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Preface

The aim of this book 1s to give an understandable introduction to the the-
ory of complex manifolds. With very few exceptions we give complete proofs.
Many examples and figures along with quite a few exercises are included.
Our 1ntent 18 to famiharize the reader with the most important branches and
methods 1n complex analysis of several variables and to do this as simply as
possible. Therefore, the abstract concepts involved with sheaves, coherence,
and higher-dimensional cohomology are avoided. Only elementary methods
such as power series, holomorphic vector bundles, and one-dimensional co-
cycles are used. Nevertheless, deep results can be proved, for example the
Remmert—Stein theorem for analytic sets, finiteness theorems for spaces of
cross sections in holomorphic vector bundles, and the solution of the Lewvi
problem.

The first chapter deals with holomorphic functions defined 1n open sub-
sets of the space @". Many of the well-known properties of holomorphic
functions of one variable, such as the Cauchy integral formula or the maxi-
mum principle, can be applied directly to obtain corresponding properties of
holomorphic functions of several variables. Furthermore, certain properties of
differentiable functions of several variables, such as the implicit and inverse
function theorems, extend easily to holomorphic functions.

In Chapter II the following phenomenon 1s considered: For n > 2, there
are pairs of open subsets H C P C C" such that every function holomorphic
in H extends to a holomorphic function in P. Special emphasis 1s put on
domains G ¢ C" for which there is no such extension to a bigger domain.
They are called domains of holomorphy and have a number of interesting
convexity properties. These are described using plurisubharmonic functions.
If G is not a domain of holomorphy, one asks for a maximal set £ to which all
holomorphic functions in G extend. Such an "envelope of holomorphy" exists
in the category of Riemann domains, i.e., unbranched domains over C".

The common zero locus of a system of holomorphic functions 1s called
an analytic set. In Chapter 11l we use Weierstrass's division theorem for
power series to investigate the local and global structure of analytic sets.
Two of the main results are the decomposition of analytic sets into irreducible
components and the extension theorem of Remmert and Stein. This is the
only place in the book where singularities play an essential role.

Chapter IV establishes the theory of complex manifolds and holomorphic
fiber bundles. Numerous examples are given, in particular branched and un-
branched coverings of C", quotient manifolds such as tori and Hopf manifolds,
projective spaces and Grassmannians, algebraic manifolds, modifications, and
toric varietiecs. We do not present the abstract theory of complex spaces, but
do provide an elementary introduction to complex algebraic geometry. For
example, we prove the theorem of Chow and we cover the theory of divi-
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sors and hyperplane sections as well as the process of blowing up points and
submanifolds.

The present book grew out of the old book of the authors with the ti-
tle Several Complex Variables, Graduate Texts in Mathematics 38, Springer
Heidelberg, 1976. Some of the results in Chapters I, 11, 111, and V of the old
book can be found in the first four chapters of the new one. However, these
chapters have been substantially rewritten. Sections on pseudoconvexity and
on the structure of analytic sets; the entire theory of bundles, divisors, and
meromorphic functions; and a number of examples of complex manifolds have
been added.

Our exposition of Stein theory in Chapter V is completely new. Using only
power series, some geometry, and the solution of Cousin problems, we prove
finiteness and vanishing theorems for certain one-dimensional cohomology
groups. Neither sheaf theory nor @ methods are required. As an application
Levi’s problem 1s solved. In particular, we show that every psecudoconvex
domain in C" 1s a domain of holomorphy.

Through Chapter V we develop everything 1n full detail. In the last two
chapters we deviate a bit from this principle. Toward the end, a number of
the results are only sketched. We do carefully define differential forms, higher-
dimensional Dolbeault and de Rham cohomology, and Kahler metrics. Using
results of the previous sections we show that every compact complex mani-
fold with a positive line bundle has a natural projective algebraic structure. A
consequence 18 the algebraicity of Hodge manifolds, from which the classical
period relations are derived. We give a short introduction to elliptic opera-
tors, Serre duality, and Hodge and Kodaira decomposition of the Dolbeault
cohomology. In such a way we present much of the material from complex
differential geometry. This 1s thought as a preparation for studying the work
of Kobayashi and the papers of Ohsawa on pseudoconvex manifolds.

In the last chapter real methods and recent developments in complex an-
alysis that use the techniques of real analysis are considered. Kahler theory is
carried over to strongly pseudoconvex subdomains of complex manifolds. We
give an introduction to Sobolev space theory, report on results obtained by
J.J. Kohn, Diederich, Fornaess, Catlin, and Fefferman (E—Neumann, subellip-
tic estimates), and sketch an application of harmonic forms to pseudoconvex
domains containing nontrivial compact analytic subsets. The Kobayashi met-
ric and the Bergman metric are introduced, and theorems on the boundary
behavior of biholomorphic maps are added.

Prerequisites for reading this book are only a basic knowledge of calculus,
analytic geometry, and the theory of functions of one complex variable, as
well as a few elements from algebra and general topology. Some knowledge
about Riemann surfaces would be useful, but 1s not really necessary. The
book 1s written as an introduction and should be of interest to the specialist
and the nonspecialist alike.

Preface Vvii

We are indebted to many colleagues for valuable suggestions, in particular
to K. Diederich, who gave us his view of the state of the art in -Neumann
theory. Special thanks go to A. Huckleberry, who read the manuscript with
great care and corrected many inaccuracies. He made numerous helpful sug-
gestions concerning the mathematical content as well as our use of the English
language. Finally, we are very grateful to the statf of Springer-Verlag for their
help during the preparation of our manuscript.

Wuppertal, Gottingen, Germany Klaus Fritzsche
Summer 2001 Hans Grauert
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Chapter 1

Holomorphic Functions

1. Complex Geometry

Real and Complex Structures. Let V be an n-dimensional com-
plex vector space. Then V' can also be regarded as a 2n-dimensional real

vector space, and multiplication by 1 = /-1 gives a real endomorphism
J:V > V with 2 = —idy. If {a4,...,a,} is a complex basis of V, then
{ai,...,an,101,...,ia} is a real basis of V.

On the other hand, given a 2n-dimensional real vector space V, every real
endomorphism J : V — V with J? = —idy induces a complex structure on V
by

(at+ib)-v :=a-v+b.Iv).

We denote this complex vector space also by V, or by (V,J), if we want to
emphasize the complex structure.

If a complex structure J is given on V, then —J is also a complex structure.
It is called the conjugate complex structure, and the space (V,-J) is sometimes
denoted by V.. A vector v € V ig also a vector in V. If z is a complex number,

in V.

Our most important example is the complex n-space
C" :={z :=(21,...,2n) :z,€Cfori=1,...,n},
with the standard basis
e; :=(1,0,...,0), ...
We can interpret C™ as the real 2n-space
R*" ={(X,y) =(Z1, - -sTn, Y1, --»Yn) - Ti,y;i ER fori =1,...,n},
together with the complex structure J : R?® — R*? given by
J@1, .o T, Y1, s Un) = (Y1, —Yn, L1y, Ty )

These considerations lead naturally to the idea of “complexification.”

L' A row vector is described by a bold symbol, for instance v, whereas the corre-
sponding column vector is written as a transposed vector: v*
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Definition. Let E be an n-dimensional real vector space. The com-
plexification of E is the real vector space E. := E® E, together with the
complex structure J : E. — E,, given by

J(v,w) := (—w,v).
Furthermore, conjugation C in E,. 1s defined by

Clv,w) :=(v, —w).

Since Cod = —Jo(, it is clear that C defines a complex isomorphism between
E. and FE..

The complexification of R” is the complex n-space C™ identified with R*" in
the way shown above. In this case the conjugation C is given by

C:(z1,...,2n) = (Z1,- ..y 2n)

and will also be denoted by z — Z.

If V =FE, is the complexification of a real vector space E, then the subspace

Re(V) :={(v,0) :v € E}CYV

the complexification of some real vector space as well, but this real part 1s
not uniquely defined. It is given by the real span of any complex basis of V.

Example

Let E be an n-dimensional real vector space and E* := Homg(FE,R) the
real dual space of linear forms on E. Then the complexification (£*). can be
identified with the space Homg (£, C) of complex-valued linear forms on E.

In the case £ =R"™, a linear form A € E* is always given by
A:vies v-al

with some fixed vector a € R™. An element of the complexification (£*). is
then given by vi—= v -2z with z =a+ib € (R"), =C".

Now let T be an n-dimensional complex vector space and F'(T') :=Homg(T',C)
the space of complex-valued real linear forms on T. It contains the subspaces
T' := Homg(7, C) of complex linear forms and 7'’ :=Hom¢(7, C) of complex
antilinear forms 2.

? A real linear map X : T — C is called complex antilinear it A¢ .v) =€ . A(v) for
c € C. Therefore, T’ can be viewed as the set of complex antilinear forms on 7.
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Let {flla...,,an} be a complex basis of 7, and b; = ia;, for: = 1,...,n.
Let {a1,-..,0n,01, ..., 08} be the basis of 7* =Homg(7,R) that is dual to
{a1,...,an,b1,-..,b,}. Then we obtain elements

)\i :=Cl'+i,8?;€F(T)j i=1,...,l’1.

Claim. Theforms \; are complex-linear.

PROOF: Consider an element z = z1a;+- .-+2,a, € T with z; = x;Hy; € C.
Then

n T
Ae(2) = Ap ( Y wiai+ Y y?:b@)
=1 1=1
Fi F £ 3
= Z%Ak(az‘) Zyi)\k(bi:
i=1 i—1
= Tkt Wk = 2k
Now the claim follows. _
It is obvious that the \; are linearly independent. Therefore, {1, ..,\,} i

Since it is also obvious that 7'NT’ = {0}, we see that every element A € F(T)
has a unique representation

A= Zn:ci)\i + Zn:dixi, with ¢;,d; € C.
i=1

1=1
Briefly, B
A=XN+XN with N eT and N €T’
Here ) is real;i.e., A € Homg(T,R) if and only if A" =N

Hermitian Forms and Inner Products

Definition. Let T be an n-dimensional complex vector space. A Her-
mittan form on T i1s a function H : T x T -> C with the following
properties:

1. v+ H(v, w)is C-linear for every w € T.

2. Hw,v) =H(v,w)forv,we T.

It follows at once that w — H(v,w) is C-antilinear for every v € T, and
H(v,v) is real for every v € T. If H(v,v) >0 for every v # 0, H is called an
inner product or scalar product.
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There 1s a natural decomposition
Huv,w)=Sw, w)+iA(v,w),

with real-valued functions S and A. Since

S(w,v) +iA(w,v) =H(w,v) =H(v, w)=5(v, w)-iA(v, w) ,

it follows that S is symmetric and A antisymmetric.

Example

If £ is a field, the set of all matrices with p rows and ¢ columns whose elements
lie in k will be denoted by M, ,(k) and the set of square matrices of order n
by M, (k). Here we are interested only in the cases £ =R and £ =C.

A Hermitian form on C™ is given by
H:(z,w)—zHW’,

: L C. Tyt
where H € M,,(C) is a Hermitian matrix, ie., H =H.

The associated symmetric and antisymmetric real bilinear forms S and A are
given by
S(z,w) = Re (z HWt) = é(zHWt + WHEt)

and

A(z,w) = Im (zHWt) = 2—11‘( Hw'-wHZz").

If H is an inner product, then S is called the associated Euclidean inner
product.

The identity matrix E,, yields the standard Hermitian scalar product

T

<zlw>:z-Wt = E 2, Wy

v=1

Its symmetric part (z|w), := Re({z|w)) is the standard Euclidean scalar
product. In fact, if we write z =x +iy and w =u +iv, with x,¥,u,v € R",
then

(Z ' w)Qn —

|
(]
D
<
&2
<
1
2
<
<
<
“""'-.----""
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If the standard Euclidean scalar product on R™ 1s denoted by ( | : .')ﬂj we
obtain the equation

(2] W),,= (x]|u) +(¥ V),

Balls and Polydisks

Definition. The Euclidean norm of a vector z € C" is given by

ol = \/(z|2) —+/(z]2),,

the Euclidean distance between two vectors z, w by

dist(z,w) = ||z — w].

An equivalent norm is the sup-norm or modulus of a vector:

1z| := max |z,].
n

v=1,...,

This norm 18 not derived from an inner product, but it defines the same topo-
logy on €™ as the Euclidean norm. This topology coincides with the usual
topology on R?™. We assume that the reader is familiar with it and mention
only that it has the Hausdorff property.

Definition. B,(zg) :={z € C" : dist(z,zy) < r} is called the (open)
ball of radius r with center zg.

A ball in C" is also a ball in R*®, and its topological boundary

\

OBr(zg) = {z€ C" : dist(z,2zq) =1}

is a (2n — 1)-dimensional sphere.

Definition. Letr =(ry,...,r,) € R" allr, > 0,29 = (zim,. 20 €
C™. Then
P*(zg,r) :={z€ C" : |z, — 20| <7, forv=1,...,n}

is called the (open)polydisk (orpolycylinder) with polyradius r and center
zg. f r € Ry and r := (7,...,71), we write P?(zg) instead of P*(zg,r).
Then P} (zp) = {ze C" :|z —zp| < 1}.

If D denotes the open unit disk in C, then P* :=P}(0) =Dx---x Dis
N——p—

n times

called the unir polydisk around O.
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We are not interested m the topological boundary of a polydisk. The following
part of the boundary 1s much more important:

Definition. The distinguished boundary:of the polydisk P™(zo, r) is
the set

T"(zo,r) ={z€C"” : |z, — 2| =r, forv =1,..,n}.

The distinguished boundary of a polydisk 1s the Cartesian product of 7 circles.
It 1s well known that such a set 1s diffeomorphic to an n-dimensional forus.
In the case n = 1 a polydisk reduces to a sitmple disk and 1ts distinguished
boundary 1s equal to 1ts topological boundary.

Connectedness. Both the Euclidean balls and the polydisks form a base
of the topology of C™. By a region we mean an ordinary open set in C". A
region 3 i1s connected if each two points of G can be joined by a continuous
path in G. A connected region 1s called a domain.

If a real hyperplane in R™ meets a domain, then it cuts the domain into
two or more disjoint open pieces. For complex hyperplanes in the complex
number space (which have real codimension 2) this 1s not the case:

1.1 Proposition. Let G C C" be a domain and
E :={z = (Zl,. vy Z) cC" : z; =0}
Then G' :=G —E is again a domain.

PROOF: Of course, E is a closed set, without interior points, and G' = G- E
is open. Write points of C" in the form z = (z1,2*), with z* € C"~'. Given
two points v = (v1,v*) and w = (wy, w*) in G’, it must be shown that v
and w can be joined in G’ by a continuous path. We do this in two steps.

Step 1: Let G = P™(zg,€) be a small polydisk. Then G’ is the product of
a punctured disk and a polydisk in n — 1 variables. Define z := (w;,v™).
Clearly, z € G’, and we can join v; and w; within the punctured disk, and
v* and w* within the polydisk. Therefore, v and w can be joined within G'.

Step 2: Now let G be an arbitrary domain. There is a path ¢ :I — G joining

v and w . Since ¢(]) is compact, it can be covered by finitely many polydisks
Ui, ...,U;suchthat Uy CcGforA=1,...,1

It is easy to show that there is a & > 0 such that for all ¢, € I with
" =t} <6, p(t') and p(t") lie in the same polydisk Ug. Then let ¢ =15 <
t; < ... <ty =bbe apartition of I with [t; —¢,_1| <d forj =1,...,N.
Let z; := ¢(t;) and A(5) € (1,...,1} be chosen such that Uy contains z;
and z;_, (it can happen that A(j1) = A(j2) for j1 # j2). By construction z;—1
lies in Uy;y N Uxii—1), and thus Ux) N Uxg-1) — E is always a nonempty
open set.

1. Complex Geometry 7

We join v = zg € Uy(y) and some point z; € Uyy N Uy2y — E by a path
1 interior to Uyy — E. By (1)this is possible. Next we join Z; and a point
Z € Uy2) NUxz) — E by a path ¢, interior to Uy gy — E, and so on. Finally,
pN joinszy—1 and w = zn within Uyny) — E. The composition of 1, ...,onN
connects v and w in G'. -

Reinhardt Domains

Definition. The point set

Y i={r =(r1,...,7n) ER" : 7, >0forv=1,...,n)

will be called absolute space, the map 7 :C" — ¥ with 7(zq,...,2,) =
(lz1l,- - - 5]2n|) the natural projection.

The map 7 1s continuous and surjective. For any r € ¥, the preimage
7~ !(r) is the torus T*(0,r). For z € C*, we set P, := P*(0,7(z)) and
T, :=T"%(0,7(z)) =7 '(7(z)) (see Figure 1.1).

Definition. A domain G C C" is called a Reinhardt domain if for
every z € G the torus T, 1s also contained in G.

| 22]

........

|21
Figure 1.1. A polydisk in absolute space

Reinhardt domains G are characterized by their images in absolute space:

7 17(G) = G. Therefore, they can be visualized as domains in ¥. For exam-

ple, both balls and polydisks around the origin are Reinhardt domains.
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Example

Let zg € C*, with |2 > 1forv = 1,...,n. Then 7(e'? .zq) = 7(2z0), but
e .zg —zg| =€ — 1] .|zo| > |e'Y — 1], and for suitable @ this expression
may be greater than . So P"(zo,¢) is not a Reinhardt domain.

Definition. Let G C C™ be a Reinhardt domain.

1. G 1s called proper if O € G.
2. G is called complete if Vz€ GN(C*)" : P, C G (see Figure 1.2).

Later on we shall see that for any proper Reinhardt domain G there is a
smallest complete Reinhardt domain G containing G.

Figure 1.2. (a) Complete and (b) noncomplete Reinhardt domain

Exercises

1. Show that there is an open set B C C? that is not connected but whose
image 7(B) is a domain in absolute space.

2. Which of the following domains i1s Reinhardt, proper Reinhardt, complete
Reinhardt?

(a) G, :={z € C? : 1> 21| > |22]},

(b) G2 :={Z c C? : Izll < 1and lZzl < 1- |21|},

(¢) G3 is a domain in C? with the property
zcG = ¢et.zeGforteR

3. Let G C C™ be an arbitrary set. Show that G is a Reinhardt domain

<= 3G C ¥ open and connected such that G =7"1(G).

4, A domain G C C" is called conwex, if for each pair of points z,w € G the

line segment from z to w 1s also contained in G. Show that an arbitrary

domain G is convex if and only if for every z € OG there is an affine

linear function A :C™ — R with A(z) =0 and Alg < 0.

2. Power Series 9

2. Power Series

Polynomials. In order to simplify notation, we introduce multi-indices.

Forv =(vq,...,vn) € Z™ and z € C™ define

¥l

‘y‘ :=Z v, and z" = 311”1 ... pn

=1

The notation v > 0 (respectively v > 0) means that v; > 0 for each i
(respectively v > 0 and v; > 0 for at least one 7).

A function of the form

z+— p(z) = Z a,z”, with a, € C for |v| < m,

jp[<m

1s called a polynomial (of degree less than or equal to m). If there 18 a v
with |v| = m and a, # 0, then p(z) is said to have degree m. For the
zero polynomial no degree 1s defined. An expression of the form a,z” with
a, # 0 is called a monomial of degree m := |v|. A polynomial p(z) is called
homogeneous of degree m 1 1t consists only of monomials of degree .

2.1 Proposition. A polynomial p(z) #+ 0 of degree m is homogeneous if
and only if

p(Az) = A" -p(z), forall AeC.

PROOF: Let p(z) =a,z" be a monomial of degree m. Then
p(Az) =a,(Az)” =" .a,z2" = A" p(z).
The same 18 true for finite sums of monomials.

On the other hand, let p(z) =>_ w<n @vz” be an arbitrary polynomial with

p(Az) = A™ .p(z). Gathering monomials of degree i, we obtain a polyno-
mial p;(z) = )_,=; aw2” with p;(Az) = X* .pi(z). Then for fixed z the two
polynomaials

N

A= p(Az) =) pi(z) . A* and A AT p(z)
1=0

are equal. This 1s possible only 1if the coefficients are equal, i.e., py,(z) = p(z)

and p;(z) =0 for i # m. So p = p,, 1S homogeneous. -

Convergence. If for every v € NI a complex number ¢, is given, one
can consider the series »_ ., ¢ and discuss the matter of convergence. The
trouble is that there is no canonical order on N7 .
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Definition. The series > -,¢, is called convergent if there is a bi-

jective map ¢ :N — Nj such that > 77, |c,)| < oo. Then the complex
number Y .-, Cu(i) i called the limit of the series.

It 1s clear that this notion of convergence 1s independent of the chosen map
@, and that it means absolute convergence.

2.2 Proposition. 2_,o¢, is convergent if and only if

{ Z\cp| . I C Nj ﬁm'te}

vel

1s a bounded set.

The proot 18 trivial.

2.3 Proposition. If the series } o Cv converges to the complex number
C, then for eache > 0 there exists afinite set Io C Ny such that:

1. Y le| <, for any finite set K ¢ N§ with K Nl =2.
veK

Z c, — cl < E, for any finite set I with Ip C I CNj
vel

PROOF: We choose a bijective map ¢ :N — N&. Then Y_,-, Cp(i) = ¢, and
the series is absolutely convergent. For a given £ > 0 there exists an %20 € N

such that 3 _,—; |com| <é€ andlz1 1 Co( —c\ < €.

Setting Iy = ¢({1,2,...,i0}), it follows that >, cglcv! <€ for any finite set
K with KNIy =@, and | X ,cp, & — ¢| <&

Then for any finite set I with Ip C I C Ng,

IZCU-—C‘——l(ZCI,"C) Cy <|ch——c~—|— Z e, | < 2.

vel L’EI Ip velg vel—1Ig

-
Example
Let ¢1,...,9n, be real numbers with 0 < ¢; < l1fori =1,..,n, and g :=
(g1, ..,qn). Then for any v € Niy, ¥ =¢;" ...¢5" is a positive real number.

If I C Nj is a finite set, then there is a number N such that I C

{0,1,...,N}", and therefore

Sal-Se <X e <1

pel vel i=1v;=
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Since the partial sums are bounded, the series 1S convergent. It 1s absolutely
convergent in any order, and the limit 1s

Zq Hl—q@

v >0 —

We call this series the generalized geometric series.

Now let M C C™ be an arbitrary subset, and {f, : v € N} a family of
complex-valued functions on M. We denote by || f,||as the supremum of | £, |
on M,

Detinition.  The series >, -, f,, is called normally convergent on M
if the series of positive real numbers > . .|| f.||ar 18 convergent.

2.4 Proposition. Let the series Y <, f, be normally convergent on M.
Then it is convergent for any z € M, and for any bijective map ¢ :N — N7}

the series Y ._, foqiy is uniformly convergent on M.

PROOF: If the series is normally convergent, then ) < ,|f.(z)| is convergent
foranyz € M. Butthen } ., f.(z) is also convergent, and there is a complex

number f(z) such that Zil fo(y(z) converges to f(z), for every bijective
map ¢ :N — Nj.

If an ¢ >0 is given, there is an ig such that 3.7, | f,u)lla < £ Then

’ Z (i) (2)

1=k

<Z|‘f@(z)HM<E form >k > iy and z € M.

Therefore.

‘iﬁp(é)@)—f z

t=1 i=k+1

i) (Z) ‘ <eg, for k& > .

This proves the uniform convergence. -

Power Series. Let {a, : v € N}} be a family of complex numbers, and
zg € C™ a point. Then the expression

Z a,, (Z _ Zo)v
v>0

is called a (formal) power series about zy. It is a series of polynomials. It
this series converges normally on a set M to a complex function f, then as a
uniform limit of continuous functions f is continuous on M .
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2.5 Abel's lemma. Let PP CC P C C" be polydisks around the origin.>If

the power series ) _,~q@v2z” converges at some point o the distinguished
boundary of P, then it converges normally on P’.

PROOF: Let w € OpP be a point where ), -, 2, W" is convergent. Then
there is a constant ¢ such that |a, w”| < ¢ for all v € Ng.

We choose real numbers ¢; with 0 < ¢; < 1 such that |z]| < g;|w;| for any
z =(z1,...,2n) € PPandi = 1,...,n. It follows that

la,2"] < q" .¢, forq =(q1,-..,Gn), 2 € P, and v € Nj.

Then |la,z"|lpr < q" .c as well, and from the convergence of the generalized
geometric series it follows that > <, a.,2" is normally convergent on P'. =

Definition. We say that a power series Y, % (Z — Z0)” converges

compactly in a domain G if it converges normally on every compact subset
K CG.

2.6 Corollary. Let P C C" he apolydisk around the origin and w be apoint
o the distinguished boundary of P. If the power series >_u>q Wz’ converges
at w, then it converges compactly on P.

PrROOF: Let K C P be a compact set. Then there is a ¢ with 0 <q < 1

such that K C g- P CC P. Therefore, the series is normally convergent on
K. n

Let S(z) =) _, -0 a.,2” be a formal power series about the origin, and

B :={z€C" : 5(z) convergent}.

2.7 Proposition. The interior BO is a complete Reinhardt domain, and
S(z) converges compactly in B°.

PROOF: Let w be a point of B°. There is a polydisk P*(w,s) C B° and
a point v € P*(w,&) N (C*)™ such that w € Py(0). Then T C B”, and if
w € (C*)™, then also Py (0) C B".

To see that B® is a complete Reinhardt domain, it remains to show that it

is connected. But this is very simple. Every point of B® can be connected to
a point in B® N (C*)™, and then within a suitable polydisk to the origin.

* The notation U CC V means that U lies relatively compact in V;i.e., U is a
compact set which is contained in V.

2. Power Series 13

From these considerations it followsthat B° is the union of relatively compact
polydisks around the origin. Therefore, S(z) converges compactly on B". 4

The set B° is called the domain of convergence of S(z).

2.8 Proposition. Let G be the domain of convergence of the power series
S(z) =3 ,500z". Then

. V1 vy;—1 v
Szj(Z) . Z &y'yjzl -r--Zj --.Zn'ﬂ

v=>0
v; >0

also converges compactly on G.

PROOF: Let w be any point of (C*)*NG, and |a, w”| < ¢ for every v € NJ.
IfO0<g< land z =¢q .w, then

Vj C

:__"a’lfzv‘gﬁ'yj'q

v
|~ | *

1
lay -vijzit ez 2

Now,

S g = (iqpl)___ iyjquj ___(iqun)

1§ convergent. Therefore, S, (z )is convergent, and it follows that .S, 1is nor-
mally convergent on FP,(0). Since every compact set K C G can be covered
by finitely many polydisks of this kind, S, 1s compactly convergent on P. =

Definition. Let B ¢ C™ be an open set. A function f : B — C is called
holomorphic if for every zg € B there is a neighborhood U =U(zg) C B

and a power series S(z) = ) ,a.(z — Zo)” that converges on U to

f(2).

The set of holomorphic functions on B is denoted by O(B).

It 1s immediately clear that every holomorphic function 1s continuous.

Exercises

1. Let f, g be two nonzero polynomials. Prove that

deg(f - g) —deg(f) + deg(g).

2. Let f = f1--.fx be a homogeneous nonzero polynomial. Show that f; is
homogeneous, for: =1,...,k.
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3. Find the domain of convergence for the followmg power series:

f(z,w) = Z 2w, gz, w) = Z(zw)k, h(z,w) = Zm —;—!z”w“

4. Determune the Iimit and the domain of convergence of the series

F(z,w) = Z((Qz)v +y z“)wv.

v>0 (=0

5. A polyradius r = (r1,...,1,) € ¥ is called a radius of convergence for
the power series f(z) =) 2" if f(2) is convergent in P =P™(0,r),
but not convergent in any polydisk 7 =P"(0,r’} with P CC P,

Prove the following generalization of the root test:

r 18 a radius of convergence for f(z) if and only if Jimm “’\'/|a,y|r"’ = 1.

3. Complex Differentiable Functions
The Complex Gradient

Definition. Let B C C™ be an open set, zo € B a point. A function

f : B — C is called complex differentiable at zg if there exists a map
A :B — C" such that the following hold:

1. A i1s continuous at zg.
2. f(z) = f(z0) + (z —20) .A(2)" for z € B.

Complex differentiability is a local property: For f to be complex differen-
tiable at z it is sufficientthat there is a small neighborhood U =U(z¢) C B
such that the restriction f|y is complex differentiable at zo.

3.1 Proposition. Itft is complex differentiable at zo, then the value of the
function A at zg is uniquely determined.

ProoF: Assume that there are two maps A; and Ag satisfying the condi-
tions of the definition. Then

(7 — Z0) (A1(z) = As(2))" =0 for every z € B.

In particular, there is an € > 0 such that the equation holds for z =2zg +te,,
witht € C, [t{ <e,andi = 1,...,n. If Ay =(A}Y,...,A), then

t (AP (2) — AP (2)) =0, for |t| <e, Z=20Tte,andi=1,..,n.

Because the A™ are continuous at zo, it follows that Aq(Zo) = Ag(zp). ™
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Definition. Let f : B — C be complex differentiable at zg. If there
exists a representation

f(z) = f(zo0) + (z — 20) . A(z)",

with A continuous at zg, then the uniquely determined numbers

fi—(m) = f.. () =€, . A(zg)*

are called the partial derivatives off at zg. The vector

Vi(z0) = (fz1(20), .- ., f2n (20)) = A(Z0)

is called the complex gradient of f at z,.

Remarks

1. If f is complex differentiable at zg, then f is continuous there as well.

2. A function f is called complex differentiable in an open set B if it is
complex differentiable at each point of B. Then the partial derivatives of
f define functions f, on B. If each of these partial derivatives i1s again
complex differentiableat zg, then f is called rwice complex differentiable
at zg, and one obtains second derivatives

0*f
92,07, *0) = Jruz. (20)

By induction, partial derivatives of arbitrary order may be defined.
3. Sums, products, and quotients (with nonvanishing denominators) of com-
plex differentiable functions are again complex differentiable.

Weakly Holomorphic Functions. Let B ¢ C" be an open set,
zg € B a point, and f a complex-valued function on B. For w # 0 let
Yw C — C” be defined by

(PW(C) 1= Zg + (W.

Then fopw(C) is defined for sufficiently small {. Iff is complex differentiable

at Zo, then we have a representation f(z) = f(zo) T (2 — 20) . A(z) ¢, with A
continuous at zg. It follows that

Flew(Q)) — flow(0)) =Cw - A(pw(()) ",

and [ o pw 18 complex differentiableat ¢ =0, with

(F 20w) (0) =W+ Afso)* = lim 2 (7w (C)) ~ (iw(0))].
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This 1s the complex directional derivative of f at zg 1n the direction w. We
denote it by Dy, f(2z¢). In particular, f, (zo) = De_ f(2zo) forv =1,...,n.

An arbitrary function f 1s called partially diflerentiable at zg 1t all partial
derivatives De, f(zg) exist forv =1,...,n.

A function f 1s called weakly holomorphic on B 1f it is continuous and partially
differentiable on B. Then for z = (z1,...,2,) € B and v = 1,...,n the
functions

(= flz1,-..,20-1,Cy 2041, -+ ., Zn)

are holomorphic functions of one variable.

Iff 1s complex differentiable on B, then f 1s also weakly holomorphic on B.
Later on we shall see that weakly holomorphic functions are always complex
differentiable, in contrast to the behavior of real differentiable functions.

Holomorphic Functions

3.2 Proposition. Let P ¢ C* be apolydisk around the origin, and S(z) =
ZijO a,z” a power series that converges compactly on P to a function f.
Then | is complex differentiable at O, with

le (0) =a1,0 ..... 0y .., fzﬂ(o) = GJO,...,O,I'

PROOF: We choose a small polydisk P, CC P around the origin such that

S(z) 1s normally convergent on P, But then the series obtained by any

rearrangement of the terms 1s also normally convergent, and 1t converges to
the same limit. We write

f(z) = Z a,Z”
v >0
= 400...,0+% Z &yzlfl_lng 2
v >0
V9. oUp 20
Uy —1
T S R R SRTTI A > auz,
v =0, v >0 v1=...=Vnp-—1=0
V3,. --ab"nZO Uﬂ.>0
= f(O+z.A1(2)F ...+ 2. . An(2)
Since the series A;(z), .. .,A,(z) converge normally on P: to continuous func-
tions, f is complex differentiable at 0, with f;,(0) = A, (0). -

3.3 Corollary. If B ¢ C" is an open set, and | : B — C a holomorphic
function, then [ is complex diflerentiable on B.
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PROOF: Let zop € B be an arbitrary point. There 1s a power series S(w)
converging compactly near O to a holomorphic function g such that

f(zg T W) =g(w) =¢(0) +w;, . A (wW)+-..4+w, .Ap(W),

with continuous functions Ay, ..., A,. It follows that f is complex differen-
tiable at Zg. o
Exercises

1. Show that there is a function f : C" — C that is complex differentiable

at every point z = (21, ... ,2,) with 2z, = 0, but is nowhere holomorphic.
2. Prove the following chain rule: If G C €C” is a domain, f : G — C a
complex differentiable function, and ¢ = (¢, ...,¢,) : A — G a map

with holomorphic components ¢;, then f oy : A — C is a holomorphic
function, with (f 0 )'(¢) = VF(#(C)) .¢'(O)".

4. 'The Cauchy Integral

The Integral Formula. Let r = (r1,...,7,) be an element of R,
P =P"(0,r), T =T"(0,r),and f a continuous function on 7. Then

kr(z,C) = /(<) _ f(C1y... ()

(C=2z) bt (G —21) - (G — 2n)

defines a continuous function k¢ : P x 1" — C.

Definition.

O = (5m) [hrtmcrac

T
(E}F) / / / (C)(cldflzl)”'(cndfnzn)

|C-1‘:Tl |<ﬂ1=r'ﬂ

1s called the Cauchy integral oftf over T,

Obviously, C'r 18 a continuous function on P.

4.1 Theorem (Cauchy integral formula). Let P, T be as above, and

U =U(P) be an open neighborhood of the closure of P. 1tt is weakly holo-
morphic on U, then Cyr(z) = f(z) for any z € P.

PROOF: It P =0 (0)x...xD, (0),wemay assume thatU =U; x-..xU,,
with open neighborhoods U; = U, (D (0)) fori=1,...,n.

Ty




18 I. Holomorphic Functions

Since f is weakly holomorphic, we can fixz* = (21, ... ,2n—1) € U1 X+ .- XUn-—1
and apply the Cauchy integral formula in one variable to {, — f(z’, (). For
2, € D,_(0) it follows that

1 f(zfa Cﬂ)
/ = dé,,.
f(Z ?Zﬂ) 271 Cﬂ — Zn Cﬂ
lCﬂ‘ZTﬂ
Similarly, for the penultimate variable z,—1 and z"”7 = (z1,...,2,-2) € Uy X

.. X U,,_2 we obtain

1 Z”, e 3,2:”
f(ZH,zn—lazn) — % / f( C 1 - ) an—l

Cn 1 lﬂTﬂ 1

H Cﬂ-—-l Cn) d d
B (Z’H'I) / / Cn 1= Zn—1)(Cn — Zn) o o1,

lgn 1‘—*?"11. l\zﬂlﬁrﬂ

and after n steps, f(z) = Cyr(2), for z € P. _

4.2 Theorem (power series expansion). Let P =P*(0,r) C C* pbe

a polydisk and T its distinguished boundary. Iff T — C is a continuous
function, then there is a power series Y, sg @27 that converges to C¢(2z) in

all of P.

The coefficients a, of this series are given by

Qyy...v,, = (_1‘) f(Ch.“jin_zl dClan

1 27} i’1+1... v

PROOF: Setting 1 :=(1,...,1)e Nj, forz € P and { E T it follows that
1 1 1

—t
— —

Cof ~ GG G (1-2) (- 2)

) y G Cr
- @) -Z@)

11 =0 v, =0

fr=(1... ,Tn), then for fixed z € P and arbitrary ¢ € T we have

‘ZJ |
T'j

<1, for 3 =1,.

Since 7' is compact and f continuous on T there 1s a constant M with
f(¢)] < M on T. Then 3,5, (£(¢)/¢"" )z* is dominated on T by the
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convergent series (M/r')y>" _.q”,where q = (¢1,. -.,qn), and therefore it

is normally convergent as a series of functions on 7" with limit f({)/(¢ —z)!.
We can iterchange summation and integration:

Cy(z) = (zim)ﬂﬁ (CfECZ)P d¢ = Za,yz“’,

v>0

LN\ [ )
= (%) /Twl *

The series converges for each z E P. -

with

4.3 Osgood’s theorem. Let B C C" be an open set. Thefollowing state-
ments about a function f : B — C are equivalent:

1. f is holomorphic.
2. [ is complex differentiable.
3. [ is weakly holomorphic.

PROOF: We alrecady know that a holomorphic function F is complex differ-
entiable, and it is trivial that then f is weakly holomorphic.

On the other hand, let f : B — C be weakly holomorphic, and zo € B
an arbitrary point. There 1s a small polydisk P around zq that 1s relatively
compact in B. If T is its distinguished boundary, then f|p = Cyr, and the
Cauchy integral is the limit of a power series. So f is holomorphic. -

In addition, if f is weakly holomorphic on B, zo € B a point, and P CC B
a polydisk around zg, then there is a power series 5(z) = > ., v (z2 — 2g)"
that converges to f on all of P. -

Holomorphy of the Derivatives

4.4 Weierstrass’s convergence theorem. Let G CC" be a domain, and
(fr) a sequence of holomorphic functions on G that converges uniformly to a
function f. Thenf is holomorphic.

PROOF: The limit function i1s continuous. Let zg € G be a point, P CC G
a polydisk around z,, and 7" 1ts distinguished boundary. Then

= hm = lim C
‘P k— o0 fk|P k— 00 felT
Since 7" 1s compact, we can interchange integral and limit. Thus, for any fixed
zc P,

lim Cf,7(z) = Ctim s 7(2) = Cpi1(2).

k—oo k — oo
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Since f 18 continuous on 7", the Cauchy integral Cy 7 has a power series
expansion in P. Therefore, f 1s holomorphic at zg. _

4.5 Proposition. Let S(z) =3, ,.qa.z2" be a power series and G its do-

main of convergence. Then the limitfunction f o S(z) is holomorphic on G,
and the formal derivative

_ § r M1 vi—1 v
Szj(Z)'— @y'ijl Zj "'Znn
v>0
v, >0
converges to f. . In particular, all partial derzvatzves of f are likewise holo-
morphzc.

PROOF: Since S(z) converges compactly on G, f is locally the uniform limit
of a sequence of polynomials. Then 1t follows from Weierstrass’ theorem that
J 1s holomorphic. But also S5;,(z) converges compactly on G, and 1its limit
function g must be holomorphic on G.

Now let zg be an arbitrary point of G. Since G 1s a complete Reinhardt
domain, there 1s a polydisk P around the origin with zo € P CC G. We
define

f*(Z) = / gj(zln' ..3Zj—13C:ij—|—1;- __3Zn)dc+f(zlj- .*303' ,Zn)
0

For the path of integration we take the connecting segment between (0 and
z; In the z;-plane. Then f* 1s defined on P.

Let S(z) =>_,—,pi(z) be the expansion into a series of homogeneous polyno-
mials. Then S, (z) =>_._,(p:):, (z), and this series converges uniformly on
the compact path of integration we used above. Therefore, we can interchange
summation and mtegration, and consequently,

f(z) = Z(/o j(pi)zj(zlj...jc,,...,zﬂ)dC—l—pj(zl,,...,O,,...,zn))
— Zp%(z) — f(z)a
i=0
for z € P. Hence f. (Zo) = f;"j(zo) = g;(20). -

4.6 Corollary. Let G ¢ C* be adomain and f : B = € a holomorphic
function. Then f is infinitely complex differentiable in G.

Let v = (vq, ...,v,) be a multi-index. Then we use the following abbrevia-
f1ons:
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1. vt =, 1,
2. If f 1s sufficiently often complex differentiable at zg, then

4
D” f(zo) = s 5 (Zo).

aZijl * e '82?1

4.7 Identity theorem (for power series).

Let f(z) =>_ oa,2" and g(z) =) -, b.2" be two convergent power series
in a neighborhood U =U(0) C C™. If there is a neighorhood V(0) C U with
flv =9|v, thena, =b, for all v.

ProoOF: We know that f and g are holomorphic. Then DY f(0) = DV g(0)
for all v, and successive differentiation gives

Df (O)=v!.a, and DYg(0) =uv!.b,

4.8 Corollary. Let G ¢ C™ be a domain, zog € G a point, and f :B — C
a holomorphic function. If f(z) =3 <o (2 —20)" is the (uniquely deter-
mined) power series expansion near zg € G, then

1
a, = — D" f(zg), for eachv € N
V!

4.9 Corollary (Cauchy’sinequalities). Let G C C" be a domain, f :
G — C holomorphic, zo € G a point, and P = P"(zg,r) CcC G a polydisk
with distinguished boundary T'. Then

]

|D” f(z0)| < — - supl|f]
I T

PrOOF: Let f(z) =3 _.,a.(z —zp)” be the power series expansion of f
at zo. Then D* f(zg) =v'a, and

v (%m)/ff (¢ —f(co;“ “

y V! £(O)
_ V! / F(21 + e, 20 4 ppeitn)]

(2m)" r
0,27

and therefore

[A

dt; - - - dt,,

!
— - 5U .
- Tplfl

A
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The Identity Theorem.Let G € C* be always a domain. The con-
nectedness of G will be decisive in the following.

4.10 Identity theorem (for holomorphic functions).

Let f1,f2 be two holomorphic functions on G. If there is a nonempty open
subset U C G with f1ilu = fa|u, then f1 = fa.

PrROOF: We consider f := fi — f2 and the set
N ={ze G :D"f(z) =0 for all v}.

Then N # &, since U C N. Let zg € G be an arbitrary point, and

f(2) = 3 D" f(20) (2~ 20)"

v >0

the power series expansion of f in a neighborhood V = V(zy) C G. I zg
belongs to N, then flyy = 0, and also V C N. This shows that N is open.
Because all derivatives D' f are continuous, £V 18 closed. Since GG 1s a domain,
we get N =G and f1 = f2. n

Remark. In contrast to the theory of one complex variable, 1t 1s not suf-
ficient that f; and fo coincide on a set M that has a cluster point in G.
Consider for example, G = C? and M = {(z1,22) : 22 =0]. The holomor-
phic functions f1(z1, z2) :=22(21 —22) and fa(21, 22) =22(21 + 22) are equal
on M, but f;(0, 1) = -1 and f2(0,1) = 1.

4.11 Theorem (maximum principle).

Let f : G — C be a holomorphic function. If there is a point zo € G such
that |f| has a local maximum at zo, then f is constant.

PROOF: We consider the map pw : C — C" with ¢ow({) = z¢ +{w, for
an arbitrary w # 0. Then f o v« 18 a holomorphic function of one complex
variable, defined near { = 0. Now, since |f o ¢w/| has a local maximum at
the origin, this function must be constant in a neighborhood of the origin.
But the direction w was chosen arbitrarily, so f also has to be constant in a

neighborhood of O € C”. The identity theorem implies that f is constant on
G. =

Exercises

1. Prove Liouville’s theorem: Every bounded holomorphic function on C”
1S constant.
2. Prove that if f € O(C™) and |f(z)| < C -{|z”|| for some C >0 and some

v € NI, then f is a polynomial of degree at most |v].
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3. Let G € C™ be a domain and f € O(G) not constant. Prove that then
f(U)cC C is open for any open subset U C G.

4. Let G C C™ be a domain. A set F of holomorphic functions on G is called
locally bounded, if for every z € G there 1s a neighborhood U(z) C G such
that {||fllu : f € F} is bounded. Prove the following:

(a) (Lemma of Ascoli) If A C G 1s a dense subset and (f,,) 1s a locally
bounded sequence of holomorphic functions in G which converges
pointwise on A, then (f,) is compactly convergent on G.

(b) (Theorem of Montel) Every locally bounded sequence of holomorphic
functions in G has a compactly convergent subsequence.

Hint: More or less, you can use the well-known proof from the 1-

dimensional theory.

5. 'The Hartogs Figure

Expansion in Reinhardt Domains.Let r/,, " be real numbers with
0<r, <rl/for 1<v < n We define

P = {zeC" :|z,| <], forall v},
0 = {zeC" :r, <[z <r, forall v}

Clearly, P and Q are Reinhardt domains. Let f be a holomorphic function in
Q. Then for allr € 7(Q), the Cauchy integral C'f 7, is a holomorphic function
in P and therefore a fortiori in P (see Figure 1.3).

| 22|}

¥
s

Figure 1.3. Expansion m the polydisk

5.1 Proposition. The function fr : P — C given by fi(z) =Cy.(2) is
independent of r.

PROOF: We have
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@ = (5 / / ! (C)cldflzl'”qnd-c-nzﬂ'

1C1l="1 {ni=7n

In each variable ¢, the integrand f(¢)/(¢(, — 2. ) is holomorphic on the annulus
{¢, :r, < ¢, <r!’}. From the Cauchy integral formula for one variable it
follows that

HO)— ey — f] Q) g,
G

ICul=ry bv ™ 2 =7 CU Ay

if v/ <r, <r} <ry. This yields the proposition. n

5.2 Proposition. Let G ¢ C" be a proper Reinhardt domain, f holomor-
phic on G. Then for every z € Gn(C*)" the Cauchy integral Cyy, coincides
with f in a neighborhood of the origin.

ProoF: GN (C*)” is a Reinhardt domain. Therefore, G :=7(G N (C*)™)
1s a domain in the absolute space.

Let B :={r € Ggy : C¢1, coincides with f in the vicinity of 0 }. Then B #
@, because there is a small r € Gg such that P(0) C G.

B 1s open: It rg € B, we can find sets P, Q as we did at the beginning of this
section such that ro € Q C Gg. Then forr € Q, fr =Cyt, 1s a holomorphic

function on P, and independent of r. But f,, coincides with f near the origin.
Therefore, Q C B.

Also, Gg — B 1s open. The proof goes as above. Since Gg is connected, that
implies that B = G. a

5.3 Corollary. Let G be a proper Reinhardt domain, f holomorphic in G.
Then there is a power series S(#) which converges in G to f.

PROOF: Let zg € G be arbitrarily chosen. Then there 1s a point w € GN
(C*)™ with zg € Py. The holomorphic function g := Cy1, has a power
series expansion g(z) = >, -4a,2” in Py. Since g coincides with f in a small
neighborhood of the origin, the coefficients @, are those of the Taylor series
of f about O. Since zy was arbitrary, it follows that the series converges in
all of G. By the identity theorem its limit is equal to 1. -

Definition. If Gis a proper Reinhardt domain, then

6:= |J P

zcGN(C*)n

is called the complete hull of G

Figure 1.4. (a) 2-dimensional, and (b) 3-dimensional Hartogs figure

5. The Hartogs Figure 25

Remarks

1. Every complete Reinhardt domain 1s proper, but the opposite is in general
false. For n = 1, Reinhardt domains are open disks around 0, and there
1s no difference between proper and complete domains.

2. The complete hull G of a proper Reinhardt domain G is again a domain
containing G. And it is Reinhardt: For z_€ G there is some z1 with
z € P ¢ 6. But then also T, CP,;, C G. The same argument shows
that G is complete.

3. Let G; be another complete Reinhardt domain with G C G;. For z ¢
GnN (C*)", z also lies in G, and by the completeness of G it follows

that P C ¢G;. So G C (1, and we see that G is the smallest complete
Reinhardt domain containing G.

An immediate consequence 1s the following:

5.4 Theorem. Let G be a proper Reinhardt domain and f be holomorphic
in G. Then there is exactly one holomorphic function f in G ih ﬂG _f

Hartogs Figures.In the case n = 1the situation above cannot appear.

For n > 2 we can choose sets G and G in C” such that G # 6. This reflects an
essential difference between the theories of one and several complex variables.

Now let n > 2, P the unit polydisk, ¢4,. ..,q, real numbers with 0 < g, < 1
forv =1,..,n, and

H=H(q) :={z € P" :|z| >qq 0r |z,| <g, forp=2,...,n}.

Then (P?, H) is called a Euclidean Hartogs figure (see Figure 1.4). H is a
proper Reinhardt domain and P its complete hull.

>
e |21
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5.5 Hartogs’ theorem. Let (P%, H) be a Euclidean Hartogs figure. Then
any holomorphic function f on H has a holomorphic extension f on P”.

The theorem follows immediately from our considerations above.

Exercises

1. For 0 < g < 1let G1,G2 C C? be defined by

G, = {(z,w) :g<|z| < land |w| < 1},
G, = {{z,w) :|z] < land |w| <g¢}.

(a) Prove that every holomorphic function f on G; has a unique repre-
sentation

flz,w) = Z an(w)z"”, with a, € O(D).

n=—-—0oco

(b) Prove that every holomorphic function g on G2 has a unique repre-
sentation

g(z, w)= Z bn(w)z", with b, € O(Dg(0))-
n=0

(¢) Use (a)and (b) to prove that every holomorphic function f on G1UG>
has a unique holomorphic extension to the unit polydisk.
2. Let G ¢ C™ be an arbitrary Reinhardt domain, f € O(G). Show that
there exists a uniquely determined “Laurent series” ), czn 0, Z2" cONverg-
ing compactly in G to f.

6. The Cauchy-Riemann Equations

Real Differentiable Functions. Recall the following from real an-
alysis:

Let B C C™ be an open set and zg a point of B. A function f : B — R is called
differentiable (in the real sense) if there is a real linear form L :C"™ — R and
a real-valued function r with:

1. f(z) = f(zo) + L(z — 20) +7(2 — 20).

. r(w)
S wl T

The real linear form [ f(zq) := L is called the (total) derivative of f at zy.
It can be given in the form
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L:-u+iv—nu .fo(zo)t +v -Vyf(zﬂ)ta

with Vi f(2z0) = (fz,(20),. .. fe. (20)) and Vy f(zo) = (fy:(20), .- ., fyn(Z0))-
We call (Vxf(zo), Vyf(zg)) the real gradient of f at zg.

If f=g+1h :B — C is a complex-valued function, then f is called differen-
tiable (in the real sense), f g and h are differentiable. The (real) derivative

of f at zg 18 defined to be the complex-valued real linear form

Df(zo) :=Dg(zo) +iDh(zg).

6.1 Proposition. A function f : B — C is (real) differentiable at zg if and
only if there are maps A*,A" : B — C" such that:

1. A® and A” are continuous at zq.

2. f(z) = flzg) 2z —2p) . A(2)! +(Z — %) .A"(2)¢ for z € B.

The values A’(zo) and A"(zgy) are uniquely determined.

PROOF: (1)Let f be differentiable at zy. Then there 1s a complex linear
form A’ and a complex antilinear form A’ such that

Df(Zo) = A’ +A”.

The decomposition 1s uniquely determined, and there are vectors A’(zg) and
A"”(zg) such that

AN{w) =w .A"(zo)‘t and A"(w) = W*A”(zo)t.
Now we define

r(z — 7o)
2||z — zo]|®

A'(z) = A'(zo)A - (Z — Zp),

|

Na0) + g (2~ 20),

AH(Z)

It is easy to see that
(aA’ and A’ are continuous at zq,
(bY(2) = f(20) + (2 —2) . A (2)t + (7 —70) .A"(2)
(2 ) Now let the decomposition be given, and define

L{w) = w-A(zg)'+w- A" (zg) ",

r(w) = W.(A(z) - Alz0)) T W (A"(2) - A(z0))".
Since

T < A (z) — A (z0))) +IA(2) — A" (20)),

iwl
it follows that f 1s differentiable at zg with derivative L.

RN
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Wirtinger’s Calculus

Definition. Let f : B — C be real differentiable at zg. If we have a
representation

F(2) = f(20) + (z —20) . A'(2) " + (2 — %) . A"(z)",

with A’ and A” continuous at zy, then the uniquely determined numbers

Of-(zg) = [ (Zo) == €, .A’(zo)t

JzZ,

and

af
0z,

are called the Wirtinger derivatives of [ at zp.

(Zo) = f5, (Z0) ==€v . A (zg)"

The complex linear (respectively antilinear) forms (3f)z, : C* — C and
(0f)z, :C" — C are defined by

OF)aoW) =3 ooy and  ()ay(w) = 3 f, (20,

=1

and the differential of [ at zg by (df )z, :=(0f)z, T (0f)z,-

Obviously, Df(zg) = (df),,.

If we introduce the holomorphic (respectively antiholomorphic) gradient
Vf c= (fZJ?"‘?fzn) and 6f. = (leﬁ"'?fzn)’

then (0f)z,(W) =w .V f(z0)! and (0f)z, (W) =W -V f(zo)".

6.2 Proposition. Let f be a (complex-valued) function that is real differ-
entiable at zg. Then

f;u(zﬁ)
fz.(Zo)

DO b N | b

(fz.(Zo) — ify,(Z0))
(fz. (Z0) +1fy,(20)).

Proor: Let be L := Df(zy). Then
fo (20) = L(e,) = (0f)zo(€v) + (8f)zo () = [z, (20) + fz,(20)

and

fy,,,. (Z[}) — L(iey) — (3f)zo(iBV) + (gf)zlt}(iev) - i(fzu (ZU) o fzu(zo)-
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Putting things together we obtain

Jo, (Z0) — 1 [y, (Zo) = 2f-, (20) and [y, (Zo) + 1fy, (20) =2f3, (Zo).

Remark. Use these formulas with care! The derivatives f, and f, 1n
general are complex-valued. So the equations do not give the decomposition
of f, and fz 1nto real and 1imaginary parts, respectively!

The Cauchy-Riemann Equations

6.3 Theorem. Letf :B — C be a continuously real differentiablefunction.
Then f is holomorphic if and only if [z, (2) =0 on B, forv=1,...,n

PROOF: (a)If f 1s holomorphic, then f 1s complex differentiable at every
point zg € B. Comparing the two decompositions

f(z) = f(20) + (z — 20) .A(2)"

and

f(z) = f(zo) T @ —20) . A(2)" +(Z -2) .A"(2)°

we see that A'(zg) = A(zp) and A’(zp) = 0. The latter equation means that
fz,(Zzo)=0forv =1,...,n

(b) I fz, (z)= 0, then [ 1s holomorphic in each variable and 1s consequently
holomorphic. n

Remark. Now the following is clear: If f is holomorphic near zg, then

(0f)ay =0 and D f(2o)(W) = (df )zo (W) = (Of )z Zfzu(zta

The equation (8f), = 0 is the shortest version of the Cauchy- Riemann dif-
ferential equations. In greater detail, these are the equations

fgu(Z) — 0, for v = 1,...,!1

Finally, if f = g + ih, then we can write the Cauchy—Riemann equations in
their classical form:

, =hy, and hy, =—g,, , forv =1,...,n.
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Exercises

1. Derive the Cauchy—Riemann equations in their classical form.
2. Let f : G — C be real differentiable. Prove the formulas

—TT

(£.) =z ard  foz, =f3,, forv,p=1,.  |n

3. Let G C C" be a domain and fi,. ..,fk :G — C holomorphic functions.
Show that 1f 2?:1 /5[ ; 1s constant, then all f; are constant.
0°|h)? _ | Oh |?

Hint: If 4 1s holomorphic, then 0z2;0Z; 5:2’:

7. Holomorphic Maps

The Jacobian.Let B C C™ be an open set. A map

£ =(fi,. .., fm) : B~ C™

is called holomorphic (respectively real differentiable) if all components f;
are holomorphic (respectively real differentiable).

7.1 Proposition. The map £ : B — C™ is holomorphic if and only if
for any zg € B there exists a map A : B — M,, n(C) with the following
properties.

1. A is continuous at zg.
2. f(z) =f(zo) T (z —29) .A(2)?, forz € B.

The value A(zg) is uniquely defined.

PROOF: The map f 1s holomorphic if there are decompositions

f,u(z) = f,u(ZO) + (Z — ZU) ' Aﬂ(z)ta

with A, continuous at zg, foru =1,...,m.

Then A is given by A(z)? = (A1(z)t,...,An(z)"). We leave the further
details to the reader. -

Definition. If f : B — C™ is holomorphic, then J¢(zo) = A(Zo) is
called the complex Jacobian (matrix) of { at zg. The associated linear
map f'(zg) :C" — C™ 1s called the (complex) derivative off at Zo. It 1s
given by

f’(Zo)(W) =W . Jf(ZO)r.
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Explicitly, we have

(f1)=(z) ... (f1)z,(2)
Ji(z) — '

(fm)zl (Z) L. (fm)zn (Z)

This matrix 1s also defined for differentiable maps.

Definition. If f =g+ ih : B — C™ is a differentiablemap, then the
real Jacobian matrix Jg s(2p) € Mo, 2n(R) is the real matrix associated
to the real linear map

(Dg(zo), Dh{zg)) : C" = R*™ — R*™.

The real Jacobian of f = g + ih is given by

(91)z -+ (91)zn | (91)y: 0 (91)y,

_ (gm)ml e (gfm:)a:n (gw;)yl L (gﬂ;)yn

R (A)er 0 (M)an | (Bi)y o0 (h1)y,
(hodas = (hden | (rondys = (o)

The EX-linear map Df(z) : C™ — C" is defined by Df(z) :=Dg(z) +i Dh(z).

Setting (8f)z = ((8f1)z}- .. ,(3fm)z) and (5f)z = ((Efl)zw C e ,(5fm)z); we
obtain

Df(z) = (af), + (0f),.

7.2 Theorem. A differentiablemap f =g +ih : B — C™ is holomorphic
if and only if Df(z) is C-linear for every z € B.

If £ is holomorphic and n =m, then det(Jg ¢(z)) = |det Jg(2)]?.

PROOF: The map f is holomorphic if and only if (Of) = 0 for every z. Then
Df(z) = (0f),, which is complex linear. In this case we have the Cauchy-
Riemann equations

(Gu)z, = (hp)y, and (hu)e, — —(9u)z, .

and therefore

(fu)zv — (fﬂ):lﬁu = (gﬂ)xu +i(hp,)$,,a fOf/J =]_,. oy T and vy = 1,...,?’?}.
B

A
Ifn=rrzj,,thenJ];g’f=(CY D)witth—CandA::D,ande:
A+1C.
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By elementary transformations,

A —Cc\ _ A+iC —C+iA
w(2 £) - (e
AviCc 0
= det( C A—»EC)
= |det(A +iC)|%.

It follows that holomorphic maps are orientation preserving!

Chain Rules. Let B ¢ C" be an open set, f : B — C™ a differentiable
map, and g a complex-valued differentiable function that 1s defined on the
image of f. Then g of : B — C 1s differentiable, and the following holds:

7.3 Proposition (complex chain rule).

(gof),, = i(gwu of) - (fu)z + Z(%u o f) - (}’“)ZU:
u=1 p=1
(gof)z, = 3 (9w, of)-(fu)z + D (9w, oF) - (fu)s,

One can use the well-known proof for the chain rule 1n real analysis, consid-
ering z, and z, as independent variables.

7.4 Corollary. Iff and g are holomorphic, then

(gof)z (z) = 0 (i.e, gof is holomorphic),

Fr

(gof). () = Y gu,(f(@)  (fu)x(2).

The second equation can be abbreviated as

V(gof)(z) = Vg(f(z)) . Je(2)

Tangent Vectors. In this paragraph we use the term differentiable for
infinitely differentiable.

Definition. A tangent vector at a point z € C" is a pair t = (z,w),
where the direction w of t is an arbitrary vector of C". If the base point
z. 18 fixed, we simply write w instead of t or (z,w).

The set T, of all tangent vectors at z is called the tangent space (of C'"')
at z.

[ P .
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The notation "tangent vector” is motivated by the following:

Let B CC™ be an open set and I C R an interval containing O as an interior
point. If a = (e, ..., ) : I — B is a differentiable path, then o'(0) is the
direction of the tangent to the curve a at the point «(0). Therefore,

&(0) == (a(0), &’ (0))

is called the rangent vector of o at z = «(0). Each tangent vector (z,w) € T,
can be written in the form a(0), e.g., a(t) =2z +tw.

The tangent space 1 carries in a natural way the structure of a complex
vector space:

(Z, Wl) + (Z, WZ) = (Z: Wi +W2):
A(z,w) = (z,A-w), forAeC.

Every tangent vector t = (z,w) operates linearly on the algebra &(B) of
differentiable functions on B by

tlf] = Df(z)(w).

This is the directional derivative, also denoted by Dy, f(z). If t = (0), for
some differentiable path a, then t[f] =( f o @)’(0), due to the chain rule.

The operator ¢ : &(B) — R satisfies the product rule:

t[f -9l =t{f] 9(2z) + f(=) - t[g].

In general, a linear operator satisfying the product rule 1s called a derivation.
In Chapter IV we will show that the tangent space is 1sSomorphic to the vector
space of derivations.

The Inverse Mapping.Let B;, B, C C" be open sets, and f : By — B
a holomorphic map.

Definition. The map f is called biholomorphic (or an invertible holo-
morphic map ) iff is bijective and £~ holomorphic.

7.5 Inverse mapping theorem. (Consider a point zqg € By and its image
wo =f(zg). Then the following are equivalent:

1. There are open neighborhoods U = U (zg) C By and V =V (wg) C B,
such that t : U — V is biholomorphic.
2. det Jf(Zg) 75 0.
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Proor: ¥ fly : U — V is biholomorphic, then (fly)~! o f = idy and f(z,w) =0 <= F(z,w) =(z,0)

1 = det(Eﬂ») — det(J(ﬂU)‘l (W[]) i Jf(Z{})) — det(J(ﬂU)—l (W[})) _ det(Jf(z{])), s (2w — F_l(zj 0)
and therefore det(Js(zo)) # 0.

If det(Jp(zo)) # 0, then also det(Jr £(2zg) = |det Je(zo)|? # 0. It follows from

real analysis that there are open neighborhoods U =U(zg) C By and V = This completes the proof. n
V(wg) C By such that f|y :U — V is bijective and g = (fly)™" : V - U
a continuously differentiable map (in the real sense). Then f o g = idy is a Remark.  We can exchange the coordinates in the theorem. If rk J¢(zo, wo) =
holomorphic map, and if we write f = (/15 fn) and g = (91, ..,9n), then g m, then there are coordinates z;, ,...,2;, such that £=1(0) is the graph of a

| map g8 — g(zi-l,. . ,Ziﬂ) near (ZQ, W[]).

(47

0=(fuog)ﬁp_ =Z((fv)z;kog) .(QA)'@‘M: fOI‘ vV, i =13'..:~n' . )
Y| Exercises

1.Let G = P" C C? be the unit polydisk and f = (f1,f2) : G — G a

In the language of matrices this means that
holomorphic map with £(0) = 0.

Vg (a) Showthat iff(z) =z+Y", ., Pn(2) with pairs p,(z) = (pi™ (z), 5" (z))
0=Js: : . of homogeneous polynomials of degree n, then f(z) = z. Hint: Use
YVaon Cauchy’s inequalities and consider the iterated maps f* =fo...of
(k times).
Since Js is invertible, it follows that Vg, = 0 for each A. Therefore, the map (b) Show that if f is biholomorphic, then fi, f2 are linear. _
n 3 2. Let G1,G2 C C™ be two domains. A continuous map f : G; — Gy is

g 1S holomorphic. . :
called proper if for every compact subset K C G the preimage f~' (K)

1S a compact subset of G5.
7.6 Implicit function theorem. Let B C C™ x C™ be an open set, f = | (a) Show that every biholomorphic map 1s proper. Give an example of a
proper holomorphic map that 1s not biholomorphic.
(b) Let &1 and G5 be bounded. Showthat a continuousmap f :G; — Gy
is proper if and only if for every sequence (zx) in 3 tending to G,

det (8f‘”“ (2o, Wo) p=a,. ’m* n4m ) # 0. the sequence (f(z;)) tends to 0G,.

(fi,..«sfm) : B — C™ a holomorphic mapping, and (2o, Wo) € B a point
with £(zo,wg) =0 and

Oz, v=n+1,.. (c) Let G',G"” C C be bounded domains and f : &' x G — G5 a

proper holomorphic map onto a bounded domain G, C C?. Show

Then there is an open neighborhood U = U’ x U" C B and a holomorphic that z — £, (z, w) cannot vanish identically on G'. Let 29 € G’ be an
map g :U" — U" such that arbitrary point and (z;) a sequencein G’ tending to zg. Show that the
, , | sequence of holomorphic maps ¢ :G” — G5 with g (w) =f(2g, W)

{(z,w)eU' xU" :f(z,w) =0} ={(z,g(z)) :z€U'}. has a subsequence converging compactly on G” :f) (a %10101150rphic

map o : G"” — C? with ¢(G") C 8G,. Show that there must exist

Proor: We write Je(zg, wo) = (J'|J"), with J' € My ,(C) and J” € at least one point zg € G’ such that the corresponding map g is
M, (C), and define F : B — C" x C™ by F(z,w) :=(z,f(z,w)). Then not constant.
| 3. Use the results of the last exercise to prove that there 1s no proper map-
det Jo(z0, wo) — det ( B 0 ) 7y ping from the unit polydisk to the unit ball in CZ. | |
| 4, Let G; C C™ and G C C™ be domains and f : G; — G5 a biholomorphic
| map. Show that m = n.
Therefore, there are open neighborhoods U = U(zo,Wo) C B and V = ? 5. Let G ¢ C™ be adomain and D :&(G) — R a derivation, i.e., an R-linear
V(20,0) < C"*™ such that Fly : U — V is biholomorphic. Obviously, | map satisfying the product rule at zp € G. Show that DJ[f] depends only
F~'(w,v) = (u,h(u,v)). We may assume that U =U’ x U" c C" x C™ . on fly, U an arbitrary small neighborhood of z.

and V = U’ x W, with some open neighborhood W = W (0) ¢ C™. Defining
g U — U"” by g(z) :=h(z,0), it follows that
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6. Let G C C" be a domain, f = (f1,...,fm) : G — C™ a holomorphic
mapping, and M ={(z,w) € Gx C™ : w =f(z)}. Prove the following:

Ifg : G xC™ — C is a holomorphic function with g{p; = 0, then for
every point (zg, wo) € M there is a neighborhood U and an m-tuple
(a1, ...,8 of holomorphic functions in U such that

g(z,w) =Y _a,(z,w) (w, — fu(2)) for (z,w) €U

8. Analytic Sets

Analytic Subsets. Let B ¢ C™ be an arbitrary region. f U C B is

an open subset, and Y17 ..., f, are holomorphic functions on U, then their
common zero set 18 denoted by
N(fla- --afq) ={Z el : fl(z) = ... =fq(z) =0}-

Definition. A subset A C B is called analytic if for every point zp € B
there exists an open neighborhood U = U(zg) C B and holomorphic
functions J1: ..y foonU suchthat UNA =N(f1,...,f,)

If zo is a point of B — A, then we can choose an open neighborhood U = U(zp)
and holomorphic functions fio, . ,fq on U such that

zo €U :=U—-N(f1,...,fqg) CUC B.

Since the zero set N(fi1,...,fq) is closed in U, it follows that B — A is open
and A closed in B. Therefore, an analytic set in B could have been defined as
a closed subset A C B such that for any zg € A there exists a neighborhood
U and functions /1 oy Jo€OW) with AnU =N(f1,...,fq)-

Example

In general, analytic sets cannot be given by global equations. We consider
the domain G :=G1 U Gy with

5 1
G, = {z2=(21,22)€C* :|zn] < 5 and |29) < 1},

1
Gy = {z=(21,22) € c? . z1] < 1and 2 < |22f < 1}.

For the analytic set we take A ={(z1, z0) € Ga 121 =22} (see Figure 1.5).

The sets GG, G2 give an open covering of G with ANG; =0 and ANGe =
{(z1,22) =21 —22 =0}. S0 A is an analytic subset of G.
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Figure 1.5. A not globally defined analytic set

Iff is a holomorphic function in G that vanishes on A, then f can be analyt-
ically continued to the unit polydisk P2, since (P2, G) is a Euclidean Hartogs

figure (up to the order of the coordinates). Let f be the continuation. Since

o

g(z) = f(z,z) vanishes for ; < |z| < 1,it also vanishes for 0 < [z] < 1.
This means that f vanishes on A = {(z, z0) € G : 21 = 22}. Any zero set
of finitely many holomorphic functions in G that vanish on A must contain
A. So A itself cannot be given by global holomorphic functions. In the next
chapter we define special domains in C" each of which possesses a holomor-
phic function that cannot be analytically extended to a larger domain. Those
domains are called domains o holomorphy. On such domains the global rep-
resentation of analytic sets 1s possible. The proof of this fact 1s not contained
in this book, because it requires sheaf theory. One has to show that the
sheaf of germs of holomorphic functions that vanish on A is “coherent” (cf.
|GrRe84], Section 4.2). Then every stalk of this sheaf is generated by global
sections (Cartan’stheorem A, cf. Chapter V 1n this book, and [GrRe?Q], Sec-
tion I'V.5). From that it can be proved that A is the zero set of finitely many

global holomorphic functions.

Definition. A subset M of a domain G is called nowhere dense in G
if the closure of M in G has no interior points.

Since an analytic set A C G 18 always closed 1in G, 1t 18 nowhere dense 1f 1n
every neighborhood of every point z € G there are points outside of A.

8.1 Proposition. Assume that A is an analytic set in a domain G C C".
If A has an interior point, then A = G. If A is nowhere dense in G, then

G — A is connected.

PROOF:. To start with we assume that G = B is a ball and that there are
holomorphic functions f1,...,f; on B with A =N(f1,...,f,)-
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s B s an ;nterior point of A, we consider an arbitrary complex line L
1 _ _ _ .

thrzoouzh 2. BY the identity theorem the functions f; all vanish on LN B and

t herefore 1M B.

If A 1s nowhere dense in B and L an arbitrary complex line, then either

LN B C A or A has only isolated points on LN B. 50 any two points of L NB
outside of A can be connected in LN (B — A).

Now let (G be an arbitrary domain. If zo E G is an interior point of A, and

wg € G an arbitrary point, then we can join these points by a continuous
path o : [0,1] — G. The compact image of this path can be covered by finitely

many balls B C G such that BN A is the zero set of holomorphic functions
on B. Successively it follows that every ball is contained in A. So A =G.

If A is nowhere dense in G, then we consider zg, wo € G — A and use the

same continuous path. It 1s clear from above that any point z in the first ball
B that is not an element of A can be joined in B — A to zg. Applying this
successively we obtain a curve between zg and wg in B — A. -

If n = 1,then a nowhere dense analytic set consists only of 1solated points.

Bounded Holomorphic Functions. Assume that G ¢ C" is a do-
main and A C G a proper analytic subset.

8.2 Riemann extension theorem. [If f is a holomorphic function n

G — A that is bounded in a neighborhood o every point of A, then [ can be
holomorphically extended to G.

PRrOOF: Since A # G, A is nowhere dense in G. Let 2o € A be an arbitrary

point. Then there 1s a complex line L through zo that in a neighborhood of
zo 1tersects A only 1n zg.

After a linear change of coordinates we may assume that zo = O and that
L. =Ce; is the z1-axis. We can find a polydisk

P ={Z =(ZI,ZF) ceCxC 1 : lzll < rl,lz’| <?‘} ccG

such that AN {z : |z1] =ry, |2'| < 7} is empty. For any ¢’ € C" ' with
ic'| <r,the set D ={z :|z| <r; and 2’ = ¢’}is a 1-dimensional disc such
that D N A contains only isolated points, since otherwise D C A (see Figure
1.6). By the classical Riemann extension theorem in one variable f can be

extended to a function f(zl,z’ ) that is holomorphic in z;. By the classical
Cauchy integral formula we have

flz1,2) = 5}5 ~/|Cl='r1 J;(C_ 21) g, for 1| <ryand [z} <r

The mtegrand on the right side 1s holomorphic on P. Consequently, the left
side is differentiable (in the real sense), and since integration and differenti-

ation by z; can be exchanged, f is holomorphic on P. If we carry this out
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71 |21 |
Figure 1.6. Riemamn extension theorem

at every point zg € A, by the 1dentity theorem we obtain the desired global
extension of f to G.
n

Regular Points.Let G ¢ C™ be a domain, andz € Gapoint. If fy, ..., f,
are holomorphic functions in a neighborhood of z, then we define

rkz(f1,.. ., fq) = rk J(fl:'“!fq)(z)'

Definition. An analytic set A C G is called regular of codimension
q at z € A 1 there i1s a neighborhood U = U(z) C G and holomorphic
functions f1,...,f; on U such that:

1L.ANU =N(f1,...,f,)-

2. rkz(.fla' --:fQ) ={.

The number n — ¢ 1s called the dimension of A at z.

The set A 1is called singular at z if it is not regular at that point. The

set of regular points of A is denoted by Reg(A) or A, the set of singular
points by Sing(A).

It is clear that A is open in A, and therefore Sing(A) C A closed.

8.3 Theorem (local parametrization of regular points). LetA C G
be analytic, zo € A a point. A is regular of codimension q at zo if and only

if there are open neighborhoods U =U(zy) C G and W =W (0) C C" and a
biholomorphic map ¥ :U — W such that F(zy) =0 and

FUNA) = {w=(wi,...,wn) €W : wy_gss = = w, =0}

PROOF: Let A be regular at zg. There 1s an open neighborhood U = U (zg)

such that ANU = N(f1,...,fq) and rky (f1,...,fq) = ¢q. By renumbering
the coordinates we can achieve that
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Jitrrt(Zo) =(J"[J7),

with J' € M, ,,_q(C), J” € M,(C), and det J” # 0. Then define F :U — C"
by

F(Zl,- ' :zn) = (zl*z'.([mﬂ <. :zﬂ—qhz‘floiq?fl(zl}' . - ,zn)a . .':fq(zla- J ,zn))

Consequently, the Jacobian has the form
E, _ 0
JF(ZO) ~— ( JI ! JH ) ,

and therefore det Jg # 0. Shrinking U if necessary, we have our biholomorphic
map F :U — W, with F(zp) =0 and

w=F(z) forsomezec UNA <= wp_44+1 =...=w, =0.

The other direction of the proof is trivial. -

Up to this point 1t 1s not clear whether or not there exist regular points. In
Chapter III we will show that the set of singular points of an analytic set
A 1s a nowhere dense analytic subset of A. At the moment we want only to
demonstrate that the zero set of a single holomorphic function contains at

least one regular point (and then, of course, a nonempty open set of regular
poInts).

8.4Proposition. Let G CC"™ be a domain, and f a nonconstant holomor-
phic function on G. Then the analytic set N(f ) contains a regular point.

PROOF: The case n = 11s trivial. Therefore, we assume n > 1.

If every point of A :=N(f) is singular, then Vf(z) = 0 on A. Since f is not
constant, it is impossible that there is a point z such that DY f(z) = 0 for

every multi-index v. Therefore, we can find a point zg € A, an integer ng, a
multi-index vp, and some A € {1,...,n} such that

L. |vo| =no and (D* ), (20) # 0,
2. DY f(z) =0 for every z € A and every v with |v| < ng.

The set M == {z ¢ G : D* f(z) = 0} is analytic in G and regular of
codimension 1 at zg. We may assume that zg =0 and M = {z =(21,2') €
G : z; =0}, making G sufficiently small.

We have A C M, and we want to show equality near zq. It is clear that the
function ¢ — f(¢,0") has exactly one zero at ¢ = 0, and it follows easily

from Rouché’s theorem that for 2’ sufficiently close to O’ the functions ¢ —
f(¢,z") also have exactly one zero. This means that there is a neighborhood

V =V (0) CU suchthat VNA =V NM. In particular, zp is a regular point
u

of A.

= TR R T o pm e iy Sy n . L, ]
I T s o T, TT P e E e D T S ST, .
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Definition. A k-dimensional complex submanifold of a domain G C
C” 1s an analytic set A C G such that A is regular of codimension n — &
at every point.

If A C Gis a k-dimensional complex submanifold, then for every point z € A
there is an open neighborhood U = U(z) C G, an open set W C C*, and a
holomorphic map ¢ : W — U such that:

1.tk J,.(w) =k forw € W.
2. p(W) =UNA.
3. ¢ : W—= UNA is a topological map.?

7

The proof follows immediately from the local parametrization theorem. The
map ¢ 18 called a local parametrization.

Injective Holomorphic Mappings. Let G C C” be a domain, and
f =(fi,...,fn) : G— C™ a holomorphic map.
8.6 Theorem. Tffis injective, then det Jp(z) # 0 everywhere.

PROOF: We use induction on z2z. The case n = 118 well known. We consider
the case n > 1 and define 4 :=det Js.

Assume that N(h) # @. Then there exists an open subset U C G such that

M =Un N(h} 1s a nonempty (n — 1)-dimensional complex submanifold of
U.

We claim that Jgjpr = 0. To prove this, we assume that there is a point
zo € M with Je(zg) # 0. Without loss of generality, we may assume that

A fn
‘a—i;(zo) # 0.

Let F : G — C" be defined by ¥ (2/, z,) :=(2', fn(2, 2,)). Then det Jr(zg) #

0, and there are connected open neighborhoods, U of z5 and V. of = F(Zn)
such that KU — V18 (}ho OII]OI’[I)%IC. There 1s a hol%morp 1C r;lyélp f: V=

C"™~! guch that

fo F—l(wf’ W) = (E(w’, Wn), wn)’
and we define

g =(g1,...,g0-1): W i= {we C* : (W) € Vj—C"
by g(w') :==£(w',w{).

* A map ¢ : X — Y between topological spaces is called fopological or a homeo-

morphism if it is continuous and bijective and the inverse mapping ¢~ ! : Y — X
1s also continuous.
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Since g 18 injective, we can apply the induction hypothesis and conclude that
det Jg(wj) # 0. Now

Je(zo) - Jp-1(Wo) = ( g (wo) ) = ( Jggiv{}) i ) .

€n

Therefore, h(zo) = det Jr(zo)-det Jg(Wg) # 0 as well. This is a contradiction.

We have demonstrated that Jg(z) = 0 for every z € M. Since f is holomor-
phic, also Df(z) = O on M, and using a local parametrization of M we obtain

that |4, 18 locally constant. But this is impossible, since f is injective. The
set N(h) must be empty. -

8.6 Corollary. X G C C" is a domain, and £ : G — (1" an injective

holomorphic mapping, then also £(G) is a domain, and £ : G — f(G) is
biholotnorphic.

PROOF: Let wg :=f(20) be a point of G :=f(G). Then det Je(zo) # 0,
and there are open neighborhoods U = U(zg) € G and V = V(wp) C @E1™
such that f :U — V 1s biholomorphic. It follows that wg 1s an interior point
of G’ and that £~ is holomorphic at wo. .

Exercises

1. Prove the following properties:
(a) Finite intersections and unions of analytic sets are analytic.
(b) Iff :G7 — G2 18 a holomorphic map between domains and A C G5
an analytic set, then f=1(A) C G is analytic as well.
(¢) If A; C Gy and A C Go are analytic sets, then A; x A, is an analytic
subset of G1 x Ga.
2. Let U C @1 be an open neighborhood of the origin and A C U be
an analytic subset containing the origin. For 1 < £kt < n—-—1land I =

{i1,.. ik} C (1,...,n}let pr :E1" — C* be defined by
pI(zlﬁ' --azﬂ) - = (z‘il&- .o ,z*i;,;)-

Prove: If A is regular of codimension »n — k& at the origin, then there exists
an I and open neighborhoods V =V (0) cU, W = W(0) C C* such
that p; :ANV — W is bijective.

3. Show that A = {(w,z1,2) € C® : w? = z;2,} is an analytic set that is
regular of codimension 1 outside the origin and singular at O.

4. Let Ay, A2 be two analytic sets in a neighborhood of the origin in 61"

such that O € A := A; N Az. Suppose that U N A; # U N A2 for every
neighborhood U of 0. Show that A 1s singular at O.

Chapter 11

Domains of Holomorphy

1. The Continuity Theorem

General Hartogs Figures. The subject of this chapter is the contin-
uation of holomorphic functions. We consider domains in C*, for n > 2. A
typical example is the Euclidean Hartogs figure (P", H), where P™ = P™(0, 1)
1s the unit polydisk, and

H={ze€ P” :|z1| >q or|z,| <q, forv=2,... n}

Here qy,. .., g, are real numbers with 0 < ¢, < 1forv = 1,...,n. Every
holomorphic function f on H has a holomorphic extension f on P".

moiphie Dippit L8 = dfor)- anite 7B (R) CFnbR 5 BFSGuhelon

general Hartogs figure.

We use the symbolic picture that appears as Figure 11.1

]

Figure II.1. General Hartogs figure

1.1 Continuity theorem. Let G C 1" be domain, (}'3} ﬁ) a general Har-

togs figure with HcG, fa holomorphic function on G. If GNP is connected,
then f can be continued uniquely to GU P,
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Proor: Let g :P™ — C™ be an injective holomorphic mapping such that
P := g(P") and H := g(H). The function 2 := f o g is holomorphic in
H. Therefore, there exists.exactly one holomorphic function h on P" with
hlw = h. Since g : P" — P is biholomorphic, the function fy = hog™ 1! is
defined on ﬁ, and it is a holomorphic extension of f|z. We define

=~ . { flz) forzeg,
/(z) -_{ fo(z) for z € 2,

Since GN P is connected and f = f; on H , 1t follows from the identity
theorem that f is a well-defined holomorphic function on G U P. This is the
desired extension of f . n

Example

Let n > 2 and P’ CC P be polydiscs around the origin in C™. Then every
holomorphic function f on P — P’ can be extended uniquely to a holomorphic
function on P.

For a proof we may assume that P = P™ is the unit polydisk, and P’ =
P™(0, 1), with r — (ri,...,7p) and 0 <r, < 1forv = 1,...,n. It is clear
that G :=P — P’ is a domain.

Given a point zg = (237, ...,2{) € G with [2{’| > r,, we choose real num-

bers ¢1,...,q9, as follows: For v = 1,...,n — 1,let g, be arbitrary numbers,
with r, < g, < 1. To obtain a suitable q,,, we define an automorphism 7" of
the unit disk D by
C — 20
T(C) := -

CZOC -1

This automorphism maps 2 onto 0 and a small disk D C {{ € C : r, <
|| <1} around z{” onto a disk K ¢ D with 0 € K. Notice that 0 need not
be the center of K. We choose ¢, > 0 such that D,_(0) C K.

If we define H := {z € P" : |z1] > q1 0or|2,| < gq, forv =2,...,n}, then
(P', H) is a Euclidean Hartogs figure. The mapping g : P* — P™ defined by

g(z1,...,20) = (21, .., 201, T~ (2n))

is biholomorphic, and (ﬁ,, H ) = (P",g(H)) is a general Hartogs figure, with

H C{z € P" :|z1| >rior |z, >7mn} CG.

Since PN G = G is connected, the continuity theorem may be applied. The
preceding example is a special case of the so-called Kugelsatz which we shall
prove 1n Chapter VI.
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£

Figure 11.2. A Hartogs figure for concentric polydiscs

Removable Singularities. Let G ¢ C™ be a domain. f A ¢ G is an
analytic set and f a holomorphic function on G — A that is locally bounded
along A, then by Riemann's extension theorem f has a holomorphic extension
to G. If n > 2 and A is a complex linear subspace of codimension greater
than or equal to 2, then every function holomorphic on G — A has such an
extension.

1.2 Theorem. Let P" =P"(0, 1) be the unit polydisk in C", n > 2, k > 2,
and
E:=1@7 =(21,...y2n) €C" : zjp_py1 == 2z, = 0}.

Then every holomorphic function f on P" — E can be holomorphically ex-
tended to P™.

PRooF: Set P! :={z' = (z1,...,2n—k) : |2'| <1}, and for 0 < r < 1
define P! :={z" = (zp_p41,..-,20) : |2"| <7r}.

Let P” :=P{ and fix an ¢ with 0 <e < 1. Then P"NE C P’ x P!, and for
w € P’ the function f(z") := f(w,z") is holomorphic on P” — P”. From
the example above we know that f has a holomorphic extension Far to P,
Now define f :P™ — C by f(w,z") = fu(2”). On P" — E, f is equal to f
and 1s therefore holomorphic.

For w € P’ take a small open neighborhood U =U(w) cC P'.Then K :
U x dP! is compact. By the maximum principle we conclude that

‘f(zfazn)‘ = | fo (") | < || farrlopr < || fllx < o0, for (z/,2") e Ux P! —E.

From Riemann's extension theorem it followsthat fis holomorphic on P". m
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1.3 Corollary. Forn > 2, every isolated singularity of a holomorphic func-
tion of z1,...,2n tS Temovable.

Riemann’s extension theorem is false if we drop the condition “f bounded
along the analytic set.” For example, let G C C" be a domain, g: G = C a
holomorphic function, and let f : G—N(g) — C be defined by f(z) :=1/g(z).
Then f is holomorphic on G — N(g) but cannot be extended to any point of

N(g).
Things look quite different if there is a little hole in the hypersurface:

1.4 Proposition. Letn > 2, Go C C*" ! a domain, g : Go — C a contin-
wous function, and I' := {z = (2, 2,) € Go x C : 2, = g(2')} the graph of
g in G := Gy x C. In addition, let zg be a point of L and U =U(zg) C G a
small neighborhood.

If f is a holomorphic function on (G-T")UU, then f has a unique holomorphic
extension to G.

PrOOF: The uniqueness of the extension follows from the identity theorem.
For the proof of existence (which is only a local problem) we may assume
that Go = {z/ € C*™! : |Z/| < 1} and that there is a ¢ with 0 < ¢ <1 such
that |g(z')| < ¢ for z’ € Gg. It also may be assumed that U is connected.
Then it is clear that G’ := (G — ) uU C P™ = P"(0, 1) is connected.

Since g : z’' — (2, g(2')) is continuous, U’ := g~ (U) is an open neighborhood
of z}, with (U’ x D)NT C U and therefore U’ x D C G". Forv =1,...,n—1
let T, be the automorphism of D defined by

( — =
ZO¢ -1

TV(C) ‘=

Then h : P* — P" with h(z1,...,2,) := (T1(22),. .., Th—1(2n), 21) is holo-
morphic, h(0) = (z},0), and h({z € P : |z1| > ¢}) C{w € P" : lw,| > q}.

2]
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Figure I1.3. Extending a holomorphic function across a hypersurface
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We define ¢; := ¢q, and for v = 2,...,n choose ¢, such that
h(D x D, (0) x --- x Dg,(0)) C U’ x D.

Then (P™,H) with H := {z € P" : |z1] > quor|z,| < g forv =2 ... ,n}
is a Fuclidean Hartogs figure, and (ﬁ, H ) = (P™,h(H)) is a general Hartogs
figure, with H C G’ (see Figure IL3). Since PN G = G' is connected, the
proposition follows from the continuity theorem. n

The Continuity Principle. Sometimes we wish to use a family of
analytic disks instead of a Hartogs figure.

Definition. A family of analytic disks is given by a continuous map
@ : D x [0,1] — C™ such that @¢({) := ((,t) is holomorphic in D,
for every t € [0,1]. The set S; := (D) is called an analytic disk, and
bS; := ¢:(OD) its boundary.

Observe that in general bS; is not the topological boundary of S;.

Definition. A domain G C C" is said to satisfy the continuity prin-
ciple if for any family {S;, ¢t € [0,1]} of analytic disks in C™ with
Uo<i<1 88t C G and Sy C G, it follows that Joe,<; St C G.

Example

Let P™ be the unit polydisk and {S;, t € [0,1]} a family of analytic disks

in C" with Uogtg bS; ¢ P and Sy C P™. Because Sy and the union of all
boundaries bS; are compact sets, there is an € > 0 such that

U bS; C P*(0,1 —¢) and Sy C P™(0,1—¢).

0<t<1
We assume that | Jj<,<; St is not contained in P, and define
to :=inf{t € (0,1} : Sy ¢ P"}.

It is clear that t4 > 0, Sy, ¢ P™, and S; C P" for 0 < t < tg. Then S;,
contains a point zg = (zim, e z,f,f}) c OP™. If the family of analytic disks is
given by the map ¢ : D x [0,1] — C”, and w,, denotes the uth coordinate
function, then f, +(¢) := w, o ©((,t) is continuous on D and holomorphic in
D. Choosing u such that |2{| = 1, there is a (o € D with £, ¢, (o) = z’ and

| f1.t0(Co)| = 1. But by the maximum principle we have

|fu,t(C0)| < S$1[§3|fu,t| <1l-—¢g, fort <ty

Since t — f, +(Cp) is continuous, a contradiction is reached, and therefore P™
satisfies the continuity principle.
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Hartogs Convexity.

Definition. A domain G C C"is called Hartogs convez if the following
holds: It (P, H ) is a general Hartogs figure with H C G, then P C G.

An immediate consequence of the definition is the following:

The biholomorphic image of a Hartogs convexr domain is again Hartogs

CONVEL.

1.5 Theorem. Let G C C™ be a domain that satisfies the continuity prin-
ciple. Then G is Hartogs conver.

PROOF: Let (ﬁ, E) be a general Hartogs figure with H C G. We assume
that it is the biholomorphic image (g(P™), g(H)) of a Euclidean Hartogs figure
(P™,H) with

H={z: |z1] >q or |z,| <qu for u =2,...,n}.

In order to define analytic disks we choose some r with ¢1 < 7 < 1 and
introduce the affine analytic disks

Dy :={z=(21,2") € P* =P x P" : |z1] <r and z' = w}.

Since D C P™ for every w € P”, we can define ¢w : D x [0,1] — C” by
setting ¢w((,t) := g(r(,tw). Then a family {S¢(w) : 0 <t <1} of analytic

disks in P 1s given by

Se(w) = pw(D X {t}) = g(Dtw)-

It follows that bS:(w) C G for every w € P" and every ¢ € [0,1], and in

addition, So(w) = g(Dg) C G. The situation is illustrated in Figure I1.4.

1

St (W) bS5 (W)

>

|21

Figure I1.4. Analytic disks in a Hartogs figure
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Since G satisfies the continuity principle, we obtain that g(Dy,) = S1(w) is
contained in G. This is valid for every w € P". Therefore, P C G, and G 1is
Hartogs convex. m

1.6 Corollary. The unit polydisk P™ is Hartogs convex.

Domains of Holomorphy

Definition. Let G ¢ C™ be a domain, f holomorphic in G, and zg €
OG a point. The function f is called completely singular at zo 1if for
every connected neighborhood U = U(zg) C C” and every connected
component C of UNG there is no holomorphic function g on U for which

9|C = flc-

Example

Let G:=C—-{z € R : z <0} and let f be a branch of the logarithm on
(G. Then f is completely singular at z = 0 but not at any point z € R with
z < 0.

Definition. A domain G C C" is called a weak domain of holomorphy
if for every point z € 9G there is a function f € O(G) that is completely
singular at z.

The domain G is called a domain of holomorphy if there is a function
f € O(G) that is completely singular at every point z € 0G.

Examples

1. Since C™ has no boundary point, it trivially satisfies the requirements of
a domain of holomorphy.

2. It is easy to see that every domain G C C is a weak domain of holomor-
phy: If zg is a point in G, then f(z) := 1/(z — 2) is holomorphic in G
and completely singular at zg.

O

For G = D we can show even more! The function f(z) := Y. o 2" is
holomorphic in the unit disk and becomes completely singular at any
boundary point. Therefore, D is a domain of holomorphy. At the end of
this chapter we will see that every domain in C is a domain of holomorphy.
3. If f: D — C is a holomorphic function that becomes completely singular
at every boundary point, then the same is true for f: P =Dx-.-xD —
C, defined by f(21,...,2n) := f(21)+-+ -+ f(2n). In fact, if z¢ is a bound-
ary point of P", then there exists an ¢ such that the ith component 2. is
a boundary point of D. If fcould be extended holomorphically across zg,
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then f;(¢) = f(z{o), .. ,C, ..., 282) would also have a holomorphic ex-
tension. But then f could not be completely singular at z!”. Therefore,
the unmit polydisk 18 a domain of holomorphy.

4. If (P", H) is a Euclidean Hartogs figure, then H is not a domain of holo-
morphy.

1.7 Proposition. Let G C C" ke a domain. If for every point zg € 0G
there is an open neighborhood U =U(zy) C C™ and a holomorphic function
f :GUU — C with f(zg) =0 and f(z) # 0 for z € G, then G is a weak
domain of holomorphy.

PrROOF: We show that 1/f is completely singular at zp. For this assume that
there is a connected open neighborhood V =V (zg), a connected component

C Cc VNG, and a holomorphic function F on V with Flg = (1/f) [C
The set V! := V — N(f) is still connected and contains C. By the idéntity

theorem the functions F' and 1/f must coincide in V'. Then F' is clearly not
holomorphic at zg. This is a contradiction. _

1.8 Corollary. Every convex domain in C" is a weak domain of holomor-
phy.

PrROOF: If zg € 0G, then because of the convexity there is a real linear
form A on C™ with A(z) < A(zp) for z € G. We can write A in the form

Az) = Zayzy +Z&ﬁu, with o 1= (0, . . Q) £ 0.
r=1 u=1

So A =Reh(z), where h(z) :=2.> . _, a, 2, is holomorphic on C".

Since the function f(z) :=h(z) —h(zp) is holomorphic on C", f(zg) =0, and
f(z) #£ 0 on G, the proposition may be applied. _

We will show that every weak domain of holomorphy is Hartogs convex. As
a tool we need the following simple geometric lemma, which will be useful in
other situations as well.

1.9 Lemma (on boundary components). Let G ¢ C" be a domain,
U cC" an open set withUNG# @ and (C" —U)NG# 2.

Then GNOC NOU # @ for any connected component C of UN G.

PROOF: We choose points z; € C cU NG and z2 € (C" — U )N G. There
is a continuous path v :[0,1] — G with v(0) = z; and (1) = z2. Let
to :=sup{t € [0,1] : v(¢t) € C} and 2o :=(fo). Clearly, zo € 0C N G,
but zg € C. Since C is a connected component of U N G, 2o cannot lie in

U N G and therefore even not in U. Since v(t) € U for t < tg, it follows that
Zo © oU . n

1. The Continuity Theorem S1

1.10 Theorem. Let G C C" be a weak domain of holomorphy. Then G is
Hartogs convex.

PrROOF: Assume that G is not Hartogs convex. Then there is a general
Hartogs figure (P, H ) with H C Gbut PN G # P. We choose an arbitrary
zo in H and set C :=Cpnc(z0).' Since H lies in P N G and is connected, it
follows that H C C. Furthermore, C' & P.

Since PNG # @ and (C* — G) NP # &, by the lemma there is a point
z1 € 0C N oG N P (see Figure 11.5).

Figure 11.5. G is not Hartogs convex

Let f be an arbitrary holomorphic function in G. Then f|¢ is also holomor-
phic, and by the continuity theorem it has a holomorphic extension F on P.
Since P is an open connected neighborhood of z;, we obtain that f is not

completely singular at z;. This completes the proot by contradiction. n

It follows, for example, that every convex domain is Hartogs convex. As a
consequence, we see that every ball 1s Hartogs convex.

1.11 Theorem. Every domain o holomorphy is Hartogs convex.

The proof 1s trivial.

For the converse of this theorem one has to construct on any Hartogs convex
domain a global holomorphic function that becomes completely singular at
every boundary point, something that is rather difficult. It was done in 1910
by E.E. Levi in very special cases. The general case is called Levi’s problem.

In 1942 K. Oka gave a proof for n = 2. At the beginning of the 1950s Oka,
Bremermann, and Norguet solved Levi’s problem for arbitrary n. It was gen-

1 We denote by Cjs(z) the connected component of M containing z.
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eralized for complex mamfolds (H. Grauert, 1958) and complex spaces (R.
Narasimhan, 1962). Finally, in 1965 L. Hormander published a proof that
used Hilbert space methods and partial differential equations.

Exercises

1. Prove the following statements:

(a) Finite intersections of Hartogs convex domains are Hartogs convex.
(b) If G; € Go C G3 C --- 1s an ascending chain of Hartogs convex
domains, then the union of all G; i1s also Hartogs convex.

2. Let GC C*"beadomain,0<r <R,anda€ Gapoint. Let U =U(a) C
G be an open neighborhood and define @ :=w € C™ :r <|w| < R).
Prove that every holomorphic function on (Gx @) U(U x P” (0, R ) Jhas
a unique holomorphic extension to G x P™(0, R ).

3. Let 0 <r < R be given. Use Hartogs figures to prove that every holo-
morphic function on Bz(0) — B,(0) has a unique holomorphic extension
to the whole ball Bg(0).

4. For £ > 0, consider the domain

G, :={(z,w) € P20, 1) : [z] < [w]® +¢}.

Prove that G, is Hartogs convex if and only if € =0.

5.Let G € C" be a domain and f : G — Dgr(0) ¢ C a function, I' =
{(z,w) € G x Dgr(0) : w = f(z)} its graph. Sow that if there is a
holomorphic function F in G x Dg(0) that is completely singular at every
point of I', then f is continuous. (With more effort one can show that f
1S holomorphic.)

6. Show that the “Hartogstriangle” {(z,w) € C? :|w| < |z| <1} is a weak
domain of holomorphy.

2. Plurisubharrnonic Functions

Subharmonic Functions. Recall some facts from complex analysis of
one variable. A twice differentiable real-valued function 2 on a domain G C C
is called harmonic if h,z(z) = 0 on G. The real part of a holomorphic function
1s always harmonic, and on an open disk every harmonic function 1s the real
part of some holomorphic function.

If D =D,(a) C Cis an open disk and 3 : R — R a continuous periodic
function with period 27, then there is a continuous function 4 : D — R that
is harmonic on D such that hA(re'’) = 3(t) for every ¢ (Dirichlet’s principle).

An upper semicontinuous function ¢ : G — RU {—o0} is said to satisfy the
weak mean value property 1 the following holds:

For every a € G there is an r > 0 with D,(a) cC G and
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27
pla) < %/ w(a +Q€it)dt for 0 <o <r.
0

Remarks

1.If ¢ :G— RU {—m} is an upper semicontinuous function, then the sets
U, :={z € G : p(z) < v} are open, and therefore ¢ is bounded from
above on every compact subset K C G. It follows that the integral in the
definition always exists.

2. Harmonic functions satisfy the weak mean value property (even the
stronger mean value property with “=" 1nstead of “<”).

3. If £ : G — C is a nowhere identically vanishing holomorphic function,
then log| f| satisfies the weak mean value property. In fact, the function
¢ = log|f| is harmonic on G — N(f),because it can be written locally
as Re(log f), with a suitable branch of the logarithm. And at any point
zog € N(f) we have p(z5) = —o0, so the inequality of the weak mean
value property 1s satisfied.

2.1 Proposition. Let ¢ : G — R satisfy the weak mean value property. If
@ has a global maximum in G, then ¢ is constant.

PROOF: Let a € G be any point with ¢ := ¢(a) > ¢(z) for z € G. We
choose an » > 0 such that

1

D,(a) CC G and ¢(a) < o

2w
/ ola toe'Ydtfor0<o<r
0

Assume that there is a b € D,.(a) with ¢(b) < p(a). We write b = a + pe'?
and get

1 27 | 1 27
< it — —
@< [ platecydi< s [ elaydt=pte)

This is a contradiction, so ¢ must be constant on D,(a). Now we define the
set M :={z € G : p(z) =c/. Obviously, M is closed in G and not empty,
and we just showed that M is open. So M =G, and ¢ is constant. .

Definition. Let G ¢ C be a domain. A function s : G — RU {—oc}
1s called subharmonic 1t the following hold:

1. 5 is upper semicontinuous on G.
2. If D cc Gisadisk, 2 : D — R continuous, h|p harmonic, and 2 > s
on 0D, then 7> s on D.

2.2 Proposition. Lers, : G — RU {—occ} be a monotonically decreasing
sequence of subharmonic functions. Then s =lim,_,., S, is subharmonic.
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PROOF: The limit s =lim, 0 5, = inf{s,} is upper semicontinuous. Let
D ccGbe adsk, 4 :D — R continuous and harmonic on D, with s < A
on 0D. For fixed € we consider the compact sets

K, :={z € D :s,(2) > h(z) +¢€}.

Then K,,; C K, and (.-, K, = @. Therefore, there is a vp € N with

K, = @ for v > 1. This means that for v > vy, s, < h+¢€ on 9D, and

therefore the same is true on D. Since the s, are decreasing, s <h2+econ D.
This holds for every € > 0, and consequently s < -2 on D. o

2.3 Proposition. Let (Sa)aca be a family of subharmonic functions on

G. If s := sup s, ist upper semicontinuous and finite everywhere, then s is
subharmonic.

PrOOF: If s < hon 8D, where D cC G and /& : D — R is continuous

and harmonic on D, then s, < kA on 9D for every a € A. Since the s, are

subharmonic, it follows that s, < 2 on D for every a € A. But then s < A
on D as well. m

Examples

1. Clearly, every harmonic function 1s subharmonic.

2. Let s : G — R be a continuous subharmonic function such that —s is also
subharmonic. Then s 1s harmonic. To show this, we look at an arbitrary
point ¢ € G and choose an r > O such that D :=D,(a) CC G. Then there
is a continuous function # : D — R with hlsp = s|sp that is harmonic
on D (Dirichlet’s principle). It follows that s < 4 on D. But because —hA
1s also harmonic, we have —s < —h on D as well. Together this gives
s =honD.

3. Let f : G — C be a holomorphic function. Then s := log|f| is subhar-
monic. In fact, if f(z) = 0 on G, then we have s(z) = —oo, and there is
nothing to prove. Otherwise, s is harmonic on G — N(f), and we have
only to look at an isolated zero a off. We choose D =D..(a) CC G and
a function A4 that is continuous on D and harmonic on D, with s < A
on 0D. We know that s, and therefore also s — 4, has the weak mean
value property on D, and it is certainly not constant. So it must take its
maximum on the boundary 0. This means that s < A on D.

4. Let G ¢ C be an arbitrary domain. The boundary distance 6¢ : G —
R, U {+oc} is defined by

0c(z) ==sup{r € R : D.(2) C G].
Claim: s := —10ogdqg 1S subharmonic on G.

PrOOF: If G = C, then s{z) = —oo and there is nothing to prove.
If G # C, then s is real-valued and continuous. For w € 0G we define

ot EFe " a
N e e ] bt e o 2 e e L s e, o R i el S S L e s o2
Cghl s et RS Lol e ' :

[ .;,..4,_- [T —

i LT T

2. Plurisubharmonic Functions 55
s :G — R by setting s,,(2) := —log|z —w|. Then s(z) = sup{s.(2) -
w € 8G}. By Proposition 2.3 the claim follows. -

The Maximum Principle

24 Theorem. Lets : G — RU{—o0} be a subharmonic function on a
domain G C C. If s takes its maximum on G, then it must be constant.

PROOF: Assume that ¢ := s(a) > s(z) for every z € G. As in the case of
functions that have the weak mean value property 1t suffices to show that s
18 constant 1n a neighborhood of a. If this 1s not the case, there 1s a small disk
D =D,(e) CC G and b € 0D with s(a) > s(b). Since s is upper semicontin-
uous, there is a continuous function 2 on 0D with s < A < ¢ and h(b) < c.

Solving Dirichlet’s problem we can construct a harmonic continuation of 4

on ID. Now

h{a) = 51; /0 h(a +re'") dt < c = s(a).

This 1s a contradiction n

For later use we give the following criterion for a function to be subharmonic:

2.5 Theorem. Let G CC be a domain and s : G — RU {—co} an upper
semicontinuous function. Suppose that for every disk D CC G and every

function f € O(D) with s < Re(f) on 0D it follows that s < Re(f) on D.
Then s is subharmonic.

PrROOF: Let D =D,(a) CCG, h :D — R continuous and harmonic on D,
and s < h on 0D. For simplicity we assume a = 0.

For v € N, a harmonic function A, on D, =D, 4 —-1))-(0) 2 D is given by

hy (2) ;=h((1 _ —E)z)

Then (A, ) converges on D uniformly, increasing monotonically to 4. Further-
more, for every v there is a holomorphic function f, on D, with Re(f,) = 4,.

Let £ > 0 be given. Then there is a vy such that |h — h,| <£on D forv > vy,

Therefore, s < h, T =Re(f, +¢) on 8D for v > 1. By definition it follows
that s < A, + £ on D. Since (k,) is increasing, it follows that s < A +¢ and
therefore s < h on D. n

Difterentiable Subharmonic Functions

2.6 Lemma. Lets :G— R be a¥%? function such that s, >0 on G. Then
s is subharmonic.
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ProOF: Let D = D,(a) Cc G and let a continuous function # : D — R be
given such that 4 is harmonic on D and s < 2 on dD. We define ¢ :=s — A.

Assume that ¢ takes 1ts maximum at some interior point zg of D. Then we
look at the Taylor expansion of ¢ at zo 1n a small neighborhood about zp:

(20 +2) = p(z0) +2Re Q(2) 4+ ¢.z(20)2Z + R(z),

where Q(z) = ¢.(20)z + 5¢.:(20)2" is holomorphic and R(z)/[z]* — 0 for

z — 0. The function 9 (2) = 2Re)(z) is harmonic, with ¥(0) = 0. Since
it cannot assume a maximum Or a minimum, 1t must have zeros arbitrarily

close to but not equal to 0. On the other hand, o(zp + 2) —w(20) < 0 and

¢.z(20)2Z > 0 outside z = 0. This is a contradiction. Thus ¢ must assume
its maximum on the boundary of D, and s < A on D. m

2.7 Theorem. Lets :G — R be a €2 function. Then s is subharmonic if
and only if s,z > 0 on G.

PROOF: (a) Let s,z(z) > 0 for every z € G. Then we define s, on G by
setting s, = s T (1/v)zZ. Obviously, (s,).z = S.z + (1/v) > 0. Then s,
1S subharmonic by the above lemma. Since (s,) converges, monotonically
decreasing, to s, 1t follows that s 1s subharmonic.

(b) Let s be subharmonic on G. We assume that s,z(a) <0 for some a € G.
Then there is a connected open neighborhood U = U(a) C G such that

s,z <0 on U. By the lemma it follows that —s 1s subharmonic on U. Then
s must be harmonic on U. So s.z(a) =0, contrary to assumption. m

Plurisubharmonic Functions. We return to the study of domains in

arbitrary dimensions. Let G C C™ be a domain and (a,w) a tangent vector
at a € G. We use the holomorphic mapping aaw : C — C" defined by

aaw(C) = a+ (w.

Definition. Let G C C" be a domain. An upper semicontinuous func-

tion p : G — R U {—o0} is called plurisubharmonic on G if for every
tangent vector (a,.w) in G the function

Paw(C):=po Qa,w(C) = pla+ (w)

is subharmonic on the connected component G(a, w) of the set a;}y (G) C
C containing 0.

Remarks

1. Plurisubharmonicity 1s a local property.

2. Plurisubharmonic Functions Y

2. If f € O(G), then log| f| is plurisubharmonic.

3. If p1, p2 are plurisubharmonic, then so is p; + po.

4, It p 1s plurisubharmonic and ¢ > 0, then ¢ .p is plurisubharmonic.

5. If (p,) 1s a monotonically decreasing sequence of plurisubharmonic func-
tions, then p := lim,,_, ., p, 18 also plurisubharmonic.

6. Let (pa)aca be a family of plurisubharmonic functions. If p := sup(p,)

1S upper semicontinuous and finite, then 1t 1s also plurisubharmonic.
7. I a plurisubharmonic function p takes its maximum at a point of the
domain G, then p is constant on G.

The Levi Form

Definition. Let U ¢ C" be an open set, f € €4(U:R), and a € U.
The quadratic form* Lev(f) : T, — R with

Lev(f)(a,w) := Z fa,z, (2)w, W,
v, p

is called the Levi form of f at a.

Obviously, Lev(f) is linear in f.
Examples

1. In the case n = 1we have Lev(s)(a, W) = s,z(a)ww. So s is subharmonic
if and only if Lev(s)(a,w) > 0 for every a € G and w € C.

2. Let f(z) :=||z||* =>_._, z:Z;- Then Lev(f)(a,w) = |wl|? for every a.

3. If f € ¢%(U;R) and p : R — R is twice continuously differentiable, then

Lev(oo f)(a,w) = ¢"(f(a)) - [(0f)a(w)|* +0'(f(a)) - Lev(f)(a, w).
4. If F :U — V ¢ C™ is a holomorphic map and g € ¥%(V;R), then
Lev(g o F)(a, w) = Lev(g)(F(a), F'(a)(w))
5. For f € €*(U;R) the Taylor expansion at a € U gives
f(z) = f(a) +2Re(Qs(z — a))T Lev(f)(a,z —a) T R(z — a),

where Qs(w) =3 " _ f. (@w, T35, y Jzuz, (@)w,w, is a holomorphic
quadratic polynomial, and ’

R _
lim 2z - @)

204 |z — al?

= (.

‘If H : T x T — C is a Hermitian form on a complex vextor space, then the
associated quadratic form Q : V — R is given by Q(v) :=H (v, v).
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2.8 Theorem. A function f € €*(U;R) is plurisubharmonic i and only if
Lev(f)(a,w) > Ofor every ac U and every w € T,

PrROOF: Let (a,w) be atangent vector in G and Q :=q v. Then foa(0) =
f(a) and
(fo0)z(0) =Lev(f 0a)(0, 1) =Lev(f)(a, w).

Now, f 1s plurisubharmonic if and only if f o« is subharmonic near 0 for any
a = 0 w. Equivalently, (fo ) CE(O) > ( for any such a. But this is true if
and only if Lev(f)(a, w) > 0 for any tangent vector (a,w) in G. u

2.9 Corollary. Let G1 C C" and Go ¢ C™ be domains, F : Gi — G>

a holomorphic map, and ¢ € €?(G1;R) plurisubharmonic. Then g o F is
plurisubharmonic on G .

Proor: This 1s trivial, because of the formula in Example 4 above. u

Exhaustion Functions. For every domain G C C the function — logdg
1S subharmonic. In higher dimensions 1t 1S in general not true that this func-
tion 1S plurisubharmonic for every domain G.

Definition. Let G C C™ be a domain. A nonconstant continuous func-

tion f : G — R is called an exhaustion function for G if for ¢ < supq(f)
all sublevel sets

Gf) i=1z€ G : f(z) <c

are relatively compact in G.

Example

For G = C", the function f(z) :=lz||? is an exhaustion function. For G # C™,
we define the boundary distance d¢ by

da(z) = dist(z,C" - G).

Then —d¢ 1s a bounded, and —logdg an unbounded, exhaustion function.
We only have to show that dg 1S continuous:

For every point z € G there is a point r(z) € C* — G such that
0c(z) =dist(z,r(z)) < dist(z, w) for every w € C" — G.

Then for two arbitrary points u, v € G we have
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a _ x| < llu _v] +36(v),
u — v| +oa(u).

dg(u) = [ju —r(u)
and in the same way d¢(Vv)

IA A

Therefore, [6g(u) —da (V)| < [fu - v|.

Definition. A function f € €%(G;R) is called strictly plurisubhar-
monic if Lev(f)(a,w) >0 fora€ G, w €1, and w # 0.

For a proof of the following result we refer to [Ra86], Chapter II, Proposition
4.14.

2.10 Smoothinglemma. Let G CC"™ be a domain, f : G - R a continu-
ous plurisubharmonic exhaustion function, K C G compact, and € > 0. Then
there exists a €°° exhaustion functiong : G — R such that:

1. g>f onG.
2. g is strictly plurisubharmonic.
3. |g(z) — f(z)] <EORK.

Exercises

1. Let G C C be a domain. Prove the following statements:

(a) If f : G — C is a holomorphic function, then | f|® is subharmonic for
a > 0.

(b) If » 1s subharmonic on G, then «? 1s subharmonic forp € N.

(¢c) Let v # —oo be subharmonic on G. Then {z € G : u(z) = —o0}
does not contain any open subset.

2. Let G C C be a domain, s # —oo a subharmonic function on GG, P :=
{z € G :s(z) =—o0}. Show that if » is a continuous function on G and
subharmonic on G — A, then « 1s subharmonic on G.

3. Let U ¢ C™ be open, f :U — C* a holomorphic map, and A € M. (R) a
positive seniidefinite matrix. Show that ¢(z) =f(z) . A - f(z)? ig pluri-
subharmonic.

4. Let G ={(z,w) € C? : |w| <|z] <1} be the Hartogs triangle. Prove that
there does not exist any bounded plurisubharmonic exhaustion function
on G.

5. Are the following functions plurisubharmonic (respectively strictly pluri-

subharmonic)?
pi(z) = log(1 + ||z||*), for z € C™,
p2(z) — —log(l —|z||%), for ||z]| < 1,
p3(z) = | z|*e” Re(z) for z € C™.

6. Consider a domain G C C™ and a function f € €*(G). Prove that f is
strictly plurisubharmonic if and only if for every open set U CC G there
is an € > 0 such that f(z) — ¢(|z]|? is plurisubharmonic on U.
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3. Pseudoconvexity

Pseudoconvexity

Definition. A domain G C C" is called pseudoconvex if there i1s a
strictly plurisubharmonic 4°° exhaustion function on G.

Remarks

1. By the smoothing lemma the following is clear: I —logdg 1s plurisub-
harmonic, then G 1s pseudoconvex.
2. Pseudoconvexity 18 invariant under biholomorphic transformations.

31 Theorem. If G C C" is a pseudoconvex domain, then G satisfies the
continuity principle.

PrOOF: Letp :G — R be a strictly plurisubharmonic exhaustion function.

Suppose that there exists a family {5; : 0 <t < 1} of analytic disks given
by a continuous mapping ¢ :D x [0,1] — C” such that So C G and bS; C G
for every t € [0, 1], but not all S¢ are contained in G.

The functions p o ¢ : D — G are subharmonic for every t with Sy C G. It
follows by the maximum principle that p|S; < maxyg, p for all those t.

We define tg :=inf{t € {0,1] : S; ¢ G}. Then tx > 0, 5S¢, C G, and S,
meets OG in at least one point zg. We can find an increasing sequence (%,)

converging to g and a sequence of points z, € 5; converging to zg. SO
p(z,) — co :=supg(p), but there is a ¢ < ¢g such that Plss, < c¢ for every

t € 10,1]. This is a contradiction. -

3.2 Corollary. If G is pseudoconvex, then G is Hartogs convex.

The Boundary Distance

3.3 Theorem. I G C C" is a Hartogs convex domain, then —logodg is
plurisubharmonic on G.

Proor: Forz € G and u € C” with ||ju|| = 1 we define
dgu(z) ==sup{t >0 : z+7u e G for |7| < t}.

Then §g(z) = inf{dgu(z) : ||u]] = 1}, and it is sufficient to show that
—10gd¢g u 18 plurisubharmonic for fixed u.

(a) Unfortunately, g w does not need to be continuous, but 1t is lower semi-
continuous:

B i i B o T =y . h x ] ol e n . .
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Let zo € G be an arbitrary point and ¢ < 8¢ u{zp). Then the compact set

K :={z =29 +7u : || < ¢} is contained in G, and there is a 6 > 0 such
that {z :dist(K,z) < é} CG.

For z € Bs(zp) and |7| < ¢ we have
|(z + ru) — (2o T 7u)|| =(z —20|| <S, and therefore g u(z) > c.

(b) The function —logdg , 1S upper semicontinuous, and we have to show
that

5(¢) := —log ¢ u(Zo + (b)

1s subharmonic for fixed u,zg, b. First consider the case that u and b are
linearly dependent: b = Xu, X # 0.

Let G be the connected component of 0 in {¢ € C : zg (b € G}. Then

dgu(zZo+Cb) = sup{t>0 :zo+C(b+TUue Gfor|r| <t/
= sup{t >0 :(F+7/A€ Gy for|r| <t}
= |Al sup{r>0 :{+0c € Gy for |g| < 1)
= A} 06, (),

and this function 18 1in fact subharmonic.

(¢) Now assume that u and b are linearly independent. Since these vectors
are fixed, we can restrict ourselves to the following special situation:

n=2 z0=0, b=e;, and u=e,.

Then s(¢) = —logsup{t >0 : ((,7) € G for |7| < t}. We use holomorphic
functions to show that s is subharmonic. Let R > r» > 0 be real numbers such
that (¢,0) € G for [¢| < R, and let f : Dg(0) — C be a holomorphic function
such that s </ :=Re f on 0D,(0). We have to show that s < & on D,.(0).

We have the following equivalences:

s(Q) < h(¢) <= sup{t >0 :({1)eGfor|r| <t} > ¢ (<)
— (C:c'ewf(C))EGfOfCE_D—,

(d) Define a holomorphic map F by
F(z, ) :=(7”21?226_f(5"31))_

Then F is well defined on a neighborhood of the unit polydisk P2 = P2(0, 1).
It must be shown that F(P?) ¢ G. We already know the following:

1. F(z1,2:) € Gfor [21] =1 and 22| < 1,because s(t) < h(t) on 9D,.(0).
2. F(z1,0) € G for |21} < 1,because (¢,0) € G for ¢l < T
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These facts will be used to construct an appropriate Hartogs figure. First, : .. .
note that : " APPIRP =8 pseudoconvex, it follows that F o hs(P?) C G. This is valid for every ¢ < 1.
But P2 =Jy.5-1 hs(P?). Therefore, F(P?) C G, which was to be shown. =

r 0
Jr(z1,22) = ( . e—f0rz) ) , 80 det Jp(z1,22) # 0.

By the inverse function theorem it follows that F is biholomorphic. 3.4 Theorem. Thefollowing properties of a domain G C C" are equivalent:

1. G satisfies the continuity principle.
For0<6<1 fine hy :C* — C? —
or 0 <6 we define 5 ~ by hs(21, 22) := (21, 02) and apply hy 2. G is Hartogs pseudoconvez.

to the compact set . : :
P 2 3. —logog is plurisubharmonic on G.
4. G is pseudoconvex.

—r—

C:={(21,22) €C? : (]| €1, 22 =0) or (Jz1] =1, |22] I1)} CP2.
Consequently,
Cs :=hs(C) ={(z1,22) € C* : (|21] € 1,22 =0) or (|z1| = 1,

Then F(C5) C G, as we saw above, and therefore Cs C F~1(G).

PrROOF:

22| < 4)}. (1) = (2)is Theorem 1.5,

(2) = (3) is Theorem 3.3,
(3) = (4) follows from the smoothing lemma,

For 0 <& <min(4, 1 - §) we define a neighborhood U, of Cs by U, := (4) = (1) was proved in Theorem 3.1. |

{(z1,22) € C% : (Joa| < 1+4¢, |22 <€) or (1 —€ < |z1] < 1+4¢, |22] < 5+6)}.
Properties of Pseudoconvex Domains

If we choose € small enough, then U, ¢ F~1(G).
Finally, we define He :=h; '(U. N P?) N P2 (see Figure 11.6).Then
He = {(21,22) € P? :(21,829) € U. N P2}

€

d

3.5 Theorem. If G1,Go CC" are pseudoconvex domains, then Gy NGy is
pseudoconvex.

PrROOF: The statement 1s trivial it one uses Hartogs pseudoconvexity. =

A n T i AU UV N SR = e i e g™ Ty L Ny Lo, BN T e T = e e e el T
B T o . W AT AT S Y S O ST N N W A ESISIR T SR e apre e SR Sy SIS [ ERRE S C A S S .

= {(21-,.22) €C (o] <1 fz2l < 5) or (1 - < |2] < T, 22| < 1)}

3.6 Theorem. LetGy C Gy C...C C" be an ascending chain of pseudo-
convex domains. Then G :=U_f,‘(‘:“'=]L G, is again pseudoconvex.

PrROOF: 'This follows immediately from the continuity principle. m

-

.
- i
|
8- ]
‘.
.
2

i 3.7Theorem. A domain G C C" is pseudoconvex if and only if there is an
|

open covering (U,).er of G such that U, NG is pseudoconvex for every t € I .

PROOF:

Gk

—=" 18 trivial. The other direction will be proved in two steps. At first, we
assume that G is bounded.

For any point zg € dG there is an open set U, such that zg € U, and GNU,
__ is pseudoconvex. If we choose a neighborhood W = W(zg) C U, so small
Figure 11.6. Constructionof the Hartogs figure that dist(z, 0U,) > dist(z, zq) for every z € W NG, then 6a(z) = denu, (2) on

WNG. This shows that there is an open neighborhood U = U(9G) such that
—10gd¢q is plurisubharmonic on U NG (we use the fact that 3G is compact).

Since (P2, H,.) is a Euclidean Hartogs figure, (Fo hs(P?),F o hs(H:)) is a Now. G —U CC G. We define
general Hartogs figure with Fohg(H.) € F(U-NP?) C G. Since G is Hartogs
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c:=sup{—logdg(z) : z€ G- U},

and
p(z) := max(—logdc(z), 12[1* + ¢+ 1).

Then p 1s a plurisubharmonic exhaustion function, and by the smoothing
lemma, G 1s pseudoconvex.

If G i1s unbounded, we write it as an ascending union of the domains

G, := B,{(0) N G. Each G, 1s bounded and satisfies the hypothesis, so 1s
pseudoconvex. Then G 1s also a pseudoconvex domain. n

Exercises

1. Suppose that G; C C™ and G2 € C™ are domains.
(a) Show that if G; and G4 are pseudoconvex, then G1 x G2 is a pseu-
doconvex domain in C*™™
(b) Show that if there is a proper holomorphic map f : G; — G2 and G2
is pseudoconvex, then G1 is also pseudoconvex.
2. Let G C C™ be a domain and ¢ : G — R a lower semicontinuous positive
function. Prove that

G ={(z,w) e Gx C : |w| <po(z')}

1S pseudoconvex if and only if —logp 1S plurisubharmonic.
3. A domain G C C" 1s pseudoconvex if and only if for every compact set
K C G the set

}?pl T— {z € G : p(z) < supp for all plurisubharmonic functions p on G}
K

1s relatively compact in G.

4. Levi Convex Boundaries

Boundary Functions

Definition. Let G C C™ be a domain. The boundary of G is called
smooth at zg € OG if there is an open neighborhood U = U(zg) C C™
and a function g € ¥°°(U; R) such that:

1.UNG =z elU : p(z) <O

2. (do)s #0forze U.
The function p 1s called a local defining function (or boundary function).

Remark. Without loss of generality we may assume that g,,, # 0. Then
by the implicit function theorem there are neighborhoods

A A T A L
g ;‘::?:Miﬁﬂ
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—1
U’ of (zg,z) = (217, ...,2501,20) € C"7" xR, U” of y© € R,

and a ¢ functiony :U’ — U” such that {(z’,zn,yn) € U' xU" : o(2', %, +
iyn) =0t ={(2', zn,y(z',z0)) : (Z',2zn) € U’}

Making the neighborhood U :={(z',z, +V) : (Z,z,) € U’ and y, € U"}
small enough and correcting the sign if necessary, one can achieve that

UNG ={(2',zn Tiyn) €U :yn <z, z,)}.

In particular, UNOG = {z € U : p(z) = 0) is a (2n — 1)-dimensional
differentiable submanifold of U.

4.1 Lemma. Let OG be smooth at zg, and let p1, 00 be two local defining
functions onU =U(zy). Then there is a €°° function h onU such that:

1. h>0o0nU.
2. 01 =h'Q2 onU.
3. (do1)z =h(z) .(do2), forz € UN IG.

PROOF: Define & :=p0;/0; on U — 0G. After a change of coordinates, we
have zg = 0 and g3 = y,. Then g(t) :=p1(2', z, T it)is a smooth function
that vanishes at r = 0. Therefore,

I

g(yn) — g(O)
/G g'(s)ds = yn*/o g'(tyn) dt

QQ(Z!:' Tn + |yn) . h(z;a Zn)a

01 (Z!? Z'n,)

I

1

where
' oy
h(zfa Ty T+ iyn) — / __(Z!:'Tn + ity ) dt
o OYyn
1S Smooth.
For z € OG we have (dp1), = h(z) .(dos),. Therefore, h(z) # 0, and even
greater than 0, since A(z) > 0 by continuity. n

4.2 Theorem. Let G CC C" be a bounded domain with smooth boundary.
Then OG is a differentiable submanifold, and there exists a global defining

function.

PROOF:  We can find open sets V; CCU; ¢ C*, i = 1,...,N, such that:

1. {Vi,...,Va} is an open covering of 9G.
2. For each i there exists a local defining function g; for G on U;.
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Il

3. For each i there is a smooth function ¢; : U; — R with ¢;|v,
@ilcn—u, = 0, and ¢; 2> 0 in general.

Define ¢ =), @i (so > 0 on 0G) and ¥; = ¢;/p. Then > .4 = 1on
OG. The system of the functions v¥; is called a partation of unity on 0G.

1,

The function p = Z?zl ©;0; 1S now a global defining function for G. We
leave it to the reader to check the details. _

The Levi Condition. For the remainder of this section let G ¢C C»
be a bounded domain with smooth boundary, and o : U =U(0G) — R a
global defining function. Then at any zg € 0G the real tangent space of the
boundary

T2 (0G) :={v € Tz, : (dp)z,(V) = 0}

is a (2n — 1)-dimensional real subspace of T3, . The space
H, (0G) :=T,,(0G) NiT, (0G) = {v €Ty, : (00)z,(V) =0}

1s called the complex (or holomorphic) tangent space of the boundary at zp.

[t 1s a (2n — 2)-dimensional real subspace of 1,,, with a natural complex

structure, so an (n — 1)-dimensional complex subspace’.

Definition. The domain G is said to satisfy the Levi condition (respec-
tively the strict Levi condition) at zg € 0G if Lev(p) is positive semidef-
inite (respectively positive definite) on H, (3G). The domain G is called
Levi convex (respectively strictly Levi convex) if GG satisfies the Levi con-
dition (respectively the strict Levi condition) at every point z € 0G.

Remark. The Leviconditions do not depend on the choice of the boundary
function, and they are invanant under biholomorphic transformations.

If o1 =h.pe, with i > 0, then for z € 0G,

Lev(o1)(z, W) = h(z) .Lev(0z)(z, w) +2Re{ (Bh)a(w) (Boz)a(w)}-

So on H,(OG) the Levi forms of o, and o2 differ only by a positive constant.

Affine Convexity. Recall some facts from real analysis:

A set M C R"™ 1s convex if for every two points x,y € M, the closed line
segment from X to y 1s contained in M. In that case, for each point Xg €
R™ — M there 1s a real hyperplane H C R™ with xg € H and M N H = O.
This property was already used 1n Section 1.

° H,(0G) is often denoted by 7,°(0G).
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If a € R™, U = U(a) is an open neighborhood and ¢ :U — R is at least €7,
then the quadratic form

Hess(p)(a, w) = Z Py, (A)Wywy
v, Lt

1s known as the Hessian of ¢ at a.

4.3 Proposition. Let G CC R™ be a domain with smooth boundary, and
o a global defining function with (do)x # 0 forx € O0G. Then G is convex if
and only if Hess(p) is positive semidefinite on every tangent space Ty (0G).

PROOF: Let G be convex, and xg € dG an arbitrary point. Then T =
T%, (0OG) 1s areal hyperplane with TNG = . For w € T and a(t) :=xp+tw
we have

(00 a)’(0) = Hess(p)(xg, W).

Since p(xg) = 0 and g o a(t) > 0, it follows that o o a has a minimum at
t =0. Then (p o @)”(0) > 0, and Hess(p) is positive semidefinite on 7.

Now let the criterion be fulfilled, assume that 0 € G, and define o, by

E

N

0=(x) 1= o(x) + - lIx[|"

For small £ and large N the set G, :=
G, CGo CGfore <eg and .,
show that G, 1s convex.

{X : p.(x) < 0} 1S a domain. We have
(. = . Therefore, it 18 sufficient to

The Hessian of g, is positive definite on T3 (0G) for every X € OG. Thus this
also holds 1n a neighborhood U of 0G. If € 1s small enough, then G, C U.
We consider

S ={(x,¥y) e Gc x G, :tx+ (1-t)ye G, forO<t< 1).

Then S is an open subset of the connected set G, x G,. Suppose that S isnot a
closed subset. Then there exist points xg,¥g € G, and atp € (0,1) with tgxg+
(1—1%9)yo € 0G.. So the function ?+— g, o a(t), with a(t) :=txy + (1-1)yo,
has amaximum at t0. Then (g.0a)"(tg) < 0 and Hess(g.)(a(tp), xo—yo) < 0.
This 18 a contradiction. m

A domain G = {p < 0) is called strictly convex at xo € OG if Hess(p) is
positive definite at xg. This property 1s independent of ¢ and invariant under
affine transformations.

Now we return to Levi convexity.

4.4 Lemma. LetU CC™ be open and ¢ € €*(U;R). Then

Lev(y)(z, W) = ¢ (Hess(p)(z, w) + Hess(p)(z, iw))
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PROOF: This 1s a stmple calculation! n

4.5 Theorem. Let G CCC™ be a domain with smooth boundary. Then the
following statements are equivalent:

1. G is strictly Levi convex.

2. There is an open neighborhood U = U(OG) and a strictly plurisubhar-
monic function o € €°(U;R) such that UNG = {ze U : o(z) <0)
and (dg)z # 0 forz € U.

3. For every z € OG there is an open neighborhood W = W(z) ¢ C",
an open set V.C C", and a biholomorphic map F : W — V such that

F(WNG) is convex and even strictly convex at every point of F(WNOG).

PROOF:

(1) = (2) : We choose a global defining function ¢ for G, and an open
neighborhood U = U(OG) such that g is defined on U with (dg)z # 0 for

z € U. Let A >0 be a real constant, and g4 :=e*? — 1. Then o4 is also a
global defining function, and

Lev(oa)(z, w) = Ae¢™ [Lev(o)(z, w) + Al(d0)=(W)[] .
The set K :=0G x S*™ ! is compact, and
Ky :={(z,w) € K : Lev(p)(z,w) <0}

is a closed subset. Since Lev(p) is positive definite on H,(9G), we have
(00)z(W) # 0 for (z,w) € Ky. Therefore,

M = ménLev(g)(z,w) > —00,
C = 11}?;1|(8Q)z(w)|2 > 0.

We choose A so large that A- C+ M > 0. Then

Lev(o)(2, W) = A - [Lev(0)(2,w) + Al(80)a(w)[2] > A (M + AC) >0

for (z,w) € Ky, and
Lev(o)(z,w) > A2 - |(90)a(w)[? > 0

for (z,w) € K — Kg.

So Lev(pa)(z,w) > 0 for every z € G and every w € C" — {0}. By conti-
nuity, o4 1s strictly plurisubharmonic in a neighborhood of 0G.

(2) == (3):We consider a point zg € G and make some simple coordinate
transformations:

B B o i -

T R . _
5 N 1 I i A e
Ao ALy s s ke, it A el e dt - 8l 112 3 . P B T I :

e e - A T L e e = o o = A i
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By the translation z — w = z — zg we replace zg by the origin, and a
permutation of coordinates ensures that p,,, (0)# 0.

The linear transformation

W — U1 = (le (0)’[111 + ... +Qwﬂ(0)wnaw25 - e ,wn)

gives u; =w .Vp(0)*, and therefore

o(u) = 2Re(u-V(gow)(0)") + termsofdegree > 2
= 2Re (u.Jw(0)!.Vp(0)") + terms of degree > 2
= 2Re(w.Vo(0)") + terms of degree > 2
= 2Re(uy1) + terms of degree > 2.

Finally, we write o(u) =2Re(u; +Q(u)) +Lev(g)(0,u)+ ..., where Q is a
quadratic holomorphic polynomial, and make the biholomorphic transforma-
tion

Uy = (u1 —+ Q(u), Uo, . .. ,’U,n).

It follows that

o(v) =2Re(v1) +Lev(0)(0,v)+ terms of order > 3.

By the umiqueness of the Taylor expansion

o(v) = Dp(0)(v) + %Hess(g)(o, v) + terms of order > 3,

and therefore Hess(0)(0,v) = 2 .Lev(p)(0,v) > 0 for v # O (in the new
coordinates). Everything works 1n a neighborhood that may be chosen to be
convex.

(3) = (1) : This follows from Lemma 4.4:

Hess(p) > 0 on T,(0G) — Lev(p) >0 on H,(0G).

The latter property 1s invariant under biholomorphic transformations. -

A Theorem of Levi.Let G ¢C C™ be a domain with smooth boundary.
If G is strictly Levi convex, then 1t 1s easy to see that G is pseudoconvex.
We wish to demonstrate that even the weaker Levi convexity 1s equivalent
to pseudoconvexity. For that purpose we extend the boundary distance to a

function on C".
0c(z) for z € @,
da(z) = 0 for z € 0G,

—5Cﬂ_§(z) for z §Z/ é
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4.6 LLemma. —dg s a smooth defining function for G
PROOF: We use real coordinates x = (xq,...,zn) with N = 2n. It is clear

that G = {x : —dg(x) <0}.

Let xg € G be an arbitrary point and ¢ : U(Xp) — R a local defining
function. We may assume that ¢,, (xg) # 0. Then by the implicit function
theorem there is a product neighborhood U’ x U” of xp in U and a smooth
function 2 :U’ — R such that

(X, zn) e U xU" : o(x',zn) =0} = {(X’h(X)) :x € U’}

It follows that O = Vy o(x’, h(X)) + 0., (X', h(X)) . Vh(x').

At the point (x',h(x")) € 0G the gradient Vp(x’, h(x")) is normal to 0G
and directed outward from G. Every point y in a small neighborhood of the
boundary has a unique representation y =X + t . Vo(x), where t = —dg(¥y)
and X 1S the point where the perpendicular from y to G meets the boundary.
Therefore, we define the smooth map F :U’ x R — R” by

y=F(' t) =, h(x") +1.Vo(x', h(x")).

Then there are smooth functions A and b such that

/ E —1 +t'A(X;) Vx" !ah )
Jrr(x',t) = ( V}T(x’) +t .b(x) meg’}hg’;; ) ?

and therefore

/ B En_ _QmN(X!’h(XI))'vh(X!)t
det T (x,0) = dee gt e OOREON SO

, ! EN -1 —~Vh(x')"
pen ) tet (51 DG )

= 0un (X R(X)) (1 + [|[VR()|?) # 0.

It follows that there exists an € > 0 such that F maps U’ x (—¢,¢) difleo-
morphically onto a neighborhood W = W (xg), and U’ x {0} onto OGN W,
Moreover, since dg(x +1t - Vo(x)) = —t for |[t| < € and € small enough, it
follows that do = (— o F~! is a smooth function near 0G. If p’ is defined
by p’'(x’, 1) := (x’,0), then the projection

p=p oF ! :x+t Vo(x)— x, for x € 4G,

is a smooth map, and dg is given by da(y) =0 .||y — p(y)||, where 0 = 1
fory € G and o = —1 elsewhere.

For y # 6G we have

e TR L TR I L T R gy =8 = - o o S
T R A TS i T T R R B g e AN LRy LAY = . N

P BT T SU, 1t Lo e wiR TR Mg 3 e
Y JE SRR P R 0 S o NP PR
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N
(dG‘)yu (y) — ||y _ p(y)“ ) kzzl(yk _pk(y))(ﬁkv — (Pk)yu (y))

I

e [P = (P [P (3) 4]

and therefore

Vda(y)

o

“ly —p@)

Since o(p(y)) = 0, it follows that Dp(y)(Vo(p(y))) =0. Buty —P(y) is a
multiple of Vo(p(y)).- Together this gives

-y —py) — Dp(y)(y — p(¥))].

_ . y—ply) | Vop(y)
Véel) ly =PIl [IVelp(¥)II'
If y tends to 0G, we obtain that Vdg(y) # 0. n

E.E. Levi showed that every domain of holomorphy with smooth boundary 1s
Levi convex, and locally the boundary of a strictly Levi convex domain G is
the *natural boundary” for some holomorphic function in G. Here we prove
the following result, which 1s sometimes called “Levi’s theorem”.

4.7 Theorem. A domain G with smooth boundary is pseudoconvex if and
only 1f 1t is Levi convex.

PROOF:

(1)Let G be pseudoconvex. The function —d¢ is a smooth boundary function

for G, and —logdgs = —logdg is plurisubharmonic on G, because of the
pseudoconvexity. We calculate
1 1
Lev(—logd — Lev(—d | D(de)), 2
ev(—logdg)(z, w) (@) ev(—dc)(z, w) do(2)? (0(dg) )z (W)

This is nonnegative in G. If z € G, w € T,, and (0(dg))z(w) =0, it follows
that Lev(—dg)(z,w) > 0. This remains true for z — 0G, so —dg satisfies
the Levi condition.

(2) Let G be Levi convex, and suppose that G is not pseudoconvex. Then in
any neighborhood U of the boundary there exists a point zg where the Levi
form of —logos has a negative eigenvalue. This means that there 18 a vector
wp such that

w.z(0) = Lev(logég)(zg, wo) > 0, for o(() :=logda(zo + (wp).
Consider the Taylor expansion

P(0) — 9(0) +2Re(pc(0)C +50cc(0)C2) + 2 (O)ICP +

©0(0) +Re(AC+BCH) +A[¢C)2 +...,
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with complex constants A, B and a real constant A > 0.

We choose a point pe € 0G with d¢{Zo) = ||pPo — zol|, and an arbitrary € > 0.
Then an analytic disk ¢ :D.(0) — €™ can be defined by

W(C) :=2¢ +Cwp +exp(A¢ + B (Po — 20)-

We have ¢(0) = po, and we wish to show that ¥ (() € G, for 0 < (| <& and
E sufficiently small.

Since o(¢) > o(0) + Re(AC + BC2) +(2/2)|¢|? near ¢ =0, it follows that
0c(zo +(wo) = exp(p(())
exp((0)) - | exp (AC + B( )['GXP(%ICF)
> §g(zo) | exp (AC + BC®) |
lexp (AC + BC®) (o - 20) |,

for ¢ small and # 0. This means that we can choose the £ 1n such a way

that ¥({) € G, for 0 < |{| <e. The analytic disc is tangent to 0G from the
interior of G.

Now f({) =dg(¥(()) is a smooth function with a local minimum at { = 0.
Therefore (Oda)p, (' (0 )) =(0f)o(1) =0, and

f(¢O) =Re (fcc(0)¢?) + fo2lC? +terms of order > 3.

1V

Since Re (fcc(0)e*') + f.z > 0 for every ¢, it follows that
Lev{dz)(po, ¥’ (0)) = fz(0) > 0.

This i1s a contradiction to the Levi condition at pg, because —d¢g i1s a defining
function for G. -

Exercises

1. Prove Lemma 4 4.

2. Assume that G cC C? has a smooth boundary that is Levi convex outside
a point a that is not isolated in dG. Show that G is pseudoconvex.

3. Assume that G ¢ C? is an arbitrary domain and that S C G is a smooth
real surface with the following property: In every point of S the tangent
to Sis not a complex line. Prove that for every compact set K C G there
are arbitrarily small pseudoconvex neighborhoods of SN K.

4. Assume that G c¢C C? is a domain with smooth boundary. Then G
is strictly Levi convex at a point zg € 0G if and only if the following
condition is satisfied:

There i1s a neighborhood U = U(zg), a holomorphic function ¢ : D — U
with »(0) = zg and ¢'(0) # 0, and a local defining function ¢ on U such
that (g0 ¢)(¢) >0 on D - {0} and (g0 ¢)z(0) >0.

i
i vexity and affine convexity. Let us begin with some observations about convex
i
i
I
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5. Let G cC C" be a domain with smooth boundary. If G satisfies the strict
Levi condition at zp € 0G, then prove that the following hold:
(a) There 1s no analytic disk ¢ : D — C™ with

. X . da(p(€))
pl0) =20 and  lim oo oy

(b) There are a neighborhood U = U(zy) and a holomorphic function f
inU with GN{zeU : f(z) =0} ={2z0}.

6. A bounded domain G C C™ is called strongly pseudoconvex if there are
a neighborhood U = U(0G) and a strictly plurisubharmonic function
o€ €*(U) suchthat GNU = 7z< U : p(z) <0}. Notice that a strongly
pseudoconvex domain does not necessarily have a smooth boundary!

: IS e By ML éme&‘w%ﬁd

= (

Prove the following results about a strongly pseudoconvex bounded do-
main G:
(a) G 1s pseudoconvex.
(b) If G has a smooth boundary, then G is strictly Levi convex.
(¢) For every z € OG there is a neighborhood U = U(z) such that U NG
1s a weak domain of holomorphy.
7. Let G C C" be a pseudoconvex domain. Then prove that there is a family
of domains G, C G such that the following hold:
(a) G, CC G4, for every v.

(b) U2, Gv =G.
(¢) For every v there 1s a strictly plurisubharmonic function f, €

¢>°(GL+1) such that G, is a connected component of the set

lz€ Gy o fu(z) <0},

5. Holomorphic Convexity

Affine ConvexityWe will investigate relationships between pseudocon-

domains in R¥.

Let .Z be the set of affine linear functions f :RY — R with

f(x)=ayz; +...Ttanzn +9, ai, ...

If M is a convex set and xg a point not contained in A/, then there exists
a function f € .Z with f(x¢) = 0 and f|pr < 0. For any ¢ € R, the set
{x € RY : f(x) <c} is a convex half-space.

AN, b e R,

Definition. Tet A7 ¢ RY be an arbitrary subset. Then the set

H(M) := x € RY : f(x)<supf, forall f e &
A

1s called the affine convex hull of M.
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5.1 Proposition. Let M, My, M, ¢ RY be arbitrary subsets. Then

1. M Cc H(M).

2. H(M) is closed and convex.

3. HLH(M)) = H(M).

4, If My ¢ My, then H(M;) C H(Ms).

5. If M is closed and convex, then H(M) =M .
6. If M is bounded, then H(M) is also bounded.

PROOF:. (1)is trivial.

(2) If xo ¢ H(M), then there is an f € £ with f(xg) > sup,, f. By conti-
nuity, f(x) >sup, f in a neighborhood of xq. Therefore, H{M) is closed.

If xg,yo are two points in H(M), then they are contained in every convex
half-space ¥ = {X : f(x) <sup,,f/, and also the closed line segment from
X L0 yo is contained in each of these half-spaces. This shows that H(M) is
convex.

(3 ) We have to show that H(H(M)) ¢ H(M). If x € H(H(M)) is an arbi-
trary point and f an element of &, then f(x) < supgy T < supy f, by
the definition of H(M).

(4) 1s trivial.

(5)Let M be closed and convex. If xg € M, then there is a point yg € M
such that dist(xg, M) = dist(xg, yo) (because M is closed). Let zp be a point
in the open line segment from xg to yo. Then zg € M, and there is a function
f e % with f(zg) = 0 and flar < 0. Since  — f(txo + (1 — t)yo) is a
monotone function, it follows that f(xg) >0 and therefore xqg ¢ H(M).

(6) If M is bounded, there is an R > 0 such that M is contained in the closed
convex set Br(0). Thus H(M) C Bgr(0). n

Remark. H(M) is the smallest closed convex set that contains M.

5.2 Theorem. A domain G C RY is convex if and only if K CC G implies
that H(K) cC G.

PROOF: Let G be a convex domain, and M CC G a subset. Then H{M) is
closed and contained in the bounded set H(M). Therefore, H{M) is compact,
and it remains to show that H{(M) C G. If there is a point xg € H(M) - G,
then there is a function f € .% with f(xg) =0 and f|¢ < 0. It follows that

supzr f <0, and f(xg) >sup,,f. This is a contradiction to xo € H(M).
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On the other hand, let the criterion be fulfilled. If X0, ¥¢ are two points of G,
then K := {xg, Yo} is a relatively compact subset of G. It follows that H(K)
is contained in G. Since H(K) is closed and convex, the closed line segment
from Xg t0 yo 1S also contained in G. Therefore G is convex. _

Holomorphic Convexity. Now we replace affine linear functions by
holomorphic functions.

Definition. Let G C C™ be a domain and K ¢ G a subset. The set

{z € G :|f(=)] < suplfl, forall f € O(G)}

- -

K =Kg:

is called the holomorphically convex hull of K in G.

5.3 Proposition. Let G C C" be a domain, and K, K1, Ko subsets of G.
Then

I. KcK.

2. K is closed in G.

3. K=K. L

4. If K1 C Ka, then Ky C K.

5. If K is bounded, then K is also bounded.

PROOF: (1)i1s trivial.

(2) Let zg be a point of G — K. Then there exists a holomorphic function
f on G with |f(zg)| > supy|f|. By continuity, this inequality holds on an

entire neighborhood U =U(zy) C G. So G — K is open.
(3) supz|f| Bupgk|fl.

(4) is trivial.

(5)If K is bounded, it is contained in a closed polydisk P?(0,r). The coordi-
nate functions z, are holomorphic in G. For z € K we have |2,| < supglz.| B
r. Hence K is also bounded. _

Definition. A domain G C C™ is called holomorphically convex if
K CC G implies that K CC G.
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Example

In C every domain 1s holomorphically convex:

Let K CC G be an arbitrary subset. Then K is bounded, and it remains
to show that the closure of K is contained in G. If there is a point zp €

K - G, then z; lies in K N 8G. We consider the holomorphic function
f(2) == 1/(z — z) In G. If (2,) is a sequence in K converging to 2o, then
|f(zu)| < supglf| < supglf] < co. This is a contradiction. For n > 2, we

will show that there are domains that are not holomorphically convex. But
we have the following result.

54 Proposition. If G ¢ C™ is an affine convex domain, then it is holo-
morphically convex.

PROOF: Let K be relatively compact in G. Then H(K) CC G. If zp is a
point of G — H{K), then there exists an affine linear function A € £ with

Mzg) > supg A. Replacing A by A — A(0) we may assume that A is a homo-
gencous linear function of the form

/\(Z) m— 2Re(a121 + - anzn)-

Then f(z) :=exp(2 .(a121 + ...+ anzyn)) is holomorphic in G, and |f(z)| =

exp(A(z)). f(zp)| >supplf|, and zo € G — k .This proves K CC
G. n

In general, holomorphic convexity 1s a much weaker property than affine
convexity.

The Cartan—-Thullen Theorem.Let G ¢ C™ be a domain, and
£ > (0 a small real number. We define

G, =11z €G: dg(z) >¢el.

Here are some properties of the set G,:

1. If z € G, then there is an £ > 0 such that dg(z) > €.
Therefore, G =1J.., G,

2. If &1 < €9,then G,, D Ge,.
3. G, is a closed subset of C™. In fact, if zg € C* — G,, then da(Zo) < €
or zg ¢ GG. In the latter case, the ball B.(zp) is contained in C" — G.. If

720 € G — G, and § :=65(Z0), then B._5(zo) CC" = G,. SoC" -G, is
open.

5.5 Lemma. Let GC C"™ be a domain, K ¢ G a compact subset, and | a

holomorphic function in G. TK C G,, thenfor any 0 with 0 <9 < E there
exists a constant C > 0 such that the following inequality holds:
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PROOF: For 0 < d <¢, G ={z € G : dist(K,z) < §} is open and
relatively compact in G, and for any z € K the closed polydisk P7(z,4) 1s
contained in G’ C G. If T is the distinguished boundary of the polydisk and
|f| < C on G’, then the Cauchy inequalities yield

5.6 Theorem (Cartan-Thullen). [f G is a weak domain of holomorphy,
then G is holomorphically convex.

PrROOF: Let K CC G. We want to show that K cC G. Let ¢ :=
dist(X,C" — G) > dist(K,C" — G) > 0. Clearly, K lies in G,.

We assert that the holomorphically convex hull K lies even in G.. Suppose
this 1s not so. Then there 1S azg € K — G,. Now let f be any holomorphic

function in G. In a neighborhood U =U(zy) C G, f has a Taylor expansion

f(z) =) a,(z —20)", with a, =3 D" f(z).
V>0 2
The function z — a,(z) = = D”f(z) is holomorphic in G. Therefore,

la,(z0)] < supyla,(z)|. By the lemma, for any 6 with 0 < § < £ there
exists a C > 0 such that supgla, (z)| < C/§!¥!, and then

ay(z —20)"| < C- (Iz 5#) |2, — 29\

On any polydisk P*{zg, 6) the Taylor series 1s dominated by a geometric
series. Therefore, 1t converges on P = P"(zg, £) to a holomorphic function f
We have [ = f near zg, and then on the connected component Q of zg in
P N @G. Since P meets G and C" — @G, 1t follows from Lemma 1..9 that there

is a point z; € P NOQ NOG. Then f cannot be completely singular at z;.

This 1s a contradiction, because f 1s an arbitrary holomorphic function in G,

and G is a weak domain of holomorphy. -

Exercises

1. Let G; € G2 C €™ be domains. Assume that for every f € O(G;) there
is a sequence of functions f, € O(G3) converging compactly on Gy to f.

Show that for every compact set K C G it followsthat Ko, NGy = Kg, .



78 II. Domains of Holomorphy

2. Let F :Gy — G2 be a proper holomorphic map between domains in C”,
respectively C™. Show that if G2 is holomorphically convex, then so is
G1.

3. Let G € C” be a domain and S C G be a closed analytic disk with
boundary 5S. Show that S C (bS)q-

4. Define the domain G C C? by.G :=P?(0, 1)- P2(0,1/2). Construct the
holomorphically convex hull K¢ for K :={(z1,22) :21 =0 and |z9] =
3/4}. Is K¢ a relatively compact subset of G ?

5. Let F be a family of functions in the domain G. For a compact subset
K C G we define

Kr:={z€G :|f(2)| <sup|f| forall f € F |.
K

The domain G is called convex with respect to F, provided that Kz 1is

relatively compact in G whenever K is. Prove:

(a) Every bounded domain is convex with respect to the family €°(G)
of all continuous functions.

(b) The unit ball B = B;(0) is convex with respect to the family of

holomorphic functions 2~ . L with v,u = 1,...,n and k,! € Ng.

6. Singular Functions

Normal Exhaustions.Let G ¢ C™ be a domain. If G is holomorphically
convex, we want to construct a holomorphic function in G that is completely
singular at every boundary point. For that we use "normal exhaustions."

Definition. A normal exhaustion of GG i1s a sequence (K, ) of compact
subsets of G such that:

1. K, cc(K,41), for every v.

2. Uf;__l K, =0G.

6.1 Theorem. Any domain G in C* admits a normal exhaustion. -G is
holomorphically convex, then there is a normal exhaustion (K,,) with K, =
K, for every v.

PROOF: In the general case, K, :=P"(0,v)N G/, gives a normal exhaus-
tion. If G is holomorphically convex, K, cc G for every v. We construct a
new exhaustion by induction.

Let K := K. Suppose that compact sets K7, ...,K,_1 have been con-
structed, with K* = Kf for j = L...,v — 1,and K} CC (K}5,)". Then
there exists a A(¢) € N such that K;_; ¢ (Kxu)) . Let K} := Kj(,)-

e e . T
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[t 1s clear that (K)) is a normal exhaustion with I?; = K.

Unbounded Holomorphic Functions. Again let G ¢ C" be a
domain.

6.2 Theorem. Let (K,) be a normal exhaustion of G with f{'u = K,,
A(p) a strictly monotonic increasing sequence of natural numbers, and (z,,)

a sequence of points with z,, € K41 — Kx()-

Then there exists a holomorphic function f in G such that |f(z,)| is un-
bounded.

PROOF: The function f is constructed as the limit function of an infinite
series [ = Zle Ju- By induction we define holomorphic functions f, in G
such that:

Lo |Fulry,, <27# for p2>1.

ru—1
2. |fulz)| > p+ 1+ Z|fj(z“)| for pu > 2.

7=1
Let f1 := 0. Now for u > 2 suppose that fi,...,f,—1 have been constructed.

Since z, € K41 — Ky and I?)\(“) = K)\(u), there exists a function g
holomorphic in G such that |g(z,)| > ¢ :=sup Ky |g|. By multiplication by

a suitable constant we can make

9(z,)] >1>q.

If we set f, :=g" with a sufficiently large &, then f, has the properties (1)
and (2).

We assert that > y f, converges compactly in G. To prove this, first note
that for K C G an arbitrary compact subset, there 1s a ug € N such that
K C Kjy(,,)- By construction supg|f,| < 27 for g > pg. Since the geo-
metric series ), 27* dominates Z“ [ 1in K, the series of the f, is normally
convergent on Ig . This shows that f = Zﬁ fu 18 holomorphic in G. Moreover,

fz)l 2> [fu@z)] =) 1f(2))

VT
> p+1- Zlfb*'(zu)l
v>H
> p+1-3 27 (since z, € K, for v > p)
V>l

A’ (since Z 277 =1).

v>1

It follows that |f(z,)] — oo for p — oo.
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The following 1s an 1mportant consequence:

6.3 Theorem. A domain G is holomorphically convex if and only if for
any infinite set D that is discrete in G there exists a function f holomorphic
in G such that |f| is unbounded on D.

ProOF: (1)Let G be holomorphically convex, D C G infinite and discrete.
Moreover, let (K, ) be a normal exhaustion of & with K, =K,. Then K,ND
1s finite (or empty) for every v € N. We construct a sequence of points z,, € D
by induction.

Let z; € D — K; be arbitrary, and A(1) € N minimal with the property that
z; lies in K)(1y41. Now suppose the points zy,...,z,—1 and the numbers
A1), ..., A(¢ — 1)have been constructed such that

z, € Khoyy1 =Koy, forv =1,...,0 = 1.

Then we choose z, € D — K)(,-1)+1 and A(x#) minimal with the property
that z,, lies in K (,,y+1. By the theorem above there 1s a holomorphic function
f in G such that |f(z,)| — oo for ¢ — oo. Therefore, |f| is unbounded on D.

(2) Now suppose that the criterion is satisfied, and K CC G. Then K C G,

and we have to show that K is compact. Let (z,) be any sequence of points
in K. Then

supq{|f(z,)] : v € N} < Sgp‘fl < oo, for every f € O(G)

Therefore, {z, : v € N} cannot be discrete in G. Thus the sequence (z,)

has a cluster point zg in G. Since K is closed, zo belongs to K. So G is
holomorphically convex. m

Sequences. For a domain G ¢ C"* we wish to construct a sequence that
accumulates at every point of 1ts boundary.

6.4 Theorem. Let (K,) be a normal exhaustion of G. Then there exists
a strictly monotonic increasing sequence A\(y) of natural numbers and a se-
quence (z,,) o points in G such that:

1.z, € K)\(M)+1 — K)\(M)? for every u.
2. If zp is a boundary point of G and U =U(zy) an open connected neigh-
borhood, then every connected component of U N G contains infinitely

many points of the sequence (z,).

PrROOF: This 1s a purely topological result, since we make no assumption
about G. The proof is carried out in several steps.
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(1)Let B = {B, : v € N} be the countable system of balls with rational
center and rational radius meeting 90G. Every intersection B, NG has at most
countably many connected components. Thus we obtain a countable family

C ={C, : dv € N such that C,, is a connected component of B, € B}.

(2) By induction, the sequences A(p) and (z,) are constructed. Let z; be
arbitrary in Cy; — Ky. Then there 1s a unique number A(1) such that z; &

Kximy+1 — Kx).

Now suppose z;, ..., Z,..1 have been constructed such that
Zj C Cj n(K)\(j-)+1 —K,\(j)), fOI’j — 1,. sy M= 1.

We choose z,, € C,, — Kj(u—1)+1 and A(g) as usual. That is possible, since
there is a point w € B,y N 0C, NOG if C, is a connected component of
B,y NG. Then €™ — K\, _1y41 18 an open neighborhood of w and contains
points of C.,

(3) Now we show that property (2) of the theorem 1s satisfied. Let zg be a
point of 0G, U =U{zg) an open connected neighborhood, and Q a connected
component of U N G. We assume that only finitely many z, lie in ), say
Z1,...,Zm. Lhen

U":=U —A{2z1,...,Z2m} and Q* .= Q—{z,...,2,n}

arc open connected sets that contain no z,. Obviously, Q* is a connected
component of G NU*,

There 1s a point wg in U* N 0Q* N OG, and a ball B, C U* with wy € B,.

Then B, NG ¢ U* N G. Moreover, B, N G must contain a point w; € Q%.
The connected component C* of w, in B, NG is a subset of the connected
component of wy in U* N G. But C* is an element C),; of C. By construction
it contains the pomnt z, . That 1s a contradiction. Infinitely many members

of the sequence belong to Q. =

6.5 Theorem. [f G is holomorphically convex, then it is a domain o holo-
morphy.

PROOF: Let (K,) be a normal exhaustion of G with I?U = K, and choose
sequences A{p) € N and (z,) in G such that z, € K,y — Kj(,). We may
assume that for every point zg € 9G, every open connected neighborhood
U =U(zp), and every connected component Q of U N G there are infinitely
many z,, 1n Q.

Now let t be holomorphic in G and unbounded on D :={z, : 4 € N}. [t s

clear that f is completely singular at every point zp € 0G. .
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Remark. It 1s not necessary that a completely singular holomorphic func-
tion 1s unbounded. In 1978, D. Catlin showed in his dissertation that if
G cC C" 1s a holomorphically convex domain with smooth boundary, then
there exists a function holomorphic in G and smooth in a neighborhood of G
that is completely singular at every point of the boundary of G.

Exercises

1. A domain G CC C" is holomorphically convex if and only if for every
z € 0G there is a neighborhood U(z) such that U NG is a domain of

holomorphy.
2. Let G4 C C* and G2 € €™ be domains of holomorphy. Iff : Gy — C™ 1s
a holomorphic Qapping, then f~'(G2) NGy is a domain of holomorphy.
3. Find a bounded holomorphic function on the unit disk D that is singular
at every boundary point.

7. Examples and Applications

Domains of Holomorphy

7.1 Proposition. Every domain in the complex plane C is a domain of

holomorphy.

PROOF: We have already shown that every domain in C is holomorphically
convex. Therefore, such a domain 1s also a domain of holomorphy. _

7.2 Theorem. Thefollowing statements about domains G € C" are equiv-
alent.

1. G is a weak domain of holomorphy.

2. G is holomorphically convex.

3. For every infinite discrete subset D C G there exists a holomorphic func-
tion f in G such that |f| is unbounded on D.

4. G is a domain of holomorphy.

The equivalences have all been proved in the preceding paragraphs. Fur-
thermore, we know that every domain of holomorphy 1s pseudoconvex. Still
missing here 1s the proof of the Levi problem: Every pseudoconvex domain
1$ holomorphically convex. We say more about this in Chapter V.

Every affine convex open subset of €™ 1s a domain of holomorphy. The n-fold
Cartesian product of plane domains 1s a further example.

7.3 Proposition. [If Gy,...,G, C C are arbitrary domains, then G :=
Gi X ---xX Gy is a domain o holomorphy.
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PROOF. Let D ={z, =(z{,...,2") : p € N} be an infinite discrete subset

-’ n

of G. Then there is an i such that (z!') has no cluster point in G;, and there
1$ a holomorphic function f in G; with lim“_,m] (=) | = oo. The function f

=,

in G, defined by f(z1,...,2,) := f(zi), is holomorphic in G and unbounded
on D. _

Remark. The same proof shows that every Cartesian product of domains
of holomorphy 1s again a domain of holomorphy.

Complete Reinhardt Domains. Let G C C* be a complete Rein-
hardt domain (see Section 1.1). We will give criteria for G to be a domain of
holomorphy. For that purpose we define a map log from the absolute value
space ¥ to R™ by

log(ry,...,mn) = (logry, ..., logry,).

Definition. A Reinhardt domain G is called logarithmically convex if
log 7(G N (C*)™) is an affine convex domain in R™.

Remark. Forz =(z1,...,2n) € Gwehave log7(z) = (log|z], .. .,log|z,]).
If z € (C*)™, then |z;| > 0 for each i, and log 7(2z) is in fact an element of R™.

7.4 Proposition. The domain o convergence of a power series S(z) =
> >0 0uZY IS logarithmically convex.

PROOF: Let G be the domain of convergence of S(z), and M :=log7(G N
(C*)™) € R™. We consider two points x,y € M and points z,w € GN (C*)"
with log 7(z) =X and log 7(w) =y. If A > 1is small enough, Az and Xw still
belong to G 1N (C*)™. Since S(z) 1s convergent in Az, Xw, there 1s a constant
C >0 such that

a,| AL Z2Y| < C and  ay| AP jwY| < C, for every v € N

Thus
lay | AV |z¥ |t wr Tt < O, forevery v and 0 < £ < 1.

It follows from Abel’s lemma that S(z) i1s convergent in a neighborhood of
z; = (|z1]" w1 ", . L lzal s ).

This means that z; € G and tx+ (1-t)y =log7(z:) € M, for 0 < t < 1.
Therefore, M 1s convex. n
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7.5 Proposition. Let G be a complete Reinhardt domain. If G is logarith-
mically convex, then it is holomorphically convex.

PROOF: Let K be a relatively compact subset of G. Since G is a complete
Reinhardt domain and K a compact subset of G, there are points zy, ...,z €
G N(C*)™ such that

k
K CcG' = U P"(0,q;) CG, where q; :=7(z;).
=1

We consider the set 4 = {m(z) =2" : v € Nj} of monomials, which is a
subset of O(G). For z € P*(0,q;) and m € A we have

m(z)| =[z"| <qf =|m(q;)|
Let Z := {2j,...,2;}. Then for z € K it follows that

Im(z)| < sup|m| < sup|m| < sup|m|, for every m € A.
K G’ Z

Suppose that K is not relatively compact in G. Then K has a cluster point
7o in OG, and it follows that |m(zo)| < sup,|m|, for every m € A.

Let h(z) := logT(z), for z € (C*)™. Since G is logarithmically convex, the
domain Gy = h(G N(C*)*) C R™ is affine convex. For the time being we
assume that zg € (C*)™. Then X :=h(zg) € 0Go, and there is a real linear
function A(x) =a3x; + ...+ a,z, such that A(x) < A(xq) for x € Gp.

Let x =log7(z) be a point of Gp, and u € R™ with u; <z, forj =1,...,n.
Then e < €% = |z;|, and therefore (since G is a complete Reinhardt do-
main) w = (e¥t,...,e"*) € GN(@*)" and u € Gy. In particular,

A(x) —na; =A(x —ne;) < A(xg), for every n € N.
Therefore, a; > O forj =1,...,n.

Now we choose rational numbers r; > a,; and define A(X) =rix1+: .- +7r,2,.

If we choose the r, sufficienty close to a;, the inequality AM(q:) < A(xo)
holds for ¢ = 1,...,k, and it still holds after multiplying by the common
denominator of the r;. Therefore, we may assume that the r; are natural
numbers, and we can define a special monomial mqg by mg(z) :=21" ...2"".

Then - -
Mo (2i)] = M) < eAlx0) lmo(2zo)|, fori=1,...,k.

So |mg(zg)| > sup,|mgl, and this is a contradiction.

If zo ¢ (C*)*, then after a permutation of the coordinates we may assume

(0) (0) (0) __ — ~(0) '
that 23 .- 2" # 0 and 2;;;, = ... = 25’ = 0. We can project on the space
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C! and work with monomials in the variables z{, ..., z;. Then the proot goes
through as above. m

Now we get the following result:

7.6 Theorem. Let G C C™ be a complete Reinhardt domain. Then the

following statements are equivalent:

1. G is the domain o convergence of a power series.
2. G is logarithmically convex.

3. G is holomorphically convex.

4. G is a domain of holomorphy.

PROOF: We have only to show that if G is a complete Reinhardt domain
and a domain of holomorphy, then it is the domain of convergence of a power
series. By hypothesis, there is a function f that is holomorphic in G and
completely singular at every boundary point. In Section 1.5 we proved that
for every holomorphic function in a proper Reinhardt domain there is a power
series S(z) that converges in G to f. By the identity theorem it does not
converge on any domain strictly larger than G. m

Analytic Polyhedra.Let G ¢ C” be a domain

Definition. Let U C G, V;,...,Vk C C open subsets, and fi1,. ..,
holomorphic functions in G. The set

P:=fzcU : fi(z) eV, fori =1,..,k}

is called an analytic polyhedron in Gif P CCU.

If, in addition, V4 = ... =V, =D, then one speaks of a special analytic
polyhedron in G.

Remark. An analytic polyhedron P need not be connected. The set U
in the definition ensures that each union of connected components of P is
also an analytic polyhedron if 1t has a positive distance from every other
connected component of P.

7.7 Theorem. Every connected analytic polyhedron P in G is a domain of
holomorphy.

PROOF: We have only to show that P is a weak domain of holomorphy.
If zo € OP, then there is an i such that f;(zg) € 9dV;. Therefore, f(z) =

(fi(z) — ﬁ.;(zo))‘1 is holomorphic in P and completely singular at zg. m
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Example

Let g < 1be a positive real number, and

P :={z =(z1,22) € C° : |21] < 1,]22] < 1and |21 - 22| < q}.

I'hen P (see Figure 11.7)1s clearly an analytic polyhedron, but neither affine

| 22|}

Figure 11.7. An analytic polyhedron

convex nor a Cartesian product of domains. So the analytic polyhedra enrich
our stock of examples of domains of holomorphy.

We will show that every domain of holomorphy 1s "almost" an analytic poly-
hedron.

7.8 Theorem. I G C C" is a domain of holomorphy, then there exists
a sequence (P,) of special analytic polyhedra in G with P, CC P,4+1 and

U P, =G.

=1

PROOF: Let (K,) be a normal exhaustion of G with I?I, = K,. If z €
0K,,1 is an arbitrary point, then z does not lic in K, C (K,41) , and
therefore not in K,. Hence there exists a function f holomorphic in G for
which ¢ :=supg |f| < |f(z)|. By multiplication by a suitable constant we

obtain ¢ < 1 < |f(z)|, and then there is an entire neighborhood U = U(z)
such that |f| > 1on U.

Since the boundary 0K, 1 1s compact, we can find finitely many open neigh-
borhoods U, ; of 2z, ; € 0K, 1+1,j = 1,...,k,, and corresponding functions
fv.; holomorphic in G such that |f, ;| > 1on U, ;, and 8K, 41 C U?;l U,
We define

P, :={z€ (K,41)° :|foj(z)] <lforj =1,..,k}

Clearly, K, C P, C (K,41)°. Furthermore, M :=K, 1 — (U1 U...UU,k, )
is a compact set with P, C M C (K,+1) . Consequently, P, CC K,11. Thus
P, 1s a special analytic polyhedron 1n G. It follows trivially that the sequence
(P,) exhausts the domain G. _
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In the theory of Stein manifolds one proves the converse of this theorem.

Exercises

1. If R 1s a domain in the real number space R™, then
Tr = R+IiR" :={z € C" : (Re(21), ...,Re(z,)) € R/

is called the tube domain associated with R. Prove that the following

properties are equivalent:

(a) R 1s convex.

(b) T'r 18 (affine) convex.

(¢) T'r 1s holomorphically convex.

(d) Tr 1s pseudoconvex.

Hint: To show (d) = (a) choose Xy, yo € R. Then the function ¢({) =

— In é71, (x0 + (Yo —Xo0)) is subharmonic in D. Since 61, (x +iy) = dr(x),

one concludes that  — —Indgr(xo Tt(yo — Xg)) assumes its maximum

at t =0Qort = 1. R

2. Let G C C" be a domain. A domain G C C" is called the envelope of
holomorphy of G if every holomorphic function f in G has a holomorphic
extension to (. Prove:

(a) If R C R” is a domain and H(R) its affine convex hull, then G =
H(R) +iR" is the envelope of holomorphy of the tube domain G =
R+ 1R". R

(b) If G C C” 1s a Reinhardt domain and G the smallest logarithmi-

cally convex complete Reinhardt domain containing G, then G is the
envelope of holomorphy of G. Hint: Use the convex hull of log 7(G).
3. Construct the envelope of holomorphy of the domain

G, :=P*(0,(1,9)) UP?(0,(g,1)).

4. A domain G C C" is called a Runge domain if for every holomorphic
function f in G there is a sequence (p, ) of polynomials converging com-
pactly in G to f.

Prove that the Cartesian product of n simply connected subdomains of
€ 1s a Runge domain in C".

5. A domain G C C" 1s called polynomially convex if it 1S convex with
respect to the famly of all polynomials (cf. Exercise 5.5). Prove that

every polynomially convex domain 1s a holomorphically convex Runge
domain.

8. Riemann Domains over C"

Riemann Domains. It turns out that for general domains in C" the
envelope of holomorphy (cf. Exercise 7.2) cannot exist in C”. Therefore, we
have to consider domains covering C".
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Definition. A (Rzemann) domain over C™ is a pair (G, n) with the
following properties:
1. G 1s a connected Hausdortf space.
2. w:G — C™ is a local homeomorphism (that is, for each point z € G
and its "base point" z :=x(x) € C" there exist open neighborhoods
U=U(z) CX and V =V(z) C C* suchthat # : U — V is a
homeomorphism).

4

Remarks

1. Let (G,w) be a Riemann domain. Then G 1s pathwise connected, and
the map = :G — C" is continuous and open. The latter means that the
images of open sets are again open.

2. ¥ (G,, 7,) are domains over C" forv = 1,..,1, and x, € G, are points
over the same base point zg, then there are open neighborhoods U, =
U,(x,) C G, and a connected open neighborhood V =V (zg) C C" such
that 7, |y, :U, — V is a homeomorphism forv = 1,...,1L

Examples

1. If G is a domain in C™, then (G,idg) is a Riemann domain.
2. The Riemann surface of /z (without the branch point) is the set

G :={(z,w) €C* x C : w? = z}.

It G is provided with the topology induced from C* x C, then it 1s a
Hausdorff space. The mapping ¢ : C* — G defined by { — (¢?,¢) is
continuous and biyjective. Therefore, G 18 connected. The mapping ¢ 18
called a uniformization of G.

Now let w : G — C be defined by 7(z, w) :=z. Clearly, 7 is continuous. If
(20, wp) € G is an arbitrary point, then zg # 0, and we can find a simply
connected neighborhood V(zp) C @*. Then there exists a holomorphic
function f in V with f?(z) = z and f(z9) =wg¢. We denote f(z) by /2.

The image W := f(V) is open, and the set 7~ (V') can be written as the
union of two disjoint open sets

Ur ={(2,£f(2)) :2€ V}=(Vx (W) NG.

Let f(z) = (2, f(2)). Then f : V. — G i1s continuous, and.a © j?(z) = z.
The open set U :=U_ is a neighborhood of (zp,wp), with f(V) =U and

m(z,w) = (2, w)on U; that is, n|y : U — V is topological. Hence
(G,n) is a Riemann domain over C.

* A general topological space X is said to be connected if it is not the union of
two disjoint nonempty open sets. A space X is called pathwise connected if each
two points of X can be joined by a continuous path in X . For open sets in C"
these two notions are equivalent,

¥

A
&

o
e
1

TR I R e s T R e L

PN -t SR WL SN R
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The space G can be visualized in the following manner: We cover C with
two additional copies of C, cut both these “sheets” along the positive
real axis, and paste them crosswise to one another (this is not possible
in R® without self intersection, but in higher dimensions, it is). This is
illustrated in Figure 11.8.

Figure 11.8. The Riemann surface of /2

8.1 Proposition (on the uniqueness oflifting). Let (G,x) be a domain
over C" and Y a connected topological space. Let yog € Y be a point and

1,92 Y — G continuous mappings with ¥1(yo) = ¥2(yo) and ™o ¢y =
T oYy, Theny =1,

PROOF: Let M ={y € Y : ¢1(y) = ¥=2(y)}. By assumption, yo € M,
so M # @&. Since G is a Hausdorff space, it follows immediately that M is

closed. Now let y € Y be chosen arbitrarily, and set x =y (y) = ¢2(y) and
z = w(x). There are open neighborhoods U = U({x) CGand V =V (z) C
€™ such that w : U — V is topological, and there is an open neigborhood
W =W(y) with v»(W) C U for A =1,2. Then

Vlw = (7lu) T omoun|w = (mju) ™ oo halw —alw,

and therefore W C M. Hence M is open, and since Y is connected, it follows
that M =Y.

Definition. Let zg € C" be fixed. A (Riemann) domain over C* with
distinguished point 1s a triple G = (G, 7, zg) for which:

1. (G,n) is a domain over C".

2. zg 1s a point of G with 7 (xg) :=2p.
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Definition. Let G; = (G;,m;,x;) be domains over C* with distin-
guished point. We say that G; s contained in G, (denoted by G1 < G2 )
if there is a continuous map ¢ : G1 — G2 with the following properties:

1. my 0 p =m (called “p preserves fibers”).
2. (,0($1) = I9.

8.2 Proposition. If G < Ga, then the fiber preserving map ¢ : G1 — G2
with @(z1) = T is uniquely determined.

This follows immediately from the uniqueness of lifting.

8.3 Proposition. The relation “<” is a weak ordering; that 1s:

1. G <G.
2. Gy < Gy and Go < Gz = G1 < Us.

The proof is trivial.

Definition. Two domains G1, Gy over C" with fundamental point are
called isomorphic or equivalent (symbolically G1 = Gs) if G1 < G2 and

Go < G1.

8.4 Proposition. Two domains G; = (G;,m;,%5), ] = 1,2, are 1somorphic
if and only if there exists a topological® fiber preserving map ¢ : G1 — G2
with (1) = T2.

PrROOF: If we have fiber preserving mappings @1 : G1 — G5 and o 1 Gy —
G4, with ¢1(z1) = z2 and @2(x2) = 21, it follows easily from the uniqueness
of fiber preserving maps that @2 0 @1 = idg, and @1 0 w2 = id¢,. The other
direction of the proof is trivial. _

Definition. A domain G = (G, 7, zg) with 7(zo) = 2o is called schlicht
if it is isomorphic to a domain Gy = (Go,idg,,Z0) With Go C C™.

8.5 Proposition. Let G = (Gj,idg,,x;), 7 = 1,2, be two schlicht domains

with G1,Go C C™. Then Gy < G2 if and only if G1 C Gs.

Example

5 Recall that a “topological map” is a homeomorphism!
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Let G := {(z,w) € C? : w? = zand z £ 0} and m(2,w) = z. Then
G1 = (G1, 71, (1,1)) is the Riemann surface of y/z, with distinguished point
(1,1). The domain G; is contained in the schlicht domain G = (C,idg, 1), by
@(z,w) := z. But the two domains are not isomorphic.

Union of Riemann Domains. We begin with the definition of the
union of two Riemann domains. Let G; = (G;,7,,%;), 7 = 1,2, be two Rie-
mann domains over C" with distinguished point, and zg := m1(x1) = 72 (x3).
We want to glue G1, G5 in such a way that x; and x; will also be glued.

To get a rough idea of the construction, assume that we already have a
Riemann domain G = (G, m,zp) that is in some sense the union of G; and
G->. Then there should exist continuous fiber preserving maps ¢ : G1 —» G
with (,01(£E1) = Xy, and 25 G2 — G with (,02($2) = Xy- If o : [O, 1] — G1
and 3 :[0,1] — G2 are two continuous paths with «(0) = z;, 5(0) = z2 and
m oo = mpo 3, then v1 := 1 o and 5 := g 0 § are continuous paths in G
with w o~y = mo~, and ¥, (0) = ¥2(0) = zg. Due to the uniqueness of lifting,
it follows that v; = v9. This means that «(t) and §(¢) have to be glued for
every ¢t € [0,1]. Unfortunately, this is an ambiguous rule. For example, we
could say that z € G; and y € G have to be glued if m;(x) = m2(y). Then
the desired property is fulfilled, but it may be that there are no paths « from
xr1 to £ and (3 from x; to y with m; o = 7 0 8.

Therefore, we proceed in the following way: Start with the disjoint union

G U (G5, and take the “finest” equivalence relation ~ on this set with the
following property:

1. L1 ~ IQ-
2. If there are continuous paths o : [0,1] = G and G :[0,1] = G2 with
«(0) = z1, B(0) = 2, and 71 o = w3 0 3, then a(l) ~ F(1).

One can equip G := (G UG3)/ ~ with the structure of a Riemann domain.
This will now be carried out in a more general context.

Let X be an arbitrary set. An equivalence relation on X is given by a partition
X ={X, : v € N} of X into subsets with:

1. UuENXFf’:X*
2. X, NX, = for v +#pu.

The sets X, are the equivalence classes.
Now let a family (Z,).cr of equivalence relations on X be given with %, =

{X,, svueN}foreel Weset N:=][] ., N, and

X, = ﬂX:;L, for v := (v,),e; € N.

A
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Then & = {X, : v € N} is again an equivalence relation (simple exercise),
and it is finer than any Z,. This means that for every ¢ € I and every V € N,

there is a v, € N, with X, C X .

We apply this to the disjoint union X = User G, for a given family (Gx)reL
of Riemann domains G = (G, 7x, Zx) over C™ with distinguished point. An
equivalence relation on X is said to have property (P) if the following hold:

1. xx ~ x,, for A\,0 € L.
9. If o : [0,1] = G and G : [0,1] = G, are continuous paths with a(0) ~

5(0) and 7y 0 o = 7, © J, then a(1) ~ 5(1).

We consider the family of all equivalence relations on X with property (P).
It is not empty, as seen above in the case of two domains. Therefore we can

construct an equivalence relation (as above) that is finer than any equivalence
relation with property (P). We denote it by ~p . It 1s clear that my(z) = 7, (¥)
if z € Gy, y € Gp, and x ~p y. The relation ~p also has property (P), and
the elements of an equivalence class X, all lie over the same point z = z(X,).
We define G := X/ ~p and 7(X,) := z(X,). The equivalence class of all
will be denoted by z.

8.6 Lemma. Lety € Gy and x € G, be given with m,(zx) = ma(y) =: z. If
we choose open neighborhoods U = U(y) C G, V = V(z) C G,, and an open
connected neighborhood W = W (z) such that my : U - W and 7o : V = W
are topological mappings, then for ¢ = (mply) tomy: U =V the following
hold:

1. ¢(y) = .
9. Ifx ~py, then p(y') ~py foreveryy €U.

PROOF: The first statement is trivial. Now let « : [0, 1] — W be a con-
tinuous path with a(0) = z and a(l) = my(y') for some y' € U. Then

3 = (m|y) ' oa and v := @ o 3 are continuous paths in U and V with
B0y =y ~px=¢p(ly) =7(0)and myof =mp0po B = 7w, o 7. Therefore,
y' = B(1) ~p (1) = oY), -

8.7 Theorem. There is a topology on G such that

A

g := (éj%, T)

is a Riemann domain over C" with distinguished point T, and all maps @ :

G\ — G with
ox(z) 1= equivalence class of T

are continuous and fiber preserving.
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PROOF: (1) Sets of the form (M) for M open in G together with G

constitute a base of a topology for G. To see this it remains to show that the
intersection of two such sets is again of this form.

Let M C Gy and N C G, be open subsets. Then

‘P)\(M) M ‘PQ(N) — ‘PQ(N A ‘Pg_l(‘PA(M)))'

But ¢, '(pa(M)) is open in G,. In fact, let z € v, (¢x(M)) be given, and
y € M be chosen such that p)(y) = ¢,(x) (and therefore y ~p x). Let z :=
mx(y) = 7,(z). Then there exist open neighborhoods U = U(y) and V = V(z)
and an open connected neighborhood W = W(z) such that 7, : U — W and
w, 1 V — W are topological mappings. Let ¢ := (mply) tomy: U - V. By
the lemma, ©(y) = x and p(y') ~p y' for every y’' € U.

So V' := p(MNU) is a neighborhood of z in G, and since w,(¢(y')) = wA(¥')
for every ' € U, it follows that V' C ¢, ' (pa(M)).

Consequently, every (), is a continuous map.

(2) Remark: Since every y & G is an equivalence class (), we have

M = | J oa(py*(M)) for any subset M C G.

(3) 7 :Né' — C" is continuous: Let V € C™ be an arbitrary open set, and
M := #Y(V). Then ¢ ' (M) = m; (V) is open in G,, and therefore M =

A

U,\eL ‘PA(‘P;I(M)) is open in G.

(4) G is a Hausdorff space: Let y1,y2 € G with y1 # yo, and z1 = w(y1),
Zo = ’ﬂ'(yz).

There are two cases. If z; # zp, then there are open neighborhoods Vi(z)
and Va(zg) with Vi N Vo = @. Then 77 1(V}) and 7! (V3) are disjoint open
neighborhoods of y; and y,. If 27 = z3, then we choose elements z; € Gy,
Ty € G, with px(z1) = y; and @,(r2) = y2, and since z; and zz are not
equivalent, the above lemma implies that there are disjoint neigborhoods ot
y1 and yo.

(5) G is connected: Let y = ¢y (x) be an arbitrary point of . Then there is
a continuous path « : [0,1] — G, that connects the distinguished point x)
to x. Then ¢ o o connects x to y.

(6) 7 is locally topological: Let y = ¢a(x) be a point of G, and z = 7(y) =
mx(x). Then there exist open neighborhoods U = U(zx) C G and W =
W(z) C C™ such that my : U — W is a topological mapping. U = wx(U)
?s an opern neigEborhood of y, with F(U) = mA(U) = W. In addition, 7| is
injective, since 7 o ¢x = my and my|y is injective.
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(7 ) Clearly, the maps @) : Gy — G are fiber preserving, and it was already
shown that they are continuous. u

Now G has the following properties:

1. Gy < G, for every X € L. N
2. If G* 1s a domain over C™ with G, < G* for every A, then G < G*

PROOF: (of the second statement)

If G* is given, then there exist fiber preserving mappings @3 Gy — G*, We
introduce a new equivalence relation ~ on the disjoint union X of the Gy by

Nz = z€G) 1 €G,and g} (z) =p,(z')

[t follows from the uniqueness of lifting that ~ has the property (P).Now we
define a map ¢ :G — G* by

p(pa(z)) = @i(z).

Since ~p 1s the finest equivalence relation with property (P),e 1s well defined.
Also it 1s clear that ¢ 1s continuous and fiber preserving. u

Therefore (_3 is the smallest Riemann domain over C” that contains all do-
mains G,.

Definition. The domain G constructed as above 1s called the union of
the domains Gy, and we write G =J, .1, G-

Special cases:

1. From G, < G and Gy < G it follows that G; U Gs < G.
From G, < G, it follows that G; U Gy = Go.
GgUG=G.

G1UG2 = Ga UG

. G1U (G UGs) = (G1 UG2) UGs.

CU s Lo 1D

Example

Let G1 = (G, m,x1) be the Riemann surface of /2 with distinguished point
r1 =(1,1) and G3 = (Ga,1d, z2) the schlicht domain

1
G2={ze<c :§<|z|<2)

with distinguished point x5 = 1.
Then gl UGy = (é,%j 50), where é = (Gl O Gz)/ ~p.

Let y € m;*(G2) C G:1. Then we can connect y to the point Z1 by a path
a in 77 1(G2), and 71 (y) to z2 by the path 71 o @ in G2. But 1 ~p %2, SO
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y ~p 71(y) as well. This shows that over each point of G2 there is exactly
one equivalence class.

Now let z € C — {0} be arbitrary. The line through 2z and 0 in € contains a
segment « : [0,1] — @* that connects 2 to a point 2* € Ga. There are two
paths aq, 09 in Gy with 1 o1 = T o2 = a. Since a1 (1) ~p az(1), it
follows that a1 (0) ~p a2(0).

Then it follows that G1 UGy = (C — {0},id, 1).

Exercises

1. For t = (tl}...,tn) € ¥ define @t:(C” — C" by
Qi(21,. -0y 2n) 1= (eitlzl,. ..,eit”zn).

A Riemann domain G = (G, 7, xo) 18 called a Reinhardt domain over

C™ if w(zg) = O and for every t € ¥ — (C*)™ there is an isomorphism

py G — G with mo ¢y = ¢ o7. Prove:

(a) f G C C™ is a proper Reinhardt domain, then § = (G,id,0) is a
Reinhardt domain over C”.

(b) Let G, G, C C? be defined by

1 1
Gi1 = P%*0,1) — {(z,'w) |z| = 2 and |w| < §}a
1
Gy = {(z,w) c P4(0,1) : |w| < 5}

Gluing G, and Gy along {(z,w) : L < 2| < land|w| < 3} one
obtains a Riemann domain over C? that is a Reinhardt domain over
C?, but not schlicht. Show that this domain can be obtained as the

union of G = (Gl,id, (2, %)) and Go = (Gg, id, (2, %))

2. Let J ={0,1,2,3,...} C Ny be a finite or infinite sequence of natural
numbers and P, = P"(z;,r;), ¢ € J, a sequence of polydisks in C”.
Assume that for every pair (¢,7) € J x J an "incidence number" €;; €
{0,1} is given such that the following hold:

(a) €i5 = &1 and ¢;; = 1.

(b) €, =01szﬂPJ = .

(¢) For every ¢ >0 1in J there 1s a 7 <1 with ¢;; = 1.
(d) It F’z M Pj ) Pk 75 & and Eij = l,then ik =E4k-

Points z € P; and w € P; are called equvalent (z ~ w) if Z = w and

e;; = 1.Prove that G :={J F;/ ~ carries 1n a natural way the structure
of a Riemann domain over C".

Let # : G — C" be the canonical projection and suppose that there 1s a

point Zp € [ );cs Pi. Is there a point zo € G such that (G,n, xg) can be
written as the union of the Riemann domains (FP;,1d,zq)?
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9. The Envelope of Holomorphy

Holomorphy on Riemann Domains

Definition. Let (G,7) be a domain over C". A function f : G —» C
is called holomorphic at a point x € G 1if there are open neighborhoods
U=U(x) ¢ Gand V = V(7m(z)) ¢ C" such that 7|y : U — V is
topological and f o (w|y)~ ' : V — C is holomorphic. The function f is
called holomorphic on G if f 1s holomorphic at every point x € G.

Remark. A holomorphic function is always continuous. For schlicht do-
mains in @" the new notion of holomorphy agrees with the old one.

Definition. Let G; =(G;,7;,%;),j = 1,2, be domains over C" with
distinguished point, and g1 < G2 by virtue of a continuous mapping
¢ :G1 — G4. For every function f on G2 we define flg, =f o ¢.

9.1 Proposition. Iff : Gz — C is holomorphic and G1 < Gz, then flg, is .;

holomorphic on G1.

Proor: Trivial, since ¢ is a local homeomorphism with T 0 =m.  ®
Definition.

1. Let (G,r) be a domain over C" and = € G a point. If f is a holo-
morphic function defined near x, then the pair (f, ) is called a local
holomorphic function at x.

2. Let (Gy,7m1), (G2,m2) be domains over C*, and 1 € G1, 72 € G2
points with m;(z1) = m2(x2) =:z. Two local holomorphic functions
(f1,71), (f2,22) are called equivalent if there exist open neighbor-
hoods Ui (z1) C G1, Ua(z2) € Gz, V(2z), and topological ma?pings
m U = V,mp :Uy = V with fy o (mi]y,) ™" = fao (m2lu,)” £

3. The equivalence class of a local holomorphic function ( f, x ) 1s denoted

by fz-

I‘ .

Remark. I (fi)z, = (f2)s,, then clearly, fi(z1) = f2(x2). In particular,
if G1 =Gg, mp =7, and 1 = T3, then it follows that f1 and fo coincide in
an open neighborhood of 1 = 3.
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9.2 Proposition. Let (Gy,m), (G2, m2) be domains over C*, ay :]0,1] —
G\ continuouspaths withm oo = meows. Additionally, let fy be holomorphic
on Gy, for X =1,2. If (f1)a;(0) = (f2)as(0), then also (fi)a,(1) = (f2)asz(1)-

PrOOF: Let M :={t€ [0,1] : (f1)er(t) = (f2)as(ty}- Then M # @, since
0 € M. It is easy to see that M is open and closed in [0, 1], because of the
identity theorem for holomorphic functions. So M =0, 1]. =

9.3 Proposition. LetG; =(G,,m;,x;),j =1,2, be domains over C™ with
distinguished point, and Gy < Gz. Then for every holomorphic function f on
(1 there is at most one holomorphic function F on Gy with Flg, = f, i.e.,
a possible holomorphic extension off is uniquely determined.

PROOF: Let Fq, F, be holomorphic extensions of f to Go. We choose neigh-
borhoods Uy(zy) C G, suchthat the given fiber-preserving map ¢ :Gp + G5
maps U; topologically onto Us. We have F; o o|y, = f|u,, forj =1,2, and
therefore F1|y, = Faly,. It follows that (F4),, = (F3)s,. Since each point of
(2 can be joined to x2, the equality Fy = F5 follows. -

Envelopes of Holomorphy

Definition. LetG = (G,m, xp) be a domain over C™ with distinguished
point and .# a nonempty set of holomorphic functions on G.

Let (Gx)aer be the system of all domains over C" with the following
properties:
1. G < G, forevery A € L.
2. For every f € % and every A € L there i1s a holomorphic function
F on G, with FAIG =TF.
Then Hz(G) :=J, G 18 called the 9-hull of G.

If # = O(G) is the set of all holomorphic functions on G, then H(G) :=
Hoqy(G) is called the envelope of holomorphy of G. If # = {f} for
some holomorphic function f on G, then Hy(G) :=Hsy(G) 1s called the
domain o existence of the function f.

9.4 Theorem. LetG = (G, xq) be a domain over C*, & a nonempty set

o holomorphic functions on G, and Hgz(G) = (G, 7,zo) the 9-hull. Then
the following hold.:

1. G < Hg: (g)
2. For each function I € F there exists exactly one holomorphic function

FonG withF|lg=1.
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3. IfGy = (G1,71,x1) is a domain over C™ such thatG < G and every func-
tion f € % can be holomorphically extended to G1, then G1 < Hz(G).

PROOF: Hgz(G) is the union of all Riemann domains Gy = (G, 7, x)) to
which each function f € % can be extended. We have fiber-preserving maps
ox :G— Gy and @y :Gr — G.

Let ~p be the finest equivalence relation on X :=J,.; G, with property

(P).® Then G is the set of equivalence classes in X relative to ~p. We define
a new equivalence relation >~ on X by

x~7z e= zeGyI €GqG, mx)=r,(z), and for each f € F

and its holomorphic extensions F7, I3 on Gy, respectively G,,

we have (F)\)z = (Fp)a'-

Then ~ has property (P):

(i)For any A we can find open neighborhoods U = U(zg), V = V(z,), and
W =W (w(zg)) such that all mappings in the following commutative dia-

gram are homeomorphisms:
LA

U > v
’H’\ /ﬂ-)\
|14

Then for f € % and its holomorphic extension £ on G we have that
Fyo(my)™t = Fyopyo (7lg)™! = f o (w|y)~" is independent of A.
Therefore, all distinguished points x are equivalent.

(iiJffa :[0,1] — Gy and 8 :[0,1] — G, are continuous paths with «(0) =~ 3(0)
and myoa =7, © B, then (FA)Q(O) — (Fg)ﬁ(0)~ It follows that (F)\)a(l) =
(F,)g1y as well, and therefore a(1) =~ B(1).

Since G < G, and Gy < Hz(G), it follows that G < Hx(G). Furthermore, the
fiber preserving map @ = Py o @ does not depend on A.

Now let a function f € .# be given. We construct a holomorphic extension
F on G as follows:

Ify e G is an arbitrary point, then there is a A € L and a point yx € G
such that y = ¥ (y»), and we define

F(y) .= Fx(yr)-

If y =3,(y,) as well, then y, ~p y,, and therefore yx > y, as well. It tollows

that Fy\(y)) = F,(y,), and F is well defined.
® For the definition of property (P) see page 92.

e ¥ 'th?_’:f‘?%'s":hqi"r‘ﬁ”?-'.“f-.'z-'-'-‘:"+1;~?r AL e e U
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We have F o p = F o py oy, = Fy oy = f on G. This shows that F 1s
an extension of f, and from the equation F' o )y = F) 1t follows that F 1S
holomorphic (since () 1s locally topological).

The maximality of H z(G) follows by construction. m

The 9-hull H4(G) is therefore the largest domain into which all functions
f € % can te holomorphically extended.

9.5 Identity theorem. Let G; = (Gj,75,x;), ] = 1,2, be domains over
C", and G = (G, 7, %) the union of G1 and G2. Let f; :G; — C be holomor-
phic functions and § = (G,7,x) a domain with G < G; forj = 1,2 such that

file = f2|lg. Then there is a holomorphic function f on G with ﬂ(;j = f;,

for 3 =1,2.

PROOF: Let f := filg = fale, and F :={f}. Since G < Hz(G) and
G2 < Hz(G), it follows that G; UGy < Hz(G).

Let f be a holomorphic extension off to G (where Hz(G) = (@, T,Z)), and
f = .ﬂé' Then

—— o~ o

(Fle)le = fle = (Flz)le = fle = f

Therefore, J?lG:, 1s a holomorphic extension off to ;. Due to the uniqueness
of holomorphic extension, f|g, = f; forj =1, 2. =

Pseudoconvexity. Let P" ¢ C” be the unit polydisk, (P™, H) a Eu-
clidean Hartogs figure, and & : P* — C" an injective holomorphic map-
ping. Then (®(P™), ®(H)) is a generalized Hartogs figure. P = (P, @, 0) and
H = (H,®,0) are Riemann domains with H < P. We regard the pair (P,H)
as a generalized Hartogs figure.

9.6 Proposition. Let (G,7w) be a domain over C*, (P, H) a generalized
Hartogs figure, and xo € G a point for which H < G :=(G,m,xg).

Then every holomorphic function f on G can be extended holomorphically to
GUP.

The proposition follows immediately from the 1dentity theorem.

Definition. A domain (G, ) over C" 1s called Hartogs convex if the
fact that (P ) is a generalized Hartogs figure and x¢ € G a point with
H<G :=(G,m,xp) implies GUP = G.

A domain G = (G, 7, o) over C" is called a domain of holomorphy if there
exists a holomorphic function f on G such that its domain of existence
1S equal to G.
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Remark. If G C C" is a schlicht domain, then the new definition agrees
with the old one.

9.7 Theorem.

1. If G = (G, xg) is a domain over C* and # a nonempty set of holo-
morphic functions on G, then H#(G) is Hartogs convex.
2. bvery domain of holomorphy is Hartogs convex.

PROOF: Let (P, H) be a generalized Hartogs figure with H < H#(¢). Then
every function f € .# has a holomorphic continuation to H #(G) UP .There-
fore, Hz(G) U P + Hz(G). On the other hand, we also have Hz(G) <
Hz(G) UP soHz(G)UP= Hz(G). .

A Riemann domain (G, ) 1s called holomorphically convex if for every infinite
discrete subset D C G there exists a holomorphic function f on G that is
unbounded on D.

9.8 Theorem (Oka, 1953). If a Riemann domain (G mx) is Hartogs pseu-
doconuex, it is holomorphically convex (and therefore a domain of holomor-

phy).

This is the solution of Levi’s problem for Riemann domains over C". We
cannot give the proof here.

It seems possible to construct the holomorphic hull by adjoining Hartogs
figures (cf. H. Langmaak, [La60]). It is conceivable that such a construction
may be realized with the help of a computer, but until now (spring 2002) no
successful attempt 1s known. We assume that parallel computer methods are
necessary.

Boundary Points. In the literature other notions of pseudoconvexity
are used. We want to give a rough 1dea of these methods.

Definition. Let X be a topological space. A filter (basis) on X 1S a

nonempty set R of subsets of X with the following properties:
1.9 € K.

2. The 1ntersection of two elements of R contains again an element of
the set R.

Example

1. I z¢ is a point of X, then every fundamental system of neighborhoods
of zg 1n X 1s a filter, called a neighborhood filter of xo.
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2. Let (zn) be a sequence of points of X . If we define Sy = {z, : n >
N}, then R :={Sy : N &€ N} is the so-called elementary filter of the
sequence (). A filter is therefore the generalization of a sequence.

Definition. A point xo € X 1s called a cluster point of the filter R if
o € A, for every A € R. The point zq is called a limit of the filter R if
every element of a fundamental system of neighborhoods of zy contains
an element of R.

For sequences the new notions agree with the old ones.

It f:X — Y 18 a continuous map, then the image of any filter on X 18 a
filter on Y, the so-called direct image.

Definition. Let (G,7) be a Riemann domain over C". An accessible
boundary point of (G, )is a filter R on G with the following properties:
1. R has no cluster point in G.
2. The direct image #(R) has a limit zy € C™.
3. For every connected open neighborhood V = V(zy) C C" there is
exactly one connected component of 7—1(V) that belongs to R.
4. For every element U € R there is a neighborhood V = V(zy) such
that U is a connected component of 7= (V).

Remark. For a Hausdorff space X the following hold:

1. A filter in X has at most one limit.

2. If a filter in X has the Iimit zq, then zg is the only cluster point of this
filter.

(for a proof see Bourbaki, [Bou66], § 8.1)

Therefore, the Iimit zg 1n the definmition above is uniquely determined.

There 1s an equivalent description of accessible boundary points that avoids

the filter concept. For this consider sequences (z,) of points of G with the
following properties:

1. (z,) has nu cluster point in G.
2. The sequence of the images n(z, ) has a limit zg € C™.
3. For every connected open neighborhood V = V(zy3) C C” there is an

o € N such that for n,m > ng the points x, and z,, can be joined by a
continuous path « :[0,1] - G with 7 o ([0,1]) C V.

Two such sequences (z.), (y,) are called equivalent if

1. lim, 77(37:/) = limu—-}oo 'J'T(yy) =Zy.

2. For every connected open neighborhood V = V(z) there 18 an ny such
that for n, m > rmo the points x, and y,, can be joined by a continuous
path a :[0,1] - G with noa([0,1]) C V.
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An accessible boundary point 1s an equivalence class of such sequences.

Let 8G be the set of all accessible boundary points of G. Even if G is schlicht,
this set may be different from the topological boundary 8G. There may be
points in G that are not accessible, and it may be happen that an accessible
boundary point 1s the limit of two mequivalent sequences.

We define G :=GUIG. If ro = |x,] is an accessible boundary point, we define
a ncighborhood of rp in G as follows: Take a connected open set U C G
such that almost all z,, lie in U and w(U) is contained in a neighborhood
of zg = lim,, o 7(Z,). Then add all boundary points » = [y,] such that
almost all y,, liec in U and lim,, oo 7(yn) i$ a cluster point of 7(U). With this
neighborhood definition G becomes a Hausdorff space, and @ : G — C” with

m(z) if x € G,
7(z) ;=) Hm w(z,) if x =[z,] € 0G,
Tt -—— OO0

1S a continuous mapping.

Definition. A boundary point r € 8 is called removable if there is

L

a connected open neighborhood U = U(r) ¢ G such that (U, %) is a

schlicht Riemann domain over C™ and 3G NU is locally contained 1n a
proper analytic subset of U.

A subset M C OG is called rhin if for every ro € M there 18 an open
neighborhood U = U(rg) C G and a nowhere identically vanishing holo-
morphic function f on U N G such that for every r € M N U there exists
a sequence (z,) in U NG converging to r such that im,, . f(z,) = 0.

Example

Let G C C” be a (schlicht) domain and A C G a nowhere dense analytic
subset. Then every point of A is a removable boundary point of G’ :=G — A.

The points of the boundary of the hyperball B,.(0) C C™ are all not removable.

Let B be a ball in the affine hyperplane H = {(zg, ...,2,) € C"T* : 29 =1},
and G ¢ C*+! — {0} the cone over B. Then every boundary point of G is
not removable, since locally the boundary has real dimension 2z + 1.The set
M :={0} is thin in the boundary, as is seen by choosing f(zo, ...,2n) = 2o.

Analytic Disks. Let (G,n) be a Riemann domain over C". If ¢ :D — G
is a continuous mapping, 7o : D — C™ holomorphic, and (7 ov)'(¢) # 0 for
¢ € D, then S :=p(D) is called an analytic disk in G. The set bS :=¢(dD)
18 called 1ts boundary.

T - " . - . . . T Sn l'.. "'.. . g,
g e i [ S : . . - - : Tt Ee b e AR an et e s T B e ey Ry IR i T =
Gy R AR | T PR Y (T O ot A TER SRS SUR L B WL S P P Ty F L E g Ty e, M LU Ll et o, . i e PR A
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Let I := |0,1] be the unit interval. A family (S;):er of analytic disks (D)
in G is called continuous if the mapping (z,t) — ¢:(2) is continuous. It is
called distinguished if S; C GforO<r < land 6S5;: C Gfor0 < < 1.

Definition. The domain G 1s called pseudoconvex it for every distin-

guished continuous family (S;):er of analytic disks in G it follows that
51 CG.

The domain G is called pseudoconvex at r € 8G if there 1S a neighborhood
U =U(r) C G and an € > 0 such that for every distinguished continuous
family (S;)ter of analytic disks in G with 7(S;) C B.(7(r)) it follows
that S:NU C G forte I

As in C™ one can show that a Riemann domain is pseudoconvex if and only
if 1t 18 Hartogs pseudoconvex.

9.9 Theorem (Oka). A Riemann domain (G, 7) is pseudoconvex if and
only if it is pseudoconvex at every point r € 8G.

9.10 Corollary. If (G,w) is a domain of holomorphy, then G is pseudo-
convex at every accessible boundary point.

The converse theorem i1s Oka’s solution of Levi's problem.

Finally, we mention the following result:

9.11 Theorem. Let (G,x) be a Riemann domain over C*, and M C 8G

a thin set o nonremovable boundary points. It G is pseudoconvex at every
point of 8G — M, then G is pseudoconvex.

PROOF: See [GrRe56], §3, Satz 4. n

Exercises

1. Prove that a Reinhardt domain G over C™ must be schlicht if it is a
domain of holomorphy.

2. Prove that if (G, 7) is a Reinhardt domain, then for every f € O(G)
there is a power series S(z) at the origin such that f(x) = S(n(z)) for
x € @G.

3. Prove that the envelope of holomorphy of a Reinhardt domain 1s again a
Reinhardt domain.

4. Prove that the Riemann surface of the function f(z) = log(z) has just
one boundary point over 0 € C.

5. Find a schlicht Riemann domain in C? whose envelope of holomorphy is
not schlicht.

6. Construct a Riemann domain ¢ = (G, r,zg) over C? such that for all
x,y € 7~ m(x0)) and every f € O(G) the equality f(z) = f(y) holds.
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7. Let (G,w) be a Riemann domain and (5’, ) its envelope of holomorphy.
If f 1s a holomorphic function on G and F its holomorphic extension to

G, then f(G) = F(G).
3. Consider
1

{(z,w) 5 < z| < 1,

et,w) : z<r<1,t>0and |w

G

'w|<1}

Determine the envelope of holomorphy of G.

9. Let G C C™ be a domain and p : G — R a plurisubharmonic function.
If zo is an accessible boundary point of B :={z € G : p(z) <c} CC G,
then B 18 pseudoconvex at zg, 1n the sense of the last paragraph.

Chapter III

Analytic Sets

1. The Algebra of Power Series

The Banach Algebra Bs. In this chapter we shall deal more exten-
sively with power series in C™. Our objective is to find a division algorithm
for power series that will facilitate our mvestigation of analytic sets.

We denote by C[z] the ring of formal power series ), ., a,2z” about the
origin. Let R" be the set of n-tuples of positive real numbers.

Definition. Lett =(t1,...,tp) € R and f =) ,a,2" € C[z]. We
define the “number” || f||¢ by B

1] _ﬂ__{ szolayﬁ“ it this series converges,
" o0 otherwise.

Let By = {f € Clz] : || f]le < oo}.

Remark. One can introduce a weak ordering on R if one defines

(P, o stn) < (E], .., 1) &= §; <t fori=1,...,n.

For fixed f, the function t — || f{|¢ is monotone: If t < t* then || fll¢ < || file«.

Definition. A set B is called a complex Banach algebra if the following
conditions are satisfied:
1. There are operations

+:BxB—-B, -:CxB—->B and o:BxB-—>B

such that
(a) (B,+,-) is a complex vector space,
(b) ( B,+,0) is a commutative ring with 1,
() c.(fog)=(c.flog=fo(c.g)forall f,ge B and ce C.
2. To every f € B a real number ||f|| > 0 is assigned that has the

properties of a norm:
() lle- fll =lel If]l, for c € C and f € B,

(b) IIf +gll <l +llgll, for f,g € B,
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(¢) Il =0 <= f 0

3. If ogll < I Nigll, for f,9 € B.

4. B 1s complete; 1.e., every sequence 1n B that 1s Cauchy with respect
to the norm has a limit in B.

1.1 Theorem. B: ={f € C[z] :|flls <o} is a complex Banach algebra
for any t € RL.

PROOF: Clearly, C[z] is a commutative C-algebra with 1. Straightforward
calculations show that ||. . .||s satisfies the properties (2a), (2b), (2¢) and (3).1t

followsthat By is closed under the algebraic operations, and all that remains
to be shown 1s completeness.

Let (fx) be a Cauchy sequence in By with fx =)_,5¢a, 2”. Then for every
e > (0 there is an n =n(¢) € N such that for all A, 4 2 n,

Solal — e =Ilfx = fulle <e

>0

Since t¥ = #* . ..t¥» # 0, it follows that

E
lafd —al | < = for every v € Ng.

For fixed v, (alV) is therefore a Cauchy sequence in C which converges to a
complex number a,.

Let f :=)_,>0@ 2" - This is an element of C[z].
Given S > 0, it follows that there exists an n =n(d) such that

0
ZI a® — g0+ lt"" <—- forx>nandp €N

2
v >0

Let I ¢ N be an arbitrary finite set. For any A > n there exists a it = p(A) €
N such that >, ;lal™ —a,|t” <d/2, and then

> af ~a

vel

t¥ <§, for\>n.

In particular, ||fy — fll¢ < 6. Thus fi — f (and then also f) belongs to Bk,
and (f») converges to f . -

Expansion with Respect to 2;. For the following we require some
additional notation:

IfrveNj, teRY, and z € C*, write
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Vv = (I/]_,V’)j t = (tljt’), and Z — (Zl,Z;).

An element f =) .,a,z" € C[z] can be written in the form

f=2_hz, with fi(2) =D apwniz'}”
A=0

v’ >0

The series f, are formal power series in the variables 2z, .. .,z,. We call this

representation of f the expansion o ff with respect to z;. Now the following
assertions hold:

1. f€ By < fr € By forall A, and Z||f)\||t;ti‘ < 00.
X=0
2. |27 . flle =t3 .|If]l¢ , for s € No.

PROOEF:

(1) Since we are dealing with absolute convergence, 1t 1s clear that

OO
1flle =D IAallet?.
A=0

(2) We have 28 . f =337 faz; . The right side is the unique expansion of
zi . f with respect to z;. Now the formula can be easily derived. .

Convergent Series in Banach Algebras. Let B be a complex
Banach algebra and (f)) a sequence of elements of B. The series > ., fa

converges to an element f € B if the sequence Fi, :=}:§’:1 fx converges to
f with respect to the given norm.

1.2 Proposition. Every f € B with||1 — fl|| < 1is a unit in B with

R - 1
f7r=0 =N and |If 71 < .
/\;0 =17
ProoOF: Let £ :=|[1 - f||. Then 0 < ¢ < 1,and the convergent geometric

series Y 5. o &~ dominates the series 5. (1 — f)*. As usual, it follows that
this series converges to an element g € B. We have

f.5°a-0 = a-a-,).y a-4r
X=0

X=0
_ iu p=Sa-
A=0 X=l
= 1-( -

As n tends to infinity we obtain f .g = 1and ||g|| < Ziozo £ — 1/(1 —¢). m
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Convergent Power Series. A formal power series f = Y_,>g a,z” 18

called convergent if it is convergent in some polydisk P around the origin. In
that case there exists a point t € P N R%Y, and since f converges absolutely
at t, it follows that f € B¢. On the other hand, if f € B¢, then by Abel’s

lemma f converges in P =P™(0,t).
1.3 Theorem.

1. H, := {f € Clz] : 3t € R} with ||f|lt < oo} is the set of convergent
power series.

2. H,, is a C-algebra.
3. There is no zerodivisor in H,: If f .¢ =0 inH, thenf =0 org =0.

We have already proved the first part, and then the second part follows easily.
The last part is trivial, since C[z] contains no zero divisors.

Remark. If f is convergent and f(0) = 0, then for every € > 0 there is
at € R} with |[f||¢ <e. In fact, since f(0) = 0, we have a representation

f=zfit+ - +znfn I flle < oo, thenalso ||fille <oofori=1,..,n, and

1£lle =D till fille < max(te,...,tn) - > I fille

=1 =1

This expression becomes arbitrarily small as t — 0.

When we go from By to H,, we lose the norm and the Banach algebra
structure, but we gain new algebraic properties:

1. f€e Hy,isaunit <= f(0)# 0.

PROOF: One direction is trivial. For the other one suppose that f(0) #£ 0.
Then g :=J . f(0)~! — 1is an element of H, with g(0) = 0. So there |
exists a t with ||gflt < 1,and f .f(0)~! is a unit in B;. Thus f is a unit

n H,,. n

2. The set m :={f € H, : f(0) =0} of all nonunits in H,, is an ideal:
(@) fufoem =3 it fpem
(b) femand h€ H, = h-fem.

An ideal a in a ring R is called maximal if for every ideal b with aC b C R
it followsthat a =b or b = R.

One can show that in any commutative ring with 1+# 0 there exists a maximal
ideal. If a C R is maximal, then R/a is a field.

1.4 Theorem. The set m of nonunits is the unique maximal ideal in H,
and Hy, /m = C.

Proor: I a C H, isaproperideal, then it cannot contain a unit. Therefore,
it is contained in m. The homomorphism ¢ : H, — C given by f — [f (0) is
surjective and has m as kernel. -

S ot i
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Distinguished Directions. An element f € H, is called zl-regular of
order k 1if there exists a power series fp(z1) 1n one variable such that:

1. f(21,0,...,0) =2z¥ . fo(z1).
2. fo(0) #0.

If fis zy-regular of some order, f 1s called z;-regular.

Let f(z) = >_5., /rzy be the expansion of f with respect to z;. Then f is
z1-regular of order & if and only if fo(0") = ... = fr_1(0’) = 0 and f,(0") # 0.
f is zl-regular if and only if f(z1,0,...,0)% 0.

We often need the following properties:

1. fisaunit in H, <= f is 21-regular of order O.
2. If fy 1s zl-regular of order k), for A = 1,2, then f; . fy 1s z1-regular of
order ky T ko.

There are elements f # 0 of H,, that £ (0)= 0 which are not z;-regular, even
after exchanging the coordinates.

Definition.  Tet ¢ = (e3,...,c,) be an element of C*~!, The linear
map ogc :C"* — C™ with
O'C(Z]j ce zn) .= (Z]_, 2o + C2Z21,--.,2n + anl)

is called a shear.

The set 32 of all shears 1s a subgroup of the group of linear automorphisms
of Cn, with Jg = id@n.

We can write o.(z) :=z T2z .(0,¢).In particular, we have o¢(e;) = (1,¢).

1.5 Theorem. Let f € H,, be a nonzero element. Then there exists a shear
o such that f oo is z1-reqular.

PROOF: Assume that f converges in the polydisk P. If we had f(z1,2") =0
for every point (z;,z') € P with z; # 0, then by continuity we would have
f = 0, which can be excluded. Therefore, there exists a point a =(ay,a’) € P
with a; # 0 and f(a) # 0. We define ¢ :=(a;)~! .a’and ¢ :=0.. Now,

foo(a,0") = f(a1 .oc(e1)) = flay .(1,¢)) = f(a) #0.

So foo(z,0") #0, and f oo 1s 21-regular. .
Remark. If f1,...,f; are nonzero elements in H,,, then f :=f;-..fi # 0
converges on a polydisc P, and there exists a point a € P with f (a)# 0 and
a1 # 0. As in the proof above we obtain a shear ¢ such that fyo0,...,fic0

are zl-regular.
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Exercises Then there exists exactly one q € B and one r € B'|z| with deg(r) < s such

that
1.Let f(z) = },,>0 2" be a formal power series.

(a) Prove the "Cauchy estimates": f € By = l|a,| < ||flle/t” for
almost every V.

(b) Prove that if there is a constant C' with |a,|s” < C, then f € B for
I < s.

(¢) Let f,(z) =Y, g0 nZ” be asequence of power series with || fr]ls <
C. If every sequence (a,,) converges in C to a number a, then
show that (f,) is a Cauchy sequence in By converging to f(z) =
Y. o @z, for every 1 < s.

f=q.g+rj

with

lgs - all < t7° -1 £1l- 1%

and

2. The Krull topology on H,, is defined as follows: A sequence ( fn) CONvVerges
in H, to f if for every k € N there is an ng with f — f, € m* forn > ng.
What are the open setsin H,? Is H, with the Krull topology a Hausdorff
space? PROOF: Let us first try to explain the 1dea of the proof. I # € B, then there

3. Let B be a complex Banach algebra with 1. Show that for every f < b _j= 18 a unique decomposition i = g - 2§ +ry, where r, € B'[z] and deg(ry) < s.
the series exp(f) =Y ., f*/n! is convergent, and that exp(f) is a unit If ¢ is given, we define an operator T =T, : B — B by
n B,

4, If f is a formal power series and f =5 5. P its expansion into homo- T(h) :=g-g;" .qn tra
gencous polynomials, then the order of f 1s defined to be the number

Iril < Il —

If T were an isomorphism, then f =T(T~1f) =g-(g-!-gp-: £)+rr-1 would
ord(f) :=min{s € Ny : p; # 0). be the desired decomposition. One knows from Banach space theory tlgat T 18
an 1somorphism if idg — T is "small" in some sense. Since ||(idg — T)(h)|| =

Now let (fn) be a sequence of formal power series such that for every |27 — 995 || ‘HQhHa one can, in fact, conclude from the hYPOth_eSiS of the
k € N there is an ng with ord(f,) > k for n > ng. Show that fol fn 18 theorem that idg — 7T is "small." Now T~ ! = 5% o(idg —T)*. Since (idp —
a formal power series. Use this technique also for the following: T)°f = fand (idg—T)'f = (2§ —gg; ')q, we obtain the following algorithm:
Ifg1,. ..,9m are elements of H, with ord(g;) > 1,then Inductively we define sequences fx, gy, rx beginning with fo =/ =z{gy +ro.

If fx =2gx + 7, has been constructed for some X > 0, then we define

Z a, wh — Z (91(2), - - gm(2))"

1>0 >0 fas1 = (7 - 995 ) an,

defines a homomorphism ¢ : H,, — H, of complex algebras. and obtain ¢x41 and ry4+; by the unique decomposition

Fasr = 2{gg + aga, ra+1 € B'[z1]  with deg(ryyi) < s.

2. The Preparation Theorem If we define ¢ == 3" g=lgy and r =" 7, then

Division with Remainder in By. Let a fixed clement t € R} be N N
chosen. When no confusion is possible we write B in place of By, B’ in place f_ fo _ Z iy — Z i
of By, and || f|| in place of || f||¢- The ring of polynomials in 2; with coefficients N I PR i
in B’ is denoted by B’[z1]. 00

2.1 Weierstrass Formula in By. Let f and g = Y aeo 9221 be two = Z(f A Sas)

elements of B. Assume that there exists an s € Ng and a real number E with
0 <E < 1such that g5 is aunitin B' and ||2§ — g g7 || <e-t5.

3 I

— (ggs Q)\’I'TA) = g-q—+r.
X=0
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When using this algorithm we do not need the abstract transformation 7
and the Banach theory of such transformations. However, it 1s necessary to
prove the convergence of all of the series that were used.

For this let & :=—(z{ — gg;'). Then ||hl| < .£5 and gg; ! = 2§ + A.

From fy = z{gx + 7 it follows that ||rall  WIA)| and Jlga]  W° I fall:
Furthermore, from fa+1 = —h - qx it follows that

1A+l R ol < e [IAN

Thus || fa]| < e £l and > 5—q f converges.

Since S
lg tanll < eM7%Nga H fFll and  {irall < €M £

. — OO
the series g = Zio-:o g;tgxn and r =) _g 7 also converge.

The estimates for [[gs¢|l and || f] follow readily:

o . 1
lsal < Dllaall < 01D = oA
A=0

L
1 —¢

Il < D lmall < WA

It still remains to show uniqueness. Assuming that there are two expressions
of the form

f=q9+7r =qg+r2,
it follows that

0 —(q1 —q2) .9+ (1 —72) = (@1 — @2)9s21 + (@1 — @2)gsh + (11 —12)

and
1(g1 —q2)gs27l] B I[(q1 — g2)9s27 + (11 — 72
= ”(QI —Q2)gshn
< ety (g1 — q2)9sll
= &-l(ar —g2)gs21 |-
Since 0 <e < 1,(q1 — ¢2)gs2{ =0. Therefore, ¢1 = g2 and r; =r2. _

2.2 Corollary. If the assumptions of the theorem are satisfied and if in
addition f € B'[z1], g € B’[z1], and deg(g) = s, then ¢ € B’{z;] with ¢ =0
or deg(q) =deg(f) — s.

PROOF: Let d :=deg(f). For d < s we have the decomposition f =0-g+ f.
Hence we have to consider only the case d > s.

.....
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We assume that deg(f,) < d forp =0,...,A. Then deg(g)) < d - s, and
therefore

deg(fa+1) =deg(fA — ) —QQQIQ’A) Boax(d,s — 1,5+ (d-s5))=4d.

Hence deg(fy) < d and deg(qy) < d—sforall A. It followsthat deg(q) < d—s,
and from f =g .¢ +r we can conclude that deg(q) =d — s. =

The Weilerstrass Condition. We use the notation from above.

Definition. Let s € Ng. An element g = 5., gx27 € B satisfies the
Weierstrass condition (or W-condition) at position s if

1. g5 1s a unit 1n B'.
2. 12§ — g9t < 5t5.

Let R be an integral domain.' A polynomial f(u) = feu® + fe_ w1+ ...+
fiv + fo € R|u] is called monic or normalized if fs = 1. A polynomial
f € B'[~] is normalized if and only if it is z;-regular of some order k < s.

2.3 Weierstrass preparation theorem in B;. If'g & B satisfies the W-
condition at position s, then there exists exactly one normalized polynomial

w € B'[z1] of degree s and one unit ¢ € B such that g =¢ . w.

PROOF: We apply the Weierstrass formula to f = z{. There are uniquely
determined elements ¢ € B and r € B’|z;] with 2§ =¢-g+r and deg(r) < s
(we choose an € < = such that |25 — gg;!|| < et5).

But then 2§ — gg; ' = (¢ — g;1)g *+r is a decomposition in the sense of the
Weierstrass formula. Therefore, we have the estimate

1 E
. 1 < t—S 8 . —1 .
l9sq = LI < #7°l|21 =99, || - 77— < 7

< 1.

That means that g,¢ and hence gis aunitin B.Lete :=¢ ' andw :=2§ —r.
Then w is a normalized polynomial of degree s, and e .w =¢~ (2 — 1) =g.

If there are two decompositions g =eq(2{ —ry) =ea(2{ — 2}, then
2i =e;t g+ —ez1.g+ e

From the unmiqueness condition in the Weilerstrass formula i1t follows that

e =es and ry =1y, m

2.4 Corollary. Jf ¢ is a polynomial in z;, then e is also a polynomial in
AR

! An integral domain is a commutative nonzero ring in which the product of two
nonzero elements 18 nonzero.
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PROOF: We use the decomposition 2§ — gg;! = (¢ — g;1)g +r. From the
Weierstrass formula it follows that

1
~1
Pl < 2 - 997t - == < - e <
Since w, = 1,1t 18 also true that
|2 —ww; | =1l2f —w|| =|irll <ti.

Therefore, g = e .w + 0 is a decomposition in the sense of the Weierstrass
formula, and the proposition follows from Corollary 2.2. .

The Weierstrass preparation theorem serves as a “preparation for the exami-
nation of the zeros of a holomorphic function.” If the function 1s represented
by a convergent power series g, and there exists a decomposition g = €-w with
a unit ¢ and a “pseudopolynomial” w(z1,z’) = 23 —i—Al(z")zf_l + -+ Ag(Z'),
then ¢ and w have the same zeros. However, the examination of w 1s simpler
than that of g.

Weierstrass Polynomials.Now we turn to the proof of the Weierstrass
formula and the preparation theorem for convergent power series.

The ring H,, is an integral domain with 1.If f € H,, and f(z) =Y 504 fa(z') 2}
with fy =0 for A\ > s, then f is an element of the polynomial ring H,_1[21].
If fs # 0, then deg(f) =s. I f is normalized and f,(0") =0 for A < s, then
f 1s zi-regular exactly of order s, and f(z1,0) = z7.

Definition. A normalized polynomial w € H,,_1[2;] with deg(w) = s
and w(z1,0") = 2] 1s called a Weierstrass polynomial.

We have seen that a normalized polynomial w € H,,_1[z] with deg(w) = s is
a Weierstrass polynomial if and only if it is z;-regular of order s. It follows

casily that the product of two Weilerstrass polynomials 1s again a Weierstrass
polynomial.

It g =e.wi1sthe product of a unmit and a Weierstrass polynomial of degree s,
then we also have that g i1s z;-regular of order s, since the unit e is zi-regular
of order 0. We now show that conversely, every z;-regular convergent power
series 18 the product of a unit and a Weierstrass polynomaial.

2.5 Theorem. Let g € H, be z -reqular of order s. Thenfor every € >0

and evey to € R there exists at < to such that g lies in B:, gs is a unit
in By, and (|27 — 995 e < € .t1.

PROOF: Letg = Zfio g)lzf‘ be the expansion of ¢ with respect to z1. Then
gr(0) =0for A =0,1,...,s — 1and g5(0’) # 0.

Since g is convergent, there exists a t1 < tg with ||glls, < 00. Then gx € By
for all A, and in particular,
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f(z’) s gs(of)_lgs(zr) — 1€ Bti'

Now, f(0"} = 0. Thus there exists a t2 < t; such that || f]l¢ < 1forall t < ¢s.
Therefore, g 1s a unit 1 By, and g an element of By .

Let h :=2§ —gg.'. Then h € By for all t < tz, and we have an expansion

h =35 ohxzt with o, =0, hy = —gxg;" for A # s, and h(0") = 0 for
A=01,...,s—1.

It £t; > 0 is sufficiently small, then

0 o0
| 32 mad |, <6 | X e
A A

=s5+1 =s+41

< t5 -
ts 19

t

forall t = (¢;,t’) < to. And since hy(0') =0 for A =0,...,s — 1, for every
small ¢; there exists a suitable t” such that

s—1
|3
A=0

Consequently, ||A|ly < E.15. .

s—1 -

= E Nhallets <5 - =

t 2
A=0

Remark. In a similar manner one can show that if ¢, ...,g9y € C|z] are
convergent power series and each ¢; 18 zi-regular of order s;, then for every
e >0 there 1s an arbitrary small t € R? for which

gi € By, (gi)s; 1S a unit in By and ||27° — ¢:(g; ;1

LR
<e.t]

Weierstrass Preparation Theorem

2.6 Theorem (Weierstrass division formula). Let g€ H,, be z1-regular
of order s. Thenfor every f € H, there are uniquely determined elements
q € H, and r € H,_1[z1] with deg(r) <s such that

f=q-g9+r
Iff and g are polynomials in z, with deg(g) = s, then q is also a polynomial.

PROOF: There exists a t € R} and an ¢ with 0 <& < 1such that f and g

lie in By, gs is a unit in By, and ||zf — gg. 'l < E.#5. It then follows from
the division formula in B, that there exist ¢ and r with f =q .g +7.

Let two decompositions of f be given:

f:Q’1'g+?‘1=92'g+?“2-
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We can find a t € R} such that f,q1,42,71,72 lie in By and g satisfies the

W-condition in By. From the Weierstrass formula in By 1t followsthat q; = g9
and ™ =T79. H

2.7 Theorem (Weierstrass preparation theorem). Letg &€ H, be 2 -
regular of order s. Then there exists a uniquely determined unit e € H,, and
a Weierstrass polynomial w € H,,_1[21] of degree s such that

g=e-w.
If ¢ is a polynomial in zy, then e is also a polynomial in z1.

PRrROOF: There exists at € R such that g satisfies the W-condition in Bk.
The existence of the decomposition ¢ = ¢ .w with a umit ¢ and a normalized
polynomial w of degree s therefore follows directly from the preparation the-
orem in Bg¢. Since g is z;-regular of order s, the same is true for w. So w is a
Weierstrass polynomial.

Now, w has the form w = 23 —7r, where r € H,,_1[z1] and deg(r) < s. Thus, if
there exist two representations g = e (z{ —r) =ea(2] —r2), it follows that
2§ =e;'-g+7r1 =e; .g+re. The Weierstrass formula implies that e; = e,

r1 =79 and therefore wi = ws. _

Exercises

1. Write a computer program to do the following: Given two polynomials
f(w, x,y) (of degree n in w and degree m in x and y) and g(w, z,y) with
g(w,0,0) =w?, the program uses the Weierstrass algorithm to determine
y and » (up to order m in x and y) such that f =y .g +r.

2. Let f :P™ 1 x D— C be a holomorphic function and 0 <7 < 1be a real
number such that { = f(z’,¢) has no zero forz € P" ! and r < |{| < 1.
Then prove that there is a number k such that for every z’ € P!
the function ¢ — f(2/,{) has exactly k£ zeros (with multiplicity) in D.
Use this statement to give an alternative proof for the uniqueness in the
Weierstrass preparation theorem.

3. Show that the implicit function theorem for a holomorphic function f :
C" x @¢:— @ with f(0) =0 and f,, (0) # 0 follows from the Weierstrass
preparation theorem.

3. Prime Factorization

Unique Factorization. Let I be an arbitrary integral domain with
1. Then I* := 1 — {0} is a commutative monoid with respect to the ring
multiplication, and the set ™ of units of 7/ is an abelian group.
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Let a, b be elements of I*. We say that a divides b (symbolically a|b) if there
exists ¢ € I*with b = a .¢. We can also allow the case b = 0. Then every
element of 7* divides O, and a unit divides every element of I.

Definition. Consider an element a € IT* — I'*.
1. a 1s called irreducible (or indecomposable) it from a = ay .a, (with
ay,ag € I'*)it follows that ay € I™ orag € I'”™.
2. ais called prime if a|ayas implies that a|a; or a|asy.

Irreducible and prime elements can be defined 1n an arbitrary commutative
monoid. In 7* every prime element 1s irreducible, and 1n some rings (for
example, in Z or in R|[X]) it is also the case that every irreducible element is
prime. In Z[v/—5] one can find irreducible elements that are not prime.

Definition. [ is called a unique factorization domain (UFD) if every
element a € /7 can be written as a product of finitely many primes.

One can show that the decomposition into primes i1s uniquely determined up
to order and multiplication by units. In a UFD every irreducible element 1s
prime and any two elements have a greatest common divisor (gcd).

Every principal ideal domain® is a UFD, and in this case the greatest common

divisor of two elements a and b can be written as a linear combination of a
and b. For example, Z and K|[X| (with an arbitrary field K ) are principal
ideal domains. So in particular, C[X] is a UFD.

Gauss’s Lemma. Let I be an integral domain. Two pairs (a,b), (¢,d) €
I x I'* are called equivalent if ad = bc. The equivalence class of a pair (a.b)
is called a fraction and is denoted by a/b. The set of all fractions has the
structure of a field and 1s denoted by Q(I). We call it the quotient field of I.

The set of polynomials f(u) =ag+aiu+- .-+a,u” inu with coefficientsa; € 1
constitutes the polynomial ring /[u]. The set I°fu] of monic polynomials in
Ilu] is a commutative monoid. Therefore, we can speak of factorization and
irreducibility in I°%[y].

3.1 Gauss’s lemma). Let I be a unique factorization domain and Q =
Q). If wi,wo are elements of Q°lu] with wiwy € I%u], then wy € IPlu| for
A=12

PROOE.  For A =1,2, wx =axg tayu+ - tays _qusx-1 T+ with
ax,,, € Q. Therefore, there exist elements dy € I such that dy .wy € I{u]. We
can choose d), 1 such a way that the coefficients of d, .w, have no common

divisor (such polynomials are called primitive).

2 A principal ideal domain is an integral domain in which every ideal is generated
by a single element.
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We define d :=di1d2 and assume that there 1s a prime element p with p | d.
Then p doesn’t divide all coetficients dyay ,, of dy .w)y. Let g, be mimimal
such that p 1 daay ., . Then

(diw1)(daws) = ...+ u**7#2(day ,,a2,,, T something divisible by p )+ ... .

Since I is a UFD, p doesn’t divide (dya; ,, )(d2a2 4,). So the coefficient of
uM1t#2 ig not divisible by p. But since wiwsy has coefficients in 7, every divi-
sor of d must divide every coefficient of d . wywe = (diw)(dows). This 1s a
contradiction!®

When d has no prime divisor, it must be a unit. But then d; and dy are also
units, and wy =d; ' (dxwy) belongs to 1°[ul. m

3.2 Corollary. Letl e a unique factorization domain.

1. If a € I°[u] is prime in Q[u], then it is also prime in I°]u].

2. If a € I°[4] is reducible in Q[u], then it is reducible in I%[u].

3. Every element of I°[u] is a product of finitely many prime elements.
4.1f a € I°[u] is irreducible, it is also prime.

ProoF: 1.Let a€ I°[u] be a prime element in Q[u]. I adivides a product
a’a’ in J9[u], then it does so in Q[u]. Therefore, it divides one of the factors
in QQ[u]. Assume that there is an element b € Q[u] with @ = ab. By Gauss’s
lemma b € I°[u]. This shows that g is prime in I°[u].

2. Let a € I°u] be a product of nonunits ar,ay € Qul. If ¢; € Q is the
highest coefficient of a;, then cico = 1,¢; “a; € Q°[u] and a = (¢] *a1)(c; tas).
By Gauss c; Ya; € I°[u], and these elements cannot be units there. So a is
reducible in 7%[u].

3. Every element a € I°[y] is a finite product @ =a; ...q; of prime elements
of @[u]. One can choose the a; monic, as in (2). Using Gauss’s lemma several
times one shows that the a; belong to I°[u]. By (1)they are also prime in
I°%[u]

4. Let a € I°u] be irreducible. Since it is a product of prime elements, it
must be prime 1tself. n

Remark. In the proof we didn’t use that 7 is a unique factorization do-
main. We needed only the fact that Q|u] 1s a UFD (since Q 1s a field) and
the statement of Gauss’s lemma: If aq,ay € Q°u] and ajay € I°[y], then
a; € I%[u] fori=1,2.

> The original version of Gauss’s lemma states that the product of primitive poly-
nomials 18 again primitive. The reader may convince himself that this fact can

be derived from our proof.
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Factorization in H,,. Now the above results will be applied to the case
I =H,.

Definition. Let f € H,, f = Zi‘;opk be the expansion of f as a
series of homogeneous polynomials. One defines the order of f by the
number

ord(f) :=min{A €Ny :py #0} and ord(0) :=o00.

(See also Exercise 1.4 1n this chapter)

Then the following hold:

1. ord(f) > O for every f € H.
2. ord(f) =0 <= f is a unit.

3. ord(fy . f2) =ord(f1) T ord(fz).

3.3 Theorem. H, is a unique factorization domain.

PROOF: We proceed by induction on n.

For n =0, H, = C is a field, and every nonzero element is a unit. In this
case there is nothing to show.

Now suppose that the theorem has been proved forn — 1.Let f € H, be a
nonunit, f # 0. Iff is decomposable and f = f;- f, is a proper decomposition,
then ord(f) = ord(f1) 4+ ord(f2), and the orders of the factors are strictly
smaller than the order of f. Therefore, f can be decomposed into a finite
number of irreducible factors.

It remains to show that an irreducible f is prime. Assume that f| fi1 fo, with
fr € (Hp)* for A =1,2. There exists a shear o such that fi oo, fo oo and
f oo are z;-regular. If we can show that f oo divides one of the f) oo, then
the same 1s true for f and f). Therefore, we may assume that fi, fo, and f
are z;-regular.

By the preparation theorem there are units e, eo, € and Weilerstrass polyno-
mials wq,ws, w such that f; = e w1, f1 = es-ws, and f = e-w. Then w divides
wiwg. If wywe =q .w with q € H,,, then the division formula says that q 1s
uniquely determined and a polynomial in z;. So w divides wiws in HY _{[21].
Since w is irreducible in H,, it must also be irreducible in HY_,[21]. By the
induction hypothesis H,,_; is a UFD, and therefore w is prime in HyY 4 [z]. It
follows that w|w; or w|ws in HY_,[z1] and consequently in H,,. This means

that f|f1 or f|fo in Hx. m

Hensel’s Lemma. Let w € H,[u] be a monic polynomial of degree s.
There 1s a polydisk P around O € C™ where all the coefficientsof w converge to
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holomorphic functions. Therefore, we can look at w as a parametrized family
of polynomials in one variable u. By the fundamental theorem of algebra
w(0,u) splits into linear factors, and the same is true for every w(z, u) with
z € P. We now show that such splittings are coherently induced by some
splitting of w in H2[u], at least in a neighborhood of O.

3.4 Hensel's lemma. [Let w(0,u) = Hazl(u —cx)®* be the decomposition
into linear factors (withc, # cy, forv # p and s1+- ..+ 58, =s). Then there
are uniquely determined polynomials w1, . ..,w; € H>[u] with the following
properties:

1. deg(w,\) =3)Ufor)\ == 1,...jl.
2. wr(0,u) =(u —cy)®>.
3. W=w .....Wwj.

PrROOF: We proceed by induction on the number /. The case ! = 11is trivial.
We assume that the theorem has been proved for [ — 1.

First consider the case w(0,0) = 0. Without loss of generality we can assume
that ¢; = 0. Then w(0, u) =u** . h(u), where A is a polynomial over C with
deg(h) =s — s1 and h(0) # 0. So w is u-regular of order s, and there exists
a unit ¢ € H2[u] and a Weierstrass polynomial w; with w = e .wy. Since
w1 (0,u) =u®, 1t follows that

z
e(0,u) = h(u) = H(u —cy )™

A=2

By induction there are elements ws,. ..,w; € Hplu] with deg(w,) = sy,
wx(0,u) = (u — cx)®* and € = wso---w;. Then w = wiws ---wy is the de-
sired decomposition.

If w(0,0) # 0, then we replace w by w'(z,u) :=w(z,u T ¢;) and obtain a
decomposition w’ =w] ...w] as above. Define

wi(z,u) :=wy(z,u —cy).

This gives a decomposition w = wy ...w; 1n the sense of the theorem. The
uniqueness statement also follows by induction. m

The Noetherian Property. Let R be a commutative ring with 1.
An R-module 1s an abelian group M (additively written) together with a
composition R x M — M that satisfies the following rules:

1.7(x14+22) =rzy +rze forr € R and z1,22 € M.
2. (m +r2):1: =rmz+rerforrm,m e Randr e M.
3. ?"]_(T'QE) — (?"1?"2).’13 forriy,re € R andz & M.
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4. 1-z=x tor x € M.

These are the same rules as those for vector spaces (and the elements of
a module are sometimes also called vectors). However, it may happen that
re =0 even if r # 0 and z # 0. Therefore, 1n general, an R-module has no
basis. So-called free modules have bases by definition. An example is the free
module RQ:=R x ...x R (gtimes), with a basis of unit vectors. An example
of a nonfree module is the Z-module M :=Z/67Z, where 2-3 =2-3 =0.

If M 1s an R-module, then a submodule of M 1s a subset N C M with the
following properties:

l.z,ye N —= x+y€ N.
2.rée€Randze N = rz €N,

A submodule of an R-module 1s itself an R-module.

Example

The ring R 18 also an R-module. The composition 1s the ordinary ring mul-
tiplication. In this case the submodules of R are exactly the ideals in R. An
R-module M is called finite if there is a finite set {zy,...,z,} C M such
that every x € M 1s a linear combination of the z; with coefficientsin R. The
free module R? is obviously finite. But Z/67Z is also finite, being generated
by the class 1.

Definition. An R-module M is called noetherian if every submodule
N C M is finite.

A ring R is called noetherian if it 1 a noetherian R-module. This means
that every 1ideal in R 1s finitely generated (in the sense of a module).

3.5 Proposition. Let R be a noetherian ring. Then any ascending chain
of ideals

IoclcBR c---CR

becomes stationary, i.e., there is a kg such that Iy = I, for k > kg.

PrROOF: The set J :=Jr- Ix is obviously an ideal. Since R is noetherian,

J 18 generated by finitely many elements fy,. .., fn. Each f, lies in an ideal
I, . If ko =max(kq,...,knN), then all f, are elements of Ix,. So Iy = I, for
k _>_ k‘o. |

3.6 Theorem. IfR is a noetherian ring, then R? is a noetherian R-module.

PROOF: We proceed by induction on gq.
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The case ¢ = 1listrivial. Assume that g > 2 and the theorem has been proved
forg — 1.Let M C R? be an R-submodule. Then

I :={reR :3r'c R with (rn,r') e M)

1s an 1deal in R and as such is finitely generated by elements 71, . ..,7;. For
every 7y there is an element vy € R7~" such that ry :=(r,r}) lies in M.

The set M’ := M n ({0} x R?™!) can be identified with an R-submodule
of R?~', and by the induction assumption it is finite. Let ry = (0,1)), A =
[+ 1,..,p, be generators of M.

An arbitrary element x € M can be written in the form x = (z1,x’) with
d
1 € I. Then 1 =Y _; ax7x, ax € R, and

! [

X — ZG,APA = (O,X! — ZG)\I‘;) c M.

X=I X=l
That 1s, there are elements a;4+1,. ..,ap € R such that
! P
X—ZQ)\I'A = Z a)Ty.
X A=I+1
Hence {T1,...,r,} is a system of generators for M. u

3.7 Riickert basis theorem. The ring H, of convergent power series is
noetherian.

PROOF: We proceed by induction on n#. For n = 0, H, = C, and the
statement 18 trivial. We now assume that » > 1 and that the theorem has
been proved for n — 1.Let I C H,, be a nonzero ideal and g # 0 an element
of 1. Without loss of generality we can further assume that g 1s 21-regular of
order s.

Let ® =&, : H, —» (Hp—1)° be the Weierstrass homomorphism, which is
defined in the following manner: For every f € H,, there are uniquely defined

clements g € Hy, and r =rg +riz1 +-- +re_1257" € H,_1[z1] such that
f=q-g+r. Let ®(f) :=(ro,...,7s-1)-

Now, ® is an H,_i-module homomorphism. By the induction hypothesis

H,—1 isnoetherian, and so (H,—1)? is a noetherian H,_-module. Since M :=

et

@ (1Ijs an H,_,-submodule, it is finitely generated. Let ry = (7", ... ,?‘gl),

A=1,..,1, be generators of M .

If f € I is arbitrary, then f = g-g+r with r = ro+ry1z1+-- 47,12 "' and
there are elements ay,. ..,a; € Hp—1 such that (ro,71,...,7s—1) = ®4(f) =
z&zl a)r). Hence we obtain the representation
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z
_ A A A s—1
f=qg-9+> ax-(r® +rPVzi+- +10 257,
A=1
The set {g, 7™, ..., r®} with r® =r{” + 7Pz + - 470 257 is a system
of generators of I. n

Exercises

1. Prove that O(C) is not a UFD.

2. Let M be a finite H,,-module, and m C H,, the maximal 1deal. f M =
m .M, then M = 0.

3. Let f : P! x D —» C be a holomorphic function such that for every
7z € P"~! there is a unique solution z, = (z’) € D of the equation
f(z',z,) = 0. Use function theory of one variable to show that ¢ is
continuous, and use Hensel’s lemma to show that ¢ is holomorphic.

4. Let f € H,, be 21-regular, f = ¢ - w with a unit ¢ and a Weierstrass
polynomial w € H,,_;|z]. Prove that f is irreducible in H,, if and only
if w is irreducible in Hy,_q[z].

5. Show that f(z,w) :=2% —w?(1 —w) is irreducible in the polynomial ring
C|z, w] and reducible in H,.

6. Let f € H,, be given with f,. (0)# 0 forsome i. Prove that f isirreducible
n H.

4. Branched Coverings

Germs. Let B ¢ C” be an open set and zg € B a fixed point. A local
holomorphic function at zg 1s a pair (U, f) consisting of an arbitrary neigh-
borhood U = U(zg) € B and a holomorphic function f on U. Two such
functions f : U — C and g : V — C are called equivalent if there is a neigh-
borhood W =W (zy) cU NV such that f|W = g|W. The equivalence class
of a local holomorphic function (U, f) at zg 1s called a germ (of holomorphic
functions) and 1s denoted by f;,. The value f(zg) as well as all derivatives of
[ at zy (and therefore the Taylor series of f at zg) are uniquely determined
by the germ. On the other hand, if a convergent power series at zg 18 given,
then this series converges in an open neighborhood of zg to a holomorphic
function f, and the germ off determines the given power series. So the set
O, of all germs of holomorphic functions at z, can be identified with the @-
algebra of all convergent power series of the form > - ,(z—zg)". This algebra
1s 1somorphic to the algebra H,, and has the same algebraic properties.

Let fz, # O be any element of O,, with f(zg) = 0. Then there are a neigh-
borhood U(zg) C B, a neighborhood W(0) C @  a holomorphic function
¢ on U, and holomorphic functionsa,, ...,a, on W such that after a suitable
change of coordinates the following hold:
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1. e(z) #£0 forevery z € U.
2. f(z) =e(z) .w(z —20) for w(wy, W) =w +ar(w)z;7' + ... Fas(w').

Pseudopolynomials. A pseudopolynomial of degree s over a domain
G C C™ is a holomorphic function w in G x C that is given by an expression

w(u,z) =u® +hi(z)u’ '+ ..+ hs(z),

with hy,...,hs € O, where O = O(G) denotes the ring of holomorphic
functions on . The set of pseudopolynomials of any degree over G will be
written as O°[u].

We begin with several remarks on the algebraic structure.

4.1 Proposition. If G s a domarn, v.e., a connected open set, then the
rng O = O(G) 1s an integral domarn.

PROOF: We need to show only that O has no zero divisors. Assume that

f1, fo are two holomorphic functions on G with both f; # 0. Since G is a
domain, their zero sets are both nowhere dense in G, and there 1s a point

z € G with f1(z) . f2(z) # 0. So f1 .f2 # 0. .

It also follows that O°[u] is free of zero divisors. We denote by Q the quo-
tient field of @. Then the group Qu]™ of units in the integral domain Q|u]
consists of the nonzero polynomials of degree 0. If O C O is the multiplica-

tive subgroup of not identically vanishing holomorphic functions on G, then
Qlul* N O =0*.

4.2 Proposition. Ifwi,ws € Q°u] are pseudopolynomials with wy .ws €
OO[?.L], then wi,wq € Oo[u]

PrROOF: If w =u® +(fi/g1)u*"t + ...+ (fs/gs) is an arbitrary element of
Q°[u], then for all z € G the germs g; 5 are not 0.

For a moment we omit the 7. If the quotient of f, and g, i1s holomorphig, i.e.,
fo. =h .g, with h, € O,, then A, i1s uniquely determined and there i1s a ball
B around z in G such that h, comes from a holomorphic function h on B
and the equation f = h .g is valid in B. If we take another point z’ € B,
the germ of A at this point is the quotient of the germs of f and g at this
point. So z — h,(z) defines a global holomorphic function 2 on G. We write

h=1/9

Thus, if w, =u®+ ((f1)2/(g0)2)u*"t + -+ ((£5)2/(gs)2) lies in Oylu] for
every z € G, then w € O°[u].

Now we apply Gauss's lemma in the unique factorization domain O, = H,.

Let w := wy .wy. Then (w1)z . (w2)z =w, € OF[u] for every z € G. Conse-
quently, the coefficients of (w;), are holomorphic, and by the remarks above
this means that w, € O°[u]. -
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The following 1s an immediate consequence of the above two propositions:

4.3 Theorem. LetG e C™ be a domain. Then O°[u] is afactorial monoid;
1.e., every element is a product o finitely many primes.

Euclidean Domains

Definition. An integral domain I is called a Euclidean domain if there
is a function N : I'* — Ny with the following property (division with
remainder): For all a,b € I, b £ 0, there exist ¢g,r € I with
l.a=qg-b+r,
2. r=00r N(r) < N(b).
The function NV 1s called the norm of the Euclidean domain.

Examples

1. Z is a Euclidean domain with N(a) :=|al.
2. If k is a field, then k[z] is a Euclidean domain, by N(f) :=deg(f).

Every Euclidean domain / 1s a principal 1ideal domain and thus factorial. If
a,b are elements of 7, then the set of all linear combinations

r-a+s-b£0, r,sel,

has an element d with N(d) minimal. The element d generates the ideal
a={ra+sb :r,s € I}andis a greatest common divisor of a and b. It is
determined up to multiplication by a unit.

Now assume again that Gis adomaininC", O = O(G), and Q = Q(0O). Then
Q[u] is a Euclidean domain. If w;,ws are pseudopolynomials in O°[u], there
is a linear combination in w = rywy + rews # 0 in Qu] with minimal degree.
It can be multiplied by the product of the denominators of the coefficientsin

r1 and ro. Then rq, 79, and w are in Ofu], and w is a greatest common divisor
of w1, w2.

The Algebraic Derivative. Let O and Q be as above. If w € O°[u]
has positive degree, then 1t has a unique prime decomposition w = wiq - . -wy.
The degree of each w; 18 positive. We say that w is (a pseudopolynomial)
without multiple factors 1f all the w, are distinct.

The (algebraic) derivative of a pseudopolynomial 1s defined as follows. If
w=2>, oau”, then D(w) :=>°_.v-a, .u¥~!. Thus

D(wy Fws) D(w1) + D(ws),
D(w1 ,w2) D(w1) .w2 +wy . D(ws)
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4.4 Theorem. An element w € O°u] is without multiple factors if and
only if a greatest common divisor of w and D(w) is a function h € O*.

PROOF: If w has the irreducible w; as a multiple factor, then D(w) 18 also
divisible by w;. This is also true in Qlu]. So a greatest common divisor is
certainly not a function 4 € O~.

Assume now that w =], w; has no multiple factor. Then

D(w) = Zwln-D(w%—)---w;‘

If the degree of the greatest common divisor ¥ of w and D(w) is positive, then
~ is a product of certain w, So at least one w, divides both w and D(w). Then
w; divides wy ...D(w;) ...w; and hence D(w;). This is not possible, because

D(w;) has lower degree. So the degree of the greatest common divisor is 0,
and therefore 1t is a function 2 € O~. m

Symmetric Polynomaials.

Definition. A polynomial p € Z[u, ...,us| is called symmetric if for
all 1, j we have p(u1,. .., %, ... %5, .., Us) =D(U1, . ., 855 .00 Uiy oL, Us).

There are the elementary symmetric polynomials o1, .. .,a, defined as follows:

o1(U1,y...,us) = U3+ -+ U,
uy(ug + ...+ us) Fus(ug +... 4+ us) T FUs—1Us,

oa(u1,. .., Us)

Os(Ul,.. ,Us) = Ui~ -Us.
The following result is proved, e.g., in the book [vdW66)]

4.5 Theorem. [fp€ Zluy,...,us| is symmetric, then there is exactly one
polynomial Q(y1,. ..,Ys) € Zly1,. .., Us| such thatp = Q(o1,. ..,a,).

The Discriminant. Consider the special symmetric polynomial

pv(ul, .« ,’LLS) — H(u% — ’U.’.j)2

f<j

(square of the Vandermonde determinant). Since it 1S symmetric, there 1s

a uniquely determined polynomial Qv (y1,...,y,) with integral coefficients

such that

pv(t1,.. -, Us) = Qv(o1(u, ..., Us), ..., 0s(U1, ..., Us)).
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Definition. Ifw =u® +h;(z)u*"'+- ..+ hs(z) is a pseudopolynomial
in O°u], then A, = Qv (—hy, he,...,(—1)°hs) is called the discriminant
of w. It is a holomorphic function in G, and we denote its zero set by D,

It 1s well known from the theory of polynomials that
(=1)*hi(z) = os(wr, . ..,w,),

where wy, . ..,w, are the zeros of the polynomial v — w(u,z). So A,(z) =0
if and only 1if there 15 a pair ¢ # j with w; =w;.

Assume now that w 1s without multiple factors. Then there 1s a linear combi-
nation of w and D(w) that is a function & € O*. We restrict to a point z € G
with h(z) # 0. Then the greatest common divisor of w(u,z) and D(w)(u, z)
is /. This means that w(u, z) has no multiple factors; i.e., the zeros of w(u, z)
are all distinct. So A, (z) # 0, and D, is nowhere dense.

Example

Let G C C" be a domain, a,b holomorphic functions in G, and w(u,z) :=
u® — a(z) .u +b(z). In this case

2

pv(uy,ug) = H(’U@ — ’Uij)2 = (u1 — uz)2 = (u1 + u2)° — 4 - uy - ug.

1< 7
So Qv (y1,y2) =yi —4-y2, and

Au(z) = Qv (a(2),b(z)) = a(2)” - 4b(z).

If ze Gand A, (z) # 0, there are two different solutions of w(u,z) = 0.

Hypersurfaces. We use the theory of pseudopolynomials to study ana-
lytic hypersurfaces. Such analytic sets are locally the zero set of one holomor-
phic function. Assume that f 1s a holomorphic function in a connected neigh-
borhood of the origin in C**! that is not identically 0. Without loss of gener-
ality we may assume that A = N(f) contains the origin. Then a generic com-
plex line £ through O meets A in a neighborhood of O only at the origin. After
a linear coordinate transformation, £ = {(u,z) : z = 0} is the first coordinate
axis. By the Weierstrass preparation theorem fg oy = €(g,0) - w(0,0) 10 the ring
Hpt1, where eg gy 18 @ unit in H, 1, and w0y € Hp lu] a Weierstrass poly-
nomial. We can represent the germs locally by holomorphic functions. Thus
there is a domain G C C" containing O, and a disk D ={u € C : |u| <7}
such that in U := D X G there are a holomorphic function e that does not
vanish in U and a pseudopolynomial w over G with f =e.win U. We may
assume that A N (0D x G) = &. Therefore, the zero set of f in U is that of

W,
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We can decompose w into prime factors. Using the fact that any power of a
prime factor vanishes at the same points as the prime factor does, we may
assume that w is without multiple factors. Then the discriminant A, is not

identically zero in G. We set D, = {z€ G :4,(z) =0}.

4.6 Theorem (on branched coverings). [fzo € G — D, there are a

neigborhood W =W (zo) C G — D, and holornorphic functions fi,...,fs in
W with fi(z) # f;(z) fori# j and z € W such that

w(t,z)=(uv - fi(z))..(v - fs(z)) inC x W.

There are fewer than s points over any point Zzo € D, (see Figure I111.1).

Figure 111.1. A branched covering over G

A point z € G above which there are fewer than s points is called a branch
point. All points of the discriminant set D, are branch points. Over all other
points our set A 18 locally the umion of disjoint graphs of holomorphic func-
tions, and 1s therefore regular.

PROOF: For zg € G — D, the polynomial w(u,20) has s distinct roots.

We write w(u,29) = (v —c1) -+ (u — ¢s), where the ¢; all are distinct. If

w(u,z)=u®+hi(z)u’"t + ... +h(z), then the germ
Wz :=U2 + (hl)zc;us—l + + (hs)z,g

is a polynomial over O, = H,. By Hensel’s lemma it has a decomposition
W,, =Wiz - -Ws,z, With the following properties:
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1. Wy zg(u,2p) =u —c; fori =1, ...,s.
2. deg(w; z,) = 1.

We have w; », =u —r;, with r; € H. There are a connected neighborhood
Wi(zg) C G - D, and holomorphic functions fi,...,fs in W such that the
power series r; converge to f;. Since the germs of w and (v — f1) ...(u — fs)
coincide at zg, 1t follows from the identity theorem that

wlexw = (u — f1) o — fs),

and since W C G—D,, it also followsthat f;(z) # f,(z)fori#£ jandz e W.
|

Examples

1. Let G =C and w = 22 — 2. Then the discriminant is given by A, (z2) =
422, and D, = {0} C C. If 22 € @, there is a neighborhood W ¢ C - D,
where /z9 is well defined. There we have w = (21 — /Zz2) . (21 + /Z2).
This gives a surface above C that is a connected unbranched 2-sheeted
covering over C—{0}. The point 0 is a branch point. This is the (branched)
Riemann surface of \/z. The unbranched part was already discussed in
Section 11.8.

2. A completely different situation is obtained if we take w = 22 — 25 =
(21 —#22) - (21 + 22). The discriminant is 4z5 in this case, and the discrim-
inant set D, is again the origin in C. The set A consists of two distinct
sheets, which intersect above 0, and both are projected biholomorphically
onto C. The set A — {0 /,i.e., A without the branch point, is no longer
connected.

3. In higher dimensions the situation is even more complicated. Let us con-
sider the analytic set A = N(f), where f(z,...,2,) = 2t +. .+ 25"
with s; > 2 fori = 1,...,n. This 1s a very simple holomorphic functon.
The derivatives are f, =s; .25 ! and their joint zero set consists only

2

of 0 € C™. So all other points of A are regular.

Every line £ through the origin lies completely in A, or f has a zero of
order s with s > min(sy,...,s,) on £ at the origin. Therefore, there is
no line that intersects A in O transversally. From this one can conclude
that O 1s in fact a singular point of A (see, for example, Exercise 8.2 in
Chapter I).

Now we look on f :C™ — C as a fibration with general fiber
Ay ={zeCm 129 4 ... 425 =1}

Then A = Ap has an isolated singularity, while all other sets A; are
regular everywhere. We call the family (A, )¢ a deformation of A.
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The Unbranched Part. We assume that G C C™ is a domain and
w(u,z) a pseudopolynomial over G of degree s. We set G' = G — D,

A={(u,z) € Cx G : w(u,z) =0},

and A’ = A|G’ the part of A over G'. Then A’ is an unbranched covering of
G Tt is an n-dimensional submanifold of C x G’, and we have the canonical
projection w : A — G. If (up,20) € A" is a point, thereis a small neighborhood
B = B(ug,2¢) C A’ that is mapped by holomorphically and topologically
onto a ball around zg in G’. We also call B a ball. The holomorphic map
(w|g) "' : w(B) — C"*! is a local parametrization of A’. A complex function
f in B is called holomorphic if f o (m| g)~! is holomorphic. In particular, the
components of 7 itself are holomorphic functions on 5.

For holomorphic functions in B we have the same properties as for holomor-
phic functions in a domain of C". For example, the identity theorem remains

valid, and we obtain the following results:

4.7 Proposition. Assume that A1 is a connected component of A’ and that
M is an analytic subset of A1. Then M = Ai, or M is nowhere dense in Ay

4.8 Proposition. If f is a holomorphic function on A’, and A, a connected
component of A, then either f vanishes identically on Ay or its zero set 18

nowhere dense in Aj.

4.9 Proposition. Let A, again be a connected component of A’. Assume
that M is a nowhere dense analytic set in Ay and that f is a holomorphic
function in Ay — M that is bounded along M. Then f has a unique holomor-

phic extension to Aj.

Decompositions. We consider the interaction between the decomposi-

tion of a pseudopolynomial into irreducible factors and the decomposition of

its zero set into “irreducible” components.

4.10 Proposition. Let G C C" be a domain and w(u,z) a pseudopolyno-

mial over G without multiple factors. Then w is irreducible if and only if the
intersection of its zero set A with C x (G — E) is connected for every nowhere

dense analytic subset E C G which contains the discriminant set D, .

PROOF: Since locally over @’ = G — D,, the set A’ = A|G’ looks like a
domain in C™. a nowhere dense analytic set does not disconnect A’, locally

b

and globally. Therefore, we may assume that £ = [),,.

If w is not irreducible, every factor w; defines an analytic set A; over G —D,,.

The intersection of different A; is empty. So A|(G — D.,) is not connected.
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If, on the other hand, A|G’ has the connected components A;, ¢ = 1,...,s,
with s > 0, then for any point z € G—D,, thereisa ball B C G—D,, around z
such that A;|B splits into graphs of holomorphic functions f; : j =1,...,s;.
In each case we form the pseudopolynomial w; = (u — f1) -+ (u — f,,). The
zero set of this w; is exactly A;|B, and it determines w; and vice versa. So
over the intersection of two different balls the pseudopolynomials must be
the same, and thus we obtain global holomorphic functions w; in G — D,,. If
z € D, then there is a neighborhood W of z such that A;|(W — D,,) C A|W
is a bounded set. So the coefficients of w; are bounded over this neighborhood
and extend holomorphically to G. We also denote this extension by w;, and
for reasons of continuity it follows that w = wy - - - w;. N

If the w; are the irreducible factors of w, we call their zero sets A; the irre-
ducible components of A. The sets A} = A;|G’ are the connected components

of A|G’.

4.11 Proposition. Assume that w*,w are pseudopolynomials without mul-
tiple factors over a domain G and that A* = {w* =0} C A = {w =0}. Then

*

w* ts a factor of w.

PROOF: Let D denote the union of the discriminants of w* and w. It is
a nowhere dense analytic set in G. Over G — D we decompose the two
unbranched coverings into connected components. There we have A* =
AjU---UAg and A=A, U---U A, with s* < 5. This yields pseudopolyno-
mials over G — D that extend to pseudopolynomials w1, ..., ws over G, with

. .. :
w* =wj - we+ and w = wjy -+ -ws. This implies the result. n

The following result is proved analogously.

4.12 Proposition. Assume that w is free of multiple factors and that A =
{w = 0} is the disjoint union of two nonempty sets M', M" that are closed in

Cx G. Then there are pseudopolynomials w’, w"” over G with M’ = {w' = 0},
M"={w" =0}, and ' - V" = w.

PROOF: The construction is first carried out outside D_,. We set G' =
G — D, and use the fact that every nonempty open subset of A’ = A|G’
must be a union of connected components of A’. If w = w;---w, is the
decomposition into irreducible factors, then we may assume that there is an
s* with 0 < s* < s such that for W' = wy - we and W’ = wWer g -+ Wy We
have M'|G" = {(u,z) € Cx G' : W'(u,z) = 0} and M"|G' = {(u,z) €
Cx G : w'(u,z) =0}

It is now essential that in a continuous family f(u,z) of holomorphic functions
of one variable u the zeros depend continuously on the family parameter z
(“continuity of roots”). We omit the proof here. If we apply this fact (and
the equations A = M'UM". w = w’ - w"), we get that the sets M’|G’ and
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M"|G' are not empty (i.e., 0 < s* < s) and that their closures in C x G are
M’ respectively M". n

Projections. In the next section we will investigate zero sets of several
holomorphic functions. Here we begin with the simplest case, the common
zero set N of a pseudopolynomial w over G C C™ and an additional holomor-
phic function f in a neighborhood of A = {(u,z) € Cx G : w(u,z) = 0}.
Our method involves the projection of N to G.

4.13 Proposition. Assume that [ = f(u,z) is a continuous function on A
that is holomorphic outside of C x D, and does not vanish identically in a
neighborhood of any point of A. Then the projection of N = {f = w = 0} to
G is an analytic set N' = {f = 0}, where f is a holomorphic function in G
that does not vanish identically.

ProOoF: Ifz € G — D,, we have a ball B C G — D, around it such that

over B our w has the form w(u,z) = (u — f1(z)) - - - (u — fs(z)). The function
f does not vanish identically on any eraph u = f;. Consequently,

f(z) = f(fi(2),2) - f(fs(2),2)

does not vanish identically. In the usual way we obtain the holomorphic
function f in the entire set G — D,,. It is bounded along D,,. So it extends
to a holomorphic function in G. m

Now consider the following situation: Assume that G is a domain in C" and
that w is a pseudopolynomial over G without multiple factors. Let f be a
holomorphic function in a neighborhood of A = {w(u,z) = 0} C C x G that
does not vanish identically on any open subset of A and define

N:={(u,z) e CxG : w(u,z) = f(u,z) = 0}.

Denote by N’ the projection of IV to G.

We want to give a definition for “unbranched points” of N. The difficulty is
that there may exist such unbranched points of NV lying in the set of branch
points of w.

4.14 Proposition. For any point zo € N’ there is an arbitrarily small
linear coordinate change in z1, ..., zn such that thereafter the line parallel to
the z1-axis through zo intersects N' in zg as an isolated point.

In such coordinates there is a mneighborhood U(zg) C G, a domain G’ in
the space C"~1 of the variables 2’ = (z2,...,2n), and a pseudopolynomial
W'(z1,2") over G’ such that {(z1,2') € Cx G" - w'(z1,2") = 0} =N'NU.

PROOF: A “small” linear change of the coordinates z1,.-.,2n means here
that the transformation is very near to the identity. Since / does not vanish
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identically, after a small generic coordinate transformation the line parallel
to the z1-axis through zg intersects N’/ in zg as an isolated point. And then
it is also clear that U, G’, and ' with the desired properties exist. m

Let us now assume that we have chosen a point zg € N’ and suitable coordi-
nates as above, and that U, G’, and w’ have also been chosen.

Definition. In the given situation, a point (u,z) € NN (C x U) is
called an unbranched point of N if z €¢ N’ — C x D, and there is a
neighborhood V =V (z) C N’ — C x D, with a holomorphic function g
on V such that N N (C x V) is the graph {u = g(w) : w € V}. (Figure
I11.2 shows the situation.)

o examples of unbranched points ™

CXDwf

Figure III1.2. Branched and unbranched points of NV
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