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This book aims to be a course in Lie groups that can be covered in one
year with a group of good graduate students. I have attempted to address
a problem that anyone teaching this subject must have, which is that the
amount of essential material is too much to cover.

One approach to this problem is to emphasize the beautiful representation
theory of compact groups, and indeed this book can be used for a course of
this type if after Chapter 25 one skips ahead to Part III. But I did not want
to omit important topics such as the Bruhat decomposition and the theory of
symmetric spaces. For these subjects, compact groups are not sufficient.

Part I covers standard general properties of representations of compact
groups (including Lie groups and other compact groups, such as finite or p-
adic ones). These include Schur orthogonality, properties of matrix coefficients
and the Peter-Weyl Theorem.

Part 11 covers the fundamentals of Lie groups, by which I mean those sub-
jects that I think are most urgent for the student to learn. These include the
tollowing topics for compact groups: the fundamental group, the conjugacy
of maximal tori (two proofs), and the Weyl character formula. For noncom-
pact groups, we start with complex analytic groups that are obtained by
complexification of compact Lie groups, obtaining the Iwasawa and Bruhat
decompositions. These are the reductive complex groups. They are of course a
special case, but a good place to start in the noncompact world. More general
noncompact Lie groups with a Cartan decomposition are studied in the last
tew chapters of Part II. Chapter 31, on symmetric spaces, alternates examples
with theory, discussing the embedding of a noncompact symmetric space in
1ts compact dual, the boundary components and Bergman-Shilov boundary
of a symmetric tube domain, and Cartan’s classification. Chapter 32 con-
structs the relative root system, explains Satake diagrams and gives examples
illustrating the various phenomena that can occur, and reproves the Iwasawa
decomposition, formerly obtained for complex analytic groups, in this more
general context. Finally, Chapter 33 surveys the different ways Lie groups can
be embedded in one another.
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Part III returns to representation theory. The major unifying theme of
Part III is Frobenius-Schur duality. This is the correspondence, originating in
Schur’s 1901 dissertation and emphasized by Weyl, between the irreducible
. representations of the symmetric group and the general linear groups. The
correspondence comes from decomposing tensor spaces over both groups si-
multaneously. It gives a dictionary by which problems can be transterred from
one group to the other. For example, Diaconis and Shahshahani studied the
distribution of traces of random unitary matrices by transferring the problem
of their distribution to the symmetric group. The plan of Part 11l is to first
use the correspondence to simultaneously construct the irreducible represen-
tations of both groups and then give a series of applications to illustrate the
power of this technique. These applications include random matrix theory,
minors of Toeplitz matrices, branching formulae for the symmetric and uni-
tary groups, the Cauchy identity, and decompositions of some symmetric and
exterior algebras. Other thematically related topics topics discussed in Part
1T are the cohomology of Grassmannians, and the representation theory ot
the finite general linear groups.

This plan of giving thematic unity to the “topics” portion of the book with
Frobenius-Schur the unifying theme has the effect of somewhat overemphasiz-
ing the unitary groups at the expense of other Lie groups, but for this book
the advantages outweigh this disadvantage, in my opinion. The importance of
Frobenius-Schur duality cannot be overstated.

In Chapters 48 and 49, we turn to the analogies between the representation
theories of symmetric groups and the finite general linear groups, and between
the representation theory of the finite general linear groups and the theory of
automorphic forms. The representation theory of GL(n,F,) is developed to
the extent that we can construct the cuspidal characters and explain Harish-
Chandra’s “Philosophy of Cusp Forms” as an analogy between this theory
and the theory of automorphic forms. It is a habit of workers in automorphic
forms (which many of us learned from Piatetski-Shapiro) to use analogies with
the finite field case systematically.

The three parts have been written to be somewhat independent. One may
thus start with Part II or Part III and it will be quite a while before earlier
material is needed. In particular, either Part II or Part IIl could be used as
the basis of a shorter course. Regarding the independence of Part IlI, the
Weyl character formula for the unitary groups.is obtained independently of
the derivation in Part II. Eventually, we need the Bruhat decomposition but
not before Chapter 47. At this point, the reader may want to go back to Part
II to fill this gap.

Prerequisites include the Inverse Function Theorem, the standard theorem
on the existence of solutions to first order systems of differential equations
and a belief in the existence of Haar measures, whose properties are reviewed
in Chapter 1. Chapters 17 and 50 assume some algebraic topology, but these
chapters can be skipped. Occasionally algebraic varieties and algebraic groups
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are mentioned, but algebraic geometry is not a prerequisite. For affine alge-
braic varieties, only the definition is really needed.

The notation is mostly standard. In GL(n), I or I,, denotes the n x n
~ 1dentity matrix and if g is any matrix, g denotes its transpose. Omitted entries
In a matrix are zero. The identity element of a group is usually denoted 1 but
also as I, if the group is GL(n) (or a subgroup), and occasionally as e when
it seemed the other notations could be confusing. The notations C and C are
synonymous, but we mostly use X C Y if X and Y are known to be unequal,
although we make no guarantee that we are completely consistent in this. If
X is a finite set, | X| denotes its cardinality.

One point where we differ with some of the literature is that the root
system lives in R ® X™*(T') rather than in the dual space of the Lie algebra of
the maximal torus T as in much of the literature. This is of course the right
convention if one takes the point of view of algebraic groups, and it is also
arguably the right point of view in general since the real significance of the
roots has to do with the fact that they are characters of the torus, not that
they can be interpreted as linear functionals on its Lie algebra.

To keep the book to a reasonable length, many standard topics have been
omitted, and the reader may want to study some other books at the same
time. Cited works are usually recommended ones.

Acknowledgments. The proofs in Chapter 36 on the Jacobi-Trudi iden-
tity were worked out years ago with Karl Rumelhart when he was still an
undergraduate at Stanford. Very obviously, Chapters 40 and 41 owe a great
deal to Persi Diaconis, and Chapter 43 on Cauchy’s identity was suggested by
a conversation with Steve Rallis. I would like to thank my students in Math
263 tor staying with me while I lectured on much of this material.

This book was written using TRXmacs, with further editing of the exported
IXIEX file. The utilities patch and diff were used to maintain the differences
between the automatically generated and the hand-edited TEX files. The fig-
ures were made with MetaPost. The weight diagrams in Chapter 24 were
created using programs I wrote many years ago in Mathematica based on the
Freudenthal multiplicity formula.

T'his work was supported in part by NSF grant DMS-9970841 .

Daniel Bump
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- Haar Measure

If G is a locally compact group, there is, up to a constant multiple, a unique
regular Borel measure pp that is invariant under left translation. Here left
translation invariance means that pu(X) = u(gX) for all measurable sets X.
Regularity means that

(X)) =inf {(U)|U D X,U open} =sup {u(K)| K C X, K compact}.

Such a measure is called a left Haar measure. It has the properties that any
compact set has finite measure and any nonempty open set has measure > 0.

We will not prove the existence and uniqueness of the Haar measure. See
tor example Halmos {51, Hewitt and Ross [57], Chapter IV, or Loomis [94]
for a proof of this. Left-invariance of the measure amounts to left-invariance
of the corresponding integral,

/ f(vg)dur(g) '—‘“—/ f(g)dpr(g), (1.1)
G G

for any Haar integrable function f on G.
There is also a right-invariant measure, pugr, unique up to constant multiple,

called a right Haar measure. Left and right Haar measures may or may not
coincide. For example, if

G:{((y) f)|x,yeR,y>o},

then it is easy to see that the left- and right-invariant measures are, respec-
tively,

dpy, =y ?dzdy, dur =y 'dzdy.

They are not the same. However, there are many cases where they do coincide,
and if the left Haar measure is also right-invariant, we call G unimodular.
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Conjugation is an automorphism of G, and so it takes a left Haar measure
to another left Haar measure, which must be a constant multiple of the first.
Thus, if g € G, there exists a constant 6(g) > 0 such that

/ f(g~ hg) dur(h / f(h)dpr(h

If G is a topological group, a quasicharacter is a continuous homomorphism
X:G—C*. It |x(g)| =1 for all g € G, then x is a unitary quasicharacter.

Proposition 1.1. The function 6 : G — RZ is a quasicharacter. The mea-
sure 0(h)pr (h) is right-invariant.

The measure d(h)ur, (h) is a right Haar measure, and we may write ur(h) =
o(h)ur(h). The quasicharacter d is called the modular quasicharacter.

- Proof. Conjugation by first g; and then g9 is the same as conjugation by g; go
In one step. Thus 0(g192) = 0(g1) d(g2), so 4 is a quasicharacter. Using (1.1),

5(9) | S dun() = | f(g- 9 hg) dus(h) = | ko) dus i)

Replace f by fd in this identity and then divide both sides by d(g) to find
that

/ F(h) 6(h) dpr,(h) = /G 7(hg) 8(h) du (k).

Thus, the measure 6(h) dpr(h) is right-invariant. (]
Proposition 1.2. If G is compact, then G is unimodular and 11 (G) < oo.

Proof. Since 6 is a homomorphism, the image of J is a subgroup of R . Since
G is compact, 6(G) is also compact, and the only compact subgroup of R is
just {1}. Thus § is trivial, so a left Haar measure is right-invariant. We have
mentioned as an assumed fact that the Haar volume of any compact subset of
a locally compact group is finite, so if G is finite, its Haar volume is finite. O

If G is compact, then it is natural to normalize the Haar measure so that
(G has volumne 1.

To simplify our notation, we will denote fG f(g)dur(g) by fG f(g)dg.

—1

Proposition 1.3. If G is unimodular, then the map g — g~ is an isometry.

Proof. Tt is easy to see that g — g~ ! turns a left Haar measure into a right
Haar measure. If left and right Haar measures agree, then ¢ — ¢~ ! multiplies

the lett Haar measure by a positive constant, which must be 1 since the map
has order 2. []
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EXERCISES

Exercise 1.1. Let dqo X denote the Lebesgue measure on Mat,, (R). It is of course a
Haar measure for the additive group Mat, (R). Show that |det(X )| "doX is both
a left and a right Haar measure on GL(n, R).

Exercise 1.2. Let P be the subgroup of GL(r + s,R) consisting of matrices of the
form

D = (gl ;() ; g1 € GL(T, R)a g2 € GL(S,R), X € MatTXS(R).
2

Let dgi and dg> denote Haar measures on GL(7r,R) and GL(s,R), and let do X
denote an additive Haar measure on Mat,xs(R). Show that

drp = | det(gl)l'"s dg) dg2 da X, drp = | det(gg)lﬂr dg1 dg2 da X,

 are (respectively) left and right Haar measures on P, and conclude that the modular
quasicharacter of P is

6(p) = | det(g1)|" | det(g2)| ™.
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Schur Orthogonality

In this chapter and the next two, we will consider the representation theory
of compact groups. Let us begin with a few observations about this theory
and its relationship to some related theories.

If V is a finite-dimensional complex vector space, or more generally a Ba-
nach space, and 7 : G — GL(V) a continuous homomorphism, then (7, V) is
called a representation. Assuming dim(V') < oo, the function x,(g) = tr 7(g)
1s called the character of m. Also assuming dim(V) < oo, the representation
(w, V) is called irreducible if V has no proper nonzero invariant subspaces,
and a character is called irreducible if it is a character of an irreducible rep-
resentation.

(If V is an infinite-dimensional topological vector space, then (m,V) is
called irreducible if it has no proper nonzero invariant closed subspaces.)

A quasicharacter x is a character in this sense since we can take V = C
and 7(g)v = x(g)v to obtain a representation whose character is .

The archetypal compact Abelian group is the circle T = {z c C”~ | 1z| = }
We normalize the Haar measure on T so that it has volume 1. Its characters
are the functions x,, : T — C*, x,(2) = z™. The important properties of the
Xn are that they form an orthonormal system and (deeper) an orthonormal
basis of L*(T).

More generally, it G is a compact Abelian group, the characters of G form
an orthonormal basis of L*(G). If f € L?(G), we have a Fourier expansion,

flg) = 3 ay x(9), / £(9)x(g) dg. (2.1)

X

and the Plancherel formula is the identity:

/G @ dg =3 Jayl* (2.2)

X
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These facts can be directly generalized in two ways. First, Fourier analysis
on locally compact Abelian groups, including Pontriagin duality, Fourier in-
version, the Plancherel formula, etc. is an important and complete theory due
to Weil [124] and discussed, for example, in Rudin [104] or Loomis [94]. The
most important difference from the compact case is that the characters can
vary continuously. The characters themselves form a group, the dual group G,
whose topology is that of uniform convergence on compact sets. The Fourier
expansion (2.1) is replaced by the Fourier inversion formula

f(g) = /éf(x)x(g) dx, f(x) = /Gf(g) x(9) dg.

The symmetry between G and G is now evident. Similarly in the Plancherel
formula (2.2) the sum on the right is replaced by an integral.

The second generalization, to arbitrary compact groups, i1s the subject
of this chapter and the next two. In summary, group representation theory
gives a orthonormal basis of L?(G) in the matrix coefficients of irreducible
representations of G and a (more important and very canonical) orthonormal
basis of the subspace of L?(G) consisting of class functions in terms of the
characters of the irreducible representations. Most importantly, the irreducible
representations are all finite-dimensional. The orthonormality of these sets is
Schur orthogonality; the completeness is the Peter-Weyl Theorem.

These two directions of generalization can be unified. Harmonic analy-
sis on locally compact groups agrees with representation theory. The Fourier
inversion formula and the Plancherel formula now involve the matrix coefh-
cients of the irreducible unitary representations, which may occur in contin-
uous families and are usually infinite-dimensional. This field of mathematics,
largely created by Harish-Chandra, is fundamental but beyond the scope of
this book. See Knapp [81] for an extended introduction, and Geltfand, Graev
and Piatetski-Shapiro [46] and Varadarajan [120] for the Plancherel formula
for SL(2, R).

Although nfinite-dimensional representations are thus essential in har-
monic analysis on a noncompact group such as SL(n,R), noncompact Lie
groups also have irreducible finite-dimensional representations, which are im-
portant in their own right. They are seldom unitary and hence not relevant
to the Plancherel formula. The scope of this book includes finite-dimensional
representations of Lie groups but not infinite-dimensional ones.

In this chapter and the next two, we will be mainly concerned with com-
pact groups. In this chapter, all representations will be complex and finite-
dimensional except when explicitly noted otherwise.

By an inner product on a complex vector space, we mean a positive definite
Hermitian form, denoted (, ). Thus (v, w) is linear in v, conjugate linear in
w, satisfies (w,v) = (v, w), and (v,v) > 0 if v # 0. We will also use the term
inner product for real vector spaces — an inner product on a real vector space
is a positive definite symmetric bilinear form. Given a group G and a real or
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complex representation 7 : G — GL(V'), we say the inner product (, ) on
V' is G-equivariant or invariant if it satisfies the identity

(m(g)v, m(g)w) = (v, w).

Proposition 2.1. If G is compact and (7, V) is any finite-dimensional com-
plex representation, then V admits a G-equivariant inner product.

Proof. Start with an arbitrary inner product ((, )). Averaging it gives another
iner product,

(v, w) = /G (m(g)v,m(g)w) dyg,

for it is easy to see that this inner product is Hermitian and positive definite.
It is G-equivariant by construction. (]

Proposition 2.2. If G is compact, every finite-dimensional representation is
the direct sum of irreducible representations.

Proof. Let (m, V') be given. Let V] be a nonzero invariant subspace of minimal
dimension. It is clearly irreducible. Let V= be the orthogonal complement of
Vi1 with respect to a G-invariant inner product. It is easily checked to be
invariant, of lower dimension than V, and so by induction Vi = V5@ ... 8V,
Is a direct sum of invariant subspaces and soV =V; & ... ® V, is also. O]

A function of the form ¢(g) = L(n(g)v), where (m,V) is a finite-
dimensional representation of G, v € V and L : V — C is a linear functional,
1s called a matriz coefficient on G. This terminology is natural, because if we

choose a basis ey, -+, e,, of V| we can identify V with C™ and represent g by
madtrices:
m11(9) -+ T1n(9) v V1 n
7r(g)v — ; E : : V= ; = Zvjej.
7T'n,l(g) T 71"n,'n,(g) Un Un =1

Then each of the n* functions 7;; is a matrix coefficient. Indeed

mi(9) = Li(m(9)e;),
where L;()_; vje;) = v;.

Proposition 2.3. The matriz coefficients of G are continuous functions. The
porntwise sum or product of two matrix coefficients 1s a matriz coefficient, so
they form a ring.

Proof. If v € V| then ¢ — m(g)v is continuous since by definition a represen-
tation m : G — GL(V) is continuous and so a matrix coefficient L(x(g)v')
1S continuous.
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If (m1,V1) and (mq, V) are representations, v; € V; are vectors and
L; : Vi — C are linear functionals, then we have representations 1 D 7o
and M @ Mo on V3 & V5 and V; ® Vs, respectively. Given vectors v; € V,
and functionals L; € V.*, then L, (71'(9)‘1)1) + Lo (w(g)vg) can be expressed as
L((’ﬂ'l 6971'2)(9)(’01,’02)) where L : Vl EBVQ — Cis L(.’L’l,.’L'g) — Ll (.’L’l):l:LQ(.’L'Q),
so the matrix coefficients are closed under addition and subtraction.

Similarly, we have a linear functional L1 ® L, on V; ® V, satistying

(L1 ® L2)(x1 ® x2) = L1(x1)La(x2)

and

(L1 ® La)((m1 ® m2)(g)(v1 ® v2)) = L1(m1(g)v1) La(m2(g)v2),
proving that the product of two matrix coefficients is a matrix coefficient. O

It (w, V) is a representation, let V* be the dual space of V. To emphasize
the symmetry between V and V*, let us write the dual pairing V x V* — C

In the symmetrical form L(v) = [v,L]. We have a representation (7, V*),
called the contragredient of n, defined by
[v, 7(9)L] = [7(¢”")v, L] . (2.3)

Note that the inverse is needed here so that 7(g192) = 7(g1)7(g2).

If (=, V') is a representation, then by Proposition 2.3 any linear combination
of functions of the form L(n(g)v) with v € V, L € V* is a matrix coefficient,
though it may be a function L'(7'(g)v') where (7', V') is not (m, V), but a
larger representation. Nevertheless, we call any linear combination of functions

of the form L(7(g) v) a matriz coefficient of the representation (w,V). Thus

the matrix coefficients of m form a vector space, which we will denote by M.,
Clearly, dim(M) < dim(V)?.

Proposition 2.4. If f is a matriz coefficient of (m,V), then f(g) = f(g™1)
1s a matrix coefficient of (w, V™).

Proof. This is clear from (2.3), regarding v as a linear functional on V*. 0O

We have actions of G on the space of functions on G by left and right

translation. Thus if f is a function and g € G, the left and right translates
are

(AM9)f)(z) = f(g™ =), (p(9)f)(z) = f(zg).

Theorem 2.1. Let f be a function on G. The following are equivalent.

(1) The functions A(g)f span a finite-dimensional vector space.

(12) The functions p(g)f span a finite-dimensional vector space.

(112) The function f is a matriz coefficient of a finite-dimensional repre-
sentation.
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Proof. 1t is ecasy to check that if f is a matrix coeflicient of a particular
representation V', then so are A(g)f and p(g)f for any g € G. Since V is finite-
dimensional, its matrix coefhicients span a finite-dimensional vector space; in
fact, a space of dimension at most dim(V)?%. Thus (iii) implies (i) and (ii).

Suppose that the functions p(g)f span a finite-dimensional vector space V.
Then (p, V) is a finite-dimensional representation of GG, and we claim that f is
a matrix coefficient. Indeed, define a functional L : V — C by L(¢) = ¢(1).
Clearly, L(p(g9)f) = f(g), so f is a matrix coefficient, as required. Thus (ii)
implies (iii).

Finally, if the functions A(g)f span a finite-dimensional space, composing
these functions with ¢ — ¢~ ! gives another finite-dimensional space which is
closed under right translation, and f defined as in Proposition 2.4 is an element
of this space: hence f is a matrix coefficient by the case just considered. By
Proposition 2.4, f is also a matrix coefficient, so (i) implies (iii). O]

If (w1, V1) and (mq, V5) are representations, an intertwining operator, also
known as a G-equivariant map T : V; — V5 or (since V; and V5, are sometimes
called G-modules) a G-module homomorphism, is a linear transtormation 7' :
Vi — V5 such that

Tom(g) =mag)oT

for ¢ € G. We will denote by Homc(V;, Vo) the space of all linear trans-
formations V; — V5 and by Homg(V;, V) the subspace of those that are
intertwining maps. If T is a bijective intertwining map, then 77! : V, — V;
1s also an intertwining map, so 7' 1s an 1Isomorphism.

For the remainder of this chapter, unless otherwise stated, G will denote
a compact group.

Theorem 2.2. (Schur’s Lemma) (7) Let (71, V1) and (72, V2) be trreducible
representations, and let T : Vi — V5 be an intertwining operator. Then either
1" 1s zero or it is an isomorphism.

(i2) Suppose that (7, V') s an wrreducible representation of G andT : V — V

1s an intertwining operator. Then there exists a scalar A € C such that T'(v) =
Av for allv e V.

Proof. For (i), the kernel of T is an invariant subspace of V7, which is assumed
irreducible, so if T is not zero, ker(71") = 0. Thus T  is injective. Also, the image
of T is an invariant subspace of V5. Since V5 is irreducible, it T' is not zero,
then im(1") = V5. Therefore T' is bijective.

For (ii), let X\ be any eigenvalue of T'. Let I : V — V denote the identity
map. The linear transformation 7' — A is an intertwining operator that is not
an isomorphism, so it is the zero map by (i). O

We are assuming that G is compact. The Haar volume of G is theretore
finite, and we normalize the Haar measure so that the volume of G is 1.

We will consider the space L?(G) of functions on G that are square-
integrable with respect to the Haar measure. This is a Hilbert space with
the inner product
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(f1, f2) g2 = [G f1(9) Fa(g) dg.

Schur orthogonality will give us an orthonormal basis for this space.

It (m,V) is a representation and (, ) is an invariant inner product on V.,
then every linear functional is of the form z — (z,v) for some v € V. Thus
a matrix coetficient may be written in the form ¢ — (7 (g)w, v), and such a
representation will be useful to us in our discussion of Schur orthogonality.

Lemma 2.1. Suppose that (71, V1) and (79, Vo) are complex representations
of the compact group G. Let {,) be any inner product on V. If v;,w; € V;,
then the map T : V| —> V5 given by

Tw) = [ (m(g)w,m) malg™ v dg (2.4)

1s G -equivariant.

Proof. We have

T(7r1(h)w) = /G (Wl(gh)w,vl)m(g"l)vg dg.

The variable change g — gh ' shows that this equals 7 (h)T'(w), as required.
L]

Theorem 2.3. (Schur orthogonality) Suppose that (7w1,V}) and (wq, Vs)
are wrreducible representations of the compact group G. Either every matrizc
coefficient of m, is orthogonal in L*(G) to every matriz coefficient of ma, or
the representations are isomorphic.

Proof. We must show that if there exist matrix coefficients f; : G — C of ;
that are not orthogonal, then there is an isomorphism T : V; — V,. We may
assume that the f; have the form f;(g) = (m;(g9)w;, v;) since functions of that
form span the spaces of matrix coefficients of the representations 7;. Here we
use the notation (, ) to denote invariant bilinear forms on both V; and Vs,
and v;, w; € V;. Then our assumption is that

/ (m1(g)wi,v1) (ma(g™ " vz, w2) dg = / (m1(g)w1,v1) (ma(g)wa, va) dg # 0.
G G

Define T° : V|, — V5 by (2.4). The map is nonzero since the last inequality
can be written (weo, T'(wy)) # 0. It is an isomorphism by Schur’s Lemma. O

T'his gives orthogonality for matrix coefficients coming from nonisomorphic
irreducible representations. But what about matrix coefficients from the same
representation? (If the representations are isomorphic, we may as well assumne
they arc equal.) The following result gives us an answer to this question.
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Theorem 2.4. (Schur orthogonality) Let (7,V) be an irreducible repre-
sentation of the compact group G, with invariant inner product { , ). Then
there exists a constant d > 0 such that

/G (m(g)wy,v1) (7(g)wa2,v2) dg = d™ (w1, we) (v2,v1) . (2.9)

Later, in Proposition 2.11, we will show that d = dim(V).

Proof. Fixing v; and vy, T given by (2.4) is G-equivariant, so by Schur’s
Lemma it is a scalar. Thus, there is a constant ¢ = ¢(v1, v9) depending only
on v; and v, such that T(w) = cw. In particular, T'(w;) = cw;, and so

c(v1,v9) (wy we) = (T(wy),ws) =

] (r(g)wr, 1) (m(g~" v, wp) dg = / (r(q)w, v1) (7(g)wa, vz) dg.
G

G

On the other hand, the variable change ¢ — ¢! and the properties of the
Inner product give us

/ (m(g)wi, v1) (T(g)wa, v2)dg = / (m(g)ve, w2) (m(g)v1,w1) dg,
G G

so the same argument shows that there exists another constant ¢’ (w;, ws) such
that for all v; and vy we have

/G (r(g)w1, v1) (7(q)wa, v3) dg = ¢ (wy, wp) (va,v1)

Putting these two facts together, we get (2.5). We will compute d later in
Proposition 2.11, but for now we simply note that it is positive since, taking
w; = wy and v; = vg, both the left-hand side of (2.5) and the two inner
products on the right-hand side are positive. (]

Before we turn to the evaluation of the constant d, we will prove a difterent
orthogonality for the characters of irreducible representations (Theorem 2.5).
This will require some preparations.

Proposition 2.5. The character x of a representation (w,V') is a matrix co-

efficient of V.

Proof. If v1,--- ,v, is a matrix of V, and L4, --- , L, is the dual basis of V",
then x(g) = >_;_; Li(7(g)vs)- .

Proposition 2.6. Suppose that (w,V) is a representation of G and (n*,V™)
is its contragredient. Then the character of m* s the complex conjugate X of
the character x of G.
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Proof. Referring to (2.3), 7*(g) is the adjoint of 7(g)~' with respect to the
dual pairing [, ]|, so its trace equals the trace of w(g)~1. Since 7(g) is unitary
with respect to an invariant inner product (, ), its eigenvalues t;,--- , ¢, all
have absolute value 1, and so

tr m(g) " = Zt;1 = ZE:@

L]

The trivial representation of any group G is the representation on a one-
dimensional vector space V with n(g)v = v being the trivial action.

Proposition 2.7. If (7, V) is an irreducible representation and x its charac-
ter, then '

- | 1 of w15 the trivial representation,
/GX(Q) a9 = {O otherw:se.

Proof. The character of the trivial representation is just the constant function
1, and since we normalized the Haar measure so that G has volume 1, this
integral is 1 if 7 is trivial. In general, we may regard fG x(g) dg as the inner
product of x with the character 1 of the trivial representation, and if 7 is
nontrivial, these are matrix coeflicients of different irreducible representations
and hence orthogonal by Theorem 2.3. []

If (w,V) is a representation, let V& be the subspace of G-invariants, that
IS,
Ve ={veV|n(g)v=wuforall g e G}.

Proposition 2.8. If (7, V) is a representation of G and x its character, then

/ x(g) dg = dim(VE).
G

Proof. Decompose V = @;V; into a direct sum of irreducible invariant sub-
spaces, and let x; be the character of the restriction 7; of 7 to V;. By Propo-
sition 2.7, fG xi(9)dg = 1 if and only if =; is trivial. Hence fG x(g) dg is the
number of trivial m;. The direct sum of the V; with «; trivial is V&, and the
statement follows. ~ O

Suppose that (w1, V1) and (m, V) are representations of G. We define a
representation I/ of G X G on the space Homc¢(V7, V5,) of all linear. transfor-
mations 1" : V; — V, by

II(g,h)T = my(g) o T o (h™1). (2.6)

We recall that V* i1s a module for the contragredient representation 7. We
will compare this to the representation 7o ® 7; : G x G — GL(V, ® V¥)
defined by (m2 ®71)(g,h) = m2(9) ®71(g). We denote by [, ] the dual pairing
Vl X Vl* — C.
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Proposition 2.9. Let (my, V1) and (mwq, V) be representations of G. Then the
representation (2.6) of G X G on Homc¢(Vy, V) is equivalent to the represen-
tation mo @ M of G X G on Vo @ Vi*.

Proof. Define a bilinear map V3 x V¥ — Hom¢(V1, V2) by mapping (ve, L) €
Vo x VI* to the linear transformation vy, — vy, L] v2. By the universal prop-
erty of the tensor product, there is induced a linear map 0 : Vo ® V¥ —
Homc(V1, V3) such that 8(vo ® L)v, = vy, L] ve. It is easy to see that 6 is an
1Isomorphism. We must show that it is G X GG-equivariant, that 1s,

0 o (m2(g9) ® 71(h)) = II(g,h) o b. (2.7)

We have, for v; € V; and L € V",

0 o (m2(g9) ® 71 (h)) (ve ® L)(v1) = 8(m2(g9)ve @ 71 (h)L)(v1) =
[[Ula'ﬁ'l(h)LII m2(g)ve = [[Wl(h_l)vla L]] m2(g)v2 =
7T2(9)( [[Wl(h’—_l)vlaL]] ’Uz) = ma(g)0(v2 & L)Wl(h“I)M
= (I1(g,h) 0 6)(v2 ® L)vs.

This proves (2.7). O

If (7, V) is an irreducible representation, we also have an action of G X G
on the space M, of matrix coefficients of 7. If (¢,h) € G X G and f € M,

define u(g,h)f : G — C by (puf)(z) = f(h™'zg).

Proposition 2.10. If (7, V) is an irreducible complex representation of the
compact group G, and f € My, then u(g,h)f € My. Thus p : G X G —
GL(M) is a representation. It is equivalent to the representation of G X G
on V®V* = End(V) obtained by taking (my, V1) = (me, Vo) = (7, V') to be the

same representation in Proposition 2.9.

Proof. If v € V, L € V* let f,r(9) = [=(g)f,L]. The bilinear map
(v,L) — f, 1 induces an isomorphism V ® V* — M, which we claim
is an isomorphism. This map is surjective by the definition of M, and Schur
orthogonality (Theorem 2.4) guarantees that M, contains dim(V)* orthogo-
nal and hence linearly independent vectors, so the map must also be injective.
We check easily that u(g, h)fo.L. = fr(g)v.#(h)L, 50 this map is G-equivariant,
and we conclude that M, =2 V ® V* as G-modules. The result now follows
from Proposition 2.9. O

If (w1, V1) and (72, Va) are irreducible representations, and x; and X2 are
their characters, we have already noted in proving Proposition 2.3 that we may
form representations m; @ we and 71 ® o on V3 & V5 and Vi ® Va. It 1s easy to
see that X, @r, = Xm; + X, a0d Xm, @1, = Xm Xmp- It 18 NOt quite true that
the characters form a ring. Certainly the negative of a matrix coeflicient is a
matrix coefficient, yet the negative of a character is not a character. The set
of characters is closed under addition and multiplication but not subtraction.
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We define a generalized (or virtual) character to be a function of the form
X1 — X2, where y; and xg are characters. It is now clear that the generalized
characters form a ring.

The character ot a representation satisfies

x(ghg™") = x(h)

since x(ghg™1) is the trace of 7(g) 7(h) w(g) , and the trace of a linear trans-

formation is unchanged by conjugation.

Theorem 2.5. (Schur orthogonality) Let (71,V;) and (72, Vs) be repre-
sentations of G with characters x1 and xo. Then

/G x1(9) x2(9) dg = dim Homg(V1, V3). (2.8)

If m1 and my are irreducible, then

/GXI(Q)XQ(Q) dg = {1 if m1 2 a3

0 otherw:se.

Proof. We embed G — G x (G along the diagonal. Then Hom¢(V7, V2), which
1s a G X G-module by virtue of the representation (2.6), becomes a G-module,
and it is clear that Hom¢g(V;, V) is just the space of G-invariants. By Proposi-
tion 2.9, this means that dim Homg(V;, V,) is the same as the dimension of the
space of G-invariants in V5 x Vi, and using Proposition 2.6, the character of
mo®7r is x2X1- The dimension of the space of G-invariants is |, - Xx2(9) x1(g9) dg
by Proposition 2.8. It is an integer, so we may take its complex conjugate to
obtain (2.8).
The second statement follows from (2.8) by Schur’s Lemma, Theorem 2.2.
L]

Proposition 2.11. The constant d in Theorem 2.4 equals dim(V').

Proof. Let vq,--- , v, be an orthonormal basis of V', n = dim(V'). We have

x(9) =Y _ (mi(g)vi, vi)

)

since (m(g)v;,v;) is the ¢,j component of the matrix of 7(g) with respect to
this basis. Now

1 = / IX |2dg — Z/ 'Uza'Uz (g)v],'vj)dg

There are n® terms on the right, but by (2.5) only the terms with i = j are
nonzero, and those equal d~!. Thus d = n. 0
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A function f on G is called a class function if it is constant on conjugacy
classes, that is, if it satisfies the equation f(hgh™!) = f(g).

Proposition 2.12. If f is the matriz coefficient of an irreducible representa-
tion (m, V'), and if f is a class function, then f is a constant multiple of x .

Proof. By Schur’s Lemma, there is a unique G-invariant vector in Homg (V, V);
hence. by Proposition 2.10, the same is true of M, in the action of G by con-
jugation. This matrix coefficient is of course y,. ]

Theorem 2.6. If f is a matriz coefficient and also a class function, then f
ts a fintte linear combination of characters of irreducible representations.

Proof. Write f = >_._, fi, where each f; is a class function of a distinct irre-
ducible representation (m;, V;). Since f is conjugation-invariant, and since the
fi live in spaces M., which are conjugation-invariant and mutually orthog-
onal, each f; is itself a class function and hence a constant multiple of x,. by
Proposition 2.12. (]

EXERCISES

Exercise 2.1. Suppose that GG is a compact Abelian group and 7 : G — GL(n,C)
an irreducible representation. Prove that n = 1.

Exercise 2.2. Suppose that G is compact group and f : G — C is the matrix
coefficient of an irreducible representation m. Show that g — f(g~') is a matrix
coetlicient of the same representation .

Exercise 2.3. Suppose that GG is compact group. Let C(g) be the space of contin-
uous functions on G. If f; and f, € C(G), define the convolution f; * f2 of fi; and

f2 by
(f1 * f2)(9) =/ fi(gh™") f2(h) dh = / fi(R) f2(h"'g) dh.
G G

(i) Use the variable change h — h™'g to prove the identity of the last two
terms. Prove that this operation is associative, and so C(G) is a ring (without unit)
with respect to covolution.

(ii) Let m be an irreducible representation. Show that the space M, of ma-

trix coeflicients of 7w is a 2-sided ideal in C(G), and explain how this fact implies
Theorem 2.3.
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Compact Operators

It $ is a normed linear space, a linear operator T : § — § is called bounded
it there exists a constant C such that |T'z| < C|z| for all z € §. In this case,
the smallest such C is called the operator norm of T, and is denoted |T'|. The
boundedness of the operator T is equivalent to its continuity. If § is a Hilbert
space, then a bounded operator T is self-adjoint if

T'f,g9)=(f,Tg)

tor all f,g € $. As usual, we call f an eigenvector with ergenvalue A\ it f # 0
and T'f = Af. Given A, the set of eigenvectors with eigenvalue ) is called the
A-etgenspace. It follows from elementary and usual arguments that if T is a self-
adjomt bounded operator, then its eigenvalues are real, and the elgenspaces
corresponding to distinct eigenvalues are orthogonal. Moreover, if V C § is a
subspace such that T'(V) C V, it is easy to see that also T(V+) c VL.

A bounded operator T : § — § is compact if whenever {1 T2, 23,---} is
any sequence in ), the sequence {T'z;, Tzs, - - - } has a convergent subsequence.

Theorem 3.1. (Spectral Theorem for compact operators) Let T be a
compact self-adjoint operator on a Hilbert space $. Let N be the nullspace of
I". Then the Hilbert space dimension of M+ is at most countable. ML has an
orthonormal basis ¢; (i =1,2,3,---) of eigenvectors of T so that Tp; = \;0;.
If N+ is not finite-dimensional, the etgenvalues A; — 0 as 1 — oo.

Since the eigenvalues \; — 0, if )\ is any nonzero eigenvalue, it follows from
this statement that the \-eigenspace is finite-dimensional.

Proof. This depends upon the equality

Iz,
T| = sup ~————-————-—H :rzc)|
O#xESH (.’II,QL‘)

To prove this, let B denote the right-hand side. If 0 £ z € §,



18 Lie Groups
| (Tz, )| < |Tz|- |z < |T|-|z|* = |T| - (z,z),

so B < |T|. We must prove the converse. Let A > 0 be a constant, to be
determlned later. Using (Tzas :1:> (Tx,Tx), we have

(Tz,Tx) = | {T(Ax + X' Tz), e + A7 Tz) —

<T()\:r . Tx), A\x — A1 Tzc)l <
i I(T(Aaz + A7 Tz), Az + A7 Tx)| + [(T(Az - A Tz), Az — A7 Tz)| <
i— [B <)\::c + A ' T A+ 271 Tm) + B <)\:c N DY R T.r)] =
S [N (z,z) + \7* (T2, Tz)] .

Now taking A = /|Tz|/|x|, we obtain
Tz|* = (Tz,Tz) < B|z| |Tx|,

so |Tz| < Blz|, which implies that |T| < B, whence (3.1).

We now prove that 91+ has an orthonormal basis consisting of eigenvectors
of T. It is an easy consequence of self-adjointness that M+ is T-stable. Let X
be the set of all orthonormal subsets of 91+ whose elements are eigenvectors
of T. Ordering X' by inclusion, Zorn’s Lemma implies that it has a maximal
element S. Let V be the closure of the linear span of S. We must prove that
V =L, Let o = V. We wish to show Hp = N. It is obvious that N C §Ho.
To prove the opposite inclusion, note that g is stable under 7', and T induces
a compact self-adjoint operator on $9. What we must show is that 7T'|$Ho = 0.
If T has a nonzero eigenvector in $g, this will contradict the maximality of
Y. It is therefore sufficient to show that a compact self-adjoint operator on a
nonzero Hilbert space has an eigenvector.

Replacing $ by $o, we are therefore reduced to the easier problem of
showing that if T' # 0, then T has a nonzero eigenvector. By (3.1), there is
a sequence T, Ts, 3, - of unit vectors such that | (T'z;,z;) | = |T'|. Observe
that if x € §, we have

(Tx,z) = (x,Tx) = (Tx,x)

so the (T'z;, z;) are real; we may therefore replace the sequence by a subse-
quence such that (Tz;, z;) — A, where A = £|T'|. Since T' # 0, A # 0. Since T
is compact, there exists a further subsequence {z;} such that Tr; converges
to a vector v. We will show that z; — A~

Observe first that

(T, 2i) | < |Txil |os] = [Tzs| < T 2| = |Al,
and since (T'z;, ;) — A, it follows that |T'z;| — |A|. Now

A x; — T-Tz'|2 = (Az; — Tz, Az, — Tx;) = /\2|-’13i|2 T |T$'3z"|2 — 2\ (T'z;, i)
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and since |z;| = 1, |Tz;| — |)|, and (T'z;, z;) — ), this converges to 0. Since
I'r; — v, the sequence Ax; therefore also converges to v, and z; — A lw.
Now, by continuity, Tr; — A~'Twv, so v = A~ ! Tv. This proves that v is
an eigenvector with eigenvalue A. This completes the proof that 91+ has an
orthonormal basis consisting of eigenvectors.

Now let {¢;} be this orthonormal basis and let \; be the corresponding
eigenvalues. If ¢ > 0 is given, only finitely many |\;| > € since otherwise we
can find an infinite sequence of ¢; with |T'¢;| > €. Such a sequence will have
no convergent subsequence, contradicting the compactness of 7. Thus D+ is
countable-dimensional, and we may arrange the {¢;} in a sequence. If it is
infinite, we see the \;, — 0. L]

Proposition 3.1. Let X and Y be compact topological spaces with Y a metric
space with distance function d. Let U be a set of continuous maps X — Y
such that for every x € I and every ¢ > 0 there exists a neighborhood N of

x such that d(f(z), f(2')) < € for all 2’ € N and for all f € U. Then every
sequence tn U has a uniformly convergent subsequence.

We reter to the hypothesis on U as equicontinuity.

Proof. Let So = {f1, f2, f3,--- } be a sequence in U. We will show that it has
a convergent subsequence. We will construct a subsequence that is uniformly
Cauchy and hence has a limit. For every n > 1, we will construct a subsequence
Sn — {fnla fn27 fn3> "o } of Sn-——l such that SUP e x d(fnz(x)a fnj(m)) < l/n

Assume that S,,_; is constructed. For each z € X, equicontinuity guaran-
tees the existence of an open neighborhood N, of z such that d ( f(y), f (zc)) <
—51;1- for all y € N, and all f € X. Since X is compact, we can cover X by
a finite number of these sets, say N, ,---, N . Since the f,_1; take values
In the compact space Y, the m-tuples (fn__l,?;(atl), . ,fn_1,i(93m)) have an
accumulation point, and we may therefore select the subsequence {f,;} such
that d(fn,,;(zck),fnj(:rk)) < -5% for all 7,7 and 1 < kK < m. Then for any v,
there exists x; such that y € N,, and

d(fnz(y)afn;)(y))
< d(fui(y), fri(aw)) + d(fri(@k), frj(@k)) + d(Fni (Y), frj(zk))

1 1 1 1
ggﬁ‘l-%—i-%—n.

This completes the construction of the sequences { f,.;}.

The diagonal sequence { fi1, f22, f33,--- } is uniformly Cauchy. Since Y is
a compact metric space, it is complete, and so this sequence is uniformly
convergent. L]

We topologize C(X) by giving it the L* norm | |, (sup norm).

Proposition 3.2. (Ascoli and Arzela) Suppose that X is a compact space
and that U C C(X) s a bounded subset such that for every x € X and € > 0

there s a neighborhood N of x such that |f(x) — f(y)|eo < € for ally € N and
all f € U. Then every sequence in U has a uniformly convergent subsequence.
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Again, the hypothesis on U is called equicontinuty.

Proof. Since U is bounded, there is a compact interval ¥ C R such that all
functions in U take values in Y. The result follows from Proposition 3.1. U

EXERCISES

Exercise 3.1. Suppose that T is a bounded operator on the Hilbert space §, and
suppose that for every € > 0 there exists a compact operator T¢ such that |T'—T¢| < e.
Show that T is compact. (Use a diagonal argument like the proof of Proposition 3.1.)

Exercise 3.2. (Hilbert-Schmidt operators) Let X be a locally compact Haus-
dorff space with a positive Borel measure p. Assume that L*(X) has a countable
basis. Let K € L?(X x X). Consider the operator on L*(X) with kernel K defined
by

= /X K(z,y) f(y)dy.

Let ¢; be an orthonormal basis of L*(X). Expand K in a Fourier expansion:

=) ¢i(z)di(y), ¥ =T

Show that 3 |[¢i|° = [ [ |K(z,y)|*dz dy < oo. Consider the operator Tn with kernel

Show that T is compact, and deduce that T' is compact.




4

The Peter-Weyl Theorem

In this chapter, we assume that G is a compact group. Let C(G) be the
convolution ring of continuous functions on G. It is a ring (without unit unless
G is finite) under the multiplication of convolution:

(f1 % f2)(g) = /G Fi(gh™) fa(h) dh = /G f1(B) fa(h=g) dh.

(Use the variable change h — h~lg to prove the identity of the last two
terms. See Exercise 2.3.) We will sometimes define f; * f, by this formula
even if f; and f, are not assumed continuous. For example, we will make use

of the convolution defined this way if f; € L>°(G) and f, € L'(G), or vice
versa.

Since G has total volume 1, we have inequalities (where | |, denotes the
L? norm, 1 < p < 00)

fli < fl2 < floo- (4.1)
I'he second inequality is trivial, and the first is Cauchy-Schwarz:
flo= (L1 <|fl2- 12 = [fl2
(Here | f| means the function |f|(z) = |f(z)|.)

Proposition 4.1. If ¢ € C(G), then convolution with ¢ is a bounded operator
Ty on L'(G). If f € LY(G), then Ty f € L*°(G) and

T5floo < |9lool fl1- (4.2)
Proof. If f € L'(G), then

Tafleo = sup| [ 9(on™) £(h)dh| < loles [ 170} an

ge’

proving (4.2). Using (4.1), it follows that the operator 14 1s bounded. In fact,
(4.1) shows that it is bounded in each of the three metrics | |1, | |2, | |oo. O
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Proposition 4.2. If ¢ € C(G), then convolution with ¢ is a bounded operator
Ty on L*(G) and |Ts| < |p|eo. The operator Ty is compact; and if (g~ ') =

®(g), it is self-adjoint.

Proof. Using (4.1), L*°(G) c L*(G) Cc L'(G), and by (4.2), |Tyfla <
T5 floo < |Ploo]fl1 < |0|ool|fl2, sO the operator norm |Ty| < |@|2.

By (4.1), the unit ball in L?(G) is contained in the unit ball in L'(G), so
it is sufficient to show that B = {T,f|f € L'(G),|f|]1 < 1} is sequentially
compact in L*(G). Also, by (4.1), it is sufficient to show that it is sequentially
compact in L*°(G), that is, in C(G), whose topology is induced by the L™ (G)
norm. It follows from (4.2) that B is bounded. We show that it 1S equicon-
tinuous. Since ¢ is continuous and G is compact, ¢ is uniformly continuous.
This means that given € > 0 there is a neighborhood N of the identity such
that |¢(kg) — ¢(g)| < € for all g when k € N. Now, if f € L'(G) and |f|; < 1,

we have, for all g,

(¢ % f)(kg) — (&% f)(9)l =
G G
elfl1 < e

This proves equicontinuity, and sequential compactness of 8 now follows by
the Ascoli-Arzela Lemma (Proposition 3.2).

If p(97") = ¢(g), then

(Tyf1, fa) = /G /G b(gh™) f1(h) Fa(g) dg dh

while

(f1,Tpf2) = /C:/C:¢(h9;1)f1(h) f2(g) dg dh.

These are equal, so T is self-adjoint. (]

Recall that if g € G, then (p(9)f)(z) = f(zg) is the right translate of f
by g.

Proposition 4.3. If ¢ € C(G), and A € C, the A-eigenspace
V(X)) ={f € L*(G) | Tpf = \f}
is invariant under p(g) for all g € G.

Proof. Suppose Ty f = Af. Then

(Tep(g)f)(z) = fG o(zh™ 1) f(hg) dh.

After the change of variables h — hg™!, this equals
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[G d(zgh") f(h) dh = p(g)(Tsf)(z) = Mo(g)f (@)

[

Theorem 4.1. (Peter and Weyl) The matriz coefficients of G are dense
in C(G).

Proof. Let f € C(G). We will prove that there exists a matrix coefficient f’
such that |f — f'|o < € for any given € > 0.

Since G is compact, f is uniformly continuous. This means that there exists
an open neighborhood U of the identity such that if ¢ € U, then |p(g) f — floo <
€/2. Let ¢ be a nonnegative function supported in U such that fG ¢(g)dg = 1.
We may arrange that ¢(g) = ¢(g~') so that the operator T} is self adjoint as
well as compact. We claim that |Tf — floo < €/2. Indeed, if h € G,

(6% N)(R) = £(B)| = | / Flg™" k) - 9(g)F ()] dg| <
/ &(9) |f(g~'h) — f(h)|dg < Ucb(g) p(9)f — fleo dg
< [ o(g)(e/2)dg = %

U

By Proposition 4.1, Ty is a compact operator on L%(G). If ) is an eigenvalue
of Ty, let V(A) be the A-eigenspace. By the spectral theorem, the spaces V()
are finite-dimensional (except perhaps V' (0)), mutually orthogonal, and they
span L?(G) as a Hilbert space. By Proposition 4.3 they are Ts-invariant. Let
fx be the projection of f on V(). Orthogonality of the f, implies that

(4.3)

Let
f'=To(f"), "= fr,

where ¢ > 0 remains to be chosen. We note that f’ and f” are both contained
In ®IAI> , V(A), which is a finite-dimensional vector space, and closed under
right translation by Proposition 4.3, and by Theorem 2.1, it follows that they
are matrix coefficients.

By (4.3), we may choose ¢ so that » jo_. iy | fal5 is as small as we like.

Using (4.1) may thus arrange that

Z I < Z x| = Z |f)\|2 2|¢|Oo (4.4)

0<|A|<q 1 0<|A|<q 5 0<|A|<q
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We have

To(f = f")=Ts | fo+ Z Ix] =1y Z I

0<|A|<q 0<|A]|<q

Using (4.2) and (4.4) we have |Ty(f — f"')]oo < €/2. Now

f—flloo = f —Tof +Tp(f — [ < |f —Tofl +|Tof — Tpf"]
* <s5+5 =€

Corollary 4.1. The matriz coefficients of G are dense in L*(G).

Proof. Since C(G) is dense in L?(G), this follows from the Peter-Weyl Theo-
rem and (4.1). O

We say that a topological group G has no small subgroups it it has a
neighborhood U of the identity such that the only subgroup of G contained
in U is just {1}. For example, we will see that Lie groups have no small
subgroups. On the other hand, some groups, such as GL(n,Z,) where Z, is
the ring of p-adic integers, have a neighborhood basis at the identity consisting
of open subgroups. Such a group is called totally disconnected, and for such a
group the no small subgroups property tfails very strongly.

A representation is called faithful if its kernel is trivial.

Theorem 4.2. Let G be a compact group that has no small subgroups. Then
G has a faithful finite-dimenstonal representation.

Proof. Let U be a neighborhood of the identity that contains no subgroup but
{1}. By the Peter-Weyl Theorem, we can find a finite-dimensional representa-
tion 7 and a matrix coeflicient f such that f(1) =0 but f(g) > 1 when g € U.
The function f is constant on the kernel of m, so that kernel is contained in
U. It follows that the kernel is trivial. ]

We will now prove a fact about infinite-dimensional representations of a
compact group G. The Peter-Weyl Theorem amounts to a “completeness”
of the finite-dimensional representations from the point of view of harmonic
analysis. One aspect of this is the L? completeness asserted in Corollary 4.1.
Another aspect, which we now prove, is that there are no irreducible uni-
tary infinite-dimensional representations. From the point of view of harmonic
analysis, these two statements are closely related and in fact equivalent. Rep-
resentation theory and Fourier analysis on groups are essentially the same
thing.

If H is a Hilbert space, a representation 7w : G — End(H) is called unitary
if (m(g)v, m(g)w) = (v,w) for all v,w € H, g € G. It is also assumed that the
map (g,v) — m(g)v from G x H — H is continuous.
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Theorem 4.3. (Peter and Weyl) Let H be a Hilbert space and G a compact

group. Let m : G — End(H) be a unitary representation. Then H is a direct
sum of finite-dimensional irreducible representations.

Proof. We first show that if H is nonzero then it has an irreducible finite-
dimensional invariant subspace. We choose a nonzero vector v € H. Let N be
a neighborhood of the identity of G such that if g € N then |7 (g)v—v| < |v|/2.
We can ﬁnd a nonnegative continuous function ¢ on G supported in N such
that [~ ¢(g)dg = 1.

We clalm that [, ¢(g) m(g)vdg # 0. This can be proved by taking the
mner product with v. Indeed

</ ¢(g) m(g)v dg, > = (v,v) — </N d(g)(v — m(g)v) dg,v> (4.5)
i </N d(9) (v — 7(g)v) dg,v> I < /N v — m(g)v|dg - |v] < |v]?/2.

Thus, the two terms in (4.5) differ in absolute value and cannot cancel.
Next, using the Peter-Weyl Theorem, we may find a matrix coefficient f
such that |f — ¢|o < €, where € can be chosen arbitrarily. We have

I/G(f — ¢)(g) m(g)v dgl < €|yl

so if € is sufficiently small we have [, f(g) m(g9)vdg # 0.

Since f is a matrix coefficient, so is the function g — f(g~!) by Proposi-
- tion 2.4. Thus, let (p, W) be a finite-dimensional representation with w € W
and L : W — C a linear functional such that f(g~') = L(p(g)w). Define a
map I': W — H by

T(@) = | Lpg™)a) n(g)ods

This is an intertwining ma,p by the same argument used to prove (2.4). It is
nonzero since T'(w) = [ f(g) m(g)vdg # 0.

We have proven that every nonzero unitary representation of G has a
nonzero finite-dimensional invariant subspace, which we may obviously assume
to be irreducible. From this we deduce the stated result. Let (7, H) be a
unitary representation of G. Let X' be the set of all sets of orthogonal finite-
dimensional irreducible invariant subspaces of H, ordered by inclusion. Thus if
SecXand U,V € S, then U and V are finite-dimensional irreducible invariant
subspaces, If U # V. then U 1L V. By Zorn’s Lemma, Y has a maximal
element S and we are done if S spans H as a Hilbert space. Otherwise, let H’
be the orthogonal complement of the span of S. By what we have shown, H’
contains an invariant irreducible subspace. We may append this subspace to
S, contradicting its maximality. | (]
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EXERCISES

Exercise 4.1. Let GG be totally disconnected, and let 7 : G — GL(n, C) be a finite-
dimensional representation. Show that the kernel of 7 is open. (Hint: use the fact
that GL(n,C) has no small subgroups.) Conclude (in contrast with Theorem 4.2)
that the compact group GL(n,Z,) has no faithful finite-dimensional representation.

Exercise 4.2. Suppose that GG is a compact Abelian group and H C G a closed sub-
group. Let x : H — C” be a character. Show that y can be extended to a character
of G. (Hint: Apply Theorem 4.3 to the space V = {f € L*(G)| f(hg) = x(h) f(g)}.

To show that V is nonzero, note that if ¢ € C(G) then f(g) = [ ¢(hg) x(h)™"' dh
defines an element of V. Use Urysohn’s Lemma to construct ¢ such that f # 0.)



Part 1I: Lie Group Fundamentals






Lie Subgroups of GL(n, C)

It U is an open subset of R", we say that a map ¢ : U — R™ is smooth it
1t has continuous partial derivatives of all orders. More generally, if X C R"
1s not necessarily open, we say that a map ¢ : X — R" is smooth if for
every x € X there exists an open set U of R" containing x such that ¢ can be
extended to a smooth map on U. A diffeomorphism of X C R™ with ¥ C R™
is a homeomorphism F' : X — Y such that both F' and F~! are smooth. We
will assume as known the following useful criterion.

Inverse Function Theorem. If U C R? is open and w € U, if F : U —
R"™ 15 a smooth map, with d < n, and if the matrizx of partial derivatives
(OF;/0x;) has rank d at u, then u has a neighborhood N such that F' induces

a diffeomorphism of N onto its image.

A subset X of a topological space Y is locally closed (in Y) if for all x € X
there exists an open neighborhood U of x in Y such that X N U is closed
In U. This is equivalent to saying that X is the intersection of an open set
and a closed set. We say that X is a submanifold of R"™ of dimension d if it
1s a locally closed subset and every point of X has a neighborhood that is
diffeomorphic to an open set in R?.

Let us identity Mat,,(C) with the Euclidean space C™ =~ R2"". The subset
GL(n,C) is open, and if a closed subgroup G of GL(n,C) is a submanifold of

R2"" in this identification, we say that GG is a closed Lie subgroup of GL(n,C).
It may be shown that any closed subgroup of GL(n,C) is a closed Lie sub-
group. See Remark 7.1 and Remark 7.2 for some subtleties behind the innocent
term “closed Lie subgroup.”

More generally, a Lie group is a topological group G that is a differentiable
manifold such that the multiplication and inverse maps G x G — G and
(G — G are smooth. We will give a proper definition of a differentiable
manifold in the next chapter. In this chapter, we will restrict ourselves to

closed Lie subgroups of GL(n, C).
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Example 5.1. If F' is a field, then the general linear group GL(n,F') is the
group of invertible n x n matrices with coeflicients in F'. It is a Lie group.
Assuming that F' = R or C, the group GL(n, F') is an open set in Mat,, (F)
and hence a manifold of dimension n? if F = R or 2n? if F' = C. The special
linear group is the subgroup SL(n, F') of matrices with determinant 1. It is a
closed Lie subgroup of GL(n, F') of dimension n* — 1 or 2(n® — 1).

Example 5.2.If F =R or C, let O(n,F) = {g € GL(n,F)|g - t¢ = I}. This
is the n X n orthogonal group. More geometrically, O(n, F') is the group of

linear transformations preserving the quadratic form Q(zx1, - ,z,) = 9 +
15+ ...+ x2. To see this, if () = *(x1,---,xn) is represented as a column
vector, we have Q(z) = Q(x1, -+ ,z,) = 'z - x, and it is clear that Q(gx) =
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