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Preface to the 2nd Edition

[ have been very gratified by the response to the first edition, which has
resulted in it being sold out. This put some pressure on me to come out with
a second edition and now, finally, here it is.

The original text has stayed much the same, the major change being
in the treatment of the hook formula which is now based on the beautiful
Novelli-Pak-Stoyanovskii bijection [NPS 97|. I have also added a chapter on
applications of the material from the first edition. This includes Stanley’s
theory of differential poscts [Stn 88, Stn 90| and Fomin’s related concept of
growths [Fom 86, Forn 94, Fom 95|, which extends some of the combinatorics
of S,-representations. Next come a couple of sections showing how groups
acting on posets give rise to interesting representations that can be used to
prove unimodality results [Stn 82|. Finally, we discuss Stanley’s symmetric
function analogue of the chromatic polynomial of a graph {Stn 95, Stn tal.

I would like to thank all the people, too numerous to mention, who pointed
out typos in the first edition. My computer has been severely reprimanded
for making them. Thanks also go to Christian Krattenthaler, Tom Roby,
and Richard Stanley, all of whom read portions of the new material and gave
me their comments. Finally, I would like to give my heartfelt thanks to my
editor at Springer, Ina Lindemann, who has been very supportive and helpful
through various diflicult times.

Ann Arbor, Michigan, 2000






Preface to the 1st Edition

In recent years there has been a resurgence of interest in representations
of symmetric groups (as well as other Coxeter groups). This topic can be
approached from three directions: by applying results from the general theory
of group representations, by employing combinatorial techniques, or by using
symmetric functions. The fact that this area is the confluence of several
strains of mathematics makes it an exciting one in which to study and work.
By the same token, it is more diflicult to master.

The purpose of this monograph is to bring together, for the first time
under one cover, many of the important results in this field. To make the
work accessible to the widest possible audience, a minimal amount of prior
knowledge is assumed. The only prerequisites are a familiarity with elemen-
tary group theory and linear algebra. All other results about representations,
combinatorics, and symmetric functions are developed as they are needed.
Hence this book could be read by a graduate student or even a very bright
undergraduate. For researchers I have also included topics from recent journal
articles and even material that has not yet been published.

Chapter 1 is an introduction to group representations, with special empha-
sis on the methods of use when working with the symmetric groups. Because
of space limitations, many important topics that are not germane to the rest
of the development are not covered. These subjects can be found in any of
the standard texts on representation theory.

In Chapter 2, the results from the previous chapter are applied to the
symmetric group itself, and more highly specialized machinery is developed
to handle this case. I have chosen to take the clegant approach afforded by the
Specht modules rather than working with idempotents in the group algebra.

The third chapter focuses on combinatorics. It starts with the two famous
formulae for the dimensions of the Specht modules: the Frame-Robinson-
Thrall hook formula and the Frobenius-Young determinantal formula. The
centerpiece is the Robinson-Schensted-Knuth algorithm, which allows us to
describe some of the earlier theorems in purely combinatorial terms. A thor-

ough discussion of Schiitzenberger’s jeu de taquin and related matters 1s 1n-
cluded.

Chapter 4 recasts much of the previous work in the language of symmet-
ric functions. Schur functions are introduced, first combinatorially as the
generating functions for semistandard tablecaux and then in terms of sym-
metric group characters. The chapter concludes with the famous Littlewood-
Richardson and Murnaghan-Nakayama rules.

My debt to several other books will be evident. Much of Chapter 1 is
based on Ledermann’s exquisite text on group characters [Led 77]. Chapter

Vil



viii PREFACE TO THFE 1ST EDITION

2 borrows heavily from the monograph of James [Jam 78|, whereas Chapter
4 1s inspired by Macdonald’s already classic book {Mac 79|. Finally, the third
chapter is a synthesis of material from the research literature.

There are numerous applications of represcntations of groups, and in par-
ticular of the symmetric group, to other areas. For example, they arise in
physics [Boe 70|, probability and statistics {Dia 88|, topological graph the-
ory [Whi 84|, and the theory of partially ordered sets [Stn 82]. However, to
keep the length of this text reasonable, I have discussed only the connections
with combinatorial algorithms.

This book grew out of a course that I taught while visiting the Université
du Québec a Montréal during the fall of 1986. I would like to thank [’équipe
de combinatoire for arranging my stay. I also presented this material in a
class here at Michigan State University in the winter and spring of 1990. I
thank my students in both courses for many helpful suggestions (and those
at UQAM for tolerating my bad French). Francesco Brenti, Kathy Dempsey,
Yoav Dvir, Kathy Jankoviak, and Scott Mathison have all pointed out ways
in which the presentation could be improved. I also wish to express my
appreciation of John Kimmel, Marlene Thom, and Linda Loba at Wadsworth
and Brooks/Cole for their help during the preparation of the manuscript.
Because I typeset this document myself, all errors can be blamed on my

computer.

East Lansing, Michigan, 1991
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Chapter 1

Group Representations

We begin our study of the symmetric group by considering its representations.
First, however, we must present some general results about group represen-
tations that will be useful in our special case. Representation theory can be
couched In terms of matrices or in the language of modules. We consider
both approaches and then turn to the associated theory of characters. All
our work will use the complex numbers as the ground field in order to make
life as easy as possible.

We are presenting the material in this chapter so that this book will be
relatively self-contained, although it all can be found in other standard texts.
In particular, our exposition is modeled on the one in Ledermann |Led 77].

1.1 Fundamental Concepts

In this section we introduce some basic terminology and notation. We pay
particular attention to the symmetric group.

Let G be a group written multiplicatively with identity €. Throughout
this work, G is finite unless stated otherwise. We assume that the reader 1s
familiar with the elementary properties of groups (cosets, Lagrange’s theorem,
etc.) that can be found in any standard text such as Herstein [Her 64].

Our object of study is the symmetric group, S,,, consisting of all bijections
from {1,2,...,n} to itself using composition as the multiplication. The ele-
ments ™ € S,, are called permutations. We multiply permutations from right
to left. (In fact, we compose all functions in this manner.) Thus 7o is the
bijection obtained by first applying o, followed by .

If m is a permutation, then there are three different notations we can use
for this element. Two-line notation is the array

1 2 00Mn
- ow(1) w(2) - w(n)

T

1



2 CHAPTER 1. GROUP REPRESENTATIONS

For example, if m € S5 is given by
m(l) = 2, m(2) = 3, m(3) =1, m(4) = 4, m(5) = 5,

then its two-line form is

o 1 2 3 4 5
2 3 1 4 5°
Because the top line is fixed, we can drop it to get one-line notation.
Lastly, we can display 7 using cycle notation. Given i € {1,2,...,n}, the
clements of the sequence 7, w(2), 74(), 7°(2), . .. cannot all be distinct. Taking

the first power p such that nP(7) = ¢, we have the cycle

(3, w(3), (1), ..., 7P~ (3)).

Equivalently, the cycle (7,7, k,...,l) means that 7 sends 7 to 7, 7 to k, ...,
and [ back to 2. Now pick an element not in the cycle containing 7 and iterate
this process until all members of {1,2,...,n} have been used. Our example

from the last paragraph becomes
T =(1,2,3)(4)(5)

in cycle notation. Note that cyclically permuting the elements within a cycle
or reordering the cycles themselves does not change the permutation. Thus

(1,2,3)(4)(5) = (2,3,1)(4)(5) = (4)(2,3,1)(5) = (4)(5)(3,1,2).

A k-cycle, or cycle of length k, is a cycle containing k elements. The
preceding permutation consists of a 3-cycle and two 1-cycles. The cycle type,
or simply the type, of 7 is an expression of the form

(1™, 2™2, .., n'mn),

where my is the number of cycles of length k£ in w. The example permutation
has cycle type
(1%,2°,31,4°,5°),

A 1-cycle of 7 is called a firedpoint. The numbers 4 and 5 are fixedpoints in
our example. Fixedpoints are usually dropped from the cycle notation if no
confusion will result. An involution is a permutation such that 7% = e. It is
easy to see that 7 is an involution if and only if all of 7’s cycles have length
1 or 2.

Another way to give the cycle type is as a partition. A partition of n 1s a

sequence
A= (A, A2,y )

where the \; are weakly decreasing and 22:1 A; = n. Thus Kk 1s repeated my
times in the partition version of the cycle type of . Our example corresponds

to the partition
A= (3,1,1).



1.1. FUNDAMENTAL CONCEPTS 3

In any group G, elements g and h are conjugates if
g = khk™!

for some £k € G. The set of all clements conjugate to a given ¢ is called
the conjugacy class of g and 1s denoted by K,. Conjugacy is an equivalence
relation, so the distinct conjugacy classes partition . (This is a set partition,
as opposed to the integer partitions discussed in the previous paragraph.)
Returning to &,,, it is not hard to see that if

= (ilaiQa"'aiZ)'“(im’i"n"f‘l""’in)

in cycle notation, then for any o € S,

oo™ = (0(i1),0(2),...,0(@) - (6(im)s T(Gma1)s . -, (in))-
It follows that two permutations are in the same conjugacy class if and only
if they have the same cycle type. Thus there is a natural one-to-one corre-
spondence between partitions of n and conjugacy classes of §,,.

We can compute the size of a conjugacy class in the following manner.
Let G be any group and consider the centralizer of g € GG defined by

Z,={he€G : hgh™! =g},

1.e., the set of all elements that commute with g. Now, there is a bijection
between the cosets of Z, and the elements of K,, so that

Kyl = 77 (1.1)

where | - | denotes cardinality. Now let G = &,, and use K for K, when g
has type .

Proposition 1.1.1 [f A = (1™,2™2 ..., n"") and g € S,, has type A, then
Z,| depends only on \ and

det
z2x = |Zg| = 1"'m12M2my! - -0 m,,!

Proof. Any h € Z, can either permute the cycles of length ¢ among them-
selves or perform a cyclic rotation on each of the individual cycles (or both).
Since there are m;! ways to do the former operation and ™ ways to do the
latter, we are done. m

Thus equation (1.1) specializes in the symmetric group to

v !
n o (1.2)

ky = — — —
zy  1mMimq12Mm2mg!- . -nMmam, !’

where ky = | K|
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Of particular interest is the conjugacy class of transpositions, which are
those permutations of the form 7 = (z,5). The transpositions generate S,
as a group; in fact, the symmetric group is generated by the adjacent trans-
positions (1,2), (2,3), ..., (n—1,n). If m = 77T, where the 7; are
transpositions, then we define the sign of ™ to be

sgn(m) = (—1)F.

It can be proved that sgn is well defined, i.e., independent of the particular
decomposition of m into transpositions. Once this is established, it follows
easily that

sgn(mo) = sgn(m) sgn(o). (1.3)

As we will see, this is an example of a representation.

1.2 Matrix Representations

A matrix representation can be thought of as a way to model an abstract
group with a concrete group of matrices. After giving the precise definition,

we look at some examples.
Let C denote the complex numbers. Let Mat,; stand for the set of all

d X d matrices with entries in C. This is called a full complex matrix algebra
of degree d. Recall that an algebra is a vector space with an associative
multiplication of vectors (thus also imposing a ring structure on the space).
The complex general linear group of degree d, denoted by G L, is the group
of all X = (z; ;)axda € Maty that are invertible with respect to multiplication.

Definition 1.2.1 A matrixz representation of a group G is a group homomor-
phism
X :G— GLd.

Equivalently, to each g € G is assigned X(g) € Maty such that
1. X(e) = I the identity matrix, and
2. X(gh) = X(g)X(h) for all g,h € G.

The parameter d is called the degree, or dimension, of the representation and
1s denoted by deg X. =

Note that conditions 1 and 2 imply that X(¢g~') = X(g)™*, so these matrices

are in GLg4 as required.
Obviously the simplest representations are those of degree 1. Our first

two examples are of this type.

Example 1.2.2 All groups have the trivial representation, which is the one
sending every g € GG to the matrix (1). This is clearly a representation because
X(e) =(1) and

X(g)X(h) = (1)(1) = (1) = X(gh)
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for all g, h € GG. We often usc 1¢ or just the number 1 itself to stand for the
trivial representation of G. =

Example 1.2.3 Let us find all one-dimensional representations of the cyclic
group of order n, C,,. Let g be a generator of C,,, i.e.,

Cn=1{9,9°,9°...,9" = €}.

If X(g) = (c), c € C, then the matrix for every element of C,, is determined,
since X (g*) = (c*) by property 2 in the preceding definition. But by property
1,

(c") = X(9") = X(¢) = (1),

so ¢ must be an nth root of unity. Clearly, each such root gives a representa-
tion, so there are exactly n representations of C,, having degree 1.

In particular, let n = 4 and Cs = {e,g,9% g°}. The four fourth roots
of unity are 1,2, —1,—t. If we let the four corresponding representations be
denoted by X(1), X(2) x(3) X(4) then we can construct a table:

where the entry in row i and column j is X (¥ (g7) (matrix brackets omitted).
This array is an example of a character table, a concept we will develop 1n
Section 1.8. (For representations of dimension 1, the representation and its
character coincide.) Note that the trivial representation forms the first row
of the table.

There are other representations of C4 of larger degree. For example, we

can let
1 0
X(9)=(0 Z)

However, this representation is really just a combination of X (1) and X,
In the language of Section 1.5, X is completely reducible with irreducible
components X (1) and X(2). We will see that every representation of C,, can

be constructed in this way using the n representations of degree 1 as building
blocks. =

Example 1.2.4 We have already met a nontrivial degree 1 representation of
Spn. In fact, equation (1.3) merely says that the map X(7) = (sgn(w)) is a
representation, called the sign representation.

Also of importance is the defining representation of S,,, which is of degree
n. If € S,, then we let X(7) = (x; ;)nxn, Where

v 1 ifw(y) =1,
»J 7 1 0 otherwise.
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The matrix X () is called a permutation matriz, since it contains only zeros
and ones, with a unique one in every row and column. The reader should
verify that this is a representation.

In particular, consider §3 with its permutations written in cycle notation.
Then the matrices of the defining representation are

1 0 O 0 1 O
X(e)=10 1 0 |, X((,2))=11 0 0 |,
0 0 1 0 0 1
0 0 1 1 0 O
X((1,3))=(01 0], X(©23)=(00 1],
1 0 O 0 1 O
0 0 1 0 1 O
X((L,2,3))=(10 0|, X((,3,2)=(0 0 1 |.m
0 1 O 1 0 O

1.3 G-Modules and the Group Algebra

Because matrices correspond to linear transformations, we can think of rep-
resentations in these terms. This is the idea of a G-module.

Let V be a vector space. Unless stated otherwise, all vector spaces will
be over the complex numbers and of finite dimension. Let GL(V') stand for
the set of all invertible linear transformations of V' to itself, called the general
linear group of V. If dimV = d, then GL(V) and GL4 are isomorphic as
groups.

Definition 1.3.1 Let V be a vector space and G be a group. Then V is a
(G-module if there is a group homomorphism

p:G— GL(V).

Equivalently, V' is a G-module if there is a multiplication, gv, of elements of
V by elements of G such that

1. gv eV,

2. g(ev +dw) = c(gv) + d(gw),
3. (gh)v = g(hv), and

4. ev =1V

forall gh € G; v,w e V; and scalars c,d € C. »
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In the future, “G-module” will often be shortened to “module” when no
confusion can result about the group involved. Other words involving G- as
a prefix will be treated similarly. Alternatively, we can say that the vector
space V carries a representation of (.

Let us verify that the two parts of the definition are equivalent. In fact,
we arc just using gv as a shorthand for the application of the transformation
o(g) to the vector v. Item 1 says that the transformation takes V to itself; 2
shows that the map is linear; 3 is property 2 of the matrix definition; and 4 in
combination with 3 says that g and ¢~' are inverse maps, so all transforma-
tions are invertible. Although it is more abstract than our original definition
of representation, the G-module concept lends itself to cleaner proofs.

In fact, we can go back and forth between these two notions of represen-
tation quite easily. Given a matrix representation X of degree d, let V be
the vector space C? of all column vectors of length d. Then we can multiply
v € V by g € GG using the definition

def
gv = X(g)v,

where the operation on the right is matrix multiplication. Conversely, if V' is
a G-module, then take any basis B for V. Thus X (g) will just be the matrix
of the linear transformation g € GG in the basis 5 computed in the usual way.
We use this correspondence extensively in the rest of this book.

Group actions are important in their own right. Note that if .S is any
set with a multiplication by elements of G satistying 1, 3, and 4, then we
say G acts on S. In fact, it is always possible to take a set on which G
acts and turn it into a G-module as follows. Let S = {s1,82,...,5,} and let
CS = C{s1,s92,...,s8,} denote the vector space generated by S over C; i.c.,
CS consists of all the formal linear combinations

C1S1 + C282 + -+ + C,, Sy,

where ¢; € C for all i. (We put the elements of S in boldface print when they
are being considered as vectors.) Vector addition and scalar multiplication in

CS are defined by

(c151 + CoSo + + CnSn) —+ (d151 + dQSQ + -+ dnSn)
(c1 +di)s1 + (co+da)sa + -+ (cn +dpn)sn

and

c(c181 + 280 + -+ +cnsn) = (cc1)s1 + (cca)se + - -+ + (ccn)sn,

respectively. Now the action of G on S can be extended to an action on CS
by linearity:

g (c1s1 +cas2+ -+ ¢,8,) = c1(gs1) + c2(gs2) + - + cn(gsn)

for all g € G. This makes CS into a G-module of dimension |S]|.
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Definition 1.3.2 If a group G acts on a set S, then the associated module
CS is called the permutation representation associated with S. Also, the
elements of S form a basis for CS called the standard basis. m

All the following examples of G-modules are of this form.

Example 1.3.3 Consider the symmetric group &,, with its usual action on
S=1{1,2,...,n}. Now

CS={c11+c2+---+c,n : ¢; € C for all 7}
with the action
m(c1l+c2+:--+cpn) =cymw(l) +com(2) + -+ - + ¢, m(n)

for all m € §,,.
To make things more concrete, we can select a basis and determine the

matrices X (7)) for # € §,, in that basis. Let us consider S3 and use the
standard basis {1,2,3}. To find the matrix for 7 = (1, 2), we compute

(1,2)1 = 2; (1,2)2 = 1; (1,2)3 = 3;
and so

1 0
X((1,2)) = 0 0
0 1

0
If the reader determines the rest of the matrices for Ss, it will be noted that
they are exactly the same as those of the defining representation, Exam-

ple 1.2.4. It 1s not hard to show that the same is true for any n; i.e., this is
merely the module approach to the defining representation of S,,. =

Example 1.3.4 We now describe one of the most important representations
for any group, the (left) reqular representation. Let G be an arbitrary group.
Then GG acts on itself by left multiplication: if g € G and h € § = G, then the
action of g on h, gh, is defined as the usual product in the group. Properties 1,
3, and 4 now follow, respectively, from the closure, associativity, and identity
axioms for the group.

Thus if G = {g1,92,...,9n}, then we have the corresponding G-module

ClG|={cig1 +c2g2+ - +cpgn, : ¢; € C for all 7},

which is called the group algebra of G. Note the use of square brackets to
indicate that this is an algebra, not just a vector space. The multiplication is
gotten by letting g;g; = gr in C|G] if 9,9, = gx in G, and linear extension.
Now the action of G on the group algebra can be expressed as

g (c1g1 + coge + -+ cn8n) = c1(g881) + c2(g882) + - - + cn(g88n)

for all g € G. The group algebra will furnish us with much important combi-
natorial information about group representations.
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Let us see what the rcgular representation of the cyclic group C4 looks
like. First of all,

C[C4] = {c1€ + cog + c38% + c4g® : ¢; € C for all i }.

We can easily find the matrix of g in the standard basis:

gde=g* gg=g° ¢’g°=¢ gg=g

Thus

0
0
X(g)=| ;
0

—_— O O O

0
1
0
0

o OO =

Computing the rest of the matrices would be a good exercise. Note that
they are all permutation matrices and all distinct. In general, the regular
representation of G gives an embedding of G into the symmetric group on
|G| elements. The reader has probably seen this presented in a group theory
course, in a slightly different guise, as Cayley’s theorem |Her 64, pages 60-61].

Note that if G acts on any V, then so does C|G]. Specifically, if cig; +
cogo + -+ cngn € C|G] and v € V, then we can define the action

(c1g1 +c2g2+ -+ cngn)v =1c1(91V) + c2(g2v) + - - + cr(gn V).

In fact, we can extend the concept of representation to algebras: A represen-
tation of an algebra A is an algebra homomorphism from A into GL(V). In
this way, every representation of a group GG gives rise to a representation of its
group algebra C|{G/|. For a further discussion of representations of algebras,
see the text of Curtis and Reiner [C-R 66]|. m

Example 1.3.5 Let group G have subgroup H, written H < G. A gen-
eralization of the regular representation is the (left) coset representation
of G with respect to H. Let g1,92,...,9;x be a transversal for H; i.e.,
H = {g1H,g92H,...,9xsH} is a complete set of disjoint left cosets for H in
G. Then G acts on ‘H by letting

9(9:H) = (99:)H
for all g € G. The corresponding module
CH ={cigtH+ cogocH+ --- + g H : ¢; € C for all i}
inherits the action
g (c1igitH + - + crgp H) = c1(g81H) + - - - + ck(ggr H).

Note that if H = G, then this reduces to the trivial representation. At
the other extreme, when H = {¢}, then H = G and we obtain the regular
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representation again. In general, representation by cosets is an example of an
induced representation, an idea studied further in Section 1.12.

Let us consider G = &3 and H = {¢,(2,3)}. We can take
H={H, (1,2)H, (1,3)H}

and
CH ={ctH+c2(1,2)H+ c3(1,3)H : ¢; € C for all i}.

Computing the matrix of (1, 2) in the standard basis, we obtain
(1,2 H=(1,2)H, (1,2)(1,2)H=H, (1,2)(1,3)H=(1,3,2)H = (1,3)H,
so that

0 1 0
X((1,2))=[1 0 0
0 0 1

After finding a few more matrices, the reader will become convinced that we
have rediscovered the defining representation yet again. The reason for this
1s explained when we consider isomorphism of modules in Section 1.6. =

1.4 Reducibility

An idea pervading all of science is that large structures can be understood by
breaking them up into their smallest picces. The same thing is true of repre-
sentation theory. Some representations are built out of smaller ones (such as
the one at the end of Example 1.2.3), whercas others are indivisible (as are
all degree one representations). This is the distinction between reducible and
irreducible representations, which we study in this section. First, however,
we must determine precisely what a piece or subobject means in this setting.

Definition 1.4.1 Let V be a G-module. A submodule of V 1s a subspace W
that is closed under the action of G, i.e.,

weW=gweW forall g €.

We also say that W is a G-tnvariant subspace. Equivalently, W is a subset of
V that is a G-module in its own right. We write W < V if W is a submodule

of V. =

As usual, we illustrate the definition with some examples.

Example 1.4.2 Any G-module, V, has the submodules W = V as well as
W = {0}, where 0 is the zero vector. These two submodules are called trivial.

All other submodules are called nontrivial. m
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Example 1.4.3 For a nontrivial example of a submodule, consider G = §,,,
n>2,and V = C{1,2,...,n} (the defining representation). Now take

W=C{1+2+---+n}={c(1+2+4+---4+n) : ce C};

i.e., W is the one-dimensional subspace spanned by the vector 1 +2+4.--+n.
To check that W is closed under the action of &,,, it suffices to show that

aw € W for all w in some basis for W and all 7 € §,,.
(Why?) Thus we need to verify only that
m(l1+2+4+---4+n)eW

for each m € §,,. But

m(1+2+---+n)=n(1)+7(2) + -+ 7(n)
=142+ ---+neWw,

because applying 7 to {1,2,...,n} just gives back the same set of numbers
in a different order. Thus W is a submodule of V' that is nontrivial since
dimW =1and dimV =n > 2.

Since W is a module for G sitting inside V', we can ask what representation
we get if we restrict the action of G to W. But we have just shown that every
m € S, sends the basis vector 1 + 2 + - - - + n toitself. Thus X (7) = (1) is the
corresponding matrix, and we have found a copy of the trivial representation
in C{1,2,...,n}. In general, for a vector space W of any dimension, if G
hixes every element of W, we say that G acts trivially on W. »

Example 1.4.4 Next, let us look again at the regular representation. Sup-
pose G = {g1,92,...,9n} With group algebra V = C|G]|. Using the same idea
as 1n the previous example, let

W=C[g1 —l—g2+---+gn],

the one-dimensional subspace spanned by the vector that is the sum of all
the elements of G. To verify that W is a submodule, take any ¢ € G and
compute:

g(gr+g+--+8n) =981 +98 + -+ 98n
= £ +g2+---+gn€W,

because multiplying by g merely permutes the elements of G, leaving the sum
unchanged. As before, GG acts trivially on W'.

| The reader should verify that if G = S,,, then the sign representation can

also be recovered by using the submodule

W = C[Zwesn sgn(7) ™ | m
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We now introduce the irreducible representations that will be the building
blocks of all the others.

Definition 1.4.5 A nonzecro G-module V is reducible if it contains a non-
trivial submodule W. Otherwise, V' is said to be irreducible. Equivalently, V
1s reducible if it has a basis B in which every g € G is assigned a block matrix

of the form oo A(g) | B(g) 1.4
(9) ( 0 +C(9) ) e

where the A(g) are square matrices, all of the same size, and 0 is a nonempty
matrix of zeros. m '

To see the equivalence, suppose V of dimension d has a submodule W of
dimension f, 0 < f < d. Then let

B — {W1>W2:- . o ,Wf,Vf+1,Vf+27' . o ,Vd},

where the first f vectors are a basis for W. Now we can compute the matrix
of any g € G with respect to the basis B. Since W is a submodule, gw; € W
for all 7, 1 <1 < f. Thus the last d — f coordinates of gw; will all be zero.
That accounts for the zero matrix in the lower left corner of X(g). Note that
we have also shown that the A(g), g € G, are the matrices of the restriction
of G to W. Hence they must all be square and of the same size.

Conversely, suppose each X(g) has the given form with every A(g) being
f x f. Let V = C?® and consider

W = (C{el,eg,. . o ,ef},

where e; 1s the column vector with a 1 in the ith row and zeros elsewhere
(the standard basis for C*). Then the placement of the zeros in X (g) assures
us that X(g)e; € W for 1 < i < f and all g € G. Thus W is a G-module,
and 1t is nontrivial because the matrix of zeros is nonempty.

Clearly, any epresentation of degree 1 is irreducible. It seems hard to de-
termine when a representation of greater degree will be irreducible. Certainly,
checking all possible subspaces to find out which ones are submodules is out
of the question. This unsatisfactory state of affairs will be remedied after we
discuss inner products of group characters in Section 1.9.

From the preceding examples, both the defining representation for §,, and
the group algebra for an arbitrary GG are reducible if n > 2 and |G| > 2, respec-
tively. After all, we produced nontrivial submodules. Let us now illustrate
the alternative approach via matrices using the defining representation of Ss.
We must extend the basis {1 + 2 + 3} for W to a basis for V = C{1, 2, 3}.

Let us pick

Of course, X (e) remains the 3 x 3 identity matrix. To compute X( (1,2) ),
we look at (1,2)’s action on our basis:

(1,2)(1+2+3)=1+2+3, (1,2)2=1=(1+2+3)-2-3, (1,2)3 =3.
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So
1 1 O
X((L,2))=]0 -1 0
0 —1 1

The reader can do the similar computations for the remaining four elements
of S3 to verify that

1 O 1 1 0 O
X( (173)): 0 1 -1 ; X ( (2a3)) — 0 0 1 ,
0 0 -1 0 1 0
1 O 1 1 1 O
Xx((L,2,3))={00 -1 |, Xx(32)=|0 -1 1
0 1 -1 0 —1 O

The one in the upper left corner comes from the fact that &3 acts trivially on
Ww.

1.5 Complete Reducibility and Maschke’s
Theorem

It would be even better if we could bring the matrices of a reducible G-module
to the block diagonal form

for all g € G. This is the notion of a direct sum.

Definition 1.5.1 Let V be a vector space with subspaces U and W. Then

V' is the (internal) direct sum of U and W, written V = U & W, if every
v € V can be written uniquely as a sum

V=u-+Ww, uelU, we W

If V is a G-module and U, W are G-submodules, then we say that U and W

are complements of each other.
If X is a matrix, then X is the direct sum of matrices A and B, written
X = A& B, if X has the block diagonal form

- (4)
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To see the relationship between the module and matrix definitions, let V
be a G-module with V =U & W, where U, W < V. Since this is a direct sum
of vector spaces, we can choose a basis for V

B = {ul,ug,. U, Wer 1, Weio,... ,Wd}

such that {u;,u2,...,us} is a basis for U and {wfy1,Wsyo,...,Wgq} is a
basis for W. Since U and W are submodules, we have

gu; € U and gw; e W

for all g € G, u; € U, w; € W. Thus the matrix of any g € G in the basis B

IS X(g)=(Agg) O——),

where A(g) and B(g) are the matrices of the action of G restricted to U and
W, respectively.

Returning to the defining representation of 83, we see that

V =C{1,2,3} =C{1 +2+ 3} @ C{2, 3}
as vector spaces. But while C{1 + 2 + 3} is an S3-submodule, C{2,3} is

not (e.g., (1,2)2 = 1 &€ C{2,3}). So we need to find a complement for
C{1+ 2+ 3}, i.e., a submodule U such that

C{1,2,3}=C{1+2+3}aU.

To find a complement, we introduce an inner product on C{1,2,3}. Given
any two vectors i,j in the basis {1, 2,3}, let their inner product be

<i7j> — 5i,j7 (15)

where 0; ; is the Kronecker delta. Now we extend by linearity in the first
varlable and conjugate linearity in the second to obtain an inner product on
the whole vector space. Equivalently, we could have started out by defining
the product of any two given vectors v =al +02+c3, w =1 +y2 + 23 as

(v, W) = aZ + by + cz,

with the bar denoting complex conjugation. The reader can check that this
definition does indeed satisfy all the axioms for an inner product. It also

enjoys the property that it is invariant under the action of G:

(gv,gW) = (V, W) for all g € G and v,w € V. (1.6)

To check invariance on V, it suffices to verify (1.6) for eclements of a basis.
But if m € &3, then

(mi, 7j§) = On(i),n(g) = 93,5 = (1,]),
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where the middle equality holds because 7 is a bijection.
Now, given any inner product on a vector space V' and a subspace W, we
can form the orthogonal complement:

W+={veV : (v,w)=0forallwe W}

[t is always true that V = W @& W+. When W < V and the inner product is
(G-invariant, we can say more.

Proposition 1.5.2 LetV be a G-module, W a submodule, and (-,-) an inner
product invariant under the action of G. Then W is also a G-submodule.

Proof. We must show that for all g € G and u € W+ we have gu € W+.
Take any w € W; then

(gu,w) = (g 'gu,g”'w) (since (-,-) is invariant)
= (u,9"'w) (properties of group action)
= 0. (ue W+, and g-'we W

since W is a submodule)

Thus W+ is closéd under the action of . =

Applying this to our running example, we see that
C{1+2+4+3}" = {v=al+b2+c3 : (v,1+2+3) =0}
= {v=al+b2+c3 : a+b+c=0}.

To compute the matrices of the direct sum, we choose the bases {1 + 2 + 3}
for C{1+2+ 3}, and {2 -1, 3—-1} for C{1+ 2 + 3}-+. This produces the

matrices
1 0 O 1 0 0
X(e) = 0 1 0 |, X((1,2)) = 0 —1 -1 ,
0 0 1 0 0 1
1 0 0 1 0 O
X(1,3))={0 1 o), X(@3)=[00 1],
0 —1 -1 0 1 O
1 0 0 1 0 0
X((1,2,3)) =0 -1 -1 ], X((1,32))=[0 0 1
0 1 0 0 —1 -1
These are indeed all direct matrix sums of the form
Alg)| 0 0
X — 0
(g) ) B(g)

Of course, A(g) is irreducible (being of degree 1), and we will see in Section 1.9
that B(g) is also. Thus we have decomposed the defining representation of
S, into its irreducible parts. The content of Maschke’s theorem is that this
can be done for any finite group.
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Theorem 1.5.3 (Maschke’s Theorem) Let G be a finite group and let V
be a nonzero G-module. Then

V=wLaow?®ag...o wk,

where each W) is an irreducible G-submodule of V.

Proof. We will induct on d = dimV. If d = 1, then V itself is irreducible
and we are done (k = 1 and W) = V). Now suppose that d > 1. If V is
irreducible, then we are finished as before. If not, then V has a nontrivial
(GG-submodule, W. We will try to construct a submodule complement for W
as we did in the preceding example.

Pick any basis B = {vi,va,...,v4} for V. Consider the unique inner
product that satisfies

(Vi; Vj) = 0;

for elements of B. This product may not be G-invariant, but we can come up
with another one that is. For any v,w € V' we let

(v,w) =) (gv,gw).

gel

We leave it to the reader to verify that (-, )’ satisfies the definition of an
inner product. To show that i1t is GG-invariant, we wish to prove

(hv, hw) = (v, w)’

for all h € G and v,w € V. But

(hv,hw)' = ) | (ghv,ghw) (definition of (-,-)")
= ) rec\fV, fw) (as g varies over GG, so does f = gh)
= (v, w)’ (definition of (-, -)’)
as desired.
If we let

W+={veV : (v,w) =0},
then by Proposition 1.5.2 we have that W+ is a G-submodule of V with

V=WaoWw- .

Now we can apply induction to W and W= to write each as a direct sum of
irreducibles. Putting these two decompositions together, we see that V has

the desired form. =

As a corollary, we have the matrix version of Maschke’s theorem. Here
and in the future, we often drop the horizontal and vertical lines indicating
block matrices. Our convention of using lowercase letters for elements and

uppercase ones for matrices should avoid any confusion.
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Corollary 1.5.4 Let G be a finite group and let X be a matrix representation
of G of dimension d > 0. Then there is a fixred matrix T such that every

matrizc X(g), 9 € G, has the form

rx@r-=| . XPe) e
0 0 .. X(k) (g)

where each X9 is an irreducible matriz representation of G.

Proof. Let V = C% with the action
gv = X(g)v
for all g € G and v € V. By Maschke’s theorem,
V=wlow®eg..owh,

cach W) being irreducible of dimension, say, d;. Take a basis B for V' such
that the first dj vectors are a basis for W1 the next ds are a basis for W(2)
etc. The matrix T that transforms the standard basis for C% into B now does
the trick, since conjugating by T just expresses each X(g) in the new basis

L. =

Representations that decompose so nicely have a name.

Definition 1.5.5 A representation is completely reducible if it can be written
as a direct sum of irreducibles. =

So Maschke’s theorem could be restated:

Fvery representation of a finite group having positive dimension 1S
completely reducible.

We are working under the nicest possible assumptions, namely, that all
our groups are finite and all our vector spaces are over C. We will, however,
occasionally attempt to indicate more general results. Maschke’s theorem
remains true if C is replaced by any field whose characteristic is either zero or
prime to |G|. For a proof in this setting, the reader can consult Ledermann
Led 77, pages 21-23].

However, we can not drop the finiteness assumption on G, as the following
example shows. Let R be the positive real numbers, which are a group under
multiplication. It is not hard to see that letting

X(r):((l) logl;r)

for all r € R™ defines a representation. The subspace

W:{(g) : cecc}cc?
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1S Invariant under the action of G. Thus if X is completely reducible, then
C? must decompose as the direct sum of W and another one-dimensional
submodule. By the matrix version of Maschke’s theorem, there exists a fixed

matrix 7' such that

TX(r)T~" = ( xg) y(O'r) )

for all r € R*. Thus z(r) and y(r) must be the eigenvalues of X(r), which
are both 1. But then

o= (3 9)r=(3 4)

for all » € R*, which is absurd.

1.6 G-Homomorphisms and Schur’s Lemma

We can learn more about objects in mathematics (e.g., vector spaces, groups,
topological spaces) by studying functions that preserve their structure (e.g.,
linear transformations, homomorphisms, continuous maps). For a G-module,
the corresponding function is called a G-homomorphism.

Definition 1.6.1 Let V and W be G-modules. Then a G-homomorphism
(or simply a homomorphism) is a linear transformation 6 : V' — W such that

O(gv) = gb(v)

for all g € G and v € V. We also say that 0 preserves or respects the action
of G. m

We can translate this into the language of matrices by taking bases B and C
for V and W, respectively. Let X(g) and Y (g) be the corresponding matrix
representations. Also, take 1" to be the matrix of € in the two bases B and C.

Then the G-homomorphism property becomes

for every column vector v and g € G. But since this holds for all v, we must

have
TX(g) =Y(g)T for all g € G. (1.7)

Thus having a G-homomorphism 6 is equivalent to the existence of a matrix 7T
such that (1.7) holds. We will often write this condition simply as T'X = YT.

As an example, let G = §,,, V = C{v} with the trivial action of &, and let
W = C{1,2,...,n} with the defining action of &,. Define a transformation

0:V > W by
O(v)=14+2+---+n
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and linear extension; i.e..
O(cv) =c(1+2+---+ n)

for all ¢ € C. To check that 0 is a G-homomorphism, it suffices to check that
the action of G is preserved on a basis of V. (Why?) But for all 7 € S,,.

O(nv) = 0(v) = Zi = WZi = mO(v).

1=1

In a similar vein, let G be an arbitrary group acting trivially on V- = C{v},
and let W = C[G] be the group algebra. Now we have the G-homomorphism
0:V — W given by extending

o(v)=) &

gel

lincarly.
If G =38,, we can also let G act on V = C{v} by using the sign represen-
tation:
mu = sgn(m)u

for all m € S,, and u € V. Keeping the usual action on the grdup algebra, the
reader can verify that

n(v) = )  sgn(m)m

TES,

extends to a G-homomorphism from V to W.

It is clearly important to know when two representations of a group are
different and when they are not (even though there may be some cosmetic
differences). For example, two matrix representations that difter only by a
basis change are really the same. The concept of G-equivalence captures this
1dea.

Definition 1.6.2 Let V and W be modules for a group G. A G-isomorphism
1S a G-homomorphism 6 : V' — W that is bijective. In this case we say that
V and W are G-isomorphic, or G-equivalent, written V' = W. Otherwise we
say that V and W are G-inequivalent. m

As usual, we drop the G when the group is implied by context.

In matrix terms, 6 being a bijection translates into the corresponding
matrix T being invertible. Thus from equation (1.7) we see that matrix
representations X and Y of a group G are equivalent if and only if there
exists a fixed matrix T such that

Y(9) =TX(9)T™"

for all g € G. This is the change-of-basis criterion that we were talking about
carlier.
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Example 1.6.3 We are now in a position to explain why the coset rep-
resentation of S3 at the end of Example 1.3.5 1s the same as the defining
representation. Recall that we had taken the subgroup H = {¢, (2,3)} C S3

giving rise to the coset representation module CH, where
H=1{H, (1,2)H, (1,3)H}.

Given any set A, let $4 be the symmetric group on A, i.e., the set of all
permutations of 7. Now the subgroup H can be expressed as an (internal)
direct product

H = {(1)(2)(3), (1)(2,3)} =1(1)} x {(2)(3), (2,3)} = S{1} X Sy2,33- (1.8)

A convenient device for displaying such product subgroups of §,, is the
tabloid. Let A = (A1, A\o,..., A;) be a partition, as discussed in Section 1.1. A
Young tabloid of shape X is an array with [ rows such that row ¢ contains A;
integers and the order of entries in a row does not matter. To show that each
row can be shuflled arbitrarily, we put horizontal lines between the rows. For
example, if A = (4,2,1), then some of the possible Young tabloids are

3 1 4 1 3 1 1 4 9 5 3 4
5 9 = 9 5 £ 2 1
2 2 i

e S —

Equation (1.8) says that H consists of all permutations in §3 that permute
the elements of the set {1} among themselves (giving only the permutation
(1)) and permute the elements of {2,3} among themselves (giving (2)(3) and
(2,3)). This is modeled by the tabloid

2 3
1 a

P —

since the order of 2 and 3 is immaterial but 1 must remain fixed. The complete
set of tabloids of shape A = (2,1) whose entries are exactly 1, 2, 3 is

2 3 1 3 1 2
S“{__l__ 23 }

Furthermore, there is an action of any # € S3 on S given by

3 _ 7)) 7()
* AN
Thus it makes sense to consider the map 6 that sends
0 2 3
H — “1_ ,
0 2 3 1 3
? 2 3 1 2
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By linear extension, # becomes a vector space isomorphism from CH to CS.
In fact, we claim it is also a G-isomorphism. To verify this, we can check that
the action of each m € &3 is preserved on each basis vector in H. For example,

if r=1(1,2) and H € H, then

3 _ (1,222 = (1,2)0(H).

0((1,2)H) = 6((1,2)H) = :

1
2_

Thus
CH = CS. (1.9)

Another fact about the tabloids in our set S is that they are completely
determined by the element placed in the second row. So we have a natural
map, 7, between the basis {1,2,3} for the defining representation and S,

namely,

n 2 3
1 5 T

n 1 3
2 — _2__ :

n 1 2
3 — _E__ .

Now 7 extends by linearity to a G-isomorphism from C{1, 2,3} to CS. This,
in combination with equation (1.9), shows that CH and C{1,2, 3} are indeed
equivalent.

The reader may feel that we have taken a long and winding route to get
to the final S3-isomorphism. However, the use of Young tabloids extends far
beyond this example. In fact, we use them to construct all the irreducible
representations of S,, in Chapter 2. =

We now return to the general exposition. Two sets usually associated
with any map of vector spaces 6 : V — W are its kernel,

ker@ = {veV : 0(v) =0},
where O is the zero vector, and its image,
imf={weW : w=20(v) for some v € V}.

When 6 is a G-homomorphism, the kernel and image have nice structure.
Proposition 1.6.4 Let 0 : V — W be a G-homomorphism. Then

1. ker 8 is a G-submodule of V', and
2. im0 is a G-submodule of W.
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Proof. We prove only the first assertion, leaving the second one for the reader.
It 1s known from the theory of vector spaces that ker 8 is a subspace of V since
6 1s linear. So we only need to show closure under the action of G. But if

v € ker @, then for any g € G,

6(gv) gf(v) (60 is a G-homomorphism)
g0 (v € ker8)

0,

and so gv € ker 8, as desired. m

It is now an easy matter to prove Schur’s lemma, which characterizes (G-
homomorphisms of irreducible modules. This result plays a crucial role when
we discuss the commutant algebra in the next section.

Theorem 1.6.5 (Schur’s Lemma) Let V and W be two irreducible G-
modules. If 0 :' V — W 1s a G-homomorphism, then either

1. 6 i1s a G-1somorphism, or
2. 0 1s the zero map.

Proof. Since V is irreducible and kerf is a submodule (by the previous
proposition), we must have either ker = {0} or kerf = V. Similarly, the
irreducibility of W implies that im@ = {0} or W. If kerf = V or imf = {0},
then 6 must be the zero map. On the other hand, if ker = {0} and im0 = W,
then we have an 1somorphism. =

It 1s Interesting to note that Schur’s lemma continues to be valid over
arbitrary fields and for infinite groups. In fact, the proof we just gave still
works. The matrix version is also true in this more general setting.

Corollary 1.6.6 Let X and Y be two irreducible matrix representations of
G. If T 1s any matriz such that T'X(g) = Y (g)1 for all g € G, then either

1. T 1s invertible, or

2. 1" 1s the zero matriz. »

We also have an analogue of Schur’s lemma in the case where the range
module is not irreducible. This result is conveniently expressed in terms of
the vector space Hom(V, W) of all G-homomorphisms from V' to W.

Corollary 1.6.7 Let V and W be two G-modules with V' being irreducible.
Then dim Hom(V, W) = 0 if and only if W contains no submodule isomorphic

toV. =

When the field is C, however, we can say more. Suppose that 1’ 1s a matrix

such that
TX(g) = X(9)T (1.10)
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for all g € GG. It follows that
(T — cl)X = X(T — cl),

where I is the appropriate identity matrix and ¢ € C is any scalar. Now C is
algebraically closed, so we can take ¢ to be an eigenvalue of T'. Thus T — ¢f
satisfies the hypothesis of Corollary 1.6.6 (with X = Y) and is not invertible
by the choice of ¢. Our only alternative is that T' — ¢I = 0. We have proved

the following result:

Corollary 1.6.8 Let X be an irreducible matriz representation of G over the
complex numbers. Then the only matrices T' that commute with X(g) for all
g € G are those of the form 1" = cl—i.e., scalar multiples of the tdentity

matriz. m

1.7 Commutant and Endomorphism Algebras

Corollary 1.6.8 suggests that the set of matrices that commute with those of
a given representation are important. This corresponds in the module setting
to the set of G-homomorphisms from a G-module to itself. We characterize
these sets 1n this section. Extending these ideas to homomorphisms between
different G-modules leads to a useful generalization of Corollary 1.6.7 (see

Corollary 1.7.10).

Definition 1.7.1 Given a matrix representation X : G — GLg4, the corre-
sponding commutant algebra is

Com X ={T € Maty : TX(g9) = X(¢)T for all g € G},

where Mat, is the set of all d x d matrices with entries in C. Given a G-module
V', the corresponding endomorphism algebra is

EndV={0:V >V : 6is a G-homomorphism}. m

It is easy to check that both the commutant and endomorphism algebras do
satisty the axioms for an algebra. The reader can also verify that if V is a
G-module and X is a corresponding matrix representation, then End V' and
Com X are isomorphic as algebras. Merely take the basis B that produced X
and use the map that sends each # € End V' to the matrix 7 of # in the basis
B. Let us compute Com X for various representations X.

Example 1.7.2 Suppose that X is a matrix representation such that

0 X (2)

where X(1) X(2) are inequivalent and irreducible of degrees d;, ds, respec-
tively. What does Com X look like?
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111 1hp )
T — ? 2
( I, 129
IS a matrix partitioned in the same way as X. If T'X = XT', then we can
multiply out each side to obtain

T1,1X(1) me@) B X(I)Tl,l X(l)TLg
T2,1X(1) TQ,Q)((Q) _ )((2)51’2_l )((2)51"2,2 ‘

Suppose that

Equating corresponding blocks we get

T1,1X(1) = X(l)Tl,la
T1,2X(2) = X(I)T1,2,
T, XV = X1,
TroX? = X7y,

Using Corollaries 1.6.6 and 1.6.8 along with the fact that X(1) and X(?) are
inequivalent, these equations can be solved to yield

T1,1 — ledla T1,2 — T2,1 = 0, T2,2 — CQIdza

where ¢;,co € C and I4,, 1, are identity matrices of degrees d;, d2. Thus

I ledl 0
L= ( 0 Cgldz ) '

We have shown that when X = X1 @ X with X(1) 22 X2 and irre-
ducible, then

ComX — {ClIdl D C2Id2 . C1,C2 € (C}a
where d; = deg XV, dy = deg X(®) .m

In general, if X = &%, X% where the X are pairwise inequivalent
irreducibles, then a similar argument proves that

Com X = {@®"_,c;I4, : ¢; € C},

1=1

where d; = deg X(*). Notice that the degree of X is Zfz__l d;. Note also that
the dimension of Com X (as a vector space) is just k. This is because there
are k scalars ¢; that can vary, whereas the identity matrices are fixed.

Next we deal with the case of sums of equivalent representations. A

convenient notation 1S

™

e N——
mX=XeXB---BX,

where the nonnegative integer m is called the multiplicity of X.
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Example 1.7.3 Suppose that

XM 0 |
Xz( 0 XO ) =2X1,

where X (1) is irreducible of degree d. Take T partitioned as before. Doing the
multiplication in T'X = X1 and equating blocks now yields four equations,
all of the form

T;; X = xWT;

for all ¢,7 = 1,2. Corollaries 1.6.6 and 1.6.8 come into play again to reveal
that, for all 2 and 7,

Ti,j — Ci,jlda
where ¢; ; € C. Thus
_ ciala ca2lsg \ | .
Com X = {( er 11y cool, ) . ¢;,; € C for all Z,j} (1.11)

is the commutant algebra in this case. =

The matrices in Com 2X) have a name.

Definition 1.7.4 Let X = (z;;) and Y be matrices. Then their tensor
product is the block matrix

CC1,1Y ZCLQY
X 0 Y = (ZCZ,]Y) — 332,1Y $2,2Y . oo =

Thus we could write the elements of (1.11) as

T — ( Ci1 C12 ) QI

C21 €22

and so

ComX ={My;®I; : My € Maty}.
If we take X = mX(), then

Com X = {M,,®I; : M,, € Mat,,},
where d is the degree of X (1), Computing degrees and dimensions, we obtain
deg X = degmX V) = mdeg XV = md

and
dim(Com X)) = dim{M,, : M,, € Mat,,} = m?.

Finally, we are led to consider the most general case:

X=mXVDem,X?a - ®dm X", (1.12)
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where the X (%) are pairwise inequivalent irreducibles with deg X(?) = d,. The
degree of X is given by

k
deg X = Zdeg(mz—X(i)) = m1d; + modo + - - + miray.
i=1

The reader should have no trouble combining Examples 1.7.2 and 1.7.3 to
obtailn

Com X = {@&* (M, ® 1)) : M, € Mat,,, for all i} (1.13)

of dimension

dim(Com X) = dim{®_,M,,, : M,, € Mat,, } =m?+m3 +--- + m5.

Before continuing our investigation of the commutant algebra, we should
briefly mention the abstract vector space analogue of the tensor product.

Definition 1.7.5 Given vector spaces V and W, then their tensor product
1s the set

VW = {Zci,jvi Qw; : ¢ ; €EC,v,eV,w; € W}
2,)
subject to the relations
(c1v1 + c2Va) @ W = ¢1 (V1 @ W) + ¢2(Va @ W)

and
vV & (dlwl ~+ d2W2) — dl(V 024 Wl) + dQ(V 024 W2). _

It i1s easy to see that V ® W is also a vector space. In fact, the reader can
check that if B = {vy,va,...,vgq} and C = {w;,wo,..., Wy} are bases for V
and W, respectively, then the set

v,Qw; : 1<:1<d,1<3<f
]

is a basis for V ® W. This gives the connection with the definition of matrix
tensor products: The algebra Mat,; has as basis the set

B:{Ei,j . 1SZ,]Sd},

where E; ; is the matrix of zeros with exactly one 1 in position (z,5). So if
X = (z; ;) € Maty and Y = (yx;) € Mats, then, by the fact that ® is linear,

d /
(Y 2iEi;)® () yriEri)

1.7=1 k,l=1
d f

Z Z Li,5Yk,l (Ezaj 28 Eksl)' (114)

ij=1 k,l=1

XY
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But it E; ; ® Ex; represents the (k,[)th position of the (i,j)th block of a
matrix, then equation (1.14) says that the corresponding entry for X ® Y
should be z; ;yx .1, agreeing with the matrix definition.

We return from our brief detour to consider the center of Com X. The
center of an algebra A is

Zpo={a€ A : ab=ba for all be A}.

First we will compute the center of a matrix algebra. This result should be
very reminiscent of Corollary 1.6.8 to Schur’s lemma.

Proposition 1.7.6 The center of Mat, is
Zmat, = {clq : c € C}.
Proof. Suppose that C € Zy1at,. Then, in particular,
CE;; =FE;;C (1.15)

for all .. But C'E;; (respectively, E; ;C) is all zeros except for the ith column
(respectively, row), which is the same as C’s. Thus (1.15) implies that all
off-diagonal elements of C' must be 0. Similarly, if 7 # 7, then

where the left (respectively, right) multiplication exchanges columns (respec-
tively, rows) ¢ and 5 of C. It follows that all the diagonal elements must be
equal and so C = cl; for some ¢ € C. Finally, all these matrices clearly
commute with any other matrix, so we are done. »

Since we will be computing Zcom x and the elements of the commutant
algebra involve direct sums and tensor products, we will need to know how
these operations behave under multiplication.

Lemma 1.7.7 Suppose A, X € Mat,; and B,Y € Mats. Then
1. (Ao B)(XaY)=AX & BY,
2. (A B)(X®Y)=AX ® BY.

Proof. Both assertions are easy to prove, so we will do only the second.
Suppose A= (az-,j) and X = (xi,j)- Then

(A®B)(X®Y) (a;,; B)(z:;Y) (definition of ®)
(>-rai kB zk;Y) (block multiplication)
( (>, airzik ;) BY) (distributivity)

AX ® BY. (definition of ®) m

Now consider C' € Zcom x, where X and Com X are given by (1.12) and
(1.13), respectively. So

CT =TC for all T € Com X, (1.16)
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where T' = @7 (Mp, ® I3,) and C = @, (Cyy, ® 14,). Computing the
letft-hand side, we obtain

CT = (&-Cn ®14) (O M, ®1;) (definition of C and T)

= BF (Cn. ®14) (M, 1) (Lemma 1.7.7, item 1)

= o (Cr. M, ® 14.). (Lemma 1.7.7, item 2).
Similarly,

TC = ®j=y(Mp,Crm, ® 13,).
Thus equation (1.16) holds if and only if

Con, My, = My,.C,,. for all M,, € Mat,,. .

But this just means that C,,. is in the center of Mat,,., which, by Proposition
1.7.6, 1s equivalent to

Cm,; — Ci]'mz
for some ¢; € C. Hence
C = & cilm, ®I4,
= Of ¢Im,q,
Cllmldl 0 0
0 colm,d, 0
O 0 Voo Ck]mkdk

and all members of Zcom ¥ have this form. Note that dim Zeom x = k.
For a concrete example, let

X 0
X = 0 x (1) 0 — 9y (1) D X(Q)’
0 o X

where deg X(1) = 3 and deg X(?) = 4. Then the matrices T € Com X look
like

a 0 0l 0 0/0 0 0 O

0 a 0/0 b 0/0 0 0 O

0 0 alO O |0 0 0 O

c O Old O 00 O O O
n_| 0 c0f0d0j0 0 00

0 0 ¢c|0 O d|0 0 0 0 |’

0 0 0[O0 O O[]z O O O

0 0 0[O0 O 0|0 =z 0 O

0 0 0|0 O 0|0 0 z O

0 0 0/0 0 0|0 O 0 =z

where a,b,c,d,x € C. The dimension is evidently

dim(Com X) = m2 +m2 = 22 4 12 = 5.
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The elements C' € Zc,,,, x arc cven simpler:

a 0 010 O O0l0 O O O

0 a 0[O0 0 0|0 O O O

0 0 al0O 0 0[O0 O 0 O

0 0 0la 0 OJlO0O O O O

~_| 0 00j0a 00000
0 0 0/0 0 al/O0 O O 0 |°

0 0 0[O0 O Olz O O O

0 0 0/0 0 0|0 =z 0 O

0 0 0/]0O O 0/]0 0 z O

0 0 0|0 0 0|0 O 0 «z

where a,x € C. Here the dimension is the number of different irreducible
components of X, in this case 2.
We summarize these results in the following theorem.

Theorem 1.7.8 Let X be a matrix representation of G such that

where the X9 are inequivalent, irreducible and deg X\¥) = d;. Then
1. deg X = m1d; + modo + -+ - + mrdy,
2. COHIX — {697{6:1(Mmt ® [d,,,) . N[mz e Matmi fOT' all z})

3. dim(Com X) = m? + ms3 -I-“--l-mg?g,

4. Zcom X = {@f:lcilmidi . ¢; € C foralli}, and

D. dimZCOmX — k. ®

What happens if we try to apply Theorem 1.7.8 to a representation Y
that is not decomposed into irreducibles? By the matrix version of Maschke’s
theorem (Corollary 1.5.4), Y is equivalent to a representation X of the form
given in equation (1.17). But if Y = RXR™' for some fixed matrix R, then
the map

T - RTR™ !

1S an algebra isomorphism from Com X to ComY. Once the commutant
algebras are isomorphic, it is easy to see that their centers are too. Hence
Theorem 1.7.8 continues to hold with all set equalities replaced by isomor-
phismes.

There is also a module version of this result. We will use the multiplicity
notation for G-modules in the same way it was used for matrices.

Theorem 1.7.9 Let V be a G-module such that
VeV emv®e...omv®,

where the V(¥ are pairwise inequivalent irreducibles and dim V() = d;. Then
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1. dimV = md; + modo + -+ - + mydy,

2. End V = @*_ Mat,, ,

3. dim(End V) =mf +m3 + - +m;3,

4. Zrndv 18 tsomorphic to the algebra of diagonal matrices of degree k,
and

5. dim ZEndV — k. =

The same methods can be applied to prove the following strengthening of
Corollary 1.6.7 in the case where the field is C.

Proposition 1.7.10 Let V and W be G-modules with V irreducible. Then
dim Hom(V, W) is the multiplicity of V in W. =

1.8 Group Characters

It turns out that much of the information contained in a representation can
be distilled into one simple statistic: the traces of the corresponding matrices.
T'his 1s the beautiful theory of group characters that will occupy us for the
rest of this chapter.

Definition 1.8.1 Let X(g), g € G, be a matrix representation. Then the
character of X is

x(g) = tr X(g),

where tr denotes the trace of a matrix. Otherwise put, x is the map

G s C.

If V is a G-module, then its character is the character of a matrix represen-
tation X corresponding to V. =

Since there are many matrix representations corresponding to a single G-
module, we should check that the module character is well-defined. But if X
and Y both correspond to V, then Y = TXT ! for some fixed T'. Thus, for
all g € G,

trY (g) =trTX(g)T~"' = tr X(g),

since trace is invariant under conjugation. Hence X and Y have the same

character and our definition makes sense.

Much of the terminology we have developed for representations will be
applied without change to the corrcsponding characters. Thus if X has char-
acter y, we will say that y is irreducible whenever X is, etc. Now let us turn

to some examples.
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Example 1.8.2 Supposc G is arbitrary and X is a degree 1 representation.
Then the character x(g) is just the sole entry of X(g) for each g € G. Such
characters are called linear characters. m

Example 1.8.3 Suppose we consider the defining representation of S,, with
its character x9¢!. If we take n = 3, then we can compute the character values
directly by taking the traces of the matrices in Example 1.2.4. The results

are

[t is not hard to see that in general, if 7 € §,,, then

def(

X" (m) = the number of ones on the diagonal of X ()

= the number of fixedpoints of 7. »

Example 1.8.4 Let G = {g1,92,...,9,} and consider the regular repre-
sentation with module V = C|G]| and character x**8. Now X(¢) = I,, so
x"&(€) = |G]|.

To compute the character values for g # €, we will use the matrices arising
from the standard basis B = {g;,g2,.--,8n}. Now X(g) is the permutation
matrix for the action of g on B, so x™8(g) is the number of fixedpoints for
that action. But if gg; = g; for any %, then we must have g = €, which is not
the case; 1.e., there are no fixedpoints if g # €. To summarize,

reg _ IGI lfg — €,
X =(g) = { 0 otherwise. m

We now prove some elementary properties of characters.

Proposition 1.8.5 Let X be a matrix representation of a group G of degree
d with character x.

1. x(e) = d.

2. If K is a conjugacy class of G, then
9,h € K = x(9) = x(h).

3. IfY 1is a representation of G with character v, then

X=2Y = x(g9) =v¥(9g)
forall g € G.
Proof. 1. Since X (¢) = I,

x(€) =trly = d.
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2. By hypothesis g = khk™!, so
x(9) = trX(g) = tr X(k)X (h)X (k)~" = tr X (h) = x(h).

3. This assertion just says that equivalent representations have the same
character. We have already proved this in the remarks following the preceding
definition of group characters. m

It is surprising that the converse of 3 is also true—i.e., if two represen-
tations have the same character, then they must be equivalent. This result
(which is proved as Corollary 1.9.4, part 5) is the motivation for the paragraph

with which we opened this section.
In the previous proposition, 2 says that characters are constant on conju-

gacy classes. Such functions have a special name.

Definition 1.8.6 A class function on a group G is a mapping f : G —» C
such that f(g) = f(h) whenever g and h are in the same conjugacy class.
The set of all class functions on G is denoted by R(G).

Clearly, the sums and scalar multiples of class functions are again class
functions, so R(G) is actually a vector space over C. Also, R(G) has a natural
basis consisting of those functions that have the value 1 on a given conjugacy
class and O elsewhere. Thus

dim R(G) = number of conjugacy classes of G. (1.18)

If K is a conjugacy class and yx is a character, we can define x, to be the
value of the given character on the given class:

Xx = X(9)

for any g € K. This brings us to the definition of the character table of a
group.

Definition 1.8.7 Let G be a group. The character table of G is an array
with rows indexed by the inequivalent irreducible characters of G and columns
indexed by the conjugacy classes. The table entry in row x and column K is

Xk

By convention, the first row corresponds to the trivial character, and the first
column corresponds to the class of the identity, K = {¢}. =

It is not clear that the character table is always finite: There might be
an infinite number of irreducible characters of G. Fortunately, this turns out
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not to be the case. In fact, we will prove in Section 1.10 that the number
of inequivalent irreducible representations of GG is equal to the number of
conjugacy classes, so the character table is always square. Let us examine
some examples.

Example 1.8.8 If G = C,, the cyclic group with n elements, then each
element of C, is in a conjugacy class by itself (as is true for any abelian
group). Since there arc n conjugacy classes, there must be n inequivalent
irreducible representations of C,,. But we found n degree 1 representations in
Example 1.2.3, and they are pairwise inequivalent, since they all have different
characters (Proposition 1.8.5, part 3). So we have found all the irreducibles
for C,,.

Since the representations are one-dimensional, they are equal to their
corresponding characters. Thus the table we displayed on page 5 is indeed
the complete character table for Cy. ®

Example 1.8.9 Recall that a conjugacy class in G = §,, consists of all per-
mutations of a given cycle type. In particular, for S5 we have three conjugacy
classes,

Ki={e}, K2={(1,2), (1,3), (2,3)}, and Kz={(1,2,3), (1,3,2)}.

Thus there are three irreducible representations of &3. We have met two of
them, the trivial and sign representations. So this is as much as we know of
the character table for Sj:

Ve

We will be able to fill in the last line using character inner products. m

1.9 Inner Products of Characters

Next, we study the powerful tool of the character inner product. Taking
Inner products is a simple method for determining whether a representation
IS irreducible. This technique will also be used to prove that equality of
characters implies equivalence of representations and to show that the number
of irreducibles is equal to the number of conjugacy classes. First, however,
we motivate the definition.

We can think of a character y of a group G = {g1,92,...,9n} as a row
vector of complex numbers:

X = (x(91),x(g92),---,x(gn)).
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It x 1s irreducible, then this vector can be obtained from the character table
by merely repeating the value for class K a total of |K| times. For example,
the first two characters for Sz in the preceding table become

x\Y'=(1,1,1,1,1,1) and x® =(1,-1,-1,-1,1,1).
We have the usual inner product on row vectors given by
(c1,€2y-«-ycn) - (d1,day ... dyn) = c1dy + c2da + - + cpdy,

where the bar stands for complex conjugation. Computing with our S3 charr
acters, 1t 1s easy to verify that

YD (1) =5 (2) . 4 (2) =6
and
Y y(2) = 0.

More trials with other irreducible characters—e.g., those of Cs—will lead the
reader to conjecture that if x{¥) and x\9) are irreducible characters of G, then

@ G _ ) 1G] =,
XX {0 if 5 # ;.

Dividing by |G| for normality gives us one definition of the character inner
product.

Definition 1.9.1 Let y and ¥ be any two functions from a group G to the
complex numbers C. The inner product of x and % is

X ¥ IGIZX

gel

Now suppose V is a G-module with character . We have seen, in the
proof of Maschke’s theorem, that there is an inner product on V itself that is
invariant under the action of G. By picking an orthonormal basis for V', we
obtain a matrix representation Y for 1, where each Y (g) is unitary; i.e.,

{

Y(g ') =Y(9) ' =Y(g),

where t denotes transpose. So

P(g) =trY(g)=trY(g )i =trY(¢g") =w(g™ ).

Substituting this into (-, ) yields another useful form of the inner product.

Proposition 1.9.2 Let x and v be characters; then

(x, ¥ IGI > x(9)p(g™"). (1.19)

ged
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When the field is arbitrary, equation (1.19) is taken as the definition of the
inner product. In fact, for any two functions x and ¥ from G to a field, we
can define

but over the complex numbers this “inner product” is only a bilinear form.
Of course, when restricted to characters we have (x, ) = (x,¥)’. Also note
that whenever y and 1 are constant on conjugacy classes, we have

1 —
IGI Z IKIXIHDK,
K

(X, V) =

where the sum is over all conjugacy classes of G.

We can now prove that the irreducible characters are orthonormal with
respect to the inner product (-, -).

Theorem 1.9.3 (Character Relations of the First Kind) Let x and ¢
be irreducible characters of a group G. Then

<Xa ¢> — 5)(,"@0'

Proof. Suppose x,v% are the characters of matrix representations A, B of
degrees d, f, respectively. We will be using Schur’s lemma, and so a matrix

must be found to fulfill the role of T" in Corollary 1.6.6. Let X = (z; ;) be a
d X f matrix of indeterminates z; ; and consider the matrix

Y =— ) A(9)XB(g™") (1.20)

Ah)Y B(h)™!

!
P
=

=
S
>
v
=
I
7

||
2
Ry
S
>
3
S
>

n
g
P
833’
>
jes
Bt

= Y,

(0 ifA#B,
Y“{ddﬁAgB. (1.21)
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Consider first the case where x # 1, so that A and B must be inequivalent.
Since this forces y; ; = 0 for every element of Y, we can take the (i, 7) entry
of equation (1.20) to obtain

Zzazk xk‘lbl,]( _1)_0

k,l gelG

for all ¢, 7. If this polynomial is to be zero, the coefficient of each xk,; must

also be zero, so
|G| D aik(9)bii(g™") =0
gel

for all ¢, 7, k,l. Notice that this last equation can be more simply stated as
<ai,k,bg,j), = () V Z',j,k,l, (1.22)

since our definition of inner product applies to all functions from G to C.
Now,

X =tI‘A:aL1 —I—a2,2+---+ad,d

and
Y =trB = bl,l +b2,2 +"'+bf,f,
SO
<X1 %D) — <Xa ¢>' — Zi,j <ai,z’, bjjj)’ =0
as desired.

Now suppose xY = ¥. Since we are only interested in the character values,
we might as well take A = B also. By equation (1.21), there is a scalar
c € C such that y; ; = cd; ;. So, as in the previous paragraph, we have
(ai k,a1) =0 aslong as ¢ # j. To take care of the case i = j, consider

ZA (g) X A(g _1)—CId

gel

IGI

and take the trace on both sides:

cd = trecly
= — ) trA(g)XA(g™")

||

Q|-
]
<

= tr.X.
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Equating coefficients of likec monomials in this equation yields

_ 1
(@i K, Q1) = Tel Y aik(g)ayi(g™h) = = Okl (1.23)

It follows that

d
6x) = D (@i a;)

| |
M=~ i
Q.| — )
8

|
p—t 0O

and the theorem is proved. =

Note that equations (1.22) and (1.23) give orthogonality relations for the
matrix entries of the representations.
The character relations of the first kind have many interesting conse-

quences.

Corollary 1.9.4 Let X be a matriz representation of G with character Y.

Suppose
X o le(l) a mQX(Q) DD ka(k),

where the X9 are pairwise inequivalent irreducibles with characters x¥.
1. x = mix™M +mox® + - + mpx®.
2. (x,xY)) =m; forall .
3. ()(,x)=mf+ms+---+m:.
4. X is irreducible if and only if (x,x) = 1.

0. Let'Y be another matrix representation of G with character 1. Then

X 2Y if and only if x(g9) = ¥(g)

forall g € G.

Proof. 1. Using the fact that the trace of a direct sum is the sum of the
traces, we see that

k k
X =trX = tr@miX(i) = Zmix(i).
1=1 1=1
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2. We have, by the previous theorem,

(x, x9) thx ’X(J) Zmz ) 9 m;.

3. By another application of Theorem 1.9.3:
_ (Z mz‘X(i),ijX(j)) _ Zmz—mj<x“ y (3) Zm
) 7 2,7

4. The assertion that X is irreducible implies that (y, x) = 1 is just part
of the orthogonality relations already proved. For the converse, suppose that

_§ 2 __
— m;, =
2

Then there must be exactly one index j such that m; = 1 and all the rest of
the m; must be zero. But then X = X9), which is irreducible by assumption.

5. The forward implication was proved as part 3 of Proposition 1.8.5. For
the other direction, let Y = @f__ﬂn,;X (Y). There is no harm in assuming that
the X and Y expansions both contain the same irreducibles: Any irreducible
found in one but not the other can be inserted with multiplicity 0. Now
X = ¥, so {x,x\¥) = (v, x¥)) for all i. But then, by part 2 of this corollary,
m; = n; for all <. Thus the two direct sums are equivalent—i.e., X 2 Y. =

As an example of how these results are applied in practice, we return
to the defining representation of §,,. To simplify matters, note that both
m, 7' € S, have the same cycle type and are thus in the same conjugacy
class. So if x is a character of S,,, then x(w) = x(7~!), since characters are
constant on conjugacy classes. It follows that the inner product formula for

S,, can be rewritten as

= = 5 x(m)w(n). (1.24)

'WESn

Example 1.9.5 Let G = S3 and consider x = y9¢f. Let (1) x(2) () be
the three irreducible characters of S35, where the first two are the trivial and
sign characters, respectively. By Maschke’s theorem, we know that

Furthermore, we can use equation (1.24) and part 2 of Corollary 1.9.4 to com-
pute m; and mo (character values for x = xy4¢! were found in Example 1.8.3):

= (6xM) = 5 = ST x(mx 6(3 1+1-141-1+1-140-1+0-1) = 1,
71'683
= (x, x'?) = Z x(m)x P (7) = -—(3-1-—1-1—1-1—1-1+0-1+0-1) _0.

71'633
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Thus
x = x"" +max®.

In fact, we already knew that the defining character contained a copy
of the trivial one. This was noted when we decomposed the corresponding
matrices as X = A® B, where A was the matrix of the trivial representation
(see page 13). The exciting news is that the B matrices correspond to one or
more copies of the mystery character x(3). These matrices turned out to be

B = (o 1 ). p(2)=( "5 ).

pa =( 4 V) men-=(],)

B((1,2,3) ) = ( “} "'(1) ) B( (1,3,2)) = ( _(1) __i )

If we let ¥ be the corresponding character, then

P(e) =2,
w( (1’2)):¢( (133)):¢( (2,3)):0,

If ¢ is irreducible, then m3 = 1 and we have found x(%. (If not, then 7, being
of degree 2, must contain two copies of x(3).) But part 4 of Corollary 1.9.4
makes 1t easy to determine irreducibility; merely compute:

(¥, Y) = é—(22 +024+0°+ 0%+ (=1)°+ (=1)°) = 1.

We have found the missing irreducible. The complete character table for S3
1S thus

In general, the defining module for S,,, V = C{1,2,...,n}, always has
W =C{1+2+---4+n} as a submodule. If x'!) and x* are the characters

corresponding to W and W+, respectively, then V = W@W+. This translates
to

Xdef — X(l) 4 X_L

on the character level. We already know that x4¢' counts fixedpoints and
that X(l) 1S the trivial character. Thus

x(7) = (number of fixedpoints of ) — 1

is also a character of S,. In fact, x* is irreducible, although that is not
obvious from the previous discussion. =
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1.10 Decomposition of the Group Algebra

We now apply the machinery we have developed to the problem of decom-
posing the group algebra into irreducibles. In the process, we determine the
number of inequivalent irreducible representations of any group.

Let G be a group with group algebra C{G| and character x = x"6. By
Maschke’s theorem (Theorem 1.5.3), we can write

ClG| = @mz—V(”, (1.25)

where the V) run over all pairwise inequivalent irreducibles (and only a finite
number of the m; are nonzero).
What are the multiplicities m;? If V(¥ has character x*), then, by part

2 of Corollary 1.9.4,

mi = (X x' > x(@)x (g™
|G| =

But we computed the character of the regular representation in Example 1.8.4,
and it vanished for g # € with x(e¢) = |G|. Plugging in the preceding values,

we obtain

m; = lélx(e)x(i)(e) = dim V® (1.26)
by Proposition 1.8.5, part 1. Hence every irreducible G-module occurs in
C|G| with multiplicity equal to its dimension. In particular, they all appear
at least once, so the list of inequivalent irreducibles must be finite (since the
group algebra has finite dimension). We record these results, among others

about the decomposition of C[G], as follows.

Proposition 1.10.1 Let G be a finite group and suppose C[G] = ®;m; V¥,
where the VY form a complete list of pairwise inequivalent irreducible G-
modules. Then

1. m; = dim V(i),
2. 3 .(dimV®)2 = |G|, and
3. The number of V*) equals the number of conjugacy classes of G.

Proof. Part 1 is proved above, and from it, part 2 follows by taking dimen-
sions in equation (1.25).
For part 3, recall from Theorem 1.7.9 that

number of V(i) = dim ZEnd C[G]:

What do the elements of End C{G] look like? Given any v € C|G]|, define the
map ¢, : C[G] — C|G| to be right multiplication by v, i.e.,

¢, (W) = WV.
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for all w € C[G]. It is casy to verify that ¢, € End C|G]. In fact, these are
the only elements of End C[G| because we claim that C[G] = End C[G] as
vector spaces. To see this, consider ¢ : C[G] — End C[G] given by

vggbv.

Proving that ¢ is linear is not hard. To show injectivity, we compute its
kernel. If ¢_ is the zero map, then

0=¢_(€) =€v =v.

For surjectivity, suppose § € End C|G| and consider 6(e), which is some
vector v. It follows that 6 = ¢_, because given any g € G,

0(g) = 0(ge) = gb(e) = gv = gv = ¢,(8),

and two linear transformations that agree on a basis agree everywhere. On
the algebra level, our map ¢ 1s an anti-ilsomorphism, since it reverses the
order of multiplication: ¢_¢ = ¢ __ for all v,w € C|G|. Thus ¢ induces an
anti-isomorphism of the centers of C[G| and End C|G], so that

number of V(¥ = dim (G-

To find out what the center of the group algebra looks like, consider any
z =c1g + -+ cn8n € Zc(g], Where the g; are in G. Now for all h € G, we
have zh = hz, or z = hzh™!, which can be written out as

c181 + -+ cngn = cthgith™ + -+ + ¢ hg,h™,

But as h takes on all possible values in G, hg;h~' runs over the conjugacy
class of g;. Since z remains invariant, all members of this class must have the

same scalar coefficient ¢;. Thus if G has k conjugacy classes K4,..., Kt and
we let
Z; = Z 8
geEK;
for i =1,...,k, then we have shown that any z € Z¢(g) can be written as

k
7 = E d;z;.
i=1

Similar considerations show that the converse holds: Any linear combination
of the z; is in the center of C[G]. Finally, we note that the set {zi,..., 2}
forms a basis for Zcig]- We have already shown that they span. They must
also be linearly independent, since they are sums over pairwise disjoint subsets

of the basis {g : g € G} of C[G]. Hence

number of conjugacy classes = dim Z¢|g] = number of V(¥

as desired. =

As a first application of this proposition, we derive a slightly deeper rela-
tionship between the characters and class functions.
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Proposition 1.10.2 The irreducible characters of a group G form an or-
thonormal basis for the space of class functions R(G).

Proof. Since the irreducible characters are orthonormal with respect to the
bilinear form (-,-) on R(G) (Theorem 1.9.3), they are linearly independent.
But part 3 of Proposition 1.10.1 and equation (1.18) show that we have
dim R(G) such characters. Thus they are a basis. m

Knowing that the character table is square permits us to derive orthogo-
nality relations for its columns as a companion to those for the rows.

Theorem 1.10.3 (Character Relations of the Second Kind) LetK, L
be conjugacy classes of G. Then

where the sum s over all irreducible characters of G.

Proof. If x and v are irreducible characters, then the character relations of
the first kind yield

1 .
<Xa¢> — ’K| XK VK = 5)(,1,0:
p3

where the sum is over all conjugacy classes of G. But this says that the
modified character table

U = (VIKI/IG] xx)

has orthonormal rows. Hence U, being square, is a unitary matrix and has
orthonormal columns. The theorem follows. m

As a third application of these ideas, we can now give an alternative
method for finding the third line of the character table for S3 that does not
involve actually producing the corresponding representation. Let the three
irreducible characters be (1), x(3) and x(3, where the first two are the
trivial and sign characters, respectively. If d denotes the dimension of the
corresponding module for ¥(3) then by Proposition 1.10.1, part 2,

12 4+ 1% + d* = |S3| = 6.

Thus x(3)(e) = d = 2. To find the value of x(3) on any other permutation, we
use the orthogonality relations of the second kind. For example, to compute

L = X(s)( (1,2) ),

3
0 — Zx(ﬂ(e)x(i)( (1,2) Y=1-14+1(-1) + 27,
1=1

so x = 0.
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1.11 Tensor Products Again

Suppose we have representations of groups G and H and wish to construct
a representation of the product group G x H. It turns out that we can use
the tensor product introduced in Section 1.7 for this purpose. In fact, all the
irreducible representations of G X H can be realized as tensor products of irre-
ducibles for the individual groups. Proving this provides another application
of the theory of characters.

Definition 1.11.1 Let G and H have matrix representations X and Y,
respectively. The tensor product representation, X ® Y, assigns to each
(g, h) € G x H the matrix

(X®Y)(g,h)=X(g) QY (h). =

We must verify that this is indeed a representation. While we are at it, we
might as well compute its character.

Theorem 1.11.2 Let X and Y be matriz representations for G and H, re-
spectively.

1. Then X QY 1s a representation of G x H.

2. If X, Y and X QY have characters denoted by x, ¥, and x ® ¥, respec-
tively, then

(X ® ¥)(9,h) = x(g9)¥(h)
for all (g,h) € G x H.

Proof. 1. We verify the two conditions defining a representation. First of
all,

(X RY)(e,e) =X(e)QY(e) =TIRI=1.
Secondly, if (g, h), (¢’,h') € G x H, then using Lemma 1.7.7, part 2,

(X ®Y)((g,h)-(¢',h")) = (X®Y)(gg', hh)

= X(99') ® Y (hK)

= X(g9)X(¢)@Y(hY(h)
(X(g)®Y(h))-(X(g") @ Y(R'))
= (X®Y)(g,h)- (X®Y)(g,H).

|

2. Note that for any matrices A and B,

trA® B = tr(ai,jB) <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>