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Preface

Kurt Hensel (1861-1941) discovered or invented the p-adic numbers! around the
end of the nineteenth century. In spite of their being already one hundred years
old, these numbers are still today enveloped in an aura of mystery within the
scientific community. Although they have penetrated several mathematical fields,
number theory, algebraic geometry, algebraic topology, analysis, . .., they have
yet to reveal their full potential in physics, for example. Several books on p-adic
analysis have recently appeared:

FE Q. Gouvéa: p-adic Numbers (elementary approach);
A. Escassut: Analytic Elements in p-adic Analysis, (research level)

(see the references at the end of the book), and we hope that this course will
contribute to clearing away the remaining suspicion surrounding them. This book
is a self-contained presentation of basic p-adic analysis with some arithmetical
applications.

% % *

Our guide is the analogy with classical analysis. In spite of what one may think,
these analogies indeed abound. Even if striking differences immediately appear
between the real field and the p-adic fields, a better understanding reveals strong
common features. We try to stress these similarities and insist on calculus with the
p-adics, letting the mean value theorem play an important role. An obvious reason
for links between real/complex analysis and p-adic analysis is the existence of

The letter p stands for a fixed prime (chosen in the list 2, 3, 5, 7, 11, ... ) except when explicitly
stated otherwise.
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an absolute value in both contexts.2 But if the absolute value is Archimedean in
real/complex analysis,

if x # 0, for any y there is an integer n such that |nx| > |y,
it is non-Archimedean in the second context, namely, it satisfies

Inxf=1x+x+---+x| <|x|.
——

n terms

In particular, |n] < 1 for all integers n. This implies that for any r > O the subset
of elements satisfying |x] < r is an additive subgroup, even a subring if r = 1.
For such an absolute value, there is (except in a trivial case) exactly one prime
p such that |p| < 1.2 Intuitively, this absolute value plays the role of an order
of magnitude. If x has magnitude greater than 1, one cannot reach it from O by
taking a finite number of unit steps (one cannot walk or drive to another galaxy!).
Furthermore, | p| < 1 implies that | p”| — 0, and the p-adic theory provides a link
between characteristic 0 and characteristic p.

The absolute value makes it possible to study the convergence of formal power
series, thus providing another unifying concept for analysis. This explains the
important role played by formal power series. They appear early and thereafter
repeatedly in this book, and knowing from experience the feelings that they inspire
in our students, I try to approach them cautiously, as if to tame them.

* % *

Here is a short summary of the contents
Chapter I: Construction of the basic p-adic sets Z,, Q, and S,
Chapters II and III: Algebra, construction of C,, and €2,
Chapters IV, V, and VI: Function theory,
Chapter VII: Arithmetic applications.

I have tried to keep these four parts relatively independent and indicate by an
asterisk 1n the table of contents the sections that may be skipped in a first reading.
I assume that the readers, (advanced) graduate students, theoretical physicists, and
mathematicians, are familiar with calculus, point set topology (especially metric
spaces, normed spaces), and algebra (linear algebra, ring and field theory). The
first five chapters of the book are based solely on these topics.

The first part can be used for an introductory course: Several definitions of the
basic sets of p-adic numbers are given. The reader can choose a favorite approach!
Generalities on topological algebra are also grouped there.

2Both Newton’s method for the determination of real roots of f = 0 and Hensel’s lemma in the
p-adic context are applications of the existence of fixed points for contracting maps in a complete
metric space.

3Since the prime p is uniquely determined, this absolute value is also denoted by | . | ,. However.
since we use it systematically, and hardly ever consider the Archimedean absolute value, we simply
write | . |.
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The second — more algebraic — part starts with a basic discussion of ultrametric
spaces (Section II.1) and ends (Section II1.4) with a discussion of fundamental
inequalities and roots of unity (not needed before the study of the logarithm in
Section V.4). In between, the main objective is the construction of a complete and
algebraically closed field Cp,, which plays a role similar to the complex field C
of classical analysis. The reader who is willing to take for granted that the p-adic
absolute value has a unigue extension | . |x to every finite algebraic extension K
of Q,, can skip the rest of Chapter II: If K and K’ are two such extensions, the
restrictions of | . |x and |. |x- to K N K’ agree. This proves that there is a unique
extension of the p-adic absolute value of Q,, to the algebraic closure Q‘;, of Q.
Moreover, if 0 € Aut(K/Qp), then x — |x°|g is an absolute value extending
the p-adic one, hence this absolute value coincides with | .| K./’I\‘his shows that
o is isometric. If one is willing to believe that the completion Qf, = C,, is also
algebraically closed, most of Chapter III may be skipped as well.

In the third part, functions of a p-adic variable are examined. In Chapter IV,
continuous functions (and, in particular, locally constant ones) f : Z, — C, are
systematically studied, and the theory culminates in van Hamme’s generalization
of Mahler’s theory. Many results concerning functions of a p-adic variable are ex-
tended from similar results concerning polynomials. For this reason, the algebra of
polynomials plays a central role, and we treat the systems of polynomials — umbral
calculus — 1n a systematic way. Then differentiability is approached (Chapter V):
Strict differentiability plays the main role. This chapter owes much to the presenta-
tion by W.H. Schikhof: Ultrametric Calculus, an Introduction to p-adic Analysis.
In Chapter VI, a previous acquaintance with complex analysis is desirable, since
the purpose is to give the p-adic analogues of the classical theorems linked to the
names of Weierstrass, Liouville, Picard, Hadamard, Mittag-Leffler, among others.
In the last part (Chapter VII), some familiarity with the classical gamma function
will enable the reader to perceive the similarities between the classical and the p-
adic contexts. Here, a means of unifying many arithmetic congruences in a general
theory is supplied. For example, the Wilson congruence is both generalized and
embedded in analytical properties of the p-adic gamma function and in integrality
properties of the Artin-Hasse power series. I explain several applications of p-adic
analysis to arithmetic congruences.

* % *

Let me now indicate one point that deserves more justification. The study of metric
spaces has developed around the classical examples of subsets of R” (we make
pictures on a sheet of paper or on the blackboard, both models of R? ), and a famous
treatise in differential geometry even starts with “The nicest example of a metric
space is Euclidean n-space R".’” This point of view is so widely shared that one
may be led to think that ultrametric spaces are not genuine metric spaces! Thus the
commonly used notation for metric spaces has grown on the paradigmatic model
of subsets of Euclidean spaces. For example, the “closed ball” of radius r and
center a — defined by d(x, a) < r — is often denoted by B(a:r) or B,(a). This
notation comforts the belief that it is the closure of the “open ball” having the same
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radius and center. If the specialists have no trouble with the usual terminology and
notation (and may defend it on historical grounds), our students lose no opportunity
to insist on its misleading meaning. In an ultrametric space all balls of positive
radius (whether defined by d(x,a) < r or by d(x,a) < r) are both open and
closed. They are clopen sets. Also note that in an ultrametric space, any point of
a ball is a center of this ball. The systematic appearance of totally disconnected
spaces in the context of fractals also calls for a renewed view of metric spaces. I
propose using a more suggestive notation,

Bo(@={x:d(x,a)<r}, Bg(@)={x:d(x,a)<r)

which has at least the advantage of clarity. In this way I can keep the notation
A strictly for the closure of a subset A of a topological space X. The algebraic
closure of a field X is denoted by K“.

* * *

Finally, let me thank all the people who helped me during the preparation of this
book, read preliminary versions, or corrected mistakes. I would like to mention
especially the anonymous referee who noted many mistakes in my first draft,
suggested invaluable improvements and exercises; W.H. Schikhof, who helped
me to correct many inaccuracies; and A. Gertsch Hamadene, who proofread the
whole manuscript. I also received encouragement and help from many friends and
collaborators. Among them, it is a pleasure for me to thank

D. Barsky, G. Christol, B. Diarra, A. Escassut, S. Guillod-Griener,
A. Junod, V. Schiirch, C. Vonlanthen, M. Zuber.

My wife, Ann, also checked my English and removed many errors.

Cross-references are given by number: (I1.3.4) refers to Section (3.4) of Chapter
II. Within Chapter II we omit the mention of the chapter, and we simply refer
to (3.4). Within a section, lemmas, propositions, and theorems are individually
numbered only if several of the same type appear. I have not attempted to track
historical priorities and attach names to some results only for convenience. General
assumptions are repeated at the head of chapters (or sections) where they are in
force.

Figures 1.2.5a, 1.2.5¢, 1.2.5d, and 1.2.6 are reproduced here (some with minor
modifications) with written permission from Marcel Dekker. They first appeared in
my contribution to the Proceedings of the 4th International Conference on p-adic
Functional Analysis (listed in the References).

Alain M. Robert
Neuchatel, Switzerland, July 1999
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1

p-adic Numbers

The letter p will denote a fixed prime.

The aim of this chapter is the construction of the compact topological ring Z,
of p-adic integers and of its quotient field Q,,, the locally compact field of p-adic
numbers. This gives us an opportunity to develop a few concepts in topological
algebra, namely the structures mixing algebra and topology in a coherent way.
Two tools play an essential role from the start:

® the p-adic absolute value | . |, = | .| or its additive version. the p-adic valuation
ord, = vp,

® reduction mod p.

1. The Ring Z, of p-adic Integers

We start by a down-to-earth definition of p-adic integers: Other equivalent pre-
sentations for them appear below, in (4.7) and (4.8).

1.1.  Definition
A p-adic integer is aformal series Y i~0 @i P* with integral coefficients a; satisfying
0< a < p-— 1.

With this definition, a p-adic integer @ = Y_,_oa; p’ can be identified with the
Sequence (g;);>o of its coefficients, and the set of p-adic integers coincides with



2 1. p-adic Numbers

the Cartesian product

X=X,=[]Oo.L...p-11=(01,....p—J".

i>0

In particular, ifa = )", qaip', b =Y, o bip’ (witha;, b; € {0,1,...,p—1})
we have

a=b <= aq; =b;foralli>0.

The usefulness of the series representation will be revealed when we introduce
algebraic operations on these p-adic integers. Let us already observe that the
expansions in base p of natural integers produce p-adic integers (ending with zero
coefficients: Finite series are special series), and we obtain a canonical embedding
of the set of natural integers N = {0, 1, 2, ...} into X.

From the definition, we immediately infer that the set of p-adic integers is not
countable. Indeed, if we take any sequence of p-adic integers, say

a=Zaipi, b=zbipi, C-‘—‘ZC:‘P[, cees

i>0 i>0 i>0

we can define a p-adic integer x = Zizo x; p* by choosing

xO#“O?-xl#bl’ X2¢C2, cecy

thus constructing a p-adic integer different from a, b, c, .. .. This shows that the
sequence a, b, c, ... does not exhaust the set of p-adic integers. A mapping from
the set of natural integers N to the set of p-adic integers is never surjective.

1.2. Addition of p-adic Integers

Let us define the sum of two p-adic integers a and b by the following procedure.
The first component of the sum is ay + by if this is less than or equal to p — 1, or
ap + bo — p otherwise. In the second case, we add a carry to the component of
p and proceed by addition of the next components. In this way we obtain a series
for the sum that has components in the desired range. More succinctly, we can say
that addition is defined componentwise, using the system of carries to keep them
in the range {0, 1, ..., p — 1}.
An example will show how to proceed. Let

a=1=1+0p+0p>+---,
b=(p—D+@E-Dp+(p-Dp’+---.

The sum a + b has a first component 0, since 1 + (p — 1) = p. But we have to
remember that a carry has to be taken into account for the next component. Hence
this next component is also 0, and another carry has to be accounted for in the
next place, etc. Eventually, we find that all components vanish, and the result is
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1+ & = 0, namely b is an additive inverse of the integer a = 1 (in the set of p-adic
integers), and for this reason written b = —1. More generally, if

a= Za;pi,

i>0
we define

b=oc@=)Y (p—1—a)p
i>0

sothat a + b+ 1 = 0. This is best summarized by a + o(a@) + 1 = 0 or even
o(a) + 1 = —a. In particular, all natural integers have an additive inverse in the
set of p-adic integers. It is now obvious that the set X of p-adic integers with the
precedingly defined addition is an abelian group. The embedding of the monoid
N in X extends to an injective homomorphism Z — X. Negative integers have
the form —m — 1 = o(m) with all but finitely many components equal to p — 1.
Considering that the rational integers are p-adic integers, from now on we shall
denote by Z, the group of p-adic integers. (Another natural reason for this notation
will appear in (3.6).) The mapping o : Z, — Z, obviously satisfies oc2=000 =
id and is therefore an involution on the set of p-adic integers. When p is odd, this
involution has a fixed point, namely the elementa =Y, &2 p’ € Z,,.

1.3.  The Ring of p-adic Integers

Let us define the product of two p-adic integers by multiplying their expansions
componentwise, using the system of carries to keep these components in the desired
range {0, 1, ..., p — 1}.

This multiplication is defined in such a way that it extends the usual multiplica-
tion of natural integers (written in base p). The usual algorithm is simply pursued
indefinitely. Again, a couple of examples will explain the procedure. We have
found that —1 = 3"(p — 1)p’. Now we write

—l=(p-D-) P, —(p-DY P =1,

i>0 i>0

HC_HCC 1 — pisinvertible in Z p with inverse given as a formal geometric series of
ratio p. Since

P-Y) ap =ap+ap’+---#£1+0p+0p*+---,

i>0

the prime p is not invertible in Z p for multiplication. Using multiplication, we can
also write the additive inverse of a natural number in the form

—m=(-1)-m=Y (p—p' -y mp,

i>0
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but it is not so easy to deduce the coefficients of —m from this relation. Together
with addition and multiplication. Z, is a commutative ring. When p is odd, the
fixed element under the involution o is

but 2 is not an invertible element of Z,, —% ¢ Z,, and the involution 0 = o, has
no fixed point in Z;.

1.4. The Order of a p-adic Integer

Leta =) ;. a; p' be a p-adic integer. If a # 0, there is a first index v = v(a) > 0
such that a, # 0. This index is the p-adic order v = v(a) = ordp(a), and we get
a map

v= ord,:Z,— {0} > N.

This terminology comes from a formal analogy between the ring of p-adic integers
and the ring of holomorphic functions of acomplex variable z € C.If f isanonzero
holomorphic function in a neighborhood of a pointa € C, we can write its Taylor
series near this point

f@= Zan(z —a)', (am#0, |z—al <é).

n>m
The index m of the first nonzero coefficient is by definition the order (of vanishing)
of f ata: this order is 0 if f(a) # O and is positive if f vanishes at a.

Proposition. The ring Z, of p-adic integers is an integral domain.

Proor. The commutative ring Z, is not {0}, and we have to show that it has no
zero divisor. Let thereforea = Y, qa;p' #0, b= Y, b;p' # 0, and define
v = v(a), w = v(b). Thena, is the first nonzero coefficientof a,0 < a, < p,and
similarly b, is the first nonzero coefficient of b. In particular, p divides neither a,
nor b,, and consequently does not divide their product a,b,, either. By definition
of multiplication, the first nonzero coefficient of the product ab is the coefficient
Cupw Of pUt, and this coefficient is defined by

0<cCypw <P, Copw =ayb, (mod p). ™

Corollary of proof. The order v :Z, — {0} — N satisfies
v(ab) = v(a) + v(b),
v(a + b) > min(v(a), v(b))

ifa, b, and a + b are not zero. |
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It is convenient to extend the definition of the order by v(0) = oo so that
the preceding relations are satisfied without restriction on Z,, with the natural
conventions concerning the symbol oc. The p-adic order is then a mapping Z, —
N U {oo} having the two above-listed properties.

1.5. Reduction mod p
Let F, = Z/ pZ be the finite field with p elements. The mapping

a =Za,~pi = ap mod p
i>0
defines aring homomorphisme : Z, — F, called reduction mod p. This reduction
homomorphism is obviously surjective, with kernel

la€Z,:ap=0}={Ziz1aip' = pZj>0a;1p') = pZ,.

Since the quotient is a field, the kernel pZ, of ¢ is a maximal ideal of the ring
Z,. A comment about the notation used here has to be made in order to avoid a
paradoxical view of the situation: Far from being p times bigger than Z,, the set
PZ, is a subgroup of index p in Z,, (just as pZ is a subgroup of index p in Z).

Proposition. The group Z;‘ of invertible elements in the ring Z,, consists of the
p-adic integers of order zero, namely

Zx={) aip':ao#0}.

i>0

Proor. If a p-adic integer a is invertible, so must be its reduction &(a) in F,. This
proves the inclusion Z;‘ C {Z,-Zo a;p' : ayp # 0}. Conversely, we have to show
that any p-adic integer a of order v(a) = 0 is invertible. In this case the reduction
&) e F, is not zero, and hence is invertible in this field. Choose 0 < by < p
V;’lith aobo = 1 mod p and write aphy = 1 + kp. Hence, if we write a = ag + pe,
then

a-bp=1+kp+ paby =1+ px

for some p-adic integer k. It suffices to show that the p-adic integer 1 + «p is
Invertible, since we can then write

a-by(l+xkp)'=1, a'=bo(l +kp).

In other words, it is enough to treat the case ap = 1, a = 1 + kp. Let us observe
that we can take

A+kp)y' =1—kp+&pl —---=l+ap+ap’+--

with integers ¢; € {0, 1, ..., p — 1}. This possibility is assured if we apply the
rules for carries suitably. Such a procedure is cumbersome to detail any further, and
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another, equivalent, definition of the ring Z, will be given in (4.7) below, making
such verifications easier to handle. [

Corollaryl. TheringZ, of p-adic integers has a unique maximal ideal, namely
pL,=21,—-17 ;. n

The statement of the preceding corollary corresponds to a partition Z,, = Z 7 11
PZ, (a disjoint union). In fact, one has a partition

Z,-{0}= ]_[ ka: (disjoint union of ka; = v~ (k).
k>0

Corollary 2. Every nonzero p-adic integer a € Z, has a canonical represen-
tation a = p'u, where v = v(a) is the p-adic order ofaandu € Z; is a p-adic
unit. [ ]

Corollary 3. The rational integers a € Z that are invertible in the ring Z,, are
the integers prime to p. The quotients of integers m/n € Q (n # 0) that are
p-adic integers are those that have a denominator n prime to p. |

1.6. The Ring of p-adic Integers is a Principal Ideal Domain
The principal ideals of the ring Z ,,

(P = P'Z, = (x € Z,,:ordy(x) 2 k},
have an intersection equal to {0}:

Z,5p2,>---2p2,>--->()p'Z, = {0}
k>0

Indeed, any element a # 0 has an order v(a) = k, hence a ¢ (p**!). In fact, these
principal ideals are the only nonzero ideals of the ring of p-adic integers.

Proposition. The ring Z, is a principal ideal domain. More precisely, its ideals
are the principal ideals {0} and p*Z p (k € N).

Proor. Let I # {0} be a nonzero ideal of Z,, and 0 # a € I an element of minimal
order, say k = v(a) < co. Write a = p*u with a p-adic unit u. Hence p* =
u~'a € I and (p*) = p*Z, C I. Conversely, for any b € I let w = v(b) > k and
write

b= pwu/ - pk B pw—kul € kap-

This shows that I C p*Z,. [
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2. The Compact Space Zp,
2.1.  Product Topology on Z,,

The Cartesian product spaces

x,=[l0.L2,....p-}={0,1.2,...,p— )N

i>0

will now be considered as topological spaces, with respect to the product topology
of the finite discrete sets {0, 1, 2, ..., p — 1}. These basic spaces will be studied
presently, and we shall give natural models for them (they are homeomorphic for
all p). By the Tychonoff theorem, X, is compact. It is also totally disconnected:
The connected components are points.

Let us recall that the discrete topology can be defined by a metric

1 ifa#b,
3, b) = . *

0 ifa=0b,
or, using the Kronecker symbol, §(a, b) = 1 — &,,. Several metrics compatible
with the product topology on X, can be deduced from these discrete ones. For
X =(ap,ay,...), y = (b, by, ...) € X, we can define

é(a;, b; 1
dex,yy = sup 28D 1
i>0 P pre—»
6 i bi
dx,y) = Z (ai“ ), and so on.
i>0

Although all metrics on a compact metrizable space are uniformly equivalent, they
are not all equally interesting! For example, we favor metrics that give a faithful
image of the coset structure of Z,: For each integer k € N, all cosets of p"Z in
Z,, should be isometric (and 1n partlcular have the same diameter).
The p-adic metric is the first mentioned above. Unless specified otherwise, we

use 1t and introduce the notation

Ix| d(x,0)=p™ ifx #0(v= ordp(x)),

X =

0 ifx=0

(absolute values will be studied systematically in Chapter II). We recover the

p-ad.ic metric from this absolute value by d(x, y) = |x — y]. With this metric,
multiplication by p in Z, p IS a contracting map

d(px, py) = 3 d(x, )

and hence is continuous.
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2.2.  The Cantor Set

In point set topology the Cantor set plays an important role. Let us recall its
construction. From the unit interval Cy = I = [0, 1] one deletes the open middle
third. There remains a compact set

C1=1[0, UL, 11.

Deleting again the open middle third of each of the remaining intervals, we obtain
a smaller compact set

C;=1[0,1JUlZ Huig Q1uid, 11

Iterating the process, we get a decreasing sequence of nested compact subsets of
the unit interval. By definition, the Cantor set C is the intersection of all C,,.

remove
() S—— 2/ e———
| | - R s - | -_—
TR TRT " ws CTCT
The Cantor set

It is a nonempty compact subset of the unit interval / = [0, 1]. The Cantor
diagonal process (see 1.1) also shows that this compact set is not countable. If we
temporarily adopt a system of numeration in base 3 — hence with digits 0, 1, and
2 — the removal of the first middle third amounts to deleting numbers having first
digitequal to 1 (keeping first digits 0 and 2). Removing the second, smaller, middie
intervals amounts to removing numbers having second digit equal to 1, and so on.
Finally, we see that the Cantor set C consists precisely of the numbers 0 < a < 1
that admit an expansion in base 3:

o)

4]
0.(11(12...:—3—{»—53.{-...

with digits o; = 0 or 2. We obtain these expansions by doubling the elements of
arbitrary binary sequences. This leads to considering the bijection

1//:2(1,-2"9232!.%, Z, - C.
i>0 i>0

The definition of the product topology shows that this mapping is continuous, and
hence is a homeomorphism, since the spaces in question are compact.
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Binary sequences can also be considered as representing expansions in base 2
of elements in the unit interval. This leads to a surjective mapping

. ai
Q: Za,-Z’ > ZZ—H—_T, Z, - [0,1].
i>0 i>0
This map is surjective and continuous but is not injective: The numbers 3, _; 2

and 2/ € Z, have the same image in [0, 1], as is immediately seen (in the decimal
system, a decimal expansion having only 9’s after place j can be replaced by a
decimal expansion with a single 1 in place j). In fact, Card ¢~'(t) < 2 for any
t €0, 1]

We can summarize the situation by a commutative diagram of maps

v:Z, - C c 01

I A
("2 Z2 - [Oy 1]

The function g identifies contiguous extremities of the Cantor set C and sends
them onto points of the interval having two binary expansions (rational numbers
of the form a/2/). These constructions will now be generalized.

019 29 173 23 1
v v
0 i

Gluing the extremities of the Cantor set

2.3, Linear Models of Z,

We choose a real number b > 1 and use it as numeration base in the unit interval
[0, 1. In other words, we try to write real numbers in this interval in the form
ao/b+ ay /b? 4 - - - with integral digits 0 < a; < b. More precisely, fix the prime

P and consider the maps ¢ = ¥, (= ¥p.p) : Z, — [0, 1] defined by the infinite
series in R

¥ (;a:pi) =70- Z(; %

Wi_lh a normalizing constant ¥ chosen so that the maximum of ¢ is 1. Since
this maximum is attained when all digits g; are maximal, it is attained at
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—1=Y,4(p— 1)p' € Z,, and its image must be 1:

p—1 b! p—1
P=9 ) G =0 - Dy = 0
i>
namely
_b—1
=7

For p =2 and b = 3 we find that # = 2, and we recover the special case studied
in the preceding section, where ¢ furnished a homeomorphism Z, — C C [0, 1].
In general, ¥ = v, will be injective if the p-adic integers

Z:(p —1)p' and p’ € z,
i>j
have distinct images in [0, 1]. The first image is
O-(p—1Y_ 1/b* =9(p— b2 /(1 —b7")
i>j
=0b 9 Y (p-1)/(b—-1) = b,

The second image is © - b~/ ~!. The injectivity condition is thus & > 1, orb > p.
Let us summarize.

Theorem. The maps Y, (= ¥.p) : Z, — [0, 1] defined for b > 1 by

: b—1 a;
a; ! = e—— —_—
¥ (; P) p—1 Lo bi+l
are continuous. When b > p, ,, is injective and defines a homeomorphism of
Z, onto its image Yp(Zp). When b = p, we get a surjective map V, which is
not injective. ]

The commutative diagram given in the last section generalizes immediately to
our present context.

Comment. When b > p, ¥, gives a linear model of Z,, in the interval [0, 1]; the
image is a fractal subset A of this interval. The self-similarity dimension d of such
aset is “defined” by means of a dilatation producing a union of copies of translates
of A. If we denote by E(A) an intuitive — not formally defined — notion of extent
of A and if AA is a union of m translates of A, this self-similarity dimension d
satisfies

mE(A) = EQLA) = AYE(A),
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and hence d - logA = logm and d = logm/log. In our case, take L =b so
that m = p and the self-similarity dimension of A=y,(Z,) in [0,1] C R is
log p/logb < 1. In this way we obtain a continuous family of fractal models of
increasing dimension for b “\, p degenerating in the limit to a connected interval.

It may be useful to look at symmetric models obtained by replacing the digits
a €{0,1,2,..., p— 1} by symmetric ones in {—L;—', . L;—'}. Define

p—1
v(k)=k——2— O<k=<p-1.

We can choose the normalization constant ¢ of the map

V'Y ap e ’9'2‘;,(.?1)

i>0

in order to have
miny’ = —1. maxy’ = +1.

(When p = 2, v(k) = (—1)F+ 1% = :l:%, and the corresponding expansion has
fractional digits.) The involution o induces a change of sign in the image. When
P # 2 it has the origin as fixed point. Here is a picture of centered linear models
of Z3; when b\ 3.

| ¥ | Y v v
\ I | N ¥ Y y
-1 12 -1/4 0 1/4 12 1

A centered linear model of Z3

2.4. Free Monoids and Balls of Z,

L‘?‘ B_,(a) denote the ball defined by d(x,a) = |x —al <rinZ p- Itis clear that
this ball does not change if we replace its radius r by the smallest power p™ that is
greaterthanorequal tor . If the p-adic expansion of ais ap+a; p+- - -+a, p"+- - =
$n+ p"*la, the ball does not change either if we replace its center by s,,. This ball
is fully determined by the sequence of digits (of variable length giving the radius)
9, a, ...,ay,, and we associate to it the word

aoa, ---a, € M,

In the free monoid generatedby S ={0, 1, ..., p—1}.

COpversely, to each (finite) word in the elements of S — say apa; - - - a, — we
aSSO'CIate the ball of center a = ap 4+ a1p + - - - + a,p" and radius r = p~™". We
get in this way a bijective map between M p and the set of balls of Z,: Observe

ﬂ,lat a ball B.,(a) defined by d(x, a) < r is the same as a ball B, (a) for some
r >y
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The monoid M, has several matrix representations
My — GL(Z)y).

For example, when n = 2, we can take

s»TS=(g i) (seS=1{0,1,...,p—1}.

_(p a\(p b\ _ (p* a+bp
Lly= (0 1) (0 1) = (0 1)
and more generally,

gy taip+---+a,p”
ToTs - an_(p” a 1pl T4Y

Indeed,

Observe that in this representation the length of a word corresponds to the order of
the determinant of the matrix. In terms of balls, the radius appears as the absolute
value of the determinant, whereas a center of the ball is read in the upper right-hand
corner of the matrix. With the preceding notation

n-+1
B<,(a) = B<,(S") < qpa; ---ay (G Mp) <« (po s]n) .

Euclidean models of the ring of p-adic integers will be obtained in the next section
by means of injective representations

Mp — GLR).

Since M, is free, such representations are completely determined by the images
of the generators, namely by p matrices Mg, ..., M,_;.

2.5. Euclidean Models

Let V be a Euclidean space, namely a finite-dimensional inner product space over
the field R of real numbers. Select an injective map

§$={0,1,2,...,p—1}=>V, u(S) =X CV,

and define the vector mappings (using vector digits)

viq,
W:\Pv,b:Zp -V, Zatp = ﬁz bf""l :

i>0 i>0

Since Z;, = | [, cs(@0 + pZp), we have

1
vz, = J (0:’-7 + E\y(z,,)) :

veX
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For large enough values of b, the image F = F, , = W, ,Z, will also be a disjoint
union of self-similar images. In this way we get a construction of spatial models
W(Z,) by iteration (similar to the construction of the Cantor set as an intersection

of compact sets).
More explicitly, let us denote by 3 the convex hull of ¥ in V. As 1s known,

this is the intersection of all half spaces containing X. It is also the intersection
of those half spaces containing ¥ and having for boundary a hyperplane touching
the configuration. Let A be an affine linear functional on V such that

A<lonX, A(w)=1forsomeve X.

Choose @ = b — 1. Then
v(a;) 1
(ﬁz pi+1 ) = g = b
i>0

so that the image F of W is also contained in the convex hull of X: F C T = Ko.
Moreover, by choice of the constant %,

A9 Tor) = 1

From the self-similarity representation of F we get a better approximation

F= U(ﬁ + )CK,:U(z?b+IZO)

veX veX

Iterating this inclusion in the self-similarity representation of F we get an even
better approximation:

v 1 v o K

F= LJ(I9 + )CK2=U(19;+EUve):('95+'EQ))‘
veX veX

Eventually, this leads to a representation of the fractal F as the intersection of

a decreasing sequence of compact sets K,. Several pictures will illustrate this
construction.

(2.5.1) Take, for example, p = 3, V = R3 with canonical basis ey, €;, €, and
V(k) = €. Then the corresponding vector maps W : Z3 — R? are given by

a= Za,&i - Ya)=19 Z b?:l'

i>0

Let us choose the constant ¢ such that

€y
VO =) 5 =,

namely 7. 1/b"+! = 9 /(b — 1) = 1. In this case, the image of W is contained
In the plane x + y -+ z = . Since the components of the images W(a) are positive,
€ image of the map W is contained in the unit simplex of R* (convex span of the
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basic vectors). More precisely, the mappings W are injective for b > 2, and hence
give homeomorphic images — models — of Z3 in this simplex. When b = 2, the
image is a Sierpiriski gasket — hence connected — in this simplex. In general, the
image is a fractal having self-similarity dimension log 3/ log b.

Models of Z3: Sierpinisky gasket

(2.52)Takenow p =35,V = R?, and the map v defined by v(0) = (0, 0), v(1) =
(1,0), v(2) = (0, 1), v(3) = (—1,0), v(4) = (0, —1). With a suitably chosen
normalization constant i}, the components of an image ¥(a) = (x, y) will satisfy
—1<x+y<land -1 <x—y < 1. The image of W is a union of the similar
subsets W (k +5Zs) (0 < k < 4). Observe that W(5Zs) = b~!W(Zs) and that these
subsets are disjoint when b > 3. In this case, the image is a fractal of self-similarity
dimension log 5/ log b. In the limit case b = 3 the image is connected.

- ~
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Model of Zs5 as planar fractal
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(2.5.3) It is interesting to refine the preceding construction by addition of an
extra component. Take p = 5 as before but V = R3 with V' of the form

V(k) = (v(k), b) € R,
h0=0, h1=h3=—h2=—h4=h>0.

The corresponding vector maps W have images in a tetrahedron bounded by an
upper edge parallel to the x-axis and a lower edge parallel to the y-axis (hence
two horizontal edges: Choosing 4 suitably, we get a regular tetrahedron). These
edges give linear models of Z,, and the vertical projection on the horizontal plane
(obtained by omitting the third component) is the previous construction. But now,
the vector maps W are already injective for b > 2, and in the limit case b = 2 the
image is a well-known connected fractal, parametrized by Zs. As in (2.2), these
vector mappings furnish commutative diagrams

\I—’bi Z5 i \I—’b(Z5) i d |4

I Vf V&g
O=V: Zs — O(Zs)

Model of Zs as space fractal

(254)Take p =7, v:{0,1,2,...,6} — R given by v(0) = 0 and

v(1) =(1,0,-1) v2)=(,1,—1) v3)=(-1,1,0)
v(4) =(~1,0,1) v(5)=(0,—1,1) v(6)=(1,—1,0).

With a suitable normalization constant, all the image points will remain in the cube

The ?Omponents of an image also satisfy x + y + z = 0, and hence are situ-
ated in this plane, intersecting the cube in a regular hexagon. For b > 3 we get
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interesting models of Z; in this hexagon. In the limit case b = 3, a connected
fractal parametrized by Z; appears.

(2.5.5) We can give a 3-dimensional model refining the preceding one. Still
with p = 7, take the canonical basis e;, €,, €3 of R* and consider the vector map
corresponding to the choice v(0) = 0 and

v(i)=¢; v2)= e v(3)= e;
v(4) =—e v(5)=—e; v(6)=—e;.

The image of the corresponding vector map W : Z; — R3 is a fractal model con-
tained in the octahedron

IxI+ 1yl + 1zl <1

(provided that we choose a correct normalization constant ). A suitable projection
of this model on a plane brings us back to the preceding planar example (contained
in a hexagon).

The preceding constructions are similar to the IFS (iterated function systems)
used for representing fractals: They stem from affine Euclidean representations of
the monoid of balls of Zp. In fact, in this section only translations and dilatations
are used (rotations will also occur in I1.4.5 and 11.4.6).

2D S
K
L%

o

&5
k.

S
K
k

Models of Z7

2.6. An Exotic Example

There is an interesting example connecting different primes. We can add formally
(1.e., componentwise) two 2-adic numbers and consider this sum in Z3. We thus
obtain a continuous map

3 Z2 X Zz —> Z}, (Z a,»2i, Zb,Z’) > Z(a,— + b,)3'
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We can make a commutative diagram

ZoxZ, = I

$ {
cxCc 5 c+cC
N N

017 -5 10,2

Recall that the left vertical map is given by

: ) 2; — 2b;
(Z:a,-Z‘, Zb,Z ) [ard (Z: _3_i+_l’ Z: B_H'_l)

and hence the diagonal composite is

(Za,-z", Zb,-z") 2y “3—:3

Consequently, this composite has an image equal to the whole interval [0, 2].
Hence addition C x C — [0, 2] is also surjective. A good way of viewing the
situation is to make a picture of the subset C x C in the unit square of R? and
consider addition (x, y) — (x + y, 0) as a projection on the x-axis. The image of
the totally disconnected set C x C is the whole interval [0, 2].

A projection of C x C

3. Topological Algebra
3.1. Topological Groups

Definition. A ropological group is a group G equipped with a topology such
that the map (x, y) +> xy~' : G x G — G is continuous.
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If G is a topological group, the inverse map x — x~! is continuous (fix x = e

in the continuous map (x, y) —> xy~') and hence a homeomorphism of order 2
of G. The translations x > ax (resp. x — xa) are also homeomorphisms (e.g.,
the inverse of x > ax is x + a~!x). A subgroup of a topological group is a
topological group for the induced topology.

Examples. (1) With addition, Z,, is a topological group. We have indeed
dea+p'Z, Veb+p'Z,=a —-bea-b+p'L,
for all n > 0. In other words, using the p-adic metric (2.1), we have
x—al <|p"l=p" ly-bl=|p’|=p" = |x-y)—(@-bl <p™",

proving the continuity of the map (x, y) — x — y at any point (a, b).
(2) With respect to multiplication, Z 7 is a topological group. There is a funda-
mental system of neighborhoods of its neutral element 1 consisting of subgroups:

1+ pZ, D1+ p*Z,D>---D1+p'ZyD---

consists of subgroups: If &, 8 € Z,, we see that (14 p"B)~! = 1+ p"B’ for some
B’ € Z, (as in (1.5)), and hence

a=1+pa, b=1+p'B=ab' =1+ p'a)1+p"B)=1+p'y
for some y € Z,. Consequently,

a ea(l + p"Ly), V' e b(1 + p"Z,) = abv'eab™'(1 + P"Z,) (n=1),
and (x, y) — xy~!is continuous. As seenin (1.5), 1 + pZ p 1s a subgroup of index
p — 1inZ}. Itis also open by definition (2.1). With respect to multiplication, all
subgroups 1 + p"Z, (n > 1) are topological groups.

(3) The real line R is an additive topological group.

If a topological group has one compact neighborhood of one point, then it is a
locally compact space. If a topological group is metrizable, then it is a Hausdorff
space and has a countable fundamental system of neighborhoods of the neu-
tral element. Conversely, one can show that these conditions are sufficient for
metrizability. !

Let G be a metrizable topological group. Then there exists a metric d on G that
defines the topology of G and is invariant under left translations:

d(gx, gy) =d(x.y).

' Specific references for the text are listed at the end of the book.
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A metrizable group G can always be completed, namely, there exists a comp-
lete group G and a homomorphism j : G — G such that

o the image j(G) is dense in 6,

e j is a homeomorphism G — j(G),

® any continuous homomorphism f:G — G' into a complete group G’ can be
uniquely factorizedas f =goj:G — G — G’ with a continuous homomor-
phismg: G — G'.

3.2. Closed Subgroups of Topological Groups
As already observed, a subgroup of a topological group is automatically a topolo-
gical group for the induced topology.

Lemma. Let G be a topological group, H a subgroup of G.

(@) The closure H of H is a subgroup of G.

(b) G is Hausdorff precisely when its neutral element is closed.

Proor. (a)Lety : G x G — G denote the continuous map (x, y) — xy~}. Since
H is a subgroup, we have ¢(H x H) C H and hence

o(H x Hy=9(H x H) C o(H x H)C H.

This proves that H is a subgroup.

(b) Let us recall that a topological space X is Hausdorff precisely when the
diagonal Ay is closed in the product space X x X. In any Hausdorff space the
points are closed, and thus

G Hausdorff = {e} closed
= Ag = ¢ }(e)closedin G x G
— G Hausdorff.

The lemma is completely proved. L

Proposition. Let H be a subgroup of a topological group G. If H contains
a neighborhood of the neutral element in G, then H is both open and closed
in G.

Proor. Let V be a neighborhood of the neutral element of G contained in H. Then
for each h € H, hV is a neighborhood of h in G contained in H. This proves
that H is a neighborhood of all of its elements, and hence is open in G. Consider
now the cosets gH of H in G. Since translations are homeomorphisms of G,
these cosets are open in G. Any union of such cosets is also open. But H is the
complement of the union of all cosets gH # H.Hence H is closed. ]
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Examples. The subgroups p"Z, (n > 0) are open and closed subgroups of the
additive group Z . The subgroups 1+ p"Z,, (n > 1) are open and closed subgroups
of the multiplicative group 1 + pZ,.

Let us recall that a subspace Y of a topological space X is called locally closed
(in X)) when each point y € Y has an open neighborhood V in X suchthat Y NV
is closed in V. When this is so, the union of all such open neighborhoods of points
of Y is an open set U in which Y is closed. This shows that the locally closed
subsets of X are the intersections U N F of an open set U and a closed set F
of X. In fact, ¥ is locally closed in X precisely when Y is open in its closure Y.
Locally compact subsets of a Hausdorff space are locally closed (a compact subset
is closed in a Hausdorff space). With this concept, the preceding proposition admits
the following important generalization.

Theorem. Let G be atopological group and H a locally closed subgroup. Then
H is closed.

Prook. If H is locally closed in G, then H is open in its closure H. But this closure
is also a topological subgroup of G. Hence (by the preceding proposition) H is
closedin H (hence H = H) and also closed in G by transitivity of this notion. =

Alternatively, we could replace G by H, thus reducing the general case to H
locally closed and dense in G. This case is particularly simple, since all cosets g H
must meet H: g € H forall g € G, namely H = G.

Corollary 1. Let H be a locally compact subgroup of a Hausdorff topological
group G. Then H is closed. u

Corollary 2. Let I' be a discrete subgroup of a Hausdorff topological group G.
Then T is closed. [ |

The completion Gof Gisalsoa topological group. If G is locally compact, it
must be closed in its completion, and we have obtained the following corollary.

Corollary 3. A locally compact metrizable group is complete. u

3.3.  Quotients of Topological Groups

As the following statement shows, the use of closed subgroups is well suited for
constructing Hausdorff quotients. Let us recall that if H is a subgroup of a group
G, then G/H is the setof cosets g H (g € G). The group G acts by left translations
on this set. When H is a normal subgroup of G. this quotient is a group. Let now
G be a topological group and

n:G—> G/H
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denote the canonical projection. By definition of the quotient topology, the open
sets U’ C G/ H are the subsets such that U = 7 ~!(U’) is open in G. Now, if U is
any open set in G, then

7 '\@U)=UH = | J Uh
heH

is open, and this proves that 7 U is open in G/ H. Hence the canonical projection
m : G — G/H is a continuous and open map. By complementarity, we also sece
that the closed sets of G/ H are the images of the closed sets of the form F = FH
(.e., F = n~}(F’) for some complement F’ of an open set U’ C G/H). It is
convenient to say that a subset A C G is saturated (with respect to the quotient
map ) when A = AH, so that the closed sets of G/H are the images of the
saturated closed sets of G (but 7 is not a closed map in general).

Proposition. Let H be a subgroup of a topological group G. Then the quotient
G/H (equipped with the quotient topology ) is Hausdor{f precisely when H is
closed.

Proor. Let m : G — G/H denote the canonical projection (continuous by defi-
nition of the quotient topology). If the quotient G/ H is Hausdorff, then its points
are closed and H = m~!(e) is also closed. Assume conversely that H is closed in
G. The definition of the quotient topology shows that the canonical projection 7
is an open mapping. We infer that

m=axn:GxG—->G/HxG/H

is also an open map. But Ker(m;) = H x H C G x G. Hence 7 induces a
topological isomorphism

7:(GxG)/(HxH)—> G/HxG/H.
To prove that G/ H is Hausdorff, we have to prove that the diagonal
A={(x,x):x € G/H}

is closed in the Cartesian product G/H x G/ H. Since the map 7 is a homeomor-
phism, it is the same as proving that the inverse image A of this diagonal is closed
in(G x G)/(H x H). This inverse image is

A={(g . kymod H xH:gH =kH}
= {(g,k)mod H x H : k™'g € H}.

But R = {(g,k) : k™'g € H} C G x G is closed by assumption: It is an inverse
image of the closed set H under a continuous map. This closed set R is obviously
Saturated, i.e., satisfies

R=R-(H x H).
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This proves that its image R’ = A inthe same quotient is closed, and the conclusion
is attained. ]

Together with the theorem of the preceding section, this proposition establishes
the following diagram of logical equivalences and implications for a topological
group G and a subgroup H.

G/H finite Hausdorff <= H closed of finite index

3 3

G/H discrete = H open
3 3

G/ H Hausdorff = H closed

3.4. Closed Subgroups of the Additive Real Line

Let us review a few well-known results concerning the classical real line, viewed
as an additive topological group. At first sight, the differences with Z, are striking,
but a closer look will reveal formal similarities, for example when compact and
discrete are interchanged.

Proposition 1. The discrete subgroups of R are the subgroups

aZ (0<aeR).

Proor. Let H # {0} be a nontrivial discrete subgroup, hence closed by (3.2).
Consider any nonzero & in H, so that O < |h| (= :h) € H. The intersection H N
[O, |2|] is compact and discrete, hence finite, and there is a smallest positive element
a € H. Obviously, Z - a C H. In fact, this inclusion is an equality. Indeed, if we
take any b € H and assume (without loss of generality) b > 0, we can write

b=ma+r (meN,0<r<a)

(take for m the integral part of b/a). Sincer = b —ma € Hand 0 < r < g,
we must have r = 0 by construction. This proves b = ma € Z - a, and hence the
reverse inclusion H C Z - a. ]

Corollary. The quotient of R by a nontrivial discrete subgroup H # {0} is
compact. n

Proposition 2. Any nondiscrete subgroup of R is dense.

Proor. Let H C R be a nondiscrete subgroup. Then there exists a sequence of
distinct elements &,, € H withh,, — h € H.Henceeg, = |h, — h| € H andg, — 0.
Since H is an additive subgroup, we must also have Z - ¢, ¢ H (for all n > 0),
and the subgroup H is dense in R. ]



3. Topological Algebra 23

Corollary. (a) The only proper closed subgroups of R are the discrete sub-
groupsal (a € R).
(b) The only compact subgroup of R is the trivial subgroup {0}. ]

Using an isomorphism (of topological groups) between the additive real line
and the positive multiplicative line, for example an exponential in base p

t—p', R—>Ry

(the inverse isomorphism is the logarithm to the base p) we deduce parallel results
for the closed (resp. discrete) subgroups of the topological group R..o.

Typically, we shall use the fact that the discrete nontrivial subgroups of this
group have the form p°% (a > 0) or, putting § = p~°, are the subgroups

Z_(0":mel}
for some 0 < 6 < 1.

3.5. Closed Subgroups of the Additive Group of p-adic Integers

Proposition. The closed subgroups of the additive group Z,, are ideals: They
are

{0}, p"Z, (meN).

Proor. We first observe that multiplication in Z,, is separately continuous, since
Ix'a—xa|=lal|lxX’ —x] - 0 (& — x).

Since an abelian group is a Z-module, if H C Z,, is a closed subgroup, then for
anyhe H,

ZHCH = Z,aCcZac H=H.

This proves that a closed subgroup is an ideal of Z,, (or a Z,-module). Hence the
result follows from (1.6). -

Corollary 1. The quotient of Z, by a closed subgroup H # {0} is discrete. ®

Corollary 2. The only discrete subgroup of the additive group Z,, is the trivial
subgroup {0}.

Proor. Indeed, discrete subgroups are closed: We have a complete list of these
(being closed in Z,, compact, a discrete subgroup is finite hence trivial). Alterna-
tively, if a subgroup H contains a nonzero element 4, it contains all multiples of £,
and hence H D N - h. In particular, H 3 p"h — 0 (n — 00). Since the elements
P"h are distinct, H is not discrete. L]
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3.6. Topological Rings

Definition. A topological ring A is a ring equipped with a topology such that
the mappings

) x+y:AxXA— A,
x, )P x-y:AXA—>A

are continuous.

The second axiom implies in particular that y — —y is continuous (fix x = —1
in the product). Combined with the first, it shows that

xyY)Px—y:AxA—> A

is continuous and the additive group of A is a topological group. A topological
ring A is a ring with a topology such that A is an additive topological group and
multiplication is continuous on A X A.

If A is a topological ring, the subgroup A* of units is not in general a to-
pological group, since x — x~! is not necessarily continuous for the induced
topology (for an example of this, see the exercises). However, we can consider the
embedding

x> (x DAY > A xA,

and give A> the initial topology: It is finer than the topology induced by A. For this
topology, A* is a topological group: The continuity of the inverse map, induced by
the symmetry (x, y) — (¥, x) of A x A, is now obvious. Still with this topology,
the canonical embedding A* < A is continuous, but not a homeomorphism onto
its image in general.

Proposition. With the p-adic metric the ring Z,, is a topological ring. It is a
compact, complete, metrizable space.

Proor. Since we already know that Z,, is a topological group (3.1), it is enough to
check the continuity of multiplication. Fix a and b in Z, and consider x = a + A,
y =b+kinZ,. Then

Ixy —ab| = |(a + h)b + k) — ab| = |ak + hb — hk|
< max(lal, |b))(1h] + lk]) + |hIIk} — O (A, |k} — 0).

This proves the continuity of multiplication at any point (a,b) € Z, x Z,,. ]

Corodllary 1. The topological group Z, is a completion of the additive group
Z equipped with the induced topology. a
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To make the completion process explicit, let us observe that if x = >, a; p'
is a p-adic number, then

Xp = Z aip' €N

O<i<n

defines a Cauchy sequence converging to x.

Corollary 2. The addition and multiplication of p-adic integers are the only
continuous operations on L, extending addition and multiplication of the nat-
ural numbers. =

3.7. Topological Fields, Valued Fields

Definition. A topological field K is a field equipped with a topology such that
the mappings

x,y)—»x+y: KxK—K,
x,y)»x-y: KxK—>K,

x—>x1. KX K*

are Continuous.

Unless explicitly stated otherwise, fields are supposed to be commutative. A
topological field is a topological ring for which K> = K — {0} with the induced
topology is a topological group. Equivalently, a topological field is a field K
equipped with a topology such that

(x,y) > x — yis continuous on K x K,

(x, ¥) = x/y is continuous on K> x K*.

Except for the appendix to Chapter 11, we shall be interested only in valued fields:
Pairs (K, |.|) where K is a field, and |.| an absolute value, namely a group
homomorphism

.1: K* = Ry
extended by |0} = 0 and satisfying the triangle inequality
x+yl<xI+Iyl &, ye€K),
or the stronger ultrametric inequality
Ix + vl <max(lx], ly) (x,y € K).
In this case d(x, y) = |x — y| defines an invariant metric (or ultrametric) on K,

dx,y)=d(x—a,y—a)=d(x—-y,0) (a, x,y€K).
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This situation will be systematically considered from (II.1.3) on, and in the ap-
pendix of Chapter II we shall show that any locally compact topological field can
be considered canonically as a valued field.

Proposition 1. Let K be a valued field. For the topology defined by the metric
d(x, y) = |x — yl, K is a topological field.

Proor. The map (x, y) — x — y is continuous. Let us check that the map (x, y)
xy~Lis continuous on K> x K*. We have

x+h x  hy—kx

y+k y  yo+k)
Hence if y # O is fixed, |k| < |y|/2, and ¢ = max(}x|, |y|),

+h h| + tk
L L N R )
y+k y 1yl
This proves that K is a topological field. [ ]

Proposition 2. Let K be a valued field. Then the completion K of K isagaina
valued field.

Proor. The completion Kis obviously a topological ring, and inversion is contin-
uous over the subset of invertible elements. We have to show that the completion
is afield. Let (x,) be a Cauchy sequence in K that defines a nonzero element of the
completion K. This means that the sequence |x,,| does not converge to zero. There
is a positive £ > 0 together with an index N such that |x,| > ¢ foralln > N. The
sequence (1/x,),> 1s also a Cauchy sequence

1 1

Xn Xm

Xn — X
= <& xy —Xml > 0 (n,m — o0).

XnXm

The sequence (1/x,)n>n (completed with’l\’s for n < N) defines an inverse of the
original sequence (x,) in the completion K. ]

4. Projective Limits

4.1. Introduction

Let x = Zizo a; p' be a p-adic integer. We have defined its reduction mod p as
&(x) = ap mod p € F,. We can also consider the finer reduction ap +a; p mod p?
or more generally

eq(x) = Za,-pi mod p” € Z/p"Z.

i<n
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By definition of addition and multiplication of p-adic integers, we get homomor-
phisms
gn:Zp —> Z/p"L.

Since X, = Y ;., aip' — x (n — 00), we would also like to be able to say that
the rings Z/p"Z converge to Z,,. This convergence relies on the links given by the
canonical homomorphisms

¢nZ/p"L > Z/p"L

and the commutative diagram

Z/pn+1Z
Ent ©n
/& N\
z, — Z/p"Z

which we interpret by saying that Z, is closer to Z/p"*'Z than to Z/p"Z.
Before proceeding with precise definitions, let us still consider an example
emphasizing a similar situation for sets. Consider the finite products E, = [, _, X;
of a sequence (X;);>0 of sets. We would like to say that these partial products
converge to the infinite product E = [];., X; and thus consider this last product
as limit of the sequence (E,). For this purpose, we have to formalize the notion of
approximation of E by the E,,. This relation is given by the projections

pn:E — E,

omitting components of index i > ». In a sense, these projections are composed
of infinitely many arrows — each ¢; : E;;; — E; omitting a component — as
in the chain of maps

pnE—>---> E,— Epyy — E,.

One can consider that any set X, given with a family of maps f,: X — E, which
have the same property as above, is an upper bound of the sequence (E,,). A limit of
the sequence would then be a least upper bound. Thus the limit would be an upper
bound (E, (p,)) such that every upper bound (X, f,,) is obtained by composition
withamap f : X — E as follows:

fn=pnof:X_f>E"’""”£ﬂ+2">En+l—>En-

This factorization plays the role of remainder after division of f, by all maps
¢j:Ejyy — Ejforj>n:

fn=0n0 for1 =n0@ni10 frya=Ynof.

These preliminary considerations should motivate the following definition.
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4.2. Definition

A sequence (E,, ¢p)n>0 Of sets and maps ¢, E,p1 — E, (n > 0) is called a
projective system. A set E given together with maps ¥, : E — E, such that
Yn = @n 0 Ynya (n > 0) is called a projective limit of the sequence (E,;, ¥n)n>0
if the following condition is satisfied: For each set X and maps f,: X — E, sat-
isfying fp, = @n 0 fuy1 (n > 0) there is a unique factorization f of f, through the
set E:

fa=Ypof:X—>E—>E, (n>0)

The maps ¢, : E 4, — E, are usually called transition maps of the projective
system. The whole system, represented by

Eg« Ej < -« E, « -,

is also called an inverse system. “The” projective limit £ = lim E,, is also placed

at the end of the inverse system:

Yn
<« E, < E,;) < ---limE,
©Dn ha
-f,,‘\‘\‘\ Tf

X

The hypothesis f,, = ¢, o f,41 can be iterated, and it gives

Jn = @n 0 fnt1 = @n © Pp41 © fr42
= (Pn OPnt1 0O Wnik)O frk+1 = Yno f

for k > 0. Hence f behaves as a limit of the f; (j — o0) and ¥, as a limit
of composition of transition mappings ¢, © @,+) © - - - © @p4x When k — 00. The
factorization condition is a universal property in the sense that it must hold for
all similar data. Finally, it is obvious that if (E, (¥,),>0) is a projective limit of a
sequence (E,, ¢n)n>0, it will still be a projective limit of any sequence (E,, ©n)n>k»
since we can always define inductively ¢,.; = ¢,-10¢, for n < k. In other
words, projective limits do not depend on the first terms of the sequence.

4.3. Existence

Theorem. For every projective system (E,,, n)n>0 Of Sets, there is a projective
limit E=1imE, C n E,, with maps ,, given by (restriction of ) projections.

n>0
Moreover, if (E', ) is another projective limit of the same sequence, there is
a unique bijection f : E' — E such that |, = ¥, o f.
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ProOE. Let us prove existence first. For this purpose, define

E = {(n) : @u(ins1) = xp foralln > 0} [ | En.

n>0

The elements of E are thus the coherent sequences (with respect to the transition
maps ¢p) in the product. If x € E, we have by definition

@n(Pny1(x)) = pa(x);

hence for the restrictions ¥, of the projections p,, to E,

©n © Yny1 = Yn-

The set E with the maps ¥, can thus be viewed as an upper bound of the sequence
E,, with transition maps ¢,. Let us show that this construction has the required
universal property. For this purpose consider any other set E’ withmaps ¢/, : E’ —
E,, satisfying ¢, o ¥, , = ¥, and let us show that there is a unique factorization
of ¥, by ¥,,. It is clear first that the v, define a (vector) map

W) E = [ En y > W00

The relations ¥, (y) = ¢a(¥,,,(y)) show that the image of the vector map (¥,)
is contained in the subset E of coherent sequences. There is thus a unique map
f:E' — E C []E, having the required properties ¥, = ¥, o f, and this one
is simply the vector map (i, ) considered as having target E. All that remains
is to prove the uniqueness. If both (E, (¥,)) and (E’, (,)) have the universal
factorization property, there is also aunique map f’ : E — E’with y, = ¥, 0 f'.
Substituting this expression in ¥, = ¥, o f, we find that

Yp=Vuof=Y,0f of,

and f’ o f is a factorization of the identity map E’ — E’. Since we are assuming
that (E’, ¥) has the unique factorization property, we must have f’ o f = idg .
One proves similarly that f o f’ = idg. [ |

Corollary. When all transition maps in a projective system (E,, @p)n>0 are
surjective, then the projective limit (E, (¥,)) also has surjective projections {,,
and in particular, the set E is not empty.

Proor. By construction of E in the product [ Ep, it is enough to show that if one
component x,, € E, is given arbitrarily, then there is a coherent sequence with
this component in E,. It is enough to choose x,;1 € E,y With ¢,(xp41) = X,
(this is possible by surjectivity of ¢,) and to continue choices accordingly. The
(countable!) axiom of choice ensures the possibility of finding a global coherent
sequence with prescribed nth component. [ ]
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4.4. Projective Limits of Topological Spaces

When the projective system (E,,, ¢,),>0 is formed of topological spaces and con-
tinuous transition maps, the construction made in the previous section (4.3) im-
mediately shows that the projective limit (E, ¥,,) is a topological space equipped
with continuous maps ¢, : E — E,, having the universal property with respect to
continuous maps. Any topological space X equipped with a family of continuous
maps f, : X — E, suchthat f,, = ¢, 0 f,41 (n > 0) has the factorization property
fn = ¥, o f with a continuous function f : X — E. Indeed, this factorization
is simply given in components by the f, and is continuous by definition of the
product topology (and the induced topology on the subset l‘l_rl‘l E,C n E,). When

the topological spaces E,, are Hausdorff spaces, the subspace lim E,, is closed: It

is the intersection of the closed sets defined respectively by the coincidence of the
functions p, and ¢ o p, . For future reference, let us prove a couple of results.

Proposition 1. A projective limit of nonempty compact spaces is nonempty and
compact.

Proor. Let (K, ¢,) be a projective system consisting of compact spaces. The
product of the K, is a compact space (Tychonoff’s theorem), and the projective
limit is a closed subspace of this compact space. Hence lim K, is compact. Define

K;I, = ‘pn(KlH—l) D) Kylyl = (on(‘pn+l(Kn+2)) = ‘pn(K:H_])) Do

These subsets are compact and nonempty. Their intersection L, is not empty in
the compact space K,,. Moreover, ¢,(L,+1) = L,, and the restriction of the maps
¢, to the subsets L, leads to a projective system having surjective transition map-
pings. By the corollary in (4.3), this system has a nonempty limit (with surjective

projections). Since lim L,, C lim K, the proof is complete. u
«— «—
Corollary. A projective limit of nonempty finite sets is nonempty. ]

Proposition 2. In a projective limit E = lim E,, of topological spaces, a basis

of the topology is furnished by the sets ¥,7 (U,), where n > 0 and U, is an
arbitrary open set in E,,.

Proor. We take a family x = (x;) in the projective limit and show that the men-
tioned open sets containing x form a basis of neighborhoods of this point. If we
take two open sets V,, C E, and V,_; C E,_,, the conjunction of the conditions
xp € V, and x,,_; € V,_; means that

Un(x) =x, € Vo N (Vo)

Call U, the open set V,, N tpn’_',(V,,_l) of E,,. Then the preceding condition is still
equivalent to x € ¥, (U,). By induction, one can show that a basic open set in
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the product —say [], .y Va x [,y E» — has an intersection with the projective
limit of the form w;l(UN) for some open set Uy C Ey. ]

Corollary. The projective limit of the sequence of initial partial products E,, =
[Ti<n Xi of a sequence of topological spaces is (homeomorphic to) the topolo-
gical product [ ;.o X; of the family. ]

Prook. The canonical projections ]'L>0 X; — E, furnish a continuous bijective
factorization [ ;.o Xi — llm E,,, which is an open map by definition of the open
sets in these two spaces. ]

Proposition 3. Let A be a subset of a projective limit E —= hm E, of topological
spaces. Then the closure A of A is given by

A=) W@alA)).

n>0

Proor. Itis clear that A is contained in the above mentioned intersection, and that
thisintersection is closed. Hence A is also contained in the intersection. Conversely,
if b lies in the intersection, let us show that & is in the closure of A. Let V be a
neighborhood of b. Without loss of generality, we can assume that V is of the form
¥,71(U,) for some open set U, C E,. Hence ¥,(b) C U,. Since by assumption
b € ¥ (Yn(A)), we have ¥,,(b) € ¥,,(A), and the open set U, containing b must
meet ¥,,(A): There is a pointa € A with ¥,,(a) € U,. This shows that

ae ANY\(Uy).

In particular, this intersection is nonempty, and the given neighborhood of b indeed
meets A. ]

Corollary 1. If K is a compact subset of a projective limit E = im E,,, then

K = (¥ @nlK))-

n>0

Corollary 2. A subset A of a topological projective limit is dense exactly when
all its projections ,(A) are dense. ]

4.5. Projective Limits of Topological Groups

Itis also clear that if a projective system (G, ¢, ) is formed of groups G,, and homo-
morphisms ¢, : G,41 — G, then the projective limit G = lim G,, is nonempty
since it contains the neutral sequence (e, e, ...). It is even zf—group having this
sequence as neutral element, and the projections ¥, : G — G,, are group homo-
morphisms. The universal factorization property holds in the category of groups.

An interesting case is the following. Let G be a group and (H,) a decreasing
sequence of normal subgroups of G. We can then take G, = G/H, and (since
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H,,, C H,),¢,:G/H,, — G/ H, the canonical projection homomorphism. The
projective limit of this sequence is a subgroup of the product

G =1mG/H, c [|G/H,

together with the restrictions of projections V¥, : GG / H,. Since the system of
quotient maps f,, : G — G/H, is always a compatible system, we get a factoriza-
tion f: G — G such that fn = ¥n o f.Itis easy to determine the kernel of this
factorization f:

ker f = f~! (mkerw,,) = ket fo =) Hn-

In fact, we have the following general result.

Proposition. Let G =lim G,, be aprojective limit of groups, and let ,,:G — G,
denote the canonical %momorphisms. Then Nkery, ={e} is reduced to
the neutral element and G is canonically isomorphic to the projective limit
lim (G/ ker y1,).

Proor. Let G’ = [\ ker ¢, and consider the embedding f : G’ — G leading to
trivial composites f,, = ¥xlg = ¥n o f. Since the system (G’, f,) obviously
admits the trivial factorization g : G’ — G (constant homomorphism with image
e € G),we have f = g by uniqueness. This proves that the embedding f is trivial,
namely G’ = {e}. Of course, one can also argue that since the projective limit G
consists of the coherent sequences in the product [] G,,, with maps ¥, given by
restriction of projections, Nker v, consists only of the trivial sequence. n

4.6. Projective Limits of Topological Rings

It would be a tedious task to give a list of all structures for which projective
limits can be defined. One can do it for rings, vector spaces, . . ., and one can mix
structures, for example by looking at topological groups, topological rings, and
so on. Just for caution: A projective limit of fields is a ring, not a field in general
(because a product of fields is not a field). Coming back to the case of a group
G (having no topology at first), in which a decreasing sequence (H,) of normal
subgroups has been chosen, we can consider the projective limit of the system of
discrete topologlcal groups G, = G/H,. Let again G = 11m G/H, and identify

G with its image in G.ThenG is dense in G, which can be v1ewed as acompletion
of G. More precisely, the closure H;of H;inG is open and closed in G, and these
subgroups form a basis of neighborhoods of the identity in G. The subgroups H;
make up a basis of neighborhoods of the neutral element in G for a topology, and
G is the completion of this topological group. At this point one should recall that
a topological group admitting a countable system of neighborhoods of its neutral
element is metrizable.
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Similarly, if A is a commutative ring given with a decreasing sequence (/,,) of
ideals and transition homomorphisms ¢, : A/I,, — A/I,, the projective limit
A=1lmA/lL isa topological ring equipped with continuous homomorphisms
(projec(gons) {1/ A A /1. By the universal factorization property of this limat,
we get a canonical homomorphism A — Athat is injective when [ I, = {e}, and
in this case A can be identified with the completion of A for the topology of this
ring, having the I, as a fundamental system of neighborhoods of 0.

4.7. Back to the p-adic Integers

We apply the preceding considerations to the ring Z of rational integers and its
decreasing sequence of ideals I, = p"Z. The inclusions p"*t'Z C p"Z lead to
canonical transition homomorphisms

on:Z/p""'L — Z/p"L.

The next theorem gives a second equivalent definition for p-adic integers.

Theorem. The mappmg z,— llm Z./ p"Z that associates to the p-adic num-

ber x =" a; p' the sequence (x,, In>1 Of its partial sums x,=Y_; _, a; p' mod
p" is an isomorphism of topological rings.

Proor. Since the transition homomorphism ¢, is given by
Za,-pi mod p"*! Za,-pi mod p”,
i<n i<n

the coherent sequences in the product [ ] Z/p"Z are simply the sequences (x,) of
partial sums of a formal series ZizO a;p' (0 < a; < p—1), and these are precisely
the p-adic integers. The relations

2
Xy =ag, X2=ap+ap, x3=ap+ap+ap,

and conversely

X2 — X} X3 — X2
a0=.x1, a]——- , a2= 2 ’
p

show that the factorization Z, — 11m Z./ p"Z is bijective, and hence an algebraic
isomorphism. Since this is a continuous map between two compact spaces, it is a
homeomorphism, whence the statement. n

One can note that the homomorphisms Z — Z/p"*'Z — Z/p"Z furnish a
limit homomorphism Z — lim Z/p"Z. which can be identified to the canonical
embedding Z — Z,. The map

Za,-pi mod p” > Za,—pi mod p"Z,

i<n i<n
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obviously defines an isomorphism Z/ p"Z — Z,/p"Z,, and in particular,
Z,/pZ,=7Z/pL =F).
More generally, the same argument shows that
Z,/p"L,=Z/p"ZL.

On the other hand, the restriction of the reduction homomorphism Z, — Z/ Pz
to the subring

Zy ={a/b:a€Z, 0#beNandbprimeto p} CQ
is already surjective and has kernel p"Z;), hence defines an isomorphism:
Zp)/p"Lipy =Z/p"L.

Starting with the subring Z,) C Q, we see that Z, appears also as a projective
limit im Z;,)/ p"Z,,,) and hence as a completion of this ring Z,.

Comment. The presentation of the ring Z, of p-adic integers as a projective
limit of the rings Z / p"Z shows that one can choose any system of representatives
for Z mod pZ and write a corresponding expansion for any x € Z, in the form
x =Y s;p' with all digits s; € S. In particular, when the prime p is odd, it can
also be useful to choose the symmetrical system of representatives

— p=1 -1
S=(=5%...,0,..., 5.

In practice, we always choose a system of representatives S containing O in order to
allow finite expansions x = Y _ s; p'. For example, if we choose the representative
p € Sinstead of O € S, the representations

p-1+0-p+Y s;p'=0-1+1-p+ Y s;p'

i>2 i>2

are not permitted, since O ¢ S.

4.8. Formal Power Series and p-adic Integers

Let us derive yet another presentation of p-adic integers. We denote by Z[[ X]] the
ring of formal power series in an indeterminate X with rational integral coefficients.
A formal power series is just a sequence (a,)nen Of integers a, € Z. Addition is
made coefficientwise,

(@n) + (by) = (cy) withc, = a, + b, (n>0),
and multiplication according to

(@n) - (by) = (cn) With ¢, = Y aib, (n>0).

i+j=n
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These composition laws appear naturally if we use the notation f= f(X)=
ano a, X" for the sequence (a,),en- In this way we identify polynomials to for-
mal power series having only finitely many nonzero coefficients: Z[ X] C Z[[ X]].
We shall use formal power series rings over more general rings of coefficients and
shall study their formal properties when needed (V1.1).

Theorem. The map
Y aX'e Y ap X > Z,
is a ring homomorphism. It defines a canonical isomorphism
ZIXN/X = p) = Zp,

where (X — p) denotes the principal ideal generated by the polynomial X — p
in the formal power series ring.

ProoF. Let us consider the sequence of homomorphisms

fo i ZUXN —> Z/p"Z, Y aiX'+> Y aip' mod p".

i<n

Since these maps f,, are obviously compatible with the transition homomorphisms
¢, defining the projective limit, we infer that there is a unique homomorphism

f:2XN > mZ/p'L =1,

compatible with the f,.If x = )_ a; p is any p-adic integer, then x = f(}_ a; X"),
and this shows that f is surjective. We have to show that the kernel of f is the
principal ideal generated by the polynomial X — p. In other words, we have to
show that if the formal power series ) a; X’ is such that }_;_, a;p' € p"Z for
every n > 0, then this formal power series Y_a; X" is divisible by X — p. For
n =1 the condition implies gy = 0 mod p, hence ay = pa for some integer .
Then, for n = 2 we get

ap+a1p =0mod p* = oy +a, = 0 mod P,
and we infer that there is an integer ¢ such that ¢y + a; = po,. Let us go on:
(a0 + a1 p) +ap* = 0mod p* = ;1 p? + a3 p* = O mod p?,
which gives ) + a> = pa, for some integer «,. Generally, forn > 1,
Pleny+anp" =ao+ayp+--- +a,p" =0mod p"*!

furnishes an integer &, with &,_; + a, = pa,,. All these relations can be summa-
rized by

ap = plly, ap = po, —0,_ ) (}’l = 1),
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or still more concisely by
anr X +mX 4 =(p - XN+ aX + X +--),
namely

Y ax=(p-X) aX.

This concludes the proof. u

5. TheField Q, of p-adic Numbers
5.1. The Fraction Field of Z,

The ring of p-adic integers is an integral domain. Hence we can define the field of
p-adic numbers as the fraction field of Z,

Q, = Frac(Z,).

An equivalent definition of Q,, appears in (5.4).

We have seen that any nonzero p-adic integer x € Z, can be written in the form
x = p™u with a unit u of Z, and m € N the order of x. The inverse of x in the
fraction field will thus be 1/x = p~™u~!. This shows that this fraction field is
generated — multiplicatively, and a fortiori as a ring — by Z, and the negative
powers of p. We can write

Q, =Z,[1/p].
The representation 1/x = p~™u~"! also shows that 1/x € p~™Z,, and
Q= U P "Ly
m>0

is a union over the positive integers m. These considerations also show that a
nonzero p-adic number x € Q,, can be uniquely written as x = p™u withm € Z
and a unit 4 € Z;; hence

e =1]rz
meZ

1s a disjoint union over the rational integers m € Z. The definition of the order
givenin (1.4) for p-adic integers can now be extended to p-adic numbers x € Q,,.
If0# x = p™u with a unitu € Z7, then we define

ord,(x) = vp(x) = vp(p"u) =m € Z.

(When the reference to the prime p is not needed, we simply denote this order by
v(x) =ordx.) Hence

v m)=p"Z, - p"'Z, = Pz
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We have
vx)>0 <= xeZ,

and this equivalence is valid even when x = O with the usual convention v(0) =
+00>0.Ifx =a/b(ae€Z,, 0#b € Z,),then v(x) = v(a) - v(b) € Z, and
the basic relation

v(xy) = v(x) + v(y)

holds for all x, y € Z, (even when xy = O with the convention m + oo = oo +
00 = 00). The p-adic order is a homomorphism

v:Qp = ]_[p"'Z; - Z.
meZ

Moreover, if x = p®u is a nonzero p-adic number, with u a p-adic unit, we can
writtu =Y a;p' € Z, withap #0(0 <a; < p—1),and

x= Za,-p”" = ijpj

is a sum starting at the integer v = ord x € Z, possibly negative.

As in (1.4), we may compare these expansions to the Laurent expansions of
meromorphic functions (in the complex plane, near a pole). The index of the first
nonvanishing coefficient is the order of the power series.

By convention, the order of the zero power series is +0c. Hence the relation

v(x +y) = min(v(x). v(y))
holds in all cases.

Comment. IfZ,, C Q denotes the subring consisting of rational numbers having
denominator prime to p, we have similar formulas

e=Ur"zZpn Q =]]rz,
m>0 peZ

x

(p) cOnsists of the fractions having both numerator and denomi-

since the group Z
nator prime to p.

5.2. Ultrametric Structure on Q
The map x + |x| = 1/pY, where v =ord x € Z, defines a homomorphism
Q; - (R*)+ =Ryo

that we conventionally extend by the definition |0] = 0. This map extends the
previous absolute value on Z, and is called the p-adic absolute value on Q,
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(cf. (2.1), (3.7); absolute values will be systematically studied in Chapter II, cf.
(I1.1.3)). This absolute value has the characteristic properties

x| > 0if x #0, [|xy|=Ix|-lyl, Ix+ yl < max(]x],|y])-
In particular, we can define a metric on Q, by
dix,y)=Ix =yl

This distance satisfies

d(x,y) > 0if x # yand d(y, x) =d(x, y)
as well as the triangle inequality in the strong ultrametric form

d(x, y) < max(d(x, z),d(z, y)) < d(x, 27) + d(z, y).
This metric is invariant on the additive group
dx +z,y+2)=d(x,y)
and also satisfies
d(zx, zy) = |zl - d(x, y)

forall x, y, z € Q,. In particular,

d(x,
d(px, py) = (xpy)-

From now on we shall always consider Q,, as a metric field, endowed with this
ultrametric distance. By (3.7) Q,, is a valued field, and hence a topological field.

Theorem. The field of p-adic numbers Q,, induces on Z, the p-adic topology.
It is a locally compact field of characteristic 0. It can be identified with the
completion of Z[1/p] = {ap® : a € Z, v € Z}, or of Q, for the p-adic
metric.

Proor. With the metric just introduced Z,, is the unit ball centered at the origin in
Q,: For x € Q, we have equivalences

x€l, = v(x)20= x| <14=d(x,0) <1
Similarly, if k > 0, the ideal p*Z,, is the ball defined by d(x,0) < p~*. These

balls make up a fundamental system of neighborhoods of 0 in Z, and Q,,. Since
the group Z, contains a neighborhood of 0, it is open (and hence closed). In fact,
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it is a compact neighborhood of 0 in Q,,. This proves that the topological field Q,,
is locally compact, and hence complete (Corollary 3 in (3.2)). Finally, if

x=Zx,-pi (v=ordx €Z)

i>v

is the p-adic expansion of a nonzero element x € Q,, the sequence

Xp = Z x,-pi

v<i<n

of truncated sums is a Cauchy sequence of Z[1/ p] converging to x,

X —Xxp, = Zx,-pi € p"Z,,
i>n

" >0 (n-— o).

d(x,x,) =Ix —xp| < p~
This proves that Z[1/p] is dense in Q,,, and this metric space can be viewed as a
completion of the ring Z[1/ p] for the induced metric. [ ]

5.3. Characterization of Rational Numbers Among p-adic Ones

Itis easy to recognize rationals among p-adic numbers if we know their expansions.
The resultis similar to the characterization of rational numbers among real numbers
expressed in decimal expansions.

Proposition. Letx =Y a;p' € Q, (i > v(x), 0<a; < p—1).Thenxisa
rational number, i.e., x € Q precisely when the sequence (a;) of digits of x is
eventually periodic.

Proor. Multiplying if necessary a p-adic expansion by a power of p, we see that
it is enough to consider the case v(x) > 0, namely x € Z,. If the sequence (a;)
is eventually periodic, x is the sum of an integer and a linear combination (with
integral coefficients) of series of the form

. 1
2P =P eQ

jz0

and hence is a rational number. Conversely, suppose that x = Y x;p' = a/b is
the p-adic expansion of a rational number (as we mentioned, we can assume that
x € Z,; hence the summation is made for i > 0). Taking a reduced representation,
a and b will be relatively prime integers, with b prime to p. Adding a suitably
large integer to x, we may assume that x is positive (hence a and b are also posi-
tive). Considering the p-adic expansions of these integers, we are able to write an
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equality

ijpj .inpi = Zakpk.

158 i>0 k<a

In the left-hand side we have to take into account some carries r, according to the
following identities:

boxe + byxg_y +--- +bexo+re = ag + rey p-
For £ > max(«, B), we have more simply
boxe +bixe—1 + - -+ bgxe_g +re = reqap.

It suffices to compute x, mod p as a function of x¢_y, ..., x,—g and r,, and then
to take the representative of this class such that 0 < x, < p. This allows the deter-
mination of the carry rgy; by division by p. In other words, starting with the data

(Xe—1s - - -» Xe—pr re) € (Z/ pZyPH

there is an algorithm (taking into account the fixed values of by, . . ., bg) furnishing

(Xe, Xe—1s - - -y Xe—p1, Tey1) € (L] pZYPH

(the values of x¢_1, ..., xe—p41 are simply copied in a shifted position). Since the
set (Z/pZ)P+! is finite, this algorithm will eventually produce a cyclic orbit (as
soon as a vector takes a value already attained, it will produce the next vector
already attained and start a cycle). |

Corollary. The p-adic integers p"2 and " are not rational. u
p

5.4. Fractional and Integral Parts of p-adic Numbers

As we have already noticed, any nonzero p-adic number x € Q, can be written
asaseries x = ) ., x; p' starting at the index m = v(x) € Z. Let us define

i>m

[x]= Zx,-pi € Z, : integral part of x,

i>0

(x) = Z xip' € 2{1/p] C Q : fractional part of x.
i<0

We thus obtain a decomposition
x=[x1+x:Qp=2Z,+Z[1/p].

If (x) # O, then (x) = ap” for integers a@ and v < 0. This decomposition depends
on the choice of representatives chosen for digits; here 0 < x; < p — 1. With this
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choice, more can be said of the fractional part as a real number, namely
I eI X 1 _
0sm=3 xpr= 3 —<(p-D) =1
i<0 I<j<—v i>1
Hence the fractional part of any p-adic number satisfies
(x) [0, 1) N Z[1/p].

Let us consider these representatives mod1, namely in Z[1/p]/Z C R/Z.
With the normalized exponential, we can embed the circle R/Z in the complex
numbers:

R - R/Z — C* : t > exp(2mit).

This leads us to consider the map (systematically considered by J. Tate, whence
the notation)

7:Q, > C*: x > exp(2mi(x)).

For example, if v(x) = —1,namelyx =k/p+ ywithO <k < p—landy € Z,,
then

©(x) = exp(2mik/p) = ¥,

where ¢ = exp(2mi/p) is a primitive pth root of unity in C. The image of all
elements x € Q,, with v(x) > —1 is the cyclic subgroup of order p in C*:

p_lZp/Zp = T(P—lzp) =pnp C c*.

It is useful to introduce some notation. The cyclic subgroup of mth roots of unity
in C will be denoted by

um={z€C:7" =1}
The union of all these cyclic groups is the group of all roots of unity (in C)

u= U“"’ = {z € C: " = 1 for some integer m > 1}.

m>1

With respect to the prime p, we have a direct product decomposition

H= u’(P) - l‘l’pxy

where 11, is the group of roots of unity of order prime to p, and i, the group
of roots of unity having order a power of p: pth power roots of unity. Hence p
is the p-Sylow subgroup of the abelian torsion group u. It is the union of the
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increasing sequence of cyclic groups

u,pCu,lr,C...Cu,ka...,

Hpe = Up,pk C CX.
k>0

Proposition. The map t : Q, — C*, x > exp(2mi(x)) is a homomorphism.
It defines an isomorphism Q, /L, = 1 ,= of the additive group Q,,/Z, with the
group of pth power roots of unity in the complex field C.

Proor. Let us compute the difference
- -M=x+y—-Ix+yl - —-IxD-O-DD.

It is equal to [x] + [y] — [x + yl€Z,, and hence (x + y) — (x) — (y)€
Z[1/p1NZ, = Z. This proves that

exp(2rif(x +y) — (x) = () =1

and 7(x +y) = t(x) + t(y). The map 7 is a homomorphism. Its kernel is defined
by

kert ={x € Q,: (x) e Z}.

But (x) € Z means x = [x] + (x) € Z,, so that kert = Z,. The image of t
consists of the complex numbers of the form

exp(2rik/p™) = exp(2ri/ p™)k.

Since exp(2mi / p™) is a root of unity of order p™, these roots of unity generate —
when m varies among natural integers — the subgroup z po<. | |

In particular, we have
x € p_"Zp — pfx e 7, — r(x)pk =1 = 1(x) € pup.

Comment. It is possible to give the factorization of rational numbers into p-
integral and p-fractional components independent of the construction of p-adic
numbers. Indeed, any rational number has the form

x =p"% (v € Z, a and b prime to p).

When v = —m < 0, namely when x ¢ Zp), we can use the Bézout theorem to
express the fact that p™ and b are relatively prime,

(P".b)=1=ap™ + Bb;
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hence multiplying by x yields

a aa a

T T T

€ Zy) + Zf1/pl.

This gives an elementary description of the decomposition
Q= Z(p) +Z[1/p]

induced by the decomposition Q, = Z, + Z[1/p].

5.5. Additive Structure of Q) and Z,

Let us start with the sum formula Q, = Z, + Z[1/p] proved in the last section.
Observe that this sum is not direct, since

Z,NZ{1/p] =Z.

The various embeddings that we have obtained are gathered in the following
commutative diagrams giving the additive (resp. multiplicative) structure of Q,

(resp. Q; ).

Q Q,
J N / N
Z, Z[1/p] z, Z[1/p]
N / N /
Z Z
Q* Q;
/ N J N
Z;, p* z; p*
N / N J
() M

If we embed Z in the direct sum Z, @ Z[1/p] by means of m +> (m, —m) and
call I the image, then the addition homomorphisms

2, ®Z[1/pl > Zyy +Z[1/p]1 = Q,
Z,0Z[1/pl > Z,+Z[1/p]=Q,
have kernel I" and furnish isomorphisms
(Zpy®Zil/pl) /T =Q,
(Z,®Z(1/p]) /T = Q,.
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Thus we have the following diagrams with vertical short exact sequences.

z
!

Z,, - Zyp®Zll/p] <« Z[1/p],

\
Q

y/
J
Z, - Z,®Z[l/p] <« Z[1/p].
J
Q,

Here is another pair of diagrams describing the inclusion relations between the
various abelian groups of numbers that we have considered:

Zli/p] - Q = Q, P> Q= Q
U U U U U U
Z o Zyp o> I, M = Zy < 7.

Comment. The subgroup Z, of Q, admits no direct complement. Indeed, for any
subgroup I' of Q,,

['NZ, = {0} => T discrete in Q, => I' = {0}.

In a sense, the subgroup Z[1/ p] is the best near supplement that one can take, and
we have unique sum decompositions with two components:

x€Z, yel0,1)nZ[1/p]

But this system of representatives [0, 1) N Z[1/p] is not a subgroup.

5.6. Euclidean Models of Q,

It is easy to give Euclidean models of the fields Q,, extending the models of Z,
given in (2.5) if we only observe that the inclusions of additive topological groups

1
;Zp DZ,andZ, D pZ,

are similar. In other words, a dilatation of ratio p of the Euclidean model of Z,
gives a model of (1/p)Z,. Iteration gives a model of

Qp = U p_mZP'
m>0

An illustration shows a piece of Q;, with central portion Z;.
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A piece of Q7 with Z; as central portion

6. Hensel’s Philosophy

6.1. First Principle

Let us explain the first principle in a particular case. Let P(X,Y) € Z[X, Y]
be a polynomial with integral coefficients. When speaking of solutions of the
implicit equation P = 0 in a ring A, we mean a pair (x, y) € A x A = A% such
that P(x, y) = 0.

Proposition. The following properties are equivalent:

(&) P =0 admits a solution in Zj,.
(li) For each n > 0, P = 0 admits a solution in Z/p"Z.
(iii) For each n > 0, there are integers ay, b, such that

P(a,, b,) =0 mod p".

Prook. (iii) is a simple reformulation of (ii). Now for x =Y, a; p' € Z,, define
*n=) i na;p' mod p" € Z/p"Z. Thenif (x, y) € Z, x Z,, then

P(xp, y») = P(x,y)mod p"Z, € Z,/p"ZL, (= Z/p"Z),
and hence (i) = (ii). Conversely, to prove (ii) = (i) let us consider the finite sets

Xn={(x.y) €Z/p"L xZ/p"L : P(x,y) =0}



46 1. p-adic Numbers

Reduction mod p” furnishes a map ¢, : X,4+1 — X,,, and the projective system
(Xn, ©n)n>1 has a projective limit X = limX, C Z, x Z,. The pairs in X
furnish solutions of P = 0 in Z, and the result follows from (4.4) (Corollary of
Proposition 1). u

Generalizations. Instead of a single polynomial P in two variables, one can
consider an arbitrary family (#;);¢; of polynomials having a finite number m > 2
of indeterminates and their common zeros. The above result shows similarly that
the algebraic variety defined by the equations P; = 0 (i € I) will have points with
coordinates in Z, precisely when it has points with coordinates in all rings Z/ p"Z
(n>1.

6.2. Algebraic Preliminaries

Proposition. Let A be aring and P € A[X] be any polynomial. Then there are
polynomials Py and P, € A[X, Y] such that

P(X+h)=PX)+h-P(X.h)= P(X)+h - P'(X)+h2PxX, h).

Proor. Let us write the polynomial P explicitly as a finite sum P(X) =Y a, X"
with some coefficients a,, € A. Then

PX+h) =) aiX +h)' =) a,X" +nX" " h+ 1)
= Za,,X" +h Zna,,X"_l +h? . Py(X, h);

hence the result. [ ]

6.3. Second Principle

The idea for improving approximate solutions will now be given in its simplest
form. Take a polynomial P € Z[X] and an integer x such that P(x) = 0 mod p.
'We can look for a better approximation X of P(X) = 0 in the form of an integer
such that P(%) = 0 mod p?. Without loss of generality, we may assume that x is
an integer gy between 0 and p — 1. We are looking for an integer X = ag + a; p
(again with 0 < a; < p) such that P(%) = 0 mod p?. But we have just seen that
we can write

P(ap+ai1p) = P(ap) + P'(ao) - a1 p + (@ p)* - b

for some integer b. By assumption, P(ap) = pt, and the desired congruence holds
mod p? if t + P’(ap) - a; = 0 mod p. We can suppose ¢ # O (there is nothing to
prove otherwise). When P’(ap) # 0 mod p we can take a; = —t/P’(ap) mod p
and

pt_ _ .- P(ap)
P’(ap) P’(ao)

fc=a0+a1p =daop —
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exactly as in the classical Newton approximation method. With this choice, we have
P(%) = P(ap + a; p) = 0 mod p?.
We shall occasionally use the notation
P(x)
P'(x)
for the Newton map. It is obvious that £ = Np(x) can be far from x when P’(x)
is small.

Np(x)=x —

f(x)

Y

ol N® x

Newton’s method

6.4. The Newtonian Algorithm

Iq this section we show that even when the derivative vanishes mod p, we can
still construct a better approximation of a root of P = 0, but we have to be less
demanding concerning its location.

Proposition. Ler P € Z,[X1and x € Z, be such that P(x) = 0 mod p". If
k= v(P'(x)) < n/2, then 3 = Np(x) = x — P(x)/P'(x) satisfies

(1) P(%) =0 mod p"*!  (adefinite improvement ),
(2) 2 = xmod p"* (a controlled loss ),
(3) u(P'(®)) = v(P'(x)) (=k) (an invitation to iteration ).

Proor. Put P(x) = p"yforsomey € Zp,and P'(x) = p*u for some unitu € Z;.
By definition of %,

R P(x
x = ) —p""‘ylf1 € p”"kZ,,.

On the other hand, still by choice of £, the first two terms of the Taylor expansion
of the polynomial P at the point x cancel each other:
P(x)

PR)= P(x)— o) P(x)+ & —x)-t.
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By (6.2) the 1 in the last term belongs to Z,. Hence
P(«Q) = (i’ —x)2 .t e p2n—2k Zp = pn A pn—2k Zp c p,,_HZp

(recall that 2k < n). It only remains to compute the order of P’(%). For this, we
use a first-order Taylor expansion of P’ at the point x (6.2):

PR)=POx+@E—-x)=Px)+(E—x)-s

“2kzs) = pru.

= pfu+ p"*z-s = pfu+ p"
Since n — 2k > 0, and since u is a unit,
v=u+p"H*zscu+ pl,C 1%,

which proves v(P’(%)) = k as claimed. |

Theorem (Hensel’s Lemma). Assume that P € Z,[X] and x € Z, satisfies
P(x) = 0mod p".
If k = v(P'(x)) < n/2, then there exists a unique root & of P in Z, such that

£ = x mod p"™* and v(P'(§)) = v(P'(x)) (= k).

ProoF. Existence. Let xo = x and construct an improved root x; € Zp,
x1 = xomod p" ¥ and P(x;) = 0 mod p"*', v(P'(x1)) = v(P'(x0)) (=k).

Similarly, we can find an improvement x, of the approximate root x; in the form
of a p-adic integer satisfying

x2 = x; mod p"*' % and P(x;) = 0 mod p"*+2.

Iterating the construction, we get a Cauchy sequence (x,,),>0 having a p-adic limit
£ satisfying P(¢§) = O and £ = x mod p"*.

Uniqueness. Let £ and 1 be two roots of P satisfying the required conditions:
In particular,

n=§ mod p"¥,
and since n > 2k, we have n — k > k + 1. and a fortiori
n =& mod p*tl.

Now,

P(m) = PE)+P'E)Xn— &) +(n—£)a
e e
=0 =0
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for some p-adic integer a. Hence

=5 (P®+0—5a)=0.

But
P'(E) + (n—£)a #0,
N —’ S —
order k order >k +1
so that the only possibility is n — & = 0, and uniqueness follows. |

Note that the uniqueness part of the proof shows that £ is the unique root
satisfying the a priori weaker congruence £ = x (mod p**!).

6.5. First Application: Invertible Elements in Z,

Let us consider the first-degree polynomial P(X) = aX — 1, where a # O is a
p-adic integer. In order to be able to find an approximate root mod p, we have to
assume that a € pZ, (in the p-adic expansion of a, the constant term ag # 0).
When this is the case, P/(X) = a and k = v(P'(x)) = 0, and any root mod p can
be improved to a root mod p” (n > 2). Eventually, we find a genuine root in Z,,
which means that a is invertible in this ring. Thus we have another “proof™ of the
implication

a€ly,—pl,=acl,.

However, this proof is deceptive, since Newton’s method assumes a priori that we
know how to divide: In the first step we are led to replacing x by
P(x) ax — 1

P'(x) a

~

X=X

1
==
a

Numerically, it is better to apply Newton’s method to the rational function f(X) =
1/X — a, for which f’(X) = —1/X?. Hence

)"c=Nf(x)=x—M=x+x2f(x)=2x—ax2.

')
With this function, Newton’s method uses a polynomial, and no division is required
to evaluate the successive approximations of the inverse.

6.6. Second Application: Square Roots in Q p

Consider now the quadratic polynomials P(X) = X2 — a, where a is a p-adic
mteger It is obvious that such an equation can have a root x in Z only if v(a) =
U(x?) = 2v(x) is even. Then if we divide a by a suitable even power p? of p, we
are brought back to the case v(a) = 0, namely a € Z;. Since P'(x) = 2x, we see
that the case p = 2 has to be treated separately.



50 1. p-adic Numbers

Case p odd. Hensel’s lemma will apply as soon as we can find an approximate
root mod p. But we know that in the cyclic group F, squares make up a subgroup
of index two. The quadratic residue symbol of Legendre distinguishes them:

a\ _ |+1 ifaisasquaremod p,
“ | -1 ifais notasquare mod p.
Let us choose an integer 1 < a < p that is not a square mod p. Then the three

numbers a, p, ap have no square rootin Q. They make a full set of representatives
for the classes mod squares

QL /(QNY = (p*/p™) x (L3 /@XY) = 2/2Z x /2.

Since every quadratic extension of Q,, is generated by a square root of an element
(every quadratic extension of a field of characteristic O is generated by a square
root), we see that we obtain all quadratic extensions of the field Q, for p > 3 —
up to isomorphism — in the form of the three distinct fields

Q,(Va), Qu(v/P), Qp(v/ap).

Casep =2. Observe that Z> = 1+ 2Z,, since the only possibility for the nonzero
constant digit is 1. Now we have

a€l] isasquare <= a €1+ 8Z,.

Proor. Ifa = b? € Z5 forsome b = 1 + b2 + by2? + - -- = 1 + 2c, then b? =
1 + 4(c + ¢?), and since ¢ = ¢ mod 2Z,, we have b?> € 1 + 8Z, as claimed.
Conversely, if a = 1 mod 8Z,, we can apply Hensel’s lemma to the resolution
of the equation X2 — a@ = 0, starting with the approximate solution x = 1. By
assumption, this is an approximate solution mod 2* (n = 3 > 2k = 2 is suitable).
We get an improved solution %,

#2=amod2® but% = x mod 22 only,

sincen —k = 3 —1 = 2. By iteration. we get an exact root £ = 1 mod 4 satisfying
xX=ainZ,. .

We have
Q3 /(Q3) = (2%/2%%) = (23 /(Z5Y’).
Since
LS =1+42Z, = {1} - (1 +4Z,),
we also have

LY /(L) = {E1) x (1 +4Z2)/(1 + 8Zy),
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so that finally
QI /(QY = Z/2Z x 1)2Z x 1./2Z.

There are — up to isomorphism — seven quadratic extensions of the field Q,. They
are obtained by adjoining roots of elements in the nontrivial classes of Q; /(Q;)*.
If we choose the elements

~1, (14 4) =45, 42, 425,

we get the seven nonisomorphic quadratic extensions

Q:(vV-1), Qu(+v/E5), Qx(vE2), Qu(/E10).

Examples. (1) Since 32 = 1 mod 8, x = 3 is an approximate root of x> — 1 = 0.
Newton’s method leads to the improvement X = 7, which is an improved solution
mod 16, but we only have 7 = 3 mod 4 as the theory predicts (and there is no
exact root £ = 3 mod 4, since the only roots are £ = +1).

) Sincea = —7 =1 — 8 = 1 mod 8, we obtain

\/~7€Z5< c Q.

(3) The preceding considerations prove that the equations
X>+1=0and X2 -3 =0

have no solution in Q. The polynomials X2 + 1 and X? — 3 are irreducible in

Q:[X].
We shall determine later the structure of the multiplicative group 1 + 4Z,.

6.7. Third Application: nth Roots of Unity in Z,,

Let £ be any root of unity in Qp.say£” = 1.Thennv(¢) = v(1) =0and v(§) =0
This proves that all roots of unity in QplieinZ; C Q. In particular, each root of
unity has a well-defined reduction mod p, s(&) € Fx Let us show that the group
Z contains roots of unity in each class mod pZ,, i. e above each element of F ;.

The polynomial P(X) = XP~!—1 hasderivative P’(X) = (p—1)X?~2. For any
unit x € Z; , k = v(P’(x)) = 0, and the simplest case (6.3) of the approximation
method applies. Since the polynomial X?~! — 1 has p — 1 distinct roots in the
field F »» namely all elements of F;, Hensel’s lemma furnishes p — 1 distinct roots
in Z7. This shows that the field Q, of p-adic numbers always contains a cyclic
subgroup of order p — 1,

Mp-] C Z; C QX,

consisting of roots of unity.
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Proposition 1. When p is an odd prime, the group of roots of unity in the field

Qp is pp-1-

Proor. We have to prove that the reduction homomorphism ¢ : u(Q,) — F} is
bijective. It is surjective by Hensel’s lemma. So assume that { = 1 + pr € kere
(t € Z,) is aroot of unity, say ¢ has ordern > 1,

"=+ p) =1

Hence npt + (;)pztz g p" =0, 0r

1 (n + (Z)pt +---+ p"'lt"'l) =0.

This shows that z = O (when pt{n) or p | n. In the second case, replace ¢ by ¢? and
n by n/p: Starting the same computation, we see that t = 0 or p? | n (original
n), and so on. Finally, we are reduced to the case n = p. In this case, the above

equation is simply
; p .. p-1,p-1) _
p+ 2 pt+---+p°t =0,

p+ (5)P1+~--+p””’t”" =p+p’--) #0.

and since p > 3,

This proves that # = 0 in all cases and ¢ = 1. ]

When p is odd, p — 1 is even and —1 belongs to 1. The number —1 will
have a square root in Q, precisely when (p — 1)/2 is still even, namely when
p = 1 mod 4. We have

V=1eQ, & 4|p-1 < p=1mod4.
A number i = /=1 can thus be found in Qs, Qy3, ...
Proposition 2. The group of roots of unity in the field Q, is p2 = {*1}.
Proor. We have
“1=1424+22+---€1+2Z,
and
{1} =2 CZ =1+2Z,.

On the other hand, F;' = {1}, and the only roots of unity in Z have order a power
of 2. But —1 is not a square of Z (6.6), and there is no fourth root of 1 in Q.
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To summarize, we give a TABLE.

Number of
quadratic
Field Units Squares  Roots of unity  extensions
Q: Z; =1+27, 1+8Z, 2 = {£1} 7
index 4
inZ;
Q, Z;>51+pZ, index2 Hp-1 3
p odd prime index p-1 inZ;

6.8. Fourth Application: Field Automorphisms of Q,,

It is possible to determine all automorphisms of the field Q, (over the prime
field Q). For this purpose, we need a lemma.,

Lemma. Let x € Qj. Then the following properties are equivalent:

() xisaunit: x € Z*.
p
(ii) xP~! possesses nth roots for infinitely many values of n.

ProoF. If x is a unit, then x # O mod pZ, and xP! = 1 mod pZ,. Let us put
a = xP~! and consider the equation P(X) = X" — a = 0. It has an approximate
root 1 mod p, and when r is not a multiple of p, P’(1) = n does not vanish mod
p- By Hensel’s lemma, there is an exact solution of this equation, namely there
exists an element £ € Z, such that " = g = xP~!. This proves (i) = (ii).

Conversely, if x?~! = y”, we have
(p— Dv(x) = n - v(yn),
and n divides (p — 1)v(x). This can happen for infinitely many values of r only if

v(x) = 0; hence x is a unit (we are assuming x # O from the outset). ]

Theorem. The only field automorphism of Q,, is the identity.

ProoF. Let ¢ be an automorphism of the field Q - By the algebraic characterization
f’f units of Q;, the automorphism ¢ must preserve units. Hence if x € Q, is written
In the form x = p"u (where n = v(x) and u € Z; is a p-adic unit), we shall
have

o(x) = @(p"u) = p(p")p(u) = p"pu)

and v(¢(x)) = n = v(x). This shows that the algebraic automorphisms of the field
_Qp preserve the p-adic order: They are automatically continuous. Now, if y € Q,,
1s an arbitrary element, we can take a sequence of rational numbers r,, € Q with
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r, — y. For example, we can take these rational numbers by truncating the p-adic
expansion of y. Now, since the automorphism ¢ is trivial on rational numbers,

¢(y) = @(lim y,) = lim ¢(y,) = lim y, =y. .
n—->oo n—>o0 n—>o0
Note. The preceding theorem is similar to the following well-known result:
The only algebraic automorphism of the real field R is the identity.

Indeed, if ¢ is a field automorphism of R, we have ¢(x2) = ¢(x)? for all x, and
hence ¢(y) > O for all y > O (write y = x2), and then also

o(u) < p)forallu <v

(put y = v — u). This means that these algebraic automorphisms automatically
preserve the order relation <. Since they must be trivial on the prime field Q, they
must be trivial. In detail: If 7 € Rand a, b € Q, then

a<t<b=a=g(a)=<¢t) <¢pb)=>.
Thus we see that
lp(t)—tl<b—a

is arbitrarily small; hence ¢(1) —t = 0.

Comment. Let us stress that in both the p-adic and the real cases, we are con-
sidering purely algebraic automorphisms over the prime field Q: The proofs show
that they are automatically continuous, and hence trivial. But there are infinitely
many automorphisms of the complex field C: Only two of them are continuous,

namely the identity and the complex conjugation. For example, the nontrivial au-
tomorphism

a+bv2>a—bv2 (a, be Q)

of the field Q(ﬁ) extends to any algebraically closed extension of this field;
in particular it extends to C. This extension is a discontinuous automorphism
of C.

Appendix to Chapter 1: The p-adic Solenoid

The fields R of real numbers and Q, of p-adic numbers can be linked in an
interesting topological group, the solenoid. We present a couple of constructions
and properties of this mathematical structure.
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A.1. Definition and First Properties
The canonical group homomorphisms

¢on :R/p"Z - R/P"Z, x mod p"T'Z 1> x mod p"Z (n > 0)
make up a projective system (R/p"Z, ¢,),>0 of topological groups.

Definition. The p-adic solenoid S, is the projective limit S, = imR/p"Z of
the projective system (R/p"Z, ¢,,). -

By definition, the solenoid S, is a compact abelian group equipped with canon-
ical projections
Yn:Sp > R/P"ZL (n=0)
that are continuous surjective homomorphisms. In particular,
¥v=v:8, > R/Z

is continuous and surjective, and the solenoid can be viewed as a covering of the

circle. The kernel of this covering is obviously ker ¢ = limZ/p"Z = Z,, and we
. S .

have the following short exact sequence of continuous homomorphisms,

0—-2Z,—>S,—->R/Z—0,

presenting the circle as a quotient of the solenoid, or the solenoid as a covering of
the circle with fiber Z,. Also observe that

P"Z, =ker(y,) C Z, =ker(y) C Sp.

Alternatively, one could define the solenoid as the projective limit of the system
having transition homomorphisms

¢, :R/Z—>R/Z, xmodZ+> pxmodZ (n=1).

A.2.  Torsion of the Solenoid
We recall the following well-known fact:
For each positive integer m > 1 there is a unique cyclic

subgroup of order m in the circle: It ism™'Z/Z C R/Z.

Proposition 1. For each positive integer m > 1 prime to p the solenoid Sy, has
a unique cyclic subgroup C,, of order m.

Proor. Let us denote temporarily by C? the cyclic subgroup of order m of the
circle R/ p"Z (it is the subgroup m~'Z/ p"Z). Since the transition maps

oo :R/p"MZL — R/p"Z
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have a kernel of order p prime to m (by assumption), they induce isomorphisms
Crt1 — C7 . The projective limit of this constant sequence is the cyclic subgroup
Cn C S,. To prove uniqueness, let us consider any homomorphismo : Z/mZ —
S,. The composite

Ypoo :Z/mL - S, - R/p"L

has an image in the unique cyclic subgroup C, of the circle R/p"Z. Hence o has
an image in C,,, and this concludes the proof. u

Observe that this unique cyclic subgroup C,, of order m (prime to p) of S, has
a projection ¥ (C,,;) in the circle given by

Y(Cn)=m—Z/Z C R/Z.

Since ¥ (m~'Z/Z) = C,, x Z,, the cyclic group C,, is the maximal finite sub-
group contained in ¥ "' (m~'Z/Z).

Proposition 2. The p-adic solenoid S, has no p-torsion.

Prook. Leto : Z/pZ — S, be any homomorphism of a cyclic group of order p
into the solenoid. I claim that all composites

@noYnp100 :Z/pZ — S, - R/p"Z — R/p"Z
are trivial. Indeed, the composite
Ynt100 :Z/pL — S, — R/p"H'Z

must have an image in the unique cyclic subgroup of order p of the circle R/ p"+'Z,
and this subgroup is precisely the kernel of the connecting homomorphism ¢, and
¥, 00 = @u(Yns1 o o). Consequently, there is no element of order p in S, (and
a fortiori no element of order p* fork > 1inS,). |

A.3. Embeddings of R and Q) in the Solenoid

Theorem. The p-adic solenoid contains a dense subgroup isomorphic to R. It
also contains a dense subgroup isomorphic to Q.

Proor. The projection maps f, : R — R/ p"Z are compatible with the transition
maps of the projective system defining the solenoid

fn=@no fon :R—> R/p"HZ - R/p"Z
Hence there is a unique factorization f : R — S, such that

fu=Vnof:R—>S, > R/p'Z.
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If x # 0 € R, as soon as p" > x we have f,(x) # 0 € R/p"Z and consequently
f(x) # 0 € S,. This shows that the homomorphism f is injective (this also
follows from (L4.5), since [, ker f, = [),»; P"Z = {0}). The density of the
image of f follows from the density of the images of the f,, (1.4.4, Proposition 3)
(in fact. all f, are surjective). Consider now the subgroups

H =y~ '(p7"2/L)C S, (k=0).
We have Hy = Z, by definition, and this is a subgroup of index p* of Hy:
Hy = {igln p*LIp"L=p*L, (k=1).
Hence
Q, =y '@/ py/D) =y (p*2/2) = | JHi C S,
The density of this subgroup of S, follows from the density of all images
¥n(Qp) = Z[1/p)/p"Z CR/P"Z
(1.4.4, Proposition 3). ]

Corollary. The solenoid is a (compact and) connected space.
Proor. Recall that for any subspace A of a topological space X we have

A connected, A C B C A = B connected.

In our context, take for A the connected subspace f(R) C S,, which is dense in
the solenoid. The conclusion follows. ]

Let us summarize the various homomorphisms connected to the solenoid in a
commutative diagram.

7 — 7, = z,
J 1 )
R <= §, <« Q.
J J )
R/Z = R/Z <« Qy/Z,

A.4.  The Solenoid as a Quotient
The sequence of continuous homomorphisms

i RxQp > R/P"Z, (1,x)+—> t+Za,-p' mod p"Z

i<n

(fx =) naip', v =ordp(x)) is compatible with the sequence of con-
necting homomorphisms defining the projective limit S,,. Hence there is a unique
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factorization consisting of a continuous homomorphism
F:RxQp—=8,, (t,x)>1+x

having composites ¥/,, o f = f,. Alternatively, the two injective continuous ho-
momorphisms j; :R — 8, j»:Q, — S, furnish a unique continuous homomor-
phism

jl +j2:R®Qp - Sp9
which coincides with the preceding one (we are identifying the product and the

direct sum). This homomorphism f will therefore be called the sum homomor-
phism.

Lemma. The kernel of the homomorphism f defined above is the subgroup
kerf =T ={(a,—a):aecZ[1/p]} CRxQ,.

It is a discrete subgroup of the product R x Q.

Proor If f(r,x) = O, we have in particular fo(z,x) = Yoo f(r,x) = 0 €
R/Z, namelyt + Y, o ap' €L, t € =Y, ap +Z C Z[1/p]. Similarly,
fu(t,x) = 0 gives
1 +Za,-pi ep'ZL (n=>1).
i<n

This proves that the p-adic expansion of the element r € Z[1/p] is given by
t = —lim),_, ap'in Q, Hence t = —x € Q,. Conversely, it is obvious
that I' C ker f. Let us show that the (closed) subgroup T is discrete. For this it
is enough to show that a suitable neighborhood of 0 in R x Q,, contains only the
neutral element of I'. Consider the open set

-L 1) xZ,CRxQ,.

If apair (a, —a)isinI" N (-1, 1) x Z,, then the p-adic expansionofa € Z[1/p]
mustbeof theform ), a; P'. But we have seen (1.5.4) that in the p-adic field Qp.
the intersection Z[1/ p]|NZ » = £ contains only the rational integers. In particular,
acZ n (—1,1) ={0}. Hence

rN-1,1)xZ,) ={0} CR x Q,,

and the proof is concluded. u

Theorem. The sum homomorphism f :R x Q, — S, furnishes an isomor-
phism f' : (R x Qp)/T'p = S, both algebraically and topologically.

Proor. Since all maps f, are surjective, the map f has a dense image (1.5.4).
Moreover, using the integral and fractional parts introduced there,

fa,x)=fa+(x),x —(x)) = f(s,5),
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where s € R and y = x — (x) = [x] € Z,. Going one step further, we have
fG, )= fs—IslLy+Ish=fu,2),
where u =5 —[s] € [0, 1) and z = y + [s] € Z,,. This proves
Imf=fRxQp)= f([0,1) X Zp).

A fortiori, the image of f is equal to f([0, 1] x Z,), and hence is compact and
closed. Consequently, f is surjective (and f” is bijective). In fact, the preceding
equalities also show that the Hausdorff quotient (recall that the subgroup I',, is
discrete and closed) is also the image of the compact set & = [0, 1] x Z, and
hence is compact. The continuous bijection

ffTRxQp/T,—>S,

between two compact spaces is automatically a homeomorphism. n

Corollary 1. The solenoid can also be viewed as a quotient of R x Z, by the
discrete subgroup Az = {(m, —m) : m € 71}

f RxZy)/Az =S,

ProoE. Since the restriction of the sum homomorphism f : R x Q, — S, to the
subgroup R x Z, is already surjective, this restriction gives a (topological and
algebraic) isomorphism

TR xZy)/ ker f'=Z,.
But

ker f' = (ker fYNR X Z,)= Az ={(m,—m):m e Z}. -

These presentations of the solenoid can be gathered in commutative diagrams
of homomorphisms:

Z[1/p] Z
N N N N
R Q, R Z,
N v N\ e
SP SP

Corollary 2. The solenoid can also be viewed as a quotient of the topo-
logical space [0, 11 x Z,, by the equivalence relation identifying (1, x) to
O, x+1) (xe€Zp).
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Prook. This follows immediately from the previous corollary, since the restric-
tion of the sum homomorphism to [0, 1] x Z,, is already surjective, whereas its
restriction to [0, 1) x Z,, is bijective. ]

Comment. This last corollary gives a good topological model of the solenoid:
One has to glue the two extremities of the cylinder [0, 1] x Z, having basis Z,
by a twist representing the unit shift of Z,,. This gives a model for the solenoid
as a very twisted rope! On the other hand, it is clear that instead of the subgroup
I' = Z[1/ p] consisting of the elements (@, —a) (a € Z[1/p]) we could equally
well have taken the diagonal subgroup A, image of

avr>(a,a):Z[1/p] > Rx Q,,

the isomorphism (R x Q,)/A = S, now being given by subtraction.

A.5. Closed Subgroups of the Solenoid

Lemma. Let 6 : Cpn — Cpn be a surjective homomorphism between two
cyclic groups of orders p™ and p™'. Then the only subgroup H C C pm not
contained in the kernel of & is H = Cpm.

ProoE. Recall that any subgroup of a cyclic group is cyclic and that the number of
generators of C, = Z/nZ is given by the Euler ¢-function ¢(n). In particular, if
n = p™ is a power of p, the number of generators is

e(p™=p"(p =D =p"—p" .
Consequently, all elements not in the kernel of a surjective homomorphism of a
cyclic group of order p™ onto a cyclic group of order p™~! are generators of the
cyclic group of order p™ (the kernel has order p™~1). u

Proposition. For each integer k > O, there is exactly one subgroup H, C S,
having a projection of order p* in the circle: y(Hy) = p~*Z/Z C R/Z. This
subgroup is Hy = ¢~ (p™Z/Z) C S,.

Proor We can apply the lemma to each surjective homomorphism
p—kZ/pn+lZ - p—kZ/an

in the sequence of connecting homomorphisms defining the solenoid as a projective
limit. The projective limit of these cyclic groups is p~*Z,,. u

As a preliminary observation to the following theorem, let us assume that the
solenoid contains a cyclic subgroup H of some finite order m > 1. Taking a gener-
ator x of H and n large enough so that ¥,(x) # 0, we see that the restriction of this
homomorphism ¥, to H must beinjective. A fortiori, the restriction of ¥, (and all
¥y for N > n)to H must be injective. The restriction of ¢, : R/p""'Z — R/p"Z
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to ¥n+1(H) must be injective. Hence H = ,,41(H) has no element of order p
and m is prime to p.

Theorem. The closed subgroups of the solenoid S, are

(1) G, the cyclic subgroup of order m relatively prime to p (m > 1),
(2) Cpy x p*Z,, where m is primeto p and k € Z,
(3) S, itself (connected).

Proor. Let H be a closed subgroup of the solenoid S,,. Since H is compact, its
image ¥ (H) is a closed subgroup of the circle R/Z. The only possibilities are

Y (H) = n"'Z/Z cyclic of order n > 1,
or
Y (H) = R/Z is the whole circle.
(1) The easiest case is the second one,
Y (H) = R/Z is the whole circle,

in which case ¥,(H) C R/ p"Z must be a closed subgroup of finite index. Hence
it must be open in this circle. By connectivity, ¥,(H) C R/p"Z. Since this must
hold for all n > 1, we conclude that

H=H=\f"{(HH) =S,
n>1
and H = S, in this case.
) If y(H) = {0}, then H C ¥ ~(0) = Z, C S, and we have shown in (3.5)
that the only possibilities are

H = {0}, p"Zp for some integer k > 0.

These possibilities occur in the list for C,, = {0} (m = 1).

(3) We can now assume that ¥(H) = a~'Z/Z is cyclic and not trivial. Write
a = p*.m with k > 0 and m prime to p. By the Chinese remainder theorem (or
the p-Sylow decomposition theorem) this cyclic group is a direct product of the
cyclic subgroups m~'Z/Z and p~*Z/Z. If k > 1, the above lemma shows that
¥n41(H) must contain an element of order p**!. As in the proposition, we see
that H contains ¢ "W (p~*Z/Z) = p~™Z, C S, and finally H = C,, x p~*Z,.1f
k = 0, two possibilities occur: Either ,,(H) is cyclic of order m for all n, or there
is a first n such that this group ¥, (H) contains an element of order p. In the first
case H = C,,, while H = C,, x p"Z, in the second. ]

A.6. Topological Properties of the Solenoid

We have seen in (I.A.4) that the solenoid S, can be viewed as a quotient of the
cylinder [0, 1] x Z,, and an image of [0, 1) x Z,. This leads to considering the
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second projection of this product as a (discontinuous) map (¢, x) > x. This map
has continuous restrictions to all subspaces [0, n] x Z, (0 < n < 1). It furnishes
continuous retractions of these subspaces onto the neutral Z ,-fiber of the solenoid.

Recall that we have a continuous surjective homomorphism ¥ :S, — R/Z
leading to a presentation of the solenoid by the short exact sequence of continuous
homomorphisms

0->2,—-8S,—>R/Z—-0.

The subspaces ¥ ~1([0, n]) (0 < n < 1) have continuous retractions on the fiber
Z,, simply since ¥ ([0, n]) is homeomorphic to [0, n] x Z,. The following
statement is then an immediate consequence of these observations.

Proposition 1. Let U be any proper subset of the circle R/Z. Then the subspace
¥ ~Y(U) C S, of the solenoid is homeomorphic to U x Z,. The map

t,x)=(@—[t],x +[t]) = (0, x +[t])
furnishes by restriction a continuous retraction of ¥ ~1([0, n]) C S, onto the

neutral fiber Z, C S, (0 < n < 1). ]

The solenoid has still another important topological property that we explain
and prove now.

Definition. A compact and connected topological space K is called indecom-
posable when the only partition of K in two compact and connected subsets is
the trivial one.

Proposition 2. The solenoid S, is an indecomposable compact connected to-
pological space.

Proor. Let us take two compact connected subsets A and B covering S,. We have
to show that if A # S, then B = S,. Thus we assume A # S, from now on:
B # @. Since we have

K = ()9, Wa(K))

n>1

for every compact set K, the assumption A # S, leads to ¥,(A) # R/p"Z for
some integer n = ng and hence also for all integers n > nq (the transition maps
¢n, are surjective). It will suffice to show ¥,,(B) = R/p"Z for all n > n,. Take
such an n and an element b € B. Then

¢, '(b) CR/p™'Z
has cardinality p > 2, and the restriction of ¢, to the connected set

C = ¢, ' Yu(B) = Ypy1(B)
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is not injective. The proof will be complete as soon as the following statement (in
which the situation and notation are simplified) is established.

Let a > 1 be any integer, ¢ : R/aZ — R/Z the canonical projection, and C a
connected subset of R/aZ containing two distinct points s # t with ¢(s) = ¢(t).
Then ¢(C) = R/Z.

In terms of the restriction ¢|¢ of the map ¢ to C, we have to prove

¢|c not injective = ¢|c surjective

under the stated assumptions. It is obviously enough to do so when C # R/aZ.
In this case, take a point P ¢ C C R/aZ and consider a stereographic projection
from the point P of the circle R/aZ onto a line R. This is a homeomorphism

f:R/aZ—{P} = R.

The image f(C) of the subset C is a connected subset of the real line containing
the images of two different congruent points mod Z. Since any connected set in the
real line is an interval, this proves that f(C) contains the whole interval J linking
these two different congruent points. Hence C contains a whole arc I of the circle
having image ¢(I) = R/Z. ]

EXERCISES FOR CHAPTER 1

1. Compute the squares of the following numbers
6, 76, 376, 9376, ....
Show that one can continue the sequence in a unique way: For example, the number
74374008 17871 09376
appears in the 18th position. Define the limit

o= Za,-lOi = ---agasasazazayap = - - - 109376

i>0

as a 10-adic integer: o € Zo. Give the 10-adic expansion of —1.

Observe that by definition a? = o, and find the four solutions 0, 1, «, Bofx2 =x
inZjo. What are o + 8, af ?

Prove that Z19 = Zs x Z;. (Hint. Consider the map x > (ax, fx).)

2. (a) Give the 5-adic expansion of the integers 15, —1, —3. The integers 2. 3, 4 are

invertible in Zs: Give the 5-adic expansions of the inverses. Give the expansion of
% in Z74

(b) What is the p-adic expansion of % if the prime p is odd?

(c) If f is a positive integer. give the expansion of 1/(1 — pf )inZ,.

(d) More generally, find the expansion of 1/m inZ, when the integer m is not divisible
by p. (Hint. Let f be the multiplicative order of p mod m so that p/ — 1 = nm.
Thenuse 1/m = —n/(1 — p¥).)
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. (@) Show x € p"Z, <= —x € p"Z, and so ord,(—x) = ordp(x).

(b) Check as in (1.5) that if & € Z y, then (1 + p"ar)~! = 1 + p"a’ for some o € Z),.
(¢) Using the p-adic metric. reformulate (b) in the form
if 0 <r < 1, then

x—1ll<nly—ll<r=lxy—1}<r

(d) Leto denote the involution introduced in (1.2). Show that 0 (B, (a)) = B<,(c(a)).

. Show that there is a square root of 2 in Z7. (Compute the first coefficients in a =

ap+a17+ay7* + - - - iteratively using a2 = 2; do not be surprised if no regular pattern
appears: The same happens for the computation of the decimal expansion of /2 in R;
cf. also (1.5.3).)

. (@) Solve the equation x2 = 1inall Z/2"Z (n > 1). Guess the result by making a small

table with the first values n < 4 or 5.
(Hint. Consider separately the cases n = 1, 2, > 3. When n > 3, observe that if
x2 = 1, then x is the class of an odd integer 2k + 1 (0 < k < 2"~ 1), and 4k(k + 1)
has to be divisible by 2". In (VIL.1.7) we show that the unit group in Z/2"Z is a
product of two cyclic groups (rz > 3), from which the result also follows.)

(b) Solve the equation x2 = 1 in Z,.

. (@) Let N be a positive integer. Show that the subset {N, N + 1, N + 2, ...} is dense

inZp.
(b) For which values of a and b € Z, is the subset a + bN dense in Z,?
(c) Show that the subset {—1, —2, =3, ...} isdense in Z,.

. Let jp : Q = Q,, denote the canonical injection.

(a) Determine the subring j, 1(Z,,) of the field Q (this subring is simply written Q N
Z, =Z). Whatiis j, (Z,) N Z{1/p)?

(b) Show that
N i;'@y=z
p pnime
(this equality is sometimes simply written (") p(Q NZp) =17).

. Let X be a nonempty set and E = XN the set of sequences in X. For two different

sequence a = (a,), b = (b,) let us put

1 1
d@a,b) = ———— = —.
@b min{r : a, # bn} v
(a) Show that d defines an ultrametric distance on E.
(b) Show that E is complete for the preceding metric.

. The distance between two subsets A, B of a metric space is defined by d(A, B) =

infaeA beB d(a, b). Show that if the metric d is ultrametric, then

d(a.b) ifr <d(a,b),

d(B<y(a), B<(b)) =
(B<r(a), B<r(b)) 0 ifr > d(a, b).

More generally, the distance of two disjoint balls B, B’ is equal to the constant value
ofd(x,x")forx € B,x' € B'.
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10. Let K be a (commutative) field and let K[[X]] be the ring of formal power series

11

12.

13.

14.

FX) =3 p50anX". Choose 0 < 6 < 1 and for g(X) = 3,50 bn X" # f(X), define
d(f(X), g(X)) = omin(n :n by}

Show that d defines an ultrametric distance on K [[ X]] for which this space is complete.
Show that the space of polynomials K[X] is dense in K[[X]], and hence this is a
completion of the space of polynomials. The ball { f(X) : d(f(X), 0) < 6"} is the ideal
(X™) = X"K[[X]). The fraction field K ((X)) = K[[X]][X '] consists of the Laurent
series ¥ ., @, X" (v € Z). It is a completion of the ring K[X, X~'].

Let 6 > 1 and for any nonzero polynomial f € R[X] define | f| = 6% Extend this
definition by |0] = 0 and | f/g| = |f|/|g) for a rational fraction f/g € R(X). Show
that this defines an ultrametric absolute value on the field R(X).

Let E be a compact metric space and f : Z; — E be a continuous surjective map. For
each ball B C Z, of positive radius, let Ap = f(B) be the compact image of B in the
space E. Observe that

Ap = Agp UApr if B=B uB”,
(A = (f)}

B>x

Conversely, recall that M denotes the free monoid generated by two letters, say 0 and
1, and P(E) denotes the set of parts (power set) of E. For any map ¢ : My — P(E)
having the properties
@ ¢@)=E, ¢(w)=ewd)Upwl) (weMy),
(b) 8(p(wy)) — 0 when the w,, are the initial segments of an infinite word,
() () e(wn) # @ when the w, are the initial segments of an infinite word,

show that there exists a continuous surjective map

[ :Zy — E suchthat f(By) = ¢(w).

Let E be a compact metric space. Show that there exists a continuous surjective map
J:Z, — E. In other words, the metric space is a topological quotient of the space
Z;. (Hint. Let (K;)1<i<x be a covering of E by closed sets of diameter < 1. If k > 1
call Ag = KgU---UKgand A) = K¢y  U---U K with, e.g., £ = [k/2).If € > 1,
start again and define similarly shorter unions Aqg, Ag; such that Ag = Agg U Agi-
This leads to finitely many words w; so that K; = Ay, . Proceeding similarly for each
of them, show how to define a map ¢ : My — E having the properties listed in the
previous exercise.)

Conclude that all spaces Z,, are homeomorphic to Z,.

Give an explicit continuous surjective map Z; — {1/n :n > 1}

Let E be a compact metric space. Show the equivalence

(i) there is a continuous surjective map f : [0. 1] —> E,

(ii) E is path-connected.
(Hint. Use the previous exercise to construct a continuous surjective map fo: C —
E. where C is the Cantor subset of the unit interval, and extend fo through the
missing intervals — this is possible if the space E is path-connected.)
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In particular, for every compact, convex subset K of a (real or complex) Hilbert
space, there is a continuous surjective f:[0.1] — E (“space-filling curve” or
Peano curve).

15. Let E be a compact metric space with the following properties:
(a) E is totally disconnected.

(b) E has no isolated point (hence is not a singleton set!).
Show that E is homeomorphic to Z,.

16. Show that the planar fractal image of Zs is path-connected when it is connected (cf.
picture in text).

17. Construct a planar model of Q7 using v : {0, 1, ...6} — C defined by
v(0) =0, v(j)=e7/% (1<j<6).

Observe the appearance of the von Koch curve in the image of

X7 = Za,,7":15a,,56}CQ7-

n>0

18. (a) Give an example of a discrete subset of [0, 1] C R that is not closed.

(b) Prove that if A is a discrete subset of a Hausdorff topological space X. then A is
openin A (the same is true for any locally compact subset in a Hausdorff space).

(c) Let G be a topological group that is Hausdorff. and I" a discrete subgroup. Prove
directly that I' is closed in G (cf. 1.3.2).

(d) Let G be a group having more than one element, let G, denote the topological
group G with the discrete topology, and let G denote the topological group G
with the topology having only @ and G as open sets (not Hausdorff?). Prove that
I' = G4 x {e} is a discrete subgroup of the topological group G4 x Go. What is
its closure?

19. (a) Let H be a normal subgroup of a topological group G. Prove that the subgroup H

is also normal.

(b) For any topological group G, the quotient G/{e} is a Hausdorff topological group.

(c) Let H be a closed subgroup of a locally compact (topological) group G. Prove that
the space G/H is locally compact

(d) Let G be alocally compact totally discontinuous group, so that the connected com-
ponent of the neutral element in G is {e}. Prove that any neighborhood of the neutral
element contains a clopen subgroup. (Hint. Start with a compact neighborhood K
of e. There is a clopen neighborhood U of e contained in K. Since U is compact
and disjoint from the closed set F = G — U, there is a symmetric neighborhood
W of e such that UW N FW = @ and hence

UW C(FW) C F°=U.

By induction W" C UW" C U. The subgroup generated by W is open and
contained in U.)

20. Here is an example of a topological ring A that does not induce on its units A* atopology
compatible with the group structure (cf. (I.3.5)). Let H be a complex Hilbert space with
orthonormal basis (e;);>0. Hence the elements of H are the series x = ;.o X;e; such
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22

23.

24.

25.
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that x; € C and Zizo |xi |2 < oo. Consider the sequence of continuous operators 7, in
H defined by
€ ifi #n,

Tn:eir> {e,,/n ifi =n.

Prove that forevery x € H, |T,,x —Jc||2 — 0, and hence T,x — x and T,, — I for the
strong topology on the ring A of bounded operators on H. But T,,"l #> 1 for the strong
topology (consider the vector x =}, -1 e,/n).

Let K be an ultrametric field.
(a) Show that if K is locally compact, then all balls of K are compact (and conversely).
(b) Two balls of K having the same radius r > 0 are homeomorphic.

(Hint. Consider separately the cases |K*| discrete or dense; remember that all

spheres are clopen, and if necessary, use a bijection (0, r] N | K *| N ©,r)N|K*|)

Let G be a group and
G=GyD>G1D5G2D---2G, D -

be a decreasing sequence of normal subgroups of G. Show that there is a unique group
topology 0.1 G for which (G)n>0 is a fundamental system of neighborhoods of e. For
this topology, the G,, are clopen subgroups and

G Hausdorff <= [ G, = {e}.

n>0

When this is the case, show that G is metrizable. (Hint. Note that G/ G,, is discrete and
metrizable. One can embed G in the countable metrizable product [ G/ Gn.)

Let A = My(Zp) be the noncommutative ring of 2 x 2 matrices having coefficients
in Z,. Show that A is a topological ring (for the product topology). The units in A
constitute a group A* = Glo(Zp):

g € Gly(Zy) < g € Ma(Zp) and detg € Z;.

Show that Gl>(Z ) is a topological group with the topology induced from A. Let G,, C G
denote the normal subgroup consisting of matrices g = (g;j) congruent to the identity
matrix mod p”,

8ij = 8[] mod p"Zp
(6ij = 1ifi = j and = 0if i # j is the Kronecker symbol). Show that the G,, form a
fundamental system of neighborhoods of the identity in Glo(Zp).

Let (An)n>0 be a decreasing sequence of subsets of a set E. Consider the canonical
inclusions A, ) C A, as transition homomorphisms. Show that the intersection A =
nnzo A, together with the inclusions A — A,, has the universal property characterizing

the projective limit h(_m A, and hence may be identified with it: ll(_m Ap = n Ap.

Let (Xy, ¥n)n>0 and (¥, ¥n)n>0 be two projective systems. One can consider canoni-
cally (X, % Yu, ¥n X ¥n)n>0 as a projective system. Prove

lim(X, x ¥,) =limX,, x limY,,.
— «— «—
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26.

27.

28.

29.

30.

31.
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Leta € Z be a rational integer. Show that X 2 4 X +a = Ohasa root in Q: if and only
if a is even.

(a) In which fields Q, does one find the golden ratio (root of xZ=x+1)?
(b) How many solutions of X 44+ X241 = Oarein Q;? (Either make a list of solutions
mod 7, or consider ¥ = XZ and solve in two steps.)

(a) Show thatifa € 1 4 pZ, and the integer n is prime to p, then there is an nth root
of ain Q.

(b) Give anexample of a € 1 + pZ, having no pth root in Qp,.

(¢) Show thatifa € 1 + p°Z p» then a has a pth root in Q.

Let n be a positive integer, v = ordpn; hence n = p*n’ and (p, n") = 1. For integers
a, b € Z, prove

a=b (modnZy)<=>a=>b (modp"Z).

(Hint. Observe that nZ,y = p“Zp) and nZp) NZ = p''Z.)

Let p and g be distinct primes.

(a) Prove that the fields Q, and Qy are not isomorphic.

(b) Prove that the fields Q, and R are not isomorphic.

(c) Prove that the fields Qp(14—1) and Qg (1p—1) are not isomorphic.
(Hint. Look at roots of unity. Observe that for each prime p, the field Q, has an
algebraic extension of degree 4, which is not the case of the field R. For part (¢),
use the lemma in (6.8).)

Let p and g be distinct primes. What is the projective limit

lim R?/ (p"Z x ¢"Z)?
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Finite Extensions of the Field
of p-adic Numbers

The field Q,, is not algebraically closed: It admits algebraic extensions of arbitrarily
large degrees. These extensions are the p-adic fields to be studied here. Each one
is a finite-dimensional, hence locally compact, normed space over Q,. A main
result is the following: The p-adic absolute value on Q,, has a unique extension to
any finite algebraic extension K of Q,,.

1. Ultrametric Spaces

1.1. Ultrametric Distances

Let (X, d) be a metric space. Thus X is equipped with a distance function d : X x
X —> R, satisfying the characteristic properties

d(x,y) >0 x #y,
d(yy x) = d(x7 y)1
d(x,y) <d(x,z)+d(z,y)

forall x, y,and z € X. Forr > 0 and a € X we define!
B (a)={x€X:d(x,a)<r}

= dressed ball of radius r and center a,

!Let me use this unconventional terminology in this section only. From (I1.2) on, I shall rely on the
reader for a proper distinction between “open” and “closed” balls.
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B.,(a)={x€ X :d(x,a) <r}
= stripped ball of radius r and center a.

Hence B.,(a) is empty if r = 0, and the stripped balls form a basis of a topology
on X: In particular, all stripped balls are open.

Definition. An ultrametric distance on a space X is a distance (or metric)
satisfying the strong inequality

d(x,y) <max(d(x,2),d(z,y)) (=< d(x,z)+d(z,y))

forallx, y, and z € X. An ultrametric space (X, d) is a metric space in which
the distance satisfies this strong inequality.

The following results are valid in ultrametric spaces.

Lemma 1. (@) Any point of a ball is a center of the ball.
(b) If two balls have a common point, one is contained in the other.
(c) The diameter of a ball is less than or equal to its radius.

Proor. (a)If b € B_,(a), then d(a, b) < r and
x € B_,(a) &= d(x,a) <r "5 d(x,b) <r <= x € B_,(b)

proving B_,(a) = B.,(b). The case of a dressed ball is similar.
(b) Take, for example, a common point ¢ of the balls B_,(a) and B.,.(b). By
the previous part, we have

B_,(a) = B.,(c) and Bsr’(b) = Bsr’(c)'

Now, it is clear that B,(c) C B<,(c)if r < r’, while B<,-(c) C B, (c)ifr' <r.
All other cases are treated similarly. Part (c) is obvious. [ ]

It is immediately seen by induction that ultrametric distances also satisfy the
strong inequality for finite sequences x;, x, ..., x, € X:

d(x1, x,) < max (d(x), x2), d(x2, x3), ..., d(Xs—1, Xp))-

Consider a cycle containing n > 3 distinct points: x; (1 <i < n), x4 = x;. We
may assume d(xy, X,,) = max; <, d(xi, xi+1): Renumber these points if necessary,
and observe that d(x,,, x,,4+1) = d(x,,, x1) = d(x1, x,). Since

d(xy, x,) < max (d(xy, x2), - - ., d(xy—1, Xn))
by the ultrametric inequality, it follows that

d(x] ) xn) = d(xiv xi+l)



1. Ultrametric Spaces 71

for at least one index 1 < i < n— 1. In other words, the cycle has at least two pairs
of consecutive points with equal maximal distance. In particular, in a set a, b, ¢
of cardinality 3, at least two pairs have the same (maximal) length. A picturesque
way of formulating this property is this:

In an ultrametric space, all triangles are isosceles (or equilateral), with at

most one short side.

Here is an image of the situation. Let x be the earth and y, z be two stars in a
galaxy not containing the earth, so that d(x, y) > d(y, z). Then we consider that
d(x, y) = d(x, z) (this is the distance of the galaxy containing y, z to the earth).
In other words, ultrametric distances behave as orders of magnitude.

Let us denote by S,(a) = {x € X : d(x,a) = r} the sphere of center a and
radius r > 0. Then if a ball B does not contain the point a, it lies on the sphere
S, (a), where r = d(a, B)

if B = B_y(b),thenr =d(a,b) > s and B C S,(a),
and similarly,
if B = B<s(b), thenr =d(a,b) > s and B C §,(a).
Let us reformulate these properties in the form of another lemma.
Lemma 2. (a) Ifd(x,z) > d(z,y), thend(x, y) = d(x, 2).

(b) Ifd(x,z) #d(z,y), then d(x. y) = max (d(x, z), d(z, ¥)).
(c) Ifx € S,(a), then B.,(x) C S,(a) and

S@= {J B« .

xes, (a)

N
N\

Balls within a ball

The stripped balls are open in any metric space: By definition, they make up a
basis of the topology. Similarly, the dressed balls are closed in any metric space.
In an ultrametric space we have some other peculiarities.
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Lemma 3. (a) The spheres S,(a) (r > 0) are both open and closed.
(b) The dressed balls of positive radius are open.
(¢) The stripped balls are closed.
(d) Let B and B’ be two disjoint balls.
Thend(B, By =d(x,x") forany x € B.x"' € B'.

ProoE. (a) The spheres are closed in all metric spaces, since the distance function
x = d(x, a) is continuous. A sphere of positive radius is open in an ultrametric
space by part (¢) of the previous lemma.

(b)Xf r > 0, then B<,(a) = B.,(a) U S,(a) is open.

() Ifr > 0, the sphere S,(a) is open; hence B_,(a) = B<,(a)— S;(a) is closed.
Ifr =0, B.,(a) = @is closed.

(d) Take four points: x, y € B and x’, y' € B’. The 4-cycle of points x, x’, y', y
has two pairs with maximal distance: They can only be d(x, x") = d(y, y’), since
we assume that the balls are disjoint. All pairs of points x € B, x’ € B’ are at the
same distance, and d(B, B’) := infycp xep d(x, x") is this common value. [

Due to the frequent appearance of simultaneously open and closed sets in ultra-
metric spaces, it is useful to introduce a definition.

Definition. An open and closed set will be called a clopen set.

Lemma 4. (a) Asequence (x,),>o withd(x,, Xn4+1) = 0 (n - 00) isa Cauchy
sequence.
b) Ifx, > x # a, then d(x,,a) = d(x, a) for all large indices n.

ProoF. (a) Observe that if d(x,,, x,,11) < & for all n > N, then also
d(Xp, Xp4m) < Max d(Xpyi, Xnyiv1) < €
O<i<m

foralln > N andm > 0.
(b) In fact, d(x,,, a) = d(x, a) as soon as d(x,, x) < d(x, a). [

Proposition. Let Q@ C X be a compact subset.

(a) Foreverya € X — Q, the set of distances d(x, a) (x € 2) is finite.

(b) For every a € <, the set of distances d(x,a) (x € Q — {a}) is discrete
in R>0.

ProoF. (a) We have just seen that

d(x,y) < d(x,a) = d(y,a) = d(x, a),

hencethe function f : x + d(x, a), 2 — R.islocally constantand continuous.
Its range is finite: The sets f~!(c) (for ¢ € f(2)) form an open partition of the
compact set €2.
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(b) The map f : x > d(x,a), Q2 — {a} — R, is locally constant as before.
For ¢ > 0, its restriction to the compact subset 2 — B_.(a) has finite range. This
proves that all sets

[e,00) N {d(x,a):x € Q, x #a)}

are finite. Hence f(Q2 — {a}) is discrete in C R.¢. "
Let us summarize.

Properties of ultrametric distances.

(a) Any point of a ball is a possible center of the ball
b € B.,(a) => B<,(b) = B<,(a) (and similarly for stripped balls).
(b) If two balls have a common point,
then one is contained in the other.
(c) A sequence (x,)nen is a Cauchy sequence
precisely when d(xy,, X,4.1) > 0 (n — 00).
(d) In a compact ultrametric space X, for eacha € X,
the set of nonzero distances {d(x. a) : a # x € X} is discrete in R...

1.2.  Ultrametric Principles in Abelian Groups

Let G be an additive (abelian) group equipped with an invariant metric d, namely
a metric satisfying

dx+z,y+2z)=d(x,y) (x,yandze€ G).

For x € G, define
x| =d(x, 0).
Then
|—x] =d(—x,0) =d(0, x) = d(x, 0) = |x|

and

Ix+yl=d(x+y,0) <d(x+y,y)+d(y,0)

<dx.0)+d(y,0) = |x| + |yl

This shows that x +> —x and (x, y) > x+ y are continuous and G is a topological
group when equipped with the metric d. We shall say that G is a valued group

when such a metric d has been chosen.
Assuming that this metric satisfies the ultrametric inequality, we shall have

similarly

Ix +yl =d(x+y,0) <max(d(x +y, y), d(»,0))
< max (d(x, 0), d(y, 0)) = max(|x|. |y}).
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In particular, all nonempty balls centered at the neutral element 0 € G are sub-
groups of G. These subgroups are

B,O)={xeG:lxl=<r} (r=0),

B,0O)={xeG:|x|<r} (@ >0).
Instead of applying (1.1) to see that the balls B,(0) and B_,(0) are open and
closed when r > 0, one can observe that these subgroups are neighborhoods of
the origin and use (I.3.2) to reach the same conclusion.

Conversely, if we are given a function G — R : x > |x]| satisfying
Ix] >0 forx #0, |—x|=|x|,
x+yl < IxI+1yl (resp. < max (x|, |y]))

then we can define an invariant metric (resp. ultrametric) on G by
dx,y)=|x —y|.

The characteristic properties of distances are immediately verified (see the specific
references at the end of the volume). A pair (G, | . |) consisting of an abelian group
G and a function G — R>¢ : x +— |x]| satisfying the preceding properties, with
the ultrametric inequality

|x +y| <max(lx|, |y]) (x,y € G),

will be called an abelian ultrametric group.
The study of convergence for series in a complete abelian group is simpler in
ultrametric analysis than in classical analysis. Let (a; );>0 be a sequence and define

Sp = E a;.

If this sequence of partial sums s,, has a limit s, then
ap, =Sp41 — Sy > 5 —5=0.

This necessary condition for convergence of the series Zizo a; is sufficient in any
complete ultrametric group. Indeed, if s, — s, = a, — 0, the sequence (s,)
1s a Cauchy sequence and hence converges. Moreover, reordering the terms of a
convergent series, and grouping terms, alters neither its convergence nor its sum.

Proposition. Let (a;);cn be a sequence in a complete ultrametric abelian group.
Assume that a; — 0, so that the series Z,-zo a; converges: Let s be its sum.
Then

(a) for any bijection o : N — Nwe have s = Y ;.o Ao,

(b) for any partition N = | |; I, we haves = }_ (Zie,) a,-).
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Prook. (a) For £ > 0, define the finite set
I1(e) ={i : lai| > &}

and the corresponding sum

s(e) = Z a;.

icl(e)

For any finite set J D 1(g),

< max |g| <e.
igl(e)

> a

J—-I(g)

This proves that the family (a;) is summable. This notion is independent of the
order on N. Explicitly, for ¢ > 0, n > 0 we have

Is(e) — s(m)| < max(e, 1),

since s(&) — s(#) is a finite sum of terms having absolute values between ¢ and 7.
In particular, (s(1/n)).-0 is a Cauchy sequence, and we call s its limit. If £ > 0,
letting n — o0 in

Is(e) — s(1/n)| < max(e, 1/n)
we get
Is(e) —s| <e.

Hence we can say that s(¢) — s whene — 0.Now, ifa] = a,;, is a rearrangement
of the terms of the series and 5|, = ), _, a/, the inequality

Is—s/|<e

holds when {o(i) : i < n} contains the finite set I(g), hence for all sufficiently
large n.

(b)Lets; = Z,—E,l aj, so that we have to prove s = ) | s;. Take any & > 0 and
define the finite sets

Ii(e)=1; N I(e).
Obviously, the nonempty 7;(¢) make a partition of the finite set I(¢), and

s(e):Z:a; =Z Z q;

I(e) j i€l ()
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Finally,
|s — ZS_,‘I <max | |s — s(e)l, Z Z a - Zsj
j j iE’j(s) j
< max | |s — s(g)|, max Z a —sj|| <e
ielj(e)
Since this is true for all £ > 0, the conclusion follows. ]

Corollary. Let (a;j)i>0,j>0 be a double sequence such that for any € > O the
set of pairs (i, j) with |a;j| > & is finite. Then this double family is summable
and

> (Te) - (Bw).
i20 \j=0 j=0 \i=0

Proor. The family (a;;)i>0,j>0 is summable over the countable set N x N by
hypothesis, and the sum of the corresponding series } ; ; a;; can be computed in
any order. It can also be computed using the two groupings mentioned. [ ]

Comments (1) Summable families over arbitrary index sets will be considered
later (cf. (IV4.1)). The above proposition will be generalized correspondingly.

(2) In classical analysis, there is a distinction between conditionally convergent
and absolutely convergent — or commutatively convergent, or summable — series
(of real or complex numbers): This distinction disappears in non-Archimedean
analysis, since the sum of a convergent series can be computed in any order, any
grouping. But in both contexts a grouping in a divergent series may produce a
convergent one: Think of @; = (—1), |a;] = 1 # 0; here is a grouping that leads
to a convergent series

a-ND+a-D+---=04+04+---=0,
and here is another grouping,
1+(-14+D)+C1+D+---=1404+0+---=1

leading to a different sum. Or think of the divergent series ), _,a, where all
a, = 1. A suitable grouping of its terms leads to a convergent series:

1+(L1+...+])+(‘1+...+])+...=1+p+p2+...=-—-—,

-  — I1-p
p terms p? terms
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Basic Principles of Ultrametric Analysis in an Abelian Group
(1) The strongest wins
IxI >yl == Ix + y| = Ix].
(2) Equilibrium: All triangles are isosceles (or equilateral )
a+b+c=0,]|c| <|b| = |a| = bl

(3) Competitivity
ata+t---+a,=0=
there is i # j such that |a;| = |a;| = max |a|.

(4) A dream realized
(an)n>o0 is a Cauchy sequence <= d(a,, a,41) = 0.
(5) Another dream come true (in a complete group)

E L Gn CONVETgES &= Ay —> 0.
n—

When )", ., an converges, 3, . lan| may diverge but
lano a,,| < sup |an| and the infinite version of (3) is valid.
(6) Stationarity of the absolute value

a, = a # 0 = there is N with |a,| = |a| forn > N.

1.3.  Absolute Values on Fields

Definition 1. An absolute value on a field K is a homomorphism

f:K*—> Ry

extended by f(0) = 0 and suchthat f(x +y) < f(x)+ f(y) (,y € K).

77

The trivial homomorphism f(x) = 1(x € K*) defines the trivial absolute value
on K. We shall usually denote by f(x) = |x| an absolute value, and by definition,

such a function will always have the characteristic properties

x| = 0,
x| =0=x=0,
Ixyl = Ix|-1yl,

Ix+yl =< x|+ |yl

forall x, y € K. The pair (K, |.|) is a valued field (1.3.7).
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Ifx" =1 e K, then |x|" = |x"| = 1 and |x| = 1. In particular, |-1| = |1] =1,
Also, ]2 =11 4+ 1] < 1+ 1 = 2, and by induction
Inl<n (neN)

(here n = n - 1 € K in the left-hand side of the inequality, whereas n € R in
the night-hand side). Also, quite generally,

X

y

=% (xe K,y e K*).
y

By induction
1 +x2 4+ x| < Il + x2] + -« + |xnl

for every positive integer n.

Definition 2. Arn ultrametric field is a pair (K, | .|) consisting of a field K and
an ultrametric absolute value on K, namely an absolute value satisfying the
strong triangle inequality

Ix + yl <max (x|, IyD < Ix| + Iyl x,y € K).

As before, induction shows that
Ix1 +x2 4 - - + x,] < max(Ixql, x2l, ..., IxaD)-
In this case, we have |2| = |1 4 1] < 1 and by induction
Inl<1 (neN).
Hence ultrametric fields have the non-Archimedean property
Inx| < |x| (n €N).

The following lemma is obvious (cf. (1.2)).

Lemma. All balls containing 0 in an ultrametric field K are additive subgroups.
The dressed unit ball B<,(0) is a subring of K. The balls B<,(0) (r < 1) are
ideals of B<1(0). The balls B,(0) (r < 1) are ideals of B<;(0). ]

Propeosition. Let x > |x| be an absolute value on a field K. Then:

(1) d(x, y) = |x — y| defines a metric on K.

(2) For each exponent 0 < o <1, x > |x|” still defines
an absolute value on the field K.

(3) If x — |x| is an ultrametric absolute value,
then for each positive exponent oo > 0, x > |x|* still defines
an ultrametric absolute value on the field K .
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proor. All statements are obvious except perhaps the triangle inequality, which is
nevertheless a simple exercise. [ |

The trivial absolute value defines the discrete metric: d(x,y) =1 if x # y.

1.4. Ultrametric Fields: The Representation Theorem
Let K be an ultrametric field. We use the general notation
A = {x € K : |x| < 1}: dressed unit ball,
M = {x € K : |x| < 1}: stripped unit ball.
Hence
A=A"uM
isadisjoint union, where A, the multiplicative group of invertible elements in A,

is the unit sphere |x| = 1.

Proposition. The subset A is a maximal subring of K, and M is the unique
maximal ideal of the ring A.

Proor. Indeed, if A’ is any subring strictly containing A. it will contain an element
y such that |y| = r > 1 together with all its powers y". Hence B<,» = y"A C A’.
and since r” = |y"| — co, weseethat K = | J,.., y"A = A’. Moreover, any ideal
not contained in M contains a unit, and hence coincides with the whole ring A.
This shows that M is the unique maximal ideal of A. "

Definition 1. A subring A of a field K such that

foreveryx e KX, x e Aorl/x e A
is called a valuation ring of K. A commutative ring A having a single maximal
ideal is called a local ring.

The unit ball in an ultrametric field is a local ring and a valuation ring.

Definition 2. If K is an ultrametric field, its residue field is the quotient k =
A/M of its dressed unit ball, the maximal subring of K, by its unique maximal
ideal.

The residue field parametrizes the stripped balls of unit radius in the dressed
unit ball of K: If § C A is a set of representatives for the classes mod M, then

A=B,O) =]]Bawm.

xeSs

Theorem. Let K be a complete ultrametric field, A its maximal subring de-
fined by |x| < 1. Choose an element & with |£§| < 1 together with a set of
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representatives S C A containing O for the classes A/§ A. Then each nonzero
element x € K> is a sum

x=Za,~§’i (mel, g €8, a, #0)

i>m

withm > O precisely when x € A. The map x > (s,) where s,, = Zm§i<n a;t
defines an isomorphism A = 1im A/E" A.

Proor. The conditions |§| < 1, & € A is not a unit, and & € M are all equivalent.
Starting with x € A. there is a unique ag € S withx —ap € £ A,

x=ap+&x; (x; € A).
Repeating the procedure for x;, and so on, we get by induction
x=ap+ @€+ +a, £ +x,E"

with q; € S and x,, € A. In the notation of the statement of the theorem, we can
write x = s, + x,&". Since [x,&"| < |£"| = |&|" — 0, the sequence (s,)n>0 1S @
Cauchy sequence, and the series Zn>0 a;E! converges to the element x € A. Since
forany x € K there is an integer k such that |€¥x| < 1, namely such that £¥x € 4,
the preceding expansion can be derived for this element, and we obtain a series
expansion for x starting at the index i = m = —k. n

Observe that even when X is not complete, each x € K> has a series represen-
tation as indicated in the theorem, but an arbitrary series

Y at' (meZ a€s, an#0)

i>m

will — in general — converge only in the completion of K. In other words, even
when K is not complete, we get an injection

A A=1limA/E"A.

1.5. General Form of Hensel’s Lemma

Theorem (Hensel’s Lemma). Let K be a complete ultrametric field with max-
imal subring A and f € A[X]. Assume that x € A satisfies

LFOOl < If/ ().

Then there is a root £ € A of f such that | — x| = | f(x)/f'(x)| < |f'(x)l
This is the only root of f in the stripped ball of center x and radius | f'(x)|.

Proor. In spite of the similarity with (1.6.4) (particular case K = Q,), we give a
complete proof with absolute values (instead of congruences). The idea is again to



1. Ultrametric Spaces 81

use Newton’s method iteratively. Since the polynomials f and f’ have coefficients
inthering A, we have [ f(x)] <1and O < |f'(x)| < 1.

First step: Estimates concerning the distance of ¥ = x — f(x)/f'(x) to x.
The assumption is ¢ := | f(x)/f'(x)?] < 1. We have

. f® e,
ST T e T
F —xl = clf G-

Similarly

o o _(f®Y _ f®)
= _(f’(x)) = Fie T

X — x> =clf@)l.
The second-order expansion (1.6.2) of f at the point x gives
fE)=fO)+E =) D)+ET=xyr eA:|r|<),
=0 Newt:;’s choice
G < £ —xP =clf®)l < If )],

and X is an improved approximation to a root. The first-order expansion (1.6.2) of
f’ at the point x gives

fA=Ffx)+GE—x)»s (se€A: |sI<,
') = Ol <E—xl=clf ) <|f )
It shows that
F I =1 &)+ (&)= e =1 &)l
S
strongest
The invitation to iteration is clear.

Second step: Further iterations.
Letnow X = Ns(X)

o f(®)
T (R
This iteration furnishes

[F I <CIFE) <Cel f < R,

< ol f(x)l = 2
T2 ’

and since | f(x)| = ¢l f'(x)|? by definition, we obtain

LFGOI < PP
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We can construct the sequence xo = x. x; = X, X2 = X, ... inductively with
Xiy1 = x;. Define also ¢; =7, ¢i41 = ¢;. The preceding estimates show that

LFO < €imr -+ - el Fo)l < & o)l = E1F0o)> = 0 (i = 00),
lx2 —x1] = [x =% < Alf (xo)l < el f/(xo)l = 1x1 — xol,

and by induction,

2 .
[Xig1 — x| S 1 f xo)l < clf'(xo)l = Ix1 — x0] (G = 1).
In particular, |x; — x| = |x; — x| = [¥ — x| = c| f'(x0)| is constant for i > 1
(these x; are closer to each other than to xo).

Third step: The limit root &.

The sequence (x; );>o is a Cauchy sequence, so it converges in the complete field
K. Since all iterates x; belong to the closed subring A, we have

£E=limux; €A,
n—>oo
[€ —xol = Ix1 — xol = X — x| = cl f'X)| < | '),
F&) = f(lim x;) = lim f(x;) = 0.
n—oo n—>o0

Fourth step: Uniqueness of the root & .

Let & be as before and 7 have the required properties, say n = & + h. Hence

|h| = [n—E&] < |f'(x)| = | f'(&)]. The second-order expansion (1.6.2) of f at the
point £ gives

0= f(n)=@+hf'(§)+h2t (teA: i<,

=0
O0=nh( f'(§) + ht )= h(f'()+ ht);
—— | —
strongest #0
hence h =0, 1.e.,n=E&. ]

Observe that when the absolute value is trivial. it takes only the values O and 1,
the assumption reduces to

0=If@I <IfWP=1,
and the statement is trivially correct.

1.6.  Characterization of Ultrametric Absolute Values

Theorem. Let x + |x| be an absolute value on a field K. Then the following
properties are equivalent:

(i) |n| < 1 for all natural integers n € N.
(ii) The absolute value is bounded on N - 1.
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(iii) |1 + x| < 1 for every x € K such that |x| < 1.

(iv) x > |x| is an ultrametric absolute value.

) {x € K : |x| < 1} is a subring of K.
Proor. We proceed according to the following scheme of implications:

() = (i) = (iii) = (iv) = (v) = (iii)
and
@v) = ().
Among these implications, several are trivial, namely,
@O =), @)= W) =i and Gv)= ().

It only remains to prove two implications. For (if) = (iii) we can assume |n| < M
for all integers n and use the binomial formula to compute

D (’:)x <Y Mixl.

MT+x|"<(n+1)M,
14x| <@+ D" MV/n

N+x"=|1+x)"=

When |x| < 1, we obtain

for all integers n > 1. Since (n + 1)V/" — 1 as well as M'/" — 1 for n — 00, we
infer |1 4+ x| < 1. To prove (iii) = (iv), we can — without loss of generality —
assume that |x| > |y| in [x + y|, |x| > O and estimate this quantity as follows:

Ix + yl =Ix|- 11+ y/x] < [x| = max (x], |y]). ]

Corollary. Any absolute value on a field of characteristic p # 0 is ultrametric.

Proor. Indeed, any absolute value is bounded on the image of N in a field of
characteristic p, since this image is a finite prime field. The second condition of
the theorem is automatically satisfied. n

The absolute values that are not bounded on the prime field of K (necessarily
of characteristic zero) are sometimes called Archimedean absolute values: They
have the property that

if x # 0, then for each y there is an n € N such that |nx| > |y|.

1.7.  Equivalent Absolute Values

Distinct absolute values can define the same topology on a field K . It is not always
useful to distinguish them.
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Theorem. Let |.|, and |.|, be two absolute values on a field K. Then the
Jollowing conditions are equivalent:

(i) Thereisanca > Owith | .|, =] ..
(&) |.1y and | .|, define the same topology on K.
(iii) The stripped unit balls for | . |, and | . |, coincide.

We say that | . |, and | . |2 are equivalent absolute values when these conditions

are satisfied.

Proor. (i) = (ii) Since |x —al, < r <= |x —al; < r'/®, the stripped balls are
the same for the two topologies. Hence the topologies defined by | .|, and | . |, are
the same.

(if) = (iii) Let us observe that

Ix[; < 1 <= x" — 0 (for the topology defined by | . |1)
and similarly for | . |,. By assumption we obtain
Ixh <l x|, < 1.

(fii) = (i) Let us assume |x|; < 1 <= |x]; < 1. Since [1/x|; = 1/|x|; and
similarly for | . |, we see that

xh > 1< |x]2>1
and consequently
Ixh =1 x|, =1.

If |.|; is trivial, |x|; = 1 for all x € K*, and the same is true for |. |, so that
we can take @ = 1 in the statement of (7). Otherwise, we can find xg € K> with
Ixol1 # 1, and replacing xo by 1/x if necessary, we can assume |xp|; < 1. Define

_ logixol2
loglxol’

so that |xo|, = |xl{ by definition. Take then any element x € K> with |x|; < 1
and consider the rational numbers r > 0 such that |x|] < |xo|;. These rational
numbers r = m/n are those for which

m

Ix[T" < Ixolf, <1

011

By assumption, these are the same as those for which

xm

" <1,
X0

2
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namely |x|3 < |xol3 or |x|5 < |xol2. On the other hand, these rational numbers
are precisely those for which

rlogjx|; <logjxoly (resp.rloglx|; <log|xol2)

r > log|xoli/logix|y  (resp.r > log|xglz/log|x|2)
(all logarithms in question are negative). This proves

log|xo|1 /loglx|; = log|xol2/loglx|2,
loglx|2/log|x|; = log|xol2/log|xel1 = a.

Hence |x]; = |x[Y, as was to be shown. [ ]

2. Absolute Values on the Field Q

2.1. Ultrametric Absolute Values on Q

Let us recall that if p is a prime number, we can define an absolute value on
the field Q of rational numbers by the following procedure. If x = p™a/b with
a,b,m € Z, b # 0, and p prime to a and b, we put

Jx| p=P .
In other words, we put |p|, = 1/p < 1 and |n|, = 1 for any integer n prime to
P, and extend it multiplicatively for products. Since

Q*=p*xZ (p) ]_Ipmz(xp)’
meZ

this defines the absolute value uniquely. This absolute value is an ultrametric
absolute value on Q.

Theorem (Ostrowski). Let x — |x| be a nontrivial ultrametric absolute value
on the field Q. Then there exists a prime p and a real number o > 0 such that

l= k2 (xeQ.

Proor. Since the integers generate Q (by multiplication and quotients), the absolute
value must be nontrivial on N. As we have seen, any ultrametric absolute value
satisfies |n| < 1 (n € N). Hence there must exist a positive integer n with |n| < 1.
The smallest such integer is a prime p because in any factorization n = n; - n,, we
have |n;| - |n2] = |n| < 1, and consequently one factor n; must satisfy |n;| < 1.
Let us call this prime p so that by definition

[nj=1 for 1 <n<p
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but0 < |p| < 1.Iclaim that for every integer m € Z prime to p, we have [m| = 1.
Indeed, if m is prime to p, the Bézout theorem asserts that there are integers u and
v with up 4+ vm = 1. Hence

1= 1] = lup + vm| < max(lup}, |om]) < 1.

Since by assumption |up| = |ullp| < |u| < 1, the maximum must be jvm| = 1
and hence |m| = 1 (we know a priori that [v] < 1 and |[m| < 1). There is now a
unique positive real number ¢ such that

Ipl =(Q1/p)*

(indeed, take ¢ = (log| p|)/(log(1/p)) — a quotient of two negative numbers —
independent from the basis of logarithms chosen). Then if the rational number x
is written in the form x = pYa/b € Q* with p prime toa and b (i.e.,a/b € Z(’;,)),
we shall have

I = 1pl® = (1/py*™ = Ix[2

and the theorem is completely proved. |

2.2. Generalized Absolute Values

Observe that if | . | is an absolute value and & > 0, then |.[* is not an absolute
value in general. For example if | . | is the usual absolute value on Q and @ = 2,
then f(x) = |x|? does not satisfy the triangle inequality

4d=fQ)=fA+D> f(OH+ fQ)y=2.
But it satisfies

FOx+y) = Ix + y1? < (x+ IyD? < @max{|x], |y|)? = 4max(f(x). f())-

This is one reason for considering generalized absolute values.

Definition. A generalized absolute value on a field K is a homomorphism f :
K> — R.q extended by f(0) = O for which there exists a constant C > 0 such
that

f(x +y) < Cmax(f(x), f(y)) (x.y€K).

Observations. (1) For any generalized absolute value f and any @ > 0 (not only
forO <a < 1), f*is also a generalized absolute value: Replace C by C*.

(2) The ultrametric absolute values are those for which the above inequality
holds with C = 1. Moreover, if f is a (usual) absolute value, then

f&x+y) < f)+ f(y) < 2max(f(x), f(¥)),

and (usual) absolute values are generalized absolute values: The above inequality
holds with C = 2. Let us prove a converse.
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Theorem. Let f be a generalized absolute value on a field K for which
fx+y) <2max(f(x), f(y)) (x,y € K).
Then f is a usual absolute value: It satisfies the identity

fE+N=<fX)+ fQ) &,y€K).

Proor. Iterating the defining inequality for generalized absolute values, we find
that

f(ay + a3 + a3 + a3) < Cmax(f(a) + ay), f(as + az))
< C?’maxy<i<s f(ai)-

More generally, by induction if n = 2", then
fla +---+ap) < C" max f(a)-

Since we are assuming that the constant C = 2 can be taken in the preceding
inequalities, we have

fla +---+a,) < 2" max f(a;) = nmax f(a;).

Now, if n is not a power of 2, say 2"~! < n < 27, we can complete the sum by
taking coefficients a; = 0 forn < i < 2" and still write

flay + -+ ay) < 2" max f(a;) < 2nmax f(a;).
We shall have to use two particular cases of this general inequality:

(D) f(n) <2n (takea; =1for1 <i <n),
(2) f (leiiﬂ ai) < 2n max f(ai) =< 2n Zlfifﬂ f(ai)-

Toestimate f(a+ b), we shall estimate f((a+ b)") thanks to the binomial formula
(the nth power of a + b is a sum of n + 1 monomials)

fla+byy=71 (Z (:.’)a"b""')
<2+ DY f ((:')) - f@y @y

<2n+ 1)22(:.’) flay fy!
= 4(n+ 1)(f(a)+ f(B))".
Let us extract nth roots:

fla+b) < 4"+ D" -(f(a)+ f®)) — f(a)+ f(b) (n—>c0). ®
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2.3.  Ultrametric Among Generalized Absolute Values

We can give a generalization of (1.6).

Theorem. Let f be a generalized absolute value on a field K. If f is bounded
on the image of the natural numbers N in K, then it is an ultrametric absolute
value.

Proor. Let n = 2" be a power of 2 and consider a sum of n terms g;. As in (2.2),
we see by induction that

flay+---+a,) < C max f(a;).

Take now x € K and consider the element
n—1\ ;
A+x)1= ( . )x'.
Ole<n t

Since this sum has n elements, we have

Fa+x) ' =fa+xyH=c max [f ((nl_ 1)) -f(xi)] .

If f 1s bounded on the image of N in K, say f(k) < A for all k € N, we shall
have

(FA+x)y™" < C"Amax (1, f(x)"™)
and
FQ +x) < C7=DAVED max (1, £(x)).
Letting again n — 00, we obtain
f(1+x) <max(l1, f(x)).
If now a # 0 and b € K, then f(a) # 0 and

fla+b)= fl@)f(1+b/a)
< f(@max(l, f(b/a)) =max(f(a), f(b)) .

2.4. Generalized Absolute Values on the Rational Field

The ultrametric absolute values on the rational field Q have been determined in
(2.1). Here, we treat the generalized absolute values.

Theorem. Any nontrivial generalized absolute value on the rational field Q is
either a power of the usual absolute value or a power of the p-adic absolute
value.
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Proof. Take any nontrivial generalized absolute value f and assume that

fx+y) < C-max(f(x), f(y)).

If C <1, then f is ultrametric, and we conclude by (2.1). Assume now C > 1.
By induction — regardless of the size and number of addends — we can prove

flap+---+a)<C"-max f(a).

Let us fix an integer n > 2 and put A = A, = max(f(1), ..., f(n)) > 1. Now,
any integer m > 2 can be expanded in base n, say

m= Z mint (0 <m; <n, m, #0).

O<i<r
Hence
f(m) < C"-max f(m;)f(n")
< C"A, -max f(n) = C"A,max(1, f(n)").
Butm, # 0, n” < m, and thus r < logm/log n, so that we can write
Fm) < AnCYE™ 198" _max (1, f(n)oe™/logny,
Flm)Mloem < pVlem\logn oy (1, f(n)llen).

Let us replace m by m* (keeping n fixed), so that the left-hand side is unchanged,

and let k — oo, whence Ay *'8™ _, | We obtain

f(m)l/logm < Cl/logn ) max(l, f(n)l/logn).

In other words, we have obtained an inequality in which the constant A, does not
appear. We can now replace n by n*, and since C'/*¥ — 1, we have simply

f(m)l/logm S max(l, f(n)l/logn)'

First case: There is an integer n > 2 with f(n) < 1.
We can use such an integer » in the inequality just found and deduce

f(m) < 1 for every integer m > 2.

Hence f is an ultrametric absolute value by (2.3). Finally, Ostrowski’s theorem
(2.1) applies: f is a power of the p-adic absolute value

fO=k xeQ

for some real & (determined by the condition f(p) = |pl; = (1/p)").
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Second case: We have f(n) > 1 for every integer n > 2.
The general inequality
f(m)!/ 8™ < max (1, f(n)"/'E")
is now simply
flm)1oem < f(my/loen.
Since we can permute the roles of n and m, we must even have
f(m)lllogm — f(n)l/logn.
Hence f(n)'/1°8" = ¢ is independent from r. This leads to
f(n) — ealogn — na
for all integers n > 1, and with the usual absolute value
fy=1nl* (nel).
By the multiplicativity property, we also have
fx)=xI* (xeQ).

Since 0 < a < 00, the map f is a power of the usual absolute value, and the
theorem is completely proved. .

Comment. The preceding result shows that for a generalized absolute value f on
the field Q, the only possibilities are

® fistrivial,

® |p| < 1 for some prime p and f is a power of the p-adic absolute value,

® |n| > 1 for all positive integers n and f is a power of the usual Archimedean
absolute value.

Observe that the two nontrivial cases can also be classified according to the
value of |2|: If |2| < 1, f is a power of the 2-adic absolute value; if |2| =1, fisa
power of the p-adic absolute value for some odd prime p; if |2| > 1, f is a power
of the usual Archimedean absolute value.

3. Finite-Dimensional Vector Spaces

3.1. Normed Spaces over Qp

Let V be a vector space over the field Q,. A norm on V is a mapping

I-1I:V—{0} - Rso
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extended by ||0]] = O and satisfying the following characteristic properties:

llaxll = lallixll (@ € Qp, x € V),
Ix +yll <max(llxll, Iyl) (x,y € V).

In particular, the norms that we are considering are ultrametric norms. A normed
space over Q,, is simply a vector space over this field equipped with a norm. A
norm defines an invariant (ultra-)metric on the underlying additive group of V.
Hence a norm defines a topology on V, which becomes an additive topological
group in which scalar multiplications

x—>ax:V—>V (@aeQ))

are continuous homeomorphisms.

Examples. (1) Let V = Q, with norm |lx|| = c¢|x| where ¢ > 0 is a fixed,
arbitrarily chosen positive real constant. This example shows that {}jv|| : v € V}
can be different from the set of absolute values of scalars, i.e. the absolute values
of the elements of the field Q,. (This is a difference from real and complex normed
spaces).

2)LetV = Q; for some positive integer n. Then for x = (x;)1<i<n € V we
can put [|x|lcc = SUp;<;<p IXi] = Maxi<i<n |x;il. This defines an ultrametric norm
onV.

Two norms x + ||x|| and x +> ||x||" are called equivalent when they induce
(uniformly) equivalent metrics on V, namely when there exist two constants 0 <
¢ < C < oo with

clixll < lixll” < Clixjl-

This happens precisely when the topologies defined by these two norms are the
same (exercise).

Theorem. Let V be a finite-dimensional vector space over Q. Then all norms
onV are equivalent.

Proor. Let n = dim V and choose a basis (e;)1<;<, of V. Hence
x=()v=) Xe =q(x)

defines an algebraic isomorphism ¢ : Q; 5 V. On the space Q}, we consider the
Sup norm given in the above example. We have to show that the isomorphism ¢ is
bicontinuous. But

|3 xie: | < maxixiesl = maxixlel < maxiel - maxixi] = Clixlee,
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where C = max |l¢; ||. (Note that the strong triangle inequality is not really nec-
essary here since it would be enough to observe that || )" x;e; |l < Y llxiei]] <
3" lleill - max |x;] = C’||x|loo-) This proves that [|p(x)|| < Cllx|lcc and ¢ is continu-
ous. Finally, we show that p isanopenmap. Let B = B<; = {x € Q’;, ixlleo 1)
be the unit ball in Q),. We have to show that ¢(B) contains an open ball of positive
radius centered at 0 in V. Denote by S; the unit sphere

Si={xeQ:lxlo=1}

in Qj. Then ) is a closed subset of the compact set B<y, and hence is compact.
This implies that ¢(S$)) is also compact. This image does not contain the origin of
V (remember that ¢ is bijective). Hence the distance from 0 to ¢(S$;) is positive,
and the minimum is attained for some point ¢(xp):

x € 8§ == llp()ll = llexo)ll =& > 0.

If v € V — {0} has norm |[v]} < &, the norm of all multiples Av where [A] <1 will
also satisfy J]Av|| < €. Hence in particular, if [[v]] < &, then

reK, A <1==rv¢e(S)).
Since (¢;) is a basis, we can write
v=" vie; = p((v;)).

Without loss of generality we may assume that the largest component is the last
one:

0 # |val = max |vi| = (vi)lloo-
With A = 1/v, we have Av = ¢((v;i/vy)) = p(w) € ©(S)). The remark made

before proves that this scalar A satisfies |A| > 1, so that

1
l(Wdlloo = fvnl = s 1.

This shows that v = @((v;)) with [|(v;)]lec < 1: v € ¢(B), where B = B<;(0, Q;).
Consequently,

B (V) C ¢(B). n

Corollary 1. Let V and W be two finite-dimensional normed vector spaces
over Qpandc : V — W a linear map. Then « is continuous. -

Corollary 2. Any algebraic isomorphism of a finite-dimensional normed vector
space over Q,, is bicontinuous. ]
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Corollary 3. Let V be a finite-dimensional vector space over Qp. A subset
§ C V that is bounded with respect to one norm on V is bounded with respect
to any other normon V. u

Remark. Observe that the proof could be simplified if we knew that all norms of
elements of V were absolute values of scalars, namely if ||V || = |Qp[. But this
equality is in general not satisfied.

3.2. Locally Compact Vector Spaces over Q,,

There are not many compact normed spaces over Q). In fact, any nonzero element
x of a vector space generates a line, and the norm is an unbounded continuous
function on this line because

Iaxi = 1Alixll (& € Qp).

This shows that the only compact normed space is the trivial normed space {0}.
Let us turn to locally compact normed spaces over Q.

Theorem. If V is a locally compact normed space over Qp, then its dimension
is finite.

Proor. Let us select a compact neighborhood €2 of 0 in V. Also choose a scalar
a € Qp with 0 < |la| < 1 (for example a = p with |a| = 1/p will do). The
interiors of the translates x + a2 (x € V) cover the whole space. A fortiori there
is a finite covering of the compact set 2 of the form

QC U(a,- +a?) (for somea; € V).
finite

Consider the finite-dimensional subspace L generated by the elements g;. By
(3.1), this finite-dimensional subspace is isomorphic to a normed space Qf,, and
hence is complete. Consequently, this subspace L is closed, and in the Hausdorff
quotient V /L (1.3.3) the image A of the set £2 is a compact neighborhood of 0 and
satisfies

ACaA (ora'AC A),
whence a™A C A by induction. Since |[a™"| — 00, we see that

Acv/iLc|JaTmAca.

n>1

In particular V/L is compact: V/L = 0, V = L is a finite-dimensional space. =

Corollary. In a locally compact normed vector space over Qp, the compact
subsets are the closed bounded sets.
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Proor. The compact subsets of any metric space are closed and bounded (by con-
tinuity of the distance function). Conversely, if V is a locally compact normed
vector space over Qp, it has finite dimension and its norm is equivalent to the
sup norm of this space (3.1). But in Q/, any bounded set is contained in a (com-
pact) product of balls of Q,. Hence the closed bounded sets are compact subsets
of Q7. =

3.3.  Uniqueness of Extension of Absolute Values

Let K be a finite (hence algebraic) extension of the field Q,. We can consider K as
a finite-dimensional vector space over Q,. Each absolute value on K that extends
the p-adic absolute value of Q,, is a norm on this vector space, and we can apply
the results of (3.1).

Proposition. There is at most one absolute value on K that extends the p-adic
absolute value of Q,.

Proor. Let|.|and].| betwo absolute values on K that extend the absolute value
of Q,. These two norms must be equivalent, and there exist constants 0 < ¢ <
C < 0o such that

clx| < Ixf' < Clx|  (x € K).
Replace x by x" in the preceding inequalities:
cx" < x| < Clx").

Since |.| and | .| are absolute values, they are multiplicative, and the preceding
inequality is simply

clx|" < |x|™ < Clx|",
or
cix) < x| < CVix).

Letting n — 0o, we have ¢/" — 1 and C'" — 1. This proves |x| = |x/'. u

Application. Let K be a Galois extension of Q, and assume that the p-adic
absolute value of Q,, extends to K. Then for each automorphism o of K /Q, we
can consider the absolute value |x|" = |ox]|. By the preceding proposition, this
absolute value must coincide with the original one. Let G = Gal (K /Q,) and for
each x € K, consider the element

Nkx) = n ox €Qp.

oeG
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We must have

INX)| =

I—[ax

oceG

Hence withd = #(G) = [K : Qp] = dimg,(K),

=[] loxl = 1x[©.

oceG

x| = IN(x)M.

Since N(x) € Q), this formula gives an explicit expression for the extension of
the absolute value of Q, (provided that one exists!). This observation can be used
to prove the existence of an extension of the absolute value of Q.

3.4. Existence of Extension of Absolute Values

Let again K be a finite extension of degree d of the field Q,. The relative norm
(as defined in field theory, not to be confused with a vector space norm!) is a
multiplicative homomorphism (3.3)

N =Ngjq, : K* = Q%, x> Nx),

which coincides with the dth power on Q, - It can be defined either by embedding
K in a Galois extension L and taking a product over the d distinct embeddings
K < L orby using the determinant of the Q ,-linear map y +> xy of the Q,-vector
space K.

Theorem. Let K be a finite extension of degree d of the field Q, of p-adic
numbers. For each x € K, let £, denote the Q,-linear operator y +— xy in K.
Then

F(x) = NI = | det £,

defines an absolute value on K that extends the p-adic one. This is the unique
absolute value on K having this property.

Proor. If a € Q,, it is obvious that N(a) = a? whence |[N(a)|'/¢ = |al, and
the proposed formula is an extension of the p-adic value. The multiplicativity
fxy) = f(x)- f(y)is a consequence of the multiplicativity of the determinant
(or of the norm). We still have to check the ultrametric inequality. For this crucial
point we use the local compactness of K. Let us choose any norm x + ||x]| on K
with | K || = |Q,|. For example, pick a basis ey, . . ., €5 of K over Q, and use the
sup norm on components in this basis. Since the continuous function f does not
vanish on the compact set [|x|| = 1, it is both bounded above and below on this
set, say

O<e< f(x)<A<oo (Ix]=1).
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For x € K* choose A € Q, with |x|| = |A|. Hence the vector x /A has norm 1,
e fx/MH <A (x#£0),
and since f(x/A) = f(x)/|Al,
el = f(x) < AIAl (x #0),
ellxll < f(x) < Allxll  (x # 0).

Thus with a = £~ we have both ||x|| < af(x)and f(x) < Al x|. Suppose now
f(x) <1 (hence ||x]| < a). We infer

fA+x) < Alll+ x|l < Amax (|11, lIx )
< Amax (|I1]], @) = C = Cmax (f(1), f(x)).
If more generally f(y) > f(x), we can divide by y and apply the preceding

inequality to x /y, since f(x/y) = f(x)/f(y) < 1. Finally, multiplying both sides
by f(y), we obtain the general inequality

f(x +y) < Cmax(f(x), f(»).

This proves that f is a generalized absolute value. Since f extends the p-adic
absolute value, it is bounded on N C Q, C K and is an ultrametric absolute value
by (2.3).

The uniqueness of the extension has already been proved in (3.3). ]

3.5. Locally Compact Ultrametric Fields

In locally compact ultrametric fields K , we shall use adapted notation
R=B<DP=By4

instead of
A=B, DM= B,

which will still be used in the general — not necessarily locally compact — case.

We are going to prove the following general result.

Theorem. Let K be a field equipped with a nontrivial ultrametric absolute
value and consider the corresponding (ultra-)metric space. Then K is locally
compact precisely when the following three conditions are satisfied:

(1) K is a complete metric space.

(2) The residue field k = R/ P is finite.

(3) |K*| is a discrete subgroup of R,
hence of the form 6% for some 0 < 6 < 1.



4. Structure of p-adic Fields 97

proor. Assume first that the field K is locally compact. Hence there is a compact
neighborhood of 0 in K. This neighborhood contains a ball B<.(0), where & > 0.
This ball B< is compact. Using dilatations, we see that all balls B<,(0) of K are
compact. Any Cauchy sequence in K is bounded, hence contained in a compact
ball: It must converge in K. This shows that K is complete (recall more generally
that every locally compact topological group is complete (1.3.2)). Now the residue
field parametrizes the open unit balls contained in the unit ball B<;(0). If this
last one is compact, the preceding partition in open sets must be finite, which
proves (2). Finally, since the open unit ball B;(0) is closed in the compact ball
B<1(0), the continuous function x +> |x| must attain a maximal value over the
compact set B1(0). Call 6 < 1 this maximal absolute value. The only possible
nonzero absolute values are now the integral powers of 8. Indeed, a multiplicative
subgroup of R.¢ is either discrete or dense (1.3.4). (Alternatively, one could use
the last property of ultrametric distances mentioned in (1.1) for the compact sets
By —B.,,0<r<s.)

Conversely, assume that the three conditions are satisfied and choose an element
7 € K with largest possible absolute value less than 1: 71 € P C R=nR C P.
The reverse inclusion also holds:

xeP= Ix|<|nr|=>x=n-x/r (x/T € R)y=>x €nR.
This proves that P = () = 7R is principal. By the representation theorem

(1.4), the complete ring R is topologically isomorphic to the projective limit
R= lim R/m" R of the finite rings R/x" R:

R = B (0) is isomorphic to R compact.

The field K is locally compact, since it has a compact neighborhood of 0. n

4. Structure of p-adic Fields

4.1. Degree and Residue Degree

Let K be a finite extension of the field Q, of p-adic numbers. Hence K is locally
Compact and complete. Let us choose an element 7 of maximal absolute value
smaller than 1, say 0 < |7| = @ < 1, and come back to the usual notation for
the ring

R={xeK:|x| <1}

and its maximal ideal P = m R. The residue field k = R / P is finite, hence a finite
Cxtension of ¥, = Z,/pZ,.If f = [k : F,] = dimg, (k), then

k=F,, q=4#k) =HEF,) =p/,
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since there is — up to isomorphism — only one finite field having g elements.
Since the integer p belongs to P, we have

1/p=Ipl=6° |n|=|p|"*

for some integer e > 1.

Definitions. The residue degree of the finite extension K of Q) is the integer
f =k :Fp] = dimg, (k).
The ramification index of K over Q) is the integer

e=[1K*| : |Q;I1=1IK*| : pP21=#(K*|/p®.

Warning. Ihope that the degree f will not occur next to a polynomial f(X) ora
function f, or if it does, let me rely on the reader to distinguish them (using P for
a polynomial could similarly lead to a confusion with the maximal ideal P = 7 R
in a finite extension K of Q,, and here 7 is not 3.14159. . .!) In the same vein, k
will usually denote a residue field and here, we try to avoid its use as a summation
index.

Leta; and a; € Q%, x; and x, € K* be such that
laix1| = |azxa|  (#0).

Then |x1| = |az/a1| - 1x2] € p? |x2|, and the absolute values of x; and x, belong
to the same coset mod p%. Consequently, in a finite sum

D axi (ae€Q}, xi€K”)

of nonvanishing terms, if the |x;| belong to distinct cosets mod pZ, we cannot
have a competition of absolute values, and necessarily )_ a;x; # 0. This argument
shows that n = [K : Qp] = dim(K) > e. One can also see directly thatn > f
(exercise!). Let us prove that n > ef (we even prove n = ef below).

Proposition. In the situation described in this section, we have ef < n.

Proor. Let us choose a family (s;)1<i< r in R such that the images si € k make up
a basis over the prime field F,. I claim that the elements

(i N<i<f. 0<)<e

are independent over Q,,. Consider indeed a nontrivial linear combination

Zc,—,s,-n’ = Zx,-n’ (ci) € K),
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where x; = Y_; ¢ijs;i. Then for each j there is an index £ = £(j) such that
lcej] > |cij|  forall i,

and x;/cej = Y_;(cij/cej)si = Y_; ¥iSi is a nontrivial linear combination with
coefficients in R (and y; = 1). Consider this relation mod P: Define y; = y; mod
P. Since (57); is a basis of the residue field kK = R/ P considered as a vector space
over its prime field, we have

0# ) 75 € R/P
i
simply because 7, = 1. Hence

Z}’isi ¢ P, Z}’isi
i ;

and |x;| = [cg;] € 1Qp | is a power of p. There can be no competition among the
absolute values of the distinct terms x jnf , and this proves

ZC,‘jS,‘?Tj = le'ﬁj ;é 0.

This proves the expected linear independence, and hence the inequality stated in
the proposition. [ |

=1

Theorem. For each finite extension K of Qp, we have
ef =[K :Qp]l =n.

Proor. By the above proposition it is enough to prove the existence of a set of
generators of K over Q, containing ef elements. We shall show that the family

(i Ni<i<ys 0<j<e

of the Proposition generates the Q,-vector space K. For this purpose we use the
Ireépresentation theorem (1.4) for the complete field K and the element £ = p €
P C R. In this case R/pR is finite with representatives

S = E c,-,-s,-n’:OSc,-,-Sp—l}.
1<i<fO<j<e
Hence one can write any element x € R as a series

x = Zc,gp[ (ce € 9).

20

If we write explicit expressions for the coefficients

Cp = E C,']'[S,'T(] €S,

I<i<fO0<j<e
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we obtain

X = C,'jgs,'ﬂ]p y
£>0 1<i<f,0<j<e

and if we sum in a different order (only £ can take infinitely many values, and
p® — 0: The family in question is summable by the Proposition in (1.2) ), then

x= Z (Zfijepl)-sm’-
[4

I<i<f.O<j<e

Butc;j =Y ,cijep* € Zpand x =), ¢;jsim?. This proves that the ef elements
siml (1 <i < f, 0 < j < p—1)constitute a spanning set of the field K
considered as a vector space over Q. Together with the proposition, this concludes
the proof of the theorem. u

A finite extension K of Q,, is said to be

unramified when e = 1,i.e,, when [K : Q,] = f,
totally ramified when f =1, i.e, when[K : Q,] =e¢,
tamely ramified when p does not divide e,

wildly ramified when e is a power of p.

In other words, an extension K /Q) is

unramified when p is a generator of the maximal ideal P C R,
totally ramified when the residue field does not grow.

Comment. Let us come back to the analogy between p-adic numbers and func-
tions of a complex variable already mentioned in (I.1.4) and (1.5.1), since it is also
responsible for the preceding terminology. Let us explain this in its simplest form.

Let & # 0 be a meromorphic function defined in a neighborhood of O in C. It is
known that there is a representation

E@Q) =) ad" (am #0)

n>m

validin a punctured disc 0 < |z] < &. The smallestindex m € Zsuchthata,, # Ois
the order of € at the origin. This integer is positive when & vanishes and is negative
when £ has a pole at the origin. In this way, we see an analogy between the field
L of meromorphic functions defined in a (variable) neighborhood of the origin in
C and the p-adic field Q, consisting of the formal expansions x = Y_ . anp"
(m € Z). The functions that are holomorphic at the origin make a maximal subring
Lo of L comparable to Z, in Q,. The local construction of the field L is also a
Justification for calling Q,, a local field.
Now take an integer ¢ > 1 and consider the change of variable

ur—>z=u®:C—> C.
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This is a canonical example of a ramified covering of degree e at the origin, in a
topological sense: The inverse image of any z # 0 consists of e distinct preimages,
while u = O is the only preimage of z =0.If§ =), a,z" (0 < |z] < &)is as
before a meromorphic function in a neighborhood of the origin, we can make the
change of variable z = u¢ and obtain a new expansion

W) =E@) =Y au".
n>m

Inthis way, the field L is embedded in the field L’ consisting of convergent Laurent
series in the variable u. There is no function 47z defined in a neighborhood of z = 0
in C, so that the field L’ = L(z'/¢) is a proper extension of the field of convergent
Laurent series L in the variable z. This extension L' is totally ramified over L, with
degree e: It is obviously comparable to the extension Q,(r) of Q, if m = p'/e.
Observe that with meromorphic functions it is traditional to work with the order-of-
vanishing function ordy(£§) = m, instead of a corresponding ultrametric absolute
value |£]¢p = 6™ (for a choice 0 < 8 = |z|¢ < 1; there is no canonical choice for
0 here).

The rational field Q can similarly be compared to the field of rational functions
C(2), the completions Q, (letting now the prime p vary) corresponding to the
fields of meromorphic functions near a variable point a € C instead of the origin.

4.2. Totally Ramified Extensions
Let us recall the following well-known irreducibility result stated over Z, rather

than over Z.

Theorem 1 (Eisenstein). Let f(X) € Z,[X] be a monic polynomial of degree
n > 1with f(X) = X" modp, f(0) # 0 mod p?. In other words,

fX)=X"+ a1 X" ' +---+ap,
ord(@)>1(0<i<n-1), ord(a)=1
Then f is irreducible in the rings Z,[X] and Q,[X].

Proor. Take a factorization f = g - h in Zp[X] — or in Q,[X]; this is the same
by an elementary lemma attributed to Gauss — say

g=b£X£+"'+b0, h=c, X" +---+cp.
Hence
£+m=", b[Cm = 1’ bOCO=aO~

Since ay is not divisible by p?, p can divide only one of the two coefficients by
and ¢y. Without loss of generality we can assume that p divides ¢ but p_ does not
divide bo. Consider now all these polynomials mod p. By assumption f = X" is
a monomial, so that its factorization f = g - h must be a product of monomials
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and h = ¢ is a constant. Considering that b¢c,, = 1, the only possibility now is
m = 0 and a trivial factorization. a

The preceding argument mod p can be made directly on the coefficients. Let
r > 1 be the smallest power of X in h having a coefficient not divisible by p:
p does not divide ¢, but p divides ¢, _y, ¢,—3, . - ., Cop-

The coefficient of X” in the product of g and 4 is
a, = boc, + b1¢,—1 +bac, 2+ - - = boc, + p(- - ).

Since bgc, is not divisible by p, the preceding equality shows that p does not
divide g, either. By assumption, this shows that » = n. Summing up,

n=m+€>m>r=n

implies m = n and € = 0. The factorization g - h of f is necessarily trivial.

The same proof shows the following more general result.

Let A be a factorial ring with fraction field K, and m a prime of A. Any poly-
nomial

f=a,X"+ a1 X" ' +---+ay € A[X] (of degreen > 1)

with a,, not divisible by 7, a; divisible by 1t for 0 <i < n — 1, ap not divisible by
72, is irreducible in the rings K[X]and A[X].

Definition. A monic polynomial f(X) € Z,[X) of degree n > 1 satisfying the
conditions of the theorem, namely

f(X)=X"modp, f(0)# 0 modp?,

is called an Eisenstein polynomial.

Theorem 2. Let K be a finite, totally ramified extension of Qp. Then K is
generated by a root of an Eisenstein polynomial.

Proor. The maximal ideal P of the subring R = B<; of K is principal and gen-
erated by an element 7 with || = |p|. Since n = [K : Q,] = e by assumption,
the linearly independent powers (ﬂi)OE,- < generate K and K = Q,[rr]. The irre-
ducible polynomial of this element can be factored (in a Galois extension of Q,
containing K) as

fO=[lx-=)=x+Y ax' +[]="
o O<i<e o

The constant term has absolute value |I1,777| = || = |p| (by (3.3) all automor-
phisms o are isometric), whereas the intermediate coefficients g; satisfy |a;| < 1
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(each is divisible by one 77 at least, and a; € Z,). Hence these intermediate
coefficients are in pZ, as required: f is an Eisenstein polynomial. u

Examples. (1) In the field Q,, —1 is not a square (1.6.6), and we can construct the
quadratic extension K = Qa(i) = Q[X}/(X? + 1). Since
G+1)?=i+2i+1=2,

the element i + 1 is a square root of 2i. With the (unique) extension of the 2-adic
absolute value we have

. . 1 . 1
i+1P=2il=1=1, L+1=/L,

sothat i + 1 is a generator of the maximal ideal P of the maximal subring R of
the field K: P = (i + 1)R. The quadratic extension K is totally ramified of index
e = 2, hence wildly ramified. Let x =i + 1. Thenx — 1 =i and (x — 1)* = —1
shows that x is a root of the polynomial

X2-2X+2=(X-1?*+1.

This is an Eisenstein polynomial (relative to the prime 2), and K = Q-(i) is also
obtained as a splitting field of this Eisenstein polynomial.

(2) For p # 2 let us add a primitive pth root of unity to Q,,. In other words, we
are adding to Q, arootof {¥ — 1 =0 with ¢ # 1. Hence ¢ is aroot of

P,X)=X"-D/X-D=X"+-- +X+1

This is the pth cyclotomic polynomial: It is irreducible, since the change of variable
X — 1 = Y produces

O,(X)=[Y +1)’ ~1)/Y =Y°" + p(--)+ p,

an Eisenstein polynomial. Hence we obtain an extension of Q,, of degree p — 1
prime to p. We shall prove that it is totally ramified. Since the powers ¢’ are also
roots of the same equation when i is not a multiple of p, the powers ¢’ (1 <i <
p — 1) form a complete set of conjugates of ¢, and

o, =[] x-.

1<i<p-1

Obviously, ®,(1) =1+ ---+ 1= p, so that

p=o,(= [] a-¢b.

I<i<p-—1

But all absolute values |1 — ¢’| are equal by (3.3), since these elements are
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conjugate. The preceding inequality leads to

lpl= J] n-¢i=n—gr

1<i<p-1

This proves that 7 = 1 — ¢ is a generator of P in R: The extension K = Q,(¢)
is ramified with degree n = ¢ = p — 1. hence totally and tamely ramified.

In the course of the preceding deduction we have used the uniqueness of exten-
sion of valuations again. However, in the present context, it is obvious that

1= =0-00+---+&h

implies |1 — ¢f| < |1 — ¢|. But the roles of ¢ and ¢’ may be reversed: ¢’ is also
a generator of the cyclic group 1, of order p when 1 <i < p — l,sothat ¢ is
a power (¢°) of ¢¥ (take j such that ij = 1 mod p). This furnishes the equality
|1 —&f| = |1 — £|. By the way, this proves that

l_i
§|=1

=1y _
H+e+---+¢7 = i

and 1+ ¢ + --- + ¢! are units of the maximal subring R C K = Q,(2).
These are the so-called cyclotomic units of K. Since ¢ = 1 mod P, we have
1+¢+---+¢1=imod P.

4.3.  Roots of Unity and Unramified Extensions

Let K be a(commutative) field of characteristic 0 and let ;.( K') be the multiplicative
group consisting of the roots of unity in K. Since every element of this group has
finite order (by definition), we can apply the Sylow decomposition theorem (or the
Chinese remainder theorem) and write a direct product u(K) = pp,(K)- ppy(K),
where elements in 1 p=(K) have a pth power order and elements in 1, (K ) have
order prime to p. We shall prove that when K is a finite extension of Q ,, the group
1(py(K) is finite, and compute its order. (In the next section we show the finiteness
of the group i p=(K).)
In any valued field, all roots of unity are on the unit sphere:

"=1="="=1l=1=[¢|=1
In the case of an ultrametric extension of Q,,
KD>DA=B,4D>M=B_,
we see that © = u(K) C A* ¢ K*. By reduction mod M,
e:A—> A/M=k

we obtain e(u) C k*. To explain the effect of reduction mod M on roots of unity
let us give a lemma.
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Proposition 1. Let K be any ultrametric extension of Q). Then

tp=(K) = p(K) N (1 + M).

Prook. First, if ¢ € p(K) has order a power of p, denote by ¢ = £(¢) € k its
reduction. Then
P’=1=>£Pf=iek=>2=i=>§el+M,

since the field k has characteristic p. Conversely, if ¢ € 1 + M has ordern > 1,
write { = 1+ & with 0 # |€]| < 1. Then

1=14+&"=14+nE+---+&"=14+&En+ &)
implies n + £ = 0, and
Inl = ] < |&] <1

implies p | n. If n # p, we can replace ¢ by ¢?, which has order n/p > 1, and
iterate the procedure. Eventually, we see that n is a power of p. u

Corollary 1. The restriction of the reduction map € to p(K) has kernel 1 yo(K).
It is injective on pp)(K): The distance between two distinct roots of unity of
order prime to p is 1. u

Corollary 2. If the residue degree f = f(K/[Q)) is finite, then the group
1(p)(K) of roots of unity having order prime to p in K is finite and

#(uepyK) < p! — 1. .

When K/Q, is finite, the next proposition shows that the order of 11(,)(K) is
exactly p/ — 1.

Proposition 2. Assume that the extension K of Q, is complete with residue
field k algebraic over ¥ ,. Then we have a split exact sequence

(1) = ppe(K) = (K) = k% —> (1),

Ifthe residue field is finite, say f = [k : F,] < oo, then the cyclic group pup)(K)
has order pf — 1.

PrOOF. Let & : u — k* be the group homomorphism obtained by restriction
of the reduction (ring) homomorphism A — A/M. It will be enough to show
that & induces an isomorphism p(,(K) = k*. By the preceding proposition, the
reduction map induces an isomorphism of f1(,)(K) into k*. We have to prove that
1t is surjective. Let @ € k* and replace k by the finite field F (o) = F, so that
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« is a root of unity of order prime to p, dividing m = g — 1 = #(k*). Choose
an element a € A in the coset o (mod M) and consider the solutions x of the
following problem:

X" —1=0withx=a (mod M) (ie., &(x) = a).

Since m is prime to p, and K is complete, Hensel’s lemma (1.4) can be applied,
and this furnishes an element x in K> with x™ = 1; hence x € p)(K) and
ex)=¢(a)=oa.

This proves that — when the residue field k is algebraic — the restriction of the
reduction mod M is an isomorphism p,)(K) = k*. ]

Application. Let K be a locally compact (i.e., finite) extension of Q, and adopt
the usual notation corresponding to this case:

K DR=B4(K)DP=nR,
k=R/P, f=I[k:F,l, q=p/=#(®K).

Then we have canonical isomorphisms

wpy(K) x (1+ P) > R*  (multiplication),
Kpy(K) = k*  (reduction mod P).

With a choice of 7, we also have an isomorphism
7% X pp(K) x (14 P) S K*  (multiplication).

We infer that if p* is the highest power of p such that K has a root of unity of
order p®, then

pp=(K) = p(K)N (1 + P) has order p°.

The p-adic logarithm will furnish a way of analyzing more precisely the structure
of the abelian group 1 + P (cf. V4.5).

It is useful to relativize the definitions of ramification index and residue degree
as follows. Let K C L be two finite extensions of the p-adic field Q, and denote
by R the maximal subring of K, P its maximal ideal, k = R/P (residue field of
K) as before. Introduce the maximal subring R; of L, the maximal ideal P; of
Ry,and k; = R; /P, (residue field of L). We can define

I

e=e(L/K)=1[|L*|: |K™]],
f=f(L/K)=Ilkg : k] = dim k,
n=[L:K]=dimg(L).
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Then n = ef simply because this relation holds for both index and degree over
Qp:

n=¢€f (wheren'=[L:Q,),..)

n" =€"f" (wheren” =[K :Q,],...),

and we can divide these relations,

Theorem. Let K C L be two finite extensions of Q,. Then there is a unique
maximal intermediate extension K C K,, C L that is unramified over K.

Prook. If the residue field k; of L has order g, we have seen that L* contains
a cyclic subgroup r1(py(L) of order g; — 1 consisting of the roots of unity having
order prime to p in L. More precisely, if g = #(k) and f = f(L/K) is the
residue degree of the extension, then g; = ¢/. The unramified extensions of
K contained in L correspond one-to-one to the extensions of k = ¥, in k. This
correspondance is order-preserving, hence the uniqueness of amaximal unramified
extension. Explicitly,

Ky = K(M(p)(L)) = K(Mql_—l) CcL. |

4.4. Ramification and Roots of Unity

Let us keep the notation introduced in the preceding section for the group of roots
of unity in the extension K of Q,.

Theorem. Let ¢ be a root of unity in the field K having order p* (t > 1).
Then |¢ — 1] = |p|V/¥") < 1, where o(p') = p'~Y(p — 1) denotes the Euler
@-function.

Prook. (1) Case t = 1, the root ¢ has order p. In this case {? = 1 but ¢ # 1 and
{=14£& (€| < 1) is aroot of the polynomial (X? — 1)/(X — 1):

1 P _1 1
Ul e bt En) (xl< D),

0
§ §

Hence
p(l +&x)+ &P~ =0,
and since |£| < 1 and |x| < 1, we have |1 + px| =1,

£ = | — p(1 + px)| = |pl,
I~ 11=l&] = IpieD < 1.
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Since this absolute value occurs frequently in p-adic analysis, let us introduce a
special notation for it:

<L
s =Pl <1pl77 =1, <1,

so that

r = % = Izl’ I’p > % (p Odd prime).

(2) General case: The order of ¢ is precisely p™*! (¢ + 1 > 1). Then ¢?' has
order p, and by the special case already treated,

7 —1l=r, <1
Let us write { = 1 + 5 with || < 1, so that
P —1=(+n" —1=n"+pny
with |y| < 1. Since

Ipnyl < Ipl <rp=11-¢*,

P

we see that r, = |1 — £ | = In”'| and finally || = r,',/ " as expected. n

Location of the 2"th roots of unity on the unit sphere

The appearance of the Euler p-function is even more natural if we proceed as in
(4.2). Let us give this deduction as a reminder of the properties of the cyclotomic
polynomials. Recall that
Xr—1
X -1

D,(X) =

denotes the pth cyclotomic polynomial (of degree p — 1).



4. Structure of p-adic FHelds 109

Location of the p"th roots of unity on the unit sphere (p = 3 and 5)

Then, it is well known that the p'th cylotomic polynomial (of degree ¢(p') =
p'~Y(p — 1)) is given by

XF -1
X' —1

11

=Xx®0rT o xPT L

@ (X)) =P, (X" ) =

If ¢ is a root of unity of order p’, then the other roots of unity having the same
order are the powers ¢/ of ¢, where the integer j is prime to p, hence the preceding
cyclotomic polynomial has a factorization

1

(X)) = X" x4

= [ &«x-¢hH

1=<y=<p'-1.p1j

with a product restricted to the integers j prime to p: There are ¢(p®) linear factors
in this product. On the other hand, substituting X = 1, we get

r= [] a-¢b

1<;<p'-1,ptj

Butz =1 (mod P)and

| Y
l—i 1444 =] (mod P).
When p is prime to j, we infer |1 — ¢’| = |1 — ¢, and all factors in the above

Product have the same absolute value,

lpl = |1 — ;"ﬂ(p'), £ — 1= |p|1/¢(P')'
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Corollary 1. Ifthe ramification index e = e(K)is finite, then the group i y(K)
of roots of unity in K having order a power of p is finite. More precisely,

#(pp=(K)) <

e
1-1/p°

Prook. In general, if the field K has a root of order p', the preceding theorem
shows that the ramification index e is a multiple of ¢(p’) = p’ — p'~'. Hence

p'd—1/p)<e.
This gives a bound for the order p* < ep/(p — 1), and

ep
#(upe(K)) < ﬁ ]

Observe that the result of this corollary is valid for any valued field K of char-
acteristic 0, provided that its absolute value extends the p-adic one on Q.
In particular, if e = 1, we have # (L p=(K)) < p/(p — 1),

#(ppe(K)) =1if p >3,

whereas # (112 (K)) < 2 if p = 2. This proves again a result obtained in (1.6.7).

Corollary 2. The group of roots of unity in Q,, is precisely

w(Qp) = 1(p)(Qp) = pp—1  p odd prime,
w(Q2) = pa(Qr) = {£1}. ]

Example. Let K be the extension generated over Q,, by a primitive pth root of
unity and K’ the extension of K generated by a primitive root of unity of order i
Both extensions are totally ramified. The degrees of these cyclotomic extensions
are determined by the previous theory, and a diagram summarizes the situation.

K' = Qp(;pz)
degree p | wild
K = Qp({p)
degree p — 1 | tame
Q,

The element m = £, — 1 has absolute value || = | p|"/(P~1 generating the group
of values |K*|: P = 7R C R C K = Q({,). Similarly, the element 7’ = ¢,2 —1
has absolute value || = |p|!/P?~" generating the group of values |K"*|:

P'=7'R' CR C K'=Q,({p).
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4.5. Example 1: The Field of Gaussian 2-adic Numbers

The ring of Gaussian integers Z[i] is a square lattice generated by 1 and i = +/—1
in the complex field:

Zli)=2Z®iZCC.

It is known that this ring is a principal ideal domain. We can also embed it in an
algebraic extension of the 2-adic field Q.. Since we have seen that —1 has no root
in Q2, the extension K = Q,(i) has degree 2 over Q,. Observe that (1 +i)? = 2i;
hence |1 + i} = |2|"/2, and this extension is totally and wildly ramified: e = 2.
The general notation gives 1n this case

K=Q(i)D R=2Z,[i]D> P=({1+i)R.
We shall consider the generator
r=i—1=i(1+1i)
of the maximal ideal P,
=2, |=|=]|2|V2
Since the residue field of K is
k=R/P =F,,
Wwe can consider representations with “digits” in the representative system
$=1{0,1} C Q2 C Q).
Expansions in base b = 7 of nonzero elements of K = Q,(i) have the form:
Z,-Zvaibi (€S, veZ, a #0),
while elements of Z,[i] have expansions
Zizoaibi’ (a; € S).

A parametrization of Z,[i] is given by the set of binary sequences, hence a bijective
map

@SN Zoli), (@) Y aib,
Or equivalently,

®:PN) > Zolil, J > Y b
J

Proposition. The elements of Z-li] admitting a finite expansion
Zosisn a;b', (where a; € S, n € N)in base b are precisely the Gaussian
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integers, and we have

Z[i] = {Z b’ : 1 afinite subset ofN} )

J

Proor. Since Z{[i]is aring containing 1 and b, it certainly contains all polynomials
in b. We have to prove the converse inclusion, namely:

Every Gaussian integer admits a finite representation in base b.

Let F = ®(S™) C Z[i] be the image of the finite binary sequences. It will
be enough to prove that this image is a subgroup of Z{[i], since it contains the
generators | and b. In other words, we have to prove

F+FCFand —FCF.
Starting with

b=i—1, b+1=i,
b? = -2i, b* = —4,

we infer successively
bAb+1)=2,
PAb+1)+1=3,
B +b b+ 1)+ 1=3—4=—1
We have obtained the expansions
2=0"+0,
~1=1+b>+b>+b%,
and more generally,
2bi — bi+2 +bi+3,
_bi — bi +bi+2 +bi+3 +bi+4.

These expansions give reduction algorithms to prove that for finite subsets J and
K of N,
Z b+ Z b eF,
J K
-~ Z b eF. u
J

4.6. Example 2: The Hexagonal Field of 3-adic Numbers

Here, we consider the quadratic extension K = Qs3(+/—3) of the field Q3 of 3
adic numbers. Since it is obtained by adjunction of the root of a generator of the
maximal ideal 3Z3 of Z;, it is totally and tamely ramified with index e = 2. This
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quadratic extension contains { = (1 + +/—3)/2, which is a root of unity of order
6: One can check in succession

P=r-1,8=—¢=¢-1)—-¢=-1.

Also observe that if we add a root 7 of unity of order 3 to Qs, we obtain a totally
ramified extension of degree 2, for which n — 1 is a generator of the maximal ideal.
In fact, we can take 1 = ¢2 and check (with the 3-adic absolute value)

=1 =" =202 +1=—-¢ - 20 - D+ 1=301-¢) = -3¢%,
and since 4+ 1 = ¢2 4+ 1 = ¢, it follows that |5 + 1| = 1 and
=12 =n—12=|-3¢%, In—1=]3"2=J1/3.

We shall now take the generator b = +/—3 and consider expansions Y_; a;b" having
coefficients g; in a fixed set of representatives (containing 0) of the residue field

k=R/P =R/bR =13/3Z; =F;.

We could take {0, 1, —1} as a set of representatives. However, we shall take S =
{0, 1, ¢}: Indeed by definition 2¢ = 1 + b, so that

=-20+b=0+b-3¢=0+b+ b =¢ (mod b)
and we can replace the representative —1 by . It is easy to check that

20=1+b,
2=¢+b+b>+Cb3
1+¢ =cb+ b+ b 4 ¢b,

These relations show how to compute sums. Finally, a picture shows(!) how the
image of the finite ternary sequences

F = o™y c Z[¢)
fills in the whole lattice Z[¢)

A
7.\ A
O AdaAA
A_K__’\_——»
AO 1 AI“A"-*.\”
AA A = " -
A AA AT
AA
AN

Finite sums > _; 3 a; b’
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As in the preceding section, we have obtained unique representations for
the elements of the hexagonal lattice Z[¢], which is the ring of integers in

QW-3).

Proposition. Letb = /-3, { = (1 ++/—3)/2, and S = {0, 1, ¢}. Then the
finite sums ¥",a;b’ (a; € S) fill up the hexagonal lattice Z[{] in C (or in
K = Q3(v/=3) ]

4.7. Example 3: A Composite of Totally Ramified Extensions

Let us consider the following quadratic extensions of Qs:
K1 =Q:(v=3), K;=Qsv3).

They are both totally (tamely) ramified, since |+/—3| = |+/3] = |3|"/2. Hence
n=e =2, f =1 for both. Let K = K, - K, denote the composite (in a common
extension). Obviously, J=1 = J—_3/J§ € K, and the cyclic group of roots of
unity in K contains p4. But the residue field of Qs is F3 = Z3/3Z3; it contains
only the roots of unity 1. Hence the residue field of K contains the quadratic
extension Fg and its cyclic group of units pg. On the other hand, as we have seen
in the preceding example,

K1 = Q3(v/=3) D Q(W=3) D Z[¢]

where ¢ = &g = (1 4+ +/—3)/2 is aroot of unity of order 6. Altogether. K contains
Hg - 3 = o4 (Chinese remainder theorem). Both the residue degree and the
ramification index of K must be greater than 1. The only possibility is e(K) = 2,
f(K)=2(and n(K) = 4).

Q:(v3,V-3) = Q3(v3. V/~1)

/ N
K K,

N /!
Q;

It is interesting to observe that although both K; are totally ramified over Qj, their
composite K is not totally ramified over Qs. In fact, take an odd prime p and
a positive integer a prime to p that is not a square mod p. Then the quadratic
extensions Q,(,/p) and Q,(,/ap) are nonisomorphic and totally ramified over
Q, - But they generate

Qp(ﬁ’ «/a—p) = Qp(\/;7 \/Z),

which contains the unramified quadratic extension Q,(1/a) of Q,,. The image of
V/a in the residue field of Q,(,/a) is a square root of @ mod p. Hence f > 2, and
since ef = n =2, we havee = 1.
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Appendix to Chapter 2: Classification of Locally
Compact Fields

In this appendix we shall give an approach to the classification of locally compact
(commutative) fields of characteristic 0. This contains our main case of interest,
namely that of ultrametric fields. For this purpose we shall take for granted the
existence of a Haar measure on such a field: On any locally compact group G
there exists a positive Radon measure ;1 on G — or equivalently a regular Borel
measure i on G — that is left invariant. Thus we view this measure either as a
(1) positive continuous linear functional

1:C(G;R)—=R, f pu(f)

on the space of compactly supported continuous functions on G, invariant under
left translations

u(f)=/6f(x)du(X)=/Gf(gX)du(X) (g € G),

orasa
(2) o-additive function on a suitable o -algebra of subsets containing the relatively
compact open sets U of G. We also write u(U) for the measure of the subset U.
If U is a relatively compact open subset of K, we denote by vol (U) the measure
of U. By left invariance of this measure, we have vol (U) = vol (gU) for any
g € G. The Radon measure can be extended as a linear form on a vector space of
functions containing the characteristic functions of relatively compact open sets
U C G, and if we denote by ¢y the characteristic function of U, the two points of
views are linked by the relation vol (U) = p(¢y ). By abuse of notation, we shall
also write vol (U) = u(U).
The uniqueness of Haar measures will play an essential role and will be admitted
here without proof:

Let p and v be two Haar measures on a locally compact group G;
then there exists a positive constant « such that . = av.

For a general classification of locally compact fields, not necessarily commu-
tative and in any characteristic, the reader can consult the references given at the
end of this volume.

A.l. Haar Measures

LetK bea locally compact commutative field (the general definition of topological
fields was given in (1.3.7)) and let us choose and fix a Haar measure 2 on the additive
group K. By invariance, we have vol(U) = vol (U +a) forany a € K.

For any automorphism « of the field K, the invariant measure a(u) defined
by a(u)(U) = p(aU) (for all U in the suitable o-algebra) is proportional to
K, say a(pn) = m(e) - p. Since two Haar measures are proportional, this scalar
m(a) is independent of the choice of Haar measure. Now take in particular for
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automorphism « an automorphism of the form « : x > ax wherea #0 € K. Iy
this case we shall simply denote by m(a) the resulting scalar. By definition

vol (@U) = m(a) - vol(U) (a € K*).
The associativity of multiplication in K gives immediately
m(ab) = m(@mb) (a,b e K*).

Hence m is a homomorphism K> — (R*),q, m(1) = 1 and m(a™') = m(a)™.
This homomorphism m is the modulus of K. It is conventionally extended by
m(0) = 0. We shall eventually show that it is a generalized absolute value on K.

A.2.  Continuity of the Modulus

Take a compact neighborhood V of 0in K and choosea € K. SinceaV is compact
and the Haar measure is regular, for each ¢ > 0 we can find an open set U D aV
with

vol(U) < vol(aV) + ¢.

By continuity of multiplication in K, there is a neighborhood W of a such that
U>DWV.Thusforx e W

vol(xV) < vol(U) <vol(@V) +e,
m(x) < m(a)+ &/vol (V).

Since m(x) > 0 and m(0) = 0, this inequality proves that m is continuous at the
point 0. It also proves that m is upper semicontinuous at each pointa € K. But for
a # 0 we can write m(a) = 1/m(a™"), whence m is also lower semicontinuous at
such points. This proves the continuity of the modulus on K.

A.3. Closed Balls are Compact

Forr > 0 we denote by B, = {x € K : m(x) < r} a closed ball in K. Fix again
a compact neighborhood V of 0in K. We shall prove

B, is contained in a compact set of the form yV .

As a first step, we construct a sequence (77, ),>0 C V with 7,, — 0. Since
0-v={0jcv,

there is a neighborhood U of 0 in K for which we still have UV C V (take Vo
an open neighborhood of 0 in V and choose U such that UV is contained in Vo)-
We can find an element 7 € U NV with 0 < m(rr) < 1. Hence 2 e UV C V,
n3=n-n? € UV C V,and by induction, 7" € V (n > 1). But V is compact, s0
that the sequence (77") must have a cluster value 7’ in V . By continuity of m, m(7")
must be a cluster value of the sequence (m(sr")). Since m(z") = m(n)* — 0,
the only possibility is m(7’) = 0 and 7’ = 0. This proves that the sequence
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(z") has only one cluster value in the compact set V: It must converge, and
7" — 0. Finally, observe that since 1 € Uand UV C V, wehave 7V C V and
v ¢ 7~'V. We see by induction that the sequence of compact sets 77 "V increases
monotonically.

Second step: We show that B, C m =NV for some large N > 1. Since we already
know that B, is closed and 7VV is compact, this will indeed show that B, is
compact. Leta € B,. By the first part m"a — 0, and there is a first integer n such
that 7"a € V. If a ¢ V, this first positive 7 is such that 7"a € V but 7" la ¢ V.
In other words, 7"a € V — V. The set V — mV is relatively compact (in V
compact) and

0¢Q:=V —nmV.
We can define r' = infq m(x) > 0 and choose N > 1 such that m(zx)" -r < r'.
Hence

m(n’)N -r<r <m@@"a) =m(@@Y'm@@) < m@@)'r (a€B,).

This shows that m(7r)Y < m(r)" and hence n < N. Thus we havea € 7"V C
7NV for all a € B,: The ball B, is contained in the compact set 7NV, [ ]

Corollary 1. The balls B, (r > 0) make up a fundamental system of neighbor-
hoods of 0 in K. In particular,

a" > 0inK < m() < 1.

Prook. If V is any compact neighborhood of 0 in K, put r = maxy m(x) in
order to have V C B,. Since 0 is not in the closure of B, — V, the minimum r’
of m(x) on the closure  of B, — V is positive; for 0 < r” < r’ it is clear that
B.cv. ]

Corollary 2. Any discrete subfield of K is finite.

ProOE. Let F be a discrete subfield of K. Choose any a € K with m(a) > 1. Then
we have m(a™") = m(a)™" —> 0, whence a™ — 0, and since F is discrete it
§h0ws a ¢ F. This proves F C B;. But we know that F is closed (1.3.2). Thus F
IS compact and discrete, hence finite. |

Remark. If the field K has characteristic 0 but is not assumed to be commutative,
We see here that its center is a locally compact nondiscrete (commutative) field.
_Iﬂdeed, this center is closed and contains the rational field Q by assumption, hence
1S not finite. It is locally compact and not discrete by Corollary 2.
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A4. The Modulus is a Strict Homomorphism

We claim that I' = m(K*>) is closed in R,o and m : K* — T is an open map.
For r > 0, the compact set m(B,) is simply m(B,) = {0} U (T N[0, r]. In
particular, if 0 < & < r < 0o, I'N[g, r] is closed in R.. Since the interiors of
the intervals [&, r] cover R, we can conclude that I' is closed in this topological
space. If V is a neighborhood of 1 in K*, we have now to prove that m(V) is
a neighborhood of 1 in I'. It is enough to show that for every sequence (3,) in
I' such that y,, — 1, there is a subsequence y,, in m(V) (a subset A is not a
neighborhood of 1 in I when there is a sequence y,, — 1in I" and y,, & A). Let
us write ¥, = m(x,) for some elements x, € V. Since V is compact, the sequence
(x,) must have — at least — one cluster point x € V. By continuity of m, m(x)
must be a cluster point of m(x,) = y, — 1. This proves m(x) = 1, namely
x € N :=ker(m) C K*.But VN is a neighborhood of x € N. By definition of a
cluster point, for each ng there must be an integer n > ng with x,, € VN and hence
Yn = m(x,) € m(VN) = m(V). This proves the existence of the subsequence of
() in m(V) as desired.

Corollary. If the field K is locally compact and nondiscrete, the subgroup
m(K*) is either R or of the form (6" : n € Z} = 6% for some 0 < 6 < 1.
When C = max {m(1 + x) : x € By} = 1, the second case occurs.

Proor. Since 1+ By is aneighborhood of 1in K *, its image must be a neighborhood
of 1 in I'. When C = 1, this neighborhood is contained in (0, 1] and its image
under ¢ > ¢t~ ! is a neighborhood of 1in I contained in [1, co). The intersection of
these two neighborhoods of 1 in I' is reduced to the single point {1}, thus proving
that I 1s discrete in this case. [ ]

In an obvious sense, the modulus m defines the topology of K: Any neighbor-
hood of an element x € K has the form x + V for some neighborhood V of 0in
K, and m(V) contains a neighborhood of 0 € I', namely,

thereisane > Osuchthat m(x) <e = x €V,
which implies that the given neighborhood x -+ V contains x + B,.

A.5. Classification

Let us recall the result obtained above (Corollary 2 in A.3): In a nondiscrete locally
compact field, any discrete subfield is finite. Now the discussion of cases can be
made according to the value of the constant

C =max m(1 +x)>1.
x€By

It is obvious that

m(a + b) < C - max (m(a), m(b)),
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since if 0 # m(a) > m(b), we can divide by a so that x = b/a € B; and
m(l +b/a) < C, m(a+b) < C-m(a) = C - max(m(a), m(b)). Hence m defines
a generalized absolute value (I1.2.2) on K. In every case, a suitable power of C
will be less than or equal to 2, and a power of m 1s a metric defining the topology
of K. This shows that any locally compact field is metrizable.

First case: C > 1. In this case, the field K is not ultrametric; hence it is automat-
ically of characteristic 0 and contains the field Q. If K is not discrete, Q is not
discrete either (because infinite, by the result just recalled), and the metric induced
by K on Q must be equivalent to the usual Archimedean metric. The completion
R of Q for this metric must also be contained in K. Hence K is a real vector space.
Being locally compact, it must be finite-dimensional. One can show that the only
possible cases are K = R. C (or H: Hamilton quaternions if it is not commutative).

Second case: C = 1. Then K is ultrametric. If we assume K to be of characteristic
0, it contains the field Q, and as before, the induced metric on Q is not trivial. By
the classification of ultrametric absolute values on Q we infer that K must induce a
p-adic metric on Q and contain a completion Q,,. Since K is assumed to be locally
compact, its degree over Q), is finite (I1.3.2). We leave out the positive characteristic
case (interested readers can find a complete discussion in the specific references
given at the end of this book).

It is easy to see that contrary to the real case, there are extensions of Q, of
arbitrarily large degree (cf. (I11.1.3)).

A.6. Finite-Dimensional Topological Vector Spaces

In order to approach the structure of locally compact fields (having no a priori
norm), we have to give a few general definitions and results concerning topologi-
cal vector spaces. Instead of limiting ourselves to the field of scalars Q,, let us treat
the case of arbitrary valued fields: This general context has the advantage of em-
Phasizing the individual properties needed to establish each result. Thus we shall
consider in this section that K is any ultrametric valued field (II.1.3), nondiscrete:
|K*| # {1}. In particular, K is a metric space.

Definition. A topological vector space over K is a vector space V (over K)
equipped with a Hausdorff topology for which
the additive group V is a topological group,

the multiplication (a,v) — a - v : K x V — V is continuous.

Let U be a neighborhood of 0 in such a topological vector space. By continuity
of multiplication at (0, 0). there is & > 0 and a neighborhood Uy C U of 0 such
that

Uy:={av:a €Kk, |al <& velp} CU.
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This neighborhood U; C U of O has the property

a€K, |la| <1 = alU; Cc U;.

Definition. A nonempty subset U in a topological vector space V is balanced
when

a€ekK, jal<1=aUCU.

The balanced neighborhoods of 0 in a topological vector space play the role of the
balls in normed spaces. We have just proved that in a topological vector space
there is a fundamental system of neighborhoods of 0 consisting of balanced
ones.

Theorem 1. A one-dimensional topological vector space V over K is isomor-
phic as a topological vector space to K. More precisely, foreach 0 # v € V,
the map a v av : K — V is a bijective linear homeomorphism.

Proor. Fix 0 # v € V. The one-to-one linear map a + av : K — Vis
continuous, since V is a topological vector space over K. We have to show the
continuity of the inverse, namely

V& > 03 U neighborhood of 0 in V such thatav € U = |a| < &.

We proceed as follows. If ¢ > 0 is chosen, we take b € K with 0 < [b| < ¢ anda
balanced neighborhood U of 0 in V such that U # bv # 0 (this is possible, since
we assume that V is Hausdorff). Now, if av € U, then

b
bv=—--aa ¢ U — —|>1=la| < |b] <e. n
a S~ U balanced
el

Lemma. A linear form ¢ : V — K on a topological vector space V is contin-
uous precisely when its kernel is closed in V.

Prook. If the linear form ¢ is continuous, its kernel is closed. Conversely, assume
that the kernel of ¢ is closed. We may assume ¢ # 0 and take vo € V with
¢(vo) # 0. Replace vp by vo/¢(vp), so that ¢(vg) = 1. The linear variety

{p=1}=vy+kergp

1s closed and does not contain the origin. Hence there is a balanced neighborhood
U of 0 that does not meet this closed subset:

(vo+kerp)NU = Q.
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I claim that ¢(U) C B.;, so that ¢ is bounded, continuous at the origin, and

continuous. Now, if v € U and ¢(v) # 0, consider the scalara = 1/¢(v). We have

plavy=1=>av¢lU = |a|> 1.
U balanced

This proves [¢(v)] < 1, as expected. ™

Theorem 2. Assume that the field K is complete. Then a finite-dimensional
topological vector space V over K is isomorphic as a topological vector space
to a Cartesian product K¢. More precisely, for any basis (e;) of V, the linear
map

() Y hei iKY >V
i
is an isomorphism of topological vector spaces.

Proor. We proceed by induction on the dimension of the vector space V: The
dimension-1 case is covered by the first theorem. Assume that the statement is true
uptodimensiond — 1. lf dimg V =d, select abasis ey, . . ., e; of V and consider
the linear span W of the first d — 1 ¢;. By the induction assumption, the space W
is isomorphic to K¢~! and hence complete and closed in V. The linear form

¢:Zlie;HAd,V—+K
i

s continuous, since its kernel ker(¢) = W is closed. The one-to-one linear map
Kdzkd—lxKiWXKed—sEn—;V
is continuous. Its inverse is
X (x — p(x)es , p(x)eq)

and hence is also continuous. a

A.7. Locally Compact Vector Spaces Revisited

We have seen in (3.2) that locally compact normed spaces V over Q, are finite-
dimensional. Using the existence of Haar measures, we can now prove the same
Statement without the assumption that the topology is derived from a norm.

Theorem. Any locally compact vector space over Q,, is finite-dimensional.

PrOOF (WEIL). The proof is based on (A.6): A finite-dimensional subspace of a
locally compact vector space V over Q, is isomorphic as a topological vector space
to a finite product Q‘,’,, hence is complete, and hence is closed in V and locally
Compact. Let now V be any locally compact vector space over Q,. In particular,
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it is a locally compact abelian group, and we can choose a Haar measure (. on V,
We can define a modulus homomorphism

my Q; —> R>0

as for locally compact fields (A.1). For 0 # a € Q,, the map U > vol(al) is
also a Haar measure on V, and by uniqueness, there is a unique positive scalar
my(a) > 0 such that vol(aU) = my(a) - vol(U) (for all relatively compact
open sets U C V). For example, If W = Q“‘; has dimension d over Q,, then

mw(a) = |a}®. Since p"* — Oin Qp, we have

my(p)" = my(p") - 0.

and this proves my(p) < 1 for all locally compact Q,-vector spaces V. Select
now a d-dimensional vector subspace W of V. Integrating in succession over W
and F=V/W,

f= /dup(y)/ f&x+y)dpw(x),
F w

we get an invariant Radon measure on V, which we may take for py (or we can
change the choice of Haar measure on F to obtain this equality). Hence

[ sy = [ dueo) [ £+ yauwia)
v F w
for all continuous functions f with compact support on G. We see that

my(a) = my(a) - mp(a) = |al® - mp(a),
my(p) = |p|* - me(p) < |pl,
logmy(p) < d-log|pl,

and by division by log | p| < 0,

d < logmy(p)/log|p|.

This shows that the dimension d of finite-dimensional subspaces of V is bounded,
and this implies that V itself is finite-dimensional. .

A.8.  Final Comments on Regularity of Haar Measures

Let us consider the Haar measure on the locally compact group G = R x Ry
where the first copy of R has the usual topology and the second copy the discrete
topology. The usual Lebesgue measure i, is a Haar measure on R, and we can
take for Haar measure of R, the counting measure

1a(A) =#(A) (A CRy).
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The product of these two Haar measures is a Haar measure on the product R x R,.
The subset A = {0} x R, has the discrete topology, and

u(A) = udflf; L) = oo,

simply since each openset U O A contains an uncountable family of open intervals
of positive length. However, acompactset K C A is finite (because discrete), hence
W(K) =0, and Supg compact c4 #(K) = 0 is different from p1(A) = oc. In general,
inner regularity holds only for subsets having +1(A) < oo (and in a suitable algebra
containing the Borel subsets). This pathology disappears in locally compact spaces
that are countable at infinity. This last property holds for all locally compact fields:
we have seen this in characteristic zero in (A.5).

ExERrcises FOR CHAPTER 2

1. Let X be an ultrametric space. Show that the spheres of radius » > 0 in X are the
complements of one open ball of maximal radius r in a closed ball of radius r.

2. Let X be an ultrametric space.

(a) Fix a positive radius » > 0. Show that the condition d(x, y) < r is an equivalence
relation x ~ y between elements of X. The equivalence classes are the closed
balls of radius r, and the quotient space is the uniformly discrete metric space of
closed balls of fixed radius r (the inequality d(x, y) < r also defines an equivalence
relation, for which the equivalence classes are the open balls of radius r).

(b) Fixa € X and assume that {d(x, a) : x € X}is dense in R>(. Show that the ordered
set of closed balls containing the point a (with respect to inclusion) is isomorphic
to the half line [0, co) C R.

(c) Assume that for each x € X, {d(x, y) : y € X}is dense in R>¢. Define Ty as the
ordered set of closed balls in X (with respect to inclusion). Prove that this is a tree.
Recall that we denote by 8(A) the diameter of a bounded subset of a metric space,
so that § B<, = r. We have two natural maps

XxRsp — Tx (@,r) ~» B=B(a)
18 18
R>o 8B)=r

For r > 0, the fiber §~1(r) is the uniformly discrete metric space consisting of
closed balls of fixed radius r. If X is separable, this fiber is countable. For any subset
A C X define Tx(A) as the subset consisting of the (dressed) balls B meeting A.
Prove that this is a subtree of 7. Take for A successively sets containing only one,
two, or three elements: What are the possible configurations?

(d) The metric space Z, can be embedded in an ultrametric space X satisfying the
condition required in (c) (cf. Chapter III). Sketch Tx(Z ) and show that the picture
does not depend on the choice of ambient space X.

3. Let | .| be an absolute value on a field K.
(a) Prove the triangle inequality

x+y* <IxI"+Iy* (x,ye K, 0<a<).
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(b) When the absolute value is ultrametric, prove the same result for all o > 0.
©Ifa=ag+ leisn aj and |g;| < |a| for 1 <i < n, prove |a] = maxo<i<n |a;l.

. As corollary of the proof of Theorem 1 of (I1.1.4) we see that (with the notation of the

theorem): If A/£A is finite, then A/£" A is also finite and #(A/E" A) = [#(A/§A)]".
More generally, show that in any integral domain A,

#(A/(ab)) = #(A/(a)) - #(A/ (b))

ifab # 0. (Hint. Observe that multiplication by b on (a) = a A leads to an isomorphism
of the A-modules A/(a) and Ab/(ab). Then use the isomorphism A/abA = A/aA x
aA/abA)

. (a) Let P(X) = X2 —2X + 1 € Z[X]. This polynomial has the root x = 1. Find

explicitly the sequence of iterates given by Newton’s method starting at an element
x # 1: Does this sequence converge in Q,?
(b) Let A be the maximal subring of an ultrametric field asin (1.4), and let P(X) € A[X]
be a polynomial having a simple root x = §.
Show that for any x in the open ball of center £ and radius | P/(£)] # 0 Newton’s
method furnishes a sequence of iterates that converges to §.

. Prove directly the following: If @,, — 0 and b, — 0 in an ultrametric field, then

Cpn = Zo_<_i5n ajby—;j — 0and

Za,, . Zb,, = Zc,,.

n>0  n>0 n>0
[Hint. The assumption implies that the two sequences are bounded, say
lail < C, |bil <C foralli >0,
and for each given € > 0 there exists N = N, such that
lail <&, |bil<e (i =N).

Fori + j > 2N, we have |a;b;| < eC, since one index at least is greater or equal to
N.]

. Show that two norms on a vector space define the same topology when there exist two

constants ¢, C such that
clixll < Ixl" < Clixll.

(The unit ball for one norm must contain a ball for the other norm; observe that this
condition is independent from the ultrametricity.)

. Let K'/K be a finite extension of ultrametric fields. Show directly that the residue field

k' of K’ has finite degree over the residue field of K and
f=W :kl<n=I[K:K]

(cf. 4.1 and 4.3).

. Let K be a valued field that is an extension of Qp, and let £ € K. Suppose that there

exist integers ap(j), a1(j). .. -.an-1(j) € Z (j = 1) such that

[E" + an—1(DE" T+ +ag()l > 0 (j — o).
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(a) Show that |§] < 1. (If you cannot, glimpse at the proof of Proposition 3 in (II1.2.1)).
(b) Prove that £ is algebraic of degree less than or equal to n over Qp.
(Hint. Consider the nonempty sets X,, C (Z/p™Z)" consisting of the families
(ap mod p™, ..., ap—1 mod p™) such that |" 4+ a,_18" 1+ .- +apl < [P =
1/p™. Then any element of L'E Xm # O gives a polynomial dependence relation

for £ over Qp.)

10. Let s < ¢ and ¢ a root of unity of order p*, ¢’ a root of unity of order p’, both in Q‘;,.
What is the distance | — '|?

11. Let K be an ultrametric extension of Q.. Prove that if the group p(K) of roots of unity
in K is infinite, then this field X is not locally compact. (Hint. Canyou find a convergent
subsequence?)

12. Show that the quadratic extensions Qs(+/2) and Qs(+/3) of Qs in Q2 coincide, by two
methods:
(a) Use the fact that 6 has a square root in Qs.
(b) X2 —2 and X2 — 3 are irreducible over Fs (hence 24 C Qs5(v/2), 24 C Qs5(+/3)).

13. Consider the following quadratic extensions of Q7 in Qf

Q:(V=1), Q:(v2), Q7(+/3), Q1(+/5), Q:(V6).

By (1.6.6), they cannot be distinct: Give identities. What is the degree of Q7(+/2, v/3)
over Q7? (What is the degree of Q(~/2, +/3) over Q?)

EXERCISES FOR APPENDIX TO CHAPTER 2

L. Let U be a neighborhood of 0 in a topological vector space V over a valued field K.
Show that
AU
reK,|A21

is a balanced neighborhood of 0 contained in U.

2. Let K be a nondiscrete ultrametric field. Assume that K is not complete and consider
the topological vector space K over K.Ifa, b € K are linearly independent over K, the
two-dimensional subspace Ka + Kb is not isomorphic, as a topological vector space,
to K2. (Hint. The one-dimensional subspaces of K 2 are not dense in this space!)

3. Let K be a finite extension of Qp (bence locally compact). A character of K is a

continuous homomorphism x : K — U(1) = {z € C* : |z| = 1}.

(a) Prove that such a character x is locally constant and takes its values in ypo<.

(b) If ¢ is a fixed nontrivial character, consider the characters ¥,(x) = ¥ (ax) (a € K).
Show that a > ¥, is an injective homomorphism f : K — K- where K~ is the
(multiplicative) group of characters of K. (For a nontrivial character on K, one can
take the composite of the trace 7k /q,, and the Tate homomorphism 7 (1.5.4).)

(c) Define a topology on K- having for neighborhoods of a given character x the
subsets

VeaOO) = {x" € K71 1x'(x) — x(x)] < ¢}

(e > 0, A acompact subset of K). Show that the above-defined homomorphism
f :a — g is continuous.
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(d) Show that the inverse homomorphism ¥, > a is continuous on f(K). Conclude
that this image is locally compact, and hence closed in K~. (Hint. Use Corollary 1
in (1.3.2).)

Comment. For any locally compact abelian group G. one can define its Pontryagin
dual
G-~ = {x : G — U(1) a continuous homomorphism}

and show that G- is again a locally compact abelian group with (G-)~ canonically
isomorphic to G. When G = K is the additive group of a locally compact field, one can
show (as above) that K and K~ are isomorphic. This generalizes the known situation
for the field R.
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Construction of Universal
p-adic Fields

In order to be able to define K-valued functions by means of series (mainly power
series), we have to assume that K is complete. It turns out that the algebraic
closure Qf, is not complete, so we shall consider its completion C,,: This field turns
out to be algebraically closed and is a natural domain for the study of “analytic
functions.” However, this field is not spherically complete (2.4), and spherical
completeness is an indispensable condition for the validity of the analogue of the
Hahn-Banach theorem (Ingleton’s theorem (IV.4.7); spherical completeness also
appears in (V1.3.6)). This is a reason for enlarging Q7, in a more radical way than
Just completion, and we shall construct a spherically complete algebraically closed
field ©,, (containing Q7, and C)) having still another convenient property, namely
12, = Rzo. This ensures that all spheres of positive radius in 2, are nonempty:
B_,(a) + B, (a)forall r > 0.In fact, we shall define the big ultrametric extension
Q, first — using an ultraproduct — and prove all its properties (this method is
dUe to B. Diarra) and then define C), as the topological closure of Qf, in C),. This
simplifies the proof that C,is algebralcally closed. By a universal p- adlc ﬁe]d we
mean a complete, algebrazcally closed extension of Q.
In this chapter Qf, denotes a fixed algebraic closure of Q.

1. The Algebraic Closure Qf of Qp

1.1.  Extension of the Absolute Value

There is a canonical absolute value on Qf,. Indeed, the absolute value of Q, extends
uniquely to Q“, as the following observation shows. If K; and K, are two finite
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extensions of Q, in Qf, the two extensions (I1.3.4) of the absolute value of Q, to
these fields must agree on their intersection K; N K by uniqueness (I1.3.3). Hence
all the extensions of the absolute value of Q,, to finite subextensions of Q}, define
a unique extension of this absolute value to Qf,. As a consequence, this algebraic
closure is an ultrametric field, and we set

A? := the maximal subring of Q, : |x| < 1,
M? := the maximal ideal of A? : |x| < 1,

k® := A“/M* the residue field of Q.

We shall see below that Qf, is not complete, hence not locally compact. Moreover,
the residue field £ is infinite, and [(Q‘,’))" | is a dense subgroup of R..o. Hence none
of the conditions of (I1.3.5) for local compactness are satisfied!

1.2.  Maximal Unramified Subextension

We have seen in (I1.4.3) that every finite extension K of Q,, contains a maximal
unramified subextension: Since K is complete, the group p(,)(K) of roots of
unity in K having order prime to p is isomorphic to the cyclic group k> of order
g — 1 = p/ — 1, where f is the residue degree of K :

Kur = Qp(¢g-1) = Qp(ug—1) C K.

It is not difficult to generalize this result to the algebraically closed extension

Q7.

Proposition. The residue field k° of the algebraic closure Q‘,’) of Qp isan
algebraic closure of the prime field F .

Prook. Since any algebraic element x € Qj, generates a finite-dimensional ex-
tension K of Q,, the residue field of K is also finite-dimensional over F,. This
proves that the residue field of Q;’, is algebraic over F,. Conversely, if £ # 0 is
algebraic over F , it belongs to the cyclic group F,(§)* and hence is a root of unity
of order m prime to p. Now consider the cyclotomic extension Q,(f4,,) obtained
by adjoining to Q,, all roots of unity of order m. If ¢ # 7 are two such roots, then
|¢ —n] = 1 and the reductions of { and ny are distinct (cf. I1.4.3). Hence the residue
field of Q,(1t,) contains m distinct mth roots of unity and contains &. o

We shall denote by F, = F= = ., F,s an algebraic closure of F, and by
Qpur = Qpip)) C Q, the extension generated by all roots of unity having
order prime to p. This is the maximal unramified extension of Q,, in Q-

Corollary. The residue field of the maximal unramified extension of Q, in Q,
is an algebraic closure of the prime field F ,. L
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1.3. Ramified Extensions

One can give another reason for the fact that the extension Qj, has infinite degree
over Q,. Choose algebraic numbers 1, = p'/¢ (e > 2). We have

7l = |pl = 1/p, Im| = (1/p)e,

and consequently the ramification index of Q,(,) is greater than or equal to e.
This proves that Q, has algebraic extensions of arbitrarily large degree. Indeed,
the polynomial X ¢ — p is an Eisenstein polynomial, and hence is irreducible (11.4.2)
inZ,[X] or Qp[X]: This defines an extension of degree e of Q,. More generally,
if K is any finite extension of Q,, (contained in Q‘I‘,), it is locally compact, and we
can choose a generator 7r for the maximal ideal P of R. The polynomial X¢ —
is an Eisenstein polynomial, hence is irreducible in R[X] and K[X], whence K is
not algebraically closed. These simple observations show that

I(Q‘;))XI D) pQ = {pv ‘ve Q} — Up(l/E)Z_

e>1

Proposition. The absolute values of algebraic numbers over Q,, are fractional
powers of p: [(Q3)*| = p2.

Proor. If x € Q‘,’,_— Q, is any algebraic number not in Q,,, it satisfies a nontrivial
polynomial equation

Z ax'=0 (g€ Q)

0<i<n

of degree n > 2. By the principle of competition, there are two distinct indices,
sayi > j, with

laix'| = Iajle # 0.
Hence
'™ = laj/ail € p*,
and |x| € pV9Z (¢ =i— j > 1). n

1.4.  The Algebraic Closure Q7, is not Complete

A complete metric space X is a Baire space: A countable union of closed subsets
X, in X having no interior point cannot have an interior point. In particular, such
a countable union cannot be equal to X. Recall that locally compact spaces and
complete metric spaces are Baire spuces.

Theorem. The algebraic closure Q7 of Q, is not a Baire space.
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Proor. Let us define the sequence of subsets

X,,={xeQ‘,’,:degxz[Qp(x):Qp]=n}CQ‘;, n=>1

so that Qf, = Up>1 X, It is also obvious that AX,, C X, (A € Qp), X+ X, C
X mn, and in particular,

Xn + Xn C an.

(a) These subsets are closed. If x # 0 is in the closure of X,,, say x = limx;
with a sequence (x;) in X,,, then for each x; let f;(X) € Q,[X] be a polynomial
of least degree with x; as a root and coefficients scaled so they lie in Z,, and at
least one of them is in Z . Extracting if necessary a subsequence of ( f;), we can
assume that it converges (in norm, coefficientwise), say f; — f, so f € Zy[X]
has degree less than or equal to n and at least one coefficient in Z%, so f(X) # 0.
By the ultrametric property, the convergence f; — f is uniform on all bounded
sets of Q“’,. Since the convergent sequence (x;) 1s bounded. we have

f&x) = fitxi) = f(x) = (i) + f(xi) = filxi) > 0.
-0 —‘:0
This implies f(x) = lim f;(x;) = Oand x € X,,.
(b) The subsets X, have no interior point. Since for any closed ball B of positive
radius in Q‘;, we have Q}, = Q,, - B. such a ball cannot be contained in a subset
X, and no translate can be contained in X,,. [ |

Corollary. The space Qy, is neither complete nor locally compact. [ ]

1.5. Krasner’s Lemma

Theorem 1 (Krasner’s Lemma). Let K C Qf, be afinite extension of Q, and
let a € Qf, (so that a is algebraic over Q). Denote by a° the conjugates of
a over K and put r = ming 4, |a® — al. Then every element b € B_,(a; Q)
generates (over K) an extension containing K (a).

Proor. Take any algebraic element b such thata ¢ K(b). Since we are in charac-
teristic 0, Galois theory asserts that there is a conjugate a® # a of a over K(b)
(the automorphism o fixes K (b) elementwise) and we can estimate the distance
of a to b as follows:

|b—a’l =|(b—a)|=Ib-al,
la —a°l < max(la — b|. |b—a°|) = |b —al.
This shows that
Ib—al=la—a>r.
Hence if b € B_,(a), namely |b — a| < r, we have

aec K®), K()c K®). .
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Examples. (a) Take K = Q, and @ = +/—1 = i. Then i° = —i and
r=li—i%l=2i|=2| = 3.
Hence for b € Q4,
b—il <3 =>i€Qub).
(b) Take K = Q3 anda = ~/=3.Thena® = —+/—3 and
r=la—a’|=2v3| = Y3l = 32 = /L.
Hence for b € Q4,

lb—J—_3|<\/§=>\/:—3€Q3(b).

Recall that the norm of a polynomial f(X) = Zisn a, X" is the sup norm on the
coefficients || f|| = max;<y la,l.

Theorem 2 (Continuity of Roots of Equations). Let K be a finite extension
of the p-adic field Q,, and fix an algebraic element a € Q‘;, of degree n over
K corresponding to a monic irreducible polynomial f € K[X] (of degree n).
There is a positive € such that any monic polynomial g € K[X] of degree n with
lg — fll <& hasaroot b € K(a) also generating this field: K(b) = K(a).

Proor. Let us factorize the polynomial g in the algebraic closure Qj, of K, say
8(X) = I(X — b;), and evaluate it at the root a of f:

[ @ -5 =g = 2@~ f@.
With M = maxg<i<, (la|’) = max(l1, |a|") we can estimate

[Tle —bil = 1g@~ f@l < g - fII - M,

hence for one index i at least,
la —bil < lig— fIMV" - MY

By the preceding theorem, if ¢ > 0 is chosen small enough, then flg — f|| < ¢
will imply K(b;) D K(a) for some i. But the degree of b; is less than or equal to
n, since it is a root of the nth degree polynomial g € K[X1]. This proves K(b;) =
K(a). [

Corollary 1. Let f € K[X]be a monic irreducible polynomial, a € Qf, a root
of f, and (g;)ien a Sequence of monic polynomials with coefficients in K of the
same degree as f. If gi — [ (coefficientwise), there is a sequence (x;) of roots
of these polynomials such that x; € K(a) for large i and x; — a.
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Proor. As soon as ||g; — f|| < € is small enough, the above result is applicable
and shows that |a — x;| is small for at least one root x; of g;. More precisely, the
inequality

la — x| < llgi — FIM" - M7

shows that |a — x;] — 0, and the convergence x; — a in K(a) follows. ]
Corollary 2. The algebraic closure Qj, of Qp is a separable metric space.

Proor. Take a € Qj, and let f be its minimal polynomial over Q). Since Q is
dense in Q,, we can find monic polynomials g € Q[X] as close to f as we want.
If we choose a sequence g, — f, the continuity principle for the roots shows
that a is a limit of roots x,, of the polynomials g,. This shows that the algebraic
closure of Q is dense in Q. But this algebraic closure is a countable field since
the set of polynomials of fixed degree with coefficients in the countable field Q is
countable. [ ]

1.6. A Finiteness Result

In the last two sections of this chapter, let us prove a couple of theorems easily
obtained with the techniques developed above. (We shall not need them in the
sequel.)

Theorem. Let K be a finite extension of Q, and n > 1 an integer. Then there
are only finitely many extensions of K of degree n in Q5

Prook. (1) Let F be an extension of degree n of K and let e be its relative ram-
ification index, f its residue degree: n = ef. The cyclic subgroup consisting of
roots of unity in F having order prime to p is isomorphic to the cyclic group
of nonzero elements in the residue field of F (I1.4.3). These roots generate the
maximal unramified subextension F,, of K in F,

[For : K)l=f

(I1.4.4), and the extension F/F,, is totally ramified of degree e. If the residue
degree f is given, there is only one unramified extension of degree f of K in
Q7. Hence the announced result will be established as soon as the same finiteness
property for totally ramified extensions is established.

(2) Let us show that there are only finitely many totally ramified extensions of
given degree n = e of K. Fix such an extension F andlet K D R D P = nR
(conventional notation). By (I1.4.2, I11.4.4) it is generated by an element having
minimal polynomial

X"+ ap X"+ oo tugm,
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which is an Eisenstein polynomial. Its coefficients a; belong to P, and ug € R* is
aunit: up € K and |ug| = 1. The Cartesian product

P! x R

is compact, and by continuity of the roots of equations (1.5), each element of
this product has an open neighborhood corresponding to polynomials having
their roots generating the same extension F in QY. This completes the finiteness
proof. ]

1.7. Structure of Totally and Tamely Ramified Extensions

It is possible to improve the result (11.4.2) concerning the generation of totally
ramified extensions.

Theorem. Let K C L CQj, be finite extensions of Q). Assume that L/K is
totally and tamely ramified of degree e. Then there exists a generator 1 of the
maximal ideal P of R C K such that L is generated by an eth root of 7w in Q.

Prook. By assumption e = [L : K] is prime to p. The proof will be accomplished
in three steps.

(1) Consider arbitrary generators 7t of P C R C K and 7 of PL C Ry C L.
Since L/K is totally ramified of degree e, |7 |¢ = || and 7 /7 = uis aunitin
Ry. Since the residue degree of L/K is 1, the residue fields are the same, and there
isaunit ¢ of R (one can take a root of unity in K) such that ¢ = (mod P);.
Let us write

771‘:=7T-u, u=¢+mLv (v € RL).
Hence
i =n-(+mv)y=¢n+nmLv.

The element ¢ is also a generator of the ideal P of R. We are going to show that
L is generated by a root of the equation X¢ — ¢ 7. Let us replace the generator 7
byn' = ¢m and simply denote it by 7 again. Thus we assume from now on that
the generators 7r; and 7 are linked by a relation

n; =m+nmmy (v € RL).

(2) The polynomial f = X¢ — = is an Eisenstein polynomial (IL.4.2) of R[X].
ence it is irreducible over K[X]. We have

fy)=mn] —m =nnpy, |f@r)] = |nmLv] < ).

Let us factor finQf:

fX=x-r=[]X-a)

l<i<e
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(where [y = +m). Since f is irreducible, the roots ¢; are conjugate and have
the same absolute value in Q?, say {c;| = ¢ independent of i. Hence

¢ =[] leul = Iml,
loi} = ¢ = /e = |,
and
frL — o] < max(joyl, {7 l) = I
If we come back to the polynomial f, then

l—[ (L — ;)

1<i<e

=|f@l < |n| = |m. |

shows that at least one of the factors is smaller than |7, {. Without loss of generality
we may assume

| — ol < |mel.

(3) The roots of f(X) = X¢ —m = 0 are the o4 = ¢;r, where ¢f = 1. Since e
is prime to p, we have {{; — 1] = 1 when {; # 1 by Proposition 1 in (IL.4.3). This
proves

log —a|l =|al=c=|mL] (G#1),

frp —el <|rif=le—oa} @#1).
By Krasner’s lemma, we infer that
K(a) C K(mp),

and since the element « has degree e, this inclusion is an equality. L]

Example. If we add a primitive pth root ¢, of unity to Q,, we obtain a totally
ramified extension K of degree p — 1. Hence K /Q,, is tamely ramified and can
be generated by a (p — 1)-th root of the generator —p of pZ,,.

For p = 3, we have seen in (IL4.6) that b = 4/—3 works:
Q3(853) = Q3(v—3).

2. Definition of a Universal p-adic Field

2.1. More Results on Ultrametric Fields

Let us start with a couple of general results concerning (nondiscrete) ultrametric
fields.
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Proposition 1. Let K be an ultrametric field and K its completion. Then K is
still an ultrametric field and

@ K| = K|,
(b) K and K have the same residue field.

ProoF. Let A be the ring of Cauchy sequences in K. The ideal I of A consisting
of Cauchy sequences a = (a,) with a, — 0 (also called null Cauchy sequences)
is a maximal ideal: If a, /> 0, then a, # O except for finitely many indices n
and a is invertible in the quotient A/I. We can define K = A/I with a canonical
injection K < K given by constant sequences. If a = (a,) € A — I is a Cauchy
sequence that is not null, the sequence (|ay|) is stationary (stationarity principle),
and we define an absolute value on K by

lal = lim|a,] € |[K*| C R,y fora# 0 and|0] =0.
n—oco

Obviously, the canonical injection K < K is an isometric embedding, and we
view K as a subfield of K: The absolute value of K extends the absolute value
of K. The residue field k of K parametrizes the open unit balls B.1(a) (a=0
or la] =1) contained in the closed unit ball: k> parametrizes the open unit balls
contained in the unit sphere S; = {x € K : |x] = 1}. Any Cauchy sequence of the
closed unit ball has all its final terms in an open unit ball; hence it corresponds to
a fixed element in the residue field k. [ |

An extension L of an ultrametric field K having same residue field k; = k and
the same absolute values |L| = | K| is called an immediate extension of K. Hence
the completion of K is an immediate extension of K.

Proposition 2. Let K be a nondiscrete ultrametric field and put

A ={x € K : |x] < 1} : maximal subring of K
M = {x € K : |x| < 1} : maximal ideal of A.

Then, either M is principal, or M = M? and the ring A is not Noetherian.
Proor. By hypothesis I' = |K*| # {1}, and either ' N (0, 1) has a maximal
element 6 or it has a sequence tending to 1. In the first case we can choose 7 € M

with || =8, and M = 1 A is principal. In the second case, for each x € M, namely
Ix| < 1, we can find an element y such that [x]| < [y| < 1, so that

x=y-(x/y)e M.

Since v and x /y belong to M, this shows that x € M2, and we have proved M = M2,
In this last case, the subgroup I' = |K *| is dense in R. ¢, and all the ideals

I, =Be, = B4, (0;K)={x € K : |x| <r}

forr € ' N (0, 1) are distinct: The ring A is not Noetherian. [ ]
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Proposition 3. With the same notation as before:

(a) If K is algebraically closed, so is the residue field k.
(b) If L is an algebraic extension of K, the residue field k; of L
is also an algebraic extension of the residue field k of K.

Proor. In any ultrametric field, |€] > 1, |a;| < 1 (i < n)implies
") > &' = laig’] @ <n),
& > 1) aig'l,

i<n
and hence

E" + ) at'| = lgI" > 1,

i<n

§"+ ) at #0.
i<n
This proves that any root of amonic polynomial having coefficients |a;| < 1 belongs
to the closed unit ball |x| < 1.
(@LetX"+Y,_, «; X' € k[X] be amonic polynomial of degree n > 1. Choose
liftings a; € A of the coefficients, i.e., a; =a; (mod M), and consider the monic
polynomial

X"+) aX' e AX).
<n

Since the field K is algebraically closed, this polynomial has aroot x € K. By the
preliminary observation, x € A and x mod M is a root of the reduced polynomial
X"+ . _, & X" This proves that k is algebraically closed.

(b) Let 0 # & € ki and choose a representative x € A; — M of the coset
& # 0: |x|] = 1. By assumption, this element is algebraic over K, and hence ¥
satisfies a nontrivial polynomial equation

Za,—x" =0 (n>1, a € K).

i<n
By the principle of competitivity, at least two monomials have maximal competing
absolute values

la;| = laix'| = lajx’| = |a;| forsomei < j.

Dividing by a;, we obtain a polynomial equation with coefficients |a;| < 1.4; € A
and at least two of them not in M. By reduction mod M we get a nontrivial
polynomial equation satisfied by &. L
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2.2. Construction of a Universal Field 2,

Let R be the normed ring £°°(Q‘;,) consisting of bounded sequences & = (¢; )ien Of
Q, with the sup norm

llell = sup;en lexi-

Let us also choose and fix an ultrafilter I/ on N containing the subsets {n, 00)
(n € N).(Readers not familiar with ultrafilters can find all definitions and properties
used here in the Appendix to this Chapter.) Recall that for each subset A C N either
A el or A =N — A € U. On the other hand (here is the reason for choosing an
ultrafilter), each bounded sequence of real numbers has a limit along U, and we
put

() = lim|o;| = 0.

Proposition 1. The subset J = ¢~'(0) is a maximal ideal of the ring R, and
the field 2, = R/J is an extension of the field Qj,.

Proor. Let us show that each element @ ¢ 7 is invertible mod 7. Butif @ = (a,)
is not in the ideal 7, the limit r = ¢(a) > 0 does not vanish, so we can find a
subset A € U such that r/2 < |a;| < 2r (i € A). Define a sequence 8 = (8;) by

1
Bi=—forie A and B; =0fori ¢ A.
Q;
Since |8;] < 2/r (i € A), the sequence S is bounded 8 < 2/r and 8 € R. By
Construction 1 — B vanishes on the set A, hence 1 — af € J. This shows that
@mod J is invertible in the quotient 2,. Consequently, the quotient is a field,

and J a maximal ideal of R. Finally, constant sequences provide an embedding
-, ]

The map ¢ defines an absolute value on the field Q,: For a = (¢ mod J) we
put

la| = lale = ¢(e) = lim |e;|.

This absolute value extends the absolute value on Q" (considered as a subfield of
p through constant sequence).

Proposition 2. The absolute value | . lq coincides with the quotient norm of
R13, namely for a = (¢ mod 7),

lale = lle mod Jligy7 := inf lla — BIi.
ped
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Proor. We have limy, |y;| < sup |y;| (¥ € R), and hence
limje;| =lim|e; — B < supla; — Bil (B € J).
lale < lle =Bl (B €I).
This proves
lale < llallz,g-

Conversely, if a =« mod 7, then for any subset A € U we can define the sequence
B=(Bi)as B;i=0( € A)and B;=0a; (i /€A)sothat B€ T and |l — B =
SUp;e4 loi) and

flallr;7 < inf sup|e;| = lim suple;| = lim || = |ale.- =
Aeld icA u

From now on we shall simply write |a] = |a|q, for either the absolute value on the
field 2, or the quotient norm in R/J.

Proposition 3. We have
12 = Rso.

Proor. This is a simple consequence of the fact that IQ‘;,I is dense in R>g. Indeed,
each positive real number r is limit of a sequence (r,,) of elements r,, € IQ‘[’,I, say
rm = || (e € QF), so that the sequence « is bounded and defines an element a
in the quotient 2, with |a| = r. .

Comment. This construction of £, is reminiscent of nonstandard analysis. Let
X = Q;, and in the Cartesian product X N introduce the equivalence relation

)~ On) == {neN:x, =y} el.

The quotient *X := XN/~ is an ultrapower of X (as systematically used in non-
standard analysis, in the construction of superstructures). The subset #X consisting
of classes of bounded sequences is the set of limited elements in this ultraproduct
*X, and the classes of sequences tending to zero (along U) are the infinitesimal el-
ements '’X C X . The quotient °X/’X = R/.J = 2, has more simply been obtained
in one step.

2.3. The Field 2, is Algebraically Closed

Let f € Q,[X] be a monic polynomial of degree n > 1, say

fX)=X"+a, X"+ - +a (a€R).
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We show that this polynomial f has a root in the field €2,,. Select representative
families for the coefficients:

a = (0y;); mod J.
We can consider the polynomials

(X)) =X"+) auX' € QiX].
k<n
Since the field Qf, is algebraically closed, each of these has all its roots in Q;-
More precisely, the product of the roots of f; is (up to sign) the constant term «;
of this polynomial, so that we can choose at least one root & with & < |ag;|V".
The sequence & = (&;) is bounded ||€]| < |laol|'/”, & € R, and the class x of £ is a
root of f in . ]

2.4. Spherically Complete Ultrametric Spaces

Consider a decreasing sequence (Bx;, (an))n>0 of closed balls in an ultrametric
space X:

d(a;, a,) < ry, for all pairs i > n.

When r,, \{ 0, the sequence of centers is a Cauchy sequence; hence it converges if
we assume that the space X is complete. The limit of this sequence belongs to every
B, (ay) (these balls are closed). In particular, this shows that the intersection of
the sequence is not empty.

At first, it seems surprising that even in a complete space, a nested sequence
of closed balls may have an empty intersection when the decreasing sequence of
radii has a positive limit. Consider, however, the followin g situation. In the discrete
space N with the ultrametric distance d(n, m) = 1 — §,,,,, the decreasing sequence
of closed sets F,, = [n, 00) has an empty intersection (they all have diameter equal
to 1). This space is complete (it is uniformly discrete), and a small modification of
the metric (cf. the exercises) transforms these sets F, into closed balls of strictly
decreasing radii.

Definition. An ultrametric space X is called spherically complete when all
decreasing sequences of closed balls have a nonempty intersection.

A spherically complete space X is complete: If (x,,) is any Cauchy sequence of
X, consider the decreasing sequence (r,,) where r, = sup,,.,, |Xm — x,| (wWhich
Converges to 0). Then ( B, (xn)) is a decreasing sequence of closed balls having
for intersection a limit of the sequence.

Comment, Any extension of an ultrametric field K which has the same residue
field ang the same value group (in R*) is called an immediate extension of K . It
€an be proved that each ultrametric field admits an immediate extension that is
SPherically complete. For example, there is a spherically complete extension of
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Q7 that has residue field F = and value group pQ. In fact, spherically complete
extensions are maximal elements among extensions having prescribed residue field
and value group.

2.5. The Field 2, is Spherically Complete

Let us consider any decreasing sequence (B,),>o of closed balls B, = B, (a,)
in the field 2,. The ultrametric inequality shows that such a sequence of balls
decreases if

lapy1 — an| <r, and (r,) decreases.
Take liftings «,, € R of the centers a, € R/J in the following way. Since
lGns1 — Gnl S 1 < 1hy

and since the absolute value is the quotient norm, we can proceed by induction and,
once ¢, has been chosen, successively choose the next lifting «,4; still satisfying
llotng1 —etnll < rp—y. Then |lox — || < ry—i forall k > n. The ith component will
a fortiori satisfy |oy; — ai| < rn—3 (K > n). Consider now the diagonal sequence
& = (&) in R defined by &; = «;;. Then

"E —(Y,," S SUP |§l _am'l < n—1

i>n

because the interval [n, co) of N belongs to the ultrafilter /, whence for x =§
mod J,

Ix—anl =< “E ’_an" < rp-a,

|x —ap_1| < max(|x — apl, la, — an1l) < rp-a,

namely x € B,_;. Since this happens for all integers n > 0, we infer x € (1) Bns
and the intersection of the given decreasing sequence of balls is not empty.
The field €2, is spherically complete, hence complete.

3. The Completion C, of the Field Q‘;,

3.1. Definition of C,,
Let us define
C, = Q% = closure of Q% in Q2.
Hence C,, is a completion of Qf:
C,=0Q.

Proposition. The field C, is a separable metric space.
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prook. The algebraic closure Q, of Q, is a separable metric space (by Corollary
2in (1.5)) and is dense in C,. Any countable dense subset of Qjis automatically
dense in Cp: For example Q is dense in C. n

The universal field C,, is not locally compact: [Cx| = p? = {p* : v € Q} is
dense in R..¢. We shall use the following notation

A, = {x € C, : |x| < 1}: maximal subring of C,

M, = {x € C, : |x] < 1}: maximal ideal of A ,.

Hence M, = Mf,, and A, is not a Noetherian ring (2.1).

3.2. Finite-Dimensional Vector Spaces over a Complete
Ultrametric Field

Let us formulate and prove a generalization of (I1.3.1) (cf. Theorem 2 in (IL.A.6)
for the most general version).

Theorem 1. Let K be a complete (nondiscrete) ultrametric field and V a finite-
dimensional vector space over K. Then all norms on'V are equivalent.

Proor. We use induction on the dimension n of V. Since the property is obvious for
n = 1,itis enough to establish it in dimension n assuming that it holds in dimension
n — 1. Choose a basis (€;);<i<, of V and consider the vector space isomorphism
¢ : K" — V sending the canonical basis of K" onto the chosen basis of V.
Considering that K" is equipped with the sup norm, we have to show that for any
given norm || . || on V, the mapping ¢ is bicontinuous. First, for x = (x;) € K",
we have

Ixier + - + xnenll <Y Ixlllesll < max |xi| - Sllesll,
le@ll < Clixli (€ = Z|lel),
Which proves the continuity of the map ¢. Conversely, let F be the subspace of
generated by the last n — 1 basis vectors. Since the dimension of F is n — 1,
the induction hypothesis shows that on this subspace, the given norm is equivalent

t? the sup norm of the components. In particular, F is complete and closed in V.
Since e = ¢, ¢ F, we can define

d(e, F) = inf le—y|| > 0
yeF

andput  — d(e, F)/|e]| < 1. By the induction hypothesis, there is also a constant
CF such that

Iyl = cr - max |xi| (¥ = Xoci<n Xi€; € F).
2<i<n
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Foreachv = g(x) € E — F,sayv=_¢te+y (¢ #0, y € F), we can write

v==E§(e+y/§)
with
vl = €1 - lle +y/&1l = [&] - lle = ¥'ll
> €] -d(e, F)=I§] - ylell =y - |&ell,
and hence
lyll = Ilv — &ell < max(lIvll, ligell) < max(livil, y~'IvI) = Ivil/¥

(since y < 1). This shows that ||v|| > y|lyll. We have thus proved

Ivil = yligell, Uvll > yiyl,
vl = y - max(l|€ell, lylD,

and since ||y]] > ¢ max;>2 x|, we have
le@)ll = lIvll > y max(|&]llell, cr max;>2 |x:])
> cmax;s1 x| = c - X[,
with x; = & and ¢ = ¢y = y min(cr, |le|)). L]
Corollary. If K is a complete (nondiscrete) ultrametric field and L is a finite

extension of K, there is at most one extension of the absolute value of K to L.
Any K -automorphism of L is isometric.

Proor. Same as in (11.3.3). [ ]
We can now give Krasner’s lemma (1.5) in a more general form.

Theorem 2. Let Q2 be any algebraically closed extension of Q, and K C Q
any complete subfield. Select an algebraic element a (€ 2) over K and denote
by a° its conjugates over K. Let r = minge 4, |a° — a|. Then every algebraic
element b over K, b € B_,(a), generates with K an extension containing
K(a).

Proor. We can proceed as in (1.5), since we now have uniqueness of the extension
of absolute values for finite extensions of K. For any algebraic element b such
that a ¢ K(b), a has a conjugate a° # a over K (b) (the automorphism o leaves
all elements of K (b) fixed). and

lb—a’l=|(b—-a)|=|b—al,

la —a°| < max(la — b|, |b—a’])=|b—al.
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Hence

Ib—al>la—a’|>r.

Taking the contrapositive, |b —a| < r==>a € K(b) and K(a) C K(b). ]

3.3. The Completion is Algebraically Closed

Theorem. The universal field C,, is algebraically closed.

Prook. Let L (C £2,,) be a finite — hence algebraic — extension of C,. We can
apply the general form of Krasner’s lemma to the extension C, C €2, since we
already know that

¢ the field C,, is complete,
o the field Qf is algebraically closed,
¢ he field 2, has an absolute value extending the p-adic one.

Assume that L = C(a) is generated by an algebraic element a of degree n > 1
and let f € C,[X] be the monic irreducible polynomial of a. By density of the
algebraic closure Q; of Q, in C,, we can choose (1.5) a polynomial g € Q[X]
sufficiently close to f in order to ensure that a root of g generates L over C,,. But
Q‘;, is algebraically closed, so that g has all its roots in Q2, and this proves that f
hasdegree 1: L =C,. [ |

Comment. We have not used the possibility of extending the absolute value of
C, to finite extensions of this field, since we work in the field £, constructed
In(2.2). The general possibility of extending absolute values for finite (algebraic)
extensions — where the base field is not locally compact — involves other algebraic
techniques.

34. The Field C p is not Spherically Complete

Proposition. The universal field C,, is not spherically complete.

Proor. Here is an argument showing the existence of strictly decreasing sequences
of closed balls of C p» having an empty intersection (without explicitly constructing
One such sequence!).

Letr, > r > 0bea strictly decreasing sequence of I' = pQ = IC)1

ro>r >-->r,>--->hmr, =r > 0.

:n the ball p = B-,,(0) we can choose two closed disjoint balls By and B; with
C.S.ame radius r; < ry. In each of these we can select two closed disjoint balls of
Tadii r, r1, say

B;o and B;; closed and disjoint in B;.
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Continuing these choices, we define sequences of closed balls having decreasing
radii given by the sequence (r,,) and satisfying in particular

BiDBijD>---DBij.xy DBijojuD---

(withmulti-indices equal to O or 1). By construction, two balls having distinct multi-
indices of the same length are disjoint. If (i) = (i, i, . . .) is a binary sequence we

can define
By ={)Bi-i,-

n>1

Such an intersection is either empty or is a closed ball of radius r = lim r,, having
for center any element in it, as always in the ultrametric case. In any case, all B
are open subsets of C,, (this is where r = limr,, > Ois used). If two sequences (i)
and () are distinct — say i, # j, — then by construction Bj,..;, and Bj,...; are
disjoint, and a fortiori By C B;,...i,» B(j) C Bj,.,, are disjoint. Since the metric
space C,, is separable, the uncountable family of disjoint open sets (Bg;,) can only
be a countable set of distinct open sets (any countable dense subset must meet all
nonempty open sets). This forces most of the By;) to be empty! [

A pictorial representation of the preceding proof is sketched in the exercises.

3.5. The Field Cp, is Isomorphic to the Complex Field C

The result of this section will not be used in this book. It gives the answer to a
natural question, namely: What is the algebraic structure of the field C,,?
Let us start by the determination of the cardinality of the field C,,.

Lemma. The field C, has the power of the continuum.

Proor. The unitball of Q, isZ, = ]_[,,>0{0, 1, ..., p—1}, hence has the powerof
the continuum ¢: numeration in base p gives a 1-1 correspondence with [0, 1] C R
except for contably many overlaps. so these sets have the same cardinality. (In
fact, each Z,, is homeomorphic to the Cantor set: Exercise 13 of Chapter 1.) The
field Q, ltself has the same power, since it is the countable union of balls p"Zp
(each having cardinality c). All finite extensions of Q, have the same power. The
algebraic closure Q7 of Q,, still has the same power (the ring of polynomials i
one variable over Q,, has also the power of the continuum). Finally, a countable
product (Q" )N cannot have bigger cardinality. Such a product contains all Cauchy
sequences of Q‘,'), and

Card(C,) < Card(Q%)™) = c. .

Recall the terminology used for field extensions. A transcendence basis of a field
extension K /k is a family (X);cs in K such that
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the subfield k(X;)ict C K is a purely transcendental extension of k,
and K [ k(Xi)ic1 is an algebraic extension.

Here are some general results of Steinitz concerning field theory:

Two algebraic closures of a field k are k-isomorphic.
Every field extension K [k has a transcendence basis.
Two transcendence bases of K [ k have the same cardinality.

For example, let Q¢ be the algebraic closure of Q in C,, and Q? the algebraic
closure of Q in C. Then there is an isomorphism

-
These fields are countable. But the fields C,, and C have the power of the continuum,

hence the same transcendence degree (over the prime field Q or its algebraic
closure).

Theorem. The fields C and C,, are isomorphic.

Proor. Any extension of the rational field Q having the power of the continuum
has a transcendence basis having this cardinality. By the above lemma the tran-
scendence degrees of C and C,, over Q (or its algebraic closure) are the same, and
We can select transcendence bases (X);c; in C and resp. (Y);¢; in C, (indexed by
the same set). Now, C is an algebraic closure of Q(X;)ic; and C p Is an algebraic
closure of Q(Y;);<;. Hence these two algebraic closures are isomorphic. ]

Asaconsequence, we can view the field C, as the complex field C endowed with
an exotic topology. But the preceding considerations do not lead to a canonical
isomorphism between these universal fields: The axiom of choice has to be used
to show the existence of such an isomorphism.

Field > B, > B, Residue field Nonzero | . | Properties

Q52,5 Pz, F, p? locally compact

17 .
K> _ o f Z_ ¢ ef =dimg, K < o0
ROP=nk F,@=prD Il p { locally compact

a a 4 _Fa —F o Q algebraically closed
MRS K=K, =F, P { not locally compact
C @ —F o Q algebraically closed

14 DAP DMp Fp_Fp D {complete

Q5 Ag O Mg ke Roo { algebraically closed

uncountable spherically complete
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4. Multiplicative Structure of C,

4.1. Choice of Representatives for the Absolute Value

Definition. Let G be an abelian group written multiplicatively and n > 2 an
integer. We say that

1. G is n-divisible if for each g € G, there is x € G withx" = g,

2. G is uniquely n-divisible if for each g € G, there is a unique x € G
with x" = g,

3. G is divisible if it is n-divisible for all n > 2.

A simple application of Zorn’s lemma will show the possibility of extending all
homomorphisms having a divisible group as target.

Theorem. Let G be a divisible abelian group. For each abelian group H and
homomorphism ¢ : Hy — G of a subgroup Hy C H, there is a homomorphism
¥ : H — G extending ¢.

Proor. Consider all homomorphisms Hy C H’ 2> G(H isa subgroup of H
containing Hp) extending a given homomorphism ¢ : Hy — G. There will be a
maximal one y for the order relation given by continuation: Every totally ordered
set of extensions has an upper bound, defined in the obvious way on the union
of the increasing chain of subgroups. I claim that the domain of such a maximal
homomorphism is the whole group H. Indeed, if the domain of an extension ¢’ i
a proper subgroup H' C H, let us show that it is not maximal. For this purpose,
select any element g € H, g ¢ H' and consider the subgroup H” generated by H '
and g, namely the image of the homomorphism

&, x)—>g'x":Zx H — H.

When the only power of the element g that lies in H’ is the trivial one, the subgroup
H” is isomorphic to Z x H’, and an extension of ¢’ is given by

¢"(gx") == ¢'(x").
If other powers of g lie in H’, the inverse image of H' by the homomorphisr‘rl
£+> g* : Z — H is anontrivial subgroup mZ C Z (m > 0) (in other words, g
the smallest positive power of g in H'). In this case, we choose an mth root z € G
of ¢'(g™) € G such that 2™ = ¢’(g™). We can define the extension ¢” : H” —> G
by
9"(g"x) == 2'¢'(x).
This is well-defined because if g1 x] = g%x} (x] € H’), we have

gll"fz — xé(x;)—l c H,;



4. Multiplicative Structure of C, 147

hence £, — £2 = km is a multiple of m and
P ="M =g = =
PP =50 = ¢/ (g" ) = 217",
and finally
21¢'(x]) = 229/ (x5). .

Remarks. (1) For an additively written abelian group G, divisibility requires that
allequations nx = a (x € G, n positive integer) have (at least) one solution x € G,
hence the terminology. For example, the additive groups Q and R are divisible,
but Z is not a divisible group.

(2) Anabelian group G having the extension property mentioned in the statement
of the theorem is called injective group or injective Z-module.

Application. The universal field C, is algebraically closed; hence the multi-
plicative group C is divisible. The homomorphism ¢ : Z — C, defined by
pn) = p" € Cx has an extension ¢ : Q — C; . This extension 1s one-to-one,

since its kernel 1 rs a subgroup of Q with ker ¢y N Z = {0}. The image of ¢ is a
discrete subgroupI"’ C C ; isomorphic to the subgroup pQ C R.p. Instead of ¥/ (r)
we shall often write p” € C, and ¥(Q) = p?. But — although the notation does
not emphasize it — this subgroup R cC C7 depends on a sequence of choices of
roots of p in C,, and is not canonical. When we consider p@ as a subgroup of C,

we have to remember that |p®| = 1/p® > 0. This subgroup is a complement to

the kernel
Ul ={xeC,:Ix|=1}cC]
of the absolute value. In particular, we have a direct product decomposition
C,=T-U1)=p? xUQ1)
(@nalogous to polar coordinates in C*) given by
x=r-(x/r)— (Ixl,x/r) (€T, |x|=|r|, x/r € UQ1)).

f}lnce both A, and M, are clopen subsets of the metric space C,,, the subgroup
) = -M is clopen and the preceding product s a topological isomorphism.

4.2, Roots of Unity

A first analysis of the structure of the group of units

Ul)=A,-M, c C;
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is made by looking at the reduction mod M,,. The restriction of the (ring) homo-
morphism

g:A, = A,/M, =F,

(where F ,~ is an algebraic closure of Z,/pZ, = F)) to units gives a surjective
(group) homomorphism (I11.4.3)

e:U(1) - Fw
with kernel & 1(1) =14 M, C U(1), whence a canonical isomorphism
U/ +M,) =Fw.

In the algebraically closed field C,, we can find roots of unity of all orders, so
that © = u(C,) is isomorphic to the group of roots of unity in the complex field.
There 1s a canonical product decomposition of this group,

1= [p) - pe  (direct product),

where p(,,) is the subgroup consisting of the roots of unity of order prime to p, and
1 pe the subgroup consisting of the pth power roots of unity (in C,).

The restriction of the reduction homomorphism & gives an isomorphism of this
subgroup j(,) with F ., and hence a direct product decomposition

U(l)=ppy-(1+Mp) C C;.
On the other hand,
mp= C (1 +Mp)ﬂQ‘,’,.

Let us recall the more precise result established in (11.4.4).

Theorem. Let ¢ € pp,~ C C, be a root of unity having order p' (¢ > 1). Then
£ =1 =1pI"" <1 (@)= p"(p— 1) .

For a subextension K of C,, the link with the notation used in (IL.4.3) is

Hpy(K) = ppy N K roots of unity (in K) having order prime to p,
p=(K) = pp= N K: pth power roots of unity (in K).

4.3. Fundamental Inequalities

In the preceding section (4.2) — based on I1.4.4 — we recalled the estimates for
absolute values of pth powers. Such estimates form a recurring theme of p-adic
analysis, and we give a few more precise forms of these estimates for convenient
reference. The first one is purely algebraic.
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Fundamental Inequalities: First form. Denote by I = (p, T) the ideal of the
ring Z[T] generated by the prime p and the indeterminate T. Then

AQ+TY —-1€T-I" (n>0).

Prook. For n = 0, the assertion is a tautology, and we proceed by induction on
n > 0. Assume that (1 + 7)*" = 1 4+ Tu for some u € I". Hence

a1+ T)”"+I =(1+Tuw’ =1+ pTuv+ T?u?
for some polynomial v € Z{T]. But
pTueT-pI"CT-1"",
TPu? =T-TP P eT - 1"

(since p > 2), and the sum pTu + TPuP belongs to T - I"*! as expected. [ |

Let us replace the indeterminate T by an element t € A, C C,. Since each
element in /" is a sum of terms containing factors pi T for 0 < i < n, the
ultrametric inequality shows that all elements obtained have an absolute value
smaller than or equal to the maximum of | p’t"~?|, and we see that we have obtained
the following inequality.

Fundamental Inequalities: Second form. Lett € C ps 1t] < 1. Then
(1 +1)”" = 1] < |t] - (max(lt], |ph)"  (n > 0)

(cf.(V.4.3)). n

Other forms are often used (they are not completely equivalent to the preceding
Ones, but also admit useful applications). We mention them briefly.

Third form. Let K be a finite extension of Q.. K DR D P.Then
A+PY¥ Ccl+P* (n>0).

If P=75Rand || =6 <1 (generator of the discrete group |[K*| C R.o),
then in K the announced inclusion is equivalent to

7] <6 = |(1 +1)"" — 1] <"+, ™

This thirg form follows from the first one (replace T by ) but is less precise than
€ second form because

pEP, |pl=6°

and § = IpIlVe > |plife > 1.
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Fourth form. With the same assumptions as in the third form, we have
(1+t)"=1+4nt (mod pntR)

ift € 2pR (n €N, Zorevenlp). »

If we look at the first term only in the expansion
A+t —1—nt=n(n—D*2+---,
we find that for /2 € pR,

n(n — 1)t?

1
=m-—1)-nt-- ent-pR.
> (n )-n 26n 4

It only remains to check that the next terms are not competitive. Since we shall
not need this form before Chapter VII, we refrain from giving a proof now. It will
be obtained by a general method in (V.3.6). ]
4.4. Splitting by Roots of Unity of Order Prime to p

‘We have a direct product decomposition (4.2)

of the multiplicative subgroup defined by |x| =1 in C;. The corresponding pro-
jection U(1) — g, is the Teichmiiller character. It can be made explicit in
several forms. Let [x| =1 and K = Q,(x) have residue degree f.The residue field
k = R/P of K has order g = p”/, and the reduction homomorphism & sends the
given unit x to an element £(x) € F;‘ of order dividing g — 1 (IL.4.3). Hence

ex)¥'=1,x9"'=1 (mod P).

The fundamental inequality (second form) shows that the pth powers of xi ' =
I+t(tePCKorteM,CCp,)tendtol:

x4 51 (n > o).

A fortiori, taking n = fm,

qm+l
=x9" 51 (m—> o).

xa"

Say x¢""' = x7"(1 + &,) where &,, — 0. Hence x¢™"' — x4" = x4"¢g,, — 0,
and the Cauchy sequence (x9"),,>0 has a limit  in the complete (locally compact)
field K C C,. Obviously, {9 = ¢ and

¢ = lim x9" =x +(xq—x)+(xq2—x")+---.=_x (mod P).

m— o0
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The map
x> ¢ =o(x)= lim x7"
m—0o0

defines a homomorphism U(1) N K* — pu,_; C K* that corresponds to the
projection on the first factor in the direct product decomposition (11.4.3)

U N K™ = gy x (1+ P).

It is possible to give a formula working mdependently from the residue degree of
x € U(1). Indeed, if g is given, the subsequence (x?" ) has an end tail in (x9").
We have obtained the following result.

Theorem. Let x € C,, with |x| = 1. Then the sequence (xp"') converges to the
unique root of unity that is congruent to x  (mod M) and the homomorphism

. 1
w:x > =owx)= lim xP"
m— o0

corresponds to the projection on the first factor in the direct product decompo-
sition

U(l) = Hpy X (1 +Mp) | ]

4.5. Divisibility of the Group of Units Congruent to 1

In this section we investigate the divisibility properties of the multiplicative group
1+M,.

Proposition 1. The group 1 +M p is divisible. For eachm > 2 prime to p, it is
uniguely m-divisible.

Proor. It is enough to prove that the group 1 + M, is p-divisible and uniquely
m-divisible for each m prime to p.
MLet14re1 +M,, and selectarootx € C,, of X? — (1+t): this is possible.
since this field is algebralcally closed. Since lxlp = |xP] = |1 +1t| = 1, we have
Xl = 1: x € U(1). Now

(xmodM, )Y =xP mod M, =1 €k

"“Phes x mod M, = 1. since k has characteristic p. This proves x = | + s €

I+ M,

@ Let 1+t €1+ M, and select a positive integer m prime to p. We are
0Okmg for a root of the polynomlal f(X)= X" — (1 +1). We already have an
pproximate root y = 1 for which the derivative m X™~! does not vanish mod M,
(P does not divide m):

fH=1-AQ+)=—1, f'=m, |f'()I =1
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Thus we have | f(y)/f'(¥)?| = |-t} < 1,and Hensel’slemma (IL.1.5) is applicable:
There is a unique root of f in the open ball of center 1 and radius 1. n

In fact, for each ¢ € pm C pg) C F;m, there is one root x of f withx =¢
(mod M,,)). These m roots of f are all the roots of this polynomial, and for each
given { € u,, there can be only one root of f congruent to this root of unity ¢.

For later reference, let us formulate explicitly the following characterization of
the topological torsion of C}.

Proposition 2. For x € C, we have

x€l+M, < x*" > 1 (n— ).

Proor. If x = 1+t € 1 + M, the sequence
1=+ -1

tends to O by the fundamental inequality (4.3) (second form). Conversely, assume
that x?" — 1 (for some x € C ) and take an integer n such that x?" belongs to the
open neighborhood 1+ M), of 1 in C,,. Since we have proved in (4.1) that there is
a torsion-free subgroup I' (= p@) of C , and a direct-product decomposition

Cl =Ty -1+M,),

we see thatx € pi(,)-(1+M),,). The first component ¢ of x is trivial simply because
it has an order prime to p:

Xpn€1+Mp=>cp"=1=>§=l, | ]

Observe that the convergent sequence (x”"),»o is eventually constant precisely
when x is a pth power root of unity

X € jp= C1+M,.

Appendix to Chapter 3: Filters and Ultrafilters

A.1. Definition and First Properties
Let X be a set. A family F of subsets of X is a filter when

0.XeF,0¢F,
1. Ae F,Be F=ANBekF,
2Ae FLADA= A e F.

If there is a filter on a set X, then this set is not empty by the condition 0. The
condition 1 shows (by induction) that the intersection of a finite family of subsetS
A; € F is an element of the filter F and in particular is not empty. The intersectio?
of all elements of 7 may be empty, in which case we say that this filter is free.
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Example. Let X be a subset of a topological space Y, choose a point y € X-X,
and define a filter 7 on X as follows:

F ={VNX: Visaneighborhood of y in Y}.

This example is typical, since if F is any free filter on a set X, we can define a
topology on the disjoint union ¥ = X LI {w} by specifying its open sets:

subsets of X and subsets A U {w} (A € F).

The topology induced on X is the discrete one, but w is in the closure of X in Y,
and the filter on X attached to w is precisely F.
A family B C F is a basis of this filter if any A € F contains a B € B.

Lemma. Let B be a family of nonempty subsets of a set X such that
A € B, B € B=> there exists C € B suchthat C C AN B.

Then the family of subsets of X containing elements of B is a filter having B as
a basis. [ ]

The filter constructed in the previous lemma is called the filter generated by B.

Lemma. Let F be a filter on a set X and let f : X — Y be a map. Then the

Jamily f(F) = {f(A) : A € F}isafilter on f(X)and a basis of a filter on Y.
| ]

Example. Let F be a free filter on N. Choose for each 2 € N an element A, eF
suchthat n ¢ A,. Hence A = [,y An € F and [N,00) D A, and hence
[N,00) € F. Any free filter on N contains all subsets [N, c0) (N € N).

More generally, let X be an infinite set. Then any free filter on X contains
all cofinite subsets (i.e. complements of finite subsets) as elements. The cofinite
subsets form the Fréchet filter on X.

A2, Ulmrafilters

The inclusion relation for families F C P(X) is an order relation, and if 7/ > F,
We, say that ¥’ is finer than F. For example, any free filter on X is finer than the
Fréchet filter.

In an obvious sense, the subsets of a finer filter F~ are smaller than those of F.!

Definition. Maximal filters are called ultrafilters.
\

i
Compare with coffee powder, where finer grinding also provides finer granules'!
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Any totally ordered sequence of filters on a set X has a majorant (the union
in P(X)), and by Zorn’s lemma, any filter is contained in a maximal one. For
example. the Fréchet filter on X is contained in an ultrafilter (necessarily free).

Theorem. Let F be a filter on a set X. Then F is an ultrafilter precisely when
the following criterion is satisfied:

foreachY C X eitherY €e ForY =X —-Y € F.

Proor. If the condition is satisfied, F is obviously maximal. Conversely, assume
that there is asubset ¥ C X withY ¢ F and Y ¢ F. Observe thatall A € F
meet Y:

Y¢F = Y PA=>YNA£D.
AeF

Define 7' D F as follows:
F =[{ACX:ADANY forsome A € F}.

Hence F' is afilter, and Y € F'. Since Y ¢ F, F’ is strictly finer than F, proving
that this last filter was not maximal. ]

Corollary 1. LetU be an ultrafilter on a set X. If Ay, ..., A, is a finite family
of subsets of X such that Ulsisn A; € U, then there exists at least one index i
forwhich A; € U.

Proor. It is enough to prove the assertion for two subsets (by induction). If A ¢ U
and B ¢ U, we infer from the above criterion that A € U, B¢ € U; hence
(AUBY =A°NB e€lU,and AUB ¢ U. .

Corollary 2. Let f : X — Y and let U be an ultrafilter on the set X. Then
f M) is an ultrafilter on f(X) and a basis of an ultrafilter on Y.

Proor. It is enough to prove the assertion when f is surjective. For any A C Y»
either f~1(A) or f~1(A)° = f~!(A°) belongs to Uf; hence

either A = f(f1(A))or A = f(f~1(A°)) belongs to U.

By the criterion, f(U{) is an ultrafilter on Y. n

A.3. Convergence and Compactness

Definition. Let X be a topological space. A filter F on X is said to converge 10
a point x € X if it is finer than the filter of neighborhoods of this point, namely,
when each neighborhood of x in X contains a subset A € F.
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For example, the filter of neighborhoods of a point converges to this point. In a
Hausdorff space, a convergent filter can converge to at most one point.

Let X be a compact space. Then for each filter 7 on X, the family (A)sc7 has
nonempty finite intersections; hence by compactness

Q= ﬂz#ﬁ.

AeF

[f U is any open set containing 2, then

UNQ=0=UN[A4;=0=UD[]4;>(]A4;(eF)
jed jed jeJ

for some finite family (A ;) of subsets A; € F. This proves that U contains an
element of F and this filter is finer than the filter of neighborhoods of €2.

Theorem. In a compact space, every ultrafilter converges.

Proor. Let U be an ultrafilter on the compact space X and choose x in the non-
empty intersection () ,;, A- The nonempty subsets

UNV (U elU,V neighborhood of x)

generate a filter finer than U/, hence equal to /. Hence this ultrafilter converges to
¥, and a posteriori

(1A= x} .

AelU

Application. Let{ be an ultrafilter on the set N of natural numbers and let (@ndn>0
be a bounded sequence of real numbers. Then limy a, exists and

infa, < lima, < supa,.
n 173 n

Proor. Since the sequence (a, )= is bounded, then

-0 < « = infa, < B :=supa, < oo,
n n

and this sequence defines a map
n—a,:N—[o,B]CR

taking its values in a compact space. The image of the ultrafilter I{ is a basis of an
ultrafilter in the compact space [, B]; hence it converges in this space. [ ]
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A.4. Circular Filters

Let K = Q, be the spherically complete extension of Q, constructed in (II1.2),
Recall that |2]| = R and the residue field kg is infinite.

To each closed ball B C K we associate a filter Fg on K defined as follows:

If the ball B is a single point {a}, we take for Fp the filter of neighborhoods of
this point, generated by the B_.(a) (¢ > 0).

If B = B, (a) has positive radius r, we take for F the filter generated by the
subsets

A(g, a1, -..,a,) = B<,ys(a) — U B.,_:(a;)) O<e<r, a; €B)
1<i<n

When & decreases and/or the number of points n increases, these subsets decrease,
and we see that these subsets make up a basis of a filter. The filter Fp generated
by this basis is the circular filter associated to the closed ball B.

By definition, the subset A(g, gy, . . ., a,) contains

r<|x—al<r+¢ (x€K)

(observe that this set is independent of the choice of center a € B). Also, for any
b € B thereis a § > 0 such that

{(xeK:r=8<|x-bl<r}CA(,a,...,ap).

Lemma. Let B be a closed ball of radius r > 0 and choose a € B. Thena
basis of the circular filter Fg is given by the following subsets

A, ay,...,a)={r—e<|x—a|<r+e¢}—- U B, _.(a;),
finite

where the a; are chosen on the sphere S,(a) : |x —a| =randO0<e<r. B

Here, replacing & by a smaller one, we may even assume that the points a; satisfy
la; —ajl =r (@ # J)
The preceding definitions can be relativized to a subset X C K = 2,,. Assume

XNA#Q@forall A € Fp,

so that Fp induces a filter on X. Then this induced filter Fg(X) = Fg N X is still
called a circular filter on X.

For example, let X = C,. When the closed ball B C K does not meet Cp, W€
have r := d(B, Cp) > 0, and if §(B) = r, the trace of F on C,, is a circular filter
without a center in C,,.

EXERCISES FOR CHAPTER 3

1. Prove that Q¢ is not complete by considering the series 3, ,,_; P" p\r.
(Hint. Let x be the sum in a completion of Qf, and let K be the completion of Q%)
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Show by induction that all pY" € K for (n, p) = 1, and hence K is not algebraic over
Q)

. Let K be an algebraically closed valued field. Prove that its completion K is also
algebraically closed. R
(Hint. Let f(X) = X" + an1 X" 1+ --- + a1 X + ap € K[X] and select monic
polynomials f;(X) = X" + an_1,; X"~ 3 +- -+a1;X + apj € K[X] converging
coefficientwise to f. Then 8; := || fj41 — fjll = max; |a;, j+1 — ai j| = 0 (7 — o0).
Choose inductively a root x; (in the algebraically closed field K) of f; so that (x;); is
a Cauchy sequence (cf. III.1.5) and hence converges in the completion K to a root of
f. This type of proof also appears in (VI.2.2).)

. Let X be the real Banach space consisting of sequences x = (x,),>0 of real numbers
converging to zero with the norm |[x|| = sup [x,| = max |x,|. Consider the sequence
in X defined by

a=0), a=0+1L1+3....1+100.) @==D

so that |la, || = 2 (n > 1). Show that with the induced metric, the set A = {a,, : n > 0}
is an complete ultrametric space which is not spherically complete.
(Hint. The induced metric on A is given by

d(an, an+k) = llan ~ anykll = 1 + ,,+1 n=0, k=1).

What is the closed ball of center a,, and radius 1 + %?)

- (a) Let X be a complete metric space having the following property: Any decreasing

sequence of possible values of the distance function converges to 0. Show that X is
spherically complete.
() If a complete metric space is not spherically complete, show that we can replace
its metric by a uniformly equivalent one & for which it is spherically complete. (Hint:
For given x and y, define 8(x, y) = 2", where the integer n € Z is chosen so that
d(x, y) < 2" < 2d(x, y). Then use (a).)

- Prove that the residue field of €2, is uncountable.
(Hint. Each sequence N — 11(p) C Q¢ leads to a nonzero element of the residue field
ko of Q,.IfN — kg is any map, use Cantor s diagonal procedure as in (I.1.1) to define
an element not contained in the image.)

- There are many possible choices of copies of p@ in C,. Let ¢, denote the homomor-
phism x + x": CX — C;,‘ (n > 1), then ker hm @n = hm Unt gives a parametrization
of choices. (Recall that a countable projective limitof surjectlve maps is surjective (4.3).)

- Let K be an extension of Q p with |K | dense in R..0. Recall (exercise of Chapter II)

that the tree T is the ordered set of closed balls of K. This tree comes with a projection

8:Tx — R>o. Forr > 0, the fiber 8~ =K / B<, is the uniformly discrete quotient

group of closed balls of radius r.

(@) Show that the maximal totally ordered subsets of Tk are isomorphic to either [0, co)
or to (0, oo): Let us call these subsets maximal branches, and in the first case, we
say that the corresponding branch bears a fruit. The projection by § of a maximal
branch is either an isomorphism with the interval [0, o) or an isomorphism with
an interval (r, oc) (r > 0): The fruit of a branch can lie only above r = 0.
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(b) Show that K is complete exactly when all maximal branches having a projection
containing (0, co) do bear a fruit, i.e., are isomorphic to [0, co) by projection.

(c) Assume that the field K is separable, so that all fibers 6~ Yr)(r > 0)are countable,
Show that such a field cannot be spherically complete.
(Hint. The set of distinct branches having a nonempty intersection with any
571, r"] for some fixed ' < r” is uncountable.)

K . K/B

<i

\

r=0 r r r=1
Tree of K: Fruits, branches, and holes
(d) Define an action of the 2 x 2 upper triangular matrix group T2+ (K) C GlIx(K)on

Tk (cf. (VL3.1)). When K = £2,, show that this action is transitive on the subtree
defined by § > 0.

. Leta € Q, — Cpand r := d(a, Cp) > 0. Show that the cases S,(a) N C, = @ and

Sr(a) N Cp, # @ both occur.

(Hint. Choose firsta € €2, with |a| = 1 and residue class @ € kg not algebraic over the
prime field: In this case r = 1 and the sphere S} (a) meets C,. On the other hand, select
a decreasing sequence of closed balls B<,, (an), r, \\ 1 having an empty intersection
in C,, and choose a in the intersection of the same balls of £2,,: The sphere §; (a) does
not meet C),.)

. Let K be an ultrametric field. Assume that both k (the residue field) and | K | are count-

able. Prove that for fixed r > 0, the set of dressed balls of radius r is also countable.
(Hint. Observe that the set of open balls of radius r is countable. Define a surjective
map from the set of open balls to the set of closed balls of the same radius.)

Let K be an ultrametric field with | K %] dense in R..q. For real > 1 let P, denote the
partition of the closed unit ball A = {x € K : |x] < 1} into its cosets mod the additive
subgroup B<j;r = {x € A : |x| < 1/t}. The family (P,) indexed by ¢ € [0, co) has the
property

fors >t > 1, P; is strictly finer than P;.

(The “continuous family” (A,);>) of associated o -algebras is a filtration of the space
A in the sense used in the theory of stochastic processes.)
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Letus denote by B<, (r > 0) the additive subgroup |x| < r (in C, or in any ultrametric

field having dense valuation).

(@) For0 <r < s,show thatthe subgroup B<, of B< has no supplement: B< is notadi-
rect product of B<, with another subgroup. In other words, the short exact sequence

0> H=Bs; >G=B<;—> G/H—->0

does not split. (Hint. Forall x € G = B<s. p"x — 0.)

(b) For 0 < r < s < 1 show that the multiplicative subgroup 1 4+ B<, of 1 + B<s has
no supplement. (Hint. If |x| < 1.then (1 +x)?" — 1.)

(o) For0 < s2 < r < s < 1, prove that there is a canonical isomorphism

(1 + B<)/(1 + B<;) — B<s/B<r.

(Hint. Consider the homomorphism x — 1 = x — 1 mod B<;.)

(d) We have pp0 N (1 + B.,,) = {1}, but the direct product pip~ - (1 + B<,,)is a
proper subgroup of 1+ M,. Show that 1 + B, has no supplement in 1 + M,
and more precisely, u = is maximal among the subgroups H C 14+ M, such that
HN(1+ B,,) = {1}. (Hint. The sequence (1 +1)?" — 1 is eventually stationary
precisely when 1 +1 € ppe.)

Prove the first form of the fundamental inequalities by induction, using a = (1 + )"
and the factorization

a?—1=@—-D(1+a+---+aP™h),

where eachaX € 1+ 1 (k > 1)sothat 1+a+---+aP~1 € p+1 = I. (Observe that
the case n = 1 of the statement is crucial, and the induction step is based solely on it!)
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Continuous Functions on Z p

The goal of this chapter is the study of continuous functions on subsets of the
p-adic field Q,, with values in an extension of Q. Since Q, admits a partition into
clopenballs x +Z, (x € Q,/Z, = Z[1/p)/Z), it is enough to study continuous
functions on Z,. Thus, we shall typically study continuous functions Z, — C,.
Since the natural numbers N form a dense subset of the ring Z,,, we shall start by
the study of functions on N or Z and with values in any abelian group.

In classical analysis, real- or complex-valued functions that are continuous on
an interval can be uniformly approximated by polynomial functions (theorem of
Weierstrass). But there is no canonical series representation for them. It is a specific
feature of p-adic analysis that continuous functions Z, — C, have a canonical
Mabhler series representation. As has been noticed and proved by L. van Hamme,
many systems of polynomials can also be used instead of the binomial system.
This leads us into the umbral calculus, where suitable systems are found.

Due to the granular structure of Z,, the locally constant functions also constitute
adense subspace of C(Z,,; C,) (these functions correspond to the step functions Oﬂ
an interval in the classical theory). A basis of this space consisting of characteristic
functions of suitable balls has been devised by M. van der Put.

1. Functions of an Integer Variable

1.1. Integer-Valued Functions on the Natural Integers

A polynomial f(x) € Q[x] can take integral values on all natural integers even ififS
coefficients are not integers. Forexample n> = n (mod 2) shows that 3x*— 1xis
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such a polynomial. More generally, n” =n  (mod p) shows that the polynomial
lep— -“;x is also such a polynomial.
? The study of these polynomials is based on the following observation. Each

pinomial polynomial

(x) _xx—=1---x—n+1)

€Qx] (n=0)

n n!

defines an integer-valued function N — N. This (and the theorem below) explains
their central role in this chapter.
The first binomial polynomials are

()= ()= ()-3-%

One can read the sequence of values given by (n) in Pascal’s triangle: The first
values are O (outside of the triangle)

(=0 ()=t ()0 () () e

In the figure below, we exhibit the values of the binomial polynomials in vertical
columns, with special attention to (3).

~—
)
N—

s
| 0
1 1 0
1 2 1 0
13 3 1 0
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8

28 56 70 56 28 8 1

Values of the binomial polynomials as vertical columns
On the other hand, introduce the finite-difference operator V defined by

(VX)) = fx+1) = f(x)-

(This is a discrete analogue of the gradient operator, whence the notation; we
keep A for a discrete analogue of the Laplace operator.) This forward-difference
OPerator acts on any function f on N taking values in an abelian group. An abelian
8roup can always be considered as a Z-module, and conversely, any Z-module is
an abelian group. Thus we shall now consider functions f : N — M where M is
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a Z-module. The action of the finite-difference operator on the binomial functiong
1s easily determined: An elementary computation shows that

()0 ()= e

The binomial polynomials behave with respect to the difference operator as the
polynomials x’/i! do with respect to the derivation operator:

o .X_' —ixi—l _ xi—1 .
Py =0, D(i!)— na-m D

This analogy will be exploited and generalized.

Theorem. Let M be any abelian group and let f : N — M be an arbitrary
map. Then there is a unique sequence (m;);>o of M such that

f(x)—Zm,( )= 3 m(’f) x € N).

i>0 O<i<x

For x € N only finitely many terms of the sum are nonzero, and m; = (V' f)0).

ProoE. Since (’: ) =0forx =0andi > 1, we see that mg = f(0) is uniquely de-
fined. The finite-difference operator can be used repeatedly to bring any coefficient
into the constant term position:

A )

i>1 i>1

Vi) = Zm,( _k)

i>k

Hence m; = V* f(0). These computations already prove the unigueness of the
coefficients m; and show how they have to be computed. Conversely, if the function
fis given, let us compute the iterated differences V¥ f(0) € M and define g(x) =
ZO<, V'S (0)( ) ¢ = f—g. The 1terated differences of ¢ vamsh at the origin
by construction: ¢(0) = 0, ¢(1) — ¢(0) = 0, whence (1) =0, ..., from which
it is apparent that ¢ vanishes at the points 0, 1, 2,.... More fonnally, one can
establish by induction the general formula

VEp(0) = Z( 1)‘( )¢(k—z)— oK)+ ---.

i<k

The induction hypothesis ¢(j) = 0 for all j < k and V¥¢(0) = 0 implies

pky=— Y (- 1)'( )w(k—o—o k > 0).

1<i<k
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Hence ¢ = 0, as expected. This proves f = g and the existence of an expansion
of the desired form. u

Comments. (1) The preceding proof shows that the expansion of f issimply f =
Y im0 Mi (,) This series converges pointwise: Although infinitely many coefficients
m; will be nonzero in general, for each fixed x € N the sum X;>o m; fi(x) is a
finite sum. Let us introduce the Pochhammer symbol

=1, xi=xx-D---x—i+1) =1,
so that

X .
V(x); =i(x);— and (1) = —

The preceding series expansion of j takes the form

Vif(O
f=Y lf!()-(x),-,

i>0

which is strikingly similar to the Taylor-MacLaurin power series of an analytic
function (of a real or complex variable).
(2) The formulas

[k
VEF©O) =) (DM (i)f(i)
i<k
correspond to the formal power series identity
k n
k X X f__
kZOV fO 5 =e ;f(n)n!

between these two generating functions.

1.2, Integer-Valued Polynomial Functions

We shall denote by L = L(Z) C Q[x] the Z-module consisting of polynomial
functions taking integer values on the natural integers:

L={f €Qlx]: fN)CZ}.
We have seen in (1.1) that Z[x] C L is a proper inclusion: All binomial functions

belong to L.

?heorem. The Z-module L consisting of polynomial functions f € Qx]
Integer-valued on N is free, with a basis given by the binomial polynomials (’)
Proor. Let f be an integer-valued polynomial. Obviously, all the iterated differ-
€nces of f have the same property, and in particular the coefficients m; of the series
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expansion of f are rational integers. On the other hand, the iterated differences
Vi f will vanish identically if the exponent i is greater than the degree of f. Hence
the series Y _m;(;) is a finite sum, and the uniqueness of the representation has
been proved in (1.1). n

Corollary 1. Ifapolynomial f € Qlx] takes integral values on N, it also takes
integral values on Z.

Prook. It is enough to check this property for the basis of L consisting of the

binomial polynomials. If x = —m is a negative integer, then
- . i — 1
( _m)=—m(—m—1)-~-(—m—i+l)/i!=(—l)’(m+_l )GZ.
i i
Hence the (;) and all f € L define functions Z — Z. [

Corollary 2. If a polynomial of degree d > O (with rational coefficients) takes
integral values on d + 1 consecutive integers, then it takes integral values on
all integers.

Proor. Let f take integral values on the integers a,a + 1, ...,a + d and con-
sider its translate g(x) = f(x — a) which takes integral values on the first integers
0, 1, ..., d. Hence the first iterated differences of g at the origin are also integers,
and if f is a polynomial of degree d, so is g. The expansion g =}, , Vig(0) (,)
shows that g € L.

Definition. Let M beaZ-module. The M -valued polynomial functions are those
that have a finite expansion in the basis consisting of binomial polynomials.

Since the polynomial functions with values in M are the finite sums 3 m; (;), the
mapping

Maps(N; M) = M™ : f > (V' f(0))izo
induces a bijection between the polynomial functions and M™: The subspace of

the product consisting of families with only finitely many nonzero entries.

1.3.  Periodic Functions Taking Values in a Field
of Characteristic p

We shall have to consider the case where the Z-module M is a vector space over
the finite field F . To start with, letus take M = F,.

Proposition. Fori < p’, the functions () Z— F,, x> (})modp ar
periodic of period T = p'. They make up a basis of this space of T-penodl"
maps.
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proor. The binomial coefficients are best described by their generating function
A +uy = Z(x) '

£ i )
i>0

The identity (1 + uy*T = (1 4+ u)* - (1 + u)T combined with the congruence

AQ+w? =1+u?” (mod p)
leads to
A+uy*™ =A+uf-A+u”) (mod p).

Fori < p', the coefficients of ' in (14 x)**?" and in (1 4u)" are the same mod p;

hence
(x o ) = (’:) (mod p) (i < p.
To prove the second part of the statement, consider the linear map
J : Mapsy_periogic(Z; Fp) > F T f > (V f(0)osi<r-

IfVif(0)=0for0 <i < T, then f vanishes at the points 0, 1, ..., 7 — 1 (1.1),
hence vanishes identically by T-periodicity. This proves that the linear map j is
injective. Since both spaces Mapsy_periodic(Z; F ) and F‘T7 have the same dimension
overF,, (even the same number of elements, since this field is finite), it is bijective.
It will be enough to check that the image of the set of binomial polynomials (1) 1S
the canonical basis of the target

(;) is a polynomial of degree i => V*() =0 fork > i,

~

V() = () vanishes at0 fork <i, V*()(0)=1. =

Remark. It is not difficult to prove periodicity of the binomial coefficients relative
10 nonprime moduli. For example,

X = (x) mod m
i

Theorem. Let M be a vector spaceover ¥, and f : Z — M a function that is
Periodic of period T = p' (for somet > Q). Then f can be uniquely written
In the form

Is periodic of period m'.

f= Z (l)m, (m; € M).

0<i<T
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In other words,

Mapsy periogic (£; M) = @ M;
i
is the direct sum of the subspaces

M; = ()M CMaps(Z; M) 0O<i<T).
l

Proor. A T-periodic map on Z is a map on the finite quotient Z/TZ, and hence
takes only finitely many values. This reduces the proof to the finite-dimensional
case. The map

J i Maps;_peiogic = M7, f > (V' f(O)o<i<r

is linear and injective. Since both spaces Mapsy_periogic and M T have the same
dimension over F,, (even the same number of elements, since this field is finite),
it is bijective. L]
1.4. Convolution of Functions of an Integer Variable

Let A be a commutative ring and f, g : N — A two functions. We define their
shifted convolution product by'

frgm= ) fe= )Y flgn—1-i) (=1

i+j=n—1 0<i<n-—1

and f % g(0) = 0. This is a commutative, associative, and distributive product on
Maps(N. A).

Proposition. The iterated differences of a shifted convolution product are given

by

VU(f28) =2 itjcna VIF - V(O + fxV"g (n=1)
Proor. It will be practical to use the notation f, for a unit translate of a function
f:
)= f(n+1) (n=0)

(the value f(0) is lost). With this notation the difference operator is expressed
by

Vi=hHh-F

!The usual convolution product is defined by f % g(n) = ¥;, ,_, f(i)g(j) (n > 0).
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Let us evaluate the translate of a shifted convolution product:

(Fren(m) = frgm+ D= > f)e())

i+j=n

= fme®+ Y fe(+1

i+j=n—1
= f(n)g(0) + (f x81)(n),
whence
V(fxg)=(fxgnh— fxg=f g0+ f*Vg.
Iterating the preceding formula, we obtain
VAfxg) = V(f-g0) + fxVg)

=Vf. g0+ V(f%Vg)
=Vf-g0)+ f-Vg0)+ fxV.

By induction, we obtain

Vi(fxg)= Y V'f-VigO+fxVg,

i+j=n—1

167

which expresses V'(f * g) as a sum of f x V"g and a linear combination of the

finite differences V/ f (i < n) of f.

1.5.  Indefinite Sum of Functions of an Integer Variable

If the finite-difference operator V is to be compared to the derivation operator —
Pursuing the analogy — we should construct an inverse of it, corresponding to
Integration. It is clear that for any function f : N — A, there is a unique primitive

F:N — A satisfying
VF = f and F(0) = 0.
These conditions indeed imply
f(0)=VF(©) = F(1)— F0) = F(1)
and then
f(m)y=Fn+1)—F@), F(n+1)=F@n)+ f(n).
By induction, F(n + 1) = Yo < £ ).

Definition. The indefinite sum operator S is defined by

Sf(0)=0 and Sf(n) = Z f@) (n=>1).

O<i<n
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If we use the shifted convolution product introduced in the preceding section, we
see that Sf = 1% f, where 1 represents the constant function 1 on N. In fact,

V(x f)my =Y f@)—Y_ fl)=f@), V(ixf)=f.

i<n i<n

Examples. (1) Let f = 1 be the constant unit function. Then S1(n) = n.
(2) Let f (= S1) be the identity function N — N. Then

i n nn—1)
Sf(n) = Zl = (2) = 5 .

i<n

(3) More generally, let f = (k) be the kth binomial polynomial N — N. We
have seen in (1.1) that V(;) = (,-,) and (2) =0 (k > 1). Hence

(e2o)=() o=0

This property can be read in Pascal’s triangle. Consider, for example, the two
consecutive sequences

£2:0,0,1,3,6,10,...,
f3:0,0,0,1,4,10,....

The differences of the second one indeed give the first one.
(4) Consider now f(n) = n?, the square function. In this case

Sfy=) i2=124+22+... 4+ (n—- 1>
Since
) -e=-()
we have
29 n n
for=t=2(l) o :
and

n n
Sfn) = 2(3) + (2)

6Sf(n)=2nn—1Y(n —2)+3n(n—1)
=nn—-D2n—-4+3)=nn-1)2n —1).

We have obtained the well-known formula

Sfny=>_i*= tn(n—12n - 1).

i<n
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This way of proceeding is similar to the general procedure that consists in writing
the binomial series expansion of F = Sf,

F = F0)+ VF(O)(i) + VZF(O)Q) +V3 F(O)(é),

using F(0) =0and VF = f;hence
VF@O) = f(0)=0, V’FO)=Vf0)=1, V3F(@0)=V?f(0)=2.

The preceding examples lead to the following result.

Proposition 1. If the function f of an integer variable is given by
n
fy= Za(.),
iz0 \!
then

F(n) = Sf(n) = ZC‘(i : 1). .

i=0

The preceding examples also show that

Ix1=id, 1xlxl(n)= " yerws Ixlx---xl(n)= n)_
2 [ —— k

k+1 factors
A few more formulas may be useful. By definition f = V(Sf) = V(1% f). Let
Us compute S(V f):

SOV =12V )= Y VfK)

O<k<n

= Y [fk+ 1= f)) = f(n)— f(0).

O<k<n
If we denote by P, the projection on constant functions defined by
Po:Maps(N; A) > A, f f(0)-1

We have obtained S o V = id — Py. Hence the following proposition.

Proposition 2. The indefinite-sum and finite-difference operators are linked by
the formulas

VoS=id, SoV=id—P, VoS—SoV=D~r. -

The identity S(Vf) = f — f(0) - 1 gives a first-order limited expansion of f if
Weonly rewrite it f = f(0)- 1+ S(V f). This point of view has been generalized
by van Hamme.
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Theorem. For every function f of an integer variable and every integer n > ()
we have

f=f0)-1+Vf(0)- (i)+V2f(0)- (2)+ +V"f(0)-( )+Rn+lf

n
with the van Hamme form for the remainder Ry, f = V™! f x ().

Proor. The case n = 0 has already been obtained: R, f = SVf = 1%V f. For
n > 1 we can use the identity

Vi(fxg)= Y Vif-VigO)+fxV'g

i+j=n—1
proved in (1.4). Let us apply

ViH(gxf)= ) Vig-VIf(0)+gxV"'f

i+j=n

to the function g(x) = (). for which Vig(x) = (,*,) = (’J‘) We find that

n X _ X : X nal
= (()er)- 2 () w0 (e

But the left-hand side is
v ((x)if) =V (xls---x1x )= V(S ) = f,
n

whence the result, since V o § = id. L

2. Continuous Functions on Z,,

2.1. Review of Some Classical Results

Let us recall the basic property of uniform convergence.

Theorem. Let X be a topological space, M a complete metric space, and
(fu)n>0 a sequence of continuous maps X — M. If

d(fma fn) = SUde(fm(X). fn(x)) -0 (m,n— o0),
xeX
then the sequence (f,,)n>0 has a limit that is a continuous function f : X — M.

Proor. Fix momentarily x € X. Then (fu(x))u=o is a Cauchy sequence in the
complete space M ; hence it converges. Let f(x) = lim,_, o, f,(x) denote its limit
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This defines a function f : X — M. We have to prove that this function is
continuous. But for each positive £ > O there is a rank N = N such that

du(fm(¥), fn(¥)) < S;de(fn(x), f) =d(fm, fn) <€

(m,n>N, y € X). Letting m — 00 we infer
du(f(), fu(¥) <& (n=N, y€X),
and hence
acf, fn) = i:gdu(f(y), M <e (mn=N).

This proves that the sequence ( f,)n>0 converges uniformly to f and implies the
expected continuity: let us recall this point. For a, y € X, we write

du(f(y), f(@)) < du(f(y), [+ Amu(fu(y), f2(@)) + du(fn(a), f(a));

whence

du(f ), f(@) < &+ du(fr(y), fn@)+& (= N).

Let us choose and fix an integer n > N. If a € X, the continuity of the function
fn assures us that there is a neighborhood V of a in X such that

y € V= dy(fn(y), fu(a)) < e.

The preceding inequality shows that

du(f(y), f(@)) <3¢ (yeV),

and hence f is continuous at the point a (for any a € X). n

Another classical result for continuous functions f :Z, — R is the following.
If we fix a continuous injective function ¢ : Z, — R (for example, a linear
mode] of Z, (1.2.3) corresponds to such a function), then f can be uniformly
approximated by polynomial expressions in ¢. Indeed, the algebra of polynomials
" ¢ is a subalgebra of the algebra of continuous functions over the compact
SPace Z,,, which separates points. The Stone-Weierstrass theorem implies that this
s“bﬁlgebra is dense for uniform convergence.

F{nally, let f:Z, - C, be a continuous function. Then |f| : Z, - R is
Continuous, and since Z, is a compact space, sup | f|= max|f]| is attained at
Some point x ¢ Z,. More precisely, f(Z,) is a compact subset of C, and the
Proposition in (I1.1.1) shows that

{If(x) #0:x € Z,)} isdiscrete in Ro.

ll“ Particular, for every € > 0 there are only finitely many possible real values of
fx) satisfying | f(x)| > .
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2.2.  Examples of p-adic Continuous Functions on Z,,

The definition of a topological ring A shows that any polynomial f € A[X] gives
rise to a continuous polynomial function A — A. In particular, if f € Cp[X]isa
polynomial with coefficients in C,, it gives rise to acontinuous functionZ, — C,
by restriction. Since x € Z, implies |x| < 1, any power series Y ;. a;x’ with
a; € Cp, and |g;] — O converges uniformly, and hence defines a continuous
function Z, — C,,. For any continuous function f : Z, — C,, we define its sup
norm by

A= sup | f()l = max [ f(x)]  (<00).

x€Z,

Finally, let us give examples of continuous functions Z, — C,, of an apparently
different type. If x = )_, g a; p' € Z,, we define f(x) = Y. a p*. This defines
a continuous function Z, — Z, with

)= fO)] = Ix -yl

This estimate shows that f is even differentiable at every point with f’ = 0, but
f is not locally constant. We shall come back to this example later on. If we put
fx)=3_ a;p™, we have similarly

[f) = fO=Ix—yI",
and with f(x) = Y_ @; p*', then forany m > 1,

fx) = fl < 1x—y”
if |[x — y| is small enough.

2.3. Mabhler Series

The binomial polynomials define continuous functions

()22 - ()

Since N is dense in Z,, we have ||(;)]| = supy |(})] < 1. In fact, (}) = 1 proves

0

As noted in the previous section, for any sequence (¢;);>¢ in C,, with |a;| — 0, the
series ) ;. Gk (k) defines a continuous function f : Z, — C,. Itis quite remark-
able that conversely, every continuous function Z, — C,, can be so represented-

=1 (k=0).
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This result has been obtained by Mahler and will be established below. For exam-
ple, itis applicable to all locally constant functions.

Definition. A Mahler series is a series Zkzo ay (k) with coefficients |ay| — 0
in Cp, (or Q2p).

Comment. If a series ), ax(;) converges simply at each x € Z,, it converges
uniformly on Z,, and is a Mabhler series. In fact, assume that it converges at the
single point —1. This implies ax(7') — 0, and since (7') = (—1), we see that

lax] = |ax(3')| = O: the series converges uniformly.

Example. Let t € M, — namely, r € C,, |t| < 1 — and consider the sequence
@ = t*, which tends to 0. The Mahler series Y., t*(}) converges uniformly to
a continuous function f : Z, — C,. Since (1 + 1)" = Yo, (;)* for integers
n > 1, the preceding continuous function extends n +— (1 + t)", and it is still
denoted by

A4y = Z‘k(i) (x €Zp).

k>0

24. The Mahler Theorem

Keeping the preceding notation concerning the binomial polynomials fi(x) = (;)
and the sup norm || ff| = supz_ | f(x)| for continuous functions on Z, we intend
to prove the following general result.

Theorem 1. Let f : Z, — C, be a continuous function and put a, = VX £(0).
Then |ay| — O, and the series Zkzo a (k) converges uniformly to f. Moreover,
1f 1 = supyg lakl-

Prook. Since the function f is continuous, f(Z,) is a compact subset of C, and
|f(Z})| has at most 0 as an accumulation point in Rxo. Without loss of generality
We may assume f # O and replace f by f/f(xo), where xo € Z,, is chosen with
!f (x0)] maximal. Hence we shall assume || f]| = 1 from now on: The image of f
S contained in the unit ball A, of C,. Let us consider the quotient E = A,/ pA,,
(A, = B, (C))) as a vector space over the prime field F,,. Then the composite
¢=(f mod p): Z, — A, — E is continuous (takes only finitely many values,
Is locally constant) and is not identically zero. Since Z  is compact, it is uniformly
Continuous and uniformly locally constant. This means that for ¢ suitably large, ¢
S constant on cosets mod p' Z,. Hence ¢ is T-periodic on Z, where T = p' with
Values in the vector space E. By (1.3) we can write

@ = ZQk(k) (oy € E).

k<T
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Taking representatives a € A p for the oy, the difference

fF=Y afk

k<T
has values in pA ,. By the competition principle, at least one Iakl =1, and
la?] <1, max|a)| = 1.
By construction || f =3, ; a?())| =7 < Ipl. I f — Y,y al(;) is not 0, we
can iterate the procedure on this difference and find § > T and coefficients a

(k < S) with

la}| <r, maxlal|=r,

”(f ,;a" )) k;ak()“=f'slpzl.

We can even write

if we agree to define a? = O for k > T. It is obvious that this procedure leads to
convergent series

and

2
I

|/\

lp

f=> @ +ak)( )

k<S

a=a)+al+---€Cp, laf|<|p"|—>0,
lal <1 (k<T), lal<r (T<k<S$), etc,

and also sup,_ lak| = supy .7 lak] = 1 = || f||. The proof of the theorem is there-
fore complete, since | f — >_,.0a(;)| < IpI™ for all positive integers m. ~ ®

Corollary. For any continuous function f : Z, — C,, there is a sequence of
polynomials f, € C,[x] that converges uniformly to f. u

Theorem 2. Let f : N — C, be any map and define ay = V* f(0). Then the
following properties are equivalent:

(i) lax| — O when k — oc.

(if) The Mabhler series Y, ax(;) converges uniformly.

(iii) f admits a continuous extension to Z, — C,.

(v) f is uniformly continuous (for the p-adic topology on N).
o) IVEFII — O when k — oo.
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proor. Here is a complete scheme of implications.

()= (ii) We have
x .

a = lal (x € Zp),
hence the uniform convergence if |a;| — O.

(i1) = (iii) This is the basic property of uniform convergence reviewed in (3.1).

(iii) < (iv) On a compact metric space, any continuous function is uniformly
continuous.

(iif) = (v) Apply the Mahler theorem to the continuous extension of f to Z,,
(still denoted by f):

< la

f= Zak() (@ = V* £(0)).

k>0

Since V(;) = (,,) we have

gl )

k>1

r=gels)

V7 £l = sup |ax] — O.
k> j

and by induction

By the same theorem

In particular, |a;| = |V/ £(0)] < [V fIl - 0; hence (v) = (i). =

2.5, Convolution of Continuous Functions on Z b

As an application of the Mahler theorem, we show that the (shifted) convolution
Product defined in (1.4) for functions of an integer variable N — C,, extends to
Z,, — C,.Inturn, thisresult allows us to give an explicit estimate for the remainder
ina ﬁmte Mahler expansion. By definition,

fremy= Y f)e()

i+j=n-I
|f xg)] < max If@DI < If el

and

Ifxgll < fitfigl.
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Proposition. Let f and g be two continuous maps Z, — C,. Then the shifted
convolution product f x g has a continuous extension Z, — C,.

Proor. By (3.4) (Theorem 2, (i) = (iii)), the existence of a continuous extension
of f * g (initially only defined on N) will follow from V*(f x gX(0) — 0. To prove
this convergence, let us come back to the formula (proved in 1.4)

VP (fxg)= ) VIf-VigO)+ fxV"Hyg,

i+j=2n

VHI(fag)0) = Y VI f(0)- VIg(0)+ (f V2" Ig)0).

i+j=2n

For any bounded function #, the ultrametric property gives || Vh| < ||A||, and we
can estimate

VA (fxe)0) =Ty + Ta+ Ts,

where
Ti= ) Vf0) V" g0),
n<i<2?n
= Y V" f0) VigO),
n<j<2n
T3 = (f xV"*1g)0),
as follows:

ITi| < IV £l - llgl,
Il < IFI- IV gll,
T30 < WFI- NV gl < IFI- I1Vgll.

Altogether, this shows that
[V f % g)0)] < max(|Til, |Tal, | T3])
<max(V" £l - ligh, Ifll-1I1V"gl) — 0.

Similar estimates can be made for |V2"(f % g)(0)|, and we prove thereby the r¢-
quired convergence: V¥(f x g)(0) — O. .

Corollary 1. Any continuous f : Z, — C, has limited Mahler expansions
f=fO+Vf)- (i)+V2f(0)~ (2)+

LV FO)- (n) + Ronf (1= 1)
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with the van Hamme form of the remainder
Ry f = V"“fi(’;), IRt fIl S IV FL =0 (n > 00).

Proor. The announced formulas hold on N by the preceding section. Taking g =
(”) in [[fxgll < Ifllligll, we see that they extend continuously to Z, by the

proposition. ]

Another application of the Mahler theorem (or of the possibility of extending
the convolution product to continuous functions over Z,) is given by the following

corollary.

Corollary 2. For any continuous function f : Z, — C,, the indefinite sum
Sf = fx10of f extends continuously toZ,. More precisely, if f = Y .o ax (k)
is the Mahler expansion of f, then

Sf=1xf =Zak(kj;1), IS =111

k>0
Proor. We have noticed that
S ) = 1 ) = ) ’
(k) i(k) (k + 1)
whence the result. n

Corollary 3. The only linear form ¢ : C(Z p» K) = K that is invariant under
translation is the trivial one ¢ = 0.

Proor. Infact, we prove thatif p(F) = ¢(F;)forall F € C(Z,; K),where Fy(x) =
F(x + 1), then ¢ = 0. Indeed, take any f € C(Zp; K). There exists an F €
CZ,;K)with f = VF = F, — F (take F = Sf), and thus

o(f) = @(F1 — F) = ¢(F1) — ¢(F) = 0. [

Corollary 4. Leto : Z, — Zp, x +— —1 — x, be the canonical involution
(L1.2). Then S(f o o)(x) = —Sf(—x).

Proor, For integers n, m > 1 we have

Sfin+m)—Sf(m)=fm)+---+ fn+m—1).

By density of the integers n > 1 in Z, and continuity of both sides, we get more
generally

Sfx+m)=Sf(x)=f)+--+ fx+m—1) (x€Z).
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Take now x = —m in this equality:
SfO) = Sf(=m)= f(—m)+---+ f(=1)
= flem—=1)+---+ f(c(0)
= S(f oo )(m).
Since Sf(0) = 0, the result follows. )

Example. Leta =1+t €1+ M C C, and take

— X — X __ k X
f@=a"=1+ty=) 1 (k)

k>0

Then we have

Sf<x)=Zt"( > )=9+—')X———1 (t £0),

oo \k+1 t
1
SfE) ==—= @#1.

3. Locally Constant Functions on Z,

3.1. Review of General Properties

When X is a topological space and E any set,amap f : X — E is locally constant
if foreachx € X

Vi={yeX: f(y)=fx)}

is a neighborhood of x. Equivalently, one can require f~!(e) open in X for each
e € E, oreven f~!(A) open in X for each subset A C E. In other words, locally
constant functions f : X — FE are continuous functions when FE is endowed
with the discrete topology. On a connected space, a locally constant function 1S
constant (take x € X, pute = f(x) € E, A = E — {e}, and consider the partition
of the connected space X into two disjoint open sets f~!(e) and f~!(A): Since
f~Ye) # D, f~1(A) must be empty and f = e is constant). A locally constant
function f on a compact space X can take only a finite number of values (f X)
must be compact and discrete).

Lemma. If X is a compact metric space, a locally constant function f on X is
uniformly locally constant when there exists § > 0 such that

d(x,y) <d= f(x) = f(y)-
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Proor. Give E the discrete metric. Since X is compact, f : X — E is uniformly
continuous. Hence there is a § > 0 such that

d(x,y) <§=d(f(x), ) <1 = fx)= f(y),

and the conclusion follows. =

The set of functions X — E is denoted by F(X; E), and when E = K is a
field, F(X; K) = F(X) is a vector space over K (omitted from the notation if
this field is implicit from the context). When X is a compact ultrametric space, the
locally constant functions X — K form a K-vector subspace F(X) of F(X).
The characteristic functions of clopen balls of X form a system of generators of

Fe(X).
3.2. Characteristic Functions of Balls of Z,

We are interested in locally constant functions on X = Z, taking values in any
abelian group M (this abelian group will typically be an extension K of Q,). Let
us start by the study of the (uniformly) locally constant functions f € FI°(Z,; M)
satisfying

. 1
Ix—ylslpfl=ﬁ=>f(x)=f(y)

for some fixed integer j > 0. These are the functions that are constant on all closed
balls of radius r ; = 1/p’. Since the balls in question are the cosets of p/Z, inZ,,
these functions are the elements of the vector space

Fj = FZ/p'Z) = F(Z,/P'Zy) C F(Zy; K).
In fact, we have a partition

Z,= || G¢+r'z,)

O<i<p’
into balls of radius r;, and
i+piZ, = Bepili) 0<i<p))
is an enumeration of these balls in Z p- For fixed j the characteristic functions
¢i,j = characteristic function of the ball B<y/,,(i) (0 <i < p’)

Mmake up a basis of the finite-dimensional space F;. When we let j increase, the
Subspaces F ; also increase, and

Fe@zyK) = Fi.
Jj=0

U"foﬂunately, the previously given basis of F; has no element in common with the
aS1s constructed similarly in Fj_;. A clever way of constructing coherent bases
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of the spaces F; — where the basis of F; extends the basis of F;_; — has beep
devised by M. van der Put. Let

@00 =1 characteristic function of Z,, i=0
¥ =14 ¢i1 characteristic function of i + pZ, (1<i < p)
¥i2 characteristic function of i + p*Z, (p <i < p?), et
Generally,

Vi = ¢ j characteristic function of i + p/Z, if p/~! <i < pJ.

Since absolute values of elements of Z, can only be powers of p, we have

1 1 . .

Xl<-¢=kl<s—= (P l<i<p),
i p’

and ¥; = ¢; j is also the characteristic function of the ball
Bi={xeZ,:|x—i] <1/i}

(with the convention By = Z,, for i = 0).

On the other hand, the indices i in the range p/~! <i < p/ are precisely those
that admit an expansion of length j in base p, namely an expansion of the form

i=ig+ip+---+ijap™ O<ip<p-—1,ij_#0).

Definition. The length of an integer i > 1is the integer v = v(i) > 1 such that
the expansion of i in base p has digits i; = 0 for £ > v, while i,_, # 0.

With this definition, the van der Put sequence is defined by
V¥i = ¢iwi) : Characteristic function of i 4 p”(i)Zp.

Here are the first few functions:

1

©®., --- Yp-1,1

$,2 --- Yp-12 $p2 --- Pp2-12

%3 --- $p-13 .. ... $p23 --- Ppi-1,3
%o,

The sequence (¥; )i appears at the top of this triangular table of characteristi¢
functions.

Proposition. The sequence (Y;)o<i<, is a basis of F, (j > 0).
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prook. For fixed j > 0, the components of any f € F; in the known basis ¢; ;
(i< p’) of F; are the (constant) values of f on the balls i + p’ Z,:

f=Y f@e;

i<pl

In particular, for f = ¥, the characteristic function of By = £ + p“Z,, we have

a sum of the form
Yy = Z Pi,j»

where the indices that occur are the same as those occurring in the partition
B =[G+ p'Z,).
They are the indices i such that 0 < i < p/ and i = £ (mod p)" (in order to have
i € By). These indices can be listed:
i=4¢ L+ p°, £+2p", ....

The first one is £ itself, and they are all greater than or equal to £. The matrix
of the components of the ¥, in the basis ¢; ; is lower triangular with 1’s on its
diagonal (all its entries are 0’s and 1’s). This matrix U has determinant 1 and hence
is invertible: The ¥ (0 < £ < p’) form a basis of F;. If we write U = I + N,
the matrix N is lower triangular with O’s on its diagonal and hence is nilpotent: A
Power of N vanishes. This proves that

U =1-N+N =4 (=1)"N" if N"*! =0.
Pl particular, the inverse U ! of U has integral entries: The components of the ¢; ;
In the basis () are also integers. .

Here is an even more precise result.

Proposition. If f =Y aiVi € Fj, the coefficients are given by
ao = f(0) and a, = f(n)— f(n-) (n=1),

Wheren_ = n — n,_, p*~! denotes the integer of length strictly smaller than n
obtained by deleting its top digit in base p.
PROO_F- We have already observed that £(0) = ay. Fix a positive integer n and
Consider the sum fn)y=>3 . pr Gi ¥;(n) in which y;(n) = 0 or 1. More precisely,
Yyi(n)y=1<=neBsB;
< n =imod p*®

< the digits of n and i
are the same up to v(i)

<= i is an initial partial sum of n.
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This shows that
Fm) = ag+ () +an,
whereas
F(n) =ap + (%).
Hence f(n) — f(n_) = a, as claimed in the proposition. n

Corollary. When f = Z a;y; € Fj takes its values in an ultrametric field, we
have

£ 1l = max ja;].
Prook. For each x € Z, we have ¥;(x) =0 or 1: [¢;(x)] < 1 and
FEN =1 aipa(x)| < max|a].
This proves
Il = sup | f(x)] < max la].
Conversely, ag = f(0) = lao] < || f|l, andforn > 1,
lanl = 1£(n) = f(n)] < max( ), | f@ ) < IFl,

hence max |a,| < || fIl. "

Since (¥;i)iso is a basis of F14(Z,; K) = | ;>0 Fy» it is easy to generalize
the preceding results to all locally constant functions (taking their values in an
extension K of Q,).

Theorem. Let f : Z, — K be a locally constant function. Define
ay=f(0), an=fm) - f(n-) (n=1).
Then f = a;y; is a finite sum and || f|| = sup; |ail. »

3.3. The van der Put Theorem

We are now able to give the main result, namely the representation of any contin-
uous f : Z, — K where K is a complete extension of Q,.

Theorem. Let f : Z, — K be a continuous function. Define

ap= f0), a, = f(n)— f(n.) (n=1).
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Then |an| — 0, and Y_ a;{; converges uniformly to f. Moreover,

171 = sup Jai| = max lail.
13

ProokE Since |n —n_| — 0 (n — o0) and f is uniformly continuous, we have

lan| = 1 f(n) — f(n_)| = O (n — 00), and the series converges uniformly. The
sum of this series is a continuous function,

g= Z a;y;.

We still have to prove f = g. Since these functions are continuous, it is enough
to show that their restrictions to the dense subset N are the same. The obvious
equality f(0) = ap = g(0) can be used as the first step in an induction on n. Let
8 = Y icpi @iVi. Forn < p/ we have

f(n)— f(n-)=a, (by definition)
= coefficientof g;  (since n < p’)
= gj(n) — gj(n-),

f(n) —gj(n) = f(n-) —gj(n-).

This shows that if f and g, agree on {0, 1, 2, ....n — 1}, they will also agree at
the point n (provided that n < p/). As a consequence, for all integers n € N,
f@) = lim; g;j(n) = g(n) (with a stationary convergence). As mentioned, this
proves f = g. The equality || fl| = sup; |a;| is obtained exactly as in the case f
locally constant. n

4. Ultrametric Banach Spaces

In this section K will always denote a complete ultrametric extension of Q 5

We have already given in (I1.3.1) the formal properties of ultrametric norms on
Q,-vector spaces, and we have studied finite-dimensional such spaces over K.
Here we turn to infinite-dimensional ones.

We shall simply say normed space for ultrametric normed space over K, and
Banach space for complete normed space.

4.1. Direct Sums of Banach Spaces

T]_‘e direct sum of a family (E;)ies of normed spaces is the algebraic direct sum of
this family,

@ E; = {(x;) : only finitely many x; # 0} C n E;

iel iel
eaum .
Quipped with the sup norm on the components,

fixll = sup llxill = max llx:ll  if x = (x;).
1
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When (E;);¢/ is afamily of Banach spaces, it is convenient to consider acompletioy
of the preceding direct sum. Here is the construction. The support of a family
x =(xi)ie1 € [lj; Eisis Iy ={i € I : x; #0} C I, and ||x; || — O means

forall e > 0, theset I,(e) :=={i € I : ||x;|| > &} is finite.

If ||x;| — O, then the support I, of the family x is at most countable, since it i
the countable union of the finite sets I,(1/n) (n > 1).

Definition. The Banach direct sum of the family (E;)ic; of Banach spaces E;
is the normed space

—

@ielEi c l—[ Ei

iel
consisting of the families x = (x;) such that ||x;|| — O, equipped with the sup

norm

el = NGl == sup lx; | = max flx |-
1]

This terminology is justified by the following result.

Theorem. The Banach direct sum of a family (E;);c; of Banach spaces is @
completion of the normed direct sum of the family.

Proor. The set of families x such that ||x; || — O1is a vector subspace of the product
]—[i <1 Ei, and the algebraic direct sum is dense in it. Let us show that the Banach
direct sum is complete,

@Ei c @ielE'- c l—[E'
iel iel

Letn — x™ = (xf")),-e, be a Cauchy sequence in the direct sum. For eachi € I,

ne— x,.(") is a Cauchy sequence in E;. Let x; be its limit. For given £ > 0, there is

an integer N, such that

X —x™) <& (n,m > N).
A fortiori, foralli € I,

Ix" = x| <& (n.m> N,).

Letting m — o0, we obtain

Ix"” - xll<e >N, iel. *)
Since ||xi(")|| < ¢ outside a finite set J (depending on ¢ and n). we also have

Ixill < max(Ix™ N, 16 —xill) <& G ¢ J).
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This proves that the family x := (x;) is in @i < Ei- Coming back to the inequality
(%), we see that

"x(”) —_ x“ = sup “_x'(n) — X " <ée (n > NE)'
i

This proves x™ — x in @, E;. a

Example. When all Banach spaces E; = E are equal, the algebraic direct sum is

also denoted by
@E:E"’c E! =l_[E.

iel iel

Its completion is the space of sequences in E converging to 0: we denote this
space by co(/; E). (The notation co(K) is similar to the classical (co) introduced
by S. Banach when K = C.) When E = K is the base field, or when I = N, we
drop them from the notation if there is no risk of confusion:

co(I) = co(I; K), co(E) = co(N; E), co = co(N) = co(N; K).

We can now formulate a few consequences of the theorem.

Corollary 1. Let E be a Banach space. Then co(I; E) is a completion of E c
E! for the sup norm. ]

Corollary 2. Let E be a Banach space. Then the sum map E? — E has a
unigue continuous extension ¥ : co(I; E) — E.

Prook. The sum x = (x;) +> >

in

iel

i1 Xi : E) > E is a contracting linear map

<supllx = llx| (x € ED).

Ithas a unique continuous extension X.. This extension is also a contracting linear
Map by density and continuity. Hence we have more generally

>

iel

<suplxill = lixll  (x € co(I: E)). n

Thi§ sum ¥ can be computed using any ordering of the index set / and any
groupmg I = ][, I;: The equality for families with finite support extends by
Continuity to the completion co(7; E) (cf. (11.1.2)).

CQPOIIary 3 (Universal Property of Direct Sums). Let £ denote the canonical
"Mjection of a factor into the direct sum E; — @,;.; Ei C @;c,Ei. Then
for each Banach space E and family (f,) consisting of linear contractions
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fi + Ej = E, there is a unique linear contraction f such that the following
diagram is commutative:

£

E; — Dics Ei c DiyE
i Io8fi /f
F

Proor. Under the assumptions made,

) v (fix): @D, Ei — coll: E)

is a linear contracting map, and composition with the sum X yields the unique
solution to the factorization problem

fF=Xo(f fx=§:f.~x,-. .

4.2. Normal Bases

When F and F are (ultrametric) normed spaces over K, we denote by L(E; F) the
normed vector space of continuous linear maps T : E — F. Recall that a linear
map is continuous precisely when it is continuous at the origin. or, equivalently,
when it is bounded:

Tx
IT] := sup "—” < 00
x#0 "x"

By definition, we have
ITxIl < ITHlix (x € E).

This shows that T is a contraction precisely when ||T|| < 1.

Comment. The inequality |[Tx|| < |T|llx]] (x € E) shows that |[Tx|} < ITl
when |[lx|| <1, and hence supy, <; II7x|| < [IT]l. But contrary to classical funC:
tional analysis, this inequality can be a strict inequality: When 1 ¢ || E ||, the unit
sphere ||x]| = 1 is empty, closed and open unit balls coincide, and supy, <1 =
SUpPy,) <1- For the operator 7 = id (and || E — {0}| discrete in R.,¢) we have

sup [lx[l = sup |lx|| <15 |id|=1.
Ixi<1 Ixli<1

Proposition 1. If F is complete, then L(E; F) is also complete.

Proor. Let (T;,) be a Cauchy sequence in L(E; F). For each x € E, (T,(x)) 18
a Cauchy sequence in the complete space F, and hence has a limit Tx which
obviously depends linearly on x € E. This defines a linear map T : E —

Let & > O be given. There exists an integer N, such that |7}, — T,,|| < ¢ for all
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n,m > N,. Letting m — 0o we deduce || Tx — T,,x|| < ¢llx]| forall n,m > N,.
This proves that the operator T — T7,,, is continuous (bounded); hence T = T, +
(T — T,,) is continuous. Moreover, |7 — T, || < € whenm > N,. This shows that
IT = Tull = O, T, &> T (m — 00), and everything is proved. [

Corollary. For any normed space E, the topological dual E' = L(E; K) is a
Banach space. [ ]

Example. Let 7 be any index set and E a Banach space. The vector space of
bounded sequences a = (g;);¢; in E with the norm ||af| = sup; ||a;|| is a normed
space, denoted by [*°(I; E) (it is complete: cf. exercise).

The universal property of a direct sum consisting of factors E; all equal to the
same Banach space E and for linear forms ¢; : E — K leads to the following
statement.

Proposition 2. The topological dual of the space co(I; E) is canonically iso-
morphic as a normed space to 1°°(1; E').

Prook. If ¢ is a continuous linear form on co(7; E), we let ¢; = ¢ o &; denote the
restriction of ¢ to the ith factor E in co(/; E) (families having a zero component for
allindices except 7). Since [l¢;|| < ll¢ll. we get abounded family (¢;) € I°(I; E”).
Conversely, if (¢;) € 1°(I; E'), we can define a linear form ¢ = X¢; on co(I; E)
by the formula (¢;) +— > wi(ai) (a summable series, since the sequence ¢; is
bounded and ||g; || — 0). Both maps

o> (pog), (@) Ty

are linear and decrease norms. Hence they are inverse isometries. [
In other words, the bilinear map
(@), (@)~ Y _wil@), coll; E) x I°(1; E') > K
i
isa duality pairing that proves the proposition.
Corollary. The space 1°(1) = 1°°(1; K) is a Banach space. [
Inthe space ¢y = co(I), the family of elements &; = (5;;) ;=0 (Kronecker symbol)

ha§ the following basic property. Each sequence a = (a,),>0 € ¢o is the sum of a
Unique convergent series
a= Z ap€y,

n>0
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and ||la]l = sup,. la,| = max,-¢ la,|. We say that this family of elements ¢; =
(8ij) constitutes the canonical basis of this space (in spite of the fact that it is not
a vector space basis: In linear algebra, linear combinations are always assumed to
be finite linear combinations).

This leads to the following definition.

Definition. A normal basis in an ultrametric Banach space E is a family (€;);¢;
of elements of E such that

® each X € E can be represented by a convergent series
X=3 ; Xi€; where the sequence of components |x;] — 0,
® in any representation X = y_, X;€; we have
IX]| = sup;¢; Ixil-

A normal basis is sometimes called an orthonormal basis. In particular, for each
convergent series ) , x;€;, the set of nonzero components is at most countable, as
observed earlier. If (¢;); is a normal basis, we have |e;|| = 1 foreachi € 1. On
the other hand,

X = inei = Z)’iei = Z(xi —yi)ei =0,
i i i
and by the second postulated property of a normal basis,

sup Ix; = yil =0 =0,=xi=y; (€l

iel
whence the uniqueness of representations in normal bases. All properties of normal
bases are summarized in the following obvious result.

Proposition 3. Let E be an ultrametric Banach space having a normal basis
(€i)ics. Then the mapping (x;) v Y_;; Xi€; defines a linear bijective isometry
co(l;K)> E. Conversely, any linear bijective isometry co(I; K) 5 E defines
a normal basis in E, namely the image of the canonical basis of co(I1; K). 8

Example 1. The Banach spaces co(I; K) supply examples of ultrametric spaces
with normal bases. In particular, when the index set I is finite, we get the (ﬁnite)
product spaces K" with the sup norm (cf. exercises).

Example 2. Let £ = C(Z,; K) be the space of continuous functions Z, — K
(where K is a complete extension of Q,) equipped with the sup norm. The Mahler
theorem (2.4) asserts that the binomial polynomials constitute a normal basis of
E: The map

co(K) = E: (@) — Zakfk = Za"(];)

k>0 k>0



4. Ultrametric Banach Spaces 189

isabijective linear isometry. The van der Put theorem (3.3) asserts that the sequence
(¥j)jzo0 constitutes another normal basis of E. These two normal bases are quite
different in nature.

4.3. Reduction of a Banach Space

Let K be a complete extension of Q, and E an ultrametric Banach space over K.
We keep the general notation for

o A = B (K): maximal subring of K,
o M = B ;(K): maximal ideal of A,
® k = A/M: residue field of K.

Moreover, we consider the closed unit ball in E, E; = {v € E : ||v]] < 1}, as an
A-module and ME, = {Ax : A € M, x € E;} as an A-submodule (M E; is
obviously an additive subgroup of E;). As a consequence, E = E;/ME; is a
k-vector space.

Remark. We have quite generally M E; C B, (E). This inclusion is in general
astrict inclusion. For example consider any finite, ramified extension K of Q, as
a Banach space over Q,. Its open unit ball is strictly larger than pB<;(K): The
open unit ball contains an element of norm | p|'/¢, while all elements of pB<(K)
have norms < |p| < |p|/°.

Lemma. Ifeither |E|| = |K|, or |K*| is dense in R.q, then ME, = B (E).

ProoE In the first case, if A = [|lx|| < 1, we can write x = A - (x/A) € ME;. In
the second case, if ||x|| < 1 we can choose a scalar A € K with [x]] < |A] < ]
and still write x = A - (x/A) € ME;. [ ]

Proposition. If(e;);c 1 is a normal basis of E, then (¢; mod M E);¢; is a basis
of the k-vector space E.

Proor. Define &; = (¢; mod ME;) € E. These elements generate E: f ¥ =
(x mod ME)) € E we can write x = Y x;€; with all |x;| < 1 and only finitely
Many |x;| = 1, giving rise to a finite linear combination X = Z (x; mod M)g;. On
the other hand, take a linear combination >.oigi=0¢ E = E\/ME, (a; € k,
O'fl)' finitely many nonzero such coefficients). We can choose scalars a; € A C K
With ¢; = (a; mod M) and g; = 0 if o; = 0. By assumption

Y aie; € ME; C Ba(E),
7
Damely || 3", a;e;|| < 1. By definition of a normal basis,

E a;e;
i

<1

sup lai| =
il
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and |g;| < 1 for all . This proves that all o;; = (a; mod M) = 0 € k and the linear
combination is trivial. The family (&;), is free and is a basis of the reduced vector
space E. |

4.4. A Representation Theorem

With the same notation as before, observe that the closed balls B<,(E) (r > 0)
and the open balls B.,(E) (r > 0) are A-modules and for any ideal / of A,

B.,(E)/1B<,(E)is an A/I-module.
In particular, if the ideal / is principal, say I = (§) with |§| < 1, then
B<.(E)/& B<,(E) is an A /(£)-module.

Let us generalize the expansion theorem (I1.1.4) to the vector case.

Theorem. Let E be an ultrametric Banach space, & € K, |§| < 1, and choose
a set of representatives S C B<,(E) for the classes mod & B<,(E). Assume that
0 € S. Then every element x € B<,(E) can be represented uniquely as the sum
of a convergent series

x=Y at (a€S).

i>0

Proor. Take for ag the (unique) representative in § with x —ag € & B<,(E). Hence
x —ap =r = &x; for some x; € B<,(E). One can proceed similarly for x; and
find elements a; € S, x; € B<,(E) with x; — a; = £x,, namely

x =ap+aif +&x,.

Iterating the construction, we obtain a series Y ;. @;&’, which converges to x. For
this part of the proof, the completeness of E is not needed, since the element X,
the limit of partial sums, is known a priori. But when E is complete, every series
> -0’ with coefficients a; € S is convergent, since |a;&'| < r|¢|" — 0. The
uniqueness statement is immediately verified. Indeed, if ZizO a;&' = 0, we have

ay =~ ait' € B (E),

i>1

hence ap = 0, since this representative is in S. By induction, all ¢; = 0.

4.5. The Monna-Fleischer Theorem

In a Banach space co(/; K), we have

Ixll = sup [x| = max [x;| € IKI.
1
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Hence if an ultrametric Banach space admits a normal basis, we have

IEN = IKI, |E—{OH =IK™|.

Theorem. Let K be a complete ultrametric field with | K *| discrete in R, o and
E an ultrametric Banach space over K. Then E admits a normal basis precisely
when |E|| = |K].

Proor. The preliminary comment proves the necessity of the condition. Con-
versely, let us show why it is sufficient. Since K has a discrete valuation, its
maximal subring A = R is principal, with maximal ideal M = P = wR. Then
PE; = mE;. Let us choose and fix a system of representatives S C R for the
classesmod P, with O € §. Also choose and fix a basis (&;); of the k-vector space
E = E,/mE, with liftings ¢; € F;,s0 & = ¢; mod wE;. I claim that (e;); is a
normal basis of E. Consider first the case of a vectorx € E;: ||x|| < 1. The vector
X = (x mod 7 E1) can be expanded in the k-basis (¢;);, say X = Y_ o;&; (only
finitely many ¢; # 0). Consider the representatives

afo) €S, afo) =q; (mod P);

hence afo) = 0 except for finitely many indices. If ||x|| = 1, at least one Iafo)l =1

and all |afo)| < 1. We have

rh=Xx-— Za,@ei € B<1(E).

B)_/ thelemma in (4.3), we have B, (E) = P E; = m E;, and the same construction
with the vector 7 ! (x — Zafo)e,-) € E, gives a family

af” €S, a,fl) # O for finitely many indices only,
such that
X = Zafo)ei +7 Zaf”ei +r (r; e m?Ep).
By iteration, we obtain a sequence r, € 7" E, and convergent series
a; =a§0)+na§l)+-~- €ERCK

giYing arepresentation x = )_, a;€; with a; — 0 (for fixed j, only finitely many
J . .
9" # 0). At each step of the iteration we have to choose a scalar A, such that

An( ™"kl = 1.

This is possible by the assumption | E|| = |K]|. [
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4.6. Spaces of Linear Maps

Let K be a complete ultrametric field and E, F two ultrametric Banach spaces
over K. Assume that E admits a normal basis and fix an isomorphism co(J) = E
Then any linear map T : E — F furnishes a family of f; = T'e;, € F, namely the
image of the normal basis of E — canonical basis of co(J). When the linear map
T is continuous, this family is bounded

Il < T el = TN
We thus obtain a linear map
L(E;F) = I®(J;F) : T (f;),.

Proposition 1. Assume that E admits a normal basis and fix an isomorphism
co(J) = E. Then the map

L(E;F)— I®(J; F)

defined above is an isometric isomorphism.

Proor. We have already seen that ||(f;); || < |T||. Conversely,

X = Zx,-e,- = T(X) = Zx,-f,— (this sum converges!),
j J

N7l < sup lix;f;ll < suplx;|sup ;)| = x|l sup If;
] j j j
whence |7l < sup; [f; || = II(f;),}|. Observe that for any choice of bounded

family f; € F,thereisa T € L(E; F) with Te; = f; (j € J), so that the map
L(E; F) — [°°(J; F) is surjective.

In particular, for F = K, we get the following result (cf. Proposition 1 in (4.2))-

Corollary. There is a canonical isometric isomorphism

(co(d)Y = 1°(J). .

Assume now symmetrically that F has a normal basis and fix an isomorphism
co(I) = F. The linearmaps 7 : £E — F = co(I), x > T(x) = (pi(x)) give 2
family (¢;); of linear forms ¢; : E — K. If T is continuous, so are the lineal
forms ¢; and |T(x)Il = sup; |@:i(X)l,

N7 = sup \ T/ 1]l
x#0
= supsup J; (X)I/ x|l

x#0 i

= supsup |@i(X)/[IxIl = sup fie;ll-
i x#0 i

This proves the following proposition.
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Proposition 2. The linear map
L(E;co1)) = I E") : T +— (¢)

is isometric, but not always surjective. n
When both E and F have normal bases, we get the following statement.

Proposition 3. When E = co(J) and F = co(I), we can make canonical
identifications

L(E; F) =1%(J;co(1)) CI®(E") = 17 1°() =17 x ). [

In other words, when normal bases are chosen, continuous linear maps £ — F
are represented by bounded matrices with columns in co(/) = F.

More particularly, if T is continuous and of rank less than or equal to 1. we can
write

T(x) = ¢p(X)a = (p(X)a;);

for some ¢ € E’. In this case, ¢;(X) = ¢(X)a;, li¢ill = lailllg]l — 0. This proves
that the image of T belongs to the closed subspace co(/; E’). By linearity, the same
property will hold for any continuous linear map T of finite rank:

Li(E;co(1)) = oI E') : T+ (9i)-

Definition. A completely continuous linear map T : E — F is a linear map
that can be approximated (uniformly on the unit ball ) by finite-rank continuous
linear maps.

If we denote by L..(E, co(1)) the space of completely continuous maps E — F,
then T > (¢;) defines anisometric map Leo(E, co(1)) — co(1, E’). Itis surjective:
Itis enough to check that the image of the finite-rank operators is dense in the target
Space. But if (¢;) is an arbitrary sequence of continuous linear forms on E with
loill - 0, and ¢ > 0 is given, there is a finite subset J C 7 such that ||g; || < &
fori ¢ J. Define y; = ¢; fori € J and ¥; = O fori ¢ J. Then () is the image
of a continuous finite-rank operator and [|(¢;) — (¥i)ll < €.

Comment. One can show that when K is a locally compact field, the completely
Continuous maps T : E — F are precisely the linear maps that transform bounded
Sets of E into relatively compact sets in F. These transformations are classically
called compact linear maps. In the general case, the distinction between compact
and completely continuous operators has been studied in detail and has led to the
definition of compactoids.
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4.7. The p-adic Hahn-Banach Theorem

Let E be anormed space, V C E a vector subspace, and ¢ : V — K acontinuoyg
linear form

lo(x)]
loll = sup ——— <00
oxev  lIx]l

Is there a continuous linear formg : E — K extending ¢? If the answer is positive,
can we find a linear form y with the same norm ?

Theorem (Ingleton). Let V be a subspace of a normed space E. When the base
field K is spherically complete, the restriction map

]r,/'_)(o:‘lflv’ E' -V

is surjective. Moreover, for each ¢ € V', it is possible to find an extension y =9
with ||| = liell.

Proor. (a) Let us show first that a continuous linear form on a subspace V # E
can be extended to V + Ka (for any a € E — V) without increasing its norm. The
definition of ¥ = @ has to satisfy

W(x +2ra)ll < llell- lIx +2all (x €V, A € K).

For A = 0 this is satisfied, since ¥|y = ¢. When A # 0, we may divide by —A
and see that it is sufficient to find a linear form ¥ with

V& —a)ll < llell-lix —all (xeV),
lox) =¥ @I < llell - lix —al :=r« (x€V).

In other words, we have to choose @ = ¥/(a) in the intersection of the balls By =
B, (¢(x)) C K. For any pair of points x, y € V, ¢(x) € B, and ¢(y) € By are
at distance

lo(x) — oI < llell - Ix — ylIl < llell max(llx — all, |y — all) = max(rx, ry)-

This proves that the smallest among the balls B, and B, is contained in the largest:
B, N By, # . Since we are assuming that the field K is spherically complete,
the intersection [,y Bx is not empty and any « in this intersection is a possible
choice for o = Y (a).

(b) Consider now the set of pairs (V’, ¢’) consisting of a vector subspace V' D V
and an extension ¢’ of ¢ to V’ with the same norm as ¢. This set of pairs is ordered
by the relation

V", 9"y = (V,¢) = V">V and ¢}y = ¢
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Any linearly ordered set of such pairs has an upper bound. By Zormn’s lemma,
there is a maximal pair. By the first part, this maximal pair is defined on the whole

space E. =

5. Umbral Calculus

The Mahler theorem (3.4) has been generalized by L. van Hamme. To be able
to give this generalization, we have to briefly review umbral calculus: This term
has its origin in the nineteenth century, when formal computations were used with
litde justification. Today, it refers to an algebraic treatment of polynomials, power
series, and identities between them.

5.1. Delta Operators

Let K be a field of characteristic 0 and K[X] the vector space of polynomials (in
one variable) with coefficients in K. The translations 7, (a € K) are the linear
operators in K[X] defined by

(T f)X) = f(X + a).

We shall often identify the indeterminate X with a variable x (in K or in an exten-
sion of K : Since K is infinite, there is no danger in identifying formal polynomials
and polynomial functions on K). Since the degree of the zero polynomial is not
defined, let us adopt the ad hoc convention deg(0) = —1: This allows us to speak
of the subspace of polynomials having degree less than or equal to  for any n > 0.
The unit translation will also be denoted by 7; = E.

Definition. A delta operator is a linear endomorphism § of K[X] such that

(1) 8 commutes with all translations t, (a € K),
(2) 8(X) = ¢ € K* is a nonzero constant.

Proposition. Let § be a delta operator in K[X]. Then

(1) 8(a) = O for all constants a € K.
() if f is a nonconstant polynomial, then deg(8f) = deg f — 1.

Proor, By hypothesis, 8(X) = ¢ # 0, and by translation,
¢ =10 =1,0X =61,X =8(X +a)=46X+da=c+da.

F‘I]Cnce da = O for all constants a € K. To prove the second point, it will suffice to
Show that

degdX")=n—-1 (n>1).
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Fix an integer n > 1 and put X" = f(X). Then
F(X +a)=1f(X)=18X" = 81,(X") = 8(X + a)*

=8 Z (:)ak N Xn-—k — Z (:)ak N S(Xn_k),

and for X =0,
f@=Y" (Z)a"ﬁ(X"“")(O),

or
_ n n—k vk
fXxXy= E (k)s(x )0) - X,

We see that f is a polynomial of degree less than or equal to » with a coefficient
of X" given by §(1)(0) = (1) = O (using the first part, already proved). The
coefficient of X"~ ! is n6X(0) = nc # O (the field K has characteristic 0). Hence
f(X) = 8X" is a polynomial of degree n — 1. n

Corollary. The image by a delta operator of the subspace of polynomials of
degrees less than or equal to n (n > 1) is the subspace of polynomials of degrees
less than or equal ton — 1.

Proor. The dimension of the image of a linear operator is equal to the dimension
of the source minus the dimension of the kernel. The assertion follows from the
proposition. ]

Examples. (1) The differentiation operator D is itself a delta operator. More
generally, if a € K, the operator t,D = D1, is a delta operator.
(2) The finite difference operators (recall E = t;: Unit translation)

V=V,=1—-id=E —id,
V_=id - T = T._IV,
and 7,V are delta operators. When a # b, the operators 7, — t;, are also delta

operators.
(3) Any formal power series in D of order 1, namely

P =Zc,-D" =c;D+---€ K[[D]] (c; #0),

i>1
defines a delta operator. For example
log1+D)=D~-1iD*+1D%—...,
e —1=D+LD*+LD*+...,
D*/(e® -1)=D-1D* ...

are delta operators.
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5.2. The Basic System of Polynomials of a Delta Operator

Let 8 be a delta operator. If f is a nonzero polynomial, there is a polynomial g
quch that 8(g) = f (and necessarily deg g = deg f -+ 1 by the preceding section).
This polynomial g is determined up to an additive constant, since the kernel of §
consists of the constants. Replacing g by g — g(0), we see that there exists a unique
polynomial g such that

8(g) = f, g(0) =0 (normalization),

and the degree of this polynomial is one more than the degree of f.

Definition. The basic system (py,)n>0 corresponding to a delta operator § is the
system of polynomials such that

l.degp,=n (n=0),
2. 8pp=nppy (n=1),
3. p0=1p.0)=0 (nx>1).

Starting with py = 1 there is a unique polynomial p; (of degree 1) such that
4(p1) = 1 and p;(0) = 0. Proceeding inductively, there is a unique polynomial py,
(of degree n) such that 8(p,) = np,_; and p,(0) = 0. Hence the definition char-
acterizes a unique system of polynomials for any delta operator. Explicit formulas
for computing these polynomials will be given in (5.5) and (6.2). Any basic system
constitutes a K-basis of the vector space K[X].

For example, the basic system of the delta operator D (derivation) is the system
(x")n=0 of powers of x. For the operator § = V the basic system is

(xX)p =x(x —1)---(x —n+1) (Pochhammer symbol)
with the convention (x)o = 1. We indeed have (1.1)
VX)) =nx)p—1 (n>=1),

and (x), vanishes at x = 0if n > 1. For § = V_ the basic sequence consists of

hthe polynomials p,(x) = x(x + 1)---(x + n — 1). For every basic sequence, we
ave

&pp=nn—1)---(n—k+1):poy (k <n).
In particular,
8"pn =n!- pp = n!

Generalized Taylor Expansion. Let$ be adelta operator and (p,)n>o its basic
System in K[X]. Then we have general expansions

5k
e =Y B 00y (e ki),

k>0
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We can indeed write the tautology

84 (pa)(0)

Pn= k! * Pks

k<n

where all coefficients of the p; are O except for p,, which is 1. For any linear
combination f of the p, we obtain by linearity

S (F)0)
r=2 "

Replacing f by one translate 7, f in the preceding equality, we obtain

Z & (txf o Z (8 f )0)

of = Px
k=0 k>0
)
= 2k k>
which is the announced generalized Taylor expansion. u

In particular, if we take for f the polynomial p,, we obtain the following
equalities.

Binomial Identities. Any basic sequence of a delta operator satisfies the fol-
lowing identities:

prx+y)= Y (Z) - P(x)Pni(3)- "

0<k<n
The binomial identity can be written in the mnemonic way

pr(x +y) =“(px)+ pO)"”

where one must remember to replace powers by indices in the binomial expansion
of the right-hand side.

5.3. Composition Operators

Definition. A composition operator is an endomorphism T of K{X] that com-
mutes with translations.

We shall determine all composition operators. More precisely, we shall establish
the following result.

Theorem. The following properties of an endomorphism T: K{X] — K [x1
are equivalent: They characterize composition operators.

(i) T commutes with the unit translation.
(ii) T commutes with all translations.
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(iii) For all delta operators $, T can be written as a formal
power seriesin8: T = ¢(8) € K[[3]].
@) T = (D) € K[[D]] is a formal power series in the derivation D.
(v) T commutes with the derivation TD = D T.
i) T commutes with any delta operator.

ProoE. (i) => (ii) Write 7; = E and use the Taylor series expansion around »:

k
E"f() = fn+x)= Y fOm)-

k=0
By the commutation hypothesis 7T E = E T we infer

E"Tf TEnf Zf(k)( ) T(-x ).

k>0
Put g = T f and consider the polynomial in two variables

T
P,y = g+ 9= Y 900 - T8

k>0

We have seen that F(x, n) = 0 for all positive integers n and all x. If x is fixed, the
corresponding polynomial in y has infinitely many roots and is consequently iden-
tically zero. This proves F = 0. Hence t,g — Tv.f=0,0rt,Tf— Tz, f =0.
Since this is valid for all polynomials f, we see that the operator T commutes with
translations.

(#i)=> (iii) Let T be a composition operator and § a delta operator. Write the
generalized Taylor formula using the basic sequence (p;) corresponding to 4:

pr(x)

T fx)=fx+y) =) &y

(first for fixed y and variable x). We have
Pk
nf=2 5 %o
Let us apply the composition operator T to this polynomial,
Tpx
owITf=Trt f= Z -8 f(y)

and evaluate it at the origin (we now fix x = 0 and consider a variable y):

(TF)Y) = (&TN0) = (T, f)O) = Z( 2O gt £y,

Hence

Tf = Z(TPA)(O) st f
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and finally,

The coefficients of the expansion of a composition operator T as a power series
in the delta operator § — say 7 = Y _ ;8 — are given by ax = (T px)(0)/k!. In
particular, let us remember that for the case § = D these coefficients are

(T(X"))(O).

a, =
* k!

Since obviously (if) = (i) and (iii) = (iv) = (v) = (vi) it only remains to prove
(vi) = (ii) to accomplish the full cycle of equivalences. Let é be a delta operator
and write the generalized Taylor formula for an arbitrary polynomial:

fe+») =) 8 f@-pO/k,
o f(x) =Y & f(x)- p(y)/k!,
owf =Y pO)/k-&f,
=" py)/kt -8

This shows that all translations can be expressed as formal power series in any
delta operator. As a consequence. if an operator commutes with a delta operator,
it commutes with all translations. B

For convenience, let us use the following notation for the commutant of a subset
A of the endomorphism ring of K[X]:

A'={T € EndK[X]}: TS = ST forall S € A}.

The commutant of A’ is the bicommutant — or double commutant — of A: It1s
denoted by A” = (A’Y.

Corollary. In the endomorphism ring of K[X], the commutant of a delta oper
ator § can be identified with the ring K[| D]]. In particular, this commutant is
commutative, and the bicommutant of any delta operator can be identified with
the ring K[[D]].

Proor. The equivalences (v) <> (vi) < (iv) of the theorem show that the commu~
tant of the derivation, or of any delta operator, coincides with the ring of power
series in the derivation D. This ring is independent of the delta operator in question
and is commutative; hence by (ii) < (v) < (vi) we have

{DY = {r, :y € KY = {8} C End K[X].
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since {D} is commutative, {D}" C {D}". On the other hand, the operation that
consists in taking the commutant obviously reverses inclusions, and

D € {DY = {D} > {DY}". -

Let T be a nonzero composition operator. We can write 7 = ., a; D’ witha
first nonzero coefficient a, # 0 (v > 0). In this case, we say that the composition
operator T has order v and we write T = DVS = SD" with acomposition operator
S of order 0, namely, S is invertible. Since the kernel of the operator DV consists
of the polynomials of degree less than v, we infer

v = dimker DV = dimkerT.

This equality shows that the order of a composition operator is independent of the
delta operator used to represent it as a power series. On the other hand, the delta
operators are the composition operators of order 1.

IfT =) a;D/and T’ =) b; D’ are two composition operators, then 7 o 7’
is also a composition operator, and its formal power series is obtained by multipli-
cation of the formal power series giving T and T".

54. The van Hamme Theorem

Let T be a continuous endomorphism of the Banach space C(Z,) of continuous
functions on Z,, (and values in a fixed complete extension K of Q). Let us recall
the definitions of the norms

Sl = sup [f(x)] = max | f(x)I,

Sup = max taken on the compact space Z,,,

170 = sup WTAU/NfIl = sup ITFN.
F#0 1f1=1

When this continuous endomorphism commutes with the unit translation operator
_E = 1, it also commutes with the (forward) difference operator V = t; —id and
1ts powers. Hence 7T leaves the subspaces ker V” C C(Z,) invariant.

Lemma. 7he subspace ker V" of C(Z,) consists of all polynomials of degree
Strictly smaller than n.

Proor. The statement is obvious for n = 0 and 1. In fact, if V" f = 0, the finite
difference theory applied to the restriction of f on N shows that this restriction is
4 polynomial p of degree smaller than n. Hence we have f = p on N and also on

» by continuity and density of Nin Z,,. ]
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As a consequence, any continuous endomorphism T' of C(Z,) commuting with
E (or equivalently, with V) leaves the polynomial subspace

M= K[X]=|Jkerv" c C(Z,)

n>0

invariant and induces a composition operator in this space. Let us expand this
composition operator as a formal power series in the delta operator V

Tln= Za,,V" € K[[V]l

n>v

If T # 0, the order v of T is the index of the smallest nonzero coefficient. Since
[Vl = 1, the ultrametric inequality shows that

IT| < supja,l.

On the other hand, the basic polynomial sequence of the delta operator V is the
sequence (x), = x(x — 1)--- (x —n + 1), and the coefficients «,, are given by the
formula

_ T

n!

n

In particular for n = 1, |oy| = |T)] < [T |Ilx|l = IT}}. If we assume ||T| =
ley |, we see that |a,| < |y | forall n > 1. The main step of van Hamme’s gener-
alization of the Mahler theorem can now be given.

Proposition. Let T be a continuous endomorphism of C(Z,) that commutes
with V. Assume T(1) = 0and ||T|| = |oy| = 1., so that T induces a delta oper-
ator on K[X] with basic polynomial sequence (pp)n>0-

po=1, deg p, =n, T(py) =np,y and p,(0)=0 (n >1).
Then | pn/ntl| = 1.
Proor. Let us use the renormalized g,, = p,/n!, so that by definition
qgo=1, degg, =n, T(q,) = gn—y, andg,(0) =0 (n > 1).

We have to prove ||g, |l = 1 (n > 1). Replacing T by T /c;, we may assume o) = L

I=ligoll = iTqsll < llg1ll = 1T q2ll < llgall < ---.
Now by assumption, T = V +0,V2+ --- = V(I + &,V + ---) = VU with
an invertible composition operator U = (I + a,V + ---), |[U}jf = 1. Define
V=U"'=]-0V+---also with |V|| = 1. We claim that there is a suitablé

continuous invertible composition operator S, with ||S|| = 1, such that

an = SV"(f,,), (*)
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where f, = (;) denote momentarily the binomial polynomials: V f, = f,_,. First,
for any composition operator S of order 0, the preceding definition leads to poly-
nomials with deg g, = n. Moreover,

Tqg, =T oSV"(f,) = VU o SV"(f),
and since U = V™! and all the operators in question commute,
Tgn =SV o V(fy) = SV (fuu1) = Gn1-

There only remains to construct a suitable invertible composition operator S with
ISl = 1 so that the formula () furnishes polynomials with g,(0) = 0 (n > 1).
Let us take

’

1%
S=1-V—=I1-VV'U,
1%

where V' is given by the formally derived power series in V giving V. Namely,

V=I1+) BV'=V' =) npV"".

n>1 n>1

Now we have

4

1%
SV'(fy) = (1 - VV) o V(f,)
= (V" = VV" V') (£,).

Recall that all the operators are formal power series in V, and VK fn = fn—k van-
ishes at the origin for k < n. The only interesting term is thus the monomial
containing V" f,,. Butif ¢ = ¢(t) is a formal power series, the formal power series

¢ — 1"l =" = (t/n)") =¥ — (t/m)Y’

has a coefficient of ¢" equal to 0. Since this is the constant term in SV"(f,,), this
Proves that g,,(0) = 0. All operators used in the definition of S have norm less than
Orequal to 1; hence IS < 1, llgnll < ISINV" Il full = 1. L]

Theorem. Let T be a continuous endomorphism of C(Z,) that commutes with
V. Assume T(1) =0and |T) = |T(x)| = 1. Define the polynomial sequence

qo = 1, degqn =n, T(Qn)=Qn-ls qn(0)=0 (n > 1).

Then each continuous Sunction f € C(Z,) can be expanded in a generalized
Mabler series

f(x) = ch%

n>0

With ¢, = (T" £)(0) — O and || f | = sup,,5¢ [Cnl-
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Proor. Using the notation of the preceding proposition, we have 7 = VU with
invertible and ||U || = 1. Hence

IT"fOI < T fl = MUV fI < IV"fll = 0

(by the Mahler theorem). It will be enough to establish all statements for the
polynomial functions f, since the general case will result from this by density
and continuity. The generalized Taylor expansion of a polynomial f takes the
form

£ =20 B =317 £)0) - g

n>0 ° n>0

From |lg,|| = 1 follows quite generally

Il Il < suplenl,

and from the asserted formula for the coefficients,

leal = KT O < NT" AU NT"NANNTI*HAN < D fHS

whence conversely sup |c,| < || £l and finally sup |c,| = || fII- B

Comment. The generalized Mahler expansion is not valid for the delta operator
D (differentiation): This operator does not extend continuously to all of C(Z;)-
On the other hand, its renormalized basic sequence is g, (x) = x"/n!, and evenifa
seriesexpansion f(x) = Y, .o cax"/n!converges uniformly, || f || = sup | f(0)l =
max | f(x)] is not usually eqﬁal to sup |c,|. The delta operator D on K[X]) hasa
power series expansion in V with coefficients

o, =D ((x) ) (0) = coefficient of x in (x)
n! n

= constant coefficient of (x — 1)---(x —n + 1)/n! = (=1)""'/n.
In particular, oy = 1, but |e,,| > 1 when #n is a multiple of p, so that the theorem

is not applicable.

5.5. The Translation Principle

To illustrate an important principle we begin with a particular case.

Example. We know that the basic sequence for the delta operator D is the sequence
of powers. The basic sequence corresponding to a translate 7, D of D is

pn(x) = x(x — na)”' (n>1).
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Indeed, we have

Dp, = (x — na)"' + (n — Dx(x — na)"~?
= (x — na)" ?[x — na + nx — x] = n(x — na)"*[x —aj,

whence
7,Dp, = n(x +a —na)"[x +a —al = np,_,.

To be able to prove the general translation principle we need a couple of easy
results.

Lemma. Let T = ¢(D) = ano a, D" be a composition operator and let My
be the multiplication by x operator f > xf. Then

TM, — M, T = ¢'(D).

Proor. By definition,
(DM —MD)f = (xfY —xf' = f.
whence DM, — M, D = I (identity operator). Similarly,
(D"My = M D")f = ()" = xf® = nf"",

whence D"M, — M, D" = nD" V. This is the particular case 7 = D" of the
expected formula. The general case results by additivity, since for any polynomial
Fo(TM, — M, T)(f) is a finite sum

Zan(DnMx _ MXD")f — ZannD(n—l)f

(only terms with n < deg( f) + 1 really occur). |

Comment. One can define the Pincherle derivative T' = TM, — M, T of any
Composition operator. For T = ¢(D) the lemma shows that 77 = ¢/(D). A sim-
Ilar result has been used for a long time in quantum theory: If M denotes the
Multiplication operator by a polynomial f, then

DMy — MyD = My : multiplication operator by the derivative f’.

Observe that in (5.4) we have used a different derivative, namely a derivative with
Tespect to a series expansion in the operator V. For this reason. it is always necessary
10 specify with respect to which delta operator the derivative of a composition
Operator is taken.
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Proposition. Let § be a delta operator and write § = D@(D) with an invertiple
power series ¢. Then the basic sequence of polynomials of § is given by

prn=xp(D)"(x""1) (n>1).

Proor. Since (D) as well as ¢(D)™" are invertible operators, ¢(D)™"(x"1) js
a polynomial of degree n — 1 and the polynomial p, = x¢@(D)™"(x"~!) has de-
gree n. Since x divides p,, we obviously have p,(0) = 0. It only remains to
check that 8p, = np,_,. By definition, p, = M,e@(D)™"(x"!), so that ép, =
Do(D)M, (D) " (x"1). Using the lemma, we can write
M,o(D)™"(x"™") = p(D) "M, (x"!) — [p(D) " (x" )
= @(D)™"(x") + nle(D)™" ' 1(x" ).
Hence
8pn = De(D)Mx(D)"(x"1)
= Dp(D)[@(D)™"(x") + nlp(D) ™" 1](x" )]
= @(D)™"*}(Dx") + np(D)™"(Dx"")
= (D) " (nx""") 4 n(n — Hp(D)"(x"?)
= [ng(D) "M, + n(n — De(D)™"](x"~?).
Using again the lemma to bring the operator M, into the first position, we obtain
8pn = [Mxngp(DY™™*! + (n(D)™"*'Y 4+ n(n — (D) "1(x"?)
= nMyp(D) " D(x"2) + [=n(n — (D)™ + n(n — (D) "1(x" )
= nMyp(D)" " D(x"?) = np,_1. .
The Translation Principle. Let 8 be a delta operator and (p,)n>o its basic

sequence. Then the basic sequence of the translate delta operator t,8 is givet
by po = 1 and

Dn = a pn(x —na) (n>1).
X —na

Proor. By the explicit formula of the proposition with § = Dg(D), we have

Pn = x[Tp(D)I"(x" 1)
= XT_pa@(D) " (x" ") = xT_pa[(1/x) ],

from which the translation principle follows. .

Observe that since the polynomial p, is divisible by x (n > 1), p.(x — na)
is divisible by x — na and the polynomial p, is divisible by x: It vanishes at the
origin as required. Several cases of this translation principle are interesting. For
example, the case @ = —1 leads to the backward difference operator _ V = Vs
while a = —% leads to a centered difference operator.
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Umbral calculus
Delta Basic sequence Related
operator of polynomials sequences
av.s) (vs.2) (Iv.e.l)
D =d/dx (x>0 Appell sequences
Dp, =npy 1
umbral
ri operator
3 (Pr)n=0 Sheffer sequences
88y = NSy
T_,8 ( X (x+ ))
—y ny.
> x+ny Pn Y n>0
avs.5) translation principle

Binomial identity: p,(x + y)="“(p(x)+ p(y))",”
Appell sequences: p,(x + y)=“(p(x) + y)",”
Sheffer sequences: s,(x + ¥) =“(s(x) + p(y))".”

cf.(V.5.4), (V.5.5) for the example of the Bernoulli numbers and polynomials.

6. Generating Functions

6.1.  Sheffer Sequences

In this section § will be a fixed delta operator, and (py k>0 will denote its basic
Sequence. Recall the generalized Taylor series (5.2)

8% £)(0
fo =3O ),

1
=0 k!

valid for any polynomial f € K[X].

Definition. A Sheffer sequence (relative to 8) is any sequence of polynomials
(Sn)nso such that

1. degs, =nforalin > 0,
2.85y=n-s,_ foralln>1.

The constant so 1s nonzero. If (s,)n>0 is a Sheffer sequence, we have

sp=nn—1)---(n—k+1)-Spp = (M -spt  (k <n).
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The generalized Taylor expansion
fa+ = 8 FO)/k! - pux)

gives for f =5,

%u+y%=Z:c)mu%&4Ol )

This formula generalizes the binomial identity for the basic sequence (py).

Definition. An Appell sequence is a Sheffer sequence corresponding to the
derivation operator D.

The Appell sequences (p,,) are characterized by the relations

1. deg p, =n foralln > Q,
2. p,=n-pp_yforaln>1.

The Appell sequences satisfy (S), which is in this case
n
pn(x +y) = Z ( )xk * Prn—r(¥)-
O<k<n k
This identity may be symbolically written
pn(x +y)=“(x+ p(y)",”

where we interpret exponents of the binomial expansion of the right-hand side as
indices.

Proposition. Let S be an invertible composition operator. Then the polynomial
sequence s, = S(p,) is a Sheffer sequence. Conversely, if (s,) is a Sheffer s&
quence, the endomorphism S of K[X] that sends the basis (p,) onto the basis
(sn) is an invertible composition operator.

Proor. To check the first statement, we compute &8s, using the fact that § and §
commute:

88, = 88p, = S8p, = S(npu—1) = nS(p, 1) = nsy_1.
Conversely, for n > 0 we have
S8p, = Snpy_y = ns,_y = 8s, = 8Spn.

Since the polynomials p, make up a basis of K[X], this proves that S and 8
commute. Hence S is a composition operator (5.3). .
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6.2. Generating Functions

Let us still consider a fixed delta operator § with basic system of polynomials
(pnzo- Let S be an invertible composition operator. The polynomial system
$~1p, = sn is a Sheffer sequence, and we are going to determine more explicitly
the exponential generating function

Zs,.(x)— = Fs(x,2)

n>0

(where z is a new indeterminate, a variable in C or C,,, . ..). We know that

8 = ¢(D) € KI[[D]], ¢(0) =0 and ¢'(0) # 0,

S = ¢¥(D) € K[[D]], ¢(0) # 0.
By (5.3) the formal power series corresponding to the composition operator 7, S~!
is

5" s
%S = 3 nS E)O— = 35T P~

= Y s> = Fitx,o).
n!

On the other hand, the formal power series (in D resp. 8) corresponding to & can
be computed as follows. Firstly, we have seen that

" D"
To=)_ p() =D x"— = exp(xD),

and secondly,
T, = 5,85 1 oS = Fs(x,8) o y(D).

Since § = @(D), or equivalently D = ¢~1(8) (a systematic characterization of
mvembxhty of formal power series is given in (V1.1.3) Theorem 1), a comparison
of the two expressions for 7, furnishes

Fs(x, p(D)) - ¥(D) = exp(x D).

With the formal power series § = @(D), we can express D = ¢~!(8) and come
2cK to the above expression:

Fs(x,z)- »//(so“(z» = exp(xsa“‘(z))

Fs(x,2)= ) sa(x ) exp(re ' (2)-

'//(tﬂ“( )
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We can deduce several useful identities from this one. For example, derivation
with respect to x leads to

Fs(x,2) = s, (x)—
n>0
_ 9@
V(e~1(2)

97'@)
Y505 k=

n>l

- exp(x¢~(2)),

In particular, for the basic sequence s, = p, which corresponds to the identity
composition operator S = id, hence to the formal power series ¢ = 1,

> p,,(x)— exp(xg™ @),

n>0

> p,,(O)— =¢"'(2).

n>1

The first identity gives an algorithm for the computation of the basic sequence
(Pn)n=0- Here are a few examples.

Example 1. Let us consider the delta operator
V=V,=1-1=¢P -1 =¢(D),
for which
z=pu)y=¢€"—1, é*=z+1, u=1log(l +2) = ¢ '(2).
We have

exp(xe ' (z)) = exp(x log(1 + 2)) = (1 +2)

() - 5

n>0 n>0

The basic polynomials for this delta operator V are simply the Pochhammer poly-
nomials

p=1px)=x)p=xx-D---(x—-n4+1) (m=>1).

Example 2. As withthe deltaoperator V_ = 1—7_ = 1—e~P, which corresponds
toz=gpu)=1—e"* u=1logl/(1-z)=¢ (), we have

exp(xe” @) =1 —2)" =) (_n")(—z)".
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The basic polynomials are now
p=1 ppX)=x(x+1)---x+n—1)=D"(x)n @=1).

Another example of the general formulas follows (cf. the exercises for the Fibonacci
numbers and the Gould polynomials).

6.3. The Bell Polynomials

The Bell polynomials B,(x) can be defined by their generating function
3 Bu(x)= = explx(e* — )I.
=0 n!

This generating function has the required form for a basic sequence of polynomials
of a delta operator. We can indeed take

u=¢(2)=e—1=(1_ oexp))
and hence
z = @(u) = (log oty )(u) = log(1 + u).
This shows that the delta operator & that leads to this generating function is

1 1
8=¢(D)=log(l+D)=D—.2_D2+_3_D3__._.

The following formulas result from the general theory:

Bix+y)= Y. (:)Bk(x)Bn_k(y),

0<k<n

> B,'.(O)f; =¢ '@ =€ -1,

n>1

Whence B’(0) = 1 (n > 1). The polynomials B, are monic polynomials having
Zero constant term if n > 1. The first ones are

By=1, Bi(x)=x, Byx)=x+x2, Bs(x)=x+3x2+x3,
Ba(x) = x + Tx? + 6x3 + x*.

If we take the derivative of the generating function (with respect to z), we obtain
the relation

B, 1(x)=x Z (:) Bi(x),

0<k<n

from which these polynomials are easily computed inductively.
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Comment. The special values B, = B,(1) of the Bell polynomials are the Bej
numbers. They represent the numbers of distinct partitions of the set {1, 2, ...
into nonempty subsets. The first ones are

Bo=1, By=1, By=2, B3=5, B;=15,

where, for example, the five partitions of {1, 2, 3} are

{1}, {2}, {3}
{1,2}, {3}
{2,3} {1}
{1,3}, {2}
{1,2,3}.

EXERcises FOR CHAPTER 4

1. (@) Suppose that we define the notion of Banach space E over an ultrametric field X
simply as a complete normed K-vector space. Try to prove that if E is a Banach
space of positive dimension over K, then K is complete.

(b) If you cannot prove (a), think of the following examples: K is a noncomplete ultra-
metric fieldand E = K is its completion with the norm given by the extensionof the
absolute value. This is a Banach space over K. For example, take K = Q with the
p-adic absolute value and E = Q) as Banach space over Q, or K = Q‘;, (algebraic
closure of Qp) and E = C,, as Banach space over Qf,. What is happening?

2. Let (E;)icr be a family of Banach spaces. Define the Banach product of this family 2
the normed vector subspace

[ <] =
iel iel

consisting of the bounded families x = (x;), equipped with the sup norm

lxll = Il == sup ||x; .
]

In particular, @, <1 Ei is anormed vector subspace of [];c; Ei-

(a) Show that this Banach product is complete and hence is a Banach space. Observe
that [®°(I; E) = ﬂ,e 1 E and conclude that [°°(/; E) is complete for any Banach
space E.

(b) Show that the dual of @, E; is canonically isomorphic to ﬂ, o Ej .

(¢) Formulate the universal properties of the direct sum and Banach product as canonical
isometries

L(E; l:IEi) = ﬁL(E;Ei),
L(@E,;E) = ﬁL(E,—;E).

[The second isomorphism for E = K gives (b).]
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_Let E = K" (for some n > 1) with the sup norm. If (¢j)1<j<n is 2 normal basis of

E, show that the matrix having the ; for columns is in Gi,,(A): It has entries in A and
determinant in A*. Conversely, any normal basis is obtained in this form.

. When |K*| = |7 |Z is discrete but the condition || E|| = | K| is not satisfied, show that

the norm of E can be replaced by an equivalent one that satisfies it. Take either
X" = sup{IAl : & € K, || < [Ixl}

or
IXII” = inf{|x| : 1 € K, |A] > |Ix]]},

for which
fellxl < Ixl’ < Ixll < Ix1” < ||~ i1l

Since sup = max and inf = min, these new norms take their values in |K|.

. Let (4;)icr be a family of continuous operators in an unitrametric Banach space E such

that for each x € E, ¢(x) := sup;; llui(x)|] < co. Show that sup; . llu;ll < oo.
(Hint. Consider the subsets E,, C E defined by ¢ < n and use the Baire property for
the union U,>,; E, = E, or copy the proof of the Banach-Steinhaus theorem from any
book on functional analysis !)

. (@) Assume f € Q[X], f(0) € Z, and that V f takes integral values on all natural

numbers. Prove that f also takes integral values on N.

(b) Let the polynomial f € Q[X] take integral values on all natural numbers: f(N) C
Z. Prove that f also takes integral values on all integers: f(Z) C Z.
(Hint. Show that f(Z) C QN Z, for all primes p.)

. The maximal number of electrons on atomic layers is given by the following sequence

K:2, L:8 M:18, N:32,....

What is the next one? Find a polynomial formula f(r) giving these values.
(Hint. Compute the finite differences to determine the simplest polynomial f taking
these prescribed values.)

- The maximal number of regions in the plane R? determined by n lines is given by (make

pictures!)
n | 0123 4
fy | 1 2 47 11

Find a polynomial formula for f(n).

- Let f(n) denote the maximal number of regions determined in the unit disk |z| < 1 (of

the complex plane C) by connecting n distinct points on its boundary |z| = 1 by lines.
Show that this sequence starts as follows:
n | 12345 6
fmy | 1 2 4 8 16 31

Find a polynomial formula for f(n).
Consider the Fibonacci sequence as a function of an integer vanable n — f:
fO-_-O- fl =1, fn+l =fn+fn-l (n>1).

Does this function extend continuously to any Z p» (p prime)?
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11. What are the Mahler series expansions of the following polynomial functions:
fO =21, gx)=4-3x, f(g(x)).

12. Letx" = 3", 0 anx(;) be the Mahler series of the continuous function x": Z, — Q.
Hence ap, ; = 0 for k > n. Show that

ano =8, (=1 forn =0and =0 forn > 0),

[k
ang =Y. (—1)"‘J(j)j",

O<j<k

ank = k(ap—1.x +ap—1,k-1) (k=>=1,n>1).
Show also that when p is an odd prime,
apk =0 (modp) 2<k<p-1.

The a,, x/ k! are the Stirling numbers of the second kind; cf. (V1.4.7).

13. Let f : Z, — Q,, be continuous, given by a Mahler series

f(x)=Zan(z).

n>0

What is the Mahler series of the function x f?

14. Prove the following formula:
X\ [ x Lx N, 1= N (=n"!
n) “\o-1) " 2\n-2)F3\n-3) T P

15. Show that the series

forn > 1.

Yol )

5 p" pZn -1
converges forallx € Zp,x # 1. The sum f(x) defines a continuous unbounded function
Z,—{-1} - Q.

16. Leta € 1 + M, and m a positive integer prime to p. Show that there is a unique mth
rootof a in 1 + M,.
(Hint. Consider the series expansion (1 + 7)1/ = 3 k>0 (l/k'")t".)

17. Let f : Z, - C,, be a continuous function and F = Sf its indefinite sum (IV.1.5).
(a) Show that there are uniform estimates

[Fin+p")—F(n) <& (neN),

where &, — 0 (v — 00). (Hint. In a sum F(n + p*) — F(n) = ¥, i cpp J@
group the indices i in question into cosets mod p*Z. Let C be one such coset 2
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pick one ¢ € C,

D@ =) (Fx) = fe)+ P (o).

xeC xeC

Hence | 3, cc f(0)] < maxxec (1f(x) = FOL 1P~ f(OD).)

(b) Show that for every given & > 0, there is an integer v such that
|F(n+kp")— F(n) <& (n,k €N).

(c) Prove directly (i.e., without the Mahler theorem) that for any continuous function
f : Zp — C,p, the indefinite sum F of f extends continuously to Z,. (Corollary
21in 3.5).

. Show that the finite sums

Zcitﬂi (Zc,— =0, Za,— -,éO)

are delta operators (notations of 5.1).
Let us define the Bell-Carlitz polynomials Bf by their generating function
"
exp(xz+ (e —1)) = 'g Bﬁ(x)m.

Hence B5(0) = B, (=B,(1) cf.(1V.6.3) ) are the usual Bell numbers.
(a) Prove that

n
Bix)= ) (.)Bn-,xf, Bi(1) = Byy1.
0<jzn

Hence these polynomials interpolate consecutive values in the sequence (By,)n>0-
(b) Prove that the sequence (BS),>0 is an Appell sequence (IV.6.1).
(Hint. Differentiate the expression found under (a).)

Consider the power series expansion (1 —z—22)~! = Y _n>0ant". Showthata, = fpi1,
Wwhere ( f,)n>0 is the Fibonacci sequence

fo=0, A=1 famu=fot+tfo1x =1

Define a sequence (p,,) of polynomials by the identity

1 "
exp (x log m) = Z Pn(x);—,,

So that a, = p,(1)/n!. Show that this generating function corresponds to the choice
u= qo—l(z) =logl/(l1—-z—-2%), e*—1=—-z-2% &=q¢D).

Show that
2Ry
6_¢(D)",§2('<) (-V.)
(the operator —V_ is simply given by f > f(x — 1) — f(x)).
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21. Show that the basic sequence of polynomials corresponding to the translate delta oper-
ator _ Vis
pnx)=x-(x+ne—1p_y (n2=1).

The renormalized polynomials g,(x) = p,(x)/n! are the Gould polynomials
X (x + ne), x X + ne x (x+ne—1
gn(x) = . = =- .

X +ne n! X +ne n n n—1

(Hint. Check by induction that
Vpn =n(x +&)(x + &+ @ — 1)e — Dy = nTe(pn—1)

and hence t_.V p,, = npp_, then use the translation principle (5.5).) Write explicitly
the binomial identity for the Gould polynomials.

Show that the delta operators 7_.V satisfy the condition ||T|| = |a1] = 1 of the van
Hamme theorem (5.4), and hence they give rise to uniformly convergent expansions of
all continuous functions Z, — K (complete extension of Qp).
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Differentiation

Calculus in the p-adic domain is rather straightforward. Let us emphasize, however,
that:

* A function with a continuous derivative is not necessarily strictly differentiable.

* The mean value theorem is valid provided the increment is small enough:
lhl < rp.

* The radius of convergence of the exponential series is r, < 0.

In this chapter the field K will denote a complete extension of Qp.eg,K=C,
orQ
D

1. Differentiability
L1 Strict Differentiability

Let X ¢ K be a subset with no isolated point.

Definition. A function f : X — K is said to be differentiable at a point a € X if
the difference quotients (f(x) — f(a))/(x —a) have alimit £ = f'(a)as x —a
x#a)in X.

Equivalently, one can require the existence of a limited expansion of the first
order

f(x) = fla)+ (x — a)f'(@) + (x — a)p(x) where p(x) - 0 (x —> a).
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Example 1. Let (B,),>1 be the sequence of open balls
Bi={xe€Zy:x—p"l <Ip"} Cix € Zp: x| = |P"]}
and f the function on Z,, vanishing outside (_J B, (a disjoint union) with values
fx)=p*" (x€B).

Then f is constant on each open ball B, and hence is locally constant outside
the origin. Consequently f is differentiable at each x # 0 with f'(x) = 0. At
the origin lim,_,o(f(x) — f(0))/x = lim,_,¢ f(x)/x exists and is zero, so that
f 1s also differentiable at this point with f'(0) = 0. In this example, f’ =0
(identically), f’ is continuous, a situation classically denoted by f € C!, but the
difference quotients

fO)=F®) _ f0) = FO)
y—x - X =Yy

take the value 1 on the pairs x = x,, = p", y =y, = p" — p?", which are arbitrarily
close to the origin.

Example 2. Let f :Z, — Z, be the continuous function defined by

X = Zanpn = f(x)= Zanpzn'

n>0 n>0

Then f is differentiable at all points x € Z, with f'(x) = 0. Again f'=0¢€ c,
but f is injective, and hence far from being locally constant.

The preceding examples show that the notion of differentiability at each point of
a set X is not very useful, even if we require these derivatives to vary continuously,
and we shall introduce a stronger condition.

Definition. We say that f is strictly differentiable at a point a € X — and
denote this property by f € S'(a) — if the difference quotients

fx)— f(y)
x—y

have a limit £ = f'(a) as (x, y) — (a, a) (x and y remaining distinct).

Of(x,y) =

Classically, i.e., for a function f:I — R (where I C R is an open interval),
if f'(a) exists at each a € I and f':a v+ f'(a) is continuous, then f is strictly
differentiable at all points a € I. The examples preceding the definition show
that in ultrametric analysis, the situation is different and we have to assume strict
differentiability to get interesting results.

Proposition 1. Let f: X — K be strictly differentiable at a point a € X with
f'(@) # O. Then there is a neighborhood V of a in X such that the restriction
of f/f'(a) to V is isometric.
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Prook. Since f € S'(a), for each £ > 0 there is a neighborhood V; of a for which
1®f(x,y)— f'(@a)] <eifx € V,and y € V,.

Let us take £ = | f'(a)| (# O by assumption) and V the corresponding neighbor-
hood. Then

[@fx, ) — f@l <|f'@|#0, if (x,y) eV xV
and there is a competition between the terms ®f(x, y) and f'(a)
|®f (x, )l = | fi(@) for (x,y) € V x V.

Hence [f(x) — fWI = |f'(@)| - |Ix — y| for(x,y) e V x V. u

Corollary. If f € S'(a) and f'(a) # O, then there is a neighborhood V of
a € X inwhich f is injective. |

Theorem. Assume that the function f is defined in a neighborhood of a € K
and strictly differentiable at this point with f'(a) # 0. Choose an open ball B
containing a such that

o = sup M — fl@)| < If'@a)l.

x#£y€eB X —
Then f maps each open ball contained in B onto an open ball, namely

B (b) C B=> f(B(b)) = B(f(B)) (' =|f"(a)le).

Proor. Put s = f’(a) # 0. As in the preceding proposition, we have

fx) - f»)

|=ISI (x #y€B),
x—y

and f/s is an isometry in the ball B. This already proves
f(B<e(b)) C B ge(f(D))-

To prove that this inclusion is an equality, we select any ¢ € B5-(f(b)), namely
If(b) - ¢| < |s|e, and show that the equation f(x) = ¢ has a solution x with
Ix - b| < &. Equivalently, we show that the map ¢(x) = x — (f(x) — c¢)/s has a
fixed point x with |[x — b| < £. Observe first that (B (b)) C Bs(b):
¢exX)—b=x—-b—(f(x)—0)/s
=x—b—(f(x)— f)/s — (f)—c)/s,
lo(x) — b] < max(|x —bl, | f(x) = fFD/Isl, | f(b) —cl/Is]) < e.
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Now we prove that ¢ is a contracting map with contraction ratio 6 /|s| < 1:

w(x)—w(y)=x_y__fﬁ);_f_m
S TANCEY )
s x—y ;
lp(x) — ()] < uo:i.lx_yl_
Is] Is|

Since the ball B..(b) is closed in the complete space K, the mapping ¢ has a
unique fixed point in this ball and the theorem is completely proved. [ |

Observe that this theorem is a generalization of Hensel’s lemma (I1.1.5) (here
f is not a polynomial): The function f —chasazerox € B, or f(x) = ¢, as soon
as | f(b) — c| is small enough for some b € B.

Let us wurn to strict differentiability on a subset X having no isolated point.
Since X is a metric space, it is Hausdorff and the diagonal of X is closedin X x X.
The open subset X x X — Ay is dense in the product X x X.

Proposition 2. For f : X — K, the following properties are equivalent:

@) f € SYa)foralla € X.
(i) The function ®f, initially defined only on X x X — Ay, admits a continuous
extension ® to X x X.
(iii) f is differentiable at each point a € X and there is a continuous function
o on X x X vanishing on Ay with

fO)=fO)+0 - x)+@-xaix,y) (x,yeX).

Proor. The implication (i) == (ii) is given by the double limit theorem, which
we recall: Let X be a dense subset of a topological space X, Y a metric space,
and f a continuous map Xo — Y such that for each x € X

z € Xoand z — x implies f(z) has a limit g(x) € Y.

Then the extension g : X — Y is continuous. (More generally, the conclusion i
valid when the target space Y is a regular space, i.e., a topological space in which
every point has a fundamental system of neighborhoods consisting of closed sets.)
The implication (ii) = (i) is obvious. _
Finally, if ®f has a continuous extension &, it has a unique one by the density
of X x X — Ax in X x X. Since we can write

fO)=fxO)+ @ —-x)Pf(x,y)
=f)+ O -x)f'x)+ @ —0)Qf(x,y)— f(x)],

a(x,¥)

it is obvious that (i) < (iii). "
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Definition. We shall say that f is strictly differentiable on X — notation f €
S!(X) or even f € S' — when the conditions of Proposition 2 are satisfied.

When f € SY, f/(x) = 35(x, x) is continuous and f € C!, but strict differentia-
bility is a stronger condition, justifying a specific notation. Strict differentiability
furnishes coherent limited expansions, and if

M = sup|®f(x, y)| = sup |D(x, y)| < o,
xX#£y X,y

we have

Ifx)— f) = Mlx —yl.

1.2. Granulations

The theorem of the preceding section is particularly interesting when the field K
is locally compact, namely when it is a finite extension of Q,,. Let us come back
to the usual notation for this case:

KDRDP=nR, k=R/P=F,

Ifr € |K*|, every ball B.,(a) is a disjoint union of g open balls B; = B_,(a;) =
Beg,(a;) (with @ = || < 1) and any set containing g distinct points x; € B<,(a)
with

|X; —xjl >=r @@ #])

contains at most one point in each B;, hence exactly one point in each B;.

Proposition. Let K be a finite extension of Q, and f : Q2 — K be an isometry
where S is some compact open subset of K. Then f maps the balls contained
in Q onto balls of K.

Prook. If B_,(a) is a ball contained in €2, it is clear that
f(B<(@)) C B4 (b) (b= f(a)).

There remains to prove the surjectivity f(B<,(a)) = B, (). But if we take a
Partition of B.,(a) consisting of smaller disjoint balls, say B! = B<.(a;) with
€ = |r|"r, the images x; = f(a;) of chosen points a; € B form a system of g”
points in B<,(f(a)) with

i —xjl=la—ajl > ¢ (i #)).

Hence the image f(B<,(a)) contains a point in each smaller ball of the partition
of f(B.,(a)) into g balls of radius ¢ = [7|'r < r (j > 0). This shows that
fhe image of B.,(a) by f meets all closed balls of positive radius. Hence this
Image f(B.,(a)) is dense in B<,(f(a)). Since it is compact, it is closed, and the
Proposition is established. ]
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Definition. A granulation of an open compact set @ C K is a finite partition of
Q into balls B<,(a;) of the same radiusr > (.

Since two balls By, B, having a common point satisfy either By C B, or B,
By, two granulations are always comparable: One is finer than the other. Every
ball of the coarser one is a disjoint union of some power ¢V of balls of the finer
one. Now observe that g* = 1 (mod p — 1), so that the numbers of balls in
the two granulations differ only by a multiple of p — 1. This number of balls is
well-defined modulo p — 1.

Definition. For any open compact set 2 in a finite extension K of Qp, we define
the type t(2) € Z/(p — 1)Z of Q2 to be the class mod(p — 1) of the number of
balls in any granulation of 2.

For example, the type of Z,, is p =1 and the type of Z; is p — 1 = 0.
It is obvious that the type is additive for disjoint unions:

QU Q) = 1(Q) + () € Z/(p — 1)Z.

Consequently, to compute the type of any open compact set €, it is enough to
know the cardinality of any partition of 2 into balls (allowing unequal radii). The
following theorem summarizes the preceding comments.

Theorem. Let 2 be an open compact subset of a finite extension K of Q,and
f aninjective strictly differentiable map Q2 — K. If f’ vanishes nowhere, then
Q and f(S2) have the same type.

Proor. From f € S'(a) and f’(a) # O we infer that there is a neighborhood V
(for example an open ball) of a in £2 such that any ball in V is transformed by f
into a ball of f(V).

Corollary. Let p > 2, and f :Z, — Z}; be an injective strictly differentiable
map with nowhere vanishing f’. Then f is not surjective. .

1.3. Second-Order Differentiability

With the same notation as in (1.1), we define

Of(x,2) — &f(y,2)

b f(x,y,2) = Xy

when x, y, and z are distinct. Since we can also write
fx) f») f(2)
G=MNx-2) G-x)-2) G@-x—-y)

this function @, f is symmetric in x, y, and z.

G2 f(x,y,2) =
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Definition. We say that a function f is twice strictly differentiable at a point
a € X — and denote this property by f € $*(a) — if ®2f(x, y,2) tends to a
limitas (x, y,2) — (a,a,a), x, y, and z remaining distinct.

Proposition 1. If f € S*(a), then f € S'(a).

Proor. Let us take two pairs (x, y) and (z,7) € X x X — Ay in the vicinity of
(a,a) and estimate the difference

Of(x,y) —@f(z,1) = ©f (x,y) — ®f(z, y) + ®f(z, y) — ©f(z, 1)
=x-2)P2f(x,z, )+ —)P2f(y, ¢, 2)-

If we assume f € S$%(a), then @, f will remain bounded in a neighborhood of
(a,a, a), say |P, f| < M, when the three variables of ®, f are close enough to
a. In particular if x, y, z, and t are near enough to a, we have

[Qf(x,y) — @f(z, )] < M max(lx —zl, [y — t]),

aquantity that tends to zero when (x, y) and (z, t) tend to (a, a). Since the target of
®f is a complete space, the Cauchy criterion is valid and shows that this function
®f has alimit as (x, y) — (a, a). ]

As in (1.1) (Proposition 2), the double limit theorem shows that the following
two properties are equivalent:

() f € S*a)foralla € X.
(ii) The function ®, f, initially defined only on triples with distinct entries, admits
a continuous extensionto X x X x X.

Weshall say that the function f is twice strictly differentiable — notation f € S%(X)
oreven f € §2 — when these conditions are satisfied.

Proposition 2. If f € S?, then f’ € S\.

PROOE. We have to prove that the difference quotients

Fx) =
X

&) = ==

have a continuous extension across the diagonal of X x X. By assumption, there
is a continuous function (132 that extends @, f to X x X x X, and we have

Df(x,2) — Df(y,2) = (x — y) - Balx, y, 2).
In this expression we let z — x. We know that @ f(x, z) tends to f’(x) and

F(x) = Of (3, x) = (x — y) - Da(x, y, x).
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Since the order of the variables in ®f, &, f, and 62 is irrelevant, we can write

F1&) = @f(x, 1)+ (x = y) - Dalx, %, Y),
and interchanging x and y,

FO)= 20,0+ — %) 320, %).
Subtracting these expressions, we obtain

F0) = F/) = (x = I®a(x, X, ) + Ba(x, 3, Y],
Of'(x, y) = Balx, x, y) + Pa(x, y, ¥).

This shows that &’ admits a continuous extension to X x X: f’ € S'. Moreover,

(@) = (fY(a) = ®f'(a, a) = 2®,(a, a, a). "

1.4. Limited Expansions of the Second Order

It is also possible to characterize the second-order differentiability by means of
limited expansions (this will not be used later and may be skipped).

Proposition. In order for a function f to be in the class S?, it is necessary and
sufficient that it admits a limited expansion

F)=FO+x =) -a) + (x — y)*B(x, y),

where « and B are two continuous functions.

PRrooF. (a) Suppose first that f € SZ C S!. In the formula

D f(x,y,2) = (Df(x’zz : jf(y, 2 (x, y, z distinct),

we can let z — y. In the limit, we get

f(x,y) = Bf(r,y) _ f(x,y)— f'(¥)
xX—=y - xX—=y

o f(x,y,y) = (x #y)»

namely

Of(x,y) = f') + (x — P2 f(x, 3, ).

Coming back to the definition of ®f, we have

F) = fO) = = NF )+ (x — ¥ P2 f(x, 5, ¥).

This gives an expansion of the desired form with

o= f'and B(x,y) = aszf(xv Y, y).
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(b) Conversely, let us postulate the existence of a limited expansion as in the
statement of the proposition; hence

Of(x, ) =a(y)+ & —y)Bx,y) (x#)y).
If x, y, and z are distinct, we have

®f(x,2) = a(2) + (x — 2)B(x, 2),
Df(y,2) = a(x) + (y — 2B, 2),

whence by subtraction (and division by x — y),

x —

2103, = T D+ T B, D)

= AB(x,2) + uB(y, 2)

(where A + pu = 1). Let us choose a point a # x and subtract the same quantity
B(x,a) = (A + p)B(x, a) from both members:

S, f(x,y,2) — B(x,a) = AB(x, 2) — B(x, a)] + ulB(y, 2) — B(x, a)].

Itis clear that
y—>aandz—>a= pu— 0and Y, f(x,y,2) = B(x,a)

(observe that |A] = 1 as soon as max(|z —al, |y —a]) < |x — a|). When x, y, and
Z —> a (while remaining distinct), we even see that @, f(x, y, z) - B(a,a): In
the region U: max (|x — z|, |y — z|) < |x — y], in which |u| and |A| are less than
orequal to 1 we have

|¢’2f(x, Y. Z) - ﬂ(ar a), S
max('ﬂ(x’ Z) - ﬁ(x: a)l: “3()’, Z) - ﬂ(xv a)l1 lﬁ(xa a) - ﬁ(a~ a)') .

In this region @, f(x, y,z) = B(a,a) (x, y, and z distinct — a). Since @, f is
Symmetric in its three variables, we can estimate the difference

lq)Zf(xa ) Z) - ﬂ(ao a)l

by first permuting the variables in order to bring them into the region in which the
Preceding estimates have been made. n

Caution. A function f on Z, can have a derivative f’ € S' without being twice
strictly differentiable, namely with f & $2. One can think of a function f with
Vanishing derivative at each point, hence with f’ = 0 € $2, but that is not strictly
differentiable at a point: We have given an example of such a function, locally
Constant outside the origin, in (1.1).
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1.5. Differentiability of Mahler Series

Let f be a continuous function on Z, and choose y € Z,. We can write the Mahler
expansion of the continuous function x + f(x + y) as

fo+y) = ZC"‘”G) with c¢(y) = (V% £)(3) - 0.

k>0

Theorem. Let f be a continuous function on Z,. Then f is differentiable at y
precisely when

YV H/kl = 0 (k — o).

Inthis case f'(y) = Y o (=D} (VX ))/ k.

Proor. Replacing f by its translate x +> f(x + y) we see that it is enough to
prove the theorem when y = 0. Now, since ¢y = f(0), we have

F&x) - fO) _Z_c_k_ x =Zc_k x—l)
x ~x\k) Hk\k-1/)
If |cx/ k| — O (when k — 00), the Mahler series
y
Z(ck/k)( ) =g()
o k—1
represents a continuous function of y € Z,. In particular, f’(0) exists and
-1 Ck Ck
"0) =g(—1) = — = —11E
£ = g(-1) ;(k_l)k ;( fo

Conversely, if f is differentiable at the origin, the function g defined by g(0) =
f'(0)and g(x) = (f(x) — f(0))/x for x # 0 is continuous on Z, and possesses &
Mahler expansion

g =) n (i) (where yx = V¥g(0) — 0).

k>0

We deduce

FO =~ fO=xg) =Y yex (")

k>0 k

()=o) () =) (i)

But
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Hence we can write

f(x) = f(0)+ xg(x)

X X
=co+ gn ((k + 1)(k N 1) +k(k))
=co+ Zk()’k—l + yk)(z)-

k=1
By uniqueness of the Mahler coefficients of f, we deduce ¢x = k(yx + vi-1)
(k > 1) and in particular ¢,/ k = y; + yx—1 = 0 (k - ©0). n

Comment. For any integer k > 1 we have [k| = p~*® > 1/k, or equivalently,
1/|k| < k. Hence |ci/ k] < k|ck|, and the condition k|c,| — Oimplies |cx/k| — O.
This stronger condition will imply strict differentiability of the Mahler series.

Let us first give a statement concerning Mahler series of Lipschitz functions.

Definition. A function f:X — K (as in (1.1)) is Lipschitz when there exists
a constant M with

1f() = fI = Mlx —y| (x,y € X).

Since the smallest bound M is
ISl : =sup |Df(x, y)l,
x#£y

Lipschitz functions are also characterized by |®f| bounded. We shall denote by
Lip (Z,) the subspace of C(Z,) consisting of Lipschitz functions. By definition,
S'(Z,) C Lip(Z,) C C(Z,).
Proposition. A function f = Zkzo Ck (k) € C(Z,) is Lipschitz precisely when
{klek[}so is bounded, namely

|®f| bounded <= the sequence k|cy| is bounded in R>.
The proof of this proposition is based on the following lemma.

Lemma. Fork > 1and p’ <k < pi*!, we have

(z) - (i)l <plx—yl (x,yelZp).

Comment. More precisely, when k is in the quoted interval, its expansion in base
P has the form

k=ko+k1p+-~-+kjp’ O<k<p, kj;éO)
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(j + 1 digits), and we call k_ the integer ko + k1 p+ - - - +kj—1p/~! < pJ (at most
j digits). Then

k—k_=kjp', lk—k_|=p,

and the statement of the lemma can be written uniformly for all integers k:

(- Qfw-sr s

This lemma shows that |x — y| < |p/| = p~/ implies |(}) — (})| < 1. For
example, if y = x 4+ p” forsome h > j,

(z) - (x:ph)| <1 (fork < p".

This is the p"-periodicity of the binomial functions (IV.1.3)

x> (i) modp (k < ph
already exploited in the proof of the Mahler theorem.

Proor oF THE LEMMA. The formal identity (1 + TY+ = (1 + T)*(1 + T)" leads

to the well-known relation
( y) Z ( )(y)
k i+j=k LAY

(first for positive integers x and y but also by density and continuity for p-adic
integers x and y). Write then

()-C77)-20)0) -0+ 2 0)62)

Thus

0-C)=Z(2) =202

and it only remains to estimate

i)

1 1
t=isk [i}  minj<i< Ji]
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Itis clear that for pl <k< pI*1, the minimum in question is attained for i = p’
with |i| = |p’| = p~/. The lemma follows. n

Remark. A slightly less precise inequality, namely

(&)-()

would be sufficient for our study of S! functions.

<k-lx-yl,

Proor OF THE ProposITION. Let us write the difference quotients

Of e+ by x) = Iﬁﬁ_"_):ﬂ‘_) %ch ((x:h) ~ ()1:))

k>1

Z ( <z>)

I
x>
A
> 2
(=]
™
A
e
(o
\/
~
|
~—

for h # 0. We observe that

TG =5

~ |nl
uniformly in i (and fixed h # 0). The double family

;—"(’f)(k’i,) N kc—ki()ic)(k}:—l 1)

is thus summable in any order, and in particular, it is equal to a double series over
theindices i > 0 and j = k —i — 1 > 0. Replacing h by y + 1, we obtain

Ofx+y+1lx)=) fJ-‘Z—TC)C) O # —1).

i,j=0

=0 (k— o0)

Firstly, the ultrametric inequality gives

|Of(x+y+1,0)] < sup | 4L
i.j>0 J +1
and hence
19f = sup |Of(x+y+1,x] < sup | 2]
x,y#£—-1 i,j>0 + 1
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In fact, the preceding expansion is a false Mahler series in y because it is not
valid for all values of y € Z. Nevertheless, it holds for all (x, y) € N x N, and
this proves that the coefficients are given by the finite differences on the integers,
Hence secondly,

Citj+1
HE < sup [@f] = |@f |l (< 00)
JH1 7 xysa
and
sup |4 < Jof.
i,j=0 1
Altogether, we have
sup [ZHEL| = Jaof) (< o0).
ij01J+1

In particular, considering only the subset of indices (i, j) for whichi + j +1=n,

sup (Ical, [€n /21, - .., len/nD) < RS-

On the left we have

lealsup 1/lil = leal - p* (P < < p**).

i<n

Call «, the highest power of p that is less than or equal to n. The preceding
considerations prove that

Citj+1
I®fll = sup [——==| = sup kalcal.
ij=0 | J+1 n>1
Since k, < n < pkp, the proposition follows. .

Corollary 1. Let f e Lip(Zp)and f =Y ¢, (n) its Mahler expansion. Then

I®f1l = sup k,lc,| < 0. s

n>1

The number || ®f || does not define a norm on the vector space Lip (Z,) because
&f vanishes for constant functions: It is only a seminorm. In order to have a norm
we take

If il = sup (LF(O), N RF 1D

Since f(0) = ¢o, we define in an ad hoc way the value g = 1 in order to have

I fllh = sup knlcal.
n>0
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Corollary 2. Let f € Lip(Z,) and Sf its indefinite sum. Then Sf € Lip(Z,)
and

Iflh < USflh < Pl flh-

Proor. We have

I fllx = sup «ilaxl,
n>0

"Sf"l = sup Knlan—ll

n>1
by Corollary 2 in (IV.3.5). Now observe that
Kn—1 < Kn < DKn—y,

whence the assertion. n

Corollary 3. The map

=)~ (%),

is an isomorphism between the normed spaces (Lip(Z,), | . l1) and £°. The
functions

landx,,(x) n>1)
n
correspond to the “canonical basis” of €.

Here, «,, (highest power of p that is less than or equal to n) is considered as an
element of Z,: Its absolute value is |k, | = 1/k, € R.o.

Proor. Any f e C(Z,) is given by a Mahler series
f= ch(') (lca) > O).
n>0 n
When f is Lipschitz. we write this series
- )
=) — € Lip(Z
f ; KnKn (n) ip(Z,)

with

£l = sup (LFO), 1D “E" sup Knle,] = sup len/kal;

n>0 n>0

hence the result. ]
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1.6. Strict Differentiability of Mahler Series

Theorem. For a continuous function f =Y. ci(;) € C(Z,), we have

klci]| > 0 (k — 00) = f € SN(Z,).

Of(x, y) = é;ck (C) - (z)) / x -,

and thanks to the lemma (in its weak form),

() () oA e

If k|cx| — 0, @f is a continuous function as a sum of a uniformly convergent
series with continuous terms: The polynomial (}) — (7) in x and y vanishes identi-
cally on the diagonal x = y and s divisible by x — y, whence ((;) — (3)) /(x—¥)
is also a polynomial function. n

Proor. We have

sup
x.y

It is possible to prove conversely

feS\Z,) = klal >0 (k- ).
Corollary. Let f € S'(Z,) and Sf its indefinite sum. Then Sf € SNZ,). ™

With the preceding results, it is easy to construct examples of continuous func-
tions on Z, exhibiting various behaviors (as far as differentiability is concerned).

Example 1. Let the Mahler coefficients ¢; of a continuous function f be
pl ifk=pl,
= { 0  if k1s not a power of p,
so that
|ck/ k| takes alternatively values O and 1.

Hence |c;/ k| does not tend to 0, thereby proving that f is not differentiable at the
origin. But @£ is bounded, since k|c;| (taking values O and 1 only) is bounded.

Example 2. As in the preceding example. but with

pH ifk=pl,
Cr =
* 0 if k is not a power of p.
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Then

lck/ k| takes alternatively values 0 and | p/| — 0,

so that f is differentiable at the origin. Here |ci/k| = k|ci| and f € S'.

2. Restricted Formal Power Series

2.1. A Completion of the Polynomial Algebra

Recall that in this chapter K denotes a complete extension of Q,. A formal power
series with coefficients in a subring R of the field K is a sequence (ap)n>0 Of
elements of R. However, when we use the product

(an)nzO . (bn)nzo = (Cn)nzo with Cph = Z aibj (n > O)

i+j=n

we prefer the series representation f(X) = ), ., a» X" instead of (a,)n>0. The set
of formal power series is a ring and an R-algebra denoted by R[[X]]. Recall that
the formal power series ring with integral coefficients has already been considered
in (14.8); we shall come back to a more systematic study of formal power series
rings in (VI.1). The particular formal power series having coefficients a,, — 0 are
called restricted formal power series, or more simply restricted (power) series.
The restricted formal power series with coefficients in K form a vector subspace
of K[[X]] denoted by K{X} and isomorphic to the Banach space ¢o(K) (IV.4.1).
This subspace is a completion of the polynomial space for the Gauss norm — sup
norm on the coefficients —

K[X] c K{X} c K[[X]].
We still call Gauss norm the extension

IFOON = sup lan| = max la,| (f(X)=) a,X" € K{X}).

n=0 n=0 n>0

Lemma. For rwo restricted power series f and g, we have
lfgl<1rinel.

Prook. Let f(X) =300 X", g(X) = )_,.0bn X" be two polynomials. Their
Product o = fg is the polynomial h(X) = ano ¢, X" having coefficients ¢, =
itj=p Gibj. Since |c,| < max;y,=n la;illbjl < | fllllgl,

Ifgl = maxcal < IfNlgl (f:g € KIXD.

Hence multiplication is (uniformly) continuous in K [X] and extends continuously
10 the completion K {X} with the same inequality. n
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Hence K{X} is a ring and a Banach algebra. This is the Tate algebra in one
variable over K .

As usual, we denote by A the maximal subring of K, M the maximal ideal of
A, and k = A/M the residue field of K. The unit ball A{X} C K{X} is a subring,
since

Ifl<1, lligh<1=lfgl <1

From this it follows that the reduction (IV.4.3) of the Banach space K{X}, the
quotient of its closed unit ball by its open unit ball, is the polynomial ring over the
residue field

A{X}/M{X} = k[X).

Let |x| < 1 (x in K or K’: complete extension of K)and f =) . ,a,X" are-
stricted formal power series. Then |a,x"| — 0(n — o00),sothat f(x) =) _,.oanx"
converges and f defines a function on the unit ball of K (or K’)

f:A—> K:xHZa,,x".

n>0

The sup norm of this function satisfies

It flic,ca,xy = sup | f(x)] < Sug lan| = Il fllkixy-
A n>

In particular, the series ano a,x" converges uniformly on the unit ball A, and f
defines a continuous function on this ball. The linear map

K{X} > Cy(A;K): Y a X" > f

n>0
is a contracting map of Banach spaces.
Example. Let K = Q,, and consider the polynomial (restricted formal power
series) X — X? of norm 1 in Qp{X}. Since x = x (mod p) for all x € Zp, we

have |x? —x| < |p| = 1/p when x € Z, and the norm of the continuous function
x> xP—xonZyisl/p < 1.

Theorem. If the residue field k of K is infinite, the canonical embedding
K{X} — Cp(A: K) is isometric:

sup [fOl = | fllkixy-
xe€A
Proor. If f = 0, then || f|| = O and there is nothing to prove. Otherwise, we can

replace f by f/a, where |a,| = | f||. Thus we may assume that || f|| = 1.In this
case the image of f € A{X} in the quotient is a nonzero polynomial

f e A{X}/M{X} = kIX],
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and since the residue field £ is infinite, we can find « € k> with f(a) # 0. Taking
any a € A* C K> with residue class « in k*, we have

lal =1and |f(a)| =1,

whence sup;, <1 | f(x)] = maxy<1 | f(xX)] = maxpy=1 [ fO) = 1= || f]l. n

The preceding proof shows more: For f € K{X}, wehavesup, | f| = max,4 | f|
in spite of the fact that the unit ball A is generally not compact. Moreover, the
maximum of | f(x)] (Jx| < 1) is attained at a point x with [x| = 1.

Recall that we denote by A, the maximal subring of C,, (closed unit ball) and
by M, the maximal ideal of A, (open unit ball).

Corollary. We have

= max
x€A,

sup |a,| = sup
n>0 x€A,

E anx” E apx”

and this maximum is attained on A;‘ = A, — M,, which is the unit sphere
|x| =1 in C,. The canonical embedding

K{X}—> Cb(Ap;C,,)
is isometric. n

2.2, Numerical Evaluation of Products

Let f(X) = Y ns0anX" and g(X) = ), bn X" be two restricted power series.
Their formal product is the power series

h(X) = Zc,,X",
n>0
where
=Y aib; (n>0).
O<i<n

As we have seen in the previous section, it is again a restricted power series.

Theorem. Ler f(X), g(X) € K{X} be two restricted power series and let h(X)
be their formal product. Then h(X) € K{X}, and the evaluation of this formal
Product can be made according to the usual product

h(x) = f(x)g(x) (x| <1).

Proor. Replacing a,x" by a, and 51m11ar]y b,x" by b,, we see that it is suffi-
cient to prove the statement for x = 1. With ¢, = ZOs:sn a;b,_; we have to
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prove
if Y ,s00an and ), o by converge, then ), ., c, converges and

Sa=Ya Y
n>0 n>0 n>0
Because multiplication is continuous,
Zai-ij —Za,--ij -0 (N — o).
i>0 j=0 i<N J<N
Let us show now that
Sa-Yb-Y a0
isN  j<N k<N
Choose N, large enough to ensure
lail <&, |bil <& (i > Ng).
Now the difference
D) b= o
i<N jsN k<N

is the sum of the terms @; b; corresponding to pairs (i, j)in the square 0 < i, j <N
above the diagonal, namely with i + j > N. The contribution of these terms is
less than or equal to £C if C is an upper bound for the coefficients and N > 2N,
because at least one index i or j will be greater than or equal to N,. This proves
the theorem. [ ]

Observe that the classical result concerning absolutely convergent series cannot
be applied here, since we only assume |a,| — 0 and |b,| — 0 (but ) _ |a,| and/or
> |by| may diverge). On the other hand. due to the ultrametric inequality, it is now
easier to estimate tails of sums!

Corollary. The canonical map K{X} — Cy(A; K) is a norm-decreasing ho-
momorphism of K-algebras. .

This isomorphism is isometric when the residue field k of K is infinite (and als0
when | K *| is dense in R, as we shall see later (V1.1.4)). The identification ofa
restricted formal power series f(X) with the function f that it defines on the unit
ball A will often be made.

2.3. Equicontinuity of Restricted Formal Power Series
Let us still identify K{X} with a normed subspace of C,(A;C,). With A =
B<1(K) as usual,

sup ()] < 1 lkpn = sup lanl = sup [f)] (f =3 anX" € K(X))-

X€A n> xeA,
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Proposition 1. The unit ball in K{X} is uniformly equicontinuous. More pre-

cisely, K{X} C Lip(A)and ||@f || < | flh < | fllfor f € K{X}. Inparticular,
[fOc+h)— FOOI < |AIfIl ifix] < 1 and |h] < 1.

Proor. Write f =) a,X", so that
fO=fO)=) anx" —y)=(x =)D anx" ' +---+y").

n>0 n>1
If |x| < 1and |y| < 1, the ultrametric inequality gives |x" ! + ...+ y"7 1| < I,
and the result follows. n

In a similar vein, let us derive the following inequalities.

Proposition 2. If f € K{X}, then
O+ = fO—=fOI+FOL<IfI-1xyl (x] <1, Iyl <D.
If moreover f is odd, then
fax+y)=f—fMI<IfIl-lxyx+yl (xI<L Iyl<D.
Proor. With the same notation as before,

f+y = f&) = M+ FO) =Y _an((x+y)" = x" = y"),

n>2

whence the result, since each term (x + y)” — x™ — y" is divisible by xy. When f
is odd,

fR+)—f@—fO)= Y allx+y)—x"—y").

nodd >0

Only the terms with n odd and greater than or equal to 3 remain in the sum, and
for these

(x+y)" —=x" = y" = xy(x + y)pa(x)

for some integral polynomials p, € Z[X]. Hence || p,|| < 1. n

Remark. Although it is uniformly equicontinuous, the unit ball of C,{X} is not
Precompact in Cp(A p; C,p): The Ascoli theorem is not applicable, since A, is not
IOcally compact. For example, the infinite sequence (X"),>¢ satisfies

1IX"=X"|=1 (n#m)

and hence contains no convergent subsequence. However, if we consider the re-
Striction of these continuous functions to the (compact) unit ball R of a finite
Cxtension K of Q,, the preceding sequence admits a convergent subsequence,
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namely (X?" ),,,>0, where ¢ is the cardinality of the residue field of K. In fact, the
subsequence (X?" ) converges uniformly on every unit ball B,(0; K), provided
that K has finite residue degree over Q, (II1.4.4).

2.4. Differentiability of Power Series

The formal derivation operator f + f’ is continuous and contracting on K{X}
simply since |na,| < |a,| — 0 and

If'll = sup Inan| < sup |an| = I fIl-

We are interested in strict differentiability; hence we look at the differential
quotients

Of(x,y)=

fx)— f) £ ).
x—y

When f € K{X}, Proposition 1 of (2.3) shows that
X, V)= a, Y X"y

n>1 O<i<n-1

is a formal power series in two variables and coefficients tending to zero. Thus
@ f has a continuous extension to A x A that is a sum of a uniformly convergent
power series (in two variables). The value on the diagonal is

f(X.X)=) na,X"".

n>1

This proves the following result.

Theorem 1. Let f € K{X}. Then f defines a strictly differentiable function on
the unit ball A of K: f € S'(A). The derivative of f is given by the restricted
Jormal power series

f'=fla =) na,X"" € K{X)}. .

n>1
It is easy to give more precise estimates for the convergence:

Of(x,y) = ) naE" = an(x" —y")/(x —y) = Y nag"

n>1 n>1 n>1
— Zan(xn—l ooyl nf"_l)—> 0
n>1

when (x, y) — (&, £). In fact,

Gy T e = Y oy -,

i+j=n—1
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and by (2.3),
Ix'y/ — "7 = Ix'y’ — £'E]
< max (Ix'|ly’ — &), Ix' — '11g7))
<max(ly —§l,Ix —&D (x.y,§ € A).
We have obtained

[@f(x, ) = fE < IfIl - max(ly — &I, Ix — &)

Theorem 2. A restricted formal power series f = Y a,X" defines a twice
strictly differentiable function on the unit ball A of K : f € S?*(A).

Proor. As we have seen in the proof of the preceding theorem,

q’f(xvy)=Zan Z Xyl =aitax+y)+---.
n>1 i+j=n—1

and hence, for distinct x, y, z,

Qf (x,2) — ®f(y,2)
x-=y

:Zan Z x;:iizj

n>2  it+j=n—1

= Zan Z xkytzm.

n>2 k+4-€+m=n-2

(be(x’ y,2) =

Since |a,] — 0, this series converges uniformly on A x A x A and represents a
continuous extension of &, f. n

Generalization. Let us just indicate here that differentiability of restricted power
series is not limited to order two. In fact, one can define higher-order difference
quotients inductively by

D1 flxo, x2, -y x) — Pry fx1, X2, .- xa)
X0 — Xy

Dy f(x0, x1, - .. X)) 1=

(xo # x,). The expressions @, f are symmetric in their k + 1 variables, and an
€asy computation shows that

Oy f(X0, X1 X = D (ﬁ_%f)_—x)
i J#ES
Takjng f(x) = xV we obtain

ig i iy
D f(xg, X152 5 X1) = E xgxy' - xt,
ip+iy+-- +ig=N—k
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a sum of all homogeneous monomials of total degree N — k. In this case &y f has
an obvious extension to the diagonal (all x; = x):

& f(x, x x) = xN* #{monomia]sofdegreeN—k}
k 3 XKy ooy = .

in k + 1 variables

_ N N_k_(xN)(k)
=) T T

The equality & f(x, x, ..., x) = f®(x)/k! remains true by linearity when f is
a polynomial or even a restricted series. These functions are of class S on A.

2.5. Vector-Valued Restricted Series

Let E be an ultrametric Banach space over K. A restricted vector series (with
coefficients in E) is a formal power series

fX) =) aX",

n>0

where a, € E, |la,|| = 0. We can still define the Gauss norm of such a restricted
series f by

I FIl == sup lla,ll-
n>0

Hence the normed space of restricted vector series (with coefficients in E) is a
Banach space isometric to co(E). If the indeterminate X is replaced by a variable
x € A C K, the restricted series ) _,.,a,X" gives rise to a continuous vector-
valued function f: A — E, which we can write as f(x) = Y, ., x"a, (not that
it matters, but we may prefer to write scalar multiplications on the left), for which

sup || f(0)ll < sup lanlt =111

Ixi<1 n>i

That is, the linear map co(E) — Cp(A. E) is continuous and contracting.

Proposition. When the residue field k of K is infinite, the canonical map
co(E) — Cp(A, E)is an isometry.

Proor. Assume [ fll = ¢ > 0 and look at the A-module B<.(E): Its quotient
E = B<.(E)/B..(E) is a vector space over k = A/M. The restricted series f
with coefficients in B<.(E) has a polynomial image f = }_a, X" having at Jeast
one nonzero coefficient, since || f|| = c¢. We can choose a k-linear form @ on
E such that ¢(a,) # O for such a coefficient. The scalar polynomial ¢ © f=
Y. X" =Y ¢(a,)X" is not identically zero and there is an element & € k* such
that ¢ o f() # 0. A fortiori f(cr) # Oand || f(a)ll = ¢ forevery a € A, a inthe
coset « (mod M). .
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3. The Mean Value Theorem

3.1. The p-adic Valuation of a Factorial
Since the formula for the p-adic order of n! will play an essential role, we review
it.
Lemma. Let n > 1 be an integer and let Sp(n) be the sum of the digits of n in
base p. Then the p-adic order of n! is given by

n— Sp(n)

ordp(n!) = T

Proor. We have to compute

ordy(n!) = Z ord (k).

1<k<n

Let us fix an integer k < n say with order ord,(k) = v and write its expansion in
base p:

k=kop®+---+kp® (v<¥, k,#0).
Then
k=l=@p=D+-+@=Dp"™ +k — Dp"+--- + ke,
and hence
Splk —1)=v(p — 1) + Sp(k) — 1.
Equivalently,

v = ord,(k) = ;%(1 + Sptk — 1) — S,(k)).

Summing over all values of k < n we obtain a telescoping sum

1
p—1

1
ord,(n!) = -1 DU+ Spk— 1) = Spk) = (n—Spny. ™

1<k<n

ALTERNATIVE PROOF. A more traditional way of obtaining the same formula goes
as follows. The number of integers k with fixed v = ord,(k) that appear in the
Product n! is equal to the number of multiples of p" that are not multiples of p¥*!
(and are less than or equal to n), namely

)5
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where [x] denotes the integral part of the real number x. Hence

- (3]
AERONE e

Let us write n in base p as n = ng + n, p 4+ nap* + - - - (a finite sum). Then

n 2
_I; =m+mp+np +---,

n 2
— | =n+nmptmp +---,
p

n=ny+pi|—

n | n
—|=m+p S\
P L P

n—_ | n
—’;_ =n;+p | i |

Hence [ n ]

Summing all these, we obtain
n +ord,(n!) = Sy(n)+ p ord,(n!),
n—Sp(n) =(p — 1)ord,(n!)

and the result follows.

3.2. First Form of the Theorem

As already recalled in (2.1) the field K is assumed to be a complete extension of
Q, (e.g., Cp, or ). Even for polynomial functions f, the following form of the

mean value theorem,

[f(h) — fO)] < |nl- I £

does not hold without restriction. Recall that for polynomials f (or more generally
for restricted power series), we use the sup norm on the coefficients (Gauss norm)-
If the residue field of K is infinite, this norm coincides with the sup norm of |f1

on the unit ball of K (2.1).
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For example, if f(t) = t?, we have f'(t)= pt?~!; hence || f'| =|p|=1/p < 1.

1=|f() = fOI> k-1 f'l = 1/p.

However, we show below that there is a universal bound (depending on the prime
p but not on the restricted series f) such that the mean value theorem holds for
|h] < rp. The preceding example can be used to discover the limitation in size of
the increment 4. In order to have

I f(hR) — fO)I < |kl If)
in this particular case, we must have
[R)? < [RIF'I = Bl pl,

whence the restriction |h| < | p|//(P~D,
Let us recall that we have introduced a special notation (11.4.4) for this absolute
value:

=|pl/" ™, pl<r, <1
It will play an important part from now on. Observe that
1

rp=s3 rp> lp (p odd prime),

and alsor, ' 1 when the prime p increases (whereas |p| = 1/p \{ 0).

Theorem. Let f(X) € K{X} be a restricted power series and also denote by
[f the corresponding functiont — f(t) =_,., ant" on the unit ball A of K.
Then -

If+h) — fOI <A - 1

Jorallt,h € K with |t] < land |h| <r, = p|/®PD.

First Proor. (1) Let us establish first the result for a polynomial f. The Taylor
formula permits us to compute the difference f(t + h) — f(z) as

Dk D f(n) hk-1
f(t+h)—f(t)—;h" — h; o Do,
S0 that
hk 1
It < 1= £+ )= fO) < 1kl sup | == D' £,
Since

IDfIl = I f'Il = sup |kax| < sup lax] = I f1,
k>1 k>0
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we see that ||[D|| < 1, |D*|| <1 (k > 1). In particular, || D*~! f'|| < || f'|| and

ID* £l < sup lan| =5 0 (=0fork > deg /).
n>k

The result will be proved if we can show that |h*~1/k!| < 1 (for all k > 1). This
condition for k = p requires |h|P~! < |pl, ie., |h| < rp. When it is satisfied, we
have

A" < pl D < iy,

simply since

k—S,,(k)< k—l_
p—1 ~ p-—1

ordp(k!) =

(2) Consider now the general case of a restricted series f(t) = Zkzo .
Without loss of generality we may assume | f(t + k) — f(¢)| # O, hence f not
constant. Consider the polynomials f,(t) = ¥, _, axt*. We have

f— full = iup lax] — 0
as well as
Il full = sup lax| = || f1,
k<n

Al = sup Ikall = Ll

for all large n. Take t and & as in the first part. The convergence

fat +B) = fut) > f+h)— fF()#0

implies | f,(t + h) — f(t)] = | f(t + h) — f(¢)] for all large n. Hence, using such
a large value of the integer n, and using the result for polynomials, we have

If+h) = fOl = 1fut +h) = fu@®I < IR - U0 =R 00 »

SeconD Proor. Let us observe that

D™y (m\
koo \k)

so that the operator D¥/k! transforms polynomials with integer coefficients into
polynomials with integer coefficients: ||D*/k!|| < 1, || D*|| < |k!| — O. Bettef
still: If g is any restricted series, it is obvious that || D*(g)/k!|| — 0, since the first
k coefficients of g are destroyed by the operator D* (while the other coefficients
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of g are multiplied by integers under the effect of the operator D*/k!). Coming
back to the expression

D

fe+hy—f&)y=hy_ T ESD

k=1

we see that the mean value theorem will be proved if we show |k¥=1/k| < 1. For
k = p this condition requires || < |p|"/P~1 = r, as before. When it is satisfied,
take an integer k, put v = ord,(k), and write k = p’m > p". We have

A R A
—_—] < <P pl™ = |p|*.
| S ST lpl [Pl
The exponent is
pv —1 v—1
p= p_]—V=(1+p+---+p )—v=0,
and the proof is completed. n

Remark. Let E be an ultrametric Banach space over K and

fX)=)" ax*

k>0

arestricted power series with coefficients in E. Then we can view f as the vector-
valued function

t— Zt"ak, A— E
k>0

on the unit ball A of K (2.5). Then the mean value theorem immediately furnishes
W@ +h) = fFON <1kl -If)

fOr allt, h € K suchthat |t] < 1and |h| < r, = |p|"/P~D. In fact, simply replace
In the above proof |ax| by llaxl, | £(t)| by | ()|, etc. whenever necessary.

3.3. Application to Classical Estimates

Let us apply the mean value theorem (3.2) to the polynomials f(t) = (1 + t)?"
(n > 1). Since f'(t) = p"(1+ t)P"~*, we have || f’|| = |p"| and hence

I+ = 1] < || - |p"| for [t} < 7.
Recall that the fundamental inequality (I11.4.3) in its second form gives

(1487 —1] < Je| - (max (lt], |pD))",
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hence the same inequality only when |t| < |p|. Since
Iyp=lpl<r, <1

with strict inequalities for all p > 3, the mean value estimate is sharper for odd
primes (in the indicated region).

(a+x)¥*-1]
|

1 R

7

i
LG |
1
[}
1 -

0 1/p r oL |1 r=|x|

An application of the mean value theorem

With the Newton polygon method (VI.1.6) we shall be able to compute more
explicitly these absolute values |(1 + t)7" — 1|. Let us simply observe now that
this absolute value vanishes when (1 + t)?" = 1, namely when 1 +t € pp». The
smallest |t| for which this occursis 1 +t € pp, and as we have seen in (11.4.4),
this implies |t] = | p|"/?~D = p.

Let us give another application to binomial coefficients. Define successively two
polynomials g and f (having integral coefficients) by

A+ XY =14+p-g(X)+ XP,
f@®) =1 +1g(X)+ XP),
so that

f(0) =1+ XxP)y",
f(p) =1+ X)P".

Here we consider f : Q, — E, where E C Q,[X] denotes the finite-dimensional
subspace consisting of polynomials of degree less than or equal to np. The mean
value theorem (vector form) leads to an estimate of the norm of

fP) = FO =1+ XP" —(L+ Xy =Y ("J{" )xf - (:)X""-
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Since | /Il < In|, we have || f(p) — f(O)ll < [np| and in particular, looking at the

coefficient of XP*
n n
R

On the other hand, when j is not divisible by p, the coefficient of X/ satisfies

np
(j ) =0 (mod npZ,).

This last congruence was obvious a priori, since

n np (np —1
(p)z_p(p )ean,,.
J J\ji—1

3.4. Second Form of the Theorem

Let us give a closely related form of the mean value theorem for series converging
inM C A C K. Assume that f(t) = Ekzo axt* converges whenever |t| < 1.
More precisely, let us assume that the coefficients g; € K satisfy

|ax|r* — O for all positive real numbers r < 1.

The variable ¢ itself can be taken in the field K or any extension of this field, e.g.,
inCp. When T € M, we can consider the restricted series f; € Cp{X} defined by

f:(X) = Zakt"X".

k>0
If[f| < 1 we have f(@) = f:(t/7) as soon as the element T € M, is chosen such
that |¢| < |z| < 1. Obviously;

fi@/7) £l
T

and sup |f'(t)| = .
ri<lel Iz|

=

The mean value theorem for the restricted series f, now gives
t h t h
f(s+2)-n (—)] <170 |—
T T T 14

[f@t+h)— f®I < |h|- sup |f' O

Irl<|zf

EQUiva]ently,

Allthis is valid whenever |h/t| < rpforsome t € M,. Wecanfindsuchat € M,,
actly when |h| < rp. Let us summarize this result in the case K = C,, using
the notation

llell<i :== IS:Jpl lg)l (< o0).
1<
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Theorem. Let f € C,[[X]] be aformal power series that converges in the open
unit ball M,,. Assume that || f'|| <1 < oo. Then we have

[ f@+h)— f®O < k|- I f'll<
forallt e My, and |h| < rp. "
In this case, the mean value theorem holds in M,, for increments h € C,, satisfy-

ing |h| < rp, (notice the strict inequality). Examples of this situation are given by
power series f € Z,[[X]] (or more generally in A[[X]]): [| f'll<1 < 1. Take for

instance f =) ;.0 X* =1/(1 — X).Forall |t] < 1wehave |f(t +h)— f(t)| =
[h|/I(1 —2)(1 —t — k)| = |h| (¢, h € M), simply since [l —¢t| = |1 —t —h|=1
the strongest wins! Here | f'(t)] = 1/|1 —t|> = 1l and || f'l<; = 1.

3.5. A Fixed-Point Theorem

Theorem. Let K be a finite extension of Q,, R = B<1(K) its closed unit ball,
and f € K{T} a restricted formal power series with || f|| < 1. Assume

IS/l < Land inf |f(x) = x| <rp = |p|V®.
xX€
Then f has a fixed point in R.

Proor. The function f defines a continuous map from the unit ball R of K into
itself. Since |K *| is discrete in R (we are assuming that the field K is a finite
extension of Q,), there is a point xo € R with | f(xo)—xo| < r,.Define inductively
Xpt1 = f(x,) for n > 0. By the mean value theorem,

[Xnae1 — Xl = 1 f(xn) — f(xn-1)l
=< lxn - -xn—ll ° "f,“ =< lxn - xn—lia

and we see by induction that |x,41 — x,] < rp, (n > 0). If x, = x,,1 for on€
positive n, we are done. Otherwise, |x,, — x,—1| # O for all positive integers, and
as before,

1Xn41 — Xp| = If(xn) - f(xn—l)]
< |xn = xp-1l- "f’" < |Xn — Xp—1] < rp.

The strictly decreasing sequence |x,.+1 — x| in the discrete subgroup |K *| C R>0
has to tend to 0: (x,) is a Cauchy sequence. The limit of this sequence is 2 fix
point of f in R. .
Comment. To show that the hypotheses are necessary, let us consider the function
f(MY=TP+1e€Qp[T] C Qp{T}. We have

f@=pT" Ifll=5 <<l
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This function f has no fixed point in the unit ball Z,, of Q,,. In fact,
fX)—x=xP—x+1=1 (modp) (x€Z,)

so that infyez, | f(x) — x| = 1, and the second assumption of the theorem is not
satisfied. (However, x? —x+ 1 = Ocertainly has aroot in a suitable finite extension
of Qp, and f hasa fixed point in the unit ball of such an extension.)

3.6. Second-Order Estimates

Let us keep the notation of the general mean value theorem (3.2).

Theorem. We have
Lf(t+h)— f(&) = F'©OR < k72 - ")
whenever t, h € K satisfy |t] < 1 and

Ikl < |W2lif p=2, |kl <|pIV"~? if pisanodd prime.

Prook. Asin (3.2), it is enough to prove this theorem for polynomials. Let us write
the Taylor series of f at the point £:

fa+h) = f@) = f@Oh =) k- DFf)/k!

k>2

— hzz___ . Dk zf”(t)

k>2

hk—2 Dk—2f”
— 2 A
=h ?;: k(k—1) (k- 2)!(')'

As in the proof of the mean value theorem (3.2) we have

Dk—2f// Dk—2f//
(k—2)'|| <l (k=2), and 2 “ -0 (k—> o)
(1) For p # 2 it only remains to prove
hk—2
|k(k _— <1 (k=2).

For g — p this requires |h? ~2] < | p|. which is the condition given in the theorem.
hen it is satisfied, if v = ord,(k) > 1, we have k > p¥ and [k — 1| = 1, whence

[h|P" 2
tpl¥

<Ipl°

hk—2
Ik(k -D|~
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with an exponent

= > —v>
e b2 v_p_.1 v>0

the linear fractional transformation x — £=% increases when x < p — vert;-
p— P — verti

cal asymptote — since for x =0 it takes a value p*~! >1 above the horizontal
asymptote). In the case v = ord,(k — 1) > 1, we have k > p" + 1, and the
preceding estimates are satisfied. Finally, when ord,(k — 1) = ord,(k) = 0, we
have |k(k — 1)| = 1, and the proof is complete.

(2) In the case p = 2, we take a factor h?/2 in front of the above Taylor
expansion, and it only remains to prove

hk—2

CrE 72l

for [h] < |v/2|. For k = 4 this already requires |h2/2| < 1, which furnishes
the restriction |h] < V2. Conversely, assume that this condition is satisfied. For
v = ordy(k) > 1,

k > 2¥ and [k(k — 1)/2] = 2"

whence

- lo1—(v—1) — |2|e

hk—2 Ih|2"—2
, < <12
k(k — 1)/2 |21

Since we are assuming v > 1, the exponent e is equal to 2°~1 — v > 0. One can
treat the case v = orda(k — 1) > 1 in a similar way. u

Comment. The condition on the absolute value of the increment |#] is less restric-
tive for p = 2, but the inequality is also weaker in this case, since the denominator
2 in |h?/2] is important (it is irrelevant for odd primes p).

Corollary. Let K be afinite extension of Qp, R its ring of integers with maximal
ideal P. For n € N (or even n € Zp), we have

(1+x)"=1+nx (mod pnxR)

assoonasx € 2pR.

Proor. We take f(7) = (1 + T)", so that

() =n(n—1)A+TY"? (n>2),
Ifll = In(n — 1| (n>0).
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For [x] < |pIV®~? (tesp. < |v/2| if p = 2) we have

X2

[(1+x)"—1—nx| < >

A< mx - |5

Since |x/2| < | p| when x € 2pR, the preceding inequality furnishes the expected
statement. n

This corollary gives the fourth form of the fundamental inequality, mentioned
in (111.4.3).

4. The Exponential and Logarithm

4.1. Convergence of the Defining Series

Theorem. The series Zkz,(——l)""xk /k converges precisely when |x| < 1.
The series Yo x* / k! converges precisely when |x| < r, = |p|"/(¥~,

Proor. Since |k| = 1 for all integers k prime to p, in order to have convergence
of the first series, the condition |x*/k| — 0 implies |x| < 1. Conversely, when
x| <1,

k

<kixf >0 (k— o0).

For the second series
k

|~ ordp k) —
k!

Ik-ordpx —ordp (k)
’

= IxI*Ip p

We use (3.1) for the p-adic valuation of factorials. The exponent is

1 S, (k)
k (ordp(x) - ;)TI) + F

Since S,(k) = 1 whenk = p/ (j > 0) is a power of p, we have
x*

1
x -0 <= k (ordp(x) - -p————-—l) — 00,

and this happens precisely when ord,,(x) — ;le > 0, namely when

1 _
ordy(x) > ——, Ixl < |pl"/®-D

as asserted. n
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By analogy with the classical case, we shall write

k
log(1+x) = Y (~1f1 2,
k>1 k
e = = ﬁ
= exp(x) = ;
£kl

for the sums of these series whenever they converge. Strictly speaking, we should
mention the dependence on the prime p and, for example, write log (1 + x) and

exp,(x).

Comments. (1) In the p-adic domain, the exponential function is not an entire
function: The convergence of the exponential series is limited by the radius 7,

rp=13 and % <r, <1 (podd prime),
which we have already encountered as a limitation for the increments in the mean
value theorem (3.2) and (3.4). A heuristic explanation for this apparent coinci-
dence is furnished by the Taylor series, when expressed in terms of the differential
operator D = d/dx. Quite formally, we have

h*D* f(x)

= = exp(hD)(/)(x).

fa+m=Y"

k>0

On polynomial functions, or more generally on restricted power series, we have
seen that ||D|| = 1, so that the series for exp(h D) converges for |h| < 7p (as
we have just seen). However, observe that the first form (3.2) of the mean value
theorem holds even up to || < r,. Inthe classical case, the exponential is an entire
function, and there is no limitation for the size of the increments in the mean value
theorem.

(2) Since |x| < r, < 1 is required for convergence of the exponential, there
is no number e = exp(l) defined in Q,,. For p > 3, however, r, > 1/p = Ipls
and exp(p) is well-defined by the series: One could select a definition of a number
e = ey, as a pthroot of exp(p). Similarly, when p = 2 one could define e as fourth
root of exp(4). However, there is no canonical choice for these roots.

(3) The series defining the functions log and exp have rational coefficients.
Hence for each complete extension L of Q,,

x € Boy(Ly=log(l1+x) €L,
x € B, (L)=> ¢ =exp(x) € L.

4.2. Properties of the Exponential and Logarithm

Proposition 1. For |x| < r, we have

[log(1 + x)| = |x|, |exp(x)l =1, [l —exp(x)l = |x|.
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prook. For k > 1 we have S,(k) > 1 and hence ord,(k!) < (k — 1)/(p — 1). We
infer
k| > [k > [pfet = r51,
Ix/7k) < X7k < (xi/rp) " - Ixl < ) < 1
for k > 2and 0 < |x| < r,,. Hence the absolute values of the terms in the series

k
1 +x+z-);—'— = exp(x),
k>2 7

k
x4+ Y (=D = log(1 + x)
k>2 k

are strictly smaller than the first ones. By the ultrametric character of the absolute
value, the strongest (we underline it!) wins:

exp(x) =l+x+z--~ = |exp(x)| =1,
k>2

exp(x) — 1 =x+) - = |exp(x) - 1] = x|,

k=2
log(1+x)=x+ Y - == |log(l +x)| = |x]|
k>2
if x| < r,. ]
Corollary. The only zero of log(1 + x) in the ball x| < r, is x = 0. n

In fact, we shall prove a stronger result:

x > log(1 + x) is injective in the ball B,,.

Proposition 2. For two indeterminates X and Y, we have the following formal
identities:
exp(X + Y) = exp(X) - exp(Y),
logexp(X) = X,
explog(l + X) =1+ X.
Proor. The first identity is easily obtained if we observe that the product of two

Monomials X?/i! and Y/ /j!is

Xiyi __(i—l—j) Xiyi
it o\ i Ja+pH
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Grouping the terms withi + j = nleads to asum (X + Y)"/n!. Let us turn to the
second identity. In the series log(1 4+ X) = anl a, X" we would like to substitute
X =e"—1=5Y+bY>+.-.- (b = 1). We have to expand the following
expression and group the powers of Y:

D an(BrY +hY?+ ) =) e

n>1 n>1
Here are the first coefficients:
a=ab, c=ab +a2bf, c3 =a1bs +a; -2bb, +a3bf.
More generally, we see that
cn =a1bp +ax(--)+ -+ - + an—1(---) + a,by.

For2 < j < n—1thecoefficientofa; isapolynomialin b, . . ., b,_; with integral
coefficients (of total degree j). The problem is to evaluate the polynomials ¢, at
the rational values

-1yt 1

a, = ’ bn =
n n!

(n>1).

The result of this computation is known: Identical computations are classically
made for the substitution of the real-valued power series x = €” — 1 in the real-
valued log(1 + x) (convergent for |x| < 1). But it is established in any calculus
course that the result is log(e”) = y. Hence all evaluations of the polynomials ¢
vanish for n > 2, and the expected formula is proved. The third identity is treated
similarly. [ ]

Remark. The preceding proof is surprising: It relies on real analysis for a purely
formal result that is applied to p-adic series. It was our purpose to deal with the
exponential and logarithm function in an elementary way — before treating power
series systematically — and thus we had to give an ad hoc proof for this inversion.
But a more systematic treatment of formal power series will give us an opportunity
to present an independent proof of this property with no reference to real analysis
(VLI).

Proposition 3. For |x| <r, and |y| < r, we have

exp(x + y) = exp(x) - exp(y),
logexp(x) = x,
explog(l +x)=1+x.

Proor. Observe first that if a,, and b, — 0, then the family (a,b,;)n,m>0 1S SUT”
mable. In particular, its sum is independent of the way terms are grouped befor®
summing. Hence the first identity holds as soon as the variables x and y are in the
domain of convergence of the p-adic exponential

exp(x) - exp(y) = exp(x + y).
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Let us check the second identity: We have to show that it is legitimate to substitute
avaluex € C,, [x]| < rp, in the formal identity

X =logeX = log(1 + e(X)),
where

e(X)—Z—T—e

n>1

The substitution in the sum can be made by addition of two contributions:

1y —1ym-!
x = [Z i (X)"] + [Z (—’l—e(xy"] .
X=x X=x

n<N m>N

In the first finite sum, the substitution can obviously be made in each term accord-
ing to
%2

e(X) |x=x = (x + 1 +- ) =ex)" (x| <rp).

Since |e(x)| = |x| < rp < 1, we have

n—1

Z( l) e(x)" — log(l +e(x)) =log e (N — o0).

n<N
The proof of the second identity will be completed if we show that the second
contribution is arbitrarily small (for large N). But when [x| < rp, each monomial
appearing in the computation of e(x) satisfies |x'/i!| < rp (because i > 1),
and each monomial appearing in the computation of e(x)™ has an absolute value
less than r,'. All individual monomials appearing in the evaluation of the second
contribution )" - have an absolute value smaller than

(_l)m—l

m

m>N "~

sup r

m>N p

Since the power series for the logarithm converges, it is possible to choose N large
€nough to ensure that all |1 /mr; (m > N) are arbitrarily small and that the same
holds for their sum (mdependently of the groupings made to compute it). Again,
the verification of the third identity is similar. [

Corollary. (a) The exponential map defines an isometric homomorphism
exp: Bo,, — B, (1)=1+ B, C C}.
(b) The homomorphismlog : 1 + M, — C,, is surjective.

Proor. ( a) The fact that the exponential map is injective in its domain of definition
Tesults from the equality loge* = x. Better still, the exponential is an isometry:

le* —e'l=le*|le*™> — 1l ={e" 7 — 1| =|x — yl.
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The inverse of the isometry
B, — 1+ B,

is the restriction of the logarithm to the ball B_,,(1) C 1 +M,. In particular, we
have

log(1 +x)(1+y) =log(l +x)+log(1+y) (x,y€ B.,).
But the power series

fx,y)=log(l + x)1 +y) —log(1 + x) —log(1 + y) = Y Gpax™y"

n,m>0
converges for [x| < 1 and |y| < 1. Since

3m+nf
3"X3"Y |(x,y)=0.0)

m!nla,, = =0,

we conclude that the logarithm is a homomorphism in its ball of convergence:
log(l + x)(1 +y) =log(1 +x) +log(l1 +y) (x,y € Bay).

(b) If x € C,, choose a sufficiently large integer n in order to ensure that
|p"x| < rp. Hence

p"x =logexp p"x, x =Ilogé

fora p"throot &£ € 1 + M, of exp p"x € 1 + M,, (II1.4.5). u

4B,

The unit ball in Cs
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Theorem. The logarithm defines a homomorphism log : 1 + M, — C,. Its
kernel is the subgroup pp=. Its restriction to 1 + B.,, is an isometry (hence

injective).
prook. There only remains to establish the statement concerning the kernel of the
logarithm. Let x = 1+t € 1+ M, be in this kernel. We know that x> 1

(whenn — o0) (111.4.5: Proposition 2) Taken large enough so that [x?" —1| < rp.
Since x”" is still in the kernel, we now have x?" = 1 by the corollary of the first

proposition. .

4.3. Derivative of the Exponential and Logarithm

The exponential and logarithm are strictly differentiable functions in their disk of
convergence (2.4), and

kxk—l xk—l
’ — — ——
fexpal' =3 = = ; k-1t P®

k>1

1
llog(1 + 07 = Y (114 —Z( DI = e

k>1 k>1

Proposition. Let t € M. Then, the derivative of
x>0+ Z,—> C,
at the origin is log(1 + t).

Proor. By definition, we have a Mahler expansion
A+ = Zt"( ) (x €Z,),
k>0
since ¢ € M, c C,. We deduce

(A +1y “‘Z'()=Zk(i::) -t

k>1

x N k—l)k’

k>1

a+o -1 _ x=1y e\
. log(1+t)—Z((k_l) -1 )k

k>2
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When |t] < 1 we know that t*/k — 0, whereas

x—1 k-1
(k— 1)—(—1)

—1
<1, (z ) — (—1)"_l whenx - 0 (k> 1).

-1
This proves that
9—% —log(l+t) (x > 0inZy)
uniformly in ¢ on any disk B, C C, of radiusr < 1. n

Comment. We can write
(d/dx)—o (1 + 1ty =log(l +1),

where the derivative is the limit of difference quotients taken with respect to
increments in Z,. When log(1 + t) # 0 and |A| is small enough, we have

A+t -1
h

= |log(1 +1)].

This provides an improvement of the second form of the fundamental inequalities
(IIL4.3), in the region r, < [t| < 1. But |log(1 + ¢)| is arbitrarily large in this
region, since log : 1 +M, — C, is surjective (4.2).

4.4. Continuation of the Exponential
It is natural to try to construct a homomorphism
f:Cp— C;

extending the exponential defined above by a series expansion. If such an extension
exists, when x € C,, we can choose a high power p" of p so that p"x € B, (the
exponent n depends on x) and then

F&)P" = f(p"x) = exp(p"x).

In other words, f(x) has to be a p"th root of exp p"x in the algebraically closed
field C,,. This can be done in a coherent way, thus furnishing a continuation of the
exponential homomorphism.

Proposition. There is a continuous homomorphism Exp : C, — 1+ M, €x-
tending the exponential mapping, originally defined only on the ball B,, C Cp

Proor. Recall that 1 + M), is a divisible group (II1.4.5), and divisible groups
are injective Z-modules (111.4.1), and hence enjoy an extension property for
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homomorphisms defined over subgroups. We can use this for the homomorphism
exp: B, — 1+ B, C 1 +M,,

since its target is the divisible group 1 + M,,. ]

For this corollary, only the p-divisibility of 1 + M, is used.

The usefulness of the extensions Exp is limited by the fact that none are canon-
ical. However, since the logarithm is defined on the image of any extension, the
composite log oExp : C, — C, hasameaning. If x € C, letus choose an integer
n such that p"x € By, and consider the following equalities:

p" log oExp(x) = log(Exp x)”" = log(Exp(p"x))
= log(exp(p"x)) = p"x.
Consequently, log oExp(x) = x. We have obtained the following result.
Corollary. Thelog: 1+ M, — C, is inverse to all extensions
Exp : C, > 14+ M,,
and any such extension is injective. n

Let us summarize the construction in a diagram of homomorphisms (of abelian
groups):

Ex lo
¢, 22 1+m, X ¢,
0] U U
exp log

B<rp —> 1+B rp —> B<rp-

Both composite arrows are identities.

4.5.  Continuation of the Logarithm
Proposition. There is a unique function f : C ; — C,, having the properties

(1) f is a homomorphism: f(xy) = f(x)+ f(»),

(2) The restriction of f to 1 + M p» = B<1(1) coincides with the logarithm
defined by its series expansion,

(3) f(p) = 0 (normalization).

Prook. Let us start with the uniqueness statement. By (II1.4.2), the subgroups
PQM(,,) and 1+M), generate C} . Hence it is enough to see that the given conditions
‘mply that f vanishes on pQu. Thls is obvious on the subgroup p, since the field C,,
(of characteristic 0) has no additive torsion. On the other hand, if x € p@, there w1ll
be an equation x* = p® (with some integers a and b). Hence af(x) = bf (p) =
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by the normalization condition, and f(x) = O as expected. For the existence
part, it is enough to define f trivially by O on p@u observing that this definition
is coherent with the logarithm on the intersection p@u N (1 + M) =4 .
But the subgroup pp~ is precisely the kernel of the logarithm series (Theorem
in (4.2)). [

The preceding continuation of the log function is called the Iwasawa logarithm
and is denoted by Log.
Theorem. The Iwasawa logarithm has the following properties:

(1) It is locally analytic: In the neighborhood of any a # 0

—1k-1 _ k
b (xa“) (x —al < la]).

Logx:Loga+Z
k>1

2) Forx € 17,

1 1—xP 1y
Logx = Z( x ).
1~pkZl k

(3) For any complete subfield K of Cp, Log(K*) C K.
(4) For every continuous automorphism o of C,

Log (x°) = (Log x)°.

Proor. (1) When a # 0 let us simply write x = a(1 + (x — a)/a) and

Logx=boga+log(l+x_a),
a

so that the asserted expansion follows.
(2)If x € Z, we have xP"'=1 (mod p)and

1

Log (xP™!) =
p—1

Logx =

log (1+ P71 —1)).
P g (14 ( )
The series expansion is applicable to the last term and furnishes the announced
expression.

B)IfK DADMandx € K*, let us write

x=p -L-u (reQ, {e€pup, ucl+M),

so that Log x = log u. Hence we can find integers n and m with x” = p™v, wher¢
v € 1+ M, and hence nLogx = Logv. Since x" € K, we have v € K. Now
the coefficients of the series defining the logarithm are rational and K is complete:
logv € K, and finally Log x = (log v)/n € K.
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(4) Under the stated conditions, we can consider the homomorphism
f:C5—>C,, x> 07" Log(x?).

We know that {x?| = |x| by uniqueness of extensions of absolute values first on
Q, 3. 3) and then also on C,, by continuity. Since the coefficients of log(1 + x)
are rational numbers, the second condition of the proposition is verified by f.
Hence f satisfies the three characteristic properties of the Iwasawa logarithm: It

must coincide with it. -

Comments. (1) The product of the subgroups p p and 1+ B.,, isadirect product,
since the intersection of these subgroups is trivial. But this product is not equal
to 1 + M,,. Indeed, the logarithm of an element in the product is in the ball

B<"p?

l()g (#p“’ . (1 + B<r,,)) = B<rp,

whereas log(1 + M) = C,. A different way of seeing this consists in observing
that

1# ¢ =14 € ppe = |E] = |p/*?) > 1,
(¢ of order p/) (11.4.4). Takingx = 1 +r € 1+ B.,,, hence |t| < |£|, we have
Cx =1+&+1t+ &t with [£2] < min ([&], ¢]).
Now
gx — 1] = [§] = | p| /P

has a very particular form. It is clear that we are not obtaining all elements of
14+ M, in this form (in M,, the p-adic order is an arbitrary positive rational
number).

(2) The rationality property of the logarithm shows that for every finite extension
K of Q,, the logarithm furnishes an isometric isomorphism

log: 1+ B<,,(K) = B, (K).
In particular,
log: 1+ pZ, > pZ, (=Z,) (poddprime),
log:1+4Z, > 47, (=7Z,).
In general, with the conventional notation

K DRDP=nmR,
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the multiplicative subgroup 1 4 P still contains its torsion subgroup (p-torsion)
as a direct factor. Let m be the largest integer such that K has a p™th root of
unity: This torsion subgroup is ppn; it is cyclic. One can show that there is ag
isomorphism

14+ P55 Z/p"Z x R.

This results from the structure theorem for finitely generated Z,-modules: The
ranks of the multiplicative Z ,-modules

1+ P, 1+B, (K)C1+P

are the same, since the quotient is finite, cyclic of order p™ (cf. A. Weil: Basic
Number Theory). These results do not extend to infinite extensions of Q, contained
in Cp,.

(3) Let us still consider a finite extension K of Q,, in C,. When P = B, (K),
both cases

upCl+Pandu, ¢ 1+ P

can occur. For example, for p = 3, consider as in (I1.4.7) the two quadratic
extensions K; = Q3(+/—3) and K, = Q3(+/3). Since the field Q(+/—3) contains
a 6th root of unity (the ring of integers of this field is a hexagonal lattice in
the complex field) and since v/—1 € Q3(v/3,/=3) = K, - K,, we see that
14 C K, - K; and necessarily

M1z = pa- 3 C Ky - Ks.
On the other hand, the order of p3y N (K] - K3) is #(k*) = 3/ — 1, hence of the
form2, 8, 26, .. ., and the presence of a fourth root of unity implies that this order

is greater than or equal to 8. In particular, K; # K,. Since Q(+/—3) = Q(&3) we
see that ¢3 € K but {3 ¢ K. Nevertheless, quite generally,

pp(K) = ppe NK (C(A+M,)NK =1+ P).

If P = 7 R, then p1,(K) C 14 B<z|(C), s0 that the order of p1 (K ) is adivisor
of the order of

Mp= N (1 + lem(cp))’

which is known, since the absolute values |¢ — 1| for ¢ € p, are given by
(111.4.2).
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(4) Here is a diagram summing up the general situation:

log

(1) —> 1+ B<r,, (__—_—)_ B<r‘,

N n P n
log

‘l,p —> 1+Bs,-" —> BSrp

N N n
log

ppe — 1+M, — C,

Exp

n n N

Lo
pPep—s C » —% C,.
The lines consist of short exact sequences, split by the choice of a section Exp
of log. Observe that the subgroup p@ - i is well-defined, independently from the
choice of a copy of p@ c C 2

Note. The possibility of extending the exponential to the whole of C, had already
been shown by M.-C. Sarmant(-Durix) in her doctoral thesis. We have followed
the method of the book by W. Schikhof.

5. The Volkenborn Integral

5.1.  Definition via Riemann Sums

Let K be a complete extension of Q). We are going to define [ f dx for certain
functions f : Z, — K. Unfortunately, Corollary 3 in (IV.3.5) shows that one
cannot define nontrivial translation-invariant linear forms on C(Z)). Let us recall
this result (notation fi(x) = f(x + 1)).

Lemma. If¢ : C(Z,) — K is linear and translation-invariant, i.e.,

o(fi) = o(f) forall f € C(Z,),
then ¢ = 0. [ ]

Observe that we can define translation-invariant linear forms on F'(Z,,), the
Space of locally constant functions on Z, (IV.2.1). Indeed, we can construct such a
linear form with ¢(1) = 1. Translation invariance imposes the same value 1/p for
Fhe characteristic functions of the cosets of pZ,. More generally, this translation-
Nvariant linear form should take the same value 1/p" for the characteristic func-
tions of the cosets p"Z,. These functions have sup norm 1 but

() = l#l = p" is arbitrarily large.
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This shows that this linear form is not continuous. Equivalently, we can define the
p-adic “volume” of the balls B<),(j)inZ, to be

m(B<ipr(j) = 5 € Qp-

The next construction works for differentiable functions — at least (S (0) should
exist — and is not translation-invariant. It is convenient to deal with strictly dif-
ferentiable functions f € S(Z,).

Let us start with the expressions

LS =Y fGymGi+p'Z,)

P’ O<j<p O<j<p

representing Riemann sums for f.The integral of f over Z, will be defined as the
limit (n — ©0) of these sums, when it exists. The indefinite sum F of a function
f has been defined in (IV.1.5) in order to have VF = f (F(0) = 0):

F=Sf=1xf: Fly= Y f().

O<j<k
Hence we have

F(p™) — F(0)

1
— Y fli)= .
p" 0< <p" p
(since F(0) = 0), and we see that the limit exists if F is differentiable at the origin.
When the function f has Mahler coefficients ¢,, we know that the coefficients

of Sf are simply shifted, and the differentiability of Sf at the origin is equivalent
to the requirement

lena1/n) — 0 (n — 00)

(Theorem 1 in (1.5)). This is the case if f € SY(Z,).

Definition. The Volkenborn integral of a function f € S'(Z,) is by definition

1
fz feydx = lim = > f()=(S(O).

0<y<pn

If f = c is a constant, then pr f(x)dx = c. Here is a main property of this
integral.

Proposition 1. (a) For f € S (Z,) we have

./z fxydx{ < plfih.
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®) If fo = f in S', namely || f, — flli — O, then

ff,,(x)dx—»f f(x)dx.
ZP ZP

Proor. By definition,

/ fx)dx
ZP

so that (a) follows from Corollary 2 in (1.5):

= [(SFYOI < ISf Iy = sup(IPSf I, ISFOD,

ISf iy < pliflh-

(b) is a consequence of (a). [ |

Recall that we use the notation V f for a discrete gradient of a function f:
Vix)=fx+1D— f(x).

Proposition 2. For f € SY(Z,) we have

f Vf®ydx = £(0).

z,

Proor. By definition,

f Vfr)dx = (SVFY0) = (f — FO(©) = f'©),

z,

since SV f = f — f(0) (Proposition 2 of (IV.1.5)). u

5.2, Computation via Mahler Series

The indefinite sum of a binomial function (;) is the next one S(;) = (,,,). This
Observation makes it easy to compute the Volkenborn integral of a function f € S*
of which the Mahler expansion is known.

Proposition. Let Zkzo Ck (k) be the Mahler series of a strictly differentiable
Juncrion f € S*. Then

/Z faydx =) (=Dree/(k +1).

k>0



266 5. Differentiation

Proor. Since f, = stn Cr (k) tends to f in [|.|l;, we can simply integrate tery

by term:
f fx)dx = Z Cr / (z)dx.
z, k=0 z,

Now,

[G= ()
and

(i) =)

k+1 k+1\ &k

implies

! 1 —1 -1 —1)k

* Yoy=tim —(* T =L _ &b

k+1 x>0 k+1 k k+ 1\ k k+1

(one can also apply directly Theorem 1 in (1.5) to the function Sf). n

Example. Let us fix 1 € M, C C,, namely |t| < 1, and consider the function
[ = f; defined by

X X
fEO=0+1y =) t"(k).

k>0

Then

/(1+t)"d > SDAS Lo (1+1) (=1fort =0)
X = = — = = .
Z, Lo kw1 0 E

5.3. Integrals and Shift

A few more formulas for the Volkenborn integral will be useful. Recall that the
translation operators 7, have been defined in (IV.5.1) by

L f@)= f(x+1.

In particular, for T = 7; = E (unit translation), tf = fj. Let us also denote by .D
the differentiation operator, V the finite difference operator, and S the indefinité
sum. Obviously, D commutes with translations and consequently also with V =
T —id.

Proposition1. Let Py : f + f(0)-1betheprojection of S'(Z,) onto constants.
Then the following relations hold:
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@ St=15— Pp.
(b) DS commutes with all translations t,.
© SD = DS — PyDS.

Proor. By definition, for integers n > 1,

SaHm = Y tf(= D fG+1

0<j<n O<j<n
= ) f@)=Sfn+1)— f(0) = tSf(n) - f(0),
O<i<n

which proves St = 7§ — Py (by density of the integers #n > 1in Z, and continuity
of the functions in question). On the other hand, differentiation of the function
Stf = tSf — f(0) leads to DStf = DtSf = rDSf. Moreover, recall that
VSf = fbut SVf = f — f(0) IV.1.5). In other words,

VS=id, SV=id— P,
We infer
SD = SDVS = SVDS = DS — P,DS.

The proposition is proved. u
Proposition 2. Ler f € SY(Z,). Then
@ [ fod= s
Zp

®) S(F)(x) = / fx+1)dt — f f(t)dt.
z, z,
Proor. Start with the definition fzp f@®)dt = (Sf)(0). Hence

/ f(t+ Ddt = / tf(t)dt = (STfY(©) = DStf(0)
zZ, z,

= tDSf(0) = DSf(1) = (SfY (D).

The first formula (a) for a positive integer x = n follows by iteration, and for any
x € Z, by continuity and density (alternatively, one can do the same calculations
With 7, in place of 7). Recall now Proposition 2 of (5.1),

/Z Vf@)dt = f'(0),

and use a translation

f Vi@ +x)dt = f(x).
ZP
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From this, it is obvious that S(f')(n) = f'(0)+ --- + f'(n — 1) can be expresseq
as a telescoping sum

s = [ ferma- [ foa asnen,
Z, z,
and by continuity and density of the positive integers n in Z,,
S(f)x) = f f@+x)dt — f f@)dt (x €Z,).
Z, Z,
Writing f’ = g, we can choose any primitive G € S} (Z p) of g and write

S(g)(x)=/ G(x+t)dt—f G(t)dr.

Z, z,

Of course, two different primitives of a function g may differ by any function h
having #’ = 0.

Proposition 3. Let f € SXZ,) C SY(Z,) and define F(x) = fz,, fx+ndt
Then F € S\(Z,) and

F(x)= / flx+1)dt.
ZP

Proor. By Proposition 2 of (1.3),
fesz,) = [ eSS\,

so that
G(x) = / f'(x+1)dt
Z,
defines a function G € S*(Z,). Moreover, by Proposition 2 (a),
/; f'x +1)dt = (Sf'Y(x) = (DSDf)x),

which proves G = DSDf. Now by the first proposition SD = DS — PoDS and
G = D(DS - PyDS)f = DDSf = (Sf)' = F/,
because F = (Sf)'. "

Proposition 4. Let o denote the involution (1.1.2) x + —1 — x of Z,. Then

f(foo)dx=/ fdx.
z, z,
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proor. We have seen that

h
/ fdx——(sf)(o)_l f()
Let us ta.ke h = —-p” (n — OO), Hence
(Y = tim LEPD _ y 2P
n—>00 _p” n—>00 pn

But by the Corollary 4 in (IV.3.5),
=Sf(=p") = S(f oo )(P"),

whence the result (Sf)(0) = (S(f o o)) (0). n

Corollary If f is an odd function, then
(0
f Fdx—— f( )

Prook. Quite generally, using Proposition 2 in (5.1) and Proposition 4, we have
= / (fx+1D)— fx)dx = / (f(=x)— f(x)) dx.
Z, Z,
Now, if f is odd, we obtain the announced result

£10) = f _2f(x)dx.

z,

54. Relation to Bernoulli Numbers

In (5.2), we have proved
1
/ (1+1)ydx = -t—log(l +1)
Zp

for ¢| < 1,t € Cp. Let us now choose |t| < r, and define s = log(1 + 1), so that
t=¢—1, |s|=1]t] <rp.

The preceding formula now reads

R)
/ et dx = .
z, e —1
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Classical Definition. The Bernoulli numbers are the rational numbers by, de.
fined by the following generating function:

=T
=1 &k

Here are the first few values:

b0=11b1=—%7b2= ,b3=0’b4=_%’b5=01

O\

and,

1 1 5 691
be = 33. bs = —35, bio = g, b2 = —3555-

Since we can also write e = Y, o t*x*/k! with a convergence in S'(Z), we
can integrate term by term (Proposition 1 in (5.1))

([ #ax)E = nt
z, k! *K!

and identify the coefficients
b, = / x*dx.
zZ

P

Observe that by definition b, € Q, and these integrals are independent of the prime
p used to compute them! Also, |b;| < pllx*|l; = p (still by Proposition 1in (5.1)),
namely |pbi| < 1,i.e., pbx € Z,NQ.In (5.5) we shall give a more precise result.

Proposition. The Volkenborn integral of a restricted series f = ), apx"
exists and can be computed term by term:

Here, the b, are the Bernoulli numbers, and using f z, f(x)dx = —f'(0)/2 for
the odd functions f(x) = x?*+! (Corollary at the end of (5.3)), we obtain

b = —%, by =0 (k=1)

Classical Definition. 7he Bernoulli polynomials By are defined by the follow-
ing generating function:

tk texl
B X)— = .
g KT = o



5. The Volkenborn Integral 271

I hope that no confusion will arise between the Bernoulli and the Bell polyno-
mials (also denoted by B,, in (IV.6.3)): The context should always explicitly specify
which ones are under consideration!

Obviously, b, = B;(0). Conversely, the definition

Z Bk(x)——- =" Z bk—

k>0
xigd ok
= ) by
j>0,k>0 J: k!

leads to an explicit expression of the Bernoulli polynomials (with Bernoulli num-
bers as coefficients):

Bu(x)=n! Y bisie T

j+k=n

n .

= Z (_)b,,_jx’.
O<j<n J

Thus B, is a monic polynomial of degree n (equal to its index). This expansion

is symbolically written “B,(x) = (b + x)":” the binomial formula leads to the

correct expression, provided that we interpret 5* as the kth Bernoulli number &;.
Here are a few values:

Bo(x)=1, Bi(x) =x — 1, By(x) =x? —x + %.
Returning to the Volkenborn integral, we have
> Bk(x)—— = f eVdy = f O gy,
k>0 p Zp
Identification of the coefficients leads to the p-adic expression of the Bernoulli

polynomials

Bi(x) = f (x + y)dy.

P

The formula (5.3)

f Vfix+y)dy = f'(x)
zZ,
for f = x* leads o

c+y+Didy— | (x+y)fdy =kx*",
z, z,
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namely
By(x + 1) — B(x) = kx*1.

In particular, By(1) = By(0) for k > 2, and these polynomials may be extended by
1-periodicity on R. We obtain the continuous periodic functions x > By(x — [x])
(k > 2) on the real line (as usual, [x] denotes the integral part of a real number x
sothat 0 < x — [x] < 1).

On the other hand, we can expand (y +x + 1)" = > (})(» + x)* and hence
rewrite

(n+1x" ="y = _/ > (n: 1)(X+ ) dy

z, k<n

=+ DB+ Y (”+ I)Bk(x).

k<n-1 k

This gives a recurrence relation for the computation of these monic polynomials:

1
:E: (n :- )ng(X)

k<n-—1

B,(x) = x" —
(x) = x n+1

In particular, for x =0 and n > 1,

1 n+1 n b%
b, = B,(0) = — by = — —.
" n(0) n+1k;l( k )k Z (k—l)k

k<n—1

Another relation for the Bernoulli polynomials is easily obtained from the fact that
the integrals of f and of f o ¢ are the same (Proposition 4 in (5.3)):

Bk(l—x)=f (v +1-x)dy
ZP
:/(—]—y-i-l—x)"dy
z,
— (1 fz O + 0t dy = (~DFBy(x).

5.5. Sums of Powers

The above formula V By (x) = kx*~!, with SV = id — P, leads to By(x) — bx =
kS(x*1). Replacing k by k + 1, we obtain

B _
S(x*y = _ﬂ%lb_kﬂ (k > 0).
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This gives an explicit formula for the sums of powers:

1 k+1 o xkl

S(x*) = — ( . )bk+1—jx’ +
k1,22 \ k+1
i xkH

= byx + ( )bk+l =+ —
2 T

Here are a few explicit expressions for these sums of powers:

Sm)y = Y i =8 k= D),

1<i<n

Si(n) = 3n(n — 1),
Syn) = tn(n — 1)(2n — 1),

Ss(n) = Fn(n — 17,

5

Sa(n) = in® — In* 4+ in® — 3n,
1

6_ 1,5 _ _ 1,2
Ss(n) = ¢n Zh” + n Bh.

(Observe that fork = 0, S(x°) = By(x)—b, = x gives a sum of powers ZK"

n, which is correct if the summation is extended over the indices 0 < i < n and
x¥ is the constant 1, including 00 = 1.) In the Archimedean theory, the main term
is x¥+1 /(k + 1): Tt gives the primitive of x*, namely the area below the graph of
t > t* between the values 0 and x. Here the main term will turn out to be byx.

Proposition. When p is an odd prime, the sums of kth powers satisfy
Si(p) = pbr  (mod pkZ,) (k > 1),
while

Sk(2)=1=2b, (mod kZ;) (k> 1).

Proor. We have pbo = p, pby = —p/2, which are bothin Z,, (even if p = 2).
We already know (5.4) that pby € Z,, (k > 0) (this also follows by induction, as
the next argument shows). Since

Z pi pH
Si(p) = pbr + ( ) t1—j— +
2<]<k -’ k + 1

-1 pj—2 pk
= pby + pk ( )b T + pk )
* "Z;k i—2)P GG T P e )
Y
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we have to show that
~1 pi- P
. bis1-j = + eZ,.
2;,( (1 - 2)” GG -D T ke P
But the pby1-j areinZ, for j > 2, and for p > 3
J=8%() _Jj—1

ord, j(j — 1) <ord, j! = =1 = poi <j-1
implies -*— J(J 57 € Zp-Forp =2,
ord; j(j — 1) = max(ord, j, ordy(j — 1)) < j — 1
with equality for j = 2. This explains the loss of one power of 2. [ ]
Corollary. For any prime p, by, € QNp™'Z, (n>1). [

Remarks. (1) For p = 2 and odd k > 3, the corresponding Bernoulli number is
zero: The congruence S;(2) = 1 = 0 = 2b; holds mod &Z;,, not mod 2kZ,. For
even k = 2n > 2, the same congruence forces b,, to have an even denominator.

(2) For p = 3 and even k = 2n > 2, the congruence S,,(3) = 3b,, (mod 3Z3)
leads to 3by, = 1 + 2?* = 1 + 4" (mod 3Z3), and 3 appears in the denominator
of b,,. By the preceding remark, the factor 6 appears in the denominator of all b2n
(n=>1).

(3) The property pby, € Z, (all primes p) means that the denominator of by, is
a product of distinct primes (each prime occurring at most once). We have a more
precise result.

Theorem (Clausen-von Staudt). The denominator of the Bernoulli number
by, is the product of the primes £ such that £ — 1 divides 2n. More precisely,

1
bzn=—Z Z Z+m2n (my, € Z).
prime: €—1|2n

Proor. Let us start with the congruence pb,, = Sn(p) (mod pZ,). Now, it is
easy to compute a sum » o_;_, j* mod p: This is a sum over the field F,. Put

Sk = (Sk(p) mod p) € Fp.

For each 0 # u € F, we have

xt = )k = u* xk = ks,
=D x=) >

xeF, xeF, xeF,
whence

A —ub)s, = 0.
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If k is not a multiple of p — 1, we can choose u € F} such that u* # 1 (because
F”; is cyclic), and in this case we see that s, = 0, namely S;(p) = 0 (mod p).
On the other hand, if p — 1 | &, then

=Y x= Y l1=p-1=-1¢F, k=1).
xeF, 0#xeF,

This information can be gathered together in the following form:

1
p(bk+ > Z) €eQNpZ,.
£ prime: £—1{k=2n

Letting the prime p vary (an exception!), we obtain

b+ Y. %eQnﬂZ,,:Z.

£ prime: £—1{k p prime
5.6. Bernoulli Polynomials as an Appell System
In (5.3) we have proved
re= [ vio+na.
ZP
In the case of Bernoulli polynomials, this gives

Bi(x) = f VBi(y + x)dy = f k(y +xY'dy = kBy_1(x).

z, z,

Hence (By)i»0 is an Appell system of polynomials. In particular, it satisfies the
modified binomial identity for Sheffer systems (IV.6.1). We can derive it immedi-
ately in our context:

Bn(X+y)=/ Ct+x+y)de
zZ

P

:A Z (:)(t +x)ky"’kdt

p 0<k<n

=Y (Z)Bk(x)y"”"-

0<k<n
In umbral notation, we can write symbolically
B,(x + y) =“(B(x)+ »)",”

Which generalizes (5.4) B.(y) = “(b + y)",” since B,(0) = b,. Let us give the
Telation between this system and composition operators. Let U be the operator on
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K[X] defined by

U(p)x) = f p(y + x)dy.

P

It is obvious that this operator U commutes with the unit translation £ = 7; =7,
hence (IV.5.3) with all translations:

U(px)=U(p)x +1)= f p(y +x + 1)dy = U(zp)(x).

P

By definition U(x*) = By, and the system of Bernoulli polynomials is a Sheffer
sequence (IV.6.1). Moreover, as we have seen in (IV.6.2), V = ¢” — 1. We deduce

V(Up)x) = /Z (PO +x+ 1) — p(y +x)) dy E p'(x),

(e” —DUp=Dp, Up=—5—p.
This is the expression of the composition operator U as a formal power series in

the derivation D (IV.5.3).

EXERCISES FOR CHAPTER 5
A. Classical reminder. Let f, g, & : R — R denote the functions defined by

2 . .
Flxy= x“sin(1/x) ffx #0,
0 ifx =0,
andg=f+x/2,h= f—x2
(a) Prove that f is differentiable at every point with f’(0) = 0, but f is not strictly
differentiable at the origin f ¢ S'(0) and f’ is not continuous.
(b) Prove that g is differentiable at every point with g’(0) = % but there is no neigh-
borhood of the origin in which g is increasing.
(¢) Prove that # is differentiable at every point with £’(0) = 0 and there are infinitely
many points in every neighborhhood of the origin at which % has a relative maxi-
mum.

B. Classical reminder (continued). Let f be a real-valued function defined in the neigh-
borhood of a point a € R. Assume that f € $1(a) and f’(a) > 0. Show that there is
neighborhood V of a such that the restriction of f to V is an increasing function and
in particular is injective.

1. Discuss the continuity and differentiability at the origin of the following functions On

Zp:
i) ()
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. Prove that the function S introduced in (V.3.1) — sum of digits in base p — satisfies
Sp(m +n) = Sp(m) + Sp(n) — (p — l)ordp(m : n)‘

Splm —n) = Sp(m) — Sp(n) +(p — l)ordp(',':)-
. Let f : Zp — Qp be defined by

priflxl=1p"l =%

Then f is locally constant outside the origin, and lim,_,¢ | f(x)/x| = 1. By refining the
preceding definition, construct a function g that is locally constant outside the origin,
also differentiable at the origin with g’(0) = 1.

. Check that | log(1 + x)| < rp when |x| = rp. But show that | log(1 + x)| is variable on
the sphere |x| = rp.

(a) Fdx which values of x € Cj, do the following series converge?

%3 x2n+1
smx—x—§+ z,;)( 1)"(2n+1)'

x2 2n
cosx =1— o 4= Z( I)" o

(b) Inthe disk of convergence, prove that
sin? x +cos? x = 1,
sinx cosy + cosx siny = sin(x + y),

COSXCOSy — sinxsiny = cos(x + y).

Compute the derivative of the functions sin and cos.
(¢) Choose a square root i of —1 in Cp, and prove that

cosx +isinx =e* (i € Cp, i = —1).
(d) Check the estimates (give their domain of validity)
Jsinx] = x|, |cosx|]=1, |cosx—1=7?

. Prove that when? € Mp, x +— (1+41)* is differentiable at the origin of Cp: To compute
the limit of differential quotients for x — 0 (in C,, not only in Z,), use the expression
(1 + )" = exp(x log(1 + 1)) valid for small |x|.

- The Chebyshev polynomials (of the first kind) can be defined by the classical formulas
T,(cosO) = cosnb (n > (). Observe that Ty (x) = T,,(Tn(x)). When p is an odd
prime, prove that

Tp(x)=xP (mod p)
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and with the mean value theorem, show that
Tpx)=T, (xP) (mod P"Zp(x»

(what can you say about the case p = 27).

. Let us say that a polynomial f(x) € Zy[x] is an nth psendo-power when f'(x) e

nZp[x].

(a) Show that the following polynomials are nth pseudo-powers: x", f(x)" (f any
polynomial), 7,, (Chebyshev polynomial of the first kind; cf. previous exercise).

(b) Using the mean value theorem, prove that if f is an nth pseudo-power, then

a=b (mod pZy) = f(a)= f(b) (mod pnZp).

(¢) Suppose (fn)n>0 is a sequence of polynomials with deg f, = n and satisfying the
congruences
Jpn(x) = fn(xP) (mod anp).

Show that f; is annth pseudo-power. Deduce that form € N, a € Zp, the sequence
fmpv has a limit for v — oo.

. Define a sequence of polynomials inductively by the conditions

1
po=1, pn= primitive of p,_; such that f pn(x)dx =0 (n=>1).
0

The first one is py(x) = x — %

(a) Prove that p,(x) = B,(x)/n!, where B, (x) denotes the nth Bernoulli polynomial.

(b) Prove that p,(1) = pn(0) (n # 1) and compute the Fourier series expansions of
the 1-periodic functions f, extending puljo,17,

2wimx

e
n(x) = — —_— >1).
Jn(x) ;;)Qmm)" (n>1

Foreven n = 2k > 2 there is absolute convergence, and
2 1 2
0) = ——— 2 R
f2(0) @miy* £~ m2 (2711)7"“ )

For any prime p, prove the following congruence for the Bernoulli numbers:
2n(bpn — bp) =0 (mod pnZy) (n=>1).

(Hin1. Use the congruence jP" = j" (mod pnZp) (exercise 8), hence a similar con-
gruence for the sums of powers Spn(p) and Sp(p). and conclude by Proposition in

(5.5))

For each m > 1, show that the numerator of

22 23 n
24—+ —+-+—
2 3 +n

is divisible by 2 when n is large enough.
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14.
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(a) Check the preceding assertion experimentally for a few values of n > 2.
(b) Prove the general statement by consideration of the logarithm 1 +M; — C; and
the expansion of log(1 — 2) = log(—1) = 0.

Show that all continuous homomorphisms f : Z; — Qp have the following form:
fQuy=¢"w" (¢ €ppy, uel+ply)

forsomev € Z/(p— 1)Zandx € Zp.

. Prove that an infinite product ]'[nzo( 1 + a), where all a, # —1, converges for any

sequence (@ )p>0 converging to 0 in Cp.
(Hint. Use |log(1 + ap)| = lan| if |an| is small.)

Let 7 be an ordered set, (E;);c; a family of sets (or groups, rings,...), and let ¢;; :
E; — E; be maps (resp. homomorphisms,...) given fori < j € I, subject to the
transitivity conditions

¢ij=¢ie0¢£jZEj——>E£-—)Ei (i<£€<j).

Assume that / contains a countable cofinal sequence S : iy < i} < --- and consider
the projective system (Ej, , ¢i,,,.i,)n>0 With projective limit l:_n_1 s E;. Show that if T
is another countable cofinal sequence in I and lim 7 E; is similarly defined, there is a
canonical isomorphism lim g E; = lim7 E; (u:e_the universal property of projective
limits). Provided that / h;s—; countabl;oﬁnal subset, we may define lim E; by choosing
such a sequence § and putting llr_n E; = l‘l_l_n s E;. For example, let?be the maximal
subring of a complete ultrametric field K and consider the ideals

I =B,(KYCA O<r<l).
Establish the following isomorphism:
A{X} —> lim (A/L)[X]

(limit when r \, 0).
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Analytic Functions and Elements

A powerful method for defining functions is provided by power series (we have
seen two examples in Chapter V: exp and log). This method is here developed
systematically, and we come back to a more thorough study of formal power
series. As is classically known, uniform limits of polynomials in a complex disk
lead to analytic functions.

Another class of special functions is supplied by rational functions, namely
quotients of polynomials: The simplest being the linear fractional transformations.
We also study them in this chapter, especially since their uniform limits in the
p-adic domain lead to the “analytic elements” in the sense of Krasner. Indeed, in
ultrametric analysis, the sole consideration of balls is not sufficient and in particular
not adapted to analytic continuation.

Inthis chapter the field K will still denote a complete extension of Q,, inC (or in
Q,) often with dense valuation. The results that also require K to be algebraically
closed will be simply formulated for the field C,, (they are also valid for 2p)-

1. Power Series

1.1. Formal Power Series

Formal power series have already appeared repeatedly (with integral coefficients
in (1.4.8), with coefficients in a field in (IV.5), (V.2)). We now study them more
systematically.

Let A # {0} be a commutative ring with a unit element 1. The formal powel
series ring A[[X]] consists of sequences (ap),>o of elements of A, with addition
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and multiplication respectively defined by
(an)nZO + (bn)nzo = (an + bn)nzO,
(an)nzo . (bn)nZO = ( Z aibn—i) -
0<i<n n>0

Instead of the sequence notation (@, ),>¢ we shall prefer to use the notation f =
f(X) = ) ,50anX" for a formal power series. The formal power series ring
A[[X]] contains the polynomial ring A[X], and since I € A, we have X" €

AlIX1] (n = 0).
Let us show that this formal power series ring constitutes a completion of the

polynomial ring.

Definition. Let f(X)=)_,.,a.X" be a nonzero power series. Its order is the
integer

w=o(f)=min{n € N:a, # 0}
This order is the index of the first nonzero coefficient of f(X). We shall also
adopt the convention w(0) = oo with the usual rules
oo>n, c0o+n=n+oo=00 (n=>0).
The following relation is then obvious:
o(f + g) = min(w(f), w(g)),
with an equal sign if the orders are different. Moreover,
(X" f) = n+ o(f)
shows that
{f(X): o(f) = n} = X"A[[X]]
is the principal ideal generated by X" in the formal power series ring. Since
A[LXN/ X" AlLXT] = ALX1/(X"),
we also have
A[[XT] = Lim A[[X]]/ X" A[[X]] = lim A[X]/(X")

(with obvious identifications), and the ring A[[X]] appears as a completion of the
ring A[X] for the metrizable topology admitting the ideals (X") as a fundamental
System of neighborhoods of 0.

When the ring A has no zero divisor, we have, moreover,

o(fg) = o(f) + w(g).



282 6. Analytic Functions and Elements

Taking f = g weinfero(f?) = 20(f)and o(f") = nw(f) (n > 0) by induction,
In particular, we see that if A is an integral domain, so is the formal power serieg
ring A[[X]]. If we iterate the construction, A[[X]][[Y]] = Al[[X, Y]] is also an
integral domain. We have obtained the following result.

Lemma. Let A be an integral domain and n a positive integer. Then the formal
power series ring A[[ X1, ..., X,]] is also an integral domain. N

Definition. The formal derivation D of the ring A[[X]] is the additive map
defined by

D (Za,,X") = Zna,,X"_l = Zna,,X"_'.

n>0 n>0 n>1

It satisfies

D(fg) = D(f)g+ fD(g) (f, g € Al[X]]).

Since ker D D A, we see in particular that

D(af)=aD(f) (a €A, f e AlX]),

namely, the derivation D is A-linear. Since

o(D(f)) =z o(f) — 1,

it is also continuous for the previously defined topology.
If we iterate this derivation D we obtain

D¥(X"y=nn—1)---(n —k + DX"7*,
and since the product of k consecutive integers is divisible by k!, we can define
—I—Dk X" > (n)X"—"
k! k
even when the ring A does not contain inverses of the integral multiples of 1. Hence

we define an A-linear map

1
;;D" : AlLX]] — AlIX])

correspondingly. In spite of the fact that a formal power series does not define 2
function, we also use the notation f(0) for the constant coefficient ag of f. Then
if f(X)= ano a, X", we have

1
a = =DFXO) (k> 0).
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1.2. Convergent Power Series

Since we are assuming that the field K is complete, an ultrametric series con-
verges when its general term tends to 0. If r > O denotes a real number such that
lay|r" — O, then ano a,x" converges (atleast) for |x| < r,and we get a function
B, (0) > K.

Definition. The radius of convergence of a power series f = ano a, X"
having coefficients in the field K is the extended real number 0 < ry < o0
defined by

rg =sup{r >0:|a,|r" — O}.

Alternatively, we can consider the values of r > 0 for which (Ja, |r") is bounded:
sup{r > 0: |a,|r" — 0} < sup{r > 0: (ja.|r") bounded},
and conversely,
(la,|r") bounded = |a,|s" - 0 (s <r)
proves the other inequality, so that
ry =sup{r > 0: (la,|r") bounded}.

It is possible to compute this radius of convergence as in the classical complex
case by means of Hadamard’s formula.

Proposition 1. The radius of convergence of f = ), ., a, X" is

1 1

rf = = = - .
impso la,|V/"  limsup,_, o, la,|'/"

Proor. Define r ¢ by the Hadamard formula. If |x| > rf (this can happen only if
ry < oo!), we have
. 1/k . 1/k 1

lim sup |x{lay]’" = |x|- lim sup |ax|’" = |x| - — > 1.

n=>00 4>, n—>00 psp ry
Hence the decreasing sequence sup,.., |x|lax|'/¥ is greater than 1, and for infinitely
many values of k > O we have |a;||x|* > 1, namely, the general term a;x* of the
series does not tend to zero: The series Y a;x* diverges. Conversely, if |x| < r f
(this can happen only if r; > 0') we can choose |x| < r < ry, and from

lim suprial'* =r- lim supla]'* <1
n—>00 n—>00 y~p

we infer that for some large N

sup riag|V* < 1.
k>N
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Hence |a;|r* < 1forall k > N and
k k
x
i =lart (B < B2 N0 e oo
r r

This shows that the general term of the series ) axx* tends to zero, and the series
converges. n

The letter x will here be used for a variable element of B_,,, while the capital
X denotes the indeterminate. When r¢ = 0, the power series converges only for
x = 0. Hence we shall mainly be interested in power series f for which r¢ > 0.

Definition. A convergent power series is a formal power series f withrg > 0.

Comments. (1) Let f(X) € K[[X]] be a convergent power series. If K’ C Q, is
a complete extension of K, then f can be evaluated at any point x € B_, f(K .
The convergent power series f(X) defines in this way a continuous function (still
denoted by f)

f:B4(K')—> K’
because it is a uniform limit of continuous polynomial functions

fvix— Z a,x".

0<n<N

Usually, we shall simply write the condition |x| < r, assuming implicitly that the
element x is taken in K, C,, or even ,,.

) Ifry > 1, f is arestricted series, and by Theorem 1 in (V.2.4), it is strictly
differentiable, with a derivative given by numerical evaluation of the formal deriva-
tive: f'(x) = (Df)(x) (Ix| < 1). A similar result holds for any convergent power
series: If [xg| < ry, then the restricted power series g(X) = f(xoX) has the
preceding property, and we conclude that

&)= (Df)x) (x| <ry).

(3) Observe that a radius of convergence ry > 0 does not necessarily belong t©
|K*|.1f 0 < ry ¢ |K*|, then the sphere |x| = ry is empty: B<,, = B<,,- These
subtleties disappear when we take x in the universal field Q,, since |2,| = R>0-
Either the series converges at all points of the sphere {x € @, : |x| = rs}or it
diverges at all points of this sphere.

Examples. (1) The radius of convergence of the series ), ., X" isry =1 This
series diverges at all points of the sphere |x| = 1, since its general term does not
tend to 0.
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(2) More generally, any series f = Y, . a,.X" € Z,[[X]] has a radius of
convergence ry > 1. Interesting examples are supplied by the expansions

fa)=Y" (:’;) X" € Z,[[X]]

n>0

for fixed a € Z,. We also denote by (1 + X)? the formal power series f5(X).

(3) When a series ano a, X" converges on the sphere |x| = 1, it is a restricted
series (V.2) and r; > 1. Here is an example with r; = 1. Consider }_, ., p"X¥",
which obviously converges when |x| = 1. Since | p”|V/#" = |p|"/?" — 1, we have
ry = 1 by Hadamard’s formula.

(4) The radius of convergence of a series can be 1 even when the coefficients
are unbounded or when |a,,| — co. The series Y_, ., X?" /p" illustrates this pos-
sibility. As in the previous example r; = 1, since -

11/p"| 7" = |p|™7" — 1.

This series converges only if |x| < 1: It obviously diverges if |x| = 1.
Proposition 2. Let f and g be two convergent power series. Their product
fg (computed formally) is a convergent power series, and more precisely, the
radius of convergence of fg is greater than or equal to min(r s, rg). Moreover,

the numerical evaluation of the power series fg can be made according to the
usual rule

(fe)x) = f(x)g(x) (x| < min(rs,rg)).
Proor. All statements are consequences of (V.2.2). ]

Corollary 1. Let r > 0. The set of power series f = Y a,X" such that
lanir™ — 0 is a ring, and for each x € B<, the evaluation map f v f(x)isa
homomorphism of this ring into the base field K. [

Corollary 2. For any polynomial f, the radius of convergence of the composite
fogis>r,and

(fog)x) = f(g(x)) (x| <rp).

Prook. If |x| < ry, taking f = g in the preceding proposition, we obtain g%(x) =
8(x)? and by induction g"(x) = g(x)" (n > 0). Taking linear combinations of
these equalities, we deduce

(f og)(x) = f(gx)) (Ix] <rg)

for any polynomial f. |
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The possibility of evaluating a composition f o g according to the same e
will be established for general power series in (1.5).

Proposition 3. The radius of convergenceof f = ano a, X" and of its derivg-
tive Df =Y, na,X""" are the same: ry = rp;.

Proor. Let us prove this proposition when the field is either an extension of Q,, or
an extension of R with the normalized absolute value. We know that
p<nl<n (meN)
and also
" 51 (n—> o).
This proves

e l —_ o ol
lim,,_, o|na,| =1 hmn—»oolnanll/n = l“nn—>oo|an|l/n’

which concludes the proof. [ |

Although f and Df always have the same radius of convergence, their behaviors
on the sphere |x| = r; may differ. For example, the radius of convergence of the
series f = Y .o X¥" is ry = 1. This series diverges on the unit sphere, but the
derivative Df = )", _o p"xP"~! converges at all points of the unit sphere.

Example. The series

log(1+ X) =) (=1""'X"/n,

n>1

a -'l_ ) — Z(_l)n—lxn—l — Z(_l)nxn

n>1 n>0

have the same radius of convergence, since the second one is the derivative of the
first. Obviously, the radius of convergence of the second one is r = 1; hence the
radius of convergence of the logarithmic series is also 1 (compare with (V.4.1))-
Direct inspection (V.4.1) shows that the series log(1 + X) diverges when |x| = 1,
while the series f(X) = exp X diverges on the sphere |x| = rp,.

1.3.  Formal Substitutions

In this section we study the composition of power series f(X), g(X) € K[[X]]-
In order to be able to substitute X = g(Y) in the power series f(X), it is essential
to assume that the order of g(X) is positive. This assumption is represented by any
of the following equivalent notations:

w(g@)>1, g0)=0, g(X)e XKI[[X]]
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Then o(g") > n, and if f(X) =", ,a,X", then
f(g(y)) = Zan(g(Y))" = chyn

n>0 n>0

is well-defined, since the family (a,(g(Y))"),> is summable: The determination of
any coefficient ¢, involves the computation of at most a finite number of a,, (g(Y))"™
(m < n) and their coefficients of index at most » in each of them. We thus define
the composite power series by

(fog)¥)=) cu¥" € K[[Y]].

n>0
The substitution X = g(¥) furnishes a homomorphism
fFX) > (fog)Y)= f(g(Y): K[[X]] - KI[[Y]]

sending 1 to 1 and continuous for the metrizable topology having the ideals
X*K[[X]] as fundamental neighborhoods of 0, since

o(f)=k=w(fog)>k.

For a fixed power series g of positive order, the identity of formal power series
(fif2)ocg=(fiog)Nfa08)

is easily verified. Hence f2 o g = (f o g)?, and by induction
frog=(fog) (nx=1).

Observe that the exponents are relative to multiplication and not to composition.
Iteration of composition is represented by

gP=gog, g™=gogo---og.
N ———

n factors

Also distinguish the multiplication identity f = 1 (constant formal power series)
and the composition identity g = X = id:

foX=f, Xog=g (fe€KIX]I ge XKI[X]D.
For example X" o f = f,but X" o f = f" (n > 0).

Proposition. Let g and h be two formal power series with positive order. Then
Jor any formal power series f we have

(fog)oh= fo(goh).

Proor. Both sides are well-defined. They are equal when f(X) = X", since fog =
8" in this case (the observation made just before the proposition is relevant). Hence
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the statement of the proposition is true by linearity for any polynomial f. Finally,
in the general case let f(X) =), .oa,X". Then

(fog)oh= (Za,,g") oh=> an(g"oh)

n>0 n>0
=) angoh) = fo(goh). .
n>0

Theorem 1. Let f(X) =), .oa,X" be a formal power series. The following
properties are equivalent:

(i) 3g € K[[X1) with g(0) = O and (f o g)X) = X.
(ii) ap = f(0) =O0anda; = f'(0) # 0.

When they are satisfied, there is a unique formal power series g as required by
(i), and this formal power series also satisfies (g o f)(X) = X.

Proor. (i) = (i) If g(X) = ), buX"™, then the identity (f o g)}(X) = X can
be written more explicitly as

Za,,g(X)" =ap+ah X + X(--)=X.

n>0

In particular, ap = 0 and a,b, = 1; hence a; # 0.

(if) = (i) The equality (f o g)(X) = X requires that a;b, = 1 and that the
coefficient of X" in a18(X) + - - - + a,g(X)" vanishes (for n > 2) (indeed, the
coefficient of X" in a,,g(X )™, whenever m > n, vanishes). This coefficient of X"
is determined by an expression

albn + P"(a2’ - "9a";bl9 .- ',b"—l)

with known polynomials P, having integral coefficients (not that it matters, b'_“
these polynomials are linear in the first variables a;; cf. (V.4.2)). The hypothesis
a; # 0 € K makes it possible to choose iteratively the coefficients b, according to

b, = —a; ' Py(az, - ..,an b1, ..., byy) (n>2).

These choices furnish the required inverse formal power series g.

Finally, if f satisfies (i) and g is chosen as in (i), then by = 0 and by =
1/a; # 0, so that we may apply (i) to g and choose a formal power series h with
(g o h)(X) = X. The associativity of composition shows that

h(X) = (f 0 g) o h(X) = f o (g o h)(X) = f(X).
S—— S~
id id

This proves g o f(X) =g o h(X) = X. ]
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We still need a formula for the formal derivative of a composition. The identity

D(f g)=(Df)g + f Dg (f,g € KI[X])

is well-known and easy to check. In particular, if f = g, we see that D(g?) =
2g Dg. By induction

D(g")=ng"'Dg (g€ K[X]) (n=>1)
and by linearity
D(f o g)Y) = Df(X) Dg(Y) = Df(g(Y)) Dg(Y)

for all polynomials f € K[X].

Theorem 2 (Chain Rule). Ler f and g be two formal power series with
8(0) = 0. Then the formal derivative of f o g is given by

D(f o g)(Y)= Df(X) Dg(Y) = Df(g(Y)) Dg(Y).
Proor. Fix the power series g and let f vary in K[[X]]. Then
o(f)>k=w(fog)>k=(D(fog)=k—1
as well as

w(f)zk——_—>w(Df)Zk—1=>w[Df(g(Y))Dg(Y)] >k—1.

The identity D(f o g)\Y) = Df(g(Y)) Dg(Y), valid on the dense subspace of
polynomials f € K[X], extends by continuity to f € K[[X]]. ]

Application. Let us come back to the formal power series
—1+X+,,X2 *-Zpo,:'X"

of order 0 and

log1+X)=X - 1X2+...= %, 0 yn

of order 1. Their formal derivatives are respectively

DE*)=0+1+X+LX2+---=¢,

1
D XND=1-X XZ e — —ln_lX"—lz—.
(log(1 + X)) +Xx2F ;< ) X

For the composition, let us introduce here the formal power series of order 1

eX)=eX—1=3, ,5X", De(X)=D(*)=¢".
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The composite

log(e*) = log(1 +e(X)) = X + Y _ cx X*

k22
is well-defined, and its formal derivative is
1 X o
— X =,
D(log(e™)) = | 1+ e(X)
1+ ZkzZ kaXk_l.
Comparison of these two expansions gives
O=kc;€Q, =0 (k=>2),
and this proves

log(eX) = log(l + e(X)) = X.

The formal power series e(X) is the inverse for composition of log(1 + X): By the
last assertion of Theorem 1 we also have e(X) o log(1 + X) = X, namely

expologl+ X)—1=1X,
or equivalently

elog(H»X) =1+ X.

1.4. The Growth Modulus

Let f be a nonzero convergent power series with coefficients in the field K. For
Ix| < ry wehave f(x) =) ., a,x" and hence

| f(x)] <max |a,x"].
n>0

Although the sphere |x| = r is not compact, f is bounded on this sphere:
[fCOl < lamlr™ (x| =),

for some m > 0. Let us say that a monomial |a,,x™| is dominant on a sphere
|x] =r (< rg)when

lap|r" < la,|r™ foralln # m.
In this case, this monomial is responsible for the absolute value of f,
LfOOl = lamx™| = |lam|r™ (x| =71),

which is constant on the sphere. When r is small enough, there is always a dominant
monomial: If m = w(f) is the order of f, we have |f(x)] = |a,x™| for all
sufficiently small values of |x|.
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Definitions. (1) The growth modulus of a convergent power series f is defined
by
M, f = M,(f) = max lanlr® (O <r <ry)
n

so that r — M, f is a positive increasing real function on the interval
[0,rf) C R.

(2) We say that r € [0, ry) is a regular radius for f if the equality M, f =
lan|r™ holds for one index n = n(r) > 0 only. The monomial |a,|r" or anx" is
called the dominant monomial for that radius.

(3) When there are (at least) wwo distinct indices i # j such that M, f =
lailr’ = |a,|r!, we say thatr is acritical radius and the monomials |a; |r' = M, f
are called competing monomials.

By definition
fOl<M(f) iflx|=r<ry,

and this inequality is an equality | f (x)| = M, (f) for all regular radii r. If ap # O,
then r = O is regular and | f(x)| = |ap| for small |x|. The positive critical radii
satisfy r'~J = |a;/a;| € |K*|: They are roots of absolute values of elements of
K. A critical radius of a power series with coefficients in K is the absolute value
of an algebraic element (over K).

Whenthe coefficients a, € K are given, itis easy tosketch the curves r > |a,|r"
(n > 0) and their upper bound M, f on the given interval. This upper bound is a
continuous convex curve. Let us show that it is continuously differentiable except
ata discrete set of points of the interval [0, r ).

M f(=[f (X))

A

" / -
0 r r re r=|x|

The growth modulus: r — M, f
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Classical Lemma. Let ¢, > 0and 0 < R < c¢ be such that for every r < R,
car® — 0(asn — ©0). Then

r > M(r) =sup ¢,r" = max c,r"
n>0 n=0

is a continuous convex function on the interval I = [0, R) that is smooth except
on a discrete subset A = {r’ <r” < r"” < --.} C I. Between two consecutive
values of A, M coincides with a single monomial c,,r™.

Proor. Let 0 < r < R. Since ¢,r"* — 0(n — o0), there is an integer m > 0 with

™ = max Ccurt = M(r).

IfN>mand0 < s < r, then

CN _ CN -
CNrNSCmrm—:‘)—‘er_(.l——"}—“'st
Cm Cm

<1=>cnsV < cpus™

Hence only finitely many monomials, namely those for which N < m, cancompete
with ¢, s™ for s < r. The critical radii s < r are among the finite set of solutions
of

L. Ci
siTT=2 (0<i<j<m).
Cj
The set A is either finite— possibly empty — or consists of an increasing sequence
converging to R. a

This proves that a nonzero convergent power series f has only finitely many
critical radii smaller than any given value r < r and the set of regular radii of f
is dense in [0, rf).

In the following commutative diagram, we denote by 3 the union of the critical
spheres in the open convergence ball of f and by [0, 7)., the subset consisting
of regular values.

B, D B, —-%X i> K*
111 1 L1
[0.ry) D [0, T freg lw_rf R.o

Examples. (1) The power series ), ox" = 1/(1 —x)and ), _,x"/n! = s
have no critical radius. This is obvious for the first one, and follows from the proof
of Proposition 1 (V.4.2) for the second one (this can also be seen as a consequence
of the fact that the exponential has no zero (2.2)). On the other hand, if the set
{lan lr;} is unbounded on the real line, then there exists a sequence of critical radil
ri /' ry (exercise).
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() If f is a restricted power series, then M;(f) is the Gauss norm of f. This
suggests that the maps f — M,(f) are norms on a suitable subspace of K[[X]]
depending on the value r > 0. This is indeed the case.

Proposition 1. When |K *| is dense in R.o and f € K{X}, the Gauss norm of
f and the sup norm of the function defined by f on the unit ball A of K coincide.

In other words (cf. (V.2.1)), the canonical homomorphism
K{X} — C(A: K)

is an isometric embedding.

Proor. The Gauss norm of f is M, f, and the inequality

sup [f() <M, f

Ix|<1

holds in general. With our assumption, we can choose a sequence x, € K with
[x,| regular and |x,| / 1; hence we have

'
M, f =sup M, f <sup|f(x)|. ]
r/1 x€A

Proposition 2. When r > 0 is fixed, f — M,(f) is an ultrametric norm on
the subspace consisting of formal power series f(X) = Y a,X" such that
lanlr® — 0 (n — 00). This norm is multiplicative, i.e., M,(fg) = M,(f)M,(g)
when f and g belong to this subspace.

Prook. If f # 0, then one a, at least is nonzero, and M,(f) > |a,|r" > 0, since
r > 0. Hence M, is a norm on the subspace considered. Moreover, the equality

M, (fg) = M, (fIM,(g)
is true if r is aregular radius for f, g, and fg, since it is the common value (V.2.2)
| f8() = If gl (x[=r, x € Qp).
The general result follows by density of regular values and continuity of the maps

r—=>MJ(f). re— M@, re- M(fg). "

In the classical case, a complex function with an infinite radius of convergence
Is an entire function. The only entire functions that are bounded on C are the
Constants. This is the theorem of Liouville. There is an analogous result in p-adic
analysis.
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Theorem. Letthe power series f € K[[X]]have infinite radiusofconvergeme.
If the function | f| is bounded on K and |K*| is dense, then f is a constan;
More generally, if | f(x)| < Clx|" for some C >0, N € N, and all x € K with
|x| > ¢, then f is a polynomial of degree less than or equal to N.

Proor. It will suffice to prove the second, more general, statement. Write f(x) =
> a,x" as usual. We have

lanlr" < M, f = | f®)xjr < CrV,

provided that r > c is aregular radius of f. By the lemma and since | K *| is dense
in R. ¢, this happens at least for a sequence of values rj = |x;| - 00, x; € K,

lan) < Cr}™".

Letting j — oo, we geta, = O for all n > N. This proves that f is a polynomial
of degree at most N, as claimed. n

There are many entire functions that are bounded on Q,,, just as there are many
entire functions bounded on R (e.g., polynomials in sin x and cos x).

1.5. Substitution of Convergent Power Series

Let f(X) =) .00 X", 8(X) = )_,., bnX™ be two convergent power serics
with g(0) = 0. The formal power series (f 0 g)(X) = Y ;.o cxX* will turn out to
be convergent, too, and we intend to prove the validity of the numerical evaluation

(f og)x) = f(g(x)),

Z ox* = Za,, (Emzlb,,,x’”)n

k>0 n>0

when |x] is suitably small.

In order to be able to substitute the value X = g(x) in the formal power series
f(X), it is necessary to assume that this is small: |g(x)| < ry will do. But even
if g(x) = 0, namely, x on a critical sphere of g, |x| might be too big to allow
substitution in f o g. Recall that critical spheres occur when several monomials
are of competing size. The circumstance g(x) = 0does not prevent a few individual
monomials to be large, and thus have an influence after rearrangement of these
terms. On the other hand, the power series f o g converges in a ball, and it would
be unreasonable to expect to be able to take advantage of the single fact that “g(x)
small,” i.e., x close to a root of g, and hence x on a critical sphere of g, while
sup |g| on this critical sphere is M,(g) (r = |x]). This explains the reason for the
hypotheses made in the following theorem.

Theorem. Let f and g be two convergent power series with g(0) = 0. If
Ix| < rg and My(g) < ry, thenr ., > |x| and the numerical evaluation of the
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composite f o g can be made according to
(f o 8)(x) = f(g(x))-

Proor. Assume that x € K (or £2,,) satisfies the assumptions and define r = |x|.
Then recall that if f(X)=},,oanX"andg(Y) = 3_,., b,¥", the formal power
series (f o g)(¥Y) = ZkzO cxY* is obtained by grouping equal powers in the
expansion of ), ., ang(Y)" (this is a double series). Define the polynomials

X)y= ) aXx".

0<n<N
The substitution
(fv o g)x) = fn(g(x))

is valid if |x] < ry by Corollary 2 of Proposition in (1.2). Let y = g(x). Since
Iyl = lg(x)] < M,(g) < ry, we have fn(y) — f(»), and here is a diagram
summing up the situation:

negx)  — flgkx) (N — o0)
I < polynomial case for fy (1.2)

(frnog)x) —> (fog)x) (N — o).

Introduce

(fw 0 8)XY) = Y cl(N)Y*,

k>0

(f = f)o)¥) =Y N)Y*,

k>N
so that the coefficients ¢; of f o g are
& =q(N)+(N), & =c(N) (k<N).
Recall that
(fog)¥)~(fvogh¥) = ang(¥)' =Y ci(N)¥*

n>N k>N
is obtained by grouping the monomials having the same degree. Any monomial
of g(Y)* is a sum of products of » monomials of g(Y). When we evaluate it at a
point y with M\y,g = p, the ultrametric inequality shows that its absolute value is
less than or equal to p”. This 1s where we use the assumption M,(g) < r £ in its
full force: Choose y € C,, with

@ x| =r < |y < re, so that g(y) is well-defined.
®) lg(y) < Mg =p < rg, so that f(g(y)) is well-defined
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(this is possible by continuity of ¢t — Mg and M,(g) < rs). Our previoyg
observation gives

[y (NI < sup la,]p” = 0 (N —> 00)

because p < r . This shows that the sequence (¢x ¥¥* >0 lies in the closure of the ser
of sequences (¢, (N )Y >0 (N > 1). But for each N, the sequence c;,(N)y* — 0
(k — o) and the space ¢g of sequences tending to O is complete (IV.4.1). This
proves

Y =0, rp >yl > Ixl,
and also

(f og)y) = (fnog)y) = 0. "
Example. Take K = Q,, and consider the formal power series

1
=) X"=-—, g)=Y-Y"
n>0

Takearoot{ € pp—1. Theng(¢) = 0, sothat £(g(¢)) = f(0) = 1 is well-defined.
But rf., = 1, and the power series of f o g is not convergent on the unit sphere,
so that (f o g)(¢) is not defined. Here for r = |¢| = 1, M,(g) = 1 is not less than
rs = 1, and the substitution is not allowed (cf. exercises for the case p = 2). This
example also shows that for fields K having a discrete valuation, the condition on
balls g(B.,(K)) C B.,, is not sufficient to allow substitution: If (1 < r < P
y € Z, = B, (0;Q,), we have y = y# (mod pZ,) hence |y — y#| < |p| <1
and thus g(B,(Q,)) = g(B<1(Q,)) C B.,. But although f converges in the
open unit ball, we cannot find a power series representing the composite f o g in
the ball B, since the rational function

1
1—y+y?
has poles at the roots of 1 — y + y? = 0. These poles are located on the unit sphere
of afinite extension of Q,, and no power series can represent this rational function
on the sphere r = 1 (cf. exercises).

Another quite interesting example where the composition (f o g)(x) is well-
defined but different from f(g(x)) will appear in (VII.2.4).

Application. As proved in (1.3), the formal power series f(X) = log(1 + X) and
g(X) = e(X) = exp X — 1 are inverses of each other. By (1.5),

log(e" ) =x (x| <rp),
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since Mixj(e(-)) = |x] and |x| = r < r, < neg = 1. Similarly,
explogl+x)=1+x (x| <rp),

since Mixj(log(1 + -)) = |x| for |x| = r < rp, and r,, is the radius of convergence
of the exponential. This is a second, independent, proof of the fact that exp and
log are inverse isometries in the open ball B<,p(K ) (Proposition 2 in (V.4.2)).

1.6. The Valuation Polygon and its Dual
The study of

M, = Mr(f) = sup Ianlr"

n>0

is best made using logarithms. We shall use Greek letters for these logarithms:

p=logr < ps=logryg,
o, =log|ay|,

wp =log M, = sup (np + ).

n>0
Itis convenient to choose the log to the base p in order to have log p = 1 and
o, = logla,| = —ord,(a,) = —v,.

The function p, is a convex function as the sup envelope of affine linear functions.
Itis a piecewise linear function, since the critical radii (and their logarithms) occur
on a discrete subset. Its opposite

—p = ,ilg{)(vn —np)
18 a concave function. When |x| = r = p® is aregular radius, we have
—t, = ord, f(x).
Definition. The function
p>h, = 'ggg(vn —np) (—00 < p < py),
or its graph, is the valuation polygon of the power series f.

(@) Let a; X' be the dominant monomial between two consecutive critical radii,
sayr < r < r’. Then

hp=—pp,= 'lgg(vn —np)=v; —ip



298 6. Analytic Functions and Elements

is affine linear in the corresponding interval
'o=logr <p<p =logr'.

This gives a side of the valuation polygon. The valuation polygon, or the graph of
p = h, = inf,50(v, — np), is the boundary of the convex intersection of lower
half-planes determined by the lines of equations

Ay pi> v, —np.

The slope of A}, is —n, and this line passes through the point (0, v,,). The segment
of A} above the interval ['p, p’] is a portion of the boundary — a side — of this
convex region.

(b) If the dominant monomial just beyond the critical radius r’ is a; X/, then
i < j are the extreme indices for competition of the monomials

lailr™ = lajlr",

'Y = lai/aj| = p7it,
, ’ 11]' — Vi
=logr = .
Iy g =i

(c) From the definition h, = inf,>o(v, — np) (—00 < p < py) we infer succes-
sively

hpfvn_np (P,'lZO),
hy,+np <v, (p, n>0),
sup(h, +np) < v, (n>0).
P

The function

n > sup(h, + np)
p

is a piecewise linear convex function whose graph gives the boundary of the convex
intersection of upper half-planes containing all points P, = (n, v,). The line of
equation

Ay : ni>h,+np

has slope p and passes through the point (0, k). This gives a method for computing
h, = —p, for a fixed value of p. The value v, — np is geometrically the height
above the origin of a straight line of slope p going through the point P, = (n, Vn)-
One can draw the graph of the function n +> ord,a, of an integer variable —
consisting of the points P, — and look for the lowest line of slope p going through
these points. The height above the origin of this lowest line gives the value hp-
Letting now the slope p vary, this construction furnishes the desired convex hull
of the points P, (or of the graph of n — v, = ord, a,).
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A Vn=ordpa,

critical slope

The Newton polygon: convex envelope of the P,

Definition. The function
n > sup(v, +np) (=00 < p < py),
P

or its graph, is the Newton polygon of the power series f.

The Newton polygon is the boundary of the sup convex envelope of the points
Py =(n,v,) (n > 0).

A few conventions are useful at this point. When a coefficient a,, vanishes, its
valuation v,, = 00, and the corresponding point P, is at infinity above all other
ones. For example, the Newton polygon has a first vertical side at m = ord( f),
least integer m with a,, # 0. If f is a polynomial, it also has a last vertical side at
n =deg(f) (since all P,’s are at oo when n > deg f).

The two polygons constructed are duals of each other. The sides of one cor-
fespond to vertices of the other. For example, a side of the Newton polygon cor-
Tesponds precisely to a slope of a lowest contact line going through two distinct
points P,. This situation occurs when two monomials have competing maximal
absolute values, namely when this slope p is the logarithm of a critical radius: The
valuation polygon has a vertex, and the graph of r —> M, f exhibits an angle at
the corresponding value of tne radius r. More formally, from

h, = ig{)(vn —np) (p <pr)
Wwe infer
hp <vn—np (p <ps, n>0)
Wwith equality for at least one index n. Equivalently,
hp+np <v, (p<pys, n>0),
sup(hp +np) <v, (n=>0).
p
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Newton polygon

e

\ J

Valuation polygon

Y

Duality of the Newton polygon and the valuation polygon

The affine lines
Ayt hy+1tp,

which are below all P,,, have a sup that is the Newton polygon. Dually, the affine
lines

Ay pr> —(np+oay)=v, —np

have an inf that is the valuation polygon. .
This notion of duality is developed in CONVEXITY THEORY. It has numerous appli-
cations:

differential geometry (contact transformations),
variational calculus, classical mechanics, .. . .

Algorithm. Here is an efficient procedure to find the critical radii of a power
series f(X) = Y, oa,X". Let v, := ord, a, and plot the points P, = (1, Vn)-
Determine the convex envelope of this set of points (and of Po, = (0, 00))- The
vertices of this convex envelope correspond to dominant monomials, those respon”
sible for | f| = M, between two critical radii, and endpoints of sides correspond
to competing monomials (responsible for a critical radius) with extremal indices-
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If P, and P; (i < j)are two endpoints of a side of the Newton polygon, the slope
s of this side
r__ ViV ’
p=-2"F —logr
j—i

corresponds to the critical radius r’ for which the two monomials a; X iand a ¢
are the extreme competing monomials |a; |(r')’ = la;|(r'),

'Y~ =\|afa;l = p~, r =pF.

Forp / p’,the point P; is the only contact point of the line A, of slope p defining
the Newton polygon

hy=vi —ip (o /' p').
For p \\ ©’, the point P; plays a similar role:

hy=vi—jp (P \pP).

Example 1. Consider an Eisenstein polynomial (I1.4.2)
fX)=X"+a,1 X" +---+ap € Z[X],

where p | a; (0 < i < n) and ay is not divisible by p2. These assumptions mean
that

ordpap =1, ord,a;>1 (1<i<n),

So that the Newton polygon of f can be drawn (see the figure).

ord (a,)
1 .
[ ] [ ]
v -
o 1 2 ; n .
critical slope : p=-1/n
critical radius : r=pe =|p|'®

The Newton polygon of an Eisenstein polynomial
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Example 2. Let us treat the case of the power series

FOO=log+X) =3, EUyn.

n

We have
od,a, =0ifl1 <n<p, ordya,=-1,
and
—1<ord,a, <0if p <n < p?
ord (1/n)
A
(1] 1 2 3 4 5 6 7 8 n
P P P
[ [ EETTTSITESITANPPRRROIIN - [

slope : -1/(p® - p?)

The Newton polygon of the logarithm

The vertices of the Newton polygon are the points
Pi=(.0), P,=(p.=1), Pr=(p"~2), Pp=(p’-3),
The successive slopes of the sides are
-1 -1 -1
-1 pp pop T (70

They correspond to critical radii

1 1

—L - -
pr<p P <p < (1),
and we recognize the sequence
o ’ 1/p ” 1/ 2
= -1 = = P LR
rp=|plPt <r,=r, <r,=r/t < (= 1)

Between two consecutive critical radii, the absolute value of the logarithm coin®
cides with the absolute value of the dominant monomial. We already know that

[log(1+x)| = |x] (0 < |x]| <rp),
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_ the isometry domain of log (inverted by exp) — and see further that

xP

rp < |log(1 +x)| = l? = plxl? < pr, (r, <Ix| <rp),

/

where rl’, = r,l, P is the next critical radius. Quite generally,

J

P, < Hog(l + 0| = | 2| = p/Ixl”’ < pir,

for
/p! 1/p’
r <|Ixl <r,/”.

Here we see how |log(1 + x)| increases: We already knew by (V.4.4) that it can
be arbitrarily large, since log : 1 +M, — C,, is surjective. On the other hand, the
zeros of log(1 -+ x) can occur only when |x| is equal to a critical radius. This gives
an independent proof of (I11.4.4) for the estimates of [ — 1| when £ € ptpes.

1.7. Laurent Series

Let us show how the preceding considerations extend to Laurent series. Let

f=zanX" =ianx”
—o00

neZ
be such a series with coefficients in the field K. Thus we consider this series as a
sum of two formal power series
fF=F+f"=) aX"+) aX"
n<0 n>0

with f+ € K[[X]] as before, and f~ =",  a,X" E_K[[X"]] has zero con-
Stant term. Convergence requires |x| < rf = rp+ = 1/1imy_.co la,|"/" for the first

one and similarly |x~!| < 1/1im,_, |a_s|"/" for the second one. Let us define

ry i=Timy e la_n|"/"

and let us assume r 7 < r}L, so that we have acommon open annulus of convergence
s < |x| < r} and hence a continuous (strictly differentiable) function — still
denoted by f — in this annulus of K (or in any complete extension of K).
\The absolute value of this function f is bounded on a sphere |x| = r (where
e <r< r;f),
[f < sup lalr" (x| =r),
—o0o<n<oC

and is even constant on this sphere, provided that a single monomial dominates
al the others. In this case we say that it is a regular radius. We again define the
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growth modulus of f,

M, f=MJ(f)= sup |a,r" (ry <r< r}'),
—o0<n<o0
as a positive real function on the interval (rs» r}') C R. A critical radius r is 3
value ry<r< r}F such that for two monomials (at least)

M, f = la;lr' = lajlr! (00 <i < j < 00).

The critical radii make up a discrete subset of the interval (rf_, r}L), and regular
radii are dense in this interval.

The growth modulus r +— M, f of a Laurent series is a convex function but
is not necessarily increasing. Taking the log to the base p, define p = logr,
pof =logM, f. Then

pr>h,=p,f (logr; <p <logrf)

is a concave piecewise linear function (inf envelope of affine linear ones). It is the
valuation polygon of the Laurent series f. All these facts are established exactly
as in the case of power series.

Laurent series can also be multiplied in a common annulus of convergence. Let
us indeed start with the case of Laurent polynomials. If

p=Y aX" g=)Y bX"eK[X,X],

finite finite

then their product is the polynomial pg = Y ¢, X" having coefficients

=Y ab, lcal < sup lah| (neZ).
k+I=n k+l=n

With the Gauss norms of p and g (sup norms on the coefficients) we have

lenl < Nl -Nglt (n € Z)

and consequently

tpgll < lipll - gl

The product operation is (uniformly) continuous: It extends continuously to the
completion K{X, X~'} with the same inequality. This completion consists of
Laurent series ) _ . _, oo dnX", where |a,| — O for both limits n — 00 &
n — —o0: These are called restricted Laurent series.

In particular, the powers of arestricted Laurent series are again restricted Laurent
series, and if £ € K{X, X'}, then x" " € K{X, X"} forallm € Zandn € N-
More generally, if f is aconvergentLaurentseriesandr, < |a| < rf,then g(X)=
f(aX)isin K {X, X"}, and the sameresults are established for convergent Laurent
series instead of restricted ones.
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2. Zeros of Power Series

2.1. Finiteness of Zeros on Spheres
Let K be a complete extension of Q,, (in C,, or Q2,),

KDADM, A/M =k: residue field.

Select a nonzero convergent power series f(X) = ano a, X" € K[[X]}:rf > 0.
If f(a) = O for some a € K™, la|l < rg, thenr = |a] is a critical radius: Indeed,

[f(@] =0 <M, f :=supla|r" #0

n>0

(cf. (1.4): r = O is critical precisely when ag = f(0) = 0).

We have already obtained an illustration of this fact in the study (1.6) of
|log(1 + x)| for |x| < 1: the zeros of log occur on the critical spheres, centered at
1, containing pth-power roots of unity (V.4.2).

Proposition. Let f € A{X} be a restricted power series. Let a € A. Then there
is a formal power series g such that

F(X)= f(@)+ (X —a)g(X).

Moreover, g € A{X}Yandry > ry.

Proor. Replace f by f1(X) = f(aX), and hence f; € A{X} (if |a] < 1 we even
haver, =r r/lal > 1). Hence we only have to consider the typical case a = 1. We
write f = 3" o a,X" (a, € A, |a,] - 0),and we haveto find g = 3", b, X"
with h -

fX) = f(D)+ (X — Dg(X).
Comparing coefficients. we find the conditions
ao=f(1)—bo, Gp=bpy1—by, (n>1),
orby = f(1) —ap = Y ;.04 bn = b,—1 — a,. By induction we see that

bh=) a€A (n>0).

i>n

Hence |b,| — Oand g € A{X}, as desired. If r; = 1, we are done. If r; > 1, take
anyr > 1,r < ry, sothat la;|r* — 0. Hence there is a constant ¢ > 0 such that

lailrt <c, lal <c/r' (i >0).
Hence |b,| < sup;., lail < csup;., 1/ri = c/rt),

|bnlr™ <c/r (n>0).
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Since the sequence (|b,r"),>0 is bounded, rg > r. Letting r increase to s, we
see that ry > sup,_, , r = ry (compare with Theorem 1 in (V.2.4)). n

Theorem (Strassman). A nonzero restricted power series f € A{X} has only
finitely many zeros in A.

ProOF. (1) Zeros on the unit sphere. Assume f =3 _,a,X" # 0 and define
p:=min{n : |a,| = sup|a;|} < v = sup{n : |a,] = sup|a;[},
1] 1]
so that & < v. If u = v, then f has no zero on the unit sphere. We are going to
show more precisely that f has at most v — p zeros (counting multiplicities) on

the unit sphere. Suppose v > 1 and f(a) = O for some a € A*, namely |a| = 1.
Write

f=X-a)g, geAlX}

By the definition of the extreme indices  and v, when we reduce the coefficients
mod M,

fX)=(X —@)E(X) € k[X],
we find that
deg f =1+degd, o(f)=w(?),
since @ # 0 (w denotes the order as in (1.1): first index of a nonzero coefficient),
v=14ve, = .
This proves that
Ve—Meg=(V—p)—1<v—p.
But any zero b # a of f is also a zero of g:
0= f(b)=(b—a)b)=>gb)=0.

For example, if v = p + 1, we arrive at v, = p,, so that g cannot vanish on A%
In this case, f has only one zeroin AX,and v — p = 1. If v > p + 1, wecan
repeat the procedure for g. In this way, we see that after at most v — p steps, the
last function h € A{X} obtained will satisfy v, = p,, hence will not vanish oD
the unit sphere A*. This process leads to a factorization

f=P-h, Ppolynomial, h e A{X},

and h does not vanish on A*. )
(2) Zeros in M. If f(a) = O for some a € M, namely la| < 1, considef
fu(X) = f(aX),for whichr;, = rs/|a| > r; > 1. By the first step, f, hasafinit®
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rumber of zeros on the unit sphere: f has a finite number of zeros on the critical
sphere of radius r = |a|. Since f has only finitely many critical radii » < 1, the
conclusion follows. -

The proof has shown more precisely that the number of zeros of f in A (counting
multiplicities) is bounded by the telescoping sum of differences v — i of exponents
of critical monomials (corresponding to the critical radii less than 1). Hence we
have obtained the following result.

Corollary. Let f = }_ .oa,X" € K[[X]] be a nonzero convergent power
series and assume that r < ry is a critical radius of f. Let also

p=min{n :|a,r" =M, f} <v=max{n:|a,|r" = M, f}
bethe extreme indices of the monomials of maximal absolute value. Then, count-
ing multiplicities,

f has at most v — p zeros in S,(K),
[ has at most v zeros in the closed ball B<,(K),
f has at most u zeros in the open ball B_,(K). [ ]

Remark. With the previous notation we have

la,ls* forr—e<s<rm,

lay|s® forr <s <r+e

Msf={

for small enough & > 0. Taking logarithms (to the base p),

no —ordpa, foro / p,
Ho f =
vo —ordpa, foro Y\ p,

and v — . appears as a difference of slopes of the valuation polygon at the corre-
Sponding vertex.

2.2, Existence of Zeros

We keep the same notation as in the preceding section.

Theorem 1. Let K be a complete and algebraically closed extension of Q, and
f =Y a,X" € K[[X]] anonzero convergent power series. If f has a critical
radius r < ry, then f has a zero on the critical sphere of radius r in K. More
precisely, if i < v are the extreme indices for which |a,|r" = M, f, then f has
exactly v — p zeros (counting multiplicities) on the critical sphere |x| = r of
K : There is a polynomial P € K[X] of degree v — p and a convergent power
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series g € K[[X]] with

f=P-g, rg>rs, gdoesnotvanishon S, (K).

Proor. The result is trivial if r = 0, so we assume 7 > 0 from now on. Recall that
la lrt = |aylr®, r*=# = la,/a,| € |K*|. Since K is algebraically closed, there
is an element @ € K with |a| = r. Replace f by f,(X) = f(aX) havingr =1
as critical radius. This converts f into a series having a radius of convergence
rg, = r¢f/lal > 1, and in particular, f, € K{X}. We can similarly replace f by
the multiple f/a, and assume |a,| = |a,| = M, f =1 (and a, = 1). To sumup,
it is sufficient to study the normalized situation

r =1 < ryisacntical radius of f € A{X} C K{X},
laul =layl =M, f=1. la, <1 (n>=0),
la.| < 1forn < p and also forn > v.
We are going to show that (counting multiplicities)
f has precisely v — . zeros on the critical sphere S, (K).

For |x| # 1 close to 1, the absolute value of f(x) is given by

la,x¥| =x|* if |x] /1 sayl—e<|x| <],

| f(x)] = )
la,x¥I =xf* if |x]\\1 sayl < |xj<1+e.

(The first estimate is valid when |x| is larger than the largest critical radius less
than 1, and similarly, the second one is valid when |x| is smaller than the smallest
critical radius greater than 1.)

First step: Truncation. Forany index r > 0 define the polynomial P, =) _, . anx"
(of degree < 7) and the remainder g, = Y _,_, an,x". We have f = P; + gr» and
if T > v, then

n>t

Mlgt =max|a,,| <1 =M1f= MlPr.
n>t

By continuity of the functions r +> M, g, and r — M, f we infer

E a,x"

n>t

<M, g, <M, f (x]=rcloseto]l).

If r is regular for both g, and f (which is the case if 7 # 1 is close to 1), we have
lgc(xX) = M,g: < M, f =|f(x)| (x]=r #1, rcloseto1).
Consequently, if 7 > v, then

[FOOl = | Pr(x) + g(x)] = | Pr(x)|
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for the same values of |x| = r. Choose T > v, so that @, # 0: deg P, = 7. Since
K is algebraically closed, we can factorize this polynomial:

P(X)=a. [ [(X - &).
§

More precisely, consider the partition of these roots into three subsets,
A = A; : roots€ with |&] < 1,
A= A, : roots€ with [&| > 1,
A=A, : roots& with |&]|=1.
Here is a table of the absolute values |x — &, depending on & and |x| close to 1:

A gl <1 Ac:gEl=1 A g >1

x| /1 x| 1 3]
Ix] =1 1 Ix — &l €]
x| \ 1 x| x| 1§

In the middle column, we see that when |x| crosses the value 1, then |[x — &|
(¢ € A) varies from 1 to |x|. The number of roots £ € A — taking multiplicities
into account — is responsible for the variation of growth of | P;|. We have

Pl = la [ TIx— &1 [Ix —&1] ] 1x—&l
A A N

(the factors of this product are repeated as many times as the respective multiplic-
ities require). Considering separately the cases |x| < 1 and |x| > 1, we have

lacllx™ - 1 [Ty l€] i xl=r 1,
|P.(x)| = o Il , M
lacllx [ - x[*2 - [T 1€ if Jxi=r \i1

(where multiplicities are taken into account in the exponents — the same notational
abuse is made below). Recall ()

OOl = M layllxl# = x| for|x|=r /1, @
x) =M, f =

/ laulix|” = |x|*  for x| =r \y 1.
COmparing the first lines of (1) and (2), we infer

p=*#A, lacl[]lE1=1.
X
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Observe that if 7 > v, then |a,| < 1, so that N is not empty! Comparing now the
second lines, we get

S=H#HA=v—p

independently from the index of truncation 7 (recall that this takes into account
the multiplicities of the roots || = 1 occurring in P; and is thus greater than or
equal to the cardinality of this set of roots). Since |a;|[], [ = 1, we can now
write

1P)l =[]Ix— & forlx|=1, %)
A
namely, the absolute value of P (x) on the critical (unit) sphere is the product of

the distances of x to the roots £ € A.

Second step: Convergence. Let us compare two successive truncations: if P, # f,
then there is 7’ > 7 with

Po(x) =) anx" = Pe()+arx”, ay #0.

n<tr’

By the first step, the roots of the polynomial P on the unit sphere constitute a set
A’ having the same number of elements (counting multiplicities) § = v — p as A,
and

|Pe()l = [J1x— &1 for|x|=1.
AI

In particular, if we take aroot £ € A of P,, we have

[T — &1 = [Pe®)] = |Pu(§) — Pe(®)| = lavt"| = lac.

Ar
Hence for one root £’ € A’ at least, we have
1/8
&'~ &| < lar|"?.

When f is not a polynomial, we can consider the infinite sequence of successive
truncations of f, which are polynomials of degrees equal to their index

T<n=t<p=1t"<-..
Their sets of roots on the unit sphere
A=A, A=A, Ay ...C{xeK:|x]=1}

have the same cardinality 8. Let us choose and fix a root & = & € Ag. We have
seen that we can choose aroot & € A, such that

&1 — &l < lag, |'/?
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and then a root &, € A; such that
& — &| <lan|'?, etc.

Since |a,| — 0, this construction furnishes a Cauchy sequence (§;);>o on the unit
sphere of the complete field K. Let us call &, its limit. By construction,

fEm) =) ai,,
|fEl =) aik,,| < max a;] -0,

o) = f(lim &,) = lim f(§,) =0

This proves the existence of a root a = &, of f in the unit sphere of K. Writing
f=(X —a)g.if v—p > 1, we can repeat the construction of a root of g.
Eventually, we arrive at the precise statement of the theorem. [ |

For example, if a convergent power series f € C,[[X]] has no zero in the open
ball B_, , of C,, then it has no critical radius. This is the case for f(X) = eX, as
was mentioned in (1.4) (before the Liouville theorem).

Corollary. Let f € K[[X]] be a convergent power series having no zero in
some closed ball (x| < r (< ry) of K° Then 1/f is given by a convergent
power series withry;y > r. If f has no zero in anopen ball |x| < r' (< rg)of
K*, then 1/f is given by a convergent power series with ry;; > r'.

Proor. Let f = 3", . ,a,X". Since ag = f(0) # 0, we may replace f by f/f(0)
and assume ap = 1. Define g = Y, ,a,X",sothat f = 1+ g, r, = ry. The
forial power series 1/f € 1+ XK[[X]] is obtained by formal substitution (1.3)
1 1 X

AR TS B

since w(g) > 1. For the estimate of the radius of convergence of this power series,
We may replace K by K¢, and hence assume that K is algebraically closed. By the
theorem, f has no critical radius less than or equal to r, and if f = Zn>0 a, X",
then |gy| > |a,|r" foralln > 1. This showsthat M, g = max,sy ja,|r" < lagl = 1.
Numerical evaluation of the above composition (1.5) is valid when

x{ <rg=ry, Myg <rya+r =1,
which is the case for |x| < r, since
Mg <Mg<l

The same reference (1.5) also proves that r;;f > r. The second statement is
Obtained by letting r 7 r’. [ ]
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When K is not algebraically closed, we can still give the following factorizatiop
result (in the following statement, ¢ and v have the same meaning as before).

Theorem 2. Let K be a complete extension of Q, in Qp and f € K[[X]]q
nonzero convergent power series.

(@ If f(a) =0 for some a € Q,, la| < ry, then a is algebraic over K.
(b) If r = 1is a critical radius of f, then there is a factorization
f=cP-0-g, ce€K*, P, Q€ A[X]monic polynomials,
P of degree v — p, |P(0)] = 1, Q of degree n, Q = X* (mod M),
g1 € 1+ XM{X} (rg > ry) has no zero in the closed unit ball
of K*°. These conditions characterize uniquely this factorization.

Prook. (a) If f has a zero a on the sphere |x| = r 1n C, (or €2,,), then r is a critical
radius, and the preceding theorem shows that f has v — p roots in €2, (counting
multiplicities). If o is a K-automorphism of €2, it is continuous and isometric
(111.3.2):

f@)=f@’ =0, |a°|=lal=r

Hence a has a finite number of conjugates contained in the finite set of roots of
f on the sphere |x| = r of £2,. By Galois theory, this proves that a is algebraic
over K. The same argument shows that the product P = I—[E(X — &) € K[X]
extended over all roots of f having absolute value  (all multiplicities counted)
has coefficients fixed by all K -automorphisms of K¢ and hence coefficients in K.
This is a monic polynomial P € K[X] of degree v — p.

(b) Define P = ]_[5(X — &) € K[X], the product over all roots of f haviqg
absolute value r = 1 (taking into account multiplicities). Hence P is a monic
polynomial of degree v — p, and P(0) = *]]& is a unit. Let similarly @ =
[1(X — &) € K°[X] be the product corresponding to the roots of f in the open
unit ball [§| < 1,i.e., £ € M. Then Q is a monic polynomial of degree p having
its coefficients in M except for the leading one. As before. Galois theory shows
that Q € K[X]. Now, f = P Qg with a convergent power series g, ro > 'y > 1,
having no zero in the closed unit ball of K¢, hence no critical radius. If & =
3 o0bi X', we have |bo| > |b;x'| foralli > 1, |x| < 1, since there is no critical
radius in the unit ball. Hence |bg| > |b;|, and taking ¢ = by # 0, we see that
(b; = Osincerg > 1)

f=cPOg, g=1+) (bi/OX' €1+ XM{X).
i>0
For uniqueness, observe that in a factorization f = cP - Q - g with &1 €
1+ XM{X} (r, > ry), hence g; having no zero in the closed unit ball of K%
the polynomial ¢ P Q is a multiple of the product of the linear factors correspond-
ing to the roots of f in the closed unit ball (counting multiplicities). If the degree
of P is v, this monic polynomial is the product ]_[g(X —§&) € KX] extended
over allroots || < 1.If P = [—[§ (X — &) is a product extended over a subset O
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roots, the condition | P(0)| = | [—[E &| = 1 implies that the factors correspond to
roots || = 1. The degree of P being v— p by assumption, this product contains all
the linear factors of f corresponding to the roots on the unit sphere. Consequently,
Q is the product of the linear factors of f corresponding to the roots in the open
unit ball. [ ]

Remarks. (1) Under the assumptions of (b). if f has its coefficients in A, and
not all in M, then the constant ¢ is a unit, and by reduction mod M, the equality
f =cPQg leads to f =¢PQg = ¢PX*, since g, = 1. Since P is a monic
polynomial of degree v — u with constant term P(0) € A*, P(0) # 0, we
recognize the significance of 1 and v as the extreme indices of monomials of
maximal absolute value for |x| = 1. In the normalized form a, = 1; hence ¢ = 1.

(2) This theorem is a version of the Weierstrass preparation theorem, which was
initially proved for rings of germs of holomorphic functions in several complex
variables. It has now several formulations in purely algebraic terms.

2.3. Entire Functions

Definition. An entire function is a function f given by a formal power series
f € K[[X]] having infinite radius of convergence: r; = o0.

Before studying the entire functions more closely, let us prove the following
elementary result.

Lemma. For any sequence (a,),=0 in a complete ultrametric field K with
an — 1, the products py := [,,_y an convergetoalimitdenotedby [|,.o an =
[Tr2o an. More generally, if (a,),>0 is a sequence of K -valued functions defined
onsome set S, and if a, — 1 uniformly on S, the partial products py converge

uniformly to [ ], an.

Proor. By assumption |a,| = 1 for large n. Hence the partial products remain
bounded, say |py| < C (N > 0). By definition,

Pn+1 — Py = (ay — Dpn,
|pvsr — pnl < Clay — 1] =0 (N — o0).

This proves that the sequence of partial products py is a Cauchy sequence. It
Converges in the complete field K. The second statement follows immediately
from the first one. [

The exponential 1s an example of a function with no zero:
e *=e=1 = €& #£0

(this is true for the complex exponential and for the p-adic exponential: Only the
hOmomorphism property is used!). Although it is an example of an entire function
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in complex analysis, the finite radius of convergence of the p-adic exponentig]
prevents this function from being entire in this context. In fact, any entire function
having no zero in complex analysis is of the form f(z) = €@ for some entire
function g, but the only entire functions in p-adic analysis having no zero in ap
algebraically closed field are the constants. This leads to an easy determination
of entire functions in p-adic analysis. The main results are contained in the next
statement.

Theorem. Let f € KI[X]] be a formal power series with ry = o0.

(a) If f does not vanish in K, then f is a nonzero constant.
(b) If f has only finitely many zeros in K°, then it is a polynomial.
(©) If0 # f € Cpl[X]], the following conditions are equivalent.
(i) f has infinitely many zeros.
(ii) f has a sequence of critical radii — <.
(iii) The growth of | f| is not bounded by a polynomial in |x|,
(iv) f is given by a convergent infinite product
f(x) = Cx" -T]QQ — x /&) the product taken over nonzero
roots of f, counting multiplicities, and m = ordy f.

Prook. (a) If f does not vanish, then ag = f(0) # 0 and | f(x)| = |ag| whenever
[x] is smaller than the first critical radius. Since f does not vanish, there is no
critical radius; hence all a, = 0 for n > 1. This proves that f = ag 1s constant.

(b) After division of f by the monic polynomial having the same roots as f,
we are brought back to the first case.

(¢) The equivalence (i) <= (ii) is a consequence of the finiteness of zeros on
each critical sphere. The equivalence (ii) <= (iii) is Liouville’s theorem (1.4).
Finally, (iv) == (i) is clear, and we now show (ii) == (iv). By assumption f # 0,
and if its order 1s m > 0, we can write

fO)=) ax"=Cx"(0+ ) a)x")

n>m n>1

with C = a,, (and a,, = ay,1n/a,). Without loss of generality we may now assume
that f is given by an expansion f(x) =1+ ., a,x". In this case | f(x)| = 1
for small x, namely for x| < ro (ro denoting the first critical radius of f)- Just
beyond this critical radius, we shall have | f(x)| = |x|" if there are precisely N
zeros (counting multiplicities) of f on the critical sphere |x| = rp. Let us write

f@ = po)- i@, por= ] (1—1).
1§1=ro, f(§)=0 §

The same procedure can obviously be iterated on each successive critical sphere
and furnishes a factorization

f&x) = pa(x) - frya(x), palx) = ]_[ (1 - l) .

[§1<ra. f(§)=0 g
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This construction makes it obvious that for fixed x, the terms (1 — x /&) of the
product tend to 1 and this convergence is uniform in x in a ball B<g (provided
that R < o<). This is the infinite product representation of f. It also shows that
for each given sequence (&;) with |&;] — oc there is an entire function having the
&’s as zeros (with correct multiplicities, and no other root): The corresponding
infinite product converges uniformly on all bounded sets (its general term tends
to 1 uniformly on bounded sets). Observe finally that if an infinite product of the
form [ (1 — x /&) has the same zeros ( 0) as a power series f, the quotient

& [T = /67 = )

has no further zero x # 0. This function has no positive critical radius and can
only be a monomial ¢,,x™, m being the multiplicity of the zero at the origin. This
concludes the proof of the theorem. [ ]

24. Rolle’s Theorem

Rolle’s theorem for differentiable functions of a real variable is valid for scalar
functions only. Here it is:

If f : [a, b] = R (a < b) is continuous and differentiable on

the open interval (a, b), then there exists a < ¢ < b with

f) - f@

~——a

The mean value theorem with an intermediate point follows from it. The preceding

equality can be written f(b) — f(a) = (b —a)f'(c)or witha =t,b =t + h,

€ =t 4 6h, as a limited expansion of the first order:
fe+h=f®)+h-ft+6h) O<6<]I).

We give here the p-adic versions. Let us start with an easy observation.

flo=

Proposition. Let f € K[[X]] be a convergent power series. For £ € K with
|€] < ry, there is a unique convergent f; € K[[X1] with f(x) = fe(x — &)
Jor small |x|. Moreover, f; has the same radius of convergence as f, and the
preceding equality holds for |x| < ry.

If f =3, oa,X", this means that we can expand around &,
Y ax" =) anE)x - &),
n>0 n>0
with no gain (no loss either) in convergence: [x| < ry <= |x — &| <rj.

Proor. For a polynomial f € A[X], this is the Taylor formula for the expansion
around the point § € A:

YoaX" =) a(X —E+E =) @)X —§)" = (X - &),

n<d n<d n<d
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with a polynomial f; € A[X]. This proves that sup, |a,(§)| < 1 when sup, |a,| <
1,sothat f > f; diminishes the Gauss norms. The same is true for the converse
isomorphism. We conclude that

f— fe : K[X] — K[X] isisometric.

This isometry has a unique isometric extension to the completion K {X}: We still
denoteitby f > f..Now,if f € K[[X]]hasr; > 0, we may apply the preceding
result to any g = f(aX) where o € K¢, |a| < ry, since g € K?{X} in this case.
This shows that the radius of convergence of f; is greater than or equal to ry,
but as before, the inverse isometry proves the converse inequality and nothing is
gained. n

Theorem. Let f € C,[[X]] have convergence radius ry > 1. Then

(a) if f has two distinct zeros a # b in B« satisfying la —b| < rp,
then f’ has a zero in B<,;

(b) if f has two distinct zeros a # b in B, satisfying la — b| < rp,
then f' has a zero in B.,.

Proor. By the preceding proposition, we can replace f by its expansion centered
at the point b. Thus, we may assume a # b = 0, la| < r, (resp. la| < rp):
fX)= Zn>l a, X" and g, # 0 (otherwise, f’(0) = 0, and we are done). We can
also assume that ja| = r, is the smallest positive critical radius. Hence there is an
integer n > 1 such that

1al|rc = lanlrg,

whence

a n—1
(resp. <ry, ).

an
If v = ord,n, say n = p’m, m prime to p, we have

n—l_pm—l>p -1

v—1
+...+ +1>p

(with equality only form = 1and v = 1: n = p). Hence

0 —1 azt
—| =7 = 1Pl < 1pl = nl,
n
so that |a;] < |na,| and |a1| = |na,|r"! for some r’ < 1. Recallmg thatry =

r¢ > 1. we see that the power series f’ admits a critical radius r’ < 1. By 22) f
has a zero in the closed unit ball. In the case (b), |a,| < |na,| proves r’ < 1, and
the zero is in the open unit ball. .



2. Zeros of Power Series 317

Example. Let f = x” — px and choose a root p!/?=1) e C,,. The zeros of f are
0and pp—y - p/P~. Hence two distinct roots are at a distance r,. The zeros of
f" are also the zeros of f'/p = xP~! — 1, ie., the elements of 1 p—1 on the unit

sphere.

Corollary. Let f € Cp[[X]] withry > 1. For each pair of points a, b € A,
such that \a — b| < rp, there is a point § € A, such that
fb)— fl@)y= (- a)f').
Ifa, b € M, and |a — b\ <, there is a point § € M, such that
f®)- f@=®—-a)f'E).
Prook. As in the classical case, consider the function

fl@ fx) fw)
¢(x)=| a x b |,
1 1 1

which vanishes at x = a and x = b. Its derivative

f@ f'x) fo)
Px)=1| a 1 b
1 0 1

vanishes in A, (resp. M ). =

2.5.  The Maximum Principle

The preceding theory concerning critical radii — and particularly the existence of
Zeros on critical spheres — has important consequences for the study of power
series.

Proposition. Let r < ry be a critical radius of f € C,[[X]1]. Then | f| takes
all values between 0 and M, f in |Cp|. More precisely, for each y € C, with
I¥l < M, f, there is a solution x € C, of the equation f(x) =y with |x| =r.
If ly| = M, f, the same equation also has a root of absolute value r, provided
that |y — f(O)l = M, f.

Proor. Consider the formal power series

fX)—y=(@—»+Y aX" (a= fO).
n>1
If | ¥l < M, f, then f—y has the same dominant monomials as f, and r is
still a critical radius of f — y: This function vanishes on the corresponding sphere.
If |y] =M, f, the assumption made ensures that the formal power series
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f—y=(a—-y)+ anx a,X" also admits the critical radius r and hence vay.
ishes on the corresponding critical sphere of C,. This proves that

M, f = sup | f(x)| = sup | f(x)] —maXIf(X)|

Ix)<r Ixl<r

when r is critical. n

Corollary. Letr < ry. Then
M, f = sup | f(x)] = sup | f(x)I.

Ix|<r Ix|<r
Moreover; ifr € IC;,‘l is a rational power of p, then

M, f= maxlf(X)I— max | f(x)]-

Proor. Forevery r <ry,

fON<=Mxf<Mf (x|<r)

implies that

sup | f(x)] < sup | f(x)| < M, f.

Ix|<r Ixl<r
Conversely, we can find a sequence (x,) in C, such that:
|xn| = ry isregular forall n and r,, 7 r.
Hence
| fON =M, f ./ M f
implies that

sup | f(x)l = Suplf(xn)l =M, f

Ixl<r

Finally, if r is regular, | f(x)] = M, f is constant on the sphere |x| = r, while ifr
is critical, M, f = maxy=, | f(x)| follows from the proposition. .

2.6. Extension to Laurent Series

Instead of Taylor series, we can work with convergent Laurent series
o0
=) aX" e K[[X,X'])
—00

as in (1.7). Existence of zeros on critical spheres r; < |x| =r < r}“ is ensured,
provided that the field K is algebraically closed (typically, if K = Cp).
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For example, let » be a critical radius of f. Asin (2.5), an equation f(x) =y €
C, will have a solution x € C,, with x| = r, provided that
either |y| <M, f or |y|=M,fand|y—ao]l =M,f.
This shows that

sup |f(0) = max [f)l =M, f (f <r < ).

Ixj<r

In the case of a Laurent series f, the function» + M, f is not necessarily increas-
ing, but it is always a convex function on the interval (r/, r}L). A consequence of
this observation is the maximum principle for annuli:

Ifr; <n<n< r}L (ri € |K*}), then
SUP,, <ix|<r; | ) = maxy, <<y, | (X)) = max(M,, f, M,, f).
We have also seen that
p=logri> p,f =logM, f

isa convex function on the interval (log ry,log r;) (cf. (1.7)). Let us show that it
is— as in complex analysis — a formal consequence of the maximum principle
for all functions x™ f" (m € Z, n € N) (given by convergent Laurent series by
(I7)inannulir; <r <ry <rjf.

Hadamard’s Three-Circle Theorem. Assume that f € K[[X,X 1] is a
convergent Laurent series, so that f is also a function defined on an annu-
lusr= < |x| <rt of K. Then

p=logr— pu,f =logM, f = loglmlax | £
X\=r
is a convex function.

Proor, Let(r— <rn<r<n<rt), M= M,, f, so that
M, f < max (M, M3)
by the maximum principle. Apply this inequality to x” f* (m € Z, n > 0),
r" M < max (r{" M7, ry' M}),
and taking nth roots
P M, < max (r]"" My, r)'" Ms).

If K = C,, we can choose the rational number & = m/n such that r{ My = r{ M,
Of K = 2, or C, we can take a sequence of rational numbers m; /n; converging
to the real root o of r{ M, = r§ M,). With this choice for & (using continuity if
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K =, or C), we can write
r’M, < r;le = rgMz = (r‘,’Ml)s - (rgMz)'

if s +¢ = 1. Since p = logr is a convex combination of the p; = logr;, we can
chooses > 0.t > Owiths+¢ = 1 andr = r{ - r;. With this choice r® = r{* .r,
and the obtained inequality simplifies into

M, <M -M;.

With p, = logM, and u; = logM; (i = 1,2), we now get the announced
convexity property

Ko Sspatipz (p=sp1+1p2)- u

Definition. Let f be a Laurent series withr; = 0. We say that the origin is an
isolated singularity. Three cases can occur:

(1) f is a Taylor series (a, = O for alln < 0):
The origin is a removable singularity.

(2) f has finitely many coefficients a, # 0 for n < 0:
The origin is a pole.

(3) f has infinitely many coefficients a,, # 0 forn < 0:
The origin is an essential singularity.

If the origin is a pole of f, its order is the smallest integer m > 0 such that
x™ f is a Taylor series (has a removable singularity at the origin). In the case of an
essential singularity, the analogue of a classical result of Picard is valid.

Proposition. Let f have an essential singularity (at the origin). Then there are
infinitely many critical radii r; \, 0, and for each ¢ > 0, y € C,, the equation
f(x) = y has infinitely many solutions 0 < |x| < ¢. L

Proposition. Ler f be a Laurent series withr ; = 0 and r; = 00. Then

(a) if f has no zero in C%, f is a single monomial;
(b) if f has only finitely many zeros in C,
then f is a polynomial in X and X~!;
(¢) f is given by a Weierstrass product
FX)=CX" - [[ig>1(1 = X/8)* - [Tje (1 — §/X)*%
extended over the roots & of f =0,
v denoting the multiplicity of the root &. "

Example: Theta Functions. Choose an element g € C; with 0 < |g| < 1
Consider the product

o) =[Ja-¢"%]] (1 - "7) :

n>0 n>0
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which converges in the annulus 0 < |x| = r < co. Obviously,
X
O1(g~'X) = —= - ©y(X).
q
If we define more generally ©,(X) = ©,(a"'X) (@ € C;,‘ ), then we have
_ X
Ou(g™'X) = —— - ©y(X).
aq

Products of such theta functions satisfy functional equations of the form
B 1X) = C(—X)* - O(X).

These functions are used for the construction of the Tate elliptic curves.

3. Rational Functions

Functions defined by convergent power series expansions are defined in a ball.
Unfortunately, as we have seen in (2.4), it is impossible to obtain an analytic
extension of such a function by looking at the expansions at different points of
the ball of convergence: The radius of convergence does not change, so the ball of
convergence is the same. Any point of a ball is a center of the ball, and there is no
way of defining “points near the edge.”

On the other hand, we like to consider rational functions (quotients of poly-
nomial functions) as analytic functions outside their set of poles (zeros of their
denominators). These functions can be expanded in power series in each ball con-
taining none of their poles. More generally, uniform limits of rational functions
will play a role similar to the analytic functions in complex analysis: They are the
“analytic elements” introduced by Krasner.

3.1. Linear Fractional Transformations

A linear fractional transformation is a rational function

where ad —bc # 0. The coefficients are taken from a field K, and alinear fractional
transformation defines a map

f: K U{oo} - K U {oo}.

The space K U {00} = P!(K) is the projective line over K: Its elements are the
homogeneous lines in K ?, represented by quotients

1o [x : y] = class of pairs proportional to (x, y).
y
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When ¢ = 0 (@ and d # 0), we get an affine linear map

ot s an @20
x dx 7= x (a .

When ¢ # 0,

ax+b 1 ad 1
fx) = cx+d ;[a+(b—7) x+d/c:|'

Typical examples of linear fractional transformations are

(a) translations x > x + b,
(b) dilatations (or homotheties ) x +— ax,
(c) inversion x — 1/x.

The preceding formula shows that these particular linear fractional transformations
generate the group of all linear fractional transformations.

A good description of linear fractional transformations is supplied by 2 x 2
matrices: To each such invertible matrix we associate the linear fractional trans-
formation having for coefficients the entries of the matrix

Composition of linear fractional transformations corresponds to matrix multipli-
cation: The above correspondence is a homomorphism from the group Gl,(K) of
invertible 2 x 2 matrices with entries in K to the group of automorphisms of the
projective line P!(K) = K U {o0}. The kernel of this homomorphism consists of

the nonzero multiples of the identity matrix I, (scalar matrices) (g 2) =a-b
(a # 0), namely the center of Gl2(K'). Hence there is an isomorphism

PGlL(K) = GL(K)/(K* L) > Aut(P'(K)).

Here are representative matrices for the three types of linear fractional transfor-
mations listed above:

(a) The matrix (1 b) produces the translation x > x + b.

0 1
(b) The matrix (?) (1)) produces the dilatation (or homothety) x +— ax.

(c) The matrix I produces the inversion x +—> 1/x.
1 0

Proposition. Let K be an ultrametric field. Then the image of a ball of K under
a linear fractional transformation is either a ball or the complement of a ball.
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proor. Affine linear transformations send an open (resp. dressed) ball to an open
(resp- dressed) ball. The formula

ax+b
cx+d

fx)= =—i~[a+(b—ad/c)

1

x+d/ c]

(when ¢ # 0) shows that a linear fractional transformation that is not an affine
linear map is nevertheless composed of such transformations and of an inversion.
Itis thus sufficient to prove the statement for the inversion. Consider, for example,
the ball B_.(a) and its image B’ by inversion. If the origin belongs to B_,(a),
then this ball coincides with B, = B_,(0) and its inverse is the set defined by
Ix|] > 1/r, i.e., the complement of the ball B<,,,(a). Otherwise, |a| > r, and for
x € B,(a),

x—al<r. Ixl=la+(x—-a)l=lal,

so that
1 1

X a

a—x la — x| r

< —.
lal? lal?

xa

This proves that the image of the ball B_,(a) under inversion is contained in the
ball B_,/,,z(1/a). Since the same argument shows that the image under inversion
of the second ball must be contained in the first one, we conclude that the inversion
is a bijection between these balls. A completely similar proof holds for closed balls
instead of open ones (alternatively, one can use the relation B, (a) = [ ),.., B<s(a)
between closed and open balls.) Hence we have

f(B<(@) = B pap(1/a) iflal >,
f(B<(a)) = Borjjap(1/a) if|lal > r,
fUx:Ix—al=rY)={y:ly—1al=r/lal’} iflal>r. ]

The image of a ball is called a generalized ball: A complement of a ball of K is
identified to a ball of P1(K) containing the point at infinity; note, however, that in
general two such generalized balls satisfy no inclusion relation. The analogy with
the classical complex case is striking. Indeed, recall that in C a linear fractional
transformation preserves the family of generalized circles (circles and straight
lines) and the family of generalized disks (disks, half planes, and complements of
disks).

3.2.  Rational Functions

Letus review a few elementary algebraic facts concerning rational functions having
coefficients in an algebraically closed field K . Let f € K(x) be arational function
and write f = g/h with two relatively prime polynomials g and 4, 4 being
monic. We say that f is regular at the point a € K if h(a) # 0. In this case,
f(a) = g(a)/ h(a) is well-defined, and the numerator of the function f — f(a)
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vanishes, and hence is divisible by x — a. This shows that if f is regular at q, we
can write

f=f@+x—-a)fayx), farational, regular at a.

Iterating this construction for f(;), we obtain a second-order limited expansion of
f. By induction, we see that for any integer m > 1,

f=a+a(x—a)+ - +au1(x —a)" ' +(x —a)" fom)»

where f() is rational, regular at the point a.

We say that f # O has a pole of order m > 0 if the denominator 4 has a zero
of order m at the point a (hence g(a) # 0, since g is prime to ). In this case, we
write h(x) = (x — a)"h;(x), hy(a) # 0; hence

g 1 g
= R = — lar ata.
G —arh G —a fH, f I regular at a

f=

If we write the above expansion for f;, we obtain

1
f= (—x—_—;);(ao+al(x—-a)+---+am_1(x—a)""l +@x —a)"f)
ap ap Ayp—1 x ~
T x—aym +(x—a)"'—l +.“+x—-a+f_ Fa (x—a)+f

with a polynomial P, of degree m and zero constant term. The rational function

1 ap am—l
P, =
a(x—a) (x—a)"‘+ +x—a

is the principal part of f atthe pole a. Itis uniquely characterized by the properties

P, is a polynomial with zero constant term,
1
f—P, (——) isregularata .
x—a
The order of f # O at the point a € K is by definition

ord, f = ord,g —ord h € Z.

This integer is positive if f (is regular and) vanishes at a. negative = —m if f has
a pole of order m ata.

Consider the finite set {o;} = {a € K : h(a) = 0} of poles of f = g/h and
the respective principal parts P; (x_lu._) of f.Then f -3, P; ( x_lm) is a rational
function that is regular everywhere: It is a polynomial, and we have obtained the
decomposition

1
f= z.:-Pi (x —a,-) + Ps (P € K[x]).
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One way to obtain this decomposition is to start with the Euclidean division algo-
rithm for polynomials,

g=Ph+g, degg <degg.

f=2=24P0 (PueKix).

Ifdegg > degh, then deg P, = degg — degh; otherwise, Py, = 0. The well-
known partial fractions expansion for the first term leads to

8 1

ot P. .

h Z,: ! (X - d,')
The particular rational functions

_t
x—ay"’

x" (@€eK,m>0,n>0)
generate the K -vector space K (x). Since they are also independent, they make a
vector space basis of K (x).

If K is a valued field, we have

P, (-—1——)| -0 (x]— o),
xX—a

P,,( ! )I—)OO (x| = a).
x—a

With the previous notation

1
f@=>Y P (;—_;) + Pool(),

h{a)=0

-0 |x|—>00

we see that
[F(x)] = Owhen [x] > 00 <= Py(x)=0,
| f(x)] is bounded when |x] = 00 <=  Po(x) is constant,
|f(x)] > ocowhen |x]| > 00 <= degPx(x)>0.

Let us now specialize to K = C), algebraically closed and complete. We can use
the binomial series expansion: Fora # 0, m > 1,

1 —m
x—ay (—L)m (1 - 2)

=Y (-pm (‘n’") affm (x| < lal)

n>0
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(a Taylor series),

= (—1Y(—m) 2 (x| > la)

(a Laurent series). In particular, in any region r; < |x| < r, containing no pole of
f, we can choose the first type of expansion for the principal parts corresponding
to poles |o;] > r, and the second type for the principal parts corresponding to
poles |o;| < r;. We obtain Laurent series expansions (1.7) (and (2.6)).

Proposition. Let f € C,(x) be a nonzero rational function and {«;} its set of
poles. Then f admits three types of Laurent series expansions:

(@ Y _<ncoo @nx" (0 < Ix| < minfly| : o; # O}),
B) Y ocncoo@nx"  (max{la;] : || <1} < x| < minfloy] : |oi] > 1)),
(©) Y- ooanen @nx" (x| > max{los|}).

Proor. In the first case (a), if f has a pole at the origin, then m is its order. Letus
consider only the case (b). If r > 0is fixed, group the principal parts corresponding
to poles in the closed ball |x| < r. For each individual monomial in these principal
parts, amultiple of some 1/(x —«;)", choose the Laurent expansion that converges
for |x| > |e;|. Any linear combination of these expansions converges at least for
Jx| > max{|e;] : |a;| < r}. Group similarly the principal parts corresponding to
the poles |e;| > r, and choose the Taylor series for the corresponding monomials
1/(x — o;)": Their linear combination converges at least for |x] < min{leil :
le;] > r}. Adding these two contributions, we get a Laurent series as announc

Observe that since a Laurent series defines a continuous sum in its open annulus
of convergence, this region cannot contain a pole of the sum, whence the precise
estimate for the radii limiting its region of convergence. =

3.3.  The Growth Modulus for Rational Functions

Let us say that a radius r > O is regular for a rational function f = g/h € Cp(X)
(g and h relatively prime polynomials) when it is regular for both g and h, hence
when g and h do not vanish on the sphere |x| = r of C,. Hence, when |x| =T is
regular for f = g/h.

Mg

g0l = M,g, |h(x)| = M,h, and |f(x)|=Mrh.

Lemma. Let f = g/h € C,(x) and define M, f := M,g/M,h for real r > 0.
This expression is well-defined independently from the particular representation
of f as afraction g/ h, and r v M, f is continuous on R..¢. For each regular
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r>0 lf(x) = 117, f on the sphere |x| = r. In each region where f has a
Laurent series expansion, M, f coincides with the growth modulus as defined

in (2.6).
proor. If f = g/h = g1/ hy.then ghy = g1h, [g(x)hi(x)| = |g1(x)h(x)] implies
M,g-M.hy = M,g, - M,h

first for the regular values r (of g. h, g;, and hy, i.e., of the product ghg;h;),
and hence also for all values » > 0 by continuity. This proves that M, g/M,h =
M,g1/M,h;. The other assertions of the lemma are obvious. ]

Considering the previous results, we shall simply denote by M, f = M,g/M,h
the growth modulus of a rational function f = g/h.

M (x-1)/(x-p))

0l 1/p 1 r
pole zero

Growth modulus for a linear fractional transformation

Observe that for a nonzero rational function f, M, f > Oforr > 0. When aradius
r > 0 is not regular for the rational function f = g/h, we say that it is a critical
Tadiys: f has some poles and/or zeros on the sphere |x| = r. Denote as before by
{e;} the poles of f and introduce its set {8;} of zeros.

Theorem. Let f = g/ h € Cp(x) be a rational function. Then we have:

(a) If f is regular at the origin, thenr +— M, f is
convex increasing on the interval 0 < r < min{jo;|}.
(b) If f has no pole in the region ry < |x| < r,, then
r +> M, f is convex in the interval ry <r < ra.
(c) Ifdeg g < degh, thenr +— M, f is decreasing for r > max{|c;|}.
@ 1f)N =M, f =cr*es=®eh for |x| = r > max{le;l, |8,1}.
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Prook. (a) and (b) follow from the lemma and (1.4). For (c) and (d), observe
that for any polynomial P of degree d, M, P = |ay|r® when r is bigger than the
absolute value of all roots of P. Apply this to P = h to obtain (c), and to both g
and A to obtain (d). .

Example. Consider the rational function

f(x) = € Cp(x),

1 —x2

which has a simple zero at the origin and two poles on the unit sphere. For |x| < 1
we have |1 — x?| = 1, while |1 — x?| = |x|? for |x| > 1. Hence

Ix| if |x] <1,

1/Ix| if x]> 1,

r ifr <1,

rUoifr>1.

| fOl = { M, f= {

Proposition 1. Let f = g/h € C,(x) be a rational function and let S, be the
sphere {x : |x| = r} of radius r > 0. Then:

(a) If f hasnopole on S,, then | f(x)] < M, f (x € §,).
(b) If f hasnozeroon S;, then | f(x)| > M, f (x € §,).

Prook. (a)Ifacritical sphere S, (r > 0) contains no pole of f, its denominator does
not vanish on this sphere and r is a regular value for the denominator: [h(x)| = M,h
is constant on S,

1g() < Mg
Mrh - r

(b) Replace f by 1/f. |

[fO)l =

:Mrf (IXI:I‘)

<
>

If f has a zero B € S,, then by continuity, | f| takes arbitrarily small values in
a neighborhood B_.(B) of B. Such a neighborhood is contained in the sphere S
as soon as ¢ < |B|. Hence | f| takes arbitrarily small values on the sphere S,. The
same holds for 1/f if f hasapolea € S,. If f has both zeros and poles in S,, this
shows that | f| takes arbitrarily small and large values on this sphere. This will be
made more precise in the next propositions.

Proposition 2. Let f = g/h € Cp(x), S, as before and consider an open ball
D = B_,(a) of maximal radius in the sphere S, (hence |a| = r). If f has no
pole in D, then

M, f = sup Lf == [l fllp-

Proor. For s > r = |a|, the spheres S; and S;(a) = {x : |x —a| = s} coincidt_?-
Hence M f = M, ,f (growth modulus with respect to the center a): This 15
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obvious for regular values of s and by continuity also for all values s > r. This
proves

M, rf = Mr.af-

Since f is regular in the ball D, its growth modulus M, , f (with respect to the
center a) is an increasing function of t < r. By the maximum principle (2.5) for

balls,
Miof = sup |f(x) (t <),

Ix—al<t
and by continuity of the function ¢ > M, , f,

M,of =supM,of = sup sup |f(x)|

t<r t<r |x—al<tr
= sup [f()l = I fllp- n
|x—a|<r

Observe that since we work with the field C,, having an infinite residue field,
a sphere S, of positive radius is a disjoint union of infinitely many open balls of
maximal radius r, so that it is always possible to choose aball D = B_,(a) without
pole of f as in Proposition 2.

Proposition 3. Let f = g/h € C,(x) be a rational function, S, as before.
Then:

(@) If f has no pole on S,, then M, f = SUPy =, | f ()
(b) If f has no zero on S,, then M, f = infiy =, | f(x).
(c) If f has both zeros and poles on S,, then

| f(x)] assumes all values of |C,| onx € §,.

Proor. Observe that if f has no pole and no zero in S,, then r is regular and
| f(x)] = M, f is constant on S,. Now (a) follows from Propositions 1 and 2. For
(b), replace f by 1/f and apply the previous result.

(c) Choose a pole & € S, and a zero 8 € S, with

le — Bl = minja; — B, | := 6
(minimum taken over the zeros B ; and poles «; in ;). Then
Msof =Mspf (s>9),
since the spheres of radius s > & and centers « (resp. 8) coincide. By continuity,
Msof =Mspf =M.

Now, foreachy € C,, |y] < M, f — y has a critical radius r < & and f(x) =y
has a solution x € B_s(8) C S,. Similarly, for each y € Colyl>M, fx)=y
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has a solution x € B.s(x) C S, (consider 1/f). Finally, as in (2.6), f also assumeg
some values y = f(x) where |y] = M. 2

3.4. Rational Mittag-Leffler Decompositions

Recall that we denote the complement of aset B C Cp, by B =C, — B.

Proposition 1. Let 0 # f = g/h € Cp(x). Assume degg < degh and that
f has all its poles in a ball B = B, for some o > 0. Then for any subset D
disjoint from B, | fllp < |fllgr = M, f. If D = B_,(a) is a maximal open
ball in the sphere |x| = o, then

W fllp=Nfllge =M f.
ProoF. Since f has all its poles ¢; in B, we have 0, = max; |o;| < o and

[fx)l < Mlxlf (x| > Gp)-

On the other hand, since degg < deg k, the growth modulus M, f decreases for
r > oy,

IfON<Msf (x| =z 0),

and for D C B€ we have

Wfllp < Ifllpe < M, f.

Taking a sequence x, € B¢ withregularr, = |x,| \\ o,sothat| f(x,)| = M,, f /'
M, f, we see that || fllge > sup, | f(x,)] = M, f. Finally, if D = B_,(a)isa
maximal open ball in the sphere [x| = o, then Proposition 2 of (3.3) shows that
Il fllp = M, f, since f has no pole on |x| = o. L

Observation. The last step of the preceding proof, || f|p = M, f, requires only
that we find a sequence (x,) in D with regular r,, = |x, — a| / o, so that

[fGn)l = Mr,..af = Moof =M, f,
I fllp > sup|f(xn)l > lim]| f(x,)l = M, f.

This will be essential for generalizations (cf. Proposition 2 in (4.2)).

If f = g/h € Cp(x)isarational functionand o > 0, we can group the princiPa]
parts corresponding to the poles ; of f in the open ball B = B_,:

1
fex)="Y_ P (x_ai).

leyl<o
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We can apply Proposition 1 to fg, since this function has all its poles in B. The
growth modulus M, fp is decreasing forr > o:

I fellp = SuglfB(X)l <M.fg (DC B).
X€

Proposition 2. Let f € Cp(x) be a rational function and let fg be the sum
of the principal parts of f corresponding to its poles in B = B.,. If D is a
maximal open ball B_(a) in the sphere |x| = o and D contains no pole of f,
then

W fellp = Mo fg < My f = I flip-

Proor. We may assume fp # O and let us mtroduce fy := f — fg € C,(x),
which is regular in B (but may have poles in the sphere |x| = o). Hence

r — M, fo is increasing (may be constant) forr < o.
On the other hand, M, fp decreases (strictly) beyond
op :==max{la| :xisapoleof finB} < o.

There is at most one crossing point of M, foand M, fg intheinterval (o,,, o). Hence
M, fo # M, fg with at most one exception r € (¢op, o). For all regular values (all
except finitely many), these M, represent absolute values of the corresponding
functions where in a sum, the strongest wins:

M, fp < max(M, fz, M, fo) = M(fs + fo) = M. f (0p(fs) <T /' 0).
Taking an increasing sequence of regular values r,, /' o, we conclude that
M, fg < M, f.
Finally, by Proposition 2 of (3.3) we have M, fg = || fgllp. Mo f = I fllp. ™

Let us go one step further and group the poles of f in a finite number of balls.

Theorem. Let B; = B, (a;) (1 <i < £) be a finite set of disjoint open balls
in the closed ball B<, and define D = B, — |[,.;., Bi. Let f € Cp(x) be
a rational function regular in D, f; = fg the sum of the principal parts of f
corresponding to its poles in B; (1 < i < £). In the canonical decomposition

f=ft) fi=) fi

I<i<t O<i<?t
where fy is regular in B<,, we have

fi.fllp = max, I fillp-
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Proor. Asin (3.3) (Proposition 2) we can select open balls D; of maximal radiyg
o; on the spheres [x — a;] = 0; (1 < i < £) and containing no pole of f.

Mittag-Leffler decomposition of a rational function

By Proposition 1, the inclusions D; C D C By lead to the same sup norms

I fillp, = W fillp = I fillpe (= Mo, 4, fi)-
By Proposition 2, we have || fillp, < | fllp, (i > 1), hence

I fillp = W fillp, < W fllp, <l fllip (A <i<0).

Now the competitivity principle (IL1.2)in f — fo—Y_,_; ., fi = Oshows thatwe
have o

Ifllp = max llﬁllo .

Note that for the regular part f, of f in B<, we have

l follp = sup | fo(x)] = max [fo()l = sup |folx)l

Ixl<r |x—bl<r

for any |b| = r. On the other hand, if deg g < degh, f = g/h — 0 (x| = o)
we find that fy = 0, so that we also have

Ifllp = sup |lfillp

1<i<e

for the unbounded domain D = C, — [ [;.;; Bi-
Let us mtroduce the following notation for any subset D of C:

R(D): ring of rational functions having no pole in D,
Ro(D) C R(D): subring defined by | f (x)] — 0 when |x| — o0.
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For any open ball B and any D disjoint from B, we can look at
R(D U B) => R(D) - Ro(B").

The first map is the restriction f — f|p (injective as soon as D is infinite), while
the second is f +— fp (principal part of f in B). This second map is surjective
and admits a section fg — fg|p also given by restriction. If a rational function is
regular on D U B and on B¢, i.e., regular everywhere, then it is a polynomial. If
moreover it tends to O (when |[x] — 00), then it is O:

R(D U B) N Ry(B°) = {0}.
Hence the preceding sequence is a short exact sequence: It splits
f = fo+ fg © (fo. fg) : R(D)= R(D U B) ® Ro(B).

More generally, with the notation and assumptions of the theorem,
0 —> R(B<) —> R(D) —> @ Ro(Bf) —> 0

1<i<¢

is a split short exact sequence (the case £ = 1 is as in the previous example). The
section of f > ([fi)1<i<e furnishing the splitting is (fii<i<e > I_j<i<¢ filD-
Indeed, the difference f — Y, .., filp extends to the regular fy € R(B<,). All
these maps are linear and contracting; hence

R(D) = R(B<,)® €D Ro(Bf)

1<i<t
is an isomorphism of the normed space R(D) with a direct sum of normed spaces
over C, (IV4.1).
3.5.  Rational Motzkin Factorizations

Itis easy to give a product decomposition for rational functions quite similar to
the sum decomposition given in the preceding section. Let B ¢ C p be an open
balland f =g/h e C p(x) arational function having all its zeros and poles in B:

S={a € C, : gla)h(a) =0} C B.
Hence f = ¢ [Taes(x — @)Y (pa € Z, ¢ € C). Choose b in B and write

x —a\*
f =c(x — b)zﬂa I—I (m—) =c(x — b)zu"h(X).

a€s

Observe that

lx —al
Ix —b]

1 (x ¢ B).
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More precisely,

x—a b—a b—a
=1 1 B),
bt iop| <! G¢D
x—a x —a\"
—1]| <1 (@es), I —1f <1
x_b Be a€s x—-b B¢

This gives a factorization
f(x) = c(x — bY"h(x),
where
m = (number of zeros — number of poles) of f in B,
and
th — Hlg <1, h(x)— 1(x] —> o0).

If we take another center b in B, we shall have

f(x) = c(x — bY"h(x)

i::(x—'f) h.
x—b

In particular, we see that ¢ and m are independent of the choice of center of B (but
h depends on this choice). The integer m is called index of f relative to the ball
B. Asymptotically,

with

fG)~c(x—b)" (x| > o0).

We can formulate a more general result when the zeros are located in a finite union
of balls. Let r > 0 and let

Bi =B, (bi)CB, (1<i<¥

be a finite set of disjoint open balls contained in B, (0 < 0; < r, |bi| =T ).
Consider the domain

D=B.- |] B.

1<i<e
The next three propositions concern rational functions f that are units in the ring
R(D): Neither f nor 1/f has poles in D, i.e., f has neither zero nor pole in D-

Proposition 1. Any f € R(D)* can be uniquely factorized as
f=ro- n fi  (Motzkin factorization),

1<i<e
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where fo € R(B<,)  andfor1 <i < ¢

fi=&—=b)"hi € R(B))*, [Ihi =g <1, hi(x) > 1(Ix] - c0).

Proor. The only possibility consists in collecting the zeros and poles of f in B;
and defining f; as the product of the corresponding factors (x — a)*« (a € B;.
ta € Z positive for zeros and negative for poles of f). With fo = f/[],<;<¢ fi
all requirements are satisfied. -

As before, the difference m; between the number of zeros and poles of f in B;
(taking multiplicities into account) is the index of f with respect to B;. With any
choice of center b; of B;, the Motzkin factor f; of f relative to B; satisfies

fi fi

— — 1.
& — biym (x — by ll .

D

lh: — Uip = II

Proposition 2. Assume ||f — 1||p < 1. Then f has as many zeros as poles in
each ball B; C D°.

Proor. The assumption implies |f(x) — 1| < 1 forall x € D, hence | f(x)] = 1
1s constant in D. Consider a ball B; and consider the growth modulus centered
at b; € B;. Without loss of generality, we may assume i = 1, by = 0, since b,
is also a center of the ball B.,. Since D contains a maximal open ball D; of the
sphere |x| = 0} := o having no pole of f — 1 (in fact infinitely many such balls),
Proposition 2 of (3.3) shows that

Mo(f =D =1f—-HUp =If —Hb <1

Motzkin factorization of a rational function
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By continuity of the growth modulus, we have M,(f — 1) < 1 forall z close to o.
For regular values of t < o close to o we have

fO)-U=M(f-D<l=[f®I=1 (x|=12).

Hence M, f = 1 fort / o. But our study of Laurent series has shown (3.3) that
fort < o close to o, M, f = t"™, where m is the difference between the number
of zeros and poles of f in B;. Hence m = 0, as asserted. u

Under the assumptions of the preceding proposition, if f has some zeros in B;,
1t also has some poles in this ball, and we can look at the principal part P; f of f
in B; (3.4).

Proposition 3. If || f — 1llp < 1, then the principal part P; f of f relative to
the ball B; and the Motzkin factor f; = h; defined in Proposition | are related
by

WPifllp=1fi—1lp A=<i=<¥.

Proor. Let S denote the set of zeros and poles of f,and let f = fo- [];<;<¢ fi be
the Motzkin factorization of f. By Proposition 2, we have

fi= 11 (f__ff,-)m: [[x-are=1+o.

aeSNB, a€SNB;

Hence w; = f; — 1 is a rational function that is regular outside B; and tends to0
when |x| — o0: w; is a sum of principal parts of poles in B;. Moreover,

lwillp < llwillsr < 1.

Similarly, fo = ¢(1 + wg), and replacing f by f/c (hence fy by fo/c) we may
assume ¢ = 1. Let us compare the additive and multiplicative decompositions

f=Rf+ Y Pf=]] Q+op=0+w) [[a+ep
1<i<t 0<j<t Jj#i

|

1+, regularin B,

with ||¥;llp < 1. Hence
=0+ ¥+ o + ),

and the principal part P; f of f relative to the ball B; is also the principal part of
w;(1 4+ ¥;):

Pif = Pilwi + o) = 0 + Pi(wi ). )
By the rational Mittag-Leffler theorem (3.4),

| Pi(wi ¥i)lip < llwi¥illp < lle;illp,
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and in (*) the first term is dominant:

WP flip = llwillp = I fi — Hip- u

3.6. Multiplicative Norms on K (X)

When r > 0is fixed, the growth modulus M, (f) (1.4) defines an absolute value, in
other words a multiplicative norm, on the field K (X) of rational functions having
coefficients in an extension K of Q,. Other norms of the same type are obtained
if we consider a € K and consider the growth modulus centered at the point a:
For a rational function f regular at a, having a power series expansion

fo) =) a@x—a) (x—al <ry),

n>0

M, o(f) :=suplan(@)r" (r <ry).

n>0

When |K | is dense in R, ¢, the maximum principle (2.5) shows that

Meof = sup |f(x)l= sup |f(x)] (f € K[X]);

|x—a)l<r [x—al<r

hence M,,f = | flls is the sup norm on the ball B = B.,(a) when f is a
polynomial. Since a multiplicative norm on K (X) is completely determined by its
values on K[X], we deduce that the following properties are equivalent:

D Mg = M,p; (i) B, (@) = B, (b); (i) |a—b| <r.

When the field K is algebraically closed, a multiplicative norm is completely
determined by its values on linear functions. As we have seen, for a linear function

X-&f=@-H)+X-a)
we have
M o(X — &) =sup(l —al,r) (r=0).
When £ varies in K we have M, ,(X — £) > r and hence

inf Myo(X —&)>r.
gek
In fact, this inequality is an equality: Take § € K with |§ —a]| <r.

Proposition. Let K be an algebraically closed, spherically complete extension
of Qp. Then any absolute value  on the field of rational functions K (X)) that
extends the absolute value of K is of the form M, , for some a € K andr > 0.

Proor. By (I1.1.6), the absolute value ¥ is ultrametric. We are looking for a ball
B = B_,(a) leading to

V(X -8 =Mao(X -8)=X—-£&llp ¢ €K).



338 6. Analytic Functions and Elements

Let us consider
r= ;‘2{ Y(X —&).
(1) If this is a minimum, take a € K such that /(X — a) = r. Then
r<y(X —§&) <sup(¥y(X —a),¥@—§))
N e’ Nt s’
=r =i —al

If [€ — a| # r, this is an equality

Y(X — &) =sup(r, |§ —al) = Mya(X — §).
If ¢ — a| = r, the preceding inequality gives

r<yYy(X —§&) <sup(r,r)=r;

hence Y(X — &) = r = sup(r, |€ — a|) = M, o(X — ). This proves ¢ = M, ,.
(2) In general, take a sequence

V(X —a)=rp,\\r (n=0).

As we have seen,

r <Y(X —§) < sup(Y(X —an), Y(an — §)) = My, 0,(X — &).

=rn =lé—anl
Hence
r<y(X —&) < liminfM, o (X - &) (& €K),
V< lmz ng

If y(X — &) > r, then ¥(X — &) > r, for all large n, and by (1),

r<y(X —&)=sup(ry, 1€ —anl) = M,, 0(X —§) (n=N)
proves that

Y(X — &) = liminf M, 4,(X — §).

Ifthereisa& € K with (X —&) = r, we are brought back to the first case already
treated.
(3) Let us study liminf,_, oo M,, 4, (X — &). Consider the inequality
Tt = Y(X — any1) < sup(ry, |Gpyy — apl) = M;, 0 (X — Gpyy)-

Ifr, # lany1 — apl, then r,yy = sup(ry,, lap+1 — apl) > ry. Since we suppose
on the contrary r,4; < Iy, there is a competition r, = |a,;; — a,|. Define the
sequence of balls B, = B<,,(an) (n > 0). We have just proved that

B,yy CB, (n=0).
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Since the field K is spherically complete by assumption,
B = ﬂ Bn # Qa
n>0
and any element g in this intersection is a possible center of the ball B = B.,(a):

fiminf M,, o, (X —§) = lm X = £ll5, = IX = £l = My.a(X — £).

This concludes the proof. ™

4. Analytic Elements

Since analytic continuation cannot be achieved by means of Taylor expansions in
p-adic analysis (cf. (1.2)), another procedure has to be devised. It was Krasner’s
idea to mimic the Runge theorem of complex analysis: A holomorphic function
f defined in a domain D of the complex plane C can be uniformly approximated
by means of rational functions. More precisely, for each compact subset C C D,
choose A = {a;};c; with one point in each connected component of the comple-
ment of C in the Riemann sphere. Then f can be uniformly approximated on C
by rational functions having all their poles in the set A.

We shall adopt this point of view here, and we start by a discussion of the
domains of C, in which the idea of Krasner can be carried out. For simplicity, we
shall limit ourselves to bounded analytic elements.

4.1. Enveloping Balls and Infraconnected Sets

Let D be any nonempty subset of the field C,,. Its diameter is defined by
§=48(D)= sup |x —y|=sup|x —a]| <oco (ae D).

x.,yeD xeD
The closed ball
Bp := Bs(a) (a € D)

is called the enveloping ball of D (if D is unbounded — i.e., § = 0o — we take
Bp = C,). It is the intersection of all closed balls containing D and hence the
Smallest closed ball containing D. When D is closed and bounded,

aeCp—D=>r=d(a,D)=xiglf)|a—x|>0,

and the open ball B.,(a) is a maximal open ball in the complement of D. Each
maximal open ball of Bp — D is called a hole of D. The preceding observations
show that any closed bounded subset D has a representation

D=BD—]_[B,», where BD=DUUB,~
i i

with (possibly infinitely many) holes B; = B_,, (a;).
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Examples. (1) Let D = B, be the open unit ball. Then Bp = B, and the holes
of D are all the open balls B.;(a) contained in the unit sphere (Ja|] = 1).

(2)If0 < r ¢ |Cp|, we have B.,(a) = B<,(a), and this set coincides with its
enveloping ball (it has no hole).

We shall be interested in a special class of closed bounded subsets.

Definition. Asubset D C C, iscalledinfraconnected ifits diameter é is positive
and for eacha € D

{lx —al : x € D} isdense in [0, §] C Rxo.

In other words, D is infraconnected when for all pairs of distinct points a #
b € D, all annuli

fxeCo:n<lx—al<n} O<nn<rn<|b—a])

meet D. In particular, if D is infraconnected, it has infinitely many elements.

(v

Infraconnected sets

Lemma. Let D be an infraconnected set. Then for each c € C),
I.={lx —c|:x € D}

is dense in an interval of R.

Prook. (1) If ¢ = a € D, by definition {}x — a| : x € D} is dense in the interval
[0, 8], where & is the diameter of D.
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(@) If c ¢ Dis at adistance r < & of D, we have to prove
I. = {|x — c| : x € D} is dense in the interval [r, 8].

There is nothing to prove if » = 8. Otherwise, choose a € D with |c — a| < 8.
Since 8 = sup,.p la — b|, we can choose b € D with |c —a| < |a — b] < 6.
Hence

r<|c—al<la—bl=|c—bl<é

(make a picture !). The annuli of inner radius r; > |a — c| having center a or
¢ coincide. If we select any outer radius r, > r, r, < |c — b| = |c — a], the
corresponding annulus meets D, since this subset is infraconnected.

(3) Finally, if D is bounded and ¢ € C,, is not in the enveloping ball of D, D is
contained in the sphere |x — ¢] = d(c, D) > & centered at ¢ and I, is an interval
reduced to a point. n

Examples. (1) Let0 < r; < r, < 0o. Then the annulus ry < |x —a] < rp 1s
infraconnected. But the complement of this annulus is not infraconnected. The
complement of a sphere in a ball is infraconnected. For example, the subset |x| #
1/p of the unit ball B is infraconnected.

(2) The compact subset Z, C C,, is not infraconnected.

(3) Let (B;)1<i<¢ be a finite family of disjoint open balls contained in B<;. Then

D=Ba- || B

1<i<¢

is infraconnected, and the holes of D are the open balls B; (a more general class
of examples will be given below).

Proposition. Let (B;)i>0 be a sequence of disjoint open balls contained in the
closed unit ball B<. If the sequence of radii r; tends to O, then

D=B,-|]5

i>0
is an infraconnected set. Its enveloping ball is Bp = B;.
Proor. Let us recall the following fact (systematically used in the proof):

Any nonempty sphere of radius 0 < p < 1 is a union of infinitely
many open balls of equal radii < p.

Let us order the radii of the balls B; in strictly decreasing order

r'>r">r">...\/ 0.
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By assumption, there are only finitely many balls B; of any given radius in this
sequence. There exists an open ball B’ C B<; of radius r’ and disjoint from
the finite number of balls B, having radius greater than or equal to r’. In this
ball B’ we can find an open ball B” of radius r” disjoint from the finite number
of balls B, having radius greater than or equal to r” (and < r’), etc. We can
construct a sequence of clopen balls B’ > B” D B” O - - - having radii (diameter)
approaching 0. Since the field C,, is complete, the intersection B'NB" N B" - .. js
a common point and is not in the union of the sequence (B;);>o. This construction
shows that B<; — || B; is nonempty and has infinitely many points. The proof
that it is infraconnected follows from the observation that at each step of the
above construction, we can choose the ball B¥) in any given nonempty sphere of
prescribed radius > r®. [

4.2. Analytic Elements

As in (3.4), let R(D) denote the ring of rational functions having no pole in D:

R(D)y={f =g/h:g, h € Cp[X], h having no zero in D}.

Definition. Let D be a closed subset of C,. A function f : D — Cp isan
analytic element if it is a uniform limit of a sequence of rational functions
fn € R(D).

The analytic elements on D make up a vector space H(D), which is a uniform
completion of R(D). However, note that in general an f € R(D) can be an
unbounded function on D, so that R(D) is not a metric space. Let us start with the
important case where it is a metric space (in (4.3) we shall show how to treat the
other case).

Proposition 1. When D C C,, is a closed and bounded subset, each f € R(D)
is bounded on D, and H(D) is the closure of R(D) in the Banach algebra Cp(D)
for the sup norm.

Proor. Recall (3.2): The functions

x”, (—x":};)—m (nZO,aGéD,mzl)
constitute a basis of the vector space R(D). When D is bounded, the functions x"
(n > 0) are bounded on D. Moreover, when D is closed and a ¢ D, the distanc®
inf.ep |x — a| is positive, so that the functions 1/(x — @)™ (m > 1) are also
bounded on D. This proves that all rational functions having no pole on D defin€
bounded continuous functions D — C,,, and the same is true for the analytic
elements (IV.2.1). Since the closure of a subalgebra of C,(D) is also a subalgebra,
the statement follows. .
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Corollary. The product of two analytic elements on a closed and bounded set
D is an analytic element. n

We can now generalize Proposition 1 in (3.4) for infraconnected sets.

Proposition 2. Let D C C, be a closed, bounded, and infraconnected set.
Assume 0 € Bp and let 0 < d(0, D) <r < 8(D). Then

M. f <lflp (f € R(D)).

If the sphere |x| = r meets D, we have, more precisely,
M, f <\ flls,ap < Ifllp  (f € R(D)).

Proor. Let o = d(0, D), § = 8(D), so that {|x| : x € D} is dense in the interval
[0,8]. If f € R(D), let us show that there exists a sequence x,, € D with

[fx)l =My, f > M, f (n—> 00),
so that

Iflip =suplf(x)l = lim|f(x,)| = M, f.

First case: D does not meet the sphere S, = {|x| = r}. Since D is infraconnected
and r € {|x| : x € D}, we can find points x, € D with |x,| = r monotonically.
All except finitely many (that we may discard) are regular, and we have finished
in this case.

Second case: There is a point a € D N S, (observe that in this case D C S, may
well happen for r = §!). We have M;, f = M, f for s > r, since the spheres
of radius s and respective centers a or 0 coincide. By continuity we also have
M,.f = M, f. By density of the values |x — a| (x € D infraconnected) in the
interval [0, 8] we can find a sequence x,, € D such that |x, — a| = r, is regular
for £ (with respect to the center @), r,, /' r: |x,| = |a| = r. Hence x,, € S, N D,

lf(xn)| - Mr.af = Mrf,
I flls.np = sup|f(xn)l > M, f.

n
The proof is complete. u
Corollary. Let c € Bp where D is a closed bounded infraconnected set, and r
in the interval J. = closure of {{x —c| : x € D). Then the growth modulus M, .

(centered at the point c) has a continuous extension to H(D). More precisely,
f v+ M, f is a contracting map

IMycf — Mgl <My o(f =)< IIf —gllp (f, & € R(D)).
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Proor. Take a sequence (x,,) as in the proof of the above proposition (working for
both f and g) and let n — o0 in the inequality

O] — 180Gl | < [f(xn) — 8xn)l < IILf — &lip- n

Definition. Let D be closed, bounded, and infraconnected:
ce€ Bp, o=d(,D)<r <éD)
The growth modulus M, . is defined on H(D) by continuous extension of

[ M. .f:R(D)— Rsp.

For fixed r and c, the growth modulus is a seminorm on H(D). Beware of the fact
that for complicated infraconnected sets D there can be nonzero analytic elements
f on D with M, .f = O: This can happen only when r is an extremity of the
interval [o, 8]. For this more specialized topic involving a discussion of 7-filters,
we refer to the recent book by A. Escassut.

4.3. Back to the Tate Algebra

A power series f(x) = ano an,x" with 0 < ry < oo does not necessarily define
an analytic element on B,,. If it does, this sum is bounded on the closed and
bounded ball B, (Proposition 1 in (4.2)). In the typical case r; = 1, if the lan
are unbounded, there are infinitely many critical radii less than 1, and the sum
is unbounded: It is not an analytic element on B.; = Mp. When the |a,| are
bounded, both cases can happen. The series y_,_, x" = 1/(1 — x) has bounded
lap| (= 1) and is an analytic element on M,, (indeed a rational function with a
single pole at 1 ¢ M)p). It is more difficult to give an example of a power series
with bounded coefficients that is not an analytic element on M, (a criterion will
be given in (4.6)). When |a,| — 0, the sum f is a uniform limit of polynomials
(partial sums) on A ,, and we get an analytic element on the closed unit ball. This
simple observation shows that a convergent power series defines analytic elements
on all balls B, (r < ry).

Theorem. The space H(A ) of analytic elements on the closed unit ball coin-
cides with the Tate algebra C,{x} with its norm: for f = ano apx",

I £l = sup [f(x)] = sup |a,].
Ix]<1 n>0

ProoE. When |a| > 1 the series expansion (3.2)
n

1 | x\—m man M) X
G—ay  (-ay (1 _2) =2 0 ( n )am+"

n>0
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converges for |x| < |a] and a fortiori for |x| < 1: Its coefficients tend to O:

(__l)m+n —m
an+m (n ) =

=l

-0 (n— o0).

This shows that the space of rational functions without a pole on A , is a subspace of
the Banach algebra C,{x}. This subspace contains the dense subspace consisting
of the polynomials

Cplx] C R(A,) C Cplx},
and the closure is H(A ) = Cp{x}. ]
To be able to speak of analytic elements on the complement of a ball (which is

unbounded) we now approach the case of unbounded domains D, and hence R(D)
is not a metric space. Let us introduce the vector subspaces

Ry(D) :={f € R(D) : f bounded on D},
consisting of the rational functions f = g/h, deg g < degh, having no pole in D,
Ro(D):={f € R(D) : f - 0(Ix] = 00)} C Rp(D)

consisting of the rational functions f = g/h,deg g < degh, having no pole in D.
The Euclidean division algorithm shows more precisely that

R(D) = Ro(D) ® Cplx]
= Ro(D) ® C, ® xC,[x].
[ ——
=Ry(D)
A fundamental system of neighborhoods of an f in R(D) is given by
Ve(fo) ={f € R(D): Suglf(x) = fox)| <€} (¢>0).
X€

In particular, if f; is bounded, then V.(fp) C Ry(D), namely:
Vs(fO) ﬁXCP[X] = {0}

This proves that the topology induced by uniform convergence on xCp[x] is the
discrete one:
R(D)= RyD) & xCplx]
S

e —’
normed space  uniformly discrete

By completion we get

H(D)= H,(D) @ xCp[x]
Banach space  uniformly discrete
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We can also write
H(D) = Hy(D) ® C,, ® xC,[x]
and group the last two factors
H(D) = Hy(D) & Cplx],

but the uniform structure on the last factor is not the discrete one.

When D is unbounded, we shall only use bounded analytic elements and thus
work in the Banach algebra Hy(D) = Hy(D) @ C,. We note that Hy(D) is a
(maximal) ideal in this algebra with quotient Hy(D)/Hy(D) = C,, (a field).

Let us now treat explicitly the case of the complement of open balls.

Proposition. The bounded analytic elements on C, — M, = {|x| > 1} are the
formal restricted power series in 1 /x:

Hy({lx] = 1}) = Cp{1/x} D Ho({lx] = 1}) = x7'C,{1/x}.

Proor. The inversion x - y = 1/x transforms bounded rational functions having
no pole in |x| > 1 into rational functions having no pole in |y| < 1,

Rp({lx] = 1}) = R{{lyl < 1}),
and the completion is
Hy({lx] = 1}) = H({lyl < 1}) = Cp{y}

by the preceding theorem. u

The comments made prior to the proposition prove that the analytic elements
on {|x| > 1} are given by Laurent series having only finitely many nonzero terms
anpx”™ withn > 0:

H({lx| = 1}) = Hy({Ix] = 1}) ® xCp[x] = Cp{1/x} & xCp[x].
More generally, if B = B_,(a) is an open ball, then
H(B€) = H,(B) ® (x — a)Cplx —a),
and
Hy(B°) C Cpll(x ~a)™']
is the subspace consisting of the formal power series

fx)= Za,,/(x —a)® suchthat|a,|/r" — 0 (n— o0).

n>0
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Similarly,
Ho(B) C (x —a) ' Cpll(x —a)™']]
is the subspace consisting of the formal power series

fx)= Za,,/(x —a)’ suchthat |a,|/r" > 0 (n—> oo).
n>1
4.4. The Amice-Fresnel Theorem

Let B=1+M, C C, be the open ball of radius 1 and center 1. We are going to
give a useful description of the space Hy(B€) of generalized principal parts relative
to the hole B: These are the analytic elements in the complement of B that tend
to zero at infinity. By (4.3) we know that these analytic elements f € Hy(B€) are
given by restricted power series in 1/(x — 1) with zero constant term:

f=) 1 n )m+, (Al — 0)
m>0

and

lfllpe = My,1 f = sup |An].

m>0
Let us expand each term (x — 1)™™~! according to the binomial formula

(x — 1)—m 1 =(— 1)m+1 Z ( 1)(_x)n-

n>0
Recall the elementary identity (—1)" (_":,_1) =(-n" (_':n_l) e.g.,if m > n, then
(—1)"(_"1 - 1) — (—1)"(_m — 1)'-'-(—"1 —n) ) mm—1)---(n+1)
" D m— m

_ n+Dn+2)---m(m+1)---(m+n)
o m!

_ (—1)"’(—” — 1)
m

(similar computations are valid when n > m). Grouping terms, we see that the
coefficient of x" in f(x) is

m - —-n—1 _ —n—1
an =) (~1"(=1) Am( ” )_—me( - )

m>0 m=>0

Define ¢ : Z, — C,, by the uniformly convergent series

o(x) = — ZA( )

m=0
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(thisisaMahler seriesin y = —x—1(IV.2.3)). The inequality [l¢]lz, < max |2, |is
obvious, and conversely, since 1,, is a linear combination with integral coefficients
of p(-1),...,9(—m — 1), we also have

max [An| < ll¢llz,

(recall Theorem 1 in (IV.2.4) for Mahler series). This proves that

leliz, = sup Am| = £l

By definition, ¢ is a continuous extension of n — a, to Z,. Reversing the opera-
tions, we have proved the following result of Y. Amice and J. Fresnel.

Theorem. Let f = ano a,x" € Cpllx]) be a convergent power series with
rs > 1 and denote by B the open ball 1 + M,,. Then the following properties
are equivalent:

(i) The sequence n + a, has a continuous extension ¢ : Z, — Cp.
(ii) f is the restriction of an analytic element of Hy(B°).

4.5. The p-adic Mittag-Leffler Theorem

For a simple region D = B, — | |,.;, Bi where the B; = B,,(a;) are disjoint
open balls in B,, namely holes of D (notations and assumptions of (3.4)), the
rational Mittag-Leffler theorem leads by completion to a simple decomposition of
analytic elements in D:

H(D) —> H(B<)® (P Ho(BY).

1<i<t

Explicitly, this means that each f € H(D) can be uniquely written as

f=fo+Y fi (fo€ H(Bs): fi€Ho(Bf), 1<i<o),

namely with generalized principal parts f; of f,regular outside B;, or equivalently,
having all their singularities in the hole B; of D. If we choose a center g; in the hole
B;, such a generalized principal part f; € Ho(By) is given by a Laurent expansion
(Corollary in (4.3))

fix)= Z _ Ia';l - 0.

’
n>1 (x —ai)n o;

Let us turn to a closed, bounded, and infraconnected domain D C C,,.

Proposition. Let D be closed, bounded, and infraconnected, f € R(D). Let
also B = B, be a hole of D. If fp denotes the sum of the principal parts
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attached to the poles of f in B, and fo = f — fp, then

lifelip < Mo fe < Mo f <\ fllb,
I fllp = max(ll fgll o, Il foll p)-

Prook. If f € R(D)is a rational function without a pole in D, B = B, is a hole
of D, and fp is the sum of the principal parts of f corresponding to its poles in B,
then we have f = fp + fo with aregular fy € R(D U B), fg(x) — 0 (x — 00),
and

Ifellp < My fz by (3.4) Proposition 1,
My fg < M, f by (3.4) Proposition 2,
M, f <|Ifllp by (4.2) Proposition 2.

This proves || fgllp < Il f Il o, and the competitivity principle (11.1.2) in
f=fe—fo=0
leads to

Il fllp = max(li 8!l o, l folip)- =

This means that we have an isomorphism
R(D) —> R(D U B) @ Ro(B°)

of normed spaces.
Let now (B;);¢; be the family of holes of D, so that Bp = D U]], B; is the
enveloping ball of D. We also have a split short exact sequence
res

0 — R(Bp) —> R(D) > D Ro(B{) > 0

with linear contracting maps of normed spaces. The surjective map is f +> (fi)ier,
where f; denotes the sum of the principal parts of f at its poles in B;: When
f € R(D) is given, finitely many f; are nonzero. The map

(et = D filo: €D Ro(BY) > R(D)

is a splitting: f — )", filp is the restriction of a rational fy € R(Bp) and f(x) =
fo(x) + 3", fi(x) (x € D). The central term is the normed direct sum of the
extreme ones, and

R(D) —> R(Bp) & P Ro(Bf)

is an isometry of normed spaces. By completion, we obtain the following general
result.
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Theorem. Let D be a closed, bounded, infraconnected set, (B;)ic; its family of
holes. Then there is a Banach direct sum decomposition

H(D) <> H(Bo)TD, , Ho(BY.

Each f € H(D) can be uniquely expressed as a sum

f="fo+Y_ fir Ifllp=max(lfoll,sup I £:})),

iel

where

fo is an analytic element on the enveloping ball of D,
fi are analytic elements on B with f;(x) — 0 (x — 00),

Nfill = I fillse = Il filp > 0 (@ — o0). "

In particular, in the summable family (f;);c; of generalized principal parts of
an analytic element f € H(D), at most countably many f; are nonzero (IV.4.1).

4.6. The Christol-Robba Theorem

A formal power series f = Y_ ., anx" € Cp[[x]] having bounded coefficients
converges at least for |x| < 1:ry > 1 but it does not always define an analytic
element on the open ball M,. Let us determine the space H(M,) of analytic
elements on this ball.

Since HM,) C H(B<,) for all r < 1, it follows that any f € H(M)) is given
by a power series Y _,.oanx" such that |a,[r" — 0 (n — o) for all r < 1, hence
by a power series having a radius of convergence r; > 1. On the other hand, M,
is closed and bounded; hence H(M,) C Cy(M,) (Proposition 1 in (4.2)).

Lemma. The subspace of Cp[[x]] consisting of the convergent power series f
having a radius of convergence ry > 1 and a bounded sum in M, coincides
with the space € of formal power series having bounded coefficients: The
map

@z > D _anx" : £ — C,l[x]1N Co(M,)

n>0

is an isometric isomorphism.

Prook. If (a,),>0 is a bounded sequence,

E a,x”

n>0

| f)l =

<supla,| (x| <1),
n>0
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hence || fll < sup,¢ lan| with the sup norm of f on M,. Conversely, assume that
the power series ano a,x" converges for |x]| < 1 and has a bounded sum in this
ball. For a regular |x| = r < 1 we have

la,r"l < M, f = | fI < IFIl (n>0).

Taking a sequence of regularr /' 1, weinfer |a,| < || ]l (n > 0),and consequently
sup,so laxl < I Fll- =

The preceding proof works for any field K having a dense valuation: Compare
with (V.2.1), where the residue field k was assumed to be infinite.
The lemma shows that we have an isometric embedding

F > @nnzo © HMp) — £2° = £2°(Cp).

The following theorem characterizes the image: It gives a criterion for a formal
power series with bounded coefficients to define an analytic element f € H(M,).

Theorem (Christol-Robba). Let f = ), , a.x" € C,l{x]] be a formal
power series with bounded coefficients. Define p, = p*(p* — 1) (v > 1). Then
f defines an analytic element on M, precisely when the following condition
(CR) holds:

For each € > O there exist vand N > 0

such that |apyp, —an| <€ (n > N).

Proor. The proof is based on the Mittag-Leffler theorem (4.5) for the bounded and
closed infraconnected set

D=MP=B.<_1 - ]_I B<l(§)c BD:le =Ap-

[4=279%)
The condition is necessary. Let us write the Mittag-Leffler decomposition of the
space of analytic elements H(M,) on the open unit ball as

HM,) = H(Ap) ® D), Ho(¢ +M,))

with a sum parametrized by { € (). The space H(A) is the Tate algebra with
normal basis (x')i»0, and Ho((¢ +M,)°) has normal basis 1/(x — £)™*! (m > 0).
This proves that the family of functions

1
x", W (n>0, ¢ € pp), m=0)

constitutes a normal basis of H(M,,). Let us show that each basis element satisfies
the condition given in the theorem. This is obvious for the powers x" (n > 0). On
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the other hand, the rational function

fx) = € € pipr, m20)

=gy

(having a pole at the point { ¢ M) can be expanded according to the binomial
formula

&= c)mﬂz( )( e

n>0

m 1—n -n_n
( C)m+lz( )( m )C x

n>0

by the elementary identity on binomial coefficients recalled in (4.4). We have
obtained

fx)=-¢"" 'Z( l—n) X",

n>0

Let us estimate the difference between two coefficients as in the condition (CR):

(2 (e
AT ()

Now, since since p, is a multiple of p* — 1 and {#'~1 = 1, we have {77 =1
for v large enough (depending on £). On the other hand, x +> (%) is uniformly
continuous on Z, so that, uniformly in n,

-1 —-—n- -1~
( P“) _ ( ") is small if p, is small in Z,
m m

which is the case for large v, since p, is a multiple of p’:

()
) (e oo

Finally, the conclusion will be reached as soon as we observe that (CR) character-
izes a closed subspace of £°°. Let (a,) be a sequence in the closure of the space
satisfying (CR). If ¢ > Ois given, we can first find a sequence (a,) satisfying (CR)



4. Analytic Elements 353
and with |G, — ap| < & (n > 0). Then

1@n+p, — Gn] < Max(|Gpyp, — Qnip,l, 1@ntp, — anl, lan — apl)
< max (¢, |@nyp, — anl)-

This is less than or equal to € when n and v are large enough, by assumption on
the sequence (a,,). Hence (a,) still satisfies (CR).
The condition is sufficient. Fix a positive integer N and consider the rational

function

n
ZN5n<N+p., GnX
1—xp

gn(x) = Z apx" +

n<N

having all its poles in the set of roots of unity (on the unit sphere). We have

n
ZN5n<N+p., anXx
1 —xb

fO)—gnx) =) ax" —

n>N

The numerator is

(1 —=xP)(f(x) — gn(x))

= E apx” — xP _5_ apx" — E a,x"

n>N n>N N<n<N+p,
= E apx" — xP E apx" = E (@nyp, — )X TP,
n>N+p, n>N n>N

We have obtained

2z N @ntp, — ap)x" P

fx)—gntx) = ,

1—xpv

and since |1 — x?| = 1 for |x| < 1, we have

1f) = gn| = Y @nsp, —anx™P| < SUP lanyp, —anl (x| < 1)

n>N

With the postulated condition, || f — gn|| < &. This proves that f is a uniform
limit on |x| < 1 of rational functions gy having no pole in this ball. [ ]

Examples. Here are three power series with bounded coefficients (hence a
bounded sum in |x| < 1) that do not define an analytic element on M,:

® 3 ,50x?  (follows from the Christol-Robba condition),
® exprx (Jm]| =rp) (exercise),
® (1+x)"™ (m > 1 not multiple of p) (book by A. Escassut).
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Analytic elements

Formal Sequences
power series C,lxI1 (@p)n>0 H G
n>0
power series Limsup |a,|'/" < 1
converging in rg=1
Ix] <1
power series (@nn>0
bounded in bounded *
x| <1 sequence
analytic HM,) Christol-Robba
elements in condition
Ix] <1 4.6)
analytic H(Ap) =C,{x} a, — 0 <o
elements in (n = o0)
Ixf<1
polynomials C,lxl a, # 0 for c™

finitely many n’s

4.7. Analyticity of Mahler Series
Theorem. Let f : Z, — C,, be a continuous function with Mahler series

=Y« C)

k>0

Then f is the restriction of an analytic element f € C pix} iff lex/ k! — O

Proor. Consider the triangular change of basis of the space of polynomials given
by

Ox = n;:(—l)"‘" [ﬁ] x" (k>0

where the coefficients are positive integers: Stirling numbers of the first kind.
Conversely,

X" = k}; {Z} s

where the coefficients are positive integers: Stirling numbers of the second kind.
Hence if f = ), a,x" = Zk by (x) is a polynomial, we have sup, |a,| =
sup, 1bx|, and this isometry (a,) +> (bx) extends to an isometric embedding of the
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completion
Cplx} — C(Z);Cp),
X
Y ax" > Y b= (k)
n=0 k>0 k>0
where b, = ci/k!. The assertion follows. [ ]

Corollary. Ifthe Mahler coefficients c; of a continuous function f satisfy |cx| <
cr* (k > ko) for some c > 0andr < rp, then f is the restriction of an analytic
element f on the closed unit ball A, of C,,.

Proor. Under the assumption, |ci/k!| < crk /lk!]. Since the general term of the
exponential series e* tends to 0 when |x] = r < r,, we have r¥/lk!] — 0. The
conclusion follows by the Theorem in (4.3). n

Example. Choose and fix an element ¢ € C, with |t| < r,. According to the
preceding corollary, the Mahler series

=2 4()
k>0

is the restriction of an analytic element f € H(Ap) = C,{x}. I claim that the
analytic element in question is

f(x) — ex l()g(l'f'l).

Proor. The assumption |t] < r, indeed implies (Proposition 1 in (V.4.2))
[Tog(d + 1) = lt] < rp,

so that the series expansion

log(1 4
fiwy = 3 GleEd + )

!
=0 n!

converges for |x] < 1. Now, for integers m > 0,
(mlog(l+ 1))
film) = Z -
n>0 '
— emlog(l+t) — (elog(l+1))'" — (l +t)m - f(m)
(we have used the identities Y = e*e”; hence e™ = (€*)™ and €80+ = 1 4¢).

By continuity and density,

) = fx) = f(x) (x €Zp).
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Since f — fj is given by a power series expansion, it vanishes identically in its
convergence disk (a nonzero power series expansion has a discrete sequence of
critical radii with finitely many zeros on each critical sphere). n

Since

fo=) (z) =(1+0" (x€Zp),

k>0

it is also clear that for larger values of t € M, C C,, we can still define (1 4 ¢)*
for smaller values of x € C,. Recall that

) 4 S .
P, < |log(l +0)| = | —| = p/it1”’ < pir,

for
r;,/”j_l <ltl <ri/”
(cf. (1.6)). Hence
lt] < rl/7 = |log(1 + 1)| < p'r,,
and it is enough to assume |x| < 1/p/ to have a convergent series expansion for
(1 41)* = eloeln,

P and |x — n| < 1/p7, we can define

Still, for |t] < 7y
(1 + t)x =(1 +t)" -Q +t)x—n - (1 + t)n R e(x-—n)lOg(l+l)_

For these values of the parameter t € C,, the functionx > (1 + )" isa locally
analytic function defined in the neighborhood

Vj = U B<1/,,1(a)= Zp+B]/pl

acZ,
of Z,in C.
Remark. The identity
& log(1+1) _ a+ t)x

leads to

Z [xlog1 + 01" _ Z’k(;)
k>0

!
n>0 n:
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hence to
Z:[Jrlog(nl+t)]" _Z__( O = Z Z( l)k—n[] n
n>0 ° k>0 ! n<k

Identifying the coefficients of x" we get the well-known classical identity

1 1 n k
[og(n;F 1)} Z( 1y [] t_

k>n

where the coefficients are again the Stirling numbers of the first kind.

4.8. The Motzkin Theorem

Let D be a closed, bounded, and infraconnected set, f € H(D)* an invertible
analytic element on D. Assume that B = B_,(a) is a hole of D (maximal open
ball in the complement of D). A Motzkin factorization of f relative to the hole B
is a product decomposition f = g f(g), where

(1) g € H(DU B)%,

2 fey=0x—-ay"h (meZ,he HBY),
h(x) > 1 (x = o0),and ||k — 1}lgc < 1.

Remarks. (1) We have seen in (4.3) that an analytic element on B¢ admits a
convergent Laurent series expansion. If it is not zero, we can write it as

Z aj(x — ay = a,(x —a)” - h(x).
Jj<m

Here h(x) = 1 + b /(x — a) + --- (@mby = @1, ...) is invertible if it does
not vanish on B¢, i.e., if it has no critical radius greater than or equal to . Since
h(x)—1 - 0(x - 00), M,k (r > o) decreases, M, h \, O (r - 00), and

I = Ulge = Mya(h ~ 1) = max [b;1/r/ < 1.
J=

(2) When || f — 1{|p < 1, then f is invertible. In fact, since D is closed and
bounded, H (D) is a closed subalgebra (Banach subalgebra) of Cy,(D) (4.2). Hence
the geometric series expansion

1
c=r—— = (- fY
f- 1—(1 20

converges (in norm) in H(D). More generally, if f € H(D) and || f — f(a)ll <
| f(a)|] for some a € D, then f/f(a) (hence also f) is invertible.

(3) The existence of a Motzkin factorization (with respect to a hole B = B.;)
requires M, f > 0: The growth modulus function is multiplicative:

Mo f=Msg- Ma(f(B)) > 0.

This condition is also sufficient, as we are going to prove.
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Theorem. Let D be a closed, bounded, and infraconnected set, B = B_, g4
hole of D. Then each f € H(D) satisfying \|\f — llp < 1 admits a unique
Motzkin factorization (with index m = 0)

f=g-h Ih—1p <1, h(x)—>1(x—> 00).

Proor. Let (f,,)n>0 be a sequence of R(D) converging uniformly to f. Since
Nfn — Uip <max(llfn — flip, If —1lp) <1

for large n, we can disregard the first few values of n and assume || f,, — 1{lp <1
for all n. By the rational Motzkin factorization result (3.5) we can write

fn=8n by (hp=(fdzy—D.

Now set P(f) = fp, the principal part of a rational function f with respect
to the hole B (as in the Mittag-Leffler decomposition) and Q(f) = fis) the
Motzkin factor of f relative to the same hole. Obviously, P(f) = P(f — 1) and
Ofulfm) = Ofn/ Ofm (the Motzkin factorization of rational functions is simply
obtained by gathering the linear terms corresponding to the zeros and poles in B).
The norm estimate in (3.5) for the function f,,/f,, leads to

Wo(fn/fm) — b = hn/hm — Ui = | P(fa/fu)llD-
By the proposition in (4.5),
lhn/ b — U = WP(fa/fu)lp = IP(fu/fm — DliD

fn“‘fm fn"fm
M, <
= ( I )< I

D

Hence we have

h, — h,,
Nan/hm — D = Whn/bhm — 1B = Mo ( > )
< Ma (fn - fm)
S

and by multiplicativity of the growth modulus

Ma(hn - hm) < Ma(fn - fm)
Mohw = Mofn

But since |f,, — 1] < 1, we have | f,,] = 1 (on D) and M, f,, = 1. The same is
true for h,, and f. We have obtained

1hn — BmllBe = Mo(hy — Bm) < Mo(fo — fi) < W fa— fullps

which proves the uniform convergence of the singular (Motzkin) factors k, t©©
h € H(B). Since ||h — 1||pc < 1, we even have h € H(B¢)*. Moreover, we have
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a uniform convergence

D Y e ngy (> o)
—_—— —
k., h " ’

which implies a convergence

fo f

h=7">T=8

hy, h
in H(D). The maximum principle on the ball B and Proposition 2 in (4.2) give
"gn - gm"B =< Ma(gn - gm) = "gn - gm"D’

hence

llgn — &mllpu < llgn — gmllp = 0

when m,n — 00, sothat g, — g € H(D U B). Since
1 hy, h 1
_—= > — = —
& fn f 8
uniformly (first on D, but also on D U B by the maximum principle), the function
gis aunit of H(D U B) and does not vanish in D U B.
Let us prove uniqueness. If f = gihy = gah, are two decompositions, then

L=

@ hy

is a Motzkin factorization of f = 1, and it is sufficient to prove the uniqueness in
this simple case. Assume that gh = 1 is a Motzkin factorization and choose

gn—> g (g € R(DUB)Y), h,—>h (h, € R(B)").
Then the inequality (x) for the rational functions k, and 1 gives
hn — Uipe < lignbn —1llp > 0 (n — o0).

This proves k, — 1 (n — 00), h =lim,,cchy, = 1,and g = 1. n

EXERCISES FOR CHAPTER 6

1. (@) Show that K[X][[Y]] # KI[Y][X] (consider 3 ; _; X'Y7).
(b) Give a description of the fraction field K((X)) of K[[X]] using Laurent series of
order > —o<.

2. Using the definition of the product of formal power series prove the identity
D(fg)=gDf + fDg (f, g € KIIX])

for the formal derivative of a product.
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(a) Let f, g € K[[X1] be two convergent power series with g(0) = 0. Assume that
the value group |K*| is dense in R . Prove that the numerical evaluation result
(f 0 g)(x) = f(g(x)) is valid in the ball |x] < r of K, provided that r < r, and
g(Bfr) C B<r[-

(b) Show that the radius of convergence of a composite f o g satisfies

fog = min (rg, suplr : Mg <ry})

and M,(f o g) = Mp,¢(f).

. Let f(X) € KI[[X]] be a convergent power series and fix a € K, la] < rf. Let

X=a+Yand f(X) = f(a+7Y)= fa(Y) (this substitution g(Y) = a + Y isnot a
substitution of formal power series of the type considered in the theory, since w(g) = 0).
Show that the following double series is summable when X is replaced by an element

xeK, x| <rg:
E an(n)amY"—m.
m

O<m=n

Reorder its terms to obtain another proof of the proposition in (V1.2.4):

1
f@ + Df(a)Y + 502f(a)y2 Foee.

Deduce that the radius of convergence of g is at least equal to r . Interchanging the roles
of f and g, conclude that ry = r,. [By contrast to the classical case, it is impossible to
obtain an analytic continuation of f using a Taylor series centered at a different point.}

. Let p be an odd prime. There is a sequence (ap)»>0 in Cp with

1 1
wm <lanl < (= 0)

What is the radius of convergence of the power series f = ano an X"? Show that the
sphere |x| = ry in Cp is empty (the corresponding closed and open balls coincide)-
What can one say of the convergence of f on the sphere |x| = rf in 2,?

. Take K = Q,, and consider the formal power series

1
fX=3 X"=r—, &)=Y -YP.
n>0

Find the power series representing the composite f o g, which is the rational function

1
1 -X+XP

when p = 2. In this case, the two roots &,  of 1 — X + X2 = 0 are easily determined.
Give the power series expansion of (1 — X + X2)~! explicitly using the partial fraction
decomposition
1 a b
= + :
1-X+X2 X-t X-p
The coefficients of the corresponding power series are periodic mod 6.
(Hint. Note that £ and 7 are 6th roots of unity.)
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Show that

sinx
tanx = ——  (Ix| < rp),
cosx

x3 X
arctanx =x ——+ —F--- (x| < 1),
3 5
are inverse functions for |x| < rp.L. van Hamme has suggested the following extension.
Choose i € Cp, with i2 = —1 and use the Iwasawa logarithm to define

14ix
ix

- (x # +i).

1
arct = —L
ctan x % 0g

Using
1+ 1—1i
2i(arctanx — arctana) = Log + z.x — Lo d
1+ia

1—-ia
prove that if a point a € C,, is selected. then arctanx is given by a series expansion
valid in the ball
Ix — aj < min(ja — i|, |a + i}).
Prove that

arctanl =0, lim arctanx = 0.
Ix}—=>o00

. (a) Let f(X) = ano a, X" be a convergent power series and assume that the set

{lan |r;l} is unbounded. Prove that there exists an infinite sequence of critical radii
ri /' ry.
(b) Let (a,)n>0 be a sequence in Cp, with

laol < lajl < --- <lap] <--- < 1.

Prove that the formal power series f(X) =Y, >0 anX " defines a bounded function
in |x| < ry with infinitely many critical radii converging to r .

. Prove that for any ultrametric field K, 1 + X K[[X]] is a multiplicative group, and for

r>0,
Gr =12 anX":lasl <1/1" (n = 0)]
n>0

is a multiplicative subgroup of 1 + X K[[X]].
(Hint. For r = 1, the subgroup G; is simply 1 + X A[[X]]; use dilatations to get the
general statement.)

Prove the Liouville theorem in the case K has a discrete valuation but an infinite residue
field.

. (@) Showthatr > Oisaregularradiusfor f1, f5, ..., friffitisregularfor fi f2--- fn.

(b) Let f, g € K[[X]] be two convergent power series. Assume f(xp) = g(x,) fora
convergent seqUeNce X, —> Xoo (Xn # Xoo foralln > 0), where |xeo| < min(r s, rg).
Show that f = g.

(c) Formulate and prove a statement analogous to (b) for Laurent series.
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12. Let K = Qp(pp). This is a totally ramified extension of Qp, and |K | is dense (the
residue field of K is Fp). Give an example of a polynomial f for which || fllgayss =
Supy <7 |.f(x)| is not a maximum.

13. Let f denote the Taylor series at the origin of

X4+ (p* — X% - p?
1-pX ’

What is the canonical factorization f = c¢P Qg (Theorem 2 in V1.2.2) of this formal
power series? Draw the Newton polygon of f.

14. Show that the formal power series ), . p™ X" defines an entire function. What is the
location of its zeros? Give the form of an infinite product that represents this function.

15. Give the Laurent expansions of the rational function

- *
@ =Dx—p)

valid in the region |[x| > 1. Same question for the region 1/p < |x] < 1.

16. Let f(X) = ano an X" be a formal power series with coefficients |a,| < 1. Consider

the map g : Mp — {0} — C, — A defined by y = g(x) = f(x) + 1/x. Prove that g
is bijective.
(Hint. To show that g is surjective, proceed as follows. For given y with |y| > 1
we are looking for a solution x of x = y~I(1 + xf(x)). Show that the sequence
defined inductively by xp = 0, x,4.1 = Y~ 1(1 + X, f(xp)) is a Cauchy sequence with
{xnl = 1/ly| < 1, and hence it converges in the open unit ball M,.)

17. What are the critical radii of the polynomial
X"+l +x"+---+x2+#x+l n>1)7?

How many roots are there on each critical sphere?

18. Let f : R.g — R, be a C?-function and define log f(r) = ¢(p), where p = logr-
Show that ¢ may be convex even when f is not convex (consider f(r) = /7).
(a) Consider the functions fyo(r) = r® (e € R) and discuss the convexity of fu and
the corresponding ¢, .
(b) Prove r2f"(r)/f(r) = ¢"(p) + ¢’ (p)(¢'(p) — 1) and deduce that if ¢ is convex and
¢’ does not take values in (0, 1), then f is convex.

19. What is the Newton polygon of the polynomial
px3 — (4p2 + l)x2 + (4p3 +4p)x — 4p2 ?

(a) Compute the absolute value of the zeros of this polynomial.
(b) Factorize the polynomial and compare with the result obtained in (a).

20. (a) Show that the logarithm log : 1 + B<,, — Bx,, is sutjective. More precisely,
show that for each |y| = rp there are exactly p preimages x; with |x;| = 7p and
log(1 + x;) = y (butif |y| < rp, there are only p — 1 preimages).

(b) Draw the valuation polygon of the formal power series of log(l + X).
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What are the Newton polygons of the Chebyshev polynomials 73, T, Ty (any prime p)
(cf. exercises for Chapter V). Same question for Ty, T), Ty, ..., Tpr.

Let f = g/h € Cp(x) be a rational function. Assume that f has a zero and a pole on
a sphere |x| = r. Show that | f| assumes all values (in = |C;,‘ |) on this sphere.

Generalize the mean value theorem (as given in (2.4)) to the case of a parametrized
curve t — (f(2), g(2), k(1)) by considering the determinant

fla)y f@) f(b)
()= | gla) gt) gb)|,
h(@) h(t) hb)

which vanishes for the two valuest =a and ¢t = b.

(a) Draw the graph of the growth modulus M, f of the following rational functions:

1-X 1-x\" 1-Xx"

1+ X’ 1+x/) 7 14Xxm
Can one guess the location of the zeros and poles of a rational function by the sole
observation of the graph of M, f? Sketch the graph of the growth modulus M, ; f,

centered at the point 1, for the same functions.
(b) Draw the graph of the growth modulus M, f of

X 1—-pX
1-X1-p2X’
Give the principal parts P f of the rational functions

_x2+x+] 2x2 —x —-1
- ’ 2x2

f

x2

at the origin. Take o > 1 and consider a region D := {o < |x| < r}. Compare | Pf||p
and || f — 1|lp.

With the notation of (3.5), let f = ¢[],cs(x — a)*=. Prove that the principal part
P;(f'/f) with respect to some ball B; is f//fi, where f; is the Motzkin factor of f
relative to B;. If || f — 1]lp < 1, use (3.4) and prove || f' "D = maxo<i<¢ || f ”D .

Fix r > 0 and choose ¢ € €, — Cp. Then
fe= M)
is a multiplicative norm on Cp(X). If § = dist(c, Cp), show that
aiengp M (X —a) =6.

In particular, the general inequality infaecp M, (X — a) > r can be a strict inequality.

Show that the union of two infraconnected subsets having a nonempty intersection is
infraconnected.
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The subsets of C,
B<1/:(0)N {|x —al>¢: foralla € Q,,}

are infraconnected. What are their enveloping balls? What are their holes? Conclude
that C, — Q) is a union of an increasing sequence of bounded infraconnected sets, each
of them having finitely many holes.

(a) Let B be a dressed ball and D a closed and bounded subset of Cj, so that

I fila =lfllp forall polynomials f.

Prove that D C B and B = Bp is the enveloping ball of D.
(b) Let D be closed and bounded. Prove || flig, = || flip for f € H(Bp).
(Hint. Choose g € R(Bp)suchthat || f —gllg, < | flip-)

Let D = B<; — |lj<j<¢ Bi and B C D any nonempty open ball. Show that the
restriction map H(D) — H(B) is injective.

(Hint. Use the Mittag-Leffler decomposition to show that each f € H(D) is described
by a power series expansion in B and hence has isolated zeros if nonzero.)

The simple domains of the form D = B<, — [ [ <; <, Bi can be patched together. For
example, if the hole B; of D has radius r;, show that any D; = B<,, — ]__[15 i<t B}
has a nonempty intersection with D and the union D U D is again a simple domain of
the same form.

Choose a sequence r, 7' 1 (r, < 1) andlet S, = {|x| = rp,}. Show that

D:B<1—USnCCp
n

is infraconnected. Moreover, if B C D is any nonempty open open ball, show that the
restriction map H(D) — H(B) is injective.

(Motzkin calls analytic a set D having this property. If D’ = D U B_j(l), it can be
shown that the restriction H(D') — H(BLi(1) is not injective; hence D’ is not an
analytic set; this is again the phenomenon of T-filters.)

Find domains of uniform convergence for the following sequences of rational functions:

n 2n

X xn X
1—xn’  1—x20" 1 —xn’

LetO <e <land D ={x € Cp: |x| ¢ [1 — &, 1 + €]}. Consider the sequence of
functions

fax)=

o € R(D).

This sequence converges in H(D): The limit f # 0 is a zero divisor (a nontl‘i\ﬂ'fll
idempotent). Conclude that for any D € C, having at least two points, and which 1s
not infraconnected, H (D) is not an integral domain.

(Hint. Choose a # b € D and an annulus {0 < r; < |x —a| < r; < |b —a|} that
does not meet D and use a sequence similar to the one above. It can be shown that
infraconnectedness is also a sufficient condition for H(D) to be an integral domain.)
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Show that the series ano p"/(x — n) converges for x € C,, — Zp and that it defines
an analytic element on the subsets D, = {x € Cpp : |[x —a] > 1/nVa € Z,}.

>(=5-3)

o\ X~ pox
converges for x ¢ {0} U pN and defines an analytic element in the complement D, of
any (finite) union of balls of the form {,,»¢ B<e(p") (¢ > 0).

Show that the series

Show that the exponential is not an analytic element on its convergence ball.
(Hint. Let 7 be a root of XP~1 + p = 0, so that the convergence ball of f(X) = e™*
is 1. Then use the Christol-Robba criterion (V1.4.6).)

Let py, = p¥(p* — 1) and ¢, (x) = 1 — xP*. Check the following assertions:

(a) ¢p(x) => 0 (v > oo)forany |x| = 1.

®) lpo@)| =1, ifIx| <1, Mi(p) = 1.

(©) supjy =1 () = 1.

(a) Let D C C), be closed, bounded, and infraconnected. Assume f € H(D) and
IIf = 1ip < 1. Prove thatlog f € H(D).

®) If f € RIDY, IIf — Uip < 1,and f = []; fi is the Motzkin factorization of
f (with respect to a finite family of open balls B; as in (3.5)). show that log f =
> log f; is the Mittag-Leffler decomposition of log f.

Let0 < r < 1 and (an),>1 @ sequence on the unit sphere with |a,, — a,,| = 1 whenever
n # m. Define

Bo = B,(0), Bn=Bl(an), D= Cp — Up>0By.
Choose a sequence A,, — 0 and consider the rational functions

An

gn(x)=1+

X —a,

Show that |lg, — 1ilge < [Anl/r — 0. Conclude that I1,>1 &r converges uniformly
on D, x?T],-; & € H(D)*, but the sequence fy = x? [];.,<n &n is not uniformly
convergent on D.

(Hint. Observe that fi 41— fn is notbounded on D due to the presence of the unbounded
factor x2.)
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Special Functions, Congruences

The applications given in this chapter concern congruences.

They rely on the first two sections of the preceding chapter (convergence
of power series, growth modulus, critical radii). The more technical notion of
analytic element developed in the last two sections of Chapter VI is not used
here.

1. The Gamma Function I",

The special functions of classical analysis are defined by a variety of methods: se-
ries expansions, differential equations, parametric integrals, functional equations,
etc. We have seen in (V.4) that the power series method is well adapted to the
definition of the exponential and logarithm in a suitable ball of C,,.

Here is another method adapted to p-adic analysis. Let f be a classical function
defined on some interval [a, 00) C R withrational values f(n) € Q on the integers
n > a, we may look for a continuous function Z, — C,, extending n > f(n)-
By the density of Z N [a, 00) in Z,,, there is at most one such interpolation. of
course, this possibility requires arithmetic properties of the sequence of values
f(n) and the method works only in particular cases. A suitable modification of
the function n + n! will lead to an analogue of the classical gamma function.
Another successful example of this method (not treated here) is the Riemann zeta
function, using its values at the negative integers.

To simplify our considerations, we assume first that the prime p is odd: p > 3-
The case p = 2 is treated later in (1.7).
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1.1. Definition

The function n +> n! cannot be extended by continuity on Z,,. Indeed, let us look
for a continuous function

f:Zp—>Qp

satisfying f(n) = nf(n — 1) for all integers n > 1. By continuity and density the
same relation will hold for all n € Z,. Iterating it, we get

fm)y=nn—n~-2)---p" f(p" - 1)

for all integers n > p™, where p™ is a fixed power of p. Since f is continuous
on the compact space Z,, it is bounded and there is a constant C > O such that
|f(x)I < C (x € Z,,). The preceding factorization also shows that

[fm < IpI"-C

for all integers n > p™. But these integers make up a dense subset of Z,,; hence

1 fllo < 1pI™-C.

Since the integer m > 1 is arbitrary, the only possibility is || f|lco = 0. (The single
consideration of the case m = 1 is sufficient: Taking C = || f|loo We get || flloo <
[P flloos (1 —=1/P)Il f llco < 0.) The only continuous function f onZ,, satisfying
the functional equation f(n) = nf(n — 1) for all integersn > 11is f = 0.

The trouble obviously comes from the multiples of p in the factorial n!: Let us
omit them and consider a restricted factorial n'*

n!* = n J-
1<j=n, ptj

The key to the construction of the p-adic gamma function lies in a generalization
of the classical Wilson congruence

(p—1!'=—1mod p.

Proposition. Let a and v > 1 be two integers. Then

n j=—-1 (mod p").

as<j<a+p, ptj

Proor. The integers a < j < a + p¥ make up a complete set of representatives
of the quotient Z/ p"Z. Those that are not multiples of p represent the invertible
elements, namely the elements of the unit group G = (Z/p“Z)*. Grouping each
element g € G with its inverse g ! we obtain compensations in the product except
when g = g~!. But

g=g'e=g’=1
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In the ring Z/pZ we can write
P=1=g"-1=0<(g— (g+1)=0.

The elements in question are g = =1, or both g — 1 and g + 1 are zero divisors.
The second case corresponds to

p dividesbothg —1and g + 1.

Obviously, this second case can happen only when p divides 2 = (g+1)—(g—1),
i.e., p = 2. Since we are considering only the case p odd, this does not occur, and
the proposition is proved. |

The proposition implies that the products

foy=1 ] i =2

1<j<n, ptj
satisfy f(a) = f(a + p*) (mod p). More generally, they also satisfy
f@)= f(a+mp") (modp*) (meN).

The function a = f(a) : N — {0, 1} — Z is uniformly continuous for the p-adic
topology, hence has a unique continuous extension Z, — Z,,.

Definition. The Morita p-adic gamma function is the continuous function
r,:2,->12,
that extends

foy=1 J] i =2

1<j<n.ptj

Observe that by construction, this p-adic gamma function takes its values in the
clopen subset Z) of Z,,.

Since its definition depends on the prime p, this function is denoted by I',. (But
as with the functions log and exp, we might simply denote it by I" when the prime
p is fixed and there is no risk of confusion.)

1.2. Basic Properties
We have

r,=1, I,3)=-2

n! ifnodd,n < p—1,
l"p(n+l)={ d

—n! ifneven,n <p-—1.



1. The Gamma FunctionI', 369

From the definition it also follows that ' ,(n) € Z; is given by

(=)n _ —1)y+in

l"p(n+ )= n,s,(ps,, kp = [n/p]!p[n/p]

when the integer n is greater than or equal to 2. Still, by its definition, we have

—nlp(n)  if n is not multiple of p,

r 1) =
p(n+1) { -T'p(n) if n is multiple of p,

and by continuity, more generally,

-xIp(x) ifxe Z;j,

r )=
Pt D {—l",,(x) ifx € pZ,.

It is convenient to introduce a function A p:

f )= ifer; (x| =1),
PI=V10 txepz, (xl<),

in order to be able to write the functional equation
Fp(x +1)=hp(x)-Tp(x) (x € Zp).

This functional equation can be used backwards to compute the values I",(1) and
I',(0) from I' ,(2) = 1. In particular, we check that I',(0) = 1. This normalization
also follows by continuity: By the proposition in (1.1) (with a = 0),

r,ph=- [] i=+1 @modp";
1<j<p", pti

hence I',(p") - 1 asn — o0.

Theorem. For an odd prime p, the p-adic gamma function Ty, : Z, — Q,, is
continuous. Its image is contained in Z,,. Moreover:

mr,o0=1,r,0)=-1,T,2)=1,
Mpn+1)=D"*"n! (1<n<p).
@) Ty = 1.
G ITp(x) =TI < lx =y, Fpx)— 1] < x|
@) Tp(x + 1) = hp(x)lp(x).
(5) Tp(x) - Tp(1 —x) = (—1F®,
where R(x) € {1,2,...,p}. R(x)=x (mod p).

As we shall see in (1.7), the property (3) has to be suitably modified for p = 2.
The exponent in (5) is also different in this case.
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Proor. (3) follows from I'(a + mp¥)=T(a) (mod p") (a € Z, m € N) by conti-
nuity.
There only remains to prove (5). Put f(x) = I';(x) - I',(1 — x). We have

fx+1)= hp(x)rp(x) - T p(=x),
and since ["p(—x) = T',(1 — x)/ hp(—x),
fx+ D =& f(x), &x)=hp(x)/hp(—x).

Now,

-1 iflx|=1,
&(x) = )
+1 if|x] < 1.

Take for x an integer n and iterate,
fr+ D =em)- f()=---=(=D*fQ),

with an exponent # equal to the number of integers j < n prime to p. Since the
number of integers j < n divisible by p is [n/p], this exponent # is n — [n/p].
Hence

fn+1)=Tpn+1)-Tp(—n)= (—1)rtn/p) T,(DI,(0) = (_l)n+1—[n/P].
——

-1

To find the formula given in (5), let us take x = m = n + 1 (integer), whence
1—m= —nand

Tp(m) - Tp(1 —m) =Tp(n +1) - Tp(—n) = (1)1 -1"/7L,

With the expansion of the integer »n in base p,

n
n:no+n1p+~‘=no+p[;]

o[-0 o[3]

Since we assume p odd — hence p — 1 even — this proves that n — [n/ p] has the
same parity as no:

we infer

(_ 1 )n+l—[n/p] — (_ l)no+1 .

Sincem = n+1 = ng+1 (mod p)andng+1isinthe correctrange{l, 2, ..., ph
we have R(m) = no + 1, and the formula is proved for integral values x = m of
the variable. By density and continuity, it remains true for all x € Z . n
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Comment. The classical ['-function satisfies the Legendre relation

F@ra-z=

sinmz’
which implies for z = %
1\2 __ 1\ __
rGyY ==, TG)=J7.

Hence we can say that in Q,, an analogue of the number 7 could be taken as
I =(=1)P+V2 Inparticular,if p = 1 (mod 4), T',(3) = ~/—Tis acanon-
ical square root of —1 in Q,,. This canonical imaginary unit can be identified easily.
Inthecase p=1 (mod 4), the Wilson congruence

¢-vr= (22 )2=1 moap)

shows that (%—'—)! mod p is a square root of —1. Since (p+1)/2 = % (mod p),
the point (3) of the above theorem gives

rh =1, (232) = oo (2= (221 amoa

1.3.  The Gauss Multiplication Formula

The classical gamma function satisfies the identity
[Ir (z + i) = Qm)" 2722 Panz)  (m > 2),
m
0<j<m

which is the Gauss multiplication formula. Tt is remarkable that I', satisfies a
similar relation.

Proposition. Let m > 1 be an integer prime to p. Then

[T r» (" " é) = & - MR PO i),

O<j<m

where

w1

0<j<m
R(y)e{lv"'vp}v R(y)EymOdp’
_RO») -y

s(y) €Z,.
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Proor. Let

fx) = fu(x) = ]—[ rp(x'l'i)’
0<j<m m

Gx) = Gm(x) = f(x)/ T p(mx).

We have to compute the Gaussian factor G(x). Start with

1 .
G(x+1/m)= Tomx+ 1) 15];'1m Cp(x + j/m)

1
- DEHD 1T 1+ jim)

- hp(mX)rp(mx) ) l-‘p(x) O<j<m

_ hp(x) G

= ) >

Consider the locally constant function

hp(x) | —x/(—mx)=1/m if|x]=1,
hp(mx) | =1/(=1)=1 if x| < 1

A(x) =

(since (m, p) = 1). This multiplier is useful to compute the successive values
G(1/m) = 10) - G(0),
GQ2/m) = X0)A(1/m)- G(0), ...
G(j/my= [] Mi/m)- GO).

O<i<j

Since (m, p) = 1, we have

[T xi/my=q/my*

O<i<j
with an exponent

# = #{i prime to p, 0 < i < j}

--[2)

Let us find a convenient form for this exponent. Start with the p-adic expansion
of the integer j — 1:

i — 1
j—1=(j—1>o+p[——’ ]
14

. . i — 1
J =(J"1)0+1+P[J—],
e p

=:R(J)
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where R(j) = j (mod p)isin the correct range {1, ..., p}. This proves

f—l—[ﬂ] R(])—l+(p—l)["_l],
p p

and hence
n G /m) = ml—R(i)(mP—l)S(i)
O<i<j
with
. -1 j = R()
S(J)z_[l ]=_J D
p p
an expression that admits a continuous extension to Z,,
R(x)—x
s(x) = —u—— (x €Zp).
p

We have proved

GG/my= [ Mi/m)- GO

O<i<j
— M=KD nP=1y0) . G (0),
and
G(X) — ml—R(mx)(mp—l )s(mx) N G(O)

for integral x = j/m (j = mx > 0 multiple of m). By continuity, the last formula
will also hold for all x € Z,,. This proves the expected formula

[T Totx +i/m) = & - m' =R =1 0L (mx)

0<j<m

with ¢,, = G(0). n
Finally, let us observe that ¢,, = G(0) is always a fourth root of unity.

Lemma. We have £4 = l In fact, 83, = | except when p =1 (mod 4) and
m is even, in which case s = -1

Proor. When m is odd,
Em = l-"p(,—l,') p( )

since I',(0) = 1. Now we can group pairs

(20 (5) -
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(by the analogue of the Legendre relation). In this case &, = 1. Assume now m
even. The same grouping leaves the middle term Fp(%) solitary:

Em = irp(‘;‘)’ g2 = rp(‘;')2~

m

As we have seen in (1.2), [,(3)> = —1 when p = 1 (mod 4), so that &, is a
square root of —1 and

tn=GO) = [] Ipd)

O<j<m

is a root of unity of order 4. [ ]

1.4. The Mahler Expansion
If f is a continuous function on Z,, it can be represented by a Mahler series
x
f@ =3 a (k) a = (V* £)(0).
k>0

We have shown (Comment 2 in (IV.1.1)) that these coefficients are linked to the
values of f by the identity of formal power series

k n
Zakf‘k—, =e"‘-Zf(n)%-

k>0 : n>0

Proposition. LetT',(x +1) = Zkz() ay (;) be the Mahler series of T ,. Then its
coefficients satisfy the following identity:

k

x 1—xP xP

E (—l)kHakE; = exp (x + —)
! —x p

k>0

Proor. Let us compute e *¢(x), where ¢(x) = ), .o p(n 4 1)x"/n!. For
this purpose, we make a partial summation over the cosets mod p:

mp+j
o(x) = Cpmp+j+1)———.
o2, 25" o
Here, we can use
_ (_1)n+ln!
oD = G plipein
forn = mp + j, [n/p] = m and get
(mp + j)!

. — (_1yPHiHL
Fp(mp+j+1)=(-1) o=
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We obtain
=Y Y- 1)”"“*"‘
0<j<p m>0
=) (= ( ) G
m>0 0<1<p
= —exp((_ x)’ ) Z( 1) %
O<j<p
— exp ((—x)") 1= (=x)
P 1= (=x)
Finally,
B} (X)) 1 = (=% x
e Tp(x) = —exp (—x + ) =) a—,
P 1 —(—x) =0 k!
whence the desired formula. [ |

L.5. The Power Series Expansion of logI"p,
We shall use the following formula (V.5.3) for the Volkenborn integral:

S(f)x) = fz [fx+y)—fONdy (xe€Zp)

with the function

Fx) = xLogx —x if|x| =1,
- if x| < 1,

ffx)y=

Logx if|x|=1
if x| < 1
= Loghp(x).

Here, Log denotes the Iwasawa logarithm (V.4.5): It vanishes on roots of unity, so
that Log (—x ) = Log x. This implies that the function f is odd, sothat fzp ft)dt=0

(Corollary of Proposition 4 in (V.5.3)), a fact that we are going to use presently. On
the other hand 4, still denotes the function occurring in the functional equation

Cpx + 1) = hp(x)lp(x);
hence

VLogI'p(x) = LogT'p(x + 1) —Log ' ,(x) = Log h p(x).



376 7. Special Functions, Congruences
Since SVf = f — f(0)and Log',(0) = Log 1 = 0, we infer
Log I'p(x) = SLog hp(x).

The above formula for the Volkenborn integral with f’ = Log &, is now
Log [, (x) = SLogh)) = S = [ f0x+ )y

= fz x4+ yLog(x + ) — (x + )l dy.

For the computations, we come back to
Log(x +y) =Logy+Log(1 +x/y),

and Log(l + x/y) = log(1 + x/y) is given by the sertes expansion if |x/y| <1
(e.g., x € pZy and |y| = 1). Since (1.2) |T",(x) — 1] < |x], we also have

ILog 'p(px)| = ITp(px) — 1] < |px|,

since | px| < rp.
Theorem. For x € pZ,, we have

p - -
LOg l",,(x) =Aox — Z mxz +1,

m>1

where

AO:_/
Z

The radius of convergence of the power series is 1, and this provides a contin-
uation of Log Iy, in the open unit ball M, C C,,.

Logtdt, A,,,:/ t72"dt (m=>1).
Z

x x
P P

Proor. The preliminary considerations already prove that

[(x +y)logy —x — y+ (x + )’)Z(—l)"_]—)f—,,:l dy,
ny

n>1

x
P

Logp(x) = f
zZ
which is equal to

X/ Logydy+/ (yLogy—y)dy+f (—x +(x+y)Z---) dy.
Z; Z, z;

v~

=Ao =0. previous comment
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Here is the elementary computation for the series appearing under the integral
sign:

G +YY (1) ‘—"—Z( 1)"' +Z< - ,,",

n>1 n>1 n>1
+1 -1 n—1.,n+1
R ) Z———( Y~ x
n>1 n>1 (n + l)yn
1 1 xn+l
— _l n—1 —_
X+ ;( ) (n s 1) >
xn+1
=x+ _1yr—1., A
Z( D n(n +1) oy

n>1

Now, for odd n > 1, the function equal to 0 on pZ, and to 1/y" on Z; is odd
with a vanishing derivative at the origin. This shows that fZ; y~"dy = 0 for odd
n > 1 (Corollary at the end of (V.5.3)). There remain only the even terms

Do o
LogTy(x) = Aox — 3 7 x2m41
og Fp(x) = dox :L:;zm(zm+ n*

with Ag = fZS Logtdt, and A,, = [;x t72"dt (m > 1) as asserted. We can de-
P
duce an estimate of these coefficients. If f, denotes the function equal to O on pZ,

and to x~2" on Z;, we have || f,,ll1 = 1 (cf. (V.1.5)), as follows from
Ofuryy =Y X =,
x—y x21y2n(x — y)
y2n _ x2n ) 1
|®fae N = || = 7 X< (xl =yl =)

This proves |A,| < p (Proposition 1 in (V.5.1)) and pA, € Z,, (n > 1). The iso-
metric property of the logarithm on 1 4 pZ, makes it easy to prove that the norm
Il.ll1 (V.1.5) of the function equal to O on pZ,, and to Log on units is 1: This proves
[Ag] < p also. But we can prove a more precise result directly (cf. below). We have
seen (Proposition 3 in (VI1.1.2)) that the radius of convergence of a power series
f 1is the same as the one for its derivative f’ and hence also for f”. Let us apply
1t to

_ _ )“” 2n+1
FO) = hox ; m@n+ 1)
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and

f'x)y=— Z Anx21,

n>1
Since the coefficients A, are bounded, we infer ry» > 1. Finally, rp < 1 comes

from the fact that |A,| /~ 0: We show this in the next lemma. ]

Recall that the Bernoulli numbers (V.5.4) are given by the Volkenborn integral

by =/ xkdx (k> 0).
z

14

Lemma. For n > 1 we have X, = by, (mod Z,). Moreover; || < 1 and
|Anl = p for all integers n > 1, such that 2n is a multiple of p — 1.

Proor. (1) We have
I,
I (0)

Ao = (logTpY (x)lx=0 = = I,(0),

and since we have seen in (1.2) that ' ,(p”) = 1 (mod p”) we infer

I1p(p") -1 — I1p(P”) - I‘p(o) c

Z7
p" P
whence
, . Tp(p")—Tp(0)
Fp(O) = "lggo _p"— €Z,
and |Ag] < 1.

(2) The units of the ring Z/p™Z are represented by the integers 0 < j < p”
that are prime to p. The involution « +> 1! on these units shows

Z = Z i (mod p™).
1<j<p™, ptj 1<j<p™, ptj

Dividing by p™ and letting m — 00, we obtain by definition (V.5.1) (adapted to 2
function vanishing outside Z)

A,,_—:/ t_z”th/ tdt (mod Z,).
3 Z

x
P P

(3) Start with
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Let us compute explicitly the second integral:

1
2n : .
/ t7dt = lim — E i
Pzp

o0
"TOPT <j<p. pli

§ : m2n 2n

1<m<pr!

1 lim

p n—->oo p"

1 2n 2n 2n—1

=—-p t"dt = p™ 7 by,.
p z

14

(Observe that this computation proves that in the Volkenborn integral over pZ,
we could have replaced formally ¢ by ps with d(ps) = |plds = (1/p)ds!) We
have obtained

j 1t dt = tz”dt—pz""f s ds
e Z, z

/4
=1 —p”" by =byy (modZ,) (n>1).
The last assertion of the lemma follows now from the Clausen-von Staudt theorem

(V5.5). n

The lemma and hence also the theorem are completely proved. Let us summarize
two formulas that follow immediately from the theorem (and its proof).

Corollary. We have
I’ (x)
Fp(x)

dt.

=f Log(x +t)dt, (LogT))'(x) =f
x X +t¢

Proor. Everything follows from the previous proof and Proposition 3 of (V.5.3)
(justification of derivation under the integral sign) Observe that the expansion
1 1
x+t t (l+x/t) t Z(— ) "

can be integrated termwise:

7y —n—l
/zxx+ =) (=1y'x ] dt.

n>0

Since the integrals of odd functions (with zero derivative at the origin vanish by
the corollary of Proposition 4 in (V.5.3)), there remain only the even powers of ¢
(corresponding to odd powers of x):

RS L= [
_/Zxx+t %

This confirms our previous expression for the coefficients of Log I' . [ ]
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1.6. The Kazandzidis Congruences

We have already given in (V.3.3) some congruences for the binomial coefficients

pn\ _(n
()= (5) cmoaprzn

It turns out that these congruences hold modulo higher powers of p.

Theorem (Kazandzidis). For all primes p > 5 we have

(p ”) = (Z) (mod p*nk(n — k)(})Z,).

Pk

For p = 3 the same congruence holds only mod 3*nk(n — k)(;)Zs (namely one
power of 3 fewer).

The form of these congruences suggests that we should prove (when p > 5)

pn n\ _ 3 B
(pk) /(k) =1 (mod p’nk(n —k)Z,).

It is clear that the left-hand side is a p-adic unit, and L. van Hamme had already
observed that it can be expressed in terms of I', (or in terms of a p-adic beta
function) as follows:

pn n I'p(pn)
= —_—— k l = .
(pk)/ (k) T p(Pk)T p(pl) G+i=n)

The Kazandzidis congruence states that this unit belongs to a multiplicative sub-
group 1+ p"Z, C Z; withaprecisely determined integerr > 0. The preceding unit
can be studied by means of the logarithm: We have indeed proved | log §| = |§ — 1|
if |§ — 1| < rp. On the other hand, we also have |T' ,(x) — 1] < |x|, proving, for
example,

Tp(px)el+pZ, (x €Zp).

Since we are assuming p > 3 we have |p| < rp, and the isometric property of
the logarithm is valid for & = I",(px), resp. § = I')(py) and & = T',(px + py)
(x,y € Z,). Hence

r r
o(PX+Ppy) 1' _ KPXEPY) | g,

I p(px)T p(py) I'p(px)T p(py)

Let us introduce the restricted power series (all its coefficients are in pZ, as we
shall see)

An
fx) =log Tp(px) = hopx — Y o p?Hix2n+l,
; 2n(2n + 1)
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This is an odd function (this is also a consequence of the Legendre relation, which
implies ' ,(px) - T'p(— px) = 1). We now have

Tp(px + py)
Tp(px)Tp(py)

As we have seen in (V.2.2), the linear term of f(x + y) — f(x) — f(y) disappears,
and |f(x +y) — f(x) — f(¥)) < C - |xy(x + y)|, where the constant C is the
sup of the absolute value of the coefficients (of index n > 3) of f. Here, we need
to examine carefully these coefficients. The Kazandzidis congruences will follow
from the next theorem. |

=|fx+y)— fx) - fO)

Theorem. Let f(x) =log I'p(px) (x € Zp). Then

(a) f is given by a restricted series having all its coefficients in pZ,,

®) 1f(x +y)— fx)— FO) < IPPxy(x + Y)I.
Proor. Let us start with

An
f@)=2opx =)

2n+1 _2n+1
= 2n(2n + 1) :

(a) Theradius of convergence of f is p > 1 (this function is obtained by a dilatation
x > px from the function considered in (1.5)) and hence the series for f(x) is a
restricted power series. We can write
p2n—l -
X) = Aopx — Ay - —————x 2t
fO)=2op pn};p " T

We have seen that Ag € Z,, and pA, € Z, (n > 1). It is enough to observe that

2n—1
p

2n(2n+1)

This is obvious for n = 1 and n = 2 and follows from the lemma below for n > 3.
(b) Let us repeat the expression for f(x + y) — f(x) — f(y) in the following
form:

€Z, (n=1).

A A
~5 P = =y = Py = =)

The leading term in this expression of f (x +y)—f(x)— f(y)is

M
-—p 3(x y+xy )= —-p xy(x+y)- p3xy(x+y) mod Z,.

2-3 -3
When the prime p is greater than 3, this term is in p*xy(x + y)Z,, whereas it is
only in 32xy(x + y)Z3 when p = 3. The next term is treated similarly:

A2
22 pixy(x + y))| < ——— pOxy(x + y)|.

4.5 4526

b
’fgpsxy(x + y)l
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When p = 3 there is a factor 3* making this term smaller than the first one. Whep,
p = 5there is still a factor 5% of the same size as in the first term. When p > 5 the
factor p> makes this term strictly smaller than the first one. The subsequent terms
are treated in the next lemma. n
273

P <1

Lemma. Forn >3 wehave |——— <
2n(2n + 1)

ProoE. Let us estimate the p-adic order of the fraction:

2n—3—ord, 2n(2n+1) > 2n —3 —ord, 2n 4+ 1)!
2n+1-5§,2n+1)
p—1
2n+1-1
p—1

=2n—3-—
>2n—3—

2
Ssm—3-_n_3>0

1.7. About ™

Let us show here how the Morita gamma function is defined for the prime p = 2.

Preliminary comment. Let G be a finite abelian group written additively and let

s=s(G)=Zg.

geG

In this sum the pairs {g, —g} consisting of two distinct elements contribute 0 t0
the sum, and we see that
=Yg

8=—¢
But g = —g is equivalent to 2g = 0, and
H={geG:2g=0}CG

is a subgroup of G, isomorphic to a product of cyclic groups of order 2: H is of
type (2.2, ..., 2). Moreover, we have seen that s(G) = s(H). Now, the sum s(H)
is obviously invariant under any automorphism of the group H: The only case
where s(H) can be nonzero is thus

H cyclic with two elements,

in which case s(H) = 1 is the nontrivial element of this group. Equivalently, s # 0
precisely when the 2-Sylow subgroup of G is cyclic and not trivial
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Proposition. For v > 3 the kernel of the homomorphism
x+>xmodd : (Z/2"ZLY — (ZJ4Z)* = {£1}

isacyclic group C(2°~%)of order 2"~ generated by the class of 5, and (Z./2°Z)*
is isomorphic to the direct product of C(2"~%) and {%1}.

Prook. Since the order of (Z/2Z)* is 2", the kernel of the homomorphism
onto (Z/4Z)* = {%1} has order 2”2, We shall prove that this kernel contains an
element x of order 2"~2. Take x = 1 + 4¢ (obviously in the kernel) and use the
fourth form of the fundamental inequality (111.4.3) (Corollary at the end of (V.3.6))

(1+1)"=14+nt (mod pntR)
for n = 2% and p = 2. Replacing ¢ by 4t (¢ € R) we obtain
(1+40)% =1+2%4r (mod 2-2* - 4R),
(1+40% =142 (mod 2*F3R).

The element 1+ 4¢ has order 2"~ precisely (and is a generator of the kernel) when
A +41)?7 £ 1 (mod 2°):

A+40* 7 =142 #£1 (mod 2°R).

As appears now, this will be the case exactly when ¢ is odd, |¢] = 1. This proves
that the class of an integer x = 1 + 4¢ is a generator of C(2"~2) precisely when
x$#1 (mod 8)and x =5 =1+ 4 is an eligible candidate! n

Corollary The product of all units of /2 Z is
Tv=1), —-1@w=2), 1w=>3).
Proor. This follows from the preliminary observation, since
@22y ={1}, (Z/AZY* = {£1},
whereas if v > 3, then
(Z/2°Z)" = {+1} x C(2"7Y)

is a product of two nontrivial cyclic groups. n

Now let us consider the following sequence:

fy=1, foo= [] Jj «=2).

1<j<n, j odd
Hence f(2) = 1 and
fOn+1)=fCn) (> ).
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Since f(n) is odd for all n > 1, we infer (for the 2-adic absolute value!)
fml=1, [fm)— f@I<Rl=3 (.m>1).

For n = 2" we have
f)=1, f@=1, f@=3=-1 (mod4)

and then

f@y= J] Jj=+1 md2) @=3).

1<j<2, j odd

As in (1.1) we infer

[fn+2") — f@)| = <12" (vz=3)

f(n)(n 1T i- 1)

<j<n+2v, j odd

and more generally
If(m)— f@)| <Im—n| (mn>1, |m—-nl<}.

This proves that the function f is uniformly continuous, and hence has a unique
extension to Z, — Z> = 14 2Z,, which we still denote by f:

IfG) = fON<Ix—y (x—yl <.
Since f(2¥) = 1 mod 2" (v = 3) we deduce f(0) = 1.

Lemma. We have |f(x +4)— f()l =1 (x € Zy).

Proor. Since the image of f is contained in 1 + 2Z; of diameter % we have quite
generally | f(x) — f(y)| < 1. The relation
f@n+2)=Q2n+ 1)f(2n) = 2nf(2n) + f(2n)
shows that
|f@n+2)— f@2n)| = [2nf@2n)| = [2n] (< 2|=3).
Similarly,
f@n+4)— f@2n)= f(2n)-1-3— f(2n) = -2f(2n) (mod 4),
[f@n+4)— fQn) = 12fQn) = 12| (=3).
Since we also have
f@n+1D)+4) - fCn+1)= f2n+4)— f(2n),
we may conclude that | f(x +4) — f(x)| = 2| =1 (x € Zy). [
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In order to have
ryO=1, r,M)=-1, Ir,2)=1

for all primes (including p = 2), we decide to change the sign of f(n) when n is
odd. Thus we define

Ty = (-1"fm)=(-1y [] Jj (=2.

1<j<n,j odd
The formula (Definition (1.1))
Tm=y [] i @=2

1<j<n. pij

holds now for all primes p. By definition, we have

fx)  ifx €2Z,,

F2() = {—f(x) ifx € 1422,.

Consequently, when x and y are in the same coset mod 2,
Fa(x) = Ta(y) = £(f(x) — FO)).
and this shows that
IT2(x) = T2 = 1f(x) — fFO)I (x =y (mod 2)),

so that the inequalities obtained for f are still valid for I',.
Observe that we have

Fa(x + 1) = ha(x)M2(x),
where

—x ifxel+2Z; (x|=1),

h =
2(x) [ —1 ifxe2Z, (x| < 1),

in complete similarity with the odd-prime case (1.2).

2. The Artin-Hasse Exponential

The exponential series has a radius of convergence r, < 1 because its coefficients
a, = 1/n! have increasing powers of p in the denominator. It turns out that the
Artin-Hasse power series

exp (x + %x” + ;’z-xpz + - ) = Za,,x”

n>0
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has p-integral coefficients: a, € QN Z,. As a consequence, this power series has
a radius of convergence equal to 1. Dwork has used this power series for the
construction of pth roots of unity in C,, (similar to the construction of nth roots of
unity in C). The Dieudonné-Dwork criterion explains the integrality property of
the Artin-Hasse power series, and Hazewinkel has found a deep generalization of
this phenomenon. We shall present only the initial aspects of these theories.

2.1. Definition and Basic Properties

Let us start by reviewing a couple of elementary formulas concerning the Mébius
function. Recall that for an integer n > 1 this function is defined by p(1) = 1 and

u(n) = 0 if n is divisible by a square k% > 1,
w(p1p2--- pm) = (—1)" if the p; are distinct primes.

Lemma. We have

doud =0, Y ludi=2" @>1,

din din

where k is the number of distinct prime divisors of n.

Prook. In fact, if n = p}' - -- p;* and d | n is adivisor with u(d) # O, thend isa
product of a subset of primes p;, and quite explicitly,

S =1+ Z (i) +}: wpip;) + -

dln
— — k —_— e e — k
=1 k+(2) +(-1)
=) 1)'( ) =1-1 =0
O<i<k
Similarly,
Zlu(d)l—I+Z|u(p.)|+§:|u(p.p,)|+ =14+ =2 ®
din

Proposition. We have identities of formal power series

> —M log(1 — x") = x,
n>1
and for each prime p
1 1
Z —Mlog(l ):x+—x”+—2x”2+--~.
n p p

n>1. pin
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Proor. Recall that

log1 1) =log —— =" =
— 10, it =10 = —_—
g gl—t sm

Hence

> - 1ogt - = Y um Y X

n>1 n>1 m>1
XN
= E N E un) = x
N=>1 n|N

by the first identity of the lemma. Similarly,

2 —ﬁfli)log<1—x")= ) u(n)Z’,‘Z

n>1, pin n>1, pin m>1
N
X
D ILE pT
N>1 n|N, pin

The conditions n | N and n prime to p amount ton | Np~”, where v = ord, N
(also denoted by p¥ || N). The corresponding sum vanishes (still by the first
identity of the lemma) except if Np™ = 1, namely N = p¥ (v > 0):

pn) " _ N 1 .
Z ——n—log(l—x)—z 7v——x+;x”+?x +---

n=1, pin N=p®

Corollary. We have formal power series identities:

exp(x) = [ [ (1 —xm7+rm,

n>1
exp (x +LxP 4 Lx 4 ) = ]1"[* (1 — x™)y~#ein, L]
n>1, pin

Definition. 7he Artin-Hasse exponential is the formal power series defined by

2
Ep(x)=exp(x+1px”+#x” +) =1+x+---.
Since log and exp are inverse power series for composition (VI.1), we have
E _ 1 ,, 1 5
log p(x)—x+—1;x +-p—2x +---,

and by the corollary.
E,(x)= [] a—xmweom

n>1, ptn

is an identity of formal power series.
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2.2. Integrality of the Artin-Hasse exponential

The power series /7 = 1 + )f" /p + - -- converges at least for |x| < r,, since
|x?/p| < |x| for |x]| < rp. Consider the product of the two power series

x? » xP
ex=]+x+...+F+... and e"/”=l+-;+---

Its first coefficients are

p epxp T+x+---+ X + P(l+l)+
eXpx -exp— = x+--- =+ =
p p-Dn! pl p

The coefficient of x? is
1+(p— 12
pt

A miracle happens: The numerator is divisible by p — Wilson’s theorem — so
that the whole fraction is in Z,. More is true: All the coefficients in the product

xP x?
eXpX - exp — - exp——--- = l—[exp——— -expz
p jz0 =0 P

are p-integral, hence in Z,. As a consequence, this power series converges for
x| < L.
The radius of convergence of the power series

1 1
h(x) = x + =xP + —xP 4.
p p
is the same as for its derivative (Proposition 3 in (V1.1.2)):

He)=1+xP"4x? o

namely r, = rpy = 1. The critical radii and the growth modulus of h are the same
as for the logarithm log(1 + x): Both series have the same dominant monomials.
In particular, E,(x) = exp h(x) is well-defined, it converges at least for |x| < rp,
and

llog Ep(x)| = [h(x)| = |x]  (Ix| < rp).
(But |A| is unbounded in the open unit ball M, C C,.) This proves that E,(x) =
exp h(x) is well-defined in the ball |x| < r,.

Theorem. The coefficients of the Artin-Hasse power series E, are p-integral
rational numbers, so that E,(x) € 1 + xZp[[x]]. Moreover, the radius of con-
vergence of this power series is rg, = 1, and

IEp(x)I =1, |Ep(x)—1l=Ix| (x| <1).
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Prook. When p does notdivide n, —u(n)/n is equal to O or to +1/n: The binomial
series expansion of (1 — x")"#"/" has its coefficients in Z,, and hence converges
for |x] < 1 (atleast). The infinite product has coefficients in Z, too. It also converges
in the ball |x| < 1 by the lemma in (V1.2.3). This proves E,(x) € 14+xZ,[[x]], and
in particular r =rg, > 1. Let us show that this radius of convergence is precisely
1. For this purpose, let us prove the identity of formal power series

E,(x") = E,(x)E,({x)--- Ep(¢P 'x)

where ¢ is a primitive pth root of unity: { # 1 = ¢?. The exponent in the product
1s indeed
(}+c+-~+§””')x+p(ﬁx”+ﬁx”z+---),

~~

=0

whence the identity. Now, each power series E,({'x) has the same radius of
convergence r = rg,, while the radius of convergence of E,(x?) is ri/p. By
Proposition 2 in (V1.1.2). we obtain

rVP > min@r,r,...,r)=r,
namely r > r?. This proves r < 1.! Now let

E,(x)—1=x +Z a,x"  (an € Zp).

n>2
Hence we have
la,x"| < xI" < IxPP < x| (x] <1, n>2),
and |E,(x) — 1| = |x| (]x] < 1) since the strongest wins. [ |
As we have already observed, the coefficient of x” in the expansion of
&HIP — o . &FIP

is p-integral. Let us show that this product furnishes a transition between exp and
E ,, with an intermediate radius of convergence (a quantitative way of saying that it
has fewer powers of p in the denominators of its coefficients than the exponential).

Proposition. The radius of convergence of the power series f(x) = &*+*'/P is

— ~2p-1)/p’
rf-—rpp P,

hencer, <ry < 1. We have

lexp (x + %x")l =1 (x| <ry)

lor r = 00, but look at exercise 9.
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Proor. (1) As formal power series, we have

pi
— SHFIP . >
Ep(x)—e CXPZ p-’,

Jj=2

and conversely,
p xpj
eIP = Ep(x) - exp —Z—. .

=2 P’

To prove that this product converges beyond |x| = r, and get an estimate of its
radius of convergence, it is sufficient to show that the radius of convergence of its
second factor is greater than r,, (Proposition 2 in (VI.1.2)). To get an estimate of

the radius of convergence of
x?
exp{— ) —

we use (VI.1.5). First, let us recall that
x?

M, Z'p—]=

j=2

1 2
i I <y < VPP
1l forO__r_rp r,

(the dominant monomial of the log series in the interval r, < r <rpis xP’/ p*
Since the preceding monomials are absentin } ;. , xP' /p’, the first one is domi-
nant upto r;). The numerical substitution of g(x) = Y., x”' /p/ in f(x) = expx
is allowed when

x| <rg=1and My g <rf=r,.

The second condition is

2 i 2 . 2p-1 _
P /1P% < 1pl7,  IxIP < |pPFT = |plv =P,
namely
@p-1)/p?
x| <rp .
Since
1 _1fp_1)_21 _2p
p<p( p)'" pZ<p2<l’
we see that

I p— 2
rp <rob e <,

and the numerical evaluation is valid in the region considered above. The radius of

- - — 2 -
convergence of the composite is at least rf,z" vt rp. Inits ball of convergence,
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all factors in
x+xP/p __ E xpj
€ = p(X)'l_[eXP Y
=2
x+xP/p) 2p-1)/p°
have absolute value equal to 1, hence le [=1(x] <rp ).
(2) To simplify the notation, let

1
p = radius of convergence of —,
E p

p2
p2 = radius of convergence of exp (x_{) s
p

4

. x

p3 = radius of convergence of exp (Z _,> .
>3 P
j=3

Since |E,(x) — 1] = |x]| for |x| < 1, we have p > 1. More precisely, 1/E,(x) =
E,(—x) if p is odd, proves that p = 1 in this case. Now, let us write

x? 1 x¥
€xp (-—;2—) = E,0) - f(x)-exp (fg ;}—-)

This shows that

Pz 2 min(p9 rf, p3)

(Proposition 2 in (V1.1.2)), and since p; < p3 < 1 < p, we inferthat p, > r;. B

2.3. The Dieudonné-Dwork Criterion

Another proof of the p-integrality of the coefficients of the Artin-Hasse power
series will now be given.

Let k be a field of characteristic p. The identity x? = x in k characterizes its
prime field F,. In the polynomial ring k[x], the identity f(x)? = f(xP) charac-
terizes polynomials f having coefficients in the prime field. For a polynomial f
with integral coefficients, the congruence f(x)? = f(x?) (mod p) means that

fx)P — f(xP) € pZix],

and itshould therefore be written more precisely as f(x)? = f(x?) (mod pZ[X]).
For polynomials f with rational coefficients, it turns out that the same congruence
characterizes the integrality of its coefficients. This principle also holds for power
series. The extent to which the operations

first raising x to the power p and then applying f,
first computing f(x) and then raising to the pth power

lead to similar results, is a measure of the integrality of the coefficients of f. A
precise formulation of this principle can now be given.



392 7. Special Functions, Congruences

Theorem (Dieudonné-Dwork). Let f(x) € 1+ xQ,[[x]] be a formal power
series. Then the following conditions are equivalent:

(i) The coefficients of f areinZ,.
@) f(x)?/f(xP) € 14+ pxZ,[[x]].

Proor. (i) = (i) If f(x) € 14 xZp[[x]], then f(x)? = f(xP) (mod p). Both
series belong to 1 + xZ,[[x]], and f(x?) € 1+ xZp[[x]] is invertible, so that (ii)
follows.

(i) = (i) Letus write f(x) = ;.0 @x’ (ao =1, g € Q,) and assume

f&x)P = f(xP) (1 +p Y b,-xf> (b; € Z,). *)

Jj=l1

We have ag=1 and a) =b; € Z,,. Let us assume by induction that a; € Z,, for
i < n and let us compare the coefficients of x" in both members of (*). The
coefficient of x” in the left-hand side is the same as in

p
(Z a,-xi) = Z alx® + p(---).

i<n i<n

The nonwritten monomials are products g;,a;, - - - @;, x""*2*+ having at least
two distinct indices i ;. It is enough to determine them mod Z,, and for this reason,
all monomials not containing a,, will play no explicit role, since — by the induction
assumption — they have coefficients in Z,. The only monomials containing a,
that are of interest for us have a single factor a,x” and all other factors ay = 1 (all
other monomials containing a,, lead to powers x™, m > n). Hence we find that the
coefficient of x” in the left-hand side of (x) is

a’ + pa,+ termsin pZ,.

1
N~

ifip=n

With the convention a,,;, = 0 when n is not divisible by p (i.e., n/ p not an integer),
we may write this coefficient as

a;,, + pa, + terms in pZ,.
The right-hand side of (x) is
Z axPi. (l +pZ bjx’) ,
isn/p jsn
and the coefficient of x” in this expression is
ayp + terms in pZ,.

Since n/p < n, the induction hypothesis shows that a,,, € Z,, and hence a’ /p
anp (mod pZ,). By comparison we infer pa, € pZ, and a, € Z,.

m il
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Application. Consider, for example, the Artin-Hasse power series E,. As formal
power series we have the following identities:

4 P’
Ep(x)P =exp pr— = exp px+x"+zc—-+... = eP E,(x?).

=0 P’ p
Hence

Ep0) _ o

E,(P) € 1+ pxZ,[[x]],

as we are just going to show. In other words, the p-integrality of the coefficients
of the Artin-Hasse power series follows from the Dieudonné-Dwork criterion and
the following observation.

Proposition. We have
eP* e 1 + pxZ,[[x]]
and even

eP* € 1+ pxZ,{x} (p anodd prime).

Proor. For n > 1 we have

" n—S,(n)
d, —~ = £
orpn' o1
-1 -2
spotTlop=2, Loy
p—1 p-1 p-

hence the first result. For p = 2 there remains only ord; (2" /n!) > 1 with equality

precisely when S>(n) = 1, namely when n = 2V is a power of 2. For p > 3 we
see that

n -2

ord, L > P

n! p—1

-n—> 00 (n— 00),
and the second result follows. ]

2.4. The Dwork Exponential

The roots of the equation x +x?/p = O are 0, as well as the roots of x?~! + p = 0.
All the roots 77 of x?~! + p = 0 have the same absolute value || = rp. Since the
radius of convergence of exp(x + x?/p) is greater than r,, we may evaluate this
power series on any such root 7. But crude substitution of v in x + x?/p gives 0,
and €° = 1 is not the correct result for &+**/7| _ 1 In fact, the condition given in
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(VL.1.5) for numerical substitution is not satisfied, since

xp
MIHI (X + 7) = I‘p = rexp.

In the classical, complex case, all roots of unity are special values of the expo-
nential. It turns out that pth roots of unity can also be constructed analytically by
means of a generalized exponential. Recall thatif 1 # ¢ € pp, then [§ — 1| =7,
(11.4.4).

Proposition (Dwork). Choose a root = of the equation xP~' + p = 0.and let
¢ denote the result of the substitution e*+*’/P |x=n. Then { € i is the pth
root of unity such that

r=14+m (mod 7?).

Proor. (1) We have
P = 1 4 x +x%(---)=14x (mod x?) (x indeterminate).
Let us show that we also have
ex+x”/P|X:n =147 (mod ”2).

The sup norm of the function €****/7 on its ball of convergence is 1. hence the
coefficients a, of its power series expansion e*+*"/7 =}~ >0 anX" satisfy

2, —In
lanlr,” <1 (n>0)
(Lemma in (V1.4.6)). Hence
n—nZEE—'

lanrt"| <r, 7

The exponent of r), is

np? —2np+n (p—l)2
5 =n i
p p
We want to show that |a,7"| < || (n>2). This is certainly the case when
(p 'Yn>1. When p > 5, we have("p')zn > ;gn > 1 for all n > 2 and
we are done. When p = 3, we have (" 1yn = 9n > 1 for all n> 3. We have
to estimate az. But the coefficients a,, of exp(x + 1x°) are the same as those of

the Artin-Hasse power series for n < 8, hence are 3-integers, and the conclusion

follows. When p = 2, we have ("TT')Zn = }‘n > 1 for all n > 5. We have to

estimate the coefficients a, for n < 4. But (exercise)

2
2 :1+n+7t2+§7z3+,—527t4+---,

X=m=—2
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and since $7? = 1 (is a 2-integer!), S7* = 0 (mod 72) as we desired to show.
(2) As formal power series, we have
(ex+x"/p)l’ — ep(x+x”/p) — epx+x" =P . ex".

In detail, let ¢ denote the polynomial ¢(x) = xP. Then ¢ o exp(x) = exp px as
formal power series, and hence with h(x) = x +x?/p

(exp(x +x?/p))P = g oexp(x + x¥/p) = ¢ o (expoh)(x)
= (p oexp) o h(x) = exp(ph(x))

P 14
— epx+x — epx ex

(since ¢ is a polynomial, no condition on the order of exp o# is required in Corollary
2 of Proposition 2 (V1.1.2)). Since |?| = |pr| = |plr, < rp, the numerical
evaluation of both exponentials is obtained by substitution (VI.1.5):

g‘:rf = (ex+xp/plx=n)p =ef" . e”p = eP” -e_p” = 1. | ]

Let us renormalize the situation. Choose a root = of x?~! + p = 0; hence
|| = rp. Substitute x = 7y, so that €™ converges whenever |y| < 1. The same
substitution in exp(x + x”/p) leads to a power series

Trpyp
) =exp(zry - ”yp) =expr(y — y¥)

exp (ny +

converging at least for

Iyl < rg"‘l)/"z, Iyl <r

2p—1)/ p*~1
o .
The exponent of r,, is

2p—1 2p—1-p? (p— 1)
e - 1= P2 == P

The power series exp 7 (y — y?) converges at least for

Iyl < |pl=@~ V@ = pe-b16D,
hence its radius of convergence is greater than or equal to p®=D/(¢?") > 1.

Definition. When 7 is a root of xP™' 4 p = O in Qj. the Dwork series is the
formal power series

Eq(x) = exp(r(x — x?)) € Qp(m)[[x]].

The radius of convergence of the Dwork series is p~1/(#" > 1.
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Hence E, = f og, where f(x)=e* and g(x) =7 (x —xP)has order 1 (sufficient
to enable substitution). We shall be interested in the special values taken by this
power series when its exponent vanishes:

xP—-x=0&>x=00rx € pp.
As we have seen,
E:()=147 (mod r?)

is a generator of pi .

Theorem (Dwork). Let = be aroot of xP™' + p = 0. Then K = Q(n) isa
Galois extension of Q. It is totally and tamely ramified of degree p — 1, and
K = Qp(up). More precisely:

(a) The field K contains a unique pth root of unity {, € L, such that
r=14+m (modr?).

(b) The series E,(x) has a radius of convergence p'P~Y/P" > 1.
(c) Forevery a € Q, witha? = a we have

Ez(a)€ pp, Eq(@)=1+ar (mod n?),

so that E; (1) = {x.

Proor. Nearly everything has already been proved. Observe that X?~! + p is an
Eisenstein polynomial relative to the prime p and hence is irreducible over Qp
(I1.4.2). f r and 7’ are two roots of this polynomial, then (' /m)P~! = 1, hence
n'[n € pp-1 C Qp. Thus the splitting field of X7~! + p over Q,, is obtained
by adding a single root 7 of this polynomial to Q. This proves that K is totally
ramified of degree p — 1 over Q,, and hence tamely ramified. The uniqueness of 2
pthroot of unity ¢, = 14 7 (mod r2) follows from the simple observation thatthe
distance between pth roots of unity is r, (Example 2 in (11.4.2), and also (IL.4.4)):
Two distinct pth roots of unity are not congruent mod 772. The other statements of
the theorem follow easily from previous observations. L

Comments (1)If 1 # { € C, is aroot of unity of order p, we have seen in (I1.4.4)
that§ = ¢ — 1 is a root of

xP' 4 px(--)+p=0,

and hence || = r, = |p|"/*P~D. We are now considering roots 7 of the simpler
equation

x4+ p=0.
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Since 7 and £ have the same absolute value, £ = sru for some u with jJu| = 1:
{—l=mu, (=14+muecp,CcC,

IfaP~! = 1, say a = k (mod p) with 1 < k < p (namely k = qq is the first digit

in the p-adic expansion of a), then both E,(a) and E, (1)* are pth roots of unity

congruent to 1 + kzr (mod 72), and the theorem implies

Ex(a) = Ex(1)".

(2) The Dwork power series is a kind of exponential map: E,(0) = 1 and

E
pp-1 Cla:aP =a} =5 p,

3 ¢/
FX c F,

(3) Let f > 1and E{(x) = expm(x — xP’), so that Ex(x) = E1(x). Then
E,{(x) =expr(x — x”f)
=expr(x —xP)-expr(x? — xP).- cexpr(xP’ T — xP"y
= Ex()Ex(xP)--- Ex(x?"")

converges at least when each factor converges. The most restrictive condition is
given by the last one: Convergence of E, (xPH) occurs if

lxpf-'l < pP VP x| < peDI@R ),

With g = p/, we see that the radius of convergence of Ef is p?~D/®9) > 1.

E, (Artin-Hasse) Ef (Dwork)

i »’ —x9
f & & CxPijO :rp_l e —x (g = pf)
L 2t =t
rg  rp=Ipl7T rp” 1 p P

Radii of convergence of some exponential series
(listed in increasing order)

2.5. Gauss Sums

Sums of roots of unity play an important role in number theory. Let us show how
they can be used to prove that any quadratic extension of the rational field Q is
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contained in a cyclotomic one, i.e., in an extension generated by roots of unity. It
is enough to show that the quadratic extensions Q(,/p) (p prime) are contained
in a cyclotomic extension of Q.

Let us choose a root of unity ¢ of prime order p > 3 in an algebraically closed
field K of characteristic 0. For example, take K = C and { = €?*/P_ Then the

sum of roots of unity
0<v< p (p)

is the simplest example of a Gauss sum: Here — as in (1.6.6) — (—;’;) = =1 denotes
the quadratic residue symbol of Legendre.

Proposition 1. For an odd prime p, we have S5 = +p.

Proor. The square of the sum S, is

vt - Z (m) ;-V‘Hl-.
O<v,u<p (P) (p) O<v,u<p p

For fixed i # 0, vy goes through all nonzero classes mod p, and we can replace
v by vu in the double sum:

Sf, _ Z (v# );.(v+l)ll Z (j’_) co+Du,
v,§ p v, u p,

We consider separately the terms withv = p — 1:

> (G)e=e-n(3)

andforv # p—1

)3 (%) I g,

v#p—1 p#0

Recall that

zcy(v+l) — Z c/—l(v+l) —1=—1.

pn#0 O<p<p
N ——
=0 because v+1#£0



2. The Artin-Hasse Exponential

sz=<p—”(%) =0
- (5)-2)

=p-1/p)- Y (3)
O<v<p P
e, e’

=0

Hence

The announced formula is proved.

Corollary 1. For a prime p > 3, the complex absolute value of S, is

1Splc = /P

399

Corollary 2. For a prime p > 3, the quadratic extension Q(,/p) is contained

in the cyclotomic field Q(¢, ~/—1).

Observe that if p = 2, we have (1 4+ +/—1)? = 2./—1, so that /2 € Q(+/—1)

and the quadratic extension Q(+/2) is also contained in a cyclotomic one.

Comment. A theorem of Kronecker asserts that any Galois extension of the ra-
tional field Q with abelian Galois group is contained in a cyclotomic one. This is
a deeper theorem, which has been widely generalized, and belongs now to class

field theory.

The general form of Gauss sums in a field K containing a pth root of unity ¢ is

obtained as follows. The map v +— ¢V, F, — K> is a group homomorphism:

grtt =Ygk
The map v +> (%), F, — K™ is a group homomorphism:

2-06)

extended by (%) = 0. Replace Z/pZ = F, by a finite field F, (where g = p/ is

a power of p) and let more generally ¥ and x be two group homomorphisms

Vv :F, > K* and x :F"]< — K™ extended by x(0) =

According to tradition, we shall say that v/ is an additive character of F; and x a
multiplicative character of F,. By definition, the Gauss sum attached to this pair
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of characters is the sum

G, x)=Y_ ¥Mx® =Y yOx).

veF, veFy

In the next section we give the p-adic absolute value of Gauss sums. Now, let us
show how to determine all additive characters of a finite field.

Proposition 2. Let G be a group and K a field. Any set of distinct homomor-
phisms G — KX is linearly independent in the K -vector space of functions
G — K.

Proor. Since linear independence of any family is a property of its finite subsets,
it is enough to prove that all finite sets of distinct homomorphisms are linearly
independent. We argue by induction on the number of homomorphisms ;. Since
homomorphisms are nonzero maps, the independence assertion is true for one ho-
momorphism. Assume that n — 1 distinct homomorphisms are always independent
and consider n distinct homomorphisms ¥; (1 < i < n). Starting from a linear
dependence relation

a(x)+ -+ Y(x) =0 (€, o €K),
we multiply it by the value y;(a) (for some a € G):

i@y + -+ i@y.(x) =0 (x € 6).

On the other hand, we may replace x by ax in the first equality, and since ¥;(ax) =
¥i(a)yi(x), we obtain

ayi@¥i(x) + -+ anyn(@¥n(x) =0 (x € G).

If we subtract the two relations obtained, the first term disappears, and we get a
shorter relation:

ar(Yn(@) — (@) + - - - + a,(Yi(a) — Yu(a))¥, = 0.

By the induction assumption, all the coefficients of this new relation vanish. If we
choose a € G such that ¥,(a) — ¥,(a) # O (this is possible since ¥, # ¥n)
we see that @, = 0. Using the induction assumption again, we get o; = 0
(1 <i<n) -

Proposition 3. Let F be a finite field and Tt : F — K* a nontrivial additive

character. Then any other additive character \ has the form ¥ (x) = t(ax) for
some a € F.

Proor. The identity

t(a(x + y)) = t(ax + ay) = t(ax)t(ay)



2. The Artin-Hasse Exponential 401
shows that for any a € F, 1,(x) := t(ax) defines an additive character. Now,
a > 1, 1s a homomorphism

Ta+p(x) = T((a + b)x) = (ax + bx) = 1(ax)T(bx) = Ta(x)Tp(x).
It is injective, since 7 is a nontrivial character:
,(x)=1 xeF) = a=0.
The additive characters (7,),¢F constitute a basis of the F-vector space of functions

F — K*. Any additive character must be in this family by Proposition 1. ]

As a consequence, we observe that the Gauss sums G(i, x) can be computed
easily from G(z, x):

G, X) =G0 x) = Y, T(@x)x(x).

xeFx

1

If we assume a # 0 and replace x by ™" x in the sum, then we obtain

G, x)= Y taa™')x@'x) =Y t®)x@ Hx = x@"G(x, x).

xeFXx xXEF>

2.6. The Gross-Koblitz Formula

Let us choose a primitive pth root of unity {, in C, and let K = Q,(¢,). Then
{¢p, — 1| = rp, and ¢, — 1 is a generator of the maximal ideal P of R C K. As we
have seen in (2.4), there is a generator 7 of P uniquely characterized by

Pl =—p, m=¢,—1 (mod (g, — 1))

Conversely, if we choose aroot 1 € Cp, of 771 = —p, the field K = Q,(r) is
a Galois extension (2.3) of Q,, it contains all roots of unity of order p, and the
Dwork series furnishes Ex (1) = ¢, the unique root of unity of order p satisfying

=147 (mod 2.

Since an additive character of the field F, is uniquely determined by its value
V(1) € pup, we choose the nontrivial additive character

Y1) =&, YW= ¢ (ve Fp)-
We can now consider Gauss sums of the form

G(x, ¥)=)_ x(x)5  (x(0) =0),

xeF,

where x is a multiplicative character of F,, with values in K. More precisely, the
values of x are roots of unity having order dividing p — 1 (and 0):

G(x, V) € Q(up, tp-1) = Q(Upp—1))-
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We shall consider Gauss sums of the form

D o) Y@ =)o@ (@(0) =0),

O#xeF, xeF,

where w(x) € -1 denotes the unique root of unity in K having reduction x in
the residue field R/ P of K ((11.4.3) and (II1.4.4)). Here, the integer a only counts
mod p — 1: It is better to take o € ;1_—1Z/Z and set

Gy = — Z w(x) PDaEX (4(0) = 0).

x€F,

A reason for the choice of sign is that we now have Go = 1:

dDo=0= ) g=-1.

O<v<p O<v<p

It is remarkable that these Gauss sums are linked to the Morita p-adic gamma
function: Wheno = a/(p—1) (0 <a < p— 1) we have explicitly

a
Go = °T i
i ”(p—l)

This is a particular case of the Gross-Koblitz formula. Since the values of I',, are
units of Z,, the preceding formula gives the exact order of G,, and

Gl = I7|* = r& = | p|7T.

Conversely, this case of the Gross-Koblitz formula shows that

a
o
Pp__

and this is an algebraic value, since 77! = —p.

There is a more general formula. Let @ € Z,) = Q N Z,, be a rational number
with denominator N prime to p and choose a sufficiently high power g = p/ of
p so that the extension F, of degree f of its prime field contains a root of unity of
order N. We shall work in the tamely ramified extension

K= Qp(”a ILq—l) C Cp

having ramification index e = p — 1, residue degree f, and hence degree n = ef
over Q,,. Considering « € %Z /Z C ;ll—,Z/Z, we choose a representation

1) € Q(7, Lpp-1))s

Os(a)=—0—<l
qg—1

of a and write the p-adic expansion of the numerator:

a=ao+a,p+---+af_,pf" <g-—1 <q=pf.
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Let Sp(a) = Yy« s aj denote the sum of digits of a as in (V.3.1) and introduce
the integers a®) having the p-adic expansions obtained by cyclic permutations
from the expansion of a = a©:

a® = a;_ +app + - + ap,p’,

a® = aro+ag p+--- +af—3pf—',

a’™ = ay+ap+azp® +--- +app’ !

On the other hand, if the nontrivial additive character ¥ of the prime field F, is
chosen as before, the composite of ¢ with the trace
Tr:F, > F,, x> x4 xP 4 xP

is a nontrivial additive character of F, (the trace is nontrivial, since the extension
F,/F, is separable: All extensions of finite fields are separable). Then we have
the following general formula.

Theorem (Gross-Koblitz). LetO <o = 4 3 < 1. The value of the Gauss sum

G, is explicitly given by
a (@) ah
Gum 3 otwrrsaren =m0 T, (22).
#xeF, 0<y<f

3. The Hazewinkel Theorem and Honda Congruences

3.1. Additive Version of the Dieudonné-Dwork Quotient

The power series

f(x)—-z—x”’—x+—x”+ LxP 4.
Jj=0

does not have coefficients in Z, (powers of p appear in the denominators). How-
ever, its exponential — the Artin-Hasse power series — has p-integral coefficients.
This phenomenon will now be studied more closely. Observe that

fxPy=xP+ 1 x” + LxP’ 4.
so that

f(x)—

fx?)
p

has integral coefficients! Let us introduce the operator

fx?)
P

Hp f(x) = f(x) —
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on formal power series. We have an identity of formal power series:

exp pHy f(x) = exp(pf(x) — f(xP))
_ (exp f(x))?
" expf(xP)

The expression H,, f is an additive version of the Dieudonné-Dwork quotient
@(x)? /p(xP) (2.3), and we shall formulate criteria for p-integrality of some formal
power series in terms of H),.

Proposition. Let f denote the formal power series f(x) = log(1 + x). Then

Hf(x)= Y (" —x™)/n € Zx]),
n odd

Hyf(x)= Y (=1)""'x"/n € Zy)[x]] (panodd prime).
n>1, pin

Hence for all primes p, Hp(log(1 + x)) has p-integral coefficients.
Proor. We have

log(1+x)= Y (- 1)"-

n>1

xn

L 1og1 +x7) = 1"l
 log(1 +x7) ,,Z( )

n>1

If the prime p is odd, we have (—1)" = (—1)P", and the announced result follows
in this case. When p = 2, let us write explicitly

x" x"
log(1+x) =Y —-— =,
n odd n n even n
and
Hogl+x) =Y == ¥ a+c1y ')
n odd n=2m even
As announced, all coefficients are in Z). .

3.2.  The Hazewinkel Maps

Let us consider the following setting: Either

A=ZpltlC B=Q[r]
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or
A=1Z,[t] C B=Q[t],
and o is the Q-linear map (resp. Q,-linear map)
c:B— B, a@)= Za,-ti = a(t?) = Za,-t”i
extended to

0. Bllx]] > BIlxll, Y a(x' > Y ai(e”)x,

i>0 i=0

letting o act on the coefficients only. Note that (o, f)(x") = 0.(f (x")), so that we
may unambiguously write this term o, f (x").

Definition. Any map H, : B[[x]] — Bl[x]] of the form
1 o
fe Hyf = f(x)— ;Za;f(x" ),
I;

where I C N* = {1, 2, ...} is a subset of indices, will be called a Hazewinkel
map.

[n the next three propositions, H,, denotes a Hazewinkel map.

Proposition 1. Let f =), ., fux™ € B[[x]], so that f(0) = 0. Then
H,f e Allx]l = mfp, € A (m>1).

Proor. The coefficients of H,f = ) h,,x™ € A[[x]] are given by

h,,,=f,,,—l > 0 fup € A
P
with the convention f,,/,+ = 0if i > ord,(m), namely if m/p’ is not an integer.
This series of identities starts with k,, = f,, € A when (i, p) = 1. We proceed
by induction on the order v of m, the case v = 0 having just been treated. When
p | m, we have

mfy, — — Z Uifm/pi = mh,, € mA,
P

so that
Mfpy = — Z 0" fyp = Z plof ( — fuip ) (mod mA)
P45 7 P

€A by induction

and hence mf,, € A as expected. [
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Remark. When f =Y f,x™ € B[[x]] and H,, f € A[[x]], we can write f,, =
an,/m with coefficients a,, € A, and the formal power series f is a logarithmic
series

m_ X"
fO=) fax" =) an—.

m>1 m>1

Proposition 2. Let g = Y, ., gmx™ and h = Y, .| hux™ be two formal
power series with zero constant term. Then

Hy(g o ) = Hy(@)i+ 5 3 3 @'gn)- (1™ = (@lta?)).

I m>1

Proor. By definition,
Hygom =goh—~ > oitg o1,
while
H(2)(h) = g(h) — % 3 olg)

The first terms are the same and cancel by subtraction. Using the obvious relation
0,(g oh) = 0y(g) 0 0,(h)

and the expansion g = Zmz ; &»x™ we get the announced result. u

In the special case I = {1} (a single term in the index set I),
1
Hyf = f(x)— ;U*f(xp),

and we recover the additive version (3.1) of the Dieudonné-Dwork quotient in
the case of constant coefficients (cf. generalization in (3.3) below). The following
conditions are equivalent:

@ fm —(/p)ofmsp € A.
(ii) am —oamyp, € mA.
(i) a, =0am;p (mod mA).
(iv) an(t) = amp(t?) (mod p"Aft]) (v =ord,m).

Definition. A sequence (a,)m>1 in A = Z,,)[t] is a p-Honda sequence when it
satisfies the following Honda congruences:

am(t) = apm/p(t?) (mod mZ,ylt]) whenp|m.
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In particular, a sequence (@ )m>1 in Zp) is a p-Honda sequence when
Qm =Qpyp (mod mZ,) when p | m.

The paragraph preceding the definition proves the following result.

Proposition 3. For a formal power series f(x) = Zmzl anx™ [/m € B[[x]]
we have the equivalences

1
@) Hyf = f(x)— ;o*f(xp) has its coefficients in A C B,

(i) (@m)m>1 is a p-Honda sequence in A.

Propesition 4. Let A be a ring, I an ideal of A containing a prime p, and x
and y two elements of A satisfying x = y (mod I") for some integer r > 1.
Then

pllm = x"=y" (modI"*") (veN).

Proor. (1) Let us write x = y + z with z € I". Hence
=+ =y +zp(--)+2°
with
p--yezd cl - I1=1"
and
el cr”crt.

This establishes the case m = p (v = 1) of the lemma.
(2) The case m = pV is treated by induction on v, the basic step v > v + 1
being analogous to the first case already treated. Hence

x? =y”" (mod IY* (> 0).

(3) Finally, if we raise a congruence to the power £ = m/p", it is preserved: If
x' =y (modI),sayx’ =y + 7' with z’ € I, then

@) =0 +2C) e () + . =

This proposition shows that the sequence ((1 + x)™),,>1 is a p-Honda sequence
for any prime p. Let us state it explicitly.

Corollary. Let m > 1 be an integer divisible by p. If v > 1 denotes its p-adic
order; then

A+ x)" =1+ x?y"'?  (mod p“Z[x)).
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Proor. Observe that (14+x)?=1+4x? (mod p) and apply the proposition. n

3.3. The Hazewinkel Theorem

The particular form of the Hazewinkel theorem that we are going to state and prove
has been specifically studied by various authors:

Barsky, Cartier, van Hamme, Honda, . . ., Zuber

(neither exhaustive nor chronological. . . but in alphabetical order!). It has many
applications. Let us first give the Dieudonné-Dwork theorem (2.3) in a more general
form.

Theorem (Dieudonné-Dwork). Let f(x) € 14+xQ,[t})[[x]] be a formal power
series. Then the following conditions are equivalent:

(i) The coefficients of f are inZ,(t].
(i) f(x)P /o, f(xP) € 1+ pxZp[t][[x]].

Prook. As in (2.3): Only observe at the end of the implication (i) = (i) that the
coefficient of x" in the left-hand side is now

anjp(t)? + pa,(t) + terms in pZ,[r]
and in the right-hand side
U*an/p(t) = an/p(tp) = an/p(t)p (mod Pzp[t])

The conclusion follows. ]

If we know a priori that the coefficients of f are rational, namely

f(x) € 1+ xQIrilIx1],
we get equivalent statements:

(1) The coefficients of f are in Zp|t],
) fx)P/o.f(xP) € 1 + pxZp[t]l[x]]

simply since Z, N Q = Z,,. Let us come back to the notation of (3.2):
either A =Z,)[t]1C B=Q[t] orA=1Z,[t] C B=Q,[t]
and

c:B—- B, at)= Za,-ti > a(t?) = Za,-t”i
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is extended to

o : BlIxI] > BlIx]l, ) ai()x' = Y a(t?)x’

i>0 i20

by letting o act on the coefficients only.

Theorem. For a formal power series f(x) = }_, ., @Gmx™/m € B[[x]] we
have equivalent statements:

1
() Hyf = flx) - ;o*f(x”) has its coefficients in A C B.
(ii) ¢ = e has coefficients in A.
PrOOE. (i) => (if) Assume that f(x) = ), fux™ = 3,5, amx™/m satisfies

(i). By Proposition 3 in (3.2), (a,,) 1s a p-Honda sequence. Then H »(f) has coeffi-
cients in A and by the proposition in (2.3), exp pH,( f) has p-integral coefficients

exp pH,(f) = (exp f)?/expo. f(x?) = (exp f)? /o.exp f(xF)
= @(x)’ [o.0(xP) € 1 + pxZp[11[[x]).
By the general form of the Dieudonné-Dwork criterion,
¢(x) =exp(f) € 1 + xA[[x]]

has p-integral coefficients.
The proof of the converse (ii) => (i) 1s based on Proposition 4 in (3.2). Assume
that ¢ = exp(f) has p-integral coefficients. Write

f(x) = logexp(f(x)) = log(1 + (¢/® — 1)) = g(h(x)),
namely f = g o h with g(x) = log(1 + x) and h(x) = e/*) — 1. Proposition 2 in
(3.2) can be applied to this composition:
1 ] i . i
Hp(f) = Hp(g oh)= Hp(g)(h) + ; ZZ o' gnm (h(x)pm - (aih(xp ))m) .
I m>1

By (3.1) H,(g) has p-integral coefficients and by assumption, & has p-integral
coefficients. There only remains to consider the second term, where g has constant
coefficients (independent of ¢)

O'igm =gm = El/m.

Now, for all formal power series & € A[[x]] having p-integral coefficients, we
have

h(x)” =olh(x”) (mod p).
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As Proposition 4 of (3.2) shows, this congruence is improved when raised to g
power m:
h(x)?™ = olh(x"Y" (mod p)*™' (v = ord,m).
This proves
h(x)P™ — alh(x"'Y" € pmA[[x]].

and the p-integrality of the remaining sum follows. ]

3.4.  Applications to Classical Sequences

Proposition (Beukers). Let M be a d x d matrix with integer coefficients.
Define a, = Tr(M"). Then for any prime p, (a,),> is a p-Honda sequence

Qn = Gpyp (mod mZg,y) i plm.

Proor. We have to prove that e/ has coefficients m A = Zpy where f(x) =
Y =1 amx™ /m. This logarithmic generating function s easily evaluated:

—,"1 Mm m
fay=Y" (TrM'"):TI = Tr (Z mx )

m>1 m=>1

= Tr (—log{l — Mx)).
Hence
exp f(x) = expTrlog(l — Mx)™" = detexplog ((1 — Mx)™")
=det(l — Mx)"! = 1/det(l — Mx)

has its coefficients in A. [ ]

Corollary 1. The Lucas sequence
£0=2, E] =1, En+l =en +£n—] (n > ])s

is a p-Honda sequence for any prime p.

1 1
Proor. Let M = (] 0

x?2 —x — 1, hence M> — M — I = 0 (Hamilton-Cayley). We deduce

) € M(Z). The characteristic polynomial of M is

Mn+2 — Mn+] + Mn (Il > O)
Since Tr I» = 2, Tr M = 1, this proves that ¢, = Tr M" is the Lucas sequence. B
Corollary 2. The Perrin sequence
a=3. a=0, a=2. day>=a,+a,; n>1),

is a p-Hondua sequence for any prime p.
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ProoF. Let M =

S = O
— O

1
0 | € M3(Z). The characteristic polynomial of M is
0

—x3+x + 1, hence M> — M — I = 0 (Hamilton-Cayley). We deduce
Mn+3 — Mn+l + M" n> O)

Since Trl3 = 3, TrM = 0, and Tr M? = 2, this proves that a, = Tr M" is the
Perrin sequence. ]

3.5. Applications to Legendre Polynomials

Let (P,)n>0 denote the sequence of Legendre polynomials. This sequence can be
defined by its generating function

1
== 2; P,(t)x",
n>!

where R? = 1 — 2xt + x?. Recall that these polynomials P,(t) € Q[¢] satisfy
degP,=n, P,(1)=1 (n=0).

They can be computed according to the Rodrigues formula

1 (d)
Put) = 5 (E) -1

This formula shows that the coefficients of P, are rational numbers with denomi-
nators powers of 2. More precisely, the coefficients of P, belong to (1/2")Z. They
are p-integral for all odd primes p.

The following generating functions are well known (they can be checked by
differentiation with respect to x):

x™ x—t+R
Y Pra()— =log ———,
s m 1—
x™ 2
P,(1)— = log —————.
”; 0 =loe T x

Hence

x™ x—t+R
exp (Z Pm_l(t)—r;-) __]—-—_t—’

m>1

xm 2
exp (Z Pm“’;) AR

m>1
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and for each odd prime p, we get two p-Honda sequences. Explicitly,
plm= Py,(t)= P(m/p)—l(tp) (mod mZ(p)[t])a
Pl m = Pu(t) = Py;p(t*) (mod mZ,[t)).

For example, to check that

f—:’—f— € Zp X1,

write

x—t+ R 1_’_Jr—l_*_l-—x 142 1—t \?
—— — X ———
1—¢ 1—¢t  1-1¢ (1 —x)?

1-

=1+ T 14

o 12\ A -1y _, ,
‘l+1—tz(n)(1—x)2"2x’

n>1

so that the denominator 1 — ¢ disappears: All coefficients are in Z[%, t] C Zplt).

The integrality verification for the other generating function is similar and therefore
left as an exercise. ]

The change of variable r = 1 4 27 clears the powers of 2 in the denominators,
and congruences mod 2 (or mod 4) can also be established.

3.6. Applications to Appell Systems of Polynomials
Let (A,(?))n>0 be an Appell family (IV.6.1) in Z,[t]: A}, = nA,_; (n > 1). The
following result generalizes the corollary of Proposition 4 in (3.2).
Theorem (Zuber). For an Appell family (A,(t))n>0 in Zp[t), the following
conditions are equivalent:

(i) There exists a € L, such that
As(@)= Ay p@) (modnZ,) (n>1, p|n).
(i) There exists a € Z,, such that (An(a))n>1 is a Honda sequence
An(a) = App(@?) (modnZ,) (n>1, p|n).
(iii) (An)n>1 is a Honda sequence of polynomials
At)= An/p(tp) (mod an[’]) (n>1, pin).

Proor. (i) < (ii) by the p-adic mean value theorem (V.3.2),
In]
A;l/p pA(n/p)—l = | A,,/p" = l

la? —al <|pl<r, (a€Z)p).
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Hence

(@) = Ay (@] < 1p] - Hslnl

and the equivalence follows.
(iit) = (i) is obvious.
(i) = (iii) This uses (3.3): It is enough to show that

exp Y Au)= = qut)x* (@ =1 (%)
n>1 k>0

has p-integral coefficients, namely gi(¢) € Z,[t].
(1) Let us compute the partial derivative d/9¢ of the defining equation (x):

ZA — expz Z gix*
n>1 k>0

or equivalently (using A, = nA,_),

Y Anax"- Y gmx™ =) gixk,

n>1 m>0 k>0
This gives

q,ﬁ = Z An1Gm = AoGr—1 + A1gk—2+ - - - + Agr. 1))

n+m=k,n>1

(2) Let us compute the partial derivative 8/3dx of the defining equation (x):

ZA,,X”‘l -eXpZ cee= Z kgx*!

n=1 k=1
or equivalently,

ZA,,X”_ . Z gmx™ = qukx -1

n=1 k=1
This gives

kge= ), Agn k=D,
n+m=k,n=1
and
k=Dgra= Y. Agn=Agea+ - +Aa k=D (D

n+m=k~1,n>1
(3) Comparing (1) with (1 1),

gy = Aogrk—1 + k= Dge_y =k + Ap— Dgxr (k= 1).
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Iteration leads to

g =+ Ag— )k + Ag— 2)gk—2, ...,
g =k +Ao— Dk +Ao—2)---(k+Ag— Ogie (1<E=<k).
Now, the Taylor formula is
k—1+ A .
a(t) = Z ( . 0)qk—j(a)(t —ay.
0<j<k J

Since Ag € Z,, all binomial coefficients are in Z,. Moreover, by assumption, all
gn(a) € Z,, since (A,(a))n>) is a p-Honda sequence. We conclude that the poly-
nomials g (¢) have p-integral coefficients. ]

EXERCISES FOR CHAPTER 7
1. For f, g € Q[x], prove that
f=g (modnZpy[x]) <> f=g (mod p*Zp)lx))

(cf. Exercise 29 in Chapter I).

2. Let p be an odd prime. Show that the closure of the set of pairs (n, n!*)inZ, x Zp is
the union of two graphs.
(Hint. Consider the graphs of £I",,.)

3. Find the limit lim,,_, oo I ,(p"). More precisely, can you evaluate
lim (Fp(p™) — 1)/p"?
n—->oc
4. Prove the congruence
A+4% = 142" (mod 23 (1 € Z)

by induction on the integer k > 0.

5. More on the gamma function I';.
(a) Check the formula

_(=1y@m/2)
rg(n) = m)—- n 2 l)
(b) Prove Ma(n + Dla(—n) = (=HHHEFY2A (7 >y,
(c) Letm > 1 be an odd integer. Prove [ o4 _,, 2(k/m) = £1.

6. For any prime p and 0 < a < p, show that

(a + pn)!

n —-1)P"
=D prn!
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has a continuous extension to Z, given by
x> (1)@ + px+ D eZy CQp.

Prove the following generalization. Let ¢ = pf (f = 1 be a fixed power of p, and
0 < a < g. Show that
(a+gmy

m> (—=1)@—bm —
(=p)r " m!

admits a continuous extension Z, — Q,, given by

x = (=D =py s TT Fpla/p'1+ p/x+ 1),
O<i<f

(Hint. Write a telescopic product withng =a +gm, ny =m

(argm! _nol mto oot
m! ——n,. na! ng!
_@+pm)! (@+pn)  (ag-1+ pm)!
- ny! ny! m!

=xp" T plao+pm+1) - pP*Cpmp+1)--- p"T (o +1).
Observe that when the prime p is odd. g — 1 is even and (—1)4¢~D™ = 11: Hence this
sign is relevant only if p = 2. in which case it is () = (—1)".)

. With7?~! = —p_prove
€ e 1+ axZp[r]l[x]].

b8l n n — Sp(n) . Sp(n) - 1

)

(Hint. Forn > 1. 0rdp,

Il

nt  p-—1 p—1 p—-1"p-1
. Compute the first coefficients of the Artin-Hasse exponential E, for p = 2. 3 (and 5).
In particular. show that

Ex(X)=1+X+X>+3X3+ 2X*+ X3¢,
Ex(X)=1+ X+ X2+ 5X3+ £x*+ X3¢

Compute the first coefficients of the Dwork exponential for p = 2. 3 (and 5).

. Here is another proof of the fact that the radius of convergence r of the Artin-Hasse

exponential E, is smaller than or equal to 1.

(@) Show thatif this radius r were greater than 1, then the unit sphere would be a critical
sphere of E . and E}, would have a zero a # 1 on this sphere.

(b) Use the identity

E (x)Epx)-- E,,({p_]x) = Ep(xP)

(where ¢ is a primitive pth root of unity:  # 1 = ¢”)to show that £, would have
infinitely many zeros on the unit sphere. thus contradicting (V12.1).
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10.

11

12.

13.

14.

15.
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(c) When p # 2, give another proof of rg, < 1 based on the identity

E(x)/Epx) =Y x?'71.

i=0

(Hint. Use Propositions 2 and 3in (V1.1.2), as well as 1/E p(x) = E p(—x) to show
that ry/E, = rEp.)

When 7P~1 = —p and 'y = x, then we have ") = ¢+**/P_Find the corre-
sponding general expression for "0~ (g = p/, f > 1) interms of x = 7ry.

Prove the following relations for the coefficients of Dwork’s exponential e”*—**) =
Zn >0 Anx "

nAp=mAp| (1 <n<gq), nA,=7n(An-1-qgAn—g) (n=q).

(Hint. Differentiate the above generating function.)

For0 < @ =a/(p —1) < 1let G, denote the Gauss sum — Y_ ¢~ ?E;({). Use the
Gross-Koblitz formula to prove G, G1—¢ = +p.

Let x be a nontrivial multiplicative character F; — CX*, and consider the Gauss sum

GO =Yy x(we®

x
veF,

(where ¢ # 1 is a pthroot of unity in C). Show that the complex absolute value of this
Gauss sum is

IGX)Ic = V/P-

(Hint. Prove G(x )G(x) = p exactly as in the proof of Proposition 1 in (VIL.2.5). There,
the Legendre symbol was a multiplicative character x such that x # 1 = x2. But here,
x2 may be nontrivial.)

Let x : F; — € be a nontrivial, complex-valued, multiplicative character of F. As
in the previous exercise, we consider the Gauss sums G(x): |G(x)|c = ./p. Show that
the only case when G(x) = ¢,,/p for some root of unity ¢, happens when x = (-

(Hint. Let  : F; —C C* denote an injective homomorphism, considered as a
complex-valued, multiplicative character of F, (analogous to the Teichmiiller char-
acter (I11.4.4)). Show that any nontrivial multiplicative character x : Fj; — C* can be
written uniquely x = w0 (1 <a < p - 2) If G(w™%)%/p is a root of unity, use the
Gross-Koblitz formula to show thata = L )

Check the following formulas by differentiation with respect to x

Y A0S =tog* R

m>1

> P,,,(t)—- = log

m>1

—tx+ R’
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16. Let (By)n>0 denote the sequence of the Bernoulli polynomials. If p is an odd prime,
prove the following congruences:

Bpn(t) = B,(t?) (mod nZ,) (n=>1).
For p = 2, prove that a single power of 2 is lost, i.e.,
2Bou(t) = 2B,(t?) (mod nZ;) (n > 1).

(Hint. Use (Chapter V, Exercise 10) and (VII.3.6) for the Appell sequence B, (1) =
2pBn(t) € Zpl1l)
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Tables

Number of
quadratic
Field Units Squares Roots of unity extensions
Q. Z; =1427Z, 14 8Z, Ha = {£1} 7
index 4
m Z5
Q, Z; O>1+pZ, index 2 Mp-i 3
p odd prime index p-1 inZ7
Field D B<; D B. Residue field Nonzero | .| Properties
Q,>Z2,>pZ, F, p? locally compact
1
L =dimg, K
_ _ o f Z_ ¢ ef = lme < OO
KSRSP=nR Fo@=r") "= {locally compact
a a " 4« _pa_F . Q algebraically closed
QoA OM ko =F,=Fp p { not locally compact
0 _F oo Q algebraically closed
Cr oA, O M, Fp=F, p {complete

ko algebraically closed
$2p 2 Ag D Mo uncountable R0 { spherically complete




426 Tables

Umbral calculus

Delta Basic sequence Related
operator of polynomials sequences
(IV.5) (IV5.2) (Ive.1)
D =d/dx (xX"n>0 Appell sequences
D Pn = NPn-1
r oy umbral
operator
8 (Pn)n>0 Sheffer sequences
88, = nsp_|
[ x
7_,8 ( — pn(x +n_v))
x+ny 720
(IV.5.5) translation principle

Binomial identity: p,(x + y)=""(p(x) + pQO:)'.”
Appell sequences:  p,(x + y)="“(p(x)+ y)",”
Sheffer sequences: s,(x +y) ="“(s(x) + p(y )"

Analytic elements

Formal Sequences
power series CollixN (n)n>0 n C,
n>0
power serles limsup |a,|"/" <1
converging in (rg=1)
Ix] <1
power series (dn)n=0
bounded in bounded A
Ix] <1 sequence
analytic HM,) Christol-Robba
elements in condition
x] <1 4.6)
analytic H(Ap) = Cp{x} an —> 0 4
elements in (n — 00)
Ixi <1
polynomials C,Ix] a, # Otor Y

finitely many n’s
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Radius of convergence of some exponential series
(listed in increasing order)

E, (Artin-Hasse) E,{ (Dwork)
P J
fooe &Y e et g =ph)

2p-1
) p-1
rg  rp,=|p|7T rp’ 1 p







Basic Principles of Ultrametric
Analysis in an Abelian Group

(1) The strongest wins
Ix] > |yl = |x + y| = |x].
(2) Equilibrium: All triangles are isosceles (or equilateral )
a+b+c=0,|c| < bl => |a] = |bl.

(3) Competitivity

ata+---+a,=0 =

there isi # j suchthat |a;| = |aj]| = max |ai|.
(4) A dream realized

(@n)n>0 is a Cauchy sequence <= d(a,, ay4+1) — O.

(5) Another dream come true (in a complete group)

ano a, converges <> a, — 0.
When Y, .o an converges, 3, . |a,| may diverge, but

| anl < suplay| = max a,|

n>0

and the infinite version of (3) is valid.
(6) Stationarity of the absolute value

a, — a # 0 = thereis N with |a,| = |a| forn > N.






Conventions, Notation, Terminology

We use the abbreviations ,

iff “if and only if,” := “equal by definition,” = nontrivial equality.

B is the “end of proof™ (or “absence of proof™) sign.

In a statement: (£). (i), . . . always denote equivalent properties.

In the table of contents, an asterisk * before a section indicates that it will not be used later
and may be omitted in a first reading.

Set Theory

P(E) power set of E: Set of subsets of E; @: Empty set.
ACBmeans“xe€e A== x € B”hence: A C E <= A e P(E).
(certain authors denote this inclusion by C).
When A € B C E. B— A = B\ A denotes the complement of A in B,
E — A = A€ is the complement of a subset A C E.
A subset of E having only one element is a singleton set: x € E = {x} € P(E).
[ I : Disjoint union symbol. partition of a set.
E': Sct of families (or functions) I — E.
E'D: Set of families I — E having components equal to the base point
of E (the neutral element in a group G.theOinaring A...)
except for finitely many indices.
Let f: E — F,x+ f(x)beamap. Then
f isinjective when x # y = f(x) # f(3), namely f is one-to-one,
or equivalently when f(x) = f(y) = x =),
[ is surjective when f(E) = F (namely f is onto).
[ is byjective when it is one-to-one and onto.
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The characteristic function of a subset A C E is the function

1 if xeA,

w(x)=¢A(x)={0 i oxg A

Fundamental Sets of Numbers

N={0,1,2,...,n,... CZCcQCRcCC, N*={1,2,...,n,...} =N.o.
When p € (2,3,5,7,11,.. .} isa prime, F, = Z/pZ.
p | n means p divides n, ptn means p does not divide n,
pY || n means that pY is the highest power of p dividing n,
Roo={xeR:x>0}, Rso={xeR:x>0}, [a,b)intervala <x<b
Zy={a/b:ae€Z, b>1,bprimeto p} C Q.
Z[1/pY={ap’:a€Z, veZ} CQ.
Whena > 0and S CR,a’ = {a® : s € S} C Rog, e.8.. p% C pQ C Ruo.
[x] € Z integral partof x e R: [x] <x < [x] + L
(x) fractional part of x € R: x = [x] + (x).
ged: Greatest common divisor; lcm: Least common multiple.
8;j: Kronecker symbol (= 1if i = j, = 0 otherwise).

Groups, Rings and Modules

A>: Multiplicative group of units (i.e.. invertible elements) in a ring A.
A[X}: Polynomial ring in one indeterminate X and coefficients in the ring A,
a monic polynomial f is a polynomial having leading coefficient 1:

X" +an 1 X" V- 4ao ifdeg f =n.
A[[X]): Formal power series ring.
A{X): Restricted power series over a valued ring A
(Chapter V: Power series with coefficients — 0) A[X] C A{X} C A[[X]].
An integral domain is a commutative ring A # {0} having no zero divisor.
K = Frac A: Fraction field of an integral domain A. In particular,
K(X) = Frac A[X]: Rational fractions,
K((X)) = Frac A[[X]] (O K(X)): Formal Laurent series ring.
A[1/q}: Partial fraction ring corresponding to denominators in {1. g, ¢2, .. .},
where ¢ is not a zero divisor in the ring A.
If G is an abelian group. then {g € G : g" = e for some integer n > 1}
is the torsion subgroup of G: In particular,
1(A) denotes the group of roots of unity in a commutative ring A,
o= pu(C™) = pp= x pp), where
pp=: pth-power roots of unity (p-Sylow subgroup of 1),
I4(py: Roots of unity having order prime to p,
un(A) = {x € A : x" = 1}: nthroots of unity in the ring A.

A pair of homomorphisms A 4 B % Cis exact when f(A) =kerg.
A short exact sequence (SES) is an exact pair with
f injective and g surjective; hence C is a quotient of B by f(A) = A,

written 0 — A —j> B % C — 0 for additive groups

(replace 0 by 1 for multiplicative groups).



Conventions, Notation, Terminology 433

Fields, Extensions

Characteristic of a field K: Either O or the prime p suchthat p- 1y =0 € K.
in which case the prime field F, is contained in K.

For each prime p, the group F;,‘ is cyclic; when the prime p is odd, the squares in F;‘ make
up a subgroup of index two. kernel of the Legendre symbol -‘;; = *l.

In a field (or a ring) of characteristic p we have (x + y)? = x? + y».

K9: Algebraic closure of a field K; when K = K“ is algebraically closed of characteristic
0, 1, (K) is cyclic and isomorphic to Z/nZ.

Pl(K) = K U {oo} denotes the projective line over the field K .

Topology, Metric Spaces

The closure of a subset A C X (X being a topological space) is denoted by A.

A Hausdorff space is a topological space X in which for every pair of distinct points, it is
possible to find disjoint neighborhoods of these points: Equivalently, the diagonal Ay is
closed in the product X x X.

The diameter of a subset A C X with respect to a metric d is

diam(A) = 8(X) = sup, ye 4 d(x, y) < 00.

We say that A is bounded when diam(A) < oo.
‘The distance of a point x € X to asubset A C X is d(x, A) = inf,ca d(x, @),

d(x,A)=0+= x € A.
The balls in a metric space (X. d) are denoted by
B<;(a) = B</(u:X) = {x € X : d(x, a) < r}: closed (dressed) ball.
B_<,(a) = B (u; X) = {x € X :d(x, a) < r}: open (stripped) ball.

For a ball with center a equal to the base point (the neutral element in a group. the O element
in a ring), the notation will be just B<,, B,.
The sphere of radius r > 0 and center a in the metric space (X, d) is

Sr@)={xe X:d(x,a)=r} = B<,(a) — B, (a).

A metric space is separable if it has a countable dense subset.

C(X: K): Space of continuous functions X — K, or simply C(X) when K is understood;
Ch(X; K): Subspace consisting of the bounded continuous functions (when K is a valued
field). The sup norm of a bounded function is

hA=1Murlx = Suglf(—'f)l (f € Cp(X; K)).
X€
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A

absolute value 11.1.3
—overQ1I1.2.1

algebraic variety 1.6.1

Amice-Fresnel theorem V1.4.4

analytic element V1.4.2

Appell sequence 1V.6.1

Artin-Hasse exponential VIL.2.1

B

Baire space 111.1.4
balanced subset I1.A.6
balls (stripped and dressed) 11.1.1
Banach space (uitrametric —) IV.4.1
basic system of polynomials 1V.5.2
Bell (numbers and polynomals) 1V.6.3
Bell-Carlitz polynomials (IV, exercise 19)
Bernoulli (numbers and polynomials) V.5.4
Beukers proposition VII.3.4
binomial identities 1V.5.2

— polynomial IV.1.1

C

Cantor set 1.2.2

carry (operations in basis p) 1.1.2
Chebyshev polynomials (V, exercise 7)
Christol-Robba theorem VI1.4.6
Clausen-von Staudt theorem V.5.5
clopen set 11.1.1

commutant (bicommutant) 1V.5.3

composition operator 1V.5.3
continuity of roots of equations H1.1.5
continuous retraction .A.6

convexity (and duality) VI.1.4
covering of circle LA.1

critical radius VI.1.4

cyclotomic polynomial (— units) 11.4.2

D

delta operator IV.5.1

diagonal (in a Cartesian product) 1.3.3
Dieudonné-Dwork criterion VI11.2.2, VI1.3.3
differential quotient (higher order —) V.2.4
divisible group 111.4.1

dominant (monomial) VI.1.4

dressed ball 11.1.1

duality (convexity theory) VI.1.6

Dwork series VI1.2.3

E

Eisenstein (irreducibility criterion)
1142

-— polynomial 11.4.2
entire function V1.2.3
enveloping ball Bp V14.1
equivalent absolute values I1.1.7

— norms 11.3.1, 111.3.2
Euclidean model 1.2.5
extension of absolute values

— existence 11.3.4

— uniqueness 11.3.3
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F

Fibonacci numbers (1V, exercise 20)

filters IILA.1

finiteness (extensions of Q, of given degree)
16

formal power series 1.4.8, IV.5, VL1

fractal subset 1.2.3

fractional part (x) 1.5.4

fundamental inequalities 111.4.3

G

gamma function I', (Morita) VII.1.1
Gaussian 2-adic numbers 11.4.5
Gauss multiplication formula for I",
VIL1.3

—norm V.2.1
generalized absolute value 11.2.2

— ball VL.3.1

—overQI1.24

— Taylor expansion IV.5.2
Gould polynomials (IV, exercise 21)
granulation, type of — V.1.2
growth modulus VI.1.4, VI.3.3

H

Haar measure I1.A.1
Hahn-Banach theorem (p-adic) 1V.4.7
Hadamard formula (radius of convergence)
VIL1.2
— three-circle theorem V1.2.6
Hazewinkel maps VIL.3.2
— theorem VIL3.3
Hensel’s lemma 1.6.4, 11.1.5
hexagonal field (3-adic numbers) 11.4.6
Honda sequence (and congruences)
VIL3.2
homothety (= dilatation) 1.5.6, V1.3.1

I

IFS (iterated function system) 1.2.5
indecomposable compact space I.A.6
indefinite sum IV.1.5

Ingleton theorem 1V.4.7

index with respect to a hole V1.3.5
infinite product V1.2.3

infraconnected set V1.4.1

injective Z-module 111.4.1

p-integer 1.5.4

integral part (p-adic) [x] 1.5.4

inverse system (= projective system) 1.4.2
involution o 1.1.2

irreducibility criterion (Eisenstein) 11.4.2
isolated singularity V1.2.6

Iwasawa logarithm Log V.4.5

K

Kazandzidis congruences VIIL.1.6
Krasner’s lemma II1.1.5, 111.3.2

L

Legendre polynomials VII.3.5
— relation for ', VIL.1.2
— quadratic residue symbol 1.6.6
length of an expansion in basis p IV.3.2
—ofaword 1.2.4
linear fractional transformation V1.3.1
Liouville theorem VI1.1.4
Lipschitz function V.1.5
locally analytic function V1.4.7
locally constant function IV.3.1
local ring 11.1.4
Lucas sequence VIL.3.4

M

Mabhler series IV.2.3

— theorem IV.2.4
maximum principle VI1.2.5, V1.2.6
mean value theorem V.3.2, V.3.4
metric, p-adic — 1.2.1
Mittag-Leffler theorem V1.3.4, V1.4.5
Mbbius function p(n) VIL2.1
module of an automorphism I1.A_1
Monna-Fleischer theorem IV.4.5
Motzkin factorization V1.3.5, V1.4.8
multiplicative norm VI1.1.4, V1.3.6

N

Newton algorithm 1.6.4
-— approximation method 1.6.3
— polygon VI.1.6
normal basis (ultrametric Banach space)
1v.4.2

o

order v, = ord, 1.1.4, 1.5.1
order of composition operator 1V.5.3
order of formal power series 1V.5.3, VI.1.1

P

p-adic integer I.1.1. — number 1.5.1
— metric 1.2.1
Perrin sequence VII.3.4
Picard theorem (essential singularity) VI.2.6
Pochhammer symbol (x),, IV.1.1
principal ideal domain 1.1.6
— pant at a pole V1.3.2
projective limit (inverse system) 1.4.2



Q
quadratic residue symbol (Legendre) 1.6.6

R

radius of convergence VI.1.2
— (exp and log) V.4.1
ramification index I1.4.1
reduction mod p 1.1.5
— of ultrametric Banach space IV4.3
regular radius VI.1.4
representation theorem 1V.4.4
residue degree 11.4.1
— field .14
restricted factorial VII.1.1
— formal power series V.2.1
Rodrigues formula VIL3.5
Rolle’s theorem V1.2.4
roots of unity in C 1.5.4
—inC, 11142
Runge theorem V1.4.2

S

saturated set 1.3.3
Schnirelman’s theorem V1.2.3
self-similarity dimension 1.2.3
Sheffer polynomials, — sequences IV.6.1
Sierpifisky gasket 1.2.5
solenoid S, L.A.1
spherically complete metric space 111.2.4
stereographic projection LA.6
Stirling numbers (1st and 2nd kind)
V1.4.7
Strassman theorem VI1.2.1
strict differentiability V.1.1
stripped ball I11.1.1
support (of a family) 1V.4.1
— differentiability V.1.1

T

tame ramification I1.4.1
Tate homomorphism 7, 1.5.4

Index

Teichmiiller character 111.4.4
topological field 1.3.7

— group 1.3.1

—ring 1.3.6
totally disconnected 1.2.1

— ramified (extension) 11.4.1
transition map (inverse system) 1.4.2
translation principle IV.5.5
type of a granulation V.1.2

U

ultrafilter [ILA.2

uitrametric absolute value I1.1.3
— Banach space IV4
— distance, — space 11.1.1
—fieldIL.1.3
—group 11.1.2

ultraproduct I11.2.2

uniformly equivalent metrics 1.2.1
unit (p-) 1.5.4
universal field 2, 111.2.2
universal property of inverse limits 1.4.2
unramified extension 11.4.1
maximal — 11.4.4, I11.1.2

\%

valuation of n! V.3.1
— polygon VL.1.6
— subring 11.1.4
valued field 1.3.7
van der Put sequence 1V.3.2
— theorem 1V.3.3
van Hamme theorem 1V.5.4
Volkenborn integral V.5.1

w

wild ramification 11.4.1
Wilson congruence VIL1.1

y/

Zuber theorem VII.3.6
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