive integer values and random variables
with values in a measurable space (1, 5), such that the X all have the
same distribution m but are not necessarily independent.
(1) Show that the distribution µ of X N is absolutely continuous with respect
to M.
(2) If f (x) _ (x) and a > 0, show that

E(N") >
1 I a

Jffn+1(x)dm(x).

METHOD. If B(y) = {x E I : f (x) > y}, show that

(i) µ(B(y)) < P[X E B(y)] + PIN > y]
fl<v

and use Problem 1-6.
(3) Show that 1 + E(log N) > f f (x) log f (x)dm(x) by letting cr 10 in (2)
and using the monotone convergence theorem.

Problem IV-5. With the notation of Problem IV-4, we take I = [0, 1],
B = the Borel algebra, and m = Lebesgue measure, and we assume that the
(X,, 1 are independent. Let f : I -+ [0, +oo) be a nonnegative measur-
able function, bounded by a number b > 1, which satisfies f f (x)dx = 1.
Let

N = inf{2n : bX2r_1 < f(X2,,)}.

Show that XN has density a = f .
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REMARK. This procedure for constructing a random variable of given den-
sity f on [0,1] from uniform random variables was invented by J. Von
Neumann in 1951.

Problem IV-6. (1) Let Y be a positive random variable. Show that for
ally>0

P(Y > y) < 1E(Y) (Chebyshev's inequality).

(2) Let X be a real random variable such that E(X2) < oo. If m = E(X),
show that for all t > 0

P(IX - ml > t):5 t2E((X - 1n)2) (Bienaime's inequality).

(3) Let {Xn }n 1 be a sequence of independent real random variables with
the same distribution and such that E(X?) < cc. If m = E(X1), show that
for all E>0and for all aE [0, 2)

P -m1 >
e- -Oasn-r0

n nn

(weak law of large numbers).
(4) Let {Xn}n be a sequence of independent real random variables with
the same distribution, for which there exists k > 0 such that E[exp kIX1 1] <
oo. If m = E(X1), show that for every e > 0 there exists q in (0, 1) such
that

P l -mlIX1+

n
+Xn > EJ < 2q".

Conclude that n (Xl + . + m almost surely as n --k oo (strong
law of large numbers).

METHOD. Show that m = [E(exp(sXl))]8=o and apply Chebyshev's in-
equality to Y = exp(s(X1 + Xn)).

Problem IV-7. Let {X"},x I be a sequence of nonnegative real random
variables with the same distribution, such that Xj and Xn are independent
for every pair (j, n) with j 36 n. Assume that E(X1) < oc. Set S" _
' j 1 X3 , Yn = X " 1 (xn <n), and S;, = E 1 Y,,. The goal of this problem
is to prove the law of large numbers:

P I lim S n = E(X1)J = 1.
In oc n

(1) Using Problem 1-6, show that E(X1) < or, implies E', P[X, 0 Yn] <
oo. Using the Borel-Cantelli lemma (1-5.2.8), conclude that limn_,p(Sn -
Sn) exists with probability 1.
(2) Show that limn_,, *E(S,) = E(X1).
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(3) Let a be a real number greater than 1 and let kn be the integer
part of an. Prove the existence of a constant C1 such that E{kns

n such that kn > j} < Clj-2. With the help of Bienaime's inequality,
conclude that

00

Ski E(S;.)I
>e

< 21
zE(Y?).

n=1 j=1

Then prove that E(Y?) < oo.
(4) Deduce from (2), (3), and the Borel-Cantelli lemma that

P In-oolim k° = E(Xi )J = 1,
kn

then from (1) that

P [urn Sk- = E(X1)] = 1.
n-+oo kn

(5) Prove that, for every a > 1,

P a-1E(X1) < liminf Sn < lim sup Sn < aE(X1)J = 1.[a-
n-'oo n n-co n J

Deduce the law of large numbers from this.

REMARKS. The elementary proof whose outline is sketched here is due to
N. Etemadi (1981).

Problem IV-8. Let {Xm}n
1

be independent real random variables with
the same distribution and such that E(X1) = 0 and 0 < E(X?) < oo. Let

Sn=X1+...Xn,

(1) Show that limn_oo P(Sn > 0) _ by using Laplace's theorem (IV-
4.3.1) and Problem 11-22.
(2) Use the preceding result and the weak law of large numbers proved in
Problem IV-6(3) (that limn-,,. P[I S I > e] = 0 for all e > 0) to show that

n
-!o))] 1111 = 1.

Problem IV-9. (1) If X and Y are independent real random variables,
show that P(X + Y > a + b) > P(X _> a) P(Y > b) for all real a and b.
(2) Let {Xn}n 1 be a sequence of real independent random variables with
the same distribution, and set So = 0 and S, = X, + + X,,. Let s be a
fixed real number. Set pn = P[Sn >- ns]. Show that pn+m > PnPm for all
m, n>0andthat, forn>O,Pn=O if and only if p, = 0.
(3) If the sequence {an},O00 of nonnegative real numbers is such that
an+m > an + am for all m, n >- 0, show that limn_ 00 n = infd>o 21.
Conclude that Pn = a(s) exists.
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Problem I V-10. Let {Xn}n_1 be a sequence of independent real variables
with the same distribution. Suppose that W(t) = E(exptX1) exists for all
t in an open interval I containing 0 and fix a real number s > E(X)
such that t -' a t"cp(t) attains its minimum a(s) at a point r of I. Let
Sn=Xi+...+Xn.
(1) Show that logcp(t) is convex on I and that r > 0. Conclude, using
Chebyshev's inequality (Problem IV-6), that

LP \nn > s1 J

1/n
< a(s).

(2) Let µl be the distribution of Xi -s and let v(dx) _ e,lµl(dx). Prove
that v is a probability measure, that f xv(dx) = 0, and that f x2v(dx) <
00.
(3) Let {Zn100 1 be a sequence of independent random variables with the
same distribution v. Show that

P [ nn
> a] = (a(s))nE[exp(-r(Zi

Conclude from Problem IV-8 that

a(s) =
ri
limoo I P\(nn

(4) Compute a(s) in the following cases:
(a) p(t) = exp(t2/2) (normal distribution)
(b) p(t) = cosh(t) (Bernouilli distribution)
(c) ap(t) = (1- t)-Q, t < 1, a > 0 (gamma distribution)
(d) P(t) = exp A(et - 1), ) > 0 (Poisson distribution)
(e) Ip(t) = (),p+q= 1, 0<p< 1, t< - logq, a >0

(negative binomial distribution)
(f) (At) = 1, It( < I (Laplace's first distribution)
(g) cp(t) = i tt

(logarithm of a Cauchy distribution)

REMARK. It is not known what conditions on a decreasing function a on
R are sufficient for the existence of a distribution it of the Xn such that

1/n

lim [P (n > s =a(s).
n-oo n )

Problem IV-11. If zl and z2 are complex numbers with positive real
part, set r(zi) = fo xz1-le-zdx and B(zi, z2) = fo xzl-1(1 - x)z2-idx.
Assume without proof the formula

B(zi, z2) =
r(zi)r(z2)
r(zi + Z2)
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If a and b are positive, the probability measures

dx
a(dx) =

1(o.+x)(x)x"-`e-rr(a)

dx
$a,b(dx) = x)b-1

B(a,b)

($(dx) =1(o.+.)(x)xa-I(1 +x)-a-b
dx

a.h B(a, b)

are called, respectively, the gamma distribution with parameter a mid the
beta distributions of the first and second kind with parameters a and b. (1)
If µ is a bounded measure on (0, +oo), its Mellin transform is (111Et)(t)

x"}t(dx) for t real. (This is the Fourier transform of the image of it
under x --# log x.) Compute Mrya, Af fl b, and AID . (2) If X is a random
variable with distribution $$a,b, compute the distribution of X/1 - X. (3)
If X and Y are independent r.v. with distributions -y,, and -yb, compute the
distributions of X/Y and X/(X + Y). (4) If X, Y, and Z are independent
r.v. with distributions 11,b, $$a+bx, and 1, +b.c, compute the distributions
of XY and XZ.

Problem IV-12. (1) Let rya be the probability measure of Problem IV-11.
with a > 0. Compute its Fourier transform. If X and Y are independent
random variables with distributions -ya and -tb, compute the distribution of
X +Y.
(2) Let X be a Gaussian random variable with density a x2/2°ldx.

it
Compute E (2 ) J for t real, and use Problem IV-11 to find the distri-

bution of a .

(3) Let X1,. .. , X,t, 1'1,. .. , Y,a be independent random variables with the
same distribution as X of (2). Compute the distribution of 2I (X? +

+ X,2t) by using (1) and (2), and the distributions of '+Xl and
X z by using Problem IVx I+

Y;11 +

'
+Y,,,

+Xd

Problem IV-13. In Euclidean space Rr1+1, consider a random variable
X = (Xo, X1, ... , X,t) whose distribution p is invariant under every orthog-
onal matrix of R`I+ 1 and satisfies Et({ 0)) = 0. Let v denote the distribution
of X on (0, +oo) and let Y = (X , x .... , }.

(1) Use Problem 111-2 to show that the distribution of Y is independent of
V.

(2) From now on, assume that the { XX }j are independent, with the same

distribution p and with Fourier transform exp(- 4). Show, using Problem
III-1, that u must be invariant under every orthogonal matrix.
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(3) If a E R, compute the integral

I (a) = 1

+ a

J exp I- 2 (x2 + dx
L /

by using the following fact from Problem I1-12(1):

f+W lal - +nlo

f(x - -)dx = J f(y)dy
X 0000

(4) By first conditioning with respect to Xo (see Problem IV-34), compute
the Fourier transform of the distribution of Y.
(5) Using Problem IV-11, find the distribution of 111112 Derive the density
of Y from this, by observing that the distribution of Y is invariant under
every orthogonal matrix in Od and using Problem 111-3.

Problem IV-14. Let 7a be the probability measure of Problem IV-11,
with a > 0.
(1) Use Problem IV-12 to compute lima, f.' exp[it( )]ia(dx).
(2) Using Problem 11-14, show that

00

1

x
1-ta(dx) =

+"0 1x1e_xz12 dx

lim fo
-

(3) Integrate by parts to compute the integral fo 11'ya(dx) and prove
Stirling's formula:

aa-1/2e a _ 1

a1i o r(a) = 27r

Problem IV-15. (1) Let p be a probability measure on R such that
µ(t) = µ(t cos 9)µ(t sin 0) for all real t and 0. Show that there exists a > 0
such that Fl(t) = exp(- a2' ).

METHOD. Show that A(t) > 0, then that A(t) > 0 for every t. Finally,
consider f (x) = - log µ(f) for x > 0.
(2) For positive integers d1 and d2, let pl and 02 be probability measures
on the Euclidean spaces Rd' and Rd2 such that v = Al 0 142 is invariant
under the group G of orthogonal matrices on Rd'+d2 Show that there

exists a > 0 such that µ;(t) = exp(-
z

11th;), j = 1, 2, where I1t1lI and IIt1I2
are the norms in Rd' and Rd2.

METHOD. Use Problem III-1 and part (1) of this problem for the case where
d1=d2=1.
REMARK. The converse of the property in (2) is trivial. This characteriza-
tion of centered normal distributions is sometimes called Maxwell's theo-
rem.
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Problem IV-16. A real random variable Z is called symmetric if Z and
-Z have the same distribution.
(1) Show that Z has distribution c(dz) _ 7r, +s ) if and only if Z is symmet-

ric and 1X12 has distribution 13(2)(1/2,1/2). (See Problem IV-11.) Assuming
without proof the formula r(z)I'(1-z) = x x: for complex numbers z such
that 0 < Rez < 1, compute E(IZ1'r) for real tin this case.
(2) Let X, and X2 be two real random variables that are independent
and symmetric, and have distributions p, and P2 such that p,({0}) =
132({0}) = 0. Show that Z = Al has distribution c in the following cases:

(a) p1(dx) = p2(dx) = exp(-x2/2)dx/ 2rr
(b) 1X,12 has distribution 13(2, b) and 1X212 has distribution 13(2)(.12 2,1 +b)
(c) pl (dz) =1p2(dx) = v 2/7rdx/(1 + z4)

(3) With Xl and X2 as in (2), deduce from (2a) that U = ( x

V X-

x; +x;
xX+x) is uniformly distributed on the unit circle of Euclidean space

9

R2 if and only if Z = z has distribution r.

REMARKS. Example (2c) is due to Laha (1949). Moreover, if (X,, X2) is as
in (2) with U uniform, then (X- , - ) has the same property.

Problem IV-17. A probability measure v on a Euclidean space Rd is
called isotropic if v({0}) = 0 and the image of v under the mapping
x - ', in the unit sphere Sd_i of Rd, is the unique rotation-invariant
probability measure ad_ 1 on Sd- 1. It is called radial if its image v, in R
under the mapping x '- (a, x) does not depend on a when a ranges over
the unit sphere.
(1) Let p, and P2 be probability measures on the Euclidean spaces Rd' and
Rd', with dl and d2 positive. Show that the probability measure v= pl0p2
on the Euclidean space Rd`+d2 is isotropic if and only if it, and P2 are
radial and if, for every al in Sd,_, and a2 in Sd2_,, the image of v under
(XI, X2) F-4 is c(dz) d,

METHOD. Prove the assertion first for d, = d2 = 1 and use Problem IV-16.
(2) Let (X i, X2, X3) be three independent random variables such that the
distribution v of (X,, X2, X3) in R3 is isotropic. Show that there exists
or > 0 such that

a2t2 \
E[exp(itXj)) = exp(-2 f for j = 1, 2, 3, and t E R.

METHOD. Apply (1) to the distributions it, of X, and 132 of (X2, X3) and
use Problem IV-14.

REMARKS. The converse of (1) is true but rather lengthy to prove. (2) is
true for n independent random variables, n > 3; this follows easily from
the problem. (Problem IV-16 showed that this would be false for it = 2.)
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This property of the normal distribution is due to I. Kotlarski (1966), who
proves it with the additional hypothesis that the Xj are symmetric.

Problem IV-18. Let E be a finite-dimensional real vector space, let E'
be its dual, and let (x, t) be the canonical bilinear form on E x E'. If p is
a probability measure on E, itsL Fourier transform is defined on E' by

AA(t) = exp(i(x, t))µ(dx)

(1 ) If there exists to 34 0 such that Il(tp)l = 1, show that it is concentrated
on a countable union of affine hyperplanes and determine them.

METHOD. First consider the case where A(to) = 1.
(2) If there exists a probability measure v on E such that µ(t)v(t) =1 for
every t in E*, show that p and v are Dirac measures.

METHOD. First prove this when dim E = 1.

REMARKS. This result can be generalized by replacing E and E` by a
locally compact abelian group and its group G of continuous characters X.
(See 111-1.4.)

Problem IV-19. Let X1, X2, Y1, and Y2 be independent real random
variables such that Yl and Y2 are strictly positive and E[exp(itXj)] =
exp(-t2/2) for j = 1,2 and t real. Let R = [X3Y2 + X22y ]1/2. Using
Problems IV-16 and IV-18, find the distributions of Y1 and Y2 such that
U = (X1Y1/R, X2Y2/R) is uniformly distributed on the unit circle of R2.

Problem IV-20. Let ad_1 be the uniform probability measure on the unit
sphere Sd_1 of the Euclidean space Rd, and let Yd be the image of Pd under
the dilation x'-4 fdx.

Prove that vd converges narrowly to v(dx) = exp(-x2/2)dx/ 2x.

METHOD. If Yl,... , Yd.... is a sequence of independent random variables
with the same distribution v and if Rd = [1f +... + Y2]1/2, use the fact
that ad_ 1 is the distribution of Rd 1(Y1, Y2,..., Yd), the weak law of large
numbers of Problem IV-6, and Problem 1-10.

REMARK. This property of uniform distributions on spheres is known as
Poincar6's lemma.

Problem IV 21. Let S,, denote the set of probability measures p on R
such that there exists a probability measure p" on the Euclidean space R'
whose image in R under x F- (a, x) is p for every a in the unit sphere
of R". Prove that p E fln° 1S" if and only if there exists a probability
measure p on [0, +oo) such that the Fourier transform of p satisfies µ(t) _
j o`0 exp(-4 )p(dy). Prove that such a p, if it exists, is unique.

METHOD. For the uniqueness of p, use Problem 11-20. For its existence, use
Problems 111-1, 111-2(4), and IV-20, as well as Paul Levy's theorem on the
convergence of distributions.
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REMARK. This property is due to I. Schoenberg (1937) .

Problem IV-22. Let (X0, X1,.. . , Xd) be an Rd+1-valued random variable
that is radial, i.e. whose distribution is invariant under the group Od+1 of
d x d orthogonal matrices. Let t = (tl, t2, ..-,td) and IIt II = [t l + - - +t2

] .

Prove that E[exp(i E,=I t,X f - IIt1IX(a)] = I for every I in R`t such that
E[exp(-IItlIXo)] < 00.

METHOD. Prove the assertion first for d = 1 and li concentrated on the
unit circle.

Problem IV-23. Let { (V,,, W,,)) be a sequence of independent random
variables with the same distribution, with values in R x Rd (where Rd has
the Euclidean structure), and satisfying E[log IV, I] < 0 and E[log+ II WI III <
00.
(1) Prove that IV, . . . V,, 111 W,++1 II converges almost surely.

METHOD. Use the Borel-Cantelli lemma to show that lim sup._(, II W', II
1, then use the strong law of large numbers. (See Problem IV-7.)

(2) Let p be the distribution of the Rd-valued random variable which is
equal to the sum of the series Enn V1 ... V,, Let v be a distribution
on Rd whose Fourier transform 1 satisfies

v(t.) = E[v(V1t)exp(i(Wi,t))] for every t in Rd.

Show that p = v.
(3) Let be a sequence of independent W+1-valued random vari-
ables with the same distribution, the uniform distribution on the unit
sphere Sd of Rd+l Let V - 1 and W be the projections of U,, onto
(R, 0, 0, ...) and onto its orthogonal complement. Prove that if µ is the
distribution of EO0_)) V1 ... then ri(t) = exp(-IItli).

METHOD. Use (2) and Problem IV-22.
(4) Let { X }° I be a sequence of independent random variables with values
in N = {0, 1,2 .... } and with the same distribution, such that X1 satisfies
Pk = P[X1 = k] < 1 for every k in N. Set qk = P[X1 < k]. Show that
if p is the distribution of F,,°,`_e px, pxz px qx,,+, , then p is Lebesgue
measure on [0, 1].

Problem IV-24. Let X and Y he independent random variables with the
same distribution and with values in Euclidean space Rd, d > 1, which
satisfy the following conditions: (i) P[X = 0] = 0; (ii) llklf and IIXII are
independent; and (iii) Txif is uniformly distributed on the sphere Sd_ I.
(That is, the distribution of X is "radial" - see Problem 111-2(4).) Prove
that

P[112X - YII : IIYII] <

and that this inequality is the best possible.
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METHOD. Consider R = y , use the fact that R and R-1 have the same
distribution on (0, +oo), and prove the inequality by first conditioning with
respect to I log R1. For the second part, take IIXII with density nx(1-n)/n

on (0,1) and show that the distribution v of exp(-I log RI) tends vaguely
to the Dirac measure at 0.

REMARKS. 1. There is also an explicit expression,

P(112X - YII -< IIYII] =
4

f GG(a)dv'(a),

1wh re G ( ) r( ) = x *(d ) i di ib tid th t fe y ) yy 7177--( +X v a r on oan s e s u

A2/(1 - A2).
2. This inequality is due to A.O. Pittenger, who proves it with the additional
hypothesis P[II X II = x] = 0 for all x > 0 (1981).
3. Relaxing the hypothesis of the problem to P[II X II = 0] = 0 easily yields
the upper bound

P[112X - YII <- IIYIU < p + (1- p)24,

where p = P[II X II = 0] < 1, and this again is best possible. Note also that
P[112X - YII < IIYII] = (1 - p)2/4 < 1/4 in all cases.

Problem IV-25. Let H be a separable Hilbert space and let pu denote the
orthogonal projection of H onto a subspace U. Define the Boolean algebra
B of subsets B of H for which there exists a finite-dimensional subspace V
of H and a Borel set BV of V such that B = pv-l(BV). Let a(B) denote
the or-algebra generated by B.
(1) Show that {x: IIxUI <r} Ea(B) ifr>0.

METHOD. Use the fact that, since H is separable, there exists an increasing
sequence {V,, }n 1 of finite-dimensional subspaces of H such that Un 1 V.
is dense in H.
(2) A cylindrical probability on H is given by probabilities pv on each finite-
dimensional subspace V of H such that, if V1 C V2, the image of pV2 under
pv, is uv, . For B E B, let EB denote the set of finite-dimensional subspaces
V such that there exists a Borel subset BV of V with B = p-v1(By). Prove
that V py(BV) is constant on EB. Denoting this constant by p(B),
prove that p is finitely additive on B.
(3) Consider the cylindrical probability defined as follows. Let p be a prob-
ability measure on [0, +oo) and let pV be defined by its Fourier transform,

µV(t) = IV exp(i(x.t))pV(dx) = J
or,

exp(-y2I2t ) P(dy) for t E V.

Show that p is not a-additive on B if p({0})) < 1.
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METHOD. Otherwise p could be extended to a a-additive probability mea-
sure p on a(B). Use Problems 1-10 and IV-6 to show that this would imply
p({x : IIxII < r}) = p({0}) for r > 0.

Problem IV-26. In Euclidean space R", consider the positive quadratic
form by q(x) = k_I Akxk, where x = {xk}k_1 and Ak > 0. Set
IIxII = L.k-1

'\k.

(1) If X is an R"-valued random variable such that

(-N!)E(exp(i(X,t))) = exp,

show that P[q(X) ? r2] < for every r > 0.

METHOD. Use Chebyshev's inequality, Problem IV-6.

(2) Let p be a probability measure on R" with Fourier transform A (t) _
fR exp(i(x, t))p(dx) and let f > 0 be such that 11 - µ(t)I < e for every t
in R" with q(t) < 1. Prove that, for every r > 0,

r exp(_II I221fL(dx) > 1-f- 2IIZII
R^ f

(3) Prove that, for every r, R > 0,

/ 2

p({x: IIxII<R}>i-f-2TI2II -exp\(-R2/.

Conclude that there exists a number R(jjqjj, f) such that

p({x : IIxII < R(IIgII,f)} 2:1 - 2e.

REMARK. This result is called Minlos's lemma (1959).

Problem IV-27. The notation is that of Problem IV-25 and p = (pv)v
is a cylindrical probability on H. A positive quadratic form q on H is a
bounded linear mapping A : H - H such that q(x) = (Ax, x) > 0 for
every x. If the dimension of V is n, there exist a basis b = {b1, ... , b" }
of V and nonnegative numbers A1, ... , A. such that, if Ek-1 xkbk is in
V, then q(x) = Ek-1 Akxk. Moreover, the distribution of the {Ak}k_1 is
independent of b, and we may set IIgvII = Ek=1 AA:. This implies that
II qv, II <- Ilgv, II if V1 c V2, and we set IIxII = suPV II qv II < +oo.
(1) Let µv (t) = fv exp(i(x, t))pv(dx) for t E V. Show that µv, (t) = µv, (t)
iftEVlnV2.
(2) Set µ(t) = µv(t) if t E V. Suppose that, for all f > 0, there exists a
positive quadratic form qE on H such that II% II < oo and 11 - µ(t)1 < f for
all t such that qf(t) < 1. Deduce from Problem IV-26 that, for all f > 0,
there exists such that

pv({x:xEVandIlxll:5R(f)})2:1-2f foreveryV.
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(3) With the preceding hypotheses, prove that it is a a-additive probability
measure on the Boolean algebra B by showing that, if An E B, An 3 An+i,
and 1i(A) > b > 0 for every n, then fl,°_1A,, 36 0.

METHOD. Let V, be a finite-dimensional subspace of H containing a Borel
set An such that An = Pv (A;,) and let B,,(R) be the closed ball of radius
R in Vn. We may assume that Vn C Vn+1 Construct compact sets K;, of Vn
contained in A', n B,, (R), introduce Kn = p- (Kn), and use the fact that
Cn = Kn fl ... fl Kn n {x : flxll < R} is a decreasing sequence of compact
sets in the weak topology on H.
REMARK. This result is due to Minlos (1959).

Problem IV-28. Let {Xn}n>1 be a sequence of independent random vari-
ables with the same distribution defined by P[X,, = 11 = P[Xn = -11 _
1/2. Compute the limiting distribution as n - 00 of

Yn = [1+4+9+...+n21-1/2[XI +2X2+3X3+...+nXn].

METHOD. Consider the characteristic function of Yn.
REMARK. This is a simple special case of Lindeberg's theorem, which is a
significant generalization of Laplace's theorem, IV-4.3.1 (also often called
the central limit theorem). Lindeberg's theorem is stated as follows: If (i)
the real random v a r i a b l e s { X ,, } 1 are independent (but do not necessarily
have the same distribution); (ii) for every n, E(X,) = 0 and an = E[(X1 +

+ oo; and (iii) for every e,

-i 0, where .f((x) =E .f(h)]
then the distribution of (X1+ .+Xn) tends to the Gaussian distribution
N(0,1) as above.

Problem IV-29. On the real line, consider the Gaussian distribution
µ(dx) = z exp(2 )dx. Let L2(µ) be the Hilbert space of functions which
are square integrable with respect to µ, with the scalar product

+
(.f, 9) = f x

f (x)9(x) p(dx).
00

The Hermite polynomials {Hn(x)}°0_0 are defined by

00

L Hn(x)(it)n = exp(itx + 2) _ <p(t,x) Vt E C.
n=0

Assume without proof that this implies

00 / 2

(*) IHn(x)l Itln < expl ltd lxi + I .

n=0



310 Exercises for Chapter IV

(1) By computing (W(t,.), cp(s, .)) in two different ways, show that (H,,, H,,,)
= 0 if n 7A in and that (H,,, ,t,. Use the uniqueness of the Fourier
transform to show that if f in L2(µ) satisfies (f, H,,) = 0 for every n, then
f=0.
(2) Show that Hn_I (x) = and that (n + (x) = xHn(x) -

if it > 1.
(3) Let f E L2(µ) and let fn = n!(f, H,,). Show that f = E,°C_o
(where the convergence of the series is in the L2(µ) sense). If, moreover, f
exists (in the sense that F(x) = f (0) + f j' f'(t)dt for every x) and belongs
to L2(µ), show that f = En ,)

METHOD. Compute (f, by means of an integration by parts and (2).
(4) Prove H. Chernoff's inequality: If X is a Gaussian random variable with
distribution it and if f is a real-valued function such that both f'E[I f'(X )I2]
and E[I f (X )I2] exist, then E[I f'(X )I2J > variance of f (X ). Analyze the
case of equality.

Problem IV-30. Let (X, Y) be a Gaussian random variable with values
in R2 such that X and Y have distribution µ(dx) = (2n)-'/2exp(- 2 )dx.
(1) For the Hermite polynomials defined in Problem IV-29, prove that

c:os 0 + z sin 0) _ Hk(y) eos1 sine-k 0.
k=0

(2) Assume that coy0 = E(XY) 0 ±1 and define the random variable
Z = X - Y cos B

sin 9
Verify that Y and Z are independent and use (1) to

prove that H,,(Y)(E(XY))n.
(3) Prove Gebelein's inequality: If f E L2(µ) with E(f(X)) = 0, then

E[E[f (X)IY])2] <- (E(XY))2E(f2(X ))

Analyze the case of equality.

METHOD. Write f = n as in Problem IV-29.

Problem IV-31. Let H,, be the nth Hermite polynomial described in
Problem IV-29 and compute

L
?./dx

s 1 = Hµ(t)

Use this to find
l+00

00 2Tr

Problem IV-32. Let (f), A, P) be a probability space and let 8 be a sub-
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a-algebra of A. We would like to show that if X E Ll (A), then

for all B E B,(*)

and that (*) characterizes E[XIB].
(1) Show that (*) holds if X E L2(A).
(2) If X > 0, let L(X) = limn+,,.E[min(X, n)[B]. If X E L' (A), let
L(X) = L(X+) - L(X-), where X+ = max(X,0) and X- = max(-X,0).
Show that L(X) E L'(B) and that fB(X - L(X))dP = 0 for all B in B.
(3) Show that if f, g E L' (B) are such that fB(f -g)dP = 0 for every B
in B, then f = g.
(4) Show that L(X) is a bounded linear operator from L'(A) to Ll(B) and
infer that L(X) = E(XIB).

REMARK. This characterization of conditional expectation is often taken
as a definition in the literature.

Problem IV-33. Suppose that, for every n > 0, Xn E L' (A) and X > 0.
Use the preceding problem to show that if X,, T Xo, then

Y. = ''[XnIB] T E[XoIBI.

Problem IV-34. Suppose that (Sl, A, P) is a probability space, B is a sub-
a-algebra of A, Y is a B-measurable random variable, and X is a random
variable independent of B. Consider f : R2 - R such that f (X, Y) is
integrable. The goal of this problem is to show that if µ is the distribution
of X, then

+a
(*) E[f(X,Y)IB] = J f(x,Y)p(dx)

-00

(1) Show that (*) holds if f(x,y) = 1j(x)1j(y), where I and J are Borel
subsets of R.
(2) Let P be the Boolean algebra on R2 consisting of sets of the form
E = UP_1I,, x Jp, where Ip and Jp are Borel subsets of R. Show that (*)
holds if f (x, y) = 1E(x, y) with E E P.
(3) Let M be the family of Borel subsets M of R2 such that f (x, y) _
Iu(x, y) satisfies (*). Show that M is a monotone class.
(4) Prove (*) successively for the following cases: (a) f is a simple function
on R2; (b) f is a positive measurable function with f (X, Y) integrable; and
(c) the general case.

Problem IV-35. On a probability space (St, A, P), consider an integrable
random variable X and a sub-a-algebra B of A, both independent of an-
other sub-a-algebra C of A. Prove that if D is the a-algebra generated by
B U C, then

E[X ID] = E[X18].
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METHOD. Prove the assertion first for square integrable X.

Problem IV-36. If X and Y are integrable random variables such that
E[X IY] = Y and E[YI X] = X, show that X = Y a.s.

METHOD. Show that, for fixed x,

(i) 0< J (X-Y)dP=J (Y-X)dP,
Y<x<X x<X and s<Y

and conclude by symmetry that both sides of the equation are zero. Then
use Problem 1-13.

Problem IV-37. Suppose that (fl, A, P) is a probability space, X and Y
are integrable random variables, and B is a sub-or-algebra of A such that
X is B-measurable.
(1) Show that E[YIB] = X implies E[YIXJ = X.
(2) Show by a counterexample that E[YIX] = X does not imply that
E[YIB] = X.

REMARK. If {A" }">o is a filtration of (fI,A, P), {X"}">o a sequence
adapted to this filtration, and B. the o -algebra generated by X0,... , X",
then {X",B"}">o is a martingale if {X",A"},,>o is. The converse is false.

Problem IV-38. Let (Yo, 1'1,. .. , Y,,) be an (n + 1)-tuple of real random
variables defined on a probability space (fZ, 6, P). Let F denote the sub-
s-algebra of 6 generated by f (w) and assume that
E(IYoi) < oo.
(1) By applying Theorem N-6.5.1 to f, show that there exists a Borel-
measurable function g : R" -, R such that

E[Yo IF] = g(Y1, Y2, . , Y,,) P-almost everywhere.

(2) Assume that the distribution of (Yo, Yl,... Y,,) in R"+1 is absolutely
continuous with respect to Lebesgue measure dyo, dyl,... , dy,,, and let
d(yo, y', ... , y") denote its density. Prove that

+00
E(YoIF) _ [K(Y1iY2,...,Y")]-1 f yo d(yo,Y1,...,Y.)dyo,

ao

where +00(yl,... , y") = f + d(yo, yl,... , y")dyo. Prove that if A is a Borel
subset of R, then

P[Yo E AI-17 =

[K(Y1,...,Y")]-1 f d(yu,Yi,...,Y")dyo
A

(3) Assume that the distribution of (Yo, I'1,. .. , Y,,) in R"+1 is Gaussian
(with the definition in N-4.3.4, which implies that E(Y,,) = 0 for j =
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0, ... , n). Use the observation that if (X, Yi, ... , Yn) is Gaussian in Rn+l,
then X is independent of (Y1,.. . , Yn) if and only if E(XY3) = 0 Vj =
I,-, n, to show that there exist real numbers A1, ... , An such that E[Yof ]
=A1Y1+...+AnYn.

Problem IV-39. Let {Xn} be a sequence of independent real random
variables with the same distribution and let .Fn be the or-algebra, generated
by Xl,... , Xn. Set Sn = X1 + + Xn for n > 0 and set So = 0. Which of
the following processes are martingales relative to the filtration {.fin};°_o?
(1) Sn, if E(IX1I) < 00.
(2) Xl +... + Xn - nA, if E(X2) < oo and A is real.
(3) exp(aSn - nA), if W(a) = E(exp(aXi)) < oo and a and A are real.
(4) Yn = ISmin(n.T)I, where T = inf{n > 0 : Sn = 0), and we assume that
P[X1 = 1] = P[Xi = -1] = z.

Problem IV-40. Let 1',. .. , Yn,... be independent real random variables
with the same distribution and such that E[IY1 I] < oo. Set Sn = Y1 + . +
Yn.
(1) Show that E[YkISf]=Sn/n if 1<k<n.
(2) If m is fixed and Xk = S,n_k/(m - k) for 0 < k < m - 1, show that
(Xo,... , X,n_ 1) is a martingale. (Apply Problem N-35.)

Problem IV-41. Let {Xn}n 1 be a sequence of independent random
variables with the same distribution defined by P[Xn = k] = 2_k for
k = 1, 2,.... Random variables Zn are defined by letting Zo be a positive
constant and setting Z n = (3Zn_ 1)/2xn f o r n =1, 2, ....
(1) Prove that {Zn}n0 is a martingale relative to the filtration °,
where .i'n is the o-algebra generated by X11. .. , Xn.
(2) Use the law of large numbers (see Problem W-6) to prove that Zn - 0
almost surely as n -oo.

REMARK. This gives a heuristic confirmation of the following unproved
conjecture in number theory. If n is an odd positive integer, let f (n) =
(3n + 1)2-v(3n+1), where 2r(3n+1) denotes the greatest power of 2 that
divides the integer 3n + 1. The conjecture asserts that, for every n, there
exists an integer k such that the kth iterate of f satisfies f (k) (n) = 1. If
n is very large, v(3n + 1) appears to behave like the variable X1 of the
problem, and {Zk}k=1 like the sequence {fk(n)}k 1.

Problem IV-42. Let H C Ll (Il, A, P), where (St, A, P) is a probability
space.
(1) If F is a positive function on (0, +oo) such that F(x)/x is increasing
and - +oo as n - oo, and if

supE(FIh)=M<co,
he M

show that H is uniformly integrable.
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METHOD. Use Proposition IV-5.7.2.
(2) If H is a bounded subset of LN(1l, A, P) with p > 1, show that H is
uniformly integrable.

Problem IV-43. Let {Xij }; =1 be independent random variables with
values in N and with the same distribution. Assume that 0 < in, = E(X11) <
oo and that a2 = E((X11 - m)2) < oo. Consider the sequence of random
variables defined by

Zo = 1

Zn+1 0 if Zn =0
Zn+1 Xi.n+1 if Z,i > 0.

F is the o-algebra generated by {Xi,, : 1 < i < oo, 1 < j < n}.
(1) Show that is a martingale.
(2) Show that E (Z2,+1/m2(n+1)) = E (Z72 & /m2") + a2/m2n+1.

Conclude that, if m > 1, the martingale is regular. (Use Problem IV 42
and Theorem IV-5.8.1.)

REMARK. is sometimes called the Gallon-Watson process, and
serves as a model in genetics. (Xi,,; is the number of offspring of the indi-
vidual i of the jth generation, which has total size Z;.)
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Problem V-1. Let E be the set of compactly supported C°° functions on
R, and let d and 6 be the operators on E defined by

(dp)(x) = V'(x) and (bso)(x) = -,p'(x) +xW(x).

(1) Prove by induction on n that

dnb - bdn = ndn-1.

(2) Let p be a norm on E. Let B be the algebra of operators on E which
are continuous with respect to this norm, that is the set of endomorphisms
a of E such that

IIali = sup{p(a('p)) : p('') < 1}

is finite. Assume that d and b are in B. Use (1) to prove that, for all n > 1,

(lnd' ' ii < 211d"11 1 Jjdll 11611.

(3) Deduce from (2) that d and b are never simultaneously continuous.

REMARK. This result is due to Aurel Wintner (1947).

Problem V-2. Let {Hn}n() be the sequence of Hermite polynomials de-
fined in V-1.3.
(1) Use Proposition V-1.3.4 to show that, for n > 1,

Hn+1 + nHn_ 1 = xHn.
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If H,, = (compare with Problem IV-29), show that

Hn+1=n+1Hn+1-n1 Hn-1

(2) Conclude from (1) that the radius of convergence R(x) of En 0 H,(x)
is +oo for every complex number x.

METHOD. For (2), show that for every E > 0 there exist an integer N(E) and
a sequence {xn}n° N(e)-1 such that IHnI <- xn and xn+1 = Exn + Exn-1-

Problem V-3. Let {Hn} ', d, and 6 be defined as in V-1.3. For nonneg-
ative integers n, consider

F,(x) = H,(ix)(-i)n.

Let A E C and define p by p = b + Ad.
(1) For n > 1, prove that dnp = pdn + ndn-' and Fn+1 = xFn +

n that

n

(d + p)n = E CnkHk(p)d"-k,

k=0

where Cn denotes the binomial coefficient.
(3) If V is a polynomial and t is real, let r&)(x) = sp(x + t). Prove that
(exp(td))(cp) = rt(,p) and that

(exp t(d + p))((P) = (exP
2 eXP(tP)rt) (v')

In particular, if A = 1 (that is, if p(V)(x) = xW(x)), compute (exp t(d +

REMARK. The result of (2) is due to Viskov4; that of (3) is due to Ville.5

Problem V-4. Let X and Y be independent random variables with the
same distribution v1(dx) = exp(-x2/2)dx/ 2x. Let g : R - [0, +oo) be
a measurable function and let Z = X + Y g(X). Assume that Z has a
normal distribution. Cantelli conjectured in 1917 that g is then constant
almost everywhere; this is still unproved in 1994.
(1) Let go = E(g(X)). For all real t, compute E(exp tZ) as a function of
go. Prove that exp(ag) E L2(v1) for all a > 0.

METHOD. Use the Cauchy-Schwarz inequality.

O. Viskov, Theory of Probability and Its Applications, Vol. 30, n. 1 (1984),
141-143.

'J. Ville, Comptes Rendus Acad. des Sc. 221 (1945), 529-539.
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(2) Let {gn}n o be the sequence of real numbers such that g(x) _
o gn H"n P' in the L2 (VI) sense. By considering E(Z3) and E(Z4), show

that g1 = 0 and -2g2 = En '=2 g,2, /n!.
(3) Prove that g(x) < go + I almost everywhere.

METHOD. If f > 0, let A, = Ix :g(x)>e+go +1}, and let a be a real
number such that AE = A, fl [a, +oo) has positive measure. Consider

t2
JA exp[tx + 2 (g(x) go)]v1(dx)f

Problem V-5. As usual, we denote by {Hn}n>o the sequence of Hermite
polynomials and by v1 the normal distribution on R. Let p be a probability
distribution on R2 such that if (X, Y) has distribution it, then X and Y
have distribution v1 and there exists a real sequence {Cn}n>o with

E(Hn(X)lY) = CCHH(Y).

(1) Prove that Cn = E(H,, (X) H,, (Y)) and -1 < C. < 1 for all n in N.
(2) Prove that if En>1 Cn < +oo, then it is absolutely continuous with
respect to v1(dx)v1(dy-) and its density is

f(x,y) _ Hn(x)Hn(y)
n>O

METHOD. For (2), write p(dx, dy) = v1(dy)K(y, dx). Show that the func-
tion x '- f(x, y) is in L2(v1) y-almost everywhere and that, for every
0 E C,

Jexp(Ox)(f(xi y)vj(dx) - K(y,dx)) = 0 y-a.e.

Problem V-6. We keep the notation of Problem V-5 and denote by C
the set of probability measures p on R2 described there. Let p be a fixed
element of C.
(1) Define {bn,k}o<k<n by

n

xn = E bn.kHk(x)
k=

and let n

Pn(y) = > bn.kCkHk(y)-
k=0

Show that f xnK(y, dx) = Pn(y) y-a.e. and that limy-,,. y-nPn(y) = C,,.
(2) Let o,(y, dt) be the image of K(y, dx) under the mapping x F- x/y. For
0 E C, show that

00 Ckj+00

00
exp(0t)a(y, dt) = expC2i<z/ E k! eky

kHk(y)



318 Exercises for Chapter V

and

Jul +ijexP(ot)c(idt) Ck 9A.yx
( k-0 JC.

(3) Show that. the probability inea ure o(dt) = limy-00 a(,y, dt) exists and
that

Jtfo(dt).C =

From the fact that IC,,1 < 1, conclude that a(R \ [-1,1]) = 0.
(4) Show that or is the unique probability measure on [-1, 11 such that
cl _ ,flu t*'a(dt).
(5) Show that the mapping it .--+ or, from C to the set of probability measures
on [-1, 1], is a bijection. What is it when a is the Dirac measure at p?

METHOD. For (5), consider successively the cases where p = 1, p = -1,
and (using Problem V-5(2) and Mehler's formula, V-1.5.8(ii)) p < 1.

REMARK. This phenomenon was observed by 0. Sarmanov (1966) and
generalized by Tyan, Derin, and Thomas (1976).
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