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Preface

Operator theory is a diverse area of mathematics which derives its impetus
and motivation from several sources. It began as did practically all of modern
analysis with the study of integral equations at the end of the last century.
It now includes the study of operators and collections of operators arising in
various branches of physics and mechanics as well as other parts of math-
ematics and indeed is sufficiently well developed to have a logic of its own.
The appearance of several monographs on recent studies in operator theory
testifies both to its vigor and breadth.

The intention of this book is to discuss certain advanced topics in operator
theory and to provide the necessary background for them assuming only
the standard senior—first year graduate courses in general topology, measure
theory, and algebra. There is no attempt at completeness and many
“elementary” topics are either omitted or mentioned only in the problems.
The intention is rather to obtain the main results as quickly as possible.

The book begins with a chapter presenting the basic results in the theory
of Banach spaces along with many relevant examples. The second chapter
concerns the elementary theory of commutative Banach algebras since these
techniques are essential for the approach to operator theory presented in the
later chapters. Then after a short chapter on the geometry of Hilbert space,
the study of operator theory begins in earnest. In the fourth chapter operators
on Hilbert space are studied and a rather sophisticated version of the spectral
theorem is obtained. The notion of a C*-algebra is introduced and used
throughout the last half of this chapter. The study of compact operators and
Fredholm operators is taken up in the fifth chapter along with certain ancillary
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Xxii Preface

results concerning ideals in C*-algebras. The approach here is a bit un-
orthodox but is suggested by modern developments.

The last two chapters are of a slightly different character and present a
systematic development including recent research of the theory of Toeplitz
operators. This latter class of operators has attracted the attention of several
mathematicians recently and occurs in several rather diverse contexts.

In the sixth chapter certain topics from the theory of Hardy spaces are
developed. The selection is dictated by needs of the last chapter and proofs
are based on the techniques obtained earlier in the book. The study of Toeplitz
operators 1s taken up 1n the seventh chapter. Most of what i1s known in the
scalar case is presented including Widom’s result on the connectedness of
the spectrum.

At the end of each chapter there are source notes which suggest additional
reading along with giving some comments on who proved what and when.
Although a reasonable attempt has been made in the latter chapters at citing
the appropriate source for important results, omissions have undoubtedly
occurred. Moreover, the absence of a reference should not be construed to
mean the result 1s due to the author.

In addition, following each chapter is a large number of problems of
varying difficulty. The purposes of these are many: to allow the reader to test
his understanding; to indicate certain extensions of the theory which are now
accessible; to alert the reader to certain important and related results of
which he should be aware along with a hint or a reference for the proof; and
to point out certain questions for which the answer is not known. These latter
questions are indicated by a double asterisk; a single asterisk indicates a
difficult problem.
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1 Banach Spaces

1.1 We begin by introducing the most representative example of a Banach
space. Let X be a compact Hausdorff space and let C(X) denote the set of
continuous complex-valued functions on X. For f; and /£, in C(X) and 4
a complex number, we define:

(1) (/i-

-f2)(X) = f1(%)-

-f2(%);

(2) (Af;)(x) = 4f1(x); and
(3) (/1. /2)) = f1(x) f2(x).

With these operations C(X) is a commutative algebra with identity over the
complex field C.

Each function fin C(X) is bounded, since it follows from the fact that fis
continuous and X is compact that the range of fis a compact subset of C.
Thus the least upper bound of | f| is finite; we call this number the norm of
f and denote it by

|/ lle; = sup{lf(x)]: xe X}.

The following properties of the norm are easily verified:

(D) |fllo =0 if and only if f=0;
@ M)e =14 [/l
B f+gle < |

@ 1fgle < [flelgl

flotgle; and



2 1 Banach Spaces

We define a metric p on C(X) by p(f,9) = || f—9g| .. The properties of
a metric, namely,

(1) p(f,g)=0ifand only if f=g,
(2) p(f.9) = p(g9.f), and
3) p(f, ) < p(/,9) +p(g,h),

follow immediately from properties (1)-(3) of the norm. It is easily seen that
convergence with respect to the metric p is just uniform convergence. An
important property of this metric is that C(X) is complete with respect to it.

1.2 Proposition If X'is a compact Hausdorff space, then C(X) is a complete
metric space.

Proof 1f {f,}, is a Cauchy sequence, then
| £ () = £ < | fi —Fulw = P S

for each x in X. Hence, {f,(x)}>2, 1s a Cauchy sequence of complex numbers

for each x in X, so we may define f(x) = lim, ., f,(x). We need to show

that fis in C(X) and that lim,.. ., [|/—/.|, = 0- To that end, given ¢ > O,

choose N such that n,m > N implies || f,—f.|l.. < &. For x, in X there exists

a neighborhood U of x, such that | fy(x,) —fy(x)| < & for x in U. Therefore,
| f(x0) = f()| < lim | £,(x0) — fy(x0)| + | f(X0) — S (X)]

n—>od

+ lim | fy(x) — £, ()|

n— oo

< 3¢

which implies f is continuous. Further, for » > N and x in X, we have

[ £o(x) = fX)| = | fu(®) = lim f,(x)| = lim |£,(x) —fu(x)]

> o) ni—» 05

< limsup |, ~ £yl < &

ni—» 00

Thus, lim,_, ., | f,—f|l.. = 0 and hence C(X) is complete.

We next define the notion of Banach space which abstracts the salient
properties of the preceding example. We shall see later in this chapter that
every Banach space is isomorphic to a subspace of some C(X).

1.3 Definition A Banach space is a complex linear space 4 with a norm
| || satisfying
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(D) |f|l =0 if and only if f= 0,
@ Al =12 If|l for Ain C and fin Z, and
A If+gl <|fl+g] for fand g in Z,

such that 4 is complete in the metric given by this norm.

1.4 Proposition Let & be a Banach space. The functions
a: X XX - Z defined a(f,g) =f+g,
s: CxXZ - & defined s(4,f) = 4, and
n: X - R" defined n(f) = | f||

are continuous.

Proof Obwvious. i

1.5 Directed Sets and Nets The topology of a metric space can be described
in terms of the sequences in 1t that converge. For more general topological
spaces a notion of generalized sequence is necessary. In what follows it will
often be convenient to describe a topology in terms of its convergent general-
ized sequences. Thus we proceed to review for the reader the notion of net.

A directed set A is a partially ordered set having the property that for each
pair o and f in A there exists yin 4 such that y> o and y > . A net is a
function « —» 4, on a directed set. If the 4, all lie in a topological space X,
then the net is said to converge to 4 in X if for each neighborhood U of 4
there exists oy in A4 such that 4, is in U for o > a. Two topologies on a space
X coincide if they have the same convergent nets. Lastly, a topology can be
defined on X by prescribing the convergent nets. For further information
concerning nets and subnets, the reader should consult [71].

We now consider the convergence of Cauchy nets in a Banach space.

1.6 Definition A net {f,},., in a Banach space X is said to be a Cauchy
net if for every ¢ > 0, there exists a, in A such that o,,0, = o, mmplies

“f:n _fl;f.?,“ <E.

1.7 Proposition In a Banach space each Cauchy net i1s convergent.

Proof Let {f,}..4 be a Cauchy net in the Banach space . Choose o,
such that « > o, implies ||f,—f,,| < 1. Having chosen {o;};_; In A, choose
O+ 1 = &, such that a > o, , implies

1

| fe—fos ]l < ek
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The sequence {f, }.—1 1S clearly Cauchy and, since & is complete, there

n=1

exists fin 4 such that lim,,_, ., f, = 1.
It remains to prove that im,., f, =/ Given ¢ > 0, choose »n such that

1/n <¢/2 and ||f, —f| < ¢/2. Then for o = o, we have
|[fi=fl < e Sl + e, —fl < Un+e2<e W

We next consider a general notion of summability in a Banach space
which will be used in Chapter 3.

1.8 Definition Let {f,}, ., be a set of vectors in the Banach space . Let
F ={FcA:.F finite}. If we define F; < F, for Fy c F,, then & is a

directed set. For each Fin &, let g =Y, .rf,- If the net {gg}r.s converges
to some g in &, then the sum ) ,_, f, 1s said to converge and we write

g = ZmEAf;r.'

1.9 Proposition If {f,}, ., 1s a set of vectors in the Banach space & such
that 3,4 | /.| converges in R, then ¥, . , f, converges in Z.

Proof It suffices to show, in the notation of Definition 1.8, that the net
{gr}reg 18 Cauchy. Since Y, || /.|| converges, for € > 0, there exists F,, in
Z such that F > F, implies

2Ll = 2146 <.

aceF aeFg

Thus for F;, F, = F, we have

“gﬂ _ng” = | Z Ja— Z IA|

aeFy ack;

=1 ) fi— ) /fl
GEF:[\FZ lIEFz\Fi

< ) e+ X Al
aeF\F; aeF\Fy

< 2 A= 2 Ifl <.
GEF;[UFz GEF(}

Therefore, {gp}r.# 1s Cauchy and 3, _, f, converges by definition. i

We now state an elementary criterion for a normed linear space (that s,
a complex linear space with a norm satisfying (1)-(3) of Definition 1.3) to be
complete and hence a Banach space. This will prove very useful in verifying
that various examples are Banach spaces.



The Conjugate Space of Continuous Linear Functionals 5§

1.10 Corollary A normed linear space 4 is a Banach space if and only if
for every sequence {f,};=; of vectors in & the condition Y22, l£,] < oo
implies the convergence of X 2 ; f,.

Proof I & 1s a Banach space, then the conclusion follows from the
preceding proposition. Therefore, assume that {g,},%; is a Cauchy sequence
in a normed linear space & in which the series hypothesis is valid. Then we
may choose a subsequence {g, }r=; such that ;2 {g, . —g.[ < oo as
follows: Choose n; such that for i,j>#n, we have |g;—g;]| < 1; having
chosen {r};~; choose ny, ; > nysuch thati,j > ny, ; implies [g;—g;| < 27¥.
If we set f, =g, —G,_, for k>1 and f; =g, , then 32, [fill < oo, and
the hypothesis implies that the series D ;= f, converges. It follows from the
definition of convergence that the sequence {g, };=, converges in Z and
hence so also does {g,} % ;- Thus & 1s complete and hence a Banach space. i

In the study of linear spaces the notion of a linear functional is extremely
important. The collection of linear functionals defined on a given linear space
is 1tself a linear space and this duality 1s a powerful tool for studying either
space. In the study of Banach spaces the corresponding notion is that of a
continuous linear functional. '

1.11 Definition Let 2 be a Banach space. A function ¢ from % to Cis a
bounded linear functional if*:

(D) o1 fi +2213) = 4 o(f1) + A4, 0(f2) for fi,f, in & and 44,4, in C;
and

(2) There exists M such that [@(f)| < M| f| for every fin &.

1.12  Proposition Let ¢ be a linear functional on the Banach space . The
following statements are equivalent:

(1) ¢ 1s bounded;
(2) @ 1s continuous;
(3) ¢ 1s continuous at 0.

Proof (1) implies (2). If {f,},c4 IS 2 net iIn & converging to f, then
limaEA “ﬁx_f” = 0. Hence,

lim (/) — (/)] = lmle(f,—/)] < lmM|f,—f] =0,

oEA acA acA

which implies that the net {¢ (f,)},. 4 cOnverges to ¢ (f). Thus ¢ is continuous.
(2) mplies (3). Obvious.
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(3) implies (1). If ¢ is continuous at 0, then there exists 6 > 0 such that
||| < & implies |¢ (f)| < 1. Hence, for any nonzero g in X we have

2| gl ( 6 ) 2
9)| = 79 )| < 19l
9@ = =5~ 1o\ 7741 s 19l

and thus ¢ is bounded.

We next define a norm on the space of bounded linear functionals which
makes it into a Banach space.

1.13 Definition Let 2 * be the set of bounded linear functionals on the Banach
space . For ¢ in Z&'*, let
(N

ol = S“p{ /]

Then 4* is said to be the conjugate or dual space of Z.

L f# 0}-

1.14 Proposition The conjugate space £* is a Banach space.

Proof That Z'* i1s a linear space is obvious, as are properties (1) and (2)
for the norm. To prove (3) we compute

‘(091 +€92)(f)‘ — sup ‘@91“) + @2(f)‘

|1+ ¢, = sup S
TR e | £ ££0 | /]
o ()] |, ()]
< sup + sup
“rzo fl O o IS
= [|@[| + [|¢-].

Finally, we must show that Z* is complete. Thus, suppose {¢,}>, isa Cauchy
sequence in 2'*. For each fin % we have |¢,(f)—¢,,()| < |ea—@nl | £ so
that the sequence of complex numbers {¢, ()}, is Cauchy for each fin Z.
Hence, we can define ¢ (f) = lim,_, , ¢, (f). The linearity of ¢ follows from
the corresponding linearity of the functionals ¢_. Further, if N 1s chosen so
that n, m > N implies | ¢,— ¢, | < 1, then for fin & we have

o (N)] < lo(f) —en(H + |on ()
< lim |@,(f) — oxn (O] + |on ()]

H— 00

< limsup |, — x| £ + |onll [£]]

Fi— OO

< I+ foxD 1A
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Thus ¢ is in £* and it remains only to show that lim,_, . |¢—¢,| = 0. Given
¢ > 0, choose N such that n,m > N implies |¢,— @,/ <e&. Then for fin &
and m,n > N, we have

(o— 0.)(N| < [(9—0 )] + [(@m— )N < [(@—0.)(N] + €| f]-

Since lim,,_, . [(¢—¢,)(f)| =0, we have |¢— ¢, <& Thus the sequence
{2, converges to ¢ and Z* is complete. i

The reader should compare the preceding proof to that of Proposition 1.2.
We now want to consider some further examples of Banach spaces and
to compute their respective conjugate spaces.

1.15 Examples Let /®(Z") denote the collection of all bounded complex
functions on the nonnegative integers Z . Define addition and multiplication
pointwise and set |f||., =sup{|f(®)|:neZ"}. It is not difficult to verify
that /*(Z™) is a Banach space with respect to this norm, and this will be left
as an exercise. Further, the collection of all functions fin /*(Z™) such that
lim,, . f(n) =0 is a closed subspace of /®(Z™) and hence a Banach space;
we denote this space by ¢, (Z™).

In addition, let /' (Z") denote the collection of all complex functions ¢
on Z" such that 3% | (n)| < 0. Define addition and scalar multiplication
pointwise and set | ¢l, = X..—o |@(n)|. Again we leave as an exercise the task
of showing that /! (Z™) is a Banach space for this norm.

We consider now the problem of identifying conjugate spaces and we
begin with ¢, (Z*). For ¢ in /' (Z*) we define the functional ¢ on ¢,(Z™)
such that ¢(f) = 32 o @@)f(n) for fin ¢,(Z™); the latter sum converges,
since

(] = | 3 o)) < ¥ lo@)] 11

< Ifle X lo@) = Wl ol

Moreover, since ¢ is obviously linear, this latter inequality shows that ¢ 1s
in ¢,(Z)* and that |¢|, = ||¢|, where the latter is the norm of ¢ as an
element of cy(Z*)*. Thus the map o(p) = ¢ from I'(Z") to ¢o(Z™)* is well
defined and is a contraction. We want to show that « is 1sometric and onto
co(Z1)*.

To that end let L be an element of ¢,(Z")* and define the function ¢
on Z* so that ¢ (n) = L(e,) for nin Z*, where e, is the element of ¢, (Z™)
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defined to be 1 at » and 0 otherwise. We want to show that ¢; = L, and that
locl: < |L|. For each N in Z" consider the element

L(e)
In = Z )]~

of ¢,(Z"), where 0/0 is taken to be 0. Then | fyl., <1 and an easy com-
putation yields

L(e) N N

L L L(e, I(e)| = n)|;

L] > 1L = Z T L n;ﬂl e = ¥ louto)

hence ¢ is in /'(Z") and |¢.|, < |L|. Thus the map B(L)= ¢, from
co(Z)* to ' (Z™) is also well defined and contractive. Moreover, let L be in
co(Z*)* and g be in ¢, (Z7); then

lim |g — Z g e,| o, =

N oD

and hence we have

L(g) = lm {Z g(ﬂ)L(e,,)} = lim {Z g(n) @L(n)}

N> 0D N 00

= 3. 9 9.0 = 4u(9)

Therefore, the composition oo f is the identity on ¢y (Z*)*. Lastly, since
¢ = 0 implies ¢ = 0, we have that « is one-to-one. Thus « is an isometrical
isomorphism of /' (Z™*) onto cy(Z)*.
Consider now the problem of identifying the conjugate space of /' (Z™).
For fin I®(Z*) we can define an element f of /1(Z*)* as follows: f(¢) =
. f() o(n). We leave as an exercise the verification that this identifies
1Y (Z*)* as [°(Z).

1.16 We return now to considering abstract Banach spaces. If a sequence of
bounded linear functionals {¢,}2 , in £* converges in norm to ¢, then it
must also converge pointwise, that is, lim,,, ., ¢,(f) = ¢(f) for each fin Z.
The following example shows that the converse is not true.

For k in Z* and fin [*(Z") define L, (f) = f(k). Then L, is in [ (Z")*
and | L,| = 1 for each k. Moreover, lim,_, , L, (f) = O for each fin I'(Z™).
Thus, the sequence {I,}>, converges “pointwise” to the zero functional O
but |L,—0| =1 for each k in Z*.
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Thus, pointwise convergence in &* is, in general, weaker than norm
convergence; that is, it is easier for a sequence to converge pointwise than it
is for it to converge in the norm. Since the notion of pointwise convergence
is a natural one, we might expect it to be useful in the study of Banach spaces.
That is indeed correct and we shall define the topology of pointwise con-
vergence after recalling a few facts about weak topologies.

1.17 Weak Topologies Let X be a set, Y be a topological space, and & be
a family of functions from X into Y. The weak topology on X induced by
Z is the weakest or smallest topology  on X for which each function in &
is continuous. Thus & is the topology generated by the sets { f~(U) : fe &,
U openin Y}. Convergence of nets in this topology is completely characterized
by lim, ., x, = x if and only if lim, . 4 f(x,) = f(x) for every fin &. Thus
is the topology of pointwise convergence.

If Yis Hausdorff and % separates the points of X, then the weak topology
is Hausdorff.

1.18 Definition For each fin & let f denote the function on &* defined
(@) = o(f). The w*-topology on Z* is the weak topology on Z* induced
by the family of functions {f: fe &}.

1.19 Proposition The w*-topology on Z&* is Hausdorfl.

Proof It ¢, # @,, then there exists f in & such that ¢, (f) # ¢, (f).
Hence, f(¢,) # f(¢,) so that the functions {f: fe %} separate the points
of &*. The proposition now follows from the remark at the end of Section

1.17. W

We point out that the w*-topology is not, in general, metrizable (see
Problem 1.13). Next we record the following easy proposttion for reference.

1.20 Proposition A net {¢,},c4 In Z¥* converges to ¢ in £* in the w*-
topology if and only if lim,. , ¢,(f) = ¢(f) for every fin & .

The following shows that the w*-topology is determined on bounded
subsets of Z'* by a dense subset of & and this fact will be used in subsequent
chapters.

1.21 Proposition Suppose .# is a dense subset of & and {@,},ca 1S a
uniformly bounded net in Z&* such that lim,_, ¢.(f) = @(f) for fin A.
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Then the net {¢,}.. « CONvVerges to ¢ in the w*-topology.

Proof Given g in & and ¢ > 0, choose fin .# such that ||f—g| < &/3M,
where M = sup{| ¢, [¢.| : @ € A}. If o is chosen such that a > o, implies
|0 (F)— ()| < €/3, then for o > &y, we have

10.(9)— (9] < |90.(9)— (N + (=) + |o()—(9)]
< |l@all | f—gll + &3+ o] |f~9g] < e

Thus {¢,},. , cOnverges to ¢ in the w*-topology. I

1.22 Definition The unit ball of a Banach space % istheset {fe X : | f|| <1}
and is denoted (%), .

1.23 Theorem (Alaoglu) The unit ball (2'*), of the dual of a Banach space
is compact in the w*-topology.

Proof The proof is accomplished by identifying (Z'*), with a closed sub-
set of a large product space the compactness of which follows from Tychonoff’s
theorem (see [71]).

For each fin (%), let C,’ denote a copy of the closed unit disk in C and
let P denote the product space X (s, C;’- By Tychonoff’s theorem P is
compact. Define A from (Z%*), to P by A(¢) = ¢ |(%Z), - Since A(¢,) = Alp,)
implies that the restrictions of ¢, and ¢, to the unit ball of 4 are identical,
it follows that A is one-to-one. Further, a net {¢,},. 4 In Z* converges in the
w*-topology to a ¢ in &* if and only if lim,_, ¢, (f) = ¢(f) for fin & if
and only if lim, . s 0, (f) = @(/f) for fin (%), if and only if lim, . , A(¢)(f) =
A(@)(f) for fin (&), . This latter statement is equivalent to lim,,_ , A(p,) = A(e)
in the topology of P. Thus, A is a homeomorphism between (Z'*), and the
subset A[(Z'*),] of P.

We complete the proof by showing that A[(Z¥*),] 1s closed in P. Suppose
{A(0)}yc 4 18 @ net In A[(Z¥%),] that converges in the product topology to
Y in P.If £, g, and f+ g are in (%4),, then

Y (f+g) = ImA(¢,)(f+g) = limA(e,)(f) + lim A(¢,)(g)

ae A ae A acA

= Y (f) + ¥ (9)-
Further, if fand Af are in (%), , then

V(4) = im A(@)(4) = lim g, (4f) = Alim o, (f) = W (/)

acA acA aeA
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Hence ¥ determines an element { of (2*), by the relationship

v = 1A

for fin &. Since Y (f) = ¥ (f) for fin (%), , we see not only that i} is in (Z'*),
but, in addition, AQ)) = . Thus A[(¥*),] is a closed subset of P, and
therefore (%), 1s compact in the w*-topology. i}

The importance of the preceding theorem lies in the fact that compact
spaces possess many pleasant properties. We shall also use it to show that
every Banach space is isomorphic to a subspace of some C(X). Before doing
this we need 10 know something about how many continuous linear functionals
there are on a Banach space. This and more 1s contained in the Hahn-Banach
theorem. Although we are only interested in Banach spaces in this chapter,
it is more illuminating to state and prove the Hahn-Banach theorem in
slightly greater generality. To do this we need the following definition.

1.24 Definition Let & be a real Iinear space and p be a real-valued function
defined on &. Then p is said to be a sublinear functional on & if p(f+g) <

p(N+p(g) for fand g in & and p(Af) = Ap(f) for f in & and positive A.

1.25 Theorem (Hahn-Banach) Let & be a real linear space and let p be a
sublinear functional on &. Let & be a subspace of & and ¢ be a real linear
functional on & such that ¢(f) < p(f) for fin . Then there exists a real
linear functional ® on & such that ®(f) = ¢ (f) for fin &F and D(g) < p(g)

for g in €.

Proof We may assume without loss of generality that & # {0}. Take f
notin & and let 4 = {g+Af: 1€ R, g F}. We first extend ¢ to ¢ and to
do this it suffices to define ®(f) appropriately. We want ®(g+ Af) < p(g+4f)
for all Ain Rand g in &. Dividing by |4) this can be written @ (f—h) < p(f—h)
and ®(—f+h) < p(—f+h) for all h in & or equivalently,

—p(=f+h)+ ¢oh) < O(f) < p(f—h) + ¢(h)
for all # in &#. Thus a value can be chosen for ®(f) such that the resultant
® on ¢ has the required properties if and only if

sup{—p(—f+h) + o)} < inf {p(f— k) + ¢k)}.

hes KEZF

However, for h and & in %, we have

oh) — k) = oth—k) < pth—k) < p(f—k)+ plh— 1),
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so that
—ph—)+ oM < p(f— k) + k).

Therefore, ¢ can be extended to ©® on ¥ such that ®(h) < p(h) for  in &.

Our problem now is to somehow obtain a maximal extension of ¢. To that
end let 2 denote the class of extensions of ¢ to larger subspaces satisfying the
required inequality. Hence an element of £ consists of a subspace ¢ of &
which contains & and a linear functional ®4 on % which extends ¢ and
satisfies Oy (g) < p(g) for g in 4. There is a natural partial order defined on
P, where (91, Dy,) < (¥,,P,) if 4, = 9, and @y, () = O, (f) for fin %,.
To apply Zorn’s lemma to the'class &2, we must show that for every chain
{(%,, Dy )}eca in P there 1s a maximal element in 2. (Recall that a chain is
just a linearly ordered set.) If {(%4,,®y )}scqisachainin Z, let 9= J,.4 %,
and define ® on % by @ (f) = @4 (f), where f1sin ,. It is easily verified that
% is a subspace of & which contains & ; that ® is well defined, linear, and
satisfies O (f) < p(f) for fin ¢; and that (%, Dy ) < (%, D) for each o in A.
Thus the chain has a maximal element in & and Zorn’s lemma implies that
2 itself has a maximal element (¢4,, ®,). If 4, were not &, then the argument
of the preceding paragraph would yield a strictly greater element in 2 which
would contradict the maximality of (¥4, ®y,). Thus ¥, = & and we have the
desired extension of o to &. W

The form of this result which we need in this chapter is the following.

1.26 Theorem (Hahn-Banach) Let.# be a subspace of the Banach space .
If ¢ is a bounded linear functional on .#, then there exists ® in Z* such that

®(f) = ¢(f) for fin 4 and | @] = |¢].

Proof If we consider & as the real linear space &, then the norm is a
sublinear functional on € and ¢ = Reg is a real linear functional on the
real subspace .. It is evident that || < | ¢|. Setting p(f) = ||o| | £ we
have ¥ (f) < p(f) and hence from the preceding theorem we obtain a real
linear functional ¥ on & that extends i and satisfies ¥ (f) < |o| | f|| for
fin Z. If we now define ® on & by ®(f) = ¥ (f)—i¥(if), then we want to
show that @ is a bounded complex linear functional on & that extends ¢ and
has norm |¢|.

For fand g in &, we have

O(f+g) = ¥(f+g) — '¥{(f+9))
= Y(f)+ ¥Y(g) —i¥(f) —i¥(ig)
= @(f) + @(g).
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Further, if 4; and 4, are real and fis in &, then ®@{f) =Y (@) —i¥Y(—f) =
i®(f) and hence
O((A; +id)f) = ©(4 ) + @4, f) = 4, ©(f) + ik, ©(f)
= (A4 +id) @ (f).
Thus, ® is a complex linear functional on Z. Moreover, for fin .# we have
O(f) =Y()—i¥Y(@) =¢(f) — i) = Reo(f) —iReo(if)
= Re¢(f) — iRe(ip(f)) = Reo(f) — i(—Imo(f)) = ¢ (f).
Lastly, to prove |[®] = [|¥] it suffices to show that |®| < |¥| in view of
the fact that || = ||| and @ is an extension of ¢. For fin & write ®(f) =
re'®. Then
@) = r = eHO(f) = BePf) = (e )
< [ NI < 1A,

so that @ has been shown to be an extension of ¢ to & having the same
norm. W

1.27 Corollary If fis an element of a Banach space &, then there exists ¢
in &* of unit norm so that o(f) = |f|-

Proof We may assume f# 0. Let # = {Af: A< C} and define y» on .#
by Y (Af) = | f|. Then [¢y| =1 and an extension of ¢ to & given by the
Hahn-Banach theorem has the desired properties. i

1.28 Corollary 1If ¢(f) =0 for each ¢ in &%, then f= 0.

Proof Obvious.

We give two applications of the Hahn-Banach theorem. First we prove
a theorem of Banach showing that C(X) is a universal Banach space and then
we determine the conjugate space of the Banach space C([0, 1]).

1.29 Theorem (Banach) Every Banach space & is isometrically isomorphic
to a closed subspace of C(X) for some compact Hausdorff space X.

Proof Let X be (Z*),; with the w*-topology and define f from & to
C(X) by (Bf)(¢) = o(f). For f; and f, in & and A, and 4, in C, we have

PAifi + 2 £)(0) = oAy fi + A2 12) = 41 0(f1) + A2 0(f2)
= A; B(f o) + 4, B(f2)(9).
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and thus f is a linear map. Further, for fin & we have
1B = sup [BU(@)| = sup [o(N] < sup [of [£] < lf],
0e(L®), 0E(T*), P (X

and since by Corollary 1.27 there exists ¢ in (Z'*); such that ¢ (f) = | f|,
we have that |f()| ., = [|f||- Thus B is an isometrical isomorphism. i

The preceding construction never yields an isomorphism of & onto
C((Z*),) even if & is C(Y) for some Y. If Z is separable, then topological
arguments can be used to show that X can be taken to be the closed unit
interval.

Although this theorem can be viewed as a structure theorem for Banach
spaces, the absence of a canonical X associated with each & vitiates its
usefulness.

1.30 We now consider the problem of identifying the conjugate space of
C([0, 1]). By this we mean finding some concrete realization of the elements
of C([0, 1])* analogous with the identification obtained in Section 1.15 of the
conjugate space of /1(Z™") as the space [*(Z™) of bounded complex functions
on Z*. We shall identify C([0, 11)* with a space of functions of bounded
variation on [0, 1]. We shall comment on C(X)* for general X later in the
chapter. We begin by recalling a definition.

1.31 Definition If ¢ 1s a complex function on [0, 1], then ¢ 1s said to be of
bounded variation if there exists M >0 such that for every partition
O=t, <t < - <t,<t,,, =1, 1tis true that

golcﬂ(tm)— o(t)| < M.

The greatest lower bound of the set of all such M will be denoted by |¢|,-

An important property of a function of bounded variation is that it
possesses limits from both the right and the left at all points of [0, 1].

1.32 Proposition A function of bounded variation possesses a limit from
the left and right at each point.

Proof Let ¢ be a function on [0, 1] not having a limit from the left at
some ¢ in (0, 1]; we shall show that ¢ is not of bounded varijation on [0, 1].
If ¢ does not have a limit from the left at ¢, then for some ¢ > 0, it 1s true
that for each 6 > 0 there exist s and s’ in [0, 1] such that r—d < s < s’ <t and
|o(s)—@(s")| =& Thus we can choose inductively sequences {s,},~, and
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{s,},>, such that O0<s;<sy'<--<5,<s,”<t and |o(s)—o(s,)| =

Now consider the partition ¢, =0; #,,,.; =8, for k=0,1,...,N—1; ¢,, =
Sk’ fOl‘ k — 1,2, sy N; and t2N+1 — 1. Thel‘l

2N
kgo‘@(tk+1) — @(tk)‘ Z ]QD(S ") — @(Sn)‘ NE,

which implies that ¢ is not of bounded variation on [0, 1]. The proof that
¢ has a limit from the right proceeds analogously.

Thus, if ¢ 1s a function of bounded variation on [0, 1], the limit ¢ (z7)
of ¢ from the left and the limit ¢ (¢) of ¢ from the right are well defined for ¢
in [0,1]. (We set ¢(07) = ¢(0) and ¢(17) = ¢(1).) Moreover, a function
of bounded variation can have at most countably many discontinuities.

1.33 Corollary If ¢ is a function of bounded variation on [0, 1], then ¢
has at most countably many discontinuities.

Proof Observe first that ¢ fails to be continuous at 7 in [0, 1] if and only
if (1) # (") or @(t) # ©(t7). Moreover, if ¢,,1,,...,1, are distinct points
of [0, 1], then

Z lo(t) — ()] + Z lo(t) — o) < |ol.-

=0
Thus for each ¢ > O there exists at most finitely many points ¢ in [0, 1] such

that [@(f)— ()| + |@()—@(7)| = . Hence the set of discontinuities of
¢ is at most countable. i

We next recall the definition of the Riemann-Stieltjes integral. For f in
C([0,1]) and ¢ of bounded variation on [0, 1], we denote by [ fde, the
integral of f with respect to ¢; thatis, {J f do is the limit of sums of the form

o SN [@(ti1)— 98], Where 0= fg < 1, < - < £, < f4, = 1 is a par-
tition of [0, 1] and ¢; is a point in the interval [7;, ¢, ,,].- (The limit is taken
over partitions for which max; ¢;<,|%+,—| tends to zero.) In the following
proposition we collect the facts about the Riemann-Stieltjes integral which
we will need.

1.34 Proposition If fis in C([0,1]) and ¢ is of bounded variation on
[0, 1], then {0 fde exists. Moreover:

(D) [SCufi+Af) do=A {3 f, dp+ 2 (5f,dp for f; and f; in
C([0,1)), 4, and 4, in C, and ¢ of bounded variation on [0, 1];
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(2) I{l)fd()u @+ A0,) =14 I{l)fd("l + 2, I(l)fdfﬂz for fin C([0, 1D, 24
and 1, in C, and ¢; and ¢, of bounded variation on [0,1]; and
3) |fofde| < | fllllel, for fin C([0,1]) and ¢ of bounded variation

on [0, 1].
Proof Compare [65, p. 107]. W

Now for ¢ of bounded variation on [0, 1], let ¢ be the function defined
by ¢(f) ={ 5 fde for fin C([0,1]). That ¢ is an element of C([0, 1])* follows
from the preceding proposition. However, if ¢ is a function of bounded
variation on [0, 1], £, 1s a point in [0, 1), and we define the function iy on
[0,1] such that ¥ (¥) = @(¢) for ¢t # 1, and ¥ () = @(¢,"), then an easy
computation shows that (¢ fde = [ fdy for fin C([0,1]). Thus if one is
interested only in the linear functional which a function of bounded variation
defines on C([0,1]), then ¢ and i are equivalent, or more precisely, ¢ = .
In order to avoid identifying the conjugate space of C([0, 1]) with equivalence
classes of functions of bounded variation, we choose a normalized repre-
sentative from each class by requiring that the distinguished function be left
continuous on (0, 1).

1.35 Proposition Let ¢ be of bounded variation on [0,1] and i be the
function defined ¥/ (r) = ¢(t7) for ¢ in (0,1), ¥ (0) = ¢(0), and ¥ (1) = @ (1).
Then ¥ is of bounded variation on [0, 1], ¥, < |¢|,, and

f 1fdrp= f 1fd:j/ for fin C([0,1]).
0 0

Proof From Corollary 1.33 it follows that we can list {s,};>; the points
of [0,1] at which ¢ is discontinuous from the left. Moreover, from the
definition of iy we have Yy (f) = @(¢) for t # s; for i = 1. Now let 0 =, <
f, <. <t,<t,.;=1 be a partition of [0,1] having the property that if
;15 in S = {s,: 7> 1}, then neither £,_, nor £, ; is. To show that i 1s of
bounded variation and ||, < |¢|,, it is sufficient to prove that

3 )~ ¥ @ < ol

Fixe¢>0.If f;isnotin Sori=0orn+1,thenset/ =¢. If ;1s1n §
and i # 0, n+1, choose ;' in (f_4,¢) such that |o(;,7)—@(t)| < &/2n+2.
Then 0=t/ <t <-- <t/ <t,,,=11s a partition of [0,1] and
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3 10— @) = X 000 — 00|
< 3 100 = 9 )| + ¥ loie ) — 00

+ Z 0() ~ o(t:))

<g2+ o], + &2

Since ¢ is arbitrary, we have that ¥ is of bounded variation and that
lll, < llel.-

To complete the proof for & an integer, let 7, be the function defined
iy () = 0 for ¢ not in {s,,5,,...,5y} and 5 (s;) = @(s;)— Y (sp) for 1 Ki N.
Then it is easy to show that limy., . |¢— @ +#y)], =0 and {} fdyy =0
for fin C([0, 1]). Thus, we have from Proposition 1.34 that

[[rdo = [ray+ tim [ rang = [ rap. m

N-= o J0

Let BV[0, 1] denote the space of all complex functions on [0, 1] which
are of bounded variation on [0, 1], which vanish at 0, and which are con-
tinuous from the left on (0, 1). With respect to pointwise addition and scalar
multiplication, BV[O0, 1] is a linear space, and | ||, defines a norm.

1.36 Theorem The space BV[O0, 1] 1s a Banach space.

Proof We shall make use of Corollary 1.10 to show that BV[O0,1] is
complete and hence a Banach space. Suppose {¢,}2; 1s a sequence of
functions in BV[0, 1] such that 3> ., |¢,[, < . Since

10,0 < |@a(®) — 0, 0)] + |9, (1) — @, (1) < ||@al,

for ¢ in [0, 1], it follows that Y ; ¢, (f) converges absolutely and uniformly
to a function ¢ defined on [0, 1]. It is immediate that ¢(0) = 0 and that ¢
is continuous from the left on (0, 1). It remains to show that ¢ is of bounded
variation and that limy_, _ [[¢ — 3>, ¢.|, = O.

fO0=t,<t; <---<t, <t,=11s any partition of [0,1], then

k

k oo v'e)
_;0‘(P(ti+1)“€0(fi)‘ = ) ; Pullir1) — ;%(&)

1=0
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|@n(tir1) — @u (1)

iy

F/A)
8 M=
M8

v
!
a‘ P

<3| ie6w-awl] < 3ol

n=1
Therefore, ¢ is of bounded variation and hence in BV[0, 1]. Moreover, since
the inequality

Z ((0 o ;1 (pn)(ti+l) T (@ T ;1 qon)(tl‘)
- :;0

iI=

Z P (ti+ 1)"_ Z Py (ti)
n=N+1 n=N+1
< Z z ‘(Pn(ti+l) o (0,,([5)‘ < Z “(Pn“v

holds for every partition of [0, 1], we see that

oo

N
e— Y @l < Y |@ulls

n=1 v n=N+1
for every integer N. Thus ¢ = Y2, @, 1n the norm of BV[0, 1] and the proof
is complete.

Recall that for ¢ of bounded variation on [0, 1], we let ¢ be the linear
functional defined ¢(f) = {3 fde for fin C([0, 1]).

1.37 Theorem (Riesz) The mapping ¢ — ¢ 1s an isometrical isomorphism
between BV[0,1] and C([0, 1]*.

Proof The fact that ¢ is in C([0,1]D* follows immediately from
Proposition 1.34 and we have, moreover, that | ¢| < [|¢|,.- To complete the
proof we must, given an L in C([0, 1])*, produce a function ¢y in BV|[0, 1]
such that ¢ = L and ||[{/||, < |L|. To do this we first use the Hahn-Banach
theorem to extend L to a larger Banach space.

Let B[O, 1] be the space of all bounded complex functions on [0, 1].
It 1s by now routine to verify that B[O, 1] i1s a Banach space with respect to
pointwise addition and scalar multiplication, and the norm |f],=
sup{|f(©)|: 0< ¢ < 1}. For E a subset of [0, 1], let I;; denote the characteristic
(or indicator) function on E, thatis, I(¢) 1s 1 if #1sin E and 0 otherwise. Then
for every E the function I is in B[O, 1].

Since C([0, 1] is a subspace of B[O, 1] and since L is a bounded linear
functional on C([0, 1]), we can extend it (but not necessarily uniquely) to a
bounded linear functional L on B[0, 1] such that |L| = | L||. Moreover, L
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can be chosen to satisty L(/;,) = 0, since we may first extend it in this manner
to the linear span of I, and C([0, 1]) in view of the inequality

|L(f+ Mio)| = [LOO| < |L| Al < (LI £+ Mgyl

which holds for fin C([0,1]) and 4 in C.

Now for 0 < ¢ < 1 define ¢(¥) = L(J o ), where (0,7] is the half open
interval {s:0<s< ¢} and set ¢(0) = 0. We want first to show that ¢ is of
bounded variation and that |¢|, < | L|-

Let0O=¢f, <t; < <t,<t,,; =1 be a partition of [0, 1] and set

b = Lo(tii1) — o)1/ |@(tr 1) — @ (&)
if (t,..,) # (&) and O otherwise. Then the function

f: Z AkI(tk;tk+l]
k=0

is in B[0,1] and | f|,; < 1. Moreover, we have

n

LI ERIAEWACT NN ERI™)

k=0

= k;() Ak E(I(tk:tk+ 1])

= L(f) < |E| = |L],

and hence ¢ is of bounded variation and |¢f, < |L|.

We next want to show that L(g) = {(gdp for every function g in
C([O,1]. To that end, let g be in C([0,1]) and ¢ > 0; choose a partition
O=f<t; <+ <t,<t,,y =1 such that

&
2|\ L]

for s and s’ in each subinterval [#,,7,,,] and such that

|9(s) — g(s")| <

f gdo — HZ g(tk)(‘}o(tkﬂ) _(P(tk)) < :’;

0 k=0

Then we have for f= 33 _og(t) 1y, 1., 1+ 9(0) 1, the inequality

L(g)-—Lgdfp < |L(g) — L(f)| + L’(f)-Lgdfp

n 1
< |E|lg—flls+ 1D g(tk)(rp(tm)-fp(tk))-—f g do
k=0 0
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Thus L(g) = {3 g d¢ for g in C([0,1]).
Now the ¢ obtained need not be continuous from the left on (0, 1).
However, appealing to Proposition 1.35, we obtain ¢ in BV[O0, 1] such that

¥, < llel, < |L| and
';E(g) = J{;gdxb =J{;gd¢ — L(g)

for g in C([0, 1]). Thus Y = L and combining the inequality obtained from
the first paragraph of the proof with the one just above, we obtain
l¥ll, = |L|. Thus BV[0,1] = C([0,1])*.

1.38 The Conjugate Space of C(X) If X isan arbitrary compact Hausdorff
space, then the notion of a function of bounded varnation on X makes no
sense. Thus one must search for a different realization of the elements of
C(X)*. 1t can be shown with little difficulty that each countably additive
measure defined on the Borel sets of X gives rise to a bounded linear functional
on C(X). Moreover, just as in the preceding proof we can extend a bounded
linear functional on C(X) to the Banach space of bounded Borel functions
by the Hahn—-Banach theorem and then obtain a Borel measure by evaluating
the extended functional at the indicator functions for Borel sets. This repre-
sentation of a bounded linear functional as a Borel measure is not unique.
If one restricts attention to the regular Borel measures on X, then the pairing
is unique and one can identify C(X)* with the space M (X) of complex regular
Borel measures on X. We do not prove this in this book but refer the reader to
[65]. This result is usually called the Riesz—Markov representation theorem.
We shall need it at least for X a compact subset of the plane.

1.39 Quotient Spaces Let 2 be a Banach space and .# be a closed sub-
space of Z. We want to show that there is a natural norm on the quotient
space Z/.# making it into a Banach space. Let Z/.# denote the linear space
of equivalence classes {[ /] :fe &}, where [f] = {f+g:g¢<€ A}, and dehne
a norm on %/ by
LAl = inf | f+g| = inf |A].
hel[f]

gef

Then |[f1| =0 implies there exists a sequence {g,};>, in 4 with
lim,_, . [|f+g,l| =0. Since # is closed, it follows that f is in .# so that
[ /1= [0]. Conversely,if[ /] = [0], thenfisin # and 0 < ||[f]| < | f—f] =O.
Thus, |[f]|| = 0 if and only if [ /] = [0]. Further, if f; and f, are in & and
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/. 1s in C, then
IALAH = ITAAT] = inf [Afi+g] = |4] inf | fi+A] = [4] |[A]]
geEM hetl

and
|ILAT+ LR = LA+ = mf | fi+/2+4]
gEM
= inf |fi+g+fa+g.| < wf |fi+g:] + inf || £+,
G1,92€M greM g2€M

< AT+ IL200-
Therefore, |- | is @ norm on &/.# and it remains only to prove that the space
is complete.

If {[ /. 1}.>, is a Cauchy sequence in Z/.#, then there exists a subsequence

{£f. 322, such that ||[f,., 1—[f, 1] <1/2" If we choose A, in [f, , —F.]
such that ||| < 1/2%, then 37, |A]| <1 and hence the sequence {A} is

absolutely summable. Therefore, A= >72,h, exists by Proposition 1.9,
Since

k-1 k—1
=Sl = 3 Unis=£, = ¥ [

we have lim, , ., [/, —f.. 1 = [#]. Theretore lim, _, ,, [ £,,1 = A+, J and &'/ A
is seen to be a Banach space.

We conclude by pointing out that the natural map f— [f] from & to
%[ M is a contraction and is an open map. For suppose fis in &, ¢ > 0, and

N(H)={geZ:|f—g| <e&}. If [h] is in
N([fD = {lkle Z/A4 - ||Lf1- k]| < &},

then there exists A, in [A£] such that ||f—#A¢| < &. Hence, [A#] and, in fact,
all of N_([ /1) is in the image of N.(f) under the natural map. Therefore, the
natural map is open.

1.40 Definition Let £ and & be Banach spaces. A linear transformation
T from 4 to % 1is said to be bounded if

1771
i
The set of bounded hnear transformations of & to % is denoted (%, %)

with (&, %) abbreviated 2(%). A linear transformation is bounded if and
only if it is continuous.

|T] = sup 0.

1.41 Proposition The space (%, %) 1s a Banach space.
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Proof The only thing that needs proof is the completeness of (%', %)
and that is left as an exercise. i

Although an essential feature of a Banach space is that it is complete in
the metric induced by the norm, we have not yet made any real use of this
property. The importance of completeness is due mainly to the applicability
of the Baire category theorem. We now present one of the principal appli-
cations, namely the open mapping theorem. The equally important uniform
boundedness theorem will be given in the exercises.

1.42 Theorem If & and % are Banach spaces and 7 in (%, %) is one-to-
one and onto, then 7! exists and is bounded.

Proof The transformation 7' is well defined and we must show it to
be bounded. For r> 0 let (%), = {fe % : |f| <r}. To show that 771 is
bounded it is sufficient to establish 7~ ' (%), = (%), for some r >0 or
equivalently, that (%); c T(%Z)y for some integer N.

Since T'is onto, we have | ;2 ; T[(%,)] = %. Further, since % is a complete
metric space, the Baire category theorem states that % is not the countable
union of nowhere dense sets. Thus, for some N the closure clos {T[(Z)y]1}
of T[(Z)x] contains a nonempty open set. It follows that there i1s an /4 in
(Z)x and an ¢ > 0 such that

Th+ @), = {fe¥: |f-Th| <&} = clos{T[(X)x1}-

Therefore, (%), ¢ — Th+clos{T[(ZX)x1} < clos{T(%),x]} so that (%), <
clos{T[(%),]}, where r = 2N/c. Except for the fact that this 1s the closure,
this is what we need to prove. Thus we want to remove the closure.

Let f be in (%), . There exists g, in (%), with || f— Tg; || < 4. Since f— Tg;
is in (%),,,, there exists g, in (%),, with |f—Tg,—Tg,| <Z. Since
f—Tg,—Tg, is in (¥)y,,, there exists g; in (%),,, with | f—Tg,—Tg,— 19, |

< 4. Continuing by induction, we obtain a sequence {g,}.>; such that
|gall < r/2°"" and | f-37- Tg,| < 1/2" Since

e ® &
Y gl < D 5emr = 20

n=1

the series 3.2, g, converges to an element g in (%),,. Further,

Tg = T(Iim ng) = lim ) Tg, = f.

n—oC k=1 now k=1

Therefore, (%), c T[(%),,] which completes the proof. i
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1.43 Corollary (Open Mapping Theorem) If & and % are Banach spaces
and T'is an onto operator in (%, %), then T is an open map.

Proof Since T is continuous, the set & = {fe X : Tf=0} is a closed
subspace of . We want to define a transformation S (see accompanying
figure) from the quotient space &/ # to % as follows: for [ /] in &/ set

S[f]= Tg for g in [ f]. Since g, and g, in [ f] imply that g, —g, is in A,
we have Tg, = Tg, and hence S 1s well defined. Obviously, S is linear and
the inequality
ISLAH = inf [Tg| < |7 int g = 7] L]
gelf] gelrl

which holds for [ f]in &/.#, shows that S is bounded. Moreover, if S[f] =0,
then Tf =0, which implies that f i1s in .4 and [ f]} = [0]. Therefore, S is
one-to-one. Lastly, S is onto, since 7 is, and hence the preceding theorem
demonstrates that S is an open map. Since the natural homomorphism =«
from & to &/.# is open and T = Sr, we obtain that Tis open. i

We conclude this chapter with some classical examples of Banach spaces
due to Lebesgue and Hardy. (It is assumed in what follows that the reader 1s
familiar with standard measure theory.)

1.44 The Lebesgue Spaces Let p be a probability measure on a g-algebra
% of subsets of a set X. Let #* denote the linear space of integrable complex
functions on X with pointwise addition and scalar multiplication, and let
A" be the subspace of null functions. Hence, a measurable function f on X
isin Z' if {x|f| du < o0 and is in A" if {x | f| du = 0. We let L' denote the
quotient space £/ A" with the norm |[f]]; = {x|f]| dp. That this satisfies
the properties of a norm (that is, (1)-(3) of Section 1.1) is easy; the com-
pleteness is only slightly more difficult.

Let {[f,]}%; be a sequence in L' such that >, [[/1ll: < M < .
Choose representatives £, from each [f,]; then the sequence {3 n—i|/ful}N=1
is an increasing sequence of nonnegative measurable functions having the
property that the integrals

.L(,,i ff"') =Y LI < M

n=1
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are uniformly bounded. Thus, it follows from Fatou’s lemma that the function
h =32 ,|f is integrable. Therefore, the sequence {3'V_, £.}%., converges
almost everywhere to an integrable function & in .#"'. Finally, we have that

EDN VA I D WA AP

n=1 | n=1

> f\ﬁ,\du-fé SRITAIE
n=N+1 JX n=N+1

and hence 3%, [f.] = [k]. Thus, L' is a Banach space.
For 1 < p < oo let £? denote the collection of functions fin %' which

satisfy {4 |f]? dp < oo and set A7 = A n £P. Then it can be shown that
PP is a linear subspace of #' and that the quotient space I = ¥P/ AP
is a Banach space for the norm

I, = ([ 111 du)”p

The details of this will be carried out for the case p = 2 in Chapter 3; we
refer the reader to [65] for details concerning the other cases.

Now let # * denote the subspace of .#' consisting of the essentially
bounded functions, that is, the functions f for which the set

{xe X:|f(x)| > M}

has measure zero for M sufficiently large, and let || f||,, denote the smallest
such M. If we set /" = A n ¥ ©, then we can easily show that for fin
% * we have | f|, =0 if and only if fis in A& ®. Thus | ||, defines a norm
on the quotient space L™ = & ©/ A4 “. To show that L™ is a Banach space
we need only verify completeness and we do this using Corollary 1.10. Let
{Lf.1}Z, be a sequence of elements of L* such that 3., [/l < M < .
Choose representatives f, for each [ f,] such that | £,| is bounded everywhere
by |[[£.]|..- Then for x in [0, 1] we have

3140 < ¥ AN < M

n=1

Therefore the function h(x) = Y2, f,(x) is well defined, measurable, and
bounded since

oo

h@l = | 30| < ¥ L@ < M

n=1

Thus, A is in % ® and we omit the verification that limy_, . [|[[A1—2 0= [/:]
= (). Hence, L* 1s a Banach space.
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Although the elements of an If space are actually equivalence classes of
functions, one normally treats them as functions. Thus when we write f in
L', we mean fis a function in %! and f denotes the equivalence class in I
containing f. Hereafter we adopt this abuse of notation.

We conclude by showing that (L')* can be identified as L®. This result
should be compared with that of Example 1.15. We indicate a different proof
of this result not using the Radon-Nikodym theorem in Problem 3.22.

For ¢ in L™ we let ¢ denote the linear functional defined as

gﬁ(f)szqodp for fin L.
X

1.45 Theorem The map ¢ — @ is an isometrical isomorphism of L™ onto
(L)*.

Proof 1f ¢ is in L*™, then for fin ' we have |[(@/)(x)} < [o| . 1 f)]
for almost every x in X. Thus fo 1s integrable, ¢ 1s well defined and linear,
and

60| = j fo du| < ol f £l di < ol 1], -

Therefore, ¢ is in (L)* and |¢] < o] -

Now let L be an element of (I')*. For E a measurable subset of X the
indicator function Iy is in L' and |[Ig]|, = {x Iz dp = p(E). If we set
L(E) = L(I;), then it is easily verified that A 1s a finitely additive set function
and that |A(F)| < u(E)|L|. Moreover, if {E,}32, is a nested sequence of
measurable sets such that (.2, E, = ¢, then

im 2(E)] < lim [AGE)| < |L| fim p(E,) = o

H— 0D n— o n— oo

Therefore, 4 is a complex measure on X dominated by u. Hence by the
Radon-Nikodym theorem there exists an integrable function ¢ on X such
that A(E) = {x I ¢ du for all measurable E. It remains to prove that ¢ is

essentially bounded by ||L| and that L(f) = |y fe du for fin L.
For N an integer, set

1
Ey = {xe X2 1L+ - < o] < N}.

Then Ey is measurable and Iy ¢ is bounded. If f=3*_ ¢ I is a simple
step function, then it is easy to see that L(f)= {yfe du. Moreover, a
simple approximation argument shows that if fis in L' and supported on
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Ey, then again L(f) = j’ vJodu lLet g be the function defined to be
o(x)/|e(x)| if x 1s in Ey and ¢(x) # 0 and O otherwise. Then g is in L, is
supported on Ey, and |g|; = n(Ey). Therefore, we have

fgqo du
X

which implies u(Ey) = 0. Hence, we obtain pu({ /7= Ey) = 0, which implies
¢ is essentially bounded and |¢|, < |L|. Moreover, the above argument
can be used to show that

u(Ey) L] = [L(g)| =

1
~ [ Il s, n > (uLu + —)u(EN)
X N

L(f) = ] fodu  for all fin L},
X
which completes the proof. i

We now consider the Banach spaces first studied by Hardy. Although
these spaces can be viewed as subspaces of the IP spaces, this point of view
is quite different from that of Hardy, who considered them as spaces of
analytic functions on the unit disk. Moreover, although we study these spaces
in some detail 1n later chapters, here we do little more than give the definition
and make a few elementary observations concerning them.

1.46 The Hardy Spaces If T denotes the unit circle in the complex plane
and u is the Lebesgue measure on T normalized so that p(T) = 1, then we
can define the Lebesgue spaces LV (T') with respect to u. The Hardy space H?
will be defined as a closed subspace of I”(T). As in the previous section we
consider only the cases p = 1 or 0.

For nin Z let y, denote the function on T defined y,(z) = z". If we define

| 2r
H' = {feLl('[F):-é;J; Sr.dt =0 for n= 1,2,3,---,},

then H*' is obviously a linear subspace of I! (T). Moreover, since the set

{fe Ll(‘l]‘):-;;J;nfx,,dt = 0}

is the kernel of a bounded linear functional on I!(T), we see that H' is a

closed subspace of L' (T) and hence a Banach space.
For precisely the same reasons, the set

1 2n
HOO = {QOELOD(-E‘) :QE\L (an dt = 0 fOI‘ n = 152}35'”}}
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is a closed subspace of L*(T). Moreover, In this case

1 2r
{@EL‘”(T):-—f Pxn At = 0}
2 0

is the zero set or kernel of the w*-continuous function

| 27
fﬂ (‘P) = i_ f DPXn dt
T

0

and hence is w*-closed. Therefore, H* is a w*-closed subspace of L*(T).
If we let Hy® denote the closed subspace

| 27
{@EH“":——] (pdtzO},
271' 0

then the conjugate space of H' can be shown to be naturally isometrically
isomorphic to L®(T)/Hy*. We do not prove this here but consider this
question in Chapter 6.

Notes

The basic theory of Banach spaces is covered in considerable detail in
most textbooks on functional analysis. Accounts are contained in Bourbaki
[7], Goffiman and Pedrick [44], Naimark [80], Riesz and Sz.-Nagy [92],
Rudin [95], and Yoshida [117]. The reader may also find 1t of interest to
consult Banach [5].

Exercises

Assume in the following that X is a compact Hausdorff space and that Z is
a Banach space.

1.I  Show that the space C(X) is finite dimensional if and only if X is finite.

1.2 Show that every linear functional on % is continuous if and only if
% 1s finite dimensional.

1.3 If # is a normed linear space, then there exists a unique (up to 1s0-
morphism) Banach space 2 containing .# such that clos # = %.

1.4 Complete the proof begun in Section 1.15 that I’ (Z7)* = 1 *(Z").

1.5 Determine whether each of the following spaces is separable in the
norm topology: co(Z™"), I*(Z7), [ *(Z™), and [ *(Z)*.
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Definition An element f of the convex subset K of & is said to be an extreme
point of K if for no distinct pair £, and £, in K is f = 1(f, +£,).

1.6  Show that an element f of C'(X) is an extreme point of the unit ball if
and only if | f(x)| = 1 for each x in X.

[.7 Show that the linear span of the extreme points of the unit ball of
C(X) 1s C(X).

1.8  Show that the smallest closed convex set containing the extreme points
of the unit ball of C([0,1]) 1s the unit ball but that the same is not true for

C([0, 1] x [0, 1]).*

1.9 Show that the unit ball of ¢,(Z™) has no extreme points. Determine
the extreme points of the unit ball of /' (Z"). What about the extreme points
of the unit ball of L' ([0, 1])?

1.10 If K is a bounded w*-closed convex subset of Z*, then {¢(f): ¢ € K}
is a compact convex subset of C for each fin Z. Moreover, if 4, is an extreme
point of {¢(f,,) : ¢ € K}, then anyextreme pointof the set {¢p € K: ¢ (f,) = Ao}
is an extreme point of K.

1.11 If K 1s a bounded w*-closed convex subset of £*, then K contains an
extreme point.* (Hint: If {/,},. 4 is a well-ordering of &, define nested subsets
{K,},.4 such that

Ka: (Peﬁm Kﬁ:(P(.ﬁ:):Aﬁ:}a

where Z, is an extreme point of the set {¢(f): ¢ € )s<,Ks}. Show that
(Vec 4 K, consists of a single point which is an extreme point of K.)

1.12 (Krein-Mil'man) A bounded w*-closed convex subset of Z* 1s the
w¥-closed convex hull of its extreme points.*

1.13  Prove that the relative w*-topology on the unit ball of Z* is metrizable
if and only if 4 is separable.

1.14 Let A be asubspace of 4, x be in %, and set
d = inf{|x—y|:ye A}

If d > 0, then show that there exists ¢ in Z* such that ¢(y) = 0 for y in A,
¢(x)=1, and |¢| = 1/d.

1.15 Show that if we define the function f(¢) = ¢(f) for fin & and ¢ in
Z'*, then fis in £** and that the mapping f— f is an isometrical isomorphism
of & into Z**,
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Definition A Banach space is said to be reflexive if the image of & is all
of &**.

1.16 Show that & is reflexive for & finite dimensional but that none of the
spaces co(Z"), 1'(Z™M), I *(Z™), C([0,1]), and L' ([0, 1]) is reflexive.

1.17 Let & and % be Banach spaces. Define the 1-norm | f@ g|, = | f]| + | 4|l
and the oo-norm [ f®g| . = sup{|f],[lgll} on the algebraic direct sum
& ®%. Show that £ ® ¥ is a Banach space with respect to both norms and
that the conjugate space of # @® % with the 1-norm 1s *® %* with the
cO-NOrm.

1.18 Let & and % be Banach spaces and | | be a norm on & @ % making it
into a Banach space such that the projections n, . ¥ @®% - % and =, :
XD — % are continuous. Show that the identity map between & @ ¥
in the given norm and Z @ % with the 1-norm 1s a homeomorphism. Thus
the norm topology on & @ % 1s independent of the norm chosen.

1.19 (Closed Graph Theorem) It T 1s a linear transformation from the
Banach space 4 to the Banach space % such that the graph {{/,Tf) : fe &}
of T is a closed subspace of Z ® %, then T is bounded. (Hint: Consider the

map f— (f, Tf).)
1.20 (Uniform Boundedness Theorem) Let & be a Banach space and

{pa}; be a sequence in Z* such that sup {|¢,(f)| :ne Z*} < oo for fin &.
Show that sup {||¢,| : ne Z"} < co.* (Hint: Baire category.)

1.21 1If & is a Banach space and {¢,}>, is a sequence in Z* such that
{p. ()}~ is a Cauchy sequence for each fin &, then lim,_, _ ¢, exists in
the w*-topology. Moreover, the corresponding result for nets is false.

1.22 Show that if # is a Banach space and ¢ is a (not necessarily continuous)
linear functional on %, then there exists a net {¢,},.4 In &* such that

lim, 4 ¢,(f) = ¢(f) for fin Z.

1.23 Let & and % be Banach spaces and T be a bounded linear trans-
formation from & onto %. Show that if # = ker T, then &/.# is topologically
isomorphic to %,

Definition If % is a Banach space, then the collection of functions {¢ € Z'*}
defines a weak topology on & called the w-topology.

1.24 Show that a subspace .# of the Banach space & is norm closed if and
only if it is w~closed. Show that the unit sphere in & is w-closed if and only
if Z is finite dimensional. *
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1.25 Show that if 4 is a Banach space, then & is w*-dense in Z**,

1.26 Show that a Banach space & is reflexive if and only if the w- and w*-
topologies coincide on &,

1.27 Let & and % be Banach spaces and T be in (%, %). Show that if ¢
is in #* then f— @(Tf) defines an element { of Z*. Show that the map
T*¢@ = isin L(#*, %). (The operator T* is called the adjoint of 7.)

1.28 If & and % are Banach spaces and T 1s in (%, %), then T is one-to-
one if and only if 7% has dense range.

1.29 If % and % are Banach spaces and T'is in (%, %), then T has a closed
range if and only if 7* has a closed range. (Hint: Consider first the case

when T is one-to-one and onto.)

Definition If .# is a subspace of the Banach space &, then the annthilator
M of M is defined as A+ = {¢ € Z*: p(x) =0 for x e 4},

1.30 If & is a Banach space and .# is a closed subspace of &, then #* is
naturally isometrically isomorphic to Z*/.4™*.

1.31 If & is a Banach space and A" is a subspace of &%, then there exists a
subspace .# of & such that #* = A" if and only if 4" is w*-closed.

1.32 If the restriction of a linear functional ¢ on the Banach space M(X) of
complex regular Borel measures on X to the unit ball of M (X) is continuous
in the relative w*-topology, then there exists a function fin C(X) such that

gD(ﬂ)=Lfdﬂ for pin M(X).%*

(Hint: Obtain f by evaluating ¢ at the point measure o0, at x and use the fact
that measures of the form >}_, o6, for 37, |o;| <1 are w*-dense in the
unit ball of M(X).)

1.33 (Grothendieck) A linear functional ¢ in &** is w*-continuous if and
only if the restriction of ¢ to (Z'*), is continuous in the relative w*-topology.*
(Hint: Embed & in C(X), extend ¢ to M(X) via the homomorphism from
M(X) to M(X)/%*+ = &*, and show that the function f obtained from the
preceding problem 1s in %)

1.34 (Krein—-Smul'yan) If & is a Banach space and .# is a subspace of %,
then .4 is w*-closed if and only if # n (&*), is w*-closed.* (Hint: Show
that .# is the intersection of the zero sets of a collection of w*-continuous
linear functionals on Z'*.)
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1.35 (Banach) 1If & is a separable Banach space and .# is a subspace of
Z*, then # is w*-~closed if and only if # is w*-sequentially complete.

1.36 Let & and % be Banach spaces and 2 ® % be the algebraic tensor
product of & and % as linear spaces over C. Show that if for w in F Q %

we define

n F ¢4
[wl = inf{Zl Il 1yill < X15ees X0 € X5 ¥ (50ees Vu €W, w=) xi®yi},
1= i=1

then |-, is a norm on & ® %. The completion of & ® # is the projective
tensor product of 4 and 5/ and is denoted & ® #. ’

1.37 Let & and & be Banach spaces and Z ® % be the algebraic tensor
product of & and % as linear spaces over C- Sahow that if for w in Q%

we define

lwl; = Sup{ I X1soers Xn € X} ViseosVn €U

'21 0 (x) ¥ (y:)

QPE@™); Ye @)y, w= i;xi(@yi},

then ||-|; is a norm on & ®€7/ The completion of & ®@‘ is the inductive

tensor product of & and % and is denoted Z ® %.

1.38 For & and % Banach spaces, show that the identity mapping extends
to a contractive transformation from X ¥ to ¥ X %.

1.39 For X and Y compact Hausdorff spaces show that C(X)® C(Y) =
C(XxY). (Hint: Show that it is sufficient in defining [} |; to take ¢ and
to be extreme points of the unit ball of Z* and &*))

1.40 For X and Y compact Hausdorft spaces show that

CX)®C(Y) = C(XxY)

if and only if X or Y is finite. (Hint: show that there are functions /(x, y) =
1 [i(®)g;(y) for which |k||, =1 but |A|, is arbitrarily large.) Thus the
tensor product of two Banach spaces is not unique.
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2.1 In Chapter 1 we showed that C(X) i1s a Banach space and that every
Banach space is, 1n fact, isomorphic to a subspace of some C(X). In addition
to being a linear space, C(X) is also an algebra and multiplication 1s con-
tinuous in the norm topology. In this chapter we study C(X) as a Banach
algebra and show that C(X) 1s a “universal” commutative Banach algebra
in a sense which we will Iater make precise. We shall indicate the usefulness
and power of this result in some examples.

2.2 Recall that in Section 1.1 we observed that C(X) is an algebra over C
with pointwise multiplication and that the supremum norm satisfies
179l < |f|lw lglle for f and g in C(X). These properties make C(X) into
what we will call a Banach algebra.

In the study of Banach spaces the notion of bounded linear functional is
important. For Banach algebras and, in particular, for C(X) the important
idea 1s that of a multiplicative linear functional. (We do not assume the
functional to be continuous because we show later that such a functional is
necessarily continuous.) Except for the zero functional, which is obviously
both multiplicative and linear, every multiplicative linear functional ¢ satisfies
@(1) =1 since ¢ # 0 means there exists an fin C(X) with ¢(f)# 0, and
then the equation ¢ (1) ¢ (f) = ¢ (f) implies ¢ (1) = 1. Thus we restrict our
attention to the set My, of complex multiplicative linear functionals ¢ on
C(X) which satisfy ¢ (1) = 1. For each x in X we define the complex function

32
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¢, on C(X) such that ¢,.(f) =f(x) for f in C(X). It is immediate that ¢,
Is in Mc(xy, and we let ¢ denote the mapping from X to My, defined
Y (x) = ¢. The following proposition shows that iy maps onto My, .

2.3 Proposition The map ¥ defines a homeomorphism from X onto M y,,
where My, is given the relative w*-topology on C(X)*.

Proof Let ¢ be in My, and set
& = kergp = {fe C(X) : p(f) = 0.

We show first that there exists xy in X such that f(x,) = O for each fin K.
If that were not the case, then for each x in X, there would exist £, in & such
that £, (x) ¢ 0. Since f, is continuous, there exists a neighborhood U, of x
on which f, # 0. Since X is compact and {U_ },.x is an open cover of X,
there exists Uy,,...,U,, with X={J7_, U, . If we set g=3"_,f, f. ,
then ¢(g) = 3]-; 0(f.) ¢(f,) =0, implying that g is in K. But g 50 on
X and hence is invertible in C(X). This in turn implies ¢ (1) = ¢(g)-¢(1/g)
= (0, which is a contradiction. Thus there exists x, in X such that f(x,) =0
for f1in K.

If fis in C(X), then f—¢(f)-1is in K since o(f—o(f)-1) = o(f)—o(f)
= (. Thus

f(xo) — o (f) = (f—(f)-1)(x0) = 0,

since ¢—¢@(f)-11s in K& and therefore ¢ = ¢,.

Since each ¢ In Mgy, 1s bounded (in fact, of norm one), we can give
M ¢ x, the relative w*-topology on C(X)* and consider the map ¥ : X —» M x,.
If x and y are distinct points of X, then by Urysohn’s lemma there exists f in
C(X) such that f(x) # f(»). Thus

V(x)(f) = ox(f) = f(x) # f(¥) = ¢,(f)) = ¥ () (),

which implies that i 1s one-to-one.

To show that i is continuous, let {x,},. 4 be a net in X converging to x.
Then lim,_, f(x,) = f(x) for f in C(X) or equivalently lim,_,¥ (x,)(f) =
Y (x)(f) for each f in C(X). Thus the net {{¥(x)},.4 converges in the
w*-topology to ¥ (x) so that ¥/ is seen t0 be continuous. Since i is a one-to-one
continuous map from a compact space onto a Hausdorff space, it follows
that i 1s a homeomorphism. This completes the proof. i

We next state the definition of Banach algebra and proceed to show that
the collection of multiplicative linear functionals on a general Banach algebra
can always be made into a compact Hausdorff space in a natural way.
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2.4 Definition A Banach algebra 8B is an algebra over C with identity 1
which has a norm making it into a Banach space and satisfying |1]| = 1
and the inequality || fg| < |f| |¢| for fand g in B.

We let A denote the element of B obtained upon multiplying the identity
by the complex number A.

The following fundamental proposition will be used to show that the
collection of invertible elements in B is an open set and that inversion is
continuous in the norm topology.

2.5 Proposition If fis in the Banach algebra B and |1—f| < 1, then fis
invertible and

1
I—[1-£]"

|F770 <

Proof If wesety = |1—f| <1, then for N > M we have

N N

N M
2. A=fr=2x 0= = X a=-m< 2 I-A"
n=0 n=0 n=M+1 n=M+1
N nM+l
— h <L —
n=§f+lﬂ 1 —9

and the sequence of partial sums {3_,(1—f)"}7—o is seen to be a Cauchy
sequence. If g = > .2 o (1—/)", then

fe = 01=a= (L, a-r7) = lim (C1-a-m 3 a-17)

NooD

= lim(1—(1— ") =1,

N- o0

since limy., ., [[(1—=F)"*'| = 0. Similarly, gf =1 so that f is invertible with
f~' = g. Further,

. N _ N 1
lgll = lim Zo(l—f)" < lim Y 1—f]" =

N-»00 N-sx =0 1-— Hl#—f“ ‘

2.6 Definition For B a Banach algebra, let ¥ denote the collection of
invertible elements in B and let ¥,, respectively, 4, denote the collection
of left, respectively, right invertible elements in B8 that are not invertible.

The following result will be of interest in this chapter only as it concerns
% but we will need the results about %, and %, in Chapter 5 when we study
index theory.



Abstract Banach Algebras 35

2.7 Proposition If B is a Banach algebra, then each of the sets ¢, ¥,
and ¥, is open in B.

Proof If fis in & and |f—g| <V/|f '], then 1> |f~ | |f—gl =
|1—f"'g|l. Thus the preceding proposition implies that f~'g is in ¢ and
hence g = f(f 'g) is in %. Therefore ¢ contains the open ball of radius
1/| £~ | about each element of fin ¢. Thus ¢ is an open set in B.

If fis in %, then there exists / in B such that Aif = 1. If || f—g| < 1/||A]|,
then 1> ||h| |f—gll = |Af—hg| = |1 —hg||. Again the proposition implies
that k = hg is invertible and the identity (k™ 'h)g = 1 implies that g is left
invertible. Moreover, if g is invertible, then h = kg ! is invertible which in
turn implies that fis invertible. This contradiction shows that ¢ is in %, so that
%, 1s seen to contain the open ball of radius 1/|4| about f. Thus %, is open.
The proof that ¢, is open proceeds in the same manner. [

2.8 Corollary If B is a Banach algebra, then the map on ¢ defined
f— f~!1is continuous. Thus, ¥ is a topological group.

Proof 1If fis in %, then the inequality ||f—g| < 1/2||f | implies that
|1—f"'g| <% and hence

lg™* I < g™ AL =1 ) A~ < 20070
Thus the inequality

I~ =g " = 1" U=g ' <2079l

shows that the map f— f~ ! is continuous. Ji
There is another group which is important in some problems.

2.9 Proposition Let B be a Banach algebra, ¢ be the group of invertible
elements in B, and ¢, be the connected component in ¢ which contains
the identity. Then %, is an open and closed normal subgroup of ¢, the cosets
of %, are the components of ¢, and ¥/%, 1s a discrete group.

Proof Since ¥ is an open subset of a locally connected space, its com-
ponents are open and closed subsets of 4. Further, if f and g are in %,, then
%, is a connected subset of ¢ which contains fg and f. Therefore, %, U f%
is connected and hence is contained in 4,. Thus fg is in %, so that %, is a
semigroup. Similarly, f~'9,w %, is connected, hence contained in %,
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and therefore %, 1s a subgroup of 4. Lastly, if fis in ¢, then the conjugate
group f%, f ! is a connected subset containing the identity and therefore
1% f ' =9%. Thus, 9, is a normal subgroup of ¥ and %/%, is a group.

Further, since %, is an open and closed connected subset of ¢4 for each
fin %, the cosets of %, are the components of 4. Lastly, ¥/%, is discrete
since %, is an open and closed subset of 4.

2.10 Definition If B is a Banach algebra, then the abstract index group
for B, denoted Ay, is the discrete quotient group %/%,. Moreover, the
abstract index is the natural homomorphism y from € to Ag.

We next consider the abstract index group for a Banach algebra in a little
more detail.

2.11 Definition If ‘B is a Banach algebra, then the exponential map on B,
denoted exp, is defined

= 1
expf = — 1"
n=0"""

The absolute convergence of this series is established just as in the scalar
case from whence follows the continuity of exp. If B is not commutative,
then many of the familiar properties of the exponential function do not hold.
The following key formula is valid, however, with the additional hypothesis
of commutativity.

2,12 Lemma If B is a Banach algebra and f and g are elements of B which
commute, then exp(f+g) = expfexpy.

Proof Multiply the series defining exp f and expg and rearrange. i

In a general Banact: algebra it is difficult to determine the elements in the
range of the exponential map, that is, the elements which have a “logarithm.”
The following lemma gives a sufficient condition.

2.13 Lemma If B is a Banach algebra and fis an element of B such that
11—7| < I, then fis in exp B.

Proof 1If we set g=>",(l/m)(1—f)", then the series converges ab-
solutely and, as in the scalar case, substituting this series into the series
expansion for expg yields expg=7. I
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Although it is difficult to characterize exp®8B for an arbitrary Banach
algebra, the collection of finite products of elements 1n expB is a familiar
object.

2.14 'Theorem IffBisaBanach algebra, then the collection of finite products
of elements in exp*B is %, .

Proof If f=expg, then f-exp(—g)=exp(g—g)=1=exp(—g)f, and
hence £ 1s in ¥. Moreover, the map ¢ from [0, 1] to expB defined ¢ (1) =
exp(Ag) 1s an arc connecting 1 to fand hence fi1s in %,. Thus exp ‘B 1s con-
tained in %,. Further, if % denotes the collection of finite products of elements
of expB, then & is a subgroup contained in %,. Moreover, by the previous
lemma £ contains an open set and hence % being a subgroup 1s an open set.
Lastly, since each of the left cosets of % is an open set, it follows that &
is an open and closed subset of ¥,. Since %, is connected we conclude that
Y, = %, which completes the proof. |

The following corollary shows that the problem of identifying the elements
of a commutative Banach algebra which have a logarithm is much easier.

2.15 Corollary If B is a commutative Banach algebra, then exp8B = %,.
Proof ByLemma 2.12if B is commutative, then exp B is a subgroup.

Before continuing, we identify the abstract index group for C(X) with
a more familiar object from algebraic topology. This identification is actually

valid for arbitrary commutative Banach algebras but we will not pursue this
any further (see [40]).

2.16 Let X be a compact Hausdorff space and let ¢ denote the invertible
elements of C(X). Hence a function fin C(X) 1s in ¢ if and only if f(x) # 0
for all x 1n X, that is, ¢ consists of the continuous functions from X to C* =
C\{0}. Since ¢ is locally arcwise connected, a function fis in %, if there exists
a continuous arc {f;}; 0,17 Of functions in ¢ such that f, =1 and f; = .
If we define the function F from X x [0, 1] to C* such that F(x, 4) = f;(x),
then F is continuous, F(x,0) =1 and F(x, 1) = f(x) for x in X. Hence f 1s
homotopic to the constant function 1. Conversely, if ¢ is a function in 4
which is homotopic to 1, then g is in %,. Similarly, two functions g, and g,
in ¢ represent the same element of A = 4/%, if and only if g, is homotopic
to g,. Thus A is the group of homotopy classes of maps from X to C*.
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2.17 Definition If X 1s a compact Hausdorff space, then the first co-
homotopy group n' (X) of X is the group of homotopy classes of continuous
maps from X to the circle group T with pointwise multiplication.

2.18 Theorem If X 1s a compact Hausdorft space, then the abstract index
group A for C(X) and n' (X) are naturally isomorphic.

Proof We define the mapping @ from ='(X) to A as follows: A con-
tinuous function f from X to T determines first an element {f} of n'(X)
and second, viewed as an invertible function on X, determines a coset f+%,
of A. We define ®({f}) =f+%,. To show, however, that ® is well defined
we need to observe that if ¢ i1s a continuous function from X to T such that
{f} ={g}, then f i1s homotopic to g and hence f+ %, =g +%,. Moreover,
since multiplication in both 7' (X) and ¢ is defined pointwise, the mapping
@ is obviously a homomorphism. It remains only to show that @ is one to-one
and onto.

To show @ 1s onto let f be an invertible element of C(X). Define the
function F from X% [0,1] to C* such that F(x,?) = f(x)/|f(x)|". Then F
is continuous, F(x,0)= f(x) for x in X, and ¢g(x) = F(x,1) has modulus
one for x n X. Hence, f+ %, = g +%, s0 that ®({g}) = f+%, and therefore
@ 1s onto.

If f and g are continuous functions from X to T such that ®({f}) =
®({g}), then fis homotopic t0 g in the functions in ¥, that is, there exists a
continuous function G from X x [0, 1] to C* such that G (x,0) = f(x) and
G(x,1) = g(x) for x in X. If, however, we define F(x, ) = G(x, )/|G(x,?)|,
then F i1s continuous and establishes that f and g are homotopic 1n the class
of continuous functions from X to T. Thus {f} = {¢g} and therefore @ is
one-to-one, which completes the proof. W

The preceding result is usually stated in a slightly different way.

2.19 Corollary If X is a compact Hausdorff space, then A is naturally
isomorphic to the first Cech cohomology group H'(X,Z) with integer
coefficients.

Proof It is proved in algebraic topology (see [67]) that ='(X) and
H' (X, Z) are naturally isomorphic. W

These results enable us to determine the abstract index group for simple
commutative Banach algebras.
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2.20 Corollary The abstract index group of C(T) 1s isomorphic to Z.

Proof The first cohomotopy group of T 1s the same as the first homotopy
group of T and hencei1s Z. N

We now return to the basic structure theory for Banach algebras.

2.21 Definition Let B be a Banach algebra. A complex linear functional
¢ on B is said to be multiplicative if:

(1) ¢(fg9) =@ (f)@(g) for fand g in B; and
2) ()= 1.

The set of all multiplicative linear functionals on B is denoted by M = M.

We will show that the elements of M are bounded and that A is a w*-
compact subset of the unit ball of the conjugate space of B. We show later
that A is nonempty if we further assume that 8 is commutative.

2.22 Proposition If B is a Banach algebra and ¢ is in M, then |¢| = 1.

Proof Let K =kero={feB:e(f)=0}. Since p(f—¢(f)-1)=0, it
follows that every element in B can be written in the form A+ f for some A
in C and f m K. Thus

loo| = Sllp‘go(g)‘ _ Sup‘go(l_i_f)‘ = sup 4] — = sup : = ]
g#0 | g| e[| A+f] ret |A+f wes|1+A|

because [|[1+4|| < 1 implies that / is invertible by Proposition 2.5, which
implies in turn that /# is not in K. Therefore |¢| =1 and the proof is
complete. N

Whenever we deduce topological properties from algebraic hypotheses,
completeness is usually crucial; the use of completeness in the proof of
Theorem 1.42 was obvious. Less obvious is the role played by completeness
in the preceding proposition.

2.23 Proposition If B is a Banach algebra, then A is a w*-compact subset
of (B*),.

Proof Let {¢,}.c4 b€ a net of multiplicative linear functionals in A/
that converge in the w*-topology on (B*), to a ¢ in (B*),. To show that
M 1s w*-compact it is sufficient in view of Theorem 1.23 to prove that ¢ 1s
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multiplicative and ¢(1)=1. To this end we have ¢(1) =lim,_,¢,(1) =
lim,_,1 = 1. Further, for fand g in B, we have

0(fg) = im ¢, (fg) = lim¢,(f) ¢.(g)

xEA acA
= 1i£%(f)lin;%(g) = @(f)- o(9)

Thus ¢ 1s in M and the proof is complete. W

Thus M is a compact Hausdorfl space in the relative w*-topology. Recall
that for each f in B there is a w*-continuous function f: (B8*), —» C given
by f(0) = @(f). Since M is contained in (B*),, then f| M is also continuous.
We formalize this in the following:

2.24 Definition For the Banach algebra B, the Gelfand transform is the
function I': B— C(M) given by ['(f) = f| M, that is, I(/)(¢) = ¢(f) for
¢ In M.

2.25 FElementary Properties of the Gelfand Transform If 8B i1s a Banach
algebra and I' 1s the Gelfand transform on B, then:

(1) I is an algebra homomorphism; and
@) TS| <[] for fin B.

Proof The only nonobvious property needed to conclude that I 1s an
algebra homomorphism is that I' 1s multiplicative and that argument goes as
follows: For fand g in B we have

['(f9)(0) = ¢ (fg) = (/) e(g) = T/ e} T(g)(e) = [T(f)-T(9)](9),

and hence I' 1s multiplicative. To show that I" is a contractive mapping we
let f be in B and then

[Tl = IfI Mo < Il = I1:

Thus I is a contractive algebra homomorphism and the proof is complete. |

2.26 Before proceeding we want to make a few remarks about the Gelfand
transform. Note first that I" sends all elements of the form fg —gf to 0. Thus,
if B 1s not commutative, then the subalgebra of C(M) that 1s the range of I’
may fail to reflect the properties of B. (In particular, we indicate in the prob-
lems at the end of this chapter an example of a Banach algebra for which
M 1s empty.) In the commutative case, however, M 1s not only not empty
but is sufficiently large that the invertibility of an element fin B is determined
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by the invertibility of I fin C(M). This fact alone makes the Gelfand transform
a powerful tool for the study of commutative Banach algebras.

To establish this further property of the Gelfand transform in the com-
mutative case, we must first consider the basic facts of spectral theory. We
will not assume, in what follows, that B8 is commutative until this assumption
is actually needed.

2.27 Definition For B a Banach algebra and f an element of B we define
the spectrum of f to be the set

ox(f) = {L € C: f—1is notinvertible in B},

and the resolvent set of f to be the set

pe(f) = Clog(f).

Further, the spectral radius of fi1s defined
re(f) = sup{|2| : 1 € 6 (/)}.

When no confusion will result we omit the subscript 8 and write only

o(f), p(f), and r(f).

The following elementary proposition shows that o(f) 1s compact. The
fact that o(f) 1s nonempty lies deeper and is the content of the next theorem.

2.28 Proposition IfBisa Banach algebra and fis in B, then ¢(f)is compact
and r(f) < ||f].

Proof If we define the function ¢ : C—8B by ¢(1) =f—A, then ¢ is
continuous and p(f) = ¢~ (%) is open since ¢ is open. Thus the set o(f)
1s closed.

IF |4] > ||, then

11| /
== =)

so that 1 —f/A is invertible by Proposition 2.5. Thus f— 4 1s invertible. There-
fore, A is in p(f), o(f) is bounded and hence compact, and r(f) < [|f]- W

2.29 Theorem If B is a Banach algebra and fis in B, then o(f) 1s non-
empty.

Proof Consider the function F:p(f)— B defined F(1) = (f—1)"".
We show that F is an analytic B-valued function on p(f) that is bounded
at infinity and use the Liouville theorem to obtain a contradiction.
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First, since inversion is continuous we have for 1, in p(f) that

{F(l) —Flo)] _ . {(f— ho) ' [(f=o) = (F=M](F— 1)~
A— /10 A — /10

lim

A"'}J.ﬂ A AD

lim (f—20) ' (f—A)7! = (f—1y) 2%

A"'}Aﬂ

In particular, for ¢ in the conjugate space B*, the function ¢ (F) is a complex

analytic function on p(f).
Further, for 1] > | f| we have, using Proposition 2.5, that 1—f/1 is

invertible and
—1
(I_I) <1
A 1— | A74]

l —1
lim |[F(A)| = lim § > (f — 1)
A~ 0D

Thus i1t follows .that

A= OO /1 A
< lim : - 0
< sup = (.
w-w A T—=] /2]

Therefore for ¢ in B* we have lim,_,, ¢(F(1)) = 0.

If we now assume that o(f) is empty, then p(f) = C. Thus for ¢ in B* it
follows that ¢ (F) 1s an entire function that vanishes at infinity. By Liouville’s
theorem we have ¢ (F) = 0. In particular, since for a fixed 4 in C we have
@(F(4)) = 0 for each ¢ in B*, it follows from Corollary 1.28 that F(4) = 0.
This, however, is a contradiction, since F(A) is by definition an invertible
element of B. Therefore o (f) is nonempty. [

Note that although B is not assumed to be commutative, the subalgebra
of B spanned by 1, £, and elements of form (f— A1)~ ! is commutative, and the
result really concerns only this subalgebra.

2.30 The following theorem is an immediate corollary to the preceding and
1s crucial in establishing the desired properties of the Gelfand transform.
Recall that a division algebra is an algebra in which each nonzero element
is invertible.

2.31 Theorem (Gelfand-Mazur) If B is a Banach algebra which is a
division algebra, then there is a unique isometric isomorphism of 8 onto C.
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Proof 1If fis in B, then o(f) is nonempty by the preceding theorem. If
As is in o(f), then f— A, is not invertible by definition. Since ¥ is a division
algebra, then f—A,=0. Moreover, for A3 A, we have f—1 = A,—1 which
is invertible. Thus ¢ (f) consists of exactly one complex number A, for each
fin B. The map ¥ : B — C defined Y (f) = A, is obviously an isometric
isomorphism of B onto C. Moreover, if iy’ were any other, then '(f) would
be in o (f) implying that ¥ (f) = ¥'(f). This completes the proof. |

2.32 Quotient Algebras We now consider the notion of a quotient algebra.
Let B be a Banach algebra and suppose that 9t is a closed two-sided 1deal of
RB. Since M 1s a closed subspace of B we can define a norm on B/IR following
Section 1.39 making it into a Banach space. Further, since It 1s a two-sided
ideal in B, we also know that B/} is an algebra. There remain two facts to
verify before we can assert that B/ is a Banach algebra.

First, we must show that ||[1]]| = 1, and this proof proceeds as follows:
I[1]]| = inf, g ||1—g| =1, for if |1—g| <1, then ¢ is invertible by
Proposition 2.5.

Secondly, for fand g in B we have

ILAA0g]] = [Lfg]ll = inf |fg—A|

he I

< inf |[(f—h)(g—hy)| < inf ||f=h,| inf |g—h,|

hyhe hie M hye

= L/ 1ILg]

so that |{f1lg]| < L/]1l |Lg]ll- Thus B/M is a Banach algebra. Moreover,
the natural map f— [ /] is a contractive homomorphism.

2.33 Proposition If B is a commutative Banach algebra, then the set M of
multiplicative linear functionals on B is in one-to-one correspondence with
the set of maximal two-sided ideals in B.

Proof Let ¢ be a multiplicative linear functional on B and let K& =
kero ={feB:¢o(f)=0}. The kernel & of a homomorphism is a proper
two-sided ideal and if fis not in &, then

1=(1 _f){ S
o(f)) o)

Since (1— f/o(f)) is in K, the linear span of f with & contains the identity 1.
Thus an ideal containing both & and f would have to be all of B so that &
is seen to be a maximal two-sided ideal.
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Suppose 9t 1s a maximal proper two-sided ideal in B. Since each element
f of M is not invertible, then |1 —f|| = 1 by Proposition 2.5. Thus 1 is not in
the closure of 9. Moreover, since the closure I of M is obviously a two-
sided ideal and 9 < M < B, then M =W and M is closed. The quotient
algebra B/ is a Banach algebra which because IR is maximal and B is
commutative, 1s a division algebra. Thus by Theorem 2.31, there is a natural
isometrical isomorphism y of B/ onto C. If n denotes the natural homo-
morphism of B onto B/IN, then the composition ¢ = Yn is a nonzero
multiplicative linear functional on B. Thus ¢ 1s in M and M = ker ¢.

Lastly, we want to show that the correspondence ¢ « ker ¢ is one-to-one.
If ¢, and ¢, are in M with ker ¢, = ker ¢, = I, then

01 ()~ ¢2(f) = (f—02.() — (f—:.(N)

is both in 9 and a scalar multiple of the identity for each fin B and hence
must be 0. Therefore ker ¢, = ker ¢, implies ¢, = ¢, and this completes
the proof. N

This last proposition is the only place in the preceding development
where the assumption that 8 is commutative 1s required.
Hereafter, we refer to My as the maximal 1deal space for B.

2.34 Proposition If B is a commutative Banach algebra and fis in B,
then f1s invertible in B if and only if I'(f) 1s invertible in C(M).

Proof If fis invertible in B, the I'(f™ ') is the inverse of Y'(f). If f 1s
not invertible in B, then M, = {gf: g € B} i1s a proper ideal in B since 1
is not in W,. Since B is commutative, Y, 1s contained in some maximal
ideal 9t. By the preceding proposition there exists ¢ in M such that ker ¢ = .

Thus I'(f)(p) = ¢(f) = 0 so that Y'(f) 1s not invertible in C(AM). N

We summarize the results for the commutative case.

2.35 Theorem (Gelfand) If B is a commutative Banach algebra, M i1s 1ts
maximal ideal space, and I': B - C(M) is the Gelfand transform, then:

(1) M 1s not empty;

(2) I' is an algebra homomorphism;

(3) [Tl < |lf] for fin B; and

(4) f1s invertible in B if and only if I'(f) i1s invertible in C(M).

The crucial fact about statement (4) is that it refers to I'(f) being invertible
in C(M) rather than in the range of T'.



The Spectral Radius Formula 45

We obtain two corollaries before proceeding to a result concerning the
spectral radius.

2.36 Corollary If B is a commutative Banach algebra and fis in 8B, then

o(f) =rangel fand r(f) = |If| .-

Proof If 1i1s not in a(f), then f— 4 1s invertible in B by definition. This
implies that Y'(f)—A4 is invertible in C(d), which in turn implies that
(T f—2)(¢p) # 0 for ¢ in M. Thus (If)(¢) # A for ¢ 1n M. If 4 is not in the
range of I'f, then I f—/ 1s mvertible in C(M) and hence, by the preceding
theorem, f—A is invertible in B. Therefore, 4 1s not in o(f) and the proof is
complete. |

If p(z) =3 Loa,z" 1s an entire function with complex coefficients and
f1s an element of the Banach algebra B, then we let ¢ (f) denote the element

S 0y f" of B.

2.37 Corollary (Spectral Mapping Theorem) If B 1s a Banach algebra, f is
in B, and ¢ 1s an entire function on C, then

a(e(N) = ¢(a(f)) = {eD) : Le a(f)].

Proof 1If ¢(2) =>L,a,z" 1s the Taylor series expansion for ¢, then
() =37 _oa,f" can be seen to converge to an element of B. If B, i1s the
subalgebra of B generated by 1, £, and elements of the form (f—1)"! for A in

p(f) and (o(f)— )~ * for pin p(@(f)), then B, is commutative and oy (f)=
o, (f) and ogx(@(f)) = oy (¢(f)). Thus, we can assume that B is com-

mutative and use the Gelfand transform.
Using the preceding corollary we obtain

o(¢(f)) = range I'(p(f)) = range o(If)
= ¢(range I'f) = ¢(a(/)),
since I'{@(f)) = ¢(If) by continuity; thus the proof is complete. N

We next prove a basic result due to Beurling and Gelfand relating the
spectral radius to the norm.

2.38 Theorem If B is a Banach algebra and f is in B, then rg(f) =
lim,..., | /7]
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Proof If B, denotes the closed subalgebra of B generated by the identity,
frand {(/"— D)1 Ae pu(f), ne 27}, then B, is commutative and 05, (/M=
ox(f™) for all positive integers n. From the preceding corollary, we have
o5, (/") = 0y (f)" and hence rg(f)" =ru(f") < |f"|; thus the inequality
re(f) < liminf,, ., ||/ follows.

Next consider the analytic function

G(J) = —ai;
n=0

which converges for || > limsup,., . [f"|'" by Proposition 1.9. For
|A| > |f|| we have G(A) = (f— )~ ' and therefore

(f—N)G@A) = GW(f—H =1  for || > limsup | f"|".

H—>» 00D

Thus
re(f) = limsup [ /*]|'/" > lminf [ /™|*" = rg(f),

n-»cO -+ 00

from which the result follows. |

2.39 Corollary If B is a commutative Banach algebra, then the Gelfand
transform is an isometry if and only if || f?| = | f]|* for every fin B.

Proof Since r(f) = |I'yf]. for fin B by Corollary 2.36, we see that
[ is an isometry if and only if r(f) = |f|| for f in B. Moreover, since
r(f*) = r(f)* by Corollary 2.37, the result now follows from the theorem. |}

We now study the self-adjoint subalgebras of C(X) for X a compact
Hausdorff space. We begin with the generalization due to Stone of the classical
theorem of Weilerstrass on the density of polynomials. A subset 2 of C(X)
is said to be self-adjoint if £in A implies f is in .

240 Theorem (Stone-Weierstrass) Let X be a compact Hausdorfl space.
If 9 is a closed self-adjoint subalgebra of C(X) which separates the points
of X and contains the constant function 1, then U = C(X).

Proof If U, denotes the set of real functions in 2, then 2, is a closed
subalgebra of the real algebra C,(X) of continuous functions on X which
separates points and contains the function 1. Moreover, the theorem reduces
to showing that U, = C,(X).

We begin by showing that £in _implies that | /| is in 9. Recall that the



The Stone-Weierstrass Theorem 47

binomial series for the function ¢ (f) = (1 —H)Y? is 32 o, ", where o, =
(—D"(*?). 1t is an easy consequence of the comparison theorem that the
sequence {3_oa,t"}v_, converges uniformly to ¢ on the closed interval
[0,1—467 for 6 > 0. (The sequence actually converges uniformly to ¢ on
[—1,1].) Let fbe in A, such that || f|., <1 and set g; =6+(1—8)f* for &
in (0,1]; then 0 < 1—g; < 1-46. For fixed § > 0, set iy = 3V_,a,(1 —g5)"
Then /i 1s in A, and

-
1M1=

oty (1—g5(x))" — (1 —g5(x))

lin—(9*]. = sup

N
< sup | ) o, "= ().
tel[0,1—98] |n=0

Therefore, limy., ., [y —(95)%||, = 0, implying that (g;)% is in Y. Now
since the square root function is uniformly continuous on [0, 1], we have
limy..o || /]~ (95)%].. = 0, and thus |f] is in 2L,.

We next show that 9 1s a lattice, that 1s, for f and g 1n U the functions
fvgand fA garein U, where (fv g)(x) = max{f(x), g(x)}, and (f A g)(x) =
min { f(x), g(x)}. This follows from the identities

fvg=#Hf+g+|f-gl}, and fArg=3i{f+g—|f-9l}

which can be verified pointwise.

Further, if x and y are distinct points in X and a and b arbitrary real
numbers, and f1s a function in 2, such that f(x) # f(y), then the function
g defined by

f(@) — f(x)
f(y) —f(x)

is in A, and has the property that g(x) = a and g(y) = b. Thus there exist
functions in U, taking prescribed values at two points.

We now complete the proof. Take fin C,(X) and ¢ > 0. Fix x, 1n X. For
each x in X, we can find a ¢, in U such that g, (x,) = f(x,) and g.(x) = f(x).
Since f and g are continuous, there exists an open set U, of x such that
g9.(») <f(y)+e for all y in U,. The open sets {U,},.x cover X and hence
by compactness, there is a finite subcover U, ,U,,,...,U, . Let h, =
Gx NG, N Ag, . Then b is in U, b _(x,) = f(x0), and h, (¥) < f(y) +¢
for y in X.

Thus for each x, in X there exists A4, in A, such that A _(x) = f(x0)
and A, () <f(y)+¢ for y in X. Since A, and f are continuous, there exists

an open set V, of x, such that &, (y) > f(»)—¢ for y in V. Again, the

g() =a+ (b—a)
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family {V, }x,cx covers X, and hence there exists a finite subcover
VisVipseeisVoy . Ifwesetk=h_vh,v--vh, ,then kisin U and f(y)—e

<k(yY) <f(y)+e& for y in X. Therefore, |f—k|, <& and the proof is
complete. N

241 1If [a,b] is a closed interval of R, then the collection of polynomials
SN, a,2"} with complex coefficients is a self-adjoint subalgebra of C([a,b])
which separates points and contains the constant function 1. Thus its closure
must be C([a, b]), and this 1s the statement of the Weierstrass theorem.

We now consider the closed self-adjoint subalgebras of C(X) containing
the constant function 1 that do not separate points and show that they can
be 1dentified as C(Y) for some compact Hausdorff space Y.

Let X be a compact Hausdorff space and 2 be a closed subalgebra of
C(X) which contains the constant functions. For x in X we let ¢, denote
the multiplicative linear functional in My defined ¢, (f) = f(x). The follow-
ing proposition is of interest even in the nonself-adjoint case.

2.42 Proposition If # is the map defined from X to My so that #(x) = ¢,,
then # 1s continuous.

Proof 1If {x,},.41s a net in X which converges to x, then lim,_4 f(x,) =

f(x) for fin AU. Therefore, im,., ¢, (/) = ¢.(f) and hence lim,_,7(x,) =
17(x) 1n the topology of M. Thus, 7 is continuous. W

In general, # 1s neither one-to-one nor onto. The latter property, however,
holds if 2 1s self-adjoint.

2.43 Proposition If U is self-adjoint, then # maps X onto My.

Proof Fix ¢ in My and set K, = {x € X : f(x) = ¢(f)}. First of all, each
K, 1s a closed subset of X, since f'is continuous. Secondly, we want to show
that not only is each K, nonempty but that the collection of sets {K, : f € 2}
has the finite intersection property. Suppose

Ki,nK;,n--nK, =

for some functions £}, 15, .-.,f, 1n L. Then the function

90) = Y. 1) ~ o ()’

does not vanish on X. Moreover, g is in 9 since the latter is a self-adjoint
algebra. But g(x) > O for x in X and the fact ti:at X is compact implies that
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there exists ¢ >0 such that 1= g(x)/]gllo =& and hence such that
11—(g/1g]l) < 1. But then g~ is in 9 by Proposition 2.5 which implies
¢(g) # 0. However,

0(0) = . (01D ~ 9 U@ — 2 T) = 0

which is a contradiction. Thus the collection {K, : f'e€ U} has the finite inter-
section property. If x is in {\,eqK,, then #(x) =¢ and the proof is
complete. J§

The reader should consider carefully how the self-adjointness of U was
used in the preceding proof. We give an example in this chapter of a sub-
algebra for which # is not onto. Even for examples where # 1s onto, the Gelfand
transform I" need not be onto. It is, however, for self-adjoint subalgebras.

2.44 Proposition If U is a closed self-adjoint subalgebra of C(X) containing
the constant function 1, then the Gelfand transform I" 1s an isometric iso-
morphism from U onto C(My).

Proof For f in U there exists x, in X such that f(xq) = | f{.., since
X 1s compact. Therefore,

[/l 2 1T

sup (TN = TN @x)] = flxo) = | fleos

@ civigy

and henceI isanisometry. Since I" is known to be an algebraic homomorphism,
it remains only to prove that I' is onto. The range of I'" is a subalgebra of
C(My) that contains 1, since I'l =1, is uniformly closed since I' is an
isometry, and separates points. Moreover, since by the preceding proposition
for ¢ in M, there exists x in X such that #x = ¢, we have for fin U that

TN (9) = @) = @NEX) = f(x) = f(x) = T(N@x) = TN ().

Therefore, Ff= l“(?) and I'Y is self-adjoint because U is. By the Stone-
Weierstrass theorem, we have I'¥l = C(My,) and the proof is complete. I

245 Lemma Let X and Y be compact Hausdorff spaces and £ be a con-
tinuous map from X onto Y. The map 6* defined by 6*f = fo0 from C(Y)
into C(X) is an isometrical isomorphism onto the subalgebra of continuous
functions on X which are constant on the closed partition {0 1(3):ye Y}
of X.

Proof That 6* is an isometrical isomorphism of C(Y) into C(X) is
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obvious. Moreover, it is clear that a function of the form fo8 is constant
on the partition {#71(y):y e Y}. Now suppose g is continuous on X and
constant on each of the sets 671 (y) for y in Y. We can unambiguously define
a function f on Y such that fo0 = g; the only question is whether this f is
continuous. Suppose {¥.}.c4 1S @ net of points in ¥ and y is in Y such that
lim,,. ,y, =y. Choose x, in 6 '(y,) for each « in 4 and consider the net
{X,}.c4- In general, lim, . , x, does not exist; however, since X is compact
there exists a subnet {x,,}pcp and an x in X such that lim; 5 x,, = x. Since
0 is continuous, we have 0(x) =y and limg gg(x,,) = g(x) = f(»); thus f
is continuous and the proof is complete. [}

2.46 Proposition If U is a closed self-adjoint subalgebra of C(X) containing
the constant function 1, and # a continuous map from X onto My, then n*
is an isometrical isomorphism of C(My) onto U which is the left inverse of
the Gelfand transform, that is, #*oI = 1.

Proof For fin % and x in X, we have ((#*1)f) (x) = (Tf)(x) = f(x).
Therefore #* is the left inverse of the Gelfand transform. Since I' maps U
onto C(Myg) by Proposition 2.44, we have that #* maps C(My) onto U. K

We state and prove the generalized Stone-Weierstrass theorem after
introducing the following terminology. For X a set and ¥ a collection of
functions on X define the equivalence relation on X such that two points
x; and x, are related if f(x,) = f(x,) for every fin . This relation partitions
X into the sets on which the functions in 2 are constant. Let Iy denote this
collection of subsets of X.

2.47 Theorem Let X be a compact Hausdorff space and ¥« be a closed
self-adjoint subalgebra of C(X) which contains the constants. Then 2 is the
collection of continuous functions on X which are constant on the sets
of Ily.

Proof This follows by combining Lemma 2.45 and Proposition 2.46. |}

If U separates the points of X, then [y consists of one-point sets and the
usual Stone-Weierstrass theorem follows.

2.48 As we have just seen, the self-adjoint subalgebras of C(X) are all of
the form C(Y) for some compact Hausdorff space Y. This is far from true,
however, for the nonself-adjoint subalgebras. Let U be a closed subalgebra
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of C(X) which contains the constant functions. If we let B denote the smallest
closed self-adjoint subalgebra of C(X) that contains 21, then ‘B is isometrically
isomorphic to C(Y), where Y is the maximal ideal space of ‘B, and the Gelfand
transform I implements the isomorphism. Then I'¥ is a closed subalgebra
of C(Y) that contains the constant functions and, more importantly, separates
the points of Y. Therefore, rather than study U as a subalgebra of C(X), we
choose to study I'¥ as a subalgebra of C(Y). Thus we make the following
definition.

2.49 Definition Let X be a compact Hausdorft space and U be a subset
of C(X). Then ¥ is said to be a function algebra if ¥ is a closed subalgebra
of C(X) which separates points and contains the constant functions.

The theory of function algebras is very extensive and draws on the tech-
niques of approximation theory and complex function theory as well as those
of functional analysis. In this book we will be limited to considering only a
few important examples of function algebras.

2.50 Example Let T denote the circle group {ze C: |z =1}. For n in Z
let x, be the function on T defined y,(z) = z". Then yo =1, x_, = ¥,» and
Ym Xn = Xm+n fOr nand m in Z. The functions in the set

N
.@={ Y oc,,x,,:oc,,e@}

n=—N

are called the trigonometric polynomials. Since £ is a self-adjoint subalgebra
of C(T) which contains the constant functions and separates points, then the
uniform closure of £ is C(T) by the Stone-Weierstrass theorem.

Let 2, = {3 0-00%Xx : % € C}; the functions in £, are called analytic
trigonometric polynomials. If we let A denote the uniform closure of &,
in C(T), then A is a function algebra, but at this point it is not obvious that
A # C(T). We prove this by showing that the maximal ideal space of A is
not T. For this we need a lemma.

251 Lemma IfY).,0,%,i8in 2, and wisin C, |w| < 1, then

N

Al 1 (2= . 1
W= — . — (It.
n;{) o 271 .[} (Z o x") ) I—we™

n=0

Proof Expand 1/(1—we™ ™) =3*_,(we™ ™)™, where the series converges
uniformly for ¢ in [0, 27]. Therefore,
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N

1 (2 | 1
2_?1_ o (Z%f%ﬂ)(et)l -*i't "_2_

n=0

i W™ f 21me“"' ™t dt

m=0

M‘,__

since (1/2r) (2" dt = 1 for k =0 and O otherwise. [l

For win C, [w| < 1, define ¢, on &, such that

N N
q)w( ZO G Xn) == ;} oy, W',

It is clear that ¢, is a multiplicative linear functional on &, . However,
since 2, is not a Banach algebra, that is, 2, is not complete, we cannot
conclude apriori that ¢, is continuous. That follows, however, from the
preceding lemma since

N N 1 2 N ] 1
o dt
c,ow(";) Oty xu) 2, o J; (Z Oy xu) €)=

{
M
=S:’.'
=

|

n=0 |
(I T l
< — dt.
27 ;Q"x" . J(; 1 —we ™|

Therefore, ¢, is bounded on £, and hence can be extended to a multiplicative
linear functional on 4. Now for w in C, |w| = 1, let ¢,, denote the evaluation
functional on A, that is, ¢ (f) = f(w) for fin A. The latter is well defined,
since A < C (T)

Now set D = {ze C: |z| €1}, let M denote the maximal ideal space of
A, and I&t ¢ be the function from D to M defined by y/(z) =

2.52 Theorem The function y is a homeomorphism of @ onto the maximal
ideal space M of A.

Proof By the remarks preceding the theorem, the function i i1s well
defined. If z, and z, are in D, then §/(z,) = Y (z,) implies that z, = ¢,, (x;) =
@,,(x1) = z,; thus Y is one-to-one.

If  isin M, then )y,) = ! implies that z = ¢(y,) is in D. Moreover, the

identity
N
o Be)
= n=0

|
R
-
—
S
A,
<
-
ot
=

|
M=
-]
-
N
-
l]
S
P
]2
2
-
5‘:2
~—’
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proves that ¢ agrees with ¢, on the dense subset #, of A. Therefore, ¢ = ¢,
and 1 is seen to be onto M.

Since both D and M are compact Hausdorff spaces and y is one-to-one
and onto, to complete the proof it suffices to show that ¥ is continuous. To
this end suppose {zz}z.p is a net in D such that limg gz, = z. Since
SUPgep L1|¢z,ll} = 1 and £, is dense in 4, and since

_ N _ N N
llmgozﬂ( ) oznx") = llrg( Zoa,,zﬁ") = Z,Oocnz"

BeB n=0 pe

N
— (Dz( Zﬂ oy Xrl)

for every function Y%_, o, %, in 2., it follows from Proposition 1.21 that
s is continuous. [Ii§

2.53 From Proposition 2.3 we know that the maximal 1deal space of C(T)
is just T. We have just shown that the maximal ideal space of the closed
subalgebra 4 of C(T) is . Moreover, if ¢_ is a multiplicative linear functional
on A, and {z| = 1, then ¢, is the restriction to A of the “evaluation at z”
map on C(T). Thus the maximal ideal space of C(T) is embedded in that of A.
This example also shows how the maximal ideal space of a function algebra
is, at least roughly speaking, the natural domain of the functions in it. In this
case although the elements of 4 are functions on T, there are ‘“hidden points™
inside the circle which “ought” to be in the domain. In particular, viewing
¥1 as a function on T, there is no reason why it should not be invertible;
on D, however, it is obvious why it is not—it vanishes at the origin.

et us constder this example from another viewpoint. The element y,
iscontained in both of the algebras A and C(T).In C(T) we have o1y (%) = T,
while in 4 we have ¢ ,(y;) = . Hence not only is the “A-spectrum” of ¥,
larger, but it is obtained from the C(T)-spectrum by “filling in a hole.” That
this is true, in general, is a corollary to the next theorem.

2.54 Theorem (Silov) If B is a Banach algebra, ¥ is a closed subalgebra
of B, and fis an element of 2, then the boundary of o, (f) is contained in
the boundary of oy (f).

Proof If (f—2) has an inverse in U, then it has an inverse in B. Thus
oy f) contains ogx(f) and hence it is sufficient to show that the boundary of
cul( /) < ogx(f). If 44 is in the boundary of oy ( /), then there exists a sequence
{4,172, contained in pg(f) such that lim,, A, = 1,. If for some integer

n=1
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n it were true that [(f/—4,) 7| < {1/(1o—4,)|, then it would follow that
|(f—20) — (f= )| < YI(S—=2)7 7|

and hence f— 4, would be invertible as in the proof of Proposition 2.7. Thus
we have lim,_, . [(f/—4,) || = .

If 1, were not in ogx(f), then it would follow from Corollary 2.8 that
|(f—A)~'|| is bounded for A in some neighborhood of 1,, which is a
contradiction. |

2.55 Corollary If ‘B is a Banach algebra, ¥ is a closed subalgebra of B,
and f is an element of %, then oy (f) is obtained by adding to oyx(f) certain
of the bounded components of Cl\og( f).

Proof Elementary topology and the theorem yield this result. [

2.56 Example We next consider an example for which the Gelfand trans-
form is not an isometry.

In Section 1.15 we showed that /' (Z") is a Banach space. Analogously,

if we let /' (Z) denote the collection of complex functions f on Z such that

< _ o |f(m] < oo, then with pointwise addition and scalar multiplication

and the norm ||f]|, = 3= _ . |f(n)| < oo, I'(Z) is a Banach space. More-

over, /1(Z) can also be made into a Banach algebra in a nonobvious way.

For fand g in /' (Z) define the convolution product
o)) = ¥ fr—K)g(h)

To show that this sum converges for each n in Z and that the resulting function
is in /' (Z), we write

3 1ol = X | Y fo-Rglol < ¥ Y [fn—h)lgtk)
= 3 gl Y. 1fn=Rl = 171, ¥ _laCol
= 171 1l

Therefore, fog is well defined and is in /' (Z), and ||fog|, < |f]1gli- We
leave to the reader the exercise of showing that this multiplication is asso-
ciative and commutative. Assuming this, then /! (Z) is a commutative Banach
algebra.
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For n in Z let e, denote the function on Z defined to be 1 at » and O other-
wise. Then e, is the identity element of /'(Z) and e,ce,, =e,,, for n and

m in Z.
Let M be the maximal ideal space of /' (Z). For each zin T, let ¢, be the

function defined on [/'(Z) such that ¢, (f) =Y _ . f(n)z" It is easily
verified that ¢, is well defined and in M. Thus we can define a function from

T to M by setting ¥ (z) = ¢,.

2.57 Theorem The function i is a homeomorphism from T onto the
maximal ideal space M of !'(Z).

Proof If z; and z, are in T, and ¢,, = ¢, , then z; = ¢, (e;) =
¢,,(€1) = z,; hence i is one-to-one. Suppose ¢ is an element of M and
z = @(eq); then

] 1 1

—I7 = = =
Z7H el lle~q]

which mmplies that z is in T. Moreover, since ¢(e,) = [@(e)]" = z" = ¢_(e,)
for n in Z, it follows that ¢ = ¢, = y(2). Therefore, again ¢ is one-to-one
and onto and it remains only to show that i is continuous, since both M
and T are compact Hausdorfl spaces. Thus, suppose {zz};.p Is a net of points
in T such that lim; gz, = z. Then for fin /' (Z) we have

0, () — @D < ), 1fW)Iz"—2" + X 1f()]]zg"—2"

1 = Jlells = o(e))] = |z = 1,

<N in]> N
< | Ay sup |z"=2" +2 3, |f(m).
nl <NV Inl>N

Hence for ¢ > 0, if N is chosen such that 3", .y |f(n)| < ¢/4 and B, is then
chosen in B such that f> B, implies supy,<y|z;"—2"| < &/2|f]l;, then

|02, (N)— 0. (NI <& for B = Po. Therefore, limg.p¢.,(f) = ¢.(f) and ¥
is continuous and the proof is complete. [

2.58 Using the homeomorphism iy we identify the maximal ideal space of
['(Z) with T. Thus the Gelfand transform is the operator I' defined from
[1(Z) to C(T) such that (Tf)(z) = 32 _ . f(n)z" for z in T, where the series

converges uniformly and absolutely on T to I'f. The values of f on Z can be
recaptured from I'f, since they coincide with the Fourier coefficients of 1'f.

More specifically,

I (2= L.
f(n) = ” f ANE)e™ ™ dt for nin Z,
0
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since

P f (rf) (e ‘)B_mt dt = — f f(m) oHln—n)t At

Ly f(m)f e dt = f(n)

m= — aj

where the interchange of integration and summation is justified since the
series converges uniformly. In particular, ¢ in C(T) is in the range of I’ if
and only if the Fourier coefficients of ¢ are an absolutely convergent series,

that is, if and only if
1 2n
Z — f p(e)e "™ dt| < .
27 0

n= - oo

We leave to the exercises the task of showing that this is not always the case.

Since not every function ¢ in C(T) has an absolutely convergent Fourier
series, it is not obvious whether 1/¢ does if ¢ does and ¢ (z) # 0. That this
is the case is a nontrivial theorem due to Wiener. The proof below is due to
Gelfand and indicates the power of his theory for commutative Banach
algebras.

2.59 Theorem If ¢ in C(T) has an absolutely convergent Fourier series
and @(z) # Ofor z in T, then 1/¢ has an absolutely convergent Fourier series.

Proof By hypothesis there exists fin /' (Z) such that I'f = ¢. Moreover,

it follows from Theorem 2.35 that ¢(z) # O for z in the maximal ideal space
T of I1'(Z) implies that fis invertible in /' (Z). iIf g = f !, then

1 =1I(e) =1(gef)=1g-¢ or " = Ig.

Therefore, 1/¢ has an absolutely convergent Fourier series and the proof is
complete. |

2.60 Example We conclude this chapter with an example of a com-
mutative Banach algebra for which the Gelfand transform is as nice as
possible, namely an isometric isomorphism onto the space of all continuous
functions on the maximal ideal space.

In Section 1.44 we showed that L is a Banach space. If fand g are elements
of L®, then the pointwise product is well defined, is in I°, and | fg]. <
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Il lgllo- (That is, &< is an ideal in £*.) Thus L* is a commutative
Banach algebra. Although it is not at all obvious, L is isometrically iso-
morphic to C(Y) for some compact Hausdorff space Y. We prove this after
determining the spectrum of an element of L. For this we need the following
notion of range for a measurable function.

2.61 Definition If fis a measurable function on X, then the essential range
A (f) of fis the set of all 4 in C for which {x e X : | f(x)— 4| < &} has positive
measure for every ¢ > 0.

2.62 Lemma If fisin L™, then Z(f)is a compact subset of C and || f] ., =
supi|A| : 1€ Z(f)}.

Proof If 1, is not in Z(f), then there exists £ > 0 such that the set
{xe X :|f(x)—1,| <&} has measure zero. Clearly, then each 1 in the open
disk of radius ¢ about A, fails to be in the essential range of f. Therefore, the
complement of Z(f) is open and hence Z(f) is closed. If 4, in C 1s such that
lo = | f(x)| +6 for almost all x in X, then the set {x e X : [f(x)— Ao| < 6/2}
has measure zero, and hence sup{|i|: e Z(/)} <|f].. Thus Z(f) is a
compact subset of C for fin L™,

Now suppose fis in L® and no 1 satisfying || = | /], is in Z(f). Then
about every such A there is an open disk D, of radius 6, such that the set
{xe X:|f(x)—1| < é,} has measure zero. Since thecircle {1 e C : || = | f| »}
i1s compact, there exists a finite subcover of open disks D, ,D, ,...,D,
such that the sets {xe X:f(x)e D,;} have measure zero. Then the set
{xe X:f(x) e\ )’ ;D;} has measure zero, which implies that there exists
an &> 0 such that the set {xe X: |f(x)| > |f||l.—¢} has measure zero.
This contradiction completes the proof.

2.63 Lemma If fisin L*®, then o(f) = Z(f).

Proof If 7 is not in o(f), then 1/(f—2) is essentially bounded, which
implies that the set {x e X : | f(x)—4| < 1/2| f—4| .} has measure zero. Con-
versely, if {x e X :|f(x)— 4| < 6} has measure zero for some é > 0, then

1/(f— 7) is essentially bounded by 1/d, and hence 4 is not in o (f). Therefore
c(f)=2() &

2.64 Theorem If M is the maximal ideal space of [, then the Gelfand
transform I is an isometrical isomorphism of I* onto C(M). Moreover,

[f = I[(f) for fin I
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Proof We show first that I is an isometry. For f in L* we have, combin-
ing the previous lemma and Corollary 2.36, that range I/ = #(f), and hence

IT(N| . = sup{|4|: Aerange If} = sup{|i|: Le Z()} = ||f] -

Therefore I' is an isometry and I'(L”) 1s a closed subalgebra of C(M).

For fin L” set f = fi+1if,, where each of f; and f, is real valued. Since
the essential range of a real function is real and range I'f; = Z(f;) and
range I'f, = Z(f,), we have

If = Ify + iTf, = If, ~ ilf; = T().
Therefore I'L” is a closed self-adjoint subalgebra of C(M). Since it obviously

separates points and contains the constant functions, we have by the Stone-
Weierstrass theorem that I'L” = C(M) and the theorem is proved. i

Whereas in preceding examples we computed the maximal ideal space,
in this case the maximal ideal space is a highly pathological space having
220 points. We shall have reason to make use of certain properties of this
space later on.

2.65 It can be easily verified that /°(Z") (Section 1.15) is also a Banach
algebra with respect to pointwise multiplication. It will follow from one of
the problems that the Gelfand transform is an onto isometrical isomorphism
in this case also. The maximal ideal space of /“(Z™) is denoted fZ* and is
called the Stone-Cech compactification of Z™.

Notes

The elementary theory of commutative Banach algebras is due to Gelfand
[41] but the model provided by Wiener’s theory of generalized harmonic
analysis should be mentioned. Further results can be found in the treatises
of Gelfand, Raikov and Silov [42], Naimark [80], and Rickart [89]. The
determination of the self-adjoint subalgebras of C(X) including the generaliz-
ation of the Weierstrass approximation theorem was made by Stone [105].

The hiterature on function algebras is quite extensive but two excellent sources
are the books of Browder [10] and Gamelin [40].

Exercises

21  Let 2={feC(0,1):f eC(0,1]D} and define |f]s=]S]+
|/l - Show that 2 is a Banach algebra and that the Gelfand transform is
neither isometric nor onto.
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2.2 Let X be a compact Hausdorff space, K be a closed subset of X, and
I={feCX):f(x) =0 for xeK}.

Show that 3 is a closed ideal in C(X). Show further that every closed ideal
in C(X) is of this form. In particular, every closed ideal in C(X) is the inter-
section of the maximal ideals which contain it.%*

2.3 Show that every closed ideal in & is not the intersection of the maximal
ideals which contain it.

2.4 Let & be a Banach space and £(%) be the collection of bounded linear
operators on Z. Show that £(%) is a Banach algebra.

2.5 Show that if & is a finite (> 1) dimensional Banach space, then the
only multiplicative linear functional on (%) is the zero functional.

Definition An element 7 of £(%) is finite rank if the range of 7 is finite
dimensional.

2.6  Show that if & is a Banach space, then the finite rank operators form
a two-sided ideal in £(%) which is contained in every proper two-sided ideal.

2.7 If fis a continuous function on [0, 1] show that the range of f is the
essential range of f.

2.8 Let f be a bounded real-valued function on [0, 1] continuous except
at the point 1. Let U be the uniformly closed algebra generated by f and
C([01]). Determine the maximal ideal space of U.*

2.9 If X is a compact Hausdorff space, then C(X) is the closed linear span
of the idempotent functions in C(X) if and only if X is totally disconnected.

2.10 Show that the maximal ideal space of L* is totally disconnected.

2.11 Let X be a completely regular Hausdorff space and B(X) be the space
of bounded continuous functions on X. Show that B(X) is a commutative
Banach algebra in the supremum norm. If fX denotes the maximal ideal
space of B(X), then the Gelfand transform is an isometrical isomorphism of
B(X) onto C(fX) which preserves conjugation. Moreover, there exists a
natural embedding f of X into BX. The space BX is the Stone~Cech com-
pactification of X.

2.12 Let X be a completely regular Hausdorff space, ¥ be a compact
Hausdorff space, and ¢ be a continuous one-to-one mapping of X onto a
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dense subset of Y. Show that there exists a continuous mapping  from X
onto Y such that p = yo¢@. (Hint: Consider the restriction of the functions
in C(Y) as forming a subalgebra of C(fX).)

2.13 Let B be a commutative Banach algebra and
R={feB:1+Afe¥ for Le}.
Show that R is a closed ideal in B.

Definition If B is a commutative Banach algebra, then
R={feB:1+ife¥ for LeC}
is the radical of B and B is said to be semisimple if R = {0}.

2.14 If ‘B is a commutative Banach algebra, then ‘R is the intersection of
the maximal ideals in *B.

2.15 If B is a commutative Banach algebra, then B is semisimple if and
only if the Gelfand transform is one-to-one.

2.16 If ‘B i1s a commutative Banach algebra, then B/*R is semisimple.

2.17 Show that L'([0,1]) @ C with the l-norm (see Exercise 1.17) is a
commutative Banach algebra for the multiplication defined by

[(feD(gDmi(t) = {uf (1) + Ag(n) + L If(t —x) g(x) dx} ® Au.

Show that L' ([0, 1]) @ C is not semisimple.

2.18 (Riesz Functional Calculus) Let ‘B be a commutative Banach algebra,
x be an element of B, Q be an open set in € containing o(x), and A be a finite
collection of rectifiable simple closed curves contained in Q such that A
forms the boundary of an open subset of C which contains o (x). Let A(QQ)
denote the algebra of complex holomorphic functions on Q. Show that the

mappmg
¢ - fco(Z)(x—Z)"‘ dz
A
defines a homomorphism from A(Q) to B such that o(¢(x)) = ¢(o(x))
for ¢ in A (Q).

2.19 If B is a commutative Banach algebra, x is an element of B with
o(x) < Q, and there exists a nonzero ¢ in 4(Q) such that ¢(x) =0, then
o(x) is finite. Show that there exists a polynomial p(z) such that p(x) = 0.

2.20 Show that for no constant M is it true that 3°_ _yla,] < M| ple
for all trigonometric polynomials p = 3. _yva. % on T.
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2.21 Show that the assumption that every continuous function on T has
an absolutely convergent Fourier series implies that the Gelfand transform
on /! (Z) is invertible, and hence conclude in view of the preceding problem
that there exists a continuous function whose Fourier series does not converge
absolutely.*

Definition If B is a Banach algebra, then an automorphism on B is a con-
tinuous isomorphism from B onto B. The collection of all automorphisms

on B is denoted Aut(*B).

2.22 If X is a compact Hausdorff space, then every isomorphism from
C(X) onto C(X) is continuous.

2.23 If X is a compact Hausdorff space and ¢ is a homeomorphism on X,
then (@f)(x) = f(px) defines an automorphism © in Autf C(X)]. Show that
the mapping ¢ — @ defines an isomorphism between the group Hom(X)
of homeomorphisms on X and Aut[ C(X)].

2.24 If U 1s a function algebra with maximal ideal space M, then there is
a natural isomorphism of Aut(%) into Hom(M).

2.25 [If A 1s the disk algebra with maximal ideal space the closed unit disk,
then the range of Aut(4) in Hom(D) is the group of fractional linear trans-
formations on D, that is, the maps z — B(z—a)/(1 —az) for complex numbers
o and f satisfying |o| < 1 and || = 1.*

Definition If % is a function algebra contained in C(X), then a closed subset
M of X is a boundary for U if || f| .. = sup{|f(m)|: me M} for fin 2.

2.26 1f A 1s a function algebra contained in C(X); M 1s a boundary for 2;
f1i,---,/, are functions in U; and U is the open subset of M defined by

{xeX:|f;(x)| < 1fori=1,2,..,n}.

Show either that M\U is a boundary for U or U intersects every boundary
for 2.

2.27 (Silov) If U is a function algebra, then the intersection of all boundaries
for 9 is a boundary (called the Silov boundary for 20).%

2.28 Give a functional analytic proof of the maximum modulus principle
for the functions in the disk algebra 4. (Hint: Show that

j‘ i I an [ 10
e = o | kO-0sE a,

O

where the function k,(f) = 32 _ ., r"¢™ is positive.)
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2.29 Show that the Silov boundary for the disk algebra A4 is the unit circle.

2.30 Show that the abstract index group for a commutative Banach algebra
contains no elements of finite order.

2.31 If B, and B, are Banach algebras, then B, XB, and B, BB, are
Banach algebras. Moreover, if ‘B, and B, are commutative with maximal

ideal spaces M, and M,, respectively, then M, x M, is the maximal ideal
space of both B, ¥B, and B, ® B, (see Exercises 1.36 and 1.37 for the

definition of & and ®.)

2.32 1If ‘B is an algebra over C, which has a norm making it into a Banach

space such that || fg|| < | /| lg| for fand g in B, then B P C is a Banach
algebra in the 1-norm (see Exercise 1.17) for the multiplication

(@) (gdp) = (fg+ig+uf) @ An
with identity 0@ 1.

2.33 If ¢ is a multiplicative linear functional on B, then ¢ has a unique
extension to an element of Mgec. Moreover, the collection of nonzero
multiplicative linear functionals on B 1s a locally compact Hausdorff space.

2.34 Show that I'(R) is a commutative Banach algebra without identity
for the muluplication defined by

(feg)(x) = f_:f(x—t) g(t) dt for fand gin L' (R).

2.35 Show that for ¢ in R the linear function on L' (R) defined by

0N = | _1weds

is multiplicative. Conversely, every nonzero multiplicative linear functional
in I!(R) is of this form.* (Hint: Every bounded linear functional on L'(R)
is given by a ¢ in L°(R). Show for fand g in I (R) that

| | =000 t0x-000) - o0 drax = 0
and that implies ¢ (x— 1) @ (¢) = @ (x) for (x, f) not in a planar set of Lebesgue

measure.)

2.36 Show that the maximal ideal space of I'(R) is homeomorphic to R
and that the Gelfand transform coincides with the Fourier transform.



3 Geometry of Hilbert Space

3.1 The notion of Banach space abstracts many of the important properties
of finite-dimensional linear spaces. The geometry of a Banach space can,
however, be quite different from that of Euclidean »-space; for example, the
unit ball of a Banach space may have corners, and closed convex sets need
not possess a unique vector of smallest norm. The most important geometrical
property absent in general Banach spaces is a notion of perpendicularity or
orthogonality.

In the study of analytic geometry we recall that the orthogonality of two
vectors was determined analytically by considering their inner (or dot)
product. In this chapter we introduce the abstract notion of an inner product
and show how a linear space equipped with an inner product can be made
into a normed linear space. If the linear space is complete in the metric defined
by this norm, then it is said to be a Hilbert space. This chapter is devoted to
studying the elementary geometry of Hilbert spaces and to showing that
such spaces possess many of the more pleasant properties of Euclidean n-
space. We will show, in fact, that a finite dimensional Hilbert space is
1somorphic to Euclidean n-space for some integer .

3.2 Definition An inner product on a complex linear space . is a function
¢ from ¥ x & to C such that:

(D) @(oy fi +02/2,9) =21 0(f1,9) + o, 0(f2,9) for op,0, In € and
J1:f2,9in Z;

63
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(2) o(f, B191+ B292) = Byo(f.91) + B,0(f, g5) for B,,B, in C and
f;glsgz iﬂ ,(f;

3) o(f.9) = ¢(g.f) for fand gin Z; and
@) o(f,f) =0 for fin & and ¢(f,f) = 0if and only if f= 0.

A linear space equipped with an inner product is said to be an inner
product space.

The following lemma contains a useful polarization identity, the im-
portance of which lies in the fact that the value of the inner product ¢ is
expressed solely in terms of the values of the associated quadratic form y

defined by ¥ (/) = o(f,f) for fin &Z.

3.3 Lemma If.¥ isan inner product space with the inner product ¢, then
o(,9) = o+ g./+9) — o(f—g& f—9) + ip(f+ig, [+ig)
—io(f—ig, f—ig)}
for fand g in &Z.
Proof Compute. R

An inner product is usually denoted (,), that s, (f,9) = ¢(f,g) for f
and g in &.

3.4 Definition If & is an inner product space, then the norm | | on &
associated with the inner product is defined by || f|| = (£,f)* for fin £.

The following inequality is basic in the study of inner product spaces.
We show that the norm just defined has the required properties of a norm
after the proof of this inequality.

3.5 Proposition (Cauchy—Schwarz Inequality) If / and g are in the inner
product space &, then

Lol < I/l
Proof For fand gin & and 4 in C, we have

4% 1911 + 2Re[A(£, )] + | /1* = (F+Ag, f+29)
= | f+4g]* = 0.

Setting A = te®, where ¢ is real and € is chosen such that e ™(f,g) = 0,
we obtain the inequality

lgl1** + 2|(£,9)|t + | F1* = O.
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Hence the quadratic equation

lgl*¢* + 2[(£, 9t + I £1* =0

in ¢ has at most one real root, and therefore its discriminant must be non-
positive. Substituting we obtain

R2|(£ 911> — 4lgl*171* < O,
from which the desired inequality follows. [

3.6 Observe that the property (f,f) = 0 implies that f= 0 was not needed
in the preceding proof.

3.7 Proposition If £ is an inner product space, then || defines a norm
on %.

Proof We must verify properties (1)—3) of Definition 1.3. The fact that
| /]| = 0 if and only if f= 0 is immediate from (4) (Definition 3.2) and thus
(1) holds.

Since

|71 = (AL 4072 = AA(LN))% = |Allfl  for AinC and fin 2,
we see that (2) holds. Lastly, using the Cauchy-Schwarz inequality, we have
| f+91* = (f+g.f+9) = (LN + (,9) + (6. + (9,9)
1F1%+ lgl* + 2Re(f, 9) < | 1% + llgl* + 2|(f; 9)]

< /1% + lgh* + 217 gll < A1+ 191’
for fand gin . Thus (3) holds and |- | is a norm. [

|

3.8 Proposition Inan inner product space, the inner product is continuous.

Proof Let & be an inner product space and {f.}.,c4 and {g.}.ca b€
nets in % such that lim,._, f, =f and lim,. , g, = g. Then

(. 9) — (for 9| < U= )| + |(fer 9— 90|

/=7l gl + 170 g — gl

and hence limaeA(fa;c: 9o) = (j;g) i

3.9 Definition In the inner product space % two vectors f and g are said
to be orthogonal, denoted f 1L g, if (/,g) = 0. A subset & of £ is said to be

orthogonal if f L g for fand g in & and orthonormal if, in addition, | f| =
 for fin <.

/

N



66 3 Geometry of Hilbert Space

This notion of orthogonality generalizes the usual one in Euclidean space.
It is now possible to extend various theorems from Euclidean geometry to
inner product spaces. We give two that will be useful. The first is the familiar
Pythagorean theorem, while the second is the result relating the lengths of
the sides of a parallelogram to the lengths of the diagonals.

3.10 Proposition (Pythagorean Theorem) If {f,.f,,....f,} is an orthogonal
subset of the inner product space &, then

n 2 n
YAl = YA

Proof Computing, we have

lg:lfl: B (;glfl:’ 121]?) — ,Zn:l (j;’f;) T Zn: l(ff:];')

L,J=

1#]

= Y (o) = X I

3.11 Proposition (Parallelogram Law) If f and g are in the inner product
space £, then

[£+91* + I f=gl* = 21£1* + 2] g]*
Proof Expand the left-hand side in terms of inner products.

As in the case of normed linear spaces the deepest results are valid only if
the space 1s complete in the metric induced by the norm.

3.12 Definition A Hilbert space is a complex linear space which is com-
plete in the metric induced by the norm.

In particular, a Hilbert space 1s a Banach space.

3.13 Examples We now consider some examples of Hilbert spaces.

For »n a positive integer let C" denote the collection of complex ordered
n-tuples {x:x =(x;,X%X3,..-,X%,), X, € C}. Then C" 1s a complex linear space
for the coordinate-wise operations. Define the inner product (,) on C" such
that (x,y) =>7"_, x, y,. The properties of an inner product are easily verified
and the associated norm is the usual Euclidean norm | x|, = (3=, |x,|?)*

To verify completeness suppose {x*},2., is a Cauchy sequence in C" Then
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since |x*— x| < |x*—x",, it follows that {x,};>, is a Cauchy sequence
in C for 1 <i< n If we set x = (x,Xxa,...,%;), where x; = lim,_, _ x*, then
x is in C" and lim, , , x* = x in the norm of C". Thus C" is a Hilbert space.

The space C" is the complex analog of real Euclidean n-space. We show
later in this chapter, in a sense to be made precise, that the C"’s are the only
finite-dimensional Hilbert spaces.

3.14 We next consider the “union” of the C"’s. Let . be the collection of
complex functions on Z* which take only finitely many nonzero values.
With respect to pointwise addition and scalar multiplication, & is a complex
linear space. Moreover, (f,g9) = > .—of(n) g(n) defines an inner product on
<. where the sum converges, since all but finitely many terms are zero. Is &
a Hilbert space? It is if & is complete with respect to the metric induced by
the norm ||f], = (2, |f(7)|*)*%. Consider the sequence {f;}s>, contained
in %, where
()" n<k,

Siln) =

n>k.

One can easily show that {f,};% 1s Cauchy but does not converge to an
element of . We leave this as an exercise for the reader. Thus £ is not a
Hilbert space.

3.15 The space .Z is not a Hilbert space because it is not large enough. Let
us enlarge it to obtain our first example of an infinite-dimensional Hilbert
space. (This example should be compared to Example 1.15.)

Let /*(Z") denote the collection of all complex functions ¢ on Z* such
that %, |@(n)|* < co. Then [*(Z*) is a complex linear space, since

U+ 9)M)]* < 2|f()|* + 2| g(n)]?.

For f and g in [*(Z"), define (f, g) = 32, f(n) g(n). Does this make sense,
that is, does the sum converge? For each N in Z™, the n-tuples

Fy = (/O |fMD],...|/AM]) and Gy = (|g0)],|g(D], ... |g(N)|)
lie in C*. Applying the Cauchy-Schwarz inequality, we have

N S
Y. 1) 9] = (Gl < IFul 1G]

N %, [ N 72
=(Z |f(n)|2) (n§0|g(n)|2) < | A2 19l--

=0
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Thus the series > L, (n);(;) converges absolutely. That (,) is an inner
product follows easily.

To establish the completeness of /*(Z™) in the metric given by the norm
| |, suppose {f*}5_, is a Cauchy sequence in /2(Z*). Then for each » in
Z%, we have

L5~ fim)| < I =1

and hence {f*(n)}>, is a Cauchy sequence in C for each n in Z*. Define
the function fon Z* to be f(n) = lim,_, , f*(n). Two things must be shown:
that fis in /*(Z") and that lim,, ., | f—f™||, = 0. Since {f*};>, is a Cauchy
sequence, there exists an integer K such that for k > K we have | f*—7¥| 2' <L
Thus we obtain

{f: lf(n)lz}% < {ﬁf ) =) } {f: *(m) }

2

k—}OO

{Zlf*(n) f"(n)!z} {Z (n)lz}
< limsup | = + 152 < 1+ 5],

k— o0

and hence f is in /*(Z*). Moreover, given &> 0, choose M such that
k,j> M implies |f*—f7|| < e. Then for k > M and any N, we have

;0 [ —f*@|* = lim } |f(m)—f*@n)*

J2 0 n=0

< limsup || f7—f*],* < &
j— o0
Since N is arbitrary, this proves that |f—f*||, < ¢ and therefore I*(Z*) is
a Hilbert space.

3.16 The Space L?> In Section 1.44 we introduced the Banach spaces I
and [° based on a measure space (X, &, 11). We now consider the correspond-
ing I* space, which happens to be a Hilbert space.

We begin by letting £ denote the set of all measurable complex functions
f on X which satisfy {|f]? du < co. Since the inequality |f+g}* <2[f]*+
2|g}? is valid for arbitrary functions fand g on X, we see that £ is a linear
space for pointwise addition and scalar multiplication. Let 4> be the sub-
space of functions f in #? for which {y|f|* du =0, and let I? denote the
quotient linear space £%/.42.
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If fand g are in £?, then the identity

1fgl = 3{(S1+1g)* = 1f17 = |9l

shows that the function fg is integrable. If we define ¢ (f, g) = {5 fg du for
fand gin &2, then ¢ has all the properties of an inner product except one;
namely, @ (/,f) = 0 does not necessarily imply f = 0. By the remark follow-
ing the proof of the Cauchy—Schwarz inequality, that inequality holds for ¢.
Thus, if £, f', g, and g’ are functions in £ such that f—f' and g— ¢’ belong
to A2, then

lo(f,g) — (90 < lo(F—f )| + lo(f,9—9)]

(=151 o (9, 9)

+ o5 e(g—9,9—9) = 0.

Therefore, ¢ is a well-defined function on I*. Moreover, if ([ fL[f] =0,

then fx|f]* du =0 and hence [f]=[0]. Thus ¢ is an inner product on

[? and we will denote it from now on in the usual manner. Furthermore, the

associated norm on I* is defined by |[f]1l, = (x|f]* dw)”2 The only

problem remaining before we can conclude that I? is a Hilbert space is the

question of its completeness. This is slightly trickier than in the case of I'.
We begin with a general inequality. Take fin #* and define g on X such

that g(x) = f(x)/| f(x)] if f(x) # 0 and g(x) = 1 otherwise. Then g is measur-

able, |g(x)| =1, and fg =|f]. Moreover, applying the Cauchy-Schwarz
inequality, we have

£ = me du = foa di = (£, 9) < 112 lgl = 171

Therefore, || f]; < | fll, for fin £2.

We now prove that I* is complete using Corollary 1.10. Let {[£1}2,
be a sequence in I’ such that 32, |[£.]], < M < co. By the preceding
mnequality Y5>, |[/.1ll; < M, and hence, by the proof in Section 1.44,
there exists f in %! such that Y2, f.(x) = f(x) for almost all x in X.

Moreover
L > [ de < L(; w) dp = [; Iﬁ.l] 2

) N 2
< (% 1al) <

and since limy., ., [YN_, £,(0)|* = | f(x)|? for almost all x in X, it follows
from Fatou’s lemma that |f]? is integrable and hence f'is in &*. Moreover,

<
<
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since the sequence {(3°~_, |£.,1)*}%_, is monotonically increasing, it follows
that k = limy_.., (3X. ;| £,])* is an integrable function. Therefore,

im |01 ¥ 0] 3_13;( [|r-5x d.u)%

N— 0
o0 2 14
lim (f Y f, d,u) = 0
N oo Xin=N+1 |[

by the Lebesgue dominated convergence theorem, since |32 v, fil2 <k
for all N and limy_ . |32 nyq £o(¥)]? =0 for almost all x in X. Thus I?
is a Hilbert space. Lastly, we henceforth adopt the convention stated in
Section 1.44 for the elements of I*; namely, we shall treat them as functions.

3.17 The Space H* Let T denote the unit circle, p the normalized
Lebesgue measure on T, and I*(T) the Hilbert space defined with respect
to p. The corresponding Hardy space H? is defined as the closed subspace

2n
{feLz(TF):ziﬂL fi,dt =0 for n=1,2,3,...},

where y, is the function y,(e") = ™. A slight variation of this definition is

{(feZ2():(f,yx)=0 for n=—-1,-2,-3,...}.

3.18 Whereas in Chapter 1 after defining a Banach space we proceeded to
determine the conjugate space, this is unnecessary for Hilbert spaces since
we show 1n this chapter that the conjugate space of a Hilbert space can be
identified with the space itself. This will be the main result of this chapter.

We begin by extending a result on the distance to a convex set to subsets
of Hilbert spaces. Although most proofs of this result for Euclidean spaces
make use of the compactness of closed and bounded subsets, completeness
actually suffices.

3.19 Theorem If.# isa nonempty, closed, and convex subset of the Hilbert
space J, then there exists a unique vector in 4~ of smallest norm.

Proof 1If & =inf{|f]| :fe A"}, then there exists a sequence {f,}n—o
in /4 such that lim,.. ||f,| = 6. Applying the parallelogram law to the
vectors f,/2 and £, /2, we obtain
A N A N A R T

— 2"
2 2| T2 T2

Since H” is convex, (f,+£.)/2 is in A& and hence |(f,+f.)/2]|* = 6*. There-
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fore, we have |f.—f.|* < 2| f|*+2|f.|*—46%, which implies

limsup || £, —f.||* < 26* + 26% — 46* = 0.
Thus {f,}  is a Cauchy sequence in 4 and from the completeness of #
and the fact that 4 is a closed subset of # we obtain a vector fin A such
that lim,__ _ f, =f. Moreover, since the norm is continuous, we have
I£] = tim, o | 5] = 5.

Having proved the existence of a vector in # of smallest norm we now
consider its uniqueness. Suppose fand g are in A with || f]| = |g| = . Again
using the parallelogram law, we have
”f_g”z rrf'rz rrgl'z ”f_l_g'

_ 2 219 <2 % 5
2 2l T2 2 2 T 0,

since |[(f+¢g)/2| = 6. Therefore, f = g and uniqueness is proved. [

N
on
N
on
N

If 7 is a plane and / is a line in three-space perpendicular to n and both =
and / contain the origin, then each vector in the space can be written uniquely
as the sum of a vector which lies in = and a vector in the direction of /. We
extend this idea to subspaces of a Hilbert space in the theorem following
the definition.

3.20 Definition 1f .Z is a subset of the Hilbert space 5, then the orthogonal
complement of .#, denoted .#*, is the set of vectors in # orthogonal to
every vector in .

Clearly .#" 1s a closed subspace of 5, possibly consisting of just the zero
vector. However, if .# is not the subspace {0} consisting of the zero vector
alone, then #1 # .

3.21 Theorem If .# is a closed subspace of the Hilbert space 5# and f is
a vector in #, then there exist unique vectors g in .4 and h in 4" such that

f=g+h.

Proof 1If we set A ={f—k:ke #), then H is a nonempty, closed
and convex subset of #. Let h be the unique element of # with smallest
norm whose existence i1s given by the previous theorem. If £ 1s a unit vector

in ./, then h—(h,k)k is in #, and hence
I41* < |h— (k) k|2 = [|B])> — (b, k) (h, k) — (h k) (hy k) + (B, k) (B, k) |k

Therefore, |(h, k)|* < 0, which implies (h, k) = 0, and hence / is in .#". Since
h is in /', there exists g in .# such that f = g+h and the existence is proved.
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Suppose now that f= g, +h, = g, +h,, where g, and g, are in .# while
h, and h, are in A#*. Then g,—g, =h,—h, is in M ~ 4", and hence
g»— g, is orthogonal to itself. Therefore, ||g,—g|* =(92—91,9,—9g,) =0
which implies g, = g,. Finally, A, = h, and the proof is complete. i

3.22 Corollary If .# is a subspace of the Hilbert space 5#, then .#'' =
clos A .

Proof That clos.# < 4" follows immediately for any subset .4 of
#.If fis in AL, then by the theorem f= g+#h, where g is in clos.# and
hisin #*. Since fis in 4", we have

0 = (f,h) = (g+hh) = (hh) = |A]*.
Therefore, # = 0 and hence fisin clos #Z. |}

If g is a vector in the Hilbert space 5#, then the complex functional defined

¢,(f) = (f,g) for fin # is clearly linear. Moreover, since |@,(f)| < | f] |g]
for all fin o, it follows that ¢, is bounded and that |¢,| < |g|. Since

|911* = 04(9) < l@gll gl we have |g|| < ¢, and hence [¢,] = lg|. The
following theorem states that every bounded linear functional on 3 is of

this form.

3.23 Theorem (Riesz Representation Theorem) If ¢ is a bounded linear
functional on 5, then there exists a unique g in 3 such that (/) = (/, 9)
for fin 7.

Proof let A be the kernel of ¢, that is, A ={fe : o(f)=0;}.
Since ¢ is continuous, 4 is a closed subspace of . If A = 3 then
¢(f) = (f,0) for fin o and the theorem is proved. If 4 # 5, then there
exists a unit vector 4 orthogonal to # by the remark following Definition
3.20. Since his notin 24, then ¢ (h) # 0. For fin S the vector f— (o (f)/p (M) h
is in % since ¢ (f— (@ (f)/¢(#)h) = 0. Therefore, we have

o () = o(f)(h By = (“’f,f))h (h)h)

o(f) o(f)
= h, o(h)h 2 h o(h)h
(f o) “) ((h) ())
= (fo)h)
for fin 3, and hence ¢(f) = (/,g) for g =Mh.
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If (f,9,) = (/,g9,) for fin A, then, in particular, (g, —9,,9:—¢g,) =0
and hence g, = g,. Therefore, ¢(f) = (/,g) for a unique g in #. K

Thus we see that the mapping from # to #* defined g — ¢, is not only
norm preserving but onto. Moreover, a straightforward verification shows
that this map is conjugate linear, that is, @, , 14,5, = 01 @,, +02¢@,, for a,
and o, in C and g, and g, in 5#. Thus for most purposes it is possible to
identify 5 * with 5 by means of this map.

3.24 In the theory of complex linear spaces, a linear space is characterized
up to an isomorphism by its algebraic dimension. While this is not true for
Banach spaces, it is true for Hilbert spaces with an appropriate and different
definition of dimension. Before giving this definition we need an extension
of the Pythagorean theorem to infinite orthogonal sets.

3.25 Theorem If {f}.. 4 is an orthogonal subset of the Hilbert space
then 3, , f, converges in # if and only if 3, 4|/o]|* < o and in this case

"295514]::"2 — Z:ZEA "ﬁxllz‘

Proof lLet & denote the collection of finite subsets of 4. If > _4f,
converges, then by Definition 1.8, the continuity of the norm, and the
Pythagorean theorem we have

2 12 2
Y £l =llim Y £l =lm}) f
oeA Fe# oeF Fe# |laeF
= lim Y |£I* = X /1%
Fe%# ocF aEA

Therefore, if 3,  f, converges, then 34| £.|* < .

Conversely, suppose 3. 4| f.l|> < 0. Given ¢ > 0, there exists Fy in &
such that F> Fy implies Y, i |l = Sacr, 1fol* < €%, Thus, for F; and
F, in & such that F,, F, = F,, we have

> fom X 1

2

= Y I+ X A7

a€Fy o €F5 ] a e F\F, o€ Fa\Fy
< Y 6P = X L7 <€
ackF; VF, aeF,

where the first equality follows from the Pythagorean theorem. Therefore,
the net {3, .+ f.}res is Cauchy, and hence Y, 4 f,,converges by definition. i

3.26 Corollary If {¢,},., is an orthonormal subset of the Hilbert space



74 3 Geometry of Hilbert Space

A and .4 is the smallest closed subspace of H#° containing the set {e, : ¢ € A},
then

M = {2 Jney: 2,€C, Y |4)* < oo}.
a €A a€EA

Proof Let & denote thie directed set of all finite subsets of 4. If {1},

is a choice of complex numbers such that ¥ ,.,|4,|* < oo, then {1 e} .,

is an orthogonal set and Y, |4, €.|* < 0. Thus ¥, ., A e, converges to

a vector f in 3 by the theorem and since f= lim, Y, -4, e, , the vector

1s seen to lie in

N = {Z Ity A, €C, Y |4,)* < oo}.

acA aEA

Since A4 contains {e, : « € A}, the proof will be complete once we show that
A is a closed subspace of #°. If {1}, and {u,},. . satisfy 3, ., |12 < 0
and 3, |p,|* < o0, then

Y Aatua* <2 Y 412 +2 Y |ul? < oo

acEA aEA ac A

Hence A4 is a linear subspace of 7.
Now suppose {f"}.%, 1s a Cauchy sequence contained in A4 and that

=3 ../ ™e . Then for each « in 4 we have

7
-1 < (3 1A= 20P) = 1m—rl,

oA

and hence A = lim__, A exists. Moreover, for Fin &% we have

Y 142 = lim ¥ 2”2 < lim ¥ |A7)* = fim |/"]2 < co.

rd = n— o gl rn—o oA H—r OO

Hence, f=3,. 41 e, is well defined and an element of A4”". Now given ¢ > 0,
if we choose N such that n,m > N implies |f™—f™| < ¢, then for F in &,
we have

Y A~ AP = lim Y AW —iP]2 < lim sup|f"—/"|* < ¢

a€F m—oo gelr rm— oo

Therefore, for n > N, we have

2 = ¥ =20 = lim Y |2,~ A0 < 6%

aEA Fe% aeF

and hence A is closed. I}

3.27 Definition A subset {e,},., of the Hilbert space 5# is said to be an
orthonormal basis if it is orthonormal and the smallest closed subspace

containing it is 7.
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An orthonormal basis has especially pleasant properties with respect to
representing the elements of the space.

3.28 Coroliary If {¢,},. 4 1s an orthonormal basis for the Hilbert space &#
and f is a vector in ', then there exist unique Fourier coefficients {4,},. 4
contained in C such that /=3 . (4, e,. Moreover, 1, = (f,e,) for o in A.

Proof That {/,}, ., exists such that f=>,_4,4,¢, follows from the
preceding corollary and definition. Moreover, if % denotes the collection of
finite subsets of 4 and f 1s in A, then

(fse5) = (z Leo eﬂ) ~ lim (z Len eﬂ)

acA Fe# \oa€eF
= lim ) A,(e,ep) = lim A, = 4.
Fe# ogeF EE?‘*
€

(The limit 1s unaffected since the subsets of 4 containing B are cofinal in &)
Therefore the set {4,},. 4 1s unique, where 1_ = (f,¢,) for v in 4.

3.29 Theorem Every Hilbert space (5 {0}) possesses an orthonormal basis.

Proof Let & be the collection of orthonormal subsets £ of 3 with the
partial ordering £, < E, if E, < E,. We want to use Zorn’s lemma to assert
the existence of a maximal orthonormal subset and then show that it is a
basis. To this end let {£,};., be an increasing chain of orthonormal subsets
of #. Then clearly | ), .5 E; is an orthonormal subset of &# and hence is
In &. Therefore, each chain has a maximal element and hence & itself has a
maximal element E,,. Let .# be the smallest closed subspace of 5# containing
Ey. It 4 = 37, then E,, is an orthonormal basis. If 4 # 5, then for e a
unit vector in .#*, the set E£,, U {¢} is an orthonormal subset of # greater
than E,,. This contradiction shows that .# = 5 and E,, is the desired ortho-
normal basis. i

Although there is nothing unique about an orthonormal basis, that s,
there always exist infinitely many if 5 # {0}, the cardinality of an ortho-
normal basis 1s well defined.

3.30 Theorem If {e,},.,and {f;};.pare orthonormal bases for the Hilbert
space A, then card 4 = card B.

Proof If either of A and B is finite, then the result follows from the theory
of linear algebra. Assume, therefore, that card 4 > N, and card B = X,.
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For o in A set B,={fe B:(e,fg) #0}. Since e, =34 .p(e,f5)fz by
Corollary 3.28 and 1= |e,|* = Y55 |(enfp)|* by Theorem 3.25, it follows
that card B, <¥,. Moreover, since fz =3, (€, fp)e,, it follows that
(e, f3) # 0 for some « in A. Therefore, B= | J,., B, and hence card B <
Sascacard B, <3 4 No=card 4 since card 4 > N,. From symmetry we
obtain the reverse inequality and hence card 4 == card B.

3.31 Definition If 57 is a Hilbert space, then the dimension of #, denoted
dim 27, is the cardinality of any orthonormal basis for 7.

The dimension of a Hilbert space is well defined by the previous two
theorems. We now show that two Hilbert spaces 5## and # of the same
dimension are isomorphic, that s, there exists an i1sometrical isomorphism
from # onto A which preserves the inner product.

3.32 Theorem Two Hilbert spaces are isomorphic if and only if their di-
mensions are equal.

Proof 1f 5 and 4 are Hilbert spaces such that dim 3 = dim 2", then
there exist orthonormal bases {¢,},. 4 and {f,},. 4 for 57 and 4", respectively.
Define the map ® from # to A such that for g in 5, we set ®g =
> ecalg,e)f,. Since g=73,..(g,¢e,)e, by Corollary 3.28, it follows from
Theorem 3.25 that 3, . 4 (g, €)I* = ||g||>. Therefore, ®g is well defined and

[®@g]* = ;A (9, e)l* = lgl*

That @ i1s linear is obvious. Hence, @ i1s an isometrical isomorphism of ##
to . Thus, @ is a closed subspace of /4 which contains {f, : o € A} and
by the definition of basis, must therefore be all of . Lastly, since (g, g) =
lg||* = |@g|* = (Pg, Pg) for g in #, it follows from the polarization
identity that (g, %) = (g, ®h) for gand hin #. I

3.33 We conclude this chapter by computing the dimension of Examples
3.13, 3.15, 3.16, and 3.17. For C" it is clear that the n-tuples

{(1,0,...,0),(0, 1,...,0), ...,(0,0,..., 1)}

form an orthonormal basis, and therefore dimC" = n. Similarly, it 1s easy
to see that the functions {e,}®> , in [*(Z") defined by e,(m) =1 if n=m
and O otherwise, form an orthonormal subset of /2(Z*). Moreover, since f
in [*(Z™) can be written f= 32 ., f(n)e,, it follows that {¢,} > , is an ortho-
normal basis for /2(Z*) and hence that dim[/*(Z")] = N,.
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In the Hilbert space I7([0,1]), the set {¢*™}, ., is orthonormal since
Ll} 2™ dy — |1 if n=0 and 0 otherwise. Moreover, from the Stone—
Weierstrass theorem it follows that C([0,1]) is contamned in the uniform
closure of the subspace spanned by the set {¢*™* : ne Z} and hence C (10,1
is contained in the smallest closed subspace of I*([0, 1]) containing them.
For f in I*([0,1]) it follows from the Lebesgue dominated convergence

theorem that lim,_, || f—/;||, = 0, where

J(x), J(x)| < &,
0, )| > &

Since C([0, 1) is dense in L' ([0, 1]) in the I'-norm, there exists for each k in
Z*, a function ¢, in C([0,1]) such that |@,(x)} <k for x in [0,1] and
| fi— @il < 1/k*. Hence

1 1% 1
ﬁmsup( [ m——-@wx) gmsup(k [15-0d dx)

k— oo k— oo

o=

< limsup fl —1—- dx = 0.
koo Jo K
Thus, C([0, 1]) is a dense subspace of I ([0, 17) and hence the smallest closed
subspace of IZ([0, 1]) containing the functions {€*™ :neZ} is I*([0, 1]).
Therefore, {e*™} ., is an orthonormal basis for I*([0,1]). Hence,
dim {I*([0, 17)} = X, and therefore despite their apparent difference, /*(Z™)
and I?([0, 1]) are isomorphic Hilbert spaces.

Similarly, since a change of variables shows that {y,},.» 1s an ortho-
normal basis for I*(T), we see that {y,),.y+ is an orthonormal basis for
H? and hence dim H? = N, also.

We indicate in the exercises how to construct an example of a Hilbert
space for all dimensions.

Notes

The definition of a Hilbert space is due to von Neumann and he along
with Hilbert, Riesz, Stone, and others set forth the foundations of the subject.
An introduction to the geometry of Hilbert space can be found in many
textbooks on functional analysis and, in particular, in Stone [104], Halmos
[55], Riesz and Sz.-Nagy [92], and Akhieser and Glazman [2].
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Exercises

3.1 Let A be a nonempty set and let
[7(4) = {f:A - C: ) |f(®* < oo}.
aeA

Show that /%(A4) is a Hilbert space with the pointwise operations and with
the inner product (f, g) =3, 4 f(¢) g(c)). Show that dim/*(A4) = card 4.

3.2 Let % bea normed linear space for which the conclusion of the parallel-
ogram law is valid. Show that an inner product can be defined on % for
which the associated norm is the given norm.

3.3 Show that the completion of an inner product space is a Hilbert space.

3.4 Show that C([0, 1]) is not a Hilbert space, that 1s, there is no inner
product on C([0, 1]) for which the associated norm 1s the supremum norm.

3.5 Show that C([0, 1]) is not homeomorphically isomorphic to a Hilbert
space.’¥

3.6 Complete the proof began in Section 3.14 that the space ¥ defined
there is not complete.

3.7 Give an example of a finite dimensional space containing a closed
convex set which contains more than one point of smallest norm.*

3.8 Give an example of an infinite dimensional Banach space and a closed
convex set having no point of smallest norm. *

3.9 Let ¢ be a bounded linear functional on the subspace .# of the Hilbert
space . Show that there exists a unique extension of ¢ to # having the
same norm.

3.10 Llet # and A be Hilbert spaces and # @A denote the algebraic
direct sum. Show that

(<h1: kl): Chy, kz)) — (hn hz) + (kpkz)

defines an inner product on # @ %, that # @4 is complete with respect to
this inner product, and that the subspaces # @ {0} and {0} @ £ are closed
and orthogonal in # @ A

3.11 Show that each vector of norm one is an extreme point of the unit ball
of a Hilbert space.

3.12 Show that the w*-closure of the unit sphere in an infinite-dimensional
Hilbert space is the entire unit ball.
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3.13 Show that every orthonormal subset of the Hilbert space # is con-
tained in an orthonormal basis for #.

3.14 Show that if .# is a closed subspace of the Hilbert space #, then
dim .4 < dim .

3.15 (Gram-Schmidt) Let {f,},>, be a subset of the Hilbert space #
whose closed linear span is #. Set e¢; =f,/|fi| and assuming {e};_, to
have been defined, set

Cot1 = (f::+1 — 5: (fo+15 ek)ek)/ Jov1 — i (fn+ 10 € €l »
k=1 k=1

where e, , is taken to be the zero vector if

41
ﬁ:+ 1 = kZl (fn+ 19 ek) €y -

Show that {e,} ., is an orthonormal basis for .

3.16 Show that I*([0, 1]) has an orthonormal basis {e,}*., such that e, is
a polynomial of degree n.

3.17 Let % be a dense linear subspace of the separable Hilbert space 5.
Show that ¥ contains an orthonormal basis for #. Consider the same
question for nonseparable s .*

3.18 Give an example of two closed subspace .# and A" of the Hilbert
space # for which the linear span

MAN ={f+g:fed,ge N}

fails to be closed.* (Hint: Take .# to be the graph of an appropriately chosen
bounded linear transformation from 5 to # and A4 to be A @{0}, where
H =K DA )

3.19 Show that no Hilbert space has linear dimension N,. (Hint: Use the
Baire category theorem.)

3.20 If # is an infinite-dimensional Hilbert space, then dim # cotncides
with the smallest cardinal of a dense subset of .

3.21 Let # and A be Hilbert spaces and let #® A denote the algebraic

tensor product of 5# and 4 considered as linear spaces over C. Show that

m

(Zhi®ki: ihf’(@kf’) = Z
i=1 j=1

e~ (hi: hj’) (ki: k_f’)



80 3 Geometry of Hilbert Space

defines an inner product on #® 4. Denote the completion of this inner

product space by #® . Show that if {e,},. 4, and {f;}45 are orthonormal
bases for # and i, respectively, then {€,&f} (. pyeaxp IS an orthonormal
basis for # R A .

3.22 Let (X,%, ) be a measure space with y finite and ¢ be a bounded
linear functional on L' (X'). Show that the restriction of ¢ to I2(X) is a bounded
linear functional on I’*(X) and hence there exists g in I*(X) such that
o(f) = \xfg dyu for fin I*(X). Show further that g is in I°(X) and hence
obtain the characterization of ! (X)* as L°(X). (Neither the result obtained
in Chapter 1 nor the Radon—Nikodym theorem is to be used in this problem.)

3.23 (von Neumann) Let p and v be positive finite measures on (X, &)
such that v is absolutely continuous with respect to x. Show that f— [y fdy
is well defined and a bounded linear functional on I*(u +v). If ¢ is the function

in I7(u+v) satisfying {x fo d(u+v) = {x fdu, then (1—¢@)/o is in I'(x) and

1 —
v(E)zf—“’du
E ¢
for £ in .

e

3.24 Interpret the results of Exercises 1.30 and 1.31 under the assumption
that & is a Hilbert space.
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4 Operators on Hilbert
Space and C*-Algebras

ol e e e i

4.1 Most of hnear algebra involves the study of transformations between
linear spaces which preserve the linear structure, that is, linear transformations.
Such 1s also the case in the study of Hilbert spaces. In the remainder of the
book we shall be mainly concerned with bounded linear transformations
acting on Hilbert spaces. Despite the importance of certain classes of un-
bounded linear transformations, we consider them only in the problems.

We begin by adopting the word operator to mean bounded linear trans-
formation. The following proposition asserts the existence and uniqueness
of what we shall call the “adjoint operator.”

4.2 Proposition If 7 is an operator on the Hilbert space 5, then there
exists a unique operator S on # such that

(71, 9) = ([, Sg) for fand g in 7.

Proof For a fixed g in 5# consider the functional ¢ defined ¢(f) =
(Tf, g) for fin A . It is easy to verify that ¢ is a bounded linear functional
on #, and hence there exists by the Riesz representation theorem, a unique
h in 5 such that o (f) = (f, #) for fin 5. Define Sg = h.

Obviously S'is linear and (77, g) = (f, Sg) for fand g in . Setting f = Sg

81
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we obtain the inequality
1Sgl1? = (Sg,S9) = (TSg,9) < |T||Sgllg| for gin 7.

Therefore, ||S|| < {{7| and S is an operator on J#.

To show that S is unique, suppose S, is another operator on # satisfying
(/. So9) = (Tf, g) for fand g in #. Then (f, Sg— S, g) = 0 for fin # which
implies Sg—.S,¢g = 0. Hence § = S, and the proof is complete. i

4.3 Definition If 7 1s an operator on the Hilbert space #, then the adjoint
of T, denoted T*, is the unique operator on # satisfying (77, g) = (f, T*g)
for fand g in .

The following proposition summarizes some of the properties of the
involution 7 — 7T*. In many situations this involution plays a role analogous

to that of the conjugation of complex numbers.

4.4 Proposition If 5 is a Hilbert space, then:

(1) T** = (T*)* = Tfor T in L(H#):

@) 7] = 7% for T in £(#);

(3) (@S+pT)* =aS*+pT* and (ST)* = T*S* for o, f in C and S, 7
in L(H);

(4) (T*)" ! = (T YH* for an invertible T in £(#); and

(5) |T|? = |T*T| for Tin £(#).

Proof (1) If fand g are in 4, then

(s T**g) = (T*f,9) = (9, T*f) = (Tg,f) = (/, T9),
and hence 7** =T,

(2) In the proof of Proposition 4.2 we showed ||7**| < |T*| <|T|.
Combining this with (1), we have |T|| = || 7#|.

(3) Compute.

(4) Since T*(T™ 'Y =(T'T)*=1=TT'y*=(T"'y*T* by (3), it
follows that T* is invertible and (7T%) ™! = (T~ )*.

(5) Since |T*T| < |T*||T| = |T|* by (2), we need verify only that
|7*T| = |T|* Let {f,}2, be a sequence of unit vectors in # such that
hm,_, | 7f.| = | T||. Then we have

|7 T| > lim sup| T*T%,] > lim sup(T* TS, £) = lim | 77|12 = | TI2

H— 00 yi— OO 11— o0

which completes the proof.
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4.5 Definition If 7 is an operator on the Hilbert space #, then the kernel
of 7, denoted ker 7, is the closed subspace {fe # : Tf = 0}, and the range
of T, denoted ran 7, is the subspace {7f: fe #}.

4.6 Proposition If 7 is an operator on the Hilbert space 5, then ker T =
(ran 7*)* and ker T* = (ran 7)™

Proof It is sufficient to prove the first relation in view of (1) of the last
proposition. To that end, if fis in ker 7, then (T*g,f) = (g, Tf) = 0 for
g in #, and hence fis orthogonal to ran 7*. Conversely, if f'is orthogonal to
ran T%*, then (7, g) = (f, T*g) = 0 for g in ¢, which implies 7f = 0. There-
fore, fis in ker T and the proof is complete. i

We next derive useful criteria for the invertibility of an operator.

4.7 Definition An operator T on the Hilbert space # is bounded below
if there exists ¢ > 0 such that {7f| > ¢| f| for fin .

4.8 Proposition If 7 is\an operator on the Hilbert space s, then T is
invertible if and only if 7 is bounded below and has dense range.

Proof If T is invertible, then ran 7= 4 and hence is dense. Moreover,

1
|7

1 _ :
T > e 1T T = e U] for fin
and therefore T i1s bounded below.
Conversely, if 7 is bounded below, there exists &> 0 such that
I Tl = el f]l for fin s#. Hence, if {Tf};_, is a Cauchy sequence in ran 7,
then the inequality

1
Iy =till < = 1TF, =T,

implies {f, }32, is also a Cauchy sequence. Hence, if f=1lim,.,, f,, then
7f=lim,. . Tf, 1s in ran T and thus ran T is a closed subspace of #. If we
assume, in addition, that ran 7 is dense, then ran 7 = #. Since T being
bounded below obviously implies that 7" is one-to-one, the inverse trans-
formation 7! is well defined. Moreover, if g = T, then

_ 1 1
177 gl = 1Al < AZff = - gl

and hence 77! is bounded.
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4.9 Corollary If 7 is an operator on the Hilbert space # such that both
T and T#* are bounded below, then 7 is invertible.

Proof If T* is bounded below, then ker 7* = {0}. Since (ran 7)* =
ker 7* = {0} by Proposition 4.6, we have (ran7)" = {0}, which implies
clos[ran 7] = (ran T)** = {0} = # by Corollary 3.22. Therefore, ran 7
is dense in # and the result follows from the theorem. i}

410 If T is an operator on the finite dimensional Hilbert space C" and
{e;}7=, is an orthonormal basis for C”", then the action of 7 is given by the
matrix {a;;};;-,, where q; = (Te;e;). The adjoint operator 7% has the
matrix {b;;}!;-,, where b;; = a; for i,j=1,2,...,n.

The simplest operators on C” are those for which it is possible to choose
an orthonormal basis such that the corresponding matrix is diagonal, that is,
such that ¢;; = O for i # j. An operator can be shown to belong to this class
if and only if it commutes with its adjoint. In one direction, this result is
obvious and the other is the content of the so called “spectral theorem” for
matrices.

For operators on infinite dimensional Hilbert spaces such a theorem is no
longer valid. Hilbert showed, however, that a reformulation of this result
holds for operators on arbitrary Hilbert spaces. This “spectral theorem™ is
the main theorem of this chapter.

We begin by defining the relevant classes of operators.

4.11 Definition If 7 is an operator on the Hilbert space 4, then:

(1) Tis normal tf 77* = T*T;

(2) T is self-adjoint or hermitian if 7 = 7T%;
(3) T is positive if (Tf,f) = 0 for fin #; and
(4) T is unitary if 7*7T = TT* = L

The following is a characterization of self-adjoint operators.

4.12 Proposition An operator T on the Hilbert space # is self-adjoint if
and only if (71, f) is real for fin .

Proof 1If T is self-adjoint and f'is in 5, then

(T1, 1) = (f. T*f) = (f, Tf) = (T},f)

and hence (7F,f) is real. If (T7,f) is real for fin 4, then using Lemma 3.3,
we obtain for fand g in 5 that (Tf,g) = (Tg,f) and hence T=T*. B
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4.13 Corollary If P is a positive operator on the Hilbert space 5, then
P is self-adjoint.

Proof Obvious. I}

4.14 Proposition If 7 is an operator on the Hilbert space 5, then T*T
is a positive operator.

Proof For f in # we have (T*Tff) = |Tf||* =0, from which the
result follows.

When we speak of the spectrum of an operator 7" defined on the Hilbert
space #, we mean its spectrum when 7 is considered as an element of the
Banach algebra £(#) and we use o (7T') to denote it. On a finite-dimensional
space 4 is in the spectrum of 7 if and only if 1 is an eigenvalue for 7. This
is no longer the case for operators on infinite-dimensional Hilbert spaces.

In linear algebra one shows that the eigenvalues of a hermitian matrix
are real. The generalization to hermitian operators takes the following form.

4.15 Proposition If 7 is a self-adjoint operator on the Hilbert space ),
then the spectrum of T is real. Furthermore, if 7 is a positive operator, then
the spectrum of 7 is nonnegative.

Proof If 1=o+if with o, f real and f # 0, then we must show that
T— 4 is invertible. The operator K = (T—a)/f is self-adjoint and 7— 1 is
invertible if and only if K—i is invertible, since K—7 = (7T 1)/. Therefore,
in view of Proposition 4.9, the result will follow once we show that the operators
K—iand (K—1i)* = K+1i are bounded below. However, for fin 5#, we have

[(KED)f1* = (KD LKD) = |KF* F i(KLf) £ i/ K + |f1°
= |&KAI* + 1A% = 1/17

and hence the spectrum of a self-adjoint operator 1s real.
If we assume, in addition, that 7 is positive and 1 < 0, then

I[(T=DA? = |TF1* - 24(TL1) + 21 A1* = 2|11

Since (T— A)* = (T— 1), then T— A is invertible by Proposition 4.9 and the
proof is complete. I}

We consider now a special class of positive operators which form the
building blocks for the self-adjoint operators in a sense which will be made
clear in the spectral theorem.
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4.16 Definition An operator P on the Hilbert space J# is a projection if
P is idempotent (P* = P) and self-adjoint.

The following construction gives a projection and, in fact, all projections
arise in this manner.

4.17 Definition Let.# be a closed subspace of the Hilbert space J#. Define
P, to be the mapping P, f = g, where f= g+h with g in .# and % in A"

4.18 Theorem If .# is a closed subspace of #, then P, is a projection
having range .#. Moreover, if P is a projection on 4, then there exists a
closed subspace .# (=ran P) such that P = P,,.

Proof First we prove that P, is an operator on 4. If f,,f, are vectors
in # and 1,, 1, complex numbers, then f; = g, + 4, and f; = g, +k,, where
g, g, are in 4 and h,,h, are in .4*. Moreover

MO+ 0 =G99, +2,9) + (A1 hy + Ay hy),

where 4, g, +1, g, is in A and (4, hy + 1, h,) is in .#*. By the uniqueness of
such a decomposition, we have

Py(Aifi+2202) =419, +A,9, = Pufi + A, P, [,

and hence P, is a linear transformation on . Moreover, the inequality

|Pafil® = 1g:1* < lgal* + 12d]* = A1)

shows that P, 1s bounded and has norm at most one. Therefore, P is an
operator on . Moreover, since

(Butfi502) = (91,92 + h3) = (94, 92) = (91 + 1y, 92) = (15 PuS2)s

we see that P, is self-adjoint. Lastly, if fis in .#, then f = f+40 is the required
decomposition of f and hence P, f=f. Since ran P, = ./, it follows that
P,* = P, and hence P, is idempotent. Therefore P, is a projection with
range /.
Now suppose P is a projection on # and set 4 =ran P. If {P[,} -, 1s
a Cauchy sequence 1n # converging to g, then
g = lim Pf, = lim P*f, = P[lim Pf,] = Py.

yi—> OO yi— 0 n—» oo

Thus g is in .# and hence .# is a closed subspace of #. If g is in .#*, then
| Pg|* = (Pg, Pg) = (g, P%g) = 0, since P2g is in .#, and hence Pg=0.
If fis in #, then f= Pg+h, where /4 is in .#* and hence P, f= Pg =
P*g+ Ph = Pf. Therefore, P=P,. B
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Many geometrical properties of closed subspaces can be expressed in
terms of the projections onto them.

4.19 Proposition If 7 1s a Hilbert space, {.#;};—, are closed subspaces
of #, and {P,}}_, are the projections onto them, then P, + P, +4--- +P, =1
if and only if the subspaces {.#;}!-, are pairwise orthogonal and span #,
thatis, ifand only if each fin 5 has a unique representationf = f; +f5 ++-- +f,,
where f; i1s In /..

Proof If P,+P,+.--+ P, = I then each f in J# has the representation
f=P,f+P,f+--+P, f and hence the .#, span #. Conversely, if the
{AM)N_, span # and the sum P,+P,+--«+P, is a projection, then it
must be the identity operator. Thus, we are reduced to proving that
P, +P,+---+ P, is a projection if and only if the subspaces {.#;};_, are
pairwise orthogonal, and for this it suffices to consider the case of two sub-
spaces.

Therefore, suppose P, and P, are projections such that P, + P, is a
projection. For fin .#,, we have

(Pr+P)LS) = (P +P2)£f)
= (PyiPL )+ (oL Py )+ (P, P )+ (P S, Py f)
= (P L)+ (P )+ (P L S) + (P )
= ((Py+PILS) + 2(PL 1.1,

since P, f=f and thus 2||P, f11? = 2(Py f, Pof) = 2(P2 £,f) = 0. Hence,
f and therefore .#, is orthogonal to .#,.

Conversely, if P, and P, are projections such that the range of P, is
orthogonal to the range of P,, then for f1n 5, we have

(Py+P) f = (Py+P)P, f+ (Py+P) Py f= P *f+ P°f
= (Py+P,)/f,

since P, P, f=P, P, f=0. B

The proof shows that the sum of a finite number of projections onto
pairwise orthogonal subspaces is itself a projection.

We next consider some examples of normal operators other than those
defined by the diagonalizable matrices on a finite-dimensional Hilbert space.

4.20 Example Let (X,%,u) be a probability space. For ¢ in L°(y) define
the mapping M,, on I?(x) such that M,, f = ¢f for fin L*(u), where ¢f denotes
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the pointwise product, and let M = {M  : ¢ € L°(1)}. Obviously M, is

L
linear and the inequality

14 2
||M¢f||z=(L|‘;0f|2du) Q(L(umuuﬂ)w) < 19l 11

shows that M, is bounded. Moreover, if E,, is the set

{xeX:|oXx)| > |¢lo— L/n}

iz 1\2 iz
gt = ([ Jote2an) > | [ (10ha=7) 1 |
X X H

1
> (loka—; ) Vil

and hence |M,| = |¢| - For fand g in I*(y) and ¢ in L°(u) we have

then

(M, £, g) = L(tpf‘)ﬂ dut = Lf@ du = (f, My g),

which implies M_* = M. Lastly, the mapping defined by ¥ (¢) = M, from
L*(y) to 9 is obviously linear and multiplicative. Therefore, ¥ is a *-iso-
metrical isomorphism of I’°(u) onto 9. (The terminology *- is used to denote
the fact that conjugation in L*(y) is transformed by ¥ to adjunction in
2(L*(u)).)

Since L°(y) is commutative, it follows that M, commutes with M * and
hence is a normal operator. For ¢ in L”(i) the operator M, is self-adjoint
if and only if M, = M_* and hence if and only if ¢ = @ or ¢ is real. Since
M,? = M, the operator M, is idempotent if and only if > =@ or ¢ is a
characteristic function. Therefore, the self-adjoint operators in 9 are the
M, for which ¢ is real, and the projections are the M, for which ¢ is a
characteristic function.

Let us now consider the spectrum of the operator M,,. If ¢ — A is invertible
in L*(u), then M, —A=M,_,; is invertible in Q(I7(p)) with inverse
M, -1 -1, and hence o(M,) c Z(¢). To assert the converse inclusion we
need to know that if M »— 4 1s invertible, then its inverse is in ¥&. There are
at least two different ways of showing this which reflect two important
properties possessed by K.

4.21 Definition If 57 is a Hilbert space, then a subalgebra I of £(¢)
1s said to be maximal abelian if it is commutative and is not properly con-
tained in any commutative subalgebra of ().
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4.22 Proposition The algebra M = {M  : ¢ € L”(p)} is maximal abelian.

Proof Let T be an operator on I*(u) that commutes with 9. If we set
W = T1, then  is in [*(i) and T = TM,1 = M, T1 = ¢ for ¢ in I>(p).
Moreover, if E, is the set {x e X : [{y(x)] = | T|| + 1/n}, then

71 > 1700 = ot = [ 101 o)

1 7 1
> (||:r|| +“)(f 1 n|2du) > (IITII +—) | ZE.]12-
nJ\Jx &

Therefore, || I |, = 0 and hence the set {x € X : [{/(x)| > | 7|} has measure
zero. Thus ¢ is in L*(u) and To = M, ¢ for ¢ in L*(u). Since C(X) is
dense in IZ () as proved in Section 3.33 and C(X) < L*(y), it follows that
T = M, is in Y. Therefore, I 1s maximal abelian.

Y2

4.23 Proposition It 5 is a Hilbert space and % is a maximal abelian sub-
algebra of {(H#), then o(T) = ou(7T) for T in .

Proof Clearly o(T)cogq(T) for T in U. If 1 is not in ¢(7), then
(T—2)"! exists. Since (77— 1) ™! commutes with 2l and 9 is maximal abelian,
we have (T—2)" ! is in . Therefore A is not in o4(7) and hence og(7T) =

o(7). Ik
424 Corollary If ¢ is in L°(y), then o(M,) = %(¢).

Proof Since M = {M,, :y € L*(1)} is maximal abelian, it follows from
the previous result that o4 (7) = o(7). Since I and L*°(u) are isomorphic
we have 0y (T) = 6,.(,,(T) and Lemma 2.63 completes the proof. M

We give the alternate approach after giving an example of a subalgebra
A of L(H#) and an operator T in ¥ for which o (T) # o(T).

4.25 Example Let /*(Z) denote the Hilbert space consisting of the complex
functions fon Z such that Y% _ _|f(n)|* < co. Define U on /?(Z) such that

(UN(n) =f(n—1) for fin I*(Z). The operator U is called the bilateral shift.
It is clearly linear and the identity

00 0

1Url* = 2 (UNmI* = Y |ftn=DI* = |/1*

n= —oJ n= —oJ

for fin 1%(Z) shows that U preserves the norm and, in particular, is bounded.
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If we define 4 on / 2(Z) such that (Af)(n) = f(n+1) for fin / Z(Z):I we have

W)= S WNmam = S fin—1)g@)

n= — oo n—=-—ao

= ¥ fgmrD) = (f, 49).

n= — o0

Therefore, 4 = U* and a computation yields UU* = U*U = Tor U~ ! = U*,
Thus U is a unitary operator.

From Proposition 2.28 we have o(U) =D and (U™ 1) = o(U*) < D.
If 2is in D,0< |A] <1, then (U-A)U" "= A((1/A)—~U"1). Since 1/ is
not in [, the operator A((1/A)— U™ ") is invertible and hence so is U—A.
Therefore o(U) is contained in T. For fixed 0 in [0,2r] and n in Z*, let f,
be the vector in /?(Z) defined by f,(k) = 2n+1) % e *° for |k| <n and O
otherwise. A straightforward calculation shows that £, is a unit vector and
that lim, ., (U—¢€%f, = 0. Therefore U—¢€" is not bounded below, and
hence ¢ is in o(U). Thus ¢(U) =T.

Let 20, denote the smallest closed subalgebra of £(/*(Z)) containing
I and U. Then 9, is the closure in the uniform norm of the collection of
polynomials in U, that is,

N
A, = clos{}: , U":oc,,e@}.

If ./ denotes the closed subspace
{(fel*(@):fk) = 0 for k < 0}

of 1?(Z), then U4 < .4, which implies p(U).# < M for each polynomial p.
If for A in ¥, we choose a sequence of polynomials {p,},>, such that
lim,,_, . p,(U) = A4, then Af = lim,,_,  p,(U)f implies Af in 4, if f is, since
each p (U)f is in . Therefore A# — .# for A in N, . We claim that U !
is not in ¥, . If e, is the vector in /% (Z) defined to be 1 at 0 and O otherwise,
then

(U "e)(—1) = (U*e)(—1) = 1 # 0.

Hence U~ '.# & .4 which implies that U~ is not in 9 . Therefore, O is
in oy, (U), implying oy, (U) # o(U).

The algebra 2, can be shown to be isometrically isomorphic to the disk
algebra defined in Section 2.50 with U corresponding to y, and hence
oq,(U) = D. We return to this later.

The algebra U, is not maximal abelian, since it is contained in the
obviously larger commutative algebra {M,: ¢ € L*(T)}. Equally important
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is that 9 is not a self-adjoint subalgebra of £(/*(Z)), since, as we will soon
establish, such algebras also have the property of preserving the spectrum.
We consider the abstract analog of a self-adjoint subalgebra.

4.26 Definition If 9[ is a Banach algebra, then an involution on % is a
mapping 7 — T* which satisfies:

(i) T** =T for T in U;
(i) (@S+p* =aS*+p7T* for S, Tin A and o, fin C; and
(iii) (ST)* = T*S* for S and T in 9.

If, in addition, |T*T| = | T|? for Tin U, then ¥ is a C*-algebra.

A closed seli-adjoint subalgebra of () for # a Hilbert space is a
C*-algebra in view of Proposition 4.4. Every C*-algebra can, in fact, be
shown to be isometrically isomorphic to such an algebra (see Exercise 5.26).

All of the various classes of operators whose definitions are based on the
adjoint can be extended to a C*-algebra; for example, an element 7 in a
C *-algebra is said to be self-adjoint if 7= T*, normal if 77* = T*T, and
unitary if 7*T = TT* = I.

We now give a proof of Proposition 4.15 which is valid for C *-algebras.
Our previous proof made essential use of the fact that we were dealing with
operators defined on a Hilbert space.

4.27 Theorem In a C*-algebra a seli-adjoint element has real spectrum.

Proof Observe first that if 7' is an element of the C*-algebra ¥, then the
inequality
| 7)* = |T*T| < |T*| | T|

implies that |7 < ||7%| and hence ||T| = |T*|, since 7** = T. Thus
the involution on a C*-algebra is an isometry.

Now let H be a self-adjoint element of U and set U = expiH. Then from
the fact that H is self-adjoint and the definition of the exponential function,
it follows that U* = exp(iH)* = exp(—iH). Moreover, from Lemma 2.12
we have

UU* =exp(iH)exp(—iH) = exp(iH—iH) = I = exp(—iH)exp(iH) = U*U

and hence U is unitary. Moreover, since 1 = ||| = |U*U|| = | U|* we see
that |U| = |U*| = |U ™| = 1, and therefore ¢ (U) is contained in T. Since
o(U) = exp(ioc (H)) by Corollary 2.37, we see that the spectrum of f must
be real. i
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4.28 Theorem If B is a C*-algebra, U is a closed self-adjoint subalgebra
of B, and 7T is an element of ¥, then oo (7T) = 64 (7).

Proof Since oy (T) contains 64(7), 1t is sufficient to show that if 7— A
is invertible in B, then the inverse (T— 1)~ ! is in 2A. We can assume A =0
without loss of generality. Thus, T is invertible in B, and therefore T*T
is a self-adjoint element of W which is invertible in B. Since oo (T*7T) is
real by the previous theorem, we see that 6o (7*T) = 0z (T* T) by Corollary
2.55. Thus, T* T is invertible in 9 and therefore

T ' =@ Y(TH HT* =(T*T)" ' T*

is in 9 and the proof is complete.

We are now in a position to obtain a form of the spectral theorem for
normal operators. We use it to obtain a “functional calculus™ for continuous
functions as well as to prove many elementary results about normal operators.

Our approach is based on the following characterization of commutative
C *-algebras.

4.29 Theorem (Gelfand-Naimark) If 9 is a commutative C *-algebra and
M is the maximal ideal space of ¥, then the Gelfand map is a *-isometrical
isomorphism of ¥ onto C(M).

Proof 1f I denotes the Gelfand map, then we must show that F(E"_j =
I'(T*) and that |I'(7)| ., = | T||. The fact that I" is onto will then follow from
the Stone-Weierstrass theorem.

If Tisin U, then H=3(T+T%*) and K = (T— T*)/2i are self-adjoint
operators in 9 such that 7= H+iK and T* = H—iK. Since the sets ¢(H)
and ¢(K) are contained in R, by Theorem 4.27, the functions I'(H) and
I'(K) are real valued by Corollary 2.36. Therefore,

I(T)=1T(H)+il'(K) =T(H) —il(K) = T'(H—-iK) = I(T%),

and hence I i1s a *-map.
'To show that I'' is an isometry, let T be an operator in 2I. Using Definition
4.26, Corollary 2.36, Theorem 2.38, and the fact that 7* T is self-adjoint,

we have

I7)? = IT*T| = ((7* D)% = lim |(7*T)*|**

= |[I(T* 1|, = INTHT(D)| = IIT(D)*]c = ITD)]"
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Therefore I is an isometry and hence a *-isometrical 1somorphism onto

c(M). B

If 91 is a commutative C* algebra and T is in U, then 7 is normal, since
T* is also in ¥ and the operators in 2l commute. On the other hand, a normal
operator generates a commutative C *-algebra.

4.30 Theorem (Spectral Theorem) If 5 is a Hilbert space and 7T'is a normal
operator on 5, then the C*-algebra ¢, generated by T is commutative.
Moreover, the maximal ideal space of ¢, is homeomorphic to o(7), and
hence the Gelfand map is a *-isometrical isomorphism of € onto C(o (T')).

Proof Since T and T* commute, the collection of all polynomials in 7
and 7* form a commutative self-adjoint subalgebra of £(5#) which must be
contained in the C*-algebra generated by 7. It is easily verified that the
closure of this collection is a commutative C*-algebra and hence must be
C,. Therefore € is commutative.

To show that the maximal 1deal space M of ¢ is homeomorphic to o (7)),
define  from M to o(T) by Yy (@) = I(T)(¢@). Since the range of I'(T) is
o (T) by Corollary 2.36, i is well defined and onto. If ¢, and ¢, are elements
of M such that {(¢,) = Y (@,), then

I'(T)(¢,) = I(T)(9,), 01 (T) = @(7),

and

¢ (T%) = I(T*)(9,) = I(D)(@1) =T (1)(p2) = I(T*)(p2) = ¢(T7),
and hence ¢, and @, agree on all polynomials in 7 and 7T*. Since this col-
lection of operators is dense in ¢, it follows that ¢, = ¢, and therefore
\ is one-to-one. Lastly, if {¢,},.4 is @ net in M such that lim,. 49, = o,
then
limy(¢,) = imI(T)(¢,) = I(T)(¢) = Y (¢)

GEA a€EA
and hence iy is continuous. Since M and ¢(7) are compact Hausdorff spaces,
then i is a homeomorphism and the proof is complete. W

4.31 Functional Calculus If 7'is an operator, then a rudimentary functional
calculus for T can be defined as follows: for the polynomial p(2) = 3 n—¢ %, 2"
define p(7T) = Y X_,a, T" The mapping p — p(T) is a homomorphism from
the algebra of polynomials to the algebra of operators. If 5 is finite
dimensional, then one can base the analysis of 7 on this functional calculus.
In particular, the kernel of this mapping, that is, {p(z): p(7) =0}, is a
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nonzero principal ideal in the algebra of all polynomials and the generator
of this ideal is the minimum polynomial for 7. If 5 is not finite dimensional,
then this functional calculus may yield little information.

The extension of this map to larger algebras of functions (see Exercise

2.18) is a problem of considerable importance in operator theory.

If T is a normal operator on the Hilbert space #, then the Gelfand map
establishes a *-isometrical isomorphism between C(o(T)) and €,. For ¢
in C(o (7)), we define (7)) = I'" '¢. It is clear that if ¢ is a polynomial in z,
then this definition agrees with the preceding one. Moreover, if 4 is an
operator on S that commutes with 7 and 7%, then 4 must commute with
every operator in ¢, and hence, in particular, with ¢(7) for each ¢ in
C(o(T)).

In the remainder of this chapter we shall obtain certain results about
operators using this calculus and then extend the functional calculus to a

larger class of functions.

4.32 Corollary If 7 is a normal operator on the Hilbert space #, then
T is positive if and only if o(T') is nonnegative and self-adjoint if and only

if o(T) 1s real.

Proof By Proposition 4.15, the spectrum of T is nonnegative if 7T is
positive. Conversely, if 7'is normal, o (7T) is nonnegative, and I' is the Gelfand
transform from €, to C(o(7)), then I'(T) > 0. Thus there exists a con-
tinuous function ¢ on ¢(7T) such that I'(T) = |¢|*. Then

T =o(TN)1le(N)] = o(T)* o(T)

and hence T is positive by Proposition 4.14.
If T is self-adjoint, then the spectrum of T is real by Proposition 4.15.

If T'is normal and has real spectrum, then yy = I'(T') is a real-valued function
by Corollary 2.36, and hence 7 = y(T) = Y (T) = Yy (T)* = T*. Therefore,
T is self-adjoint.

The preceding proposition is false without the assumption that 7 is
normal, that is, there exist operators with spectrum consisting of just zero
which are not self-adjoint.

The second half of the preceding proposition is valid in a C*-algebra,
while the first half allows us to define a positive element of a C*-algebra to

be a normal element with nonnegative spectrum.
We now show the existence and uniqueness of the square root of a positive

operator.,
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4.33 Proposition If P is a positive operator on the Hilbert space #, then
there exists a unique positive operator Q such that Q* = P. Moreover,
O commutes with every operator which commutes with P.

Proof Since the spectrum o (P) is positive, the square root function \/_
is continuous on o (P). Therefore \/P is a well-defined operator on # that
is positive by Corollary 4.32, since ¢(,/P) = /o (P). Moreover, (VPP =P
by the definition of the functional calculus, and /P commutes with every
operator which commutes with P by Section 4.31. It remains only to show
that \/P is unique.

Suppose Q is a positive operator on J# satisfying Q% = P. Since QP =
00* = 0?Q = PQ, it follows from the remarks in Section 4.31 that the
C*-algebra U generated by P, \/E and Q 1s commutative. If I" denotes the
Gelfand transform of U onto C(Mg), then F(\/_ ) and T'(Q) are non-
negative functions by Proposition 2.36, while I'(\/P)* = I'(P)=I(Q)?
since I is a homomorphism. Thus I'(,/P) = I'(Q) implying Q = /P and
hence the uniqueness of the positive square root.

4.34 Corollary If T is an operator on 5, then T is positive if and only if
there exists an operator S on # such that 7'= S*S.

Proof If T is positive, take S = \/ T. If T= S*S, then Proposition 4.14
yields that T is positive. i

Every complex number can be written as the product of a nonnegative
number and a number of modulus one. A polar form for linear transformations
on C" persists in which a positive operator is one factor and a unitary operator
the other. For operators on an infinite-dimensional Hilbert space, a similar
result is valid and the representation obtained is, under suitable hypotheses,
unique. Before proving this result we need to introduce the notion of a partial
isometry.

4.35 Definition An operator V on a Hilbert space 5 is a partial isometry
if |Vf|| = |f]| for f orthogonal to the kernel of V; if, in addition, the kernel
of V'is {0}, then ¥V is an isometry. The initial space of a partial isometry is the
closed subspace orthogonal to the kernel.

On a finite-dimensional space every isometry is, in fact a unitary operator.
However, on an infinite-dimensional Hilbert space this is no longer the case.
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Let us consider an important example of this which is related to the bilateral
shift.

4.36 Example Define the operator U, on [*(Z%) by (U.f)(n) =
f(n—1) for n > 0 and 0 otherwise. The operator is called the unilateral shift
and an easy calculation shows that U is an isometry. Moreover, since the
function ¢, defined to be 1 at 0 and O otherwise is orthogonal to the range
of U,, we see that U, is not unitary. A straightforward verification shows
that the adjoint U * is defined by (U *f)(n) = f(n+1).

ILet us next consider the spectrum of U, . Since U, is a contraction,
that is, |U, | = 1, we have o(U,) < . Moreover, for z in D the function
f. defined by f,(n) = 2" is in I*(Z") and U, *f, = Zf,. Thus z is in o(U,)
and hence o(U,) = D.

The question of whether a partial isometry exists with given subspaces
for initial space and range depends only on the dimension, as the following

result shows.

4.37 Proposition If .4 and .4 are closed subspaces of the Hilbert space #
such that dim.#Z = dim A", then there exists a partial isometry V with initial

space .# and range 4.

Proof If A4 and A" have the same dimension, then there exist ortho-
normal bases {¢ }. ., and {f.,},.4 for # and A" with the same index set.
Define an operator V on # as follows: for g in & write g =h+> .4 A,€,
with #1 # and set Vg=>_.,A f,. Then the kernel of V is .#* and
IVg| = ||lg| for g in 4. Thus, V is a partial isometry with initial space .#,

and range 4. I}

We next consider a useful characterization of partial isometries which
allows us to define partial isometries in a C *-algebra.

4.38 Proposition Let ) be an operator on the Hilbert space 2. The follow-
ing are equivalent:

(1) V is a partial isometry;
(2) V'* is a partial isometry;
(3) VV* is a projection; and
(4) V*V is a projection,

Moreover, if V is a partial isometry, then VV* is the projection onto the
range of ¥, while V*V is the projection onto the initial space.
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Proof Since a partial isometry V is a contraction, we have for fin #
that

(U=V*NLS) = LN = VLS = |17 = IVf]* = 0.

Thus I—V*V is a positive operator. Now if f is orthogonal to kerV, then
[¥7|| = | f]| which implies that (I—V*V)f,f) = 0. Since |(I-V*V)"f|? =
((I-V*V)f,f) =0, we have (I-V*V)f =0 or V*Vf=f. Therefore, V*V
is the projection onto the initial space of V.

Conversely, if V*V is a projection and f is orthogonal to ker(V*V),
then V*Vf = f. Therefore,

VA2 = V*VE ) = (L) = If]%

and hence V preserves the norm on ker(V*V)'. Moreover, if V*Vf =0,
then 0 = (V*Vf,f) = |[Vf]|* and consequently ker(V*¥V) = kerV. Therefore,
V is a partial isometry, and thus (1) and (4) are equivalent. Reversing the
roles of V and V'*, we see that (2) and (3) are equivalent. Moreover, if V*V
is a projection, then (VV*y =VWV*V)V* =VV*, since V(V*V)=V.
Therefore, VV'* is a projection, which completes the proof. i

We now obtain the polar decomposition for an operator.

4.39 Theorem If 7 is an operator on the Hilbert space 5, then there
exists a positive operator P and a partial isometry V such that 7 = VP. More-
over, V and P are unique if ker P = Ker V.

Proof 1If we set P =(T*T)", then

|BfI|* = (PLEf) = (P°£f) = (T*TIff) = |Tf|*  for fin .

Thus, if we define ¥ on ran P such that VPf = T¥, then ¥ is well defined and
is, in fact, isometric. Hence, ¥ can be extended uniquely to an isometry
from clos[ran P] to . If we further extend ¥ to J# by defining it to be the
zero operator on [ran P}, then the extended operator V is a partial isometry
satisfying 7= VP and ker V = [ran P]* = ker P by Proposition 4.6.

We next consider uniqueness. Suppose T = WQ, where W is a partial
isometry, Q is a positive operator, and ker W = ker O, Then P? = T*T =
OW*WQ = Q?, since W*W is the projection onto

[ker W]+ = [ker Q]* = clos[ran Q}

by Propositions 4.38 and 4.6. Thus, by the uniqueness of the square root,
Proposition 4.33, we have P = Q and hence WP = VP. Therefore, W=V
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on ran P. But
[ran P]' = ker P = ker W = kerV,

and hence W=V on [ranP]'. Therefore, V=W and the proof is
complete.

Although the positive operator will be in every closed self-adjoint sub-
algebra of () which contains 7, the same is not true of the partial isometry.
Consider, for example, the operator 7= M, M, in 2(I*(T)), where ¢ is a
continuous nonnegative function on T while { has modulus one, is not con-
tinuous but the product @y is.

In many instances a polar form in which the order of the factors is reversed
is useful.

4.40 Corollary If T is an operator on the Hilbert space 5, then there
exists a positive operator O and a partial isometry W such that 7= QW.
Moreover, W and Q are unique if ranW = [ker O]".

Proof From the theorem we obtain a partial isometry ¥V and a positive
operator P such that 7% = VP. Taking adjoints we have T = PV*, which is
the form we desire with W =¥V* and Q = P. Moreover, the uniqueness also
follows from the theorem since ran W = [ker Q7' if and only if

kerV = ker W* = [ranW]" = [kerQ]'t = kerP. B

It T is a normal operator on a finite-dimensional Hilbert space, then the
subspace spanned by the eigenvectors belonging to a certain eigenvalue
reduces the operator, and these subspaces can be used to put the operator in
diagonal form. If 7 is a not necessarily normal operator still on a finite-
dimensional space, then the appropriate subspaces to consider are those
spanned by the generalized eigenvectors belonging to an eigenvalue. These
subspaces do not, in general, reduce the operator but are only invariant for it.

Although no analogous structure theory exists for operators on an infinite-
dimensional Hilbert space, the notions of invariant and reducing subspace
remain important.

4.41 Definition If 7 is an operator on the Hilbert space # and . is a
closed subspace of 4, then .# 1s an invariant subspace for T if T.4 < 4
and a reducing subspace if, in addition, T(A#") < 4" .

We begin with the following elementary facts.



The Polar Decomposition 99

4.42 Proposition If 7 is an operator on J#, .4 is a closed subspace of
H#, and P, is the projection onto .#, then .# is an invariant subspace for T
if and only if P, TP, = TP, if and only if .#* is an invariant subspace for
T*; further, .# is a reducing subspace for 7 if and only if P, 7= TP, if
and only if .# is an invariant subspace for both 7 and T*.

Proof If . is invariant for 7, then for fin 4, we have TP, f in ./
and hence P, TP, f=TP,f;thus P, TP, = TP,. Conversely, if P, TP, =
TP,, then for fin .4, we have Tf =TP,f=P,TP,f= P, Tf, and hence
Tf is in Z. Therefore, T4 < A4 and # 1is invariant for 7. Further, since
I— P, is the projection onto .#" and the identity

T*(I—-P,) =1-P,)T*(I-P,)

is equivalent to P, T* = P, T*P,, we see that .#* is invariant for 7* if
and only if .#Z is invariant for 7. Finally, if .4 reduces T, then P, T =
pP,TP, = TP, by the preceding result, which completes the proof. I}

4.43 In the remainder of this chapter we want to extend the functional
calculus obtained in Section 4.31 for continuous functions on the spectrum
to a larger algebra of functions. This larger algebra of functions is related
to the algebra of bounded Borel functions on the spectrum.

Before beginning let us give some consideration to the uses of a functional
calculus and why we might be interested in extending it to a larger algebra of
functions. Some of the details in this discussion will be omitted.

Suppose 7 is a normal operator on the Hilbert space # with finite
spectrum o(7) = {4, 4,,---, Ay} and let ¢ — @ (7T) be the functional calculus
defined for ¢ in C(o(T)). If 4, is a point in the spectrum, then the character-
istic function I,;, is continuous on ¢(7) and hence in C(c(7)). If we let
E, denote the operator I, ,(T), then it follows from the fact that mapping
@ = @(T) 1s a *isomorphism from C(c(T)) onto €., that each E, is a
projection and that £, +E,+---+Ey =1 If .4, denotes the range of E,,
then the {#,}’., are pairwise orthogonal, their linear span is # and /Z,
reduces 7T by the preceding proposition. Moreover, since

N

N
I'=2z(T) = [Z A;I{A.}J (7T) = ;A;Eu

1= 1

we see that T acts on each .#, as multiplication by A,. Thus the space H#
decomposes into a finite orthogonal direct sum such that 7 is multiplication
by a scalar on each direct summand. Thus the functional calculus has enabled
us to diagonalize 7 in the case where the spectrum of T'is finite.
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If the spectrum of T is not discrete, but is totally disconnected, then a
slight modification of the preceding argument shows that # can be de-
composed for such a 7 into a fimte orthogonal direct sum of reducing
subspaces for 7 such that the action of 7' on each direct summand is approxi-
mately (in the sense of the norm) multiplication by a scalar. Thus in this case
T can be approximated by diagonal operators.

If the spectrum of T is connected, then this approach fails, since C(o (7))
contains no nontrivial characteristic functions. Hence we seek to enlarge
the functional calculus to an algebra of functions generated by its character-
istic functions. We do this by considering the Gelfand transform on a larger
commutative self-adjoint subalgebra of £ (). This algebra will be obtained
as the closure of €, in a weaker topology. Hence we begin by considering
certain weaker topologies on £ ().

4.44 Definition Let »# be a Hilbert space and £(s#) be the algebra of
operators on #. The weak operator topology is the weak topology defined
by the collection of functions 7T"— (7f, g) from £(3#) to C for f and g in .
The strong operator topology on £(5) is the weak topology defined by the
collection of functions 7 — Tf from () to # for fin .

Thus a net of operators {7 }_ ., converges to T in the weak [strong]
operator topology if
im(7,f,9) = (Tf,g9) [imT, f= Tf] for every fand gin .

a€A a€E A

Clearly, the weak operator topology is weaker than the strong operator
topology which is weaker than the uniform topology. We shall indicate
examples in the problems to show that these topologies are all distinct.

The continuity of addition, multiplication, and adjunction in the weak
operator topology is considered in the following lemma. We leave the corre-
sponding questions for the strong operator topology to the exercises.

445 Lemma If 5 is a Hilbert space and 4 and B are in £(%), then the
functions:

(1) a(S, T) =S+ T from L(H) x L(H#) to L(HF),
(2) B(T) = AT from L(H) to L(H),

(3) v(T) = TB from L£(5¢) to L(+), and

(4) 6(T)=T* from L(H) to L(H),

are continuous in the weak operator topology.
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Proof Compute. I}

The enlarged functional calculus will be based on the closure of the
C*-algebra ¢, in the weak operator topology.

4.46 Definition If 5 is a Hilbert space, then a subset U of {(H#) is said
to be a W*-algebra on 4 if U is a C*-algebra which is closed in the weak
operator topology.

The reader should note that a W *-algebra is a C*-subalgebra of £(#)
which is weakly closed. In particular, a W *-algebra is an algebra of operators.
Moreover, if ® is a *-isometrical isomorphism from the W*-algebra U
contained in () to the C*-algebra B contained in £(%"), then it does
not follow that B i1s weakly closed 1n £("). We shall not consider such
questions further and refer the reader to [27] or [28].

The following proposition shows one method of obtaining W*-algebras.

4.47 Propesition If # is a Hilbert space and 9 is a self-adjoint sub-
algebra of £(), then the closure ¥ of I in the weak operator topology is
a W*-algebra. Moreover, ¥ is commutative if I is.

Proof That the closure of M is a W *-algebra follows immediately from
Lemma 4.45. Moreover, assume that % is commutative and let {S,}, .,
and {7,}z.p be nets of operators in I which converge in the weak operator
topology to S and T, respectively. Then for fand g in # and f in B, we have

(STﬁf; g) = Lim(S, Tﬂf;g) = Hm(Tﬁ S.[>9) = (TﬁSf; g)-

xeEA aEA

Therefore, ST, = T, S for each f in B and a similar argument establishes
ST = TS. Hence, ¥ is commutative if M is. I

4.48 Corollary If 5 is a Hilbert space and 7 is a normal operator on
then the W*-algebra I8, generated by 7 is commutative. Moreover, if A;
is the maximal idea space of I,, then the Gelfand map 1s a *-isometrical
isomorphism of B, onto C(A,).

Proof This follows immediately from the preceding proposition along
with Theorem 4.29. |}

4.49 If T is a normal operator on the separable Hilbert space # with
spectrum A contained in C, then we want to show that there is a unique L”
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space on A and a unique *-isometrical isomorphism I'* ; MW, — [* which
extends the functional calculus I of Section 4.31, that is, such that the
accompanying diagram commutes, where the vertical arrows denote inclusion

€, —> C(A)

| .

%T"“_)' Lm

maps. Thus, the functional calculus for 7 can be extended to %, and
W ={o(T):pel”}

We begin with some measure theoretic preliminaries concerning the
following illustrative example. Let A be a compact subset of the complex
plane and v be a finite positive regular Borel measure on A with support A.
(The latter condition is equivalent to the assumption.that the inclusion
mapping of C(A) into L*(v) is an isometrical isomorphism.) Recall that for
each ¢ in L°(v) we define M, to be the multiplication operator defined on
I?(v) by M,f= ¢f and that the mapping ¢ — M, is a *-isometrical iso-
morphism from I®(v) into £(I%(v)). Thus we can identify the elements of
L[*(v) with operators in (L7 (v)).

The following propositions give several important relationships between
v, C(A), L*(v), and £(I*(v)). The first completes the presentation in Section
4.20.

4.50 Proposition If (X, 7, u)is a probability space, then L°(p) is a maximal
abelian W*-algebra in £(1*(p)).

Proof In view of Section 4.19, only the fact that L*(1) 1s weakly closed
remains to be proved and that follows from Proposition 4.47, since the weak
closure is commutative and hence must coincide with L*(1).

The next result identifies the weak operator topology on L*(u) as a
familiar one.

4.51 Proposition If (X,%, ) is a probability space, then the weak oper-
ator topology and the w*-topology coincide on L*(u).

Proof We first recall that a function f on X is in L' () if and only if it
can be written in the form f = gh, where g and h are in IZ(p).
Therefore a net {¢,},., in L°(u) converges in the w*-topology to ¢ if
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and only if

lim | ¢,/ du = Lf,ofdu

a€A JX

if and only if

(M, 9,) = lim | g,k diu = | ook diu = (M, g,

aEA a€EA JX

and therefore if and only if the net {M_},., converges to M, in the weak
operator topology. I

The next proposition shows that the W*-algebra generated by multipli-
cation by z on L*(v) is L°(v).

4.52 Proposition If X isa compact Hausdorff space and u is a finite positive
regular Borel measure on X, then the unit ball of C(X) i1s w*-dense in the
unit ball of L*(u).

Proof A simple step function y in the unit ball of I*°(u) has the form
V=>7_,0a,lp, where {o,{ <1 for i=1,2,...,n, the {E}]_, are pairwise
disjoint, and | J'-, E,= X. For i = 1,2,...,n, let K, be a compact subset of
E,. By the Tietze extension theorem there exists ¢ in C(X) such that
loll.. < 1 and ¢(x) = ¢, for x in K,. Then for fin L' (1), we have

ff(co—w) dn -.<..f\f\ o— ] d
X X

= i £l =l du~<...2f £ du.

=1 JEIK, =1 JEIK,

Because p is regular, for fi,....f, in I*(1) and ¢ > 0, there exist compact
sets K, < FE, such that

f \Jj\du<—8— for j=1,2,...,m.
E\K, 2n

This completes the proof. i}

4.53 Corollary If X is a compact Hausdorff space and p is a finite positive
regular Borel measure on X, then C(X) 1s w*-dense in L* (u).

Proof Immediate. N
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We now consider the measure theoretic aspects of the uniqueness problem.
We begin by recalling a definition.

4.54 Definition Two positive measures v, and v, defined on a sigma
algebra (X, %) are mutually absolutely continuous, denoted v, ~ v,, if v,
is absolutely continuous with respect to v, and v, is absolutely continuous
with respect to v,.

4.55 Theorem If v, and v, are finite positive regular Borel measures on
the compact metric space X and there exists a *-isometrical isomorphism
® : L*°(vy) » L*(v,) which is the identity on C(X), then v, ~v,, [*(v,) =
L*(v,), and @ is the identity.

Proof If E is a Borel set in X, then ®(I) is an idempotent and there-
fore a characteristic function. If we set ®(I;) = I, then it suffices to show
that £ = Fv,—a.e. (almost everywhere), since this would imply v,(E£) =0
if and only if I, = 0 in L*(v,) if and only if Ir = 0 in L*(v,) if and only if
v,(F) =0, and therefore if and only if v,(E) =0. Thus we would have
v, ~ v, and L*(v,) = L*(v,), since the [* space is determined by the sets
of measure zero. Finally, ® would be the identity since it is the identity on
characteristic functions and the linear span of the characteristic functions
is dense in ™.

To show that £ = Fv,—a.e. it suffices to prove that F < F v,~—a.e., since
we would also have (X\F) < (X\E) v,—a.e. Further, we may assume that F
is compact. For suppose it is known for compact sets. Since v, and v, are
regular, there exists a sequence of compact sets {K,} >, contained in E such
that E={)2, K,v,—a.e. and E=|)2, K, v,—a.e. Thus, since ® and
®~! are *-linear and multiplicative and hence order preserving, ® preserves
suprema and we have

I = sup®@(lg,) < suply, = I\« x = Ipv,—a.e

and therefore F is contained in FE v,—a.e. Therefore, suppose E is closed
and for n in Z" let ¢, be the function in C(X) defined by

S -

1 —n-d(x,E) if d(x,E)<

2

@y (x) —

e e

0 if d(x,E) =

2
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where d(x, E) =inf{p(x,y):yeE} and p is the metric on X. Then
I < ¢, for each n and the sequence {¢,},~; converges pointwise to I..
Since @ is order preserving and the identity on continuous functions, we have
I. < ¢, v,—a.e. and thus Fis contained in Ev,—a.e. |}

After giving the following definition and proving an elementary lemma
we obtain the functional calculus we want under the assumption the operator
has a cyclic vector.

4.56 Definition If 5 is a Hilbert space and U is a subalgebra of £(¢),
then a vector fin 3 1s cyclic for U if clos[2Af ] = 3# and separating for U
if Af=0 for A in U implies 4 = 0.

4.57 Lemma If 5# is a Hilbert space, ¥ is a commutative subalgebra of
L(3), and fis a cyclic vector for ¥, then fis a separating vector for .

Proof If B is an operator in W and Bf =0, then BAf= ABf=0 for
every A in 9. Therefore, we have Uf < ker B, which implies B=0.

The following theorem gives a spatial isomorphism between 2B, and L,
if T is a normal operator on 3 having a cyclic vector. (Note that such an
H is necessarily separable.)

4.58 Theorem If T is a normal operator on the Hilbert space 3 such that
¢, has a cyclic vector, then there is a positive regular Borel measure v on C
having support A =¢(7T) and an isometrical isomorphism y from 3 onto
I?(v) such that the map I'* defined from ¥, to L(L*(v)) by T'*4 = yAy~!
is a *-isometrical isomorphism from %3, onto L*(v). Moreover, I' * is an
extension of the Gelfand transform I' from ¢, onto C(A). Lastly, if v, is
a positive regular Borel measure on € and I'{* is a *-isometrical isomorphism
from B, onto L*(v,) which extends the Gelfand transform, then v, ~ v,
LX(vy)) = L*(v), and I} *=T*

Proof Let f be a cyclic vector for €, of norm one and consider the
functional defined on C(A) by Y (¢) = (@(T)f.f). Since |y is obviously
linear and positive and

W (@) = (MO < le(DINF? = ¢l

there exists by the Riesz representation theorem (see Section 1.38) a positive
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regular Borel measure v on A such that

|od=@mrn for gince
A

Now suppose that the support of v were not all of A, that is, suppose there
exists an open subset V' of A such that v(}) = 0. By Urysohn’s lemma there
is a nonzero function ¢ in C(A) which vanishes outside of V. Since, however,
we have

-y

lo(DSI? = (oD, 0(T)f) = (92(TVAS) = L 0% dv = 0,

and fis a separating vector for ¢, by the previous lemma we arrive at a
contradiction. Thus the support of v 1s A.
If we define y, from € f to I*(v) such that y,(@(T)f) = ¢, then the

computation

lol,% = f 012 dv = (|9|2(DVLS) = oD

shows that y, i1s a well-defined isometry. Since €, f is dense in 3 by
assumption and C(A) is dense in I (v) by Section 3.33, the mapping y, can
be extended to a unique isometrical isomorphism y from J# onto IZ(v).
Moreover, if we define I'* from W into L(I7(v)) by I'*(A4) = yAy~ !, then
I'* is a *-isometrical isomorphism of ¥, into L(L*(v)). We want to first
show that I'’* extends the Gelfand transform I' on €. If i/ 1s in C(A), then
for all ¢ in C(A), we have

[T*(W(T)] o = WDy o =y (T o(Df =y[W)(Df1=y¢ = M, ¢

and since C(A) is dense in I*(v), it follows that T*(y(T)) = M, = T(y(T)).
Thus I'* extends the Gelfand transform.

To show that I'* (;) = L*(v), we note that since I'’* 1s defined spatially
by y, it follows from Proposition 4.51 that I'* is a continuous map from
3, with the weak operator topology to L*(v) with the w*-topology. There-
fore, by Corollary 4.53, we have

* (W) = I'*(weak oper clos[E1])
= w¥-clos[C(A)] = L*(v),

and thus I'* i1s a *-isometrical isomorphism mapping I8, onto L*(v).
Finally, if v, is a positive regular Borel measure on A and I'|* 1s a

*-isometrical isomorphism from 2B, onto L*(v,) which extends the Gelfand

transform, then I'*I'f ™! is a *-isometrical is~=norphism from L*(v,) onto
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L*(v) which is the identity on C(A). Hence, by Theorem 4.55, we have
vy ~v, I°(v;) = L*(v), and T'*I'{"! is the identity. Therefore the proof
is complete.

4.59 The preceding result gives very precise information concerning normal
operators possessing a cyclic vector. Unfortunately, most normal operators
do not have a cyclic vector. Consider the example:

# = I2([0,1]) ® I2([0,1])

and T=M,®M,, where g(t) = t. It 1s easy to verify that €, has no cyclic
vector and this is left as an exercise. Thus the preceding result does not apply
to 7. Notice, however, that

C,r={M,eM,: e C({0,1])} and W, ={M, DM, :¢elL*(0,1])},

and thus there still exists a *-isometrical isomorphism I'* from T, onto
(0, 17) which extends the Gelfand transform on ¢,. The difference is
that I'* is no longer spatially implemented.

To see how to obtain I'* 1n the general case, observe that f=1@®0 is
a separating vector for W, and that the space .# = clos[IB;f] is just
L*([0,1]) @ {0}; moreover, .# is a reducing subspace for 7" and the mapping
A — A| M defines a *-isometrical isomorphism from 2B, onto the W *-algebra
generated by T'|.#. Lastly, the operatot 7'|.# is normal and €, has a
cyclic vector; hence the preceding theorem applies to it.

Our program is as follows: For a normal 7 we show 283, has a separating
vector, that W, and W, , are naturally isomorphic, and that the theorem
applies to T|.Z. Thus we obtain the desired result for arbitrary normal
operators. To show that I8, has a separating vector requires some preliminary
results on W *-algebras.

4.60 Proposition If U is an abelian C*-algebra contained in £(3¢), then
there exists a maximal abelian W *-algebra in £(3¢) containing 9.

Proof The commutative C*-subalgebras of £(3¢) which contain ¥ are
partially ordered by inclusion. Since the norm closure of the union of any
chain is a commutative C*-algebra of £(3) containing 2, then there is a
maximal element by Zorn’s lemma. Since the closure of such an element in
the weak operator topology is commutative by Proposition 4.47, it follows
that such an element is a W*-algebra. |}
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The following notion is of considerable importance in any serious study
of W *-algebras.

4.61 Definition If U is a subset of £(5#), then the commutant of U,
denoted 9’, is the set of operators in £(3#) which commute with every
operator in 1.

It is easy to show that if U is a self-adjoint subset of £ (), then A’ 1s a
W *-algebra.

The following proposition gives an algebraic characterization of maximal
abelian W *-algebras.

4.62 Proposition A C*-subalgebra U of £(5#) i1s a maximal abelian
W *-algebra if and only if U = A'.

Proof If W =AW, then A is a W*-algebra by our previous remarks.
Moreover, by definition each operator in ¥’ commutes with every operator
in U and therefore ¥ is abelian. Moreover, if 4 is an operator commuting
with U, then 4 1s in ¥’ and hence already in 9. Thus 2 is a maximal abelian
W *.algebra.

Conversely, if % is an abelian W *-algebra, then 9 < ’. Moreover, if
Tis in W', then T= H+iK, where H and K are self-adjoint and in 2’. Since
the W*-algebra generated by ¥ and either H or K is an abelian W *-algebra,
then for ¥ to be maximal abelian, it is necessary for H and K to be in ¥ and
hence A =A". I

4.63 Lemma If U is a C*-algebra contained in £(3#) and fis a vector
in &, then the projection onto the closure of f'is in A".

Proof In view of Proposition 4.42 it suffices to show that clos[9/f] is
invariant for both 4 and A* for each 4 in ¥. That is obvious from the
definition of the subspace and the fact that U is self-adjoint. i

The following proposition shows one of the reasons for the importance
of the strong operator topology.

4.64 Proposition If 57 is a Hilbert space and {P,},.4 is a net of positive
operators on J such that 0 < P, < Py < Ifor o and f in 4 with o < f5, then
there exists P in £() such that 0< P, < P< I for o in A and the net
{P,}eca cOnverges to P in the strong operator topology.
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Proof If Qis in £()#) and 0< Q@ <1, then 0K 0* €< @< I since O
commutes with (J— 0)” by Proposition 4.33 and since

(Q-00/1.f) = (QU-O"f,I-]”f) >0 for fin K.

Further, for each f in 5 the net {(P,f,f)}..4 is increasing and hence a
Cauchy net. Since for f > o, we have

|(Ps— PYfI* = (Pe—PI*1.f) < (Pp—PILS) = (Ppf.f) — (P L)
it therefore follows that {P, f},., 1s a Cauchy net in the norm of #. If we
define Pf=1lim,_, P, f, then P is linear,
|PA] < lim[[P.f] < 1Al and O < lim(P.A) = (BL):

aeA

Therefore, P is a bounded positive operator, 0 < P, < P <1, for o in A,
and {P,},., converges strongly to P, and the proof is complete. [}

The converse of the following theorem is also valid but is left as an exercise.

4.65 Theorem If U is a maximal abelian W*-algebra on the separable
Hilbert space 5, then ¥ has a cyclic vector.

Proof Let & denote the set of all collections of projections {E,}, .
in A such that:

(1) For each o in A there exists a nonzero vector f, in 5 such that E, is
the projection onto clos[f,]; and
(2) the subspaces {clos[%f,]}.. 4 are pairwise orthogonal.

We want to show there is an element {E,},_, in & such that the span of the
ranges of the E, is all of 5.

Order & by inclusion, that is, {E_}, ., is greater than or equal to {Fg};p
if for each B, in B there exists &, in 4 such that F; = E, . To show that &
is nonempty observe that the one element set { P01} 18 In & for each non-
zero vector fin 3. Moreover, since the union of a chain of elements in &
is in &, then & has a maximal element {£_ },. , by Zorn’s lemma.

Let & denote the collection of all finite subsets of the index set 4 partially
ordered by inclusion and let {£r}r.» denote the net of operators defined
by Pr =Y ,.rE,. By the remark after Proposition 4.19, each Pz is a pro-
jection and hence the net is increasing. Therefore, by the previous proposition
there exists a positive operator P such that 0 < Pp < P < [ for every Fin &
and {P;}r.s converges to P in the strong operator topology. Therefore,
{P*} .4 converges strongly to P? and P is seen to be a projection.
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The projection P is in U since U is weakly closed and the range .# of P
reduces U since A is abelian. Thus, if fis a nonzero vector in .#*, then
clos[2f] is orthogonal to the range of each E,. If we let E; denote the
projection onto clos[f ], then {E.}.. 4. (5 1S an element in & larger than
{E},. ... This contradiction shows that .#* = {0} and hence that P =I.

Since # is separable, dimranE, >0, and dims# =3} ,_,dimrankE,,
we see that 4 is countable. Enumerate 4 such that 4 = {&;, ®,,...} and set
=127 IS |- Since E, f=27f /|f.ll, we see that the range of
E, is contained in clos[f]. Therefore, since the ranges of the E, span 5,
we see that f'is a cyclic vector for U and the proof is complete. [

The assumption that 5 is separable is needed only to conclude that A

is countable.
The following result is what we need in our study of normal operators.

4.66 Corollary If U is an abelian C*-algebra defined on the separable
Hilbert space #, then U has a separating vector.

Proof By Proposition 4.60 2 is contained in a maximal abelian W*-
algebra ‘B which has a cyclic vector f by the previous theorem. Finally, by
Lemma 4.57 the vector f is a separating vector for 8 and hence also for the
subalgebra U. |

The appropriate setting for the last two results is in B/ *-algebras having
the property that every collection of pairwise disjoint projections is countable.
While for algebras defined on a separable Hilbert space this is always the
case, it is not necessarily true for W*-algebras defined on a nonseparable
Hilbert space 5 ; for example, consider £(X).

Before we can proceed we need one more technical result concerning
*-homomorphisms between C *-algebras.

4.67 Proposition If A and B are C*-algebras and ® is a *-homomorphism
from U to B, then | ®|| < 1 and ® is an isometry if and only if ® is one-to-one.

Proof 1If H is a self-adjoint element of 2, then ¢, is an abelian C*-
algebra contained in 2 and ®(¢,) is an abelian *-algebra contained in 5.
If / is a multiplicative linear functional on the closure of ®(¢y) then Yo ®
defines a multiplicative linear functional on €. If ¥ is chosen such that
|y (®(H))| = |[®(H)|, which we can do by Theorem 4.29, then we have
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|H| = [Y(P(H))| = |®(H)| and hence ® is a contraction on the self-
adjoint elements of A. Thus we have for 7 in 2 that

|T1* = |T*T| > |T*T)| = [2(T)*(D)| = |D(T)|?

and hence |®| < 1.

Now for the second statement. Clearly, if ® is an isometry, then it is
one-to-one. Therefore, assume that ® is not an isometry and that 7 is an
element of A for which |7T] =1 and |®(T)| < 1. If we set 4 = T*T, then
|4 =1 and |®(A)| = 1 —e with ¢ > 0. Let f be a function in C([0, 1])
chosen such that f(1) =1 and f(x) =0 for 0 < x < 1—¢&. Then using the
functional calculus on €, we can define f(4) and since by Corollary 2.37
we have o(f(4)) =rangeT'(f(4))=f(c(4)), we conclude that 1 is in
a(f(A)) and thus f(A4) # 0. Since @ is a contractive *-homomorphism, it is
clear that ®(p(4)) = p(®(4)) for each polynomial and hence ®(f(4)) =
f(®(A)). Since, however, we have |®(4)|| = 1 —g, it follows that o(®(4)) <
[0, 1 —¢] and therefore

o (@(f(4)) = f(o(®(4)) = ATO,1-¢]) = {0}.

Since ®(4) is self-adjoint, we have ®(4) = 0, which shows that @ is not
one-to-onc. |§

Now we are prepared to extend the functional calculus for an arbitrary
normal operator on a separable Hilbert space.

4.68 Let 37 be a separable Hilbert space and 7 be a normal operator on .
By Corollary 4.66, the abelian W *-algebra I3, has a separating vector f.
If we set A = clos[,f], then .# is a reducing subspace for each 4 in
.., and hence we can define the mapping ® from W, to L(A#) by
®(A) = A| A for A in W, It is clear that ® is a *-homomorphism. We use
the previous result to show that ® is a *-isometrical isomorphism.

4.69 Lemma If 2 is a C*-algebra contained in £(), f is a separating
vector for U and .# is the closure of Uf, then the mapping @ defined
®(A) = A| A for A in U is a *-isometrical isomorphism from U into L(.#).
Moreover, o(A4) = o(A|.#) for A in .

Proof Since ® is obviously a *-homomorphism, it is sufficient to show
that @ is one-to-one. If 4 is in A and ®(4) = 0, then Af = 0, which implies
A =0 since f is a separating vector for 2. The last remark follows from
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Theorem 4.28, since we have

0o #)(A) = 6u(A) = 0g y(A| M) = 0o y(AlA). B

Finally, we shall need the following result whose proof is similar to that of
Theorem 1.23 and hence is left as an exercise.

4.70 Proposition If A is a W*-algebra contained in £(5#°), then the unit
ball of U is compact in the weak operator topology.

Our principal result on normal operators can now be given.

4.71 Theorem (Extended Functional Calculus) If 7'is a normal operator on
the separable Hilbert space 5 with spectrum A, and I' is the Gelfand trans-
form from €, onto C(A), then there exists a positive regular Borel measure v
having support A and a *-isometrical isomorphism '™ from 2B, onto L*(v)
which extends I". Moreover, the measure v is unique up to mutual absolute
continuity, while the space L*(v) and I'* are unique.

Proof Let f be a separating vector for MW, .# be the closure of W, f
and ® be the *-isometrical isomorphism defined from 2B, into £(.#) by
®(A) = Al.# as in Section 4.68. Further, let 28 , be the W*-algebra gener-
ated by 7'|.#. Since ® is defined by restricting the domain of the operators,
it follows that ® is continuous from the weak operator topology on 23..
to the weak operator topology on £(.#), and hence ®(3,) < W ,. More-
over, it is obvious that if I, is the Gelfand transform from ¢, onto C(A),
then I’ =1,0.

Since 7'{.# is normal and has the cyclic vector f, there exist by Theorem
4.58 a positive regular measure v with support equal to o(7|.#) = A by
the previous lemma and a *-isometrical isomorphism I,* from I8 , onto
L*(v) which extends the Gelfand transform I, on €, ,. Moreover, I';* 1s
continuous from the weak operator topology on I3 , to the w*-topology on
L*(v). Therefore, the composition I'* =I*o® is a *-isometrical isomor-
phism from 2B, into L*(v) which is continuous from the weak operator
topology on 2, to the w*-topology on L*(v) and extends the Gelfand
transform I" on .

The only thing remaining is to show that I'* takes 2, onto L*(v). To
do this we argue as follows: Since the unit ball of M, is compact in the weak
operator topology, it follows that its image is w*-compact in [*(v) and
hence w*-closed. Since this image contains the unit ball of C(A), it follows
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from Proposition 4.52 that I'* takes the unit ball of I8.. onto the unit ball
of L*(v). Thus, I'* 1s onto.

The uniqueness assertion follows as in Theorem 4.58 from Theorem
4.55. B

4.72 Definition If 7" is a normal operator on the separable Hilbert space
F, then there exists a unique equivalence class of measures v on A such that
there is a *-isometrical isomorphism I'* from 2B, onto L*(v) such that
I*(p(T)) = ¢ for ¢ in C(A). Any such measure is called a scalar spectral
measure for 7. The extended functional calculus for 7 is defined for ¢ in
L*(v) such that I'*(¢(T)) = ¢. If I, is a characteristic function in L*(v),
then I,(T) 1s a projection in MW, called a spectral projection for 7, and its
range is called a spectral subspace for 7.

We conclude this chapter with some remarks concerning normal operators
on nonseparable Hilbert spaces and a proposition which will enable us to
make use of certain aspects of the extended functional calculus for such
operators. We begin with the proposition which we have essentially proved.

4.73 Proposition If 2 is a norm separable C*-subalgebra of (), then
H = ,.4DH, such that each H#, is separable and is a reducing sub-
space for 2.

Proof It follows from the first three paragraphs of the proof of Theorem
4.65 that 3 = >, .4 D H#,, where each 5, is the closure of Uf, for some f,
in J#. Since A is norm separable, each 3¢, is separable and the result
follows. IR

474 From this result it follows that if 7 is normal on 5, then each
T,= T|H#, is normal on a separable Hilbert space and hence has a scalar
spectral measure v, . If there exists a measure v such that each v, is absolutely
continuous with respect to v, then Theorem 4.71 can be shown to hold for 7.
If no such v exists, then the functional calculus for 7 is usually based on the
algebra of bounded Borel functions on A. In particular, one defines @(7T') =
> .ca®o(T,) for each Borel function ¢ on A. The primary deficiencies in
this approach is that the range of this functional calculus is no longer Wy
and the norm of ¢(T) is less accessible.

Sometimes the spectral measure E(-) for T is made the principal object
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of study. If A is a Borel subset of A, then the spectral measure is defined by
E@) = I(T) = ). @ I\(T)

acA

and is a projection-valued measure such that (E(A)f, f) is countably additive
for each fin #. Moreover, the Stieltjes integral can be defined and T' = |, z dE.
We shall not develop these ideas further except to show that the range of each
spectral measure for 7 lies in 23,

4.75 Proposition If 7 is a normal operator on the Hilbert space 5 and
E(-) is a spectral measure for 7, then E(A) 1s in 283, for each Borel set A in A.

Proof Let T=>,_..®D T, be the decomposition of 7 relative to which
the spectral measure E(-) is defined, where each T, acts on the separable
space 3, with scalar spectral measure u,. If % denotes the collection of
finite subsets of A, then | Jreg X .cr @I, 1s a dense linear manifold in J2.
Thus if A is a Borel subset of A, it is sufficient to show that for f,,£,....f,
lying in >, .p, @ #, for some F, in & and ¢ > 0, there exists a continuous
function ¢ such that 0 < ¢ < 1, and |(o(T)—EQA))f,| <efori=1,2,...,n.
Since

Y. [(o(T) — INTD) P fI*

aeky

Z f lo—1,|° lpx’mfi‘z du,,
A

ﬂEFD

[((T) — EQ) £

this is possible using Proposition 4.52. [

We conclude this chapter with an important complimentary result. The
following ingenious proof is due to Rosenblum [93].

4.76 Theorem (Fuglede) If 7' is a normal operator on the Hilbert space #
and X is an operator in £(3) for which TX = X7, then X lies in 23,

Proof Since . is generated by 7 and 7%, the result will follow once it
is established that 7% X = XT™*.

Since T*X = XT* for each k > 0, it follows that exp(iAT) X = X exp(iAT)
for each A in C. Therefore, we have X = exp(iAT) X exp(—iAT), and hence

F(4) = exp(iAT™*) X exp(—iAT™)
= exp[i(AT+AT*)] X exp[ —i(AT+ AT*)]
by Lemma 2.12, since T77T* = T*T. Since AT+ AT* is self-adjoint, it follows
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that exp[i(AT+ AT*)] and exp[—i(AT+ AT*)] are unitary operators for A
in C. Thus the operator-valued entire function F(4) is bounded and hence by
Liouville’s theorem must be constant (see the proof of Theorem 2.29).
Lastly, differentiating with respect to 4 yields

F'(A) = iAT* exp(iAT™*) X exp(—IAT™)
+ exp(AT*) X exp(—iAT*)(—iAT*) = 0.

Canceling 4 and then setting 4 =0 yields 7*X = XT*, which completes
the proof. [}

Notes

The spectral theorem for self-adjoint operators i1s due to Hilbert, but
elementary operator theory is the joint work of a number of authors including
Hilbert, Riesz, Weyl, von Neumann, Stone, and others. Among the early
works which are still of interest are von Neumann’s early papers [81], [82],
and the book of Stone [104]. More recent books include Akhieser and
Glazman [2], Halmos [55], [58], Kato [70], Maurin [79], Naimark [80],
Riesz and Sz.-Nagy [92], and Yoshida [117].

We have only introduced the most elementary results from the theory of
C*- and W*-algebras. The interested reader should consult the two books
of Dixmier [27], [28] for further information on the subject as well as a guide
to the vast literature on this subject.

EXxercises

4.1 If T is a linear transformation defined on the Hilbert space 5, then
T is bounded if and only if

sup{|(Zf. /)| : fe ., | f]| =1} < c0.

Definition If 7" is an operator defined on the Hilbert space 5, then the
numerical range W(T) of T is the set {(Tf,f):fe ., |f| =1} and the
numerical radius w(T") is sup{|A| : A e W(T)}.

4.2 (Hausdorff~Toeplitz) 1If T is an operator on 5, then W(T) is a
convex set. Moreover, if 5 is finite dimensional, then W(T) is compact.
(Hint: Consider W(T) for T compressed to the two-dimensional subspaces
of )
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4.3 If T'is a normal operator on &, then the closure of W (T) is the closed
convex hull of ¢ (7). Further, an extreme point of the closure of W(7') belongs
to W(T) if and only if it is an eigenvalue for T.

44 If T is an operator on 3, then o(7) is contained in the closure of
W(T). (Hint: Show that if the closure of W(T) lies in the open right-half
plane, then T is invertible.)

4.5 If Tis an operator on the Hilbert space 5, then r(T) < w(T) < || T
and both inequalities can be strict.

4.6 (Hellinger-Toeplitz) If S and T are linear transformations defined on
the Hilbert space # such that (87, g) = (f, Tg) for fand g in 57, then S and
T are bounded and 7= S*.

4.7 If T is an operator on J, then the graph {{f,Tf> : fe #} of T is a
closed subspace of #° @ H# with orthogonal complement {{ — T*g, g> : g € H#}.

4.8 If T'is an operator on ¢, then 7'is normal if and only if || 7f|| = | T*f|
for fin 5. Moreover, a complex number A 1s an eigenvalue for a normal
operator 7'if and only if / is an eigenvalue for 7*. The latter statement is not
valid for general operators on infinite-dimensional Hilbert spaces.

4.9 If S and T are self-adjoint operators on 5, then ST is self-adjoint if
and only if S and T commute. If P and Q are projections on 3, then PO
is a projection if and only if P and O commute. Determine the range of PQ
in this case.

4.10 1If # and A" are Hilbert spaces and A4 1s an operator on @A, then
there exist unique operators A,,, A,;, A3,, and A,, in £(HK), L(A, ),
L(H,A), and L(KA"), respectively, such that

AL kY = (A h+ ALk, Ay h+ Ay K.
In other words A is given by the matrix
o
Ay, Ay, |
Moreover show that such a matrix defines an operator # @ .71 .

4.11 1If 5 and A are Hilbert spaces, 4 is an operator on £(X% ", 3), and J
is the operator on # @A~ defined by the matrix

o o)
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then J is an idempotent. Moreover, J is a projection if and only if 4 = 0.
Further, every idempotent on a Hilbert space .Z can be written in this form
for some decomposition .¥ = # DA .

Definition If 7, and 7', are operators on the Hilbert space 5#; and 3#,,
respectively, then 7 is similar (unitarily equivalent) to 7, if and only if there
exists an invertible operator (isometrical isomorphism) S from 4, onto
H#, such that 7, S = ST;,.

4.12 1If 5 is a Hilbert space and J is an idempotent on 5 with range /#,
then J and P, are similar operators.

4.13 If (X,%,u) 1s a probability space and ¢ a function in L*(y), then A
is an eigenvalue for M, if and only if the set {x € X : ¢ (x) = A} has positive
measure.

4.14 Show that the unitary operator U defined in Section 4.25 has no eigen-
values, while the eigenvalues of the coisometry U, * defined in Section 4.36
have multiplicity one.

4.15 If A is a C*-algebra, then the set 2 of positive elements in A forms
a closed convex cone such that Z N — 2 = {0}. (Hint: Show that a self-
adjoint contraction H 1n U is positive if and only if |I— H| < 1.)

4.16 1If A is a C*-algebra, then an element H in 2 is positive if and only
if there exists 7' in U such that H=T*T.* (Hint: Express T*T as the
difference of two positive operators and show that the second is zero.)

4.17 If P and Q are projections on # such that |P-—-Q| <1, then
dimran P = dimran Q. (Hint: Show that (J— P)+4- O is invertible, that
ker Pnran Q = {0}, and that P[ran Q] = ran P.)

4.18 An operator V on 5 is an isometry if and only if V*V = 1. If V is an
1sometry on J2, then V is a unitary operator if and only if V* is an isometry
if and only if ker V* = {0}.

4.19 1If # and o are Hilbert spaces and A4 is an operator on @ A given

by the matrix
{ Ay Ay ]
Ay Az ’

then # @ {0} is an invariant subspace for A4 if and only if 4,; =0, and
H @ {0} reduces 4 if and only if 4,, = 4,, =0.
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4.20 1If U, is the unilateral shift, then the sequence {U_ "}, converges
to 0 in the weak operator topology but not in the strong. Moreover, the
sequence {UF"}® , converges to O in the strong operator topology but not
in the norm.

4.21 Show that multiplication is not continuous in both variables in either
the weak or strong operator topologies. Show that it is in the relative strong
operator topology on the unit ball of £(57).

4.22 If 5 1s a Hilbert space, then the unit ball of £(3) is compact in the
weak operator topology but not in the strong. (Hint: Compare the proof of
Theorem 1.23.)

4.23 If AU is a W*-algebra contained in £(3), then the unit ball of U is
compact in the weak operator topology.

4.24 1If U is a *subalgebra of L(H#), then WU, ,={[02]:4e U} is a
*-subalgebra of £ (5 ®© ). Similarly, Uy, 1sa *-subalgebra of L(H' @ --- @ H)
for any integer N. Moreover, Uy, is closed in the norm, strong, or weak
operator topologies if and only if % is. Further, we have the identity

"o "
Q[(N) _ Q[(N)'

4.25 If AUisa *-subalgebra of #, 4isin W, x,, x,,..., Xy are vectors in i,
and & > 0, then there exists Bin 2 such that |4x;— Bx;| <efori=1,2,..., N.
(Hint: Show first that for .# a subspace of HFD---®H, we have
clos[W/yy A ] = clos[Uy, A1)

4.26 (von Neumann Double Commutant Theorem) 1f U 1s a *-subalgebra
of £(5), then U is a W*-algebra if and only if A = A" *

4.27 1If A is a C*-subalgebra of L(5), then U is a W*-algebra if and only
1f 1t is closed in the strong operator topology.

4.28 If S and T are operators in the Hilbert spaces 5 and 4, respectively,
then an operator S® 7 can be defined on S#® " in a natural way such that
|S@T| = S| || and (S® T)* = S*@T*

In Exercises (4.29-4.34) we are considering linear transformations defined on
only a linear subspace of the Hilbert space.

Definition A linear transformation L defined on the linear subspace &, of
the Hilbert space # is closable if the closure in #@H# of the graph
{(LL  fe@,} of L is the graph of a linear transformation L called the
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closure of L. If L has a dense domain, is closable, and L = L, then L is said
to be closed.

4.29 Give an example of a densely defined linear transformation which is
not closable. If 7T is a closable linear transformation with 2., = 5, then
T is bounded.

4.30 1If L is a closable, densely defined linear transformation on 3, then
these exists a closed, densely defined linear transformation M on 4 such
that (Lf,g) = (f, Mg) for fin &; and g in &,,. Moreover, if N is any linear
transformation on 3 for which (Lf,g) = (f, Ng) for fin 2, and g in @,
then 2y < 2,; and Ng = Mg for g in . (Hint: Show that the graph of M
can be obtained as in Exercise 4.7 as the orthogonal complement of the graph
of L.)

Definition If L i1s a closable, densely defined linear transformation on 52,
then the operator given in the preceding problem is called the adjoint of L
and is denoted L*. A densely defined linear transformation H is symmetric

if (Hf,f) is real for fin &4 and self-adjoint if H = H*.

4.31 1If T is a closed, densely defined linear transformation on 5, then
T = T** * (This includes the fact that ¥, = Y ..). If H i1s a densely defined
symmetric transformation on 5, then H is closable and H* extends H.

4.32 1If H is a densely defined symmetric linear transformation on # with
range equal to 3, then H is self-adjoint.

4.33 1If T is a closed, densely defined linear transformation on 3, then
T*T 1s a densely defined, symmetric operator. (Note: 7*7f is defined for
those f for which 7fis in Z,.)

4.34 If T is a closed, densely defined linear transformation on #, then
T*T is self-adjoint. (Hint: Show that the range of 74+ 7*T is dense in J#
and closed.)

4.35 If A is a commutative W*-algebra on s with # separable, then
is a *-isometrically isomorphic to L*(u) for some probability space (X, &, p).

4.36 Show that there exist W*-algebras U and B such that 2 and B are
*-isomorphic but A’ and B’ are not.

4.37 1f Wis an abelian W *-algebra on # for S separable, then U is maximal
abelian if and only if 2 has a cyclic vector.
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4.38 Give an alternate proof of Fuglede’s theorem for normal operators
on a separable Hilbert space as follows: Show that it is enough to prove that
E(A) XE(A,) =0 for A, and A, disjoint Borel sets; show this first for Borel
sets at positive distance from each other and then approximate from within
by compact sets in the general case.

4.39 (Putnam) If T, and T, are normal operators on the Hilbert spaces
H, and H#,, respectively, and X in £(3#,, ) satisfies T, X = XT,, then
T,*X = XT,*. (Hint: Consider the normal operator [{' ;2] on #, @,
together with the operator [y ol)-

4.40 1If T, and T, are normal operators on the Hilbert spaces 5, and #,,
respectively, then 77, is similar to 73, if and only if 7, 1s unitarily equivalent
to 7.

4.41 Let X be a compact Hausdorff space, # be a Hilbert space, and ® be
a *-isomorphism from C(X) into £(5#). Show that if there exists a vector f
in 2 for which ®(C (X)) is dense in 57, then there exists a probability measure
p on X and an isometrical isomorphism ¥ from L*(u) onto # such that
YM,¥V* =®(p) for ¢ in C(X). (Hint: repeat the argument for Theorem
4.58.)

4.42 Let X be a compact Hausdorfl space, ## be a Hilbert space, and @
be a *-isomorphism from C(X) into £(3#), then there exists a *-homo-
morphism ®* from the algebra #(X) of bounded Borel functions on X
which extends ®. Moreover, the range of ®* i1s contained in the von Neumann
algebra generated by the range of ®. (Hint: use the arguments of 4.74 and
4.75 together with the preceding exercise.)



5 Compact Operators, Fredholim
Operators. and Index Theory

5.1 In the preceding chapter we studied operators on Hilbert space and
obtained, in particular, the spectral theorem for normal operators. As we
indicated this result can be viewed as the appropriate generalization to
infinite-dimensional spaces of the diagonalizability of matrices on finite-
dimensional spaces. There 1s another class of operators which are a general-
ization in a topological sense of operators on a finite-dimensional space.
In this chapter we study these operators and a certain related class. The
organization of our study is somewhat unorthodox and is arranged so that
the main results are obtained as quickly as possible. We first introduce the
class of compact operators and show that this class coincides with the norm
closure of the finite rank operators. After that we give some concrete examples
of compact operators and then proceed to introduce the notion of a Fredholm
operator. We begin with a definition.

5.2 Definition If 57 is a Hilbert space, then an operator 7 in 2() is a
finite rank operator if the dimension of the range of T is finite and a compact
operator if the image of the unit ball of 5 under T is a compact subset of 5.
Let 2§ (57), respectively, LE(#) denote the set of finite rank, respectively,
compact operators.

In the definition of compact operator it is often assumed only that
121
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T[(s),] has a compact closure. The equivalence of these two notions
follows from the corollary to the next lemma.

5.3 Lemma If 5 1s a Hilbert space and 7 is in (3¢), then T is a continu-
ous function from # with the weak topology to 5 with the weak topology.

Proof If {f,}.ca is a net in # which converges weakly to fand g is a
vector in S, then

lim(Zf,,g) = im(f,, T*g) = (f, T%g) = (If,9),

a€A a€A

and hence the net {7f }. .4 converges weakly to 7f Thus T is weakly con-
tinuous. [

5.4 Corollary If 5# is a Hilbert space and T is in £(5¢), then T[(5¢),]
1s a closed subset of 7.

Proof Since (), is weakly compact and 7" 1s weakly continuous, it
follows that T[(3),] is weakly compact. Hence, T[(5#),] is a weakly
closed subset of # and therefore 1s also norm closed. [

The following proposition summarizes most of the elementary facts about
finite rank operators.

5.5 Proposition If 5 is a Hilbert space, then Q& (H) is the mimmal
two-sided *-ideal in £(H#°).

Proof If S and T are finite rank operators, then the inclusion
ran(S4+7) cranS+ranT

implies that S+ 7 is fintte rank. Thus, 2§ () is a linear subspace. If S is
a finite rank operator and T is an operator in £(J¢), then the inclusion
ran ST < ran .S shows that 8§ () is a left 1deal in £(3#). Further, if 7' is a
finite rank operator, then the identity

ran 7* = T*[(ker T*)"] = T*[closran 7]

which follows from Corollary 3.22 and Proposition 4.6, shows that 7% is
also a finite rank operator. Lastly, if S is1in £(5°) and T is in £ (5F), then
T* is Iin £ () which implies that 7*S* 1s in L§ () and hence that ST =
(T*S*)* 1s In LF(3F). Therefore, LF () is a two-sided *-ideal in L(HF).
To show that LF(H#) is minimal, assume that 3I is an ideal in £(¥#)
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not (0). Thus there exists an operator 7 # 0 in 3, and hence there is a non-
zero vector f and a unit vector g in J such that 7f = g. Now let # and & be
arbitrary nonzero vectors in 5 and 4 and B be the operators defined on
by Al =(l,g)k and Bl =(,h)f for [ in . Then, S = ATB is the rank one
operator in 3 which takes £ to k. It is now clear that 3 contains all finite rank
operators and hence 2§ () is the minimal two-sided ideal in £(5¢). I}

The following proposition provides an alternative characterization of
compact operators.

5.6 Proposition If 57 is a Hilbert space and T is in £(3¢), then T is com-
pact if and only if for every bounded net {f,}.., in # which converges
weakly to fit is true that {7f },. . converges in norm to 7.

Proof If T is compact and {f,},.4 1s a bounded net in 5 which con-
verges weakly to f, then {7f,},., converges weakly to 7f by Lemma 5.3 and
lies in a norm compact subset by the definition of compactness. Since any
norm Cauchy subnet of {7f},.. must converge to 7f, it follows that
lim,_, 7f, = Tf in the norm topology.

Conversely, suppose 7 is an operator in £(#°) for which the conclusion
of the statement is valid. If {7f,},.4 18 a net of vectors in T[(3),], then
there exists a subnet {f, };.p Which converges weakly to an f. Moreover,

since each f,, is in the unit ball of &, it follows that {7f, }s.p converges in
norm to 7f. Therefore, T[(5),] is a compact subset of 5 and hence T is

compact. [}

5.7 Lemma The unit ball of a Hilbert space »# is compact in the norm
topology if and only if 5 is finite dimensional.

Proof If 5 is finite dimensional, then 5 is isometrically isomorphic
to C" and the compactness of (), follows. On the other hand if & is
infinite dimensional, then there exists an orthonormal subset {e,},~, con-
tained in (#), and the fact that |le,—e,,| =+/2 for n # m shows that (),

is not compact in the norm topology. [

The following property actually characterizes compact operators on a
Hilbert space, but the proof of the converse is postponed until after the next
theorem. Whether this property characterizes compact operators on a Banach
space 1s unknown.



124 5 Compact and Fredholm Operators, Index Theory

5.8 Lemma If 5 i1s an infinite-dimensional Hilbert space and 7 is a
compact operator, then the range of T contains no closed infinite-dimensional
subspace.

Proof Let .# be a closed subspace contained in the range of 7 and let
P , be the projection onto .#. It follows easily from Proposition 5.6 that the
operator P, T is also compact. Let 4 be the operator defined from 5# to
M by Af=P,Tf for fin #. Then A is bounded and onto and hence by
the open mapping theorem is also open. Therefore, A[(5),] contains the
open ball in .# of radius 6 centered at O for some 6 > 0. Since the closed
ball of radius & is contained in the compact set P, T[(5),], it follows from
the preceding lemma that .# is finite dimensional. [

We are now in a position to show that LE(5) is the norm closure of
LF(5). The corresponding result for Banach spaces 1s unknown.

5.9 Theorem If 5 1s an infinite-dimensional Hilbert space, then £E(X)
is the norm closure of 2§ ().

Proof We first show that the closure of £§ () is contained in LE ().
Firstly, it 1s obvious that () is contained in £E(5#°). Secondly, to prove
that LE(H) is closed, assume that {K,}% | is a sequence of compact operators
which converges in norm to an operator K. If {f,},., 1s a bounded net in
H# that converges weakly to £, and

M = sup{l, | £f,|: o€ A},

then choose N such that |K— Ky <é&/3M. Since K, is a compact operator,
we have by Proposition 5.6 that there exists o in 4 such that | Ky f,— Ky f|| <
g3 for o = oy. Thus we have

| Kfe— Kf | < (K~ Kp) Lol + | Ky fa= Ky S| + [(Ky—K) f]

S,E+E+f=e for o = o,
3 3 3
and hence K is compact by Proposition 5.6. Therefore, the closure of £ (5¢)
is contained in L€ (7).
To show that LF () is dense 1n LE(H), let K be a compact operator
on # and let K = PV be the polar decomposition for K. Let # =3, D H,
be a decomposition of # into separable reducing subspaces for P given by

Proposition 4.73, and set P, = P|3,. Further, let 10, be the abelian W*-
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algebra generated by P, on &, and consider the extended functional calculus
obtained from Theorem 4.71 and defined for functions in L*(v,) for some
positive regular Borel measure v, with support contained in [0, |P|]. If
. denotes the characteristic function of the set (g, | P[], then y, is in L*(v,)
and E° = x.(P,) 1s a projection on 57,. If we define . on [0, | P|] such that
Y. (x) = 1/x for e < x < || P| and O otherwise, then the operator Q,° = (P,)
satisfies O ,*P, = P,Q, = E . Thus we have

ran() @ ES) =ranP() ® Q) < ranP = ranK

ae A a€A

and therefore the range of the projection ) _,@® E, 1s finite dimensional
by Lemma 5.7. Hence, P,=P(3 .. ® E°) 1s in LF () and thus so is P,V.
Finally, we have

”K_PaV”

”‘PV-_PEV” < ”P__‘PSH == SUp ”Pa_’PaEaEH

a€A

sup sup lx—xx,(x)], < e,
aed O0<x<|{P}i

and therefore the theorem is proved. B

Notice that in the last paragraph of the preceding proof we used only
the fact that the range of K contained no closed infinite-dimensional sub-
space. Thus we have proved the remaining half of the following result.

5.10 Corollary If 5 is an infinite-dimensional Hilbert space and T is an
operator on 57, then T is compact if and only if the range of T contains no
closed infinite-dimensional subspaces.

5.11 Corollary If 5 i1s an 1nfinite-dimensional Hilbert space, then £E ()
is a minimal closed two-sided *-ideal in £(3#). Moreover, if 5 is separable,
then LE(57) is the only proper closed two-sided ideal in £(3¢).

Proof For the first statement combine the theorem with Proposition 3.5.
For the second, note by the previous corollary that if 7 is not compact, then
the range of T contains a closed infinite-dimensional subspace .#. A simple
application of the open mapping theorem yields the existence of an operator
S on # such that T.S= P ,, and hence any two-sided ideal containing T
must also contain I. This completes the proof. [}

5.12 Example Let K be a complex function on the unit square [0, 1] x
[0,1] which is measurable and square-integrable with respect to planar
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Lebesgue measure. We define a transformation Tx on L*([0, 1]) such that

(Tef) () = f K f0)dy  for fin I([0, 17).

The computation

[ Nl = | 2

1

1
f K 0) f) dy)| dx
0 0

< { | I\K(x,y)\‘*dy}{ | I\f(y)\za'y} dx

1 1
— 1712 f f K(x, )| dy dx

which uses the Cauchy-Schwarz inequality, shows that Ty is a bounded
operator on I*([0, 1]) with

I r1 Vs
Tl auxuﬁ{ ' \K(x,y)\zdxdy} |

The operator Ty is called an integral operator with kernel K. We want to
show next that Ty is a compact operator.

If we let @ denote the mapping from L* ([0, 17)x [0, 1]) to £(L*([0, 1))
defined by ®(K) = Ty, then ® is a contractive linear transformation. Let
2 be the subspace of I*([0,1]x[0,1]) consisting of the functions of the
form

N
K(x,y) = ;fi(x) 7:(»),

where each f; and g; is continuous on [0, 1]. Since & is obviously a self-
adjoint subalgebra of the algebra of continuous functions on [0, 1] x [0, 1]
which contains the identity and separates points, it follows from the Stone-
Weierstrass theorem that C([0,1]x[0,1]) is the uniform closure of 2.
Moreover, an obvious modification of the argument given i1n Section 3.33
shows that 2 is dense in [*([0, 1] x [0, 1]) in the [*-norm. Thus the range
of @ is contained in the norm closure of ®(2) in L(L*([0, 1])).

Let f and g be continuous functions on [0,1] and let 7 be the integral
operator with kernel f(x) g(y). For A in I*([0, 1]), we have

1 1
(Th) (x) = L S g h(y) dy :f(x)( L g(¥) h(y) dy),

and hence the range of T consists of multiples of f. Therefore, T'is a rank one
operator and all the operators in ®(%) are seen to have finite rank. Thus
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we have by Theorem 5.9 that
@ (L7 ([0, 1] x [0,1])) < clos®(D) < clos LF(L*([0, 1)) = LE(I2([0, 1]),

and hence each integral operator Tk is compact.

We will obtain results on the nature of the spectrum of a compact operator
after proving some elementary facts about Fredholm operators.

If 5 1s finite dimensional, then LC () = L(H#°). Hence, in the remainder
of this chapter we assume that H is infinite dimensional.

5.13 Definition If »# 1s a Hilbert space, then the quotient algebra
L(H)/RE(HK) 1s a Banach algebra called the Calkin algebra. The natural
homomorphism from £(°) onto £(#°)/LE () 1s denoted by .

That the Calkin algebra 1s actually a C*-algebra will be established later
in this chapter.

The Calkin algebra is of considerable interest in several phases of analysis.
Our interest 1s 1n its connection with the collection of Fredholm operators.
The following definition of Fredholm operator is convenient for our purposes
and will be shown to be equivalent to the classical definition directly.

5.14 Definition If # 1s a Hilbert space, then T 1n £(3) is a Fredholm
operator 1If n(7) i1s an invertible element of £(H#)/LC(H#). The collection
of Fredholm operators on # is denoted by % ().

The following properties are immediate from the definition.

5.15 Proposition If 5 is a Hilbert space, then % () is an open subset
of £(X), which is self-adjoint, closed under multiplication, and invariant
under compact perturbations.

Proof If A denotes a group of invertible elements in £(3)/2C (),
then A is open by Proposition 2.7 and hence so is & (#) =n~ ' (A), since =
is continuous. That % () is closed under multiplication follows from the
fact that 7 is multiplicative and A is a group. Further, if T is in % () and
K is compact, then T+ K is in % (J) since n(T) = n(T+ K). Lastly, if T is
in & (), then there exist S in £(5#) and compact operators K; and K,
such that S7T= 7+ K, and TS = I+ K,. Taking adjoints we see that 7 (7%*)
is invertible in the Calkin algebra and hence % () is self-adjoint. |l

The usual characterization of Fredholm operators is obtained after we
prove the following lemma about the linear span of subspaces. If .# and A~
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are closed subspaces of a Hilbert space, then the linear span .# + .4 is, in
general, not a closed subspace (see Exercise 3.18) unless one of the spaces
is finite dimensional.

5.16 Lemma If 5 is a Hilbert space, .# is a closed subspace of 5, and
A is a finite-dimensional subspace of #, then the linear span #+ A" is a
closed subspace of .

Proof Replacing A7, if necessary, by the orthogonal complement of
M AN in A, we may assume that .# N A" = {0}. To show that

MY+ N ={f+g:fel, geN}

is closed, assume that {f,}>, and {g,}>., are sequences of vectors in .#
and A", respectively, such that {f,+g,},~, is a Cauchy sequence in .
We want to prove first that the sequence {g,}.2, is bounded. If it were not,
there would exist a subsequence {g,, };~; and a unit vector 4 in A" such that

h.

lim |g,| = and lim 2™ —

k— o0 ko0 |||
(This depends, of course, on the compactness of the unit ball of .4".) However,
since the sequence {(1/(g,. ) (fu. + 9. )}i=1 Would converge to 0, we would
have

lim T

kv |gml

—h.

This would imply that / is in both .# and A" and hence a contradiction.
Since the sequence {g,}.> , is bounded, we may extract a subsequence
{90 tr=1 such that lim,_,, g, =g for some g in A . Therefore, since

{(f;uc + gnk)}g; 1

is a Cauchy sequence, we see that {f, },%.; 1s a Cauchy sequence and hence
converges to a vector f in #. Therefore, im__,  (f,+9g,) =f+g¢g and thus
A+ A is a closed subspace of . |

The following theorem contains the usual definition of Fredholm operators.

5.17 Theorem (Atkinson) If 5 is a Hilbert space, then 7 in £(X) is a
Fredholm operator if and only if the range of T is closed, dim ker 7 is finite,
and dim ker 7* is finite.



Atkinsor’s Theorem 129

Proof If T is a Fredholm operator, then there exists an operator 4 in
£(s) and a compact operator K such that AT=1714+K. If fis a vector in
the kernel of 7+ K, then (/4 K) f=0 implies that Kf=—f, and hence f is
in the range of K. Thus,

kerT < kerAT = ker(J+K) <« ranK

and therefore by Lemma 5.8, the dimension of ker 7 is finite. By symmetry,
the dimension of ker 7* is also finite. Moreover, by Theorem 5.9 there
exists a finite rank operator F such that |K— F| <. Hence for f in ker F,

we have
A Zf 1 = |ATS| = |+ Kf|| = |f+ Ef+ Kf—Ff|
=

fI = Kf=Ffll = [ £1/2.

Therefore, T is bounded below on ker F, which implies that T'(ker F) is a
closed subspace of # (see the proof of Proposition 4.8). Since (ker F)* is
fimmte dimensional, it follows from the preceding lemma that ran T =
T(ker F)+ T[(ker F)'] is a closed subspace of .

Conversely, assume that the range of T is closed, dimker 7 is finite, and
dimker 7* is finite. The operator T, defined T, f= Tf from (ker )" to
ran T is one-to-one and onto and hence by Theorem 1.42, is invertible. If
we define the operator S on J# such that Sf= T, 'ffor fin ran T and Sf=0
for f orthogonal to ran 7T, then S is bounded, ST= 71— P,, and TS =1-P,,
where P, is the projection onto ker T and P, is the projection onto (ran T)* =
ker T*. Therefore, n(S) is the inverse of n(T) in L(3#)/LE(H), and hence
T is a Fredholm operator which completes the proof. |}

5.18 As we mentioned previously, the conclusion of the preceding theorem
is the classical definition of a Fredholm operator. Early in this century
several important classes of operators were shown to consist of Fredholm
operators. Moreover, if 7T is a Fredholm operator, then the solvability of the
equation Tf=g for a given g is equivalent to determming whether g is
orthogonal to the finite-dimensional subspace ker T*. Lastly, the space of
solutions of the equation Tf=g¢ for a given g is finite dimensional.

At first thought the numbers dimker 77 and dimker 7* would seem to
describe important properties of 7, and indeed they do. It turns out, how-
ever, that the difference of these two integers is of even greater importance,
since it is invariant under small perturbations of 7. We shall refer to this
difference as the classical index, since we shall also introduce an abstract
index. We will eventually show that the two indices coincide.
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5.19 Definition If 52 is a Hilbert space, then the classical index j is the
function defined from % () to Z such that j(T) = dim ker T— dim ker 7°*.
Fornin Z, set #,={T € % (¥): j(T) = n}.

We first show that % is invariant under compact perturbations, after
which we obtain the classical Fredholm alternative for compact operators.

520 Lemma If 5 is a Hilbert space, 7 is in &, and K is in QE(#),
then 74K is in % .

Proof Since T is in &, there exists a partial isometry ¥ by Proposition
4.37 with initial space equal to ker 77 and final space equal to ker T*. For
fin ker T and g orthogonal to ker T, we have (T+V)(f+g) = Tg+V¥, and
since Tg is in ran T and Vf is orthogonal to ran 7T then (T+V)(f4+g)=0
implies f+g =0. Thus T+V is one-to-one. Moreover, since 74V is onto,
it follows that 74V is invertible by the open mapping theorem.

Let F be a finite rank operator chosen such that |[K— F|| < 1/|(T+V)™!|.
Then T+V+ K—F is invertible by Proposition 2.7, and hence 7+ K is the
perturbation of the invertible operator S= T+ ¥V+ K— F by the finite rank
operator G=F—V. Now T+K is a Fredholm operator by Proposition

5.15, and j(T+K)=j(S+G) =j(I+S7'G), since
ker(S+G) = ker(SJ+S7'G))
and
ker((S+G)*) = ker((I+ S~ G)*S*) = S* ' ker((I+ S~ 1 G)¥).

Thus it is sufficient to show that j(7+S7'G) =0.

Since S7'G is a finite rank operator the subspaces ran(S”™'G) and
ran(S” 'G)* are finite dimensional, and hence the subspace .# spanned by
them is finite dimensional. Clearly, (/+ S 'G) M <., (I+S7 ' O)* M < M,
and (I+S7'G) f=ffor forthogonal to .Z. If A is the operator on .# defined
by Ag=(J+S"'G)g for g in .#, then ker4 = ker(J+ S 'G) and ker 4* =
ker((7+.S7'G)*). Since A is an operator on a finite-dimensional space, we
have dim ker 4 = dimker 4%, and therefore

dim(/+S7'G) = dim((I+ S ' G)*).
Thus, j(I+S7'G) =0 and the proof is complete. I

After recalling the definition of generalized eigenspace we will prove a
theorem describing properties of the spectrum of a compact operator.
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5.21 Definition If 5 is a Hilbert space and T 1s an operator in £(5¥),
then the generalized eigenspace &; for the complex number 4 is the collec-
tion of vectors f such that (7—1)"f=0 for some integer ».

5.22 'Theorem (Fredholm Alternative) If K is a compact operator on the
Hilbert space &, then o(K) i1s countable with O the only possible limit point,
and if A is a nonzero element of o (K), then A is an eigenvalue of K with finite
multplicity and 4 is an eigenvalue of K* with the same multiplicity. More-
over, the generalized eigenspace &, for A is finite dimensional and has the
same dimension as the generalized eigenspace for K* for A.

Proof If 4 is a nonzero complex number, then — Af is invertible, and
hence K— 4/ is in % by Proposition 5.15. Therefore, if A is in o(K), then
ker(K— 1) # {0}, and hence 4 is an eigenvalue of K of finite multiplicity.
Moreover, since j(K—1) =0, we see that A is an eigenvalue of K* of the
same multiplicity.

If &, # ker(K— A)" for any integer N, then there exists an infinite ortho-
normal sequence {k, };2; such that k, is in &,,, © &,. Since Kk, ||* =
A+ ||(K—2)k, |? and the sequence {k,}5%, converges weakly to O, it
follows from Proposition 5.6 that 0 = lim, ., | Kk, | = || which is a contra-
diction. Thus &, = ker(K—A)" for some integer N. Moreover, since (K—A)"
is a compact perturbation of (—A)"I, (K—4)" is a Fredholm operator with
index 0. Therefore,

dim ker[(K—A)"] = dim ker[(K*—2)"],

and since &, = ker(K—A)" for some N by the finite dimensionality of &,
it follows that the dimension of the generalized eigenspace for K for A is
the same as that of the generalized eigenspace for K* for A.

Finally, to show that ¢(K) is countable with O the only possible limit
point, it is sufficient to show that any sequence of distinct eigenvalues con-
verges to 0. Thus let {4}, be a sequence of distinct eigenvalues and let
/,, be an eigenvector of 4 . If we let .#, denote the subspace spanned by
{fi:sf2s S v}, then M, < M, S M4 < -, since the eigenvectors for distinct
eigenvalues are linearly independent. Let {g,}°., be a sequence of unit
vectors chosen such that g, is in ., and g,, 1s orthogonal to .#,_,. If his a
vector in A, then h =Y, (h,9,)9,+ 9, where g, is orthogonal to all the
{902 ,. Since ||h]? =32, |(hg)|*>+]lgoll*? by Theorem 3.25, it follows
that lim,_,  (g,,/) = 0. Therefore, the sequence {g,}>, converges weakly
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to 0, and hence by Proposition 5.6 the sequence {Kyg,},~-, converges to O
in norm. Since g, 1s in ./, there exist scalars {o;};-, such that g, = Y7_, o; f;,
and hence

n n n n—1
Kg, = ';1 o; Kf; = ;lailif:: = A, ;laifi + Zl o; (A— A f;

= A, + h,,

where A, is 1n .#,_,. Therefore,

lim [2,* < Lim (|4,]*[|g.1*+14,]*) = lim | Kg,|*

H— OO n— oo n— oG

and the theorem follows. [

5.23 Example We now return to a special integral operator, the Volterra
integral operator, and compute its spectrum. Let

| if x=2y

K(x,y) = { _ for (x,»)in[0,1] x [0, 1]
0 f x<y

and let V be the corresponding integral operator defined on I*([0,1]) in
Section 5.12. We want to show that a(J') = {0}. If 4 were a nonzero number
in o (V), then since V' 1s compact by Section 5.12 it follows that 1 is an eigen-
value for V. If f'is an eigenvector of V for the eigenvalue 4, then | /() dy =
Af(x). Thus, we have

X 1
A 1] < f ) dy < f 7o) & < 1]

using the Cauchy-Schwarz inequality. Hence, for x; in [0,1] and n > O,
we have

1 X1 1 xy (X2
ol < o [l < o [ el dn an <

1 X1 *Xx2 Xn
“f“z X"

- M‘n+1 n! :

Since

ol x

nsoo |[A]"T1 0!

= 0,



Volterra Integral Operators 133

it follows that f= 0. Therefore, a nonzero A cannot be an eigenvalue, and
hence o (V) = {0}.
We digress to make a couple of comments.

5.24 Definition If # 1s a Hilbert space, then an operator 7 in £(¢) is
quasinilpotent if o (7") = {0}.

Thus the Volterra operator is compact and quasinilpotent.

5.25 Example Let T be a quasinilpotent operator and U be the com-
mutative Banach subalgebra of £(s#) generated by I, T, and (T—A1)"! for
all nonzero A. Since 7 is not invertible, there exists a maximal ideal in U
which contains 7, and thus the corresponding multiplicative linear func-
tional ¢ satisfies (/) =1 and ¢(7T) = 0. Moreover, since the values of a
multiplicative linear functional on 9 are determined by its values on the
generators and these are determined by its value at 7, it follows from Corollary
2.36 that the maximal ideal space of 2 consists of just ¢. In particular, this
example shows that the Gelfand representation for a commutative Banach
algebra may provide little aid 1n studying this algebra.

We now return to the study of Fredholm operators and define the abstract
index.

5.26 Definition If 57 1s a Hilbert space, then the abstract index i 1s defined
from & (H') to Ag )06 #) SUch that i = yom, where y is the abstract index
for the Banach algebra £(#)/LC (7).

The following properties of the abstract index are immediate.

5.27 Proposition If 5 1s a Hilbert space and i 1s the abstract index, then
i 1s continuous and multiplicative, and i(7+ K) = i(T) for T in % () and
K in £8(#).

Proof Straightforward. [}

5.28 We have defined two notions of index on the collection of Fredholm
operators: the classical index j from % (J¢) to Z and the abstract index i
from & (H) to A. Our objective 1s to show that these two notions are essen-
tially the same. That 1s, we want to produce an isomorphism o« from the
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additive group Z onto A such that the following diagram commutes.

F(H)

7 A

To produce o we will show that for each », the set %, = j~ ' (n) is connected.
Since i 1s continuous and A is discrete, i must be constant on % ,. Thus the
mapping defined by a(n) = i(T) for T in &, is well defined. The mapping
o is onto, since i is onto. Further, consideration of a special class of operators
shows that o is a homomorphism. Finally, the fact that & ; is invariant under
compact perturbations will be used to show that keri = %, and hence that
o0 is one-to-one.

Once this isomorphism is established, then the following results are
immediate corollaries: j is continuous and multiplicative, and is invariant
under compact perturbauon.

We begin this program with the following proposition.

5.29 Proposition If 2 is a W*-algebra of operators in (), then the
set of unitary operators in ? is arcwise connected.

Proof Let U be a unitary operator in 2 and let I3, be the W *-algebra
generated by U. As in the proof of Theorem 4.65 there exists a decomposi-
tion of # =3 ,.,® H, such that each s, reduces U and U,= U|H#,
has a cyclic vector. Moreover, by Theorem 4.58 there exists a positive regular
Borel measure v, with support contained in T and a functional calculus
defined from L*(v,) onto W, by an isometrical isomorphism from L’ (v,)
onto .

If we define the function {y on T such that Y (") =1 for —n <1<,
then y is in each L*(v,), and there exists a sequence of polynomials {p,},-,
such that ||p,| <= and

1

1
sup{\p,,(e")——d/(e")\: —n+-<1I< n} < -.
n n

(Use the Stone—Weierstrass theorem to approximate a function which agrees
withyy on {¢": —n+(1/n) < t < n} and is continuous.) Consider the sequence
of operators

{pn(U)}::Oﬁl — {Z ('B pn(Ua)} B

axeA n=1
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in 28, and the operator H =3, _, ® ¥ (U,) defined on 5. Using the identi-
fication of #, as L*(v,), it is easy to check that the sequence {p, (U)}<,
converges to (U,) in the strong operator topology. Since the operators

{ Y & pn(Ua)}:: 1

ac A

are uniformly bounded, it follows that the sequence converges strongly
to H. Therefore, H is in W,, and moreover &' = U, since ¢V V=) = U for
each o in A. If we define the function U, = ¢*" for 1 in [0, 1], then for 4,
and 4, in [0, 1], we have

|Us,— Uzl = llexpii, H—expil, H| = |expii H(I—expi(4,—4;) H)|
= sup |1, — expi(4,— 1) ¥ (U,)|

a€A
< |1 —expi(d,—4) Y]l = |expil; —expil,,

and therefore U, is a continuous function of A. Thus the unitary operator
U is arcwise connected to Uy = I by unitary operators in . B

The following corollary is now easy to prove.

5.30 Corollary If 5 is a Hilbert space, then the collection of invertible
operators in £(5#) is arcwise connected.

Proof Let T be an invertible operator in £(3#°) with the polar decom-
position 7= UP. Since T is invertible, U is unitary and P is an invertible
positive operator. For 4 in [0,1] let U, be an arc of unitary operators con-
necting the identity operator U, to U= U, and P, =(1—-A)I+AP. Since
each P, is bounded below, it is invertible and hence U, P, is an arc con-
necting the identity operator to 7. |

Much more is true; a theorem of Kuiper [73] states that the collection
of invertible operators in () for a countably infinite-dimensional 5 is
a contractible topological space.

5.31 Corollary If 5 is a Hilbert space and 7 is an invertible operator
in £(5), then i(T) is the identity in A.

Proof Since n(T) is in the connected component A, of the identity
in A, it is clear that i(T) is the identity in A. [}
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We now consider the connectedness of #,,.

5.32 Theorem If 5 1s a Hilbert space, then for each n in Z the set % ()
Is arcwise connected.

Proof Since (&F ,(HK))* =% _,(5F), it is sufficient to consider n = 0.
Ifn=0and Tis in &%,, then dimker 7 = dimker 7%#; thus there exists a
partial isometry V' with initial space contained in ker T and range equal to
ker 7* = (ran T)*. For each ¢ > 0 it is clear that 7+¢V is onto and hence is
right invertible and \

ker(T+¢eV) = ker(T) © mit(V).

Hence 1t is sufficient to prove that if S and 7T are right invertible with
dimker S =dimker T, then S and T can be connected by an arc of right
invertible operators in & ,,.

Let S and 7 be right invertible operators with dim ker.S = dimker 7.
Let U be a unitary operator chosen such that ker SU = ker 7 and U, be an
arc of unitary operators such that U, = I and U; = U. Then SU is connected
to S'1in %, and hence we can assume that kernels of our two right invertible
operators are equal.

Hence, assume that .S and 7 are right invertible operators with ker.S =
ker 7. By Proposition 4.37, there exists an isometry W with range W=
(ker S)* = (ker T)*. Then the operators SW and TW are invertible and
hence by Corollary 5.30 there exists an arc of operators J; for 0 < 1< 1
such that J, = SW and J, = TW. Since WW?#* 1s the projection onto the
range of W, we see that SWW* =S and TWW?* =T. Hence J,W* 1s an
arc of operators connecting .S and 7, and the proof will be completed once
we show that each J,W* is in & . Since (J, W*)(WJ ;1) = 1, it follows that
J,W* is right invertible and hence ker((J/,W*)*)}= {0}. Further since
ker(J, W*) = ker W* we see that j(J,W*) =n for all A. This completes the

proof. |

5.33 Recall now the unilateral shift operator U, on /*(Z") introduced in
Section 4.36. It 1s easily established that ker U, = {0}, while ker U * =
{eo}. Since U, 1s an isometry, its range is closed, and thus U, is a Fredholm
operator and j(U,) =—1.

Now define

u.," n=0,

U =
{ Ui ™" n<0.
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Since for n = 0 we have ker U = {0} and
ker UP* = ker U™ = \/{eg,€1,...,€,_1},

it follows that j(U?) = —n. Similarly since U'P* = U™, we have j(U) =
—-n for all integers n. The following extension of this formula will be used
in showing that the map to be constructed is a homomorphism.

If m and n are integers, then j(UYUY) = j(UT)+j(U™). We prove
this one case ata time. If m = Oandn = Oorm < Oand n < 0, then U™ U'P =
Ut and hence

JUPUEY) = —m—n = j(U) + j(UD).
If m <0 and n = 0, then
Un+m — U(u-[—m) — m :g‘ n,
UmUP = Ut UL = ) '
r—@m — ge+tm _ 4 5 p,
and again the formula holds. Lastly, if m > 0 and n < 0, then
ker UPUP =kerUT™" = \/{ep, €15 .r€ 1}
and

ker[UPUPT* = ker(U," U ™* = kerUZ"U%" = \/{€0s-»€m-1} >

and hence

JUPIUE) = —n—m = j(U) + j(UL).

The next lemma will be used in the proof of the main theorem to show
that each of the &, is open.

534 lLemma If 57 is a Hilbert space, then each of the sets %, and
| pz0F , 1s Open in L(3F).

Proof Let T be in %, and let F be a finite rank operator chosen such
that 7+ F is invertible. Then if X is an operator in £(3#) which satisfies
|7—X|| < 1/|(T+F)~!|, then X+ F is invertible by the proof of Proposi-
tion 2.7, and hence X is in &, by Lemma 5.20. Therefore, %, is an open set.

If T is a Fredholm operator not in &, then there exists as in the proof
of Lemma 5.20 a finite rank operator F such that 7+ F 1s either left or right
invertible. By Proposition 2.7 there exists ¢ > 0 such that if X 1s an operator
in () such that |7+ F— X || <e, then X is either left or right invertible
but not invertible. Thus X is a Fredholm operator of index not equal to O
and therefore so 1s X— F by Lemma 5.20. Hence [ },.o %, 1s also an open
subset of L(5). I
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We now state and prove the main theorem of the chapter.

5.35 Theorem If 5 is a Hilbert space, jis the classical index from % ()
onto Z, and i is the abstract index from % () onto A, then there exists an
isomorphism o from Z onto A such that oo = i.

Proof Since the dimension of # is infinite, we have H# @ /*(Z")
isomorphic to &, and hence there is an operator on J unitarily equivalent
to 1@® UL, Therefore, each &, is nonempty and we can define a(n) = i(7),
where 7 is any operator in & ,,. Moreover, « is well defined by Theorem 5.32.
Since i is onto, it follows that o is onto. Further, by the formula in Section
5.33, we have

a(m+n) = i(l® US"™™) = i((I@ U™ UT™)
= iI® Ui UT") = a(m) - a(n),

and hence o is a homomorphism.

It remains only to show that o« is one-to-one. Observe first that n (%)
is disjoint from 7 (| J,.0 %), since if 7T is in &, and S is in &, with n(S) =
n(T), then there exists K in LE () such that S+ K = 7. However, Lemma
5.20 implies that j(7') = 0, and hence n(% ) is disjoint from 7 (| J, .0 % ,)-
Since %, and | J,.0%, are open and 7 is an open map, it follows that
(%) and w(l J,.0F,) are disjoint open sets. Therefore, 7(% ) is an open
and closed subset of A and hence is equal to the connected component A,
of the identity in A. Therefore, n takes %, onto Ay and hence i takes %
onto the identity of A. Thus « is an isomorphism. [

We now summarize what we have proved in the following theorem.

5.36 Theorem If 5 is a Hilbert space, then the components of & ()
are precisely the sets {&,: ne Z}. Moreover, the classical index defined by

j(T) = dimker T — dim ker 7*

is a continuous homomorphism from % (3#°) onto Z which is invariant under
compact perturbation.

We continue now with the study of LE(H) and L(H)/LE(H) as C*-
algebras. (Strictly speaking, L€ (3¢) is not a C*-algebra by our definition,
since it has no identity.) This requires that we first show that the quotient
of a C*-algebra by a two-sided ideal is again a C*-algebra. While this is
indeed true, it is much less trivial to prove than our previous results on
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quotient objects. We begin by considering the abelian case which will be
used as a lemma in the proof of the main result.

5.37 Lemma If U is an abelian C*-algebra and 3 is a closed ideal in U,
then J is self-adjoint and the natural map = induces an involution on the
quotient algebra /3 with respect to which it is a C*-algebra.

Proof Let X be the maximal ideal space of A and M be the maximal
ideal space of the commutative Banach algebra /3. Each m in M defines a
multiplicative linear function men on . The map y (m) = mox is a homeo-
morphism of M onto a closed subset of X. Further, this homeomorphism
defines a homomorphism ¥ from C(X) to C(M) by

Wk) =koy and kerW=1lkeC(X):k(f(m)) =O0forme M}.

Moreover, Wol'y = I'y,50m and by the Gelfand-Naimark theorem (4.29),
we know that I'y is a *-isometrical isomorphism. Therefore, kern =
Iy ' (kery) and thus the kernel is self-adjoint and 7 induces an involution
on A/I. Moreover, it is clear that /I is *-isometrically isomorphic to
C(M) and hence a C*-algebra. |}

We now proceed to the main result about quotient algebras.

5.38 Theorem If % isa C*-algebra and 3 is a closed two-sided ideal in 21,
then 3 is self-adjoint and the quotient algebra /3 is a C*-algebra with
respect to the involution induced by the natural map.

Proof We begin by showing that J is self-adjoint. For 7 an element of
3, set H= T*T. For A > O the element AH? is positive, since it is the square
of a self-adjoint element, and therefore AH? + 1 is invertible in 2. More-
over, rearranging the identity (AH?>+D(AH?>+1)"! =1 shows that the
element defined by

U, = (AH*+D)"' = = —(AH*+1)"'AH?

is in 3. Moreover, if we set S, = TU,+ T, then S,*S, = (AH*+1)"2H and
from the functional calculus for ¢, we have

_ X
15,#S,] = [+ D)2 H] < sup{ -xea(m}

OxZ+1)2

X 9
< x 2 0; < ,
P {(sz M } 16 (37"
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where the last inequality is obtained by maximizing the function ¢(x) =
x(Ax*+1)~? on R. Taking adjoints of the equation S, = TU,+ T and re-
arranging yields

3
% *
Jim | 704 0,7 = lim [5,] < lim 7oy =

Since each — U, T* is i1n 3, and 3J is closed, we have 7% 1n 3 and hence 3
i1s self-adjoint.

Now U/3J 1s a Banach algebra and the mapping (4+3)* = A¥*+3 i1s
the involution induced by the natural map. Since we have [[(4+3)*|| =
HA+ 3, it follows that

[(A+3)*(A+ )| < [(A+D*[[|4+3] = |4+3]7

and hence only the reverse inequality remains to be proved before we can
conclude that /3 1s a C*-algebra.

Returning to the previous notation, if we set R =C,; N 3, then K 1s a
closed two-sided self-adjoint ideal in the abelian C*-algebra (EH, and hence
C,/8 1s a C*-algebra by the previous lemma. If we consider the subalgebra
n(Cy) = Cy/3 of /T, then there 1s a natural map n’ from €4/K onto C,/3.
Moreover, it follows from the definition of & and the quotient norm that
7" 1s a contractive isomorphism. Therefore, for 4 in &, we have

O a(A+ R) = 0g,,,5(4A+3)
and hence

[ A+ Rlgun 2 14+ Slewss 2 Pewis(A+3) = peya(d+ 8) = 4+ Kl e s-

Thus, n’ is an 1sometry and €/3J is an abelian C*-algebra. Lastly, it follows
from the functional calculus for €,/J3 and the special form of the function
Y (x) = Ax? /(1 + Ax?), that

[z (UDI = All=(ED|* (X + A=(H)[*) 7.
To complete the proof we use the identity 7= S, — 7TU, to obtain

3 +Aun(T)H\n(H)H2
4(3H% T 1+A|n(ED)*

|7 (D) < [=(SH] + [=(D)] |7 (U] <

Setting 4 = 1/(3|n(H)|?), we further obtain the inequality

3(|n(H)|)*
(Hn(4 ) _“ D)

[=(D)] <
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and finally
|n(D)|* < |=(E)]| = |n(T)*n(T)].
Therefore, A/I 1s a C*-algebra. B

We now consider the algebra L€ (3#°) which plays a fundamental role in
the study of C*-algebras. The following result has several important con-
sequences. A subset S of £(5) 1s said to be irreducible if no proper closed
subspace 1s reducing for all S in €.

5.39 Theorem If U 1s an irreducible C*-algebra contained in £(H#) such
that A N LE(F) # 0, then LE () is contained 1n L.

Proof If K 1s a nonzero compact operator in 2, then (K+K%*) and
(1/i)(K— K*) are compact self-adjoint operators in 2. Moreover, since at
least one is not zero, there exists a nonzero compact self-adjoint operator
H in 2. If 4 is a nonzero eigenvalue for H which it must have, then the pro-
jection onto the eigenspace for 4 1s in €4 and hence in 2 using the functional
calculus. Moreover, since this eigenspace 1s finite dimensional by Theorem
5.22, we scée that 2 must contain a nonzero finite rank projection.

Let £ be a nonzero finite rank projection in 2 of minimum rank. Con-
sider the closed subalgebra W, = {EAE: A e U} of M as a subalgebra of
Ex. If any self-adjoint operator in [, were not a constant multiple of a
scalar, then 2[; and hence 2l would contain a spectral projection for this
operator and hence a projection of smaller rank than E. Therefore, the
algebra 2. must consist of scalar multiples of E. Suppose the rank of F i1s
greater than one and x and y are linearly independent vectors in its range.
Since the closure of {4x: 4 € 5} is a reducing subspace for 2L, it follows
that it must be dense in #. Therefore, there must exist a sequence {4},
in 2 such that lim_,  ||4,x—y| =0, and hence lim,_,, |E4, Ex—y| = 0.
Since x and y are linearly independent, the sequence {£A4,E},-; cannot
consist of scalar multiples of E. Therefore, £ must have rank one.

We next show that every rank one operator is in 2 which will imply
by Theorem 5.9 that £€(5#) is in U. For x and y in &, let T, , be the rank
one operator defined by T, ,(z) = (z,x) y. For a unit vector x, in EH, if
{4}, is chosen as above such that lim,_ . |4,x,—y| =0, then the
sequence {4, Ty, xotneq is contained mn A and lim, 4, Ty, x, = Ty, xo-
Similarly, using adjoints, we obtain that 7,_, is in 2 and hence finally that
Ty x =T, s, Txo x 18 in A. Thus LE(H#) is contained in A and the proof is

¥, X0

complete. |}
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One of the consequences of this result is that we are able to determine
all representations of the algebra £€(3%).

5.40 Theorem If @ is a *-homomorphism of £CE(H#) into L(K), then
there exists a unique direct sum decomposition # = A DY, D A ,,
such that each 4, reduces ®(LE(H)), the restriction ®(T)|H o =0 for
T 1n 8¢ (5F), and there exists an isometrical isomorphism U, from 3¢ onto
+ A, for o in A such that ®(7)|H ", = U, TU,* for T in LE(F).

Proof If ® is not an i1somorphism, then ker® is a closed two-sided
ideal in £¢ () and hence must equal LC(H#), in which case ®(7) = O for
T in LE(3F). Thus, if we set A = A", the theorem 1s proved. Hence, we
may assume that ® is an isometrical 1somorphism.

Now let {¢;};.; be an orthonormal basis for 5# and let P, be the pro-
jection onto the subspace spanned by ¢;. Then E; = ®(P) is a projection
on /4 . Choose a distinguished element O in 7 and define V; on 5 for i in [
such that V(3 ,.;4;¢,) = 4o €;. It is obvious that V; is a partial isometry
with V;V.* = P, and V*V,; = P,. Hence W; is a partial isometry on % and
WxW,=FE, and W;W:* = E;. Let {x,*},.4 be an orthonormal basis for the
range of £, and set xi* = W, x,". It is easy to see that each x” is in the range
of E; and that {x{};.; .4 1s an orthonormal subset of #". Let ", denote
the closed subspace of 5 spanned by the {x;/};_,. The {},., are pair-
wise orthogonal and hence we can consider the closed subspace >, ., ® A,
of A". Lastly, let 5, denote the orthogonal complement of this subspace.
We want to show that the subspaces { '}, 4 (0 have the properties ascribed
to them in the statement of the theorem.

Since V;V;* is the rank one operator on J taking e; onto e, it is clear
that the norm-closed *-algebra generated by the {V;};.,; i1s L&(5F). There-
fore, ®(LE(SF)) 1s the norm-closed *-algebra generated by the {W;};., and
hence each ", reduces ®(LE()). If we define a mapping U, from 5 to
A, by U,e; = x7, then U, extends to an isometrical isomorphism and
o)A, = U, TU*. Therefore, ® is spatially implemented on each 4% ’,,.

Lastly, since each ", reduces ®(LE (7)), it follows that A, also is a
reducing subspace and since

(Z Ei)(I)(T) (Z EI-) = ®(T) for TinLE(H),
tel iel

while 7-3Y,_, E; is the projection onto % ,, we see that ®(7T)|H# , =0 for
7in 28(57). B
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Such a result has a partial extension to a broader class of C*-algebras.

5.41 Corollary If 9 is a C*-algebra on # which contains LE(#) and
® is a *-homomorphism of 2 into £(HA") such that ®|LE () is not zero

and ®() is irreducible, then there exists an 1sometrical isomorphism U
from 3 onto A such that ®(4) = UAU* for A in %L

Proof 1f ®(2C€ (7)) is not irreducible, then by the preceding theorem
there exists a proper closed subspace # of A4 such that the projection P
onto 4’ commutes with the operators ®(K) for K in LE(5#), and there
exists an isometrical isomorphism U from # onto A4 'such that ®(K)|#" =
UKU* for K in 2C(H#). (The alternative leads to the conclusion that
O|LE(H) =0.) Then for 4 in A and K in LE(H), we have

[PD(A)— D (4) PJO(K) = PO(A)D(K) — D(A)D(K) P
— P®(AK) — D(AK)P = 0,

since AK is in LC(F). If {F,},. 4 is a net of finite rank projections in 3
increasing to the identity, then {®(E,)| A}, 4 converges strongly to P, and
thus we obtain PO(A) P = D(A) P for every A in . Since @A) 1s self-
adjoint and is assumed to be irreducible, this implies A4 = 24". Lastly, for
A in %A and K in LE (), we have

®O(K) [®(4) — UAU*] = ®(KA) — (UKU*)(UAU%)
= UKAU* — UKAU* = 0,

and again using a net of finite projections we obtain the fact that ®(4) =
UAU* for A 1n A. |IK

These results enable us to determine the *-automorphisms of () and
LE(HK).

5.42 Corollary If 57 is a Hilbert space, then ® is a *-automorphism of
L(H) if and only if there exists a unitary operator U in £(5) such that
®(4) = UAU* for 4 in L(F).

Proof TImmediate from the previous corollary. |

Such an automorphism is said to be inner and hence all *-automorphisms
of £(H) are inner. A similar but significantly different result holds for
£E ().
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5.43 Corollary I 5 1s a Hilbert space, then ® is a *-automorphism of
LE() if and only if there exists a unitary operator U in () such that
®(K) = UKU* for K in £¢ (7).

Proof Again immediate. [l

The difference in this case is that the unitary operator need not belong to
the algebra and hence the automorphism need not be inner. The algebra
LCE () has the property, however, that in each *-isomorphic image of the
algebra every *-automorphism is spatially implemented by a unitary operator
on the space.

We conclude with an observation concerning the Calkin algebra.

5.44 Theorem If ®@isa *isomorphism of the Calkin algebra £(3£)/L€ (3¢)
into £(A"), then ®(L(#)/LE(H)) is not a W*-algebra.

Proof If ®(&(H#)/LE(H)) were a W*-algebra, then the group of in-
vertible elements would be connected by Proposition 5.29, thus contradicting
Theorem 5.36. B

Notes

The earliest results on compact operators are implicit in the studies of
Yolterra and Fredholm on integral equations. The notion of compact oper-
ator is due to Hilbert, while it was F. Riesz who adopted an abstract point
of view and formulated the so called “Fredholm alternative.” Further study
into certain classes of singular integral operators led Noether to introduce
the notion of index and mmplicitly the class of Fredholm operators. The
connection between this class and the Calkin algebra was made by Atkinson
[4]. Finally, Gohberg and Krein [48] systematized and extended the theory
of Fredholm operators to approximately its present form. The connection
between the components of the invertible elements in the Calkin algebra
and the index was first established by Cordes and Labrouse [23] and Coburn
and Lebow [22].

Further results including more detailed historical comments can be found
in Riesz and Sz.-Nagy [92], Maurin [79], Goldberg [51], and the expository
article of Gohberg and Krein [48]. The reader can also consult Lang [74]
or Palais [85] for a modern treatment of a slightly different flavor. Again
the results on C*-algebras can be found in Dixmier [28]. The proof of
Theorem 5.38 is taken from Naimark [807, whereas the short and clever
proof of Lemma 5.7 is due to Halmos [58].
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Exercises

5.1 If 5 is a Hilbert space and T is in £(), then T is compact if and
only if (T*7)” is compact.

5.2 If T1s a compact normal operator on 5, then there eXists a sequence

of complex numbers {4,},-; and a sequence {E,}.% , of pairwise orthogonal
finite rank projections such that lim,_, A, = 0 and

N

N
lim |7— Y A,E,| =o.
n=1

5.3 If 2 is a Hilbert space, then £& () is strongly dense in £(5¢).
5.4 If 52 1s a Hilbert space, then the commutator ideal of £(3) is (7).

5.5 If K, and K, are complex functions in I*([0,1]1x[0,1]) and 7, and
T, the integral operators on I?([0, 1]) with kernels K, and K,, respectively,
then show that 7,* and 7, T, are integral operators and determine their
kernels.

5.6 Show that for every finite rank operator F on IZ([0,1]), there exists
a kernel K in ([0, 1] x [0, 1]) such that F= Ty.

5.7 If Tk is an integral operator on IZ ([0, 1]) with kernel K in
L*([0, 1]1x [0, 17)
and {f,}* . is an orthonormal basis for I?([0, 1), then the series

> (T fun I

converges absolutely to [ {¢|K(x,)|? dx dy. (Hint: Consider the expansion
of K as an element of I*([0,1]x [0, 1]) in terms of the orthonormal basis

{f;: (x)fm (y)}fmf— 1')

5.8 Show that not every compact operator on L*([0,1]) is an integral
operator with kernel belonging to I?([0, 1] x [0, 1]).

5.9 (Weyl) If T is a normal operator on the Hilbert space # and K is
a compact operator on #, then any A in ¢(7) but not in o(T+K) 1s an
1solated eigenvalue for 7" of finite multiplicity.

5.10 If T'is a quasinilpotent operator on J# for which T+ T* is in £E (),
then 7 is in £E (7).
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5.11 If T is an operator on # for which the algebraic dimension of the
linear space 5 /ran T is finite, then 7 has closed range.*

5.12 1If T'is an operator on S, then the set of 4 for which 7— 4 is not Fred-
holm 1s compact and nonempty.

5.13 (Gohberg) 1f T is a Fredholm operator on the Hilbert space 5, then
there exists ¢ > 0 such that

o = dimker(7—4)

is constant for 0 < |4| <& and « < dimker7.* (Hint: For sufficiently
small A, (T—2)|.% is right invertible, where ¥ = () o T"H# is closed, and
ker(T—2) < &.)

5.14 If T is an operator on 4, then the function dimker(7T—4) is locally
constant on the open set on which 7— 4 is Fredholm except for isolated
points at which 1t is larger.

5.15 If H s a self-adjoint operator on 5# and K is a compact operator on
H, then o (H+ K)\o(H) consists of 1solated eigenvalues of finite multiplicity.

5.16 If & is a Hilbert space and n is the natural map from £(5) to the
Calkin algebra £(5)/2C(5#°) and T i1s an operator on 37, then n(7T) is self-
adjoint if and only if 7= H+iK, where H is self-adjoint and K 1s compact.
Further, n(7) is unitary if and only if T=¥V+ K, where K is compact and
either V' or V'* is an isometry for which I—V¥V* or I—V*V is finite rank.
What, if anything, can be said if n(7") 1s normal 7%

5.17 (Weyl-von Neumann). If H is a self-adjoint operator on the separable
Hilbert space #, then there exists a compact self-adjoint operator K on »#
such that H+ K has an orthonormal basis consisting of eigenvectors.* (Hint:
Show for every vector x in J# there exists a finite rank operator F of small
norm such that H+ F has a finite-dimensional reducing subspace which
almost contains x and proceed to exhaust the space.)

5.18 If U is a unitary operator on the separable Hilbert space 5, then
there exists a compact operator K such that U+ K is unitary and 5 has an
orthonormal basis consisting of eigenvalues for U+ K.

5.19 1If U, is the unilateral shift on /%(Z.), then for any unitary operator V
on a separable Hilbert space 5, there exists a compact operator K on
[2(Z.) such that U, + K is unitarily equivalent to U, @V on [*(Z . )® . %
(Hint: Consider the case of finite-dimensional 5 with the additional re-
quirement that K have small norm and use the preceding result to handle the
general case.)
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5.20 If V, and V, are 1sometries on the separable Hilbert space 5 and at
least one 1s not unitary, then there exists a compact perturbation of ¥; which
is unitarily equivalent to V, if and only if dimker ¥, * = dim ker V,*.

Definition If 2 1s a C*-algebra, then a state ¢ on 2 is a complex linear
function which satisfies ¢ (4*4) = 0 for 4 in A and (1) = 1.

5.21 1If ¢ is a state on the C*-algebra 2, then (4, B) = ¢ (B*4) has the
properties of an inner product except (4, 4) =0 need not imply 4 =O.
Moreover, ¢ is continuous and has norm 1. (Hint: Use a generalization of
the Cauchy—Schwarz inequality.)

5.22 If ¢ is a state on the C*-algebra 2, then 9t = {4 € A: p(4*4) =0}
is a closed left ideal in . Further, ¢ induces an inner product on the quotient
space A/, such that n(B)(A4+9t) = BA+ 9t defines a bounded operator for
Bin . If we let 7, (B) denote the extension of this operator to the completion
H , of UM, then =, defines a *-homomorphism from A into L(H ).

5.23 If A is a C*-algebra contained in £(A4") having the unit vector f as a
cyclic vector, then ¢(A4) = (Af,f) is a state on A. Moreover, iIf m, is the
representation of 2 given by ¢ on &, then there exists an isometrical iso-

morphism ¢ from # , onto " such that 4 = yim (A4)yY*.

5.24 (Krein) If & is a self-adjoint subspace of the C*-algebra 2 con-
taining the identity and ¢, is a positive linear functional on % (that is,
0o(4) = 0 for 4 = 0), satisfying ¢,(I) = 1, then there exists a state ¢ on
A extending ¢, (Hint: Use the Hahn—Banach theorem to extend ¢, to ¢
and prove that ¢ is positive.)

5.25 IfUisa C*-algebra and 4 is in A then there exists a state ¢ on U such
that ¢ (4*A4) = | 4||*. (Hint: Consider first the abelian subalgebra generated
by A*A.)

5.26 If is a C*-algebra, then there exists a Hilbert space 5 and a *-iso-
metrical isomorphism 7 from A 1into £(H#°). Moreover, if 2 is separable in
the norm topology, then # can be chosen to be separable. (Hint: Find a
representation n, of U for which |n,(4)|| = | 4] for each 4 in 2 and con-
sider the direct sum.)

5.27 The coliection of states on a C*-algebra U is a weak *-compact convex
subset of the dual of 2. Moreover, a state ¢ is an extreme point of the set
of all states if and only if =, (2) is an irreducible subset of £(5 ). Such states
are called pure states.
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5.28 Show that there are no proper closed two-sided ideals 1n ¢ (7).
(Hint: Assume 3 were such an ideal and show that a representation of
£¢ ()] given by Exercise 5.26 contradicts Theorem 5.40.)

5.29 It Ais a Banach algebra with an involution, no identity, but satisfying
|7*T| = | T||* for T in A, then A @ C can be given a norm making it into
a C*-algebra. (Hint: Consider the operator norm of A @ C acting on 21.)



6 The Hardy Spaces

6.1 In this chapter we study various properties of the spaces H', H2, and
H® 1n preparation for our study of Toeplitz operators in the following
chapter. Due to the availability of several excellent accounts of this subject
(see Notes), we do not attempt a comprehensive treatment and proceed in
the main using the techniques which we have already introduced.

We begin by recalling some pertinent definitions from earlier chapters.
For nin Z let y, be the function on T defined by y,(¢) = ™. For p =1, 2, o0,
we define the Hardy space:

H? = {fe LP(T):LGf(e‘e)x,,(ew) df = 0 for n> 0}.

It is easy to see that each HP? is a closed subspace of the corresponding
IP(T), and hence is a Banach space. Moreover, since {¥,},cz is an ortho-
normal basis for I?(T), it follows that H? is the closure in the I”-norm of
the analytic trigonometric polynomials #,. The closure of Z, in C(T) 1s
the disk algebra 4 with maximal ideal space equal to the closed unit disk D.
Lastly, recall the representation of L*(T) into £(L”(T)) given by the mapping
¢ —>M,, where M, is the multiplication operator defined by M, f= ¢f
for fin IZ*(T).

We begin with the following result which we use to show that H* is an
algebra.

149
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6.2 Proposition If ¢ is in L*(T), then H? is an invariant subspace for
M, if and only if ¢ is in H®.

Proof If M,H? is contained in H?, then ¢-1 is in H?, since 1 is in H?,
and hence ¢ is in H®. Conversely, if ¢ 1s in H®, then ¢#. is contained in
H?, since for p =Y ,a,x, in ., we have

2rn N 2r
f (op) 1, d0 = ) ajf 01,4+, @0 =0  for n> 0.
0 J=0 " Jo

Lastly, since H? is the closure of #Z,, we have o H? contained in H? which
completes the proof. |}

6.3 Corollary The space H® i1s an algebra.

Proof 1If ¢ and ¢ are in H*, then M, H?> = M,(M,H*Yc M,H*?
H? by the proposition, which then implies that ¢y is in H*. Thus H® is
an algebra. |

The following result is essentially the uniqueness of the Fourier-Stieltjes
transform for measures on T.

6.4 Theorem If u is In the space M(T) of Borel measures on T and
{v % du =0 for nin Z, then u = 0.

Proof Since the linear span of the functions {y,},.7 1s uniformly dense
in C(T) and M(T) is the dual of C(T), the measure u represents the zero
functional and hence must be the zero measure. [}

6.5 Corollary If fis a function in L'(T) such that

27
(@) y,(e)do =0 for ninz,
0

then /=0 a.e.

Proof 1If we define the measure u on T such that u(E) = {;f(e) d0,
then our hypotheses become {1 x, du =0 for » in Z, and hence u = 0 by the
preceding result. Therefore, f=0a.e. |

6.6 Corollary If f is a real-valued function in H', then f=aae. for
some o 1n R.
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Proof 1f we set a = (1/2x) {3" f(€*®) dO, then « is real and

27
f (f—) ¥, d0 =0 for n > 0.
0

Since f—a is real valued, taking the complex conjugate of the preceding
equation yields

2 2
f (f—a)an9=f (f=a)y_dd =0 for n> 0.
0 0

Combining this with the previous identity yields

2n
f (f—a)y,d0 =0  for alln,
O

and hence f=a a.c. |
6.7 Corollary If both fand f are in H?, then f= « a.e. for some « in C.

Proof Apply the previous corollary to the real-valued functions 4 (f+f)
and 4 (f—f)/i which are in H* by hypothesis. [}

We now consider the characterization of the invariant subspaces of
certain unitary operators. It was the results of Beurling on a special case of
this problem which led to much of the modern work on function algebras
and, in particular, to the recent interest in the Hardy spaces.

6.8 Theorem If u is a positive Borel measure on T, then a closed sub-
space /4 of I (u) satisfies y, # = . if and only if there exists a Borel subset
E of T such that

M= L) = {fe Z(): f(€) = 0 for ¢ ¢ E}.

Proof 1If # = Lg (), then clearly y, # = . Conversely, if y, # = A,
then it follows that # =y_,x,# = y_,# and hence .# is a reducing
subspace for the operator M,, on I?(u). Therefore, if F denotes the pro-
jection onto .#, then F commutes with M, by Proposition 4.42 and hence
with M, for ¢ in C(T). Combining Corollary 4.53 with Propositions 4.22
and 4.51 allows us to conclude that F'is of the form M, for some ¢ in L* (y),
and hence the result follows. |

The role of H? in the general theory is established in the following
description of the simply invariant subspaces for M,, .
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6.9 Theorem If u 1s a positive Borel measure on T, then a nontrivial
closed subspace .# of I*(u) satisfies y, # < M and (>0 x,# = {0} if
and only if there exists a Borel function ¢ such that |¢|?du = d0/2n and
M= oH?.

Proof If ¢ is a Borel function satisfying |o|°du = d0/2n, then the
function Wf = ¢f is u-measurable for fin H? and

1 2rn
14712 = [ loftdu = 5 | 10 = 1112

Thus the image .# of H? under the isometry ¥ is a closed subspace of IZ? ()
and is invariant for M, , since x, (\¥f) = ¥ (xf). Lastly, we have

Qoxnﬁ = ‘P[OOXHHZ] = {0}

and hence ./ is a simply invariant subspace for M, .

Conversely, suppose .# i1s a nontrivial closed invariant subspace for
M, which satisfies [ ),5¢ x,-# = {0}. Then ¥ = # © x, ./ is nontrivial and
vy P =y, MO Y, 1M, since multiplication by y, is an isometry on LZ(p).
Therefore, the subspace Y 5., @ x, £ 1s contained in .#, and an easy argu-
ment reveals # O (3%, ® x, &) to be (V>0 x,# and hence {0}.

If @ is a unit vector in %, then ¢ is orthogonal to yx,.# and hence to y, ¢
for n > 0, and thus we have

0 = (¢, %, ¢) =f\<o|2xndu for n> 0.
T

Combining Theorem 6.4 and Corollary 6.6, we see that |¢|*du = d6/2n.
Now suppose & has dimension greater than one and ¢’ is a umt vector in &
orthogonal to ¢. In this case, we have

0= (%@ Xm ®") =ftp<5’xn-m du  for n,m =0,
T

and thus {1y, dv =0 for k in Z, where dv = ¢¢’ du. Therefore, pp’ =0 p a.e.
Combining this with the fact that |p|>du = |¢’|?du leads to a contra-
diction, and hence .# is one dimensional. Thus we obtain that ¢, 1s dense
in .# and hence # = @H?*, which completes the proof. [

The case of the preceding theorem considered by Beurling will be given
after the following definition.

6.10 Definition A function ¢ in H® is an inner function if |¢| = 1a.e.



Beurling’s Theorem 153

6.11 Corollary (Beurling) If 7, = M, |H?, then a nontrivial closed sub-

space 4 of H? is invariant for T, if and only if # = @H? for some inner
function ¢.

Proof 1If ¢ is an inner function, then %, is contained in H®, since
the latter is an algebra, and is therefore contained in H?. Since ¢ H? is the
closure of 2., we see that ¢ H? is a closed invariant subspace for T, .

Conversely, if .# is a nontrivial closed invariant subspace for 7, , then
A satisfies the hypotheses of the preceding theorem for du = df/2n, and
hence there exists a measurable function ¢ such that 4 = @H? and

0|2 dbj2r = dOj2x.

Therefore, |¢| = 1a.e., and since 1 is in H? we see that ¢ = ¢-1 is in H?;
thus ¢ is an inner function. JJj

A general invariant subspace for M, on I?(u) need not be of the form
covered by either of the preceding two theorems. The following result enables
us to reduce the general case to these, however.

6.12 Theorem If u is a positive Borel measure on T, then a closed in-
variant subspace .# for M, has a unique direct sum decomposition # =
M ® M, such that each of .#, and 4, is invariant for M, , x, M = M ,,

and mn?:-{) XH‘%Z — {0}

Proof If we set My = \usoXn#, then A, is a closed invariant sub-
space for M, satistying y, #, = #,. To prove the latter statement observe
that a function fis in ., if and only if it can be written in the form y, g for
some g in 4 for each n > 0. Now if we set 4, = M# © #,, then a function f
in % is in ., if and only if (f,g) =0 for all g in .#,. Since 0 =(f,g) =
(xifsx,9) and y, M, = M, it follows that y, fis in .#, and hence .#, 1s
invariant for M, . If fis in ()50 x.-#,, then it is in .#, and hence f= 0.
Thus the prooft is complete. [}

Although we could combine the three preceding theorems to obtain a
complete description of the invariant subspaces for M, , the statement would
be very unwieldy and hence we omit it.

The preceding theorems correspond to the multiplicity one case of certain

structure theorems for 1sometries (see [66], [58]).
To illustrate the power of the preceding results we obtain as corollaries

the following theorems which will be important in what follows,
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6.13 Theorem (F. and M. Riesz) If fis a nonzero function in 5?2, then the
set {" € T: f(€") = 0} has measure zero.

Proof Set E={e"eT: f(e") =0} and define
M ={geH*: g =0 for e e E}.

It is clear that ./ is a closed invariant subspace for 7,, which is nontrivial
since fis in it. Hence, by Beurling’s theorem there exists an inner function
¢ such that .# = oH?. Since 1 is in H?, it follows that ¢ is in .# and hence
that E is contained in {e" e T: ¢(e”) = 0}. Since |p| = la.e., the result
follows. I}

6.14 'Theorem (F. and M. Riesz) If v is a Borel measure on T such that
_[F ¥,dv =0 for n > 0, then v 1s absolutely continuous and there exists f in

H! such that dv = £ db.

Proof 1f p denotes the total variation of v, then there exists a Borel
function  such that dv = du and || = 1a.e. with respect to u. If #
denotes the closed subspace of L (u) spanned by {y,: n > 0}, then

(s V) = fvxntff du = an dv =0,

and hence  is orthogonal to .# in I?(y).

Suppose A = M @ M, i1s the decomposition given by Theorem 6.12.
If E is the Borel subset of T given by Theorem 6.8 such that .4, = Lg (1),
then we have

p(E) = LW/‘ZIE dﬂ = ('7;: ﬂ;IE) = 0,

since I is in ., and V is orthogonal to .#. Therefore, .#, = {0} and
hence there exists a p-measurable function ¢ such that 4 = @H? and
lp|* du = dB/2n by Theorem 6.9. Since y, is in ., it follows that there exists
g in H? such that y, = @g a.e. with respect to u, and since ¢ # 0 u a.e., we
have that p is mutually absolutely continuous with Lebesgue measure. If
fis a function in L'(T) such that dv = fd0, then the hypotheses imply that
fis in H', and hence the proof is complete. [

Actually, the statements of the preceding two theorems can be com-
bined into one: an analytic measure is mutually absolutely continuous with
respect to Lebesgue measure.
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6.15 We now turn to the investigation of the maximal ideal space M,

of the commutative Banach algebra H*. We begin by imbedding the open

unit disk D in M. For z in D define the bounded linear functional ¢, on
H' such that

1 p 10

¢.(f) = - UG _)_19 dd for fin H'.

T Jo 1 —ze

Since the function 1/(1—ze™*) is in L*(T) and H' is contained in L'(T),
it follows that ¢, is a bounded linear functional on H'. Moreover, since
1/(1—ze™) =32 ,e” ™" 2" and the latter series converges absolutely, we see
that

o0 1 2r _
0.(f) ,Eozk(ﬁ [ d@).

Thus, if p is an analytic trigonometric polynomial, then ¢, (p) = p(z) and
hence ¢, 1s a multiplicative linear functional on #2,.. To show that ¢, is
multiplicative on H® we proceed as follows.

6.16 Lemma If fand g are in H? and z is in D, then fg is in H' and
0:(f9) = 0.(f) 0.(9).

Proof Let {p,};>, and {q,}.=, be sequences of analytic trigonometric
polynomials such that

lim [|f=p,)2 = lim [g—g.]>=0.

n—cC n— 00

Since the product of two I*-functions is in L', we have

|fg—patalls < | f9—-puglli+ | Png—Padills
< | f—pallzllgllz + Ipall2 19—z

and hence lim,, | fg—p,q,||. = 0. Therefore, since each p,q, is in H' we
have fg in H'. Moreover, since ¢, is continuous, we have

¢.(fg) = lm ¢,(p,q,) = lim ¢, (p,) lim ¢.(q,) = ¢.(/)0.(9)- B

n— oo n—» 0 H—CD

With these preliminary considerations taken care of, we can now imbed
D in M.

6.17 Theorem For z in D the restriction of ¢, to H* is a multiplicative
linear functional on H*®. Moreover, the mapping F from D into M, defined
by F(z) = ¢, 1s a homeomorphism.
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Proof That ¢, restricted to H® 1s a multiplicative linear functional
follows from the preceding lemma.

Since for a fixed fin H', the function ¢_(f) is analytic in z, it follows
that F is continuous. Moreover, since ¢,(y,) = z, it follows that F is one-
to-one. Lastly, if {¢p, }.4 1S a net iIn M, converging to ¢, then

limz, = limg. (1) = ¢.(0:) = z,
acA acA

and hence F is a homeomorphism. [}

From now on we shall simply identify D as a subset of M_. Further, we
shall denote the Gelfand transform of a function fin H® by f. Note that
fID is analytic. Moreover, for fin H' we shall let f denote the function
defined on D by f(2) = ¢.(f). This dual use of the ~-notation should cause

no confusion.
The maximal ideal space M_ is quite large and is extremely complex.

The deepest result concerning M, is the corona theorem of Carleson, stating
that ID is dense in M_. Although the proof of this result has been somewhat
clarified (see [15], [39]) it is still quite difficult and we do not consider it
in this book.

Due to the complexity of M it is not feasible to determine the spectrum
of a function £ in H® using f, but it follows from the corona theorem that
the spectrum of fis equal to the closure of f(ID). Fortunately, a direct proof
of this result is not difficult.

6.18 Theorem If ¢ is a function in H®, then ¢ is invertible in #* 1If and
only if ¢|D is bounded away from zero.

Proof If ¢ is invertible in H®, then ¢ is nonvanishing on the compact
space M, and hence |¢(2)| > ¢ > 0 for z inD. Conversely, if [¢(z)| =& >0
for z In D and we set Y (2) = 1/$(2), then Y is analytic and bounded by 1/e
on . Thus  has a Taylor series expansion ¥ (z) = 32 ,a,z", which con-
verges 1n [D. Since for 0 <r < 1, we have

o i
go\an\zrz” = —f W (re")|? dt < —2

it follows that 3%, la,|®> < 1/e2. Therefore, there exists a function f in H?
such that /=32 ,a,x,.

If o =32 ,b,x, is the orthonormal expansion of ¢ as an element of
H?, then ¢(2) =32 b,z" for z in D. Since ¢(2)Y(2) = 1, it follows that
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(Xl ob,z)(Zrto0a,z") =1 for z in D. Therefore, 3> (Zr_obra,_)z" =1
for z in D, and hence the uniqueness of power series implies that

Z bya,_; = {
k=0

1 if n=0,

0 if n>0.
Since

|

M
lim f_ Z U Xm — 0:
m=0

N
lim O — Z,Obn Kn

N-oao

we have that

lim (pf—_ ( ;0 bn Xn)( Z;,Oam Xm) = 0,

N—oaoo

which mmplies that

lim | (@f—D+ Y e =0 for o= 3 aby.
N- n=N+1 1 k=n—N
Therefore,
| [2= 1 if k=0,
%L (prkd9={0 if k#0,

and hence ¢f = 1 by Corollary 6.6. It remains only to show that f1s in L* ()
and this follows from the fact that the functions {f.},. 1) are uniformly

bounded by 1/e, where f.(¢") = f(ré"), and the fact that lim,_ | f—f], =0
Thus f1s an inverse for ¢ which lies in H®. |

The preceding proof was complicated by the fact that we have not in-
vestigated the precise relation between the function f on D and the function
fon T. It can be shown that for fin H! we have lim,_,, f(re™) = f(e") for
almost all ¢" in T. We do not prove this but leave it as an exercise (see Exer-
cise 6.23).

Observe that we proved in the last paragraph of the preceding proof
that if fis in H? and f is bounded on I, then fis in H®.

We give another characterization of invertibility for functions in H®
which will be used 1n the following chapter, but first we need a definition.

6.19 Definition A function fin H? is an outer function if clos[ f2,] = H>.

An alternate definition is that outer functions are those functions in H?2

which are cyclic vectors for the operator 7', which is multiplication by
on H>.
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6.20 Proposition A function ¢ in H® is invertible in H® if and only if
¢ is invertible in L and 1s an outer function.

Proof If 1/¢p is in H®, then obviously ¢ is invertible in L*. Moreover,
since

@

it follows that ¢ is an outer function. Conversely, if 1/¢ i1s in L*(T), and ¢
is an outer function, then pH? = clos[¢p#,] = H?. Therefore, there exists
a function ¥ in H? such that ¢y = 1, and hence 1/p = is in H2. Thus,
I/p 1s in H® and the proof 1s complete. [}

|
clos[p#.] = oH? o (p(-—~H2) = H?,

Note, in particular, that by combining the last two results we see that
an outer function can not vanish on D. The property of being an outer func-
tion, however, is more subtle than this.

The following result shows one of the fundamental uses of inner and
outer functions.

6.21 Proposition If fis a nonzero function in H?2, then there exist inner
and outer functions ¢ and g such that f = ¢g. Moreover, f1s iIn H® if and
only if g 1s in H™.

Proof If we set A =clos[f#,], then .# is a nontrivial closed in-
variant subspace for 7,, and hence by Beurling’s Theorem 6.11 is of the
form @ H? for some inner function ¢. Since fis in .#, there must exist g in
H? such that f= ¢@g. If we set A& = clos[g#,], then again there exists an
inner function ¥ such that A& =y H?. Then the inclusion f?, = g%, <
oy H? implies pH? = clos[ f?,] < oyyH?, and hence there must exist 4 in
H? such that ¢ = ¢yh. Since ¢ and  are inner functions, it follows that
Yy = h and therefore y is constant by Corollary 6.7. Hence, clos[¢gZ.] =
H? and g is an outer function. Lastly, since | f| = |g|, we see that fis in H®
if and only if g is. B

We next show that the modulus of an outer function determines it up to
a constant as a corollary to the following proposition.

6.22 Proposition If g and /4 are functions in H? such that g is outer, then
|4| < |g] if and only if there exists a function k in H? such that 4 = gk and
k| < 1.
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Proof I h= gk and |k| <1, then clearly |A| < |g|. Conversely, if g is
an outer function, then there exists a sequence of analytic trigonometric
polynomials {p,};%, such that lim,_, . |1—p,g|,=0. If [h| <|g|, then we

have
1 27

1 2r
|Apn—hpmll2* = | Pu—Pwl* |H*d0 < — | | pa—pul®|g|* 40
27 0

2n Jo

= 9P~ gpall>”,
and hence {p,h} ., 1s a Cauchy sequence. Thus the sequence {p,h}’,
converges 1o a function k in H?2, and
lgk—Hl, < tim [lg]; lk—p,hl + lim lgp,— 1], 4], = 0.

n— oo n— 00

Therefore, gk = h and the proof is complete. |}

6.23 Corollary If g, and g, are outer functions in H? such that |g,| =
|g,|, then g, = Ag, for some complex number of modulus one.

Proof By the preceding result there exist functions # and &k in H? such
that |h|, |k| <1, g, = hg,, and g, = kg,. This implies g, = khg,, and by
Theorem 6.13 we have that kA= 1. Thus A=k, and hence both 4 and A
are in H?2. Therefore, # is constant by Corollary 6.7 and the result follows. [l

The question of which nonnegative functions in I* can be the modulus
of a function in H? is interesting from several points of view. Although an
elegant necessary and sufficient condition can be given, we leave this for the
exercises and obtain only those results which we shall need. Our first result
shows the equivalence of this question to another.

6.24 Theorem If fis a function in I?(T), then there exists an outer function
g such that |f] = |[g]a.e. if and only if clos[ f#, ] is a simply invariant sub-
space for M, .

Proof If |f| = |g| for some outer function g, then f= ¢g for some
unimodular function ¢ in L*(T). Then

clos[ f?,.] = clos[pg?.] = ¢ clos[¢g?.] = oH?,

and hence clos[ /%, ] 1s simply invariant.

Conversely, if clos[ /%, ] is simply invariant for M, , then there exists a
unimodular function ¢ in L*(T) by Theorem 6.9 such that clos[ fZ,] =
@H?. Since fis in clos[ f7?,], there must exist a function g in H? such that
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f= ¢g. The proof is concluded either by applying Proposition 6.21 to g or
by showing that this g 1s outer. |}

6.25 Corollary If fis a function in [*(T) such that | f| > ¢ > 0, then there
exists an outer function g such that |g| = | f].

Proof If we set A =clos[f?,], then M, # is the closure of

{fp:pe?,,p) = 0}.
If we compute the distance from f to such an fp, we find that

l 2r 82 27
ol = o | Ul =pl2d0 > = [Tl -plza0 > 2

and hence f is not in M, /. Therefore, .# is simply invariant and hence
the outer function exists by the preceding theorem. [}

We can also use the theorem to establish the following relation between
functions in H? and H'.

6.26 Corollary If fis a function in H!, then there exists g in H? such
that |g|*> = [f]a.e.

Proof If =0, then take g = 0. If fis a nonzero function in H', then
there exists / in I such that |A|? = | f]. It is sufficient in view of the theorem
to show that clos[A%, ] is a simply invariant subspace for M, . Suppose it
is not. Then y_, hisinclos[h%,] for N > 0, and hence there exists a sequence
of analytic trigonometric polynomials {p,}.~ , such that

lim | p,h—x-nh|, = 0.

n—» oo

Since
1 2
lx-nb—pahl,° = > L P2 Y-y — 202 ppy—n + W p,| dO

1 27

— “hZX—-N — W (2Pn_Pn2 AN) “ 1

we see that A%2y_y is in the closure, clos,[#?2,], of h*%, in L'(T). Since
there exists a unimodular function ¢ such that f= @h?, we see that the
function y_nf=o(_nH?) is in ¢@clos,[h2P, ] =clos,[f?.]1 < H' for
N > 0. This implies f=0, which is a contradiction. Thus clos[AZ ] 1s
simply mvariant and the proof is complete. [}

|72 v — B (2p,— P’ xn)| 40
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6.27 Corollary If fis a function in H', then there exist functions g, and
g, in H? such that |g,| = |g,| = (|f])”* and f= g, g,.

Proof If g is an outer function such that |g| = (| f])”, then there exists
a sequence of analytic trigonometric polynomials {p,} 2, such that

lim |lgp,—1], = 0.

H— OO

Thus we have

1172 — P |1 < N fPu—Pd Pulls + 1 (2w — Pu) Pl
< gl 2 |9 (Pe—Pd|2 + 192wl 2 |9 (Pr—Pr) |l 25

and hence the sequence {fp,’}> , is Cauchy in the L' (T) norm and there-
fore converges to some function ¢ in H'. Extracting a subsequence, if
necessary, such that lim,_, . (/p,2)(e") = ¢ (") a.e. and lim,_,  (gp,) (€ =1
a.c., we see that pg? =f. Since |g?| =|f| a.e., we see that |p| =1 a.e.,
and thus the functions g, = ¢g and g, = g are in H? and satisfy f= g, g,

and |g,| =]g2] = (D" W

6.28 Corollary The closure of 2, in L'(T) is H'.

Proof Iffisin H', then f=g,g, with g, and g, in H2 If {p,}Z., and
{g.}., are sequences of analytic trigonometric polynomials chosen such
that lim,,_. , |91 —pall» = lim, ., |92 —ga| 2 = O, then {p, q,},~ , is a sequence
of analytic trigonometric polynomials such that lim,,, | f—p.9.l: =0. B

With this corollary we can determine the dual of the Banach space H'.
Before stating this result we recall that H,” denotes the closed subspace

27

|
{feH":% A fd9=0} of HP? for p=1,2,00.

6.29 Theorem There is a natural isometrical isomorphism between (H ')*
and L*(1)/H,”.

Proof Since H' is contained in L' (T), we obtain a contractive mapping
¥ from L°(T) into (H')* such that

2

[Y{(p)](f) = %f ﬂ(pfd@ for ¢ in [*(T) and fin H'.

O
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Moreover, from the Hahn-Banach theorem and the characterization of
L' (T)*, it follows that given @ in (H ")* there exists a function ¢ in L*(T)
such that |¢|, = [|®| and ¥ (¢) = ®. Thus the mapping ¥ is onto and
induces an isometrical isomorphism of [ (T)/ker¥ onto (H")*.

We must determine the kernel of W. If ¢ is a function in ker¥, then

1 27
—f 0%, d0 = [P (@)1 () =0  for n 30,
27 0

since each y, is in H' and hence ¢ is in Hy®. Conversely, if ¢ lies in H,®,
then [W(¢)] (p) =0 for each p in Z_, and hence ¢ 1s I1n ker ¥ by the preced-

ing corollary. [l
Although L'(T) can be shown not to be a dual space, the subspace H! is.

6.30 Theorem There is a natural isometrical i1somorphism between
(C(T)]A)* and H,'.

Proof 1Tf ¢ is a function in H,', then the linear functional defined

O(f) = — f Tod0  for fin C(T)
27 '

is bounded and vanishes on A. Therefore, the mapping

1 271
Do(f+A4) = B() = - f fop do

is well defined on C(T)/A4 and hence defines an element of (C(T)/A4)*. More-
over, the mapping ¥ (¢) = ®, 1s clearly a contractive homomorphism of
H,' into (C(T)/A)*.

On the other hand, if @, is a bounded linear functional on C(T)/A4, then
the composition ®,0on, where 7 1s the natural homomorphism of C(T) onto
C(T)/A, defines an element v of C(T)* = M(T) such that

Do (f+4) = O =Lfdv for fin C(T)

and |v|| = |®@,]l- Since this implies, in particular, that {ygdv =0 for g in 4,
it follows from the F. and M. Riesz theorem that there exists a function ¢
in H,' such that

I (%= :
Oo(f+A) = - | Fpdo forfin cD) and Jol, = Il = |00l

Therefore, the mapping ¥ is an isometrical isomorphism of H,' onto

(C(M)/4)*. I
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6.31 Observe that the natural mapping i of C(T)/4 into its second dual
[*(T)/H* (see Exercise 1.15) is i(f+ ) = f+ H™. Since the natural map is
an isometry, it follows that i[C(T)/A4] is a closed subspace of L*(T)/H*.
Hence, the inverse image of this latter subspace under the natural homo-
morphism of L*(T) onto L*(T)/H* is closed, and therefore the linear span
H®+C(T) is a closed subspace of L*(T). This proof that H® + C(T) is
closed is due to Sarason [97].

The subspace H® + C(T) 1s actually an algebra and is just one of a large
family of closed algebras which lie between H® and L*(T). Much of the
remainder of this chapter will be concerned with their study. We begin with

the following approximation theorem.

6.32 Theorem The collection 2 of functions in L*(T) of the form y¢
for Y in H® and ¢ an inner function forms a dense subalgebra of L*(T).

Proof That 2 is an algebra follows from the identities

W100)W205) = W 1Y) (0193)

and

V101 + Y20, = (Y102 +Y500) (01 0,).

Since 2 is a linear space and the simple step functions are dense in L, to
conclude that 2 is dense in L*(T) it suffices to show every characteristic
function is in clos_[Z2]. Thus let E be a measurable subset of T and let f
be a function in H? such that

3 if é'ekFE,

& =
AN 2 if &'¢E.

The existence of such a function follows from Corollary 6.25. Moreover,
since f is bounded, it is in H® and consequently so is 1+/" for n > 0. If
1+/" = ¢,q, is a factorization given by Proposition 6.21, when ¢, is an
inner and g, is an outer function, then |g,| = |[1+f"| > } and hence 1/g,, is
in H® by Proposition 6.20. Therefore, the function 1/(1+f") = (1/g,) @,
is in 2, and since lim,., o, [ 7z —1/(1+f")| . = 0, we see that I} is in clos [ 2].
Thus, 2 is dense in L°(T) by our previous remarks. [}

We next prove a certain uniqueness result.
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6.33 Theorem (Gleason—Whitney) If @ is a multiplicative linear functional
on H® and L, and L, are positive linear functionals on L”(T) such that

LIIHOG — Llem — (I), then Ll = Lz.

Proof 1If u is a real-valued function in L*(T), then there exists an in-
vertible function ¢ 1In H® by Proposition 6.20 and Corollary 6.25 such that
|| = €". Since L, and L, are positive, we have

|@(¢)| = |L1(9)| < Li({¢]) = L1(¢)

(@) = [1()] < () = 1
Ool—}=|L,|-} £ L, = L,(e™ ).
l ‘P) ® o]

Multiplying, we obtain
= \d)(co)ll@( )I < Ly(€) La(e")

and

|

@
and hence the function ¥ (r) = L,(¢") L,(e” ™) defined for all real r has an
absolute minimum at # = 0. Since ¥ is a differentiable function of ¢ by the
linearity and continuity of L; and L,, we obtain

W(r) = Ly(ue®) Ly(e™™) — Ly (€") Ly (ue™™).

Substituting r =0 yields 0 =¥'0)= L, ®)L,(1)—L, (1) L,(x), and hence
L,(u) = L,(u) which completes the proof. I

6.34 Theorem If U is a closed algebra satisfying H* < U < [*(T), then
the maximal ideal space My of 2 is naturally homeomorphic to a subset
of M.

Proof If @ is a multiplicative linear functional on %, then ®|H® is a
multiplicative linear functional on H® and hence we have a continuous
natural map » from My, into M_ . Moreover, let ® denote any Hahn-Banach
extension of ® to L*(T). Since L*(T) is isometrically isomorphic to C(M;.)
by Theorem 2.64, @’ is integration with respect to a Borel measure v on
M, . by the Riesz-Markov representation theorem (see Section 1.38). Since
ViMio)=®'(1) =1 = |®'|| = |v| (M), the functional @’ is positive and
hence uniquely determined by ®|H® by the previous result. Therefore, the
mapping # is one-to-one and hence a homeomorphism. i

Observe that the maximal ideal space for U contains the maximal ideal
space for L (T) and, in fact, as we indicate in the problems, the latter is the
Silov boundary of 2.
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We now introduce some concrete examples of algebras lying between
H® and L*(T).

6.35 Definition If X is a semigroup of inner functions containing the con-
stant function 1, then the collection {{/¢: Yy e H®, ¢ € X} is a subalgebra
of L*(T) and the closure is denoted Us.

The argument that 2y is an algebra is the same as was given in the proof

of Theorem 6.32.
We next observe that H* + C(T) 1s one of these algebras.

6.36 Proposition If X(y) denotes the semigroup of inner functions
{xn: n =0}, then Wy, = H*+C(T).

Proof Since the linear span H*+C(T) is closed by Section 6.31, we
have H* + C(T) =clos_[H* + #]. Lastly, since
H*+ 2 =i, yeH>, n >0},
the result follows. B

The maximal ideal space of U can be identified as a closed subset of
M _ by Theorem 6.34. The following more abstract result will enable us to
identify the subset.

6.37 Proposition Let X be a compact Hausdorff space, U be a function
algebra contained in C(X) with maximal ideal space M, and X be a semi-
group of unimodular functions in . If A; is the algebra

clos{yg: yeU, peX}
and Mjy is the maximal ideal space of 2, then M;s can be identified with
{meM: |¢p(m)| =1 for p € X},
where ¢ denotes the Gelfand transform.
Proof If ¥ is a multiplicative linear functional on Uy, then ¥|U is a
multiplicative linear functional on U, and hence #(W¥) = W¥|U defines a

continuous mapping from M; into M. If ¥, and ¥, are elements of Mj;
such that (¥, = n(¥,), then ¥, |UA = ¥, |A. Further, for ¢ in X, we have

1
¥Yi(p) =Y, (‘(;) = ¥, ((P)nl = ‘Pz((ﬂ)-l = ¥,(¢)
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and thus ¥, = ¥,. Theretfore, # 1s a homeomorphism of My into M. More-
over, since |¥(¢p)| < |l¢[| =1 and

1
1'% ()]

we have |¥(¢)| =1 for ¥ in My and ¢ in X; therefore, the range of 5 is con-
tained in

= |¥(@)] < |oll =1,

{me M: |¢p(m)] = 1 for ¢ € X}

and only the reverse inclusion remains.

Let m be a point in M such that |@(m)| = 1 for every ¢ in X. If we define
¥ on {Yy@: Y €A, ¢ € L} such that ¥ (/P) = Y (m) @ (), then ¥ can easily
be shown to be multiplicative, and the inequality

YY) = W) |pm)| = ¥ m)| < |¥] = [yl

shows that ¥ can be extended to a multiplicative linear functional on Us.
Since (YY) = m, the proof is complete. |

6.38 Corollary If X is a semigroup of inner functions, then the maximal
ideal space M; of Us can be identified with

meM_,: |p(m)| =1 for peX}.

Proof Since L*(T) = C(X) for some compact Hausdorff space X, the
result follows. [IB

Using the Gleason—-Whitney theorem we can determine the Gelfand
transform in the following sense.

6.39 Theorem There 1s a homeomorphism # from M _ into the unit ball
of the dual of I°(T) such that { (m) = n(m) () for ¥ in any algebra A lying
between H® and L*(T) and m in M.

Proof For m in M let n(m) denote the unique positive extension of
m to L*(T) by Theorem 6.33. Since a multiplicative linear functional on
extends to a positive extension of m on [*(T), we have ¥ (m) = y(m) ()
for i in 2. The only thing to prove is that » is a homeomorphism. Recall that
the unit ball of L* (T)* is w*-compact. Thus if {m_} ., is a net in M which
converges to m, then any subnet of {# (r1,)}, . , has a convergent subnet whose
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limit is a positive extension of m and hence equal to #(m). Therefore, # 1s
continuous and hence an into homeomorphism. [§

We now adopt the notation @(m) = n(m)(¢p) for ¢ in L*(T). The re-
striction ¢|D will be shown to agree with the classical harmonic extension
of a function in L*(T) into the disk. We illustrate the usefulness of the pre-
ceding by proving the following result showing the unique position occupied
by H*+ C(T) in the hierarchy of subalgebras of L*(T).

6.40 Corollary If A is an algebra lying between H® and L*(T), then
either W = H* or A contains H* + C(T).

Proof From Theorem 6.34 it follows that the maximal 1deal space of
A can be identified as a subset My of M. If the origin in D is not in My,
then y, 1s invertible in A (¥, # 0), and hence C(T) is contained in ¥, whence
the result follows. Thus suppose the origin in ) is in My,. Since

1 (2=
@*%L @ dt

defines a positive extension of evaluation at 0, it follows that ¢(0) =
(1/27) (3" @ dt. If ¢ is contained in ‘lI but notin H*, then (1/27) (& @y, dt # O
for some n > 0, and hence 0 (px,,(O) ¢ (0) #,,(0) =0. This contradiction
completes the proof. [}

One can also show that either M, is contained in M _\D or W= H*.
Before we can apply this to &/ + C(T) we need the following lemma on
factoring out zeros.

641 Lemma If ¢ is in H® and z is in D such that ¢(z) = 0, then there
exists ¥ in H® such that ¢ = (x; —2) V.

N
Proof 1If 0 is in H®, then ¢0(z) = ¢(2)0(z) =0. If 8p = ¥ a, 1 1S
the orthonormal expansion of ¢ viewed as an element of H?, then

Y a,2" = Dp(z) = 0
n=0

by Section 6.15, and hence

1 oo o0 oo
= " = z" = 0.
(00 1=5) = ( S enrr 3, 70) = 3 e = 0
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Therefore, we have
| Y10 X10 1 [ ) ¢ T
— df = , = — dt
27’5 O X 1-2’21 (Xk I_EXI 275 J{; 1‘*‘2'21

1
= (Xk—-lfﬂsl - ) =0
—Z)1

for k=1,2,3,...,

and hence the function ¥, ¢/(1—zx,) 1s in H®. Thus setting Y = ¥, ¢/(1—-z¥,),
we obtain (y;—2)¢ = ¢. B

6.42 Corollary The maximal ideal space of H®+ C(T) can be identified
with M \D.

Proof From the preceding corollary, we have

Mpoicm = {me My |§,(m)| = 1}.

It remains to show that this latter set 1s M_\ID. Let m be in M_, such that
|Z:(m)| < | and set ¥, (m) = z. If ¢ 1s in H®, then ¢ —{@(z)1 vanishes at z,
and hence by the preceding lemma we have ¢ —@(2)1 = (y, —z)y for some
Yy in H®”. Evaluating at m in M_, we have

¢m) — ¢ = (L (m—2)¥(2) = 0,

and hence ¢ (m) = ¢ (z). Therefore, m = z and the proof is complete. [}

In the next chapter we shall be interested in determining when functions
in H®+C(T) are invertible. From this point of view, the preceding result
seems somewhat unfortunate since the only portion of the maximal ideal
space of H® over which we have some control, namely [, has disappeared.
We shall show, however, that the question of invertibility of functions in
H*+C(T) can be answered by considering the harmonic extension of the
function on D. Our motivation for introducing the harmonic extension is
quite different from that considered classically. We begin by determining a
more explicit representation for ¢ on .

643 Lemma If z=ré¢isin D and ¢ in [*°(T), then

x . I (2=
¢ = ) a,,r'"'e‘””=£L o)k, (0—1) dt,

n=—0Q0
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where

k. (1) : and = : f dt
— a = — .
r 1 { > n (DX n

Moreover, @] < [|@] -

Proof The function k, is positive and continuous; moreover, since

l+re?) &
k,.(t) _ Re{ +I‘e_} _ Z F'lnl em!’

it

it follows that

1 2
ol = 5- | T@ar =1
T Jo
Therefore, we have

1

2r ]
= [To@re-d| <ol 1kl = lol..
T Jo

Lastly, since ¢(z) = 3% __ a,r"le™® where z=re®, for ¢ in H® it
follows that this defines a positive extension of evaluation at z. The unique-
ness of the latter by the Gleason—Whitney theorem completes the proof. |}

6.44 Lemma The mapping from H*4C(T) to C(D) defined by ¢ —
¢|D 1s asymptotically muluplicative, that is, for ¢ and ¢ n H* 4 C(T) and
e > 0, there exists K compact in D such that

GV —ap@)| <& for zin D\K.

Proof Since H®+ C(T) =clos|| ), x-,H=], it is sufficient to estab-
lish the result for functions of the form y,¢ for ¢ in H*. If ¢ =>_> 0 a, ¥4,
is the Fourier expansion of ¢, then for z = re", we have

N
(- ) (2) — 1-4(2) §(2)|

n _ 1 oo
< kzo\r"‘ "t K | A ('_n F") Y o

“k=ﬂ+1 oo

N
Thus, if |1—r| < 4, then (-, @)(2)—X_.(2) 0 (2)| < &.

Since for ¢, and ¢, in H* and z in D, we have

N i T
‘(x—-n (Dl)(z) (x—-m (02) (Z) o (X—-n—-m P4 @2) (Z)‘
N TN

< |U-n @) @A -m ©2)(2) = 2-1(2) $1(2) R~ m(2) §2 (2)]
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NN
+ X0 01(2) £-m(2) §2(2) — F—p—(2) @1 02 (2)]
——"/\\\
+ [H a2 @1 02(2) — (e @1 ©2) (2)],

the result follows. |

An abstract proof could have been given for the preceding lemma, where
the compact set K is replaced by a set {ze D: |¥,(2)| < 1—46}. Moreover,
a similar result holds for the algebras 2y and can be used to state an in-
vertibility criteria for functions 1n 9y in terms of their harmonic extension

on D (see [30], [31]).

6.45 Theorem If ¢ 1s in H*+ C(T), then ¢ 1s invertible if and only if
there exist d,& > 0 such that

|G (re®)| = & for 1—-6 <r < 1.

Proof Using the preceding lemma for ¢ > O there exists 6 > 0 such that
for 1 -0 < r <1, we have

M

S B
o(re)—(re¥) — 1] < ¢
'

whence the implication follows one way if ¢ is chosen sufficiently small.
Conversely, let ¢ be a function in H*+ C(T) such that

\q’&(re"‘)\zsz:ro for 1—0<r < 1.

Choose Y in H® and an integer N such that |¢ —yx_y¥|.. < &/3. Then there
exists 0, > O such that for 1—-8, <r <1, we have

N o ‘
X-n Y (re") — Rn(re) P (re")] < <.

Therefore, for 1 -0, <r <1 we have using Lemma 6.43 that
Al N —iNt J (ol 2¢
00 — re ™ ety < 5,

and hence hﬂ(re"‘)\ > ¢f3 if we also assume r > 1—9. Let z,,...,zy be the
zeros of the analytic function ¥ (z) on D counting multiplicities. (Since ¥ (2)
1s not zero near the boundary, the number is finite.) Using Lemma 6.41
repeatedly we can find a function 6 in H® such that y = p6, where

P=1—2)(1—22) " \£1—2Zn)-
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Since ¥ = p, we conclude that 8 does not vanish on D and is bounded away
from zero in a neighborhood of the boundary. Therefore, @ is invertible in
H* by Theorem 6.18. Since p 1s invertible in C(T), it follows that { = p6,
and hence also y_, ¥ 1s invertible in H* 4 C(T).

Lastly, since lim,.;- [|[¢—¢,]|, =0, where ¢,(e") = ¢(re"), we have
l@(e")| = ¢ a.e., and hence |(x_y¥)(e")| = 2¢/3 a.e. Therefore,

_ 3
o) < 5
and hence ¢ 1s invertible in H* + C(T) by Proposition 2.7. |}

We conclude this chapter by showing that the harmonic extension of a
continuous function on 1 solves the classical Dirichlet problem.

6.46 Theorem If ¢ 1s a continuous function on T, then the function ¢
defined on the closed disk to be @ on D and ¢ on 0D = T is continuous.

Proof 1 p 1s a trigonometric polynomal, then the result 1s obvious.
If ¢ is a continuous function on T and {p,}.~ , is a sequence of trigonometric
polynomials such that lim,_, . ¢ —p,| =0, then lim,_,  [|&— p,[| =0, since
3 (2)—p,(2)| < |l¢—pulle by Lemma 6.43. Therefore, ¢ is continuous

on D. W
Notes

The classical literature on analytic functions in the Hardy spaces is quite
extensive and no attempt will be made to summarize it here. Some of the
earliest and most important results are due to F. Riesz [90] and F. and
M. Riesz [91]. The proofs we have presented are, however, quite different
from the classical proofs and largely stem from the work of Helson and
Lowdenslager [62]. The best references on this subject are the books of
Hoffman [66] and Duren [39]; in addition, the books of Helson [61] and
Gamelin [40] should be mentioned.

As we suggested in the text, the interest of the functional analyst in the
Hardy spaces is due largely to Beurling [6], who pointed out their role in
the study of the unilateral shift. The F. and M. Riesz theorem occurs in [91],
but our proof stems from ideas of Lowdenslager (unpublished) and Sarason
[99]. Besides the work of Helson and Lowdenslager already mentioned, the
study of the unilateral shift was extended by Lax [75], [76], Halmos [56],
and more recently: by Helson [61] and Sz.-Nagy and Foias [107].
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The study of H® as a Banach algebra largely began in [100] and the
deepest result that has been obtained is the corona theorem of Carleson
[14], [15].

The material covered in Theorem 6.24 1s closely connected with what is
called prediction theory (see [54]). The algebra H® 4+ C(T) first occurred in
a problem in prediction theory [63] and most of the results presented here
are due to Sarason [97]. The study of the algebras between H* and L*(T)
was suggested to the author [31] in studying the invertibility question for
Toeplitz operators. Theorem 6.32 is taken from [34] in which it is shown
that quotients of mner functions are uniformly dense in the measurable
unimodular functions. The Gleason-Whitney theorem is in [43]. The role of

the harmonic extension in discussing the invertibility of functionsin H % + C(T)
1s established n [30].

Exercises

6.1 1If ¢ and Y are unimodular functions in I°(T), then ¢H? = yH? if
and only if ¢ = A for some 4 1n C.

Definition A function fin H' is an outer function if clos,[ fZ,]1= H".

6.2 A function fin H'! is outer if and only if it is the product of two outer
functions in H?.

6.3 A closed subspace .4 of H! satisfies y, # < A if and only if A4 =
oH! for some inner function ¢. State and prove the corresponding criteria
for subspaces of L' (T).*

6.4 If fis a function in H!, then f= ¢g for some inner function ¢ and
outer function g in H'.

6.5 If fis a nonzero function in H!, then the set {¢'" € T: f(e") = 0} has
measure zero.

6.6 An analytic polynomial is an outer function in either H! or H? if
and only if it does not vanish on the interior of D.

6.7 Show that rotation on D induces a natural representation of the circle
group in Aut(H*) = Hom(M_)). Show that the orbit of a point in M under
this group of homeomorphisms is closed if and only if it lies in D.%

Definition If %, is the Gelfand transform of y, on M, then the fiber F;
of M over Ain T is defined by F;, = {me M_: 7,(m) = 4}.
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6.8 The fibers F, of M are compact and homeomorphic.

6.9 Ifgpisin H® and A1sin T, then ¢ 1s bounded away from zero on a
neighborhood of 4 in {4} U D if and only if ¢ does not vanish on F;.

6.10 If ¢ isin H® and a is in the range of @|F, for some A in T, then there
exists a sequence {z,},—, in D such that hm,_, , z, = 4 and lim,_, _ #(z,) = o.

6.11 Show that the density of D in M, 1s equivalent to the following state-
ment: For ¢4, @,, ..., @y in H* satisfying >, |®;(z)| = ¢ for z in D, there
exists Y, ¥,,...,¥y in H® such that 3. ¢,4; = 1. Prove this statement
under the additional assumption that the @; are in H* + C(T).

6.12 1If A 1s a closed algebra satisfying H* < U < [*(T), then the maximal
ideal space of L is naturally embedded in My as the Silov boundary of .

6.13 (Newman) Show that the closure of D in M_ contains the Silov
boundary.

Definition An isometry U on the Hilbert space # is pure if {),5o U"H# =
{0}. The multiplicity of U is dimker U*.

6.14 A pureisometry of multiplicity one is unitarily equivalent to 7', on H>.

6.15 A pureisometry of multiplicity Nis unitarily equivalentto ), <;«n @ T,
on Y <ren @ H.

6.16 (von Neumann-Wold) 1If U is an isometry on the Hilbert space 47,
then o = #, @ #, such that s#, and #°, reduce U, U|#, Is a pure

isometry, and U|J#, is unitary.

6.17 1If U is an isometry on the Hilbert space 5, then there exists a unitary
operator ¥ on a Hilbert space %" containing 5 such that Ws# < # and
W\# = U.

6.18 (Sz.-Nagy) If T is a contraction on the Hilbert space 5, then there
exists a unitary operator W on a Hilbert space " containing 4 such that
TV = P ,W"|# for N in Z,. (Hint: Choose operators B and C such that
(2 &) is a coisometry and then apply the previous result to the adjoint.)

6.19 (von Neumann) If T is a contraction on the Hilbert space J°, then
the mapping defined W (p) = p(T") for each analytic polynomial p extends
to a contractive homomorphism from the disk algebra to L£(5#). (Hint:
Use the preceding exercise.)
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6.20 Show that the w*-topology on the unit ball of L*(T) coincides with
the topology of uniform convergence of the harmonic extensions on com-
pact subsets of D. (Hint: Evaluation at a point of D is a w*-continuous

functional.)

6.21 If fis a function in H! and f.(e") =f(re®) for 0 <r < 1 and " in T,
then lim,,; | f—/,/|: = 0. (Hint: Imitate the proof of Theorem 6.46.)

6.22 1If fis a function in L' (T) for which

1 2n . ! .
— f(e)dt =0 and F(r) = f f(e®) do
27 0 -7

then the harmonic extension f satisfies

—

: 1 [~
f(re®) = o f nk,. () F(0—1) dt,

where
1—r?

k. (f) = .
/@) 1+r%—2rcost

(Hint: Observe that
] 1 [~
foe = 5- | k(@-ndF
27 J_ .

and use integration by parts.)

6.23 (Fatou) If fis a function in I}(T) and f is its harmonic extension of
fto D, then lim,.,, f(ré") = f(e") a.e.® (Hint: Show that

] 1 (2= F(6 — F(6—
flre) = o f_n[—rk..(t)]{ animd ’)} dt

and that lim,.,, f(re'®) exists and is equal to F’(6), whenever the latter de-
rivative exists.)

6.24 1If ¢ 1s a function in H® and ¢ 1s its Gelfand transform on M, then
|¢| is subharmonic, that is, if { is the harmonic extension of a real-valued
function to M, such that ¥ > |¢| on T, then ¢ > |$| on M.

6.25 A function fin H! is an outer function if and only if the inequality
|| = |g| on T implies |f| = |g| on M for every g in H.

6.26 (Jensern’s Inequality) If fis a function in H', then

1 [?r .
10g1/0) < - | logl /)] dr.%
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(Hint: Assume that f is in 4 and approximate log(|f|+¢) by the real part
u of a function g in 4; show that log|f(0)| —#(0) < ¢ and let ¢ tend to ZET0.)

6.27 (Kolmogorov—Krein) If p is a positive measure on T and p, is the
absolutely continuous part of u, then

inff I1—f|2du = inff 11—f|2 dy, .*
T T

fEAo fEA(}

(Hint: Show that if F is the projection of 1 onto the closure of A4, in I?(w),
then 1—F= 0 a.e. u,, where p, is the singular part of p.)

6.28 A function fin H? is outer if and only if

1 (2r R
inf — | |1=h2|f]2d0 = |F(O)2*
hEAO zn 0
(Hint: Show that f'is outer if and only if 1—£(0)/f is the projection of 1 on

the closure of A, in I*(|f]? d6).)

6.29 (Szego) If pis a positive measure on T, then

inf § |[1—f]*du = exp (l fznlogh dﬂ),

€Ag JT 27 0
where / is the Radon—-Nikodym derivative of u with respect to Lebesgue
measure.* (Hint: Use Exercise 6.27 to reduce it to p of the form wdf; use
the geometric-arithmetic mean inequality for one direction and reduce to
the case |k|?d@ for k an outer function in the other.)

6.30 1f A is a closed algebra satisfying H® < U < I*(T), then A is gen-
erated by H™ together with the unimodular functions u for which both u
and # are in . (Hint: If fis in U, then /42 || f|| = ug, where u is unimodular
and g 1s outer.)

6.31 If I" is a group of unimodular functions in L*(T), then the maximal
ideal space M of the subalgebra A, of L”(T) generated by H* and I" can
be identified by

My ={me M, : |d(m)| =1 for uel}.
6.32 Is every U, of the form 2 s for some semigroup X of inner functions 7% %

6.33 Show that the closure of H* +H® is not equal to L*(T).%* (Hint: If
arg z were in the closure of H® +H®, then there would exist ¢ in H* such
that ze? would be invertible in H*.)
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6.34 1If misin F, and u is the unique positive measure on M., such that

b (m) = fM Gdu for ginL*(T),

then u is supported on M. N F,.* (Hmt: Show that the maximum of ||
on F; is achieved on M;. N F; for ¢ in H®))

N
6.35 If ¢ is a continuous function and ¢ is a function in L*(T), then ¢y
and ¢y are asymptotically equal on D and equal on M_\D.

6.36 If ¢ is a function in L*(T), then the linear functional on H! defined by
Lf= (1/2n) {3" foo d6 is continuous in the w*-topology on H! if and only if
@ is in H®+ C(T).

6.37 Show'that the collection PC of right-continuous functions on T posses-
sing a limit from the left at every point of T is a uniformly closed self-adjoint
subalgebra of L*(T). Show that the piecewise continuous functions form a
dense subalgebra of PC. Show that the maximal ideal space of PC can be
identified with two copies of T given an exotic topology.

6.38 If ¢ 1s a function 1n PC, then the range of the harmonic extension of

@ on F, is the closed line segment joining the limits of ¢ from the left and
right at A.

6.39 Show that QC=[H®+C(T)|n[H®+C(T)] 1s a uniformly closed
self-adjoint subalgebra of L*(T) which properly contains C(T). Show that
every inner function in QC is continuous but that 0Cn H® # A.% (Hint:
There exists a real function ¢ in C(T) not in Re A; if { is a real function
in I?(T) such that ¢+ is in H? then e**¥ is in H® and €Y is in QC.)

6.40 1If u is a unimodular function in QC, then |&| =1 on M _\D. Is the
converse true 7%

6.41 Show that M _\D is the maximal ideal space of the algebra generated
by H® and the functions u in L (T) for which |&#| has a continuous extension
to D. Is this algebra H*® + C(T)?%*

6.42 Show that PCnQC = C(T). (Hint: Consider the unimodular func-
tions in the intersection and use Exercises 6.38 and 6.40.)

6.43 Show that there is a natural isometrical isomorphism between H®
and (L' (T)/Hy')*. Show that the analytic trigonometric polynomials £,
are w*-dense in H®.



7 Toeplitz Operators

7.1 Despite considerable effort there are few classes of operators on Hilbert
space which one can declare are fully understood. Except for the self-adjoint
operators and a few other examples, very little is known about the detailed
structure of any class of operators. In fact, in most cases even the appropriate
questions are not clear. In this chapter we study a class of operators about
which much is known and even more remains to be known. Although the
results we obtain would seem to fully justify their study, the occurrence of
this class of operators in other areas of mathematics suggests they play a
larger role in operator theory than would at first be obvious.
We begin with the definition of this class of operators.

7.2 Definition Let P be the projection of I?(T) onto H?2. For ¢ in L*(T)
the Toeplitz operator T, on H? is defined by T, f = P(¢f) for fin H 2,

7.3 The original context in which Toeplitz operators were studied was not
that of the Hardy spaces but rather as operators on [*(Z,). Consider the
orthonormal basis {y,: ne Z } for H?, and the matrix for a Toeplitz oper-
ator with respect to it. If ¢ is a function in I”°(T) with Fourier coeflicients
¢ (n) = (1/27) {5” @x—, dt, then the matrix {a, .} nez, for T, with respect to
{x,-meZ,}is

1

2n
Cp,n = (quxn!Xm) - E L Pln—m dt = (ﬁ(m—n).

177
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Thus the matrix for T, is constant on diagonals; such a matrix is called a
Toeplitz matrix, and it can be shown that if the matrix defines a bounded
operator, then its diagonal entries are the Fourier coefficients of a function
in L*(T) (see [11]).

We begin our study of Toeplitz operators by considering some elementary
properties of the mapping ¢ from L*(T) to £(H?) defined by &(¢) = T,.

7.4 Proposition The mapping ¢ 1s a contractive *-linear mapping from
I°(T) into L(H?).

Proof That £ is contractive and linear is obvious. To show that £(¢)* =
E(®), let fand g be in H?. Then we have

(T:1,9) = (P(@),9) = (f,09) = (f,P(eg) = (f;T,9) = (T,*f,9),
and hence E(p)* =T, *=T,=¢,(p). M

The mapping & is not multiplicative, and hence £ is not a homomorphism.
We see later that £ is actually an isometric cross section for a *-homomorph-
ism from the C*-algebra generated by {7,: ¢ € L*(T)} onto L*(T), that is,
if o 1s the *-homomorphism, then acé is the identity on L*(T).

In special cases, & is multiplicative, and this will be important in what
follows.

7.5 Proposition If ¢ is in L™(T) and ¢ and @ are functions in H*, then
T(f" Tlfl — T(lel aI'ld TB T(D — Taq,.

Proof If fisin H?, then Yf'is in H? by Proposition 6.2 and hence T, f =
P(Yf) = yf. Thus

1,1, f=T,Wf) = P(oyf) = T, f and 1,7, = T,.
Taking adjoints reduces the second part to the first. [}

The converse of this proposition is also true [11] but will not be needed
in what follows.

Next we consider a basic result which will enable us to show that ¢ is an
isometry.

7.6 Proposition If ¢ is a function in L*(T) such that T, is invertible, then
@ 1s invertible in L (T).

Proof Using Corollary 4.24 it is sufficient to show that M, is an in-
vertible operator if 7, is. If T, is invertible, then there exists ¢ > 0 such that
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|7, f| = €| f| for fin H?. Thus for each n in Z and fin H?, we have
| M, G DN = llexaf | = lof| 2 |P@N)] = T, 1 = el fll = elx.fI

Since the collection of functions {y, f: fe H?, ne Z} is dense in I?(T), it
follows that |M,g| >¢lg| for g in I*(T). Similarly, |M,f]| = ¢|f].
since T; = T,* is also invertible, and thus M, 1s invertible by Corollary 4.9,
which completes the proof. |}

As a corollary we obtain the spectral inclusion theorem.

7.7 Corollary (Hartman-Wintner) If ¢ 1s m L*(T), then Z(¢) = 0(M,)
o(7,).

Proof Since T,—A=T,_,; for A n C, we see by the preceding proposi-
tion that o (M) = o(T,). Since the 1dentity Z(¢) = 0(M ) was established in
Corollary 4.24, the proof i1s complete. |}

This result enables us to complete the elementary properties of €.

7.8 Corollary The mapping & is an isometry from L*(T) into £(H?).

Proof /Using Proposition 2.28 and Corollaries 4.24 and 7.7, we have for
¢ n L (T) that
|\ T, = r(T,) = sup{|i|: Lec(T,)}
sup{|A]: Ae Z(¢)} = o]

and hence & is isometric. [}

[l

Vv W

7.9 Certain additional properties of the correspondence are now obvious.

If T, is quasinilpotent, then #Z(¢) < 6(7,) = {0}, and hence 7,,=0. If T,

1s self-adjoint, then Z(¢) < 0(7,,) = R and hence ¢ 1s a real-valued function.
We now exhibit the homomorphism for which € 1s a cross section.

7.10 Definition If S 1s a subset of L*(T), then I (S) is the smallest closed
subalgebra of £(H?) containing {T,: ¢ € S}.

7.11 Theorem If € is the commutator ideal in T(L* (T)), then the mapping
£, induced from L*(T) to I(L*(T))/€ by € is a *-isometrical isomorphism.
Thus there 1s a short exact sequence

(0) > € - I(L°(T)) —> L*(T) - (0)

for which ¢ is an isometrical cross section.
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Proof The mapping &, is obviously linear and contractive. To show
that &_ 1s multiplicative, observe for inner functions ¢, and ¢, and functions

Y, and ¥, in H*, that we have

EWi10)EW,0,) —EW 0 Y,0,) = l.hqru Tqbzq"ﬁz — Twm"ﬁubzq"ﬁz
= 1o Ty, T4, — Tygd) Ty,

Since T, 7, —T,,T,, is a commutator and € is an ideal, it follows that the
latter operator hes in €. Thus £, is multiplicative on the subalgebra

2={Yp: ye H®, ¢ an inner function}

of L*(T) and the density of 2 in L (T) by Theorem 6.32 implies that £_1is a
*.-homomorphism.

To complete the proof we show that |7+ K| > |T,| for ¢ in L*(T)
and K in € and hence that &_ is an 1sometry. A dense subset of operators in
¢ can be written in the form

K = Z[ Ai [T‘bl@l ’ T\&l'@*’l’] 1_1[ Tmljﬁu ?
i= J=

where A4; is in T(L* (T)), the functions ¢;, ¢,,and B,; are inner functions, the
functions y;, ¥, and ¢;; are in H*, and square brackets denote commutator.
If we set

f.m

= |1 Bij0: 9!,

:=l
=1

then 0 is an inner function and K(@f) = 0 for fin H?2.

Fix € > 0 and let f be a function in H? chosen such that ||f| =1 and
| T, f|l =T, —e If of = g,+9g,, where g, is in H?, and g, is orthogonal
to H 2, then since @ is inner we have that 0g, is in H* and orthogonal to 6g,.
Thus

[(7o+KYEN| = [ T,@N] = | Pledf)]

2 0g:] = lg:ll = 1T /1l = [ T|l — e,
and therefore |T,+ K| = || 7,||, which completes the proof. i

A direct proof of this result which avoids Theorem 6.32 can be given
based on a theorem due to Bunce [12]. In this case the spectral inclusion
theorem is then a corollary.
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The C*-algebra I(L*(T)) 1s a very interesting one; the preceding result
shows that its study largely reduces to that of the commutator ideal € about
which very little is known. We can show that € contains the compact oper-
ators, from which several important corollaries follow.

7.12 Proposition The commutator ideal in the C*-algebra I(C(T)) is
LC(H?*). Moreover, the commutator ideal of I(L*(T)) contains LC(H?).

Proof Since the operator 7,, is the unilateral shift, we see that the
commutator ideal of T(C(T)) contains the nonzero rank one operator
T; T, —T,T,. Moreover, the algebra T(C(T)) is irreducible since 7,
has no proper reducing subspaces by Beurling’s theorem. Therefore, I (C(T))
contains L€ (H?%) by Theorem 5.39.

Lastly, since the image of 7, in T(C(T))/LC(H %) is normal and generates
this algebra, it follows that I(C(T))/LE(H?) is commutative, and hence
LE(H*) contains the commutator ideal of I(C(T)). To complete the identi-
fication of LE(H?) as the commutator ideal in T(C(T)), it is sufficient to
show that £C(H*) contains no proper closed ideal. If 3 were such an ideal,
then 1t would contain a self-adjoint compact operator H. Multiplying H by
the projection onto the subspace spanned by a nonzero eigenvector, we
obtain a rank one projection in 3. Now the argument used in the last para-
graph of the proof of Theorem 5.39 can be applied, and hence LE(H?) is
the commutator ideal in I(C(T)). Obviously, LE(H?) is contained in the

commutator ideal of T(L*(T)). W

7.13 Corollary There exists a *-homomorphism { from the quotient al-
gebra T(L*(T))/LE(H?*) onto L*(T) such that the diagram

T(L*(M) 5 T(L*(M))/LE(H?)

N

AN
commutes.

Proof Immediate from Theorem 7.11 and the preceding proposition. [l

7.14 Corollary 1If ¢ is a function in L*(T) such that 7, is a Fredholm
operator, then ¢ is invertible in L*(T).

Proof Xf T,1s a Fredholm operator, then n(7) is invertible in
T(L*(M))/LC(H?)
by Definition 5.14, and hence ¢ = ({on)(7,) 1s invertible in L*(T). N
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7.15 Certain other results follow from this circle of ideas. In particular,
it follows from Corollary 7.13 that |7,+ K| > |T,| for ¢ in L*(T) and
K in RC(H?), and hence the only compact Toeplitz operator is 0.

Let us consider again the Toeplitz operator T7,,. Since the spectrum of
T, is the closed unit disk we see, in general, that the spectrum of a Toeplitz
operator T, 1s larger than the essential range of its symbol ¢. It is this phenom-
enon which shall largely concern us. In particular, we are interested in de-
termining criteria for a Toeplitz operator to be invertible and, in addition,
for obtaining the spectrum. The deepest and perhaps the most striking result
along these lines 1s due to Widom and states that the spectrum of a Toeplitz
operator i1s a connected subset of €. This will be proved at the end of this
chapter. '

We now show that the spectrum of a Toeplitz operator cannot be too
much larger than the essential range of its symbol. We begin by recalling
an elementary definition and lemma concerning convex sets.

7.16 Definition If E is a subset of C, then the closed convex hull of E,
denoted A (E), is the intersection of all closed convex subsets of C which
contain F.

7.17 Lemma If E is a subset of C, then A(F) is the intersection of the
open half planes which contain E.

Proof Elementary plane geometry. [

The lemma and the following result combine to show that o(7,) 1s con-
tained in 2(Z(¢)).

7.18 Proposition If ¢ is an invertible function in L*(T) whose essential
range is contained in the open right half-plane, then 7, 1s invertible.

Proof Tf A denotes the subset {ze C: [z—1| < 1}, then there exists an
£ > 0 such that eZ(¢p) = {ez: ze Z(¢)} = A. Hence we have [ep—1| <1
which implies |/—T,,| < 1 by Corollary 7.8, and thus T,, = £7, is invertible
by Proposition 2.5.

7.19 Corollary (Brown-Halmos) If ¢ is a function in L*(T), then (7)) ©
h(%(9)).

Proof By virtue of Lemma 7.17 it is sufficient to show that every open
half-plane containing %(¢p) also contains ¢(7,). This follows from the
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proposition after a translation and rotation of the open half-plane to co-
incide with the open right half-plane. i

We now obtain various results on the invertibility and spectrum of cer-
tain classes of Toeplitz operators. We begin with the self-adjoint operators.

7.20 Theorem (Hartman-Wintner) If ¢ is a real-valued function in L*(T),
then

o(T,) = [essinf ¢, esssup ¢].

Proof Since the spectrum of T, is real it 1s sufficient to show that 7,,— A
invertible implies that either ¢ —A > 0 for almost all ¢ in T or ¢—1 <0
for almost all ¢ in T. If 7,,— 4 is invertible for A real, then there exists g in
H? such that (T,,— 1) g = 1. Thus there exists & in Hy? such that (p—A1)g =
1+h. Since (¢p—A)g = 1+h is in H?, we have (¢—A)|g|* =1 +h)g is in
H?!, and therefore (¢ —A)|g|? = a for some o in R by Corollary 6.6. Since
g # 0 a.e. by the F. and M. Riesz theorem, it follows that ¢ —A has the sign
of oo and the result follows. [}

Actually much more is known about the self-adjoint Toeplitz operators.
In particular, a spectral resolution is known for such operators up to unitary
equivalence (see Ismagilov [ 68], Rosenblum [94], and Pincus [86]).

The Toeplitz operators with analytic symbol are particularly amenable to
study. If ¢ is in H®, then the operator T, 1s the restriction of the normal
operator M, on I*(T) to the invariant subspace H? and hence is what is
called a subnormal operator.

7.21 Theorem (Wintner) If ¢ is a function in H*, then T, is invertible if
and only 1if ¢ is invertible in H*. Moreover, if ¢ 1s the Gelfand transform
of ¢, then ¢(T ) = clos[p(D)].

FProof If ¢ 1s invertible in H*, then there exists ¢ in H* such that
oy =1. Hence I=T7T,T,=T,T, by Proposition 7.5. Conversely, if T, is
invertible, then ¢ is invertible in L*(T) by Proposition 7.6. If ¥ 1s 1/¢, then
1,T,=1T,,=1 by Proposition 7.5, and hence 7, is a left inverse for 7,,.
Thus T, = T, " and therefore | = T, 7,1 = @P(y). Multiplying both sides
by 1/¢ =, we obtain P(y) =y implying that  is in H* and completing
the proof that ¢ is invertible in H®. The fact that o(T,) = clos[$(D)]
follows from Theorem 6.18. |}
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This result yields especially nice answers to the questions of when T, is
invertible and what its spectrum is for analytic ¢. 1t is answers along these
lines that we seek to determine. We next investigate the Toeplitz operators
with continuous symbol and find in this case that an additional ingredient
of a different nature enters into the answer. Our results on these operators
depend on an analysis of the C*-algebra I (C(T)).

We begin by showing the £ is almost multiplicative if the symbol of one
of the factors is continuous.

7.22 Proposition If ¢ is in C(T) and y is in L*(T), then 7,,7,— 7, and

4
1,7T,—1,, are compact.

Proof Ify isin L*(T) and fis in H?, then
Ty Ty f = TyP(t-1f) = PMy(x_ f = (f,Dx-1)
= PWx-f)— (LD PWx-1)
= Ty J— (LD PWx-1)>

and hence 7,7,  —17,,_, is a rank one operator.
Suppose 7, 7T,  —1,,_, has been shown to be compact for every ¢ in
L*(T) and —N < n<0. Then we have
T'ff TX—-N—l o T'.U'X—-N—l — (T'ﬁ' TX—N_ T'f’X—-N) 7 -1 (T'ﬁx—;v TX—-I T T('M’—n)x—l)
and hence is compact. Since 7,7, = T,, for n >0 by Proposition 7.5, it
follows that 7, 7,— 7, is compact for every trigonometric polynomial p.
The density of the trigonometric polynomials in C(T) and the fact that &

is isometric complete the proof that 7, 7,— 7, , is compact for  in L*(T)
and ¢ 1in C(T). Lastly, since

T, Ty—Top)* = T35 — Tys

we see that this operator is also compact. ||

The basic facts about T(C(T)) are contained in the following theorem
due to Coburn.

7.23 Theorem The C*-algebra T(C(T)) contains LE(H?) as its com-
mutator and the sequence

(0) » LE(H?) > T(C(M) > C(T) ~ (0)

is short exact; that is, the quotient algebra T(C(T))/LE(H?) is *-isometric-
ally isomorphic to C(T).
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Proof 1t follows from the preceding proposition that the mapping {
of Corollary 7.13 restricted to T(C(T))/LE(H?) is a *-isometrical isomorph-
ism onto C(T), and hence the result follows. [}

Combining this with the following proposition yields the spectrum of a
Toeplitz operator with continuous symbol.

7.24 Proposition (Coburn) If ¢ is a function in L*(T) not almost every-
where zero, then either ker T, = {0} or ker 7,,)* = {0}.

Proof If fis in ker T, and g is in ker 7%, then @f and @g are in Hy?.
Thus ¢fg and @fg are in Hy,' by Lemma 6.16, and therefore ¢fg is 0 by
Corollary 6.7. If netther f nor g is the zero vector, then it follows from the
F. and M. Riesz theorem that ¢ must vanish for almost all e in T, which
1s a contradiction. |}

7.25 Corollary If ¢ 1s a function in L*(T) such that T, is a Fredholm
operator, then T, is invertible if and only if j(7 ) = 0.

Proof Immediate from the proposition. |

Thus the problem of determining when a Toeplitz operator is invertible
has been replaced by that of determining when 1t is a Fredholm operator and
what is its index. If ¢ 1s continuous, then this is readily done. The result is
due to a number of authors including Krein, Widom, and Devinatz.

7.26 Theorem If ¢ is a continuous function on T, then the operator 7,
is a Fredholm operator if and only if ¢ does not vanish and in this case j(7 )
is equal to minus the winding number of the curve traced out by ¢ with
respect to the origin.

Proof First, T, is a Fredholm operator if and only if ¢ is invertible in
C(T) by Theorem 7.23. To determine the index of T, we first observe that
i(T,) = j(T,) if ¢ and ¥ determine homotopic curves in C\{0}. To see this,
let ® be a continuous map from [0,1]x T to C\{0} such that ®(0,e") =
(e and O(1.e") = Y (e”) for e" in T. Then the mapping 7 — T4 _1is norm
continuous and each T, is a Fredholm operator. Since j(74,) 1s continuous
and integer valued, we see that j(T,) = j(7,).

If 1 is the winding number of the curve determined by ¢, then ¢ 1s homo-
topic in C\{0} to y,. Since j(7, ) = —n, we have j(7,) = —n and the result
1s completely proved. [}
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7.27 Corollary If ¢ is a continuous function on T, then T, is invertible
if and only if ¢ does not vanish and the winding number of the curve de-
termined by ¢ with respect to the origin is zero.

Proof Combine the previous theorem and Corollary 7.25.

7.28 Corollary If ¢ is a continuous function on T, then
oc(T,) = Z(p) v {1€C: i(g,4) # 0},

where i,(¢p,A) 1s the winding number of the curve determined by ¢ with
respect to A.

In particular, the spectrum of 7, is seen to be connected since it is formed
from the union of Z(¢) and certain components of the complement.

In this case the invertibility of the Toeplitz operator 7, depended on ¢
being invertible in the appropriate Banach algebra C(T) along with a topo-
logical criteria. In particular, the condition on the winding number amounts
to requiring ¢ to lie in the connected component of the identity in C(T) or
that @ represent the identity in the abstract index group for C(T). Although
we shall extend the above to the larger algebra H *+ C(T), these techniques
are not adequate to treat the general case of a bounded measurable function.

We begin again by identifying the commutator ideal in I (H® 4 C(T))
and the corresponding quotient algebra.

7.29 Theorem The commutator ideal in T(H 4 C(T))is LE(H?) and the
mapping &g = noé from H®+ C(T) to T(H+ C(T))/LE(H?) is an iso-
metrical 1somorphism.

Proof The algebra T(H*+ C(T)) contains LE(H?), since it contains
T(C(T)) and thus the mapping & is well defined and isometric by Corollary
7.13 and the comments in Section 7.15. If ¢ and ¢ are functions in H* and
f and g are continuous, then

T¢+f Tnﬁ o T(fp+f)'ﬁ + T¢+f T, — T(¢+f)9

— T¢+f Tg_ T(¢+f)9

T¢+f T'.H'g o T(qo+f)(¢+9)

by Proposition 7.5, and the latter operator is compact by Proposition 7.22.
Thus the commutator ideal is contained in £€(H?%) and hence is equal to it.
Thus &, 1s multiplicative, since

Ex(@+f)exW+9) — Ex((0+NH W +9) = Ty Tyig— T pywra] = 0-
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Therefore, &; 1s an isometrical isomorphism, which completes the
proof. W

Note that T(H®+ C(T)) is not a C*-algebra, and hence the fact that
T, is a Fredholm operator and n(7) has an inverse in £(H %)/ RC(H %) does
not automatically imply that n(7,) has an inverse in I(H *+ C(T))/ LE(H?).
To show this we must first prove an invertibility criteria due to Widom and
based on a result of Helson and Szégo from prediction theory.

7.30 Theorem If ¢ 1s a unimodular in L (T), then the operator 7, is left
invertible if and only if dist(¢@, H™) < 1.

Proof 1f dist(p, H™) < 1, then there exists a function y in H® such
that || o —y| , < 1. This implies that |1 — @y, < 1 and hence |[I-T ;| < 1.
Thus T,*T, = Ty, is invertible in £(H?*) by Proposition 2.5 and therefore
T, 1s left invertible.

Conversely, if T, 1s left invertible, then there exists ¢ >0 such that

|7, /1l = el ] for fin H®. Thus |P(ef) > &|f| = el¢f], and hence

[of 17 = |—P)eNI* + [P(eN]* = [(T-P) N + e|ef |*.

Therefore, we have |[(I—P)(@N)| <(1=¥8)|f| for f in H? where é =
1—(1—¢)” >0. If fis in H* and § is in Hy?, then

I%r.’; @fg dtl = [(ef. )| = [((Z—P)(¢f),g)| < A-0)|f] gl

If for hin H,' we choose fin H? and g in Hy* by Corollary 6.27, such that
h=fg and ||k, = [ f]2[gll2 then we obtain

1 2r h
— dt
‘271: J; ¢

Thus, the linear functional defined by ® (%) = (1/2x) (3" he dt for h in H,'
has norm less than one. Therefore, it follows from Theorem 6.29 (note that
we are using (H,')* = [°(T)/H®), that there exists i in H® such that
le—¢| o < 1, which completes the proof. W

< (1-9)|A|,.

7.31 Corollary If ¢ is a unimodular function in L*(T), then 7, 1s in-
vertible if and only if there exists an outer function  such that |p—¢|,, < 1.

Proof If |¢—y|, <1, then || 2 &> 0fore=1-—|¢p—y|. and hence
T, is invertible by Theorem 7.21 and Proposition 6.20. Since 7,* T, 1s In-
vertible, we see that 7, is mvertible. Conversely, if 7, 1s invertible and ¢
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1s a function in H® such that [¢—yj, <1, then 7, is invertible since
T,* T, 1s, and hence ¥ is an outer function. i

As a result of this we obtain a very general spectral inclusion theorem.

7.32 Theorem If ¥ is a closed subalgebra of £(H?*) containing I (H %)
and 7, is in T for some ¢ in L*(T), then ¢(7,) = 05(T,).

Proof Obviously o(T,,) is contained in o<(7,). To prove the reverse
inclusion suppose 7, is invertible. Using Corollary 6.25, we can write ¢ =
wfy, where u 1s a untmodular function and  1s an outer function. Conse-
quently, y is invertible in L”(T), and by Proposition 6.20 we obtain that
T,'isin ¥. Thus 7,=T,T, ' is in I, moreover, T, and hence T} is in-
vertible in {(H?%). Employing the preceding corollary there exists an outer
function 6 such that |6—1u|, < 1. Since T,T, is in T and |I-T7, T, =
I —u0|, <1, we see that (T, 7,)" ' is in T by Proposition 2.5. Since

TS = T, T = Ty Ty(T, Tp) !

1s in 3, the proof is complete. i
This leads to a necessary condition for an operator to be Fredholm.

7.33 Coroliary If 2 is a closed subalgebra of L*(T) containing H * + C(T)
and ¢ 1s a function in A for which 7, is a Fredholm operator, then ¢ is in-

vertible in QL.

Proof If T, is a Fredholm operator having index n, then 7, , 1is in-
vertible by Propositions 7.5 and 7.24, and the function y,¢ is also in 2L
Therefore, by the preceding result, 7,__ is in T (), and hence using Theorem
7.11 we see that y, @ is invertible in p[I(A)] = A. Thus ¢ 1s invertible

in A, which completes the proof. [}
The condition is also sufficient for H*+ C(T).

7.34 Corollary If ¢ is a function in H* 4 C(T), then T, is a Fredholm
operator if and only if ¢ is invertible in H*+ C(T).

Proof The result follows by combining the previous result and Theorem
7.29. B
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We need one more lemma to determine the spectrum of 7, for ¢ in
H*+C(T). Although this lemma 1s usually obtained as a corollary to the
structure theory for inner functions, it is interesting to note that it also follows
from our previous methods.

7.35 Lemma If ¢ is an inner function, then H* © ¢@H? is finite dimen-
sional if and only if ¢ is continuous.

Proof 1If ¢ is continuous, then 7, is a Fredholm operator by Theorem
7.26, and hence H* © ¢H? = ker(T,*) is finite dimensional. Conversely, if
H?* © @H? is finite dimensional, then 7, is a Fredholm operator and hence
@ is invertible in H*+ C(T). We need to show that this implies that ¢ is
continuous.

By Theorem 6.45 there exist &6 > 0 such that |@(re')| > ¢ for 1-6 <
r < 1, and hence ¢ has at most finitely many zeros z,, z,, ..., zy in D counted
according to multiplicity. Using Lemma 6.41 we obtain a function yy m H®
such that y I‘[f}'; 1 (X, —2;) = @. Thus ¢ does not vanish on [ and is bounded
away from zero on a neighborhood of the boundary. Therefore, ¥ 1s in-
vertible in H® by Theorem 6.18. Moreover, since

e —z;| = |1—Z;€"] for €'in T,
we have
eit—Zj _
1-Zz;€"

Thus the function I’[f};l(xl —z;)/(1—Z; x;) 1s a continuous inner function,
and 6 =y T]}-,(1—Z;x,) has modulus one on T. Since 6 is invertible in
H®, it follows that 8 = 67! is in H® and hence that @ is constant. Thus

N
X1~ %
l;ll 1—Z; x4

and therefore 1s continuous. [

7.36 Theorem If ¢ is a function in H*+4 C(T), then T, 1s a Fredholm
operator if and only if there exist §,& > 0 such that |¢(re")| = ¢ for 1—-0 <
r < 1, where ¢ is the harmonic extension of ¢ to . Moreover, 1n this case
the index of T, is the negative of the winding number with respect to the
origin of the curve ¢(re) for 1 -8 < r < 1.

Proof The first statement is obtained by combining Corollary 7.34 and
Theorem 6.45.
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If ¢ is invertible in H*+ C(T) and &6 > 0 are chosen such that
|6 (re)| = &

for 1—8 <r < 1, then choose ¥ In H® and a negative integer N such that
o —xn¥ | < &/3. If we set @, = Ap+(1—A) xny for 0 < A< 1, then each
@, 1s in H*4+C(T) and | —¢,|, <&/3. Therefore, |G, (re*)| = 2¢/3 for
1—6 < r < 1, and hence each ¢, 1s invertible in H* + C(T) by Theorem 6.45.
Hence each T, 1s a Fredholm operator and the winding number of the curve
@,(re") 1s independent of Aand rfor0< A<l and 1-0 <r < 1. Thus it is
sufficient to show that the mdex of T, = T, , 1s equal to the negative of the
winding number of the curve (xN ) (re“)

Since T, ., = T,, T, we see that T, 1s a Fredholm operator. If we write
v =y, where g{/o 1s an outer function and y, 1s an ihner function, then
T, 1s invertible and hence 7, is a Fredholm operator. Thus y, is con-~
tinuous by the previous lemma which implies y, ¥, 1s in C(T) and we conclude
by Theorem 7.26 that

J( anfl) — J( lefli) — it(XN l1bl)‘
Since there exists by Lemma 6.44 a 0, > 0 such that 6 > 0; > 0 and

A~ A~ ~ p
lxny (re”) — xn i, (Fe) Yo (ret)| < 3 for 1—-90, <r <1,
it follows that

it((m) (re')) = ;((@.) (re")) + ft(':&:(re")) for 1—-0;<r<l

N
Using the fact that iy, does not vanish on D and Theorem 6.46, we obtain
the desired result. |

We conclude our results for 7, with ¢ in H*+ C(T) by showing that
the essential spectrum is connected. Although we shall show this for arbitrary
¢, a direct proof would seem to be of interest.

7.37 Corollary If ¢ 1s a function in H ®+ C(T), then the essential spectrum
of T, 1s connected.

Proof From the theorem it follows that A is in the essential spectrum
of 7, for ¢ in H®+ C(T) if and only if ¢— 4 is not invertible in H* 4 C(T).
Hence, by Theorem 6.46 we have that 4 1s in the essential spectrum of 7, if
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and only if 4 1s 1n
clos{@(re"): 1 >r >1—6} foreach 1 >0 > 0.

Since each of these sets i1s connected, the result follows. i

We now take up the proof of the connectedness of the essential spectrum
for an arbitrary function in L*(T). The proof is considerably harder in this
case and we begin with the following lemma.

738 Lemma If ¢ 1s an invertible function in L*(T), then 7, is a Fredholm
operator if and only if 7;,, 1s and moreover, in this case, j(T,) = —j(Ty,,)

Proof If we set ¢ = wfy by Corollary 6.25, where y 1s an outer function
and ¥ is unimodular, then Ty,, = T, Ty,, = T;y, T,* T, ,, by Proposition 7.5.
Since T, is invertible by Theorem 7.21, the result follows. [l

The proof of connectedness is based on the analysis of the solutions f,
and g, of the equations 7,,_, f; =1 and T, ,,-;9; = 1. Since we want to
consider A for which these operators are not invertible, the precise definition

of f, and g, 1s slightly more complicated.

7.39 Definition If ¢ is a function in L*(T), then the essential resolvent
p.(T,) for T, 1s the open set of those A in C for which T,,_; is a Fredholm

operator. If A is in p (7) and j(7,_,) = n, then

fi = Tx:(lqwl)l and gr = T;.i/(q,—-z)l-
The basic result concerning the f, and g, 1s contained in the following.

7.40 Proposition If ¢ is a function in I*(T) and 4 is in p.(7,), then

f29, =1and
—

d 1
‘d‘ifz(z) = fz(z) : P{(p-—&

}(z) for zin D.

Proof There exist functions u; and v, in Hy? such that y,(¢ —A)f, =
14+4, and y_,9./(p—A)=1+0,. Multiplying these two identities, we
obtain

f19, =1+ w+v,+u,0)),

where f, g, is in H* and u,+v;+u, v, is in Hy' and thus f; g, = 1. We also
have f,(z)§,(z) = 1 by Lemma 6.16.
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Since the functions A — y,/(¢—4) and 4 — y_,./(¢—A) are analytic L*-
valued functions, it follows from Corollary 7.8 that f, and g, are analytic
H?*-valued functions. Differentiating the identity y,(¢—A)f, = 14+, with
respect to A yields —y, fi+x,(0—A)f,'  =u, and hence f, =(p—A)f, —
y_. i1,’, where u,’ lies in Hy?. Multiplying both sides of this equation by
g,/(¢—A), we obtain

1 1 _, -
o—] = (p—ﬂ,f)‘g‘l = 393 — (=nit;") (u (1 +5,))

=fi9,— 4,/ (1+0,).
Since f;' g, is in H' and #,'(14-7,) is in H,', we have P{1/(¢o—A)} = £} g,.
Finally, again using the identity proved in the first paragraph, we reach the

equation f,' = f, P{1/(¢o—A)} and observing that evaluation at z in [ com-
‘mutes with differentiation with respect to 4 we obtain the desired results. [

It is possible to solve this latter equation to relate the £, which lie in the
same component of p (7).

7.41 Corollary If ¢ is a function in L*(T) and 4 and 4, are endpoints of a
rectifiable curve I' lying in p (7 ), then

1
fz(z) = fzn(z) eXp{fP{ }(Z)dﬂ}
r (¢—u
and
T —
d:(2) = ﬁan(z) eXP{—fP{ : }(Z)dﬂ}
r (¢—u
for z n D.

Proof For each fixed z in D we are solving the ordinary first order linear
differential equation dx(A)/dA = F(A) x(1), where F(A) 1s an analytic function
in A. Hence the result follows for f, and the corresponding result for g, 1s
obtained by using the identity £,(2)§,(2)=1.

We now show that no curve lying in p (7)) can disconnect Z(¢).

7.42 Proposition If ¢ is a function in I*(T) and C is a rectifiable simple
closed curve lying in p (7,), then Z(¢) lies either entirely inside or entirely
outside of C.
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Proof Consider the analytic function defined by
T

1 1
F(z) = Vo7 LP {@""ﬂ} (z)du for each z in D,

If 4, 1s a fixed point on C, then it follows from the preceding corollary that

fgn(z) = fgn(zn) expi2niF(z)} for zin D.

Therefore, exp{2niF(z)} = 1 whenever f, (z) # 0, and hence for all z in D,
since f 2, 1s analytic. Thus the function F(z) is integervalued and hence equal
to some constant N.

Now for each € in T, the integral

1 |
27l Jo () —p
equals the winding number of the curve C with respect to the point ¢ (e").
Thus the function defined by

du

o 1
V) = o c 0(€)—u

dy
is real valued. Since
1 1 1 1
Py =Pi— } —du; = ,J\P—d‘u=F
2ni Jco—u 2ni Jo (o—u
1S constant, we see that ¥ is constant a.e., and hence the winding number

of C with respect to Z(¢) is constant. Hence £ (¢) lies either entirely inside
or entirely outside of C. |}

The remainder of the proof consists in showing that we can analytically
continue solutions to any component of C\p.(7,) which does not contain
Z (¢). Before doing this we need to relate the inverse of T, ;) to the func-
tions f; and g,.

743 Lemma If ¢ is a function in (), A1s in p(T,)), k 1s in H*, and
hl =f2.P{x-—nng/(‘p_A’)}ﬂ then hl iS iI’l H2 and TXH(‘P"'A)hA —

Proof 1If we set h, =T, (,—,k, then there exists /in Hy* such that
1, (@—Ah, = k+1. Multiplying by y_,g,/(¢—2) =14+p,, where v, is in
Hoz, we obtain

1
Qo—A

g, by, = Y-nds Kk + 1(1+0,)
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and hence g,h, = P{y_,9,k/(¢p—A)}, since I(1+v,) is in H,'. We now
obtain the desired result upon multiplying both sides by f; and again using
the identity £, g, =1. I}

We need one more lemma before proving the connectedness result.

7.44 Lemma If Q is a simply connected open subset of C, Cis a rectifiable
simple closed curve lying in Q, and F,(z) is a complex function on Qx D
such that F,(z,) is analytic on Q for z, n D, F, (z) is analytic on D for 4,
in Q, and F,_is in H? for 4, in C, then F, is in H? for 4 in the interior of C
and ||F; [, < supy.ec || Fa 2

P;oof An analytic function { on D is in H? if and only if
Y. (40!
is finite, since f=3%,¥"O0)(n!) 1y, is in H? and f=; moreover

1£ 12 = Cazo W ™(0)?/ (n1) %)

If og,04,...,0 are arbitrary complex numbers, then

N N
F J-Ek) (0)_ 1 2m it 1 ikt
X =5‘f F*("“;,ﬁe'* 4

is an analytic function of 4 for 0 < r < 1. Moreover, since

S AP0 — S Fi (0) ( o ‘2)%
k >

k=0

o | < sup < sup | F [l X

Oy
k! roeC | 4, k! 2,6C K=o

k=0

it follows that

F3(0)
kKt |

N y) s
(Z ) < sup | B2,
Ao €C

k=0

and hence the result follows. [}

7.45 Theorem If ¢ is a function in L*(T), then the essential spectrum of
T, is a connected subset of C.

Proof It is sufficient to prove that if C is a rectifiable simple closed curve
lying in p.(T,) with Z(¢) lying outside, then T,_, is a Fredholm operator
for A in the interior of C. Let Q be a simply connected open set which contains
C and the interior of C and no point of the essential spectrum ¢.(7,) exterior
to C lies 1n Q. We want to show that ¢.(7,)) and Q are disjoint.
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Fix 2,1n C. For each 4 in Q let I" be a rectifiable simple arc lymng in Q
with endpoints 4, and A and define

T —
Fo(2) = Fyu(2) exp { |7 {(D ! u} ) du}
and
—
Gi(2) = g5,(2) exp { — LP {q) i u} (z) du}

e T —
for z inD. Since P{1/(¢p— )} () is analytic on the simply connected region Q,

it follows that F,(z) and G,(z) are well defined. Moreover, since F,(z) =
f.(2) for A in some neighborhood of C by Corollary 7.41, it follows from the
preceding lemma that F, is in H? for all 1 in Q. Similarly, G, is in H? for
cach A in Q.

If we consider the function (1) = T, (- F3—1, then (4) lies in H?
for 4 in Q, 1s analytic, and vanishes on the exterior of C mn Q. Thus

1y -nEr =1

X

for A 1n Q, and 1n a similar manner we see that 7,
Q. If k 1s a function in H®, then

—n(@—2)-1 G;_ =1 for A 1n

,.'——-'1""‘\\
H,(z) = Fa(z)P{m x_,,GAk} (2)

defines a function satisfying the hypotheses of the preceding lemma. Thus,
H,isin H* and T, (,_,yH, =k for 4 in Q. Moreover, we have

“Hl”z < sup |H .;,“2 = Sup “ Tx:(1¢~zn)“ ”knz
AeC AeC

Therefore, if k is in H? and {k,}%., is a sequence of functions in H* such
that lim,_, ., |k—k;||, = 0, then the corresponding functions {H;’}{%, for a
fixed 4 in Q form a Cauchy sequence and hence converge to a function H,
such that T, .,y H; = k. Thus we see that T, ,_;,1s onto for 4 in Q. Since
the same argument applied 1o 4 on Q yields that T, ;5 is onto for 1in Q,
we see that T » 1s invertible, and hence that 7,,— 4 is a Fredholm oper-

xn(@—
ator, which completes the proof. [}

7.46 Corollary (Widom) If ¢ is a function in L*(T), then ¢(7,) 1s a con-
nected subset of C.

Proof By virtue of Proposition 7.24, the spectrum of 7, is formed from
the union of the essential spectrum plus the 4 for which 7,— 4 is a Fredholm



196 7 Toeplitz Operators

operator having index different from zero. Since 7,,— 4 is a Fredholm oper-
ator for 4 in each component of the complement of the essential spectrum
and the index is constant, it follows that the spectrum 1s obtained by taking
the union of a compact connected set and some of the components in the
complement—and hence 1s connected. i

Despite the elegance of the preceding proof of connectedness, we view
it as not completely satisfactory for two reasons: First, the proof gives us no
hint as to why the result is true. Second, the proof seems to depend on showing
that the set of some kind of singularities for a function of two complex
variables is connected, and 1t would be desirable to state it in these terms.

We conclude this chapter with a result of a completely different nature
but of a kind which we believe will be important in the further study of
Toeplitz operators. It involves a notion of “localization’ and suggests that
in order to understand certain phenomena concerning Toeplitz operators it
is necessary to consider other representations of the C*-algebra I (L*(T)).

We begin with a result concerning C*-algebras having a nontrivial center.
The center of an algebra is the commutative subalgebra consisting of those
elements which commute with all the other elements 1in the algebra. In the
proof we make use of the fact that an abstract C*-algebras has a *-isometric
isomorphic representation as an algebra of operators on some Hilbert space.
Also we need to know that every *-isomorphism on C(X) can be extended
to the Borel functions on X. Although we have not proved these results
in the text, outhines of the proofs were given in the Exercises in Chapter
4 and 5.

7.47 Theorem If T is a C*-algebra, U is a C*-algebra contained 1n the

center of T having maximal ideal space My, and for x in My, 3, is the closed

ideal in T generated by the maximal ideal {4 € U: A(x) = 0} in- ¥, then
n S.x — {0}'

XE Mm

In particular, if ®_ is the *-homomorphism from ¥ onto T/J,, then
D xenmy @ O, is a *-isomorphism of T into >, p, @ T/3,. Moreover, T
is invertible in T if and only if ®_(7) is invertible in T/3J, for x in M.

Proof By Proposition 4.67 it is sufficient to show that sup, ., | P (1) =
|7 for T'in T. Fix T in T and suppose that | 7| —supxepry |Px(T)| = & > 0.
For x, in My let O, denote the collection of products SA4, where S is In
T and A is in U such that 4 vanishes on a neighborhood of x,. Then O,_
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is an ideal in ¥ contained in 3, _, and since the closure of O, contains
{AeU: A(x,) =0},

we see that §, = clos [Ox;]. Thus there exists S in ¥ and 4 in U such that
A vanishes on an open set U,_ containing x, and |®, (T)| +¢&/3 > | T+ SA|.
Choose a finite subcover, {U,};L, of My and the corresponding operators
{S3N_, in T and {4;};-, in A such that

£ £
IT] =5 > 10D +3 > IT+5,4

and A; vanishes on U,,.

Let ® be a *-isomorphism of ¥ into £(5#) for some Hilbert space #
and let Y, be the corresponding *-isomorphism of C(My,) into £(H#) defined
by ¢y, = ®I'"!, where I' is the Gelfand isomorphism of U onto C(My).
Since @ () is contained in the commutant of ® (), it follows that y_(C(My))
1s contained in the commutant of ®(I), and hence there exists a *~homo-
morphism ¥ from the algebra of bounded Borel functions on My, into the
commutant of ®(X) which extends .

Let {A;}i-, be a partition of My by Borel sets such that A; is contained
in U, fori=1,2,...,N. Then

O(T+S;4) ¢ () = ©(TYY ()
and hence

| < [O(T+S5;4)) WUp)| < IT]—5 forcach 1 <i < N.

Since the {(I,)}i=, are a family of commuting projections which reduce
®(7) and such that 3L, Y (In) = Iy, it follows that

|@(T)) = sup [O(T)¢ ()]

1<i<N

and hence |®(7)| < || T} —&/2. Since @ is an isometry, this is a contradiction.

If T'is invertible in I, then clearly @, (7) is invertible in T/3, for x in My,.
Hence suppose @, (T') is invertible in /3, for each x in M. For x_ in My, there
exists S in T by Theorem 4.28 such that @, (S7T—7I)=0. Repeating the
argument of the first paragraph, we obtain a neighborhood O, on which
|®,(ST—T)|| <4 for x in O,_. From Proposition 2.5 we obtain that ®_(ST)
is invertible and |®,(ST)"'| <2 for x in O,_. Since ®,(7T) is invertible,
O, (ST) ' ®,.(S) is its inverse, and hence |®,(7)"'| is bounded for x in
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O, . A standard compactness argument shows that sup,. . .. [®,.(7) 7| < 0.

Therefore > ,cpy @ €. (T) 1s Invertible in D, p, @ T/J,, and hence T is
invertible in ¥ by Theorem 4.28. |}

7.48 The context in which we want to apply this result is the following,
Although the center of the C*-algebra I (L*(T)) is equal to the scalars, the
quotient algebra I (L*(T))/LC(H?*) has a nontrivial center which contains
T(C(M))/LE(H?) = C(T) by Proposition 7.22. Thus we can “localize” the
algebra T(L*(T))/LE(H?) to the points of T.

For Ain T let J, be the closed ideal in X (L”(T)) generated by

{T,: e C(T), p(4) = 0},

and let T, be the quotient algebra T (L (1))/3,, and @, be the natural *-homo-
morphism from T (L*(T)) to I,.

7.49 Theorem The C*-algebras I, are all *-isomorphic. If @ is the *-homo-
morphism defined by @ =", .+ @ D, from I(L°(T)) to >, .+ @ I;, then
the sequence

(0)—> 2E(H?) —>T(L*(T)—> ¥, @ T,

AeT

is exact at I(L*(T)).

Proof Since T(L*(T)) is an irreducible algebra in £(H?), every non-
zero closed ideal contains £€(H?) by Theorem 5.39. Thus £€(H?) is con-
tained in the kernel of ® and hence @ induces a *-homomorphism @, from

the quotient algebra IT(L*°(T))/LE(H?) into ¥, .+ @ T,. Since
T(CM))/LC(H?)

is contained in the center of T(L*(7))/LC(H?), the preceding theorem
applies, and we conclude that ®_ is a *-isomorphism. Rotation by 4 on T
obviously induces an automorphism on T (L”(T)) taking 3, onto 3J,, and
hence there exists a *-isomorphism from I, onto I,. I}

The usefulness of this result lies in the fact that it reduces all questions
concerning operators in I (L*(T)) modulo the compacts to questions con-
cerning 3 ,. Unfortunately, we do not know very much about the algebras
¥ ,. The following proposition shows that the operators in ¥, depend only
on local properties of the defining functions.

Recall that M \D is fibered by the circle such that

F, = {meMy: §,(m) = 4}
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and that the Silov boundary of H® can be identified with the maximal ideal
space M,;.. of L”(T). Let us denote the intersection F, N M, .. by 0F,.

7.50 Proposition If {¢, J}f ,=1 are functions in L*(T) with Gelfand trans-
form ¢, on M. and Aisin T, then &,(3% , TT0., T,,,) depends only on the
functions {@,,|0F,},-;.

Proof 1t 1s sufficient to show that ®,(7,) = 0 for ¢ in L”(T) such that
¢|0F, = 0. By continuity and compactness, it follows that for ¢ > 0 there
exists an open arc U of T containing 4 such that ||¢l| ., < é&. If ¥ is a con-
tinuous function on T which equals 1 on the complement of U and vanishes
at A, then

Ty, =14, + 1T,

I¢\u (1

T\UY?

where

“(D)-(TQE’IU)“ < HTQDIU” < &, (I)A(quIT\U(l——lﬁ)) — 0:
since

Inpa-¢p =0 and  @,(Tor\op) = Pa(Tor,,) Pa(Ty) = 0,

since T, is in J,. Therefore, we have ||®,(7,)| <¢ for € >0 and hence
Q’A(T(D =0. .

As corollaries, we obtain the following results proved originally by
“localizing” in H*+4 C(T).

7.51 Corollary If ¢ is a function in L*(T), then 7, is a Fredholm operator
if and only if for each Ain T there exists { in L”(T) such that 7,, is a Fredholm

operator and ¢ =y on JF;.

Proof From Theorem 7.49 and the definition, it follows that 7, is a
Fredholm operator if and only if ®,(7) is invertible for each 4 in T. If for
A in T there exists ¢ in L*(T) such that T, is a Fredholm operator and
¢ = ¢ on JF,, then @,(7,) is mvertible in T, and equal to ®,(7,) by the
previous proposition. Thus the result follows from Theorem 7.47. W

7.52 Corollary If ¢ and ¢ are functions in L*(T) such that for each 4
in T either $—0,|0F, =0 for some 8, in H® or yy—0,|0F, = 0 for some
0, in #%, then 7,71, —T,, is compact.

Proof Since T,T,—T,, 1s compact if and only if ®,(7T,)®,(T,) =
®,(T,,) for each A in T by Theorem 7.49, the result is seen to follow from
Proposition 7.5. |}
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Notes

In an early paper [109] Toeplitz investigated finite matrices which are
constant on diagonals and their relation to the corresponding one- and
two-sided infinite matrices. The fundamental theorem in this line of study
was proved by Sz€go (see [54]), and most of the early work concerned this
type of question. In [116] Wintner determined the spectrum of analytic
Toeplitz matrices, and he and Hartman set the tone for much of the work
in this chapter in two papers [59] and [60] some twenty years later. The
first systematic study of Toeplitz operators emphasizing the mapping ¢ - T,
was made by Brown and Halmos in [11]. What might be called the algebra
approach to these problems was first made explicit in [29] and [30] and was
based on the earlier papers [17] and [18] of Coburn.

A ‘vast literature exists for Wiener—Hopf operators beginning with the
fundamental paper of Wiener and Hopf [115]. Most of the early work con-
cerns the study of explicit operators, and a good exposition of that along
with a bibliography can be found in Krein [72]. The studies of Toeplitz
operators and Wiener~Hopf operators had parallel developments until
Rosenblum observed [94] using Laguerre polynomials that the two classes
of operators were unitarily equivalent. Subsequently, Devinatz showed in
[25] that the canonical conformal mapping of the unit disk onto the upper
half-plane establishes the unitary equivalence between a Toeplitz operator and
the Fourier transform of a Wiener—Hopf operator. Thus a given result can
be stated in the context of either Toeplitz operators or of Wiener~Hopf
operators.

The spectral inclusion theorem is due to Hartman and Wintner [60],
although the proof given here of Proposition 7.6 first occurs in [110]. Corol-
laries 7.8 and 7.19 as well as the remarks following 7.9 are due to Brown and
Halmos [11]. The existence of the homomorphism in Theorem 7.11 as well
as its role in these questions is established in [31]. In [103] Stampfli observed
that a proof of Coburn in [17] actually yields Proposition 7.22. The analysis
of the C*-algebra T(C(T)) was made by Coburn in [17] and [18] while its
applicability to the invertibility problem for Toeplitz operators with con-
tinuous symbol was observed in [29]. Proposition 7.24 was proved by Coburn
in [ 16]. The content of Corollary 7.27 is the culmination of several authors
including Krein [72], Calderon, Spitzer, and Widom [13], Widom [110],
and Devinatz [24]. The proof given here first appears in [29] and indepen-
dently in [3], where Atiyah used the matrix analog in a proof of the periodicity
theorem. A related proof was given by Gohberg and Fel'dman [45]. The study
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of Toeplitz operators with symbol in H*+ C(T) was made in [30] with
complements in [77] and [103].

The invertibility criteria stated in Theorem 7.30 and its corollary were
given independently by Widom [111] and Devinatz [24] and are based on
a study in prediction theory by Helson and Sz€go [64]. The spectral inclusion
theorem given in Theorem 7.32 is based on an extension by Lee and Sarason
[77] of a result of the author [31]. The question of the connectedness of the
spectrum of a Toeplitz operator was posed by Halmos in [ 57] and answered
by Widom in [113] and [114]. The proof of Theorem 7.45 is a slight adapta-
tion of that in [114] to cover the essential spectrum and avoiding certain
measure theoretic considerations as well as the use of the harmonic con-
jugate. The possibility of the essential spectrum being connected was sug-
gested to the author by Abrahamse.

Theorem 7.47 1s closely related to various central decompositions in
C*-algebra (see [96]) but its application to Toeplitz operators is new, and
these results were suggested by the earlier Corollaries 7.51 and 7.52. The
first corollary is due to Simonenko [102] and independently to Douglas and
Sarason [35] and extends a result of Douglas and Widom [38]. The second
corollary is due to Sarason [98].

Several further developments and additional topics should be mentioned.
The invertibility problem for symbols in the algebra of piecewise continuous
functions has been considered by Widom [110], Devinatz [24], and from
the algebra viewpoint by Gohberg and Krupnik [50]. The invertibility prob-
lem has also been considered for certain algebras of functions which appear
more natural in the context of the line. The algebra of almost periodic func-
tions was considered independently by Coburn and Douglas [19] and by
Gohberg and Fel’dman [46], [47]. Actually, the latter authors considered the
Fourier transforms of measures having no continuous singular part. The
problem for the Fourier transform of an arbitrary measure has been con-
sidered by Douglas and Taylor [37] using a deep result [108] of the latter
on the cohomology of the maximal ideal space of the convolution algebra of
measures. Lastly, Lee and Sarason [77] and Douglas and Sarason [36] have
considered the invertibility problem for certain functions of the form ¢y for
inner functions ¢ and .

Generalizations of the notion of Toeplitz operator have been considered
by many authors: Douglas and Pearcy studied the role of the F. and M. Riesz
theorem in [33]; Devinatz studied Toeplitz operators on the H?*-space of a
Dirichlet algebra [24]; Devinatz and Shinbrot [26] studied the invertibility
of compressions of operators to subspaces; and Abrahamse studied Toeplitz
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operators defined on the H?-space of a finitely connected region in the
plane [1]. A different kind of generalization is obtained by considering
Wiener—Hopf operators. A subsemigroup of an abelian group is prescribed,
and convolution operators compressed to the corresponding I? space of
functions supported on it are studied. Certain basic results for rather arbitrary
semigroups are obtained by Coburn and Douglas in [20]. Earlier work
involving half-spaces is due to Goldenstein and Gohberg [52] and [53]. The
case of the quarter plane i1s of particular importance and coincides with
Toeplitz operators defined on H? of the bidisk. Results on this have been
obtained by Simonenko [101], Osher [84], Malysev [ 78], Strang [ 106], and
Douglas and Howe [32]. In particular, the latter authors obtain necessary
and sufficient conditions for such a Toeplitz operator to be a Fredholm
operator. They show, moreover, that while such an operator must have
index zero, it need not be invertible.

In many of the preceding contexts, various topological invariants of the
symbol enter into the determination of when the corresponding operator is
invertible, and usually these invariants must be zero. In the case of a con-
tinuous symbol on the circle, a nonzero invariant corresponds to the oper-
ator being a Fredholm operator having a nonzero index. A start at establish-
ing similar results for the other classes of operators has been made by Coburn,
Douglas, Schaefier, and Singer in [ 21] where a generalized notion of Fredholm
operator due to Breuer [8], [9] is utilized. It is expected that questions of
this kind will prove important in future developments.

Although attention in this book has been confined to the scalar case, the
matrix case is perhaps of even greater importance. The function ¢ is allowed
to have nxn matrices as values and to operate on a C"-valued H*-space.
Many of the techniques of this chapter can be carried over to this case using
the device of the tensor product. More specifically, if U is an algebra of scalar
functions, 9 is equal to A ® M,, where M, is the C*-algebra of operators
on the n-dimensional Hilbert space C", and more importantly, T(2[,) is
isometrically isomorphic to T(A)® M,. In particular, applying this to one
of the exact sequences considered in the chapter one obtains the exact sequence

(0) > LE(HY) ® M, - T(C(T)) ® M, - C(T) ® M, — (0).

(The fact that the ““scalar” sequence has a continuous cross section is also
used.) Since LE(H?*)® M, is equal to LE(H?* ® C"), one obtains that a
matrix Toeplitz operator with continuous symbol is a Fredholm operator if
and only if the determinant function does not vanish on the circle. More-
over, the index can be shown to equal minus the winding number of the
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determinant. (This latter argument uses the fact that every continuous mapping
from T into the invertible n x n matrice i1s homotopic to a mapping from T to

the invertible diagonal matrices.)
This latter result i1s due to Gohberg and Krein [49]. A generalization to
certain operator-valued analogs can be found in [31]. Additional results on

the matrix and operator-valued case are in [87] and [88].

Lastly, although this book does not comment on it, the study of Toeplitz
and Wiener—Hopf operators is important in various areas of physics and
probability (see [54], [69], [83]) and in examining the convergence of certain
differences schemes for solving partial differential equations (see [83]).

Exercises

7.1 If U and B are C*-algebras and p i1s an 1sometric *-linear map from
A into B, then o(T) < o(p(7)) for T in A. (Hint: If T is not left invertible
in 2, then there exists {S,},~; in W such that ||S, || = | and lim,,, ., S, T|| = 0.)
If, in addition, ¥ is commutative, then ¢(p(7)) < hfo(T)] for T in A

7.2 I ¢ is a nonconstant real function in L* (T), then T_has no eigenvalues.
7.3  An operator T in £(H?) is a Toeplitz operator if and only if

T, 1T, = T.
7.4 1If ¢ is a nonzero function in L*(T), then M, and T, have no eigen-
values in common.

7.5 If ¢is a real function, then T is invertible if and only if the function 1
1S In 1fs range.

7.6 If @ is in L°(T), then W(T,) = h[R()].

7.7 If ¢, ¢,, and @3 are functions i L*(T) such that T, T, —T,, 18
compact, then ¢, ¢, = @;.

Definition If {0} , is a bounded sequence of complex numbers, then the

associated Hankel matrix {a;;}{° ¢ is defined by a;; = a4 ; for i,jin Z*.

7.8 (Nehari) If {a,} 7 o is @ bounded sequence, then the Hankel operator
H defined by the associated Hankel matrix is bounded if and only if there
exists a function ¢ in L*(T) such that

1 2n . .
== — et " dt.



204 7 Toeplitz Operators

Moreover, the norm of H is equal to the infimum of the norm |¢f., for all
such functions ¢.* (Hint: Consider the linear functional L defined on H?
by L(f) = (Hg,h), where f= gh, and show that L is continuous if H is
bounded.)

7.9 (Hartman) If {o,}>.o i1s a bounded sequence, then the associated
Hankel operator 1s compact if and only if there exists a continuous function
¢ on T such that

1 & ] 't . +
a,=— | @)y, (e)dt for nin R™.*
27 0

(Hint: Use Exercise 1.33 to show that a certain linear functional L is w*-
continuous if and only if H is compact and apply the analog of Exercise 6.36.)

7.10 An operator H in 2(H?) is a Hankel operator if and only if T}, H =
HT

P4

7.11 If @ isin L*(T), then =(T,) is unitary in I(L*(T))/LE(H?) if and only
if ¢ is in QC.* (Hint: Show that the Hankel operator H, is compact if and
only if n(7,*) is an isometry in I(L*(T))/LC(H ).)

7.12 If ¢ is in L*(T), then =(T) is in the center of T(L*(T))/LE(T?) if
and only if ¢ i1s in QC. Are there any other operators in the center?%*

7.13 Show that 7, T ,— 1T, , is compact for every y in L”(T) if and only if
@ is in H* 4+ C(T).*

7.14 If ¢ is in H*+4 C(T), then ¢ is invertible in L*(T) if and only if T,
has closed range.

7.15 If@isin H”+C(T) and 4 is in 6 (T )\%(¢), then either 4 is an eigen-
value for T, or A is an eigenvalue for T,.

7.16 (Widom—Devinatz) 1f ¢ is an invertible functions in L°(T), then T,
is invertible if and only if there exists an outer function g such that

larggo| < mf2 — 0
for & > 0.

7.17 Show that there exists a natural homomorphism y of Aut|Z(C(T))]
onto the group Hom (T) of orientation preserving homomorphisms of T.
(Hint: If ¢ is in Hom (T), then there exists K in E€(H?) such that 7,+ K
is a unilateral shift.)

7.18 Show that the connected component Auty | T(C(T))] of the identity
in AutfT(C(T))] is contained in the kernel of y, Is it equal 2%
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7.19 If ¢ is a unimodular function in QC and K is appropriately chosen in
QE(H?), then a(T)=(T,+K)*T(T,+K) defines an automorphism on
T(C(T)) in the kernel of y. Show that the automorphisms of this form do not
exhaust kery.* Is a in Auty[T(C(T))]|7**

7.20 If V'is a pure isometry on J# and E, is the projection onto V"3, then
U =Y%,e"(E,—E,.,) is a unitary operator on J# for ¢" in T. If we set
p(T)=UXTU, for T in the C*-algebra ¢, generated by V, then the mapping
I'(¢") = B, is 2 homomorphism from the circle group into Aut[C€,] such that
F(e") = B,(T) is continuous for 7T in C,.. Is it norm continuous? Moreover,
for V= T,,, the unitary operator U, coincides with that induced by rotation
by € on H?.

7.21 Identify the fixed points &, for the f, as a maximal abelian subalgebra
of €, . (Hint: Consider the case of V= T,,, acting on I*(Z,).)

7.22 Show that the mapping p defined by

1 2r
p(T)=— | B(DDdt for TinG,
271: 0

Is a contractive positive map from ¢, onto §, which satisfies p(TF) = p(T) F
for Tin ¢, and Fin §,.

7.23 If V, and V, are pure 1sometries on #; and 3 ,, respectively, such
that there exists a *-homomorphism @ from ¢, to €, with ®(;) =V,
then @ is an isomorphism. (Hint: Show that po® = ®op and that ®|F,,
IS an isomorphism.)

7.24 1If A and B are operators on J# and £, respectively, and @ is a *-homo-
morphism from €, to €z with ®(4) = B, then there exists *-i1somorphism
¥ from G, 5 to €, such that Y(A® B) = A.

7.25 If V'is a pure isometfry on # and W is a unitary operator on ', then
there exists a *-ijsomorphism ¥ from ¢, onto ¢, such that y (V) = V,.

7.26 (Coburn) If V, and ¥V, are nonunitary isometries on H, and H,,
respectively, then there exists a *-isomorphism ¥ from €, onto ¢, such
that l.P(VI) == Vz.

Definition A C*-algebra U is said to be an extension of €€ by C(T), if
there exists a *-isomorphism @ from LE(#) into U and a *-homomorphism
Y from U onto C(T) such that the sequence

(0) —> L€ (H#)—> A —> C(T)—> (0)
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is exact. Two extensions U; and U, will be said to be equivalent if there
exists a *-isomorphism 6 from U, onto A, and an automorphism o in
Aut[2E ()] such that the diagram

C () —> U,

A N
©) l le C(T)—>(0)
S ®, /‘*’2

commutes.

7.27 1If N 1s a positive integer and I 1s the C*-algebra generated by 7,
and LE(H?), then T is an extension of £€ by C(T) with ¥(7,,) = x; -
Moreover, Iy and I,, are isomorphic C*-algebras if and only if N = M.
(Hint: Consider index in I.)

7.28 Let K* = I*(T)© H?, Q be the orthogonal projection onto K?*, and
define S, = QM,|K*. If N is a negative integer and S, is the C*-algebra
generated by S, and £E(K?), then & is an extension of £€ by C(T) with
Y (S,,.) = x1- Moreover, the extensions I, and &, are all inequivalent
despite the fact that the algebras I, and &, are isomorphic.

7.29 Let E be a closed perfect subset of T and u be a probability measure
on T such that the closed support of y is T and the closed support of the
restriction p of y to Eis also E. If Uy is the C*-algebra generated by M,
on I’(u) and LC(I?(ug)), then AL is an extension of L€ by C(T) with
WY(M,,) = x,- Moreover, two of these extensions are equivalent 1f and only
if the set E 18 the same.

7.30 1If E is a closed subset of T, then E = E,u {¢"™: n > 1}, where E, is a
closed perfect subset of T. Let u be a probability measure on T such that the
closed support of u1s T and the closed support of the restriction yg, of u to
E, 1s also E,. If 9 is the C*-algebra generated by W= M, ® > ,>1 ® M,its
on ()@Y, ®I*(@) and LE(I*(ug,) @ Yuz1 @ 17(Z)), then Ay is an
extension of £& by C(T) with W (W) = y,. Moreover, two of these extensions
are equivalent if and only if the set E is the same.

7.31 Every extension U of LC by C(T) is equivalent to exactly one exten-
sion of the form I, Sy, or WUg.* (Hint: Assume 2 is contained in £ ()
and decompose the representation of £¢ on #. Use Exercises 5.18-5.19.)

7.32 If T is an operator on # such that ¢,(T) =T and T*T—-TT* 18
compact, then the C*-algebra generated by T is an extension of £¢ by C(1)
with W (7') = y;. Which one is it?
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7.33 If B? is the closure of the polynomials in I?(D) with planar Lebesgue
measure and Pg is the projection of I7(D) onto B?, then the C*-algebra
generated by the operators {R,: ¢ € C(D)}, where R, = Pz M_|B? is an
extension of C(T) by £€ with W (R} ) = x;. Which one 1s 1t?

7.34 If Ais an extension of LE by C(T), determine the range of the mapping
from Aut(2) to Aut(C(T)).*

7.35 If Aisin T and ¢ is in L*(T), then $(Fy) < o(P,(T,)) < h(P(F)))
where ¢ is the harmonic extension of ¢ to the Silov boundary of H®.

7.36 (Widom) 1If ¢ isin PC, ¢” is the curve obtained from the range of ¢
by filling in the line segments joining @ (") to ¢(e*") for each discontinuity,
then T, is a Fredholm operator if and only if ©* does not contain the origin.
Moreaver, in this case the index of T, is minus the winding number of ¢*.*
(Hint: Use Section 7.51 to show that T, 1s a Fredholm operator in this case
and that the index is minus the winding number of ¢”. If ¢* passes through
the origin, then small perturbations of ¢ produce Fredholm operators of
different indexes.)

7.37 (Gohberg—Krupnik) The quotient algebra T (PC)/2C(H?) is a com-
mutative C*-algebra. Show that its maximal ideal space can be identified as
a cylinder with an exotic topology.*

7.38 If X is an operator on H? such that T * XT,— X is compact for each
inner function ¢, then is X = T,,+ K for some y in H” and compact oper-
ator K 7%

7.39 1If for each z in C, ¢, is a function in L°(T) such that ¢,(e") is an
entire function in z having at most N zeros for each ¢ in T, then the set of z
for which T, fails to be invertible 1s a closed subset of C having at most N
components.* (Repeat the whole proof of Theorem 7.45.)



10.
11.

12,

I3.

14.

I5.

208

References

M. B. Abrahamse, Toeplitz operators in multiply connected domains, Bull. Amer.
Math. Soc. T1, 449-454 (1971).

N. I. Akheizer and 1. M. Glazman, Theory of linear operators in Hilbert space. Ungar,
New York, 1961.

M. Atiyah, Algebraic topology and operators in Hilbert space, Lectures in Analysis,
vol. 103, pp. 101-121. Springer-Verlag, New York, 1969.

F. V. Atkinson, The normal solvability of linear equations in normed spaces, Mat.
Sb. 28 (70), 3—-14 (1951).

S. Banach, Théorie des opérations linéares. Monografie Matematyczne, Warsaw, 1932.
A. Beurling, On two problems concerning linear transformations in Hilbert space,
Acta Math. 81, 239-255 (1949).

N. Bourbaki, Espaces Vectoriels Topologigues, Eléments de mathématique, livre V.
Hermann, Paris, 1953, 1955.

M. Breuer, Fredholm Theories in von Neumann Algebras I, Math. Ann. 178, 243-354
(1968).

M. Breuer, Fredholm Theories in von Neumann Algebras II, Math. Ann. 180, 313-325
(1969).

A. Browder, Introduction to Function Algebras. Benjamin, New York, 1968.

A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine
Angew. Math. 213, 89-102 (1964).

J. Bunce, The joint spectrum of commuting non-normal operators, Proc. Amer. Math.
Soc. 29, 499-504 (1971).

A. Calderon, F. Spitzer, and H. Widom, Inversion of Toeplitz matrices, Illinois J. Math.
3, 490-498 (1959).

L. Carleson, Interpolation by bounded analytic functions and the corona problem,
Ann. Math. '16, 542-559 (1962).

L. Carleson, The corona theorem, Proceedings of the 15th Scandinavian Corngress
Oslo 1968, vol. 118, pp. 121-132. Springer-Verlag, New York, 1970.



I16.

17.

I8.

19.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

41.

References 209

L. A. Coburn, Weyl’s Theorem for non-normal operators, Michigan Math. J. 13,
285-286 (1966).

L. A. Coburn, The C*-algebra generated by an isometry I, Bull. Amer. Math. Soc.
73, 722-726 (1967).

L. A. Coburn, The C*-algebra generated by an isometry II, Trans. Amer. Math. Soc.
137, 211-217 (1969).

L. A. Coburn and R. G. Douglas, Translation operators on the half-line, Proc. Nat.
Acad. Sci. U.S.A. 62, 1010-1013 (1969).

L. A. Coburn and R. G. Douglas, On C*-algebras of operators on a half-space I, Inst.
Hautes Etudes Sci. Publ. Math. 40, 59-67 (1972).

L. A. Coburn, R. G. Douglas, D. G. Schaeffer, and 1. M. Singer, On C*-algebras of
operators on a half-space II: Index Theory, Inst. Hautes Etudes Sci. Pub. Math. 40,
69--79 (1972).

L. A. Coburn and A. I.ebow, Algebraic theory of Fredholm operators, J. Math. Mech.
15, 577-584 (1966).

H. O. Cordes and J. P. Labrouse, The invariance of the index in the metric space of
closed operators, J. Math. Mech. 12, 693-720 (1963).

A. Devinatz, Toeplitz operators on H? spaces, Trans. Amer. Math. Soc. 112, 304-317
(1964).

A. Devinatz, On Wiener-Hopf Operators in Functional analysis (B. Gelbaum, ed.).
Thompson, Washington, 1967.

A. Devinatz and M. Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math.
Soc. 145, 467-494 (1969).

J. Dixmier, Les algébres d’opérateurs dans Uespace hilbertien (Algébres de von Neumann).
Gauthier-Villar, Paris, 1957.

J. Dixmier, Les C*-algeébres et leurs representations. Gauthier-Villar, Paris, 1964.

R. G. Douglas, On the spectrum of a class of Toeplitz operators, J. Math. Mech. 18,
433-436 (1968).

R. G. Douglas, Toeplitzand Wiener-Hopf operators in H* + C, Bull. Amer. Math. Soc.
74, 895-899 (1968).

R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, in Abstract
Spaces and Approximation Theory (P. L. Butzer and B. Sz.-Nagy, ed.). Birkhauser
Verlag, Basel and Stuttgart, 1969.

R. G. Douglas and Roger Howe, On the C*-algebra of Toeplitz operators on the
quarter-plane, Trans. Amer. Math. Soc. 158, 203-217 (1971).

R. G. Douglas and C. Pearcy, Spectral theory of generalized Toeplitz operators,
Trans. Amer. Math. Soc. 115, 433444 (1965).

R. G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math. 31,
313-320 (1969).

R. G. Douglas and D. E. Sarason, Fredholm Toeplitz Operators, Proc. Amer. Math.
Soc. 26, 117-120 (1970).

R. G. Douglas and D. E. Sarason, A class of Toeplitz operators, Indiana U. Math. J.
20, 891-895 (1971).

R. G. Douglas and J. L. Taylor, Wiener-Hopf operators with measure kernel, Pro-
ceedings of Conference on Operator Theory, Hungary, 1970.

R. G. Douglas and H. Widom, Toeplitz operators with locally sectorial symbol,
Indiana U. Math. J. 20, 385-388 (1970).

P. Duren, H? spaces. Academic Press, New York, 1970.

T. W. Gamelin, Uniform algebras. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
I. M. Gelfand, Normierte rings, Mat. Sb. (N.S.) 9 (51), 3-24 (1941).



210

42

93.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

ol.
02.

63.
64.

635.

References

I. M. Gelfand, D. A. Raikov and G. E. Silov, Commutative normed rings, Usp. Mat.
Nauk 1, 48-146 (1946); Amer. Math. Soc. Transl. 5 (2), 115-220 (1951).

A. Gleason and H. Whitney, The extenston of linear functionals defined on H®*,
Pacific J. Math. 12, 163-182 (1962).

C. Goffman and G. Pedrick, First course in functional analysis. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1965.

I. C. Gohberg and I. A. Fel’dman, Projection methods for solving Wiener-Hopf equa-
tions, Moldavian Academy of Sciences, Kishinev, 1967 (Russian).

I. C. Gohberg and 1. A. Fel’dman, On Wiener-Hopf integral difference equations,
Dokl. Akad. Nauk SSSR 183, 25-28 (1968) (Russian); Soviet Math. Dokl. 9, 1312-1316
(1968).

I. C. Gohberg and I. A. Fel’dman, Wiener-Hopf integral-difference equations, Acta.
Sci. Math. 30, 199-224 (1969) (Russian).

I. C. Gohberg and M. G. Krein, Fundamental theorems on deficiency numbers, root
number, and indices of linear operators, Usp. Mat. Nauk 12, 43-118 (1957) (Russian);
Amer. Math. Soc. Transl. 13 (2), 185-265 (1960).

I. C. Gohberg and M. G. Krein, Systems of integral equations on a half line with kernels
depending on the difference of arguments, Usp. Mat. Nauk 13, 3-72 (1958) (Russian);
Amer. Math. Soc. Transl. 14 (2), 217-287 (1960).

I. C. Gohberg and N. Ya. Krupnik, On an algebra generated by Toeplitz matrices,
Functional Anal Prilozen. 3, 46-56 (1969) (Russian); Functional Anal. Appl. 3, 119-127
(1969).

Seymour Goldberg, Unbounded linear operators. McGraw-Hill, New York, 1966.

L. S. Goldenstein, Multi-dimensional integral equations of Wiener-Hopf type, Bull.
Akad. Stiince RSS Mold. no. 6, 27-38 (1964) (Russian).

L. S. Goldenstein and I. C. Gohberg, On a multi-dimensional integral equation on a
half-space whose kernel is a function of the difference of the arguments and on a
discrete analogue of this equation, Dokl. Akad. Nauk SSSR 131, 9-12 (1960) (Russian);
Soviet Math. Dokl. 1, 173-176 (1960).

U. Grenander and G. Szegd, Toeplitz forms and their applications. University of
California Press, 1958.

P. R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity.
Chelsea, New York, 1951.

P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208, 102-112 (1961).

P. R. Haimos, A glimpse into Hilbert space. Lectures on modern mathematics. Vol. 1, -
1-22. Wiley, New York, 1963.

P. R. Halmos, A Hilbert space problem book. van Nostrand-Reinhold, Princeton,
New Jersey, 1967.

P. Hartman and A. Wintner, On the spectra of Toeplitz’s matrices, Amer. J. Math. 12,
359-366 (1950). ]

P. Hartman and A. Wintner, The spectra of Toeplitz’s matrices, Amer. J. Math. 76,
867882 (1954).

H. Helson, Lectures on invariant subspaces. Academic Press, New York, 1964.

H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several
variables, Acta Math. 99, 165-202 (1958).

H. Helson and D. E. Sarason, Past and future, Marh. Scand. 21, 5-16 (1967).

H. Helson and G. Szégo, A problem in prediction theory, Am. Mat. Pura Appl. 51,
107-138 (1960).

E. Hewitt and K. Stromberg, Real and abstract analysis. Springer-Verlag, New York,
1965.



66.

67.
68.

69.
70.

71.
72.

73.
74,
75.
76.
77.
78,

79.
80.

81.

82.

83.

84.

86.
87.
88.
89.
90.
91I.

92.
93.

94.

References 211

K. Hoffman, Banach spaces of analytic functions. Prentice~Hall, Englewood Cliffs,
New Jersey, 1962.

Sze-Tsen Hu, Homotopy theory. Academic Press, New York, 1959.

R. S. Ismagilov, The spectrum of Toeplitz matrices, Dokl. Akad. Nauk SSSR 149,
769-772 (1963); Soviet Math. Dokl. 4, 462-465 (1963).

M. Kac, Theory and applications of Toeplitz forms, in Summer institute on spectral
theory and statistical mecharics. Brookhaven National Laboratory, 1965.

T. Kato, Perturbation theory for linear operators. Springer-Verlag, New York, 1966.
J. L. Kelley, General topology. van Nostrand-Reinhold, Princeton, New Jersey, 1955.
M. G. Kreln, Integral equations on half line with kernel depending upon the difference
of the arguments, Usp. Mat. Nauk 13, 3-120 (1958) (Russian); Amer. Math. Soc.
Transl. 22 (2), 163-288 (1962).

N. H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3,
19-30 (1965).

Serge Lang, Analysis Il. Addison-Wesley, Reading, Massachusetts, 1969.

P. Lax, Translation invariant subspaces, Acta. Math. 101, 163-178 (1959).

P. Lax, Translation invariant spaces, Proc. Internat. Symp. Linear Spaces, Jerusalem,
1960, pp. 251-262. Macmillan, New York (1961).

M. Lee and D. E. Sarason, The spectra of some Toeplitz operators, J. Math. Anal.
Appl. 33, 529-543 (1971).

V. A. Malysev, On the solution of discrete Wiener-Hopf equations in a quarter-plane,
Dokl. Akad. Nauk SSSR 187, 1243-1246 (1969) (Russian); Soviet Math. Dokl. 10,
1032-1036 (1969).

K. Maurin, Methods of Hilbert spaces. Polish Scientific Publishers, Warsaw, 1967.

M. A. Naimark, Normed rings. Noordhoff, Groningen, 1959.

J. von Neumann, Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann.
102, 49-131 (1929).

J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der Normalen
Operatoren, Math. Ann. 102, 370-427 {(1929).

S. J. Osher, Systems of difference equations with general homogeneous boundary
conditions, Trans. Amer. Math. Soc. 137, 177-201 (1969).

S. J. Osher, On certain Toeplitz operators in two variables, PacificJ. Math. 37, 123-129
(1970).

R. Palais, Seminar on the Atiyah-Singer index theorem. Annals of Math. Studies,
Princeton, 19635.

J. D. Pincus, The spectral theory of self-adjoint Wiener-Hopf operators, Bull. Amer.
Math. Soc. 12, 882-887 (1966).

H. R. Pousson, Systems of Toeplitz operators on H?* I1, Trans. Amer. Math. Soc. 133,
527-536 (1968).

M. Rabindranathan, On the inversion of Toeplitz operators, J. Math. Mech. 19,
195-206 (1969).

C. E. Rickart, Banach algebras. van Nostrand-Reinhold, Princeton, New Jersey, 1960.
F. Riesz, Uber die Randwert einer analytischen Funktion, Math. Z. 18 (1922).

F. Riesz and M. Riesz, Uber die Randwert einer analytischen Funtion 4e Congr. des
Math. Scand. 27-44 (1916).

F. Riesz and B. Sz.-Nagy, Functional analysis. Ungar, New York, 1955.

M. Rosenblum, On a theorem of Fuglede and Putnam, J. London Math. Soc. 33,
376--377 (1958).

M. Rosenblum, A concrete spectral theory for self-adjoint Toeplitz operators, Amer.
J. Math. 81, 709-718 (1965).



212

9s.
96.

97.

98.
99.

100.

I01.

102,

103,
104.

105,

106.
107,
108.
109.
110.
111,
112,
113.
114,
115.

116,
117.

References

W. Rudin, Real and complex analysis. McGraw-Hill, New York, 1966.

David Ruelle, Integral representations of states on a C*-algebra, J. Functional Analysis
6, 116-151 (1970).

D. E. Sarason, Generalized interpolation on H*, Trans. Amer. Math. Soc. 127, 179-203
(1967).

D. E. Sarason, On products of Toeplitz operators (to be published).

D. E. Sarason, Invariant subspaces, Studies in operator theory, Math. Assoc. Amer.,
Prentice-Hall, Englewood Cliffs, New Jersey (in press).

L J. Schark, The maximal ideals in an algebra of bounded analytic functions, J. Math.
Mech. 10, 735-746 (1961).

I. B. Simonenko, Operators of convolution type in cones, Mat. Sb. 74 (116) (1967)
(Russian); Math. USSR Sb. 3, 279-293 (1967).

I. B. Simonenko, Some general questions in the theory of the Riemann boundary
problem, Izv. Akad. Nauk SSSR 32 (1968) (Russian); Math USSR Izv, 2, 1091-1099
(1968).

J. G. Stampfli, On hyponormal and Toeplitz operators, Math. Ann.183, 328-336(1969).
M. H. Stone, Linear transformations in Hilbert space and their applications to analysis.
Amer. Math. Soc., New York, 1932,

M. H. Stone, Applications to the theory of Boolean rings to general topology, Trans.
Amer. Math. Soc. 41, 375-481 (1937).

G. Strang, Toeplitz operators in the quarter-plane, Bull. Amer. Math. Soc. 76, 1303~
1307 (1970).

B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space. Akademiai
Kiado, Budapest, 1970.

J. L. Taylor, The cohomology of the spectrum of a measure algebra, Acra Math. 126,
195-225 (1971).

O. Toeplitz, Zur theorie der quadratischen Formen von unendlichvielen Verénderlichen,
Math. Ann, 70, 351-376 (1911).

H. Widom, Inversion of Toeplitz matrices 11, Illinois J. Math. 4, 88-99 (1960).

H. Widom, Inversion of Toeplitz matrices IlI, Notices Amer. Math. Soc. 7, 63 (1960).
H. Widom, Toeplitz matrices, Studies in real and complex analysis, Math. Assoc, Amer.,
Prentice-Hall, Englewood Cliffs, New Jersey, 1965,

H. Widom, On the spectrum of Toeplitz operators, Pacific J. Math. 14, 365-375 (1964).
H. Widom, Toeplitz operators on H,, Pacific J. Math. 19, 573-582 (1966).

N. Wiener and E. Hopf, Uber eine Klasse singuliiren Integral-gleichungen, S.-B. Preuss
Akad. Wiss. Berlin, Phys.-Math. Kl. 30/32, 696-706 (193]).

A. Wintner, Zur theorie der beschriinkten Bilinear formen, Math. Z. 30, 228-282 (1929).
K. Yoshida, Functional analysis. Springer-Verlag, Berlin, 1966.



Index

A

Absolute continuity, of measures, 104
Absolutely convergent Fourier series, 56, 61
Abstract index, 36, 62, 133, 138
Abstract index group, 36, 38
Adjoint
of bounded linear transformation, 30
of closed, densely defined linear
transformation, 119
of Hilbert space operator, 81-82
Alaoglu theorem, 10
Algebra of bounded holomorphic
functions, 26, 150
Annthilator, of subspace, 30, 80
Asymptotically multiplicative functions,
169
Atkinson theorem, 128
Automorphism
of Banach algebra, 61
of C*-algebra
inner, 143
weak, 144

B

Banach algebra, 34, 32-62
Banach space, 2, 1-31
Banach theorem, 13, 31
Beurling theorem, 45, 153

Bilateral shift, 89

Boundary, for function algebra, 61
Bounded below, operator, 83
Bounded variation, function, 14
Brown—-Halmos theorem, 182

C

C*-algebra, 91
Calkin algebra, 127
Cauchy-Schwarz inequality, 64
Cech cohomology group, 38
Center, of algebra, 196
Characteristic function, 18
Circle group, 51
Classical index, 130, 138
Closed convex hull, 182
Closed graph theorem, 29
Coburn theorem, 184, 185, 205
Cohomotopy group, 39
Commutant, of algebra, 108
Commutator, 180

ideal, 145, 179
Compact operator, 121, 145
Complete metric space, 2
Conjugate space, 6
Convolution product, 54
Corona theorem, 156, 173
Cross-section map, 178
Cyclic vector, 105, 157

213



214

D

Dimension, Hilbert space, 76, 79
Direct sum
of Banach spaces, 29
of Hilbert spaces, 78
Directed set, 3
Dirichlet problem, 171
Disk algebra, 51-53
Division algebra, 42

E

Eigenspace, generalized, 131
Essential range, 57

Essential resolvent, 191
Essential spectrum, 190, 191
Essentially bounded, 24
Exponential map, 36
Extensions, of C*-algebras, 205
Extreme point, 28, 78

F

Fatou theorem, 174

Fiber, of M, 172

Finite rank operator, 59, 121

Fourier coefficient, 55

Fourier series, 55

Fredholm alternative, 131

Fredholm integral operator, 125

Fredholm operator, 127

Fuglede theorem, 114, 120

Functton algebra, 51

Functtonal calculus, 93, 99
extended, 112-114

G

Gelfand-Mazur theorem, 42

Gelfand—-Naimark theorem, 93

Gelfand theorem, 44, 45

Gelfand transform, 40

Gleason-Whitney theorem, 164

Gohberg theorem, 146

Gohberg-Krupnik theorem, 207

Gram-Schmidt orthogonalization process,
79

Grothendieck theorem, 30

Index

H

Hahn-Banach theorem, 11, 12, 78
Hankel matrix, 203

Hankel operator, 203

Hardy space, 26, 70, 149-176
Harmonic extension, 168
Hartman theorem, 183, 204
Hartman-Wintner theorem, 179, 183
Hausdorff-Toeplitz theorem, 115
Hellinger-Toeplitz theorem, 116
Helson—-Szégo theorem, 187
Hermitian operator, 84

Hilbert space, 63-80, 66

I

Idempotent operator, 116-117
Indicator function, see Characteristic
function

Initial space, of partial isometry, 95
Inner function, 152
Inner-outer factorization, 158
Inner product, 63
Inner product space, 64
Integral operator, 125, 132, 145
Invariant subspace, 98

simply, 151-152
Involution, of Banach algebras, 82, 91
Irreducible subset, 141
Isometry, 95, 117, 146
Isomorphism, of Hilbert spaces, 76

J

Jensen’s tnequality, 174

K

Kernel

of integral operator, 126

of operator, 83
Kolmogrov-Krein theorem, 175
Krein—-Mil’'man theorem, 28
Krein-Smul’yvan theorem, 30
Krein theorem, 147

L

Lebesgue space, 7, 23-26, 68-70
Linear functional, 5, 72



Index

Linear transformation
bounded, 21
closable, 118
closure of, 118
self-adjoint, 119
symmetric, 119
Localization, of C*-algebras, 196

M

Matrix operator entries, 116-117
Maximal abehan subalgebra, 88
Maximal ideal space, 44

Metric, 2 ‘

Metric space, 2,

Multiplication operator, 87

Multiplicative linear functional, 32, 39

|
|

" N

Nehari theorem, 203
Net, 3

Cauchy, 3
Newman theorem, 173
Norm, 1

Hilbert space, 64
Normal element, in C*-algebra, 91
Normal operator, 84
Normed linear space, 4, 27
Numerical radius, 115
Numerical range, 115

O
Open mapping theorem, 22, 23
Operator, 81
Orthogonal, 65

Orthogonal complement, 71
Orthonormal, 65, 79
Orthonormal basis, 74-75
Outer function

in H*, 172,174

in H?, 157

P

Parallelogram law, 66

Partial isometry, 95

Piecewise continuous function, 176
Polar decomposition, 97, 98

Polar form, 95

Polarization identity, 64

215

Polynomials
analytic trigonometric, 51
trigonometric, 51
Positive element, of C*-algebra, 94, 117
Positive operator, 84
Projection, 86
Pure isometry, 173
multiplicity, 173
Putnam theorem, 120
Pythagorean theorem, 66, 73

Q

Quasicontinuous function, 176
Quasinilpotent operator, 133, 145
Quotient algebra, 43

Quotient C*-algebra, 139
Quotient space, 20

R

Radical ideal, of Banach algebra, 60
Radon-Nikodym theorem, 25, 80
Range, of operator, 83

Reducing subspace, 98

Reflexive Banach spaces, 28--30
Resolvent set, 41

Riemann-Stieltjes integral, 15

Riesz theorem, 18

Riesz (F. and M.) theorem, 154
Riesz functional calculus, 60
Riesz-Markov representatton theorem, 20
Riesz representation theorem, 72

S

Self-adjoint element, of C*-algebra, 91
Self-adjoint operator, 84
Self-adjoint subset, 46

Semisimple algebra, 60

Separating vector, 105

Silov boundary, 61, 164, 173

Silov theorem, 53

Similarity, of operators, 117
Spectral inclusion theorem, 179, 188
Spectral mapping theorem, 45
Spectral measure, scalar, 113
Spectral projection, 113

Spectral radius, 41

Spectral subspace, 113



216

Spectral theorem, 93
Spectrum, 41
operator, 85
Square root, of operator, 95
*.Homomorphism, 88, 110
State, 147
pure, 147
Stone-Cech compactification, 58, 59
Stone—Weierstrass theorem, 46
generalized, 50
Strong operator topology, 100
Subharmonic function, 174
Sublinear functional, 11
Subnormal operator, 183
Summability, tn Banach space, 4
Symbol, of Toeplitz operator, 184
Symmetric linear transformation, see Linear
transformation, symmetric
Szégo theorem, 175
Sz.-Nagy theorem, 173

T

Tensor product

of Banach spaces, 31

of Banach algebras, 62

of Hilbert spaces, 79

of operators on Hilbert spaces, 118
Toeplitz matrix, 177
Toeplitz operator, 177

Index

U

Uniform boundedness theorem, 29
Unilateral shift, 96, 117, 136

Unit ball, of Banach space, 10
Unitary element, of C*-algebra, 91
Unitary equivalence, of operators, 117
Unitary operator, 84, 117

V

von Neumann theorem, 173

von Neumann double commutant theorem
118

von Neumann-Wold decomposition, 173

Volterra integral operator, 132

2

W

W*-algebra, 101

w-topology, 29

w*-topology, 9, 30, 78

Weak topology, 9

Weak operator topology, 100
Weierstrass theorem, 48

Weyl theorem, 145

Weyl-von Neumann theorem, 146
Wwidom-Devinatz theorem, 204
Widom theorem, 195, 207
Wiener-Hopf operator, 200
Wiener theorem, 56

Wintner theorem, 183



