


From the Preface

Questions in discrete geometry typically involve finite sets of points, lines, circles, planes, or other simple geometric objects. For example, one can
ask, what is the largest number of regions Into which n lines can partition the plane, or what is the minimum possible number of distinct distances
occurring among n points in the plane (the former question is easy, the latter one is hard). More complicated objects are investigated too, such as

convex polytopes or finite families of convex sets. The emphasis is on combinatorial” properties: which of the given objects intersect, or how
many points are needed to intersect all of them, and so on. Characteristics like angle, distance, curvature, or volume, ubiquitous in other areas of

geometry, are usually not of primary interest, although they can serve as useful tools.

Many questions in discrete geometry are very natural and worth studying for their own sake. Some of them, such as the structure of 3-dimensional
convex polytopes, go back to the Antiquity, and a lot of them are motivated by other areas of mathematics. To a working mathematician or
computer scientist, the contemporary discrete geometry offers results and techniques of great diversity, a useful enhancement of the "bag of

tricks" for attacking problems in her or his field.

This book is primarily an introductory textbook. It does not require any special background besides the usual undergraduate mathematics (linear
algebra, calculus, and a little of combinatorics, graph theory, and probability). It should be accessible to early graduate students, although mastering
the more advanced proofs probably needs some mathematical maturity. The first and main part of each section is intended for teaching in class. |

have actually taught most of the material, mainly in an advanced course in Prague whose contents varied over the years.

The book can also serve as a collection of surveys in several narrower subfields of discrete geometry where, as far as | know, no adequate recent
treatment was available. The sections are accompanied by bibliographic notes and extending remarks. For well-established material, such as

convex polytopes, these parts usually refer to the original sources, point to modern treatments and surveys, and present a sample of key results in
the area. For the less well-covered topics, | have aimed at surveying most of the important recent results. For some of them, proof outlines are

provided, which should convey the main ideas and make It easy to fill in the details from the original source.
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Convexity

We begin with a review of basic geometric notions such as hyperplanes and afhine
subspaces in R¢, and we spend some time by discussing the notion of general
position. Then we consider fundamental properties of convex sets in R¢, such
as a theorem about the separation of disjoint convex sets by a hyperplane and
Helly’s theorem.

1.1 Linear and Affine Subspaces, General Position

Linear subspaces. Let R? denote the d-dimensional Euclidean space. The
points are d-tuples of real numbers, z = (z1, z2, ..., Zq).

The space R? is a vector space, and so we may speak of linear subspaces,
linear dependence of points, linear span of a set, and so on. A linear subspace of
R¢ is a subset closed under addition of vectors and under multiplication by real
numbers. What is the geometric meaning? For instance, the linear subspaces
of R? are the origin itself, all lines passing through the origin, and the whole of
R?. In R?, we have the origin, all lines and planes passing through the origin,

and R3.

Affine notions. An arbitrary line in R?, say, is not a linear subspace unless
it passes through (. General lines are what are called affine subspaces. An
affine subspace of R? has the form z + L, where z € R% is some vector and L
is a linear subspace of R%. Having defined affine subspaces, the other “affine”
notions can be constructed by imitating the “linear” notions.

What is the affine hull of a set X C R%? It is the intersection of all affine
subspaces of RY containing X. As is well known, the linear span of a set X can
be described as the set of all linear combinations of points of X. What is an
affine combination of points a1, as,...,a, € R% that would play an analogous
role? To see this, we translate the whole set by —a,, so that a,, becomes the
origin, we make a linear combination, and we translate back by +a,. This yields
an expression of the form (a1 — an) + B2(az —an) + -+ + Bunlan — an) + a, =

Brai+Paas+- -+ Bp_1an_1+ (1 —BL—P2—--- _ﬁn—l)ana where 5q,..., B, are
arbitrary real numbers. Thus, an affine combination of points as,...,a, € R%
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is an expression of the form
aia; + -+ apay, Where aq,...,ap, € Rand a1+ -+ a, = 1.

Then indeed, it is not hard to check that the affine hull of X is the set of all
affine combinations of points of X.

The affine dependence of points aq,...,a, means that one of them can be
written as an afhine combination of the others. This is the same as the existence
of real numbers a1, as, ... a,, at least one of them nonzero, such that both

a1a1 +asas +---+ana, =0and a1 +as+--- + o, = 0.

(Note the difference: In an affine combination, the «; sum to 1, while in an
affine dependence, they sum to 0.)

Affine dependence of aq,...,a, is equivalent to linear dependence of the
n—1 vectors a; — a,,09 — Qp,...,0n_1 — Gy. Lherefore, the maximum possible
number of affinely independent points in R% is d+1.

Another way of expressing affine dependence uses “lifting” one dimension
higher. Let b; = (a;,1) be the vector in R4t! obtained by appending a new
coordinate equal to 1 to a;; then aq, ..., ay, are affinely dependent if and only if
bi,...,b, are linearly dependent. This correspondence of affine notions in R¢
with linear notions in R¥t! is quite general. For example, if we identify R?
with the plane z3 = 1 in R? as in the picture,

then we obtain a bijective correspondence of the k-dimensional linear subspaces
of R? that do not lie in the plane z3 = 0 with (k—1)-dimensional affine sub-
spaces of R%. The drawing shows a 2-dimensional linear subspace of R3 and the
corresponding line in the plane z3 = 1. (The same works for affine subspaces
of R% and linear subspaces of R%™! not contained in the subspace z4,1 = 0.)

This correspondence also leads directly to extending the affine plane R? into
the projective plane: To the points of R? corresponding to nonhorizontal lines
through 0 in R?® we add points “at infinity,” that correspond to horizontal lines
through 0 in R®. But in this book we remain in the affine space most of the
time, and we do not use the projective notions.

Let a1,as,...,aq.1 be points in R%, and let A be the d x d matrix with
a; — agy1 as the ¢th column, ¢ = 1,2,...,d. Then aq,...,aq+1 are affinely
independent if and only if A has d linearly independent columns, and this is
equivalent to det(A) # 0. We have a useful criterion of affine independence
using a determinant.
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Affine subspaces of R? of certain dimensions have special names. A (d—1)-
dimensional affine subspace of RY is called a hyperplane (while the word plane
usually means a 2-dimensional subspace of R? for any d). One-dimensional
subspaces are lines, and a k-dimensional affine subspace is often called a k-flat.

A hyperplane is usually specified by a single linear equation of the form
a1Z1 + axx2 + - - - + agrxg = b. We usually write the left-hand side as the scalar

product {(a,z). So a hyperplane can be expressed as the set {z € R%: (a,z) = b}
where a € R\ {0} and b € R. A (closed) half-space in R is a set of the form

{z € R%: (a,z) > b} for some a € R4\ {0}; the hyperplane {z € R%: (a,z) = b}
is its boundary.

General k-flats can be given either as intersections of hyperplanes or as
affine images of R* (parametric expression). In the first case, an intersection
of £ hyperplanes can also be viewed as a solution to a system Ax = b of linear
equations, where z € R? is regarded as a column vector, A is a k X d matrix,
and b € R*. (As a rule, in formulas involving matrices, we interpret points of
R? as column vectors.)

An affine mapping f:R* — R has the form f:y — By + ¢ for some d X k
matrix B and some ¢ € R, so it is a composition of a linear map with a
translation. The image of f is a k'-flat for some &' < min(k, d). This k&' equals
the rank of the matrix B.

General position. “We assume that the points (lines, hyperplanes,...) are
in general position.” This magical phrase appears in many proofs. Intuitively,
general position means that no “unlikely coincidences” happen in the considered
configuration. For example, if 3 points are chosen in the plane without any
special intention, “randomly,” they are unlikely to lie on a common line. For a
planar point set in general position, we always require that no three of its points
be collinear. For points in R? in general position, we assume similarly that no
unnecessary afline dependencies exist: No £ < d+1 points lie in a common
(k—2)-flat. For lines in the plane in general position, we postulate that no 3
lines have a common point and no 2 are parallel.

The precise meaning of general position is not fully standard: It may depend
on the particular context, and to the usual conditions mentioned above we
sometimes add others where convenient. For example, for a planar point set
in general position we can also suppose that no two points have the same z-
coordinate.

What conditions are suitable for including into a “general position” assump-
tion? In other words, what can be considered as an unlikely coincidence? For
example, let X be an n-point set in the plane, and let the coordinates of the
ith point be (z;,y;). Then the vector v(X) = (z1,22,-..,Zn,¥1,¥Y2,---,Yn) CaN
be regarded as a point of R?*. For a configuration X in which z; = zs, i.e., the
first and second points have the same z-coordinate, the point v(X) lies on the
hyperplane {1 = z2} in R?". The configurations X where some two points
share the z-coordinate thus correspond to the union of (%) hyperplanes in R*".
Since a hyperplane in R?" has (2n-dimensional) measure zero, almost all points
of R?" correspond to planar configurations X with all the points having distinct
z-coordinates. In particular, if X is any n-point planar configuration and € > 0
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is any given real number, then there is a configuration X', obtained from X by
moving each point by distance at most ¢, such that all points of X' have distinct
z-coordinates. Not only that: almost all small movements (perturbations) of X
result in X’ with this property.

This is the key property of general position: configurations in general po-
sition lie arbitrarily close to any given configuration (and they abound in any
small neighborhood of any given configuration). Here is a fairly general type
of condition with this property. Suppose that a configuration X is specified by
a vector t = (t1,t2,...,t,) of m real numbers (coordinates). The objects of X
can be points in R%, in which case m = dn and the t; are the coordinates of
the points, but they can also be circles in the plane, with m = 3n and the ¢;
expressing the center and the radius of each circle, and so on. The general posi-
tion condition we can put on the configuration X is p(t) = p(t1,t2,...,tm) # 0,
where p is some nonzero polynomial in m variables. Here we use the following
well-known fact (a consequence of Sard’s theorem; see, e.g., Bredon [Bre93],
Appendix C): For any nonzero m-variate polynomial p(t1,...,t,,), the zero set
{t € R™: p(t) =0} has measure 0 in R™.

Therefore, almost all configurations X satisfy p(¢) # 0. So any condition
that can be expressed as p(t) # 0 for a certain polynomial p in m real variables,
or, more generally, as pi1(t) # 0 or p2(t) # 0 or ..., for finitely or countably
many polynomials pq, p2, ..., can be included in a general position assumption.

For example, let X be an n-point set in R%, and let us consider the condition
“no d+1 points of X lie in a common hyperplane.” In other words, no d+1
points should be affinely dependent. As we know, the affine dependence of d+1
points means that a suitable d X d determinant equals 0. This determinant is
a polynomial (of degree d) in the coordinates of these d+1 points. Introducing
one polynomial for every (d+1)-tuple of the points, we obtain (;',) polynomials
such that at least one of them is 0 for any configuration X with d+1 points
in a common hyperplane. Other usual conditions for general position can be
expressed similarly.

In many proofs, assuming general position simplifies matters considerably.
But what do we do with configurations X that are not in general position?
We have to argue, somehow, that if the statement being proved is valid for
configurations X arbitrarily close to our Xy, then it must be valid for X itself,
too. Such proofs, usually called perturbation arguments, are often rather simple,
and almost always somewhat boring. But sometimes they can be tricky, and
one should not underestimate them, no matter how tempting this may be. A
nontrivial example will be demonstrated in Section 5.5 (Lemma 5.5.4).

Exercises

1. Verify that the affine hull of a set X C R¥ equals the set of all affine combinations
of points of X. [2

2. Let A be a 2 x 3 matrix and let b € R?. Interpret the solution of the system
Axz = b geometrically (in most cases, as an intersection of two planes) and discuss
the possible cases in algebraic and geometric terms. (2

3. (a) What are the possible intersections of two (2-dimensional) planes in R*?
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For example, in the plane, conv(X) is the union of all triangles with vertices
at points of X. The proof of the theorem is left as an exercise to the subsequent
section.

A basic result about convex sets is the separability of disjoint convex sets
by a hyperplane.

1.2.4 Theorem (Separation theorem). Let C,D C R¢ be convex sets with
CND = 0. Then there exists a hyperplane h such that C lies in one of the
closed half-spaces determined by h, and D lies in the opposite closed half-space.
In other words, there exist a unit vector a € R® and a number b € R such that
for all x € C we have {(a,z) > b, and for all x € D we have {a,z) < b.

If C' and D are closed and at least one of them is bounded, they can be
separated strictly; in such a way that CNh=DNh=0.

In particular, a closed convex set can be strictly separated from a point.
This implies that the convex hull of a closed set X equals the intersection of all
closed half-spaces containing X.

Sketch of proof. First assume that C' and D are compact (i.e., closed and
bounded). Then the Cartesian product C x D is a compact space, too, and the
distance function (z,y) — ||z — y|| attains its minimum on C x D. That is,
there exist points p € C and g € D such that the distance of C' and D equals
the distance of p and q.

The desired separating hyperplane h can be taken as the one perpendicular
to the segment pg and passing through its midpoint:

It is easy to check that kA indeed avoids both C and D.
If D is compact and C closed, we can intersect C with a large ball and get
a compact set C'. If the ball is sufficiently large, then C and C’ have the same
distance to D. So the distance of C and D is attained at some p € C' and
g € D, and we can use the previous argument.
For arbitrary disjoint convex sets C' and D, we choose a sequence C; C

Cy C C3 C --- of compact convex subsets of C' with |J;>,C, = C. For

example, assuming that 0 € C, we can let C,, be the intersection of the closure
of (1 — %)C with the ball of radius n centered at 0. A similar sequence D; C

Dy C ... is chosen for D, and we let h, = {z € R% (a,,z) = b,} be a

hyperplane separating C,, from D,,, where a, is a unit vector and b, € R.
The sequence (b, ), is bounded, and by compactness, the sequence of (d+1)-

n—1
component vectors (an,b,) € R4 has a cluster point (a,b). One can verify,
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by contradiction, that the hyperplane » = {z € R%: {a,z) = b} separates C
and D (nonstrictly).

The importance of the separation theorem is documented by its presence
in several branches of mathematics in various disguises. Its home territory is
probably functional analysis, where it is formulated and proved for infinite-
dimensional spaces; essentially it is the so-called Hahn-Banach theorem. The
usual functional-analytic proof is different from the one we gave, and in a way
it is more elegant and conceptual. The proof sketched above uses more special
properties of R%, but it is quite short and intuitive in the case of compact C

and D.

Connection to linear programming. A basic result in the theory of linear
programming is the Farkas lemma. It is a special case of the duality of linear
programming (discussed in Section 10.1) as well as the key step in its proof.

1.2.5 Lemma (Farkas lemma, one of many versions). For every d X n
real matrix A, exactly one of the following cases occurs:

(i) The system of linear equations Ax = 0 has a nontrivial nonnegative so-
lution £ € R™ (all components of ¢ are nonnegative and at least one of
them is strictly positive).

(ii) There exists a y € R? such that y' A is a vector with all entries strictly
negative. Thus, if we multiply the jth equation in the system Az = 0 by y;
and add these equations together, we obtain an equation that obviously
has no nontrivial nonnegative solution, since all the coefficients on the
left-hand sides are strictly negative, while the right-hand side is 0.

Proof. Let us see why this is yet another version of the separation theorem.
Let V C RY be the set of n points given by the column vectors of the matrix A.
We distinguish two cases: Either 0 € conv(V') or 0 € conv(V).

In the former case, we know that 0 is a convex combination of the points
of V, and the coeflicients of this convex combination determine a nontrivial
nonnegative solution to Az = 0.

In the latter case, there exists a hyperplane strictly separating V from 0,
i.e., a unit vector y € R such that (y,v) < {y,0) = 0 for each v € V. This is
just the y from the second alternative in the Farkas lemma.

Bibliography and remarks. Most of the material in this chapter is quite old
and can be found in many surveys and textbooks. Providing historical accounts
of such well-covered areas is not among the goals of this book, and so we mention
only a few references for the specific results discussed in the text and add some
remarks concerning related results.

The concept of convexity and the rudiments of convex geometry have been
around since antiquity. The initial chapter of the Handbook of Convex Geometry
[GW93] succinctly describes the history, and the handbook can be recommended
as the basic source on questions related to convexity, although knowledge has pro-
gressed significantly since its publication.
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For an introduction to functional analysis, including the Hahn—Banach theo-
rem, see Rudin [Rud91], for example. The Farkas lemma originated in [Far94]
(nineteenth century!). More on the history of the duality of linear programming
can be found, e.g., in Schrijver’s book [Sch86].

As for the origins, generalizations, and applications of Carathéodory’s theorem,
as well as of Radon’s lemma and Helly’s theorem discussed in the subsequent sec-
tions, a recommendable survey is Eckhoff [Eck93], and an older well-known source
is Danzer, Griinbaum, and Klee [DGK63].

Carathéodory’s theorem comes from the paper [Car07], concerning power series
and harmonic analysis. A somewhat similar theorem, due to Steinitz [Stel6], asserts
that if 2 lies in the interior of conv(X) for an X C RY, then it also lies in the interior
of conv(Y) for some ¥ C X with |Y| < 2d. Bonnice and Klee [BK63] proved a
common generalization of both these theorems: Any k-interior point of X is a k-
interior point of Y for some Y C X with at most max(2k, d+1) points, where z is
called a k-intertor point of X if it lies in the relative interior of the convex hull of
some k-+1 affinely independent points of X.

Exercises

1. Give a detailed proof of Claim 1.2.2. [2

2. Write down a detailed proof of the separation theorem. (3

3. Find an example of two disjoint closed convex sets in the plane that are not
strictly separable. (1

4. Let f:R% — R” be an affine map.

(a) Prove that if C C R is convex, then f(C) is convex as well. Is the preimage
of a convex set always convex? [2

(b) For X C R? arbitrary, prove that conv(f(X)) = conv(f(X)). [

5. Let X C RY Prove that diam(conv(X)) = diam(X), where the diameter

diam(Y) of a set Y is sup{||z — y||: z,y € Y}. [8

6. A set C C R?is a convex cone if it is convex and for each z € C, the ray 0z is
fully contained in C.

(a) Analogously to the convex and affine hulls, define the appropriate “conic
hull” and the corresponding notion of “combination” (analogous to the convex
and affine combinations). [3

(b) Let C be a convex cone in R? and b € C a point. Prove that there exists a
vector a with {(a,z) > 0 for all x € C and {a,b) < 0. [2

7. (Variations on the Farkas lemma) Let A be a d x n matrix and let b € R?.

(a) Prove that the system Az = b has a nonnegative solution z € R™ if and only
if every y € R¢ satisfying y7 A > 0 also satisfies yTb > 0. [

(b) Prove that the system of inequalities Az < b has a nonnegative solution z if
and only if every nonnegative y € R? with yT A > 0 also satisfies yTb > 0. [3

8. (a) Let C C R be a compact convex set with a nonempty interior, and let p € C
be an interior point. Show that there exists a line £ passing through p such that

the segment £N (' is at least as long as any segment parallel to £ and contained
in C. 4

(b) Show that (a) may fail for C' compact but not convex. [1
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1.3 Radon’s Lemma and Helly’s Theorem

Carathéodory’s theorem from the previous section, together with Radon’s lemma,
and Helly’s theorem presented here, are three basic properties of convexity in
R involving the dimension. We begin with Radon’s lemma.

1.3.1 Theorem (Radon’s lemma). Let A be a set of d+2 points in RY.
Then there exist two disjoint subsets A1, A2 C A such that

conv(A;) N conv(As) # 0.

A point £ € conv(A;) Nconv(As), where A; and A, are as in the theorem,
is called a Radon point of A, and the pair (A4;, A2) is called a Radon partition
of A (it is easily seen that we can require A; U A; = A).

Here are two possible cases in the plane:

A

Proof. Let A = {ai,as,...,a4.2}. These d+2 points are necessarily affinely

dependent. That is, there exist real numbers a,...,aq412, not all of them 0,
such that Ef;rlz a; = 0 and Z‘ftrlz a;a; = 0.

?
Set P = {i: a; > 0} and N = {i: oy; < 0}. Both P and N are nonempty. We
claim that P and N determine the desired subsets. Let us put A; = {a;: i € P}
and Ay = {a;: i € N}. We are going to exhibit a point z that is contained in

the convex hulls of both these sets.

Put S =3, pa;; we also have § = — >,y ;. Then we define
T = % a; . (1.1)
ieP

Since Z‘ff;rlz aia; =0 =) ,cpaia; + ) ;- n @ia;, we also have

()
— Ot
L — Z Sz a; . (12)
1EN

The coefficients of the a; in (1.1) are nonnegative and sum to 1, so z is a
convex combination of points of A;. Similarly (1.2) expresses = as a convex
combination of points of As.

Helly’s theorem is one of the most famous results of a combinatorial nature
about convex sets.

1.3.2 Theorem (Helly’s theorem). Let Cy,Cs,..., C, be convex sets in R,
n > d+1. Suppose that the intersection of every d+1 of these sets is nonempty.
Then the intersection of all the C; is nonempty.
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The first nontrivial case states that if every 3 among 4 convex sets in the
plane intersect, then there is a point common to all 4 sets. This can be proved
by an elementary geometric argument, perhaps distinguishing a few cases, and
the reader may want to try to find a proof before reading further.

In a contrapositive form, Helly’s theorem guarantees that whenever C', Cs, ...

are convex sets with ();_; C; = 0, then this is witnessed by some at most d+1
sets with empty intersection among the C;. In this way, many proofs are greatly
simplified, since in planar problems, say, one can deal with 3 convex sets instead
of an arbitrary number, as is amply illustrated in the exercises below.

It is very tempting and quite usual to formulate Helly’s theorem as follows:
“If every d+1 among n convex sets in R? intersect, then all the sets inter-
sect.” But, strictly speaking, this is false, for a trivial reason: For d > 2, the
assumption as stated here is met by n = 2 disjoint convex sets.

Proof of Helly’s theorem. (Using Radon’s lemma.) For a fixed d, we
proceed by induction on n. The case n = d+1 is clear, so we suppose that n >
d+2 and that the statement of Helly’s theorem holds for smaller n. Actually,
n = d+2 is the crucial case; the result for larger n follows at once by a simple
induction.

Consider sets C7,C5, ..., C, satisfying the assumptions. If we leave out
any one of these sets, the remaining sets have a nonempty intersection by the
inductive assumption. Let us fix a point a; € (1,4, C; and consider the points

ai,as,-..,a4+2. By Radon’s lemma, there exist disjoint index sets I, I C
{1,2,...,d+2} such that

conv({a;: i € I }) Nconv({a;: i € I1}) £ 0.

We pick a point z in this intersection. The following picture illustrates the case

d=2and n=4:

a1
?
as” :cf * a3
.
ao

03 04

We claim that z lies in the intersection of all the ;. Consider some ¢ &
{1,2,...,n}; then i € I or i € I>. In the former case, each a; with j € I; lies
in C;, and so z € conv({a;: j € I1}) C C;. For i € I we similarly conclude
that z € conv({ae;: j € I1}) C C;. Therefore z € (i, C;.

An infinite version of Helly’s theorem. If we have an infinite collection
of convex sets in R such that any d+1 of them have a common point, the
entire collection still need not have a common point. Two examples in R' are
the families of intervals {(0,1/n): n =1,2,...} and {[n,00): n =1,2,...}. The
sets in the first example are not closed, and the second example uses unbounded
sets. For compact (i.e., closed and bounded) sets, the theorem holds:
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1.3.3 Theorem (Infinite version of Helly’s theorem). Let C be an ar-
bitrary infinite family of compact convex sets in R% such that any d+1 of the
sets have a nonempty intersection. Then all the sets of C have a nonempty
intersection.

Proof. By Helly’s theorem, any finite subfamily of C has a nonempty inter-
section. By a basic property of compactness, if we have an arbitrary family of
compact sets such that each of its finite subfamilies has a nonempty intersec-
tion, then the entire family has a nonempty intersection.

Several nice applications of Helly’s theorem are indicated in the exercises
below, and we will meet a few more later in this book.

Bibliography and remarks. Helly proved Theorem 1.3.2 in 1913 and commu-
nicated it to Radon, who published a proof in [Rad21]. This proof uses Radon’s
lemma, although the statement wasn’t explicitly formulated in Radon’s paper.
References to many other proofs and generalizations can be found in the already
mentioned surveys [Eck93] and [DGKG63].

Helly’s theorem inspired a whole industry of Helly-type theorems. A family B
of sets is said to have Helly number h if the following holds: Whenever a finite
subfamily F C B is such that every h or fewer sets of 7 have a common point,
then (F # 0. So Helly’s theorem says that the family of all convex sets in R?
has Helly number d+1. More generally, let P be some property of families of sets
that is hereditary, meaning that if F has property P and 7' C F, then F' has P
as well. A family B is said to have Helly number A with respect to P if for every
finite F C B, all subfamilies of F of size at most A having P implies F having P.
That is, the absence of P is always witnessed by some at most A sets, so it is a
“local” property.

Exercises

1. Prove Carathéodory’s theorem (you may use Radon’s lemma). [4

2. Let K C R? be a convex set and let Cy,...,C, C R% n > d+1, be convex sets
such that the intersection of every d+1 of them contains a translated copy of K.

Prove that then the intersection of all the sets C; also contains a translated copy
of K. [2

This result was noted by Vincensini [Vin39] and by Klee [Kle53].

3. Find an example of 4 convex sets in the plane such that the intersection of each
3 of them contains a segment of length 1, but the intersection of all 4 contains
no segment of length 1. [1

4. A strip of width w is a part of the plane bounded by two parallel lines at distance
w. The width of a set X C R? is the smallest width of a strip containing X.

(a) Prove that a compact convex set of width 1 contains a segment of length 1
of every direction. (3

(b) Let {C},Cs,...,C,} be closed convex sets in the plane, n > 3, such that
the intersection of every 3 of them has width at least 1. Prove that [),_; C; has
width at least 1. [2

The result as in (b), for arbitrary dimension d, was proved by Sallee [Sal75], and
a simple argument using Helly’s theorem was noted by Buchman and Valentine

[BV82].
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. Statement: Each set X C R? of diameter at most 1 (i.e., any 2 points have

distance at most 1) is contained in some disc of radius 1/+/3.

(a) Prove the statement for 3-element sets X. [2
(b) Prove the statement for all finite sets X. [2

(c) Generalize the statement to R%: determine the smallest » = r(d) such that
every set of diameter 1 in R is contained in a ball of radius r (prove your claim).

4

The result as in (c) is due to Jung; see [DGK63].

. (a) Prove that if the intersection of each 4 or fewer among convex sets C1,...,C), C

R? contains a ray then [, C; also contains a ray. [4
(b) Show that the number 4 in (a) cannot be replaced by 3. [2

This result, and an analogous one in R? with the Helly number 2d, are due to
Katchalski [Kat78].

. For a set X C R? and a point z € X, let us denote by V() the set of all points

y € X that can “see” z, i.e., points such that the segment zy is contained in X.
The kernel of X is defined as the set of all points £ € X such that V(z) = X. A
set with a nonempty kernel is called star-shaped.

(a) Prove that the kernel of any set is convex. 1

(b) Prove that if V(z)NV (y)NV (z) # 0 for every z,y, 2z € X and X is compact,
then X is star-shaped. That is, if every 3 paintings in a (planar) art gallery can be
seen at the same time from some location (possibly different for different triples
of paintings), then all paintings can be seen simultaneously from somewhere. If
it helps, assume that X is a polygon. (5

(c) Construct a nonempty set X C R? such that each of its finite subsets can be
seen from some point of X but X is not star-shaped. [2

The result in (b), as well as the d-dimensional generalization (with every d+1
regions V (z) intersecting), is called Krasnosel’skii’s theorem; see [Eck93] for ref-
erences and related results.

. In the situation of Radon’s lemma (A is a (d+2)-point set in R?), call a point

z € R? a Radon point of A if it is contained in convex hulls of two disjoint subsets
of A. Prove that if A is in general position (no d+1 points affinely dependent),
then its Radon point is unique. (3

. (a) Let X,Y C R? be finite point sets, and suppose that for every subset § C

X UY of at most 4 points, SN X can be separated (strictly) by a line from SNY.
Prove that X and Y are line-separable. (3

(b) Extend (a) to sets X,Y C R4, with |S| < d+2. [5
The result (b) is called Kirchberger’s theorem [Kir03].

1.4 Centerpoint and Ham Sandwich

We prove an interesting result as an application of Helly’s theorem.

1.4.1 Definition (Centerpoint). Let X be an n-point set in R%. A point

z € RY is called a centerpoint of X if each closed half-space containing

contains at least ;75 points of X.
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Let us stress that one set may generally have many centerpoints, and a
centerpoint need not belong to X.

The notion of centerpoint can be viewed as a generalization of the median of
one-dimensional data. Suppose that z1,...,z, € R are results of measurements
of an unknown real parameter z. How do we estimate z from the z;7 We can
use the arithmetic mean, but if one of the measurements is completely wrong
(say, 100 times larger than the others), we may get quite a bad estimate. A
more “robust” estimate is a median, i.e., a point z such that at least % of the z;
lie in the interval (—oo, z] and at least % of them lie in [z,00). The centerpoint
can be regarded as a generalization of the median for higher-dimensional data.

In the definition of centerpoint we could replace the fraction ﬁ by some
other parameter o € (0,1). For o > Wlla such an “a-centerpoint” need not
always exist: Take d+1 points in general position for X. With a = di—l—l as in

the definition above, a centerpoint always exists, as we prove next.

Centerpoints are important, for example, in some algorithms of divide-and-
conquer type, where they help divide the considered problem into smaller sub-
problems. Since no really efhicient algorithms are known for finding “exact”
centerpoints, the algorithms often use a-centerpoints with a suitable o < ﬁ,
which are easier to find.

1.4.2 Theorem (Centerpoint theorem). Each finite point set in R? has at
least one centerpoint.

Proof. First we note an equivalent definition of a centerpoint: z is a
centerpoint of X if and only if it lies in each open half-space v such that
X Nyl > d;il 7.

We would like to apply Helly’s theorem to conclude that all these open
half-spaces intersect. But we cannot proceed directly, since we have infinitely
many half-spaces and they are open and unbounded. Instead of such an open
half-space -y, we thus consider the compact convex set conv(X N~y) C 7.

conv(y N X)

Letting -y run through all open half-spaces v with | X N~y| > d;il n, we obtain a

family C of compact convex sets. Each of them contains more than d;iln points
of X, and so the intersection of any d+1 of them contains at least one point
of X. The family C consists of finitely many distinct sets (since X has finitely
many distinct subsets), and so (1C # 0 by Helly’s theorem. Each point in this

intersection 1s a centerpoint.

In the definition of a centerpoint we can regard the finite set X as defining
a distribution of mass in R%. The centerpoint theorem asserts that for some

point z, any half-space containing z encloses at least Wll of the total mass. It is
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not dificult to show that this remains valid for continuous mass distributions,
or even for arbitrary Borel probability measures on R? (Exercise 1).

Ham-sandwich theorem and its relatives. Here is another important re-
sult, not much related to convexity but with a flavor resembling the centerpoint
theorem.

1.4.3 Theorem (Ham-sandwich theorem). Every d finite sets in R? can
be simultaneously bisected by a hyperplane. A hyperplane h bisects a finite set

A if each of the open half-spaces defined by h contains at most ||A|/2] points
of A.

This theorem is usually proved via continuous mass distributions using a
tool from algebraic topology: the Borsuk—Ulam theorem. Here we omit a proot.

Note that if A; has an odd number of points, then every h bisecting A;
passes through a point of 4;. Thus if A,,..., A4 all have odd sizes and their
union is in general position, then every hyperplane simultaneously bisecting
them is determined by d points, one of each A;. In particular, there are only
finitely many such hyperplanes.

Again, an analogous ham-sandwich theorem holds for arbitrary d Borel
probability measures in R¢.

Center transversal theorem. There can be beautiful new things to discover
even in well-studied areas of mathematics. A good example is the following
recent result, which “interpolates” between the centerpoint theorem and the
ham-sandwich theorem.

1.4.4 Theorem (Center transversal theorem). Let 1 < k < d and let
A1, A,, ..., Ay be finite point sets in R%. Then there exists a (k—1)-flat f such
that for every hyperplane h containing f, both the closed half-spaces defined
by h contain at least d_iﬂ |A;| points of A;, 1 =1,2,...,k.

The ham-sandwich theorem is obtained for & = d and the centerpoint the-
orem for £ = 1. The proof, which we again have to omit, is based on a result
of algebraic topology, too, but it uses a considerably more advanced machinery

than the ham-sandwich theorem. However, the weaker result with ﬁ instead

1 ‘ i ‘
of -— —5 1S easy to prove; see Exercise 2.

Bibliography and remarks. The centerpoint theorem was established by
Rado [Rad47]. According to Steinlein’s survey [Ste85], the ham-sandwich theorem
was conjectured by Steinhaus (who also invented the popular 3-dimensional inter-
pretation, namely, that the ham, the cheese, and the bread in any ham sandwich
can be simultaneously bisected by a single straight motion of the knife) and proved
by Banach. The Center Transversal theorem was found by Dol'nikov [Dol92] and,
independently, by Zivaljevié¢ and Vreéica [ZV90].

Significant effort has been devoted to efficient algorithms for finding (approxi-
mate) centerpoints and ham-sandwich cuts (i.e., hyperplanes as in the ham-sandwich
theorem). In the plane, a ham-sandwich cut for two n-point sets can be computed
in linear time (Lo, Matousek, and Steiger [LMS94]). In a higher but fixed dimen-
sion, the complexity of the best exact algorithms is currently slightly better than
O(n®~1). A centerpoint in the plane, too, can be found in linear time (Jadhav
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and Mukhopadhyay [JM94]). Both approximate ham-sandwich cuts (in the ratio
1 : 1+¢ for a fixed £ > 0) and approximate centerpoints ((ﬁ—s)-centerpoints) can
be computed in time O(n) for every fixed dimension d and every fixed € > 0, but
the constant depends exponentially on d, and the algorithms are impractical if the
dimension is not quite small. A practically efficient randomized algorithm for com-
puting approximate centerpoints in high dimensions (a-centerpoints with a &~ 1/d?)

was given by Clarkson, Eppstein, Miller, Sturtivant, and Teng [CEMT96].

Exercises

1. (Centerpoints for general mass distributions)

(a) Let u be a Borel probability measure on R%; that is, u(R%) = 1 and each
open set is measurable. Show that for each open half-space v with p(vy) > ¢ there
exists a compact set C' C v with u(C) > ¢t. [2

(b) Prove that each Borel probability measure in R has a centerpoint (use (a)
and the infinite Helly’s theorem). [2

2. Prove that for any k finite sets A;,..., Ax C R%, where 1 < k < d, there exists a
(k—1)-flat such that every hyperplane containing it has at least - |4;| points
of 4; in both of its closed half-spaces for all : =1,2,...,k. 11
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Lattices and Minkowski’s
Theorem

This chapter is a quick excursion into the geometry of numbers, a field where
number-theoretic results are proved by geometric arguments, often using prop-
erties of convex bodies in R¢. We formulate the simple but beautiful theorem of
Minkowski on the existence of a nonzero lattice point in every symmetric convex
body of sufficiently large volume. We derive several consequences, concluding
with a geometric proof of the famous theorem of Lagrange claiming that every
natural number can be written as the sum of at most 4 squares.

2.1 Minkowski’s Theorem

In this section we consider the integer lattice Z¢, and so a lattice point is a point
in R? with integer coordinates. The following theorem can be used in many
interesting situations to establish the existence of lattice points with certain
properties.

2.1.1 Theorem (Minkowski’s theorem). Let C C R¢ be symmetric (around
the origin, i.e., C = —C), convex, bounded, and suppose that vol(C) > 2¢.
Then C contains at least one lattice point different from 0.

Proof. We put C' = ;C = {3z: z € C}.

Claim: There exists a nonzero integer vector v € Z%\ {0} such that C'N (C' +
v) # 0; i.e., C' and a translate of C' by an integer vector intersect.

Proof. By contradiction; suppose the claim is false. Let R be a large
integer number. Consider the family C of translates of C’ by the
integer vectors in the cube [-R, R]%: C = {C'+v: v € [-R, R]*NZ4%},
as is indicated in the drawing (C' is painted in gray).
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Proof. Suppose than one could see outside along some line £ passing through
the origin. This means that the strip S of width 0.16 with £ as the middle
line contains no lattice point in K except for the origin. In other words, the
symmetric convex set C' = K NS contains no lattice points but the origin. But
as is easy to calculate, vol(C) > 4, which contradicts Minkowski’s theorem. L

2.1.3 Proposition (Approximating an irrational number by a frac-
tion). Let a € (0,1) be a real number and N a natural number. Then there
exists a pair of natural numbers m,n such that n < N and

m 1
a—— | < —=

n nN’

This proposition implies that there are infinitely many pairs m,n such that

la — ®| < 1/n? (Exercise 4). This is a basic and well-known result in elementary

({
number theory. It can also be proved using the pigeonhole principle.

The proposition has an analogue concerning the approximation of several
numbers &1,...,a; by fractions with a common denominator (see Exercise 5),
and there a proof via Minkowski’s theorem seems to be the simplest.

Proof of Proposition 2.1.3. Consider the set

C:{(w,y)ERZ; —N—%SwSN—I—%, \aw—y\<%}.

Y = Qx

1
N

This is a symmetric convex set of area (2N —|—1)% > 4, and therefore it contains
some nonzero integer lattice point (n, m). By symmetry, we may assume n > 0.

The definition of C gives n < N and |an — m| < %. In other words, |a — 2| <

1
niN "’
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Bibliography and remarks. The name “geometry of numbers” was coined by
Minkowski, who initiated a systematic study of this field (although related ideas
appeared in earlier works). He proved Theorem 2.1.1, in a more general form
mentioned later on, in 1891 (see [Min96]). His first application was a theorem
on simultaneously making linear forms small (Exercise 2.2.4). While geometry
of numbers originated as a tool in number theory, for questions in Diophantine
approximation and quadratic forms, today it also plays a significant role in several
other diverse areas, such as coding theory, cryptography, the theory of uniform
distribution, and numerical integration.

Theorem 2.1.1 is often called Minkowsk:’s first theorem. What is, then, Minkowski’s
second theorem? We answer this natural question in the notes to Section 2.2, where
we also review a few more of the basic results in the geometry of numbers and point
to some interesting connections and directions of research.

Most of our exposition in this chapter follows a similar chapter in Pach and
Agarwal [PA95]. Older books on the geometry of numbers are Cassels [Cas59] and
Gruber and Lekkerkerker [GL87]. A pleasant but somewhat aged introduction is
Siegel [Sie89]. The Gruber [Gru93] provides a concise recent overview.

Exercises

1. Prove: If C C R? is convex, symmetric around the origin, bounded, and such
that vol(C) > k2%, then C contains at least 2k lattice points. [2

2. By the method of the proof of Minkowski’s theorem, show the following result
(Blichtfeld; Van der Corput): If § C R? is measurable and vol(S) > k, then
there are points s, 82,...,5:, € S with all s, —s5; € 2%, 1< 4,5 < k. [3

3. Show that the boundedness of ' in Minkowski’s theorem is not really necessary.
1

4. (a) Verify the claim made after Example 2.1.3, namely, that for any irrational o
there are infinitely many pairs m, n such that | — m/n| < 1/n%. [

(b) Prove that for o = /2 there are only finitely many pairs m,n with |o —
m/n| < 1/4n?. [2

(c) Show that for any algebraic irrational number « (i.e., a root of a univariate
polynomial with integer coefficients) there exists a constant D such that |a —
m/n| < 1/n® holds for finitely many pairs (m,n) only. Conclude that, for

example, the number 3777, 27% is not algebraic. [2

5. (a) Let a1, as € (0,1) be real numbers. Prove that for a given N € N there exist

m1,me,n € N, n < N, such that |a; — % < nlN,z‘: 1,2. 4

(b) Formulate and prove an analogous result for the simultaneous approximation

of d real numbers by rationals with a common denominator. (2] (This is a result
of Dirichlet [Dir42].)

6. Let K C R? be a compact convex set of area a and let £ be a point chosen
uniformly at random in [0, 1)?.

(a) Prove that the expected number of points of Z? in the set K + z equals a. [2

(b) Show that with probability at least 1 — a, K + z contains no point of Z2. [1
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Bibliography and remarks. First we mention several fundamental theorems
in the “classical” geometry of numbers.

Lattice packing and the Minkowski-Hlawka theorem. For a compact C' C R?, the
lattice constant A(C) is defined as min{det(A): ANC = {0}}, where the minimum
is over all lattices A in R? (it can be shown by a suitable compactness argument,
known as the compactness theorem of Mahler, that the minimum is attained). The
ratio vol(C')/A(C) is the smallest number D = D(C) for which the Minkowski-like
result holds: Whenever det(A) > D, we have C N A # {0}. It is also easy to
check that 27¢D(C) equals the maximum density of a lattice packing of C; i.e., the
fraction of R® that can be filled by the set C'+ A for some lattice A such that all the
translates C +v, v € A, have pairwise disjoint interiors. A basic result (obtained by
an averaging argument) is the Minkowski—Hlawka theorem, which shows that D > 1
for all star-shaped compact sets C'. If C is star-shaped and symmetric, then we
have the improved lower bound (better packing) D > 2{(d) = 23 -2, n~%. This
brings us to the fascinating field of lattice packings, which we do not pursue in this
book; a nice geometric introduction is in the first half of the book Pach and Agarwal
PA95|, and an authoritative reference is Conway and Sloane [CS99]. Let us remark
that the lattice constant (and hence the maximum lattice packing density) is not
known in general even for Euclidean spheres, and many ingenious constructions
and arguments have been developed for packing them efficiently. These problems
also have close connections to error-correcting codes.

Successive minima and Minkowski’s second theorem. Let C C R? be a con-
vex body containing 0 in the interior and let A C R? be a lattice. The ith
successive minimum of C with respect to A, denoted by A; = X, (C,A), is the
infimum of the scaling factors A > 0 such that AC' contains at least ¢ linearly
independent vectors of A. In particular, A; is the smallest number for which
A1 C contains a nonzero lattice vector, and Minkowski’s theorem guarantees that
¢ < 29det(A)/ vol(C). Minkowski’s second theorem asserts (2¢/d!)det(A) <
Mg - Ag - vol(C) < 2% det(A).

Computing lattice points in conver bodies. = Minkowski’s theorem provides the
existence of nonzero lattice points in certain convex bodies. Given one of these
bodies, how efficiently can one actually compute a nonzero lattice point in it?
More generally, given a convex body in R?, how difficult is it to decide whether it
contains a lattice point, or to count all lattice points? For simplicity, we consider
only the integer lattice Z¢ here.

First, if the dimension d is considered as a constant, such problems can be solved
efficiently, at least in theory. An algorithm due to Lenstra [Len83] finds in polyno-
mial time an integer point, if one exists, in a given convex polytope in R?, d fixed
(the ideas are also explained in many other sources, e.g., [GLS88], [Lov86|, [Sch86],
[Bar97]). More recently, Barvinok [Bar93] (or see [Bar97]) provided a polynomial-
time algorithm for counting the integer points in a given fixed-dimensional convex
polytope. Both algorithms are nice and certainly nontrivial, and especially the
latter can be recommended as a neat application of classical mathematical results
in a new context.

On the other hand, if the dimension d is considered as a part of the input then
(exact) calculations with lattices tend to be algorithmically difficult. Most of the
difficult problems of combinatorial optimization can be formulated as instances of
integer programming, where a given linear function should be minimized over the
set of integer points in a given convex polytope. This problem is well known to
be NP-hard, and so is the problem of deciding whether a given convex polytope
contains an integer point (both problems are actually polynomially equivalent).
For an introduction to integer programming see, e.g., Schrijver [Sch86].
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Some much more special problems concerning lattices have also been shown
to be algorithmically difficult. For example, finding a shortest (nonzeroe) vector
in a given lattice A specified by a basis is NP-hard (with respect to randomized
polynomial-time reductions). (In the notation introduced above, we are asking for
A1 (B9, A), the first successive minimum of the ball. This took quite some time to
prove (Micciancio [Mic98| has obtained the strongest result to date, inapproxima-
bility up to the factor of v/2, building on earlier work mainly of Ajtai), although
the analogous hardness result for the shortest vector in the maximum norm (i.e.,
A1([—1,1]%,A)) has been known for a long time.

Basis reduction and applications. Although finding the shortest vector of a lattice
A is algorithmically difficult, the shortest vector can be approximated in the fol-
lowing sense. For every € > 0 there is a polynomial-time algorithm which, given a
basis of a lattice A in R%, computes a nonzero vector of A whose length is at most
(1 + ¢)¢ times the length of the shortest vector of A; this was proved by Schnorr
[Sch87]. The first result of this type, with a worse bound on the approximation
factor, was obtained in the seminal work of Lenstra, Lenstra, and Lovasz [LLL82].
The LLL algorithm, as it is called, computes not only a single short vector but a
whole “short” basis of A.

The key notion in the algorithm is that of a reduced basis of A; intuitively, this
means a basis that cannot be much improved (made significantly shorter) by a sim-
ple local transformation. There are many technically different notions of reduced
bases. Some of them are classical and have been considered by mathematicians
such as Gauss and Lagrange. The definition of the Lovdsz-reduced basis used in the
LLL algorithm is sufficiently relaxed so that a reduced basis can be computed from
any initial basis by polynomially many local improvements, and, at the same time,
is strong enough to guarantee that a reduced basis is relatively short. These results
are covered in many sources; the thin book by Lovasz [Lov86| can still be recom-
mended as a delightful introduction. Numerous refinements of the LLL algorithm,
as well as efficient implementations, are available.

We sketch an ingenious application of the LLL algorithm for polynomial factor-
ization (from Kannan, Lenstra, and Lovasz [KLL88|; the original LLL technique is
somewhat different). Assume for simplicity that we want to factor a monic polyno-
mial p(z) € Z|z] (integer coefficients, leading coefficient 1) into a product of factors
irreducible over Z[z]. By numerical methods we can compute a root « of p(z) with
very high precision. If we can find the minimal polynomial of «, i.e., the lowest-
degree monic polynomial ¢g(z) € Z[z]| with ¢(a) = 0, then we are done, since ¢(z) is
irreducible and divides p(z). Let us write g(z) = 2% + ag_12% > +--- + ag. Let K
be a large number and let us consider the d-dimensional lattice A in R¥t! with ba-
sis (K,1,0,...,0), (Ka,0,1,0,...,0), (Ka?0,0,1,0,...,0),..., (Ka%0,...,0,1).
Combining the basis vectors with the coeflicients ag,a1,...,aq-1,1, respectively,
we obtain the vector vg = (0,a9,0a1,...,a4-1,1) € A. It turns out that if K is
sufficiently large compared to the a;, then vy is the shortest nonzero vector, and
moreover, every vector not much longer than vg is a multiple of vg. The LLL algo-
rithm applied to A thus finds vy, and this yields g(z). Of course, we do not know
the degree of g(z), but we can test all possible degrees one by one, and the required
magnitude of K can be estimated from the coefficients of p(z).

The LLL algorithm has been used for the knapsack problem and for the subset
sum problem. Typically, the applications are problems where one needs to express
a given number (or vector) as a linear combination of given numbers (or vectors)
with small integer coefficients. For example, the subset sum problem asks, for given
integers ai, as,...,a, and b, for a subset I C {1,2,...,n} with ). _,a; = b; i.e., b
should be expressed as a linear combination of the a; with 0/1 coeflicients. These
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and many other significant applications can be found in Grotschel, Lovasz, and
Schrijver [GLS88|. In cryptography, several cryptographic systems proposed in the
literature were broken with the help of the LLL algorithm (references are listed,
e.g., in [GLS88], [Dwo097]). On the other hand, lattices play a prominent role in
recent constructions, mainly due to Ajtai, of new cryptographic systems. While
currently the security of every known efficient cryptographic system depends on
an (unproven) assumption of hardness of a certain computational problem, Ajtai’s
methods suffice with a considerably weaker and more plausible assumption than
those required by the previous systems (see [Ajt98] or [Dwo97| for an introduction).

Exercises
1. Let v1,...,vq be linearly independent vectors in R%. Form a matrix A with
U1, ...,Uq as rows. Prove that | det A| is equal to the volume of the parallelepiped
{a1v1 + agva + --- + aqug: ai1,...,aq € [0,1]}. (You may want to start with
d=2.) 3
2. Prove that if z1,...,24 and 21, ..., 2/, are vectors in R? such that A(z,...,24) =

A(21,...,2)), then |det Z| = | det Z'|, where Z is the d X d matrix with the z; as
columns, and similarly for Z’. [3

3. Prove that for n rational vectors vq,...,v,, the set A = {i1v1 + iqv2 +--- +
InUnt 91,92, ...,in € Z} is a discrete subgroup of R%. [3

4. (Minkowski’s theorem on linear forms) Prove the following from Minkowski’s
theorem: Let £;(z) = Z‘;:l a;;z; be linear forms in d variables, 1 = 1,2,...,d,
such that the d X d matrix (a;;);,; has determinant 1. Let b4,...,bq be positive
real numbers with b1b5---bg = 1. Then there exists a nonzero integer vector

z € 29\ {0} with |£;(2)| < b; foralli =1,2,...,d. 3

2.3 An Application in Number Theory

We prove one nontrivial result of elementary number theory. The proof via
Minkowski’s theorem is one of several possible proofs. Another proof uses the
pigeonhole principle in a clever way.

2.3.1 Theorem (Two-square theorem). FEach prime p = 1(mod4) can be
written as a sum of two squares: p = a® + b%, a,b € Z.

Let FF = GF(p) stand for the field of residue classes modulo p, and let
F* = F\{0}. An element a € F* is called a quadratic residue modulo p if there
exists an # € F* with 22 = a (modp). Otherwise, a is a quadratic nonresidue.

2.3.2 Lemma. Ifpisa prime withp = 1 (mod 4) then —1 is a quadratic residue
modulo p.

Proof. The equation 2 = 1 has two solutions in the field F', namely ¢ = 1

and : = —1. Hence for any ¢ * +1 there exists exactly one j # 7 with 17 = 1
(namely, j = i1, the inverse element in F'), and all the elements of F*\ {—1, 1}
can be divided into pairs such that the product of elements in each pair is 1.

Therefore, (p—1)! =1-2...(p—1) = —1 (mod p).
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For a contradiction, suppose that the equation 2 = —1 has no solution in

F'. Then all the elements of F* can be divided into pairs such that the product
of the elements in each pair is —1. The number of pairs is (p—1)/2, which is an
even number. Hence (p—1)! = (—1)P~1)/2 = 1, a contradiction.

Proof of Theorem 2.3.1. By the lemma, we can choose a number ¢ such
that ¢> = —1(modp). Consider the lattice A = A(z1, 22), where z; = (1,q)
and z2 = (0,p). We have det A = p. We use Minkowski’s theorem for general
lattices (Theorem 2.2.1) for the disk C = {(z,y) € R*: 2% + y* < 2p}. The
area of C is 27p > 4p = 4det A, and so C contains a point (a,b) € A\ {0}. We
have 0 < a? + b? < 2p. At the same time, (a,b) = izl + 7292 for some 2,j € 4,
Wthh means that a = 1,0 = iq + jp We calculate a® + b% = i% + (ig + jp)? =

1% +14%g° + 2iqjp + 7%p? = i*(1 + ¢*) = 0 (mod p). Therefore a? + b = p.

Bibliography and remarks. The fact that every prime congruent to 1 mod
4 can be written as the sum of two squares was already known to Fermat (a more
rigorous proof was given by Euler). The possibility of expressing every natural
number as a sum of at most 4 squares was proved by Lagrange in 1770, as a part
of his work on quadratic forms.

Exercises

1. (Lagrange’s four-square theorem) Let p be a prime.
(a) Show that there exist integers a, b with a? + b = —1 (mod p). [3

(b) Show that the set A = {(z,y,2,t) € Z*: 2 = az + by (modp), t = bz —
ay (modp)} is a lattice, and compute det(A). 1

(c) Show the existence of a nonzero point of A in a ball of a suitable radius, and
infer that p can be written as a sum of 4 squares of integers. |2

(d) Show that any natural number can be written as a sum of 4 squares of
integers. 3
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Convex Independent Subsets

Here we consider geometric Ramsey-type results about finite point sets in the
plane. Ramsey-type theorems are generally statements of the following type:
Every sufliciently large structure of a given type contains a “regular” substruc-
ture of a prescribed size. In the forthcoming Erdés—Szekeres theorem (The-
orem 3.1.3), the “structure of a given type” is simply a finite set of points in
general position in R%, and the “regular substructure” is a set of points forming
the vertex set of a convex polygon, as is indicated in the picture:

A prototype of Ramsey-type results is Ramsey’s theorem itself: For every
choice of natural numbers p,r,n, there exists a natural number N such that
whenever X is an N-element set and c: (‘;f) — {1,2,...,r} is an arbitrary
coloring of the system of all p-element subsets of X by r colors, then there is an
n-element subset Y C X such that all the p-tuples in (;’:) have the same color.

The most famous special case is with p = r = 2, where (‘;f) is interpreted as the
edge set of the complete graph Ky on N vertices. Ramsey’s theorem asserts
that if each of the edges of K is colored red or blue, we can always find a
complete subgraph on n vertices with all edges red or all edges blue.

Many of the geometric Ramsey-type theorems, including the Erdos—Szekeres
theorem, can be derived from Ramsey’s theorem. But the quantitative bound
for the N in Ramsey’s theorem is very large, and consequently, the size of the
“regular” configurations guaranteed by proofs via Ramsey’s theorem is very
small. Other proofs tailored to the particular problems and using more of their
geometric structure often yield much better quantitative results.
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3.1 The Erdos—Szekeres Theorem

3.1.1 Definition (Convex independent set). We say that a set X C R is
convex independent if for every @ € X, we have ¢ ¢ conv(X \ {z}).

The phrase “in convex position” is sometimes used synonymously with “con-
vex independent.” In the plane, a finite convex independent set is the set of
vertices of a convex polygon. We will discuss results concerning the occurrence
of convex independent subsets in sufficiently large point sets. Here is a simple
example of such a statement.

3.1.2 Proposition. Among any 5 points in the plane in general position (no
3 collinear), we can find 4 points forming a convex independent set.

Proof. If the convex hull has 4 or 5 vertices, we are done. Otherwise, we have
a triangle with two points inside, and the two interior points together with one
of the sides of the triangle define a convex quadrilateral.

Next, we prove a general result.

3.1.3 Theorem (Erdos—Szekeres theorem). For every natural number k
there exists a number n(k) such that any n(k)-point set X C R? in general
position contains a k-point convex independent subset.

First proof (using Ramsey’s theorem and Proposition 3.1.2). Color a
4-tuple T' C X red if its four points are convex independent and blue otherwise.
If n is sufficiently large, Ramsey’s theorem provides a k-point subset ¥ C X
such that all 4-tuples from Y have the same color. But for & > 5 this color
cannot be blue, because any 5 points determine at least one red 4-tuple. Conse-
quently, Y is convex independent, since every 4 of its points are (Carathéodory’s
theorem).

Next, we give an inductive proof; it yields an almost tight bound for n(k).

Second proof of the Erdés—Szekeres theorem. In this proof, by a set
in general position we mean a set with no 3 points on a common line and no
2 points having the same z-coordinate. The latter can always be achieved by
rotating the coordinate system.

Let X be a finite point set in the plane in general position. We call X a
cup if X is convex independent and its convex hull is bounded from above by
a single edge (in other words, if the points of X lie on the graph of a convex
function).

Similarly, we define a cap, with a single edge bounding the convex hull from
below.
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The set L is placed to the left of R in such a way that all lines determined by
pairs of points in L go below R and all lines determined by pairs of points of R
go above L.

Consider a cup C in the set Xj, thus constructed. If C N L = 0, then
|C| < k—1 by the assumption on R. If C N L # 0, then C has at most 1 point
in R, and since no cup in L has more than £—2 points, we get |C| < k—1 as
well. The argument for caps is symmetric.

We have | X ¢| = | Xg—1,4| + | Xk ¢-1|, and the formula for | X} 4| follows by
induction; the calculation is almost the same as in the previous proof.

Determining the exact value of n(k) in the Erd6s—Szekeres theorem is much
more challenging. Here are the best known bounds:

26=2 1 1 < n(k) < (2:__25) + 2.

The upper bound is a small improvement over the bound f(k, k) derived above;
see Exercise 5. The lower bound results from an inductive construction slightly
more complicated than that of X} ,.

Bibliography and remarks. A recent survey of the topics discussed in the
present chapter is Morris and Soltan [MS00].

The Erd6s—Szekeres theorem was one of the first Ramsey-type results [ES35],
and Erdos and Szekeres independently rediscovered the general Ramsey’s theorem
at that occasion. Still another proof, also using Ramsey’s theorem, was noted
by Tarsi: Let the points of X be numbered z,,z2,...,2,, and color the triple
{zi,zj,zk}, i < j <k, red if we make a right turn when going from z; to zj via
z;, and blue if we make a left turn. It is not difficult to check that a homogeneous
subset, with all triples having the same color, is in convex position.

The original upper bound of n(k) < (2;"__24)—#1 from [ES35] has been improved
only recently and very slightly; the last improvement to the bound stated in the
text above is due to Téth' and Valtr [TV98].

The Erdos—Szekeres theorem was generalized to planar convex sets. The fol-
lowing somewhat misleading term is used: A family of pairwise disjoint convex sets
is tn general position if no set is contained in the convex hull of the union of two
other sets of the family. For every k& there exists n such that in any family of n
pairwise disjoint convex sets in the plane in general position, there are & sets in
convex position, meaning that none of them is contained in the convex hull of the
union of the others. This was shown by Bisztriczky and G. Fejes Toth [BT89] and,
with a different proof and better quantitative bound, by Pach and Téth [PT98§].
The assumption of general position is necessary.

An interesting problem is the generalization of the Erdés—Szekeres theorem
to R4, d > 3. The existence of ng(k) such that every ng(k) points in R? in
general position contain a k-point subset in convex position is easy to see (Exer-
cise 4), but the order of magnitude is wide open. The current best upper bound

na(k) < (**2471)+d [K4r01] slightly improves the immediate bound. Fiiredi [un-

published] conjectured that ng(k) < eP(Vk). If true, this would be best possible:
A construction of Karolyi and Valtr [KV01]| shows that for every fixed d > 3,

1The reader should be warned that four mathematicians named Téth are mentioned
throughout the book. For two of them, the surname is actually Fejes T6th (Laszlé and
Géabor), and for the other two it is just Téth (Géza and Csaba).
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ng(k) > ecak/“"V with a suitable c; > 0. The construction starts with a one-

point set Xy, and X;,; is obtained from X; by replacing each point z € X; by
the two points z — (sf,af_l,...,az-) and z + (5?,5?‘1,...,55), with &; > 0 suffi-
ciently small, and then perturbing the resulting set very slightly, so that X;,; is
in suitable general position. We have |X;| = 2°, and the key lemma asserts that
mc(X;+1) < me(X;) + me(n(X;)), where mc(X) denotes the maximum size of a
convex independent subset of X and = is the projection to the hyperplane {z4 = 0}.

Another interesting generalization of the Erdés—Szekeres theorem to R is men-
tioned in Exercise 5.4.3.

The bounds in the Erdés—Szekeres theorem were also investigated for special
point sets, namely, for the so-called dense sets in the plane. An n-point X C R?
is called c-dense if the ratio of the maximum and minimum distances of points in
X is at most ¢y/n. For every planar n-point set, this ratio is at least cy+/n for
a suitable constant ¢y > 0, as an easy volume argument shows, and so the dense
sets are quite well spread. Improving on slightly weaker results of Alon, Katchalski,
and Pulleyblank [AKP89], Valtr [Val92a] showed, by a probabilistic argument, that
every c-dense n-point set in general position contains a convex independent subset
of at least cin'/® points, for some ¢; > 0 depending on ¢, and he proved that this
bound is asymptotically optimal. Simplified proofs, as well as many other results
on dense sets, can be found in Valtr’s thesis [Val94].

Exercises

1. Find a configuration of 8 points in general position in the plane with no 5 convex
independent points (thereby showing that n(5) > 9). [2

2. Prove that the set {(i,7); 1 = 1,2,...,m,j = 1,2,...,m} contains no convex
independent subset with more that Cm?2/3 points (with C' some constant inde-
pendent of m). 4

3. Prove that for each k there exists n(k) such that each n(k)-point set in the plane
contains a k-point convex independent subset or k& points lying on a common
line. [3

4. Prove an Erdés—Szekeres theorem in R%: For every k there exists n = ng(k) such
that any n points in R? in general position contain a k-point convex independent
subset. [2

5. (A small improvement on the upper bound on n(k)) Let X C R? be a planar
set in general position with f(k,£)+1 points, where f is as in the second proof
of Erdés—Szekeres, and let ¢ be the (unique) topmost point of X. Prove that X
contains a k-cup with respect to t or an £-cap with respect to t, where a cup with
respect to ¢ is a subset Y C X \ {¢} such that Y U {¢} is in convex position, and
a cap with respect to ¢ is a subset Y C X \ {¢} such that {z,y,z2,t} is not in
convex position for any triple {z,y, 2} C Y. Infer that n(k) < f(k—1,k)+1. [2

6. Show that the construction of X, described in the text can be realized on a
polynomial-size grid. That is, if we let n = | Xy |, we may suppose that the
coordinates of all points in X, are integers between 1 and n® with a suitable
constant ¢. (This was observed by Valtr.) [3

3.2

Horton Sets

Let X be a set in R%. A k-point set Y C X is called a k-hole in X if Y is convex
independent and conv(Y)NX =Y. In the plane, Y determines a convex k-gon
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3.2.2 Theorem (Seven-hole theorem). There exist arbitrarily large finite
sets in the plane in general position without a 7-hole.

The sets constructed in the proof have other interesting properties as well.

Definitions. Let X and Y be finite sets in the plane. We say that X is high
above Y (and that Y is deep below X) if the following hold:

(i) No line determined by two points of X UY is vertical.
(ii) Each line determined by two points of X lies above all the points of Y.
(iii) Each line determined by two points of Y lies below all the points of X.

For a set X = {x1,z2,...,2,}, with no two points having equal 2-coordinates
and with notation chosen so that the z-coordinates of the z; increase with ¢,
we define the sets Xy = {2, 24, ...} (consisting of the points with even indices)
and X; = {x1,zs,...} (consisting of the points with odd indices).

A finite set H C R? is a Horton set if |H| < 1, or the following conditions
hold: |H| > 1, both Hy and H; are Horton sets, and H; lies high above Hj or
Hy lies high above H;.

3.2.3 Lemma. For every n > 1, an n-point Horton set exists.

Proof. We note that one can produce a smaller Horton set from a larger one
by deleting points from the right. We construct H*) a Horton set of size 2%,
by induction.

We define H(® as the point (0,0). Suppose that we can construct a Horton
set H*) with 2% points whose z-coordinates are 0,1,...,2¥—1. The induction
step goes as follows.

Let A =2H® (ie., H*) expanded twice), and B = A + (1, k), where hy,
is a sufficiently large number. We set H*+1) = A U B. Tt is easily seen that if

hi is large enough, B lies high above A, and so H*+1) is Horton as well. The
set H() looks like this:

Closedness from above and from below. A set X in R? is r-closed from
above if for any r-cup in X there exists a point in X lying above the r-cup
(i.e., above the bottom part of its convex hull).

a point of
X here r=4

N
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the construction. Let H be a finite set in R%, d > 2, in general position (no d+1
on a common hyperplane and no two sharing the value of any coordinate). Let
H = {z1,z2,...,Zn} be enumeration of H by increasing first coordinate, and let
Hy, ={z;:i =r(mod gq)}. Let p1 =2,p2 =3,...,pa—1 be the first d—1 primes,
and let us write p = p4y_1 for brevity. The set H is called d-Horton if

(i) its projection on the first d—1 coordinates is a (d—1)-Horton set in R%~! (where
all sets in R' are 1-Horton), and

(ii) either |H| < 1 or all the sets H, ,. are d-Horton, r = 0,1,...,p—1, and for every
subset 7 C {0,1,...,p—1} of at least two indices, there is a partition I = J U K,
J # 0 # K, such that |J,..; Hp,, lies high above |J,..x Hp,.

Here A lies high above B if every hyperplane determined by d points of A lies
above B (in the direction of the dth coordinate) and vice versa. Arbitrarily large
d-Horton sets can be constructed by induction: We first construct the (d—1)-di-
mensional projection, and then we determine the dth coordinates suitably to meet
condition (ii). The nonexistence of large holes is proved using an appropriate
generalization of r-closedness from above and from below.

Since large sets generally need not contain k-holes, it is natural to look for other,
less special, configurations. Bialostocki, Dierker, and Voxman [BDV91] proved the
existence of k-holes modulo ¢: For every ¢ and for all & > ¢+2, each sufficiently
large set X (in terms of ¢ and k) in general position contains a k-point convex
independent subset Y such that the number of points of X in the interior of conv(Y)
is divisible by ¢; see Exercise 6. Karolyi, Pach, and Téth [KPT01] obtained a
similar result with the weaker condition k& > 2 ¢ + O(1). They also showed that
every sufficiently large I-almost convez set in the plane contains a k-hole, and Valtr
[Val01] extended this to k-almost convex sets, where X is k-almost convex if no
triangle with vertices at points of X contains more than k£ points of X inside.

Exercises

1. Prove that an n-point Horton set contains no convex independent subset with
more than 4log, n points. [2

2. Find a configuration of 9 points in the plane in general position with no 5-hole.
3

3. Prove that every sufficiently large set in general position in R* has a 7-hole. [

4. Let H be a Horton set and let £ > 7. Prove that if Y C H is a k-point subset in
convex position, then |H Nconv(Y)| > 2l%/4] | Thus, not only does H contain no
k-holes, but each convex k-gon has even exponentially many points inside. 14

This result is due to Nyklova [Nyk00], who proved exact bounds for Horton
sets and observed that the number of points inside each convex k-gon can be
somewhat increased by replacing each point of a Horton set by a tiny copy of a
small Horton set.

5. Call a set X C R? in general position almost convez if no triangle with vertices
at points of X contains more than 1 point of X in its interior. Let X C R? be
a finite set in general position such that no triangle with vertices at vertices of
conv(X) contains more than 1 point of X. Prove that X is almost convex. [3

6. (a) Let ¢ > 2 be an integer and let & = mg+2 for an integer m > 1. Prove
that every sufficiently large set X C R? in general position contains a k-point
convex independent subset Y such that the number of points of X in the interior
of conv(Y') is divisible by ¢q. Use Ramsey’s theorem for triples. (4

(b) Extend the result of (a) to all £ > g + 2. [3
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Incidence Problems

In this chapter we study a very natural problem of combinatorial geometry: the
maximum possible number of incidences between m points and n lines in the
plane. In addition to its mathematical appeal, this problem and its relatives are
significant in the analysis of several basic geometric algorithms. In the proofs
we encounter number-theoretic arguments, results about graph drawing, the
probabilistic method, forbidden subgraphs, and line arrangements.

4.1 Formulation

Point—line incidences. Counsider a set P of m points and a set L of n lines
in the plane. What is the maximum possible number of their incidences, i.e.,
pairs (p,£) such that p € P, £ € L, and p lies on £? We denote the number of
incidences for specific P and L by I(P, L), and we let I(m,n) be the maximum
of I(P, L) over all choices of an m-element P and an n-element L. For example,
the following picture illustrates that 7(3,3) > 6,

=

and it is not hard to see that actually 7(3,3) = 6.

A trivial upper bound is I(m,n) < mn, but it it can never be attained
unless m = 1 or n = 1. In fact, if m has a similar order of magnitude as n then
I(m,n) is asymptotically much smaller than mn. The order of magnitude is
known exactly:

4.1.1 Theorem (Szemerédi—Trotter theorem). Forallm,n > 1, we have
I(m,n) = O(m?/3n?/3 + m + n), and this bound is asymptotically tight.

We give two proofs in the sequel, one simpler and one including techniques
useful in more general situations. We will mostly consider only the most inter-
esting case m = n. The general case needs no new ideas but only a little more
complicated calculation.
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Of course, the problem of point—line incidences can be generalized in many
ways. We can consider incidences between points and hyperplanes in higher
dimensions, or between points in the plane and some family of curves, and so
on. A particularly interesting case is that of points and unit circles, which is
closely related to counting unit distances.

Unit distances and distinct distances. Let U(n) denote the maximum
possible number of pairs of points with unit distance in an n-point set in the
plane. For n < 3 we have U(n) = () (all distances can be 1), but already for
n = 4 at most 5 of the 6 distances can be 1; i.e., U(4) = 5:

We are interested in the asymptotic behavior of the function U(n) for n — oc.

This can also be reformulated as an incidence problem. Namely, consider an
n-point set P and draw a unit circle around each point of p, thereby obtaining
a set C of n unit circles. Each pair of points at unit distance contributes
two point—circle incidences, and hence U(n) < 3 Iigwc(n, n), where Ingre(m,n)
denotes the maximum possible number of incidences between m points and n
unit circles.

Unlike the case of point—line incidences, the correct order of magnitude of
U(n) is not known. An upper bound of O(n*3) can be obtained by modifying
proofs of the Szemerédi—Trotter theorem. But the best known lower bound is
U(n) > nltei/loglogn for some positive constant ¢;; this is superlinear in n but
grows more slowly than n't¢ for every fixed € > 0.

A related quantity is the minimum possible number of distinct distances
determined by n points in the plane; formally,

n) = min dist(z,y): z,y € P}|.
g(n) PcR2:|P|=n\{ (%,y): ¢,y € P}

Clearly, g(n) > (3)/U(n), and so the bound U(n) = O(n*/3) mentioned above

gives g(n) = Q(n?/3). This has been improved several times, and the current
best lower bound is approximately 2(n’%). The best known upper bound is

O(n//Togn).

Arrangements of lines. We need to introduce some terminology concerning
line arrangements. Consider a finite set L of lines in the plane. They divide the
plane into convex subsets of various dimensions, as is indicated in the following
picture with 4 lines:

y —
N

1N
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Recently Pinchasi [Pin02] proved the following conjecture of Bezdek, resembling
Sylvester’s problem: For every finite family of at least 5 unit circles in the plane,
every two of them intersecting, there exists an intersection point common to exactly
2 of the circles.

The problems of estimating the maximum number of point—line incidences, the
maximum number of unit distances, and the minimum number of distinct distances
were raised by Erdés [Erd46]. For point-line incidences, he proved the lower bound
I(m,n) = Q(m?/3n%/3 + m + n) (see Section 4.2) and conjectured it to be the
right order of magnitude. This was first proved by Szemerédi and Trotter [ST83|.
Simpler proofs were found later by Clarkson, Edelsbrunner, Guibas, Sharir, and
Welzl [CEGT90], by Székely [Szé97], and by Aronov and Sharir [ASO1la]; they are
quite different from one another, and we discuss them all in this chapter.

Téth [Té6t01a] proved the analogy of the Szemerédi—Trotter theorem for the
complex plane; he used the original Szemerédi—Trotter technique, since none of the
simpler proofs seems to work there.

A beautiful application of techniques of Clarkson et al. [CEGT90] in geometric
measure theory can be found in Wolff [Wol97]. This paper deals with a variation
of the Kakeya problem: It shows that any Borel set in the plane containing a circle
of every radius has Hausdorff dimension 2.

For unit distances in the plane Erd6s [Erd46]| established the lower bound
U(n) = Q(n'te/loglogn) (Section 4.2) and again conjectured it to be tight, but
the best known upper bound remains O(n*/3). This was first shown by Spencer,
Szemerédi, and Trotter [SST84], and it can be re-proved by modifying each of
the proofs mentioned above for point—line incidences. Further improvement of the
upper bound probably needs different, more “algebraic,” methods, which would
use the “circularity” in a strong way, not just in the form of simple combinatorial
axioms (such as that two points determine at most two unit circles).

For the analogous problem of unit distances among n points in R3, Erdds
[Erd60] proved Q(n*/? loglogn) from below and O(n®/?) from above. The example
for the lower bound is the grid {1,2,..., |»}/3|}3 appropriately scaled; the bound
Q(n*/3) is entirely straightforward, and the extra loglogn factor needs further
number-theoretic considerations. The upper bound follows by an argument with
forbidden K3 3; similar proofs are shown in Section 4.5. The current best bound
is close to O(n®/2); more precisely, it is n3/220(e°(n) [CEG+90]. Here the func-
tion a(n), to be defined in Section 7.2, grows extremely slowly, more slowly than
logn, loglogn, logloglogn, etc. In dimensions 4 and higher, the number of unit
distances can be Q(n?) (Exercise 2). Here even the constant at the leading term is
known; see [PA95]. Among other results related to the unit-distance problems and
considering point sets with various restrictions, we mention a neat construction of
Erdos, Hickerson, and Pach [EHP89] showing that, for every a € (0, 2), there is an
n-point set on the 2-dimensional unit sphere with the distance o occurring at least
Q(nlog* n) times (the special distance +/2 can even occur Q(n*/3) times), and the
annoying (and still unsolved) problem of Erdés and Moser, whether the number
of unit distances in an n-point planar set in convex position is always bounded by
O(n) (see [PA95] for partial results and references).

For distinct distances in the plane, the best known upper bound, due to Erdos,
is O(n/+/logn). This bound is attained for the 1/nx+/n square grid. After a series

of increases of the lower bound (Moser [Mos52], Chung [Chu84|, Beck [Bec83],
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Clarkson et al. [CEGT90], Chung, Szemerédi, and Trotter [CST92], Székely [Szé97],
Solymosi and Téth [STO1]) the current record is Q(n*/—1/€)=¢) for every fixed
g > 0 (the exponent is approximately 0.863) by Tardos [Tar01], who improved a
number-theoretic lemma in the Solymosi—-Téth proof. Aronov and Sharir [ASO1b]
obtained the lower bound of approximately n°°%¢ for distinct distances in R3.

Another challenging quantity is the number I ..(m, n) of incidences of m points
with n arbitrary circles in the plane. The lower bound for point-line incidences
can be converted to an example with m points, n circles, and Q(m?/3n2/3 + m+n)
incidences, but in the case of I ..(m,n), this lower bound is not the best possible
for all m and n: Consider an example of an n-point set with ¢ = O(n/+/logn)
distinct distances and draw the ¢ circles with these distances as radii around each
point; the resulting tn = o(n?) circles have Q(n?) incidences with the n points.
The current record in the upper bound is due to Aronov and Sharir [ASO1lal, and
for m = n it yields I ic(n,n) = O(nt%/111¢) = O(n-3%4). A little more about their
approach is mentioned in the notes to Section 4.5, including an outline of a proof
of a weaker bound I.c(n,n) = O(n'*). Two other methods for obtaining upper
bounds are indicated in Exercises 4.4.2 and 4.6.4.

More generally, one can consider I(P,IT'), the number of incidences between an
m-point P C R? and a family I of n planar curves. Pach and Sharir [PS98a] proved
by Székely’s method that if I' is a family of curves with k degrees of freedom and
multiplicity type s, meaning that for any k& points there are at most s curves of I
passing through all of them and no two curves intersect in more than & points, then
[I(P,T)| = O (m#/2k=1)p1-1/Ck—1) Ly 4 ), with the constant of proportionality
depending on k& and s. Earlier [PS92], they proved the same bound with some
additional technical assumptions on the family I' by the technique of Clarkson
et al. [CEGT90]. Most likely this bound is not tight for ¥ > 3. Aronov and
Sharir [ASOla] improved the bound slightly for I' a family of graphs of univariate
polynomials of degree at most k. The best known lower bound is mentioned in the
notes to Section 4.2 below.

Point-plane incidences.  Considering n points on a line in R® and m planes
containing that line, we see that the number of incidences can be mn without
further assumptions on the position of the points and/or planes. Agarwal and
Aronov [AA92] proved the upper bound O(m?/°*n*/® + m + n) for the number of
incidences between m planes and n points in R if no 3 of the points are collinear,
slightly improving on a result of Edelsbrunner, Guibas, and Sharir [EGS90]. In
dimension d, the maximum number of incidences of n hyperplanes with m vertices
of their arrangement is O(m?/3n?/3 + n4—1) [AA92], and this is tight for m > n%—2
(for smaller m, the trivial O(mn) bound is tight).

The complexity of many cells in an arrangement of lines was first studied by
Canham [Can69], who proved K(m,n) = O(m? + n), using the fact that two
cells can have at most 4 lines incident to both of them (essentially a “forbidden
K, 5" argument; see Section 4.5). The tight bound O(m?/3n2/3 + m + n) was first
achieved by Clarkson et al. [CEGT90]. Among results for the complexity of m
cells in other types of arrangements we mention the bound O(m?/3n?/3 + na(n) +
nlogm) for segments by Aronov, Edelsbrunner, Guibas, and Sharir [AEGS92],
O(m2/3n2/3a(n)/? + n) for unit circles [CEGT90] (improved to O(m?/3n2/3) +
n) by Agarwal, Aronov, and Sharir [AASO1]), O(m3/5n/520-42(n) 4 ) for arbi-
trary circles [CEGT90] (also improved in [AASO01]; see the notes to Section 4.5),
O(m?/3n + n?) for planes in R? by Agarwal and Aronov [AA92] (which is tight),
and O(m/2n%?(logn)(l4/21-1/2) for hyperplanes in R¢ by Aronov, Matousek,
and Sharir [AMS94]. If one counts only facets of m cells in an arrangement of n
hyperplanes in R%, then the tight bound is O(m?2/3n%/? + n?=1) [AA92]. A few
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more references on this topic can be found in Agarwal and Sharir [AS00a].

The number of similar copies of a configuration. The problem of unit distances
can be rephrased as follows. Let K denote a set consisting of two points in the plane
with unit distance. What is the maximum number of congruent copies of K that can
occur in an n-point set in the plane? This reformulation opens the way to various
interesting generalizations, where one can vary K, or one can consider homothetic
or similar copies of K, and so on. Elekes’s survey [Ele01] nicely describes these
problems, their relation to the incidence bounds, and other connections. Here we
sketch some of the main developments.

Beautiful results were obtained by Laczkovich and Ruzsa [LR97]|, who investi-
gated the maximum number of simzilar copies of a given finite configuration K that
can be contained in an n-point set in the plane. Earlier, Elekes and Erdés [EE94]

proved that this number is Q(n2~(1°87)"") for all K, where ¢ > 0 depends on K,
and it is Q(n?) whenever all the coordinates of the points in K are algebraic num-
bers. Building on these results, Laczkovich and Ruzsa proved that the maximum
number of similar copies of K is £(n?) if and only if the cross-ratio of every 4 points
of K is algebraic, where the cross-ratio of points a, b, c,d € R? equals 7 g:z,
with a, b, ¢, d interpreted as complex numbers in this formula.

Their proof makes use of very nice results from the additive theory of numbers,
most notably a theorem of Freiman [Fre73| (also see Ruzsa [Ruz94|): If A is a set
of n integers such that |A+ A| < cn, where A+ A = {a+b: a,b € A} andc > 0is a
constant, then A is contained in a d-dimensional generalized arithmetic progression
of size at most C'n, with ' and d depending on ¢ only. Here a d-dimensional
generalized arithmetic progression is a set of integers of the form {2 +i1¢1 +i2g2 +
ceetigqqi i1 =0,1,...,m1,12 =0,1,...,n9,...,ig = 0,1,...,ng4} for some integers
2o and q1,¢2,...,q4. It is easy to see that |A + A| < Cy|A| for every d-dimension-
al generalized arithmetic progression, and Freiman’s theorem is a sort of converse
statement: If |A+ A| = O(|A|), then A is not too far from a generalized arithmetic
progression. (Freiman’s theorem has also been used for incidence-related problems
by Erdoés, Fiiredi, Pach, and Ruzsa [EFPR93|, and Gowers’s paper [Gow98] is an
impressive application of results of this type in combinatorial number theory.)

Polynomials attaining O(n) values on Cartesian products. Interesting results re-
lated to those of Freiman, as well as to incidence problems, were obtained in a
series of papers by Elekes and his coworkers (they are described in the already
mentioned survey [Ele01]|). Perhaps even more significant than the particular re-
sults is the direction of research opened by them, combining algebraic and com-
binatorial tools. Let us begin with a conjecture of Purdy proved by Elekes and
Rényai [ER00] as a consequence of their theorems. Let P be a set of n distinct
points lying on a line u C R?, let Q be a set of n distinct points lying on a line
v C R?, and let Dist(P,Q) = {|lp — ¢||: p € P,q € Q}. If, for example, u and v
are parallel and if both P and @ are placed with equal spacing along their lines,
then | Dist(P, Q)| < 2n. Another such case is P = {(+/4,0):¢ = 1,2,...,n} and
Q@ = {(0,+/7): 7 = 1,2,...,n}: This time u and v are perpendicular, and again
| Dist(P, Q)| < 2n. According to Purdy’s conjecture, these are the only possible
positions of u© and v if the number of distances is linear: For every C' > 0 there
is an ng such that if n > ng and |Dist(P, Q)| < Cn, then v and v are parallel or
perpendicular.

If we parameterize the line u by a real parameter z, and v by y, and denote the
cosine of the angle of v and v by A, then Purdy’s conjecture can be reformulated
in algebraic terms as follows: Whenever X,Y C R are n-point sets such that the
polynomial F(z,y) = 22 + y? + 2\zy attains at most Cn distinct values on X x Y,
i.e., |{F(z,y): z € X,y € Y} < Cn, then necessarily A = 0 or A = £1, provided
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that n > ng(C).

Elekes and Rényai [ER00| characterized all bivariate polynomials F'(z,y) that
attain only O(n) values on Cartesian products X xY. For every C, d there exists an
no such that if F'(z,y) is a bivariate polynomial of degree at most d and X,Y C R
are n-point sets, n > ng, such that F'(z,y) attains at most Cn distinct values on
X xY, then F(z,y) has one of the two special forms f(g(z)+ h(y)) or f(g(x)h(y)),
where f, g, h are univariate polynomials. In fact, we need not consider the whole
X xY; it suffices to assume that F' attains at most C'n values on an arbitrary subset
of 6n? pairs from X x Y (with ng depending on &, too). A similar result holds for a
bivariate rational function F(z,y), with one more special form to consider, namely
F(z,y) = f((g(z) + h(y))/ (1 — g(z)h(y))).

We indicate a proof only for the special case of the polynomial F(z,y) = 2 +
y? + 2\zy from Purdy’s conjecture (following Elekes [Ele99]); the basic idea of the
general case is similar, but several more tools are needed, especially from elementary
algebraic geometry. Solet Z = F(X,Y) be the set of values attained by F on X xY.
For each y; € Y, put f;(xr) = F(z,y;), and define the family I' = {v;;: ¢,5 =
1,2,...,n,% # j} of planar curves by ~v;; = {(fi(), f;(¢)): t € R} (this is the
key trick). Each +;; contains at least 7 points of Z x Z, since among the n
points (fi(xr), fi(xx)), zr € X, no 3 can coincide, because the f; are quadratic
polynomials. Moreover, a straightforward (although lengthy) calculation using
resultants verifies that for A ¢ {0,£1}, at most 8 distinct curves ;; can pass
through any two given distinct points a,b € R2. Consequently, I' contains at least
tn? distinct curves. Using the bound of Pach and Sharir [PS92], [PS98a] on the
number of incidences between points and algebraic curves mentioned above, with
Z X Z as the points and the at least %nz distinct curves of I' as the curves, we obtain
that |Z| = Q(n%/*). So there is even a significant gap: Either A € {0,+1}, and
then F(X,Y) can have only 2n distinct elements for suitable X,Y, or A &€ {0,+1}
and then |F(X,Y)| = Q(n%/*) for all X,Y.

Perhaps this latter bound can be improved to Q(n?—¢) for every € > 0 (so there
would be an almost-dichotomy: either the number of values of F' can be linear,
or it has to be always near-quadratic). On the other hand, it is known that the
polynomial 22 + y? + zy attains only O(n?/+/logn) distinct values for z,y ranging
over {1,2,...,n}, and so the bound need not always be linear or quadratic. It
seems likely that in the general case of the Elekes—Rényai theorem the number of
values attained by F' should be near-quadratic unless F' is one of the special forms.

Further generalizations of the Elekes—Rényai theorem were obtained by Elekes
and Szabo; see [Ele01].

Exercises

1. Let Iicirc(m,n) be the maximum number of incidences of m points with n unit
circles and let U(n) be the maximum number of unit distances for an n-point
set.

(a) Prove that I1circ(2n,2n) = O(I1cire(n, n)).
(b) We have seen that U(n) < zIicirc(n,n). Prove that Iigrc(n,n) = O(U(n)).

2

2. Show that an n-point set in R* may determine Q(n?) unit distances. [¢

3. Prove that if X C R is a set where every two points have distance 1, then
X| < d+1. 3

4. What can be said about the maximum possible number of incidences of n lines
in R3 with m points? [2
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10.

. Use the Szemerédi—Trotter theorem to show that n points in the plane determine

at most

(a) O(n"/3) triangles of unit area, [3

(b) O(n7/3) triangles with a given fixed angle a. [2

The result in (a) was first proved by Erdds and Purdy [EP71]. As for (b), Pach
and Sharir [PS92] proved the better bound O(n? logn); also see [PA95].

. (a) Using the Szemerédi—Trotter theorem, show that the maximum possible num-

ber of distinct lines such that each of them contains at least & points of a given
m-point set P in the plane is O(m?/k® + m/k). 2

(b) Prove that such lines have at most O(m?/k? + m) incidences with P. [3

(Many points on a line or many lines)

(a) Let P be an m-point set in the plane and let ¥ < 4/m be an integer parameter.
Prove (using Exercise 6, say) that at most O(m?/k) pairs of points of P lie on
lines containing at least ¥ and at most /m points of P. [3

(b) Similarly, for K > 1/m, the number of pairs lying on lines with at least \/m
and at most K points is O(Km). (3

(c) Prove the following theorem of Beck [Bec83|: There is a constant ¢ > 0 such
that for any n-point P C R?, at least cn? distinct lines are determined by P or
there is a line containing at least cn points of P. [2

(d) Derive that there exists a constant ¢ > 0 such that for every n-point set P
in the plane that does not lie on a single line there exists a point p € P lying on
at least cn distinct lines determined by points of P. 11

Part (d) is a weak form of the Dirac-Motzkin conjecture; the full conjecture, still

unsolved, is the same assertion with ¢ = 3.

(Many distinct radii)

(a) Assume that Ieic(m,n) = O(m®n® +m + n) for some constants o < 1 and
B < 1, where I i.¢c(m,n) is the maximum number of incidences of m points with n
circles in the plane. In analogy with to Exercise 7, derive that there is a constant
¢ > 0 such that for any n-point set P C R?, there are at least cn?® distinct circles
containing at least 3 points of P each or there is a circle or line containing at
least cn points of P. [8

(b) Using (a), prove the following result of Elekes (an answer to a question of
Balog): For any n-point set P C R? not lying on a common circle or line, the
circles determined by P (i.e., those containing 3 or more points of P) have (n)
distinct radii. [4

(c) Find an example of an n-point set with only O(n) distinct radii. 3

(Sums and products cannot both be few) Let A C R be a set of n distinct real
numbers and let S= A+ A={a+b:a,b€c A}and P=A.-A={ab: a,b € A}.

(a) Check that each of the n? lines {(z,y) € R*: y = a(z—b)}, a,b € A, contains
at least n distinct points of $ x P. 1

(b) Conclude using Exercise 6 that |Sx P| = Q(n5/2), and consequently, max(|$|,|P) =

Q(n5/4); i.e., the set of sums and the set of products can never both have almost
linear size. [2] (This is a theorem of Elekes [Ele97] improving previous results on
a problem raised by Erdos and Szemerédi.)

(a) Find n-point sets in the plane that contain Q(n?) similar copies of the vertex
set of an equilateral triangle. [1
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(b) Verify that the following set P,, has n = O(m*) points and contains Q(n?)
similar copies of the vertex set of a regular pentagon: Identify R? with the
complex plane C, let w = e2™/% denote a primitive 5th root of unity, and put

P, = {io + i1w + taw?® + i3w®: 49, 11,492,135 € Z, |i;] < m}.

4

The example in (b) is from Elekes and Erdos [EE94], and the set P, is called a
pentagonal pseudolattice. The following picture shows Ps:

4.2 Lower Bounds: Incidences and Unit Distances

4.2.1 Proposition (Many point—line incidences). We have I(n,n) =
Q(n%3), and so the upper bound for the maximum number of incidences of
n points and n lines in the plane in the Szemerédi—Trotter theorem is asymp-
totically optimal.

It is not easy to come up with good constructions “by hand.” Small cases
do not seem to be helpful for discovering a general pattern. Surprisingly, an
asymptotically optimal construction is quite simple. The appropriate lower
bound for I(m,n) with n # m is obtained similarly (Exercise 1).

Proof. For simplicity, we suppose that n = 4k® for a natural number k.
For the point set P, we choose the k x 4k? grid; i.e., we set P = {(i,j): i =
0,1,2,...,k—1,5 = 0,1,...,4k*—1}. The set L consists of all the lines with
equations y = ax + b, wherea =0,1,...,2k—1and b=0,1,...,2k%*—1. These
are n lines, as it should be. For z € [0, k), we have az+b < ak+b < 2k*+2k* =
4k?. Therefore, for each i =0,1,...,k—1, each line of L contains a point of P
with the z-coordinate equal to i, and so I(P,L) > k- |L| = 3 n%/3.

Next, we consider unit distances, where the construction is equally simple
but the analysis uses considerable number-theoretic tools.

4.2.2 Theorem (Many unit distances). For alln > 2, there exist configu-
rations of n points in the plane determining at least n1t¢1/108logn ynit distances,
with a positive constant c;.
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A configuration with the asymptotically largest known number of unit dis-
tances is a v/n X 4/n regular grid with a suitably chosen step. Here unit distances
are related to the number of possible representations of an integer as a sum of
two squares. We begin with the following claim:

4.2.3 Lemma. Let p; < p2 < :-+ < p, be primes of the form 4k+1, and put
M = pips---pr. Then M can be expressed as a sum of two squares of integers
in at least 2" ways.

Proof. As we know from Theorem 2.3.1, each p; can be written as a sum of
two squares: p; = a?—l—b?. In the sequel, we work with the ring Z|i], the so-called
Gaussian integers, consisting of all complex numbers u + iv, where u,v € Z.
We use the fact that each element of Z|i] can be uniquely factored into primes.
From algebra, we recall that a prime in the ring Z[i] is an element v € Z[i] such
that whenever v = v1v2 with 1,72 € Z[i], then |y1| = 1 or || = 1. Both
existence and uniqueness of prime factorization follows from the fact that Z]i]
is a Euclidean ring (see an introductory course on algebra for an explanation
of these notions).

Let us put a; = a;+1b;, and let &; = a;—1b; be the complex conjugate of ;.
We have a;a; = (a; +1ib;)(a; —ib;) = a? + b? = p;. Let us choose an arbitrary

subset J C I = {1,2,...,r} and define Ay + iB; = (Hje.]aj) (HjeI\Jaf:i)-

Then Ay — iBj = (Hje.] 6:3-) (HjeI\J aj), and hence M = (Ay +iBy)(Ay —
iBj) = A% + B3%. This gives one expression of the number M as a sum of two
squares. It remains to prove that for two sets J # J', Ay +iBy # Ay + iBy.
To this end, it suffices to show that all the a; and &; are primes in Z[i]. Then
the numbers Ay+iB; and Ay +1Bj are distinct since they have distinct prime
factorizations. (No o or &; can be obtained from another one by multiplying
it by a unit of the ring Z[i]: The units are only the elements 1, —1,1i, and —i.)
So suppose that o; = y1y2, 71,72 € Z[i]. We have p; = a;&; = 71727172 =
71 |%|72|*. Now, |v1|* and |y2|? are both integers, and since p; is a prime, we
get that |y1| =1 or |y2| = 1.

Next, we need to know that the primes of the form 4%k+1 are sufficiently
dense. First we recall the well-known prime number theorem: If w(n) denotes
the number of primes not exceeding n, then

n
w(n) = (1 + o(l))m as n — 00.
Proots of this fact are quite complicated; on the other hand, it is not so hard
to prove weaker bounds cn/logn < w(n) < Cn/logn for suitable positive
constants c, C.

We consider primes in the arithmetic progression 1,5,9,...,4k+1,.... A
famous theorem of Dirichlet asserts that every arithmetic progression contains
infinitely many primes unless this is impossible for a trivial reason, namely,
unless all the terms have a nontrivial common divisor. The following theorem
is still stronger:
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4.2.4 Theorem. Let d and a be relatively prime natural numbers, and let
T4,6(n) be the number of primes of the form a+kd (k =0,1,2,...) not exceeding

n. We have
1 n

o(d) Inn’

Td,a(n) = (1 + 0(1))

where ¢ denotes the Euler function: ¢(d)is the number of integers between 1
and d that are relatively prime to d.

For every d > 2, there are ¢(d) residue classes modulo d that can possi-
bly contain primes. The theorem shows that the primes are quite uniformly
distributed among these residue classes.

The proof of the theorem is not simple, and we omit it, but it is very nice
and we can only recommend to the reader to look it up in a textbook on number
theory.

Proof of the lower bound for unit distances (Theorem 4.2.2). Let us
suppose that n is a square. For the set P we choose the points of the v/n X y/n
grid with step 1/v/M, where M is the product of the first r—1 primes of the
form 4k+1, and r is chosen as the largest number such that M < 7.

It is easy to see that each point of the grid participates in at least as many
unit distances as there are representations of M as a sum of two squares of
nonnegative integers. Since one representation by a sum of two squares of
nonnegative integers corresponds to at most 4 representations by a sum of two
squares of arbitrary integers (the signs can be chosen in 4 ways), we have at
least 2" 1 /16 unit distances by Lemma, 4.2.3.

By the choice of r, we have 4p1po---p,_1 < n < 4p1p2---pr, and hence

2" < n and p, > (3)!/". Further, we obtain, by Theorem 4.2.4, r = w4 (p,) >

(% —o(1))pr/logpr > /Dr > nl/3" for sufficiently large n, and thus r°" > n.
Taking logarithms, we have 3rlogr > logn, and hence r > logn/(3logr) >
log n/(3loglogn). The number of unit distances is at least n 2" % > plteci/loglogn
as Theorem 4.2.2 claims. Let us remark that for sufficiently large n the constant

¢1 can be made as close to 1 as desired.

Bibliography and remarks. Proposition 4.2.1 is due to Erdés [Erd46].
His example is outlined in Exercise 2 (also see [PA95]); the analysis requires a
bit of number theory. The simpler example in the text is from Elekes [Ele01].
Its extension provides the best known lower bound for the number of incidences
between m points and n > m*~1/2 curves with k£ degrees of freedom: For a
parameter t < m'/* let P = {(4,§): 0<i<t,0<j < 2}, and let I" consist of the
graphs of the polynomials 3";_; a2t with a; = 0,1,..., | %], £=0,1,...,k-1.

Theorem 4.2.2 is due to Erdos [Erd46]|, and the proof uses ingredients well
known in number theory. The prime number theorem (and also Theorem 4.2.4)

was proved in 1896, by de la Valée Poussin and independently by Hadamard (see
Narkiewicz [Nar00]).

Exercises

1. By extending the example in the text, prove that for all m,n with n? < m and
m? < n, we have I(m,n) = Q(n?/3m?2/3). [
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2. (Another example for incidences) Suppose that n = 4t° for an integer ¢ > 1 and
let P ={(¢,5): 0 <4, <+/n}. Let S ={(a,b),a,b=1,2,...,¢, ged(a,b) = 1},

where gcd(a, b) denotes the greatest common divisor of ¢ and b. For each point
p € P, consider the lines passing through p with slope a/b, for all pairs (a,b) € S.

Let L be the union of all the lines thus obtained for all points p € P.

(a) Check that |L| < n. (2

(b) Prove that |S| > ct? for a suitable positive constant ¢ > 0, and infer that
I(P, L) = Q(nt?) = Q(n*/3). [

4.3 Point—Line Incidences via Crossing Numbers

Here we present a very simple proof of the Szemerédi—Trotter theorem based
on a result concerning graph drawing. We need the notion of the crossing
number of a graph (; this is the minimum possible number of edge crossings
in a drawing of G. To make this rigorous, let us first recall a formal definition
of a drawing.

An arc is the image of a continuous injective map [0,1] — R?. A drawing
of a graph (G is a mapping that assigns to each vertex of G a point in the plane
(distinct vertices being assigned distinct points) and to each edge of G an arc
connecting the corresponding two (images of) vertices and not incident to any
other vertex. We do not insist that the drawing be planar, so the arcs are
allowed to cross. A crossing is a point common to at least two arcs but distinct
from all vertices. In this section we will actually deal only with drawings where
each edge is represented by a straight segment.

Let G be a graph (or multigraph). The crossing number of a drawing of
(G in the plane is the number of crossings in the considered drawing, where a
crossing incident to & > 2 edges is counted (’2") times. So a drawing is planar
if and only if its crossing number is 0. The crossing number of the graph G is
the smallest possible crossing number of a drawing of G; we denote it by cr(G).
For example, cr(Ks5) = 1:

As is well known, for n > 2, a planar graph with n vertices has at most 3n—6
edges. This can be rephrased as follows: If the number of edges is at least 3n—5

then cr(G) > 0. The following theorem can be viewed as a generalization of
this fact.

4.3.1 Theorem (Crossing number theorem). Let G = (V, E) be a simple
graph (no multiple edges). Then

3
cr(G) > L B

— 64 |VI|2 4

(the constant % can be improved by a more careful calculation).
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The lower bound in this theorem is asymptotically tight; i.e., there exist
graphs with n vertices, m edges, and crossing number O(m?/n?); see Exercise 1.
The assumption that the graph is simple cannot be omitted.

For a proof of this theorem, we need a simple lemma:

4.3.2 Lemma. The crossing number of any simple graph G = (V, E) is at least
[E| = 3|V|.

Proof. If |E| > 3|V| and some drawing of the graph had fewer than |E|— 3|V
crossings, then we could delete one edge from each crossing and obtain a planar
graph with more than 3|V| edges.

Proof of Theorem 4.3.1. Consider some drawing of a graph G = (V, E)
with n vertices, m edges, and crossing number z. We may assume m > 4n,
for otherwise, the claimed bound is negative. Let p € (0,1) be a parameter;
later on we set it to a suitable value. We choose a random subset V! C V by
including each vertex v € V into V' independently with probability p. Let G’
be the subgraph of G induced by the subset V'. Put n' = |V'/|, m' = |E(G")],
and let ' be the crossing number of the graph G’ in the drawing “inherited”
from the considered drawing of G. The expectation of n' is E[n'| = np. The
probability that a given edge appears in E(G') is p?, and hence E[m'] = mp?,
and similarly we get E[z'] = zp*. At the same time, by Lemma, 4.3.2 we always
have ' > m' — 3n', and so this relation holds for the expectations as well:
E[z'] > E[m/] — 3E[n']. So we have zp*® > mp® — 3np. Setting p = 2 (which is
at most 1 since we assume m > 4n), we calculate that

3

1 m
> .
$_64 n2

The crossing number theorem is proved.

Proof of the Szemerédi—Trotter theorem (Theorem 4.1.1). We consider
a set P of m points and a set L of n lines in the plane realizing the maximum
number of incidences I(m, n). We define a certain topological graph G = (V, E),
that is, a graph together with its drawing in the plane. Each point p € P
becomes a vertex of (G, and two points p,g € P are connected by an edge if
they lie on a common line £ € L next to one another. So we have a drawing
of G where the edges are straight segments. This is illustrated below, with G
drawn thick:

If a line £ € L contains & > 1 points of P, then it contributes £—1 edges to
P, and hence I(m,n) = |E| 4+ n. Since the edges are parts of the n lines, at
most (,) pairs may cross: cr(G) < (5). On the other hand, from the crossing
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number theorem 4.3.1 we get cr(G) > & - |E[*/m?% —m. So & - |E[?/m?2 —m <
cr(G) < (3), and a calculation gives |E| = O(n%3m?/3 + m). This proves the
Szemerédi—Trotter theorem.

The best known upper bound on the number of unit distances, U(n) =
O(n4/ %), can be proved along similar lines; see Exercise 2.

Bibliography and remarks. The presented proof of the Szemerédi—Trotter
theorem is due to Székely [Szé97].

The crossing number theorem was proved by Ajtai, Chvatal, Newborn, and
Szemerédi [ACNS82| and independently by Leighton [Lei84]. This result belongs
to the theory of geometric graphs, which studies the properties of graphs drawn in
the plane (most often with edges drawn as straight segments). A nice introduction
to this area is given in Pach and Agarwal [PA95], and a newer survey is Pach
[Pac99]. In the rest of this section we mention mainly some of the more recent
results.

Pach and Téth [PT97] improved the constant ; in Theorem 4.3.1 to approx-
imately 0.0296, which is already within a factor of 2.01 of the best known upper
bound (obtained by connecting all pairs of points of distance at most d in a regular
/1 X 4/n grid, for a suitable d). The improvement is achieved by establishing a
better version of Lemma 4.3.2, namely, cr(G) > 5|E| — 25|V| for |E| > 7|V| — 14.

Pach, Spencer, and Téth [PSTO00] proved that for graphs with certain forbidden
subgraphs, the bound can be improved substantially: For example, if G has n
vertices, m edges, and contains no cycle of length 4, then cr(G) = Q(m*/n?) for
m > 400n, which is asymptotically tight. Generally, let G be a class of graphs that
is monotone (closed under adding edges) and such that any n-vertex graph in G
has at most O(nt®) edges, for some o € (0,1). Then cr(G) > cm?tl/a/pltl/e
for any G € G with n vertices and m > Cnlog®n edges, with suitable constants
C,c > 0 depending on G. The proof applies a generally useful lower bound on the
crossing number, which we outline next. Let bw((G) denote the bisection width of
(G, i.e., the minimum number of edges connecting V; and V5, over all partitions
(V1,V2) of V(@) with |V4],|V2| > 2 |[V(G)|. Leighton [Lei83] proved that cr(G) =
Q(bw(G)?) — |V(G)| for any graph G of maximum degree bounded by a constant.
Pach, Shahrokhi, and Szegedy [PSS96], and independently Sykora and Vrto [SV94],
extended this to graphs with arbitrary degrees:

cr(G) = Q (bw(G)?) — = Z deg(v)?, (4.1)

where deg(v) is the degree of v in G. The proof uses the following version, due
to Gazit and Miller [GM90], of the well-known Lipton—Tarjan separator theorem
for planar graphs: For any planar graph H and any nonnegative weight function

w:V(H) — [0, 2] with >_vev(m) W(v) = 1, one can delete at most 1.58\/236‘,0{) deg ; (v)?

edges in such a way that the total weight of vertices in each component of the re-
sulting graph is at most % To deduce (4.1), consider a drawing of G with the
minimum number of crossings, replace each crossing by a vertex of degree 4, assign
weight 0 to these vertices and weight |V(1G)| to the original vertices, and apply the

separator theorem (see, e.g., [PA95] for a more detailed account). Djidjev and Vrto
[DV02] have recently strengthened (4.1), replacing bw(G) by the cutwidth of G.
To define the cutwidth, we consider an injective mapping f: V(G) — R. Each edge
corresponds to a closed interval, and we find the maximum number of these inter-
vals with a common interior point. The cutwidth is the minimum of this quantity

over all f.
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To derive the result of Pach et al. [PSTO00| on the crossing number of graphs
with forbidden subgraphs mentioned above from (4.1), we consider a graph G € G
with n vertices and m edges. If cr(() is small, then the bisection width is small, so
(G can be cut into two parts of almost equal size by removing not too many edges.
For each of these parts, we bisect again, and so on, until parts of some suitable
size s (depending on n and m) are reached. By the assumption on G, each of the
resulting parts has O(s'T%) edges, and so there are O(ns®) edges within the parts.
This number of edges plus the number of edges deleted in the bisections add up to
m, and this provides an inequality relating cr(G) to n and m; see [PSTO00] for the
calculations.

The notion of crossing number is a subtle one. Actually, one can give several
natural definitions; a study of various notions and of their relations was made by
Pach and Té6th [PT00]. Besides counting the crossings, as we did in the definition
of cr((), one can count the number of (unordered) pairs of edges that cross; the
resulting notion is called the pairwise crossing number in [PT00] and we denote
it by pair-cr(G). We always have pair-cr(G) < cr(G), but since two edges (arcs)
are allowed to cross several times, it is not clear whether pair-cr(G) = cr(G) for
all graphs GG, and currently this seems to be a challenging open problem (see Ex-
ercise 4 for a typical false attempt at a proof). A simple argument shows that
cr(G) < 2pair-cr(G)? (Exercise 4(c)). A stronger claim, proved in [PTO00], is
cr(G) < 20dd-cr(G)?, where odd-cr(@) is the odd-crossing number of G, count-
ing the number of pairs of edges that cross an odd number of times. An inspiration
for their proof is a theorem of Hanani and Tutte claiming that a graph G is planar
if and only if odd-cr(G) = 0. In a drawing of GG, call an edge e even if there is no
edge crossed by e an odd number of times. Pach and Téth show, by a somewhat
complicated proof, that if we consider a drawing of G and let Ey be the set of
the even edges, then there is another drawing of G in which the edges of Fy are
involved in no crossings at all. The inequality cr(G) < 2odd-cr(G)? then follows
by an argument similar to that in Exercise 4(c).

Finally, let us remark that if we consider rectilinear drawings (where each edge is
drawn as a straight segment), then the resulting rectilinear crossing number can be
much larger than any of the crossing numbers considered above: Graphs are known
with cr(G) = 4 and arbitrarily large rectilinear crossing numbers (Bienstock and

Dean [BD93)).
Exercises

1. Show that for any n and m, 5n < m < (g), there exist graphs with n vertices,
m edges, and crossing number O(m?3 /n?). [2

2. In a manner similar to the above proof for point—-line incidences, prove the bound
Iicire(n, n) = O(n*/3), where I ¢irc(m, n) denotes the maximum possible number
of incidences between m points and n unit circles in the plane (be careful in
handling possible multiple edges in the considered topological graph!). [3

3. Let K(n,m) denote the maximum total number of edges of m distinct cells in
an arrangement of n lines in the plane. Prove K (n,m) = O(n?/3m2?/® + n + m)
using the method of the present section (it may be convenient to classify edges
into top and bottom ones and bound each type separately). [3

4. (a) Prove that in a drawing of G with the smallest possible number of crossings,
no two edges cross more than once. [2

(b) Explain why the result in (a) does not imply that pair-cr(G) = cr(G) (where

pair-cr(G) is the minimum number of pairs of crossing edges in a drawing of G).
2
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(c) Prove that if G is a graph with pair-cr(G) = k&, then cr(G) < (22’“). 4

4.4 Distinct Distances via Crossing Numbers

Here we use the methods from the preceding sections to establish a lower bound
on the number of distinct distances determined by an n-point set in the plane.
We do not go for the best known bound, whose proof is too complicated for our
purposes, but in the notes below we indicate how the improvement is achieved.

4.4.1 Proposition (Distinct distances in R?%). The minimum number
g(n) of distinct distances determined by an n-point set in the plane satisfies

g(n) = Q(n*?).

Proof. Fix an n-point set P, and let £ be the number of distinct distances
determined by P. This means that for each point p € P, all the other points
are contained in ¢ circles centered at p (the radii correspond to the ¢ distances
appearing in P).

These tn circles obtained for all the n points of P have n(n—1) incidences
with the points of P. The first idea is to bound this number of incidences from
above In terms of n and £, in a way similar to the proof of the Szemerédi—Trotter
theorem in the preceding section, which yields a lower bound for ¢.

First we delete all circles with at most 2 points on them (the innermost circle
and the second outermost circle in the above picture). We have destroyed at
most 2nt incidences, and so still almost n? incidences remain (we may assume
that ¢ is much smaller than n, for otherwise, there is nothing to prove). Now we
define a graph (: The vertices are the points of P and the edges are the arcs of
the circles between the points. This graph has n vertices, almost n? edges, and
there are at most ¢?n? crossings because every two circles intersect in at most
2 points.

Now if we could apply the crossing number theorem to this graph, we would
get that with n vertices and n? edges there must be at least Q(n®/n?) = Q(n?)
crossings, and so ¢t = {}(n) would follow. This, of course, is too good to be true,
and indeed we cannot use the crossing number theorem directly because our
graph may have multiple edges: Two points can be connected by several arcs.

A multigraph can have arbitrarily many edges even if it is planar. But if we have
a bound on the maximum edge multiplicity, we can still infer a lower bound on
the crossing number:
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4.4.2 Lemma. Let G = (V,E) be a multigraph with maximum edge multi-
plicity k. Then

3
cr(G) =2 (;‘E‘j‘z) — O(k%|V)).

We deter the proof to the end of this section.

In the graph G defined above, it appears that the maximum edge multiplicity
can be as high as ¢t. If we used Lemma 4.4.2 with & = ¢ in the manner indicated
above, we would get only the estimate ¢ = Q(nz/ 3).

The next idea is to deal with the edges of very high multiplicity separately.
Namely, we observe that if a pair {u,v} of points is connected by & arcs, then
the centers of these arcs lie on the symmetry axis £,,, of the segment uv:

So the line £,,,, has at least &k incidences with the points of P. But the Szemerédi-
Trotter theorem tells us that there cannot be too many distinct lines, each
incident to many points of P. Let us make this precise.

By a consequence of the Szemerédi—Trotter theorem stated in Exercise 4.1.6(b),
lines containing at least & points of P each have altogether no more than
O(n?/k? 4+ n) incidences with P.

Let M be the set of pairs {u,v} of vertices of G connected by at least &
edges in (G, and let E be the set of edges (arcs) connecting these pairs. Each
edge in F connecting the pair {u, v} contributes one incidence of the bisecting
line 4, with a point p € P. On the other hand, one incidence of such p with
some £, can correspond to at most 2¢ edges of E/, because at most ¢ circles are
centered at p, and so ¢, Intersects at most 2¢ arcs with center p. So we have
|E| = O(tn?/k? + tn).

Let us set k as large as possible but so that |E| < 3n?, i.e., k = Cv/t for a
sufficiently large constant C'. If we delete all edges of E, the remaining graph
still has 2(n?) edges, but the maximum multiplicity is now below k. We can
finally apply Lemma 4.4.2: With n vertices, 2(n?) edges, and edge multiplicity
at most k = O(v/t), we have at least Q(n*/+/t) crossings. This number must
be below t2n2, which yields ¢ = Q(n*/5) as claimed.

Proof of Lemma 4.4.2. Consider a fixed drawing of G. We choose a
subgraph G' of G by the following random experiment. In the first stage, we
consider each edge of G independently, and we delete it with probability 1 — %
In the second stage, we delete all the remaining multiple edges, and this gives
(', which has n vertices, m' edges, and z' crossing pairs of edges. Consider the
probability p. that a fixed edge e € F remains in G'. Clearly p, < % On the

other hand, if e was one of k' < k edges connecting the same pair of vertices,
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then the probability that e survives the first stage while all the other edges
connecting its two vertices are deleted is

1 (1 1)’“’—1 .1
k k — 3k

(since (1 — 1/k)*~1 > 3). We get E[m/] > |E|/3k and E[z'] < z/k*. Applying

the crossing number theorem for the graph G' and taking expectations, we have

i E [m!3]

!
> :
Elr] 2 64 n2

n.

By convexity (Jensen’s inequality), we have E[m"] > (E[m'])® = Q(|E|3/k3).
Plugging this plus the bound E[z'] < z/k?* into the above formula, we get

and the lemma follows.

e _ o (1B
il (m) - Ot

Bibliography and remarks. The proof presented above is, with minor mod-
ifications, that of Székely [Szé97]. The bound has subsequently been improved
by Solymosi and Téth [STO01] to ©2(n%/7) and then by Tardos [Tar01] to (approxi-
mately) Q(n0-893).

The weakest point of the proof shown above seems to be the lower bound on
the number of incidences between the points of P and the “rich” bisectors £,,
({u, v} being the pairs connected by &k or more edges). We counted as if each such
incidence could be responsible for as many as ¢ edges. While this does not look
geometrically very plausible, it seems hard to exclude such a possibility directly.
Instead, Solymosi and Téth prove a better lower bound for the number of incidences
of P with the rich bisectors differently; they show that if there are many edges with
multiplicity at least k, then each of £2(n) suitable points is incident to many (namely
Q(n/t3/?) in their proof) rich bisectors. We outline this argument.

We need to modify the definition of the graph G. The new definition uses an
auxiliary parameter r (a constant, with » = 3 in the original Solymosi—Téth proof).
First, we note that by the theorem of Beck mentioned in Exercise 4.1.7, there is a
subset P’ C P of £2(n) points such that each p € P’ sees the other points of P in
(}(n) distinct directions. For each p € P’, we draw the ¢ circles around p. If several
points of P are visible from p in the same direction, we temporarily delete all of
them but one. Then, on each circle, we group the remaining points into groups by
r consecutive points, and on each circle we delete the at most r—1 leftover points
fitting in no such group. This still leaves £2(n) r-point groups on the circles centered
at p.

Next, we consider one such r-point group and all the (’2') bisecting lines of its
points. If at least one of these bisectors, call it Z,,, contains fewer than & points
of P (k being a suitable threshold), then we add the arc connecting u and v as an

edge of G:
; If this bisector has at most k£ points of P,

then the arc {u,v} is added to G.
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(This is not quite in agreement with our definition of a graph drawing, since the arc
may pass though other vertices of ¢, but it is easy to check that if we permit arcs
through vertices and modify the definition of the crossing number appropriately,
Lemma 4.4.2 remains valid.) The groups where every bisector contains at least &
points of P (call them rich groups) do not contribute any edges of G.

Setting k = an?/t? for a small constant o, we argue by Lemma 4.4.2 that G
has at most Sn? edges for a small 5 = B(a) > 0. It follows that most of the
r-point groups must be rich, and so there is a subset P C P’ of Q2(n) points, each
of them possessing (2(n) rich groups on its circles. It remains to prove that each
point p € P" is incident to many rich bisectors. We divide the plane around p
into angular sectors such that each sector contains about 3rt points (of the Q(n)
points in the rich groups belonging to p). Each sector contains at least ¢ complete
rich groups (since there are ¢ circles, and so the sector’s boundaries cut through
at most 2¢ groups), and we claim that it has to contain many rich bisectors. This
leads to the following number-theoretic problem: we have ¢r distinct real numbers
(corresponding to the angles of the points in the sector as seen from p), arranged
into ¢ groups by r numbers, and we form all the (}) arithmetic averages of the pairs

in each group (corresponding to the rich bisectors of the group). This yields t(;)
real numbers, and we want to know how many of them must be distinct.

It is not hard to see that for r = 3, there must be at least Q(t!/3) distinct
numbers, because the three averages (a + )/2, (a + ¢)/2, and (b + ¢)/2 determine
the numbers a, b, c uniquely. It follows, still for » = 3, that each of the (%) sectors

has Q(¢!/3) distinct bisectors, and so each point in P" has Q(n/t?/3) incidences
with the rich lines. Applying Szemerédi—Trotter now yields the Solymosi—T4th
bound of ¢ = Q(n%/7) distinct distances.

Tardos [Tar01] considered the number-theoretic problem above for larger r, and
he proved, by a complicated argument, that for r large but fixed, the number of
distinct pairwise averages is Q(¢!/¢1¢), with ¢ = 0 as r — co. Plugging this into
the proof leads to the current best bound mentioned above. An example by Ruzsa
shows that the number of distinct pairwise averages can be O(+1/t) for any fixed r,
and it follows that the Solymosi—T6th method as is cannot provide a bound better
than Q(n%°). But surely one can look forward to the further continuation of the
adventure of distinct distances.

Exercises

1. Let I rc(m,n) be the maximum number of incidences between m points and n
arbitrary circles in the plane. Fill in the details of the following approach to
bounding I ..(n,n). Let K be a set of n circles, C' the set of their centers, and
P a set of n points.

(a) First, assume that the centers of the circles are mutually distinct, i.e., |C| =
| K'|. Proceed as in the proof in the text: Remove circles with at most 2 incidences,
and let the others define a drawing of a multigraph G with vertex set P and
arcs of the circles as edges. Handle the edges with multiplicity & or larger via
Szemerédi—Trotter, using the incidences of the bisectors with the set C, and
those with multiplicity < £ by Lemma 4.4.2. Balance k suitably. What bound
is obtained for the total number of incidences? (3

(b) Extend the argument to handle concentric circles too. [3

2. This exercise provides another bound for I..(n,n), the maximum possible num-
ber of incidences between n arbitrary circles and n points in the plane. Let K
be the set of circles and P the set of points. Let P; be the points with at least
d; = 2* and fewer than 27! incidences; we will argue for each P; separately.
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Define the multigraph G on P; as usual, with arcs of circles of K connecting neigh-
boring points of P; (the circles with at most 2 incidences with P; are deleted).
Let E be the set of edges of G. For a point u € F;, let N(u) be the set of
its neighboring points, and for a v € N(u), let p(u,v) be the number of edges
connecting v and v. For an edge e, define its partner edge as the edge following
after e clockwise around its circle.

(a) Show that for each u € P;, |{v € N(u): u(u,v) > 4/d;}| < /d;/2. [

(b) Let Er, C E be the edges of multiplicity at least 41/d;. Argue that for at
least % of the edges in E}, their partner edges do not belong to E}, and hence
|E\ Ex| = Q(|E]). L2

(c) Delete the edges of Ej from the graph, and apply Lemma 4.4.2 to bound
|E \ E,|. What overall bound does all this give for I .c(n,n)? [2

A similar proof appears in Pach and Sharir [PS98a] (for the more general case
of curves mentioned in the notes to Section 4.1).

4.5 Point—Line Incidences via Cuttings

Here we explain another proof of the upper bound I(n,n) = O(n*/3) for point-
line incidences. The technique is quite diflerent. It leads to an efficient al-
gorithm and seems more generally applicable than the one with the crossing
number theorem.

4.5.1 Lemma (A worse but useful bound).

I(m,n) = O(nvm + m), (4.2)
I(m,n) = O(m+y/n + n). (4.3)

Proof. There are at most (;) crossing pairs of lines in total. On the other

hand, a point p; € P with d; incidences “consumes” (dz*) crossing pairs (their

intersections all lie at p;). Therefore, 37, (%) < (7).
We want to bound } ;" d; from above. Since points with no incidences can

be deleted from P in advance, we may assume d; > 1 for all 7, and then we
have (dz*) > (d;—1)?/2. By the Cauchy-Schwarz inequality,

m m
D (di—1) < \|m ) (di—1)2 < z(n)m;
= \' = N2
and hence Y d; = O(n+/m + m).

The other inequality in the lemma can be proved similarly by looking at
pairs of points on each line. Alternatively, the equality I(n,m) = I(m,n) for

all m, n follows using the geometric duality introduced in Section 5.1.

Forbidden subgraph arguments. For integers r,s > 1, let K, ; denote the
complete bipartite graph on r + s vertices; the picture shows K3 4:

sy
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The above proof can be expressed using graphs with forbidden K5 o as a sub-
graph and thus put into the context of extremal graph theory.

A typical question in extremal graph theory is the maximum possible num-
ber of edges of a (simple) graph on n vertices that does not contain a given
forbidden subgraph, such as K22. Here the subgraph is understood in a non-
induced sense: For example, the complete graph K4 does contain K22 as a
subgraph. More generally, one can forbid all subgraphs from a finite or infinite
family F of graphs, or consider “containment” relations other than being a
subgraph, such as “being a minor.”

If the forbidden subgraph H is not bipartite, then, for example, the complete
bipartite graph K, , has 2n vertices, n? edges, and no subgraph isomorphic to
H. This shows that forbidding a nonbipartite H does not reduce the maximum
number of edges too significantly, and the order of magnitude remains quadratic.

On the other hand, forbidding K, ; with some fixed r and s decreases the
exponent of n, and forbidden bipartite subgraphs are the key to many estimates
in incidence problems and elsewhere.

4.5.2 Theorem (Ko6vari—S6s—Turdn theorem). Let r < s be fixed natu-
ral numbers. Then any graph on n vertices containing no K, as a subgraph
has at most O(n?~1/") edges.

If G is a bipartite graph with color classes of sizes m and n containing no
subgraph K, ; with the r vertices in the class of size m and the s vertices in the
class of size n, then

|[E(G)| =0 (min(mnl_l/’" +n,m 4 + m)) ..
(In both parts, the constant of proportionality depends on r and s.)

Note that in the second part of the theorem, the situation is not symmetric:
By forbidding the “reverse” placement of K,;, we get a different bound in
general.

The upper bound in the theorem is suspected to be tight, but a matching
lower bound is known only for some special values of r and s, in particular for
r < 3 (and all s > r).

To see the relevance of forbidden K5 o to the point-line incidences, we con-
sider a set P of points and a set L of lines and we define a bipartite graph with
vertex set P U L and with edges corresponding to incidences. An edge {p, ¢}
means that the point p lies on the line £. So the number of incidences equals
the number of edges. Since two points determine a line, this graph contains
no Kp2 as a subgraph: Its presence would mean that two distinct lines both
contain the same two distinct points. The Kovari—-Sos—Turan theorem thus im-
mediately implies Lemma 4.5.1, and the above proof of this lemma is the usual
proof of that theorem, for the special case r = s = 2, rephrased in terms of
points and lines.

As was noted above, for arbitrary bipartite graphs with forbidden K 5, not
necessarily being incidence graphs of points and lines in the plane, the bound in
the K6évari—-Sos—Turan theorem cannot be improved. So, in order to do better
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for point—line incidences, one has to use some more geometry than just the
excluded Kq 2. In fact, this was one of the motivations of the problem of point-
line incidences: In a finite projective plane of order g, we have n = ¢*+q+1
points, n lines, and (¢+1)n ~ n3/2 incidences, and so the Szemerédi-Trotter
theorem strongly distinguishes the Euclidean plane from finite projective planes
in a combinatorial sense.

Proof of the Szemerédi—Trotter theorem (Theorem 4.1.1) for m = n.

The bound from Lemma 4.5.1 is weaker than the tight Szemerédi—Trotter
bound, but it is tight if n* < m or m? < n. The idea of the present proof
is to convert the “balanced” case (n points and n lines) into a collection of
“unbalanced” subproblems, for which Lemma 4.5.1 is optimal. We apply the

following important result:

4.5.3 Lemma (Cutting lemma ). Let L be a set of n lines in the plane, and
let r be a parameter, 1 < r < n. Then the plane can be subdivided into t gen-
eralized triangles (this means intersections of three half-planes) A1, Ao, ..., Ay
in such a way that the interior of each A; is intersected by at most  lines of
L, and we have t < Cr? for a certain constant C independent of n and r.

Such a collection Aq,...,A; may look like this, for example:

The lines of L are not shown.

In order to express ourselves more economically, we introduce the following
terminology. A cutting is a subdivision of the plane into finitely many general-
ized triangles. (We sometimes omit the adjective “generalized” in the sequel.)
A given cutting is a %-cuttz’ng for a set L of n lines if the interior of each triangle
of the cutting is intersected by at most > lines of L.

Proofs of the cutting lemma will be discussed later, and now we continue
the proof of the Szemerédi—Trotter theorem.

Let P be the considered n-point set, L the set of n lines, and I(P, L) the
number of their incidences. We fix a “magic” value r = nl/3 and we divide
the plane into ¢t = O(r?) = O(n?3) generalized triangles A1, ..., A; so that the
interior of each A; is intersected by at most n/r = n2/3 lines of L, according to
the cutting lemma, .

Let P; denote the points of P lying inside A; or on its boundary but not at
the vertices of A;, and let L; be the set of lines of L intersecting the interior of

A;. The pairs (L;, P;) define the desired “unbalanced” subproblems. We have
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| L;| < n?/3 and while the size of the P; may vary, the average 1P| is & = nl/3

which is about the square root of the size of L;.

We have to be a little careful, since not all incidences of L and P are
necessarily included among the incidences of some L; and P;. One exceptional
case is a point p € P not appearing in any of the F;.

Aq {e L

Such a point has to be the vertex of some A;, and so there are no more than 3¢
such exceptional points. These points have at most 7(n, 3t) incidences with the
lines of L. Another exceptional case is a line of L containing a side of A; but
not intersecting its interior and therefore not included in L;, although it may
be incident with some points on the boundary of A;.

te L

/AN

There are at most 3t such exceptional lines, and they have at most I(3t,n)
incidences with the points of P. So we have

I(L,P) < I(n,3t) + I(3t,n) + i I(Li, P,).
i=1

By Lemma 4.5.1, I(n,3t) and I(3t,n) are both bounded by O(t\/n + n) =
O (n7/ %) « n?/3 and it remains to estimate the main term. We have |L;| < n2/3

and Y¢_, |P;| < 2n, since each point of P goes into at most two P,. Using the
bound (4.2) for each I(L;, P;) we obtain

t

t
ZI LG,P Z 2/3 ‘P ZO(‘Pi‘nl/3_|_n2/3)

i=1 = =1

(nt/3) (Z\ 1) + O(tn?/%) = O(n*).

This finally shows that I(n,n) = O(n%/3).

Bibliography and remarks. The bound in Lemma 4.5.1 using excluded K> »
is due to Erdés [Erd46].

Determining the maximum possible number of edges in a K, ;-free bipartite
graph with given sizes of the two color classes is known as the Zarankiewicz problem.
The general upper bound given in the text was shown by Kodvari, Sés, and Turan
[KST54]. For a long time, matching lower bounds (constructions) were known only
for r < 3 and all s > r (in these cases, even the constant in the leading term is known
exactly; see Fiiredi [Fiir96| for some of these results and references). In particular,
K o-free graphs on n vertices with £(n3/?) edges are provided by incidence graphs
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of finite projective planes, and Kj s-free graphs on n vertices with (2(n5/3) edges
were obtained by Brown [Bro66|. His construction is the “distance-k graph” in the
3-dimensional affine space over finite fields of order ¢ = —1 mod 4, for a suitable
k = k(q). Recently, Kollar, Rényai, and Szabé [KRS96| constructed asymptotically
optimal K, ;-free graphs for s very large compared to r, namely s > r!41, using
results of algebraic geometry. This was slightly improved by Alon, Rényai, and
Szabdé [ARS99] to s > (r—1)!4+1. They also obtained an alternative to Brown'’s
construction of K3 3-free graphs with a better constant, and asymptotically tight
lower bounds for some “asymmetric” instances of the Zarankiewicz problem, where
one wants a K, ;-free bipartite graph with color classes of sizes n and m (with the
“orientation” of the forbidden K, , fixed).

The approach to incidence problems using cuttings first appeared in a seminal
paper of Clarkson, Edelsbrunner, Guibas, Sharir, and Welzl [CEGT90], based on
probabilistic methods developed in computational geometry ([Cla87], [HW87], and
[CS89] are among the most influential papers in this development). Clarkson et al.
did not use cuttings in our sense but certain “cuttings on the average.” Namely,
if n; is the number of lines intersecting the interior of A;, then their cuttings
have t = O(r?) triangles and satisfy 3 ;_, n¢ < C(c) - r(2)®, where ¢ > 1 is an
integer constant, which can be selected as needed for each particular application,
and C(c) is a constant depending on c¢. This means that the cth degree average of
the n; is, up to a constant, the same as if all the n; were O(%). Technically, these

“cuttings on the average” can replace the optimal *-cuttings in most applications.

Clarkson et al. [CEGT90] proved numerous results on various incidence problems
and many-cells problems by this method; see the notes to Section 4.1.

The cutting lemma was first proved by Chazelle and Friedman [CF90]| and,
independently, by Matousek [Mat90a]. The former proof yields an optimal cutting
lemma in every fixed dimension and will be discussed in Section 6.5, while the
latter proof applies only to planar cutting and is presented in Section 4.7. A third,

substantially different, proof was discovered by Chazelle [Cha93a).

Yet another proof of the Szemerédi—Trotter theorem was recently found by Aronov
and Sharir (it is a simplification of the techniques in [AS01lal). It is based on the
case d = 2 of the following partition theorem of MatouSek [Mat92]: For every
n-point set X C RY, d fixed, and every r, 1 < r < n, there exists a partition
X =X,UXoU---UXy, t = O(r), such that * < |X;| < %"‘ for all i and no
hyperplane h crosses more than O(r'=1/4) of the sets X;. Here h crossing X;
means that X; is not completely contained in one of the open half-spaces defined
by h or in h itself.! This result is proved using the d-dimensional cutting lemma (see
Section 4.6). The bound O(r!~1/4) is asymptotically the best possible in general.

To use this result for bounding I(L, P), where L is a set of n lines and P a
set of n points in the plane, we let X = Dy(L) be the set of points dual to the
lines of L (see Section 5.1). We apply the partition theorem to X with r = n?/3
and dualize back, which yields a partition L = L; U Lo U ---U L¢, t = O(r), with
L] =~ & = nl/3. The crossing condition implies that no point p is incident to
lines from more than O(+/r) of the L;, not counting the pathological L; where p is
common to all the lines of L;.

We consider the incidences of a point p € P with the lines of L;. The 7 where
p lies on at most one line of L; contribute at most O(4/r) incidences, which gives
a total of O(n+/7) = O(n*/3) for all p € P. On the other hand, if p lies on at least
two lines of L; then it is a vertex of the arrangement of L;. As is easy to show,
the number of incidences of k lines with the vertices of their arrangement is O(k?)

A slightly stronger result is proved in [Mat92]: For every X; we can choose a relatively
open simplex o; O X;, and no h crosses more than O(rl_” d) of the ;.
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(Exercise 6.1.6), and so the total contribution from these cases is O} |L;|*) =
O(n?/r) = O(n*/3). This proves the balanced case of Szemerédi—Trotter, and the
unbalanced case works in the same way with an appropriate choice of . Unlike the
previous proofs, this one does not directly apply with pseudolines instead of lines.

Improved point—circle incidences. A similar method also proves that I ..(n,n) =
O(n'*) (see Exercise 4.4.2 for another proof). Circles are dualized to points and
points to surfaces of cones in R3, and the appropriate partition theorem holds as
well, with no surface of a cone crossing more than O(r2/3) of the subsets X;.

Aronov and Sharir [AS01a] improved the bound to Igic(m,n) = O(m?/3n2/3 +
m) for large m, namely m > n(5-3¢)/(4=9¢) and to Isire(m,n) = O(m(6+36)/11p(0—e)/11 1
n) for the smaller m (here, as usual, £ > 0 can be chosen arbitrarily small, influ-
encing the constants of proportionality). Agarwal et al. [AAS01] obtained almost
the same bounds for the maximum complexity of m cells in an arrangement of n
circles.

A key ingredient in the Aronov—Sharir proof are results on the following ques-
tion of independent interest. (Given a family of n curves in the plane, into how
many pieces (“pseudosegments”) must we cut them, in the worst case, so that no
two pieces intersect more than once? This problem, first studied by Tamaki and
Tokuyama, [TT98|, will be briefly discussed in the notes to Section 11.1. For the
curves being circles, Aronov and Sharir [AS01a] obtained the estimate O(n3/21¢),
improving on several previous results.

To bound the number I(P, C) of incidences of an m-point set P and a set C
of n circles, we delete the circles containing at most 2 points, we cut the circles
into O(n3/ 21¢) pieces as above, and we define a graph with vertex set P and with
edges being the circle arcs that connect consecutive points along the pieces. The
number of edges is at least I(P,C) — O(n3/?T¢). The crossing number theorem
applies (since the graph is simple) and yields I(P,C) = O(m?/3n2/3 4 n3/2+e),
which is tight for m about n%/% and larger. For smaller m, Aronov and Sharir use
the method with partition in the dual space outlined above to divide the original
problem into smaller subproblems, and for these they use the bound just mentioned.

Exercises

1. Let Ii¢irc(m,n) be the maximum number of incidences between m points and n
unit circles in the plane. Prove that I;...(m,n) = O(m+/n + n) by the method
of Lemma 4.5.1. [2

2. Let I;ic(m,n) be the maximum possible number of incidences between m points
and n arbitrary circles in the plane. Prove that I ..(m,n) = O(ny/m + n) and
Lire(m, n) = O(mn3/3 +n). 2

4.6 A Weaker Cutting Lemma

Here we prove a version of the cutting lemma (Lemma 4.5.3) with a slightly
worse bound on the number of the A;. The proof uses the probabilistic method
and the argument is very simple and general. We will improve on it later and
obtain tight bounds in a more general setting in Section 6.5. In Section 4.7
below we give another, self-contained, elementary geometric proof of the planar
cutting lemma, .

Here we are going to prove that every set of n lines admits a %-cutting
consisting of O(r?log®n) triangles. But first let us see why at least Q(r2)
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triangles are necessary.

A lower bound. Consider n lines in general position. Their arrangement
has, as we know, (3)+n+1 > n®/2 cells. On the other hand, considering a
triangle A; whose interior is intersected by ¥ < 7 lines (k > 1), we see that A,

is divided into at most (’2") +k+1 < 2k? cells. Since each cell of the arrangement
has to show up in the interior of at least one triangle A;, the number of triangles
is at least n?/4k* = Q(r?). Hence the cutting lemma is asymptotically optimal
for r — oc.

Proof of a weaker version of the cutting lemma (Lemma 4.5.3). We
select a random sample S C L of the given lines. We make s independent
random draws, drawing a random line from L each time. These are draws with
replacement: One line can be selected several times, and so § may have fewer
than s lines.

Consider the arrangement of S§. Partition the cells that are not (generalized)
triangles by adding some suitable diagonals, as illustrated below:

lines of S

.................. added diagonals

......... lines of L\ §

This creates (generalized) triangles Ay, Ao, ..., A; with ¢t = O(s?) (since we
have a drawing of a planar graph with (;)—l—l vertices; also see Exercise 2).

4.6.1 Lemma. For s = 67 Inn, the following holds with a positive probability:
The A; form a %-cutting for L; that is, the interior of no A; is intersected by
more than 7 lines of L.

This implies the promised weaker version of the cutting lemma: Since the
probability of the sample S being good is positive, there exists at least one good
S that yields the desired collection of triangles.

Proof of Lemma 4.6.1. Let us say that a triangle T' is dangerous if its
interior is intersected by at least £ = 2 lines of L. We fix some arbitrary
dangerous triangle T'. What is the probablllty that no line of the sample S
intersects the interior of T'7 We select a random line s times. The probability
that we never hit one of the k£ lines intersecting the interior of T' is at most
(1 — k/n)®. Using the well-known inequality 1+z < e, we can bound this

probability by e #$/n = ¢=6Inn — 6
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Call a triangle T' interesting (for L) if it can appear in a triangulation for
some sample S C L. Any interesting triangle has vertices at some three vertices
of the arrangement of L, and hence there are fewer than n® interesting trian-
gles.? Therefore, with a positive probability, a random sample S intersects the
interiors of all the dangerous interesting triangles simultaneously. In particular,
none of the triangles A; appearing in the triangulation of such a sample S can
be dangerous. This proves Lemma 4.6.1.

More sophisticated probabilistic reasoning shows that it is sufficient to
choose s = const - rlogr in Lemma 4.6.1, instead of const - rlogn, and still,
with a positive probability no interesting dangerous triangle is missed by S
(see Section 6.5 and also Exercise 10.3.4). This improvement is important for
r small, say constant: it shows that the number of triangles in a %-cutting can
be bounded independent of n.

To prove the asymptotically tight bound O(r?) by a random sampling ar-
gument seems considerably more complicated and we will discuss this in Sec-
tion 6.5.

Bibliography and remarks. The ideas in the above proof of the weaker
cutting lemma can be traced back at least to early papers of Clarkson (such as
[Cla87]) on random sampling in computational geometry. The presented proof was
constructed ex post facto for didactic purposes; the cutting lemma was first proved,
as far as I know, in a stronger form (with logr instead of logn).

Exercises

1. Calculate the exact expected size of S, a sample drawn from n elements by s
independent random draws with replacements. (3

2. Calculate the number of (generalized) triangles arising by triangulating an ar-
rangement of 7 lines in the plane in general position. (First, specify how exactly
the unbounded cells are triangulated.) [2

3. (A cutting lemma for circles) Consider a set K of n circles in the plane. Select a
sample S C K by s independent random draws with replacement. Consider the
arrangement of S, and construct its vertical decomposition; that is, from each
vertex extend vertical segments upwards and downwards until they hit a circle
of S (or all the way to infinity). Similarly extend vertical segments from the
leftmost and rightmost points of each circle.

(a) Show that this partitions the plane into O(s?) “circular trapezoids” (shapes
bounded by at most two vertical segments and at most two circular arcs). [2

(b) Show that for s = Crlnn with a sufficiently large constant C, there is
a positive probability that the sample § intersects all the dangerous interesting
circular trapezoids, where “dangerous” and “interesting” are defined analogously
to the definitions in the proof of the weaker version of the cutting lemma . [3

4. Using Exercises 3 and 4.5.1, show that the number of unit distances determined
by n points in the plane is O(n*/3 log?/3 n). [

*The unbounded triangles have only 1 or 2 vertices, but they are completely determined
by their two unbounded rays, and so their number is at most n>.
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5. Using Exercises 3 and 4.5.2, show that I...(n,n) = O(n'*log°n) (for some
constant c), where Ig..(m,n) is the maximum possible number of incidences
between m points and n arbitrary circles in the plane. (3

4.7 The Cutting Lemma: a Tight Bound

Here we prove the cutting lemma in full strength. The proof is simple and
elementary, but it does not seem to generalize to higher-dimensional situations.

For simplicity, we suppose that the given set L of n lines is in general
position. (If not, perturb it slightly to get general position, construct the %-
cutting, and perturb back; this gives a %-cutting for the original collection of
lines; we omit the details.) First we need some definitions and observations

concerning levels.

Levels and their simplifications. Let L be a fixed finite set of lines in the
plane; we assume that no line of L is vertical. The level of a point z € R? is
defined as the number of lines of L lying strictly below z.

We note that the level of all points of an (open) cell of the arrangement of
L is the same, and similarly for a (relatively open) edge. On the other hand,
the level of an edge can differ from the levels of its endpoints, for example.

We define the level k of the arrangement of L, where 0 < k£ < n, as the set
Ey, of all edges of the arrangement of L having level exactly k. These edges plus
their endpoints form an z-monotone polygonal line, where x-monotone means
that each vertical line intersects it at exactly one point.

It is easy to see that the level £ makes a turn at each endpoint of its edges;

it looks somewhat like this:

The level &k is drawn thick, while the thin segments are pieces of lines of I and
they do not belong to the level k.

Let eg, e1,...,e: be the edges of E numbered from left to right; eg and e;
are the unbounded rays. Let us fix a point p; in the interior of e¢;. For an integer
parameter ¢ > 2, we define the q-simplification of the level k as the monotone
polygonal line containing the left part of ¢y up to the point pg, the segments
PoPq, PgP2g>-- -1 P|(t—1)/q|qPt, and the part of e; to the right ot p;. Thus, the
g-simplification has at most é—|—2 edges. Here is an illustration for t =9, ¢ = 4:

42
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(We could have defined the ¢-simplification by connecting every gth vertex of
the level, but the present way makes some future considerations a little simpler.)

4.7.1 Lemma.

(i) The portion II of the level k (considered as a polygonal line) between the
points p; and p;, is intersected by at most q+1 lines of L.

(ii) The segment p;p;+, is intersected by at most q+1 lines of L.

(iii) The g-simplification of the level k is contained in the strip between the

levels k — [q/2] and k + [q/2].

Proof. Part (i) is obvious: Each line of L intersecting II contains one of
the edges ej,ej41,...,€j1q. As for (ii), II is connected, and hence all lines
intersecting its convex hull must intersect II itself as well. The segment p;p;.,
is contained in conv(II).

Concerning (iii), imagine walking along some segment p;p;., of the g¢-
simplification. We start at an endpoint, which has level k. Our current level
may change only as we cross lines of L. Moreover, having traversed the whole

segment we must be back to level k. Thus, to get from level k to k£ + ¢ and back
to k£ we need to cross at least 2¢ lines on the way. From this and (ii), 2¢ < ¢+1,

and hence ¢ < |(¢+1)/2] = [q/2].

Proof of the cutting lemma for lines in general position. Let r be
the given parameter. If » = }(n), then it suffices to produce a 0-cutting of size
O(n?) by simply triangulating the arrangement of L. Hence we may assume
that r is much smaller than n.

Set ¢ = [n/10r]. Divide the levels Ey, E1,..., E,—1 into g groups: The ith
group contains all F; with j congruent to ¢ modulo g (¢ =0,1,...,9—1). Since
the total number of edges in the arrangement is n?, there is an i such that the
ith group contains at most n?/q edges. We fix one such i; from now on, we
consider only the levels 7, g+, 2g+1, ..., and we construct the desired %-cutting
from them.

Let P; be the g-simplification of the level jg+i. If Ej,.; has m; edges,
then P; has at most m;/q + 3 edges, and the total number of edges of the P;,
i =0,1,...,|(n—1)/q|, can be estimated by n?/q¢* + 3(n/q+1) = O(n?/q?).
We note that the polygonal chains P; never intersect properly: If they did, a
vertex of some P;, which has level g7+, would be above F;1, and this is ruled
out by Lemma, 4.7.1(iii).

We form the vertical decomposition for the P;; that is, we extend vertical
segments from each vertex of P; upwards and downwards until they hit P;_;
and P j+1-
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This subdivides the plane into O(n?/q¢?) = O(r?) trapezoids.

We claim that each such trapezoid is intersected by at most * lines of L. We
look at a trapezoid in the strip between P; and P;,;. By Lemma 4.7.1(iii), it
lies between the levels ¢j +¢— [q/2] and g(j+1)+ ¢+ [g/2], and therefore, each
of its vertical sides is intersected by no more than 3q lines. The bottom side
is a part of an edge of P;, and consequently, it is intersected by no more than
g+1 lines; similarly for the top side. Hence the number of lines intersecting the
considered trapezoid is certainly at most 10g < 7. (A more careful analysis
shows that one trapezoid is in fact intersected by at most 2¢ + O(1) lines; see
Exercise 1.)

Finally, a

%-cutting can be obtained by subdividing each trapezoid into two
triangles by a diagonal. But let us remark that for applications of %-cuttings,
trapezoids are usually as good as triangles.

Bibliography and remarks. The basic ideas of the presented proof are from
[Mat90a], and the presentation basically follows [Mat98]. The latter paper provides
some estimates for the number of triangles or trapezoids in a %-cutting, as r — oo:
For example, at least 2.54(1 — o(1))r? trapezoids are sometimes necessary, and

8(1+o0(1))r? trapezoids always suffice. The notion of levels and their simplifications,
as well as Lemma 4.7.1, are due to Edelsbrunner and Welzl [EW86].

Exercises

1. (a) Verify that each trapezoid arising in the described construction is intersected
by at most 2.5¢ + O(1) lines. Setting ¢ appropriately, show that the plane can
subdivided into 12.5r7* + O(r) trapezoids, each intersected by at most 2 lines,
assuming 1 € r < n. 12

(b) Improve the bounds from (a) to 2¢ + O(1) and 872 + O(r), respectively. [4
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Convex Polytopes

Convex polytopes are convex hulls of finite point sets in R%. They constitute the
most important class of convex sets with an enormous number of applications
and connections.

Three-dimensional convex polytopes, especially the regular ones, have been
fascinating people since the antiquity. Their investigation was one of the main
sources of the theory of planar graphs, and thanks to this well-developed theory
they are quite well understood. But convex polytopes in dimension 4 and higher
are considerably more challenging, and a surprisingly deep theory, mainly of
algebraic nature, was developed in attempts to understand their structure.

A strong motivation for the study of convex polytopes comes from practi-
cally significant areas such as combinatorial optimization, linear programming,
and computational geometry. Let us look at a simple example illustrating how
polytopes can be associated with combinatorial objects. The 3-dimensional
polytope in the picture

2341 1342
2431 1243
1432 L
2143
3421 1342 1234
\ - 7
- 132477 2134
3412 2413
2314
4319 3124
4213 3214

is called the permutahedron. Although it is 3-dimensional, it is most naturally
defined as a subset of R*, namely, the convex hull of the 24 vectors obtained by
permuting the coordinates of the vector (1,2,3,4) in all possible ways. In the
picture, the (visible) vertices are labeled by the corresponding permutations.
Similarly, the d-dimensional permutahedron is the convex hull of the (d+1)! vec-
tors in R4 arising by permuting the coordinates of (1,2,...,d+1). One can
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observe that the edges of the polytope connect exactly pairs of permutations
differing by a transposition of two adjacent numbers, and a closer examina-
tion reveals other connections between the structure of the permutahedron and
properties of permutations.

There are many other, more sophisticated, examples of convex polytopes
assigned to combinatorial and geometric objects such as graphs, partially or-
dered sets, classes of metric spaces, or triangulations of a given point set. In
many cases, such convex polytopes are a key tool for proving hard theorems
about the original objects or for obtaining efficient algorithms. Two impressive
examples are discussed in Chapter 12, and several others are scattered in other
chapters.

The present chapter should convey some initial working knowledge of convex
polytopes for a nonpolytopist. It is Just a small sample of an extensive theory.
A more comprehensive modern introduction is the book by Ziegler [Zie94].

5.1 (Geometric Duality

First we discuss geometric duality, a simple technical tool indispensable in the
study of convex polytopes and handy in many other situations. We begin with
a simple motivating question.

How can we visualize the set of all lines intersecting a convex pentagon as
in the picture?

A suitable way is provided by line—point duality.

5.1.1 Definition (Duality transform). The (geometric) duality transform
is a mapping denoted by Dy. To a point a € R\ {0} it assigns the hyperplane

Dola) = {z € RY: (a,x) = 1},

and to a hyperplane h not passing through the origin, which can be uniquely
written in the form h = {x € R%: (a,z) = 1}, it assigns the point Dy(h) =a €

R4\ {0}.

Here is the geometric meaning of the duality transform. If a is a point at
distance ¢ from 0, then Dy(a) is the hyperplane perpendicular to the line Oa and
intersecting that line at distance % from O, in the direction from 0 towards a.
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Proof. (i) Let h = {# € R% (a,z) = 1}. Then p € h means {(a,p) = 1.
Now, Dg(h) is the point a, and Dy(p) is the hyperplane {y € R%: {y,p) = 1},
and hence Dy(h) = a € Dy(p) also means just {(a,p) = 1. Part (ii) is proved
similarly.

5.1.3 Definition (Dual set). For a set X C R%, we define the set dual to X,
denoted by X*, as follows:

X*={yecR% (z,y) <1forallz € X}.

Another common name used for the duality is polarity;, the dual set would
then be called the polar set. Sometimes it is denoted by X°.

Geometrically, X* is the intersection of all half-spaces of the form Dy(x)™
with £ € X. Or in other words, X™* consists of the origin plus all points y such
that X C Dy(y)~. For example, if X is the pentagon aias...as drawn above,
then X* is the pentagon vivs... vs.

For any set X, the set X™* is obviously closed and convex and contains the
origin. Using the separation theorem (Theorem 1.2.4), it is easily shown that
for any set X C RY, the set (X*)* is the closure conv(X U {0}). In particular,
for a closed convex set containing the origin we have (X*)* = X (Exercise 3).

For a hyperplane h, the dual set h* is different from the point Dy(h).1

For readers familiar with the duality of planar graphs, let us remark that it
is closely related to the geometric duality applied to convex polytopes in RS.
For example, the next drawing illustrates a planar graph and its dual graph

(dashed):

Later we will see that these are graphs of the 3-dimensional cube and of the
regular octahedron, which are polytopes dual to each other in the sense defined
above. A similar relation holds for all 3-dimensional polytopes and their graphs.

Other variants of duality. The duality transform Dy defined above is
just one of a class of geometric transforms with similar properties. For some
purposes, other such transforms (dualities) are more convenient. A particu-
larly important duality, denoted by D, corresponds to moving the origin to the
“minus infinity” of the z4-axis (the x4-axis is considered vertical). A formal
definition is as follows.

5.1.4 Definition (Another duality). A nonvertical hyperplane h can be
uniquely written in the form h = {x € R x4 =a1x1+ -+ ag_1Tg_1 — aq}-
We set D(h) = (a1,-..,a4-1,aq).- Conversely, the point a = (a,...,aq4_1,aq)
maps back to h.

Tn the literature, however, the “star” notation is sometimes also used for the dual point
or hyperplane, so for a point p, the hyperplane Do(p) would be denoted by p*, and similarly
h* may stand for Do (h).
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The property (i) of Lemma 5.1.2 holds for this D, and an analogue of (ii)
1S:

(ii') A point p lies above a hyperplane h if and only if the point D (k) lies above
the hyperplane D(p).

Exercises

1. Let C = {z € R% |z1|+---+|zq| < 1}. Show that C* is the d-dimensional cube
{z € R%: max|z;| < 1}. Picture both bodies for d = 3. [2

2. Prove the assertion made in the text about the lines intersecting a convex pen-
tagon. 2

3. Show that for any X C R%, (X*)* equals the closure of conv(X U {0}), where
X* stands for the dual set to X. 3

4. Let C C R® be a convex set. Prove that C* is bounded if and only if 0 lies in
the interior of C. (2

5. Show that C = C* if and only if C is the unit ball centered at the origin. [2

6. (a) Let C = conv(X) C R%. Prove that C* =(_.x Do(x)~. 2

(b) Show that if C' = [\, .z h~, where H is a collection of hyperplanes not
passing through 0, and if C is bounded, then C* = conv{Dy(h): h € H}. [2

(c) What is the right analogue of (b) if C is unbounded? [2

7. What is the dual set A* for a hyperplane h, and what about A**7 |38

8. Verify the geometric interpretation of the duality Dy outlined in the text (using
the embeddings of R¢ into R41). [2

9. (a) Let s be a segment in the plane. Describe the set of all points dual to lines
intersecting s. L1

(b) Consider n > 3 segments in the plane, such that none of them contains 0 but
they all lie on lines passing through 0. Show that if every 3 among such segments
can be intersected by a single line, then all the segments can be simultaneously
intersected by a line. (3

(c) Show that the assumption in (b) that the extensions of the segments pass
through 0 is essential: For each n > 1, construct n+1 pairwise disjoint segments
in the plane that cannot be simultaneously intersected by a line but every n of
them can (such an example was first found by Hadwiger and Debrunner). [4

5.2 H-Polytopes and V-Polytopes

A convex polytope in the plane is a convex polygon. Famous examples of
convex polytopes in R® are the Platonic solids: regular tetrahedron, cube,
regular octahedron, regular dodecahedron, and regular icosahedron. A convex
polytope in R? is a convex set bounded by finitely many convex polygons. Such
a set can be regarded as a convex hull of a finite point set, or as an intersection
of finitely many half-spaces. We thus define two types of convex polytopes,
based on these two views.
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There are several ways of proving the equivalence of H-polytopes and V-poly-
topes. QOurs is inspired by a proof by Edmonds, as presented in Fukuda’s lecture
notes (ETH Ziirich). A classical algorithmic proof is provided by the Fourier-
Motzkin elimination procedure, which proceeds by projections on coordinate hy-
perplanes; see [Zie94] for a detailed exposition. The double-description method is
a similar algorithm formulated in the dual setting, and it is still one of the most
efficient known computational methods. We will say a little more about the algo-
rithmic problem of expressing the convex hull of a finite set as the intersection of
half-spaces in the notes to Section 5.5.

One may ask, what is a “vertex description” of an unbounded H-polyhedron?
Of course, it is not the convex hull of a finite set, but it can be expressed as the
Minkowski sum P + C, where P is a V-polytope and C is a convex cone described
as the convex hull of finitely many rays emanating from 0.

Exercises

1. Verify that a d-dimensional simplex in R? can be expressed as the intersection
of d+1 half-spaces. (2

2. (a) Show that every convex polytope in R® is an orthogonal projection of a
simplex of a sufficiently large dimension onto the space R® (which we consider
embedded as a d-flat in some R"™). [3

(b) Prove that every convex polytope P symmetric about 0 (i.e., with P = —P)
is the affine image of a crosspolytope of a sufficiently large dimension. L3

5.3 Faces of a Convex Polytope

The surface of the 3-dimensional cube consists of 8 “corner” points called ver-
tices, 12 edges, and 6 squares called facets. According to the perhaps more usual
terminology in 3-dimensional geometry, the facets would be called faces. But in
the theory of convex polytopes, the word face has a slightly different meaning,
defined below. For the cube, not only the squares but also the vertices and the
edges are all called faces of the cube.

5.3.1 Definition (Face). A face of a convex polytope P is defined as

e cither P itself, or

e a subset of P of the form P N h, where h is a hyperplane such that P is
fully contained in one of the closed half-spaces determined by h.
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We observe that each face of P is a convex polytope. This is because P
is the intersection of finitely many half-spaces and A is the intersection of two
half-spaces, so the face is an H-polyhedron, and moreover, it is bounded.

If P is a polytope of dimension d, then its faces have dimensions —1, 0,
1,..., d, where —1 is, by definition, the dimension of the empty set. A face of
dimension 7 is also called a j-face.

Names of faces. The O-faces are called wvertices, the 1-faces are called
edges, and the (d—1)-faces of a d-dimensional polytope are called facets. The
(d—2)-faces of a d-dimensional polytope are ridges; in the familiar 3-dimension-
al situation, edges =ridges. For example, the 3-dimensional cube has 28 faces
in total: the empty face, 8 vertices, 12 edges, 6 facets, and the whole cube.

The following proposition shows that each V-polytope is the convex hull of
its vertices, and that the faces can be described combinatorially: They are the
convex hulls of certain subsets of vertices. This includes some intuitive facts
such as that each edge connects two vertices.

A helpful notion is that of an extremal point of a set: For a set X C R%, a
point x € X is extremal if x € conv(X \ {z}).

5.3.2 Proposition. Let P C R% be a (bounded) convex polytope.

(1) (“Vertices are extremal” ) The extremal points of P are exactly its vertices,
and P is the convex hull of its vertices.

(ii) (“Face of a face is a face”) Let F' be a face of P. The vertices of F' are
exactly those vertices of P that lie in F'. More generally, the faces of F
are exactly those faces of P that are contained in F'.

The proof is not essential for our further considerations, and it is given at the
end of this section (but Exercise 8 below illustrates that things are not quite as
simple as it might perhaps seem). The proposition has an appropriate analogue
for polyhedra, but in order to avoid technicalities, we treat the bounded case
only.

Graphs of polytopes. Each 1-dimensional face, or edge, of a convex polytope
has exactly two vertices. We can thus define the graph G(P) of a polytope P
in the natural way: The vertices of the polytope are vertices of the graph, and
two vertices are connected by an edge in the graph if they are vertices of the
same edge of P. (The terms “vertices” and “edges” for graphs actually come
from the corresponding notions for 3-dimensional convex polytopes.) Here is an
example of a 3-dimensional polytope, the regular octahedron, with its graph:

For polytopes in R3, the graph is always planar: Project the polytope from
its interior point onto a circumscribed sphere, and then make a “cartographic
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map” of this sphere, say by stereographic projection. Moreover, it can be shown
that the graph is vertex 3-connected. (A graph G is called vertex k-connected
if [V(G)| > k+1 and deleting any at most k—1 vertices leaves G connected.)
Nicely enough, these properties characterize graphs of convex 3-polytopes:

5.3.3 Theorem (Steinitz theorem). A finite graph is isomorphic to the
graph of a 3-dimensional convex polytope if and only if it is planar and vertex
3-connected.

We omit a proof of the considerably harder “if” part (exhibiting a poly-
tope for every vertex 3-connected planar graph); all known proofs are quite
complicated.

Graphs of higher-dimensional polytopes probably have no nice description
comparable to the 3-dimensional case, and it is likely that the problem of decid-
ing whether a given graph is isomorphic to a graph of a 4-dimensional convex
polytope is NP-hard. It is known that the graph of every d-dimensional poly-
tope is vertex d-connected (Balinski’s theorem), but this is only a necessary
condition.

Examples. A d-dimensional simplex has been defined as the convex hull of
a (d+1)-point affinely independent set V. It is easy to see that each subset of
V determines a face of the simplex. Thus, there are (k_j) faces of dimension k,
k=-1,0,...,d, and 29! faces in total.

The d-dimensional crosspolytope has V = {ey, —ey,...,eq, —€q} as the ver-
tex set. A proper subset F° C V determines a face if and only if there is no ¢
such that both e¢; € F and —e; € F (Exercise 2). It follows that there are 39+1
faces, including the empty one and the whole crosspolytope.

The nonempty faces of the d-dimensional cube [—1,1]% correspond to vectors
v € {—1,1,0}9. The face corresponding to such v has the vertex set {u €
{-1,1}%: u; = v; for all i with v; # 0}. Geometrically, the vector v is the

center of gravity of its face.

The face lattice. Let F(P) be the set of all faces of a (bounded) convex
polytope P (including the empty face @ of dimension —1). We consider the
partial ordering of F(P) by inclusion.

5.3.4 Definition (Combinatorial equivalence). Two convex polytopes P
and () are called combinatorially equivalent if 7(P) and F(Q)) are isomorphic
as partially ordered sets.

We are going to state some properties of the partially ordered set F(P)
without proofs. These are not difficult and can be found in [Zie94].

It turns out that F(P) is a lattice (a partially ordered set satisfying addi-
tional axioms). We recall that this means the following two conditions:

o Meets condition: For any two faces F,G € F(P), there exists a face
M € F(P), called the meet of F' and G, that is contained in both F' and

(G and contains all other faces contained in both F' and G.
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o Joins condition: For any two faces F,G € F(P), there exists a face
J € F(P), called the join of F and G, that contains both F' and G and
is contained in all other faces containing both F' and G.

The meet of two faces is their geometric intersection F N G.

For verifying the joins and meets conditions, it may be helpful to know
that for a finite partially ordered set possessing the minimum element and the
maximum element, the meets condition is equivalent to the joins condition, and
so 1t is enough to check only one of the conditions.

Here is the face lattice of a 3-dimensional pyramid:

The vertices are numbered 1-5, and the faces are labeled by the vertex sets.

The face lattice is graded, meaning that every maximal chain has the same
length (the rank of a face F is dim(F')+1). Quite obviously, it is atomic:
Every face is the join of its vertices. A little less obviously, it is coatomic;
that is, every face is the meet (intersection) of the facets containing it. An
important consequence 1s that combinatorial type of a polytope is determined
by the vertex—facet incidences. More precisely, if we know the dimension and
all subsets of vertices that are vertex sets of facets (but without knowing the
coordinates of the vertices, of course), we can uniquely reconstruct the whole
face lattice in a simple and purely combinatorial way.

Face lattices of convex polytopes have several other nice properties, but no
full algebraic characterization is known, and the problem of deciding whether a
given lattice is a face lattice is algorithmically difficult (even for 4-dimensional
polytopes).

The face lattice can be a suitable representation of a convex polytope in
a computer. Each j-face is connected by pointers to its (j—1)-faces and to
the (j+1)-faces containing it. On the other hand, it is a somewhat redundant
representation: Recall that the vertex—facet incidences already contain the full
information, and for some applications, even less data may be sufficient, say
the graph of the polytope.

The dual polytope. Let P be a convex polytope containing the origin in its
interior. Then the dual set P* is also a polytope; we have verified this in the
proof of Theorem 5.2.2.

5.3.5 Proposition. For each j = —1,0,...,d, the j-faces of P are in a bijec-
tive correspondence with the (d—j—1)-faces of P*. This correspondence also
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reverses inclusion; in particular, the face lattice of P* arises by turning the face
lattice of P upside down.

Again we refer to the reader’s diligence or to [Zie94] for a proof. Let us
examine a few examples instead.

Among the five regular Platonic solids, the cube and the octahedron are
dual to each other, the dodecahedron and the icosahedron are also dual, and
the tetrahedron is dual to itself. More generally, if we have a 3-dimensional
convex polytope and ( is its graph, then the graph of the dual polytope is the
dual graph to &, in the usual graph-theoretic sense. The dual of a d-simplex is
a d-simplex, and the d-dimensional cube and the d-dimensional crosspolytope
are dual to each other.

We conclude with two notions of polytopes “in general position.”

5.3.6 Definition (Simple and simplicial polytopes). A polytope P is
called simplicial if each of its facets is a simplex (this happens, in particular, if
the vertices of P are in general position, but general position is not necessary).
A d-dimensional polytope P is called simple if each of its vertices is contained
in exactly d facets.

The faces of a simplex are again simplices, and so each proper face of a
simplicial polytope is a simplex. Among the five Platonic solids, the tetrahe-
dron, the octahedron, and the icosahedron are simplicial; and the tetrahedron,
the cube, and the dodecahedron are simple. Crosspolytopes are simplicial, and
cubes are simple. An example of a polytope that is neither simplicial nor simple
is the 4-sided pyramid used in the illustration of the face lattice.

The dual of a simple polytope is simplicial, and vice versa. For a simple d-di-
mensional polytope, a small neighborhood of each vertex looks combinatorially
like a neighborhood of a vertex of the d-dimensional cube. Thus, for each
vertex v of a d-dimensional simple polytope, there are d edges emanating from
v, and each k-tuple of these edges uniquely determines one k-face incident to v.
Consequently, v belongs to (g) k-faces, k =0,1,...,d.

Proof of Proposition 5.3.2. In (i) (“vertices are extremal”’), we assume
that P is the convex hull of a finite point set. Among all such sets, we fix one
that is inclusion-minimal and call it V. Let V,, be the vertex set of P, and let
Ve be the set of all extremal points of P. We prove that V3 = V,, = V., which
gives (i). We have V., C Vj by the definition of an extremal point.

Next, we show that V,, C V,. If v € V, is a vertex of P, then there is
a hyperplane A with P N h = {v}, and all of P \ {v} lies in one of the open
half-spaces defined by h. Hence P \ {v} is convex, which means that v is an
extremal point of P, and so V,, C V..

Finally we verity Vy C V,. Let v € Vj; by the inclusion-minimality of Vj,
we get that v ¢ C = conv(Vj \ {v}). Since C and {v} are disjoint compact
convex sets, they can be strictly separated by a hyperplane h. Let h, be the
hyperplane parallel to A and containing v; this h, has all points of Vj \ {v} on

one side.
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of at most f(d,n) < 2n(*Tl°82"I=1) < 9plo8:d+1 edges and going upward all the

time. The proof is quite short and uses only very simple properties of polytopes
(also see [Zie94] or [Kal97]).

Kalai [Kal92] also discovered a randomized variant of the simplex algorithm for
linear programming for which the expected number of pivot steps, for every linear
program with n constraints in R%, is bounded by a subexponential function of n

and d, namely by nC(Vd) Al the previous worst-case bounds were exponential.
Interestingly, essentially the same algorithm (in a dual setting) was found by Sharir
and Welzl and a little later analyzed in [MSW96], independent of Kalai’s work and
at almost the same time, but coming from a quite different direction. The Sharir—
Welzl algorithm is formulated in an abstract framework, and it can be used for
many other optimization problems besides linear programming.

Realizations of polytopes. By a realization of a d-dimensional polytope P we
mean any polytope Q@ C R that is combinatorially equivalent to P. The proof of
Steinitz’s theorem shows that every 3-dimensional polytope has a realization whose
vertices have integer coordinates. For 3-polytopes with n vertices, Richter-Gebert
[RGI7] proved that the vertex coordinates can be chosen as positive integers no

larger than 218" and if the polytope has at least one triangular facet, the upper
bound becomes 43" (a previous, slightly worse, estimate was given by Onn and
Sturmfels [0S94]). No nontrivial lower bounds seem to be known. Let us remark
that for straight edge drawings of planar graphs, the vertices of every n-vertex graph
can be placed on a grid with side O(n). This was first proved by de Fraysseix, Pach,
and Pollack [dFPP90] with the (2n—4) x (n—2) grid, and re-proved by Schnyder
[Sch90] by a different method, with the (n—1) x (n—1) grid; see also Kant [Kan96]
for more recent results in this direction.

For higher-dimensional polytopes, the situation is strikingly different. Although
all simple polytopes and all simplicial polytopes can be realized with integer vertex
coordinates, there are 4-dimensional polytopes for which every realization requires
irrational coordinates (we will see an 8-dimensional example in Section 5.6). There
are also 4-dimensional n-vertex polytopes for which every realization with integer

coordinates uses doubly exponential coordinates, of order 22°™ " There are nu-
merous other results indicating that the polytopes of dimension 4 and higher are
complicated. For example, the problem of deciding whether a given finite lattice is
isomorphic to the face lattice of a 4-dimensional polytope is algorithmically diffi-
cult; it is polynomially equivalent to the problem of deciding whether a system of
polynomial inequalities with integer coeflicients in n variables has a solution. This
latter problem is known to be NP-hard, but most likely it is even harder; the best
known algorithm needs exponential time and polynomial space. An overview of
such results, and references to previous work on which they are built, can be found
in Richter-Gebert [RG99|, and detailed proofs in [RG97]. Section 6.2 contains a

few more remarks on realizability (see, in particular, Exercise 6.2.3).

Exercises

1. Verify that if V C R¢ is affinely independent, then each subset F' C V determines
a face of the simplex conv(V). [2

2. Verify the description of the faces of the cube and of the crosspolytope given in
the text. [3

3. Consider the (n—1)-dimensional permutahedron as defined in the introduction
to this chapter.



5.4 Many Faces: The Cyclic Polytopes 87

(a) Verify that it really has n! vertices corresponding to the permutations of
{1,2,...,n}. 2
(b) Describe all faces of the permutahedron combinatorially (what sets of per-
mutations are vertex sets of faces?). [3

(c) Determine the dimensions of the faces found in (b). In particular, show that
the facets correspond to ordered partitions (4, B) of {1,2,...,n}, A, B # 0, and
count them. [3

. Using Proposition 5.3.2, prove the following:

(a) If F' is a face of a convex polytope P, then F' is the intersection of P with
the affine hull of F'. (2

(b) If F and G are faces of a convex polytope P, then F'N G is a face, too. 1

. Let P be a convex polytope in R3 containing the origin as an interior point, and
let F' be a j-face of P, 5 =0,1, 2.

(a) Give a precise definition of the face F" of the dual polytope P* corresponding
to F (i.e., describe F' as a subset of R?). [2

(b) Verify that F' is indeed a face of P*. [2

. Let V C R® be the vertex set of a convex polytope and let U C V. Prove that U
is the vertex set of a face of conv(V) if and only if the affine hull of U is disjoint

from conv(V \ U). [8

. Prove that the graph of any 3-dimensional convex polytope is 3-connected; i.e.,
removing any 2 vertices leaves the graph connected. (5

. Let C be a convex set. Call a point x € C exposed if there is a hyperplane
h with C N h = {z} and all the rest of C' on one side. For convex polytopes,
exposed points are exactly the vertices, and we have shown that any extremal
point is also exposed. Find an example of a compact convex set C' C R? with
an extremal point that is not exposed. [3

. (On extremal points) For a set X C R%, let ex(X) = {z € X: z & conv(X \{z})}
denote the set of extremal points of X.

(a) Find a convex set C C R? with C' # conv(ex(C)). [1
(b) Find a compact convex C' C R? for which ex(C) is not closed. [4

5.4 Many Faces: The Cyclic Polytopes

A convex polytope P can be given to us by the list of vertices. How difficult
is it to recover the full face lattice, or, more modestly, a representation of P
as an intersection of half-spaces? The first question to ask is how large the
face lattice or the collection of half-spaces can be, compared to the number of
vertices. That is, what is the maximum total number of faces, or the maximum
number of facets, of a convex polytope in R? with n vertices? The dual question
is, of course, the maximum number of faces or vertices of a bounded intersection
of n half-spaces in R¢.

Let f; = f;(P) denote the number of j-faces of a polytope P. The vector

(fo, f1,---, fq) is called the f-vector of P. We thus assume fy; = n and we are
interested in estimating the maximum value of f;_; and of Eg:o fr.
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In dimensions 2 and 3, the situation is simple and favorable. For d = 2, our
polytope is a convex polygon with n vertices and n edges, and so fo = f1 = n,
fo = 1. The f-vector is even determined uniquely.

A 3-dimensional polytope can be regarded as a drawing of a planar graph,
in our case with n vertices. By well-known results for planar graphs, we have
fi < 3n—6 and fo < 2n—4. Equalities hold if and only if the polytope is
simplicial (all facets are triangles).

In both cases the total number of faces is linear in n. But as the dimension
grows, polytopes become much more complicated. First of all, even the total
number of faces of the most innocent convex polytope, the d-dimensional sim-
plex, is exponential in d. But here we consider d fixed and relatively small, and
we investigate the dependence on the number of vertices n.

Still, as we will see, for every n > 5 there is a 4-dimensional convex polytope
with n vertices and with every two vertices connected by an edge, i.e., with (3)
edges! This looks counterintuitive, but our intuition is based on the 3-dimen-
sional case. In any fixed dimension d, the number of facets can be of order
nld/ ZJ, which is rather disappointing for someone wishing to handle convex
polytopes efficiently. On the other hand, complete desperation is perhaps not
appropriate: Certainly not all polytopes exhibit this very bad behavior. For
example, it is known that if we choose n points uniformly at random in the unit
ball B9, then the expected number of faces of their convex hull is only o(n), for
every fixed d.

It turns out that the number of faces for a given dimension and number of
vertices is the largest possible for so-called cyclic polytopes, to be introduced
next. First we define a very useful curve in R?.

5.4.1 Definition (Moment curve). The curve v = {(¢,t?,...,t%): t € R} in
R€ is called the moment curve.

5.4.2 Lemmma. Any hyperplane h intersects the moment curve « in at most d
points. If there are d intersections, then h cannot be tangent to vy, and thus at
each intersection, v passes from one side of h to the other.

Proof. A hyperplane h can be expressed by the equation (a,z) = b, or in
coordinates a1 x1 +azz2+- - -+aqgzq = b. A point of v has the form (¢, t2 ... td),
and if it lies in h, we obtain a1t + ast? + - - - + agt® — b = 0. This means that ¢ is
a root of a nonzero polynomial py(t) of degree at most d, and hence the number
of intersections of h with -y is at most d. If there are d distinct roots, then they
must be all simple. At a simple root, the polynomial ps(t) changes sign, and
this means that the curve v passes from one side of & to the other.

As a corollary, we see that every d points of the moment curve are affinely
independent, for otherwise, we could pass a hyperplane through them plus one
more point of v. So the moment curve readily supplies explicit examples of
point sets in general position.

5.4.3 Definition (Cyclic polytope). The convex hull of finitely many points
on the moment curve is called a cyclic polytope.
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white circles is (”;k), since by deleting every second black circle we get a one-

to-one correspondence with selections of the positions of & black circles among
n — k possible positions.

Let us return to the original problem, and first consider an odd d = 2k41.
In a valid arrangement of circles, we must have an odd number of consecutive
black circles at the beginning or at the end (but not both). In the former case,
we delete the initial black circle, and we get a paired arrangement of 2k black
and n—1—2k white circles. In the latter case, we similarly delete the black
circle at the end and again get a paired arrangement as in the first case. This
establishes the formula in the theorem for odd d.

For even d = 2k, the number of initial consecutive black circles is either
odd or even. In the even case, we have a paired arrangement, which contributes
(”;k) possibilities. In the odd case, we also have an odd number of consecutive
black circles at the end, and so by deleting the first and last black circles we
obtain a paired arrangement of 2(k—1) black circles and n—2k white circles.
This contributes (", *,”) possibilities.

Bibliography and remarks. The convex hull of the moment curve was studied
by by Carathéodory [Car07]. In the 1950s, Gale constructed neighborly polytopes
by induction. Cyclic polytopes and the evenness criterion appear in Gale [Gal63].
The moment curve is an important object in many other branches besides the
theory of convex polytopes. For example, in elementary algebraic topology it is
used for proving that every (at most countable) d-dimensional simplicial complex
has a geometric realization in R2%t1.

Convex hulls of random sets. Bdarany [Bar89] proved that if n points are chosen
uniformly and independently at random from a fixed d-dimensional convex polytope
K (for example, the unit cube), then the number of k-dimensional faces of their
convex hull has the order (logn)®~! for every fixed d and k, 0 < k < d—1 (the
constant of proportionality depending on d, &k, and K). If K is a smooth convex
body (such as the unit ball), then the order of magnitude is n(¢-1)/(@+1)  again

with d, k, and K fixed. For more references and wider context see, e.g., Weil and
Wieacker [WW93|.

Exercises

1. (a) Show that if V is a finite subset of the moment curve, then all the points of
V are extreme in conv(V'); that is, they are vertices of the corresponding cyclic
polytope. (2

(b) Show that any two cyclic polytopes in R? with n vertices are combinatorially
the same: They have isomorphic face lattices. Thus, we can speak of the cyclic
polytope. 3

2. (Another curve like v) Let 8 C R be the curve {(7, 75, - -» Hid): teR, t>
0}. Show that any hyperplane intersects 8 in at most d points (and if there are d
intersections, then there is no tangency), and conclude that any n distinct points
on 3 form the vertex set of a polytope combinatorially isomorphic to the cyclic
polytope. 4] (Let us remark that many other curves have these properties as

well; the moment curve is just the most convenient example.)

3. (Universality of the cyclic polytope)
(a) Let z1,...,%, be points in R®. Let y; denote the vector arising by appending
1 as the (d+1)st component of x;. Show that if the determinants of all matrices
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with columns y;,,...,¥;,,,, for all choices of indices ¢; < ip < .-+ < ¢441, have
the same nonzero sign, then z,...,z, form the vertex set of a convex polytope
combinatorially equivalent to the n-vertex cyclic polytope in R¢. [

(b) Show that for any integers n and d there exists N such that among any N
points in R? in general position, one can choose n points forming the vertex set
of a convex polytope combinatorially equivalent to the n-vertex cyclic polytope.
8] (This can be seen as a d-dimensional generalization of the Erd6s—Szekeres
theorem.)

4. Prove that if n is sufficiently large in terms of d, then for every set of n points
in R? in general position, one can choose d+1 simplices of dimension d with
vertices at some of these points such that any hyperplane avoids at least one of
these simplices. Use Exercise 3. [2

This exercise is a special case of a problem raised by Lovasz, and it was commu-
nicated to me by Bardny. A detailed solution can be found in [BVST99].

5. Show that for cyclic polytopes in dimensions 4 and higher, every pair of vertices
is connected by an edge. For dimension 4 and two arbitrary vertices, write out
explicitly the equation of a hyperplane intersecting the cyclic polytope exactly
in this edge. (3

6. Determine the f-vector of a cyclic polytope with n vertices in dimensions 4, 5,
and 6. (3

5.5 The Upper Bound Theorem

The upper bound theorem, one of the earlier major achievements of the theory
of convex polytopes, claims that the cyclic polytope has the largest possible
number of faces.

5.5.1 Theorem (Upper bound theorem). Among all d-dimensional convex
polytopes with n vertices, the cyclic polytope maximizes the number of faces
of each dimension.

In this section we prove only an approximate result, which gives the correct
order of magnitude for the maximum number of facets.

5.5.2 Proposition (Asymptotic upper bound theorem). A d-dimension-
al convex polytope with n vertices has at most 2(L d?z J) facets and no more than

9d+1 (L d?z J) faces in total. For d fixed, both quantities thus have the order of

magnitude nl%/2].

First we establish this proposition for simplicial polytopes, in the following
form.

5.5.3 Proposition. Let P be a d-dimensional simplicial polytope. Then
(a) fo(P)+ fi(P)+ -+ + fa(P) < 2%f4_1(P), and

(b) fa—1(P) < 2f1a/2)-1(P).






5.5 The Upper Bound Theorem 93

Proof. The basic idea is very simple: Move (perturb) every vertex of P by
a very small amount, in such a way that the vertices are in general position,
and show that each k-face of P gives rise to at least one k-face of the perturbed
polytope. There are several ways of doing this proof.

We process the vertices one by one. Let V' be the vertex set of P and let
v € V. The operation of c-pushing v is as follows: We choose a point ¢’ lying in
the interior of P, at distance at most ¢ from v, and on no hyperplane determined
by the points of V', and we set V' = (V' \ {v}) U {v'}. If we successively &,-push
each vertex v of the polytope, the resulting vertex set is in general position and
we have a simple polytope.

It remains to show that for any polytope P with vertex set V' and any v € V,
there is an € > 0 such that s-pushing v does not decrease the number of faces.

Let U C V be the vertex set of a k-face of P, 0 < k < d—1, and let V'
arise from V by e-pushing v. If v € U, then no doubt, U determines a face of
conv(V'), and so we assume that v € U. First suppose that v lies in the affine
hull of U \ {v}; we claim that then U \ {v} determines a k-face of conv(V"’).
This follows easily from the criterion in Exercise 5.3.6: A subset U C V is the
vertex set of a face of conv(V') if and only if the affine hull of U is disjoint from
conv(V \U). We leave a detailed argument to the reader (one must use the fact
that v is pushed inside).

If v lies outside of the affine hull of U \ {v}, then we want to show that
U = (U\ {v}) U {v'} determines a k-face of conv(V’). The affine hull of U
is disjoint from the compact set conv(V \ U). If we move v continuously by a
sufficiently small amount, the affine hull of U moves continuously, and so there
is an € > 0 such that if we move v within ¢ from its original position, the
considered affine hull and conv(V \ U) remain disjoint.

The h-vector and such. Here we introduce some notions extremely useful
for deeper study of the f-vectors of convex polytopes. In particular, they are
crucial in proofs of the (exact) upper bound theorem.

Let us go back to the setting of the proof of Proposition 5.5.3. There we
considered a simple polytope that used to be called P* but now, for simplicity,
let us call it P. It is positioned in R? in such a way that no edge is horizontal,
and so for each vertex v, there are some i, edges going upwards and d — 7, edges
going downwards.

The central definition is this: The h-vector of P is (hg, h1,...,hq), where h;
is the number of vertices v with exactly ¢ edges going upwards. So, for example,
we have hg = hg = 1.

Next, we relate the h-vector to the f-vector. Each vertex v is the lowest
vertex for exactly (2“:’ ) faces of dimension &, and each k-face has exactly one
lowest vertex, and so

d .
=Y (k) he (5.1
=0

(for ¢ < k we have (;) = 0). So the h-vector determines the f-vector. Less

obviously, the h-vector can be uniquely reconstructed from the f-vector! A
quick way of seeing this is via generating functions: If f(z) is the polynomial
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Zﬁzo frz* and h(z) = fzo h;z*, then (5.1) translates to f(z) = h(z+1), and
therefore h(z) = f(z—1). Explicitly, we have

d Ak
=3 (B .

k=0

We have defined the h-vector using one particular choice of the vertical
direction, but now we know that it is determined by the f-vector and thus
independent of the chosen direction. By turning P upside down, we see that

hiZhd_@ fora,llz'=0,1,...,d.

These equalities are known as the Dehn—-Sommerwille relations. They include
the usual Euler formula fo + fo = fi + 2 for 3-dimensional polytopes.

Let us stress once again that all we have said about h-vectors concerns only
simple polytopes. For a simplicial polytope P, the h-vector can now be defined
as the h-vector of the dual simple polytope P*. Explicitly,

J o fd—Fk
hj=) (=1)"7F (d _j).fk—l-
k=0

The upper bound theorem has the following neat reformulation in terms of
h-vectors: For any d-dimensional simplicial polytope with fy = n vertices, we
have

hig("_d,’i 1), i=0,1,...,|d/2]. (5.3)

1

Proving the upper bound theorem is not one of our main topics, but an outline
of a proof can be found in this book. It starts in the next section and finishes in
Exercise 11.3.6, and it is not among the most direct possible proofs. Deriving
the upper bound theorem from (5.3) is a pure and direct calculation, verifying
that the h-vector of the cyclic polytope satisfies (5.3) with equality. We omit
this part.

Bibliography and remarks. The upper bound theorem was conjectured
by Motzkin in 1957 and proved by McMullen [McM70]. Many partial results have
been obtained in the meantime. Perhaps most notably, Klee [Kle64] found a simple
proof for polytopes with not too few vertices (at least about d? vertices in dimen-
sion d). That proof applies to simplicial complexes much more general than the
boundary complexes of simplicial polytopes: It works for Eulerian pseudomanifolds
and, in particular, for all stmplicial spheres, i.e., simplicial complexes homeomor-
phic to S%~!. Presentations of McMullen’s proof and Klee’s proof can be found in
Ziegler’s book [Zie94]. A nice variation was described by Alon and Kalai [AK85].
Another proof, based on linear programming duality and results on hyperplane
arrangements, was given by Clarkson [Cla93]. An elegant presentation of similar
ideas, using the Gale transform discussed below in Section 5.6, can be found in
Welzl [Wel01] and in Exercises 11.3.5 and 11.3.6. Our exposition of the asymptotic
upper bound theorem is based on Seidel [Sei95].

The ordering of the vertices of a simple polytope P by their height in the def-
inition of the h-vector corresponds to a linear ordering of the facets of P*. This
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ordering of the facets is a shelling. Shelling, even in the strictly peaceful mathe-
matical sense, is quite important, also beyond the realm of convex polytopes. Let
IC be a finite cell complex whose cells are convex polytopes (such as the boundary
complex of a convex polytope), and suppose that all maximal cells have the same
dimension k. Such I is called shellable if kK = 0 or £ > 1 and K has a shelling. A
shelling of I is an enumeration Fi, F5, ..., F, of the facets (maximum-dimension
cells) of IC such that (i) the boundary complex of Fj is shellable, and (ii) for every

¢ > 1, there is a shelling of the complex F; N U;;ll F; that can be extended to a
shelling of the boundary complex of F;. The boundary complex of a convex poly-
tope is homeomorphic to a sphere, and a shelling builds the sphere in such a way
that each new cell is glued by contractible part of its boundary to the previously
built part, except for the last cell, which closes the remaining hole.

McMullen’s proof of the upper bound theorem does not generalize to simplicial
spheres (i.e., finite simplicial complexes homeomorphic to spheres), for example
because they need not be shellable, counterintuitive as this may look. The upper
bound theorem for them was proved by Stanley [Sta75] using much heavier algebraic
and algebraic-topological tools.

An interesting extension of the upper bound theorem was found by Kalai
[Kal91]. Let P be a simplicial d-dimensional polytope. All proper faces of P
are simplices, and so the boundary is a simplicial complex. Let K be any subcom-
plex of the boundary (a subset of the proper faces of P such that if F' € K, then
all faces of F' also lie in K). The strong upper bound theorem, as Kalai’s result is
called, asserts that if K has at least as many (d—1)-faces as the d-dimensional cyclic
polytope on n vertices, then K has at least as many k-faces as that cyclic polytope,
forall k=0,1,...,d—1. (Note that we do not assume that P has n vertices!) The
proof uses methods developed for the proof of the g-theorem mentioned below as
well as Kalai’s technique of algebraic shifting.

Another major achievement concerning the f-vectors of polytopes is the so-
called g-theorem. The inventive name g-vector of a d-dimensional simple polytope
refers to the vector (go,g1,-..,9(4/2|), Where go = ho and g; = h; — h;_1, ¢ =
1,2,...,|d/2]. The g-theorem characterizes all possible integer vectors that can
appear as the g-vector of a d-dimensional simple (or simplicial) polytope. Since
the g-vector uniquely determines the f-vector, we have a complete characterization
of f-vectors of simple polytopes. In particular, the g-theorem guarantees that all
the components of the g-vector are always nonnegative (this fact is known as the
generalized lower bound theorem), and therefore the hA-vector is unimodal: We have
ho < hy <--- < higa) = hrayo1 2 -+ 2 ha- (On the other hand, the f-vector of a
simple polytope need not be unimodal; more exactly, it is unimodal in dimensions
up to 19, and there are 20-dimensional nonunimodal examples.) We again refer to
[Zie94] for a full statement of the g-theorem. The proof has two independent parts;
one of them, due to Billera and Lee [BL81], constructs suitable polytopes, and the
other part, first proved by Stanley [Sta80], shows certain inequalities for all simple
polytopes. For studying the most elementary proof of the second part currently
available, one can start with McMullen [McM96] and continue with [McM93].

For nonsimple (and nonsimplicial) polytopes, a characterization of possible f-
vectors remains elusive. It seems, anyway, that the flag vector might be a more
appropriate parameter for nonsimple polytopes. The flag vector counts, for every
k=1,2,...,d and for every #; < 13 < --- < 1}, the number of chains F; C F5 C
+++ C Fy, where Fy,..., F}, are faces with dim(F;) = ¢; (such a chain is called a
flag).

No analogue of the upper bound theorem is known for centrally symmetric
polytopes. A few results concerning their face counts, obtained by methods quite
different from the ones for arbitrary polytopes, will be mentioned in Section 14.5.
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The proof of Lemma 5.5.4 by pushing vertices inside is similar to an argument
in Klee [Kle64], but he proves more and presents the proof in more detail.

Convez hull computation. What does it mean to compute the convex hull of a given
n-point set V C R%? One possible answer, briefly touched upon in the notes to
Section 5.2, is to express conv(V') as the intersection of half-spaces and to compute
the vertex sets of all facets. (As we know, the face lattice can be reconstructed
from this information purely combinatorially; see Kaibel and Pfetsch [KP01] for an
efficient algorithm.) Of course, for some applications it may be sufficient to know
much less about the convex hull, say only the graph of the polytope or only the
list of its vertices, but here we will discuss only algorithms for computing all the
vertex—facet incidences or the whole face lattice. For a more detailed overview of
convex hull algorithms see, e.g., Seidel [Sei97].

For the dimension d considered fixed, there is a quite simple and practical ran-
domized algorithm. It computes the convex hull of n points in R? in expected time
O(nl4/2] £ nlogn) (Seidel [Sei91], simplifying Clarkson and Shor [CS89]), and also
a very complicated but deterministic algorithm with the same asymptotic running
time (Chazelle [Cha93b|; somewhat simplified in Bronnimann, Chazelle, and Ma-
tousek [BCM99]). This is worst-case optimal, since an n-vertex polytope may have
about 12L9/2] facets. There are also output-sensitive algorithms, whose running time
depends on the total number f of faces of the resulting polytope. Recent results
in this direction, including an algorithm that computes the convex hull of n points
in general position in R? (d fixed) in time O(nlog f + (nf)1~1/(l4/2]+1) (1og n)c(d)),
can be found in Chan [Cha00b].

Still, none of the known algorithms is theoretically fully satisfactory, and prac-
tical computation of convex hulls even in moderate dimensions, say 10 or 20, can be
quite challenging. Some of the algorithms are too complicated and with too large
constants hidden in the asymptotic notation to be of practical value. Algorithms
requiring general position of the points are problematic for highly degenerate point
configurations (which appear in many applications), since small perturbations used
to achieve general position often increase the number of faces tremendously. Some
of the randomized algorithms compute intermediate polytopes that can have many
more faces than the final result. Often we are interested just in the vertex—facet
incidences, but many algorithms compute all faces, whose number can be much
larger, or even a triangulation of every face, which may again increase the com-
plexity. Such problems of existing algorithms are discussed in Avis, Bremner, and
Seidel [ABS97].

For actual computations, simple and theoretically suboptimal algorithms are
often preferable. One of them is the double-description method mentioned earlier,
and another algorithm that seems to behave well in many difficult instances is
the reverse search of Avis and Fukuda [AF92]. It enumerates the vertices of the
intersection of a given set H of half-spaces one by one, using quite small storage.
Conceptually, one thinks of optimizing a generic linear function over [|H by a
simplex algorithm with Bland’s rule. This defines a spanning tree in the graph of
the polytope, and this tree is searched depth-first starting from the optimum vertex,
essentially by running the simplex algorithm “backwards.” The main problem of
this algorithm is with degenerate vertices of high degree, which may correspond to
an enormous number of bases in the simplex algorithm.

Also, it sometimes helps if one knows some special properties of the convex hull
in a particular problem, say many symmetries. For example, very extensive com-
putations of convex hulls were performed by Deza, Fukuda, Pasechnik, and Sato
[DFPS00], who studied the metric polytope. Before we define this interesting poly-

tope, let us first introduce the metric cone M,,. This is a set in R(;) representing all
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metrics on {1,2,...,n}, where the coordinate zy; ;1 specifies the distance of i to j,
1 <i<j<n. So M, is defined by the triangle inequalities z; j1 + {8} < T{s,k}
where ¢, 7, k are three distinct indices. The metric polytope m,, is the subset of M,
defined by the additional inequalities saying that the perimeter of each triangle is
at most 2, namely xy; ;1 + Ty 51 + Ty < 2. Deza et al. were able to enumerate
all the approximately 1.5-107 vertices of the 28-dimensional polytope mg; this may
give some idea of the extent of these computational problems. Without using many
symmetries of m,,, a polytope of this size would currently be out of reach. Such
computations might provide insight into various conjectures concerning the metric

polytope, which are important for combinatorial optimization problems (see, e.g.,
Deza and Laurent [DL97] for background).

Exercises

1. (a) Let P be a k-dimensional convex polytope in R*, and @ an ¢-dimensional
convex polytope in Rf. Show that the Cartesian product P x Q@ C R*t¢ is a
convex polytope of dimension k + £. (2

(b) If F' is an ¢-face of P, and G is a j-face of @, 7,7 > 0, then F' x (G is an
(¢ + 7)-face of P x (). Moreover, this yields all the nonempty faces of P x ). [3

(c) Using the product of suitable polytopes, find an example of a “fat-lattice”
polytope, i.e., a polytope for which the total number of faces has a larger order
of magnitude than the number of vertices plus the number of facets together (the
dimension should be a constant). [3

(d) Show that the following yields a 5-dimensional fat-lattice polytope: The
convex hull of two regular n-gons whose affine hulls are skew 2-flats in R°. [3

For recent results on fat-lattice polytopes see Eppstein, Kuperberg, and Ziegler
[EKZ01].

5.6 The Gale Transform

On a very general level, the Gale transform resembles the duality transform
defined in Section 5.1. Both convert a (finite) geometric configuration into
another geometric configuration, and they may help uncover some properties of
the original configuration by making them more apparent, or easier to visualize,
in the new configuration. The Gale transform is more complicated to explain
and probably more difficult to get used to, but it seems worth the eflort. It
was invented for studying high-dimensional convex polytopes, and recently it
has been used for solving problems about point configurations by relating them
to advanced theorems on convex polytopes. It is also closely related to the
duality of linear programming (see Section 10.1), but we will not elaborate on
this connection here.

The Gale transform assigns to a sequence a = (a1,as,...,a,) of n > d+1
points in R% another sequence § = (g1, 32,.-.,9n) of n points. The points
G1,32, - - -, 0n live in a different dimension, namely in R?* 91, For example, n
points in the plane are transformed to n points in R? 3 and vice versa. In
the literature one finds many results about k-dimensional polytopes with k43
or k+4 vertices; this is because their vertex sets have a low-dimensional Gale
transform.
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Let us stress that the Gale transform operates on sequences, not individual
points: We cannot say what g; is without knowing all of a1,a2,...,a,. We
also require that the affine hull of the a; be the whole RY; otherwise, the Gale
transform is not defined. (On the other hand, we do not need any sort of general
position and some of the a; may even coincide.)

The reader might wonder why the points of the Gale transform are written
with bars. This is to indicate that they should be interpreted as vectors in a
vector space, rather than as points in an affine space. As we will see, “affine”
properties of the sequence a, such as affine dependencies, correspond to “linear”
properties of the Gale transform, such as linear dependencies.

In order to obtain the Gale transform of a, we first convert the q; into
(d+1)-dimensional vectors: a; € R4t is obtained from a; by appending a
(d+1)st coordinate equal to 1. This is the embedding R — R*! often used
for relating affine notions in R? to linear notions in R%*!; see Section 1.1.

Let A be the d X n matrix with a; as the 7th column. Since we assume that
there are d+1 affinely independent points in a, the matrix A has rank d+1,
and so the vector space V generated by the rows of A is a (d+1)-dimensional
subspace of R®. We let V- be the orthogonal complement of ¥V in R"; that is,
V+ ={w e R™ (v,w) =0 forallv € V}. We have dim(V~+) = n—d—1. Let
us choose some basis (by,bs,...,b,_4_1) of V-, and let B be the (n—d—1) x n
matrix with b; as the jth row. Finally, we let g; € R" 91 be the ith column
of B. The sequence g = (91,32,---,3n) is the Gale transform of a. Here is a
pictorial summary:

d — —  d+1 Gale transform
l
: aq .. Qp basis of
polint sequence n—d—1| orthogonal
complement

5.6.1 Observation.

(i) (The Gale transform is determined up to linear isomorphism) In the con-
struction of g, we can choose an arbitrary basis of V+-. Choosing a dif-
ferent basis corresponds to multiplying the matrix B from the left by a
nonsingular (n—d—1) X (n—d—1) matrix T (Exercise 1), and this means
transforming (gy, ..., gn) by a linear isomorphism of R" 91

(ii) A sequence g in R"~9~! is the Gale transform of some a if and only if it
spans R"~9~! and has 0 as the center of gravity: %, g; = 0.

(iii) Let us consider a sequence g in R" 9! satisfying the condition in (ii). If
we interpret it as a point sequence (breaking the convention that the result
of the Gale transform should be thought of as a sequence of vectors), apply
the Gale transform to it, again consider the result as a point sequence,
and apply the Gale transform the second time, we recover the original g,
up to linear isomorphism (Exercise 5).
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Two ways of probing a configuration. We would like to set up a dictionary
for translating between geometric properties of a sequence a and those of its
Gale transform. First we discuss how some familiar geometric properties of a
configuration of points or vectors are reflected in the values of afline or linear
functions on the configuration, and how they manifest themselves in affine or
linear dependencies. For a sequence @ = (@y,...,d,) of vectors in R4l we
define two vector subspaces of R":

LinVal(a) = {(f(@1), f(@2),---, f(@)): f: R — R is a linear function},
LinDep(a) = {a € R": a1a; + asaz + - -- + apa, = 0}.

For a point sequence a = (ay,...,a,), we then let AffVal(a) = LinVal(a) and
AffDep(a) = LinDep(a), where a is obtained from a as above, by appending
1’s. Another description is

AffVal(a) = {(f(a1), f(a2),..., f(an)): f:R® — R is an affine function},
AffDep(a) = {a e R": aya1 + -+ apap = 0,01 + -+ + a, = 0}.

The knowledge of LinVal(a) tells us a lot about a, and we only have to learn
to decode the information. As usual, we assume that a linearly spans all of
R4+,

Each nonzero linear function f: R4t — R determines the linear hyperplane
hy = {z € R f(z) = 0} (by a linear hyperplane we mean a hyperplane
passing through 0). This h; is oriented (one of its half-spaces is positive and
the other negative), and the sign of f(a;) determines whether a; lies on h¢, on
its positive side, or on its negative side.

hs: f(x)=0

We begin our decoding of the properties of @ with the property “spanning a
linear hyperplane.” That is, we choose our favorite index set I C {1,2,...,n},
and we ask whether the points of the subsequence a; = (a;: ¢ € I) span a linear
hyperplane. First, we observe that they lie in a common linear hyperplane if
and only if there is a nonzero ¢ € LinVal(@) such that ¢; = 0 for all ¢ € I.
It could still happen that all of a; lies in a lower-dimensional linear subspace.
Using the assumption that @ spans R%t!| it is not difficult to see that @; spans
a linear hyperplane if and only if all ¢ € LinVal(a) that vanish on a; have
identical zero sets; that is, the set {i: ¢; = 0} is the same for all such ¢. If we
know that ay spans a linear hyperplane, we can also see how the other vectors
in a are distributed with respect to this linear hyperplane.

Analogously, knowing AffVal(a), we can determine which subsequences of
a span (affine) hyperplanes and how the other points are partitioned by these
hyperplanes. For example, we can tell whether there are some d+1 points on
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a common hyperplane, and so we know whether a is in general position. As a
more complicated example, let P = conv(a). We can read off from AffVal(a)

which of the a; are the vertices of P, and also the whole face lattice of P
(Exercise 6).

Similar information can be inferred from AffDep(a) (exactly the same in-
formation, in fact, since AffDep(a) = AffVal(a)"; see Exercise 7). For an
a € AffDep(a) let I_(a) = {i € {1,2,...,n}: a4 > 0} and I _(a) = {i €
{1,2,...,n}: a; < 0}. Aswe learned in the proof of Radon’s lemma (Lemma 1.3.1),
I. =TI (a) and I_ = I_(a) correspond to Radon partitions of a. Namely,
>iely @i = X ey (—ai)ai, and dividing by ;7 @i = 321 (—ai), we have
convex combinations on both sides, and so conv(as, ) Nconv(a;_) # 0. Con-
versely, if I; and I, are disjoint index sets with conv(ayr,) N conv(ar,) # 0,
then there is a nonzero o € AffDep(a) with I, (o) C I; and I_(a) C I>. For
example, a; is a vertex of conv(a) if and only if there is no a € AffDep(a) with
I, (o) = {3}

For a sequence a of vectors, linear dependencies correspond to expressing
0 as a convex combination. Namely, for disjoint index sets I; and I, we have
0 € conv({a;: i € I;1} U {—a;: i € Io}) if and only if there is a nonzero a €
LinDep(a) with I, (a) C I; and I_(«) C I5.

Together with these geometric interpretations of LinVal(a), AffVal(a), LinDep(a),
and AffDep(a), the following lemma, (whose proof is left to 