Ward Cheney
Analysis for
Applied
Mathematics

&) Springer



Graduate Texts in Mathematics

29

30

31

32

33
34

TAKEUTI/ZARING. Introduction to
Axiomatic Set Theory. 2nd ed.

OxtoBY. Measure and Category. 2nd ed.
ScHAEFER. Topological Vector Spaces.
2nd ed.

HiLTON/STAMMBACH. A Course in
Homological Algebra. 2nd ed.

MaAc LANE. Categories for the Working
Mathematician. 2nd ed.

HUGHES/PIPER. Projective Planes.

SERRE. A Course in Arithmetic.
TAKEUTI/ZARING. Axiomatic Set Theory.
HuMpHREYS. Introduction to Lie Algebras
and Representation Theory.

CoHEN. A Course in Simple Homotopy
Theory.

CoNway. Functions of One Complex
Variable 1. 2nd ed.

BEALS. Advanced Mathematical Analysis.
ANDERSON/FULLER. Rings and Categories
of Modules. 2nd ed.
GoLuBITSKY/GUILLEMIN. Stable Mappings
and Their Singularities.

BERBERIAN. Lectures in Functional
Analysis and Operator Theory.

WINTER. The Structure of Fields.
RosenBLATT. Random Processes. 2nd ed.
HALMos. Measure Theory.

HaLMos. A Hilbert Space Problem Book.
2nd ed.

HusemoLLER. Fibre Bundles. 3rd ed.
HuMPHREYS. Linear Algebraic Groups.
BARNES/MACK. An Algebraic Introduction
to Mathematical Logic.

GREUB. Linear Algebra. 4th ed.

HoLMEs. Geometric Functional Analysis
and Its Applications.
HEwITT/STROMBERG. Real and Abstract
Analysis.

MANEs. Algebraic Theories.

KEeLLEY. General Topology.
ZARISKI/SAMUEL. Commutative Algebra.
Vol.L.

ZARISKI/SAMUEL. Commutative Algebra.
Vol Il

JAcoBSON. Lectures in Abstract Algebra I.
Basic Concepts.

JAcoBSON. Lectures in Abstract Algebra II.

Linear Algebra.

JACOBSON. Lectures in Abstract Algebra
I11. Theory of Fields and Galois Theory.
HirscH. Differential Topology.
SpiTzeR. Principles of Random Walk.
2nd ed.

35

36

37
38

39
40

41

42

48

49

50
51

52

54

S5

56
57
58

59
60

61
62
63

64
65

ALEXANDER/WERMER. Several Complex
Variables and Banach Algebras. 3rd ed.
KELLEY/NAMIOKA et al. Linear
Topological Spaces.

MonK. Mathematical Logic.
GRAUERT/FRITZSCHE. Several Complex
Variables.

ARVESON. An Invitation to C*-Algebras.
KEMENY/SNELL/KNAPP. Denumerable
Markov Chains. 2nd ed.

AposTtoL. Modular Functions and Dirichlet
Series in Number Theory.

2nd ed.

SERRE. Linear Representations of Finite
Groups.

GILLMAN/JERISON. Rings of Continuous
Functions.

KENDIG. Elementary Algebraic Geometry.
LOEVE. Probability Theory I. 4th ed.
LoEVE. Probability Theory II. 4th ed.
Moise. Geometric Topology in
Dimensions 2 and 3.

SacHs/Wu. General Relativity for
Mathematicians.

GRUENBERG/WEIR. Linear Geometry.

2nd ed.

EpwaARrDS. Fermat's Last Theorem.
KLINGENBERG. A Coursein Differential
Geometry.

HARTSHORNE. Algebraic Geometry.
MANIN. A Course in Mathematical Logic.
GRAVER/WATKINS. Combinatorics with
Emphasis on the Theory of Graphs.
BROWN/PEARCY. Introduction to Operator
Theory I: Elements of Functional
Analysis.

MassEey. Algebraic Topology: An
Introduction.

CroweLL/FOXx. Introduction to Knot
Theory.

KosLitz. p-adic Numbers, p-adic Analysis,
and Zeta-Functions. 2nd ed.

LANG. Cyclotomic Fields.

ARNOLD. Mathematical Methods in
Classical Mechanics. 2nd ed.
WHITEHEAD. Elements of Homotopy
Theory.

KARGAPOLOV/MERLZIAKOV. Fundamentals
of the Theory of Groups.

BoLLoBaAs. Graph Theory.

EpwaRrDS. Fourier Series. Vol. I. 2nd ed.
WELLs. Differential Analysis on Complex
Manifolds. 2nd ed.

(continued after index)



Ward Cheney

Analysis for Applied
Mathematics

With 27 Illustrations

) Springer




Ward Cheney
Department of Mathematics
University of Texas at Austin

Austin, TX 78712-1082
USA

Editorial Board

S. Axler

Mathematics Department

San Francisco State
University

San Francisco, CA 94132

USA

E.W. Gehring
Mathematics Department
East Hall

University of Michigan
Ann Arbor, MI 48109
USA

K.A. Ribet

Mathematics Department

University of California
at Berkeley

Berkeley, CA 94720-3840

UsSA

Mathematics Subject Classification (2000): 46Bxx, 65L60, 32Wxx, 42B10

Library of Congress Cataloging-in-Publication Data
Cheney, E. W. (Elliott Ward), 1929-
Analysis for applied mathematics / Ward Cheney.

p. cm. — (Graduate texts in mathematics ; 208)
Includes bibliographical references and index.
ISBN 0-387-95279-9 (alk. paper)

. Mathematical analysis. [. Title.
QA300.C4437 2001
515—dc21

II. Series.

2001-1020440

Printed on acid-free paper.

© 2001 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Terry Kornak; manufacturing supervised by Jerome Basma.
Photocomposed from the author’s TeX files.

Printed and bound by Maple-Vail Book Manufacturing Group, York, PA.

Printed in the United States of America.

987654321
ISBN 0-387-95279-9 SPIN 10833405

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH



Preface

This book evolved from a course at our university for beginning graduate stu-
dents in mathematics—particularly students who intended to specialize in ap-
plied mathematics. The content of the course made it attractive to other math-
ematics students and to graduate students from other disciplines such as en-
gineering, physics, and computer science. Since the course was designed for
two semesters duration, many topics could be included and dealt with in de-
tail. Chapters 1 through 6 reflect roughly the actual nature of the course, as it
was taught over a number of years. The content of the course was dictated by
a syllabus governing our preliminary Ph.D. examinations in the subject of ap-
plied mathematics. That syllabus, in turn, expressed a consensus of the faculty
members involved in the applied mathematics program within our department.
The text in its present manifestation is my interpretation of that syllabus: my
colleagues are blameless for whatever flaws are present and for any inadvertent
deviations from the syllabus.

The book contains two additional chapters having important material not
included in the course: Chapter 8, on measure and integration, is for the ben-
efit of readers who want a concise presentation of that subject, and Chapter 7
contains some topics closely allied, but peripheral, to the principal thrust of the
course.

This arrangement of the material deserves some explanation. The ordering
of chapters reflects our expectation of our students: If they are unacquainted
with Lebesgue integration (for example), they can nevertheless understand the
examples of Chapter 1 on a superficial level, and at the same time, they can
begin to remedy any deficiencies in their knowledge by a little private study
of Chapter 8. Similar remarks apply to other situations, such as where some
point-set topology is involved; Section 7.6 will be helpful here. To summarize:
We encourage students to wade boldly into the course, starting with Chapter 1,
and, where necessary, fill in any gaps in their prior preparation. One advantage
of this strategy is that they will see the necessity for topology, measure theory,
and other topics — thus becoming better motivated to study them. In keeping
with this philosophy, I have not hesitated to make forward references in some
proofs to material coming later in the book. For example, the Banach contraction
mapping theorem is needed at least once prior to the section in Chapter 4 where
it is dealt with at length.

Each of the book’s six main topics could certainly be the subject of a year's
course (or a lifetime of study), and many of our students indeed study functional
analysis and other topics of the book in separate courses. Most of them eventu-
ally or simultaneously take a year-long course in analysis that includes complex
analysis and the theory of measure and integration. However, the applied math-
ematics course is typically taken in the first year of graduate study. It seems
to bridge the gap between the undergraduate and graduate curricula in a way
that has been found helpful by many students. In particular, the course and the
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vi Preface

book certainly do not presuppose a thorough knowledge of integration theory nor
of topology. In our applied mathematics course, students usually enhance and
reinforce their knowledge of undergraduate mathematics, especially differential
equations, linear algebra, and general mathematical analysis. Students may, for
the first time, perceive these branches of mathematics as being essential to the
foundations of applied mathematics.

The book could just as well have been titled Prolegomena to Applied Math-
ematics, inasmuch as it is not about applied mathematics itself but rather about
topics in analysis that impinge on applied mathematics. Of course, there is
no end to the list of topics that could lay claim to inclusion in such a book.
Who is bold enough to predict what branches of mathematics will be useful in
applications over the next decade? A look at the past would certainly justify
my favorite algorithm for creating an applied mathematician: Start with a pure
mathematician, and turn him or her loose on real-world problems.

As in some other books I have been involved with, I owe a great debt of
gratitude to Ms. Margaret Combs, our departmental TEX-pert. She typeset and
kept up-to-date the notes for the course over many years, and her resourcefulness
made my burden much lighter.

The staff of Springer-Verlag has been most helpful in seeing this book to
completion. In particular, I worked closely with Dr. Ina Lindemann and Ms.
Terry Kornak on editorial matters, and I thank them for their efforts on my
behalf. I am indebted to David Kramer for his meticulous copy-editing of the
manuscript; it proved to be very helpful in the final editorial process.

I thank my wife, Victoria, for her patience and assistance during the period
of work on the book, especially the editorial phase. I dedicate the book to her
in appreciation.

I will be pleased to hear from readers having questions or suggestions
for improvements in the book. For this purpose, electronic mail is efficient:
cheney@math.utexas.edu. I will also maintain a web site for material related
to the book at http://www.math.utexas.edu/users/cheney/AAMbook

Ward Cheney
Department of Mathematics
University of Texas at Austin
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Chapter 1

Normed Linear Spaces

1.1  Definitions and Examples 1

1.2  Convexity, Convergence, Compactness, Completeness 6

1.3  Continuity, Open Sets, Closed Sets 15

1.4  More about Compactness 19

1.5 Linear Transformations 24

1.6  Zorn’s Lemma, Hamel Bases, and the Hahn—-Banach Theorem 30
1.7 The Baire Theorem and Uniform Boundedness 40

1.8  The Interior Mapping and Closed Mapping Theorems 47

1.9 Weak Convergence 53

1.10 Reflexive Spaces 58

1.1 Definitions and Examples

This chapter gives an introduction to the theory of normed linear spaces. A
skeptical reader may wonder why this topic in pure mathematics is useful in
applied mathematics. The reason is quite simple: Many problems of applied
mathematics can be formulated as a search for a certain function, such as the
function that solves a given differential equation. Usually the function sought
must belong to a definite family of acceptable functions that share some useful
properties. For example, perhaps it must possess two continuous derivatives.
The families that arise naturally in formulating problems are often linear spaces.
This means that any linear combination of functions in the family will be another
member of the family. It is common, in addition, that there is an appropriate
means of measuring the “distance” between two functions in the family. This
concept comes into play when the exact solution to a problem is inaccessible,
while approximate solutions can be computed. We often measure how far apart
the exact and approximate solutions are by using a norm. In this process we are
led to a normed linear space, presumably one appropriate to the problem at hand.
Some normed linear spaces occur over and over again in applied mathematics,
and these, at least, should be familiar to the practitioner. Examples are the
space of continuous functions on a given domain and the space of functions
whose squares have a finite integral on a given domain. A knowledge of function
spaces enables an applied mathematician to consider a problem from a more

1



2 Chapter 1 Normed Linear Spaces

lofty viewpoint, from which he or she may have the advantage of being more
aware of significant features as distinguished from less significant details.

We begin by reviewing the concept of a vector space, or linear space.
(These terms are interchangeable.) The reader is probably already familiar with
these spaces, or at least with the example of vectors in R™. However, many
function spaces are also linear spaces, and much can be learned about these
function spaces by exploiting their similarity to the more elementary examples.
Here, as a reminder, we include the axioms for a vector space or linear space.

A real vector space is a triple (X, +,-), in which X is a set, and + and -
are binary operations satisfying certain axioms. Here are the axioms:

(i) If £ and y belong to X then so does = + y (closure axiom).

(ii) z+y=y+ < (commutativity).

(iii) z+ (W + 2) = (z +y) + z (associativity).

(iv) X contains a unique element, 0, such that £+ 0 =z for all = in X.

) With each element z there is associated a unique element, —z, such
that £ + (—z) = 0.
(vi) Ifz € X and A € R, then A-z € X (R denotes the set of real numbers.)

(closure axiom)

(vii) A (z+y)=A-T+A-y (X €R), (distributivity).
(viii) A+ p) - z=X-z+p-z (A p€R), (distributivity).
(ix) A-(p-z)=(Mn) -z (associativity).

(v

(x) 1.xz=u=,

These axioms need not be intimidating. The essential feature of a linear space
is that there is an addition defined among the elements of X, and when we add
two elements, the result is again in the space X. One says that the space is
closed (algebraically) under the operation of addition. A similar remark holds
true for multiplication of an element by a real number. The remaining axioms
simply tell us that the usual rules of arithmetic are valid for the two operations.
Most rules that you expect to be true are indeed true, but if they do not appear
among the axioms it is because they follow from the axioms. The effort to keep
the axioms minimal has its rewards: When one must verify that a given system
is a real vector space there will be a minimum of work involved!

In this set of axioms, the first five define an (additive) Abelian group. In
axiom (iv), the uniqueness of 0 need not be mentioned, for it can be proved
with the aid of axiom (ii). Usually, if A € R and = € X, we write Az in place
of A - . The reader will note the ambiguity in the symbol + and the symbol
0. For example, when we write 0z = 0 two different zeros are involved, and in
axiom (viii) the plus signs are not the same. We usually write £ —y in place of
z + (—y). Furthermore, we are not going to belabor elementary consequences of
the axioms such as A Y7 z; = 3_7 Azi. We usually refer to X as the linear space
rather than (X, +,-). Observe that in a linear space, we have no way of assigning
a meaning to expressions that involve a limiting process, such as 3_7° z;. This
drawback will disappear soon, upon the introduction of a norm.

From time to time we will prefer to deal with a complex vector space. In
such a space \-z is defined (and belongs to X) whenever A € C and z € X. (The
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symbol C denotes the set of complex numbers.) Other fields can be employed
in place of R and C, but they are rarely useful in applied mathematics. The
field elements are often termed scalars, and the elements of X are often called
vectors.

Let X be a vector space. A norm on X is a real-valued function, denoted
by || ||, that fulfills three axioms:

(i) “.’L‘" > 0 for each nonzero element in X.
(i) ||,\z” =|A| ”:c” for each X in R and each z in X.
(iii) ||J: + y|| < “z” + “y” for all z,y € X. (Triangle Inequality)

A vector space in which a norm has been introduced is called a normed linear
space. Here are eleven examples.

Example 1. Let X = R, and define ||z” = |z|, the familiar absolute value
function. [ |

Example 2. Let X = C, where the scalar field is also C. Use ”12” = ||, where
|z| has its usual meaning for a complex number z. Thus if £ = a + ib (where a
and b are real), then |z| = va? + b2. (]

Example 3. Let X = C, and take the scalar field to be R. The terminology
we have adopted requires that this be called a real vector space, since the scalar

field is R. ]
Example 4. Let X = R". Here the elements of X are n-tuples of real numbers
that we can display in the form z = (z(1),z(2),...,z(n)] or T = [z, T3, ..., Tn).

A useful norm is defined by the equation

||:t||oo = max |z(i)|

1<ign
Note that an n-tuple is a function on the set {1,2,...,n}, and so the notation
z(%) is consistent with that interpretation. (This is the “sup” norm.) (]

Example 5. Let X = R", and define a norm by the equation “:t” =
S i, lz(i)]. Observe that in Examples 4 and 5 we have two distinct normed
linear spaces, although each involves the same linear space. This shows the ad-
vantage of being more formal in the definition and saying that a normed linear
space is a pair (X,|| ”) etc. etc., but we refrain from doing this unless it is
necessary. (]

Example 6. Let X be the set of all real-valued continuous functions defined
on a fixed compact interval [a, b]. The norm usually employed here is

ll2lloe = Jmax, la(s)]

(The notation maxagsgs |T(s)| denotes the maximum of the expression [z(s)| as
s runs over the interval [a,b].) The space X described here is often denoted
by Cla,b]. Sticklers would insist on C([a, b]), because C(S) will be used for
the continuous functions on some general domain S. (This again is the “sup”
norm.) ]
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Example 7. Let X be the set of all Lebesgue-integrable functions defined on
a fixed interval [a,b). The usual norm for this space is ||z|| = f: |z(s)|ds. In this
space, the vectors are actually equivalence classes of functions, two functions
being regarded as equivalent if they differ only on a set of measure 0. (The
reader who is unfamiliar with the Lebesgue integral can substitute the Riemann
integral in this example. The resulting spaces are different, one being complete
and the other not. This is a rather complicated matter. best understood after
the study of measure theory and Lebesgue integration. Chapter 8 is devoted to
this branch of analysis. The notion of completeness of a space is taken up in the
next section.) ]

Example 8. Let X =/, the space of all sequences in R
z = (z(1),z(2),...]

in which only a finite number of terms are nonzero. (The number of nonzero
terms is not fixed but can vary with different sequences.) Define Hz]] =

maxn |z(n)]. (]
Example 9. Let X = /4, the space of all real sequences = for which
sup,, |z(n)| < co. Define ||z|| to be that supremum, as in Example 8. ]

Example 10. Let X = II, the space of all polynomials having real coefficients.
A typical element of II is a function x having the form

z(t) = ag + a1t + azt> + - - 4 ant”

One possible norm on I is £ — max;|a;|. Others are z — maxoge<y |z(t)| or
T fol |z(t)| dt or z — (3¢ |z%)/3. ]

Example 11. Let X = R", and use the familiar Euclidean norm, defined
by
n 1/2
zll, = () .
i=1
In all of these examples (as well as in others to come) it is regarded as
obvious how the algebraic structure is defined. A complete development would
define z +y, Az, 0, and —z, and then verify the axioms for a linear space. After
that, the alleged norm would be shown to satisfy the axioms for a norm. Thus,
in Example 6, the zero element is the function denoted by 0 and defined by
0(s) = O for all s € [a,b]. The operation of addition is defined by the equation

(x+y)(s) = z(s) + y(s)

and so on.

The concept of linear independence is of central importance. Recall that a
subset S in a linear space is linearly independent if it is not possible to find a
finite, nonempty, set of distinct vectors x;,Z2,...,Zmn in S and nonzero scalars
C1,C2, - - .,Cm for which

azy+ etz + 0+ CmITm =0
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(Linear independence is not a property of a point; it is a property of a set
of points. Because of this, the usage “the vectors... are independent” is mis-
leading.) The reader probably recalls how this notion enters into the theory
of nth—order ordinary differential equations: A general solution must involve a
linearly independent set of n solutions.

Some other basic concepts to recall from linear algebra are mentioned here.
The span of a set S in a vector space X is denoted by span(S), and consists
of all vectors in X that are expressible as linear combinations of vectors in S.
Remember that linear combinations are always finite expressions of the form
E:;l Aiz;. We say that “S spans X” when X = span(S). A base or basis
for a vector space X is any set that is linearly independent and spans X. Both
properties are essential. Any set that is linearly independent is contained in a
basis, and any set that spans the space contains a basis. A vector space is said
to be finite dimensional if it has a finite basis. An important theorem states
that if a space is finite dimensional, then every basis for that space has the same
number of elements. This common number is then called the dimension of the
space. (There is an infinite-dimensional version of this theorem as well.)

The material of this chapter is accessible in many textbooks and treatises,
such as: [Au], [Av], [BN], [Ban], [Bea], [CP], [Day], [Dies], [Dieu], [DS], [Edw],
[Frie2], [Fried], [GP), (Gre], [Gri], [HS], [HP], (Hol], [Horv], [Jam], [KA], [Kee],
(KF], [Kre], [Lanl], [Lo], (Moo], [NaSn], [OD], [Ped], [Red], [RS], [RN}], [Roy],
(Rul], [Sim], [Tay2], [Yo], and (Ze].

Problems 1.1

Here is a Chinese proverb that is pertinent to the problems: I hear, I forget; I see, I
remember; I do, I understand!

1. Let X be a linear space over the complex field. Let X" be the space obtained from X by
restricting the scalars to the real field. Prove that X" is a real linear space. Show by an
example that not every real linear space is of the form X" for some complex linear space
X. Caution: When we say that a linear space is a real linear space, this has nothing to
do with the elements of the space. It means only that the scalar field is R and not C.

2. Prove the norm axioms for Examples 4-7.

3. Prove that in any normed linear space,

ol =0 and |lizll - Iyl | < llz = vl

4. Denote the norms in Examples 4 and 5 by || ||__ and || ||, respectively. Find the best
constants in the inequality
afjell, < ll=llo < Bllzll,

Prove that your constants are the best. (The “constants” o and 3 will depend on n but
not z.)

5. In Examples 4, 5, 6, and 7 find the precise conditions under which we have ||z + y|| =
Nzl + llyll-
6. Prove that in any normed linear space, if = # 0, then z/||z]| is a vector of norm 1.

7. The Euclidean norm on R" is defined in Example 11. Find the best constants in the
inequality allzl| . < llzll, < Allzll -
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11.
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20.
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22.
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What theorems in elementary analysis are needed to prove the closure axioms for Example
67

. What is the connection between the normed linear spaces € and I1 defined in Examples

8 and 10?

For any t in the open interval (0,1), let t be the sequence [t,t2,t3,...]. Notice that
t € éx. Prove that the set {t : 0 < t < 1} is linearly independent.

In the space IT we define special elements called monomials. They are given by Tp(t) =
t" where n = 0,1,2,... Prove that {z, : n=0,1,2,3...} is linearly independent.

Let T be a set of real numbers. We say that T is bounded above if there is an M
in R such that t < M for all t in T. We say that M is an upper bound of T. The
completeness axiom for R asserts that if a set T is bounded above, then the set of
all its upper bounds is an interval of the form [b, 00). The number b is the least upper
bound, or supremum of T, written b = L.u.b.(T) = sup(T). Prove that if £ < b, then
(z,00)NT is nonempty. Give examples to show that [b,c0)NT can be empty or nonempty.
There are corresponding concepts of bounded below, lower bound, greatest lower
bound, and inARmum.

Which of these expressions define norms on R2? Explain.

(a) max{|z(1)], |=(1) + z(2)I}
(b) {x(2) — z(1)]
(© l=(1)] +|=(2) - =(1)] + |=(2)]

Prove that in any normed linear space the conditions ||z|| = 1 and ||z - y|| < € < 1 imply
that ||z — v/|ly|| || < 2e.

Prove that if N; and N3 are norms on a linear space, then so are a; N1 + a2 N2 (when
a1 > 0and a2 > 0) and (N? + N2)!/2.

Is the following set of axioms for a norm equivalent to the set given in the text? (a) ||z|| #
0ifz #0, (b) [|Azl = =Allz|| if A <0, (©) ||z + yll < llzll + [lvll-

Prove that in a normed linear space, if ||z+y|| = ||z||+||y||, then |lez+By|| = ||laz||+||8y|
for all nonnegative o and G.

Why is the word “distinct” essential in our definition of linear independence on page 47
Is the set of functions f;(z) = |z — i, wherei = 1,2..., linearly independent?

One example of an “exotic” vector space is described as follows. Let X be the set
of positive real numbers. We define an “addition”, @, by t ® y = zy and a “scalar
multiplication” by a © £ = £°. Prove that (X,®,®) is a vector space.

In Example 10, two norms (say N1 and N2) were suggested. Do there exist constants
such that Ny € aN2 or N, < BN1?

In Examples 4 and 5, let n = 2, and draw sketches of the sets {z € R? : ||z|| = 1}.
(Symmetries can be exploited.)

1.2 Convexity, Convergence, Compactness, Completeness

A subset K in a linear space is said to be convex if it contains every line segment
connecting two of its elements. Formally, convexity is expressed as follows:

[reK & yeK & 0<AK1l] = Ax+(l-Ay€eK

The notion of convexity arises frequently in optimization problems. For example,
the theory of linear programming (optimization of linear functions) is based on
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the fact that a linear function on a convex polyhedral set must attain its extrema
at the vertices of the set. Thus, to locate the maxima of a linear function
over a convex polyhedral set, one need only test the vertices. The central idea
of Dantzig’s famous simplex method is to move from vertex to vertex, always
improving the value of the objective function.

Another application of convexity occurs in studying deformations of a physi-
cal body. The “yield surface” of an object is generally convex. This is the surface
in 6-dimensional space that gives the stresses at which an object will fail struc-
turally. Six dimensions are needed to account for all the variables. See [Mar),
pages 100-104.

Among examples of convex sets in a linear space X we have:

(i) the space X itself;
(ii

(iii

any set consisting of a single point;
the empty set;
(iv) any linear subspace of X;

(v

~ — — —

any line segment; i.e. a set of the following form in which a and b are
fixed:
Aa+{(1-Xb: 021}

In a normed linear space, another important convex set is the unit cell or unit
ball:
(zex : [l <1)

In order to see that the unit ball is convex, let ||:c” <1, ”y“ <1l,and0< A< 1.
Then, with g =1 - A,

I+ gl < ]+ el = Nl + sl < A+ = 1

If we let n = 2 in Examples 4 and 5 of Section 1.1, then we can draw pictures
of the unit balls. They are shown in Figures 1.1 and 1.2.

| s
N

-1 1 -1

N
\1
7

X

Figures 1.1 and 1.2. Unit balls

There is a family of norms on R", known as the £,-norms, of which the norms
in Examples 4 and 5 are special cases. The general formula, for 1 < p < o0, is

Iel, = ()

1=1
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The case p = oo is special; for it we use the formula

2]l o = max |2(0)

It can be shown (Problem 1) that limp_, ||1:Hp = H:r”m (This explains the
notation.) The unit balls (in R?) for || Hp are shown for p = %, 2, and 7, in
Figure 1.3.
T
/ . .\\\‘\

Figure 1.3. The unit balls in €, for p = %, 2, and 7.

In any normed linear space there exists a metric (and its corresponding

topology) that arises by defining the distance between two points as

d(z,y) =[]z -9
All the topological notions from the theory of metric spaces then become avail-
able in a normed linear space. (See Problem 23.) In Chapter 7, Section 6,
the theory of general topological spaces is broached. But we shall discuss here
topological concepts restricted to metric spaces or to normed linear spaces. A
sequence Ti, T2,... in a normed linear space is said to converge to a point =
(and we write , = z) if

lim ||zn —z|| =0

n—o0o

For example, in the space of continuous functions on [0, 1] furnished with the
max-norm (as in Example 6 of Section 1, page 3), the sequence of functions
Zn(t) = sin(t/n) converges to 0, since
|lzn — 0| = sup [sin(t/n)| = sin(1/n) -0
0!

The notion of convergence is often needed in applied mathematics. For example,
the solution to a problem may be a function that is difficult to find but can be
approached by a suitable sequence of functions that are easier to obtain. (Maybe
they can be explicitly calculated.) One then would need to know exactly in what
sense the sequence was approaching the actual solution to the problem.

A subset K in a normed space is said to be compact if each sequence
in K has a subsequence that converges to a point in K. (Caution: In general
topology, this concept would be called sequential compactness. Refer to Section

7.6.) A subsequence of a sequence z,Ts,... is of the form TnyyTngs-- - where
the integers n, satisfy ny < n; < nz < ---. Our notation for a sequence is [T, |,
or [z, : n € N}, or [z1,T2,...]. With this meagre equipment we can already

prove some interesting results.
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Theorem 1. Let K be a compact set in a normed linear space X.
To each x in X there corresponds at least one point in K of minimum
distance from z.

Proof. Let z be any member of X. The distance from z to K is defined to be

the number
dist (z, K) = inf ”:1: - z”
z€EK

By the definition of an infimum (Problem 12 in Section 1.1, page 6), there exists
a sequence [yn] in K such that ||z - y,,|| — dist (z, K). Since K is compact,
there is a subsequence converging to a point in K, say yn, = y € K. Since

llz = ol < llz = yny | + llwm; — vl

we have in the limit ||:z:—y|| <dist(z, K) < ||1:—y||. (The final inequality follows
from the definition of the distance function.) (]

The preceding theorem can be useful in problems involving noisy measure-
ments. For example, suppose that a noisy measurement of a single entity x is
available. If a set K of admissible noise-free values for = is prescribed, then
the best noise-free estimate of x can be taken to be a point of K as close as
possible to z. Theorem 1 is also important in approximation theory, a branch
of analysis that provides the theoretical underpinning for many areas of applied
mathematics.

Example 1. On the real line, an open interval (a,b) is not compact, for we
can take a sequence in the interval that converges to the endpoint b, say. Then
every subsequence will also converge to b. Since b is not in the interval, the
interval cannot be compact. On the other hand, a closed and bounded interval,
say [a,b), is compact. This is a special case of the Heine-Borel theorem. See the
discussion before Lemma 1 in Section 1.4, page 20. [}

Given a sequence [z,) in a normed linear space (or indeed in any metric
space), is it possible to determine, from the sequence alone, whether it con-
verges? This is certainly an important matter for practical purposes, since we
often use algorithms to generate sequences that should converge to a solution
of a given problem. The answer to the posed question is that we cannot infer
convergence, in general, solely from the sequence itself. If we confine ourselves to
the information contained in the sequence, we can construct the doubly indexed
sequence Cpmy, = ||:c,, - a:m”. If [cnm] does not converge to zero, then the given
sequence [Zn) cannot converge, as is easily proved: For any z in the space, write

nm = l[£n — 2] = [[@n = 2) = @m = 2] < lon ] + [l ~ ]

This shows that if cpm does not converge to 0, then (z,]) cannot converge. On
the other hand, if ¢, converges to zero, one intuitively thinks that the sequence
ought to converge, and if it does not, there must be a flaw in the space itself: The
limit of the sequence should exist, but the limiting point is somehow missing from
the space. Think of the rational numbers as an example. The missing ingredient
is completeness of the space, to which we now turn.
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A sequence (T,] in a normed linear space X is said to have the Cauchy
property or to be a Cauchy sequence if

nleoo f;lr:: ||z: — :cjl[ =0

j2n

If every Cauchy sequence in the space X is convergent (to a point of X, of
course), then the space X is said to be complete. A complete normed linear
space is termed a Banach space, in honor of Stefan Banach, who lived from 1892
to 1945. His book [Ban] stimulated the study of functional analysis for several
decades. Examples 1-7, 9, and 11, given previously, are all Banach spaces.
The real number field R is complete, and so is the complex number field C.
The rational field Q is not complete. These facts are established in elementary
analysis courses.

Completeness is important in corstructing solutions to a problem by taking
the limit of successive approximations. One often wants information about the
limit (i.e., the solution). Does it have the same properties as the approximations?
For example, if all the approximating functions are continuous, must the limit
also be continuous? If all the approximating functions are bounded, is the limit
also bounded? The answers to such questions depend on the sense in which the
limit is achieved; in other words, they depend on the norm that has been chosen
and the function space that goes with it. Typically, one wants a norm that leads
to a complete normed linear space, i.e., a Banach space.

Here is an example of a normed linear space that is not a Banach space:

Example 2. Let the space be the one described in Example 8 of Section 1.1,
page 4. Thisis ¢, the space of “finitely-nonzero sequences,” with the “sup norm”
|]z|| = max; |z(i)|- Define a sequence (k] in £ by the equation

I = |1,

1 1
5,5,...,?0,0,...]

If m > n, then

1 1
I — Ty = 0,...,0,;—;——1-,...,;,0,...}

L

Since ||:cm —zn” = 1/(n+1), we conclude that the sequence [z] has the Cauchy
property. If the space were complete, we would have z, — y, where y € £. The
point ¥y would be finitely nonzero, say y(n) =0 for n > N. Then form > N, =,
would have as its Nth term the value 1/N, while the Nth term of y is 0. Thus
||zm — y|| = 1/N, and convergence cannot take place. ]

Theorem 2.  The space C[a,b] with norm ||z|| = max, |z(s)| is a
Banach space.

Proof. Let [zn] be a Cauchy sequence in C[a,b]. (This space is described in
Example 6, page 3.) Then for each s, [zn(s)] is a Cauchy sequence in R. Since R
is complete, this latter sequence converges to a real number that we may denote
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by z(s). The function z thus defined must now be shown to be continuous, and
we must also show that ||a:,, - :r|| — 0. Let ¢ be fixed as the point at which
continuity is to be proved. We write

(1) [2(s) = 2(8)] < |2(s) = za(s)] + |2n(s) = 2a(t)] + |2n(t) — 2(2)]

This inequality should suggest to the reader how the proof must proceed. Let
€ > 0. Select N so that ”.’l‘n - :1:,,,” < €/3 whenever m > n > N (Cauchy
property). Then form 2 n > N, |zn(s)— zm(s)| < €/3. By letting m — oo we
get |Tq(s) — z(s)| < /3 for all s. This shows that ”In - J:“ < €/3 and that the
sequence ||:cn - a:|| converges to 0. By the continuity of =, there exists a § > 0
such that |z,(s) — z4(t)] < €/3 whenever |t — s| < 6. Inequality (1) now shows
that |z(s) — z(t)| < € when |t — s| < §. (This proof illustrates what is soinetimes
called “an €/3 argument.”) (]

Remarks. Theorem 2 is due to Weierstrass. It remains valid if the interval
(a, b] is replaced by any compact Hausdorff space. (For topological notions, refer
to Section 7.6, starting on page 361.) The traditional formulation of this theorem
states that a uniformly convergent sequence of continuous functions on a closed
and bounded interval must have a continuous limit. A sequence of functions [f,]
converges uniformly to f if

(2) Ve 3n Vk Vs [k>n = Ifk(s)—f(s)|<e]

(In this succinct description, it is understood that €¢ > 0, n € N, k € N, and s is
in the domain of the functions.) By contrast, pointwise convergence is defined
by

Vs Ve 3n Vk [k>n = |fx(s)—f(s)l <€]

Our use of the austere and forbidding logical notation is to bring out clearly
and to emphasize the importance of the order of the quantifiers. Thus, in the
definition of uniform convergence, n does not (cannot) depend on s, while in
the definition of pointwise convergence, n may depend on s. Notice that by the
definition of the norm being used, (2) can be written

Ve 3n Vk [k>n = lfx = fll <€)

or simply as limn_yc || fn — f||, = 0. The latter is conceptually rather simple, if
one is already comfortable with this norm (called the “supremum norm” or the
“maximum norm”).

The (perhaps) simplest example of a sequence of continuous functions that
converges pointwise but not uniformly to a continuous function is the sequence
[fa] described as follows. The value of f,(z) is 1 everywhere except on the
interval [0, 2/n], where its value is given by |nz — 1.

Problems 1.2

1. Prove that limp_, oc ”-‘f",, = max, g;gn |2(i)] for every z in R™.
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. Is this property of a sequence equivalent to the Cauchy property?

lim sup ||zx —zn| =0
nox k>n

Answer the same question for this property: For every positive ¢ there is a natural number
n such that ||z, — zn|| < € whenever m 2 n.

. Prove that if a sequence [zn] in a Banach space satisfies 2:0:1 [lzn]l < oo, then the

. <
series Zn—l Zn converges.

. Prove that Theorem 2 is not true for the norm f lz(t)] dt.

. Prove that the union of a finite number of compact sets is compact. Give an example to

show that the union of an infinite family of compact sets can fail to be compact.

. Prove that || ”p on R™ does not satisfy the triangle inequality if 0 <p <1and n 2 2.

. Prove that if z, — z, then the set {z,z),z2,...} is compact.

. A cluster point (or accumulation point) of a sequence is the limit of any convergent

subsequence. Prove that if a sequence lies in a compact set and has only one cluster
point, then it is convergent.

. Prove that the convergence in Problem 1 above is monotone.

. Give an example of a countable compact set in R having infinitely many accumulation

points. If your example has more than a countable number of accumulation points, give
another example, having no more than a countable number.

. Let g and z; be any two points in a normed linear space. Define z2,z3,... inductively

by putting
Zn+z = §(zn+1 +20) n=0,1,2,...

Prove that the resulting sequence is a Cauchy sequence.

. A particular Banach space of great importance is the space € (S), consisting of all

bounded real-valued functions on a given set S. For z € €5 (S) we define

llzllo = sup |z(s)]
SES

Prove that this space is complete. Cultural note: The space €,(N) is of special interest.
Every separable metric space can be embedded isometrically in it! You might enjoy
trying to prove this, but that is not part of problem 12.

Prove that in a normed linear space a sequence cannot converge to two different points.
How does a sequence [zn : n € N] differ from a countable set {zn : n € N}?
Is there a norm that makes the space of all real sequences a Banach space?

Let co denote the space of all real sequences that converge to zero. Define ||z]| =
sup,, |z(n)|. Prove that co is a Banach space.

If K is a convex set in a linear space, then these two sets are also convex:

u+K={u+z:z€ K} and AK ={Mzx:zx€ K}

Let A be a subset of a linear space. Put

n n
A‘:{Z,\;a; : nEN,/\,ZO,a,‘EA,Z,\g= }

i=1 i=1

Prove that A C A°€. Prove that A€ is convex. Prove that A is the smallest convex set
containing A. This latter assertion means that if A is contained in a convex set B, then
A¢ is also contained in B. The set A€ is the convex hull of A.
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If A and B are convex sets, is their vector sum convex? The vector sum of these two sets
isA+B={a+b: ac A be B}.

Can a norm be recovered from its unit ball? Hint: If z € X, then /) is in the unit
ball whenever |A| 2 ||z||. (Prove this.) On the other hand, /) is not in the unit ball if
Al < llzll- (Prove this.)

What are necessary and sufficient conditions on a set S in a linear space X in order that
S be the unit ball for some norm on X?

Prove that the intersection of a family of convex sets (all contained in one linear space)
is convex.

A metric space is a pair (X,d) in which X is a set and d is a function (called a metric)
from X x X to R such that

(i) dz,y) 20

(ii) d(z,y) =0 ifandonly if z =y
(i) d(z,y) = d(y, )
(iv) d(z,y) < d(z,2) + d(z,)

Prove that a normed linear space is a metric space if d(z, y) is defined as ||z — y||.

For this problem only, we use the following notation for a line segment in a linear space:
(@,b) ={Aa+(1-ANb:0< A< 1)

A polygonal path joining points a and b is any finite union of line segments
U:'zl(a,«,a,-“), where a1 = a and an4+1 = b. If the linear space has a norm, the length
of the polygonal path is ZL, |lai = ai4+1ll. Give an example of a pair of points a,b in
a normed linear space and a polygonal path joining them such that the polygonal path
is not identical to (a,b) but has the same length. A path of length ||a — b|| connecting a
and b is called a geodesic path. Prove that any geodesic polygonal path connecting a
and b is contained in the set {z : ||z — a|| < ||b - al|}-

If £, — z and if the Césard means are defined by on = (1 +---+2zn)/n, then on — z.
(This is to be proved in an arbitrary normed linear space.)

Prove that a Cauchy sequence that contains a convergent subsequence must converge.

A compact set in a normed linear space must be bounded; i.e., contained in some multiple
of the unit ball.

Prove that the equation f(z) = Z:lo ak cosb*z defines a continuous function on R,
provided that 0 < a < 1. The parameter b can be any real number. You will find
useful Theorem 2 and Problem 3. Cultural Note: If 0 < a < 1 and if b is an odd
integer greater than a~}, then f is differentiable nowhere. This is the famous Weierstrass
nondifferentiable function. (See Section 7.8, page 374, for more information about this
function.)

Prove that a sequence [zn] in a normed linear space converges to a point z if and only if
every subsequence of [z,] converges to x.

Prove that if ¢ is a strictly increasing function from N into N, then ¢(n) 2 n for all n.

Let S be a subset of a linear space. Let S; be the union of all line segments that join
pairs of points in S. Is S; necessarily convex?
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(continuation) What happens if we repeat the process and construct S2,S53,...? (Thus,

for example, S2 is the union of line segments joining points in S1.)

Let I be a compact interval in R, I = [a,b]. Let X be a Banach space. The notation
C(I,X) denotes the linear space of all continuous maps f : I -+ X. We norm C(/,X)
by putting ||f|| = sup,¢, || £(t)||. Prove that C(I, X) is a Banach space.

Define fn(x) = e~ "*. Show that this sequence of functions converges pointwise on (0, 1]
to the function g such that g(0) = 1 and g(t) = 0 for t #0. Sho“{ that in the L2-norm
on [0,1], fn converges to 0. The L2-norm is defined by || f|| = {fo If(t)lzdt}ln.

Let [zn] be a sequence in a Banach space. Suppose that for every € > O there is a
convergent sequence ly,] such that sup,, ||zn ~ yn|| < £. Prove that [z,] converges.

In any normed linear space, define K(z,7) = {y : ||z = y|| < r}. Prove that if K(z,1) C
K(0,1) then 0 € K(z, 1).

Show that the closed unit ball in a normed linear space cannot contain a disjoint pair of
closed balls having radius %

(Converse of Problem 3) Prove that if every absolutely convergent series converges
in a normed linear space, then the space is complete. (A series Exn is absolutely
convergent if ) _ ||zq|| < 00.)

Let X be a compact Hausdorff space, and let C(X) be the space of all real-valued
continuous functions on X, with norm || f|| = sup|f(z)|. Let fn) be a Cauchy sequence
in C(X). Prove that

lim lim fn(z) = lim lim fa(z)
T—=x9 Nn—oo n—oo r—zxg

Give examples to show why compactness, continuity, and the Cauchy property are needed.

The space €, consists of all sequences z = [z(1),z(2),...] in which z(n) € R and
ZIx(n)l < oo. The space €2 consists of sequences for which Z:I:r:(n)i2 < oo. Prove
that €1 C £; by establishing the inequality ) jz(n)]? < o jz(n)])2.

Let X be a normed linear space, and S a dense subset of X. Prove that if each Cauchy
sequence in S has a limit in X, then X is complete. A set S is dense in X if each point
of X is the limit of some sequence in S.

Give an example of a linearly independent sequence [zg, Z1,Z2,...] of vectors in £ such
that Z:Zo zn = 0. Don’t forget to prove that Zzn =0.

Prove, in a normed space, that if zn = z and ||zn — yn|| =+ 0, then yn = z. If zn = z
and ||zn — yn|| = 1, what is limyn?

Whenever we consider real-valued or complex-valued functions, there is a concept of
absolute value of a function. For example, if z € C[0, 1), we define |z| by writing |z|(t) =
|z(t)|. A norm on a space of functions is said to be monotone if ||z|| > lyll whenever
{z] 2 ly|. Prove that the norms || and | ||, are monotone norms.

Il
(Continuation) Prove that there is no monotone norm on the space of all real-valued
sequences.

Why isn’t the example of this section a counterexample to Theorem 27
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47. Any normed linear space X can be embedded as a dense subspace in a complete normed
linear space X. The latter is fully determined by the former, and is called the completion
of X. A more general assertion of the same sort is true for metric spaces. Prove that the
completion of the space € in Example 8 of Section 1.1 (page 4) is the space co described
in Problem 16. Further remarks about the process of completion occur in Section 1.8,

page 60.

48. Metric spaces were defined in Problem 23, page 13. In a metric space, a Cauchy sequence
is one that has the property limn,m d(zn,zm) = 0. A metric space is complete if
every Cauchy sequence converges to some point in the space. For the discrete metric
space mentioned in Problem 11 (page 19), identify the Cauchy sequences and determine
whether the space is complete.

1.3 Continuity, Open Sets, Closed Sets

Consider a function f, defined on a subset D of a normed linear space X and
taking values in another normed linear space Y. We say that f is continuous
at a point z in D if for every sequence [z5] in D converging to z, we have also
f(zn) = f(z). Expressed otherwise,

f(limz,) = lim f(zn)

A function that is continuous at each point of its domain is said simply to be
continuous. Thus a continuous function is one that preserves the convergence
of sequences.

Example. The norm in a normed linear space is continuous. To see that this
is 8o, just use Problem 3, page 5, to write

| ol — el | < flzn =]

Thus, if , — z, it follows that ||:tn|| - “a:” (]

With these definitions at our disposal, we can prove a number of important
(yet elementary) theorems.

Theorem 1. Let f be a continuous mapping whose domain D is a
compact set in a normed linear space and whose range is contained in
another normed linear space. Then f(D) is compact.

Proof. To show that f(D) is compact, we let [yn] be any sequence in f(D),
and prove that this sequence has a convergent subsequence whose limit is in
f(D). There exist points £, € D such that f(zn) = yn. Since D is compact, the
sequence [T,] has a subsequence [zni] that converges to a point z € D. Since f
is continuous,

£(@) = f(limzn,) = lim f(zn,) = limyn,
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Thus the subsequence [y, | converges to a point in f(D). ]

The following is a generalization to normed linear spaces of a theorem that
should be familiar from elementary calculus. It provides a tool for optimization
problems—even those for which the solution is a function.

Theorem 2. A continuous real-valued function whose domain is a
compact set in a normed linear space attains its supremum and infi-
mum; both of these are therefore finite.

Proof. Let f be a continuous real-valued function whose domain is a compact
set D in a normed linear space. Let M = sup{f(z) : z € D}. Then there
is a sequence [r,] in D for which f(z,) — M. (At this stage, we admit the
possibility that Al may be +00.) By compactness, there is a subsequence [z,,]
converging to a point £ € D. By continuity, f(zn;) = f(z). Hence f(z) = M,
and of course M < oco. The proof for the infimum is similar. (]

A function f whose domain and range are subsets of normed linear spaces
is said to be uniformly continuous if there corresponds to each positive € a
positive & such that ||f(z) — f(y)|| < & for all pairs of points (in the domain of
f) satisfying ||z — y|| < 8. The crucial feature of this definition is that & serves
simultaneously for all pairs of points. The definition is global, as distinguished
from local.

Theorem 3. A continuous function whose domain is a compact
subset of a normed space and whose values lie in another normed space
is uniformly continuous.

Proof. Let f be a function (defined on a compact set) that is not uniformly
continuous. We shall show that f is not continuous. There exists an £ > O for
which there is no corresponding § to fulfill the condition of uniform continuity.
That implies that for each n there is a pair of points (z,,yn) satisfying the
condition ||zn — yn|| < 1/n and ||f(zn) — f(yn)|| > €. By compactness the
sequence [zn) has a subsequence [Ini] that converges to a point r in the domain
of f. Then yn, — z also because ||yn; — z|| < ||yn; — zn; || + ||zn; — z||- Now the
continuity of f at x fails because

€S Hf(zﬂ,') - f(yﬂl)H < “f(xﬂ,‘) - f(I)H + ”f(.’L‘) - f(yﬂ,)” L

A subset F in a normed space is said to be closed if the limit of every
convergent sequence in F is also in F. Thus, for all sequences this implication is
valid:

[znheF & zp,—oz] = z€F

As is true of the notion of completeness, the concept of a closed set is useful
when the solution of a problem is constructed as a limit of an approximating
sequence.

By Problem 4, the intersection of any family of closed sets is closed. There-
fore, the intersection of all the closed sets containing a given set A is a closed
set containing A, and it is the smallest such set. It is commonly written as A or
cl(A), and is called the closure of A.
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Theorem 4. The inverse image of a closed set by a continuous map
is closed.

Proof. Recall that the inverse image of a set A by a map f is defined to be
fYA)={z : f(z) € A}. Let f : X = Y, where X and Y are normed spaces
and f is continuous. Let K be a closed set in Y. To show that f~!(K) is closed,
we start by letting [z,] be a convergent sequence in f~'(K). Thus r, — z and
f(za) € K. By continuity, f(zn) = f(z). Since K is closed, f(z) € K. Hence
z € f~Y(K). ]

As an example, consider the unit ball in a normed space:

{z lall <1}
This is the inverse image of the closed interval [0, 1] by the function z — ||a:||
This function is continuous, as shown above. Hence, the unit ball is closed.
Likewise, each of the sets
{z:||z—a| <7} {z:||z—aq| 27} {z:a<|z-q| <8}

is closed.

An open set is a set whose complement is closed. Thus, from the preceding
remarks, the so-called “open unit ball,” i.e., the set

U={z : |z]| <1}
is open, because its complement is closed. Likewise, all of these sets are open:
{z: ||« > 1} {z:|lz-a||<r} {z:a<|z-aq| <8}

An alternative way of describing the open sets, closer to the spirit of general

topology, will now be discussed.
The open £-cell or e-ball about a point zg is the set

B(zo,e) = {z : ||z - zol| < €}
Sometimes this is called the e-neighborhood of 4. A useful characterization of
open sets is the following: A subset U in X is open if and only if for each £ € U
there is an € > 0 such that B(z,e) C U. The collection of open sets is called the
topology of X. One can verify easily that the topology 7 for a normed linear
space has these characteristic properties:

(1) the empty set, @ , belongs to T;

(2) the space itself, X, belongs to T;

(3) the intersection of any two members of 7 belongs to T;

(4) the union of any subfamily of 7 belongs to 7.

These are the axioms for any topology. One section of Chapter 7 provides an
introduction to general topology.

A series ) p.., Tx whose elements are in a normed linear space is conver-
gent if the sequence of partial sums s, = 3_,_, zx converges. The given series
is said to be absolutely convergent if the series of real numbers 3"3=, ||z«||
is convergent. That means simply that Z:o:l ”:ck” < o0o. Problem 3, page 13,
asks for a proof that absolute convergence implies convergence, provided that
the space is complete. See also Problem 38, page 14. The following theorem
gives another important property of absolutely convergent series.
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Theorem 5. If a series in a Banach space is absolutely convergent,
then all rearrangements of the series converge to a common value.

Proof. Let 3.2, z; be such a series and )_;2, zx, a rearrangement of it. Put
T = 372,Ti, Sn = 1=y Tir 8n = Yy Tk, and M = 32, ||zil|. Then
S ||2:kl. || < M. This proves that 3 2, zy, is absolutely convergent and hence
convergent. (Here we require the completeness of the space.) Put y = Z?:] T,
Let € > 0. Select n such that 35, ||zi|| < & and such that ||Sm — z|| < & when
m 2> n. Select r so that ||sr - y” < € and so that {1,...,n} C {ki,..., kr}.
Select m such that {ky,...,kr} C {1,...,m}. Then m 2> n and

m
|Sm = s¢l| = |[(z1 + -+ + Tm) = (@ky + - + i, )|| < Z IEAIRSG
i=n41
Hence
ll = yll <z = Smll + [|Sm = srl] + [lsr — wl] < 3¢ .

In using a series that is not absolutely convergent, some caution must be
exercised. Even in the case of a series of real numbers, bizarre results can arise
if the series is randomly re-ordered. A good example of a series of real numbers
that converges yet is not absolutely convergent is the series ), (—1)"/n. The
series of corresponding absolute values is the divergent harmonic series. There
is a remarkable theorem that includes this example:

Riemann’s Theorem. If a series of real numbers is convergent but
not absolutely so, then for every real number, some rearrangement of
the series converges to that real number.

Proof. Let the series Yz, satisfy the hypotheses. Then limz,, =0 and

Z:c,.— Zzn=2|zn|=oo

In>0 n<0

Since the series Yz, converges, the two series on the left of the preceding
cquation must diverge to +0o and —oo, respectively. (See Problems 12 and 13.)
Now let r be any real number. Select positive terms (in order) from the series
until their sum exceeds r. Now add negative terms (chosen in order) until the
new partial sum is less than r. Continue in this manner. Since limz, = 0, the
partial sums thus created differ from r by quantities that tend to zero. ]

Problems 1.3

1. Prove that the sequential definition of continuity of f at z is equivalent to the “c,$”
definition, which is

Ve>0 36>0 Vulllz—ull<s=[if(z) - f(u)ll <€]
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. Let U be an arbitrary subset of a normed space. Prove that the function z — dist(z,U)

is continuous. This function was defined in the proof of Theorem 1 in Section 1.2, page
9. Prove, in fact, that it is “nonexpansive”:

| dist(z, U) — dist(y, U)| < llz -l

. Let X be a normed space. We make X X X into a normed linear space by defining

Iz, 9|l = llz]| + lly|l. Show that the map (z,y) — z + y is continuous. Show that the
norm is continuous. Show that the map (A,z) — Az is continuous when R X X is normed
by [I(A 2)|l = 1A + =|I.

. Prove that the intersection of a family of closed sets is closed.

. If £ # 0, put T = z/||z||. This defines the radial projection of = onto the surface of the

unit ball. Prove that if z and y are not zero, then

Iz -9l < 2ll= — yll/ll=ll

. Use Theorem 2 and Problem 2 in this section to give a brief proof of Theorem 1 in

Section 2, page 9.

. Using the definition of an open set as given in this section, prove that a set U is open if

and only if for each z in U there is a positive € such that B(z,e) C U.

8. Prove that the inverse image of an open set by a continuous map is open.

10.
11.

12.

13.

14.

. The (algebraic) sum of two sets in a linear space is definedby A+ B={a+b:a € A,

b € B}. Is the sum of two closed sets (in a normed linear space) closed? (Cf. Problem
19, page 13.)

Prove that if the series 221 z; converges (in some normed linear space), then z; — 0.

A common misconception about metricspaces is that the closure of an open ball S = {z :
d(a,z) < r} is the closed ball S* = {z : d(e,z) < r}. Investigate whether this is correct
in a discrete metric space (X, d), where d(z,y) = 1 if z # y. What is the situation in a
normed linear space? (Refer to Problem 23, page 13.)

Let Z zn and Z Yn be two series of nonnegative terms. Prove that if one of these series

converges but the other does not, then the series Z(”‘ — yn) diverges. Can you improve
this result by weakening the hypotheses?

Let Z:z:n be a convergent series of real numbers such that Z |zn| = co. Prove that the
series of positive terms extracted from the series }: zn diverges to co. It may be helpful

to introduce un = max(zn,0) and vn = min(zn, 0). By using the partial sums of series,
one reduces the question to matters concerning the convergence of sequences.

Refer to Problem 12, page 12, for the space £.c(S). We write < to signify a pointwise
inequality between two members of this space. Let gn and f, be elements of this space,
forn=1,2,...Let gn 20, fa—1 —9n-1 < fn S M, and ;‘gi < M for all n. Prove
that the sequence [fn] converges pointwise. Give an example to show that convergence
in norm may fail.

1.4 More About Compactness

We continue our study of compactness in normed linear spaces. The starting
point for the next group of theorems is the Heine-Borel theorem, which states
that every closed and bounded subset of the real line is compact, and conversely.
We assume that the reader is familiar with that theorem.
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Our first goal in this section is to show that the Heine-Borel theorem is true
for a normed linear space if and only if the space is finite-dimensional. Since most
interesting function spaces are infinite-dimensional, verifying the compactness of
a set in these spaces requires information beyond the simple properties of being
bounded and closed. Nany important theorems in functional analysis address
the question of identifying the compact sets in various normed linear spaces.
Examples of such theorems will appear in Chapter 7.

Lemma 1. In the space R™ with norm ||.7:|]oo = maxigign |Z(7)]
each ball {z : ||z||, < c} is compact.

Proof. Let [zx] be a sequence of points in R™ satistying ||zx|[, < c. Then
the components obey the inequality —c < zx(?) < c. By the compactness of the
interval {—c, c], there exists an increasing sequence [; C N having the property
that lim [z,(1) : k € I] exists. Next, there exists another increasing sequence
I C I such that lim [z4(2) : k € [ exists. Then lim [zx(1) : k € I
exists also, because [ C J,. Continuing in this way, we obtain at the nth
step an increasing sequence [, such that lim[zx(i) : k € I,] exists for each
it =1,...,n. Denoting that limit by z*(¢), we have defined a vector z* such that
*||,, = O as k runs through the sequence of integers /n. ]

Lemma 2. A closed subset of & compact set is compact.

Proof. 1f F is a closed subset of a compact set K, and if [z,] is a sequence in
F, then by the compactness of K a subsequence converges to a point of K. The
limit point niust be in F', since F is closed. []

A subset S in a normed linear space is said to be bounded if there is a
constant c such that ||z|| < c for all z € S. Expressed otherwise, sup,¢g ||z|| <
00.

Theorem 1. In a finite-dimensional normed linear space, each
closed and bounded set is compact.

Proof. Let X be a finite-dimensional normed linear space. Select a basis for
X, say {r),...,Zn}. Define a mapping T : R® = X by the equation

Ta=Za(i):L‘i a = (a(1),...,a(n)) € R

i=1

If we assign the norm || || to R™, then T is continuous because

< S la(i) - ()] i
i=1

<maxla Z”I;H —”a—b” 2”171”

|- 5] =
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Now let F be a closed and bounded set in X. Put M = T~}(F). Then M is
closed by Theorem 4 in Section 1.3, page 17. Since F = T(M), we can use
Theorem 1 in Section 1.3, page 15, to conclude that F' is compact, provided that
M is compact. To show that A is compact, we can use Lemmas 1 and 2 above
if we can show that for some c,

Mc{aeR" : [a], <e)
In other words, we have only to prove that M is bounded. To this end, define
B =inf{||Ta|| : [la]| , = 1}

This is the infimum of a continuous map on a compact set (prove that). Hence
the infimum is attained at some point b. Thus ||b|joc = 1 and

n

> b(i)z:

i=1

8= |Tel| =

Since the points x; constitute a linearly independent set, and since b # 0, we
conclude that Tb # 0 and that 8 > 0. Since F is bounded, there is a constant
c such that ||z|| < c for all z € F. Now, if a € R" and a # 0, then a/|la||« is a
vector of norm 1; consequently, ||T(a/|lalls)|| = B, or

ITal| > Bllall

This is obviously true for @ = 0 also. For @ € M we have Ta € F, and
/3||a||oo < ||Ta|| < ¢, whence ||a||0(J < ¢/B. Thus, M is indeed bounded. [}

Corollary 1. Every finite-dimensional normed linear space is com-
plete.

Proof. Let [r,] be a Cauchy sequence in such a space. Let us prove that the
sequence is bounded. Select an index m such that ||z; — z;|| < 1 whenever
i,j 2 m. Then we have

“Ii” < “3:,~ - :cm“ + ":rm” <14 “g;m“ (i>m)

Hence for all 7,
llesll < 1+ [lzafl + -+ + |lem]| = ¢

Since the ball of radius c is compact, our sequence must have a convergent
subsequence, say T, — =*. Given € > 0, select N so that ||:t.- - J:_,-H < € when
i,j 2 N. Then |jz; — 1:,,'.| < € when i,j > N, because n; > i. By taking the
limit as i = oo, we conclude that ||z; — z*|| < € when j > N. This shows that
I]' — . [ ]
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Corollary 2. Every finite-dimensional subspace in a normed linear
space is closed.

Proof. Recall that a subset Y in a linear space is a subspace fif it is a linear
space in its own right. (The only axioms that require verification are the ones
concerned with algebraic closure of Y under addition and scalar multiplication.)
Let Y be a finite-dimensional subspace in a normed space. To show that Y is
closed, let y, € Y and y, — y. We want to know that y € Y. The preceding
corollary establishes this: The convergent sequence has the Cauchy property and
hence converges to a point in Y, because Y is complete. [}

Riesz’s Lemma. If U is a closed and proper subspace (U is neither
0 nor the entire space) in a normed linear space, and if 0 < A < 1, then
there exists a point = such that 1 = ||z|| and dist(z,U) > A.

Proof. Since U is proper, there exists a point 2 € X \U. Since U is
closed, dist(z,U) > 0. (See Problem 11.) By the definition of dist(z,U) there
is an element u in U satisfying the inequality ”z - u|| < A~ ! dist(z,U). Put
z=(z~- u)/||z - u|| Obviously, “:z:” = 1. Also, with the help of Problem 7, we

have
dist(z,U) = dist(z — u, U)/”z - u” = dist(z,U)/”z - u|| > A (]

Theorem 2.  If the unit ball in a normed linear space is compact,
then the space has finite dimension.

Proof. If the space is not finite dimensional, then a sequence [z,] can be
defined inductively as follows. Let z; be any point such that ||I1” = 1. If
" Zy,...,Tp—1 have been defined, let U,_; be the subspace that they span. By
Corollary 2, above, U,,_; is closed. Use Riesz's Lemma to select z, so that
||zn|| = 1 and dist(zn,Un-1) > 3. Then ||zn — z;|| > J whenever i < n. This
sequence cannot have any convergent subsequence. [

Putting Theorems 1 and 2 together, we have the following result.

Theorem 3. A normed linear space is finite dimensional if and only
if its unit ball is compact.

In any normed linear space, a compact set is necessarily closed and bounded.
In a finite-dimensional space, these two conditions are also sufficient for compact-
ness. In any infinite-dimensional space, some additional hypothesis is required
to imply compactness. For many spaces, necessary and sufficient conditions for
compactness are known. These invariably involve some uniformity hypothesis.
See Section 7.4, page 347, for some examples, and [DS] (Section 1V.14) for many
others.

Problems 1.4

1. A real-valued function f defined on a normed space is said to be lower semicontinuous
ifeachset {z : f(z) < )} isclosed () € R). Prove that every continuous function is lower
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12.

13.

14.

15.

16.

17.
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semicontinuous. Prove that if f and —f are lower semicontinuous, then f is continuous.
Prove that a lower semicontinuous function attains its infimum on a compact set.

. Prove that the collection of open sets (as we have defined them) in a normed linear space

fulfills the axioms for a topology.

. Two norms, N; and N2, on a vector space X are said to be equivalent if there exist

positive constants a and 3 such that aNy < N2 < BN,;. Show that this is an equivalence
relation. Show that the topologies engendered by a pair of equivalent norms are identical.

. Prove that a Cauchy sequence converges if and only if it has a convergent subsequence.

. Let X be the linear subspace of all real sequences z = [z(1),z(2),...] such that only a

finite number of terms are nonzero. Is there a norm for X such that (X, || ||) is a Banach
space?

. Using the notation in the proof of Theorem 1, prove in detail that F = T (M).

. Prove these properties of the distance function dist(z, U) (defined in Section 1.2, page 9)

when U is a linear subspace in a normed linear space:
(a) dist(Az,U) = |\|dist(z,U)
(b) dist(z — u,U) = dist(z,U) (uel)
(c) dist(z + y,U) < dist(z,U) + dist(y,U)

. Prove this version of Riesz's Lemma: If U is a finite-dimensional proper subspace in a

normed linear space X, then there exists a point z for which ||z|| = dist(z,U) = 1.

. Prove thatif the unit ballin a normed linear space is complete, then the space is complete.

. Let U be a finite-dimensional subspace in a normed linear space X. Show that for each

Z € X there exists a u € U satisfying ||z — u|| = dist(z, U).

Let U be a closed subspace in a normed space X. Prove that the distance functional has
the property that for z € X \ U, dist(z,U) > 0.

In any infinite-dimensional normed linear space, the open unit ball contains an infinite

disjoint family of open balls all having radius % (') (Prove it, of course. While you're at

it, try to improve the number %)

In the proof of Theorem 1, show that M is bounded as follows. If it is not bounded,
let ax € M and |lax|l, = co. Put a} = ai/|lak|l. Prove that the sequence [a}]
has a convergent subsequence whose limit is nonzero. By considering Taj, obtain a
contradiction of the injective nature of T.

Prove that the sequence (5] constructed in the proof of Theorem 2 is linearly indepen-
dent.

Prove that in any infinite-dimensional normed linear space there is a sequence [z) in
the unit ball such that ||:zn - zm” > 1 when n # m. If you don’t succeed, prove the
same result with the weaker inequality ||zn —Zm|| 2 1. (Use the proof of Theorem 2 and
Problem 8 above.) Also prove that the unit ball in €, contains a sequence satisfying
llzn — zm|| = 2 when n # m. Reference: [Dies).

Let S be a subset of a normed linear space such that ||z — y|| = 1 when z and y are
different points in S. Prove that S is closed. Prove that if S is an infinite set then it
cannot be compact. Give an example of such a set that is bounded and infinite in the
space C[0,1).

Let A and B be nonempty closed sets in a normed linear space. Prove that if A + B is
compact, then so are A and B. Why do we assume that the sets are nonempty? Prove
that if A is compact, then A + B is closed.
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1.5 Linear Transformations

Consider two vector spaces X and Y over the same scalar field. A mapping
f: X =Y is said to be linear if

flau + Bv) = af(u) + Bf(v)

for all scalars a and 3 and for all vectors u, v in X. A linear map is often called
a linear transformation or a linear operator. If Y happens to be the scalar
field, the linear map is called a linear functional. By taking a = 3 = 0 we see
at once that a linear map f must have the property f(0) = 0. This meaning of
the word “linear” differs from the one used in elementary mathematics, where a
linear function of a real variable £ means a function of the form = — az + b.

Example 1. If X = R" and Y = R™, then each linear map of X into Y is of
the form f(z) =y,

y(i) =Y ayz(j) (1<i<m)
i=1

where the a;; are certain real numbers that form an m x n matrix. (]
Example 2. Let X = C[0,1] and Y = R. One linear functional is defined by
f(z) = [y a(s)ds. .

Example 3. Let X be the space of all functions on [0,1] that possess n
continuous derivatives, z’,z",...,z(™). Let ag,a1,...,an be fixed elements of
X. Then a linear operator D is defined by

n
Dz = z a;z®

i=0
Such an operator is called a differential operator. (]
Example 4. Let X = C[0,1] = Y. Let k be a continuous function on [0, 1] x
[0,1]. Define K by

1

(Kz)(s) = / K(s, £)z(t) dt

0

This is a linear operator, in fact a linear integral operator. (]

Example 5. Let X be the set of all bounded continuous functions on Ry =
{teR:t >0} Put

(Lz)(s) = / e %tz(t)dt
0
This linear operator is called the Laplace Transform. (]

Example 6. Let X be the set of all continuous functions on R for which
J22, |z(t)| dt < oo. Define

(Fz)(s) = /90 e~ 2istr(¢) dt

— 00
This linear operator is called the Fourier Transform. ]

If a linear transformation T acts between two normed linear spaces, then
the concept of continuity becomes meaningful.
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Theorem 1. A linear transformation acting between normed linear
spaces is continuous if and only if it is continuous at zero.

Proof. LetT : X — Y besuch a linear transformation. If it is continuous, then
of course it is continuous at 0. For the converse, suppose that T is continuous
at 0. For each € > 0 there is a § > 0 such that for all z,

|z|| <6 = ||T1:|| <e
Hence
|lz-y||<é = ||Tz-Ty||=|T(z-y)| <e (]
A linear transformation T acting between two normed linear spaces is said
to be bounded if it is bounded in the usual sense on the unit ball:
sup{ITa]: ] < 1} < o

Example 7. Let X = C'[0,1], the space of all continuously differentiable
functions on [0,1]. Give X the norm ”17”oo = sup|z(s)|. Let f be the linear
functional defined by f(z) = z’(1). This functional is not bounded, as is seen
by considering the vectors z,(s) = s™. On the other hand, the functional in

Example 2 is bounded since |f(z)| < fol |z(s)|ds < ||:z:||oo ]

Theorem 2. A linear transformation acting between normed linear
spaces is continuous if and only if it is bounded.

Proof. LetT: X — Y besuch a map. If it is continuous, then thereisa é > 0
such that
llzl| <6 = ||T=|| <1

If ||z|| < 1, then 6z is a vector of norm at most 8. Consequently, ||T(éz)|| < 1,
whence ||T1:|| < 1/8. Conversely, if ||Tz|| < M whenever ||1:|| < 1, then

Mz r(22)
£

This proves continuity at 0, which suffices, by the preceding theorem. (]

=l < 7 = <1= <M= ||Tz|| <

If T:X =Y is a bounded linear transformation, we define
IT|| = sup{||T=|| - ||=| < 1}

It can be shown that this defines a norm on the family of all bounded linear
transformations from X into Y; this family is a vector space, and it now becomes
a normed linear space, denoted by L£(X,Y).

The definition of ||T|| leads at once to the important inequality

7=l < IITit ll=l

To prove this, notice first that it is correct for z = 0, since T0 = 0. On the other
hand, if z # 0, then z/||z|| is a vector of norm 1. By the definition of ||T]|, we
have ||T(z/||z|])|| < ||T]|, which is equivalent to the inequality displayed above.
That inequality contains three distinct norms: the ones defined on X, Y, and
L(X,Y).
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Theorem 3. A linear functional on a normed space is continuous if
and only if its kernel (“null space”) is closed.

Proof. Let f: X — R be a linear functional. Its kernel is
ker(f) = {z : f(z) = 0}

This is the same as f~!({0}). Thus if f is continuous, its kernel is closed, by
Theorem 4 in Section 1.3, page 17. Conversely, if f is discontinuous, then it is
not bounded. Let Hz,,” < 1 and f(zn) — oo. Take any z not in the kernel and
consider the points £ — e,x,, where €, = f(z)/f(zn). These points belong to
the kernel of f and converge to z, which is not in the kernel, so the latter is not
closed. (]

Corollary 1.  Every linear functional on a finite-dimensional normed
linear space is continuous.

Proof. 1If f is such a functional, its null space is a subspace, which, by Corollary
2 in Section 1.4, page 22, must be closed. Then Theorem 3 above implies that
f is continuous. ]

Corollary 2.  Every linear transformation from a finite-dimensional
normed space to another normed space is continuous.

Proof. Let T: X — Y be such a transformation. Let {b;,...,b,} be a basis
for X. Then each z € X has a unique expression as a linear combination of
basis elements. The coefficients depend on z, and so we write z = Z?: 1 Ai(T)b;.
These functionals A; are in fact linear. Indeed, from the previous equation and
the equation u = 3 A;(u)b; we conclude that

az + fu = i[az\i(z) + BAi(u)] b

i=1
Since we have also n
az + fu = z Ai(az + Bu)b;

i=1

we may conclude (by the uniqueness of the representations) that
Ai(az + Bu) = adi(z) + BAi(u)

Now use the preceding corollary to infer that the functionals \; are continuous.
Getting back to T, we have

Tz = T('z:; /\i(z)bi> = iZ:;/\i(a:)Tbi

and this is obviously continuous. [
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Corollary 3. All norms on a finite-dimensional vector space are
equivalent, as defined in Problem 3, page 23.

Proof. Let X be a finite-dimensional vector space having two norms || ||, and

| l,- The identity map I from (X,|| ||,) to (X,|| ||,) is continuous by the
preceding result. Hence it is bounded. This implies that

llzll, = 172}, < elle]],

By the symmetry in the hypotheses, there is a 8 such that ||z||, < B||z,- ®

Recall that if X and Y are two normed linear spaces, then the notation
L(X,Y) denotes the set of all bounded linear maps of X into Y. We have seen
that boundedness is equivalent to continuity for linear maps in this context. The
space £(X,Y) has, in a natural way, all the structure of a normed linear space.
Specifically, we define

(A + BB)(z) = a(Az) + B(Bx)
4]l = sup{||Az[|, : = € X, [le]| < 1}

In these equations, A and B are elements of £(X,Y), and z is any member of
X.

Theorem 4. If X is a normed linear space and Y is a Banach space,
then L(X,Y) is a Banach space.

Proof. The only issue is the completeness of £(X,Y). Let [An] be a Cauchy
sequence in £(X,Y). For each £ € X, we have

[4n2 — Ama|| = |(4n = Am)z]| < [|4n = Am| [z}

This shows that [A,z] is a Cauchy sequence in Y. By the completeness of Y we
can define Az = lim A,z. The linearity of A follows by letting n — oo in the
equation

Ap(ax + pu) = aA,z + fAqu

The boundedness of A follows from the boundedness of the Cauchy sequence
[An]. If ||A,,| < M then ||A,,:1:” < M||:z|| for all z, and in the limit we have
||Ax|| < M||z||. Finally, we have || A, — A|| — 0 because if ||An — Am|| < € when
m,n 2 N, then for all £ of norm 1 we have ||An1: - Amx“ < e when m,n > N.
Then we can let m — oo to get ||Anz — Az|| < € and ||A, — A]| <. ]

The composition of two linear mappings A and B is conventionally written
as AB rather than Ao B. Thus, (AB)x = A(Bz). If AA is well-defined (i.e., the
range of A is contained in its domain), then we write it as A2. All nonnegative
powers are then defined recursively by writing A% = I, A"t! = AA",
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Theorem 5. The Neumann Theorem. Let A be a bounded
linear operator on a Banach space X (and taking values in X). If
||A” < 1, then I — A is invertible, and

oo

(I-A)'=> 4

k=0

Proof. Put B, = Z:=o Ak. The sequence [By] has the Cauchy property, for
if n > m. then

n n o0
1Ba=Ball = 3 4 < 3 |44 < X 4l
k=m+1 k=m+1 k=m

~ A i Al = fA1m/ (3 - D4l

(In this calculation we used Problem 20.) Since the space of all bounded linear
operators on X into X is complete (Theorem 4), the sequence [Bn] converges to
a bounded linear operator B. We have

n+1

n
(I—A)Bp=Bp~ABn=)Y A=Y Ak =1- 4"
k=0 k=1

Taking a limit, we obtain (I — A)B = I. Similarly, B(I — A) = I. Hence
B=(I-A)". ]

The Neumann Theorem is a powerful tool, having applications to many
applied problems, such as integral equations and the solving of large systems of
linear equations. For examples, see Section 4.3, which is devoted to this theorem,
and Section 3.3, which has an example of a nonlinear integral equation.

Problems 1.5

1. Prove that the closure of a linear subspace in a normed linear space is also a subspace.
(The closure operation is defined on page 16.)

2. Prove that the operator norm defined here has the three properties required of a norm.

3. Prove that the kernel of a linear functional is either closed or dense. (A subset in a
topological space X is dense if its closure is X.)

4. Let {z1,...,zx} be a linearly independent finite set in a normed linear space. Show that
there exists a 6 > 0 such that the condition

max |lz: — will < 6
<igk

1SS

implies that {y1,...,yx} is also linearly independent.

5. Prove directly that if T is an unbounded linear operator, then it is discontinuous at 0.

(Start with a sequence |zn] such that ||z.]} < 1 and ||Tznl} = o0.)
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11.
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. Let A be an m X n matrix. Let X = R", with norm ||z||,, = max;g;gn |€(i)|. Let Y =

R™, with norm |lyl|, = max,¢;¢m [¥(i)|. Define a linear transformation T from X to
Y by putting (Tz)(i) = 3_7_, @i;2(4), 1 < i < m. Prove that ||T|| = max; 3°7_, las;l.

. Prove that a linear map is injective (i.e., one-to-one) if and only if its kernel is the O

subspace. (The kernel of a map T is {z: Tz = 0}.)

. Prove that the norm of a linear transformation is the infimum of all the numbers M that

satisfy the inequality ||Tz|| < M||z|| for all z.

. Prove the (surprising) result that a linear transformation is continuous if and only if it

transforms every sequence converging to zero into a bounded sequence.

If f is a linear functional on X and N is its kernel, then there exists a one-dimensional
subspace Y such that X =Y @ N. (For two sets in a linear space, we define U + V as
the set of all sums u + v when u ranges over U and v ranges over V. If U and V are
subspaces with only 0 in common we write this sum as U @ V.)

The space €5 (S) was defined in Problem 12 of Section 1.2, page 12. Let S = N, and
define T : €sc(N) - C -—%.%] by the equation (T'z)(s) = 2:’:1 z(k)s*. Prove that T is
linear and continuous.

Prove or disprove: A linear map from a normed linear space into a finite-dimensional
normed linear space must be continuous.

Addition of sets in a vector space is defined by A+ B = {a+b:a € A b € B}.
Better: A+ B = {z : 3a € A & 3b € B such that z = a + b}. Scalar multiplication
is AA = {Aa : a € A}. Does the family of all subsets of a vector space X form a vector
space with these definitions?

Let Y be a closed subspace in a Banach space X. A “coset” is a set of the formz +Y =
{z +v:y € Y}. Show that the family of all cosets is a normed linear space if we use the
norm |jz + Y [| = dist(z,Y).

Refer to Problem 12 in the preceding section, page 23. Show that the assertion there is
not true if % is replaced by %

Prove that for a bounded linear transformation T: X - Y

Tl = sup [ITz|| = sup||Tz||/ll|
x#0

x||=1
Prove that a bounded linear transformation maps Cauchy sequences into Cauchy se-
quences.

Prove that if a linear transformation maps some nonvoid open set of the domain space
to a bounded set in the range space, then it is continuous.

On the space C[0, 1] we define “point-evaluation functionals” by t*(z) = z(t). Here
t € (0,1 and z € C[0,1]. Prove that [|t*]| = 1. Prove that if ¢ = ) "  \;t;, where
t1,t2,...,tn are distinct points in [0, 1], then ||¢|| = ;1 1l

In the proof of the Neumann Theorem we used the inequality ||A%|| < ”A||k Prove this.

Prove that if {¢1,...,¢n} is a linearly independent set of linear functionals, then for
suitable z; we have ¢;(z;) = §;; for 1 < i,j < n.
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22. Prove that if a linear transformation is discontinuous at one point, then it is discontinuous

everywhere.

23. Linear transformations on infinite-dimensional spaces do not always behave like their
counterparts on finite-dimensional spaces. The space cg was defined in Problem 1.2.16
(page 12). On the space cg define

Az = Al|z(1),z(2),...] = [=(2),z(3),.. ]
Bz = Blz(1),z(2),...] = [0,z(1),z(2),.. ]

Prove that A is surjective but not invertible. Prove that B is injective but not invertible.

Determine whether right or left inverses exist for A and B.

24. What is meant by the assertion that the behavior of a linear map at any point of its
domain is exactly like its behavior at 0?7

25. Prove that every linear functional f on R™ has the form f(z) = Z?:x a;z(i), where
z(1),z(2), ...,z(n) are the coordinates of z. Let @ = [a1,a2,...,an) and show that the

relationship f — a is linear, injective, and surjective (hence, an isomorphism).

26. Is it true for linear operators in general that continuity follows from the null space being

closed?
27. Let ¢g,91,...,%n be linear functionals on a linear space. Prove that if the kernel of ¢¢
contains the kernels of all ¢; for 1 < i < n, then ¢g is a linear combination of ¢1,...,%n.

28. If L is a bounded linear map from a normed space X to a Banach space Y, then L has a
unique continuous linear extension defined on the completion of X and taking values in
Y. (Refer to Problem 1.2.47, page 15.) Prove this assertion as well as the fact that the

norm of the extension equals the norm of the original L.

29. Let A be a continuous linear operator on a Banach space X. Prove that the series
:5:0 A™/n! converges in £(X, X). The resulting sum can be denoted by e?. Is e
invertible?

30. Investigate the continuity of the Laplace transform (in Example 5, page 24).

1.6 Zorn’s Lemma, Hamel Bases, and the Hahn-Banach Theorem

This section is devoted to two results that require the Axiom of Choice for their
proofs. These are a theorem on existence of Hamel bases, and the Hahn-Banach
Theorem. The first of these extends to all vector spaces the notion of a base,
which is familiar in the finite-dimensional setting. The Hahn-Banach Theorem
is needed at first to guarantee that on a given normed linear space there can
be defined continuous maps into the scalar field. There are many situations
in applied mathematics where the Hahn-Banach Theorem plays a crucial role;
convex optimization theory is a prime example.

The Axiom of Choice is an axiom that most mathematicians use unre-
servedly, but is nonetheless controversial. Its status was clarified in 1940 by a
famous theorem of Godel [Go]. His theorem can be stated as follows.
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Theorem 1. If a contradiction can be derived from the Zermelo-
Fraenkel axioms of set theory (which include the Axiom of Choice),
then a contradiction can be derived within the restricted set theory
based on the Zermelo—Fraenkel axioms without the Axiom of Choice.

In other words, the Axiom of Choice by itself cannot be responsible for intro-
ducing an inconsistency in set theory. That is why most mathematicians are
willing to accept it. In 1963, Paul Cohen [Coh] proved that the Axiom of Choice
is independent of the remaining axioms in the Zermelo—Fraenkel system. Thus
it cannot be proved from them. The statement of this axiom is as follows:

Axiom of Choice. If A is a set and f a function on A such that
f(a) is a nonvoid set for each a € A, then f has a “choice function.”
That means a function c on A such that c(a) € f(a) for all o € A.

For example, suppose that A is a finite set: A = {ai,...,an}. For each i in
{1,2,...,n} a nonempty set f(a;) is given. In n steps, we can select “repre-
sentatives” 1 € f(a), T2 € f(az), etc. Having done so, define c(o;) = z; for
i =1,2,...,n. Attempting the same construction for an infinite set such as
A = R, with accompanying infinite sets f(a), leads to an immediate difficulty.
To get around the difficulty, one might try to order the elements of each set f(a)
in such a way that there is always a “first” element in f(a). Then c(c) can be
defined to be the first element in f(a). But the proposed ordering will require
another axiom at least as strong as the Axiom of Choice! For a second example,
see Problem 45, page 40.

A number of other set-theoretic axioms are equivalent. to the Axiom of
Choice. See [Kel] and [RR]. Among these equivalent axioms, we single out
Zorn’s Lemma as being especially useful. First, we require some definitions.

Definition 1. A partially ordered set is a pair (X, <) in which X is a set
and < is a relation on X such that

(i) z<zforallz
(i) fz<yand y < z, then z < =

Definition 2. A chain, or totally ordered set, is a partially ordered set in
which for any two elements z and y, either z <y or y < z.

Definition 3. In a partially ordered set X, an upper bound for a subset A
in X is any point = in X such that a < z for all a € A.

Example 1. Let S be any set, and denote by 25 the family of all subsets of
S, including the empty set @ and S itself. This is often called the “power set”
of S. Order 25 by the inclusion relation C. Then (25,C) is a partially ordered
set. It is not totally ordered. An upper bound for any subset of 25 is S. [}

Example 2. In R?, define £ < y to mean that (i) < y(i) for i = 1 and 2.
This is a partial ordering but not a total ordering. Which quadrants in R? have
upper bounds? ]

Example 3. Let F be a family of functions (whose ranges and domains need
not be specified). For f and g in F we write f < g if two conditions are fulfilled:
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(i) dom(f) C dom(g)

(ii) f(z) =g(z) for all  in dom(f)
When this occurs, we say that “g is an extension of f.” Notice that this is
equivalent to the assertion f C g, provided that we interpret (as ultimately we
must) f and g as sets of pairs of elements. (]

Definition 4. An element m in a partially ordered set X is said to be a
maximal element if every r in X that satisfies the condition m < z also
satisfies £ < m.

Zorn’s Lemma. A partially ordered set contains a maximal element
if each totally ordered subset has an upper bound.

Definition 5. Let X be a linear space. A subset H of X is called a Hamel
base, or Hamel basis, if each point in X has a unique expression as a finite
linear combination of elements of H.

Example 4. Let X be the space of all polynomials defined on R. A Hamel
base for X is given by the sequence [h,] where h,(s) = s", n=0,1,2,.... @n

Theorem 2. Every nontrivial vector space has a Hamel base.

Proof. Let X be a nontrivial vector space. To show that X has a Hamel
base we first prove that X has a maximal linearly independent set, and then
we show that any such set is necessarily a Hamel base. Consider the collection
of all linearly independent subsets of X, and partially order this collection by
inclusion, C. In order to use Zorn’s Lemma, we verify that every chain in
this partially ordered set has an upper bound. Let C be a chain. Consider
S* =J{S: S € C}. This certainly satisfies S C S* for all S € C. But is S*
linearly independent? Suppose that ZLI a;3; = 0 for some scalars a; and for
some distinct points s; in S*. Each s; belongs to some S; € C. Since C is a chain
(and since there are only finitely many s;), one of these sets (say S;) contains all
the others. Since S; is linearly independent, we conclude that " |a;| = 0. This
establishes the linear independence of S* and the fact that every chain in our
partially ordered set has an upper bound. Now by Zorn’s Lemma, the collection
of all linearly independent sets in X has a maximal element, H. To see that H
is a Hamel base, let r be any element of X. By the maximality of H, either
H U {z} is linearly dependent or HU {z} C H (and then z € H). In either
case, Z is a linear combination of elements of H. If £ can be represented in two
different ways as a linear combination of members of H, then by subtraction, we
obtain 0 as a nontrivial linear combination of elements of H, contradicting the
linear independence of H. [}

In the next theorem, when we say that one real-valued function, f, is dom-
inated by another, p, we mean simply that f(z) < p(z) for all z.

Hahn-Banach Theorem. Let X be a real linear space, and let
p be a function from X to R such that p(z + y) < p(z) + p(y) and
p(Az) = Ap(z) if A > 0. Any linear functional defined on a subspace of
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X and dominated by p has an extension that is linear, defined on X,
and dominated by p.

Proof. Let f be such a functional, and let X be its domain. Thus Xg is a
linear subspace of X. In approaching the theorem for the first time and wonder-
ing how to discover a proof, one naturally asks how to extend the functional f
to a domain containing X that is only one dimension larger than Xy. If that is
impossible, then the theorem itself cannot be true. Accordingly, let y be a point
not in the original domain. To extend f to X + span(y) it suffices to specify a
value for f(y) because of the necessary equation

flz+XMy)=f(x)+Af(y) (z€Xo, AeR)
The value of f(y) must be assigned in such a way that
f@)+Af(y) <p(z+Ay) (T€Xo, AeR)

If A = 0, this inequality is certainly valid. If A > 0, we must have

(3)+1w<p(3+y) (=€ X0

or
f(z1) + fy) < p(z1 + ) (1 € Xo)

If A < 0, we must have

f(z2) + f(y) 2 ~plz + Ay) = —p(—z2 — y) (z2 € Xo)

A

These two conditions on f(y) can be written together as

=p(—z2 —y) — f(z2) < fy) <p(x1 +9) — flz1) (21,72 € Xo)
In order to see that there is a number satisfying this inequality, we compute

f(z1) = f(z2) = fz1 — 22) < P(z1 — T2) =p(T1 +Yy — T2 — V)
<p(z1 +y) +p(—z2 - y)

This completes the extension by one dimension.

Next, we partially order by the inclusion relation (C) all the linear exten-
sions of f that are dominated by p. Thus h C g if and only if the domain of
g contains the domain of h, and g(z) = h(z) on the domain of h. In order to
use Zorn’s Lemma, we must verify that each chain in this partially ordered set
has an upper bound. But this is true, since the union of all the elements in
such a chain is an upper bound for the chain. (Problem 2.) By Zorn’s Lemma,
there exists a maximal element f in our partially ordered set. Then f is a linear
functional that is an extension of f and is dominated by p. Finally, f must be
defined on all of X, for if it were not, a further extension would be possible, as
shown in the first part of the proof. [ |
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Corollary 1. Let ¢ be a linear functional defined on a subspace Y
in a normed linear space X and satisfying

oy < Mlly|| (yeY)

Then ¢ has a linear extension defined on all of X and satisfying the
above inequality on X.

Proof. Use the Hahn-Banach Theorem with p(z) = M” || ]

Corollary 2. Let Y be a subspace in a normed linear space X.
If w € X and dist(w,Y) > 0, then there exists a continuous linear
functional ¢ defined on X such that ¢(y) =0 forally e Y, ¢(w) = 1,
and “¢|| = 1/dist(w,Y).

Proof. Let Z be the subspace generated by Y and w. Each element of Z has a
unique representation as y + Aw, where y € Y and A € R. It is clear that ¢ must
be defined on Z by writing ¢(y + Aw) = A. The norm of ¢ on Z is computed as
follows, in which the supremum is over all nonzero vectors in Z:
||#]| = sup |o(y + Mw)/|[y + Aw|| = sup |A/||ly + dw]|| = sup 1/ly/A+ wl|
= 1/inf ||y + w|| = 1/ dist(w, )

By Corollary 1, we can extend the functional ¢ to all of X without increase of

its norm. []
Corollary 3. To each point w in a normed linear space there
corresponds a continuous linear functional ¢ such that ||¢|| =1 and
¢(w) = [|u]].

Proof. In Corollary 2, take Y to be the 0-subspace. (]

At this juncture, it. makes sense to associate with any normed linear space X
a normed space X" consisting of all continuous linear functionals defined on X.
Corollary 3 shows that X* is not trivial. The space X* is called the conjugate
space of X, or the dual space or the adjoint of X.

Example 4. Let X = R"®, endowed with the max-norm. Then X* is (or
can be identified with) R™ with the norm || ||,. To see that this is so, recall
(Problem 1.5.25, page 30) that if ¢ € X*, then ¢(z) = Y|, u(i)z(i) for a
suitable u € R™. Then

lell = sup |z (i)(i)| = zluu = Ifull, '
llzlloo €1

Example 5. Let cg denote the Banach space of all real sequences that converge
to zero, normed by putting ||z|| . = sup|z(n)]. Let €& denote the Banach
space of alI real sequences u for which Y"o2, |u(n)| < oo, normed by putting
Hu”l = Y22, lu(n)|. With each u € ¢; we associate a functional ¢, € c§ by
means of the equation ¢,(z) = Y} o, u(n)z(n). (The connection between these
two spaces is the subject of the next result.) [}
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Proposition. The mapping u — ¢, is an isometric isomorphism
between £, and cj. Thus we can say that cg “is” £;.

Proof. Perhaps we had better give a name to this mapping. Let A : {; —
cp be defined by Au = ¢,. It is to be shown that for each u, Au is linear
and continuous on cg. Then it is to be shown that A is linear, surjective, and
isometric. Isometric means “Au][ = ”u”1 That ¢, is well-defined follows from
the absolute convergence of the series defining ¢, (z):

3l Ju()] < D llellolutm)l = l|ll ]l
The linearity of ¢, is obvious:
dulaz +By) = 3 _u(n)[az(n) + fy(n)] = a D Ju(n)z(n) + 8D u(n)y(n)
= adu(z) + Adu(y)

The continuity or boundedness of ¢, is easy:

6u(@)] = |3 utm)z(n)| < 3 lum)] le(m)] < Jlzll el

By taking a supremum in this last inequality, considering only z for which
Izl < 1, we get

ligull < ffull,
On the other hand, if € > 0 is given, we can select N so that 3 o~ ., |u(n)] <e.

Then we define z by putting z(n) = sgn u(n) for n < N, and by setting z(n) = 0
for n > N. Clearly, z € ¢p and ”:c”o‘J = 1. Hence

N N
l6ull = dulz) =D _z(n)u(n) = lu(n)l > |lu]|, - €
n=1 n=1

Since & was arbitrary, ||d)u” > "u“l Hence we have proved

l[Aull = léull = [lll,

Next we show that A is surjective. Let 1 € cj. Let §, be the element of cq
that has a 1 in the nth coordinate and zeros elsewhere. Then for any z,

T= i z(n)dén

n=1

Since ¥ is continuous and linear,

V() = Y a(M)$(8n)
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Consequently, if we put u(n) = ¥(d,), then ¥(z) = ¢,(x) and ¢ = ¢,. To verify
that u € ¢;, we define (as above) z(n) = sgnu(n) for n < N and z(n) = 0 for
n > N. Then

N
Y lum)l =Y z(nyu(n) = ¥(z) < [[¥]] ||| = |||
n=1

Thus |[u], < ||
Finally, the linearity of A follows from writing
Saurpu(2) = Y_(au+Bv)(n)z(n) = a Y _u(n)a(n) + 8 v(n
= (adu + Bdy)(z ) [ ]

Corollary 4. For each = in a normed linear space X, we have
||| = max{|o(z)| : 6 € X* , ||g]| =1}
Proof. If¢ € X* and ||¢|| = 1, then

z) < [lel} [|=]l = ||l
Therefore,
sup{la()| : 6 € X", [|¢]| = 1} < ||z
For the reverse inequality, note first that it is trivial if £ = 0. Otherw1se, use
Corollary 3. Then there is a functional ¥» € X* such that ¥(z ||:c|| and
l#]] = 1. Note that the supremum is attained. ]

A subset Z in a normed space X is said to be fundamental if the set of
all linear combinations of elements in Z is dense in X. Expressed otherwise, for
each £ € X and for each € > 0 there is a vector ZL, Aiz; such that 2; € Z,

A; € R, and
“.’L‘ - Zz\iZ,'” <eg

We could also state that dist(z,span Z) = 0 for all z € X. As an example, the

vectors
4, =(1,0,0,... )

62 =(0,1,0,...)
etc.
form a fundamental set in the space cp.
Example 6. In the space C|a, b}, with the usual supremum norm, an important
fundamental set is the sequence of monomials
w(t) =1, w(t)=t, u(t)=t*,

The Weierstrass Approximation Theorem asserts the fundamentality of this se-
quence. Thus, for any z € C[a,b] and any € > O there is a polynomial u for
which ||z — u”oo < €. Of course, u is of the form Y ;g Aju;. ]

Definition 5. If Ais asubset of a normed linear space X, then the annihilator

of A is the set
={¢€e X" :¢(a)=0 forall a€ A}
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Theorem 3. A subset in a normed space is fundamental if and only
if its annihilator is {0}.

Proof. Let X be the space and Z the subset in question. Let Y be the closure
of the linear span of Z. If Y # X, let £ € X \Y. Then by Corollary 2, there
exists ¢ € X* such that ¢(z) =1 and ¢ € Y*. Hence ¢ € Z+ and Z+ # 0. If
Y = X, then any element of Z* annihilates the span of Z as well as Y and X.
Thus it must be the zero functional; i.e., Z4- = 0. ]

Theorem 4. If X isanormed linear space (not necessarily complete)
then its conjugate space X* is complete.

Proof. This follows from Theorem 4 in Section 1.5, page 27, by letting Y = R
in that theorem. ]

Problems 1.6

1. Let X and Y be sets. A function from a subset of X to Y is a subset f of X x Y such
that for each £ € X there is at most one y € Y satisfying (z,y) € f. We write then
f(z) = y. The set of all such functions is denoted by S. Prove or disprove the following:
(a) S is partially ordered by inclusion. (b) The union of two elements of S is a member
of S. (c) The intersection of two elements of S is a member of S. (d) The union of any
chain in S is a member of S.

2. In the proof of the Hahn-Banach theorem, show that the union of the elements in a chain
is an upper bound for the chain. (There are five distinct things to prove.)

3. Denote by co the normed linear space of all functions z : N — R having the property
limnoc Z(n) = 0, with norm given by ||z|| = sup,, |z(n)]. Do the vectors em defined by
em(n) = 6pm form a Hamel base for co?

4. If {hq : @ € I} is a Hamel base for a vector space X, then each element z in X has a
representation z = Za Ala)hq in which A : I — R and {a : A(a) # 0} is finite. (Prove
this.)

5. Prove that every real vector space is isomorphic to a vector space whose clements are
real-valued functions. (“Function spaces are all there are.”)

6. Prove that any linearly independent set in a vector space can be extended to produce a
Hamel base.

7. If U is a linear subspace in a vector space X, then U has an “algebraic complement,”
which is a subspace V such that X = U+ V, UnV =0. (“0” denotes the zero subspace.)
(Prove this.)

FIVE EXERCISES (8-12) ON BANACH LIMITS

8. The space £ consists of all bounded sequences, with norm ||z|| ., =sup, |z(n)|. Define
T : €° — €< by putting
Tz = [z(1), z(2) — z(1), z(3) — z(2), z(4) — z(3) .. ]

Let M denote the range of T, and put u = (1,1,1,...]. Prove that dist(u, M) = 1.

9. Prove that there exists a continuous linear functional ® € M1 such that ||¢|| = ¢(u) = 1.
The functional ¢ is called a Banach limit, and is sometimes written LIM.

10. Prove that if z € £°° and z 2> 0, then ¢(z) 2> 0.
11. Prove that ¢(z) = limp z(n) when the limit exists.

12. Prove that if y = [2(2),z(3),.-.] then ¢(x) = B(¥).



38

13

15.

16.

17.

18.

19.

20.

21.

22,

23

TH

24

Chapter 1 Normed Linear Spaces

. Let & denote the normed linear space of all bounded real sequences, with norm given
by ||z|l. = sup, |z(n)|. Prove that £x is complete, and therefore a Banach space. Prove
that €] = €, where the equality here really means isometrically isomorphic.

. A hyperplane in a normed space is any translate of the null space of a continuous,
linear, nontrivial functional. Prove that a set is a hyperplane if and only if it is of the
form {z : ¢(z) = A}, where ¢ € X* N0 and A € R. A translate of a set S in a vector
space is a set of the form v+ S = {v+s:s € S}.

A half-space in a normed linear space X is any set of the form {z : ¢(z) = A}, where
¢ € X* N\ 0and X € R. Prove that for every z satisfying ||z|| = 1 there exists a half-space
such that z is on the boundary of the half-space and the unit ball is contained in the

half-space.

Prove that a linear functional ¢ is a linear combination of linear functionals ¢1, ..., ¢n if
and only if N(¢) D ﬂ:‘zl N(¢,). Here N(¢) denotes the null space of ¢. (Use induction
and trickery.)

Prove that a linear map transforms convex sets into convex sets.
Prove that in a normed linear space, the closure of a convex set is convex.

Let Y be a linear subspace in a normed linear space X. Prove that
dist(z, Y) = sup{o(z): € X, ¢ L Y, |l¢ll =1}

Here the notation ¢ .l Y means that ¢(y) =0forally € Y.
Let Y be a subset of a normed linear space X. Prove that Y1 is a closed linear subspace
in X*.

If Z is a linear subspace in X*, where X is a normed linear space, we define
Z, ={z€ X:¢(x) =0 forall ¢€ Z}

Prove that for any closed subspace Y in X, (Y1), =Y. Generalize.

Let f(z) = an;o anz", where [an] is a sequence of complex numbers for which nan — 0.

Prove the famous theorem of Tauber that Za.—. converges if and only if lim;-,; f(z)
exists. (See [DS], page 78.)

. Do the vectors n defined just after Corollary 4 form a fundamental set in the space €

consisting of bounded sequences with norm ||z||,, = maxns |z(n)|?
REE EXERCISES (24-26) ON SCHAUDER BASES (See [Sem] and [Sing].)

. A Schauder base (or basis) for a Banach space X is a sequence [un] in X such that each
z in X has a unique representation

>
z= E Anun
n=1

This equation means, of course, that limy_, ||z — Z:l=1 Antnl| = 0. Show that one
Schauder base for ¢g is given by un(m) = énm (n,m =1,2,3,...).
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Prove that the An in the preceding problem are functions of z and must be, in fact, linear

and continuous.

Prove that if the Banach space X possesses a Schauder base, then X must be separable.

That is, X must contain a countable dense set.

Prove that for any set A in a normed linear space all these sets are the same:
AL, (closure A)+, (span A)<, [closure (span A)]*,...

Prove that for = € co,

=)l = sup{Zz(n)u(n) tuely, ) € 1}

n=1

Use the Axiom of Choice to prove that for any set S having at least 2 points there is a

function f : S — S that does not have a fixed point.

An interesting Banach space is the space ¢ consisting of all convergent sequences. The
norm is ||a:||cC = supp, |z(n)|. Obviously, we have these set inclusions among the examples
encountered so far:

£y CeopCecC il

Prove that c¢ is a hyperplane in c. Identify in concrete terms the conjugate space c*.
Prove that if H is a Hamel base for a normed linear space, then so is {h/||h|| : h € H}.

Let X and Y be linear spaces. Let H be a Hamel base for X. Prove that a linear map
from X to Y is completely determined by its values on H, and that these values can be

arbitrarily—assigned elements of Y.

Prove that on every infinite-dimensional normed linear space there exist discontinuous
linear functionals. (The preceding two problems can be useful here.)

Using Problem 33 and Problem 1.5.3, page 28, prove that every infinite-dimensional
normed linear space is the union of a disjoint pair of dense convex sets.

Let two equivalent norms be defined on a single linear space. (See Problem 1.4.3, page
23.) Prove that if the space is complete with respect to one of the norms, then it is
complete with respect to the other. Prove that this result fails (in general) if we assume
only that one norm is less than or equal to a constant multiple of the other.

Let Y be a subspace of a normed space .X. Prove that there is a norm-preserving injective
map J : Y* = X* such that for each ¢ € Y*, J¢ is an extension of ¢.

Let Y be a subspace of a normed space X. Prove that if Y4 =0, then Y is dense in X.

Let T be a bounded linear map of cg into cg. Show that T must have the form (Tz)(n) =

3% aniz(i) for a suitable infinite matrix [ani]. Prove that sup, Zzl lanil = || T

=1

Prove that if #S = n, then #25 = 2",

What implications exist among these four properties of a set S in a normed linear.space
X? (a) S is fundamental in X; (b) S is linearly independent; (c) S is a Schauder base
for X; (d) S is a Hamel base for X.
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41. A “spanning set” in a linear space is a set S such that each point in the space is a linear
combination of elements from S. Prove that every linear space has a minimal spanning

set.

42. Let f : R —+ R. Define z < y to mean f(z) < f(y)- Under what conditions is this a

partial order or a total order?

43. Criticize the following “proof” that if X and Y are any two normed linear spaces, then
X* = Y*. We can assume that X and Y are subspaces of a third normed space Z.
(For example, we could use Z = X @ Y, a direct sum.) Clearly, X* is a subspace of
Z*, since the Hahn~-Banach Theorem asserts that an element of X* can be extended,
without increasing its norm, to Z. Clearly, Z* is a subspace of Y *, since each element
of Z* can be restricted to become an element of Y*. So, we have X* C Z* C Y*. By
symmetry, Y* C X*. So X* =Y".

44. Let K be a subset of a linear space X, and let f : K — R. Establish necessary and
sufficient conditions in order that f be the restriction to K of a linear functional on X.

45. For each « in a set A, let f(a) be a subset of N. Without using the Axiom of Choice,

prove that f has a choice function.

1.7 The Baire Theorem and Uniform Boundedness

This section is devoted to the first consequences of completeness in a normed
linear space. These are stunning and dramatic results that distinguish Banach
spaces from other normed linear spaces. Once we have these theorems (in this
section and the next), it will be clear why it is always an advantage to be working
with a complete space. The reader has undoubtedly seen this phenomenon when
studying the real number system (which is complete). When we compare the
real and the rational number systems, we notice that the latter has certain
deficiencies, which indeed Lad already been encountered by the ancient Greeks.
For example, they knew that no square could have rational sides and rational
diagonal! Put another way, certain problems posed within the realm of rational
numbers do not have solutions among the rational numbers; rather, we must
expect solutions sometimes to be irrational. The simplest example, of course, is
z? = 2. Our story begins with a purely metric-space result.

Theorem 1. Baire’s Theorem. In a complete metric space, the
intersection of a countable family of open dense sets is dense.

Proof. (A set is “dense” if its closure is the entire space.) Let O;,03,... be
open dense sets in a complete metric space X. In order to show that (_, Oy, is
dense, it is sufficient to prove that this set intersects an arbitrary nonvoid open
ball S; in X. For each n we will define an open ball and a closed ball:

={z € X :d(z,zn) <Ta} S, ={ze€X: :dz,zn) <Tn}

Select any £, € X and let r; > 0. We want to prove that S, intersects ﬂn=l On
Since O, is open and dense, O; N S; is open and nonvoid. Take S} C S; N O;.
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Then take S3 C S2 N0y, Sy C S3N O3, and so on. At the same time we can
insist that r, | 0. Then for all n,

8541 C SN0, C S NO,
The points z, form a Cauchy sequence because z;,z; € Sy, if i,j > n, and so
d(zi, ;) € d(zi, Tn) + d(Tn, T;) < 2r,

Since X is complete, the sequence [z,] converges to some point z*. Since for
i>n,

T; € S"H-l C 5 N0,
we can let i — oo to conclude that z* € S}, ) C S N O,. Since this is true for
all n, the set n:‘;, Oy, does indeed intersect Sj. (']

Corollary. If a complete metric space is expressed as a countable
union of closed sets, then one of the closed sets must have a nonempty
interior.

Proof. Let X be a complete metric space, and suppose that X = oo, Fn,
where each F;, is a closed set having empty interior. The sets O, = X \ F;, are
open and dense. Hence by Baire’s Theorem, ﬂ;";l O,, is dense. In particular, it
is nonempty. If z € (\;2, Oy, then z € X N\ U;; Fn, a contradiction. [

A subset in a metric space X (or indeed in any topological space) is said to
be nowhere dense in X if its closure has an empty interior. Thus the set of
irrational points on the horizontal axis in R? is nowhere dense in R2. A set that
is a countable union of nowhere dense sets is said to be of category I in X. A
set that is not of category I is said to be of category II in X.

Observe that all three of these notions are dependent on the space. Thus
one can have E C X C Z, where E is of category II in X and of category I in
Z. For a concrete example, the one in the preceding paragraph will serve.

The Corollary implies that if X is a complete metric space, then X is of the
second category in X.

Intuitively, we think of sets of the first category as being “thin,” and those
of the second category as “fat.” (See Problems 5, 6, 7, for example.)

Theorem 2. The Banach-Steinhaus Theorem. Let {As}
be a family of continuous linear transformations defined on a Banach
space X and taking values in a normed linear space. In order that
sup, || Aa]| < oo, it is necessary and sufficient that the set {z € X :
sup, ||Aa:t” < oo} be of the second category in X.

Proof. Assume first that ¢ = sup,, ||4a| < co. Then every z satisfies || Aaz|| <
c||z||, and every z belongs to the set F' = {z : sup, | Aaz|| < o0}. Since F = X,
the preceding corollary implies that F' is of the second category in X.

For the sufficiency, define

Fn = {z € X : sup ||Aaz| < n}
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and assume that F is of the second category in X. Notice that F = (Jo_, Fy.
Since F' is of the second category, and each F; is a closed subset of X, the
definition of second category implies that some Fy, contains a ball. Suppose
that.

B={zeX:||t-z0|]| <7} CFnm (r > 0)

For any z satisfying “I” < 1 we have =g + rz € B. Hence

[ Aaz]] = || Aa [r=} (20 + r2 — o))
< 77| Aa(zo + rz)|| + 77| Aazo|| < 2r7'm

Hence || A4 || < 2r~'m for all a. (]

Theorem 3. The Principle of Uniform Boundedness. Let
{Aa} be a collection of continuous linear maps from a Banach space X
into a normed linear space. If sup, |!Aa:c|| < oo for each z € X, then

sup, ||Aal| < co.

Example 1. Consider the familiar space C[0, 1]. We are going to show that
most members of C|0, 1] are not differentiable. Select a point £ in the open
interval (0, 1). For small positive values of h we define a linear functional ¢, by
the equation

_ z(&+h) - z(E ~ h)

T (z € C[0, 1)

on(zx)

It is elementary to prove that ¢4 is linear and that ||¢s|| = h=!. Consequently,
by the Banach-Steinhaus Theorem, the set of x such that sup, |¢n(z)| < o0 is
of the first category. Hence the set of = for which sup, |¢x(T)| = oo is of the
second category in C[0,1]. In other words, the set of functions in C[0,1] that
are not differentiable at £ is of the second category in C[0, 1]. (]

Example 2. The formal Fourier series of a function z is

where the functionals a, are defined by

2
an(z) = —21;/0 z(s)e " ds

If z belongs to Ca,, the space of continuous 2w-periodic functions on [0, 27]
(endowed with the sup-norm), then the coefficients ay(z) certainly exist; (in
fact, they exist if = is only Lebesgue integrable). A sequence of linear operators,
called Fourier projections, is obtained by truncation of the series:

n

(Anz)(t) = Z ax(z)etr

k=—-n
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It can be shown that the norm of A,, considered as a map of C,, into itself,
is roughly (4/7%)logn. In fact, the norm of each functional t* o A, has this
property. Recall from Problem 19 in Section 1.5 (page 29) that t* denotes
point—evaluation at t, so that

(t" 0 Ap)(z) = 7 (Anz) = (Anz)(?)

Since sup,, ||t* o A,.u = +o00, the set of £ in C>, whose Fourier series diverge
at a specified point ¢ is a set of the second category. Thus, for most periodic
continuous functions, the Fourier series do not converge. (]

Theorem 4.  Let [An] be a sequence of continuous linear transfor-
mations from a Banach space X into a normed linear space. In order
that lim, A,z = 0 for all x € X it is necessary and sufficient that
sup,, ||A,.|| < oo and that Apu — 0 for each u in some fundamental
subset of X.

Proof. If A,z — O for all z, then obviously sup,, ”A,,:z:” < oo for all z. Hence
supy, ||An|| < o, by the Principle of Uniform Boundedness.

For the other half of the theorem, assume that ||A,,|| < M for all n and
that A,u — O for all u in a fundamental set F'. It is elementary to prove that
Any — 0 for all y in the linear span of F. Now let z € X. Let € > 0. Select y
in the linear span of F so that ||z — y|| < €/2M. Select m so that ||Any|| < €/2
whenever n > m. Then for n > m we have

[Anz]] < [ An(z = )] + [|Any]| < Mllz - yl[ +¢/2 < €

Example 3. The Riemann integral of a continuous function = defined on [a, b]
can be obtained as a limit as follows:

> e b—ay b-—
/az(s)ds:nlLII;oZz(a+z na)‘ na

i=1

This suggests that we consider the problem of approximating functionals 3 that
have the form

b
(1) Y(z) = / z(s)w(s)ds z € Cla, b

in which w is a fixed integrable function called the weight. We seek to approx-
imate 1> by a sequence of functionals ¢, having the form

(2) ¢n(zT) = i Aniz(sni)  z €Cla,b
i=1

Notice that ¢ is simply a linear combination of point-evaluation functionals.
One can argue with some justification that from the practical, numerical, stand-
point only such functionals are realizable. Other functionals, such as those
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involving integrals, must be approximated by the simpler realizable ones. Func-
tionals of this type were considered in Problem 1.5.19 (page 29), and a result of
that problem is the formula

||¢n“ = Z 'Am’l
i=1

Here it is necessary to assume that for each n, {sn1,8n2,...,8nn} is a set of n
distinct points in [a,b]. We call these points the “nodes” of the functional ¢p,.
An old theorem of Szegd, presented next, concerns this example. [}

Theorem 5. Let ¢ and ¢, be as in Equations (1) and (2) above.
In order that ¢n(x) = (x) for each z € Cla, b], it is necessary and
sufficient that these two conditions be fulfilled:

n
(i) suleAnil < 00
noio

(ii) The convergence occurs for all the elementary monomial functions,
s—sk k=0,1,2,....

Proof. Consider the sequence of functionals [t — ¢,]). The norm of ¥ is

ol = sup

llzlf<1

/bm(s)w(s)dzl < /blw(s)lds

Consequently, condition (i) is equivalent to the condition

sup [~ 6u]] < oo
n

Next observe that the functions ex defined by the equation ex(s) = s*, where
k=0,1,..., form a fundamental set in C[a,b], by the Weierstrass Polynomial
Approximation Theorem. Now apply the preceding theorem. [}

Problems 1.7

1. Prove the equivalence of these properties of a set U in a normed linear space X:
(a) U intersects each nonempty open set in X
(b) U intersects each open ball in X
(c) The closure of U is X

(d) For each z € X and each € > O there is a point u € U satisfying the inequality
lz-ull <€
(e) The set X \ U contains no open ball.
2. An interesting metric space is obtained by taking any set X and defining d(z, y) to be 1
ifz # yand 0 if z = y. In such a metric space identify the open sets, the closed sets,

the convergent sequences, and the compact sets. Also determine whether the closure of
{z:d(z,y) < r} is the set {z : d(z,y) < r}. Is (X, d) complete?

3. Prove that the set of functions in C|0, 1] that do not possess a right-derivative at a given
point in [0,1) is dense.
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. Is every set of the second category the complement of a set of the first category?

. Prove that in a complete metric space, the complement of a set of the first category is

dense and of second category.

. Prove that a closed, proper subspace in a normed linear space is nowhere dense (and

hence of first category).

. Prove that in a Banach space, a subspace of second category must be dense.

. Prove that in a Banach space every nonempty open set is of the second category. Prove

that this assertion is not true for normed linear spaces in general. (Give an example.)

. Let [zn] be a sequence in a Banach space X. Assume that sup, lé(zn)| < oo for each

¢ € X*. Prove that [z,] is bounded. Does X have to be complete for this? If so, give a
suitable example.

Determine the category of these sets: (a) the rationals in R; (b) the irrationals in R; (c) the
union of all vertical lines in R? that pass through a rational point on the horizontal axis;
(d) the set of all polynomials in C|0, 1].

Does a homeomorphism (continuous map having a continuous inverse) preserve the cat-
egory of sets?

Give an example to show that a homeomorphic image of a complete metric space need
not be complete.

Prove that any subset of a set of the first category is also of the first category. Prove
that a set that contains a set of second category is also of second category.

Is the closure of a nowhere dense set also nowhere dense? Is the closure of a set of the
first category also of the first category?

For each natural number n, let A, be a continuous linear transformation of a Banach
space X into a normed linear space Y. Suppose that for each z € X the sequence [Anz]
is convergent. Define A by the equation Ax = limn_,oc Anz. Prove that A is linear and
continuous. Explain why completeness is needed.

Let X be the space of real sequences = {z(1),z(2),...] in which only a finite number of
terms are nonzero. Give X the supremum norm. Define functionals ¢, by the equation
dn(z) = ZLl z(i). Show that the sequence [@n(z)] is bounded for each z, that each
¢n is continuous, but that the sequence [¢n] is not bounded. (Compare to the Uniform
Boundedness Theorem.)

Prove that the set of reals whose decimal expansions do not contain the digit 7 is a set
of the first category.

Select a function zo € C[0, 1} and a sequence of reals [an). Define recursively

t
I"+1(t)=0"+/ zﬂ(")ds n=0,1,...
[1]

Assume that for each t € [0, 1] there is an n for which zn(t) = 0. Prove that zo =0.

Return to Problem 15, and suppose that Y is complete. Weaken the hypotheses on An
so that Ay is not necessarily linear and the set of = for which [Anz] converges is of the
second category. Prove that this set must be X and that A is continuous.

Let (An] be a sequence of continuous linear maps from one Banach space .Y to another.
Prove that the set of = for which [Anz] is a Cauchy sequence is either X or a set of first
category.

Prove that in a complete metric space a set of the first category has empty interior.

Prove that in a complete metric space, if a countable intersection of open sets is dense,
then it is of second category.

Give an example of a metric space having countably many points that contains no subset
of second category.
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Prove that a set V is nowhere dense if and only if each nonempty open set has a nonempty
open subset that lies in the complement of V.

(Principle of Condensation of Singularities). For each n and m in N, let A,m be a
bounded linear operator from a Banach space X into a normed linear space Y. Assume
that sup,, ||Anm|| = oo for each n. Prove that the set

{1: € X :sup||Anmzl| = 0o for each n}
m

is of second category.

(The Cantor Set). This famous set is C = [0,1] \ :°=l An, where

) '
i %)U(%,%)U 2—9 2—0)U(E 28) and so on.

Draw pictures of [0,1] \ A1, [0,1] \ (A; U A2), and so on to see that we are successively
removing the middle thirds from intervals. Each A, is open, so U An is open. Hence C
is closed. Prove that C is nowhere dense. Prove that the lengths of the removed intervals
add up to 1. Explain how there can be anything left in C. Prove that C is a “perfect
set,” i.e., if £ € C, then C \ {z} is not closed.

Prove this theorem: Let X be a complete metric space. Let {fo} be a family of continuous
real-valued maps defined on X. Assume that for each z, sup, |fa(z)] < co. Then for
some nonvoid open set O, sUp, ¢ Sup, Ifa(z)| < 0o.

Prove that a countable union of sets of the first category is also a set of the first category.
Prove that a nowhere dense set is of the first category.

Is a countable set in a metric space necessarily a set of the first category?

Answer the question in Problem 30 for countable subsets of a normed linear space.

Prove that the sets Fp occurring in the proof of the Banach-Steinhaus Theorem are
closed.

In a complete metric space, is every nonempty open set of the second category?

A metric space (X,d) is said to be discrete if d(r,y) = 1 whenever z # y. In such a
space identify the nowhere dense sets, sets of first category, sets of second category, and
dense sets. (Cf. Problem 2.)

Can a normed linear space have any of the peculiar properties of discrete metric spaces?

Show that a countable discrete metric space can be embedded isometrically in the Banach
space cqg.

Give an example of sets S C F' C X, where X is a complete metric space, F is a closed
set in X, and S is of Category Il in F but of Category I in X.

The intersection of a countable family of open sets is called a Gs-set. Prove that the set
of rationals is not a G4-set in R.

(Continuation) Let f:R — R be continuous. Show that each set f~!(r) is a Gs-set.
(Continuation) Let f:R — R. Define
w(z) = inf sup |f(u) - f(v)]

€>0 jr_ujce
Jx—v|<e

Prove that w(z) = O for each x at which f is continuous. Prove that for € > 0, the set
(z: w(z) < €} is open.

(Continuation) Prove that there is no function f : R = R that is continuous at each
rational point and discontinuous at each irrational point.
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42. Can an infinite~-dimensional Banach space have a countable Hamel base?

43. Prove that the complement of a nowhere dense set is dense. What about the converse:
is it true?

44. Let f € C*(R). Thus f has derivatives of all orders on R. Suppose that 0 € {f(")(¢) :
n=0,1,2,...} for each t. Then f is a polynomial.

45. A point z in a metric space is isolated if for some € > 0, the ball of radius ¢ centered at
z contains no point of the space except x. Prove that a complete metric space in which
there are no isolated points is uncountable.

46. If f : R — R, then there is an interval (a,b) and a number M such that each point of
(a, b) is the limit of a sequence [zn] such that a < zn, < b and |f(zn)] € M.

47. Let X be a complete metric space and for each n let Fn be a closed set having empty
interior. Prove that Unle Fr has empty interior.

48. Prove that a set E in a metric space X (or any topological space) is nowhere dense if
and only if X \ E is dense.

49. In a metric space, is a singleton {r} always nowhere dense? Answer the same question
for a normed linear space.

50. Prove that if A is of the second category and B is of the first category, then A \ B is of
the second category.

51. Is a countable intersection of sets of the second category necessarily a set of the second
category?

52. A subset of a metric space is called a residual set if its complement is of the first category.
Prove that the intersection of countably many residual sets is a residual set.

1.8 The Interior Mapping and Closed Mapping Theorems

A function f from one normed linear space X to another Y is said to be closed
(or to have a closed graph) if f is closed as a subset of X x Y. Expressed
otherwise, the set

{(z, f(z)) : z € X}

is a closed set in X x Y. In terms of sequences, the closed property of f is
that the conditions z, — z and f(r,) — y imply that y = f(z). It is clear
that a continuous map is closed. For general topological spaces this is still
true if Y is a Hausdorff space ([Rul], page 29). The outstanding example of a
linear transformation that is closed but not continuous is the derivative operator
D acting on the differentiable functions in C[a,b] and mapping into C|a,d]. If
z, — z and Dz, — y, then y = Dz. This is actually a theorem of calculus
([Wid], page 305). Let us stop to prove it. We denote by C![a,b] the linear
space of all functions on [a,b] whose derivatives exist and are continuous on
[a, b].

Theorem 1. Let z, € C'[a,b), |zn~z||, — 0, and ||z, -¥||, — O
Then y € Cla,b|l and ' = y.

Proof. Since z, € C![a,b], we have z,, € C[a,b]. Thus y € C|a, b], by Theorem
2 in Section 1.2, page 10. By the Fundamental Theorem of Calculus and the



48 Chapter 1 Normed Linear Spaces

continuity of integration,

¢ t ¢
y(s)ds = / limz,,(s)ds =lim | z,(s)ds
a a n n a

= limlza(t) - zn(a)] = 2(0) - (@)
Differentiation with respect to t now yields y(t) = ='(t). ]

Of course, in general we may not infer that =, — z’ from the sole hypothesis
that z, — z, even if z, € C'{a, b] and the convergence is uniform. For example,
the sequence z,(s) = %sin ns converges (uniformly) to 0, but the sequence
z,,(s) = cosns does not converge even pointwise.

Another property that a mapping f : X — Y may have is being an interior

(or “open”) mapping. That means that f maps open sets to open sets.

Theorem 2. The Interior Mapping Theorem. If a closed
linear transformation maps one Banach space onto another, then it is
an interior map.

Proof. Let L:X —Y, where L is linear and closed, and X and Y are Banach
spaces. (This double arrow signifies a surjection.) Let S be the open unit ball
in X or Y, depending on the context. Since L is surjective,

Y=L(X)= L( D nS) C D L(nS)
n=1 n=1

Since Y is complete, the Baire Theorem implies that one of the sets cl [L(nS)]
has a nonempty interior. Suppose, then, that for some m in Nand r > 0

v+ 1S C clL(mS)
It follows that v € cl L(mS), and hence
rS C clL(mS) —v C clL(mS) —clL(mS) C clL(2mS)

Hence S C cl L(tS) for some t > 0, namely t = 2m/r.

We will now prove that S C L(2tS). Let y be any point of S. Select a
sequence of positive numbers &, such that 30> 6, < 1. Since y € clL(tS),
there is an z, in tS such that ||y — Lz,|| < é;. Since

y— Lz, € 6,5 C clL(6:tS)

there is a point zo € §;tS such that ||y - Lz, - L:cgn < 6,. We continue this
construction, obtaining a sequence z;,zs, ... whose partial sums z, =z, +---+
T, have the property ”y - Lz,.” < 6n. Also, we have

oo
llzali < llzal] + -+ + [|zall St + 82t + -+ 6aat < c(1 +Zak) <2
k=1
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The sequence [z,] has the Cauchy property because

||2n+|' - Zn" = ||$n+1 + .- +Iﬂ+i” <tby +---+ Wpti-1 < tz 6j
in

Since X is complete, 2z, — z for some z € X. Clearly, ||z]] < 2t, or z € 2tS.
Since L is closed and Lz, — y, we conclude that y = Lz; thus y € L(2tS) as
claimed.

To complete the proof we show that L(U) is open in Y whenever U is open
in X. Let y be any point in L(U). Then y = Lz for some z € U. Since U is open,
there exists a 8 > 0 such that £ + 8S C U. Then y + 8L(S) C L(U). By our
previous work, we know that S§ C L(2tS). Hence (8/2t)S C #L(S) and

y+(8/2t)S c L(U)
Thus L(U) contains a neighborhood of y, and L(U) is open. (]

Corollary 1. Ifan algebraic isomorphism of one Banach space onto
another is continuous, then its inverse is continuous.

Proof. Let L : X — Y be such a map. (The two-headed arrow denotes a
surjective map. Thus L(X) = Y.) Being continuous, L is closed. By the Interior
Mapping Theorem, L is an interior map. Hence L~! is continuous. (Recall that
a map f is continuous if f~! carries open sets to open sets.) [}

Corollary 2. If a linear space can be made into a Banach space
with two norms, one of which dominates the other, then these norms
are equivalent.

Proof. Let X be the space, and N;, N, the two norms. The equivalence of
two norms is explained in Problem 1.4.3, page 23. Let I denote the identity map
acting from (X, N2) to (X, N;). Assume that the norms bear the relationship
N1 < Ns. Since Nj(Iz) < Ny(z), we see that I is continuous. By the preceding
corollary, 1! is continuous. Hence for some a, Na(z) = No(I~'z) < aNi(z).

Theorem 3. The Closed Graph Theorem. A closed linear map
from one Banach space into another is continuous.

Proof. Let L: X — Y be closed and linear. In X, define a new norm N(z) =
||z|| + ||Lz||. Then (X, N) is complete. Indeed, if [z, is a Cauchy sequence with
the norm N, then [z,] and [Lz,)] are Cauchy sequences with the given norms in
X and Y. Hence z, = = and Lz, — y, since X and Y are complete. Since L is
closed, Lz = y and so

Nz —zp) = “:L‘ - :L‘n” + || Lz - L:t:,,“ =0

By the preceding corollary, N(z) < al|z|| for some a. Hence ||Lz|| < a||z|| ®



50 Chapter 1 Normed Linear Spaces

Theorem 4. A normed linear space that is the image of a Banach
space by a bounded, linear, interior map is also a Banach space.

Proof. Let L: X — Y be the bounded, linear, interior map. Assume that X
is a Banach space. By Problem 1.2.38 (page 14), it suffices to prove that each
absolutely convergent series in Y is convergent. Let y, € Y and ) ||y,,” < 00.
By Problem 2 (of this section), there exist x, € X such that Lz, =y, and (for
some ¢ > 0) “z"“ < c“yn“. Then ) Ha:,.,” <c) ||y,,” < oo. By Problem 1.2.3,
page 12, the series ) _ x, converges. Since L is continuous and linear, L(}_ z,) =
3" Lzp, = yn, and the latter series is convergent. (]

Let L be a bounded linear transformation from one normed linear space,
X, to another, Y. The adjoint of L is the map L* : Y* — X* defined by
L*¢ = ¢o L. Here ¢ ranges over Y*. It is elementary to prove that L* is linear.
It is bounded because

”Lo Lt¢

=sup| | = supsup |(L"¢)(z)]
¢ ¢ z

= Sl;p sgp ’¢(L1‘)’ = Slip ”LI” =||L]]

In this equation ¢ ranges over functionals of norm 1 in Y, and z ranges over
vectors of norm 1 in X. We used Corollary 4 on page 36.

In a finite-dimensional setting, an operator L can be represented by a matrix
A (which is not necessarily square). This requires the prior selection of bases
for the domain and range of L. The adjoint operator L* is represented by
the complex conjugate matrix A*. An elementary theorem asserts that A is
surjective (“onto”) if and only if A* is injective (“one-to-one”). (See Problem 20.)
The situation in an infinite-dimensional space is only slightly more complicated,
as indicated in the next three theorems.

Theorem 5. Let L be a continuous linear transformation from one
normed linear space to another. The range of L is dense if and only if
L* is injective.

Proof. Let L : X —» Y. By Theorem 3 in Section 1.6 (page 37), applied
to L(X), we have these equivalent assertions: (1) L(X) is dense in Y. (2)
L(X)t =0. (3) If ¢ € L(X)*, then ¢ = 0. (4) If ¢(Lx) = O for all z, then
¢=0.(5) If L*¢ =0, then ¢ = 0. (6) L* is injective. |

Theorem 6. The Closed Range Theorem. Let L be a bounded
linear transformation defined on a normed linear space and taking val-
ues in another normed linear space. The range of L and the null space
of L*, denoted by N'(L*), are related by the fact that [N'(L*)]. is the
closure of the range of L.

Proof. Recall the notation U, for the set {x € X : ¢(z) =0 for all € U},
where X is a normed linear space and U is a subset of X*. (See Problems 1.6.20
and 1.6.21, on page 38, as well as Problem 13 in this section, page 52.) We
denote by R(L) the range of L. To prove [closure R(L)] C [N (L*)]L, let y be
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an element of the set on the left. Then y = limy, for some sequence [y,] in
R(L). Write y, = Lz, for appropriate . To show that y € [N (L*)],. we must
prove that ¢(y) = 0 for all ¢ € N'(L*). We have

¢(y) = ¢(limyn) = lim ¢(yn) = lim$(Lzy)
= lim(¢ o L)(zy) = lim(L*@)(z,) = lim0 =0

To prove the reverse inclusion, suppose that y is not in [closure R(L)]. We
shall show that y is not in [N(L*)],. By Corollary 2 of the Hahn-Banach
Theorem (page 34), there is a continuous linear functional ¢ such that ¢(y) # 0
and ¢ annihilates each member of [closure R(L)]. It follows that for all z,
(L*¢)(z) = (@ o L)(z) = ¢(Lz) = 0. Consequently, ¢ € N'(L*). Since ¢(y) # 0,
we conclude that y ¢ [N(L*)) . 2

Theorem 7 Let L be a continuous, linear, injective map from one
Banach space into another. The range of L is closed if and only if L is
bounded below: Hifllfl |Lz|| > 0.

z||=

Proof. Assume first that ||Lz|| > ¢ > 0 when ||z|| = 1. By homogeneity,
”Lz” > c“:r” for all . To prove that the range, R(L), is closed, let y, € R(L)
and y, = y. It is to be shown that y € R(L). Let y,, = Lz,. The inequality

llvn — ymll = | L(zn — zm)|| > €||zn — zm]|

reveals that [z,] is a Cauchy sequence. By the completeness of the domain space,
Tn — T for some z. Then, by continuity,

Lz = L(limz,) = limLz, = limy, =¥y

Hence y € R(L).

Now assume that R(L) is closed. Then L maps the domain space X injec-
tively onto the Banach space R(L). By Corollary 1 of the Interior Mapping The-
orem (page 49), L has a continuous inverse. The equation ||L~y|| < ||[L~"|| ||y]|
is equivalent to ||z|| < ||L7!||||Lz||, showing that L is bounded below. ]

Problems 1.8

1. Use the notation in the proof of the Interior Mapping Theorem. Show that a linear map
L: X —Y isinterior if and only if L(S) D rS for some r > 0.

2. Show that a linear map L : X — Y is interior if and only if there is a constant ¢ such
that for each y € Y there is an z € X satisfying Lz = y, ]r:“ < <llyll-

3. Define T : cg — cg by the equation (T'z)(n) = z(n + 1). Which of these properties does
T have: injective, surjective, open, closed, invertible? Does T have either a right or a
left inverse?

4. Prove that aclosed (and possibly nonlinear) map of one normed linear space into another
maps compact sets to closed sets.

5. Let L be a linear map from one Banach space into another. Suppose that the conditions
Tn — 0 and Lz, — y imply that y = 0. Prove that L is continuous.
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11.

12.

13.

14.

15.

16.

17.

18.

19.
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. Prove that if a closed map has an inverse, then the inverse is also closed.

. Let M and N be closed linear subspaces in a Banach space. Define L: M x N - M+ N

by writing L(z,y) = £ + y. Prove that M + N is closed if and only if L is an interior
map.

. Adopt the hypotheses of Problem 7. Prove that M + N is closed if and only if there is

a constant c such that each 2 € M + N can be written z =z + y wherez € M,y € N,
and [|z]| + [lyll <€ o)zl

. Let L : X — Y be a continuous linear surjection, where X and Y are Banach spaces.

Let y» — y in Y. Prove that there exist points zn € X and a constant c € R such that
Lzn = yn, the sequence [zn) converges, and ||zn|| < c||yn]|-

. Recall the space € defined in Example 8 of Section 1.1. Define L : £ = € by (Lz)(n) =

nz(n). Use the sup-norm in € and prove that L is discontinuous, surjective, and closed.

Is the identity map from (C[-1,1), || ||,.) into (C[-1,1}, || II;) an interior map? Is it
continuous?

(Continuation) Denote the two spaces in Problem 11 by X and Y, respectively. Let

1
G={y€Y:/ y(s)da:O}
-1

Show that G is closed in Y. Define

_ [ nz g < 1/n
9n(s) = z/|z| lz| > 1/n

Show that [gn] is a Cauchy sequence in Y. Since the space L![—1, 1] is complete, gn — ¢
in L!. Since G is closed, g should be in G. But it is discontinuous. Explain.

Let X be a normed linear space, and let K C X and U C X*. Define
Kt ={pecX":¢(x)=0forall z € K}

U, ={z€ X :¢(z)=0forall g €U}
Prove that these are closed subspaces in X* and X, respectively.

Prove that for any subset K in a normed linear space, (K +), is the closure of the linear
span of K. The Hahn-Banach Theorem can be used as in the proof of the Closed Range
Theorem. Problem 13 will also be helpful.

Prove that if L is a linear operator having closed range and acting between normed linear
spaces, then the equation Lz = y is solvable for z if and only if y € [NM(L*)]..

Prove that if L is a bounded linear operator from one normed space into another, and
if ||Lz]|/dist(z,N(L)) is bounded away from O when ||z|| = 1, then the conclusion of
Problem 15 is again valid.

Let T be a linear map of a Banach space X into itself. Suppose that there exists a
continuous, linear, one-to-one map L : X — X such that LT is continuous. Does it
follow that T is continuous?

Define an operator L by the equation

1
(L::)(t):/ (t — 8)2z(s)ds

1

Describe the range of L and prove that it does not contain the function f(z) = et.

(Continuation) Draw the same conclusion as in Problem 18 by invoking the Closed Range
Theorem. Thus, find ¢ in the null space of L* such that ¢(f) # 0.
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20. For an m x n matrix A prove the equivalence of these assertions: (a) A* is injective. (b)
The null space of A* is 0. (c) The columns of A* form a linearly independent set. (d)
The rows of A form a linearly independent set. (e) The row space of A has dimension
m. (f) The column space of A has dimension m. (g) The column space of A is R™. (h)
The range of A is R™. (i) A is surjective, as a map from R™ to R™.

1.9 Weak Convergence

A sequence [z,] in a normed linear space X is said to converge weakly to an
element z if ¢(x,) — ¢(z) for every ¢ in X*. (Sometimes we write z,, = T.)

The usual type of convergence can be termed norm convergence or strong
convergence. It refers, of course, to ||:t,. - :c" — 0. Clearly, if z, — z, then
T, — z, because each ¢ in X* is continuous. This observation justifies the
terms “strong” and “weak.”

Example 1. For an example of a sequence that converges weakly to zero yet
does not converge strongly to any point, consider the vectors ey, in cg defined by
en(Z) = d;in. These are the “standard unit vectors” in the space cq. (This space
was defined in Problem 1.2.16, on page 12.) Recall from Section 1.6, particularly
the proposition on page 34, that every continuous linear functional on cg is of

the form
e <)

8(z) = 3 ali)z(i)

i=1
for a suitable point & € ¢;. Thus ¢(e,) = a(n) — 0. The sequence [z,] does not
have the Cauchy property, because ||:l:,1 - :c,,,” =1 when n # m. [}

Lemma. A weakly convergent sequence is bounded.

Proof. Let X be the ambient space, and suppose that £, — z. Define func-
tionals T, on X* by putting

Tn(¢) = d(zn) (€ X7)

For each ¢, the sequence [¢(z,)] converges in R; hence it is bounded. Thus
sup,, |Zn(¢)| < co. By the Uniform Boundedness Theorem (page 42), applied in
the complete space X*, HT,.” < M for some constant M. Hence, for all n,

sup {[Za (@) : 4 € X°, |8l <1} <M
By Corollary 4 of the Hahn-Banach Theorem (page 36), ||zn|| < M. a

Theorem 1. In a finite-dimensional normed linear space, weak and
strong convergence coincide.

Proof. Let X be a k-dimensional space. Select a base {b,,...,b} for X and
let ¢, ..., ok be the linear functionals such that for each z,

k
T = Z #i(x)b;
=1
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By Corollary 1 on page 26, each functional ¢; is continuous. Now if z, — z,
then we have ¢;(zn) = ¢(z), and consequently,

|z - za]| = ]|ij b1z~ za)bi]| < i |¢ile —zn)l [|ts]| » 0 .
i=1 =1

Theorem 2. If a sequence [z, in a normed linear space converges
weakly to an element z, then a sequence of linear combinations of the
elements T, converges strongly to z.

Proof. Another way of stating the conclusion is that  belongs to the closed

subspace
Y = closure (span{z,,r,...})

If £ ¢ Y, then by Corollary 2 of the Hahn-Banach Theorem (page 34), there is
a continuous linear functional ¢ such that ¢ € Y+ and ¢(z) = 1. This clearly
contradicts the assumption that =, — z. (]

A refinement of this theorem states that a sequence of convezx linear combi-
nations of {z,,zs, ...} converges strongly to z. This can be proved with the aid
of a separation theorem, such as Theorem 3 in Section 7.3, page 344.

Theorem 3.  If the sequence (zo, 1, T3,...] is bounded in a normed
linear space X and if ¢(z,,) = ¢(zo) for all ¢ in a fundamental subset
of X*, then z, — x.

Proof. (The term “fundamental” was defined in Section 1.6, page 36.) Let
F be the fundamental subset of X* mentioned in the theorem. Let i be any
member of X*. We want to prove that ¥(z,) — ¥(zo). By hypothesis, there is a
constant M such that ||z;|| < M fori=0,1,2,... Given € > 0, select ¢1,...,dm
in F and scalars Aj,..., A, such that

fo-Snel < g7

Put ¢ = Y Ai¢i. It is easily seen that ¢(zn) = ¢(zg). Select N so that for all
n > N we have the inequality |¢(z,) — ¢(zo)| < €/3. Then for n > N,

[¥(zn) — ¥(z0)| < |¥(zn) — $(zn)| + |d(zn) — d(z0)| + |d(z0) — (z0)]|
<||¥ = ol [lzall +e/3 + |6 = w]| [|zol|
<

€ € €

Example 2. Fix a real number p in the range 1 < p < oo. The space ¢, is
defined to be the set of all real sequences z for which 3-27  |z(n)|P < co. We
define a norm on the vector space ¢, by the equation

lell, = (fj lz(n)l”)w
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For p = oo, we take ¢, to be the space of bounded sequences, with norm
lz||, = sup, [z(n)|. We shall outline some of the theory of these spaces. (This
theory is actually included in the theory of the LP spaces as given in Chapter
8.) Notice that in these spaces there is a natural partial order: T > y means
that z(n) > y(n) for all n. We also define |z| by the equation |z|(n) = |z(n)|. a

Hoélder Inequality. Let 1 <p<oo,1l/p+1/g=1,z¢€ ¥, and
y € ¢q. Then

> z(ny(n) < Izl [lvll,

n=1
Minkowski Inequality. If z and y are two members of ¢,, then
e +yll, < iz, + [lvll,

Proof. For p =1 an elementary proof goes as follows:

iz + ]|, = 3" lz(m) + y(m) < Y lz(m)l + D lwm)l = |||, + lvll,

Now assume 1 < p < oo. Then

3 lz(n) + y)lP < 3 _{lz(n)] + ly(n)[}
< 3" max(lz(m)], (I}
= > 2 max{jz(n)P", ly(n)I"}
<22 {lz(m)IP + ly(n)I"} < oo
This proves that = + y € ¢,. Now let 1/p + 1/g = 1 and observe that
rzel, =zl ey,

because
Yo {1} =Yz < oo

Therefore, by the Holder inequality,
=+ o, = 3 lz(n) + y(m)I?
> lz(n) +y(m)P z(n) + D lz(n) + y(n) P~ y(n)|
1z +uiP=!, Allll, + llvll,}
/
= llz+oll;" {ll=ll, + [lvll,}

<
<

Thus, finally,
llz +ll, < ll=ll, +llvll, .

Some theorems about these spaces are given here without proof.
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Theorem 4. The conjugate of ¢, is isometrically isomorphic to
¢q, where p™' +q~! = 1. (Here 1 < p < 00.) The isomorphism pairs
each element ¢ in & with the unique element y in ¢, such that ¢(z) =

2k 2(k)y(k).

Theorem 5. Let T and z,, bein¢,. We have T, — z if and only if
l|zall,, is bounded and z (k) — z(k) for each k.

Theorem 6. Let S be a compact Hausdorff space, and suppose
z,Z, € C(S). We have =, — z if and only if ||z,|| _ is bounded and
Zn(8) = z(s) for each s € S.

Theorem 7. (Schur’s Lemma) In the space ¢;, the concepts of weak
and strong convergence of sequences coincide.

A subset F in a normed linear space X is said to be weakly sequentially
closed if the weak limit of any weakly convergent sequence in F is also in F. A
weakly sequentially closed set F' is necessarily closed in the norm topology, for
if £, € F and z, — z, then £,, — = € F. (A simple example of a closed set that
is not weakly sequentially closed is the surface of the unit ball in the space cp.)

Theorem 8. A subspace of a normed linear space is closed if and
only if it is weakly sequentially closed.

Proof. Let Y be a weakly sequentially closed subspace in the normed space
X. If y, € Y and yn — y, then y, — y and y € Y. Hence Y is norm-closed.

For the converse, suppose that Y is norm-closed, and let y, € Y, yn — .
If y ¢ Y, then (because Y is closed) we have dist(y,Y) > 0. By Corollary 2 of
the Hahn-Banach Theorem (page 34) there is a functional ¢ € Y+ such that
¢(y) = 1. Hence ¢(yn) does not converge to ¢(y), contradicting the assumed
weak convergence. [ |

A refinement of this theorem states that a convex set is closed if and only
if it is weakly sequentially closed. See [DS], page 422.

Theorem 9. A linear continuous mapping between normed spaces
is weakly sequentially continuous.

Proof. Let A: X — Y be linear and norm-continuous. In order to prove
that A is weakly continuous, let T, — z. For all ¢ € Y*, ¢ 0 A € X*. Hence
¢(Az, — Az) 5 0forallp e Y". ]

In a conjugate space X*, the concept of weak convergence is also available.
Thus ¢, — ¢ if and only if F(¢n) = F(¢) for each F € X**. There is another
type of convergence, called weak* convergence. We say that [¢,] converges to ¢
in the weak* sense if ¢pn() = ¢(z) for all z € X.
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Theorem 10. Let X be a separable normed linear space, and [¢,]
a bounded sequence in X*. Then there is a subsequence [¢n’.] that
converges in the weak* sense to an element of X*.

Proof. Since X is separable, it contains a countable dense set, {z,,z2,...}.
Since [¢,] is bounded, so is the sequence [¢n(z1)]. We can therefore find an
increasing sequence Ny C N such that limnen, ¢n(z1) exists. By the same rea-
soning there is an increasing sequence N C Ny such that limpen, ¢n(T2) exists.
Continuing in this way, we generate sequences

NODN;DON D -

Now use the Cantor diagonalization process: Define n; to be the ith element
of N;. We claim that lim;_,o ¢,,‘.(:tk) exists for each k. This is true because
limuen, én(zx) exists by construction, and if ¢ > k, then n; € N; C Ny. For any
T € X we write

¢nj (Ik) _¢nj (z)

g (k) — b (k)| +

¢n,'(z) '—¢nj (I)' < ¢ni(z)'¢n,’(‘rk)l +
This inequality shows that [@,,(z)] has the Cauchy property in R for each z €
X. Hence it converges to something that we may denote by ¢(z). Standard
arguments show that ¢ € X*. [}

For Schur’s Lemma, see [HP] page 37, or [Ban] page 137. The original
source is [Schu]. See also [Jam] page 288, or [Hol] page 149.

Problems 1.9

1. Show that the Holder Inequality remains true if we replace the left-hand side by
> lz(n)l ly(n)].

2. If 1 < p < g, what inclusion relation exists between €, and €47

3. Prove that if zn -> z and ||zn|| — ¢, then ||z|| < ¢. Why can we not conclude that
llz|] = ¢? Give examples. Explain in terms of weak continuity and weak semicontinuity
of the norm.

4. Fix p > 1 and define a nonlinear map T on ¢, by the equation Tz = [z|P~! sgn(z).
Thus, (Tz)(n) = |z(n)|P~!sgn(z(n)) for all n. Prove that T maps €, into €q, where
1/p+ 1/q = 1. Then determine whether T is surjective.

5. Prove this theorem: In order that a sequence [zx] in a normed linear space X converge
weakly to an element z it is necessary and sufficient that the sequence be bounded and
that ¢(xn) — ¢(z) for all functionals ¢ in a set that is dense on the surface of the unit
ball in X*.

6. Prove this characterization of weak convergence in the space co: In order that a sequence
Tn converge weakly to an element z in the space co it is necessary and sufficient that the
sequence be bounded and that (for each i) we have limn_s5 zn(i) = z(i).

7. A Banach space X is said to be weakly complete if every sequence [zn] such that ¢(zn)
converges for each ¢ in X* must converge weakly to an element z in X. Prove that the
space cp is not weakly complete.
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1.10 Reflexive Spaces

Let X be a Banach space. It is possible to embed X isomorphically and iso-
metrically as a subspace of X**. There may be many ways to do this, but one
embedding is called the natural or canonical embedding, denoted by J. Thus
J: X = X**, and its definition is

(Jz)(¢) = ¢(z) €X', z€EX

The reader may wish to pause and prove that J is a linear isometry.

For an example of this embedding, let X = co; then X* = ¢; and X** = (.
In this case, J : ¢g = €, and J can be interpreted as the identity embedding,
since ¢(z) = 3o, u(n)z(n) for an appropriate u € ¢;.

If the natural map of X into X** is surjective, we say that X is reflexive.
Thus if X is reflexive, it is isometrically isomorphic to X **. The converse is false,
however. A famous example of R.C. James exhibits an X that is isometrically
isomorphic to X**, but the isometry is not the canonical map J, and indeed the
canonical image of J(X) is a proper subspace of X** in the example. See [Ja2].

Theorem 1. Each space ¢, where 1 < p < oo, is reflexive.

Proof. 1f p~'+¢7! =1, then ¢, = ¢, and ¢; = ¢, by Theorem 4 of Section
1.9, page 56. Hence ¢, = ¢,. But we must be sure that the isometry involved
in this statement is the natural one, J. Let A : £, = ¢; and B : {; — ¢} be
the isometries that have already been discussed in a previous section. Thus, for
example, if z € ¢, then Az is the functional on ¢; defined by

(Az)y) = S z(n)y(n)  yel,

n=1
Define B* : £;* — £; by the equation
B'¢=¢0oB ¢ety

One of the problems asks for a proof of the fact that B* is an isometric isomor-

phism of l’;,‘ onto £;. Thus B*~!A is an isometric isomorphism of ¢, onto 0.

Now we wonder whether B*~!A = J. Equivalent questions are these:
B*~ 1Az = Jz (z €ty
Az = B*Jz (z €tp)
(Az)(y) = (B*Jx)(y) (zelp, yel)
(Az)(y) = (Jz)(By) (z€bp, yel)
(Az)(y) = (By)(z) (z€lp, yel)

The final assertion is true because both sides of the equation are by definition
Sz 2(n)y(n). ]
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Theorem 2. A closed linear subspace in a reflexive Banach space
is reflexive.

Proof. LetY be a closed subspace in a reflexive Banach space X. Let J : X —
X** be the natural map. Define R: X* — Y* by the equation R¢ = ¢|Y. (This
is the restriction map.) Let f € Y**. Define y = J=!(f o R). We claim that
y € Y. Suppose that y ¢ Y. By a corollary of the Hahn-Banach Theorem, there
exists ¢ € X* such that ¢(y) # 0 and ¢(Y) = 0. Then it will follow that R¢ =0
and that ¢(y) = ¢(J "1 (fo R)) = (f o R)(¢) = 0, a contradiction. Next we claim

that for all ¢ € Y*, f(¥) = ¢(y). Let % be a Hahn-Banach extension of ¢ in
X*. Then ¥ = Ry and f(¥) = f(RY) = (foR)(¥) = (Jy)(¥) = ¥(y) = ¢(y)- 0

Theorem 3. A Banach space is reflexive if and only if its conjugate
space is reflexive.

Proof. Let X be reflexive. Then the natural embedding J : X — X** is
surjective. Let ® € X***, and define ¢ € X* by the equation ¢ = ® o J. Then
for arbitrary f € X** we have f = Jz for some z, and consequently,

f(¢) = (Jz)(¢) = d(z) = (P 0 J)(z) = ®(Jz) = B(f)

Thus @ is the image of ¢ under the natural map of X* into X ***. This natural
map is therefore surjective, and X" is reflexive.

For the converse, suppose that X* is reflexive. By what we just proved,
X** is reflexive. But J(X) is a closed subspace in X**, and by the preceding
theorem, J(X) is reflexive. Hence X is reflexive (being isometrically isomorphic
to J(X)). ]

Eberlein—Smulyan Theorem. A Banach space is reflexive if and
only if its unit ball is weakly sequentially compact.

Proof. (Partial) Let X be reflexive, S its unit ball, and [y,] a sequence in
S. We wish to extract a subsequence [y,,i] such that y,, — y € S. To start,
let Y be the closure of the linear span of {y1,y2,...}. Then Y is a closed and
separable subspace of X. By Theorem 2, Y is reflexive, and so Y = Y **. Since
Y** is separable, sois Y *. Let {1, %2, ...} be a countable denseset in Y *. Since
(¥1(yn)] is bounded, there exists an infinite set N; C N such that limnen, ¥1(yn)
exists. Proceeding as we did in the proof Theorem 10, Section 1.9, page 57, we
find a subsequence yn; such that ¥(yn,) converges for all ¥ € Y*. By a corollary
of the uniform boundedness theorem, there is an element f of Y** such that
Y(yn;) = f(¥) for allp € Y*. Since Y is reflexive, f(¢) = ¥(y) for some y € Y.
Hence w(y,,i) — Y(y) for all y € Y*. Now if ¢ € X*, then ¢|Y € Y". Hence

A(Yn;) = (1Y )(yn;) = (2IY)(y) = 6(¥)
Thus y,, — y. By a corollary of the Hahn-Banach Theorem, ||y|| < 1.

The converse is more difficult, and we do not give the proof. See [Yo), page
141, or [Tay2], page 230. ]
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Theorem of James. A Banach space X is reflexive if and only
if each continuous linear functional on X attains its supremum on the
unit ball of X.

Proof. (Partial) Suppose that X is reflexive. Let ¢ € X*, and select z, € X
such that ||xn|| < land ¢(zn) = ”(15” By the Eberlein-Smulyan Theorem, there
is a subsequence [zn,] that converges weakly to a point z satisfying ||z|| < 1. By
the definition of weak convergence,

oz) = imo(z.,) = o]
The converse is more difficult, and we refer the reader to [Hol], page 157.

One application of the second conjugate space occurs in the process of com-
pletion. If X is a normed linear space that is not complete, can we embed it
linearly and isometrically as a dense set in a Banach space? If so, such a Banach
space is termed a completion of X. The Cantor method of completion of a
metric space is fully discussed in [KF). The idea of that method is to create a
new metric space whose elements are Cauchy sequences in the original metric
space.

If X is a normed linear space, we can embed it, using the natural map
J, into its second conjugate space X**. The latter is automatically complete.
Hence J(X) can be regarded as a completion of X. It can be proved that all
completions of X are isometrically isomorphic to each other.

The Lebesgue spaces Lp[a,b] can be defined without knowing anything
about Lebesgue measure or integration. Here is how to do this. Consider the
space C[a,b] of all continuous real-valued functions on the interval [a,b]. For
1 £ p < oo, we introduce the norm

b 1/p
Jell, = [ [ tmtorr as

In this equation, the integration is with respect to the Riemann integral. The
space C[a, b], endowed with this norm, is denoted by Cp|a, b]. It is not complete.
Its completion is Lp(a,b]. Thus if J is the natural map of Cy[a, b] into its second
conjugate space, then

LP[av b = J(Cp[ai b])

Problems 1.10

1. Use the fact that cg = £, and ¢ = € to prove that the successive conjugate spaces of
ce are all nonreflexive.

2. Find a sequence in the unit ball of ¢g that has no weakly convergent subsequence.
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2.1 Geometry

Hilbert spaces are a special type of Banach space. In fact, the distinguishing
characteristic is that the Parallelogram Law is assumed to hold:

le = ol + llz + o = 2l2ll” + 2l

This succinct description gives no hint of the manifold implications of that as-
sumption. The additional structure available in a Hilbert space makes it the
preferred domain for much of applied mathematics! We pursue a more tradi-
tional approach to the subject, not basing everything on the Parallelogram Law,
but using ideas that are undoubtedly already familiar to the reader, in particular
the dot product or inner product of vectors. An inner-product space is a
vector space X over the complex field in which an inner product (z, y) has been
defined. We require these properties, for all z, y, and z in X:

(1

(z,y) is a complex number

)
2) (z,9) = (y,2) (complex conjugate)
(3) (Cl'l?, y) = 0<Iyy) aeC
(4) (z,z) >0 if T#0

(5) (z+y,2) = (z,2) + (v, 2)
The term “pre-Hilbert space” is also used for an inner-product space. Occa-
sionally, we will employ real inner-product spaces and real Hilbert spaces. For
them, the scalar field is R, and the inner product is real-valued. However, some
theorems to be proved later are valid only in the complex case.

61



62 Chapter 2 Hilbert Spaces

Example 1. Let X = C" (the set of all complex n-tuples). If two points
are given in C", say = = [z(1),z(2),...,z(n)] and y = [y(1),y(2),...,y(n)], let

(z,y) = Sin; z(D)y(). ]
Example 2. Let X be the set of all complex-valued continuous functions
defined on [0, 1]. For z and y in X, define (z,y) fo (t)y(t)dt. ]

In any inner-product space it is easy to prove that

(z+y,z+y) = (g, 1)+ 2R(z,y) + (¥ ) R = “real part”
(z,ay) = a(z.y)
(z,y+2) = (z,9) + (z,2)

(3-0) = Soteu)

In an inner-product space, we define the norm of an element z to be ||z|| =
(z, ).

Theorem 1. The norm has these properties

a. ||:L‘|| >0 if £#0

b el =lol Je] (@)

c. |(z,y)] < ||| ||y]] Cauchy-Schwarz Inequality

d |lz+y| <zl + ]|y|| Triangle Inequality

e. ||z + y||2 + |z - yH2 = 2”1”2 + 2||y||2 Parallelogram
Equality

f. If (z,y) = 0, then ||z + y“2 = ||:r||2 + ||y“2 Pythagorean
Law.

Proof. Only c and d offer any difficulty. For c, let Hyll =1 and write
0< (z - My, © - Ay) = (£,2) = Xz, 9) — My, z) + [M*(w:y).

Now let A = (z,y) to get 0 < ||J:|| — |{z,y)|>. This establishes c in the case
|ly|| = 1. By homogeneity, this suffices. To prove d, we use c as follows:

lz+y))* =z +pz+y) = (z,2) + @) + (z.¥) + (v V)
ll2]|* + 2R (2, ) + llyll” < llall® + 21z, w)l + [|y]|*
< lall* + 2ll=ll llgll + llwll® = (ll=ll + [[vlD)® .

I

Item e in Theorem 1 is called the Parallelogram Equality (or “Law”) because it
states that the sum of the squares of the four sides of a parallelogram is equal
to the sum of the squares of the two diagonals.
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Lemma. In an inner-product space:
a. £ =0 if and only if (z,v) =0 for all v
b. = =y if and only if (z,v) = (y, v) for all v
c. ||z|| = sup{l{z,v)| : ||v]| = 1}

Proof. If £ =0, then (z,v) =0 for all v by Axiom 3 for the inner product. If
(z,v) = 0 for all v, then (z,z) = 0, and so :c = 0 by Axiom 4. The condition
z =y is equivalent to z —y =0, to (z — y,v) = 0 for all v, and to (z,v) = (y,v)
for all v. If |Jv]| = 1 then by the Cauchy-Schwarz Inequality, |(z, v) | < =) 1
£ =0, then [|z]| < [(z,v)| for all v. If £ # 0, let v = z/||z|. Then ||v|| = 1 and
(z,v) = ||| 2
Definition. A Hilbert space is a complete inner-product space.

Recall the definition of completeness from Section 1.2 (page 10): It means
that every Cauchy sequence in the space converges to an element of the space.

Example 3. The space of complex-valued continuous functions on [0, 1] fur-
nished with inner product

1
(z,9) = /o ()70 dt

is not complete. Consider the sequence shown in Figure 2.1. The sequence
of functions has the Cauchy property, but does not converge to a continuous
function.

Figure 2.1

Example 4. We write L%[a,b] for the set of all complex-valued Lebesgue
measurable functions on [a, b] such that

b
/ |z(t)|2 dt < oo
a

(The concept of measurablllty is explained in Chapter 8, Section 4, page 394.)
In L?[a,b], put (z,y) fa t)y t)dt. This space is a Hilbert space, a fact known
as the Riesz-Fischer Theorem (1906). See Chapter 8, Section 7, page 411 for
the proof. This space contains many functions that have singularities. Thus,
the function ¢ — ¢~!/3 belongs to L2(0, 1], but ¢t — t=2/3 does not. (]

In L?[a,b], two functions f and g are regarded as equivalent if they differ
only on a set of measure zero. Refer to Chapter 8 for an extended treatment
of these matters. A set of measure O is easily described: For any ¢ > 0 we can
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cover the given set with a sequence of open intervals (a,, b,) whose total length
satisfies Y, (bn — an) < €. An important consequence is that if f is an element
of L?, then f(z) is meaningless! Indeed, f stands for an equivalence class of
functions that can differ from each other at the point z, or indeed on any set of
points having measure 0. When f(z) appears under an integral sign, remember
that the z is dispensable: The integration operates on the function as a whole,
and no particular values f(z) are involved.

Example 5. Let (S, A,p) be any measure space. The notation L?(S) then
denotes the space of measurable complex functions on S such that [ |f(s)|? dp <
oo. In L%(S), define (f,g) = [ f(s)g(s) dp. Then L?(S) is a Hilbert space. See
Theorem 3 in Section 8.7, page 411 [

Example 6. The space ¢2 (or ¢3) consists of all complex sequences z =
[z(1) IQ_)_,_] such that Y |z(n)|?> < oo. The inner product is (z,y) =
Y z(n)y(n). This is a Hilbert space, in fact a special case of Example 5. Just
take S = N and use “counting” measure. (This is the measure that assigns to
a set the number of elements in that set.) This example is also included in the
general theory of the spaces ¢,, as outlined in Section 1.9, pages 54-56. [

Theorem 2. IfK is a closed, convex, nonvoid set in a Hilbert space
X, then to each x in X there corresponds a unique point y in K closest
to z; that is,

|z - y|| = dist(z, K) == inf{||]z - v|| : v € K}

Proof. Put a = dist(z, K), and select y, € K so that ||z — y,,” — a. Notice
that 1(yn + ¥m) € K by the convexity of K. Hence ||3(yn + ym) — z| > a. By
the Parallelogram Law,
90 = yml|* = [[(ym = 2) = (vn = D)||°
= 2lvn = 2||° + 2/[vm — 2|* - [|vn + ym — 22|
= 2/[yn — 2||* + 2||ym = 2||* = 4]| 1 (¥n + ym) — 2|’
< 2”yn - 13”2 + 2“ym — I||2 — 42250

This shows that [y,] is a Cauchy sequence. Hence y, — y for some y € X. Since
K is closed, y € K. By continuity,

llz = vl = ||z - limyn|| =lim||z - ya|| = a

For the uniqueness of the point y, suppose that y; and y; are points in K of
distance a from z. By the previous calculation we have

llos = well < 2llws = 2ll* + 2llyz — 2f]* - 40® =0 .

In an inner-product space, the notion of orthogonality is important. If
(z,y) = 0, we say that the points = and y are orthogonal to each other, and we
write z L y. (We do not say that the points are orthogonal, but we could say
that the pair of points is orthogonal.) If Y is a set, the notation z L Y signifies
that z L y forall y € Y. If U and V are sets, U L V means that u 1 v for all
veUandallveV.
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Theorem 3. LetY be a subspace in an inner-product space X. Let
z € X and y € Y. These are equivalent assertions:

a.r-ylY, ie,(t—-yv)=0forallveY.

b. y is the unique point of Y closest to .

Proof. If ais true, then for any u € Y we have

lz ~ll” = lite ~ ) + = )l* = e~ ull* + [y — ll” > [l= ~ I/

Here we used the Pythagorean Law (part 6 of Theorem 1).
Now suppose that b is true. Let u be any point of Y and let A be any scalar.
Then (because y is the point closest to )

0 |lz—(y+ Au)“2 - |lz - y“2 = —2R(z — y, ) + I/\Iznu”2

Hence _ 2
2R{Mz—ynd}<|M2”ﬂ|

If (r —y,u) # 0, then u # 0 and we can put A = (z — y,u)/”u”2 to get a
contradiction: )
2R{S[[ul|} < IN?[Ju] .

Definition. The orthogonal complement of a subset Y in a inner-product
space X is

Yt={z€eX:(z,y)=0 forall yeY}

Theorem 4. IfY is a closed subspace of a Hilbert space X, then
X=YaY'L

Proof. We have to prove that Y is a subspace, that Y N Y+ = 0, and that
X CY+Y* If v, and v, belong to Y*, then so does o, v; + asv,, since for
Yyey,

(y, a1v1 + a2v2) =@ (y, v1) + @2(y,v2) =0

Ifz € YNY", then (z,z) = 0, so z = 0. If £ is any element of X, let y be
the element of Y closest to . By the preceding theorem, £ —y 1L Y. Hence the
equation £ = y + (z — y) shows that X c Y + YL ]

Theorem 5. If the Parallelogram Law is valid in a normed linear
space, then that space is an inner-product space. In other words, an
. . 2
inner product can be defined in such a way that (z,z) = ”:r” .

Proof. We define the inner product by the equation

a@0) = o+ 9l -l — ol +ille + il — ifle — ]
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From the definition, it follows that
2 2
1R(z,y) = ||z + Il ~ [l= —vll
From this equation and the Parallelogram Law we obtain

AR(u+v,y) = ||u +v+ y||2 - Hu +v-— y||2

= {2fju+ ol +2fo* = llu+ v ]}
= {2flull® +2llo = ylf* ~ Jlu v+ oI}

= {lu+ ol = flu=wll*} + {lo+oll* - lv - ol*}
+ {llu+ yll® + flu = ol = 2l - 2Jlwll’)
+{2llol® + 20l = flo+ wll* - llo - wli*)

=4R(u,y) + 4R(v,y)

This proves that R(u + v,y) = R{u,y) + R{v,y). Now by putting iy in place

of y in the definition of (z,y) we obtain (z,iy) = —i(z,y). Hence the imaginary
parts of these complex numbers satisfy

T{u+v,y) = —Rifu+v,y) = R{u + v,1y)
= R(u,iy) + R(v,iy) = ~Ri(u,y) — Ri(v,y)
=I(u,y) + I(v,y)
(In this equation, T denotes “the imaginary part of.”) Thus we have fully es-
tablished that {u + v,y) = (u,y) + (v,y). By induction, we can then prove that

(nz,y) = n(z,y) for all positive integers n. From this it follows, for any two
positive integers m and n, that

(Ze) = Em( 2 5) = Zte

By continuity, we obtain (Az,y) = A(z,y) for any A > 0. From the definition,
we quickly verify that

(~z,y) = ~(z,y) and (iz,y) =i(z,y)
Hence (Az,y) = A(z,y) for all complex scalars A. From the definition we obtain
4(z,z) = ”2.7:“2 +i||z + iz”2 —i||lz - i:z:“2
= dlle||® + 1 +il)2l|” - i1 = il2]le]|* = 4je|
Finally, we have
Ay,z) = |y +||” = |ly - || +ilJy +iz||* - i |y - iz||®
= e+ ol - Il = oll* + il - ity + i) = illity - i)|?
=l +ull* = |z = ol + illz - iw)]* - il|= + ||

= 4{z,y) ]
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In an inner-product space, the angle between two nonzero vectors can be
defined. In order to see what a reasonable definition is, we recall the Law of
Cosines from elementary trigonometry. In a triangle having sides a,b,c and
angle 0 opposite side ¢, we have

c® =a%+ b% — 2abcosd

Notice that when # = 90°, this equation gives the Pythagorean rule. In an
inner-product space, we consider a triangle as shown in Figure 2.2.

Figure 2.2

We have

lz-y||* = (@ - yz—y) = (z.2) - (z,9) - (3,2) + (v,9)
= ||| + ||||* - 2R(=, v)

On the other hand, we would like to have the law of cosines:

llz = wl* = ll=lI* + full® ~ 22l ls}] cos @

Therefore, we define cos @ so that H:z:” ||y|| cosf = R(z,y) Thus
R(z,y)
6 = Arccos ———r
[ENIE]

The “principal value” of Arccos is used; it is an angle in the interval [0, 7]. Is

the definition proper? Yes, because the number 'R(z,y)”z:”_llly”—1 lies in the
interval [—1, 1], by the Cauchy-Schwarz inequality. Other definitions for the
angle between two vectors can be given. See [Ar], pages 87-90.

There are many sources for the theory of Hilbert spaces. In addition to the
references indicated at the end of Section 1.1, there are these specialized texts:
(AG], [Ar], (Berb), [Berb2], [DM], [Hal2], [Hal3], [St], and [Youn].

Problems 2.1

1. Verify that Example 1 is an inner-product space.

2. Verify that Example 2 gives an inner product. Give all details, especially for the fourth
axiom.

3. Prove the four equations stated in the text just after Example 2.

4. Fix z and y in an inner-product space, and determine the value of A for which ||z — Ayl
is a minimum.

5. Prove the Parallelogram Law.
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Let K be a convex set in an inner-product space. Let z be a point at distance a from
K. Prove that the diameter of the set

fzeK:|lz~z|| Sa+6}

is not greater than 2v/2ad + 32. The diameter of a set S is sup, ,es |lu — v|.

. Prove that in an inner-product space if [|z]l = 1 < |ly||, then ||(z — y/lly)|| < |l - yl}-

. Prove that in an inner-product space X, the mapping z — (z,v) is continuous. (Here v

can be any fixed vector in the space.) Prove that on X x X the mapping (z,y) — (z,y)
is continuous.

. In an inner-product space X, le¢t M = {z € X : (z,v) = 0}, where v is a fixed, nonzero

vector. Show that M is a closed subspace. Prove that M has codimension 1.

For any subset M of an inner product space X, define M1 = {z € X : (z,m) =0 for all
m € M}. Prove that M1 is a closed subspace and that M N M1 is either @ (the empty
set) or 0. (Here 0 denotes the zero subspace, {0}.)

Prove that |(z,y)| = ||z|| ||lyl| if and only if one of the vectors z and y is a multiple of
the other.

Let X be any linear space, and let H be a Hamel basis for X. Show how to use H to
define an inner product on X and thus create an inner-product space.

Let A be an n xn matrix. In the real space R™, define (z,y) = yT Az. (Here we interpret
elements of R™ as n x 1 matrices. Thus yT is a 1 xn matrix.) Find necessary and sufficient
conditions on A in order that our definition shall produce a genuine inner product.

Let X be the space of all “finitely nonzero sequences” of complex numbers. Thus z € X if
z:N = R and {n: z(n) # 0} is finite. For z and y in X, define (z,y) = Z:‘;l z(n)y(n).
Prove that X is not a Hilbert space.

Let X = R?, and define an inner product between vectors z = [z(1),2(2)) and y =
(¥(1),y(2)) by the equation

(z,y) = 2z(1)y(1) + z(2)y(2)
Prove that this makes X a real inner-product space. Let

Y ={y e X:y(1) - y(2) =0}

Find the point y of Y closest to z = [0,1]. Draw an accurate sketch showing all of this.
Explain why £ — y is not perpendicular to Y. Does this contradict Theorem 5?7 Draw a
sketch of the unit ball.

Prove or disprove this analogue of Theorem 4: If Y is a subspace of a Hilbert space X,
then X =Y @Y1,

. Let = and y be points in a real inner-product space such that {|z + yl[ﬂ = “-"—'”2 + ||y||2

Show that z L y. Show that this is not always true in a complex inner-product space.
In an inner-product space, prove that if ||z,|| = ||y|l and (zn,y) — |lyl|?, then z, — y.

Prove or disprove: In a Hilbert space, if 2:;1 [lzall* < oo, then the series X L Zn
converges.

Find all solutions to the equation (z, a)c = b, assuming that a, b, and c are given vectors
in an inner-product space.

Indicate how the equation Az = b can be solved if the operator A is defined by Az =
Z?:x (z, ai)ci. Describe the set of all solutions.

Find all solutions to the equation = + (z,a)c = b.

Use Problem 22 to solve the integral equation z(s) + fol z(t)t?s dt = coss.
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Let v = [v(1),1(2),...] be an element of £2. Prove that the set {z € £2 : [z(n)| < |v(n)]
for all n} is compact in £2.

Prove that if M is a closed subspace in a Hilbert space, then M11 = M.

Prove that if M = M 11 for every closed linear subspace in an inner-product space, then
the space is complete.

Prove that if M and IV are closed subspaces of a Hilbert space and if M 1 N, then
M + N is closed.

Consider the mapping A in Problem 21. Find necessary and sufficient conditions on a;
and c; in order that A have a fixed point other than 0.

In a Hilbert space, elements w, u;, and v, are given. Show how to find an z such that
n
T=w+ Z(z, vi)u;

In a Hilbert space, let ||za ]| = ¢, ||ya|| — ¢, and (€n,yn) —* ¢ Prove that ||z, —yn|| -+
0. Then make two generalizations. Is there any similar result for unbounded sequences?

If M C N, then N1+ C ML, Prove this.

Let K be a closed convex set in a Hilbert space X. Let £ € X and let y be the point of K
closest to . Prove that R{z —y,v —y) < O for all v € K. Interpret this as a separation
theorem, i.e., an assertion about a hyperplane and a convex set. Prove the converse.

Prove that if a; > 0 and Z:x a; < oo, then

The Banach space £! consists of sequences [z1,x3,...] for which Z ]zn| < co. The norm
is defined to be [[z]| = ) |znl|. Prove that ! is dense in £2, and explain why this does
not contradict the fact that €! is complete.

Prove that in a real-inner product space

fle - ylI* = llzli® - llyll* + 20y - z.9)

In a real inner-product space, does the equation ||z + y + z||* = Jjz|* + llwll® + =)
imply any orthogonality relations among the three points?

Find the necessary and sufficient conditions on the complex numbers w;, w2,...,wn in
order that the equation
n
(z,9) = Y _ z(k)y(k) wk
k=1

shall define an inner product on C™.

Prove that if £ is an element of €2, then for all natural numbers n,

k
inf la(k)| Y I=(3)] =0

=1
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39. Let K be a closed convex set in a Hilbert space X. For each  in X, let Pz be the point
of K closest to z. Prove that ||Pz — Py|| € ||z — y||. (Cf. Problems 2.2.24, 2.1.32.)

40. (Continuation) Prove that each closed convex set K in a Hilbert space X is a “retract”,

i.e., the identity map on K has a continuous extension mapping X onto K.

41. Let F and G be two maps (not assumed to be linear or continuous) of an inner product
space X into itself. Suppose that for all z and y in X, (F(z),y) = (z,G(y)). Prove that
if a sequence zn converges to z, and G(xn) converges to y, then y = G(z). Prove also
that F(0) = G(0) = 0.

42. Prove that in an inner product space, if A > 0, then

(2.1 < Miell® + 55 ol

2.2 Orthogonality and Bases

Definition. A set A of vectors in an inner-product space is said to be or-
thogonal if (z,y) = 0 whenever T € A, y € A, and T # y. Recall that we write
.l ytomean (z,y) =0,z .L Stomeanthatz Lyforallye S,andU 1 V
to mean that ¢ L yforallz e U andy e V.

Theorem 1. Pythagorean Law. If {z;,%2,...,7,} is a finite
orthogonal set of n distinct elements in an inner-product space, then

Sl =St

Proof. By our assumptions, x; # z; if i # j, and consequently,

D3OSR SO SRR BERIRS S

j=11i=1

This theorem has a counterpart for orthogonal sets that are not finite, but
its meaning will require some explanation. What should we mean by the sum
of the elements in an arbitrary subset A in X? If A is finite, we know what is
meant. For an infinite set, we shall say that the sum of the elements of A is s if
and only if the following is true: For each positive € there exists a finite subset
Ao of A such that for every larger finite subset F* we have

IZ{z:zeF}—s <e

When we say “larger set” we mean only that Ay C F C A. Notice that the
definition employs only finite subsets of .A. For the reader who knows all about
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“nets,” “generalized sequences,” or “Moore-Smith convergence,” we remark that
what is going on here is this: We partially order the finite subsets of A by
inclusion. With each finite subset F of .A we associate the sum S(F) of all the
elements in F. Then S is a net (i.e., a function on a directed set). The limit of
this net, if it exists, is the sum s of all the elements of .A. To be more precise,
it is often called the unordered sum over A.

When dealing with an orthogonal indexed set of elements [z;] in an inner-
product space, we always assume that x; # z; if ¢ # j. This assumption allows
us to write z; L z; when i # j.

Theorem 2. The General Pythagorean Law.  Let [z;] be an
orthogonal sequence in a Hilbert space. The series )_ x; converges if
and only if ¥ ||z,||* < oo. If ¥ ||z,]|” = A < oo, then || T x;||* = A,
and the sum )_z; is independent of the ordering of the terms.

Proof. Put Sn= YTz, and s, = 37 ||;||".
By the finite version of the Pythagorean Law, we have (for m > n)

1$m = $all = |32 = 3l * = tom — sl
n+1 n+l

Hence [S,] is a Cauchy sequence in X if and only if (ss] is a Cauchy sequence
in R. This establishes the first assertion in the theorem. )
Now assume that A < co. By the Pythagorean Law, ||Sn||” = sn, and hence

. - 2
in the limit we have || }::z:]” = A. Let u be a rearrangement of the original
series,say u = )_ Tk, Let U, = 31 Tk By the theory of absolutely convergent
series in R, we have S ||;rk]. || = A Hence, by our previous analysis, U, = u

and ||u||2 = A. Now compute

m n m
(Un, Sm) = <zxkj,z )= D0 |l s,

=1 j=11i=1

We let n — oo to get (u,Sm) = 2 i, ||:c,-||2. Then let m — oo to get (u,z) = A,
where z = lim S,,,. It follows that £ = u, because

llz —ul)® = el - 2R(z,w) + |ju* =2 -22+ A =0 “

Definition. A set U in an inner-product space is said to be orthonormal if
each element has norm 1 and if (u,v) = 0 when »,v € U and u # v. If the set U
is indexed in a one-to-one manner so that U = {u; : ¢ € I}, then the condition of
orthonormality is simply (u;,u;) = d;;, where, as usual, d;; is 1 when i = j and
is O otherwise. If an indexed set is asserted to be orthonormal, we shall always
assume that the indexing is one-to-one, and that the equation just mentioned
applies.

If [vi : i € I] is an orthogonal set of nonzero vectors, then [v;/||vi]| : i € I]
is an orthonormal set.
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Theorem 3. If [y1,Y2,...,Yn] is an orthonormal set in an inner-
product space, and if Y is the linear span of {y; : 1 < i < n}, then for
any z, the point in Y closest to z is Y ., (T, ¥i)¥i.

Proof. Lety =Y. ,(z,¥i)yi. By Theorem 3 in Section 2.1, page 65, it suffices
to verify that £ — y L Y. For this it is enough to verify that £ — y is orthogonal
to each basis vector y,. We have

(2= 5wk = (206 = { S48 v vk ) = (3, 0e) = (@, ) (i, )

i 1

= (@, y) = D _(%,y:)0uk = (z,yk) — (T, ux) =0 . ]

i

The vector y in the above proof is called the orthogonal projection of z onto
Y. The coefficients (z, y;) are called the (generalized) Fourier coefficients of
T with respect to the given orthonormal system. The operator that produces
y from z is called an orthogonal projection or an orthogonal projector.
Look ahead to Theorem 7 for a further discussion.

Corollary 1.  If z is a point in the linear span of an orthonormal
set [y1,2, .-, yn) then T = 370\ (7, v:)vs.

Theorem 4. Bessel’s Inequality. If[u; : i € I'] is an orthonormal
system in an inner-product space, then for every z,

>l u)l? <

Proof. For j ranging over a finite subset J of I, let y = >_(z,u;)u;. This vector
y is the orthogonal projection of £ onto the subspace U = span(u; : j € J). By
Theorem 3, £ — y A U. Hence by the Pythagorean Law

lz* = lle=w)+ull” = llz=sl +llul® > ol = 3l wde|l® = 301w, w)?

This proves our result for any finite set of indices. The result for I itself now
follows from Problem 4. (]

Corollary 2. If (u1,u2,...] is an orthonormal sequence in an
inner-product space, then for each z, limy—,o0 (T, ¥,) = 0.

Corollary 3. If [u; : i € I) is an orthonormal system, then for
each  at most a countable number of the Fourier coefficients (T, u;)
are nonzero.

Proof. Fixing z, put J, = {¢ € I : |{z,u;)] > 1/n}. By the Bessel Inequality,

Izl 2 3 w2 S 1/n2 = (# Jn)/n?

j€Jn Jj€Jn
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Hence J,, is a finite set. Since
o0
{i: (z,u;) £0} = U In
n=1

we see that this set must be countable, it being a union of countably many finite
sets. ]

Let X be any inner-product space. An orthonormal basis for X is any
maximal orthonormal set in X. It is also called an “orthonormal base.” In this
context, “maximal” means not properly contained in another orthonormal set.
In other words, it is a maximal element in the partially ordered family of all
orthonormal sets, when the partial order is set inclusion, C. (Refer to Section
1.6, page 31, for a discussion of partially ordered sets.)

Theorem 5. Every nontrivial inner-product space has an orthonor-
mal basis.

Proof. Call the space X. Since it is not 0, it contains a nonzero vector .
The set consisting solely of .1:/”II| is orthonormal. Now order the family of
all orthonormal subsets of X in the natural way (by inclusion). In order to use
Zorn’s Lemma, one must verify that each chain of orthonormal sets has an upper
bound. Let C be such a chain, and put A* = [J{A : A € C}. It is obvious that
A* is an upper bound for C, but is A* orthonormal? Take z and y in A® such
that £ # y. Say £ € A, € C and y € Az € C. Since C is a chain, either A; C A,
or A2 C A;. Suppose the latter. Then z,y € A,. Since A, is orthonormal,
(z,y) = 0. Obviously, ||z|| = 1. Hence A* is orthonormal. ]

Theorem 6. The Orthonormal Basis Theorem. For an or-
thonormal family (u;) (not necessarily finite or countable) in a Hilbert
space X, the following properties are equivalent:

[ui) is an orthonormal basis for X.

Ifr € X andz 1 u; for all i, then £ = 0.

Foreachr € X, =Y (z,u:)u..

For each ¢ and y in X, (z,y) = Y_(z,u:)(y, ui).

For each z in X, ”:1:”2 = 3" |{z,u;)|?. (Parseval Identity)

@ fogp

Proof. To prove that a implies b, suppose that b is false. Let £ # 0 and
z L u; for all i. Adjoin z/||z|| to the family [u;] to get a larger orthonormal
family. Thus the original family is not maximal and is not a basis.

To prove that b implies ¢, assume b and let £ be any point in X. Let
y = Y_(z,u;)u;. By Bessel's inequality (Theorem 4), we have

2w wyul” = 37 e w® <

By Theorem 2, the series defining y converges. (Here the completeness of X is
needed.) Then straightforward calculation (as in the proof of Theorem 3) shows
that £ —y L u; foralli. By b,z —y =0.
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To prove that ¢ implies d, assume c and write

z= Z(z, uidu; Y= Z(y,m)ui

Straightforward calculation then yields (z,y) = > (=, u;)(y, u:).

To prove that d implies e, assume d and let y = z in d. The result is the
assertion in e.

To prove that e implies a, suppose that a is false. Then [u;] is not a maximal
orthonormal set. Adjoin a new element, z, to obtain a larger orthonormal set.

Then 1 = H:r”2 # 3" |(z,ui)|? = 0, showing that e is false. (]

Example 1. One orthonormal basis in ¢2 is obtained by defining un(j) = dy;-
Thus
uy=[1,0,0 ...], u=[0,1,0,...], etc

To see that this is actually an orthonormal base, use the preceding theorem, in
particular the equivalence of a and b. Suppose z € ¢2 and (z,u,) = 0 for all n.
Then z(n) = 0 for all n, and £ = 0. [

Example 2. An orthonormal basis for L?[0, 1] is provided by the functions
un(t) = €2™ where n € Z. One verifies the orthonormality by computing the
appropriate integrals. To show that [u,] is a base, we use Part b of Theorem 6.
Let £ € L?[0,1] and z # 0. It is to be shown that (z,u,) # O for some n. Since
the set of continuous functions is dense in L2, there is a continuous y such that
|z - y|| < ||z||/5. Then ||y|| > ||z|| = ||z = y|| > &||z||. By the Weierstrass
Approximation Theorem, the linear span of [us] is dense in the space C[0,1],
furnished with the supremum norm. Select a linear combination p of [u,] such
that [lp — |, < l=]/5. Then [[p— ]| < [l}/5. Hence [l]| > ||| - lu o] >
2||l||- Then

[(z,p)| > |(p,P)| - [{y — P, P)| = (= — ¥, P)|
> [lpll* - llv =2l lIpll - ll= = vll llpl > 0
Thus it is not possible to have (z,un) = 0 for all n. (]

Recall that we have defined the orthogonal projection of a Hilbert space
X onto a closed subspace Y to be the mapping P such that for each z € X, Pz
is the point of Y closest to .

Theorem 7. The Orthogonal Projection Theorem. The
orthogonal projection P of a Hilbert space X onto a closed subspace
Y has these properties:

It is well-defined; i.e., Pz exists and is unique in Y.
. It is surjective, i.e, P(X) =Y.

It is linear.

IfY is not O (the zero subspace), then ||P|| = 1.
z- Pz LY forallzx.

® a0 TP
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f. P is Hermitian; i.e., (Pz,w) = (z, Pw) for all z and w.

g. If[y:) is an orthonormal basis for Y, then Pz = _(z,¥:)¥i-
h. P is idempotent; i.e., P? = P.

i. Py=yforallyeY. Thus P|Y = Iy.

. 2 2 2

3 el = [P + - Pl

Proof. This is left to the problems. [

The Gram-Schmidt process, familiar from the study of linear algebra, is an
algorithm for producing orthonormal bases. It is a recursive process that can be
applied to any linearly independent sequence in an inner-product space, and it
yields an orthonormal sequence, as described in the next theorem.

Theorem 8. The Gram-Schmidt Construction. Let
[v1,v2,v3,...] be a linearly independent sequence in an inner product
space. Having set uy = v, /||v,||, define recursively

n
Un — (Um Ut‘)ui

|
—

Un =

n=23,...

3|
i
-l

||vn — . (Vn, wi)ui|
1

I

Then [u,u2,us,...] is an orthonormal sequence, and for each n,
span{uj,uz,...,u,} = span{vi,vz,...,vn}.

Notice that in the equation describing this algorithm there is a normalization
process: the dividing of a vector by its norm to produce a new vector pointing
in the same direction but having unit length. The other action being carried out
is the subtraction from the vector v, of its projection on the linear span of the
orthonormal set presently available, u,,us,...,u,_1. This action is obeying the
equation in Theorem 3, and it produces a vector that is orthogonal to the linear
span just described. These remarks should make the formulas easy to derive or
remember.

Example 3. (A nonseparable inner-product space). A normed linear space
(or any topological space) is said to be separable if it contains a countable
dense set. If an inner-product space is nonseparable, it cannot have a count-
able orthonormal base. For an example, we consider the uncountable fainily of
functions uy(t) = e, where t € R and A € R. This family of functions is
linearly independent (Problem 5), and is therefore a Hamel basis for a linear
space X. We introduce an inner product in X by defining the inner product of
two elements in the Hamel base:

1 A=
(u»\7ua>=5»\0={0 /\#Z,

This is the value that arises in the following integration:

—_ 1’(" O)t t
i — = i d
Tllm 2T/ u,\(t) ua(t)dt llm 2T €
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If A = o, this calculation produces the result 1. If A # o, we get 0. Elements of
X have the property of almost periodicity. (See Problem 1.) (]

Example 4. (Other abstract Hilbert spaces). A higher level of abstraction
can be used to generate further inner product spaces and Hilbert spaces. Let us
create at one stroke a Hilbert space of any given dimension. Let S be any set.
The notation C5 denotes the family of all functions from S to the field C. This
set of functions has a natural linear structure, for if £ and y belong to C5, z +y
can be defined by

(z + y)(s) = z(s) +y(s)

A similar equation defines Az for A € C. Within C5 we single out the subspace
X of all £ € CS such that

(1) z[lz(s)|2:s€S]<oo

(Here we are using the notion of unordered sum as defined previously.) This

" construction is familiar in certain cases. For example, if S = {1,2,...,n}, then
the space X just constructed is the familiar space C™. On the other hand, if
S = N, then X is the familiar space ¢2. In the space X, addition and scalar
multiplication are already defined, since X C C5. Naturally, we define the inner
product by

(2) (@,y) =D [z(s)y(s) : s € S]

Much of what we are doing here loses its mystery when we recall (from the
Corollary to Theorem 4) that the sums in Equations (1) and (2) are always
countable. The space discussed here is denoted by €%(S). (]

Example 5. (Legendre polynomials.) An important example of an orthonor-
mal basis is provided by the Legendre polynomials. We consider the space
C[-1,1) and use the simple inner product

1
(fr9) = / Satae

Now apply the Gram-Schmidt process to the monomials t — 1,t,t2,t3,... The
un-normalized polynomials that result can be described recursively, using the

classical notation Pj:
Po(t) =1 Pi(t)=t

2n -1 -1
Pa(t) = = —tPaa(t) =

Puoa(t) (n=2,3,..)

The orthonormal system is, of course, p, = P,/ HP,.” The completion of the
space C[—1,1] with respect to the norm induced by the inner product is the
space L?[—1,1]. Every function f in this space is represented in the L?—sense
by the series

f =3 {fipe)pe

k=0
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We should be very cautious about writing
[o o]
£(&) =D (£, pe)pe(t)
k=0

because, in the first place, f(t) is meaningless for an element f € L?[—1,1].
In this context, f stands for an equivalence class of functions that differ from
each other on sets of measure zero. In the second place, such an equation would
seem to imply a pointwise convergence of the series, and that is questionable,
if not false. Without more knowledge about the expansion of f in Legendre
polynomials, we can write only

[ -

Consult [Davis| or [Sz] for the conditions on f that guarantee uniform conver-
gence of the series to f.

n

Z(f,pk)pk(t)]zdt —+0 asn— oo
k=1

Problems 2.2

1. A function f: R — C is said to be almost periodic if for every € > 0 thereisan ¢ > 0
such that each interval of length £ contains a number 7 for which

sup |f(s +71) - f(s)l < e
3€ER

Prove that every periodic function is almost periodic, and that the sum of two almost
periodic functions is almost periodic. Refer to [Bes) and [Tay?2] for further information.

2. Prove Theorem 7.

3. Prove Theorem 8. (Theorem 7 will help.)

4. Let x : I = R4, where I is some index set. Suppose that there is a number M such that
2 |z;:J € J] < M for every finite subset J in I. Prove that 2[1‘; : i € I) exists and
does not exceed M. What happens if we drop the hypothesis x; = 0?7

5. Prove that the set of functions {uy : A € R}, defined in Example 3, is linearly indepen-
dent.

6. Using the inner product

1
(:t,y)=/ x(t)y(t) dt

1

construct an orthonormal set {ug,u1,u2,%3} where (for each j) u; is a polynomial of
degree at most j. (One can apply the Gram-Schmidt process to the functions v;(t) = t7.)

7. Prove that the functions un(t) = €™t (n =0,+1,42,...) form an orthonormal system
with respect to the inner product

(z’y)=2i/ z(t) y(t) dt
™ -
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8. Prove that the functions

11.

12

13.

14.

16.

17.

cosnt n=-1,-2,-3,...
u,.(t):{sinnt n=1,23,...
1/V2 n=0

form an orthonormal system with respect to the inner product

@) =1 / T(e)y(e) e

"

. Prove that the Chebyshev polynomials

T,(t) = cos(n Arccost) (-1€t<1;n=0,1,2,..))

form an orthogonal system with respect to the inner product
1

{z, ) =/ 2(t)y(t)(1 - ¢%)" 12 dt
-1

What is the corresponding orthonormal system? Hint: Make a change of variable t =

cos § and apply Problem 8.

. Let v1,va,... be a sequence in a Hilbert space X such that span{v;,v2,...} = X. Show

that X is finite dimensional.

Prove that any orthonormal set in an inner product space can be enlarged to form an

orthonormal basis.

Let D be the open unit disk in the complex plane. The space H?(D) is defined to be the
space of functions f analytic in D and satisfying fD |£(2)]*dz < co. In H2(D) we define
(f,9) = fD f(z)'g(—z)dz. Prove that the functions un(z) = z™ (n = 0,1,2,...) form an

orthogonal system in H2(D). What is the corresponding orthonormal sequence?
If 0 < a < B, which of these implies the other?

@ Ylzall®<oo, (b)) Tllzall <oo.

Prove that if {vy,v2,...} is linearly independent, then an orthogonal system can be

constructed from it by defining u1 = v; and

n-1
Un=Un“z(U'\yu])u]/“uj”2 n=23,...
=1

. Illustrate the process in Problem 14 with the four vectors vo, v1,v2,v3, where v;(t) = ti

and the inner product is defined by (z,y) = f_‘l z(t)y(t) dt.

Let [u; : i € J'] be an orthonormal basis for a Hilbert space X. Let {v; : i € J] be an
orthonormal set satisfying Y, ||u; — u||]* < 1. Show that [v; } is also a basis for X.

Where does the proof of Theorem 6 fail if X isanincomplete inner-product space? Which

equivalences remain true?



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
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Prove that if P is the orthogonal projection of a Hilbert space X onto a closed subspace
Y, then I — P is the orthogonal projection of X onto Y.

(Cf. Problem 12.) Let I be the unit circle in the complex plane. For functions continuous
on I" define (f,g) = —i fr f(2)g(z) Zdz. Prove that this is an inner product and that the
functions 2™ form an orthogonal family.

Prove that an orthogonal projection P has the property that (Pz,z) = ||Pz||* for all z.

Let [un] be an orthonormal sequence in an inner product space. Let [an] C C and
an___l |an|? < co. Show that the sequence of vectors yn = Z"

j=1CYj has the Cauchy
property.

Let [u1,u2,...,un) be an orthonormal set in an inner product space X. What choice of

n . . .
-1 Aju;|| a minimum? Here z is a prescribed

coefficients A; makes the expression ||z — ZJ.

point in X.

d"l
den X
with respect to the inner product (z,y) = f_l z(t)y(t) dt.

Define pn(t) = (t2 —1)" for n = 0,1,2,... Prove the orthogonality of {pn : n € N}

If K is a closed convex set in a Hilbert space X, there is a well-defined map P: X — K
such that ||z — Pz|| = dist(z, K) for all . Which properties (a), ..., (j) in Theorem 7
does this mapping have? (Cf. Problem 2.1.39, page 70.)

Consider the real Hilbert space X = L2[—n, 7], having its usual inner product, (z,y) =
f_"” z(t)y(t) dt. Let U be the subspace of even functions in X; these are functions such
that u(—t) = u(t). Let V be the subspace of odd functions, v(—t) = —v(t). Prove that
X =U+YV and that U L V. Prove that the orthogonal projection of X onto U is given
by Pz = u, where u(t) = %[:c(t) + z(—t)]. Find the orthogonal projection Q : X — V.
Give orthonormal bases for U and V, and express P and Q in terms of them.

Let [en] be an orthonormal sequence in a Hilbert space. Let M be the linear span of this

sequence. Prove that the closure of M is
oc oc
{ E Qan€n E lanlz < 00}
n=1 n=1

Let [en : n € N] be an orthonormal basis in a Hilbert space. Let [an) be a sequence
in C. What are the precise conditions under which we can solve the infinite system of

equations (z,en) = an (n € N)?
Find orthonormal bases for the Hilbert spaces in Examples 3 and 4.

What are necessary and sufficient conditions in order that an orthogonal set be linearly
independent?

A linear map P is a projection if P2 = P. Prove that if P is a projection defined on a
Hilbert space and ||P|| = 1, then P is the orthogonal projection onto a subspace.

Let [un : n € N] be an orthonormal sequence in a Hilbert space X. Define

Y = {Xx:anun TZ|‘1"|2 < oo}
n=1
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Prove that the map a — z anun is an isometry of €2 onto Y. Prove that Y is a closed

subspace in X.

An indexed set [u; : i € I]in a Hilbert space is said to be stable if there exist positive
constants A and B such that

AZ[‘%[Q < Zaiuiﬂz < BZ Jaif?
whenever a € €2(I). Prove that a stable family is linearly independent. Prove that every

orthonormal family is stable.

(Continuation) Let [u; : i € Z] be an orthonormal family. Define vi = u; + ui+1. Prove

that [v; : i € Z] is stable. Generalize.

(Continuation) Let [u; : i € I] be a stable family. Let a : ] — C. Prove that these
properties of a are equivalent: (1) Zlail2 < oo; (2) Za,‘u,‘ converges; (3) Zai(x,ui)
converges for each z in the Hilbert space.

(Continuation) Let [u; : ¢ € I] be an indexed family of vectors of norm 1 in a Hilbert
space. Prove that if z‘.ﬁ [(ui.u;)|2 < 1, then the given family is stable.

(Continuation) Prove that if [u; : i € I] is stable, then {ZG.-u.- : a €631} is a closed

subspace.

Let [z1,22,...,Zn] be an ordered set in an inner-product space. Assume that it is
orthogonal in this sense: If i # z;, then (:t.-‘xj) = 0. Show by an example that the
Pythagorean law in Theorem 1 may fail.

(Direct sums of Hilbert spaces). For n = 1,2,3,... let X be a Hilbert space over the
complex field. The direct sum of these spaces is denoted by @::l Xn, and its elements
are sequences [Tn : n € N|, where z, € Xn and Z"le “:l:n"2 < 00. Show how to make
this space into a Hilbert space and prove the completeness.

This problem gives a pair of closed subspaces whose sum is not closed. Let X be an
infinite-dimensional Hilbert space, and let {un} be an orthonormal sequence in X. Put

Un = U2n Wn = u2n+41 Zn = —vn +
n n

oc
1 VnZ =1 1
= —Wn To = —Un
n
n=1

Let W and Z denote the closed linear spaces generated by {wn} and {zn}. Prove that
(1) All three sequences {vn}, {wn}, {zn} are orthonormal.
(2) The vector xo is well-defined; i.e., its series converges.
(3) The vector zq is in the closure of W + Z.
(4) If z € Z, then (z,vn) = (2z,2n)/n.
(5) If w e W, then (w,vn) =0.

(6) If zo = w+ z, where w € W and z € Z, then
1 = n(zo,vn) = n(w+ 2,vn) =(z,2,) 20

This contradiction will show that ¢ ¢ W + Z.
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40. Prove that an orthonormal set in a separable Hilbert space can have at most a countable
number of elements. Hint: Consider the open balls of radius % centered at the points in
the orthonormal set.

41. Let [un] be an orthonormal base in a Hilbert space. Define va = 27V 2(uy, + uznt1)-
Prove that [v,] is orthonormal. Define another sequence [wn] by the same formula,
except + is replaced by —. Show that the v-sequence and the w-sequence together

provide an orthonormal basis for the space.

42. Let X and Y be measure spaces, and f € L2(X x Y). Let [u;] be an orthonormal basis
for L2(X). Prove that for suitable v; € L2(Y), we have f(z,y) = Z:u.'(::)vi(y).

2.3 Linear Functionals and Operators

Recall from Section 1.5, page 24, that a linear functional on a vector
space X is a mapping ¢ from X into the scalar field such that for vectors z,y
and scalars a, b,

é(az + by) = ad(z) + be(y)

If the space X has a norm, and if

(1) sup |¢(z)| < oo
[lz]}=1

we say that ¢ is bounded, and we denote by ”¢>|| the supremum in the inequality
(1). (Boundedness is equivalent to continuity, by Theorem 2 on page 25.)

The bounded linear functionals on a Hilbert space have a very simple form,
as revealed in the following important result.

Theorem 1. Riesz Representation Theorem. Every continuous
linear functional defined on a Hilbert space is of the form = — (z,v)
for an appropriate vector v that is uniquely determined by the given
functional.

Proof. Let X be the Hilbert space, and ¢ a continuous linear functional. De-
fineY = {z € X : ¢(z) = 0}. (This is the null space or kernel of ¢). If Y = X,
then ¢(z) = O for all £ and ¢(z) = (z,0). If Y # X, thenlet 0 £ u e Y. (Use
Theorem 4 in Section 2.1, page 65.) We can assume that ¢(u) = 1. Observe
that X =Y & Cu, because £ = = — ¢(z)u + ¢(z)u, and £ — ¢(z)u € Y. Define
v= u/||u”2. Then

(z,0) = (z - d(2)u,v) + ($(z)u,v) = S(z)(v,v) = ¢(z) (u,v)/|[u]|” = $(z) u

Example 1. Let X be a finite-dimensional Hilbert space with a basis
{ur,u2,...,un], not necessarily orthonormal. Each point £ of X can be rep-
resented uniquely in the form = = E; Aj(z)u;, and the A; are continuous linear
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functionals. (Refer to Corollary 2 in Section 1.5, page 26.) Hence by Theorem 1
there exist points v; € X such that

n

zT= Z(:z:,v]-)u]- zeX
j=1

Since u; = 3_;_, (us, v;)u;, we must have (u;,v;) = 8;;. In this situation, we say
that the two sets [u1,ug,...,u,] and [v1,v2,...,vy] are mutually biorthogonal
or that they form a biorthogonal pair. See [Brez]. ]

Before reading further about linear operators on a Hilbert space, the reader
may wish to review Section 1.5 (pages 24-30) concerning the theory of linear
transformations acting between general normed linear spaces.

Example 2. The orthogonal projection P of a Hilbert space X onto a closed
subspace Y is a bounded linear operator from X into X. Theorem 7 in Sec-
tion 2.2 (page 74) indicates that P has a number of endearing properties. For
example, “P|| = 1. ]
Example 3. It iseasy to create bounded linear operators on a Hilbert space X.
Take any orthonormal system [u;] (it may be finite, countable, or uncountable),
and define Az = 3, 3" a;;(z,u;)ui. If the coefficients a;; have the property
> 3, laij|* < oo, then A will be continuous. (]

Theorem 2. Existence of Adjoints. If A is a bounded linear
operator on a Hilbert space X (thus A : X — X), then there is a
uniquely defined bounded linear operator A* such that

(Az,y) = (z,A%y) (z,y € X)

=4l

Furthermore, ||A'

Proof. For each fixed y, the mapping £ — (Az,y) is a bounded linear func-
tional on X:

(A(Mz + p2),y) = (Mz + pAz,y) = MAz,y) + p(Az,y)
Az, y)| < || Az]| [|yll < [|All =]l 9]
Hence by the Riesz Representation Theorem (Theorem 1 above) there is a unique
vector v such that (Az,y) = (z,v). Since v depends on A and y, we are at liberty
to denote it by A*y. It remains to be seen whether the mapping A* thus defined
is linear and bounded. We ask whether
A*(A\y + pz) = Ay + pA*2

By the Lemma in Section 2.1, page 63, it would suffice to prove that for all z,

(. A*(\y + pz)) = (T,AA"y + pA*2)
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For this it will be sufficient to prove
(z,A*(\y + pz)) = Xz, A*y) + B(z, A" 2)
By the definition of A*, this equation can be transformed to
(Az, My + pz) = MAz,y) + B(Az, 2)

This we recognize as a correct equation, and the steps we took can be reversed.
For the boundedness of A* we use the lemma in Section 2.1 (page 63) and
Problem 15 of this section (page 90) to write

”A'| = sup ||A‘y||= sup sup |(z,A'y)|
llyll=1 Moli=1 fizli=1
= sup sup |[(Az,y)| = sup ||A:r||=||A||
Nzfl=1 |lyli=1 Izl)=t
The uniqueness of A* is left as a problem. (Problem 11, page 89) (]

The operator A* described in Theorem 2 is called the adjoint of A. For
an operator A on a Banach space X, A* is defined on X* by the equation
A*¢ = ¢po A. If X is a Hilbert space, X* can be identified with X by the Riesz
Theorem: ¢(z) = (z,y). Then (A*¢)(z) = (¢o A)(z) = ¢(Azx) = (Az,y). Thus,
the Hilbert space adjoint is almost the same, and no shame attaches to this
innocent blurring of the distinction.

Example 4. Let an operator T on L?(S) be defined by the equation

(Tz)(s) = [5 k(s, £)z(t) dt

Here, S can be any measure space, as in Example 5, page 64. Assume that the
kernel of this integral operator satisfies the inequality

-/;-/;[k(s, t)|2dtds < oo

Then T is bounded, and its adjoint is an integral operator of the same type,
whose kernel is (s,t) — k(t,s). Such operators have other attractive proper-
ties. (See Theorem 5, below.) They are special cases of Hilbert—Schmidt
operators, defined in Section 2.4, page 98.

If A is a bounded linear operator such that A = A*, we say that A is self-
adjoint. A related concept is that of being Hermitian. A linear map A on
an inner product space is said to be Hermitian if (Az,y) = (z, Ay) for all z
and y. This definition does not presuppose the boundedness of A. However,
the following theorem indicates that the Hermitian property (together with the
completeness of the space) implies self-adjointness.
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Theorem 3. If a linear map A on a Hilbert space satisfies (Az,y) =
(z, Ay) for all z and y, then A is bounded and self-adjoint.

Proof. For each y in the unit ball, define a functional ¢, by writing ¢,(z) =
(Az,y). It is obvious that ¢, is linear, and we see also that it is bounded, since
by the Cauchy-Schwarz inequality

|6y(2)] = {Az, 9)] = I(, Ay)| < [lz]|[| Ay ]
Notice also that by the Lemma in Section 2.1, page 63,

sup |ioy(z)| = sup |(Az,y)| = ||Az||
yll<1 lyll<1

By the Uniform Boundedness Principle, (Section 1.7, page 42),
00> sup [|¢y|| = sup sup |gy()|
llyll<1 I ESYEIRS!

= sup sup |(Az,y)||@y(z)]
lell<1 llgl<t

= sup sup [(Az,y)||dy(T)]|
[EESYIES!

= sup sup [(Az,y)||¢y(x)]
(EESYTIES!

= sup sup |(Az,y)| = sup ||Az||=|4]|
=<t liyli<t llzll<1

The equation (Az,y) = (z, Ay) = (z, A*y), together with the uniqueness of the
adjoint, shows that A = A". (]

With any bounded linear transformation A on an inner product space we
can associate a quadratic form z ++ (Ax, ). We define

nAll= Sup I(Az, z)|

Lemma 1. Generalized Cauchy—-Schwarz Inequality. IfAis
a Hermitian operator, then

I(Az, v)| < 1Al ||| 1wl

Proof. Consider these two elementary equations:

(A(z +y),z +y) = (Az,z) + (AT, Y) + (Ay, 2) + (Ay,)
—(A(z - y),x — y) = —(Az,z) + (Az,9) + (Ay,7) — (Ay,V)

By adding these equations and using the Hermitian property of A, we get

(1) (A(z +y),z +y) — (A(x - y),z - y) = 4R(Az,y)
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From the definition of || A|| and a homogeneity argument, we obtain
(2) Az, z)| <BAllle]®  (z € X)
Using Equation (1), then (2), and finally the Parallelogram Law, we obtain
[4R(Az,y)| = |(A(z + y),z +y) — (A(z - y).z - y)|
<Az +y),z + y)| + [(Alz - y),z - ¥)|
<l + > +0Alle - vl
2
= nANll=|l* + 2wl
Letting ||:r|| = ||y|| = 1 in the preceding equation establishes that
IR(Az,y) <WAN (=]l = lsll = 1)

For a fixed pair z,y we can select a complex number 6 such that |§] = 1 and
6(Az,y) = |(Az,y)|- Then

[(Az,y)| = |(A(6z),y)| = IR(A(6z),y)| <Al
By homogeneity, this suffices to prove the lemma. [}
Lemma 2. If A is Hermitian, then ||A|| =l Al
Proof. By the Cauchy-Schwarz inequality,
Al = sup |(Au,u)| < sup [|[Aull|lull = sup [|4u] = [[A]
llull=1 lluli=1 llull=1
For the reverse inequality, use the preceding lemma to write

lAll = sup ||Az||= sup sup |(Az,y)|

lzli=1 lali=1 iyll=1
< sup sup Al [l [|y]| =N All .
fall=1 Ilyll=1

Definition. An operator A, mapping one normed linear space into another, is
said to be compact if it maps the unit ball of the domain to a set whose closure
is compact.

When we recall that a continuous operator is one that maps the unit ball to
a bounded set, it becomes evident that compactness of an operator is stronger
than continuity. It is certainly not equivalent if the spaces involved are infinite
dimensional. For example, the identity map on an infinite-dimensional space is
continuous but not compact.

Lemma 3. Every continuous linear operator (from one normed
linear space into another) having finite-dimensional range is compact.

Proof. Let A be such an operator, and let £ be the unit ball. Since A is
continuous, A(Z) is a bounded set in a finite-dimensional subspace, and its
closure is compact, by Theorem 1 in Section 1.4, page 20. [}



86 Chapter 2 Hilbert Spaces

Theorem 4. If X and Y are Banach spaces, then the set of compact
operators in L(X,Y) is closed.

Proof. Let [An] be a sequence of compact operators from X to Y. Suppose
that ||A,. - A|| — 0. To prove that A is compact, let [z;] be a sequence in the
unit ball of X. We wish to find a convergent subsequence in [Az;]. Since A,
is compact, there is an increasing sequence /1 C N such that [Ayz; : i € I]
converges. Since A, is compact, there is an increasing sequence I, C I such
that [Aoz; : © € [, converges. Note that [Ajx; : i € I] converges. Continue
this process, and use Cantor's diagonal process. Thus we let I be the sequence
whose ith member is the ith member of I;, for i = 1,2, ... By the construction,
[Anz;i : i € I] converges. To prove that [Az; : i € I] converges, it suffices to
show that it is a Cauchy sequence. This follows from the inequality
l[Azi — Az;|| < ||Azi — Anzi]| + ||Anzi — Anzj|| + || Anz; — Azj|
<A = An||[|zil| + [|Anz: = Anzs]| + [|4n = All[lz;]]  w
Theorem 5. Let S be any measure space. In the space L?(S),
consider the integral operator T defined by the equation

= / k(s, t)a(t) dt
S

If the kernel k belongs to the space L2(S x S), then T is a compact
operator from L*(S) into L?(S).

Proof. Select an orthonormal basis [u.) for L2?(S), and define anm =
(Tum,un). This is the “matrix” for T relative to the chosen basis. In fact,
we have for any z in L2(S), £ = Y .(z,un)un, whence

Tz = Z(Tz,un)un = Z < Z(z,um)Tum,u,,>u,,

n n m

= z [Z Gnm (z,um)} Uy

Using the notation k, for the univariate function t «— k(s,t), we have

Il —//|ks ) |2dtds_/||lc I ds-/Zl ke un)? ds
=/zn:|/k,(a)un(¢)dt]2ds=/‘L::|(Tun)(s)|2ds
-5 Jlunyo)* ds = > | Tun?

- Zﬂ:;](nmum)lz: Y lamal®

3)

= Z Bm where (B, = Zlamn|2
m=1 n



Section 2.3 Linear Functionals and Operators 87

Equation (3) suggests truncating the series that defines T in order to obtain
operators of finite rank that approximate T. Hence, we put

n oo
Thz = Z Zaij(z, uj)uy

i=1j=1

By subtraction,

Tz - Thz = Eiaq(l,uj)ui

i>n j=1

whence, by the Cauchy-Schwarz inequality (in £2!) and the Bessel inequality,

e <) oo o0
|Tz — Taz||” = > | > iz, u,-)|2 <Y HaG Y Kz ue)?
k=1

i>n =1 i>n j=1

[e o]
<o S laii? = 12| Y s

i>n j=1 i>n

This shows that ||T - Tn|| — 0. Since each T, is compact, so is the limit T, by
Theorem 4. [}

Theorem 6. The null space of a bounded linear operator on a
Hilbert space is the orthogonal complement of the range of its ad joint.

Proof. Let A be the operator and A(A) its null space. Denote the range of
A* by R(A*). If z € M(A) and z is arbitrary, then

(z,A*z) = (Az,z) = (0,2z) =0
Hence z € R(A*)L and N(A) € R(A*)L. Conversely, if z € R(A*)L, then
(Az, Az) = (z,A%(Az)) =0

whence Az = 0, z € N(A), and R(A*)* C N(A). (]

Corollary. A Hermitian operator whose range is dense is injective
(one-to-one).

A sequence [z] in a Hilbert space is said to converge weakly to a point
z if, for all y,
(1:71| y) —* (1:7 y)

A convenient notation for this is z,, —* . Notice that this definition is in com-
plete harmony with the definition of weak convergence in an arbitrary normed
linear space, as in Chapter 1, Section 9, (page 53). Of course, the Riesz Repre-
sentation Theorem, proved earlier in this section (page 81), is needed to connect
the two concepts.
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Example 5. If [un] is an orthonormal sequence, then u, — 0. This follows
from Bessel’s inequality,
> Hun ) < Julf?

which shows that (un,y) — 0 for all y. ]

Wesay that a sequence [z5] in an inner-product space is a weakly Cauchy
sequence if, for each y in the space, the sequence [(Zr,y)} has the Cauchy prop-
erty in C.

Lemma 4. A weakly Cauchy sequence in a Hilbert space is weakly
convergent to a point in the Hilbert space.

Proof. Let [z,] be such a sequence. For each y, the sequence [(y,Zn)] has
the Cauchy property, and is therefore bounded in C. The linear functionals ¢,
defined by ¢n(y) = (y,Zn) have the property

sup [¢n(y)l <00 (y € X)

By the Uniform Boundedness Principle (Section 1.7, page 42), we infer that
||¢,.|| < M for some constant M. Since

llzall = sup (y,zn)| = ||¢n]| < M
llyli=1

we conclude that [z,] is bounded. Put ¢(y) = lim,(y,zn). Then ¢ is a bounded
linear functional on X. By the Riesz Representation Theorem, there is an z for
which ¢(y) = (y,z). Hence limn(y,z5) = (y,z) and z,, — z. (]

Many problems in applied mathematics can be cast as solving a linear equa-
tion, Az = b. For our discussion here, A can be any linear operator on a Hilbert
space, X, and b € X. Does the equation have a solution, and if it does, can
we calculate it? The first question is the same as asking whether b is in the
range of A. Here is a basic theorem, called the “Fredholm Alternative.” It is
the Hilbert space version of the Closed Range Theorem in Section 1.8, page 50.
Other theorems called the Fredholm Alternative occur in Section 7.5.

Theorem 7. Let A be a continuous linear operator on a Hilbert
space. If the range of A is closed, then it is the orthogonal complement
of the null space of A*; in symbols,

Proof. This is similar to Theorem 6, and is therefore left to the problems.
(Half of the theorem does not require the closed range.) (]
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Problems 2.3

. Let X be a Hilbert space and let A : X = X be a bounded linear operator. Let [ui : i € ]

be any orthonormal basis for X. (The index set may be uncountable.) Show that there
exists a “matrix” (a function a on I x I) such that for all z, Az = Z'. Z,’ ai;(T, u;)u;.

. Adopt the hypotheses of Problem 1. Show that there exist vectors v; such that Az =

3", (z,v:)u;. Show also that the vectors v; can be chosen so that |lv|| < [JA]l.

. Let [un] be an orthonormal sequence and let Az = ZAn(:. Un)un, where [A,] is

bounded. Prove that A = A* if and only if {An] C R.

. Prove that a bounded linear transformation on a Hilbert space is completely determined

by its values on an orthonormal basis. To what extent can these images be arbitrary?

. Let X be a complex Hilbert space. Let A: X —+ X be bounded and linear. Prove that

if Az L z for all z, then A = 0. Show that this is not true for real Hilbert spaces.

. Let A be an operator on a Hilbert space having the form Az = Z An{Z,un)un, where

[un] is an orthonormal sequence and [A,] is a bounded sequence in C. If f is analytic
on a domain containing [An], then we define f{A)(z) to be Zf(z\n)(z,u..)u,.. For the
function f(z) = e* prove that f(A + B) = f(A)f(B), provided that AB = BA.

. Prove, without using the Hahn—Banach theorem, that a bounded linear functional defined

on a closed subspace of a Hilbert space has an extension (of the same norm) to the whole
Hilbert space.

. Let Y be a subspace (possibly not closed) in a Hilbert space X. Let L be a linear map

from X to Y such that z — Lz 1L Y for all z € X. Prove that L is continuous and
idempotent. Prove that Y is closed and that L is the orthogonal projection of X onto Y.

. Let A be a bounded linear operator mapping a Banach space X into X. Prove that if

[==)
> leall14)I" < oo

n=0

then 2:‘;0 cn A™ is also a bounded linear operator from X into X.
An operator A whose adjoint has dense range is injective.

Prove the uniqueness of A* and that A** = A.

Prove the continuity assertion in Example 3.

Let [en] be an orthonormal sequence, [An] a bounded sequence in C, and Az =
Z An{z,en)en. Show that the operators defined by the partial sums Z'; Ak{z,ex)ex
need not converge (in operator norm) to A. Find the exact conditions on [An] for which
this operator convergence is valid. Prove that if the partial sum operators converge to
A, then A is compact.

Let X be a separable Hilbert space, and [ua] an orthonormal basis for X. Define A :
X = X by

o

1
Az = Z ;(I,Un)un

n=1

Notice that A is a compact Hermitian operator. Prove that the range of A is the set

{y €EX : zlen(y,u,.)l2 < oo}
n=1

Prove that the range of A is not closed. Hint: Consider the vector v = Zm

ey Un/n.
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16.
17.
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21.

22

23.

24.

25.

26.

27.
28.

29.

30.

31.
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Let X and Y be two arbitrary sets. For a function f: X x Y — R, prove that

sup sup f(z,y) = sup sup f(z,y)
r€EX yey yeEY x€X

Show that this equation is not generally true if we replace sup,c x by infzex on both
sides.

Prove that if A, — A, then A;, — A*. (This is continuity of the map A — A*.)

Prove that the range of a Hermitian operator is orthogonal to its kernel. Can this
phenomenon occur for an operator that is not Hermitian?

Prove that for a Hermitian operator A, the function z — dist(z, R(A)) is a norm on
ker(A). Here R(A) denotes the range of A.

. Let A be a bounded linear operator on a Hilbert space. Define |z,y] = (Az,y). Which

properties of an inner product does [, ] have? What takes the place of the Cauchy—
Schwarz inequality? What additional assumptions must be made in order that |, ] be an
inner product?

Give an example of a nontrivial operator A on a real Hilbert space such that Az 1 z
for all z. You should be able to find an example in R2. Can you do it with a Hermitian
operator? (Cf. Problem 5.)

Let [un] be an orthonormal sequence in an inner product space. Let [An] be a sequence
of scalars such that the series Z Anun converges. Prove that Z IAn]? < oo,

Let {un] be an orthonormal sequence in a Hilbert space. Let Az = Z:Z: an (T, un)un,
where [an) is a bounded sequence in C. Prove that A is continuous. Prove that if [an]
is a bounded sequence in R, then A is Hermitian. Prove that if [an] is a sequence in C

such that Z lan]? < oo, then A is compact. Suggestion: Use Lemma 3 and Theorem 4.

If [un] isan orthonormal sequence and Az = Z An(Z,un)un where A\, € C and A\, #2 0,
then A is not compact.

Let v be a point in a Hilbert space X. Define ¢(z) = (z,v) for all z € X. Show that the
mapping T such that Tv = ¢ is one-to-one, onto X*, norm-preserving, and conjugate
linear: T(av; + agv2) = a1 Tv; + a2Tv2.

Prove that if X is an infinite—dimensional Hilbert space, then a compact operator on X
cannot be invertible.

Let .X be a Hilbert space. Let A: X — X be linear and let B : X — X be any map such
that (Az,y) = (z, By) for all £ and y. Prove that A is continuous, that B is linear, and
that B is continuous.

Adopt the hypotheses of Problem 3, and prove that ||A|| < sup, [Anl-

Illustrate the Fredholm Alternative with this example. In a real Hilbert space, let A be
defined by the equation Az = z — A(v,z)w, where v and w are prescribed elements of
the space, and (v, w) # 0. The scalar X is arbitrary. What are A*, N(A*), R(A)? (The
answers depend on the value of \.)

Refer to Theorem 5, and assume that S = [0, 1]. Prove that if the kernel k is continuous,
then Tz is continuous, for each = in L2(S).

Let A be a bounded linear operator on a Hilbert space, and let [un] and [vn] be two
orthonormal bases for the space. Prove that if Zn Zm K Aun,vm)l? < oo, then A is
compact. Suggestion: Base the proof on Lemma 3 and Theorem 4. Write

Az = z(z,u")Au" = E(I,u") Z(Au,.,vm)

Define the operator T as in Theorem 5, page 86, and assume that

c=//|k(s,t){2dsdt<oo
SJS
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Prove that if [un) is an orthonormal sequence and if Tun = Anun for each n, then
Zn '/\"'2 <e
32. Prove Theorem 7.

33. Prove the assertion made in Example 3.

2.4 Spectral Theory

In this section we shall study the structure of linear operators on a Hilbert
space. Ideally, we would dissect an operator into a sum of simple operators or
perhaps an infinite sum of simple operators. In the latter scenario, the terms of
the series should decrease in magnitude in order to achieve convergence and to
make feasible the truncation of the series for actual computation.

What qualifies as a “simple” operator? Certainly, we would call this one
“simple”: Qr = (z,u)v, where u and v are two prescribed elements of the space.
The range of Q is the subspace generated by the single vector v. Thus, Q is an
operator of rank 1 (rank = dimension of range). We may assume that ||v|| = 1,
since we can compensate for this by redefining u. Every operator of rank one is
of this form.

Another example of a simple operator (again of rank 1) is Tz = a(z, u)u.
Notice that in defining the operator T there is no loss of generality in assuming
that ||u|| = 1, because one can adjust the scalar a to compensate. Next, having
adopted this slight simplification, we notice that T has the property Tu = au.
Thus, a is an eigenvalue of T and u is an accompanying eigenvector. From such
primitive building blocks we can construct very general operators, such as

oo
Lz = Z a; (T, uj)uy
j=1

This goal, of representing a given operator L in the form shown, is beautifully
achieved when the operator L is compact and Hermitian. (These terms are
defined later.) We even have the serendipitous bonus of orthonormality in the
sequence [un). Each u, will then be an eigenvector, since

o0
Lu, = E a; (un, ¥j)uj = anln
j=1

Definition. An eigenvalue of an operator A is a complex number A such that
A — A1 has a nontrivial null space. The set of all eigenvalues of A is denoted
here by A(A). (Caution: A(A) is defined differently in many books.)

If X is a finite-dimensional space, and if A: X — X is a linear map, then
A certainly has some eigenvalues. To see that this is so, introduce a basis for X
so that A can be identified with a square matrix. The following conditions on a
complex number A are then equivalent:

(i) A — AI has a nontrivial null space
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(i) A — M is singular

(iii) det(A — AI) =0 (det is the determinant function)
Since the map A — det(A — AJ) is a polynomial of degree n (if A is ann xn
matrix), we see that there exist exactly n eigenvalues, it being understood that
each is counted a number of times equal to its multiplicity as a root of the
polynomial. This argument obviously fails for an infinite-dimensional space.
Indeed, an operator with no eigenvalues is readily at hand in Problem 1.

If A is an eigenvalue of an operator A, then any nontrivial solution of the
equation Az = Az is called an eigenvector of A belonging to the eigenvalue A.

Lemma 1. If A is a Hermitian operator on an inner-product space,
then:

(1) All eigenvalues of A are real.

(2) Any two eigenvectors of A belonging to different eigenvalues
are orthogonal to each other.

(3) The quadratic form x — (Az, z) is real-valued.

Proof. Let At =Mz, Ay = py, z # 0,y # 0, A # pu. Then
Xz,z) = (Az,z) = (Az,2) = (2, Az) = (2, M2) = X(2,2)
Thus A is real. To see that (z,y) = 0, use the fact that A and p are real and
write
(A= )z, y) = (Az,y) - (z,py) = (Az,y) — (z,Ay) =0
For (3), note that (Az,z) = (z, Az) = (Az, x). ]

Lemma 2. A compact Hermitian operator A on an inner-product
space has at least one eigenvalue X such that |A| = ||A]|.

Proof. Since the case A = 0 is trivial, we assume that A # 0. Put ||A|l =
sup{|(Az,z)| : ||z|| = 1}. By Lemma 2 in Section 2.3 (page 85), [|Al| = [|A]|-
Take a sequence of points T, such that ||za | =1 and lim|[(Azn, zn)| =l All-
Since A is compact, there is a sequence of integers n;, na, . .. such that lim; Azni
exists. Put y = lim; Az,,;. Then y # 0 because |[(AZn,,zn;)| = | All # 0. By
taking a further subsequence we can assume that the limit A = lim(Azy;, zn;)
exists. By Lemma 1, A is real. Then

| Az, - ’\z"ill2 = ”Az"‘i”2 = MAZn;, Tn;) = Man;, ATn,) + Azllfniﬂz
Hence
0 < im[Azn, ~ Ao = Ul - A2~ 22 22 = g - 2

This proves that |A| < Hy” On the other hand, from the above work we also

have
lly|| = lim || Azp, || < lim || ][]z, || = || 4] = I\

Thus our previous inequality shows that 0 < lim ||Az,,i - /\z,,i“ < 0, and that
o = Azn,l| < ly = Az] + 1420, ~ Az 0

Thus z,, — y/A. Finally, Ay = A(lim Az,;) = Alim Az,,, = Ay, so y is in the
null space of A — Al, and ] is an eigenvalue. [}
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Theorem 1. The Spectral Theorem. If A is a compact Hermi-
tian operator defined on an inner-product space, then A is of the form
Az = Y Mi(z,ex)ex for an appropriate orthonormal sequence {ex}
(possibly finite) and appropriate real numbers )y satisfying lim A\x = 0.
Furthermore, the equations Aex = Arex hold.

Proof. If A =0, the conclusion is trivial. If A # 0, we let X; = X. Let A\; and
e; be an eigenvalue and unit eigenvector determined by the preceding lemma.
Thus, |\ ]| = ||A|| Let X; = {z : (z,e1) = 0}. Then X is a subspace of X},
and A maps X3 into itself, since (AT, e;) = (z, Ae1) = (z, \1e1) = A (T,e1) =0
for any £ € X,. (Thus X; is an invariant subspace of A.) We consider the
restriction of A to the inner product space X, denoted by A|X,. This operator
is also compact and Hermitian. Also, ”A|X2|| < ||A" If A|X; # 0, then the

preceding lemma produces A, and ez, where ||ez|| = 1, |A2] = [|AIX2]| < |\,
e; L Xj, Aea = A2e2. We continue this process. At the nth stage we have
[Ar] = A2l = --- > |Aa| >0, {e1,.-.,en} orthonormal, and Aex = Akex for
k =1,...,n. We define Xp4; to be the orthogonal complement of the linear
span of [e1,...,en]. If A|Xn41 = 0, the process stops. Then the range of A is
spanned by ey, .. ., exs. Indeed, for any z, the vector z— "7 (z, ex)ex is orthogonal
to {ei1,...,en}; hence it lies in X,41, and so A maps it to zero. In other words,

n

n
Az =) (z,ex) Aek = ) Me(z, ex)ex

k=1 k=1

If A|Xn4+1 # 0, we apply the preceding lemma to get An4) and en41. It remains
to be proved that if the above process does not terminate, then limAx = 0.
Suppose on the contrary that |An| = € > O for all n € N. Then e,/\, is a
bounded sequence, and by the compactness of A, the sequence A(en/An) must
contain a convergent subsequence. But this is not possible, since A(en/An) = en
and {en}, being orthonormal, satisfies |e,. - e,,,” = V2. In the infinite case let
Yn =T — 3 p_, (T, ex)ex. Since yn L 3, (T, ex)ex,

n n
ll]|* = llyn + > (@, exdexll” = llunll” + -1z, ex)? > [lunll®
k=1 k=1

Since |An41] is the norm of || 4| Xn41|, we have
lAyn]l < [Anstl {jynl] € [Anal l|z]| =0
Since Ayn = Az — 37 Ac(T, ex)ex, we have Az = limy, 37 Az, ex)ex. ]
Remark. Every nonzero eigenvalue of A is in the sequence [An).

Proof. Suppose Az = Az, z# 0, A# 0, A ¢ {\n :n € N}. Then z L e, for
all n by Lemma 1. But then Az = Y A\,(z,en)en = 0, a contradiction. [}
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Remark. Each nonzero eigenvalue A of A occurs in the sequence
[An) repeated a number of times equal to dim{z : (A— AI)z = 0}. Each
of these numbers is finite.

Proof. Since A, — 0, a nonzero eigenvalue A can be repeated only a finite
number of times in the sequence. If it is repeated p times, then the subspace
{z : (A — M)z = 0} contains an orthonormal set of p elements and so has
dimension at least p. If the dimension were greater than p, there would exist
T # 0 such that Az = Az and (z, e,) = 0 for all n (again impossible). (]

The next theorem gives an application of the spectral resolution of an op-
erator, namely, a formula for inverting the operator A — AI when A is compact
and A is not an eigenvalue of A. (The Hermitian property is not assumed.)

Theorem 2. Let A be a compact operator (on an inner-product
space) having spectral decomposition AT = Y_ An(T,en)en. (We allow
An to be complex.) If0 # X ¢ {A,}, then A — X[ is invertible, and

(A-AD7'z= -2z 4207 Y A, x’e",)\e

Proof. If the series converges, then our formula is correct. Indeed, by the
continuity of A — AI we have by straightforward calculation

(A= ABz=B(A- M)z =1

where Bz is defined by the right side of the equation in the statement of the
theorem. In order to prove that the series converges, define the partial sums

Un = Z ,\:: fk)

The sequence [v,] is bounded, because with an application of the Pythagorean
law and Bessel's inequality we have

2 1 2 oo 2
e z <swp| 5| Sltaenr < 5 e
k=1

Since A is compact, A\, — 0, by Problem 15. Thus § < co. Also, the sequence
[Av,) contains a convergent subsequence. But [Av,} is a Cauchy sequence, and a
Cauchy sequence having a convergent subsequence is convergent (Problem 1.2.26,
page 13). To see that [Av,] is a Cauchy sequence, write

(x, ex)

-

(z, ek)
Av, = Z,\ -
and
2 = (:1: ek) 2
||Av ~ Ava||” = M2kl < sup Kz, el .
i " k=2n+1 Ak = A 1<j <00 | Aj —A k;ﬂ

If an operator A is not necessarily compact but has a known spectral res-
olution (in the form of an orthonormal series), then certain conclusions can be
drawn, as illustrated in the next three theorems.
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Theorem 3. Let A be an operator on an inner-product space
having the form At = Yo" | An(T,€n)en, where {€,} is an orthonormal
sequence and [A,] is a bounded sequence of nonzero complex numbers.
Let M be the linear span of {e, : n € N}. Then M+ = ker(A).

Proof. The following are equivalent properties of a vector z:
(a) z € ker(A)

) 42| = 0
) Z l’\n(zveﬂ)]2 = 0
(d) (z,en) =0 for all n. .

Theorem 4. Adopt the hypotheses of Theorem 3. The orthonormal
set {en} is maximal if and only if ker(A) = 0.

Proof. By Theorem 3, ker(A) = 0 if and only if M+ = 0. (In these equations, 0
denotes the 0 subspace.) The condition M+ = 0 is equivalent to the maximality
of {e,}. Here refer to Theorem 6 in Section 2.2, page 73, and observe that the
equivalence of (a) and (b) in that theorem does not require the completeness of
the space. (]

Theorem 5. Let A be an operator on a Hilbert space such that Az =
S 1 An(T, en)en, where [e4] is an orthonormal sequence and [A,] is a
bounded sequence of nonzero complex numbers. If v is in the range of

A, then one solution of the equation Az =visz =) oo | A\; ' (v, en)en.

Proof. Since v is in the range of A, v = Az for some z. Hence
(U,em) = (Azyem) = <Z ’\n(zven)en’ em) = /\m<zaem)
n=1

From this we have

oo oo
Z (v,e,)] Z z,en)|2 < |2 “
n=1 n=1

This implies the convergence of the series £ = Y oo, A7 (v, €n)en, by Theorem 2
in Section 2.2, page 71. It follows that

Az = Z/\;l(v, en)Ae, = Z(v, enlen = Z/\n(z,en)en =Az=v [ ]

Example 1. Consider the operator A defined on L2[0, 1} by the equation

= /1 G(s,t)z(s)ds
0

where
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The eigenvalues of A are A\, = n272, and the corresponding eigenfunctions are
en(t) = V2sin(2nnt). This example is discussed also in Section 2.5 (page 107)
and in Section 4.7 (page 215). Theorem 5 shows how to solve the equation
Az = v when v is a prescribed function in the range of A. ]

We turn now to the topic of Fredholm integral equations of the first kind.
These have the form

2) /S K(s,0)z(t) dt = £(s)

In this equation, the functions K and f are prescribed. The unknown
function z is to be determined. A natural setting is the space L?(S), described
on page 64. Let us assume that the kernel K is in the class L(S x S), so that
Theorem 5 of Section 2.3 (page 86) is applicable.

If the integral on the left side of Equation (2) were a Riemann integral on
the interval [0, 1], it would be a limit of linear combinations of sections of the
bivariate function K. That is,

I (D) (s2)e()

The sections of K are functions of s parametrized by the variable t:
s+ K'(s) = K(s,t)

Thus, we must expect the integral equation to have a solution only if f isin the
L2 —closure of the linear span of the sections K*®. This argument is informal, but
nevertheless alerts us to the possibility of there being no solution.

Adopting the notation of Theorem 5 in Section 2.3 (and its proof), we have

(Tz)(s) = / K(s,t)z(t) dt
s
The operator T thus defined from L2(S) to L?(S) is compact. (It is an example
of a Hilbert-Schmidt operator.) Its range cannot be all of L2(S), except in the

special case when L?(S) is finite dimensional. Equation (2) will have a sotution
if and only if f is in the range of T. Now, as in Section 2.3,

oo oo
Tz = Z Z a;j (T, uj)u

i=1 j=1

On the other hand, if f is in the range of T', we have
(3) f=3(fudu
i=1
Hence the equation Tz = f will be true if and only if Equation (3) holds and

Zafj(z,uj)=(f,ui) (i=l,2,...)

ji=1
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Putting & = (z,u;) and B; = (f,u;), we have the following infinite system of
linear equations in an infinite number of unknowns:

Zaijfj=5,' (i=1,2,...)
Jj=1

A pragmatic approach is to “truncate” the system by choosing a large integer n
and considering the finite matrix problem

n
Zaiifj("):ﬁi (i=1,2,...,n)
j=1

Here the notation f;.") serves to remind us that we must not expect 5](-") to equal

(z,u;). One can define z, = Z;;]E](-")uj and examine the behavior of the
sequences [T,) and [Tz,]. Will this procedure succeed always? Certainly not,
for the integral equation may have no solution, as previously mentioned.

Other approaches to the solution of integral equations are explored in Chap-
ter 4. The case of Equation (2) in which the kernel is separable or “degenerate,”
i.e., of the form

K(s,t) = z": ui(8)v;(t)
i=1

is easily handled:

(T2)(s) = /S K (s, t)z(t) dt = /S S wi(s)vi(t)a(t) de
i=1

= ZU;‘(SJ(W’I)
i=1

This shows that the range of T is the finite-dimensional space spanned by the
functions u,u,,...,u,. Hence, in order that there exist a solution to the given
integral equation it is necessary that f be in that same space: f = 2:;1 Cil;.
Any z such that (v;,z) = ¢; will be a solution.

Spectral methods can also be applied to Equation (2). Here, one assumes
the kernel to be Hermitian: K(s,t) = K(t,s). Then the operator T is Hermitian,
and consequently has a spectral form

o0
Tz = Z An (T, un)un
n=1

in which [u,] isan orthonormal sequence. If f isin the span of that orthonormal
sequence, we write f =Y o (f,un)un. The solution, if it exists, must then be
the function £ whose Fourier coefficients are (f,u,)/A,. If this sequence is not
an £% sequence, we are out of luck! Here we are following Theorem 5 above. This
procedure succeeds if f is in the range of T.

For compact operators that are not self-adjoint or even normal there is still a
useful canonical form that can be exploited. It is described in the next theorem.
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Theorem 6. Singular-Value Decomposition for Compact Op-
erators. Every compact operator on a separable Hilbert space is
expressible in the form

oo
E:cun

in which [uy] is an orthonormal basis for the space and [v,] is an orthog-
onal sequence tending to zero. (The sequences [un] and [vn] depend on
A.)

Proof. The operator A*A is compact and Hermitian. Its eigenvalues are non-
negative, because if A*Ax = (z, then

0 < (Az, Az) = (z, A" Az) = (z, Bz) = Bz, 7)

Now apply the spectral theorem to A* A, obtaining

A*Az = Z /\,2, (T, un)un

n=]

where [u,] is an orthonormal basis for the space and A2 — 0. Since we are
assuming that [uy) is a base, we permit some (possibly an infinite number) of
the A, to be zero. In the spectral representation above, each nonzero eigenvalue
A2 is repeated a number of times equal to its geometric multiplicity. Define
vp = Aupn. Then we have

(VmyVn) = (Atp, Auy) = (U, A* Au,) = (um,/\;‘;un) = /\,2,5,",.

Hence [v,] is orthogonal, and ||vn|| = A = 0. Since [uy] is a base, we have for.
arbitrary ,

:tun

uMS

Consequently,
o] [e.°]
AI:ZI‘U."A‘U. Zzun [ |
n=1 n=1

A general class of compact operators that has received much study is the
Hilbert—Schmidt class, consisting of operators A such that

Z ”Aua“2 < o0

for some orthonormal basis [u,]. It turns out that if this sum is finite for one
orthonormal base, then it is finite for all. In fact, there is a better result:
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Theorem 7. Let {u,) and [vg] be two orthonormal bases for a
Hilbert space. Every linear operator A on the space satisfies

3 l4va]® = 37 [ Avs]?
a B
Proof. By the Orthonormal Basis Theorem, Section 2.2 (page 73), we have
Yo lAua]’ =33 1(Aua, vp)? = 3 3~ [(Atta, vg) 2
@ a g B a
=55 (e, AP = 3 || A v
B a B

. 2 . 2
Letting {ua} = {vg} in this calculation, we obtain )5 ]IAvg“ =35 |4 vg” .
By combining these equations, we obtain the required result. ]

Example 2. An example of a Hilbert-Schmidt operator arises in the following
integral equation from scattering theory:

u(e) = f(z) [ Glla - yDhwu(w)dy

Here, f, G, and h are prescribed functions, and u is the unknown function. The
function h often has compact support. (Thus it vanishes on the complement
of a compact set.) It models the sound speed in the medium, and in a simple
case could be a constant on its support. The function f in the integral equation
represents the incident wave in a scattering experiment. An important concrete
case is

u(z) = P / e ) dy
r3 47|z — 9|

In this equation, p is a unit vector ( prescribed). Notice the singularity in the ker-
nel of this integral equation. Unfortunately, in the real world, such singularities
are the rule rather than the exception. [

References for operator theory in general are [DS, vol.Il], (RS], [AG], [Hal2].
Problems 2.4

1. Let X be a Hilbert space having a countable orthonormal base [u;,u2,...). Define an

operator A by the equation
0
Az = Z(t,un)um&l
n=1

What are the eigenvalues of A? Is A compact? Is A Hermitian? What is the norm of A?

2. Repeat Problem 1 for the operator

=}
Az = E an(Z, un)un
n=1
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10.

11.

12.

13.
14.

15.
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in which [a,,] is some prescribed bounded real sequence. Find the conditions under which
A~! exists as a bounded linear operator.

. Repeat Problem 1 for the operator

2
Az = Z(z, Un+1)Un
n=1

. Repeat Problem 1ifthe basisis (..., u_2,u_1,up,u1,...]and A = E:c=_x(a:,un)un+l-

What is A~17

. Let Y be a subspace of a Hilbert space X, and let A:Y — X be a (possibly unbounded)

linear map such that A~! : X — Y exists and is a compact linear operator. Prove that
if (A — AJ)~! exists, then it is compact.

. Prove that for a compact Hermitian operator A on a Hilbert space these properties are

equivalent:
(a) (Az,z) 2 Oforall z

(b) All eigenvalues of A are nonnegative

. Prove these facts about the spectral sets: (A is defined on page 91.)

(a) A(A) = A(A%)
(b) If A is invertible, A(A~!) = {A"1: X € A(A)}
(c) A(AM) D {A": A€ A(A)} for n =1,2,3,...

. Let {e1,e2,...} be an orthonormal system (countable or finite). Let A1, A2, ... be complex

numbers such that lim A, = 0. Define Az = Z/\n(z,en)en. Prove that the series
converges, that A is a bounded linear operator, and that A is compact. Prove also that
if the Ax are real, then A is Hermitian. Suggestion: Exploit the facts that operators of
finite rank are compact and limits of compact operators are compact.

. In the spectral theorem, when is the following equation true?

oc
= Z(-’t' €n)€n
n=1

Let P be the orthogonal projection of a Hilbert space onto a closed subspace. What are
the eigenvalues of P? Give the spectral form of P and I — P.

Let A be a bounded linear operator on a Hilbert space. Prove that:
(1) A commutes with A™ for n =0,1,2,....
(2) A commutes with p(A) for any polynomial p.
(3) If A~! exists, then A commutes with A~™ forn=0,1,2,3,....
(4) If (A — AI)~! exists, then it commutes with A.

An operator A is said to be normal if AA* = A*A. Give an example of an operator
that is not normal. (The eminent mathematician Olga Tausky once observed that most
counterexamples in matrix theory are of size 2 x 2.) Are there any real 2 x 2 normal
matrices that are not self-adjoint? (Other problems on normal operators: 29, 39, 40, 41.)

Establish the first equation in the proof of Theorem 4.

If A is a bounded linear operator on a Hilbert space, then A + A* and i(A — A*) are
self-adjoint. Hence A is of the form B + iC, where B and C are self-adjoint.

Let {e1,e€2,...} be an orthonormal sequence. Let Az = ZAn(z,en)en, in which 0 <
inf |An| < sup|An] < co. Prove that the series defining Az converges. Prove that A is
not compact. Prove that A is bounded. What are the eigenvalues and eigenvectors of A?
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Find the eigenvalues and eigenvectors for the operator Az = —z’’ acting on the space
X = {z € L?0,1) : 2(0) = 0 and z’(1) + vz(1) = 0}. Here v is a prescribed real number.
How can the eigenvalues be computed numerically? Find the first one accurate to 3 digits
when v = —%. Newton’s method, described in Section 3.3, can be used.

Prove that if Az = Az, A*y = py, and A # i1, then z L y.
If A is Hermitian and z is a vector such that Az # 0, then A"z #0forn=20,1,2,....

Every compact Hermitian operator is a limit of a sequence of linear combinations of
orthogonal projections.

If X is an eigenvalue of A2 and A > 0, then either +VA or —V/X is an eigenvalue of A.
(Here, A is any bounded operator.) Hint: If A2z = Az, then for suitable ¢, = £ cAz is
an eigenvector of A.

Consider the problem z" + (A2 —q)z = 0, (0) = 1, z’(0) = 0. Show that this initial-value
problem can be solved by solving instead the integral equation

¢
z(t) - % / g(s) sin(A(t — s))z(s)ds = cos(At)
0

If X is an eigenvalue of A, then ||A]| = [A].
If A is Hermitian and p is a polynomial having real coefficients, then p(A) is Hermitian.

A bounded linear operator A on a Hilbert space is said to be unitary if AA* = A*A=1.
Prove that for such an operator, (Az, Ay) = (z,y) and ||Az|| = ||z||.

(Continuation) All eigenvalues of a unitary operator satisfy [A] = 1.
If Az=Y_"" | An(z,en)en, what is a formula for A¥ (k =0,1,2,...)? (The en form an
orthonormal sequence.)

Let A and B be compact Hermitian operators on a Hilbert space. Assume that AB = BA.
Prove that there is an orthonormal sequence [un] such that

Az = Z An (T, tn)un Bz = Zun(l‘,un)un

Hint: If X is an eigenvalue of A, put E = {z : Az = Az}, and show that B(E) C E.
Apply the spectral theorem to B|E.

An operator A on a Hilbert space is said to be skew-Hermitian if A* = —~A. Prove a
spectral theorem for compact skew-Hermitian operators. (Hint: Consider iA.)

Assume that A is “normal” (AA* = A* A) and compact. Prove a spectral theorem for
A Use A= %(A + A*)+ é(A — A*®), Problem 28, and Problem 27.

Let A be a compact Hermitian operator on a Hilbert space X. Assume that all eigenvalues
of A are positive, and prove that {Az.z) > 0 for all nonzero z.

Prove that a compact operator on an infinite-dimensional normed linear space cannot be
invertible.

Let [un) be an orthonormal sequence in a Hilbert space and let [An] be a bounded sequence
in C. The operator Az = Z/\n(x,un)un is compact if and only if A\, — 0.

Criticize this argument: Let A be defined as in Problem 32. We show that A is surjective,
provided that A, # O for all n. Take y arbitrarily. To find an z such that Az = y we
write the equivalent equation Z An(Z,un)un = y. Take the inner product on both sides
with um, obtaining Am(z, um) = (¥, um). Thus

r= Z (¥, um) um
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34. Let .4 be a bounded linear operator on a Hilbert space. Suppose that the spectral
decomposition of A is known:

20
Az = Z Anf{z,en)en
n=1

where [e5] is an orthonormal sequence. Show how this information can be used to solve
the equation Az — puz = b. Make modest additional assumptions if necessary.

35. Prove that the eigenvalues of a bounded linear operator A on a normed linear space all
lie in the disk of radius ||A]| in the complex plane.

36. Prove that if P is an orthogonal projection of a Hilbert space onto a subspace, then
for any scalars a and § the operator aP + 3(I — P) is normal (i.e., commutes with its
adjoint).

37. Prove that an operator in the Hilbert—-Schmidt class is necessarily compact.

38. Prove that every operator having the form described in Theorem 6 is compact, thus
establishing a necessary and sufficient condition for compactness.

39. Find all normal 2 x 2 real matrices. Repeat the problem for complex matrices.

40. Prove that for a normal operator, eigenvectors corresponding to different eigenvalues are
mutually orthogonal.

41. Prove that a normal operator and its adjoint have the same null space.

Appendix to Section 2.4

In this appendix we consider a finite-dimensional vector space X, and discuss
the relationship between linear transformations and matrices.

Let L : X —» X be a linear transformation. If an ordered basis is selected
for X, then a matrix can be associated with L in a certain standard way. (If L is
held fixed while the basis or its ordering is changed, then the matrix associated
with L will change.) The association we use is very simple. Let [u,,...,u,] be
an ordered basis for X. Then there must exist scalars a;; such that

n
(1) LUJ'=ZG{J"U.,' (IS_]SH)

i=l

The n x n array of scalars

a)y Qin
A=
Qn1 " Qpp
is called the matrix of L relative to the ordered basis [u),...,un].
With the aid of the matrix A it is easy to describe the effect of L on any
vector . Writez = 37, ¢; u;j. The n-tuple (ci, ..., cn) is called the coordinate
vector of z relative to the ordered basis [uy,...,u,). Then

n n

(2) Lx=chLuj=Zc:~Zauuf=Z(Zaw)”f
j=1 i=1 j=1

j=1 i=1
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The coordinate vector of Lz therefore has as its entries
n
Zat‘jcj (I1<ig<n)
j=1

This n-tuple is obtained from the matrix product

air -+t Qin C1

Qn1 - Qnn Cn

If the basis for X is changed, what will be the new matrix for L? Let [vy, ..., vy]
be another ordered basis for X. Write

n
(3) v= pyw  (1<j<n)
i=1

The nx n matrix P thus introduced is nonsingular. Now let B denote the matrix
of L relative to the new ordered basis. Thus

N

n)

n n ) n
(4) Lv; =Zbkjvk= Zbkj Zpikui (1<
k=1 k=1 i=1

Another expression for Lv; can be obtained by use of Equations (2) and (3):

n

(5) Ly; = Z (Zaikpkj)‘lti (1<ji<n)
k=1

t=1

Upon comparing (4) with (5) we conclude that
n n
(6) Zpik brj = Z ik Pk;j (1<i,j<n)
k=1 k=1

Thus in matrix terms,
(7 PB = AP or B =P 'AP

Any two matrices A and B are said to be similar to each other if there exists
a nonsingular matrix P such that B = P~!AP. The matrices for a given linear
transformation relative to different ordered bases form an equivalence class under
the similarity relation. What is the simplest matrix that can be obtained for
a linear transformation by changing the basis? This is a difficult question, to
which one answer is provided by the Jordan canonical form. Another answer
can be given in the context of a finite-dimensional Hilbert space when the linear
transformation L is Hermitian.
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Let [u1,...,un] be an ordered orthonormal basis for the n-dimensional
Hilbert space X. Let L be Hermitian. The spectral theorem asserts the exis-
tence of an ordered orthonormal basis [v), ..., v,] and an n-tuple of real numbers
(A1,..-,An) such that

(8) Lz = i Ailz,vi) v
i=1

As above, we introduce matrices A and P such that
n n
(9) Luj =) ajui  v;=» pyu (1<j<n)
=1 i=1

The matrix B that represents L relative to the v-basis is the diagonal matrix
diag(A1,...,An), as we see from Equation (8). Thus from Equation (7) we
conclude that A is similar to a diagonal matrix having real entries. More can be
said, however, because P has a special structure. Notice that

n n
(1)]k = 6]1: = vk,v] <szk u;, Zpr_; ur> Zzpik ﬁrj(uiaur)

i=1r=1
= zPucP,] = z (P");i(P)it = (P P)ji
i=1

This shows that
(10) PP=1
(It follows by elementary linear algebra that PP* = I.) Matrices having the
property (10) are said to be unitary. We can therefore state that the matrix A
(representing the Hermitian operator L with respect to an orthonormal base) is
unitarily similar to a real diagonal matrix.

Finally, we note that if an n x n complex matrix A is such that A = A*, then
A is the matrix of a Hermitian transformation relative to an orthonormal basis.

Indeed, we have only to select any orthonormal base [ui,...,un] and define L
by

Il

n
Lujzzaijui (1<j<n)

Then, of course,
n n

n
Lz:L(chuj)zz Cj a5 U;
j=1 j=11i=1
By straightforward calculation we have
(Lz,y) = (=z, Ly)
A matrix A satisfying A* = A is said to be Hermitian. We have proved

therefore the following important result, regarded by many as the capstone of
elementary matrix theory:

Theorem. Every complex Hermitian matrix is unitarily similar to
a real diagonal matrix.
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2.5 Sturm-Liouville Theory

In this section differential equations are attacked with the weapons of
Hilbert space theory. Recall that in elementary calculus we interpret integration
and differentiation as mutually inverse operations. So it is here, too, that dif-
ferential operators and integral operators can be inverse to each other. We find
that a differential operator is usually ill-behaved, whereas the corresponding in-
tegral operator may be well-behaved, even to the point of being compact. Thus,
we often try to recast a differential equation as an equivalent integral equation,
hoping that the transformed problem will be less troublesome. (This theme will
reappear many times in Chapter 4.) This strategy harmonizes with our general
impression that differentiation emphasizes the roughness of a function, whereas
integration is a smoothing operation, and is thus applicable to a broader class
of functions.

Definition. The Sturm-Liouville operator is defined by

(Az)(t) = [p(t)z'(t)]' + q(t)z(t) ie, Ar=(pz') +gqz
where z is two~times continuously differentiable, p is real-valued and continu-
ously differentiable, and q is real-valued continuous. The domain of the functions
z, p, and q is an interval [a,b]. We permit = to be complex-valued. Let eight
real numbers a;j, G;; be specified 1 <7, € 2. Assume that

p(a)(Br1B22 — Br2021) = p(b)(a11022 — a12021)

Let X be the subspace of L?[a,b] consisting of all twice continuously differen-
tiable functions x such that

01117((1) + 0121‘1(0) + ﬁ]].’l:(b) + ,@1213’(()) =0
ag1z(a) + azz:l:'(a) + Ba1z(b) + ﬁzzx’(b) =0

Assume also that 01022 # B120821 or aijaz2 # ai2a2;.

Theorem 1. Under the preceding hypotheses, A is a Hermitian
operator on X.

Proof. Let z,y € X. We want to prove that (Az,y) = (z, Ay). We compute
b b
(42,9) - (5, Ay) = [ 194z ~2Az) = | [3(p=') +Taz - 2(p7) - 7]
b
= [ woz'y - 2(r37)
b
= / (#(pz") + ¥'pz’ — z(pY) — 2'P¥')
b b
= / [pz'y - p¥’] = [pz'y - pa¥],
= p(b) [z (6)H(b) — z(6)7'(b)] — P(a) [z'(2)F(a) — 2(a)F'(a)]
= —p(b)[det w(b)] + p(a)[det w(a)]
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where w(t) is the Wroriski matrix

[0 3]

Put also

o [011 012] = {ﬂu ﬂlZ]

a1 022 B2 B2

Our hypothesis on p is that p(a)det 3 = p(b)det a. The fact that z,y € X
gives us aw(a) + Bw(b) = 0. This yields (det a)[det w(a)] = (det B)(det w(b)).
Note that det(—8) = det(3) because 3 is of even order. Multiplying this by p(b)
gives us p(b) detadetw(a) = p(b) det 3det w(b). By a previous equation, this is
p(a) det Sdet w(a) = p(b)det 3det w(b). If det 3 # 0, we have p(b) det w(b) =
p(a) det w(a). If det @ # 0, a similar calculation can be used. (]

Lemma. A second-order linear differential equation
a(t)z”(t) + b(t)z'(t) + c(t)z(t) = d(t) (a<t<b)
can be put into the form of a Sturm-Liouville equation (pz')' +qz = f,
provided that the functions a,b, c are continuous and a(t) # 0 for all t
in the interval [a, b].
Proof. We transform the equation az” + bz’ + cz = d by multiplying by the

integrating factor }zexp/(b(t)/a(t)) dt. Thus

o"el e 4 (b/a)x'ef b/a 4 (c/a)zef b/a (d/a)ef b/a

or
(zrefb/a) +(c/a)efb/“:c =f
Let
p=el¥,  q=(c/a)el¥ .
Example 1. If Az = —z” (i.e., p(t) = ~1 and q(t) = 0), what are the

eigenvalues and eigenfunctions? The solutions to —z” = Az are of the form
c1 sin VAt + ¢ cos VAt. Hence every complex number A is an eigenvalue, and
each eigenspace is of dimension 2. (]

Example 2. Let Az = —z" as before, but let the inner-product space be
the subspace of L2[0, 7] consisting of twice continuously differentiable functions
that satisfy £(0) = z(n) = 0. The eigenvalues are n? for n =0, 1,2,..., and the
eigenfunctions are sin n2t. ]

The next theorem illustrates one case of the Sturm-Liouville Problem. We
take p(t) = 1 in the differential equation and let 8y = B12 = a2 = @22 = 0.
We assume that |aj;| + |ai2| > 0 and [B21] + |822] > 0. It is left to Problem 8
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to prove that the differential operator is Hermitian on the subspace of functions
that satisfy the boundary conditions.

Our goal is to develop a method for solving the equation Az = y, where y is
a given function, and z is to be determined. The plan of attack is to find a right
inverse of A (say AB = I) and to give £ = By as the solution to the problem.
It will turn out that the spectral theorem is applicable to B.

We assume that there exist functions u and v such that

(1) v =qu Baru(b) + Bu'(b) =
(2) v =qu anv(e) + azv’(a) =0
(3) u'(a)v(a) — u(a)v’(a) = 1

From (3) we see that u # 0 and v # 0. The left side of (3) is the Wroriskian of
u and v evaluated at a.

In practical terms, u and v can be obtained by solving two initial-value
problems. This is often done as follows. Find ug and vo such that

u[l;)l = quo ’U,[)(b) 1 Ua(b) =0
w=qu vfa)=0 vy(a)=1

The u and v required will then be suitable linear combinations of up and vg.
Now we observe that for all s,

u'(s)v(s) —u(s)v'(s) =1

This is true because the left side takes the value 1 at s = a and is constant.
Indeed,

d
— v —w] = uw"v+ v —w” — vV = quv—uqu=0

ds

Next we construct a function g called the Green’s function for the prob-
lem:
u(s)u(t) a<t<s<d
g9(s,t) =
v(s)u(t) a<s<t<h
The operator A in this case is defined by
4) Az =z" - qz

and the domain of A is the closure in L;[a,b] of the set of all twice continuously
differentiable functions x such that

a11z(a) + a122'(a) = B z(b) + fara’(b) =

Theorem 2. A right inverse of A in Equation (4) is the operator B
defined by

b
(5) (By)(s) = / os, t)y(t) dt
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Proof. 1t is to be proved that AB = I. Let y € C[a,b] and put z = By. We
show first that Az = y. From the equation

b
:L‘(s):/ g(s,t)y(t)dt

S b
=/ u(s)v(t)y(t)dt+/ v(s)u(t)y(t)dt

s b
u(s)/ v(t)y(t)dt+v(s)/ u(t)y(t) dt

we have

#(5) = w(5) [ (Ut + ()
b
+ v'(s)/ w(t)y(t) dt — v(s)u(s)y(s)

K] b
:u'(s)/ v(t)y(t)dt+v’(s)/ u(t)y(t) dt

Another differentiation gives us

s b
z"(s) = u"(s)/ v(t)y(t) dt + ' (s)v(s)y(s) + v"(s) / u(t)y(t) dt — v'(s)u(s)y(s

] b
= q(s)u(s)/ v(t)y(t)dt + q(s)v(s)/ u(t)y(t)dt + y(s [u — u(s)v'(s )]
= q(s)z(s) + y(s)

In the last step, the constant value of the Wroriskian was substituted. Our
calculation shows that =" — gz = y or AT = y, as asserted. Hence AB = I.

It remains to prove that z € X, i.e., that z satisfies the boundary conditions.
We have, from previous equations,

=v(a) /bu(t)y(t) dt = cv(a)

b
(@) =v(a) [ ut(t)dt = o'(a)

and

Hence
anz(a) + apz’(a) = anicv(a) + ajpcv’(e) = 0

Similarly we verify that
Ba1z(b) + Bazx’(b) =0 [

Remark. If it is known that the homogeneous boundary-value problem has
only the trivial solution, then B is also a left inverse of A. In order to verify this,
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let z € X, y = Az, and By = z. The previous theorem shows that y = ABy =
Az and that z € X. Hence £~z € X and A(z—z) = 0. It follows that z —z = 0,
so that £ = By = BAz.

Remark. The operator B in the previous theorem is Hermitian, because (by
Problem 9) g satisfies the equation

g(s,t) = g(t, s)

Now we apply the Spectral Theorem to the operator B. Notice that B is
compact by Theorem 5 in Section 2.3, page 86. There exist an orthonormal
sequence [un] in L%[a,b] and real numbers A, such that

[e o]
By = Z An (Y, Un)tun

n=1

Since Bu, = Aruk, we have up = ApAug, and uy satisfies the boundary con-
ditions. This equation shows that u; is an eigenvector of A corresponding to
the eigenvalue 1/\. Since Ax — 0, 1/A\x = oco. Consequently, a solution to the
problem Az = y, where y is given and = must satisfy the boundary conditions,
is

oo
T=By=)_ An(ytn)un

n=1

Example 3. Consider the boundary-value problem
Az=2"+z=y z'(0)=z(n) =0

We shall solve it by means of a Green’s function. For the functions u and v we
can take u(t) = sint and v(t) = cost. In this case the Green’s function is
s

sin scost g

VASIV/A

glst) = {

<t
<

<
cosssint s<t<«

The compact Hermitian integral operator B is given by
8 ™
(By)(s) = sins/ costy(t)dt+coss/ sint y(t) dt (]
0 s

Example 4. Let us solve the problem in Example 3 by using the Spectral
Theorem. The eigenvalues and eigenvectors of the differential operator A are
obtained by solving £ +z = pz. The general solution of the differential equation
is

z(t) =c¢ysin\/1—put +cycosy/1—p
Imposing the conditions z'(0) = z(w) = 0, we find that the eigenvalues are pn =
1-(n- %)2 and the eigenfunctions are v (t) = cos(2n — 1)t/2. The vn are also

eigenfunctions of B, corresponding to eigenvalues A, = 1/pn = (n — n? + %) -
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Observe that the eigenfunctions v,, are not of unit norm. If a,, = 1/||v,,||, then
(anvn] is an orthonormal system, and the spectral resolution of B is

By = Z An(y, @nvn)(Qnvn)
n=1

A computation reveals that a,, = (2/7)'/2. Hence we can write
oo
By = (2/m) Z An(Y, Un)vn

n=1

Use of this formula is equivalent to the traditional method for solving the
boundary-value problem

+z=y 1'(0)==z(m)=0

t, which
satisfy the boundary conditions. Then we build a function of the form =z =
z;w:l cnVn. This also satisfies the boundary conditions. We hope that with a
correct choice of the coefficients we will have Az = y. Since Av, = p,v,, this
equation reduces to ZZ":l CnltnUn = Y. To discover the values of the coefficients,
take the inner product of both sides with v,,:

n
The traditional method starts with the functions v,(t) = cos

Z Cnpin (Un, Um) = (¥, Um)

By orthogonality, we get Cmiman? = (¥, Um) and cm = (¥, Um) ' 02,

Notice that Theorem 2 has given us an alternative method for solving the
inhomogeneous boundary-value problem. Namely, we simply use the Green’s
function to get z:

2(s) = (By)(s) = /0 " g(s, t)y(t) dt .

Our next task is to find out how to determine a Green’s function for the more
general Sturm-Liouville problem. The differential equation and its boundary
conditions are as follows:

Az =(pr') +qx=y 1z €C?%a,b]
(6) Q]].‘E(a) + (11217'((1) + ﬂllI(b) + ﬂ]le(b) =0

a21z(a) + a222’(a) + B212(b) + B22x'(b) = 0

We are looking for a function g defined on [a,b] x [a,b]. As usual, the t-sections
of g are given by g'(s) = g(s,t).
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Theorem 3. The Green’s function for the above problem is charac-
terized by these five properties:

(i) g is continuous in (a, b] x [a, b].

a . . .
(ii) 3—9iscontmuousma<s<t<bandma<t<s<b.
s

(iii) For each't, gt satisfies the boundary conditions.
(iv) Agt =0 in the two open triangles described in (ii).
g g
= == (s,t) = — .
(v) llm 35 9 (s,1) - lles s 9 (s,t) = ~1/p(s)

Proof. As in the previous proof, we take y € C|a,b] and define

b
zm=/gmmmm

It is to be shown that z is in the domain of A and that Az = y. The domain of A
consists of twice-continuously differentiable functions that satisfy the boundary
conditions. Let us use’ to denote partial differentiation with respect to s. Since

s b
n@=/aawwm+/mamma

we have (as in the previous proof)

] b
f@=/¢wmmm+/¢@mww
a L]
It follows that

b b
2@ = [ g@numa  at)= [ gb.ou0
a a
b b
d@= [ danoe  ce= [ deouoae
a a
Any linear combination of z(a), z(b), z'(a), and z’(b) is obtained by an integra-
tion of the same linear combination of g(a,t), g(b,t), ¢'(a,t), and g’(b,t). Since

g' satisfies the boundary conditions, so does x. We now compute z”(s) from the
equation for z'(s):

s b
I"(S)=9'(s,s—)y(3)+/ g”(s,t)y(t)dt—y'(sa5+)y(5)+/’ g"(s,t)y(t)dt

b
= y(5)/p(s)+ [ ¢"(s.00(t)
a
Here the following notation has been used:

g'(s,84) = tlijins g'(s,1) g'(s,5-) = tliTmsg’(s, t)
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Now it is easy to verify that At = y. We have

Az = (pr') + gz =p't’ + pr” + qz

Hence
b b
(42)(s) = P(9) [ /(5,01 + 3(s) + p(s) [ 9" (s, hute)
b
+a(s) [ gls.hu(e)
b !
=3(9)+ [ [(p(6)g'(5.0)) + als)gls, O]u(e) dt = ()
because g is a solution of the differential equation. [}

Example 5. Find the Green's function for this Sturm-Liouville problem:
=y z2(0)=2(00=0 =zeC?0,1]

The preceding theorem asserts that g* should solve the homogeneous differential
equation in the intervals 0 < s <t < 1and 0 < t < s < 1. Furthermore, g*
should be continuous, and it should satisfy the boundary conditions. Lastly,
g'(s,t) should have a jump discontinuity of magnitude —1 as t passes through
the value s. One can guess that g is given by

1

0 0<s<t
<s<1

g9(s,t) = {

<
<

s—t 0<t<s

If we proceed systematically, it will be seen that this is the only solution. In the
triangle 0 < s <t < 1, Ag* = 0, and therefore g* must be a linear function of s.
We write g(s,t) = a(t) + b(t)s. Since g must satisfy the boundary conditions,
we have ¢(0,t) = (8g/9s)(0,t) = 0. Thus a(t) = b(t) = 0 and g(s,t) = 0 in
this triangle. In the second triangle, 0 < t < s < 1. Again g* must be linear,
and we write g(s, t) = a(t) + 3(t)s. Continuity of g on the diagonal implies that
a(t) + B(t)t = 0, and we therefore have g(s,t) = —3(t)t + B(t)s = B(t)(s - t).
The condition (8g/8s)(s,s+) — (8g/8s)(s,s—) = —1/p leads to the equation
0 — B(t) = —1. Hence g(s,t) = s — t in this triangle. The solution to the
inhomogeneous boundary-value problem z” = y is therefore given by

2(s) = /Os(s — t)y(t)dt .

Example 6. Find the Green’s function for the problem
" —-z'-2z=y z(0)=0=x(1)

We tentatively set

(7) gw0={z
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and try to determine the functions u and ». The homogeneous differential equa-
tion has as its general solution the function

z(s) = ae™* + fe?*
The solution satisfying the condition z(0) = 0 is
u(s) = ae~* — ae’®
The solution satisfying the condition z(1) =0 is

v(s) = ~Bede™* + PBe**

With these choices, the function g in Equation (7) satisfies the first four require-
ments in Theorem 3. With a suitable choice of the parameters o and (3, the
fifth requirement can be met as well. The calculation produces the following
equation involving the Wronskian of u and v:
9'(s,s+) — ¢'(s,5=) = u'(s)v(s) — v'(s)u(s)
=apB(3 - 3e3)e’

In this problem, the function p is p(s) = e~*, because
z"(s) — 2'(s) = (e™°'(s))’

Hence condition 5 in Theorem 3 requires us to choose o and 3 such that a8 =
—(3 —3e%)~! =~.0017465. Then

-8 __ 528 2t _ eB—t
ols,1) = {aﬂ(e e )

aﬂ(e’“ - 63"’)(6—‘ _ e2t)
Example 7. Find the Green’s function for this Sturm-Liouville problem:
z'4+9r=y z(0)=x(r/2)=0

According to the preceding theorem, g should be a continuous function on the
square 0 < s,t < /2, and ¢* should solve the homogeneous problem in the
intervals 0 < s < tand t < s < /2. Finally, 8g/0s should have a jump of
magnitude —1 as t increases through the value s. These considerations lead us
to define
—%sin3scos3t 0<s<tgw/2
g(svt) = {

= = g
—%cos3ssin3t 0<t<s<n/2

Problems 2.5

1. Find the eigenvalues and eigenfunctions for the Sturm-Liouville operator when p=¢g¢ =1

and
a=[(l) (1)] =0
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11.

12.

13.
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Prove that an operator of the form
b
(Az)(s) = / k(s, t)z(t) dt
a

is Hermitian if and only if k(s,t) = k(t,s).

. Find the Green’s function for the problem

/-3 +2z=y z(0) =0 = z(1)

. Find the Green’s function for the problem

-9z =y z(0) =0 = z(1)

. Prove that if u and v are in C?[a,b], then the function

u(s)u(t) a<s<t<h
g(s,t) = {
v(s)u(t) a<t<s<b

has properties (i) and (ii) mentioned in Theorem 3.

. (Continuation) Show that if

i (u/v) = -1
then g (in Problem 5) will have property (v) in Theorem 3.

. Prove that if p = 1 in the Sturm-Liouville problem and 031 = f12 = a21 = az2 =0 then

A is Hermitian.

. Prove that the function g in Equation (4) is symmetric: g(s,t) = g(t, s).
10.

Let Az = (pz’)’ — gz. Prove Lagrange’s identity:

zAy - yAz = [p(zy’ — yz'))

(Continuation) Prove Green’s formula:
i b
/ (zAy — yAz) = p(zy’ — yz')|,
a

Show that the Wroriskian for any two solutions of the equation (pz’)’ — gz = 0 is a scalar
multiple of 1/p, and so is either identically zero or never zero. (Here we assume p(t) # 0
fora <t<b)

Find the eigenvalues and eigenfunctions for the operator A defined by the equation Az =
—z' 422’ —x. Assume that the domain of A is the set of twice continuously differentiable
functions on [0, 1) that have boundary values z(0) = z(1) = 0.
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3.1 The Fréchet Derivative

In this chapter we develop the theory of the derivative for mappings between
Banach spaces. Partial derivatives, Jacobians, and gradients are all examples of
the general theory, as are the Gateaux and Fréchet differentials. Kantorovich’s
theorem on Newton’s method is proved. Following that there is a section on
implicit function theorems in a general setting. Such theorems can often be
used to prove the existence of solutions to integral equations and other similar
problems. Another section, devoted to extremum problems, illustrates how the
methods of calculus (in Banach spaces) can lead to solutions. A section on the
“calculus of variations” closes the chapter.

The first step is to transfer, with as little disruption as possible, the ele-
mentary ideas of calculus to the more general setting of a normed linear space.

Definition. Let f : D —» Y be a mapping from an open set D in a normed
linear space X into a normed linear space Y. Let £ € D. If there is a bounded
linear map A : X = Y such that

0 L@+ h) - f(z) - Al

A Al =0

then f is said to be Fréchet differentiable at z, or simply differentiable at
z. Furthermore, A is called the (Fréchet) derivative of f at z.
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Theorem 1.  If f is differentiable at z, then the mapping A in the
definition is uniquely defined. (It depends on z as well as f.)

Proof. Suppose that A, and A, are two linear maps having the required prop-
erty, expressed in Equation (1). Then to each € > 0 there corresponds a 6 > 0
such that

lf(z +h) = f(z) — A:ih|| < €||h]] (i=1,2)

whenever ||h|| < 6. By the triangle inequality, ||A1h — A2h|| < 2¢||h|| whenever
||k|| < 6. Since A; — A, is homogeneous, the preceding inequality is true for all
h. Hence || 41 — A2|| < 2€. Since € was arbitrary, ||4, — Ay|| = 0. s

Notation. If f is differentiable at z, its derivative, denoted by A in the
definition, will usually be denoted by f’(z). Notice that with this notation
f'(z) € L(X,Y). This is NOT the same as saying f’ € L£(X,Y). It will be
necessary to distinguish carefully between f’ and f'(z).

Theorem 2. If f is bounded in a neighborhood of £ and if a linear
map A has the property in Equation (1), then A is a bounded linear
map; in other words, A is the Fréchet derivative of f at .

Proof. Choose § > 0 so that whenever ||h|| < 6 we will have
Ifx+h)|| <M and |f(z+h)~ f(z)— Ah|| < ||A]
Then for ||h|| < 6 we have ||Ah|| < 2M +||h|| < 2M +6. For |[u]| < 1, ||6u]| < 6,

whence || A(6u)|| < 2M +6. Thus || 4| < (2M +6)/8. ]

Example 1. Let X =Y = R. Let f be a function whose derivative (in the
elementary sense) at £ is A. Then the Fréchet derivative of f at z is the linear
map h — Ah, because

lim |f(:1:+h) - f(z) —Ah| - lim

fz+h) - f(z) _
h—0 A k0 h —A =0

Thus. the terminology adopted here is slightly different from the elementary
notion of derivative in calculus. (]

Example 2. Let X and Y be arbitrary normed linear spaces. Define f : X —
Y by f(z) = yo, where yq is a fixed element of Y. (Naturally, such an f is called
a constant map.) Then f'(z) = 0. (This is the 0 element of £(X,Y).) (]

Example 3. Let f be a bounded linear map of X into Y. Then f'(z) = f.
Indeed, ||f(z + h) — f(z) - f(h)|| = 0. Observe that the equation f’ = f is not
true. This illustrates again the importance of distinguishing carefully between
f'(z) and f". (]
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Theorem 3. If f is differentiable at =, then it is continuous at x.

Proof. Let A = f'(z). Then A € £(X,Y). Given € > 0, select § > 0 so that
8 <€/(1+||A||) and so that the following implication is valid:

|lrl| <6 = ||f(z+h) - f(z) - AR||/||h|| <1

Then for ||h|| < 4, we have by the triangle inequality

1f(z+h) = F@)|| < |[f(@ +h) - f(z) = Ab|| + || AR
<|[R]l + [LARI < [|R]| + [|Al] [|2]
<6(1+||A|])<e [}

Example 4. Let X =Y = (C[0,1] and let ¢ : R = R be continuously
differentiable. Define f : X — Y by the equation f(z) = ¢ oz, where z is any
element of C[0, 1]. What is f'(z)? To answer this, we undertake a calculation
of f(z + h) — f(z), using the classical mean value theorem:

£z + k) = F@)](®) = $(a(t) + k(1) - Bz (1) = & (2(8) + 8(V)A(D)) h(2)
where 0 < 6(t) < 1. This suggests that we define A by
Ak = (¢' oT)h
With this definition, we shall have at every point ¢,
(£ + k) = £(2) = 4R)(&) = &' (2(2) + O(E)R(D)) h(t) — & (2(0)) ()
Hence, upon taking the supremum norm, we have
If(z + h) — f(z) — Ah|| < ||¢' o (z +6h) — ¢ oz|| | |A]|

By comparing this to Equation (1) and invoking the continuity of ¢’, we see that
A is indeed the derivative of f at . Hence f'(z) = ¢’ o z. ]

Theorem 4. Let f : R® = R. If each of the partial derivatives

D;f (= 0f/0z;) exists in a neighborhood of x and is continuous at
then f'(z) exists, and a formula for it is

n
(@h=) Dif(x)-hi  h=(h1,hs,...,hs) ER"
i=1

Speaking loosely, we say that the Fréchet derivative of f is given by
the gradient of f.

Proof. We must prove that

’P-I'nllhll fz+h) - f(z) - Zth(:r]:
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We begin by writing
f(z+h) = f(2) = F(v") = F(o°) = Yo [£(v") = F(v* )
i=1

where the vectors v* and v*~! differ in only one coordinate. Thus we put v° = z
and v' = v*~! + hsef, where €' is the ith standard unit vector. By the mean
value theorem for functions of one variable,

fY) = fY) = f0! + hief) = f(0'TT) = R Dif(v*T! + Oihiet)

where 0 < 0; < 1. Putting this together, and using the Cauchy-Schwarz in-
equality, we have

IRl (2 + h)=f(z) = 3 hiDsf(z)

= 7| ta[Dus " + i) - Dus(a)]
< 1Al ially/ S [Def 0=t + 0ihiet) = Dis(@)]* -0

as ||k|| = 0, by the continuity of D;f at z. Note that
flv'=* + Oihie’ — z|| = ||(a,. .., hiz1,8:h4,0,0,...,0)]| < ||R]] B
Theorem 5. Let f : R®™ - R™, and let fy,..., fr be the component

functions of f. If all partial derivatives D; f; exist in a neighborhood
of ¢ and are continuous at z, then f'(z) exists, and

h) =2Djf,~(:t)-hj forall heR"

Speaking informally, we say that the Fréchet derivative of f is given by
the Jacobian matrix J of f at z: Ji; = (D; fi(z)).

Proof. By the definition of the Euclidean norm,

Z[f,x+h ZDJf, r

e o = 1= =

Each of the m terms in the sum (including the divisor ||h||2) converges to 0 as

h — 0. This is exactly the content of the preceding theorem. (]
Example 5. Let f(z) = y/|z1z2|. Then the two partial derivatives of f exist

at (0,0), but f/(0,0) does not exist. Details are left to Problem 16. ]
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Example 6. Let L be a bounded linear operator on a real Hilbert space X.
Define F' : X — R by the equation F(z) = (z, Lz). In order t o discover whether
F is differentiable at z, we write

F(z+h)— F(z) = (z + h,Lz + Lh) — (z, Lz)
= (z,Lh) + (h, Lz) + (h, Lh)

Since the derivative is a linear map, we guess that A should be Ah = (z, Lh) +
(h, Lz). With that choice, |Ah| < 2||z||||L||||~]|, showing that ||4|| < 2||z|| ||L]|-
Thus A is a bounded linear functional. Furthermore,

|F(z + h) - F(z) - Ah| = |(h, LR) < [|L]| [A]]* = o(h)

(The notation o(h) is explained in Problem 6.) This establishes that A = F'(x).
Notice that
Ah = (L*z + Lz, h) ]

References for the material in this chapter are [Avl], [Av2)], [Bart], [BI],
(Bo), [Car], [Cart], [CS], [Cou], [Dieu], [Els], [Ewi], [Fox], [FM], [GF], [Gold],
[Hesl], [Hes2], [JLJ], [Lan1], [NSS], [PBGM], [Sag], [Schj], [Wein], and [Youl].

Problems 3.1

1. Let g be a function of two real variables such that g22 is continuous. (This notation means
second partial derivative with respect to the second argument.) Define f : C[0,1] —

CJ0,1) by the equation (f(z))(t) = fol g(t, z(s)) ds. Compute the Fréchet derivative of
f. You may need Taylor’s Theorem.
2. Let f be a Fréchet-differentiable function from a Hilbert space X into R. The gradient

of f at = is a vector v € X such that f’(z)h = (h,v) for all h € X. Prove that such a v
exists. (It depends on z.) Illustrate with f(z) = (a,)?, a € X and fixed.

3. Prove that if f and g are differentiable at z, then sois f+g, and (f+g)'(z) = f'(z)+g'(x).

4. Let X, Y and Z be normed linear spaces. Prove thatif f: X — Y is differentiable and
if A: Y — Z is a bounded linear map, then (Ao f)) = Ao f'.

5. Let f : X — X be differentiable, X a real Hilbert space, and v € X. Defineg: X =+ R
by g(z) = (f(z),v). Prove that g is differentiable, and determine g’.

6. We write h — o(h) for a generic function that has the property

im _o(h) =
h—o ||R||
Thus f’(z) is characterized by the equation f(z + h) — f(z) ~ f'(z)h =o(h). Prove that

the family of all such functions o from X to Y is a vector space.

7. Find the derivative of the map f : C[0, 1) — CJ0, 1] defined by f(xz) =g-z. Here the dot
signifies ordinary multiplication, and g € C|0, 1].

8. Supply the missing details in Example 4. For example, you should establish the fact that
[l¢’ o (x + 8h) — ¢’ o z|| converges to 0 when h converges to 0. Quote any theorems from
real analysis that you use.

9. Let X and Y be two normed linear spaces, and let £ € X. Let f and g be functions
defined on a neighborhood of = and taking values in Y. Following Dieudonné, we say
that “f and g are tangent at z" if

. Nfz+h)—glz+h)l _
Ay I =0
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
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Prove that this is an equivalence relation. Prove that the relationship is preserved if the
norms in X and Y are changed to equivalent ones. Prove that £ — f(zg) + f/(z0)(z — o)
is the unique affine map tangent to f at zo. (An affine map is a constant plus a linear
map.)

Show that these two functions are tangent at z = 2:

flz) =22  g(x) =3+ /17— (z - 6)2

Draw a picture to illustrate.

Prove that if f and g are tangent at z and if both are differentiable at z, then f'(z) =
g’(z). Here f and g should be as general as in Problem 9.

Let X = C[0,1], with its usual sup-norm. Select t, € {0,1) and v; € C(0,1], and define
f(z) = Z:‘:llz(tg)]"’v,. Prove that f is differentiable at all points of X and give a
formula for f’.

Prove that the supremum norm on the space C|0, 1] is not differentiable at any element
z for which there are two or more points ¢ in [0, 1) where |z(t)| = ||z||.

Recall that cgq is the space of sequences converging to 0 and that the norm is ||z|| =
maxpn |z(n)|. Prove that the norm is differentiable at z if and only if there is a unique n
such that |z(n)| = {lz|l-

Let yo be a point in a normed linear space Y. Define f : R — Y by the equation
f(t) = tyo. Compute f'. Now define g(t) = (sint)yo and compute g’.

Supply the missing details for Example 5.

Define f : C|0,1] — CJ0, 1] by the equation [f(z)](t) = z(t) + folla:(st)]z ds. Compute
f'(z).

Prove that if f is differentiable at z, then f is Lipschitz continuous at z. This means
that |\f(y) — f(2)|l < Ally — zl| for some A and all y in a neighborhood of z.

Let an (n =0,1,2,...) be real numbers such that Z:‘;o anz™ converges for all z € C.
Let X be a Banach space. Define f : £(X, X) = L£(X, X) by the equation f(A) =
an=0 anA™. What is the Fréchet derivative of f7

Explain the difference between these statements:

(i) f’ is continuous at z.

(ii) f'(z) is continuous.
Prove that if f'(z) exists, then it is continuous and differentiable. Give an example of a
mapping f such that f’ is continuous but not differentiable.

Refer to the definition of the Fréchet derivative. If the bounded linear map A satisfies
the weaker condition

lim 11[](: +Ah) - f(z) - AAK|| =0
A0 A

for every h € X, then f is said to be Gateaux differentiable at zr, and A is the
Gateaux derivative at z. Prove that if f is Fréchet differentiable at z, then it is
Gateaux differentiable at z, and the two derivatives are equal.

Let f be a differentiable map from one normed linear spaces into another. Let y be a
point such that f~!({y}) contains no point z for which f’(z) = 0. Prove that f~1({y})
contains no nonvoid open set.

If f:R — R", what is the formula for f’(z)?

Prove that in an inner-product space the functions f(z) = ||z:||2 and g(z) = (e, z) are
differentiable. Give formulas for the derivatives.
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3.2 The Chain Rule and Mean Value Theorems

We continue to work with a function f : D — Y, where D is an open set in
a normed linear space X, and Y is another normed linear space. In the next
theorem, we have another mapping g defined on an open set in Y and taking
values in a third normed space. In the proof we use notation explained in
Problem 3.1.6, page 119.

Theorem 1. The Chain Rule. If f is differentiable at r and if g
is differentiable at f(z), then g o f is differentiable at z, and
(9o f)'(z) = ¢'(f(z)) o f'()
Proof. Define F=go f, A= f'(z),y = f(z), B=g¢'(y), and
oi(h) = f(z + h) - f(z) - AL (h € X)
o02(k) = g(y + k) — 9(y) — Bk (keY)
¢(h) = Ah + 0,(h)
It is to be shown that F’'(z) = BA. This requires a calculation as follows:
F(z + h) — F(z) — BAh = g(f(z + h)) — g(f(z)) — BAh
= 9lf(z) + Ah + or(h)] ~ g(y) — BAh
=gly + ¢(h)] - g(y) - BAh
= g(y) + Ba(h) + 02(#(h)) — g(y) — BAh
= B[Ah + O1(h)] + o2(¢(h)) — BAh
= Boi(h) + 02(¢(h))

In order to see that this last expression is o(h), notice first that ”Bol(h)H <
||B|| ||o1(R)||- Hence this term is o(k). Now let € > 0. Select &; > 0 so that

[kl <& = floak)ll <ellkll/ (]| A]l +1)
Select 4 > 0 so that § < 61/(||Al| + 1) and so that
ol <6 = flam)ll <Al
Now let ||h|| < 8. Then we have
lle®l = [|ak + os(r)]| < [|A]l||R]] + [lov(R)]
<(lAall +Dllafl < |4l + 15 < &
Consequently, using k = ¢(h), we conclude that
lloz(a(r)| < elle(M)I/ (1A]l + 1) < elil] .

The mean value theorem of elementary calculus does not have an exact
analogue for mappings between general normed linear spaces. (An exception to
this assertion occurs in the case when f : X — R. See Theorem 2, below.) Even
for functions f : R — X, the expected mean-value theorem fails, as we now
illustrate.
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Example. Define f : R — R? by the equation f(t) = (cost,sint). We ask: Is
the equation

f@2m) = £(0) = f'()2m

true for some t € (0,27)? The answer is “No,” because the left side of the
equation is (0,0), while f'(t) = (—sint,cost) # (0,0). ]

However, the mean value theorem of elementary calculus does have a gen-
eralization to real-valued functions on a normed linear space. We present this
first.

Theorem 2. Mean Value Theorem I. Let f be a real-valued
mapping defined on an open set D in a normed linear space. Let
a,b € D. Assume that the line segment

[a,t) ={a+tb—a):0<t <1}

lies in D. If f is continuous on [a,b] and differentiable on the open line
segment (a,b), then for some £ in (a,b),

f(b) - f(a) = f'(€)(b—a)

Proof. Put g(t) = f(a+t(b— a)). Then g is continuous on the interval [0, 1]
and differentiable on (0,1). By the chain rule,

g'(t)=f'(a+t(b-a))(a-0b)
By the mean value theorem of elementary calculus,

f(b) = fa) =g'(r) = f'(a+1(b—a))(b—a)
=f'(&)(b—-a) ]

Theorem 3. Mean Value Theorem II. Let f be a continuous
map of a compact interval [a,b] of the real line into a normed linear
space Y. If, for each z in (a,b), f'(z) exists and satisfies ||f’(z)|| <M,
then || f(b) — f(a)“ < M(b-a).

Proof. 1t suffices to prove that ifa < a < 8 < b, then || f(8)— f(c)|| < M (b—a)
because, the desired result would follow from this by continuity. Also, it suffices
to prove || f(8) — f(a)|| < (M + €)(b - a) for an arbitrary positive . Let S be
the set of all z in [a, 3] such that

() - f(@)|| < (M + &)z —a)

By continuity, S is a closed set. Let xo = sup S. Since S is compact, o € S. To
complete the proof, the main task is to show that zo = 3. Suppose that o < 3
and look for a contradiction. Since f is differentiable at zg, there is a positive §
" such that § < 8 ~ ¢ and

|h| < 6 = ||f(zo + h) ~ f(z0) — f'(zo)h|| < elhl
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Put h = 6/2 and u = £¢ + 6/2. Then
[I£ () = £(z0) — f'(z0)(u — 2o)|| < €(u — zo)
Hence
[1£(w) = f(zo)|| < [|f(20)(u = o) || +e(w — 2o) < (M + &) (e ~ o)
Since =g € S, we have also
[1£(20) = f(a)]| < (M + ¢)(zo - a)
Hence
[17¢w) = £l < [|£ ) = F(zo)l| + ||£(20) = f()]| < (M + &) — a)

This proves that u € S. Since u > zo, we have a contradiction. Thus ¢ = S,
B €8S, and

|£(8) — f(@)|| < (M +€)(B—a) < (M +¢)(b—a) .
Theorem 4. Mean Value Theorem IIl. Let f be a map from
an open set D in one normed linear space into another normed linear
space. If the line segment
S={ta+(1-t)b : 0<t< 1}
lies in D and if f'(z) exists at each point of S, then

17®) = f(a)]| < [|o - al|sup | /()]

Proof. Define g(t) = f(ta+(1—t)b) for 0 < t < 1. By the chain rule, g’ exists
and ¢'(t) = f'(ta + (1 — t)b)(a — b). By the second Mean Value Theorem

l£(6) = f(a)]| = ll9(1) — g(0)|| < e lg'@l < |6 - all:gg 1)

Notice that g = f o £, where £(t) = ta + (1 — t)b. Thus £'(t) € L(R, X). Hence
in the formula for g’, the term (a — b) is interpreted as a mapping from R to X
defined by t — t - (a — b). (]
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Theorem 5. Let X and Y be normed spaces, D a connected open
set in X, and f a differentiable map of D into Y. If f'(z) = 0 for all
z € D, then f is a constant function.

Proof. Since f'(x) exists for all z € D, f is continuous on D (by Theorem 3 of
Section 3.1, page 117). Select Top € D and define A = {z € D : f(z) = f(z0)}.
This is a closed subset of D (i.e., the intersection of D with a closed set in X).
But we can prove that A is also open. Indeed, if £ € A, then there is a ball
B(z,r) C D, because D is open. If y € B(z, r), then the line segment from z to
y lies in B(z,r). By the Mean Value Theorem II,

1£(x) = fF) < ||z — ol sup [|f'(tz+ (1 —t)y)|| =0
0<t<l1

So f(y) = f(x) = f(xo). This means that y € A. Hence B(z,r) C A. Thus A is
open (it contains a neighborhood of each of its points). A set is connected if it
contains no proper subset that is open and closed. Since A is open and closed
and nonempty, A = D. ]

The connectedness of D is essential in the preceding theorem, even if D C R.
For example, suppose that D = (0,1) U (2,3) and that f(z) =1 on (0, 1) while
f(z) =2 on (2,3). Then f is certainly not constant, although f’(z) = 0 at each
point of D.

Problems 3.2

1 . .
1. Let X =CJ0,1] and let f(z) = llzll, = fo |z(t)| dt. Is f differentiable?

2. Prove that the norm in a real Hilbert space is differentiable except at 0. Hint: Find the
derivative of ||z||* first.

3. Let X be areal Hilbert space and v € X. Define f(z) = ||x]|2v. What is f'(z)?

4. Let f be a continuous real-valued map on a Hilbert space. If f'(zg) exists, then there is
a direction of steepest descent at zg. This means that there exists a vector u of norm 1
for which (d/dt)f(zo + tu)};=0 is a maximum. What is u?

5. Let f be a differentiable and continuous real-valued function defined on an open set D
in a normed linear space. Suppose that o € D and that f(zo) = f(z) for all z € D.
Prove that f'(zg) = 0.

6. Let D be a bounded open set in a finite-dimensional normed linear space. Let D be the
closure of D. Let f: D — R be continuous. Assume f differentiable in D and that f is
constant on D \ D (the boundary of D). Show that f’(x) = O for some = € D. (Hint: A
continuous real-valued function on a compact set achieves its maximum and minimum.
Use Problem 5.)

7. Let K be a closed convex set contained in an open set D contained in a Banach space
X. Let f: D = X. Assume that f’(z) exists for each z € K and that f(K) C K.
Assume also that sup{||f’(z)|| : £ € K} < 1. Show that f has a unique fixed point in K.
(Banach’s Theorem, page 177, is helpful.)

8. The mean value theorem for functions f : R — R states that f(z+h)— f(z) = hf'(z+6h)
for some 8 € (0,1). Show that this is not valid for complex functions. Try e*, z=0, h =
27i, and at least one other function.

9. Let f be a differentiable map from a normed space X to a normed space Y. Let yo be a
point of Y such that f’ is invertible at each point of f~!(yo). Prove that f~!(yo) is a
discrete set.



Section 3.3 Newton’s Method 125

10. Write out the conclusion of Theorem 2 in the case that X = R™, using the partial
derivatives 8f/dz;.

3.3 Newton’s Method

The elementary form of Newton’s method is used to find a zero of a function
f : R = R (or “root” of the equation f(z) = 0). The method is iterative
and employs the formula z,4+, = Tn — f(xn)/f'(z,). Its rationale is as follows:
Suppose that z, is an approximation to a zero of f. We try to find a suitable
correction to I, so as to obtain the nearby root. That is, we try to determine h
so that f(z, + h) = 0. By Taylor’s Theorem,

0= f(zn +h)= f(zn) +hf'(zn) + o(h)

So, by ignoring the o(h) term, we are led to h = —f(z,)/f'(z,). If f is now
a mapping of one Banach space, X, into another, Y, the same rationale leads
US t0 Tnt1 = Tn — [f'(zn)]”' f(zn). Of course f'(zn) is a linear operator from
X into Y, and the inverse [f'(z,)]~! will have to be assumed to exist as a
bounded linear operator from Y to X. First, we examine the simple case, when
f:R=R.

Theorem 1. Let f be a function from R to R. Assume that f”
is bounded, that f(r) = 0, and that f'(r) # 0. Let § be a positive
number such that

6 max |f"(z)| =+ min |f(z)l <1

1
P=§ lz—rigé jz—ri<é

If Newton’s method is started with o € [r — 8,7 + §), then for all n,
p 2
[Trp1 — 7l < g‘zn —r° < plon — 7
Proof. Define e, = z, — 7. Then

0= F(r) = F(@n - en) = f(@) - enf(@n) + 361" (En)

In this equation, the point &, is between z, and r. Hence |§, —7| < |Tn—T| = |€n].
Using this we have

erat = s =n = L 7 = e - 02
— enf'(xn) - f(:l:n) _ 62 f"(fn)
f'(zn) " f'(zn)

Since |z¢ — r| < & by hypothesis, we have |ey] < § and |& — 7| < 8. Hence
lea] < 3ed1f” (€o)l/1 £ (xo)l < €3 - 2p/5 < pleol. By repeating this we establish
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that |Zn+1 — 7| < p|Ta — | (convergence). Similarly, we have |e;| < (p/d)e3 and
len+1] < (p/68)€2. (quadratic convergence). (]

The successive errors e, in the preceding theorem obey an inequality
len+1] < Clen|?. Suppose, for example, that C = 1 and |eg| < 10~!. Then
ler] € 1072, |eg| < 1074, |es] < 1078, and so on. For an iterative process, this
is an extraordinarily favorable state of affairs, as it indicates a doubling of the
number of significant digits in the numerical solution at each step.

Example 1. For finding the square root of a given positive number a, one can
solve the equation 2 — a = 0 by Newton’s method. The iteration formula turns
out to be
1 a
Tnt1 = E(zn + —)
T

n

This formula was known to the ancient Greeks and is called Heron’s formula.
In order to see how well it performs, we can use a computer system such as
Mathematica, Maple, or Matlab to obtain the Newton approximations to v/2.
The iteration function is g(z) = (z + 2/z)/2, and a reasonable starting point is
zo = 1. Mathematica is capable of displaying z,, with any number of significant
figures; we chose 60. The input commands to Mathematica are shown here.
(Each one should be separated from the following one by a semicolon, as shown.)
The output, not shown, indicates that the seventh iterate has at least 60 correct
digits!

glxJ:=(x+(2/x))/2; gl1l; N[%4,601; gl4); gl4l; ... (]

Example 2. We illustrate the mechanics of Newton’s method in higher di-
mensions with the following problem:

z-y+1=0
2 +y?-4=0

where T and y are real variables. We have here a mapping f : R? — R?,
and we seek one or more zeros of f. The Newton iteration is u,4+1 = u, —

[f'(un)) "' f(un), where up, = (Tn,yn) € R2. The derivative f'() is given by the
Jacobian matrix J. We find that

1 -1 _ 1 2y 1
J= Ve
[21‘ 2y] J 2z + 2y [ -2z 1]
Hence the iteration formula, in detail, is this:
zn+1]= Tn| _ 1 2 1] [zZn—yn+1
Yn+1 Yn 2Ty + 2yy -2z, 1 3:31 + y?l -4

If we start at up = (0,2)T, the next vectors are u; = (1,2)T and up, =
(5/6,11/6). A symbolic computation system such as those mentioned above
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can be used here, too. The problem is chosen intentionally as one easily visual-
ized: One seeks the points where a line intersects a circle. See Figure 3.1. (]

Figure 3.1
The remarkable theorem of Kantorovich is presented next. This theorem:
(1) Proves the existence of a zero of a function from suitable hypotheses, and (2)
Establishes the quadratic convergence of the Newton algorithm. When it was
published in 1948, this theorem gave new information about Newton’s method
even when the domain space X was two-dimensional.

Theorem 2. Kantorovich Theorem on Newton’s Method.
Let f : X - Y be a map from a Banach space X into a Banach
space Y. Let zo be a point of X where f'(xo) exists and is invertible.
Define

ao = ||f (o) f(zo)|| b0 = ||f (o)l
S={zeX: ||:v - xo“ 2a0}
k = 2sup{||f'(z) = f'()||/|lz — v|| : z,v € S,z # v}

If f is differentiable in S and if agbok < %, then f has a zero in S.
Newton’s iteration started at zo converges quadratically to the zero.

Proof. At the nth step we will have z,,an,,b, such that
(1) z, € S
) f'(zn) 7! exists
> Ilfl In) 1f In)”
) 7)) <
) anbn Ic < -
(6) an < ao/2"
Observe that 1 — a,bpk 2 3, and that properties (1)-(6) are true for n = 0.

Now define , )
In+1=xn_f(zn)- f( )

n+l bn(l _anb k)

(2
(3
(4
(5

2
An4l = §kbn+lan
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We will prove properties (1)-(6) for n + 1.

(I) zp41 is well-defined because of (2).

(1) ||zn - In+1“ = ”f,(zn)_lf(xn)“ < an.

(I11)

| Tn+1 = z,.|| +[@n = znaa || + -+ [lor - 2o

n+an-1+---+ao

||l‘n+1 - 5130”

//\ N

1 1 1
00(54' on—1 +"'+§+1) <2ao

N

Thus z,4; € S.
(Iv)

1
ant1bnprk = (‘

2kbn+1ai)bn+lk

1
= E(anbn+l k)2

- %(a,,b,,lc):’(l — anbak)~

< 2anbuk)’ < 3
Observe that a,b, 1k < 1.

(V) Let H = f'(zn) "' f'(zn+1)- Then H is invertible because
11 = H|| =f'(zn) "' {f () = f'(@ns1)}

Hf’ (zn) || || £ (zn) - '(znmll

1

< bn= kllxn - In+1|| b kan < z

We know also that ||H~!|| < (1— lanbsk)~. It follows that f'(zn41) is invert-
ible since it is a product of invertible operators, f'(zn+1) = f'(zn)H.

(VI) From (V) we have

1 @nan) M = 1H7 S @) M < LS ()7
<(- §anb,,lc)_lb,, < bn(1 = @nbrk)™! = bn

(VII) Define g(x) =  — f'(zn) ! f(z). Then g(zn) = Tn+1- If £ € S, then
lg' @ =11 = £(zn)" £ (2)]| = ||f (@) f (zn) - £ (@)}
<7 @) 15 @n) = £@) < baghlza — 2]

(VIII) Using the Mear Value Theorem and parts (VII) and (II), we have

£/ (@n) " f(@ns1)|| = ||Znsr = g(@ns1)|| = ||9(zn) = 9(zns)]|
< g @ flzn = Tt || < |I9 )|an
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Here T is some point on the line segment joining z, to £,,4+,. From part (VII),
it follows that

"f’(l'n)_lf(l'n+l)u < b,,-;—k“:tn - f”a"

1 1
< bn‘2'k”l'n - .’En+1”an < bn'ik(lzl

(IX)

| (@ne1) T f(@asn)ff = |JHF( zn)-‘f (Zns1)]|
HH‘]H 1£'(= f(zm)ll
< (1 - 'éanbnk).—lbnika?,

. 1 1
< (1 = anbpk) 'bnika;ﬂ = §b,,Ha?,k = Gnii

(X) Using the observation made in (IV), we have

1 1 1
Anty = —2—kb,,+1a = (@nbns1k)(5 a,,) 2a,, < 5‘10/2n = ‘10/2"+1

This completes the induction phase of the proof.

(XI) If m > n, then from parts II and X we have

lzn = 2mll < llzn = 2nts]] + llenss = 2nsall +-- + [[2m-1 = 2ol

1 1
San tant1+-- an(1+2+4+ )—2an

Notice that a, — 0 by (6). Hence [z,] is a Cauchy sequence. By the com-
pleteness of X there is a point z* such that z, —» z*. We have z* € S by

(1).
(XII) Define hy, = anbyk. From part (IV), we have

(@nbnk)?(1 — anbnk) ™% < 2(anbnk)? = 2h2

N =

hny1 = @ng1bpik =
Therefore,

(2h0)*"

L)

hn 2h721 1S 2(2'13;—2)2 = Sh:—z <

(XIII)
1 1
aQn = '2—kbna,21_1 = Ekbﬂ—l(l - an_lbn_lk)'laf,_l

< (kbn—lan—l)an—l = hn_-1an-1
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Repeating this inequality, we obtain
an < ha_thn_2---hoag
1 n-1]|]1 -2 1 0
< [5(2’10)2 ] [5(2’10)2" } [5(2’10)2 ]ao
1" ~1n-2

— ao(f) (2h0)2" +2" 7% 41

= ao2—n(2ho)2n_l
(X1V) ||x,, —z*|| € 2an < 2002 " (2agbok)?" ! = c-27"-62", where ¢ = 4a3bok.

If 8 = 2apbok < 1, this is quadratic convergence. Here z* = lim z,,. The sequence
[zn] has the Cauchy property, by part (XI).

(XV) In order to prove that f(z*) = 0, write || f(zn)|| = || £ (n)(Zn — ZTn41)|| €
| £(@n)]| lzn = Tns1|l- Now ||zn — Zn41|| = 0 and ||f'(zn)|| is bounded as a
function of n because || f'(zn)|| < || £/(zn) = f'(xo)|| + || £/(z0)|| < §||zn — Zo|| +
|| £/ (zo)||- Since f is continuous, f(z*) = f(limz,) = lim f(z,) = 0. ]

For the preceding theorem and the one to follow (for which we do not give the
proof), we refer the reader to (Gold] and to [KA].

Theorem 3. Kantorovich’s Theorem on the Simplified New-
ton Method. Assume the hypothesis of Kantorovich’s The-
orem except that the radius of S is set equal to the quantity
(1 — +/T = 2agbok]/(bok). Then the simplified Newton iteration

Tnt1 = Tn — f'(T0) ™! f(zn)

converges at least geometrically to a zeroof f in S.

The next theorem concerns a variant of Newton's method due to R.E. Moore
(Moo). In this theorem, we have two normed linear spaces X and Y. An open
set 2 in X is given, and a mapping F : = Y is prescribed. It is known that
F has a zero z* in Q and that F'(z*) exists. We wish to determine z*. For this
purpose we set up an iterative scheme of the form

(7) Znt1 = G(ga),  G(z) =z - A(z)F(x)
Here, A(z) € £(Y,X), and we assume that

(8) sup ||A(z)|| = M < 0
z€EN

It is intended that A(z) be an approximate inverse of F'(z*). We assume that

=A<1

(9) sup ”I - A(:E)F'(:r‘)|
z€EN
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Theorem 4. There is a neighborhood of x* such that the iteration
sequence defined in Equation (7) converges to =* for arbitrary starting
points in that neighborhood.

Proof. Select € > 0 such that

(10) 0=2+Me<1
By the definition of the Fréchet derivative F’'(z*), we can write
(11) F(z) = F(z*) + F'(z")(z — =*) + n(z)

). In particular, we can select 6 > 0 so that

]

From (11), using the fact that F((z*) = 0 and the definition of G, we have

where 7)(z) is o(||a: -z

(12) lz—2*|| <6=>[z€Q and ||n)]| < efle - =

G(r)—z* =z —z" — A(T)F(x)
—z—1" — A(z)[F'(z")(z - z*) + n(z)]
=z —z" - A(x)F'(z*)(x — z") — A(z)n(z)
= [I - A(z)F'(z*)](z — z°) — A(z)n(z)

If we assume further that ||z —z*|| < 6, then
I6te) — =]l < Al - | + Mo
< M|z —z°| + Me|jz - =

= (A + Me)||lz — z°|

If the starting point z, for the iteration is within distance é of z*, then

=0|jc -z

o - 2] = G (ao) — 2] < olleo - =] < 08
Continuing, we have

o - ]| = G(a1) — 2] < lfes — 7] < %5
In general, ||zn — z*|| < 8"6, and hence z, — z*. .

Corollary 1. If there is an r > 0 such that
sup ||F'(z)7!|| <oo and sup ||I - F'(z)"'F'(z")

llz—z*||<r llz—z*|I<r

<1

then there is a neighborhood of =* in which Newton’s method converges
from arbitrary starting points.

Corollary 2. IfX =Y and if ||I - F’(:z:‘)l < 1, then the iteration
Tn41 = Tn — F(zn) will converge to =* if started sufficiently near to
T*.

Corollary 3. If NI — F'(zo)"'F'(z*)|| < 1, then the simplified
Newton iteration T,4+; = T, — F'(x¢) ! F(x) converges to z* if started
sufficiently near to =*.

Applications to nonlinear integral equations. In the following para-
graphs we shall discuss the application of Newton’s method and the Neumann
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Theorem to nonlinear integral equations. A rather general model problem is
considered:

1
(13) 2(s) - ,\/ a(s,t,2(t)) dt = v(s)
0

Here ), v, and g are given. We assume that v € C[0, 1] and that g is continuous
on the 3-dimensional set

D={(s,t,u):0<s<1,0<t<], —o0o<u<oo}
Also, we assume that |g(s,t,u1) - g(s,t,uz)l < klul - uQI in the domain D.

Theorem 5. If |/\|lc < 1, then the integral equation (13) above has
a unique solution.

Proof. Apply the Contraction Mapping Theorem (Chapter 4, Section 2, page
177) to the mapping F defined on C(0, 1] by (Fz)(s) = v(s)+ A fol g(s, t,z(t))dt.
We see easily that
| Fzy — Fz2|| = sup |(Fz1)(s) — (Fx2)(s)|
s
1
< |A|sup/ lg(s,t,21(2)) — g(st,z2(t))]|
s Jo

1
< |,\|/ k|z1(t) — z2(t)| dt
0
< [Aklz1 = 22| .

If [Alk < 1, then the sequence Tn41 = F(zn) will converge, in the space C|0, 1],
to a solution of the integral equation. In this process, o can be an arbitrary
starting point in C[0,1]. Newton’s method can also be used, provided that we
start at a point sufficiently close to the solution. For Newton’s method, we define

the mapping f by
(@) ==(s) = A [ gls.t,2(0) dt = v(s)
We require f’, which is given by
1
(f'(z)h](s) = h(s) — /\/0 g3 (s, t,z(t))h(t) dt

where g3 is the partial derivative of g with respect to its third argument, i.e.,
g3(sv tv u) = (a/au)g(sv t, u)'
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Lemma. If g3 exists on the domain
Q={(st,u) : 0<s< L, 0<t<Y, fu < jzf|}

and if |
lim - [g(s, t,bu+71)—g(s,t,u)— rg3(s,t,u)] =0
r=0r

uniformly in @, then f'(z) is as given above.

The next step in using Newton’s method is to compute f’(z)~!. Observe
that f'(x) = I—-\A, where A is the integral operator whose kernel is g3(s, t, z(t)).
Explicitly,

1
(AR)(s) = / 93(s, - 2(t)) () dt
0

This is a linear operator, since z is fized. If |A| HA” < 1, then I —AA is invertible,
and by the Neumann Theorem in Chapter 1, Section 5, page 28, we have

(o]
F@) ' = A =T+ XA+ 21222+ A3+ ... = [+ AB
0

where B= A+ AA% + ...
If A is any integral operator of the form

(Ah)(s) = /0 (s, Oh(t) dt

then we can define a companion operator B depending on a real parameter A by
the equation

(14) B=X"1I-2rA)"" 1]

Theorem 6. The operator B, as just defined, is also an integral
operator, having the form

(15) (Bh)(s) = /0 r(s, )h(t) dt

The kernel satisfies these two integral equations

(16) { r(s,t) = k(s,t) + A f k(s,u)r(u,t) du

r(s,t) = k(s,t) + /\fc,l k(u, t)r(s,u) du

Proof. From the definition of B we have AB = (I —AA)"! —JTor I + AB =
(I — AA)~!. Consequently, we have

(I +AB)(I - M) = (I = AA)I+AB) = I

T+ AB—-AM - BA=1-)M+)B-)MMB=1
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AB-=AM—-)NBA=AB-)A-)AB=0
and
(17) B= (I +AB)A= A(I + AB)

Conversely, from Equation (17) we can prove Equation (14). Thus Equation
(17) serves to characterize B. Now assume that 7 satisfies Equations (16) and
that B is defined by Equatlon (15). We will show that B must satisfy Equation
(17), and hence Equation (14). We have

[(A + ABA)h / k(s, t)h(t) dt + /\/r(s,u)(Ah)(u)du

=/0 (s,t)h(t)dt+/\/ (s,u / k(u, t)h(t) dt du
- /Ol{lc(s, H+ /\/Ol r(s,u)k(u,t)du}h(t)dt

1
- / r(s,t)h(t) dt = (BR)(s)
0
This proves that B = A+ ABA. Similarly, B= A + AAB. (]

Example 2. ([Gold], page 160.) Solve the integral equation

1
z(s) — / st Arctanz(t)dt = 1 + s2 — 0.485s
0

This conforms to the general theory outlined above. @We have as kernel
g(s,t,u) = st Arctanu, and gs(s, t,u) = st/(1 + u?). We take as starting point
for the Newton iteration the constant function zo(t) = 3/2. Then

o(sit,zo(®) = st/(1+5) = st = ast

Then f'(zo) = I — A, where (Az)(s) = fo ast z(t)dt. Also we can express
f'(zo)™' = (I = A)~! = I + B, as in the preceding proof. We know that B is
an integral operator whose kernel, 7, satisfies the equations

r(s,t) =ast+ folasur(u,t)du
r(s,t) = ast+f0]atur(s,u)du

From these equations it is evident that r(s,t)/st is on the one hand a function of
t only, and on the other hand a function of s only. Thus 7(s, t)/st is constant, say
B, and (s, t) = O st. Substltutmg in the integral equation for r and solving gives
us 8 = 12/35. One step in the Newton algorithm will be x; = zo— f'(z0) ™! f(z0).
We compute y = f(xo) as follows:

1
y(s) = xo(s) —/o g(s,t,To(t)) dt — v(s)
! 3
- / st Arctan 2 dt — 1 — s? + .485s
0

= -~ — 00639686165 — s>
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Then z;, = o — f'(z0) "'y = 20 — (I + B)y = 7o — y — By. Hence

31 ! 1
T1(8) = 2 [5 — 95— 52] - / ﬂSt[i -9t — t’] dt (v = .0063968616)
0
=1+ s +(.0071279315) s (]

Problems 3.3

1. For the one-dimensional version of Newton's method, prove that if r is a root of multi-
plicity m, then quadratic convergence in the algorithm can be preserved by defining

Tnt1 =Tn —Mmf(zn)/f'(zn)

2. Prove the corollaries, giving in each case the precise assumptions that must be made
concerning the starting points.

3. Let eo,ey,... be a sequence of positive numbers satisfying en+1 < ce2. Find necessary
and sufficient conditions for the convergence limn en = 0.

4. Let f be a function from R to R that satisfies the inequalities f’ > 0 and f”” > 0. Prove
that if f has a zero, then the zero is unique, and Newton'’s iteration, started at any point,
converges to the zero.

5. How must the analysis in Theorem 1 be modified to accommodate functions from C to
C? (Remember that the Mean Value Theorem in its real-variable form is not valid.)

6. If r is a zero of a function f, then the corresponding “basin of attraction” is the set
of all x such that the Newton sequence starting at z converges to r. For the function
f(z) =22 +1, z € C, and the zero r = i, prove that the basin of attraction contains the
disk of radius Z about r.

3.4 Implicit Function Theorems

In this section we give several versions of the Implicit Function Theorem and
prove its corollary, the Inverse Function Theorem. Theorems in this broad cate-
gory are often used to establish the existence of solutions to nonlinear equations
of the form f(x) = y. The conclusions are typically local in nature, and describe
how the solution = depends on y in a neighborhood of a given solution (zo,yo).
Usually, there will be a hypothesis involving invertibility of the derivative f’(zo).
The intuition gained from examining some simple cases proves to be com-
pletely reliable in attacking very general cases. Consider, then, a function
F : R? 5 R. We ask whether the equation F(z,y) = O defines y to be a
unique function of z. For example, we can ask this question for the equation

z+y?2-1=0 (z,y € R)

This can be “solved” to yield y = +/1 —z. The graph of this is shown in the
accompanying Figure 3.2. It is clear that we cannot let z be the point A in the
figure, because there is no corresponding y for which F(r,y) =z +y?>-1=0.
One must start with a point (zo, yo) like B in the figure, where we already have
F(zo,y0) = 0. Finally, observe that at the point C there will be a difficulty,
for there are values of £ near C to which no y’s correspond. This is a point
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where dy/dz = oco. Recall that if y = y(z) and if F(z,y(z)) = 0, then ¥’ can be
obtained from the equation

d
0= B;F(I’y(x)) = D) F + (Do F)y

(In this equation, D; is partial differentiation with respect to the ith argu-

ment.) Thus y' = —D,F/D,F, and the condition y'(z9) = oo corresponds to
D,F(z9,Y0) = 0. In this example, notice that another function arises from

Equation (1), namely
y=-—-Vvli-z

In a neighborhood of (1,0), both functions solve Equation (1), and there is a
failure of uniqueness.

\/

Figure 3.2

In the classical implicit function theorem we have a function F of two real
variables in class C!. That means simply that 9F/8z and OF /Oy exist and are
continuous. It is convenient to denote these partial derivatives by F} and F3.

Theorem 1. Classical Implicit Function Theorem. Let F be
a C'-function on the square

{(zy) : =20l <6, |y—yol <6} c R?

If F(zo,y0) = 0 and Fy(zo,y0) # 0, then there is a continuously
differentiable function f defined in a neighborhood of zo such that
Yo = f(zo) and F(z, f(z)) = 0 in that neighborhood. Furthermore,

f’(I) = -—Fl(:t:,y)/Fz(z,y), where y= f(.’l,‘)

Proof. Assume that F(zg,yo) > 0. Then by continuity, Fz(z,y) > @ > 0 in
a neighborhood of (o, ¥0), which we assume to be the original §-neighborhood.
The function y — F(zo,y) is strictly increasing for yo — 6 < y < yo + 6. Hence

F(zo,y0 — 6) < F(x0,3%0) =0 < F(To,yo + 6)

By continuity there is an € in (0,8) such that F(z,yo — 6) < 0 < F(z,yo + ) if
|z — zo| < €. By continuity, there corresponds to each such z a value of y such
that F(z,y) =0and yo — 6 < y < yo + 6. If there were two such y’s, then by
Rolle’s theorem, F5(z,y) = 0 at some point, contrary to hypothesis. Hence y is
unique, and we may put y = f(z). Then we have F(z, f(z)) = 0 and yo = f(xo).
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Now fix £, in the e-neighborhood of zo. Put y; = f(z:). Let Az be a small
number and let y; + Ay = f(z; + Az). Then

0=F(z: + Az, y; + Ay)
= F](:C] + OAI n + GAy)AI + Fz(Il +0AI n + GAy)A
for an appropriate 8 satisfying 0 < 6 < 1. (This is the Mean Value Theorem for
a function from R? to R. See Problem 3. 2.8, page 124.) This equation gives us

_A_y A + 8Az, y, +6AyY)

Az~ Fy(z) + 604z, y1 +600y)
As Az — 0 the right side remains bounded. Hence, so does the left side. This

proves that as Az converges to 0, Ay also converges to 0. Hence f is continuous
at ). After all, Ay = f(z, + Az) — f(z;). Furthermore,

' T ﬂ_ _Fl(xlyyl)
f(zl)_hmAI_ Fy(z1, 1)

Therefore, f is differentiable at ;. The formula can be written
f'(z) = —Fi(z, f(z))/F2(z, f(2))

and this shows that f’ is continuous at z, provided that z is in the open interval
(zo —€,T0 +€). [}

Theorem 2. Implicit Function Theorem for Many Variables.
Let F : R™ x R — R, and suppose that F(zo,yo) = 0 for some o € R"
and yo € R. Ifall n+1 partial derivatives D; F exist and are continuous
in a neighborhood of (Zo, Yo) and if Dy41 F(Zo, Yo) # O, then there is a
continuously differentiable function f defined on a neighborhood of zg
such that F(z, f(z)) =0, f(zo) = Yo, and

Dif(z) = =D;F(z, f(2))/Dn+1F(z, f(z)) (1<i<n)

Proof. This is left as a problem (Problem 3.4.4). (]
Example 1. F(r,y) = 22 +y%+1or 22 +y? or 22+ y? — 1. (Three phenomena
are illustrated.) (]

If we expect to generalize the preceding theorems to normed linear spaces,
there will be several difficulties. Of course, division by F> will become multi-
plication by F; !, and the invertibility of the Fréchet derivative will have to be
hypothesized. A more serious problem occurs in defining the value of y corre-
sponding to z. The order properties of the real line were used in the preceding
proofs; in the more general theorems, an appeal to a fixed point theorem will be
substituted.

Deﬁmtlon Let X,Y,Z be Banach spaces. Let F: X xY — Z be a mapping.
e Cartesian product X x Y is also a Banach space if we give it the norm

” :c )|l = |lz]l + ||ly||- I they exist, the partial derivatives of F at (z0,Y0) are
bounded linear operators D, F(zg, yo) and D2 F(zo, yo) such that

lim ”F(% + h,y0) — F(Z0,Y0) — DIF(Io,yo)h“/”hH =0 (he X, h—0)
and

lim ||F(zo,y0 + k) = F(20, %) — D2F(z0,%0)k|/||k[| =0  (keY, k—0)
Thus D;F(zo,y0) € L£(X,Z) and D2F(z0,Y0) € L(Y,Z). We often use the
notation Fj in place of D;F.
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Theorem 3. General Implicit Function Theorem. Let X,Y,
and Z be normed linear spaces, Y being assumed complete. Let §2 be
anopensetin X xY. Let F:Q — Z. Let (zo,y0) € Q. Assume that
F is continuous at (zo,yo), that F(zg,yo) = 0, that DoF exists in §Q,
that D, F is continuous at (zg,yo), and that Dy F(zo,yo) is invertible.
Then there is a function f defined on a neighborhood of ¢ such that
F(z,f(z)) =0, f(xo) = yo, f is continuous at o, and f is unique
in the sense that any other such function must agree with f on some
neighborhood of zy.

Proof. We can assume that (zg,yo) = (0,0). Select § > 0 so that
) l=ll <6 flvl <8} c o

Put A = D,F(0,0). Then A € £L(Y,Z) and A~} € £(Z,Y). Foreach z satisfying
u:c” < 8 we define G, (y) =y — A" F(z,y). Here ||y|| < 4. Observe that if G,
as a fixed point y*, then

¥V =G (y")=y" - A"'F(z,y")

from which we conclude that F(z,y*) = 0. Let us therefore set about proving
that G, has a fixed point. We shall employ the Contraction Mapping Theorem.
(Chapter 4, Section 2, page 177). We have

G, (y) =1 - A"'DyF(z,y) = A" {D2F(0,0) ~ D2 F(z,y)}

By the continuity of D, F at (0,0) we can reduce ¢ if necessary such that
[z <6 and [lvl <8] = el <4

Now G,(0) = —A~'F(x,0) = —A"!'{F(z,0) — F(0,0)}. Let 0 < ¢ < . By
the continuity of F at (0,0) we can find 4, € (0, 9) so that

l=ll <d = [|G2(O)f < 3¢

If ||z|| < 6, and ||y|| < €, then by the Mean Value Theorem III of Section 2,
page 123,
G < [IG=O] +|G=(v) - G=(0)]
<

1 y :
7€+ sup Gz - [[vl]

€ €
Szt+;=¢
2 2

Define U = {y € Y : ||y|| < &}. We have shown that, for each = satisfying

LL z|| < &, the functlon G maps U into U. We also know that ||G’ ||
roblem 1, G, has a unique fixed point y in U. Since this fixed pomt depends
on z, we write y = f(z), thus defining f. From the observations above we infer

that
F(z, f(z)) =
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Since F(0,0) = 0, it follows that Go(0) = 0. By the uniqueness of the fixed
point, 0 = f(0). Since £ was arbitrary in (0,8) we have this conclusion: For each
€ in (0, 8) there is a . such that

l=ll <6 = [IG2(0)ff < 3¢

Our analysis then showed that y = f(z) € U, or ||f(z)|| < €. As a consequence,
||1:|| < 6 = ||f(:c)|| < ¢, showing continuity at 0. For the uniqueness,
suppose that f is another function defined on a neighborhood of 0 such that f
is continuous at 0, f(0) = 0, and F(z,f(z)) =0. If 0 <& < 4, find § > 0 such
that < 6. and

el <6 = |f@)<e

Then f(z) € U. So we have apparently two fixed points, f(z) and f(z), for the
function G. Since this is not possible, f(z) = f(z) whenever ||z|| < 6. ]

Theorem 4. Second Version of the Implicit Function Theorem.
In the preceding theorem, assume further that F' is continuously dif-
ferentiable in Q and that Dy F(zo, o) is invertible. Then the function
f will be continuously differentiable and

f'(z) = —DyF(z, f(2))™' o DiF(z, f(z))

Furthermore, there will exist a neighborhood of z¢ in which f is unique.
This theorem can be found in [Dieu], page 265.

Theorem 5. Inverse Function Theorem I. Let f be a continu-
ously differentiable map from an open set Q in a Banach space into a
normed linear space. If o € Q and if f'(xzq) is invertible, then there is
a continuously differentiable function g defined on a neighborhood N
of f(zo) such that f(g(y)) =y forally e N.

Proof. For z in Q and y in the second space, define F(z,y) = f(z) —y. Put
Yo = f(zo) so that F(zg,y9) = 0. Note that D, F(z,y) = f'(z), and thus
D, F(zg,yo) is invertible. By Theorem 4, there is a neighborhood N of yo and
a continuously differentiable function g defined on A such that F(g(y),y) =0,

or f(g(y)) —y=0forallyeN. [

Theorem 6. Surjective Mapping Theorem I. Let X and Y be
Banach spaces,  an open set in X. Let f : @ = Y be a continuously
differentiable map. Let xo € Q and yo = f(xo). If f'(xy) is invertible,
as an element of L(X,Y), then f(Q) is a neighborhood of yy.

Proof. Define F : QXY — Y by putting F(z,y) = f(z)—y. Then F(zo,y0) =
0 and D, F(zo,y0) = f'(%o). (D) is a partial derivative, as defined previously.)
By hypothesis, Dy F(zg,yo) is invertible. By the Implicit Function Theorem
(with the réles of z and y reversed!), there exist a neighborhood N of yo and
a function g : N' = Q such that g(yo) = zo and F(g(y),y) = 0 for all y € N.
From the definition of F we have f(g(y)) —y=_0forall ye N. In other words,
each element y of A is the image under f of some point in §2, namely, g(y). ®
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Theorem 7. A Fixed Point Theorem. Let Q be an open set
in a Banach space X, and let G be a differentiable map from Q to X.
Suppose that there is a closed ball B = B(xo,7) in Q such that

(i) k=sup||G'(z)|| < 1
zeB
(i) ||G(zo) — zo|| < 7(1 - k)
Then G has a unique fixed point in B.

Proof. First, we show that G|B is a contraction. If z; and z, are in B, then
by the Mean Value Theorem (Theorem 4 in Section 3.2, page 123)

||G(:z:1) - G(z2)|| € sup ||G'(z1 + A(z2 - 1)|| [y = z2||
0<A<I
<kl - 2]
Second, we show that G maps B into B. If z € B, then

|G(2) = zo| < [|G(z) = G(o)|| +[|G(xo0) = x|
<k||z—zo||+ l—-k)
Skr+(1-Kkr=

Since X is complete, B is a complete metric space. By the Contractive Mapping
Theorem (page 177), G has a unique fixed point in B. (]

Theorem 8. Inverse Function Theorem II. Let Q be an open
set in a Banach space X. Let f be a differentiable map from Q2 to a
normed space Y. Assume that Q2 contains a closed ball B = B(zxo,T)
such that

(i) The linear transformation A = f'(zo) is invertible.

(i) k=sup,eg|l - A7 f'(2)]| <1

Then for each y in Y satisfying ||y - f(zo)H <(1- Ic)rHA‘lH—l the
equation f(z) =y has a unique solution in B.

Proof. Let y be as hypothesized, and define G(z) = £ — A~ ![f(z) —y). It
is clear that f(z) = y if and only if = is a fixed point of G. The map G is
differentiable in Q, and G’(z) = I ~ A~! f'(x). To verify the hypothesis (i) in
the preceding theorem, write

@ =T-A"f(2)| <k (z€B)

By the assumptions made about y, we can verify hypothesis (ii) of the preceding
theorem by writing

|G(z0) — zo|| = ||zo — A~ [f(z0) — y) — 20|
=[|A7!||[|£(zo) — ]l
<A@ -mrfla=t)™ = a - k)

By the preceding theorem, G has a unique fixed point in B, which is the unique
solution of f(zr) =y in B. ]
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Example 2. Consider a nonlinear Volterra integral equation

z(t) — 2x(0) + %/t cos(st)(z(s)]® ds = y(t) (0gtg)
0

in which y € C[0,1]. Notice that when y = 0 the integral equation has the
solution £ = 0. We ask: Does the equation have solutions when ”y” is small?
Here, we use the usual sup-norm on C[0, 1], as this makes the space complete.
(Weighted sup-norms would have this property, too.) Write the integral equation
as f(z) = y, where f has the obvious interpretation. Then f'(z) is given by

[f'(z)h)(t) = h(t) — 2h(0) + /l cos(st)z(s)h(s)ds
0

Let A = f'(0), so that Ah = h — 2h(0). One verifies easily that A%h = h, from
which it follows that A~! = A. In order to use the preceding theorem, with

zo = 0, we must verify its hypotheses. We have just seen that A is invertible.
Let ||:c|| < r, where r is to be chosen later so that ||[I - A~!f'(z)|| < k < 1.
From an equation above,

| [f'(z)h](t) = (AR)(t) | = |/ cos(st)z s)ds’
< 1Al =l

It follows that ,
[|£"(x)h — Al < ||| ||=]]

and that
£ (z) = Al < |l=]| < =

Since ||A|| = ||[A7}|| = 3, we have
|1 - A7 @) = |[A (A~ f'@)|| < |47 |r = 3r

The hypothesis of the preceding theorem requires that 3r < k < 1, where k is
to be chosen later. By the preceding theorem, the equation f (z) = y will have
a unique solution if

lofl < (1= Bl A7 < 3 - k%

In order for this bound to be as generous as possible, we let k = %, arriving at
the restriction ||y|| < %. ]

Lemma. Let X and Y be Banach spaces. Let 2 be an open set
in X, and let f : Q@ = Y be a continuously differentiable mapping. If
To € 2 and € > 0, then there is a § > 0 such that
“.’E] -—-:Co” < 5, HSIJQ—IQH <d= “f(:nl)—f(zg)—f'(:co)(:cl —:62)” < E”.’El —.’1?2”

Proof. The map z — f'(z) is continuous from 2 to £(X,Y). Therefore, in
correspondence with the given £, there is a § > 0 such that

|z = zo|| < 6 = || £'(z) = f'(zo0)|| < &
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(We may assume also that B(Zo,6) C Q.) If ||z1 — zo|| < 6 and ||z2 — zo|| < 6,
then the line segment S joining ) to x, satisfies S C B(zg,S) C Q. By Problem
2, page 145, we have

If(z1) = f(z2) = f'(zo)(z1 — 22)|| < ||21 — z2]| e £/ (z) = (o)l

<eller - 2] .

Theorem 9. Surjective Mapping Theorem II. Let X and Y
be Banach spaces. Let Q be an open set in X. Let f : Q =5 Y be
continuously differentiable. If o € Q and f'(zo) has a right inverse in
L(Y, X), then f(Q) is a neighborhood of f(zg).

Proof. Put A= f'(zq) and let L be a member of L(Y, X) such that AL =1,
where I denotes the identity mapon Y. Let c = ||L|| By the preceding lemma,
there exists § > 0 such that B(zg,d) C Q and such that

l[u— 2ol <6, |Jv - zo|| < 6= || £(w) = F(v) — Aw —v)|| < % [Ju—2
Let yo = f(zo) and y € B(yo, 6/2c). We will find r € Q such that f(z) =
The point « is constructed as the limit of a sequence {z,} defined inductively
as follows. We start with the given zo. Put ) = ¢ + L(y — yo)- From then on
we define

Tnt1 =Tn — L[f(zn) = f(Tno1) — A(Tn — Tn-1)
By induction we establish that ||z, — Tn-1]| < 6/2" and ||zn — zo|| < 6. Here
are the details of the induction:
ller = zo|| = || L(y = vo|| < clly - wol| < cb/(2) = 6/2.
lzn+1 = znl| < || f(zn) = f(Zn-1) = A(Tn = Tnos)||
< C(]./?C)”ln - In—l” < 6/2n+1
<|

241 = Zo|| < [|&nsr = zal| + |20 = Tna || + -+ + [J21 = zo|
5 6 5
Spmitgmtotz<8

Next we observe that the sequence [T,] has the Cauchy property, since (for
m > n)

1 1
ll2n = 2m|| < [|zn=Zner | 4+ [|Tm-r = 2m]| < 5(5m+§r+7+“') <6/

Since X is complete, we can define £ = limz,. All that remains is to prove
z € Q and f(z) = y. Since ||zn — 20| < 6, we have ||z — o)) < 6and z € Q.
From the equation defining z,4; we have

A(Tns1 —zn) = —AL{f(zn) — f(Tn-1) — A(Th — Zn-1)}
= A(zn — Tno1) — {f(zn) = f(zn-1)}
By using this equation recursively we reach finally
ATty = Tp) = A(z1 — T0) — {f(zn) — f(Tn- 1)}
—{f(xn-1) = f(@n-2)} = -+ = {f(21) ~ f(z0)}
= AL(y — yo) — f(zn) + f(20)
=y—yo— f(zn) +yo=y - f(zn)
Let n — oo in this equation toget 0 = y — f(z). (]
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Corollary. Let f be a continuously differentiable function mapping
an open set 2 in a Banach space into a finite-dimensional Banach space.
If 2o € Q and if f'(zo) is surjective, then f(Q?) is a neighborhood of

f (o).

Proof. By comparing this assertion to the preceding theorem, we see that it
will suffice to prove that f’(zo) has aright inverse. It suffices to give the proof in
the case that f maps Q into Euclidean n-space R", because all finite-dimensional
Banach spaces are topologically equivalent. Let {e;,...,e,} be the usual basis
for R". Let X be the Banach space containing §2, and set A = f'(x). Since
A is surjective, there exist points u;,...,u, in X such that Au; = e;. Define
L : R™ - X by requiring Le; = u; (and that L be linear, of course). Obviously,

ALe; = e;,s0 ALy = y for all y € R™. Also, ||L|| < (X ||u,'||2)l/2 because the
Cauchy-Schwarz inequality yields (with y =3 c;e;)

el = S el = | S ot = | Sl < Sl ]
<(xa) (i) = i (Sar)” :

Example 3. Let f: R3 - R3 be given by

fle)=y z=(&,628) y=(n.mm)
T = 26] + €3 cos€2 - £163
2 = (& + &) —4sing,
13 = log(€2 + 1) + 56, + cos &3 ~ 1

Notice that f(0) = 0. We ask: For y close to zero is there an = for which
f(z) = y? To answer this, one can use the Inverse Function Theorem. We
compute the Fréchet derivative or Jacobian:

83 —¢3  —€3sin€y  cosé — &
fl(z) = | 3(& +6&)* —4dcos&e  3(€ +&)?

5 (62 + 1)_1 —sin 3
At £ = 0 we have

0 0 1

f0)= 0 -4 0

S5 10
Obviously, f’(0) is invertible, and so we can conclude that in some neighborhood
of y = 0 there is defined a function g such that f(g(y)) = v. (]
The direct sum of n normed linear spaces X, Xa,..., X, is denoted by
ST, ®X;. Its elements are n-tuples = (z,Z2,...,Tn), where z; € X; for

i = 1,2,...,n. Although many definitions of the norm are suitable, we use

llell = 525y -
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IfX = Z:;l @X; and if f is a mapping from an open set of X into a normed
space Y, then the partial derivatives D; f(z), if they exist, are continuous linear
maps (D, f)(z) € L(X;,Y) such that

”f(fL‘],. csTie 1, T R T, TR) — f(I) - (le)(.’l:)h“ = O(”h”)

The connection between partial derivatives and a “total” derivative is as one
expects from multivariable calculus. That relationship is formalized next.

Theorem 10. Let f be defined on an open set Q in the direct-sum
space X = Y I, ®X; and take values in a normed space Y. Assume
that all the partial derivatives D;f exist in  and are continuous at
a point x in Q. Then f is Fréchet differentiable at x, and its Fréchet
derivative is given by

(1) f'(z)h = ZD,- f(x)hi  (he X)

Proof. Equation (1) defines a linear transformation from X to Y, and

17/ (@)l < ZIIDI hil| < ZIIDz 2)||[|Al

< max ([D; f(= ilZHh [

1<3€n

= max ||D;f(= IIIIhII

1€j<n

Thus Equation (1) defines a bounded linear transformation. Let
G(h) = f(z + h) — Z D; f(

We want to prove that ||G(h)|| = o(||h||). For sufficiently small h, z + h is in Q,
and the partial derivatives of G exist at £ + h. They are

D;G(h) = D;f(z + h) — D; f(x)

If € is a given positive number, we use the assumed continuity of D;f at = to
find a positive § such that for ||h|| < 6 we have ||D;G(h)|| < &, for 1 < i< n.
Then, by the mean value theorem,
G| < [IG(h1, b2, ... hn) = G(O, by ..., h) |
+||G(0, ha, . ... ha) — G(0,0, h3,...,h,,)H
+---+||G(0,0,...,ha) - G(0,0,...,0)||

< D_ellhll = [l
i=1
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Since € was arbitrary, this shows that ||G(h)|| = of||r]))- a2

Problems 3.4

1. Let U be a closed ball in a Banach space. Let F: U* — U, where Ut is an open set
containing U. Prove that if sup{||[F’(z)|| : z € U} < 1, then F has a unique fixed point
inU.

2. Let X be a Banachspace and O an open set in X containing a, b, zg, and the line segment
S joining a to b. Prove that

I£(6) — f(a) = f'(zo)(b - )| < |6~ all sup I1f'(2) = f'(zo)ll .

[Suggestion: Use the function g(z) = f(z) — f’(zo)z.] Determine whether the same
inequality is true when f’(zo) is replaced by an arbitrary linear operator. In this problem,
f:X = Y, where Y is any normed space.

3. Suppose F(zg,y0) = 0. If z; isclose to z¢g, there should be a y; such that F(zy,y;) = 0.
Show how Newton’s method can be used to obtain y;. (Here F : X xY — Z, and
X,Y,Z are Banach spaces.)

4. Prove Theorem 2.

5. Let f : 2 > Y be a continuously differentiable map, where 2 is an open set in a Banach
space, and Y is a normed linear space. Assume that f’(z) is invertible for each = € 12,
and prove that f(2) is open.

6. Let a be the point in [0,1] where cosa = a. Define X to be the vector space of all
continuously differentiable functions on [0, 1] that vanish at the point a. Define a norm
on X by writing ||z|| = SUPogrg1 |z’ (t)]. Prove that there exists a positive number &

such that if y € X and |[|y|} < 8, then there exists an z € X satisfying

sinox +xocos=y

7. Let f be a continuous map from an open set 2 in a Banach space X into a Banach
space Y. Suppose that for some zg in 2, f/(zo) exists and is invertible. Prove that f is
one-to-one in some neighborhood of zg.

8. In Example 2, with the nonlinear integral equation, show that the mapping z — f’(z) is
continuous; indeed, it satisfies a Lipschitz condition.

9. Rework Example 2 when the term 2z(0) is replaced by az(0), for an arbitrary constant
a. In particular, treat the case when a = 0.

3.5 Extremum Problems and Lagrange Multipliers

A minimum point of a real-valued function f defined on a set A is a point zg
such that f(zo) < f(z) for all £ € M. If M has a topology, then the concept
of relative minimum point is defined as a point g € M such that for some
neighborhood N of ¢ we have f(z¢) < f(z), for all £ in N.

Theorem 1. Necessary Condition for Extremum. Let Q2 be
an open set in a normed linear space, and let f : Q@ = R. Ifzq is a
minimum point of f and if f'(zg) exists, then f'(zq) = 0.
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Proof. Let X be the Banach space, and assume f’(zo) # 0. Then there exists
v € X such that f'(zg)v = —1. By the definition of f'(zo) we can take A > 0
and so small that o + Av is in Q and

f(o + Av) — f(zo) = Af (zo)vl / Allo]| < (2lv]l) ™"

This means that %[f(zo + M) — f(zo)] is within distance % from —1, and so is
negative. This implies f(zo + Av) < f(o). (]

In this section we will be concerned mostly with constrained extremum
problems. A simple illustrative case is the following. We have two nice functions,
fand g,on R to R. We put M = {(z,y) : g(z,y) = 0} and seek an extremum
of fIM. (That means f restricted to M.) If the equation g(z,y) = O defines y
as a function of z, say y = y(z), then we can look for an unrestricted extremum
of ¢(z) = f(x,y(z)). Hence we try to solve the equation ¢'(x) = 0. This leads
to

0= fi(z,y(x)) + fa(z,y(z))y' (z)
= fi(z,y(z)) — fa(z,y())g1 (2, y(x))/ g2(, y(x))

Thus we must solve simultaneously
(1) 9(z,y) =0 and  fi(z,y) - fa(z,9)91(z,y)/g2(2,y) = O
The method of Lagrange multipliers introduces the function
H(z,y,A) = f(z,y) + Ag(z,y)
and solves simultaneously H, = H, = H3 = 0. Thus
fi®,y) + Agi(2,y) = fa(z,y) + Ag2(z,y) = 9(z,9) = 0

If go(z,y) # 0, then A = — fa(z,y)/g2(x,y), and we recover system (1). The
method of Lagrange multipliers treats £ and y symmetrically, and includes both
cases of the implicit function theorem. Thus y can be a differentiable function
of z, or = can be a differentiable function of y.

Example 1. Let f and g be functions from R? to R defined by f(z,y) =
22+ y?, g(z,y) =z —y+ 1. Theset M = {(z,y) : g(z,y) = 0} is the straight
line shown in Figure 3.3. Also shown are some level sets of f, i.e., sets of the
type {(z,y) : f(z,y) = c}. At the solution, the gradient of f is parallel to the
gradient of g. The function H is H(z,y,A) = 22 +y?> + A& —y + 1), and the
three 1eqt:al:ions to be solved are 2z + A =2y — A =z — y + 1 = 0. The solution
is (—5, 2) [ ]
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Figure 3.3

Example 2. Let f(z,y) = 22 — y? and g(z,y) = 2 + vy — 1. Again we show
M and some level sets of f, which are hyperbolas and straight lines. There
are four extrema; some are maxima and some are minima. Which are which?
The H-function is H = 12 — y? + A(z? + y? — 1), and the three equations to
solve are 2z + 20z = =2y + 2\y = 2 + y?> — 1 = 0. The (z, y, A) solutions are
(0,1,1), (0,-1,1), (1,0,-1), (1,0, —1). Figure 3.4 is pertinent. (]

Figure 3.4

If there are several constraint functions, there will be several Lagrange multipli-
ers, as in the next example.

Example 3. Find the minimum distance from a point to a line in R?. Let the
line be given as the intersection of two planes whose equations are (a,z) = k
and (b,z) = €. (Here, z, @, and b belong to R3.) Let the point be c. Then H
should be

|z - 0”2 + A[{a, z) — k] + p[(b,z) — €]
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This H is a function of (z,,z2, 3, A, ). The five equations to solve are

2(zy — c1) + Aay + pb, = 2(zg — c2) + Aaz + puby = 2(z3 — c3) + Aaz + ubs =0
(a,z) —k=(bz)-€=0

We see that z is of the form £ = ¢ + aa + 3b. When this is substituted in the
second set of equations, we obtain two linear equations for determining a and
a:

(a,a)a + (a,b)8 =k — (a,c) and (a,b)a+ (b,d)3 =120-(bc) [

Theorem 2. Lagrange Multiplier. Let f and g be continuously
differentiable real-valued functions on an open set 2 in a Banach space.
Let M = {z € Q: g(z) = 0}. If z¢ is a local minimum point of f|M
and if g'(z¢) # 0, then f'(zo) = Ag'(zo) for some A € R.

Proof. Let X be the Banach space in question. Select a neighborhood U of
T such that
zeUNM= f(zo) < f(z)

We can assume U C Q. Define F : U - R? by F(z) = (f(z),9(z)). Then
F(zo) = (f(z0),0) and F'(z)v = (f'(z)v,g (z)v) for all v € X. Observe that
if r < f(zo), then (r,0) is not in F(U). Hence F(U) is not a neighborhood of
F(70). By the Corollary in Section 4.4, F’(zo) is not surjective (as a linear map
from X to R?). Hence F'(zo)v = a(v)(6, p) for some continuous linear functional
a. (Thus a € X*.) It follows that f'(z¢)v = a(v)0 and ¢'(zo)v = a(v)u. Since
9'(zo) # 0, n # 0. Therefore,

fl(o)v = (6/pm)a(v)n = (8/1)g'(zo)v .

Theorem 3. Lagrange Multipliers. Let f, g1,...,9n be contin-
uously differentiable real-valued functions defined on an open set 2 in
a Banach space X. Let M = {z € Q: gi(z) = -+ = ga(z) = 0}. If
Tp is a local minimum point of f|M (the restriction of f to M), then
there is a nontrivial linear relation of the form

kS (xo) + A1g31(z0) + Aaga (o) + - -+ + Angp(zo) = 0

Proof. Select a neighborhood U of z¢ such that U C Q and such that f(zo) <
f(z) for all z € U N M. Define F :U — R™*! by the equation

F(z) = (f(2), 91(2), 92(), - . ., gn(2))

If r < f(zo), then the point (r,0,0,...,0) is not in F(U). Thus F(U)
does mot contain a neighborhood of the point (f(z0),91(z0),-- - gn(T0) =
(f(z0),0,0,...,0). By the Corollary in Section 3.4, page 143, F'(zo) is not
surjective. Since the range of F’(z¢) is a linear subspace of R**!, we now know
that it is a proper subspace of R™"*!. Hence it is contained in a hyperplane
through the origin. This means that for some g, A1,...,An (not all zero) we
have
1f'(o)v + Mgy (zo)v + -+ + Angp(zo)v = 0
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for all v € X. This implies the equation in the statement of the theorem. [}

Example 4. Let A be a compact Hermitian operator on a Hilbert space X.
Then ||A|| = max{|A] : A € A(A)}, where A(A) is the set of eigenvalues of A.
This is proved by Lemma 2, page 92, together with Problem 22, page 101. Then
by Lemma 2 in Section 2.3, page 85, we have ||A|| = sup{|(Az, z)| : ||z|| = 1}.
Hence we can find an eigenvalue of A by determining an extremum of (Az,z)
on the set defined by ||z|| = 1. An alternative is given by the next result. [}

Lemma. If A is Hermitian, then the “Rayleigh Quotient” f(z) =
(Az,z)/(z,T) has a stationary value at each eigenvector.

Proof. Let Az = Az, z # 0. Then f(z) = (Az, z)/(z, z) = A\. Recall that the
eigenvalues of a Hermitian operator are real. Let us compute the derivative of
f at £ and show that it is 0.

(Az + Ah,z + h) |
(@+hz+h) M/IIk

= lim |(Az,z) + (Ah,z) + (Az, h) + (Ah.h) = A||z + &||*|/||A]| || + A]|®
= lim | (h, AZ) + A(z, h) + (Ah, h) = 2ARe(z, k) — A, )| /||| ||= + &))°
= lim |A(h, z) + A(z, h) + (Ah, h) — 2ARe(z, k) — A(h, h)|/||R]| || + k||
= lim |(Ah, k) — A(h, B)|/||R|| || + |®

=lim|(Ah = M, B)|/||A]| |< + ||

< lim |4k = AA|| [[2]l/][2]] ||z + &]|*

< lim |4 = A1|| [|h]l/ || + b]* = 0

Jim | f(z + h) = £(@)|/[|R]] = lim |

Thus from the definition of f’(x) as the operator that makes the equation
lim | f(@ + k) ~ f(z) = f'(z)h| / ||n]| = 0

true, we have f’(z) = 0. ]

Since the Rayleigh quotient can be written as

(Az,x) < x z >
sl A=),
Izl (lell) izl
it is possible to consider the simpler function F(z) = (Az, z) restricted to the
unit sphere.

Theorem 4. If A is a Hermitian operator on a Hilbert space,
then each local constrained minimum or maximum point of (Az, ) on
the unit sphere is an eigenvector of A. The value of (Az,z) is the
corresponding eigenvalue.

Proof. Use F(z) = (Az,z) and G(z) = ||:::||2 — 1. Then
F'(z)h = 2(Az, h) G'(x)h = 2(z, h)



150 Chapter 3 Calculus in Banach Spaces

Our theorem about Lagrange multipliers gives a necessary condition in order
that z be a local extremum, namely that pF’'(z) + AG’(z) = 0 in a nontrivial
manner. Since ||z|| = 1, G'(z) # 0. Hence p # 0, and by the homogeneity we
can set p = —1. This leads to

—2(Az,h) +2Mz,h) =0  (h € X)

whence Ax = Az. [ |

Extremum problems with inequality constraints can also be discussed in a
general setting free of dimensionality restrictions. This leads to the so-called
Kuhn-Tucker Theory.

Inequalities in a vector space require some elucidation. An ordered vector
space is a pair (X, 2) in which X is a real vector space and > is a partial order
in X that is consistent. with the linear structure. This means simply that

y — Tt+z22y+z2

2
20 = A2y

T

T2y, A

In an ordered vector space, the positive cone is
P={z:z>0}

A cone having vertex v is a set C such that v+ A(z — v) € C when z € C
and A 2 0. It is elementary to prove that P is a convex cone having vertex at
0. Also, the partial order can be recovered from P by defining £ > y to mean
r—yeP.

If X is a normed space with an order as described, then X* is ordered in
a standard way; namely, we define ¢ > 0 to mean ¢(z) > O for all z > 0. Here
¢e X"

These matters are well illustrated by the space C|a, b], in which the natural
order f > g is defined to mean f(t) > g(t) for all t € [a,b]. The conjugate space
consists of signed measures.

In the next theorem, X and Y are normed linear spaces, and Y is an ordered
vector space. Differentiable functions f: X - Rand G: X - Y are given. We
seek necessary conditions for a point zo to maximize f(z) subject to G(z) > 0.

Theorem 5. If zp is a local maximum point of f on the set {z :
G(z) 2 0} and if there is an h € X such that G(zo) + G'(zo)h is an
interior point of the positive cone, then there is a nonnegative functional
¢ € Y* such that ¢(G(zo)) = 0 and f'(z0) = —¢ 0 G'(z)-

Proof. (Following Luenberger [Lue2]). Working in the space R x Y, we define
two convex sets
H={ (t,y): forsome h, t < f'(zo)h and y < G(zo) + G'(xo)h }
K={(t,y):t>0,y>0}=[0,00)x P

One of the hypotheses in the theorem shows that P has an interior point, and
consequently K has an interior point. No interior point of K lies in H, however.
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In order to prove this, suppose that (¢,y) is an interior point of K and belongs
to H. Then for some h € X we have

0<t< fl(zo)h
0 <y <G(zo)+ G'(zo)h

Here the inequality y > O is interpreted to mean that y is an interior point of
the positive cone P. For A € (0,1) we have

G(zo + Ah) = G(z0) + G'(z0) M1 + 0(A)
= (1= N)G(xo) + A[G(z0) + G'(zo)] + o(A)
> A[G(zo) + G'(zc)h] + o()
> Ay +o(A)

Since y is an interior point of P, there is an € > 0 such that B(y,e) C P.
By Problem 1, B(Ay,Ae) C P for all A > 0. Select A small enough so that
[lo(N)]|| < Ae. Then

Ay + o(A) € B(Ay, Ae) C P

Consequently, G(zo + Ah) > 0. Similarly, for small A we have

f(xo + Ah) = f(zo) + f'(zo) A + 0(A)
2 f(zo) + At + o(A) > f(zo)

Thus z¢ + Ah lies in the constraint set and produces a larger value in f than
f(zo). This contradiction shows that H is disjoint from the interior of K.

Now use the Separation Theorem (Theorem 2 in Section 7.3, page 343). It
asserts the existence of a hyperplane separating K from H. Thus there exist
p€R and ¢ € Y* such that [l + ||¢|| >0 and

pt+ ‘b(y) < ¢ when (tvy) €EH
pt+ ¢(y) > c when (t,y) € K

Since (0,0) € HN K, we see that ¢ = 0. From the definition of K, we see that
2 >0 and ¢ > 0. Actually, p > 0. To verify this, suppose p = 0. Then ¢ # 0,
and ¢(y) < 0 whenever (t,y) € H. From the hypotheses of the theorem, there
is an h such that G(z¢) + G'(zo)h = z is interior to P. By the definition of H,
(f'(zo)h,z) € H, and so ¢(z) < 0. Hence there are points y near z and in P
where ¢(y) < 0. But this contradicts the fact that ¢ > 0.

Since g > 0, we can take it to be 1. For any h, the point

(f'(zo)h, G(z0) + G'(zo)h)
belongs to H. Consequent)y,
f'(@o)h + 8[G(zo) + G'(zo)h] <O (h€ X)

Taking h = 0 in this inequality gives us ¢[G(zo)] < 0. Since G(zo) > 0 and
¢ > 0, we have ¢[G(zo)] > 0. Thus ¢$[G(zo)] = 0.
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Now we conclude that

[ (@o)h + d|G'(20)h) O (h € X)

Since h can be replaced by —h here, it follows that

f(Zo)h + &[G’ (zo)h] =0

In other words,

10.

11.
12,

13.

J'(zo) = =90 G'(xp) (]

Problems 3.5

. (a) Use Lagrange multipliers to find the maximum of zy subject to z + y = ¢. (b) Find

the shortest distance from the point (1,0) to the parabola given by y2 = 4z.

. Let the equations f(z,y) = 0 and g(z,y) = 0 define two non-intersecting curves in R2.

What system of equations should be solved if we wish to find minimum or maximum
distances between points on these two curves?

. Show that in an ordered vector space with positive cone P, if B(z,r) C P, then

B(Mz, A\r) C Pfor A 2 0.

. Prove that the positive cone P determines the vector order.

. Let A be a Hermitian operator on a Hilbert space. Define f(z) = (4z,z) and g(z) =

(z,z) — 1. What are f’(z) and ¢’(z)? Find a necessary condition for the extrema of f
on the set M = {z: g(z) = 0}. (Use the first theorem on Lagrange multipliers.) Prove
that your necessary condition is fulfilled by any eigenvector of A in M.

. What is f'(z) in the lemma of this section if z is not an eigenvalue?

. Use the method of Lagrange multipliers to find a point on the surface

(z —y)? — 22 =1 as close as possible to the origin in R3.

. Let A and B be Hermitian operators on a real Hilbert space. Prove that the stationary

values of (z, Az) on the manifold where (z, Bz) = 1 are necessarily numbers ) for which
A — AB is not invertible.

. Find the dimensions of a rectangular box (whose edges are parallel to the coordinate

axis) that is contained in the ellipsoid a2z2 + b2y2 + ¢?z2 = 1 and has maximum volume.

Find the least distance between two points, one on the parabola y = z2 and the other
on the parabolay = —(z — 4)2.

Find the distance from the point (3,2) to the curve zy = 2.

In R3 the equation z2 + y2 = 5 describes a cylinder. The equation 6z + 3y + 2z = 6
describes a plane. The intersection of the cylinder and the plane is an ellipse. Find the
points on this ellipse that are nearest the origin and farthest from the origin.

Find the minimum and maximum values of zy + yz + zz on the unit sphere in R3
(22 + y2 + 22 = 1). See [Barb). page 21.

3.6 The Calculus of Variations

The “calculus of variations,” interpreted broadly, deals with extremum problems
involving functions. It is analogous to the theory of maxima and minima in
elementary calculus, but with the added complication that the unknowns in the
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problems are not simple numbers but functions. We begin with some classical
illustrations, posing the problems only, and postponing their solutions until after
some techniques have been explained. Traditional notation is used, in which z
and y are real variables,  being “independent” and y being “dependent.” This
harmonizes with most books on this subject.

Example 1. Find the equation of an arc of minimal length joining two points

in the plane. Let the points be (a,a) and (b, 8), where a < b. Let the arc

be given by a continuously differentiable function y = y(z), where y(a) = a
L . b

and y(b) = B. The arc length is given by the integral [ /1 +3y'(z)2dz. Here

y € C'[a,b). The solution, as we know, is a straight line, and this fact will be

proved later. [ |

Example 2. Find a function y in C![a, b], satisfying y(e) = a and y(b) = 5,
such that the surface of revolution obtained by rotating the graph of y about the
z-axis has minimum area. To solve this, one starts by recalling from calculus
that the area to be minimized is given by

b b
(1) / 2ny(x)ds = 27r/ y(z)v/1+ y'(x)%dx

The solution turns out to be (in many cases) a catenary, as shown later. Figure
3.5 shows one of these surfaces. (]

Example 3. In a vertical plane, with gravity exerting a downward force, we
imagine a particle sliding without friction along a curve joining two points, say
(0,0) and (b, B). There is no loss of generality in taking b > 0, and if the positive
direction of the y-axis is downward, then 3 > 0 also. We ask for the curve along
which the particle would fall in the least time. If the curve is the graph of a
function y in C[0, b], then the time of descent is

1+ y
2) / \/ 2gy(z)

as is shown later. In the integral, g is the acceleration due to gravity. This prob-
lem is the “Brachistochrone Problem,” posed as a challenge by John Bernoulli
in 1696. Figure 3.6 shows two cases of such curves, corresponding to two choices
of the terminal point (b, 3). Both curves are cycloids, one being a subset of the
other.
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Figure 3.5

/ aaf

Figure 3.6

[n 1696, Isaac Newton had just recently become Warden of the Mint and
was in the midst of overseeing a massive recoinage. Nevertheless, when he heard
of the problem, he found that he could not sleep until he had solved it, and
having done so, he published the solution anonymously. Bernoulli, however,
knew at once that the author of the solution was Newton, and in a famous
remark asserted that he “recognized the Lion by the print of its paw”. [West] &

The three examples given above have a common form; thus, in each one
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there is a nonlinear functional to be minimized, and it has the form

b
3) / F(z,y(2),¥(2)) dz

The unknown function y is required to satisfy endpoint conditions y(a) = a and
y(b) = B. In addition, some smoothness conditions must be imposed on y, since
the functional is allowed to involve y’. The first theorem establishes a necessary
condition for extrema, known as the Euler equation, or the Euler-Lagrange
Equation.

Theorem 1. The Euler Equation. Let F be a mapping
from R3 to R}, possessing piecewise continuous partial derivatives of
the second order. In order that a function y in C![a,b] minimize

f: F(z,y(z), Y¥'(z)) dz subject to the constraints y(a) = a, y(b) = B, it
is necessary that Euler’s equation hold:
d ' ,
(4) E;Fs(xvy(x)vy (I)) = F2(Ivy($),y (I))
(Here F; and F3 are partial derivatives.)

Proof. Let u € C'[a,b] and u(a) = u(b) = 0. Assume that y is a solution of
the problem. For all real 6, y + fu is a competing function. Hence

b
% / F(2,y(2) +6u(z),y'(2) + 6u'(z)) dz| =0

This leads to fab(Fg’U. + F3u’) = 0. The second term can be integrated by parts.
The result is

b
d ,
/ [Fg(z,y(x),y’(x)) - a&(m,y(z),y (:c))] u(z)dz =0
a
By invoking the following lemma, we obtain the Euler equation. ]

Lemma. Ifv is piecewise continuous on [a,b] and iff: u(z)v(z)dr =
0 for every u in C*|a,b] that vanishes at the endpoints a and b, then
v=0.

Proof. Assume the hypotheses, and suppose that v # 0. Then there is a
nonempty open interval (a, 3) contained in [a,b] in which v is continuous and
has no zero. We may assume that v(z) > 0 on (a, 8). There is a function u
in C!{a, b such that u(z) > 0 on (a, 8) and u(z) = 0 elsewhere in [a,b]. Since
f: uw = ff uv > 0, we have a contradiction, and v = 0. [}

Example 1 revisited. (Shortest distance between two points.) In this problem,
F(u,v,w) = vV1+ w?. Hence F, = F; =0 and F3=w(1+w2)“/2. Then

Fa(z,y(2),v'(2)) = ¥'(2) [1 + y'(=)?] "/

The Euler equation is %Fg(l‘, y(z),y’(z)) = 0. This can be integrated to yield

F3(z,y(z),y'(z)) = constant. Then we find that y’ must be constant and that
y(z) = a + m(z — a), where m = (8 - a)/(b — a). .
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Theorem 2. In Theorem 1, if Fy = 0, then the Euler equation
implies that

(5) y'(z)F3(z, y(2),¥'(z)) — F(z,y(z),¥'(z)) = constant

Proof.

d ., d d
— [y F3s—F| =y"F ' FR-F-FRy -Fy' =y | —F3-F|=0.
dx[y 3 ] y 3+yd:c 3 1 2y 3y y[dx 3 2] [}
Example 2 revisited. In Example 2, the function F in the general theory will
be F(u,v,w) = v(1 + w?)"/?, where u = z, v = y(z), and w = y'(z). Then, by
the preceding theorem, wF3 — F is constant. In the present case, it means that

w?u(1 4+ w?)" V2 — (1 4+ w?)? = —¢

In this equation, multiply by (1 + w?)'/2, obtaining

2

—c(1+ w)? = wlv — v(1 +w?) = —v

This gives us c?(1 + w?) = v?, from which we get

dy _ 2 /2 _1lro 72 _le, g2
dl_-—w—[(v/c) 1] —C[v c? —C[y c?]

Write this as
dy dz

Ve

This can be integrated to give cosh™!(y/c) = (z/c) + A. Without loss of general-
ity, we take the left-hand endpoint to be (0,a). The curve y = ccosh((z/c) + A)
passes through this point if and only if @ = ccosh A. Hence c can be eliminated
to give us a one-parameter family of catenaries:

a cosh A
(6) y—mcosh (——&——-I+r\)

Here A is the parameter. If this catenary is to pass through the other given
endpoint (b, 3), then A will have to satisfy the equation

B = (a/ cosh A) cosh(bcosh AJa + A)

Here a, b, 3 are prescribed and A is to be determined. In [Bl] (pages 85-119) you
will find an exhaustive discussion. Here are the main conclusions, without proof:

1. The one-parameter family of catenaries in Equation (6) has the appearance
shown in Figure 3.7. The “envelope” of the family is defined by g(z) =
miny ya(z), where y, is the function in Equation 6.

I1. If the terminal point (b, 3) is below the envelope, no member of the family
(6) passes through it. The problem is then solved by the “Goldschmidt
solution” described below.
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III. If the terminal point is above the envelope, two catenaries of the family (6)
pass through it. One of these is a local minimum in the problem but not
necessarily the absolute minimum. If it is not the absolute minimum, the
Goldschmidt solution again solves the problem.

IV. For terminal points sufficiently far above the envelope, the upper catenary
of the two passing through the point is the solution to the problem.

V. The Goldschmidt solution is a broken line from (0, a) to (0,0) to (b,0) and
to (b, 8). It generates a surface of revolution whose area is w(a? + 5%). #

Figure 3.7

Example 3 revisited. Consider again the Brachistochrone problem. We are
using (z, y) to denote points in R2, ¢t will denote time, and s will be arc length.
The derivation of the integral given previously for the time of descent is as
follows. At any point of the curve, the downward force of gravity is mg, where m
is the mass of the particle and g is the constant acceleration due to gravity. The
component of this force along the tangent to the curve is mg cos 8 = mg (dy/ds),
where 6 is the angle between the tangent and the vertical. (See Figure 3.8.) The
velocity of the particle is ds/dt, and its acceleration is d?s/dt?.

ds
dy

dx
Figure 3.8
By Newton’s law of motion (F = ma) we have mg(dy/ds) = m(d?s/dt?), or
d%s/dt? = g(dy/ds). Multiply by 2(ds/dt) to get
ds d’s dy ds

G ae = Yds @t

d (ds\? dy ds)2
dt (dt) 9 oo (dt 9y +

whence
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If the initial conditions are t = 0, y = 0, and ds/dt = 0, then C = 0. Hence

ds _ o a1
a - Ve ds ~ 2gy

1+ y'(
o[ e[
/ \/ 2gy
Since we seek to minimize this integral, the factor 1//2¢g may be ignored. The
function F in the general theory is then F(u,v,w) = /(1 +w?)/v. Since
Fy = 0, Theorem 2 applies, and we can infer that y'(z)Fs(z,y(z),y’'(z)) —

F(z,y(z),y'(z)) = c (constant). For the particular F in this example,
Fs(u,v,w) = wv(l + w?)]~1/2. Thus

V(@ fy(@) (1 +9'(@)?)) 7 — y(@) 121+ y'(2)7) P =

After a little algebraic manipulation we get y(z)[1 + ¥'(z)?) = c~2. When this
is “separated” we get dz = /y/(k—y)dy and T = \/y/(k y)dy. The
integration is carried out by making a substitution y = ksin?@. The result is
z = k(6 — 1/2sin20). Then we have a curve given parametrically by the two
formulas. With ¢ = 20 they become z = (k/2)(¢ — sin @), y = (k/2)(1 ~ cos ¢).
These are the standard equations of a cycloid. (]

Example 4. This is the Brachistochrone Problem, except that the terminal
point is allowed to be anywhere on a given vertical line. Following the previous
discussion, we are led to minimize the expression

b ’ 2
/ 1+ () dz
0 y(z)
subject to y € C2[0,b] and y(0) = 0. Notice that the value y(b) is not prescribed.
To solve such a problem, we require a modification of Theorem 1, namely:

Theorem 3. Any function y in C?[a,b)} that minimizes

b
[ Flas@.v@) &
a
subject to the constraint y(a) = a must satisfy the two conditions

(7 F3(z,y(2),y'(2)) = Fa(z,y(z)y'(z)) and F3(b,y(b),y'(b)) =0

4
dz
Proof. This is left as a problem. |

Returning now to Example 4, we conclude that F3(b,y(b),y’(b)) = 0. This
entails y'(b)//y(b)[1 + ¢’ (b)?] = 0, or y’(b) = 0. Thus the slope of our cycloid
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must be zero at £ = b. The cycloids going through the initial point are given
parametrically by

z = k(¢ — sin @)

y = k(1 - cos @)

The slope is
dy_dy dz_ _sing
dr dp " dp  1-cosed
This is 0 at ¢ = w. The value £ = b corresponds to ¢ = =, and k = b/w. The
solution is given by z = (b/7)(¢ —sin¢), y = (b/7)(1 —cos#),0<d <. &

Example 5. (The Generalized Isoperimetric Problem.) Find the function y
that minimizes an integral

b
/ F(z,y(z),¥/(2)) dz

subject to constraints that y belong to C'[a, b] and

b
[ 6y y@)dz=0 sa)=a u6)=5 '
a
The next theorem pertains to this problem.

Theorem 4. If F and G map R3 to R and have continuous partial
derivatives of the second order, and if y is an element of C?[a, b] that

minimizes f:F(x, y(z),y'(z)) dz subject to endpoint constraints and

fab G(z,y(z),y'(z)) dz = O, then there is a nontrivial linear combina-
tion H = pF + AG such that

®) Ha(2,4(2).v/(2)) = = Hy(z,u(a), ()

Proof. As in previous problems of this section, we try to obtain a neces-
sary condition for a solution by perturbing the solution in such a way that
the constraints are not violated. Suppose that y is a solution in C'[a,b]. Let
m and 7, be two functions in C![a,b] that vanish at the endpoints. Consider
the function z = y + 8171 + 8,7m,. It belongs to C![a,b] and takes correct val-
ues at the endpoints: z(a) = @, z(b) = §. We require two perturbing func-
tions, 7 and 7, because the constraint f: G(z,z2(z),2'(z))dz = 0 will be true
only if we allow a relationship between the two parameters 8; and 6,. Let
1(61,6:) = [! F(z,2(z),2'(z)) dz and J(61,82) = [ Gz, z(z),'(z)) dz. The
minimum of 7(8:,6,) under the constraint J(6;,02) = 0 occurs at 8, = 62 = 0,
because y is a solution of the original problem. By the Theorem on Lagrange
Multipliers (Theorem 3, page 148), there is a nontrivial linear relation of the
form pf’(0,0) + AJ'(0,0) = 0. Thus

or aJ oI aJ
II-—*‘I‘ + /\-—-l- =0 at (61,62) =(0,0), and ua—gz + /\‘aTz'

Following the usual procedure, including an integration by parts, we eventually
obtain Equation (8). . (]

=0 at (0,0)
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Example 6. It is required to find the curve of given length ¢ joining the
point (—1,0) to the point (1,0) that, together with the interval (—1,1] on the
horizontal axis, encloses the greatest possible area.

We assume that 2 < ¢ < . Let the curve be given by y = y(z), where y
belongs to C![—1,1]. The area to be maximized is then

/—11 y(z)dx

and the constraints are
1
[ ViTv@ia=e  y-n=un)=0
-1
This problem can be treated with Theorem 4, taking

F(r,y,y)=y and G(z,y,¥)=vV1+ ) -¢/2

The necessary condition of Theorem 4 is that for a suitable nontrivial pair of
coefficients g2 and A

[(F +AG)z = =(kF +2G)s] (2,3(2), /() = 0

(In these equations, subscript 2 means a partial derivative with respect to the
second argument of the function, and so on.) In the case being considered, we
have F; = 1, F3 =0, G2 = 0, and G3 = ¥/ (z)([1 + ¥'(2)?] "'/%. The necessary
condition then reads

d__y'(z)

A =0
b Ty @p
If p = 0, then A must be 0 as well. Hence we are free to set 1 = 1 and integrate
the previous equation, arriving at

(@)
e = ()
1+y'(z)?
This can be solved for y'(z):
Ir—QC

Another integration leads to
yz)=—-VA-(z-a)+c
We see that the curve is a circle by writing this last equation in the form

(z-a)+y—c)?=A?
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Since the circle must pass through the points (—1,0) and (1,0), we find that
c1 = 0 and that 1 +c2 = A\2. When the condition on the length of the arc is
imposed, we obtain ¢ = 2\ Arcsm— from which A can be computed. [}

Example 7. (The Classical Isoperimetric Problem.) Among all the plane
curves having a prescribed length, find one enclosing the greatest area. We
assume a parametric representation z = z(t) and y = y(t) with continuously
differentiable functions. We can also assume that 0 < ¢t < b and that z(0) = z(b),
y(0) = y(b) so the curve is closed. Let us assume further that as t increases from
0 to b, the curve is described in the counterclockwise direction. The region
enclosed is then always on the left. Recall Green's Theorem, [Widl], page 223:

/(sz+Qdy / [@i(z,y) — Pa(z,y)] dzdy

where R is the region enclosed by the curve I' and the subscripts denote partial
derivatives. A special case of Green's Theorem is

1
2/( —ydz +zdy) = // 1+ 1)dzdy = Area of R
r

Thus our isoperimetric problem is to maximize the integral

b
dzr dy
/0‘ (—y at +.’L‘E) dt
b 2 2
dz dy
/; \/(E) + (E) dt = constant

This isoperimetric problem involves again the minimization of an integral subject
to a constraint expressed as an integral. But now we have two unknown functions
to be determined. A straightforward extension of Theorem 4 applies in this
situation. Suppose that we wish to minimize

subject to

b
/ F(t,(t),2'(t),y(t), () dt

subject to the usual endpoint constraints and a constraint

b
/ G(t,z(t), '(t), y(t), ¥/ (t)) dt =

The Euler necessary condition is that for a suitable nontrivial linear combination
H = uF + )G,

d
Hz(t,I,I,, yvy) —d—t'Ha(t z,T )yvy’)

d
Ha(t,z,2'y,y') = aHs(t,z,r’,y,y’)
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If we apply this result to Example 7, we will use
H(t,z,2'y,y") = p(xy’ —yz') + AV/z'? 4+ y2

The Euler equations are

d -
wy = pr [_lly+Az'($'2 +y12) 1/2]

d -
~uz' = p [;tz + 2 (2 +y?) 1/2]

Upon integrating these with respect to ¢, we obtain
2uy = A’ (2 + y'z)"l/2 +A
—2uz = A/ (22 +y?) - B

If 4 = 0, we infer that 2’ = y' = 0, and then the “curve” is a straight line.
Hence u # 0, and by homogeneity we can assume j1 = % Then y - A =
M/ (224 y'?)" Y% and £ — B = —\y'(z'2 + y'2)~1/2. Square these two equations

and add to obtain the equation of a circle: (x — B)? + (y — A)? = A2, ]

Applications to Geometrical Optics. Fermat’s Principle states that a ray
of light passing between two points will follow a path that minimizes the elapsed
time. In a homogeneous medium, the velocity of light is constant, and the least
elapsed time will occur for the shortest path, which is a straight line. Consider
now two homogeneous media separated by a plane. Let the velocities of light
in the two media be c¢; and c;. What is the path of a ray of light from a point
in the first medium to a point in the second? We assume that the path lies in
a plane. By the remarks made above, the path consists of two lines meeting at
the plane that separates the two media.

(xp. yp)

y-axis

velocity ¢,
x-axis

velocity ¢,

(x9, ¥}

Figure 3.9

If the coordinate system is as shown in Figure 3.9, and if the unknown point
on the z-axis is (z,0) then the time of passage is

1 1 _ _
T= C—l\/(x—ll)2+yf+;\/(x'xz)z'*'y%:‘fl 'pr+c;'p2
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For an extremum we want dT'/dz = 0. Thus

d d
c;1£.+02-171;3=0'

1 1

et —(z—z1)+e;' —(z—x2) =0
pP1 P2

cl”l sin; = c;l sin ¢,

This last equation is known as Snell's Law.

Now consider a medium in which the velocity of light is a function of y; let
us say ¢ = c(y). This would be the case in the Earth’s atmosphere or in the
ocean. Think of the medium as being composed of many thin layers, in each of
which the velocity of light is constant. See Figure 3.10, in which three layers are
shown.

\Qyzq) ! velocity ¢,

velocity ¢,

¢ 3\/3\6—\ 93 velocity ¢
Figure 3.10

Snell’s Law yields

sin ¢ sings  sin¢3
= = = ... = k constant
C1 [op] C3

For a continuously varying speed c(y), the path of a ray of light should satisfy
sin ¢(y)/c(y) = k. Notice that the slope of the curve is

y'(z) = tan (% - ¢) = cot ¢ = cos@/sin ¢

=4/1 — sin? ¢/sin¢= V1 —k2?/kc

.___.k_c.__ dy =dz and T = M

V1 —k2c? V1 - k2(y)?
Example 8. What is the path of a light beam if the velocity of light in the
medium is ¢ = ay (where « is a constant)?

Hence

Solution. The path is the graph of a function y such that
kay

Vi Paig

dy

=

The integration produces

x:%\/l—k2a2y2+A
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Here A and k are constants that can be adjusted so that the path passes through
two given points. The equation can be written in the form

(2= A) = (1 - Ka®y?)
or in the standard form of a circle:
(z—- AP +y? =

k2a?

The analysis above can also be based directly on Fermat’s Principle. The
time taken to traverse a small piece of the path having length As is As/c(y).
The total time elapsed is then

/° V1+y(x)? i
o c(y)

This is to be minimized under the constraint that y(a) = & and y(b) = 8. Here
the ray of light is to pass from (a,a) to (b,3) in the shortest time. By Theorem
2, a necessary condition on y can be expressed (after some work) as
-1 1r \21—1/2
[e(y(=))] ™ [1 +¥'(=)?] = constant ]
In order to handle problems in which there are several unknown functions

to be determined, one needs the following theorem.

Theorem 5.  Suppose that y,,...,yn are functions (of t) in C?[a,b]
that minimize the integral

b
/F(yx,---,yn,yi,.-.,y;)dt
a
subject to endpoint constraints that prescribe values for all y;(a), y;(b).
Then the Euler Equations hold:
d O0F OF
(9) o = B
dt Oy; Oy

Proof. Take functions 1,,...,7, in C?(a,b] that vanish at the endpoints. The
expression

(1<i<n)

b
/ F(yl +61m,...,Yn +0nnn)dt
a

will have a minimum when (6y,...,60,) = (0,0,...,0). Proceeding as in previous
proofs, one arrives at the given equations. [}

Geodesic Problems. Find the shortest arc lying on a given surface and
joining two points on the surface. Let the surface be defined by z = z2(z,y). Let
the two points be (zo, Y0, 20) and (z1,¥1,21). Arc length is

(z11121) (z1v121)
/ ds = / Vdr? + dy? + dz2?
( {

Zo¥020) To¥020)
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If the curve is given parametrically as z = z(t), y = y(t), z = z(z(t),y(t)),
0 <t < 1, then our problem is to minimize

1
(10 /0 VE? Y+ (4 gy de

subject to = € C?[0, 1), y € C?[0,1], (0) = zo, (1) = i, ¥(0) = yo, ¥(1) = 1.
Example 9. We search for geodesics on a cylinder. Let the surface be the
cylinder z2 + 22 = 1, or z = (1 — 22)'/2 (upper-half cylinder). In the general
theory, F(z,y,2',y’) = /2’2 + y’2 + (2,7’ + 2,y’)%. In this particular case this
is

F= [1;2 +y?+ 231:12]1/2 _ [(l _ 12)—110 + yr2]1/2
Then computations show that
oOF zz'"? OF T’ OF oF o

Oz (1-1z2)2F oz’ (1-z?)F oy oy F

To simplify the work we take ¢ to be arc length and drop the requirement that
0 < t < 1. Since dt = ds = \/x'? + y'2 + 22dt, we have 2 + y'? + 2'2 = 1 and
F(z,y,2',y’) = 1 along the minimizing curve. The Euler equations yield

1 - x2)z" + 2zz"? zz'?

( (l)—z2)2 S U=z and y" =0
The first of these can be written z” = zz'2/(z% — 1). The second one gives
y = at + b, for appropriate constants a and b that depend on the boundary
conditions. The condition 1 = F? leads to z'2/(1 — z2) + ¥’ = 1 and then to
z'2/(1-1%) = 1—a?. The Euler equation for z then simplifies to ="’ = (a? - 1)z.
There are three interesting cases:

Case 1: a =1. Thenz"” =0, and thus both z(t) and y(t) are linear expressions
in t. The path is a straight line on the surface (necessarily parallel to
the y-axis).

Case 2: a = 0. Then 2” = —z, and = = ccos(t + d) for suitable constants c
and d. The condition z'?/(1 — z2) = 1 gives us ¢ = 1. It follows that
z=cos(t+d), y=0",and z = V1 —z22 = sin(t + d). The curve is a
circle parallel to the zz-plane.

Case 3: 0 <a < 1. Thenz =ccos(v1—a?t+d), and as before, c = 1. Again
z =sin(v/1 — a?t + d), and y = at + b. The curve is a spiral. ]

Examples of Problems in the Calculus of Variations with No Solutions.
Some interesting examples are given in [CH], Vol. 1.

I. Minimize the integral fol v/1 + y'2dz subject to constraints y(0) = y(1) =0,
¥’'(0) = ¥’(1) = 1. An admissible curve is shown in Figure 3.11, but there
is none of least length, since the infimum of the admissible lengths is 1, but
is not attained by an admissible y.

a 1

0

Figure 3.11
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II. Minimize f_ll 22 y'(z)? dx subject to constraints that y be piecewise contin-
uously differentiable, continuous, and satisfy y(—1) = -1, y(1) = 1. An
admissible y is shown in Figure 3.12, and the value of the integral for this
function is 2¢/3. The infimum is 0 but is not attained by an admissible y.
This example was given by Weierstrass himself!

| ! ]

N

<+ -1

.

Figure 3.12

Direct Methods in the Calculus of Variations. These are methods that
proceed directly to the minimization of the given functional without first looking
at necessary conditions. Such methods sonietimes yield a constructive proof
of existence of the solution. (Methods based solely on the use of necessary
conditions never establish existence of the solution.)

The Rayleigh—Ritz Method. (We shall consider this again in Chapter 4.)
Suppose that U is a set of “admissible” functions, and ® is a functional on U
that we desire to minimize. Put p = inf{®(v) : u € U}. We assume p > —00,
and seek a u € U such that &(u) = p. The problem, of course, is that the
infimum defining p need not be attained. In the Rayleigh-Ritz method, we start
with a sequence of functions w;,w,,... such that every linear combination
ciw; + - -+ + cnwy, is admissible. Also, we must assume that for each u € U and
for each € > 0 there is a linear combination v of the w; such that ®(v) < $(u)+e€
For each n we select v, in the linear span of wy, ..., w, to minimize ®(v,). This
is an ordinary minimization problem for n real parameters cy,...,cn. It can be
attacked with the ordinary techniques of calculus.

Example 10. We wish to minimize the expression fob foa(dzz, + ¢?) dz dy sub-
ject to the constraints that ¢ be a continuously differentiable function on the
rectangle R = {(z,¥) : 0 < £ < a, 0 < y < b}, that ¢ = 0 on the perimeter of
R, and that [ [, ¢? da:dy = 1. A suitable set of base functions for this problem
is the doubly indexed sequence

Unm(T,y) = 2 sin 222 sin 7Y

’ Vab a b

It turns out that this is an orthonormal set with respect to the inner prod-
uct (u,v) = [[pu(z,y)v(z,y)dzdy. We are looking for a function ¢ =
> CnmUnm that will solve the problem. Clearly, the function ¢ vanishes
c2,, = 1 by the

(n,m 21)

nm=1
on the perimeter of R. The condition [[ ¢? = 1 means } >
Parseval identity (page 73). Now we compute

n,m=1

2 nr nrr . mwy
aunm(x,y) = — —c0os — sin ——

Vab a a b
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The system of functions

2 cos 22Z in 7Y
Vab a b
. 2 nm 2 o
is also orthonormal. Thus o= Z(——cnm) . Similarly,
R n,m a

/ ¢2 Cnm) 2

Hence we are trying to minimize the expression

[fsd0- E[(Fon) (Fro)| -E (G 5 e

subject to the constraint _c2,, = 1. Because of the coefficients n? and m?, we

obtain a solution by letting c;; = 1 and the remaining coefficients all be zero.
2 ™ Y
H = = ———sin — sin —. (Thi le is taken fr CH],
ence ¢ = uj \/&sm 2 S (This example is taken from [CH], page
178.) ]

Example 11. (Dirichlet Problem for the Circle) The 2-dimensional Dirichlet
problem is to find a function that is harmonic on the interior of a given 2-
dimensional region and takes prescribed values on the boundary of that region.
“Harmonic” means that the function u satisfies Laplace’s equation:

(92 (92
Uzz +Uyy =0 or (6:1:2 Byz) u(z,y) =0

Laplace’s equation arises as the Euler equation in the calculus of variations when
we seek to minimize the integral [fi(u2 + u2)dzdy subject to the constraint
that u be twice continuously differentiable and take prescribed values on the
boundary of the region R. To illustrate the Rayleigh-Ritz method, we take R
to be the circle {(z,y) : 2 + y? < 1}. Then polar coordinates are appropriate.
Here are the formulas that are useful. (They are easy but tedious to derive.)

z=rcosf y=rsinf r=+vz2+y?2 6 =tan"'(y/z)
=us —ups —uY
uz—urr uG uy—ur;-}-ug—?
wtul=ul+r 5 dzdy = rdrdf

The integral to be minimized is now

2 1
[E/ / (v2 +r~%u)rdrdo
o Jo

The boundary points of the domain are characterized by their value of . Let
the prescribed boundary values of u be given by f(6). Let f” be continuous.
Then (by classical theorems) f is represented by its Fourier series:

o o)
= Z'(a,, cosnf + b, sinnf) (' means that the first term is halved)

n=0
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These are the values that u(r,0) must assume when r = 1. We therefore postu-
late that u(r, 6) have the form

Z [fn(r cosnf + gn(r) sin -nO] g =0

1 27
The integral I consists of two parts, of which the first is J; = / T / u? df dr.
0o Jo

Now ’
= Z [f1(r) cosnb + gp(r) sin nb)

and consequently,

[z =l = 7 3t gt

n=0

1
Thus I, = WZ/ r[f,’l(r)2 +g:,(r)2] dr. Similarly, the other part of I is
0

1 27
I =/ r”I/ u3 df. We have
0 0

ug = Z [—nfn(r) sinnd + ngn(r) cosnf|

and consequently,

o0

/(;2” uidd=m Z [n?fa(r)? + ngn(r)?]

n=1

0o 1
Thus I =« Z n"’/ ! fa(r)? + gn(r)?] dr. Hence
n=1 Y

00 1
= Z/ [1‘_!',',(r)2 +rgn(r)?2 +n?r fu(r)? + n2r'1gn(r)2] dr
n=0v0
We therefore must solve these minimization problems individually:
1
minimize / [rf,’t(r)2 + nzr‘lfn(r)z] dr subject to fn(l) = a,
0
1
minimize / [fg;,(r)2 + nzr'lg,,(r)2] dr subject to gn(1) = b,
0

Fixing n and concentrating on the function f,, we suppose it is a polynomial of
high degree, m = n. Thus fu(r) = co + &i7 + 7% + - + ci™. The integral
to be minimized becomes a function of (cg,ci,c2,...,cm), and the constraint
isco+c¢y+c2+ -+ cm = an- The solution of this minimization problem is
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Cn = ay, all other c; being = 0. Hence f,,(r) = a,r". Similarly, gn(r) = b,r".
Thus the u-function is

10.

11.

u(r,8) = %0- + Z r"(an cosn + by, sinnh) ]
n=1

Problems 3.6

. Among all the functions z in C![a,b] that satisfy z(a) = a, z(b) = 8, find the one for

which f: u(t)2z’(t)2 dt is a minimum. Here u is given as an element of C[a,b).

. Prove Theorem 3, assuming that F' has continuous second derivatives.

. Find a function y € C2(0, 1) that minimizes the integral fol[%y’(:c)Q+y(:c)y’(::)+y'(:r) +

y(x)] dx. Note that y(0) and y(1) are not specified.

. Prove this theorem: If {un} is an orthonormal system in L2(S,u) and {ua} is an or-

thonormal system in L%(T,v), then {un ® ym : 1 < n < 00,1 £ m < oo} is orthonormal
in L2(S x T). Here un ® um is the function whose value at (s, t) is un(s)um(t). Explain
how this theorem is pertinent to Example 10.

. Determine the path of a light beam in the zy-plane if the velocity of light is 1/y.

. Find a function u in C![0, 1] that minimizes the integral fol [u'(t)® 4+ u’(t)]dt subject to

the constraints u(0) = 0 and u(1) = 1.

. Repeat the preceding problem when the integrand is u(t)2 + u’(t)2.

. Explain what happens in Example 6 if £ > w. Try to solve the problem using polar

coordinates: r = r(6), where 0 < 6 < .

. Verify that the family of catenaries in Example 2 passing through the point (0, 4) is given

by y = f(c, ), where c is a parameter and

cosh ¢
T

4
flc,z) = mcosh[— -]

Suppose that the path of a ray of light in the zy-plane is along the parabola described
by 2z = y2. What function describes the speed of light in the medium?

Find the function u in C?0, 1] that minimizes the integral fol {[u()]?+[u'(t))2} d t subject
to the constraints u(0) = u(1) = 1.
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In this chapter we will explain and illustrate some important strategies
that can often be used to solve operator equations such as differential equations,
integral equations, and two-point boundary value problems. The methods to be
discussed are as indicated in the table above.

There is often not a clear-cut distinction between these methods, and nu-
merical procedures may combine several different methods in the solution of a
problem. Thus, for example, the Galerkin technique can be interpreted as a pro-
jection method, and iterative procedures can be combined with a discretization
of a problem to effect its solution.

4.1 Discretization

The term “discretize” has come to mean the replacement of a continuum by a
finite subset (or at least a discrete subset) of it. A discrete set is characterized by
the property that each of its points has a neighborhood that contains no other
points of the set. A function defined on the continuum can be restricted to that
discrete set, and the restricted function is a simpler object to determine. For
example, in the numerical solution of a differential equation on an interval [a, b],
it is usual to determine an approximate solution only on a discrete subset of that

170
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interval, say at points a = tg < t; < --- < tp4+; = b. From values of a function
u at these points, one can create a function & on [a,b] by some interpolation
process. It is important to recognize that the problem itself is usually changed
by the passage to a discrete set.

Let us consider an idealized situation, and enumerate the steps involved in
a solution by “discretization.”

1. At the beginning, a problem P is posed that has as its solution a function
u defined on a domain D. Our objective is to determine u, or an approxi-
mation to it.

2. The domain D is replaced by a discrete subset Dy, where h is a parameter
that ideally will be allowed to approach zero in order to get finer discrete
sets. The problem P is replaced by a “discrete version” Ph.

3. Problem Py, is solved, yielding a function v, defined on Dy,.

4. By means of an interpolation process, a function ¥}, is obtained whose do-
main is D and whose values agree with vy on Dy,.

5. The function 9y, is regarded as an approximate solution of the original prob-
lem P. Error estimates are made to justify this. In particular, as h — 0, 7
should converge to a solution of P.

Example 1. This strategy will now be illustrated by a two-point boundary-
value problem:

(1)

v +au +bu=c O<t<1
u(0) =0 u(l)=0

The coefficients a, b, and c are allowed to be functions, assumed to be continuous
in the independent variable t. Notice that the differential equation is linear.
That is, the unknown function u occurs in a linear fashion. The boundary-value
problem (1) is problem P in the previous discussion. The domain D is the
interval [0, 1].

For a discretization, let us choose equally spaced points in the interval as
follows:

O=tp<t1 <---<tpn<thyp1 =1 ti=th, h=1/(n+1)
The parameter h in the previous discussion is just the step size in the boundary-
value problem.
Directly from Equations (1), we have
u”’(t:) + a(t:)u'(t:) + b(ti)u(ts) = c(ts) (1<ig<n)

That equation is written in abbreviated form as

u! + aiu} + biu; = c; (1€ign)
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A “discrete version” of the original problem is obtained by replacing deriva-
tives in Equation (1) by approximations. Two commonly used formulas (dis-
cussed later, in Lemma 2) are these:

(2) f”(t) — f(t+h)_2.";(2t)+f(t‘h) _ 1—12-h2f(4)(7')
' _f(t+h)—f(t~h) 1 "
(3) fl(t) = oh - Ehzf ()

We use these (without the error terms involving 7) to approximate u’ and u” at
the points ¢;. Since we wish to use u as the solution of the original problem, we
use a different letter to denote the solution of the discretized problem. Thus v
will be a vector of n 4+ 2 components, and v; is expected to be an approximate
value of u(t;). The problem Py, is

Vig1 — 20; + v Vit1 — Vi
(4) h? MRS
Yo =VUn41 =0

-1 +bvi=¢ (1€ign)

Here we have written a; = a(t;), and so on. Problem (4) is a system of n linear
equations in n unknowns v;. It is solved by standard methods of linear algebra,
such as Gaussian elimination. The ith equation in the system can be written in
the form

-2 L, - ORI S
(5) ’Ui._l(h. 2—-5’1 1(1.,') +’U,‘(—2h 2+bi)+v,~+1(h 2+§h la,-) = ¢

It is clear that the coefficient matrix for this system is tridiagonal, because the ith
equation contains only the three unknowns v;_;, v;, and v;4+;. Furthermore, if h
is small enough and if b(t) < 0, the matrix will be diagonally dominant. Indeed,
assume that hla;| < 2. Then h~% £ Jh~'a; is nonnegative and —2h=2 + b; is
nonpositive. The condition for diagonal dominance in a generic n x n matrix
A=(Ay)is

n

|4l = Y 1451>0  (i=1,...,n)
‘-
i

In this particular case, the condition becomes
1
(6) 2h~2 — b, — (h“2 _ -;—h_la,«) - (h‘2 + §h-la,) =—b;>0

We write System (5) in the form Av = ¢, where A is the tridiagonal matrix and
¢ now denotes the vector having components ¢;. The vectors v and ¢ should be
“column vectors.”

Let us assume that the linear system has been solved to produce the vector
v. The next step is to “fill in” the values of a continuous function 7 such that
¥(t;) = v; (1 € i € n). This can be done in many ways, such as by means of a
cubic spline interpolant. Another way of interpreting this step is to say that we
have extended the function v to the function .
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In order to investigate how close the approximate solution may be to the
true solution, we begin by recording three equations that are satisfied by the
true solution:

u +au' +bu=c

u(t;) + a(t)u' (t:) + blte)u(ts) = c(t:)

Uiy — 2Ug + Ui h"’u(“)(n) +a [u,-+1 — Ui—1 hzu(s)(f,‘)
- i -

(7) A2 12 2h 6 ] b = c

On the other hand, the solution to the discrete problem satisfies the equation
(8) h™2(vig1 = 20i + vi1) + ai(2R) "M (g1 —vic1) H bivi = ¢

By subtracting one equation from the other, we arrive at an equation for the
“error” e = u — v:

(9) h_2(€i+1 —2e; +e€i-1)+ a,~(2h)"(e.-+1 —ei-1) + bie; = hzd,'

Here d; = {5u{¥(r;) + taut¥(&). Equation (9) has the same coefficient matrix
as Equation (8). If we denote that matrix by Ay, Equation (9) has the form

Ahe = h2d

Now by the lemma that follows, and by Equation (6),

145l max{]a"; - Z laz;l} = mgx(—bi)“

J#t

Since b is continuous and negative on [0, 1], there is a positive 8, independent of
i and h, such that —b; > é. Thus ||4;||_, < 1/6, and we have

lell.o < A2, el < R287" (S5 1], + 21| )

Thus as h — oo, the discrete solution converges to the true solution at the speed
O(h?). (O(h) is a generic function such that |O(h)| < ch.) ]

Lemma 1. If ann x n matrix A is diagonally dominant, then it is
nonsingular, and

n -1
||A= ” max{|a,,| - Z [aijl}

j=1
J#i
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Proof. Let z be any nonzero vector, and let y = Az. Select 7 so that |z;| =

”z“oo. Then

n

ai;T; + E @ijTj =Yi
i=1
J#i

n

lasiza| < lwal + D lais |5
j=1
J#L

n n
sl ||z, < lwil + | Z laii| < lyll, + ll=ll Z las;]
7 i

Hence
n
el (1ot = 3 ast) < ol
j=1
Jj#i
This shows that y # 0. Thus A maps no nonzero vector into 0, and A is
nonsingular. If we write £ = A~y in the above inequality, we obtain

n -1
47wl < ol (lnl = 3
i
and this implies the upper bound in the lemma. (]

Lemma 2. If f® is continuous on (t — h,t + h), then
F7(8) = K218 + ) = 27(0) + St~ W) = R2FD(E)

f’(t) = (2h)—1[f(t+ h,) _f(t _ h)] _ éh’2fm(77)

Proof. We derive the first formula and leave the second as a problem. By
Taylor's Theorem we have

SR = S0+ RE(0) + Zh2S7(0) + SR (1) + ok SO ()
JlE=h) = £(0) = hf'(0) + 3R2F"() — S (6) + ok S (6a)
Upon adding these two equations, we get

FlE+R)+ £(t = B) = 20(6) + K1 (0) + 5o h 11O () + £ (6a)]
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Upon rearranging this, we obtain
£1(8) = R[S+ B) = 2£(8) + (2 = 1) = 5h? [f9E) + FO(€2)]

Observe that the expression 1[f(*)(£;) + f(4)(&;)] is the average of two values of
£ on the interval [t — h,t + h]. Its value therefore lies between the maximum
and minimum of f*) on this interval. If f¢) is continuous, this value is assumed
at some point £ in the same interval. Hence the error term can be written as
—h2 £ (€)/12. .

Example 2. We give another illustration of the discretization strategy. Con-
sider a linear integral equation, such as

b
/ k(s,t)z(s)ds = v(t) (a<t<gb)

In this equation, the kernel k and the function v are prescribed. We seek the
unknown function z.

Suppose that a quadrature formula of the type

b n
/ f()ds~ S s f(s;)

=1

is available. (The points s; need not be equally spaced.) Takingt = s; in the
integral equation, we have

/bk(s, si)z(s)ds = v(s;) (1€ig<mn)

a

Applying the quadrature formula leads to a discrete version of the integral equa-
tion:

ZCjk(Sj,S,')I(Sj) = v(s;) (1<i<n)
j=1

This is a system of n linear equations in the unknowns z(s;); it can be solved
by standard methods. Then an interpolation method can be used to reconstruct
z(t) on the interval a < t < b. Approximations have been made at two stages,
and the resulting function z is not the solution of the original problem. This
strategy is considered later in more detail (Section 4.7). (]

References for this chapter are [AR], [AY], [AIG], [At], [Au], [Bak], [Bar],
[Brez], [BrS], [CCC], [CMY], [Cia], [CH], [Dav], [DMo], [Det], [Dzy], [Eav], [Fic],
[GG], [GZ1], [GZ2], [GZ3)], [Gold], (Gre], [Gril, (Hen], [HS], [IK], [KA], [KK],
[Kee], [KC], [Kras], [Kr], [LSU], [Leis], [Li], [LM], [Lo], [Luel], [Lue2], [Mey],
(Mil], [Moo], [Mor1], [Mor2], [Nazl], [Naz2], [OD], [OR], [Ped], [Pry], [Red],
[Rh1}, [Rh2], [Ros], [Sa], [Sm], [Tod], [Wac|, [Was), [Wat], [Wilf], and [Zien].
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Problems 4.1

1. Establish the second formula in the second lemma.

2. Derive the following formula and its error term:

f"(z) & [f(z + 2k) — 2f(z + h) + 2f(z — h) — f(z - 2h)]/(2R?)

3. To change a boundary value problem
v +au +bu=c u(a)=0 u(B) =0

into an equivalent one on the interval [0, 1], we change the independent variable from ¢
to s using the equation t = s + a(1 — s). What is the new boundary value problem?

4. To change a boundary value problem
v’ +au' +bu=c u(0) = a u(l) =0

into an equivalent one having homogeneous boundary conditions, we make a change in

the dependent variable v = u — €, where £(t) = a + (8 — a)t. What is the new boundary

value problem?

5. A kernel of the form K(s,t) = :l=1 u;(8)vi(t) is said to be “separable” or “degenerate.”
If such a kernel occurs in the integral equation

1
z(t) = / K(s,t)z(s)ds + w(t)
0

then a solution can be found in the form z = w + Z:‘=1 aiv;. Carry out the solution
based on this idea. Illustrate, by using the separable kernel e*~¢.

4.2 The Method of Iteration

The term iteration can be applied to any repetitive process, but traditionally
it refers to an algorithm of the following nature:

(1) To given, Tn4 = Fz,, n=0,1,2,...

We can also write £, = F"zo, where FO is the identity map and F**! =
F o F™. In such a procedure, the entities zg,z;,... are usually elements in
some topological space X, and the map F : X — X should be continuous. If
lim, 00 T exists, then it is a fixed point of F', because

(2) F(limz,) = lim Fz, =limz,4+, = limz,

The method of iteration can be considered as one technique for finding fixed
points of operators.

The Contraction Mapping Theorem (due to Banach, 1922) is an elegant
and powerful tool for establishing that the sequence defined in Equation (1)
converges. We require the notion of a contraction, or contractive mapping.
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Such a mapping is defined from a metric space X into itself and satisfies an
inequality

(3) d(Fz,Fy) < 0d(z,y) (T,y€ X)

in which 6 is a positive constant less than 1. Complete metric spaces were the
subject of Problem 48 in Section 1.2, page 15. Every Banach space is neces-
sarily a complete metric space, it being assumed that the distance function is
d(z,y) = ||.1:-y||. A closed set in a Banach space is also a complete metric space.
Since most of our examples occur in this setting, the reader will lose very little
generality by letting X be a closed subset of a Banach space in the Contraction
Mapping Theorem.

Theorem 1. Contraction Mapping Theorem. If F' is a contrac-
tion on a complete metric space X, then F has a unique fixed point £.
The point € is the limit of every sequence generated from an arbitrary
point T by iteration

[z, Fz, F’z,.. ] (z € X)

Proof. Reverting to the previous notation, we select z¢ arbitrarily in X and
define z,4y = Fz, forn=0,1,2,.... We have

d(Tn,Tn-1) = d(FTn_1,Fzn_2) < 8d(Tn-1,Tn-2)
This argument can be repeated, and we conclude that
(4) d(zTn,Tn_1) € 0" d(z1, T0)

In order to establish the Cauchy property of the sequence [z,], let n > N and
m > N. There is no loss of generality in supposing that m > n. Then from
Equation (4),

d(zm,Tmo1) + d(@mot,Emo) + - + d(Tnt1,7n)
[0"'_1 +O™2 4.4 0"]d(1‘17-’l‘0)

[0N + N+ ... ]d(:cl,Io)

=0 (1-6)"'d(z1, o)

d(-fmazn) <
<
<

Since 0 € 6 < 1, limy_,008" = 0. This proves the Cauchy property. Since the
space X is complete, the sequence converges to a point £. Since the contractive
property implies directly that F is continuous, the argument in Equation (2)
shows that £ is a fixed point of F'.

If n is also a fixed point of F', then we have

(5) d(&,m) = d(FE, Fn) < 0d(€,7)

If € # 7, then d(£,n) > 0, and Inequality (5) leads to the contradiction 8 > 1.
This proves the uniqueness of the fixed point. [}
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The iterative procedure is well illustrated by a Fredholm integral equation,
z = Fz, where

(6) (Fz)(t) = /01 K(s,t,z(s))ds+w(t) (0<t<1)

It is assumed that w is continuous and that K (s, t,r) is continuous on the domain
in R3 defined by the inequalities

0<skK1 0t —00<r<oo

We will seek a solution z in the space C[0,1]. This space is complete if it is
given the standard norm
], = suplz(@)

In order to see whether F' is a contraction, we estimate ||Fu - Fv||:

(7) [(Fu)(t) = (Fo)(t)] < /01 |K (s,t,u(s)) — K(s,t,v(s)) | ds
If K satisfies a Lipschitz condition of the type
(8) |K(s,t,8) — K(s,t,m)| <OlE—n  (6<1)
then from Equation (7) we get
|(Fu)() = (Fo)(t)] < 6]|u = v]]
and the contraction condition
©) |Fu - Fol| < olfu - o]

By Banach’s theorem, the iteration z,4+; = Fz, leads to a solution, starting
from any function z¢ in C[0, 1]. This proves the following result.

Theorem 2. If K satisfies the hypotheses in the preceding para-
graph, then the integral equation (6) has a unique solution in the space

clo, 1).

Example 1. Consider the nonlinear Fredholm equation

1t
(10) z(t) = 5/ cos(stz(s)) ds
(i
By the mean value theorem,

| cos(st€) — cos(stn)| = | sin(st¢)| |st§ — stn| < |€ — 7|
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If the iteration is begun

Thus the preceding theory is applicable with 8 = %
= 1 and z(t) = t~'sin(t/2). The

with o = 0, the next two steps are x,(t)
next element in the sequence is given by

1 ]
z3(t) = E/o cos(tsm 2) ds

This integration cannot be effected in elementary functions. In fact, it is analo-
gous to the Bessel function Jy, whose definition is

Jo(2) = l/ cos(zsin@) df
0

us

If the iteration method is to be continued in this example, numerical procedures
for indefinite integration will be needed. [}

The method of iteration can also be applied to differential equations, usually
by first turning them into equivalent integral equations. The procedure is of great
theoretical importance, as it is capable of yielding existence theorems with very
little effort. We present some important theorems to illustrate this topic.

Theorem 3. Let S be an interval of the form S = (0,b). Let f be
a continuous map of S x R to R. Assume a Lipschitz condition in the
second argument:

|f(s:t1) = f(s,t2)] < Alta =t
where X is a constant depending only on f. Then the initial-value
problem

has a unique solution in C(S).

Proof. We introduce a new norm in C(S) by defining

||z|| —suplz )| e2*s

The space C(S), accompanied by this norm, is complete. Since the initial-value
problem is equivalent to the integral equation

z=Az  (Az)(s) =0+ / ft,z(t))dt e C(S)
0

all we have to do is show that the mapping A has a fixed point. In order for
the Contraction Mapping Theorem to be used, it suffices to establish that A is
a contraction. Let u,v € C(S). Then we have, for 0 < s < b,

|(Au—Av / |f(tu ,v(t))ldt

s/ Au(t) — v(t)| dt

0
s
= )\/ ePe M |u(t) — v(t)| dt
0

3
sz\”u-—v”w‘/; e dt

< ,\||u - v||w(2/\)_1 e’
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From this we conclude that
e - Av)(e)| < 4 [u=s],

and that
[[4u = Av]l,, < 3lju-of, .

Example 2. Does the following initial value problem have a solution in the
space C[0, 10]7
z’ = cos(ze*) z(0)=0

This is an illustration of the general theory in which f(s,t) = cos(te®). By the
mean value theorem,

17, 12) = £l t2)] = | Sh5,7)] I -~ ]
For0<s<10andt€R,
‘%‘ = | —sin(te®)e®| < e'°
Hence, the hypothesis of Theorem 3 is satisfied, and our problem has a unique
solution in C[0, 10]. s

Example 3. If f is continuous but does not satisfy the Lipschitz condition in
Theorem 3, the conclusions of the theorem may fail. For example, the problem
z’ = %3, z(0) = 0 has two solutions, z(s) = 0 and z(s) = s3/27. There is no
Lipschitz condition of the form

|67 = 2% < Aty — 1o

(Consider the implications of this inequality when ¢, = 0.) (]

Example 4. The problem z’ = z?, z(0) = 1 does not conform to the hypothe-
ses of Theorem 3 because there is no Lipschitz condition. By appealing to other
theorems in the theory of differential equations, one can conclude that there is
a solution in some interval about the initial point s = 0. [}

In order for us to handle systems of differential equations, the preceding
theorem must be extended. A system of n differential equations accompanied
by initial values has this form:

zi(s) = fi(s,z1(8),22(s),...,Zn(s))  £:(0)=0
z3(s) = fa(s,21(8), T2(5), .-, Tn(s))  22(0) =0

Ty (s) = fals,z1(8),x2(8), ..., Zn(s)) zn(0) =0

The right way of viewing this is as a single equation involving a function
x : § = R", where S is an interval of the form [0,b]. Likewise, we must have
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a function f : S x R™ - R". We then adopt any convenient norm on R", and
define the norm of x to be

— —2Xs
Ixll,, = supe™|ix(s)]
The Lipschitz condition on f is
[|£(s,u) = £(s,v)|| < Alju—v|| u,veR"

The setting for the theorem is now C(S, R™), which is the space of all continuous
maps x : S = R", normed with || ||w The equation x'(s) = f(s,x(s)) now
represents the system of differential equations referred to earlier. For further
discussion see the book by Edwards [Edw], pp. 153-155.

The use of iteration to solve differential equations predates Banach’s result
by many years. Ince (4] says that it was probably known to Cauchy, but was
apparently first published by Liouville in 1838. Picard described it in its gen-
eral form in 1893. It is often referred to as Picard iteration. It is rarely used
directly in the numerical solution of initial value problems because the step-by-
step methods of numerical integration are superior. Here is an artificial example
to show how it works.

Example 5.
z' = 2t(1 + 1) z(0) =0

The formula for the Picard iteration in this example is

Tn4(t) = /: 25(1 + zn(s)) ds = t2 + /Ot 25zn(s)ds

If zo = 0, then successive computations yield

1 1 1
T, (t) = t? Ta(t) =t + 5t“ r3(t) =t + 5t“ + gte

. . . . 2
It appears that we are producing the partial sums in the Taylor series for et” —1,
and one verifies readily that this is indeed the solution. [}

In some applications it is useful to have the following extension of Banach’s
Theorem:

Theorem 4. Let F be a mapping of a complete metric space into
itself such that for some m, F™ is contractive. Then F has a unique
fixed point. It is the limit of every sequence [F*z], for arbitrary z.

Proof. Since F™ is contractive, it has a unique fixed point £ by Theorem 1.
Then
Fg = F(F™¢) = F™*¢ = F™(F¢)
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This shows that F¢ is also a fixed point of F™. By the uniqueness of § F§ = €.
Thus F has at least one fixed point (namely £), and £ can be obtained by
iteration using the function F™. If z is any fixed point of F', then

Fr=z Flr=zx... Flr =z

Thus z is a fixed point of F™, and = = £.
It remains to be proved that the sequence F™z converges to £ as n — oo.
Observe that for i € {1,2,...,m} we have

Frmtip = FY™(F'z) 5 € as n— 00
by the first part of the proof. If € > 0, we can select an integer N having the

property '
ne2N = dF"™"r,f<e (1<i<m)

Since each integer j greater than Nm can be written as j = nm+i, wheren > N
and 1 < i < m, we have

j>Nm = d(Fiz,f)<e¢

This proves that lim Fiz = €. ]

To illustrate the application of this theorem, we consider a linear Volterra
integral equation, which typically would have the form

(11) / K(t,s)z(s)ds+v(t) z € Cla,b]

(The presence of an indefinite integral classifies this as a Volterra equation.)
Equation (11) can be written as

r=Az+v

in which A is a linear operator defined by writing

= /at K(t,s)z(s)ds

(A=) < 1K, [zl (¢ - @)
From this it follows that

It is clear that

[(A%z)( /|Kts||Az )| ds

t
< [ K@) 1K llzlols = @) ds

2 t—
< IKI2 Jl=l..
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Repetition of this argument leads to the estimate

(b—a)
n!

jar)o) < 16N lello S < 1l el
This tells us that
larf<ermt e=lk b -a)

Now select m so that ”A"‘” < 1. Denote the right side of Equation (11) by
(Fz)(t), so that Fx = Az + v. Then

Flz =A%z + Av+v
F3z =A%z + A%v+ Av+ v

and so on. Thus
|F7z — Fmy|| = [|A7z — Ay < [|A™]] ||z - ]|

This shows that F™ is a contraction. By Theorem 4, F has a unique fixed point,
which can be obtained by iteration of the map F. Observe that this conclusion
is reached without making strong assumptions about the kernel K. Our work
establishes the following existence theorem.

Theorem 5. Let v be continuous on [a,b] and let K be continuous
on the square [a,b] x [a,b]. Then the integral equation

t
z(t) = / K(s,t)z(s)ds + v(t)
has a unique solution in C[a,b).

The next theorem concerns the solvability of a nonlinear equation F(z) = b
in a Hilbert space. The result is due to Zarantonello [Za].

Theorem 6. Let F be a mapping of a Hilbert space into itself such
that

(a) (Fx — Fy,z —y) 20:”1:—y”2 (a>0)

(b) [IFz - Fyll < BlJz - |
Then F is surjective and injective. Consequently, F~! exists.

Proof. The injectivity follows at once from (a): If z # y, then Fx # Fy.
For the surjectivity, let w be any point in the Hilbert space. It is to be proved
that, for some z, Fx = w. It is equivalent to prove, for any A > 0, that an z
exists satisfying £ — A(Fz — w) = z. Define Gz = £ — AM(Fr — w), so that our
task is to prove the existence of a fixed point for G. The Contraction Mapping
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Theorem will be applied. To prove that G is a contraction, we let A = a/3? in
the following calculation:

|Gz = Gy||* = ||z = MFz — w) ~y + A(Fy — w)||”
= ||z -y - AFz - Fy)|”
= ||lz = y|* - 2A(Fz = Fy,z - y) + N*||Fz — Fy||°
<l = 9ll’ - 2xallz ~ olf* + X267z - |’
=|lz - y]|*(1 - 22a + A?6?)
= |lz - y[*(1 - 20%/6% + @?/5?)
= ||z - o|*(1 - «*/8%) .

Problems 4.2

1. From the existence theorem proved in the text deduce a similar theorem for the initial
value problem
z'(s) = f(s,z(s)) zla)=¢ a<s<b

2. Let F be a mapping of a Banach space X into itself. Let zo € X, >0,and0 < A< 1.
Assume that on the closed ball B(zo,r) we have

[IFz — Fy|| < Allz - |
Assume also that ||zg — Fxo|| < (1 — A)r. Prove that F*zg € B(zxo,r) and that z* =
lim F™xp exists. Prove that z* is a fixed point of F and that [|[F™zo ~ z*| € A™r.

3. For what values of A can we be sure that the integral equation
1
z(t) = A/ e* cosz(s)ds + tant
0

has a continuous solution on {0,1]?

4. Prove that there is no contraction of X onto X if X is a compact metric space having at
least two points.

5. Give an example of a Banachspace X and a map F : X — X having both of the following
properties:

(a) ||Fz— Fyl| <]l —yl| whenever z#y
(b) Fz#zforallz

6. Prove that the integral equation

¢
z(t) =/ [z(s) + s]sinsds
0

has a unique solution in C[0, 7/2}, and give an iterative process whose limit is the solution.

7. Prove that if X is a compact metric space and F is a mapping from X to X such that
d(Fz,Fy) < d(z,y) when z # y, then F has a unique fixed point.

8. Let F be a contraction defined on a metric space that is not assumed to be complete.
Prove that
inf d(z, Fz) =0
x



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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. Let F be a mapping on a metric space such that d(Fz,Fy) < d(z,y) when z # y. Let z

be a point such that the sequence F™z has a cluster point. Show that this cluster point
is a fixed point of F (Edelstein).

Carry out 4 steps of Picard iteration in the initial value problem z’ = z + 1, z(0) = 0.

Give an example of a discontinuous map F : R — R such that F o F is a contraction.
Find the fixed point of F.

Extend the theorem in Problem 7 by showing that the fixed point is the limit of F™z,
for arbitrary z.

The diameter of a metric space X is
diam(X) =sup{d(z,y) :z€ X, y€ X}

This is allowed to be +0o. Show that there cannot exist a surjective contraction on a
metric space of finite nonzero diameter. (Cf. Problem 4.)

Let X be a Banach space and f a mapping of X into X. Are these two properties of f
equivalent?
(i) f has a fixed point.
(ii) There is a nonempty closed set E in X such that f(E) C E and such that || f(z) —
S < 3z - yl| for all z,y in E.

Let T be a contraction on a metric space:
d(Tz,Ty) S Md(z,y) (A <1)

Prove that the set {z : d(z,Tz) < €} is nonempty, closed, and of diameter at most
e(1 -=x)"L

The Volterra integral equation

t
z(t) = w(t) +/ (t + s)z(s)ds
(]

is equivalent to an initial-value problem involving a second-order linear differential equa-
tion. Find it.

Let F be a mapping of a complete metric space into itself. If £ is a fixed point of F™
(for some m), does it follow that £ is a fixed point of F?

Let f : [0,b] x R — R. Prove that if f and 8f/8t are continuous (¢t being the second
argument of f), then the initial-value problem z’(s) = f(s,z(s)), z(0) = 8 has a unique
solution on [0,b].

Prove that if F: R® — R" is a contraction, then I + F is a homeomorphism of R™ onto
R™.

Prove that if g € C[0,b], then the differential equation z’(s) = cos(z(s)g(s)) with pre-
scribed initial value z(0) = 3 has a unique solution.

A map F : X = X, where X is a metricspace, issaid to be nonexpansive if d(Fz, Fy) <
d(z, y) for all z and y. Prove that if F is nonexpansive and if the sequence [F™z] converges
for each z, then the map z — lim, F™z is continuous.

Let co be the Banach space of all real sequences * = [z1,z2,...] that tend to zero.
The norm is defined by ||z} = max; |z;|. Find all the fixed points of the mapping
f :co = co defined by f(z) =[1,z1,z2,...]. Show that f is nonexpansive, according to
the definition in the preceding problem. Explain the significance of this example vis-a-vis
the Contraction Mapping Theorem.

Let U be a closed set in a complete metric space X. Let f be a contraction defined on
U and taking values in X. Let A be the contraction constant. Suppose that zo € U,
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z) = f(zo), r = AM(1 — M)~ d(zp,x;), and B(x;,r) C U. Prove that f has a fixed point
in B(zxy,r).

24. Prove that the following integral equation (in which u is the unknown function) has a
continuous solution if || < 1.

1
u(t)—A/ \fttssin[tu(s)]ds=e‘ (0<tg1)
0

25. Let F be a contraction defined on a Banach space. Prove that [ — F is invertible and
that (I = F)~! = lim, H,, where Ho =1 and Hp4, = I + FH,.

26. Prove that the following integral equation has a solution in the space C|0, 1].
1
z(t) = et + / cos[i:2 — 5% 4 z(s)sin(s)]ds
0
27. In the study of radiative transfer, one encounters integral equations of the form

1
u(t) = a(t) +/ u(s)k(t — s)ds
0

in which u represents the flux density of the radiation at a specified wave length. Prove
that this equation has a solution in the special case k(t) = sint.

4.3 Methods Based on the Neumann Series

Recall the Neumann Theorem in Section 1.5, page 28, which asserts that if a
linear operator on a Banach space, A : X — X, has operator norm less than 1,
then I — A is invertible, and

1) (-4 =Y ar
n=0

The series in this equation is known as the Neumann series for (I — A)~!.
This theorem is easy to remember because it is the analogue of the familiar
geometric series for complex numbers:
1 2, .3
(2) TS =l+z+28+27 4 lz| <1
In using the Neumann series, one can generate the partial sums z, =
S k_o A¥v by setting Ty = vo = v and computing inductively

(3) Un = Avn_ In = In-1+VUn (n= 1,2,...)

Another iteration is suggested in Problem 25.

For linear operator equations in a Banach space, one should not overlook the
possibility of a solution by the Neumann series. This remark will be illustrated
with some examples.
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Example 1. First, consider an integral equation of the form

(4) z(t) — /\‘/: K(s,t)x(s)ds = v(t) (0t

In this equation, K and v are prescribed, and z is to be determined. For certain
values of A, solutions will exist. Write the equation in the form

(5) (I=XA)z=v

in which A is the integral operator in Equation (4). If we have chosen a suitable
Banach space and if H/\A” < 1, then the Neumann series gives a formula for the
solution:

[e ]
(6) z=(T-2A)"tv= Z(/\A)"vzv+/\Av+A2A2v+--- 2
n=0
Example 2. For a concrete example of this, consider
1
(7 z(t) = /\/ e'~*x(s)ds + v(t)
0

Here, we use an operator A defined by

(Az)(t) = /le'"’x(s) ds
0

If we compute A%z, the result is

(A%z)(t) = /0 et~ (Az)(s) ds

1 1
:/ e"’/ e* ?z(o)dods
) 0
1f 1
=/ [/ e"’e""ds]:t(o')da
o LJo
1

=/ e'~%z(c)do = (Az)(t)

0

This shows that A2 = A. Consequently, the solution by the Neumann series in
Equation (6) simplifies to

2=v+ANv+ A2Av+ ABAv+ -

=u+(l—i—/\—-1)Av=v+%Av [ |

Example 3. Another important application of the Neumann series occurs in a
process called iterative refinement. Suppose that we wish to solve an operator
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equation Az = v. If A is invertible, the solution is £ = A~!v. Suppose now that
we are in possession of an approximate right inverse of A. We mean by that
an operator B such that ||1 — AB || < 1. Can we use B to solve the problem? It
is amazing that the answer is “Yes.” Obviously, o = Bv is a first approximation
to . By the Neumann theorem, we know that AB is invertible and that

(AB)~ i I - AB)*

It is clear that the vector t = B(AB)~!v is a solution, because Ar =
AB(AB)~'v = v. Hence z =

(8) B(AB)~ 21 AB)*v = Buv+ B(I - AB)v+ B(I — AB)*v+--- g

Theorem. The partial sums in the series of Equation (8) can be
computed by the algorithm zo = Bv, Tn+1 = Tn + B(v — Azy).

Proof. Let the sequence [z,] be defined by the algorithm, and let

= an:(l — AB)*v

k=0

We wish to prove that z, = y, for all n. For n = 0, we have yo = Bv = z,.
Now assume that for some n, , = y,. We shall prove that ,4+; = yn4+1. Put
n= 3 k_o(I — AB)*, so that y, = BSnv. Then

Tnt1 = Tn + B(v — Azy,) = yn + Bv — BAy,
= BSqv+ Bv— BABS,v = B(S, + I — ABS,)v
n
=B[(I-AB)Sn+1]v= B[Z(I - AB)**1 + 1|y
k=0
= BSn+1V = Yn4 ]

The algorithm in the preceding theorem is known as iterative refinement.
The vector v — Ax,, is called the residual vector associated with z,. If the
hypothesis ||I - AB” < 1 is fulfilled, the Neumann series converges, the partial
sums in Equation (8) converge, and by the theorem, the sequence [zn) converges
to the solution of the problem. The residuals therefore converge to zero.

The method of iterative refinement is commonly applied in numerically
solving systems of linear equations. Let such a system be written in the form
Az = v, in which A is an N x N matrix, assumed invertible. The numerical
solution of such a system on a computer involves a finite sequence of linear
operations being applied to v to produce the numerical solution zo. Thus (since
every linear operator on R" is effected by a matrix) we have £o = Bv, in which
B is a certain N x N matrix. Ideally, B would equal A~! and zo would be
the correct solution. Because of roundoff errors (which are inevitable), B is
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only an approximate inverse of A. If, in fact, HI - AB“ < 1, then the theory
outlined previously applies. Thus the initial approximation o = Bv can be
“refined” by adding Bry to it, where rq is the residual corresponding to zo.
Thus 79 = v — Azg. From z; = zo + Brg further refinement is possible by
adding Br;, and so on. The numerical success of this process depends upon the
residuals being computed with higher precision than is used in the remaining
calculations.

Problems 4.3

1. The problem Az = v is equivalent to the fixed-point problem Fz = z, if we define
Fr =z — Az + v. Suppose that A is a linear operator and that ||I — A|| < 1. Show that
F is a contraction. Let g = v and £n4+1 = Fzn. Show that z, is the partial sum of the
Neumann series appropriate to the problem Az =v .

2. Prove that if A is invertible and if the operator B satisfies ||A — B|| < ||A~!||”?, then
B is invertible. What does this imply about the set of invertible elements in £(X, X)?
(Here X is a Banach space.)

3. Prove that if infy ||I — AA|| < 1, then A is invertible.

4. If |)A|| is small, then (I — A)~! = I + A. Find £ > 0 such that the condition ||A]| < ¢

implies
N — A=t = (I + a)f < 3A)°

5. Make this statement precise: If ||AB — I|| < 1, then 2B — BAB is superior to B as an
approximate inverse of A.

6. Prove that if X is a Banach space, if A € £(X, X), and if ||A|| < 1, then the iteration

Tn4l = Azn + b

converges to a solution of the equation z = Az + b from any starting point zo.

7. Let X and Y be Banach spaces. Show that the set Q of invertible elements in £(X,Y) is
an open set and that the map f : Q — L(Y, X) defined by f(A) = A~! is continuously
differentiable.

8. Give an example of an operator A that has a right inverse but is not invertible. Observe
that in the theory of iterative refinement, A need not be invertible.

9. Prove that if the equation Az = v has a solution z¢ and if || ~ BA|| < 1, then zo =
(BA)~!Bv, and a suitable modification of iterative refinement will work.

10. In Example 2, prove that the solution given there is correct for all X satisfying A # 1. In
particular, it is not necessary to assume that ||AA|| < 1 in this example.

11. In Example 2, compute || A]|.
12. Show how to solve the equation (I —AA)z = v when A is idempotent (i.e., A2 = A).

13. Let A be a bounded linear operator on a normed linear space. Prove that if A is nilpotent
(i.e., A™ = O for some m > 0), then I — A is invertible. Give a formula for (I — A)~!.

14. Prove this generalization of the Neumann Theorem. If A is a bounded !‘inear transfor-
mation from a Banach space X into X such that the sequence Sn =) ; _, A* has the

Cauchy property, then (I — A)™! exists and equals limn 00 Sn. Give an example to show
that this is a generalization.

15. Prove or disprove: If A is a bounded linear operator on a Banach space and if ||A™| < 1
for some m, then (I — 4)-! = Z:‘lo Ak,

16. A Volterra integral operator is one of the form

t
(Az)(t):/ K(s,t)z(s)ds
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17.

18.

19.

20.

2].

22.

23.

24.

25.
26.

27.

28.

29.
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Assume that A maps Cla,b] into C[a,b]. Prove that (I — A)~! exists and is given by
the usual Neumann series. Refer to Section 4.2 for further information about Volterra
integral equations.

Define A : C(0, 1] — C|[0,1] by the following equation, and prove that A is surjective.

1
(Az)(t) = / cos(st)z(s)ds + 2z(t)
0

Prove that the set of nonsingular n x n matrices is open and dense in the set of alln x n
matrices.

Let ¢ € C[0, 1) and satisfy ¢(t) > 0 on [0,1]. Put K(s,t) = ¢(s)/¢(t) and

1
(Az)(t):/ K(s,t)z(s)ds
0

Prove that A2 = A. What are the implications for the integral equations Az = = + w?

Suppose that the operator A satisfies a polynomial equation Z;.'=O ¢; Al = 0 in which
co # 0. Prove that A is invertible and give a formula for its inverse.

Prove that if ||A|| < 1, then

1

——— U= <
o SIe- 7S

1
1=l

Assume that A™t! = A for some integer m > 1, and show how to solve the equation
T~ Az =b.

Investigate the nature of the solutions to the Fredholm integral equation z(t) = 1 +
fol z(st)ds.
Define F : C[0, 1] —» C[0, 1] by the equation

1
(Fz)(t) = z(t) - / K(t,z(s))ds
0

Make reasonable assumptions about K and compute the Fréchet derivative F’(z). Make
further assumptions about K and prove that F'(z) is invertible.

In Example 3, do we have A~! = B(AB)~!?

Find the connection between the Neumann Theorem and Lemma 1 in Section 4.1. (That
lemma concerns diagonally dominant matrices.)

Let a and b be elements of a (possibly noncommutative) ring with unit 1. Show that the
partial sums of the series Z:o:o b(1 — ab)* can be computed by the formulas zo = b and
Tn+1 = Zn + b(1 — azn).

Define an operator A from C[0, 1) into C[0, 1] by the equation

1 ¢
(Az)(t) = z(t) —/0. z(3) [32 + -2—] ds

Prove that A is invertible and give a series for its inverse.

Consider the integral operator (K:z)(ti = _!: k(t,s)z(s)ds, where z € C[0,1] and k €
C([0,1] x [0,1]). Prove that I — K is invertible. Prove that this assertion may be false if
the upper limit in the integral is replaced by 1.
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4.4 Projections and Projection Methods

Consider a normed linear space X. An element P of L£(X, X) is called a pro-
jection if P is idempotent: P? = P. Notice particularly that linearity and
continuity are incorporated in the definition. Obvious examples are P = 0 and
P = I. In Hilbert space, if {v1, v2,...} is a finite or infinite orthonormal system,
the equation
(1) Pz = Z(I,Uj)vj
J
defines a projection. To prove this, notice first that
Pv; = Z(v.-,vj)vj = Zé‘jvi =
J J
Thus P leaves undisturbed each v;. Consequently,
P’z = P(Pz) =) (z,0;)Pv;= ) (z,0;)v; = Pz

J J

Here are some elementary results about projections.

Theorem 1.  The range of a projection is identical with the set of
its fixed points.

Proof. Let P: X — X be a projection and V its range. If v € V, then v = Pz
for some z, and consequently,

Pv=Pz=Pzr=v
Thus v is a fixed point of P. The reverse inclusion is obvious: If x = Pz, then
z is in the range of P. [ ]

Theorem 2. If P is a projection, then so is I — P. The range of
each is the null space of the other.

Proof.

(I-P?=(I-P)I-P)=1-2P+P*=1-P
Use R and N for “range” and “null space.” Then the preceding theorem shows
that

(2) R(P)=N(I-P)
Applying this to I — P, we get
(3) R(I - P) = N(P) .

It should be noted that the range of a projection P is necessarily closed,
because the continuity of P implies that the set { z: (I-P)x=0 } is closed.
This is a special property not possessed by all elements of £(X, X). Notice also
that P acts like the identity on its range. Thus, every projection can be regarded
as a continuous linear extension of the identity operator defined initially on a
subspace of the given space. If P is a projection of X onto V, then V is closed,
and we say that “P is a projection of X onto V,” writing P : X —» V, where
the double arrow signifies a surjection.
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Theorem 3. The adjoint of a projection is also a projection.

Proof. Let P be a projection defined on the normed space X. Recall that its
adjoint P* maps X* to X* and is defined by the equation

P'¢=¢oP peX"
Thus it follows that
(P*)’¢=P*(P*¢)= (6o P)oP=go P = ¢oP=P'¢ .
In the next theorem, the structure of a projection having a finite-
dimensional range is revealed.

Theorem 4. Let P be a projection of a normed space X onto a
finite-dimensional subspace V. If {vy,...,v,} is any basis for V then
there exist functionals ¢; in X* such that

(4) #i(v;) = dy; (1<4,j<n)

(5) Pzx = i(bi(.'l))’l)i (.’l‘ € X)
i=1

Proof. Select ¥; € V* such that for any v € V,

v="Y (v
i=1

The functionals 9; are linear and continuous, by Corollary 1 in Section 1.5, page
26. (See also the proof of Corollary 2 in the same section.) For each z € X,
Pz € V, and so Pz = Y, ¥i(Pz)vi. Hence we can let ¢i(z) = ¥;(Pz).
Being a composition of continuous linear maps, ¢; is also linear and continuous.
The equation Pv; = v; implies that ¢;(v;) = 4;; by the uniqueness of the
representation of Pz as a linear combination of the basis vectors v;. [}

A set of vectors v;,vq,... and a set of functionals ¢;, ¢2, ... is said to form a
biorthogonal system if ¢;(v;) = &;; for all i and j. The book [Brez] is devoted
to this topic.

In practical problems, a projection is often used to provide approximations.
Thus, if z is an element of a normed space X and if V is a subspace of X, it
may be desired to approximate = by an element of V. If v € V, the error or
deviation of z from v is ||z — v||, and the minimum deviation or distance
fromzto Vis

dist(z, V) = JIE]‘f/ ||.7: - v||

This quantity represents the best that can be done in approximating x by an
element of V. In most normed spaces it is quite difficult to determine a best
approximation to z. That would be an element v € V such that

(6) ||z = v|| = dist(z, V)

Such an element need not exist. It will exist if V is finite dimensional and in
certain other special cases. Usually, we find a convenient projection P: X —» V
and accept Pr as an approximation to z. In Hilbert space, we can use the
orthogonal projection of X onto V and thereby obtain the best approximation.
In most spaces, best approximations—even if they exist—cannot be obtained by
using linear maps.
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Theorem 5. If P is a projection of X onto a subspace V, then for
allze X,

(7) = - Pz|| < ||1 - P| dist(z, v)
Proof. For any v € V, Pv = v. Hence
Il = Pal| = Iz — v) = Pla = v}l = [l = Pz~ )| < |} = 2| [}e ~ |

Now take an infimum as v ranges over V. ']

As remarked above, the Hilbert space case is especially favorable, since the
orthogonal projection onto a subspace does yield best approximations. If X is
a Hilbert space and P : X — V is a projection, we call it the orthogonal
projection onto V if

(8) z—Pr LV (x € X)
If this is the case, then by the Pythagorean Law,
9) l=ll* = [|Pz[]* + |}z - P=|]

Hence P and I - P have operator norms at most 1. Inequality (7) now shows that
Pz is the best approximation to = in the subspace V. Furthermore, z — Px is the
best approximation of z in VL. (This last space is the orthogonal complement
of V in the Hilbert space X.)

Example 1. Consider the familiar space Cla, b]. In it we single out for special
attention the subspace Il,,_; consisting of all polynomials of degree at most n—1.
This has dimension n. Now select points t; < t, < --- < t, in [a,b], and define
polynomials

t s —tj .
a(s) =] t._t{ (1€ign)
i Y

.
—

These polynomials have degree n — 1 and satisfy the equation

.

4i(t;) = by (1<4,j<n)

This is a special case of Equation (4) above. The operator L, defined for z €
Cla, b] by the equation

is the Lagrange Interpolation Operator; it is a projection. ]

For any t € [a,b], we can define a functional t* on the space C|a,b] by
writing t*(z) = z(t), where z runs over Cla, b]. This functional is called a point
evaluation functional. Notice that in Example 1, the functions ¢1,%2,-..,%én
and the functionals t1,t3,...,t; form together a biorthogonal system, as defined
just after Theorem 4.
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Besides being used directly to provide approximations to elements in a
normed linear space, projections are used to solve operator equations. Let us
illustrate this in a Hilbert space X. Suppose that it is desired to solve an op-
erator equation Ar = b. Here, A € L(X, X); it could be an integral operator,
for example. Let [u; : j € N] be an orthonormal basis for X. (In such a case, X
must be separable.) The equation Az = b is equivalent to an infinite system of
equations:

(10) (Az,u;) = (b, u;) (jeN)

In attempting to find an approximate solution to this problem, we solve the
finite system
(Azn,uj) = (byu;) (1<j<n)

This is the same as
(11) P,(Az, - b) =0

where P, is the orthogonal projection defined by

n

(12) P,,y=Z(y,uJ~)uj

j=1

Does this strategy have any chance of success? It depends on whether the
sequence [T,], arising as outlined above, converges. Assume that z, — . Let
us verify that z is a solution: Az = b. By the continuity of A, Az, & Az. Since
[|[Pall = 1, Pa(Azn — Az) = 0. But PoAz, = Pab by our choice of z,. Hence
Ppb~ P, Az — 0. In the limit, this gives us b = Ax.

Notice that this proof uses the essential fact that P,y — y for all y. For
our general theorem (in any Banach space) this assumption is needed.

Theorem 6. Let (Pr) be a sequence of projections on a Banach
space X, and assume that P,y — y for eachy in X. Let b € X and
A € L(X, X). For each n let z be a point such that P,(Az, —b) = 0.
Ifz, = z, then Az =b.

Proof. Since Ph,y — y, we also have ||P,,y“ — ”y" , and therefore sup,, ”P,,y” <
oo for each y. Since X is complete, we may apply the Uniform Boundedness Prin-
ciple (Section 1.7, page 42) and conclude that sup,, || Pa|| < co. By the continuity
of A, Az,, -+ Az. By the boundedness of “P,,", we have P,(AX, — Az) — 0.
By the choice of z,,, P, Az, = P,b. Hence P,b — P,Ar — 0. In the limit, this
yields b = Axz. (]

A projection method for solving an equation of the form Az = b, where
A € L(X, X), begins by selecting a sequence of subspaces

(13) icvecVsc---C X
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and associated projections P, : X — V,. For each n, we find an z, that satisfies
(14) P,(Az, -b)=0

Often we insist that z,, € V,, but this is not essential. One hopes that the
sequence [Tn] will converge to a solution of the original problem. We shall give
some positive results in this direction. These apply to a problem of the form

(15) - Ar=b

Theorem 7. Let P be a projection of the normed space X
onto a subspace V. Suppose that r € X, x — Az ~-b=0,T €V, and
P( — AT —b)=0. IfI — PA is invertible, then

(16 e =3l < it = PAY | e - e

Proof. From Equation (15), PAz = Pz — Pb. Hence

(17) r—PAz=z-Pz+ Pb

Since T € V, it follows that PT = Z. Consequently,

(18) - PAZ=Pb

Subtraction between Equations (17) and (18) gives
r—-I—-PA(z-I)=z- Pz

or

(I-PA)(z—Z)=z~ Pz

Thus we have
r—Z=(I-PA) ™Yz - Pz)

This leads to Inequality (16). (]

Let us see how this theorem can be applied in the case where X is a Hilbert
space. Let [v],v2,...] be an orthonormal basis for X, and suppose that we wish
to solve

(19) T—Az=b
in which A € £(X, X) and ||A|| < 1. Let V,, be the linear subspace of dimension

n generated by {v),....,vn}, and let P, be the orthogonal projection of X onto
Vi. The familiar formula for P, is

(20) Przx = i(x, v;)v;
j=1
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In applying the projection method to Equation (19), let us select elements
zn in V;, for which

(21) Po(I — Az, = P,b

By the preceding theorem, the actual solution  is related to the approximate
solution z, by the inequality

(22) e = zall < [|(1 = Pa) M| Iz — Poz]]
Now ||Pa|| = 1, and so || P, A|| < ||A|| < 1. Hence
|4 = PaA)~H| < (1= [|AID7

(This estirmate comes from the proof of the Neumann Theorem.) Also, we know

that
’ oo 2 oo
2 - Paal] =] S @l = 3 1@ wl -0
i=n+1 i=n+l

We conclude therefore from Inequality (22) that the approximate solutions z,
converge to r as n — co. We summarize this discussion in the next theorem.

Theorem 8.  Let [v;,vs,...| be an orthonormal basis in a Hilbert
space X. Let A€ £(X, X) and ||A|| < 1. For eachn, let T, be a linear
combination of vy, ..., vn chosen so that

(23) (zn — Az, v:) = (b, v:) (1<i<n)
Then [z, converges to the solution of the equation  — Az = b.

Of course, the Neumann Theorem can be used to solve the equation (/- A)x = b.
It gives z = (I — A)~'b=Y""° , A™b. There seems to be no obvious connection
between this solution and the one provided by Theorem 8.

In the general projection method, in solving the equation

(24) P,(Az-b)=0
we need not confine ourselves to the case where z is chosen in the range of P,.

Instead, we can let = be a linear combination of other prescribed elements, say
T =) ., ciu;. In this case, we attempt to choose c; so that

(25) P, (zn: cj Auj — b) =0

j=1

Suppose that P, is a projection of rank n having the explicit formula

(26) Pz =3 bia)o
i=1
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Then Equation (25) gives us

(27)
or

(28)

n
¢.~(Echuj —b) =0 (1<i<n)
=1

D cidi(Au) =ib)  (1<i<n)
j=1

This is a system of linear equations having coefficient matrix (¢;(Au;)). In the
next two sections we shall see examples of this procedure.

10.

11.

12.

Problems 4.4

. Let {u1,...,un} be a linearly independent set in a inner-product space. Prove that the

Gram matrix, whose elements are (u;,u;), is nonsingular.

. Let P be a projection of a normed space X onto a subspace V. Prove that Px = 0 if and

only if ¢(z) = O for each ¢ in the range of P*.

. Let Pi,Pz,... be a sequence of projections on a normed space X. Suppose that

Pn4+y P, = P, for all n and that the union of the ranges of these projections is dense in
X. Suppose further that sup,, ||Pa|| < co. Prove that Ph,z — z for all z € X.

. Let P, P2, ... be asequence of projections on a Banach space X. Prove that if Phz = =

for all z € X, then sup, || Pa|| < co and the union of the ranges of the projections is
dense in X. Hint: The Uniform Boundedness Theorem is useful.

. Let X be a Banach space and P, P2,... projections on X such that P,z — z for every

z. Suppose that A is an invertible element of £(X, X). For each n, let z, be a point
such that Pazn = zn and Pa(Azn — b) = 0. Prove or disprove that the sequence [zn]
necessarily converges to the solution of the equation Az = b.

. Let {#1,...,®n} be a linearly independent set in X *. Is there a projection P : X —+ X

having rank n of the form Px = 2;1 ¢i(z)vi? (The rank of a linear operator is the
dimension of its range.)

. Adopt the notation of Theorem 4, and prove that ¢;(Pz) = ¢i(z) for alliin {1,2,...,n}

and for all z in X.

. Prove that the operator L in Example 1 is a projection. Prove that ||L]| = || 3~ [¢:] ]| -

. Let A and P be elements of £L(X, X), where P2 = P. Let V denote the range of P. Show

that PA|V € L(V, V). Is PA|V invertible?

Prove a variant of Theorem 6 in which P is an arbitrary linear operator and T satisfies
Pz =z

In the setting of Theorem 8, prove that the solution to the problem is given by z
oo n N . . . .

E n:OA b. How is this solution related to the one given in the theorem, namely, z

limzn?

Consider the familiar sequence space cg. (It was described in Problem 1.2.16, page 12.)
We define a projection P : co — co by selecting any set of integers J and setting

z(n) (neNNJ)

(Pz)(n) =

0 (neJ)
Prove that P is a projection. Identify the null space and range of P. Give the formula
for I — P. Compute ||P|| and ||[I — P||. How many projections of this type are there?
What is the distance between any two different such projections?
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13. Let {u1,u2,...,un} and {v1,v2,...,un} be sets in a Hilbert space, the second set be-
ing assumed to be linearly independent. Define Az = Z:‘zl(z, u;)vi. Determine the
necessary and sufficient conditions on {u;} in order that A be a projection, i.e., A%2 = A.

14. (Variation on Problem 5.) Let X be a Banach space, and let Py, P2,... be projections
on X such that Pnz — z for each z in X. Assume that [|Pall = 1 for all n. Let A

be a linear operator such that ||I — A|| < 1. If the points zn satisfy PrTn = zn and
Pn(Azn —b) = 0, then the sequence [rn] converges to a solution of the equation Az = b.

15. In R?,let u = (1,1), v = (1,0), and Pz = (z, u)v. Prove that P is a projection. Using the
Euclidean norm in R2, compute ||P||. This problem illustrates the fact that projections
on Hilbert spaces need not have norm 1.

16. Is a norm-1 projection defined on a Hilbert space necessarily an orthogonal projection?

17. Explain why point-evaluation functionals, as defined on the space Cla, b], cannot be
defined on any of the spaces LP[a,b].

4.5 The Galerkin Method

The procedure that goes by the name of the mathematician Galerkin is one of
the projection methods, in fact, the one described at length in the preceding
section. We review the method briefly, and then discuss concrete examples of
its use.

We wish to solve an equation of the form

(1) Au=1>

in which A is an operator acting on a Hilbert space U. A finite-dimensional
subspace V is chosen in U, and we let P denote the orthogonal projection of U
onto V. Then we find & € V such that

(2) P(AG-b)=0
If vy,v9,...,v, is a basis for V, and if we set & = Z;‘=1 ¢;v;, then Equation (2)
leads to
(3) ZCJ'(A‘UJ',U,') = (b’ Ui) (1 <ig n)

Jj=1

These are the “Galerkin Equations” for .

Here is an example of the Galerkin method in the subject of partial differ-

ential equations. We recall the definition of the Laplacian operator V2 (also
denoted by A):
0y O%u
— + e
oz?  9y?
An important problem, known as the Dirichlet problem, is to find a function
u = u(z,y) that obeys Laplace’s equation V2u = 0 in a bounded open set (“re-
gion”) Q in the plane and takes prescribed values on the boundary of the region
(denoted by d0Q). Thus there are two conditions on the unknown function wu:

{V2u=0 in Q
u(z,y) = g(z,y) on 9N

Viu =

(4)
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A function u that has continuous second-order partial derivatives and sat-
isfies V2u = 0 in a region Q is said to be harmonic in Q. In the Dirichlet
problem, the function g is defined only on 9Q and should be continuous. Thus
the Dirichlet problem has the goal of reconstructing a harmonic function in a
region 2 from a knowledge of its values on the boundary of Q. It furnishes a
nice example of the recovery of a function from incomplete information. (The
general topic of optimal recovery of functions has many other specific examples,
such as in computed tomography, where the density function of a solid object is
to be recovered from information produced by X-ray scanning.)

In applying Galerkin’s method to the Dirichlet problem, it is advantageous
to select base functions u,,...,u, that are harmonic in . Then an arbitrary
linear combination 2;;1 cju; will also be harmonic, and we need only to adjust
the coefficients so that the boundary conditions are approximately satisfied.
That could mean that || 2;'=1 cjuj — g|| is to be minimized, where the norm is
one that involves only function values on 92. In Galerkin’s method, however,
we select c; so that

n
(5) (Xeus—g,w)y=0 i=1...n
j=1

where the inner product could be a line integral around the boundary of Q.

A plenitude of harmonic functions can be obtained from the fact that the
real and imaginary parts of a holomorphic function of a complex variable are
harmonic. To prove this, let w be holomorphic, and let w = u + iv, where u and
v are the real and imaginary parts of w. By the Cauchy-Riemann Equations,
we have

@+@_2@+ﬁ?ﬂ_i@+£(_§z)

dr?  Jy?  9zdr Oydy 0Ordy Oy\ Oz

The proof for v comes from observing that it is the real part of —iw.
To illustrate this, consider the function z — 22. We have

w=zl=(z+iy)? =2 -y*+2zy=u+iv

Thus the functions u = 2 — y? and v = 2zy are harmonic. (See Problem 10.)
The Dirichlet problem is frequently encountered with Poisson’s Equation:

©) {V2u=f in Q

u=g on N

One way of solving (6) is to solve two related but easier problems:

{V2v=f on Q {V2w=0 on Q

7
) v=0 on 9N

w=g on N

Clearly, the function u = v 4+ w will then solve (6). The problem involving w
was discussed previously. The Galerkin procedure for approximating v begins
with the selection of base functions v;,v,... that vanish on Q. Then an
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approximate solution v is sought having the form v = Z;=1 c;jvj. The usual
Galerkin criterion is applied, so we have to solve the linear equations

n
(8) zcj(v2vjvvi)=(fivi) i=11"~"yn
j=1
The inner product here should be defined by the equation
©) (o) = [ v)u(e.)de dy
Theorem 1. If Q is a region to which Green’s Theorem applies,

then the Laplacian is self-adjoint with respect to the inner product (9)
when applied to functions vanishing on 0S2.

Proof. Using subscripts to denote partial derivatives, we write Green’s Theo-
rem in the form

[@=PR)=[ (Pdz+qay
9 0
Applying this to the functions Q@ = uv; — vu; and P = vuy — uvy, we obtain
/(uV2v — V%) = / ((vuy — wvy) dz + (uvz — vu;) dy]
Q ET)
Since v and u vanish on 89, we conclude that (u, V2v) = (V?u,v). ]

A remark about Equation (8) is in order. Some authors argue that the
coefficients c; should be chosen to minimize the expression

7 (30) 1
j=1

where the Hilbert space norm is being used, corresponding to the inner product
in Equation (9). This is a problem of approximating f as well as possible by a
linear combination of the functions V2v; (1 € ¢ € n). The solution is obtained
via the normal equations

n
D ¢V~ f L V2 (1<i<n)
j=1

This leads to the system

(10) icj(vzvj’v%)i) = (f, V2u;) (1<i<n)
Jj=1

This is not the classical Galerkin method, although it is an example of the
general theory presented in Section 6.4.

An existence theorem for solutions of the Dirichlet problem is quoted here,
from (Gar|, page 288. It concerns domains with smooth boundary. Other such
theorems can be found in [Kello].
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Theorem 2. Let Q be a bounded open set in R? whose boundary
00 consists of a finite number of simple closed curves. Assume the
existence of a number r > 0 such that at each point of I there are
two circles of radius r tangent to O at that point, one circle in §
and the other in RZ\ Q. Let g be a twice continuously differentiable
function on Q. Then the Dirichlet problem (4) has a unique solution.

For boundary-value problems involving differential equations, the Galerkin
strategy can be applied after first turning the boundary-value problem into a
“variational form.” This typically leads to particular cases of a general problem
that we now describe.

Two Hilbert spaces U and V are prescribed, and there is given a bilinear
functional on U x V. (“Bilinear” means linear in each variable.) Calling this
functional B, let us make further assumptions as follows:

(a) |B(wv)| < affull[|v]

(b) me"H—l supy,i=1 |B(w,v)| =6 >0

(c) If v # 0, then sup, B(u,v) >0
With this setting established, there is a standard problem to be solved, namely,
given a specific point z in V, to find w in U such that, for all v in V, B(w,v) =
(2,v). The following theorem concerning this problem is Babugka’s generalization
of a theorem proved first by Lax and Milgram. The proof given is adapted from
[OdR].

Theorem 3. Babuska-Lax—Milgram Under the hypotheses listed
above we have the following: For each z in V there is a unique w in U
such that

B(w,v) = (2,v) forallvinV

Furthermore, w depends linearly and continuously on z.

Proof. As usual, we define the u-sections of B by B,(v) = B(u,v). Then each
B, is a continuous linear functional on V. Indeed,

||Bu|| = sup{IB(u,v)| : veV, ||v]| =1} < o[

By the Riesz Representation Theorem (Section 2.3, Theorem 1, page 81), there
corresponds to each u in U a unique point Au in V such that By(v) = (Au,v).
Elementary arguments show that A is a linear map of U into V. Thus,

(Au,v) = By(v) = B(u,v)

The continuity of A follows from the inequality ||Au|| = |Bu|| < a||u||. The
operator A is also bounded from below:

|| Au|| = “s“p](Au ,U) = ||sIJp | B(u,v)| > B||u|
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In order to prove that the range of A is closed, let [v,] be a convergent sequence
in the range of A. Write v, = Au,, and note that by the Cauchy property

0= lim "vn — Um|| = lim || Aun — Augm| 2 B lim ||u,. - um”

n,m—o0 n,m n,m
Consequently, [us] is a Cauchy sequence. Let u = limn un. By the continuity of
A, v, = Au, — Au, showing that lim, v, is in the range of A. Next, we wish
to establish that the range of A is dense in V. If it is not, then the closure of
the range is a proper subspace of V. Select a nonzero vector p orthogonal to the
range of A. Then (Au,p) = O for all u. Equivalently, B(u,p) = 0, contrary to
the hypothesis (3) on B. At this juncture, we know that A~! exists as a linear
map. Its continuity follows from the fact that A is bounded below: If u = A~ 'v,
then the inequality ||Au|| > B||u|| implies |[v|| > B||A~'v||. The equation we
seek to solve is B(w,v) = (z,v) for all v. Equivalently, (Aw,v) = (z,v). Hence
Aw = z and w = A~ !z Since there is no other choice for w, we conclude that
it is unique and depends continuously and linearly on z. [}

If a problem has been recast into the form of finding a vector w for which
B(w,v) = (z,v), as described above, then the Galerkin procedure can be used
to solve this problem on a succession of finite-dimensional subspaces U, C U
and V, C V.

Reviewing the details of this strategy, we start by assuming that dim(Uy,) =
dim(Vn) = n. Select bases {u;} for U, and {v;} for V;,. A solution wy, to the
“partial problem” is sought:

B(wp,vi) = (z,v:) (1<i<n)

A “trial solution” is hypothesized: wn = Y] cju;. We must now solve the
following system of n linear equations in the n unknown quantities c;:

n
Y ciBluj,vi) = (z,0)  (1<i<n)
j=1

In order to have at this stage a nonsingular n x n matrix B(u;,v;), we would
have to make an assumption like hypothesis (b) for the two spaces Uy, and V;.
For example, we could assume

( b*) There is a positive 3, such that

sup  |B(u,v)| 2 Gn|lu|| (uw€Un)
vEVR, ||vl|=1

Problem 14 asks for a proof that this hypothesis will guarantee the nonsingularity
of the matrix described above.
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Example 1. Consider the two-point boundary-value problem

(pe) —qu=f u(@)=0 u®)=

This is a Sturm-Liouville problem, the subject of Theorem 1 in the next section
(page 206) as well as Section 2.5, pages 105ff. In order to apply Theorem 3,
one requires the bilinear form and linear functional appropriate to the problem.
They are revealed by a standard procedure: Multiply the differential equation
by a function v that vanishes at the endpoints a and b, and then use integration

by parts: , \
/a [o(pr) — vqu] = /a of
vpu’]i - /bv’pu' - /bvqu = /abvf
/ [pu'v’ + quv] = / —fv

B(u,v)—/ (pu'v' + quv) / fv

a
There is much more to be said about this problem, but here we wish to emphasize
only the formal construction of the maps that enter into Theorem 3.

Example 2. The steady-state distribution of heat in a two-dimensional domain
Q is governed by Poisson’s Equation:

Viu=f inQ

Here, u(z,y) is the temperature at the location (z,y) in R?, and f is the heat-
source function. If the temperature on the boundary 99 is held constant, then,
with suitable units for the measurement of temperature, we may take u(z,y) =
0 on 9Q. This simple case leads to the problem of discovering u such that
B(u,v) = (f,v) for all v, where

B(u,v) = — / (ugvz + uyvy)
Q
To arrive at this form of the problem, first write the equivalent equation
(V2u,v) = (f,v) for all v

The integral form of this is

/vV2u=/vf for all v
Q Q

The integral on the left is treated by using Green’s Theorem (also known as
Gauss’s Theorem). (This theorem plays the role of integration by parts for
multivariate functions.) It states that

/Q(Pz+Qy)=/m(de—Qd$)
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This equation holds true under mild assumptions on P, @, ©, and 9. (See
[Wid].) Exploiting the hypothesis of zero boundary values, we have

/UV2u=/(u:¢ + uyy v
Q Q

= /‘;[(u,v)z + (uyv)y — UzVz — “yvy]

= /c;n(u,v — Uuyv) — A(uzvz + uyvy)

= —/(uzv,_- + vay) = B(uvv) .
Q

References. For the classical theory of harmonic functions consult [Kello).
For the existence theory for solutions to the Dirichlet Problem, see [Gar]; in
particular, Theorem 2 above can be found in that reference. For the Galerkin
method, consult [KK], [KA], [OdR], [Kee], and [Gre], [Gri].

Problems 4.5
1. ([Mil}, page 115) Find an approximate solution of the two-point boundary-value problem
’ +tr' +z =2t z(0) =1 z(1)=0
by using Galerkin's method with trial functions

z(t) = (1 — t)(1 + c1t + cat® + cat?)

2. Find an approximate solution of the problem
(tz') +z =t z(0) =0 z(l) =1
by using Galerkin’s method and the trial solution

z(t) =t +t(1 —t)(cy + cat)

3. Invent an efficient algorithm for generating the sequences of harnonic functions [un}, [vn),
where 2" = u, +ivhandn=0,1,2,...

4. Prove that a differentiable function f : R — R such that inf; f'(z) > O is necessarily
surjective. Show by an example that the simpler condition f’(z) > 0 is not adequate.

5. A sequence vy, v2,... in a Banach space U is called a basls (or more exactly a Schauder
basis) if each z € U has a unique representation as a convergent series in U of the form
z = 2:110"(-’)""- The an depend on z in a continuous and linear manner, i.e.,
an € U*. If U has a Schauder basis, then U is separable. Prove that an(vm) = énm.
Prove that no loss of generality occurs in assuming that |[un ]| = 1 for all n. See problems
24-26 in Section 1.6, pages 38 and 39.

6. (Continuation) Prove that for each n, the map P, defined by the equation Phz =
:=1 ax(x)vx is a (bounded, linear) projection.
7. (Continuation) Prove that sup, ||Pa|l < co.

8. (Continuation) What are the Galerkin equations for the problem Az = b when the
projections in the preceding problems are employed?
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9. (Continuation) Use Galerkin's method to solve Az = b when A is defined by Avn =
oo ._2 oo —-n
j=nd Vi andb=) ~ 27 vn.

10. Use the computer system Mathematica to find the real and imaginary parts of 2™ for
n =1 to n = 10. Version 2 (or later) of Mathematica will be necessary. The input to do
this all at once is

n=1; While[(n=n+1)<11, Print([ComplexExpand[(x+I y)An]]]

11. Use Green's Theorem to show that the operator A defined by
Au = auzy + buzy + cuyy
is Hermitian on the space of functions having continuous partial derivatives of orders 0,

1, 2 in Q and vanishing on 9. In the definition of A, the coefficients are constants.

12. Give an elementary proof of Green's Theorem for any rectangle in R? whose sides are
parallel to the coordinate axes.

13. Solve the Dirichlet problem on the unit disk in R? when the boundary values are given
by the expression 8z¢ — 8y4 + 1.

14. Prove that the matrix (B(u;, v;)) described following Theorem 3 of this section is non-
singular if the hypothesis (b*) is fulfilled by the spaces Un and Vn.

4.6 The Rayleigh—Ritz Method

The basic strategy of this method is to recast a problem such as
(1) F(z)=0 (zr e X)

into an exrtremal problem, i.e., a problem of finding the maximum or minimum
of some functional ®. This extremum problem is then solved on an increasing
family of subspaces in the normed space X:

UhclUycUsc---Cc X

It is obvious that there are many ways to create an extremum problem
equivalent to the problem in (1). For example, we can put

(2) ®(z) = || F(z)||

If this choice is made with a linear problem in a Hilbert space, we are led to
a procedure very much like Galerkin’s Method. Suppose that F(z) = Az — v,
where A is a linear operator on a Hilbert space. The minimization of ||Az - v||,
where z € U,, reduces to a standard least-squares calculation. Suppose that U,
has a basis [u;,u2,...,un]. Then let z = Z;’zl cjuj. The minimum of

n
E CjAUj - v
i=1
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is obtained when the coefficient vector (cy, ¢, ..., cn) satisfies the “normal” equa-
tions
n
(3) > cjAu; —v L A(Un)
Jj=1

This means that

-,

(4) icj(Au]-,Aui) = (v, Au;) (1<ig<n)
Jj=1

These are not the Galerkin equations (Equation (3) in Section 4.5, page 198).
The Rayleigh-Ritz method (in its classical formulation) applies to differen-
tial equations, and the functional ® is directly related to the differential equa-
tion. We illustrate with a two-point boundary-value problem, in which all the
functions are assumed to be sufficiently smooth. (They are functions of t.)

{(p:z:’)’—q:c:f astgb

5) z(a) = a z(b) =0

In correspondence with this problem, a functional ® is defined by

b
(6) o(x) = / [(=')p+ g + 2zf] dt

Theorem 1.  Ifzisa function in C?|a,b] that minimizes ®(z) locally
subject to the constraints z(a) = a and z(b) = B, then z solves the
problem in (5).
Proof. Assume the hypotheses, and let y be any element of C?[a, b] such that
y(a) = y(b) = 0. We use what is known as a variational argument. For each

real number ), £ + My is a competitor of z in the minimization of ®. Hence the
function A — ®(z + Ay) has a local minimum at A = 0. We compute

d d [°
a@(z +y) = o / ((=' + M)+ (z + My)Pg +2(z + W) f] dt

b
= 2/ (' + M )y'p+ (z + My)yg + yf] dt

Evaluating this derivative at A = 0 and setting the result equal to O yields the
necessary condition

b
(7 / (pz'y +qzy+ fy)dt =0

We use ii. »gration by parts on the first term, like this:

[b b b b
] pz'y =pz’y]a - / (pz')'y = - / (pz')'y
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Here the fact that y(a) = y(b) = 0 has been exploited. Equation (7) now reads

b
(8) / [-—(px')'+q:z+f]ydt=0

(The steps just described are the same as those in Example 1, page 203.) Since
y is an arbitrary element of Cz[a,b] vanishing at @ and b, we conclude from
Equation (8) that
—(pz') +qz+f=0

The details of this last argument are as follows. Let z = —(pz’)’ + qr + f.
Then f: z(t)y(t) dt = 0 for all functions y of the type described above. Suppose
that z # 0. Then for some 7, z(7) # 0. For definiteness, let us assume that
z(7) = € > 0. Then there is a closed interval J C (a,b) in which z(t) > /2.
There is an open interval I containing J in which 2(t) > 0. Let y be a C?
function that is constantly equal to 1 on J and constantly equal to 0 on the
complement of I. Then f: z(t)y(t)dt > 0. ]

Theorem 2.  Assume that p(t) > 0 and g(t) > 0 on [a,b). Ifz is a
function in C?[a, b) that solves the boundary-value problem (5) then x
is the unique local minimizer of ® subject to the boundary conditions
as constraints.

Proof. Let z € C?a,b], z # z, 2(a) = o, and z(b) = B. Then the function
y = z— z satisfies 0-boundary conditions but is not 0. By calculations like those
in the preceding proof,

b b
9 B +y)=d(z)+2 / ('y'p + zyg + yf) + / (W) + 2]

Using integration by parts on the middle term, we find that it is zero. Then
Equation (9) shows that ®(z) > ®(z). ]

Returning now to the two-point boundary-value problem in Equations (5),
we make the simplifying assumption that the boundary conditions are z(0) =
z(1) = 0. (In Problems 4.1.3 - 4, page 176, it was noted that simple changes
of variable can be employed to arrange this state of affairs.) The subspaces
U, should now be composed of functions that satisfy z(0) = x(1) = 0. For
example, we could use linear combinations of terms ti(1 — t)7 where i,j > 1. If
z = Y 7_, cju; is substituted in the functional ® of Equation (6), the result is

Jj
a real-valued function of (¢, cz, ..., cn) to be minimized. The minimum occurs

when
9 (& .
3?q><zc]u,~> =0 (i=1,2,...,n)
to\j=1

When the calculations indicated here are carried out, the system of equations
to be solved emerges as

n
dajei=b  (1<i<n)
j=1
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where

1
wzﬁbmmmwnwmmme

m=—AUmem

This completes the description of the Rayleigh-Ritz method for this problem.

In order to prove theorems about the convergence of the method, some
preliminaries must be dealt with. The following lemma is formulated for an
arbitrary topological space. Refer to Chapter 7, Section 6, pages 361ff, for basic
topology.

Lemma. Let ¥ be an upper semicontinuous nonlinear functional
defined on a topological space X. Let X; C X2 C --- be subsets of X
such that Uff:l X, isdense in X. Then as n 1 oo, we have

(10) zén){n () | Jnf ¥(z)
Proof. Let p=infiex ¥(z). (We permit p = —o0o.) For any r > p, the set
O={zeX:¥(z)<r}

is nonempty. It is open, because ¥ is upper semicontinuous. Since |J X, is
dense, it intersects O. Select m such that X, N O contains a point, say £. Then
forn2>2m
< i < i <
p< inf W(z) < inf W(r) V() <r ]

In applying the Rayleigh-Ritz method to the two-point boundary-value
problem

(11) (pr') —qz = f
(12) z(0)=z(1)=0

we take X to be the space {z € C?(0, 1] : (0) = z(1) = 0}, normed by defining
llzll = [|z]|,, + l|z’]|.- Next, we assume that the finite-dimensional subspaces
U, in X are nested (U, C Un41) and that (Jo, Uy, is dense in X. Thus, the
elements of U,, satisfy (12). Notice that X has codimension 2 in C?[0, 1]. In fact,
X @I, = C?|0, 1], where IT; denotes the subspace of all first-degree polynomials.
The functional @ is

®(z) = /0 ] [p(z')? + gz* + 2fx] dt

The functional @ attains its infimum on each finite-dimensional subspace of
X. A proof of this is outlined in Problems 6, 7, and 8.
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Theorem 3. Let x denote the solution of the boundary-value prob-
lem (11,12), and let =, be a point in U, that minimizes ® on U,.
Assumeq > 0 and p > 0 on [0,1). Then x,(t) = z(t) uniformly.
Proof. Since we have assumed that |J;—, Un is dense in X, the preceding
lemma and Theorem 2 imply that ®&(z,) | ®(z). Notice that our choice of norm

on X guarantees the continuity of ®. In the following, we use the standard
inner-product notation

(u,v) = /] u(t)v(t)dt
0

and || ||2 is the accompanying quadratic norm. From Equation (9) in the proof
of Theorem 2, we have

1
B(zn) - B(z) = / [p- (zh — )2 +q- (zn — z)?] dt

1
’ Nn2 . ’ ’ 2
> [ ot —2at > miy ploh - |

This shows that ||:::§1 - :r:'||2 — 0. By obvious manipulations, including the
Cauchy-Schwarz inequality, we have now

len(s) —2(o)] = | [ [z(t) = 20)] dt| < [ Jai(t) — 2'(e)) e
0 0

1
< / lzn(t) — 2’ () dt = (Jz, — 2’|, 1) < ||zn = :r:'||2 . ||1||2
0

This shows that
[|#n = zll, < lan —2'l|, =0 .

As an illustration of the preceding theorem, consider the subspaces

Up={wv : vell,} w(t) =t(l1-t)

The union of these subspaces is the space of all functions having the form
n
t—t(1-t) ) axt*
k=0

Is this subspace dense in the space

X={zeC*0,1] : z(0)=z(1)=0}7?
The norm on X is defined to be ||:c|| = ||a:||°° + ||x'||°°. To prove density,

let £ be any element of X, and let ¢ > 0. By the Weierstrass Approximation
Theorem, there is a polynomial p such that ||p — z’|| < oco. Define u(s) =
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Jo p(t) dt, so that v’ = p, u(0) =0, and ||u’ — ||, < e. Then [u(s) — z(s)| =
lfos[u’(t) — 2/(t)] df| < e. Since z(1) =0, |u(1)] < e. Put v(t) = tu(1). Then
W'(t)] = Ju(1)] < € and |v(t)] < |u(1)|] < e. Notice that u — v is a polynomial
that takes the value 0 at 0 and 1. Hence u — v contains w(t) = (1 —¢) as a

factor, and belongs to one of the spaces U,. Also,

e =v=zll, <llu—z] + ol <2

||o' =" - | < - ||+ Ilv']| . < 2e

Thus z can be approximated with arbitrary precision by elements of | Jn., Un.
To summarize, we state the following theorem.

Theorem 4. In the two-point boundary-value problem described in
Equations (11, 12), assume that p/, q, and f are continuous. Assume
further that p > 0 and q > 0. If, for each n, z, is the polynomial of
degree n that minimizes ® subject to the constraint z,,(0) = z,(1) =0,
then [z,] converges uniformly to a solution of Equations (11,12).

Another illustration of the Rayleigh—Ritz method is provided by a boundary-
value problem involving Poisson’s equation in two variables:

(13)

V2u=f in Q
u=g on 9N

In correspondence with this problem, we set up the functional
d(u) = /(ui + u§ + 2uf) dr dy
Q

We shall now show that any function u that minimizes ®(u) under the constraint
that u = g on 99 must solve the boundary-value problem (13).

Proceeding as before, take a function w that vanishes on 92, and consider
&(u + Aw). Since u is a minimum point of ®,

< pu + 2w 0

d\ )lA=0 =

This leads, by straightforward calculation, to the equation
(14) /wWﬁwwwqma@=o
Q

In order to proceed, we require Green's Theorem, which asserts (under reason-
able hypotheses concerning Q) that

/(P;+Qy)dzdy=/ (Pdy — Qdx)
Q an
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Using this, we have

/(u,w, + uywy) = / [(wug)z + (wuy)y — wV2u]
n n

=/ (—wuyd1:+wu,dy)—/wV2u
2 Q

Since w vanishes on 9, we can now write (14) in the form

// (—wV%u 4 fw)dzdy =0

ol

Since w is almost arbitrary, this equation implies that
Vig=f

There are many problems in applied mathematics that arise naturally as
minimization problems. This occurs, for example when a configuration involving
minimum energy is sought in a mechanical system. One inclusive setting for such
problems is described here, and an elegant, easy, theorem is proved concerning
it.

Let X be a Banach space, and suppose that a continuous, symmetric bilinear
functional B is given. Let ¢ be a continuous linear functional on X, and let a
closed convex set K be prescribed. We seek the minimum of B(z,z) + ¢(x) on
K.

Theorem 5. In addition to the hypotheses in the precedmg para-
graph, assume that B is “elliptic,” in the sense that B(z, z) ﬂ“:r”
for some B > 0. Then the minimum of B(z,z) + ¢(z) on K is attamed
at a unique point of K.

Proof. The bilinear form B defines an inner product on X. The norm arising
from the inner product is written ||z||; = +/B(z,z). Since B is continuous,
there is a positive constant a such that |B(z,y)| < a“z”“y“ Consequently,
||:c||B < a”a:”. On the other hand, from the condition of ellipticity, we have
llzllg > vB||z|- Thus the two norms on X are equivalent. Hence, (X, |- |g)
is complete and therefore a Hilbert space. Also, K is a closed convex set in
this Hilbert space. By the Riesz Representation Theorem, ¢(x) = —2B(v, z) for
some v in X. Write

B(z,z) + ¢(z) = B(z — v,z — v) — B(v,v)

This shows that our minimization problem is the standard one of finding a point
of K closest to v, in the Hilbert space setting. Theorem 2 in Section 2.1 (page
64) applies and establishes the existence of a unique point z in K solving the
problem. [ |

Historical note. A biographical article about George Green is [Cannl], and a
book by the same author is [Cann2]. When you are next in England, you would
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enjoy visiting Nottingham and seeing the well-restored mill, of which George
Green was the proprietor. His collected works have been published in [Green].

Problems 4.6

1. Let u be an element of CJ0, 1] such that

1
/ u(t)z(t)dt =0
0

whenever z is an element of C[0, 1] satisfying the equation Z::il(:r:(l/n)]2 = 0. Prove
or disprove that u is necessarily 0.

2. Let t1,t2,...,tm be specified points in [0,1], and let z be an element of C[0,1] that
vanishes at the points t;,...,tm. Can we approximate z with arbitrary precision by a
polynomial that also vanishes at these points?

3. Solve the two-point boundary-value problem
" =z? z(0) = 6 z(1) =3
Suggestion: Multiply by =’ and integrate, or try some likely functions containing param-

eters.

4. Let £ be an element of Cz[a,b] that minimizes the functional

b
&(z) = / [p(z')? + qz2 + 2fz)dt

subject to the constraints £(a) = @ and z’(b) = 0. Find the two-point boundary-value
problem that z solves.

5. Use an elementary change of variable in the problem

{ (pz') —qz=f

z(a)=a z(b)=4

to find an equivalent problem having homogeneous boundary conditions. Thus, y(a) =
y(b) =0 in the new variable. Is the new problem also of Sturm-Liouville form?

6. Define X = {z € C2[a,b] : z(a) = z(b) = 0}. Prove that if z € X then ||z, >
llzllo (b ~ a)~1. Try to improve the bound.

7. (Continuation) In the Sturm-Liouville problem described by Equations (11) and (12),
assume that p(t) 2 § > 0 and that g 22 0. Prove that for z € X,

®(z) 2 oliz'{l5 ~ £l lzll,

8. (Continuation) Use the two preceding problems to show that on any finite-dimensional
subspace in X, the infimum of & is attained.

9. Solve the two-point boundary-value problem
2z’ =12 z(0) =0 (1) =1

This is deceptively similar to Problem 3, but harder. Look for a solution of the form
z(t) = an.—_o ant™. You should find a “general” solution of the differential equation

containing two arbitrary constants ag and ay. All remaining coefficients can then be
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obtained by a recurrence relation. After imposing the condition z(0) = 0, your solution
will contain only the powers t,t%,¢7,¢1% ... The parameter a; will be available to secure
the remaining boundary condition, (1) = 1. Reference: [Dav].

Let [a,b] be a compact interval in R, and define

b 1/2
lzllc = sup lz(t)l llzll, = {/ Ix(t)lzdt}

astsh
Prove that if ||z},||, — 0 and if inf, g, zn(t)] — O, then [lzn|l . — 0. Is the result
true when the interval is replaced by [a,00)? Assume z, continuous.

In C!(a,b] consider the two norms in the preceding problem. Prove that

el < lo(a)l +Kl|2'll,  where k= (b-a)!/?

Consider the two-point boundary-value problem
= f(t,z) z(0) = a z(1) =8

and the functional

1
&(z) = / [(z')2 + 29(t, )] dt
0

Assume that f = 9/8z. Prove that any C2?-function that minimizes ®(zx) subject to the
constraints £(0) = a and z(1) = 3 is a solution of the boundary-value problem. Show by
example that the converse is not necessarily true.

Prove that there exists a polynomial of degree 5 such that p(0) = p’(0) = p”(0) = p’(1) =
P’(1) =0 and p(1) = 1.

(Continuation) Let a < b. Using the polynomial in the preceding problem, show that
there exists a polynomial q of degree 5 such that g(a) = ¢’(a) = q”ga) =q(b)=4q"(b) =0
and q(b) = 1. With the help of ¢ construct a nondecreasing C*-function f such that
f(t) =0o0n (—o00,a) and f(t) =1 on (b, 00).

Solve the integral equation

z(t) =sint + / (2 + s?)z(s) ds
0

This two-point boundary value problem is easily solved:
z’’(t) = cost z(0) = z(7r) =0 (ot
Use the Ritz method to solve it, employing trial functions of the form z(t) = Z an sinnt.

Orthogonality relations among the trigonometric functions will be useful in minimizing
the Ritz functional.

4.7 Collocation Methods

The collocation method for solving a linear operator equation

(1)

Az =b
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is one of the projection methods, as described in Section 4.4. It begins by
selecting base functions u,,...,u, and linear functionals ¢,...,¢,. We try to
satisfy Equation (1) with an z of form z = 2;=1 cju;. This leads to the equation

(2) > cjAu;=b
j=1

In general, this system is inconsistent, because b is usually not in the linear
space generated by Au;, Aus,...,Au,. We apply the functionals ¢; to Equa-
tion (2), however, and arrive at a set of n linear equations for the n unknowns
C1,C2y...,Cyl

D cid(Au;) =¢i(b)  1<i<n
j=1

Of course, care must be taken to ensure that the n x n matrix whose elements
are @;( Au;) is nonsingular. In the classical collocation method, the problem (1)
involves a function space; i.e., the unknown z is a function. Then the functionals
are chosen to be point-evaluation functionals:

$i(z) = z(t:)

Here, the points t; have been specified in the domain of z.

Let us see how a two-point boundary-value problem can be solved approxi-
mately by the method of collocation. We take a linear problem with zero bound-
ary conditions:

@ {:c +pz’ tqz=f

2(0) = z(1) = 0

As usual, it makes matters easier to select base functions that satisfy the ho-
mogeneous part of the problem. Suppose that we let u;(t) = (1 ~ t)t7 for
j = 1,2,...,n. As the functionals, we use ¢;(z) = z(t;), where the points
t1,...,tn can bechosenin the interval [0, 1). For example, we canlet t; = (i—1)h,
where h = 1/(n — 1). The operator A is defined by

Az =2" + pr’ + ¢z
and by computing we find that
(Auj)(t) = j(G ~ NP2 = (G + NP +p(t) 5771 = (G + 1)tI] + q(0)[t — 7+

The matrix whose elements are (Au;)(t;) is easily written down, but it is not
instructive to do so. It will probably be an ill-conditioned matrix, because the
base functions we have chosen are not suited to numerical work. Better choices
for the base functions u; would be the Chebyshev polynomials (suitable to the
interval in question) or a set of B-splines.

More examples of collocation techniques will be given later in this sec-
tion, but first we shall discuss the important technique of turning a two-point



Section 4.7 Collocation Methods 215

boundary-value problem into an equivalent integral equation. This continues a
theme introduced in Section 2.5. The integral equation can then be shown to
have a solution by applying a fixed-point theorem, and in this way we obtain an
existence theorem for the original two-point boundary-value problem.

We consider a two-point problem of the form

@) {x = f(t, ) 0<tg1

2(0)=0 z(1)=0

There is no loss of generality in assuming that the interval of interest is [0, 1]
and that the boundary conditions are homogeneous, because if these hypotheses
are not fulfilled at the beginning, they can be brought about by suitable changes
in the variables. (In this connection, refer to Problems 3 and 4 in Section 4.1,
page 176.) Observe that Equation (1) is, in general, nonlinear. We assume that
f is continuous on [0,1] x R.

The Green’s function for the boundary value problem (4) is defined to
be the function

t(1 —s) 0<tss<1
(5) G(t,s) =
s(1—t) 0<s<t<

Notice that G is defined on the unit square in the st-plane, and vanishes on the
boundary of the square. Although G is continuous, its partial derivatives have

jump discontinuities along the line s = t. Using the Green’s function as kernel,
we define an integral equation

1
(6) z(t) = —/0 G(t,s)f(s,z(s)) ds

Theorem 1.  Each solution of the boundary-value problem (4) solves
the integral equation (6) and conversely.

Proof. Let z be any function in C[0, 1], and define y by writing

y(t) -—/0 G(t,s)f(s,z(s))ds

- / "G(t,9)f(s,2()) ds + / G(t,91(5,2(s)) ds
0 1

We intend to differentiate in this equation, and the reader should recall the
general rule:

d t
A h(s)ds = h(t)

Then the chain rule gives us

k(t)
%/ h(s)ds = h(k(t))K'(t)
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Now, for y'(t) we have

y'(t) = ~Gt,t) f(t,2(t)) — /0 Gult,5)f (s, 2(s)) ds
+G(t,t) f(t,z(t)) + /t Gi(t,s)f(s,z(s))ds
1

t t
= / sf(s,z(s))ds +/ (1-3)f(s,z(s))ds
0 1
A second differentiation yields

(7) y'(8) = tf(t,z(t)) + (1 - ) f(t, 2(t)) = f(t,z(1))
If z is a solution of the integral equation, then y = z, and our calculation (7)
shows that " = y” = f(t,z). Since G(t,s) = 0 on the boundary of the square,
y(0) = y(1) = 0. Hence z(0) = z(1) = 0. This proves half of the theorem.

Now suppose that z is a solution of the boundary-value problem. The above
calculation (7) shows that

y'(t) = £(t,2(t)) = 2"(1)
It follows that the two functions z and y can differ only by a linear function of

t (because "’ — y” = 0). Since z(t) and y(t) take the same values at t = 0 and
t = 1, we conclude that x = y. Thus z solves the integral equation. [}

Theorem 2. Let f(s,t) be continuous in the domain defined by the
inequalities 0 < s < 1, —oo < t < 0o. Assume also that f satisfies a
Lipschitz condition in this domain:

(8) [f(s,t1) = f(s,t2)| < k|tr —ta| (k< 8)
Then the integral equation (6) has a unique solution in C[0, 1].

Proof. Consider the nonlinear mapping F : C[0, 1] — C[0, 1] defined by
(Fz)(t /Gtsf(sz( ))ds =z e€cC[o,1]

We shall prove that F is a contraction. We have

(Fu)(t) - (Fu)(t) / G(t, )| (s, u(s)) — £(s,0(s))| ds

< k/ol G(t,s)iu(s) - v(s),ds

1
<k||u_v||mA G(t, ) ds

= (k/8)|lu -],
It follows that
|Fu = Foll,, < G/8)u v,
and that F is a contraction. Now apply Banach’s Theorem, page 177, taking
note of the fact that C[0, 1], with the supremum norm, is complete. [}
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Corollary. If the function f satisfies the hypotheses of Theorem 2,
then the boundary-value problem (1) has a unique solution in C|[0, 1].

Example 1. Consider the two-point boundary-value problem

x"(t):%exp{%(t+l)cos[z(t)+7—3t]} -1<tg1
(9)
z(-1)=-10 z(1)=-4

Our existence theorem does not apply to this directly, and some changes of
variables are called for. We set

2(t)=xz(t) =3t +7
and find that z should solve this problem:

{z”(t) = lexp{3(t+1)cosz(t)}

(10) z(-1)=2z2(+1)=0

Next we set
t=-1+2s y(s) = z(t)

and find that y should solve this problem:

{ y"(s) = 2exp{scosy(s)}
y(0) =y(1)=0
To this problem we can apply the preceding corollary. The function f(s,r) =

2e°c0sT satisfies a Lipschitz condition, as we see by applying the mean value
theorem:

(11)

£ = £air2) = | D (a,rs)|irs ol

The derivative here is bounded as follows
[2e°“°*T(—ssin r)| < 2e =~ 5.436

Since the Lipschitz constant 2e is less than 8, the boundary-value problem (11)
has a solution y. Hence (9) has a solution x, and it is given by

z(t)=y((t+1)/2) +3t -7 [

For the practical solution of boundary-value problems, one usually relies
on numerical methods (some of which have already been discussed) such as
discretization, Galerkin's method, and collocation. For the problem considered
above, namely

(12) {:c” = f(t,) ogtg1

2(0) =z(1)=0
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there is now an additional method of proceeding. One can set up an equivalent
integral equation,

1
(13) 2(t) = /0 —G(t, s)f (s, 2(s)) ds

and solve it instead. If we discretize both problems (12) and (13) in a certain
uniform way, the two new problems will be equivalent, a result to which we now
turn our attention.

The standard discretization of the boundary value problem (12) is done by
introducing a formula for numerical differentiation, as in Section 4.1. For the
integral equation, we require a formula for numerical integration, and choose for
this purpose a simple Riemann sum. Thus the discretized problems are

(14) {yi-l =2 + i1 = R f(t,y)  1<ign
Yo=yn41 =0
n
(15) yi=—hY Gt t;)f(t;,y;) 0<i<n+]1

j=1
In both of these we have set h = 1/(n + 1) and t; = th. Of course, y € R™+2.
Notice that we have used the fact that G vanishes on the boundary of the square.

Theorem 3. Problems (14) and (15) are equivalent.

Proof. We proceed as in the proof of Theorem 1, which concerns the “undis-
cretized” problems. The réle of the second derivative is now played by a set of
linear functionals L; defined on R™*2 by the equation

(16) Li(z) =h™ %[z =22+ 2i41]  1<ign

Here z is an arbitrary element of R**2 written in the form z = (zq, 21,- . Zn+1 ).
Now let (Yo, ...,¥n+1) be arbitrary, and let z be defined by

n
(17) a=—hY Gt t;)f(t;y) 0<i<n+1
ij=1

We assert that L;z = f(t;,y;) for i = 1,2,...,n. In order to prove this, apply
L; to z, using the linearity of L;. The result is

(18) Li2= —hZf(tj,yj)LiG(‘,tj)

j=1
Now G(t,s) is a linear function of t in each of the two intervals 0 < t < s and
s <t < 1. Thus L;G(-,t;) = 0 unless i = j. In the case i = j we have
LiG(-,t;) = h72[G(ti-1, ti) — 2G(t:, ti) + G(tiz1, ti)]
=h72tio1 (1 — t;) — 2t(1 — &) + ti(1 — tiy1)]
=h73[(1 = ti)(tic1 — ti) + ti(1 — tiss — 1 + ¢,)]
=h"?[-h(1 - t;) - ht,-] =-h"!
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Thus from Equation (18) we have, as asserted,
Liz = —hf(ti,y:)(=h~") = f(ti, )

Now suppose that (yo,...,Yns1) solves the equations in (15). Then z; = y;
for 0 < 2 £ n+ 1. Consequently, L;y = L;z = f(ti,y;). Since zo0 = zn41 = 0,
from (17), we have also Yo = Yn+1 = 0. Thus y solves the equations in (14).

Conversely, if y solves the equations in (14), then L;y = f(ti,y;) = Liz.
Since the second divided differences of y and z are equal, these two vectors can
differ only by an arithmetic progression. But y,;; = 2,41 and yo = 2o, so the
vectors are in fact identical. Thus y satisfies the equations in (15). ]

Now reconsider the integral equation (13), which is equivalent to the
boundary-value problem (12). One advantage of the integral equation is that
many different numerical quadrature formulas can be applied to it. The most ac-
curate of these formulas do not employ equally spaced nodes. The idea of using
unequally spaced points in the discretized problem of (14) would not normally
be entertained, as that would only complicate matters without producing any
obvious advantage in precision. The quadrature formulas of maximal accuracy
are well known, however, and are certainly to be recommended in the numerical
solution of integral equations, in spite of their involving unequally spaced nodes.

A quadrature formula of the type needed here will have the form

1 n
(19) /0 g(s)ds =~ 3 Aq(s;)

Jj=1

in which g € C[0,1], 0 € s; < 1, and the A; are coefficients, often called
weights. The Riemann sums employed in Equation (15) are obviously obtained
by a formula of the type in (19). However, there are other formulas that are
markedly superior. The result of using formula (19) to discretize the integral
equation (13) is

y(t) = ~ Z A;G(t,55)f(s5,u(s5))

Notice that this equation can be used used in a practical way in functional
iteration. We can start with any yo in C[0, 1] and define inductively

ymar(t) = = ) A;G(t, 55) £ (55, ym(s))
Jj=1

The right-hand side of this equation is certainly computable. It is a linear
combination of sections G*J. One can also use collocation at the points s; to
proceed. This will lead to

(20) vi=— D A;G(si,5;)f(55,95) (1<i<n)
j=1

In this equation, y; is an approximation to z(si). In general, Equation (20) will
represent a system of n nonlinear equations in the n unknowns (y;,...,yn). The
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solution of such a system may be a difficult matter, but for the moment we shall
suppose that a solution y = (¥1,...,¥n) has been obtained. Let us use z to
denote the solution function for the integral equation (13). It is to be hoped
that |y; — z(s;)| will be small. Here the nodes of the quadrature formula are
S1,...,8n. Two functions that enter the theorem are

1 n
(21) u(t)=/0 Glt,)f (s, 2(s)) ds — 5 A;G(t, ;)1 (5, 2(55))

Jj=1

1 n
(22) u(t) = / G(t,s)ds — z A;G(t,s5)
0 =
If the quadrature formula is a good one, these functions will be small in norm.

We continue to assume the Lipschitz inequality (8) on f.

Theorem 4. Ifk(1+ 8”””00) < 8, and if the weights A; in Equation
(19) are all positive, then fort =1,2,...,n,

|z(si) — yil < /\llu“OO where A = [1 - k(-é— + ”v”oo)]_l

Proof. Let ¢; =|z(s;) — ¥;] and € = maxe;. Then for each 7 we have

1 n
&= / G(s4,5) £ (5,2(5)) ds — 3 A;G(s1, 83 f(35,3,)|
0 i=1

= Iu(Si) +3 " A;G(si,55) f(s5,2(s5)) = ) AjG(Si,Sj)f(sj:yj)}
J=1

j=1

<lully, +3° A;G(si,5) | £(s5, 2(s5)) - f(s5,95)]

=1

n 1
< ”u“m + ksz A;G(si,85) = “u“m + ke [/ G(s;,8)ds —~ v(si)]
j=1 o
1
< el + ke(5 + o)

It follows that & < ||u|[oo +ke (3 + ||v“oo) When this inequality is solved for &,
the result is the one stated in the theorem. |

Theorem 5. The “discretized” integral equation (20) can be solved
by the method of iteration if k (§ + ”v“oo) < 1and A; > 0. Note that
k,v, and A;j are as in Equations (8), (22), and (19).

Proof. Interpret Equation (20) as posing a fixed-point problem for a inapping
U : R® -5 R™ whose definition is

Uy)i=-D_A;G(si,8)f(siy¥) (1<i<n)
j=1
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A short calculation will show that this is a contraction:

I(Uy -~ UZ)-'l < ZAiG(sivsj)‘f(sj’yj) — f(s5,25)
Jj=1

n
< kaax lvi — 2| Y AG(si,s0)

v=1

As in the preceding proof, the sum in this last inequality has the upper bound
% + Hv”m Hence we have

oy - Uz, < £(5 + lello )iy = 2l

The Lipschitz condition in (8) is usually established by estimating the
partial derivative f, = Bf(t,s)/as and using the mean value theorem. If
|f2] < k < 8 on the domain where 0 < t < 1 and —0o < s < oo, then we
can also use Newton’s method to solve the discretized integral equation in (20).
The equations that govern the procedure can be derived in the following way.
Suppose that an approximate solution (y,,¥2,...,yn) for system (20) is avail-
able. We seek to calculate corrections h; so that the vector (y; +hy,...,yn+hn)
will be an exact solution of (20). Thus we desire that

n
(23) yi+hi=_ZAjG(Si,Sj)f(Sj,yj+hJ‘)
j=1

Of course, we take just the linear terms in the Taylor expansion of the nonlinear
expression f(sj,y; + hj) and use the resulting linear equations to solve for the
h;. These linear equations are

(24) yit+hi = — > A;G(s1,55) [ £(s5,55) + hsfa(s5,¥5)]
j=1

(Having made this approximation, we can no longer expect the corrections to
produce the exact solution; hence the need for iteration.) When Equation (24)
is rearranged we have

n

(25) hi+ Y Ejhj=d;  (1<i<n)
j=1

in which

Ei; = A;G(si, 85) f2(85,95)
and

n
di = —Yi — Z AjG(sh sj)f(sj7 yJ)
i=1
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Equation (25) has the form (I + E)h = d. We can see that I + E is invertible
(nonsingular) by verifying that ||E||oo <1

18]l = mng |Eyy| = maxZA G(si, ;)1 fals5,95)]

i=1

kmaxZAG’s,,SJ ( +“ “ )

i=1

If our numerical integration formula is sufficiently accurate, then ||v||  will be

small enough to yield ||E[| , < 1, since k < 8.
This section is concluded with a few remarks about the quadrature formulas
mentioned above. Such a formula is of the type

(26) /b z(t)w(t) dt = z": Aiz(t;) z € Cla, b)
a i=1

The function w is assumed to be positive on [a,b] and remains fixed in the
discussion. The points t; are called “nodes.” They are fixed in [a,b]. The coeffi-
cients A; are termed “weights.” The formula is expected to be used on arbitrary
functions z in C[a, b).

Theorem 6.  If the nodes and the function w are prescribed, then
there exists a formula of the type displayed in Equation (26) that is
exact for all polynomials of degree at most n — 1.

Proof. Recall the Lagrange interpolation operator described in Example 1 of
Section 4.4, page 193. Its formula is

n

(27) Lz =) z(t))t

i=1

Since L is a projection of Cla, b] onto [],_,, we have Lz = z for all z € [],,_,,
and consequently, for such an z,

n n b
(28) /bz(t)w(t)dt=/bZz(ti)&(t)w(t)dt=Zz(t,~)/ atyw(t)dt 4
a ¢ i=1 i=1 e

Example 2. If (t,t2,t3) = (—1,0,+1) and [a, b) = [~1, 1], what is the quadra-
ture formula produced by the preceding method when w(t) = 1? We follow the
prescription and begin with the functions ¢;:

6(t) = (t—ta)(t —ta)(ts — t2) " (ty —t3)" " = t(t — 1)/2
Ot)=(t-t)(t—t3)(ta—t1) (ta—t3) ' =112
£5(t) =t(t+1)/2 (by symmetry)
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The integrals f_ll £;(t) dt are :l,, %, and %, and the quadrature formula is therefore

(29) /l z(t)dt = %z(—l) + %.1:(0) + %:1:(1)
-1

The formula gives correct values for each = € [],, by the analysis in the proof
of Theorem 6. As a matter of fact, the formula is correct on ]_[3 because of
symmetries in Equation (29). This formula is Simpson’s Rule. ]

Theorem 7. Gaussian Quadrature. For appropriate nodes and
weights, the quadrature formula (26) is exact on [],,_,-

Proof. Define an inner product on C[a,b] by putting

b
(30) (z,y) = / 2(t)y(t)w(t) dt

Let p be the unique monic polynomial in [], that is orthogonal to [],_,, or-
thogonality being defined by the inner product (30). Let the nodes t,,...,tn be
the zeros of p. These are known to be simple zeros and lie in (a, b), although we
do not stop to prove this. (See [Ch], page 111.) By Theorem 6, there is a set
of weights A; for which the quadrature formula (26) is exact on [],,_,. We now
show that it is exact on [],,_,. Let = € [],,_,- By the division algorithm, we
can writc £ = gp + r, where g (the quotient) and r (the remainder) belong to

I1._,- Now write
b b b
/xw:/qu+/ Tw
a a a

Since p L [],_, and g € [],_, the integral [ gpw is zero. Since p(t:) = 0, we
have z(t;) = r(t;). Finally, since r € [],,_,, the quadrature formula (26) is exact
for r. Putting these facts together yields

/ " e (Ow(t) dt = / " () dt = iAir(ti) - i Aiz(ts) .
a a i=1 i=1

Formulas that conform to Theorem 7 are known as Gaussian quadrature
formulas.

Theorem 8. The weights in a Gaussian quadrature formula are
positive.

Proof. Suppose that Formula (26) is exact on Iz,_,. Then it will integrate
€% exactly:

b n
0< / é’?—(t)w(t)dt = ZA.[?(t.‘) =Aj [}
a i=1
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Problems 4.7

. Refer to the proof of Theorem 3 and show that if z is a vector in R™*2 for which L;z =0

(1 € i < n), then z is an arithmetic progression.

. Prove that if, in Equation (28), a = —b, w is even, and the nodes are symmetrically

placed about the origin, then the formula will give correct results on nn when n is odd.

. Prove that if the formula (26) is exact on HZn then the nodes must be the zeros of

-1
a polynomial orthogonal to Hn_ L

. Let (z,y) = f_ll:l:(t)y(t)dt. Verify that the polynomial p(t) = t3 — %t is orthogonal to

Hz' Find the Gaussian quadrature formula for this case, i.e.,, n =3, w(t) =1, a = -1,
b=+1.

. Define

1
(z.y) =/ z(t)y(t)(1 — ¢7) 7/ dt

-1
Verify that this improper integral converges whenever z and y are continuous functions on
the interval [—1,1]. Accepting the fact that the Chebyshev polynomial T3(t) = 4t3 —3t is
orthogonal to ﬂz, find the Gaussian quadrature formula in this case. Hint: T3(cos 6) =
cos 36. Use the change of variable t = cos6 to facilitate the work.

. Consider this 2-point boundary value problem:

g’ = (a2 +1)71? z(0) =0 (1) =1

By using Theorem 2, show that the problem has a unique solution in the space in CJ0, 1].

. Prove that the general second-vrder linear differential equation

ur” + v’ vwzr=f

can be put into Sturm-Liouville form, assuming that u > 0, by applying an integrating
factor exp f(v —u')/u.

. Prove that fol |G(t,9)|ds = }.

. Find the Green’s function for the problem

' = f(t,z) 0<t<1
z(0) =0

Prove that it is correct.

Prove that if z € C[0, 1] and if z satisfies the integral relation (6), in which f is continuous,
then z € C2(0,1].

Prove that this two-point boundary value problem has no solution:
! +z=0 z(0) =3 T(n) =7

Convert the two-point boundary value problem in Problem 11 to an equivalent homoge-
neous problem on the interval [0, 1], and explain why Theorem 2 and its corollary do not

apply.
An integral equation of the form

z(t) + fK(LS)f(s,I(S))ds =(t)
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is called a Hammerstein equation. Show that it can be written in the formz+AFz = v,
where A and F are respectively a linear and a nonlinear operator defined by

b
(Az)(t) =/ K(t,s)x(s)ds (F(x))(t) = f(t,z(t))

(Continuation) Show that the boundary-value problem
z"(t) + g(z(t)) = v(t) z(0)==z(1) =9

is equivalent to a Hammerstein integral equation.

Consider the initial-value problem
" +ur’ +vz=f z(0)=a, z'(0)=2 (t=20)

Show that this is equivalent to the Volterra integral equation
t
z(t) + / K(t, s)x(s)ds = f(t) — Bu(t) — av(t) — Stv(t)
0

in which K (t,s) = u(t) + v(t)(t — s).

For what two-point boundary-value problem is this the Green’s Function?

g(s,t):min{s,t}—%st 0<s,t<1

Prove that if ug =0 and Liu =0fori=1,2,..., then u; = ia for a suitable constant a.
(Refer to the proof of Theorem 3, page 218, for definitions.)

Write down the fixed-point problem that is equivalent to the boundary-value problem in
Equation (11), page 217. Take one step in the iteration, starting with yg(t) = 0. Check
your answer against ours: y;(t) = 2[et + (1 —e)t—1].

Consider a numerical integration formula

b n
/ z(tw(t)dt Y Agz(ts)

i=1

Assume that w is positive and continuous on [a,b]. Assume also that ¢; are n distinct
points in {a, b]. Prove that the formula gives correct results for “most” functions in Cfa, b}.
Interpret the word “most” in terms of dimension of certain subspaces.

Prove that the following two-point boundary-value problem has a continuous solution
and that the solution satisfies z(t) = z(1 —¢t):

z’'(t) = sin(z — ¢t)sin(z +t — 1) z(0) =z(1) =0 0<t<l)

4.8 Descent Methods

Here, as in the Rayleigh-Ritz method, we assume that a problem confronting us
has been somehow recast as a minimization problem. Assume therefore that a
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functional ® : K — R is given, where K (the domain of ®) is a subset of some
Banach space X. Usually & is nonlinear. Let

(1) p = inf &(z)
We admit the possibility that p = —oo. The objective is to find a point zg in K
that yields

d(x0) = p

It is obvious that many problems of best approximation are of this nature;
in such problems ®(x) would be the distance between x and some element z that
was to be approximated. The domain of & would typically be a linear subspace
consisting of all the approximants.

Another familiar problem that can be recast as a minimization problem is
the two-point boundary value problem for a Sturm-Liouville equation. When
the Rayleigh-Ritz method is applied, we seek a minimum of the functional

b
<I>(a:)=/ [p- (&) +q 2°+2f 2]

In the calculus of variations, similar functionals are encountered. For ex-
ample, in the “brachistochrone” problem (page 153),

(z) =/0°[1+(I,)2]1/2(2gz)-1/2

A goal somewhat more modest than finding the minimum point is to gen-

erate a minimizing sequence for ®. That means a sequence T, Z,... in K
such that
(2) lim ®(zx) =p

k—o0

The sequence itself may or may not converge.

Theorem 1. A lower semicontinuous functional on a compact set
attains its infimum.

Proof. Recall that lower semicontinuity of & means that each set of the form
K= {z € K:®(z) <A}
is closed. If A > p, then K is nonempty. The family of closed sets {K) :

A > p} has the finite-intersection property (i.e., the intersection of any finite
subcollection is nonempty). Since the space is compact,

n{K,\Z/\>P}#@

(see [Kel]). Any point in this intersection satisfies the inequality ®(z) < p. 8
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The preceding theorem can be proved also for a space that is only count-
ably compact. This term signifies that any countable open cover of the space
has a finite subcover. ([Kel] page 162). A consequence is that each sequence
in the space has a cluster point. Let =, be chosen so that ®(z,) < p + 1/n.
Let z* be a cluster point of the sequence [z,]. Then ®(z*) < p. Indeed, if
this inequality is false, then for some m, ®(z*) > p + 1/m. Since ® is lower
semicontinuous, the set

O={z:®d(z)>p+1/m}

is a neighborhood of z*. Since z* is a cluster point, the sequence [z,,] is frequently
in O. But this is absurd, since £y, Tm+y,... lie outside of .

A standard strategy for proving existence theorems consists of the following
three steps:

I. Formulate the existence question in terms of minimizing a functional ® on

aset K.

II. Find a topology 7 for K such that K is r-compact and ® is t-lower-
semicontinuous.
III. Apply the preceding theorem.

(The two requirements on the topology are in opposition to each other.
The bigger the topology, the more difficult it is for K to be compact, but the
easier it is for ® to be lower semicontinuous.) Examples of this strategy can be
given in spectral theory, approximation theory, and other fields. Here we wish to
concentrate on methods for constructing a minimizing sequence for a functional
d.

If ® is a functional on a normed space X, and £ € X, then the Fréchet
derivative of ® at £ may or may not exist. If it exists, it is an element ®'(x) of
X* and has the property

(3) &(z+ h) — &(z) - ¥'(x)h = o(h)  (h € X)

These matters are discussed fully in Chapter 3. The linear functional ®'(z) is
usually called the gradient of ® at =. In the special case when X = R", and

T = (611521 . ")Eﬂ)v h= (7)177)27‘“17)11)1 it has the form

(1) Y@h=3 Son  heR"
i=1 i

If ®'(z) exists at a specific point z, then for any h € X, we have

(5) Loz + th)], o = ¥(@)h

Indeed, by the chain rule (Section 3.2, page 121),
%Q(z + th) = @'(z + th)h

The left-hand side of Equation (5) is called the directional derivative of ® at
z in the direction h. The existence of the Fréchet derivative is sufficient for the
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existence of the directional derivative, but not necessary. (An example occurs
in Problem 2.) The mapping

d
h+— (—Etb(z + t‘h)|t=0

is called the Gateaux derivative. (The mathematician R. Gateaux was killed
while serving as a soldier in the First World War, September 1914.)

If, among all h of norm 1 in X, there is a vector for which ®'(z)h is a
maximum, this vector is said to point in the direction of steepest ascent. Its
negative gives the direction of steepest descent. These matters are most easily
understood when X is a Hilbert space. Suppose, then, that ® is a functional
on a Hilbert space X and that &’(z) exists for some point x. By the Riesz
representation theorem for functionals on a Hilbert space, the functional ®'(x)
is represented by a vector v in X, so that ®'(z)h = (h,v). If “h” = 1, then by
the Cauchy-Schwarz inequality,

(h,v) < (R, v)[ < || [fol] = |||l

We have equality here if and only if h is taken to be v/ Hv” Thus the (unnor-
malized) direction of steepest ascent is v.

An iterative procedure called the method of steepest descent can now
be described. If any point z is given, the direction of steepest descent at z is
computed. Let this be v. The functional ® is now minimized along the “ray”
consisting of points = + tv, t € R. This is done by a familiar technique from
elementary calculus; namely, we solve for ¢ in the equation

d
—& -
@ (r+tv)=0
If the aBpropriate t is denoted by t~, then the process is repeated with x replaced

by z + tv.
These matters will now be illustrated by a special but important problem,
namely, the problem of solving the equation

(6) Az =b

in which A is a positive definite self-adjoint operator on a real Hilbert space X,
and b € X. In symbols, the hypotheses on A are that

(7 (Az,y) = (z, Ay)

(8) (Az,z) >0 if #0
For this problem, we define the functional

(9) &(z) = (Az — 2b,x)

Theorem 2. Under the hypotheses above, a point y satisfies the
equation Ay = b if and only ify is a global minimum point of ®.
Proof. Let x be an arbitrary point and v any nonzero vector. Then
&(z + tv) = (Az + tAv — 2b,z + tv)
(10) = (Az — 2b,x) + t{Az — 2b,v) + t(Av, z) + t?(Av,v)
= &(x) + 2t(Az — b,v) + t*(Av,v)



Section 4.8 Descent Methods 229

The derivative of this expression, as a function of t, is
d
(11) EZ(P(I + tv) = 2(Azx — b,v) + 2t(Av,v)

The minimum of ®(z + tv) occurs when this derivative is zero. The value of ¢
for which this happens is

(12) t=(b— Az,v)(Av,v)"!
When this value is substituted in Equation (10) the result is
(13) Oz + tv) = B(x) — (b — Az, v)2(Av,v)™!

This shows that we can cause ®(z) to decrease by passing to the point = + tv,
except when b — Az 1v. If b— Az # 0, then many directions v can be chosen for
our purpose, but if Az = b, we cannot decrease ®(z). (]

In the problem under consideration, the directional derivative of ® is ob-
tained by putting t = 0 in Equation (11):

d
(14) acb(z + tv) o= 2(Azx — b,v)

It follows that the direction of steepest descent is the residual vector 7 = b— Az.
(Positive scalar factors can be ignored in specifying a direction vector.) The
algorithm for steepest descent in this problem is therefore described by these
formulas:

(15) Th =b— Azp, tn = {rn,Tn)/(ATn,T0) Tptl = Tn + taTn

Since the method of steepest descent is not competitive with the conjugate
direction methods on this problem, we will not go into further detail, but simply
state without proof the following theorem. See [KA], pages 606—608.

Theorem 3. If A is self-adjoint and satisfies

inf (Az,z) >0
llz]l=1

then the steepest-descent sequence in Equation (15) converges to the
solution of the equation Az = b.

There is more to this theorem than meets the eye, because the hypotheses on
A imply its invertibility, and consequently the equation Ax = b has a unique
solution for each b in the Hilbert space. See the lemma in Section 4.9, page 234,
for the appropriate formal result.
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Example. We consider the problem Az = b when

1 2 3
a=[a 3] e-[i]
How does the method of steepest descent perform on this example? We prefer
to let Mathematica do the work, and give it these inputs:

A={{1..2.},{2..5.}}

b=(3.,1.}
Inverse[A]
%.b

The output is A~' = [°, 7?] and the solution, z = (13,~5)7. Next, we
program Mathematica to compute 10 steps of steepest descent, starting at z =
(0,0). The following input accomplishes this.

x=(0.,0.}

Do[r=b-A.x;Print[r];phi=-x. (r+b);Print(phij;

t=(r.r)/(r.A.r)};yex+t r;x=y;Print(x],{10}]

After 10 steps, the output is z = (5.7, -1.7) and ® = —22.4587. Since the
solution is z° = (13,-5) and ® = —34, the algorithm works very slowly. Of
course, with some starting points, the solution will be obtained in one step.
Such starting points are z* + sv, for any eigenvector v. Here are Mathematica
commands to compute eigenvectors of A:

A={{1..2.},{2.,5.}}

Eigenvectors[N[A]]
If we start the steepest descent process at a remote point such as z* + 100v, the
first step (carried out numerically) gives a point very ciose to z*. The contours
{ievel sets} of ® for this example are shown in Figure 4.1.

0F

0 5 10 15 20
Figure 4.1
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Problems 4.8

. Refer to Equation (13) and discuss the problem of determining v so as to maximize

(b— Az, v)?(Av,v)"}

The solution should be, of course, v = g — = (or a multiple of it), where o = A~ 1b.

. Define f : R2 -» R by putting f(z,y) = 0if z = 0 and f(z,y) = zy?(z2+y*) ! otherwise.

Prove that f has a Gateaux derivative at 0 in every direction, but that f’(0) does not
exist. Show, in fact, that f is discontinuous at 0.

. Denote by C2 the linear space of all continuous real-valued functions on [0,1] with

Li-norm. Prove that point—evaluation functionals are discontinuous on C2. A point-
evaluation functional is of the form t* for some t € [0,1], where t*(z) = z(t) for all
z € C2. Does t* have a directional derivative?

. What is the direction of steepest descent for the function

®(z) = £ +sin(€:1£2) + expéa z = (€1,£2,83)

at the point (1,2, 3)? Does this function attain its minimum on R3?

. Let A be a bounded linear operator on a real Hilbert space X. How does the functional

¥(z) = ||Az - b)|°

behave on a ray z + tv? Where is the minimum point on this ray, and what is the
minimum value of ® on this ray? What is the direction of steepest descent? What are
the answers if A is self-adjoint?

. A functional & is said to be convex if the condition 0 < A < 1 implies

S(Az + (1 — A)y) < Ad(z) + (1 - N)d(y)

for any two points z and y. Is the functional z — (Az—2b,z) convex when A is Hermitian
and positive definite?

. Let A be any bounded linear operator on a Hilbert space, and let H be a positive definite

Hermitian operator. Put
®(z) = (b - Az, H(b — Az))

Discuss methods for solving Az = b based upon the minimization of ®. Investigate the
equivalence of the two problems, give the Gateaux derivative of ¥, and derive the formula
for steepest descent. In the latter, the method of Lagrange multipliers would be helpful.
Determine the amount by which ®(z) decreases in each step.

. What happens to the theory if the coefficient 2 is replaced by 1 in Equation (9)?

. Prove that when the method of steepest descent is applied to the problem Az = b the

minimum value of ® is —(z, b), where z is the solution of the problem.

Let the method of steepest descent be applied to solve the equation Az = b, as described
in the text. Show that

Zn+2 =Zn + (tn +tnt1)rn —tntns1 Ar,
rat1 = (I —tnA)rn

Prove that if v is an eigenvector of A and if Azg = b, then the method of steepest descent

will produce the solution in one step if started at zg + sv.

Let A be a bounded linear operator on a complex Hilbert space. We assume that A is
self-adjoint and positive definite. Prove that if Azg = b, then zo minimizes the functional

&(z) = (Az,z) - (x,b) - {b,2)



232 Chapter 4 Basic Approximate Methods in Analysis

13. Let f : R = R be continuous. Let g(t) = f(t) everywhere except at t = 0, where we
define g(0) = f(0) — 1. Is g lower semicontinuous? Generalize.

14. Prove that the method of steepest descent, as given in Equation (15), has this property:

b(@n) = Banss = [Irall*/]1 41

Show that if b is not in the closure of the range of A, then ®(zn) — —oo.

15. Prove that if infj;||=) (AZ, ) = m > 0, then the method of steepest descent (described
in Equation (15)) has this property:

®(zn) - B(@n+1) < [Irall?/m

16. In the method of steepest descent, we expect successive direction vectors to be orthog-
onal to each other. Why? Prove that this actually occurs in the example described by
Equation (15).

17. In the method of steepest descent applied to the equation Az = b, explain how it is
possible for ® to be bounded below on each line yet not bounded below on the whole
Hilbert space.

18. Use the definition of Gateaux derivative given on page 228 or in Problem 3.1.21 (page
120) to verify that Equation (5) gives the Gateaux derivative of &.

4.9 Conjugate Direction Methods

In this section we continue our study of algorithms for solving the equation
(1) Az =b

assuming throughout that A is an operator on a real Hilbert space X. Later, the
application of these methods to general optimization problems will be considered.

Recall (from Theorem 2 in the preceding section, page 228) that when A is
self-adjoint and positive definite, solving Equation (1) is equivalent to minimizing
the functional

(2) ®(z) = (Az — 2b, )

A general descent algorithm goes as follows. At the nth step, a vector z,, is avail-
able from prior computations. By means of some strategy, a “search direction”
is determined. This is a vector v,. Then we let

(3) Tnel = In + vy an = (b— Azp,vn)/{Avp, vy)

Formula (3) ensures that ®(r,+;) will be as small as possible when ,4; is
restricted to the ray z, + tv,.

In this algorithm, considerable freedom is present in choosing the search
direction v,. For example, in the method of steepest descent, v, = b — Azy,.
We shall discuss an alternative that has many advantages over steepest descent.
One advantage is that the idea of searching for a minimum value of a functional
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is abandoned, and we retain only the algorithm in Equations (3). The operator
(or matrix in the finite-dimensional case) need not be self-adjoint or positive
definite. Finally, the direction vectors v, are subject to weaker hypotheses.

First some definitions are needed. For an operator A, a sequence of vectors
v1,Vs,... in X is said to be A-orthogonal if

(4) (vi, Avj) =0 when i #j

This new concept reduces to the familiar type of orthogonality if A is the identity
operator. The descent algorithm (3) is called a conjugate direction method
if the search directions vy, v2,... are nonzero and form an A-orthogonal set.

A slightly stronger hypothesis is that our set of vectors v; is A-orthonormal,
meaning that the condition (v;, Av;) = 6;; is fulfilled. The formula for a, in
Equation (3) is then simpler.

Theorem 1. In the conjugate direction algorithm (3), using an
A-orthonormal set of direction vectors, each residual v, = b — Az, is
orthogonal to all the previous search directions vi,..., 1.

Proof. Letr, =b— Azr,. We wish to prove that

(5) Th LU),V2,...,0n (n=2,3,...)

First we observe that

(6) Tngl = b— Azpy) = b— A(Tn + anvn) = 1y — an Av,
Consequently, by the definition of a,, we have

(7 (r2,v1) = (1, v1) — a1 (Avy,v) = (r,v1) — (M, 01) =0

Now assume that Equation (5) is true for a certain index n. In order to prove
Equation (5) for n + 1, let 1 €7 < n and use Equation (6) to write

(8) (Pag1,03) = (rn,v:i) — an(Avn, v;)

For i < n, both terms on the right side of Equation (8) are zero. For i = n the
definition of a, shows that the right side is zero, as in Equation (7). (]

Corollary. Let A be an m x m matrix. Let {v;,...,vm} be an A-
orthonormal set of vectors. Then the conjugate direction algorithm (3)
produces a solution to the problem in (1) no later than the (m + 1)st
step. Thus Az;,4 = b.

Proof. By the preceding theorem, rm4; L {v1,...,Um}. But this set of m
vectors is linearly independent, because

m
<ZCJ“UJ',AU,‘> = Ci(‘U,', A‘Ui) = Cy§
j=1

Hence 41 = 0. Thus b — Az, = 0. [ |
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Lemma. If A is an Hermitian operator on a Hilbert space and
satisfies the inequality

o el > mllell (>0
then A is invertible, and ||A~!|| < 1/m.

Proof. (The techniques of this proof were used previously, in Theorem 3 of
Section 4.5, page 201.) Recall from Theorem 3 of Section 2.3 (page 84) that the
Hermitian property implies continuity and self-adjointness. In order to prove
that the range of A, R(A), is closed, let {yn) be a convergent sequence in R(A).
Write y, = Az, and y, — y. Then [y,] has the Cauchy property. By using (9)
we get
m|zn = 2| < [|[A(zn = 2| = [[yn — ym|
This shows that [z,] is a Cauchy sequence. Hence T, — z for some z. By the
continuity of A, y, = Az, = Az, and y = Az € R(A).
Next we observe that R(A)+ = 0. Indeed, if y € R(A)* then for every z,

(Ay,z) = (y,Az) =0
This implies that Ay = 0, and then y = 0 by Inequality (9). Since R(A) is
closed and R(A)* = 0, we infer that R(A) = X. Since the null space of 4 is 0,
A~! exists as a (possibly unbounded) operator: But if y = Az, then
91l = [|4=z]| > ml|z]| = m{|A~"y]]
whence |41y < . .

Theorem 2. Let A be a self-adjoint operator on a Hilbert space X.
Assume that

(10) m|z|’ < (z, Az) < M|[z||*  (m>0)

Let vq,va,... bean A-orthonormal sequence whose linear span is dense
in X. Then the conjugate direction algorithm

(11) Tnt1 = Tn + (Un, b — Azn)vn

produces a sequence that converges to A~'b from any starting point
I.

Proof. (After [Lue2]) Putting an = (vn,b— Az,), we have, from Equation
(11),

T2 =T +a1v;
T3 = Tp + vz = T1 + V) + Qav2

and so on. Thus, in general,

(12) Tp— Ty = a1V1 + X202 + -+ + QU1
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From Equation (12) and the A-orthogonal property,
(13) (xn — x1, Avp) = 0 = (Azn — ATy, V)
From the definition of a, and Equation (13), we get
an = (Un,b— Azxp) = (v, b— Azy — Az, + AT))
= (Un,b— A7) = (vn, A(A™10 - 17))

This shows that the right side of Equation (12) represents the partial sum of the
Fourier series of A~1b — 11, if we use for this expansion the inner product

(z,4] = (z, Ay)

These two inner products lead to the same topology on X because of Equation
(10). Hence z, — 1, = A™1b— z;. (]

In the conjugate direction algorithm, there is still some freedom in the choice
of the direction vectors v;. In the conjugate gradient method, these vectors
are generated in such a way that (for each n) z, minimizes ® on a certain
linear variety of dimension n — 1. The conjugate gradient algorithm appears in
a number of different versions. For a theoretical analysis of the method, this
version seems to be the best:

I. To start, let z; be arbitrary, and define v; = b — Az;.

II. Given z,, and v,, we set
(14) zTp41 =T + anvp an = (b — ATn, vp) (vp, Ava) ™!

(15) Un4l = b—- Azn+l - ﬁnvn ,Bn = (b - A$n+1- Avn)(vnyAvn)—l

Theorem 3. Let A be a self-adjoint operator on a Hilbert space.
Assume that for some positive m and M,

(16) m“:::“2 < (z, Ax) € M“a:”2

Then the sequence (z,] generated by the conjugate gradient algorithm
converges to A~1b.

Proof. Throughout the proof, the nth residual is defined to be
(17) rn = b— Az, n=1,23,...

It follows that

(18) T+l = b— AZpnt1 = b — A(Zp + anvy) = rn — anAv,
First we establish two orthogonality relations:

(19) (rn+1» vn) =0 n= 1,2,..‘
(20) (Un+1,Avn)=0 n=l,2,...
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These are consequences of formulas (18), (14), and (15), as follows:

(rn+ls Un) = (rn — apAvy, vn) = (rna vn) — Qq (A'Un, vn)
= (rﬂv Un) - (Tm vn> =0
(Un+1, AVn) = (Tnt1 — Onn, AVy) = (Tny1, AUn) = Bn(vn, Avy)
=(

Tnt+1, AUn) — (Tat1, Avp) =0

Define a sequence e, by the equation

-1

€n = (TnyA Tn)

From this we have
(21) en = (AA7r,, A7) > m”A"lrnn2
Using Equation (18) we can express e,4+; as follows:

ent1 = (Tn+1, A7 o)
= (rn — anAuy, A_l(rn — apAvy))
= (rn — anAUm A7'ry ~ anvy)
= (rn Tn) "Qn(AUmA_lrn)-an(rn,Un)+a (Avq,vy)
=é€n Qn(vm Tn) = @n(Un, Tn) +Qn(Vn, Tn)
= ~ an(Un,Tn)

= en[l ~ an(Vn,Tn /en]

In order to show that e, converges geometrically to zero, it suffices to prove that
the bracketed expression in the previous equation is less than 1 —m/M. We will
prove two inequalities that accomplish this objective, namely

(22) an > 1/M
(23) (vn,Tn)/en =2 m
From Equations (15) and (19) we have
(24) (rn,vp) = (TnsTn = Bn—1Vn-1) = (Tmrn)
Equation (21) and the Cauchy-Schwarz inequality imply that
- 2 - -
ml|A™ ra]|” < (A7 ) < [|A7 7| (7|

This leads to m||A~'r,|| < “rn“ Inequality (23) now follows from

men = m(rn, A7 1) < ml|ral] |47 rall < [|rall® = (ray7a) = (n,70)
To prove Inequality (22), we start with Equation (15), written in the form

Tn = Un + Bn_1Un—1
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From this we conclude that
(Tny ATn) = (Un + Bn-1Vn-1, A(Vn + Bn_1n-1))
Since (vn_1, Av,) = (Avn_1,v,) = 0 by Equation (20), we obtain
(rny ATn) = (Un, AUn) + B2_ ) (Un-1, AVn_1) > (tn, Avs)
Thus, using (16) and (24) we have
(Un, Avp) € (n, Ary) S M(rp,70) = M(rn, vn)

Hence
an = (rnvvn)(vm Aun)_l > l/M

At this stage, we have established that
m
€nt1 S (1 - "_)en

Consequently, e, — 0. From Inequality (21) we conclude that A~!r, — 0, or
A b —z, 0. [

Problems 4.9

1. Let A be an m x m matrix that is symmetric and positive definite. Let U be an m x m
matrix whose columns form an A-orthonormal set. Prove that UTAU = 1.

2. Let Abeanmxm symmetric matrix such that (z,Az) # 0 when« 3 0. Let {u1,...,um}
be a basis for R™. Define v; = u; and

u, , Av
Vk4+1 = Ug4y — Z( kt1 ') Ui (k=112v"'1m—1)

{vi, Av;)
Prove that {vi,v2,...,um} is an A-orthogonal basis for R™.
3. Show that if A is an m x m symmetric positive definite matrix and if {v1,...,um} is an

A-orthonormal set, then the solution of Az =bisz = Z;’;](b, ;).

4.10 Methods Based on Homotopy and Continuation

In this section we address the problem of finding the roots of an equation
or the zeros of a mapping

(1) f(z)=0

Here f can be a mapping from one Banach space to another,say f: X — Y.
This problemisso general that it includes systems of algebraic equations, integral
equations, differential equations, and so on. We will describe a tactic called the
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continuation method for attacking this problem. The discussion is adapted
from that in [KC].

The fundamental idea of the continuation method is to embed the given
problem in a one-parameter family of problems, using a parameter t that runs
over the interval [0,1]. The original problem will correspond to t = 1, and
another problem whose solution is known will correspond to t = 0. For example,
we can define

(2) h(t,z) = tf(z) + (1 - t)g(z)

The equation g(z) = 0 should have a known solution. The next step is to select
points to,t;,... such that

O=to<t) <tg<:--- <t =1

One then attempts to solve each equation h(ti,z) = 0, (0 < i < m). Assuming
that some iterative method will be used (such as Newton’s method), it makes
sense to use the solution at the ith step as the starting point in computing a
solution at the (¢ + 1)st step.

This whole procedure is designed to cure the difficulty that plagues Newton’s
method, viz., the need for a good starting point.

The relationship (2), which embeds the original problem (1) in a family of
problems, is an example of a homotopy that connects the two functions f and
g. In general, a homotopy can be any continuous connection between f and g.
Formally, a homotopy between two functions f,g: X — Y is a continuous map

(3) h:[0,1]x X 2Y

such that h(0,z) = g(z) and h(1,z) = f(z). If such a map exists, we say that f
is homotopic to g. This is an equivalence relation among the continuous maps
from X to Y, where X and Y can be any two topological spaces.

An elementary homotopy that is often used in the continuation method is

h(t,z) = tf(z) + (1 — t)[f(z) = f(z0)]

(4)
= f(z) + (t — 1)f(z0)
Here ¢ can be any point in X, and it is clear that zo will be a solution of the
problem when t = 0.

If the equation h(t,z) = 0 has a unique root for each t € [0, 1], then that
root is a function of t, and we can write z(¢) as the unique member of X that
makes the equation h(t,z(t)) = O true. The set

(5) {z(t) : 0<t<1}

can be interpreted as an arc or curve in X, parametrized by t. This arc starts
at the known point z(0) and proceeds to the solution of our problem, z(1).
The continuation method determines this curve by computing points on it,
z(to),z(t1),...,z(tm).
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If the function t — z(t) is differentiable and if h is differentiable, then the
Implicit Function Theorems of Section 3.4, pages 136ff, enable us to compute
z'(t). By following this idea, we can describe the curve in Equation (5) by a
differential equation. Assuming an arbitrary homotopy, we have

(6) 0 = h(t,z(t))
Differentiating with respect to ¢, we obtain
(7) 0 = hy (L, z(t)) + ha(t, z(t))2'(t)

in which subscripts denote partial derivatives. Thus

®) 2(0) = ~[a(t.2)] i (t,2)

This is a differential equation for z. Its initial value is known, because z(0) has
been assumed to be known. Upon integrating this differential equation across
the interval 0 < t < 1 (usually by numerical procedures), one reaches the value
z(1), which is the solution to Equation (1).

Example 1. Let X =Y = R?, and define

i 2 _3
sin; +e J = (61.6) € R

fle) = [(éz+3)2—el—4

A convenient homotopy is defined by Equation (4), and we select the starting
point zo = (5,3). The derivatives on the right side of Equation (8) are computed
to be

2
hy = f'(z) = [Cojfl 2;: +6]

YRR

where @ = sin5 + €3 — 3 and b = 27. The inverse of f'(z) is

1 [26+6 —ef2
[ b2 ] A = 2(&3 + 3) cosé; + €52

[F@)™ =%

1 cos &

The differential equation that controls the path leading away from the point z is
Equation (8). In this concrete case it is a pair of ordinary differential equations:

§)_-1[2%6+6 —ef2 ] [a _:_1[2a(€2+3)—be52}
[ﬁé} A [ 1 COS£1] [b} T A a+beos

When this system was integrated numerically on the interval 0 < ¢t < 1, the
terminal value of z (at t = 1) was close to (12, 1). In order to find a more
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accurate solution, we can use Newton’s iteration starting at the point produced
by the homotopy method. The Newton iteration replaces any approximate root
z by x — 4, the correction § being defined by

§=[f'(@)] " f=)

(These matters are the subject of Section 3.3, beginning at page 125.) In the

current example, the vector 9 is

)

R

1 cos )

A

—eb2

} [ siné; + €2 -3
(

£24+3)2 & —4

Five steps of the Newton iteration produced these results:

& &2
= 12.000000000000000000 1.0000000000000000000
= 12.691334908752890571 1.0864168635941113213
12.628177397290770959 1.0777753827891591357

12.628268254380085321
12.628268254564651450

1.0777773669468545670
1.0777773669690025700

1.0777773669690025700

Ll R
I o
TV LN = O

12.628268254564651450

The curve {z(¢t) : 0 <t < 1} is shown in Figure 4.2

3 \

2 \)
;

6 8 10 12
Figure 4.2

In an example such as this one, the differential equation need not be solved
numerically with high precision, because the objective is to end at a point near
the solution—in fact, near enough so that the classical Newton method will
succeed if started at that point.

A formal result that gives some conditions under which the homotopy
method will succeed is as follows. This result is from [OR].

Theorem. If f : R® — R" is continuously differentiable and if
“f'(:c)"lu is bounded on R", then for any g € R™ there is a unique
curve {z(t) : 0 < t < 1} in R™ such that f(z(t)) + (t — 1) f(zo) = 0,
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0 < t < 1. The function t — z(t) is a continuously-differentiable
solution of the initial value problem =’ = — f'(x)~! f(z¢), z(0) = zo.

Another way of describing the path x(t) has been given by Garcia and Zangwill
[GZ). We start with the equation h(t,z) = 0, assuming now that £ € R™ and
t € [0,1). A vector y € R™*! is defined by

y= (L{ly{?v"'v&ﬂ)

where &,,&2,... are the components of z. Thus our equation is simply h(y) =
0. Each component of y, including t, is now allowed to be a function of an
independent variable s, and we write h(y(s)) = 0. Differentiation with respect
to s leads to the basic differential equation

9) h'(y)y'(s) =0

The variables s and t start at 0. The initial value of z is z(0) = z¢. Thus
suitable starting values are available for the differential equation (9).

Since f and g are maps of R™ into R™, h is a map of R**! into R*. The
Fréchet derivative h'(y) is therefore represented by an n x (n + 1) matrix, A.
The vector y’(s) has n+ 1 components, which we denote by n},n3,...,%,4,- By
appealing to the lemma below, we can obtain another form for Equation (9),
namely

(10) nj=(-1Ydet(4;) (1<j<n+1)

where A; is the n x n matrix that results from A by deleting its jth column.
Let us illustrate this formalism with a problem similar to the one in Example 1.

Example 2. Let f be the mapping

6]2 - 35% +3 2
@)= | z=(61,6) €R
£1&2+6
We take the starting point £g = (1,1) and use the homotopy of Equation (4).
Then
£2-32+2+t
h(t,z) =
&2 —-1+Tt
The differential equation (9) is given by
tl

1 26 667 0
(11) [ [e] = 1ol

7T &L & 0

&

It is preferable to use Equation (10), however, and to write the differential
equations in the form

t' = —(26} + 6€3) t(0)=0
(12) & =& + 426 & (0
& =—(&—-146)  &(0
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The derivatives in this system are with respect to s. Since we want ¢ to run from
0 to 1, it is clear (from the equation governing t) that we must let s proceed
to the left. Alternatively, we can appeal to the homogeneity in the system, and
simply change the signs on the right side of (12). Following the latter course,
and performing a numerical integration, we arrive at these two points:

s=087, t= 969, £ =-294, € =197
s=088, t=1010, £ =-302, £ =201

Either of these can be used to start a Newton iteration, as was done in Example
1. The path generated by this homotopy is shown in Figure 4.3. []

-3 - 01 \-‘_/1
Figure 4.3

A drawback to the method used in Example 2 is that one has no a priori knowl-
edge of the value of s corresponding to t = 1. In practice, this may necessitate
several computer runs.

Lemma. Let A beannx (n+ '1) matrix. A solution of the equation
Az = 0 is given by x; = (—1)’ det(A;), where A; is the matrix A
without its column j.

Proof. Select any row (for example the ith row) in A and adjoin a copy of it
as a new row at the top of A. This creates an (n + 1) x (n + 1) matrix B that
is obviously singular, because row i of A occurs twice in B. In expanding the
determinant of B by the elements in its top row we obtain

n+l n+1

O=detB= Y (-1)a;;det(4;) = Y _ ayz;
j=1 j=1

Since this is true for i = 1,2,...,n, we have Az = 0. [}

The connection between the homotopy methods and Newton's method is
deeper than may be seen at first glance. Let us start with the homotopy

h(t,z) = f(z) — e™* f(zo)

In this equation ¢t will run from 0 to co. We seek a curve or path, £ = z(t), on
which
0= h(t,z(t)) = f(z(t)) — e f(xo)
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As usual, differentiation with respect to t will lead to a differential equation
describing the path:

(13) 0= f(2(6))'(t) + e™* f(z0) = £ (z(0)) 7' (t) + f(x(t))

(14) 2'(t) = - £ (2(t) " £ (2(t))

If this differential equation is integrated using Euler's method and step size 1,
the result is the formula

Tnyl = Tn — fl(zn)—lf(zn)

This is, of course, the formula for Newton’s method. It is clear that one can
expect to obtain better results by solving the differential equation (14) with
a more accurate numerical method (incorporating a variable step size). These
matters have been thoroughly explored by Smale and others. See, for example,
[Sm].

Application to Linear Programming. The homotopy method can be
used to solve linear programming problems. This approach leads naturally to
the algorithm proposed in 1984 by Karmarkar [Kar]. In explaining the homotopy
method in this context, we follow closely the description in [BroS].

Consider the standard linear programming problem

Tz

maximize c
(15) {

subject to Az =bandz >0

Here, c € R*, z € R®*, b € R™, and A is an m x n matrix. We start with a
feasible point, i.e., a point z° that satisfies the constraints. The feasible set

is
F={zeR" : Ar=b and >0}

Our intention is to move from z° to a succession of other points, remaining
always in F, and increasing the value of the objective function, cTz. It is
clear that if we move from z° to z!, the difference ! — £° must lie in the null
space of A. We shall try to find a curve t — z(t) in the feasible set, starting at
29 and leading to a solution of the extremal problem. Our requirements are

(i) z(t) =0 fort >0

(ii) Az(t)=b fort>0

(iii) cTz(t) is increasing for t > 0.
The curve will be defined by an initial-value problem:

(16) ' =F(x) z(0)=z°

The task facing us is to determine a suitable F. In order to satisfy condition (i),
we shall arrange that whenever a component z; approaches 0, its velocity z}(t)
shall also approach 0. This can be accomplished by letting D(z) be the diagonal

matrix
I 0

D(z) = 2

0 Tn
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and assuming that for some bounded function G,

(17) F(z)= D(z)G(z)

If this is the case, then from Equations (15) and (17) we shall have
z) = z;Gi(z)

and clearly z; — 0 if -; - 0.

In order to satisfy requirement (ii), it suffices to require Az’ = 0. Indeed,
if Az’ =0 then Az(t) is constant as a function of t. Since Az(0) = b, we have
Az(t) = b for all t. Since 2’ = F = DG, we must require ADG = 0. This is
most conveniently arranged by letting G = PH, where H is any function, and
P is the orthogonal projection onto the null space of AD.

Finally, in order to secure property (iii), we should select H so that ¢Tz(t)
is increasing. Thus, we want

0< %(cTz(t)) =cTe' =cTF(z) =" DG = " DPH

A convenient choice for H is Dc, for then we have, (using v = Dc),

¢ DPH =cTDPDc = vT Pv = (v, Pv)
= (v — Pv+ Pv, Pv) = (Pv, Pv) 20

Notice that v — Pv is orthogonal to the range of P, and (v — Pv, Pv) = 0.
The final version of our initial-value problem is

(18) ' = D(z)P(z)D(z)c  z(0) = 2°
The theoretical formula for P is
(19) P=1-(AD)T[(AD)(AD)T]"'AD

The validity of this depends upon B = AD having full rank, so that BBT will
be nonsingular. This will, in turn, require x; > 0 for each component. Thus the
points z(t) should remain in the interior of the set

{z :z20}

In particular, z° should be so chosen. In practice, Pv is computed not by (19)
but by solving the equation BBTz = Bv and noting that

Pv=v-BT;

As mentioned earlier, the initial-value problem (18) need not be solved very
accurately. A variation of the Euler Method can be used. Recall that the Euler
Method for Equation (16) advances the solution by

z(t + 0) = z(t) + 6z'(t) = =(t) + S F(z)
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Using this type of formula, we generate a sequence of vectors z°,z!,... by the
equation

! = gk 4 6, F(zF)

Although it is tempting to take ) as large as possible subject to the requirement
z**! € F, that will lead to a point z¥*! having at least one zero component.
As pointed out previously, that will introduce other difficulties. What seems to
work well in practice is to take dx approximately 9/10 of the maximum possible
step. This maximum step is easily computed; it is the maximum A for which
zF*! > 0. (The constraint Az = b is maintained automatically.)

Problems 4.10

. Solve the system of equations

z-2y+y?+1P—d=—z-y+22-1=0

by the homotopy method used in Example 2, starting with the point (0,0). (All the
calculations can be performed without recourse to numerical methods.)

. Consider the homotopy h(t,z) = tf(z) + (1 - t)g(z), in which

f(z) =22 -5z +6 glx) =22 -1

Show that there is no path connecting a zero of g to a zero of f.

. Let y = y(s) be a differentiable function from R to R™ satisfying the differential equation

(9). Assume that h(y(0)) = 0. Prove that h(y(s)) = 0.

. If the homotopy method of Example 2 is to be used on the system

sinz +cosy + eV =tan"(z +y) —zy =0

starting at (0,0), what is the system of differential equations that will govern the path?

. Prove that homotopy is an equivalence relation among the continuous maps from one

topological space to another.

. Are the functions f(z) = sinz and g(x) = cosz homotopic?

7. Consider these maps of [0, 1] into [0,1) U (2,3):

f@y=0 gt)=2

Are they homotopic?

. To find vZ we can solve the equation f(z) = x2 — 2 = 0. Let zo = 1 and h(t,z) =

tf(z)+(1-t)[f(x)—f(zo)). Determine the initial value problem that arises from Equation
(8). Solve it in closed form and verify that z(1) = V2.

. In Example 1 are the hypotheses of the Ortega—Rheinboldt theorem fulfilled?
10.

Prove that any two continuous maps from a topological space into a normed linear space
are homotopic.
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5.1 Definition and Examples

The theory of distributions originated in the work of Laurent Schwartz in
the era 1945-1952 [Schl2). Earlier work by Sobolev was along similar lines.
The objective was to treat functions as functionals, and to notice that when
so interpreted, differentiation was always possible. This opened the way to the
study of partial differential equations by new methods that bypassed the classical
restrictions on functions. The functionals that now become the focus of study
are called “distributions”—not to be confused with distributions in probability
theory! The term “generalized functions” is also used, especially by Russian
authors.

Since this exposition of distribution theory is addressed to readers who are
seeing these matters for the first time, we have used notation that maintains
distinctions between entities that, in_other literature, are often denoted by a
single symbol. For example, we use f to denote the distribution arising from a
locally integrable function f. We use ¢; — ¢ to signify the special convergence
defined in a space of test functions, and we use 0° for a distributional derivative,
in contrast to D* for a classical derivative.

In these first sections of Chapter 5 we consider all test functions to be
defined on R™, not on a prescribed open set Q0. This frees the exposition from
some additional complication.

We begin with the notion of a multi-index. This is any n-tuple of non-
negative integers

a=(ay,az,...,ap)

246
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The order of a multi-index « is the quantity

n
lal =3 e
i=1

If @ is a multi-index, there is a partial differential operator D corresponding to
it. Its definition is

peo (BN (N2 ("o o
~ \ 0, Oz, Oty © Oryt---9zn

This operates on functions of n real variables z,,...,z,. Thus, for example, if
n=3and a =(3,0,4), then
7
peg= .29
Oz30z}

The space C*°(R"™) consists of all functions ¢ : R® — R such that D% €
C(R™) for each multi-index a. Thus, the partial derivatives of ¢ of all orders
exist and are continuous.

A vector space D, called the space of test functions, is now introduced.
Its elements are all the functions in C*°(R™) having compact support. The
support of a function ¢ is the closure of {z : ¢(z) # 0}. Another notation for
D is CE(R™). The value of n is usually fixed in our discussion. If we want to
show n in the notation, we can write D(R").

At first glance, it may seem that D is empty! After all, an analytic function
that vanishes on an open nonempty set must be O everywhere. But that is a
theorem about complex-valued functions of complex variables, whereas we are
here considering real-valued functions of real variables.

An important example of a function in D is given by the formula

(2) c-exp(|z|2-1)"! if e R"and |z| < 1
) =
0 if ze R* and |z] > 1

where c is chosen so that [ p(z)dr = 1. Here and elsewhere we use || for the

Euclidean norm:
n 1/2
ol = (zxz)
i=1

The graph of p in the case n = 1 is shown in Figure 5.1.

(1)

-1 -0.5 6.5 1

Figure 5.1 Graph of p

The fact that p € D is not at all obvious, and the next two lemmas are inserted
solely to establish this fact.
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Lemma 1.  For any polynomial P, the function f : R — R defined
by

P(1/z)e " >0
f(x) = {

B 0 <0
is in C*®(R).

Proof. First we show that f is continuous. The only questionable point is

z = 0. We have P(1/z) P(t)
T
i =i — " =1 —_—
;I:T(]) f(=) l:lf(} exp(1l/x) c}g exp(t)

By using L'Hépital’s rule repeatedly on this last limit, we see that its value is 0.
Hence f is continuous. Differentiation of f gives

~-1/z
flz) = { Q(1/x)e >0
0 r<0

where Q(z) = z?[P(z) — P'(z)]. By the first part of the proof, li?& fl(z)=0 1t
x
remains only to be proved that f/(0) = 0. We have, by the mean value theorem,

f(0) = lim f0) —SO) _ iy pr(e(h)) = 0

h—=0 h h—0

where £(h) is strictly between 0 and h. (Note that h can be positive or negative
in this argument.) We have shown that

f(z) = { S(l/x)e-w £>0

r<0

This has the same form as f, and therefore f’ is continuous. The argument can
be repeated indefinitely. The reader should observe that our argument requires
the following version of the mean value theorem: If g is continuous on [a, b] and
differentiable on (a,b), then for some £ in (a,b)

9'(€) = [96) — 9(a)] /(b - a) .
Lemma 2. The function p defined in Equation (1) belongs to D.

Proof. The function f in the preceding lemma (with P(z) = 1) has the prop-
erty that p(z) = ¢ f(1—|z|?). Thus p = c fog, where g(z) = 1—|z|? and belongs
to C*°(R"). By the chain rule, D®p can be expressed as a sum of products of
ordinary derivatives of f with various partial derivatives of g. Since these are
all continuous, D®p € C(R™) for all multi-indices a. (]

The support of a function ¢ is denoted by supp(¢). An element ¢ of C*°(R™)
such that

©
\"
o

/¢ =1 supp(¢) C {z : || < 1}
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is called a mollifier. The function p defined above is thus a mollifier. If ¢ is a
mollifier, then the scaled versions of ¢, defined by

(2) ¢i(z) =j"d(jz) (z€R" jeN)

play a role in certain arguments, such as in Sections 5.5 and 6.8. They, too, are
mollifiers.

The linear space D is now furnished with a notion of sequential convergence.
A sequence [¢;] in D converges to 0 if there is a single compact set K containing
the supports of all ¢;, and if for each multi-index o,

D%¢; — 0 uniformly on K

We write ¢; — 0 if these two conditions are fulfilled. Further, we write ¢; — ¢
if and only if ¢; — ¢ — 0. The use of the symbol — is to remind the reader of
the special nature of convergence in D. Uniform convergence to 0 on K of the
sequence D¢; means that

sup [(D%¢;)(z)] -0 as j — oo
zeK

Since all ¢; vanish outside of K, we also have

sup |(D“'¢j)(m)[ -0
z€ERM

Continuity and other topological notions will be based upon the convergence
of sequences as just defined. In particular, a map F from D into a topological
space is continuous if the condition ¢; — ¢ implies the condition F(¢;) —
F(¢). The legitimacy of defining topological notions by means of sequential
convergence is a matter that would require an excursus into the theory of locally
convex linear topological spaces. We refer the reader to [Rul] for these matters.
The next result gives an example of this type of continuity.

Theorem 1. For every multi-index a, D® is a continuous linear
transformation of D into D.

Proof. The linearity is a familiar feature of differentiation. For the continuity,
it suffices to prove continuity at 0 because D¢ is linear. Thus, suppose that
¢; € D and ¢; - 0. Let K be a compact set containing the supports of all
the functions ¢;. Then Dﬂd')j(l') — 0 uniformly on K for every multi-index 3.
Consequently, D5D°¢J—(x) — 0 uniformly for each 8, and so D®¢; — 0, by the
definition of convergence in D. (]

A distribution is a continuous linear functional on D. Continuity of such
a linear function T is defined by this implication:

(6, €D & ¢; 0] = T(¢;) =0

The space of all distributions is denoted by D’, or by D’(R").
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Example 1. A Dirac distribution J, is defined by selecting £ € R™ and writing

3) o(d) = d(§) (0€D)

It is a distribution, because firstly, it is linear:
Fe( My + Agd2) = (A1 + A2d2)(€) = M1 (€) + Aa2(§) = Mde(d) + Made(d2)

Secondly, it is continuous because the condition ¢; —» 0 implies that ¢;(£) — 0.
If we write § without a subscript it refers to evaluation at 0; i.e., § = 4. [

Example 2. The Heaviside distribution is defined, when n = 1, by

(4) fi(g) = /0 “oz)dz (6 €D) .

Example 3. Let f: R™ — R be continuous. With f we associate a distribution
f by means of the definition

(5) @) = / f@)o(x)dz (6 € D)

The linearity of f is obvious. For the continuity, we observe that if ¢; — 0, then
there is a compact K containing the supports of the ¢;. Then we have

Fi6pl =] [ 1@s,(@)ds| <supleste)] [ [s)lay =0

because ¢; — 0 entails sup |¢;(z)| = 0. ]
xz
Example 4. Fix a multi-index « and define
T9)= | D% (€D
This is a distribution. (The proof involves the use of Theorem 1.) ]
Example 5. If H is the Heaviside function, defined by the equation

. >0
H(a:):{l if =

0 if <0

then Example 2 above illustrates the principle in Example 3, although H is
obviously not continuous. [}

The distributions f described in Example 3 are the subject of the next
theorem.
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Theorem 2. Iffe€ C(IR")‘,. then f, as defined in Equation (5), is a
distribution. The map f v+ f is linear and injective from C(R™) into
D’.

Proof. We have already seen that f is a distribution. The linearity of the
mapping f — f follows from the equation

(a1 fi +a2f2)~(¢) = /(alfl + azfa)p = 01/f1¢+02/f2¢

= a1 fi(@) + azf2() = (a1 fi + a2 f)()

For the injective property it suffices to prove that if f # 0, then f # 0. Supposing
that f # 0, let £ be a point where f(€) # 0. Select j such that f(z) is of
one sign in the ball around € of radius 1/j. Then pj(z — €), as defined in
Equation 2, is positive in this same ball about £ and vanishes elsewhere. Hence
J f(z)pj(x — €)dz # 0. This means that f(¢) # 0 if ¢(z) = p;(z - €). ]

Example 3 shows that in a certain natural way, each continuous function
f:R™ 2 R “is” a distribution. That is, we can associate a distribution f with
f. In fact, the same is true for some functions that are not continuous. The
appropriate family of functions is described now.

A Lebesgue-measurable function f : R® — R is said to be locally inte-
grable if for every compact set K C R", [, |f(x)|dz < oc. As is usual when
dealing with measurable functions, we define two functions to be equivalent
if they differ only on a set of measure zero. The equivalence classes of locally
integrable functions make up the space L} .(R™).

We mention, without proof, the result corresponding to the preceding the-
orem for the case of locally integrable functions. See [Rul] page 142, or [Lanl]
page 277.

Theorem 3. Iffis IocaHy integrable, then the equation f @) = f fo
defines a distribution f that does not depend on the representative
selected from the equivalence class of f. The mapping f «— f is linear
and injective from L} (R™) into D’.

Theorem 4. Let p be a positive Borel measure on R™ such that
1(K) < oo for each compact set K in R™. Then p induces a distribution
T by the formula

T0)= [ o@)dulz) (4D)

Proof. The linearity is obvious. For the continuity of T, let ¢; € D and
@¢; - 0. Then there is a compact set K containing the supports of all ¢;.
Consequently,

IT(65)| < f #3(2)|du@) < sup [6;0)| | d(z)
K yeK K

= p(K) sup |¢;(y)| = 0 ]
veEK
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The distributions described in Theorem 3 are said to be regular.

Suggested references for this chapter are [Ad], [Con], (Dono], ([Edw], [Fol],
[Fyi], [Friel], [Fried], [GV], [Gri], [Ho], [Horv], [Hu], [Jon], [Maz], [OD], [RS],
(Rul], [Schl], [Schl2], [So], [Yo], (Ze], [Zem), and (Zie).

Problems 5.1

1. Describe the null space of D in the case n = 2. Do this first when the domain is C>(R")
and second when it is D.

2. Let f : R =+ R. Suppose that f’ exists and is continuous in the two intervals
(=00,0) , (0,00). Assume further that liir‘; fl(z) = li;r&f’(:). Does it follow that f’
x x

is continuous on R? Examples and theorems are wanted.

3. Prove that for each zo € R™ and for each r > 0 there is an element ¢ of D such that the
set {z : ¢(x) # 0} is the open ball B(zo, r) having center zo and radius r.

4. Prove that if O is any bounded open set in R™, then there exists an element ¢ of D such
that {x : ¢(x) # 0} = O. Hints: Use the functions in Problem 3. Maybe a series of such
functions § 2~ %@, will be useful. Don’t forget that the points of R™ whose coordinates
are rational form a dense set.

5. For each v € R™ there is a translation operator E, on D. Its definition is (Eyé)(z) =
¢(x — v). Prove that E, is linear, continuous, injective, surjective, and invertible from

Do D.

6. For each ¢ in C*(R™) there is a multiplication operator M, defined on D by the
equation My = ¢1. Prove that M is linear and continuous from D into D. Under
what conditions will My be injective? surjective? invertible?

7. For suitable ¢ there is a composition operator Cy4 defined on D by the equation
Cy¥ = ¥ 0 . What must be assumed about ¢ in order that Cy map D into D? Prove
that Cy is linear and continuous from D to D. Find conditions for Cy to be injective,
surjective, or invertible.

8. Prove that E, as defined in Problem 5, has this property for all test functions ¢ and ¥:

/¢Eu¢=/¢E—v¢

What is the analogous property for My in Problem 67

9. Prove that if T is a distribution and if A is a continuous linear map of D into D, then
T o A is a distribution. Use the notation of the preceding problems and identify & o Ey,
8¢ 0 My, and é¢ 0 Cy in elementary terms. What is (§¢ o Ey, 0 Mg o Cy)(9)?

10. Show that D@DP = D2+8 and that consequently D2D¥? = DA D=,

11. Let ¢ € D. Prove that if there exists a multi-index a for which D®¢ = 0, then ¢ = 0.
Suggestion: Do the cases |a|] = 0 and |a| = 1 first. Proceed by induction on |a].

12. Prove (in detail) that each test function is uniformly continuous.

13. Prove that D is a ring without unit under pointwise multiplication. Prove that D is an
ideal in the ring C%°(R"). This means that f¢ € D when f € C* and ¢ € D.

14. For ¢ € D(R), define T(¢) = D7 ,(D*$)(k). Prove that T is a distribution.

15. Give an example of a sequence [¢,] in D such that [De¢;] converges uniformly to O for
each multi-index a, yet [¢;] does not converge to 0 in the topology of D.

16. Show that supp(¢) is not always the same as {z : ¢(x) # 0}. Which of these sets contains
the other? When are these sets identical?
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17. A distribution T is said to be of order 0 if there is a constant C such that |T(¢)] €
Cll¢ll, (for all test functions ¢). Which regular distributions are of order 0?

18. Prove that the Dirac distributions in Example 1 are not regular.
19. Give a rough estimate of ¢ in Equation 1. (Start with n = 1.)

20. Show that the notion of convergence in D is consistent with the linear structure in D.

5.2 Derivatives of Distributions

We have seen that the space D’ of distributions is very large; it contains (im-
ages of) all continuous functions on R™ and even all locally integrable functions.
Then, too, it contains functionals on D that are not readily identified with func-
tions. Such, for example, is the Dirac distribution, which is a “point-evaluation”
functional. We now will define derivatives of distributions, taking care that
the new notion of derivative will coincide with the classical one when both are
meaningful.

Definition. If T is a distribution and a is a multi-index, then 8°T is the
distribution defined by
(1) 3°T = (-1)°l To D2

Notice that it is a little simpler to write 9°T = T o (-D)®. The first
question is whether 8°T is a distribution. Its linearity is clear, since T and D®
are linear. Its continuity follows by the same reasoning. (Here Theorem 1 from
the preceding section is needed.)

The next question is whether this new definition is consistent with the old.
Let f be a function on R™ such that D?f exists and is continuous whenever
|a] < k. Then f is a distribution, and when |a| < &,

(2) a°f = (D°f)”

To verify this, we write (for any test function ¢)

(D47 @) = [(D* 118 = (-1l [ 1% = (-1l f(pg)
(3)

= (0°f)(¢)
In this calculation integration by parts was used repeatedly. Here is how a single
integration by parts works:

* af oo * _ 9¢

N E(ﬁdzi = f¢|_m - /-mf E;d:r,»
Since ¢ € D, ¢ vanishes outside some compact set, and the first term on the
right—hand side of the equation is zero. Each application of integration by parts
transfers one derivative from f to ¢ and changes the sign of the integral. The
number of these steps is |a| = Y I, a.

Now, it can happen that 6"}7# (D@ f)~ for a function f that does not have

continuous partial derivatives. For an example, the reader should consult [Rul],
page 144.
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Example 1. Let H be the Heaviside distribution (Example 2, page 250), and
let 6 be the Dirac distribution at 0 (Example 1, page 250). Then with n = 1
and a = (1), we have dH = 4. Indeed, for any test function ¢,

(0H)(9) = ~H(D¢) = / ¢ = 6(0) -~ 6(cc) = 6(0) =6(8)  ®
Example 2. Again let n =1 and a = (1), so that D is an ordinary derivative.
Let

z ifz2>20
@={"
0 if <0
One is tempted to say that f’ is the Heaviside function H. But _this is not true,
since f'(0) is undefined in the classical sense. However, Bf , and so in the
sense of distributions the equation f* = H becomes correct. [ ]

The nomenclature that is often used in these matters is as follows: A “dis-
tribution derivative” (or a “distributional derivative”) of a function f is a distri-
bution T such that ( f ) = T. In the general case of an operator D®, we require
a°f= T. If T is a regular distribution, say T = g, then the defining equation is

[oo =1l [ 1D (6 €D)

Example 3. What is the distribution derivative of the function f(z) = |z|?
It is a distribution g, where g is a function such that for all test functions ¢,

/g¢> —/f¢'=—/_(;(——:c)¢'(:c)d:c—/om 2¢/(z) dz

=:c¢(:z:)|0 - ’ ¢(z)d:c—:c¢(z)|:°+/ooo¢(z)dx

0 o0
=/ (—1)¢(1:)d1:+/ (+1)¢(z) dz
—00 0
Thus
-1 r<0
o) = { } = 2H(z) -
+1  z20

We say that f' = g in the sense of distributions, or 8f= g- Note particularly
that f does not have a “classical” derivative. (]

Example 4. What is the distribution derivative f” when f(z) = |z|? If we
blindly use the techniques of classical calculus, we have from Examples 1 and
3, f/=2H -1 and f” = 24. This procedure is justified by the next theorem.

[ ]
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Theorem 1. The operators 8¢ are linear from D’ into D’. Further-
more, 8°9° = 899 = 318 for any pair of multi-indices.

Proof. The linearity of 3% is obvious from the definition, Equation (1). The
commutative property rests upon a theorem of classical calculus that states that

2 2
for any function f of two variables, if Bax—afy and aé:,afx
then they are equal. Therefore, for any ¢ € D, we have D*DP¢ = DSD2gp.

Consequently, for an arbitrary distribution T we have

exist and are continuous,

8°(8°T) = (~1)1°1(8°T) o D* = (-1)l®l(~1)!8! T 6 DA o D
= (=1)lAl(=1)lel T o D* 0 DA
= (—1)'0’(8°T) o DP
=8%9°T (]

Theorem 2.  For n =1 (i.e., for functions of one variable), every
distribution is the derivative of another distribution.

Proof. Prior to beginning the proof we define some linear maps. Let 1 be the
distribution defined by the constant 1:

T = [ Y@ (6€D)

Let M be the kernel (null space) of 1. Then M is a closed hyperplane in D.
Select a test function % such that 1(y) = 1, and define

Ap=¢—1(¢) (¢ € D)

(Be)(2) = [ Ty (GeM)

We observe that if ¢ € M, then B¢ € D.

Now let T be any distribution, and set S = —T o B o A. It is to be shown
that S is a distribution and that 3S = T. Because A¢ ¢ M for every test
function, BA¢ € D. Since B o A is continuous from D into D, one concludes
that S is a distribution. Finally, we compute

(8S)(¢) = —S(¢') = T(BA¢') = T(B¢') = T

Here we used the elementary facts that 1(¢') = 0 and that B¢’ = ¢. (]
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Theorem 3. Let n = 1, and let T be a distribution for which
OT = 0. Then T is ¢ for some constant c.

Proof. Adopt the notation of the preceding proof. The familiar equation
d T
= — d
¢(z) = o /_m é(y) dy

says that ¢ = DB¢, and this is valid for all ¢ € M. Since A¢ € M for all ¢ € D,
we have A¢p = DBA¢ for all ¢ € D. Consequently, if 3T = 0, then for all test
functions

T(¢) = T(Ad + 1(¢)¥) = T(DBAQ) + 1(¢)T(¥)
= —(8T)(BA¢) + T(¥)1(¢)
= T(¥)1(¢)
Thus T = ¢, with ¢ = T'(y). [

We state without proof a generalization of Theorem 2.

Theorem 4. If T is a distribution and K is a compact set in R™,
then there exists an f € C(R™) and a multi-index a such that for all
¢ € D whose supports are in K,

T(¢) = (8°f )(9)

Proof. For the proof, consult [Rul], page 152. s

Problems 5.2

1. Let f be a C!'-function on (—00,0} and on {0, 00). Let a = 11111(1) f(z) ~ Ll;l; f(z). Express
the distribution derivative of f in terms of a and familiar distributions.

2. Let & and H be the Dirac and Heaviside distributions. What are 8" and 8™ H?

3. Find all the distributions T for which 8°T = 0 whenever |a| = 1.

4. Use notation introduced in the proof of Theorem 2. Prove that ToA = 0,that DBA=A,
and that Ao D = D. Prove that B o A is continuous on D.

5. The characteristic function of a set A is the function X 4 defined by

1 ifseA

xA(3)={ .
0 ifsgA

If A= (a,b) C R, what is the distributional derivative of X 4?

6. For what functions f on R is the equation 6;: f’ true?
7. Let n = 1. Prove that D : D — ‘D is injective. Prove that 3 : D’ — D’ is not injective.

8. Work in D(R™). Let a be a multi-index such that |a] = 1. Prove or disprove that
D2 : D - D is injective. Prove or disprove that 8 : D’ — D’ is injective.

9. Let n = 1. Is every test function the derivative of a test function?
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10. Let f € C>°(R) and let H be the Heaviside function. Compute the distributional deriva-
tives of fH. Show by induction that 3™(fH) = HD™f+ 3 " ! Dk £(0)gm k18,

11. Prove that the hyperplane M defined in the proof of Theorem 2 is the range of the
operator o when the latter is interpreted as acting from D(R!) into D(R?).

12. If two locally integrable functions are the same except on a set of measure 0, then the
corresponding distributions are the same. If H is the Heaviside function, then H’(z) =0
except on a set of measure 0. Therefore, the distributional derivative of H should be 0.
Explain the fallacy in this argument.

13. Find the distributional derivative of this function:

cosz z>0
stz = {

sinz z<0
14. Define A on D(R?) by putting
oc
A(e) =/ é(z1,z3)dzy
—oC

Prove that A maps D(R?) into D(R?).
15. Refer to the proof of Theorem 2 and show that B A is a surjective map of D to D.

16. Refer to Problem 5. Does the characteristic function of every measurable set have a
distributional derivative?

17. Consider the maps f f~, De, and 0*. Draw a commutative diagram expressing the
consistency of D® and 8* in Equation (1).

18. Find a distribution T on R such that 82T + T = 4.

5.3 Convergence of Distributions

If [T;] is a sequence of distributions, we will write T; — 0 if and only if
T;j(¢) — O for each test function ¢. If T is a distribution, T; — T means that
T; — T — 0. The reader will recognize this as weak* convergence of a sequence
of linear functionals. It is also “pointwise” convergence, meaning convergence at
each point in the domain. Topological notions in D’, such as continuity, will be
based on this notion of convergence (which we refer to simply as “convergence
of distributions”). For example, we have the following theorem.

Theorem 1.  For every multi-index a, 8® is a continuous linear map
of D’ into D’.

Proof. Let T; — 0. In order to prove that 3°T; — 0, we select an arbitrary
test function ¢, and attempt to prove that (8°T )(¢) — 0. This means that
(- )I°1T (D*@) — 0, which is certainly true, because D% is a test function.
See Theorem 1 in Section 5.2. ]

An important result, whose proof can be found, for example, in [Rul] page
146, or (Ho] page 38, is the following.
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Theorem 2. If a sequence of distributions [T;] has the property
that (T;(¢)] is convergent for each test function ¢, then the equation
T(¢) = lim; T;(¢) defines a distribution T, and Tj = T.

The theorem asserts that for a sequence of distributions T; if lim; T;(¢)
exists in R for every test function ¢, then the equation

T(¢) = imT;(¢)

defines a distribution. There is no question about T being well-defined. Its
linearity is also trivial, since we have

T(¢ + ¢2) = liJmTj(¢1 + ¢2) = li]m Tj(¢d1) + liJI.HTj(¢2) =T(¢1) + T(¢2)

The only real issue is whether T is continuous, and the proof of this requires
some topological vector space theory beyond the scope of this chapter.

Corollary 1. A series of distributions, 3°72, Tj, converges to a
distribution if and only if for each test function ¢ the series Z;x:’l T;(®)
is convergent in R.

Corollary 2. If Y T; is a convergent series of distributions, then
for any multi-index o, 8*)_T; = Y 9°T;.

Proof. By Theorem 1, 8* is continuous. Hence

e <] m m
o(3n) = (m 27 ) = jim ()

Jj=1 Jj=1
m (o9}
— H a . = a .
= Jm 3 20°T, =3 0°T, .
j= j=

The previous theorem and its corollaries stand in sharp contrast to the
situation that prevails for classical derivatives and functions. Thus one can
construct a pointwise convergent sequence of continuous functions whose limit
is discontinuous. For example, consider the functions f; shown in Figure 5.2.

fx

P 1

Figure 5.2



Section 5.3 Convergence of Distributions 259

Similarly, even a uniformly convergent series of continuously differentiable func-
tions can fail to satisfy the equation

d d
Tz D A=) o T

A famous example of this phenomenon is provided by the Weierstrass nondiffer-
entiable function

o]
flz)= Z 2% cos 3k z
k=1

This function is continuous but not differentiable at any point! (This example
is treated in [Ti2) and [Ch]. See also Section 7.8 in this book, pages 374ff, where
some graphics are displayed.)

Example. Let f,(z) = cosnz. This sequence of functions does not converge.
Is the same true for the accompanying distributions f,? To answer this, we take

any test function ¢ and contemplate the effect of f;, on it:

ﬁa(‘ﬁ) = /_00 ¢(z) cosnzdr = /b ¢(x) cos nx dr

Here the interval g, b] is chosen to contain the support of ¢. For large values
of n the C® function is being integrated with the highly oscillatory function
fn. This produces very small values because of a cancellation of positive areas
and negative areas. The limit will be zero, and hence f,-. — 0. This conclusion
can also be justified by writing f, = g, where gn(z) = sinnz/n. We see that
gn — 0 uniformly, and that the equations ¢, — 0 and f';. — 0 follow, in D'

[ ]

Theorem 3. Let f, fi, fa,... belong to L}OC(IR"), and suppose
that f; — f pointwise almost everywhere. If there is an element
g € L} .(R™) such that |f;| < g, then fj = f in D'.

Proof. The question is whether

(1) [0 [ 10

for all test functions ¢. We have f;¢ € L!(K) if K is the support of ¢. Further-
more, |fj¢| < gl¢| and (f;¢)(z) = (f¢)(z) almost everywhere. Hence by the
Lebesgue Dominated Convergence Theorem (Section 8.6, page 406), Equation
(1) is valid. ]
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Theorem 4. Let (f;] be a sequence of nonnegative functions in
L} .(R™) such that [ f; =1 for each j and such that

loc
.lim / f_-,' =0
320 Jiz|zr

for all positive r. Then }7] — 6 (the Dirac distribution).

Proof. Let ¢ € D and put ¥ = ¢ — ¢(0). Let € > 0, and select » > 0 so that
|¥(z)| < € when |z| < 7. Then

| [ 10-00)] =| [ sle-o0)| = | [ 59| < 1501

S/ {fjw|+/ | £l
lzl<r lz[>r

<e / sl + maxo@) [ f;

|z}2r

Taking the limit as j — oo, we obtain

[im f5(#) - 6(o)| < e
Since € was arbitrary, lim; f~_,'(¢) = 4(¢p). [ |

Problems 5.3

1. What is the distributional derivative of the Weierstrass nondifferentiable function men-
tioned in this section?

2. Let {Tp : @ € A} be a set of distributions indexed with a real parameter 6; i.e. A C R.
Make a suitable definition for limg_,, Tp.

3. (Continuation) If ¢ € D, if n = 1, and if 6 € R, let ¢g(z) = d(x ~6). If T
is a distribution, let Ty be the distribution defined by Ty(¢) = T(¢g). Prove that
limg_,00~ ! (Ty — T) = OT.

4. Let [£,] be a sequence of distinct points in R™, and let §; be the corresponding Dirac
distributions. Under what conditions does Z;’il cj0; represent a distribution? (Here
¢j € R.) A necessary and sufficient condition on [¢;] would be ideal.

5. Use Theorem 4 to prove that if f is a nonnegative element of LIIOC(R") such that fj =1

and if f;(z) = jf(jz) for j = 1,2,..., then f, = 6.
6. Do these sequences have the properties described in Theorem 4?
@) fi(z) =3/lr(1+ j%2?)]
(b) f;(z) = jn~1/? exp(~%z?)

7. Let thereal line be partitioned by points —oo = zo < £y < --- € Tp4+1 = 00, and suppose
that f is a piecewise continuously differentiable f un%tion. with breaks at x,,...,zn. Prove
that the distributional derivative of f is (f')™~ + Ziﬂ ¢ibz,;, where c; is the magnitude of
the jump in f at z;; i.e., ¢i = f(zi +0) — f(z; —0). Notice that this problem emphasizes
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the difference between (f’)~ and (f~)’. The prime symbol has different meanings in
different contexts.

5.4 Multiplication of Distributions by Functions

Before getting to the main topic of this section, let us record some results from
multivariate algebra and calculus.
Recall the definition of the classical binomial coefficients:

m‘

— f0< k<
(1) (’:) ={ Hm—m TOSksm
0 otherwise

These are the coefficients that make the Binomial Theorem true:
" /m
(2) (a+b)™ = go(k)akbm‘k

The multivariate version of this theorem is presented below.
Definitions. For two multi-indices a and 3 in Z", we write 3 < a if 8; < o;
for each ¢ = 1,2,...,n. We denote by a + 3 the multi-index having components

(a+8)i=a; + 6 (1<ign)

If 3 € a, then a — 3 is the multi-index whose components are a; — 3;. Finally,
if 8 < a, we define

a Q) Q2 Qn
3 =
If z = (z,,%z2,...,2,) and a = (aj, a3, -..,ay), then by definition,

n

a . a; __ 0] a2 an

2o = [[a = 2% 252 . ..28
t=1

The function £ — z® is a monomial. For n = 3, here are seven typical mono-
mials:

4.5 3 1

T)1X5x3 TiT3 5 T T2 T3

These are the building blocks for polynomials. The degree of a monomial £©
is defined to be |a|. Thus, in the examples, the degrees are 10, 9, 3,0, 1, 1, and
1. A polynomial in n variables is a function

p(z) =) caz®  (z€R")



262 Chapter 5 Distributions

in which the sum is finite, the ¢, are real numbers, and a € Z7}. The degree of
pis

max{|a| : ¢, # 0}
If all ¢, are O, then p(z) = 0, and we assign the degree —oc in this case. A
polynomial of degree 0 is a constant function. Here are some examples, again

with n = 3:
Pi(z) = 3+ 2z, — Txiz; + 22,237

p2(z) = V2zi25 — ﬂz?xgza
These have degrees 12 and 9, respectively.
The completely general polynomial of degree at most k in n variables can

be written as
T Z cqz® (z € R™)

This sum has (kx") terms, as established later in Theorem 2.
We have seen in Section 5.1 that multi-indices are also useful in defining

. . ., 0 0 7] .
differential operators. If we set D = (811 By’ -, oz, ). Then in a natural
way we define

n % ala]
D = = —
11 drjt  0z(19r,?---9z]"

=1

A further definition is
n
o =eler! - ag! =[]t
i=1

The n—dimensional binomial coefficients are then expressible in the form

o if 0 <
(2)={Fan "O<ose

0 otherwise

Multivariate Binomial Theorem. For allz and y in R™ and all

ainZ?,
a -
o= 3 (§)av
0<Bga
Proof.
n n (= 71 .
(@+9)* =[x+ )% =] ( ')zf"y?‘"p"
i=1 =1 gm0 B
oL (831 B B & a4
= Z (ﬁ )Illy;"l 13 I Z (ﬂ")zgnygn—ﬁn
B81=0 ! Bn=0 "
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=3 8 ()= 3 TG T

B=0 Bn=0 i=1 0<B<a i=1

=Y (g)mﬂya-—ﬁ .

0gBa
We will usually abbreviate the inner product (z,y) of two vectors z,y € R"
by the simpler notation zy.

Multinomial Theorem Letz,y € R® and m € N. Then

m!
(xy)™ = |O|Z—m o T

Proof. It suffices to consider only the special case y = (1, 1,..., 1), because
Ty = ((Ilylv' . 1znyn)1(li' R 1))

For this special case we proceed by induction on n. The case n =1 is trivially
true, and the case n = 2 is the usual binomial formula:

m_ m!  a 02_'" ml i omej
(T1 +22)™ = al;ﬂn 01!02!11 I = ;;T——!(m — j)!f'?l-"z
Suppose that the multinomial formula is true for a particular value of n. The
proof for the next case goes as follows. Let £ = (z1,...,Zn), w = (T1,...,Tn+1),
a=(ap,...,on),and 8 = (ai,...,0n41). Then

(1'1 +"'+In+1)m = [(Il + "'+In)+1‘n+l]m

=(,(

(14 +zYzi]

)
T 5 Lt

In this calculation, we let 8 = (ay,...,an,m — j), where |a| = j. (]

The linear space of all polynomials of degree at most m in n real variables
is denoted by Il (R™). Thus each element of this space can be written as

= Z Caz®
lalgm
Consequently, the set of monomials
{z— z%:|a| < m}

spans II,(R™). Is this set in fact a basis?
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Theorem 1 The set of monomials * — =% on R™ s linearly inde-
pendent.

Proof. If n = 1, the monomials are the elementary functions z, — x{ for
7=0,1,2,... They form a linearly independent set, because a nontrivial linear
combination Z;-":O ¢jr] cannot vanish as a function. (Indeed, it can have at
tnost m zeros.)

Suppose now that our assertion has been proved for dimension n — 1. Let
z = (r1,...,Ta) and a = (ai,...,an). Suppose that Y ., cqx® = 0, where
the sum is over a finite set J C Z%. Put

Je={a€eJ:a; =k}

Then for some m, J = JoU---UJny, and we can write

m m
0= Z Z CaZil - 22" = Z-’C'f Z CaZS2 .- g0n
k=0 a€Jy k=0 OEJk
By the one-variable case, we infer that for k = 0,...,m,
> cazp?-zdn =0
a€Jy
Note that as a runs over Jx, the multi-indices (as,...,a,) are all distinct. By
the induction hypothesis, we then infer that for all a € Jx, co = 0. Since k runs
from O to m, all ¢, are 0. [}

We want to calculate the dimension of II;(R"). The following lemma is
needed before this can be done. Its proof is left as a problem.

Lemmal Forn=1,23,...andm=0,1,2,... we have

> (1) ="

k=0
Theorem 2 The dimension of II,(R™) is (m N n).
n

Proof. The preceding theorem asserts that a basis for [I(R") is {z — =2 :
|a|] € m}. Here £ € R™ Using # to denote the number of elements in a set, we
have only to prove

n

m+n
#{ani:la[ém}:( )
We use induction on n. For n = 1, the formula is correct, since

#{a€Z+:a<m}=m+l=(m:1)
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Assume that the formula is correct for a particular n. For the next case we write

G 2

afgm—k}

(m—k+n)
n
0

m
#{aeZi ol < m} =# U{aez';+‘:a,,+1=k,

k=0

m
=Z#{a€Zi:|a]<m—k}:
k=0

()= (n)

k=0

14

k

In the last step, we applied Lemma 1. (]

Theorem 3. (The Leibniz Formula) If ¢ and ¢ are test functions,
then for any multi-index a we have

4 D(¢w) =) (a) DP¢- D>y
BLa s
Proof. (after Horvdth) We use induction on |al. If |a] = 0, then @ =

(0,0,...,0), and both sides of Equation (4) reduce to ¢.

Now suppose that (4) has been established for all multi-indices a such that
|a] € m. Let 4 be a multi-index of order m + 1. By renumbering the variables
if necessary we can assume that v, > 1. Let & = (v — 1,72,73,.--,7n)- Then
DY = D, D2, where D, denotes 8/dz,. Since |a| < m, the induction hypothesis
applies to D°‘, and hence

D(¢w) = DiD(e) = D1 S (§ )D%-D“-f’w
B<a

(5)
= Z ( ) [D1DP¢- D*"Py + DPg. DD Fy)]

A<a

Now we set 8 = (61,02,...,0n) and 8’ = (81 + 1,0,,...,0,). Observe that
B < aif and only if 8’ < 7. Hence the first part of the sum in Equation (5) can
be written as

z (g) DB’¢ . D‘T--B'w

B'<y

_ =1\ (7 (m)ps -0
=, (520 G) - (r)pe or
m-1 M 3 v-8
%(51—1) (ﬂz) (ﬂn)D oD
71
m-1 Y
3 (ﬂi—l) E E ( 2) ' (ﬂn)Dﬂ"’ Dy

81=0
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The second part of the sum in Equation (5) can be written as

(7) > (7‘"1) Z Z (”) < ()pss- 02y

By=0

Now invoke the easily proved identity

G~ =()

Adding these two parts of the sum in Equation (5), we obtain

moo=35 ()2 £ @) (e o

B1=0
=3 ( )D%. DY Py .
By

Since D’ is a vector space, a distribution can be be multiplied by a constant
to produce another distribution. Multiplication of a distribution T by a function
f € C*°(R"™) can also be defined:

(f-T)(¢)=T(f¢).

Notice that if f is a constant function, say f(x) = c, then f - T, as just defined,
agrees with cT. In order to verify that f - T is a distribution, let ¢; — 0 in
D. Then there is a single compact set K containing the supports of all ¢;, and
D®¢; — 0 uniformly on K for all multi-indices. If f € C°°(R") then by Leibniz’s
formula,

D%(fo;) = Z (g) DPf-D°Bp; 50

BLa

This proves that f¢; — 0 in D. Since T is continuous,
(f-T)¢;) =T(f¢;) >0

Hence f - T is continuous. Its linearity is obvious.
Here is a theorem from elementary calculus, extended to products of func-
tions and distributions.

9.
ail?i !
and let 0 be the corresponding distribution derivative. If T € D’ and
f € C(R™), then

Theorem 4. Let D be a simple partial derivative, say D =

(fT)=Df-T+f-8T
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Proof.

(Df-T+f-8T)(¢)=T(Df¢)+0T(f-¢) =T(Df - ¢) - T(D(f9))
=T(Df-¢)-T(Df-¢+f-D¢)
= —T(f-D¢) = ~(fT)(D¢) = (3(fT))(¢) .

Theorem 5. Let n = 1, let T be a distribution, and let u be an
element of C*®(R). If 8T + uT = f, for some f in C(R), then T = g
for some g in C'(R), and ¢’ + ug = f.

Proof. If u=0, then T = f Write f = h’, where
wo) = [ 1w

Then h € C!(R). From the equation

T ~h)=8T—-f=0

we conclude that T — k = ¢ for some constant c. (See Theorem 3 in Section 5.2,
page 256.) Hence T = h+ec.

If u is not zero, let v = exp [udz. Then v' = vu and v € C*(R). Then vT
is well-defined, and by Theorem 4,

A(vT) = v'T +vdT = v(uT +8T) = vf = 17}'

By the first part of the proof, we have vT' = g for some g € C!(R). Hence
T = g/v. It is easily verified that (g/v)' + u(g/v) = f. (]

Theorem 6. If ¢ € D, then

" #(z)dx = l,ff’(} h" Z #(ha)

a€ln

Proof. The right side is just the limit of Riemann sums for the integral. In
the case n = 2, we set up a lattice of points in R2. These points are of the form
(th,jh) = h(i,j) = ha, where a runs over the set of all multi-integers, having
positive or negative entries. Each square created by four adjacent lattice points
has area h2. ]

Problems 5.4

. Prove that if v € C°°(R") and if f € L} _(R"), then vf = vf.

. For integers n and m, (":‘) = (nfm). Is a similar result true for multi-indices?

. Prove that if T; = T in D’ and if f € C>(R™), then fT; = fT.

. Let 0 be a test function such that 6(0) # 0. Prove that every test function is the sum of
a multiple of 8 and a test function that vanishes at 0.

. (Continuation) Prove that if f € C¥(R) and f(0) = 0, then f(z)/z, when defined appro-
priately at 0, is in C¥~1(R).

W N e

w
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13.

14.

15.

16.

17.

18.

19.

20.

Chapter 5 Distributions

. (Continuation) Let n = 1 and put ¥(z) = z. Prove that a distribution T that satisfies

YT = 0 must be a scalar multiple of the Dirac distribution.

. For fixed ¥ in C>°(R") there is a multiplication operator My defined on D’ by the

equation My, T = ¢T. Prove that My, is linear and continuous.

. Prove that the product of a C>°-function and a regular distribution is a regular distri-

bution.

. Prove that if ' = f and h € C!(R), then h = f.
10.
. Prove the Leibniz formula for the product of a C>*-function and a distribution.
12.

Let ¢ € C>°(R) and let H be the Heaviside function. Compute 8(4)!7].

Define addition of multi-indices a and 3 by the formula (a+ 8); = a; +0; for 1 < i < n.
If B < a, we can define subtraction of G from a by (a — 8); = a; — B;. Define also
a! = ajlas!---an!. Prove that

a al
(o) = Gia—py ¥ A<

(Continuation) Express (1 + |z|2)™ as a linear combination of “monomials” z®. Here
zeR*, meN, ae N".
Prove that for any multi-index a,

D1 + |z}*)™ = Z s28(1 + a2y~ lel
181<lal

Verify the formal Taylor's expansion

fa+h) =3 = h°Df(2)

a20

The binomial coefficients are often displayed in “Pascal’s triangle”:

Each entry in Pascal's triangle (other than the 1’s) is the sum of the two elements
appearing above it to the right and left. Prove that this statement is correct, i.e., that

CeD=M+0)

n
Prove that Z (:) = 2". Is a similar result true for the sum z (Z)?
k=0 181€la]

Prove that the number of multi-indices 8 that satisfy the inequality 0 < 0 < a is
(14 a1)-+-(1+ an).

Find a single general proof that can establish the univariate and multivariate cases of
the Binomial Theorem and the Leibniz Formula. This proof would exploit the similarity
between the formulas

(z + y)z'y? =2yl 4 2+ and D(D'fDIg) = D fDIig + DifDitlyg

Prove Lemma 1.
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5.5 Convolutions

The convolution of two functions f and ¢ on R" is a function f * ¢ whose
defining equation is

(1) (f*9)(z / fWox —y)dy (z€R™)

The integral will certainly exist if ¢ € D and if f € L] .(R"), because for each
T, the integration takes place over a compact subset of R®. With a change of
variable in the integral, y = £ — 2, one proves that

(Fro)@) = [ @~ 2)8(z)dz= 6+ /)a)

In taking the convolution of two functions, one can expect that some favor-
able properties of one factor will be inherited by the convolution function. This
vague concept will be illustrated now in several ways. Suppose that f is merely
integrable, while ¢ is a test function. In Equation (1), suppose that n = 1, and
that we wish to differentiate f *x ¢ (with respect to z, of course). On the right
side of the equation, r appears only in the function ¢, and consequently

(f 8)'( / f@W)é (@ - y)dy

The differentiability of the factor ¢ is inherited by the convolution product f *¢.
This phenomenon persists with higher derivatives and with many variables.

It follows from what has already been said that if ¢ is a polynomial of degree
at most k, then so is f * ¢. This is because the (k + 1)st derivative of f * ¢ will
be zero. Similarly, if ¢ is a periodic function, then so is f * ¢.

We shall see that convolutions are useful in approximating functions by
smooth functions. Here the “mollifiers” of Section 5.1 play a role. Let ¢ be a
mollifier; that is, ¢ € D, ¢ > 0, f¢ =1, and ¢(z) = 0 when |:r| > 1. Define
#;(z) = j"#(jz). It is easy to verify that [¢; = L (In this discussion j ranges
over the positive integers.) Then

f(2) = (f % 6;)() = flz) - /ffr—2¢,
- / f(2)65(2) dz - / fla - 2)65(2)dz
- / [f(z) — flz — 2)]$;(2) dz

Since ¢(z) vanishes outside the unit ball in R™, ¢;(z) vanishes outside the ball
of radius 1/j, as is easily verified. Hence in the equation above the only values
of z that have any effect are those for which |z’ < 1/j. If f is uniformly
continuous, the calculation shows that f * ¢;(z) is close to f(z), and we have
therefore approximated f by the smooth function f * ¢. Variations on this idea
will appear from time to time.
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Using special linear operators B and E, defined by

(2) (Ez9)(y) = ¢y — 2)
(3) (Bé)(y) = ¢(—y)
we can write Equation (1) in the form

(4) (f * 9)(x) = f(E=B¢)

For f € L}, .(R") and ¢ € D we have

Ef(e) = / E.f ¢= / fly - 2)p(y) dy = / f(2)d(z + 1) dz
= f(E_.¢)

Equations 4 and 5 suggest the following definition.

Definition. If T is a distribution, E,T is defined to be TE_;. If ¢ € D, then
the convolution T x ¢ is defined by (T * ¢)(z) = T(E;B¢).

Lemma 1. ForT € D' and ¢ € D,
(6) E;(Tx¢)=(E;T)x¢=Tx E;¢
Proof. Straightforward calculation, using some results in Problem 1, gives us

(E2(T *9)](y) = (T * ¢)(y — z) = T(Ey—_2B9)
((EzT) % ¢)(y) = (E:T)(EyB¢) = T(E_. E,B¢) = T(E,_,B¢)
[T * Ez¢] (y) = T(EyBE,¢) = T(EyE_.B¢) = T(E,_.B¢) a

Lemma 2. IfT is a distribution and if ¢; - ¢ in D, then T * ¢; —
T * ¢ pointwise.

Proof. By linearity (see Problem 3), it suffices to consider the case when ¢ = 0.
If ¢; - 0 in D, then for all ,

(T = ¢])(z) = T(E,Bq&j) -0
by the continuity of B, Ez, and T (Problem 8). ]

Lemma 3. Let [z;] be a sequence of points in R"™ converging to z.
For each ¢ € D,

)] E;J.d) — E,¢ (convergence in ‘D)

Proof. If Ki = {z,z1,%2,... } and if K is the support of ¢, then (as is easily
verified) the supports of E, j(b are contained in the compact set

Ki+Ko={u+v:u€K, ve K}
Now we observe that

(8) (Exj #)(y) = (E.¢)(y) uniformly for ye€ K; + Ko
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Indeed, for a given £ > 0 there is a § > 0 such that
lu—1 <6 = |p(u) —d(v)| <e (u,v € K1 + K, — K))

(This is uniform continuity of the continuous function ¢ on a compact set.)
Hence if |z; — | < 4, then |¢(y — z;) — ¢(y — z)| < €. It now follows that

(D"E‘,J.d:)(y) — (D®E;¢)(y) uniformly for ye€ K + K>
because D"'E,jd) = E:J- D*¢, and (8) can be applied to D*¢. (]

Lemmad4. Lete=(1,0,...,0),0< |t| <1,and F, =t~ (Ey—E.).

Then for each test function ¢, Fy¢ — % ast — 0. (This convergence
1
is in the topology of D.)
Proof. Since |t| < 1, there is a single compact set K containing the supports of

Fy¢ and 6_¢ By the mean value theorem (used twice) we have (for0 < 6,0’ < 1)

3::1
o | _| 99 -1 4
5o (@) = (Ro)(a)| = | 52(2) ~ 7' 9(a) - ol )
| 0¢ 99
= 3—1:1 .'l') - a—zl(l' Ote)l
¢ ,
- @_(1 -6 te)' l6t|
)
<Jlazzl,
The norm used here is the supremum norm on K. Our inequality shows that
ast o 0, (Fpo)(z) — (gTd)) (z) uniformly in £ on K. Since ¢ can be any test
1

function, we can apply our conclusion to D¢, inferring that Ft D¢ converges

uniformly to — D% on K. Since D® commutes with F; (Problem 9) and

311
with other derivatives, we conclude that D®F;¢ converges uniformly on K to
9 . - .
Dagzg. This proves that the convergence of F;¢ is in accordance with the
1
notion of convergence adopted in D. ]

Theorem. IfT is a distribution and if ¢ is a test function, then for
each multi-index a,

(9) DT x¢)=(8°T)x¢p =T x D%
Proof. From Equations (3) and (2) we infer that

D°B = (-1)l*l BD®
D°E; = E; D*
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Hence

(8°T * ¢)(z) = (8°T)(E.B¢) = (-1)!*l T D°E.B¢
=(-1)°TE, D°B¢ =TE, BD%¢ =T *D"¢
This proves one part of Equation (9). For the other part, consider the special case
a=(0,...,0,1,0,...,0). Thus D = % Let e = (0,...,0,1.0,...,0) € R",
and F; = t~!(Eg — FEie). Since '
4 o (y) = oy —te)
a—xid’(y) = th_% - 1

= lim(F:4)(3)

= tli_%[t'l(Eo - Ete)¢](y)

we have D¢ = tlin})thI), by Lemma 4. Using Lemma 1, we have

Fi(T*¢)=Tx Fi¢
By Lemma 2, we can let t — 0 to obtain
D(T*¢)=T=*D¢
By iteration of this basic result we obtain, for any multi-index o,
D*(Tx¢)=Tx*D% ]
Corollary. IfTe€ D and ¢ € D, then T x p € C°(R").

Proof. We have to prove that D®(T * ¢) € C(R™) for all multi-indices a. Put
1 = D%. Then by the theorem,

DXT+¢)=T+D%¢=Txp

To see that T * 9 is continuous, let [z;] be a sequence in R™ tending to . By
Lemma 3,

(T +9)(x;) = T Ex;BY - T E; Bv = (T » ) () .

Problems 5.5

1. Prove that
(a) EzEy = Ez4y
(b) BE; =FE_:B
(c) pryv=9¢=*¢
(d) 6yE:B =6:FE,
2. Prove that E; : D’ = D’ is linear, continuous, injective, and surjective.
3. Prove that for fixed T € D’ the map ¢ +— T ¢ is linear from D to C=(R").
4. Prove that if T € D’ and ¢ € D, then

T(¢) = 8(T « Bp) (6 = Dirac distribution)
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5. Fixing a distribution T, define the convolution operator Ct by C'r¢ = T » ¢. Show that
6:Cr = TE:B.

6. Prove that the vector sum of two compact sets in R™ is compact. Show by example that
the vector sum of two closed sets need not be closed. Show that the vector sum of a
compact set and a closed set is closed.

7. For 2m-periodic functions, define (f » g)(z) = j;)h f(¥)9(z — y)dy. Compute the convo-
lution of f(z) = sinz and g(z) = cos z.

8. Prove that B and E. are continuous linear maps of D into D. Are they injective? Are
they surjective?

9. Prove that D*E, = E.D°.

10. What is § » ¢?
11. Which of these equations is (or are) valid?
(a) B(Ex(#(y))) = &(z —v)
{(b) (B(Ez¢))(y) = ¢(x —y)
(c) Ex(B(s6(v))) = ¢(—z —v)
(d) Ex(B(¢(v))) = ¢(z — v)

5.6 Differential Operators

Definition. A linear differential operator with constant coefficients is any
finite sum of terms c,D®. Such an operator has the representation

A= Z caD®

Jajgm

The constants ¢, may be complex numbers. Clearly, A can be applied to any
function in C™(R™).

Definition. A distribution T is called a fundamental solution of the oper-
ator Y coD? if Y c,0°T is the Dirac distribution.

Example 1. What are the fundamental solutions of the operator D in the case
n=17 (D= %). We seek all the distributions T that satisfy 0T = . We saw
in Example 1 of Section 5.2 (page 254) that OH = 6, where H is the Heaviside
function. Thus H is one of the fundamental solutions. Since the distributions
sought are exactly those for which T = 8H, we see by Theorem 3 in Section
5.2 (page 256) that T = H + ¢ for some constant c.

Theorem 1. The Malgrange—Ehrenpreis Theorem. Every
operator ) coD?® has a fundamental solution.

For the proof of this basic theorem, consult [Ho] page 189, or [Rul] page 195.
The next theorem reveals the importance of fundamental solutions in the study
of partial differential equations.
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Theorein 2. Let A be a linear differential operator with constant
coefficients, and let T be a distribution that is a fundamental solution
of A. Then for each test function ¢, A(T * ¢) = ¢.

Proof. Let A =3 coD®. Then Y c,8°T = 4. The basic formula (the theo-
rem of Section 5, page 271) states that

DX(T+¢)=8"T+¢
From this we conclude that
A(T*¢) =Y caD*(T+¢) = (ana" )*¢=5*¢=¢
In the last step we use the calculation

(6 * ¢)(z) = 6(E:Bo) = (EzB¢)(0) = (B¢)(0 — z) = ¢(z) .

Example 2. We use the theory of distributions to find a solution of the
d

differential equation é = ¢, where ¢ is a test function. By Example 1, one

fundamental solution is the distribution H. By the preceding theorem, Hx¢

will solve the differential equation. We have, with a simple change of variable,

wa) = (o)) = [ " Hy)olz - y)dy = | s '

Example 3. Let us search for a solution of the differential equation
W tau=¢

using distribution theory. First, we try to discover a fundamental solution, i.e.,
a distribution T such that 8T + aT = 8. If T is such a distribution and if
v(z) = €%, then

Ow-T)=Dv-T+v-8T=av-T+v-(6-aT)=v-6=96

Consequently, by Example 1,
v-T=H+¢ and T= %(§+E)

Thus T is a regular distribution f, and since c is arbitrary, we use ¢ = 0, arriving
at

f(z)=€e""*H(z)
A solution to the differential equation is then given by

o0

w(z) = (f + 6)(z) = / e *VH(y)d(z — y) dy

—00

=/ e YVo(r—y)dy
0
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This formula produces a solution if ¢ is bounded and of class C*. ]

The Laplacian. In the following paragraphs, a fundamental solution to the
Laplacian operator will be derived. This operator, denoted by A or by V2, is

given by
82 92
A= —+. -4+ —
oz? oot oz

At first, some elementary calculations need to be recorded. The notation is
z=(z1,...,%n) and |z| = (22 + --- + T2)V/2
2 -1
Lemma 1. Forz #0, -—|z| = z;]z]™".
Tj

0 é) - -
= (@ 4422 = Yt b+ )T (2) =zl
2

2
Lemma 2. Forz #0, %l:ﬂ = |z|7! - :c?|:c]‘3.
J
Proof.
9’ 2 -1 -1 -2 -1
wlxl = E;[f'«'jll'l ] = lel™ + 2 (= 1) || z;]x|
J 3
=|z|7! = :z:;‘?l:l:l‘3 ]
Lemma 3. For z# 0, and g € C%(0,c0),

Ag(lz)) = ¢"(Iz]) + (n = D)lz| ™' g'(z)

o lel) = ¢ ) 2ol = o el el

82 4 2 — ’ 82
%—gg(lxl) = ¢"(|z)z}lz"% + g (lxi)a—xglx!
= g"(lz))z3|z7* + ¢’ (Jz])(|z] ™" — 2}|z]7%)

no52
Ag(jz)) = ,Z;: bggg(lwl)

= ¢"(lz])lz|*|z|7* + ¢’ (Iz)(nlz|™" ~ |z|*|2]~?)

=¢"(Iz]) + (n - 1)lzlg'(z) .
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For reasons that become clear later, we require a function g (not a con-
stant) such that Ag(|z]) = 0 throughout R™, with the exception of the singular
point £ = 0. By Lemma 3, we see that g must satisfy the following differential
equation, in which the notation r = || has been introduced:

-1
g =0

g'(r) +

This can be written in the form
g"(n/g'(r) = (1 - n)r™!
and this can be interpreted as
= logg'(r) = (1 —n)r~!
From this we infer that
logg'(r) = (1 = n)logr + logc
g(r)y=cr

l-n

If n > 3, this last equation gives g(r) = 72-™ as the desired solution. Thus we
have proved the following result:

Theorem 3. Ifn > 3 then A|z|*>~™ = 0 at all points of R™ except
z=0.

Of course, this theorem can be proved by a direct verification that |z|>~™
satisfies Laplace’s equation, except at 0. The fact that Laplace’s equation is not
satisfied at O is of special importance in what follows. Let f(z) = |z|2~™. As
usual, f will denote the corresponding distribution.

In accordance with the definition of derivative of a distribution, we have

Af= Z Z =foA

For any test function ¢,

(1) (AF)@) = F(ag) = / e~ (Ad)(z) do

The integral on the right is improper because of the singular point at 0. It is
therefore defined to be

(2) lim |z|*~"(A¢)(z) dz

€40 Szt e

For sufficiently small €, the support of ¢ will be contained in {z : |z| < ¢~!}.
The integral in (2) can be over the set

Ac={z:e<|z| <€}
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An appeal will be made to Green's Second Identity, which states that for regions
2 satisfying certain mild hypotheses,

/(uAv —vAu) = / (uVv —vVu)- N
Q aa

The three-dimensional version of this can be found in [Hur] page 489, [MT] page
449, [Tay1] page 459, or [Las] page 118. The n-dimensional form can be found
in [Fla]) page 83. In the formula, N denotes the unit normal vector to the surface
0. Applying Green'’s formula to the integral in Equation (2), we notice that
Alz|*~™ = 0 in A.. Hence the integral is

3) lePAg = / (12[*""V - $Vj~™) - N
Ae BAge

The boundary of A, is the union of two spheres whose radii are € and e~!. On
the outer boundary, ¢ = V¢ = 0 because the support of ¢ is interior to A¢. The
following computation will also be needed:

Vlel*" - N = Z((—%lzlz‘") L=y @) (2) = @ e
Jj=1

ol =~ & E

The first term on the right in Equation (3) is estimated as follows

/l | |z|>"Vé- Nl ds < e max |Vé(z)| ds
z|=€

z|=¢€ |z|=¢

=ce? o™ = O(e)

Hence when € — 0, this term approaches 0. The symbol o,, represents the “area”
of the unit sphere in R™. As for the other term,

| /1 . [6() - 6(0))VIaP ™ - N]as < (n=2) [ |l ~"lo(a) - #(0)]dS

1=|

< (=2 " maxlé(@) - 4(0)] [ S

{zl=¢

= (n-2)e! Mw(e)oe™ ! 50

In this calculation, w(e) is the maximum of |¢(z) — ¢(0)| on the sphere defined
by |z| = €. Obviously, w(e) — 0, because ¢ is continuous. Thus the integral in
Equation (3) is

(2—n)ond(0) = (2 — n)ond(d)

Hence this is the value of the integral in Equation (1). We have established,
therefore, that Af = (2 — n)o,d. Summarizing, we have the following result.
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Theorem 4. A fundamental solution of the Laplacian operator in
a2~

(2 —n)o, ’

dimension n 2> 3 is the distribution corresponding to where

on denotes the area of the unit sphere in R™.

Example 4. Find a fundamental solution of the operator A defined (for n = 1)

by the equation
Ap=¢" +2a¢' +bp (¢ € D)

We seek a distribution T such that AT = §. Let us look for a regular distribution,
T = f. Using the definition of derivatives of distributions, we have

(Af)(@) = f(¢" ~ 2a¢’ + bo)
= /_ f(z)[¢"(z) - 2a¢/(z) + bo(z)] dz

Guided by previous examples, we guess that f should have as its support the
interval [0,00). The integral above then is restricted to the same interval. Using
integration by parts, we obtain

- [T re - sasef 2 [T rown [ so
0 0 0 0

—FO)F(0) - 9|7 + /0 6 + 2a£(0)$(0) + /0 (2af' +bf)

—£(0)¢'(0) + £'(0)#(0) + 2a£(0)¢(0) + /m(f” +2af" +bf)

0

The easiest way to make this last expression simplify to ¢(0) is to define f on
{0,00) in such a way that

() f"4+2af' +bf=0
(i)  f(0)=0
(iii) fl(0)=1
This is an initial-value problem, which can be solved by writing down the general

solution of the equation in (i) and adjusting the coefficients in it to achieve (ii)
and (iii). The characteristic equation of the differential equation in (i) is

A2+ 2a0+b=0

Its roots are —a+ Va2 — b. Let d = va? — b. If d # 0, then the general solution
of (i) is

—azx —dx

—ar, dr e

cie + co€

Upon imposing the conditions (ii) and (iii) we find that

d~!e~ %% sinh dz 20
fa) = {

0 <0
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The case when d = 0 is left as Problem 14. [}

A linear differential operator with nonconstant coefficients is typically of
the form

(4) A=Y caD"

In order for this to interact properly with distributions, it is necessary to assume
that c, € C°(R"). Then AT is defined, when T is a distribution, by

(5) AT =Y ca(D°T) =Y _(-1)%lca(T 0 D%)

Remember that T o D? is a distribution; multiplication of this distribution by
the C*-function c, is well-defined (as in Section 5.5). The result of applying
this to a test function ¢ is therefore

(6) (AT)(¢) = >_(~1)!*N(T 0 D*)(cad)

Notice that the parentheses in Equation (5) are necessary because coT o D is
ambiguous; it could mean (coT) o D.

It is useful to define the formal adjoint of the operator A in Equation (4).
It is

(7) A =3 (-1)ID%ca) $€D

Notice that this definition is in harmony with the definition of adjoint for oper-
ators on Hilbert space, for we have

(AT)(¢)=T(A"¢) (TeD', ¢€ D)
and this can be written in the notation of linear functionals as
(AT, ¢) = (T, A" 9) (TeD', ¢ €D)

Using Example 4 as a model, we can now prove a theorem about funda-
mental solutions of ordinary differential operators (i.e., n = 1).

Theorem 5. Consider the operator

A= z d kel

j=0

in which ¢; € C*®(R) and cm(z) # O for all z. This operator has a
fundamental solution that is a regular distribution.

Proof. We find a function f defined on [0, 00) such that
(i) ZcJ ) (z

(i)  em-1(0)fmV(0) =1

(i) ¢(0)fP0) =0 (0<j<m=-2)
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Such a function exists by the theory of ordinary differential equations. In par-
ticular, an initial-value problem has a unique solution that is defined on any
interval [0, b], provided that the coefficient functions are continuous there and
the leading coefficient does not have a-zero in [0, b]. We also extend f to all of
R by setting f(z) = 0 on the interval (—o00,0). With the function f in hand, we

must verify that Af = §. This is done as in Example 4. (]

Problems 5.6

1. If the coefficients c, are constants, then the formal adjoint of the operator Z caD is

%:(—l)l'ﬂc0 De. If the former is denoted by A, then the latter is denoted by A*. Prove
that for any distribution T, AT = T o A".

2. (Continuation) Prove that the Laplacian

n

2=2(5%)

i=1

is self-adjoint; i.e., A* = A.

3. Solve the equation Y’/ +2Y’' + Y = § + ¢’ in the distribution sense, using a function of
the form Y (z) = H(z)f(z).

4. If P is a polynomial in n variables, say P = Z caz®, and if D is the n-tuple
(—6—, i, ceey i-), then what should we mean by P(D)?

8z, 0Oz2 Ozn

5. Fix y € R™ and let f(z) = e{*-¥) for z € R". Prove that P(D)f = P(y)f. Express this

result in the language of eigenvalues and eigenvectors.

6. If the functions v, belong to C>°(R™), then a differential operator Z voD® has a coun-
terpart 2 v,0? that acts on distributions. Consider the operator

8 8
1 2y-1 Y v
(1+=z°) 6:':+e 3

and compute its effect on the Dirac distribution on R2.
2

I}
8z,0z3

-3

(Try an analogue of

. Let n = 2 and find a fundamental solution of the operator
the Heaviside distribution.)
8. What is the null space of the operator in Problem 7, interpreting it as a map on C>(R?)?

9. What is the null space of the operator in Problem 7 if we interpret it as a tnap on D'?
d!

10. Let »n = 1, and find a fundamental solution of the operator el Use it to give a solution

T

to v’ = ¢ in the form of an integral.

11. Let n =1 and f(z) = et*1zl. Show that a multiple of 7is a fundamental solution of the
2

d
operator 2 + k21. Give an integral that solves the equation v” + ku = ¢.
£

12. Let p be a function such that p and % belong to C!(R). Define f(z) to be fox dt/p(t) if
z >0 and to be 0 if z < 0. Show that, in the distributional sense, (pf’)’ = 6.

13. In Examples 2 and 3 find more general solutions by retaining the constant in / + c.

14. Complete Example 4 by obtaining the fundamental solution when d = 0.
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In this section we prove a theorem on partitions of unity in the space D of
test functions. Then we define the support of a distribution, and study the
distributions whose support is compact. In particular, the convolution S * T of
two distributions can be defined if one of S and T has compact support. Recall
more fundamental notion of the support of a function f. It means the

the
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Distributions with Compact Support

closure of the set {z : f(zx) # 0}.

281

Lemma 1. There is a function f € C®(R) such that 0 < f <1,

f(z) =0 on (—00,0], and f(z) =1 on (1, 00).

Proof. Define

and

exp(z?/(z2 -1)] |z| <1
g9(z) =

0 Jz[ > 1

f(:r):{g(z—l) <1

1 otherwise

The graphs of f and g are shown in Figure 5.3.

[0a} fe2)
L
1
o

Leal o
]

o (=) o o
Y
.

-2 -1 0 1 2 -2 -1 0 1 2

Figure 5.3

Lemma 2. Ifzy € R™ and p > r > 0, then there is a test function
¢ such that

(i)0< o<1
(ii) (x) =l if|xt —xo| < T
(iii) ¢(z) = 0 if|z - zo] > p.

Proof. Use the function f from the preceding lemma, and define

¢(z) =1 — f(alz —zo|* ~ )

witha = (p? ~7r2)~! and b = r2a. If |z —x0| < 7, then a|z—zolZ—b < ar? —b

2
so¢(z) = L If |z — zo| > p, then alz — zo)2 — b > ap® — b = a(p? — 1?) =

o(x) = 0.

L

0

]

SO
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Theorem 1. Partitions of Unity. Let .A be a collection of open
sets in R™, whose union is denoted by Q. Then there is a sequence [¢;]
in D (called a “partition of unity subordinate to .A”) such that:

a. 0<¢; <lfori=1,2,...

b. For each i there is an O; € A such that supp(¢;) C O;.

c. For each compact subset K ofSQ there is an index m such that

o)+ -+ omlz)=1
on a neighborhood of K.

Proof. (Rudin) Let [E(zi,r,-)] denote the sequence of all closed balls in R™
having rational center z;, rational radius r;, and contained in a member of A.
By the preceding lemma, there exists for each ¢ a test function _¥; such that
0< ¥ <1, ¥i(z) =1 on B(x,7i/2), and ¥i(x) = 0 outside of B(z;,r;). Put
¢ =¥, and

(1) @i = (1~ 1)L —tpg) (1 —i1)¥y (i22)

It is clear that on the complement of B(z;,r;), we have ¥i(z) = 0 and ¢:i(z) = 0.
By induction we now prove that

(2) dr+-+di=1—[(1=91)(1~¢2)-- (1~ )]

Equation (2) is obviously correct for i = 1. If it is correct for the index i — 1,
then it is correct for 7 because

dr4+di=1=[(1—w1) - (L=wim)] + [(1 = 1) - (1 = vi1)]
=1=[(1=9)- - (1= %i-1)(1 = )]

Since 0 < ¥; < 1 for all 7, we see from Equation (2) that
o0
> ilz) <1 (zr € R™)
i=1

On the other hand, if z € U, B(zi,7i/2), then ¥;(z) = 1 for some i in
{1,...,m}. Then ¢;(z) + --- + ¢m(z) = 1 from Equation (2). Since the open
balls B(z;,7;/2) cover 2, each compact set K in  is contained in a finite union
Uiz, B(zi,7:/2). This establishes (c). ]

Fixing a distribution T, we consider a closed set F in R™ having this prop-
erty:

(3) T(¢) =0 for all test functions ¢ satisfying supp(¢) C R® \ F

Theorem 2. Let supp(T) denote the intersection of all closed sets
having property (3). Then supp(T) is the smallest closed set having

property (3).

Proof. Let F be the family of all closed sets F having property (3). Then

supp(T) = n{F :FeF}
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Being an intersection of closed sets, supp(T’) is itself closed. The only question
is whether it has property (3). To verify this, let ¢ be a test function such that
supp(@) C R™ \supp(T). It is to be shown that T(¢) = 0. By De Morgan’s
Law,

supp(¢) CR* N (|(F : Fe F} =| {R*\F : F e F}

By the preceding theorem, there is a partition of unity [1;] subordinate to the
family of open sets {R® \ F : F € F}. Since supp(¢) is compact, there exists
(by Theorem 1) an index m such that

m
zllii(l) =1 on a neighborhood of supp(¢)

i=1

Notice that ¢ = 452;"___1 ¥4, because if ¢(z) = 0, the equation is obviously true,
while if ¢(z) # 0, then z € supp(¢) and Y"1, ¥i(z) = 1. Hence, by the linearity

of T,
T(¢)=T (Z ¢w.~> = T(¢ws)
i=1 i=1

Again by Theorem 1, there exists for each ¢ an F; € F such that

supp(#¥;) C supp(wi) C R" N\ F

Since F; € F, F; has property (3), and we conclude that T'(¢y;) =0 for 1 <1 <
m. By Equation (4), T(¢) = 0. ]

Notice that supp() has two different meanings: one for functions on R™ and
another for distributions. This is the conventional practice. By Problem 10, the
two definitions are compatible.

Example 1. The support of the Dirac distribution § is the set {0}. If ¢ is
a test function for which supp(¢) C R™ \ {0} then clearly §(3) = 0. ]

Example 2. The support of the Heaviside distribution H is the set [0, 00).
[ ]

Definition. The space € is defined to be the space C*°(R™) with convergence
defined as follows: ¢; — 0 if for each multi-index , D®¢;(z) converges uni-
formly to O on every compact set.

Theorem 3. Each distribution having a compact support has an
extension to € that is continuous.

Proof. Let T be a distribution for which supp(T) is compact. By the theo-
rem on partitions of unity, there is a test function 1 such that ¥(z) = 1 on a
neighborhood of supp(T'). Define T on £ by the equation T(¢) = T(¢)). This is
meaningful because ¢1) € D. Now we wish to establish that T is continuous on
E. To this end, let ¢; € £ and suppose that ¢; — 0, the convergence being as

prescribed in £. All the functions ¢;1 vanish outside of supp(v’), and for each
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multi-index &, D(¢;¥) converges uniformly to 0 by the Leibniz formula. Hence
¢;¥ — 0 in D. By the continuity of T and the definition of T,

T(¢;) = T(¢;¥) >0

Finally, we must prove that T is an extension of T. Let ¢ be any test
function; we want to show that T'(¢) = T(¢). Equivalent equations are T'(¢%) =
T(¢) and T(¢py — ¢) = 0. To establish the latter, it suffices to show that

supp(¢y — ¢) C R™ \ supp(T)

(Here we have used Theorem 2.) Since ¢y —¢ = ¢- (¢ — 1), it is enough to prove
that
supp(¥ — 1) C R™ N\ supp(T)

To this end, let £ € supp(y — 1). By definition of a support, we can write
z = limz;j, where (y —1)(z;) # 0. Since ¥(z;) # 1, we have =; ¢ N, where N is
an open neighborhood of supp(T') on which ¥ is identically 1. Since £; € R* \ N,
we have £ € R™® \ N because the latter is closed. Hence z € R™ \ supp(T). =a

Theorem 4.  Each continuous linear functional on £ is an extension
of some distribution having compact support.

Proof. Let L be a continuous linear functional on £. Let T = L | D, which
denotes the restriction of L to D. It is easily seen that T is a distribution. In
order to prove that the support of T is compact, suppose otherwise. Then for
each k there is a test function ¢, whose support is contained in {z : [z] > k}
such that T(¢,) = 1. It follows that ¢, — 0 in £, whereas L(¢x) = 1. In order
to prove that L = T, as in the preceding proof select 7 j € D so that v;(z) =1
if |z| < j and v;(z) = 0 if |z| > 2. If ¢ € £, then v;¢ = ¢ in E. Hence

L(¢) = lim L(v;¢) = lim T(v;¢) = T(¢)
because supp(T’) C supp(~y;) for all sufficiently large j. .

The preceding two theorems say in effect that the space £’ consisting of all
continuous linear functionals on £ can be identified with a subset of D’, viz. the
set of all distributions having compact support.

Recall that the convolution of a test function ¢ with a function f € L}OC(R")
has been defined by

(4) (roe) = [ st
The convolution of a distribution T with a test function ¢ has been defined by
(5) (T * ¢)(z) = T(E:B9)

where (B¢)(z) = ¢(—z) and (Ex¥)(y) = ¢(y — 2).

Now observe that if T has compact support, then T (or more properly, its
extension T) can operate (as a linear functional) on any element of £. Conse-
quently, in this case, (5) is meaningful not only for ¢ € D but also for ¢ € £.
Equation (5) is adopted as the definition of the convolution of a distribution
having compact support with a function in C®(R").
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Theorem 5. If T is a distribution with compact support and if
e thenTxpeé&.

Proof. See [Rul], Theorem 6.35, page 159. ]

Now let S and T be two distributions, at least one of which has compact
support. We define S * T to be a distribution whose action is given by the
following formula:

(6) (S+T)(¢)=6(S*(T+Bg)) (¢€D)

Here 6(¢) = ¢(0) and (B¢)(z) = ¢(—z). We first verify that (6) is meaningful,
i.e., that each argument is in the domain of the operator that is applied to it.
Obviously, B¢ € D and T * B¢ € € by the corollary in Section 5.5, page 272. If
S has compact support, then by the preceding lemma, S * (T * B¢) € £. Hence
é can be applied. On the other hand, if T has compact support, then T * B¢
is an element of £ having compact support; in other words, an element of D.
Then S x (T *x Bg) belongs to €, and again é can be applied.

It is a fact that we do not stop to prove that S * T is a continuous linear
functional on D; thus it is a distribution. (See [Rul], page 160).)

Finally, we indicate the source of the definition in Equation (6). If S and T
are regular distributions, then they correspond to functions f and g in L,OC(R").
In that case,

(S+T)(6) = (F+9)(8) = / (f * 9)(2)é(z) dx

= [[ 1)t - o) dyds

5(7+ (o4 (B) = (1 + 9+ (80)))0) = [ 1o+ BOX-v)dy

= [[ 19t BoN v - ) dzay
//f o(y + 2) dzdy
= [[ 19tz - vota) deay

Problems 5.7

1. Refer to the theorem concerning partitions of unity, page 282, and prove that for each z
there is an index j such that ¢;(z) = 0 for all i > j.

2. Let [z;] be a list of all the rational points in R™. Define T by T(¢) =Y _ 0 27 '¢(z:),
where ¢ is any test function. Prove that T is a distribution and supp(T) = R™.

3. For a distribution T, let ¥, be the family of all closed sets F such that T(¢) = 0
when ¢ | F = 0. Let F2 be the family of all closed sets F such that T(¢) = 0 when
supp(¢) C R™ \ F. Show that F; is generally a proper subset of Fa.

On the other hand,
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12.
13.

14.
15.
16.

17.
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. Refer to the theorem on partitions of unity and prove that wZ‘;.':l ¢i =+ Y as j — oo,

provided that supp(y) C Q2

. Prove that the extension of T as defined in the proof of Theorem 3 is independent of the

particular ¥ chosen in the proof.

. If ¢ € D, T € D', and supp(¢) Nsupp(T) = D (the empty set), then T(¢) = 0.
. If T € D’ and supp(T) = &, what conclusion can be drawn?
. Show that if ¢ € C(R™), if T € D', and if ¢(z) = 1 on a neighborhood of supp(T),

then ¢T =T. :

. Why, in proving Lemma 1, can we not take g to be a multiple of the function p introduced

in Section 7.1?

. Let f € C(R™). Show that supp(f') = supp(f).
. Let T be an arbitrary distribution, and let K be a compact set. Show that there exists

a distribution S having compact support such that S(¢) = T(¢) for all test functions ¢
that satisfy supp(¢) C K.

Prove that a distribution can have at most one continuous extension on €.

Prove that if a distribution does not have compact support, then it cannot have a con-
tinuous extension on £.

Let T be a distribution and A a neighborhood of supp(T). Prove that for any test
function ¢, T(¢) depends only on ¢ | NV.

Prove or disprove: If two test functions ¢ and y take the same values on the support of
a distribution T, then T(¢) = T(¢).

Refer to the theorem on partitions of unity and prove that the balls B(z;,r;/2) cover the
complement of the support of T.

Prove that if f and g are in L[IDCIR", then for all test functions ¢,

—— -

(f xg)(#) = f(B(g = BY))
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6.1 Definitions and Basic Properties

The concept of an integral transform is undoubtedly familiar to the reader in
its manifestation as the Laplace transform. This is a useful mechanism for
handling certain differential equations. In general, integral transforms are helpful
in problems where there is a function f to be determined from an equation that
it satisfies. A judiciously chosen transform is then applied to that equation, the
result being a simpler equation in the transformed function F. After this simpler
equation has been solved for F, the inverse transform is applied to obtain f. We
illustrate with the Laplace transform.

Example. Consider the initial value problem
(1) ff=f-2f=0 f(O)=a f(0)=53
The Laplace transform of f is the function F defined by
F(s) = / f(t)e = dt
0

The theory of this transform enables us to write down the equation satisfied by
F:

(2) (s*=s—2)F(s)+(1-s)a—-B=0

287
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Thus the Laplace transform has turned a differential equation (1) into an alge-
braic equation (2). The solution of (2) is

F(s)=(B+as—a)/(s?-5-2)
By taking the inverse Laplace transform, we obtain f :

f(t) = 3(a + B)e* + 3(2a ~ B~ .

The Fourier transform, now to be taken up, has applications of the type
just outlined as well as a myriad of other uses in mathematics, especially in
partial differential equations. The Fourier transform can be defined on any
locally compact Abelian group, but we confine our attention to R™ (which is
such a group). The material presented here is accessible in many authoritative
sources, such as [Rul], [Ru2)], [Ru3], [SW], and [Fol].

The reader should be aware that in the literature there is very little uni-
formity in the definition of the Fourier transform. We have chosen to use here
the definition of Stein and Weiss [SW]. It has a number of advantages, not the
least of which is harmony with their monograph. It is the same as the definition
used by Horvath [Horv], Dym and McKean [DM], and Lieb and Loss [LL]. Other
favorable features of this definition are the simplicity of the inversion formula,
elegance in the Plancherel Theorem, and its suitability in approximation theory.

We define a set of functions called characters e, by the formula

ey(z) = 2™V yeR®, zeR"
Here we have written
zy=(T,y) =T -y=T1y1 +Tay2 + -+ + Tn¥n

where the z; and y; are components of the vectors z and y. Notice that each
character maps R"™ to the unit circle in the complex plane. Some convenient
properties of the characters are summarized in the next result, the proof of
which has been relegated to the problems.

Theorem 1.  The characters satisfy these equations:
(a) ey(u+v) = ey(u)ey(v)
(b) Eyey = ey(—u)ey, where (E,f)(z) = f(z — u)

(c) ey(z) = ex(y)
(d) ey(Az) = exy(z) (A €C)

The Fourier transform of a function f in L' (R™) is the function fdeﬁned
by the equation

for= [ eos@a wer)

In this equation, f can be complex-valued. The kernel e~27*#¥ is obviously
complex-valued, but z and y run over R™. Notice that

f) = (frey)
since in dealing with complex-valued functions, the conjugate of the second
function appears under the integral defining the inner product.
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Example. Let n =1 and let f be given by

1 on[-1,1]
)= {
0 elsewhere
Then
1 —2mizy z=1
z - —2m’zyd — €
fy = [ emovar = S
r=-1
_ e—-21riy - e21n'y _ 1 e21{iy _ e—2vriy _ sin(27ry)
= T omy oy % I '

The function £ — sin(2#xz)/(7z) is called the sinc function. It plays an
important réle in signal processing and approximation theory. See [CL], Chapter
29, and the further references given there.

If f € L}(R™), what can be said of f? Later, we shall prove that it is
continuous and vanishes at co. For the present we simply note that it is bounded.
Indeed, ||j¢]|0° < ||£|l, because

3) )l < / le=2Y) | ()| dz = / |£(@)] dz = || 1],

In order to use the Fourier transform effectively, it is essential to know how
it interacts with other linear operators on functions, such as translation and
differentiation. The next theorem begins to establish results of that type.

Theorem 2. Let E denote the translationAoperator, defined by
(Eyf)(z) = f(r —y). Then we have E,f =e_yf ande,f = E, f.

Proof. We verify the first equation and leave the second to the problems. We
have

E"y\f(z) = /f(u — y)e—2m'zu du = /f(v)e—Zfriz(u+y)dv

~

— e—2mizy /f(v)e_z""" dv = e_y(z)f(z) a

Recall the definition of the convolution of two functions, as given in Section
5.5, page 269:

(rro)e) = [ fwoa-v)dy
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Theorem 3. If f and g belong to L'(R™), then the same is true of
f*g,and
I1£+gll, < [I£1l, - llall,

Proof. ([Smi]) Define a function h on R™ x R™ by the equation
h(z,y) = g(x - y)

Let us prove that h is measurable. It is not enough to observe that the map
(z,y) — z —y is continuous and that g is measurable, because the composition
of a measurable function with a continuous function need not be measurable.
For any open set O we must show that A~!(©) is measurable. Define a linear
transformation A by A(z,y) = (z — y,z + y). The following equivalences are
obvious:

(z,y) € A~H0O) h(z,y) e O

gz -y) €O
z-yeg ' (0)
(z-yx+y) €9 ' (O)xR"
A(z,y) € g7'(0) x R

(z,y) € A7 [g7}(0) x R"]

IR A

This shows that
R (0) = A7} [g71(0) x RY)

Since g is measurable, g~ '(©®) and g~!(©®) x R™ are measurable sets. Since A
is invertible, A~! is a linear transformation; it carries each measurable set to
another measurable set. Hence h~!(() is measurable. Here we use the theorem
that a function of class C' from R™ to R™ maps measurable sets into measurable
sets, and apply that theorem to A~1.

The function F(z,y) = f(y)g9(z — y) is measurable, and

J[1F@uidgzay= [150)1 [1o6 - vl dzay
= [ @i lsl dv = sl Nl

By Fubini's Theorem (See Chapter 8, page 426), F is integrable (i.e., F €
L'(R™ x R")). By the Fubini Theorem again,

15+ all, = / (f * 9)(z)] dz < / Fa,y)ldyde = |||}, lol,

Theorem 3 can be found in many references, such as [Smi] page 334, [Ru3] page
156, [Gol] page 19.
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Theorem 4. If f and g belong to L'(R™), then

Fro=Tg
Proof. We use the Fubini Theorem again:
3@ = [e-xr+ 0@ dy= [e-aw) [ gty - u)dudy

= [[e-xtuty-wsoty - waudy
= [e-stw)fw [ e-aty - wigly - u)dudy
= [e-stfw) [ esly = wigty - wayu
= / e_o(u)f(u) du / e_z(2)g(z) dz = f(z)g(z) .

Theorem 5. If f € L'(R™), then fe Co(R™). Thus, f is continuous
and “vanishes at 00.”

Proof. From the definition of f,

[f(z) - fw)l < / le=2miez _ =2mivz| | £(2)| d2

If y converges to x through a sequence of values y;, then the integrand is bounded
above by 2| f(z)|, and converges to 0 pointwise (i.e., for each z). By the Lebesgue
dominated convergence theorem (Chapter 8, page 406), the integral tends to 0.

Hence f(y;) = f(). ~
In order to see that f vanishes at infinity, we note that —1 = e~™ and
compute f as follows, using r = 2|z|?:

B /f(y)e—21rizy dy = /mf(’u)e_z"iz(u+x/r) du
With the change of variable y = u + z/r this becomes
f = — - E —2mizy
flz) = / f(y ; )e dy

It follows that

2f(z) = /e‘z’”’” [f(y) f(y - —)] dy

2| f(z /lf y——)ldy

and that
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At this point we want to say that as z tends to infinity, £/r — 0 (because
r = 2|z|?), and the right-hand side of the previous inequality tends to zero.
That assertion is justified by Lemma 3 of Section 6.4, page 306. ]

Suggested references for this chapter are [Ad], [BN], [Bac], [Br], [CL], [DM],
[Fol], (GV], [Gol], [Gre], [Gri], [Hel], [Ho), [Horv], [Kat], [Ko], [Lan1], [LL], [Loo],
[RS], [Rul], [Ru2], [Ru3), [Schl], [SW], [Til1], [Ti2], [Wal], [Wie], [Yo], [Ze], and
(Zem).

The table of Fourier transforms presented next uses some definitions and
proofs that emerge in later sections.

Table of Fourier Transforms

Function Its Fourier Transform Definitions

f f(z) = " W)e ™ ¥dy | zy= ]}j:fiw

E,f e-of (Bof)(2) = flz —v)

eof E_f ev(z) = €27

P(D)f P*f P*(z) = P(2niz)

fxg i (f*9)(z) = | fly)g(z—y)dy

Pf P-(D)f P =P (32)
2w

Saf 2SS (52f)(2) = f(Az)

£ e~ T e ™

z —s e~ z— 2(1 + 4n?z?)~!

z—s em 9% zr— w/ae‘”2’2/°

zr— (22 +a?)7! z— ge“z’"’"‘
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12.

13.

14.

15.

16.
17.
18.
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20.
21.

22.

23.
24.
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Problems 6.1

. Prove Theorem 1.
. Does the group R™ have any continuous characters other than those described in the

text?

. Express §(f * €¢) in terms of a Fourier transform.
. What are the characters of the additive group Z7?
. Find the Fourier transform of the function

z) = { cosz 0<z<1
1) { 0 elsewhere.

. Prove the second assertion of Theorem 2.
. Prove that the mapping F that takes a function f into f is linear and continuous from

LY(R™) to C(R™). (Note: F is also called the Fourier transform.)

. Prove that if A > 0 and h(z) = f(z/)), then h(z) = A" f(\z).

. Prove that if h(z) = J(—z), then h(z) = f(z).
. Prove that L!(R™) with convolution as product is a commutative Banach algebra. A

Banach algebra is a Banach space in which a multiplication has been introduced such
that z(y2z) = (zy)z, z(y+2) = zy+ zz, (T + y)z =z + Yz, Mzy) = (Ax)y = z(Ay),
and ||zyl| < ||zl Ilyll-

Does the Banach algebra described in Problem 10 have a unit element? That is, does
there exist an element u such that u» f = f s u = f for all f?

Show that the function f(z) = (1 + iz)~2, z € R, has the property that f(s) > O for
s <0 and f(s) =0 otherwise.

Prove that the function ¢(z) = z2 has the property that for each f € L}(R"), ¢ o f
is the Fourier transform of some function in L!(R™). What other functions ¢ have this
property?

Prove that the function f(:z:) exp(z ~ e*) has as its Fourier transform the function
f(s) =TI'(1-1i8), and that f(s) is never 0. The Gamma function is expounded in [Wid1).
(This problem relates to the proof of Theorem 4.) Let f: X —+ Y and g:Y — Z be
two functions. Show that for any subset 4 in Z, (go f)~1(A). = f~1(g~!(A)). Now let
X =Y =R. Show that if g is continuous and f is measurable, then g o f is measurable.
Explain why f o g need not be measurable.

How are the Fourier transforms of f and f rela}gd?

Prove that if f; — f in L!(R™), then f;(z) — f(z) uniformly in R™.

What logic can there be for the following approximate formula?

k=N

ﬂ:)z Z f(k)e—mn'kz

k=—-N

Under what conditions does the approximate equation become an exact equation?
(The Autocorrelation Theorem) Prove that if

9(z) = / Fu)f(u + z)du

then g = |f|2.

Prove that fftg:fffg.

Assume that f is real-valued and prove that the maximum value of f * Bf occurs at the
origin. The definition of B is (Bf)(z) = f(—z).

Recall the Heaviside function H from Section 5.1, page 250. Define f(z) = e 2*H(zx)
and g(z) = e ¥ H(z). Compute f * g» assuming that0 <a < b.

Prove that if f is real-valued, then ]f|2 is an even function.

We have adopted the following definition of the Fourier transform:

(fxf)(y)=/ e 2"V f(z) dz
Rn
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Other books and papers sometimes use an alternative definition:
1 :
= — —iry
(F21)¥) @n)Tz /R" e f(z)dz

Find the relationship between these two transforms.
25. (Continuation) Prove that the inverse Fourier transforms obey this formula:
Fil=(2n)2F; 10512,  where (Sxf)(x) = f(Az)

26. (Generalization of Theorem 3) Prove that if f € LP(R") and g € L9R"™), then the
convolution f * g is well-defined, and ||f » gl . < ||, ligll,-

27. Let f be the characteristic function of the interval (—1/2,1/2). Thus, f(z) = 1if |z| <
1/2, and f(z) = O otherwise. Define g(z) = (1 — |z|)f(z/2) and show that f » f = g.

28. Prove the “Modulation Theorem”: If g(z) = f(z)cos(az), then

~ 1~ a 1~/ a
g(z) = §f(2—7r- +I) + Ef(é; 1‘)
29. Define the operator B by the equation (B f)(z) = f(—z), and prove that f* Bf is always
even if f is real-valued.

6.2 The Schwartz Space

The space 8, also denoted by 8(R"), is the set of all ¢ in C°°(R") such that
P - D%¢ is a bounded function, for each polynomial P and each multi-index a.
Functions with this property are said to be “rapidly decreasing,” and the space
itself is called the Schwartz space. In the case n = 1, membership in the
Schwartz space simply requires sup, |t™¢{*)(z)| to be finite for all m and k.

Example 1. The Gaussian function ¢ defined by
¢(a) = 1o
belongs to 8. ]

It is easily seen, with the aid of Leibniz's formula, that if ¢ € 8, then
P - ¢ € 8 for any polynomial P, and D%p € 8 for any multi-index a.

We note that S(R™) is a subspace of L!(R™). This is because functions in
8 decrease with sufficient rapidity to be integrable. Specifically, if ¢ € 8, then
the function £ — (1 + |z|?)"¢(z) is bounded, say by M. Then

/ |6(z)| dz < M / (1 + [2f)~" do
R" Rn

00
= M/ (1 +73)"dr <
0

In this calculation we used “polar” coordinates and the “method of shells.” The
thickness of the shell is dr, the radius of the shell is 7, and the area of the shell
is 7™~ lw,, where w, denotes the area of the unit sphere in R".

Deflnition. In 8, convergence is defined by saying that ¢; — 0 if and only
if P(z)- D*¢;j(z) = 0 uniformly in R™ for each multi-index a and for each
polynomial P. In other terms, ||P - D%¢;||_, — O for every multi-index & and
every polynomial P, the sup-norm being computed over R".
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Lemma 1. If P is a polynomial, then the mapping ¢ — P - ¢ is
linear and continuous from 8 into 8.

Proof. Let ¢; —- 0. We ask whether Q - DB(P . ¢;) — 0 uniformly for each
polynomial @ and multi-index 3. By using the Leibniz formula, this expression
can be exhibited as a sum of terms Q., - D®¢;, where the Q. are polynomials and
a is a multi-index such that a < 8. Each of these terms individually converges
uniformly to zero, because that is a consequence of ¢; — 0 in 8. Therefore, their
sum also converges to 0. [

Lemma 2. If g € 8, then the mapping ¢ — g¢ is linear and
continuous from 8 into 8

Proof. This is left to the problems. (]

Lemma 3. For any multi-index a, the mapping ¢ — D®¢ is linear
and continuous from 8 into 8.

Proof. This is left to the problems. ]

In studying how the Fourier transform interacts with differential operators,
it is convenient to adopt the following definitions. Let P be a polynomial in
n variables. Then P has a representation as a finite sum P(z) = Y coz?, in
which each a is a multi-index, £ = (z,...,%,), co is a complex number, and

¢ = 27252 - 23", Each function £ — z® is called a monomial. We define
also
0 8 0
(s3] ag an
o (2N (2N (0
oz, Jz, Oz,
P(D) =Y csD*
Lemma 4.  The function e, defined by ey(z) = e?"=¥ obeys the

equation P(D)e, = P(2niy)ey for any polynomial P.
Proof. It suffices to deal with the case of one monomial and establish that
D%ey = (2miy)®e,. We have

0 0 2mi(
e (z) = — e?rily1T)++ynzn)
dz; o) = 5

= e?minT1Htynan) 9y ) = (2miy;)ey(x)



296 Chapter 6 The Fourier Transform

Thus, by induction, we have
o \% . .
(55;) ey = (2miy;) ey

Consequently, D%, = (2miy)*! (2miyz)2 - - - (27iy,) " ey = (27miy) e, ]

The next result illustrates how the Fourier transform can simplify certain
processes, such as differentiation. In this respect, it mimics the performance of
the Laplace transform.

Theorem 1. If ¢ € 8, and if P is a polynomial, then
([P(D/(2mi))$|* = P - ¢. Equivalently, [P(D)¢]® = P+¢, where
P*(z) = P(2miz).

Proof. We have to show that

{20(5) ¢] =3 car®d)

Since the Fourier map f +— f is linear, it suffices to prove that

[(2—1:—1) d>} () = ¥ o(y)

Equivalently, we must prove that
1\ laf— ~
i a — &
(55) D°dIw) =¥°d)

Thus we must prove that
1 ylai a a7
(50)" [ (Dot @ems()dz = 1°5(0)

In this integral we can use integration by parts repeatedly to transfer all deriva-
tives from ¢ to the kernel function e_,. Each use of integration by parts will
introduce a factor of —1. Observe that no boundary values enter during the
integration by parts, since ¢ € 8. Using also the preceding lemma, we find that
the integral becomes successively

(57D [ 6(a) (De-y(@)] @) do

= (el(5)" [ eta)(-2miv)e-y () do

-~

=y / $(2)e—y (@) dz = y2B(y) .
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Example 2. Let A denote the Laplacian operator; i.e.,

Then A = P(D/(2wt)) if P is defined to be

P(z) = (- 4n%) (e} + 25 + -~ + 27) = ~4n’|a]®

Hence, for ¢ € 8,

Equivalently, . _
Ag(z) = —4n|z|*¢(z) .

Theorem 2. If¢ € 8 and P is a polynomial, then P(-D/(2mi))¢ =
P¢. Equivalently, P(D)¢ = P*®, where P*(y) = P(—2riy).

Proof. We insert the variables, and interpret P(D) as differentiating with
respect to the variable . Thus, with the help of Lemma 4, we have

(P(D)3] @) = P(D) [ e-.wot) dy = PD) [ e-y(aotw)
- / [P(D)e_y) (z)#(y) dy = / P(=2rig)e_,(z)é(y) dy
- / P*(y)e—2(4)8(y) dy = P3(z) .

In the preceding proof, one requires the following theorem from calculus.
See, for example, [Wid1] page 352, or [Bart] page 271.

Theorem 3. If f and 8 f/Oz are continuous functions on R?, then,
provided that the integral on the right converges, we have

d [ _[*9
;l;_/o f(:l?,t)dt—/ol %f(l',t)dt

Theorem 4. The mapping ¢ —> a is continuous and linear from 8
into 8.

Proof. First we must prove thatAa € 8 when ¢ € 8. It is to be shown that a
is a C*™-function and that P - D%¢ is bounded for each polynomial P and for
each multi-index a. In Theorem 5 of Sectlon 6.1 (page 291), we noted that ¢ is
continuous. By Theorem 2 above, D"¢ Q ¢ for an appropriate polynomial
Q. Since Q - ¢ € 8 (by Lemma 1), we know that (ﬂ is continuous, and can
therefore conclude that D"a is continuous. Hence a € C™,
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Now we ask whether P - D°‘$ is bounded. By the preceding remarks and
Theorem 1,

(1) P.D°$=P.®=[P(§%)(Q-¢)]A

Since P(D/(Zm’))(Q -¢) € 8, its Fourier transform is bounded, as indicated in
Eguation (3) of Section 6.1, page 289.

For the continuity of the map, let ¢; — 0 in 8. We want to prove that aj -0
in 8. That means that P - D"aj — 0 uniformly for any polynomial P and any
multi-index a. By Equation (1) above, the question to be addressed is whether
[P(D/(27))(Q - ¢;)]" — O uniformly. If we put ¥; = P(D/(271))(Q - ¢;), we
ask whether zz_,-(t) — 0 uniformly. Now, ¥; € 8, and ¢; - 0 in 8 by Lemmas 1
and 2. Hence (1 + |z/2)"¢j(z) — O uniformly. It follows that for a given € > 0
there is an integer m such that (1 + |z|2)"|v;(z)| < € whenever j > m. For such

]7
/llpj(l')' dr < 5/(1 +]z|?) " dr = ce

and this shows that [ |¢;| = 0. From the inequality
150 = | [iwesa| < [1s,001d

we infer that ;(z) — 0 uniformly. |

This section concludes with a proof of the Poisson summation formula. This
important result states that under suitable hypotheses on the function f, the
following equation is valid:

(1) S ) =3 fw

vezn vezn

A variety of hypotheses can be adopted for this result. See, for example, [SW]
page 252, [Lanl] page 373, [Yo| page 149, [Gri] page 32, [Wal| page 60, [Kat]
page 129, [Fri] page 104, [Ho| page 177, [DM] page 111, [Fol] page 337, [Til]
page 60.

Theorem 5. Poisson Summation Formula. If f € C(R") and if
sup (17(2)] + 7)) (1-+1a1)™** < oo
T

for some e > 0, then 3°,can f(V) = 3 ezn fw).

Proof. Let c equal the supremum in the hypotheses. Then for “.’L‘”oo <1 and
v # 0 we have

-n-¢

fatnl<c(i+lz+v) " <e(1+ 2+ o))

<c(1+ v, —llel) <l
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(In verifying these calculations, notice that the exponents are negative.) Then
we have

et <e S =S T s

v#0 v#0 J=1t[v|loco=j
00
= e vl =)
1

j=

I
.Mg

1
—

oo
X i @M ) =0 T <o

j j=1

By a theorem of Weierstrass (the “M-Test”, page 373)), this proves that the
function F(z) = Y, f(x + v) is continuous, for its series is absolutely and
uniformly convergent The function F' is integer-periodic: For p € Z™,

F(z+p)= Zf z+p+v)=)Y f(z+v)= F(z)

Let Q = [0,1)", the unit cube in R™®. The Fourier coefficients of the periodic
function F are

A, = / F(z)e 2™ 4z = / Z f(z + p)e 2" 4z
Q QL

— Z —21nu(y 1) dy = Z —21riuy dy

Q+u Q+u

fy)e v dy = f(v)

R"

Our hypotheses on f are strong enough to imply that f € L'(R™). Hence
f € Co(R™). The hypothesis on f shows that the series _ f{( f T +v) is absolutely
and uniformly convergent. Hence

S lAd =Y 1fw) < oo

From this we see that the Fourier series of F, 3, A, e?™" is uniformly and
absolutely convergent. By the classical theory of Fourier series (such as in [Zy],
vol. II, page 300) we have

ZAvemriux — F(:!.‘)

It follows that
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Problems 6.2

. Prove Lemma 2.
. Prove Lemma 3.
. Let f bean even function in L!(R). Show that

-,:;f(t) = / f(z) cos(2wtz) dz
0

The right-hand side of this equation is known as the Fourier Cosine Trausform of f.

. Let B be the operator such that (Bf)(z) = f(—z). Find formulas for Ef and Bf. How

are these related?

. What is the Leibniz formula appropriate for the operator (D/(2mi))®?
. Let f € LY(R™) and g(z) = f(Az), where A is a nonsingular n x n matrix. Find the

relation between f and g.

. Prove that, after Fourier transforms have been taken, the differential equation f’(z) +

z f(x) = 0 becomes (f)’(t) + 41r’tf(t) =0.

. Give a complete formal proof that P - f € 8 whenever P is a polynomial and f € 8.
. Prove that for a function of n variables having the special form

@z = [[ i)

j=1

we have

n
Tt tn) =H}}(¢j)
j=1
Prove that if f € L!(R) and f > 0, then

IF()l < flo) (¢ #0)

Let fm(z) =1 if |z} £ m, and fm(z) =0 otherwise. (Here z € R, and m=1,2,....)
Compute f,, * fi and show that it is the Fourier transform of a function in L!(R).
Interpret Lemma 4 as a statement about eigenvalues and eigenvectors of a differential
operator. ~ N
Prove, by using Fubini’s Theorem, that for functions f and g in L}(R™), ffg = ff§~
Explain why e~ !l is not in 8.
—_—

Prove that if ¢ € 8, then D¢ exists for any multi-index a.
Let P be a polynomial on R™ and let g be an element of C*(R™) such that |g(z)} < |P(z)|
for all z € R™. Is the mapping f —+ g f continuous from & into 8?
Prove that 8 is the subspace of C®(R"™) consisting of all functions ¢ such that for each
a, the map z — z%(D%¢)(z) is bounded.
Show that ¢; —» 0in 8 if and only if P(D)(Q¢;) — O uniformly in R™ for all polynomials
P and Q.
Prove that if P is a polynomial and c is a scalar, then P(cD)ey = P(2micy)ey.
Prove that if P is a polynomial and c is a scalar, then P(cD)¢ = Pc¢, where Pc(z) =
P(~2micz).

-~ —_—
Prove that P(—D)¢ = P+¢, where P*(z) = P(2miz).
Prove that for z € R", |z2| < [z{lel.

Using the operator B in Problem 4, prove that f: BY.

Prove that .
d’ 2 2
me‘ = e p(z)
where the polynomials px are defined recursively by the equations pp(z) = 1 and

Pr+1(z) = 2zpy(z) + pl ().
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25. Prove that if f obeys the differential equation
f(x) - 4r%2? f(z) = M (=)

then the same is true of f.
26. Prove that for each n there is a constant cn such that

#{v e 2" vl = i} = cas™ "

Suggestion: Compute #{v € Z" : ||v]|, < j} first.
27. Prove that for ¢ € S(R™) and A # 0,

Z Hz+ Av) = Z ,\—ng( ;) e2mive/a

vezn vezn
28. Evaluate z:cz_x(l + k2)~! by using Theorem 5.

29. Evaluate Zz‘ll(k‘ +a4)~! by using Theorem 5.
30. The first moment of a function f is defined to be

/ z f(z) dz

Prove that under suitable hypotheses, the first moment is (f)’(O)/(—21ri).

6.3 The Inversion Theorems

In the previous section it was shown that the operator F defined by F(¢) = é
is linear and continuous from 8 into 8. In this section our goal is to prove that
F is surjective and invertible, and to give an elegant formula for F~!.

Theorem 1. The function 6 defined on R™ by 6(z) = e’ isa
fixed point of the Fourier transform. Thus, 6 = 6.

Proof. First observe that the notation is
n
1,2 —rr=x-r= (I’:r):Zz?:Isz
J=l

We prove our result first when n = 1 and then derive the general cafe. Define,
for z € R, the analogous function ¥(z) = e~"**. Since Y'(z) = e~ (-2nz) =
—2rzy(zx), we see that 3 is the unique solution of the initial-value problem

(1) ¥'(z) + 2wzy(z) = 0 ¥(0) =1

By Problem 7 in Section 6.2, or the direct use of Theorems 1 and 2 (pages
296-297), we obtain, by taking Fourier transforms in Equation (1),

(®)'(z) + 2mzP(z) = 0
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The initial value of 15 is

3(0) = /_: w@iz= [~ iz

-0

(See Problem 10 for this.) We have seen that ¥ and 121\ are two solutions of
the initial-value problem (1). By the theory of ordinary differential equations,

Y= J) This proves the theorem for n = 1. Now we notice that

= YP(z1)¥(z2) - Y(zn)

By Problem 9 of Section 6.2, page 300,

8(x) = [] (xy) = [] w(z5) = 6(2) '

n
j=1 j=1

Theorem 2. First Inversion Theorem. If ¢ € 8(R™), then

da)= [ 3= [ Buermeeay
R™ Rn
Proof. We use the conjurer’s tricks of smoke and mirrors. Let 6 be the func-

tion in the preceding theorem, and put g(x) = 6(z/A). Then g(y) = A"ﬁ(x\g).
(Problem 8 in Section 6.1, page 293.) By Problem 13 in Section 6.2, page 300,

Jowe($) au= [3wswran= [s0)awdy =" [ 6wy

U\ ~
- /d’)(X)G(u) du
In the preceding calculation, let A = k, where k € N, and contemplate letting

k — oo. In order to use the Dominated Convergence Theorem (Section 8.6, page
406), we must establish L!-bounds on the integrands. Here they are:

Bwe ()l <Bwilel,  éeL'®

l¢(3)| < lell Bl 8 e L@

Then by the Dominated Convergence Theorem,

2 6(0) / 3(y)dy = $(0) / B(u) du
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But we have, by the special properties of 6,

1=06(0)=6(0) = / d:r:—/H

Thus Equation (2) becomes

(3) [oway=

This result is now applied to the shifted function E_,¢:

/ E_.d(y)dy = (E_z)(0)

By Theorem 2 in Section 6.1, page 289, this is equivalent to

/ 3w) - ex(y) dy = 6(2) .

Theorem 3. The Fourier transform operator F from 8(R") to
8(R") is a continuous linear bijection, and F~! = F3.

Proof. The continuity and linearity of F were established by Theorem 4 in
Section 6.2, page 297. The fact that F is surjective is established by writing the
basic inversion formula from the preceding theorem as

- / 3W)e=(y) dy = / FW)e-z(—y)dy = / 3(~u)e_q(v) du = [F(BF)|(z)

Here B is the operator such that (Bg)(z) = ¢(—z). The inversion formula also

shows that F is injective, for if ¢ = 0, then obviously ¢ = 0. Again by the
inversion formula,

/ 3(2) - e—y(z) dzr = ¢(~y) = (BH)(y)

Thus ¥2 = B. It follows that F4 = I and F3F =I. ]

Theorem 4. Second Inversion Theorem. If f and f belong to
L'(R™), then for almost all ,

fl@)= | flyem=vdy
Rn
Proof. Assume that f and fare in L'(R™). Let ¢ € 8. Then by Theorem 2,

= fez$ By Problem 13 in Section 6.2, page 300, ffd) ff$ Hence if
we put F(y ffey, then we have (with the help of the Fubini theorem)

[ba11@dz= [of@)dz = [ ean)b)ay fiz) dz
- [30) | [ Fores@ias| av = [BFway
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Thus [¥(z)(f — F)(z)dz = 0 for all ¥ € 8, because é can be any element of
8. The same equation is true for all ¥ € D, since D is a subset of 8. Now apply
Theorem 2 of Section 5.1, page 251, according to which ¢ = 0 when ¢ = 0. The
conclusion is that that f(r) = F(r) almost everywhere. (]

Problems 6.3

1. Does F commute with the operators B and Ex?
2. Find the inverse Fourier transform of the function

) = sint t| <7
"o It >n

3. Explain why, for ¢ € S,

/ / e 2rixutg(y) dy dz = ¢(-2)

4. Let f € LY(R) and define h(z) = [ f(t)dt. Prove that if h € L'(R), then A(t) =

(2mit)=1f(t).

5. For the function f(z) = e~!*!, show that flz) = 2/(1 + 472z2). Show that f is analytic
in a horizontal strip in the complex plane described by the inequality |[Im(z)| < 1/(472).
(Here n=1.)

6. Let f(z) = e * forz 2 0 and let f(z) = 0 for z < 0. Find fa.nd verify by direct
integration that f(z) = f f ex-

7. In Section 6.1 we saw that the following is a Fourier transform pair:

f(z) = { 1 -1<z<1 ?(t) - sin7r2t1rt

0 otherwise

Prove that f belongs to L!(R) but fdoes not. Explain why this does not violate the
inversion theorem.
8. Using Theorem 1 of this section and Problem 8 in Section 6.1, page 293, prove that the

- X 7.
Fourier transform of the function ¢(z) = e~ %*" is

By = (I)Ww’f/a

a

Prove also that F~1¢ = F¢. Prove that this last equation follows from the sole fact that

@ is an even function.
9. Prove that if f is odd and belongs to L!(R), then

if(‘) = /°° f(z)sin(2ntz)dz
2 0

The right-hand side of this equation defines the Fourier Sine Transform of f.

10. Prove that
bt 2 1
e T dr = —
/. ) v

0

This can be accomplished by considering the square of this integral, which can be written
as the (double) integral of e~(x+1%) over R2. This double integral can be computed by
polar coordinates.
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6.4 The Plancherel Theorem

This section is devoted to extending the Fourier operator from the Schwartz
space 8(R™) to L2(R™). It turns out that the extended operator has a number
of endearing properties, leading one to conclude that L%(R™) is the “natural”
setting for this important operator.

Lemma 1. If f and g belong to the Schwartz space 8(R™), then
f * g also belongs to 8(R™), and furthermore, fg = f * g.

Proof. Since f and g belong to 8, so does fg by Lemma 2 in Section 6.2,
page 295. By Theorem 4 of Section 6.2, page 297, f, g, and fg belong to
8. Consequently, fg belongs to 8. By Theorem 4 of Section 6.1, page 290,
f *g= fg Hence f * g € 8, and by the inversion theorem (Theorem 2 in the
preceding section), f * g € 8. Using the operator F such that F(f) = f and the
operator B such that (Bf)(z) = f(—x), we have

-~

frg=F'F(f*g) = FU(Ff- F9)

= F~'(Bf - Bg) = F~'B(f9) = F ' F*(fg) = fa .

Lemma 2. If f € L'(R™) and ¢ € D(R™), then f * ¢ € C=(R").
Proof. By the theorem in Section 5.5, page 271,

D*(Tx¢)=T=*D% (Te D, ¢eD)

In particular, for f € L'(R"),
(1) D%(f»¢)=f*D%
(Recall that the definition of convolution involving distributions was made to
conform to the ordinary convolution if the distribution arises from a function.)

Now f * g is continuous for any continuous g with compact support, as is easily
seen from writing

(f+9)(@) - (f+a)v) = / f(w) [z ~ u) — o(y ~ u}}du

Applying this to the right side of Equation (1), we see that D?( f*g) is continuous
for every multi-index a. [}

The Lebesgue space LP(R™), where 1 < p < oo, has as elements all mea-

surable functions f such that |f|P € L(R™). The norm is ”f” ||If|”||1/p.
Further information about these spaces is found in Section 8.7, pages 409ff.
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Lemma 3. The translation operator E; has the following continuity
property: If1 < p< oo and f € LP(R"), then the mapping * — E, f
is continuous from R™ to LP(R"™).

Proof. The continuous functions with compact support form a dense set in
LP, if 1 < p < oo. Hence, if € > 0, then there exists such a continuous function
h for which !|f - h“p < €. Let the support of h be contained in the ball B, of

radius r centered at 0. By the uniform continuity of h there is a § > 0 such that
-y <6 = |h(z)-h(y)l<e

There is no loss of generality in supposing that § < r. If |z — y| < 6, then
[|Bzh ~ Eyhll, = / |h(z - @) — h(z - y)Pdz < € vol(Byr) < P(4r)"

From the triangle inequality it follows that
B=f = Eyf|l, <|B2f — Ezhl|, +[|Ezh - Eyh||, + | Eyh — By ],
= |B2(f = )|, + || Ezh = Eyhll, + | By(h = N,
<||f = hll, +e(ar)™? + ||k~ 1],
< 26 +e(4r)™/P (]

In the next result we use a function p € D such that p > 0 and [ p = 1. This is
a “mollifier.” Then px is defined by px(z) = k" p(kz), for k= 1,2,...

Theorem 1. If f € L'(R"), then f*py — f in the metric of L'(R™).
Furthermore, f * p, € C®(R").

Proof. Since [pr =1,
(f * pe)(z) = f(z) = / (f(z - 2) - f(z))ox(2) dz

Hence by Fubini's Theorem (Chapter 8, page 426)

/ 1f o - fl < / \f(z = 2) = f(z)low(2) dz dx
=/ |f(z = 2) — f(x)|dz pr(2) dz

= [1B1 - flpe() s

Here we need Lemma 3: If f € L'(R") and € > 0, then there is a § > 0 such
that ||E. f — f||, < € whenever |2| < 6. If p(x) = 0 when |z| > r, then px(z) = 0
when |z| > r/k. Hence when r/k < & we will have ||f x p — f”x < e. Lemma 2
shows that f * px € C(R"). 2
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Theorem 2. The space of test functions D(R") is a dense subspace
of L}(R™).

Proof. Let f € L'(R"), and let £ > 0. We wish to find an element of D(R")
within distance € of f. The function f * p; from the preceding theorem would
be a candidate, but it need not have compact support. So, we do the natural
thing, which is to define

flz) if|z|<m

0 elsewhere

i) = {

Then f,,(z) = f(z) pointwise, and the Dominated Convergence Theorem (page
406) gives us [ |fm| — [ [f|. Consequently, we can select an integer m such that

1£1l; = llfmll, < €/2. Then
[ i@l <en
lz]>m

Now select a “mollifier” p; i.e., p is a nonnegative test function such that f p=1.
As usual, let px(x) = k"p(kx). By Theorem 1, there is an index k such that

|| fon * P = fim]|, < €/2. Hence
fmxok = Fll, S| fm* ok~ fmll, + | fm = £l <€

Observe that f,, * pr has compact support and belongs to C*®(R"), by Lemma
2. Hence fm * px is in D. (]

Plancherel’s Theorem. The Fourier operator F defined originally
on 8(R™) has a unique continuous extension defined on L*(R™), and

this extended operator is an isometry of L*>(R™) onto L?(R™).

Proof. For two functions in 8 we have the Parseval formula:
ra=GFa o [ri=[73

This is proved with the following calculation, in which the inversion theorem is
used:

(f.9) = / Fw) 5wy dy = / / f(z)e 2™ 5(g) de dy

=/ﬂ@/zﬁwam@¢u5/nnﬁﬁa

This leads to the isometry property for functions in 8:

il = [£7 = [7F =170,



308 Chapter 6 The Fourier Transform

Since 8 is dense in L2(R™) (Problem 4), F has a unique continuous extension
with the same bound, ]|.7-‘]| < 1 (Problem 6). It is then easily seen that the
extension is also an isometry (Problem 7). (]

The extension of F referred to in this theorem is sometimes called the
Fourier-Plancherel transform. One must not assume that the usual formula for
f can be used for f € L?(R™), because the integrand in the usual formula

fiz) = / fy)e =y dy

need not be integrable (i.e., in L'). However, f is an L? limit of L! functions,
because L!(R") is a dense subset of L2(R™). For example, we can use this

sequence:
{f(r) if |z] < m

0 if |z] > m

Sm(z) =

Since f belongs to L2, f, belongs to L!. Indeed, letting X, be the characteristic
function of the ball {z : |z| < m}, we have by the Cauchy-Schwarz inequality

Wil = [ 1@ Xm(z) bz < 11 1%l

The sequence [fm) converges to f in the metric of L? because

I1f = fmll? = / 1£(2) = fm(@)? d = / |f(@)?dz -0

lx{>m

It now follows that f = lim fm, the limit being taken in the L? sense. This state
of affairs is often expressed by writing

~

f(y) =L.IM. f(z)e~2™=¥ gy

m=00 Jir|<m

In this equation, L.I.M. stands for “limit in the mean,” and this refers to a limit
in the space L2. R

Another procedure for generating a sequence that converges to f in L? is to
select an orthonormal basis [u,] for L2, to express f in terms of the basis, and
to take Fourier transforms:

[e o]

=3 (f umbum

m=0

o o)
=Y (fumim
m=0
This manipulation is justified by the linearity and continuity of the Fourier
transform operator acting on L2. In order to be practical, this formula must
employ an orthonormal basis of functions whose Fourier transforms are known.
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An example in R is given by the Hermite functions h,, of Problem 12. They
form an orthogonal basis for L2(R). The functions Hy = hsy/ "hm“ provide an
orthonormal basis, and by Problem 12,

=3 (f Ha)Hm =Y (f, Ho)(~i)"Him
m=0

m=0
Having seen that the Fourier operator F is continuous from L%(R") to
L%*(R?) and from L'(R™) to L>(R™), one might ask whether it is continuous
from LP(R™) to LYR") in general, when 1 + 1_ 1. The answer is “Yes” if
P < 9. We quote without proof the Hausdorfg-Yo(lImg Theorem: If 1 < p < 2, and
if — + = = 1, then the Fourier operator is continuous from LP(R") to L%(R"),
ang itsqnorm is not greater than 1. For further information, consult [RS] and

(SW]. The exact value of the norm has been established by Beckner [Bec].

Problems 6.4

1. In Lemma 2, can we conclude that f *+ g belongs to Cp(R")?

2. Explain why Lemma 3 is not true for the space L°°(R").

3. Prove that 8 C L%(R").

4. Prove that 8 is dense in L2(R™). _

5. Prove that if f,g € 8, then ff 9= ff?

6. Prove this theorem: Let Y be a dense subspace of a normed linear space X. Let A €
L(Y,2), where Z is a Banach space. Then there is a unique A € £(X, Z) such that
A|Y = A and ||A|| = ||A|l. Suggestions: If z € X, then there is a sequence yx € Y such
that yx — z. Put Az = lim Ay,. Show that the limit exists and is independent of the
sequence y.

7. In the situation of Problem 6, show that if A is an isometry, then so is A

8. Show that neither of the inclusions L'(R™) C L2(R™), L%(R™) c L}(R"™) is valid.

9. Find an element of L2(R) \ L! (R) and compute its Fourier-Plancherel transform.

10. Prove that the Fourier transform of the function

_Je z20
f(z)_{O r <0

is (2miz + a)~1. Here, a > 0. Show that f € L2(R) \ L!(R).
11. Prove that the equation fg = f » g holds for functions in L2(R™).

12. The eigenvalues of F : L?(R) — L2(R) are %1, +i, and no others. Show that hm
(—=i)™hm, where h,, is the Hermite function

hm(z) = exp(xz?)D™ exp(—2nz?)

Suggestions: Prove that hm4y(z) = hi,(z) — 27zhm(z). Then prove that Fm+|(z) =
—i(hm)’(z) + 2mizh;m(z). Show that the functions (—1)™h,, obey the same recurrence

relation as hy,.
13. For f and g in 8, prove that

FHfe)=(F )= (F g

Then prove this for functions in LZ(R"™).
14. Generalize Lemma 2 so that it applies to f € Llloc(lR"). Can the hypotheses on f be
relaxed?
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15. Define f(z) =0forz < 1and f(z) =z~ ! forz > 1. Find f Useful reference: Chapter 5
in [AS).

16. Is this reasoning correct? If f € L1, then f is continuous. Since L! is dense in L2, the
same conclusion must hold for f € L2.

17. The variance of a function f is defined to be ||uf||/||f||, where u(z) = z. Prove this

version of the Uncertainty Principle: The product of the variances of f and f cannot be
less than 1/(4r).

6.5 Applications of the Fourier Transform

We will give some representative examples to show how the Fourier transform
can be used to solve differential equations and integral equations. Then, an
application to multi-variate interpolation will be presented. These are what
might be called direct applications, as contrasted with applications to other
branches of abstract’mathematics.

Examplel. Letn=1andD = ac_ii If P is a polynomial, say P()) = Z;’;O ciM,
then P(D) is a linear differential operator with constant coefficients:

m m J
(1) P(D) = ;chj = gc,-(zn)i (%)
Consider the ordinary differential equation
(2) P(D)u=g —o00<z<00
in which g is given and is assumed to be an element of L!(R). Apply the Fourier
transform F to both sides of Equation (2). Then use Theorem 1 of Section 6.2
(page 296), which asserts that if u € 8, then
(3) F[P(D)u] = P*F(u)
where P*(z) = P(2riz). The transformed version of Equation (2) is therefore
(4) P*F(u) = F(g)
The solution of Equation (4) is
(5) F(u)=F(9)/P*
The function u is recovered by taking the inverse transformation, if it exists:
(6) u=F"'[F(g)/ P*]
Theorem 4 in Section 6.1, page 291, states that

(7) F(o*v) =F(¢) F(¥)
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An equivalent formulation, in terms of !, is
(8) ¢+ =F ' [F(¢) F(¢)]

If h is a function such that A = 1/P*, then Equations (6) and (8) yield

a9 17
(9) u=.Fl[-P—I]=}'l[gh)_—.g*h
In detail,
oo
(10) u@)= [ gwhia-v)dy
— 00
The function h must be obtained by the equation h = F~!(1/P*). (]

Example 2. This is a concrete case of Example 1, namely
(11) u'(z) +bu(z)=e ¥ (>0, b#£1)

The Fourier transform of the function g(z) = e~!*¥l is g(t) = 2/(1 + 4n?%t?)
(Problem 5 of Section 6.3, page 304). Hence the Fourier transform of Equation
(11) is

2mit a(t) + ba(t) = 2/(1 + 4nt?)

Solving for @, we have

S0 — 2
) = Tr a5+ 2ni)

By the Inversion Theorem,

00 2621ria:tdx
u(t) = /oo (1 + 4n2z2)(b + 2wix)

To simplify this, substitute z = 2wz, to obtain

u(t) _ l /00 eitz dz
TS (14 22)(b+1i2)
The integrand, call it f(z), has poles at z = +i, —i, and ib. In order to evaluate

this integral, we use the residue calculus, as outlined at the end of this section.
Let the complex variable be expressed as z = = + iy. Then

leitz' — |eit(:+iy)t — le-—ty+ita:l — e—ty
For t > 0 we see that

r]_i.n;osup{|zf(z)|. tlzl=r,Im(z) 20} =0
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Hence by Theorem 4 at the end of this section,
[ o]
/ f(2)dz = 2wi x (residue at i + residue at ib)
— 00

By partial fraction decomposition we obtain

_ e [(2ib= 2070 (2ib+2i)70 (i - ib?)!
f(z)=e |7 2z P P

Hence the residues at ¢, —i, and ib are respectively

et —et e~ bt

2ib—-1)  2i(b+1)  i(1-8)

Thus for t > 0,

u(t) = n~'2ni et + e
2i(b—1) ' i(1—b2)
et 2e
“ho1 1o
Similarly, for t < 0,
_et
ut) =153 '

Example 3. Consider the integral equation
o o]
/ k(z — s)u(s)ds = g(z)
- 00

in which k and g are given, and u is an unknown function. We can write
uxk=g

After taking Fourier transforms and using Theorem 4 in Section 6.1 (page 290)
we have

-~

whence @ = §/E and u = -7'-_1(.6/”;)~

For a concrete case, contemplate this integral equation:
o 2
/ e 1z=sly(s)ds = e7* /2
]
Here, the functions k and ¢ in the above discussion are

k(z) = e 1=l g9(z) = e=%/2
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From Problems 6.3.5 and 6.3.8 (page 304), we have these Fourier transforms:

2

- I~ - 1/2 —2r2x2
(1 + dn2z?) 9(z) = (2m) e

k(z) =

(It turns out that we do not require g.) Hence
i(z) = §(z)/k(z) = §(z)(1 + 4n’2?)/2

To take the inverse transform, use the principle in Theorem 1 of Section 6.2

—

(page 296) that P(D)g = P*-g. We let P(z) = (1 — £2)/2, so that P*(z) =
P(2miz) = (1 + 4n%2?)/2. Then

—

2= P*§= P(D)g
The inverse transform then gives us

u(z) = [P(D)gl(z) = 5(9 ~ ¢")(z) = e~ /(2 ~ 2?) '

As another example of applications of the Fourier transform, we consider a
problem of multi-variate interpolation. First, what is meant by “multi-variate
interpolation”? Let us work, as usual, in R®. Suppose that at a finite set of
points called “nodes” we have data, interpreted as the values of some unknown
function. We will assume that the nodes are all different from one another.
Since we will not need the components of the nodes, we can use the notation
z),Z2,...,Tm for the set of nodes. Let the corresponding data values be real
numbers A}, Az, ..., A\n. We seek now an “interpolating” function for this infor-
mation. That will be some nice, smooth function that is defined everywhere and
takes the values ); at the nodes z;. (Polynomials are not recommended for this
task.) One way of obtaining a simple interpolating function is to start with a
suitable function f, and use linear combinations of its translates to do the job.
Thus, we will try to accomplish the interpolation with a function of the form

T — Zij(:l:—-Ij)

=1

When the interpolation conditions are imposed, we arrive at the equations
m
docif(mi-zi) =M  (1<i<m)
=1

This is a system of m linear equations in the m unknowns c;. How can we be sure
that the system has a solution? Since we want to be able to solve this problem
for any );, we must have a nonsingular coefficient matrix. This can be called the
“interpolation matrix”; it is the matrix A;; = f(z; — ;). A striking theorem
gives us an immense class of useful functions f to play the role described above.
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Theorem 1. If f is the Fourier transform of a positive function
in L'(R™), then for any finite set of points T,,Ts,...,Tm in R™ the
matrix having elements f(z; — x;) will be positive definite (and hence
nonsingular).

Proof. Let f =3, where g € L'(R") and g(x) > 0 everywhere. The interpola-
tion matrix in question must be shown to be positive definite. This means that
u* Au > 0 for all nonzero vectors u in C™. We undertake a calculation of this

quadratic form:

= Z ZakAkjuj = ZZﬁkuJ'f(xk — xj)
k=1j=1
ZZM/ g(y)e” V=25 gy
Rﬂ.
- /mn 9(y) D Tne ™IV Y uye VI dy
2
= / g(y)'h(y)| dy>0
R™

Here we have written

It

h(y) =) u ™™ (yeR)
j=1

So far, we have proved only that the interpolation matrix A is nonnegative
definite. How can we conclude that the final integral above is positive? It will
suffice to establish that the functions y — €2™*¥%J form a linearly independent
set, for in our computation, the vector u was not zero. Once we have the linear
independence, it will follow that |h(y)|? is positive somewhere in R", and by
continuity will be positive on an open set. Since g is positive everywhere, the
final integral above would have to be positive. The linear independence is proved

separately in two lemmas. [}
Lemma 1. Let A\,...,A\m be m distinct complex numbers, and let
¢, ..., Cm becomplex numbers. Ifz;';l cje’\iz = 0 for all z in a subset

of C that has an accumulation point, then 2;1:1 |cjl = 0.

Proof. Use induction on m. If 7n = 1, the result is obvious, because e*1* is
not zero for any z € C. If the lemma has been estab]ished for a certain integer

m— 1, then we can prove it for m as follows. Let f(z Zl cj i’ , and suppose
that f(zx) = 0 for some convergent sequence [zx). Smce f is an entire function,
we infer that f(z) = 0 for all z in C. (See, for example, [Ti2] page 88, or [Ru3]
page 226.) Consider now the function

m-—1

Flz) = d [ Am: . _d “ e =Am)z ei(ni — A Yehg—Am)z
)= gl 0] = 52 e >~ (%= n)

=1



Section 6.5 Applications of the Fourier Transform 315

Since f = 0, we have F = 0. By the induction hypothesis, ¢j(Aj — Am) = 0 for

1 < j<m-—1. Since the A; are distinct, we infer that ¢; = -+ = ¢cm—1 = 0.
The function f then reduces to f(z) = ce*™2. Since f =0, ¢y = 0. (]
Lemma 2. Let wy,...,wy, be m distinct points in C*. Let
C1,...,cm be complex numbers. If Zy':l cje¥i® = 0 for all z in a

nonempty open subset of R™, then Z;":] ;] = 0.

Proof. Let O be an open set in R™ having the stated property. Select £ € O
such that the complex inner products w;f are all different. This is possible
by the following reasoning. The condition on £ can be expressed in the form
w;€ # wi€ for 1 € j < k < m. This, in turn, means that £ does not lie in any
of the sets

Hjp = {z e R" : (w; — wx)z = 0} (1€<j<k<m)

Each set Hjj is the intersection of two hyperplanes in R™. (See Problem 4.)
Hence each Hjyi is a set of Lebesgue measure 0 in R™, and the same is true of
any countable union of such sets. The finite family of sets H;x therefore cannot
cover the open set O, which must have positive measure. Now define, for t € C,
the function f(¢) = Y_1" cje(“’ig)t. Since € € O, our hypothesis gives us f(1) = 0.
Let U be a neighborhood of 1 in C such that ¢£ € O whent € U. Since f(t) =0
on U, Leinma 1 shows that Z;"=1 lejl = 0. (]

More information on the topic of interpolation can be found in the textbook
(CL]. Functions of the type f, as in Theorem 1, are said to be “strictly positive
definite on R™.” They are often used in neural networks, in the “hidden layers,”
where most of the heavy computing is done.

The remainder of this section is devoted to a review of the residue calculus.
This group of techniques is often needed in evaluating the integrals that arise in
inverting the Fourier transform.

Theorem 2. Laurent’s Theorem. Let f be a function that is
analytic inside and on a circle C in the complex plane, except for having

an isolated singularity at the center (. Then at each point inside C with
the exception of ¢ we have

= n 1 f(2)d
@)= X enlz=0" =g [ A

The coefficient c_, is called the residue of f at (. By Laurent’s theorem, the
residue is also given by

(12) oy = ZLM,/Cf(z)dz
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Example 4. The integral | e®/z'dz, where C is the unit circle, can be

c
computed with the principle in Equation (12). Indeed, the given integral is 2mi
times the residue of e*/z* at 0. Since

27,4 2 28 4
e*/z% = (1+z+ﬁ+§+---)/2
=2"%42734 %2-2 + %z"l + .-
we see that the residue is % and the integral is %m’. [}
Theorem 3 The Residue Theorem. Let C be a simple closed
curve inside of which f is analytic with the exception of isolated singu-
1
larities at the points (y,...,¢m. Then 511'_1./ f(z)dz is the sum of the
c
residues of f at (1,-..,Gm-
Proof. Draw mutually disjoint circles Cy,...,Cn around the singularities and

contained within C. The integral around the path shown in the figure is zero,
by Cauchy’s integral theorem. (Figure 6.1a depicts the case m = 2.) Therefore,

0=/f(z)dz— f(z2)dz—--- - (z)dz

f
Cm

In this equation, divide by 2#i and note that the negative terms are the residues
of fat (... Cm- [ |

(@) ®
Figure 6.1

Example 5. Let us compute / , where C is the circle described by

z
C 22 +1
|z — i] = 1. By the preceding theorem, the integral is 2i times the sum of the
residues inside C. We have

1 1 _i/2 i/2

TZ¥1 +iNz-9) z+i z-1i

f(2)
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The residue at 7 is therefore —i/2, and the value of the integral is . ]

Example 6. Let us compute the integral in Example 5 when C is the circle
Jz — 1] = 3. This circle is large enough to enclose both singularities. The residue
at —i is 1/2, and the sum of the residues is 0. The integral is therefore 0. (This
illustrates the next theorem.) ]

Theorem 4. If f is a proper rational function and if the curve C
encloses all the poles of f, then [. f(z)dz = 0.

Proof. Write f = p/q, where p and g are polynomials. Since f is proper, the
degree of p is less than that of q. Hence the point at oo is not a singularity
of f. Now, C is the boundary of one region containing the poles, and it is
also the boundary of the complementary region in which f is analytic. Hence

Jc f(z)dz =0. ]

Theorem 5. Let f be analytic in the closed upper half-plane with
the exception of a finite number of poles, none of which are on the real
axis. Define

M, =sup{|zf(2)l : |2l = 7, Z(2) > 0}

00
If M, converges to 0 as r — oo, then %/ f(2)dz is the sum of the
/-

residues at the poles in the upper half-plane.

Proof. Consider the region shown in Figure 6.1b, where C is the semicircular
arc and r is chosen so large that all the poles of f lying in the upper half-

plane are contained in the semicircular region. On C we have z = re*¥ and
dz = ire*®df. Hence
T~
[ 1r@ldz = [ 11(re®) - rids < by —>0
c 0
By Theorem 3,
,
f(2)dz +/ f(z)dz = 2mi x (sum of residues)
-r C
By taking the limit as r — 0, we obtain the desired result. (]

Problems 6.5

1. Solve this integral equation

/ e 1x-9ly(s)ds = f(z)

—o0

2. Solve this integral equation

/ u(s)ds — / u(s)ds + u(z) = f(z)
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. What happens in Example 2 if b =17 Is the solution u(t) = sinh t?

. Prove that if w € C", then w = u + iv for suitable points u and v in R". We will write
u = R(w) and v = Z(v). Prove, then, that for z € R™, the equation zw = 0 holds if and
only if zR(w) =0 and zZ(w) = 0.

5. Let g be analytic in a circle C centered at zg, and let f be analytic in C except for having

a simple pole at zp. What is the residue of gf at z0?
6. Prove that arbitrary data at arbitrary nodes z1,z2,...,zm in R™ can be interpolated by
a function of the form £ —» ZZ;I ck exp(—|z — z4]?). (These are Gaussian functions.)

=

6.6 Applications to Partial Differential Equations

Example 1. The simplest case of the heat equation is
(1) Uzz = Ut

in which the subscripts denote partial derivatives. The distribution of heat
in an infinite bar would obey this equation for co < £ < 0o and t 2 0. A fully
defined practical problem would consist of the differential equation (1) and some
auxiliary conditions. To illustrate, we consider (1) with initial condition

(2) u(z,0) = f(z) —00<T< 00

The function f gives the initial temperature distribution in the rod. We define
u(y,t) to be the Fourier transform of u in the space variable. Thus

~ o .
Uy, t) = / u(z, t)e= 27Ty 4
— 00

Taking the Fourier transform in Equations (1) and (2) with respect to the space
variable, we obtain

—4m*y?i(y, t) = @(y,t)
(3)

~

u(y,0) = f(y)

—

Here, again, we use the principle of Theorem 1 in Section 6.2, page 296: P(D)u =
P*u, where P*(z) = P(2miz).

Equation (3) defines an initial-value problem involving a first-order linear
ordinary differential equation for the function #%(y,:). (The variﬂb\le y can be
ignored, or interpreted as a parameter.) We note that (2); = (u.). The phe-
nomenon just observed is typical: Often, a Fourier transform will lead us from
a partial differential equation to an ordinary differential equation. The solution
of (3) is

(4) iy, t) = fly)e 4 v
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Now let us think of t as a parameter, and ignore it. Write Equation (4) as
a(y,t) = f(y)@(y,t), where G(y,t) = e~im?vit Using the principle that o0 =

¢ * ¢ (Theorem 4 in Section 6.1, page 291), we have
(5) u('vt) =f()*G(1t)

. . _danly? . .
where G(-,t) is the inverse transform of y — e~ %" ¥"t. This inverse is

G(z,t) = (41rt)'1/ze_’2/(“), by Problem 8 of Section 6.3, page 304. Conse-
quently,

o ]
(6) u(z,t) = (41rt)"/2/ f(z — z)e—zz/(‘u) dz s
Example 2. We consider the probler_nc’o
(7) Uza =t 220, t>0
7
u(z,0) = f(z), u(0,t)=0 >0, t>0

This is a minor modification of Example 1. The bar is “semi-infinite,” and one
end remains constantly at temperature zero. It is clear that f should have the
property f(0) = u(0,0) = 0. Suppose that we extend f somehow into the interval
(—00,0), and then use the solution of the previous example. Then at = 0 we
have

(8) u(0,t) = (41rt)‘% /c° f(~z)e"22/‘" dz

The easiest way to ensure that this will be zero (and thus satisfy the bound-
ary condition in our problem) is to extend f to be an odd function. Then the
integrand in Equation (8) is odd, and u(0,t) = 0 automatically. So we define
f(—z) = —f(z) for £ > 0, and then Equation (6) gives the solution for Equa-
tion (7). ]
Example 3. Again, we consider the heat equation with boundary conditions:
9)

Uy = Uy 20, t>0
{ u(z.0) = f(z) u(0,t) = g(t)

Because the differential equation is linear and homogeneous, the method of su-
perposition can be applied. We solve two related problems, viz.,

(10) Vzz = Ut v(z,0) = f(z) v(0,t) =0

(11) Wry = Wy w(z,0) =0 w(0,t) = g(t)

The solution of (9) will then be u = v + w. The problem in (10) is solved in
Example 2. In (11), we take the sine transform in the space variable, using w®
to denote the transformed function. With the aid of Problem 1, we have

2myg(t) — 4my*wi(y, t) = wi(y,t)  w (y,0)=0
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Again this is an ordinary differential equation, linear and of the first order. Its
solution is easily found to be

t
wi(y,t) = 2wye"4"2y2'/ e4"2y2°g(a) do
0

If w is made into an odd function by setting w(z,t) = —w(—z,t) when £ < 0,
then we know from Problem 9 in Section 6.3 (page 304) that

@(y,t) = ~2iw(y,t)

Therefore by the Inversion Theorem (Section 6.3, page 303)

w .
w(z, ) = / @y, ()2 dy

—00
or - .
. 2 2 2 2
w(z, t) = —-47ri/ eZmizyye=i"y ‘/ etV 99(0) do dy
—o0o 0

To simplify this, let z = 2zy. Then
- [ t 2
w(z,t) = 7/ ze'"/ e~ (t=9)g(g) do dz ]
—o0 0

Example 4. The Helmholtz Equation is
Au—-gu=f

in which A is the Laplacian, 3_y_, 82/8z2. The functions f and g are prescribed
on R™, and u is the unknown function of n variables. We shall look at the special
case when g is the constant 1. To illustrate some variety in approaching such
problems, let us simply try the hypothesis that the problem can be solved with
an appropriate convolution: u = f x h. Substitution of this form for u in the
differential equation leads to

A(f+h)~fah=f

Carrying out the differentiation under the integral that defines the convolution,

we obtain
f*Ah—f*h,:f

Is there a way to cancel the three occurrences of f in this equation? After
all, L! is a Banach algebra, with multiplication defined by convolution. But
there are pitfalls here, since there is no unit element, and therefore there are no
inverses. However, the Fourier transform converts the convolutions into ordinary
products, according to Theorem 4 in Section 6.1 (page 291):

(Namr-Fr=7
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From this equation cancel the factor f, and then express (Ah)" as in Example
2 in Section 6.2 (page 297):

—4n?|z|? h(z) — h(z) = 1

-1

M) = e

The formula for h itself is obtained by use of the inverse Fourier transform, which
leads to

o0
h(:c)=7r"/2/ t~"/2exp(—t — |rz|?/t) dt
0

The calculation leading to this is given in [Ev], page 187. In that reference, a
different definition of the Fourier transform is used, and Problem 6.1.24, page
293, can be helpful in transferring results among different systems. ]

Problems 6.6

1. Define the Sine Transform by the equation
30
IO / f(z) sin2nztdr
0

Show that (f”)S(t) = 2ntf(0) — 4n2t2 f£5(t). (Two integrations by parts are needed, in
addition to the assumption that f € L1.)
2. Define the Cosine Transform by the equation

e =/ f(z)cos 2nxt dr
0

Show that (f/)C(t) = —f'(0) — 4n2t2£C(t).
3. A function can be decomposed into odd and even parts by writing f = fo + fe, in which

fol@) = 3f(x) = 3f(=2)  fe(z) = 3f(x) + 3 f(~2)

Show that f = 2fC —~ 2if 5.

4. If wS is the sine transform in the first variable in the function (z, t) — w(z, t), what is
the difference between (wS): and (we)S?

5. Define a scaling operator by the equation (S)f)(z) = f(Az). Prove that D® o S, =
AlalSy o Do,

6. If the problem Au — u = f is solved by the formula u = f s h, for a certain function h,
how can we solve the problem Au — c?u = f, assuming ¢ > 0?

6.7 Tempered Distributions

Let. us recall the definitions of two important spaces. The space D, the space of
“test functions,” consists of all functions in C*°(R"™) that have compact support.
(Of course, D depends on n, but the notation does not show this.) In D we
define convergence by saying that ¢; — 0 in D if there is one compact set
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containing the supports of all ¢; and if (D%@;)(z) converges uniformly to 0 for
each multi-index a.

The space 8 consists of all functions ¢ in C®°(R") such that the function
P - D¢ is bounded, for all polynomials P and for all multi-indices a. In 8 we
defined ¢; — 0 to mean that P - D%¢; converges uniformly to 0, for each P and
for each a.

It is clear that D C 8. A distribution T, being a continuous linear functional
on D, may or may not possess a continuous linear extension to 8. If it does
possess such an extension, the distribution T is said to be tempered.

Theorem 1. Every distribution having compact support is tem-
pered.

Proof. Let T be a distribution with compact support K. Select ¥ € D so
that #(z) =1 for all z in an open neighborhood of K. We extend T by defining
T(¢) = T(¢v)) when ¢ € 8. Is T an extension of T? In other words, do we have
T(¢) = T(¢) for ¢ € D? An equivalent question is whether T'()¢ — ¢) = 0 for
¢ € D. We use the definition of the support of T to answer this. We must verify
only that the support of (1 — )¢ is contained in R™ \ K. This is true because
1 — 9 is zero on a neighborhood of K. The linearity of T is trivial. For the
continuity, suppose that ¢; — 0 in 8. Then for any a, D%®¢; tends uniformly
to 0, and D®(¢;¥) tends uniformly to 0 by Leibniz’s Rule. Since there is one
compact set containing the supports of all 1)¢;, we can conclude that ¥¢; — 0
in D. By the continuity of T, T(¥¢;) — 0 and T(¢#;) — O. ]

If T is a tempered distribution, it is customary to make no notational dis-
tinction between T and its extension to 8. If V' is a continuous linear functional
on 8, then its restriction V|D is a distribution. Indeed, the linearity of V|D
is obvious, and the continuity is verified as follows. Let ¢; — 0 in D. Since
there is one compact set K containing the supports of all ¢; and since any poly-
nomial is bounded on K, we see that P(z)(D%®;)(z) — 0 uniformly for any
multi-index a and for any polynomial P. Hence ¢; — 0 in 8. Since V is con-
tinuous, (V[D)(¢;) — 0. This proves that the space 8’ of all continuous linear
functionals on 8 can be identified with the space of all tempered distributions.

Lemma. Theset D(R") is dense in the space 8(R").

Proof. Given an element ¢ in 8, we must construct a sequence in D converging
to ¢ (in the topology of 8). For this purpose, select ¥ € D such that ¥(z) =1
whenever |z] < 1. For j = 1,2,..., let ¥;(z) = ¥(x/j). It is obvious that ;¢
belongs to D. In order to show that these elements converge to ¢ in 8, we must
prove that for any polynomial P and any multi-index a,

(1) P-D%* ¢ - ¢¢;) = 0 uniformly in R"

In the following, P and « are fixed. By the Leibniz Formula, the expression in
(1) equals

@) Py (§)0o e 020 - w)

B<La
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Since ¢ € 8, we must have P - D“~8¢ € 8 also. Hence |z|?|P(z) - D®~f¢(z)] is
bounded, say by M. This bound can be chosen to serve for all 8 in the range
0 < 8 < a. Increase M if necessary so that for all 3 in that same range,

181
IDA(1 — )| = H (D5(1— )| < [DP(1 - %)| < | DAL + |DPv| < M

Fix an index j. If |z| < j, then 1 — ¢;(z) = 0, and the expression in (2) is 0 at
z. If |z| 2 j, then

|P(z) - D*"P¢(x)] < M [|zl* < M/5?
Also, for |z| > j, |D?(1 — ;)| < M. Hence the expression in (2) has modulus

no greater than
a
Mj=2M =c¢j~?
2 (ﬁ) ’ ?

0<8<ea

This establishes (1). ]

Theorem 2. Let f be a measurable function such that f/P €
L'(R™) for some polynomial P. Then f is a tempered distribution.

Proof. For ¢ € 8, we have
fo)= [ s@0ta)ds
RN
Suppose that P is a polynomial such that f/P € L!. Write

flo) = / (f/P)P

Since ¢ € 8, P¢ is bounded, and the integral exists. If ¢; — 0 in 8, then
P(z)¢j(z) = 0 uniformly on R™, and consequently,

\Fi) < sup |P)es(a)] [|1/P| -0 '

Definition. The Fourier transform of a tempered distribution T is defined by
the equation T(¢>) (d)) for all € 8. An equxvalent equation is T=ToF,

where F is the Fourier operator mapping ¢ to ¢

Theorem 3.  IfT is a tempered distribution, then so is T. Moreover,
the map T — T is linear, injective, surjective, and continuous from
8t8.

Proof. The Fourier operator F is a continuous linear bijection from 8 onto &
by Theorem 3 in Section 6.3, page 303. Also, F~! = F3 Since T =T o F, we
see that T is the composition of two continuous linear maps, and is therefore
itself continuous and linear. Hence T is a member of 8'.
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For the linearity of the map in question we write
(aT + bU)* = (aT + bU) o F = aT o F + bU o F = aT + bU

For the injectivity, suppose T =0. Then ToF =0 and T(¢) = 0 for all ¢
in the range of F. Since F is surjective from 8 to 8, the range of F is 8. Hence
T(¢)=0for all ¢ in 8;ie, T =0.

For the surjectivity, let T be any element of 8. Then T = T o F* =
(T o F3) o F. Note that T o F3 is in 8’ by the first part of this proof.

For the continuity, let T; € 8’ and T; — 0. This means that T;(¢) — O for

all ¢ in 8. Consequently, ﬁ(d)) = Tj(a) — 0 and f} - 0. (]

Example. Since the Dirac distribution & has compact support, it is a
tempered distribution. What is its Fourier transform? We have, for any ¢ € 8,

5(¢) = 8(6) = #0) = [ o(a)dz = 1(9)

(Remember that the tilde denotes the distribution corresponding to a function.)
Thus, 6=1. (]
Theorem 4. IfT is a tempered distribution and P is a polynomial,

then -
— A = a
PT—P(%)T and P-T—P(m)T

Proof. For ¢ in 8 we have

PT(8) = (PT)(@) = T(P) = T[(P(,2)8)"] = (P (32)9) = [P(Z)T](9)

2mi

We used Theorem 1 in Section 6.2, page 296, in this calculation. The other
equation is left as Problem 6. ]

Problems 6.7

. Prove that every f in L'(R™) is a tempered distribution.
. Prove that every polynomial is a tempered distribution.
. Prove that if f is measurable and satisfies |f| < |P| for some polynomial P, then f is a
tempered distribution.
4. Prove that the function f defined by f(x) = e*, (n = 1) is not a tempered distribution.
Note that f is a distribution, however,
5. Let f(z) = (Iz] + 1)~1. Explain how it is possible for f to belong to L2(R) in spite of
the fact that the integral f_°°°° f(z)e~2mi=t dr is meaningless.
6. Prove the remaining part of Theorem 4.
7. Under what circumstances is the reciprocal of a polynomial a tempered distribution?
8. Define 8, by 84(9) = ¢(a). Compute 4,.
9. Prove that our definition of the Fourier transform of a tempered distribution is consistent
with the classical Fourier transform of a function,
10. Is the function f(z) = e~ !%/ a member of 8? Is f a tempered distribution?
11. What flaw is there in defining T¢ = T¢ for T € D’ and ¢ € D?
12. Find the Fourier transforms of these functions, interpreted as tempered distributions:
{a) gx) =z (z€R)

W N =
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(b) g(x) =1 (z €R")
(c) g(z) =2 (z€R").
13. Let T € D/(R™). Why can we not prove that T is tempered by using the density of D in
S and Problem 6.4.6 on page 3097

6.8 Sobolev Spaces

This section provides an introduction to Sobolev spaces. These are Banach
spaces that have become essential in the study of differential equations and the
numerical processes for solving them, such as the finite element method. It is
therefore not surprising that the elements in these Sobolev spaces are functions
possessing derivatives of certain orders. The theory relies on distribution theory
and capitalizes on the fact that distributions have derivatives of all orders.

Our first step is to generalize the theory of distributions slightly by con-
sidering the domain of our test functions to be an arbitrary open set Q in R™.
Usually, 2 will remain fixed in any application of the theory. Our test functions
are C functions defined on 2 and having compact support. The support of a
test function is, then, a compact subset of £2. The space of all these test functions
is denoted by D(€). Convergence in this space has the expected meaning: The
assertion ¢; — 0 means that there is a single compact subset K in Q containing
the supports of all ¢;, and that on K we have 8°¢; — 0 uniformly for each
multi-index a. The use of the distinctive symbol — is to remind us of the very
special concept of convergence employed in this context.

The dual space of D(NQ) is the space of distributions, denoted by D'(2). Its
elements are the continuous linear functionals defined on D(Q). Continuity of a
distribution T' means that T preserves limits: From the hypothesis “¢; converges
to ¢" we may conclude that “T'(¢;) converges to T(¢).”

As before, we can create distributions from locally integrable functions.
Local integrability of a function f defined on 2 means that for every compact
set K in €, the integral fn |f] is finite. We then write f € L} .(€2). All these
definitions are in harmony with the definitions first seen on R®, and indeed, we
include Q = R™ as a special case. The distribution corresponding to a locally
integrable function f has been denoted by f; its definition is now

(1) 7o) = /n f(2)d(z)dz (¢ € D))

Sometimes we do not belabor the distinction between f and f, and think of each
fin L} .(Q) as a distribution. The clear advantage of this is that such functions
will possess derivatives of all orders (in the distribution sense). Derivatives of
this type are called “weak derivatives” or “distribution derivatives” to distinguish
them from the classical derivatives, which are then called “strong” derivatives.
Thus if f € L}_.(R) and if a is a multi-index, D*f need not exist in the classical
sense, but 82 f will always exist. Recall that in this book the symbol 8% was
reserved for distributions, and

() (8°T)(¢) = (-1)IT(D*¢) (¢ € D(N))
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Equation (2) can be written more succinctly as 3T = T o (—D)®. Then, for
any polynomial P, we have P(8)T = T o P(-D).

The classical spaces LP(Q2), for 1 < p < oo, are defined as follows. The
elements of LP(2) are the Lebesgue measurable functions f defined on Q for
which

3) I, ={ [ lf(z)l"dx}l/p < o0

The norm here can also be denoted by ”f“LP(Q)‘ The resulting normed linear
space is complete. A fine point that complicates matters is that, in fact, the
elements of LP are equivalence classes of functions, two functions being regarded
as equivalent (i.e., belonging to the same equivalence class) if they differ only
on a set of measure zero. Section 8.7 (pages 409ff) provides more information
about the LP spaces.

Deflnition. To say that a distribution T belongs to LP(Q2) means that T = g
for some g € LP(R2). When this circumstance occurs, we write ”T”p = gl

With suitable caution, one can also write T € LP(R2).

Let k € Z, and 1 < p < 0o. The Sobolev space W*?(Q) consists of all
functions f in LP(Q) such that 8%f € LP(Q) for all multi-indices a satisfying
|a| < k. More precisely, this space is

{f € LP(Q) : there exist g, € LP(Q) such that 8%f =g,, for la| < k}

Observe that we need the fact (indicated in Problem 2) that each member of
LP(Q) is in L] (Q). In the space W¥*P(Q), a norm is defined by putting

1/p 1/p
(4) 171l = (Z 113°f|l§) = (Z “90”2’)

jaj<k laj<k

The verification of the norm axioms is relegated to the problems. Notice that in
Equation (4) the conventions of the above definition are being used.

Theorem 1. The Sobolev spaces W*:P(Q) are complete.

Proof. We begin by observing a useful implication:
(5) [hj —~+0 in L”(Q)] = [ﬁj ~0 in 'D’(Q)]

To prove this, let ¢ be a test function. By the Holder Inequality (Section 8.7,
page 409),

© ol =| [ mee)] < { [ lh,-(znp}l/p {/ |¢(x)|q}”q
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Here 1 < p < oo and 1/p + 1/q = 1. Inequality (6) establishes (5).

Now let f;] be a Cauchy sequence in W*P(Q). By the definition of this
space, there exist functions g € LP(2) such that 8°f, = g;’ for |a] < k. By
Problem 2, each g° belongs to LIOC( ), and therefore g;’ is a distribution. From
the definition of the norm (4), we see that for each a the sequence (9] has
the Cauchy property in LP(Q2). Since LP(f2) is complete (by the Riesz-Fischer
Theorem, page 411), there exist functions f® € LP(Q) such that ¢§ — f° in
LP(Q). By (5), we conclude that ;];5 - F’ In particular, for a = 0, g;’ — fO.
Consider the equation

(M 92(8) = (8°f;)(¢) = (-1 f;(D°¢) = (—1)'°'§§(D°¢)
By letting j — oo in (7) and using the convergence of E_‘,-;, we obtain
f2(9) = (1)l (D) = 8" f3(9)

This proves that 8"?6 = F, and shows that for |a| < k, 3"}'\6 € LP(Q). By the
definition of the Sobolev space, f© € W?(Q). Finally, we write

155 =101, = > lecf - & folE = > llog = £l -0 .

laj<k la|<k

The test function space D(S?) is, in general, not a dense subspace of the
Sobolev space W*:P(Q). This is easy to understand: Each ¢ in D(2) has compact
support in Q. Consequently, ¢(z) = O on the boundary of Q. The closure
of D(N) in W*P(Q) can therefore contain only functions that vanish on the
boundary of 2. However, the special case 2 = R" is satisfactory from this
standpoint:

Theorem 2. The test function subspace D(R™) is dense in
Wkp(R").

For the proof of Theorem 2, consult [Hu]. Some closely related theorems
are given in this section.

In many proofs we require a mollifier, which is a test function 3 having these
additional properties: ¥ > 0, ¥(z) = 0 when ||:£|| > 1, and fw = 1. Then one
puts ¥;(z) = j™P(jz). A “mollification of f with radius €” is then ¥; * f with
1/j < €. These matters are discussed in Section 5.1 (pages 246ff) and Section
5.5 (pages 269fF).

Lemma 1. If f € LP(R"), and if ¢; is as described above, then
f*v¥;— fin LP(R™), as j — oo.

Proof. The case p = 1 is contained in the proof of Theorem 1 in Section 6.4,
page 306. Let B; be the support of ¥; (i.e., the ball at 0 of radius 1/j). By
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familiar calculations and Hoélder’s inequality (Section 8.7, page 409) we have

/B [f(z - 9) - F(@)] 5 (v) dy]

Jj

1/p
< {/ 1f(z—y)—f(z)|"dy} l[sll,
B

J

|(f #¥5)(@) = f(z)] =

(Here q is the index conjugate to p: pg = p+ q.) Hence,

()@~ 1@ < sl [ 1rte =) - siolay

J

Thus, using the Fubini theorem (page 426), we have
L@ -s@fa < ul [ [ 1fe-n-i@rdad
RN Bj R"
We can write this in the form

w0 — fIIP < |l E.f—flP
1= 117 < [, 1801 = Al e

where E, denotes the translation operator defined by (Ey¢)(z) = o(z — y).
Recall, from Lemma 3 in Section 6.4 (page 306), that for a fixed element f in
LP(R™), the map y — Eyf is continuous from R™ to LP(R™). Hence there
corresponds to any positive € a positive § such that

p<s = |Bf-1l,<e
Thus if 1/5 < &, we shall have, from the above inequalities,
Fewi=1ll, < uBy)llwl;

where pu(B;) is the Lebesgue measure of the ball of radius 1/j. By enclosing
that ball in a “cube” of side 2/j, we see that u(B;) < (2/7)". Thus,

I *w; = 11l < e@/9)™P|lesll,

In order to estimate the right-hand side in the above inequality, use Problem 6
to get

n/ n/
( ) p||1};]|| = e(]) pj"(q—l)/q“d,”q = Eznjn(l—l/Q—l/P)”d)”q = 2|y,
[ ]
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Theorem 3.  The set of functions in W*P(Q) that are of class C™®
is dense in Wk?(Q).

Proof. Let By, By, ... be asequence of open balls such that B; C Q forall i and
U Bi = Q. The center and radius of B; are indicated by writing B; = B(x:,;).
Appealing to Theorem 1 in Section 5.7 (page 282), we obtain a partition of
unity subordinate to the collection of open balls. Thus, we have test functions
¢; satisfying 0 < ¢; < 1. Further, supp(¢;) C B;, and for any compact set K
in Q, there exists an integer m such that Z;" ¢; = 1 on a neighborhood of K.
Now suppose that f € W*P(Q). Let 0 < € < 1/2. Eventually, we shall find a
C>-function g in W*?(Q) such that ||f - g|| < 2e.

Select a sequence &; | 0 such that B(z;, (1 + &;)r;) C Q for each i. Define
fi = ¢;f. Let g; be a mollification of f with radius d;7;. At the same time,
we decrease J; if necessary to obtain the inequality ”gi - f‘llwk'x’(n) < /2.
(This step requires the preceding lemma.) Define g = > g;. If O is a bounded
open set in Q, then O is compact, and for some integer m, Z:’;l ¢; =1lon a
neighborhood of ©. On O, we have

=D bf=fY ¢i=f
=1 =1 =1

Then we can perform the following calculation, in which the norm in the space
Wk.P(0) is employed (until the last step, where the domain  enters):

NfF=all=1D_f=D all = 1D _(fi =90l
=1 i=1 t=1

00 oo
< Z [l fi — &l < Z || £i = gl'”wk,p(n)
t=1 t=1

<e/2+e/d+---=¢€ (]

Another way of interpreting the space W*?(Q) will be described here. It
allows one to understand this space without an appeal to distributions. Notice,
to start with, that the set

V={feC"q) : |Ifll, < o}

is a linear subspace of W*P(Q). In drawing this conclusion it is necessary to
identify any classical derivative D®f with its distributional counterpart 8%(f).
Indeed, the elements of W*:?(Q2) have been defined to be distributions.

Since V C W*P(Q), the closure of V is also a subspace, and it is denoted
here by V¥P(Q). We can also characterize V5P(Q) as the completion of V in
the norm “ . “ kp' The true state of affairs is quite simple, as stated in the next

theorem, for the proof of which we refer the reader to [Ad] or [Maz].
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Theorem 4. The Meyers—Serrin Theorem.
VEP(Q) = WhP(Q) 1<p<oo

Embedding Theorems. Here we explore the relations that may exist be-
tween two Sobolev spaces, in particular, the relation of one such space being
continuously embedded in another.

For general normed linear spaces (£, || -||g) and (F,]| - ||r), we say that F
is embedded in E (and write F — F) if

(a) F CE;

(b) There is a constant ¢ such that ||f||z < ¢||f||z for all f € F.

Part (a) of this definition is algebraic: It asserts that F is a linear subspace
of the linear space E. Part (b) is topological: It asserts that the identity map
I : F — FE is continuous (i.e., bounded). Indeed, if

17l = sup{ll£llg : Mflle =1} =c

then the inequality in Part (b) follows.

Example 1. Every continuous function on the interval (a,b] is integrable.
Hence, this simple containment relation is valid: Cla,b] C L![a,b]. Is this an
embedding? We seek a constant ¢ such that

17l <eliflle  (f € Clab))

The constant ¢ = b — a obviously serves:

= [ v@nde< [ 1= 6- ol '

Example 2. If1 € s < T < oo and if the domain Q has finite Lebesgue
measure, then L7(Q) — L*(R2). To prove this, start with an f in L"(Q) and
write 7 = ps. We may assume that f > 0. Then f° is in LP(Q2) because
J £7 = [ f7. Use the Hélder Inequality (page 409) with conjugate indices p and

q=p/(F-1):
[ra<iel, -,

Taking the 1/s power in this inequality gives us
1/ 1/ 8)—(1/r
Il <l Hllg™ = Mol @@/ 0= '
Theorem 5. W!2%(R) — WO>(R).
Proof. (In outline. For details, see [LL], Chapter 8.) Let f be an element of
WH2(R). Since D(R) is dense in W?(R), there exists a sequence [f;] in D(R)

converging to f in the norm of W12, Each f; has compact support and therefore
satisfies fi(£o0) = 0. Since f;f{ = (f?)'/2, we have

72@) = 3120 - fi(=o0)] - 5 [200) - £2@) = [ 1si= [T 1)
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By taking the limit of a suitable subsequence, we obtain the same equation for
f, at almost all points . Then, with the aid of the Cauchy-Schwarz inequality
and the inequality between the geometric and arithmetic means, we have

p@< [ i [T [ <ol < 3105+ 500

Consequently,
. ———
W < Z5V Ik + 11

This establishes the embedding inequality:

1l < 510 .

The next theorem is one of many embedding theorems, and is given here as
just a sample from this vast landscape. It involves one of the spaces W:”’ ().
This space is defined to be the closed subspace of W*?(Q) generated by the set
of test functions D(Q). For this theorem and many others in the same area,
consult [Zie] pages 53ff, or [Ad] pages 97f.

Theorem 6. Let Q be anopensetinR™. Let k and j be nonnegative
integers. If1 < p < oo, kp < m, and p < r < np/(n — kp), then

Witkr(Q) o wiT(Q)

There are in the literature many theorems concerning compact embeddings
of Sobolev spaces. This means, naturally, that the identity map that arises in
the definition is a compact operator, i.e., it maps bounded sets to sets having
compact closure. An example of such a theorem is the next one, known by the
names Rellich and Kondrachov. It is obviously a counterpart of Theorem 6.

Theorem 7. Let Qo be an open and bounded subset of an open
domain QinR™ If§20,k21,1<p<oo,0<n—kp<n kp<n,
and 1 < r < np/(n — kp), then there is a compact embedding

WItRP(Q) = Wi (90)

For describing embeddings into spaces of continuous functions, define
Ci(R2) to be the set of all functions defined on Q such that the derivatives D f
exist, are continuous, and are bounded on €, for all multi-indices a satisfying
|al] € m. The norm adopted for this space is

Wl = mex, suplD° /@)

Theorem 8. Ifk > nm/2, then WEP(Q) = CI(Q).

Theorem 8 (and others like it) can be used to establish that a distributional
solution of a partial differential equation is in fact a classical solution.
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The Sobolev-Hilbert Spaces. The spaces W¥2(2) are Hilbert spaces and
are conventionally denoted by H*(Q). For the special case 2 = R™, we can
follow Friedlander [Fri}, and define them for arbitrary real indices s as follows.
The space H*(R™) consists of all tempered distributions T for which

(1+12?)?T e L*R")

Matters not touched upon here: (1) The importance of conditions on the
boundary of 2 for more powerful embeddings. (2) The Sobolev spaces for non-
integer values of k. (3) The duality theory of Sobolev spaces; i.e., identifying
their conjugate spaces as function spaces.

Problems 6.8

. Prove that the norm defined in Equation (4) satisfies all the postulates for a norm.
. Prove that LP(Q2) C L} ().
3. Prove that for 1 < p < oo, D(£2) € LP(R2) € D’(52). Show that the embedding of L?(f)
in D’(N) is continuous and injective.
4. Show that the function
1 jz] <1
flz) = {

0 |z} 21

N ==

belongs to W?P(R) but not to W!-P(R).
5. Prove this theorem of W.H. Young. If f € LP(R) and g € L!(R), then f+g € LP(R), and

s+ gll, <A, Holly

(See [HewS), page 414, for a stronger result.)

6. Prove that if $ € D(R™) and ¢;(z) = j"¢(jz), then |[¢jﬂq = j"("“‘)/"||¢”q.

7. Why can we not define a more general Sobglev space, say WE(f2), where a is a multi-
index, and admit all functions such that 89 f € LP(Q) for all multi-indices § < a? What
would the norm be? Would the space be complete?

8. Find the norm of the identity operator for these embeddings: (a) Cla, b} < L?[a, b}; (b)
& = €% (c) (R™,]] - [loo) = (R™, ] - |]2).

9. Prove that if m 2 k, then W™P(Q) C W*-P(Q), and this set inclusion is actually a
continuous embedding. That is, the identity map of W™:?(£2) into W*-?(1) is continuous.
Wllat is the relationship between the norms in these two spaces?

10. If f € LP(R2), does it follow that f € LP(N)?

11. Let O be an open set in R™ that contains the closed ball B(z,r). Prove that for some
p > r, B(z,p) is contained in O. (This was used in the proof of Theorem 2.

12. Prove that the following formula defines an inner product in the space W*%(9):

(f.9) = Z/(D"I)(D"g)dz
agk Q

13. Let g and h be locally integrable functions on the open set . If
/ 9(z)¢(z)dz = / h(z)D®$(z)dz
Q ]

for all ¢ € D(N), what conclusion can be drawn?
14. Prove that if ¢ € D(N), then extending this function to R™ by setting ¢(z) = 0 on

R"™ \ 0 produces a function in D(R™).
15. Prove that if |a| < k, then D is a continuous linear transformation from W&?(Q) into
LP(Q).



Chapter 7

Additional Topics

7.1 Fixed-Point Theorems 333

7.2 Selection Theorems 339

7.3 Separation Theorems 342

7.4 The Arzela—-Ascoli Theorem 347

7.5 Compact Operators and the Fredholm Theory 351
7.6 Topological Spaces 361

7.7 Linear Topological Spaces 367

7.8 Analytic Pitfalls 373

7.1 Fixed-Point Theorems

The Contraction Mapping Theorem was proved in Section 4.2, and was accompa-
nied by a number of applications that illustrate its power. In the literature, past
and present, there are many other fixed-point theorems, based upon a variety of
hypotheses. We shall sample some of these theorems here.

In reading this chapter, refer, if necessary, to Section 7.6 for topological
spaces, and to Section 7.7 for linear topological spaces.

Let us say that a topological space X has the fized-point property if every
continuous map f : X — X has a fixed point (that is, a point p such that
f(p) = p). An important problem, then, is to identify all the topological spaces
that have the fixed-point property. A celebrated theorem of Brouwer (1910)
begins this program.

Theorem 1. Brouwer’s Fixed-Point Theorem. Every compact
convex set in R™ has the fixed-point property.

We shall not prove this theorem here, but refer the reader to proofs in [DS]
page 468, [Vic] page 28, [Dug] page 340, [Schj] page 74, [Lax], [KA] page 636,
(Sma) page 11, (Gr] page 149, and [Smi] page 406.

333
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Theorem 2. If a topological space has the fixed-point property,
then the same is true of every space homeomorphic to it.

Proof. Let spaces X and Y be homeomorphic. This means that there is a
homeomorphism k : X —» Y (a continuous map having a continuous inverse).
Suppose that X has the fixed-point property. To prove that Y has the fixed-
point property, let f be a continuous map of Y into Y. Then the map h~! o
f o h is continuous from X to X, and thus has a fixed point x. The equation
h=1(f(h(z))) = z leads immediately to f(h(x)) = h(z), and h(z) is a fixed point
of f. [ |

Lemma. If K is acompact set in a locally convex linear topological
space, and if U is a symmetric, convex, open neighborhood of 0, then
there is a finite set F in K and a continuous map P from K to the
convex hull of F such that t — Px € U for allz € K.

Proof. The family {x+U : z € K} isan open cover of K, and by compactness

there must exist points z1,...,, in K such that K C J_,(zi + U). Let h be
the Minkowski functional of U, defined by the equation

h(z)=inf{/\:§€U, ,\>o}

(See [KN], page 15.) Define
9i(z) = max{0,1 — h(zx — i)} (1€i<n)
It is elementary to verify that the inequality g;(x) > 0 is equivalent to the

assertion that £ — z; € U. Since each T in K belongs to at least one of the sets
z; + U, we have 3., gi(z) > O for all z € K. Define

f:l 9i(T)T: i
== 0:(z
2 gi(x) =t

Since 8i(r) > 0 and ) 6i(r) = 1, we see that Pz is in the convex hull of

{z1,T2,...,zn} whenever z € K. Since the condition 8;(x) > 0 occurs if and
only if z; € £ + U, we see that Pz is a convex combination of points in £ + U.
By the convexity of this set, Pr e z+ U. [}

Theorem 3. The Schauder-Tychonoff Fixed-Point Theorem.
Every compact convex set in a locally convex linear topological Haus-
dorff space has the fixed-point property.

Proof. ([Day), [Sma]) Let K be such a set, and let f be a continuous map of
K into K. We denote the family of all convex, symmetric, open neighborhoods
of 0 by {U, : @ € A}. The set A is simply an index set, which we partially
order by writing a > § when U, C Ug. Thus ordered, A becomes a directed set,
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suitable as the domain of a net. Since K is compact, the map f is uniformly
continuous, and there corresponds to any a € A an o' € A such that U, C Uy
and f(z) ~ f(y) € U, whenever £ —y € U, .

For any a € A, the preceding lemma provides a continuous map P, such
that P,(K) is a compact, convex, finite-dimensional subset of K. This map
has the further property that £ — P,z € U, for each z in K. The composition
P, o f maps P,(K) into itself. Hence, by the Brouwer Fixed-Point Theorem
(Theorem 1 above), P, o f has a fixed point z, in P,(K). By the compactness
of K, the net (zo : @ € A] has a cluster point z in K. In order to see that z is a
fixed point of f, write

(1) f(2) = 2= [f(2) = f(2a)] + [f(2a) = Paf(2a)] + [2a = 2]

For any 8 € A, we can select a € A such that a > 8 and z — 2, € Ug. Then
f(2)=f(22) € Ug. Also, f(2a)—Paf(za) € Ua C Ug Finally, z—z, € Uy C Ug.
Equation (1) now shows that f(z) — 2z € 3Ug. Since 8 is any element of A,
f(2) = z. Theorem 1 in Section 7.7 (page 368) justifies this last conclusion. &

Corollary. If a continuous map is defined on a domain D in a
locally convex linear topological Hausdorff space and takes values in a
compact, convex subset of D, then it has a fixed point.

Proof. Let F: D — K, where K is a compact, convex set in D. Then the
restriction of F' to K is a continuous map of K to K. By the Schauder-Tychonoff
Theorem, F|K has a fixed point. [

In Section 4.2 it was shown how fixed-point theorems can lead to existence
proofs for solutions of differential equations. This topic is taken up again here.
We consider an initial-value problem for a system of first-order differential equa-

tions:
{I;(t)=fi(t9$l(t))'--a1:n(t) (1 <l\ Tl)
z;(0) =0 n)

This is written more compactly in the form

’.:
N
//\

@) { X’((t) = £(t,x(t))

x(0) =

where x = (z1,z2,...,z,) and £ = (fy, f2,..., fn)-

Although the choice of initial values z;(0) = 0 may seem to sacrifice gen-
erality, these initial values can always be obtained by making simple changes of
variable. Changing t to t — a shifts the initial point, and changing z; to =; — c;
shifts the initial values.

The space Cpla,b] consists of n-tuples of functions in Cle,b). If x =
(z1,...,%n) € Cn[a,d], we write

x|l = e (), za @)y = sup it
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where || ||, denotes the £-norm on R". That is,

|”||1 Z'“‘l if w=(u,uy,. ..,un) € R"

i=1

Theorem 4. Let £(t,u) be defined for 0 < t < a and for u € R"
such that ”u”l < r. Assume that on this domam f is continuous and
satisfies ||f(t,u)||, < r/a. Then the initial-value problem (2) has a
solution x in Cy[0,a], and ||x|| _ <.

Proof. Refer to Section 4.2, page 179, where an initial-value problem is shown
to be equivalent to an integral equation. In the present circumstances, the
integral equation arising from Equation (2) is

(3) x(t)=/(; £(s,x(s))ds

Equation (3) presents us with a fixed-point problem for the nonlinear operator
A defined by

t
(Ax)(t) =/ f(s,x(s))ds
0
The domain of A is taken to be
D = {x € Cnla, b : ||x”°0 <r}

First, we shall prove that A maps D into D. Let x € D and y = Ax. Since
||Ix||, < . the inequality ||x(s)||, < r follows for all s in the interval [0,a].
Hence

Iyl =3 twtor= 3| [ e xonad < 3 [ iatoxtopias
a 1 a .
2/0 ;lf.‘(s,x(s))]ds =/0 ll£(s,x(s))|], ds < a(;) =

This shows that ||y||, <
The next step is to prove that A(D) is equicontinuous. If x and y are as in
the preceding paragraph, and if 0 < ¢; € t2 < a, then

ly(22) = y(e)l, =D |wite) — wa(t)]

i=1

= i l /12 fis,x(s)) ds — /tl fz‘(s,X(S))ds‘
Z/ | £i (s, x(s) |ds—/ Z|f,sxs))|ds

t1 =1

=/ £Gs, x ()], ds < Z(t2 — t1)
t
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The set A(D) is an equicontinuous subset of the bounded set D in C,[0,a]- By
the Ascoli Theorem (Section 7.4, page 349), the closure of A(D) is compact.
By Mazur’s Theorem (Theorem 10, below), the closed convex hull H of A(D)
is compact. Since D is closed and convex, H C D. The preceding corollary is
therefore applicable, and A has a fixed point x in H. Then ”x“m < r,and x
solves the initial-value problem. (]

Theorem 5. There is no continuous mapping of the closed unit
ball in R™ to its boundary that leaves all boundary points fixed. (In
other words, there is no “retraction” of the unit ball in R™ onto its
boundary.)

Proof. Let B™ be the ball and S™®~! the sphere that is its boundary. Suppose
that f: B® — S™!, that f is continuous, and that f(z) = z for all z € S"~!.
Let g be the antipodal map on S™!, given by g(x) = —z. Then go f has
no fixed point (in violation of the Brouwer Fixed-Point Theorem). To see this,
suppose g(f(z)) = z. Then f(z) = —z and 1 = ”f(z)” = H - z|| = ]Iz” Thus
z € S"~!. The point z contradicts our assumption that f(2z) = zon S*~!. @

The next theorem is a companion to the corollary of Theorem 3. Notice that
the hypothesis of convexity has been transferred from the range to the domain
of f.

Theorem 6. Let D be a convex set in a locally convex linear
topological Hausdorff space. If f maps D continuously into a compact
subset of D, then f has a fixed point.

Proof. As in the proof of Theorem 3, we use the family of neighborhoods U,.
Let K be a compact subset of D that contains f(D). Proceed as in the proof
of Theorem 3, using the same set of neighborhoods U,. By the lemma, for each
a there is a finite set F,, in K and a continuous map P, K — co(Fy,) such that
T — Pox € U, for each x € K. If £ € co(F,), then £ € D, f(z) € K, and
Po(f(x)) € co(Fg). Thus P, o f maps the compact, convex, finite-dimensional
set co(F,) into itself. By the Brouwer Theorem, P, o f has a fixed point z,
in co(F,). Then f(z,) lies in the compact set K, and the net [f(2o) : @ € A]
has a cluster point y in K. We will show that f(y) = y by establishing that
f(y) —y € U, for all a. Theorem 1 in Section 7.7, page 368, applies here.

Let a be given. Select 8 2> a so that Ug + Upg C U,. By the continuity of
f at y, select v > B so that f(y) — f(z) € Ug whenever z € K and y — z € U,,.
Select 6 > v so that Us + Us C U,. Select € > 6 so that f(z.) € y + Us. Then
we have

Y= 2e = [y — f(ze)) + [f(2¢) + Pef(2e)] € Us + Ue C Us + Us C U,
Hence f(y) — f(z¢) € Up. Furthermore,

W)~y =1f(y) - f(2)] + [f(2) ~y) €Up+Us CUp+Up CUs m
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Theorem 7. Rothe’s Theorem. Let B denote the closed unit
ball of a normed linear space X. If f maps B continuously into a
compact subset of X and if f(8B) C B, then f has a fixed point.

Proof. Letr denote the radial projection into B defined by r(z) = z if Hz” <1
and r(z) = 1‘/”1‘” if Hz” > 1. This map is continuous (Problem 1). Hence ro f
maps B into a compact subset of B. By Theorem 6, ro f has a fixed point z in
B. If ”:L‘” =1, then ”f(x)l[ = 1 by hypothesis, and we have £ = r(f(z)) = f(z)
by the definition of r. If ||z]} < 1, then ||r(f(z))|| < 1 and z = r(f(z)) = f(z),
again by the definition of r. (]

Theorem 8. Let B denote the closed unit ball in a normed space
X. Let {f;: 0 <t <1} be a family of continuous maps from B into
one compact subset of X. Assume that
(i) fo(@B) C B.
(it) The map (t,z) — fi(z) is continuous on[0,1] x B.
(iii) No f; has a fixed point in O B.
Then f, has a fixed point in B.

Proof. (From [Sma]) If 0 < € < 1, define

n(i)  lel<i-

l1—¢
ge(T) =

fa-nziiyze (”—iﬂ) 1-e< |zl <1

Notice that g, is continuous, since the two formulas agree when ”z” =1-¢.
If £ € 0B, then H:L'” = 1 and g.(z) = fo(z) € B. Thus f maps 9B into B. If
K is a compact set containing all the images fi(B), then g.(B) C K, by the
definition of g.. The map g, satisfies the hypotheses of Theorem 7, and g, has
a fixed point z, in B.

We now shall prove that for all sufficiently small ¢, “1‘5“ < 1 —e€. If this
is not true, then we can let € converge to zero through a suitable sequence of
values and have, for each € in the sequence, ||z€|| > 1 — €. Since g¢(ze) = .
we see that z. is in K. By compactness, we can assume that the sequence of €'s
has the further properties z. — z, and (1 — ||z5”)/e — t, where , € K and
t € [0,1]. By the definition of g,

fa-nzeinyse (WZW) =z,

In the limit, we have f,(z,) = 7, and ||z,| = 1, in contradiction of hypothesis
(iii).

We now know that ||z,|| < 1 — € for all sufficiently small €. Thus, for such
values of ¢,

e = aclae) = £ (12

€
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The points z, belong to K, and for any cluster point we will have £ = f;(z). &

Problems 7.1

1. Prove that the radial projection defined in the proof of Theorem 7 is continuous.

2. Prove Theorem 7 for an arbitrary closed convex set that contains O as an interior point.
Hint: Replace the norm by a Minkowski functional as in the proof of the lemma.

3. In Theorem 6 assume that D is closed. Show that the theorem is now an easy corollary
of Theorem 3, by using the closed convex hull of K and Mazur’s Theorem.

4. Prove that the unit ball in €2(Z) does not have the fixed-point property by following

this outline. Points in €2(Z) are functions on Z such that Z:].‘l:(r't)l2 < oo. Let § be

the element in €2(Z) such that §(0) = 1, and §(n) = O otherwise. Let A be the linear
operator defined by (Az)(n) = z(n + 1). Define f(z) = (1 — (Jz|[)6 + Az. This function
maps the unit ball into itself continuously but has no fixed point. This example is due
to Kakutani.

5. In R", define B={z : 0< |iz|| € 1} and S = {z : |lz]] = 1}. Is there a continuous
map f : B = S such that f(z) = z when z € S? (Cf. Theorem 5.)

6. In an alternative exposition of fixed-point theory, Theorem 5 is established first, and
then the Brouwer theorem is proved from it. Fill in this outline of such a proof. Suppose
f : B® = B" is continuous and has no fixed point. Define a retraction g of B™ onto
S™-! as follows. Let g(z) be the point where the ray from f(z) through z pierces S™~1.

7. In 1904, Bohl proved that the “cube” K = {z € R™ : ||z||oc < 1} has this property: If f
maps K continuously into K and maps no point to 0, then for some z on the boundary
of K, f(z) is a negative multiple of . Using Bohl's Theorem, prove that the boundary of
K is not a retract of K (and thus substantiate the claim that Bohl deserves much credit
for the Brouwer Theorem).

7.2 Selection Theorems

Let X and Y be two topological spaces. The notation 2Y denotes the family
of all subsets of Y. Let & : X — 2Y. Thus, for each = € X, &(z) is a subset of
Y. Such a map is said to be set-valued. A selection for #isamapf: X -5 Y
such that f(z) € ®(z) for each £ € X. Thus f “selects” an element of &(z),
namely f(z). If ®(z) is a nonempty subset of Y for each £ € X, then a selection
f must exist. This is one way of expressing the axiom of choice. In the setting
adopted above, one can ask whether & has a continuous selection. The Michael
Selection Theorem addresses this question.

Here is a concrete situation in which a good selection theorem can be used.
Let X be a Banach space, and Y a finite-dimensional subspace in X. For each
z € X, we define the distance from z to Y by the formula

dist(z,Y) = Jg{" flz -l

SinceY is finite-dimensional, an easy compactness argument shows that for each

z, the set
&(z)={yeY: |z —y| =dist(z,Y)}
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is nonempty. That is, each £ in X has at least one nearest point (or “best
approximation”) in Y. In general, the nearest point will not be unique. See the
sketch in Figure 7.1 for the reason.

/

<

IR

b3 2 3

Figure 7.1

~
e

In the sketch, the box with center at O is the unit ball. The line of slope 1
represents a subspace Y. The small box is centered at a point z outside Y. That
box is the ball of least radius centered at x that intersects Y. The intersection is
&(z). The set ®(z) is the set of all best approximations to z in Y. In this case
®(z) is convex, since it is the intersection of a subspace with a ball. It is also
closed, by the definition of ® and the continuity of the norm. Now we ask, is
there a continuous map f : X — Y such that for each z, f(z) is a nearest point
to z in Y7 One way to answer such questions is to invoke Michael’s theorem, to
which we now turn.

First some definitions are required. An open covering of a topological
space X is a family of open sets whose union is X. One covering B is a re-
finement of another A if each member of B is contained in some member of
A. A covering B is said to be locally finite if each point of X has a neigh-
borhood that intersects only finitely many members of B. A Hausdorff space X
is paracompact if each open covering of X has a refinement that is an open
and locally finite covering of X ([Kel], page 156). Clearly, a compact Hausdorff
space is paracompact.

It is a nontrivial and useful fact that all metric spaces are paracompact
([Kel), page 156). In many applications this obviates the proving of paracom-
pactness by means of special arguments.

Given the set-valued mapping ® : X — 2 and a subset U in Y, we put
&~ (U) = {r € X : ®(z) N U is nonempty}

Finally, we declare ® to be lower semicontinuous if &~ (i) is open in X
whenever U is open in Y.
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Theorem 1. The Michael Selection Theorem. Let ® be a lower
semicontinuous set-valued map defined on a paracompact topological
space and taking as values nonempty closed convex sets in a Banach
space. Then ® has a continuous selection.

For the proof of this theorem, we refer the reader to [Mich1] and [Mich2]. As an
application of Michael’s theorem, we give a result about approximating possibly
discontinuous maps by continuous ones.

Theorem 2 Let X be a paracompact space, Y a Banach space, and
H a closed subspace in Y. Suppose that f : X - Y is continuous and
g: X - H is bounded. Then for each € > 0 there is a continuous map
g: X — H that satisfies

(1) sup || f(z) — §(z)|| < sup ||f(z) — 9(z)|| + ¢
z€X z€X

Thus when approximating the continuous map f by the bounded map
g, we can find a continuous map g that is almost as good as g.

Proof. Let A denote the number on the right in Inequality (1). Foreach z € X,
define
&(z) = {he H:||f(z) - h|| < A}

This set is nonempty because g(z) € ®(z). (Notice that g is a selection for ®
but not necessarily a continuous selection.) The set ®(z) is closed and convex
in the Banach space H.

We shall prove that @ is lower semicontinuous. Let &/ be open in H. It is to
be shown that &~ (&) is open in X. Let £ € ®~(U). Then ®(z) N is nonempty.
Select h in this set. Then h € U and ||f(z) — k|| < A Also || f(z) — g(z)| < A.
So, by considering the line segment from h to g(z), we conclude that there is
an b’ € U such that ||f(z) — h’|| < A. Since f is continuous at z, there is a
neighborhood NV of z such that

|f(w) = f(@)| < A= |lf(z) -] (ueN)

By the triangle inequality, H_f(s) ~ h'|| < X when s € N. This proves that
k' € ®(s), that ®(s) N U is nonempty, that s € ®~(U), that N C &~ (U), that
@~ (U) is open, and that & is lower semicontinuous.

Now apply Michael’s theorem to obtain a continuous selection g for #. Then
g is a continuous map of X into H and satisfies g(z) € ®(z) for all z. Hence g
satisfies (1). ]

Another important theorem that follows readily from Michael’s is the the-
orem of Bartle and Graves:
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Theorem 3. The Bartle-Graves Theorem. A continuous linear
map of one Banach space onto another must have a continuous (but
not necessarily linear) right inverse.

Proof. Let A: X — Y, as in the hypotheses. Since A is surjective, the
equation Ar = y has solutions z for each y € Y. At issue, then, is whether a
continuous choice of x can be made. It is clear that we should set

O(y) = {r € X : Az =y}

Obviously, each set ®(y) is closed, convex, and nonempty. Is ® lower semicon-
tinuous? Let O be open in X. We must show that the set ®~(O) is open in
Y. But 7 (0O) = A(O) by a short calculation. By the Interior Mapping Theo-
rem (Section 1.8, page 48), A(©) is open. Thus @ is lower semicontinuous, and
by Michael’s theorem, a continuous selection f exists. Thus f(y) € ®(y), or

A(f(¥) =v. ]

In the literature there are many selection theorems that involve measur-
able functions instead of continuous ones. If X is a measurable space and Y a
topological space, a map ® : X — 2Y is said to be weakly measurable if the
set

{r € X: ®(x) N O is not empty}

is measurable in X for each open set O in Y. (For a discussion of measurable
spaces, see Section 8.1, pages 381ff.) The measurable selection theorem of Ku-
ratowski and Ryll-Nardzewski follows. Its proof can be found in [KRN], [Part],
and [Wag].

Theorem 4. Kuratowski and Ryll-Nardzewski Theorem. Let
® be a weakly measurable map of X to 2Y, where X is a measurable
space and Y is a complete, separable metric space. Assume that for
each =, ®(x) is closed and nonempty. Then ® has a measurable selec-
tion. Thus, there exists a function f : X = Y such that f(z) € ®(x)
for all z, and f~(O) is measurable for each open set O in Y.

7.3 Separation Theorems

The next three theorems are called “separation theorems.” They pertain
to disjoint pairs of convex sets, and to the positioning of a hyperplane so that
the convex sets are on opposite sides of the hyperplane. In R2, the hyperplanes
are lines, and simple figures show the necessity of convexity in carrying out
this separation. In Theorem 3, one can see the necessity of compactness by
considering one set to be the lower half plane and the other to be the set of
points (z,y) for which y > z=! and z > 0.



Section 7.3 Separation Theorems 343

Theorem 1. Let X be a normed linear space and let K be a
convex subset of X that contains O as an interior point. Ifz € X \ K,
then there is a continuous linear functional ¢ defined on X such that
for allz € K, ¢(z) < 1 < ¢(2).

Proof. Again, we need the Minkowski functional of K. It is

p(z) =inf{A: A >0 and /)€ K}

We prove now that p(z + y) < p(z) + p(y) for all £ and y. Select A\, g > 0 so
that £/\ and y/p are in K. By the convexity of K,

Ty _ A :c+ ]
A+p  A+p X A+pp

K

Hence p(z + y) < A + . Taking the infima of A and g, we obtain p(z + y) <
p(z) + p(y). Next we prove that for A > 0 the equation p(Azx) = Ap(z) is true.
Select ¢ > 0 so that z/pu € K. Then Az/Ap € K and p(Az) € Ap. Taking the
infimum of u, we conclude that p(Az) < Ap(z). From this we obtain the reverse
inequality by writing Ap(z) = Ap(A~'Az) < A~ !p(Az) = p(Az).

Now define a linear functional ¢ on the one-dimensional subspace generated
by z by writing
#(Az) = Ap(z) (A€ER)

If A > 0, then ¢(A\z) = p(Az). If A < 0, then ¢(Az) = Ap(z) < 0 < p(Az). Hence
¢ < p. By the Hahn-Banach Theorem (Section 1.6, page 32), ¢ has a linear
extension (denoted also by ¢) that is dominated by p. For each £ € K we have
¢(z) < p(z) < 1. As for 2, we have ¢(z) = p(z) > 1, because if p(z) < 1, then
z/A € K for some X € (0,1), and by convexity the point

z=Az/A)+(1-2)0
would belong to K.

Lastly, we prove that ¢ is continuous. Select a positive r such that the ball
B(0, ) is contained in K. For ||:c|| < 1 wehaverz € B(0,7) and rz € K. Hence
p(rz) < 1, ¢(rz) <1, and ¢(z) < 1/r. Thus ||¢“ <1/r. [

Theorem 2. Let K,,K, be a disjoint pair of convex sets in a
normed linear space X. If one of them has an interior point, then there
is a nonzero functional ¢ € X* such that

sup ¢(z) < inf o(z)
T€K) €Ky

Proof. By performing a translation and by relabeling the two sets, we can
assume that O is an interior point of K;. Fix a point z in K, and consider the
set K; — K2 + z. This set is convex and contains O as an interior point. Also,
z ¢ Ky — K2+ 2z because K is disjoint from K. By the preceding theorem, there
is a ¢ € X* such that for u € K; and v € K2 we have ¢(u —v + 2) < 1 < ¢(2).
Hence ¢(u) < ¢(v). ]
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Theorem 3. Let K,,K, be a disjoint pair of closed convex sets
in a normed linear space X. Assume that at least one of the sets is
compact. Then there is a ¢ € X* such that

inf
xseu% o(x) < IgnKl o(x)

Proof. Theset Ky — K3 is closed and convex. (See Problems 1.2.19 on page
12 and 1.4.17 on page 23.) Also, 0 ¢ K; — K2, and consequently there is a
ball B(0,r) that is disjoint from K; — K. By the preceding theorem, there is a
nonzero continuous functional ¢ such that

sup ¢(x) < o(x)

in
llzf<r z€K1-Kg

Since ¢ is not zero, there is an € > 0 such that for v € K, and v € K3,

€ < ¢o(u) — o(v). [}

Separation theorems have applications in optimization theory, game theory,
approximation theory, and in the study of linear inequalities. The next theorem
gives an example of the latter.

Theorem 4. Let U be a compact set in a real Hilbert space. In order
that the system of linear inequalities

(1) (,z) >0 (uel)

be consistent (i.e., have a solution, x) it is necessary and sufficient that
0 not be in the closed convex hull of U.

Proof. For the sufficiency of the condition, assume the condition to be true.
Thus, 0 ¢ c6(U). By Theorem 3, there is a vector  and a real number A such
that €6(U) and 0 are on opposite sides of the hyperplane

{v: @y, z) = A}

We can suppose that (y,z) > X for y € @(U) and that (0,z) < . Obviously,
A > 0 and z solves the system (1).

Now assume that system (1) is consistent and that z is a solution of it. By
continuity and compactness, there exists a positive & such that (u,z) > ¢ for all
u € U. For any v € co(U) we can write a convex combination v = }_ 6;u; and
then compute

(‘U, l‘) = <Z 0,"!1.,',.’1,‘) = Zﬂ(u.-,x) 2 Zﬂie =&

Then, by continuity, (w,z) > € for all w € &(U). Obviously, 0 ¢ co(U). (]
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In order to prove a representative result in game theory, some notation will
be useful. The standard n-dimensional simplex is the set

S,,={:rEIR“ : 20 and zn:z,~=l}
i=1

Theorem 5. For an m xn matrix A, either Az 2 0 for somez € Sy,
oryTA < 0 for some y € Sp,.

Proof. Suppose that there is no z in the simplex S, for which Az 2> 0. Then
A(Sy) contains no point in the nonnegative orthant,

m={yeR™ : y>0}

Consequently, the convex sets A(S;,) and P,, can be separated by a hyperplane.

Suppose, then, that.
PnC{y€R™ : (u,y) > A}

A(Sn) C{y €R™ : (u,y) < A}

Since 0 € Py, A < 0. Let e; denote the i-th standard unit vector in R™. For
positive t, te; € Py. Hence (u,te;) > A tu; > A u; > A/t, and u; 2 0. Thus
u € Py and (u,Az) < O for all £ € S,. Obviously, u # 0, so we can assume
u € Sm. Since uT Az < 0 for all £ € S,,, we have uT Ae; < 0 for 1 < i < n, or,
in other terms, uTA < 0. (In this last argument, e; was a standard unit vector
in R™.) (]

This section concludes with a brief discussion of a fundamental topic in
game theory. A rectangular two-person game depends on an m x n matrix
of real numbers. Player 1 selects in secret an integer ¢ in the range 1 < i < m.
Likewise, Player 2 selects in secret an integer j in the range 1 < j < n. The
two chosen integers i and j are now revealed, and the payoff to Player 1 is the
quantity e;; in the matrix. If this payoff is positive, Player 2 pays Player 1. If
the payoff is negative, Player 1 pays Player 2.

Both players have full knowledge of the matrix A. If Player 1 chooses 1,
then he can assure himself of winning at least the quantity min;a;;. His best
choice for 7 ensures that he will win max; min; a;;. Player 2 reasons similarly:
By choosing j, he limits his loss to max; a;;. His best choice for j will minimize
the worst loss and that number is then min; max; a;;. If

minmax a;; = maxmin a;
P v g

then this conmon number is the amount that one player can be sure of winning
and is the limit on what the other can lose.

In the more interesting case (which will include the case just discussed) the
players will make random choices of the two integers (following carefully assigned
probability distributions) and play the game over and over. Player 1 will assign
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specific probabilities to each possible choice from the set {1,2,...,m}. The
probabilities can be denoted by ;. We will then want z; > 0 for each 7 as
well as Y°7" | z; = 1. In brief, € S,. Similarly, Player 2 assigns probabilities
y; to the choices in {1,2,...,n}. Thus y € S,. When the game is played just
once, the expected payoff to Player 1 can be computed to be 2:":1 Z;;] Q;;Tiy;.
Player 1 seeks to maximize this with an appropriate choice of = in S,,, while
Player 2 seeks to minimize this by a suitable choice of y in S,,. The principal
theorem in this subject is as follows.

Theorem 6. The Min-Max Theorem of Von Neumann Let A
be any m x n matrix. Then

max min 7 Ay = min max zT Ay
TESM YESn YESn T€ESm

Proof. It is easy to prove an inequality < between the terms in the above
equation. To do so, let w € S, and v € S;;,. Then

min vTAy < vT Au < max T Au

y€Sn z€Sm
Since u and v were arbitrary in the sets S, and Sp,, respectively, we can choose
them so that we get

(2) max min 7 Ay € min max zT Ay
z€Sm yESn YESn TESmM

Now suppose that a strict inequality holds in Inequality (2). Select a real
number r such that

(3) max min T Ay < r < min max 7 Ay
TESM YESn YESn TESmM

Consider the matrix A’ whose generic element is a;; —r. By Theorem 5 (applied
actually to —A’), either A’z < 0 for some u € S,, or vT A’ > 0 for some v € Spy.

If the first of these alternatives is true, then for all £ € S,,, we have zT A'u <
0. In quick succession, one concludes that max, 7 A'u < 0, miny max, zTA'y <
0, and min, max, zT Ay < r. In the last inequality we simply compute the
bilinear form zT A’y, remembering that £ € S, and y € S,,. The concluding
inequality here is a direct contradiction of Inequality (3).

Similarly, if there exists v € Sy, for which v7 A’ > 0, then we have forall y €
Sn,vTAYy >0, min, vTA’y > 0, max, min, zT A’y > 0, and max, min, zT Ay >
r, contradicting Inequality (3) again. (]

In the language of game theory, Theorem 6 asserts that each player of a
rectangular game has an optimal strategy. These are the “probability vectors”
T € Sy and § € S, such that

z7 Aj = max min z7 Ay = min max z7 Ay
ZESM YESn YESn z€SmM
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The common value of these three quantities is called the value of the game.
Convenient references for these matters and for the theory of games in general
are [McK] and [Mor].

Problems 7.3
1. Let f: X x Y = R, where X and Y are arbitrary sets. Prove that

supinf f(z,y) < infsup f(z,y)
x V¥ vV =z

(In order for this to be universally valid, one must admit +oo as a permissible value for
the supremum and —oo for the infimum.)

2. Prove for any u € R™ that maxzes, (4, Z) = max) gign i

3. Let P, denote the set of z in R™ that satisfy z 2 0. Prove that for u € R™ and A € R
these properties are equivalent:

a. PnC {z:{u,z) > A}
b. u € Pn and A <0.

4. Saddle points. If there is a pair of integers (r,3) such that a;s < ars < ar; for all i
and j, then a,, is called a “saddle point” for the rectangular game. Prove that if such a
point exists, each player has an optimal strategy of the form (0,...,0,1,0,...,0).

5. (A variation on Theorem 4) Let X be any linear space, ® a set of linear functionals on
X. Prove that the system of linear inequalities

#(z)<0 (¢€P)

has a finite inconsistent subsystem if and only if 0 € co(®).

6. (A result in approximation theory) Let K be a closed convex set in a normed linear space
X. Let u be a point not in K, and set r = dist(u, K'). Prove that there exists a functional
¢ € X* such that

sup  ¢(x) < inf o(x)
T€EK

llz-ull€r

7. (Separation theorem in Hilbert space) Let K be a closed convex set in Hilbert space, and
u a point outside K. Then there is a unique point v in K such that for all z in K,

(z,u —v) < (v,u—v) < (u,u—1v)

8. Let ¢1,¢2,...,9n be continuous linear functionals on a normed space. Let a1,a2,...,an
be scalars, and define affine functionals ¥;(x) = ¢i(x) + ai. Define F(x) = max; 3;(x).
Prove that F is bounded below if and only if the inequality max; ¢;(z) 2 0 is true for
all £ of norm 1.

7.4 The Arzela—Ascoli Theorems

The hypothesis of compactness is often present in important theorems of analy-
sis. For this reason, much attention has been directed to the problem of charac-
terizing the compact sets in various Banach spaces. The Arzela~Ascoli Theorem
does this for spaces of continuous functions. The Dunford-Pettis Theorem does
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this for L!-spaces, and the Fréchet-Kolmogorov Theorem does it for the LP-
spaces. The most extensive source for results on this topic is [DS], Chapter 4.
See also [Yo] for the Fréchet—Kolmogorov Theorem.

We begin with spaces of continuous functions. Let (X,d) and (Y,p) be
compact metric spaces. For example, X and Y could be compact intervals on
the real line. We denote by C(X,Y) the space of all continuous maps from X
into Y. It is known that continuity and uniform continuity are the same for
maps of X into Y. Thus, a map f of X into Y belongs to C(X,Y) if and only
if there corresponds to each positive € a positive 6 such that p(f(u), f(v)) < e
whenever d(u,v) < 6.

The space C(X,Y) is made into a metric space by defining its distance
function A by the equation

(1) A(f,9) = sup p(f(z),9(z))
z€X

A first goal is to characterize the compact sets in C(X,Y).
Let K be a subset of C(X,Y). We say that K is equicontinuous if to
each positive € there corresponds a positive é such that this implication is valid:

2) [f € K and d(u,v) < 6] — p(f(u),f(v)) <e

Theorem 1. First Arzela—Ascoli Theorem. Let X and Y be
compact metric spaces. A subset of C(X,Y) is compact if and only if
it is closed and equicontinuous.

Proof. Let K be the subset in question. First, suppose that K is compact.
Then it is closed, by the theorem in general topology that asserts that compact
sets in Hausdorff spaces are closed ([Kel], page 141). In order to prove that
K is equicontinuous, let € be a prescribed positive number. Since K is com-
pact, it is totally bounded ([Kel], page 198). Consequently, there exist elements
f1, f2,--., fn in K such that

K c O B(fi,e)
i=]

where B(f,€) istheball {g: A(f,g) <&}. A finite set of continuous functions is
obviously equicontinuous, and therefore there exists a é for which this implication
is valid:

[1<i<n and d(v,v) <8] = p(fi(u),fi(v)) <€
If g € K and d(u,v) < 4, then for a suitable value of j we have
p9(u), 9(v)) < p(g(u), f5(u)) + p(f;(w), f5(v)) + p(£;(v), g(v)) < 3e

The index j is chosen so that A(g, f;) < €. The above inequality establishes the
equicontinuity of K.
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Now suppose that K is closed and equicontinuous. The space M(X,Y) of
all maps from X into Y with the metric A as defined in Equation (1) is a metric
space that contains C(X,Y) as a closed subset. It suffices then to prove that K
is compact in M(X,Y).

Let € be a prescribed positive number. Select a positive § such that the
implication (2) above is valid. Since X and Y are totally bounded, we can
arrange that

n m
X c | B(z;,9) Y c | B(wi,e)
i=1 i=1

In order to have a disjoint cover of X, let
A; = B(zi,0) ~ [B(z1,8)U---U B(zi-1,9)) (1€ign)

Notice that if £ € A;, then it follows that = € B(z;,d), that d(z;,z) < &, and
that p(f(z;), f(z)) <eforall f € K.

Now consider the functions g from X to Y that are constant on each A;
and are allowed to assume only the values y;,y2,...,ym. (There are exactly m™
such functions.) The balls B(g,2¢) cover K. To verify this, let f € K. For
each i, select yj;, so that p(f(zi),yj;) < €. Then let g be a function of the type
described above whose value on A; is y;;. For each x € X there is an index ¢
such that r € A;. Then

p(f(z),9(2)) < p(f(2), f(2:)) + p(f(2i), 9()) < 2¢

Hence A(f,g) < 2¢. This proves that K is totally bounded. Since a closed and
totally bounded set is compact, K is compact. (]

As usual, if X is a compact metric space, C(X) will denote the Banach
space of all continuous real-valued functions on X, normed by writing

l|£]] = sup |f (<)l
zeX

Theorem 2. Arzela-Ascoli Theorem IIL Let X be a compact
metric space. A subset of C(X) is compact if and only if it is closed,
bounded, and equicontinuous.

Proof. Suppose that K is a compact set in C(X). Then it is closed. It is also
totally bounded, and can be covered by a finite number of balls of radius 1:

K C U B(fi,1)

i=1
For any g € K there is an index i for which g € B(f;,1). Then
lloll < llg = fill + I£ill < 1+ max ||fsf| = M
Thus K is bounded. Let Y = [-M, M]. Then
K cC(X,Y)

The preceding theorem now is applicable, and K is equicontinuous.

For the other half of the proof let K be a closed, bounded, and equicontinu-
ous set. Since K is bounded, we have again K C C(X,Y), where Y is a suitable
compact interval. The preceding theorem now shows that K is compact. (]
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Theorem 3. Dini’s Theorem. Let fy, fo,... be continuous real-
valued functions on a compact topological space. For each x assume
that | fn(z)| | 0. Then this convergence is uniform.

Proof. Given € > 0, put Sk = {z : | fx(z)| > €}. Then each Sy is closed, and
Sk+1 C Sk. For each z there is an index k such that = ¢ Sx. Hence 5, Sk is
empty. By compactness and the finite intersection property, we conclude that
Mk, Sk is empty for some n. This means that S, is empty, and that |fa(z)| < €
for all x. Thus |fx(z)| < € for all k > n. This is uniform convergence. (]

We conclude this section by quoting some further compactness theorems.
In the spaces LP(R), the following characterization of compact sets holds. Here,
1 £ p < oo. A precursor of this theorem was given by Riesz, and a generalization
to locally compact groups with their Haar measure has been proved by Weil. See
(Edw] page 269, [DS] page 297, and [Yo] page 275.

Theorem 4. The Fréchet—Kolmogorov Theorem. A closed
and bounded set K in the space LP(R) is compact if and only if the
following two limits hold true, uniformly for f in K:

llm/lf:z:+h f(z)lPdz =0

im [ |f(@)Pdz=0

M—o00 .l]a:|>M

Theorem 5. A closed and bounded set K in the space co (de-
fined in Section 1.1) is compact if and only if for each positive € there
corresponds an integer n such that sup,¢ g Sup;sy, |z(i)] < €.

Theorem 6. A closed and bounded set K in €% is compact if and
only if
Jim sup 3 _a(i

i2n

Problems 7.4
1. Define fn € C[0,1] by fn(z) = nz/(nz + 1). Is the set {fn : n € N} equicontinuous? Is
it bounded? Is it closed?
2. Let fi(z) = e**. Show that {f) : A < b} is equicontinuous on {0, a].

3. In the space Cla,b] let K be the set of all polynomials of degree at most n thar. satisfy
llpll < 1. (Here n is fixed.) Is K equicontinuous? Is it compact?

4. Let a and X be fixed positive numbers. Let K be the set of all functions f on [a,b] that
satisfy the Lipschitz condition

1f(z) - fW) < Az - y®

Is K closed? compact? equicontinuous? bounded?
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5. Let K be a set of continuously differentiable functions on [a,b]. Put K’ = {f’ : f € K}.
Prove that if K’ is bounded, then K is equicontinuous.

6. Let K be an equicontinuous set in C[a, b]. Prove that if there exists a point z¢ in [a,b)
such that {f(zo) : f € K} is bounded, then K is bounded.

7. Define an operator L on the space C|a,b] by

(Lf)(z) = f k(z,y)f(y) dy

where k is continuous on [a,b] x [a,b). Prove that L is a compact operator; that is, it
maps the unit ball into a compact set.

8. Prove or disprove: Let [fn] be a sequence of continuous functions on a compact space.
Let f be a function such that |f(z) ~ fn(z)] 1 O for all z. Then f is continuous and the
convergence fn — f is uniform.

9. Select an element a € €2, and define
K ={z € : |z;| < lalfor all i}

Prove that K is compact. The special case when a; = 1/i gives the so-called Hilbert
cube.

10. Prove that not every compact set in €2 is of the form described in the preceding problem.

11. Reconcile the compactness theorems for L2 and €2, in the light of the isometry between
these spaces.

7.5 Compact Operators and the Fredholm Theory

This section is devoted to operators that we think of as “perturbations of the
identity,” meaning operators I + A, where I is the identity and A is a compact
operator. The definition and elementary properties of compact operators were
given in Section 2.3, page 85. In particular, we found that operators with finite-
dimensional range are compact, and that the set of compact members of £(X,Y)
is closed if X and Y are Banach spaces. Thus, a limit of operators, each having
finite-dimensional range, is necessarily a compact operator. In many (but not all)
Banach spaces, every compact operator is such a limit. This fact can be exploited
in practical problems involving compact operators; one begins by approximating
the operator by a simpler one having finite-dimensional range. Typically, this
leads to a system of linear equations that must be solved numerically. (Examples
of problems involving operators with finite-dimensional range occur in Problems
20, 21, 22, and 29 in Section 2.1, pages 68-69.)

Here, however, we consider a related class of operators, namely those of the
form I + A (where A is compact), and find that such operators have favorable
properties too. Intuitively, we expect such operators to be well behaved, be-
cause they are close to the identity operator. For example, we shall prove the
famous Fredholm Theorem, which asserts that for such operators the property
of injectivity (one-to-oneness) is equivalent to surjectivity (being “onto”). This
is a theorem familiar to us in the context of linear operators from R" to R":
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For an n x n matrix, the properties of having a 0-dimensional kernel and an n-
dimensional range are equivalent. The proof of the Fredholm Theorem is given
in several pieces, and then further properties of such operators are explored. We
have relied heavily on the exposition in [Jam], and recommend this reference to
the reader.

Lemma 1. Let A be a compact operator on a normed linear space.
If I + A is surjective, then it is injective.

Proof. Let B=1I+A and X,, = ker(B"). Suppose that B is surjective but not
injective. We shall be looking for a contradiction. Note that 0 C X; C X2 C ---
It is now to be proved that these inclusions are proper. Select a nonzero element
v1 in Xi. Since B is surjective, there exist points y2,y3, . . . such that Byn41 = Yn
forn =2,3,... We have

B, =B" !By, =By, =-- =B, =By; =0
Furthermore,
By, = B" By, = B" %y, =---=Bly3 =By =y, # 0

These two equations prove that yn € X»n \ Xyn_; and that those inclusions men-
tioned above are proper.

By the Riesz Lemma, (Section 1.4, page 22), there exist points Tn such
that £, € Xn, ”an = 1, and dist(zn, Xn-;) = 1/2. If m > n, then we
have B™z,, = 0 because z,, € X, = ker(B™). Also, B™" !z, = 0 because
Tn € Xn C Xmpm-1. Finallyy, B™z, = 0 because zn, € X, C X,,. These
observations show that

B™ Y Bz, — zn — Bxy) = B™zym — B™ 'z, — B™2, =0

Now we can write

|Azn — Az || = ||(B = I)zn — (B — I)Tm]|| = ||BTn — Tn — BTm + Tm||
= ||tm — (Bxm + Tn — Bzy)|| > dist(zm, Xm-1) > 1/2

The sequence [Azy] therefore can have no Cauchy subsequence, contradicting
the compactness property of A. (]

Lemma 2. If A isa compact operator on a Banach space, then the
range of I + A is closed.

Proof. Let B = I + A Take a convergent sequence [yn] in the range of B,
and write y = limy,,. We want to prove that y is in the range of B. Since this is
obvious if y = 0, we assume that y # 0. Denote the kernel (null space) of B by
K. Let y, = Bz, for suitable points .

If [zn] contains a bounded subsequence, then (because A is compact) [Az,]
contains a convergent subsequence, say AZn; — u. Since ATn; + Tn, = Bzn, =
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Yn; = Y, we infer that ,,, = y,, = ATn, = y—~u. Then y = lim Bz, = B(y—u),
and y is in the range of B. This completes the proof in this case.

If [xn] contains no bounded subsequence, then ||z,.|| — oo. Since y # 0, we
can discard a finite number of terms from the sequence [r,] and assume that
T, ¢ K for all n. Using Riesz’s Lemma, construct vectors v, = kn + apZ, s0O
that ||vn|| = 1, kn € K, and dist(vn, K) > 1/2. Note that

(1) By, = ap Bz, = anyn

Since ||anya|| = ||Bvn|| < ||B|| and y» = y # 0, we see that [a,] is bounded.
Since fvn] is bounded, [Av,] contains a convergent subsequence. Using the
boundedness of [a,], we can arrange that

Avy, = 2 and an, >«
From Equation (1), we conclude that (I + A)vn; = an;yn, and
Un; = Qn;Yn; — Av,,i —Say—z

If a were 0, we would have vp,, = —z and — Bz = lim By, = lim(vni + Av,,i) =
—z+4+ 2z = 0. This would show that z € K. This cannot be true because it would
imply
1/2 < dist (vn;, K) < |[on; + 2| =0
Hence a # 0. Since Bv,; — ay, we have
Bla™'vy) =y

Consequently, B(y — a~!z) = y, and y is in the range of B. (]

Lemma 3. Let A be a compact operator on a Banach space. If
I + A is injective, then it is surjective.

Proof. Let B=1+ A and let X,, denote the range of B". We have

B = (I+A)"=Xn:(2)A’°=I+g(:)A"

k=0
Since each A* is compact (for k > 1), B™ is the identity plus a compact operator.
Thus X, is closed by Lemma 2.
If £ € X, for some n, then for an appropriate u we have
z=B"=B""'Bue X,_;
Thus
(2) X=XgD2X1D2X2D--

Now our objective is to establish that X; = Xp.
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If all the inclusions in the list (2) are proper, we can use Riesz’s Lemma to
select T,, € X, such that ]|an =1 and dist(zn, Xn+1) = 1/2. Then, for n < m,
we have

|Azm — Aza|| = ||(B = Iz ~ (B = Izg|| = ||zn — (zm + Bzn — Bzw)||
2 diSt(zmxn+l) 2 1/2

because T,, € X;m C Xny1, BTm € Xm+1 C Xn+41, and Bz, € Xn4+,. This
argument shiows that [Az,] can contain no Cauchy subsequence, contradicting
the compactness of A.

Thus, not all the inclusions in the list (2) are proper, and for some n,
X7 = Xn+1- We define n to be the first integer having this property. All we
have to do now is prove that n = 0.

If n > 0, let = be any point in X,_,. Then z = B"~ !y for some y, and

Bxr=B"ye Xp=Xp41

It follows that Bz = B™*!z for some 2. Since B is injective by hypothesis, z =
B"z € X,,. Since z was an arbitrary point in X,_,, this shows that X,_; C X,.
But the inclusion X,_; O X, also holds. Hence X,_., = X, contrary to our
choice of n. Hence n = 0. [ |

Theorem 1. The Fredholm Alternative. Let A be a compact
linear operator on a Banach space. The operator I + A is surjective if
and only if it is injective.

Proof. This is the result of putting Lemmas 1 and 3 together. (]

The name attached to this theorem is derived from its traditional formu-
lation, which states that one and only one of the these alternatives holds: (1)
I + A is surjective; (2) I + A is not injective. A stronger result is known, and
we refer the reader to [BN] or [KA] for its proof:

Theorem 2. If A is a bounded linear operator on a Banach space
and if A™ is compact for some natural number n, then the properties
of surjectivity and injectivity of I + A imply each other.

An easy extension of Theorem 1 is important:

Theorem 3. Let B be a bounded linear invertible operator, and
let A be a compact operator, both defined on one Banach space and
taking values in another. Then B + A is surjective if and only if it is
injective.

Proof. Suppose that B+A is injective. Then soare B~1(B+A) and I+B~'A.
Now, the product of a compact operator with a bounded operator is compact.
(See Problem 7.) Thus, Theorem 1 is applicable, and I + B~!A is surjective.
Hence so are B(I + B~'A) and B + A. The proof of the reverse implication is
similar. ]
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Theorem 4. A compact linear transformation operating from one
normed linear space to another maps weakly convergent sequences into
strongly convergent sequences.

Proof. Let A be such an operator, A: X — Y. Let z, — z (weak conver-
gence) in X. It suffices to consider only the case when £ = 0. Thus we want
to prove that Az, — 0. By the weak convergence, ¢(z,) — O for all p € X*.
Interpret ¢(z,) as a sequence of linear maps z, acting on an element ¢ € X*.
Since X* is complete even if X is not, the Uniform Boundedness Theorem (Sec-
tion 1.7, page 42) is applicable in X*. One concludes that ”rn” is bounded. For
any Yy € Y*,
Y(Az,) = (Yo A)z, = 0

because ¥ 0o A € X*. Thus Az, — 0. If Az, does not converge strongly to 0,
there will exist a subsequence such that HA:cnl. " 2 € > 0. By the compactness
of A, and by taking a further subsequence, we may assume that Az,, — y for
some y. Obviously, ”y” > €. Now we have the contradiction Az,, — y and
Aa:,,i - 0. [ |

Lemma 4. Let [A,] be a bounded sequence of continuous linear
transformations from one normed linear space to another. If A,z — 0
for each = in a compact set K, then this convergence is uniform on K.

Proof. Suppose that the convergence in question is not uniform. Then there
exist a positive €, a sequence of integers n;, and points zn; € K such that
”A,,ia:,,i || 2 e. Since K is compact, we can assume at the same time that
Tn; converges to a point z in K. Then we have a contradiction of pointwise
convergence from this inequality:

||An'.x” = ”A"iz"i + (An;z - A"ix"i)”
2 ”A"ix'"i I| - “A"iz — An;Zn, Il
2 e~ ||An |||z - zni]] .

For some Banach spaces X, each compact operator A : X — X is a limit of
operators of finite rank. This is true of X = C(T) and X = L%(T), but not of
all Banach spaces. One positive general result in this direction is as follows.

Theorem 5. Let X andY be Banach spaces. If Y has a (Schauder)
basis, then every compact operator from X toY is a limit of finite-rank
operators.

Proof. If [v,] is a basis for Y, then each y in Y has a unique representation of
the form

(See Problems 24-26 in Section 1.6, pages 38-39.) The functionals \x are con-
tinuous, linear, and satisfy sup, ”’\k” < oo. By taking the partial sum of the
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first n terms, we define a projection P, of Y onto the linear span of the first n
vectors vx. Now let A be a compact linear transformation from X to Y, and let
S denote the unit ball in X. The closure of A(S) is compact in Y, and P, — I
converges pointwise to 0 in Y. By the preceding lemma, this convergence is
uniform on A(S). This implies that (PnA — A)(z) converges uniformly to 0 on
S. Since each P, A has finite-dimensional range, this completes the proof. [}

Theorem 6. Let A be a compact operator acting between two
Banach spaces. If the range of A is closed, then it is finite dimensional.

Proof. Since A is compact, it is continuous and has a closed graph. Assume
that A: X — Y and that A(X) is closed in Y. Then A(X) is a Banach space.
Let S denote the unit ball in X. By the Interior Mapping Theorem (Section
1.8, page 48), A(S) is a neighborhood of 0 in A(X). On the other hand, by
its compactness, A maps S into a compact subset of A(X). Since A(X) has a
compact neighborhood of 0, A(X) is finite dimensional, by Theorem 2 in Section
1.4, page 22. [ |

Let us consider the very practical problem of solving an equation Az—Az = b
when A is of finite rank. In other words, A has a finite-dimensional range. Let
{v1,...,vn} be a basis for the range of A. Let b € X , Ab = Y_ Biv;, and
A’Uj = Zi a,;j‘l}t'.

We must assume that the numerical values of a;; and 3; are available to us.
Determining the unknown z will now reduce to a standard problem in numerical
linear algebra. The case when A = 0 is somewhat different, and we dispose of
that first.

If A =0, we find u; such that Au; = v;. Since the equation At = b can be
solved only if b is in the range of A, we write b = )_~;v;. Then the solution is
T = Y I_,7iti, because with that definition of z we have Az = Y |_, viAu; =
Z:‘=1 Yivi = b.

Now assume that A is not zero. The following two assertions are equivalent:
(a) There is an z € X such that Az — Az = b.

(b) There exist ci,...,c, € R such that Zjaijcj —Aci=p; (fori=1,...,n).

To prove this equivalence, first assume that (a) is true. Define ¢; by Az =
3" ¢;v;. Then one has successively

n
ZC]“U]‘ -Ax=b
ij=1

n
> cjAu; — Mz = Ab

j=1

n n n n
E Cj E ;v — A E CivV; = E ﬁivi
j=1 i=1 i=1 i=1
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Since {vy,...,vn} is linearly independent,
n

(3) Za,‘jCj‘—/\Cizﬁi fori=1,...,n
=1

This proves (b).
For the converse, suppose that (b) is true. Define z = (3" cjvu; — b)/A.
Then we verify (a) by calculating

Az — Az = ',l([ichvj - Ab - /\é:civi} +b
[ZZGUCJvl Zﬁlvl - /\ZC v,] =

i=1 j=1

This analysis has established that the original problem is equivalent to a
matrix problem of order n, where n is the dimension of the range of the operator
A. The actual numerical calculations to obtain z involve solving the Equation
(3) for the unknown coefficients c;. We have not yet made any assumptions to
guarantee the solvability of Equation (3).

Now one can prove the Fredhelm Alternative for this case by elementary
linear algebra. Indeed we have these equivalences (in which A # 0):

(i) A — X1 is surjective.

(ii) For each b there is an z such that Az — Az = b.
(iii) For all (fi,...,0,) the system Z;‘:]aijcj - X = f; (i =1,...,n) is

soluble.

(iv) The system Z;=1 a;jcj — Ac; = 0 has only the trivial solution.

(v) The equation Az — Az = 0 has only the trivial solution.
(vi) X is not an eigenvalue of the operator A.
(vii) A — Al is injective.

Integral Equations. The theory of linear operators is well illustrated in the
study of integral equations. These have arisen in earlier parts of this book, such
as in Sections 2.3, 2.5, 4.1, 4.2, and 4.3. A special type of integral equation
has what is known as a degenerate kernel. A kerne] is called degenerate or
separable if it is of the form k(s,t) = "' ui(s)vi(t). The corresponding integral
operator is

(Kz)(t) = /Ic(s t)x ds—/Zu Jvi(t)z(s) ds
—Zv, / ui(s)z(s)ds

If we use the ilmer—product notation for the integrals in the above equation,

we have the simpler form
n

Kz =Y (z,u)v
i=1
It is clear that K has a finite-dimensional range and is therefore a cotnpact
operator. (Various spaces are suitable for the discussion.)
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Lemma 5. In the definition of the degenerate kernel k = "7, u;v;,

there is no loss of generality in supposing that {ui,...,u,} and
{v1,...,vn} are linearly independent sets.
Proof. Suppose that {v;,...,vn} is linearly dependent. Then one vector is a
n-1

linear combination of the others, say v, = ) !| a;v;. Then we can write the
kernel with a sum of fewer terms as follows:

n n-1

Kz = Z(x,ui)vi = Z(x,ui)vi + (z,un)vn

i=1 i=1

n—1 n-1
=Y (zudvi + (z,un) D @i
i=1

i=1
n-1 n-1

= Z [(I, u;) + a’i(xyu‘h)] v = Z(l‘, Uu; + a;un)v;

i=1 i=1
A similar argument applies if {u1,...,u,} is dependent. [}

Tosolve the integral equation Kz—Az = b when K has a separable kernel (as
above), we assume A # 0 and that {v),...,v,} isindependent. Then {v1,...,vn}
is a basis for the range of K, and the theory of the preceding pages applies. If
the integral equation has a solution, then the system of linear equations

n
Za;'jCj—/\C,'=ﬁ.' (IS‘I.STI.)
j=1

has a solution, where Kv; = ), a;;v; and Kb = )_ B;v;. It follows that the
solution is = A~1(Y_ cqv; — b).

The spectrum of a linear operator A on a normed linear space is the set
of all complex numbers A for which A — Al is not invertible.

Theorem 7. Let A be a compact operator on a Banach space. Each
nonzero element of the spectrum of A is an eigenvalue of A.

Proof. Let A # 0 and suppose that ) is not an eigenvalue of A. We want to
show that A is not in the spectrum, or equivalently, that A — AI is invertible.
Since A is not an eigenvalue, the equation (A — AI)xz = 0 has only the solution
z = 0. Hence A — A is injective. By the Fredholm Alternative, A — AI is
surjective. Hence (A—\I)~! exists as a linear map. The only question is whether
it is a bounded linear map. The affirmative answer comes immediately from the
Interior Mapping Theorem and its corollaries in Section 1.8, page 48fF. That
would complete the proof. There is an alternative that avoids use of the Interior
Mapping Theorem but uses again the compactness of A. To follow this path,
assume that (A—AI)~! is not bounded. We can find z,, such that "zn” =1and
[[(A~AI)"'z,|| - co. Put yn = (A= AI)"'zn. Then ||ya||/||(A=AD)yn|| = co.
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Put 2, = yn/“yn||, so that ||z,.|| =1 and ”(A—/\I)z,.” — 0. Since A is compact,
there is a convergent subsequence Azn, = w. Then

2y = A7} [Azny = (A= M)za,| & 27w

Hence A(A~!w) = w or (A — M)w = 0. Since ||w” = |A| # 0, we have contra-
dicted the injective property of A — Al [}

For an integral equation having a more general kernel, there is a possibility
of approximating the kernel by a separable (degenerate) one, and solving the
resulting simpler integral equation. The approximation is possible, as we shall
see. We begin by recalling the important Stone-Weierstrass Theorem:

Theorem 8. Stone—Weierstrass Theorem. Let T be a compact
topological space. Every subalgebra of C(T) that contains the constant
functions and separates the points of T is dense in C(T).

Definition. A family of functions on a set is said to separate the points of
that set if for every pair of distinct points in the set there exists a function in
the family that takes different values at the two points.

Example 1. Let T = [a,b] C R. Let A be the algebra of all polynomials
in C(T). Then A is dense in C(T), by the Stone-Weierstrass Theorem. This
implies that for any continuous function f defined on [a,b] and for any € > 0
there is a polynomial p such that

If =Pl = max{|f(t) - p(t) :a <t <b} <€

Example 2. Let S and T be compact spaces. Then the set
n
{f :f(s,t) = Y ai(s)bi(t) for some n, a; € C(S), b; € C(T)}
i=1

is dense in C(S x T).

The next theorem shows that theoretically we obtain a solution to the orig-
inal problem as a limit of solutions to the simpler ones involving operators of
finite rank.

Theorem 9. Let Ag, A;,... be compact operators on a Banach
space, and suppose lim, A, = Aq. If A is not an eigenvalue of Ao and
if for each n there is a point Tn such that A,zn — Az, = b, then for all
sufficiently large n,

llzo = 2l < [[(4n = AN} |40 ~ An]| ||zo]

Proof. Since A is not an eigenvalue of Ao, it is not in the spectrum of A, by
Theorem 7. Hence Ag — Al is invertible. Select m such that for n > m

(4 = AD) = (A0 = AD)|| = [|4n = Ao]| < j(4o = A1)~} ™"
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By Problem 2 in Section 4.3 (page 189), (A, — M)~ exists (when n > m). Now

write

Tn —To = [(An — M)71 = (Ag — AI) )b
= (An =~ A)7HI = (An = M)(Ag = A)7']b
= (An ~ A)7HI = {Ag = AT = (Ao — An)}(Ag — M) ]b
= (An = A7 (Ag — Ap)(Ag = A7 1b
= (An = M) (Ao — An)zo [

Problems 7.5
1. Supply the “similar” argument omitted from the proof of Lemma 1.

10.

11.

12.

13.

. Let k(s,t) = Z:;lug(s)v,-(l), where u; € La(S) and v; € L2(T). Show that k(s,t) can

also be represented as Z? ui(s)vi(t), where {v;} an orthonormal set.

. On page 358 we saw how to solve Kz — Az = b if K is an integral operator having a

separable kernel and A # 0. Give a complete analysis of the case when A = 0.

. Is the set of polynomials of the form co + c1t!7 + c2t34 + c3t3! + ... dense in Cla,b]?

Generalize.

. Solve the integral equation

1
/ (t — s)z(s) ds — Az(t) = b(t)
0

. Solve the integral equation

1
/ la(s) + b(t)]z(s) ds — z(t) = c(t)
0

. Prove that the set of compact operators in £(X, X) is an ideal. This means that if A

is compact and B is any bounded linear operator, then AB and BA are compact. (This
property is in addition to the subspace axioms.)

. Let A be a compact operator on a Banach space. Prove that if I — A is injective, then it

is invertible.

. Let A,B € L£(X,X). Assume that AB = BA and that AB is invertible. Prove

that (a) A(AB)~! = (AB)7!'A; (b) B~! = A(AB)™}; (c) A=} = B(AB)™%; (d)
A(AB)™! = (AB)~1A; (e) (BA)-! = A-1B-1,

Let A be a linear operator from X to Y. Suppose that we are in possession of elements
u1,u2,....un whose images under A span the range of A. Describe how to solve the
equation Az = b.

Prove that if A is a compact operator on a normed linear space, then for some natural
number n, the ranges of ([ + A)",(/ + A)"*1,... are all identical.

Let A be a linear transformation defined on and taking values in a linear space. Prove
that if A is surjective but not injective, then ker(A™) is a proper subset of ker(A"*1!),
forn=1,23,...

Let A be a bounded linear operator defined on and taking values in a normed linear
space. Suppose that for n = 1,2,3,..., the range of A™ properly contains the range of
An+t1 Prove that the sum A + K is never invertible when K is a compact operator.
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14. Provethat if A, are continuous linear transformations acting between two Banach spaces,
and if Anz — O for all z, then this convergence is uniform on all compact sets. (Cf.
Lemma 4.)

15. Give examples of operators on the space co that have one but not both of the properties
injectivity and surjectivity.

16. (More general form of Lemma 5) Let A be an operator defined by the equation Az =
E:=1 @i(x)vi, in which z € X, v; € Y, and ¢; € X*. Prove that there is no loss of
generality in supposing that {v1,...,va} and {#1,...,@n} are linearly independent sets.

17. Show how to solve the equation Az—z = b if the range of A is spanned by {Auy,..., Aun},
for some u; € X. Prove that the equation is solvable if 1 is not an eigenvalue of A.

18. Let A and B be members of £L(X,Y), where X and Y are Banach spaces. Suppose that
B is invertible and that (B~!A)™ is compact for some natural number m. Prove that
B + A is surjective if and only if it is injective.

19. Provide the details for the assertions in Example 2.

20. Use the Stone-Weierstrass Theorem to prove this result of Diaconis and Shahshahani
[DiS}: If X is a normed linear space and f is a continuous function from X to R, then
for any compact set K in X and for any positive ¢ there exist ¢; € X" and coefficients

¢; such that
n

f(z) =D eeti®

t=1

sup <e

r€EK

21. Prove this for an arbitrary compact operator A: The transformation I + A is surjective
if and only if ~1 is not an eigenvalue of A.

22. Prove the finite-dimensional version of the Fredholm alternative, which we formulate as
follows, for an arbitrary matrix A and vector b: The system Az = b is consistent if and
only if the system y7A =0 yTb # 0 is inconsistent.

23. Discuss the existence and uniqueness of solutions to the integral equation
~
/ cos(s — t)u(s)ds = f(t)
0

where f is a prescribed function, and u is the unknown function.

7.6 Topological Spaces

In this section we provide an abbreviated introduction to topological notions—
hardly more than enough to bring us to the Tychonoff Theorem.

So far in this book we have been dealing routinely with topological spaces,
but of a special kind, usually metric spaces or normed linear spaces. Now we
require a more general discussion so that there will be a suitable framework for
the weak topologies on linear spaces and for other examples.

A good starting point is the question, What is a topology? It is a family
of sets such that:

a. The empty set, &, is a member of the family.
b. The intersection of any two members of the family is also in the family.
c. The union of any subfamily is also in the family.
If T is a topology, we define X to be the union of all members of 7. We say
that X is the space of 7 and that 7 is a topology on X. We call the pair
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(X,7T) a topological space. Each member of 7 is called an open set in X.
By Axiom c, X is open. Sois the empty set, @. The use of the word “open”
will be unambiguous if there is only one topology being discussed. If there are
several, a more exact terminology will be needed. For example, one could refer
to the 7-open sets and the S-open sets, if 7 and S are topologies. In any case,
X and @ will always be open, no matter what topology has been assigned to X.

Example 1. Let X be any set and let 7 = 2X. That notation signifies that 7~
is the family of all subsets of X, including the empty set and X itself. Obviously,
the axioms are fulfilled in this example. This topology is the largest one that
can be defined on X, and is called the discrete topology. Every singleton {z}
is an open set in this topological space. Every topology on X is contained in
the discrete topology on X. (]

Example 2. Let X be any set, aud define 7 to consist of only the empty
set and the given set X. This is the smallest topology on X, and is called
whimsically the indiscrete topology on X. Every topology on X contains the
indiscrete topology. ]

Example 3. In R define a set V to be open if every point = in V is the center
of an interval (z —¢,z +¢) that lies wholly in V. This defines the usual topology
on R. We do not stop to prove that this definition of “open” leads to a family
satisfying the axioms (but this is a good exercise for the reader). (]

Example 4. In any set X let a notion of distance between points be intro-
duced. The distance froin £ to y can be denoted by d(z,y), and this function
should satisfy three axioms:

a. If £ #y, then d(z,y) = d(y,z) > 0.

b. For each z, d(z,z) = 0.

c. For all z,y, z, d(z, 2) < d(z,y) + d(y, 2).
Then a topology can be defined as in Example 3. Namely, a set V is open if
each point z in V is the center of a “ball”

B(I,E) = {y : d(:r,y) < €}

that lies wholly in V. The pair (X,d) is a metric space, and is a topological
space, it being understood that its topology is the one just described. All normed
linear spaces are metric spaces, because the equation d(z,y) = ]|z - yH defines
a metric. []

A topological space is said to be a Hausdorff space if for any pair of
distinct points £ and y there is a disjoint pair of open sets U and V such that
T € U and y € V. Every metric space is a Hausdorff space, since B(z,¢) and
B(y, ¢) will be disjoint from each other if ¢ is sufficiently small. The Hausdorff
property is one of a number of separation axioms that topological spaces may
satisfy. It is useful in questions of convergence, for it ensures that a sequence
(or net) can converge to at most one limit.

A base for a topology 7 is any subfamily B of 7 such that every open set
is a union of sets in B. For example, the open intervals with rational endpoints
form a base for the usual topology on R. In a discrete space, the singletons {z}
form a base.
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A subbase for a topology 7 is a subfamily S of T such that the finite
intersections of sets in S form a base for 7. For example, the intervals of the
form (a,00) and (—o0, b) provide a subbase for the (usual) topology of R. This is
evident, since by intersecting two such intervals we can obtain an interval (a, b).

A topology on a space X can be defined by specifying any family S of
subsets of X as a subbase for the topology. A base B is then the family of all
finite intersections of sets in S, and the topology itself consists of all unions of
sets in B. An easy proof then establishes that the resulting family satisfies the
axioms for a topology.

If A is any set in a topological space, we can form the largest open set
contained in A by simply taking the union of all open sets that are subsets of A.
The resulting set is called the interior of A and is often denoted by A°. The
reader can verify that a set is open if and only if it equals its interior.

In a topological space, a neighborhood of a point is any set whose interior
contains the given point. It is easily verified that a set is open if and only if it
is a neighborhood of each of its points.

In a topological space, the closed sets are the complements of the open
sets. Further properties are easily proved:

a. The empty set and the space itself are closed.
b. The intersection of any family of closed sets is closed.
c. The union of any finite collection of closed sets is closed.

As a consequence of the preceding definitions, each set can be enclosed in
a smallest closed set, called the closure of that set. Namely, we take as the
closure of A the intersection of all closed sets containing A. Then a set is closed
if and only if it equals its closure. One quickly proves that a point = belongs to
the closure of a set A if and only if each neighborhood of z intersects A.

Another basic notion in general topology is that of the relative topology
in a subset of a topological space. If Y is a subset of a topological space X,
and if T is the topology on X, then we take as the “relative” topology on Y the
family

U={Yno : OeT}

A set can be open in Y (meaning that it belongs to &) without necessarily being
open in X. For example, if Y is a non-open subset of X, then Y € U, while
Y¢T.

Another ingredient of general topology is an extended concept of conver-
gence. It turns out that sequential convergence is inadequate for describing
topological notions, in general. Sequential convergence suffices in some spaces,
such as metric spaces, but not in all spaces. The generalization of sequences
consists principally in allowing an ordered set other than the natural numbers
to serve as the domain of the indices. The definitions pertaining to this topic
are as follows.
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A partially ordered set is a pair (D, <) in which D is a set and < is a
relation obeying these axioms:

a. a<a

b. fa < (G and 8 < v, then a < 7.
A directed set is a partially ordered set in which an additional axiom is re-
quired:

c. Given a and § in D, there is v € D such that <y and 3 < 7.
The reader will recognize N as a familiar example of a directed set, it being
understood that < is the ordinary relation <. Another important example is the
set of all neighborhoods of a point in a topological space, where < is interpreted
as D.

A net or generalized sequence is a function on a directed set. This is
obviously more general than a sequence, which is a function on N. We can use
the notation [z, D, <] for a net, specifying the function z, the directed set D, and
the relation <. When we need not concern ourselves with niceties, the notation
[z4) can be used, just as we abuse notation for sequences and write (zy).

Useful conventions are as follows. A net [z,] is eventually in a set V if
there is a 3 such that £, € V whenever 3 < . If a net is eventually in every
neighborhood of a point y, then we say that the net converges to y. Let us
illustrate with one example of a theorem employing nets.

Theorem 1. A point y is in the closure of a set S in a topological
space if and only if some net in S converges to y.

Proof. If the net [z,] is in S and converges to y, then to each neighborhood
U of y there corresponds an index § such that £, € U whenever § < . In
particular, g € U. Thus each neighborhood of y contains a point of S, and y is
in the closure of S. Conversely, suppose that y is in the closure of S. Let D be
the family of all neighborhoods of y, ordered by inclusion: @ < # means 8 C a.
Since y is in the closure of S, there exists for each @ € D a point z, € N S.
The net [z,) thus defined (with the aid of the Axiom of Choice) is in S and
converges to y. [ ]

In the preceding proof, had we known in advance that the point y pos-
sessed a countable neighborhood base, we could have used a sequential argu-
ment. However, there exist spaces in which some points do not have a countable
neighborhood base. (A base for the neighborhoods of a point z is a family of
neighborhoods of z such that every neighborhood of = contains one of the sets
in the family.)

A family A of sets in a topological space X is said to be an open cover
of X if all the sets in A are open and if X is contained in the union of the
sets in A. If every open cover of X has a finite subfamily that is also an open
cover of X, then X is said to be compact. The compact sets on the real
line are precisely the closed and bounded sets. The same assertion is true for
any finite-dimensional normed linear space. These matters were investigated in
Section 1.4, pages 19-22. But in that part of the book we adopted a sequential
definition of compactness that is inadequate for general topology.
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Alexander’s Theorem. Let a subbase be specified for a topology
on a space. If every cover of the space by subbase elements has a finite
subcover, then the space is compact.

Proof. Let X be the space, T the topology, and S the subbase in question.
Assume that every cover of X by elements of S has a finite subcover. Suppose
that X is not compact. We seek a contradiction.

The family of open covers that do not have finite subcovers is a nonempty
family. Partially order this family by inclusion, and invoke Zorn’s Lemma (Sec-
tion 1.6, page 32). This maneuver produces an open cover A of X that is
maximal with respect to the property of possessing no finite subcover. Define
A’ = SN A. Certainly, no finite subfamily of A’ covers X. Since all sets in A’
are members of the subbase, our hypotheses imply that A’ itself does not cover
X.

This last assertion implies that there exists a point z that is contained in
no member of A’. Since A is an open cover of X, we can select U € A such that
z € U. By the properties of a subbase, there exist sets Sy, ...,Sy, in S such that
z € ;=1 Si C U. Since z is contained in no member of A’, one concludes that
Si ¢ A’. Hence S; ¢ A. By the maximal property of A, each enlarged family
AU {S;} contains a finite subcover of X, for i = 1,2,...,n. Hence, for each i in
{1,2,...,n}, there is an open set O; that is a union of finitely many sets in A
and has the property O; US; = X. Define B= 0O,U---UQO,. Then BUS; = X
for each 4, and N, (BUS;) = X. It follows that

XCBU(SINS;N---NS,) C BUU

Since B is the union of finitely many sets in A, and since U € A, we see that
a finite subfamily of A covers X, contradicting a property of A established
previously. ]

If we have two topological spaces, say (X;,7;) and (X2, 73), then we can
topologize the Cartesian product X; x X, in a standard way: We take as a base
for the topology of X; x X, the family of all sets A x B, where A is open in X,
and B is open in X,. (The topology itself consists of all unions of sets in the
base.)

The notion of a product extends to any family (finite, countable, or un-
countable) of topological spaces (X;, 7;), where i € I. The index set I can be
of arbitrary cardinality. The product space is denoted by I1X; or I1{X; : ¢ € I}
and is defined to be the set of all functions = on I such that z(i) € X; for all
i € I. In this context, we usually write ; = x(i). This is exactly the process by
which we construct R™ from R. We take n factors, all equal to R The generic
element of the product space is a “vector” that we write as = = [z, T2, ..., Zn).
Thus, z is a function on the index set {1,2,...,n}.

For each i € I there is a projection P; from the product space X = I1X; to
X;. It is defined by P;(z) = z;. The topology on X is taken to be the weakest
one that makes each of these projections continuous. One then must require
that each set P;"'[O] be open when O is an open set in X;. The family of all
these sets is taken as a subbase for the product topology on X.
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Tychonoff Theorem. A topological product of compact spaces is
compact.

Proof. For each i in an index set I, let (X;,7;) be a compact topological
space. We form the product space X = I1X;, and give it the product topology
as described above. Use the projections P; described above also. A subbase for
the product topology is the family S of all sets of the form P,-'l(O), where ¢
ranges over I and O ranges over 7;. In order to take advantage of Alexander’s
Theorem, let W be a cover of X by subbase sets. Thus

wcs and X=|J{0:0eW)

For each i let V; be the family of all open sets in X; whose inverse images by P;
are in W:
Vi={0€Ti: PFH0) e W}

Assertion: For some i, V; covers X;. To prove this, assume that it is false. Then
for each i, V; fails to cover X;, and consequently, there exists a point z; € X;
such that z; ¢ J{O : O € Vi}. By the Axiom of Choice we can select these
points z; simultaneously and thereby construct an z in X such that

Px=2z()=1; € X;\ U{O:OGV,-}
i€l

Consequently, we have for each i and for each open set O in X; the following
implications:

P O)eW=0€V,=12;,¢§ 0= Pz ¢ O=>z ¢ P7'(0)

However, W consists exclusively of sets having the form P;!(0), and so the
above implication reads as follows:

UeW=z¢U

This contradicts the fact that W is a cover of X, and proves the assertion.
Now select an index j € I such that V; covers X;. By the compactness of X},
a finite subfamily of V; covers X, say O1,...,0n € V;and X; = O U---UO,. 1t
follows (by using Pj‘l) that X = P;1(O;)U-- -UPJ-"(O,,). Since these n sets are
in W (by the definition of V;), we ilave found a finite subcover in W, as desired.
[ ]
A particular case of the topological product is especially useful. It occurs
when all the factors X; are equal, say to X. In the general theory, we can then
take each X; to be a copy of X. The notation X’ now is more natural than
II{X : i € I}. This space consists of all functions from I to X. We still have
the projections P; from X' to X, and Pi(z) = (i) for all i € I.
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7.7 Linear Topological Spaces

Although normed linear spaces have served us well in this book, there are some
matters of importance in applied mathematics that require a more general topol-
ogized linear space. (The theory of distributions is a pertinent example.) What
is needed is a linear space in which the topological notions of continuity, com-
pactness, completeness, etc., do not necessarily arise from a norm and its induced
metric. The appropriate definition follows.

Definition. A linear topological space is a pair (X, T) in which X is a linear
space and T is a topology on X such that the algebraic operations in X are
continuous.

Being more specific about the continuity, we say that the two maps
(z,y) > z+y (A\z)- Az

are continuous, the first being defined on X x X and the second being defined
on R x X. There is a corresponding definition if the scalar field is taken to be
C rather than R.

We remind the reader that the sets belonging to the family T are called
the open sets, and a neighborhood of a point z is any set U such that for some
open set O we have £ € O C U. The continuity axioms above can be stated in
terms of neighborhoods like this:

a. If U is a neighborhood of z + y, then there exist neighborhoods V' of z
and W of y such that v + w is in U whenever v € V and w € W.

b. If U is a neighborhood of Az, then there are neighborhoods V' of A and
W of z such that ow € U whenever @ € V and w € W.

A very useful fact is that the topology is completely determined by the
neighborhoods of 0. This is formally stated in the next lemma.

Lemma 1 In a linear topological space, a set V is a neighborhood
of a point z if and only if —z + V is a neighborhood of 0.

Proof. Hold z fixed, and define f(x) = = + 2. This mapping sends 0 to 2. Let
V be a neighborhood of z. Since f is continuous, f~!(V) is a neighborhood of
0. Observe, now, that f~'(V) = {z: f(z) eV} ={z:24+2€V}=-z+ V.
Conversely, assume that —z+V is a neighborhood of 0. We have f~!(z) = z—2,
and f~! is also continuous. It maps z to 0. Hence (f~!)~! carries —z+ V to a
neighborhood of z. But

YN -2z+V)={z: f'z)e—=z2+V)={z:z—2€—2+V}=V 3

In any topological space, a family & of neighborhoods of a point z is called
a base for the neighborhoods of z if each neighborhood of = contains a
member of Y. For example, one base for the neighborhoods of a point = on the
real line is the set of intervals [z — 1,z + 1), where n ranges over N.

Since we often want the Hausdorff axiom to hold in our linear topological
spaces, we record here the appropriate condition.
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Theorem 1. A linear topological space is a Hausdorff space if and
only if O is the only element common to all neighborhoods of0.

Proof. The Hausdorff property is that for any pair of points z # y there must
exist neighborhoods U and V of = and y respectively such that the pair U,V
is disjoint. Select a neighborhood W of 0 such that £ — y ¢ W. Then (using
the continuity of subtraction) select another neighborhood W’ of zero such that
W' — W' C W. Then z + W’ is disjoint from y + W', for if z is a point in
their intersection, we could write z = = + w, = y + wy, with w; € W’. Then
T—y=1wy—w €W — W C W. The other half of the proof is even easier:
just separate any nonzero point from 0 by selecting a neighborhood of zero that
excludes the nonzero point. (]

At this juncture, we should alert the reader to the fact that some authors
assume the Hausdorff property as part of the definition of a linear topological
space.

Let X be a linear space (preferably without a topology, so that confusion
between two topologies can be avoided in what we are about to discuss). The
notation X' signifies the algebraic dual of X, i.e., the space of all linear maps
from X into the scalar field (R or C). We can use X to define a “weak” topology
on X', and we can use X to define a weak topology on X’. There is an abstract
description that includes both of these constructions, but let us proceed in a
more pedestrian manner. What we have in mind is rather simple: We want
the topologies to lead to pointwise convergence in both cases. Although we
did not discuss it here, a topology can be defined by specifying the meaning of
convergence of nets. The topic is addressed in (Kel], pages 73-76.

The topology on X induced by X’ can be called the weak topology. A base
for the neighborhood system at O is given by all sets of the form

V(€;¢],¢2,.‘.,¢n)={(t€x : ‘¢i(l‘)l<€» 1<1<n}

In this equation € is any positive number, and {@,, ..., ¢} is any finite subset of
X'. Convergence in this topology means the following: A net[z,])in X converges
to a point z if [¢(z,)] converges to ¢(z) for every ¢ € X'.

The topology on X’ induced by X is often called the weak* topology. A
base for the neighborhood system of O is given by

Vie;z1,z2,...,Tn) = {0 € X' : |p(zi)| <&, 1<i<n}

Here, ¢ is any positive number and {z,...,Zn} is any finite set in X. With
this topology, a net [¢,] in X* converges to ¢ if ard only if [¢4(z)] converges to
¢(z) for all £ € X. This is pointwise convergence.

The topologies just described are both Hausdorff topologies, as is easily
deduced from Theorem 1. Also, one sees immediately that the space X' is a
subspace of RX since the latter is the space of all functions from X to R, while
the former contains only linear functions. This observation leads one to surmise
that the Tychonoff Theorem can help in understanding compactness in X’. The
result that carries this out requires one further notion: In a linear topological
space, a set A is bounded if for any neighborhood of zero, say U, we have
A C AU for some real .
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Compactness Theorem. Let X be a linear space, and let X' be its
algebraic dual. Give X' the weak* topology. Then the compact sets in
X' are precisely the closed and bounded sets.

Proof. Let K be a compact set in X’. The set K is closed because in any
Hausdorff space compact sets are closed. (See [Kel], page 141.) To prove that
K is bounded, let U be any neighborhood of 0 in X’. It is to be shown that
K C AU for some \. First, select a “basic” neighborhood V = V(g;z1,...,Tm)
contained in U. Then

Kc|J{s+V:6€K)
Since K is compact, this covering has a finite subcover:

n

KcJ@i+v)

i=1
(Here ¢; € K.) Select A so that all ¢; are in AV. Then
Gi+VCAV+V=A+1)VCc(A+1)U

(An easy calculation justifies the equation in this string of inclusions.) Conse-
quently, K C (A + 1)U and K is bounded.

For the converse, let K be a closed and bounded set in X’. For each z in
X, define

Uz ={d€ X':|¢(z) <1}

Thus U, is a neighborhood of 0in X’. Since K is bounded, there exists (for each
z in X) a positive scalar r; such that K C r;U;. Put D; = {c: |¢| < rz}. The
set D, is either a disk in C or an interval in R. In either case, D; is a compact
set in the scalar field. If ¢ € K, then ¢ € r U, for all z. Hence ¢(z) € D,
for all z, and ¢ is in the product space II{D; : z € X}. Consequently, K is a
subset of this product. That K is a closed subset therein is easily proved. By
the Tychonoff Theorem, this product of compact sets is compact in the product
topology of RX (or CX). This is the weak* topology in X’. Since K is a closed
subset of a compact space, K is compact. [}

Naturally, we are more interested in the spaces that are already linear topo-
logical spaces. In this case, there will be two topologies on X and three on X'.
(Notice that X’ will have a weak* topology coming from X and a weak topology
coming from X"”.) The originally given topologies can be called the “strong”
topologies, in contrast to the “weak” ones discussed above. (Rudin argues for
the term “original topology” instead of “strong topology,” because elsewhere in
functional analysis, “strong topology” means something else.)
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Theorem 2. Let X be a linear topological space, and U a neigh-
borhood of 0. Then the polar set

U°={¢peX":|p(x) < 1for al €U}
is compact in the weak* topology of X*.

Proof. The linear space X* (whose elements are continuous linear functionals)
is a subspace of X’ (whose elements are linear functionals). The weak* topology
in X* is the relative topology in X* derived from the weak* topology on X’. By
the preceding theorem, we need only prove that U° is closed and bounded in the
weak* sense in X’. If we have a net [@4] in U° and ¢, — @, then ¢4 (z) = &(z)
for all £ € U. Consequently, |¢(z)| < 1 for all £ € U, and ¢ € U°. Thus U° is
closed in the weak* topology of X'. If W is any neighborhood of 0 in X', then
W contains a set of the form

Vig;zy, .., zn) = {0 € X' |d(zi)l <e, 1<ig<n}

Select r so that rz; € U. Then for ¢ € U° we have |¢(z)| < 1 for all z € U.
Furthermore, |¢(rz;)| < 1 and ¢ € (1/re)W. Thus U° is bounded. (]

Theorem 3. (The Banach—Alaoglu Theorem) The unit ball in
the conjugate space of a normed linear space is compact in the weak*

topology.

Proof. In the preceding theorem, take U to be the unit ball of X. The polar
of U will then be the unit ball in X*. [}

If the neighborhoods of 0 in a linear topological space have a base consisting
of convez sets, the space is said to be locally convex. It is these spaces that
we shall emphasize in the following discussion. Among such spaces we find the
normed spaces and the pseudo-normed spaces. A pseudo-norm or seminorm
is a real-valued function p defined on a linear space X such that:

1. p(Az) = |Alp(z) for all A € R,z € X

2. p(x +y) < p(z) +p(y) for all z,y € X
It follows that p(0) = 0 and that p(z) 2 0 for all z € X. If p is a seminorm on
a linear space X, then in a standard way X receives a locally convex topology.
Namely, a base for the neighborhoods of 0 is taken to be the family of sets

={zeX:p(z)<e} (e>0)

It is easy to see that this set is convex.

In many spaces, the topology is not quite so simple; their topologies are
defined not by a single seminorm but by a family of seminorms. Let P be a
family of seminorms on a linear space X. We define the topology by giving a
neighborhood base for 0. The base consists of all sets

V(e;p1,b2,--- P} = {T : pi(z) <& for 1 <ign}
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in which € > 0 and {py,...,pn} is any finite subset of P.

In a linear space topologized with a family P of seminorms, it is easy to
prove that a sequence (or generalized sequence) of points zx converges to zero if
and only if p(zx) converges to zero for each p € P.

Notice that these basic neighborhoods of 0 are convex, and X, thus topol-
ogized, is a locally convex linear topological space. A remarkable theorem now
can be stated.

Theorem 4.  For any locally convex linear topological space there
is a family of continuous seminorms that induces the topology.

Proof. Let P be the family of all continuous seminorms defined on the given
space. Let U be a neighborhood of 0 in the original topology. First we must
prove that U contains one of the sets V(¢;p,,...,p,). Since the space is locally
convex, U contains a convex neighborhood U, of 0. By the continuity of scalar
multiplication, there exists a convex neighborhood U; of 0 and a number § > 0
such that cz € U; whenever = € Uz and |c| < 6. The set Uz = |J{\U2: |A] < 1}
is a convex neighborhood of 0 contained in U. Its Minkowski functional p is
continuous because for any r > 0 and any = € rUj, we have p(z) < r. Thus,
V(3;p) C W3 C U. (Minkowski functionals were defined in the the proof of
Theorem 1 in Section 7.3, page 343.)

Now let V be any “basic” neighborhood of 0 in the new topology. Say,
V = V(&;p1,...,pn). Since each p; is continuous in the original topology, V is
open in the original topology. It therefore contains a convex neighborhood of 0
from the original topology. ]

One of the main justifications for emphasizing locally convex linear topological
spaces is that such spaces have useful conjugate spaces. For any linear topolog-
ical space X, one can define X* to be the linear space of all continuous linear
functionals on X. Without further assumptions, X* may have only one ele-
ment, namely 0! A good example of this phenomenon is the space P in which
0 < p < 1. The topology is given by a norm-like functional that is actually not
a norm (since it fails the triangle inequality):

ol = (3 o)™

The only continuous linear functional is 0.
The principal corollary of the Hahn-Banach Theorem is valid for locally
convex spaces, and takes the following form.

Theorem 5. Every continuous linear functional defined on a sub-
space of a locally convex space has a continuous linear extension defined
on the entire space.

Example. Consider the space D of test functions on R™. This space was
defined in Chapter 5, page 247. Its elements are C*° functions having compact
support. The convergence to zero of a sequence (@] in D was defined to mean
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that there was one compact set containing the supports of all ¢x, and on that
compact set, D®¢; converged uniformly to zero, for every a. This notion of
convergence can be defined with a sequence of seminorms. For j = 1,2,3...,
define

py(#) = sup{[(D*¢)(@)| : z € R", flafl < j, lal < j}

Thus topologized, the space of test functions becomes a locally convex linear
topological space. Its conjugate space is the space of distributions. [}

In a linear topological space, a set A is totally bounded if, for any neigh-
borhood U of 0, A can be covered by a finite number of translates of U:

AC O(Ii+U)

i=1

More succinctly, A C F + U, for some finite set F. From the definition of
compactness in terms of coverings, it is obvious that a compact set in a linear
topological space is totally bounded. We shall use these ideas to prove Mazur’s
Theorem, to the effect that €o(K) is compact when K is compact. We shall
require the following result, for which we refer the reader to [KN].

Theorem 6. A set in a linear topological space is compact if and
only if it is both totally bounded and complete.

Lemma 2. In a locally convex linear topological space, the convex
hull of a totally bounded set is totally bounded.

Proof. Let Y be such a set and let U be any neighborhood of 0. Select a
convex neighborhood V of 0 such that V +V C U. Since Y is totally bounded,
there is a finite set F" such that Y C F + V. Let Z = co(F). The set Z is
compact, being the image of a compact set under a continuous map of the form
(01,...,0n) = T, 0iz;, where {z1,...,2,} = F. It follows that Z is totally
bounded, and that Z C F’ 4V for another finite set F’. By the convexity of V
we have

coY)Cco(F+V)=co(F)+V=Z+VCF +V+VCF +U ]

Theorem 7. Mazur’s Theorem. The closed convex hull of
a totally bounded set in a complete locally convex linear topological
space is compact.

Proof. Let K be such a set in such a space. By the preceding lemma, co(K) is
totally bounded. Hence ©6(K) is closed and totally bounded. Since the ambient
space is complete, T6(K) is complete and totally bounded. Hence, by Theorem 6,
it is compact. [ |



Section 7.8 Analytic Pitfalls 373

7.8 Analytic Pitfalls

The purpose of this section is to frighten (or amuse) the reader by exhibiting
some examples where erroneous conclusions are reached through an analysis
that seems at first glance to be sound. In every case, however, some theorem
pertinent to the situation has been overlooked. The relevant theorems are all
quoted somewhere in this section or elsewhere in the book. Proofs or references
are given for each of them. A connecting thread for many of these examples is
the question of whether interchanging the order of two limit processes is justified.
We begin with some matters from the subject of Calculus.
Here is an elementary example to show what can go wrong:

T — T
lim lim ——Y = lim = =1
z40y—0T + Yy 0 T

I — —
lim lim Y him ¥ =1
y—=0z-0T + Yy y—=0 Yy

A theorem governing this situation (and many others) is E.H. Moore’s theorem,
proved later.

It is natural to think that if a function is defined by a series of analytic
functions, then the resulting function should be continuous, continuously differ-
entiable, and so on. (This was a commonly held view until the mid-1850s.) For
example, the series

(1) Z

consists of analytic terms, and the function f should be a “nice” one. We think
that the function defined by the series should inherit the good properties of the
terms in the series. Indeed, in this example, f iscontinuous, by the Weierstrass
A -Test. This test, or theorem, goes as follows.

cos(3"z)

MI._

Theorem 1. (Weierstrass M-Test.) If the functions g, are
continuous on a compact Hausdorff space X and if

0o
(2) |9n(z)] S Mn (forallz€ X) and » M, < oo

n=1

then the series 3 o> | gn(z) converges uniformly on X and defines a
function that is continuous on X.

The hypotheses in display (2) constitute the “A-Test.” In modern notation, we
could write instead 322, [Ign|loc < 0. In the example of Equation (1), one can
set gn(z) = 27" cos(3"z) and see immediately that the constants M, = 2-"
serve in Weierstrass’s Theorem.
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The Weierstrass M-Test gives us some hypotheses under which we can in-

terchange two limits:

m m

i, i, 3 gn( 4 1) = fimfim, 3 gnz+ B
n=1 n=1

Returning to the function f in Equation (1), we propose to compute f’ by

differentiating term by term in the series, getting
(e <]
fl(z)=- Z 3"27"sin(3"1)
n=1

But here there is an alarming difference, as the factors 3"2~" are growing, not
shrinking. The very convergence of the series is questionable.

This example, f, is the famous Non-Differentiable Function of Weierstrass.
It is not differentiable at any point whatsoever! A detailed proof can be found

in [Ti2) or [Ch]. A sketch showing a partial sum of the series is in Figure 7.2.

Figure 7.2 A partial sum in the non-differentiable function

When we take more terms and blow up the picture, we see more or less the same
behavior, which reminds us of fractals. See Figure 7.3, where a magnification

factor of about 15 has been used.
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Figure 7.3 Another partial sum, magnified

Now for the positive side of this question concerning differentiating a series
term by term: A classical theorem that can be found, for example, in [Wi] is as
follows.

Theorem 2. If the functions g, are continuously differentiable on
a closed and bounded interval, if the series ), gn(x) converges on
that interval, and if the series Y, gi(x) converges uniformly on that

interval, then (3_, gn)' = 2on9n

Since differentiation involves a limiting process, the theorem just quoted is again
providing hypotheses to justify the interchange of two limits.

What can be said, in general, to legitimate interchanging limits? A famous
theorem of Eliakim Hastings Moore gives one possible answer to this question.

Theorem 3. Let f: N x N — R. Assume that nllmwf(n,m) exists
for each m and that lim f(n,m) exists for each n, uniformly in n.
Then the two limits lir'r';:ﬁomm f(n, m) and lim,, lim,, f(n,m) exist and
are equal.
Proof. Define g(m) = lim f(n,m) and h(n) = lim f(n,m). Let € > 0. Find a
positive integer M such tl?at "

m>M = |f(n,m) — h(n)] <e foralln

Notice that the uniformity hypothesis is being used at this step. A consequence is
that [f(n, M)—h(n)l < ¢, and by the triangle inequality | f(n,m)— f(n, M)| < 2¢
when m > M. Find N such that

n2 N=|f(n,M)—-g(M)|<e
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No uniformity of the limit in m is needed here, as M has been fixed. Now we
have |f(N,M) — g(M)| < € and |f(N,M) — f(n,M)| < 2¢ whenn > N. We
next conclude that |f(n,m) — f(N, M)| < 4 when n > N and m > M. This
establishes that the doubly indexed sequence f(n,m) has the Cauchy property.
By the completeness of R, the limit lim f(n, m) exists. Call it L. Then,

(n,m)—(o0,00)
by letting (n,m) go to its limit, we conclude that |L — f(N, M)| < 4e. Also,
|IL — f(n,m)| < 8 if n > N and m > M. Letting n go to its limit, we get
|L — g(m)| < 8¢ if m > M. By letting m go to its limit, we get |L — h(n)| < 8¢
if n > N. Hence hA(n) — L and g(m) — L. ]

Moore’s theorem is actually more general: The range space can be any com-
plete netric space, and the sequences can be replaced by “generalized” sequences
(“nets”). See [DS], page 28. The reader will find it a pleasant exercise in the
use of these concepts to carry out the proof in the more general case.

Another case in which the interchange of limits creates difficulties is pre-
sented next in the form of a problem.

Problem. Let U be an orthonormal sequence in a Hilbert space, say U =
{u1,us,...}. Is it true that each point in the closed convex hull of U is repre-
sentable as an infinite series Z?:l @nUn, in which a, >0 and Y a, =17

At first, this seems to be almost obvious: We are simply allowing an “infinite”
convex combination of elements from U in order to represent points in the closure
of the convex hull of U. A proof might proceed as follows. (Here we use “co”
for the convex hull and ©6 for the closed convex hull.) Suppose that z € co(U).
Then there exists a sequence z, € co(U) such that £, — . With no loss of
generality, we may suppose that

n n
T, = Zam-u,- where an; > 0 and Zam =1 foralln

i=1 i=1

Letting n tend to oo, we arrive at = = 2;";1 a;u;, where a; = lim, a,;. This
limit is justified by the Hilbert space structure. Indeed, by the properties of an
orthonormal sequence, we must have an; = (r,,u:), and therefore lim, an; =
limp(Tn, ui) = (T, u;).

After examining the proof and discovering the flaw in it, the reader should
contemplate the following special case. Define z, = (u; +- - - +uy)/n. Certainly,
I, is in the convex hull of U. Since z, is given by an orthonormal expansion,
we have ||z||?> = n(1/n?) = 1/n. This calculation shows that z, — 0. Hence 0
is in the closure of the convex hull of U. But it is not possible to represent 0 as
an “infinite” convex combination of the vectors u,. The only representation of
0 is the trivial one, and those coefficients do not add up to 1.

The foregoing example shows that in general, for a series of constants,

n oo
lim E Cni # E lim cp;
n—00 £ T = n—oo0

= 1=

The same phenomenon can be illustrated by a more familiar example. Con-
sider the contrast between approximating a function with a polynomial and
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expanding that function in a Taylor series. The expansion in powers of the vari-
able is not obtained simply by allowing more and more terms in a polynomial
and appealing to the Weierstrass approximation theorem. Indeed, only a select
few of the continuous functions will have Taylor series. If f is continuous, say
on [—1, 1], then there is a sequence of polynomials p,, such that ||f —p,|lcc = 0.
If it is desired to represent f as a series, one can write

f=P1+(P2—P1)+(Pa—P2)+(P4—P3)+"'=ZQn

where the polynomials ¢, have the obvious interpretation. However, this is
not a simple Taylor series, in general. Thus, if we have p, — f and write
Pn(z) = 3°1_ o cniz?, it is not legitimate to conclude that

n [e ]
f(z) = lim p,(z) = lim E CniT' = E ¢z’
n—o0o n—oo i=0 ico

where ¢; = lim cpn;. This last limit will not exist in most cases.
n—o00
The expansion of a function in an orthogonal series has its own cautionary
examples. Consider the orthonormal family of Legendre polynomials, pg,ps,...
defined on the interval [—1, 1]. They have the property

/_ Pa(@pn(a) dr = B

For any continuous function f defined on this same interval, we can construct
its series in Legendre functions:

o0 1
feare == [ @)
k=0 -1

Here we write ~ to remind us that equality may or may not hold. It is only
asserted that each continuous function has a corresponding formal series in Leg-
endre functions. Can we not appeal to the Weierstrass approximation theorem
to conclude that the series does converge to f? By now, the reader must guess
that the answer is “No”. The reason is not at all obvious, but depends on a
startling theorem in Analysis, quoted here. (A proof is to be found in [Ch].)

Theorem 4. The Kharshiladze—Lozinski Theorem. For each
n =0,1,2,... let Pn be a projection of the space C[-1, 1] onto the

subspace I1,, of polynomials of degree at most n. Then ||Pn|| = oo.

It is readily seen that the equation

Pa(f) =Y ak(f)Pn
k=0
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where the coefficients ay are as above, defines a projection of the type appearing
in Theorem 4. That is, P, is a continuous linear idempotent map from C[-1, 1]
onto I1,,. Hence, ||Py|| = co. By the Banach-Steinhaus Theorem (Chapter 1,
Section 7, page 41) the set of f in C[—1, 1] for which the series above converges
uniformly to f is of the first category (relatively small) in C[-1,1].

One should think of this phenomenon in the following way. The space
C[-1, 1] contains not only the nice familiar functions of elementary calculus, but
also the bizarre unmanageable ones that we do not see unless we go searching
for them. Most functions are of the latter type. See Example 1 on page 42 to
be convinced of this. To guarantee convergence of the series under discussion,
one must make further smoothness assumptions about f. For example, if f is
an analytic function of a complex variable in an ellipse that contains the line
segment [—1, 1], then the Legendre series for f will converge uniformly to f on
that segment. For results about these series, consult [San].

Interchanging the order of two integrals in a double integral can also involve
difficulties. The Fubini Theorem in Chapter 8 addresses this issue. Here we offer
an example of a double integral in a discrete measure space, where the integrals
become sums. This is adapted from [MT].

Example. Consider a function of two positive integers defined by the formula

0 ifm>n
f(n,m)={——1 ifm=n
2m " ifm<n
The two possible sums can be calculated in a straightforward way, and they turn
out to be different:

ZZf(n,m):ZZf(n,m Z l+ + + ZO 0
m n m=1n=m =1
YN fm) =303 flnm) = f(L,1)+ DD fln,m)
n m n=1m=l] n=2m=1
=—1+i[2“"+22”"+---+2“—1]
n=2

oo
=_1+Z_21-"=—1—1=—2

The difficulty here is not to be attributed to the fact that our domain N x N
stretches infinitely far to the right and upwards in the 2-dimensional plane. One
can make this example work on the unit square in the plane by the following
construction. Define intervals I, = [1/(n + 1), 1/n]. On each rectangle I, x I,
define a function F whose integral over that rectangle is f(n,m), as defined
previously. We then find, from the above calculations, that

1 1
| [ Fandzay = T8 snm) =0
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whereas -
jﬁ jﬁ F(z,y)dyds =Y 3" f(n,m) = -

By referring to the Fubini Theorem, page 426, we see that our functions
f and F do not satisfy the essential hypothesis of that theorem: They are not
integrable over the Cartesian domain. The function |f|, for example, has an
infinite number of values +1, and so cannot yield a finite integral over N x N.
Had we wished to apply the Tonelli Theorem, the crucial missing hypothesis
would have been that f > 0 or F > 0.

Let us return to the functions defined by infinite series, for such functions are
truly ubiquitous in Mathematics. We can ask, “How does integration interact
with the summation process? Can integration be interchanged with summa-
tion?” The answer is that the conditions for this to be valid are less stringent
than those for differentiation. This is to be expected, for (in general) integration
is a smoothing process, whereas differentiation is the opposite: It emphasizes or
magnifies the variations in a function. The relevant theorem, again conveniently
accessible in [Wi], is as follows.

Theorem 5. If the functions gy, are continuous on [a, b], and if the
series 3", gn converges uniformly, then

/:g:lgn(x) dz = Z/ gn(z)d

n=1
This theorem is often used to obtain Taylor series for troublesome functions.
For example, if a Taylor series is needed for the Arctan function, we can start
with the relationship

d 1
— t) =
thrctan( ) 1+ t2

o0

— Z(_t2)n
n=0

This is valid for t?2 < 1. Then for z2 < 1,

Arctan(:c):/ Z( -t Z( D"z /(20 + 1)

n=0

The interchange of differentiation and integration is another common tech-
nique in analysis. Here there are various theorems that apply, for example, the
following one, given in [Wi].

Theorem 6. Let f(z) = f:g(:t, t)dt, where g and 9g/0z are
continuous on the rectangle (A, B] x [a,b] in the zt—plane. Then

fl(z) = f ag(z,t)/0x dt

(Amusing anecdotes about differentiating under the integral sign occur in
Feynman’s memoirs [Feyn], pages 86, 87, and 110.) For more general situations,
involving an arbitrary measure p, we can still raise the question of whether

(3) %Lg(m,t)dﬂ(t)=Lg§($vt)dﬂ(t)
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The setting is as follows. A measure space (T, A, ) is prescribed. Thus T
is a set, A is a g-algebra of subsets of T, and p : A — [0, 00] is a measure. An
open interval (a,b) is also prescribed. The function g is defined on (a,b) x T
and takes values in R. Select a point g in (a,b) where (9g/9x)(xy,t) exists for
all t. What further assumptions are needed in order that Equation (3) shall be
true at a prescribed point xo? Let us assume that:

(A) For each z in (a,b), the function t — g(z,t) belongs to L!(T, A, p).

(B) There exists a function G € L' (T, A, 1z) such that

9(x, t) — g(zo, t)

< G(t) (teT,a<z<b, z+#x0)
I —XTg

Theorem 7. Under the hypotheses given above, Equation (3) is
true for the point T = xg.

Proof. By Hypothesis (A) we are allowed to define
5@ = [ gt t)dut
T

The derivative f'(zo) exists if and only if for each sequence [z,] converging to
To we have

f(zo) = lim

n—oo Tn — To n—oo

f(xqa) — f(zo) — lim Ag(xﬂ»t) — g(zo, t) du(t)

In — To

By Hypothesis (B), the integrands in the preceding equation are bounded in
magnitude by the single L'-function G. The Lebesgue Dominated Convergence
Theorem (see Chapter 8, page 406) allows an interchange of limit and integral.
Hence

’ _ . Q(Im t) (1’.01
f(xo) = Tnll’moo EEe—— du(t) = 3 (o, 1) dpu(t) ]
This proof is given by Bartle [Bart1l]. A related theorem can be found in
McShane's book [McS]. A useful corollary of Theorem 5 is as follows.

Theorem 8. Let (T, A, 1) be a measure space such that j1(T) < oo.
Letg: (a,b) x T - R. Assume that for each n, (9"g/dz™)(z,t) exists,
is measurable, and is bounded on (a,b) x T. Then

@ S feend - [ Zeoday =12

Proof. Since u(T) < oo, any bounded measurable function on T is integrable.
To see that Hypothesis (B) of the preceding theorem is true, use the mean value
theorem:

M

g(l‘ t) - mo,t)}
— t
T — T 83" E )
where M is a bound for |0g9/dzx| on (a,b) x T. By the preceding theorem,
Equation (4) is valid for n = 1. The same argument can be repeated to give an
inductive proof for all n. (]
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8.1 Extended Reals, Outer Measures, Measurable Spaces

This chapter gives, in as brief a form as possible, the main features of measure
theory and integration. The presentation is sufficiently general to cover Lebesgue
measures and measures that arise in studying the continuous linear functionals
on Banach spaces.

Since measures are employed to assign a size to sets, they are often allowed
to assume infinite values. The extended real number system is designed to
assist in this situation. This is the set R* = RU {oo} U {—c0}. The two new
points, co and —oo, that have been adjoined to R are required to behave as
follows:

(1) (-o0,00)=R

(2) £+ oo = oo for = € (—00,00)

(3) oo = oo for z € (0,00)

(4) Oco =0
From these rules various others follow, such as £ — co = —oo when z € [—00,00).
One advantage of R* is that every subset of R* has a supremum and an infimum
in R*. For example, the equation sup A = oo means that for each z € R, A
contains an element a such that a > z. Note that certain expressions, such as
-00 + 0o, must remain undefined.

381



382 Chapter 8 Measure and Integration

Definition. Let X be an arbitrary set. An outer measure “on X” is a
function p : 2X = R* such that:

(1) (@) =0 (@ is the empty set).

(2) If A C B, then p(A) < pu(B).

@) #[U A € Zp(A,v).

Of course, in these postulates, A, B, ... are arbitrary subsets of X. Notice that
(1) and (2) together imply that p2(A) > O for all A. Let us look at some examples.

Example 1. Let X be any set. If A C X, define u(A) = 0. (]

Example 2. Let X be any set. Define u(@) = 0, and for any nonempty set
A, put p(A) = +oo. [

Example 3. Let X be any set. For a finite subset A, let p(A) = # (A), the
number of elements in A. For all other sets, put p(A4) = oo. This is called
counting measure. ]

Example 4. Let X be any set and let zo be any point in X. Define u(A) to
be 1 if o € A and to be 0 if g ¢ A. ]

Example 5. Let X be any infinite set. Let {z,,z2,...} be a countable set
of (distinct) points in X. Let A, be positive numbers (n = 1,2,...). Define
“'(A) = 2{/\" !Tp € A}, and ,1,(@) =0. ]
Example 6. Lebesgue Outer Measure. Let X be the real line. Define

oo

[J,(A) = mf{Z(bl — a,') : AC U(ai,bi) , 4y < bt} [ ]

i=1

Example 7. Lebesgue Outer Measure on R". In R” define the “unit
cube” to be the set @ of all points (£,...,&,) whose components lie in the
interval [0,1). If z € R™ and A € R, definez+ AQ = {z+ Av : v € Q}. For
A C R", define

i=1

n(A) =inf{2t»\i|" D AcC U(z.-+AiQ)} .
i=1

Example 8. Lebesgue-Stieltjes Outer Measure. Let X be the real line,
and select a monotone nondecreasing function v : R = R. Define

oo

p(A) = inf{z [7(b,~) —'7(a,~)] D AC G(ai,b,-) L@ < b,-}
t=1

i=1
Notice that Lebesgue outer measure (in Example 6) is a special case, obtained
when y(z) = z. ]

In order to see that Examples 6, 7, and 8 are bona fide outer measures, one
can appeal to the following theorem.
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Theorem 1. Let X be an arbitrary set, and C a collection of subsets
of X, countably many of which cover X. Let 3 be a function from C
to R* such that

inf{3(C):CeC}=0

Then the equation

#(A) = mf{iﬁ(c,) : AC DC,‘, C; € C}
i=1

defines an outer measure on X.

Proof. Assume all the hypotheses. There are now three postulates for an outer
measure to be verified. Our assumption about 8 implies that 3(C) = 0 for all
C € C. Therefore, p(A) 2 0 for all A. Since @ C C for all C € C, u(@) < B8(C)
for all C. Taking an infimum yields u(@) < 0.

If Ac Band B c 2, Ci, then A C U2, Ci and p(A4) < Y52, B(Ci).
Taking an infimum over all countable covers of B, we have u(A) < p(B).

Let A; C X (i € N) and let ¢ > 0. By the definition of p(A;) there exist
C.-go ecC sucil° that A; C U:‘;l Cij and Z;ilﬂ(c,-j) < p(Ai) + /2. Since

i=1 Ai C U=, Cij, we obtain

#(D A,-) < ZB(Cu') < i [#(A.-) + 5/2‘] =e+ iu(fh)
i=1 %] 1=1

1=1

Since this is true for each positive ¢, we obtain p(Uij2, A:) < Ymo  u(A4:). #

The postulates for an outer measure do not include all the desirable at-
tributes that are needed for integration. For example, an essential property is
additivity:

ANB=g = p(AUB)=pu(A)+ u(B)

This property cannot be deduced from the axioms for an outer measure. See
Problem 6 for a simple example. Even Lebesgue outer measure is not additive,
although it seems to be a natural or intrinsic definition for “the measure of a
set” in R. If we concentrate for the moment on this all-important example, we
ask, How can additivity be obtained? We could change the definition. But if the
measure of an interval is to be its length, changing the definition will not succeed.
The only solution is to reduce the domain of p from 2R (or 2X in general) to a
smaller class of sets. This is the brilliant idea of Lebesgue (1901) that leads to
Lebesgue measure on R. The procedure for accomplishing this domain reduction
is dealt with in the theorem of Carathéodory, proved later. First, we describe in
the abstract the sort. of domain that will be used for measures.
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Definition. A measurable space is a pair (X,.A) in which X is a set and A
is a nonempty family of subsets of X such that:
(i) f Ae A then X N A€ A

o
(ii) If A1, Az,... € A, then | J Ai € A.
i=1
In brief, A is closed under complementation and forming countable unions. A
family A having these two properties is said to be a o-algebra. If a measurable
space (X,.A) is prescribed, we call the sets in A the measurable subsets of X.

Example 9. Let X be any set, and let A consist solely of X and @. Then
(X,A) is a measurable space. In fact, this is the smallest nonempty o-algebra
of subsets of X. (]

Example 10. Let X be an arbitrary set, and let A = 2X (the family of all
subsets of X). Then (X, .A) is a measurable space and A is the largest o-algebra
of subsets of X. [}

Example 11. Let X be any set and let A be a particular subset of X. Define
A = {X,9, A X\ A}. This is the smallest o-algebra containing A. We are
observing that, as long as A is nonempty, the set X and the empty set @ must
belong to A. In other words, these two sets will always be measurable. (]

Example 12. Let X be any set, and let A consist of all countable subsets of
X and their complements. Then A is the smallest o-algebra containing all finite
subsets of X. (']

Lemma 1. If(X,.A) is a measurable space, then X and @ belong
to A. Furthermore, A is closed under countable intersections and set

difference.
Proof. This is left to the reader as a problem. [}
Lemma 2. For any subset F of 2X there is a smallest o-algebra

containing F.

Proof. As Example 10 shows, there is certainly one o-algebra containing F.
The smallest one will be the intersection of all the o-algebras A, containing
F. It is only necessary to verify that () A, is a o-algebra. If A; € [].A,, then
Ai € A, for all v. Since A, is a o-algebra, | J;2, A; € A,. Since this is true for
all v, Uiz, Ai € NA.. A similar proof is needed for the other axiom. (]

In any topological space X, the smallest o-algebra containing the topology
(i.e., containing all the open sets) is called the o-algebra of Borel sets, or the
“Borel o-algebra.”

Suggested references for this chapter are [Bart2], [Berb3], [Berbd], [DS],
[Frie2], [Hald4], [HS], [Jo], [KS], [Loo], [OD], [RN], [Roy], [Ru3], [Tay3)], and
[Ti2).
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Problems 8.1

. Does the extended real number system R* become a topological space if a neighborhood

of oo is defined to be any set that contains an interval of the form (a, oo}, and similarly
for —oco?

. Why, in defining Lebesgue outer measure, do we not “approximate from within” and

define

¢
u(A) = sup{z:(bg —a;): (ai,b;) C A, intervals mutually disjoint} ?

i=1

. Prove that if u is an outer measure and if u(B) = 0, then (A U B) = u(A).

. An outer measure on a group is said to be invariant if ;(z + A) = u(A) for all z and

A. Prove that Lebesgue outer measure has this property.

. Under what conditions is Lebesgue-Stieltjes outer measure invariant, as defined in Prob-

lem 4?

. Let X = {1,2}, and define u(<J) =0, u(X) = 2, 1({1}) = 1 and u({2}) = 2. Show that

u is an outer measure but is not additive.

. Prove that the Lebesgue outer measure of each countable subset of R is 0.
. How many outer measures havingrangein {0, 1, ...,n} are there on a set of n elements?
. Prove that the Lebesgue outer measure of the interval [a,b] is b — a.

10.

Let 1+ be an outer measure on X, and let Y C X. Define v(A) = u(A) when ACY. Is
v an outer measure on Y?

Does an outer measure necessarily obey this equation?

u(AU B) + u(AN B) < u(A) + u(B)

Let ;1 be an outer measure on X, and let Y C X. Define v(A) = u(Y N A). Is v an outer
measure on X?

Let u and v be outer measures on X. Define 6(A) = max{p(A),v(A)} forall AC X. Is
6 an outer measure on X?

Are the outer measures in Examples 3 and 5 additive?

What is the Lebesgue outer measure of the set of irrational numbers in (0, 1}?
Prove Lemma 1.

Prove that every countable set in R is a Borel set.

Let (X, A) be ameasurablespace, and let A and B be twosubsets of X. If A is measurable
and B \ A is not, what conclusions can be drawn about AU B and A \ B?

Let (X, .A) be a measurable space, and let Y € A. Define B to be the family of all sets
Y N A, where A ranges over A. Prove that (Y, B) is a measurable space.

Does there exist a countably infinite o-algebra?
Prove that A in Example 12 is a o-algebra.

Is there an example of a og-algebra containing exactly 5 sets?
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8.2 Measures and Measure Spaces

Let (X,.A) be a measurable space, as defined in the preceding section. A function
pn: A= R* s called a measure if:

(a) n(@) =
(b) #(A) >0 for all A in A.
p(U; Ai) = 52, 1(A;) if {41, A,,...} is a disjoint sequence in A.
Notice that the additivity property discussed in the preceding section is now
being assumed in a strong form. It is called countable additivity. On the
other hand, the domain of g is not assumed to be 2X but is instead the o-
algebra A.

Example 1. Let X be any set and let A = { X, 2}. Define 1£(@) = 0 and let

1(X) be any number in [0, oo]. ]
Example 2. Let X be any set and A = 2X. Define z(A) to be the number of
elements in A if A is finite, and define u(A) = oo otherwise. (]
Example 3. If A=2%, let () =0 and u(A) =0 if A # @. ]

Example 4. Let A be a subset of X such that A # @ and A # X. Let
A={2,A, X\ A X) and define u(&) =0, u(A) =1, u(X NA) =1, u(X) = 2.
[ ]

Example 5. Let A = 2X, and let {z1,72,...} be a countable subset of X.
Select numbers \; € [0,00], i € N, and define p(A) = Y_{\i : z; € A}, u(2) =0.
[ ]

If (X,A) is a measurable space and p is a measure defined on A, then
(X,.A,p) is called a measure space.

Lemma 1. If (X, A, 1) is a measure space, then:
(1) p(A) S u(B) ifA€e A, Be A and A C B.

(2) ,;(GA,) Zp J) if A € A

1(B) = p[AU (B~ A)] = p(A) + p(B N A) > p(A)

For (2), we create a disjoint sequence of sets B; by writing B = A;, By =
Az N Ay, B3 = A3\ (A1 U A,), and so on. (Try to remember this little trick.)
These sets are in A by Lemma 1 in the preceding section. Also, B; C A; and

u@ A) - u@ B:) =SB < 3 u(a) '

=1 t=1
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Lemma 2. Let (X, A, ) be a measure space. If A; € A fori € N
and A; C Az C -+, then p(Az) 1 (U2, A:)-

Proof. Let Ag = @ and observe that A, = U_,(A; A;_;). It follows
from the disjoint nature of the sets A; \ A;_; that u(A4,) = ZL] (AN A;y).
Hence

w(An) 1 iﬂ(Ai NAia) = ﬂ[Q(Ai N Ai—l)] = ﬂ(g Ai) ]

i=1

Definition. A measure space (X, A, u) is said to be complete if the conditions
A C B, B€ A, u(B) =0 imply that A € A.

We now arrive at the point where we want to create a measure from an
outer measure u. This is to be done by restricting the domain of i from 2% to
a suitable o-algebra. A remarkable theorem of Carathéodory accomplishes this
in one stroke:

Theorem 1 (Carathéodory Theorem). Let p be an outer
measure on a set X. Let A be the family of all subsets A of X having
the property

(1) u(S) = p(SNA)+u(S~A) (for all § € 2%)
Then (X, A, ) is a complete measure space.

Proof. (In the conclusion of the theorem, it is understood that p is restricted
to A, although we refrain from writing u|A.) It is to be shown that A is a
o-algebra, that p is a measure on A, and that the newly created measure space
is complete. There are six tasks to be undertaken.

I. If A€ A, then X \ A € A, because for an arbitrary set S,

w(S) = (SN A) +p(S N A) = p[S~ (X N A)] + p[(SN (X N 4)]

II. We prove that A is closed under the formation of finite unions. It suffices
to consider the union of two sets A and B in .A. We have, for any S,

k(S) =pu(SN A) +pu(SN A)
=pu(SN A) + p[(SN A) N B] + u[(SN A) \ B]
2puf(SNA)U((SN AN B)+uS\(AUB))
=puSN(AUB)|+ S\ (AUB)
2 p((SN(AUB))U(SN (AU B))| = u(S)

III. Let A; € A. Here we prove that |J;=, A; € A. Define B; = A;U---UA;
and C; = B;\ B;_;, where By = @. By Parts I and II, together with the
equation C; = X \ [B;_; U (X \ B;)], we see that C; and B; are in A. For any
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S, (SN Bn) 2 Y., u(SNC;). This is proved by induction. For n it is trivial,
because B, = C). If it is true for n — 1, then

w(S N Bp)=p(SNBaNCy)+ p[(SN Ba) NGyl
=S NCn)+ SN Bn_1)

n-1 n
w(SNCr)+ Y u(SNC,) = Zu(sﬂci)

i=1
With this inequality available, we have, with A = Ufil A,
(2) u(S) = (SN Bn) + u(S~ Bn) ZZH:#(SN Ci) +u(SN A)
i=1
Since this is true for each n, we can write an inequality to show that A € A:
iuSﬂCl )+ u(SNA) > u[G(SﬂC,—)] + 1(S\ A)
=1

=u[SnUc,~] F (SN A) = (S N A) + (S~ A) > w(S)
1=1

i=1

~.

IV. The postulate p(@) = 0 is true for 1 on A because it is a postulate for
outer measures. That u(A) > 0 follows from the postulates of an outer measure:

0 = p(@) < p(A)

because @ C A.

V. For the countable additivity of u, look at the proof in Part III. If the
sequence A, Ay, ... is disjoint, then C; = A;, and Equation (2) will read, with
A= UZ) A;,

$)> 3 (SN A+ (S~ A)

=1

In this equation, let S = A and let n — 0 to conclude that

A2 Y A > u(JA) = u4)
i=1

VL. That the measure space (X,.A, p) is complete follows from the more
general fact that A € A if u(A) = 0. Indeed, if £(A) = 0, then for S € 2X,

u(S) = p(A) + u(S) > (SN A) + u(S~ A) .

If 1 is an outer measure on X, then the sets A that have the property
in Equation (1) of Carathéodory’s Theorem are said to be p-measurable.
Carathéodory’s Theorem thus asserts that the family of u-measurable sets (u
being an outer measure) is a o-algebra. If this o-algebra is denoted by A, then
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the concepts of p-measurable and A-measurable are the same (by the definition
of A). However, there can be other g-algebras present (for the same space X),
and there can be different kinds of measurability.

One example of this situation occurs when g is Lebesgue outer measure,
as defined in Example 6 of the preceding section (page 382). The g-algebra A
that arises from Carathéodory’s Theorem is called the g-algebra of Lebesgue
measurable sets. A smaller g-algebra is the family B of all Borel sets. This
is the smallest o-algebra containing the open sets. It turns out that B is a
proper subset of A. In some situations one uses the measure space (R, B, 1) in
preference to (R, A, ). It is convenient to use p without indicating notationally
whether its domain is 2%, or A, or B. Remember, however, that x on 2® is only
an outer measure, and countable additivity can fail for sets not in A.

We have seen that every outer measure leads to a measure via Carathéodory’s
Theorem. There is a converse theorem asserting, roughly, that every measure
can be obtained in this way.

Theorem 2. Let (X, A, 1) be a measure space. For S € 2% define
1’ (S) =inf{u(A): SC A€ A}

Then p* is an outer measure whose restriction to A is . Furthermore,
each set in A is p-measurable.

Proof. 1 Since u is nonnegative, so is p*. Since @ € A, we have 0 < p*(9) <

n(@) = 0.
ILIfSCT, then {A:S C A€ A} contains {A: T C A € A}. Hence

p°(S) =inf{u(A): SC Ae A} <inf{u(A): T C A€ A} = pu*(T)

L If S; € 2X and € > 0, select A; € A sothat §; C A; and p*(S;) >
1(A;) —€/2". Then |J;2, Si € U2, Ai € A. Consequently,

(Gs) () < S <3

Since € can be any positive number, p* (2, Si) < Y io; #(S

IV.IfS€ Aand S C A € A, thenu() un(S) < (). Taking an
infimum for all choices of A4, we get 1*(S) < u(S) < p*(S). This proves that p*
is an extension of p.

V. To prove that each A in A is u*-measurable, let S be any subset of X.
Given € > 0, we find B € A such that p*(S) 2 p(B) — € and S C B. Then

W(S)+e 2 u(B) = w(BNA) +p(BNA) = p (BN A) +p* (BN A)

> pt(SNA)+p (S~ A) 2 u'(S)
This calculation used Parts III and IV of the present proof. Since € was arbitrary,
p*(S)=p*(SNA) +pu* (S~ A) for all S. Hence A is p*-measurable. (]

The construction of p* in the preceding theorem yields some additional
information. First, we define the concept of regularity for an outer measure. An
outer measure g on 2% is said to be regular if for each S € 2X there corresponds
a p-measurable set A such that S C A4 and u(S) = p(A4).

//\ //\
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Theorem 3. Under the same hypotheses as in Theorem 2, the
outer measure p* is regular.

Proof. Let S be any subset of X. For each n € N select A, € A so that
S C A, and p*(S) 2 p(An) — 1/n. Put A =22, An. Since A is a o-algebra,
A € A. (See Lemma 1 in the preceding section, page 384.) From the inclusion
S CAC A, weget

1 (S) < ™ (A) = p(A) < u(An) <p™(S)+ 1/n

Since this is true for all n, p*(S) = u*(A). By the preceding theorem, A is
p*-measurable. [ |

Problems 8.2

1. Let i be Lebesgue outer measure. Let Q be the set of all rational numbers. Prove that
if QN [0, 1] is contained in U' 1 (@i, bi), then Z 1 (bi — a;) 2 1. Show that this is not

true if we permit a countable number of intervals (o.,,b,

2. Isthereanexampleofaset X and a measure j:on 2X such that js(X) = 1 and p({z}) =0
for all points z in X?

3. In R, is the smallest o-algebra containing all singletons {z} the same as the o-algebra of
all Borel sets?

4. Let (X, A, 1) be a measure space, and let ;* be the outer measure defined in Theorem 2
(page 389). Define the inner measure ;.. induced by u via the equation

12e(S) = sup{u(A): SO A € A}
Prove these properties of f1.: (i) p2«(S) < p°(S); (ii) #a(S) 2 0; (iii) p+(S) < p(T)
when S C T; (iv) ne() =0; (v) p.(A) = u(A) if A€ A.

5. Prove that an outer measure ;. on 2% is a measure on 2% if and only if every set in 2X
is j-measurable.

6. Let (X, A,u) be a measure space, and let A; € A Prove that “(U;tl A;) =
limn-yoc (7, A2)-
7. The symmetric difference of two sets A and Bis A A B = (A\ B)U (B \ A). Prove

that for measurable sets A and B in a measure space, the condition j:(A & B) = 0 implies
that 4:(A) = j(B).

8. Let (X, .A,u) be an incomplete measure space. Show how to enlarge A and extend pu so
that a complete measure space is obtained.

9. Let (X, A,) be a measure space. Let B be the family of all sets B € 2X such that
AN B € A whenever A € A and j1(A) < co. Show that B is a o-algebra containing A.

10. Prove that if (X, .4, 1) and (X, A4, v) are measure spaces, then so is (X,A,u + v). Gen-
eralize.

11. If (X,A, ) and (X, A, v) are measure spaces such that ;. 2 v, is there a measure 6 (on
A) such that v + 8 = u? (Caution: oo — oo is not defined in R*.)

12. Let (X. A, 1) be a measure space. Suppose that A, € A and A,,4+1 C Anp, for all n. Does
it follow that 42(()7—_, An) = lima_s00 12(An)?

13. Let X be an uncountable set and A = 2X. Define ;2(4) = 0 if A is countable and
#(A) = oo otherwise. Is (X, A, ) a measure space?

14. Prove that for any outer measure u and any set A such that ;2(A) = 0, A is j.-measurable.
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15. Let (X,.A, 1) be a measure space, and let B € A. Define v on A by writing v(4) =
11(A N B). Prove that (X,.A,v) is a measure space.

16. Let (X,.A, ) be a measure space. Let A, € A and Ef:x 11(An) < co. Prove that the
set of z belonging to infinitely many An has measure 0.

17. Let (X, A, 1) be a measure space for which 1(X) < oco. Let An be a sequence of measur-
able sets such that Ay C A2 C---and X = UA,,. Show that p2(X \ An) 1 0.

8.3 Lebesgue Measure

In this section g will denote both Lebesgue outer measure and Lebesgue measure.
Both are defined for subsets of R by the equation

(1) u(S):inf{Z[b,~-—a.~| : Sc U(ai,bi)}

i=1 t=1

The outer measure is defined for all subsets of R, while the measure p is the
restriction of the outer measure to the og-algebra described in Carathéodory’s
Theorem (page 387). The sets in this o-algebra are called the Lebesgue measur-
able subsets of R. It is a very large class of sets, bigger than the o-algebra of
Borel sets. The latter has cardinality ¢, while the former has cardinality 2€.

Theorem 1. The Lebesgue outer measure of an interval is its
length.

Proof. Consider first a compact interval [a,b]. Since [a,b] C (a —€,b + €), we
conclude from the definition (1) that j:((a,b]) < b — a + 2 for every positive €.
Hence p([a, b]) < b—a. Suppose now that p([a, b]) < b—a. Find intervals (a;, b;)
such that [a,b] C Uso;(as,b:) and 302, Jbi — aif < b—a. We can assume a; < b;
for all i. By compactness and renumbering we can get [a,b] C Ui, (ai, bi).
It follows that 3"i ,(b; — a;) < b — a. By renumbering again we can assume
a € (a1, b), by € (az,b2), b2 € (a3, b3), and so on. There must exist an index
k < n such that b < bx. Then we reach a contradiction:

n k k-1
b—a>Z(b,-—a,-);Z(b,-——a,-)=bk-al +Z(b,-—a,-+1) Sby—a; >b—a
i=1 i=1

i=1

If J is a bounded interval of the type (a, b), (a,b], or [a,b), then from the
inclusions
la+e,b—€ejcJCla—¢€b+¢

we obtain b—a —2e < pu(J) < b—a+ 2 and u(J) =b-a.
Finally, if J is an unbounded interval, then it contains intervals (a,b] of
arbitrarily great length. Hence p(J) = oo. ]
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Theorem 2. Every Borel set in R is Lebesgue measurable.

Proof. (S.J. Bernau) The family of Borel sets is the smallest o-algebra con-
taining all the open sets. The Lebesgue measurable sets form a o-algebra. Hence
it suffices to prove that every open set is Lebesgue measurable.

Recall that every open set in R can be expressed as a countable union of
open intervals (a, b). Thus it suffices to prove that each interval (a, b) is Lebesgue
measurable. We begin with an interval of the form (a,00), where a € R.

To prove that the open interval (a,o00) is measurable, we must prove, for
any set S in R, that

(2) i(S) > u[S N (a,00)] + 4[5S (a,00)]

Let us use the notation |I| for the length of an interval I. Given ¢ > 0, select
open intervals I, such that S C Up., In and Y |In| < p(S) + €. Define J,, =
I, N (a,00), Kp =1,, N(—00,a), and Ky = (a —&,a +¢€). Then we have

5~ (a,00) = S§N(~c0,a) C | ] Kn
n=0

JoUK,Cl, and J,NK, =

Consequently,

00

[Sﬂ aoo)]+u[S\ aOO Z{]Jnl+|Kn}+|K0|
=1

<Y al + 26 < pu(S) + 3¢
n=1

Because ¢ was arbitrary, this establishes Equation (2). Since the measurable sets
make up a o-algebra, each set of the form (—oo,b] = R \ (b, 00) is measurable.
Hence the set (—o00,b) = Un.,(—00,b — 1] is measurable and so is (a,b) =
(—o0,b) N (a, o). (]

Theorem 3. Lebesgue outer measure is invariant on the group
(R, +)-

Proof. The statement means that p(S) = p(v+S) forall S € 2R and allv € R.
The translate v+ S is defined to be {v + z: z € S}. Notice that the condition
S c U2, (ai, b;) is equivalent to the condition z+ S C o, (T +ai,T+b;). Since
the length of (z + ai, = + b;) is the same as the length of (a;, b;), the definition
of p gives equal values for u(S) and p(z + S). ]



Section 83 Lebesgue Measure 393

Lemma. Let {ry,r2,...} be an enumeration of the rational num-
bers in [—1,1]. There exists a set P contained in [0, 1) such that the
sequence of sets r; + P is disjoint and covers [0, 1].

Proof. Let Q be the set of all rational numbers. Consider, the family F of
all sets of the form z + Q, where 0 < = < 1. Although our description of F
involves many sets being listed more than once, the family F is, in fact, disjoint.
To verify this, suppose that £ + Q and y + Q have a point ¢ in common. Then
t=x+q, =y+qo, for appropriate ¢; € Q. Consequently, t—y=¢g2 —q; € Q,
from which it follows easily that z + Q = y + Q.

The family of sets (z + Q) N [0, 1], where 0 < z < 1, is also disjoint, and
each of these sets is nonempty. By Zermelo’s Postulate ([Kel], page 33), there
exists a set P C [0, 1] such that P contains one and only one point from each
set in the family.

Now we want to prove that the family {r; + P} is disjoint. Suppose that
t € (r;+ P)N(r; + P). Thenr;+p = r;j+p’ for suitable p and p’ in P. We have
p=p +(rj—r;), whence p € PN(p'+Q). Since 0 € Q, we have p’ € PN(p’' +Q).
By the properties of P, p = p’. From an equation above, r; = r; and then i = j.

Finally, we show that [0,1) C Ui2,(ri + P). If 0 < z < 1, then P contains
an element p in x + Q. By the definition of P, 0 < p < 1. Wewritep=z +r
for a suitable 7 in Q. Then r=p -z € [-1,1] and —r € [-1,1]. Thus —r = r;
for some i. It follows that t=p—-r=p+r; €r; + P. [ |

Theorem 4. There exists no translation-invariant measure v
defined on 2R such that 0 < v([0,1]) < co. Consequently, there exist
subsets of R that are not Lebesgue measurable.

Proof. The second assertion follows from the first because if every set of reals
were Lebesgue measurable, then Lebesgue measure would contradict the first
assertion.

To prove the first assertion, suppose that a measure v exists as described.
By the preceding lemma, the set P given there has the property

0.1 cJer:+P)c[-1,2]
i=1
Also by the lemma, the sequence of sets r; + P is disjoint. Consequently,
oo
0<u([0,1])gu[U r,+P] Zu (ri+ P) = ZV(P)
i=1 i=1 i=1
Therefore, v(P) > 0, )" v(P) = oo, and we have the contradiction

oozy[fj(r‘.+P)] SU([—I,Q])S&/([O,I]) [ |

i=1
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Problems 8.3

. Zermelo’s Postulate states that if F is a disjoint family of nonempty sets, then there is

a set that contains exactly one element from each set in the family F. Prove this, using
the Axiom of Choice.

. Prove that the set P in the lemma is not Lebesgue measurable.
. Prove that Lebesgue measure restricted to the Borel sets is not complete.

. An F,-set is any countable union of closed sets, and a Gs-set is any countable intersection

of open sets. Prove that both types of sets are Borel sets.

. Prove that the Cantor “middle-third” set is an uncountable Borel set of Lebesgue mea-

sure 0. This set is defined in Problem 1.7 26, page 46.

. Prove that the infimum in the definition of Lebesgue outer measure is attained if the set

is bounded and open.

. Prove that the set Q of all rational numbers is a Borel set of measure 0.

. Prove that for any Lebesgue measurable set A of finite measure and for any € > O there

are an open set G and a closed set F such that F C A C G and 1(G) < 1(F) + &

. Let S be a subset of R such that for each £ > 0 there is a closed set F contained in S for

which u(S\ F) < €. Prove that S is Lebesgue measurable.

Prove that a set of Lebesgue measure 0 cannot contain a nonmeasurable set, but every
set of positive measure does contain a nonmeasurable set.

Under what set operations is 28 \ B closed? Here B is the g-algebra of Borel sets.

Prove that if S C R and for every € > O there is an open set G containing S and satisfying
(G S) < ¢, then S is Lebesgue measurable.

In Theorem 4, is the result valid when the domain of v is a subset of 2R?

8.4 Measurable Functions

In the study of topological spaces, continuous functions play an important

role. Analogously, in the study of measurable spaces, measurable functions are
important. In fact, they are perhaps the principal reason for creating measurable
spaces. Our considerations here are general, i.e., not restricted to Lebesgue
measure.

Consider an arbitrary measurable space (X,.A), as defined in Section 8.1

(page 384). A function f : X — R” is said to be A-measurable (or simply
measurable) if f~!(B) € A whenever B is a Borel subset of R*.

Theorem 1. Let (X, A) be a measurable space. A function f
from X to the extended reals R* is measurable if it has any one of the
following properties:

a. f~'((a,00]) € A for eacha € R*

b. f~'([a,00)) € A for each a € R*

c. f7!([~o0,a)) € A for eacha € R*

d. f~'([-o0,a]) € A for each a € R*
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e. f7'((a,b)) € A for alla and b in R*
f. f~1(O) € A for each open set O in R*

Proof. We shall prove that each condition implies the one following it, and
that f implies that f is measurable. That a implies b follows from the equation
f(la,00]) = N3z, f~*((a — £,00]) and from the properties of a o-algebra.
That b implies ¢ follows in the same manner from the equation f~!([—o0,a)) =
X~ f~'(la,00]). That c implies d follows from the equation f~!([~o0,qa]) =
Mnei f~'([-o0,a + 1)). That d implies e follows from writing f~'((a,b)) =

o1 f7Y([—o0,6 = 1)) N f71([—00,a]). That e implies f is a consequence of
the theorem that each open set in R* is a countable union of intervals of the
form (a, b), where a and b are in R*. To complete the proof, assume condition
f. Let S be the family of all sets S contained in R* such that f~!(S) € A. It is
straightforward to verify that S is a g-algebra. By hypothesis, each open set in
R* belongs to S. Hence S contains the o-algebra of Borel sets. Consequently,
f~Y(B) € A for each Borel set B, and f is measurable. (]

Our next goal is to study, for a given measurable space (X,.A), the class of
measurable functions. First, we define the characteristic function of a set A
to be the function X 4 given by

:x,.(:;):{l ffzeA
0 ifzg A
Theorem 2. Let (X, A) be a measurable space. The family of
all measurable functions contains the characteristic function of each
measurable set and is closed under these operations:
a. f + g (provided that there is no point x where f(z) and g(x)
are infinite and of opposite signs).
Af (AeR®)
f9
supf; (t€N)
inff; (i€N)
liminf f; (i € N)
limsup f; (¢ €N)

® -0 0T

Proof. If A € A, then the characteristic function X4 is measurable because
X;:'((a,0]) = {z : Xa(z) > a}, and this last set is either X, A, or @. These
three sets are measurable, and Theorem 1 applies.

Now suppose that f and g are measurable functions. Let r),r2,... be an
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enumeration of all the rational numbers. Then

(f +9)7 ' ((a,00]) = {z : f(z) + g(z) > a}

=|J{z: f(@)>r; and g(z)>a-r1}

i=1

s

]
—-

[ ((revo0) N g™ ((a = 1, 00))]
To verify this, notice that f(z) + g(x) > a if and only if a — g(z) < f(z), and
this last inequality is true if and only if a — g(x) < r; < f(z) for some i. The last
term in the displayed equation is a countable union of measurable sets, because
f and g are measurable.

If f is measurable, then so is Af, because (Af) ™! ((a, 0]) is either @ (when
A=0and a > 0),or X (when A = 0 and a < 0), or f~((a/A, 00]) (when
A>0), or f~!([—00,a/))) (when A < 0).

If f is measurable, then so is f2, because (f2)~!((a,o0]) is X when a <0,
and it is f~!((v/@a,00]) U f~'([~00,—+/@)) when a > 0. From the identity
fg=3(f+9? - 3(f - g)? it follows that fg is measurable if f and g are
measurable.

If f; are measurable and if g(z) = sup; f;(z), then g is measurable because
97 ((a,00)) = UZ, ft-_l((a, o0]). A similar argument applies to infima, if we
use an interval [—o0,a).

If fi are measurable and g(z) = limsup fi(z), then g is measurable, because
9(x) = limp o0 SUP;5 ,, fi(x) = inf, sup;s, fi(z). A similar argument applies to
the limit infimum. (]

Consider now a measure space (X A, p). Let f and g be functions on X
taking values in R*. If the set {z : f(z) # g(x)} belongs to A and has measure
0, then we say that f(z) = g(z) almost everywhere. This is an equivalence
relation if the measure space is complete (Problem 1). More generally, if P(z) is
a proposition, for each z in X, then we say that P is true almost everywhere if
theset {z : P(z) is false} is a measurable set of measure 0. The abbreviation a.e.
is used for “almost everywhere.” The French use p.p. for “presque partout.”

Theorem 3. Let (X, A,p) be a complete measure space, as
defined in Section 8.2, page 387. If f is a measurable function and if
f(z) = g(z) almost everywhere, then g is measurable.

Proof. Define A = {z: f(z) # g(z)}. Then A is measurable and p(A) = 0.
Also, X \ A is measurable. For a € R* we write

97 ((a,00}) = {9—1((a,oo]) N (X~ A) } {g '((a, 00}) ﬂA}

On the right side of this equation we see the union of two sets. The first of
these is measurable because it is f~!((a, 00)) \ A. The second set is measurable
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because it is a subset of a set of measure 0, and the measure space is complete.

[ ]

Let (X, A, 1) be a measure space, and let f, f1, f2,... be measurable func-

tions. We say that f, — f almost uniformly if to each positive € there

corresponds a measurable set of measure at most € on the complement of which
fn = f uniformly.

Theorem 4 (Egorov’s Theorem). Let (X,.A,p) be a measure
space such that y(X) < oo. For a sequence of finite-valued measurable
functions f, f1, fo, ... these properties are equivalent:

a. f, — f almost everywhere

b. f, — f almost uniformly

Proof. Assume that b is true. For each m in N there is a measurable set
Am such that y(Ap,) < 1/m, and on X \ A, fo(z) > f(z) uniformly. Define
A=y _, Am. Then p(A) =0 because A C A, for all m. Also, fo(z) = f()
on X \ A because f,(z) = f(z) forr € XNAp and XNA = X \N[An =
U(X ~ Ap). Thus a is true.

Now assume that a is true. Let g, = f — f,. By altering g, on a set
of measure 0, we can assume that g,(z) — 0 everywhere. Next, we define
AT = {z : |g;(z)| € I/m for i 2 n}. Thus A* C AT C --- For each z there is
an index n such that x € AT% in other words, z € U°° A’" and X c U, A7%
Since X has finite measure, u(X N\ A7') = 0 as n — oo. (See Lemma 2 in
Section 8.2, page 387.) Let ¢ > 0. For each m, let n,, be an integer such that
w(X N AT ) <e/2™. Define A=(\_, A7: . Then

m=1

w(X N A) = (X\ﬂAnm) (G(X\A,T) i;uX\Am

m=1 m=1
On A, gi(z) = 0 uniformly. Indeed, for x € A we have (for all m)

i2nm = |gi(z)| < .

Let (X,.A) be a measurable space. A simple function is a measurable
function f: X — R* whose range is a finite subset of R*. Then f can be written
in the form f = ZLI AiX 4, where the A; can be taken to be distinct elements
of R*, and A; can be the set {z : f(x) = A;}. It then turns out that each
A; is measurable, that these sets are mutually disjoint, and their union is X.
(Problem 2)

Theorem 5. Let (X, A) be a measurable space, and f any nonneg-
ative measurable function. Then there exists a sequence of nonnegative
simple functions g,, such that g,(z) 1t f(z) for each . If f is bounded,
this sequence can be constructed so that g,, T f uniformly.
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Proof. ([HewS], page 159.) Define

i i1 .
ap={zex : 2—"<f(x)<2—n} (0 <i<n2"

B"={rz€X : f(z) >n}
gn = Z{;fx,,;: +nXpgn
1

The sets A and B™ are measurable, by Theorem 1. Hence g, is a simple
function. The definition of g, shows directly that g, < f. In order to verify
that gn(z) converges to f(z) for each z, consider first the case when f(z) # oo.
For large n and a suitable i, € A}. Then f(z) — gn(z) < 12" - 2% = 2in
On the other hand, if f(z) = +o00, then g,(x) = n = f(x).

For the monotonicity of gn(z) as a function of n for r fixed, first ver-
ify (Problem 3) that (for i < n2") A = A}t U AZLY. If z € A3,
then gnyi(z) = 2i/2™*' = /2" = gu(z). If z € AR}, then gnyi(z) =
(20 + 1)/2n+! > 2i/2"+! = g.(z). If £ € B", then f(z) > n, and therefore
T € Ujsnon+t A7 U B 1t follows that gniy(z) > n = gn(z).

Finally, if f is bounded by m, then for n > m we have 0 < f(z) — gn(z) <
2=". In this case the convergence is uniform. (]

Problems 8.4

1. Prove that the relation of two functions being equal almost everywhere is an equivalence
relation if the underlying measure space is complete.

2. Prove the assertions about the sets A; that were mentioned in the definition of a simple
function.

3. In the proof of Theorem 5, verify that AE") = Ag?“) U A'(z?-:ll)

4. Let (X,.A) be a measurable space, and let r1,73,... be an enumeration of the rational
numbers. Prove that a function f : X — R* is measurable if and only if all the sets
F7Y((rs, 00} are measurable.

5. Prove that every Borel set in R* is one of the four types B, B U {00}, B U {—o0},
B U {+00,—~00}, where B is a Borel set in R.

6. Prove that in order for f to be measurable it is necessary and sufficient that f~1(O) be
measurable for all open sets O in R and that f~1({oo}) and f ~!({=00}) be measurable.

7. Prove that if f and g are measurable functions, then the sets {z : f(z) = g(z)}, {z :
f(z) 2 g(z)}, and {z : f(z) > g(z)} are measurable.

8. Prove that if f and g are measurable functions and if (f + g)(z) is assigned some constant
value on the set where f(z) and g(z) are infinite and of opposite sign, then f + g is
measurable.

9. Let (R, .A) be the measurable space in which A is the family of all Lebesgue measurable
sets. Give an example of a nonmeasurable function in this setting.

10. Let F be the o-algebra of Borel setsin R. Let A be the o-algebra of Lebesgue measurable
sets. Prove that B is a proper subset of A.

11. Let (X, A, 1) be a measure space for which ¢#(X) < oo. Prove that if f is a measurable
function that is finite-valued almost everywhere, then for each ¢ > 0 there is an M such
that p({z : |f(z)| > M}) <e.
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12. Let (X, .A) be a measurable space and f a measurable function. What can you say about
the following set?
{S:SCcR and f71(8)€ A)

13. Prove that the composition f o g of two Borel measurable functions on R is Borel mea-
surable.

14. Let (X, A, u) be a measure space and f a measurable function. For each Borel set B in
R* define /(B) = u(f~!(B)). Show that v is a Borel measure, i.e., a measure on B, the
o-algebra of Borel sets.

15. If | f| is measurable, does it follow that f is measurable?

16. Show that the composition of two Lebesgue measurable functions need not be Lebesgue
measurable.

17. Prove that if f is a real-valued Lebesgue measurable function, then there is a Borel
measurable function equal to f almost everywhere.

18. Let X = N, A = 2X, and let u be counting measure, as defined in Example 3 in
Section 8.1, page 382. Let fn be the characteristic function of the set {1,2,...,n}.
Prove that the sequence [f] has property (a) but not property (b) in Egorov’s Theorem.
Resolve the apparent contradiction.

19. Refer to Problem 7 in Section 8.2, page 390, for the definition of the symmetric difference
of two sets. Prove that [X4 ~Xpgl=X, A 5.

20. Prove that a monotone function f : R — R is Borel measurable.

21. Prove that the set of points where a sequence of measurable functions converges is a
measurable set.

8.5 The Integral for Nonnegative Functions

With any measure space (X, A,p) there is associated (in a certain standard
way) an integral. It will be a linear functional on the space of all measurable
functions from X into R*. The motivation for an appropriate definition arises
from our wish that the integral of the characteristic function of a measurable set
should be the measure of the set:

(1) /xA=ll(A) (A€ A)

The requirement that the integral act linearly leads to the definition of the
integral of a simple function f:

(2) [r=] 3 aiXs, = Z";aiu(Ai)
=1 i=

In Equation (2) we assume that the sets A;,..., A, are mutually disjoint and
that the a; are distinct. Such arepresentation f = 3~ ;X 4, is called canonical.

Lemma 1. Let f = Y., X,,, where we assume only
that the sets A; are mutually disjoint measurable sets. Then [ f =

Sy aip(A).

Proof. The function f is simple, and its range contains at most n elements. Let
{Bi1,-..,Bc} be the range of f, and let B; = f~*({8:}). Then f = ¥, 3:Xs;,
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and this representation is canonical; i.e., it conforms to the requirements of
Equation (2). Putting J; = {j : a; = (;}, we have

k k
[1- zm 9=3 .u(UAAJ-) =33 Bud4y)
i=1 JE€J; i=1j€J;
= Z Z ajp(A Z ajp(A (]
=1 j€J;
Lemma 2. If g and f are simple functions such that g < f, then

Joa< [f.

Proof. Start with canonical representations, as described following Equa-
tion (2):

n k
9=) aX, f= Zﬁijj
i=1 Jj=1

Then we have (non-canonical) representations conforming to Lemma 1:

n

n k k
9= aXans, f=2_ D B5;Xans
Jj=11

i=1 j=1 =1

Since g < f, we have a; < 8; whenever A; N B; # @. By Lemma 1

/g—ZZa,uA,ﬁB) /f ZZﬁJuAﬂB)

i=1j=1 Jj=li=1

Hence
n

k
[1=[o=2 36~ amainB) >0 '

i=1 j=1

The next step in the process involves the approximation of nonnegative mea-
surable functions by simple functions, as addressed in Theorem 5 of Section 8.4,
page 397. Suppose, then, that g,, g2, ... are nonnegative simple functions such
that g, t f. Then we want the integral of f to be the limit of [ g,. For technical
reasons this is best accomplished by defining

(3) /f=SuP{/g : gsimpleandgsf}

In this equation we continue to assume f > 0

At this juncture we have two definitions for the integral of a nonnegative
simple function, namely, Equations (2) and (3). Let us verify that these defini-
tions are not in conflict with each other.
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Lemma 3. If f is a nonnegative simple function, then its integral
as given in Equation (2) equals its integral as given in Equation (3).

Proof. Since f itself is simple, the expression on the right of Equation (3) is
at least [ f. On the other hand, if g is simple and if g < f, then by Lemma 2,
J g < [ f. By taking a supremum, we see that the right side of Equation (3) is
at most [ f. ]

Lemma 4. If f and g are nonnegative simple functions, then

Jf+g)=[f+[g

Proof. Proceed exactly as in the proof of Lemma 2. Then

n k
9+ f= Z Z(a,» +ﬁj)xA,-nBj

i=1j=1

By the disjoint nature of the family {A: N B;} we have

/y+f ZZQ,+ﬂ, (A:iN B;)

i=1j =1

This is the same as [ g+ [ f, as we see from an equation in the proof of Lemma 2.
[ ]

Lemma 5. For two measurable functions f and g, the condition
0< f<gimpliesO< [f< [g.

Proof. Since 0 is a simple function, the definition of [ f in Equation (3) gives
Jf2 JO = 0. If his a simple function such that h < f, then h < g and
J h < [ g by the definition of [ g. In this last inequality, take the supremum in
htoget [f< [g. ]

We now arrive at the first of the celebrated convergence theorems for the
integral. It is these theorems that distinguish the integral defined here from
other integrals, such as the Riemann integral.

Theorem 1. Monotone Convergence Theorem. If [fn
is a sequence of measurable functions such that 0 < fn T f, then

o< [fat [ f.

Proof. (Rudin) Since 0 < fn < fns1 < fy,wehave 0 [fon < [ far1 < [f
by Lemma 5. Hence lim [ f, exists and is no greater than f f. For the reverse
inequality, let 0 < # < 1 and let g be a simple function satisfying 0 < g < f.
Put An = {z: fa(x) 2 0g(x)}. If f(z) =0, then g(z) = fu(z) =0, and € Ay
for all n. If f(z) > 0 then eventually fn(z) 2 0g(z). Hence r € J;2, An and
X = U;";l An. Also, we have A,, C A4 for all n. By Lemma 2 in Section 8.2,
page 387, we have, for any measurable set E,

(4) #(An NE) T u(E)
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From this it is easy to prove that [¢gXa, 1 [g. Indeed, we write g =
YA +XEg,; (E; being mutually disjoint) and observe that

m m m
/ngn = /Z’\ixAani = /Z’\ixAnnEi = Z’\iﬂ(An NE;)
i=1 =1 =1

As n 1 0o, we have (A, N E;) T p(E;) by Equation (4). Since the coefficients
A; are nonnegative, [ ¢X, t 3% Aju(E;) = [ g. We have proved that

G/gzlizn/gngnéli’r‘n/fn

Since this is true for any 6 in (0, 1), one concludes that [ g < limp, [ fn. In this
inequality take a supremum over all simple g for which 0 < g < f, arriving at

[ f <limg [ fn. ]

Theorem 2. For nonnegative measurable functions f and g we

have [(f+9)=[f+ [g.

Proof. By Theorem 5 in Section 8.4, page 397, there exist nonnegative simple
functions f, t f and g, 1 ¢g. Then f,+g, t f+g. By Theorem 1 (the Monotone
Convergence Theorem) and Lemma 4 above, we have

Jura=im [teg=im[ o+ o] = [+ [a

Theorem 3. Let f be nonnegative and measurable. The conditions
J £ =0 and f(z) = 0 almost everywhere are equivalent.

Proof. Let A = {z: f(z) >0} and B = X\ A. If f(z) = 0 almost every-
where, then p(A) = 0. Hence

[1=[uxassxa) = [ xa+ [ 12

< /OoxA+/0x3 = oop(A)+0u(B)=0

For the other implication, assume [ f = 0. Define A, = {z : f(z) > 1}.
Then A = ;. An. Since %x,,,, is a simple function bounded above by f we

have
1 1
0= [ 1> [ 2%an= zudn)

Thus (A,) =0 for all n and p(A) = 0 by Lemma 1 in Section 8.2, page 386.
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Theorem 4. Fatou’s Lemma. For a sequence of nonnegative
measurable functions, [(liminf f,) < lim inf [ fn.

Proof. Recall that the limit infimum of a sequence of real numbers [z,] is
defined to be lim,_,o inf;>n Ti. The limit infimum of a sequence of real-valued
functions is defined pointwise: (lim inf fn)(z) = lim inf fn(z) = lim gn(z), where
9n(z) = infi3n fi(z). Observe that gn_j(z) € gn(z) < fn(z) and that g, t
lim inf f,,. Hence by Theorem 1 (The Monotone Convergence Theorem)

/(liminffn) = /lim gn = lim/gn = liminf/g,, < liminf/f,, ]

Theorem 5. If f and g are nonnegative measurable functions that
are equal almost everywhere, then [ f = [ g.

Proof. Let A= {z: f(x)=g(x)} and B= X \ A. Then
OS/fXBS/ooxB=oou(B)=OOO=O

Similarly, [ gXp = 0. Hence

/f=/(fxx+fx3)=/fo=/9xA=/(9xA+9xB)=/9 ]

Theorem 5 states that [ f is not affected if f is altered on a set of measure
0, while retaining measurability.

Problems 8.5

1. Give an example in which strict inequality occurs in Fatou’s Lemma (Theorem 4).

2. Show that a monotone convergence theorem for decreasing sequences is not true. For
example, consider f, as the characteristic function of the interval [n, co).

3. Prove that if f is nonnegative and Lebesgue integrable on R and if F(x) = f_zx f, then
F is continuous.

4. Define fn(x) to be nif |x] < 1/n and to be 0 otherwise. What are f lim f,, and lim f fn?

5. Prove or disprove: If (X,.A, i) is a measure space and if A and B are measurable sets,
then [{X4 — Xp| = (A& B). Recall that A& B = (AN B)U(B\ A).

6. Let f be Lebesgue measurable on [0,1], and define p(t) = u(f~!((~o0,t))). Find the
salient properties of . For example, is it continuous from the right or left? Is it mono-
tone? Is it measurable? Is it invertible? What are lime_, 5 ©(t) and lime— o 0(t)?

7. (Continuation). Define f*(x) = sup{t : v(t) < z}. Prove that ©(t) < z if and only
if t < f*(z). Prove that the sets {z : f(z) < t} and {z : f*(z) < t} have equal
measure. Hence, f* is called an equimeasurable nondecreasing rearrangement of
f. Prove that the sets {z : f(z) 2 t} and {z : f*(z) 2 t} have the same measure. Prove
that the sets {z : f(z) > t} and {z : f*(z) > t} have the same measure. Prove that
F(p()) 2 = 2 o(f* (2))

8. Give an example to show that the nonnegativity hypothesis cannot be dropped from
Fatou’s Lemma (Theorem 4).
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10.
11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.
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Let fn be nonnegative measurable functions (on any measure space). Prove that if
fn— fand f 2 fn foralln.thenff,l—)ff.

Prove, for any sequence in R, that liminf (~zn) = — limsup zn.

Let X = [0,1]. Is there a Borel measure 1 on X that assigns the same positive measure
to each open interval (0,1/n), n=1,2,3,...7

If f is a bounded function, then there is a sequence of simple functions converging uni-
formly to f. (The domain of f can be any set, and no measurability assumptions are
needed.)

. Let fn be measurable functions such that f, 2 0 a.e. (“almost everywhere”) and fn 1 f

a.e. Prove that ff,. 1 ff-

Let f. be nonnegative and measurable. Prove that f 2:‘;1 fn= :;1 f fn.

Let f be nonnegative and measurable. Prove that ff = fA f, where A = {z: f(z) > 0}.
Let f, be measurable functions such that fn 2 fan+1 2 O for all n and ff.. 1 0. Prove

that f, 1L 0 a.e.

Let f be the characteristic function ofthe set of irrational points in [0, 1). 1s f measurable?
What are the Riemann and the Lebesgue integrals of f?

Prove that if {An} is a disjoint sequence of measurable sets and if X = U:;l Apn, then
x

ff=z:n=lfA,,f'

Prove that if fn are nonnegative measurable functions for which Z:ﬂ f fn < 0, then

fn—0ace.

Give an example of a sequence of Riemann integrable functions such that the inequalities
0K fn < fot+1 <1 hold, yet lim f, is not Riemann integrable.

Give an example of a sequence of simple functions f, converging pointwise to a simple
function f, and yet f[fn — fl#0.

Find a sequence of simple functions fn converging uniformly to 0, yet flfnl A 0.

8.6 The Integral, Continued

In the preceding section, the integral for nonnegative functions was developed in
the general setting of an arbitrary measure space (X,.A, 1t). Next on the agenda
is the extension of the integral to “arbitrary” functions.

Definition. Let (X,.A,u) be a measure space, and let f: X — R*. We define

[r=[r-[r

where f* = max(f,0) and f~ = max(—f,0). Note that [ f remains undefined
if [f*=[f =00

The lattice operators max and min are defined for functions in a pointwise

manner. Thus, f*(z) = max(f(z),0). Notice that f = f* — f~, that f* > 0,
that f~ >0, and that |f| = f* + f~.
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The general definition just given for the integral is in harmony with the
previous definition, Equation (3), Section 8.5, page 400, in the cases where both
definitions are applicable. Indeed, if f > 0, then f* = f and f~ =0.

Definition. A function f : X — R* is said to be integrable if it is measurable
and if [ |f| < oo. The set of all integrable functions on the given measure space
is denoted by L'(X, A, 1), or simply by L! if there can be no ambiguity about
the underlying measure space.

Lemma 1. A function f is integrable if and only if its positive and
negative parts, f* and f~, are integrable.

Proof. Assume that f is integrable. Then it is measurable, and the measura-
bility of f* follows from the fact that {z : f*(z) > a} is X when @ < 0 and is
{z : f(z) > a} when a > 0. The finiteness of the integral of | f*| is immediate
from the inequality |f* (z)| < |f(z)|. The remainder of the proof involves similar
elementary ideas. [}

Theorem 1. The set L'(X, A, p) is a linear space, and the integral
is a linear functional on it.

Proof. Let f and g be members of L!. To show that f+g € L', write h = f+g,
and
WY ~h™ =h=f*—f"+g"~g”

From this it follows that
Y+ f+g =h"+fr4+g*

Since these are all nonnegative functions, Theorem 2 of Section 8.5, page 402, is
applicable, and

/h++/f‘+/g‘=/h‘+/f++/g+

Therefore, by Lemma 1,

fusn=fo=fio- [ =[r-[r+fs-[5 =] [s

With this equation now established, we use Lemma 5 in Section 8.5 (page 401)

to write
[ie+al< fan+ih= [in1+ [1o <o

For scalar multiplication, observe first that if A > 0 and f > 0, then the
definition of the integral in Equation (3) of Section 8.5 (page 400) gives [ Af =
AJf. If f>0and A <0, then

//\f=/(/\f)+—/(/\f)‘=~/(/\f)'=—/(—/\f+)=/\/f+=/\/f
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In the general case, we use what has already been proved:

/Af:/[Af++(—A)f‘] =/,\f++/—Af-=A/f+-,\/f-
A=)

The finiteness of the integral is now trivial:

Jsi=[i=m f111< o '

The second of the celebrated convergence theorems in the theory can now
be given.

Theorem 2. Dominated Convergence Theorem. Let
g, fi, f2,... be functions in L'(X,A,u) such that |f,| < g. If the
sequence [fn] converges pointwise to a function f, then f € L' and

[fn= ]

Proof. The functions f, 4+ g are nonnegative. By Fatou’s Lemma (Theorem 4
in Section 8.5, page 403) and by the preceding theorem,

[o+ [1= [+ n= [timint(g+ 1) < timint [(g+ 12)
=liminf[/g+/f,,] =/g+liminf/f,,

Since [g < oo, we conclude that [ f < liminf [ fn. Since —f and —fy, satisfy
the hypotheses of our theorem, the same conclusion can be drawn for them:
J —f <liminf [ — fn. This is equivalent to — [ f < —limsup [ fn and to [ f >
lim sup f fn. Putting this all together produces

liminf/f,,slimsup/f,,S/fSliminf/fn (]

A step function is a function on R that is a simple function } ., €iXa;
in which the sets A; are intervals, mutually disjoint.

Theorem 3. Let f be Lebesgue integrable on the real line. For
any positive € there exist a simple function g, a step function h and a
continuous function k having compact support such that

Jir-d<e  [ir-n<e  [ir-n<e

Proof. By Lemma 1, f* and f~ are integrable. By the definition of the
integral, Equation (3) in Section 8.5, page 400, there exist simple functions g,
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and gz such that 1 < f*, 92 < f~, [ f* < [g1+¢€,and [ f~ < [g2+¢€. Then
g1 — g2 is a simple function such that

/lf"‘gl+g‘2'</[f+"‘gll+/|f_"92'=/(f+"91)+/(f_—gz)<2€

In order to establish the second part of the theorem, it now suffices to prove
it in the special case that f is an integrable simple function. It is therefore a
linear combination of characteristic functions of measurable sets of finite mea-
sure. It then suffices to prove this part of the theorem when f = X4 for some
measurable set A having finite measure. By the definition of Lebesgue mea-
sure, there is a countable family of open intervals {I,} that cover A and satisfy
p(A) € Yol u(In) < p(A) + €. There is no loss of generality in assuming
that the family {I,} is disjoint, because if two of these intervals have a point
in common, their union is a single open interval. Since the series }_ u(I) con-
verges, there is an index m such that Y >° . u(ln) < e Put B = J;_, In,
E = |J2 I.,, h = Xg, and ¢ = Xg. Then h is a step function. Since

n=m+1

A C BUE, we have f < h+ ¢. Then
h=fI<lh+o—fl+lel=(h+w—f)—w

Consequently,

/Ih—fls/(h+so—f)+/<p

= p(B) + u(E) — p(A) + p(E) < 2¢

For the third part of the proof it suffices to consider an f that is an integrable
step function. For this, in turn, it is enough to prove that the characteristic
function of a single compact interval can be approximated in L! by a continuous
function that vanishes outside that interval. This can certainly be done with a
piecewise linear function. ]

The linear space L'(X,.A, u) becomes a pseudo-normed space upon intro-
ducing the definition ||f|| = flfl Since a function that is equal to 0 almost
everywhere will satisfy “ f || = 0, we will not have a true norm unless we interpret
each f in L' as an equivalence class consisting of all functions equal to f almost
everywhere. This manner of proceeding is eventually the same as introducing
the null space of the norm, N = {g € L' : ”g“ = 0}, and considering the quo-
tient space L!/N. The elements of this space are cosets f + N, and the norm
of a coset is defined to be ||f + N|| = inf{||f + g|| : g € N}. This is the same as

fll-
” ” A consequence of these considerations is that for f in L!, the expression

f(z) is meaningless. After all, f stands for a class of functions that can differ

from each other on sets of measure 0. The single point z is a set of measure
zero, and we can change the value of f at £ without changing f as a member

of L'. The conventional notation [ f(z)dz should always be interpreted as
J f. Remember that the integral of f is not affected by changing the values
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of f on any set of measure 0, such as the set of all rational points on the line!

10.

11.

12,

13.

14.

15.

Problems 8.6

. Define the lattice operations V and A by writing

(fvg)z) =max(f(z),9(z))  (f Ag)z)=min(f(z), 9(z))

Prove that the set of measurable functions on a given measurable space is closed under
these lattice operations. Prove the same assertion for L!.

. Complete the proof of Lemma 1.

. Let X =(0,1), let .A be the o-algebra of Lebesgue measurable subsets of (0,1), and let

be Lebesgue measure on .A. Which of these functions are in L!(X,.4,): (a) f(z) =z~ !,
(b) 9(z) =z7Y/2, (c) h(z) = exp(—z~1), (d) k(z) = log z?

. If f = g almost everywhere, does it follow that f* = g+ and f~ = g~ almost everywhere?

What can be said of the converse?

. Prove or disprove: If {fn} is a sequence of measurable functions such that f, 1 f, then

St [f

. Prove that if f € L'(X,A, ), then |f| € L' and | [ f| < [If| Verify that |f| = f*+f-.

that f = f* —f~, that 0 f* < |fl,and 0 < f~ < f-

. Show that from the five hypotheses f,, integrable, h integrable, g measurable, fn, — f,

|fnl < h one cannot draw the conclusion f fng > f f9. Find an appropriately weak
additional hypothesis that makes the inference valid.

. This problem and the next four involve convergence in measure. If f, f1, f2,... are

measurable functions on a measure space (X, A, ) and if limn p{z : |fa(z) - f(z)] > €}
is O for each € > 0, then we say that f, — f in measure. Prove that if f, — f
almost uniformly, then fn, — f in measure. (Almost uniform convergence is defined in
Section 8.4, page 397.)

. Consider the following sequence of intervals: A = [0,1], A2 = [0,1/2), A3 = [1/2,1],

As = [0,1/4), As = [1/4,1/2], As = [1/2,3/4), A7 = {3/4,1], As = [0,1/8],... Let fn
denote the characteristic function of An. Prove that f, — 0 in measure but f, does not
converge almost everywhere.

Using Lebesgue measure, test the sequence fn = x[n—l.n] for pointwise convergence,
convergence almost everywhere, convergence almost uniformly, and convergence in mea-
sure.

Let (X, A, 1) be a measure space such that 1(X) < co. Let f, f1, f2,... be real-valued
measurable functions such that f, — f almost everywhere. Prove that f, — f in
measure.

Prove that the Monotone Convergence Theorem (page 401), Fatou’s Lemma (page 403),
and the Dominated Convergence Theorem (page 406) are valid for sequences of functions
converging in measure.

Prove that if A is a Lebesgue measurable set of finite measure, then for each € > O there
is a finite union B of open intervals such that (A A B) < ¢.

Prove that if f is Lebesgue measurable and finite-valued on a compact interval, then
there is a sequence of continuous functions g, defined on the same interval such that
gn — f almost uniformly.

Prove Lusin’s Theorem: If f is Lebesgue measurable and finite-valued on [a, b] and
if € > 0, then there is a continuous function g defined on [a,b] that has the property

wz: f(z) # g(x)} <e.
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8.7 The LP-Spaces

Throughout this section, a fixed measure space (X, A, u) is the setting. For
each p > 0, the notation LP(X, A,pu), or just LP, will denote the space of all
measurable functions f such that [{f|P < co. The case when p = 1 has been
considered in the preceding section. We write

1) it = (fr)”

although this equation generally does not define a norm (nor even a seminorm
if p < 1). The case p = oo will be included in our discussion by making two
special definitions. First, f € L™ shall mean that for some M, |f(z) < M
almost everywhere. Second, we define

(2) £l = inf{M : | f(2)] < M ace)

The functions in L are said to be essentially bounded, and ” f ||oo is called
the essential supremum of | f|, written as ”f”c,o = ess sup | f(z)]-

When the equation 1_7 + E =1 appears, it is understood that ¢ will be oo

when p = 1, and vice versa.

Theorem 1. Hélder’s Inequality. Let 1 < p < oo, % + % =1,
f€LP,and g € L. Then fg € L! and

9 Jirsl =1issll, < 41 el

Proof. The seminorms involved here are homogeneous: ||A f || = |A| |[ f ” Con-

sequently, it will suffice to establish Equation (3) in the special case when || f ”p =
||g||q = 1. At first, let p=1 and ¢ = oo. Since g € L™, we have |g(z)] < M a.e.
for some M. From this it follows that [|fg] < M [|f| = M||f|[l By taking
the infimum for all M, we obtain ”_fg”1 < ||f”1||g||w

Suppose now that p > 1. We prove first that ifa>0,b>0,and 0< ¢t < 1,
then a'b!~t < ta + (1 — t)b. The accompanying Figure 8.1 shows the functions
of t on the two sides of this inequality (when a = 2 and b = 12). It is clear that
we should prove convexity of the function ¢(t) = a*b'~*. This requires that we
prove ¢ (t) > 0. Since log ¢(t) = tlog a + (1 — £) log b, we have

0] =loga—logb=c

whence ¢"(t) = cp’(t) = c2p(t) 2 0.
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12
10 \

Figure 8.1

Now let @ = |f(z)|P, b = |g(z)|%, t = 1/p, 1 —t = 1/q. Our inequality yields
then |f(z)g(z)| < ;}|f(z)|" + %Ig(z)l“. By hypothesis, the functions on the right
in this inequality belong to L'. Hence by integrating we obtain

1 1 1 1
sl = [iral< > [iap+ fral=2+2=1=lslllol, u
Theorem 2. Minkowski’s Inequality Let 1< p< oo. If f and g
belong to LP, then so does f + g, and
£ +gll, <[1£1l, + llsll,
Proof. The cases p = 1 and p = oo are special. For the first of these cases,

just write
[is+d< fan+ia=[in+ [

For p = oo, select constants M and N for which |f(z)] < M a.e. and |g(z)] < N
a.e. Then |f(z) + g(z)] € M + N ae. This proves that f + g € L>™ and that
||f +9ll,, < M + N. By taking infima we get ||f + g||.. < |||l + |9/l

Now let 1 < p < co. From the observation that |f + g| < 2max{|f],|gl|},
we have

1 + g < 22 max {£17, 1917} < 22 (1117 + Ig1")
This establishes that f + g € LP. Next, write
If +glP =1f +gllf +glP~" <IfINf + P! +1glIf + P!
Since |f + g| € LP, we can infer that |f + g|[P~! € L? (where % + % = 1) because

/lf +g/P e = /|f+gl" < oo

By the homogeneity of Minkowski’s inequality, we may assume that ||f+g||n =1.

Observe now that Holder’s Inequality is applicable to the product |f| |f + g|P~!
and to the product |g||f + g|P~!. Consequently,

1= [u+or < fis1r+ap~t+ [lat1s 4o
<l hir + 5=, + Nl 117 + P,

This is equivalent to

< (Il + loll, 17 + 6l = 1151, + lall, .
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Theorem 3. The Riesz—Fischer Theorem. Each space
LP(X,A,u), wherel < p < oo, is complete.

Proof. The case p = oo is special and is addressed first. Let [f,] be a Cauchy
sequence in L. Define

Eam = {2 ¢ 1fa(2) = Jn(@)] > |~ full,0}

By Problem 1, these sets all have measure 0. Hence the same is true of their
union, E. If 2 € X \ E, then |fn(z) = fm(z)[ < ||fn - fm”w, and thus [fn(z)]
is a Cauchy sequence in R for each £ € X \ E. This sequence converges to a
number that we may denote by f(z). Define f(z) = 0 forz € E. On X \ E,
|f()] = lim|fa(z)] < lim ||fn|| < 0o. (Use the fact that a Cauchy sequence
in a metric space is bounded.) Thus, f € L*. To prove that ”fn - f”w =0
let € > 0 and select N so that an - f,,.”oo < € whenn > m > N. Then
[fn(z) ~ fm(z)| <€ on XN E, and |f(z) — fm(z)| < € for m > N.

All the cases when 1 < p < 0o can be done together. Let [f,] be a Cauchy
sequence in LP. For each k =1,2,3,... there exists a least index nx such that
the following implication is valid:

Lizne = |fi-fill, <27

It follows that n; < mp < --- and that ||fn,,, — j,,kllp < 27k Let go = 0 and
9k = f"k-}-l - fnk for k 2 1. Then

> lloell, <3 27% =
k=0 k=1

Define h, = Z olgx] and h = limh,. By Minkowski’s Inequality (Theo-
rem 2), ”hn” Zk -0 "gk” < 1, and thus by Fatou’s Lemma (Theorem 4 in

Section 8.5, page 403)
n n

This proves that h € LP. Consequently, the set A on which h(z) = oo is of
measure 0. On X \ A the two series 3 ;o |gk(z)| and Y g gk(z) converge.
Therefore, we can define f(z) = 372 gk(z) for £ € X \ A and let f(z) = 0on
A. Since

i
ng = f"l + (fng - fnl) + (fna - fﬂz) +-o+ (fn,'+1 _fn,') = fn,'_H
k=0
we have fn,(z) = f(z) a.e. Since |f| < 3720 lgk| = h, we conclude that f € LP.
It remains to be shown that ”f - fn”p — 0. By the definition of ng, if j 2 n,

then
07 = £ill, = tim £, = f5ll, =lim || fn; = £ll, <27 .
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Problems 8.7

. Prove that if f € L™, then the set {z: {f(z)| > || f|| .} bas measure 0.

. Let X be any set, and take A to be 2% and u to be counting measure. In this setting, the

space LP(X,.A,p) is often denoted by €P(X). Prove that for each f € ¢P(X) the support
of f is countable. Here, the support of f is defined to be {z € X : f(z) # 0}.

. (Continuation) Prove that if X is a set of n points, then dim €P(X) is n.

. (Continuation) For n = 2, draw the set {f € £P(X) : |[f]|p = 1} using p = 1,2, 10, c0.

. Let fn € L and fn 2 0. Prove that sup || fnll . = l|sup fall .-

. In LP(X,A,u), write f = g if || f — g”P = 0. Prove that f = g if and only if f = g ae.

(Thus the equivalence relation is independent of p.) Prove that the equivalence relation
is “consistent” with the other structure in LP by establishing that the conditions f1 = f2
and g1 = g imply that f1 + g1 = f2 + g2, M1 = M f2, and || A1}l = || f2|-

. The space €P(N) of Problem 2 is usually written simply as €P, and if f € P, we usually

write fn instead of f(n). Show that if f € ¢P, g€ €9, 1/p+ 1/q¢ = 1, then fg € € and
oC
Yo Ungnl S (222 HalP)P(302 | gal®)Ma.

. Let (E,|| ||) be a pseudo-normed linear space. Let M = {f € E : ||f|| = 0}. Prove that

M is a linear subspace of E. In the quotient space E/M the elements are cosets f + M.
Define [ f + M}l = inf{||f + g|l : g € M}. Show that this defines a norm in E/M.

. Let f and fn belong to L>(X, A, ). Show that ||f — fall,, — 0 if and only if f, — f

almost uniformly. (See the definition in Section 8.4, page 397.)

Let (X, .A,u) be a measure space for which u(X) < oo. Show that if 0 < @ < O < oo,
then LA C L°. Show that the hypothesis 1(X) < oo cannot be omitted.

Prove that if 0 < a < 8 < oo, then €2 C €8. (See the definition in Problem 7.)

Show that in the proof of the Riesz-Fischer Theorem (Theorem 3), the sequence (fn)
need not converge to f almost evlery\;/here. Cl,‘ons{de{, f%r example, the characteristic
functions of the intervals (0,1], [0, 3], (3, 1), [0, 5). (3. 3], (3, 1],... Show that || fa]|, = 0
but fa(z) is divergent for each z in [0, 1].

Let (X,.A,u) be a measure space for which u(X) < oo. Prove that for each f € L,
limpoc "f“p =|f ‘,y

Prove that for any measure space, if 0 < a < 3 < oo, then L* NL> C L>*N LA,

Prove for any measure space: If 0 < a < 3 <7 < oo, then LN LY c L8N L.

Let f(z) = [zlog?(1/x)]~! and prove that f isin L![0, 3} but. is not in Up>l Lrlo, ).
Prove that if {fn] is a Cauchy sequence in LP, then it has a subsequence that converges
almost everywhere.

Let f and fn belong to LP. If || fn — f”,, — 0 and fn — g a.e.,, what relationship exists
between f and g7

Let (X, A, u) be a measure space for which u(X) = 1. (Such a space is a probability
space.) Prove that if f and g are positive, measurable, and satisfy fg 2 1, then the

inequality ff . fg 2 1 holds.
Prove that if fn € L}(X,A,u) and Z:il [l fnll; < 0o, then fn — 0 ace

If0 < f[fl < oo, then there is a continuous function g having compact support such

that ffg #0.
Prove that if f € LP(X,.A,u) for all sufficiently large values of p, and if the limit of ||j‘||p
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exists when p — oo, then the value of the limit is || f|| .

23. Show that in general, L>®°(X, A,u) # n
occurs?

p>1 LP(X, A, ). Are there cases when equality

24. If A = 2% and u is counting measure on A, what is L®(X, A, 1{)?
25. Prove that for f € L' (X, A, i) we have Iffl < f |fl. When does equality occur here?

26. Let 1 < p<oo,1/p+1/g=1,and f € LP. Prove that |f|P € L1, that |f|P~? € L9, and
that for r £ 0, |f|” € LP/™.

8.8 The Radon-Nikodym Theorem

In elementary calculus, the expression f: f(t)dt is called an “indefinite
integral.” It is a function of the two arguments f and z, or of f and the
set [a,z]. Therefore, in general integration theory the analogous concept is an:
integral [ 4 f depending on the two arguments f and A. Recall that our notation

is as follows:
fr= ]
A

where X 4 is the characteristic function of the set A. The set A and the function
f should be measurable with respect to the underlying measure space (X, A, u).
Now suppose that a second measure v is defined on the o-algebra A. If
v(A) = 0 whenever p(A) = 0, we say that v is absolutely continuous with
respect to ¢, and we write v < p.
One easy way to produce such a measure v is given in the next theorem.

Theorem 1. If (X, A, ) is a measure space, and if f is a nonneg-
ative measurable function, then the equation

(1) )= [ rdu (Ae)
defines a measure v that is absolutely continuous with respect to p.

Proof. The postulates for a measure are quickly verified.
(@ v(@)=[f=[fXo=[0=0

(b) ¥(A) > 0 because f >0

(c) If [A;] is a disjoint sequence of measurable sets, then

V(,QAi) =/UA,-f=/foAi =/fo,,i :/foAi
=/li’rlngfxlqi =]i£n/gfx,4i =li}1ng/fx"i

= z v(Ai)

=1
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This calculation used the Monotone Convergence Theorem (Section 8.5, page 401).
The absolute continuity of v is clear: if p(A) =0, then v(A4) = [, f=0. [

It is natural to seek a converse for this theorem. Thus we ask whether each
measure that is absolutely continuous with respect to p must be of the form
in Equation (1). The answer is a qualified “Yes.” It is necessary to make a
slight restriction. Consider a general measure space (X, .A,p). We say that X
(or p) is o-finite if X can be written as a countable union of measurable sets,
each having finite measure. For example, the real line with Lebesgue measure is
o-finite, since we can write R = |J,,[~n, n].

Theorem 2. Radon—-Nikodym Theorem. Letu and v be o-finite

measures on a measurable space (X,.A). If v is absolutely continuous

with respect to p, then there exists a nonnegative measurable function

h, determined uniquely up to a set of p-measure 0, such that v(A) =

Jahdp forall A€ A
Proof. We prove the theorem first under the assumption that p(X) < oo and
v(X) < oo. Consider the Hilbert space L? = L*(X, A, + v). For any f in
L?, define ®(f) = [ fdp. 1t is easily verified that ® is a linear functional on

L2. Furthermore it is bounded (continuous) because by the Hélder Inequality
(Theorem 1 in Section 8.7, page 409)

ol =| [ 1-1du] < [ 111 1du+0) < 11, ),

By the Riesz Representation Theorem for Hilbert space (Section 2.3, page 81)
there exists an element hg in L? such that

o) = [ hodlu+v)  fel?
This means that [ fdu = [ fhod(p + v), whence
[ra=hoydu= [ fhoav
Let B = {z : ho(z) < 0}. Then 1 — ho > 1 on B, and consequently
0 < u(B) < /xB(l - ho)dpzfxghgdu <0

Thus p(B) = 0 and hg(z) > 0 a.e. (with respect to ). Since v < u, we have
v(B) = 0 also. Hence for any A € A,

V(A)=/xAdU=/halehodU=/hale(l—ho)dﬂ.

=/hg‘(1—ho)dp=/hdu (h = hg'(1 - ho))
A A
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To see that h > 0 a.e., with respect to p, write A = {z : h(z) < 0}, so that
0 < v(A) = [, hdp <0, whence p£(A) = 0.

For the second half of the proof we assume only that p and v are o-finite.
Then X = U;'f:, A, = Uff’___l B, where A, and B, are measurable sets such
that y1(A,) < oo and v(B,) < oo for each n. Write the doubly-indexed family
A; N Bj as a sequence Cp,. Then X = |JCy, (Cr) < oo, and v(Cyr) < oo.
With no loss of generality we assume that the sequence [Cy] is disjoint. Define
measures v, and g1, by putting v,(A) = V(AN C,) and un(A) = (AN Cy).
Since v <« p, we have v, < u, for all n. By the first half of the proof there exist
functions hn, such that vn(A) = [, hn dpn, for all A € A. Since the Cn-sequence
is disjoint, we can define h on X by specifying that h(z) = hn(z) tor z € Cy,.
Then we have

/Ahdp = /Athc,, dp = Z/A hndpin = va(A) = Y_v(ANCy) = v(A)

For the uniqueness of h, suppose that [, hdu = [, h'dp for all A € A. Letting
A = {z: h(z) > h'(z)}, we have

/(h~h’)dp=0 h>h on A
A

It follows that p(A) = 0. By symmetry, the set where h'(z) > h(z) is also of
measure 0. Hence h = h’ a.e. (u). ]

The preceding paragraphs have involved the concept of absolute continuity
of one measure with respect to another. The antithesis of this is “mutual singu-
larity.” Two measures 1 and v on the same measure space are said to be mu-
tually singular if there is a measurable set B such that u(B) = v(X \ B) = 0.
This relation is written symbolically as 4 L v. It is obviously a symmetric
relation.

Theorem 3. Lebesgue Decomposition Theorem. If p and v
are o-finite measures on the measurable space (X, A), then there exist
unique measures vy and v, on A such that v = v, + vy, v, € p, and
vo L M.

Proof. By the Radon-Nikodym Theorem (Theorem 2, above)—or indeed by
the first half of its proof—there exists a measurable function h such that

1(A) =/ hdu+v) (A€ A)
A
Define the set B = {z : h(z) = 0}. Next, define
vi(A) = v(AN B) va(A) = v(AN B) (A€ A)
Obviously, v; + v, = v. By Problem 8.2.15, page 391, v; and v, are measures.

Let us prove that v2 L p. Since h =0 on B, we have uu(B) = [ghd(p+v) =0.
On the other hand, (X N\ B) = v((X N\ B) N B) = v(2) = 0. Next, we prove
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that 1y <« p. Suppose that p(A) = 0. Then [, hd(p+v) =0, [, hdv =0,
and [, ghdv =0. But h >0 on AN B, and hence /(AN B) = 0, 111(A) = 0.
Finally, we prove the uniqueness of our decomposition. Suppose that another
decomposition is given: v = 3 + v4, where v3 <« p and 14 L p. Then there
exists a set C such that u(C) = v4(X ~C) = 0. (This set C is akin to B in
the first part of our proof.) If D = BUC, then 0 = u(B) + p(C) > p(D) and
p(D) = 0. 1t follows, for any measurable set A, that v;(A N D) < 11(D) = 0.
Hence

AN D) = (1 + 1) (AN D) = vy(AN D)

va(AN D) + 15(AN D) = 1p(A)

Il

The same argument will prove that 1/(A N D) = v4(A). Hence v, = v4. Since
IV = v; + V3 = v3 + 14, one is tempted to conclude outright that vy = 1.
However, if A is a set for which v9(A) = v4(A) = oo, we cannot perform the
necessary subtraction. Using the o-finite property of the space, we find a disjoint
sequence of measurable sets X, such that X = |J X, and 1/(X,) < co. Then
v (Xn N A) = v3(Xn N A) for all n and for all A. It follows that 11 (A) = v3(A)
and that v = vj. ]

Problems 8.8

1. Is the relation of absolute continuity (for measures) reflexive? What about symmetry
and transitivity? Is it a partial order? A linear order? A well-ordering? Give examples
to support each conclusion.

2. Solve Problem 1 for the relation of mutual singularity.

3. The function h in the Radon-Nikodym Theorem is often denoted by ;i_v Prove that
m

dv  dv dy .
— == E 6.
dudglu((p((

dv +6) dv  df .
=—+ — ifvrKpuand § K pu.
da du du # .

4. Refer to Problem 3 and prove that
du dv .
5. Refer to Problem 3 and prove that % =lifr<pugv.
v du

dv
6. Refer to Problem 3 and prove that f fdv = fjd— dp if v L p.
m

7. Let X = [0,1), let A be the family of all Lebesgue measurable subsets of X, let v be
Lebesgue measure, and let p be counting measure. Show that v <« u. Show that there
exists no function h for which v(A) = fA hdu. Explain the apparent conflict with the
Radon-Nikodym Theorem.

8. Prove that in the Radon~Nikodym Theorem, h(z) < oo for all z. Show also that if
v(X) < oo, then h € L1(X, A, p).

9. Extension of Radon-Nikodym Theorem. Let u and v be measures on a measurable space
(X,.A). Suppose that there exists a disjoint family { Bo} of measurable sets having these
properties:

(i) wu(Ba) < oo forall a.
(ii) u(A)=0if A€ Aand u(ANBy) =0 forall a.
(i) v(A) =0if A€ A and v(ANB,) =0 for all a.
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If v € p, then thereisan h as in the Radon-Nikodym Theorem, but it may be measurable
only with respect to the o-algebra

B={B:BC X,BNA¢€ Awhen A€ A and pu(A) < oo}

10. If there corresponds to each positive € a positive § such that
[A€ A and p(A) <8 = w(A)<e

then v « p, and conversely.

11. Let (X, A, ) be a measure space. Fix B € A and define v(A) = (BN A) for all A € A.
Is v absolutely continuous with respect to p? Is p — v a measure? Is the equation
fA fdv = fAnB f dp true for measurable f and A? Is p — v singular with respect to p?
Give examples.

12. f v < g and A L p then v L A,
13. If p I. v <€ p, then v =0.

14. Give an example of the Radon—-Nikodym Theorem in which the function h fails to be
bounded a.e.

15. Let (X, A,n) be a o-finite measure space. Let v be a measure on A. The existence of
a constant ¢ for which v < cu is equivalent to the existence of a bounded measurable

nonnegative function h such that v(A) = fA fdu.

8.9 Signed Measures

In this section we examine the consequences of relaxing the nonnegativity re-
quirement on a measure. Let (X, .A) be a measurable space. A function p from
A to R* is called a signed measure if

(i) The range of u does not include both +0o0 and —oo.

(ii) u(2) =0

(iii) (U2, As) = 3oio, n(As) when {A;} is a disjoint sequence in A.
The reason for the first requirement is that we want to avoid the meaningless
expression 0o — 0o. Thus, if p(A) = oo and p(B) = —oo, then from the equation
A = (AN B)U (AN B) we see that one of the terms p(AN B) and p(A\ B)
must be +oo. Likewise, one of u(AN B) and p(B \ A) must be —oco. Hence the
right side of the equation

w(AUB)=pu(ANB)+ u(ANB)+ p(B\A)
is meaningless.
Theorem 1. Jordan Decomposition. The difference of two
measures (defined on the same o-algebra), one of which is finite, is a

signed measure. Conversely, every signed measure p is the difference
of two measures u* and u~, one of which is finite. Furthermore, we
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may require these two measures to be mutually singular, and in that
case they are uniquely determined by p.

Proof. For the first assertion, let 1 and po be measures, and suppose that g,
is finite. Put i = p; — po. To see that u is a signed measure, note first that p
does not assume the value +oco. Next, we have u(@) = 0 since p; and p2 have
this property. Finally, let {A;} be a disjoint sequence of measurable sets. Then

= 171111 [Z m(A4;) - ZM(A‘)}

i=1 i=1
= llmz [}11(/4 Il2 A:)] = Zu(Al)
i=1

Notice that on the second line of this calculation the first sum is finite, although
the second may be infinite.

For the other half of the proof, let i be a signed measure that does not
assume the value +0o. In an abuse of language, we say that a (measurable) set
S is positive if 1(A) > 0 for all measurable subsets A in S. Define

0 = sup{u(S) : S is a positive set}

Let S, be a sequence of positive sets such that u(S,) 1 6, and define P =
Unw=, Sn. Let us prove that P is a positive set. If A C P, we write

=(ANSa) N (§1U---USn)

Since A, C S, we have u(An) > 0. Since A is the union of the disjoint family

{An}, it follows that
oo
=2 n(4n) 20
n=1

Since P is a positive set,

w(P) = (P~ Sg) + p(Sn) = p(Sn)

whence p(P) > 6 and 6 < co.

Now we wish to prove that u(A) < 0 whenever A C X \ P. Suppose, on the
contrary, that A C X \ Pand u(A) > 0. If A contains a positive set B of positive
measure, then P U B is a positive set for which u(P U B) = pu(P) + p(B) > 6, in
contradiction to the definition of #. Thus, A contains no positive set of positive
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measure. Define sets A;,A,,... as follows. Let n; be the first positive integer
such that there exists a set A, satisfying

1
AlCA  p(A)<-—
n

Since 0 < p(A) = p(AN A;)+pu(A;), wesee that A\ A, is a subset of A having
positive measure. It is therefore not a positive set. Hence there is a first positive
integer n, and a set A, such that

Ay CANAL  p(Ay) < ——
ng

Continue in this manner, finding at the kth step a set Ax and an integer n; such
that

1
A CAN(A U U A ) p(Ak)<—;l—
k

Define B = AN UZ°=1 Aj. By the same argument used earlier, B has positive
measure. It is actually a positive set. To verify this, suppose on the contrary
that there exists a set C C B such that u(C) < 0. Let m be the first positive
integer such that u(C) < —1/m. Since C C AN (A; U ---U Ag-;) for every
k, we have nx < m for all k. Hence u(Upw, Ak) = —oo and u(B) = +o0, a
contradiction.

Now define u* and u~ by writing, for A € A,

pH(A)=pu(ANP)  p~(A)=-p(ANP)

We see that u* 1L u~ because ut (X N\ P) =0=pu~(P).

Our last task is to prove the uniqueness of this decomposition. Suppose
that p = p; — g2 = v; — vy, where these are measures such that vy L v and
1 L po. Then there exists a set Q such that v (X N Q) = 0 = 1,(Q). We can
prove that v, < p; by writing

n(A)=v(ANQ)+ 1 (ANQ) =v1(ANQ) = (u+v2)(ANQ)
=pu(ANQ) = (1 —n2)(ANQ) < 1 (ANQ) < m(A)

By the symmetry in this situation, we can prove u; < v;. Hence puy = v, and
Ho = Va. [ ]

Theorem 2. Radon—Nikodym Theorem for Signed Measures.
Let (X, A, p) be a o-finite measure space. If v is a finite-valued signed
measure that is absolutely continuous with respect to u, then there is
a measurable function h such that for all A € A, v(A) = [, hdp.

Proof. By the preceding theorem, there exist measures v+ and v~ such that
v =v* — v~ and v+ L v—. Consequently, there exists a measurable set P for
which v¥(X N\ P) = 0 = v~(P). If A is a measurable set satisfying pu(A) = 0,
then p(AN P) =0and v(AN P) =0, by the absolute continuity. Hence

vt(A)=vH(ANP)+v*(ANP)=vH(ANP)
=w+v )(ANP)=v(ANP)=0
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This establishes that v* is absolutely continuous with respect to p. It follows
that v~ is also absolutely continuous with respect to . By the earlier Radon-
Nikodym Theorem (Theorem 2 in Section 8.8, page 414), there exist nonnegative
measurable functions h; and h, such that for A in A,

V+(A)=/Ah1 dp V‘(A):/Ahgd,u

It follows that h; and h, are finite almost everywhere. Thus, there is nothing
suspicious in the equation

u(A):u*(A)-u‘(A):/Ahldu—‘/thgdu=//‘(h1—hg)du .

Theorem 3. The Hahn Decomposition. If u is a signed measure
on the measurable space (X, A), then there is a decomposition of X
into a disjoint pair of measurable sets N and P such that p(A) > 0
when AC P and u(A) < 0 when AC N.

Proof. Left as a problem. [

Problems 8.9

1. Use the Jordan decomposition theorem to prove the Hahn decomposition theorem.

2. Prove that p* in Theorem 1 has the property
ut(A) =sup{u(S): S € Aand S C A}
3. Prove that a signed measure g is monotone on a positive set. Thus, if A C B C S, where
S is a positive set, then 11(A) < p(B).

4. If p is a signed measure, does it follow that —pu is also a signed measure? Are sums and
differences of signed measures signed measures?

5. Let (X, A, i) be a measure space, and let h be a nonnegative measurable function. Define
v(A) = fA hdp. Prove that ffdu = f fhdp for all measurable f.

6. Let 1 and v be measures on the measurable space (X,.A4). Suppose that 0 is the only
measurable function such that v(A) 2 fA fdu, for all A € A. Prove that v 1L pu.

7. Let (X, .A,p) be a measure space such that each singleton {z} is measurable. Define
v(A) to be the sum of all p({z}) as z ranges over A. Does this define a measure on A?

8. Is the function h in Theorem 2 unique?

8.10 Product Measures and Fubini’s Theorem

Suppose that two measure spaces are given: (X, A, u) and (Y, B,v). Is there a
suitable way of making the Cartesian product X x Y into a measure space? In
particular, can this be done in such a way that

/nyf(I’y) = /X /Yf(f’y) dv(y) du(z) ?
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We begin by forming the class of all sets of the form A x B, where A € A
and B € B. Such sets are called measurable rectangles or simply rectangles.
The family of all rectangles is not a o-algebra. For example, (A; x B;)U(A2x B>)
will not be a rectangle, in general. To understand this, observe that if points
(z1,v1) and (z2,y2) belong to a rectangle, then (z;,y2) and (z2,¥;) also belong
to that rectangle.

The next step, therefore, is to construct the o-algebra A @ B generated by
the rectangles. (Refer to Lemma 2 in Section 8.1, page 384). For any subset E
of the Cartesian product X x Y, we define cross-sections

E:={yeY:(z,y) € E}
EY={z€X:(z,y) € F)

Lemma 1. Let (X, A)and (Y,B) be two measurable spaces. If
Eec A®@B, then E € Bforallz € X and EY€ AforallyeY.

Proof. Define
M={E:ECXxY and EY€ A forall yeY)}

We shall prove that M is a o-algebra containing all rectangles. From this it will
follow that M D A ® B, since the latter is the smallest o-algebra containing all
rectangles. Then, if £ € A® B, we can conclude that £ € M and that EY € A
for each y. Now consider any rectangle E = Ax B. If y € B, then EY = A € A.
If y ¢ B, then EY = @ € A. Thus in all cases EY € A and E € M. Next, let E
be any member of M. The equation

(1) (XxY)NE)Y=X\EY

shows that (X x Y) \ E belongs to M. If E; € M, then by the equation

(2) {Q&r=gﬂ

we see that |J E; € M. [ |

An algebra of subsets of a set X is a collection C such that if A and B
belong to C then X N\ A and AU B belong also to C.

Lemma 2. The collection of all unions of finite disjoint families of
rectangles constructed from a pair of o-algebras is an algebra.

Proof. Let C be the collection referred to, and let E and F be members of C.
Then E and F have expressions E = J[_;(A; x B;) and F = U]_,(C; x D;),
both being unions of disjoint families. Since

(3) ENF= UU[ x (B; N D;)]

i=1j =1
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we see that EN F € C, and that C is closed under the taking of intersections.
From the equation

(4) (X xY)N(Ax B)=[(XNA)xBJU[X x (Y \ B)]
we get
(XxY)\E:(XxY)\CJA x B;) ﬁ A; x By)]
i=1 i=1

{ (X~ A9 x B U [x x (v~ B))]}

u' D:

This shows that the complement of E belongs to C, because C is closed under
finite intersections. By the de Morgan identities, C is closed under unions. 8

Lemma 3. In any measure space (X,.A, 1) the following are true
for measurable sets A; :

(1) If Ay C A2 C ---, then p (U2, Ai) = limp, p(An)

(2) If Ay D A2 D --- and p(A1) < oo, then p(Nig, Ai) =
lim,, p(An)

Proof. Assume the hypothesis in (1), and define B, = A, \ A,_;. The se-
quence {Br} is disjoint, and consequently,

w(Ua) - K(Us) - WO Jm 3 u(s)
:nl_]+m°°u<U B,) = hm 1(An)

To establish (2), assume its hypothesis. Then {A4; \ A,} is an increasing se-
quence, and by part (1) we have

u(Ar) - (mA )= (i~ (1a) =u(Ueai~a0)

i=1 i=1

= lim p(A;~An) = lim (u(A1) - p(An))
= p(Ar) — lim p(An) .

A monotone class of sets is a family M having these two properties:

(1) If A, € M and A; C A2 C -+ then 2, A; € M

(2) If A; € M and A; D A2 D --- then N2, A; € M
If X is a set, then 2X is a monotone class. Also, every o-algebra of sets is a
monotone class (easily verified). If A is any family of sets, then there exists a

smallest monotone class containing .A. This assertion depends on the easy fact
that the intersection of a collection of monotone classes is also a monotone class.
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Lemma 4. Let C be an algebra of sets, as defined above. Then the
monotone class generated by C is identical with the o-algebra generated
by C.

Proof. Let M and S be respectively the monotone class and the o-algebra
generated by C. Since every o-algebra is a monotone class, we have M C S.
The rest of the proof is devoted to showing that M is a o-algebra (so that
S M)
For any set F' in the monotone class M we define
Krp={A: thesets ANF, FN A, and AU F belong to M}

Assertion 1 Kpg is a monotone class.

There are two properties to verify, one of which we leave to the reader. Suppose
that A; € Kp and A) C A; C --- Let A =72, Ai. Then A;\F, F\ A;, and
A; U F all belong to M and form monotone sequences. Since M is a monotone

class, we have
[e o]

ANF=JAiNF)eM

i=1

oo
FNA=[)(FNA)eM

i=1

oo
FuA=J(Fua)eM

i=1
These calculations establish that A € K.
Assertion 2 If F €C, thenC C Kp.
To prove this let E be any element of C. Since C is an algebra, we have E' \ F
F X E, and EUF all belonging to C and to M. By the definition of K¢, E € Kp.
Assertion 3 If F € C, then M C Kp.
To prove this, note that Kr is a monotone class containing C, by Assertions 1
and 2. Hence Kr D M, since M is the smallest monotone class containing C.
Assertion 4 If FeC and E € M, then E € KF.
This is simply another way of expressing Assertion 3.
Assertion 5 If F €C and F € M, then F € Kg.
This is true because the statement. E € K is logically equivalent to F' € Kg.
Assertion 6 If F € M, thenC C Kg.
This is a restatement of Assertion 5.
Assertion 7 If E € M, then M C Kg.
This follows from Assertions 6 and 1 because Kg is a monotone class containing
C, while M is the smallest such monotone class.
Assertion 8 M is an algebra.
To prove this, let E and F be members of M. Then F € Kg by Assertion 7.
Hence EN F, F\ E, and EU F all belong to M.
Assertion 9 M is a o-algebra.
To prove this, let A; € M and define B, = A; U---U A,. By Assertion 8, M
is an algebra. Hence B, € M and B, C B, C --- Since M is a monotone class,
U2, Bn € M. 1t follows that | J;—, An € M. [ |
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Theorem 1. First Fubini Theorem. If (X, A, ) and (Y, B,v)
are o-finite measure spaces, and if E € A® B, then

(1) The function y — p(EVY) is measurable.

( ) The function m — v(E.) is measurable.

3) [x v(E:)du(z) = [, u(EY) dv(y)

Proof. Let M be the family of all sets E in A ® B for which the assertion in
the theorem is true. Our task is to show that M = A® B.

We begin by showing that every measurable rectangle belongs to M. Let
E =Ax B, where A€ A and B € B. Since EY = A or EY = @, depending on
whethery € Bory € Y \ B, we have u(EY) = Xg(y)i(A). This is a measurable
function of y. Furthermore,

[ (EY) duy / X (y)(A) du(y) = u(A)v(B)

We can carry out the same argument for v(E;) to see that E € M.

In the second part of the proof, let C denote the class of all sets in . A ® B
that are unions of finite disjoint families of rectangles. By Lemma 2, C is an
algebra. We shall prove that C C M. Let E € C. Then E = |J_, E; where
E,,...,E, is a disjoint set of rectangles. Hence

—u((g Ei>y) =#(i=LnJIE3’> = ,Z:;#(Ey

This shows that y — p(EV) is a measurable function. By the symmetry in this
n

situation, £ — v(E;) is measurable and v(E;) = 3"._, v((Ey);). Since E; € M
by the first part of our proof, we have

/X AEz) dute) = 3 /X (BD:) dute) = 3 /Y W(EY) dv(y)
_— . Yy i
-/ > BN ) = [ B avty)

This establishes that £ € M and that C C M.

In the third segment of the proof, we show that M is closed under the taking
of unions of increasing sequences of sets. Let E; € M and E) C E2 C --- Define
E = U2, Ei. Then by Lemmas 1 and 3, p(EY) = p(Uie, EY) = llm,. H(EY).
Hence, y — u(EY) is a measurable function. Also, since E, € M,

[ mEn i) = tim [ w(ED av) = tim [ v(Ene) dutz) = [ (B2 dsta)

by the Monotone Convergence Theorem (Theorem 1 in Section 8.5, page 401).
This shows that E € M.

In the fourth part of the proof we establish that M is closed under taking
intersections of decreasing sequences of sets. Since X and Y are o-finite, there
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exist An € Aand Bn € Bsuc! that X = oo, An, Y = Unr; Bn, 1(An) < o0,
and v(Bn) < co. We may suppose further that A, C A, C --- and that B; C
B, C --- Let {Ei} be a decreasing sequence of sets in M, and set E =\, E
We want to prove that E € M. Since E = |J;,[EN(A, x Bn)) and since M is
closed under “increasing unions,” it suffices to prove that £ N (A, x B,) € M
for each n. We therefore define

F={(F:FN(ApnxBy) €M for n=1,2,...}

Now it is to be proved that F € F. Since FE = ﬂ:’il E;, it will be sufficient to
prove that F is a monotone class and that E; € F for each i. Since E; € M C
A ® B, we have only to prove that F is a monotone class containing A® B. By
Lemma 4, this will follow if we can show that F is a monotone class containing
C. That F O C can be verified as follows. Since A, x B, € C, and C is an
algebra, we have the implications

FeC=FNAnxBpn)eCCM=FeF

To prove that F is a monotone class, let {F;} be an increasing sequence in F,
and set F = J;2, F;. The equation

oo
N (An x Bn) = | [Fi N (An x Bn)]
i=1

shows that F N (A, x Bn) € M, since M is closed under “increasing unions.”
Hence F € F. Next, take a decreasing sequence {F;} in F, and let F = 2, Fi.
Let n be fixed. For each i, the set G; = F; N (An x B;) belongs to M. Let
G = ;2,G;. Foreachy €Y, GY C An, whence u(GY) < p(An) < oo It
follows from Lemma 3 that u(GY) = lim; u(GY). This proves that u(GY) is a
measurable function of y. Since

/ w(GY) duly) < / W(An)X 5, (¥) () = p(An)v(Br) < 00
Y Y

the Dominated Convergence Theorem (Theorem 2 in Section 8.6, page 406)
implies that [, u(GY)dv(y) = lim; pr Gy) dv. Similarly, [, v(G:)dp(z) =
lim; [, v((Gi)z) dp(z). But for each z, fx ) )du(x Jy r(GY) dv(y) be-
cause G; € M. Hence [, pu(GY)du(y fx (z). Thus G € M. Since
G=FN(An x Bn), F € F.

We are now at the point where M is a monotone class containing C. By
Lemma 4, M contains the o-algebra generated by C. Thus M 2 A® B. [

The preceding theorem enables us to define a measure ¢ on A ® B by the
equation

8(E) = /Y w(EY) du(y) = A W(Ex) du(z)

This measure ¢ is called the product measure of p and v. It is often denoted
by p® v.
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Lemma 5. If (X, A,u) and (Y, B, v) are o-finite measure spaces,
then sois (X xY,AQ B,uQv).

Proof. It is clear that the set function ¢ has the property ¢(@) = 0 and the
property ¢(E) > 0. If {E;} is a disjoint sequence of sets in .A® B, then {E}} is
a disjoint sequence in .A. Hence, by the Dominated Convergence Theorem,

¢<QE,~)=/ ((UE) )du / (UE")du
/Z“ EY)du(y 2/“ = #(E)

Thus ¢ is a measure. For the o-finiteness, observe that if X = (J;., A, and
Y = Un_, Bn, where 4 C A, C ---and By C B, C -+, then X x Y =
Un=1(An x Bn). If, further, u(An) < 0o and v(Bn) < oo for all n, then we have
@(An x Bn) = p(An)v(Bn) < oo. ]

Theorem 2. Second Fubini Theorem. Let (X, A,pn) and
(Y, B, v) be two o-finite measure spaces. Let f be a nonnegative func-
tion on X x Y that is measurable with respect to (X x Y, A® B).
Then

1) For each z, y — f(z,y) is measurable

2) For each y, T+ f(z,y) is measurable

4) + [, f(z,y)dv(y) is measurable

(1)

(2)

(3) y— [y f(z.y) du(z) is measurable

(4)

(5) fXxY f(zv )d¢ = fX f, z,y)dvdu = fY fX z,y)dudv

Proof. If f is the characteristic function of a measurable set E, then (1) is true
because f(z,y) = Xg,(y). Part (2) is true by the symmetry in the situation.
Since

/ f(z,v) du(z) = / X (z,y) dp(z) = / X £v(z) du(z) = p(EY)
X X X

the preceding lemma asserts that (3) is also true in this case. Part (4) is true
by symmetry. For part (5), write

/ f(z,y)dé = $(E) = / J(EY) du(y)
XxY Y

_ /Y /x f(z,y) dus(z) dv(y)

The other equality is similar. Thus, Theorem 2 is true when f is the character-
istic function of a measurable set.

If f is a simple function, then f has properties (1) to (5) by the linearity of
the integrals.
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If f is an arbitrary nonnegative measurable function, then there exist simple
functions f, such that f, 1 f. Since the limit of a sequence of measurable func-
tions is measurable, f has properties (1) to (4). By the Monotone Convergence
Theorem, property (5) follows for f. (]

An extension of the Fubini Theorem exists for a more general class of mea-
sures, namely signed measures and even complex-valued measures. Since the
complex-valued measures include the real-valued measures, we describe them
first. Let (X,.A) be a measurable space. A complex measure “on X” is a
function g : A — C such that:

(I) supealp(A) < oo
(I1) (U A;) = Yoo, #(A;) for any disjoint sequence of measurable sets A;.

In an abuse of notation, we define |¢| by the equation

ul(A) = supz (A

where the supremum is over all partitions of A into a disjoint sequence of measur-
able sets. It is clear that |u(A)| < |¢|(A), because {A} is a competing partition
of A. The theory goes on to establish that |z| is an ordinary (i.e., nonnegative)
measure and |p|(X) < oo. This feature distinguishes the theory of complex or
signed measures from the traditional nonnegative measures. References: [DS],
[Roy], [Ru3], [HS], [Berb3], [Berb4].

The Fubini Theorem in this new setting is as follows:

Theorem 3. Fubini’s Theorem for Complex Measures. Let
(X, A) and (Y,B) be two measurable spaces, and let 1 and v be com-
plex measures on X and Y, respectively. Let f be a complex-valued
measurable function on X x Y. If [, [, |f(z,y)|d|p|d|v| < oo, then

//fzy)du )dv(y //fzydlf(ydu()

This theorem is to be found in [DS].
Problems 8.10

1. Verify Equations (1) and (2).

2. Verify Equations (3) and (4). Show that the two sets on the right side of Equation (4)
are mutually disjoint.

3. Prove that every o-algebra is a monotone class. Prove that the intersection of a family
of monotone classes is also a monotone class.

4. Prove that if a monotone class is an algebra, then it is a o-algebra. Can you get this
conclusion from weaker hypotheses?
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