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Preface

No applied mathematician can be properly trained without some basic un-
derstanding of numerical methods, i.e., numerical analysis. And no scientist
and engineer should be using a package program for numerical computa-
tions without understanding the program’s purpose and its limitations.
This book is an attempt to provide some of the required knowledge and
understanding. It is written in a spirit that considers numerical analysis
not merely as a tool for solving applied problems but also as a challenging
and rewarding part of mathematics. The main goal is to provide insight
into numerical analysis rather than merely to provide numerical recipes.

The book evolved from the courses on numerical analysis I have taught
since 1971 at the University of Gottingen and may be viewed as a successor
of an earlier version jointly written with Bruno Brosowski [10] in 1974. It
aims at presenting the basic ideas of numerical analysis in a style as concise
as possible. Its volume is scaled to a one-year course, 1.e., a two-semester
course, addressing second-year students at a German university or advanced
undergraduate or first-year graduate students at an American university:.

In order to make the book accessible not only to mathematicians but
also to scientists and engineers, I have planned it to be as self-contained as
possible. As prerequisites it requires only a solid foundation in differential
and integral calculus and in linear algebra as well as an enthusiasm to see
these fundamental and powerful tools in action for solving applied prob-
lems. A short presentation of some basic functional analysis is provided in
the book to the extent required for a modern presentation of numerical
analysis and a deeper understanding of the subject.



vl Preface

An introductory book of a few hundred pages cannot completely cover
all classical aspects of numerical analysis and all of the more recent devel-
opments. I am willing to admit that the choice of some of the topics in the
present volume is biased by my own preferences and that some important
subjects are omitted.

[ was taught numerical analysis in the mid sixties by my thesis adviser,
Professor Erich Martensen, at the Technische Hochschule in Darmstadt.
Martensen’s perspective on teaching mathematics in general and numeri-
cal analysis in particular had a great and long-lasting ilnpact on my own
teaching. Therefore, this book is dedicated to Erich Martensen on the oc-
casion of his seventieth birthday.

I would like to thank Thomas Gerlach and Peter Otte for carefully read-
ing the book, for checking the solutions to the problems, and for a number
of suggestions for improvements. Special thanks are given to my friend
David Colton for reading over the book for correct use of the English lan-
guage. Part of the book was written while I was on sabbatical leave at the
Department of Mathematical Sciences at the University of Delaware and
the Department of Mathematics at the University of New South Wales. I
gratefully acknowledge the hospitality of these institutions. I also am grate-
ful to Springer-Verlag for being willing to take the economic risk of adding
yet another volume to the already huge number of existing introductions
to numerical analysis.

Gottingen, September 1997 Rainer Kress
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Glossary of Symbols

Sets and Spaces

IN set of natural numbers

Z set of integers

R set of real numbers

C set of complex numbers

|z| absolute value of a real or complex number z

(a,b) open interval (a,b) ;= {z € R:a <z < b}

la, b] closed interval [a,b] := {zr € R:a <z < b}

T conjugate of a complex number z

R" n-dimensional real Euclidean space

Cc" n-dimensional complex Euclidean space

Cla, b space of real- or complex-valued continuous
functions on the interval [a, b]

C™la, b space of m-times continuously
differentiable functions

L¢(a, b] space of real- or complex-valued
square-integrable functions

{ay,...,am) set of m elements q,,...,an,

UxV product U xV := {(z,y):x € U, y € V}
of two sets U and V

U\V diffcrenceset U\ V :={z €U :z ¢V}
for two sets U and V

U closure of a set U

F: X-Y a mapping with domain X and range in Y
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Glossary of Symbols

Vectors and Matrices

I = (331,...

A = (ajk)

Norms

Il
-1l
- 1l2
(' 1')

fL'T:(:L'[,...
T Z(EI,..

, Tn)

v &n

Maiscellaneous

ZTn) !

row vector in R™ or C”

with components x,,...,Tn,

the transpose of z, i.e., 2 column vector
the adjoint of «

m X n matrix with elements ajy

the transpose of A

the adjoint of A

the pseudo-inverse of A

the inverse of an n X n matrix A

the determinant of an n x n matrix A
the condition number of an n x n matrix A
the spectral radius of an n x n matrix A
the n x n identity matrix

diagonal matrix with

diagonal elements a,,...,a,

norm on a linear space

¢, norm of a vector, L, norm of a function
¢» norm of a vector, L, norm of a function
maximum norm of a vector or a function
scalar product on a linear space

element inclusion

set inclusion

union and intersection of sets
empty set

a quantity of order m

end of proof



1

Introduction

Numerical analysis is concerned with the development and investigation of
constructive methods for the numerical solution of mathematical problems.
This objective differs from a pure-mathematical approach as illustrated by
the following three examples.

By the fundamental theorem of algebra, a polynomial of degree n has
n complex zeros. The various proofs of this result, in general, are noncon-
structive and give no procedure for the explicit computation of these zeros.
Numerical analysis provides constructive methods for the actual computa-
tion of the zeros of a polynomial.

The solution of a system of n linear equations for n unknowns can be
given explicitly by Cramer’s rule. However, Cramer’s rule is only of the-
oretical importance, since for actual computations it is completely useless
for linear systems with more than three unknowns. An important task
in numerical analysis consists in describing and developing more practical
methods for the solution of systems of linear equations.

By the Picard-Lindelof theorem, the initial value problem for an ordinary
differential equation has a unique solution (under appropriate regularity as-
sumptions). Despite the fact that the existence proof in the Picard-Lindelof
theorem actually 1s constructive through the use of successive iterations, in
applied mathematics there is need for more effective procedures to numer-
ically solve the initial value problem.

In general, we may say that for the basic problems in numerical analysis
existence and uniqueness of a solution are guaranteed through the results
of pure mathematics. The main topic of numerical analysis is to provide
efficient numerical methods {or tne actual coinputation of the solution. In
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some cases these numerical methods are actually based on constructive
existence proofs.

By a constructive method we understand a procedure that for any pre-
scribed accuracy determines an approximate solution by a finite number
of computational steps. In general, the number of computational steps of
course will depend on the required accuracy. Only very few methods will
terminate with the exact solution after finitely many computational steps
as, for example, Gaussian elimination for solving a system of linear equa-
tions. In most cases, the numerical methods will only yield approximations
to the exact solution. As a typical example, the numerical evaluation of
a definite integral by the trapezoidal rule will, in general, provide only
an approximate value for the integral. In this context two main questions
arise, namely the question of estimating the error between the exact and
the approximate solution and the question of numerical stability.

A numerical method is useful only if it is possible to decide on the accu-
racy of the approximate solution, i.e., if reliable estimates on the diflerence
between the exact and approximate solution can be given. Therefore, be-
sides the development and design of numerical schemes, a substantial part
of numerical analysis is concerned with the investigation and estimation of
the errors occurring in these schemes. Here one has to discriminate between
the approximation errors, i.e., the errors that arise through replacing the
original problem by an approximate problem, and the roundoft errors, i.e.,
the errors that occur through the fact that in the actual computation, in
general, real numbers are replaced by floating-point decimal numbers with
a fixed number of digits.

As far as stability is concerned, one has to distinguish between properly
and improperly posed problems. A problem is called properly posed or
well-posed if the solution depends continuously on the data, i.e., if small
changes in the data cause only small changes in the solution. Otherwise, the
problem is called improperly posed or ill-posed. Numerical approximations
never can circumvent the improper posedness of a problem. However, it is
desirable to control the effects of the ill-posed nature of a problem by an
adequate choice of the numerical method. On the other hand, for properly
posed problems efforts have to be made not to destroy the well-posedness
by a poorly designed numerical approximation.

To the author’s taste, the topic of stability and properly posedness is
more challenging from a mathematical perspective than the rather unin-
spiring topic of roundoff errors. Therefore, in this book emphasis is given
to ill-posedness and the related issue of ill-conditioning, whereas the dis-
cussion of roundoff errors is given only cursory attention.

The basic problems of numerical analysis are as old as mathematics it-
self, and for a number of problems there exist classical approaches such as
Newton’s method for the solution of nonlinear equations, Gaussian elimi-
nation for the solution of systems of linear equations, Gauss-Seidel and
Jacobi iterations for linear sysi.ius. Lagrarge interpolation for the ap-
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proximation of arbitrary functions by polynomials, Simpson’s rule for nu-
merical integration, and Euler’s method for the solution of initial value
problems. However, the main breakthrough of numerical methods is con-
nected with the advances in computer technology made within the last
four decades. Only the electronic computer allows one to perform exten-
stve numerical computations without error and within a reasonable amount
of time. Hence, progress in numerical analysis and computer science have
always been closely interrelated in recent history.

This book will introduce the reader to the following branches of numerical
analysis:

Solution of systems of linear and nonlinear equations,

Numerical solution of matrix eigenvalue problems,

Interpolation and numerical integration,

Numerical solution of initial and boundary value problems for differ-

ential equations,

Numerical solution of integral equations.
Of course, in an introductory exposition of only about three hundred pages
it 1s impossible to cover all of these areas exhaustively. Therefore, the reader
should not expect a comprehensive treatment of all existing numerical pro-
cedures. As already pointed out in the preface, our goal will be to guide
the reader toward the basic ideas and questions in each of the above top-
ics with an emphasis on the analysis and the understanding of numerical
methods rather than merely their description. In order to achieve this,
we will try to illustrate general principles by way of considering the main
and most important methods, and we will leave aside discussions of more
claborate details of advanced methods and the consideration of lengthy
subtleties for exceptional cases. Given the rapid development of numerical
methods, a reasonable introduction to numerical analysis has to confine
itself to presenting a solid foundation by restricting the presentation to the
basic principles and procedures.

The book includes a chapter on the necessary basic functional-analytic
tools for the solid mathematical foundation of numerical analysis. These
are indispensable for any deeper study and understanding of numerical
methods, in particular for differential equations and integral equations.

The limit of space and the taste and restrictions in experience of the
author have caused the omission of some important topics such as linear
and nonlinear optimization, approximation theory, and parallel computing,
among others. On the other hand, with separate chapters on the solution
of ill-conditioned systems of linear equations and the numerical solution
of integral equations two topics are included that do not appear in most
introductions to numerical analysis. They are included because of their im-
portance and in order to indicate to the reader where the author’s mathe-
matical research interests lie.

A study of numerical analysis remains incomplete without the numer-
ical experience of individually impiementing che numerical algorithms. It
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is very important to build up a familiarity with numerical methods by ac-
tually seeing the numbers working. For example, one has to complement
the theoretical understanding of the method of successive approximations
by the experience of actually running the numerical schemes. After hav-
ing understood the basic principles of a numerical method, it 1s important
to develop the ability to actually implement the method numerically and
work with it. In this sense the reader is encouraged to test on the computer
numerically all of the algorithms presented in this book.

The organization of the book is as follows. The first part of the book,
Chapters 2 to 7, covers numerical linear algebra and is concerned with
the solution of systems of linear and nonlinear equations. The necessary
functional-analytic tools will be presented in Chapter 3. The second part
of the book, Chapters 8 to 12, covers numerical analysis and is concerned
with interpolation, numerical integration, and the numerical solution of dif-
ferential and integral equations. At the reader’s convenience it is possible to
study most of the second part of the book before reading the first part, with
the exception of the chapter on functional analysis. Each chapter concludes
with a set of problems. These are intended as exercises and applications of
the material given in the chapter.

The references at the end of the book are intended as a possible guide to
some of the literature covering the topics of the individual chapters more
exhaustively. The list of references is not meant as a bibliography on the
vast number of introductions to numerical analysis competing with this
book. However, we explicitly encourage the reader to explore the libraries
and consult soine of the other volurnes on numerical analysis in order to

develop a broad perspective.



2

Linear Systems

The solution of systems of linear equations arises in various parts of mathe-
matics and is of central importance in numerical analysis. To illustrate the
significance of linear systems, we will start this chapter by providing some
examples of their occurrence as part of the numerical solution of differential
and integral equations. After seeing the examples, we will proceed with the
solution of systems of linear equations. In principle, we have to distinguish
between two groups of methods for the solution of linear systems:

1. In the so-called direct methods, or elimination methods, the exact solu-
tion, in principle, is determined through a finite number of arithmetic
operations (in real arithmetic leaving aside the influence of roundoft
errors).

2. In contrast to this, iterative methods generate a sequence of approx-
imations to the solution by repeating the application of the same
computational procedure at each step of the iteration. Usually, they
are applied for large systems with special structures that ensure con-
vergence of the successive approximations.

A key consideration for the selection of a solution method for a linear
system is its structure. In some problems, the matrix of the linear system
may be a full matrix, i.e., it has few zero entries. And in other problems,
the matrix may be very large and sparse, i.e., only a small fraction of the
entries are different from zero. Roughly speaking, direct methods are best
for full matrices, whereas iterative methods are best for very large and

sparse matrices.
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We will begin our treatment of linear systems by presenting the best-
known and most widely used direct method, which is attributed to Gauss,
since it is based on considerations published by Gauss in 1801 in his Dzs-
quisitiones Arithmeticae. The chapter concludes with a brief description of
elimination by orthonormal decomposition.

In this book, for an m X n matrix A = (ajx), 7 =1,...,m, k=1,... n,
with real or complex coefficients, A7 shall always denote the transposed
matrix; l.e., AT is the n x m matrix with entries

T _ . -
0 =, k=1,...,n,j5=1,...,m

. : . —T .
By A* we denote the adjoint of the matrix A;i.e., A* = A is the transpose
of the matrix with complex conjugate entries. In particular, the transpose
and adjoint of a row vector are column vectors and vice versa.

2.1 Examples for Systems of Equations

Example 2.1 We consider the discretization of the boundary value prob-
lem for the ordinary differential equation

—u'(z) = f(z,u(z)), z€]0,1], (2.1)
with boundary condition
u(0) = u(1) = 0. (2.2)

Here, f : [0,1] xR — IR is a given continuous function, and we are looking
for a twice continuously differentiable solution u : [0,1] = IR. Boundary
value problems of this type occur, for example, in the mathematical treat-
ment of vibrations of a string or a rod and in the solution of heat conduction
problems. They often also arise in the solution of problems like the following
Example 2.2 after applying separation of variables. The theory of ordinary
differential equations (see [12]) provides conditions on the right-hand side f
of (2.1), ensuring existence and uniqueness of a solution u to the boundary
value problem (2.1)-(2.2) (for the case of linear difterential equations see

also Chapter 11).
For the approximate solution we choose an equidistant subdivision of the

interval [0, 1] by setting
Z;j =qh, 7=0,...,n4+1,

where the step size is given by h = 1/(n + 1) with n € IN. At the internal
grid points zj, 7 = 1,...,n, we replace the differential quotient in the
differential equation (2.1) by the difference quotient

1

u'(zj) = oS (o) = 2ufs,) +u(zio)]
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to obtain the system of equations

1 :
_;1_2' [uj—l _2uj+uj+l]=f(mj1uj)1 lea"'ana
for approximate values u; to the exact solution u(x;). This system has to
be complemented by the two boundary conditions ug = u,4, = 0. For an

abbreviated notation we introduce the n X n matrix

2 -1
-1 2 -1
1 -1 2 -1
-1 2 -1
-1 2

and the vectors U = (uy,...,un)" and F(U) = (f(z1,w1),--., f(zn, un))7.
Then our system of equations, including the boundary conditions, reads

AU = F(U). (2.3)

For obvious reasons, the above matrix A is called a tridiagonal matrix, and
the vector F' is diagonal; i.e., the jth component of F' depends only on
the 7th component of u. If (2.1) is a linear differential equation, i.e., if f
depends linearly on the second variable u, then the tridiagonal system of
equations (2.3) also is linear.

The following two questions will be addressed later in the book (see

Chapter 11):

1. Can we establish existence and uniqueness of a solution to the system
of equations (2.3) for sufficiently small step size h, provided that the
boundary value problem (2.1)-(2.2) itself is uniquely solvable?

2. How large is the error between the approximate solution u; and the
exact solution u(z;)? Do we have convergence of the approximate
solution towards the exact solution as h — 07

At this point we would like only to point out that the discretization of

boundary value problems for ordinary differential equations leads to sys-
tems of equations with a large number of unknowns, since we expect that
in order to achieve a reasonably accurate approximation we need to choose
the step size h sufficiently small. O

Example 2.2 We now consider the discretization of the boundary value
problem for the elliptic partial differential equation

- Au(z) = f(z,u(z)), z€D, (2.4)
with Dirichlet boundary condition

ule) =0, z¢cob. (2.5)
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Here, D C IR* is 2 bounded domain, A denotes the Laplacian

0%y O*u
Py = T8 98
=8 T a2

f:D xR — IR is a given continuous function, and we are looking for
a solution u : D — IR that is continuous in D and twice continuously
differentiable in D. Boundary value problerns of this type arise, for example,
in potential theory and in heat conduction problems. The theory of elliptic
partial differential equations (see [24]) provides conditions on the given
function f that ensure existence and uniqueness of a solution wu.

For describing a numerical approximation method we restrict ourselves
to the case of the square D = (0,1) x (0,1). We choose an equidistant
quadratic grid with grid points

= (th,jh), 1,7=0,...,n+1,

where the step size again is given by h = 1/(n+1) with n € IN. Analogously
to the previous example, at the internal grid points z;;, ¢,7 = 1,...,n, we
replace the Laplacian by the Laplace difference operator

Au(z; ;) = 'hl—2 [u(zit1,5) + u(ziorj) +ulzi i) + u(zij-1) — du(zij))

Obviously, for each point z;;, this difference operator has nonvanishing
weights only at the four neighboring points on the vertical and horizontal
line through z;;. This observation also illustrates why the set of grid points
with nonvanishing weights is called the star associated with the Laplace
difference operator. Using this difference approximation leads to the system
of equations

'G) [4uz] Ui, — U1, — Ui 41 — ui.j—l] — f(xijauij)a zaj — 11' -, 1,

for approximate values u;; to the exact solution u(z;;). This system has to
be complemented by the boundary conditions

uoijzun‘}'l.jzoi ‘.=01---1n+1,
at the grid points on the vertical parts and
uj 0 =uUint1 =0, 2=1,...n,

at the grid points on the horizontal parts of the boundary 0D. In order to
write this system in matrix formn we rearrange the unknowns by ordering
them row by row and setting

(73] :'U“, U = U9y, .o Uy == Laey Vit =ul2:---:um — unna
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where m = n?. Furthermore, we introduce an m X m matrix A in the form
of an n x n block tridiagonal matrix

B I
-1 B -I
1 -I B -I
AZ'EE - . .
-I B -I
-1 B

where I denotes the n x n identity matrix and B is the n x n tridiagonal
matrix

4 -1
-1 4 -1
B — -1 4 -1
-1 4 -1
-1 4

After introducing the vectors U and F(U) analogously to Example 2.1, we
can rewrite the system of equations in the short form

AU = F(U), (2.6)

which also includes the boundary conditions.

Again we postpone the questions of unique solvability of the system (2.6)
and the problem of convergence and error estimates for later parts of the
book (see Chapter 11). Here, we conclude the example with the observation
that the system has n? unknowns, where n will be fairly large if the step
size h is sufficiently small in order to achieve a reasonably accurate approxi-
mation to the solution of the boundary value problem. These large systems
of equations arising in the discretization of partial differential equations
call for efhicient solution methods. O

Example 2.3 Consider the linear integral equation

p(z) — /0 K(z,y)e(y)dy = f(z), = €][0,1],

where K : [0,1] x [0,1) = IR and f : [0,1] = IR are given continuous func-
tions and where we seek a continuous solution ¢ : [0, 1] = IR. Such integral
equations either arise directly in the solution of applied problems, or more
often they occur indirectly in the solution of boundary value problems for
differential equations. If the homogeneous form of this equation, i.e., the
integral equation with the right-hand side f = 0, admits only the trivial
solution ¢ = 0, then for each f the inhomogeneous integral equation has a
unique solution ¢ (see Chapier i2).
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For the numerical approximation we replace the integral by the rectan-
gular sum

/0 K(z,y)e(y) dy = ;1; Y K(z,zi)p(zk)
k=)

with equidistant grid points z, = k/n, k = 1,...,n. If we require the
approximated equation to be satisfied only at the grid points, we arrive at
the system of linear equations

] — .. .
;== Kz zioe = f(zj), i=1....n
k=1

for approximate values ¢; to the exact solution ¢(z;). As in the preced-
ing examples, we postpone the question of unique solvability of the linear
system and the convergence and error analysis (see Chapter 12). O

Example 2.4 In this last example we will briefly touch on the method of
least squares. Consider some (physical) quantity © depending on time ¢ and
a parameter vector a = (ay,...,a,)’ € R" in terms of a known function

u(t) = f(t;a).

In order to determine the values of the parameter a (representing some
physical constants), one can take m measurements of u at different times
ty,...,tm and then try to find a by solving the system of equations

If 7n = n, this system consists of n equations for the n unknowns aq,,...,a,.
However, in general, the measurements will be contaminated by errors.
Therefore, usually one will take m > n measurements and then will try to

determine a by requiring the deviations

u(t,) — f(tj;a), 73=1,...,m,

to be as small as possible. Usually the latter requirement is posed in the
least squares sense, i.e., the parameter a is chosen such that

lead to the normal equations

af(tln a)

l_,.! (l

Z[U te) — f(ty; a))l
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for the method of least squares. These constitute a system of n, in general,
nonlinear equations for the n unknowns a,,...,a,. O

At this point, the reader should be convinced of the need for effective
methods for solving large systems of linear and nonlinear equations and be
willing to be introduced to such methods in the subsequent chapters. We
also wish to note that the discretization of differential equations leads to
sparse matrices, whereas for the least squares problem and the discretiza-
tion of integral equations one is faced with full matrices.

2.2 Gaussian Elimination

We proceed with describing the Gaussian elimination method for a system
of linear equations

Az = y.

Here A is a given n x n matrix A = (a;x) with real (or complex) entries, y
a given right-hand side y = (y1,...,¥n)? € IR" (or C"), and we are looking
for a solution vector z = (z1,...,z,)Y € IR" (or C™"). More explicitly, our
system of equations can be written in the form

n
Zajkﬂfk:yja =111n1
k=1
that 1s,
anz), + a2 + -+ + Q1pnZTp = Y
as1I) + QooZ9 + - 4 QopZTp = Y2
An) T} + QpoTo + - 4+ AQupTp = Un-

Assuming that the reader is familiar with basic linear algebra, we recall the
following various ways of saying that the matrix A is nonsingular:

1. The inverse matrix A~! exists.

2. For each y the linear system Az = y has a unique solution.

3. The homogeneous system Az = ( has only the trivial solution.

4. The determinant of A satisfies det A # 0.

5. The rows (columns) of A are linearly independent.

The very basic idea of the Gaussian elimination method is to use the first
equation to eliminate the first unknown from the last n — 1 equations, then
use the new second equation to eliminate the second unknown from the last
n — 2 equations, etc. This way, by n — 1 such eliminations the given linear
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system is transformed into an equivalent linear system that is of trieanguler

form
biiz) + byozo + + binZTn = 2)

|
X
oo

booxo + e + bonZTn =

|
N
-~

|

bn—l,n—lxn—l + bn—l,nIn

bnnmn = 2n

Recall that two linear systems are called equivalent if every solution of one
is a solution of the other. The triangular system can be solved recursively
by first obtaining z,, from the last equation, then obtaining z,,_, from the
second to last equation, etc. This procedure is known as backward substi-
tution. Explicitly, it is described by z,, = z,/b,, and

1 n
Ty = —— (zm— Z bm,k:ck), m=n—-1n-2,...,1.

b
mm k=m+1

We begin by considering a nonsingular matrix A. To eliminate the un-
known z,, for j = 2,...,n we multiply the first equation by a;, /a), and
subtract the result from the jth equation. For this we have to require that
a;y # 0. Since we assume the matrix to be nonsingular, this can be achieved
by reordering the rows or the columns of the given system. This procedure
leads to a system of the form

b11$1 + b12$2 -+ + blnxn = 2]
2 2 2
o + oo+ z, =y
af?z):cg +- + ag,—!:cn p— yg)

with the new coefficients given by

blk = G(IL), k-:l,...,n,
(1) (1)

(2) (1) @10 L —

ajk T ajk - ) .?1 T &y y 1,

1
a'gl)
and the new right-hand sides given by

(1 (2) (1) a('ll)yil)
2=y, Yy, =y L

@)
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Here, for the coefficients and right-hand sides of the original system we

have set a.(i:c) = aj; and yﬁ-l) = Y-

Proceeding in this way, the given nxn system for the unknowns z,, ..., z,
1S equivalently transformed into an (n—1) x (n—1) system for the unknowns
T2,...,Tn.- Adding a multiple of one row of a matrix to another row does
not change the value of its determinant. Therefore, in the above elimina-
tion the determinant of the system remains the same (with the exception
of a possible change of its sign if the order of rows or columns is changed).
Hence, the resulting (n — 1) x (n — 1) system for z2,...,2, again has a
nonvanishing determinant, and we can apply precisely the same procedure
to eliminate the second unknown z, from the remaining (n — 1) x (n — 1)
system.

By repeating this process we complete the forward elimination, by which
the system of linear equations

(1) (1)

1 1
oYz, + al, (1) (1)

o + - +aln$n =y1

0(211)371 T aé'g’mz R aéln):cn = yé”

] ] ] 1
0511)331 + a£12)$2 + -+ ag:r{l'n = yit)

with a nonsingular matrix A = (aﬁ)) is equivalently transformed into a
triangular system

binzy + byexe + + b1nZn

]
)

baoTo + v +  banz,

|
N
N

bn—l,n—l-‘rn—l + bn—l,nmn = Zn-1

bﬂﬂxﬂ — zﬂ
by n — 1 recursive elimination steps of the form
(m) (m)
(m+1) _(m)  Zjm Cmk _

aj’;‘ = Q0 — oy 1, k=m+1,...,n,

Amm
m=1,...,n—1
(m)_(m)
a" Uﬂ’l
y§m+l) - — y.,("m) —_— _.J_'.Ti.: ...... , . J; T - 1, . .’n’

ame
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The coefficients and the right-hand sides of the final triangular system are
given by

bjk::ﬂ’_(j-i)a k=_’i,--.,n,j=1,...,n,

and )
Zj = g{jj' , jf = ].,... .4 TL.

The condition afnm,,)‘ # 0, which is necessary for performing the algorithm,

always can be achieved by a reordering of the rows or columns, since oth-
erwise the matrix A would not be nonsingular.

We would like to compress the operations of one elimination step into
the following scheme

where the rectangle illustrates the remaining part of the matrix and the
right-hand side for which the elimination has to be performed. Here, a
stands for the elimination element, or pi:vot element; the elements b In
the elimination row remain unchanged; the elements ¢ of the elimination
column are replaced by zero (with the exception of the pivot element a);
and the remaining elements d are changed according to the rule

b
d—)d——c-.

a

We note that in computer calculations, of course, the new values for the
coefficients of the matrix and the right-hand sides can be stored in the
locations held by the old values.

More explicitly, the entire Gaussian elimination can be written in the
following algorithmic form.

Algorithm 2.5 (Gaussian elimination)

1. Forward elimination:
Form=1 ...,n—1 do

forj=m+1,...,n do

aAima
fork=m+1,...,n do ajx := ajx — —Jm7mk
Omm
L QiU
Yji = ¥Yj — T

Qinin
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2. Backward substitution:

Form=nn-1,...,1do z;m := Ym
fork=m+1,...,ndo z,, := T,y — Q) T
Lm
Tyn 1=
amm

If the matrix A is singular and has rank r, the climination procedure
will terminate after r steps. The matrix of the remaining (n — ) x (n — )
system for the unknowns z,,,, ..., z, is the zero matrix, because otherwise
the rank of A would be different from r. Hence, in this case the given linear
system is solvable if and only if the right-hand sides after r elimination
steps satisfy

2rp1 =---=2, =0.

The solutions can be found from the triangular system by arbitrarily choos-
INg Tr41,...,Zn and then recursively determining z,, ..., zg. This way we
obtain the (n — r)-dimensional solution manifold.

In order to control the influence of roundoff errors we want to keep the
quotient aﬁ-’;) /ain’",,’, small; 1.e., we want to have a large pivot element ).

Therefore, instead of only requiring asm) # 0, in practice, either complete

pwoting or partial row or column pivoting is employed. For complete piv-
oting, both the rows and the columns are recordered such that ams has
maximal absolute value in the (n —m +1) x (n —m 4+ 1) matrix remaining
for the mth forward elimination step. In order to minimize the additional

computational cost caused by pivoting, for row (or column) pivoting the

m .
rows (or columns) are reordered such that arm) has maximal absolute value

in the elimination column (or row), i.e., in the mth column (or row). Of
course, in the actual implementation of the Gaussian elimination algorithm
the reordering of rows and columns need not be done explicitly. Instead,
the interchange may be done only implicitly by leaving the pivot element
at its original location and keeping track of the interchange of rows and
columns through the associated permutation matrix.

The following examnple illustrates that partial pivoting does not always
prevent loss of accuracy in the numerical computations.

Example 2.6 We consider the system

z) + 200z2 = 100

1

I + I

with the exact solution z, = 100/199 = 0.502..., zo = 99/199 = 0.497....
For the following computations we usce two-decimal-digit floating-point
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arithmetic. Column pivoting leads to a;, as pivot element, and the elimi-
nation yields

I + 200:32 = 100

— 200$2 — —99,

since 199 = 200 in two-digit floating-point representation. From the second
equation we then have o = 0.50 (0.495 = 0.50 in two decimal digits), and
from the first equation it finally follows that z, = 0.

However, if by complete pivoting we choose aj2 as pivot element, the

elimination leads to
1 + 200z, = 100

1 = 05

(0.995 = 1.00 in two decimal digits), and from this we get the solution
z, = 0.5, zo = 0.5 (0.4975 = 0.50 in two decimal digits), which is correct
to two decimal digits. O

Since complete pivoting is more costly than partial pivoting, in practical
computations one can try to overcome the disadvantages of partial pivoting
by scaling the matrix. This means that if B = DyAD,, in order to obtain
the solution z of Az = y we first solve Bz = D,y for z and then determine
z from z = D»z. Here D, and D, are some diagonal matrices chosen such
that for the matrix B the row and column sums of the absolute values are
approximately equal. A diagonal matriz D = (djx) is a matrix with the
ofl-diagonal elements equal to zero; i.e., djx = 0 for j # k. For a detailed
discussion of scaling we refer to [27]. Unfortunately, there is no known
general procedure for such scaling, i.e., for choosing the diagonal matrices
D] and Dg.

For an estimate of the computational cost of Gaussian elimination we
perform a count of the number of multiplications. By a,, we denote the
number of multiplications that are required for solving a triangular n x n
system by back substitution. Obviously, for «,, we have the recurrence
relation

Qn, = Qp-) + N,

since we need n multiplications to obtain z; from the first equation after
having already determined zo,..., z,. Hence, we have

an:zk: 'n(n2+1) |
k=1

since a; = 1. By (3, , we denote the number of multiplications nceded
for the forward elimination simultaneously for r different right-hand sides.
Here we have the recurrence relation

ﬁn,r == [n I (e - ’)Ul — 1),
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since the elimination of the unknown z; requires n + r multiplications for
each row of the n — 1 rows. From this it follows that

= n3 n
Bn,rzg(k+r)(k_l)=?_§+

n(n — 1)r

2

because 3, . = 0. Adding ra, and (,, , we obtain the following result.

Theorem 2.7 Gaussian elimination for the simultaneous solution of an
n x n system for r different right-hand sides requires a total of

3
n s T

multiplications.

The computational cost, counting only the multiplications, in Gaussian
elimination is n3 /34 O(n?). It is left to the reader to show that the number
of additions is also n°/3 + O(n?) (see Problem 2.7). Doubling the number
of unknowns increases the computation time by a factor of eight. Assuming
1 usec = 10~%sec per addition and multiplication, i.e., on a computer with
one million floating point operations per second, the solution of a system
with n = 10° requires approximately ten minutes, and with n = 10% it
requires approximately six days. This illustrates dramatically that for the
solution of large linear systems iterative methods, which we will study in
Chapter 4, are better suited than direct methods. Row or column pivoting
leads to an additional cost proportional to n?, whereas complete pivoting
adds costs proportional to n3. For the latter reason, complete pivoting is
used only rarely in practical computations.

The Gaussian algorithm also allows the computation of the determinant
and the inverse of a matrix A. The determinant det A is simply given by the
product of the diagonal elements in the triangular matrix obtained through
the elimination procedure. If the determinant is computed using expansions
by submatrices, then the operational count is n! multiplications, as com-
pared to n°/3 for Gaussian elimination. This illustrates why Cramer’s rule
for the solution of linear systems is only a theoretical mathematical tool
and not a tool for practical computations.

The inverse of a matrix is obtained by solving the linear system simul-
taneously for the n right-hand sides given by the columns of the identity
matrix, i.e., by solving the n systems

AI,“'—:ei, i=1,...,n,

where e; is the ith column of the identity matrix. Then the n solutions
Z1....,Zn will provide the columns of the inverse matrix A~!. We would
like to stress that one does not want to solve a system Az = y by first
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computing A~! and then evaluating £ = A~!y, since this generally leads
to considerably higher computational costs.

The Gauss-Jordan method is an elimination algorithm that in each step
eliminates the unknown both above and below the diagonal. The com-
plete elimination procedure transforms the system equivalently into a di-
agonal system. The multiplication count shows a computational cost of
order n°/2 + O(n?), i.e., an increase of 50 percent over Gaussian elimina-
tion. Hence, the Gauss Jordan method is rarely used in applications. For
details we refer to [26, 27].

2.3 LR Decomposition

In the sequel we will indicate how Gaussian elimination provides an LR
decomposition (or factorization) of a given matrix.

Definition 2.8 A factorization of a matriz A into a product
A=LR

of a lower (left) triangular matriz L and an upper (right) triangular matriz
R s called an LR decomposition of A.

A matrix A = (ajx) is called lower triangular or left triangular if aj, =0
for j < k; it is called upper triangular or right triangular if ajx = 0 for
7 > k. The product of two lower (upper) triangular matrices again is lower
(upper) triangular, lower (upper) triangular matrices with nonvanishing
diagonal elements are nonsingular, and the inverse matrix of a lower (upper)
triangular matrix again is lower (upper) triangular (sce Problem 2.14).

Theorem 2.9 For a nonsingular matriz A, Gaussian elimination (without
reordering rows and columns) yields an LR decomposition.

Proof. In the first elimination step we multiply the first equation by a;, /a,
and subtract the result from the jth equation; i.e., the matrix A, = A is
multiplied from the left by the lower triangular matrix

1

(lnl
- 1
ap

The resulting matrix A, = L) A, is of the form

4 / 11 %k
4 y v-— -:
i \ O T ’
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where A, _, is an (n—1) x (n —1) matrix. In the second step the same pro-
cedure is repeated for the (n —1) x (n— 1) matrix A,,_,. The corresponding
(n — 1) x (n — 1) elimination matrix is completed as an n x n triangular
matrix Lo by setting the diagonal element in the first row equal to one. In
this way, n — 1 elimination steps lead to

L,.\---L)A=R,

with nonsingular lower triangular matrices L,,..., L,_) and an upper tri-
angular matrix R. From this we find

A=LR,
where L denotes the inverse of the product L,,_,--- L;. O

We wish to point out that not every nonsingular matrix allows an LR
decomposition. For example,
0 1
1 0

has no LR decomposition. However, since Gaussian elimination with row
reordering always works, for each nonsingular matrix A there exists a per-
mutation matrix P such that PA has an LR decomposition (see Problem

2.16). A permutation matriz is a matrix of the form P = (ey),--.,€epn))
where e),..., e, are the columns of the identity matrix and p(1),...,p(n)
iIs a permuation of 1,...,n.

Recall that an n xn matrix A is called symmetric if it has real coefhicients
and A = AT. A symmetric matrix A is called positive definite if z7 Az > 0
for all z € IR™ with = # 0. Positive definite matrices have positive diagonal
elements (see Problem 2.10), and therefore a reordering of rows and columns
1s not necessary for Gaussian elimination (for pivoting, the largest diagonal
element is chosen). It can be shown (see Problem 2.13) that symmetry and
positive definiteness are preserved throughout the elimination if diagonal
elements are taken as pivot elements. Therefore, for symmetric positive
definite matrices the LR decomposition is always possible. If A = LR, then
we have also A = AT = RTLT and from Problem 2.15 we can deduce that
L can be normalized such that A = LL?T Such a decomposition is used
in the Cholesky method for the solution of linear systems with symmetric
positive definite matrices. Because of symmetry, the computational cost
for the Cholesky method is n3/6 4+ O(n?) multiplications and n*/6 + O(n?)
additions. For details we refer to [26, 27|.

2.4 QR Decomposition

We conclude this chapter by describing a second elimination method for
linear systems, which leads L6 a ()i decomposition.
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Definition 2.10 A factorization of a matriz A into a product
A=QR

of a unitary matriz () and an upper (right) triangular matriz R is called a
QR decomposition of A.

We recall that a matrix () is called unitary if

QR =Q° Q=1

The product of two unitary matrices again is unitary.

In terms of the columns of the matrices A = (a;,.-.,a,) and
@ = (q1,--.,9n) and the coefficients of R = (r,;), the QR decomposition
A = QR means that

k
A = Zriini k= 11-' -y 1. (2'7)

Hence, the vectors a,,...,a, of C" have to be orthonormalized from the
left to the right into an orthonormal basis q,. .., gn. This, for example, can
be achieved by the Gram-Schmidt orthonormalization procedure (see The-
orem J.18). However, since the Gram-Schmidt orthonormalization tends to
be numerically unstable, we describe the QR decomposition by Householder
matrices.

Definition 2.11 A matrizx H of the form
H=1-2uw",

where v is column vector with v v = 1, i.e., a unit vector, is called a
Householder matrix.

Remark 2.12 Householder matrices are unitary and satisfy H = H”.
Proof. We compute
H*=1I"-2(w*)" ' =1-2vw*"=H
and
HH' =H H = (I —2v0")(1 —2v0°") =1 — 4uv* + dvv*vv” = 1,

where we use that v"v = 1. D

Geometrically a Householder matrix corresponds to reflection across the
plane through the origin orthogonal to v. To see this we write

I = Qu .L'Ty
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with the component vv*z of £ € C" in the v-direction and a component y
orthogonal to v. Then we obtain

Hx=z-2vwz=—-vwaz+vy;

1.e., Hz has the opposite component —wvv*x in the v-direction and the
same component y orthogonal to v. Because of this property, Householder
matrices are also called elementary reflection matrices.

We now describe the elimination of the unknown x; by multiplying A
from the left by a Householder matrix H, = I — 2v,v;. By a, we denote
the first column of A and by e, the kth column of the identity matrix; in
particular, e, = (1,0,...,0)*. Then the first column b, of the product H; A
IS given by

bl = HlAel = Hlal =Qa — 2'01'0;(11.

We would like to achieve that b; = oe, with o # 0. Hence, except for the
first row, v, must be a multiple of a;. Therefore, we try

u; = a) F oe (2.8)

with

Then we have

u';ul = 2((1;(11 F |anl\/a'{a1 )

» | 1 »
u;a) = q,a) F |a11| a'{al = §ulu1.
Without loss of generality we may assume that /aja; — |a11| > 0, since
otherwise we would have that a; = a),ey, i.e., that the first column already

has the required form. Therefore, if we finally choose

and

Uj
U1 — - '

then v, is a unit vector, and as requested we have

b] =qa — ulu'l'al =a —u = toe;.

The remaining columns b, = H; Ae; are obtained from the columns a; of
A by

Uy Qg
U,y

by = HyAer = Hyar = ¢, ~ 2uyvjag == ap - u;, k=2,...,n.
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From the two possible signs in (2.8) the positive sign yields the numerically
more stable variant.

The same procedure is now repeated for the remaining (n — 1) x (n — 1)
matrix. The corresponding (n — 1) x (n — 1) Householder matrix has to be
completed as an n x n Householder matrix. In general, if Ax 1s ann X n

matrix of the form
_( B
Ak = ( 0 An-s )

with a k x k upper triangular matrix Rx and an (n — k) x (n — k) matrix
A _x, we apply the Householder transformation described above with the
first column of A, _x. With the corresponding (n — k) x (n — k) Householder
matrix H,_i the n X n matrix

(L 0
Hk_(o ﬁn—k)

yields an n x n—-Householder matrix Hj; that leaves the first £ columns
in triangular form and, in addition, transforms the (k 4+ 1)st column into
triangular form. In this way, after at most n — 1 steps, we arrive at

H, , --HHA=R

with Householder matrices H,, ..., H,—) and an upper triangular matrix
R. From this we obtain

A=QR
with the unitary matrix
Q= (Hn-y---H)" = Hy---Hp_y.
We summarize our result in the following theorem.

Theorem 2.13 To each n x n matrix a QR decomposition can be obtained
through n — 1 Householder transformations.

The elimination by QR decomposition via Householder matrices can be
considered as an alternative to Gaussian elimination, since it does not need
pivoting. However, the operation count shows that 2n°/3 + O(n?) multi-
plications are required (see Problem 2.18), i.e., twice the cost of Gaussian
elimination, and the added expense of partial pivoting in Gaussian elim-
ination does not close this gap. Hence, QR decomposition is rarely used
for the solution of linear systems. But later in this book we will see that
QR decomposition is an essential part of one of the best algorithms for
numerically computing the eigcovaives o7 a matrix (see Section 7.4).
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Problems

2.1 Solve the linear system

2zy + 4xz2 + zx3 = 4
2y + 6z2 — z3 =10
Ty + 92 + 2z3 = 2

by Gaussian elimination.

2.2 Write a computer program for the solution of a system of linear equations
by Gaussian elimination with partial pivoting and test it for various examples.
You will need this code as part of other numerical algorithms later in this book.

2.3 Describe pivoting in Gaussian elimination by using permutation matrices.

2.4 Let A and B be two n x n matrices. Show that if AB is nonsingular, then
A and B are nonsingular.

2.5 Let A, B,C, and D be n x n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>