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Foreword

It is a distinct pleasure to have the opportunity to introduce Professor
Malliavin’s book to the English-speaking mathematical world.

In recent years there has been a noticeable retreat from the level of ab-
straction at which graduate-level courses in analysis were previously taught
in the United States and elsewhere. In contrast to the practices used in the
1950s and 1960s, when great emphasis was placed on the most general
context for integration and operator theory, we have recently witnessed
an increased emphasis on detailed discussion of integration over Euclidean
space and related problems in probability theory, harmonic analysis, and
partial differential equations.

Professor Malliavin is uniquely qualified to introduce the student to anal-
ysis with the proper mix of abstract theories and concrete problems. His
mathematical career includes many notable contributions to harmonic anal-
ysis, complex analysis, and related problems in probability theory and par-
tial differential equations. Rather than developed as a thing-in-itself, the
abstract approach serves as a context into which special models can be
couched. For example, the general theory of integration is developed at an
abstract level, and only then specialized to discuss the Lebesgue measure
and integral on the real line. Another important area is the entire theory
of probability, where we prefer to have the abstract model in mind, with
no other specialization than total unit mass. Generally, we learn to work
at an abstract level so that we can specialize when appropriate.

A cursory examination of the contents reveals that this book covers most
of the topics that are familiar in the first graduate course on analysis. It also
treats topics that are not available elsewhere in textbook form. A notable
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example is Chapter V, which deals with Malliavin’s stochastic calculus of
variations developed in the context of Gaussian measure spaces. Originally
inspired by the desire to obtain a probabilistic proof of Hérmander’s theo-
rem on the smoothness of the solutions of second-order hypoelliptic differ-
ential equations, the subject has found a life of its own. This is partly due
to Malliavin and his followers’ development of a suitable notion of “differen-
tiable function” on a Gaussian measure space. The novice should be warned
that this notion of differentiability is not easily related to the more con-
ventional notion of differentiability in courses on manifolds. Here we have
a family of Sobolev spaces of “differentiable functions” over the measure
space, where the definition is global, in terms of the Sobolev norms. The
finite-dimensional Sobolev spaces are introduced through translation op-
erators, and immediately generalizes to the infinite-dimensional case. The
main theorem of the subject states that if a differentiable vector-valued
function has enough “variation”, then it induces a smooth measure on Eu-
clidean space.

Such relations illustrate the interplay between the “upstairs” and the
“downstairs” of analysis. We find the natural proof of a theorem in real
analysis (smoothness of a measure) by going up to the infinite-dimensional
Gaussian measure space where the measure is naturally defined. This in-
terplay of ideas can also be found in more traditional forms of finite-
dimensional real analysis, where we can better understand and prove for-
mulas and theorems on special functions on the real line by going up to the
higher-dimensional geometric problems from which they came by “projec-
tion”; Bessel and Legendre functions provide some elementary examples of
such phenomena.

The mathematical public owes an enorinous debt of gratitude to Leslie
Kay, whose superlative efforts in editing and translating this text have been
accomplished with great speed and accuracy.

Mark Pinsky

Department of Mathematics
Northwestern University
Evanston, IL 60208, USA



Preface

We plan to survey various extensions of Lebesgue theory in contemporary
analysis: the abstract integral, Radon measures, Fourier analysis, Hilbert
spectral analysis, Sobolev spaces, pseudo-differential operators, probabil-
ity, martingales, the theory of differentiation, and stochastic calculus of
variations.

In order to give complete proofs within the limits of this book, we have
chosen an axiomatic method of exposition; the interest of the concepts in-
troduced will become clear only after the reader has encountered examples
later in the text. For instance, the first chapter deals with the abstract inte-
gral, but the reader does not see a nontrivial example of the abstract theory
until the Lebesgue integral is introduced in Chapter II. This axiomatic ap-
proach is now familiar in topology; it should not cause difficulties in the
theory of integration.

In addition, we have tried as much as possible to base each theory on the
results of the theories presented earlier. This structure permits an econ-
omy of means, furnishes interesting examples of applications of general
theorems, and above all illustrates the unity of the subject. For example,
the Radon-Nikodym theorem, which could have appeared at the end of
Chapter I, is treated at the end of Chapter IV as an example of the theory
of martingales; we then obtain the stronger result of convergence almost
everywhere. Similarly, conditional probabilities are treated using (i) the
theory of Radon measures and (ii) a general isomorphism theorem show-
ing that there exists only one model of a nonatomic separable measure
space, namely R equipped with Lebesgue measure. Furthermore, the spec-
tral theory of unitary operators on an abstract Hilbert space is derived from
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Bochner’s theorem characterizing Fourier series of measures. The treatment
in Chapter V of Sobolev spaces over a probability space parallels that in
Chapter III of Sobolev spaces over R".

In the detailed table of contents, the reader can see how the book is
organized. It is easy to read only selected parts of the book, depending on
the results one hopes to reach; at the beginning of the book, as a reader’s
guide, there is a diagram showing the interdependence of the different sec-
tions. There is also an index of terms at the end of the work. Certain parts
of the text, which can be skipped on a first reading, are printed in smaller
type.

Readers interested in probability theory can focus essentially on Chap-
ters I, IV, and V; those interested in Fourier analysis, essentially on Chap-
ters I and III. Chapter III can be read in different ways, depending on
whether one is interested in partial differential equations or in spectral
analysis.

The book includes a variety of exercises by Gérard Letac. Detailed solu-
tions can be found in Ezercises and Solutions Manual for Integration and
Probability by Gérard Letac, Springer-Verlag, 1995. The upcoming book
Stochastic Analysis by Paul Malliavin, Grundlehren der Mathematischen
Wissenschaften, volume 313, Springer-Verlag, 1995, is meant for second-
year graduate students who are planning to continue their studies in prob-

ability theory.

Interdependence
of the sections (1. 1]
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Prologue

We recall briefly the definition and properties of the usual integral of con-
tinuous functions on R.

The concepts involved are elementary and well known. However, since
this integral will be used to construct the Lebesgue integral, we sketch a
few facts for convenience.

Given the segment [0,1] C R, a partition of [0, 1] is a finite subset 7 of
[0,1] containing 0 and 1. The partition 7’ is said to be finer than 7 if 7’ D 7.
Let 0=t <t <...<t_) <t =1(r=card(m)) be an enumeration
of the points of 7. With every function f continuous on [0, 1], we associate

the sum .

s=(f) = Z(tk+l = te) f(tx)-
k

=1

This is a positive linear functional:

sx(fi+ f2) = 3x(f1) + 3x(f2) and sx(f) 20 if f2>0.

The number §(7) = sup(tx4+1 — i) is called the diameter of the partition
7. We have the following statement.
Given a continuous function f, for every ¢ > 0 there exists ) such that

|sx(f) = snr(f) <€

for any partitions m and n’ satisfying 8(mw) < n and §(n') < 7.
Indeed, since f is continuous on the compact set [0, 1], it is uniformly
continuous. Hence we can find 7 such that |f(z) - f(2')| < § if [z —2'| < 7.
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Let n” = wUn’. Then, writing 7} = 7’ U[tk4+1 —ti], where t,,...,t, denote
the points of the subdivision of ,

7’ =uny and s, (f) = ;isxg(f)-
=1
Moreover,
32 (£) = (thtr = ) F(BR)] < 5 (trn = th).
whence
on () = 82O < § Y ltkss —te) = 5
and

€ €
[sx(f) — 8= (f)] < 32 + 2
Choosing a sequence ) of partitions such that §(mx) — 0, we find that

8x.(f) is a Cauchy sequence whose limit is independent of the choice ;.
Set

=€

Af@“ﬂm%m-

Then the integral is a positive linear functional. In particular,

}/01 f(:l:)dxl < /‘0' |f(z)| dz < max |f(z).

The change of variable 2 = a + t(b — a) reduces the integral over [a, }] to
the preceding case:

b 1
/Gf(z)dz=ﬁ/o f(a+t(b—a))dt.

Differentiation. Let f be continuous. Set

F(z) = fo " f) .

Then F is differentiable and F'(z) = f(z). Evaluating integrals of contin-
uous functions is reduced to finding primitives.

Improper integrals. Integrals will be evaluated either on all of R or on [0, 1].
The functions we integrate on R will be continuous; those we integrate on
[0.1] will be continuous on (0,1). The elementary procedure consists of
passing to the limit:

i

n 1 1-2
/=11133/, f=ligl
n-— —
o f_n 0 "00.’1'



Prologue xxi

We have the concepts of convergence and of absolute convergence. The
Lebesgue theory will be developed in the second setting: every Lebesgue
integrable function will have Lebesgue-integrable absolute value. For this
reason, we consider here only absolutely convergent improper integrals. The
following results can easily be proved by calculating primitives.

If f is continuous and positive on R and if f(z) ~ |z|~® as |z] — +oc,
then the integral of f on R exists if and only if & > 1.

If f is continuous and positive on (0,1] and if f(z) ~ |z|~? as z — 0,
then fol f exists if and only if 8 < 1.

These results generalize to R™ by passing to polar coordinates. We find
in the first case that a > n, and in the second that 3 < n. (In the second
case, we integrate a function continuous on R" and zero outside a compact
set.)
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Measurable Spaces
and Integrable Functions

Introduction

In this chapter, we follow an axiomatic method of exposition. The interest
of the concepts introduced will not appear until Chapter II. We introduce
the notion of a measure space, a space endowed with a family of measurable
subsets satisfying the axioms of a o-algebra. This approach parallels that
of the theory of topological spaces, where a topological space is a space
endowed with a family of open subsets. As we will see in Chapter IV, a
peculiarity of the concept of a o-algebra is that it is adapted to the propo-
sitional calculus (Boolean algebra). Since negation is an operation of this
calculus, this leads to the axiom that the complement of a measurable set is
measurable. The fact that o-algebras are closed under taking complements
is an essential difference between the family of open sets of a topological
space and the family of measurable sets of a measure space. In order to
be able to take limits of sequences, we impose another axiom: A countable
union of measurable sets is measurable.

Having defined the concept of a measurable space, we introduce a class of
morphisms adapted to it: the measurable mappings. We introduce a natural
measurable structure on a topological space: the Borel structure. Continu-
ous mappings are thus special cases of measurable mappings. A remarkable
result is that the limit of a pointwise convergent sequence of measurable
mappings is itself measurable. Thus all the functions appearing in prac-
tice in mathematical analysis are measurable functions. A measure space
is a measurable space which is given a “mass distribution”. The concept
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of negligible sets, or sets of measure zero, is introduced; two measurable
mappings are considered equivalent if they differ on a negligible set.

We introduce the concept of convergence in measure, which gives a com-
plete metric space structure to the space M of equivalence classes of mea-
surable mappings from a measure space to a complete metric space. When
we consider functions on a measure space, i.e. mappings with values in R,
we introduce simple functions, those that assume finitely many values. The
integral, defined trivially on certain simple functions, extends to an appro-
priate completion, which defines the space L! of integrable functions. The
theorems on passage to the limit under the integral sign are then an easy
consequence of the fact that L! is a complete space. The chapter concludes
with Fubini’s theorem and the duality between LP spaces.

1 o-algebras

Let X be an abstract set. A o-algebre on X is a family A of subsets of X
satisfying the following three axioms:

1.0.1 The set X belongs to A.
1.0.2 If A € A, its complement A° € A.

1.0.3 Every countable union of sets in A belongs to A; i.e., if A, € A
Vn € N, then (U, NA4n) € A.

A Boolean algebra on X is a family B of subsets of X satisfying 1.0.1,
1.0.2, and

1.0.4 Every finite union of sets in the algebra B is in B.
Every o-algebra is thus a Boolean algebra. By using Axiom 1.0.2 and
passing to the complement, we find that 1.0.3 implies

1.0.5 If An € A, then (N N 4n) € A.

An analogous statement is obtained for Boolean algebras by restricting
to finite intersections. In what follows, we will not pursue the parallels
between Boolean algebras and o-algebras, but the reader should note that
most theorems involving passage to the limit are false for Boolean algebras.

1.1 Sub-o-algebras. Intersection of o-algebras

Given two o-algebras A and A’ on the abstract set X, we say that A’ is
a sub-o-algebra of A if A € A’ implies A € A. More formally, let P(X)
denote the set of subsets of X. We may view a o-algebra A on X as a
subset of P(X). The “order relation” between o-algebras corresponds to
the relation of inclusion between the subsets of P(X).

1.1.1 More generally, if G is an arbitrary family of subsets of X and A is a
o-algebra on X, we say that A D G if A € G implies A € A.
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1.1.2 Intersection of o-algebras

Definition. Let {A,,a € I}, be a family of o-algebras on X. We denote
by A’ = NgerAq the family of subsets of X defined by A € A’ if and only
if A€ A, for all a € I. A’ is a o-algebra called the intersection of the A,.

We verify only 1.0.3, the other axioms being even more obvious. Let
A, € A, set

Z = UneNA"'

and fix ag. Since A,, € A,, and A,, satisfies 1.0.3, it follows that Z € A,,.
As this is true for all ag, we conclude that Z € A’.

1.2 o-algebra generated by a family of sets

1.2.1 Theorem. Let G be a family of subsets of X. Then there exists on
X a smallest o-algebra containing G.

PROOF. Consider the o-algebras B on X such that
(P) B> g.

Let I denote the family of o-algebras B satisfying (P), and set Ay =
NBeiB. Then Ay is a g-algebra by 1.1.2, and it is the smallest o-algebra
of the family 1. O

1.2.2 Definition. A, is called the o-algebra generated by G. We say that
G is a system of generators of Ay.

1.2.3 Fundamental example: Borel algebras

Let X be a topological space and let Ox be the family of open subsets of
X. The o-algebra generated by Ox is called a Borel algebra, and written
Bx.

An element of By is called a Borel set. Open sets are Borel sets, as are
closed sets (as complements of open sets). The family of closed sets could
equally well be taken as a system of generators of By.

1.3 Limit of a monotone sequence of sets

1.3.1 Definition. Let A, be an increasing sequence of subsets of X. We
call the union of the A,, the limit of the sequence A,, and we set

Ax =lim T A, =| JAn, where A, C Ansi.
n
Similarly, given a decreasing sequence B, of subsets of X, we call the
intersection of the B,, its limit:

B =lim | By, =()Ba, where B, D Bnp.
n
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A sequence of subsets of X is monotone if it is either increasing or de-
creasing.

1.3.2 A monotone class is a family M of subsets of X such that if {A,} is
a monotone sequence for which A, € M for each n, then its limit is in M.

1.3.3 Proposition. A o-algebra is a monotone class.

PROOF. Let {A,} be an increasing sequence of sets in the o-algebra A.
Then by 1.0.3

lim T An = J4n € A.
Similarly, 1.0.5 proves the statement for decreasing sequences.

1.3.4 An arbitrary intersection of monotone classes is a monotone class.
Thus, given a family Z of subsets of X, there exists a smallest monotone
class My containing Z. My is called the monotone class generated by Z.

1.4 Theorem. Let By, be a Boolean algebra of subsets of X, M the mono-
tone class generated by By, and B the o-algebra generated by By. Then
B=M.

PROOF. By 1.3.3, B is a monotone class. Since B contains Bs, it contains the
smallest monotone class containing By; thus B O M.
Conversely, for all A € P(X), let

1.4.1 ®(A)={B€P(X): AUB,A-B,B— Ae M}.

Then the assertions B € ®(A) and A € ®(B) are equivalent.
Fixing A, we show that ®(A) is a monotone class. Indeed, if B, is an increasing
sequence of elements of $(A), then

B, — A is an increasing sequence of elements of M,

{ AU B, is an increasing sequence of elements of M,
A — B, is a decreasing sequence of elements of M,

and their limits are elements of M. Furthermore,
limt (AU By) = AUlim 1 By,

whence lim { B, € ®(A).
Let Ag € By; then By € ®(Ao) for all Bo € By,. Hence ®(Ao) is a monotone
class containing By. Thus ®(Ae) D M, or B € ®&(Ao) for any Ao € By, B € M.
Conversely, Ao € ®(B); i.e., ®(B) D B, for any fixed B € M.
Since ®(B) is a monotone class, it follows that ®(B) O M.
We have proved that

142 B - B, B' - B, BuU B’ € M whenever B, B’ € M.
Taking B’ = X shows that B € M if B € M, and thus
1.4.3 M is a Boolean algebra.

The following lemma, 1.4.4, implies that M is a g-algebra. Since M D By, M
contains the o-algebra generated by Bs; hence BC M. O
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1.4.4 Lemma. Let Z be a Boolean algebra which is closed under increasing
limits. (That is, if Z, is an increasing sequence of elements of Z, then
lim { Z,, € Z.) Then Z is a o-algebra.

PROOF. Let A, € Z and set Zn = Uj<p<nAp; then
UﬂAn = UnZu = lim T Zn € Z,
and Axiom 1.0.3 is satisfied.

1.5 Product o-algebras

Definition. Let X, X; be abstract sets equipped with o-algebras A,, A,,
and let the Cartesian product X, x X, be denoted by X.

1.5.1 A rectangle R is a subset of X of the form
R=A,xA; with A, €A (i= 1,2).

The set of all rectangles is denoted by R.

1.5.2 The o-algebra generated by R is called the product o-algebra and
denoted by A, ® A,.

1.5.3 The union of a finite number of disjoint rectangles is called an ele-
mentary set. The family of elementary sets is denoted by £.

1.5.4 Proposition. The elementary sets form a Boolean algebra.

PROOF. Note first that the union of a finite number of disjoint elementary sets
is an elementary set.
Let R = A; x A2, R’ = A} x A} be two rectangles; then

(R)° = (A x X2) N (X1 x A3).

Hence
R’—R=R|UR2UR3,

where R = (A N A}) x (A2 N A}), Rz = (A, N A}) x (A5 N A}), and Rs =
(A§ N A}) x (A5 N A}). Thus

(?) R — R is an elementary set.

Let E = RUR, be an elementary set that is the union of two disjoint rectangles.
(We restrict to two in order to simplify notation.)

R —E= (R -R)-R4 = (RiUR2UR3)—Rs = (R1 — R4)U(R2— Ra)U(R3—Ry).
Applying (i), we obtain

(i) R —E isanelementarysetif E€€, R €R.
If E' € £ then E’' = UR; (R: disjoint) and E’ — E = U(R, — E), whence

(iid) (E'—E)e€ forany E,E' €€.



6 I. Measurable Spaces and Integrable Functions

Taking E' = X, x X2, we obtain 1.0.2. Furthermore,
(A1 x A2) N (A} x A3) = (A1 N A}) x (A2 A3).
Hence the intersection of two rectangles is a rectangle and, more generally,
(iv) ENE €& if E,E €€

Indeed, if E = UR, and E' = URy, then EN E’ = U, o(R, N Ry). (Note that
the sets R, N Ry are disjoint.)
Finally,

(v) EUE =(E-E')U(E - E)U(ENE).

The three quantities in parentheses on the right-hand side are elementary sets
by (ii) and (iv); since they are disjoint, EU E’ € £ and 1.0.4 is satisfied.

1.5.5 Corollary. The o-algebra A, ® A, is the monotone class generated
by the elementary sets.

PROOF. 1.5.4 and 1.4.

2 Measurable Spaces

2.1 Inverse image of a o-algebra

Let X, X’ be abstract sets and let f be a mapping from X to X'. Let G’
be a family of subsets of X’. We write
FFUG)={AeP(X): A= f~1(A") with A €G'}.

2.1.1 Proposition. Let A’ be a o-algebra on X'; then f~1(A’) is a o-
algebra on X. It is called the inverse image of A’ under f and denoted by
A= f1A).
PROOF. The inverse image of X’ is X. In addition,

Usf1 ALY = Y (U,AL) (Axiom 1.0.3 is satisfied);

[F1Aa))® = fyao) (Axiom 1.0.2 is satisfied).
2.1.2 Taking the inverse image preserves inclusion between o-algebras:
FH(AY) D f1(A3) whenever A} D Aj.
2.1.3 EXAMPLE. Let Y be a subset of the set X’, let i be the canonical
injection of Y into X’, and let A’ be a o-algebra on X’. Then

i~1(A) {BeP(Y):i"}(B) € A’}
{B€P(Y):3A" € A such that A’'NY = B}.
In this special case, i~!(A’) is called the trace o-algebra of the o-algebra

A’ on the subset Y.

Since Y is a subset of X', every subset of Y can be identified with a
subset of X'. It is easy to verify that

(4) iTNA)cA & Yed.
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2.1.4 Transitivity of inverse images

Suppose that X, X’, and X" are three abstract sets, f and h are mappings
such that X % X’ ™ X" and G” is a family of subsets of X”. Then

FHRHGM) = (ho £)THGY).

2.2 Closure under inverse images of the generated o-algebra

2.2.1 Theorem. Suppose that X and X' are abstract sets, f is a mapping
from X to X', G' is a family of subsets of X', and A’ is the o-algebra
generated by G'. Then f~'(A') is the o-algebra generated by f~1(G').

PROOF. Let B denote the o-algebra generated by f~(G’).
Bc f~}(A') since f~1(G') c f~1(A).
To prove that B D f~1(A’), we let

B ={B'cX':fY(B)eB)
and prove that B’ is a o-algebra.

(i) f/Y(X")=X € B; hence X' € B'.
(ii) Let B’ € B'; then f~Y(X' — B') = X — f~}(B’) € B since B is
a o-algebra .
(iii) Let B, € B'; then f~}(U,B.) =U,f~!(B}) € B.

B’ O G’; hence B’ contains A’, the o-algebra generated by G'. Let A’ € A'.
Then A’ € B since B' D A’. Hence f~!(A’) € B. O

2.3 Measurable spaces and measurable mappings

2.3.1 Definition. The pair (X..A) consisting of a set X together with a
o-algebra A of subsets of X is called a measurable space.

2.3.2 Definition. Given two measurable spaces (X. .A) and (X', A’), a map-
ping f of X to X' is called measurable if f~1(A4’) C A.

M((X, A); (X', A")) will denote the set of measurable mappings of (X, A)
into (X', A").

2.3.3 Proposition. The composition of measurable mappings is measur-
able.

PROOF. Let f; € M((X,A); (X', A")), f € M((X',A'); (X", A")). Then
by 2.1.4 f = f,0 f, satisfies (f20 f;)"!(A") = f;l(f;l(A")) c fn_'(-A') C
A, and hence f> o f, is measurable. O
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2.3.4 Proposition (Measurability criterion). Let (X, A) and (X', A")
be measurable spaces, let A’ be the o-algebra generated by G, and let G' C
A'. Then the following are equivalent:

(i) f € M((X,A); (X', A"))
(i) f~1(G') C A
PROOF. Let A, be the o-algebra generated by f~!(G’). Then (ii) is equiv-

alent to A; C A. Furthermore, A, = f~!(A’) by Theorem 2.2.1; hence (ii)
is equivalent to (i). O

2.3.5 Measurable mappings into a product

Let (X, A), (Y1,B:), and (Y2, B2) be measurable spaces. Let Y; x Y, be
given the product o-algebra B, ® B2, defined in 1.5.2, and let 7; (i = 1,2)
be the natural projection of Y7 x Y; onto Y;.

Lemma. 7, € M((Y; x Y2,B;, ® By); (Y1, By)).

PROOF. We must consider 7] ! (B ), where By € B,. But n;}(B,) = B, xY,
is a rectangle, and hence an element of B, ® B,. O

Proposition (Measurability criterion for a mapping into a prod-
uct). Let f be a mapping of X into Yy x Y. Then f is measurable if and
only if its components f; = m; o f (i=1,2) are measurable.

PROOF. Suppose that f is measurable. Then, by the preceding lemma,
m o f is a composition of measurable mappings and hence measurable.
Conversely, suppose that f; and f, are measurable and let R = B; x B;
be a rectangle. Then f~!(R) = f{'(B1) N f;(Bz2). Each f!(By) is in
A, hence so is their intersection, and the measurability criterion 2.3.4 then
shows that f is measurable. O

2.4 Borel algebras. Measurability and continuity.
Operations on measurable functions

2.4.1 Separability and measurability
Separability of topological spaces
Let Y be a Hausdorff space.

(i) Y satisfies the first separability aziom if there exists a subset D of Y which is
countable and dense in Y (closure of D = Y).

(ii) Y satisfies the second separability aziom if there exists a countable family of
open subsets H, such that every open set in Y may be written as a union of the
H, that it contains. The family H; is called a basis of open sets for Y.

(iii) EXAMPLE. Let Y = R and let Q be the set of rational numbers. Setting
Hy, 92 = (q1,42), we obtain a countable family of intervals. Then every interval
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(z1,z2) can be written as a union of the H; that it contains. The same holds for
any open set.

(iv) Proposition. Let Y be a metric space satisfying the first separability axiom.
Then it satisfies the second.

PROOF. Let {y:} be a dense sequence in Y. We denote by d the distance on Y
and set H;m = {y € Y : d(y,y:) < m~'}, where m € N. For each open set O in
Y, let O’ be the union of the H;,, contained in O. Then O’ is an open subset of
O. Let z € O. Then there exists mo such that the ball with center z and radius
mg! is contained in O. Let j be such that d(y;, 2) < (2mo)~". Then z € H; 2m,,
and hence O C O'.

(v) The space R" satisfies the first separability axiom and hence the second.

(vi) The second separability axiom implies the first. It suffices to choose a
point y in each H; to obtain a dense sequence.

Because of (vi) and (iv), we refer to a metric space which has a dense
sequence as a separable metric space.

(vii) Let Y,Y’ be two separable metric spaces. Then their product Y” is
separable. Set y}, = (y;,y)); then the {y;'; } form a countable dense subset
of Y”.

(viii) Proposition (Measurability criterion). Suppose that (X, A) is a
measurable space, Y is a topological space satisfying the second separability
aziom, and H; is a basis of open sets of Y. Then a mapping f : X — Y is
measurable if and only if

f_l(Hi) €A, :1eN.

PROOF. This follows immediately from the measurability criterion 2.3.4. It
must be shown that, for every open set O, f~!(0) € A. Let O = U,H;;
then f~}(0) =U,f"}(H;,) € A. O

REMARK. (viii) provides an explicit criterion for the measurability of a
function.

2.4.2 Product of Borel algebras

Proposition. Consider two separable metric spaces X, and X2 and their
product Y = X) x Xy. Let Y be equipped with the product topology. Denote
by By, B2, and By the associated Borel algebras. Then By = B; ® Bs.

PROOF. Y is separable by 2.4.1. The family of open sets of the product
topology is generated by the countable unions of open rectangles: Ry =
01 x O3, where O; € Oyx,. Hence Ry € B; ® By; that is, Oy C B; ® Ba. It
follows that By C B; ® B..

Let m; be the projection of Y onto X;. Then m; € M((Y, By); (X1, B:))
since 7! (Ox,) C By.
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It follows from 2.3.5 and the fact that m; o j (j = 1,2) is measurable
that the identity mapping j : (Y, By) — (Y, B) ® B;) is measurable. Thus
J~Y(B1®B;) CBy,or By®B; C By. O

2.4.3 Measurability and continuity

Let X and X’ be topological spaces. Equipping them with their Borel
algebras Bx and By, we obtain measure spaces (X, Bx) and (X', Bx-).

Proposition. Every continuous mapping f from X to X' is a measurable
mapping from (X,Bx) to (X',Bx).

PROOF. We use the measurability criterion 2.3.4. It must be shown that
f~Y(Ox) C Bx.But since f is continuous, the inverse image of an open set
is open, whence f~!(Ox/) C Ox. Since Ox C By, the conclusion follows.
m]

2.4.4 Algebraic operations on measurable functions

Consider the field of real numbers R with its Borel algebra Br. Given
a measurable space (X,.A), we denote by £°(X,.A) the set of measurable
mappings from (X, A) to (R, Br). Elements of £L°(X, A) are called measur-
able functions. When X is a topological space with its Borel algebra By,
elements of £L%(X, Bx) are often called Borel functions.

Proposition. The absolute value of a measurable function f is measurable.
The sum and product of two measurable functions are measurable. The
multiplicative inverse of a measurable function which is everywhere nonzero
is measurable.

PROOF. Let u be the mapping from R to R defined by the absolute value:
u(¢) = |¢|- Then u is continuous, hence measurable, and 2.3.3 implies that
|f| = uo f is measurable.

Let & be the continuous mapping of R? — R defined by ®((;,(2) =
1 + ¢2. Similarly, let ¥(¢1,¢2) = G1 .

Let f) and f be measurable functions on X, and let F(z) = (fi(z), f2(z)).
Then F: X — R? and, by 2.3.5,

F € M((X,A);(R?,Br ® Br)).

By 2.4.2, Br ® Br = Bga; hence F € M((X, A),(R?, Bg2)). Since ® is
continuous, ® € M((R?, Br2); (R, Br)). Thus, by 2.3.3,

PoFe M((X’A)v (Rs BR)) = cO(X’ A)

But (® o F)(z) = fi(z) + fa(z).

Similarly, ¥ o F € L°((X,.A)) and (¥ o F)(z) = fi(z)f2(z).

We denote R — {0} by R’. Let 7 be the continuous mapping of R’ — R’
defined by 7(¢) = ¢ and let f € L(X,A), f(z) #0forallz€ X. IfO is
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an open set in R, then O’ = ONR’ is an open set in R'. Set g(z) = T(%
Then ¢~ !(0) = ¢7}(O’') = f~}(n~*(0’)). Since n~1(0’) is an open set
in R’ and R’ is open in R, 7~ !(0’) is open in R. Since f is measurable,

'm0 e A D

2.5 Pointwise convergence of measurable mappings

In this section, (X, .A) denotes a measurable space, Y a metric space, and
By the Borel algebra of Y. We say that a sequence of mappings f, : X — Y
converges pointwise to fo if lim f,(z) = fo(z) for every z € X.

2.5.1 Theorem. Let f, be a sequence of measurable mappings which con-
verge pointwise to fo. Then fo is measurable.

REMARK. It is well known that the pointwise limit of a sequence of contin-
uous functions is not necessarily continuous. This theorem shows the great
stability of the property of measurability.

ProoF. Let f, € M((X, A);(Y,B)). Let d denote the distance in Y and
let O be an open set in Y. For every &k > 0, let

Ok={z60:d(z,0“)> %}

Then O is an increasing sequence of open sets in O and O = U, . NOk.

Moreover, denoting by Ok the closure of Ok, we have O C Og.41.
Since d(fo(z), fm(z)) — 0, it follows that

Jo(z) € Ok = f4(x) € Oy if q is large enough, say ¢ > my.

Set HE, = Ng>mof; ' (Ok). Since f, is measurable, each f;!(Ox) € A,
whence HE_ € A. Let G* = U, HE, ; then G* € A.

We have thus shown that fo(z) € Ox = = € G**! or, taking the union
over k, fo(z) € O = r € |, N G", which may be written as

() fHO)c W, where W = U,NG €A

We now prove the reverse inclusion. Let £; € G". Then there existis_ m
such that ) € H}, , or z, € f;'(O;) if ¢ > m,. Thus lim fo(x1) € O, C
Or41 C O and therefore

(39) o) ow.

From (i) and (ii) it follows that f5'(0) = W, or W € A, whence fj is
measurable. O
For emphasis, we restate (i) and (ii) in the following form.
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2.5.2 Fundamental lemma. Let {f,} be a sequence of mappings from X
to the metric space Y that converges pointwise to fo. Then for every open
setOinY,

o"(O)=U |:ﬂ fq'l(Or):|, where O,={x€0:d(z,0c)>%}.

rm |g2m

2.6 Supremum of a sequence of measurable functions

For convenience of notation, we introduce in this section the set R of real
numbers completed by adjoining the two elements +o0o and —oo.
Addition and multiplication in R are defined in the elementary way,
except for the “indefinite forms” +o00 — —o0o and 0 - co.
R is given the obvious order relation, with +oco the largest and —oo the
smallest element. A distance is defined on R by setting

d(z,z’) = |Arctanz — Arctanz’|.

Every subset of R has a supremum, or least upper bound. The empty
set is assigned the supremum —oo.

2.6.1 Proposition. Let {f,} be a sequence in M((X, A); (R, Bg)) and let
@ = sup f,. Then p € M((X, A); (R, By)).

PROOF. Since {+00} is a closed subset of R, f;!({+o0}) € A. Set G =
Unf7'({+00}). Then G € A and p(z) = +x if z € G.

Let X' = G, equip X’ with the trace A’ of the o-algebra A, and denote
by f, the restriction of f, to X. Then

fr e M((X',A); (R,Br)) = L%(X', A).

Moreover, by 2.4.4, sup(f}, f3) € L%(X’, A).

More generally, let the sequence {g,} be defined by recursion: g, = f]
and gx = sup(f},gk-1) if k > 1.

An induction argument shows that gx4; € L°(X’, A’). Moreover, gx <
gk+1. Thus {gx} is an increasing sequence, hence convergent in R. Set
e1(z’') = limgk(z'), ' € X'. Then, by 2.5.1, p; € M((X’, A'); (R, Br)).
Furthermore, p(z) = p1(z) if £ € X’ and p(z) = +0 if z ¢ X'.

Let K be a closed subset of R. Then

eNK) =0T K)  if +ood K

¢ Y K) =] (K)UG if +o0€K.
Since ;! (K) = X'N A with A € A and X’ € A, it follows that o7 !(K) €
A O

2.8.2 Corollary. Let f, € M((X,A);(R,Bg)). Then (limsup f,) €
M((X, A); (R, Bg))-
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PROOF. Let @5, = sup,5, fp. Then @, is measurable. The sequence {yn(z)}
is decreasing, hence convergent in R, and 2.5.1 gives the result. O

3 Measures and Measure Spaces

Definition. Let R* = {¢ € R : ¢ > 0} U {+00}. Given a measurable
space (X,.A), a measure on (X, A) is a mapping u: A — R’ satisfying the
following two axioms:

Countable additivity (c-additivity) axiom

3.0.1. Let Ax € A, k € 1, be a finite or countable family of measurable sets
that are pairwise disjoint; that is, AkNA; =0 ifk #1. Then

(¥) p (U Ak) =Y u(Ax).

kel kel
In particular,

(1) pw(A1UA) =p(A1)+u(A2) if AxNA2=0 (finite additivity).
o-finiteness axiom
There ezist A,, € A such that

3.0.2 X =UpA, and pu(A,) < +oo Vn.

The sequence {A,} is called an ezhaustion sequence for X. If u(X) <
+00, X is said to have finite measure (or finite total mass) and u itself is
called a finite measure. It is possible to develop part of the theory without
using 3.0.2, the o-finiteness axiom. However, the axiom will always be sat-
isfied for the applications we have in mind, and we take this point of view
for ease of exposition.

Definition. A measurable space (X, .A) equipped with a measure y defined
on A is called a measure space and is denoted by (X, A, u).

EXAMPLE. Let {z;} be a countable sequence of points of X and let {a;}
be a sequence of positive real numbers. For A = P(X) and A € A, set

u(A) = }: Q;.

€A

Then (X, A, 1) is a measure space. If a; = 1, i € N, this measure yu is
called the counting measure associated with the sequence {z;}; u(A) equals
the number of points of the sequence {z;} which lie in A.

This example is trivial and does not reveal the complexity of the theory.
In fact, we will not obtain nontrivial examples of measure spaces until
Chapter II.
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3.1 Converity inequality
Proposition. Let (X, A, u) be a measure space. Then

3.1.1 u is increasing; that is, if A, and A2 € A and A; C A3, then u(A;) <
p(Az).

3.1.2 p is convez; that is, if B, ..., By, € A (not necessarily disjoint), then
n n
7] (U Bi) < ZM(B-')-
i=1 i=1
PROOF. Let A) C A2 and let B = A{N A; then B € A and A2 = A, UB.
The finite additivity axiom gives
1(Az2) = p(Ar) + u(B).

Since u(B) 2 0, we conclude that p(Az) > p(A;).
Similarly, let the sequence B,,..., By,... be defined recursively:

~

B, =B, and By = ByN(Uj<yBj)°, ¢> 1.

Then B, € A, U™ B, = Ui lB,, and by finite additivity

(Um IBJ) Z ﬂ(BJ
Ej C B; implies u(éj) < u(B,), and the desired inequality follows. O

3.2 Measure of limits of monotone sequences

Theorem. Let A, As, ..., A, ... be an increasing sequence of measurable
sets. Let

+oc
lim 1 A = | 4;.

i=1

Then

3.21 p(lim 1 A;) = lim p(A4;).

Theorem. Let By, Bs, ..., By, ... be a decreasing sequence of measurable
sets. Let

+00
lim | B; = (] B:.
i=1

3.2.2 Suppose that there exists kg such that p(Bg,) < +00. Then
323 p(lim | By) = lim p(By).
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REMARK. The properties described by these two theorems are sometimes
called continuity on increasing sequences and continuity on decreasing se-
quences.

PROOF Consider the measure space (X, A4, u). For A, € A, set Z, = A
and A,.+1 ASNAps lfn > 1.

Then A,,H € A, the A, are disjoint, and A; = U,< _,A Hence, by finite
additivity,

w(A5) =Y u(Ay).

9<)

Moreover, U2, A; = _‘;°=le and, by o-additivity,

oo 400
p (U A.‘i) = uA4).
j=1 j=1

Hence, for increasing sequences, 3.2.1 reduces to the simple observation
that the sum of a series of nonnegative terms is the limit of its partial
sums; that is, ;=1 p(A ) = lim, Zq_l u(A,). This limit always exists,
whether it is finite or infinite.

In order to prove 3.2.3, we set A, = By, N B§, k > ko. Then A} is
an increasing sequence. The relation Bix, = Bi U A}, Bix and A}, disjoint,
implies p(Bk,) = p(Bx)+p(Ay). Hence p(Aj) < p(Bk,) and p(lim T A}) =
lim u(A}) = B < p(Bk,). We have

(lim | Bi)°U (lim T A}) = Bx,,

whence
p(lim | Bi) + p(lim T Ay) = p(Bx,),

or finally

u(lim | By) = u(Bk,) ~ lim p(4}) = im{u(Bx,) — p(A})] = lim u(Bx).0

3.2.4 Application — Exhaustion principle

We now roughly sketch a principle that will often be used. Let (P) be a
property that is true for all finite measures. Let (X,.4, ) be a measure
space with an exhaustion sequence A,. Let X, = A,, equipped with the
trace o-algebra A, of the o-algebra A, and let u, be the restriction of u
to A,. Then each u, is finite and therefore satisfies (P).

To conclude that p satisfies (P), it suffices to show that “the limits of
values of u, appearing in (P) are finite”.
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3.2.5 REMARK. Let o be a mapping from A to R* satisfying the finite
additivity axiom 3.0.1(ii) and property 3.2.1 of continuity with respect to
increasing sequences. Then o satisfies 3.0.1(i), since

n +00
o(UP Ap) = o(lim(UT4,)) = limo (U 4p) = lim ) _o(4,) =Y _o(4,),
1 1

where the third equality follows from finite additivity.

3.8 Countable converity inequality

Proposition. Let {A,} be a sequence of (not necessarily disjoint) elements

of A. Then
+00 400
I (U An) <Y u(Ag).
n=1 n=1

PROOF. Set B, = |J!_, An. Then B, is an increasing sequence, and by

3.2.1 we have
400
u (U A,,) = lim u(By).

n=1

Furthermore, by the finite convexity property 3.1.2,

q +00
#(Bg) < Y nu(An) £ Y p(An).0
n=1 n=1

4 Negligible Sets and Classes
of Measurable Mappings

The concept of measurable mappings is extremely easy to work with. In
particular, the theorem that a pointwise limit of measurable mappings is
measurable makes the operations of analysis very convenient. The drawback
of this convenience is that the space of measurable functions is enormous,
and therefore hardly usable. We will work on a quotient space.

4.1 Negligible sets

Definition. Let (X, A, u) be a measure space. A subset Z of X is called
negligible if there exists A € A such that u(A) =0and A D Z.

4.1.1 Proposition. A countable union of negligible sets is negligible.
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PROOF. This follows from countable convexity:

’ (LiJA.-) < YoM

Since every term on the right-hand side is zero, the sum of the series is
zero. D

Definition. A property (P) is said to be true p-almost everywhere (denoted
p-a.e.) on the measure space (X, A, u) if

{z : (P) does not hold at z} is contained in a negligible set.

4.1.2 Let (P,) be a proposition implying the proposition (P2). Then (P,)
true u-a.e. = (P,) true p-a.e.

4.1.3 Theorem. Let (P,), ..., (Py), -.. be a sequence of properties defined
on (X, A, u). Suppose that each of the properties (P;) is true u-a.e. Then
their conjunction is true pu-a.e.

PROOF. Let A; be a negligible set that contains {z : (P;) does not hold at z}.
Then A, = U;A; is negligible. If £ ¢ A, then all the (P;) hold at z. D

4.2 Complete measure spaces

4.2.1 Definition. Given the measure space (X, A, u1), the o-algebra A is
called p-complete if every subset of a negligible set is measurable.

The measure space (X, .A, u) is called complete when A is pu-complete.

The space is complete if and only if every subset of a negligible set is
negligible.

On a complete measure space, a property P is true p-a.e. if the set
{z : (P) does not hold at z} is negligible.

4.2.2 Completion theorem. Let (X, A,u) be a measure space. Then
there ezist a o-algebra A" O A and an extension pu' of u to A’ such that
(X, A, i) is complete and, for all A’ € A', there ezist A,, A; € A' with
A, C A’ C Az, u(A2 — A)) = 0. This o-algebra A’ is unique and will be
called the completion of A.

PROOF. Define
A’ = {Z € P(X) : 3A1, A2 € A such that A C Z C Az and u(Az — 4,) = 0}.

Clearly A’ O A. We show that A’ is a 0-algebra. If Z € A’, then A3 C Z° C Af
and A{ — A3 = A; — A;, whence Z° € A’. Hence Axiom 1.0.2 is satisfied.

Let Z" € A’. Then there exist AT and AZ such that A} C Z" C A%. Set
Z% = UZ", AP = UA}, and AP = UAD. Then

AP CZ®C AP and AP - AP C | J4z - 4D).
n
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The right-hand side, as a countable union of negligible sets, is negligible,
whence Z € A’ and A’ is a o-algebra.

To extend u to A’, we first note that u(A2) = u(A41) + u(Az — A1) = u(4).
For Z € A, let /'(Z) be defined by p'(Z) = u(A)).
_ We now show that this is independent of the choice of Ay C Z C Aa. Let
A]_C Z C Az; A, A2 € A, u(A2 — A1) = 0. 'I:hen A2 O Z ) A), whence
B(A2) 2 p(A1) = p(A2). Similarly p(A2) > p(Az), whence p(A2) = p(A2).
Moreover, if Z™ is a sequence of disjoint sets, then so is AT; hence u(UAT) =
3 u(AD), and we have shown that y’ is countably additive.

Finally, u’ is complete: letting Z € A’ with u'(Z) = 0, there exists A, € A
satisfying Z C A2 and u(A2) = 0. Let Z, C Z. Then 0 C Z, C A2, where 9, A2
€ A and u(Az — 0) = 0. Therefore Z, € A'. O

4.3 The space M,((X, A); (X', A"))
(i) On M((X,A); (X', A")), let the equivalence relation be defined by

f~f if f(z)=f(z) pae
The equivalence class of f is denoted by f.

(ii) The transitivity of this relation follows from 4.1.3.

4.3.1 Definition. The quotient of M by this equivalence relation is denoted
by M,,((X,A); (X", A)).

An element f € M, is a mapping f : X — X', defined “up to a set of
p-measure zero”.

4.3.2 Let £ be a negligible set and let p: X — € — X'.
Suppose that ¢ is a measurable mapping when X — £ is given the trace
o-algebra induced by A. Define f : X — X’ by setting

fx)=p(z) if zeX-€
f(z) =zg if zek&,

where zg is an arbitrarily chosen element in X"’.
Then f € M((X,A); (X', A’)), and ¢ determines the equivalence class
of f in M,((X,A); (X', A")).

4.3.3 REMARK. When X’ = R and A = BR, the operations defined on
measurable functions (sum, product, sup) are compatible with the equiva-
lence relation. The quotient of £(X, A) = M((X, A); (R, Br)) is denoted
by LY (X, A).

Thus the operations sum, product, and sup are defined on L9 u (X, A).
Moreover, any element of Lg(X A) with a representative that is nonzero
almost everywhere has a well-defined inverse. L? u(X, A) is called the space
of equivalence classes of measurable functions.



5 Convergence in M, ((X, A); (Y,By)) 19
5 Convergence in M,((X,.A); (Y, By))

Throughout this section (X,A,u) denotes a measure space, Y a
separable metric space, and By the Borel algebra of Y.

5.1 Convergence almost everywhere

5.1.1 Definition. Let f,, € M,((X,.A); (Y,By)). {f,} is said to converge
almost everywhere if, when representatives f, of f, are chosen, {f(z)} is
convergent p-a.e.

We first show that this definition is independent of the choice of rep-
resentatives. Let g, = f, p-a.e. Denote by (P,) and (F) the following
propositions:

(Pn) gn(z) = fa(z)
(F) lim f,(z) exists.

Let (G) be the conjunction of (F) and the (P,). Then, by 4.1.3, (G)
is true p-a.e. Since (G) implies the convergence of the g, 4.1.2 gives the
result.

5.1.2 Proposition. Let f, € M,((X, A); (Y,By)). Suppose that {f,,} con-
verges almost everywhere. Then

lim fn(z)

defines an element g, € M,((X, A); (Y, By)).

PROOF. Choose an arbitrary y, € Y, let (F) be defined as in 5.1.1, and let
K be a negligible set such that K O {z : (F) is not satisfied at z}. Let

gn(z) = fa(x) zeK
gn(z) =10 z € K°©.

Then, by 4.3.2, g, € M((X’ A)v v, BY)) and g, = Tn'

Moreover, if € K then {gn(z)} converges by 5.1.2; if ¢ ¢ K, then
gn(z) = yo and hence the sequence converges.

Thus {gn(z)} converges for all z € X, and Theorem 2.5.1 shows that
go = lim g,, satisfies

90 € M((Xv -A); (Ya BY))'
Hence _
limF, = 5 € Mu((X, A); (Y, By)).0

5.1.3 Lemma. Given f,g € M((X,A);(Y,By)), let g5, be defined by
a5.¢(z) = d(f(z),9(z)). Then gy4 is a measurable function and Vn € R*
{z: grg(x) > n} is measurable.
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PROOF. Let Y2 = Y x Y and let % be the mapping from Y2 into R*
defined by the distance: ¥(y1,52) = d(y1,¥y2).

Let H : X — Y? be defined by z — (f(z),g(z)); then, by 2.3.5, H €
M((X,A); (Y2, Bya)).

Since v is continuous, ¥ o H € M((X, A); (R, Br)).

Moreover, since (1, +00) is an open set in R, qz;((n, +0)) € A. O

5.1.4 Egoroff’s theorem. Let (X, A, u) be a measure space and suppose
in addition that p(X) < +00.

Then f, € M,((X,A),(Y,By)) converges u-a.e. to f, if and only if,
choosing representatives f,, fo of the classes f,, fo,

Ve >0 3K, € A such that p(K{)<e

and fo(x) converges uniformly on K, to fo.

PROOF. Necessity is clear. Set ¢ = m~!, m a positive integer. Then f,
converges to fo on UK,,-1 = G. Since u(G°) < (K¢, .,) for every m,
#(G°) = 0.

We now prove sufficiency. Set

Ang = {z  d(fal2), fola)) > %} .

Then A, 4, € A by 5.1.3.

Let Bm,g = Un>mAn . Since By, 4 is a decreasing sequence for fixed g,
the hypothesis of convergence u-a.e. together with the limit theorem 3.2
imply that u(Bpm q) — 0 for every fixed g as m — +oo0.

Fix an increasing sequence my such that p(By,, x-1) < € 27%. Set K, =
Ure; Bmy k-1 Then

w(KS) <e and d(fm,(z), fo(z)) < % if j>myg, z€ KD

5.2 Convergence in measure

Convergence almost everywhere allowed us to introduce a notion of conver-
gence of sequences in M,,. We now define a metric on the space M,, and
thus a new notion of convergence.

Let (X,A,u) be a measure space and let (Y,By) be a metric space
equipped with its Borel measure. We denote by d the distance on Y.

5.2.1 Construction of an extended distance on M, ((X,A),(Y,By))

Let f,g € M and let g7 4 be as defined in 5.1.3. With the pair of functions
(f,g) we associate the subset of (R*)? defined by

K(f,9) = {(,n) € (R*)?: p(qy;(n, +00)) < €}
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Set
e(f,g) =inf(e +1n) where (e,n) € K(f,9).

If K(f,g) is empty, we set e(f,g) = +oo.

5.2.2 An equivalent extended distance

Set
€(f,g) = 2inf(\) where (M )A) € K(f,9).

Then we have
e(f.9) < &(f,9) < 2e(f,9).

The first inequality is proved by writing €( f, g) = inf(A+)), with (A, A) €
K(f,9). Note, moreover, that if (¢,n) € K(f,g), then (e+a,n+08) € K(f,g)
for any a,8 > 0. If ¢ > 71, we take @ = 0 and 8 = € — n to obtain
€(f,9) < 2¢ < 2¢(f,g). The case € < 1 is treated in the same way.

5.2.3 Lemma. Let f,g,h € M((X,.A);(Y,By)). Then

e(f.9) e(g. ),
e(f,9) 0 is equivalent to f(z) = g(x) p-a.e., and

e(f.h) < e(f.g)+elg,h).

PROOF. The first statement is clear, and we prove the second. If e(f,g) = 0,
then there exists a pair

(Cm'ln) € K(f:g)7 €n — 01 M — 0.

We may assume that 7, is a decreasing sequence. Then q~!((n,,+00)) is an
increasing sequence and, by the limit theorem 3.2.1,

u(lim 1 g7,; (1, +00))) = lim (g} (11, +00))) < limen = 0,

whence
w({z : d(f(z),9(z)) > 0}) =0, ie f(z)=g(z) p-ae
Conversely, if f(z) = g(z) p-a.e., then
gy 5((n, +00))) =0 Yy > 0.

It remains to show that the triangle inequality holds. By the triangle inequality
onY,

a7.0(z) < gs,9(2) + gg,n(x).

Let (e1,m) € K(f,9) and (e2,m2) € K(g, h). Then gs.n(z) > m + n; implies that
g1.9(z) > m or gg,n(x) > n2. Hence

g7.n((m + 72, +00)) C g7 3 ((m, +00)) U g 4 ((2, +00))
and, by the convexity inequality,

B(g7a((m + n2,+00))) < €1 + €2.
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We have thus shown that (e1,m) € K(f,g) and (e2,72) € K(g, k) imply that
(&1 + e2,m +m2) € K(f,h).

Set

G K(f,9)+ K(g,h)

{en) e R*)?: e=er+e2, n=m + 12,
with (Cl'nl) € K(f)g)v (€2v7f2) € K(g, h)}
Then G C K(f,h), and we obtain

e(fh)= inf (e+n)< inf (c+m)=inf(ci+es+m+m)

with
(e1,m) € K(f,g) and (e2,m2) € K(g,h).
Thus
e(f,h) < inf(ex + m) + inf(e2 + 72) = e(f, g) + e(g, h).0

5.2.4 Corollary. If f = f' and g = ¢’ p-a.e., then e(f,g) = e(f'.g').

PROOF. Since e(f,g) < e(f,f') + e(f',9’) + e(¢’,9) and the hypotheses
imply that the first and third terms on the right-hand side are zero, it
follows that e(f,g) < e(f’,9').

The opposite inequality is proved in the same way. D

REMARK. e(f,g) depends only on the equivalence classes fand 3.
Abusing notation, we set e(f,39) = e(f, g), where f and g are chosen in
the classes of f and 3.

5.2.5 Proposition. Suppose that (X, A, ) is a measure space and Y is
a metric space. Let M, ((X, A); (Y, By)) be the space of equivalence classes
of measurable mappings from X to Y and let e be as defined in 5.2.2. Set

T = C(T’g)
du(f,9) = —=—.
. 1+e(f,9)
Then d,, is a distance on M,.

PROOF. Lemma 5.2.3 shows that e satisfies the axioms for a distance, except
that e may assume the value +00. We use a construction common in topology;
let
t
k(t)= —, teR*, k(+o0)=1.
(=10 t€ (+00)

It is elementary to verify that the function ¢ — k(t) satisfies
k(t1 + t2) < k(t1) + k(t2), t1, t2 20.

It follows that d,, satisfies the triangle inequality and thus defines a distance
on M,.D

REMARK (i). If u(X) < C, then it is always true that (C,0) € K(f,g) and
hence that e(f,g) < C. In this case it is unnecessary to use d,; e may be
taken as a distance.
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REMARK (ii). A sequence f, € M, is a Cauchy sequence with respect to
the distance d,, if and only if e(f;, fa) — 0 whenever m and n — +oo.

5.2.6 Definition. A sequence f, is said to converge to fo in measure if

e(fn, fo) = 0.

Proposition. The sequence f, converges to fo in measure if and only if,
for every fired n > 0,

p({z: d(fa(z), fo(z)) >n}) =0 as n— +oo.

PROOF. (<) Let ny be such that
s({z : d(fa(2), fo(z)) >n}) <n if n>mne.
Then (n,7) C K(fn fo), whence
e(fn, fo) <2n if n>n,.

(=) Let m < n be given. Using 5.2.2, we can find n, such that €(f,, fo) <
2n if n > ny; ie., (m,m) € K(fn, fo). Hence

p({z: d(fn, fo) >n}) <m.

Since {z : d(fn, fo) > m} C {z : d(fn, fo) > n}, it follows a fortiori that

p({z : d(fn, fo) >n}) <m if n >n,.0

5.2.7 Theorem (Comparison of convergence in measure and con-
vergence almost everywhere). Suppose that (X, A, p) is a complete
measure space, Y is a metric space, fo € M,((X,A),(Y,By)), and {f,} is
a sequence in M,((X, A), (Y, By)).

(i) If du(fn, fo) — O, then there exists a subsequence {fn,} of {fn}
such that f,, — fo p-a.e.

(ii) Suppose in addition that p is a finite measure. Then the p-a.e.
convergence of f, to fo implies that d,(fn, fo) — 0.

The proof depends on the following important lemma:

5.2.8 Lemma (Borel-Cantelli). Let {A,} be a collection of elements of
A such that

ZI-‘(An) < +oo.

Then p-almost every x lies in at most a finite number of A, .
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PROOF. Set B, = Un>mAn. Then u(Bn) < 3 .5,, #(A,) by the con-
vexity inequality; hence lim;, oo #(Bm) = 0. But since B,, is a decreasing
sequence, it follows from the continuity theorem (3.2.3) that u(N,B,) =
lim u(B,) = 0. Note finally that z ¢ N,B,, « z is in only finitely many
A,. O

PROOF OF THE THEOREM (PART (i)). Let a;x be the general term of a
convergent series (for example, ax = 2~*). Fix an increasing sequence {n;}
such that €(fm, fo) < 2ax if m > ng. Set

A ={z: d(fn.(z), fo(x)) > ar}; then p(Ax) < ag.

The Borel-Cantelli lemma implies that, y-almost everywhere,  belongs
to only finitely many Ax. Thus

for p-almost every x, there ezists an integer s(x) such that d(fn, (), fo(x))
< ax if k > s(x).

Hence fy, converges u-a.e. to fo. O

PART (ii). Fix € > 0. Set
G = {2+ supdlfy(o).foa)) > }.
q2n

Then {G,} is a decreasing sequence and, by 5.1.3 and 2.6.1, G, € A. Since
Gn C X implies that u(G,) < +00, we can use the limit theorem 3.2.3 to
conclude that x((), Gn) = lim u(Gy).

The hypothesis of convergence u-a.e. implies that the left-hand side is
zero. Let ng be such that y(Gn,) < ¢; then we have €(fn, fo) < 2¢ if n > no.
(m]

5.2.9 Theorem. Suppose that (X, A, u) is a measure space and Y is a
complete metric space. Then M, ((X, A); (Y, By)), equipped with the metric
d,, is a complete metric space.

PROOF. Our approach parallels that of the proof of 5.2.7(ii). Let {fn} be a
Cauchy sequence in M,,; using a result from topology, we need only show
that the sequence {f,} has a subsequence that is convergent with respect
to the distance d,. Let ax be the general term of a convergent numerical
sequence. Fix an increasing subsequence {nx} such that €(fy,, fm) < 2ax
for all m > ng. Set

A= {:l: : d(jm,(z)a fﬂk+l (:t)) > ak};

then u(Ax) < a, or

d(fnk(z)!f"k.,.](x)) <ax if z¢ A
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Let ¢ > 0 be given, fix ko such that 3,5, ar < ¢, and set Di, =
ngkoAlv Then

(i) p(Dr,) <cand Y d(fa, (@), farys(2) <€ if z ¢ Dy,
k2>ko
Hence {yx} = {fn.(z)} is a Cauchy sequence if z ¢ Dy,.
As this is true for every ko, it follows that {f,,(z)} converges if = ¢
NkDy; but p(NkDi) =0, i.e. {fn,} converges p-a.e. to fo € M.
By inequality (i) and the triangle inequality,

(i2) d(fn,(2), fr, (x)) <€ if k,k'>ko andif ¢ Dy,.
Fixing n) and letting k’ go to infinity, we obtain
d(far(2), fo(z) <€ if k> koand z ¢ Dy,

whence
€(fa fo) < 2¢ if k> ko,

or
du(frnr fo) <2 if k> ko.O

6 The Space of Integrable Functions

In this section, we exhibit a vector subspace of M,((X,A); (R,Br)) =
L% (X, A) which will be provided with a Banach space structure. The dis-
tance defined by this norm will be an upper bound for the distance d,,, and
will thus define a finer topology than that associated with d,,.

6.1 Simple measurable functions

Let (X, .A) be a measurable space. A simple function is a measurable map-
ping from X to R such that cardinal (f(X)) < +oco. We denote by £°(X, A)
the set of simple functions.

Let (X, A,p) be a measure space. We denote by EJ(X,.A) the subset
of L% (X, A) consisting of those equivalence classes of measurable functions
which contain a simple function.

If f,g € £9(X, A), then

card((f + 9)(X)) < card(f(X))card((9(X))

and

card((fg)(X)) < card(f(X))card(g(X)),
so that £9(X, A) is a vector space equipped with a product. The same holds
for E";(X, A). Moreover, if f € £°(X,.A) so is |f|; hence the operation sup
is defined on £° and E.
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6.2 Finite o-algebras

Let Y be an abstract set and let B be a o-algebra on Y. B is called finite
if it has only a finite number of elements. Note that the finite Boolean
algebras coincide with the finite o-algebras: the countable union property
reduces to the finite union property in this case. Sets B € B such that

B'c B, B'€ B implieseither B'=B or B =0

are called atoms.
Atoms are the minimal elements with respect to the inclusion relation in
a o-algebra. If B and B are distinct atoms, then BN B = .

6.2.1 Proposition. Let B be a finite o-algebra. Then every nonempty set
in B is the union of the atoms it contains.

PROOF. Let A € B. Either A is an atom or 3A; C A, A, # A, A, € B.
Repeat the argument, starting from A,: either A, is an atom, or 34; C A,,
A2 # A,, Az € B. This produces a sequence of subsets of Y, each strictly
contained in the preceding one. Since B is finite, the process must terminate
after finitely many steps, yielding an atom. We have thus shown that

every nonempty set A € B contains at least one atom of B.

Let Hy, ..., Hy be the atoms of B contained in A and let A= UJH Then

AcC A Moreover, A°NA € B. If A°N A were nonempty, ANA would
contain an atom; but all the atoms contained in A are contained in A
whence A= A. O

6.2.2 Corollary. Let B be a finite o-algebra of subsets of Y. Then there
ezist a finite set Sg and a bijection between B and P(Spg), the set of all
subsets of Sg, such that the bijection respects the Boolean algebra structure
(the operations of union and intersection).

PROOF. We take for Sp the set of atoms of B. The bijection between B and
Sp is obtained by associating with each set B € B the atoms it contains.
0

6.2.3 Partitions

Definition. A partition of X is a finite family of pairwise disjoint subsets
of X, say K, ..., K,, whose union is X. The o-algebra B generated by
the K;, 1 < i < n, consists of sets B of the form B = U, Kj,.

The atoms of B are precisely the K;. Conversely, given a finite o-algebra B
on X, its atoms form a partition of X.
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6.2.4 Finite o-algebras and simple mappings

Let (X,.A) be a measurable space and let Y be a metric space. A function
f € M((X,.A); (Y,By)) is called simple if card(f(X)) is finite.

Proposition. A mapping f is simple if and only if f~'(By) is a finite
o-algebra .

PROOF. (=) Let zi, ... z; be an enumeration of the image f(X). Then
F1({z}}) are the atoms of f~!(By).

(«=) Let U be an atom of f~!(By). Suppose that f assumes two distinct
values on U, say y) and y;. Let O, and O, be disjoint open sets in Y,
¥ €0; (i=1,2).

Set UN f~(0;) = U; (i =1,2). Then U; € f~Y(By), Uy #0, U, C U,
and U, # U, contradicting the hypothesis that U is an atom. O

6.3 Simple functions and indicator functions

Given a subset A of X, the indicator function of A, written 14, is the
function equal to 1 on A and zero on A¢: 14(z) =1ifx € Aand 14(z) =0
otherwise.

The next proposition is easily verified.

6.3.1 Proposition. 14 15 = 14n5 and 14 + 1¢ = 1auc + lanc. More-
over, A is measurable if and only if 14 € £°(X, A).

6.3.2 Proposition. Suppose that f assumes only finitely many values. Let
B be a finite o-algebra such that B O f~'(Br). Then f can be written
uniquely in the form

f= Zailu‘ with a; € R, where the H; range over the atoms of B.

PROOF. Let Hy, ..., H, be the atoms of B. Let £ € f(X); then the hypoth-
esis f~1(¢) € B implies that f~1(£) can be written as a union of atoms.
Hence f has constant value, say a,, on H;. The two sides of the identity co-
incide on H; for every i, and since U; H; = X the identity holds everywhere.
m]

6.3.3 Corollary. The measurable indicator functions generate the vector
space of simple functions.

PROOF. Let f be a simple function and let B = f~!(Br) C .A. Then B is
a finite o-algebra by 6.2.4. O

6.4 Approzimation by simple functions

6.4.1 Proposition. Let f € L%(X,.A) be bounded. Then there erists a
sequence of simple functions g, converging uniformly to f.
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PROOF. Consider the half-open interval
Jk = [kn7, (k+ 1)n7Y).

We may write it as a countable union of closed sets in the following way:

et o (- )]

Hence Jj is a Borel subset of R, and 1,, € L%(X, Bg).
Let C and kg be such that |f(z)| < C and

+ko

U Jik O [-C,+C).

k=-ko

Set
Gn = E kn™! 1,,.
—ko<k<+ko
Since the Jx N [-C,+C] form a partition of [-C, +C], we have t —n~! <
Ga(t) <tift| <C.
Moreover, G,, takes only finitely many values and

Gn € M((R,BRr), (R, Br)).
Set gn = Gy o f; then g, € £%(X, A) and

lgn(z) - f(z)| <n7'.0

6.4.2 Corollary. Let f € L%(X, A). Then there erists a sequence {¢n} of
simple functions converging pointwise to f.

PROOF. Let A, = {z : |f(z)| < n}. Then f, = 14, f is a bounded
measurable function. Let ¢, be a simple function, constructed (as in 6.4.1)
so that

[fn(z) — @n(z)] <n~1 for all .

Then
limyp,(z) = f(z) Vze X.0

6.4.3 Corollary. Let (X, .A,u) be a measure space and let (X, A', ') be
its completion (in the sense of 4.2.3). Let f' € L°(X, A') be given. Then
there exists f € L°(X, A) such that f(z) = f'(z) p-a.e.

In particular, L} (X, A) can be identified with LY, (X, A').

PROOF. Consider first the indicator function of a set A’ € A’. There exist B,C €
A such that B ¢ A’ ¢ C and p(C - B) = 0. In particular, 15 = 14 u'-a.e.
Hence the corollary is true for .A’-measurable simple functions.
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Now let f' € L%(X,.A’) be given. By 6.4.2 there exist ¢}, € £°(X .A’) such
that lim ), (z) = f(z) Vzex. By the argument above, there exist pn € £°(X, A)
such that A, = {z: @n(z) # ¥ha(z)} satisfies u'(A}) =

Let Ax = UnAj;; note that A € A and p(Am) =0. Deﬁne en(T) = Pnlz) if
z ¢ Ao and pa(z) = 0 otherwise. Then ¢, € L°(X,.A) and {pn(z)} converges
for every z. Moreover, setting lim pn(z) = f(z), we see by 2.5.1 that f € £°(X, A)
and f'(z) = f(z) p-ae. O

6.5 Integrable simple functions

6.5.1 Definition. Simple functions f such that u({z : f(z) # 0}) < +o©
are called integrable simple functions. We denote by 8},(X ,A) the integrable

simple functions and by E}(X, A) the equivalence classes in £%(X, A) gen-
erated by the integrable simple functions.

8:‘()( ,A) is a vector subspace of £(X,.A) which is closed under multi-
plication and absolute value.

6.5.2 Definition of the integral on £} (X, A)

Let f € £,(X,A) be written in the unique form associated with the
o-algebra f 1(Br), as in 6.3.2:

= ZOJH‘ (where a; # 0 Vi).

The integral of f is defined by the formula

I(f) = )_ cun(Hy).
i

If f1 € 8'(X A), fi = f a.e., then it is easily verified that I(f) = I(f1). It
follows that the function I (- ) is defined on E} (X, A).

6.5.3 Lemma (Evaluating the integral on certain finite o-algebras).
Let f be an integrable simple function and let B be a finite o-algebra such
that B D f~'(BRr). Denoting by K, ..., K, the atoms of B, let

f= Zﬁqlk,, (where B, # 0 Vq)
q
be the decomposition of f given by 6.3.2. Then

I(f) = Y _ Bau(Ky).
q

PROOF. Let {H,} be the set of all atoms of f~!(Br). Since each H, is in
B, H, can be written as a union of atoms of B: H, = qu,‘ Kg, where I,
is a finite set.
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On each K, (g € I,), f = a,; thus a, = 3, if g € I, and

Zﬂql‘(Kq) = Z Z aspu(Ky) = Zas Z B(Ky)-
q

s q€l, 8 q€l,

But u(H,) = qul, n(Kq). O
6.5.4 Theorem (Properties of the integral on simple functions).

(i) The integral defines a positive linear functional on E)(X, A).
(i) Setting q(f) = I(|f|) defines a norm on E)\(X, A). Moreover,
11(f)I < q(f)-
(iii) p({z = |fi(z) = f2(2)| > n}) < ja(fy = f2) (Chebyshev’s
inequality).
(iv) e(fi, f2) < 29(f1 - f2)}.
(v) Every Cauchy sequence in the normed space E“‘(X,.A) is a
Cauchy sequence with respect to the distance of convergence in
measure. Convergence in norm implies convergence in measure.

PROOF OF (i). Let v be a constant. Then I(yf) = vI(f) for every f €
E\(X,A).

Now let f), fo €& "‘(X ,A). Let F be the mapping from X to R? defined
by setting F(z) = (f1(x), f2(z)).

Then F is a simple mapping and F~!(Bg2) = B is a finite sub-o-algebra
of A containing ' (Br) (i = 1,2). The decomposition of f; on the o-alge-
B gives

Hi=) Bk, and fa=) &1k,

where the K, range over the atoms of B. Then f, + f2 can be decomposed
in the o-algebra B as fi + fo = (85 + 5)1k,, whence

i+ f2) =Y _(BeH8:)n(Ks) = Y Bopt(Ko)+ ) 8op(Ks) = I(/1)+1(f2).

If f(z) > 0 p-a.e., the only coefficients appearing in the sum are the non-
negative 3,. Thus

(vi) f(x) > 0 p-a.e. implies I(f) > 0 (positivity of the integral).

PROOF OF (ii). By the positivity of the integral, the inequality |f + k| <
|1 + |h] implies that q(f + h) < q(f) + q(h).

That g(af) = |ajq(f) is trivial. It remains to show that q(f) > 0 and
that ¢(f) = 0 implies f = 0 p-a.e.

The first inequality follows from the positivity of the integral. Moreover,
in a o-algebra adapted to f,

10fD) = Y lelu(Ks),

ai#0
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and this sum of nonnegative terms can be zero only if all the terms are
zero.

Finally, —|f| < f < |f| implies the same inequality for the integrals:
=I(|f1) < 1(f) < 1(I£])-

PROOF OF (iii). We use the same finite o-algebra B as in the proof of
(i) and the same decompositions of f, and f> on the atoms of B. Then

fl-f2 = Z(ﬁs"‘ss)lK. and Q(fl _f2) = Z, 'Ynl‘(Ka)v where Vs = Iﬂs_&sl'

p({z : |fi(@) - fo(2)| > n}) = > u(K,), where J={s:v,>n},
seJ

and

a(fi = f2) 2 D ven(Is) > Y p(Ks).

seJ s€J
It follows that

q(fi = f2) > nu({z : | i(z) — fa(z)| > n}).

PROOF OF (iv). Consider the subset K(f, f2) of (R*)?, which was used
to define e(f1, f2):

K(fi, f2) = {(&,n) : u(|fr — f2l > n) < €}
Then, by (iii),

(™ 'q(f1 — f2).n) € K(f1, f2) forall n>o0.

Hence
e(f1, f2) = inf(e + 1) < inf(n + n'a(fi - f2))-

Taking 7 = [g(f, — f2)|* shows that e(fi. f2) < 2[q(f1 — f2)]#. O

PROOF OF (v). It follows immediately from (iv) that a Cauchy sequence in
the normed space E‘l‘ is a Cauchy sequence with respect to the distance of
convergence in measure. Similarly, a sequence that converges to fo in norm
also converges in measure. O

6.6 Some spaces of bounded measurable functions

6.6.0 Definitions

L>(X, A)

{f € £°(X, A)) : IM < oo such that |f(z)| < M}.
L2 (X, A)

{f € £2(X, A) : p({z : f(z) # 0)}) < o0}
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6.6.1 Proposition. For every f € C;‘f"(X ,A), there ezist o, € £ ,',(X ,A)
such that

(i) {¥n} converges uniformly to f, and
(i) {z:on(z) #0} ={z: f(z) #0)}.
PROOF. Cf. Proposition 6.4.1. O

6.6.2 Proposition. If {¢,} satisfies 6.6.1, then {I(pn)} is a Cauchy
sequence.

PROOF. Let K = {z: f(z) #0)}. Then ¢, = pnlk and

I(pn — om) = I((¢n — ¢m)1k) < p(K)sup |pn — m| = 0
by the uniform convergence of {¢,}. D

6.6.3 Definition. I(f ) =limI(p,) Vf € C;’,"‘l, where {,} is the sequence
of Proposition 6.6.1.

This is independent of the choice of sequence. Let {¢], } be another sequence
satisfying 6.6.1(i). Set

Pm = Pm/2 if m is even, and

P = ‘sz—l)/z if m is odd.

Then ¢;;, satisfies 6.6.1(i) and hence lim I ()}, ) exists. But this implies that
lim I'(py) = lim I(y},).

6.6.4 Proposition. Let f € C;‘f". Then the following statements are true:

() I(h + f2) = 1(/) + I(f2)-
(i) fr 2 f2 = 1(Hi) 2 1(f2)..
(iii) fi = f2 a.e. = I(f) = I(f).

6.7 The truncation operator

For a fixed positive integer n, let ,, be the continuous function defined on
R by

pn(t)=t if -n<t<+n

en()=n if t>n

en(t)=-n if t<-n.

Let A) C A2... C A, ... be an exhaustion of X, i.e. u(Ax) < +oo Vk
and X = UpAs.
We define T, the truncation operator of order n on £°(X, A), as follows:

6.7.1 Tu(f) = fala,, where fr,=pnof.



6 The Space of Integrable Functions 33

fn is bounded and (since ¢, is continuous) measurable. Furthermore,
since the set {z : (T, f)(z) # 0} C Ay, it has finite measure. Hence, by the
definition of L3,

6.7.2 Ta(f) € LY (X, A) forany f € LO(X,A).

6.8 Construction of L!
6.8.1 Definition of L, (X, A)

(i) Definition. £, (X, A) = {f € LO(X,A) : limy .o I(|To(f)]) < +00}.

Proposition. If fi € L}, and f, = f) a.e., then fo € LL(X,A). This
Justifies the notation

L},(X, A) = {equivalence classes of L,,(X,A)}.

(i) | fller = lim I(ITa(H))).-
(4i) If f € LY, and |f| < |h|, where h € LY, then f € L},.
(iv) If f € LV(X, A), then f € L(X, A).
6.8.2 Proposition. If f € L}, then limn—.oo I(Tn(f)) ezists.
PROOF. Let f* = sup(f,0) and let f~ = sup(—f£,0). Although T, is not a
linear operator, it is elementary to verify that, for all x € X,

Ta(f)(2) = Tu(f*)(2) = Tu(f7)(2)
and
ITn(f)I = Tn(f+) + Tn(f_),

whence

HTa(£%)) < ITa(HD) < IS lle-

{I(T.(f*))} is thus an increasing sequence which is bounded above, and
therefore converges. O

Definition. For f € L},, the integral of f is defined by / f =1lim [(T(f)).

6.8.3 Proposition. L"‘ is a vector space with the following properties:

G) [(h+f)=[hH+[f.
(i) If f >0, then [ f > 0.

Set |l = [1f|. Then

(i#i) | [ fI < 1Sz
(iv) p({z : f(z) > c}) < LU fllLs-

(v) 1 fllL: is @ norm.

PROOF. The statements clearly hold for £,°,°'l and pass to L},. O
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7 Theorems on Passage to the Limit
under the Integral Sign

7.1 Fatou-Beppo Levi theorem. Let {f,} be an increasing sequence of
integrable functions such that [ f, < C, where C is a constant independent
of n. Then

(i) im f, = fo ezxists and is finite y-a.e.,
(ii) feo € L,',, and
(iii) "fn - foo"l.l — 0.
PROOF. By setting fn = fn— f1, we may assume that f, > 0. Then [ f, =

I fallzts To(foo) = limy Ty(fn), and [ Ty(fn) < [ fu < C. It follows that
ITq(foo)llr < C, whence p({z : (Tq(fo))(z) > n}) < Cn~!. Furthermore,

{z: foo(z) > n} =lim T {n: (T4(fx))(z) > n}.
Thus
p({z : fo(z) > n}) <

Hence fo, € L'.
We now show that || foo — fnllz: — 0. Let up, = foo — fn- Then

and  ||Ty(foo)llLr < C.

31Q

Tq(ul) - qu(ul) 2 Tq(un) - qu(un)v where ¢o < gq.

Let go be chosen so that [ Ty(u1) — [ Tg,(u1) < §. Then

€
funll < 5 + 1T (un)l1

Let vp = Tgo(un). Then 0 < v, < go, va(z) =0 if z € AG,
a.e. Recall, from 6.7, that pu(Ag,) < +o0.

By Egoroff’s theorem, there exists K such that u(K°¢) < % and v,
0

and v, —» 0

converges uniformly to zero on K. Hence

€ €
lluall < 9 + 1 + u(Ag,) sup(va(z)) =0 as n — o0.0
z€EK

7.2 Lebesgue’s theorem on series. Let {u,}3%, be a sequence of el-
ements of L' such that 3 |lun|lLr < oo. Then Y 1" un converges abso-
lutely a.e. Let s, = uy + ... + u, and let 8o = lim, s,. Then s, € L},
J 800 =1im [ s,, and ||sec — 8nllLr — 0.

PROOF. Set fn(z) = Yk, |luk(z)|. Then {f,} is an increasing sequence
and f fan < E,’:;"l’ [luk|lLr < +o00. By the theorem of Fatou-Beppo Levi, this
implies that lim f,, = fo exists, foo € L', and foo < +00 a.e. Thus s, € L!
since [Seo| < foo, 8N ||Soo — Sn|lLt < ||foo — fnllLr, which approaches zero
by Fatou-Beppo Levi.
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7.3 Proposition. The truncation operator is a contraction on L}‘ (X,A):
that is,

ITa(f) = Ta(Pllar < If = Flier, V£, F € LL(X, A).
PROOF. Assume first that f and f are simple functions. Let B be the
o-algebra generated by f~!(Br), f~!(BR), and {A,}, and let S denote
the atoms of B. Then
f= Zaklm and f= Eaklﬂm where H, € S.

Let I={H€S:HNA, # 0}. Then

Ta(f) = ) ¢nl(an)l,,

kel

Ta(f) = Y ¢n(@)1a.,
- kel
ITa(f) = Ta(Al = Y_lpnlak) - pal@r)iLn,
kel

Using the elementary inequality |pn(t) — @n(t')| < |t = '], VL, t' €R,

ITalf)=Ta(Pllr < 3 p(He)lor—ak] < Y p(H)lar~ak| = |~ filL-

kel kES

Now let f and f € L!. We can find two sequences hg, Tzq of simple

functions converging in the L! norm to f and f. Passing if necessary to a
subsequence, we may suppose in addition that h, and h, converge a.e. Then
[|Tn(hg) — Tu(hg)llLr < |lhq = hqljL1; hence Ty (hy) is a Cauchy sequence in
the L! norm. Let k be its limit. Then k = T,(f) since hq converges a.e. to
f, and hence

(Tn(hg) = Ta(f)llr — O.
It follows that

1T =Tn(Pller = lim [ Ta(ho)~Tu(Rlles < lim hg=Polles = If~Fll.

(m]

7.4 Integrability criteria
7.4.1 Theorem. Let f € L}(X,A). Then f € L (X,A) if and only if
there erists a constant C such that, for all n, |T(f)ll.: < C.

PROOF. (<) Applying 7.3 with f = 0 yields [|Tu(f)llz: < Ifliz:-
(=) We prove this first in the special case that f > 0, where T (f) < Thi1(f).
By the Fatou-Beppo Levi theorem, there exists g € L' such that imT,(f) = ¢
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a.e. Moreover, a direct calculation shows that lim T,.(f)(z) = f(z) for all z € X.
Hence f = g, and therefore f € L'.

For the general case, set f* = sup(f,0) and f~ = sup(—f,0). Then f*,f~ €
L°, f*,f~ are positive, and f = f+ — f~.

Since |Ta(f)| = Ta(f*) + Ta(f~) (cf. the proof of Proposition 6.8.2),

ITu(Plls = / ()] = / Ta(f*) + / To(F).

It follows that
ITa(f* )2 <C and || Tu(f7)llr <C.

Since f* and f~ are nonnegative, this implies that f* and f~ € L' and hence

that fe L'. O

7.4.2 Corollary. Let f € L} (X, A). Then f € L\(X,A) if and only if

|fl € L'(X, A).

PROOF. The direct implication follows from 2.4.4 and 6.8.1(iii).
Conversely, assume that |f| € L, (X, A). It is easy to see that |T,(f)| =

Tn(|f]), whence ||Tn(f)lle: = ITa(If])|lL:. The conclusion follows by ap-
plying Theorem 7.4.1. O

7.4.3 Corollary. Let f € L)(X,A) and suppose that there ezists u €
L,(X,A) such that |f| < u. Then f € L}(X, A).

PROOF. | Ta(f)llLr < ITa(u)ller < llullz:. O

7.5 Definition of the integral on a measurable set

Let (X, A, 1) be a measure space and let Y be a fixed element of A. We
denote by A’ the trace on Y of the o-algebra A and by u' the restriction
of u to the elements of A’, thus obtaining a measure space (Y, A’, yu’). Let
j be the canonical injection of Y into X. The restriction operator defines
a mapping LY (X, A) — L), (Y, A') by f — foj.

Let f € L,(X, A, u). We denote by [, f the integral of f o j evaluated
on the measure space (Y, A’, '), and call f,, f the integral of f on Y.

7.5.1 Proposition. Let f € L, (X,A). Then fly € L,(X,A) and [ fly
= fv f

PROOF. Since |f1y| < |f|, Corollary 7.4.3 implies that f1y € L}(X,A).
The result follows by verifying that the integrals agree on simple functions
and passing to the limit.O

7.5.2 Proposition. Let f >0, f € L},(X,A), and set p(A) = [, f VA€
A. Then p is a measure on X and p(X) < +o0.

PROOF. Finite additivity follows from the fact that

14, + 14, = 14,04, if ANA;=0.
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The theorem of Fatou-Beppo Levy implies that p is continuous on in-
creasing sequences; this gives countable additivity. O

7.5.3 Proposition. Let A, be an increasing sequence of elements of A
such that UA, = X. Let f € L}(X,A). Suppose that [, |f| is bounded

above by a constant C independent of n. Then f € L}(X, A).
PROOF. Since |Ta(f)||z: < [4, 1], the result follows from 7.4.1. O

7.6 Lebesgue’s dominated convergence theorem
Theorem. Let f, € L,‘,(X ,A). Suppose that

(i) fa converges to h p-a.e.
and that

(ii) 3g € LL(X,A) such that |f,| < g Vn (domination hypothesis).
Then h € L},
(i) Il fn = Rl — 0.

and

(i) / fn — / h.

PROOF. It follows from 5.1.2 that h € L) (X, A). By (ii) and 7.4.3, h € L.
As in 7.5.2, we introduce the measure p associated with g:

o(A) = /A g

Let {A,} be an exhaustion sequence for X: A,, C An4; and p(A,) < +oc.
Then p(A,) — p(X) < +0o0. Fix m such that

€
P(Am) < 5

For this fixed m, we will apply Egoroff’s theorem (5.1.4) to A,,. We can
find a sequence {K,} of sets in A such that K; C K41, fa — fo uniformly
on Ky, and p(K{ N Ap) < g%

Set Gy = K{NApm. Then {G,} is a decreasing sequence; setting H = NGy,
we have lim p(Gg) = p(H). But u(H) = 0, whence g- 1y =0 p-a.e,; ie,
g-1p =0in L} and p(H) = 0. Fix go such that

[
P(qu) < 6

The identity
1x =14 + 1K¢o + lcvo



38 I. Measurable Spaces and Integrable Functions

Jun-n=[ +[ +/qulfn—hl-

Using the upper bound 2g for the function |f, — h| in the first and last
integrals, we obtain

gives

I — hll1s < 20(AS) +20(Goy) + /K o = A,

Each of the first two terms is bounded above by ¢/3. Furthermore,

INELE (zsup [fulz) - h(zn) B(Kqo).

0 L]

The last term tends to zero as n — +oc, proving (iii). Finally, (iv) follows
from the continuity of the integral with respect to the norm || - ||z (cf.
6.8.3(ii)). O

7.7 Fatou’s lemma. Let f, € L,(X, A). Suppose that

(i) fnller < C. where C is a constant independent of n, and
(i) fn converges u-a.e. to h.

Then

(iti) h € L and ||h||p < C.

PROOF. We prove this first with the additional hypothesis
(iv) w(X) < +oo.

In this case, convergence a.e. implies by Egoroff’s theorem that, for every
integer ¢ > 0. there exists K, C X such that f, converges uniformly on
K to h and p(KJ) < %. Thus

/A w—/m Ih

Since fn(x) converges uniformly to h(z) on K, the last expression tends

to zero, whence
/ |h| < C.
K

Q

< u(Kq) sup [fa(z) — h(z)|.
I€K,

Set hy = |h| - 1k,. Then {h,} is an increasing sequence since K, C K¢,
and the Fatou-Beppo Levi theorem implies that

limh,, =hy € L' and "h()"L. <C.
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If X does not have finite measure, take an exhaustion sequence for X:
X =UA,, ArCArs1, p(Ar) < +oc.

For each fixed r, set f; = fanla,; then ||f7||.2» < C. Fatou's lemma for finite
measures can be applied to A, giving

" =limf, =hla, € L' and |h"||1 <C.

The conclusion follows by applying the Fatou-Beppo Levi theorem to the in-
creasing sequence K, = |h|l14,. O

7.8 Applications of the dominated convergence theorem
to integrals which depend on a parameter

7.8.1 Integral notation in which the measure p appears

Up to now, we have dealt only with functions defined on the measure
space (X, A, ). When we consider functions defined on different spaces.
the integral notation used earlier can lead to confusion, and we denote

/f by /Xf(:c)dp(:c) for all feL,"(X‘.A).

7.8.2 Integrals depending on a parameter

Let (X, A, p) be a complete measure space. Consider a metric space Y and
let

u(y) = /x k(z, y)du(z)

be an integral depending on the parameter y. Suppose that

(i) for each fixed y the function ky(r) = k(z,y) satisfies k, €
LL(X,A).

Then u(y) is a well-defined function for every y.

7.8.3 Proposition (Continuity of an integral depending on a pa-
rameter). Assume condition (i) of 7.8.2. Let yo € Y and assume in addi-
tion that

(i) for every sequence yn — Yo,
k(z,yn) — k(z,%) p-a.e; and
(iii) there ezist g € L} (X, A) and € > 0 such that
lk(z,9)l S g(x) ¥ d(y.30) <e

Then the function u is continuous at yo.
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PROOF. Since u is defined on a metric space, in order to show continuity at
y it suffices to prove that u(y,) — u(yo) for every sequence {y,} converging
to yo. Set fa(z) = k(z,yn). Then the dominated convergence theorem (7.6)

can be applied and
[~ [ 1o

7.8.4 Proposition (Differentiability of an integral depending on a
parameter). Let Y = (yo—¢,yo+¢) be an open interval in R, and suppose
that the following three conditions hold:

(i) 7.8.2(i) is satisfied Vy € Y.
(ii) For u-almost every z, g—s(z. yo) ezists Vy € Y and is continuous
at Yo as a function of y.
(i) 39 € L. (X,A) such that, for p-almost every z, Igf(z. y)| <

g(z) for everyy €Y.
Then u s differentiable at yo and

(iv) u@@aﬂgummu»

PROOF. In order to show that u is differentiable, we must show that there
exists [ such that
tli_x.rlx)e'l[u(yo +¢) —u(y)] =L

Since R is a metric space it suffices to show that there exists ! such that,
for every sequence {e, } tending to zero,

lime; ' [u(yo + €n) — u(yo)] = L.

Making this detour lets us apply Lebesgue’s theorem, which was stated
for sequences of functions. Fixing the sequence {e,}, set

€5 fu(so + en) — u(un)) = [ fala)d(e),
where
fn(z) = € [k(z, Yo + €) — k(z,10))-
Let K be the negligible set such that (ii) and (iii) are satisfied in K°.
Then, for z € K¢, f, can be calculated using the mean value theorem:

falz) = Z—:(x‘yo + 0,(z)), where |O,(z)|<e, if ze€ K°C.

Thus it follows from (ii) that

fa(z) — Zy—k(:l«‘.yo) if ze€K°.
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Furthermore, by (iii), |fn(z)| < 9(z), z € K¢; thus

fa(@)| < 9(z) ae. and umf,,(z)=%<z,yo> ae.

Applying the dominated convergence theorem gives

[x fn(@autz) ~ | g—:(z,y)du(z)ﬂ

8 Product Measures
and the Fubini-Lebesgue Theorem

8.1 Definition of the product measure

Let (X1, A1, 1) and (X2, A2, u2) be measure spaces, let X = X, x X, be
the product space, and let A = A, ® A; be the product o-algebra (see
1.5). The product measure is a measure u defined on the measurable space
(X, A) and satisfying

(1) w(Ar x A2) = m(A1)p2(A2) if p(Ai) < +oo (i=1,2).

8.2 Proposition (Uniqueness). There ezists at most one product mea-
sure.

PROOF. Let u and i be two measures satisfying 8.1(i). Then they coincide
on rectangles and hence, by finite additivity, on disjoint unions of rectan-
gles, that is on the Boolean algebra £ of elementary sets. Let

M={ZeA:u(Z)=p(Z)}; then MDE.
Let {Z,} be an increasing sequence of sets in M. Then, by 3.2.1,
#(UnZs) = lim p(Z,) = lim ji(Z5) = f(UZy).

Thus M is closed under increasing limits.
If we further assume that

(¥ wm(Xy) <+oo and pp(X32) < +oo,
then

B(X) = m(X1)p2(X2) < +oo.

3.2.3 can be applied to prove that M is closed under decreasing limits.
Hence M is a monotone class that contains £, and it follows by 1.5.5 that
M = Al 524 Az.
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To complete the proof, it remains to lift the restriction (i). Let {Y,} and {Z.}
be exhaustions of X) and X2, and let u, and g, denote the restrictions of u and
i to Y, and Z,. Then, by the result above,

MUn = ﬁn-

Furthermore, pn(Yn X Z,) < +0c and Un(Yn x Z,) = X. Thus Y, x Z, is an
exhaustion of X with respect to both x and . By 3.2.1, for all A € A

p(A) =limpa (AN (Xn X Zy))

and
u(A) =limpn (AN (Xa x Z2)).

Since the two right-hand sides are equal, u(A) = p(4). O

Sections

For fixed z,, let i, denote the injection of X, into X defined by z;
(z1,22). For Z € P(X), let Z;, = i;l'(Z). Zy, is called the section of
Z over r,. Letting 7; be the projection of X onto X;, we have Z;, =
7I’2(7I'l_‘(1‘1) n Z)

8.3 Fundamental lemma. Let A € A= A, ® A;. Then

(i) Az, € A2 V), € X;.
(ii) Suppose that uz(X2) < +o0 and set ka(z) = p2(Az,).

Then
(iii) ka € L°((X1.A))) VA€ A.

PROOF. Since A is generated by the rectangles R, Theorem 2.2.1 implies
that iZ!(A)., is generated by {iz!(R)}. But {iz!(R)} = Ag; since Az is a
o-algebra, it coincides with the o-algebra it generates, whence (i). Let

M = {B € A: kg(z,) is a measurable function of z,}.

The rectangles are in M, as are finite unions of disjoint rectangles; thus
the Boolean algebra of elementary sets is contained in M. We now show
that M is a monotone class.

Let B, be an increasing sequence of elements of M. By the limit theo-
rem (3.2.1), ka, (z1) = p2((Bn)z,) satisfies limkg,, (z,) = ks, (1), where
Bs = UBy,,. Hence ka_ () is measurable with respect to z, by 2.5, which
implies that A, € M.

Since p2(X2) < 400, Theorem 3.2.3 on the limits of decreasing sequences
can also be applied, and it follows that M is a monotone class. Since M
contains the Boolean algebra of elementary sets, M = A by 1.5.5.0
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8.4 Construction of the product measure

8.4.1 Theorem. Let (X, A, 1) and (X2, Az, p2) be measure spaces.
(i) Suppose that pu)(X,) < +00 and pa(X2) < +oc.

For every Aec A=A, ® Ay, set

(i) p(A) = [y ka(z1)dpi(z1) where ka(z1) = p2(Az,).
(p(A) is well defined by Lemma 8.3.)
(iii) Then p is a measure on A, of total mass p(X)u2(X2) < +00.

Moreover,
(iv) p(A1r x Az) = m(Ar1)u2(A2) if Ai € A

PROOF. Since p is a finite measure, it suffices to prove that the o-additivity
axiom is satisfied. We begin by proving finite additivity. Suppose that

A=A'UA” and A'NA"=0.
Then A7, N A7, =0, whence ka/(z)) + kar(z)) = ka(z1) and

p(A) = p(A’) + p(A").

Now let AP C AP*! C ... be an increasing sequence of elements of A. Set
A* = UAP; then lim T (A%)) = (A®),, and, by 3.2.1, ka»(z1) — ka=(z1)
for all z,. Next, kar < k4p+1. Applying Theorein 7.1, the theorem of Fatou-
Beppo Levi,

lim/kAp(xl)dpl(zl) — /kAoo(zl)dpl(zl). i.e. limp(AP) = p(lim AP).

This property, together with finite additivity and 3.2.4, gives o-additivity;
hence p is a measure. It is trivial to see that (iv) is satisfied. O
8.4.2 Theorem on reversing the order of integration

Theorem. Let (X,,.A), 1), (X2, A2, u2) be measure spaces. Suppose that
m(X) < 400 and uz(X) < +00. Then, if A€ A @ Ay,

/x; dpy (1) [/m 1.4(-"31,12)‘1#2(12)]
= /X2 dp2(z2) [-/;ﬁ lA(IlsI2)dﬂ'l(zl)]'

PROOF. Although the hypotheses in 8.4.1 are symmetric in X, and X, the
construction is not.

Set la(z2) = p1(Az,). Then 0(A) = [1a(z2)dpa(z2) exists and defines
a product measure by 8.4.1. By 8.2, 0(A) = p(A) VA€ A. O
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NOTATION. The product measure is denoted by u; ® u2. By definition, for
all Ae A, ® Ay,

/ 14(@)d(1 ® p2)(2) / dyur(22) / 14 (21, 22)dpa(z2)
X X, Xa

8.4.3
- / da(z2) / 14(z1, 2z2)dps (21).
Xa X,

8.4.4 Construction of the product measure in the general case

If u) and p, are not finite measures, let X' and X7 be exhaustions of X,
and X;. Set p} = lxppi. Then pf(X;) < +o00, i = 1,2. We can define
ut ® p7 and set

(1 @ 12)(4) = lim(u} © u3)(4).

8.5 The Fubini-Lebesque theorem

Theorem. Suppose that (X, A1, u1) and (X2, A2, u2) are measure spaces.
Set X = X) x X2, A= A ® Az, and p = p) ® g, and let (X, A, ) be the
product measure space. Suppose that

(¥) f e L%X,A).
(i) Then fz, : T2 f(z1,72) satisfies f;, € LO(Xg,Ag) Vz, € X;.

Now suppose that
(#44) feLi(X,A).
Then the following two properties are satisfied:

fz, € L}, (X2, A2) m-a.e. in z,, and
) keh ), wher k)= [ Szt

/ dpy(z) [/ f(xl,xg)dpz(zz)]
./x, dp2(z2) [‘/;(l f(l'lvzz)dul(z,)],

Suppose that (i) holds, f;, € Ll (X2, A2) p1-ae.,
and there ezists k* € L), (Xl,.Al) such that

/ \f(@1,22)ldpa(z2) < K (z1).

[ f(z1,z2)du(z1, 72)
X

Conversely:

(vi)

Then (iii) is satisfied, and hence (iv) and (v).
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REMARK. Denote the functions satisfying (ii) by Q and the functions sat-
isfying (ii), (iii), (iv), and (v) by R. Then Q and R are vector spaces. Since
the indicator functions of measurable sets are in @ by 8.3, so are finite
linear combinations of indicator functions: £(X,A) C Q.

PROOF. First assume the following stronger hypothesis:
(3) feL£%X,A) and f is bounded.

Then, by 6.4.1, f is the uniform limit of a sequence of simple functions ¢":
" = Z ai'lap.
By the remark, ¢" € Q for each n; that is,

(¢™)zy € L2(X2,A2), VI1 € X).

Since (f)z, = lim(@n)z,, 2.5.1 shows that (i)’ = (ii).
Similarly, using 6.8.1(iv), hypothesis (iii) can be replaced by this stronger hy-
pothesis:

(iti)’  f satisfies (i)’ and {z : f(z) # 0} C A1 x A2, with u(Ai) < +oo.

Let {¢"} be a sequence of simple functions which converge uniformly to f and
for which ¢"(z) =0 if £ ¢ A1 x Az2. Then " satisfies (iv) and (v).
Since ¢™ — f uniformly, there exists a sequence {€.} such that ¢, | 0 and

If - SO"I < é€nla;xa,-

Thus
/ lf - Sonldll < eﬂ/ dp = Cnpz(Az).
X A1 xAz

Similarly,

o2, — ferldpia < en / dua(z2) = enpia(Aa),

X2 Az

whence [ 2, duz converges uniformly to [ fz,dpus. It follows from 2.5.3 that the
left-hand side of the formula in (iv) is measurable. Repeating the same argument
a third time for the integration in z, gives (iv) and (v). Summarizing, we have
shown that (iii)’ = (v).

Let {A}} and {A%} be exhaustion sequences for X, and Xz. Then {AP} =
{A} x A%} is an exhaustion sequence for X. Let T}, be the truncation operator
defined in 6.7. Then T,(f) satisfies (iii)’.

Suppose now that (iii) holds and that

(vid) f>o0.
{T»(f)} is an increasing sequence of functions in L} and ||Tx(f)llz: < [Ifllr-
Since T, (f) satisfies (iii)’, (v) holds and

/ kp(z1)dpr(z1) = |TpfllLr, where kp(zi) = | (Tp(f))z,dpa.
X1 X2
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As the sequence {k,} is increasing, the Fatou-Beppo Levi theorem (7.1) applied
to X shows that

limk,,:kaL,',‘(Xl,.Al) and /km=lim||T,f||Lx=||f||u,

X,

where the limit of the k,(z1) is finite if z) ¢ B for some B € A,, u1(B) = 0.
Fix z, ¢ B and apply Fatou-Beppo Levi on the space X2:

koo(z1) = lim | (Tp(f))esdpz = / BTy (f))eydpa = [ (F)ezda.
X2 X3 X3

We have thus proved (iv) and (v) when f satisfies both (iii) and (vii). If (vii)
is not satisfied, write f = f* — f~; then f*, f~ € R, and by the remark f € R.

It remains to prove the converse. Letting f satisfy (i), set f! = |f|. Using the
truncation operator Tp, we have

/ (Tyf)erdpa < / |f(z1, z2)ldpa(z2) < K (22).

Moreover, since T, f' € L}, we may use the identity (v) to obtain

/ T,f'dy = / din / (Ty(f)erdpz < / K* (22)dpalz2).
X

Hence the norm of Tp(f!) is bounded, with a bound independent of p, and the
integrability criterion 7.4.1 implies that f' € L). Since f € L°(X,.A), 7.4.3
implies (iii). O

9 The L? Spaces

9.0 Integration of complez-valued functions

Let f(z) = u(z) + iv(z) be a complex-valued function. Then f is a mea-
surable mapping from X to C if and only if u and v are measurable.
Furthermore, we say that f is integrable if u and v are integrable, and set

(2) /f=/u+i/v.

The integral f — [ f is a C-linear functional on the space L!(X. A, u; C)
of complex-valued integrable functions. Moreover, setting

Zy={zeX: f(z) #0)},

Z; € A and the function arg f(z) is well defined for z € Z;. The argument
is defined to be zero on Z§. Thus, if f € M, (X, A;C), we can write

(i) f(z) = w(z)e"),
where w € M, (X, A;RY), 8 € M, (X, A;[0.27)), and |f(z)| = w(z).
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(iii) Lemma. Let f be a complez-valued integrable function. Then |f]| is
integrable and
1< [

PROOF. |f| < |u| + |v| and is thus dominated by two integrable functions,
hence integrable. Set
/ f=re'¥;

foeee i free

Using the decomposition (ii),

then

|/f = Re/w(:z:)cos(O(a:) — p)du(z).

Since |cos(6 — ¢)| < 1, we obtain

‘ / f’ < [w@ua)0

NOTATION. The complex-valued integrable functions will be denoted by
L"‘(X ,A;C).

9.1 Definition. Let (X, A, ) be a measure space. Let p be a real number,
1< p<+o0.
Let
LE(X, A) = {f € LY(X, A) : | € LL(X, A)}.

i1 = [ w’)w.

It is clear that ||f||L» = O implies f = 0 and that ||a|z» = |a] || fl|z» for
every constant a.

Complex-valued functions with integrable pth power can be defined sim-
ilarly:

Set

LE(X,A;C) = {f € Mu(X,A;C) : |[fIP € L'}.
Writing f = u + iv or f = we'®, we obtain the equivalences

feLE(X,AC) & ue LE(X,A) and ve LE(X,A)
f € LE(X,A;C) & we LE(X,A) and 6 € LI(X,A).
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9.2 Converity inequalities

9.2.0 This section is devoted to proving the inequalities of Hélder and
Minkowski. When p = 2 these inequalities become very easy. (Cf. Exer-
cises, Cauchy-Schwarz inequality.)

9.2.1 Definition. A continuous function ¢ defined on [a,b] C R is called
convez if ¢/, (z) = lim¢jo(p(z + €) — p(z))e™! exists Vz € [a,d) and ¢/, (z)
is an increasing function. In particular, if ¢ is twice differentiable, then ¢
is convex if and only if ¢” > 0.

9.2.2 Lemma (Jensen’s inequality). Let ¢ be a conver function on
[a,0] C R. Let ax (1 < k < n) be positive numbers such that Y oy = 1.

Then
P (Z aktk) < Zak‘P(tk) Vti € [a,b)].

k=1 k=1
REMARK. This inequality may be taken as a definition of convex functions.

PROOF. We prove the lemma for the case n = 2. Let a and b be constants
and set
P(t) = p(t) + at + b.
Then ¢ is convex. Choose a and b so that ¢(t,) = @(t2) = 0. Jensen’s
inequality reduces to showing that

P(t) <0 for t, <t<ts.

Otherwise the maximum of ¢ would be strictly positive and would be at-
tained at a point t3 € (t;,t2), and we would have

Py (ts) =0, (t3) > 0.

Since @/, is increasing, @, (t) > @/, (t3) = 0if t € [t3,t2), whence §(t2) >
#(t3), a contradiction. We proceed by induction on n. Assuming that the
inequality holds for n < p, we prove it for n = p + 1.

Set £ = 8~ (3P _, ait;), where B =3""_, a;.

Then, by the result for n = 2, (B¢ + aps+1tp+1) < Bp(€) + aps19(tp+1)-

The first term on the right-hand side can be bounded above by using the
induction hypothesis, which gives p(§) < 3°F_, B~ 'aip(t;). O

9.2.3 Corollary. Let &, £&2 > 0 and let a, B > 0 satisfy a+ 8 = 1. Then
2€5 < a&) + P&,

PROOF. If § = 0, the left-hand side is zero and the inequality is obvious.
Suppose that & > 0 (i = 1,2), and set 1; = log &;. The exponential function
exp(t) satisfies the hypotheses of 9.2.1, whence

exp(am + Bne) < aexp(m) + Bexp(nz).0

9.2.4 Lemma. Let (X, A, u) be a measure space, let a, 3 > 0 be such that
a+ B =1, and let f and g be nonnegative functions in L“‘(X, A). Then
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(i) fogP € LL(X, A) and
() J 1298 < ([ )" ([ 9)".

PROOF. If f = 0 a.e., both sides of the inequality (ii) are zero. Hence we
may assume that [|f||2 > 0 and |ig||.: > 0. Setting

F=Wg 1 g=glzie

we reduce the proof of (ii) to showing that
/FWSL
We will use 9.2.3. For every z, f2(z)3%(z) < af(z) + 8§(z).

The right-hand side is an integrable function; hence (i) follows from 7.4.3.
Integrating both sides of this inequality gives

[r#s<afFesfs

/f"gﬁsa+ﬂ=1.l:|

Since [ f=[§=1,

9.2.5 Definition of conjugate exponents

Definition. Let 1 < p < +00 and 1 < ¢ < +00. We say that p and ¢ are
conjugate exponents if
1 1
-+-=1
P q
REMARKS. p is conjugate to itself if and only if p = 2.
Ifl<p<2, thenq>2.

9.2.6 Theorem (Holder’s inequality). Let (X, A, u) be a measure space,
let p and q be conjugate exponents, and let f € LP, g € L. Then

(i) fg € L! and
(%) |f fa| <N flLsllgllLe-

PROOF. Since the theorem is clear when p = 0o or ¢ = 0o, we may assume
that 1 < p < co. We first consider the case where f and g are nonnegative.
Setu=fPov=g%a=:, 0= %. Then fg = u®v?, and applying 9.2.3
gives the theorem.
In the general case, set |f| = f1, |g| = 91 Then fig1 € L' by the
argument above; hence by 7.4.2 fg € L! and

| / fyl < [ oo



50 I. Measurable Spaces and Integrable Functions

9.2.7 Theorem (Minkowski’s inequality). Let (X, A, ) be a measure
space and let f, g € LP, where 1 < p < +00. Then

(i) (f+g) € LP and
(i) If +gllee < N flie + llgllLe-

PROOF. The theorem is true for p = 1 by Proposition 6.8.3. Note that the
function (t) = tP is convex on [0, +00). Using Jensen’s inequality, we have

whence

1f(z) + 9(@)I” < (1f(@)] +9())® < 277 f () + 2"~ |g(2)I".

Hence the integrability criterion 7.4.3 implies (i). It suffices to prove (ii) in the
case that f and g > 0. We then have

/(f+y)”=/f(f+g)”" +/y(f+y)”"-

Letting g be the conjugate exponent and using Holder,

1/p 1/q
/f(f+g)”" < (/f”) (/(f+y)""”") ;

but, since p and g are conjugate, p+q = pq, or (p—1)gq = p. Writing the analogous
integral for g, we obtain

Juars [(/f’)w+ (/g’)w] (/(f+y)”)w,

Wf+ gl < (fllee + llgllee)Ilf + glIBie.

If |f + gllL» = 0, Minkowski's inequality holds trivially. Otherwise we can
divide both sides by ||f + g||%4° to obtain

or

If + gllZ=""* < U flle + lglles,

and the conjugacy relation gives p — 5 =1-p [l - %] =1.0
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REMARK. Writing f(z) = w(z)e*?‘®) shows that the Holder and Minkowski
inequalities remain true for complex-valued functions.

9.2.8 Theorem. Let (X, A,u) be a measure space and let 1 < p < +oc.
Then LP(X, A, 1) i3 a vector space on which a norm is defined by the func-
tion f — |||z

PROOF. It follows from 9.2.7(i) that L? is a vector space. Moreover, 9.2.7(ii)
and 9.1 show that || - ||.r is a norm.

9.3 Completeness theorem. Let (X,A,u) be a measure space and let
1 < p < +oc. Then LE(X, A) is a complete normed space.

REMARK. For p = 1, Lebesgue’s theorem (7.2) implies that every normally
convergent series in L' is convergent, and hence that L! is complete.

PROOF. We proceed as in 6.5.4(v) by proving the following lemma:

9.3.1 Lemma. Let {f,} be a Cauchy sequence in L. Then {f,} converges
in measure.

PROOF. Fixing ¢, set

{z : If'n(-'"') - fn’(x)l > 5} =Apn
Then
/ = ful? 2 / o = furl? 2 € p(Anm),

n.n’/

implying the Chebyshev-type inequality
l‘(An,n’) <€ fa- fn’"’[’,r
Fix ng such that ||fn — fullee < €'*P7' if n,n' > ng. It follows that
e(fn, frr) < 2eif n,n' >ny. O

9.3.2 PROOF OF THE THEOREM. Since Lﬁ is a complete space, {f,} con-

verges in measure (by 5.2.9) to fo. By 5.2.7, we can extract a subsequence
such that

(1) fa, converges to fo p-a.e.
Since f, is a Cauchy sequence in LP, we have

(i) Ifallie < C,or | |fal? ll: < C.

By Fatou’s lemma (7.7), |fo|? € L.
Fixing k, consider the sequence {us} = {|fn, — fn.|P}. Fatou’s lemma
can be applied since u, converges a.e. to |fo — fn, |P. We obtain

[|lim u,ifL: < sup [jusllz:-
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Fix mg such that ||f, — farlle < € if n,n’ > my. Take k such that
ng > mg; then

[lfo — faillee <€ if n>my

and
"fO - fn"LP < ||fo - fﬂh "U + "fm - fn"l.p <20

REMARK. Writing f = u + iv, we see that 9.3 implies that L5 (X, A;C) is
complete.

9.4 Notions of duality

Given a normed vector space E, the vector space E’ of continuous linear
functionals ! on E is called the dual of E. For | € E’, we set

Il = sup |i(z)] where ||z||<1, z€E.

It can be shown that E’ is a Banach space.

9.4.1 Theorem. Let (X, A, ) be a measure space. Then LZ(X, A) is a
Hilbert space when the scalar product is defined by

(@) fm=mw

The scalar product for the complez-valued functions Lﬁ(X , A, p) is defined
by [ fg = (flg)-

PROOF. (f|f) = || fll32, and Hélder’s inequality becomes

(i) I(F19)1 < 1 fll2llgll z2-

This is just the Cauchy-Schwarz inequality, which can be proved directly.
Moreover, Lﬁ is complete, and hence is a Hilbert space.

9.4.2 Corollary. The dual of the space L? can be identified with L?; the
dual pairing is given by 9.4.1(3).

PROOF. In a Hilbert space, by Riesz’s theorem! every continuous linear
functional can be expressed by a scalar product.

9.4.3 Proposition. Let (X, A, u) be a measure space and let p and g be
conjugate exponents, 1 < p < +oo. Then there is an isometric injection u
from L% into (L)'

1See, for example, W. Rudin, Real and Complez Analysis (New York: McGraw-
Hill, 1974).
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PROOF. Define a mapping u : L} — (L})’ by associating with g € Lf, the

linear functional
L = [ fo.

Then by Holder
(3) lHo(H < llglizeliflles = Cllflize,

which shows both that I, is a continuous linear functional and that u is a
contraction:

llw(g)ll(Ley < ligllLe-

In order to show that u is an isometry,we introduce fo = (signum(g))|g|?/?.
Then |fo|? = |g1% || follg» = llgllZ., and

/ fog = / lgle/P+! = f 191 = llgll%.

Hence
lg(fo) = llgll%..
Furthermore,
lig(fo)l < MollcLoy 1 follLe = Mgllcoy lgllZ2,
whence

Wollczey > lglldz%?.

But ¢ — ¢/p = 1, and hence u is an isometry.
It follows that u is an injective mapping of L into (L?)'. O

REMARK. It will be shown in Section IV.6 that u is surjective, and thus
identifies (LP)’ with L? (1 < p < +00).

9.5 The space L™

9.5.1 Definition. f € LY(X, A) is said to be essentially bounded if there ex-

ists a bounded representative f of f. The space of essentially bounded mea-
surable functions is denoted by L3°(X,A). We define Ag¢ = {z : [g(z)| >

€} and K(g9) = {£¢ € R : 1(Age) = 0}.
If g € L?, then K(g) # 0 and we set

lglle = inf K(g).
9.5.2 Lemma. p(Ag¢) > 0 if and only if £ < lg]le.

PROOF. The only case that is not obvious occurs when € = ||g|| L=. We then
apply the continuity theorem for increasing sequences of measurable sets.
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Setting & = [IgllL~ gives pu (U Ageoin-1) = 0. But UR Ay eopn-r =
Ag'fo' 0

9.5.3 Proposition. L°(X, A, u) is a complete normed vector space.

PROOF. We first prove the triangle inequality for ||-||L~. Let f,g € L;® and
set h = f+g; then |h(z)| < |f(z)|+|g(z)| implies that A} ¢, D A7 NAZ,.
Taking complements, we obtain

H(Ang+n) < n(Ase) + n(Agn),
or (£+1) € K(h) if £ € K(f) and n € K(g). Thus

lalleee < Ifllge + llgllLge-
If || Le> = O, then h(z) = 0 a.e. by 9.5.2, and hence || - ||z is a norm.

Let fn be a Cauchy sequence in the norm ||-|| .. Choose representatives fn of
the class f, and set un o' = fn — for. Let Apnr = {Z: |tn.nr(2)] > 3l|tn.n’ llege s
then, by the definition, u(An ) = 0.

Set Z = Up n'An,n'. Then u(Z) = 0 and

|fa(z) = for (@) < 3llfn = frllge if z € Z°.

The sequence f, converges uniformly on Z°¢. Set fo(z) = lim fn(z) if z € Z° and
fo(z) =0if z € Z. Then fo € L:o and || fn — follLe — 0. D

9.6 Proposition. Let (X ,,.A.u) be a measure space. Suppose that p(X) <
+00. Then L(X,A) D L% (X,A) if 1< p<p < +oo.

PROOF. Use Hoélder’s inequality to write
/x | Pdu(z) = / FPLxdy(2) < I 7P leg Ixlles.

where r and s are conjugate exponents. If p’ < +00, note that

NP e = ( / f|'v)"'

and taker=%> 1. Then

/

@) Iflzr < WX Nfllsr, Where a = P;P.

This shows that every function in L?" is in L?. If p’ = 0o, note that

/ IFIP < I£IBmp(X).0
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Borel Measures
and Radon Measures

Introduction

The preceding chapter dealt with abstract measure theory; given an ab-
stract set X, we rather arbitrarily prescribed the o-algebra B of its mea-
surable subsets. In this chapter, we work in a space X which is locally
compact and can be written as a countable union of compact sets. A natu-
ral o-algebra in this context is the Borel algebra Bx. A locally finite Borel
measure is a measure defined on Bx such that every compact set has finite
measure. For X metrizable, we prove Lusin’s theorem: If y is a locally finite
Borel measure and A € By, then for every ¢ > 0 there exist an open set
O and a closed set F such that F C A C O and (O - F) < €. Thus an
arbitrary Borel set can be approximated to within € by both an open and
a closed set.

A natural vector space on X is the space Ck(X) of continuous functions
with compact support. A linear functional I on Ck(X) is called positive
if I(f) = 0 for every nonnegative function f. We prove the Radon-Riesz
theorem, which constructs a bijection between the positive linear function-
als on Ck(X) and the locally finite Borel measures. In the Prologue, we
showed that the Riemann integral on R defines a positive linear functional
on Ck(R). In this chapter, we apply the Radon-Riesz theorem to obtain a
canonical translation-invariant Borel measure on R, the Lebesgue measure.
The theory of the Lebesgue integral appears as a special case of the theory
of the abstract integral developed in Chapter I. We obtain the Lebesgue
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integral on R™ by constructing the product measure, and prove the change-
of-variables formula for multiple integrals.

When Y is compact, the space of continuous functions on Y is a Banach
space. We consider the dual vector space (C(Y))* of continuous linear func-
tionals on Y, and show that every linear functional can be written as the
difference of two positive linear functionals. This leads us to the concept of
signed Radon measures.

Given a locally compact space X, we consider the Banach space Cy(X)
of bounded continuous functions on X and the closed subspace Co(X) of
functions which vanish at infinity. (Co(X))* is identified with the space
M!'(X) of finite signed Radon measures. Three topologies can be defined
on this set by using the pairings with Cx(X), Co(X), and Cy(X). We
compare the three corresponding notions of convergence.

The first section of this chapter is devoted to the construction of parti-
tions of unity, which allow the passage from local to global considerations
on X. It is purely topological, while the rest of the chapter describes mea-
sure theory on locally compact spaces.

1 Locally Compact Spaces and Partitions of Unity

1.0 Definition of locally compact spaces which are countable
at infinity

Let X be a Hausdorff topological space which satisfies the following hy-
potheses:

1.0.1 X is locally compact, i.e. every point ¢ € X has a compact neighbor-
hood.

1.0.2 X is countable at infinity, i.e. there exists a sequence { K, } of compact
subsets of X such that

KnCKnyy and | JKn=X.
n

1.0.3 Proposition. There exists a sequence H,, of compact sets such that

H, C i m+1 (where A denotes the interior of A)

and
[ o]
U Hn = X.
m=1

PROOF. The proof is by induction. Set H, = K, and, assuming that Hg
has been constructed, set G, = Hy U K,. Each £ € G, has a compact

neighborhood V/(z); from the open cover of G4 formed by {l?(z)}, extract
a finite subcover.
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This procedure gives points z,; € G,, 1 < j < my, such that H, C

Uicicm, ‘9(%,) Set Hoy1 = Uicjcm, V(2q,4)- As the finite union of
compact sets, Hg41 is compact. Furthermore,

ﬁq.;.l D U f}(zq,j) D Hq

1<jsm,

UH, 2|k, =X.0

1.1 Urysohn’s lemma

Lemma. Let F) and F; be disjoint closed subsets of a locally compact space
X. Then there erists a continuous function f on X such that

f(x)=1 if and only if z € Fy;
f(z)=0 if and only if z € F3;
0< f(z) <1 forall z € X.

PROOF. We restrict the proof to the relatively trivial special case where X
is a metric space.
Let
fi(z) = d(zv F‘l) = min(d(zv yi))) where ¥i € F;-
Then f; (i = 1,2) is a positive continuous function and fi(z) =0 & z €
F;.
Let a function ® be defined on Z = ([0, +oo) x [0, +00)) - (0, 0) by setting

®(,n) = €+n

Then & is continuous since (0, 0) is not in the domain of definition Z of ®.
Furthermore,

0<®<1,

®(&,00=1 if £>0, and

®0,7) =0 if n>0.

Let f(z) = ®(f1(z), f2(z)). Since F, N F, = 0, the mapping into (R*)?2
defined by z — (f1(z), f2(z)) actually maps into Z. Thus f is the compo-
sition of continuous mappings and hence is continuous. O

1.2 Support of a function

Definition. Let f be a continuous function on X. The support of f, de-
noted by supp (f), is the closed set

supp (f) = closure {z : f(z) # 0}.

1.2.1 Proposition. The following statements are equivalent:
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(i) z & supp(f).

(i) There erists a neighborhood V (z) such that f(z) = 0 Vz € V(2).
PROOF. Let O = (supp (f))¢; then O is an open set and

{z: f(z) #0}NO Csupp(f)NO =0,

whence, setting O = V(z), we have shown [that] (ii) = (i).

Conversely, if V(z) N {z : f(z) # 0} =0, then

V(z)n{z: f(z) £0] = 0.0

1.2.2 Proposition. Suppose that X is a locally compact space, F is a
closed subset of X, and O is an open subset of X such that F C O. Then
there exists a continuous function g such that

0<g(z) <1 for any z € X;
g(x) =1 ifandonlyif z€ F; and
supp(g) C O.

PROOF. Set F' = O°. Applying Urysohn’s lemma (1.1), let f be the function
associated with the pair of closed sets (F, F'). Set

- 1
F" = f7'([0,5)).
2
Then F” is a closed set since f is a continuous function. Let g be the function

associated by Urysohn’s lemma with the pair (F, F”). Then g(z) > 0 implies
z ¢ F", or f(z) > }, which may be written as

(z:9(2) 0} < £ (5. 1.

Hence supp (g) C closure (f~')((3,1]).
Since f~'([3,1]) is closed, we have a fortiori

supp(9) € £~(13,1) € 0.0

1.8 Subordinate covers

1.3.0 Definition. Let {U,} be an open cover of X. An open cover {V,} is
said to be subordinate to {U,} if, for any n, there exists a(n) such that

Vﬂ - Ua(n)'
A cover {H,} is said to be locally finite if, for every compact set K,
card {y: H,N K # 0} is finite.

1.3.1 Theorem. Let X be a locally compact space which is countable at
infinity. Then every open cover has a locally finite subordinate open cover
{Va} such that the V,, are compact.
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PROOF. Let {Ua} be an open cover of X and let {H.} be the sequence of
compact sets defined in 1.0.3. Set

G[ =ﬁ| and Gm=(Hm"Hm—l)-

Then
Gm = HnN(Hm-1)¢ C Hn NHE, _,.
But ° Ps o c
(H,,._l) D Hi ), whence (Hm_.l) D HS _,,
so that

Gm CHm N ( ﬁm—l)cv

and thus Gm N Hm_1 = 0. Using 1.0.3,

(i) GmnHm_2 =0.
Set
(") Ua.m - Ua n §m+l n H,c,._g.

Then Ua,m is an open cover of Gm.
For each £ € G, there is an open set W,,(z) such that

(i1) Wm(z) C Uam where a = a(z).

The W, (z) form an open cover of the compact set G,: from this cover we can
extract a finite subcover, say Wn.(z1),. .., Wn(z,).

The family {Wm(zx)} is a countable family of open sets, which we denote by
{Va}. We have V,, C Ua, where a = a(n). The {V,} cover G, for every m,
hence cover X. For fixed m, (i), (ii), and (iii) imply

(iv) card {n: Vo NGm # 0} < +oc.
We now prove a lemma.

1.3.2 Lemma. Let K be a compact subset of X. Then there exists q such
that K C H,.

PROOF. Set F, = ( ﬁr)c N K; then N, F,. = 0.

The F, form a decreasing sequence of closed subsets of the compact set K.
Since their intersection is empty, there exists q such that

0=F, = (ﬁq)cﬁK.D

1.3.3 CONCLUSION OF THE PROOF OF THEOREM 1.3.1.Given the compact
set K, let ¢ be determined by 1.3.2. Then (ii) and (iii) show that
Wn(z)NK=0 if m>q-2,

whence
card {n: V, N K # 0} < +00.0
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1.4 Partitions of unity

1.4.0 Definition. A partition of unity on the space X is a sequence of
continuous functions ¢, such that

(i) 0<yn <1,

(ii) supp (¢n)is compact,
(iii) card {n: K Nsupp (¢n) # 0} < +00 for every compact set K, and
(iv) Y n(z) =1.

REMARK. Condition (iii) is called a local finiteness condition. It implies
that, for fixed z, the series (iv) contains only finitely many nonzero terms.
The partition of unity is said to be subordinate to the open cover U, if

(v) for every n, there exists a(n) such that supp (¢n) C Uq(n)-

1.4.1 Theorem. Suppose that X is a locally compact space which is count-
able at infinity and {U,} is an open cover of X. Then there erists a parti-
tion of unity subordinate to {U,}.

PROOF. Let {V,} be the locally finite cover subordinate to {U,} con-
structed in Theorem 1.3.1.

Since the V, form a cover, by another application of 1.3.1 there is a
locally finite cover {L,} subordinate to {V,,} which satisfies

L,cV,, where n=n(s).

Applying 1.2.2 to the pair (L,, Vn(s)), there is a function g, such that
supp (gs) C Vi and g4(z) = 1 if € L,. Since each V, is compact and
the cover {L,} is locally finite, only finitely many of the elements L, are
contained in any V,,. Since the cover {V,} is locally finite,

card {n: Vo, N K # 0} < +00

for any compact set K. Hence, setting I(K) = {s : supp (gs) N K # 0}, we
obtain
card (I(K)) < +oo.

Thus the sequence {g,} satisfies condition (iii). Set
D(z) = Y g,(2).
8

To calculate D(z) on a given compact set K, it suffices to let s range
over I(K). As this set is finite, D(z) can be written on K as a sum of
continuous functions; hence D(z) is continuous on K. Together with the
local compactness of the space X, this implies that D is continuous.

Furthermore, {L,} covers X. For every z, there exists s such that z € L,;
that is,

D(z) >1 forevery ze€ X.
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Setting )
B(z) = (@)

gives a continuous function on X. Finally, set ¢, = 8g,. O

2 Positive Linear Functionals on Ck(X)
and Positive Radon Measures

2.0.1 Notation

Given a locally compact space X, Ck(X) denotes the vector space of con-
tinuous functions with compact support. We write

f20 if f(x)>0 foreveryz.

2.0.2 Definition. A positive linear functional is a linear mapping I :
Ck(X) — R such that I(f) > 0 for every f > 0.

2.1 Borel measures

Let Bx denote the Borel algebra on X. A measure defined on By is called
a Borel measure, and is said to be locally finite if

2.1.1 u(K) < 400 for every compact set K.

REMARK. Since K is closed, K € Bx.

2.1.2 Proposition. Let u be a locally finite Borel measure on X. Then
every continuous function with compact support is integrable. Setting

1) = [ rau

defines a positive linear functional on Ck(X).

PROOF. Since f is continuous, it is Bx-measurable. Furthermore, |f| is
bounded by a constant M, and setting K = supp (f) yields

|fl £ M1g.

By 2.1.1, 1k is integrable; by 1-7.4.2, so is f. The positivity of I follows
from 1-6.8.3. O

2.2 Fundamental theorem of Radon-Riesz. Let X be a metrizable lo-
cally compact space which is countable at infinity. Then the correspondence

p=1,
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of 2.1.2 defines a bijection which allows the locally finite Borel measures to
be identified with the positive linear functionals on Ck(X).

Proor. This statement contains both an eristence and a uniqueness theo-

rem: Every positive linear functional is represented by an integral with re-

spect to a locally compact Borel measure, and this representation is unique.
The proof of Theorem 2.2 occupies the rest of this section.

2.2.1 Approximation lemma. Let X satisfy the hypotheses of 2.2. Then
for every open set O in X there is an increasing sequence of compact sets
K, such that

(i) O=UK, and KnC Kns..

For every compact set K in X, there is a decreasing sequence of open
sets O, such that O,, is compact,

(i4) K =n0,, and O, C O,_,.

PROOF. Set G, = {z : d(z,0°) > 1}; then Gy, is closed. Let K5, = GuNHy,
where {H,} is the sequence of compact sets of 1.0.3.

Then Kn > 8an Hp D Guoy N Ha_y, and (i) is satisfied.
To prove (ii), let m be determined as in 1.3.2 so that K C ﬁlm, and set

On = ﬁ!mn{z:d(x,x) < %}.u

2.8 Proof of uniqueness of the Riesz representation

Let u and v be locally finite Borel measures such that

2.3.0. /f(:r)du(:z:):/f(z)du(:t), Vf € Cx(X).

2.3.1 Proposition. Suppose that 2.8.0 is satisfied. Then the measures
¢ and v coincide on open sets and on sets which can be written as the
intersection of an open set and a closed set.

PROOF. Using the approximation lemma 2.2.1(i), we can write O = UK.
For every pair (K, )o(,,.H), let g, be determined as in 1.2.2:

gn(z) =1 if =€ K,
supp (gn) C Knt1, and 0<g,<1.

Then 1k, < gn < 10, whence

ﬂWﬁS/%@SM@-
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Since, by 1-3.2.1,
lim p(Kp) = p(0) < +o0,
it follows that

(2) lim / gndp = p(O) and similarly lim / gndv = v(0).

Since gn, € Ck(X), 2.3.0 implies that the left-hand sides of the two equa-
tions are equal; thus v(0) = u(0) < +oc.

Let A= FNO, where O is open and F is closed. Using the exhaustion
principle (I-3.2.4) and setting

F,=FnNH, (H, defined as in 1.0.3),
we have
w(FNO) =limp(F,N0),
whence it suffices to show that
w(KNO)=v(KNO)

for every compact set K.

By the approximation lemma, 2.2.1(ii), there exists a sequence {O,} of
open sets with compact closures such that K = lim | O,,. Since the O,, are
compact, u(0,) < +o0; it follows from the principle of decreasing sequences
(1-3.2.3) that

u(KNO) = li’r'n (0N Ooy),

and from the first half of the proof that
©(0NO0,)=v(0N0,).0
For convenient reference, we restate the first part of the proof of 2.3.1 in
a more organized form.
2.3.2 Constructive definition of u(O)
Let O be an open set in X and let
T(0)={f€Ck(X):supp(f)COand0< f<1}.
Then
u(0) = supffdu where f € T(O).

PROOF. Set L = /fdu, where f € T(0). Since f € T(O) implies f < 1o,
we have
[ du < u(0), whence L < u(O).

Furthermore, the g, constructed in the proof of 2.3.1 satisfy g, € T(O).
Thus

lim/g,.dp < L, whence by 2.3.1(i) p(0O)<L.O
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2.3.3 Terminology

Subsets of X which can be written as the intersection of an open set and a
closed set are called sets of type o.c. Open sets and closed sets are special
cases of o.c. sets. (Take their intersection with X.) A subset of X which can
be written as a finite union of disjoint o.c. sets is called an elementary set.
It follows from the additivity of 4 and v and from 2.3.1 that u(€) = v(€)
for every elementary set £.

Lemma. The elementary sets form a Boolean algebra of subsets of X .
REMARK. Compare 1-1.5.4.
PROOF.

(i) Let R be an o.c. set. Then R° is an elementary set, for if R = ONF,
then R° = O° U F° and we can write

R =(0O°NF)U(0O°NF)u(0ONF*).
The three sets in parentheses are disjoint and each is of type o.c.

(i1) The intersection of two elementary sets is elementary. Indeed, let
€ = UiR, and £’ = U;R), where R, = O, N F; and R; = O; N F.
Then

ENE' =Ui ;RN R,.
Since the R, Rj are disjoint, so are the R, N R;. Moreover, R, NR), =
(0: N 0j) N (FiN F;) and hence is of type o.c.

(iii) The complement of an elementary set is an elementary set. If £ =
UR, then £ = NR;. By (i), each Rf is an elementary set. By (ii), £°,
as the intersection of finitely many elementary sets, is elementary.

(iv) X is of type o.c. (hence elementary).

(v) A finite union of elementary sets is elementary. By (iii), it suffices
to prove the statement for complements of elementary sets; but this
follows from (ii). O

2.3.4 Proof of the Radon-Riesz theorem (uniqueness)

PROOF. Let B = {A € Bx : v(AN H,) = u(AN H,) Vn} (where H, was defined
in 1.0.3).

We first show that B is a monotone class. This is immediate for increasing
sequences, by I-3.2.1. Now let {A,} be a decreasing sequence, A, € B. Then, by
the compactness of Hy,,

(A, N H,) < +00 and v(A,NH,) < +00.
Applying 1-3.2.3,

lim p(As () Hn) = p((lim | AJ) 0 Ha),
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whence
#((lim | A,) N Hy) = v(lim(] A,) N Hy).

As this is true for any n, we have (lim | A,) € B.

Furthermore, B contains the Boolean algebra of the elementary sets of X by
2.3.1. Therefore, by 1-1.4, B coincides with the o-algebra generated by the open
sets and the closed sets; that is, B= Bx. O

2.4 Proof of ezistence of the Riesz representation

Given a positive linear functional I on Ck(X), we would like to represent
it in integral form. We begin by using a construction that appeared in the
proof of uniqueness.

2.4.1 Measure of open sets
As in 2.3.2, we set

T(0)={f € Ck(X) :supp(f)CO and 0<f<1}.
Given a positive linear functional I, we define
() I(O) =supI(f), where f € T(O).

I(O) is called the measure of the open set O relative to the linear form I.
Note that

() I(0,) L I(02) if O, COs.

(iii) Proposition (Convexity inequality). Let {O,} be a sequence of
open subsets of X. Then

I (Uo,.) <Y 1(0,).
n n

Q = (supp (f))°.

Then Q,{O,} form an open cover of X. Let ¢, be a partition of unity
subordinate to this cover. Set

fo= f‘Pq-

Let S = {g: @,f # 0}. Since f has compact support, card(S) < +oo. If
g € S, let ¢ — 0(g) be a mapping from S to N such that

supp (9q) C Og(q)-
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Set
S(n) = 6(n).

The nonempty S(n) form a partition of S. Set
Yo = Z Pq-
q€S(n)
Set J = 6(S) and fn = fpn. Then f < 3" ., fn and, since f, € T(Oy),
I(fn) < I(Oy) and

1(f) < 3 1(0a) < Y 1(0.).0

neJ n

(iv) Proposition (Additivity of I). Let O; be a sequence of disjoint
open sets, and set O = UQO;. Then

1(0) =Y _ 1(0y).

PROOF. Given n and ¢, consider the nth partial sum of the series on the
right-hand side and choose f; € T(O;) such that

I(f:) 2 1(0;) - 27
Then f = Y], fi satisfies f € T(O), whence
n n
KO) 2 I(f)=)_I(f) 2 )_I(O;) —e.
i=1 i=1
Since n and ¢ are arbitrary, we obtain
+o00
10) 2 ¥ 1(0y),
n=1
which together with the convexity inequality gives (iv). O
2.4.2 Measure of compact sets
Let K be a compact subset of X and set
I(K) =infI(0), Oopen, ODK.

Then

(i) K; C KqimpliesI(K,) < I(K2); and
(ii) if K is compact, O is open, and K C O, then I(K) < I(O).
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(iii) Proposition (Finite additivity). Let K,, K3, ..., K, be a finite
collection of compact disjoint sets. Then

: (0 Ki) -1k,
=1 i=1

PROOF. Let 2¢ denote the infimum (minimum) of the distances from K, to K
and let
U, = {z: d(z, K;) < €}.

Then the U, are disjoint open sets.
Choose O; such that O; D K; and I(O;) < I(K:)—€2"!, and set O, = U;NO;.
Let K = UK, and choose O such that I(K) > I(O) — €. Set O] = 0N O};
then K C UOj C O, which implies that

I (U o;') —e<I(K)<I (Uo;’) .

Since the O] are disjoint, 2.4.1(iv) implies

1(Uoy) =X 10,

Since
K, c 0j c 0,,
we have )
1(0}) - 27 < I(K;) < I(0}),
and thus

D10}y —e< Y I(K;) <) 1(05).0
J J J

2.4.3 Inner measure and outer measure

We would like to define set functions for arbitrary subsets A of X. We set

u*(A) =infI(0), Oopen, OD A, and
u#.(A) =supI(K), K compact, K C A.

Then by 2.4.2(ii)
(?) s.(A) < p*(A).

1« (A) is called the inner measure of A and p* its outer measure.

(ii) Proposition (Convexity inequality for x*). Let {A,} be a sequence
of subsets of X. Then

u (U Ae) <Y w4
i i=1
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PROOF. Choose a sequence of open sets {O;} such that
AicO; and I(0;) < p*(As) +€27%.

Let A = U;A; and let O = UOy; then A C O, whence u*(A) < I(0).
By 2.4.1(iii),

1(0) < ZI(Oc) < E#‘(Ai) +e0

(iii) Proposition (Concavity inequality for u.). Let {A;} be a se-
quence of disjoint subsets of X. Then

+00 +00
He (U A;) > n(A).
=1

=1

PRroOF. Consider the nth partial sum of the series on the right-hand side.
Fix compact sets K; such that

K;CA; and I(K.) > [.l.(A.') —€27%,

Let K = UL, K;; then K is compact. Since the A; are disjoint, so are
the K;, and finite additivity (2.4.2(iii)) gives

IK) =) I(K) 2 ) m(A)-e
i=1 i=1

Since K is compact and K C A = U;A;, we conclude that u,(A4) > I(K).
(@]

2.4.4 Construction of the measure (compact case)

Throughout this section, we assume that

(H) X is compact.
Let
(@) B={AeP(X):p*(A) = p.(A)}.
If A € B, we set
(i) u(A) = p*(A) = p.(A).

(iii) Proposition. A € B if and only if for every ¢ > 0 there ezist a
compact set K and an open set O such that

KCcACO with I(O)-e<I(K)<IO).
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PROOF. We prove sufficiency; the proof of necessity is similar. If A € B,
there exists a compact set K such that K C A and I(K) + § > u.(A).

There exists an open set O such that O O K and u*(A) > I(O) - §.
Hence the fact that u.(A) = u*(A) implies that

1(0) - € < I(K) < 1(0).0

(iv) Proposition. Every closed set is in B.
PROOF. Let K be closed (hence compact). Then u.(K) = I(K) by defini-

tion, and

#*(K) = inf 1(0) = I(K)
by definition of I(K). O
(v) Proposition. Every open set is in B.

PROOF. Let O be an open set. Formally, u*(0) = I(O).

Furthermore, given ¢ > 0, by the definition of I(O) there exists g € T(O)
such that I(g) > I(O) —e.

Let K be the support of g. Then g € T(f2) for every open set 2 D K.
Hence I(g) < I(2) VQ D K; that is,

I(g) < inf I() = I(K).

Thus
I(K) > 1(9) 2 1(0) — ¢

and therefore
£.(0) 2 p*(0) —e0

(vi) Proposition. Let {A,} be a sequence of disjoint elements of B. Then

Undn € B and p(Undn) = p(An).

PROOF. u* (UAn) < ¥, p(An) by the convexity inequality, and u. (UA,) >
3", #(Ap) by the concavity inequality.
Setting Z = UA,,, we thus have u,(Z) > u*(Z), whence Z € B and

D_u(An) < p(2) = w(2) = ' (2) < Y _ u(4n) O

We now refine criterion (iii).

(vii) Lusin’s criterion. Let A € P(X). Then A € B if and only if for
every € > 0 there exist a compact set K and an open set O such that

KCACO and pO-K)<e
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PROOF. By (iii), we can find K C A C O such that
#(0) < u(K) +e.

But (O — K) and K are disjoint and belong to B (because (O — K) is
open and K is closed), whence by (vi)
#O - K) + u(K) = p(0), or p(O-K)=p(0)-pK)<eD

(viii) Proposition. B is a Boolean algebra.

PROOF. We will use Lusin’s criterion (vii). We first show that A° € B if
A € B. There exist a compact set K and an open set O such that

KCcAcCO with p(O-K)<e.
Then
O°C A°CK® and K°-0°=0-K, whence
w(K-—0°)=pu0O-K)<e
Similarly, let A, A’ € B; then KUK'C AUA’c OU O’ and

(OUO)N(KUK')* = (ON(KUK'))Uu(O'n(KUK')°)
C (ONK)U(O'NnK™).

Hence, by the convexity inequality for the outer measure,
p((OUO)N(KUK')) < p*(0 - K) +p*(0' - K').

Since all the sets in this expression are in B, we can replace u* by u to
obtain that AU A’ satisfies (vii); hence AUA’ € B. O

(ix) Theorem. Suppose that X is a compact space and B is the family of
sets defined in (i). Then B is a o-algebra containing the Borel algebra and
u defined in (ii) is a measure on B. The o-algebra B is p-complete.

PROOF. It must be shown that a countable union of sets A,, € B is in B.
Set
By = A1, Bn.=A.n(UlZ}4))°.

Then UB,, = UA,, and, since B is a Boolean algebra, B,, € B.

Since the B, are disjoint, it follows from (vi) that their union is in B.
Thus B is a o-algebra. By (vi), 1 is a measure on B. By (iv), B contains
the closed sets; therefore B contains the Borel algebra By . Next, let

YCA, where A€eB and pu(A)=0.

Then
p*(Y) < pu*(A) =0.



2 Positive Linear Functionals on Cx(X) and Positive Radon Measures 71

Furthermore, by 2.4.3(i),
Be(Y) S u*(Y),

whence
p(Y)=p*(Y)=0.

Thus Y € B, and hence B is u-complete. O

(x) Definition. The measure u constructed in Theorem 2.4.4(ix) is called
the Radon measure associated with the positive linear functional I. The
o-algebra B on which the Radon measure pu is defined contains the Borel
algebra Bx. By restricting u to Bx, we can associate a Borel measure p’
with p. The o-algebra B is the completion of Bx with respect to the measure
¢'; this will be proved in 3.4.2.

2.4.5 Proof of the representation theorem (compact case)

Theorem. Let X be a compact space, let I be a positive linear functional
on C(X), and let u be the Borel measure associated with I by 2.4.4(iz) and
(z). Then

[ fau=10.
PROOF. We will show that
(1) I(f) < /fdu for every f € C(X).
For a given € > 0, let
Ai = f7'([ke,(k +1)¢)), where [k| <N,

with N chosen so that M = max |f| < Ne. Set

- (((o-2) )

Then O} is open since f is continuous. NO} = Ay, and hence the theorem
on decreasing sequences gives

lim u(OF) = p(Ax)-
Fix n so large that

(ii) > (k+1)[(0F) - p(A)] < 1.
Ik|ISN

Since the A; form a partition of X, the Of form an open cover of X. Let
#k be a partition of unity subordinate to this cover. Set fi = i f; then
f =73 fr and moreover fix < (k + 1)epx, whence I(fi) < (k+ 1)el(pk).
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Since 0 < i < 1 and supp (px) C O, we have I(px) < p(OF), whence

1) =" I(fi) < Y _(k + 1)en(Op).

Using (ii),
I() < Y (k + Dep(Ar) +e.

Jraw=X [ s

But f(z) > ke if £ € A, whence

/ fap > kep(As)

Furthermore,

and therefore
1)< [ sdu+e (1 + Zu(Ak)) :
k

Since Ay is a partition of X, Y u(Ax) = p(X). Thus

1) < / fdu + (1 + p(X)).

As € is arbitrarily small, we have proved (i).
Now, applying (i) to f' = —f, we obtain the opposite inequality to (i);
the two inequalities imply equality. O

2.4.6 Proof of the Radon-Riesz theorem (noncompact case)

Let X be a locally compact space which is countable at infinity. Let {Hp}
be the exhaustion sequence constructed in 1.0.3 and let u,, be the function
associated by Urysohn’s lemma with the pair (Hyp,-1, (HS,)).

(i) Lemma. Let C(Hy,) denote the functions defined and continuous on
Hp,. For f € C(Hy,), define up,.f by

(um-f)(z) = f(z)um(z) if T € Hp;
(um.f)(z) =0 if 2¢ Hm.
Then uy,.f i3 a continuous function on X.

PROOF. Only the behavior at the boundary of H,, must be checked. Let
zo be a point in the boundary of Hy,; then u,(x9) = 0 and there exists a
neighborhood U of zg such that |u,(z)| < € if z € U. Hence

[(um.f)(2)| < emax|f|.O
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(ii) Corollary. Let I be a positive linear functional on Ck(X). Set
In(f) = I(um-f), f € C(Hpm).

Then I, is a positive linear functional on Hy,.

(iii) By the compact case of Riesz’s theorem, proved in 2.4.5, there exists
a measure u,, defined on the Borel algebra By, of H,, such that

In(f) = / fdim, VS € C(Ha).

(iv) Let f € Ck(X); then there exists p such that

supp (f) C ﬁ,.
Hence u,,.f = f if m > p and I(up,.f) = I(f), and thus

/fdy,n:I(f) if m>p.

(v) Let O be an open subset of X such that O is compact; then there exists

p such that O C f!,.
Hence, letting

T(0) = {f € Ck(X) : supp(f) C O},

we have
Bm(0) =sup I, (f), where f € T(O).
By (iv),
In(f) =1(f) if m>p,
whence

Um(0) =sup I(f) = um'(0) if mand m’ > p.

(vi) The measures pm, and pn coincide on the Borel algebra By, if m,
m' > p.

PROOF. Let
Z ={A€Bu, : pm(A) = pm:(A)}.
Let O, be a decreasing sequence of open sets such that

N0, =H, and O, C Hp.
Then pum(Oq) = pm'(Oq) by (v). Hence

um(Hp) = pm(Hp).
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Let B € Z; then, since B° = Hp, — B,

l‘m(Bc) = l‘m(Hp) ~ pm(B) = Ilm’(Hp) — Y (B) = Ilm'(Bc)-

Hence B € Z implies B € Z.
Let G be an open subset of H,. Then there exists G’ C i1 p+1 such that G’ is
open in X and
G'NnH, =G,
whence
G =1limG' NO,.
By (v).
I‘m(G’ NOq) = pm (G0 0q).

Hence Z contains the open subsets of Hp. Taking complements shows that Z
contains the closed subsets.

We now use 2.4.4(vii) (Lusin’s criterion) and 2.4.4(ix). Given a Borel set A
and an ¢ > 0, there exist a closed set K and an open set O such that K ¢ AC O
and pm(0) < um(K) +e.

Since pm (0) = pm/(0) and um(K) = pm:(K), it follows that

! (K) < pim?(A) < pim?(0) = pm(0) < pm(K) + ¢,
bm(K) < pm(A) < pm(0) < pm(K) +e.

Hence
[um(A) = pmr (A)| < e.
Since ¢ is arbitrarily small, um(A) = pm’(4). O

(vii) Definition of Borel measure.
Let {H,,} be the exhaustion sequence defined in 1.0.3. For A € Bx, set

p(A) = lim pmi2(AN Hpp).

By (vi),
I‘m+2(A N Hm—l) = pm41(AN Hm—l)s
whence the inclusion A N H,—y € AN H,, implies that the sequence
{m+2(AN Hp,)} is increasing. Hence its limit exists and is finite or equal
to +oc.
We first prove finite additivity. Let A,, A2 € Bx, A, N A2 = . Then,
setting A = A, U A,

pm+2(AN Hp) = pmy2(A1 0 Hp) + pmy2(A2 0 Hy,).
Hence, passing to the limit,

p(A) = u(Ay) + p(Az).

To prove o-additivity, it suffices to show that u is continuous on increas-
ing sequences.
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Let ByC B2 C...C By, ..., where B; € Bx, and set B, = UB,.
Suppose first that u(B.) = +00. Let M be a positive real number; then there
exists m such that
(B N Hp) > M.

By (vi),

Since um+2 is continuous on increasing sequences, there exists ¢ such that
bm+2(Be N Hm) > M,

whence
u(Bq) > M.

As this is true for all M, lim u(B,) = +o0.
We now consider the case u(Bx) = a < +00. Let € > 0 be given. There exists
m such that
a—¢€< pu(BoNHy) <a.

By (vi), g(Boo NHm) = ptm+2(Boo N Hm). Since pm 42 is continuous on increasing
sequences, we have

]i:n#vn+2(3q N Hm) = pm+2(Boo N Hm).
Hence there exists r such that
ﬂm+2(Br n Hm) > I-‘m+2(Boo n Hm) — €,

and thus u(B,) > (B, N Hy) implies that p(B,) > u(Bx) — 2¢. O

(viii) Representation formula.
Let f € Ck(X); then there exists m such that supp (f) C B m- By (iv),

1(f) = /H fdmaa.

But dym+2 is equal to du on H,,, whence

1) = [ sa

(ix) Definition of the associated Radon measure.
Completing the measure space (X, Bx,u) yields a measure [, called the
Radon measure associated with the linear functional I.

3 Regularity of Borel Measures
and Lusin’s Theorem

3.0.1 Hypothesis. We assume that the space X is locally compact, metriz-
able, and countable at infinity.
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3.0.2 Definition. A measure y defined on a o-algebra B containing the
Borel algebra Bx of X is called regular if for every A € B and for every
€ > 0 there exist an open set O and a closed set F such that FC AC O
and p(O - F) <e.

3.1 Proposition. Let X satisfy 3.0.1 and let p be a locally finite Borel
measure on Bx. Then there exists a Radon measure v such that p(A) =
v(A) for every A € Bx.

PROOF. Let f € Ck(X). Since the indicator function of any compact
set is integrable, the inequality |f| < M1k, where K = supp(f) and
M = max|f]|, implies that f is integrable (see I-7.4.3).

Hence a positive linear functional can be defined on Ck(X) by setting

1) = [ 1dp.

By the uniqueness theorem (2.3.4), the linear functional I determines
the measure; that is, if v denotes the Radon measure associated with the
form I by Riesz’s theorem, then

p(A) =v(A) forany A€ Bx.O

3.2 Theorem. Let X be a locally compact space satisfying the hypothesis
of 8.0.1. Then every Radon measure p on X is regular.

PROOF. If X is compact, regularity follows from Lusin’s criterion, 2.4.4(vii).

If X is only locally compact, let A be a measurable subset of X and let H,
be the exhaustion of the space constructed in 1.0.3. Set A, = G,NA, where
Gn = (Hp, — Hp—,). Using Lusin’s criterion on the compact set Hy 4, fix
a closed set F,, and an open set O,, of X such that

Fn C Hn+l, Fn C An C On, a-nd I.‘(On - Fﬂ) < 62_"-

Note that F, is compact. Set O = UO,,; then O is open and O D A.
Similarly, set F = UF,. By 1.3.2, this union is locally finite (that is, any
compact set meets only a finite number of F,,); hence F is closed. Clearly
FcAand pu(O-F)<eO

3.3 Theorem. Let X satisfy the hypothesis of 3.0.1. Then any locally finite
Borel measure p on X is regular.

PROOF. By 3.1, p is the restriction to the Borel algebra of a Radon measure
v. Since v is regular by 3.2, a fortiori so is p. O

3.4 The classes Gs(X) and F,(X)

3.4.0 Definition. The class of subsets of X which can be written as a
countable intersection of open sets is called G5(X).
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A countable intersection of elements of Gs(X) is in G5(X).

The class of subsets of X which can be written as a countable union of
closed sets is called F,(X).

A countable union of elements of Fo(X) is in F,(X).
Clearly Gs(X) and F,(X) are subclasses of the Borel algebra.

3.4.1 Proposition. Let 4 be a regular measure defined on the o-algebra B
of the locally compact space X. Then for every A € B there exist

Fe€Gs(X) and &€ F,(X)

such that
®CACT and u(-®)=0.

PROOF. By 3.0.2, we can find a sequence { F},} of closed sets and a sequence
{0} of open sets such that

F.CACO, and u(O,-F))<n™L.

Set
On = nanO:' md Fn = UanFq,.

Then F,, C A C O, and {O, — F,} is a decreasing sequence. Furthermore,
O, - F, C O, - F},, whence 0 = lim u(Oy, — F,,) = lim (] (Oy, — F,)). Set
I'=1lim | O, and ® = lim 1 F,.

Then I' - & = lim | (O, — F,,), whence (I’ — ®) = 0. Finally,

lim | On, € G5(X) and lim 1 F, € F,(X).0

3.4.2 Corollary. Let u be a regular measure defined on a o-algebra B on
X, let ' be the restriction of u to the Borel algebra Bx, and let i’ denote
the measure defined by ertending i’ to the completion Bx. Then Bx D B
and p equals the restriction of W' to B.

REMARK. Cf. I-4.2.2.

3.4.3 Lusin’s theorem. Suppose that X is a locally compact space, v is a
regular measure defined on the o-algebra B D By, and f is a B-measurable
function. Then for every compact set H and every € > 0 there erists a
compact set K such that K C H, v(H — K) < ¢, and the restriction of f
to K 1s continuous.

PROOF. Set Gy, = {z : |f(z)| = n}NH. Then {G,} is a decreasing sequence
and v(Gp) < 400, whence

lim »(G,) =v(NGp) =0.

Hence we can find m such that v(G,,,) < 27 'e.
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Considering f' = fl¢,, reduces the proof to the case of bounded f. In
this case, f is the uniform limit of a sequence {g,} of simple functions (cf.
1-6.4.1, of which we follow the notation). Let mg be such that |f(z)| < mp
for all z. Setting

Jin = {z € H: f(z) € [kn™", (k + ™)},
we may take

gn = an'll‘,,‘_", where — nmg < k < nmy.
k

Using the regularity of v, we can find a compact set Ki  such that

Kin CJin and Y v(Jin = Kin) <27 e,
k

Let V,, = Ux K n, where |k] < nmy.

Then V, is a finite union of compact sets and hence compact. Further-
more, Y(HNVS) <27 le. Let W = U, VSN H.

The convexity inequality (I-3.3) gives

(2) v(W)<e and WNH =nNV,.

Set Vo, = NV,,. Then V, is compact, whence

(i) Kin =Voo NKjpn is compact.
Moreover,
(i11) Kin isopenin V,

since K§ , NV, = U2k K n, |j] < nmyg.
By (iii}, there exists an open subset Q of X such that QNV,, = K , and
hence K ,, = QN V,; it follows that

(iv) Ki, isopenin V.

It follows from (ii) and (iv) that the indicator function of Kj ,, is contin-
uous on V. This, with the fact that Ji , N Vo = Ki.n N Vi, gives

(v) The restriction of gn to Vo is continuous. Since g,, converges uniformly
on V, to f, the restriction of f to V,, is continuous.
Furthermore, (i) shows that v(H — V) < €. O

3.5 Density theorem. Let X be a locally compact space satisfying the
hypothesis 3.0.1 and let v be a Radon measure on X. Then for every p,
1 <p< 400, Cx(X) is dense in LP(X,v).
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PROOF. Let {H,} be the exhaustion of X defined in 1.0.3 and let T,, be the
truncation operator, defined in I-6.7, associated with this exhaustion. Let f € L?
be given. Then

(Tn)(f)(z) — f(z) forevery z€ X

and
ITaf — fIP < ISP,
By the dominated convergence theorem (1-7.6),
I1Taf = fller —O.
Let m be such that
ITmf = flle <e.

Set fm = Tmf: then f,, is bounded by m and its support is contained in the
compact set Hm. Set n = (m™'¢)".

Let K be a compact set, depending on m, such that the restriction ¢, of fm
to K is continuous and such that v(Hm — K) < . Let O be an open set such
that O O Hp, and v(O — Hm) < 1.

By a theorem of Urysohn,' we can find u € Cx(X) such that supp (u) C O,

u(z) =pm(z) if z€ K, and u(z) <m forallz.
On K, fm = ¢m = u, whence fm — u = (fm — 4)1x<10. Since | fm — u| < 2m,
I fm = ullf, < (2m)°w(0NK°) < (2m)P(m™"€)".
Hence || fm — ullLr < 2¢, and finally ||f — u]lr < 3e. O

3.6 REMARK. The regularity of Radon measures allows us to approximate
L” functions by continuous functions, and measurable sets by open or closed
sets.

4 The Lebesgue Integral on R and on R"

4.1 Definition of the Lebesgue integral on R

We first consider Cx(R), the continuous functions on R with compact
support. The Riemann integral (see the Prologue) defines a positive linear
functional on Cx(R) by

1 = [ 1o
Hence there exists by II-2 a Radon measure p such that

1(f) = / F(O)du(t).

This p is called the Lebesgue measure on R, and functions measurable
in this sense are called Lebesque measurable.

!See, for example, N. Bourbaki, General Topology (New York: Springer-Verlag,
1989), IX.4.2.
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4.2 Properties of the Lebesgue integral

We include here only properties specific to the Lebesgue integral. Its most
important properties are common to all Radon measures, and were estab-
lished in Sections 2 and 3 of this chapter.

4.2.1 Proposition. Leta, b€ R, a < b. Then
#([a, b)) = p((a,b)) =b—a.
PROOF. pu((a,b)) = sup I(f) where 0 < f < 1 and supp (f) C (a,b). Setting

f=1 on [a+2€b- 2,
f=0 if t<a+e or t>b—g

and f linear on [a + €,a + 2¢] and [b — 2¢,b — €], we obtain
u((a,b)) 2b—a—3e.
Hence, since ¢ is arbitrary,
#((a,b)) 2 b —a.

The opposite inequality follows from the mean value theorem for the Rie-
mann integral. O

4.2.2 Theorem. Let O be an open subset of R. Then O is a countable
union of disjoint intervals:

(@) o
(&) #O)

PROOF. Let z € O and set

Uk(ak, bx); and

> (b —as).

a(z) =sup{y:y <=z, y ¢ 0},

B(z) =inf{y:y >z, y ¢ O}.
Since O° is closed, a(z) € O° if a(z) is finite and B(x) € O° if B(z)
is finite. It follows that (a(z),B(z)) C O and that there exists no open

interval which strictly contains (a(z), 3(z)) and is itself contained in O.
Moreover, = € (a(z), 3(z)), whence

0= U (a(2),B(=)).

z€0

Define an equivalence relation on O by

g~z if (a(z),B(2)) = (alz'), B(z")).
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Since every open interval in R contains at least one rational number, the
set of equivalence classes is countable and (i) follows. We obtain (ii) by
using the o-additivity of 4 and 4.2.1. O

4.2.3 Corollary. Every open set has strictly positive Lebesgue measure.

4.2.4 Theorem (Characterization of negligible sets). A subset E of
R is negligible with respect to Lebesgue measure if and only if, for every
€ > 0, there ezists a sequence of intervals (cx,dx) such that

U(c"’dk) ODF and Z(dk - ck) < €.
k

PROOF. The sufficiency of the condition follows from 4.2.1 and the con-
vexity inequality (1.3.3). Its necessity follows from the regularity of Radon
measures (3.2) and from 4.2.2. O

4.2.5 Corollary. Let z € R and let A = {z}. Then u(A) =0.

PROOF. O, = (z — 1,z + 1) satisfies u(On) < 2n~'. D

REMARK. We can summarize 4.2.5 by saying that a “point” of R has
Lebesgue measure zero.

4.2.6 Translation invariance

For fixed a € R, translation by the vector a is the mapping 7, of R into R
defined by

Ta: T ZT+a.

Proposition. Let B be a Lebesgue-measurable subset of R. Then 74(B) is
Lebesgue measurable and p(7,(B)) = p(B).

PROOF. It follows from the definition of the integral I in 4.1 that I(7,(f)) =
I(f), where (7of)(z) = f(z — a). The uniqueness of the Radon measure
associated with a positive linear functional implies the result. O

4.2.7 Notation

By abuse of language, we write
[10a o [ sodwo.
R R

We thus use the same notation for the Riemann integral and the Lebesgue
integral that extends it. Translation invariance is written

(i) /R f(t—a)dt = jn f(t)dt.

The vector space of Lebesgue-integrable functions defined on R will be
denoted by L'(R). The next statement follows from the translation invari-
ance of Lebesgue measure.
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(i) If f € LP(R), then 7,f € LP(R) and

e fllee = Iflie, 1< p < +oo0.

4.8 Lebesgue measure on R™
4.3.1 Definitions and notation

To simplify notation, we begin by constructing Lebesgue measure on R.
We denote by (R, A, u) the real numbers equipped with Lebesgue mea-
sure u and the o-algebra of Lebesgue-measurable subsets. Let (R,.A, ;)
and (R, A, u2) be two copies of the measure space (R, A, u).
Let RZ =R x R and let B denote the tensor product o-algebra :

B=A; ® A,.

Then B contains the Borel algebra of R? (I-2.4.2). Let u; ® uz be the
product measure defined on B by I-8.4.1.

Lebesgue measure on R? is the measure v obtained by completing u) ® 2
(cf. 1-4.2.3). The completion of B is the o-algebra of Lebesgue-measurable
subsets of R2. We denote by L!(R?) the space of Lebesgue-integrable func-
tions on R2.

If f € L'(R?), we write

/m fd"://m f(t1,t2)dt)dta.

Then, by Fubini’s theorem (I-8.5),

/R, f(ty,tx)dtydty = /Rdtz [/Rf(tl,tz)dtl] .

Lebesgue measure on R" is constructed recursively, by writing R" = R x
R""!. For f € L'(R"), the integral thus obtained is written as

/ f(t1,ta, ..., ty)dtdts ... dt,,
R"

and Fubini’s theorem reduces the calculation of this integral to the calcu-
lation of n successive integrals on R.

4.3.2 Lebesgue measure on R" and the Radon-Riesz theorem

To simplify notation, we restrict to the case where n = 2. Let a positive
linear functional be defined on Cx(R?) by

(i) 1o = [ aa [ / so(tl,tz)dt,] . peCk(R?).



4 The Lebesgue Integral on R and on R" 83

By the Radon-Riesz theorem, there exists a Radon measure p such that

I(p) = / pdp.
By the uniqueness part of the Riesz representation theorem,
p(A) = v(A) for every Borel set A.
Furthermore, since
v([-R,+R] x [-R,+R]) = 4R?,

Lebesgue measure is locally finite and hence regular by 3.2.
The measures p and v are complete regular measures defined on the Borel
algebra.

Lebesgue measure on R? may be regarded as the Radon measure associated
with (i).
4.3.3 Translation invariance
This is proved as in 4.2.6, by using 4.3.2.

4.3.4 Proposition. Every open set in R™ has strictly positive Lebesgue
measure.

PROOF. We restrict to the case where n = 2. Let O be a nonempty open
set and let (t;,t2) € O. Then there exists € > 0 such that

Q=(t)i — €6t +€) X (t2—¢€,ta+¢€) CO.

The product measure of the square Q is the product of the measures of its
components (I-8.1(i)), whence

v(Q)=4e2>0 and v(0)>v(Q).0

4.4 Change of variables in the Lebesgue integral on R"
4.4.0 Some facts from differential calculus

Let O be an open set in R”. A mapping f = (f',..., f*) is said to be a
diffeomorphism if

(i) f(O) is an open subset O’ of R™ and f is a homeomorphism of
O onto O’ (i.e. a bicontinuous bijection); and

(ii) f and g have continuous first partial derivatives, where g de-
notes the inverse homeomorphism. The Jacobian matriz of f is
the matrix
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We then have the following composition law:

If f and h are diffeomorphisms for which the composition ho f = q is
defined, then ¢ is a diffeomorphism and the Jacobian matrix of g is the
product of the Jacobian matrices,

(242) Jq = JnJy.

In particular, J, = Jf' 1

Thus the Jacobian matrix of a diffeomorphism is invertible: det(J(z))
is a continuous function that is nowhere zero, and hence has constant sign
on a connected component of O.

44.1 Change-of-variables theorem

Theorem. Let O and O’ be open subsets of R™ and let f be a diffeomor-
phism from O onto O'.

Let Cx(O') denote the continuous functions which have compact support
contained in O'. Then

O [ oEe y@ie= [ @) f pecxo)

REMARKS.

(ii) Since f is a homeomorphism, ¢ € Ck(O') implies (p o f) €
Ck(0). Since det(Js(z)) is a continuous function, the inte-
grands on both sides of (i) are continuous functions with com-
pact support and therefore integrable.

(iii) Using a partition of unity on O’, we can write ¢ = Y ,, where
the ¢, are supported in arbitrarily small open sets. It thus suf-
fices to prove the theorem for each ;. This means that we may
assume throughout that ¢ has sufficiently small support.

(iv) Functoriality. Suppose that f = g o h, where g and h are dif-
feomorphisms. If the change-of-variables formula is proved for
the diffeomorphisms g and h, then the result will hold for f in
view of the identity

|det Jg| = |det J,| |det Jnl|.

4.4.2 Lemma. The change-of-variables formula holds when n = 1.

PROOF. In this case, the formula becomes

/ o(f(@)|f'(@)ldz = / o)z

Using (iii), we can reduce the proof to the case where the support of ¢ is
small enough that f’(z) has constant sign. By the mapping z — —z, this
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can be further reduced to the case f’(z) > 0. Then the formula is

[ett@nr @iz = [ o)z

Set
F(t)

/o W(f(@)f ()da,

J(t)
G(t) = / o(z')dz’.
J(0)

Then, differentiating the integrals, we obtain
G'(t) = o(f(1)f'(2),
F'(t) = (£ () f' ().
Hence F(t) — G(t) is a constant.
Setting t = 0 shows that this constant is zero. O
4.4.3 Proof of the change-of-variables theorem

We proceed by induction on n. Assume that the result holds for m < n.
Writing z € R” in the form z = (£,y), where € R, y € R"™!, set

h(.’B) = (£I’y’)v where £, = fl(£1 y)1 yl = 3!1 and
g(z’) = (€,8(z')),  where 8= (f2&y), ..., fUEY)).

The notation P({ ,¥) means that £ has been replaced in this expression by
¢, by inverting the relation &' = f1(¢,y).

By the implicit function theorem, this inversion is possible in a neigh-
borhood of zy if

1
(id) %(zo) £0.

But the fact that det J; # 0 implies that the column vector (%g‘)m«
n

is nonzero, and we can renumber the coordinates so that (i) holds. Thus
g(z') can be defined, and it follows from (i) that

f=goh.

Using 4.4.1(iv), it suffices to prove the theorem for g and for h. Next, we
calculate

[ e b et Jy) de'dy’
RxR"—!
By Fubini’s theorem, this equals

(i) Jae [ o€ e say
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Note that the Jacobian matrix J; has some row for which all entries are
zero except the diagonal entry, which equals 1.

Thus det Jy = det Jp,,, where 6gr : y’ — 6(¢',y").

By the induction hypothesis,

/ __ P(&y)det(Jp,, )y’ = /a _ PE )y,

and substituting this into (iii) proves the theorem for the change of variables
defined by g.
It remains to prove the theorem for h. Note that, by Fubini,

@) [ ot mdededy= [ dy [ o716 ) u)det Jnde.

But det J;.—-—f—and by 4.4.2,

/R (F'(& ). y) df f ©(n, y)dn.

The result follows by substitution into (iv). O

REMARK. This proof can be given the following geometric interpretation.
Let p: R" — R, where p is differentiable and Vp # 0 everywhere. Then
the volume element dvg~» can be written locally as the volume element
on the hypersurface p = constant, “multiplied” by ﬂ_g%l[' The induction
hypothesis allows us to treat the change of variable on the hypersurface;
the other change of variable occurs in one dimension.

5 Linear Functionals on Ck(X)
and Signed Radon Measures

In Section 2 we studied positive linear functionals on Ck(X). We now drop
the hypothesis of positivity and substitute the more general hypothesis of
continuity.

5.1 Continuous linear functionals on C(X) (X compact)

Throughout this section, X is a compact space. Then Ck(X) is the space
C(X) of all continuous functions. A norm is defined on C(X) by setting

Ifllc = rz!}sa}clf(x)L
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Convergence in this norm corresponds to uniform convergence. C*(X)
denotes the Banach space of continuous linear functionals ! on C(X); that
is, those for which there exists a constant a such that

LAl < allflic-
Setting |llllc- = Sop ()1 yields I(f)] < lllc- NI fllc-

5.1.1 Proposition. If | is positive, then | is continuous.

PROOF. Indeed,
=l fllc £ f(=) < lfllc

implies

=lfllct(1x) < US) < Ifllct(Lx).
whence
(¥ lllice =1(1x).0

5.2 Decomposition theorem

Theorem. Let X be a compact space and let | € C*(X). Then there exist

positive linear functionals It and I~ such that

5.2.1 l=l*-1" and

5.2.2 itlce = I llc- + - lic-

and such a decomposition is unigue.

PROOF. For each nonnegative f in C(X), let
H(f)={ueC(X):0<u< f}

and let

(3) I*(f) =supl(u), where ue€ H(f).

Let fi, f2 > 0. Since u; € H(f1) and uz € H(f2), w1 +u2 € H(fi + f2);
hence H(f1) + H(f2) C H(fi + f2).

We now prove the opposite inclusion. Let u € H(f; + f2) be given. Set
v = min{y, fi} = 3(u + fi = |u = fi]); then v € C(X), v € H(f1), and
w=u~-v€ H(f).

Thus u = v + w with v € H(f,), w € H(f2), and we have shown that

(i) H(fi + f2) = H(fH) + H(f2)-
This implies
() Fh+ )=+ (f2), Huf220.

Any g € C(X) can be written as
(iv) g=91—g2 with g1,92>0.
(For example, we can take g; = max(g,0).)
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Define

(v) I*(g) =1*(gq1) — I*(g2).

We will justify this definition by showing that the right-hand side is
independent of the choice of the decomposition (iv). Let

9=93—94 93,9420
Then g1 — g2 = g3 — 94, Or g1 + g4 = g3 + g2. Using (iii),

I*(g1) + 1% (94) = 1% (g3) +1*(g2),

or
I*(g1) — I*(g2) = 1*(g3) — I* (ga),

which justifies definition (v).
It therefore follows from (iii) and (v) that

*(g+d) =1%(g) +17(s).
Similarly, it follows from (i) that
faf)=d*(f) if a>0, f>0.
Since 0 € H(f), we have {*(f) > 0 if f > 0, whence

(vi) It is a positive linear functional on C(X).

Setting [~ = I* — I, we have I~ € C*(X). Furthermore, let f € C(X),
f > 0. Then

I7(f) = (supl(u)) — U(f) = sup(l(u - f)), where u€ H(f).

For f > 0, set G(f) = {v € C(X) : —f < v < 0}. Then the mapping
u — u — f defines a bijection of H(f) onto G(f); hence I~ (f) = supl(v),
where v € G(f).

Since 0 € G(f), I (f) 2 0 and we have thus obtained the decomposition
5.2.1.

Let 1 denote the indicator function of the full set X; then, by 5.1(i),

I llc-x) =1*(1) and [II"llc-(x) =17(2).
There exist u, € H(1) and v, € G(1) such that
1*(1) =liml(u,) and (~(1) = limI(vy,).
It is straightforward to show that

IFlles + 1~ lles = lim(l(un) + U(vn)).
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Wehave 0 < u, <1, -1 < v, <0, and —1 < up(z) + vp(z) <1, 0r
llun +vnllc <1

Hence
[H(un + va)l < lltllc-,
and we have shown that
e + 1 lle- < ltlle--
Since the opposite inequality follows from the triangle inequality, this
proves 5.2.2. O

5.2.3 Uniqueness of the decomposition

Let
(i) I = ¢ — ¥ where ¢, ¥ are positive linear functionals.
Then
I*(f) = sup{p(u) - ¥(v)} with u€ H(f).
But

p(u) — Y(u) < o(u)
since u > 0, and thus
sup{p(u) — ¥(u)} < supp(u) = o(f).

That is,
I*(f) < p(f) for every f > 0.
Set ¢ — It = 6; then @ is a positive linear functional, and it follows from (i)
that

(#) p=1*+0 and y=1"+0.

Then [lpllcs = ¢(1) = I*(1) + 6(1) = [II*lic- + [|6lic-; similarly |[¢lc- =
= flce +6llc-.
Suppose that the decomposition ¢ — 1 satisfies 5.2.2; then

lllic = llelice + vlics = i¥llcs + 1 llc- + 2li6lic--

Furthermore, by 5.2.2, [|llic- = [[I*|lc- +I{" |lc-. Subtracting these two equations
shows that 2||0||c- = 0; thus § = 0. O

5.2.4 Corollary. Given |l € C*(X), there are two Borel measures y, and
p2 uniquely determined by

’(f)=/fdll1 —/duz and

llles = m(X) + pa(X).

PROOF. By the decomposition theorem (5.2) and the Radon-Riesz theorem.
a
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5.3 Signed Borel measures

In this section, we establish the equivalent of Theorem 5.2 for Borel mea-
sures.

5.3.1 Definition. A signed Borel measure on the compact space X is a
mapping
v:Bx = R

that can be written in the form

(%) v(A) = p1(A) — p2(A),

where py, p2 are finite Borel measures. The decomposition (i) is clearly not
unique; adding the same Borel measure 8 to p; and p, will not change the
mapping v.

5.3.2 Mutually singular measures

Two Borel measures v, and v, are said to be mutually singular if there
exists a Borel set A € Bx such that

(2) n(A)=1n(X) and v(A)=0.

The relation is symmetric, for A€ carries all the mass of v and has v,-
measure zero.

5.3.3 Theorem. If X is a compact space, there exists a bijection between the
continuous linear functionals on C(X) and the signed Borel measures. The de-
composition of a linear functional given in Theorem 5.2 corresponds to the de-
composition of the signed Borel measure as a difference of two mutually singular
Borel measures.

PROOF. We use 5.2.4. The only statement still needing proof is the equivalence
of the following two properties:

(¥) ltllcs = p1(X) + p2(X).
() m and p; are mutually singular.

We first show that (ii) = (i). If p1 and p2 are mutually singular, let A be an
element of Bx such that

p(4) =p(X) and p2(4) =0.

Set
Y= lA - 1,4:.
Then

/wdpl =p(X) and /<Pdpz = ~pa(X),
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whence
[ otdon o) = () + ().
By Theorem 3.5, we can find f € C(X) such that
If —lir <€, where L'=L'(X,Bx,m +pe).

Set N
f(2) = £(z) if @<y
f(z) = signum f(z) if |f(z)| > 1.

Then ||f ~ ¢|lz1 < 2¢ and
/ F(dpr - dp2) > pi(X) + p2(X) — 26, where € C(X), fifllc < 1.

Conversely, we show that (i) = (ii). There exists a sequence {} in the closed
unit ball of C(X) such that I(¢n) — |[lllce. Set pn = @} — p~; then

Upn) = [/widpx +/¢;dm] ~ [/wf.dm +/¢Idpz]-

Since ¢f < 1and ¢ < 1, the first term in brackets is at most equal to p1 (X) +
p2(X) = |lllic- by (i). Hence the convergence of I(pn) to ||l]c- implies that

/widm — p1(X) and /¢Sdp1 - 0.

Since
1= o} lzsoy = / (1= g)dpr,

we conclude that

i1 —@¥llLicey =0 and llorlliLige,) — 0

Passing to a subsequence {,, }, we may replace the convergence in L'(p,) of
{1 -} by convergence p;-a.e. Passing to a new subsequence {in, } reduces the
proof to the case where ¥, = ¢}, satisfies

s convergestol p;-a.e,;
¥, converges to 0 p2-a.e.

Let
A= {z:limy}(z) =1}.
Then
11 —1allL1p,) =0 and |[1allz1¢p,) =0,
or
p1(A) =p1(X) and p2(A)=0.0
5.3.4 Proposition. Let v be a signed Borel measure. Then there erists a
decomposition
v=p)-p)
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such that p) and p3 are mutually singular. Such a decomposition is unique.
We set

vl = oY + 93
and call |v| the absolute value of v.
PROOF. Let a continuous linear functional on C(X) be defined by setting

) =/<pdv =/<pdm - /spdpz.

Then, by 5.3.3, the decomposition of v as a difference of mutually singular
Borel measures corresponds to the decomposition of ! given by 5.2.4. This
decomposition exists and is unique by 5.2.4. O

5.3.5 Signed Radon measures

Given a signed Borel measure v on the compact space X, let p§ — p? be its
canonical decomposition. Let B be the completion of the Borel algebra Bx
with respect to |v|. We define a signed measure on B by setting

u(B) = p}(B) — p3(B), VBE€B.

4 is called the signed Radon measure associated with the signed Borel
measure V.

If X is a locally compact space, a signed Radon measure v on X is given
by two mutually singular Borel measures v, and v». We set |v| = v, +v; and
define the o-algebra B, by completing the Borel algebra Bx with respect
to |[v|. Then, if A € B, and |v|(A) < +00, we define v(A) = v,(A) — v2(A).

5.3.6 Important remark on terminology

Let X be a locally compact space. We denote by M (X) the vector space of
signed Radon measures and by M+ (X) the Radon measures on X; that is,
the measures associated with positive linear forms. In the usual terminol-
ogy, M(X) is called the space of Radon measures and M*(X) the space
of positive Radon measures. From the point of view of grammatical accu-
racy, this terminology is better than ours; a noun modified by an adjective
should describe a narrower class of objects than the noun alone. Our use
throughout Chapter I of the word “measure” to mean a positive measure
may justify our ignoring this rule now.

5.3.7 Complex measures

We denote by C(X; C) the space of continuous complez-valued functions on
the compact space X. Separating real and imaginary parts, we can write

C(X;C) = C(X) ® C(X).
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A C-linear functional ! on C(X;C) is determined by restricting Re(l) to
each summand of the direct sum. Since X is assumed compact, specifying
1 is equivalent to specifying two signed Radon measures p; and p,. Setting
Hell = llpall + llpzll and & = py + ip2, we have

IS +ih) = / fdpy — / hdpg + i / fdua + hdp.

i1 + ipg is called the compler measure associated with this form.

5.4 Dirac measures and discrete measures
5.4.1 Dirac measures

Let X be a locally compact space X and let xo € X. The Dirac measure
at zg is the linear functional

lto(f) = f(xo)) Vfe CK(XO)

This positive linear functional is represented by a Borel measure 4, whose
completion is defined on the o-algebra P(X) consisting of all the subsets

of X. We have
6z,(A)=1 if zo€ A
6z,(A) =0 if zo¢ A

5.4.2 Discrete measures

Now let z,,...,Zj,... € X and a; € R. Suppose that, for every compact
set K,

(@) Z laj| < +00, where Sk ={j:z; € K}.
JESK

A locally finite signed Borel measure v is defined by setting, for B € Bx,
v(B) = Zaj, where j€ Sp={j:z;€ B}

This series is absolutely convergent by (i). Let v* = Eo,>o a;é;, and let
v. = za, <0 —@;0z,. Then v+ and v~ are locally finite Borel measures.

Completing the Borel algebra with respect to |v| = v* + v~, we recover
the o-algebra of subsets P(X); hence

Jvl(C) < +oc  is defined VC € P(X).

In contrast, ¥(C) is defined only for those C € P(X) which also satisfy
[v|(C) < +o0.

We denote by My(X) the discrete measures on A and by M}(X) the
finite discrete measures: M}(X) = M!(X) N Ma(X).
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5.5 Support of a signed Radon measure

5.5.1 Definition. Let u € M(X). The support of u, written supp (u), is
the smallest closed set F such that |u|(F€) = 0. Let us show that this set
exists. Taking complements, finding F is equivalent to finding the largest
open set H such that |u|(H) = 0.

The hypothesis 3.0.1 implies that X satisfies the second separability ax-
iom of 1-2.4.1. Therefore we can find a countable family of open sets O,
which forms a basis for the open sets. Set

S={n:|u|/(0O,) =0} and H = U,esOn.

Then H, as a countable union of sets of measure zero, has measure zero:
|uI(H) = 0.

Let O’ be an open set such that |u|(O’) = 0; then O’ = Upe1Oy (since
{On} is a basis for the open sets). The hypothesis |u|(O’) = 0 implies that
[£](On) =0, whence T C S and O’ C H.

5.5.2 Proposition. Suppose that X is a locally compact space, f € Ck(X),
and p € M(X). Then

/ fdu=0 if supp(f)nsupp ()= 0.

PROOF. Let p = pu; — pp with |u| = p1 + po, and let H = (supp (p))°.
Then f = 0 |u|-a.e., whence f = 0 a.e. u;, i = 1,2, which implies that
ffd[t,‘ =0,t= 1,2.

6 Measures and Duality with Respect
to Spaces of Continuous Functions
on a Locally Compact Space

6.1 Definitions

We consider the following three vector spaces of continuous functions on
X:

Ck(X), the continuous functions with compact support;
Co(X), the continuous functions which vanish at infinity; and
Cy(X), the bounded continuous functions.

(i) Recall that a function f is said to vanish at infinity if, for every € > 0,
there exists a compact set K such that |f(z)| < € for z ¢ K. We have the
following inclusions:

(39) Ck(X) C Co(X) C Cy(X).
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If X is compact, these three spaces coincide; if X is not compact. each
of the inclusions is strict. A norm is defined on C(X) by setting, for f €
Cb(X )1

(i) Ifllc, =sup [f(z)l. ze€X.

This norm defines, by restriction, norms on Co(X) and Ck(X). The re-
striction of || ||¢, to Co(X) will sometimes be denoted by || ||c,- We then
have

(iv) llkllc, = max |h(z)], ze€ X.

The difference between (iii) and (iv) is that, although the supremum may
not be attained in (iii), it is attained in (iv) and gives a maximum.

6.2 Proposition. The space Cp(X) equipped with the norm (iii) is com-
plete. The space Co(X) is a closed subspace of Cp(X) and is therefore com-
plete. The space Ci(X) is a dense subspace of Cy(X).

PROOF. Only the third (and hardest) assertion will be proved here.?
Let {H,} be the exhaustion sequence of compact sets constructed in

1.0.3. Recall that H, C f! n+1. For each n, let ¢,, ¥, be a partition of

unity subordinate to the open cover consisting of the two sets ﬁ n+1 and
H§S. Then, since ¢, + ¥, =1 on X,

¢Yn=1 on H,.

Given h € Co(X), set h, = hyp,. Then h, € Cx(X) and ||k — hq|lc, =
[lAYnllc, — O as n — oo, since supp (¥,) C Hf, and h(x) — 0 as = tends
to infinity. O

6.3 The Alexandroff compactification

Given a locally compact space X, we can associate with it a compact space
Y and a homeomorphism % of X onto Y with one point removed. Y is
called the Alezandroff compactification of X. The construction consists of
adjoining a point at infinity to X by setting Y = X U {oo}, where oo is
a new element. The complements of compact subsets of X are taken as a
system of open neighborhoods of oc.

Having thus defined Y from the set-theoretic point of view, we now construct

a topology on Y in a more precise way by specifying its closed subsets.

2For the first two, see for example E. Hewitt and K. Stromberg, Real and
Abstract Analysis, 3rd ed. (New York: Springer-Verlag, 1975).
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A subset F of Y is closed if and only if it satisfies the following conditions:

(i) FN X is closed; and

(ii) if F N X is not compact, then oo € F.

Let p be the injection of X into Y; then, by (i), p~!(F) is closed in X if F is
closed in Y. Let H be closed in X; then, by (ii), H or H U {00} is closed in Y.
Intersecting with {00} shows that H is a relatively closed set in {00}°. Thus p
is a homeomorphism of X onto {oo}°.

The open neighborhoods of oo are the complements of closed sets that do not
contain 0o; that is, the complements of compact subsets of X. It follows easily
that the topology of Y is Hausdorff.

We now show that Y is compact. Let O~ be an open cover of Y. There exists
Y0 such that oo € O,,; hence there exists a compact set K such that O,, = K°.
The sets O, N K form an open cover of K. Let O,, N K, ..., O,, N K be a finite
subcover. Then O,, ..., O,, form a finite subcover of Y.

6.4 Proposition. Let X be a locally compact space and let Y be its Alezan-
droff compactification. Set

V={feC(Y): f(oo) =0}.
For every function f € V, let f denote its restriction to X. Then
f-f
is a linear mapping which is an isometry of V onto Co(X).

PROOF. Let f € V; then the restriction f of f to X defines an element
f € Co(X). Furthermore, since f is continuous at oo, for every € > 0 there
exists a compact set K such that |f(z) — f(oo)| < € if z ¢ K. Hence
f € Co(X).

Conversely, let h € Co(X). Then h can be extended to Y by setting
hy(o00) = 0 and setting hy(z) = h(z) if z € X. Since h € Co(X), h; is
continuous at the point oo and hence continuous everywhere. O

6.5 The space M'(X)

(i) We denote by M!(X) the set of signed Radon measures v on X such
that |v| is finite, and define a norm on M!(X) by setting

IWllan = / dly| = [v|(X).

Moreover, for every Borel set A of X, v(A) = v1(A) —v2(A) is well defined.
(See 5.3.5.)

(ii) Proposition. Let Y be the compactification of X and let
W ={veM(Y):v({oo}) =0}
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Let a mapping v — v
W — M'(X)

be defined by setting
v(A) =v(A) VYA€ Bx CBy.

This mapping is an isometric bijection of W onto M*(X).

PROOF. It suffices to note that every B € By can be written either as
B = AU {oc} or as B = A, for some A € Bx. In the first case, the
additivity of v gives v(B) = v(A) + v({oo}) = v(A) since v({o0}) =0. O

6.6 Theorem. M'(X) is the Banach space dual of Co(X).

PROOF. With the notation of 6.4, Co(X) ~ V C C(Y). Let Il € C*(Y);
then its restriction to V defines a continuous linear form on V. By the
Hahn-Banach theorem, every linear functional on V' can be written in this
way. Thus

(V)" =C*(Y)/H,

where H is the space of linear functionals which vanish identically on
V. Since V has codimension 1, H has dimension 1 and is therefore the
vector subspace generated by 6, the Dirac measure at infinity. But, in
the notation of 6.5(ii), W ~ M(Y)/H, whence (Co(X))* ~ M(Y)/H ~
W ~ M!(X). All these identifications are isometric. In particular, for every
U EM l(X )y

sup /fd# = llullar: .0
£l ICQ_

6.7 Defining convergence by duality

The following three spaces of continuous functions are associated with a
locally compact space X:

Ck(X) C Co(X) C Cb(X).

Convergence in M(X). A sequence {pn}, un € M(X), is said to converge
vaguely to po € M(X) if

(3) [ fdun— [ sduo, vf € Cue()

Convergence in M'(X). Given a sequence {vp}, v, € M1(X), we have
two new concepts of convergence.
vy, is said to converge weakly to vy if

(id) / hdvy — / hdve, Vh € Co(X).
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vy is said to converge narrowly to vy if
(i) / kdvy — / kdvo. V€ Co(X).

Since AM!(X) C M(X), vague convergence can be defined on M!(X) as
well. Thus M!(X) is provided with four notions of convergence, which
imply each other according to the following diagram:

(convergence in norm) = (narrow convergence) = (weak convergence) =
(vague convergence).

6.8 Theorem. Let u, € M'(X). Consider the following statements:
(i) {pn} converges weakly.

(ii) {pn} converges narrowly.
(iii) There exist a constant ¢ and a dense set D C Co(X) such that

lpnllasr < ¢ and / gduy, converges for every g € D.
(iv) For every e > 0. there exists a compact set K such that
|2n]|(K) < € for all sufficiently large n.

(v) Each pn is positive, {in} converges weakly to p, and [ du, —

Jdp < +00.
Then
(i) & (i),
(i) and (iv) & (i),
(v) = (i)

REMARK. To simplify the exposition, we prove only the direct implications,
which are the easiest; these are practically the only ones used in what
follows.

PROOF THAT (iii) = (i). The family of linear functionals on Cp(X)

(1) = [ Faun

satisfies

lla(f = ) < ellf = fllco-
It is thus an equicontinuous family. Since it converges on a dense subset
D. by Ascoli's theorem? it converges on all of Cy. Let loc(f) = liml,(f).

Using 6.6, we find that I is defined by a Radon measure uo, € M!(X)
and that {u, } converges weakly to po,. O

3See Bourbaki. General Topology, X.2.5.
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PROOF THAT (i) AND (iv) = (ii). Let f € Cp(X). Let K be the compact
set determined by (iv), and let ¢ denote a function with compact support
such that p(z) = 1if z € K. Then f = fp + u, where supp (u) C K¢;

hence
/ fdpn = / fodun + / udpn.

By (i), the first integral converges to [ ¢ fdjo, where dpy is the weak
limit of {dp,}. Moreover,

/ udun| < llullcy ual(K9) < el £1.0

PROOF THAT (v) = (ii). It will suffice to prove that (v) implies (iv). Given
€ > 0, let K be a compact subset of X such that u((K¢)) <e. Let f bea
function with support contained in K such that 0 < f <1 and

/ fdu > |lull - e.

Let ng be such that, if n > ng,

/dun-—/du|<e and ‘/fdun—‘/fdu

un () < lliml - / f din, whence pn((K9) < 3¢ if n > no.

< €.

Then

a

6.9 Theorem. Let X be a locally compact space and let M} ;(X) denote
the finite linear combinations of the Dirac measure on X. Then, for any
1 € M'(X), there exists a sequence {1}, ptn € M} ((X), such that {pn}
converges narrowly to p.

PROOF. Let {p.} be an increasing sequence of functions with compact support
such that 0 < pn < 1 and limy, = 1. Then ||@apu — p|lasr — 0 by Lebesgue's
dominated convergence theorem. Hence it suffices to prove the theorem when u
has compact support K. Let {On,, : j € [1,54]} be a finite cover of K by balls of
radius 1. Let An,) = On.1, A,.z = 0n2N0¢,, and set An g = Any N K. Then
each A,. « has diameter < 1 and the A, , form a partition of K. Restricting to
An,q # 0, choose zn,q € A.. e
Bn is constructed by setting

Pn = Z p(A"‘Q)&"n.q .
q

Let f € Cy(X); then

/fdu Z/,. f dp.

n,q9
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Since f is uniformly continuous on the compact set K, there exists a sequence
{nn} which tends to zero as n — oo and satisfies

@) - F@) < i diz,z) < 3.

Hence

/ Lanof dit = f(na) / Lanodp + Bamlpsl(An),

where |04| < 1. Summing over g gives

deu—/fdun

< na|pl(K).O
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Fourier Analysis

Introduction

Fourier analysis can be illustrated by analogies from optics. Given a light
beam, the goal of spectral analysis is to determine the monochromatic
beams it contains; that is, the beams of the form exp(%Zt). Once a spec-
tral analysis has been carried out, one can ask whether the analysis is
ezhaustive: is all the energy of the beam really concentrated in the band of
frequencies where the spectral analysis was done? One can also ask whether
the beam can be reconstructed from its monochromatic components: can
spectral synthesis be performed?

It is well known that quantum mechanics determines the possible energy
levels of a system as the eigenvalues of a hermitian operator defined on
a Hilbert space H. More generally, given a system of pairwise-commuting
hermitian operators, the eigenvalues of the system are the possible values
of the associated “observables”.

In the general setting of spectral theory, the problems of spectral analy-
sis, conservation of energy, and spectral synthesis remain completely mean-
ingful. Taking the space L>(R") as a Hilbert space H and the hermitian
operators generated by the translations as a family of operators, one nat-
urally recovers Fourier analysis as a special case; what is more surprising
is that general spectral theory can be obtained as a classical theorem of
Fourier analysis, Bochner’s theorem. This will be done in Appendix I.

Since differentiation operators on L2(R") appear as limits of translation
operators, Fourier analysis realizes their spectral decomposition as well.
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Thus partial differential equations with constant coefficients are subject to
the methods of real Fourier analysis (or complex Fourier analysis, but we
will not pursue this point).

Studying the domains of definition of the Laplace operator and its iter-
ates in L2(R") leads to the construction of Sobolev scales, a theory that
is stable under local diffeomorphisms and thus well suited to the local the-
ory of partial differential equations with wvariable coefficients. In dealing
with the theory of distributions, we use the approaches of Sobolev and
Schwartz simultaneously. The chapter ends with the local inversion of el-
liptic operators with variable coefficients, by means of Calderon’s theory of
pseudo-differential operators.

1 Convolutions and Spectral Analysis
on Locally Compact Abelian Groups

1.1 NoTATION. Let G be an abelian (commutative) group . The group
operation will usnally be written additively:

(91.92) = 1 + g2.

With this notation. the identity element will be denoted by 1 and the
inverse of g by —g.

A locally compact abelian group is an abelian group which is given the
structure of a locally compact topological space compatible with the group
operation. That is, the mapping from G x G to G defined by
() (91.92) — 91 — g2
is continuous. It can be shown that a metrizable group G has a translation-
invariant metric d; that is, d satisfies

(i¢) d(go + 9,90 + ¢') = d(g.9").

1.2 Ezamples
1.2.0 The integers Z form a group under addition. Given the distance de-
fined by d(n,m) = |n — m|, they form a locally compact group.

1.2.1 R", with vector addition, is a locally compact group.

1.2.2 The one-dimensional torus

Let
T={2€C:|z|=1}.
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T is the set of complex numbers of modulus 1. (From the set-theoretic
point of view, T is a circle.) T is given the group operation defined by
the multiplication of complex numbers. If 2,, 2, € T, then 2,2, € T and
z;'! =%, € T. Thus T is an abelian group; when endowed with the topology
induced by C, it is compact.

1.2.3 The n-dimensional torus

We denote by T" the product of n copies of T, endowed with the product
topology and the product group operation.

1.24 A homomorphism from R onto T

With @ € R, we associate the element
u(@) = € T.

Then u(8 + ¢') = u(0)u(d’), i.e. u is a homomorphism of R onto T. The
kernel of u is
u (1) ={0:¢Y =1} = 27Z,

where Z is the subgroup of R consisting of the integers. Let C(T) denote the
functions defined and continuous on T and let Cy(R) denote the bounded
continuous functions on R. Let u* be the map from C(T) into Cp(R)
defined by

(u"£)(0) = f(u(0)). V6€R.

Then the image of u* consists of those functious h € Cp(R) that are periodic
with period 2n; that is, functions satisfying

h(6 + 2x) = h(6).
1.2.5 A homomorphism from R" onto T"
With z = (x,,...,z,) we associate
v(z) = (e',....e"™).
The kernel of v is 22Z". The operation
frofov=0'f

maps C(T™) onto the n-fold periodic functions on R"; that is, functions h
satisfying
h(z + y) = h(z), Vy€ (2rZ)".

1.3 The group algebra

M'(G) denotes the Banach space of signed Radon measures on G which
have finite total mass.
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1.3.1 Discrete measures

Let 64 denote the Dirac measure at the point g and let

+oc
M}(G) = {u EM(G):p= Eﬂkégm where E [Bk] < +oc}.

k=1

1.3.2 Convolution in M}(G)

The convolution of two Dirac measures §,, and 4, is defined by

bg, % bg, = 8g, 49,

That is, the convolution product is the Dirac measure at the point g, + g2.
This definition is extended to M}(G) by bilinearity. Given p = 3 Bibq,
and p' = 3 B8y, in My, we set

U * ”l = Z ﬂkﬂ;égpl-gk-
k,s

Note that the convolution product is commutative, associative, and bi-
linear:

pry' =y p,
(pxp) s " = px (W' *p"),
(B+v)sp' =p*p’ +vepy

Moreover,

[l * ;l,'",\fl((;) < Z BBy | = (Z lﬂkl) (Z Iﬂil) = el 1#])-
k.s k 8

(Strict inequality can occur only if gk + g, = g +g, with (k, s) # (K, 5).)
We would like to extend the convolution operator from M}(G) to all of
M?! by an explicit formula realizing this extension. Let Co(G) denote the
continuous functions on G which vanish at infinity.

1.3.3 Fundamental lemma. Let p, ' € M}(G) and let p = p+p'. Then

[ 1ot = [ [ fie+du@an), vre o)
PROOF. The right-hand side, which we denote by II, can be written as

IT =" f(9k + 9%)BeBr-

kK’



1 Convolutions and Spectral Analysis on Locally Compact Abelian Groups 105

Grouping together all terms such that gx + g;, = g).», we obtain
=Y i@ 3 Bl = / £(2)dp(2).
9k +9;l =g;:u

1.3.4 Definition of the convolution product on M'(G). Given v, V' €
M!(G), we define a linear functional on Co(G) by setting

I(f) = /G /G f(z + y)dv(z)dv'(y).

This integral converges, since

0l < /G /G If(z + )| ldv(2)] |dv' @) < I fllce /G /G DA ®dx,

where A = |v|, X' = |//|. By Fubini,

/G / dA® dX = NG)N(G) = [v]las [V lass.
G
and hence

(?) I L ifllcoy lvlan IV Iag

Thus [ is a linear functional on Cy(G) which is continuous in the norm
topology. By II-6.6, there exists a measure o0 € M!(G) such that [ fdo =
I(f). We set 0 = v x V', and call o the convolution product of v and v'.

1.3.5 Theorem (Properties of the convolution product). Let G be a
locally compact group and let M'(G) be the Banach space of finite Radon
measures on G. The convolution product is defined on M'(G) by the for-
mula

(i) /G f(2)dN(z) = /G /G f(z + y)du(z)d'(y), Vf € Co(G),

where v, V' € M}(G) and A =v * V.
It has the following properties.

(%) v = Il < llvll 1]

(#iz) vxV =V xv (commutativity)

(iv) () *xV" =v*(V xV") (associativity)
(v) w+V)x " =vxV +vxV" (linearity)
Furthermore,

(vi) if {vn} and {v,} converge narrowly to vy and vy, then v, xV), converges
narrowly to vo * 1.
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PROOF. Formula (ii) follows from 1.3.4(i). In order to prove (vi), note that
the narrow convergence of v, and v, and Fubini’s theorem imply that
vn ® V,, converges narrowly to vp ® 1. Let f € Cy(G) and set u(z,y) =
f(z +y). Then u € Cy(G x G), and

lim udv, ®dv), = / u dvp ® dy
GxG GxG

can be written as

iim [ [ f(e+v)dunia) @ ) = [ [ @+ vie(a) 8 dis(w),
GJc cJc
vf € Gy(G).
Thus (vi) is proved.
The algebraic properties (iii), (iv), and (v) can be proved by passing to
the limit and using (vi), since these properties hold on M}(G) by 1.3.2. By

11-6.9, M}(G) is dense in the topology of narrow convergence on M'(G).
(Or this could easily be proved directly.)

1.3.6 Support of the convolution product
If F} and F; are subsets of G, we set

Fi+F,={g:9=q + g2 with g; € F;}.

Proposition. Let v, vo € MY(G). Then supp (v1*v2) C supp (11) + supp (12).

PROOF. /v(w + y)dv) (z)dr2(y) = 0 if ¢ is zero on supp (1) + supp (v2).
O
Equality holds if both measures are positive.

1.4 The dual group. The Fourier transform on M*
1.4.1 Characters

Let G be a locally compact abelian group and let T be the multiplicative
group of complex numbers of modulus 1 considered in 1.2.2. A character
on G is a mapping

x:G—-T
such that

(i) x is continuous, and
(ii) x is 2 homomorphism: x(g9 + g') = x(g9)x(g’)-
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1.4.2 The dual group

The set of characters of G is denoted by G, and is given a group structure
by defining the product x3 of two characters x, and x2 as follows:
x3(9) = x1(9)x2(9), Vg €G.
The inverse x4 of X is defined by the formula
1
x1(9)”

Thus G is an abelian group. The identity element is the trivial character
Xo defined by

x4(9) = x1(9) =

xo(9) =1, VgeG.
1.4.3 The Fourier transform on M!(G)
Given u € M(G), we assign to it a function defined on G by

Ax) = /G x(9)du(g).

4 is called the Fourier transform of .

1.4.4 Fundamental theorem (Trivialization of the convolution
product). Let u, v € M'(G). Then

that is, the Fourier transform maps the convolution product of measures to
the usual product of functions.

PROOF. Let p = p *xv. Then
/G x(2)dp(z) = /G /G x(z + y)du(z)dv(y)
- / / x(@)x(¥)du(z)dv(y)
GJG

- ([x@aua) ([ xwavin)

= p#(x)¥(x).0

The first equality follows from 1.3.5, the second from the identity x(z+y) =
x(z)x(y), and the third from Fubini’s theorem.

REMARK. Let §p denote the Dirac measure concentrated at 0. Then
8o(x) =x(0) =1, VxeG.

Moreover,
boxp=p, VueM'(G)
that is, §p is the identity element of the algebra M!(G).
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1.5 Invariant measures. The space L!
1.5.1 Translation-invariant measures

A measure u € M(G) is said to be translation invariant if

@ [ £(g+ g0)du(g) = / f(9)dulg), Voo €G.

1.5.2 Proposition. Suppose that u satisfies (i) and that G is compact.
Then

(i) B(x) =0 for every nontrivial character.

PROOF. Let x be a nontrivial character. Then there exists go € G such
that x(go) # 1. Condition (i) can be written in the form

(i) Sgo ¥ = p.

(iv) Since G is compact, u(G) < oo and thus u € M!(G). Under these
conditions, 1.4.4 can be applied:
(80 * 1) (x) = 83 COR(X) = x(90)(),

whence
x(90)8(x) — B(x) = 0= p(x) = 0.0

1.5.3 Corollary. Suppose that G is a compact group, u is a translation-
invariant Radon measure on G, and L?(G; p) is the associated Hilbert space.
Then any two distinct characters of G are orthogonal. If the measure u is
also normalized by the condition

/@=L

then the characters of G form an orthonormal system.

PROOF. Given x;, x2 € @, we evaluate

(xalxz)ze = / x1(9)x2(@)du(s).
- G
x1(9)x2(9) = x1(9)(x2(9)) ™" = x3(g),

where x3(g) € G. By 1.5.2, the integral [ x3(g)du(g) is zero if x3 is not
identically equal to 1, that is if x; # x2. Finally, if p is normalized,

IxaliZz = /G x1(9)x1(g)du(g) = /G du(g) = 1.0
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1.5.4 Haar’s theorem. Let G be a locally compact abelian group. Then
there exists a translation-invariant positive Radon measure ug on G, and
this measure is unique up to a multiplicative constant.

REMARK. If o is an invariant measure and c is a positive constant, it is
clear that cyg is an invariant measure.

We assume without proof this general theorem of Haar, and restrict
ourselves to constructing invariant measures in the special cases of the
groups R, T, and Z.

1.5.5 Examples of Haar measure
(i) Counting measure on Z

Let Z be the set of integers. Consider the measure po such that
po({n}) =1 forevery ne€Z.

Then po is translation invariant.
(ii) Lebesgue measure on R

Let R be the additive group of real numbers. The Lebesgue measure uo
is translation invariant (II-4.2.6) and hence a Haar measure.

(iii) Haar measure on T
Let ¢ : R — T be defined by setting

©(0) = e*.
Let a mapping o : T — R be defined by
o(¢) =arg (, where arg( € [0,2n).

Then o(() is a Borel mapping from T into R. Set
1
v(A) = ﬁm(a(A)),
then vy is a Borel measure on T. Moreover,

/rfdvo=/02'f(e‘0)g and /duo=1.

Lemma. The measure vg is translation invariant.

PROOF. Let 6 € [0,27) and set

2n dé 0o+2m 2r 27 +0o
— $(0+60) _ A
100_./0‘ f( 0)211'_‘/00 f( ) / /
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Setting A — 27 = u in the last integral yields

[ e - [ e

/ fdvw = Iao.Cl
T

Uniqueness of the Haar measure in (i) is clear. For case (iii), it will be
proved in 2.2.8.

(iv) The product structure

whence

The measures on Z", R", and T" are the products of the Haar measures
on each factor.

1.5.6 Notation

The Haar measure of the group G will be denoted by dg. If G is locally
compact, this measure is defined up to a normalizing factor. If G is compact,
the factor is chosen so that G has measure 1.

1.6 The space L'(G)
1.6.1 Identification of L}(G) with a vector subspace of M!(G)

We denote by L!(G) the space of functions integrable with respect to Haar
measure on G, and define an injection

j:LY(G) = M'(G)
by associating with the function f € L'(G) the Radon measure
(4) ny = f(g)dg.

1.6.2 The convolution product on L'(G)

Proposition. Let f, h € L'(G) and let puy and pp be the Radon measures
associated with them by 1.6.1(i). Then there erists k € L'(G) such that

(1) py*pn = px  (L'(G) is a subalgebra of M'(G)).
k is defined by
(1) ko) = [ ft00 - hla)dg = [ higo - 9)f(a)a.

where the two integrals converge almost everywhere in gy with respect to
Haar measure. We write
k=fxh
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(iii) REMARK. Since the convolution product on L!(G) is the restriction of
the product on M!(G), it satisfies the identities 1.3.5(ii) to (v).

PROOF. Let ¢ € Cy(G); then

oy * in) = /G /G (91 + 92)f (91)h(g2)dg1dga.

Using Fubini’s theorem yields

(0 bag * i) = /G h(g2)dg2 [ /G w(g + 92)f(gl)dgl] ‘

Set g1 = g3—g- inside the brackets. Since dg, is invariant under translation,
dgy = dg3 for fized go, whence

(orr * ) = /G h(g2)dg2 [ /G #(93)f(93 — 92)d93] .

Using Fubini again, we obtain

(oo * ) = /G (93)dgs [ /G h(g2)f(g3 - 92)d92] :

Fubini’s theorem implies that the integral in brackets converges for almost
every g; and is an integrable function k € L!(G). We have thus shown that

(pr 1 * p2) = f ©(93)k(g3)dgs.0

1.6.3 The Fourier transform on L!

The Fourier transform on L! is obtained by restriction from the Fourier
transform on M! and thus is written

() fx) = fG f(9)x(9)dg, Vx €G.

Theorem 1.4.4, on the trivialization of the convolution product, gives by
restriction

(ii) Fh(x) = FOOR(x).

1.6.4 Bessel’s inequality. Let G be a compact abelian group and let
f € L?(G). Then f € L'(G) and

1£132c) = Y IFGOP.

xea
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PROOF. Since 1(G) < +0oc, 1-9.6 implies that L!(G) D L?(G). Moreover,

) = (F1%) 2.

Let S be a finite subset of G, let Vs denote the vector subspace generated
in L2(G) by {x : x € S}, and let fs denote the orthogonal projection of f
onto Vs. Then f = fs + f — fs, where f — fs is orthogonal to fs. Hence

WAIZ2 = WfsllZa + 1F = £sliZa,
and therefore
I£11Za = I fsllZa-
But it follows from 1.5.3 that
fs =3 x(fl) =Y f(x")x and

X€ES XES

IfslEs = Y- 1F (xR0

X€ES

1.7 The translation operator
1.7.1 The translation operator on L?(G)

Given a function f defined on G and a fixed gy € G, we denote by 7,4, f the
function defined by

(@) (790 5)(9) = (9 = 90)-

By the translation invariance of dg, f € L?(G) implies (7,f) € L?(G), and
moreover

(i) Il flize = IfliLs-
Furthermore,
(iid) Tg O Tga = Tgy 492

We summarize the last identity by saying that g — 7, is a representation of
G in L?(G); that is, the mapping is a homomorphism of G into the group
of linear automorphisms of L?(G). We define the translate of a set A by an
element gg of G to be 74,(A) = A + go.

If uq is the indicator function of the set A (ua(z) =1 if z € A and
ua(z) =0if z ¢ A), then 7g,(va) = u,, (4)-

1.7.2 Fundamental theorem (Trivialization of the translation op-
erator on L'(G) under the Fourier transform). Let f € L}(G). Then

Tf (X) = x(90)f(x) Vx €G.



1 Convolutions and Spectral Analysis on Locally Compact Abelian Groups 113

PROOF.

T (X) = /c f(g9 - 90)x(9)dg-

The change of variables g — g — go = g’ leaves the Haar measure invariant:
dg = dg’. Making this change of variables gives

/ f(9~ g0)x(g)dg = / f(g")x(g' + g0)dg’ = x(g0) / f(g')x(¢')dg’.O0

1.7.3 Continuity of the translation operator

Let Ck(G) denote the compactly supported continuous functions on G,
with the norm
Iflick = max|f(g)], g €G.

Continuity theorem. (i) Let f € Cx(G). Then the mapping from G to
Ck(G) defined by g — 74 f is uniformly continuous.

(i1) Similarly, let u € LP(G), where 1 < p < +00. Then the mapping from
G to LP(G) defined by g — T4u is uniformly continuous.

PROOF.(i) Since f is continuous and compactly supported, f is uniformly
continuous. Given € > 0, there exists 7 such that

[f(g1) = f(g2)l <€ if d(g1,92) <.

Hence

790 (£)(9) =79, (F)(9)) = |f(9—90)— f(9—90)| < € if d(g—g0,9—90) < 7.
But it follows from the invariance of the distance under translation (cf.
1.1(ii)) that d(g - go,9 ~ 9p) = d(90, 9), Whence
I7go(f) = 79y (Pllc, <€ if d(g0,90) < n.D
(ii) We now consider the case where u € LP. Since p < +00, by II-3.5 there
exists f € Ck(G) such that ||f — ul|z» < §. Let us write
Tou — Tgu = Tof — 79 f + 79 (f — u) — 74(f — u).
Using 1.7.1(ii),
lrg(f = wllze = If = ullz» < 3,
whence 2
lIrgu = Tgrullee < g€+ lirgf — 79 fllLo-
Let A =supp(f). Then
supp (Tgf — T f) C T4(A) U Ty (A),
meas (supp (7o f — 74 f)) < 2 meas (A),
rgf = 79 fllLe < lrgf — 74 flic, (2 meas (A))l/p-

The right-hand side of the last inequality tends to zero as d(g,g’) — 0 by
the first part of the theorem. O
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1.8 Extensions of the convolution product

In this section, we give other cases where formula 1.6.2 converges.

1.8.1 The convolution product and the dual pairing
Let f denote the function defined by

flg) = f(~9).
Formula 1.6.2(ii) can be written formally as
(i) k(g0) = (10, 1) = (f, 750 ).

Lemma. Let f € LP(G) and h € LY(G), where 1 < p < +00 and p and q
are conjugate exponents. Then, for every go € G, the integral

(i) / £(90 — 9)h(g)dg

converges and defines a function k(go) which is uniformly continuous and
bounded and which satisfies

(221) lklle, < WfllcelibllLe.

PROOF. By symmetry, we may assume that p < g; then, since p and q are
conjugate, 1 <p < 2.
Using (i), we have

k(9] = 7o fs )] < g fllzeliblle = I fllLslhllze,

and moreover

k(g0) = k(g1)| = [(Tgo f = Tor FrB)| < g0 f = Tos Fll Lo Il o

Since p < +o00, it follows from 1.7.3(ii) that the first term tends to zero
when d(go, 91) — 0. O

1.8.2 Theorem (Action of M'(G) on L?(G) (1 £ p £ +)). Let
i € MY(G) and let f € LP(G). Then the integral

(i) h(go) = / £(90 — 9)du(g)

converges almost everywhere in go with respect to Haar measure and defines
a function in LP. Furthermore,

(32) RllLe < 1FNzelellar -
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PROOF. Let f' = |f| and let u’ = |u|. Let v € L9, u > 0, and consider the
double integral

I= / / f'(90 — 9)u(go)dgo di'(9)-

Choose a Borel representative of the equivalence class of f in £P(G). For
this fixed choice, f'(go — g) is a Borel function and hence measurable with
respect to the product measure dgo ® di(g). Thus Fubini’s theorem can be
applied once we have shown the convergence of

/ du'(g) [ / f'(90 — 9)u(go)dgo| -

By 1.8.1, the integral in brackets is convergent and bounded above by
1 £1l e flull e, whence

(13) 1 < Nlesllaer 1 llell o

Letting u equal the indicator function of a compact set K, it follows from
Fubini’s theorem that the integral (i) converges dg-almost everywhere on
K. Since K is arbitrary, (i) converges dg-a.e. on G. Let h(g) be the function
thus obtained. By (iii),

| / h(g)u(g)dg\ < lulan Ifleellullce,  Vu € L9,

If p > 1, then g < +00 and we define a linear functional on LY(G) by

() = / h(g)u(g)d.

This form is bounded, since |l(z)| < C||ullLe. By the duality theorem (IV-
6.3), it follows that h € L?. If p = 1, take u(g) = sign(h(g)) if h(g) # 0 and
u(g) = 0 otherwise. Then (iii) implies that

/ Ih(9)ldg < lullas | flles < +oo.
Thus h € L.

1.8.3 The translation operator as a convolution operator

Note that if 4 = §,,, then

/ £(90 - 9)du(g) = £(90 — 1) = (72 /)(g0)-
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In particular, 7of = f. Thus the action of M(G) on L!(G) is a general-
ization of the translation operator. More generally, if 4 € M} (cf. 1.3.1),
then pu = 3 Bxd,, and

/ £(30 — 9)du(g) = (3 Br7au f) (90).

NOTATION. Let u € M}(G) and f € L?(G) (1 < p < +00). We make the
notational convention that

(7,£)(g0) = / £(g0 - 9)du(g).

Then
Iru(AHllee < Nesllas 1f )l 2o

1.9 Convergence theorem. Let {u,} be a sequence of measures in M'(G)
satisfying hypotheses (iii) and (iv) of Theorem II-6.8 and converging nar-
rowly to v. Then

N7y f =T fliLs =0, Vf€LP, 1<p<+o0.

If in addition f € Co(G), then |1y, f — 7. fllc, — 0.

REMARK. Using the converse of Theorem II-6.8, it would suffice to assume
that {u,} converges narrowly to v. Because this converse was not proved,
we prefer to give the rather awkward statement above.

PROOF. Since p < +00, we can find h € Ck(G) such that
IIf = hllLr < e
By hypothesis II-6.8(iii), sup ||un]lm1 = ¢ < +00, whence
I7un (f = B)lIze < llallaar|lf = RliLe < cllf = Al
It thus suffices to show that
(i) I7unh = TuhliLs — 0.

Hypothesis II-6.8(iv) implies that for every ¢ > 0 there exists a compact
set H such that, for sufficiently large n,

/ dlun] <€ and / dlv| <e.
He He

Let ¢ be an element of Ck(G) such that supp (¢) C K; and ¢ =1 on H.
Set

Hn=0tn, V =9v, pp=0-@s V'=(1-9p).
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Then [|v”|| < ¢, |lun]l < €, and the proof is reduced to proving (i) for ul,
and v/. Furthermore, since y;, converges narrowly to v/, it suffices to show
that (i) holds when the p, are supported in a fixed compact set K. Let
K> be the support of k; then the support of 7, h lies in K3 = K + Ka.

But K3 is a compact subset of G. Moreover, by the definition of narrow
convergence, for every fixed g

/ h(g - ¢')dpin(g") — [ h(g - g')av(g).

That is, un(g) = (T4, h — 7w h)(g) satisfies u,(g) — 0 everywhere. It follows
from the bound |7, Al < c||k|c, 1k, that

[un(9)l < 2¢llhllc, 1k, = €11k,-

Hence, by Lebesgue’s dominated convergence theorem,

/ [un(g)Pdg — 0.0

If f € Co(G), we now determine h € Cx(G) by the condition ||k - flic, < €.
As above, we reduce the proof to showing the result when the u, are supported
in a fixed compact set K3. Setting h(§) = h(-¢), we write

/ h(g - €)dun(€) = / (roB)(E)dun(e)-

The mapping & : g — -r,z from G to Co(G) is continuous. Hence the image under
® of the compact set K3 is a compact set H C Co(G). By hypothesis II-6.8(iii),
there exists a constant c such that llznllasr < c. Consider the functions u, defined
on H by

un(y) = / ¥(€)dpm(6), ye .

Since ||unllanr < c, these functions are equicontinuous. By the definition of narrow
convergence,

un(y) = / Y(E)du(E), Vy € Co(G).

Since the functions u, are equicontinuous and converge for every y € H, the
compactness of H implies that they converge uniformly. O

1.9.1 Corollary. Let {u,} be a sequence of measures which converge nar-
rowly to 8y and satisfy hypotheses (iii) and (iv) of 1I-6.8. Then ||7,,,f —
flie» — 0.

1.9.2 Corollary. L?(G) is an M!(G)-module; that is,

(?) (Tu 0 T)(f) = Tuan(f) = (7o 0 7u)(f)-

In particular, if go € G,
(#) Too(Tuf) = Tu(Tgo f) = Tues,, (f)-
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PRroOF. It suffices to verify (i) in the case of discrete measures, where
everything is obvious; the general case follows from the narrow density of
M}(G) in M'(G) combined with Theorem 1.9.

For (ii), we note that

(it3) Tgolt = bg, * U,

where g, denotes the Dirac measure at go, and use (i). O

2 Spectral Synthesis on T" and R"

In Section 1 we introduced the Fourier transform, defined on the dual group
G. We were not concerned with whether the dual group of G contained
other elements than the trivial character, everywhere equal to 1. If G were
trivial, Fourier transform theory would have a very limited scope. We now
exhibit the characters on T" and R™ and use them to prove the injectivity
of the Fourier transform. In certain cases, we will be able to characterize
its image and give an explicit inversion formula.

2.1 The character groups of R® and T"

(i) The characters on R are of the form
xt(z) = €*%, where teR, ¢t fized

Hence R = R.
PROOF. It is clear that an imaginary exponential satisfies the equation e'*(*+¥) =

e'*e''Y and is a complex number of modulus 1. What must be proved is the

converse. Let £ — x(z) be a character of R; then, since x(0) = 1 and a is
continuous, there exists an interval [—a, a] such that

Re(x(z)) >0 if z € [—a,a].
Hence we can define a function l(z) without ambiguity by

log x(z) = il(z), g <l(z) < g, z € [-a,a).

Then I(z) is continuous and
z+y)=Uz)+Uy) if z, y, and z + y € [—a,a].

It follows from this equation that l(mz) = ml(z) if m is an integer such that
|mz| < a, and similarly that l(#) = Li(y) if |yl < a. Hence I(ra) = ri(a) for
every rational number r such that |r| < 1.

By continuity, l(za) = zl(a) if z € R, |z| < 1. Hence

x(y) =¥, where a=i(a) and |yl <o
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For any 31 € R there exists an integer m such that g, = my with |y| < a; thus

X(yl) = (x(y))m = eiaym = e“’lll o

(ii) The characters on R" are of the form

X:(z) = exp (i > tkz") :
k=1

where z = (z!,...,2") € R" and t = (t1,...,t,) € R". Hence R" =R".

PROOF. The imaginary exponentials are obviously characters. It must be shown
that every character is of this form. Let ex = (0,0, 1,0,...) be the kth element
of the canonical basis of R". Then A — )ex is a homomorphism from R to R"
and hence A — x()ex) is a character on R. By (i), we can write

it A

x(lex) =€

Writingz =), z*ex, it follows that

X(z) = HX(-‘Ekek) = Heilkzk‘D
k
(iii) The characters on T" are of the form

n
Xxm(0) = exp (izmko") ,
k=1
where m = (my,...,myp) € Z" and (¢®',...,¢") € T". Hence ™ = 2",

PROOF. The numbers (8',...,0") are each defined only up to a multiple of 2;
this indeterminacy has no effect on the value of xm(#) since m € Z", and thus
Xxm(0) is indeed a character on T".

Conversely, let x be a character on T". We define (cf. 1.2.5) a homomorphism

v : R™ — T" by setting v(z) = (e“rl ees ,e""). Then yov is a character on R
and hence, by (ii), is of the form

x(v(z)) = exp(iZtkz") .

Suppose that v(z) = 1. Then x(v(z)) = 1; hence

Z tz* = 0 modulo 27.
k

Setting z equal successively to 2we,;, 2wey, ..., 2wen shows that ¢, t2,...,t, € Z.
a
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2.2 Spectral synthesis on T
2.2.1 The Poisson kernel

Given a number r € [0, 1), the Poisson kernel on T is the function defined
by the series

(¥) P(0) =) rinleine,
nezZ
Not only is this series uniformly convergent, but its sum can be calculated:
400 ) +o0 ]
Po(0) =) (re®)" + (re™)P.
n=0 =1

Using the formula for the sum of a geometric series, we obtain

1 re~if
F-(6) = T-re®  T—re®
Thus
— 2 -2 .
(i) Pu) = —0 " 1-r where ¢ = .

1-2rcos0+12  (1-r()(1-1C)

2.2.2 Proposition. Let e = 1 denote the identity element of T and let
dv(¢) denote the Haar measure on T defined in 1.5.4. Then

P.(¢)dv(¢{) — 6. marrowlyas r—1

and, moreover, satisfies hypotheses (iit) and (iv) of II-6.8.

PROOF. Let f be a continuous periodic function, with period 27. We must
show that
+m do
Q) PO)f(O)5 — f(0) as r—1
. 73
(ii) Note that, by 2.2.1(ii), P.(8) > 0.

Integrating the uniformly convergent series 2.2.1(i) term by term shows
+x

that P,(o)g = 1. Hence, since P,.(6) > 0,

(i) IP s = 1.
(iv) For fixed n > 0, max,<jg<x Pr(6) = P-(n), which approaches zero as

r—1.

Set f1(0) = f(6) — £(0). Since

+x
JOP@)32 = 5(0),

-
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it suffices to show that
+n

HOPROZ —0.

-

Let € > 0 be given. Then there exists 7 such that |f,(0)| < § if |[§] < n.
Fixing n, we split the integral in two:

+n do
roreg = [rorege[ | pereg

-
The first integral is bounded above by £ || P-||.:, which equals § by (iii),
and the second by || f IIC(T)P,(n), which approaches zero by (iv).
Hypothesis (iv) of 11-6.8 clearly holds since T is compact, and hypothesis
(iii) since P,dv has total mass 1. O
(v) Corollary. Let du, denote the measure on M (T) defined by
P,(0)d0/2x.
IffeLP(T) 1<p<+), then |7, f— flle» 2 0asr— 1.
If f € C(T), then ||, f = flloer) — 0.
PROOF. By 2.2.2 and 1.9.1.

2.2.3 Proposition. Let f € L'(T) and let f(n), n € Z, be its Fourier
transform. Then

(f*P)B) =Y fm)rimle=imé,
mez
PROOF.

(f = P)(0) f(‘P)Pr(a ‘P)—

-

/ f(sp) z rlnlem(o-cp) d‘l’

nezZ

The uniformly convergent series Y, .5 r'™e*"(®=%) can be integrated term
by term, giving

(F2P)O) = T rnen® [ einorfp)

neZ

= Zr""e"“o) f(-n).

nez
The result follows by setting —n =m. O
2.2.4 Spectral synthesis theorem.
(i) Let f € LP(T), 1 < p < +00. Set
9r(0) = _ '™ fim)e™"".

nez
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Then ||f — grllLy = 0 asT — 1.
(it) Let f € C(T). Then ||f — grllc(ry 0 as T — 1.

REMARK. Since g, is defined in terms of the Fourier transform of f, the
theorem shows that f can be reconstructed from its Fourier transform.

PROOF. By 2.2.2(v) and 2.2.3.
2.2.5 Theorem on conservation of energy. Let f € L(T). Then

(?) 1f132emy = 3 IF(R)? and
nezZ
14
(i) f0)- ) fmye™| —0 as p— +oo.
n=-=p L2

Plancherel’s theorem. Let ¢2(Z) denote the set of sequences such that
3 lanl? < +oo.

(iii) The mapping f — f defines an isometric isomorphism from L?*(T)
onto 3(Z).

PROOF. Since the characters on T are mutually orthogonal,

llgrl22 = 3 r2inl| f(m)I2.
By Bessel's inequality,

I1£122 = 3 1f(n)2.

nez

For a proof by contradiction, assume that the inequality is strict. Since
If = grlia — O by 2.2.4, [lgriz2 — || fll 2. Hence

lim S 727 f(n)? > f(n)l?,
i 3 ) > 3 o)
a contradiction; Bessel’s inequality is in fact an equality and (i) is proved.
Let V}, denote the vector subspace of L? generated by those '™ for which
—p < n < p. Then (cf. 1.6.4 and 1.5.3) the orthogonal projection of f onto
Vp can be written as

sp(0) = Y fln)e™™.
In|<p
By the Pythagorean theorem,

I = splla + lspllZa = £1Z2,

whence

IF = spll22 = 1£122 = lspli2: = Y IF ()P,

Inl>p
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where the second equality follows from (i). Since the last expression tends
to zero, (ii) is proved.

To prove (iii), let U : L%(T) — €2(Z) be defined by U(f) = {f(n)}.
Then U is an isometry by (i). It follows that the image of U is a complete
subspace of [2(Z) and hence is closed.

Let W = {{a,} € €2 : a, = 0 except for finitely many n}. The function
that maps {a,} € W to the trigonometric polynomial ¥ a,e™*"?¢ is con-
tinuous, since the sum is finite. Because the function is continuous, it lies
in L2; thus U(L?) D W. Since W is dense in ¢2 and U(L?) is closed, we
conclude that U(L?) = ¢2. O

2.2.6 The Fourier inversion formula

If we are given f and want to evaluate the function f at a point, the only
result at our disposal so far is 2.2.4(ii). The drawback of this formula is
that it involves a double limit: we must first sum a series, then let r tend
to 1.

We would like to obtain results on the convergence of the partial sums
of the Fourier series of f, that is the sums

n=+p

sp(0) = Y f(n)e™™.

n=-p

Theorem 2.2.5(ii) is a convergence theorem for the L? norm.

Lennart Carleson showed in 1965 that the partial sums of the Fourier
series of a function f in L2(T) converge almost everywhere to f. He thus
resolved a problem that had remained open for fifty years. The following is
an elementary result.

2.2.7 Fourier inversion theorem. Let f € L'(T). Assume

(2) E If(n)l < +00.

Then

(1) f(6) = Z f (n)e"™®  for almost every 6.
nezZ

If f is also continuous, equality holds everywhere.
PROOF. Set

gr=f+P =Y fln)yr™e=™ and (6) =) fln)e"°.

nez

Then ¢ € C(T) since the series converges uniformly. We now show that

(€1)] le - g-llcery — 0.
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Clearly
le = grlleery < D IF (I =),
n

Given ¢, fix p so that 3", 1f(n)| < €/2. Then ¥y, c, |f(n)I(1 - ri™l)
is the sum of 2p + 1 terms, each of which tends to zero. This proves (iii).

It follows from the inequality ||gr —¢l||z: < llgr—¢lic(T) that lim,_o |lgr—
el = 0. By 2.2.4,

lf = llzr = 0.

Thus f and ¢ are equal a.e., and (ii) is proved.

Suppose that f is continuous; then, since ¢ is continuous, so is f —p = u.
If u were not identically 0, {u 7# 0} would contain an interval, contradicting
(ii); hence u = 0 everywhere. O

(iv) REMARK. As an element of L', f is defined only up to a set of measure
zero. (ii) means that the equivalence class of f under the relation of equality
almost everywhere contains a continuous function, namely . It i8 reasonable to
take this continuous function as a representative of the equivalence class of f.

2.2.8 Density of the trigonometric polynomials

A finite linear combination of exponentials is called a trigonometric poly-
nomial.

Proposition. The trigonometric polynomials are dense in the normed
spaces LP(T) (1 £ p < +o0) and C(T).

PROOF. Since C(T) is dense in LP by II-3.5, it suffices to prove density in
C(T), recalling that || ||z» < || llc(T)-

Let h € C(T) and let ¢ > 0 be given. Using 2.2.4(ii), fix r such that
|1k = helleety < §- Decompose h, as

he(8) = Y h(n)rimle=® + 5 R(n)rinle=ine,

Inl<p In|>p

Note that [h(n)| < [IAllz1(r) < [Ihllcery; this implies

2rp+l
1-

Z R(n)rinle-in®

In|>p

< llklleery

Since r is fixed, this expression is less than § for sufficiently large p. Thus

<eO

h - Z ﬁ(n)r""x-n

In|<p
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Corollary (Injectivity of the Fourier transform on measures). Let
u, v € M(T) satisfy

p(n)=v(n) if nel.

Then pu=v.

PROOF. Let Q be a trigonometric polynomial. By linearity, [ Qdv = [ Qdp.
Since the trigonometric polynomials are dense in C(T), it follows that

/ fdv = / fdu VfeC(T).O
Corollary (Uniqueness of Haar measure on T). Let p be a Haar
measure on T. Then there erists a constant c such that p = c22.

PROOF. By 1.5.2, p(n) = 0 if n # 0. It thus suffices to use the preceding
corollary. O

2.3 Extension of the results to T"
The Poisson kernel is defined on T" by

P =[] P(¢"), ¢=(¢"-...¢" eT™
k=1

Since the Haar measure dv(¢) = dv(¢!)®- - -®dv(¢"™) is a product measure,

P (Q)dv(¢) = Pr(¢")dv(¢") ® -+ ® Pr(¢™)dr(¢™).

By 2.2.2 each term converges narrowly to 6, ; hence P.(¢)dv({) converges
narrowly to 6.
It can be shown as in 2.2.3 that, for all f € L'(T"),

23.1 (f*=P)@O) = Z f(m)rlimlig-im8

mean

where |m|| = |my| + |m2| +--- + |mn| and m.8 = 3" ;_, mx6*.

The following theorems are proved as in 2.2.

2.3.2 Speci:ral synthesis theorem. Let f € LP(T) (1 < p < +o0). Set
g-(8) = 3 f(m)rimllg=im-8  Then

If = grllze(xny — 0.

If f € C(T), then
f = grllcery — 0.
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2.3.3 Theorem on conservation of energy. Let f € L(T"). Then

(i) IA1Fa = Y Ifm).

mez"

Set 55(8) = T es, f(m)e"™®, where S, = {m € Z" : |mi| < p Vk}.
Then

(i7) If = spllLzexn)y =0 as p— +oo.

(iii) (Plancherel) The mapping f — f is a bijection of L*(T™) onto ¢2(Z").
2.3.4 Fourier inversion theorem. Let f € L'(T"). Suppose that

(2) Z |f(m)| < +o0.
mez"
Then
(i1) f() = Z f(m)e“""'o for almost every 0.
mez"

(iii) If f is continuous, equality holds everywhere.

2.4 Spectral synthesis on R
2.4.0 Regularity of the Fourier transform on R"
Let up € M!'(R"). Its Fourier transform is defined by

At) = /R e du(z).

2.4.0.1 Proposition. The Fourier transform ji(t) is a bounded continuous
function and

(¥) lBllcyrmy < Nuliar-
PROOF. Set u = k|u| with k € L},. Then

Atn) = [ e=k(e)dlul(@).

If the sequence {t,} converges to to, the sequence of functions {e't=k(z)}
converges everywhere to e'o-Zk(z). Since it is bounded in modulus by
1€ L}, Lebesgue’s dominated convergence theorem implies that i(t,) —

lul?
1(to). Finally,

) < / dlp] = |u(R™) = [lullpp:.0
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2.4.0.2 Theorem (Lebesgue). If f € L'(R"), then its Fourier transform
f(t) = Jgn €% f(z)dr is a continuous function that vanishes at infinity,
and

(2) Iflcomn) < Il rm)-

PROOF. Since f(z)dz € M!(R"), the only new property to be proved is
that .
f(t) =0 as |t]] = +oo.

Let ¢ > 0 be given. Since the translation operator is continuous on
L'(R™), there exists 7 such that

(3) Imyf = fller <€ if iyl <.

It follows from the property a(t) = ei¥t f(t) that (7, f — f)*(t) =
(et — )f(2).

Using (i) and (ii),

(i) et - 1)f(t) <e if [yl <n.

If ¢ satisfies ||t > 7n~!, we can find y such that y.t = 7 and ||y| < 9.
Hence, by (iii),
21f(t)) < e if |t||>mp~t.O

2.4.1 Dilations and the Fourier transform

A dilation on R is multiplication by a positive number A:
z—Adx VreR, Mfixed, > 0.

Given a function u defined on R, let

) ur(z) = A u(A " tx).

Take u € L!(R) and set A~!z = y. Then [u)(z)dz = [u(y)dy. In partic-
ular,

() lualie: = lulle:-

Similarly, again setting A~z =y,

(i) an(t) = / ur(z)et=dz = / u(y)edy = T(AL).

2.4.2 Lemma. Let u € L'(R) and assume that [u(z)dz = 1. Then, as

A = 0, up(z)dx converges narrowly to the Dirac measure at 0 and satisfies
hypotheses (iii) and (iv) of Theorem II-6.8.
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PROOF. Let f € Cp(R) and set f,(x) = f(z) — f(0). Then

f ur(x)f(z)dz = £(0) [ ux(z)dz + f fi(@Yux(z)ds.

Since the first integral on the right-hand side equals 1, it suffices to show
that the second tends to zero. Setting A\~'z = y, we can write this integral
as [ fi(Ay)u(y)dy. Fix A so that [, u(y)dy < $If1lic). Then

/ H(M)u(y)dy = / IuISA+ / o’

€
/ I fllc, / Ju(y)|dy < 5 and
lyl>A ly|>A

/IUISA

Since A is fixed, A\A — 0 as A — 0. Since f,(0) = 0 and f, is continuous,
the last expression will be less than § for A sufficiently small. O

IA

IA

maxj<aa [f1(8)] HullL:.

2.4.3 Proposition. For every p > 0,

(?) exp(—tzTﬂ) = W/Rexp(—g) e''*dz.

PROOF. Cf. IV-4.3.2(ii), where this formula is proved for x = 1. The general
case is obtained by applying 2.4.1(iii).

2.4.4 Proposition. Set

1 z?
o) = Gy (~55).

Then., as p — 0, G,(x)dzx satisfies the conclusions of 2.4.2.

PROOF. It follows from 2.4.3(i), with ¢ =0 and p = 1, that

1 z?
W/exp(—-;) dz = 1.

It now suffices to apply 2.4.2. O
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2.4.5 Spectral synthesis theorem. Let f € L'(R), let f be its Fourier
transform, and set

0 s feeom()E

Iffe L'NnLP (1 <p< +00), then

(i) If - gulls =0 as p—0.

REMARK. We must assume  that f € L!, since otherwise the integral defin-
ing the Fourier transform f does not converge. Moreover, since || f|[L~ <
[|fllL:, this assumption implies the convergence of the integral defining g,,.

PROOF. By 2.4.2 and 1.9,
(14) f «Gu - flir — 0.

Furthermore, since G, is an even function,

(f * Gu)(z) = / Culy — ) f()dy.

An integral expression for G, (z) lS obtained by interchanging t and z, writing
-1
for u, and multiplying by -W in 2.4.3(i). Substituting this into the
mtegral above yields

2 :
o6 0 () 2]

The hypothesis f € L' implies the convergence of the double integral

2
// exv(—tT") |f(y)| dy dt.
R3

Hence Fubini's theorem can be applied; reversing the order of integration gives

2 . .
(f = “)(z) = /;exp(_tT“) et [/l; e"”f(y)dy] :_:r

Recognizing the quantity in brackets as f(t), we have shown that

(iv) (f*Gu)(x) = /;f(t)eXP(—tz—z-"> e‘“‘;—;, vfelL.

Now (iii) and (iv) imply (ii). O

2.4.6 Fourier inversion theorem. Let f € L!(R). Suppose that

(4) feLl'(R).
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Then
.. —itz 7y dt
(12) f(z)= | e f(t)— for almost every z.
R 27

(iii) If f is also continuous, equality holds everywhere in (ii).

PROOF. Let g, be defined as in 2.4.5(i). Then, as 4 — 0, the integrand in
2.4.5(i) tends everywhere to e~*** f(t). Furthermore, it is dominated by the func-
tion |f(t)] € L'. By Lebesgue’s dominated convergence theorem,

—itz 77,y At _
) = [ = pto)
Next, since ||f — g .1 — 0, we can extract a subsequence ux such that
f(z) =limg,, (z) almost everywhere.
This implies (ii).
To prove (iii), note that ¢(z) is continuous by 2.4.0.2. Thus ¢(z) — f(z) = u(z)
is continuous. By the same reasoning as in 2.2.7, u(z) =0 a.e. = u(z) =0. O

In the next section, we will study the space of those functions f to which the
Fourier inversion formula applies.

2.4.7 The Wiener algebra A(R)

Let R
AR)={fe L'R): fe L\R))}.

It follows from 2.4.6(ii) that the equivalence class (for equality almost ev-
erywhere) of every f in A(R) contains a continuous function. From now
on, we will take this function as the representative of f. Thus the Wiener
algebra is contained in the Banach space of continuous functions.

The Fourier inversion formula can be applied to f if and only if f € A(R).

We set [|fll 4R, = Ifllr + I flle:.
(i) f € A(R) is equivalent to f € A(R).
PROOF. By the Fourier inversion theorem,

f@) = /R Fiee .
Set f(~z) = u(z). Then u(z) = [ f(t)e"* &; that is,
(i) u=(HN

Hence N
Nel'euel'e fel.

(iii) If § € AR), then f € Co(R) and |fllgyR, < Il o(R)--
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PROOF. By the inversion formula and 2.4.0.1.

(iv) If f € A(R), then f € L Vp 1 < p < +o0.
PROOF. / \fPdz < 1A Il

(v) If f, h € A(R), then f xh € AR).

PROOF. ||f hllz1 < [IfllzilikllL and (f » k)™ = f h, whence

U * B es = IF Blles < IflleoeliBlics < [ (Bl o
Thus fxh € A(R).
(vi) Let f, h € A(R). Then (fh) = f x k and fh € A(R).
PROOF. By (ii),
(fh)(=z) = (f * 1) \(z).
By (i) and (v), f* he A(R). The inversion formula can be applied, and

[um-ae g = G,

Hence, replacing = by —z, we see that (fh)" = fxh € A(R); by (i), fh € A(R).
(vii) A(R) is dense in L?, 1 < p < +00. A(R) is dense in Co(R).
PROOF. Let L}, denote the L? functions which are zero a.e. outside a compact
set. Then L% is dense in L. Let h € L%. Set hn = h * G,-1, where G, was
defined in 2.4.4; then ||h, — h|lLr — 0.

We now show that h, € A(R). Let K be a compact set such that h(z) = 0
a.e. on K°. By Holder’s inequality,

1/q
Il < [ f dz] lhlcs,
K

where p and g are conjugate exponents. Thus h € L' and h,, € L*. Moreover,
~ ~ t? t2
o = [y exp( 57 )| < s exp( 57 )

whence h, € L' and h, € A(R).

“2n
If h € Ck(R), then hy = h*G,-1 € Co(R), hn € A(R), and ||k — hnlic, — 0.
]
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2.4.8 Theorem on conservation of energy. Let f € L' N L2. Then
I£IZ2 = 2m)~ 1122
PROOF. Let f € L' N L2 Set f, = f *G,-1. Then
1 7 ) 7
(@ fr€L' and Falt) =exp (—5_;) fo.
The Fourier inversion theorem can be applied to f,, giving
_ 7 —:l:_‘it_
)= [ e gt

Replace fn(z) by this expression in the scalar product:
Utnten = [ STz = [ 1| [ Fottet 2] o
R R R

Since f € L' and f,. € L', the double integral converges and, applying Fubini’s
theorem, we can reverse the order of integration:

(s = [ m[ /. f(z)e“’dz] == [ RO

Let n — oo; then, by 2.4.5, || fn — f|l.2 — 0, and the left-hand side thus tends
to || f llf_z. Using (i) on the right-hand side, we obtain

- 2
Jim / 1f(t)l’exv(—t;) = = Il

The sequence { exp(—%) } is increasing. Applying the theorem of Fatou-Beppo
Levi shows that If(t)l2 is integrable and that

JECRRl

2.4.9 Plancherel’s extension theorem. The Fourier transform has en
extension

(9) U:L*R)— L*R).
(i) (2x)~%U is an isometric mapping of L2(R) — L%(R).

(iii) U is a continuous bijection of L*(R) — L*(R).
(iv) The inverse of U is given by

- 1 —=
UM k) = 5-U).



2 Spectral Synthesis on T" and R" 133

PROOF. Consider the mapping u : f — f, from V = L' N L? to L2. Then,
by 2.4.8,

(v) lu()iZz = 2nllvllfa. VYo e V.

Hence u is a uniformly continuous mapping into the complete space L2.
It thus has an extension to the closure of L! N L? in L2, which is just L2.
Moreover, 2.4.8 extends by continuity and gives (ii). In particular, U is
injective. It remains to prove (iii) and (iv). By 2.4.7(iv),

A(R) c L}'(R) N L%(R).
Hence, by 2.4.7(i),
U(L' N L?) > U(A(R)) = A(R) = A(R), whence

(vi) U(L' N L?) is dense in L? by 2.4.7(vii).

Next, since (27r)~!U is an isometry, the image of L? is a complete, hence
closed, subspace of L2. Thus (vi) implies that U is surjective. Finally, the
inverse mapping of U is, up to a factor of 2w, an isometry. It follows from
(v) that it is determined by its restriction to A(R). The restriction is given
by the Fourier inversion formula, and can be written as

1@ = o [ et = o [ T = j-U (.
This expression for U~! on a dense set is valid everywhere, since U~! is

continuous. O

(vii) REMARK. What is striking in Plancherel’s theorem is that it gives an
isomorphism of spaces. Thus a problem posed in L? is equivalent under the
Fourier transform to another problem posed in L2.

2.5 Spectral synthesis on R"

We now generalize the results of the last section to R™. Let

1 1
Gu(z) = Cun)y eXP(—ﬂ“I"z) ,

where ]2 = (21)2 + ... + (z")%. Then G, (x) = [T5_, Gu(*).
By (2.4.4), G,,(xk)da:" converges narrowly in M!(R) to the Dirac mea-
sure at zero. When pu — 0, u > 0, we find that

Gu(z)dz = @G (z*)dz*
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converges narrowly to the Dirac neasure at zero in M'(R"). Moreover, by

(2.4.3), .
— 1 l‘"t" it.x
G“(.'l') = W/Rn exp(—T)e' dt.

Spectral synthesis theorem. Let f € L'(R") and set

-~ 2
9u() = 160 = [ e—-it.zf(t)exp(_l‘“;“ )(2”,':),,.

Then (|f — gullLr — 0. If, in addition, f € L' N LP (1 < p < +00), then
If - gullLe — 0.

Fourier inversion theorem. Let
AR™ ={f e L'(R"): f € L'(R")}.

Then A(R") is dense in LP(R"), 1 < p < +00, and in Cp(R").
Furthermore, almost everywhere in x (with equality everywhere if f is con-
tinuous),

y —it.T dt
f@= [ foetr s,

Plancherel’s extension theorem. There ezists a bijective mapping U of
L*(R") onto L?(R") such that

Vf € AR™).

WUz = @m)™2||fll2 and U(f)=f. VfeL'nL2

Moreover,

U-Y(h) = ——U(h).

(2m )
The proofs of these results are identical to those already given for the
case where n = 1. We end this section with a new result.

2.6 Parseval’s lemma. Let f € A(R") and let u € M'(R"). Then

/ f(z)dpu(z) = / ore;

PROOF. The Fourier inversion theorem,
- 1 F(4\a—it.T
1@) = Gy / e tea,

can be used to write f as a function of f on the left-hand side of the
assertion of the lemma. Since f € L}, Fubini’s theorem can be applied to
the resulting double integral. We obtain

/ f(z)du(z / f )dt (/ '“"dﬂ(z)) x -(—2%)7.0
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Corollary. Let p, ' € M'(R") such that ji(t) = f'(t). Then p=y'.
PRrOOF. For all f € A(R"),

/ f(z)du(z) = / f(z)du'(2).
R" R~

Since A(R™) is dense in Co(R"), y' = p. O

3 Vector Differentiation and Sobolev Spaces

3.1 Differentiation in the vector sense. The spaces WP

The goal of this section is to interpret the notion of derivative in terms of
translation operators. The advantage of this point of view is that, since the
Fourier transform realizes the spectral analysis of translation operators, the
same will be true for differentiation operators.

Given f € LP(R") and a € R", we say that the derivative of f in
the direction of a exists in the LP sense and equals D, f if, when ¢ — 0,
lime™! (7o f — f) exists in LP(R") and equals —D, f.

We then have

|Da f + f_l(Tcaf = Mlee — 0.

Let
WP = {f € LP(R") : D, f exists in the L? sense for every a € R"}.

Decomposing a = a'e; + ...+ a™e, with respect to the canonical basis of
R", we write D,f = Y_a*D,, f if f € WP. Given an integer s > 1, we
define

WP={feW!:D,fe WP_| VfeR"}

If f € WP, Dy, D,, ...D,,f is defined recursively.

3.1.1 Theorem (Spectral analysis of differentiation operators). Let
f € W}. Then

Daf(t) = —i(at)f(t).

PROOF. D,f € L}, and hence 5:{ is well defined. Since the convergence
occurs in L!, the order of integration in the following expression can be
reversed:

Do(®) = [ lime™ (raf - Pla)ei=*dz = lime (7] - (O
By 1.7.2,

~B.1(0 = tim E =D 7o) = stan)fle).0
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3.1.2 Corollary. If f € W], then
(Da,Da, - - Da, ))M(8) = [] (~i(ar-£)) f(2).
k=1

3.1.3 Theorem. If f € W}, then
F@&)=o(ltl=*) as |it]| = oo.

PRrROOF. D3 € L!. By 2.4.0.2, 5:’,}' tends to zero at infinity. Hence |a-t|* f (t)
tends to zero at infinity, and this is true for every fixed a. O

3.1.4 Corollary. W), c A={feL': fe L'}
PROOF. Since f(t) =o(||t|~""!) and fe C, it follows that fe L'.o

3.1.5 Proposition. Let u € M!(R") be a finite measure and let f € W?
(where 1 < p < +00). Then 7, f € W} and

Da("'pf) = Tp(Daf)-
PROOF. 747, f = 7u7of and € (7eq — D)7y f = Tu[€ ™ (Tea = I) f)-

Since 7, is a bounded operator on L?, the convergence of the right-hand
side implies the convergence of the left-hand side. O

3.2 The space D(R")

3.2.0 Definition. Let D(R") denote the space of infinitely differentiable
functions on R™ with compact support. We show that D(R") contains
functions that are not identically zero. Let

f(r)y = exp(l‘—_lr) if 0<r<1
= 0 if r < 1.
Set
(3) F(z) = f(lz|?), where [|z||* = (z")%+...+ (z")*.

Then F is infinitely differentiable. Since F> 0 on R" and F>0o0na
nonempty open set, [ F(z)dz > 0. Let F(z) = aF(z), where the constant
a is determined so that [ F(z)dz = 1. Then, setting
(i) Fi(z) = A""F(\"'z),

it follows from 2.4.2 that Fy(x)dz — &y narrowly.
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3.2.1 Proposition. If ¢ € D, then ¢ € WP (1 < p < +00) for every
positive integer s. In particular, 3.1.2 holds. Furthermore,

Z Oy
— k
Da(P = /) ﬁ'

PROOF. We use Taylor's formula with integral remainder:
- ‘ 9y Oy
= Do+ Darlie) = [ S (ghrte =00~ g5t

The right-hand side tends to zero uniformly in £ when ¢ — 0. As its
support lies inside a fixed compact set, we obtain convergence in all L?
(1£p<+).0

3.2.2 Corollary. If f € L? and ¢ € D, then f x p € WP for every integer
$>0.

PROOF. € Y(Tea = I)(f * @) = f * (Tea — D)e™ oo,
The last term on the right-hand side converges in L! by 3.2.1 applied to ¢,
withp=1,s8=1.0

3.2.3 Proposition. Let u € M! and assume that u has compact support.
Then (Tup) € D for every p € D.

PROOF. Let K be the support of 1 and let K, be the support of ¢. Then
the support of 7,y lies in the compact set K; + K.
Moreover,

(ru0)(2) = /K o(z - y)du(y).

Differentiating with respect to ! under the integral sign is legitimate since
g—ﬁ- is continuous and the integral is taken on a compact set. Hence

8 Ay
Bg1 (u#) = Tu (%) -
3.2.4 Proposition. The space D is dense in LP (1 < p < +00).

PROOF. Let f € LP. Using the truncation operator, we see that there exists
f € LP such that f is zero outside a compact set and

If = files <e.
Set f* Fy = uy. Then, by 3.2.0(ii),
||u,\—f||1,p —0 as A—0.

Since f € L? and ] has compact support, it follows a fortiori that f € L.
Hence, by 3.2.3, f*xF\ € D. O
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3.8 Weak differentiation

3.3.1 Definition. We denote by L} . the functions which are integrable on
every compact set. Given f € L}, the Radon measure f(z)dz is called the
measure associated with f.

f € L}, is said to have a derivative in the direction of the vector a in
the weak sense, or a weak derivative, if there exists u, € L}, such that

/fDa<p=—/uatp, Vyp € D.

The reader familiar with the distribution theory of Laurent Schwartz will
recognize a special case of differentiation in the sense of distributions.

3.3.2 Theorem. Let f € LP. Then the following statements are equivalent:

(1) feW}.
(ii) For everya € R", D, f exists in the weak sense and D, f € LP.

PROOF. (i) = (ii). The identity [(74f)h = [ f(7—gh) implies

(i43) / (€Y (Tea = 1) f)h = / f(T—ech —h)e! VfeLP, he LA,

Writing (iii) with A = ¢, we can pass to the limit on the left-hand side
since ¢ € D C L9, and on the right-hand side since ¢ € W{ by 3.2.1. This
yields the formula for integration by parts:

[DJw=—[ﬂDw)VJeWKweD

Hence u, = D, f, and (iii) follows since D, f € LP.
The proof that (ii) = (i) uses the following version of Taylor’s formula
with integral remainder.

3.3.3 Lemma. Let f € L}, and suppose that f has a weak derivative in
the direction of a. say u,. Let pe be the Radon measure defined by

mm=A}v@«,Weamw

Then
—e‘l['rmf = fl = 7o, ta.

PROOF. Let ¢ € D. Using formula 3.3.2(iii), Taylor’s formula with integral
remainder for ¢, and Fubini’s theorem, we have

Je raf = flp / f(T-cap — )€™
/ f(a)dz/ Za (m+§a)d§
= /d{/nZa == (z + €a) f(z)dz.

]
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Since f is weakly differentiable in the direction of a,

Sat 28 (2 +£a)f(z)dzr = - [ (7—ca) (2)tal(2)dz
- - / (&) (Teatia) (2)dz,

whence
/{e"[rmf — f]+ 1o ua}(z)p(z)dz = 0, Vyp € D.

As we saw in 3.2.4, D is dense in L7, this implies that the quantity in braces
is the zero function of L”:

(*) —e"l[rmf - fl=17p,u,.0

3.3.4 Proof that (ii) = (i) in Theorem 3.3.2

The result follows from considering the limit of the right-hand side of (*)
and using 1.9.1. O

3.3.5 Corollary. Let {e),...,e,} be a basis for R" and let {f,} be a
sequence of functions in WP such that ||fn — fllL» — O and, for all k,
De, fn converges in LP. Then f € W} and, for any a in R",

"Daf - Dafn"’-" —0.

PRrOOF. It suffices to prove that f is weakly differentiable in the direction
of a. The hypotheses allow us to write

/ane.,‘P= —/Dekfn‘py VLPGD

Since fp and D, f, converge in LP and since De, ¢ and ¢ are in L9, we
can pass to the limit in this equation, obtaining

[ 1Pae == [ olim(De,fo).
That is, f is weakly differentiable in the direction of e, and its weak deriva-
tive is
lim(De, fn) € L?.

Let a € R", say a = Y a*ex. Then D, f, = ¥_a*D,, fn, and hence f has a
weak derivative in the direction of a which is equal to ¥ a* lim D, f,. By
Theorem 3.3.2, f € W} and D, f =} a*lim D, fn =lim D, f,. O

3.3.6 Corollary. Let WP be given the norm

I lwe = 1flle + Y 1Dy fll o,
k
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where {ey,...,eq} is the canonical basis of R". Then W} is a complete
normed vector space and D, is a continuous mapping from WP into LP.

PROOF. The only statement that is not obvious is that W} is complete. If
{fa} is a Cauchy sequence in the W} norm, then both {f,} and {D,, fn}
are Cauchy sequences in the L? norm.

Since L? is complete, f, converges to some f € LP. Moreover, f € W}
by 3.3.5. By definition,

Ifa = fllwe = fa = fllee + Y 1Dey o — Dey fllLo-
k
Since || D¢, fa — De, fllL» — 0 by 3.3.5, f, converges to f in W}. O

3.4 Action of D on WP. The space W},

3.4.1 Proposition. Let ¢ € D and let the operation of multiplication by
@, written my,, be defined by (m, f)(z) = p(z)f(z). Then

my, : WP — WP for every p € [1,+00] and for every integer s.
PROOF. We prove the proposition when s = 1. First we show that

(") Da(wf) = (Du‘P)f + ¢Daf.

This formula is proved by passing to derivatives in the weak sense. Let D, denote
the weak derivatives. Then

/ﬁa(wf)w = —/wf(Da(tb)) Yy € D.

Furthermore, by Leibnitz’s formula for continuously differentiable functions,
—pDa(¥) = ¥Da(p) — Da(py), whence

/ Bulofi = - / 1uten) + [ 19Dute)

/ Da(f)ew + / ¥ Da(yp).

Let - -

G = [Da(pf) — ¢Da(f) — fDa(¥))-
Then G is orthogonal to every ¥ € D. Since D is dense in L? if ¢ < 400, it
follows that G is zero. If p = 1, the fact that G = 0 follows from the density of
D in Co(R"). Thus (i) is proved for weak derivatives:

Da(f¢) = ¢Daf + fDa(¥)-

Since ¢ and D, are in L™, the right-hand side is in L? if f € W}. Theorem
3.3.2 then gives the result. O
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3.4.2 Differentiable partitions of unity

Theorem. Let U, be an open cover of an open subset O of R". Then there
ezists a partition of unity @, such that

0<pn<l,

wn € D(R"),
Supp(%) c Ua(n) c 0,

and
D en(x)=1, VzeO.

The series is locally finite; that is, for every compact subset K of O,
supp (pn) N K = 0 except for a finite number of indices.

PROOF. Let
K, = {:c € O : dist(z,0°) > % and ||z|| < n}.

Then each K,, is a compact set contained in O, and the union of all the
K, equals O. By Theorem II-1.4.1 we can find a partition of unity with
continuous functions f,. We may also assume that U, is a locally finite
cover. Set

2¢,, = dist(supp (fn), U;(n))‘

Let ¢, = F,_ * fp, where F) was defined in 3.2.0(ii). Then

supp (¥n) C supp (fn) + B(0,€n) C Ug(n)-

By 3.2.3, ¥, € D since F,, € D.
Next, writing out the integral expression for v,

[ 1@ = vF.. iy = vna)
we see that ¥, (z) > 0 whenever f,(z) > 0. Hence

Z Yn(z) > 0 for every z € O.

Set

r(z) =) ¥nla).

Then r~! is an infinitely differentiable function and ¢, = r~!4,, satisfies
the conditions of the theorem. O
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3.4.3 The spaces W?

Jdoc

(i) Let O be an open set in R". We denote by D(O) the infinitely differ-
entiable functions defined in O which have compact support. A function ¢
in D(O) can be extended to R" by setting ¢(z) =0 for z ¢ O.

Writing @ for the extension of ¢ to R", we note that ¢ is infinitely
differentiable: given a point z¢ on the boundary of O, there exists an open
neighborhood V of z¢ in R"™ which does not meet the support of ¢. Hence
@ vanishes identically in V and is therefore infinitely differentiable. Thus

(#) D(0) ~ {y € D(R™) : supp (p) C O}.
We define

W?10c(0O) = {f defined and measurable on O:
fo € WP(R™) for any ¢ € D(0)}.

(iii) Proposition. f € W: 10c(0) if and only if for every zo € O there
erists an open neighborhood V,, of o in O such that

of € WP(R") Vo € D(R") with supp(p) C Vz,.

PROOF. The forward implication is trivial. The reverse implication is proved
by using a partition of unity subordinate to the cover {V,}, where z4 € O.
a

3.5 Sobolev spaces

We now study the spaces W2. Since W2 is a subspace of L? for every s,
Plancherel’s theorem allows us to characterize its image under the Fourier
transform. The space W2 is written H® and called the Sobolev space of
order s. The isomorphism of L2(R") onto L?(R") defined by Plancherel’s
extension of the Fourier transform in 2.5 is denoted by F.

3.5.1 Theorem. Let f € L?(R") and let h = F(f) be its Fourier-Plan-
cherel transform. Then the following two statements are equivalent:

(?) f € H.
(i) / IR(E)(1 + [[E]2)°dt < +oo.
R'l

PROOF. Restricting to the case where s = 1, we first show that (i) = (ii).
For f € H', we have the following extension of Theorem 3.1.1:

(¢43) F(De, f) = =it F(f)(2).
To prove this, note that F(7., f) = e'**F(f) and
C—l'r(Tcekf -f)= C—l(eidk — 1)h().
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Since the left-hand side converges in L? to —F (D, f), the right-hand side
also converges in L2. Passing to a subsequence ¢x, convergence in L? implies
convergence a.e.; (iii) follows since the right-hand side converges everywhere
to (itx)h(t). Hence

f € H® = h e L? and (t:h(t)) € L?,
and therefore
[R@PQ+t2+...+t2) e L.
We now prove that (ii) = (i). Let ¢ € D; then, by Plancherel,
_— 1 -
[ 155 = e [ FF D).
By (iii) (or 3.1.1), F(De,»)(t) = —itx F(p)(t), whence
[ 1Pe% = s [(it0F () OF B

By (ii), txF(f)(t) € L2. The inverse Plancherel isomorphism F~' can now
be used to show that there exists a function u; € L2 such that F(u,)(t) =
—itg(F f)(t). Thus

/fDek<p= /uup;

that is, the weak derivative of f in the direction e is the function u; € L2.
Theorem 3.3.2 shows that f € W2 = H!. D

3.5.2 Definition of H*® for s not an integer

Let s be a positive real number that is not an integer. Set
H® = {f €L?: /R..(l + L2 I(FF)(t)12dt < +oo} .
We define a norm on H*® by
0 191 = [ 0+ 1Py IEN©Fe

For s = 1, this norm is different from the W2 norm introduced earlier,
but the two are equivalent. The advantage of the present norm is that H*
becomes a Hilbert space with scalar product

Filf2)ae = /R (hiF2)(O)(1 + [ILI?)°dt, where hy = F(fi), k =1,2.
3.5.3 Proposition. Let f € H*. Then

(¥) 7.f € H® for every measure p € M*.

PROOF. F(7,f)(t) = u(t)F(f)(t). Hence, since |u(t)| < llullr, 3.5.2(i) implies
that
lufllns < lpllanlfllns < +00.0
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3.5.4 Differential characterization of H?*

Proposition. Let f € L2(R") and let 0 < s < 1. Then the following two
statements are equivalent:

(i) f € H(R").
(i) I,(f) = /m ||‘r,f—f||iz"z"%dz < 400, where n = dim(E).

PROOF. We use the Fourier-Plancherel isomorphism. Let u = F(f). Then

dz —-iz. ~
nw= [ o [ e - PP

Next, we set
: dr
= —-iz.§ _ 112 .
N = [ et

This integral is invariant under the mapping  — A.z, where A is an
orthogonal matrix. Hence A(*A.£) = A(£); that is, there exists a function
¥ : R* — R* such that A(§) = ¥([l€]l).

Note that, under the dilation £ — af (a > 0),

i dx
wlall) = [ fe= e 1P

Setting azr = y gives

wlall) = [ 178 — 1P e = ualel) = a®w(lel).

Setting [|€]| = 1, this shows that y¥(a) = a?*¥(1). Hence A(€) = c||€]|?*,
where c is a strictly positive constant. Finally,

nw=c | nePI»de.

Since f is assumed to be an L? function, [ |u(£)|?d§ < +oc. Hence the
finiteness of I,(u) is equivalent to that of

[, @R + el e o

Corollary. Let f € L?(E), where s is a positive real number. Let s be
decomposed as s = p+ s', with 0 < s’ < 1 and p an integer. Then the
following statements (iii) and (iv) are equivalent:

(iii) f € H*(R").
(iv) (D3 ...D7*~f) € H*, Vm such that |m| < p.
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REMARK. If 8 = 0, then H* = L? and this is the definition of H* for
integer s given in 3.1.

If ¢ >0, then 0 < s’ < 1 and membership in H* is characterized by
convergence of the integral (ii).

PROOF. Set Ff = u; then (iii) becomes
[erers...exm(1+ €1)* Ju € L?, ¥m such that |m]| < p.
This is equivalent to
1+ €’ e L0
3.5.5 Operator of multiplication by a differentiable function
Proposition. Let ¢ € D(R") and let f € H®. Then of € H®.

PROOF. The result was proved for integer n in 3.4.1. Using 3.5.4(iii) reduces
the proof to the case where 0 < s’ < 1.

We begin by writing

(®) 7=(f) — of = (1= f — ) + 1= (0f) — o7=(f).
Then, since y is bounded,
(i) lo(ref — Fllz < lelleeellT=f = flla.

Set = — zo = y; then [ |72o(9f) — ¢Tzo fI?dx = [ |of — (7—z09) f*dy. Thus

Ir=(ef) = @7 (N2 = (T-200 = @) flIL2 < fNZ2llT-z0 = PllLoo

By the mean value theorem,
(i) [7-20 — ¢liz < Clizoll®.

Substituting inequalities (ii) and (iii) into (i), we obtain the integral convergence
criterion 3.5.4(ii). O

3.5.6 The spaces H}, (O)

Let O be an open set in R". We say that f € L% _(O) if f1x € L}(R")
for every compact subset K of R". For s > 0, we say that f € H} _(O) if
¢f € H*(R") Yy € D(0). The next proposition follows essentially from
3.5.5.

Proposition. Let f € L, (O) and suppose that, for every zo € O, there
exists a function ¢ € D(O) such that p(zo) # 0 and of € H*(R"). Then
f € H{ (O).

PROOF. Let v € D(0) be such that v = 1 on a neighborhood of zo; assume that
its support supp (v) is small enough that ¢(z) # 0 on supp (v). Multiplying by
Wlﬁ"(z)’ we obtain

Vzo € O 30 € D(O) such that p € H*(R") and 6 = 1 on a neighborhood of zo.
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Let U,, = interior of §~*(1). Then, for zo € O, the collection {U;,} is an open
cover of O. Let x1,...,xn € D(O) be a partition of unity subordinate to this
cover. Then xnf = xn0f, where 6 corresponds to the open set U containing
supp (xn)- By 3.5.5, xn(6f) € H?; that is, xnf € H’ for every s.

Let ¢ € D(O). Then the identity f = Y xnf gives @f = 3" pxnf. This sum
is finite and all the terms are in H®; hence of € H*. O

3.5.7 Invariance under diffeomorphism

Theorem. Let O be an open set in R" and let g_be an infinitely differ-
entiable diffeomorphism from O onto an open set O. If f € H{ (O), then

(fog) € H:.(0).

PROOF. We use the criterion in 3.5.6. If s is an integer, it suffices to compute
the derivatives of the composite function Yo g (where ¢ € 'D(O)) and to use the
characterization of H* by means of weak derivatives.

By using 3.5.4, we may assume that 0 < s < 1 and that f and f have compact
support. Then the integral 3.5.4(ii) becomes

- r — ot —2E
= [ e+ o) - Fo)P s
Consider the mapping of = defined by
py(z) = g9(z +y) - 9(y)-
Then p is a diffeomorphism for fixed y. Let
- 7 = Fla(a )P —3
L= [ av [ 17w+ e - Fow) s

Setting g(y) = ¥ and py(z) = z gives dy = (det g~')(y)dy and dr = det(p; ' )dz.
By the change-of-variables formula for multiple integrals,

L= [ ditcer g7 [ 17+ 2) - e o3 e < e

Since g is a diffeomorphism and all that matters is its restriction to a compact
set, there exists a constant c; such that ||z|| > c)||z||. Similarly, there exists an
upper bound c; for the functional determinants, and

s [ & [17G+a-Far—2s < +w.
. Bl

The integral is finite because f € H*(0). O

3.5.8 Trace theorem. Let f € H*(R"), and consider R"~? C R". Then
the restriction operator

pp: D(R") = D(R""?)
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has a continuous operator extension

H* S HP? §f s> ’5’.

PROOF. Let ¢ € D(R") and write z = y + z, where y € R""? and z € R?.
Then, by the inversion formula,

oly+2) = [ eI
Rﬂ
Similarly, writing £ =+ ¢,
ply) = / e™*V1%(n + ¢)dnd(.
R?xR"-?
Letting p(p) denote the operator of restriction to R"~?, we obtain

0 (oo = [ 3+ Ok.

Moreover,

le(@)I2,.. g

/ (o) (L + 1l2)*~*"2dn

[ | e+
R"-P R?P
By the Cauchy-Schwarz inequality,

2
(1+ lInli?)*=?/2dn.

2

/m@(n +O)(1+ lln+ ¢ + lIn + ¢I1*)~*/2d¢

<([ o) ( [ e+ ora+ I+ <)

The first integral on the right-hand side, say J(n), converges since s > p/2.
Moreover,

1+ llm+¢I%)* = (1 + lInl® + 1CI%)°

e = g™
J n) = / = + .
) re (L4 [I0l12 + 1SH2)* Jycu<nan — Jucistni
The first integral is bounded above by

and

vol({Il¢l < [inl}) 21p/2-8
o < C+ InlPy

and the second by

4@ 2\p/2-8
/||<||>||,,|| (1 +1gI%)® < (1+ [Inl)P7==2,
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whence J(n) < ¢(1 + ||n||2)?/?~* and
(M pe-vra < € /R o, dn( =+ Il P2 1+ %) =P/2

x [ [ g+ 0ra+in+ <||2)~'d<]

<cf an [/ |¢(n+()|2(1+||n+(ll2)’dc]=CI|<PII?;--
Rn-P Rr
Thus
(14) lep(@lare-ssz < cllelllye if s> 2.

The existence of the desired extension follows from the density of D(R™)
in H*(R"). D

3.5.9 Corollary (Serge Bernstein). Let s > n/2. Then H*(R") C
Cp(R"), where Cp(R") denotes the bounded continuous functions.

PROOF. The inequality 3.5.8(ii), with p = n, gives
lpn(0)(0)| < cllellne, Ve € D(R").

Since the H®* norm is translation invariant, |pn(p)(z)| < cll¢llas for every
z € R", whence, taking the sup over z,

(?) "pﬂ(‘P)"cb(R") < cllpllae.

Let f € H*(R"™). There exists a sequence @, € D(R") such that || f —pq|l#s —
0. Then

Pn(pg) = uq € Co(R™).
The uq converge uniformly by (i); hence

limuy(z) = u € Co(R™).0

3.5.10 Theorem. Let O be an open set in R" and let V be an (n — p)-
dimensional submanifold of R™ such that V C O. If s > &, then there
exists a continuous restriction operator

HE(0) — H.(V), where s'=s~§.

PROOF. H}, (V) is defined via an atlas of charts on V. This definition is indepen-
dent of the choice of atlas, since passage from one atlas to another is accomplished
by local diffeomorphisms.! The result follows from Theorem 3.5.7.

Given vp € V, there is a local diffeomorphism from a neighborhood U of v
to O such that the image of V N U is the space R"® C R", and 3.5.9 can be
applied. O

1See, for example, W. Boothby, An Introduction to Differentiable Manifolds
and Riemannian Geometry (New York: McGraw-Hill, 1987).
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4 Fourier Transform
of Tempered Distributions

Plancherel’s theorem, characterizing the image of L? under the Fourier
transform, played a major role in the last section. Although we hardly
considered the spaces WP (s integer, p # 2), the systematic use of the
Plancherel isomorphism enabled us to study the spaces H* = W2. In Sec-
tion 5, we will study pseudo-differential operators by restricting our atten-
tion to their action on the classes H®, where we will again use the Plancherel
isomorphism.

In this section, we characterize the image under the Fourier transform of
the space S(R") of infinitely differentiable functions which, together with
all their derivatives, are of rapid decrease. The Fourier transform is an
isomorphism from S(R") onto itself, and S(R") will be given a topology
in which this isomorphism is continuous. The dual of S(R") is the space of
tempered distributions S'(R") of Laurent Schwartz; the Fourier transform
induces, by transposition, an isomorphism from S'(R") onto itself.

Our study of the Sobolev spaces of negative order will parallel that of
S(R") and S'(R™).

4.1 The space S(R™)
(i) Functions of rapid decrease

Definition. A continuous function f on R" is said to be of rapid decrease
if, for any integer m,
(1 +[lzl>)™f(z) = 0 as |lz|| = oo.

The space of functions of rapid decrease is denoted by Cpo(R") and
equipped with the following sequence of norms:

1fllmo = ma (1 + lzI)"1(z)].

Coo(R") is thus a vector subspace of Co(R"), the space of continuous
functions which vanish at infinity. Moreover,
Coo(R™) = {f € Co(R™) : || llm0 < +00 ¥m}.

We define
(ii) S(R")={f€Coo(R"):9f € Coo(R"), VYg=(aq,...,qn),
where

0l f(z)
(8z1)9r ... (9z™)9n’
and this derivative is assumed to exist in the elementary sense. In other

words, f is infinitely differentiable and all its derivatives are of rapid de-
crease.

oUf =
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(iii) Norms on S(R")

A countable family of norms is defined on S by

fllm.r = sup |0 flim,o-
lgi<r

These norms can be used to give S(R") a metrizable topology, with
distance defined by

d \ = 2—(r+m) "f“m.r ,
(10 = 3 2 i

dif,f) = df - f,0).

(iv) D(R") is a dense subset of S(R")

Let ¢ be an element of D(R") such that ¢ = 1 on a neighborhood of zero.
Set @n(z) = p(2). If f € S(R"), then d(f, fon) — 0 and fpn € D.

A linear functional / on S(R") is continuous if and only if there exist m,
r, and a constant ¢ such that

N < cll fllm,r-

4.2 Isomorphism of S(R") under the Fourier transform
Theorem (Laurent Schwartz). Let f € S(R"). Then
(i) f € L! and the Fourier inversion theorem can be applied:

f(z) = / f(t)e"'"‘%;-

(ii) f € S(R™) and there ezist constants c,, such that

"f“r.s S Crs "f"r.m-i-s’ where m > n.

(iii) The mapping f — f defines a topological isomorphism of S(R™)
onto S(R"). R
(iv) (1)) = i 0
() (3% £)" &) = —ite f0) A
(vi) If f, g € S(R"), then fg € S(R") and (fg)* = f*3._
(vii) If f, g € S(R"), then f + g € S(R") and (f * g)" = fg.

REMARKS. From now on, whenever there is no possibility of confusion,
S(R") will be abbreviated by S. The Fourier transform on S has all the
right properties: it maps differentiations to multiplications (by —i times the
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variable of differentiation) and vice versa, and convolutions to products and
vice versa.

Proor. If f € S,

Jre () )

This identity can be checked by an integration by parts on the right-hand
side; the variation of the integrated term vanishes because f is of rapid

A
decrease. It follows that ((%ﬁ—) (t) = —-itlf(t), and (iv) is proved. More-
7 of of .
|t1||f(t)| < "EET " < \lzar o since m > n.

(The last inequality uses the fact that (1 + ||z]|2)~™/2 € L}(R™).)
In general, it follows from repeated integrations by parts that @ f(t) =
(—1)l9lt9 £(t), whence |t9£(t)| < /|89 f|lm 0, and finally

(viii) £l < emllFllo,r-
Hence f € S implies f € Coo C L.
Thus the Fourier inversion formula can be applied, and (i) is proved.

Let 97 be a derivative of order g in t. It can be computed by differentiating
the Fourier integral under the integral sign:

270 = [(@te) 1@y = [ ==y (@)
Since z9f(z) € S, it follows from (viii) that
182711 < emll2? () lm.r-
Writing out in detail the norm on the right-hand side gives

129 (@)llm,r = Y 18z f (@) llm.0-

[isr
By Leibnitz’s formula for the derivative of a product,
&(zf) =) CHIz%)(8' " f)(2)-
It follows that ||z9f(z)|lm.r < cmgllfllm+q.r, Whence

Ifllrs < crsll fllmes,r

This proves (ii).
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To prove (iii), we must show that the mapping f — fis surjective. Let
h € S be given, and set h,(z) = /h(t) —itz (2dt)n Then

(iz) hi(2) = m——h(-z),

(2n )'l

and h, € S by (ii). We now compute its Fourier transform.
-~ ) 1 -~ ) 1 -~ )

- iz. )\ = _ tr. A = —iz. A .
hi(X) = / e* hy(z)dz @ / h(-z)e**"dz @ / h(z)e™**"dz

By (i), Tzl = h. This shows that the Fourier transform is surjective. The
inverse transform, given by (ix), is continuous by (ii). Both the isomorphism
S — S and its inverse are continuous: it is thus a topological isomorphism.

Applying the Fourier isomorphism to formula (iv), which has already
been proved, gives (v). R

Since f, g € S C L', 1.6.2 can be applied and (f*g)" = fg. It is clear
that the product of two functions in S is in S: if f € Sand g € S, then
f’" € S. It follows that f*g € S. This proves the first part of (vii), and the
second part follows from (vi) by the Fourier isomorphism. O

4.8 The Fourier transform in spaces of distributions
4.3.1 Notation

Using the notation of Laurent Schwartz, we write S’ for the vector space of
continuous linear functionals on S. &’ is called the vector space of tempered
distributions on R". For example, let 4 € M(R") be such that there exist
l and C for which

(3) lul({z : Izl < R}) < C(llz|1? +1)".
Then [ f(z)du(z) converges Vf € S and defines a distribution in S'.

4.3.2 Operations on S’
These are derived by transposition from continuous linear operations on S.

(i) Differentiation is a continuous linear operation on S. Since

|25, < 1hmren,

differentiation on S’ can be defined by

()= (n ). wes

The left-hand side clearly defines a continuous form on S'.
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(ii) Multiplication by a polynomial P of degree & is a continuous operation on S.
Since
I1P(z)f(z)lm.r < cllfllm+k.s, where c=c(P),

multiplication by a polynomial on S’ can be defined by
(P£,1) = (f, P).

(iii) S is an algebra: the product of two functions in S is a function in S. That
S’ is an S-module follows from the formula

(hf,l) = (f, M), Vf €S,
where | and h are fixed elements of S’ and S, respectively.

4.3.3 The weak topology on S’
Definition. A sequence I, € S’ is said to converge weakly to lo if

(f’ ln) converges to (f’ lo), Vf € 8.

Proposition. The operations defined in 4.3.2 are continuous in the weak topology
on S'.
In particular, if l, — lo weakly, then

[/l

Bl

In other words, the differentiation operator is a continuous operator on S in the
topology of weak convergence of sequences.

i}
o

PROOF. We prove this for differentiation:

(1) =~ ()

Since 3’24 € Sif f € S, the right-hand side converges to <—%,lo>. o

4.3.4 Theorem (Laurent Schwartz). Let a mapping Fg' : S’ — S’ be
defined by setting ~
(f,.Fst) = (f,1).

Then F g+ is an isomorphism from S’ onto S’, mapping weakly convergent
sequences to weakly convergent sequences.

Moreover, F o+ can be restricted to L' and L? by means of the inclusions
L' c §', L? C §'. The restriction of Fgr to L' gives the Fourier integral;
the restriction of F ¢ to L? gives the Fourier-Plancherel transform.

Finally, the inverse of F g is given by

fg? (v)=Fg (@), Vues'.

REMARK. If u is a positive measure satisfying 4.3.1(i), F g(u) is defined
even though the integral 7i(t) might diverge for every t.
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PROOF. Fixing | € S’ and setting

o(f) = (F.1),

we obtain a linear functional on S which, as the composition of continuous map-
pings, is itself continuous. Hence there exists I} € S’ such that o(f) = (f,h).
Let

h=Fg(l).

Since f — f is an isomorphism of S onto S, its transpose F g is an isomor-
phism from &’ onto S’. Moreover, by Parseval’s relation (cf. 2.6),

(Fiu) = (f,8), VfeS, VuelLl.

Hence F g is an extension of the Fourier integral on L'. The same result holds
on L2

Finally, the inversion formula for F g is proved by transposing the inversion
formula on S. O
4.3.5 Support of a distribution

Let | € S'. We say that | is zero on the open set O if [(p) = 0 for any
¢ € S(R") such that supp (¢) C O. Differentiable partitions of unity can
be used to show that there exists a largest open set {2 on which ! is zero.
The complement of Q is called the support of L.

4.3.6 Sobolev scales of distributions

For a fixed positive real number s, let D(R") be given the H~* norm
defined by

lol-+ =sup [ ofds, where fe&H', Iflmn <1.

Since D is dense in H?®, ||¢||z-» = 0 implies that ¢ = 0.
Using the notation of Sobolev, we let H~*(R") denote the completion
of the space D with respect to the H~2 norm.

Theorem (Sobolev). The Fourier transform extends from D to H™*® and
realizes an isometric isomorphism from H~® onto L*(R"™, u,), where du, =
(1 + [|¢)|2)~2at.

PROOF. If f € H?, then f € L? and the Fourier-Plancherel isomorphism gives

/ T = [ FOTFF(B)dt.
R" R"

Hence

ol = sup / o(t)o(t), with / (P (L + 11?)de < 1.
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By the Cauchy-Schwarz inequality,

| / awmu'

| / )1+ 167) (1 + 1] )“”-u)dtl

t 2 1/2
[ 28] s

1/2
lellgr-o < [/ﬁ(t)emﬁ)—,] .

Equality occurs when v(t) = c(t)(1+ ||t[|>)~*, with the constant ¢ determined
so that ||[vjjy =1. D

INA

whence

4.3.7 Comparison of the two theories
(i) Proposition. For every s >0, H~*(R") c S'(R").
PROOF. S(R") C H*(R"). Moreover,
1fllmr 2 1fllrs i 728, m> 2.
Let § € H™°. Then 0 defines a linear functional on H* and

0N < cliflls < clliflims VfEH.

Hence 6 is continuous on H*® if H® is given the topology induced by that of S.
Restricting 6 to S gives a continuous linear functional #; on S and 6 — 6, defines
the desired map H~* — §'.

This map is injective: D is dense in H®; a fortiori, so is S; thus a linear func-
tional on H* that vanishes on S is identically zero. O

(ii) Proposition. Let! € S’ and suppose that | has compact support. Then
there ezists p such thatl € H-P(R").

PROOF. There exists a pair of integers m, r such that
LA < cllfllms VS e SR?).

Let ¢ € D(R") such that ¢ = 1 on the support of I. Then I(fy) = I(f),
whence |I(f)] < cll¢f|lm.r. But

lefllm,r < cli@limell fllwe.

Moreover, by the corollary to the trace theorem, [|f|lr= < c||fllys if
s> % and || fllwe < c||f|lge+-. Hence

O < cllfll o+

Thus | extends to a continuous linear functional on H**", whence | €
H-*T". D
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5 Pseudo-differential Operators

The Fourier transform on R" diagonalizes linear differential operators with
constant coefficients. This property leads to representation theorems for the
solution of the homogeneous equation as a limit of sums of complex expo-
nentials, as well as existence theorems for the nonhomogeneous equation.
These theorems, due to Leon Ehrenpreis and Bernard Malgrange, use the
Fourier transform in C" as a fundamental tool.

Complex-analytic methods are needed to prove these theorems, which
are naturally formulated in the context of Laurent Schwartz's theory of
distributions.

To obtain such general results, we would need not only to study locally
convex topologies on spaces of distributions and duality between locally
convex spaces, but also to prove minimum modulus theorems for holomor-
phic functions of several complex variables. All these methods originate in
different currents of thought from those we have followed up to now.

We will study differentiable operators with variable rather than constant
coefficients, and on bounded open subsets of R" rather than on all of R". In
physics, differentiable operators with variable coefficients invariably appear
when an inhomogeneous medium is considered.

At first glance, Fourier analysis seems to have no means of obtaining re-
sults in this setting. It was thus a striking result when Alberto Calderon, in
1957, introduced an “infinitesimal Fourier transform on the tangent space”,
which assigns a “symbol” to an operator and thereby embeds differential
operators in the wider class of pseudo-differential operators. In this class,
one introduces an infinitesimal symbolic calculus which consists of multiply-
ing symbols. Calderon’s symbolic calculus theorem states that the symbolic
calculus corresponds to the composition of operators modulo regularizing
operators, i.e. with the gain of one derivative.

The pseudo-inverse of a differential operator can be explicitly constructed
in integral form.

This section ends with an application of the pseudo-inverse, in the proof
of the elliptic regularity theorem.

Pseudo-differential operators are a basic tool of the theory of partial
differential equations. The spectral pseudo-decompaosition they effect, and
the integral estimates they entail, make up, to some degree, the extension
of Sections 1 to 4 of this chapter.

5.1 Symbol of a differential operator
5.1.0 Notation

In order to distinguish clearly between the variables € R" and ¢t € R" of
the function f(z) and its Fourier transform f(t), we set R" = E, where E

is an n-dimensional vector space over R, and write its dual as E. The dual
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pairing is denoted by
(z,€) or .6, wherez € E, €€ E.

For a fixed choice of volume measure on FE, the Fourier transform is written
Fle) = / f(@)e"€dz, where fe L\(E).
E
The volume measure df on E is fixed so that, on L'(E)Nn L?*(E),

[ (@) Pdz = /Alf(ﬁ)l"df-
E E

Similarly, if ¢ € A(FE), the Fourier inversion formula is written

(i) o(z) = /j(&)e“"‘d{-

The two measures dr and df are called associated. The Fourier-Plancherel
transform is an isometry of L2(E) onto L2(E). We observe the convention
of choosing a basis for E in such a way that the associated volume element
is equal to 1. Under these conditions, we are led to define two bases e; of
E and e* of E as Fourier-dual if

(ej,e¥) = 2n if k=74
(ej,e¥) = 0 if k#j.
Let £(E) be the vector space of infinitely differentiable functions on E,

and let D(E) be the subspace of £(E) consisting of functions with compact
support. We will consider differential operators of the form

(i) L=Y" am(z)™,
Im|<s
where m = (m,,...,m,) denotes a multi-index, that is a system of n non-

negative integers. Let |m| = m, +...+m,, let 8, = 8/9z!,...,0, = 8/0z",
and let 9™ = 9™ ...d7. The coefficients am(z) will be “sufficiently dif-
ferentiable” functions of z. If L is not the zero operator, the largest |m|
such that a,, # 0 is called its order.

Given ¢ € £(E), we define

(Le)(z) = Y am(2)(@™¢)(2).

Im|<s

If a,, € E(E), then L defines a linear operator from £(E) to £(E). The
symbol of the operator L is the function defined on E x E by

(ii7) oL(z,€) = e Lpg(z), where g(z) =e=¢,
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Writing this out in a basis,

(iv) o1(2,6) = ) am(z)(=i€)™ ... (=in)™.

The symbol is thus a polynomial in £ for every fixed z. The advantage
of (iii) is that it is independent of the choice of basis, while (iv) appears to
depend on the choice of basis.

A differential operator can evidently be reconstructed from its symbol;
it suffices to write the symbol, in a basis, as a polynomial in £, and to
substitute i9 for & in the monomials. This elementary calculation can be
replaced by an integral expression, which has the immense advantage of
being applicable to functions o(z,£§) more general than polynomials in §.

5.1.1 Theorem. Let L be a differential operator on E with symbol o (z,§).
Then

@) (Ly)(z) = /Eam, OP(E)e=4de, Vp € D(E),

where p(€) = / o(z)€e=dx denotes the Fourier transform of .

PROOF. By 4.1(iv), ’D’(E) C S/(E') = S(E), whence @ is of rapid decrease.
Thus o (z,£)$(€) is of rapid decrease and the integral in (i) is convergent.
Moreover, by differentiating the inversion formula

o(z) = /Em)e-“'fde

with respect to 9,, we obtain

(010)(z) = /Ea(s)(—is,)e-**fd{,

and more generally
(..o p)(x) = /(_i{l)ml o (—iE)™ P(E)e =L dE.

The theorem follows by multiplying both sides by amn(z), pulling an,(z)
through the integral sign, and summing over m. O

5.2 Definition of a pseudo-differential operator on D(E)
5.2.1 The class of symbols C(83,,0)

Let 3 be a real number and let r be a positive integer. We define a class
C(B8,7,0) of measurable functions g on E x E which satisfy the following
two conditions.
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(i) g has compact support in z; that is, there exists a compact subset K of
E such that

q(z,§)=0 if z¢ K, forany €€ E.
Derivatives with respect to z in E x E are denoted by 7. The functions
q are required to satisfy the following regularity condition.

(i) 11 +1€1)P Bz q(z, I, o (ExB) < +00 for every multi-index n such that
In] <.

5.2.2 EXAMPLE. Let L be the differential operator of order s considered in
5.1.0(ii). If the coefficients of L are in W°, then

O'L(.’t, E) € C(—S, T, 0)'

It is clear from this example that, in the class C(8,r,0), the integer r
corresponds to the regularity of the coefficients and the number —8 to the
order of the operator.

5.2.3 Pseudo-differential operators defined on D(FE)

With a given symbol g € C(3,7,0) and function ¢ € D(E), we associate
the function

(i) (Ayp)(z) = /Eg(x,e)a(e)e-*’-fdf.

The integral converges since, for fixed z, ¢ is of rapid decrease in £ and
g is of polynomial growth in €. Differentiating under the integral sign with
respect to x shows that Agp € W°, and it follows from 5.2.1 that Agy has
compact support. All these observations are trivial; the following theorem
is not.

5.3 FExtension of pseudo-differential operators
to Sobolev spaces

5.3.0 Theorem. Let g € C(8.7 + 1,0) and let n = dim(E). Assume that
8 > — [ satisfies

(2) 0<s<r-n
Then there erists a constant c, such that
(i) lAgpllae < coll@llpge+s, Vi € D(E).

(iii) There ezists a unique extension of Ay to a bounded operator Ag from
H*(E) to H**A(E).
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PROOF. Statement (iii) follows from the density of D(E) in H*(E) and
from inequality (ii).

Since the H® norms can be computed in terms of the Fourier transform,
(ii) can be expressed as an inequality between Fourier transforms. Since
Agp is a bounded function with compact support, its Fourier transform
can be computed. This computation leads to the following lemma.

5.3.1 Lemma.

(i Agoln) = [ Ko(n. 02602,
where

(i) Ko(n.6) = [ o(a.€)* 0z
PROOF.

(‘Z;‘p)(n)=/;ei""(:4g<p)(z)d$=./;se"‘”’dz/i?\g(at,{)@(f)e‘”'fdf.

The double integral [ £x 5 19(2,£)P(€)|d€dz converges: it is bounded above
by

2+ 1EN°9(2. )| oo £ 5, meas (K) [ 1B + €N ~7de,
(ExE) 5

where K’ denotes the support in = of the symbol, and the integral on E
converges because @ is of rapid decrease. Hence Fubini’s theorem can be
applied to reverse the order of integration:

Ao(n) = /Ea(e)de [E oz, €)= de.

Fubini’s theorem guarantees that the integral on E converges for almost
every . Since g has compact support in z, it actually converges for every
£, and there exists a constant ¢ such that

(i13) |Kg(n,€)| < e(1+ ||€]l)~’meas (K").
5.3.2 Estimating the kernel K|

Lemma. Suppose that g € C(B,7 + 1,0) and let ' be the integer defined
byr<2r'<r+1. Then

(3) [Kg(m &)l < (1+ lIEN) 2 (1 + li§ - l®)~".

PROOF. Let {z*} be an orthonormal basis with respect to the metric ||z||.
In terms of this basis, the Laplace operator on E is defined by

Az = i(az* )2'
k=1
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Then ‘ ‘
A,e“" = _"E"2et:.€.

Let A7 be the differential operator on E with constant coefficients de-
ﬁnw by ’ ’ ’ ’
AL =(1-4A) =1-rA+---+(-1)"A".

Then AL e2(1=8) = (1 4 ||n — £]]2)" &= (=€), whence

Ky(n,O)(1+lIn— €127 = /B olz, £) AT e~y

Since g(z,£) has compact support, we can integrate by parts and turn
derivatives of the exponential into derivatives on g. Thus

1+ In =€) Ko(n9) = [ (A g(a, )0z,
and (i) follows by 5.2.1(ii).

5.3.3 Proof of the extension theorem

(i) Lemma. Let f € L?(E) and let F(f) denote the Fourier transform of
f. Then f € H?® if and only if F(f)(€) = (1 + ||€ll) 2k (&) with k € L?(E).

PRroOF. Cf. 3.5.1. O
(i) Lemma. Let Ko (n.€) = K(n,) (4g)" (1 + i) =2. Let

Gonn) = [ Rym )1k
Then 5.3.0(ii) is equivalent to the inequality
IGo Sl ag) < clfllas)y VS € LHE).
PROOF. By 5.3.3(i) and 5.3.1(ii). O
(iii) Lemma. _
|Kg(n,€)| < e(1+ (1€ = nl|?)~"+4.
PROOF. This follows from the inequality

1+Ilnll)' . e
(Fi) <z +m-ae)

which is proved by considering the following two cases:
(@) lInll < 2J|€]l.- Observe that the left-hand side is less than or equal to 2°.
(b) lInll > 2||¢|l. Observe that 1+ [l <1+ 2] — |l O
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(iv) ConcLusioN. To prove 5.3.0(ii), note that |G, f| is bounded above by
replacing K with an upper bound for |K |. Using 5.3.3(iii), it must be

shown that
1£(€)I
“/ T+ 1E - nipy 7%

The left-hand side can be written formally as |f| * u, where u(§) = (1 +
lg]IZ) =" +e/2.

Next, —2r' + s < s — r < —n by 5.3.0(i), whence u € L. Finally, using

1.8.2,
1% u e < llullzal flize.0

< clfllzag)-
L2*(E)

5.4 Calderon’s symbolic pseudo-calculus
5.4.0 Motivation

The Fourier transform maps a differential operator L® with constant coeffi-
cients to multiplication by the symbol o10(£). (The hypothesis of constant
coefficients is reflected in the fact that the symbol no longer depends on z.)
Thus the composition of constant-coefficient differential operators L° and
MO — that is, the differential operator Q° = L°M°® — corresponds to the
product of symbols 6go = 000 p0. The differential operators with constant
coefficients form a commutative algebra for which the Fourier transform
makes possible, to some extent, a spectral theory.

The differential operators with variable, but infinitely differentiable, co-
efficients also form an algebra: two such operators can be composed. But
this algebra is no longer commutative.

For example, consider the differential operators L = r! b%’ and M = 3%;
on R. Then

d\? a ,(08)\ d
LM =z (a l) , ML—5£T+I (6—$T> , and LM—ML—-a?.

Commutativity has been lost. Nevertheless, the commutator LM — ML
is an operator of order 1, while the product is an operator of order 2.
One might say that commutativity is preserved, modulo operators of lower
order.

5.4.1 Introduction to the classes C(8,1,1)

A subclass C(8,,1) of the symbols C(8,r,0) is defined by imposing the
following additional axiom:

(3) (1 + €D+ (O 0a) (@, )l o g 5, < +00,  Vim such that [m] < r.

Similarly, a class C(3, r, s) could be defined by differentiating s times with
respect to £ instead of once, and replacing 8 by 8 + s. These classes would
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appear in computing multiple commutators; such computations would arise
from taking limits that we have held fixed.

Pseudo-products

Let p and g be the symbols of the pseudo-differential operators A, and
Ag. The pseudo-product of A, and A, is the operator whose symbol is the
product of the symbols. This operator is written A,0A, and, by definition,

With the formula for the derivative of a product, it is easy to verify that
(ii) if g € C(B,7,0) and h € C(#',7,0), then gh € C(8 + B, 7,0).

The pseudo-product is a commutative operation and therefore cannot cor-
respond to the composition of operators. However, it does give an approx-
imation.

5.4.2 Calderon’s commutation theorem. Let p € C(8,2r + 2,0) and
let ge C(B',r +1,1). Suppose thatr > 3’ + 1. Set

R = AjAp — A,DA,.
Then, for s such that 0 < s<n-—r,
(i) R: H*(E) — H’+B+ﬁl+l(E)
and there erists a constant ¢, such that

(ii) "Rf"l-l'+ﬁ+5’+l < Ca“f"l-l' .

PROOF. Since D(E) is dense in H*, it suffices to prove (ii) when f € D(E).
As in the extension theorem, we take the Fourier transform of both sides
of the inequality. For f € D(E), let

Aot = A5 = [ Kyl ©)F €.

The kernel K, was computed in 5.3.1.
The proof of this theorem will require several lemmas.

5.4.3 Lemma.

(i) (Ao = [ GasMeFQ)de,  uhere

(i) Gop(A€) = /Edu / /E bz 4 by €)a(2,€ = p) PR ENah ds.
PRrRoOF. Composing the kernels gives

Gap(M6) = /EKq(A, MK p(n,£)d.
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Replacing K, and K, by the expressions given in Lemma 5.3.1,
Gop = /Jn / p(z,£)q(z,n)e*E-+1=Ndg 4z,
E E?
Setting = z+h and z = z in E2, and n = £ — p in E, we obtain
Gop = /Adu / p(z + h,€)q(z, € — p)e#h*+=€-Ndz dh.0
E E?

5.4.4 Lemma. Let O be a compact subset of E containing the supports of
p(z,.) and q(z,.). Then there ezists an even function u € D(E) such that
u(zy —xz2)=1ifz), 220 €0,

(i) Gop(ME) = /Ed# / /Ezp<z+h,aq(z,e—u)e"‘“-*’uw)e*""dh dz,

and

(4) 1= /E dp [ /E u(h)e‘“"dh].

PROOF. Let

O,={yeE:y=z —x, z; € O}.
Then O, is a compact subset of E containing the origin. There exists a
function u € D(E) equal to 1 on O;.

The right-hand side of formula 5.4.3(ii) is nonzero if 2+h € O and z € O;
that is, if h € O,. Multiplication by u(h) is multiplication by 1; this proves
formula (i).

The second formula is obtained by applying the Fourier inversion formula
to u € D(E) and noting that, since the origin is in O), 4(0) = 1.0

REMARK. We must be careful not to write a double integral in (ii), since Fubini’s
theorem does not apply. Similarly, 5.4.3(ii) cannot be written as a triple integral.

5.4.5 Lemma. (G, p — Kgp)(A, &) = I(A,€) + J(A,€), where
() INE= //E Eﬁ(ﬂ)P(z,E)IQ(z,ﬁ - 1) = q(2,§)]e* ¢ Vdzdp

(i)  J(\E) = /E du /E q(z,& — p)e*€-Ndz [ /E ...dh], and

[ f ...dh] - /E (0(z + h, £) — p(2,£)) 4P u(h)dh.

I~

PROOF. Formulas (i) and (ii) of Lemma 5.4.4 and 5.4.3(i) imply that

I [, 5€" € Vdzdp [ " Ju(h)dh, where
p(z+h,6)q(z,6 — p) —p(2,€)q(2,6) = ], +[ ]; with
p(zvf)(Q(zsﬁ - ”’) - Q(za 6)) and

Q(“'vE = ”‘)(p(z + ha E) - p(Z,E))-

Q
)
-~

1
£
|

,_.
—
-
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Note that the first term no longer contains h; hence the integration in h affects
only e”**u(h), which, since u is even, gives u(x). Thus we have

I6) = [Jiy / ) 1, exp((iz(€ — A))dz.
E E

Since 4 € L', Fubini can now be applied to obtain (i). Integrating the expression
[ ], and applying Fubini to the integral [ [, yield (ii). O

5.4.6 Lemma. Set
o= 6) = [é(q(z,e ) - a2, €))alw)dn,

and let
U(z,8) = p(2,€)g9(2,8).
Then I = K;.

PROOF. Integrate 5.4.3(i) with respect to g, then use Lemma 5.3.1. O

5.4.7 Estimating the integral I

We use the extension theorem 5.3.0 to show that
(%) geC(B +1,r+1,0).

5.4.1(ii) will then imply that pg € C(3+ '+ 1,7+ 1,0).
We first use Taylor’s formula with integral remainder on E to obtain

9(2,€) =f§ (Zka(Z,ﬁy#)Mk) u(u)dp, where
ak(z, € )= [, (Be,a(z. € — tu))dt.

Differentiating with respect to z gives
ooz, €) = X [ (Orau(z. € m)au)und
k
whence, by 5.4.1(i),

l !
G)  10r(g(zE) <c ]E /0 (1+ 1€ = tul)™* =l @)ty

Let v(p) = ||p]| |@(p)]- Then v is of rapid decrease. Set

P, = [a+le-tu) o= [ + [ |
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where A = {u: ||p]l > J!z%ll}. For any integer m,

-m
/ S /]-Av S Con (1 + ‘"-E"l‘l’) .
A t

[ <41 ol

Hence, taking m > 3’ + 1,

Moreover,

(iid) F(t,€) < Cy(1+ €)=,

where the constant C) is independent of t. Integrating with respect to ¢
gives (i). O

5.4.8 Estimating the integral J

We now use Taylor’s fornmla with integral remainder on E. Set
1}
or(2,h,8) = / (O,xp)(z + th,€)dt.
[}
Then p(z + h,€) — p(2,.€) = > h* pr.. Writing ik = O e gives

- / (p(z + h, &) - p(2,)e™ " u(h)dh = i / 3 ok (Bure™* yu(h)dh.
E E

Since p appears only in the exponential terms and we can differentiate under
the integral sign,

(P(z + 1, &) = p(z,))e " ulpdps = Y D V(2,1 8),
E

where
(?) —n(2,p.€) = z'/ (2, h, E)e™ *u(h)dh.
E

Since i and u are sufficiently differentiable in k and u has compact support, it
follows that v, which can be regarded as a Fourier transform in A, vanishes at
infinity together with its first derivative. Substituting into 5;4.5(ii) and reversing
the order of integration, we can thus integrate by parts on E with respect to i,
and we obtain

J(z,€) = Z/Ee”“‘*’dz /;(0,‘.,0)(2,4‘ = W)z, 1, E)dp.
k

Let
ok(2.6) = /Awm.q)(z,e — (e )
E
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Then J = )", K,,. We now show that
(#) g €CB+F +1,r+1,0)

by finding an upper bound for

U= 3 [0 Bl - WO
E

m,,m2

with |m,| + [m2| < r + 1. Since ¢ € C(&', 1, 1),

) OIS e Y [+ ul)™ 10 va(e, Ol
m2 E

(iv) Lemma. There erists a constant c, independent of €, such that

1 %1872 (2, s, AT
(L + IENTIB (2o )] < Gy

where ' is the integer such that r < 2r' <r + 1.

PROOF. Using (i),

/ ((=An + 1) [u(h)OT* (@r (2, h, €)™ #dh = (1 + ||ul|?)” 872k (2, s, h).
E
The inequality follows, with

¢ = meas (K)|[(—An + 1)" [w(h)O7 @k(z, #, h)| o 5. -

Here K is the support of p in z.
The following lemma, 5.4.9, together with (iii), (iv), and the hypothesis that
r> @' + 1, imply that

|Uk(2,8)] < c(1 + ||5||)“"(1 + ||£")-B'—|_
That is, (ii) is proved, and with it the commutation theorem 5.4.2. O

5.4.9 Lemma. Let r be a positive number and let
he()=Q+|nl)"", where ne E, dimE=n.
Then, if r > n and s > 0,
hy * hy < ¢(r,8)he, where t=inf(r,s).

PROOF. Let

1 1
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where A(n) = {A: 3llnll < [IAll < 2linll}. Then

1 c
<maxseac(m | ————— Vhsllpr < —————  and
/A"'(n)_ reastm (""""" + l)') Whrller < a+mn: "

1
<maxaea(n) e 11 amTa(ha)lles,
At €A(n) (l+"A|I) I (m)Tn\Ra)liL

where 7 denotes the translation operator.
(i) If s > n, then ||1 o) Tn(hs)llz1 < l[hsllLr < +00. Hence

1
<¢crm—————
/A(,,, S CTT I

h'- * hp S c(hr + ha) S Ch¢~
(ii) If 8 S n, then "lA(q)Tn(ha)"Ll S "il"“<2"€“ hd = C(l + "6")"-’ and

and

hr#hy < chy +c(1 + [l€1)"7°7" < c(hs + howr—n).

The conclusion follows by noting that s + r — n > s, whence h, * h, < ch,. Since
s < n < r, the lemma is proved. O

5.5 Elliptic regularity
5.5.0 Definition. Let L be a differential operator defined on an open subset
O of R™:
L= Z am(z)0™.
Im|<d

Let o1 (z,&) be its symbol. L is said to be an elliptic operator if, for every
compact subset K of O, there exist two constants c,, c; depending on K
such that

(@) loL(z,€)l 2 c1lléll” if z € K and if JIE]l > c..

(ii) EXAMPLE. Consider the Cauchy-Riemann operator on R?,

-9 .
~ 9!

. 0 .
Ly iz3 (where i = v-1).

Then
oL,(§) = -1+ & and |oL,(8)| = [I€]l-

(iii) ExaAMPLE. On R", consider the operator
L=~ a"(z)dd, + C*(x)d + q(z),
where the matrix a;, is symmetric and positive definite. Then

oL, (z,6) = Y a¥(z)ex; — iC*(z)éx + q(2).
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For ||€|| sufficiently large, the quadratic form dominates the first-order
terms and L, is elliptic.

5.5.1 Theorem. Let L be an elliptic operator of order d defined on the
open set O. Suppose that the coefficients of L are functions in W32, ,,
where r > d+ 1, r > n. Let f € HJ (O); then Lf is well defined and
Lf € L2 (O). Under these hypotheses, the following two statements are
equivalent:

(2) Lf € H,.(O), where 0<s<n-—r.
feHZ40), where 0<s<n-—r(i)

PROOF. It is trivial that (ii) = (i).

In order to prove that (i) = (ii), we construct a local pseudo-inverse of L.
Here pseudo-inverse means an inverse in the sense of Calderon’s symbolic
pseudo-calculus, and local means on a compact subset of O. Let O, be an
open set such that O; C O. Let v and ¥ be elements of D(O) such that
¢ =10n0,; and ¥ = 1 on the support of p. Let L, = oL, u = Lf, u; = pu,
and f; = ¢f. Then u, € H*(E), fy € HY(E), and pL(¥f) = ¢L(f) since
1 = 1 on the support of p. Hence

(i) Llfl =1up.

Let o,(z,€) be the symbol of L. Then o, has compact support inz
(since its support is contained in the support of ). Let 6 € D(FE) be equal
to 1 if ||€]| < c2(0,)- Set

9(z,€) = ¢(z)(1 ~ 0(€))[oL(z,€)] "
Then it follows from 5.5.0(i) that g € C(d,r,1).
Moreover, let go1, = p, where p(z,£) = ¢*(z)(1 — 6(£)). Multiplying the
two sides of (i) by A, gives
AgLyfi = Aguy = v, where ve€ H**d,
Set 6(z) = 8(~z). Then
(Ap1)(@) = P (@)fr(z) = (B % fi)()].
By the commutation theorem (5.4.2),
ALy =A,+R, where R:H* — H**!.
Since 2(z)(6 * f1)(z) € D(E), it follows that

(i) O*fi+ Rfy =W, with W e H**4(E).
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Rfi € H¥! since f, € H? thus @%f; € H*! if s > 1. As this is true for
every ¢ € D(0),

fr € HEY0), or fy € HEY(0).
This last relation holds for every ¥; hence f € H,‘f,‘c* 1(0), and we have
gained a degree of differentiability. Working backwards, we conclude that

fi € H3*! and therefore Rf € H4+2.
Substituting into (ii) gives

©*f=W - Rf, with WeH* and Rfe H*2

Hence, if s > 2, f € H%+2(0,); as this is true for all O,, we conclude that
f € Higc(0).

Substituting again into (ii), we find that ¢f, € H?+3(E) for s > 3,
and hence that f € H23(0,). As this is true for all O, it follows that
f € H}3(0). Hence

(¥f) € H**(E) and R(yf) € H*(E).

Substituting a third time into (ii) gives, as before,

©*f € HY(E) if s>4.

We continue this procedure until forced to stop, when d+ j > s+d. The
last possible step gives

P*f € H**4(E), whence fe€ H:t%(0).0

REMARK. With appropriate hypotheses on the differentiability of symbols,
it is possible to let pseudo-differential operators act on Sobolev spaces of
negative order and obtain the following improvement of the elliptic regular-
ity theorem (5.5.1). Let L be an elliptic operator of order d with infinitely
differentiable coefficients, and let s be a real number. Then Lf € Hj,_ im-
plies that f € Hl’otd.



IV

Hilbert Space Methods
and Limit Theorems
in Probability Theory

1 Foundations of Probability Theory

1.1 Introductory remarks on the mathematical representation
of a physical system

Before we introduce the notion of probability, it seems advisable to describe
the type of mathematical model used to represent a physical system.
Representations can be given from two distinct points of view:

o the point of view of essences, or
o the point of view of phenomena.

The point of view of essences, generally that of the pure mathematician,
consists of thinking that the physical system can be perfectly known. The
space of all possible states is introduced, and a state is a point in the space
of states. This point of view is, for instance, that of rational mechanics: the
state of a system of n physical points is completely determined by a point
in R®" (position and velocity of each of the particles).

The point of view of phenomena, generally that of the experimental
physicist, consists of observing a few facts which occur in a physical system
so complex that the physicist, at the outset, concedes that he will never
understand its basic structure. For example, the physicist can use thermo-
dynamics to analyze the phenomena of a gas without having to determine
the state of all its molecules.
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The mathematical model corresponding to a phenomenological represen-
tation is based on a logical calculus. The physicist introduces the set B of
all events that he will be in a position to observe in studying the physical
system. B is given the structure of the logical calculus, in which

e A, + A; denotes the occurrence of the event A, or the event A,;

e A).A; denotes the occurrence of both the event A, and the event Aj;
and

e { denotes the impossible event and 1 the sure event.

The set B of all events thus forms an abstract Boolean algebra. (See I-1
for the definition of Boolean algebras of sets.)

The phenomenological point of view, initially of more modest scope than
the point of view of essences, is much more adaptable to describing gains
in knowledge. Indeed, a physical system described twenty years ago by a
Boolean algebra By of events can be described today, after a more detailed
ana.lysns, by a Boolean algebra B;. All the events that appeared twenty
years ago in By will appear in B). Thus there is an injective mapping

By — B,

which commutes with the operations of the logical calculus and permits
By to be identified with a subalgebra of B,. Progress in understanding the
system is described by a sequence of Boolean algebras,

By—B,—=B;—=B3—...,

where the arrows are injective homomorphisms of Boolean algebras. This
sequence will give progressively more detailed representations of the phys-
ical system, although it may never arrive at a final representation that
would correspond to complete understanding, beyond the reach of the ex-
perimenter.

1.2 Agziomatic definition of abstract Boolean algebras

A Boolean algebra is a set B together with two commutative and associative
operations, written
AUA" and ANA.

Each of the two operations is assumed to be distributive with respect to
the other; that is,

AU(BNC)

(AUB)N(AUC) and

AN(BUC) (ANB)U(ANC).
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We assume further that there exist two elements @ and 1 in B such that
AUud=A, An0=0, AUl=1, and AN1l=A4,
and that there exists a mapping A — A€ of B into B such that
AUA° =1, ANA°=0, and (A°)°=A.

Using the commutativity and associativity of U and N and the distributivity
of each of these relations with respect to the other, it is easy to verify that

(AUB) = A°NB°, (AN B)° = A°U B".

Finally, 1° = 0 and 0 = 1.
Associated order relation

Given a Boolean algebra B and A, B € B, we say that A implies B, and
write A< B,if ANB = A.

It is easily verified that < is an order relation on B. With respect to this
ordering, 1 is the largest element and @ the smallest element; that is, for
any A€ B,0<A<1

Using the commutativity of U and N, we note that AUB and AN B are,
respectively, an upper and a lower bound of A and B. In fact, AU B is the
least upper bound of A and B and AN B is the greatest lower bound of A
and B. Let us show this, for example, for AU B. Let C be an element of B
such that A < C and B < C; then, by definition of the order relation,

(AUB)NC =(ANC)U(BNC)=AUB, and AUB<C.

1.8 Representation of a Boolean algebra

How to pass from the point of view of essences to that of phenomena is
clear.

If 2 is the space of states of the physical system being studied, we asso-
ciate with an event A of this system the following subset of Q:

A’ = {w € N : the event A is satisfied by w}.

The operations of the logical calculus correspond to taking unions and
intersections in the set P(2) of subsets of 2. With these two operations,
P(R) is a Boolean algebra. The following statement summarizes our obser-
vations.

1.3.1 The data of a phenomenological representation of a physical system
of which the space of states {2 is known are equivalent to the data of a
Boolean subalgebra of P(12).
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The converse, that every abstract Boolean algebra can be represented as
a subalgebra of P(f2), is proved in the following fundamental theorem.

1.3.2 Stone’s theorem. Let B be an abstract Boolean algebra. Then there
erist a compact space Q) and a representation identifying B with a Boolean
subalgebra of P(?) of subsets that are both open and closed in Q.

PROOF. The proof of Stone’s theorem is clear when card(B) < oo. In this
case, we define atomic events as those that are minimal in B with respect
to the relation <; then € is the set of atomic events.

In the general case, we introduce the notion of a filter on B. A filter F is a
nonempty subset of B such that

A, A2 € F implies AN Az €F;
A €F, Ay < A2 implies Az € F;
and
0¢F.
The inclusion relation on the set of subsets of B defines an order relation on
the set of filters:
Fi1>F2 if A€ F,implies A€ F,. (F) is then called finer than F3).

An ultrafilter is a filter U of B such that F = U for every filter F such that
F > U. Zorn’s lemma shows that, given a filter Fo, there always exists an ultra-
filter & finer than Fo.!

1.3.3 Lemma. Let F be a filter on B and let Ao € B. Suppose that AN Ao # 0
for any A € F. Set

Fao ={Z € B: Z contains a set of the form AN Ao with A € F}.
Then F a, 13 a filter.
PROOF. Clear.

1.3.4 Lemma. A necessary and sufficient condition that a filter U be an
ultrafilter on B is that, for any Ay € B, either Ao € U or A EU.

PROOF. Suppose that U is an ultrafilter. If Ao ¢ U, then it is impossible that
ANAp # 0 for every A € U. Otherwise 1.3.3 would imply that U 4, is an ultrafilter,
necessarily finer than U since Ao € Ua,,; but this is a contradiction. Hence, if
Ao ¢ U and A§ ¢ U, there must exist X, Y € U such that

AoNX =0 and AgNY =0.

From this it would follow that X NY = @, a contradiction.
Conversely, let F be a finer filter than U. Let Ao € F. It is impossible that
6 € U, since this would imply A§ € F, a contradiction. Hence Ao € U and
F=U.QO

!See Bourbaki, General Topology, 1.6.4.
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1.3.5 PROOF OF STONE’S THEOREM. Let Q be the space of ultrafilters on the
Boolean algebra B.
Let a mapping ¢ from B into P(f2) be defined by setting

W(A)={UeQ:AcU}, AeB.

If Ay > Az and A2 € U, then A, € U; hence ¢ is compatible with the order
relations, and is thus a Boolean algebra homomorphism. Let us show that ¢ is
injective. Suppose that A # B; then either AN B # @ or A°N B # 0. Suppose,
for example, that AN B¢ # 0, and consider the filter

F={X€B:X>AnB}.

Let U be a finer ultrafilter than F. Then U € @(A) and U ¢ p(B).

To endow 2 with a topology, consider 2, = 2B , the product of infinitely many
sets of two elements with the factors indexed by the set B. Then Q, is the product
of compact spaces and hence is compact. Let a mapping ® : Q@ — Q, be defined

by setting
oU) = {1y(A)} aes,

where 1;,(A) = 1 if A € U and is zero otherwise. ® is clearly injective; thus
can be identified with a subset of 2;. We now prove that

1.3.6 () is a closed subset of Q.

PROOF OF 1.3.6. Let Q) be identified with the set of functions f defined on B
and with values in {0,1}. We will need the following lemma.

1.3.7 Lemma. f € &() if and only if the following conditions are satisfied for
any A, A, A", A" € B:

f@ = o

f(A) < f(A) if A<A/

f(A"n A™) = inf(f(A"), f(A™)),
f(A) + f(A%) = 1

PROOF. The first three conditions simply restate the fact that ®(/) is a filter,
and the fourth that U is an ultrafilter.O

Now let

La={f€M:f(A)+ f(A°) =1}

Then L4 is a closed subset of §;, and NaegLa is a closed subset of ;.
Proceeding similarly with the other conditions of 1.3.7 completes the proof
of 1.3.6. O

With the topology induced by Q,, ®(2) is compact; pulling back this
topology makes §2 a compact space.

Fix Ay € B and define fo(U/) = 1;4(Ao). Then

0(Ao) ={U €Q: folU) =1}.

Since fy is continuous, ¢(Ap) is a closed subset of 2. But (¢(Ao))¢ = ¢(A§)
is also closed, so ¢(Ap) is an open and closed subset of 2. This completes
the proof of Stone's theorem. O
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1.4 Probability spaces
1.4.1 Definitions

A probability space is a measure space (X, A, p) for which the measure p
has total mass 1: u(X) = 1.

Following the usual practice in this field, we denote X by Q and u by P.
Thus a probability space is written in the form (2, A, P).

A measurable set A € A is sometimes called an event. The measure of the
measurable set A is called the probability of A and written P(A). Clearly
0<PA)<1

P is called the probability measure.

A property that is true a.e. on Q2 is called an almost sure (or a.s.) property.

1.4.2 Transporting a probability measure

Let (2, A, P) be a probability space and let (Y, B) be a measurable space.
Let @ be a measurable mapping from Q2 to Y:

® € M((2, A); (Y., B)).
Then a probability measure P, is defined on (Y, B) by setting
1.4.3 Py(B) = P(®~!(B)).

Axioms I-1.0.1 to 1.0.3 are easily verified. Moreover, P,(Y) = P(Q2) = 1.
P, is written

144 P, = &,(P)

and called the direct image, or simply the image, of the probability measure
P under the mapping ®. (®. P is sometimes called the measure induced by
®onY.)

1.4.5 Proposition. Let (2, A, P) be a probability space, let (Y,B) be a
measurable space, and let &, ' € M((R,.A));(Y,B)). If ¢(w) = ®'(w)
a.s., then ,P = & P.

PROOF. Let Ag = {w € N : ®(w) # ¥'(w)}.

Then P(A¢) =0 and P(A) = P(AN A§) VA€ A.

In particular, P(®~1(B)) = P(®~}(B) N A§) for any B € B. f w €
®~1(B) N Ay, then &' (w) = ®(w) € B, whence &=(B) N A§ C (¥')"!(B),
or

P(®~'(B)) < P((®")"'(B)).

Since the argument is symmetric in ¢ and &', the opposite inequality
also holds. O

1.4.6 Corollary. The direct image ®.P depends only on the equivalence
class of ® in Mp((Q, A); (Y, B)).
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1.4.7 REMARK. In Chapter I, we never found it necessary to change the
measure space, which was fixed once and for all. In probability theory,
however, two operations will play a fundamental role:

(i) transporting a probability by a measurable mapping; and
(ii) restricting a probability to a sub-o-algebra .

1.5 Morphisms of probability spaces

1.5.1 Definition. Let (2, A, P) and (', A’, P’) be probability spaces and
let
be MP((Q) A)t (Q" AI))‘

If ®,P = P’, ® is called a morphism of probability spaces and is said to
preserve probabilities.

1.5.2 The inverse image operation
Let ® € M((9,.A4);(2,A")) and let (Y, B) be a measurable space. With

u' e M((9, A'); (Y, B))
we associate P*u’, its inverse image under ®, defined by
(2°u')(w) = (u' 0 ®)(w).
Then
(®*u') € M((R, A); (Y, B)).

(®*u’ is sometimes called the pullback of u’.)
If we also assume that (£2,.4) and (', .A’) are equipped with probability
measures P and P’ and that ® is a morphism of probability spaces, then

(i) The equivalence class of (®*u’) in My((2,.A);(Y,B)) depends only on
the class of ' in Mp: (¥, A'); (Y, B)).

Let o', u} € M((', A"); (Y, B)) and set

(ii) A = {w: (2*u)(w) # (P°u})(w)} and A’ = {w' : v’ (W) # uj(w)}.
Then A = ~1(A').

P(A) = P(A') =0 since P’ = 9, P.
By abuse of language, ®* will denote the inverse image mapping induced
by ® between the spaces Mp and Mp:.

(iii) Let ®, &, € M((Q, A); (', A")) and suppose that & = &, a.s. Then d*

and &} define the same mapping from Mp:((SV, A"); (Y, B)) to Mp((Q, A);
(Y, B)).
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If not, there would exist v’ € Mp/ such that
A={w:®*u # ®}v'} and P(A)>0.

Let
A ={weN: P(w) # P (w)}.
Then A C A; and P(A;) = 0. But this implies that P(A) = 0, a contra-
diction. O
(iv) Functoriality. Let ®3 = ®3 o ®). Then (®3). = (P2). o (¥1). and
The proof is trivial. It suffices to recall that the composition of inverse
images occurs in the opposite order to that of mappings.

1.5.3 Injectivity proposition. Let ® be a morphism of the probability
space (2, A, P) into (', A', P') and let (Y,B) be an arbitrary measure
space. Then ®* defines an injective mapping

Mp: (¥, A'); (Y, B)) = Mp((£2, A); (Y, B)).
PROOF. Let o/, u} € Mp:((, A'); (Y. B)). Define u = ®*v’, u; = ®*uj,
A={w:u#u}, and A ={v:d #uj}.
Then &~1(A’) = ®(A) by 1.5.2(ii), whence P'(A’) > 0= P(A)>0.0

1.5.4 Dynkin’s theorem (Measurability and functional depen-
dence). Let (,A, P) and (¥, A',P’) be two probability spaces, let &
be a morphism from the first to the second, and let B = ®~'(A'). Then
u € L%(S2, A) can be written in the form

(3) u=u'o®, with u' € LpH(,A)
if and only if the class of u contains a B-measurable function.

PROOF. The forward implication is clear. Conversely, suppose that u is
B-measurable. Then, by 1-6.4.2, there exists a sequence {f,} of simple B-
measurable functions that converges pointwise to u. If B € B, then there
exists A’ € A’ such that B = ®~'(A’); hence 15 = ®*1,4.

This implies that every simple B-measurable function satisfies (i). Hence
Jn =), 0 ®, with v/, € L. (', A').

(ii) We show that u, converges a.s. on €0'.
If not, there would exist ¢ > 0 and A’ € A’, with P'(A’) > 0, such that

sup |u,(w) —ul,(w)|>€, VpVwe A
ma>p

Then u,, would satisfy the same inequality on ®~!(A’). But this would
contradict the a.s. convergence of f,, since P(®~!(4')) = P'(A’) > 0.
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Thus (ii) is proved. Let v’ = limu), € L%,(, A’); then u = lim f, =
u'o®. 0
1.5.5 Corollary. Let ® be a probability space morphism from (2, A, P) to
(Y, A',P') and let B = ®~1(A’). Using *, one can identify L}.(Q', A")
with the subalgebra of L% (S, A) consisting of the B-measurable functions.

PRrRooOF. By 1.5.3 and 1.5.4.

1.6 Random variables and distributions of random variables

1.6.1 Definition. Given a probability space (2, A, P), a random variable
X is a class of measurable functions, that is an element of L} (Q2, A). We
will often write simply r.v.

1.6.2 Definition. The distribution of the random variable X is the direct
image of P under X.
Thus X, P is a Borel measure on R of total mass 1. Hence, by I1-3.1,

(3) (X.P) defines a Radon measure of total mass 1.

1.6.3 Definition. Given a finite set X, ..., X of r.v. defined on the proba-
bility space (2, A, P), their joint distribution is the direct image of P under
the mapping ® : w — R defined by the Xpw), 1<p<Lk.
It follows from 1-2.4.2 and 1-2.3.5 that & € M((R, A); (R*,Bgr,)).
Hence @, P is a finite Borel measure on R* and, by II-3.1,

(i7) ®, P defines a Radon measure on R* of total mass 1.

1.6.4 Let p; be the projection of an element of R* onto its first component,
let 4 be the joint distribution of X,,..., X\, and let u; be the distribution
of X,. Then p; = (p1)aps-

This follows from functoriality, 1.5.2(iv).

1.7 Mathematical expectation and distributions
1.7.0 Notation for expectations

Let (92,4, P) be a probability space and let X € LL(,.4). Then the
mathematical expectation of X is written E(X) and defined by

E(X) = / X (w)dP(w).

The reader should note that the measure P, and the probability space
Q itself, are implicit in the notation E.
In this notation, the L9 norm is written

EQYI)Y = Y]l ze.
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1.7.1 Change of variables

Let (Q, A, P) and (', A’, P') be probability spaces, let & be a morphism
from the first space to the second, and let &* : L%(Q', A") — L%(Q, A) be
as defined in 1.5.3.

Proposition. Let ' € LL. (S, A’). Then u = (®*u’) € LL(R,A) and
E(u) = E(v).

PROOF. Suppose that u’ is a simple function, say v’ = }_ a;1 ;- Then
u= Eakl,‘k, where A; = Q‘I(A;:).

By 1.4.3, P(Ax) = P'(A}), whence E(u) = E(u’).
Let v’ € LL,; then there exists a sequence {u/,} of simple functions such
that
E(v' —u,]) = V' — iy, — 0.

Let up, = ®*u),. Then

llun = umllzy, = E(jun — um|) = E(|lup —up|) =0 as m,n — +oo.

Thus {u,} is a Cauchy sequence in L}. Let v be its limit; then v € LL.
There exists a subsequence {u], : n € o} of {u),} that converges a.e. on
Q. Similarly, there exists a subsequence {u, : n € 7} of {u, : n € 0} that

converges a.e. on 2 to v. Then the relation u, = u;, 0 ® passes to the limit,
and v = v’ o . Moreover, since

E(v) =limE(u,) and E(v') =limE(u),
the fact that E(u,) = E(u},) implies that
E(v) =E(v').0

1.7.2 Computing expectations by means of distributions

Let (2, A, P) be a probability space and let X),..., X be a finite set of r.v.
defined on Q. Let u be the Radon measure on R* that is the distribution
ole,...,Xk.

Proposition. Let ¢ € L, and let Y(w) = o(X1(w),..., Xk(w)). Then
Y €L} and E(YY) = / pdu.
Rk

PROOF. By 1.7.1.

1.8 Various notions of convergence in probability theory

This section consists of two subsections. In the first, we introduce the vocab-
ulary used in probability theory to study concepts that are already familiar.
In the second, we study the new concept of convergence in distribution.
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1.8.1 Vocabulary of probability theory

Let {X,} be a sequence of r.v. defined on the probability space (2, A, P),
and let Y be another r.v. defined on the same probability space.

Definitions

(i) Xn converges to Y almost surely (abbreviated a.s.) if Xn(w) converges
a.e. to Y(w).

(ii) X, converges to Y in mean if

[Xn=Y|lz2 =0, or E(|X,-Y]|)—0.

(iii) Xn converges to Y in mean square if

[ Xn=Yl|lzz =0, or E(X.-Y[?)—0.

(iv) X, converges to Y in probability if X, converges to'Y in measure.
(v) The relations among these different kinds of convergence were studied
in Chapter I.

1.8.2 Convergence in distribution

Let (2, Ay, P,) be a sequence of probability spaces and let (€', A, P’) be
another probability space.

Let X, € L%y, A,, P,) and Y € LO(Y, A', P') be given. We say that
the sequence of distributions of X, converges to the distribution of Y if,
writing

(7) (Xn)ePn=pn and Y.P' =v

for the respective distributions,

(ii) pn converges narrowly to v.

A sequence p, such that

(iii) pn converges narrowly

is commonly, though rather ambiguously, described by saying that

(iv) the r.v. X, converge in distribution.

1.8.3 Ciriterion for convergence in distribution

Theorem. The r.v. X, converge in distribution to the distribution of Y if
and only if

(3) lim E(p(Xx)) = E(p(Y)), Ve € Ck(R).
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PROOF. By 1.7.2, in the notation of 1.8.2(i),

E(p(X,)) = /R pdun and E(p(Y)) = [R pdv.

Thus
/sodu,, — /¢du, Vyp € Cx(R).
That is,
(ii) pn converges vaguely to v.
By 1.6.2(i),

un(R)=1 and v(R)=1;

hence lim z,(R) = v(R), and 1I-6.8 shows that (ii) is equivalent to narrow
convergence. O

1.8.4 Extension to r.v. with values in R™

An ordered m-tuple of r.v. X1,..., X™ is called an r.v. witg values in R™,
or an R™-valued r.v. Such a r.v. is sometimes denoted by X € Mp((R,.A);
(R™, Bgrm)). .

Given ar.v. X with values in R™, its distribution is the joint distribution
of the X* considered in 1.6.3; it is thus a Radon measure on R™.

A sequence of r.v. with vq.luw in R™, say X1,...,Xn,..., is said to
converge in distribution to Xo if the sequence of distributions converges
narrowly to that of Xo. We have the following propositions.

(i) The sequence of r.v. X, with values in R™ converges to the distribution
of Xo if and only if
lim E(p(X,)) = E(p(Xo0)), Ve € Ck(R™).
In this criterion, a compactly supported ¢ can be replaced by a bounded

continuous ¥. The next statement results from letting 1 be a function that
depends only on the first coordinate of R™ and applying 1.8.3.

(i) If X converges in distribution to Xo, then each component XX con-
verges in distribution to X§.

The converse of this statement is false.
1.8.5 Comparison of convergence in distribution
with other types of convergence

Proposition.

(i) A.s. convergence implies convergence in distribution.
(i1) Convergence in probability implies convergence in distribution.
(iis) Convergence in LP implies convergence in distribution.
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PROOF. Let the probability space 2 be fixed and let X,,, Y € L°(Q, A, P).
Assume first that X, converges a.s. to Y. Then Vyp € Ck(R), o(Xn(w))
converges a.s. to (Y (w). Since ¢ is bounded, Lebesgue’s dominated con-
vergence theorem can be applied to show that E(¢(X,)) — E(¢(Y)). This,
with 1.8.3, gives (i).

Assume now that X, converges in probability to Y. By 1-5.2.7, every
subsequence {X,}neo itself contains a subsequence {Xp}neo’ such that
{Xn}neo’ converges a.s. Hence, if ¢ € Cx(R), it follows from (i) that

Jim, E(p(Xn)) = E(p(Y))-

Let 8, = E(¢(Xy,)) and let v = E(¢(Y)). Then every subsequence
{Bn}nes of {Bn} contains a subsequence {Bnp}neo’ that converges to 7.
This implies that lim 8, = «, and (ii) now follows from 1.8.3.

Finally, by 1-9.3.1, convergence in L? implies convergence in probability;
thus (iii) follows from (ii). O

2 Conditional Expectation

2.0 Phenomenological meaning

We now resume the discussion of the principles of probability theory begun
in 1.1.

From the phenomenological point of view, the set of all measurements
an experimenter can possibly make on a physical system is represented by
a Boolean algebra B. The physicist is interested in exhibiting the “laws of
nature” in the context of B; given certain measurements, he would like to
predict the values of others.

There are two kinds of predictions. The first involves a functional depen-
dence. For examnple, in Ohm’s law (that V' = RI), the measurement of two
quantities completely determines the third. The second involves a “corre-
lation” without necessity; for example, a substantial drop in barometric
pressure makes it “likely” that a cyclone is approaching.

The experimenter represents the known information about the physical
system by a subalgebra B’ of B. Given a physical quantity X, he asks himself
the following questions.

(a) Is X determined by the information B'? That is, in terms of 1.5.4, is X
measurable with respect to the o-algebra generated by B'?

(b) If not, the experimenter will try to extract from the information B’
all it implies about X. What is the most likely value of X? Does he risk
making a major error by taking this most likely value as the value of X?
And so on.
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Passing to o-algebras generated by Boolean algebras allows the problem
to be posed as follows:

Given a probability space (2, A, P), a sub-o-algebra A’ of A, and X €
L°(, A, P), can X be approzimated by Y € L°(, A’, P)? (We abuse lan-
guage by writing P for the restriction of P to A’.)

In the next section, we will try to solve this problem by using an ap-

proximation that minimizes the L? norm, i.e. an orthogonal projection on
L2

2.1 Conditional expectation as a projection operator on L?

Let (€2, A, P) be a probability space and let B be a sub-o-algebra of A.
LP(Q, B, P) is abbreviated as LP(B), and so on.

2.1.1 Lemma. Let 1 < p < +00. Then LP(B) can be identified with a
closed vector subspace of LP(A).

PROOF. A B-measurable function is .A-measurable: £°(B) c £°(£2, A). The
same holds for simple functions: £(B) C £(A). Since the probability mea-
sure on B is the restriction of that on A, the integral on the integrable
simple functions E'(B) is given by restriction of the integral defined on
E!(A). Endowing E'(B) with the norm || ||.», we obtain an isometric
mapping from E!(B) to E!(A).

Since E'(B) is dense in LP(B) and LP(2, A, P) is complete, this isometry
extends to an isometry

LP(B) — LP(A).

The image of a complete space under an isometry is complete; hence the
image of LP(B) is complete and, in particular, closed in LP(A).

2.1.2 Definition. EB denotes the orthogonal projection operator from
L?(A) onto L?(B). Given f € L?(A), EB (f) is called the conditional ez-
pectation of f given B.

2.1.3 Theorem (Properties of the conditional expectation).

(i) EB(f) e L)
(i) IEB()I: < 1fllea.

Let B and C be sub-o-algebras of A such that B D C. Then
(iid) ECEB = EC and
(iv) EES) = E
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(v) Let ¢ € L(B). Then EB(of) = vEB(f), ¥f € L*(A).

PROOF. Properties (i) and (ii) follow from properties of the orthogonal
projection.

The inclusion between o-algebras B O C implies, for functions, that
L?(B) > L3(C).

Let f € L?(.A) be decomposed as

f=u+v, with v € (L*(B))* and u = EB(f)-

Then u = w+ h, with h € (L?(C))* and w = Ec(u). Substituting this into
the last line gives

(vi) f=w+(h+v).
By definition, w € L?(C), and since
L*(B) > L*(C) = (L*(B))* c (L*(C))*,

v € (L*(C))*. Hence h + v € (L?(C))*. The decomposition (vi) implies
that w = EC( f). Thus (iii) is proved.

Let Ap denote the coarse o-algebra containing only the two sets 2 and
0. A function ¢ is Ap-measurable if and only if it is constant. (L?(Ap))*
consists of the functions with zero expectation. Any function f € L? can
be written as

f=E(f)la+h, where E(h)=0,
and thus
(vid) EX(f) = E(f)1a.

By abuse of language, we identify the conditional expectation relative to
Ap with the expectation. Then (iv) becomes a special case of (iii).

It remains to prove (v). Let M,, denote the bounded operator defined on
L?(A) by multiplication by ¢. Thus M, : f — ¢f. Since p € L%(B) and
L%(B) is an algebra,

M,(L¥(B)) C L*(B).

Note that M,, is a hermitian operator; that is,

(My(£)lg)Ls = (fIMy(9)) L2

This is just a restatement of the fact that

E((¢f)9) = E(f(v9)), Vf.g€ L*(A).
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Since L?(B) is invariant under the hermitian operator M,, its orthogonal
complement is invariant under M. Thus, if f = u+ v with u € L?(B) and
v € (L3(B))*, then

M,f = Myu + M,v, where (M u) € L%(B), (M,v) € L?(B)*.

That is, EB(M, f) = M,EB(f), and (v) is proved. O

2.2 Conditional expectation and positivity

2.2.1 Proposition. Let f € L%(A), f > 0, and let B be a sub-o-algebra of
A. Then EB(f) > 0.

PROOF. Let B € B. Then, by (v),
E(EB()15) = EEB(f15)) = E(f15) > 0,

where the second equality follows from (iv). Setting v = B f, we have just
shown that

(i) E(vlp) >0, VBeB.

Let B, = {w : v(w) < —n~'}. Since v € L°(B), B, € B; it follows from (i)
that
E(vlg,) 20.

Moreover, E(vlp,) < —n~!P(B,). Hence P(B,) = 0 for all n, and thus
P(UB,) =lim P(B,) =0.0

2.2.2 Corollary. Let f, g € L?(A). Then

(3) f29=EB(f) > EB(g)
and
(i4) EB(f)| < EB(1).

PROOF. Since f —g > 0, we have EB (f—9) 2 0. Furthermore, —|f| < f <
| f] implies (ii). O

2.8 Extension of conditional expectation to L'

Theorem. The operator EB defined on L%(A) in 2.1 has a continuous

extension B , defined on L'(A) and with values in L'(B). This extension
has the following properties:

() EB(f)=f for every fe L\(B).
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(i) 1EB(NNL < 1)1

(iit) If BD C, then eCeB - £c; in particular, EeB - E.

(iv) If € L=(B), then £B(pf) = v€B(f).
PROOF. Let f € L2. Then [EBf| < EB(|f]) by 2.2.2(ii), and hence E(|EB f])
< E(EB (fD)- It follows from 2.1.3(iv) that

EEB(1£1)) = E(f) = IfllL:.
That is,

(v) IEBfllL: < Iflw, VS € L2(A).

Thus EB is a bounded operator when L2(A) is equipped with the L norm.
Since L!(B) is complete and L?(.A) is dense in L!(A), EB can be extended
to an operator from L!(.A) to L!(B). This extension is denoted by eB.

Since EB(f) = f if f € L2(B) and since L2(B) is dense in L'(B), the
operator extended by continuity has the same property; this implies (i).
Assertion (ii) follows from (v).

(iii) and (iv) are obtained from 2.1.3(iii), (iv) and (v), which we extend
by continuity. O

(vi) ABUSE OF LANGUAGE. From now on we use the same notation, namely
EB , for both SB and EB .

2.4 Calculating EB when B is a finite o-algebra

Let B be a finite sub-o-algebra of A and let e,,...,e, be the atoms of B
with strictly positive probability.

2.4.1 Proposition. EB(f) =Y akle,, where ok = piyE(f1e, ).

PROOF. Since EB(f) € L°(B), it suffices to check that f — EB(f) is or-
thogonal to L%(B). Since the 1., form a basis for L°(B), it suffices to show

that
E((f - EB())1.,) = 0.

But
E(fle.) = asE(le.) = aa(P(es))'D

2.4.2 Definition. Let a measure u; be defined on A by setting

ui(A) = ﬁmnek).

Note that px(2) = 1.
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1 is called the conditional probability given the atom ex. With the no-
tation of 2.4.1,

ag = / fdpk.

2.4.3 Proposition. Let B be a finite o-algebra of A, let ¢ be a convex
function, and let f € L'(A), f > 0. Then

o(EB(£)) < EB(o(f)).

PROOF. Retaining the notation of 2.4.1 and letting ux denote the condi-
tional probabilities, we have

EB(o(f) = T hl.., where Bi=[o(f)du, and
oEB(f) = Toler)le,, where ai= [ fdpu.

Since ux has total mass 1, Jensen’s inequality (I-9.2.2) can be applied,
and shows that p(ax) < B. O

2.5 Approrimation by finite o-algebras

2.5.1 Proposition. Let f1,..., fn € L'(A). Then there ezists an increas-
ing sequence By C ... By C ... C B of finite o-algebras such that

IEB £, —EBfills =0 ask— o0, j=1,2,...,n

PROOF. We first consider the case where n = 1, and write f for f,. Let

u=EB (f); then u € L'(B), and hence u is the limit in L' of a sequence
{ux} of simple functions in L!(B). Let B be the o-algebra generated by

the u,, 8 < k; then By C B and u is Bx-measurable. EB*(uy) = ux and
IEB* (ux - w)ll < llug - ullzs, whence

NEB* (u) - EB* (ui)llr + NEB* (ux) — ull.s

BB u —ujn <
< NEB (u— k)l + lluk = ullzs < 2ffu — uellL.

Moreover, EB*u = EB(EB f) = EB*(f) by 2.3(iii). Thus

IEBx £ — EBf|l < 2lu— £l — 0.

This ends the proof for n = 1.

The general case is treated by induction on n. Letting {B}} be a sequence of
finite o-algebras adapted to fa,..., fn, we take By to be the o-algebra generated
by 8;, and By. O
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2.5.2 Corollary (Jensen’s inequality). Let B be a sub-o-algebra of A,
let f € L*(A), f >0, and let  be a nonnegative convez function such that
E([p(f)]) < +00. Then

o(EB(1) < EB(o(f)).
PROOF. By 2.5.1, there exists a sequence of finite o-algebras Bj such that

IEB £ — flls =0 and [EB*(o(f)) - w(f)llLs — 0.

By 2.4.3, p(EB*()) < EB*(o()), or EBx(0(f)) - o(EB*(£)) 2 0.
Since L! convergence preserves positivity,

EB(o(f)) - w(EB(f)) 2 0.0

2.6 Conditional expectation and LP spaces

Let 1 < p < +o00. Then, since L?(A) C L!(A), the conditional expectation
operator EB is defined on LP(A).

2.6.1 Proposition. Let 1 < p < +00. If f € LP(A), then EB(f) € L?(B)
and

(i) IEB(f) s < I1fllLs-
Let p and q be conjugate exponents. Then
) EB(fg) = 6EB(f), VfeLP(A), g€ LY(B).

(iii)
E((EBg)(EB ) = EGEB(f)) = E(fEB(9)), VS e LP(W), g€ LI(A).

PROOF. If 1 < p < +00, the function ¢(t) = tP, t > 0, is convex. Hence (i)
follows (except when p = co) from 2.5.2 (Jensen’s inequality).

It remains to prove (i) if p = co. Given f € L*, we can find a sequence
B of finite sub-o-algebras such that

IEB 5 —EBf||.. — 0.

Using the expressions given in 2.4.1 and 2.4.2,

/fdﬂk

Let vx, be a subsequence of vy = EB: f such that vg, — B f a.s. Then,

since
lok, (W) < (| fll s,

IEB £l Lo = sup < IfllLes-
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(i) holds for p = oo.
Note that (ii) holds for bounded functions by 2.3(iv). Using the truncation
operator (I-6.7), we can find sequences f, € L*(A) and g, € L™(B) such that

I fn = flle — O (whence, by (i), IEB . — EBflr — 0) and liga — gllze — 0.
Hence, by 2.3(iv), EB(fng") = gnEB(f,.).
Since [|fagn — fgllL: — 0 by Hélder’s inequality, [EB(fngn) —EB(fg)llL1 — 0.
Similarly, g,.EB fn converges to gEB fin L', and (ii) follows.

When f, g € L?(.A), we consider the scalar product

(flg)L2 = E(f9).
By the properties of the orthogonal projection,

(EBflg) = (fIEBg) = (EB fIEBy).

Since L™ C L2, this proves (iii) for the special case where f, g € L>®(A).
The general case is proved by using the truncation operator as above. O

3 Independence and Orthogonality

3.0 Independence of two sub-o-algebras

3.0.1 Definition. Let B and C be two sub-o-algebras of the probability
space (€2, A, P). B and C are said to be independent (relative to P) if L?(B)
and L?(C) are orthogonal on the constant functions; that is, if

f € L*(B), g € L*(C), and E(f) = E(g) = 0 imply E(fg) = 0.

REMARKS.

(i) The notion of independence involves the L? norm, and thus the proba-
bility measure P. To be precise, we should speak of independence relative
to P. Since we have considered P as given once and for all, by abuse of
language we say simply independent.

(i) Since both L2(B) and L?(C) contain the function 1q, they can never be
orthogonal; independence corresponds to the strongest notion of orthogo-
nality that can be expected.

(iii) Consider the codimension-1 subspace H composed of functions orthog-
onal to the constant functions:

H = {f € L*(A): E(f) = 0}.

The relation E = EEB implies EB (H) ¢ H. Moreover, 3.0.1 can be
written as
'H N L2(B) is orthogonal to H N L?(C).



3 Independence and Orthogonality 191

(iv) It follows from 3.0.1 that L2(B) N L?(C) reduces to the constant func-
tions.

Since L?(B) N L3(C) = L?(BNC), where BNC is the o-algebra of those
functions in  that belong to both B and C, we conclude that if B and C
are independent, then BNC reduces to the sets of probability zero and their
complements. Up to sets of probability zero, BNC is thus equivalent to the
coarse o-algebra.

3.0.2 Mutual independence of n sub-o-algebras

Let By, ..., B, be n sub-o-algebras of A, let H be a subset of [0, 1], and let
By be the o-algebra generated by {B; : i € H}. Then B,,...,B, are said
to be mutually independent if

By and By are independent o-algebras for every H € P((0,1)).

3.1 Independence of random variables and of o-algebras

(i) Let (2, A, P) be a probability space and let B and C be two sub-
o-algebras that are independent on this space. Let B’ and C' be two other
sub-g-algebras such that B’ C B and C' C C. Then

B’ and C’ are independent.

Indeed, L2(B)NH O L?(B')N'H and L3(C)N'H D L*(C')N'H. Hence the
orthogonality of the first pair of subspaces implies the orthogonality of the
second pair.

(ii) Let X,,...,X, be n random variables and let By = X,:I(BR). Then
X1,...,X, are said to be mutually independent if the B; are mutually
independent o-algebras.

(iii) Let Dy, ..., D, be mutually independent sub-o-algebras of the proba-
bility space (2, A, P). Let X be a Dx-measurable r.v. defined on (2, A, P).
Then the r.v. X are independent.

This follows from (ii) and the fact that X '(Br) C Dk.

(iv) Stability of independence under a change of variables. Let X,,..., X,
be independent r.v., let ¢y,...,@, be Borel functions from R to R, and
let Y = ¢k(Xk). Then the Yy are mutually independent r.v.

Y, '(Br) € X;:'(¢x'(Br)) C X, '(Br), where the second inclusion
holds since ¢ is Borel. (i) now implies the result. O

3.2 Ezpectation of a product of independent r.v.

3.2.1 Theorem. Let B and C be two sub-o-algebras of the probability space
(R, .A, P). Then the following statements are equivalent:
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(i) B and C are independent.
(#) E(fg) = E(f)E(9) Vf e L*B), g € L*(C).

PROOF. Decompose f and g as f = u+ E(f)1 and g = v+ E(g)1q. Then
u € HN L?(B) and v € H N L?(C). Moreover,

(iii) E(fg) = E(w) + E(f)E(g),
since E(u 1q) = 0 and E(v 1q) = 0 if u, v € H. In view of (iii), (ii) is
equivalent to
E(w) =0, Yue L*(B)NnH, ve L}C)nH;

that is, to the orthogonality of L?(B) N'H and L%(C) N'H.O

3.2.2 Proposition. Let By, ..., B, be mutually independent sub-o-algebras
of the probability space (0, A, P). If fi € L™(B;),i=1,...,n, then

E (H fi) = [1Ew).
i=1 i=1

REMARK. The converse will be proved in 3.6.1.

PRrOOF. We proceed by induction on n. Assume that the theorem has been
proved for ¢ < n and let [T\, fi = h.

Let By denote the o-algebra generated by {f7"!(Br) : 2 < i < n}. Then
h € L>®(By) and, since f{'!(Br) and By are independent by 3.0.2, it
follows from 3.2.1 that

E(hfi) = E(R)E(f).

We conclude by using the induction hypothesis E(h) =[]\, E(f;). O

3.2.3 Corollary. Let f1,..., fn € LY(, A, P) and let h =], fi. If the
fi are independent, then

heL'(Q, A P) and E(h)= f[E( £i).

i=1

PROOF. We first prove the corollary under the hypothesis f; > 0,i=1,...,n.
Let T, be the truncation operator. By 3.1(iv), the Ty(f;) are independent;

by 3.2.2,
E (H'fv(m) = [[E@u)) < [[B) = M.

Set ug = [], To(f:). Then {u,} is an increasing sequence and E(ug) < M;
hence Fatou-Beppo Levi implies that limu, = h € L! and lim E(y,) = E(h).
The general case is reduced to this special case by writing

fi=f0—fl, where f=f}=sup(fi,0) and f! =f =sup(-f.,0),
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and expanding the product
H'f‘ = Z(_l)°|+...+on H'f‘a'

Since the f* are nonnegative,

E (1'[ f.‘") = [T,

As the sum of 2" functions in L', [] fi isin L. O

3.3 Conditional expectation and independence

3.3.1 Theorem. Let (2, A, P) be a probability space and let B and C be
two sub-o-algebras. Then the following two statements are equivalent:

(i) The o-algebras B and C are independent.
(i) BB(f) =E() vfeL'(©).

REMARK. The roles of B and C can be interchanged for a different formu-
lation of (ii).

This statement can be given the following concrete interpretation. If B
and C are independent, then “knowledge of the events in the o-algebra B”
in no way improves the “mean value” of a C-measurable r.v.

PROOF. (i) = (ii). Assume that f € L%(C). Set

f=f-E{)la.
Then f € H and
EC(f) = ES(f) - E(f)1a = f - E(f)1a = f,
whence f € L2(C) NH.

By (i), f is orthogonal to L2(B); thus eB (f) =0, or

EB(f) = E(f)1q,

implying (ii).

When f € L}, we use the truncation operator and pass to the limit.
(i) = (i). Let f € L?(C) N H. Then, by (ii), EB(f) = 0. That is, every
f in L?(C) N H is orthogonal to L?(B), and it follows that B and C are
independent. O

3.3.2 Corollary. Let B and C be independent sub-o-algebras of the proba-
bility space (2, A, P). Then

EBEC = E.
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PROOF. Let f € L'(Q, A, P). Then EC f € L!(C). Set u = EC(f); then

E(u) = E(ES(f)) = E(f)-

Since u € L'(C), it follows from 3.3.1 that EB(u) = E(u) = E(f). O

3.4 Independence and distributions
(case of two random variables)

3.4.1 Theorem. Let X, and X, be two r.v. defined on the probability space
(R, A, P). Let u) and py denote the distributions of X1 and X2, respectively,
and let u denote their joint distribution. Then the following statements are
equivalent:

(i) X\ and X, are independent r.v.
(ii) For all bounded Borel functions ¢,, p2 defined on R,

E(p1(X1)p2(X2)) = E(p1(X1))E(p2(X2)).

(i) p=m ® ps.

PROOF. (i) & (ii). Let B; = X '(Br). Then the independence of the
o-algebras B; and B, is equivalent to that of the r.v. X; and X».

Let f; € L?(B;). By 1.5.4, the functional dependence theorem, there exist
Borel functions i; : R — R such that

Yi(Xi)=fi (i=1,2).
Hence (i) is equivalent, by 3.2.1, to

E(¥1(X1))E(¥2(X2)) = E(¥1(X1)¥2(X2))

for all Borel functions ¥; such that ;(X;) € L2.

Using the truncation operator shows that this last condition is equivalent
to the more restrictive condition that 1; be a bounded Borel function; that
is, to (ii).

(ii) = (iii). Let C, D € Br. Set ¢ = 1¢ and ¥ = 1p. Then, computing
the expectations by means of the distributions,

/m loxpdp = E(1c(X1)1p(X2))-

But
/R 1odu = E(1c(X1)),

whence, using (ii),
#(C x D) = m(C)p2(D).
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Since 4 is a Borel measure on R? and Bg: = Br ® B, this last relation
shows by I-8 that pu = u; ® uo.

(iii) = (ii). Again using the distributions to compute the expectations,
we have

E(p1(X1)p2(X2)) =/R: 1(€1)p2(&2)dur (1) ® dua(&2).

By Fubini’s theorem, this is equal to

[ | [ ‘P2(€2)d#2(€2)] ,

and (ii) is proved. O

3.5 A function space on the o-algebra
generated by two o-algebras

3.5.1 Theorem. Let B and C be two sub-o-algebras of the probability space
(R, A, P) and let D denote the o-algebra they generate. Let V be the vector
subspace of L>(.A) defined by

n

V= {h €L®(A):h= Zfig.-, with f; € L*(B), g; € L°°(C)} .
i=1

Then L2(D) D V and V is dense in L*(D).

PROOF. We prove the theorem in the special case that there exist two

mappings u : @ — R" and v : Q@ — R? such that

(%) u"!(Brs) =B and v~ !(Bre)=C.

Let w : @ — R™*? be defined by w(w) = (u(w), v(w)). Then w=! (Bgn+»)
is a o-algebra containing B and C.
Moreover, by 1-2.4.2,

Brn+r = Br» ® Brs.

Hence Bgn+» is generated by the rectangles R = X x Y, with X € Bg-,
Y € Brr. We have
w~'(R) {w:u(w) € X and v(w) € Y}
I (X)Nv (Y).

That is, w~!(R) € D. With the hypothesis (i), we have thus shown that
(#9) D = w™ (Brn+s).
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Let p be the distribution of w and let w* be the inverse image mapping.
Then it follows from 1.7.2 that

(i#) w* : L2(R™?,p) - L¥(D),

and the mapping is a surjective isometry.

The continuous functions with compact support, Cx (R"*?), are dense
in L2(R"*?; p). (See II-3.)

Let ¢ € Cx(R"*P). Then, by the Stone-Weierstrass theorem, there exists
a sequence of polynomials P, converging uniformly to ¢ on a compact set
K, x K, which contains the support of ¢. Let g, = P, 1k, xk,- Then

(tv) llgr — ellL2(p) — 0.

We now show that
(v) w(g;) € V.
This follows since the polynomial P, is the sum of monomials of the form
(uh)™ .. (™)™ (v))? ... (vP)%
and, setting
f=1@)™ . (u")™ and g=1lg,(v")"...(v7)%,

we can write w*(g,) as a linear combination of functions of the form fg.
Thus (v) holds.

Since w* is an isometry, w*(Cx(R"*P)) is dense in L?(D), and to the
convergence of g, to ¢ in L?(p) there corresponds a convergence in L?(D).
(vi) REMARK. To prove the theorem without the hypothesis (i), we would con-
sider finite systems of B-measurable functions u,,...,u» and C-measurable func-
tions v1,...,v,. Then B could be viewed as the o-algebra generated by all the
u~'(Brn ), and similarly for C. We would then “pass to the limit”. This passage
to the limit will be carried out in detail for closely related cases in Section 6 of
this chapter.

3.5.2 Corollary. Let B,,...,B, be a finite collection of sub-o-algebras of
the probability space (U, A, P) and let D be the o-algebra generated by
Bl,...,Bn. Set

g

W, = {he L®(A):h= Zf;fg...f;;, with f; € L°°(Bi)} .
p=1

Then W, C L*(D) and W, is dense in L%(D).

PROOF. We proceed by induction on n. Let C be the o-algebra generated by
Bs,...,B,. Then, by the induction hypothesis,

(1) W, is dense in L%(C).
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The o-algebra generated by B, ..., B, equals the o-algebra generated by B,
and C. Let

V={h:h=)_ figi, with f; € L°(By), g; € L*(C)}.
Then, by 3.5.2, V is dense in L?(D). Let
(i) V'={h:h=)_ figi, where f; € L°(By), g, € L*(C)}.

Then V' C L*(D), and V' is dense in L?(D) since V' O V. By (i), each g, can
be approximated by elements of W,,_,. Hence there exists a sequence k] € W, _,
such that ||k — gi||.z — 0, and

1D fig =Y fikllea < filleollgs - kSllza.

The right-hand side tends to zero, and we conclude by noting that ) fik{ € W.
a

3.6 Independence and distributions
(case of n random variables)

Theorem. Let B,,...,B, be n sub-o-algebras of the probability space
(2, A, P). Then the following statements are equivalent:

(i) Bi,...,Bn are mutually independent.
(i) E(TTi=, fi) = [Ii=) E(fi) for any fi € L=(By).

PROOF. Recall that the direction (i) = (ii) was proved in 3.2.2. We now
prove that (ii) = (i). Let H be a subset of {1,...,n}, let H' be the
complement of H, and let C and C' denote the o-algebras generated by
{B,:i€ H} and {B; : j € H'}, respectively. We must prove the indepen-
dence of C and C'. By 3.2.1, this will follow from the identity

(iii) E(gg') = E(9)E(¢’) Vg€ L*(C), ¢' € L*(C').

Using (ii), the function space constructed in 3.5.2 on the o-algebra gener-
ated by C and C’, and bilinearity, it suffices to calculate

E (1‘[ I ff) = [Te( II B().

i€EH jEH' i€H JEH'

Using (ii) again and setting f* = 1 if i € H’, we find that the first term on
the right-hand side is E(g), and similarly the second is E(g’). This proves
(ii). O

3.6.2 Theorem. Let X,, ..., X, ben r.v. on the probability space (2, A, P).
Then the following statements are equivalent:
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(i) The r.v. X are mutually independent.
(ii) For all bounded Borel functions px on R,

E (H <pk(Xk)) = [1 E(ex(Xx)).
k=1 k=1

(i) Let p denote the joint distribution of X,,...,Xn and let u;
denote the distribution of X;. Then

u(Ar x Az x ... x An) = [T mi(4))
=1
for any A; € Br. In other words, p = ®u;.

PROOF. The theorem was proved in 3.4.1 for n = 2. The general case is
proved in the same way, with Theorem 3.2.1 replaced by Theorem 3.6.1. O

4 Characteristic Functions and Theorems
on Convergence in Distribution

4.1 The characteristic function of a random variable
Let (€, A. P) be a probability space on which the R"-valued r.v.
X =(X"....,X"

is defined. The characteristic function of the r.v. X is the function defined
on R" = {(t),...,t,)} by

ox(tita, ... tn) = Elexpli(th X' + t2 X2+ ... + to, X™))),

where i = /—1. Since the imaginary exponential is a function with modulus
1, the expectation of the right-hand side exists for every t € R".

4.1.1 Determining the distribution from its characteristic function

Proposition. Let (2, A, P) and (¥, A, P') be probability spaces and let
X and X' be R"-valued r.v. Then statements (i) and (ii) are equivalent.

(i) vx(t) = px:(t), VteR".
(it) X and X' have the same distribution.

PROOF. Let u and u' be the distributions of X and X'.
Calculating the expectations by means of the distributions, we obtain

ox(t) = /R e“*du(z) and pxi(t) = /R Ty (z).
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That is,

(ii2) px(t) = u(t),

where 2 denotes the Fourier transform of p.
But it was shown in III-2.6 that two measures with the same Fourier
transform coincide. O

4.1.2 Convergence in distribution and characteristic functions

Theorem (Paul Lévy). Let { X,} be a sequence of R"-valued r.v. defined
on different probability spaces. Then the following statements are equiva-
lent:

(i) {Xp} converges in distribution.
(ir) The functions px,(t) converge uniformly on compact sets.

Moreover, if (ii) holds, let
¥(t) = limypx, (t).

Then there exists a positive Radon measure v of total mass 1 on R" such
that U(t) = ¥(t) and the distributions of the X, converge to v.

PROOF. We first prove that (ii) = (i). Let up, denote the distribution of
X,.

(i) Vague convergence of the pp.
Consider the linear functionals [, on Co(R") defined by

lp(p) = /udu,,.

Then |lp(u)| < |lullc,. Moreover, by Parseval’s lemma (III-2.6),
b1 = Gage [ Fihox,(-thdt, vf € AR™).
Since f € L', we can apply the dominated convergence theorem to obtain
im(, () = e [ Fwwt-oe.

Since A(R") is dense in Co(R") (cf. III-2.5), II-6.8(iii) can be applied to
show that there exists v € M1(R") such that the u, converge weakly to
v; that is,

lim / udp, = / udv, Vu € Co(R").
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Furthermore,

[ Few-tas = [ Feypi-vie.
Since (A(R"))" = A(R") is dense in Co(R"), it follows that 7(t) = v (t).
(iv) Narrow convergence of the pp.

Only the pointwise convergence of px,(t) was used to prove (iii). We
must now exploit uniform convergence. Let

__1 Iz
Cx2) = Gy e"p('T) :
Then \
G0 = exp(~311P).

Consider the following integral of the nonnegative function (1 - G A) with
respect to the positive measure du,:

B = [(1- Ba@)dusla)

Writing Parseval’s relation and taking into account that (6’ A ()
= G(—t) = Gi(t) and that [ip(0) = 1, we obtain

hy=1- / B,(8)Ga(t)et.

Since [ Gy =1, this can be written

I, = / (1 - Bp(1))Ga(t)dt = /“,,K,,"f..t..»‘

where 7 is determined by first fixing ¢ such that |fip(t) — fe(t)| < €if p > ¢
and ||t]] < 1, then choosing 7 < 1 such that |fig(t) — £4(0)| < € if ||t])] < .
Then
(v) lip(t) — 1 <3¢ if it} <m,
whence
0< Iy, <3e G,\+2/ Gi.
R" leli>n

The first integral equals 1; the second tends to zero as A tends to zero, for
fized 1. Hence there exists Ag such that |I, | < 4¢ for every p > q. Let

h € Cy(R™) and set u = hG,,; then u € Co(R™) and, by (i),

/udp,,—-»/udu.
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Since 1 — G Ao iS NoOnnegative,

I/(u - h)d#p| < lalle, it = Gaolley = likllc, /(1 — Gx,) dpp < dellblic,

Moreover, U(t) = y(t), the limit of the fiy(t), satisfies (v). Similarly,
| / (u — v)dv

lim/hdp,, = /hdu, Vh € Cy(R™).

In particular, taking A = 1 shows that »(R") = 1; that is, v is a prob-
ability measure and the X, converge in distribution to the distribution ».
This proves (i).

PROOF OF (i) = (ii). By the definition of narrow convergence,

/eit.:d"p(z) —o./e“"du(z)

for every fixed ¢t. We must now prove uniform convergence in ¢t. By 11-6.8((ii) =
(iv)), given € > O there exists M such that u,([-M, M]°) < € for p sufficiently
large. Then

< 4ellhlic,

and finally

+M
Px,(t) = / e“*duy(z) +0e, where || <e.
-M .

Differentiating with respect to t under the integral sign shows that the first partial
derivatives of wx, are bounded by M. Hence the px,(t) are equicontinuous
functions, and the result follows by Ascoli’s theorem that pointwise convergence
on a compact set implies uniform convergence.? O

4.1.3 Differentiability of characteristic functions
Proposition. Let X be a r.v. with values in R". Suppose that
E(|X||&n) < o0, where p>1.

Then @x is r times continuously differentiable in t for r < p and

0 ((2)" (L) ox) 0 =By oy,

PROOF. Using the criterion for differentiation under the integral sign (I-7),
we have

a—%E(exp[i(t;X‘ + .+t X)) = E(i X expli(t1 X' + ... + ta X™))).

2See Bourbaki, General Topology, X.2.4.
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The result follows by noting that
Xl € LP = (X)) (XH)™=...(X") e L' if r+r+...4r, <p.0O

4.1.4 Taylor series expansion of a characteristic function at the origin
Proposition. Let X be a r.v. with values in R™ and suppose that || X||g~ €
L?. Then

. . 1
(4) px(t) = 1+iE(X).t - 5ax(t) + o(lItl?),

where gx(t) = 3 a*Itit; and a*7 = B(X*X7).
The matriz a*J is symmetric and nonnegative; that is,

(%) gx(t) 20 for every teR".

PROOF. Since || X||r» € L?, 4.1.3 implies that @x is twice continuously
differentiable. The derivatives at the origin can be computed using 4.1.3(i),
and (i) follows by using Taylor’s formula with remainder.

Moreover,

2
ax(t) = ZtktjE(kaj) =E [(Z t,X’) ] >0.0

k!j

4.1.5 Definitions. X is said to be centered if E(X) = 0.

If X is not centered, a centered r.v. is obtained by setting Y = X —
E(X)1q. The quadratic form gy (t) associated with the centered variable
is called the covariance of X and written o x (t).

4.2 Characteristic function of a sum of independent r.v.

4.2.1 Proposition. Let X,,...,X, be mutually independent R"-valued
r.v. on the probability space (2, A, P). Let

(4) ox, (t) = E(e*%%)

be their characteristic functions, and set

(#) S=X1+...+ Xp.
Then
P
(i) es(t) = [] ex.(®).
k=1

PROOF. pg(t) = E(e“'xiei"x7 . ‘eu.x,)_
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Using 3.2.2 with fi = e'*X*, we obtain
ps(t) = [[ B **) = [ ex.(t).0
k k

4.2.2 Corollary. With the notation of 4.2.1, let p,,...,pp be the distri-
butions of X),..., X, and let v be the distribution of S. Then

V=g xe i

PROOF. Using 4.1.1(iii), we may write 4.2.1(iii) in the form

U = i (t)i(t) . . ap(t).

By I1I-1.4.4, the convolution product of measures corresponds to the prod-
uct of the Fourier transforms. O

4.2.3 Proposition. Let X,, ..., X, be independent R"-valued r.v. Suppose

that || Xk|lr~ € L2, 1<k<p,andletS = X,+- -+ Xp. Then the covariance
forms are related by

P
os(t) =Y _ox,(t).
k=1

PROOF. Setting Xx = Xi — E(Xi)1q, we can reduce the proof to the case
where the X are centered; then S is centered. We must verify the identity

gs(t) = k=1 ax.(t), or
2 2
E (Z tjsi) =E (E tey XJ’F) =Y ttuE (2 X,’-‘Xf,.) .
Jj k j k! 7m

But, for j # m, X} and X}, are independent r.v. by 3.1(iv). Hence, by
3.2.1,

E(Xfx!) =EXHE(X],) =0.

Thus
gs(t) =ttt Y_E(XFX}) =) gx,(t).0
k1 ; j
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4.8 Laplace’s theorem and Gaussian distributions

4.3.1 Laplace’s theorem. Let X, X3,...,X,,... be a sequence of inde-
pendent R"-valued r.v. defined on the probability space (9, A, P).

Suppose that the X, all have the same distribution, that || X,|lr~ € L?,
and that E(X,) = 0. Set

1
Vvn

Then the sequence of r.v. G, converges in distribution to a r.v. G with
characteristic function

Gn= (Xl+“'+Xn)o

1
0a(t) = exp(-3an(0) .
PROOF. Since G, = ﬁSn,

0= oo 5)) oy ) o ().

By 4.2.1, ps, (t) = (px,(t))™. Hence
pa(t) = [sox. (_\/%)]n

©Ga(t) = exp(nlos(wx, (%))) .

(Note that ¢x,(0) = 1. By continuity, there exists ¢ > 0 such that, for
'tl <€ 'SoXx(t)l # 0 and _§ < argszx(t) < %' Thus IOS‘PX.(t) is well
defined for |t| < e.) Furthermore,

38 (%) =1- -2l—nqx,(t) +o0 (%)

uniformly in ¢, when t ranges over a compact subset of R". Hence

log ¢x, (%) = —%qxl (t)+o (%) ,

and ¢g, (t) — exp(—1gx, (t)) uniformly on compact sets. 4.1.2 implies the
result. O

or

4.3.2 Gaussian distributions

With the next few results, we make Laplace’s theorem more explicit by
computing the distribution of G.
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(i) Lemma. _/;exp (—52-2-) dt = (2m)/2.

PROOF. We prove this well-known result by using a trick from real variables.
LetI=fy exp(—-‘;) dt. Then, by Fubini’s theorem,

2 2
2 _ v _v
I —/nzexp( 2)exp( 2)dudv.

Passing to polar coordinates, let u = rsinf and v = rcosé, with r > 0 and
0<0<2n.
This change of coordinates defines a diffeomorphism of R? with Jacobian ma-

trix
J= sin@  cosf
“\ rcos® -—rsinf /°

Since |det J| = r dr df,

2% +o00 '_2 +00 rz
Iz=/ / exp(-—)rdrd0=21r/ exp(——)rdr.
o Jo 2 0 2

The last integral can be computed by setting r? = w. Thus

+oc 7‘2 +o00
/ exp| ——= | rdr= exp(—w)dw = 1.0
0 2 0

) t2 z2
(ii) Lemma. W/ﬂexp(ztw - -2—) dt = exP(—_z—)‘
e 2
PROOF. Let 7 be an auxiliary parameter defined by p,(t) = W exp(—;—f) .
It is straightforward to verify that

. . _ 18%p,
@) %=§azz‘

Note that £ — p,(z) is an element of the space S(R). By 11I-4.2, differentiation
with respect to z is mapped to multiplication by —it of the Fourier transform:

p-(t) = -/n pr(z) exp(itz)dz.
By I-7.8.4, we can differentiate under the integral sign; thus (i) can be written
y ~ t? .
(5) 2 5.0 =-55.00).
Note that, as 7 — 0, p-(t)dt converges narrowly to the Dirac measure at zero.

Hence p,(t) — 1 for each fixed t as 7 — 0. The differential equation (ii) thus
gives D, (t) = exp(—%r); the lemma follows by setting 7 = 1. O
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(iii) Lemma. Let Q(t) = (t1)2+ -+ (tn)?. Then
1 1 . _ 1
L /l;" exp [—iQ(x) + zt.z] dz = exp[ 2Q(t)] .
PROOF. Since exp[—1Q(z)] = [Tk=, exp[—3(z*)?], the conclusion follows

from (ii) and Fubini’s theorem. O

4.3.3 Definition. A Gaussian distribution is a measure 4 on R" with
Fourier transform fi of the form

(i) at) = exp (- 380

where h(t) is a positive quadratic form.

4.3.4 Proposition. Let pu be a Gaussian distribution given by 4.3.3(i).
Suppose that h is positive definite. Then

dy = cexp [—%hl(z)] dz,
where ¢ is a normalizing constant such that [dp = 1 and h\(z) is the
adjoint of h, defined by
(i2) hi(z) = sup{t.z : h(t) < 1}.

PROOF. Let a basis be chosen such that h(t) = 3 t2; then 4.3.2(iii) implies
(i) with hy(z) = Y z2. Using formula (ii), h1(x) can be defined without
changing bases. O

4.3.5 Proposition. Let u be a Gaussian distribution of the form 4.3.3(i).
Let
V={t:h(t)=0} and Vi={z:tz=0 VteV}.

Then u is a measure with support VL. Lety € V' and let dy be the volume
measure on VL. Then

1
du=c exp[—ihl(y)] dy,

where h, is the quadratic form defined fory € V4L by

h1(y) = sup{t.y : h(t) <1}.

REMARK. The quadratic form h, is positive definite.
PROOF. Let z, t € R™ be decomposed as

z=y+2 where yeV?i, zeV;

t=n+¢, where neVi (eV.
Then

/ ettalgy = ¢ / e exp [—lhl (y)] dy.0
Vi 2
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5 Theorems on Convergence of Martingales

5.1 Martingales
5.1.1 Definition of a filtration

Let (2, A, P) be a probability space. A filtration of the space is an increasing
sequence {A,} of sub-o-algebras of A such that

ACAC...CA,C

Let A, be the o-algebra generated by all the A,,; we write A, = lim A,,.
The filtering sequence is said to converge to A if A = A.

The phenomenological meaning of an increasing sequence of o-algebras is
clear. Let 0,1,2,...,n be the various instants of an “experiment”.

Let A, be the Boolean algebra generated by all the observations made
up to time n (in the sense of 1.1). Then A}, encapsulates all the experi-
menter’s knowledge of the system at time n. The o-algebra generated by
A, is written A, and might be called the o-algebra of the past at time n.

5.1.2 Sequence of r.v. adapted to a filtration

Let (22, A, P) be a probability space equipped with a filtration A,. A se-
quence of r.v. {X,} in L%, A) is said to be adapted to the filtration if
X, € LO(Q, A,).

5.1.3 Given a sequence {Yk } in L%(R2, A), let A} be the o-algebra generated
by Y,”!(Br), where s < k.

Then the AY form a filtration of (£, .4, P). Moreover, the sequence of
rv. Y, is adapted to the filtration A, if and only if A, D AY for anyn.

5.1.4 REMARK. An might be called the o-algebra of the past corresponding
to the “experiment” that consists of observing the values of Y; (w), . .., Yo (w).
5.1.5 Definition of a martingale

Definition. Let (£2, A, P) be a probability space equipped with a filtration
{An}. A sequence {X,} of r.v. is called a martingale if

(i) the X, are integrable: X, € L'(, A);
(ii) the sequence {Xy,} is adapted to the filtration {A,}; and
(iii) EA"(Xn41) = X, n > 1.

5.1.6 Proposition. If {X,} is a martingale, then
EA"(Xp4p) = Xa, Vn and Vp > 0.
PROOF. Since A, C Ant1 C Ans32 C ... C Anyp-1, it follows from 2.3(iii) that

A = EAEA L EAe-,
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By 5.15(iii), EAn+7-1(Xnsp) = Xntp-1, EA2-2(Xnip 1) = Xntpo21..-,
and finally

EA" (Xnt1) = Xa.0

5.2 Energy equality

5.2.1 Proposition. Let {X;} be a martingale relative to the filtration
{Ak}, and assume that X; € L?(2,.A) (1 < k < n). Then, forn > p,

n-1
E(X2) - E(X2) = Y E((Xj41 - X;)%).

j=p

PROOF. Set e; = X1 — Xj. Then, for m < j,
@)  EA=(e;) = EAEA (X;4 - X;) = EA~(X; - X;) = 0.

Writing X, = Xp + 3.7, e; and expanding X2, we obtain

E(X2) = E(X2) + 2 E(e?) + 2 E(ejejr) +2 2 E(X,e;)-
Jj=p J,J
J#i’

We now show that all the terms appearing in the last two sums are
zero. Assume that j < j'. By 2.1.3, E(ejejr) = E(E‘A-’“(ejej:)). We now
use the fact that E'A"“(ejej:) = ¢;E”+(ejr). Since j < j', (i) implies
that E‘A’“(ejl) = 0, whence E'A"“(e,-ej:) = 0. Similarly, E(Xpe;) =
EEA (X,e;) = E(X,E4(e;)) = 0. O

5.2.2 Corollary. Let {X,} be a martingale. Then E(X?) is an increasing
sequence.

PROOF. Apply the energy equality with p=n - 1.

5.8 Theory of L? martingales
5.3.1 Definition. {X}} is called an L? martingale if

sup E(X?) < +o0.

It follows from 5.2.2 that
5.3.2 lim E(X?) exists and is finite.
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5.3.3 Structure theorem. Let {Xx} be an L? martingale. Then there
erists Xoo € L?(Q, Ax) such that

(3) | Xk = XoollL2 = 0 and

(i) Xi = EA*(X).

Xoo 8 called the final value of the martingale.
Conversely, let ...Gp, C Gny1 C ... be an increasing sequence of
o-algebras on (2, A), let G, be the o-algebra generated by all the G, let

f € LA, Goo, P), and let Yy = E9*(f). Then

(i) Y} is an L? martingale
and
(iv) IYe = fllz — 0.

PROOF. We first prove the following lemma.
5.3.4 Lemma. E((Xn4+p — Xn)?) = E(X2,,) - E(X?).
PROOF.
E((Xn-l-p - Xn)z) = E(X121+p) + E(xvzz) - 2E(Xn+pxn) and
E(Xn+pXn) = EEA (X410 Xn) = E(XoEA" (Xn4p)) = E(X2).0

PROOF OF THE THEOREM. Since the sequence a, = E(X2) is convergent
by hypothesis, Ve > 0 3ng Vp > 0 an4p — an < €. By 5.3.4,

| Xn+p — X,,Ilia <€ VYn>ngandVp>0.

Thus X} is a Cauchy sequence, which converges since L? is complete. More-
over, Xx = EA*(Xy,) for all r > 0 by 5.1.6.
Let r — +00. Then Xi4r — Xoo in L2; hence EA* (Xi1r) — EA*(Xo0),

and (ii) follows.
We now prove the converse. By 2.3.3(iii),
E9-EGntr = G-
Applying this to f, we obtain
ES~(BS~++()) = E9~(4),

or
EY (Yosk) = Y.
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Furthermore, since the projection operator Eg" has norm < 1,

I¥allz2 = IE9~ (£l < 1fllL2.

The sequence {Y,} is an L? martingale. By the first part of the theorem,
3f» € L? such that

IYa = fxllLz = 0.
By the lemma, f = f, and this completes the proof of the theorem. O

5.3.5 Lemma. Let (2, A, P) be a probability space filtered by {A,}. Set
Ax =lim A, (in the sense of 5.1.1). Then

IEA f —EA=f|| s =0 for every fe L2

PROOF. We write V,, for L?(Q..4,), a closed subspace of L*(Q, A). Let V. =
Un Vs and let Iy, and v, denote the respective orthogonal projections. Then
Hilbert space theory shows that

IMv,, f — My fll.2 — 0.

Moreover, L%(R, A ) D V., for all n. Since Vi, is the smallest closed subspace of
L? that contains all the V., L?(Q, Ax) O Vo.

Now let B € A. If we show that 15 € Vo, the density of the simple functions
in L?(, Ax) will imply that L?(R, Ax) C Va and hence that

(€) L3, Aw) = Veo.

To prove this, let B denote the set of subsets B of 2 such that B € A, for some
8. From the set-theoretic point of view in P(Q), B = U,A,.

Then B is a Boolean algebra and B C A«. By I-1.4, A is the monotone class
generated by B.

If B € B, then 15 € V. Let M denote the class of subsets D of 2 with
indicator function satisfying 1p € V.

We now show that M is a monotone class. Let D, be an increasing sequence
of elements of M, with limit Do. Then 1p, — 1p. everywhere, and by the
dominated convergence theorem ||1p, — 1p._||z2 — 0.

Since P(Q) = 1, the analogous result for decreasing sequences follows by taking
complements. Thus M is a monotone class and M = A, so (i) is true and the
lemma is proved. O

5.4 Stopping times and the mazimal inequality
5.4.1 Definition of stopping time

Let {X,} be a martingale defined on the space (2, A, P) filtered by {A,}.
A stopping time T(w) is a function on 2, with strictly positive integer
values, such that

(3) Arp={w:T(w)>p}e A, VpeN.
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(ii) Proposition. If T and T? are two stopping times, then
T?(w) = inf(T! (w), T?*(w)) =per (T* A T?)(w)

s a stopping time.
PROOF. ATs p = A1, N Ar2 5 € Ap.

(iii) Any given time ¢ can be thought of as a stopping time.

5.4.2 Truncated martingales

Definition. Given a martingale { X,,} and a stopping time T, the truncated
martingale is defined by

X;f(w) = XT(w)/\n(w)'

We proceed to justify this terminology by showing that {XT} is a mar-
tingale. Since

m-1

(¥) XTI =Y (Xjn1 = Xi)lar, + X
=1

and all the functions on the right-hand side are .A,,-measurable, X7, is A,-

measurable. Moreover, A~ (XZT,,) can be computed by observing that, on
the right-hand side of (i), all the functions except X, are A,-measurable.
Thus

EA(XT,,) = (EA*(Xn41) = Xn)las., + XT.

But
EA“ (Xn+l) = Xn,

whence

EA(XT,,) = XT.0

5.4.3 Definition of the maximal function
Let {Y,} be a martingale, let

Yn‘= sup lyl’l’
1<p<n
and let
Y*= lim Y.
n—+oc

Y* is called the mazimal function of the martingale {Y,}.
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5.4.4 Doob’s maximal inequality

Proposition. Let {Y,} be a martingale on the space (2, A, P} filtered by
{An}. Then, for every constant v > 0,

@) P(Y:>)< %[E(uf,.n +E(%)] (n=0,1,...)
and
(#) P(Y*>19) < %supE(lYnl)-

PROOF. Let A} = {w : sup,<, Yp(w) > 7} and let

T(w) = inf{p:Yp(w) 219} if weA]
Tw) = n if we¢Aj.

Then T(w) < n. Moreover,

{w:T(Ww) > q} =Upgo{w : Yp(w) <1} € Ay if g<n

and
{w:T(w) >n}=0.
Thus T is a stopping time; let {Y,”} be the martingale truncated by T.
Then E(Y") = E(Y1) (since YT =Y,) and
E(YT) = E(YT 1r<n) + E(YT 172,).

YT > v on the event {w : T(w) < n} and ¥;T = Y, on {w: T(w) = n};
hence
E(Y,] 1r<n) 2 7E(1r<n) = 7P(A3}).

Thus E(Yl) - E(Yn1T=n) 2 'yP(Af,‘), and
7P(A7) < E(|Ya|) + E(Y1)).

(i) follows by observing that
{w: Y3 (W) 27} = AU {w supl-%;) 2 7} ,
p<n

To prove (ii), it suffices to note that {Y,} is an increasing sequence with
limit Y*. Hence Y* > v => Ve > 0 3n such that P(Y,, > v — ¢). Thus, by

@,
P(Y"21)<

.a
P sup E(|Yxal)
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5.5 Convergence of regular martingales

5.5.1 Definition of regular martingales

Let {Y,} be a martingale relative to the filtration A, on (2, A, P). {Y,}
is called regular if there exists Z € L!(Q, A, P) such that

Y, =EA(2) vn.

EXAMPLE. Every L? martingale is regular by 5.3.3.

5.5.2 Final value of a regular martingale

Let Ay, denote the o-algebra generated by the union of the o-algebras A,,,
and set
Y, = EA=(2).

Yo is called the final value of the martingale {Y,}.

5.5.3 Theorem on L' convergence. Let {Y,} be a regular martingale
and let Y, be its final value. Then

(i) Y, = EA(Y,) and
(3) E(lYn = Yo|) 20 as n— +o0.

PROOF. Let ¢)s(t) be the function introduced in I-6.7 to define the trun-
cation operator and set ZM = pp(Z). Then

(#d4) |ZM - Z||;r -0 as M —0.
Set Yo = EA*(ZM). Then
IYam = Yallor S 1Z2M - Z|11.

Thus ||Ya.amllz~ < M, and hence {Yy m} is a martingale. Using 5.3.3 and
5.3.5 and setting Yoo p = EA=(ZM), we obtain

(iv) You = EA(Yoorr) and [[Yarr — Yoorllzs — O.

(i) is proved by using (iii) and the first formula of (iv), then letting M tend
to infinity. Similarly, since the L2 convergence in (iv) implies L! convergence
by the Cauchy-Schwarz inequality, (ii) follows for Yy »s. Letting M — oo
shows that (ii) holds for Y. O

5.5.4 Proposition (Almost sure convergence). Let {Y,} be a regular
martingale and let Y., be its final value. Then

Yn(w) = Yo(w) almost surely.
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PROOF. Let 3;(w) = sup,,5 4 |Yn(w) - Yg(w)| and let B(w) = limg—oo Bg(w).
For fixed g, let
Zm=Yyem-Y, (m20).

Then {Z,,} is a regular martingale relative to the filtration {A4g4m} and

sup [ Zmll: < Yoo — Ygllzr + sup [[Yoo — Yo[Io.
m q9'>q

By 5.5.3(ii), the right-hand side is less than € if ¢ > go. Hence, using the
maximal inequality 5.4.4(ii),

P({w: By(w) >1}) < —2$ if q>qo-

Fixing v, let ¢ — oo. Since {,} is a decreasing sequence of functions,
P({w:pB(w) >7}) =0, whence B(w)=0as.

{Ya(w)} converges a.s. Let Zoo be its limit. Since {Y,} converges in L' to Yoo, it
has a subsequence {Yn, } that converges a.s. to Yoo; hence Zoo = Yoo. O

5.6 L' martingales
5.6.1 Definition. A martingale {Y, } is called an L' martingale if

sup ||Yallz: < 4o0.
n

EXAMPLE. Every regular martingale is an L' martingale.

5.6.2 Proposition. Let {Y,,} be an L' martingale. Let T) < Tp < ... <
T; < ... be an increasing sequence of stopping times such that, for every j,
T)(w) < 400 a.s. Let Yr,(w) = Y7,(u)(w)-

Then

f:(YT,H(W) - Yr, (w))? < +o0 a.s.

=1

PROOF. Set @ = sup ||Ya|lL: and let Y* be the maximal function. Then, by 5.4.4,
P(Y* > p) < 4ap™", whence

(2) Y*(w) < +0c a.s.

Fix p and let f be the continuously differentiable convex function defined by
f(t) = 2 if t| < p and f(t) = 2p|t| — p? if [t| > p. Let g be the nonnegative
function defined by

9(v1,v2) = f(v2) = f(w1) = (v2 ~ w1)f' ().
Then g(v1,v2) = (v2 —n)? if jui| < p (5 = 1,2).
(#3) E[f(Ya)) < 2pE(|Ya|) < 2pa
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@)  E((Ga-Y)f() = EEA =EfVEL Y -v)=0;

E(f(Ya) - f(1))

n-1
E [ (f(Yie1) - f(YJ))]

1=1
n-1
= Y E@(Yi+,Y5));
i=1
+oc
E(Z(Y.H'l—y.l)zl{y’sp)) < 2pa.
=1

Hence, letting p — +o0o and using (i),

+00
(iv) Z(Y.H»l(w) - Yj(w))? < 4+ as.

=1

We now generalize this “local version” of 5.2.1 to an increasing sequence of
stopping times T} <T2 < ... < T; < .... Set Y1, (w) = Y7, (u)(w). We would like
to show that

+o00
(v) Y (¥4, (W) - Y, W))* < +o0 as.
i=1

Once (ii) and (iii) have been generalized, the same calculation will give (v).
Letting Ar, , = {w: T} > ¢}, we have, as in 5.4.2,

f(¥r,) - f(1) Y (f(Yar) = f(Yo) Ly, -

q=1
+00
E(f(Yr,) - (V1)) = Y B(9(Yer1,Yo)lar,,) S ) 9(Yes1,Ya) < 2pa,
q=1 q
whence
(i)’ E(f(Yr,)) < 4pa.

Let Ar, denote the o-algebra generated by the AN Tj“(q), where ¢ € N. Then

(i)’ EAT (Yr,_, - Yi,)f'(Yr,)) = 0.
This proves (v). O

5.6.3 Fatou’s theorem. Let Y, be an L! martingale. Then limp .o Yn(w)
ezists a.s.

PROOF. For a proof by contradiction, assume that Fatou’s theorem fails; then
there exists b > 0 such that

(vi) G= {w : limsup |Ya(w) — Yar(w)] > 2b} satisfies P(G) > 0.

n.n’—oo
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Let Ti(w) = 1 and let the later stopping times be defined recursively by
T;+1(w) = inf{g : ¢ > T} (w) and |Yr, (w) - Yg(w)| > b}.

Since the sequence T, (w) is increasing, |YT,,, (w) — Y7, (w)| > b. This contradicts
56.2. 0

IMPORTANT REMARK. Nonzero L! martingales can be constructed with
limY,(w) = 0 a.s. It is thus impossible to reconstruct the martingale from
this limit, as was done for regular martingales. Hence the importance of
the regularity criterion that will be given in Section 5.8. In Section 5.7, we
will develop a concept that is both interesting for its own sake and crucial
for stating the regularity criterion.

5.7 Uniformly integrable sets

5.7.1 Definition. A subset H of L! is called uniformly integrable if for
every € > 0 there exists > 0 such that E(Jh| 14) < € for all h € H and
for every A € A with P(A) <.

5.7.2 Proposition. Let H be a subset of L'. Then the following two state-
ments are equivalent:

(i) H is uniformly integrable.

(i) lim |sup / b dP| =o.

9= lheH Jih|>q
PROOF. To prove that (i) = (ii), we first show that (i) implies
(i) IM < +0o such that (|l s < M Vh € H.

Let > 0 be the number associated with ¢ = 1 by Definition 5.7.1. Then (iii)
follows from setting M = -:; +1.

By Chebyshev, P(|h| > q) < ¢! M. Since this expression tends to zero as
q — oo, (i) implies (ii) formally.
We now prove that (ii) = (i). For a proof by contradiction, suppose that there
exist ¢p > 0 and sequences {hn} in H and {A.} in A such that
E(hnla,) > € and P(A,) —0.

Let go be chosen so that

/ th<‘5° Yh € H.
Ihl>q0

Set Bn = {w: |hn(w)| > go}. Then

€0 < E(hala,(18, +1pg)) < E(hals,) + qoP(An).
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Since the first term on the right-hand side is less than 5} and the second tends
to zero as n — 00, this gives a contradiction. O

5.7.3 Proposition. Let H be a uniformly integrable subset of L! and let
H, be the closure of H in the topology of almost sure convergence. Then
H, is uniformly integrable.

PROOF. Set
p(e) =supE(Jh| 14), where he€ H and P(A)<e.

Let {h,} be a sequence of elements of H which converges almost surely to
ho. Fatou’s lemma implies that

p(€) 2 liminf E(|h| 14) 2 E(|ho| 14),
whence
supE(|h| 14) < ¢(€), Vh; € Hy, YA such that P(4) < €.0

5.7.4 Theorem (Generalization of Lebesgue’s dominated conver-
gence theorem). Let {u,} be a sequence of integrable functions on a
measure space (X, A, p), u(X) < +o0o, such that

(i) the family {uy,} is uniformly integrable and
(i) uy, converges a.s. to ug.

Then
flun — uoljzs — 0.

ProoF. By Egoroff’s theorem, there exist ¢ > 0 and B € A such that
u(B¢) < € and u, converges uniformly to ug on B.
Then

lun = uollzr < E(Jun — uo| 18) + E(|un| 1<) + E(|luol| 15)-

The first term on the right-hand side tends to zero by uniform convergence,
the second by uniform integrability, and the third by the same reasoning
as in 5.7.3. O

5.8 Regularity criterion

5.8.1 Theorem. Let {X,} be an L! martingale. Then the following con-
ditions are equivalent:

(i) {Xn} is regular.
(11) {Xn:1<n < oo} is uniformly integrable.
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PROOF THAT (ii) = (i). We know by Fatou’s theorem (5.6.2) that X (w)
converges almost surely to Z. By 5.7.4, this implies that || X, — Z||z1 — 0.
Hence, using the identity

X, =EA(X,) ¢>n,
fixing n, and letting ¢ go to infinity,
X, = EA~(2).0

PROOF THAT (i) = (ii). For a c to be fixed later, set B, = {w : | Xn(w)| > c}.
Then, since Bn € A, and | X,| < EA"(|Z|)»

E(|Xn| 15,) < E((15,E"(12])) = E(€4(12))15,)) = E(12] 15,).
Hence, with b also to be fixed later,

f \Xa| dP s/ 12| dP
| Xnl>c | Xnl>c

/ |Z| dP + / 12| dP
{IXnl>c}n{iZ|>b} {IXal>c}n{|ZI<b}

< / |Z| dP + bP(|Xn| > ¢).
121>b

But, by Chebyshev’s inequality, P(|Xn| > c) < 1E(|Xn|) < 1E(|Z]), whence

/ |x,.|dp_<_/ 12| dP+'-’E(|Z|).
[Xnl>c 12>b ¢

Let b = q'/? and ¢ = g; then the right-hand side tends to zero as ¢ — oo, and
the conclusion follows by 5.7.2. O

6 Theory of Differentiation

If f is a continuous function defined on [0,1] C R and F(z) = [; f, then
F is differentiable for every z and F’(z) = f(z). The same result holds for
f € L!, provided that “for every z” is replaced by “almost everywhere”;
this is another theorem of Lebesgue.

The derivative is computed as the limit of quotients of the form

(¥ I+ - F@)] = srmsp(Ad),
where v is Lebesgue measure, p(A) = [ o foand Ac = [z,7+¢].

In this section, we study the limits of quotients of the form (i) on an ab-
stract measure space. A.s. convergence will be obtained for an appropriate
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choice of the A,: the A, will be the atoms of an increasing sequence A,, of
finite sub-o-algebras of A, “converging to A”.

Quotients of the form (i), which thus form a martingale for the filtration
A, will be used to prove the Radon-Nikodym theorem.

Conditional probabilities can immediately be defined for conditionings by
finite o-algebras; the existence of conditional distributions in the general
case will depend essentially on a convergence theorem for vector-valued
martingales. The convergence of such martingales will be clear for Radon
measures. A structure theorem will allow all separable measure spaces to
be realized by means of Lebesgue measure on R.

6.0 Separability

The measure space (X, A, p) is called separable if there exists a sequence
that is dense in L,‘,; in other words, if L,‘, satisfies the first separability
axiom I-2.4.1(i).

Consider the case of Radon measures on a compact space Y. If Y is metrizable,
then C(Y) satisfies the first separability axiom and, since C(Y) is dense in L},
the same holds for L,',. The same result is true if Y is locally compact, metrizable,
and the countable union of compact sets.

6.1 Separability and approrimation by finite o-algebras

Proposition. A measure space (2, A, P) is separable if and only if there
ezists an increasing sequence of o-algebras Ay, C A, C ... C A, ... such
that each o-algebra A,, is finite and

EA(f) = f for every fe L', A P).
The sequence of o-algebras A, is said to P-generate A.

PROOF. Assume that (2, A, P) is separable, and let f),..., fn,... be a
dense sequence in L. Approximating each f, by a sequence of simple
functions gives a countable family ® of simple functions which is dense in
L}.

Let g1,...,9n,... be an enumeration of this sequence and let A; be the
o-algebra generated by g, 1A),1<k<i.

With each f € L! we now associate a sequence { X} defined by

g f = X,

Then {Xj} is a regular martingale, which converges in L' by 5.5.3. Let
Xoo = lim Xj. Since || Xoollz: < |IfllL:, & bounded operator 7 : L! — L!
can be defined by setting 7(f) = X, and

EA X, = lim EAEAf = BAf = X,.

q—oo
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That is, 72 = w. The image V of = is closed, for if u,, = 7(f,) and u, — uo,
then since mu,, = u,, and 7 is continuous it follows that mug = ug. V is
thus a closed vector subspace of L!(X, A, u).

Let fo be a simple function in ®. Then fo € L9(Ax) for k sufficiently

large, and hence A (fo) = fo. Thus fp € V. Since the family ® of simple
functions is dense in L!, it follows that V = L!.

The proof in the other direction is clear. For each k, EA (L?) is a finite-
dimensional subspace of L! and hence separable. The union of these spaces
is separable and dense in L!. O

6.2 The Radon-Nikodym theorem

6.2.1 Theorem. Let (2, A, ) be a separable measure space and let u and
v be finite measures defined on A. Then the following statements are equiv-
alent:

(i) For every A € A, u(A) =0=v(A)=0.
(i) There exists k € L', k > 0, such that v(A) = [, kdp.

REMARK. The function k is called the density of v with respect to u and

is sometimes written k = %“1.

PROOF. It is trivial that (ii) = (i). Indeeed, if k1, is a function that is
zero a.e., then its integral is zero. To prove that (i) = (ii), assume that

(124) #(X) < +o0.

This hypothesis can easily be dropped later, by taking an exhaustion se-
quence {A,} for X.
Multiplying by a constant reduces the proof to the case where

(iv) p(X) =1 and (X, A, u) will be considered as a probability space.

We now prove that hypothesis (i) implies the following quantitative ver-
ston.

6.2.2 Lemma. Assume that 6.2.1(i) holds. Then, for every ¢ > 0, there
ezists 6 > 0 such that

u(A) <6 implies v(A)<e.
PROOF. Otherwise there would exist ¢y and A, such that
u(Ax) <27% and v(Ax) 2 €.

Set Gy, = Uk>nAx; then u(G,) < 2-"*+1. Since G, is a decreasing se-
quence,

() 4 (NaGp) =0.
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Furthermore, since v(G,) > v(A,) 2 €,
(1) v (NpGp) = limv(Gy) 2 €.

But (i) and (ii) contradict 6.2.1(i). O

6.2.3 Associated martingales

Let A;,...,A,,...bethe increasing sequence of finite o-algebras construct-
ed in 6.1.

Let £, = {ey,...,e,} be the atoms of A, and let a function Y, € L9(A,)
be defined by setting

Yoe) = &) ife e, and pler) #0,
Yp(er) = O otherwise.

Then E(Y,) = 3’ Yp(e,)u(ex), where the sum Y’ is restricted to those
atoms such that u(e,) # 0. Since u(e,) = 0 = v(e,) = 0, it follows that
E(Y,) = ¥ v(e,) = v(X).

More generally, let Ay, be the o-algebra following A,. An atom e, of
Ajp can be decomposed into atoms of Ay41: e, = graUgr2U...Ugrs.

Since the function Y4, is constant on each atom g,

EA (Ypi1)(er) = ﬁ ng Y1 (9r.5)(gr.5)-

But Yp41(9r.j)ue(gr.j) = v(gr, ;) by the definition of Y,4,. Since Y v(gr,;) =
v(er),
EA (Y1) = Y,

and we have proved the following result:
The Yy form a martingale.

6.2.4 Lemma. The martingale {Yp} constructed in 6.2.3 satisfies the uni-
form integrability condition.

PROOF. Let p be fixed. Given ¢ > 0, we must show that there exists n such
that

(?) / Yydpu = E(Yp 14) < € for any A € A such that u(A) < 7.
A
By 2.6.1(iii),

E(Y; 14) = EEA (Y, 14)) = E(,E4*(14)).
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Set o = EA»(1,4); then 0 < ¢ < 1 and E(p) = u(A).
Introducing the atoms e, of Ay, we have 2.4.1. Since ¢ is A,-measurable,
¢ is constant on each atom e, of Ap; thus

E(Ypp) =) _wle-)v(e;) and E(p) = wle-)ner).
Define a partition ®, of £, by e, € ®, if p(e,) € [27°7!,27%]. Then
E(Yyp) < 22“1/(}!,), where H, = U er,
ere‘bl

and

p(A) =E(p) > Y 27" u(H,).

Let sy be chosen so that 27%0+!y(X) < £. Then
E(Y,0) < Y 27°w(H,)+ g
0<s8<3s0

Let 7' be the number associated by Lemma 6.2.2 with ¢’ = £, and let
n = 2721y’ Then, if u(A) < 5, we have u(H,) < 1’ for 0 < s < so. It
follows from 6.2.2 that v(H,) < ¢, and thus

€ €
< - - = €.
E(Y,,<p)_2+2 €

This proves (i). O

6.2.5 Proof of the Radon-Nikodym theorem

Since {Y,} is an L! martingale and is uniformly integrable, there exists a

function k € L}, such that Y, = E4 (k).
We begin by showing that

y(A) = E(k lA).
By the construction of {Y,},
[var =BG it vera,)
In particular,

EEAREA 1,) = / (B4 1,4)dv.

Set pp = EA"(I A); then 0 < ¢, < 1. The martingale E‘A’(l A) converges
p-a.e. to 14 by 5.5.4, and convergence p-a.e. implies convergence v-a.e. by
6.2(i). Hence, by Lebesgue’s dominated convergence theorem,

/ EA*(14)dv — v(A).
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Since {Y,} is uniformly integrable, so is {Ypp,}. Moreover, Y,pp, con-
verges u-a.e. to k14, and Theorem 5.7.4 implies that

/ Yopopdp — /A k dp.

/k@:ﬂ&ﬂ
A

Thus

6.3 Duality of the LP spaces

Theorem. Let (X, A, n) be a measure space, let 1 < p < +00, and let q be
the conjugate exponent to p. Then the space of continuous linear functionals
on LP can be identified with L9. As in 1-9.4.3, the dual pairing is written

(f.9) = /fy du, where fe€LP, gelLf.

PROOF. Using an exhaustion sequence {A,} of X, we can reduce the proof
to the case where (2, A, u) is a probability space.

A positive linear functional l on L? is a linear functional such that I(f) >
0 for every f > 0, f € LP. As in II-5, it can be shown that every linear
functional on LP can be written as the difference of two positive linear
functionals. It thus suffices to prove the theorem when [ is positive.

Since p(X) < 400, L™ C LP and we can define

v(A) =1(14) 2 0.

Let C, = Uici<nAi and let Co, = U2, A;. Since the A; can be assumed to

=1

be disjoint, 37, ;<, 14, = 1c,. Thus

Y(Ca) = D U(A) = Y v(Ay).
1c, — 1c, everywhere and 1¢, < 1; hence, by Lebesgue’s dominated
convergence theorem, ||1¢c, — 1¢c_||» — 0. It follows that v is a measure
defined on A. Furthermore, p(A) = 0 implies 14 =0 in LL. whence v(A) =

{(14) = 0. Thus hypothesis 6.2.1(i) is satisfied, and the Radon-Nikodym
theorem implies the existence of a nonnegative k € LL such that

Lk du = v(A).

Using linear combinations of characteristic functions, we see that

(i) I(p) = / ke dy
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for all simple functions. If we show that
(i) ke Ll

each side of (i) will define a continuous linear functional on L?; since they
coincide on the dense set of simple functions, they will be equal everywhere.

Let B, = {z : k(z) < n} and let k, = klp,; then k, € L™. If ¢ < +o00, by
Fatou-Beppo Levi the negation of (ii) is equivalent to the assertion that ||ka||L¢ —
00 8s n — 00.

Let a = p~!q and let
1

= — k3.
knllge ™

Un

Then ||lun|lLr =1 and

l(un) = /u,.k = /u,.k,. = ||knllze — 00 as n — oo,

contradicting the inequality
[H(un)l < 10l llunllee.

The case ¢ = oo is treated in the same way, using the inequality

l(l - an) 2 n"l - an "Ll'D

6.4 Isomorphisms of separable probability spaces
6.4.1 Atoms of a measure space

Let (2, A, P) be a measure space. A € A is called a P-atom if P(A) > 0 and
if, for any B € A such that 15 < 14 a.e., either 13 =0 ae.or 13 = 1,4
a.e. This notion of atom corresponds to the one introduced in I-6.2, except
that we now consider the classes defined by equality a.e.

6.4.2 Structure theorem (nonatomic case). Let (2, A, P) be a sepa-
rable probability space which is complete and has no P-atoms. Then there
ezists f € L*(Q, A) such that 0 < f < 1 and f is a probability space
isomorphism from (Q, A, P) onto [0, 1] equipped with Lebesque measure.

PROOF. Let {A,} be the increasing sequence of finite sub-o-algebras of A
constructed in 6.1. Note that we could regroup the atoms of A,, that have
measure zero with an atom of strictly positive measure, to produce a new
sub-g-algebra A, such that P(4) > 0 if A € A}, and A # 0. Assume that
this has been done.

We next enumerate the atoms of A,, say e,,,...,€;,,, where s = s(1),
and then the atoms of A3, consistently with the enumeration for A;. That
is, all the atoms into which e ) is decomposed appear first, then the atoms
into which e; ; is decomposed, and so on.
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With the atoms of A, listed as eg1,...,€q,4, 3 = 3(g), there exists a
strictly increasing integer-valued function y such that

€q,s is decomposed into the atoms eg,; j, with p(s) < j < p(s +1).

Having defined this coherent enumeration of the atoms of A,, we set 3, =
P(eq,r) and define

1
fo(z) = 5,3,,,1 + Z Bqr» Where z €eq.

r<!

Then f, € L*°(Ay) and

EA'(qu)(eq.s): E Ba+1,r

r<e(s)
1 1
+ P(e ) Z P(eq+l,j) EﬂQ+l'j + Z ﬁq+l,m .
87 p(s)<1<p(s+1) m<y

In the second sum, observe that

2
% Z ﬂq+l,j] = %[P(e,,',)]z.

p(8)<j<ep(s+1)

Similarly, the first sum can be written >, _, 8, ., whence

EA(f,01) = £,

The f, form a martingale; since 0 < f; < 1, they form an L? martingale.
This martingale converges a.s. to its final value f € L>(A), and f; =

EA(f).

Furthermore, let
7q = sup fq,r.
r

Then {n,} is a decreasing sequence. Assume for contradiction that

() limng =¢>0.

Then there exists a decreasing sequence of atoms a,, € A, such that
P(lim | an) =lim P(ay) =€ > 0.

Let C = lim | an. Since the probability space (2, .4, P) has no P-atoms, we can
find D € A such that D C C and P(D) >0, P(C - D) > 0.
Since the o-algebras A, P-generate A,

) EA"(1p) = 1p as.
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But, since 1p < 1¢, E'A"(l p) is constant on the atom a,; that is,

(i2) lim gA» (1p) = mlc, where v, is a constant.
This contradicts (ii). Hence (i) cannot hold, and
(iv) limng =0.

(v) The distribution of f is Lebesgue measure.
Since the functions f, converge a.s. to f, their distributions converge to the
distribution of f. Let u € C([0, 1]) and consider

E(u(fn(w))) = ZBQ-"“ (%ﬂq.r + Eﬂq.l) .

i<r

The right-hand side is a Riemann sum for u, and since the mesh of the parti-
tions tends to zero by (iv), the Riemann sums converge to f u dx, whence (v).

(vi) Let A' = f~'(Br), where BR is the Borel algebra of R. Then LF(A) =
Lyp(A).
Let 8. = 3_ ., Ba.;- Then, by the construction of the f;,

fg_l((ﬁ;.n :Btl;.r+l)) = €q.r ifj >q.

By the a.s. convergence of the f,,

£ (B Baurs1]) D €air D £ ((Baurs Baurs1))-

Since P(f~!(8;.r)) = Lebesgue measure of {,-} = 0, the two inverse images
above differ by sets of probability zero. Hence L¥ (A’') O L¥ (A), and (vi) follows.
a

6.4.3 Structure theorem (general case). Let (2,.A, P) be a separa-
ble complete probability space. Then there erxists a discrete measure v =
3" ckbe, on [0,1] satisfying the following two conditions:

(3 =Y e < 1.

(ii) Setting
dp = dy + (1 - [Ivl))d¢,

there exists a function f in L°(Q,.A) which is an isomorphism from
(R, A, P) onto [0,1] equipped with the completion with respect to u of its
Borel algebra.

PROOF. Let A,..., Aq,. .. denote the P-atoms of A. Since 3, P(Aq) <1,
the set of P-atoms is countable. Let ¢y = P(Ax) and let & = -,';; then the
measure v is well defined. If ||y|| = 1, the desired isomorphism is clear. If
vl < 1, set

@ — Up Ay,
AAQ,

P =]
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and ]
P(A)= —=P(A) for A€ A
P(Q)

Applying Theorem 6.4.2 to (ﬁ, A, }3) shows that f € L“(ﬁ, .71). Now let
~ 1
f=F+Y 7140

6.5 Conditional probabilities

We would like to express conditional expectation by an integral. This has
already been done in 2.4.2 in the case of conditioning relative to a finite
sub-o-algebra.

6.5.1 Theorem. Let (2, A, P) be a separable complete probability space,
let (X, B) be a measure space, let f € Mp((R, A); (X,B)), and let p = f.P
be the distribution of f. For a o-algebra A’ on Q, let n(2, A’) be the set of
probability measures defined on A’.

Then there exist

(i) ao-algebra A’ C A such that L¥(A') = L (A) and
(i) a mapping x — v, from X to m(R,A’) that is defined p-a.e.
and satisfies

B(f)hWw) = [ s@iua) | [ mo)dvso)]

for any u € LY(B), h € L2(A').

(The expression in brackets on the right-hand side is a function in L“‘(B).)

PRrOOF. Using Theorem 6.4.2 on isomorphisms of probability spaces and
noting that the “atomic set” appearing in 6.4.3 can be handled easily,
we reduce the proof to the case where = [0,1], A is the o-algebra of
Lebesgue-measurable sets, and P is Lebesgue measure. Taking A’ = Bg,
this reduction to [0, 1] allows us to use the theory of Radon measures.

Let g, = z", z € [0, 1]. Let W denote the finite linear combinations of g,
with rational coefficients, that is the polynomials with rational coefficients.
For every w € W, the conditional expectation of w given f is defined in
the complement of a p-negligible set. Taking a countable union of such
negligible sets, we can find By € B such that p(Bg) = 0 and

Iz(w) = E(w(w)|f(w) = z) is defined Vz € B§.

Then I, is a linear functional on the Q-vector space W. Since |I;(w)| <
llwlic, the Hahn-Banach theorem implies that [, extends to a linear func-
tional I’ defined on C([0, 1]).



228 IV. Hilbert Space Methods and Limit Theorems in Probability Theory

Hence, by I1-5.2, there exists a Radon measure v, on [0, 1] such that
(k) = [ ho)dve(w), VR € C(o0,1).
In particular,
E(u(o)lf() =) = [ v(w) dvw)

This formula extends by continuity from W to LE ().
Note finally that I’ (w) > 0 if w > 0; whence v, is positive. Taking
f = 1pg shows that v,(2) =1. 0

6.6 Product of a countably infinite set of probability spaces

Theorem. Let (2, An, P,,) be a countably infinite set of probability spaces.
Then there erists a unigque probability space (2, A, P) with the following two
properties:

(i) For every q, there ezists a morphism from the product of the first q
probability spaces (U, Ap, P,) to (R, A, P).

(ii) Furthermore, (2, A, P) is the smallest probability space satisfying (i).
More precisely, if (¥, A’, P') is a probability space satisfying (i), then there
ezists a morphism of probability spaces ® : (', A, P') — (R, A, P).

PROOF. By the structure theorem (6.4.3), we can reduce the proof to the
case where Q,, = [0, 1], A, is the Borel algebra, and P, is a Radon measure
#n which is the sum of a discrete measure and a multiple of Lebesgue
measure. Let

Q=[0,1JN.
Then Q is a compact space, which will be equipped with its Borel algebra.
Define an injection
.fq : [01 I]q - [0, I]N
by setting
fo&seo i &) = (&-..,64,0,0,...).
Let
(f)e(1 ®u2®--- @ pg) = Py

Then P, converges vaguely to a Radon measure P, and (2, Bn, Py) is
the desired probability space. O
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Gaussian Sobolev Spaces
and Stochastic Calculus
of Variations

Introduction

In Chapter IV, we began by basing probability theory on the theory of
abstract measure spaces of Chapter I. We then studied convergence in
distribution by means of the Fourier transform on R%. Thus both abstract
integration theory and classical analysis were necessary to obtain the limit
theorems of probability theory. These two sources of Chapter IV derive
from the dual nature of distributions. Although a distribution is attached
to a very abstract object, a random variable on a probability space, it can
also be thought of as given by a Radon measure on R. Borrowing an image
from Plato, we might say that distributions have a daemonic nature: they
come simultaneously from celestial objects (the abstract theory of measure
spaces) and terrestrial objects (analysis on R).

In this chapter, we study the “regularity of distributions”. The concept
of regularity is based on the existence of a standard Radon measure on R,
Lebesgue measure. A distribution is called regular if it has a density k with
respect to Lebesgue measure, very regular if k is a C* function, and so on.
Lebesgue measure is defined in terrestrial terms as the translation-invariant
Radon measure on R.

To study the regularity of distributions, we will have to go up to the
celestial level of quasi-invariant measures. A Gaussian probability space
is a probability space equipped with a sequence of independent Gaus-
sian random variables that generates the underlying o-algebra. On such
a space, the probability measure is quasi-invariant under the action of
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distinguished translations, those of Cameron-Martin. The action of trans-
lationi on L2(R?) led in Chapter III to the definition of the Sobolev spaces
H3(R%).

Proceeding similarly here, we will define further celestial objects, spaces
of infinitely differentiable random variables. We can then use differential
calculus on both R and the probability space. The interaction, through
a random variable, of these two kinds of differential calculus will make it
possible to study the regularity of distributions.

The use on an abstract probability space of a natural underlying differ-
ential structure, as developed here, is commonly called “stochastic calculus
of variations”.

1 Gaussian Probability Spaces

1.1 Definition. Let (2, A, P) be a probability space and let X be an R"-
valued random variable defined on Q. X is called a Gaussian random vari-
able if the distribution of X is a Gaussian measure on R". (See I1V-4.3.3.)
Gaussian measures and Gaussian random variables are sometimes called
normal.

REMARK. If X is Gaussian, X is in L? Vp < +o0.

1.2 Definition. Let (2, A, P) be a probability space and let {X,} be a

sequence of independent normal random variables. (2, A, P) is said to be

a Gaussian space if the o-algebra generated by all the X, is equal to A.
We intend to construct a basis for L2(Q2, A, P).

1.3 Hermite polynomials

On R, we define the Gaussian measure v,(4) = [, exp(-—%’) 7‘%‘;

1.3.1 On L%(R,v,), we consider the scalar product
(i) = [ e@wia)in,
the differentiation operator d = a";, and the operator é defined by
__d __?2 8 (2
bp(z) = E-&-:cgp— e E(e cp).

1.3.2 Lemma. When ¢ and v are C' functions with compact support,

(3) (dol¥) = (pl6%)-
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(ii) Moreover, (i) remains true if ¢ and ¢ are absolutely continuous and
in L%(R,v,), with dp and 6¢ in L2.

(iii) dé — bd = Identity.

PROOF. (i) follows from an integration by parts, and (ii) from approximat-
ing  and ¥ by compactly supported C! functions. A different proof will
be given later, in 2.2.3. O

1.3.3 Definition. The Hermite polynomials are defined by setting Ho = 1
and H,, = 6"1 forn > 1. Here 6™ = §0...06, n times. It is immediate that

Hl = 6l = Z,
Hy = 661=22-1, and
H3 = 631 = 23 - 3z.

1.3.4 Proposition. H, is a polynomial of degree n whose highest-degree
term is ™. The following relations hold:

(¥) 6H, = Hu4y;
(i) dH, = nHj_;
(i#7) (6 +d)H, = zHp;
(iv) 6dH, = nH,.
PROOF.

(i) follows immediately from the definition.
(ii) is proved by induction, using 1.3.2.(iii):

dH, =d 6Hp-y =6 dHn—y + Hny = (n = 1)6Hpn_3 + Hn_).

(iii) follows from the definition of the operator 6 (1.3.1).
(iv) follows from (ii) and the definition of H,. O

1.3.5 Corollary. Let F(g(z))(€) = [*>° e%g(z)dx be the Fourier trans-

-—0oC

form of g at the point €. Then F(Hn(z)e *'/2) = ingre=€/2,
PROOF.

F@E1e= /() = (€018m1) = (dnee|1) = i"gn(e€2 )

+
= in&n/ (’oeiez-z’ﬂ dz =i"£"e_€2/2.l:|
-0 Ver

1.3.6 Theorem. {ﬁ”"} is an orthonormal basis of L*(R,v,).
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PROOF. (i) We show that the polynomials H, are dense in L?(R, ;). Oth-
erwise there would exist ¢ € L? such that (p|z*¥) =0Vk =0,1,...
Let

F(t) = / o(v)eit= 24y,

Setting ¢t = o + iT, we have

1/2 1/2
/I‘p(v)le-v’ﬂe-rvdv < [/Iso(v)lze"’z/zdv] [/e—2rve—v’/2dv] .

Thus I-7.8.4 can be used to differentiate under the integral sign, showing
that F is an entire function of ¢. Since

F®(0) = ¢* / vkp(v)e™"2dv = 0

for every k, F = 0. Applying the inverse Fourier transform, we see that
p=0.

(ii) The polynomials Hy. are linearly independent since the coefficient of z*
in Hy is 1.

(iii) We show that the functions (k—!)‘m-Hk form an orthonormal system. If
8>k, then

(Hy|H,) = (d°6*1]1) =0,
since d*6%1 = 0. If s = k, then d*6°1 is the product of s! and the coefficient
of the highest-degree term of H,; that is, d®*6°1 = s!. O

1.4 Hermite series expansion

1.4.1 Theorem. Let g be a C>® function on R such that g and all its
derivatives are in L2(R,v,). The expansion of g with respect to the basis

(,,3;172Hn 18

oo

9() = Y Elg ™ Ha()

n=0
where E(g(™) = (g(™|1) and g'™ is the nth-order derivative of g (9@ = g).
PROOF. Let g(z) = Y oo, CnHn(z) be the Hermite series expansion of g.

Integrating term by term and using the orthogonality of the polynomials
Hy, we have

+oc e—32/2dx
H — =Cik!
/_ _ Hua)e(0) == = G

E[gM)]

] .0

Moreover, (Hklg) = (6*1|g) = (1/d*g). Hence C =
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1.4.2 EXAMPLE. exp(—% +ir) =304 £ Ho(z).

PROOF.
& e —ﬁ+ta: =t"e —ﬁ+ta:
dzn P\ 72 =Pl Ty

+00 t2 32 dx
n —_— ——— — = t“.D
/—m t exp( 2 +ta:) exp( 2) o

1.4.3 Corollary. —"Sf)- oy z“("‘”)exp(—-— + 2z)dz, where v is a
simple closed curve around the origin in C.

PROOF. This follows from 1.4.2 and the Cauchy formula. O

1.5 The Ornstein-Uhlenbeck operator on R

1.5.1 Definition. £ = éd = ——7 + x4 dz is called the Ornstein-Uhlenbeck
operator on R.

1.5.2 Lemma. LH, = nH,.
PROOF. By 1.3.4(iv). O
1.5.3 Definition. Let Py be the operator defined by

Pofw)= [ f(zcost +ysind)e~=12 %=
eJ\Y) = oo Yy ‘/2—7"

REMARK. The integral above takes the same value for § and 7 — 0; it
depends only on siné.

1.5.4 Proposition.

(i) (Popl¥) = (p|Po);
(ii) dPy = sinfPyd;
(i13) Peb =sinf §P,;
(iv) LPy = PyL;

(v) PoH, = (sinf)"H,,.

PROOF. The measure exp(—’z—;ﬂ)%,ﬁl is rotation invariant. (i) follows
from this; (ii) is immediate; (iii) follows from (i) and (ii) and the fact that

(6¢l9) = (pldy). (ii) and (iii) imply (iv).
(v) is proved by alternately using (iii) and the fact that §H, = Hp4::

PyH, = PpéH,_) =sin@ 6PyH-) =sin6 §Py6H,_, = sin’ 0 62 PyH,,_,.
Iterating this gives

(sin@)"é6" PoHp = (sin6)"6™1 = (sin6)"H,,.O
1.5.5 Proposition. Let 6(t) = arcsin(e™*), where t > 0. Then
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(i) & (Powyf) = —L(Poqtyf), and
(ﬂ) Pg(t) o PO(t’) = Pg(g,Hr).

PROOF. Since Py depends only on sin 8, we can set 8(t) = arcsin(e~*). Then

d +00 e~ /2dy
Z(Pef)(®) =/ (~asinf+ yoos6)f'(z cos + ysind) ==

ycos 0Py (df)(y) — sin 8 cos OPs(d ) (y),

where the second term comes from an integration by parts. Using 1.5.4(ii),

2 (Paf)w) = WaPo () ~ PPof (1) g

d d dé
a(Po(:)f) = @(Pof)ﬁ = —LPyy)f.

This proves (i).

We now prove (ii). By 1.5.4(v), Py o Py» H, = sin(nf)sin(n8’)H,. Since
sinf(t)sinO(t') = sind(t + t') = e~(t+t)| this implies (ii) for finite linear
combinations of Hermite polynomials and hence, passing to the limit, for
L2. o

1.5.6 Lemma. (Pf)(y) = [*3 f(x)Ko(z,y)e =" /2 42, where

KO(za y) =

1 o[2zysin 0 — sin’ §(z2 + y?)
| cos 6] P 2cos?0 )

PRrooF. This follows from the change of variables © = zcos + ysin@ in
1.53.0

1.5.7 REMARK. Since the operator P; is self-adjoint with respect to the
scalar product (see 1.5.4(i)), the kernel Ky is symmetric in z and y.

1.5.8 Examples of expansion in Hermite series

(i) Ha(zcos0 +ysin6) = X0, ( ) (cos 0)P(sin 8)"~P Hio(z) Hn—p()
(i) Ko(z,y) = X2, E20° H, (x)Hn(y) = exp(sin8 6,62)1(z)1(y), where
6 = —3";’7 +zd andéy = d—;g +ya“—y.
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PROOF.
(i) (f:-)PH,,(a:cose + ysinf) = °‘:"_0;f'!H,,_p(:cc050 + ysin@) if
p < n. To evaluate PyH,_p, use 1.5.4(v) followed by Theorem
1.4.1.

(ii) Expand y — Kp(z,y) in a Hermite series, using Theorem 1.4.1:

+oo d\" 2,0 dy +oo 2,0 dy
— ) Koz, —vi/2 L Ko(z,y)(6™1)e v /2 —=
[T(3) ®en]errde = [T runerner i

+00 a 2/2 dy
= Ko(z,y)Hn(y)e™ s

—00

By 1.5.4(v), this equals (sin )" H,(z). O

1.6 Canonical basis for the L? space
of a Gaussian probability space

1.6.1 Notation. Let RN be the set of real-valued sequences and let By

be the Borel algebra on RN. Projection onto the first n coordinates is

denoted by 7, : RN — R". It follows from the structure theorem (IV-6.6)

that there exists a measure v on RN such that the direct image (7,).v of v
e—z?/?

under 7 satisfies (7).V = vy, where v, = l'[:;l (W) dz;. B, denotes
the inverse image under =,, of By.
1.6.2 Proposition. The increasing sequence {B,} of o-algebras is a fil-
tration of the space (RN, Boo,v).

The space (RN, Bw,v) is a Gaussian probability space and Boo is the
o-algebra generated by the Gaussian variables X, of projection onto the
nth coordinate.

PROOF. Follows from the definitions. O

1.6.3 Proposition. Let f € L*(, A, P) There ezists f : RN — R such
that

fw) = f(X1(W), X2(w), ..., Xa (W), .. .).
PROOF. By Dynkin’s theorem, IV-1.5.4.

1.6.4 Lemma. If (2, A, P) is a Gaussian space and {X,} i3 a sequence of
Gaussian random variables that generates A, then X, € L?"(Q, A, P) for
1<p<oo.

PROOF. The integral / z?Pe==" 24y converges. O

1.6.5 Definition. Let £ be the set of sequences of integers (n,, na,...,0,...)
for which all but finitely many terms are zero. For p = (n,,...,n,0,...) €
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€ and w € N, let
k
Hp(w) = [[ Hn. (Xi(w)),

i=1
where H,, are the Hermite polynomials on R. We write p! = HLI ngl.
1.6.6 Theorem. {(p!)~!/2H,(w)} is an orthonormal basis of L(Q, A, P).

PROOF. We prove the theorem for R2. By IV-3.5.1, linear combinations
of the form f = Y fih;, where fi(&1), hi(&2) € L?(R,11), are dense in
L?(R?,1,). Approximating the functions f;, h; by their expansions in Her-
mite polynomials shows that the set of functions of the form

Hkt (él)sz(€2)

generates L(R?, exp(— sﬁ%g )Eyi2).
Moreover,

(i (60) By (€0) Hos (60) i (62)) = 001, kr)6(s, ).

1.6.7 Theorem (Taylor-Stroock formula). Set
B@,f) = [ 0000 flon,...oxn(da)
forp=(n1,n2,...,n,0,...,0,...). IfE(8pf) exists for every p, then
1 -
fw) =3 SEOpf Hp(w)
pef
PROOF. It suffices to prove 1.6.7 when 2 = R" and f : R" — R, that is,
- 1 -
flz,...,zn) = % HE(a,,f)z{,,(acl,....ac,.).
pe

The proof proceeds as in 1.4.1. O

1.7 Isomorphism theorem. There exists an isomorphism ¢ between
L3(Q, A, P) and L2(RN, B, v).

1.8 The Cameron-Martin theorem on (RN, By, v):
quasi-invariance under the action of £
1.8.1 Proposition. Let (2, A, P) be a probability space and let {M,} be

a sequence of integrable random variables such that sup, E(|M,|P) = Cp <
+00 for p > 1. Then {M,} is uniformly integrable.
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PROOF. [, |[MaldP < [|My|lzsll1allLe < CpP(A)Y4 for A € A (cf. IV-
5.7.1). 0

In what follows, we consider the Gaussian probability space (RN, By, v)
(cf. 1.6.1 and 1.6.2).

1.8.2 Notation. Let t” be the space of sequences z = (T),...,Zpn,...) €
RN such that 352, 22 < +00. The scalar product (zly) = Z::, z;y; is
associated with the norm |z| = /3 z2 on 2. Let 7, : RN — RN denote
the mapping defined by 7,(z) = £ + y and let (7). denote the image of
the measure v under 7,. (See IV-1.4.3.)

1.8.3 Theorem (Cameron-Martin). If y € £2, then the image measure
(y)ev is absolutely continuous with respect to v and the density is given by

d((Tv)-V)( ) - CXP(Z Y2k — = Zyk)

PROOF. Let Sn(2) = Y 1, Yk2k-

(i) The sequence {S,} on (RN, By, v) is an L? martingale relative
to the filtration {B,}. Hence {S,} converges a.s. Let S, =
limy, 00 Sy. Then Sy, < +00 a.s.

(ii) The a.s. convergence of S,, implies its convergence in distribu-
tion. This follows from IV-1.8.5.

(iii) Set Ma(z) = exp(Tp., vkzx — 3 Sheoy ¥2)-

The sequence {My,} is a martingale relative to the filtration {B,} and,
for all n, E(M,) = 1. By Fatou’s theorem (IV-5.6.3), the limit M, =
limy, oo M, exists a.s.

(iv) E(MP)=E [exp(Zpykzk—- Z )]

But "
E [exp(Z(pyk)zk - 3P Dk )] =
Hence - n
E{M] = exp(;@z -p>k§_:lyz) :

M,, is therefore bounded in L? and hence uniformly integrable. By IV-
5.8, M, converges in LP to M. Thus M,, is the conditional expectation
of M. Given a function f depending on the first r coordinates, we have

E((1y)<f) = E(M, f) = E(M f).
The equality E(M, f) = E(M f) extends by continuity to all f in LP. O
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REMARK. Although v is not invariant under the Cameron-Martin trans-
lations 7,, the measure (7,).v is absolutely continuous with respect to v.
This property of (7,).v is called quasi-invariance.

2 Gaussian Sobolev Spaces

2.1 Finite-dimensional spaces
2.1.1 Notation

Let f € L2(R*,u). We write E(f) = [ f(z1....,Zx)dvk. By 1.5.8(iii), f
can be expanded in a Hermite series. If p = (p1,...,px) € N¥. we set
Pl=plp!...pxl and |p|=p1 +p2+ ... + k.

Then
f(xr....,z¢) = Z: Cp,.. m(f)HP'(I‘) Hm(-"«'k)
P1...pk p!
- Hp, (1) - .. Hp, (zk)
Zy)... T

o (E1er28) = iy () ) i)

Then
"f"[,n(yk)— 2 "fm Pk"L’(y,‘) Z: Icm 'Pkl .

P1--Pk P1...P P

For a C! function ¢ : R* — R, we have the partial differential operators
d
Ojp = 727¢ and 69 = (—0; + z;)p.

2.1.2 Operators on L2(R¥)

An operator T defined on the polynomials can be extended to a formal
operator on L%(R*) as follows: for f € L2(v), let

Tf= Z: Cp;.. Pk(f) T[pr('tl) Hm(-tk)]'

P1---Pk

The domain of T consists of those f € L2 such that Tf € L2.
Restricting our attention to differential operators, we consider 9;, é;, and

L=3"_6,0; Let

Hp, (x1) ... Hp, (zk)

G Lf= Z:aaf— Y con(Npl ~

P1---Pk
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and let the gradient operator be defined by Vf = (&, f,...,0kf). For z =
(215---42jy...,2k), with z; € L?(x), j = 1,....k, we set

k
(i7) bz= 6,z
=1

When 8; f € L?(v) for j = 1,...,k, we set

=

x 1/2
D) VAl = ( wﬁﬁnm) :
1

Similarly, if 8j, ...0,,f € L*(vx) Vj1,-..,Js, We set

1/2
(iv) IV2fl = (Z(ajlanf)2) ,

J1.Jz2

1/2
( Y, ...aj,f)2) )

Jrsee-Je

Ive £l

We intend to determine the domains of the operators V, V2, and £; that
is, the set of functions f € L?(v;) whose images under these operators are
in L?(vx). Recall that the Sobolev space W?, . was defined in I1I-3.4.3.

r.loc

2.1.3 Definition.

D',’(Rk) = {f € W,’:loc(Rk) : Z IV fllequn) < +00} .

8=0

2.1.4 Theorem. D?(R*), with the norm ||fllpr = 5o IV*fllLos)s i
a complete space.

ProOOF. By 111-3.3.6. O

2.2 Using Hermite series to characterize D?(R)
in the Gaussian L? space

Let f € L2 = L*(R,v1) and let 322 ca(f) &p = T2 fn be its Hermite
series expansion.
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2.2.1 Definition. On L2, the formal operators d, §, and L are defined by

df Z:c,.(f) = Ecn-u(f)

n>1 n>0
n+l Hp41 |
8f = Z% () —'gcn(f)(nﬂ)( vt
Lf= ch(f)( D
n>1

The reader can easily verify that £ = éd.
2.2.2 Lemma.

(i) lea()? = !l fullZa
For an integer s > 1,

(1) cn(d®f) = cn4s(f);

(i) ca(6°f) =0 if n < s and ca(6°f) = Foyyicn—s(f) fn 2 s;
(i) en(L°f) = n®cn(f).

PROOF. (i) follows from 1.3.6, since fn = cn(f)Zp.
The other identities follow from the definitions and from the relations
dHn = an_l md 6Hn = Hn+l- D

2.2.3 Proposition. Let f € L? and let 3°, 5 fn be its Hermite series
ezpansion. Then for s an integer, s > 1, properties (i) through (iv) below
are equivalent.

(?) d*f € L2.

(i1) > n?lfall}a < +oo.
n>1

(ii4) f e D}(R).

(iv) 6°f € L2

In particular, Df(R) is the domain of the operators d* and 6° on L2. If
both f and g are in D3(R), then

(v) (dflg)L2 = (f169)L2.
PROOF. (i) = (ii). d°f = 3_ 50 Cn+s( f)!",;gL since dH,, = nH,_,. Hence, by

2.2.2,
10712 = 3 lensa (NP2 = 3 By 5 e

n>0 n>0

This proves (ii), since iT‘)‘ ~ (n +8)* as n — oo.
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(i) = (i). If (ii) holds, the series 3", o cnsa(f)Zp converges in L2 and
&fel?

(iv) = (ii). By 221, &f = ¥ soea(f)(n+ D(n +2)...(n + 8) 3L
Hence, by 2.2.2,

R e
= Y (n+1)(n+2)...(n+s)lfal*
n>0

(ii) = (iii). We give the proof for the case s = 1. Let ¢ € D; then

Hy(z)
n!

[é@f@)dz = 3 / & (@)ea(£) 2252 4y

n>0

= -Y [e@e(n oty

n>0

- / o(@)df (z)de.

Hence f € W3,,,. Since df € L?, it follows that f € D}(R).

(iii) = (ii). As above, we give the proof only when s = 1. Let df be the
weak derivative of f. Then df € L? and df = }_,,5 cn(df) Zp for ¢ € D,
and hence -

[¢@1@0s =~ [ ola)if@)as.
This implies that c,+1(f) = cn(df), and (ii) follows.
(v) is proved by using the orthogonality of the Hermite polynomials. O

2.2.4 Proposition. If s = 2p, then (i), (ii), (iii), and (iv) of 2.2.8 are
equivalent to

(vi) LPf e L2
PROOF. We verify only that (ii) = (vi). Since Lf = anoc,.(f)nﬂnf,
2
IEFIE =Y ealH?*5 = 3 n2llfall®
n>0 a0

This implies equivalence when s = 1. The proof for s > 1 is similar. O
2.2.5 Lemma. The following identities hold:

(¥) 165172 = ldfiIZ: + 1 f1IZ2
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and if k is an integer, k > 1,
(i) Nd*6f1132 = lld*+ 112 + (2k + D)l|d* f11Z2 + K2lld* ! fliZa.
PROOF OF (i).
1612 = 3" (n + DllfallZ = follZs + 3 (n + 2l fnsalia.
n>0 n>0

ldfliZ = D (n+ Dl fasarla-

n>0

Hence

16£11Z2 — Ndf iz = Nfollfe + D IlfnsrliEs = IF1Z-

n>0
PROOF OF (ii). Since cn41(6f) = (n + 1)ea(f) and |en(f)I? = !l fnll3..

156713 = S lensk NP x 25 = Flenssca(Nn + )7
n>0 : n>0 !
|
Z i :'k). (n + )| k-1l
n>0 ’
Since

n+k+1)!
14441 = 3 CEE R el
n>0 )

we can compute [|d*6f||2, - [|d**! f||2, by observing that

(n+k+2)!(n+k+2) (n+k+1) (n+k+1)!
(n+2)! n! T (n+2)

[(2k+1)n+k2+4k+2).

]

2.2.6 Lemma (Differentiation of composite functions). Let g €
D{(R) and let u = g.vy be the image of vy under g. If p € L%(u) and
dp € L*(n), then po g € DY(R) and d(p o g)(z) = (dp)(g(z))dg(z).
PROOF. d is the extension of the differentiation operator %. By Hélder's
inequality, if f; € L* and f, € L4, then f,f, € L2. O

2.2.7 Lemma. If f € D{(R) and g € D}(R). then fg € D?(R) and

(¥) d(fg) = fdg + gdf.
If f € D}(R) and g € D3(R), then fg € D3(R) and
(#) L(fg) = L(f)g + L(9)f + df dg.

PROOF. (i) and (ii) follow from identities obtained when f and g are dif-
ferentiable, since d (respectively L) is the extension of the operator di
(respectively 6d — see 1.5.1). Hélder’s inequality implies that d(fg) € 2
and £(fg) € L2. O
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2.8 The spaces D(R¥) (k > 1)

2.3.1 Proposition. Let f € L*(vx) and let f = 3, . fp,..p be ils
Hermite series expansion. Then the following statements are equivalent:

() IV£Il € L*(R®, ).

(i4) > 1Pl fpr..pull 20y < +o0.
P1.--Pk

(1) f € DI(R").

PROOF. Note that
cpl~"Pj-lPJP)+l-~-Pk (f) = CP1-~-P,-|P;-|PJ+1---m (a)f)
Hence

10, 12y = 3 py Loz "*"" = Y BilfomlP.

P1...Pk P1.--Pk
(i) « (ii) then follows from the relation |V f||2, = Z_';___l o; f "%’(w)' For
(ii) < (iii), see Proposition 2.2.3. O

2.3.2 Proposition. Let f =3, . fp,..p. be the Hermite series ezpan-
sion of f € L?(vx). The following properties are equivalent:

(?) Lf e L)

(i) > PP fprpill? < +oo.
P1..-Pk

(i44) f e D3RF.O0

PROOF. See Proposition 2.2.3. O
2.3.3 Definition. Let V" f = (9;,0;, ... aj,f)j,,,,j,.
If 8,0;, ...0;, f € L*(vk) for every ji ..., jr, then
IV fi320ay = D 185 - -85 fliF -
Ji1--jr
2.3.4 Proposition. If f € D3(R*), then
ILFIF2 = V2172 + IV £I1Za-

PROOF. It suffices to check the formula for differentiable functions. In this
case, L =3 6,0;, where §; = -2 + z;0;.

Hence

ICfIF2 = D (6,05 f16:,05 ) = Y 185,05 32 + Z 18; £1122,
J:|={----J’: Jr.Jda
J2=1,...,

where we have used 1.3.2(i) and (ii). O
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2.4 Approzimation of LP(RV,v) by L?(R™,v)

Let X; : RN — R denote projection onto the ith coordinate and let B, be
the o-algebra generated by the random variables {Xi}1<i<n. Then {Bn}.
is a filtration (see 1.6.2).

2.4.1 Lemma. Let f € L(RN,v). Then
(i) fn= gB- (f) is a martingale in LP(RN,v) and
(#) limp—co || fn = fllpsgN) = 0. Thus f is the final value of a

martingale in LP(RN) relative to the filtration {B,} (see IV-
5.5.2).

PROOF.

(i) By IV-5.1.5.
(ii) By V-1.8.1 and IV-5.8.1. O

2.5 The spaces D?(RV)

Next, starting with the Gaussian Sobolev spaces D?(R*) on the finite-
dimensional space R* and using the martingale approximation of Lemma
2.4.1, we will study the Gaussian spaces D2(RN). If f € LP(RN,v), the
function f, = EB"( f) depends only on the first n variables:

fa(z) = pn(X1(x), ..., Xn(x)) = @n(z1,-..,Z0n).

2.5.1 Definition. We say that f € DP(RN) if f, = EB~(f) € D?(RN) for
all n and sup, "fn"D{,'(RN) < 400.

In this case, we set || f "D:(RN) = sup, | f""D:(RN)'

2.5.2 Operators on L*(R",v)
Let f € L2(RN,v) and let its Hermite series decomposition (see 1.6.7) be

k
f@ =Y écp(f) EAE)
pGg i=1

where p = (p1,...,p,0,...,0).
As in 2.1.2, we set

k
8f(x) =Y écp(f)aj (H Hm(-’ﬁ))
i=1

pe€



2 Gaussian Sobolev Spaces 245

k
£i(e) = 3 SiealhE ( H,,.(zi)) :
1

pe€ i=
2.5.3 Lemma. Let f € D3(RN). Then
) OEB (1) =EB~@;1) if i<m
(i) ,EB(f)=0 if j>n

PROOF. Let f € L2(RN,v) and let its Hermite series expansion be

= ¥ nnlDiHn().. @)

P1,--\Pk

Then

E(N)= 3 cnmfgiHn(®)... Hulae)

P1::-\Pk
1<ks<n

since the variables X; are independent and eB *(Hp(zx)) = 0 if k > n. (i)
and (ii) follow immediately. O

2.5.4 Lemma. Let f € D}(RN) and let f, = gB- (f)- Then, fork € N,
the sequence {0k fn}, N converges in L*(RN) and

(9) af = lim &EP-(1).

PROOF. Let k be fixed. Then {8k fn} is a martingale by 2.5.3(i); by 2.5.1
it is an L? martingale, which converges by I1V-5.3.3

To prove (i), note that 8 f — lim,, Ok fn is a continuous linear map from
D?(RN) to L2(RN) which vanishes on the set of functions depending on a
finite number of coordinates. O

2.5.5 Lemma. Let f € D2(RN). Then Lf = limp—.co EB~(Lf).
PROOF. Check that EB (Lf) = CEB- (f) on the Hermite series decompo-
sition of f. O

2.5.6 Theorem. Let f € L2(RN,v). Then the following statements are
equivalent:

(i) f € D}(RM).

(ii) For every k, k > 1, & f € L*(RN,v) and 3, (18 fl122 < +oo.

Furthermore, the space Df(RN) is complete in the metric given by the
norm [|fII5z = I fI32 + 24 10k £l 72
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PROOF. (i) = (ii): By 2.5.1,

[FAk z-ufnum+2ua,f,.u <e

ij=1
where c is a constant independent of n.
Thus 3°%_, 10;fall22 < ¢ for p < n. As n — oo, this inequality persists:
119, f1122 < c. Letting p — oo gives (ii).
(u) = (i): The same procedure as for (i) = (ii).
To show that D2(RN) is complete, let {f(?} be a Cauchy sequence in
D3(R) and set f$? = EB-(£(@). Then

"f'(‘q) - f'(‘k) "D’(RN) < ".f(q) - f(k) Ilpz(RN)-

Since D2(R") is complete, the sequence { f,(f)}qen converges in D2(R") to

fn- It is straightforward to show that { f,,},.eN is a martingale associated
with the filtration {B,}; it converges to f € D¥(RN). O

3 Absolute Continuity of Distributions

3.1 The Gaussian Space on R

Let g: R — R, g € L?(R). We seek sufficient conditions on g for the direct
image measure g,») to be absolutely continuous with respect to Lebesgue
measure on R.

3.1.1 Lemma. Let @ be a finite positive Borel measure on R. Suppose that,
for every ¢ which is C' and bounded on R,

(1) / & (€)d0(€)

< esup |p(§)]-
¢€R

Then 0 is absolutely continuous with respect to Lebesgue measure d§ on R,
and its density k is in L2(d€) and satisfies

/k2d§ <c(R) and k(§) <cdf a.e.

PROOF. Let ¢ be a bounded increasing C' function such that ¢(—o00) =

Then p(€) = [°,, ¢'(u)du.
It follows from (i) that, for every nonnegative continuous function ¢,

+00
(1) / & (E)dBE) < ¢ / ¢ (w)d.

— 00

(ii) extends to nonnegative Borel functions.
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Hence, for every nonnegative Borel function, [ fdu = 0 implies 6(f) =
By the Radon-Nikodym theorem (IV-6.2.1), 6 is absolutely continuous with
respect to Lebesgue measure. Let k(§) = % Then k(£) > 0 and, since

TEGECE:

< csup |p(§)],
EER

k(§) < cdf ae.
It remains to check that the density k = — is in L?(dg). This follows
from the inequality

[ ¥t < c [ kerte = o).
3.1.2 Corollary. If g € L?*(vy), ||dg||~! € L?(v,), and 6(3-) € L'(v),

then u = g.vy is absolutely continuous with respect to Lebesgue measure,
and its density k = du/d¢ is in L?(d§).

PROOF.
f & (€)d(g.n)(€) = j ¢ (9(2))dn = (' (g(=))]1)
and

(¢'(9(2))11)

[dtooa)@) x s
(v o016(3)) < supen 0(6) / o)

dlll

The result follows from Lemma 3.1.1. O

3.1.3 Let g € D2(R), the Sobolev space of order 2. Let A = {z € R :
dg(z) # 0}, let 14 denote the indicator function of A, and let 14, be the
density measure 14 with respect to v;.

3.1.4 Theorem. The image measure g,1 41, is absolutely continuous with
respect to Lebesgue measure.

PROOF. Let f(r) = —1—% Since g € D2(R), we have dg € D?(R)

and 6f € L?(R). Let A, = {z : dg(z) > ¢}. Whenz € A,and 0 < e < 1,

62
dg(z)f(z) > 5.
Let ¢ be a nonnegative function defined on R. Then

[9(©9.ds@ 1(2m) = / (¥ 0 9(z))dg(z) f(z)din (<)
€ [ (Wog(@))dn(z) = < ] B(E)(g-(1a.0)).
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Suppose that p4 = g.(1421) is not absolutely continuous with respect to
Lebesgue measure; then there exists a compact subset K of R such that

de§ =0 and p4(K) > 0.
Since A = UnAj/n,

pa(k) = [1cla@Na@in @) = lim [ 1clo@a, @dir(z) >0

Hence there exists ¢ such that pq,(K) > 0. Let {u,} be a sequence of
continuous functions on R such that (i) 0 < u, < 1, (ii) limp—oo un(€) =

1x(&), and (iii) for some R, un(€§) =0 if |§| > R.
Set pn(§) = ff g Un(A)dA. Then, by the dominated convergence theorem,

§
Jm pn(@) = [ 1xar=0.

Moreover,
2
(0no9l8) = (Wao0)dolN) 2 & [(Wno)-1am.

Since (¢n 0 gl6f) — 0 and [ ¢/, (£)pa.(d€) — pa.(K), this gives a contra-
diction. O

8.2 The Gaussian space on RV

Let g = (g1,...,94) € L2(RN,v) be a function with values in R%. We now
seek sufficient conditions for the direct image measure g,v to be absolutely
continuous with respect to Lebesgue measure on R®.

3.2.1 Notation. If g = (g1,...,94) is such that g, € D}[RN) for k =
1,...,d, we set

ng = (algka 3291:, cee ,ajgk, .. .).
By 2.5.6, 372, 19;9kl|Z2(,) < +o00.
3.2.2 Lemma. If

[ <) oo
Z ||3j9k||i=(u) <+o0 and 2 ||ajgp||%3(u) < +00,
=1 =1

then

oo
D " (89k1058p) L3y) < +00.
i=1

PROOF. This follows immediately from Holder’s inequality. O
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3.2.3 Notation. We set

() [Varl2(z) = Y |00k (2),

j=1

(o <]
(i) (VoxVgp)(z) = Y _0;0x(2)9;8p(<)-
i=1
The series (i) and (ii) are convergent in L!(v).
3.2.4 Definition. The matrix o;x = ((V9:|Vgk)(Z)) i=1,....a i8 called the
k=1,....d
covariance matrix associated with g.

3.2.5 Lemma. If g = (g1,...,94) : RN — R? and, for k = 1,...,d,
gk € D3(RN), then
oix € L'(RN,v).

PROOF. This follows from Holder’s inequality. O

3.2.6 Notation. Let ¢ = (91,...,94) : RN - R4 Suppose that g; €
D?(RN) for i = 1,...,d and that the inverse matrix o) exists v-a.e. We
set

. d -
(l) Zik = ic1 Oix 03945
(u) 2k = (zu,, 22ky -y Zjky )

Lemma. If g; € DYRN) for i = 1,...,d and 0;' € LYRN), then
2 ||ij“%,z(,,) < 400 and, for every C! function ¢ : R? - R,

@) 3850 0 9)(@)24(a) = %(g(::)).
3
PROOF. 8;(p © 9)(z) = L=, 5 (9(2))d;95(z), and hence

8;(v 0 g)(z)zjk(z) = 2 (g(z))Za.k ;903 9p-

This implies (i). O
3.2.7 Definition. When g; € D4(RN) fori =1,...,d and 0;;' € D{(RN),
we set
d d
bz = Y _(La)oz! = D_(VailV(azh).

i=1 =1

3.2.8 Theorem. For every function ¢ € Df(RN),
> (B5¥lzik) L2y = (¥l62k) L3¢)-

Jj
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PROOF. z:j(a,¢|z,~k) L2 = (d)l Z?=1 6,~(ai_,‘16jg,~)) and, recalling that 9; =
% and §; = —% + z;, one can easily show that

6,(f0;9:) = f6,0,9: — 0;f0;g:.
The relation follows by summmg over j. O

3.2.9 Proposmon Let tp R? = R and let g be such that g; € D (RN)
fori=1,...,d and o Di(RN). Then

/ « Oy edlo-v) = / (¢ 0 9)()b2x(z)dv(z).
PROOF

[ e @dta) = [ ZEat@Nania) = S0 (pealen)ir = (psloa)

The last equality follows from 3.2.8. O

3.2.10 Lemma. Let  be a finite measure on R?. Suppose that there exists

a constant C such that
: 9p(§)
i

@ %,

for every bounded C' function ¢ on RC.
dThen @ is absolutely continuous with respect to Lebesque measure d§ on
R®.
PROOF. For the case d = 1, see 3.1.1. We prove the lemma when d = 2.
Let ¢ be a compactly supported C! function on R2. We first show that

1/2
(37) (//};2 lol da:;da:g) < 2 Bz, dr dx; + 2,

To see this, let

——de§)| < C SUP lp(@)l, i=1,....d,

dordss )

v(z1) = sup |p(z1,72)] and w(zz) = sup |p(z1,22)l.
R z1€R

T2€

Then
(iid) //w lp|*dzdz, S/v(zl)dxlfw(zg)dxz.
Since

+00
. 1s]
(iv) o) < [ |5 e )| don
and

+ 00 a
v) w) € [ |7 )| i

(ii) is proved.
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Let u be a nonnegative continuous function with compact support such
that

(m’) // u(zl,zg)dzldxg =1.
R2
For € > 0, we set uc(z) = Zu(Z) and
p@) = [ | ulz = VBN,
R2
For every continuous compactly supported function 1,

/ /R.“ (x < '\) elzw(z)d:c 8(d))

/ /R B(2W+ €2)dz B(dN).

/ p@y(z)dz
Rﬁ

Since ¥ is continuous, (A + €z) tends to ¥()\) as ¢ — 0. It follows that

(vid) tim [ (@vi@)dz = [ (N6

The measures ¢,(z) thus converge vaguely to 8(dz) as ¢ — 0.
IfyisCY,
Opc ., | _ oy
[ o] = f o gete].
It follows from (i) and (vii) that

‘/ %wdz' < C sup |p(M).
6$i AeR?

Hence

2
dz < C.

0pe

(vii) /R 15

Ti

For every ¢, by Hoélder’s inequality,

[ oavie| < [ / |¢e|2] v [ / lwl’] "
It follows that
tiy| [ popaa| = | [ voran)| < c(f w;l’)l/z.




252 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations

The mapping ¥ — [¥(A)8(d)) is thus a continuous linear functional on
L?(dz). This implies the existence of k € L2(dx) such that

[ve@n = [v@hkiazo

3.2.11 Principal theorem. Let g = (gy,...,94) : RN — R? be such that
gi € DIRN) fori=1,...,d.
Let o = (Vgi|Vgk) be the covariance matriz. Suppose that o~ €
(RN) Then the image mcasure g.v is absolutely continuous with re-
spect to Lebesgue measure on RC.

PROOF. By 3.2.9,

| / B (©lg.)| < sup Io(e)- [ Ba@lan).

Let C = sup;, [ |62x(z)|dv(z); then C < +o0o and hypothesis 3.2.10(i) is
satisfied. O



Appendix I
Hilbert Spectral Analysis

The spectral theorem in finite dimensions makes it possible to write a
Hilbert space as a direct sum of eigenspaces of a hermitian endomorphism
u. If the dimension is infinite, direct sums are replaced by “continuous
sums”. We will apply Bochner’s theorem to obtain the spectral theorem by
Fourier analysis.

1 Functions of Positive Type

Let f be a function defined on an abelian group G. f is said to be of positive
type if, for any given g,,...,gn, € G, the matrix

(flgi—95)), 1<ij<n,

is positive hermitian. That is,

S ANfg5— 1) 20, VAi,..., M €C.
J.k

In particular, taking a single element, we find that the matrix

(7% 15)

is positive hermitian. That is,

L1 £(0)>0, f(g)=f(-g), and |f(g)* < £(0).
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Let P(G) denote the set of functions of positive type on G. Observe that
P(G) is a cone:

M +phe P(G) Vf,he P(G) and \,u€Rt.
1.2 Proposition. Let I" be an abelian group and let T be its dual. Then
(ML) € P(D).
PROOF. Let u € M}(T'), A, € C. Then, writing (v,7) for 3(7),
o) = 3G, 30T = T [ 05 - T uduto)
But
Yo ARkt ~ 3 = S AK )T = 3 M)

a0 = [ n0nm)

Algebra structure of the cone of functions of positive type

whence 2
du(v) 2 0.0

Proposition. Let f and h be functions of positive type on the abelian group
G. Then their product fh is of positive type.

PROOF. Set k = fhand let g),..., 9, € G be given. We consider the matrix

k(g: — 9;) = f(9i — 9;)h(9i — 95)
and apply the following lemma.

1.4 Lemma. Let (A}) and (B}), 1 < i,j < n, be positive hermitian matrices.
Let

C,=A}B},, 1<i,j<n.
Then C) is a positive hermitian matrix.

PROOF. Let X, (respectively Y;) be an orthonormal system of eigenvectors of
A (respectively B), and let u, (respectively v3) be the corresponding eigenvalue.

Then )
A=) paXoX, and B} =) 1Y;Vs
a 8
Hence A o
C; =) parXaYiXaY5.
a.f
Set Z}, 5 = X.Y3 and pa,g = pavs- Then

C, = ZPQ.BZ;.BZi.B-

z M ZapZas=| z AiZa sl

the matrix Z",.az,:.a is positive. C is thus a linear combination, with positive
coefficients, of positive matrices, and therefore is positive. O

Since
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2 Bochner’s Theorem

Bochner’s Theorem. Let Z be the group of integers. A function f on Z is
of positive type if and only if there exists uy € M, (T) such that fi(n) = f(n).
PROOF. (<) This follows from 1.2.
(=) Consider

gr(n) =r™ where re€0,1).

Then P,(n) = g,(n), where P,(6) denotes the Poisson kernel (see 111-2.2.1),
and thus g, € P(Z). By 1.3, k, = fg, € P(Z). Moreover, by 1.1,

k- ()] < £(0)Ir!™.
Set

(¥) l::,.(O) = Z kr(n)e_ino'

The right-hand side is an absolutely convergent series and k,(8) € C(T).
Next, let A, = e™*" if [p| < N and A\, = 0 otherwise. Then, since
k. € P(2),

.. 1 -
() 0<GnO) = 57— S AXk(p—g), VYN €Z.

We now rewrite Gy (8) in a slightly different form by noting that ApA, =
€'(9-P)¢ and summing over p — g = n:

Gn(0) = Z (l - %) e~ "%k, (n).

In|<2N -1

Letting N — +o00, the absolute convergence of (i) and inequality (ii) show
that

(iii) k.(8) > 0.
A positive linear functional can thus be defined on C(T) by setting
27
- df
b = [ u@kOF.
Integrating the series in (i) term by term yields
. 21 do
(iv) lirll = t(1) = | ke(6)5— = £(0).
0 s

Moreover, I.(e%) = f(q)r!Y — f(q) as r — 1.
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Hence, if Q(8) is a trigonometric polynomial,
(v) Em} 1 (Q) exists.

Since the trigonometric polynomials are dense in C(T) (III-2.2.8) and
the [, are equicontinuous by (iv), it follows that

'l_iml l-(u) exists for every u € C(T)

and defines a positive linear functional, that is a Radon measure pu €
M (T). In particular,

fi(n) = lim I(e™°) = f(n).0

3 Spectral Measures for a Unitary Operator

Let H be a complex Hilbert space, with hermitian inner product (h,|h2)
and norm (h|h) = |h||%. A linear operator U is called unitary if it is invert-
ible and U* = U~!. Recall that the adjoint A* of a linear operator A is
defined by the identity

(Ahq'hg) = (hllA.hz)

Theorem on existence of spectral measures. Let U be a unitary op-
erator on the Hilbert space H. For a trigonometric polynomial P) =
S Crmée™?, let

(i) PU) =Y CnU™

Given h € H, there erists a unique pp, € M (T) such that, for any trigono-
metric polynomial P,

) (P(U)hlh) = [T P(6)dux ().

un 18 called the spectral measure of U relative to h.
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PROOF. To prove the uniqueness of up, write (ii) for a trigonometric poly-
nomial consisting of a single monomial. This gives

B(m) =~(m), where ~(m)=(U™h|h),

and uniqueness follows from III-2.2.8. To prove existence it suffices, using
Bochner’s theorem, to prove that y(m) is a function of positive type on Z.
We must therefore consider the sign of

1= XA -9).
P9

Since U is unitary, U~! = U*, whence y(p — q) = (UPh|U%%). Thus
Ade¥(p — g) = (A UPh|A,U%R) and

1= (AUPh|AUT).
P
But this can be written

I= (Z AUPR| Y ,\th) =
P 9

2
>0.0

S AUTh

4 Spectral Decomposition Associated
with a Unitary Operator

Theorem. Let U be a unitary operator on the Hilbert space H. Let L*°(Br)
be the algebra of bounded complez-valued functions which are measurable
with respect to the Borel algebra of T. Then there exists an algebra homo-
morphism

®: L°(T) — End(H)
that associates the operator U with the function € and preserves conjuga-
tion. That is,

(®(£)* = 2(f).

PROOF. Recall that the scalar product on H can be obtained from the
norm by the following polarization identity:

4(hylh2) = llhy + ha|? = llhy = k2| + ||lihy + h2|I® = |lihy — he|.
Polarized spectral measures are defined by setting

4Yny,ha = Bhy+h; — Bhy—hy + Hihy+h; = Mhahy—hy-
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Thus, for every trigonometric polynomial P, it follows from polarizing 3(ii)
that

(i) (P(U)hlhg) = /T P(6)dvh, 1y (6).

Fixing f € £L>°(Bt), we define a sesquilinear functional g; by

ay(ha, ha) = /T F(6)d1hs na ().

This integral is well defined since f is a bounded Borel function. We have
the following upper bound:

gy (R, h2)| < 4fika [l IRzl 11 goe-

Hence fixing h) gives a conjugate linear functional in hy, and this form is
represented by a scalar product. There exists a bounded linear operator
&(f) such that

(i) (®(f)halhg) = /T fdva,nys Vhi,hg € H.

Moreover, when f,, converges to f while remaining bounded, Lebesgue's
dominated convergence theorem shows that

(i) (2(fn)h1lh2) —= (B(f)h1lh2).

In order to show that ® is an algebra homomorphism, it suffices, using (iii),
to check the assertion for trigonometric polynomials. In this case, (ii) and
(i) show that ®(P) = P(U), and the formula

®(P\P;) = ®(P\)®(F)

clearly holds. Finally, by the polarization identity, Y, h, = Fh, h,« Which
implies that

(®(f)h1lh2) = (h1|@(f)h2).0
Corollary. Let A € Br. Then ®(1,4) is an orthogonal projection and
®(14)%(15) = ®(1ans).
PROOF. (9(14))" = ®(14) = ®(14) and (£(14))? = ®(1%) = ®(14).
These properties characterize orthogonal projections. O

Corollary (Spectral decomposition). Let I'(H) denote the set of closed
vector subspaces of H. Let I'(H) be given the structure of an abstract
Boolean algebra, with products given by intersections and complements by
orthogonal complements. Then ® defines a homomorphism p from the
Boolean algebra Bt to I'(H) by setting

p(A) = Image of P(1,4).

Moreover,
U(p(4)) C p(A).
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5 Spectral Decomposition
for Several Unitary Operators

Let Uh,...,Un be n pairwise-commuting unitary operators on the same Hilbert
space H:
UUi =UUx, 1<kl<n.

With every trigonometric polynomial
P(6y,...,6.) = Ecm.., a0 Amafn
on T", we associate the operator
P(U,...,Un) =Y Cmyo ma U™ U™

5.1 Theorem on existence of spectral measures. To every h € H there
corresponds a positive measure un, on T" such that

(P(Uy, ..., Un)hlh) = /T P(8)dun(6).

This is proved by generalizing Bochner’s theorem from Z to Z". Theorem 5.1
leads to the simultaneous spectral decomposition of the operators Ui, 1 < k < n,
i.e. a representation of £°(By~) in End(H).






Appendix II

Infinitesimal and Integrated Forms
of the Change-of-Variables Formula

In this appendix, we give a new proof of Theorem II-4.4. The variational
method used here, coupled with the ideas of Chapter V, yields a proof in
the setting of Gaussian spaces.

1 Notation

Let u be a Borel measure on Euclidean space R". Let {T; : t € [0,1]} be
a family of R"-valued measurable mappings, defined on an open set D of
R" and with the following properties:

(i) T; : D — D' C R" is a diffeomorphism. The inverse diffeomor-
phism is denoted by A,.
(ii) Vz € D the mapping t — Tz is differentiable. The differential
is denoted by (£T:) (z).
(iii) Vt € [0,1] the direct image (A;).x under A, of the measure u is
absolutel§ (c(tzlt)inu;)us with respect to u. The density is denoted
t)eld
by Gg = dllf .

Let f: R" — RP be differentiable. J;(x) denotes the Jacobian of f at the
point .
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1.1 Definition. The vector fields
d
Zi(y) = ( ) (Ary)

are called velocity fields associated with (T}),ej0,1)-

REMARK. y — Z,(y) defines not only a vector field on D’ but also a differ-
entiable mapping from D’ to R".

1.2 Definition. Let Z; be a vector field defined on D. Z is said to admit
a divergence with respect to p if there exists a function 8,2 : D — R such
that

[raxz@yie = - [ sz

for every differentiable function f: R — R with support contained in D.

2 Velocity Fields and Densities
2.1 Theorem. Let Z, be the velocity field associated with T;. Then the

density Gy(x) = d((Ar).p)

u is given by

t
Gi(z) = Gy(z) exp [f b,,(Z,,)(T,,y)ds] a.c. dp.
0
PROOF.
) [ 16wt = [ fAmdut).
Differentiating with respect to ¢ gives
2 F(A) = Jr(Am) S A,

Furthermore,

(#) Jigor(w) = Jr(Ary)Ja, (y).

and hence

(a3i) f(A:y) Jigorn(¥)Ja, (¥)~ 1 4 A:(y)-
Since

(iv) (Tro Ay =y,
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we have
Jr.(Awy)Jay = 1d,

whence (J4,y)~! = J1,(A.y). Differentiating (iv) with respect to ¢ gives

0 (57) Aw) = -In(40) S Aw.

Substituting into (iii), we find that

A8 = ~Jgono®) (FT.) (A

and

[ gfawae) = [ (foa0w)6.20wau0)
D’ D

(vi)
/D £(2)(8,2:)(Tiz)Ge(z)du(z),

where the first equality follows from Definition 1.2 and the second from (i).
Differentiating (i) with respect to t shows that
d
EG'(:B) = (6uZ;)(Tez) - Go(z) p-ae.

O

2.2 Corollary. Let u = dx be Lebesgue measure on R" and suppose that
To = Id. Then Vt € [0,1]

/ f(Tyz)|det Jr,zldz = / f(&')dz!, where D' =Ty(D).
D D’
PROOF. It suffices to verify the relation

%logdet.lr,:c = §(Z;)(Tix),

where d
2 = (5T (4a)
and 6Z is the divergence of Z with respect to dz. To do this, we use the
following two lemmas.
2.3 Lemma.

2 (Ir)@) = (Jz,)(T) 0 Iy
PROOF.

Z0Ur)W) = Jigra®) = Jezioo®) = (J2)(T) 0 Jr,y.0
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2.4 Lemma. Let (B;) be n x n matrices such that & B; = M,B;, where
the (M,) are also n x n matrices. Then 4 log |det By| = trace M,.

PROOF. Let ®;(t) be the ith column of B;. It follows from
d
7 2:); = D (Me)i®i(t);
k

that d
Eoi(t) = ;(Mt)ek@k(t)-

Hence

%det[@l(t). e Ba(t) = Z(M,).-.-det[@l(t), o ®a(t).0

CONCLUSION OF THE PROOF OF COROLLARY 2.2.
8(Z,)(Ty) = trace(Jz,)(Tez).0

REMARKS. (1) Compare 2.2 with II-4.4.1, the change-of-variables theorem.

(2) Let T; = I + tM, where M is an n x n matrix. Suppose that I +tM is
invertible for every t € [0,1]. Then $(I +tM) = M(I +tM)~'(I +tM).
Letting A denote the exterior product, we can express the determinant of
A+ 1 as A(t) = det(I +tM) = Y ;_o(traceA*M)t*. By 2.4,

A’ -1
-Z(t) = trace M(I +tM)™".
Thus

t
det (I +tM) = exp/ trace (M(I + sM)™")ds.
0

2.5 Corollary.

d
ol @on = [

8Z(y)dy.
D)

PROOF. By 2.2,
vol (T (D)) = / |det Jr,(z)| dz
D

and

gz[vol (T(D))] / [i log det Jr, (:c)] x |det Jr,(z)|dz

b Ldt
[ 62)Ta)lder Jr,(z)lds.
D

Applying 2.2 once more proves the assertion. O
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3 The n-dimensional Gaussian Space

32
n P — = )dz;
Let R" be given the measure p = [], o and let (zly) =
2:;, z;¥; denote the scalar product of two vectors z, y € R".

3.1 Lemma. Let Z be a differentiable vector field on 6 C R". ThenVz €
0uZ(x) = trace Jz(x) — (Z(z)|x).

3.2 Theorem. Let (T;)c(o,1) be the mappings defined in Section 1 and let

H(z) = d—«% Then

Hy(z) = Ho(z)det |J, (z)] exp [- /o ‘(Z,(T,:c)lT,z)] ds

PROOF. This follows from Lemma 3.1 and Theorem 2.
ExAMPLE. Translations of the Gaussian space.

For a differentiable mapping A : R" — R", set Tz = z — h(z) and
Tix = z — th(z). Let A, be the inverse of T;. Then A,z = z + th(A.z).
The velocity fields associated with T; are

Z(z) = (%T,) (Arz) = —h(Acz).

We have
(25(Tsz)|Tsz) = —(h(z)|) + s(h(z)|h(z))

and
¢ 2
exp|~ [ (@ T Tas] = e [t(h@Ne) - § oI

Compare this with the Cameron-Martin theorem (V-1.8.3). In particular,
if Tz =z — y and Tyz = z — ty, then A,z = z + ty, det(J7,(z)) =1, and

d((Az).#) exp[tz:c,y. Z l

t—l

REMARK. This method can be extended to the infinite-dimensional Gaus-
sian space.






Exercises for Chapter I

Problem I-1. If G is a family of subsets of a set X, we denote by a(G)
the Boolean algebra generated by G and by o(G) the o-algebra generated
by G. A partition of X is a family P = {P;};cs of nonempty subsets of X
such that P,NP; =0 if i # j and Ujes = X.
(1) Let P = {P;}jcs be a partition of X. Characterize

(a) a(P) if J is finite,

(b) a(P) if J is infinite,

(c) o(P) if J is finite or countable, and

(d) o(P) if J is uncountably infinite.
(2) Show that the family A of subsets of X is a Boolean algebra generated
by a finite number of elements if and only if there exists a partition P =
{P;}jey, with J finite, such that A = a(P).
(3) Let A be a o-algebra on a countable set X. Show that there exists a
partition P of X such that A = o(P).
(4) Show that a g-algebra never has a countable number of elements.

Problem I-2. Let G be a family of subsets of a set X such that X € G and
G is closed under finite intersections. An r-family is a family R of subsets
of X which is closed under finite intersections of pairwise disjoint sets and
such that, if B, and B, € R with B, C By, then B, \ B, € R. Let r(G)
be the smallest r-family containing G. Show that r(G) equals the Boolean
algebra a(G) generated by G.



268 Exercises for Chapter I

METHOD. Consider the families

R, = {B:Ber(G) and ANBer(G) VA€G} and
R. {B:Ber(G) and ANBer(G) VAer(G)},

and show that they are r-families.

Problem I-3. Let G, and G2 be two nonempty families of subsets of a set
X which are closed under finite intersections. Let A,, Az, and A denote
the o-algebras generated by G,, G2, and G, U G, respectively. Let P be a
measure of total mass 1 on (X, .A). Show that if

P(A1 nAz) = P(Al)P(Az) forall A € G, and A; € G,,

then the same equality holds for all A; € A; and A; € A,.
METHOD. Consider the families

M, {A:A€ A and P(ANA;) = P(A)P(A;) VA2 €G,} and
M, {A:A€ A and P(A)NA)=P(A,)P(A) VA, € A},

o

and apply the theorem on monotone classes, using Problem I-2.

REMARKS. 1. This result is especially useful in probability theory. Thus, if
X =R?, A(z) = {(z1,32) : 71 < z}, and A2(y) = {(z1,%2) : T2 < ¥},
then G, = {Ai(z) : = € R} and G2 = {A2(y) : y € R} are closed
under finite intersections and A is the set of Borel subsets of R2. If P is a
probability measure on (R?, A), it is the distribution of a pair (X;, X. 2) of
real random variables. By Problem II-3, (X}, X2) is a pair of independent
random variables if and only if

P[Xl <z; X2< y] = P[Xl <I] P[X2 <y]

for all (z,y) € R%
2. The result can be extended from two factors to n factors by constructing
monotone classes M, for k = 1,2,...,n and using induction on k.

Problem I-4. Let z = {z,}32, and let
> = {a::z,. €ER VneN and ||z|le =sup|zns| < oo}.
n

Define T : £° — £ by (Tz)o = z¢ and (T'z), = T, — Tp—1 if n > 0.

(1) Ife=(1,1,...,1,...), show that the equation Tz = e has no solution
z in £%°.

(2) Let F = T¢> be the image of T'. Assume without proof that there exists
a continuous linear functional f on £ such that f(z) = 0 for every z in
F, f(e) = 1, and sup{|f(z)| : ||z|lcc £ 1} < 400 (Hahn-Banach theorem).
Show that if z = {z,}32, is such that z, > 0 for every n, then f(z) > 0.

(3) Let S : €° — £ be defined by (Sz)p = Zn41 if n > 0. Show that
f(z) = f(Sz) for every z in €.
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(4) Show that liminf,_+o z, > 0 implies that f(z) > 0. Conclude that
liminf, 100 Zn < f(z) < limsup,,_, , o, Zn for every x € £°.

(5) Let A C N and let 14 € £ be defined by 14(n) = 0if n # A and
14(n) =1ifn € A. If P(A) = f(14), show that P(AU B) = P(A) + P(B)
if AN B =0 and that P does not satisfy the countable additivity axiom.

REMARKS. The linear functional f above is called a Banach limit; it cannot
be written down explicitly since it is constructed by means of the Hahn-
Banach theorem and the axiom of choice. Similarly, it is impossible to
give an explicit example of an additive but not o-additive measure on a
o-algebra.

Problem I-5. Let X be an uncountable set and let A be the o-algebra

generated by the family of 1-element subsets of X. (See Problem 1, question
(1d).) Let P : A — [0, 1] be defined by

P(A)=0 if A is finite or countable
P(A) =1 if A is cocountable.

(A is cocountable if A€ is finite or countable.) Show that P is a probability
measure on (X, A).

Problem I-6. Let (X, A, 1) be a measure space and let f be a nonnegative
measurable function on X. For every t > 0, set

F(t)=p{z: f(z) >t} and G(t) =p{z: f(z) 2 t}.
(1) Assume that f(X) C N and that f is integrable. Prove that

[ <] o0

/. 1@du@) = 3 Fm) = 3 G(m)
n=0 n=1

METHOD. Set pun = p{z : f(z) = n} and show that [, f(x)u(dr) =

Ym0 Mn.

(2) Assume that f@ is integrable for a > 0. Prove that

+00

+o00
/x Fo(2)du(z) = a /0 L-1F(t)dt = o fo 2-1G(t)dt.

METHOD. Show that (2) holds for & = 1 by considering the functions
fa(z) = mgﬂl, where [e] means “the greatest integer < @”, and using the
monotone convergence theorem. The general case can then be reduced to
the case a = 1.

Problem I-7. If 0 < r < 1, we write the Poisson kernel as

1-r2

o0
= n -
P(6)=1+2) rmcosnf = ——0—3.

n=1
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(1) Show that 72 + cosf(1 —2r) > 0if 0 < 6 < 7 and 3 < r < 1. Deduce
that 82P,(8) < 4= and evaluate lim,—., [y 62P,(6)dd.

(2) Show that [T 62P.(8)d8 = % + 47 1%, 7" and use this to derive
another expression for lim,_,, fo 62P,.(6)d6.

(3) Use (1) and (2) to find the sums of the series Y o, __1!L" s {2,._-'7!
and Zn—l n?:

(4) Express fo (log(1 — :t:))2 aa the sum of a double series and show that

Jo (log(1 —22)?% =252 | &

Problem I-8. Evaluate 37, 5"—1,.&1 by using the integral fol 1dT:£ and
the monotone convergence theorem.

Problem I-9. Let (X, A,pn) be a measure space and let z +— f(z) =
(f1(z), f2(2), .., fo(z)) be a measurable mapping from X to R". Suppose
that R™ is equipped with a norm || || such that z — || f(z)|| is integrable.
(1) Show that f; is integrable for every j = 1,2,.

(2) Defining [, f(z)du(z) in R" by

( [ a@uao)..... [ @),

show that || [y f(z)u(dz)ll < [y If(2)llu(dz)-

METHOD. On the dual space (R")* consisting of linear functionals a:v—
(a,v) on R", introduce the dual norm [la||* = sup,o and use the

fact that |[v|| = sup, 4o 'fmr'”

REMARKS. 1.The shortest path between two points isa strazght line. Con-
sider R" with the Euclidean norm ||v|| = [v} + v +- 212 Let X =
[0,1) with Lebesgue measure. (See Chapter II.) Let F be a function from
[0,1]) to R™ such that the derivative f = F’ exists everywhere and is con-
tinuous. Then fol || f(z)||dx can be interpreted as the Euclidean length of
the curve described by F, and || fol f(z)dz|| = ||F(1) - F(0)| is the length
of the line segment with endpoints F(0) and F(1).

2. Case of equality. It can be shown that, when the unit ball B is strictly
convex (that is, when ||v;]| = |lv2]] = [|Advys + (1 = A)v2|l = 1 for A € [0,1]
holds only for A = 0 or 1), the inequality is strict unless there exist v € R"
and a function g(z) > 0 such that f(z) = g(z)v p-almost everywhere. The
application to the Euclidean length of a curve is immediate.

Problem I-10. Let X, X;,...,X,,... be measurable functions from a
space (E, &, 1) to an open set Q of Euclidean space R? such that

Ve>0 p({||Xn—X||=€})—0 asn— oo
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(1) Show that Ve > 0 there exists a compact set K C Q such that u({X ¢
K}) < e and, for every n, p({X, ¢ K}) <e.
(2) If f: Q2 — R™ is continuous, then Ve > 0

s({llf(Xa) = f(X)| 2 €}) 0 as n— oo

Problem I-11. Let (X, A, 1) and (Y,B.v) be measure spaces such that
u(X)and v(Y) > 0. Leta: X — Cand b: Y — C be functions, respec-
tively A and B measurable, such that

a(z) = b(y) p® v-almost everywhere on X x Y.

Show that there exists a constant A such that a(z) = A p-a.e. and b(y) =
v-a.e.

Problem I-12. On a measure space (X, A,u), let f and g be complex
functions such that | f|2 and |g|? are pu-integrable and consider the function

h(z,y) = |f(x)g(y) - f@)g(x)*.

(1) Show that 0 < [, s h(x,y)du(x) du(y). and use this to prove the
Cauchy-Schwarz inequality:

2
] f(2)a@)du(z)
X

< /x 1 (2)Pdu(z) /X l9(2) 2du(z)

METHOD. Consider first the case where f > 0 and g > 0.

(2) Show that equality holds in Schwarz’s inequality if and only if either
g9(z) = 0 p-a.e. on X or there exists a constant A € C such that f(z) -
Ag(z) =0 p-a.e. on X.

METHOD. Problem I-11 can be used.

Problem I-13. If X and Y are measurable real-valued functions defined
on the measure space (2, A, u) such that u({Y < z < X}) = 0 for all real
z, show that u({Y < X}) =0.

Problem I-14. Let (X, A, 1) be a measure space, where u(X) is not nec-
essarily finite, let (Y, B) be a measurable space, and let f be a measurable
mapping from X to Y. Suppose that there exists a sequence {B,} in B
such that U, B, = y and pu(f~1(B,)) < oo for every n.

(1) Show that v(B) = u(f~!(B)) defines a measure v on (Y, B) (called the
image of u under f).

(2) Show that if g € L'(v), then

/ o(f (@) u(dz) = / o(u)v(dy).
X Y

REMARKS. 1. The image measure always exists when u is bounded; this is
used extensively in probability theory, in Chapter IV. It does not always
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exist if u(X) = +o0o. For example, if X = R? is equipped with Lebesgue
measure u = dz dy and f: R2 = R =Y is the projection f(z,y) = z, the
image of u does not exist.

2. If X and Y are metrizable locally compact spaces which are countable at
infinity and u is a Radon measure on X, a sufficient condition for existence
of the image measure is that, for every compact set K in Y, f~!(K) should
be relatively compact. See problems II-11, 12, and 13 and III-3.

Problem I-15. (1) Let f be square integrable on [0,1] and let F(z) =
Js f(t)dt. Applying the Cauchy-Schwarz inequality to the product f x 1
on [0, z], show that limz ;o z~'/2F(z) = 0.

(2) Let g be square integrable on [0, +00) and let G(z) = foz g(t)dt. Ap-
plying the Cauchy-Schwarz inequality to the product g x 1 on [a, z], with
a sufficiently large, show that lim; ... z-'/2G(z) = 0.

REMARK. It is easy to replace L? by L?, with p > 1. If ,l, + % = 1, we find
that z-!/9F(z) - 0 as z — 0 and z~/9G(z) — 0 as z — +o0.
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Problem II-1. Let I be an open interval in R, equipped with the Borel
algebra B. A function F : I — R is called increasing if z < y implies that
F(z) < F(y). We set F(z - 0) = limy;; F(y), F(z + 0) = limy,; F(y), and
Drp={z:F(z-0)# F(z+0)}.

(1) If F: I — R is increasing, prove that Dp is finite or countable.

METHOD. If [a,b] C I, show that D(n;[a,b]) = {z € [a,b] : F(z +0) —
F(z —0) > 1} has a finite number of elements.

(2) If F: I — R is increasing, prove that there exists exactly one measure
i 2 0 on (I,B) such that

F(y) = F(z) = p((z,y])

for all z, y such that [z,y] C I and z, y ¢ Dp.
Prove that p({a}) = F(a + 0) — F(a — 0) for every a in I.

METHOD. Uniqueness: Use the fact (II-3.2) that a Borel measure that is
locally finite on an interval is regular, and hence determined by its values
on open sets.

Existence: Imitate the construction of the Riemann integral. For every con-
tinuous function f with support contained in I, define the integral [ fdu
as the limit of integrals of step functions

Zg(za)(F(zs) — F(zi-1)).
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(3) Let u be a locally finite nonnegative measure on (I, B) and let zo € I.
Set F(z) = p([zo,x)) if z > o and F(z) = —p([z,x0)) if z < To. Show
that F is increasing and that F(y) — F(z) = pu([z,y]) if y ¢ Dr.

(4) Let a relation on the set of increasing functions on I be defined as
follows: F| ~ F3 if there exists a finite or countable subset D, 5 of I such
that Fi(y) — Fi(z) = F2(y) — Fz(z) for all z and y € I\ D, ;. Show that
this defines an equivalence relation on the set of increasing functions on I.
Characterize the equivalence classes in terms of measure.

REMARKS. 1. Since perhaps as many as 90 per cent of the measures used
in practice are measures on R, a description of all the Radon measures > 0
on an open interval is important. Historically, the first measures > 0 were
considered by Stieltjes, precisely by means of increasing functions.

2. With every increasing function F' on an open interval I, we can thus
associate a measure u(dr), which is often written dF(z) or F(dz). Con-
versely, given a measure 1 > 0 on I, an increasing function F satisfying the
hypotheses of part (2) is called a distribution function for u. As we have
seen, a distribution function for u is not unique; we can modify (slightly)
its value at points of discontinuity (the atoms of 1) and add an arbitrary
constant. When u is a probability measure on R, there are three traditional
choices for distribution functions:

Fi@) = u(~00,2), Fa(a) = u((-c0,2]), and Fy(z) = 5[Fy(z)+ Fy(a)].

The third appears in the inversion formula for a characteristic function.
3. If we consider a measure u > 0 on a closed interval of the form (—oc. b).
[@, +00), or [a, b], we can define its distribution function as above. However,
two measures can then have the same distribution function but different
masses at the endpoints of the interval.

4. Many identities and inequalities use increasing functions on an interval. It
is essential to express the latter in terms of measures in order to understand
the former; this also gives a systematic method of proof, although not
necessarily the shortest.

Problem II-2. Specify for which measure on the open interval I each of
the following increasing functions is the distribution function (see Problem
II-1).

MI=R
(a) F(z) =« (b) F(z) = [z] (c) F(z) = Larctan z
(2) I=(-1,41)

(a) F(z) =tan Z& (b) F(z) = (signz)|z|"/? (c) F(z) = Larcsin z
(3) I =(0, +o0)
(a) F(z) =logz  (b) F(z) = —[}] (c) F(z)=(z-1)*

(Notation: [a] = sup{n: n € Z and n < a}, a* = sup{0,a}, andsigna =
+1ifa>0,sign0=0, andsigna=-1ifa<0.)
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Problem II-3. Let I be an open interval in R. A function G is called
convex if its right derivative limo[G(z + €) — G(z)] = G',(z) exists for
every z in I and the function z — G/, (z) is increasing. (See I-9.2.1.)

Prove that G is convex if and only if there exists an increasing function
F on I such that, for every z¢ in I,

G(z) - G(zo) = / " F(t)at.

METHOD. For one direction, show that G/, (z) = lim, o F(z + ¢€). For the
other, consider H(z) = f:o G', (z)dt and use without proof the fact that,
if a function has a right derivative that is zero in an open interval I, it is
constant in I.

REMARK. It can be shown that the definition of convex functions given
here is equivalent to the following property:

Gl(Az+ (1 -2y <AG(z)+ (1 - N)G(y) ifz,yeland e[0,1]
For a proof of this equivalence and further details of convex functions, the
reader may consult Artin! or Zygmund?.

Problem II-4. Let I be an open interval in R. Recall (see Problem II-3)
that a function G : I — R is called convez if there exists an increasing
function F on I such that, for every z¢ in I,

T
G(z) - G(zo) = / F(t)dt.
Zo
If u is the measure on I given by the distribution function F (see Problem
I1-2), prove the following assertions.

(1) If zo £ z, with = and z € I, then

G(z) - G(zo) = (z—z0)F(z0+0)+ /1 L(zo.2)(u)(z — u)p(du)

(z - 20)F(zo — 0) + /, 100,21 () (& — u)pa(du).
(2) If zg > z, with ¢ and = € I, then
G(z) - G(zo) = (z - z0)F(zo+0) - /, 113,201 (w) (& — w)ps(ds)

= (z - z0)F(zo - 0) - /, 11z.20) () (z — u)ps(du).

'E. Artin, The Gamma PFunction (New York: Holt, Rinehart and Winston
1964), 1-6.

2A. Zygmund, Trigonometric Series (Cambridge: Cambridge University Press
1959), 21-26.
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REMARKS. If 4 has no atoms and zp < z, we can replace the notation
Ji Yzoz)(W)g(w)du = [} 1z, z(u)g(u)du by [ ;, g(u)u(du), since the lat-
ter is unambiguous in this case. If z < x9, we write f:o g(u)p(du) =
~ J; 1iz.z0)(v)p(du), which permits us to state the relation of Chasles:

f: = f: + fbc for arbitrary a, b, and c in I. However, this relation does
not hold if x has atoms.

Problem II-5. Let M, be the set of measures x > 0 on (0, +00) equipped
with its Borel algebra, such that f0°° 1(z +o0)(v)up(du) < oo for every z > 0.
(1) Let G be a convex function on (0, +0c) (see Problem II-4) such that
lim; . 400 G(z) = 0. Prove that there exists a unique g in M; such that

+00
(3) G(z) = /0 (u—z)*u(du) for every z > 0,

where a* = max(0,a), and that f0+°° up(du) = limz_o G(z) < +o0.
(2) Conversely, let u € M;. Show that (i) defines a convex function G on
(0, 4+00) such that lim;_ +o G(z) = 0.

METHOD. Let F(z) be as in Problem II-4 and show that F(z) < 0 and
that lim;— 4. F(z) = 0. Then use Problem II-4.

REMARK. The measure zu(dz) is not necessarily bounded: G(z) = 1 gives
pldz) = &.

Problem II-8. Let M be the set of measures » > 0 on (0, +00) equipped
with its Borel algebra, such that v([z,+00)) < +oo for every z > 0. If
k is a positive integer, we denote by Ci the set of functions g defined on
(0, +00) such that G(z) = (—1)¥~'g(k~1)(z) exists and is convex and also
that limz— 400 9(2) = limz— 400 G(z) = 0.

(1) If g € Ck, show that there exists a unique v in M such that

(%) g(z) = fow [(1 - %)+]k v(du) for every z > 0.

(2) Conversely, let v € M. Show that (i) defines an element of Cj.

METHOD. (1) First use Taylor’s formula to show that limz— +00 g9 (z) =0
for j =0,1,...,k — 1, then use Problem II-5.

REMARK. It is clear that the functions f,(z) = [(1 — £)*] , play the 10le of
extremals in Ck; formula (i) shows that the functions in Ci are “barycen-
ters” of the f,. Formula (i) plays a role in the probability distributions of
Polya and Askey. (See Problem III-5.)

Problem II-7. Let u be a decreasing function defined on (0, +00) such
that u — 0 as z — +oo and [;* z?u(z)dz < oo. Show that, for every
y>0,

+00 4 +00
y2/ u(z)dx < §/ z?u(z)dz (K.F. Gauss).
Yy 0



Exercises for Chapter II 277

Describe in detail the case of equality.

METHOD. Consider a measure u on (0, +00) for which —u is a distribution
function.

Problem II-8. Let u be a decreasing function defined on (—a, +00), with
a > 0, such that u — 0 as £ — +o00 and f_+:° u(zr)dz < +00. Show that

] Yy +00
u(zr)dr < — u(z)dz Yy >0,
[ stee < 2o [ uiop vy

and describe in detail the case of equality.

METHOD. Consider a measure g on (—a, +00) for which —u is a distribution
function.

Problem II-9. Let F be an increasing function on [a,b] and let f be an
integrable function on [a, b]. Show that there exists a number £ in [a, b] such
that

b 13 b
/ f(2)F(z)dz = F(a) / f(z)dz + F(b) / f(z)dz.
a a 3

(Second mean value theorem for integrals)

METHOD. Show that this can be reduced to the case where F(a) = 0
and F(b) = 1, and consider a probability measure u on [a,b] such that
F(z) = p(la,z]) forzr ¢ Dr={z:a <z <b and F(z-0) < F(z +0)}.

Problem II-10. Let x be a probability measure on [0, 1]. Set m = fol zu(dr)

and 02 = 01 z?p(dz) — m?. Show that 02 < }. Describe in detail the case
of equality.

Problem II-11. Let f be a positive decreasing function on (0, 1] such that
Ji f(z)dz = 1, and let X € [0,1). Let P(dz) = Mo(dz) + (1 — ) f(z)dz,
where §g is the Dirac measure at the origin, let m(\, f) = fol zP(dz), and
let 02(), f) = [, z2P(dz) — m2(), f).

(1) Show that o2(), f) < 1/9. Describe in detail the case of equality.

(2) Show that 02(0, f) < 1/9. Is this inequality the best possible?

METHOD. If Dy is the set of points of discontinuity of f in (0, 1], consider
the measure v on (0, 1] such that f(z) = v([z,1]) if z ¢ D; and show that
p(dt) = tv(dt) is a probability measure on (0, 1].

REMARK. If G is a convex function from (0, 1) to [0, 1), it can be shown that
the measure P on [0,1) which is the image under G of Lebesgue measure
on (0,1) is of the type considered in the problem. Hence

/ol G2(z)dz = [/01 G(a:)d:rr < %
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Problem II-12. Let n be a positive integer and let a, a,,...,a,, C1,...,Cn
be real numbers such that ¢; < a2 <...<ap,andc; >0for j=1,...,n.
Let C and R denote the complex and the real numbers completed by a
point at infinity co. Consider the function f : C — C defined by f(z) = oo
if £ € {00,0a),...,a,} and

Cj
x—aj

f(x)=:c+a—i

i=1

if z¢{o0,ai,...,a,}.

The function T : R — R is the restriction of f to R. Lebesgue measure on
R is the measure m such that m({co}) = 0 and the restriction of m to R
is the usual measure.

(1) Let y € R. Show that the equation in z given by f(z) = y has exactly
n + 1 real roots {z;(y)}}_o such that a; < z;(y) < a;j+1 (with the con-
vention that ap = —oo and an4+) = +00). Show that Z;';o zi(y) = 1 and
conclude that T preserves m. That is, for every F in L!(m),

j%F(T(x»m(dz) - AF(z)m(dz).

(2) Prove by induction on the integer k£ > 0 that, for every z € C,

n k
Sl -4 g = 5 (2) - s

=0

(3) Let g be a nonnegative rational function such that fﬁ- g(z)m(dz) < oc.
Prove that there exists a rational function g, with the same properties and
such that the image g(x)m(dz) under T is g,(z)m(dzx). Conclude from (2)
that, if z) is a pole of g; with multiplicity m; > 0, there exists a pole z of
g with multiplicity m such that f(z) = 2z; and m; < m. Calculate g; when

2z2

1
f@)=z-_ and 9($)=W+—l)y

(4) Let z = a+1b € C, with b > 0. The Cauchy measure v, on R is defined

by v,(dz) = ;,(;:—'f‘,%%. Prove, using (3), that the image of v, under T is
Yf(2)-
REMARKS. 1. A Cayley function is a function of the form

n
Py
f@)=cr+a- 1,
;z-aj
wherec; >0,j=0,1,...,nand o, ay,...,a, arereal. f cc =0 and n =1,

it is a positive linear fractional transformation; that is, f(z) = %‘% with
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a, b, ¢, and d real and ad — bc > 0. It is easy to see that all Cayley functions
can be obtained by composing positive linear fractional transformations
with the Cayley functions corresponding to ¢p = 1.

2. It is easy to see that if f is a positive linear fractional transformation
and T is its restriction to R, then the image of v, under T is v;(,). This
observation, the remark above, and result (4) of the problem show that the
property holds for all Cayley functions.

3. Conversely, let T: R — R be a rational function such that, for every z
with positive imaginary part, the image of v, under T is a Cauchy distribu-
tion <y, (where z; depends on z). It can be proved that T is the restriction
to the real axis of a Cayley function.

4. On the other hand, a Cayley function with ¢y > 0 maps Lebesgue mea-
sure m to com. If cg = 0, the image measure is no longer a Radon measure

on R. For example, f(z) = —1 maps m(dz) to ™42,

Problem II-13. The half-plane R2 = {(z,y) : z € R and y > 0} is
equipped with the measure pu(dr,dy) = "’74". What is the image v on
[1, +00) of this measure under the mapping (z,y) — v(z,y) = 2—;(1 +z%+
¥?) (in the sense of Problem I-14)7

Problem II-14. Let {gn}n>0 be a sequence of positive measures on R,
each with total mass < 1. Suppose that p, converges weakly to po as
n — oo and that

+o00
M= sup / 12 (dz) < oco.
—00
(1) Show that p,. convergas narrowly to yo as n — oo.
+o0
(2) Show that / | (d) — / \z|o(dz) as 7 — co.

+o0

(3) Show by a counterexample that / 124, (dz) does not necessarily

+o00 i
tend to [ z2po(dz).
—00

METHOD. Use Theorem I1-6.8.

Problem II-15. If g is a measurable function on (0, +00) which is locally
integrable, and if A = limr_ 4 flT g(z)dz and B = lim,_o f: g(z)dz
exist, we say that fo+°° g(z)dz exists and equals A + B.

Let f be measurable and locally integrable on (0, +00) and suppose that
lim7— 400 flT f (:z:)i‘:£ exists. Let a and b be positive.
(1) Suppose that K = f:° f(x)% exists and let F be defined by F(z) =
I f(t)dt. Show that [;°[F(ax) — F(bz)]% exists and express the integral
in terms of a, b, and K.
(2) Suppose that L = lim_o f(z) exists. Show that f:° (f(az) - f (bx))“?’
exists and express the integral in terms of a, b, and L.
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Problem II-16. Writing 2! = [ e"¥*dy for = > 0 and applying Fubini’s
theorem, show that the integral [;°sinz%E exists (in the sense of Prob-
lem II-15) and compute it. Use this to evaluate the integrals fo°°(cosax -
cosbz)% and [;°(cosaz — cosbz) % if @, b > 0. (See Problem II-15.)

Problem II-17. For an interval I in R, LP(I) denotes the set of real-
valued functions (rather, equivalence classes of functions) whose pth power
is integrable with respect to Lebesgue measure on I.

(1) Show that L*'([0,1]) c L?([0,1)) if 0 < p < p' < o0. Give an example
of a function in L!([0, 1]) \ L2([0, 1)).

(2) Give examples of functions in L}(R) \ L?(R) and in L?(R) \ L!(R).
(3) ¢7 is the set of real-valued sequences @ = {an}n>0 such that 3} Ja.|P <
00. Show that ¢7'(N) D ¢P(N) if 0 < p < p’ < %0. Give an example of a
sequence in £2 \ £}(N).

Problem II-18. Let R';,'H denote the set of pairs (a,p) with p > 0 and
a € R". Euclidean space R" is equipped with the scalar product (a,t) and
the norm ||al||. Let

-(n+1)/2
K(a,p) = Knp [lal? + p2) V2,

where K, is the constant such that [p. K(x,1)dz = 1. The goal of this
problem is to calculate

Ii(a,p) = ./1'1'- expi(z,t)K(z — a,p)dz,

where t € R".
If f: R} — C, we write Dof = £ f and D, f = 3-2—;fforj=1,...,n.

f is said to be harmonic in R}*! if
(DE+---+D?)f(a,p) =0 for every (a,p) € R}

(1) Show that K is harmonic in R}*'. Show that, if pp > 0 and V =
(&, %’i), there exists a constant C such that |D; K (a,p)| and |D;D; K (a, p)|
are less than C(1 + ||a|[2)~*F" for all (a,p) e R"x V and i, j =0,1,...,n.
(2) Let pu be a Radon measure on R" such that

S @+ TP ) < oo

and let F,(a,p) = Jgn K(z — a,p)u(dz). Show that F, is harmonic and
that limp_. 4 F,(a,p) =0.

(8) Show that there exists a function g : R" — C such that I;(a,p) =
9(pt) exp(i(a, t)).

Use (2) to calculate g.
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REMARKS. 1. In n dimensions, K(z — a,p) is sometimes called the Poisson
kernel; in R", it is sometimes called the Cauchy distribution.

2. The calculation giving K = ['(2$!)n~("*1)/2 i5 carried out in Problem
III-4.

Problem II-19. (1) Let u and v be positive measures on R such that there
exists an interval [a,b] C R with u([a,d]) = p(R) and v([a,d]) = v(R).
Show that u = v if and only if

/ z"u(dz) = / z"v(dz), ¥ =0,1,2,....
R R

(2) Let u be a positive measure on [0, +00) (not necessarily bounded). Its
Laplace transform is the function from R to [0, +oo] defined by

s (Lp)(s) = / ~ e+ u(da).

(a) If E, = {s : (Lp)(s) < oo}, show that E, is an interval which, if
nonempty, is unbounded on the right. Give examples where E, = R, 0,
(0, +00), and [0, +00).

(b) Use (1) to show that if there exists a number a such that Ly = Lv <
+00 on [a,+00), then p = v.

Problem II-20. Give examples of sequences {u,}32, of positive Radon
measures on R such that there exists a positive Radon measure u with
limp oo tn = 4

(1) vaguely but not weakly;

(2) weakly but not narrowly; and

(3) narrowly but not in norm.

REMARK. If the sequence of positive measures {u,}32., converges vaguely
to p and p(X) < oo, then u, — p weakly, since Cx(X) is dense in Cy(X).
It should also be noted that narrow and weak convergence coincide when
X is complete.

Problem II-21. Let X be a locally compact space which is countable
at infinity and let M(X) be the set of signed Radon measures v on X
such that |v| has finite total mass ||v]|. If {v,}32, is a sequence in M1(X)
such that r = sup,, ||vs|| < 0o, show that there exist v in M!(X) and an
increasing sequence of integers {n,}%2, such that v,, — v as k — co. Show
also that v» > 0 if v, > 0 for every n.

METHOD. Use Theorem II-6.6.

REMARK. When X =R, v, > 0, and r = 1, this property is often called
Helly’s theorem.

Problem II-22. On a locally compact space X which is countable at infin-
ity, let 4 and {un}3%, be positive Radon measures such that u, converges
vaguely to p as n — oo.
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(1) If O is an arbitrary open set, show that x(0) < liminf, o n(O).

(2) Suppose that O is an open set with compact closure K and such that
its boundary 90 = K \ O has p-measure 0. Let {Ox}32, be a decreasing
sequence of open subsets of X such that N2, 0 = K. Let fi be a function
equal to 1 on K and to 0 on Of and satisfying 0 < f(z) < 1 for z in O.
(Such a function exists by Urysohn’s lemma, II-1.1.) Show that

limsupu,.(O)S/xfk(l')#(dl‘),

n—oo

and conclude that p,(0) — u(0) as n — oo.
(3) If 4 and {u,}32, are Radon measures on R, positive and with total
mass less than or equal to 1, show that u,, converges weakly to  asn — oo
if and only if

#n((a,b)) — p((a,b)) asn — oo

for all points of continuity of the distribution function x — p((—o0, z)).
If, moreover, u,(R) = u(R) = 1, show that u, — u narrowly if and only
if
#n((—00,2)) = p((-00,z)) asn — oo
for every point of continuity of the right-hand side.
METHOD. Use Problems II-1 and II-21 together with Theorem 11-6.8.

REMARK. In practice, (3) gives a necessary and sufficient condition for
the convergence of probability distributions on R; it is often taken as a
definition in elementary texts.

Problem II-23. Let X be a locally compact space which is countable at
infinity, and let x and {#n}3%, be Radon measures on X such that u,
converges vaguely to p.

(1) If O is an open set in X and u* is the restriction of x to O, show that
iy, converges vaguely to p* as n — oo.

(2) Show by an example that the statement is false if O is replaced by a
closed set.

(3) Suppose that X = R and that p, > 0, n = 1,2,.... Let a and b
be real numbers with a < b. Show that there exist numbers p and ¢ and
an increasing sequence of integers {n;}2, such that, for every continuous
function f on [a, b],

[ fum = pf@+as®)+ [ fu wsn—oo
|a,b) [a,b]

METHOD. Use Problem II-21.

Problem II-24. (1) Let O and O’ be two open sets in R", let f be a
diffeomorphism from O onto O’, and let ¢ be a measurable function on O’
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such that [, ¢(z')dz’ < co. Show that

/ o(f(z))|detJ; (z)|dz = / o(z')da’,
(o] o'

where |detJ(z)| is the Jacobian.

(2) Let a € RU {—o00}. Let f and g be functions satisfying the following
conditions: (i) f is continuously differentiable for = > a; (ii) g is defined
and integrable on [0,+00); (iii) |f'(z + “2-—2)| < g(u) for all z > a; and
(iv) both u — ug(u) and u — f(z + "—22) are integrable on [0, +00). If
F(z) = f:’: f (z+“72)du, show by a change of variables in polar coordinates
that

+o00

f(z)= -1 F'(z+ %)dv.

21 oo

REMARK. The case f(z) = e~* is well known and is used in IV-4.3.2(i).

Problem II-25. Consider a subset X of R" with positive measure, a
measurable function f : X — R", and a nonnegative locally integrable
function h on X. Let s denote the image in R" of the measure h(z)dz on
X under f (in the sense of Problem I-14) if this image measure exists.
(1) If X and U are open sets and f is a diffeomorphism from X to U, show
that

p(du) = h(f~' (u))|detJ -1 (u)|du.

(2) If there exist an open subset U of R" and disjoint open sets X,
X2,..., X4 contained in X such that the restriction f; of f to X is a
diffeomorphism on U, and if X \ 2;':1 X; has Lebesgue measure zero,
show that

d
p(du) = Y (S5 (u))ldet -1 (u) |1y (u)du.
i=1

(3) If X = (0,+00)?, c(z) = =¥/ exp[—(az + b/a)}, h(z,y) = clz)e(y),
and f(z,y) = (u,v), with u = £+ y and v = 1/z + 1/y, calculate pu.
Conclude from the result that the image of hdzdy under the map (z,y) —
(z+y,1/z+1/y—4/(z +y)) is also a product measure.

REMARKS. 1. The use of the change-of-variables theorem (II-4.4.1) to cal-
culate the image of a measure is important in practice, especially in prob-
ability theory.

2. Problem II-12 treats a special case of (2) for n = 1.

3. (3) shows that if X and Y are independent random variables of density
Kc(z)dz (a distribution called “inverse Gaussian”), then X +Y and 1/X +
1/Y —4/(X +Y) are independent. It seems difficult to justify this result
by Fourier analysis.
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Problem III-1. Let G be the group Oy of d x d orthogonal matrices, acting
on the Euclidean space R?. The scalar product and the norm are denoted
by (z,t) and ||t||, respectively. Let u be a bounded complex measure on
R%, with Fourier transform

alt) = /R _expli(z, u(da) (¢ € RY).

Prove the equivalence of the following three properties:

(1) p is invariant under every element of G.

(2) There exists ¢ : [0,00) — C such that z(t) = ¢(||t]]) for every t.

(3) The image v, in R of 4 under the mapping = — (a,z) does not depend
on a when a ranges over the unit sphere Sq—; of RC.

REMARK. Naturally, if u is real, then i(t) = u(—t) implies that ¢ is real.
But u > 0 does not imply that ¢ > 0. Thus, if o is the uniform probability
measure on Sz, the unit sphere in R3, 5(t) = ﬂHf—“

Problem III-2. Let T be a compact space, let G be a compact topological
group, and let (g,t) — gt be a continuous map from G x T to T such that
g~ {(g,t) — gt} is a homomorphism from G to the group of bijections
of T. Finally, suppose that (G,T) is a homogeneous space; that is, for
every t; and t; in T there exists g such that gt, = t,. Let dg denote the
unique measure of total mass 1 on G which is invariant under left and right
multiplication. (We accept without proof the existence and uniqueness of

dg.)
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(1) If f is continuous on T, show that t — [ f(g~'t)dg is a constant o[f].
Conclude that o(f] defines a probability measure on T which is invariant
under the action of G.

(2) If p is a probability measure on T which is invariant under the action
of G, show that g — [ flg~'tJu(dt) is a constant. Integrate with respect
to dg and conclude that u = 0.

(3) If (X, A) is an arbitrary measurable space and T is equipped with its
Borel algebra, let T x X be given the product o-algebra. Suppose that G
acts on T x X by g(t,z) = (gt,z). Show that every positive measure y on
T x X which is invariant under the action of G has the form o(dt) ® v(dz),
where v is a measure > 0 on (X, A). Converse?

METHOD. If A € A is such that u(T x A) € (0,+00), show that p4(B) =
ZJ%:—::% defines a probability measure on T which is invariant under G.

(4) Apply the precedmg results when T = S; is the unit sphere of the
Euclidean space R%*!, where G = Ogy, is the group of (d + 1) x (d +
1) orthogonal matrices and X = (0,+00). Conclude that a probability
measure P on R4*!\ 0 is invariant under G if and only if = Tz and |z|| are
independent and “—“ has the uniform distribution on Sy.

Problem III-3. In the Euclidean space R? equipped with the norm ||z||,
let m be Lebesgue measure.
(1) If yo and v, are the images of m in [0, +00) under the mappings = — ||z||

and z — “%"3 (see Problem I-14), show that

(\/2_1r)
v(dy) = ld,

I‘(“')

where I is the usual Euler function (see, for example, Problem IV-11). Use
this to find vp(dp).

METHOD. Use the formula

/5 () 2=

which holds for all ¢ > 0, to calculate the Laplace transform (L, )(s)
defined in Problem II-19.

(2) Keep the same notation m and v, for the restrictions of m and v to
R?\ {0} and (0, +00). If 1 is a measure > 0 on R?\ {0} which has density
f with respect to m, use Problem III-2 to show that the image of u on
(0, +00) under the map z — | z|| is of the form f,(p)vo(dp) and calculate
the function f; in terms of f. If u is rotation invariant, show that there
exists a function f; : (0, +00) — [0,+00) such that fi(||z|]) = f(z) m-a.e.

Problem III-4. Euclidean space R? is equipped with the scalar product
(z,t) and the norm ||t||. T is the usual Euler function.
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(1) Use Problem III-3 to evaluate I = Lﬂ, If a and t are in

R (1 + ||lz)?)™=
R and p > 0, use Problem II-18 to conclude that

di1
TF) [ it pdz = e-Plitli+itan)

1‘%—. 2 d+1 *
™ R (@ + Iz~ al®) T

(2) Show that, if £ € R? and p > 0,

2d(d+ 1 s p = e~ Pltli+i(z.) g4

d+1
2 @+ ll=I2)=  Jme

Problem III-5. Let k be a positive integer. In the Euclidean space R2-1,
the norm is written ||t] and the scalar product (z,t). Consider the map
¢ : R*711(0,1] defined by

o(t) = [(1 - ley*]c.

(1) Using Problem III-1, show that there exists a continuous function f :
[0, +00) — R such that

£y = [ explite.)o(t)ar

(2) Use Problems III-3 and III-4 to show that, for every s > 0,

k

ts <} oc
I= / e *“u3* ! f(u)du = C}, [/ e *¥(1 - cosu)du| ,
0 0

where Cj, is a constant.
(3) Show that f > 0 and that [ga, f(z)dr < oo by using Problem II-19
and the sequence of functions f, : [0, +00) — R defined by fi(u) = 1—cosu
and fos1(u) = Jo' folu = p)f1(p)dp.

Conclude that ¢ is the Fourier transform of a probability measure on
R?*~! Compute it for k =1 and k = 2.
(4) Suppose that g : [0, +00) — R is continuous and satisfies the follow-
ing conditions: (i) g(0) = 1; (ii) (—=1)*~'g{¥~1(z) exists and is convex on
(0, +00); and (iii) limz— 400 9(T) = limzm 4~ g*~1(z) = 0. Use Problem
I1-6 to show that g(||t]]) is the Fourier transform of a probability measure
on Rk~
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REMARK. The result of (4) for £ = 1 is due to G. Polya (1923), and the
general case to R. Askey (1972).

Problem III-6. Let C denote the complex numbers. A function p: C —
[0, +00) is called a seminorm if

(i) p(Az) = |A|p(z) for all A € R and 2 € C, and
(ii) p(z1 + 22) < p(z1) + p(22) for all z; and 2; in C.

(1) Let p : C — [0, +00) satisfy (i). Prove the equivalence of the following
properties:

(a) p is a seminorm.

(b) {z : p(2) < 1} is a convex subset of C = RZ,

(c) For all a), a2, a3 such that ) < a2 < a3 and a3 —a; < 7,

(i) p(e'*?)sin(az — a1) + p(e'**) sin(az — a2) — p(€'*2) sin(az — a;) > 0.

(2) Let 1 be a bounded positive measure on [0, 7). Show that

(iv) pula+is) = [ lasina - yoosalu(da)
0

defines a seminorm. Show that p, = p,, implies p = p,.

METHOD. Observe that p(e*?) is the convolution of u and |sin8| in the
group R/7Z. (See I1I-1.8.)
(3) Let 0 < o) < a2 < ...ap < 7, with the convention that ap = a, — 7
and Qn41 = a) + . The matrices A = (a;;)7 B = (bi)};=1, and
(d._,),'_,_l are defined as follows:
a,~_,~ = |sin(a; — aj)| forall 4,5 =1,...,n

i,j=1?

bi; = —sin(a;4+1—ai-1), bi,i+1 = sin(a; —a;_) (with the convention that
bn.n+1 = bn,), bii—1 = sin(ai41 —a;) (with the convention that by o = by )
fori=1,...,n, and b;; = 0 otherwise.

dii = 2sin(a41—0a;) sin(a; —a;-)) fori = 1,...,n and d;; = 0 otherwise.

Verify that AB = D. If p = Z -1 Mjba;, where m; > 0 and 4, is the
Dirac measure at a; for j = 1,2,...,n, calculate p(e*®) and verify that

(v) [my,ma,... my]A = [p“(e"ﬂl)’p“(eioz)’ . ’p“(eian )] )

(4) If p is a seminorm, show that there exists a bounded positive measure
p on [0,7) such that p = p,,.

METHOD. Let T = {a),...,an} withag=an -7 <0< a1 < ... < a,p <
T < ap41 = a; + 7. Show that there exists a seminorm pr such that, if
0<A<landj=1,...,n,

(vi)  pr X' + (1 - A)e+1] = Apr [e'*] + (1 - A)pr [e*%9+!],

and show by using (3) that there exists ur concentrated on T such that
Pr = Dur-
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Next, let a; = LLR‘E and set p, = pr and u, = pr. Show that p =
lim, . p, and that there exists a bounded positive measure x on [0, 7)
such that u, converges vaguely to u as n — oc.

REMARKS. A consequence of (4) is that every seminorm on R? can be
approximated by finite sums of the type ). |a;z + b;y|, and not only by
sup; |a;z+b;y|. For R™ with n > 2 this is false; in general, a seminorm can
be approximated only by suprema of absolute values of linear functionals.

Problem III-7. Let C be the set of complex numbers, identified with
R?, and let p be a seminorm on C. Show that exp(—p(t)) is the Fourier
transform of a probability measure on RZ.

METHOD. Use the fact, proved in Problem III-6, that there exists a sequence
of measures u, > 0 on [0, 7), concentrated at a finite number of points,
such that

p(z +iy) = nﬁggOA |z sina — y cos ajun(da).

Also use the formula e~!t! = f_+;° e"“ﬂﬁ’z—q, which appeared in Problem
I11-4.

REMARKS. This result is due to T. Ferguson (1962). It is false in higher
dimensions; only for certain norms (like the Euclidean norm) is exp(—p(t))
the Fourier transform of a probability measure. See Problem III-8 for a
counterexample.

Problem III-8. (1) What is the image v in R, under the projection
(%o,--.,Zn) — o, of the measure exp(— max;=o,...n |Zj|)dTodz, ...dzn
in R"? (See Problem I-14.)

(2) Compute the Fourier transform of v.

METHOD. Show that k!(1 — it)~(¥+1) = [* z* exp(—z + itz)dx for ¢ real
and k a nonnegative integer.

(3) Conclude that @n41(t) = exp(— maxj=o,...n Jt;|) is not the Fourier
transform of a probability measure on R"*" when n > 2.

REMARK. (3) is due to C. Herz (1963).

Problem III-9. Let E be n-dimensional Euclidean space.

(1) Ifa>0,8>0, and a + 8 < n, show that there exists a constant
K(a, B) such that I(y) = [ l|lzl|*~"|ly — |l "dz = K(a, B)(lyl|*+*~".

METHOD. Use Problem III-3.
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(2) Let 0 < v < n and let M, be the set of positive measures u, not
necessarily bounded, such that f(;t) Jexe llz =yl "u(dz)u(dy) < oc.
Show that, if 4 and v are in M,

‘ / llz = ylI" " p(dz)v(dy)| < V f(1)f(v).
ExE

Problem III-10. Let M be the space of real Radon measures on U =
{z: 2 € C and |z| = 1} and let F* (respectively F~) be the vector
space over R of complex functions defined in {z : |z] > 1} = D* (resp. in
{z:|z| <1} = D7). For p € M, we define

fH(z) = /U(e“’ —2)"'du(e®) for z € D*,
fa(2)= /U(ew —2)"'du(e’®) for z € D-.

(1) Show that the linear mapping p — f} from M to F* is injective.

METHOD. Expand f* in a power series in 1/z.
(2) Find the kernel of the linear mapping u — f; from M to F~.

REMARKS. 1. Although f} determines u, f; does not.

2. The situation is completely different if u is complex, since there exist
complex measures, like du(e*?) = e=**df, for which fi(n) = 0 for all n > 0.
Problem III-11. Let P(z,,...,z,) = P(z) bea homogeneous polynomial
of degree m in n variables which is harmonic; that is, Y p_, o =7 9 B(x) =0 for
all z in R". For a fixed 0 < 0, let

£(z) = (oVEm)™ exp( Izl )P(z) with |z]}2 = ¥, 22.

Show by induction on m that there exists a number K,,(c) such that
- - 0.2 t 2
iy = Kn(@)P0exp (<21

METHOD. mP = ¥, 24§

Problem III-12. The goal of this problem is to prove the following in-
equality of S. Bernstein: If u is a complex measure on [—a,+a], then
|&'(t)] < asup,er |(s)]-
(1) Consider the odd function h(6) of period 2m defined by h(8) = 6 if
0<0<7w/2and h(f) =7 -0ifmr/2< O <.

(a) Compute v, = (2im)~! [ +r -+ h(6) exp(—ind)do for n in Z.

(b) If v is the measure deﬁned on Rby v =37__ vns where
0n is the Dirac measure at n, show that v is bounded and that h(8) =

i [ exp(izf)v(dx).
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(2) If p is a complex measure on [—7/2,7/2], let

/2
50 = [ explitb)u(as)
-n/2
(a) Show that f(t) = (f * v)(t) for all real t.
(b) If p = po = (2)~' (65 — é_3), deduce from (a) that TR (2 -
1)72 = n2/4.
(c) Returning to the general case, deduce from (a) and (b) that

£ (t)] < Ll sup |f(s)] for all t in R.
SER

Show that equality holds if and only if p is concentrated at the points
+7/2.
(3) Prove Bernstein’s inequality and discuss in detail the case of equality.

Problem III-13. Let f : (0,+00) — R be measurable and satisfy
flx+y)=f(z)+ f(y) forallzand y > 0.

(1) If (t) = [, explitf(z)|dz for t € R, show that y — o(t) explitf(y)] is
continuous on (0, +00) and conclude that f is continuous.
(2) Show that f(z) = zf(1) for > 0.

Problem III-14. Let E be a real vector space of finite dimension n and let
E be its dual. Let €l1,...,en be a basis of E. The dual basis e}, ..., e}, of E
is defined by (ej,e}) = 0 if j # i and 1if j =, where (, ) is the canonical
bilinear form on E x E. E and E are equipped with Lebesgue measures dz
and dt, respectively, such that, if f € L'(E,dz) implies f € L‘(E‘) where
f(t) = [gexp(i(z,t))f(z)dz, then f(z) = (2m)™" [zexp(—i(z,?)) f(t)dt.
Let Z denote the set of points z = Z:;l z;e; of E such that the z; are
integers and let Z* denote the set of points { = Y"1, (i€} of E such that
the ¢; are integers.

Prove Poisson’s formula:

If f is in the space S of infinitely differentiable functions of
rapid decrease, then for every ¢ in E

3" Fem¢ +t) = [vol(ei, ..., en)] 7t Y f(z)et=0.

(eZ- 2€2
METHOD. Show that Y., |f(z)] < oo and use Theorem III-4.2 to see
that the left-hand side ¥(t) of the equation exists. Observing that the set
of periods of ¥ contains 2rZ*, compute the Fourier coefficients of .

REMARKS. 1. With the above hypotheses on the choice of dt on E, it can
be shown that
vol(ey,...,en) x vol(e],...,e;) = 1.
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Without loss of generality we may assume that vol(e;,...,e,) = 1. Let
E be given the Euclidean structure such that (e,...,e,) is orthonormal;
then E can be identified canonically with E, e = ej, and dz and dt are
identical.

2. Poisson’s formula is also valid in some situations that differ slightly from
that where f € S(E). One of these occurs when f € L}(E), f > 0, and f
has compact support.

3. A striking application of Poisson’s formula is that if

+00
9(0) =va Y exp(-o’mn?),

n=-0oc
then g(o) = g(o~!). To prove this, it suffices to take E = R, e; = 1, and
f(z) = exp(—2n222/0?).
Problem III-15. Let E be a real vector space of dimension n > 0, let E
be its dual, and let E be equipped with Lebesgue measure dz. It is always

true that E = E. The canonical linear form on E x E is written {, ). We
consider the following operators, where a € E, b € E‘, c (respectively d) is
an invertible linear mapping from E into E (resp. from E into E), and ‘c
(resp. !d) is the transpose of ¢ (resp. d).

For f € L%(E),

T.f(z) = f(z—a), Mspf(z) =€V f(z), Hcf(z)=f(c x),
andUf € L"’(E‘) is the Fourier-Plancherel transform described in I11-2.4.9.
For g € L*(E),
Tog(t) = g(t —b), Mag(t) = e“*g(t), Hag(T) = g(d™"1),

and Vg € L%(E) is the Fourier-Plancherel transform.
Prove the following formulas:

(1) UT, = MU (1) VT, =MV
(2) UM, =TU @) VM, =T,V
(3) UHc=|det c|Hpo-iU  (3) VHq=|det d|Hgqy-1V

(4) (H_1.0)f) =U(J) (4") (H_1EV)(9)=W
(5) U'=(@m "H_y .V  (5) V~'=(2r)""H_; U.

(Here 1g and 13 are the identity operators on E and E‘, respectively.
Problem III-16. Use the result of Problem IV-12,

20
., dx
e lem =it ——_ — (1-4t)"® fort€ R and a > 0,
/ T~ 87
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with the convention for 2* with Rez > 0 made in Problem IV-12, to com-
pute the Fourier-Plancherel transforms of the following functions in L?(R):
(1) |z]*"'e "1 4.00) ()

(2) |z|*'e*1(_c0,0)(T)

(3) |z|*"le™=

(4) —i - sign(z)|z|*~"e~l=l

(5) (z — a —ib)~", with n a positive integer, a and b real, and b # 0

(6) b(x2 + b?)!

(7) z(z? + b*)!

(8) f(z), where f(z) is a rational function with no real poles and without
entire part.

METHOD. For (5), use (1) and problem III-15.

Problem III-17. Compute the Fourier-Plancherel transforms of the fol-
lowing functions:

(1) Ljmq,41)(z)

(2) 1fa,5(2)

(3) sinz/z

(4) sin® z/z?

(8) (1= |=N)*

(Here a* = max{0,a}.)

Problem III-18. If f € L3(R) and (U, f)(t) = ffa e'®t f(z)dz, show that
limg oo Ua(f) = U(f), where U denotes the Fourier-Plancherel transform
of f.

Problem III-19. If f and g are in L?(R), show that

/ f(2)a(z)dz = / fl=)g(z)dz.

METHOD. Use the fact that L' N L2(R) and A(R) are dense in L2(R). (See
111-2.4.7.)

Problem III-20. Let gy(z) = i(signz)e~%*! for b > 0, let U be the Fourier-
Plancherel transform in L2(R), and let M,, be the operator on L%(R)
defined by M, f(x) = go(z)f(z). Set

Hp = U_lMgbU.
(1) Show that M,f(z) = & ff: 745 f(z — y)dy for almost every z, if
fe€L?*R)and b>0.

METHOD. Use Problem III-16(7) to compute U(gs), then apply Problem
I11-19.
(2) If f € L*(R), show that Hof = limpyo 1 fj:: y—;h;f(z — y)dy exists in

L? and give its Fourier transform. Also calculate H32f.
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REMARK. Mg f is called the Hilbert transform of f.
Problem III-21. Suppose that f € L3(R) and g € L'(R). Show that
+o¢

f(z - y)g(y)dy

—20

h(z) =

exists for almost every z and defines a function k in L2(R) such that
IRl < || ﬂl L2 |]g||y and h = gf (where g is the Fourier transform of
g € L' and h and f are the Fourier-Plancherel transforms in L?).

METHOD. Apply the Cauchy-Schwarz inequality to | f(z—y)| |9(y)|*/? (con-
sidered as a function of y) and |g(y)|*/? and use Problem III-18.

Problem III-22. Let 0 < € < a and let g qo(y) = (7y) "' L{c<iyi<a} (¥)-
(1) Compute lim¢_glimg— 400 ge.a(t), Where g o is the Fourier transform
on L'(R) of g¢q. (Use Problem II-16.)

(2) For f € L?(R), we set

_ f(y)dy
Healf) = [Sly—zlsa -;—:?

(This equals f * g q in the sense of Problem III-21.) Using Problems III-20
and III-21, show that lim¢_qlimq— 4o He.q(f) exists and coincides with
the Hilbert transform of f (Problem III-20).

Problem III-23. A function f in L?(R) is called hermitian if f(z) =
f(—z) and skew hermitian if f(z) + f(—x) = 0. Let f denote the Fourier-
Plancherel transform of f and let Hof denote the Hilbert transform of f.
(See Problems I11-20 and III-22.) Prove the following statements:

fis Hermitian Skew- Real Purely Even | Odd
iff hermitian imaginary
fis Real Purely Hermitian Skew- Even | Odd
iff imaginary hermitian
(Hof)"is | Purely Real Hermitian | Skew- | Odd | Even
iff imaginary hermitian
(Hof) is Skew- Hermitian Real Purely Odd | Even
hermitian imaginary

Problem III-24. Compute the Hilbert transform (see Problem III-20) of
each of the following functions:

filz) = ieas fz) = ey
fiz) = iylx), falx) = Llog|:i|,
fs(x) = (1-lz)*,  felz) = Llog{ztl| 4 Zlog|E!
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METHOD. Use Problem III-16 for f and Problem III-22 for f.
For f5, a* = max{0.a}.

Problem III-25. Let S be the vector space of C* functions on R which,
together with all their derivatives, are of rapid decrease.

(1) Show that if f € S, then lim—o >, £2)dz exists and defines a con-
tinuous linear functional (or “tempered distribution”) on S.

(2) Show that the Fourier transform of the distribution defined in (1) is
the Radon measure u(dt) = in(sign t)dt.

METHOD. Split the first integral into {¢ < |z| < 1} U {|z| > 1}. Also use
the fact, proved in Problein II-16, that fom *-’l'_,:—“da: =1

Problem III-26. Let I = (a,b) and let f € L!(I).

(1) If F(z) = [7 f(t)dt for = € I, show that F'(z) = f(z) in the weak
sense (I11-3.3.1).

(2) If F € L'(I) and F' = f in the weak sense, show that, fora <a < 8 <
b,

3
/ f(t)dt = F(8) - F(a).

(3) Let s be a positive integer. Show that F is in H}, ., the local Sobolev
space (see III-3.5.6), if and only if there exists f € L, (I) such that the
weak derivative of order s — 1 of F exists in the ordinary sense and satisfies

Fs=(z) = Fls=1(g) 4 / " byt

for all a and z in I.

Problem III-27. Let f € L2(R), with Fourier-Plancherel transform f.
Prove Hermann Weyl's inequality,

[/HC |f(1:)|2da:]2 < %/-:c 22| f(z)2dzx x /+m 2|f(t)[2dt,

-0 —00
and analyze the case of equality.

METHOD. Without loss of generality, assume that f is in the Sobolev space
H'(R). Show that [*%°|f(z)]?dz = —2Re [*° zf(z)f'(z)dz, with the

help of Problem I-15(2). Conclude by using the Cauchy-Schwarz inequality
(Problem I-12).

REMARK. This inequality has an interpretation in quantum mechanics,
where it is known as Heisenberg’s uncertainty principle. 3

3H. Weyl, The Theory of Groups and Quantum Mechanics (London: Dover,
1931).
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Problem IV-1. The points marked on the faces of two dice are, respec-
tively, for the first: 1, 2, 2, 3, 3, 4; for the second: 1, 3, 4, 5, 6, 8.

If X is the sum of the points obtained by throwing the two dice, compute
P[X = k] for integer k. Answer the same question for ordinary dice.

Problem IV-2. The random variable X is called a geometric distribution
with parameter p, 0 < p < 1, if

PX=k=(01-p)*'p, k=1,23,...

Compute E(X) by using Problem I-6(1).

Problem IV-3. Suppose that §, is the Dirac measure at a, p € (0,1), and
A > 0. Consider the following two probability measures on N:

vp = (1-p)bo+pb (Bernouilli distribution with parameter p)
Br = Ypeo e"‘-‘};’f-&k (Poisson distribution with parameter A)

(1) Show that the vague limit of the sequence {V3"}n>» is pa and that
By * Bag = Bag+ag: "

(2) Let 0 < p < 1. Consider the measure m, on N? concentrated at the
points (0,0), (0,1), (1,1), and (k,0) with k > 2 (note the absence of (1,0)),
such that X has distribution p, and Y has distribution v, if (X,Y) has
distribution m,. Compute m, and conclude that P(X # Y) < 2p®. (Use
the fact that e > 1 -p.)
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(3) If (X, Y) is an arbitrary variable in NZ and A C N, show that
|[P(X € A)— P(Y € A)| < P(X #7).

(4) Let (X),Yh),...,(Xn,Y,) be n independent random variables with val-
nes in N? and with distributions m,,, my,,...,mp,. Let A C N. Use (2)
and (3) to show that

n
|[P(X),+:--X,, € A)— PV1 +---+ Y, € A)| 522??-
Jj=1

(5) If n > A and A C N, show that

o 222
|37 (A) — pa(A)] < W

REMARKS. The approximation of the binomial distribution by the Poisson
distribution is both elementary and essential for applications. (5) gives an
upper bound for the error committed by replacing a binomial distribution
v, by a Poisson distribution pnp, and (4) treats the case of experiments
that are independent but not identical. This result is due to J.L. Hodges
and L. Lecam (1960).

Problem IV-4. On a probability space (2, A, P), we define a random
variable N with positive integer values and random variables {Xp.}n>1,
with values in a measurable space (I,B), such that the X, all have the
same distribution m but are not necessarily independent.

(1) Show that the distribution g of Xy is absolutely continuous with respect
to m.

(2) If f(z) = -‘-“i(z) and a > 0, show that

E(N*) > —— / 7+ (@)dm(z).

“1+a

MEeTHOD. If B(y) = {z € I : f(z) > y}, show that

(i) w(B() < 3 PlXa € By)] + PN > 3]
n<y

and use Problem I-6.
(3) Show that 1+ E(log N) > [ f(z)log f(z)dm(z) by letting o | 0 in (2)
and using the monotone convergence theorem.
Problem IV-5. With the notation of Problem IV-4, we take I = [0,1],
B = the Borel algebra, and m = Lebesgue measure, and we assume that the
{Xu}n>1 are independent. Let f : I — [0,+00) be a nonnegative measur-
able function, bounded by a number b > 1, which satisfies j;,' f(z)dz = 1.
Let

= inf{2n : bXQ,,-| S f(XQ,,)}.

Show that Xy has density £ = f.
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REMARK. This procedure for constructing a random variable of given den-
sity f on [0,1] from uniform random variables was invented by J. Von
Neumann in 1951.

Problem IV-6. (1) Let Y be a positive random variable. Show that for
ally >0

P(Y >y) < %E(Y) (Chebyshev’s inequality).

(2) Let X be a real random variable such that E(X?2) < co. If m = E(X),
show that for all t > 0

P(JX -m|>t) < 2-15E((X —m)?) (Bienaimé’s inequality).

(3) Let {Xn}32, be a sequence of independent real random variables with
the same distribution and such that E(X?) < oc. If m = E(X)), show that
for all € > 0 and for all a € [0, 3)

(weak law of large numbers).
(4) Let {X,.}3%, be a sequence of independent real random variables with
the same distribution, for which there exists k£ > 0 such that E[exp k| X, ] <
oo. If m = E(X,), show that for every ¢ > 0 there exists ¢ in (0,1) such

that
r|

Conclude that 1(X; + --- + X,) — m almost surely as n — oo (strong
law of large numbers).

X\ 4+ Xn
n

—ml > e] < 2q¢™.

METHOD. Show that m = ad;[E(exp(sX 1))]s=0 and apply Chebyshev’s in-
equality to Y = exp(s(X, + --- Xy)).

Problem IV-7. Let {X,,}3%, be a sequence of nonnegative real random
variables with the same distribution, such that X; and X,, are independent
for every pair (j,n) with j # n. Assume that E(X,) < oc. Set S, =

i=1Xjs Yo = Xnl(x,.<n)}, and S;, = 3°7_, Y;. The goal of this problem
is to prove the law of large numbers:

P[lim Sn =E(X.)] =1
n—oc N

(1) Using Problem I-6, show that E(X;) < oc implies } .-, P[Xn # Ya] <
o0o. Using the Borel-Cantelli lemma (I-5.2.8), conclude that lim, _...(S, —
S;) exists with probability 1.

(2) Show that limp_o YE(S}) = E(X)).
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(3) Let a be a real number greater than 1 and let k, be the integer
part of a™. Prove the existence of a constant C) such that Y {k;2 :
n such that k, > j} < C,j~2. With the help of Bienaimé’s inequality,
conclude that

= Clm l 2
P >€ S—- —-EY.
Sr{E® 2 <G5 seon

Then prove that 3522, F%E(sz) < co.
(4) Deduce from (2), (3), and the Borel-Cantelli lemma that

Skn E(S‘ )

S.
P[lim k*" =E(X1)] =1,

n—o00

then from (1) that

.S
P ["1320 = E(x,)] =

n

(5) Prove that, for every a > 1,

n—oo

[ “1E(X,) < llmmfs— < hmsups— <aE(X))| =1

Deduce the law of large numbers from this.

REMARKS. The elementary proof whose outline is sketched here is due to
N. Etemadi (1981).

Problem IV-8. Let {X,,}32, be independent real random variables with
the same distribution and such that E(X,) = 0 and 0 < E(X?) < co. Let
Sn=X1+---X,.

(1) Show that limp_o P(Sp > 0) = 4 by using Laplace’s theorem (IV-
4.3.1) and Problem I1-22.

(2) Use the preceding result and the weak law of large numbers proved in
Problem IV-6(3) (that lim, . P[|f§-| > €] =0 for all € > 0) to show that

limp—oo [E(exp(—Sn)1¢s,>0})]'/" = 1.

Problem IV-9. (1) If X and Y are independent real random variables,
show that P(X +Y > a+b) > P(X > a)P(Y > b) for all real a and b.
(2) Let {X,}32, be a sequence of real independent random variables with
the same distribution, and set So =0and S, = X; +---+ X,. Let sbea
fixed real number. Set p, = P|[S, > ns]. Show that pp4m > Pnpm for all
m, n > 0 and that, for n > 0, p, = 0 if and only if p, =

(3) If the sequence {an}3%, of nonnegative real numbers is such that
Guim > Gn + @y for all m, n > 0, show that lim;_ %2 = infase &,
Conclude that limy_.oc {/Pn = a(s) exists.
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Problem IV-10. Let {X,,}3, be a sequence of independent real variables
with the same distribution. Suppose that ¢(t) = E(exptX)) exists for all
t in an open interval I containing 0 and fix a real number s > E(X)
such that t »— e~ p(t) attains its minimum a(s) at a point 7 of I. Let
Sn=X1+ -+ X,

(1) Show that log(t) is convex on I and that 7 > 0. Conclude, using
Chebyshev's inequality (Problem IV-6), that

[P (%—' > s)] v < a(s).

(2) Let py be the distribution of X, — s and let v(dz) = £5u1(dz). Prove
that v is a probability measure, that [ zv(dz) = 0, and that [ z2v(dz) <
0.

(3) Let {Z,}32, be a sequence of independent random variables with the

same distribution v. Show that
S
P[% 2| = () Blesp(-r(21 + - + Zzss20200)

Conclude from Problem IV-8 that

a(s) = hm[ (%23)]1/".

(4) Compute a(s) in the following cases:
(a) p(t) = exp(t3/2) (normal distribution)
(b) ¢(t) = cosh(t) (Bernouilli distribution)
(c)p(t)=(1-¢t)"*t<1,a>0 (gamma distribution)
(d) ¢(t) =expA(et — 1), A >0 (Poisson distribution)
(e) p(t) = (2z) p+e=1,0<p<1,t<-logg,a>0
(negative binomial distribution)
(f) o(t) = 2. It <1 (Laplace’s first distribution)
(g) ¢(t) = =X~ (logarithm of a Cauchy distribution)

cost

REMARK. It is not known what conditions on a decreasing function a on
R are sufficient for the existence of a distribution u of the X, such that

nlln;o [P (%’-‘- > s)] o = a(s).

Problem IV-11. If 2; and 2; are complex numbers with positive real
part, set I['(z)) = [;° 2% ~'e~%dz and B(z),22) = fol z5 (1 - )2 dz.
Assume without proof the formula

[(21)l'(22)

B(thz) = P(Zl + 22) .
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If a and b are positive, the probability measures

Ya(dr) = Lo, 4x)(T)2"" '9"%
Bap(dz) = Ly (2)*~ (1 - 2)"~" B(dx D)

(2) — 1 —a—! -
Ade) = Lg.poey ()"~ (1 4 )7 o

are called, respectively, the gamma distribution with paraineter ¢ and the
beta distribntions of the first and second kind with parameters a and b. (1)
If p is a bounded measure on (0, +00), its Mellin transform is (A y)(¢)

= [, =" u(dz) for ¢ real. (This is the Fourier transform of the image of

under x — log x.) Compnte M+v,, M 34, and Af iﬁ) (2) If X is a random

variable with distribution 3,5, compute the distribution of X/1 — X. (3)
If X and Y are independent r.v. with distributions 4, and +,, compute the
distributions of X/Y and X/(X +Y). (4) If X, Y, and Z are independent
r.v. with distributions 8,4, B¢+b., and Hﬁ)bm, compute the distributions
of XY and XZ.

Problem IV-12. (1) Let 4, be the probability measure of Problem IV-11,
with @ > 0. Compute its Fourier transform. If X and Y are independent
random variables with distributions v, and 7, compute the distribution of
X+Y.

(2) Let X be a Gaussian random variable with density fw'ﬁe"‘/ 20% 4z,

2\l
Compute E [(5'%). ] for ¢ real, and use Problem IV-11 to find the distri-

bution of £
(3) Let X,,..., X4, N1,...,Yn be independent randomn variables with the
same distribution as X of (2). Compute the distribution of Fz[X? +

+ X3] by using (1) and (2), and the distributions of $+=tXi and
4] by using (1) and (2), and the distributions o Yir—vi an

Xi4--+X3 . .
x,'+---+lx}+Y,2:---+Y,3, by using Problem IV-11(3).

Problem IV-13. In Euclidean space R**!, consider a random variable
= (Xo, X1,...,Xa) whose distribution g is invariant under every orthog-

onal matrix of R d+1 and qatlaﬁ&s u({ 0}) = 0. Let v denote the distribution

of X on (0,+00) and letY—( . 75 74)

(1) Use Problem III-2 to show that the (llatnimtmn of Y is independent of

v.

(2) From now on, assume that the {X;}’_, are mdependent with the same

distribution p and with Fourier transforin exp(—-.z-). Show, using Problem
III-1, that x must be invariant under every orthogonal matrix.
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(3) If @ € R, compute the integral

I(a) = /+°°exp[ (:c+ )]d:c

by using the following fact from Problem II-12(1):

+oc |a| +0
f(z - -;)d:c = / f(y)dy for every f integrable on R.
- 00

-20

(4) By first conditioning with respect to Xy (see Problem IV-34), compute
the Fourier transform of the distribution of Y.

(5) Using Problem IV-11, find the distribution of ||Y'||2. Derive the density
of Y from this, by observing that the distribution of Y is invariant under
every orthogonal matrix in Q4 and using Problem III-3.

Problem IV-14. Let v, be the probability measure of Problem IV-11,
with a > 0.

(1) Use Problem IV-12 to compute limg—.co f;° exp[zt( £22)a(dz).

(2) Using Problem II-14, show that

® r—a +oo 2 dx
lim = e~ T 2 _—_.
(3) Integrate by parts to compute the integral fo | 2 |va(dx) and prove

Stirling’s formula:
aa—l/Ze—a 1
lim = .
Fe " T(@  Vor
Problem IV-15. (1) Let 4 be a probability measure on R such that
B(t) = f(tcos@)p(tsin 0) for all real t and 6. Show that there exists o > 0

such that z(t) = exp(——

METHOD. Show that fi(t) > 0, then that z(t) > 0 for every t. Finally,
consider f(z) = —logi(y/z) for z > 0.

(2) For positive integers d, and d2, let ) and u2 be probability measures
on the Euclidean spaces R** and R such that v = dm ® pg is invariant
under the group G of orthogonal matrlces on R%*%  Show that there
exists o > 0 such that fi;(t) = exp(——2—||t||,), j =1,2, where |||, and [|t||2
are the norms in R" and R%.

METHOD. Use Problem III-1 and part (1) of this problem for the case where
d] = d2 =1.

REMARK. The converse of the property in (2) is trivial. This characteriza-
tion of centered normal distributions is sometimes called Maxwell’s theo-
rem.
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Problem IV-16. A real random variable Z is called symmetric if Z and
—Z have the same distribution.
(1) Show that Z has distribution ¢(dz) = ;({‘i—‘z,-) if and only if Z is syminet-
ric and | Z|? has distribution 3 (1/2,1/2). (See Problem IV-11.) Assuming
without proof the formula I'(2)['(1-2) = " for complex numbers z such
that 0 < Rez < 1, compute E(|Z|"*) for real ¢ in this case.
(2) Let X, and X, be two real random variables that are independent
and symmetric, and have dlstrxbutlom i and pp such that p,({0}) =
#2({0}) = 0. Show that Z = —1 has distribution ¢ in the following cases:
(2) 1 (dz) = po(dz) = exp(—12/2)dx/ V2r
(b) | X1|? has distribution 3(}, b) and | X2|? has distribution 32)(1, § +b)
(c) p1(dz) = po(dz) = V2/mdz/(1 + z*)
(3) With X, and X as in (2), deduce from (2a) that U = (ﬁ

7%&??) is uniformly distributed on the unit circle of Euclidean space
1 2
R? if and only if Z = %f has distribution c.

REMARKS. Example (2c) is due to Laha (1949). Moreover, if (X, X2) is as
in (2) with U uniform, then ( XL.’ XL’) has the same property.

Problem IV-17. A probability measure v on a Euclidean space R? is
called isotropic if v({0}) = 0 and the image of v under the mapping
z— ﬁ", in the unit sphere Sy, of R¢ , is the unique rotation-invariant
probability measure 04—, on Sy_,. It is called radial if its image v, in R
under the mapping = — (@,z) does not depend on a when a ranges over
the unit sphere.

(l) Let 1, and p be probability measures on the Euclidean spaces R%' and
R%, with d, and d, pomtlve Show that the probability ineasure v = p; ®@u,
on the Euclidean space R%*% s isotropic if and only if y; and pp are
radial and if, for every a, in Sy, and a3 in Sy,—_, the image of v under

(z1,22) — %——z:f:f) is ¢(dz) = —,—,“‘f:z 3

METHOD. Prove the assertion first for d; = d2 = 1 and use Problem IV-16.
(2) Let (X1, X2, X3) be three independent random variables such that the
distribution » of (X, X2, X3) in R? is isotropic. Show that there exists
o > 0 such that

o212
Elexp(itX;)] = exp(——t) forj=1,2,3,and t € R.

2

METHOD. Apply (1) to the distributions p) of X, and pu2 of (X,, X3) and
use Problem IV-14.

REMARKS. The converse of (1) is true but rather lengthy to prove. (2) is
true for n independent random variables, n > 3; this follows easily from
the problem. (Problem IV-16 showed that this would be false for n = 2.)
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This property of the normal distribution is due to I. Kotlarski (1966), who
proves it with the additional hypothesis that the X; are symmetric.

Problem IV-18. Let E be a finite-dimensional real vector space, let E*
be its dual, and let (z,t) be the canonical bilinear form on E x E*. If u is
a probability measure on E, its Fourier transform is defined on E* by

a(t) = jE exp(i(z, t))(dz).

(1) If there exists tg # 0 such that |zi(to)] = 1, show that u is concentrated
on a countable union of affine hyperplanes and determine them.

METHOD. First consider the case where fi(to) = 1.
(2) If there exists a probability measure v on E such that ji(t)7(t) =1 for
every t in E*, show that u and v are Dirac measures.

METHOD. First prove this when dim E = 1.

REMARKS. This result can be generalized by replacing E and E* by a
locally compact abelian group and its group G of continuous characters x.
(See III-1.4.)

Problem IV-19. Let X;, X, Y;, and Y, be independent real random
variables such that Y; and Y; are strictly positive and Efexp(itX;)] =
exp(—t2/2) for j = 1,2 and ¢t real. Let R = [X}?Y2 + X3Y?|'/2. Using
Problems IV-16 and IV-18, find the distributions of Y; and Y, such that
U = (X,Y1/R, X;Y2/R) is uniformly distributed on the unit circle of R2.

Problem IV-20. Let 04— be the uniform probability measure on the unit
sphere Sg_) of the Euclidean space R“, and let v4 be the image of 4 under
the dilation z — Vdz.

Prove that v, converges narrowly to v(dz) = exp(—z2/2)dz/V/2x.

METHOD. If Y),...,Yq,... is a sequence of independent random variables
with the same distribution v and if Ry = [YZ + --- + YZ]'/2, use the fact
that g4, is the distribution of R7'(Y},Y2,...,Yq), the weak law of large
numbers of Problem IV-6, and Problem I-10.

REMARK. This property of uniform distributions on spheres is known as
Poincaré’s lemma.

Problem IV-21. Let S, denote the set of probability measures u on R
such that there exists a probability measure g, on the Euclidean space R"
whose image in R under z — (a,z) is p for every a in the unit sphere
of R". Prove that 4 € N32,S, if and only if there exists a probability
measure p on [0, +00) such that the Fourier transform of x satisfies fi(t) =

fo°° exp(-—";—‘z-)p(dy). Prove that such a p, if it exists, is unique.

METHOD. For the uniqueness of p, use Problem II-20. For its existence, use
Problems III-1, ITI-2(4), and IV-20, as well as Paul Lévy’s theorem on the
convergence of distributions.
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REMARK. This property is due to 1. Schoenberg (1937) .

Problem IV-22. Let (X, X),...,X4) bean R%*'.valued random variable
that is radial, i.e. whose dlatrlbutlon is invariant under the group Od4) of
d x d orthogonal matrices. Let t = (t1,ta,...,t4) and ||t]| = [t3 +--- +£2]3.
Prove that E[exp(iz 15X — It Xa)] = 1 for every t in R’ such that
Efexp(—[It]| Xu)] < oo.

METHOD. Prove the assertion first for d = 1 and u concentrated on the
unit circle.

Problem IV-23. Let {(V;,, W},)}3%, be a sequence of mdependent random
variables with the same distribution, with values in R x R? (where R has
the Euclidean structure), and satisfying E[log |V1|] < 0 and E[log* |W,||] <
00.

(1) Prove that 3o\ [Vi ... V| |[Wa4 |l converges almost surely.

METHOD. Use the Borel-Cantelli lemma to show that limsup,,_, . ||Wa||'/"
< 1, then use the strong law of large nmmbers. (See Problem IV-7.)

(2) Let g be the distribution of the R%valued random variable which is
equal to the suin of the series Z;’l‘;(, Vi...VaW,41. Let v be a distribution
on R? whose Fourier transform ¥ satisfies

() = E[p(Vit) exp(i(W),t))] for every t in RY.

Show that u = v.

(3) Let {U,}2~, be a sequence of independent R*'-valued random vari-
ables with the same distribution, the uniform distribution on the unit
sphere S, of Rt Let V,, — 1 and W, be the projections of U, onto
(R,0,0,...) and onto its orthogonal complement. Prove that if g is the
dlstnbutlon of Y00 yVi... VuWoy, then ji(t) = exp(—||t]]).

METHOD. Use (2) and Problem IV-22.

(4) Let {X,,}2%, be a sequence of independent random variables with values
in N ={0,1,2,...} and with the same distribution, such that X, satisfies
pr = P[X) = k] < 1 for every k in N. Set ¢ = P[X, < k]. Show that
if g2 is the distribution of Y o, Px,Px; - --PX.qX.,,, then u is Lebesgue
measure on [0, 1].

Problem IV-24. Let X and Y be independent random variables with the
same distribntion and with values in Enclidean space R’{, d > 1, which
satisfy the following conditions: (i) P[X = 0] = 0; (ii) m and || X| are
independent; and (iii) “%" is uniformly distributed on the sphere S;_,.
(That is, the distribution of X is “radial” — see Problem 111-2(4).) Prove
that 1

Pll2X -Y[I <Yl < 5

and that this inequality is the best possible.



Exercises for Chapter IV 307

METHOD. Consider R = H. use the fact that R and R~! have the same
distribution on (0, +oc), and prove the inequality by first conditioning with
respect to |log R|. For the second part, take || X|| with density 1z(1-m/n
on (0,1] and show that the distribution v, of exp(—|log R|) tends vaguely
to the Dirac measure at 0.

REMARKS. 1. There is also an explicit expression,
l P> <}
Pll2X - Y <Yl =7 [ Gladv*(a)

where G(y) = Tﬁ%‘-“) f:° 75“—"_:"1—)‘,77 and v*(da) is the distribution of
A%/(1 - A%).

2. This inequality is due to A.O. Pittenger, who proves it with the additional
hypothesis P[||X|| = z] = 0 for all z > 0 (1981).

3. Relaxing the hypothesis of the problem to P[||X|| = 0] = 0 easily yields
the upper bound

1
Pll2X - Y| <|Yl] <p+(1-p),

where p = P[||X|| = 0] < 1, and this again is best possible. Note also that
PllI2X - Y| < |IYll] = (1 = p)?/4 < 1/4 in all cases.

Problem IV-25. Let H be a separable Hilbert space and let py denote the
orthogonal projection of H onto a subspace U. Define the Boolean algebra
B of subsets B of H for which there exists a finite-dimensional subspace V
of H and a Borel set By of V such that B = pj,'(By). Let o(B) denote
the o-algebra generated by B.

(1) Show that {z: ||z]| < r} € o(B) if r > 0.

METHOD. Use the fact that, since H is separable, there exists an increasing
sequence {V,}32, of finite-dimensional subspaces of H such that U ,V,
is dense in H.

(2) A cylindrical probability on H is given by probabilities uy on each finite-
dimensional subspace V of H such that, if Vi C V3, the image of uy, under
Pv, is py,. For B € B, let Eg denote the set of finite-dimensional subspaces
V such that there exists a Borel subset By of V with B = p;;!(By). Prove
that V — uy(By) is constant on Ep. Denoting this constant by u(B),
prove that u is finitely additive on B.

(3) Consider the cylindrical probability defined as follows. Let p be a prob-
ability measure on [0, +00) and let uy be defined by its Fourier transform,

00 2 2
pv(t) = /Vexp(i(z. t)uy(dz) = /0 exp(—y—“;—") p(dy) forteV.

Show that u is not o-additive on B if p({0}) < 1.
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METHOD. Otherwise u could be extended to a o-additive probability mea-
sure u on g(B). Use Problems I-10 and IV-6 to show that this would imply

u({z : ||zl < r}) = p({0}) for r > 0.

Problem IV-26. In Euclidean space R", consider the positive quadratic
form q defined by q(x) = 3__, Axz?, where = = {zx}}_, and Ax > 0. Set
llall = k=) Ae-

(1) If X is an R"-valued random variable such that
E(exp(ix, 1) = exp( - 1)

show that Plg(X) > r?] < 1};41 for every r > 0.
METHOD. Use Chebyshev’s inequality, Problem IV-6.

(2) Let 1 be a probability measure on R™ with Fourier transform ji(t) =
Jrn exp(i(z,t))u(dz) and let € > 0 be such that |1 — fi(t)| < e for every ¢
in R" with ¢(t) < 1. Prove that, for every r > 0,

/"e"f’( Iz "2) ulde) 21— ¢ - 204l

(3) Prove that, for every r, R > 0,

: 2ljqll R?
e el < Ry 21—~ 2l oy T
Conclude that there exists a number R(||g]|, €) such that

n({z : llzll < R(ligll,€)} > 1 - 2.
REMARK. This result is called Minlos’s lemma (1959).

Problem IV-27. The notation is that of Problem IV-25 and u = (uv)y
is a cylindrical probability on H. A positive quadratic form q on H is a
bounded linear mapping 4 : H — H such that ¢(z) = (Az,z) > 0 for
every z. If the dimension of V is n, there exist a basis b = {b;,...,b,}
of V and nonnegative numbers A;,..., A, such that, if Zk_ zkbk is in
V, then g(z) = 3§, Mzi. Moreover, the distribution of the {Ax}p_, is
independent of b, and we may set ||qv|| = Y ;_, Ax. This implies that
ligvi I < llav, |l if Vi C V2, and we set [|g|| = supy [|qv|| < +00.

(1) Let iy (t) = [, exp(i(z,t))pv (dz) for t € V. Show that fiy, (t) = fiv,(t)
ifteVinVa.

(2) Set z(t) = py(t) if t € V. Suppose that, for all € > 0, there exists a
positive quadratic form g, on H such that ||g || < oo and |1 — ji(t)] < € for
all ¢t such that ¢.(t) < 1. Deduce from Problem 1V-26 that, for all € > 0,
there exists R(¢) such that

pv({z:z €V and ||z|| < R(e)}) > 1—2¢ for every V.
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(3) With the preceding hypotheses, prove that y is a o-additive probability
measure on the Boolean algebra B by showing that, if A, € B, A, D Ap4a,
and u(A,) = 6 > 0 for every n, then N2, A, #0.

METHOD. Let V,, be a finite-dimensional subspace of H containing a Borel
set A;, such that A, = p",:(A;) and let Bj,(R) be the closed ball of radius
R in V,,. We may assume that V;; C V,,+,. Construct compact sets K, of V,
contained in Aj, N B},(R), introduce K,, = p;;! (K},), and use the fact that
Co=K,Nn...nK,Nn{z:|z]] < R} is a decreasing sequence of compact
sets in the weak topology on H.

REMARK. This result is due to Minlos (1959).

Problem IV-28. Let { X;,}.>1 be a sequence of independent random vari-
ables with the same distribution defined by P[X,, = 1] = P[X, = -1] =
1/2. Compute the limiting distribution as n — oo of

Yo=[1+449+...+2% 72X, +2X2+ 3X3 + ... + nXy).

METHOD. Consider the characteristic function of Y,,.

REMARK. This is a simple special case of Lindeberg’s theorem, which is a
significant generalization of Laplace’s theorem, IV-4.3.1 (also often called
the central limit theorem). Lindeberg’s theorem is stated as follows: If (i)
the real random variables { X,,}3, are independent (but do not necessarily
have the same distribution); (ii) for every n, E(X,) = 0 and o2 = E[(X, +
v+ + Xn)?] < oo; and (iii) for every e,

E [;fc (f_:)] — 0, where fc(z) = z21[(.4-01'))(:':)’

then the distribution of 7,'—" (X1+---+X,) tends to the Gaussian distribution
N(0,1) as above.

Problem IV-29. On the real line, consider the Gaussian distribution
u(dz) = 5= exp(E,;)dx. Let L?(u) be the Hilbert space of functions which
are square integrable with respect to u, with the scalar product

+o00

(f.9) = f(@)g(z)p(dz).

—00

The Hermite polynomials { H,(z)}3%, are defined by

i H,(z)(it)" = exp(itz + -t;-) =y(t,x) VteC.

n=0

Assume without proof that this implies

S 2
(%) 3 Ha(2)l 1" < exp(|t| 2] + %) ,

n=0
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(1) By computing (¢(t,.), ¢(s,.)) in two different ways, show that (H,,, H,,)
=0 if n # m and that (H,,H,) = . Use the uniqueness of the Fourier
transform to show that if f in L2(u) satisfies (f. H,) = 0 for every n, then
f=0.

(2) Show that H}_,(z) = H,(z) and that (n + 1)Hp4(z) = cH, () —
Hy,_\(x)ifn>1.

(3) Let f € L*(u) and let f, = n!(f, H,). Show that f = Y70, f, H,
(where the convergence of the series is in the L2(u) sense). If, moreover, f’
exists (in the sense that F(x) = f(0) + fo f'(t)dt for every z) and belongs
to L2(p), show that f' =32 | foy1 H,

METHOD. Compute (f’, H,)) by means of an integration by parts and (2).
(4) Prove H. Chernoff’s inequality: If X is a Gaussian random variable with
distribution p and if f is a real-valued function such that both f'E[|f'(X)|?]
and E[|f(X)[?] exist, then E[|f'(X)|?] > variance of f(X). Analyze the
case of equality.

Problem IV-30. Let (X,Y) be a Gaussian random variable with values
in R? such that X and Y have distribution pu(dz) = (27)~1/2 exp(-!;)dx.
(1) For the Hermite polynomials defined in Problem IV-29, prove that

H,(ycos@ + 2sinf) = E Hy(y) cos* 0H,_(z) sin"* 6

k=0
(2) Assume that cos@ = E(XY) # +1 and define the random variable
Z = L;mw Verify that Y and Z are independent and use (1) to

prove that E[H,,(X)|Y] = H,(Y)(E(XY))™.
(3) Prove Gebelein’s inequality: If f € L?(p) with E(f(X)) = 0, then

E[E[f(X)[Y])?] < (E(XY))’E(S*(X)).
Analyze the case of equality.

METHOD. Write f = Z,‘f’zl JuHy as in Problem IV-29,

Problem IV-31. Let H, be the nth Hermite polynomial described in
Problem IV-29 and compute

+0c 3 . dr —
[m eu'lH"(z)e-;’/lE = H"“(t)_

Use this to find

+00
/ eiz‘f n, —-r2/2 dz
Ire _—
—0 Vvor

Problem IV-32. Let (2, A, P) be a probability space and let B be a sub-
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o-algebra of A. We would like to show that if X € L!(A), then
(%) f XdP = / E[X|B|dP for all B € B,
B B

and that (*) characterizes E[X|B].

(1) Show that (*) holds if X € L2(A).

(2) f X > 0, let L(X) = lim,— 400 E[min(X,n)|B]. If X € L!(A), let
L(X)=L(X*)—L(X"), where X* = max(X,0) and X~ = max(-X,0).
Show that L(X) € L!(B) and that [,;(X — L(X))dP =0 for all B in B.
(3) Show that if f, g € L'(B) are such that [;(f — g)dP = 0 for every B
in B, then f =g.

(4) Show that L(X) is a bounded linear operator from L!(A) to L!(B) and
infer that L(X) = E(X|B).

REMARK. This characterization of conditional expectation is often taken
as a definition in the literature.

Problem IV-33. Suppose that, for every n > 0, X,, € L'(A) and X,, > 0.
Use the preceding problem to show that if X, T Xp, then

Y, = E[X.|B] 1 E[X0|B].

Problem IV-34. Suppose that (2, A, P) is a probability space, B is a sub-
o-algebra of A, Y is a B-measurable random variable, and X is a random
variable independent of B. Consider f : R? — R such that f(X,Y) is
integrable. The goal of this problem is to show that if 4 is the distribution
of X, then

+oc

(%) E[f(X,Y)|B] = f(z,Y)p(dz).

—00
(1) Show that (*) holds if f(z,y) = 1;(z)1,(y), where I and J are Borel
subsets of R.
(2) Let P be the Boolean algebra on R? consisting of sets of the form
E = Up_,Ip x Jp, where I, and J, are Borel subsets of R. Show that (x)
holds if f(z,y) = 1g(z,y) with E € P.
(3) Let M be the family of Borel subsets M of R? such that f(z,y) =
1y (z,y) satisfies (*). Show that M is a monotone class.
(4) Prove (*) successively for the following cases: (a) f is a simple function
on R?; (b) f is a positive measurable function with f(X,Y) integrable; and
(c) the general case.

Problem IV-35. On a probability space (€2, A, P), consider an integrable
random variable X and a sub-o-algebra B of A, both independent of an-
other sub-o-algebra C of A. Prove that if D is the o-algebra generated by
BuC(, then

E[X|D] = E[X|B].
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METHOD. Prove the assertion first for square integrable X.

Problem IV-36. If X and Y are integrable random variables such that
E[X|Y] =Y and E[Y|X] = X, show that X =Y as.

METHOD. Show that, for fixed z,

(i) 0< / (X - Y)dP = (Y - X)dP,
Y<z<X z<X and z<Y

and conclude by symmetry that both sides of the equation are zero. Then
use Problem I-13.

Problem IV-37. Suppose that (€2, A, P) is a probability space, X and Y
are integrable random variables, and B is a sub-o-algebra of A such that
X is B-measurable.

(1) Show that E[Y|B] = X implies E[Y|X] = X.

(2) Show by a counterexample that E[Y|X] = X does not imply that
E[Y|B] = X.

REMARK. If {An}n>0 is a filtration of (2, A, P), {X.}n>0 a sequence

adapted to this filtration, and B,, the o-algebra generated by Xj,..., Xy,
then {Xn, Bn}n>0 is a martingale if {Xn, An}n>0 is. The converse is false.

Problem IV-38. Let (Yy,1,...,Y,) be an (n + 1)-tuple of real random
variables defined on a probability space (2,€, P). Let F denote the sub-
o-algebra of £ generated by (Y,(“'),...,Y,S“')) = f(w) and assume that
E(|Yo|) < oo.

(1) By applying Theorem IV-6.5.1 to f, show that there exists a Borel-
measurable function g : R — R such that

E[Yo|F] = gNh,Ya,...,Y,) P-almost everywhere.

(2) Assume that the distribution of (Yp,Y),...Y,) in R™*! is absolutely
continuous with respect to Lebesgue measure dyy, dy,,...,dy,, and let
d(yo, %, ---,yn) denote its density. Prove that

+00

E(VolF) = [K(V,Ya,..., Ya)]! / %o d(yo, Ya, . Ya)dyo,

—00

where K(y1,...,yn) = f_+:: d(%0, %1, - - - +Yn)dyo. Prove that if A is a Borel
subset of R, then

PlY; € A|F)

E(ly,ealB|
[K(Y], veey Yn)]—lLd(yO’ 1,...,Ya)dye.

(3) Assume that the distribution of (Yp,Y),...,Y,) in R™*! is Gaussian
(with the definition in IV-4.3.4, which implies that E(Y;) = 0 for j =
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0,...,n). Use the observation that if (X,Y;,...,Y;,) is Gaussian in R™*!,
then X is independent of (Y3,...,Yy) if and only if E(XY;) = 0 Vj =
1,...,n, to show that there exist real numbers A,, ..., A, such that E[Yp|F]
=MN +- + A Ya.

Problem IV-39. Let {X,} be a sequence of independent real random
variables with the same distribution and let F, be the o-algebra generated
by X1,...,Xn. Set Sy, = X1 +---+ X, for n > 0 and set Sp = 0. Which of
the following processes are martingales relative to the filtration {F,}3%4?
(1) Sn, if E(|X3]) < oo.

(2) X2 +---+ X2 —n), if E(X?) < 00 and ) is real.

(3) exp(aS, — n), if p(a) = E(exp(aX;)) < co and a and ) are real.

(4) Yo = |Smin(n.7)|» where T = inf{n > 0: S, = 0}, and we assume that
P[Xl = 1] = P[X] = —'1] = -;'.

Problem IV-40. Let 1;,...,Y,,... be independent real random variables
with the same distribution and such that E[|Y;|] < co. Set S, =Y, +---+
Yno
(1) Show that E[Yx|S,] = Sp/nif 1 <k < n.

(2) If m is fixed and Xy = Spy—/(m — k) for 0 < k < m — 1, show that
(Xo,- .., Xm-1) is a martingale. (Apply Problem IV-35.)

Problem IV-41. Let {X,}3%, be a sequence of independent random
variables with the same distribution defined by P[X, = k] = 27* for
k =1,2,.... Random variables Z,, are defined by letting Zy be a positive
constant and setting Z, = (3Z,-,)/2%" forn=1,2,....

(1) Prove that {Z,}32, is a martingale relative to the filtration {F,}3,,
where F, is the o-algebra generated by X,,..., Xn.

(2) Use the law of large numbers (see Problem IV-6) to prove that Z, — 0
almost surely as n — oo.

REMARK. This gives a heuristic confirmation of the following unproved
conjecture in number theory. If n is an odd positive integer, let f(n) =
(3n + 1)2-¥(3n+1) where 2v(37+1) denotes the greatest power of 2 that
divides the integer 3n + 1. The conjecture asserts that, for every n, there
exists an integer k such that the kth iterate of f satisfies f*)(n) = 1. If
n is very large, ¥(3n + 1) appears to behave like the variable X of the
problem, and {Z;}§2, like the sequence {fi(n)}52,.

Problem IV-42. Let H C L!(R, A, P), where (2, A, P) is a probability
space.

(1) If F is a positive function on (0, +00) such that F(z)/z is increasing
and — 400 as n — oo, and if

sup E(F|h) = M < oo,
heH

show that H is uniformly integrable.
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METHOD. Use Proposition IV-5.7.2.
(2) If H is a bounded subset of L?(2, A, P) with p > 1, show that H is
uniformly integrable.

Problem IV-43. Let {X;;}7_, be independent random variables with
values in N and with the same distribution. Assume that 0 < m = E(X,) <
oo and that a2 = E((X);; — m)?) < co. Consider the sequence of random
variables defined by

Zy 1
Zn+l 0 if Z" =0
Zn+l = Z,z;l Xi,u+1 if Zn > 0.

Fo is the o-algebra generated by {X; ;:1<i< o0, 1<j<n}
(1) Show that {Z, /m",F,}X, is a martingale.
(2) Show that E (22, ,/m?*"+1)) = E (Z2/m?") + 0% /m?"+!.
Conclude that, if m > 1, the martingale is regular. (Use Problem IV-42
and Theorem 1V-5.8.1.)

REMARK. {Z,}7%, is sometimes called the Galton-Watson process, and
serves as a model in genetics. (X ; is the number of offspring of the indi-
vidual i of the jth generation, which has total size Z;.)
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Problem V-1. Let E be the set of compactly supported C*° functions on
R, and let d and § be the operators on E defined by

(do)(z) = ¢'(z) and (6p)(z) = —¢'(z) + zp(2).
(1) Prove by induction on n that
d"6 — 6d™ = nd™.

(2) Let p be a norm on E. Let B be the algebra of operators on E which
are continuous with respect to this norm, that is the set of endomorphisms
a of E such that

lall = sup{p(a(y)) : p(¥) < 1}
is finite. Assume that d and § are in B. Use (1) to prove that, for alln > 1,

lind™="|| < 201" || id]| l16]].

(3) Deduce from (2) that d and é are never simultaneously continuous.
REMARK. This result is due to Aurel Wintner (1947).

Problem V-2, Let {H,}2%, be the sequence of Hermite polynomials de-
fined in V-1.3.
(1) Use Proposition V-1.3.4 io show that, for n > 1,

H,. +nH,_, =zH,.
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If H, = ﬁn? (compare with Problem IV-29), show that

~ -~ ~

Hpyr = n+ lHn+l - n+lHn-l-

(2) Conclude from (1) that the radius of convergence R(z) of Y oo %&Hn ()
is +00 for every complex number z.

METHOD. For (2), show that for every € > 0 there exist an integer N(¢) and
a sequence {:z:,.},j,";,\,(e)_l such that |H,| < z,, and z,4) = €z, + €25,

Problem V-3. Let {H,}32,, d, and § be defined as in V-1.3. For nonneg-
ative integers n, consider

Fu(z) = Hn(iz)(—1)".

Let A € C and define p by p =96 + Ad.
(1) For n > 1, prove that d*p = pd™ + nd®~! and F,4) = zF, + nF,_,.
(2) Prove by induction on n that

d+p)" =) _ CEkHy(p)d"*,

k=0

where CF denotes the binomial coefficient.
(3) If  is a polynomial and ¢ is real, let 7,(p)(z) = ¢(z + t). Prove that
(exp(td))(y) = Te(y) and that

t2
(exp (d+ () = (exp G expltolre) (o).

In particular, if A = 1 (that is, if p(¢)(z) = zy(z)), compute (exp t(d +
z)) ()

REMARK. The result of (2) is due to Viskov*; that of (3) is due to Ville.’

Problem V-4. Let X and Y be independent random variables with the
same distribution v, (dz) = exp(—z2/2)dz/v2x. Let g : R — [0, +00) be
a measurable function and let Z = X + Y /g(X). Assume that Z has a
normal distribution. Cantelli conjectured in 1917 that g is then constant
almost everywhere; this is still unproved in 1994.

(1) Let go = E(g(X)). For all real t, compute E(exp tZ) as a function of
go- Prove that exp(ag) € L%(1,) for all a > 0.

METHOD. Use the Cauchy-Schwarz inequality.
40. Viskov, Theory of Probability and Its Applications, Vol. 30, n. 1 (1984),

141-143.
%J. Ville, Comptes Rendus Acad. des Sc. 221 (1945), 529-539.
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(2) Let {gn}32, be the sequence of real numbers such that g(z) =
T2 0 9n Z22) in the L2(1) sense. By considering E(Z3) and E(Z*), show
that N = 0 and —292 21;"2 gn

(3) Prove that g(z) < go +1 a.lmost everywhere.

METHOD. If € > 0, let A, = {z : g(z) > € + go + 1}, and let a be a real
number such that A, = A, N [a, +00) has positive measure. Consider

/ expltz + g(g(:c) =1 - go)jni(dz).
Ae

Problem V-5. As usual, we denote by {Hy}n>0 the sequence of Hermite
polynomials and by v, the normal distribution on R. Let x be a probability
distribution on R? such that if (X,Y) has distribution g, then X and Y
have distribution »; and there exists a real sequence {Cy}n>0 With

E(H,,(X)|Y) = Can(Y)‘

(1) Prove that C, = E(H,(X)H,(Y)) and -1 < C, <1 for all n in N.
(2) Prove that if 3",., C? < +oo, then p is absolutely continuous with
respect to v)(dr)v,(dy) and its density is

fz9) = 3 2 Ha(e)Haly)

n>0

METHOD. For (2), write u(dz,dy) = v (dy)K (y, dz). Show that the func-
tion z — f(z,y) is in L?(1,) y-almost everywhere and that, for every
8eC,

/ exp(02)(f (z. Y (dz) — K(y,dz) =0 peaee.

Problem V-6. We keep the notation of Problem V-5 and denote by C
the set of probability measures 1 on R? described there. Let u be a fixed
element of C.

(l) Define {bn.k}OSkSn by

=" bnHi(2)

k=0
and let n
Po(y) = Y_ bnxCrHi(y)-
k=0
Show that [ z"K(y,dz) = P,(y) y-a.e. and that lim,_,o ¥~ Ppn(y) = Cn

(2) Let o(y, dt) be the image of K(y,dz) under the mapping z — z/y. For
6 € C, show that

+00
[ extonotua) = exp( 5 2) Zi Py Hils)

-0
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and

+oc K Ck
lim / exp(6t)o(y,dt) = ——|0k.
= J_o pard k!

(3) Show that the probability measure o(dt) = limy_., o(y, dt) exists and
that

C, = / o(dt).

From the fact that |C,;| < 1, conclude that o(R\ [-1,1]) = 0.

(4) Show that o is the unique probability measure on [-1,1] such that
Cu = [, tha(dt).

(5) Show that the mapping e — o, from C to the set of probability ineasures
on [-1,1], is a bijection. What is g when o is the Dirac measure at p?

METHOD. For (5), consider successively the cases where p = 1, p = —1,
and (using Problem V-5(2) and Mehler’s formula, V-1.5.8(ii)) p < 1.

REMARK. This phenomenon was observed by O. Sarmanov (1966) and
generalized by Tyan, Derin, and Thomas (1976).



Index

absolute continuity
of distributions,
247, 252
almost everywhere, convergence,
19
almost everywhere,
property true, 17
almost sure, 176
Askey functions, 276
Askey-Polya functions, 287
atoms, 26
atoms, of a probability space.
224

Banach limit, 269
Bernstein's inequality, 290
Bernstein's lemma, 148
Bessel's inequality, 111
beta distribution, 302
Bochner (theorem of), 255
Boolean algebra, 2
Boolean algebra,

abstract, 172
Boolean algebra,

of propositions, 172

Borel algebra, 3
Borel set, 3

Calderon’s theorem, 163
Cameron-Martin theorem, 237
Cauchy-Schwarz inequality, 271
change of variables

(for integrals in R"),

84
characters, 106
Chernoff’s inequality, 310
compactification,

Alexandroff, 95
completion

of a measure space,

17
conditional probability, 188, 227
convergence,

almost everywhere, 19
convergence, almost sure, 181
convergence, in distribution, 181
convergence, in mean, 181
convergence, in measure, 23
convergence, in probability, 181
convergence, narrow, 98



320 Index

convergence, pointwise,
of measurable
mappings, 11
convergence, vague, 97
convergence, weak, 97
convexity (inequalities), for
integrals, Jensen, 189
convexity inequalities, for
integrals, Holder, 49
convexity inequalities, for
integrals, Jensen’s, 48
convexity inequalities, for
integrals, Minkowski's,
50
convexity inequalities, for
measures, 14
convolution, in L!, 110
convolution, in L?, 114
convolution, of measures, 104
countable additivity, 13
covariance, 202
covariance matrix, 249

differentiation of measures, 219
differentiation
under the integral sign,
40
differentiation,
in the vector sense, 135
differentiation,
in the weak sense, 138
dilations and the Fourier
integral, 127
Dirac measure, 93
distribution
of a random variable,
179
distributions tempered, 149
divergence operator 8, 240
Doob’s maximal inequality, 212
dual group, 107
duality between L? spaces, 52
duality of the L? spaces, 223
Dynkin’s theorem, 178

Egoroff’s theorem, 20

elliptic differential operator, 168
Etemadi’s method, 300
exhaustion principle, 15
expectation, conditional, 184
expectation, mathematical, 179

Fatou (theorem on a.s.
convergence of
martingales), 215

Fatou's lemma, 38

Fatou-Beppo Levi theorem, 34

Ferguson’s theorem, 289

filter, 174

filtration, 207

Fourier analysis on M(Q), 107

Fourier inversion formula, for R,
129

Fonrier inversion formula, for T,
123

Fourier transform, on S'(R"),
153

Fourier transforin, on S(R"),
150

Fourier transform, on L!, 111

Fourier transform, on L2(R"),
132

Fubini-Lebesgue theorem, 44

function, Borel, 10

function, maximal, 211

function, measurable, 10

function, of positive type, 253

function, simple, 25

functions, characteristic, 198

Galton-Watson process, 314

gamma distribution, 301

Gauss’s inequality, 276

Gaussian distribution, 206

Gaussian probability space, 230

Gaussian Sobolev spaces on R,
239

Gaussian Sobolev spaces, on
RN, 244

group algebra, 103



group, abelian, 102
group, dual of T", 119

Holder’s inequality, 49
Hermite polynomials, 231
Herz’s counterexample, 289
Hilbert transform, 294

image, direct, 176
image, inverse, 177
independence, of o-algebras , 190
independence,

of random variables,

191
inequality, Bessel's, 111
inequality, Cauchy-Schwarz, 271
inequality, Holder’s, 49
inequality, Jensen’s, 48
inequality, maximal, 212
inequality, Minkowski’s, 50
integrability criteria, 35
integrability, uniform, 216
integral, depending

on a parameter, 39
integral, of Lebesgue on R, 79
integral, of simple functions, 29
isotropy, 306

Jacobian (and the image of a
measure), 283

Jensen’s inequality, 48

Jensen, inequality of, 189

Lévy's theorem, 199

Laplace transform, 281

large deviations, 300

Lebesgue, dominated
convergence theorem,
37

Lebesgue, theorem on series, 34

Lebesgue, theorem on the
Fourier integral, 127

limit of a monotone sequence
of sets, 3

Lindeberg’s theorem, 309

Index 321

Lusin’s criterion, 69
Lusin’s theorem, 77

martingale, L!, 214
martingale, L2, 208
martingale, axioms, 207
martingale, final value of a, 213
martingale, regular, 213
measurability criterion, 9
measurable mappings, 7
measure(s), axioms, 13
measure(s), complex, 93
measure(s), Dirac, 93
measure(s), discrete, 93
measure(s), product, 41
measure(s), Radon, 76
measure(s), regular, 76
measure(s), signed, 90
measure, Borel, 61
measure, locally finite, 61
measure, Radon, 71, 75
Minkowski's inequality, 50
Minlos’s lemma, 308
monotone class, 4

negligible, 16

operator, pseudo-differential, 156

operator, translation, 112

operator, unitary, 256

Ornstein-Uhlenbeck operator,
245

Ornstein-Uhlenbeck operator L,
233

Ornstein-Uhlenbeck semigroup,
234

Parseval’s lemma, 134

partition of unity, continuous, 60

partition of unity, differentiable,
141

Plancherel’s theorem, 122, 132,
134

Poincaré’s lemma, 305

Poisson kernel, 120
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Poisson’s formula, 291
probability, measure, 176
probability, space, 176

quasi-invariance, 238

Radon-Nikodym theorem, 220

Radon-Riesz theorem, 61

random variable, 179

random variable, centered, 202

rectangle, 5

regularity of Borel measures, 76

reversing the order of integration,
43

Schoenberg’s theorem, 306
Schwartz's theorein, 150, 153
section of a measurable set, 42
separability
of a topological space, 8
separability,
of a probability space,
219
Sobolev spaces, of integer order,
142
Sobolev spaces, of negative
order, 154
Sobolev spaces, of positive order,
143
space, complete measure, 17
space, Gaussian probability, 230
space, measurable, 7
space, measure, 13
space, separable measure, 219
spaces, LP, 47
spectral analysis, Hilbert, 253

spectral analysis, of Fourier, 107

spectral decomposition
of a unitary operator,
257

spectral synthesis, on R", 133

spectral synthesis, on T, 121,
125

stochastic calculus of variations,
230

Stone’s theorem, 174

stopping time, 210

Stroock (Taylor-Stroock
formula), 236

subordinate cover, 58

support, of a convolution
product, 106

support, of a function, 57

support, of a Radon measure, 94

symbol, of a differential operator,
157

symbol, of a pseudo-differential
operator, 159

Taylor-Stroock formula, 236
torus, 102

trace theorem, 146
truncation operator, 32

ultrafilter, 174
Urysohn’s lemina, 57

Von Neumann’s method, 299

Weyl'’s inequality, 295
Wiener algebra, 130
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