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Pretace

'I'he Geometrization Program of Thurston has been the driving force for re-
scarch in 3-manifold topology in the last 25 years. This has inspired a surge
of activity investigating hyperbolic 3-manifolds (and Kleinian groups), as
Lhese manifolds form the largest and least well-understood class of compact
$-manifolds. Familiar and new tools from diverse areas of mathematics have
heen utilised in these investigations — from topology, geometry, analysis,
proup theory and, from the point of view of this book, algebra and number
Lhcory. The important observation in this context is that Mostow Rigidity
nmiplies that the matrix entries of the elements of SL(2,C ), representing
i linite-covolume Kleinian group, can be taken to lie in a field which is a
linite extension of Q. This has led to the use of tools from algebraic number
Lheory in the study of Kleinian groups of finite covolume and thus of hyper-
holic 3-manifolds of finite volume. A particular subclass of finite-covolume
K\ lcinian groups for which the number-theoretic connections are strongest
s the class of arithmetic Kleinian groups. These groups are particularly
auncnable to exhibiting the interplay between the geometry, on the one
hand and the number theory, on the other.

'I'his book 1s designed to introduce the reader, who has begun the study of
hyperbolic 3-manifolds or Kleinian groups, to these interesting connections
with number theory and the tools that will be required to pursue them.
T'here are a number of texts which cover the topological, geometric and
analytical aspects of hyperbolic 3-manifolds. This book 1s constructed to
cover arithmetic aspects which have not been discussed in other texts. A
central theme is the study and determination of the invariant number field
and the invariant quaternmion algebra associated to a Klemian group of
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finite covolume, these arithmetic objects being invariant with respect to
the commensurability class of the group. We should point out that this
book does not investigate some classical arithmetic objects associated to
Kleinian groups via the Selberg Trace Formula. Indeed, we would suggest
that, if prospective readers are unsure whether they wish to follow the
road down which this book leads, they should dip into Chapters 4 and 5
to see what is revealed about examples and problems with which they are
already familiar. Thus this book is written for an audience already familiar
with the basic aspects of hyperbolic 3-manifolds and Kleinian groups, to
expand their repertoire to arithmetic applications in this field. By suitable
selection, it can also be used as an introduction to arithmetic Kleinian
groups, even, indeed, to arithmetic Fuchsian groups.

We now provide a guide to the content and intent of the chapters and
their interconnection, for the reader, teacher or student who may wish to
be selective in choosing a route through this book. As the numbering is in-
tended to indicate, Chapter O is a reference chapter containing terminology
and background information on algebraic number theory. Many readers can
bypass this chapter on first reading, especially if they are familiar with the
basic concepts of algebraic number theory. Chapter 1, in essence, defines the
target audience as those who have, at least, a passing familiarity with some
of the topics in this chapter. In Chapters 2 to 5, the structure, construction
and applications of the invariant number field and invariant quaternion al-
gebra associated to any finite-covolume Kleinian group are developed. The
algebraic structure of quaternion algebras is given in Chapter 2 and this is
further expanded in Chapters 6 and 7, where, in particular, the arithmetic
structure of quaternion algebras is set out. Chapter 3 gives the tools and
formulas to determine, from a given Kleinian group, its associated invariant
number field and quaternion algebra. This is then put to effect in Chapter
4 in many examples and utilised in Chapter 5 to investigate the geometric
ramifications of determining these invariants.

From Chapter 6 onward, the emphasis is on developing the theory of
arithmetic Kleinian groups, concentrating on those aspects which have geo-
metric applications to hyperbolic 3-manifolds and 3-orbifolds. Our defini-
tion of arithmetic Kleinian groups, and arithmetic Fuchsian groups, given
in Chapter 8, proceeds via quaternion algebras and so naturally progresses
from the earlier chapters. The geometric applications follow in Chapters 9,
11 and 12. In particular, important aspects such as the development of the
volume formula and the determination of maximal groups in a commen-
surability class form the focus of Chapter 11 building on the ground work
in Chapters 6 and 7.

Using quaternion algebras to define arithmetic Kleinian groups facilitates
the flow of ideas between the number theory, on the one hand and the
geometry, on the other. This interplay is once of the special beauties of
the subject which we have taken every opportunity to cinphasise. There
are olthoer, equally merttortous approaches to arithmetic Kleinian groups,
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particulary via quadratic forms. These are discussed in Chapter 10, where
we also show how these arithmetic Kleinian groups fit into the wider realm
ol general discrete arithmetic subgroups of Lie groups.

Some readers may wish to use this book as an introduction to arithmetic
Ix\lcinian groups. A short course covering the general theory of quaternion
nlgebras over number fields, suitable for such an introduction to either
awithmetic Kleinian groups or arithmetic Fuchsian groups, is essentially self-
contained in Chapters 2, 6 and 7. The construction of arithmetic Kleinian
proups from quaternion algebras is given in the first part of Chapter 8 and
Lhe main consequences of this construction appear in Chapter 11. However,
Il the reader wishes to investigate the role played by arithmetic Kleinian
rroups in the general framework of all Kleinian groups, then he or she must
[lrther assimiliate the material in Chapter 3, such examples in Chapter 4
ns interest them, the remainder of Chapter 8, Chapter 9 and as much of
( ‘hapter 12 as they wish.

l'or those in the field of hyperbolic 3-manifolds and 3-orbifolds, we have
cnhdcavoured to make the exposition here as self-contained as possible, given
Lhie constraints on some familiarity with basic aspects of algebraic number
heory, as mentioned earlier. There are, however, certain specific exceptions
{0 Lhis, which, we believe, were unavoidable in the interests of keeping the
sivze of this treatise within reasonable bounds. Two of these are involved in
steps which are critical to the general development of ideas. First, we state
without prootf in Chapter 0, the Hasse-Minkowski Theorem on quadratic
lorims and use that in Chapter 2 to prove part of the classification theorem
lor quaternion algebras over a number field. Second, we do not give the full
proof in Chapter 7 that the Tamagawa number of the quotient AL /AL is
|, although we do develop all of the surrounding theory. This Tamagawa,
nmmber 1s used in Chapter 11 to obtain volume formulas for arithmetic
I\leinlan groups and arithmetic Fuchsian groups. We should also mention
(hiat the important theorem of Margulis, whereby the arithmeticity and
non-arithmeticity in Kleinian groups can be detected by the denseness or
Jiscreteness of the commensurator, is discussed, but not proved, in Chapter
10). [lowever, this result is not used critically in the sequel. Also, on a
simall number of occasions in later chapters, specialised results on algebraic
nmunber theory are employed to obtain specific applications.

Manuy of the arithmetic methods discussed in this book are now available
n the computer program Snap. Once readers have come to terms with
some of these methods, we strongly encourage them to experiment with this
wonderful program to develop a feel for the interaction between hyperbolic
4 mantfolds and number theory.

['inally, we should comment on our method of referencing. We have
avoided “on the spot” references and have placed all references in a given
chapter in the Farther Reading section appearing at the end of cach chapter.
We should also remark that these Further Reading sections are intended to
he just Lhad, and are, by no means, designed Lo give a historieal account. of



the evolution of ideas in the chapter. 'Thas regrettably, some papers crit-
ical to the development of certain topics may have been omntted while,
perhaps, later refinements and expository articles or books, arc included.
No offence or prejudice is intended by any such omissions, which are surely
the result of shortcomings on the authors’ part possibly due to the some-
what unsystematic way by which they themselves became acquainted with
the material contained here.

We owe a great deal to many colleagues and friends who have contrib-
uted to our understanding of the subject matter contained in these pages.
These contributions have ranged through inspiring lectures, enlightening
conversations, helpful collaborations, ongoing encouragement and critical
feedback to a number of lecture courses which the authors have separately
given on parts of this material. We especially wish to thank Ted Chin-
burg, Eduardo Friedman, Kerry Jones, Darren Long, Murray Macbeath,
Gaven Martin, Walter Neumann and Gerhard Rosenberger. We also wish
to thank Fred Gehring, who additionally encouraged us to write this text,
and Oliver Goodman for supplying Snap Data which is included in the
appendix. Finally, we owe a particular debt of gratitude to two people:
Dorothy Maclachlan and Edmara Cavalcanti Reid. Dorothy has been an
essential member of the backroom staff, with endless patience and support
over the years. More recently, Edmara’s patience and support has been
important in the completion of the book.

In addition to collaborating, and working individually, at our home insti-
tutions of Aberdeen University and the University of Texas at Austin, work
on the text has benefited from periods spent at the University of Auckland
and the Instituto de Matematica Pura e Aplicada, Rio de Janiero. Fur-
thermore, we are grateful to a number of sources for financial support over
the years (and this book has been several years in preparation) — Engin-
eering and Physical Sciences Research Council (UK), Marsden Fund (NZ),
National Science Foundation (US), Royal Society (UK), Sloan Foundation
(US) and the Texas Advanced Research Program. The patient support
provided by the staff at Springer-Verlag has also been much appreciated.

Aberdeen, UK Colin Maclachlan
Austin, Texas, USA Alan W. Reid



ontents

-cface

Number-Theoretic Menagerie

(). Number Fields and Field Extensions . . ... ... .. ...
(0.2 AlgebraicIntegers . . ... .. . ... ... 0.,
().3 Ideals in RingsofIntegers . . . . . .. ... .. .......
04 Units. . . . . v v o e e e e e e e e e e e e e e e
(.h Class Groups . . . . v v v v i v i i e e e e e e e e e e e
0.6 Valuations . . . . . . . o i i i e e e e e e e e e
0.7 Completions . . . . . . . . i i v i i i e e e e e
0.8 AdelesandIdeles . . . . . .. . . ... . . ...,
(.9 QuadraticForms . ... ... .. ... ... .00

Kleinian Groups and Hyperbolic Manifolds

.1 PSL(2,C) and Hyperbolic 3-Space . .. ... .. ... ...
1.2 Subgroups of PSL(2,C) . . ... ... ... ... ...
1.3 Hyperbolic Manifolds and Orbifolds . ... ... ... ...
1.4 Examples . . . . . . . . e e e e e e e e
1.4.1 BianchiGroups . . .. .. . . . ... ... ...,
1.4.2 Coxeter Groups . . . . . v v v v i v v i e e
1.4.3 Figure 8 Knot Complement . . .. ... ... ....
1.4.4 Hyperbolic Manifolds by Gluing . ... ... .. ..
1.  3-Manifold Topology and Dehn Surgery . ... ... . ...

1.5.1 3-Manifolds . . . . . . . . . v v i e e e e e e e






Contents Xi

4.9 Fuchsian Groups . . . . . . . . . . i i e 159
4.10 Further Reading . . . . . .. . ... ... ... ....... 162
Applications
5.1 Discreteness Criteria . . . . . . . . . . .. ... .......
5.2 Bass’'s Theorem . . . . . . . . . . .. .. .. .. ... ... .

5.2.1 Treeof SL(2,Kp) .. .. ... .. .. ... .....

5.2.2 Non-integral Traces . ... .. .. .. ... .....

5.2.3 Free Product with Amalgamation. . . .. .. ... .
5.3 Geodesics and Totally Geodesic Surfaces . . . . .. ... ..

5.3.1 Manifolds with No Geodesic Surfaces. . . . . . . ..

5.3.2 Embedding Geodesic Surfaces . . . . . .. ... ...

5.3.3 The Non-cocompact Case . . ... .. .. ... ...

5.3.4 Simple Geodesics . . . . . . .. ... . 0. .
5.4 Further Hilbert Symbol Obstructions . . . . . ... .. ...
5.5 Geometric Interpretation of the Invariant Trace Field . . . .
5.6 Constructing Invariant Trace Fields . . . ... .. .. ...
5.7 FurtherReading . . . . ... ... ... ... ........
Orders in Quaternion Algebras 197
6.1 Integers, Idealsand Orders . .. .. ... .. ... ..... 197
6.2 Localisation . .. ... . ... .. ... . ... . .. . ... 200
6.3 Discriminants . . . . . . . .. .. ... .. . 0., . 205
6.4 ThelocalCase—1 .. .. ... .. .. ... .. .. ..... 207
6.5 TheLocalCase—-1I . ... ... ... ... .. ....... 209
6.6 OrdersintheGlobal Case . . . . ... ... . ... ..... 214
6.7 The Type Number of a Quaternion Algebra, . . . . . . . .. 217
6.8 Further Reading ... ... ... ... ........... . 223
Quaternion Algebras II 225
7.1 AdélesandIdeles . . . . . .. .. ... . ... .. .. ... 226
7.2 Duality . ... ... . .. e e 229
7.3 Classification of Quaternion Algebras. . . . . . . ... ... 233
74 TheoremonNorms . . . . . . . . . .. .. ... 237
7.5 Local Tamagawa Measures. . . . . .. .. .. ... ..... 238
7.6 Tamagawa Numbers . . . .. .. .. ... ... ....... 244
7.7 The Strong Approximation Theorem . . . . . .. ... ... 246
7.8 Further Reading . .. .. .. ... ... ... ........ 250

Arithmetic Kleinian Groups
8.1 Discrete Groups from Orders in Quaternion Algebras . . . .
8.2 Arithmetic Kleinian Groups . . . . . . . ... . ... ....

8.3 'The ldentification Theorem . 0 . 0 0 0 0 o0 0 o000 L.
8.1 Complete Conmmensurability Invariants . . . 0 . . . 0 0 0 L.




Xii Contents
8.5 Algebraic Integersand Orders . . . . . . .. ... ... ... 272
86 FurtherReading ... ... .. ... ... ......... 274
9 Arithmetic Hyperbolic 3-Manifolds and Orbifolds
0.1 Bianchi Groups . . . . . . . . . .« . . ... 275
0.2 Arithmetic Link Complements . . . .. ... ........ 277
0.3 Zimmert Sets and Cuspidal Cohomology . . . . . .. .. .. 281
9.4 The ArithmeticKnot . . . . . . .. . .. .. ... .. .... 285
0.5 Fuchsian Subgroups of Arithmetic Kleinian Groups . . . . . 287
0.6 Fuchsian Subgroups of Bianchi Groups
and Applications . . . . . . . . .. ... . oo 292
9.7 Simple Geodesics . . . . . . .. ... .. 000 ... 297
98 Hoovering Up . . . . . . . . . . . . i i v v oo, 299
0.8.1 The Finite Subgroups A4,S4and 45 . . . .. .. .. 299
0.8.2 Week’s Manifold Again . ... ............ 300
99 Further Reading . ... ... ... ... .. ......... 302
10 Discrete Arithmetic Groups 305
10.1 Orthogonal Groups . . . . . .. .. ... .. ... ...... 306
10.2 SO(3,1) and SO(2,1) . . . . . . . . . . . . .. 310
10.3 General Discrete Arithmetic Groups and
Margulis Theorem . . ... ... ... ... ......... 315
10.4 Reflection Groups. . . . . . . . . . o i i v i i 322
10.4.1 Arithmetic Polyhedral Groups . .. ... ... ... 325
10.4.2 Tetrahedral Groups .. .. ... ... ... ..... 326
10.4.3 Prismatic Examples . . ... .. ... ... ..... 327
10.5 Further Reading . . . . . . . . ... ... .. .. ...... 329
11 Commensurable Arithmetic Groups and Volumes 331
11.1 Covolumes for Maximal Orders . . . . .. . ... ... ... 332
11.2 Consequences of the Volume Formula . . . . . . ... .. .. 338
11.2.1 Arithmetic Kleinian Groups with
Bounded Covolume . . . . . . ... ... .. ..... 338
11.2.2 Volumes for Eichler Orders . . ... ... .. .... 340
11.2.3 Arithmetic Manifolds of Equal Volume . . . . . . .. 341
11.2.4 Estimating Volumes . . .. ... .. ... ...... 342
11.2.5 A Tetrahedral Group. . ... ... ... ... .... 343
11.3 Fuchsian Groups . . . . . . . . . i i i i i v it et 345
11.3.1 Arithmetic Kleinian Groups with
Bounded Covolume . . . . . . . . .. .. ... .... 345
11.3.2 Totally Real Fields . . . . . ... .. ... ...... 346
11.3.3 Fuchsian Triangle Groups . . . . . .. ... ... .. 346
11.3.4 Signatures of Arithmetic Fuchsian Groups . . . . . . 350)

11.4 Maximal Discrete Groups . . . . . . . . .. ..o 3H2
1.5 Distribution of Volmmes . . . 0 0 0o 0 0 o000 350



Contents x1ii

11.6 Minimal Covolume . . . . . . . . . .. .. . ... .. ..., 358
11.7 Minimum Covolume Groups . . . . . . . . .. ... .. ... 363
11.8 Further Reading . . . . . . . . .. ... ... ........ 368
12 Length and Torsion in Arithmetic Hyperbolic Orbifolds 371
12.1 Loxodromic Elements and Geodesics . . . . . ... .. ... 371
12.2 Geodesics and Embeddings in Quaternion Algebras . . . . . 373
12.3 Short Geodesics, Lehmer’s and Salem’s Conjectures . . . . . 377
12.4 Isospectrality . . . .. . . . . . . . .. .. ... ..., . 383
12.5 Torsion in Arithmetic Kleinian Groups . . . . . . . . .. .. 394
12.6 Volume Calculations Again . . . . ... ... ... ..... 405
12.7 Volumes of Non-arithmetic Manifolds. . . . . . .. .. ... 410
12.8 Further Reading . . . . .. ... ... ... ..., 413
13 Appendices 415
13.1 Compact Hyperbolic Tetrahedra, . . . . . ... . ... ... 415
13.2 Non-compact Hyperbolic Tetrahedra . . . . . . . .. .. .. 416
13.2.1 ArithmeticGroups . . . . . . . .. .. ... ... 416
13.2.2 Non-arithmetic Groups . .. ... .. ... ..... 417
13.3 Arithmetic Fuchsian Triangle Groups . . . . . . . . .. ... 418
13.4 Hyperbolic Knot Complements . . . . . ... ... ..... 419
13.5 Small Closed Manifolds . .. .. ... .. ... ....... 423
13.6 Small Cusped Manifolds . . . ... ... .. ... ...... 431
13.7 Arithmetic Zoo . . . . . . . . . . e e e e e 436
13.7.1 Non-compact Examples . . ... ... ... ..... 436
13.7.2 Compact Examples, Degree 2 Fields . . .. .. ... 439
13.7.3 Compact Examples, Degree 3 Fields . . .. .. ... 44()
13.7.4 Compact Examples, Degree 4 Fields . . . ... ... 441
Bibliography

Index 459



0

Number-Theoretic Menagerie

This chapter gathers together number-theoretic concepts and results which
will be used at various stages throughout the book. There are few proofs
in this chapter and it should be regarded as a synopsis of some of the main
results in algebraic number theory, the proofs and details of which can be
found in one of the many excellent texts on algebraic number theory. Being
labelled Chapter 0, the implication is that this is a reference section, and
key results given in this chapter will be referred back to subsequently as
required in the book. It is certainly not necessary for the reader to absorb
all the material here before proceeding further. The basic ideas in Sections
(0.1,0.2 and 0.3 will arise frequently in the succeeding chapters. However,
until Chapter 6, only these basic ideas together with, in a couple of sections,
some ideas from Sections 0.6,0.7 and 0.9 are required to understand the
proofs and examples. Thus we suggest that the readers with a passing
[amiliarity with basic notions in algebraic number theory should return
to this chapter only when they encounter a concept with which they are
unfamiliar.

We assume that the reader is familiar with standard results on field
cxtensions and Galois theory. At the end of each section of this chapter,
we give some guidance to proofs of results contained in that section. These
results are all well established, so there are many possible sources which
could be referenced. For the reader’s convenience, and for this chapter only,
references are given at the end of each section. We have endeavoured to
make our choice of references as accessible as possible to the non-expert,
bt it is siimply our choice, and the interested reader may well want to seek
further advice in chasing down the detatls of these proofs.



2 0. Number-Theoretic Menagerie

Since we are to establish these number fields as invariants of Kleinian
groups, we initially place some emphasis on discussing the invariants of the
number fields themselves — in particular, their discriminants.

0.1 Number Fields and Field Extensions

The invariant fields which form the main topic of this book are defined to
be extensions of the rationals Q, generated by elements € C, ¢ running
through some index set 2. Thus

k=Q{t : i€ Q})

is the smallest subfield of C containing {¢ : ¢ € Q}. The set (2 is usually
finite and the elements ¢; are frequently algebraic so that they satisfy poly-
nomials with rational coefficients. If both these conditions hold, then & is
a finite extension of Q (i.e., a number field) . Because Q has characteristic
0, k£ is a simple extension & = Q(t) where ¢ satisfies a monic irreducible
polynomial f(z) € Q|z]|, the minimum polynomial of ¢, where the degree
of f is the degree of the extension [k : Q] =d.

The roots of the minimum polynomial of ¢ are called the conjugates of ¢.
If they are denoted t = t4,19,... ,tq, then the assignment { — ¢; induces a
field isomorphism Q(t) — Q(¢). Conversely, if 0 : k = Q(¢) — C is a field
monomorphism, then (%) is a root of the minimum polynomial of ¢. There
are thus, exactly d field (or Galois) monomorphisms o : £ — C. These will
usually be denoted oy, 09, ... ,04.

Since f has its coefficients in Q, the roots %, will either be real or fall into
complex conjugate pairs. Thus the monomorphisms o; will be designated as
real if o;(k) C R. Otherwise, they occur in complex conjugate pairs (g;, 7;)
where o;(k) ¢ R. If we let i denote the number of real monomorphisms
and r2 the number of complex conjugate pairs, then

d =11+ 2rs.

We say that k£ has r; real places and ro complex places. Furthermore, we
refer to k£ as being totally real if ro = 0.

Examples 0.1.1

1. For quadratic extensions k& = Q(\/ E) where d is a square-free integer,
the parameters (71, 72) distinguish between the cases where d is positive
with (r1,72) = (2,0) and d is negative with (r;,7r2) = (0, 1).

2. If k = Q(t) wherc t satisfies the polynomial #* + 2 + 1 = 0, then this
irreducible polynowial has one real root, only. I'has A has one real and
once complex place,
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3. If t = /(3 —2v/5), t satisfies z* — 622 — 11 = 0, which has roots +/(3 &
2\/5) Thus k£ = Q(t) has two real places and one complex place.

4. If k = Q(&€™*/™) is a cyclotomic extension, then the roots of the minimum
polynomial are all primitive nth roots of unity. Thus for n > 2, this field
has no real places and ¢(n)/2 complex places, where ¢ is Euler’s function.

5. In a similar way, the real subfield Q(cos 27 /n) of the cyclotomic field is
totally real.

If o € k, then the norm and trace of a are defined by
Nijo(a) = o1(a)oz(a) -+ - o4(a);  Trggl(a) = o1(a) +o2(a) + - - - + g4().

In the case where a = ¢t and &k = Q(¢), these are the product and sum,
respectively, of the conjugates of £. As such, they are, up to a sign, the
constant and leading coeflicients of the minimum polynomial and so lie
in Q.

If K denotes a Galois closure of the extension k£ | Q, then K can be taken
to be the compositum of the fields o;(k), i =1,2,...,d. For each o in the
Galois group, Gal(K | Q), the set {oqg;} is a permutation of the set {o;}.
Thus for each a € k, Ny (o), Triq(a) are fixed by each such ¢ and so lie

in the fixed field of Gal(K | Q) [i.e., Njo(e) and Try o) lie in Q.
If [k:Q] =d, let {4, 9, -+ ,aq} be any set of elements in k. If

101 + 909 + ... +x904 =0
with z; € Q, then for each monomorphism ¢;,
r10;(a1) + x20i(a2) + ...+ x40:(aq) = 0.
I'hus one readily deduces that the set {a;,a2,...,a4} is a basis of & |
il and only if det[o; ()| # 0.
The element § = det[o;(c;)] lies in K and for ¢ € Gal(K | Q), o(d) is

the determinant of a matrix obtained from [o;(a;)] by a permutation of
Lhe rows. Thus o(§) = £4.

Definition 0.1.2 If {ai,as3,... ,aq4} is a basis of the field k | Q, then the
discriminant of {aq,q,... ,aq} is defined by

discr{ai, az, ... ,aq} = det[o;(a;)]?. (0.1)
Allernatively, the discriminant of a basis can be defined as

diser{ey, vy, ... g} = {](‘.(.['[‘l‘((kf(v_.,-)].
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Note that discr{ai,as,...,aq} is invariant under each ¢ € Gal(K | Q)
and so lies in its fixed field (i.e., in Q). Thus

discr{oy, as,... ,aq} € Q.
If {51,82,...,084} is another basis of k¥ | Q then

discr{B1, B, . - . , B4} = (detX)?*discr{ay, az,... ,aq} (0.2)

where X is the non-singular change of basis matrix. If £ = Q(#), then
discr{1,t,...,t4 '} = det[t]}? (0.3)

where, as before, t = ¢4, %9, ... ,tq are the roots of the minimum polynomial
of t. The calculation of the Vandermonde determinant at (0.3) gives

discr{l,t,... ,td_l} = H (t: — tj)z- (0.4)

1<i<j<d

This discriminant is a symmetric homogeneous polynomial in the roots and
as such, can be expressed in terms of the elementary symmetric homogen-
eous polynomials of degrees up to d in the roots. However, these elementary
polynomials are just the coefficients of the minimum polynomial of ¢. Thus
the discriminant at (0.4) can be computed directly from the coefficients of
the minimum polynomial. More generally, for any polynomial f of degree
d with roots t1, ta,... ,t4, define

diser(f) = [ (:—-t)% (0.5)

1<i<3<d

The value of this discriminant can be calculated directly from the polyno-
mial as is shown in Exercise 0.1, No. 6.

The above description refers to the discriminants of bases of extensions
k | Q, but can be extended to any finite extension of number fields £ | k.
Thus let {0;: £ > C |i=1,2,...,d} run through the Galois embeddings
such that o; | k = Id, and let {a1, as,... ,aq} be any basis of £ | k. Then

diSCI'g“c{O!l, ag, ... ,ad} — det[ai(aj)]z. (06)

These (relative) discriminants are related to the (absolute) discriminants

over Q as follows: Let £, 02,... , 0 be a basis of £ | Q so that {Ga; : 1<
t<e,1<j<d}isabasis of £| Q. Then

discryp{Bicj} = (discry{Bi})* Nyjq(discrox{a;}). (0.7)

This can be seen as follows: With a; as defined above, let 77 denote the
Galois embeddings of & | Q. Let IV be the normal closure in C of A | Q and
[, the normal closure of €] QQ, so that N ¢ L. Now ecach o, extends to an
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automorphism, denoted a;, of Gal(L | Q). Furthermore, choose 7; € Gal(L |
()) such that 7|, = 74, 7 = 1,2,...,e. Then the elements {7;5;,1 <1 <
¢, 1 < 7 < d} restricted to £ give all the Galois embeddings of £ | Q. Thus

discrgg{Biaj } = det[7i0; (Bman)].

lnvaluating this determinant, we get

det[7:(Bm) (7i (07 (an)))] = detlFi (Bm)]® ] Fidetlos(an)]

=1

and (0.7) follows from this.

For a discussion of conjugates and discriminants, see Chapter 2 of Stewart
and Tall (1987) or Chapter 2 of Ribenboim (1972)

Ikxercise 0.1

[. Let K be a number field which is a Galois extension of Q. Show that K
1s ewther totally real or has no real places.

2. Let K be a field with exactly one complex place. Show that every proper
subfield of K 1is totally real.

3. Let K be a field of degree 4 over Q of the form K = Q{/a) where a
satisfies z° —tx — m = 0, where t,m € Z and t?> + 4m > 0. Determine the
number of real and complex places of K.

4. Let K be a number field and L a finite extension of K. Define the norm
Npix and trace Ity i. Show that

Nrjg = Ngjgo Nk

5. Evaluate the Vandermonde determinant at (0.3) to obtain the formula
at (0.4): that is, if x1,x2,... ,Zn are n independent variables and X is the

nXn matriz [z7], 1 <t <n, 0<j<n—1, then detX =[], _.(z; — ;).

6. This exercise shows how to compute the discriminant of a polynomsial

directly from its coefficients.
(a) Let xq, x2, ... ,x, be indeterminates and let s; denote the ith elementary

symmetric polynomial in x1,%2,... ,xz, for 1 < i < n. Thus

S?, = E xml xmz * vt xmi-
1<mi<mag < --<m;<n

Let po =n and py = ¥ + 25 + -+ -+ ¥ for k > 1. Show that the pi can be
computed systematically from the s; as follows:

(i) If k < n, then

D — Ph—151 + Pr—282 — -+ (=1)* Ipysp_1 + (=1)* ks = 0.
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(i) If k > n, then

Pk — Pk—181 + -+ + (—1)"Pr—nsn = 0.

(b) Let f(x) = 2" +a12" ' +asx™ *+---+a, so that a; is (—1)* times s;,
the ith elementary symmetric polynomial evaluated at the roots of f. Prove
that

Po D1 Pn—1
P1 P2 - Pn
discr(f) =det | | I |
Pn—-1 DPn ~°°° D2n-2

where the p; are evaluated at the roots of the polynomaial.

7. (a) Find the discriminant of 2* — 22° +z — 1.

(b) Let o satisfy > —x + (=1 + V/5)/2 = 0. Taking the bases {1,a} of
Q(a) | Q§/5) and {1,(1 +v5)/2} of QW5) | Q, use (0.7) to determine
the discriminant of the basis {1, a, (1++v/5)/2, a(1+/5)/2}. Compare with

(a)

8. Let K =Q(t) and let f be the minimum polynomial of t (of degree n ).
Show that

discr{1,t,t2,... ,t" "1} = (=1)"" V2 Ny o(Df (1)) (0.8)
where D f is the formal derivative of f.
9. (a) Let £ = 2™/ pk, where p is an odd prime. Show that
discr{1,¢,£2,. .. ,gcﬁ(p")—l} _ (_1)¢(p’°)/2pp’°"1(k(p-—1)-—1). (0.9)
(b) Let p = 2cos(2m/p*), where p is an odd prime. Show that
discr{1, p, p?, ... , p?®)/271} = pp lk(p=1)=1]-1, (0.10)

0.2 Algebraic Integers

To carry the study of number fields farther, the field-theoretic concepts of
the preceding section are insufficient and the arithmetic nature of these
fields must be examined. In this section, the role of algebraic integers is

introduced.

Definition 0.2.1 An clement oo C © as an algebraie indeger if il salisfies
 onte polynonial uilh cocllicients i 7.
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I'rom Gauss’ Lemma (see Exercise 0.2, No. 1), the minimum polynomial of
an algebraic integer will have its coefficients in Z. Also, an element o € C
will be an algebraic integer if and only if the ring Z|a] is a finitely generated
abelian group. Using this, it follows that the set of all algebraic integers is
2 subring of C.

Notation Let £ be a number field. The set of algebraic integers in k& will
he denoted by Ry.

Theorem 0.2.2 The set Ri is a 1ing.

In the next section, the ideal structure of these rings will be discussed.
l'or the moment, only the elementary structure will be considered.

To distinguish elements of Z among all algebraic integers, they may be
referred to as rational integers.

An algebraic integer is integral over Z in the following more general sense.

efinition 0.2.3

e Let R be a subring of the commutative ring A. Then a € A 1s integral
over R if it satisfies a monic polynomial with coefficients in R.

o The set of all elements of A which are integral over R is called the

integral closure of R in A.

I'hns Ry 1s the integral closure of Z in k. If a@ € C satisfies a monic poly-
nonial whose coefficients are algebraic integers aq, ag,... ,an, then Z|aj
s i finitely generated module over the ring Z|a,, ag,. .. , o], which is a
linitely generated abelian group. Thus Z|a| is a finitely generated abelian
rroup and so «a is an algebraic integer. Thus if £ | £ is a finite extension,
then Ry 1s also the integral closure of Ri in £. This also shows that Ry is
mlcgrally closed in k; that is, if o € k is integral over Rx, then o € Rj.
|.t, £ be a number field and let a@ € k£ have minimum polynomial f of
Jdepree n. If NV is the least common multiple of the denominators of the
voclitcients of f, then Na is an algebraic integer. Thus the field £ can be
tecovered from Ry as the field of fractions of Ry.. Since every number field
I is a simple extension Q(«) of Q, it also follows that a can be chosen to
e an algebralc integer. Thus the free abelian group R has rank at least

I

Delinition 0.2.4 A Z-basis for the abelian group Ry is called an integral
hases ()f ’ﬂ

Pheorem 0.2.5 Every number field has an integral basis.

[l v s an algebraic integer such that £ = Q(a), then we have seen that
Jal ¢ Re. 10§ is the diseriminant of the basis {1, 0, %, ... , ™'}, then
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it can be shown that R; C %Z[a] (see Exercise 0.2, No. 4), so that R has
rank exactly n.

Not every number field has an integral basis which has the simple form
{1,a,0?,...,a™ 1}. Such a basis is termed a power basis. (See Examples
0.3.11, No. 3 and Exercise 0.2, No. 11). In general, finding an integral basis
1S a tricky problem.

The discriminant of an integral basis is an algebraic integer which also
lies in Q, and hence its discriminant lies in Z. For two integral bases ot
a number field &k, the change of bases matrix, and its inverse, will have
rational integer entries and, hence, determinant 1. Thus by (0.2), any
two integral bases of k£ will have the same discriminant.

Definition 0.2.6 The discriminant of a number field k, written A, is the
discriminant of any integral basis of k.

Recall that the discriminant is defined in terms of all Galois embeddings
of k£, so that the discriminant of a number field is an invariant of the
iIsomorphism class of k.

Examples 0.2.7

1. The quadratic number fields £ = Q(/d), where d is a square-free integer,
positive or negative, have integral bases {1, a}, where a = Vd if d #
1(mod 4) and o = (1 + Vd)/2 if d = 1(mod 4). Thus Ax = 4d if
d # 1(mod 4) and Ax =d if d = 1(mod 4).

2. For the cyclotomic number fields £ = Q(&) where £ is a primitive pth
root of unity for some odd prime p, it can be shown with some effort
that 1,£,£2,...,6P~2 is an integral basis. Hence, Ay = (—1)(P~1)/2pp—2
(see Exercise 0.1, No. 9).

The discriminant is a strong invariant as the following important theorem
shows.

Theorem 0.2.8 For any positive integer D, there are only finitely many
fields with |Ag| < D.

This theorem can be deduced from Minkowski’s theorem in the geometry
of numbers on the existence of lattice points in convex bodies in R* whose
volume is large enough relative to a fundamental region for the lattice.

Considerable effort has gone into determining fields of small discrimin-
ant and much data is available on these. There do exist non-isomorphic
fields with the same discriminant, but they are rather thinly spread. (See
Examples 0.2.11). Thus in pinning down a number field, it is frequently
sullicient, to determine its degree over QQ, the munber of real and complex
places and tls diseriminanl.
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One of our first priorities is to be able to compute the discriminant. Recall
that the discriminant of a polynomial, and, hence, of a basis of the form
{1,¢,t2,...,t*"1} can be determined systematically (see Exercise 0.1, No.

6). Note also, that if {a3, as,...,aq} is a basis of k consisting of algebraic
integers, then

discr{al, ag,... ,a(}} — m2Ak (0.11)

where m € Z by (0.2). Thus if the discriminant of a basis consisting of
algebraic integers is square-free, then that basis will be an integral basis
and that discriminant will be the field discriminant.

We may also use relative discriminants to assist in the computation. In
general, for a field extension £ | k, there may not be a relative integral basis,

since Ri need not be a principal ideal domain and R, is not necessarily a
ree Ri-module.

Definition 0.2.9 The relative discriminant Oy of a finite extension of
number fields £ | k is the ideal in Ry generated by the set of elements
{discr{ai, az,... ,aq}} where {1, az,. .. ,aq}runs through the bases of £ |
k. consisting of algebraic integers.

'T'he following theorem then connects the discriminants (cf. (0.7)).

Theorem 0.2.10 Let £ | k be a finite extension of number fields, with
¢ : k| =d.

[Ag| = |N(Gg1) A%- (0.12)

In this formula, N () is the norm of the ideal I, which is the cardinality of
Lhe ring Ry /I. As we shall see in the next section, this is finite.

lkxamples 0.2.11

|. Let k = Q(t), where t satisfies the polynomial #° +z +1. This polynomial
has discriminant —31. Thus this is the field discriminant and {1, ¢, #*} is
an integral basis.

2. Consider again the example £ = Q(t), where t = /(3 — 2v/5). From
(0.4) the discriminant of the basis {1,¢,t 3} is 1,126,400. However,
1w = (1 +1t)/2 satisfies 22 — z + (—1 + v/5)/2 = 0 and so is an algebraic
integer. The discriminant of the basis {1, u,u?, u%} is —275 (see Exercise
(.1, No. 7). Note that ¥ = Q(/5) C ¢ and so by (0.12), N(dg) | 11.
In this case, Rx i1s a principal ideal domain, so that R, is a free Rp-
module and has a basis over Ri, which we can take to be of the form
{H,| + byu, ay + bz’u} with a;, b; € k. The discriminant of this basis is the
ideal generated by (agh; — a1b2)?(3 — 2v/5). It now easily follows that
depre cannol. be R Thus N () = 11 and s0 Ay = =275,
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3. Let ky = Q(#1), where t; satisfies z° + 4z +1 = 0, and ky; = Q(f),
where t, satisfies z* — 222 + £ + 1 = 0. Both these polynomials are
irrreducible and have discriminant —283. As 283 is prime, the fields both
have discriminant —283 using (0.11). These fields will be encountered
later in our investigations.

4. For non-isomorphic fields of the same degree, same number of real and
complex places and the same discriminant, consider the following ex-
amples of degree 4 over Q. Let &y = Q(#;), where t; satisfies fi(x) =
r* + 22° 4+ 322 + 22 — 1, and k; = Q(&) where ty satisfies fo(z) =
4 — 223 4+ 22?2 — 2. Both polynomials are irreducible, have one complex
place and discriminant —1472 = —23 x 64. If either contains a subfield
other than @, that subfield must be totally real (see Exercise 0.1, No. 2)
and, by (0.12), could only be Q(+/2). One then easily checks that f;(z)
factorises over Q(v/2) but that fo(z) does not. Thus k; and k are not iso-
morphic. As in Example 0.2.11, No. 2, one can show that Ay, = —1472,
but one has to work harder to establish that Ay, is exactly —1472 (see
Exercise 0.2, Nos.4 to 6).

For integral bases and discriminants, see Ribenboim (1972), Chapters 5
and 6 or Stewart and Tall (1987), Chapter 2. For Minkowski’s theorem and
its consequence Theorem 0.2.7, see Ribenboim (1972), Chapter 9 or Lang
(1970), Chapter 5. See also Stewart and Tall (1987), Chapter 7.

In this section, we refer to available data on fields of small discriminant.
Data accrued over the years and the methods used in obtaining data have
developed into the area of computational number theory (Cohen (1993),
Pohst and Zassenhaus (1989)). The data can now be accessed via packages

such as Pari (Cohen (2001)).

Exercise 0.2

1. Prove Gauss’ Lemma, that is, if f(z) is a polynomial in Z|x] which is
reducible in Q(x), then f(x) is reducible in Z[x].

2. Show that Z[\/g] 18 not integrally closed in its field of fractions.

3. Let £ | k be a finite extension. Prove that if a € Ry then Nyi(a) and
Try () lie in R. If £ | k is quadratic, prove the converse; that is, if a € £
and Nyy(a) and Tryi(a) both lie in Ry then o € Ry.

For the next three questions, make the following assumptions: o s an al-
gebraic integer, k = Q(a) and the basis {1,a,¢?,... ,a™ '} has discrim-
inant 0.

4. Prove that Ry C 3Z|c].

5. Among all integers of the form (ag + ayce 4 ag® + - - - +a; %) /6, choose
an a; such that |a;| is wminimal (£ 0), for o = 0,1,...,n 1. Prove that
{.!'“., Y A Uy } 1S (N 'l:'IIJ!"(["I'(Ll hasis ()/ 53
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6. In No. 5, it clearly suffices to consider |g;| < 6. Prove the following
simplifying version: If none of the elements

{ ap + a1+ -+ an_10™1

| USaz'<P}
P

where p is a prime divisor of 4, are algebraic integers, then R, = Z|c|.
7. If o is a root of 2 — 2 =0 and k = Q(a), show that R, = Z|[a].

8. Determine the discriminant of Q(a), where o satisfies £ +2z —1=10
and show that Ry, = Z|a].

9. Given that {1,£,£%,... ,6P~%} is an integral basis of Q(§), where £ =
¢2™/P for p an odd prime, prove that {1,p, 2, ..., pP3)/2} where p =
2 cos(27/p), is an integral basis of Q(p). (Cf. Exercise 0.1, No. 9).

10. Show that k\/%—’ s an algebraic integer. Determine the discriminant of
QW2,1).

(1. Let f(z) = 2° + 22 — 2z + 8.

(a) Compute the discriminant of f.

(b) Let t be a root of f and let u = 4/t. Show that u is an algebraic integer.
I’rove that u & Z|t]. Deduce that {1,t,u} is an integral basis of k = Q(t).
(¢) Prove that k does not have a power basis.

0.3 Ideals in Rings of Integers

Although there is no unique factorisation at the element level in general in
.licse rings Ry, there is unique factorisation at the ideal level into products
of prime ideals. This holds in a more general setting and this will be our
slarting point in describing the elegant ideal structure of the rings Rx.

Definition 0.3.1 Let D be an integral domain with field of fractions K.
I'hen D is a Dedekind domain if all the following three conditions hold:

() D is Noetherian.
(1i) D is integrally closed in K.
(111) Fvery non-zero prime ideal of D is mazximal.

Note that, as observed in the last section, for a number field, k is the field of
ractions of Ry and Ry is integrally closed in k. Also, if I is any ideal in Ry,
then Lhe abelian group I is free abelian of finite rank by Theorem 0.2.5.

1T'hus 71 is finitely generated and so Ry is Noetherian. Let P be a prime

ileal with v € P, v # (). Then Nig(a) € P and Nyg() € Z, so that the
principal ideal Ngo(c) e © P However, the quotiont Ry /Nyo(ce) Ry is a
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finitely generated abelian group in which every element has finite order. It
is thus finite, and as a quotient, so is Rx/P. However, any finite integral
domain is necessarily a field and so P is maximal. Thus Ry is a Dedekind

domain. Note that the above argument shows that, for any non-zero ideal
I, the quotient Ry /I is finite.

Theorem 0.3.2 Let Ry be the ring of integers in the number field k. Then.:

1. Ry is a Dedekind domain.
2. If I is a non-zero ideal of Ry, R /I is a finite ring.

Betfore stating the unique factorisation theorem for Dedekind domains,
we first note that the unique factorisation of ideals is closely related to the
existence of a group structure on a more general class of modules in k,
which we now introduce:

Definition 0.3.3 Let D be a Dedekind domain with field of fractions K.
Then a D-submodule A of K is a fractional ideal of D if there exists o« € D
such that oA C D.

Every ideal is a fractional ideal and the set of ideals in D is closed under
multiplication of ideals. The fractional ideals are also closed under multi-
plication but can also be shown to be closed under taking inverses where
the identity element is the ring D itself. Indeed, it turns out that each ideal
I has, as its Inverse,

I'™'={a€ K|al c D}.

Theorem 0.3.4 Let D be a Dedekind domain.
1. Let I be a non-zero ideal of D. Then

Izpill 32_._7:)37'

where P; are distinct prime ideals uniquely determined by I, as are
the positive integers a;.

2. The set of fractional ideals of D form a free abelian group under
multiplication, free on the set of prime ideals.

We now leave the general setting of Dedekind domains and return to the
rings of integers Ry to determine more information on their prime ideals.
Note that, from Theorem 0.3.2, for any non-zero ideal I, the quotient

Ry /I is finite.

Definition 0.3.5 If I is a non-zcro ideal of Ry, define the norm of I by

N(T) R /1]
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The unique factorisation enables the determination of the norm of ideals to
be reduced to the determination of norms of prime ideals. This reduction
firstly requires the use of the Chinese Remainder Theorem in this context:

Lemma 0.3.6 Let Q1,Q2,...,Q, be ideals in Ry such that Q; + Q,; = Rx
for i # 3. Then

Q1Q2-+Qr =M, Q; and Ri/Q1+++ Qr 2@ Y Ri/Q:.

For distinct prime ideals P;, P, the condition P + P2 = Ry can be shown
to hold for any positive integers a, b (see Exercise 0.3, No. 3). Secondly, the

ring Rx/P?* has ideals P2+°/P% and each ideal of the form P¢/P*! can
be shown to be a one-dimensional vector space over the field Ry /P. Thus

1f
Izpfl 32.__Pg'r
then
N(I) = [ [(N(P:))* (0.13)
1=1

and N is multiplicative so that
N(1J)=N({I)N(J). (0.14)

The unique factorisation thus requires that the prime ideals in R be in-
vestigated. If P is a prime ideal of Ri, then R /P is a finite field and so

has order of the form p/ for some prime number p. Note that PN Z is a
prime ideal p'Z of Z and that Z/p Z embeds in Ry /P. Thus p’ = p and

pRy = P Py? - - Pge (0.15)

where, for each i, Ry /P; is a field of order p’i for some f; > 1. The primes
P; are said to lie over or above p, or pZ. Note that f; is the degree of the
cxtension of finite fields [Rx/P; : Z/pZ). If [k : Q] = d, then N(pRy) = p°
and so

g
d = Z e.gfi. (016)
1=1

Definition 0.3.7 The prime number p is said to be ramified in the exten-

sion k| Q ¢f, in the decomposition at (0.15), some ¢ > 1. Otherwise, p is
wnramaified.

T'he following theorem of Dedekind connects ramification with the dis-
critminant.



14 0. Number-Theoretic Menagerie

Theorem 0.3.8 A prime number p is ramified in the extension k | Q if
and only if p | Ax. There are thus only finitely many rational primes which
ramify in the extension k | Q.

If P is a prime ideal in Ry with |Rx/P| =q (= p™), and £ | k is a finite
extension, then a similar analysis to that given above holds. Thus in Ry,

PRy, = Q7' Q5% -+ - Q¢ (0.17)

where, for each i, Ry/Q; is a field of order ¢g’:. The e;, f; then satisfy (0.16)
where [¢ : k| = d. Dedekind’s Theorem 0.3.8 also still holds when Ay is
replaced by the relative discriminant, and, of course, in this case, the ideal
P must divide the ideal 0p.

Now consider the cases of quadratic extensions Q(v/d) | Q in some de-
tail. Denote the ring of integers in Q(/d) by O4. Note that from (0.16),
there are exactly three possibilities and it is convenient to use some special
terminology to describe these.

1. pOg = P? (ie.,, g =1,e;1 = 2 and so f; = 1). Thus p is ramified in
Q(\/d) | Q and this will occur if p | d when d = 1(mod 4) and if p | 4d
when d # 1(mod 4). Note also in this case that Oz/P = F,, so that

N(P) = p.

2. pOg = P1P; (ie., g =2,e1 = ez = f; = fo = 1). In this case, we say
that p decomposes in Q(V/d) | Q . In this case N(BR) = N(P:) = p.

3. pOgq = P (i.e.,, g = 1,e1 = 1, f; = 2). In this case, we say that p s
inert in the extension. Note that N(P) = v°.

The deductions here are particularly simple since the degree of the exten-
sion is 2. To determine how the prime ideals of Rj lie over a given rational
prime p can often be decided by the result below, which is particularly
useful in computations. We refer to this result as Kummer’s Theorem. (It
1s not clear to us that this is a correct designation, and in algebraic num-
ber theory, it is not a unique designation. However, in this book, it will
uniquely pick out this result.)

Theorem 0.3.9 Let Ry = Z|0] for some 8 € Ry with minimum polynomial
h. Let p be a (rational) prime. Suppose, over E,, that

ho=hSRS - her

where h; € Z[x| is monic of degree f; and the overbar denotes the natural
map Zl|x| — F,|x]. Then P; = pRy + hi(0) Ry is a prime ideal, N(P;) = ok
ard

‘2. P

2 !

ply P
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There is also a relative version of this theorem applying to an extension
¢ | k with Ry = Ry|6] and P a prime ideal in Rx. As noted earlier, such
extensions may not have integral bases. Even in the absolute case of k£ | Q,
it is not always possible to find a @ € Ry, such that {1,0,62%,... ,6% 1} is an
integral basis. Thus the theorem as stated is not always applicable. There
are further versions of this theorem which apply in a wider range of cases.

Once again we consider quadratic extensions, which always have such a
basis as required by Kummer’s Theorem, with 8 = v/d if d Z 1(mod 4) and

0= (1+vVd)/2ifd= 1{mod 4). In the first case, p is ramified if p | 4d. For
other values of p, % — d € F, [z] factorises if and only if there exists a € Z

such that a® = d(mod p) [i.e. if and only if (%) = 1]. In the second case, if
pis odd and p f d, then 2?2 — x + (1 — d)/4 € F,[z] factorises if and only if
(2z — 1)? — d € F, [z] factorises [i.e. if and only if (g-) = 1]. If p = 2, then

X 1—d {a:2+a:e]F2[a:] if d = 1(mod 8)

o r 4 )| 22+ z+1€eF(z] if d=5(mod 8).

Thus using Kummer’s Theorem, we have the following complete picture of
prime ideals in the ring of integers of a quadratic extension of Q).

Lemma 0.3.10 In the quadratic extension, Q(vVd) | Q, where the integer
d is square-free and p a prime, the following hold:

1. Let p be odd.
(a) If p| d, p is ramified.
(b) If (g) =1, » decomposes.

(c) If (%) = —1, p is inert.
2. Let p = 2.

(a) If d # 1(mod 4), 2 is ramified.
(b) If d = 1(mod 8), 2 decomposes.
(¢) If d = 5(mod 8), 2 is inert.

lixamples 0.3.11

. The examples treated at the end of the preceding section will be con-
sidered further here. Thus let k¥ = Q(t) where t satisfies 2 + = + 1.
T'his polynomial is irreducible mod 2, so there is one prime ideal Po
in Ry, lying over 2 and N(P;) = 2°. Modulo 3, the polynomial factor-
ises as (0 — 1)(w% + 2 — 1), so that 3Ry = PP} with N(P}) = 3 and
N(P!) = 32. Modulo 31, the polynomial factorises as (& — 3)(x — 14)° so
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that 31 R, = P{,lpé’lz, as required by Dedekind’s Theorem 0.3.8. Note

that all possible scenarios can arise, because modulo 67, the polynomial
factorises as (z +4)(z + 13)(z — 9).

2. Now consider k = Q(/(3 — 2v/5)), where, by the discussion in the pre-
ceding section Ry = Z[u], with u satisfying z* — 22° + 2 — 1 = 0.
Again using Kummer’s Theorem, we obtain, for example, 2R;, = Ps,
3Rr = PiP{ and 5R;x = P2. In cases like this one, where there is
an intermediate field, it may be easier to determine the distribution of
prime ideals in two stages using the relative version of Kummer’s The-
orem. Thus, for example, the rational prime 5 ramifies in Q(/5) | Q,
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