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Preface

As an undergraduate, I was offered a reading course on the representation theory of
finite groups. When I learned this basically meant studying homomorphisms from
groups into matrices, I was not impressed. In its place I opted for a reading course
on the much more glamorous sounding topic of multilinear algebra. Ironically, when
I finally took a course on representation theory from B. Kostant in graduate school, I
was immediately captivated.

In broad terms, representation theory is simply the study of symmetry. In prac-
tice, the theory often begins by classifying all the ways in which a group acts on
vector spaces and then moves into questions of decomposition, unitarity, geometric
realizations, and special structures. In general, each of these problems is extremely
difficult. However in the case of compact Lie groups, answers to most of these ques-
tions are well understood. As a result, the theory of compact Lie groups is used
extensively as a stepping stone in the study of noncompact Lie groups.

Regarding prerequisites for this text, the reader must first be familiar with the
definition of a group and basic topology. Secondly, elementary knowledge of differ-
ential geometry is assumed. Students lacking a formal course in manifold theory will
be able to follow most of this book if they are willing to take a few facts on faith.
This mostly consists of accepting the existence of an invariant integral in §1.4.1. In a
bit more detail, the notion of a submanifold is used in §1.1.3, the theory of covering
spaces is used in §1.2, §1.3, §4.2.3, and §7.3.6, integral curves are used in §4.1.2,
and Frobenius’ theorem on integral submanifolds is used in the proof of Theorem
4.14. A third prerequisite is elementary functional analysis. Again, students lacking
formal course work in this area can follow most of the text if they are willing to
assume a few facts. In particular, the Spectral Theorem for normal bounded opera-
tors is used in the proof of Theorem 3.12, vector-valued integration is introduced in
§3.2.2, and the Spectral Theorem for compact self-adjoint operators is used in the
proof of Lemma 3.13.

The text assumes no prior knowledge of Lie groups or Lie algebras and so all
the necessary theory is developed here. Students already familiar with Lie groups
can quickly skim most of Chapters 1 and 4. Similarly, students familiar with Lie
algebras can quickly skim most of Chapter 6.



xii Preface

The book is organized as follows. Chapter 1 lays out the basic definitions, exam-
ples, and theory of compact Lie groups. Though the construction of the spin groups
in §1.3 is very important to later representation theory and mathematical physics,
this material can be easily omitted on a first reading. Doing so allows for a more
rapid transition to the harmonic analysis in Chapter 3. A similar remark holds for the
construction of the spin representations in §2.1.2.4. Chapter 2 introduces the concept
of a finite-dimensional representation. Examples, Schur’s Lemma, unitarity, and the
canonical decomposition are developed here. Chapter 3 begins with matrix coeffi-
cients and character theory. It culminates in the celebrated Peter–Weyl Theorem and
its corresponding Fourier theory.

Up through Chapter 3, the notion of a Lie algebra is unnecessary. In order to
progress further, Chapter 4 takes up their study. Since this book works with compact
Lie groups, it suffices to consider linear Lie groups which allows for a fair amount
of differential geometry to be bypassed. Chapter 5 examines maximal tori and Car-
tan subalgebras. The Maximal Torus Theorem, Dynkin’s Formula, the Commutator
Theorem, and basic structural results are given. Chapter 6 introduces weights, roots,
the Cartan involution, the Killing form, the standard sl(2,C), various lattices, and
the Weyl group. Chapter 7 uses all this technology to prove the Weyl Integration
Formula, the Weyl Character Formula, the Highest Weight Theorem, and the Borel–
Weil Theorem.

Since this work is intended as a textbook, most references are given only in the
bibliography. The interested reader may consult [61] or [34] for brief historical out-
lines of the theory. With that said, there are a number of resources that had a powerful
impact on this work and to which I am greatly indebted. First, the excellent lectures
of B. Kostant and D. Vogan shaped my view of the subject. Notes from those lec-
tures were used extensively in certain sections of this text. Second, any book written
by A. Knapp on Lie theory is a tremendous asset to all students in the field. In par-
ticular, [61] was an extremely valuable resource. Third, although many other works
deserve recommendation, there are four outstanding texts that were especially in-
fluential: [34] by Duistermaat and Kolk, [72] by Rossmann, [70] by Onishchik and
Vinberg, and [52] by Hoffmann and Morris. Many thanks also go to C. Conley who
took up the onerous burden of reading certain parts of the text and making helpful
suggestions. Finally, the author is grateful to the Baylor Sabbatical Committee for its
support during parts of the preparation of this text.

Mark Sepanski
March 2006
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1

Compact Lie Groups

1.1 Basic Notions

1.1.1 Manifolds

Lie theory is the study of symmetry springing from the intersection of algebra, anal-
ysis, and geometry. Less poetically, Lie groups are simultaneously groups and man-
ifolds. In this section, we recall the definition of a manifold (see [8] or [88] for more
detail). Let n ∈ N.

Definition 1.1. An n-dimensional topological manifold is a second countable (i.e.,
possessing a countable basis for the topology) Hausdorff topological space M that is
locally homeomorphic to an open subset of Rn .

This means that for all m ∈ M there exists a homeomorphism ϕ : U → V
for some open neighborhood U of m and an open neighborhood V of Rn . Such a
homeomorphism ϕ is called a chart.

Definition 1.2. An n-dimensional smooth manifold is a topological manifold M
along with a collection of charts, {ϕα : Uα → Vα}, called an atlas, so that
(1) M = ∪αUα and
(2) For all α, β with Uα ∩ Uβ �= ∅, the transition map ϕα,β = ϕβ ◦ ϕ−1

α :
ϕα(Uα ∩Uβ)→ ϕβ(Uα ∩Uβ) is a smooth map on Rn .

It is an elementary fact that each atlas can be completed to a unique maximal
atlas containing the original. By common convention, a manifold’s atlas will always
be extended to this completion.

Besides Rn , common examples of manifolds include the n-sphere,

Sn = {x ∈ Rn+1 | ‖x‖ = 1},
where ‖·‖ denotes the standard Euclidean norm, and the n-torus,

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n copies

.
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Another important manifold is real projective space, P(Rn), which is the n-
dimensional compact manifold of all lines in Rn+1. It may be alternately realized as
Rn+1\{0} modulo the equivalence relation x ∼ λx for x ∈ Rn+1\{0} and λ ∈ R\{0},
or as Sn modulo the equivalence relation x ∼ ±x for x ∈ Sn . More generally, the
Grassmannian, Grk(Rn), consists of all k-planes in Rn . It is a compact manifold of
dimension k(n − k) and reduces to P(Rn−1) when k = 1.

Write Mn,m(F) for the set of n×m matrices over F where F is either R or C. By
looking at each coordinate, Mn,m(R) may be identified with Rnm and Mn,m(C) with
R2nm . Since the determinant is continuous on Mn,n(F), we see det−1{0} is a closed
subset. Thus the general linear group

GL(n,F) = {g ∈ Mn,n(F) | g is invertible}(1.3)

is an open subset of Mn,n(F) and therefore a manifold. In a similar spirit, for any
finite-dimensional vector space V over F, we write GL(V ) for the set of invertible
linear transformations on V .

1.1.2 Lie Groups

Definition 1.4. A Lie group G is a group and a manifold so that
(1) the multiplication map µ : G × G → G given by µ(g, g′) = gg′ is smooth and
(2) the inverse map ι : G → G by ι(g) = g−1 is smooth.

A trivial example of a Lie group is furnished by Rn with its additive group struc-
ture. A slightly fancier example of a Lie group is given by S1. In this case, the group
structure is inherited from multiplication in C\{0} via the identification

S1 ∼= {z ∈ C | |z| = 1}.

However, the most interesting example of a Lie group so far is GL(n,F). To
verify GL(n,F) is a Lie group, first observe that multiplication is smooth since it
is a polynomial map in the coordinates. Checking that the inverse map is smooth
requires the standard linear algebra formula g−1 = adj(g)/ det g, where the adj(g) is
the transpose of the matrix of cofactors. In particular, the coordinates of adj(g) are
polynomial functions in the coordinates of g and det g is a nonvanishing polynomial
on GL(n,F) so the inverse is a smooth map.

Writing down further examples of Lie groups requires a bit more machinery.
In fact, most of our future examples of Lie groups arise naturally as subgroups of
GL(n,F). To this end, we next develop the notion of a Lie subgroup.

1.1.3 Lie Subgroups and Homomorphisms

Recall that an (immersed) submanifold N of M is the image of a manifold N ′ under
an injective immersion ϕ : N ′ → M (i.e., a one-to-one smooth map whose differ-
ential has full rank at each point of N ′) together with the manifold structure on N
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making ϕ : N ′ → N a diffeomorphism. It is a familiar fact from differential ge-
ometry that the resulting topology on N may not coincide with the relative topology
on N as a subset of M . A submanifold N whose topology agrees with the relative
topology is called a regular (or imbedded) submanifold.

Defining the notion of a Lie subgroup is very similar. Essentially the word ho-
momorphism needs to be thrown in.

Definition 1.5. A Lie subgroup H of a Lie group G is the image in G of a Lie group
H ′ under an injective immersive homomorphism ϕ : H ′ → G together with the Lie
group structure on H making ϕ : H ′ → H a diffeomorphism.

The map ϕ in the above definition is required to be smooth. However, we will see
in Exercise 4.13 that it actually suffices to verify that ϕ is continuous.

As with manifolds, a Lie subgroup is not required to be a regular submanifold.
A typical example of this phenomenon is constructed by wrapping a line around the
torus at an irrational angle (Exercise 1.5). However, regular Lie subgroups play a
special role and there happens to be a remarkably simple criterion for determining
when Lie subgroups are regular.

Theorem 1.6. Let G be a Lie group and H ⊆ G a subgroup (with no manifold
assumption). Then H is a regular Lie subgroup if and only if H is closed.

The proof of this theorem requires a fair amount of effort. Although some of the
necessary machinery is developed in §4.1.2, the proof lies almost entirely within the
purview of a course on differential geometry. For the sake of clarity of exposition
and since the result is only used to efficiently construct examples of Lie groups in
§1.1.4 and §1.3.2, the proof of this theorem is relegated to Exercise 4.28. While we
are busy putting off work, we record another useful theorem whose proof, for similar
reasons, can also be left to a course on differential geometry (e.g., [8] or [88]). We
note, however, that a proof of this result follows almost immediately once Theorem
4.6 is established.

Theorem 1.7. Let H be a closed subgroup of a Lie group G. Then there is a unique
manifold structure on the quotient space G/H so the projection map π : G → G/H
is smooth, and so there exist local smooth sections of G/H into G.

Pressing on, an immediate corollary of Theorem 1.6 provides an extremely useful
method of constructing new Lie groups. The corollary requires the well-known fact
that when f : H → M is a smooth map of manifolds with f (H) ⊆ N , N a regular
submanifold of M , then f : H → N is also a smooth map (see [8] or [88]).

Corollary 1.8. A closed subgroup of a Lie group is a Lie group in its own right with
respect to the relative topology.

Another common method of constructing Lie groups depends on the Rank The-
orem from differential geometry.
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Definition 1.9. A homomorphism of Lie groups is a smooth homomorphism between
two Lie groups.

Theorem 1.10. If G and G ′ are Lie groups and ϕ : G → G ′ is a homomorphism of
Lie groups, then ϕ has constant rank and kerϕ is a (closed) regular Lie subgroup of
G of dimension dim G − rkϕ where rkϕ is the rank of the differential of ϕ.

Proof. It is well known (see [8]) that if a smooth map ϕ has constant rank, then
ϕ−1{e} is a closed regular submanifold of G of dimension dim G−rkϕ. Since kerϕ is
a subgroup, it suffices to show that ϕ has constant rank. Write lg for left translation by
g. Because ϕ is a homomorphism, ϕ◦lg = lϕ(g)◦ϕ, and since lg is a diffeomorphism,
the rank result follows by taking differentials. �


1.1.4 Compact Classical Lie Groups

With the help of Corollary 1.8, it is easy to write down new Lie groups. The first is
the special linear group

SL(n,F) = {g ∈ GL(n,F) | det g = 1}.

As SL(n,F) is a closed subgroup of GL(n,F), it follows that it is a Lie group.
Using similar techniques, we next write down four infinite families of compact

Lie groups collectively known as the classical compact Lie groups: SO(2n + 1),
SO(2n), SU (n), and Sp(n).

1.1.4.1 SO(n) The orthogonal group is defined as

O(n) = {g ∈ GL(n,R) | gt g = I },

where gt denotes the transpose of g. The orthogonal group is a closed subgroup of
GL(n,R), so Corollary 1.8 implies that O(n) is a Lie group. Since each column of
an orthogonal matrix is a unit vector, we see that topologically O(n) may be thought
of as a closed subset of Sn−1 × Sn−1 × · · · × Sn−1 ⊆ Rn2

(n copies). In particular,
O(n) is a compact Lie group.

The special orthogonal group (or rotation group) is defined as

SO(n) = {g ∈ O(n) | det g = 1}.

This is a closed subgroup of O(n), and so SO(n) is also a compact Lie group.
Although not obvious at the moment, the behavior of SO(n) depends heavily on

the parity of n. This will become pronounced starting in §6.1.4. For this reason, the
special orthogonal groups are considered to embody two separate infinite families:
SO(2n + 1) and SO(2n).
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1.1.4.2 SU (n) The unitary group is defined as

U (n) = {g ∈ GL(n,C) | g∗g = I },

where g∗ denotes the complex conjugate transpose of g. The unitary group is a closed
subgroup of GL(n,C), and so U (n) is a Lie group. As each column of a unitary
matrix is a unit vector, we see that U (n) may be thought of, topologically, as a closed
subset of S2n−1 × S2n−1 × · · ·×2n−1 ⊆ R2n2

(n copies). In particular, U (n) is a
compact Lie group.

Likewise, the special unitary group is defined as

SU (n) = {g ∈ U (n) | det g = 1}.

As usual, this is a closed subgroup of U (n), and so SU (n) is also a compact Lie
group. The special case of n = 2 will play an especially important future role. It is
straightforward to check (Exercise 1.8) that

SU (2) =
{(

a −b
b a

)
| a, b ∈ C and |a|2 + |b|2 = 1

}
(1.11)

so that topologically SU (2) ∼= S3.

1.1.4.3 Sp(n) The final compact classical Lie group, the symplectic group, ought to
be defined as

Sp(n) = {g ∈ GL(n,H) | g∗g = I },(1.12)

where H = {a + ib + jc + kd | a, b, c, d ∈ R} denotes the quaternions and g∗

denotes the quaternionic conjugate transpose of g. However, H is a noncommutative
division algebra, so understanding the meaning of GL(n,H) takes a bit more work.
Once this is done, Equation 1.12 will become the honest definition of Sp(n).

To begin, view Hn as a right vector space with respect to scalar multiplication and
let Mn,n(H) denote the set of n×n matrices over H. By using matrix multiplication on
the left, Mn,n(H) may therefore be identified with the set of H-linear transformations
of Hn . Thus the old definition of GL(n,F) in Equation 1.3 can be carried over to
define GL(n,H) = {g ∈ Mn,n(H) | g is an invertible transformation of Hn}.

Verifying that GL(n,H) is a Lie group, unfortunately, requires more work. In
the case of GL(n,F) in §1.1.2, that work was done by the determinant function
which is no longer readily available for GL(n,H). Instead, we embed GL(n,H)

into GL(2n,C) as follows.
Observe that any v ∈ H can be uniquely written as v = a + jb for a, b ∈

C. Thus there is a well-defined C-linear isomorphism ϑ : Hn → C2n given by
ϑ(v1, . . . , vn) = (a1, . . . , an, b1, . . . , bn) where vp = ap + jbp, ap, bp ∈ C. Use
this to define a C-linear injection of algebras ϑ̃ : Mn,n(H) → Mn,n(C) by ϑ̃X =
ϑ ◦ X ◦ ϑ−1 for X ∈ Mn,n(H) with respect to the usual identification of matrices as
linear maps. It is straightforward to verify (Exercise 1.12) that when X is uniquely
written as X = A + j B for A, B ∈ Mn,n(C), then
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ϑ̃(A + j B) =
(

A −B
B A

)
,(1.13)

where A denotes complex conjugation of A. Thus ϑ̃ is a C-linear algebra isomor-
phism from Mn,n(H) to

M2n,2n(C)H ≡ {
(

A −B
B A

)
| A, B ∈ Mn,n(C)}.

An alternate way of checking this is to first let r j denote scalar multiplication
by j on Hn , i.e., right multiplication by j . It is easy to verify (Exercise 1.12) that
ϑr jϑ

−1z = J z for z ∈ C2n where

J =
(

0 −In

In 0

)
.

Since ϑ is a C-linear isomorphism, the image of ϑ̃ consists of all Y ∈ M2n,2n(C)

commuting with ϑr jϑ
−1 so that M2n,2n(C)H = {Y ∈ M2n(C) | Y J = JY }.

Finally, observe that X is invertible if and only if ϑ̃X is invertible. In particular,
Mn,n(H) may be thought of as R4n2

and, since det ◦ϑ̃ is continuous, GL(n,H) is the
open set in Mn,n(H) defined by the complement of (det ◦ϑ̃)−1{0}. Since GL(n,H) is
now clearly a Lie group, Equation 1.12 shows that Sp(n) is a Lie group by Corollary
1.8. As with the previous examples, Sp(n) is compact since each column vector is a
unit vector in Hn ∼= R4n .

As an aside, Dieudonné developed the notion of determinant suitable for Mn,n(H)

(see [2], 151–158). This quaternionic determinant has most of the nice properties of
the usual determinant and it turns out that elements of Sp(n) always have determin-
ant 1.

There is another useful realization for Sp(n) besides the one given in Equation
1.12. The isomorphism is given by ϑ̃ and it remains only to describe the image
of Sp(n) under ϑ̃ . First, it is easy to verify (Exercise 1.12) that ϑ̃(X∗) = (ϑ̃X)∗

for X ∈ Mn,n(H), and thus ϑ̃Sp(n) = U (2n) ∩ M2n,2n(C)H. This answer can be
reshaped further. Define

Sp(n,C) = {g ∈ GL(2n,C) | gt Jg = J }

so that U (2n)∩M2n,2n(C)H = U (2n)∩Sp(n,C). Hence ϑ̃ realizes the isomorphism:

Sp(n) ∼= U (2n) ∩ M2n,2n(C)H(1.14)

= U (2n) ∩ Sp(n,C).

1.1.5 Exercises

Exercise 1.1 Show that Sn is a manifold that can be equipped with an atlas consist-
ing of only two charts.
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Exercise 1.2 (a) Show that Grk(Rn) may be realized as the rank k elements of
Mn,k(R) modulo the equivalence relation X ∼ Xg for X ∈ Mn,k(R) of rank k and
g ∈ GL(k,R). Find another realization showing that Grk(Rn) is compact.
(b) For S ⊆ {1, 2, . . . , n} with |S| = k and X ∈ Mn,k(R), let X |S be the k × k
matrix obtained from X by keeping only those rows indexed by an element of S,
let US = {X ∈ Mn,k(R) | X |S is invertible}, and let ϕS : US → M(n−k),k(R) by
ϕS(X) = [X (X |S)−1]|Sc . Use these definitions to show that Grk(Rn) is a k(n − k)
dimensional manifold.

Exercise 1.3 (a) Show that conditions (1) and (2) in Definition 1.4 may be replaced
by the single condition that the map (g1, g2)→ g1g−1

2 is smooth.
(b) In fact, show that condition (1) in Definition 1.4 implies condition (2).

Exercise 1.4 If U is an open set containing e in a Lie group G, show there exists an
open set V ⊆ U containing e, so V V−1 ⊆ U , where V V−1 is {vw−1 | v,w ∈ V }.
Exercise 1.5 Fix a, b ∈ R\{0} and consider the subgroup of T 2 defined by Ra,b =
{(e2π iat , e2π ibt ) | t ∈ R}.
(a) Suppose a

b ∈ Q and a
b = p

q for relatively prime p, q ∈ Z. As t varies, show that

the first component of Ra,b wraps around S1 exactly p-times, while the second com-
ponent wraps around q-times. Conclude that Ra,b is closed and therefore a regular
Lie subgroup diffeomorphic to S1.
(b) Suppose a

b /∈ Q. Show that Ra,b wraps around infinitely often without repeating.
Conclude that Ra,b is a Lie subgroup diffeomorphic to R, but not a regular Lie sub-
group (c.f. Exercise 5.*).
(c) What happens if a or b is 0?

Exercise 1.6 (a) Use Theorem 1.10 and the map det : GL(n,R) → R to give an
alternate proof that SL(n,R) is a Lie group and has dimension n2 − 1.
(b) Show the map X → X Xt from GL(n,R) to {X ∈ Mn,n(R) | Xt = X} has
constant rank n(n+1)

2 . Use the proof of Theorem 1.10 to give an alternate proof that
O(n) is a Lie group and has dimension n(n−1)

2 .
(c) Use the map X → X X∗ on GL(n,C) to give an alternate proof that U (n) is a
Lie group and has dimension n2.
(d) Use the map X → X X∗ on GL(n,H) to give an alternate proof that Sp(n) is a
Lie group and has dimension 2n2 + n.

Exercise 1.7 For a Lie group G, write Z(G) = {z ∈ G | zg = gz, all g ∈ G} for
the center of G. Show
(a) Z(U (n)) ∼= S1 and Z(SU (n)) ∼= Z/nZ for n ≥ 2,
(b) Z(O(2n)) ∼= Z/2Z, Z(SO(2n)) ∼= Z/2Z for n ≥ 2, and Z(SO(2)) = SO(2),
(c) Z(O(2n + 1)) ∼= Z/2Z for n ≥ 1, and Z(SO(2n + 1)) = {I } for n ≥ 1,
(d) Z(Sp(n)) ∼= Z/2Z.

Exercise 1.8 Verify directly Equation 1.11.
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Exercise 1.9 (a) Let A ⊆ GL(n,R) be the subgroup of diagonal matrices with
positive elements on the diagonal and let N ⊆ GL(n,R) be the subgroup of upper
triangular matrices with 1’s on the diagonal. Using Gram-Schmidt orthogonalization,
show multiplication induces a diffeomorphism of O(n)×A×N onto GL(n,R). This
is called the Iwasawa or K AN decomposition for GL(n,R). As topological spaces,
show that GL(n,R) ∼= O(n) × R

n(n+1)
2 . Similarly, as topological spaces, show that

SL(n,R) ∼= SO(n)× R
(n+2)(n−1)

2 .
(b) Let A ⊆ GL(n,C) be the subgroup of diagonal matrices with positive real el-
ements on the diagonal and let N ⊆ GL(n,C) be the subgroup of upper triangular
matrices with 1’s on the diagonal. Show that multiplication induces a diffeomor-
phism of U (n) × A × N onto GL(n,C). As topological spaces, show GL(n,C) ∼=
U (n)×Rn2

. Similarly, as topological spaces, show that SL(n,C) ∼= SU (n)×Rn2−1.

Exercise 1.10 Let N ⊆ GL(n,C) be the subgroup of upper triangular matrices with
1’s on the diagonal, let N ⊆ GL(n,C) be the subgroup of lower triangular matrices
with 1’s on the diagonal, and let W be the subgroup of permutation matrices (i.e.,
matrices with a single one in each row and each column and zeros elsewhere). Use
Gaussian elimination to show GL(n,C) = �w∈W NwN . This is called the Bruhat
decomposition for GL(n,C).

Exercise 1.11 (a) Let P ⊆ GL(n,R) be the set of positive definite symmetric ma-
trices. Show that multiplication gives a bijection from P × O(n) to GL(n,R).
(b) Let H ⊆ GL(n,C) be the set of positive definite Hermitian matrices. Show that
multiplication gives a bijection from H ×U (n) to GL(n,C).

Exercise 1.12 (a) Show that ϑ̃ is given by the formula in Equation 1.13.
(b) Show ϑr jϑ

−1z = J z for z ∈ C2n .
(c) Show that ϑ̃(X∗) = (ϑ̃X)∗ for X ∈ Mn,n(H).

Exercise 1.13 For v, u ∈ Hn , let (v, u) =∑n
p=1 vpu p.

(a) Show that (Xv, u) = (v, X∗u) for X ∈ Mn,n(H).
(b) Show that Sp(n) = {g ∈ Mn(H) | (gv, gu) = (v, u), all v, u ∈ Hn}.

1.2 Basic Topology

1.2.1 Connectedness

Recall that a topological space is connected if it is not the disjoint union of two
nonempty open sets. A space is path connected if any two points can be joined by a
continuous path. While in general these two notions are distinct, they are equivalent
for manifolds. In fact, it is even possible to replace continuous paths with smooth
paths.

The first theorem is a technical tool that will be used often.

Theorem 1.15. Let G be a connected Lie group and U a neighborhood of e. Then U
generates G, i.e., G = ∪∞n=1U n where U n consists of all n-fold products of elements
of U.



1.2 Basic Topology 9

Proof. We may assume U is open without loss of generality. Let V = U ∩U−1 ⊆ U
where U−1 is the set of all inverses of elements in U . This is an open set since
the inverse map is continuous. Let H = ∪∞n=1V n . By construction, H is an open
subgroup containing e. For g ∈ G, write gH = {gh | h ∈ H}. The set gH contains
g and is open since left multiplication by g−1 is continuous. Thus G is the union of
all the open sets gH . If we pick a representative gα H for each coset in G/H , then
G = �α(gα H). Hence the connectedness of G implies that G/H contains exactly
one coset, i.e., eH = G, which is sufficient to finish the proof. �


We still lack general methods for determining when a Lie group G is connected.
This shortcoming is remedied next.

Definition 1.16. If G is a Lie group, write G0 for the connected component of G
containing e.

Lemma 1.17. Let G be a Lie group. The connected component G0 is a regular Lie
subgroup of G. If G1 is any connected component of G with g1 ∈ G1, then G1 =
g1G0.

Proof. We prove the second statement of the lemma first. Since left multiplication
by g1 is a homeomorphism, it follows easily that g1G0 is a connected component of
G. But since e ∈ G0, this means that g1 ∈ g1G0 so g1G0 ∩ G1 �= ∅. Since both are
connected components, G1 = g1G0 and the second statement is finished.

Returning to the first statement of the lemma, it clearly suffices to show that
G0 is a subgroup. The inverse map is a homeomorphism, so (G0)−1 is a connected
component of G. As above, (G0)−1 = G0 since both components contain e. Finally,
if g1 ∈ G0, then the components g1G0 and G0 both contain g1 since e, g−1

1 ∈ G0.
Thus g1G0 = G0, and so G0 is a subgroup, as desired. �

Theorem 1.18. If G is a Lie group and H a connected Lie subgroup so that G/H is
also connected, then G is connected.

Proof. Since H is connected and contains e, H ⊆ G0, so there is a continuous map
π : G/H → G/G0 defined by π(gH) = gG0. It is trivial that G/G0 has the
discrete topology with respect to the quotient topology. The assumption that G/H is
connected forces π(G/H) to be connected, and so π(G/H) = eG0. However, π is
a surjective map so G/G0 = eG0, which means G = G0. �

Definition 1.19. Let be G a Lie group and M a manifold.
(1) An action of G on M is a smooth map from G×M → M , denoted by (g,m)→
g · m for g ∈ G and m ∈ M , so that:

(i) e · m = m, all m ∈ M and
(ii) g1 · (g2 · m) = (g1g2) · m for all g1, g2 ∈ G and m ∈ M .

(2) The action is called transitive if for each m, n ∈ M , there is a g ∈ G, so g ·m = n.
(3) The stabilizer of m ∈ M is Gm = {g ∈ G | g · m = m}.

If G has a transitive action on M and m0 ∈ M , then it is clear (Theorem 1.7) that
the action of G on m0 induces a diffeomorphism from G/Gm0 onto M .
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Theorem 1.20. The compact classical groups, SO(n), SU (n), and Sp(n), are con-
nected.

Proof. Start with SO(n) and proceed by induction on n. As SO(1) = {1}, the case
n = 1 is trivial. Next, observe that SO(n) has a transitive action on Sn−1 in Rn by
matrix multiplication. For n ≥ 2, the stabilizer of the north pole, N = (1, 0, . . . , 0),
is easily seen to be isomorphic to SO(n − 1) which is connected by the induction
hypothesis. From the transitive action, it follows that SO(n)/SO(n)N ∼= Sn−1 which
is also connected. Thus Theorem 1.18 finishes the proof.

For SU (n), repeat the above argument with Rn replaced by Cn and start the
induction with the fact that SU (1) ∼= S1. For Sp(n), repeat the same argument with
Rn replaced by Hn and start the induction with Sp(1) ∼= {v ∈ H | |v| = 1} ∼= S3. �


1.2.2 Simply Connected Cover

For a connected Lie group G, recall that the fundamental group, π1(G), is the ho-
motopy class of all loops at a fixed base point. The Lie group G is called simply
connected if π1(G) is trivial.

Standard covering theory from topology and differential geometry (see [69] and
[8] or [88] for more detail) says that there exists a unique (up to isomorphism) simply
connected cover G̃ of G, i.e., a connected, simply connected manifold G̃ with a
covering (or projection) map π : G̃ → G. Recall that being a covering map means
π is a smooth surjective map with the property that each g ∈ G has a connected
neighborhood U of g in G so that the restriction of π to each connected component
of π−1(U ) is a diffeomorphism onto U .

Lemma 1.21. If H is a discrete normal subgroup of a connected Lie group G, then
H is contained in the center of G.

Proof. For each h ∈ H , consider Ch = {ghg−1 | g ∈ G}. Since Ch is the continuous
image of the connected set G, Ch is connected. Normality of H implies Ch ⊆ H .
Discreteness of H and connectedness of Ch imply that Ch is a single point. As h is
clearly in Ch , this shows that Ch = {h}, and so h is central. �

Theorem 1.22. Let G be a connected Lie group.
(1) The connected simply connected cover G̃ is a Lie group.
(2) If π is the covering map and Z̃ = kerπ , then Z̃ is a discrete central subgroup
of G̃.
(3) π induces a diffeomorphic isomorphism G ∼= G̃/Z̃ .
(4) π1(G) ∼= Z̃ .

Proof. Because coverings satisfy the lifting property (e.g., for any smooth map f of
a connected simply connected manifold M to G with m0 ∈ M and g0 ∈ π−1( f (m0)),
there exists a unique smooth map f̃ : M → G̃ satisfying π ◦ f̃ = f and f̃ (m0) =
g0), the Lie group structure on G lifts to a Lie group structure on G̃, making π a
homomorphism. To see this, consider the map s : G̃ × G̃ → G by f (g̃, h̃) =
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π(g̃)π(̃h)−1 and fix some ẽ ∈ π−1(e). Then there is a unique lift s̃ : G̃ × G̃ → G̃ so
that π ◦s̃ = s. To define the group structure G̃, let h̃−1 = s̃ (̃e, h̃) and g̃h̃ = s̃(g̃, h̃−1).
It is straightforward to verify that this structure makes G̃ into a Lie group and π into
a homomorphism (Exercise 1.21).

Hence we have constructed a connected simply connected Lie group G̃ and a
covering homomorphism π : G̃ → G. Since π is a covering and a homomor-
phism, Z̃ = kerπ is a discrete normal subgroup of G̃ and so central by Lemma 1.21.
Hence π induces a diffeomorphic isomorphism from G̃/Z̃ to G. The statement re-
garding π1(G) is a standard result from the covering theory of deck transformations
(see [8]). �

Lemma 1.23. Sp(1) and SU (2) are simply connected and isomorphic to each other.
Either group is the simply connected cover of SO(3), i.e., SO(3) is isomorphic to
Sp(1)/{±1} or SU (2)/{±I }.
Proof. The isomorphism from Sp(1) to SU (2) is given by ϑ̃ in §1.1.4.3. Since either
group is topologically S3, the first statement follows.

For the second statement, write (·, ·) for the real inner product on H given by
(u, v) = Re(uv) for u, v ∈ H. By choosing an orthonormal basis {1, i, j, k}, we may
identify H with R4 and (·, ·) with the standard Euclidean dot product on R4. Then
1⊥ = {v ∈ H | (1, v) = 0} is the set of imaginary (or pure) quaternions, Im(H),
spanned over R by {i, j, k}. In particular, we may identify O(3) with O(Im(H)) ≡
{R-linear maps T : Im(H)→ Im(H) | (T u, T v) = (u, v) all u, v ∈ Im(H)} and the
connected component O(Im(H))0 with SO(3).

Define a smooth homomorphism Ad : Sp(1) → O(Im(H))0 by (Ad(g))(u) =
gug for g ∈ Sp(1) and u ∈ Im(H). To see this is well defined, first view Ad(g) as an
R-linear transformation on H. Using the fact that gg = 1 for g ∈ Sp(1), it follows
immediately that Ad(g) leaves (·, ·) invariant. As Ad(g) fixes 1, Ad(g) preserves
Im(H). Thus Ad(g) ∈ O(Im(H))0 since Sp(1) is connected.

It is well known that SO(3) consists of all rotations (Exercise 1.22). To show
Ad is surjective, it therefore suffices to show that each rotation lies in the image of
Ad. Let v ∈ Im(H) be a unit vector. Then v can be completed to a basis {v, u, w}
of Im(H) sharing the same properties as the {i, j, k} basis. It is a simple calculation
to show that Ad(cos θ + v sin θ) fixes v and is a rotation through an angel of 2θ
in the uw plane (Exercise 1.23). Hence Ad is surjective. The same calculation also
shows that ker Ad = {±1}. Since the simply connected cover is unique, the proof is
finished. �


In §6.3.3 we develop a direct method for calculating π1(G). For now we com-
pute the fundamental group for the classical compact Lie groups by use of a higher
homotopy exact sequence.

Theorem 1.24. (1) π1(SO(2)) ∼= Z and π1(SO(n)) ∼= Z/2Z for n ≥ 3.
(2) SU (n) is simply connected for n ≥ 2.
(3) Sp(n) is simply connected for n ≥ 1.
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Proof. Start with SO(n). As SO(2) ∼= S1, π1(SO(2)) ∼= Z. Recall from the proof of
Theorem 1.20 that SO(n) has a transitive action on Sn−1 with stabilizer isomorphic
to SO(n − 1). From the resulting exact sequence, {1} → SO(n − 1) → SO(n) →
Sn−1 → {1}, there is a long exact sequence of higher homotopy groups (e.g., see
[51] p. 296)

· · · → π2(S
n−1)→ π1(SO(n − 1))→ π1(SO(n))→ π1(S

n−1)→ · · · .

For n ≥ 3, π1(Sn−1) is trivial, so there is an exact sequence

π2(S
n−1)→ π1(SO(n − 1))→ π1(SO(n))→ {1}.

Since π2(Sn−1) is trivial for n ≥ 4, induction on the exact sequence implies
π1(SO(n)) ∼= π1(SO(3)) for n ≥ 4. It only remains to show that π1(SO(3)) ∼=
Z/2Z, but this follows from Lemma 1.23 and Theorem 1.22.

For SU (n), as in the proof of Theorem 1.20, there is an exact sequence {1} →
SU (n−1)→ SU (n)→ S2n−1 → {1}. Since π1(S2n−1) and π2(S2n−1) are trivial for
n ≥ 3 (actually for n = 2 as well, though not useful here), the long exact sequence
of higher homotopy groups implies that π1(SU (n)) ∼= π1(SU (2)) for n ≥ 2. By
Lemma 1.23, π1(SU (2)) is trivial.

For Sp(n), the corresponding exact sequence is {1} → Sp(n − 1) → Sp(n) →
S4n−1 → {1}. Since π1(S4n−1) and π2(S4n−1) are trivial for n ≥ 2 (actually for
n = 1 as well), the resulting long exact sequence implies π1(Sp(n)) ∼= π1(Sp(1))
for n ≥ 1. By Lemma 1.23, π1(Sp(1)) is trivial. �


As an immediate corollary of Theorems 1.22 and 1.24, there is a connected sim-
ply connected double cover of SO(n), n ≥ 3. That simply connected Lie group is
called Spinn(R) and it fits in the following exact sequence:

{1} → Z/2Z → Spinn(R)→ SO(n)→ {I }.(1.25)

Lemma 1.23 shows Spin3(R) ∼= SU (2) ∼= Sp(1). For larger n, an explicit construc-
tion of Spinn(R) is given in §1.3.2.

1.2.3 Exercises

Exercise 1.14 For a connected Lie group G, show that even if the second countable
hypothesis is omitted from the definition of manifold, G is still second countable.

Exercise 1.15 Show that an open subgroup of a Lie group is closed.

Exercise 1.16 Show that GL(n,C) and SL(n,C) are connected.

Exercise 1.17 Show that GL(n,R) has two connected components: GL(n,R)0 =
{g ∈ GL(n,R) | det g > 0} and {g ∈ GL(n,R) | det g < 0}. Prove SL(n,R) is
connected.
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Exercise 1.18 Show O(2n + 1) ∼= SO(2n + 1)× (Z/2Z) as both a manifold and a
group. In particular, O(2n + 1) has two connected components with O(2n + 1)0 =
SO(2n + 1).

Exercise 1.19 (a) Show O(2n) ∼= SO(2n) × (Z/2Z) as a manifold. In particular,
O(2n) has two connected components with O(2n)0 = SO(2n).
(b) Show that O(2n) is not isomorphic to SO(2n) × (Z/2Z) as a group. Instead
show that O(2n) is isomorphic to a semidirect product SO(2n) � (Z/2Z). Describe
explicitly the multiplication structure on SO(2n) � (Z/2Z) under its isomorphism
with O(2n).

Exercise 1.20 Show U (n) ∼= (SU (n)×S1)/(Z/nZ) as both a manifold and a group.
In particular, U (n) is connected.

Exercise 1.21 Check the details in the proof of Theorem 1.22 to carefully show that
the Lie group structure on G lifts to a Lie group structure on G̃, making the covering
map π : G̃ → G a homomorphism.

Exercise 1.22 Let R3 ⊆ GL(3,R) be the set of rotations in R3 about the origin.
Show that R3 = SO(3).

Exercise 1.23 (a) Let v ∈ Im(H) be a unit vector. Show that v can be completed to
a basis {v, u, w} of Im(H), sharing the same properties as the {i, j, k} basis.
(b) Show Ad(cos θ + v sin θ) from the proof of Lemma 1.23 fixes v and acts by a
rotation through an angle 2θ on the R-span of {u, w}.

Exercise 1.24 Let su(2) =
{(

i x −b
b −i x

)
| b ∈ C, x ∈ R

}
and (X, Y ) = 1

2 tr(XY ∗)

for X, Y ∈ su(2). Define (Ad g)X = gXg−1 for g ∈ SU (2) and X ∈ su(2). Modify
the proof of Lemma 1.23 to directly show that the map Ad : SU (2) → SO(3) is
well defined and realizes the simply connected cover of SO(3) as SU (2).

1.3 The Double Cover of SO(n)

At the end of §1.2.2 we saw that SO(n), n ≥ 3, has a simply connected double cover
called Spinn(R). The proof of Lemma 1.23 gave an explicit construction of Spin3(R)

as Sp(1) or SU (2). The key idea was to first view SO(3) as the set of rotations in
R3 and then use the structure of the quaternion algebra, H, along with a conjugation
action to realize each rotation uniquely up to a ±-sign.

This section gives a general construction of Spinn(R). The algebra that takes the
place of H is called the Clifford algebra, Cn(R), and instead of simply construct-
ing rotations, it is more advantageous to use a conjugation action that constructs all
reflections.
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1.3.1 Clifford Algebras

Alhough the entire theory of Clifford algebras easily generalizes (Exercise 1.30),
it is sufficient for our purposes here to work over Rn equipped with the standard
Euclidean dot product (·, ·). Recall that the tensor algebra over Rn is Tn(R) =⊕∞

k=0 Rn⊗Rn⊗· · ·⊗Rn (k copies) with a basis {1}∪{xi1⊗xi2⊗· · ·⊗xik | 1 ≤ ik ≤ n},
where {x1, x2, . . . , xn} is a basis of Rn .

Definition 1.26. The Clifford algebra is

Cn(R) = Tn(R)/I

where I is the ideal of Tn(R) generated by

{(x ⊗ x + |x |2) | x ∈ Rn}.
By way of notation for Clifford multiplication, write

x1x2 · · · xk

for the element x1 ⊗ x2 ⊗ · · · ⊗ xk + I ∈ Cn(R), where x1, x2, . . . , xn ∈ Rn .

In particular,

x2 = − |x |2(1.27)

in Cn(R) for x ∈ Rn . Starting with the equality xy + yx = (x + y)2 − x2 − y2 for
x, y ∈ Rn , it follows that Equation 1.27 is equivalent to

xy + yx = −2(x, y)(1.28)

in Cn(R) for x, y ∈ Rn .
It is a straightforward exercise (Exercise 1.25) to show that

C0(R) ∼= R, C1(R) ∼= C, and C2(R) ∼= H.

More generally, define the standard basis for Rn to be {e1, e2, . . . , en}, where
ek = (0, . . . , 0, 1, 0, . . . , 0) with the 1 appearing in the k th entry. Clearly {1} ∪
{ei1 ei2 · · · eik | k > 0, 1 ≤ ik ≤ n} spans Cn(R), but this is overkill. First, observe that
Cn(R) inherits a filtration from Tn(R) by degree. Up to lower degree terms, Equa-
tion 1.28 can be used to commute adjacent ei j and Equation 1.27 can be used to
remove multiple copies of ei j within a product ei1 ei2 · · · eik . An inductive argument
on filtration degree therefore shows that

{1} ∪ {ei1 ei2 · · · eik | 1 ≤ i1 < i2 < . . . ik ≤ n}(1.29)

spans Cn(R), so dim Cn(R) ≤ 2n . In fact, we will shortly see Equation 1.29 provides
a basis for Cn(R) and so dim Cn(R) = 2n . This will be done by constructing a linear
isomorphism 	 : Cn(R) → ∧

Rn , where
∧

Rn = ⊕n
k=0

∧k Rn is the exterior
algebra of Rn .

To begin, we recall some multilinear algebra.
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Definition 1.30. (1) For x ∈ Rn , let exterior multiplication be the map ε(x) :∧k Rn →∧k+1 Rn given by

(ε(x))(y) = x ∧ y

for y ∈∧k Rn .
(2) For x ∈ Rn , let interior multiplication be the map ι(x) :

∧k Rn → ∧k−1 Rn

given by

(ι(x))(y1 ∧ y2 ∧ · · · ∧ yk) =
∑k

i=1
(−1)i+1(x, yi ) y1 ∧ y2 ∧ · · · ∧ ŷi ∧ · · · ∧ yk

for yi ∈ Rn , where ŷi means to omit the term.

It is straightforward (Exercise 1.26) from multilinear algebra that ι(x) is the ad-
joint of ε(x) with respect to the natural form on

∧
Rn . In particular, ε(x)2 = ι(x)2 =

0 for x ∈ Rn . It is also straightforward (Exercise 1.26) that

ε(x)ι(x)+ ι(x)ε(x) = m|x |2,(1.31)

where m|x |2 is the operator that multiplies by |x |2.

Definition 1.32. (1) For x ∈ Rn , let Lx :
∧

Rn → ∧
Rn be given by Lx = ε(x) −

ι(x).
(2) Let � : Tn(R) → End(

∧
Rn) be the natural map of algebras determined by

setting �(x) = Lx for x ∈ Rn .

Observe that Equation 1.31 implies that L2
x + m|x |2 = 0 so that �(I) = 0. In

particular, � descends to Cn(R).

Definition 1.33. (1) Abusing notation, let � : Cn(R) → End(
∧

Rn) be the map
induced on Cn(R) by the original map � : Tn(R)→ End(

∧
Rn).

(2) Let 	 : Cn(R)→∧
Rn by 	(v) = (�(v))(1).

Explicitly, for xi ∈ Rn , 	(x1) = (ε(x1)− ι(x1)) 1 = x1, and

	(x1x2) = (ε(x1)− ι(x1)) (ε(x2)− ι(x2)) 1

= (ε(x1)− ι(x1)) x2 = x1 ∧ x2 − (x1, x2).

In general,

	(x1x2 · · · xk) = x1 ∧ x2 ∧ · · · ∧ xk + terms in
⊕

i≥1

∧k−2i
Rn .(1.34)

Equation 1.34 is easily established (Exercise 1.27) by induction on k. Also by induc-
tion on degree, it is an immediate corollary of Equation 1.34 that 	 is surjective. A
dimension count therefore shows that 	 is a linear isomorphism. In summary:

Theorem 1.35. The map 	 : Cn(R) → ∧
Rn is a linear isomorphism of vector

spaces, and so dim Cn(R) = 2n and Equation 1.29 provides a basis for Cn(R).

Thus, with respect to the standard basis (or any orthonormal basis for that matter),
Cn(R) has a particularly simple algebra structure. Namely, Cn(R) is the R-span of the
basis {1} ∪ {ei1 ei2 · · · eik | 1 ≤ i1 < i2 < · · · < ik ≤ n} with the algebraic relations
generated by e2

i = −1 and ei e j = −e j ei when i �= j .
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1.3.2 Spinn(R) and Pinn(R)

For the next definition, observe that Tn(R) breaks into a direct sum of the subalgebra
generated by the tensor product of any even number of elements of Rn and the sub-
space generated the tensor product of any odd number of elements of Rn . Since I is
generated by elements of even degree, it follows that this decomposition descends to
Cn(R).

Definition 1.36. (1) Let C+n (R) be the subalgebra of Cn(R) spanned by all products
of an even number of elements of Rn .
(2) Let C−n (R) be the subspace of Cn(R) spanned by all products of an odd number
of elements of Rn so Cn(R) = C+n (R)⊕ C−n (R) as a vector space.
(3) Let the automorphism α, called the main involution, of Cn(R) act as multiplication
by ±1 on C±n (R).
(4) Conjugation, an anti-involution on Cn(R), is defined by

(x1x2 · · · xk)
∗ = (−1)k xk · · · x2x1

for xi ∈ Rn .

The next definition makes sense for n ≥ 1. However, because of Equation 1.25,
we are really only interested in the case of n ≥ 3 (see Exercise 1.34 for details when
n = 1, 2).

Definition 1.37. (1) Let Spinn(R) = {g ∈ C+n (R) | gg∗ = 1 and gxg∗ ∈ Rn for all
x ∈ Rn}.
(2) Let Pinn(R) = {g ∈ Cn(R) | gg∗ = 1 and α(g)xg∗ ∈ Rn for all x ∈ Rn}. Note
Spinn(R) ⊆ Pinn(R).
(3) For g ∈ Pinn(R) and x ∈ Rn , define the homomorphism A : Pinn(R) →
GL(n,R) by (Ag)x = α(g)xg∗. Note (Ag) x = gxg∗ when g ∈ Spinn(R).

Viewing left multiplication by v ∈ Cn(R) as an element of End(Cn(R)), use of the
determinant shows that the set of invertible elements of Cn(R) is an open subgroup
of Cn(R). It follows fairly easily that the set of invertible elements is a Lie group.
As both Spinn(R) and Pinn(R) are closed subgroups of this Lie group, Corollary 1.8
implies that Spinn(R) and Pinn(R) are Lie groups as well.

Lemma 1.38. A is a covering map of Pinn(R) onto O(n) with kerA = {±1}, so
there is an exact sequence

{1} → {±1} → Pinn(R)
A→ O(n)→ {I }.

Proof. A maps Pinn(R) into O(n): Let g ∈ Pinn(R) and x ∈ Rn . Using Equation
1.27 and the fact that conjugation on Rn is multiplication by −1, we calculate

|(Ag)x |2 = − (
α(g)xg∗

)2 = − (
α(g)xg∗

) (
α(g)xg∗

) = α(g)xg∗
(
α(g)xg∗

)∗
= α(g)xg∗gx∗α(g)∗ = α(g)xx∗α(g)∗ = −α(g)x2α(g)∗ = |x |2 α(gg∗)

= |x |2 .
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Thus Ag ∈ O(n).
A maps Pinn(R) onto O(n): It is well known (Exercise 1.32) that each orthogonal

matrix is a product of reflections. Thus it suffices to show that each reflection lies
in the image of A. Let x ∈ Sn−1 be any unit vector in Rn and write rx for the
reflection across the plane perpendicular to x . Observe xx∗ = −x2 = |x |2 = 1.
Thus α(x)xx∗ = −xxx∗ = −x . If y ∈ Rn and (x, y) = 0, then Equation 1.28 says
xy = −yx so that α(x)yx∗ = xyx = −x2 y = y. Hence x ∈ Pinn(R) and Ax = rx .

kerA = {±1}: Since R ∩ Pinn(R) = {±1} and both elements are clearly in
kerA, it suffices to show that kerA ⊆ R. So suppose g ∈ Pinn(R) with Ag = I .
As g∗ = g−1, α(g)x = xg for all x ∈ Rn . Expanding g with respect to the standard
basis from Equation 1.29, we may uniquely write g = e1a + b, where a, b are linear
combinations of 1 and monomials in e2, e3, . . . , en . Looking at the special case of
x = e1, we have α(e1a+b)e1 = e1 (e1a + b) so that−e1α(a)e1+α(b)e1 = −a+e1b.
Since a and b contain no e1’s, α(a)e1 = e1a and α(b)e1 = e1b. Thus a + e1b1 =
−a + e1b which implies that a = 0 so that g contains no e1. Induction similarly
shows that g contains no ek , 1 ≤ k ≤ n, and so g ∈ R.

A is a covering map: From Theorem 1.10, π has constant rank with N = rkπ =
dim Pinn(R) since kerπ = {±1}. For any g ∈ Pinn(R), the Rank Theorem from
differential geometry ([8]) says there exists cubical charts (U, ϕ) of g and (V, ψ) of
π(g) so that ψ ◦π ◦ϕ−1(x1, . . . , xN ) = (x1, . . . , xN , 0, . . . , 0) with dim O(n)− N
zeros. Using the second countability of Pinn(R) and the Baire category theorem,
surjectivity of π implies dim O(n) = N . In particular, π restricted to U is a dif-
feomorphism onto V . Since kerπ = {±1}, π is also a diffeomorphism of −U onto
V . Finally, injectivity of π on U implies that (−U ) ∩ U = ∅ so that the connected
components of π−1(V ) are U and −U . �

Lemma 1.39. Pinn(R) and Spinn(R) are compact Lie groups with

Pinn(R) = {x1 · · · xk | xi ∈ Sn−1 for 1 ≤ k ≤ 2n}
Spinn(R) = {x1x2 · · · x2k | xi ∈ Sn−1 for 2 ≤ 2k ≤ 2n}

and Spinn(R) = A−1(SO(n)).

Proof. We know from the proof of Lemma 1.38 that Ax = rx for each x ∈ Sn−1 ⊆
Pinn(R). Since elements of O(n) are products of at most 2n reflections and A is
surjective with kernel {±1}, this implies that Pinn(R) = {x1 · · · xk | xi ∈ Sn−1 for
1 ≤ k ≤ 2n}. The equality Spinn(R) = Pinn(R) ∩ C+n (R) then implies Spinn(R) =
{x1x2 · · · x2k | xi ∈ Sn−1 for 2 ≤ 2k ≤ 2n}. In particular, Pinn(R) and Spinn(R)

are compact. Moreover because det rx = −1, the last equality is equivalent to the
equality Spinn(R) = A−1(SO(n)). �

Theorem 1.40. (1) Pinn(R) has two connected (n ≥ 2) components with Spinn(R) =
Pinn(R)0.
(2) Spinn(R) is the connected (n ≥ 2) simply connected (n ≥ 3) two-fold cover of
SO(n). The covering homomorphism is given by A with kerA = {±1}, i.e., there is
an exact sequence
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{1} → {±1} → Spinn(R)
A→ SO(n)→ {I }.

Proof. For n ≥ 2, consider the path t → γ (t) = cos t + e1e2 sin t . Since
γ (t) = e1(−e1 cos t + e2 sin t), it follows that γ (t) ∈ Spinn(R) and so {±1} are
path connected in Spinn(R). From Lemmas 1.38 and 1.39, we know that Spinn(R) is
a double cover of SO(n) and so Spinn(R) is connected. Thus, for n ≥ 3, Theorem
1.24 and the uniqueness of connected simply connected coverings implies Spinn(R)

is the connected simply connected cover of SO(n).
Finally, let x0 ∈ Sn−1. Clearly Pinn(R) = x0 Spinn(R) � Spinn(R). We know

that A is a continuous map of Pinn(R) onto O(n). Since O(n) is not connected but
x0 Spinn(R) and Spinn(R) are connected, x0 Spinn(R) � Spinn(R) cannot be con-
nected. Thus x0 Spinn(R) and Spinn(R) are the connected components of
Pinn(R). �


1.3.3 Exercises

Exercise 1.25 Show C0(R) ∼= R, C1(R) ∼= C, and C2(R) ∼= H.

Exercise 1.26 (a) Show ι(x) = ε(x)∗ with respect to the inner product on
∧

Rn

induced by defining (x1 ∧ x2 ∧ · · · ∧ xk, y1 ∧ y2 ∧ · · · ∧ yl) to be 0 when k �= l and
to be det(xi , y j ) when k = l.
(b) Show ε(x)ι(x)+ ι(x)ε(x) = m|x |2 for any x ∈ Rn .

Exercise 1.27 (a) Prove Equation 1.34.
(b) Prove Theorem 1.35.

Exercise 1.28 For u, v ∈ Cn(R), show that uv = 1 if and only if vu = 1.

Exercise 1.29 For n ≥ 3, show that the polynomial x2
1 + · · ·+ x2

n is irreducible over
C. However, show that x2

1 + · · · + x2
n is a product of linear factors over Cn(R).

Exercise 1.30 Let (·, ·) be any symmetric bilinear form on Rn or Cn . Generalize the
notion of Clifford algebra in Definition 1.26 by replacing x⊗x+|x |2 by x⊗x−(x, x)
in the definition of I. Prove the analogue of Theorem 1.35 still holds. If (·, ·) has
signature p, q on Rn , the resulting Clifford algebra is denoted Cp,q(R) (so Cn(R) =
C0,n(R)) and if (·, ·) is the negative dot product on Cn , the resulting Clifford algebra
is denoted by Cn(C).

Exercise 1.31 Show that there is an algebra isomorphism Cn−1(R) ∼= C+n (R) in-
duced by mapping a + b, a ∈ C+n−1(R) and b ∈ C−n−1(R) to a + ben . Conclude that
dim C+n (R) = 2n−1.

Exercise 1.32 Use induction on n to show that any g ∈ O(n) may be written as a
product of at most 2n reflections. Hint: If g ∈ O(n) and ge1 �= e1, show that there is
a reflection r1 so that r1ge1 = e1. Now use orthogonality and induction.

Exercise 1.33 Show that A(cos t + e1e2 sin t) =
⎛⎝ cos 2t − sin 2t 0

sin 2t cos 2t 0
0 0 In−2

⎞⎠.
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Exercise 1.34 (a) Under the isomorphism C1(R) ∼= C induced by e1 → i , show that
Pin(1) = {±1,±i} and Spin(1) = {±1} with A(±1) = I and A(±i) = −I on Ri .
(b) Under the isomorphism C2(R) ∼= H induced by e1 → i , e2 → j , and e1e2 → k,
show that Pin(2) = {cos θ+k sin θ , i sin θ+ j cos θ} and Spin(2) = {cos θ+k sin θ}
with A(cos θ + k cos θ) acting as rotation by 2θ in the i j-plane.

Exercise 1.35 (a) For n odd, show that the center of Spinn(R) is {±1}.
(b) For n even, show that the center of Spinn(R) is {±1,±e1e2 · · · en}.
Exercise 1.36 (a) Replace R by C in Definitions 1.36 and 1.37 to define Spinn(C)

(c.f. Exercise 1.30). Modify the proof of Theorem 1.40 to show A realizes Spinn(C)

as a connected double cover of SO(n,C) = {g ∈ SL(n,C) | (gx, gy) = (x, y) for
all x, y ∈ Cn}, where (·, ·) is the negative dot product on Cn .
(b) Replace Cn(R) by Cp,q(R) (Exercise 1.30) in Definitions 1.36 and 1.37 to define
Spinp,q(R). Modify the proof of Theorem 1.40 to show that A realizes Spinp,q(R) as
a double cover of SO(p, q)0, where SO(p, q) = {g ∈ SL(n,R) | (gx, gy) = (x, y)
for all x, y ∈ Cn} and (·, ·) has signature p, q on Rn .
(c) For p, q > 0 but not both 1, show that Spinp,q(R) is connected. For p = q = 1,
show that Spin1,1(R) has two connected components.

Exercise 1.37 (a) Let so(n) = {X ∈ Mn,n(R) | Xt = −X} and q =∑
i �= j Rei e j ⊆

Cn(R). Show that so(n) and q are closed under the bracket (Lie) algebra structure
given by [x, y] = xy − yx .
(b) Show that there is a (Lie) bracket algebra isomorphism from so(n) to q induced
by the map Ei, j − E j,i → 1

2 ei e j where {Ei, j } is the set of standard basis elements
for Mn,n(R).

1.4 Integration

1.4.1 Volume Forms

If � : M → N is a smooth map of manifolds, write d� : Tp(M) → T�(p)(N )

for the differential of � where Tp(M) is the tangent space of M at p. Write �∗ :
T ∗
�(p)(N ) → T ∗

p (M) for the pullback of � where T ∗
p (M) is the cotangent space

of M at p. As usual, extend the definition of the pullback to the exterior algebra,
�∗ :

∧
T ∗
�(p)(N )→∧

T ∗
p (M), as a map of algebras.

If M is an n-dimensional manifold, M is said to be orientable if there exists a
nonvanishing element ωM ∈ ∧∗

n(M) where
∧∗

n(M) is the exterior n-bundle of the
cotangent bundle of M . When this happens, ωM determines an orientation on M that
permits integration of n-forms on M .

Suppose ωM (ωN ) is a nonvanishing n-form providing an orientation on M (N ). If
� is a diffeomorphism, � : M → N , then �∗ωN = cωM where c is a nonvanishing
function on M . When c > 0, � is called orientation preserving and when c < 0,
� is called orientation reversing. Similarly, a chart (U, ϕ) of M is said to be an
orientation preserving chart if U is open and if ϕ is orientation preserving with
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respect to the orientations provided by ω|U , i.e., ω restricted to U , and by the standard
volume form on ϕ(U ) ⊆ Rn , i.e., dx1 ∧ dx2 ∧ · · · ∧ dxn|ϕ(U ).

If ω is a continuous n-form compactly supported in U where (U, ϕ) is an orien-
tation preserving chart, recall the integral of ω with respect to the orientation on M
induced by ωM is defined as ∫

M
ω =

∫
ϕ(U )

(ϕ−1)∗ω.

As usual (see [8] or [88] for more detail), the requirement that ω be supported in
U is removed by covering M with orientation preserving charts, multiplying ω by a
partition of unity subordinate to that cover, and summing over the partition using the
above definition on each chart.

The change of variables formula from differential geometry is well known. If
� : M → N is a diffeomorphism of oriented manifolds and ω′ is any continuous
compactly supported n-form on N , then∫

N
ω′ = ±

∫
M
�∗ω′(1.41)

with the sign being a + when � is orientation preserving and a − when � is ori-
entation reversing. A simple generalization of Equation 1.41 applicable to covering
maps is also useful. Namely, if 	 : M → N is an m-fold covering map of oriented
manifolds and ω′ is any continuous compactly supported n-form on N , then

m
∫

N
ω′ = ±

∫
M
	∗ω′(1.42)

with the sign determined by whether 	 is orientation preserving or orientation re-
versing. The proof follows immediately from Equation 1.41 by using a partition of
unity argument and the definition of a covering (Exercise 1.39).

Finally, functions on M can be integrated by fixing a volume form on M . A vol-
ume form is simply a fixed choice of a nonvanishing n-form, ωM , defining the orien-
tation on M . If f is a continuous compactly supported function on M , integration is
defined with respect to this volume form by∫

M
f =

∫
M

f ωM .

It is easy to see (Exercise 1.40) that switching the volume form ωM to cωM , for some
c ∈ R\{0}, multiplies the value of

∫
M f by |c| (for negative c, the orientation is

switched as well as the form against which f is integrated). In particular, the value
of
∫

M f depends only on the choice of volume form modulo ±ωM .

1.4.2 Invariant Integration

Let G be a Lie group of dimension n.
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Definition 1.43. (1) Write lg and rg for left and right translation by g ∈ G, i.e.,
lg(h) = gh and rg(h) = hg for h ∈ G.
(2) A volume form, ωG , on G is called left invariant if l∗gωG = ωG and right invariant
if r∗gωG = ωG for all g ∈ G.

Lemma 1.44. (1) Up to multiplication by a nonzero scalar, there is a unique left
invariant volume form on G.
(2) If G is compact, up to multiplication by±1, there is a unique left invariant volume
form, ωG, on G, so

∫
G 1 = 1 with respect to ωG.

Proof. Since dim
∧∗

n(G)e = 1, up to multiplication by a nonzero scalar, there is a
unique choice of ωe ∈

∧∗
n(G)e. This choice uniquely extends to a left invariant n-

form, ω, by defining ωg = l∗g−1ωe. For part (2), recall that replacing the volume form
ω by cω multiplies the value of the resulting integral by |c|. Because G is compact,∫

G 1 is finite with respect to the volume form ω. Thus there is a unique c, up to
multiplication by ±1, so that

∫
G 1 = 1 with respect to the volume form cω. �


Definition 1.45. For compact G, let ωG be a left invariant volume form on G nor-
malized so

∫
G 1 = 1 with respect to ωG . For any f ∈ C(G), define∫

G
f (g) dg =

∫
G

f =
∫

G
f ωG

with respect to the orientation given by ωG . By using the Riesz Representation The-
orem, dg is also used to denote its completion to a Borel measure on G called Haar
measure (see [37] or [73] for details).

If G has a suitably nice parametrization, it is possible to use the relation ωg =
l∗g−1ωe to pull the volume form back to an explicit integral over Euclidean space (see
Exercise 1.44).

Theorem 1.46. Let G be compact. The measure dg is left invariant, right invariant,
and invariant under inversion, i.e.,∫

G
f (hg) dg =

∫
G

f (gh) dg =
∫

G
f (g−1) dg =

∫
G

f (g) dg

for h ∈ G and f a Borel integrable function on G.

Proof. It suffices to work with continuous f . Left invariance follows from the left
invariance of ωG and the change of variables formula in Equation 1.41 (lh is clearly
orientation preserving):∫

G
f (hg) dg =

∫
G
( f ◦ lh)ωG =

∫
G
( f ◦ lh)(l

∗
hωG)

=
∫

G
l∗h( f ωG) =

∫
G

f ωG =
∫

G
f (g) dg.
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To address right invariance, first observe that lg and rg commute. Thus the n-
form r∗gωG is still left invariant. By Lemma 1.44, this means r∗gωG = c(g)−1ωG

for some c(g) ∈ R\{0}. Because rg ◦ rh = rhg , it follows that the modular function
c : G → R\{0} is a homomorphism. The compactness of G clearly forces |c(g)| = 1
(Exercise 1.41).

Since rg is orientation preserving if and only if c(g) > 0, the definitions and
Equation 1.41 imply that∫

G
f (gh) dg =

∫
G
( f ◦ rh)ωG = c(h)

∫
G
( f ◦ rh)(r

∗
hωG)

= c(h)
∫

G
r∗h ( f ωG) = c(h) sgn (c(h))

∫
G

f ωG =
∫

G
f (g) dg.

Invariance of the measure under the transformation g → g−1 is handled similarly
(Exercise 1.42). �


We already know that ωG is the unique (up to ±1) left invariant normalized vol-
ume form on G. More generally, the corresponding measure dg is the unique left
invariant normalized Borel measure on G.

Theorem 1.47. For compact G, the measure dg is the unique left invariant Borel
measure on G normalized so G has measure 1.

Proof. Suppose dh is a left invariant Borel measure on G normalized so G has mea-
sure 1. Then for nonnegative measurable f , definitions and the Fubini–Tonelli The-
orem show that∫

G
f (g) dg =

∫
G

∫
G

f (g) dg dh =
∫

G

∫
G

f (gh) dg dh

=
∫

G

∫
G

f (gh) dh dg =
∫

G

∫
G

f (h) dh dg =
∫

G
f (h) dh,

which is sufficient to establish dg = dh. �


1.4.3 Fubini’s Theorem

Part of the point of Fubini’s Theorem is to reduce integration in multiple variables
to more simple iterated integrals. Here we examine a variant that is appropriate for
compact Lie groups. In the special case where the Hi are compact Lie groups and
G = H1 × H2, Fubini’s Theorem will simply say that∫

H1×H2

f (g) dg =
∫

H1

(∫
H2

f (h1h2) dh2

)
dh1

for integrable f on G.
More generally, let G be a Lie group and H a closed subgroup of G, so (Theorem

1.7) G/H is a manifold. In general, G/H may not be orientable (Exercise 1.38). The
next theorem tells us when G/H is orientable and how its corresponding measure
relates to dg and dh, the invariant measures on G and H . Abusing notation, continue
to write lg for left translation by g ∈ G on G/H .
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Theorem 1.48. Let G be a compact Lie group and H a closed subgroup of G. If l∗h
is the identity map on

∧∗
top(G/H)eH for all h ∈ H (which is always true when H

is connected), then, up to scalar, G/H possesses a unique left G-invariant volume
form, ωG/H , and a corresponding left invariant Borel measure, d(gH). Up to ±1,
ωG/H can be uniquely normalized, so∫

G/H
F =

∫
G

F ◦ π,

where π : G → G/H is the canonical projection and F is an integrable function on
G/H. In this case, ∫

G
f (g) dg =

∫
G/H

(∫
H

f (gh) dh

)
d(gH),

where f is an integrable function on G.

Proof. Consider first the question of the existence of a left invariant volume form on
G/H . As in the proof of Lemma 1.44, let ωeH ∈ ∧∗

top(G/H)eH . If it makes sense
to define the form ω by setting ωgH = l∗g−1ωeH , then ω is clearly left invariant and
unique up to scalar multiplication. However, this process is well defined if and only
if l∗g−1 = l∗

(gh)−1 on
∧∗

top(G/H)eH for all h ∈ H and g ∈ G. Since lgh = lg ◦ lh , it

follows that ωG/H exists if and only if l∗h is the identity map on
∧∗

top(G/H)eH for all
h ∈ H .

Since
∧∗

top(G/H)eH is one-dimensional, l∗hωeH = c(h)ωeH for h ∈ H and some
c(h) ∈ R\{0}. The equality lhh′ = lh ◦ lh′ shows that c : H → R\{0} is a homomor-
phism. The compactness of G shows that c(h) ∈ {±1}. If H is connected, the image
of H under c must be connected and so c(h) = 1, which shows that ωG/H exists.

Suppose that ωG/H exists. Since dh is invariant, the function g → ∫
H f (gh) dh

may be viewed as a function on G/H . Working with characteristic functions, the as-
signment f → ∫

G/H

(∫
H f (gh) dh

)
d(gH) defines a normalized left invariant Borel

measure on G. By Theorem 1.47, this measure must be dg and so the second dis-
played formula of this theorem is established. To see that the first displayed equation
holds, let f = F ◦ π . �


1.4.4 Exercises

Exercise 1.38 (a) Show that the antipode map, x → −x , on S2n is orientation re-
versing.
(b) Show P(R2n) is not orientable.
(c) Find a compact Lie group G with a closed subgroup H , so G/H ∼= P(R2n).

Exercise 1.39 If 	 : M → N is an m-fold covering map of oriented manifolds and
ω′ is any continuous compactly supported n-form on N , show that

m
∫

N
ω′ = ±

∫
M
	∗ω′
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with the sign determined by whether 	 is orientation preserving or orientation re-
versing.

Exercise 1.40 If f is a continuous compactly supported function on an orientable
manifold M , show that switching the volume form from ωM to cωM , for some c ∈
R\{0}, multiplies the value of

∫
M f by |c|.

Exercise 1.41 If G is a compact Lie group and c : G → R\{0} is a homomorphism,
show that c(g) ∈ {±1} for all g ∈ G and that c(g) = 1 if G is connected.

Exercise 1.42 (a) For f a continuous function on a compact Lie group G, show that∫
G f (g−1) dg = ∫

G f (g) dg.
(b) If ϕ is a smooth automorphism of G, show that

∫
G f ◦ ϕ = ∫

G f .

Exercise 1.43 Let G be the Lie group {
(

x y
0 1

)
| x, y ∈ R and x > 0}. Show that

the left invariant measure is x−2dxdy but the right invariant measure is x−1dxdy.

Exercise 1.44 Let G be a Lie group and ϕ : U → V ⊆ Rn a chart of G with e ∈ U ,
0 ∈ V , and ϕ(e) = 0. Suppose f is any integrable function on G supported in U .
(a) For x ∈ V , write g = g(x) = ϕ−1(x) ∈ U . Show the function lx = ϕ ◦ lg−1 ◦ ϕ−1

is well defined on a neighborhood of x .
(b) Write

∣∣ ∂lx
∂x |x

∣∣ for the absolute value of the determinant of the Jacobian matrix of
lx evaluated at x , i.e.,

∣∣ ∂lx
∂x |x

∣∣ = |det J |, where the Jacobian matrix J is given by

Ji, j = ∂(lx ) j

∂xi
|x . Pull back the relation ωg = l∗g−1ωe to show that the left invariant

measure dg can be scaled so that∫
G

f dg =
∫

V
( f ◦ ϕ−1)(x)

∣∣∣∣∂lx

∂x
|x
∣∣∣∣ dx1 . . . dxn.

(c) Show that changing lx to rx = ϕ ◦ rg−1 ◦ ϕ−1 in part (b) gives an expression for
the right invariant measure.
(d) Write {( ∂

∂xi
|y)}ni=1 for the standard basis of of Ty(Rn). Show that the Jacobian

matrix J is the change of basis matrix for the bases {d(lg−1 ◦ ϕ−1)( ∂
∂xi
|x )}ni=1 and

{dϕ−1( ∂
∂xi
|0)}ni=1 of Te(G), i.e., d(lg−1 ◦ ϕ−1)( ∂

∂xi
|x ) =

∑
j Ji, j dϕ−1( ∂

∂x j
|0).

(e) Fix a basis {vi }ni=1 of Te(G). Let C be the change of basis matrix for the bases
{d(lg−1 ◦ ϕ−1)( ∂

∂xi
|x )}ni=1 and {v}ni=1, i.e., d(lg−1 ◦ ϕ−1)( ∂

∂xi
|x ) =

∑
j Ci, jv j . After

rescaling dg, conclude that∫
G

f dg =
∫

V
( f ◦ ϕ−1)(x) |det C | dx1 · · · dxn .

(f) Let H be a closed subgroup of a compact Lie group G and now suppose ϕ :
U → V ⊆ Rn a chart of G/H with eH ∈ U , 0 ∈ V , and ϕ(e) = 0. Suppose l∗h
is the identity map on

∧∗
top(G/H)eH for all h ∈ H (which is always true when H

is connected) and F is any integrable function on G/H supported in U . Fix a basis
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{vi }ni=1 of TeH (G/H) and define C as in part (e). Show that that d(gH) can be scaled
so that ∫

G/H
F d(gH) =

∫
V
(F ◦ ϕ−1)(x) |det C | dx1 · · · dxn .

Exercise 1.45 (a) View GL(n,R) as an open dense set in Mn,n(R) and identify
functions on GL(n,R) with functions on Mn,n(R) that vanish on the complement of
GL(n,R). Show that the left and right invariant measure on GL(n,R) is given by∫

GL(n,R)

f (g) dg =
∫

Mn,n(R)

f (X) |det X |−n d X,

where d X is the standard Euclidean measure on Mn,n(R) ∼= Rn2
. In particular, the

invariant measure for the multiplicative group R× = R\{0} is dx
|x | .

(b) Show that the invariant measure for the multiplicative group C× is dxdy
x2+y2 with

respect to the usual embedding of C× into C ∼= R2.
(c) Show that the invariant measure for the multiplicative group H× is dxdydudv

(x2+y2+u2+v2)
2

with respect to the usual embedding of H× into H ∼= R4.

Exercise 1.46 (a) On S2, show that the SO(3) normalized invariant measure is given
by the integral 1

4π

∫ π

0

∫ 2π
0 F(cos θ sinφ, sin θ sinφ, cosφ) sinφ dθdφ.

(b) Let f be the function on SO(3) that maps a matrix to the determinant of the
lower right 2× 2 submatrix. Evaluate

∫
SO(3) f .

Exercise 1.47 Let

α(θ) =
⎛⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞⎠ , β (θ) =
⎛⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞⎠ ,

and γ (θ) =
⎛⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞⎠ .

(a) Verify that (cos θ sinφ, sin θ sinφ, cosφ) = α(θ)β(φ)e3 where e3 = (0, 0, 1).
Use the isomorphism S2 ∼= SO(3)/SO(2) to show that each element g ∈ SO(3)
can be written as g = α(θ)β(φ)α(ψ) for 0 ≤ θ, ψ < 2π and 0 ≤ φ ≤ π and that
(θ, φ, ψ) is unique when φ �= 0, π . The coordinates (θ, φ, ψ) for SO(3) are called
the Euler angles.
(b) Viewing the map (θ, φ, ψ)→ g = α(θ)β(φ)α(ψ) as a map into M3,3(R) ∼= R9,
show that

g−1 ∂g

∂θ
= β ′(0) sinφ cosψ + γ ′(0) sinφ sinψ + α′(0) cosφ

g−1 ∂g

∂φ
= β ′(0) sinψ − γ ′(0) cosψ

g−1 ∂g

∂ψ
= α′(0).
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For 0 < θ,ψ < 2π and 0 < φ < π , conclude that the inverse of the map
(θ, φ, ψ)→ α(θ)β(φ)α(ψ) is a chart for an open dense subset of SO(3).
(c) Use Exercise 1.44 to show that the invariant integral on SO(3) is given by∫

SO(3)
f (g) dg = 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f (α(θ)β(φ)α(ψ)) sinφ dθdφdψ

for integrable f on SO(3).

Exercise 1.48 Let

α(θ) =
(

ei θ
2 0

0 e−i θ
2

)
and β (θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
.

As in Exercise 1.47, show that the invariant integral on SU (2) is given by∫
SU (2)

f (g) dg = 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f (α(θ)β(φ)α(ψ)) sinφ dθdφdψ

for integrable f on SU (2).
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Representations

Lie groups are often the abstract embodiment of symmetry. However, most fre-
quently they manifest themselves through an action on a vector space which will
be called a representation. In this chapter we confine ourselves to the study of finite-
dimensional representations.

2.1 Basic Notions

2.1.1 Definitions

Definition 2.1. A representation of a Lie group G on a finite-dimensional complex
vector space V is a homomorphism of Lie groups π : G → GL(V ). The dimension
of a representation is dim V .

Technically, a representation should be denoted by the pair (π, V ). When no
ambiguity exists, it is customary to relax this requirement by referring to a repre-
sentation (π, V ) as simply π or as V . Some synonyms for expressing the fact that
(π, V ) is a representation of G include the phrases V is a G-module or G acts on V .
As evidence of further laziness, when a representation π is clearly understood it is
common to write

gv or g · v in place of (π(g))(v)

for g ∈ G and v ∈ V .
Although smoothness is part of the definition of a homomorphism (Definition

1.9), in fact we will see that continuity of π is sufficient to imply smoothness (Ex-
ercise 4.13). We will also eventually need to deal with infinite-dimensional vector
spaces. The additional complexity of infinite-dimensional spaces will require a slight
tweaking of our definition (Definition 3.11), although the changes will not affect the
finite-dimensional case.

Two representations will be called equivalent if they are the same up to, basically,
a change of basis. Recall that Hom(V, V ′) is the set of all linear maps from V to V ′.
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Definition 2.2. Let (π, V ) and (π ′, V ′) be finite-dimensional representations of a Lie
group G.
(1) T ∈ Hom(V, V ′) is called an intertwining operator or G-map if T ◦ π = π ′ ◦ T .
(2) The set of all G-maps is denoted by HomG(V, V ′).
(3) The representations V and V ′ are equivalent, V ∼= V ′, if there exists a bijective
G-map from V to V ′.

2.1.2 Examples

Let G be a Lie group. A representation of G on a finite-dimensional vector space V
smoothly assigns to each g ∈ G an invertible linear transformation of V satisfying

π(g)π(g′) = π(gg′)

for all g, g′ ∈ G. Although surprisingly important at times, the most boring example
of a representation is furnished by the map π : G → GL(1,C) = C\{0} given by
π(g) = 1. This one-dimensional representation is called the trivial representation.
More generally, the action of G on a vector space is called trivial if each g ∈ G acts
as the identity operator.

2.1.2.1 Standard Representations Let G be GL(n,F), SL(n,F), U (n), SU (n),
O(n), or SO(n). The standard representation of G is the representation on Cn where
π(g) is given by matrix multiplication on the left by the matrix g ∈ G. It is clear that
this defines a representation.

2.1.2.2 SU(2) This example illustrates a general strategy for constructing new rep-
resentations. Namely, if a group G acts on a space M , then G can be made to act on
the space of functions on M (or various generalizations of functions).

Begin with the standard two-dimensional representation of SU (2) on C2 where
gη is simply left multiplication of matrices for g ∈ SU (2) and η ∈ C2. Let

Vn(C2)

be the vector space of holomorphic polynomials on C2 that are homogeneous of
degree n. A basis for Vn(C2) is given by {zk

1zn−k
2 | 0 ≤ k ≤ n}, so dim Vn(C2) =

n + 1.
Define an action of SU (2) on Vn(C2) by setting

(g · P)(η) = P(g−1η)

for g ∈ SU (2), P ∈ Vn(C2), and η ∈ C2. To verify that this is indeed a representa-
tion, calculate that

[g1 · (g2 · P)] (η) = (g2 · P)(g−1
1 η) = P(g−1

2 g−1
1 η) = P((g1g2)

−1η)

= [(g1g2) · P] (η)

so that g1 · (g2 · P) = (g1g2) · P . Since smoothness and invertibility are clear, this
action yields an n + 1-dimensional representation of SU (2) on Vn(C2).
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Although these representations are fairly simple, they turn out to play an ex-
tremely important role as a building blocks in representation theory. With this in

mind, we write them out in all their glory. If g =
(

a −b
b a

)
∈ SU (2), then

g−1 =
(

a b
−b a

)
, so that g−1η = (aη1 + bη2,−bη1 + aη2) where η = (η1, η2).

In particular, if P = zk
1zn−k

2 , then (g · P)(η) = (aη1+bη2)
k(−bη1+aη2)

n−k , so that(
a −b
b a

)
· (zk

1zn−k
2 ) = (az1 + bz2)

k(−bz1 + az2)
n−k .(2.3)

Let us now consider another family of representations of SU (2). Define

V ′
n

to be the vector space of holomorphic functions in one variable of degree less than
or equal to n. As such, V ′

n has a basis consisting of {zk | 0 ≤ k ≤ n}, so V ′
n is also

n + 1-dimensional. In this case, define an action of SU (2) on V ′
n by

(g · Q) (u) = (−bu + a)n Q

(
au + b

−bu + a

)
(2.4)

for g =
(

a −b
b a

)
∈ SU (2), Q ∈ V ′

n , and u ∈ C. It is easy to see that (Exercise 2.1)

this yields a representation of SU (2).
In fact, this apparently new representation is old news since it turns out that

V ′
n
∼= Vn(C2). To see this, we need to construct a bijective intertwining operator

from Vn(C2) to V ′
n . Let T : Vn(C2) → V ′

n be given by (T P)(u) = P(u, 1) for
P ∈ Vn(C2) and u ∈ C. This map is clearly bijective. To see that T is a G-map, use
the definitions to calculate that

[T (g · P)] (u) = (g · P) (u, 1) = P(au + b,−bu + a)

= (−bu + a)n P

(
au + b

−bu + a
, 1

)
= (−bu + a)n (T P) (u) = [g · (T P)] (u),

so T (g · P) = g · (T P) as desired.

2.1.2.3 O(n) and Harmonic Polynomials Let

Vm(Rn)

be the vector space of complex-valued polynomials on Rn that are homogeneous
of degree m. Since Vm(Rn) has a basis consisting of {xk1

1 xk2
2 · · · xkn

n | ki ∈ N and
k1 + k2 + · · · + kn = m}, dim Vm(Rn) = (m+n−1

m

)
(Exercise 2.4). Define an action of

O(n) on Vm(Rn) by
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(g · P)(x) = P(g−1x)

for g ∈ O(n), P ∈ Vm(Rn), and x ∈ Rn . As in §2.1.2.2, this defines a representation.
As fine and natural as this representation is, it actually contains a smaller, even nicer,
representation.

Write � = ∂2
x1
+ · · · + ∂2

xn
for the Laplacian on Rn . It is a well-known corollary

of the chain rule and the definition of O(n) that � commutes with this action, i.e.,
�(g · P) = g · (�P) (Exercise 2.5).

Definition 2.5. Let Hm(Rn) be the subspace of all harmonic polynomials of degree
m, i.e., Hm(Rn) = {P ∈ Vm(Rn) | �P = 0}.

If P ∈ Hm(Rn) and g ∈ O(n), then �(g · P) = g · (�P) = 0 so that g · P ∈
Hm(Rn). In particular, the action of O(n) on Vm(Rn) descends to a representation of
O(n) (or SO(n), of course) on Hm(Rn). It will turn out that these representations do
not break into any smaller pieces.

2.1.2.4 Spin and Half-Spin Representations Any representation (π, V ) of SO(n)
automatically yields a representation of Spinn(R) by looking at (π ◦A, V ) where A
is the covering map from Spinn(R) to SO(n). The set of representations of Spinn(R)

constructed this way is exactly the set of representations in which −1 ∈ Spinn(R)

acts as the identity operator. In this section we construct an important representation,
called the spin representation, of Spinn(R) that is genuine, i.e., one that does not
originate from a representation of SO(n) in this manner.

Let (·, ·) be the symmetric bilinear form on Cn given by the dot product. Write
n = 2m when n is even and write n = 2m + 1 when n is odd. Recall a subspace
W ⊆ Cn is called isotropic if (·, ·) vanishes on W . It is well known that Cn can be
written as a direct sum

Cn =
{

W ⊕ W ′ n even
W ⊕ W ′ ⊕ Ce0 n odd

(2.6)

for W, W ′ maximal isotropic subspaces (of dimension m) and e0 a vector that is
perpendicular to W ⊕W ′ and satisfies (e0, e0) = 1 . Thus, when n is even, take W =
{(z1, . . . , zm, i z1, . . . , i zm) | zk ∈ C} and W ′ = {(z1, . . . , zm,−i z1, . . . ,−i zm) |
zk ∈ C}. For n odd, take W = {(z1, . . . , zm, i z1, . . . , i zm, 0) | zk ∈ C}, W ′ =
{(z1, . . . , zm,−i z1, . . . ,−i zm, 0) | zk ∈ C}, and e0 = (0, . . . , 0, 1).

Compared to our previous representations, the action of the spin representation
is fairly complicated. We state the necessary definition below, although it will take
some work to provide appropriate motivation and to show that everything is well
defined. Recall (Lemma 1.39) that one realization of Spinn(R) is {x1x2 · · · x2k | xi ∈
Sn−1 for 2 ≤ 2k ≤ 2n}.
Definition 2.7. (1) The elements of S = ∧

W are called spinors and Spinn(R) has a
representation on S called the spin representation.
(2) For n even, the action for the spin representation of Spinn(R) on S is induced by
the map
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x → ε(w)− 2ι(w′),

where x ∈ Sn−1 is uniquely written as x = w + w′ according to the decomposition
Rn ⊆ Cn = W ⊕ W ′.
(3) Let S+ = ∧+W = ⊕

k

∧2k W and S− = ∧−W = ⊕
k

∧2k+1W . As vector
spaces S = S+ ⊕ S−.
(4) For n even, the spin representation action of Spinn(R) on S preserves the sub-
spaces S+ and S−. These two spaces are therefore representations of Spinn(R) in
their own right and called the half-spin representations.
(5) For n odd, the action for the spin representation of Spinn(R) on S is induced by
the map

x → ε(w)− 2ι(w′)+ (−1)deg miζ ,

where x ∈ Sn−1 is uniquely written as x = w + w′ + ζe0 according to the decom-
position Rn ⊆ Cn = W ⊕ W ′ ⊕ Ce0, (−1)deg is the linear operator acting by ±1 on∧±W , and miζ is multiplication by iζ .

To start making proper sense of this definition, let Cn(C) = Cn(R) ⊗R C.
From the definition of Cn(R), it is easy to see that Cn(C) is simply T (Cn) mod-
ulo the ideal generated by either {(z ⊗ z + (z, z)) | z ∈ Cn} or equivalently by
{(z1 ⊗ z2 + z2 ⊗ z1 + 2(z1, z2)) | zi ∈ Cn} (c.f. Exercise 1.30).

Since Spinn(R) ⊆ Cn(C), Cn(C) itself becomes a representation for Spinn(R)

under left multiplication. Under this action, −1 ∈ Spinn(R) acts as m−1, and so
this representation is genuine. However, the spin representations turn out to be much
smaller than Cn(C). One way to find these smaller representations is to restrict left
multiplication of Spinn(R) to certain left ideals in Cn(C). While this method works
(e.g., Exercise 2.12), we take an equivalent path that realizes Cn(C) as a certain en-
domorphism ring.

Theorem 2.8. As algebras,

Cn(C) ∼=
{

End
∧

W n even(
End

∧
W
)⊕(

End
∧

W
)

n odd.

Proof. n even: For z = w + w′ ∈ Cn , define �̃ : Cn → End
∧

W by

�̃(z) = ε(w)− 2ι(w′).

As an algebra map, extend �̃ to �̃ : Tn(C) → End
∧

W . A simple calculation
(Exercise 2.6) shows �̃(z)2 = m−2(w,w′) = m−(z,z) so that �̃ descends to a map
�̃ : Cn(C)→ End

∧
W .

To see that �̃ is an isomorphism, it suffices to check that �̃ is surjective since
Cn(C) and End

∧
W both have dimension 2n . Pick a basis {w1, . . . , wm} of W and

let {w′
1, . . . , w

′
m} be the dual basis for W , i.e., (wi , w

′
j ) is 0 when i �= j and 1

when i = j . With respect to this basis, �̃ acts in a particularly simple fashion. If
1 ≤ i1 < · · · < ik ≤ m, then �̃(wi1 · · ·wikw

′
i1
· · ·w′

ik
) kills

∧pW for p < k, maps



32 2 Representations∧k W onto Cwi1 ∧ · · · ∧wik , and preserves
∧pW for p > k. An inductive argument

on n − k therefore shows that the image of �̃ contains each projection of
∧

W onto
Cwi1 ∧ · · ·∧wik . Successive use of the operators �̃(wi ) and �̃(w′

j ) can then be used

to map wi1∧· · ·∧wik to any other w j1∧· · ·∧w jl . This implies that �̃ is surjective (in
familiar matrix notation, this shows that the image of �̃ contains all endomorphisms
corresponding to each matrix basis element Ei, j ).

n odd: For z = w + w′ + ζe0 ∈ Cn , let �̃± : Cn → End
∧

W by

�̃±(z) = ε(w)− 2ι(w′)± (−1)deg miζ .

As an algebra map, extend �̃± to �̃± : Tn(C) → End
∧

W . A simple calculation
(Exercise 2.6) shows that �̃±(z)2 = m−(z,z) so that �̃± descends to a map �̃± :
Cn(C) → End

∧
W . Thus the map �̃ : Cn(C) → (

End
∧

W
)⊕(

End
∧

W
)

given
by �̃(v) = (�̃+ (v) , �̃− (v)) is well defined.

To see that �̃ is an isomorphism, it suffices to verify that �̃ is surjective since
Cn(C) and

(
End

∧
W
)⊕(

End
∧

W
)

both have dimension 2n . The argument is sim-
ilar to the one given for the even case and left as an exercise (Exercise 2.7). �

Theorem 2.9. As algebras,

C+n (C) ∼=
{ (

End
∧+W

)⊕(
End

∧−W
)

n even(
End

∧
W
)

n odd.

Proof. n even: From the definition of �̃ in the proof of Theorem 2.8, it is clear
that the operators in �̃(C+n (C)) preserve

∧±W . Thus restricted to C+n (C), �̃ may
be viewed as a map to

(
End

∧+W
)⊕(

End
∧−W

)
. Since this map is already

known to be injective, it suffices to show that dim
[(

End
∧+W

)⊕(
End

∧−W
)] =

dim C+n (C). In fact, it is a simple task (Exercise 2.9) to see that both dimensions
are 2n−1. For instance, Equation 1.34 and Theorem 1.35 show dim C+n (C) = 2n−1.
Alternatively, use Exercise 1.3.1 to show that Cn−1(R) ∼= C+n (R).

n odd: In this case, operators in �̃(C+n (C)) no longer have to preserve
∧±W .

However, restriction of the map �̃+ to C+n (C) yields a map of C+n (C) to End
∧

W
(alternatively, �̃− could have been used). By construction, this map is known to be
surjective. Thus to see that the map is an isomorphism, it again suffices to show that
dim

(
End

∧
W
) = dim C+n (C). As before, it is simple (Exercise 2.9) to see that both

dimensions are 2n−1. �

At long last, the origin of the spin representations can be untangled. Since

Spinn(R) ⊆ C+n (C), Definition 2.7 uses the homomorphism �̃ from Theorem 2.9
for n even and the homomorphism �̃+ for n odd and restricts the action to Spinn(R).
In the case of n even, �̃ can be further restricted to either End

∧±W to construct
the two half-spin representations. Finally, −1 ∈ Spinn(R) acts by m−1, so the spin
representations are genuine as claimed.

2.1.3 Exercises

Exercise 2.1 Show that Equation 2.4 defines a representation of SU (2) on V ′
n .
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Exercise 2.2 (a) Find the joint eigenspaces for the action of {diag(eiθ , e−iθ ) |
θ ∈ R} ⊆ SU (2) on Vn(C2). That is, find all nonzero P ∈ Vn(C2), so that(
diag(eiθ , e−iθ )

) · P = λθ P for all θ ∈ R and some λθ ∈ C.
(b) Find the joint eigenspaces for the action of SO(2) on Vm(R2) and on Hm(R2).
(c) Find the joint eigenspaces for the action of

{(cos θ1 + e1e2 sin θ1) (cos θ2 + e3e4 sin θ2) | θi ∈ R} ⊆ Spin(4)

on the half-spin representations S±.

Exercise 2.3 Define a Hermitian inner product on Vn(C2) by(∑
k

ak zk
1zn−k

2 ,
∑

k

bk zk
1zn−k

2

)
=
∑

k!(n − k)! akbk .

For g ∈ SU (2), show that
(
g P, g P ′) = (P, P ′) for P, P ′ ∈ Vn(C2).

Exercise 2.4 Show that | {xk1
1 xk2

2 · · · xkn
n | ki ∈ N and k1 + k2 + · · · + kn = m} |=(m+n−1

m

)
.

Exercise 2.5 For g ∈ O(n) and f a smooth function on Rn , show that �( f ◦ lg) =
(� f ) ◦ lg where lg(x) = gx .

Exercise 2.6 (a) For n even and �̃(z) = ε(w) − 2ι(w′) for z = w + w′ ∈ Cn with
w ∈ W and w′ ∈ W ′, show �̃(z)2 = m−2(w,w′) = m−(z,z).
(b) For n odd and �̃(z) = ε(w)− 2ι(w′)± (−1)deg miζ for z = w+w′ + ζe0 ∈ Cn

with w ∈ W , w′ ∈ W ′, and ζ ∈ C, show that �̃(z)2 = m−2(w,w′)−ζ 2 = m−(z,z).

Exercise 2.7 In the proof of Theorem 2.8, show that the map �̃ is surjective when n
is odd.

Exercise 2.8 Use Theorem 2.8 to compute the center of Cn(C).

Exercise 2.9 From Theorem 2.9, show directly that dim C+n (C) and

dim
[(

End
∧+

W
)⊕(

End
∧−

W
)]

are both 2n−1 for n even, and dim
(
End

∧
W
) = 2n−1 for n odd.

Exercise 2.10 Up to equivalence, show that the spin and half-spin representations
are independent of the choice of the maximal isotropic decomposition for Cn (as in
Equation 2.6).

Exercise 2.11 For n odd, �̃+ was used to define the spin representation of Spinn(R)

on
∧

W . Show that an equivalent representation is constructed by using �̃− in place
of �̃+.
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Exercise 2.12 (a) Use the same notation as in the proof of Theorem 2.8. For n even,
let w′

0 = w′
1 · · ·w′

m ∈ Cn(C), let J be the left ideal of Cn(C) generated by w′
0, and

let T :
∧

W → J be the linear map satisfying T (wi1 ∧ · · · ∧ wik ) = wi1 · · ·wikw
′
0.

Show that T is a well-defined and Spinn(R)-intertwining isomorphism with respect
to the spin action on

∧
W and left Clifford multiplication on J .

(b) For n odd, let w′
0 = (1−ie0)w

′
1 · · ·w′

m . Show that there is an analogous Spinn(R)-
intertwining isomorphism with respect to the spin action on

∧
W and left Clifford

multiplication on the appropriate left ideal of Cn(C).

Exercise 2.13 (a) Define a nondegenerate bilinear form (·, ·) on
∧

W by setting(∧k W,
∧l W

)
= 0 when k+ l �= m and requiring α(u∗)∧v = (u, v)w1∧· · ·∧wm

for u ∈ ∧k W and v ∈ ∧m−k W (see §1.3.2 for notation). Show that the form is
symmetric when m ≡ 0, 3 mod(4) and that it is skew-symmetric when m ≡ 1, 2,
mod(4).
(b) With respect to the spin representation action, show that (g · u, g · v) = (u, v) for
u, v ∈ S =∧

W and g ∈ Spinn(R).
(c) For n even, show that (·, ·) restricts to a nondegenerate form on S± = ∧±W
when m is even, but restricts to zero when m is odd.

2.2 Operations on Representations

2.2.1 Constructing New Representations

Given one or two representations, it is possible to form many new representations
using standard constructions from linear algebra. For instance, if V and W are vector
spaces, one can form new vector spaces via the direct sum, V⊕W , the tensor product,
V⊗W , or the set of linear maps from V to W , Hom(V, W ). The tensor product leads

to the construction of the tensor algebra, T (V ) = ⊕∞
k=0

(⊗k V
)

, and its quotients,

the exterior algebra,
∧
(V ) = ⊕dim V

k=0

∧k V , and the symmetric algebra, S(V ) =⊕∞
k=0Sk(V ). Further constructions include the dual (or contragradient) space, V ∗ =

Hom(V,C), and the conjugate space, V , which has the same underlying additive
structure as V , but is equipped with a new scalar multiplication structure, ·′, given
by z ·′ v = zv for z ∈ C and v ∈ V . Each of these new vector spaces also carries a
representation as defined below.

Definition 2.10. Let V and W be finite-dimensional representations of a Lie group
G.
(1) G acts on V ⊕ W by g(v,w) = (gv, gw).
(2) G acts on V ⊗ W by g

∑
vi ⊗ w j =

∑
gvi ⊗ gw j .

(3) G acts on Hom(V, W ) by (gT ) (v) = g
[
T
(
g−1v

)]
.

(4) G acts on
⊗k V by g

∑
vi1 ⊗ · · · ⊗ vik =

∑(
gvi1

)⊗ · · · ⊗ (
gvik

)
.

(5) G acts on
∧k V by g

∑
vi1 ∧ · · · ∧ vik =

∑(
gvi1

) ∧ · · · ∧ (
gvik

)
.

(6) G acts on Sk(V ) by g
∑

vi1 · · · vik =
∑(

gvi1

) · · · (gvik

)
.
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(7) G acts on V ∗ by (gT ) (v) = T
(
g−1v

)
.

(8) G acts on V by the same action as it does on V .

It needs to be verified that each of these actions define a representation. All are
simple. We check numbers (3) and (5) and leave the rest for Exercise 2.14. For num-
ber (3), smoothness and invertibility are clear. It remains to verify the homomorphism
property so we calculate

[g1 (g2T )] (v) = g1
[
(g2T )

(
g−1

1 v
)] = g1g2

[
T (g−1

2 g−1
1 v)

] = [(g1g2)T ] (v)

for gi ∈ G, T ∈ Hom(V, W ), and v ∈ V . For number (5), recall that
∧k V is simply⊗k V modulo Ik , where Ik is

⊗k V intersect the ideal generated by {v⊗ v | v ∈ V }.
Since number (4) is a representation, it therefore suffices to show that the action of
G on

⊗k V preserves Ik—but this is clear.
Some special notes are in order. For number (1) dealing with V ⊕ W , choose

in the obvious way a basis for V ⊕ W that is constructed from a basis for V and a
basis for W . With respect to this basis, the action of G can be realized on V ⊕W by

multiplication by a matrix of the form

( ∗ 0
0 ∗

)
where the upper left block is given

by the action of G on V and the lower right block is given by the action of G on W .
For number (7) dealing with V ∗, fix a basis B = {vi }ni=1 for V and let B∗ =

{v∗i }ni=1 be the dual basis for V ∗, i.e., v∗i (v j ) is 1 when i = j and is 0 when i �= j .
Using these bases, identify V and V ∗ with Cn by the coordinate maps

[∑
i civi

]
B =

(c1, . . . , cn) and
[∑

i civ
∗
i

]
B∗ = (c1, . . . , cn). With respect to these bases, realize the

action of g on V and V ∗ by a matrices Mg and M ′
g so that [g · v]B = Mg [v]B and

[g · T ]B∗ = M ′
g [T ]B∗ for v ∈ V and T ∈ V ∗. In particular,

[
Mg

]
i, j = v∗i

(
g · v j

)
and

[
M ′

g

]
i, j
=
(

g · v∗j
)
(vi ). Thus

[
M ′

g

]
i, j
= v∗j (g

−1 · vi ) =
[
Mg−1

]
j,i

so that M ′
g =

M−1,t
g . In other words, once appropriate bases are chosen and the G action is realized

by matrix multiplication, the action of G on V ∗ is obtained from the action of G on
V simply by taking the inverse transpose of the matrix.

For number (8) dealing with V , fix a basis for V and realize the action of g
by a matrix Mg as above. To examine the action of g on v ∈ V , recall that scalar
multiplication is the conjugate of the original scalar multiplication in V . In particular,
in V , g · v is therefore realized by the matrix Mg . In other words, once a basis is
chosen and the G action is realized by matrix multiplication, the action of G on V is
obtained from the action of G on V simply by taking the conjugate of the matrix.

It should also be noted that few of these constructions are independent of each
other. For instance, the action in number (7) on V ∗ is just the special case of the
action in number (3) on Hom(V, W ) in which W = C is the trivial representation.
Also the actions in (4), (5), and (6) really only make repeated use of number (2).
Moreover, as representations, it is the case that V ∗ ⊗ W ∼= Hom(V, W ) (Exercise
2.15) and, for compact G, V ∗ ∼= V (Corollary 2.20).
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2.2.2 Irreducibility and Schur’s Lemma

Now that we have many ways to glue representations together, it makes sense to seek
some sort of classification. For this to be successful, it is necessary to examine the
smallest possible building blocks.

Definition 2.11. Let G be a Lie group and V a finite-dimensional representation of
G.
(1) A subspace U ⊆ V is G-invariant (also called a submodule or a subrepresenta-
tion) if gU ⊆ U for g ∈ G. Thus U is a representation of G in its own right.
(2) A nonzero representation V is irreducible if the only G-invariant subspaces are
{0} and V . A nonzero representation is called reducible if there is a proper (i.e.,
neither zero nor all of V ) G-invariant subspace of V .

It follows that a nonzero finite-dimensional representation V is irreducible if and
only if

V = spanC{gv | g ∈ G}

for each nonzero v ∈ V , since this property is equivalent to excluding proper G-
invariant subspaces. For example, it is well known from linear algebra that this con-
dition is satisfied for each of the standard representations in §2.1.2.1 and so each is
irreducible.

For more general representations, this approach is often impossible to carry out.
In those cases, other tools are needed. One important tool is based on the next result.

Theorem 2.12 (Schur’s Lemma). Let V and W be finite-dimensional representa-
tions of a Lie group G. If V and W are irreducible, then

dim HomG(V, W ) =
{

1 if V ∼= W
0 if V �∼= W .

Proof. If nonzero T ∈ HomG(V, W ), then ker T is not all of V and G-invariant
so irreducibility implies T is injective. Similarly, the image of T is nonzero and
G-invariant, so irreducibility implies T is surjective and therefore a bijection. Thus
there exists a nonzero T ∈ HomG(V, W ) if and only if V ∼= W .

In the case V ∼= W , fix a bijective T0 ∈ HomG(V, W ). If also T ∈ HomG(V, W ),
then T ◦ T−1

0 ∈ HomG(V, V ). Since V is a finite-dimensional vector space over C,
there exists an eigenvalue λ for T ◦ T−1

0 . As ker(T ◦ T−1
0 − λI ) is nonzero and G-

invariant, irreducibility implies T ◦ T−1
0 −λI = 0, and so HomG(V, W ) = CT0. �


Note Schur’s Lemma implies that

HomG(V, V ) = CI(2.13)

for irreducible V .
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2.2.3 Unitarity

Definition 2.14. (1) Let V be a representation of a Lie group G. A form (·, ·) :
V × V → C is called G-invariant if (gv, gv′) = (v, v′) for g ∈ G and v, v′ ∈ V .
(2) A representation V of a Lie group G is called unitary if there exists a G-invariant
(Hermitian) inner product on V .

Noncompact groups abound with nonunitary representations (Exercise 2.18).
However, compact groups are much more nicely behaved.

Theorem 2.15. Every representation of a compact Lie group is unitary.

Proof. Begin with any inner product 〈·, ·〉 on V and define

(v, v′) =
∫

G

〈
gv, gv′

〉
dg.

This is well defined since G is compact and g → 〈
gv, gv′

〉
is continuous. The new

form is clearly Hermitian and it is G-invariant since dg is right invariant. It remains
only to see it is definite, but by definition, (v, v) = ∫

G 〈gv, gv〉 dg which is positive
for v �= 0 since 〈gv, gv〉 > 0. �


Theorem 2.15 provides the underpinning for much of the representation theory
of compact Lie groups. It also says a representation (π, V ) of a compact Lie group is
better than a homomorphism π : G → GL(V ); it is a homomorphism to the unitary
group on V with respect to the G-invariant inner product (Exercise 2.20).

Definition 2.16. A finite-dimensional representation of a Lie group is called com-
pletely reducible if it is a direct sum of irreducible submodules.

Reducible but not completely reducible representations show up frequently for
noncompact groups (Exercise 2.18), but again, compact groups are much simpler.
We note that an analogous result will hold even in the infinite-dimensional setting of
unitary representations of compact groups (Corollary 3.15).

Corollary 2.17. Finite-dimensional representations of compact Lie groups are com-
pletely reducible.

Proof. Suppose V is a representation of a compact Lie group G that is reducible.
Let (·, ·) be a G-invariant inner product. If W ⊆ V is a proper G-invariant subspace,
then V = W ⊕ W⊥. Moreover, W⊥ is also a proper G-invariant subspace since
(gw′, w) = (w′, g−1w) = 0 for w′ ∈ W⊥ and w ∈ W . By the finite dimensionality
of V and induction, the proof is finished. �


As a result, any representation V of a compact Lie group G may be written as

V ∼=
⊕N

i=1
ni Vi ,(2.18)
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where {Vi | 1 ≤ i ≤ N } is a collection of inequivalent irreducible representations of
G and ni Vi = Vi⊕· · ·⊕Vi (ni copies). To study any representation of G, it therefore
suffices to understand each irreducible representation and to know how to compute
the ni . In §2.2.4 we will find a formula for ni .

Understanding the set of irreducible representations will take much more work.
The bulk of the remaining text is, in one way or another, devoted to answering this
question. In §3.3 we will derive a large amount of information on the set of all ir-
reducible representations by studying functions on G. However, we will not be able
to classify and construct all irreducible representations individually until §7.3.5 and
§?? where we study highest weights and associated structures.

Corollary 2.19. If V is a finite-dimensional representation of a compact Lie group
G, V is irreducible if and only if dim HomG(V, V ) = 1.

Proof. If V is irreducible, then Schur’s Lemma (Theorem 2.12) implies that
dim HomG(V, V ) = 1. On the other hand, if V is reducible, then V = W ⊕ W ′ for
proper submodules W, W ′ of V . In particular, this shows that dim HomG(V, V ) ≥ 2
since it contains the projection onto either summand. Hence dim HomG(V, V ) = 1
implies that V is irreducible. �


The above result also has a corresponding version that holds even in the infinite-
dimensional setting of unitary representations of compact groups (Theorem 3.12).

Corollary 2.20. (1) If V is a finite-dimensional representation of a compact Lie
group G, then V ∼= V ∗.
(2) If V is irreducible, then the G-invariant inner product is unique up to scalar
multiplication by a positive real number.

Proof. For part (1), let (·, ·) be a G-invariant inner product on V . Define the bijective
linear map T : V → V ∗ by T v = (·, v) for v ∈ V . To see that it is a G-map, calculate
that g(T v) = (g−1·, v) = (·, gv) = T (gv).

For part (2), assume V is irreducible. If (·, ·)′ is another G-invariant inner prod-
uct on V , define a second bijective linear map T ′ : V → V ∗ by T ′v = (·, v)′.
Schur’s Lemma (Theorem 2.12) shows that dim HomG(V , V ∗) = 1. Since T, T ′ ∈
HomG(V , V ∗), there exists c ∈ C, so T ′ = cT . Thus (·, v)′ = c(·, v) for all v ∈ V .
It is clear that c must be in R and positive. �

Corollary 2.21. Let V be a finite-dimensional representation of a compact Lie group
G with a G-invariant inner product (·, ·). If V1, V2 are inequivalent irreducible sub-
modules of V , then V1 ⊥ V2, i.e., (V1, V2) = 0.

Proof. Consider W = {v1 ∈ V1 | (v1, V2) = 0}. Since (·, ·) is G-invariant, W
is a submodule of V1. If (V1, V2) �= 0, i.e., W �= V1, then irreducibility implies
that W = {0} and (·, ·) yields a nondegenerate pairing of V1 and V2. Thus the map
v1 → (·, v1) exhibits an equivalence V1

∼= V ∗
2 . This implies that V1

∼= V2
∗ ∼= V2. �
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2.2.4 Canonical Decomposition

Definition 2.22. (1) Let G be a compact Lie group. Denote the set of equivalence
classes of irreducible (unitary) representations of G by Ĝ. When needed, choose a
representative representation (π, Eπ ) for each [π ] ∈ Ĝ.
(2) Let V be a finite-dimensional representation of G. For [π] ∈ Ĝ, let V[π ] be the
largest subspace of V that is a direct sum of irreducible submodules equivalent to
Eπ . The submodule V[π] is called the π -isotypic component of V .
(3) The multiplicity of π in V , mπ , is dim V[π ]

dim Eπ
, i.e., V[π ]

∼= mπ Eπ .

First, we verify that V[π ] is well defined. The following lemma does that as well
as showing that V[π ] is the sum of all submodules of V equivalent to Eπ .

Lemma 2.23. If V1, V2 are direct sums of irreducible submodules isomorphic to Eπ ,
then so is V1 + V2.

Proof. By finite dimensionality, it suffices to check the following: if {Wi } are G-
submodules of a representation and W1 is irreducible satisfying W1 � W2⊕· · ·⊕Wn ,
then W1∩(W2 ⊕ · · · ⊕ Wn) = {0}. However, W1∩(W2 ⊕ · · · ⊕ Wn) is a G-invariant
submodule of W1, so the initial hypothesis and irreducibility finish the argument. �


If V, W are representations of a Lie group G and V ∼= W ⊕W , note this decom-
position is not canonical. For example, if c ∈ C\{0}, then W ′ = {(w, cw) | w ∈ W }
and W ′′ = {(w,−cw) | w ∈ W } are two other submodules both equivalent to W and
satisfying V ∼= W ′ ⊕ W ′′. The following result gives a uniform method of handling
this ambiguity as well as giving a formula for the ni in Equation 2.18.

Theorem 2.24 (Canonical Decomposition). Let V be a finite-dimensional repre-
sentation of a compact Lie group G.
(1) There is a G-intertwining isomorphism ιπ

HomG(Eπ , V )⊗ Eπ

∼=→ V[π ]

induced by mapping T⊗v → T (v) for T ∈ HomG(Eπ , V ) and v ∈ V . In particular,
the multiplicity of π is

mπ = dim HomG(Eπ , V ).

(2) There is a G-intertwining isomorphism⊕
[π ]∈Ĝ

HomG(Eπ , V )⊗ Eπ

∼=→ V =
⊕

[π ]∈Ĝ

V[π ].

Proof. For part (1), let T ∈ HomG(Eπ , V ) be nonzero. Then ker T = {0} by the
irreducibility of Eπ . Thus T is an equivalence of Eπ with T (Eπ ), and so T (Eπ ) ⊆
V[π ]. Thus ιπ is well defined. Next, by the definition of the G-action on Hom(Eπ , V )
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and the definition of HomG(Eπ , V ), it follows that G acts trivially on HomG(Eπ , V ).
Thus g(T ⊗ v) = T ⊗ (gv), so ιπ (g(T ⊗ v)) = T (gv) = gT (v) = gιπ (T ⊗ v),
and so ιπ is a G-map. To see that ιπ is surjective, let V1

∼= Eπ be a direct summand
in V[π ] with equivalence given by T : Eπ → V1. Then T ∈ HomG(Eπ , V ) and V1

clearly lies in the image of ιπ . Finally, make use of a dimension count to show that
ιπ is injective. Write V[π ] = V1 ⊕ · · · ⊕ Vmπ

with Vi
∼= Eπ . Then

dim HomG(Eπ , V ) = dim HomG(Eπ , V[π ]) = dim HomG(Eπ , V1 ⊕ · · · ⊕ Vmπ
)

=
mπ∑
i=1

dim HomG(Eπ , Vi ) = mπ

by Schur’s Lemma (Theorem 2.12). Thus dim HomG(Eπ , V )⊗ Eπ = mπ dim Eπ =
dim V[π ].

For part (2), it only remains to show that V = ⊕
[π ]∈Ĝ V[π ]. By Equation 2.18,

V =∑
[π ]∈Ĝ V[π ] and by Corollary 2.21 the sum is direct. �


See Theorem 3.19 for the generalization to the infinite-dimensional setting of
unitary representations of compact groups.

2.2.5 Exercises

Exercise 2.14 Verify that the actions given in Definition 2.10 are representations.

Exercise 2.15 (a) Let V and W be finite-dimensional representations of a Lie group
G. Show that V ∗ ⊗ W is equivalent to Hom(V, W ) by mapping T ⊗ w to the linear
map wT (·).
(b) Show, as representations, that V ⊗ V ∼= S2(V )⊕∧2

(V ).

Exercise 2.16 If V is an irreducible finite-dimensional representation of a Lie group
G, show that V ∗ is also irreducible.

Exercise 2.17 This exercise considers a natural generalization of Vn(C2). Let W be
a representation of a Lie group G. Define Vn(W ) to be the space of holomorphic
polynomials on W that are homogeneous of degree n and let (g P) (η) = P(g−1η).
Show that there is an equivalence of representations Sn(W ∗) ∼= Vn(W ) induced by
viewing T1 · · · Tn , Ti ∈ W ∗, as a function on W .

Exercise 2.18 (a) Show that the map π : t →
(

1 t
0 1

)
produces a representation of

R on C2.
(b) Show that this representation is not unitary.
(c) Find all invariant submodules.
(b) Show that the representation is reducible and yet not completely reducible.

Exercise 2.19 Use Schur’s Lemma (Theorem 2.12) to quickly calculate the centers
of the groups having standard representations listed in §2.1.2.1.
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Exercise 2.20 Let (·, ·) be an inner product on Cn . Show that U (n) ∼= {g ∈
GL(n,C) | (gv, gv′) = (v, v′) for v, v′ ∈ Cn}.
Exercise 2.21 (a) Use Equation 2.13 to show that all irreducible finite-dimensional
representations of an Abelian Lie group are 1-dimensional (c.f. Exercise 3.18).
(b) Classify all irreducible representations of S1 and show that Ŝ1 ∼= Z.
(c) Find the irreducible summands of the representation of S1 on C2 generated by
the isomorphism S1 ∼= SO(2).
(d) Show that a smooth homomorphism ϕ : R → C satisfies the differential equation
ϕ′ = [

ϕ′(0)
]
ϕ. Use this to show that the set of irreducible representations of R is

indexed by C and that the unitary ones are indexed by iR.
(e) Use part (d) to show that the set of irreducible representations of R+ under its
multiplicative structure is indexed by C and that the unitary ones are indexed by iR.
(f) Classify all irreducible representations of C ∼= R2 under its additive structure and
of C\{0} under its multiplicative structure.

Exercise 2.22 Let V be a finite-dimensional representation of a compact Lie group
G. Show the set of G-invariant inner products on G is isomorphic to HomG(V ∗, V ∗).

Exercise 2.23 (a) Let πi : Vi → U (n) be two (unitary) equivalent irreducible rep-
resentations of a compact Lie group G. Use Corollary 2.20 to show that there exists
a unitary transformation intertwining π1 and π2.
(b) Repeat part (a) without the hypothesis of irreducibility.

Exercise 2.24 Let V be a finite-dimensional representation of a compact Lie group
G and let W ⊆ V be a subrepresentation. Show that W[π ] ⊆ V[π ] for [π ] ∈ Ĝ.

Exercise 2.25 Suppose V is a finite-dimensional representation of a compact Lie
group G. Show that the set of G-intertwining automorphisms of V is isomorphic to∏

[π ]∈Ĝ GL(mπ ,C) where mπ is the multiplicity of the isotypic component V[π ].

2.3 Examples of Irreducibility

2.3.1 SU(2) and Vn(C2)

In this section we show that the representation Vn(C2) from §2.1.2.2 of SU (2) is
irreducible. In fact, we will later see (Theorem 3.32) these are, up to equivalence,
the only irreducible representations of SU (2). The trick employed here points to-
wards the powerful techniques that will be developed in §4 where derivatives, i.e.,
the tangent space of G, are studied systematically (c.f. Lemma 6.6).

Let H ⊆ Vn(C2) be a nonzero invariant subspace. From Equation 2.3,

diag(eiθ , e−iθ ) · (zk
1zn−k

2 ) = ei(n−2k)θ zk
1zn−k

2 .(2.25)

As the joint eigenvalues ei(n−2k)θ are distinct and since H is preserved by
{diag(eiθ , e−iθ )}, H is spanned by some of the joint eigenvectors zk

1zn−k
2 . In par-

ticular, there is a k0, so zk0
1 zn−k0

2 ∈ H .
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Let Kt =
(

cos t − sin t
sin t cos t

)
∈ SU (2) and let ηt =

(
cos t i sin t
i sin t cos t

)
∈ SU (2).

Since H is SU (2) invariant, 1
2 (Kt ± iηt ) zk0

1 zn−k0
2 ∈ H . Thus, when the limits ex-

ist, d
dt

[
1
2 (Kt ± iηt ) zk0

1 zn−k0
2

]
|t=0 ∈ H . Using Equation 2.3, a simple calculation

(Exercise 2.26) shows that

1

2

d

dt

[
(Kt ± iηt ) zk0

1 zn−k0
2

]
|t=0 =

{
k0 zk0−1

1 zn−k0+1
2 for +

(k0 − n) zk0+1
1 zn−k0−1

2 for − .
(2.26)

Induction therefore implies that Vn(C) ⊆ H , and so Vn(C) is irreducible.

2.3.2 SO(n) and Harmonic Polynomials

In this section we show that the representation of SO(n) on the harmonic polyno-
mials Hm(Rn) ⊆ Vm(Rn) is irreducible (see §2.1.2.3 for notation). Let Dm(Rn) be
the space of complex constant coefficient differential operators on Rn of degree m.
Recall that the algebra isomorphism from

⊕
m Vm(Rn) to

⊕
m Dm(Rn) is generated

by mapping xi → ∂xi . In general, if q ∈⊕
m Vm(Rn), write ∂q for the corresponding

element of
⊕

m Dm(Rn).
Define 〈·, ·〉 a Hermitian form on Vm(Rn) by 〈p, q〉 = ∂q(p) ∈ C for p, q ∈

Vm(Rn). Since {xk1
1 xk2

2 . . . xkn
n | ki ∈ N and k1 + k2 + · · · + kn = m} turns out to be

an orthogonal basis for Vm(Rn), it is easy to see that 〈·, ·〉 is an inner product. In fact,
〈·, ·〉 is actually O(n)-invariant (Exercise 2.27), although we will not need this fact.

Lemma 2.27. With respect to the inner product 〈·, ·〉 on Vm(Rn), Hm(Rn)⊥ =
|x |2 Vm−2(Rn) where |x |2 =∑n

i=1 x2
i ∈ V2(Rn). As O(n)-modules,

Vm(Rn) ∼= Hm(Rn)⊕Hm−2(Rn)⊕Hm−4(Rn)⊕ · · · .

Proof. Let p ∈ Vm(Rn) and q ∈ Vm−2(Rn). Then
〈
p, |x |2 q

〉 = ∂|x |2q p = ∂q�p =
〈�p, q〉. Thus

[|x |2 Vm−2(Rn)
]⊥ = Hm(Rn) so that

Vm(Rn) = Hm(Rn)⊕ |x |2 Vm−2(Rn).(2.28)

Induction therefore shows that

Vm(Rn) = Hm(Rn)⊕ |x |2 Hm−2(Rn)⊕ |x |4 Hm−4(Rn)⊕ · · · .

The last statement of the lemma follows by observing that O(n) fixes |x |2k . �

By direct calculation, dimHm(R1) = 0 for m ≥ 2. For n ≥ 2, however, it is clear

that dim Vm(Rn) > dim Vm−1(Rn) so that dimHm(Rn) ≥ 1.

Lemma 2.29. If G is a compact Lie group with finite-dimensional representations
U, V, W satisfying U ⊕ V ∼= U ⊕ W , then V ∼= W .
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Proof. Using Equation 2.18, decompose U ∼= ⊕
[π ]∈Ĝ mπ Eπ , V ∼= ⊕

[π]∈Ĝ m ′
π Eπ ,

and W ∼= ⊕
[π ]∈Ĝ m ′′

π Eπ . The condition U ⊕ V ∼= U ⊕ W therefore implies that
mπ + m ′

π = mπ + m ′′
π so that m ′

π = m ′′
π and V ∼= W . �


Definition 2.30. If H is a Lie subgroup of a Lie group G and V is a representation
of G, write V |H for the representation of H on V given by restricting the action of
G to H .

For the remainder of this section, view O(n − 1) as a Lie subgroup of O(n) via

the embedding g →
(

1 0
0 g

)
.

Lemma 2.31.

Hm(Rn)|O(n−1)
∼= Hm(Rn−1)⊕Hm−1(Rn−1)⊕ · · · ⊕H0(Rn−1).

Proof. Any p ∈ Vm(Rn) may be uniquely written as p = ∑m
k=0 xk

1 pk with pk ∈
Vm−k(Rn−1) where Rn is viewed as R× Rn−1. Since O(n − 1) acts trivially on xk

1 ,

Vm(Rn)|O(n−1)
∼=
⊕m

k=0
Vm−k(Rn−1).(2.32)

Applying Equation 2.28 first (restricted to O(n− 1)) and then Equation 2.32, we get

Vm(Rn)|O(n−1)
∼= Hm(Rn)|O(n−1) ⊕

⊕m−2

k=0
Vm−2−k(Rn−1).

Applying Equation 2.32 first and then Equation 2.28 yields

Vm(Rn)|O(n−1)
∼=
⊕m

k=0

[
Hm−k(Rn−1)⊕ Vm−2−k(Rn−1)

]
=
[⊕m

k=0
Hm−k(Rn−1)

]
⊕
[⊕m−2

k=0
Vm−2−k(Rn−1)

]
.

The proof is now finished by Lemma 2.29. �

Theorem 2.33. Hm(Rn) is an irreducible O(n)-module and, in fact, is irreducible
under SO(n) for n ≥ 3.

Proof. See Exercise 2.31 for the case of n = 2. In this proof assume n ≥ 3.
Hm(Rn)|SO(n−1) contains, up to scalar multiplication, a unique SO(n − 1)-

invariant function: If f ∈ Hm(Rn) is nonzero and SO(n)-invariant, then it is con-
stant on each sphere in Rn and thus a function of the radius. Homogeneity implies
that f (x) = C |x |m for some nonzero constant. It is trivial to check the condition that
� f = 0 now forces m = 0. Thus only H0(Rn) contains a nonzero SO(n)-invariant
function. The desired result now follows from the previous observation and Lemma
2.31.

If V is a finite-dimensional SO(n)-invariant subspace of continuous functions on
Sn−1, then V contains a nonzero SO(n − 1)-invariant function: Here the action of
SO(n) on V is, as usual, given by (g f )(s) = f (g−1s). Since SO(n) acts transitively
on Sn−1 and V is nonzero invariant, there exists f ∈ V , so f (1, 0, . . . , 0) �= 0.
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Define f̃ (s) = ∫
SO(n−1) f (gs) dg. If { fi } is a basis of V , then f (gs) = (

g−1 f
)
(s)

and so may be written as f (gs) = ∑
i ci (g) fi (s) for some smooth functions ci . By

integrating, it follows that f̃ ∈ V . From the definition, it is clear that f̃ is SO(n−1)-
invariant. It is nonzero since f̃ (1, 0, . . . , 0) = f (1, 0, . . . , 0).

Hm(Rn) is an irreducible SO(n)-module: Suppose Hm(Rn) = V1 ⊕ V2 for
proper SO(n)-invariant subspaces. By homogeneity, restricting functions in Vi from
Rn to Sn−1 is injective. Hence, both V1 and V2 contain independent SO(n − 1)-
invariant functions. But this contradicts the fact that Hm(Rn) has only one indepen-
dent SO(n − 1)-invariant function. �


A relatively small dose of functional analysis (Exercise 3.14) can be used
to further show that L2(Sn−1) = ⊕∞

m=0 Hm(Rn)|Sn−1 (Hilbert space direct sum)
and that Hm(Rn)|Sn−1 is the eigenspace of the Laplacian on Sn−1 with eigenvalue
−m(n + m − 2).

2.3.3 Spin and Half-Spin Representations

The spin representation S = ∧
W of Spinn(R) for n odd and the half-spin rep-

resentations S± = ∧± W for n even were constructed in §2.1.2.4, where W is a
maximal isotropic subspace of Cn . This section shows that these representations are
irreducible.

For n even with n = 2m, let W = {(z1, . . . , zm, i z1, . . . , i zm) | zk ∈ C} and
W ′ = {(z1, . . . , zm,−i z1, . . . ,−i zm) | zk ∈ C}. Identify W with Cm by projecting
onto the first m coordinates. For x = (x1, . . . , xm) and y = (y1, . . . , ym) in Rm , let
(x, y) = (x1, . . . , xm, y1, . . . , ym) ∈ Rn . In particular, (x, y) = 1

2 (x − iy, i(x −
iy))+ 1

2 (x + iy,−i(x + iy)). Using Definition 2.7, the identification of Cm with W ,
and noting ((a,−ia), (b, ib)) = 2(a, b), the spin action of Spin2m(R) on

∧± Cm ∼=
S± is induced by having (x, y) act as

1

2
ε(x − iy)− 2ι(x + iy).(2.34)

For n odd with n = 2m + 1, take W = {(z1, . . . , zm, i z1, . . . , i zm, 0) | zk ∈ C},
W ′ = {(z1, . . . , zm,−i z1, . . . ,−i zm, 0) | zk ∈ C}, and e0 = (0, . . . , 0, 1).
As above, identify W with Cm by projecting onto the first m coordinates. For
x = (x1, . . . , xm) and y = (y1, . . . , ym) in Rm and u ∈ R, let (x, y, u) =
(x1, . . . , xm, y1, . . . , ym, u) ∈ Rn . In particular, (x, y, u) = 1

2 (x−iy, i(x−iy), 0)+
1
2 (x+ iy,−i(x+ iy), 0)+(0, 0, u). Using Definition 2.7 and the identification of Cm

with W , the spin action of Spin2m+1(R) on
∧

Cm ∼= S is induced by having (x, y, u)
act as

1

2
ε(x − iy)− 2ι(x + iy)+ (−1)deg miu .(2.35)

Theorem 2.36. For n even, the half-spin representations S± of Spinn(R) are irre-
ducible. For n odd, the spin representation S of Spinn(R) is irreducible.
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Proof. Using the standard basis {e j }nj=1, calculate

(e j ± ie j+m)(ek ± iek+m) = e j ek ± i(e j ek+m + e j+mek)− e j+mek+m

for 1 ≤ j, k ≤ m. Since e j ek , e j ek+m , e j+mek , and e j+mek+m lie in Spinn(R), Equa-
tions 2.34 and 2.35 imply that the operators ε(e j )ε(ek) and ι(e j )ι(ek) on

∧
Cm are

achieved by linear combinations of the action of elements of Spinn(R) on
∧

Cm .
For n even, let W be a nonzero Spinn(R)-invariant subspace contained in either

S+ ∼= ∧+ Cm or S− ∼= ∧− Cm . The operators ε(e j )ε(ek) can be used to show that
W contains a nonzero element in either

∧m Cm or
∧m−1 Cm , depending on the parity

of m. In the first case, since dim
∧m Cm = 1, the operators ι(e j )ι(ek) can be used to

generate all of
∧± Cm . In the second case, the operators ι(e j )ι(ek) and ε(e j ′)ε(ek)

can be used to generate all of
∧m−1 Cm after which the operators ι(e j )ι(ek) can be

used to generate all of S±. Thus both half-spin representation are irreducible.
Similarly, for n odd, examination of the element (e j ± ie j+m)en shows that the

operators ε(e j )(−1)deg and ι(e j )(−1)deg are obtainable as linear combinations of the
action of elements of Spinn(R) on

∧
Cm . Hence any nonzero Spinn(R)-invariant

subspace W of
∧

Cm contains
∧m Cm by use of the operators ε(e j )(−1)deg. Fi-

nally,the operators ι(e j )(−1)deg can then be used to show that W = ∧
Cm so that S

is irreducible. �


2.3.4 Exercises

Exercise 2.26 Verify Equation 2.26.

Exercise 2.27 (a) For g ∈ O(n), use the chain rule to show that ∂g·xi f = g
(
∂xi f

)
for smooth f on Rn .
(b) For g ∈ O(n), show that ∂g·p f = g

(
∂p f

)
for p ∈ Vm(Rn).

(c) Show that 〈·, ·〉 is O(n)-invariant on Vm(Rn).

Exercise 2.28 For p ∈ Vm(Rn) show that there exists a unique h ∈⊕
k Hm−2k(Rn),

so p|Sn−1 = h|Sn−1 .

Exercise 2.29 Show that � is an O(n)-map from Vm(Rn) onto Vm−2(Rn).

Exercise 2.30 Show that dimH0(Rn) = 1, dimH1(Rn) = n, and dimHm(Rn) =
(2m+n−2)(m+n−3)!

m!(n−2)! for m ≥ 2.

Exercise 2.31 Show that Hm(R2) is O(2)-irreducible but not SO(2)-irreducible
when m ≥ 2.

Exercise 2.32 Exercises 2.32 through 2.34 outline an alternate method of proving
irreducibility of Hm(Rn) using reproducing kernels ([6]). Let H be a Hilbert space
of functions on a space X that is closed under conjugation and such that evaluation
at any x ∈ X is a continuous operator on H. Write (·, ·) for the inner product on H.
Then for x ∈ X , there exists a unique φx ∈ H, so f (x) = ( f, φx ) for f ∈ H. The
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function � : X × X → C, given by (x, y) → (φy, φx ), is called the reproducing
kernel.
(a) Show that �(x, y) = φy(x) for x, y ∈ X and f (x) = ( f,�(·, x)) for f ∈ H.
(b) Show that span{φx | x ∈ X} is dense in H.
(c) If {eα}α∈A is an orthonormal basis of H, then �(x, y) =∑

α eα(x) eα(y).
(d) If there exists a measure µ on X such that H is a closed subspace in L2(X, dµ),
then f (x) = ∫

X �(y, x) f (y) dµ(y).

Exercise 2.33 Suppose there is a Lie group G acting transitively on X . Fix x0 ∈ X
so that X ∼= G/H where H = Gx0 . Let G act on functions by (g f ) (x) = f (g−1x)
for g ∈ G and x ∈ X . Assume this action preserves H, is unitary, and that HH =
{ f ∈ H | h f = f for h ∈ H} is one dimensional.
(a) Show that gφx = φgx and �(gx, gy) = �(x, y) for g ∈ G and x, y ∈ X .
(b) Let W be a nonzero closed G-invariant subspace of H and write �W for its
reproducing kernel. Show that the function x → �W (x, x0) lies in HH .
(c) Show that G acts irreducibly on H.

Exercise 2.34 Let H = Hm(Rn) ⊆ Vm(Rn), where Vm(Rn) is viewed as sitting in
L2(Sn−1) by restriction to Sn−1. Let p0 = (1, 0, . . . , 0).
(a) Show that Vm(Rn)O(n−1) consists of all functions of the form

x →
� m

2 �∑
j=0

(−1) j c j (x, x) j (x, p0)
k−2 j

for constants c j ∈ C.
(b) Find a linear recurrence formula on the c j to show that dimHm(Rn)O(n−1) = 1.
(c) Show that Hm(Rn) is irreducible under O(n).
(d) Show that Hm(Rn) is still irreducible under restriction to SO(n) for n ≥ 3.

Exercise 2.35 Let G = U (n), Vp,q(Cn) be the set of complex polynomials ho-
mogeneous of degree p in z1, . . . , zn and homogeneous of degree q in z1, . . . , zn

equipped with the typical action of G, �p,q =
∑

j ∂z j ∂z j , and Hp,q(Cn) = Vp,q(Cn)∩
ker�p,q . Use restriction to S2n−1 and techniques similar to those found in Exercises
2.32 through 2.34 to demonstrate the following.
(a) Show that �p,q is a G-map from Vp,q(Cn) onto Vp−1,q−1(Cn).
(b) Show Hm(R2n) ∼=⊕

p+q=m Hp,q(Cn).
(c) Show that Hp,q(Cn) is U (n)-irreducible.
(d) Show that Hp,q(Cn) is still irreducible under restriction to SU (n).

Exercise 2.36 Show that S+ and S− are inequivalent representations of Spinn(R)

for n even.
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Harmonic Analysis

Throughout this chapter let G be a compact Lie group. This chapter studies a number
of function spaces on G such as the set of continuous functions on G, C(G), or the
set of square integrable functions on G, L2(G), with respect to the Haar measure dg.
These function spaces are examined in the light of their behavior under left and right
translation by G.

3.1 Matrix Coefficients

3.1.1 Schur Orthogonality

Let (π, V ) be a finite-dimensional unitary representation of a compact Lie group G
with G-invariant inner product (·, ·). If {vi } is a basis for V , let {v∗i } be the dual basis
for V , i.e., (vi , v

∗
j ) = δi, j where δi, j is 1 when i = j and 0 when i �= j . With respect

to this basis, the linear transformation π(g) : V → V , g ∈ G, can be realized as
matrix multiplication by the matrix whose entry in the (i, j)th position is

(gv j , v
∗
i ).

The function g → (gv j , v
∗
i ) is a smooth complex-valued function on G. The study

of linear combinations of such functions turns out to be quite profitable.

Definition 3.1. Any function on a compact Lie group G of the form f V
u,v(g) =

(gu, v) for a finite-dimensional unitary representation V of G with u, v ∈ V and
G-invariant inner product (·, ·) is called a matrix coefficient of G. The collection of
all matrix coefficients is denoted MC(G).

Lemma 3.2. MC(G) is a subalgebra of the set of smooth functions on G and
contains the constant functions. If {vπi }nπ

i=1 is a basis for Eπ , [π ] ∈ Ĝ, then
{ f Eπ

vπi ,v
π
j
| [π ] ∈ Ĝ and 1 ≤ i, j ≤ nπ } span MC(G).
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Proof. By definition, a matrix coefficient is clearly a smooth function on G. If V, V ′

are unitary representations of G with G-invariant inner products (·, ·)V and (·, ·)V ′ ,
then U ⊕ V is unitary with respect to the inner product

(
(u, v), (u′, v′)

)
V⊕V ′ =

(u, u′)V + (v, v′)V ′ and V ⊗ V ′ is unitary with respect to the inner product(∑
i

ui ⊗ vi ,
∑

j

u′j ⊗ v′j

)
V⊗V ′

=
∑
i, j

(ui , u′j )V (vi , v
′
j )V ′

(Exercise 3.1). Thus c f V
u,u′ + f V ′

v,v′ = f V⊕V ′
(cu,v),(u′,v′), so MC(G) is a subspace and

f V
u,u′ f V ′

v,v′ = f V⊗V ′
u⊗v,u′⊗v′ , so MC(G) is an algebra. The constant functions are easily

achieved as matrix coefficients of the trivial representation.
To verify the final statement of the lemma, first decompose V into irreducible mu-

tually perpendicular summands (Exercise 3.2) as V =⊕
i Vi where each Vi

∼= Eπi .
Any v, v′ ∈ V can be written v = ∑

i vi and v′ = ∑
i v

′
i with vi , v

′
i ∈ Vi

so that f V
v,v′ =

∑
i f Vi

vi ,v
′
i
. If Ti : Vi → Eπi is an intertwining isomorphism,

then (Tivi , Tiv
′
i )Eπi

= (vi , v
′
i )V defines a unitary structure on Eπi so that f V

v,v′ =∑
i f

Eπi

Tivi ,Tiv
′
i
. Expanding Tivi and Tiv

′
i in terms of the basis for Eπi finishes the proof.

�

The next theorem calculates the L2 inner product of the matrix coefficients cor-

responding to irreducible representations.

Theorem 3.3 (Schur Orthogonality Relations). Let U, V be irreducible finite-
dimensional unitary representations of a compact Lie group G with G-invariant
inner products (·, ·)U and (·, ·)V . If ui ∈ U and vi ∈ V ,∫

G
(gu1, u2)U (gv1, v2)V dg =

{
0 if U �∼= V

1
dim V (u1, v1)V (u2, v2)V if U = V .

Proof. For u ∈ U and v ∈ V , define Tu,v : U → V by Tu,v(·) = v (·, u)U . For
the sake of clarity, initially write the action of each representation as (πU ,U ) and
(πV , V ). Then the function g → πU (g) ◦ Tu,v ◦ π−1

V (g), g ∈ G, can be viewed, after
choosing bases, as a matrix valued function. Integrating on each coordinate of the
matrix (c.f. vector-valued integration in §3.2.2), define T̃u,v : U → V by

T̃u,v =
∫

G
πU (g) ◦ Tu,v ◦ π−1

V (g) dg.

For h ∈ G, the invariance of the measure implies that

πU (h) ◦ T̃u,v =
∫

G
πU (hg) ◦ Tu,v ◦ π−1

V (g) dg =
∫

G
πU (g) ◦ Tu,v ◦ π−1

V (h−1g) dg

= T̃u,v ◦ πV (h),

so that T̃u,v ∈ HomG(U, V ). Irreducibility and Schur’s Lemma (Theorem 2.12) show
that T̃u,v = cI where c = c(u, v) ∈ C with c = 0 when U �∼= V . Unwinding the
definitions and using the change of variables g → g−1, calculate
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c (u1, v1)V = (T̃u2,v2 u1, v1)V =
∫

G
(gTu2,v2 g−1u1, v1)V dg

=
∫

G
(
(
g−1u1, u2

)
U

gv2, v1)V dg =
∫

G
(gu1, u2)U (g−1v2, v1)V dg

=
∫

G
(gu1, u2)U (v2, gv1)V dg =

∫
G
(gu1, u2)U (gv1, v2)V dg.

Thus the theorem is finished when U �∼= V . When U = V , it remains to calculate c.
For this, take the trace of the identity cI = T̃u2,v2 to get

c dim V = tr T̃u2,v2 =
∫

G
tr
[
g ◦ Tu2,v2 ◦ g−1

]
dg

=
∫

G
tr Tu2,v2 dg = tr Tu2,v2 .

To quickly calculate tr Tu2,v2 for nonzero u2, choose a basis for U = V with v2

as the first element. Since Tu2,v2(·) = v2(·, u2)V , tr Tu2,v2 = (v2, u2)V , so that c =
1

dim V (u2, v2)V which finishes the proof. �

If U ∼= V and T : U → V is a G-intertwining isomorphism, Theorem 2.20

implies there is a positive constant c ∈ R, so that (u1, u2)U = c(T u1, T u2)V . In this
case, the Schur orthogonality relation becomes∫

G
(gu1, u2)U (gv1, v2)V dg = c

dim V
(T u1, v1)V (T u2, v2)V .

Of course, T can be scaled so that c = 1 by replacing T with
√

cT .

3.1.2 Characters

Definition 3.4. The character of a finite-dimensional representation (π, V ) of a
compact Lie group G is the function on G defined by χV (g) = trπ(g).

It turns out that character theory provides a powerful tool for studying represen-
tations. In fact, we will see in Theorem 3.7 below that, up to equivalence, a character
completely determines the representation. Note for dim V > 1, a character in the
above sense is usually not a homomorphism.

Theorem 3.5. Let V, Vi be finite-dimensional representations of a compact Lie
group G.
(1) χV ∈ MC(G).
(2) χV (e) = dim V .
(3) If V1

∼= V2, then χV1 = χV2 .
(4) χV (hgh−1) = χV (g) for g, h ∈ G.
(5) χV1⊕V2 = χV1 + χV2 .
(6) χV1⊗V2 = χV1 χV2 .
(7) χV ∗(g) = χV (g) = χV (g) = χV (g−1).
(8) χC(g) = 1 for the trivial representation C.
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Proof. Each statement of the theorem is straightforward to prove. We prove parts
(1), (4), (5), and (7) and leave the rest as an exercise (Exercise 3.3). For part (1), let
{vi } be an orthonormal basis for V with respect to a G-invariant inner product (·, ·).
Then χV (g) =

∑
i (gvi , vi ) so that χV ∈ MC(G). For part (4), calculate

χV (hgh−1) = tr
[
π(h)π(g)π(h)−1

] = trπ(g) = χV (g).

For part (5), §2.2.1 shows that the action of G on V1⊕V2 can be realized by a matrix

of the form

( ∗ 0
0 ∗

)
where the upper left block is given by the action of G on V1 and

the lower right block is given by the action of G on V2. Taking traces finishes the
assertion. For part (7), the equivalence V ∗ ∼= V shows χV ∗(g) = χV (g). From the
discussion in §2.2.1 on V , the matrix realizing the action of g on V is the conjugate
of the matrix realizing the action of g on V . Taking traces shows χV (g) = χV (g).
Similarly, from the discussion in §2.2.1 on V ∗, the matrix realizing the action of g
on V ∗ is the inverse transpose of the matrix realizing the action of g on V . Taking
traces shows χV ∗(g) = χV (g−1). �

Definition 3.6. If V is a finite-dimensional representation of a Lie group G, let V G =
{v ∈ V | gv = v for g ∈ G}, i.e., V G is the isotypic component of V corresponding
to the trivial representation.

The next theorem calculates the L2 inner product of characters corresponding to
irreducible representations.

Theorem 3.7. (1) Let V, W be finite-dimensional representations of a compact Lie
group G. Then ∫

G
χV (g) χW (g) dg = dim HomG(V, W ).

In particular,
∫

G χV (g) dg = dim V G and if V, W are irreducible, then∫
G
χV (g) χW (g) dg =

{
0 if V �∼= W
1 if U ∼= V .

(2) Up to equivalence, V is completely determined by its character, i.e., χV = χW if
and only if V ∼= W . In particular, if Vi are representations of G, then V ∼=⊕

i ni Vi

if and only if χV =
∑

i niχVi .
(3) V is irreducible if and only if

∫
G |χV (g)|2 dg = 1.

Proof. Begin with the assumption that V, W are irreducible. Let {vi } and {w j } be an
orthonormal bases for V and W with respect to the G-invariant inner products (·, ·)V

and (·, ·)W . Then

χV (g) χW (g) =
∑
i, j

(gvi , vi )V (gw j , w j )W ,
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so Schur orthogonality (Theorem 3.3) implies that
∫

G χV (g) χW (g) dg is 0 when
V �∼= W . When U ∼= V , χW = χV , so Schur orthogonality implies that∫

G
χV (g) χV (g) dg = 1

dim V

∑
i, j

∣∣(vi , v j )V

∣∣2 = 1.

For arbitrary V, W , decompose V and W into irreducible summands as V ∼=⊕
[π ]∈Ĝ mπ Eπ and W =⊕

[π ]∈Ĝ nπ Eπ . Hence∫
G
χV (g) χW (g) dg =

∑
[π ],[π ′]∈Ĝ

mπnπ ′

∫
G
χEπ

(g) χEπ ′ (g) dg

=
∑

[π ]∈Ĝ

mπnπ =
∑

[π ],[π ′]∈Ĝ

mπnπ ′ dim HomG(Eπ , Eπ ′)

= dim HomG(
⊕

[π ]∈Ĝ

mπ Eπ ,
⊕

[π ]∈Ĝ

nπ Eπ ) = dim HomG(V, W ).

The remaining statements follow easily from this result and the calculation of
multiplicity in Theorem 2.24. In particular since V G is the isotypic component of
V corresponding to the trivial representation, dim HomG(C, V ) = dim V G and thus
dim V G = ∫

G χC(g) χV (g) dg = ∫
G χV (g) dg. Since dim V G is a real number, the

integrand may be conjugated with impunity and part (1) follows.
For part (2), V is completely determined by the multiplicities mπ =

dim HomG(Eπ , V ), [π ] ∈ Ĝ. As this number is calculated by
∫

G χEπ
(g) χV (g) dg,

the representation is completely determined by χV . For part (3), V is irreducible if
and only if dim HomG(V, V ) = 1 by Corollary 2.19. In turn, this this is equivalent
to
∫

G χV (g) χV (g) dg = 1. �

As an application of the power of character theory, we prove a theorem classi-

fying irreducible representations of the direct product of two compact Lie groups,
G1 ×G2, in terms of the irreducible representations of G1 and G2. This allows us to
eventually focus our study on compact Lie groups that are as small as possible.

Definition 3.8. If Vi is a finite-dimensional representation of a Lie group Gi , V1⊗V2

is a representation of G1 × G2 with action given by (g1, g2)
∑

i vi1 ⊗ vi2 =∑
i

(
g1vi1

)⊗ (
g2vi2

)
.

Theorem 3.9. For compact Lie groups Gi , a finite-dimensional representation W of
G1 ×G2 is irreducible if and only if W ∼= V1 ⊗ V2 for finite-dimensional irreducible
representations Vi of Gi .

Proof. If Vi are irreducible representations of Gi , then
∫

Gi

∣∣χVi (g)
∣∣2 dg = 1. Since

χV1⊗V2(g1, g2) = χV1(g1) χV2(g2) (Exercise 3.3) and since Haar measure on G1×G2

is given by dg1 dg2 by uniqueness,



52 3 Harmonic Analysis∫
G1×G2

∣∣χχV1⊗V2
(g1, g2)

∣∣2 dg1 dg2

=
(∫

G1

∣∣χV1(g1)
∣∣2 dg1

)(∫
G2

∣∣χV2(g2)
∣∣2 dg2

)
(3.10)

= 1,

so that V1 ⊗ V2 is G1 × G2-irreducible.
Conversely, suppose W is G1×G2-irreducible. Identifying G1 with G1×{e} and

G2 with {e} × G2, decompose W with respect to G2 as⊕
[π ]∈Ĝ2

HomG2(Eπ , W )⊗ Eπ

under the G2-map � induced by �(T ⊗ v) = T (v). Recall that G2 acts trivially
on HomG2(Eπ , W ) and view HomG2(Eπ , W ) as a representation of G1 by setting
(g1T ) (v) = (g1, e)T (v). Thus

⊕
[π ]∈Ĝ2

HomG2(Eπ , W )⊗ Eπ is a representation of
G1 × G2 and, in fact, � is now a G1 × G2-intertwining isomorphism to W since

(g1, g2)�(T ⊗ v) = (g1, e)(e, g2)�(T ⊗ v) = (g1, e)�(T ⊗ g2v)

= (g1, e)T (g2v) = (g1T )(g2v) = �((g1T )⊗ (g2v)) .

As W is irreducible, there exists exactly one [π] ∈ Ĝ2 so that

W ∼= HomG2(Eπ , W )⊗ Eπ .

Since Eπ is G2-irreducible, a calculation as in Equation 3.10 shows HomG2(Eπ , W )

is G1-irreducible as well. �

As a corollary of Theorem 3.9 (Exercise 3.10), it easily follows that ̂G1 × G2

∼=
Ĝ1 × Ĝ2.

3.1.3 Exercises

Exercise 3.1 If V, V ′ are finite-dimensional unitary representations of a Lie group
G with G-invariant inner products (·, ·) and (·, ·)′, show the form

(
(u, u′), (v, v′)

) =
(u, v)+ (u′, v′)′ on V ⊕ V ′ is a G-invariant inner product and the form(∑

i

ui ⊗ u′i ,
∑

j

v j ⊗ v′j

)
=
∑
i, j

(ui , v j )(u
′
i , v

′
j )
′

on V ⊗ V ′ is a G-invariant inner product.

Exercise 3.2 Show that any finite-dimensional unitary representation V of a com-
pact Lie group G can be written as a direct sum of irreducible summands that are
mutually perpendicular.
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Exercise 3.3 Prove the remaining parts of Theorem 3.5. Also, if Vi are finite-
dimensional representations of a compact Lie group Gi , show that χV1⊗V2(g1, g2) =
χV1(g1) χV2(g2).

Exercise 3.4 Let G be a finite group acting on a finite set M . Define a representation
of G on C(M) = { f : M → C} by (g f )(m) = f (g−1m). Show that χC(M)(g) =
|Mg| for g ∈ G where Mg = {m ∈ M | gm = m}.
Exercise 3.5 (a) For the representation Vn(C2) of SU (2) from §2.1.2.2, calculate
χVn(C2)(g) for g ∈ SU (2) in terms of the eigenvalues of g.
(b) Use a character computation to establish the Clebsch–Gordan formula:

Vn(C2)⊗ Vm(C2) ∼=
min{n,m}⊕

j=0

Vn+m−2 j (C2).

Exercise 3.6 (a) For the representations Vm(R3) and Hm(R3) of SO(3) from
§2.1.2.3, calculate χVm (R3)(g) and χHm (R3)(g) for g ∈ SO(3) of the form⎛⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞⎠ .

(b) For the half-spin representations S± of Spin(4) from §2.1.2.4, calculate χS±(g)
for g ∈ Spin(4) of the form (cos θ1 + e1e2 sin θ1) (cos θ2 + e3e4 sin θ2).

Exercise 3.7 Let V be a finite-dimensional representation of G. Show χ∧2 V (g) =
1
2

(
χV (g)2 − χV (g2)

)
and χS2V = 1

2 (χV (g)2 + χV (g2)). Use this to show that

V ⊗ V ∼= S2V ⊕∧2 V (c.f., Exercise 2.15).

Exercise 3.8 A finite-dimensional representation (π, V ) of a compact Lie group G
is said to be of real type if there is a real vector space V0 on which G acts that gives
rise to the action on V by extension of scalars, i.e., by V = V0 ⊗R C. It is said to
be of quaternionic type if there is a quaternionic vector space on which G acts that
gives rise to the action on V by restriction of scalars. It is said to be of complex type
if it is neither real nor quaternionic type.
(a) Show that V is of real type if and only if V possesses an invariant nondegenerate
symmetric bilinear form. Show that V is of quaternionic type if and only if V pos-
sesses an invariant nondegenerate skew-symmetric bilinear form.
(b) Show that the set of G-invariant bilinear forms on V are given by
HomG(V ⊗ V,C) ∼= HomG(V, V ∗) (c.f., Exercise 2.15).
(c) For the remainder of the problem, let V be irreducible. Show that V is of complex
type if and only if V �∼= V ∗. When V ∼= V ∗, use Exercise 3.7 to conclude that V is
of real or quaternionic type, but not both.
(d) Using Theorem 3.7 and the character formulas in Exercise 3.7, show that∫

G
χV (g

2) dg =
⎧⎨⎩ 1 if V is of real type

0 if V is of complex type
−1 if V is of quaternionic type.
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(e) If χV is real valued, show that V is of real or quaternionic type.

Exercise 3.9 Let (π, V ) be a finite-dimensional representation of a compact Lie
group G. Use unitarity and an eigenspace decomposition to show |χV (g)| ≤ dim V
with equality if and only if π(g) is multiplication by a scalar.

Exercise 3.10 Let [πi ] ∈ Ĝi for compact Lie groups Gi . Now show that the map
(Eπ1 , Eπ2)→ Eπ1 ⊗ Eπ2 induces an isomorphism Ĝ1 × Ĝ2

∼= ̂G1 × G2.

3.2 Infinite-Dimensional Representations

In many applications it is important to remove the finite-dimensional restriction from
the definition of a representation. As infinite-dimensional spaces are a bit more tricky
than finite-dimensional ones, this requires a slight reworking of a few definitions.
None of these modifications affect the finite-dimensional setting. Once these ad-
justments are made, it is perhaps a bit disappointing that the infinite-representation
theory for compact Lie groups reduces to the finite-dimensional theory.

3.2.1 Basic Definitions and Schur’s Lemma

Recall that a topological vector space is a vector space equipped with a topology so
that vector addition and scalar multiplication are continuous. If V and V ′ are topolog-
ical vector spaces, write Hom(V, V ′) for the set of continuous linear transformations
from V to V ′ and write GL(V ) for the set of invertible elements of Hom(V, V ).

The following definition (c.f. Definitions 2.1, 2.2, and 2.11) provides the nec-
essary modifications to allow the study of infinite-dimensional representations. As
usual in infinite dimensional settings, the main additions consist of explicitly requir-
ing the action of the Lie group to be continuous in both variables and liberal use of
the adjectives continuous and closed.

Definition 3.11. (1) A representation of a Lie group G on a topological vector space
V is a pair (π, V ), where π : G → GL(V ) is a homomorphism and the map
G × V → V given by (g, v)→ π(g)v is continuous.
(2) If (π, V ) and (π ′, V ′) are representations on topological vector spaces, T ∈
Hom(V, V ′) is called an intertwining operator or G-map if T ◦ π = π ′ ◦ T .
(3) The set of all G-maps is denoted by HomG(V, V ′).
(4) The representations V and V ′ are equivalent, V ∼= V ′, if there exists a bijective
G-map from V to V ′.
(5) A subspace U ⊆ V is G-invariant if gU ⊆ U for g ∈ G. Thus when U is
closed, U is a representation of G in its own right and is also called a submodule or
a subrepresentation.
(6) A nonzero representation V is irreducible if the only closed G-invariant sub-
spaces are {0} and V . A nonzero representation is called reducible if there is a proper
closed G-invariant subspace of V .
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For the most part, the interesting topological vector space representations we
will examine will be unitary representations on Hilbert spaces, i.e., representations
on complete inner product spaces where the inner product is invariant under the Lie
group (Definition 2.14). More generally, many of the results are applicable to Haus-
dorff locally convex topological spaces and especially to Fréchet spaces (see [37]).
Recall that locally convex topological spaces are topological vector spaces whose
topology is defined by a family of seminorms. A Fréchet space is a complete lo-
cally convex Hausdorff topological spaces whose topology is defined by a countable
family of seminorms.

As a first example of an infinite-dimensional unitary representation on a Hilbert
space, consider the action of S1 on L2(S1) given by

(
π(eiθ ) f

)
(eiα) = f (ei(α−θ))

for eiθ ∈ S1 and f ∈ L2(S1). We will soon see (Lemma 3.20) that this example
generalizes to any compact Lie group.

Next we upgrade Schur’s Lemma (Theorem 2.12) to handle unitary representa-
tions on Hilbert spaces.

Theorem 3.12 (Schur’s Lemma). Let V and W be unitary representations of a Lie
group G on Hilbert spaces. If V and W are irreducible, then

dim HomG(V, W ) =
{

1 if V ∼= W
0 if V �∼= W .

In general, the representation V is irreducible if and only if HomG(V, V ) = CI .

Proof. Start with V and W irreducible. If T ∈ HomG(V, W ) is nonzero, then ker T is
closed, not all of V , and G-invariant, so irreducibility implies ker T = {0}. Similarly,
the image of T is nonzero and G-invariant, so continuity and irreducibility imply that
range T = W .

Using the definition of the adjoint map of T , T ∗ : W → V , it immediately
follows that T ∗ ∈ HomG(W, V ) and that T ∗ is nonzero, injective, and has dense
range (Exercise 3.11). Let S = T ∗ ◦ T ∈ HomG(V, V ) so that S∗ = S. In the
finite-dimensional case, we used the existence of an eigenvalue to finish the proof.
In the infinite-dimensional setting however, eigenvalues (point spectrum) need not
generally exist. To clear this hurdle, we invoke a standard theorem from a functional
analysis course.

The Spectral Theorem for normal bounded operators (see [74] or [30] for de-
tails) says that there exists a projection valued measure E so that S = ∫

σ(S) λ d E ,
where σ(S) is the spectrum of S. It has the nice property that the only bounded en-
domorphisms of V commuting with S are the ones commuting with each self-adjoint
projection E(�), � a Borel subset of σ(S). In terms of understanding the notation∫
σ(S) λ d E , The Spectral Theorem also says that S is the limit, in the operator norm,

of operators of the form
∑

i λi E(�i ) where {�i } is a partition of σ(S) and λi ∈ �i .
Since S ∈ HomG(V, V ), π(g) commutes with E(�) for each g ∈ G, so

that E(�) ∈ HomG(V, V ). It has already been shown that nonzero elements of
HomG(V, V ) are injective. As E(�) is a projection, it must therefore be 0 or I . Thus∑

i λi E(�i ) = k I for some (possibly zero) constant k. In particular, S is a multiple
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of the identity. Since S is injective, S is a nonzero multiple of the identity. It follows
that T is invertible and that V ∼= W .

Now suppose Ti ∈ HomG(V, W ) are nonzero. Let S = T−1
2 ◦ T1 ∈ HomG(V, V )

and write S = 1
2 [(S + S∗)− i(i S − i S∗)]. Using the same argument as above ap-

plied to the self-adjoint intertwining operators S+ S∗ and i S− i S∗, it follows that S
is a multiple of the identity. This proves the first statement of the theorem.

To prove the second statement, it only remains to show dim HomG(V, V ) ≥ 2
when V is not irreducible. If U ⊆ V is a proper closed G-invariant subspace, then so
is U⊥ by unitarity. The two orthogonal projections onto U and U⊥ do the trick. �


3.2.2 G-Finite Vectors

Throughout the rest of the book there will be numerous occasions where vector-
valued integration on compact sets is required. In a finite-dimensional vector space,
a basis can be chosen and then integration can be done coordinate-by-coordinate.
For instance, vector-valued integration in this setting was already used in the proof
of Theorem 3.7 for the definition of T̃u,v . Obvious generalizations can be made to
Hilbert spaces by tossing in limits. In any case, functional analysis provides a general
framework for this type of operation which we recall now (see [74] for details).
Remember that G is still a compact Lie group throughout this chapter.

Let V be a Hausdorff locally convex topological space and F : G → V a con-
tinuous function. Then there exists a unique element in V , called∫

G
f (g) dg,

so that T
(∫

G f (g) dg
) = ∫

G T ( f (g)) dg for each T ∈ Hom(V,C). If V is a
Fréchet space,

∫
G f (g) dg is the limit of elements of the form

n∑
i=1

f (gi ) dg(�i ),

where {�i }ni=1 is a finite Borel partition of G, gi ∈ �i , and dg(�i ) is the measure of
�i with respect to the invariant measure.

Recall that a linear map T on V is positive if (T v, v) ≥ 0 for all v ∈ V and
strictly greater than zero for some v. The linear map T is compact if the closure
of the image of the unit ball under T is compact. It is a standard fact from func-
tional analysis that the set of compact operators is a closed left and right ideal under
composition within the set of bounded operators (e.g., [74] or [30]).

We now turn our attention to finding a canonical decomposition (Theorem 2.24)
suitable for unitary representations on Hilbert spaces. The hardest part is getting
started. In fact, the heart of the matter is really contained in Lemma 3.13 below.

Lemma 3.13. Let (π, V ) be a unitary representation of a compact Lie group G on
a Hilbert space. There exists a nonzero finite-dimensional G-invariant (closed) sub-
space of V .
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Proof. Begin with any self-adjoint positive compact operator T0 ∈ Hom(V, V ),
e.g., any nonzero finite rank projection will work. Using vector-valued integration
in Hom(V, V ), define

T =
∫

G
π(g) ◦ T0 ◦ π(g)−1 dg.

Since T is the limit in norm of operators of the form
∑

i dg(�i ) π(gi ) ◦ T0 ◦π(gi )
−1

with gi ∈ �i ⊆ G, T is still a compact operator. T is G-invariant since dg is
left invariant (e.g., see the proof of Theorem 3.7 and the operator T̃u,v). Using the
positivity of T0, T is seen to be nonzero by calculating

(T v, v) =
∫

G
( π(g)T0π(g)

−1v, v) dg =
∫

G
(T0π(g)

−1v, π(g)−1v) dg,

where (·, ·) is the invariant inner product on V . Since V is unitary, the adjoint of
π(g) is π(g)−1. Using the fact that T0 is self-adjoint, it therefore follows that T is
also self-adjoint.

An additional bit of functional analysis is needed to finish the proof. Use the
Spectral Theorem for compact self-adjoint operators (see [74] or [30] for details)
to see that T possesses a nonzero eigenvalue λ whose corresponding (nonzero)
eigenspace is finite dimensional. This eigenspace, i.e., ker(T − λI ), is the desired
nonzero finite-dimensional G-invariant subspace of V . �


If {Vα}α∈A are Hilbert spaces with inner products (·, ·)α , recall that the Hilbert
space direct sum is⊕̂

α∈A
Vα = {(vα) | vα ∈ Vα and

∑
α∈A

‖vα‖2
α <∞}.

⊕̂
αVα is a Hilbert space with inner product

(
(vα) ,

(
v′α
)) = ∑

α(vα, v
′
α)α and con-

tains
⊕

α Vα as a dense subspace with Vα ⊥ Vβ for distinct α, β ∈ A.

Definition 3.14. If V is a representation of a Lie group G on a topological vector
space, the set of G-finite vectors is the set of all v ∈ V so that Gv generates a
finite-dimensional subspace, i.e.,

VG-fin = {v ∈ V | dim (span{gv | g ∈ G}) <∞}.
The next corollary shows that we do not really get anything new by allowing

infinite-dimensional unitary Hilbert space representations.

Corollary 3.15. Let (π, V ) be a unitary representation of a compact Lie group G on
a Hilbert space. There exists finite-dimensional irreducible G-submodules Vα ⊆ V
so that

V =
⊕̂
α

Vα .

In particular, the irreducible unitary representations of G are all finite dimensional.
Moreover, the set of G-finite vectors is dense in V .
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Proof. Zorn’s Lemma says that any partially ordered set has a maximal element if
every linearly ordered subset has an upper bound. With this in mind, consider the
collection of all sets {Vα | α ∈ A} satisfying the properties: (1) each Vα is finite-
dimensional, G-invariant, and irreducible; and (2) Vα ⊥ Vβ for distinct α, β ∈ A.
Partially order this collection by inclusion. By taking a union, every linearly ordered
subset clearly has an upper bound. Let {Vα | α ∈ A} be a maximal element. If⊕̂

αVα �= V , then
(⊕̂

αVα

)⊥
is closed, nonempty, and G-invariant, and so a uni-

tary Hilbert space representation in its own right. In particular, Lemma 3.13 and
Corollary 2.17 imply that there exists a finite dimensional, G-invariant, irreducible

submodule Vγ ⊆
(⊕̂

αVα

)⊥
. This, however, violates maximality and the corollary

is finished. �

As was the case in §2.2.4, the above decomposition is not canonical. This situa-

tion will be remedied next in §3.2.3 below.

3.2.3 Canonical Decomposition

First, we update the notion of isotypic component from Definition 2.22 in order to
handle infinite-dimensional unitary representations. The only real change replaces
direct sums with Hilbert space direct sums.

Definition 3.16. Let V be a unitary representation of a compact Lie group G on a
Hilbert space. For [π ] ∈ Ĝ, let V[π ] be the largest subspace of V that is a Hilbert
space direct sum of irreducible submodules equivalent to Eπ . The submodule V[π ] is
called the π -isotypic component of V .

As in the finite-dimensional case, the above definition of the isotypic component
V[π ] is well defined and V[π ] is the closure of the sum of all submodules of V equiva-
lent
to Eπ These statements are verified using Zorn’s Lemma in a fashion similar to the
proof of Corollary 3.15 (Exercise 3.12).

Lemma 3.17. Let V be a unitary representation of a compact Lie group G on a
Hilbert space with invariant inner product (·, ·)V and let Eπ , [π ] ∈ Ĝ, be an irre-
ducible representation of G with invariant inner product (·, ·)Eπ

. Then
HomG(Eπ , V ) is a Hilbert space with a G-invariant inner product (·, ·)Hom defined
by (T1, T2)Hom I = T ∗

2 ◦ T1. It satisfies

(T1, T2)Hom (x1, x2)Eπ
= (T1x1, T2x2)V(3.18)

for Ti ∈ HomG(Eπ , V ) and xi ∈ Eπ . Moreover, ‖T ‖Hom is the same as the operator
norm of T .

Proof. The adjoint of T2, T ∗
2 ∈ Hom(V, Eπ ), is still a G-map since
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(T ∗
2 (gv), x)Eπ

= (gv, T2x)V = (v, T2
(
g−1x

)
)V = (T ∗

2 v, g−1x)Eπ

= (gT ∗
2 v, x)Eπ

for x ∈ Eπ and v ∈ V . Thus T ∗
2 ◦ T1 ∈ Hom(Eπ , Eπ ). Schur’s Lemma implies that

there is a scalar (T1, T2)Hom ∈ C, so that (T1, T2)Hom I = T ∗
2 ◦ T1.

By definition, (·, ·)Hom is clearly a Hermitian form on HomG(Eπ , V ) and

(T1x1, T2x2)V = (T ∗
2 (T1x1) , x2)Eπ

= ((T1, T2)Hom x1, x2)Eπ

= (T1, T2)Hom (x1, x2)Eπ
.

In particular, for T ∈ HomG(Eπ , V ), ‖T ‖Hom is the quotient of ‖T x‖V and ‖x‖Eπ

for any nonzero x ∈ Eπ . Thus ‖T ‖Hom is the same as the operator norm of T
viewed as an element of Hom(Eπ , V ). Hence (·, ·)Hom is an inner product making
HomG(Eπ , V ) into a Hilbert space. �


Note Equation 3.18 is independent of the choice of invariant inner product
on Eπ . To see this directly, observe that scaling (·, ·)Eπ

scales T ∗
2 , and therefore

(·, ·)HomG (Eπ ,V ), by the inverse scalar so that the product of (·, ·)Eπ
and (·, ·)HomG (Eπ ,V )

remains unchanged.
If Vi are Hilbert spaces with inner products (·, ·)i , recall that the Hilbert space

tensor product, V1 ⊗̂ V2, is the completion of V1⊗V2 with respect to the inner product
generated by (v1 ⊗ v2, v

′
1 ⊗ v′2) = (v1, v

′
1) (v2, v

′
2) (c.f. Exercise 3.1).

Theorem 3.19 (Canonical Decomposition). Let V be a unitary representation of a
compact Lie group G on a Hilbert space.
(1) There is a G-intertwining unitary isomorphism ιπ

HomG(Eπ , V ) ⊗̂ Eπ

∼=→ V[π ]

induced by ιπ (T ⊗ v) = T (v) for T ∈ HomG(Eπ , V ) and v ∈ V .
(2) There is a G-intertwining unitary isomorphism⊕̂

[π ]∈Ĝ

HomG(Eπ , V ) ⊗̂ Eπ

∼=→ V =
⊕̂

[π ]∈Ĝ

V[π ].

Proof. As in the proof of Theorem 2.24, ιπ is a well-defined G-map from
HomG(Eπ , V ) ⊗ Eπ to V[π ] with dense range (since V[π ] is a Hilbert space direct
sum of irreducible submodules instead of finite direct sum as in Theorem 2.24). As
Lemma 3.17 implies ιπ is unitary on HomG(Eπ , V ) ⊗ Eπ , it follows that ιπ is in-
jective and uniquely extends by continuity to a G-intertwining unitary isomorphism
from HomG(Eπ , V ) ⊗̂ Eπ to V[π ]. Finally, V is the closure of

∑
[π ]∈Ĝ V[π ] by Corol-

lary 3.15 and the sum is orthogonal by Corollary 2.21. �


3.2.4 Exercises

Exercise 3.11 Let V and W be unitary representations of a compact Lie group G on
Hilbert spaces and let T ∈ HomG(V, W ) be injective with dense range. Show that
T ∗ ∈ HomG(W, V ), T ∗ is injective, and that T ∗ has dense range.
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Exercise 3.12 Let V be a unitary representation of a compact Lie group G on a
Hilbert space and let [π ] ∈ Ĝ.
(a) Consider the collection of all sets {Vα | α ∈ A} satisfying the properties: (1) each
Vα is a submodule of V isomorphic to Eπ and (2) Vα ⊥ Vβ for distinct α, β ∈ A.
Partially order this collection by inclusion and use Zorn’s Lemma to show that there
is a maximal element.
(b) Write {Vα | α ∈ A} for the maximal element. Show that the orthogonal projection

P : V →
(⊕̂

α∈AVα

)⊥
is a G-map. If Vγ ⊆ V is any submodule equivalent to Eπ ,

use irreducibility and maximality to show that PVγ = {0}.
(c) Show that the definition of the isotypic component V[π] in Definition 3.16 is well
defined and that V[π ] is the closure of the sum of all submodules of V equivalent to
Eπ .

Exercise 3.13 Recall that Ŝ1 ∼= Z via the one-dimensional representations πn(eiθ ) =
einθ for n ∈ Z (Exercise 2.21). View L2(S1) as a unitary representation of S1 under
the action (eiθ · f )(eiα) = f (ei(α−θ)) for f ∈ L2(S1). Calculate HomS1(πn, L2(S1))

and conclude that L2(S1) = ⊕̂
n∈Z

Ceinθ .

Exercise 3.14 Use Exercise 2.28 and Theorem 2.33 to show that

L2(Sn−1) =
⊕̂

m∈N
Hm(Rn)|Sn−1 , n ≥ 2,

is the canonical decomposition of L2(Sn−1) under O(n) (or SO(n) for n ≥ 3) with
respect to usual action (g f ) (v) = f (g−1v).

Exercise 3.15 Recall that the irreducible unitary representations of R are given by
the one-dimensional representations πr (x) = eir x for r ∈ R (Exercise 2.21) and
consider the unitary representation of R on L2(R) under the action (x · f )(y) =
f (x − y) for f ∈ L2(R). Show L2(R) �= ⊕̂

r∈R
L2(R)πr by showing L2(R)πr = {0}.

3.3 The Peter–Weyl Theorem

Let G be a compact Lie group. In this section we decompose L2(G) under left and
right translation of functions. The canonical decomposition reduces the work to cal-
culating HomG(Eπ , L2(G)). Instead of attacking this problem directly, it turns out
to be easy (Lemma 3.23) to calculate that HomG(Eπ ,C(G)G-fin). Using the Stone–
Weierstrass Theorem (Theorem 3.25), it is shown that C(G)G-fin is dense in L2(G).
In turn, this density result allows the calculation of HomG(Eπ , L2(G)).

3.3.1 The Left and Right Regular Representation

The set of continuous functions on a compact Lie group G, C(G), is a Banach
space with respect to the norm ‖ f ‖C(G) = supg∈G | f (g)| and the set of square in-
tegrable functions, L2(G), is a Hilbert space with respect to the norm ‖ f ‖L2(G) =∫

G | f (g)|2 dg. Both spaces carry a left and right action lg and rg of G given by



3.3 The Peter–Weyl Theorem 61(
lg f

)
(h) = f (g−1h)(

rg f
)
(h) = f (hg)

which, as the next theorem shows, are representations. They are called the left and
right regular representations.

Lemma 3.20. The left and right actions of a compact Lie group G on C(G) and
L2(G) are representations and norm preserving.

Proof. The only statement from Definition 3.11 that still requires checking is con-
tinuity of the map (g, f ) → lg f (since rg is handled similarly). Working in C(G)

first, calculate∣∣ f1(g
−1
1 h)− f2(g

−1
2 h)

∣∣ ≤ ∣∣ f1(g
−1
1 h)− f1(g

−1
2 h)

∣∣+ ∣∣ f1(g
−1
2 h)− f2(g

−1
2 h)

∣∣
≤ ∣∣ f1(g

−1
1 h)− f1(g

−1
2 h)

∣∣+ ‖ f1 − f2‖C(G) .

Since f1 is continuous on compact G and since the map g → g−1h is continuous, it
follows that

∥∥lg1 f1 − lg2 f2

∥∥
C(G)

can be made arbitrarily small by choosing (g1, f1)

sufficiently close to (g2, f2).
Next, working with fi ∈ L2(G), choose f ∈ C(G) and calculate the following:∥∥lg1 f1 − lg2 f2

∥∥
L2(G)

=
∥∥∥ f1 − lg−1

1 g2
f2

∥∥∥
L2(G)

≤ ‖ f1 − f2‖L2(G) +
∥∥∥ f2 − lg−1

1 g2
f2

∥∥∥
L2(G)

= ‖ f1 − f2‖L2(G) +
∥∥lg1 f2 − lg2 f2

∥∥
L2(G)

≤ ‖ f1 − f2‖L2(G) +
∥∥lg1 f2 − lg1 f

∥∥
L2(G)

+ ∥∥lg1 f − lg2 f
∥∥

L2(G)
+ ∥∥lg2 f − lg2 f2

∥∥
L2(G)

= ‖ f1 − f2‖L2(G) + 2 ‖ f2 − f ‖L2(G) +
∥∥lg1 f − lg2 f

∥∥
L2(G)

≤ ‖ f1 − f2‖L2(G) + 2 ‖ f2 − f ‖L2(G) +
∥∥lg1 f − lg2 f

∥∥
C(G)

.

Since f may be chosen arbitrarily close to f2 in the L2 norm and since G already
acts continuously on C(G), the result follows. �


The first important theorem identifies the G-finite vectors of C(G) with the set
of matrix coefficients, MC(G). Even though there are two actions of G on C(G),
i.e., lg and rg , it turns out that both actions produce the same set of G-finite vectors
(Theorem 3.21). As a result, write C(G)G-fin unambiguously for the set of G-finite
vectors with respect to either action.

Theorem 3.21. (1) For a compact Lie group G, the set of G-finite vectors of C(G)

with respect to left action, lg, coincides with set of G-finite vectors of C(G) with
respect to right action, rg.
(2) C(G)G-fin = MC(G).
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Proof. We first show that C(G)G-fin, with respect to left action, is the set of matrix
coefficients. Let f V

u,v(g) = (gu, v) be a matrix coefficient for a finite-dimensional
unitary representation V of G with u, v ∈ V and G-invariant inner product (·, ·).
Then (lg f V

u,v)(h) = (g−1hu, v) = (hu, gv) so that lg f V
u,v = f V

u,gv . Hence {lg f V
u,v |

g ∈ G} ⊆ { f V
u,v′ | v′ ∈ V }. Since V is finite dimensional, f V

u,v ∈ C(G)G-fin, and thus
MC(G) ⊆ C(G)G-fin.

Conversely, let f ∈ C(G)G-fin. By definition, there is a finite-dimensional sub-
module, V ⊆ C(G), with respect to the left action so that f ∈ V . Since g f = g f ,
V = {v | v ∈ V } is also a finite-dimensional submodule of C(G). Write (·, ·) for the
L2 norm restricted to V . The linear functional on V that evaluates functions at e is
continuous, so there exists v0 ∈ V so that v(e) = (v, v0) for v ∈ V . In particular,
f (g) = lg−1 f (e) = (lg−1 f , v0) = ( f , lgv0). In particular, f = f V

v0, f
∈ MC(G).

Thus C(G)G-fin ⊆ MC(G) and part (2) is done (with respect to the left action).
For part (1), let f be a left G-finite vector in C(G). By the above paragraph, there

is a matrix coefficient, so f = f V
u,v . Thus (rg f )(h) = (hgu, v) so that rg f = f V

gu,v .
Since {gu | g ∈ G} is contained in the finite-dimensional space V , it follows that the
set of left G-finite vectors are contained in the set of right G-finite vectors.

Conversely, let f be a right G-finite vector. As before, pick a finite-dimensional
submodule, V ⊆ C(G), with respect to the left action so that f ∈ V . Write (·, ·) for
the L2 norm restricted to V . The linear functional on V that evaluates functions at e
is continuous so there exists v0 ∈ V , so that v(e) = (v, v0) for v ∈ V . In particular,
f (g) = rg f (e) = (rg f, v0). In particular, f = f V

f,v0
∈ MC(G), so that the set of

right G-finite vectors is contained in the set of left G-finite vectors. �

Based on our experience with the canonical decomposition, we hope C(G)G-fin

decomposes under the left action into terms isomorphic to

HomG(Eπ ,C(G)G-fin)⊗ Eπ

for [π ] ∈ Ĝ. In this case, lg acts trivially on HomG(Eπ ,C(G)G-fin) so that Eπ car-
ries the entire left action. However, Theorem 3.21 says that C(G)G-fin is actually
a G × G-module under the action ((g1, g2) f ) (g) = (

rg1lg2 f
)
(g) = f (g−1

2 gg1).
In light of Theorem 3.9, it is therefore reasonable to hope HomG(Eπ ,C(G)G-fin)

will carry the right action. This, of course, requires a different action on
HomG(Eπ ,C(G)G-fin) than the trivial action defined in §2.2.1. Towards this end
and with respect to the left action on C(G)G-fin, define a second action of G on
HomG(Eπ ,C(G)G-fin) and HomG(Eπ ,C(G)) by

(gT ) (x) = rg (T x)(3.22)

for g ∈ G, x ∈ Eπ , and T ∈ HomG(Eπ ,C(G)). To verify this is well defined,
calculate

lg1 ((g2T ) (x)) = lg1rg2 (T x) = rg2lg1 (T x) = rg2 (T (g1x)) = ((g2T ) (g1x)) ,

so that g2T ∈ HomG(Eπ ,C(G)). If T ∈ HomG(Eπ ,C(G)G-fin), then g2T ∈
HomG(Eπ ,C(G)G-fin) as well by Theorem 3.21.
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The next lemma is a special case of Frobenius Reciprocity in §7.4.1. It does not
depend on the fact that Eπ is irreducible.

Lemma 3.23. With respect to the left action of a compact Lie group G on C(G)G-fin

and the action on HomG(Eπ ,C(G)G-fin) given by Equation 3.22,

HomG(Eπ ,C(G)) = HomG(Eπ ,C(G)G-fin) ∼= E∗
π

as G-modules. The intertwining map is induced by mapping T∈HomG(Eπ ,C(G)G-fin)

to λT ∈ E∗
π where

λT (x) = (T (x)) (e)

for x ∈ Eπ .

Proof. Let T ∈ HomG(Eπ ,C(G)G-fin) and define λT as in the statement of the
lemma. This is a G-map since

(gλT ) (x) = λT (g
−1x) = (T (g−1x))(e) = (lg−1(T x))(e) = (T x)(g)

= (rg(T x))(e) = ((gT )(x))(e) = λgT (x),

so gλT = λgT for g ∈ G.
We claim that the inverse map is obtained by mapping λ ∈ E∗

π to

Tλ ∈ HomG(Eπ ,C(G)G-fin)

by

(Tλ(x)) (h) = λ(h−1x)

for h ∈ G. To see that this is well defined, calculate

(lg(Tλ(x)))(h) = (Tλ(x)) (g
−1h) = λ(h−1gx) = (Tλ(gx)) (h)

so that lg(Tλ(x)) = Tλ(gx). This shows that Tλ is a G-map and, since Eπ is finite
dimensional, Tλ(x) ∈ C(G)G-fin. To see that this operation is the desired inverse,
calculate

λTλ
(x) = (Tλ(x))(e) = λ(x)

and (
TλT (x)

)
(h) = λT (h

−1x) = (T (h−1x))(e) = (lh−1(T x))(e) = (T x)(h).

Hence HomG(Eπ ,C(G)G-fin) ∼= E∗
π .

To see HomG(Eπ ,C(G)G-fin) = HomG(Eπ ,C(G)), observe that the map T →
λT is actually a well-defined map from HomG(Eπ ,C(G)) to E∗

π . Since the inverse
is still given by λ→ Tλ and Tλ ∈ HomG(Eπ ,C(G)G-fin), the proof is finished. �


Note that if E∗
π inherits an invariant inner product from Eπ in the usual fashion,

the above isomorphism need not be unitary with respect to the inner product on
HomG(Eπ ,C(G)) given in Lemma 3.17. In fact, they can be off by a scalar multiple
determined by dim Eπ . The exact relationship will be made clear in §3.4.
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3.3.2 Main Result

For n ∈ Z, consider the representation (πn, Eπn ) of S1 where Eπn = C and πn :
S1 → GL(1,C) is given by (πn(g)) (x) = gn x for g ∈ S1 and x ∈ Eπn . In so
doing, we realize the isomorphism Z ∼= Ŝ1 (c.f. Exercise 3.13). Define the function
fn : S1 → C by fn(g) = gn . Standard results from Fourier analysis show that
{ fn | n ∈ Z} is an orthonormal basis for L2(S1). By mapping 1 ∈ Eπn → fn , we
could say that there is an is an induced isomorphism

⊕̂
n∈Z

Eπn
∼= L2(S1). This map

even intertwines with the right regular action of L2(S1).
In order to generalize to groups that are not Abelian and to accommodate both

the left and right regular actions, we will phrase the result a bit differently. Consider
the map from E∗

πn
⊗ Eπn to L2(S1) induced by mapping λ ⊗ x ∈ E∗

πn
⊗ Eπn to the

function fλ⊗x where fλ⊗x (g) = λ(πn(g−1)x) for g ∈ S1. If 1∗ ∈ E∗
πn

maps 1 to 1,
notice f1∗⊗1 = f−n , so there is still an induced isomorphism⊕̂

πn∈Ŝ1
E∗
πn
⊗ Eπn

∼= L2(S1).

Moreover, it is easy to check that this isomorphism is an S1 × S1-intertwining map
with (g1, g2) ∈ S1 × S1 acting on on L2(S1) by rg1 ◦ lg2 . Thus the results of Fourier
analysis on S1 can be thought of as arising directly from the representation theory of
S1. This result will generalize to all compact Lie groups.

Theorem 3.24. Let G be a compact Lie group. As a G × G-module with (g1, g2) ∈
G × G acting as rg1 ◦ lg2 = lg2 ◦ rg1 on C(G)G-fin,

C(G)G-fin
∼=

⊕
[π ]∈Ĝ

E∗
π ⊗ Eπ .

The intertwining isomorphism is induced by mapping λ ⊗ x ∈ E∗
π ⊗ Eπ to fλ⊗x ∈

C(G)G-fin where fλ⊗x (g) = λ(g−1x) for g ∈ G.

Proof. The proof of this theorem is really not much more than the proof of Theorem
2.24 coupled with Lemma 3.23 and Theorem 3.21. To see that the given map is a
G-map, calculate

((g1, g2) fλ⊗x ) (g) = λ(g−1
1 g−1g2x) = (g1λ)(g

−1g2x) = fg1λ⊗g2x .

To see that the map is surjective, Lemma 3.2 shows that it suffices to verify that
each matrix coefficient of the form f Eπ

u,v (g) = (gu, v) is achieved where [π ] ∈ Ĝ,
(·, ·) is a G-invariant inner product on Eπ , and u, v ∈ Eπ . Since C(G)G-fin is closed

under complex conjugation, it suffices to show f Eπ
u,v (g) = (v, gu) = (g−1v, u) is

achieved. For this, take λ = (·, u) so that fλ⊗v = f Eπ
u,v .

It remains to see that the map is injective. Any element of the kernel lies in a
finite sum of W =⊕N

i=1 E∗
πi
⊗ Eπi . Restricted to W , the kernel is G × G-invariant.

Since the kernel’s isotypic components are contained in the isotypic components of
W , it follows that the kernel is either {0} or a direct sum of certain of the E∗

πi
⊗ Eπi .

As fλ⊗x (g) is clearly nonzero for nonzero λ ⊗ x ∈ E∗
πi
⊗ Eπi , the kernel must

be {0}. �
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Theorem 3.25 (Peter–Weyl). Let G be a compact Lie group. C(G)G-fin is dense in
C(G) and in L2(G).

Proof. Since C(G) is dense in L2(G), it suffices to prove the first statement. For
this, recall that C(G)G-fin is an algebra that is closed under complex conjugation
and contains 1. By the Stone–Weierstrass Theorem, it only remains to show that
C(G)G-fin separates points. For this, using left translation, it is enough to show that
for any g0 ∈ G, g0 �= e, there exists f ∈ C(G)G-fin so that f (g0) �= f (e).

By the Hausdorff condition and continuity of left translation, choose an open
neighborhood U of e so that U ∩ (g0U ) = ∅. The characteristic function for U ,
χU , is a nonzero function in L2(G). Since lg0χU = χg0U , (lg0χU , χU ) = 0. Because
(χU , χU ) > 0, lg0 cannot be the identity operator on L2(G). By Corollary 3.15 and
with respect to the left action of G on L2(G), there exist finite-dimensional irre-
ducible G-submodules Vα ⊆ L2(G) so that L2(G) = ⊕̂

αVα . In particular, there is
an α0 so that lg0 does not act by the identity on Vα0 . Thus there exists x ∈ Vα0 so that
lg0 x �= x , and so there is a y ∈ Vα0 , so that (lg0 x, y) �= (x, y). The matrix coefficient
f = f Vα

x,y is therefore the desired function. �

Coupling this density result with the canonical decomposition and the version

of Frobenius reciprocity contained in Lemma 3.23, it is now possible to decompose
L2(G). Since the two results are so linked, the following corollary is also often re-
ferred to as the Peter–Weyl Theorem.

Corollary 3.26. Let G be a compact Lie group. As a G × G-module with (g1, g2) ∈
G × G acting as rg1 ◦ lg2 on L2(G),

L2(G) ∼=
⊕̂

[π ]∈Ĝ

E∗
π ⊗ Eπ .

The intertwining isomorphism is induced by mapping λ ⊗ v ∈ E∗
π ⊗ Eπ to fλ⊗v

where fλ⊗v(g) = λ(g−1v) for g ∈ G. With respect to the same conventions as in
Lemma 3.23, HomG(Eπ , L2(G)) = HomG(Eπ ,C(G)) ∼= E∗

π as G-modules.

Proof. With respect to the left action, the canonical decomposition says that there is
an intertwining isomorphism

ι :
⊕̂

[π ]∈Ĝ

HomG(Eπ , L2(G)) ⊗̂ Eπ → L2(G)

induced by ι(T ⊗ v) = T (v) for T ∈ HomG(Eπ , L2(G)) and v ∈ L2(G). Using the
natural inclusion HomG(Eπ ,C(G)) ↪→ HomG(Eπ , L2(G)) and Lemma 3.23, there
is an injective map κ : E∗

π ↪→ HomG(Eπ , L2(G)) induced by mapping λ ∈ E∗
π

to Tλ ∈ HomG(Eπ , L2(G)) via (Tλ(v))(g) = λ(g−1v). We first show that κ is an
isomorphism.

Argue by contradiction. Suppose κ(E∗
π ) is a proper subset of HomG(Eπ , L2(G)).

Then, since ι is an isomorphism and E∗
π is finite dimensional, ι(κ(E∗

π ) ⊗ Eπ ) is
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a proper closed subset of ι(HomG(Eπ , L2(G)) ⊗ Eπ ). Choose a nonzero f ∈
ι(HomG(Eπ , L2(G)) ⊗ Eπ ) that is perpendicular to ι(κ(E∗

π ) ⊗ Eπ ). By virtue of
the fact that ι(HomG(Eπ , L2(G)) ⊗ Eπ ) is the π -isotypic component of L2(G)

for the left action and by Corollary 2.21, it follows that f is perpendicular to
ι(
⊕

[π ]∈Ĝ κ(E∗
π ) ⊗ Eπ ). Since ι(Tλ ⊗ v) = Tλ(v) = fλ⊗v , Theorem 3.24 shows

f is perpendicular to C(G)G-fin. By the Peter–Weyl Theorem, this is a contradiction,
and so E∗

π
∼= HomG(Eπ , L2(G)).

Hence there is an isomorphism
⊕̂

[π ]∈Ĝ E∗
π ⊗ Eπ → L2(G) induced by mapping

λ ⊗ v to fλ⊗v . The calculation given in the proof of Theorem 3.24 shows that this
map is a G × G-map when restricted to the subspace

⊕
[π ]∈Ĝ E∗

π ⊗ Eπ . Since this
subspace is dense, continuity finishes the proof. �


By Lemma 3.17, E∗
π
∼= HomG(Eπ , L2(G)) is equipped with a natural inner prod-

uct. In §3.4 we will see how to rescale the above isomorphism on each component
E∗
π ⊗ Eπ , so that the resulting map is unitary.

3.3.3 Applications

3.3.3.1 Orthonormal Basis for L2(G) and Faithful Representations

Corollary 3.27. Let G be a compact Lie group. If {vπi }nπ

i=1 is an orthonormal basis

for Eπ , [π ] ∈ Ĝ, then {(dim Eπ )
1
2 f Eπ

vπi ,v
π
j
| [π ] ∈ Ĝ and 1 ≤ i, j ≤ nπ } is an

orthonormal basis for L2(G).

Proof. This follows immediately from Lemma 3.2, Theorem 3.21, the Schur orthog-
onality relations, and the Peter–Weyl Theorem. �

Theorem 3.28. A compact Lie group G possesses a faithful representation, i.e., there
exists a (finite-dimensional representation) (π, V ) of G for which π is injective.

Proof. By the proof of the Peter–Weyl Theorem, for g1 ∈ G0, g1 �= e, there exists
a finite-dimensional representation (π1, V1) of G, so that π1(g1) is not the identity
operator. Thus kerπ1 is a closed proper Lie subgroup of G, and so a compact Lie
group in its own right. Since kerπ1 is a regular submanifold that does not contain a
neighborhood of e, it follows that dim kerπ1 < dim G. If dim kerπ1 > 0, choose
g2 ∈ (kerπ1)

0, g2 �= e, and let (π2, V2) be a representation of G, so that π2(g2) is
not the identity. Then ker(π1 ⊕ π2) is a compact Lie group with ker(π1 ⊕ π2) <

dim kerπ1.
Continuing in this manner, there are representations (πi , Vi ), 1 ≤ i ≤ N , of G,

so that dim ker(π1 ⊕ · · · ⊕ πN ) = 0. Since G is compact, ker(π1 ⊕ · · · ⊕ πN ) =
{h1, h2, . . . , hM} for hi ∈ G. Choose representations (πN+i , VN+i ), 1 ≤ i ≤ M , of
G, so that πN+i (hi ) is not the identity. The representation π1 ⊕ · · · ⊕πN+M does the
trick. �


Thus compact groups fall in the category of linear groups since each is now seen
to be isomorphic to a closed subgroup of GL(n,C). Even better, since compact, each
is isomorphic to a closed subgroup of U (n) by Theorem 2.15.
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3.3.3.2 Class Functions

Definition 3.29. Let G be a Lie group. A function f ∈ C(G) is called a continuous
class function if f (ghg−1) = f (h) for all g, h ∈ G. Similarly, a function f ∈ L2(G)

is called an L2 class function if for each g ∈ G, f (ghg−1) = f (h) for almost all
h ∈ G.

Theorem 3.30. Let G be a compact Lie group and let χ be the set of irreducible
characters, i.e., χ = {χEπ

| [π ] ∈ Ĝ}.
(1) The span of χ equals the set of continuous class functions in C(G)G-fin.
(2) The span of χ is dense in the set of continuous class functions.
(3) The set χ is an orthonormal basis for the set of L2 class functions. In particular,
if f is an L2 class function, then

f =
∑

[π ]∈Ĝ

( f, χEπ
)L2(G) χEπ

as an L2 function with respect to L2 convergence and

‖ f ‖2
L2(G)

=
∑

[π ]∈Ĝ

∣∣( f, χEπ
)L2(G)

∣∣2 .

Proof. For part (1), recall from Theorem 3.24 that C(G)G-fin
∼= ⊕

[π ]∈Ĝ E∗
π ⊗ Eπ

as a G × G-module. View C(G)G-fin and E∗
π ⊗ Eπ as G-modules via the diagonal

embedding G ↪→ G × G given by g → (g, g). In particular, (g f )(h) = f (g−1hg)
for f ∈ C(G)G-fin, so that f is a class function if and only if g f = f for all g ∈ G.

Also recall that the isomorphism of G-modules E∗
π ⊗ Eπ

∼= Hom(Eπ , Eπ ) from
Exercise 2.15 is induced by mapping λ ⊗ v to the linear map vλ(·) for λ ∈ E∗

π and
v ∈ Eπ . Using this isomorphism,

C(G)G-fin
∼=

⊕
[π ]∈Ĝ

Hom(Eπ , Eπ )(3.31)

as a G-module under the diagonal action. For T ∈ Hom(Eπ , Eπ ), T satisfies gT =
T for all g ∈ G if and only if T ∈ HomG(Eπ , Eπ ). By Schur’s Lemma, this is if and
only if T = CIEπ

where IEπ
is the identity operator. Thus the set of class functions

in C(G)G-fin is isomorphic to
⊕

[π ]∈Ĝ CIEπ
.

If {xi } is an orthonormal basis for Eπ and (·, ·) is a G-invariant inner prod-
uct, then IEπ

= ∑
i (·, xi )xi . Tracing the definitions back, the corresponding ele-

ment in E∗
π ⊗ Eπ is

∑
i (·, xi ) ⊗ xi and the corresponding function in C(G)G-fin is

g → ∑
i (g

−1xi , xi ). Since (g−1xi , xi ) = (gxi , xi ), this means the class function
corresponding to IEπ

under Equation 3.31 is exactly χEπ
. In light of Lemma 3.2 and

Theorem 3.21, part (1) is finished .
For part (2), let f be a continuous class function. By the Peter–Weyl Theo-

rem, for ε > 0 choose ϕ ∈ C(G)G-fin, so that ‖ f − ϕ‖C(G) < ε. Define ϕ̃(h) =∫
G ϕ(g−1hg) dg, so that ϕ̃ is a continuous class function. Using the fact that f is a

class function,
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‖ f − ϕ̃‖C(G) = sup
h∈G

| f (h)− ϕ̃(h)| = sup
h∈G

∣∣∣∣∫
G

(
f (g−1hg)− ϕ(g−1hg)

)
dg

∣∣∣∣
≤ sup

h∈G

∫
G

∣∣ f (g−1hg)− ϕ(g−1hg)
∣∣ dg ≤ ‖ f − ϕ‖C(G) < ε.

It therefore suffices to show that ϕ̃ ∈ spanχ .
For this, use Theorem 3.24 to write ϕ(g) = ∑

i (gxi , yi ) for xi , yi ∈ Eπi . Thus
ϕ̃(h) = ∑

i (
∫

G g−1hgxi dg, yi ). However, on Eπi , the operator
∫

G g−1hg dg is a
G-map and therefore acts as a scalar ci by Schur’s Lemma. Taking traces on Eπi ,

χEπi
(h) = tr

(∫
G

g−1hg dg

)
= tr

(
ci IEπi

) = ci dim Eπi ,

so that ϕ̃(h) =∑
i

(xi ,yi )

dim Eπi
χEπi

(h) which finishes (2).

For part (3), let f be an L2 class function. By the Peter–Weyl Theorem, choose
ϕ ∈ C(G)G-fin so that ‖ f − ϕ‖L2(G) < ε. Then ϕ̃ ∈ spanχ . Using the integral form
of the Minkowski integral inequality and invariant integration,

‖ f − ϕ̃‖L2(G) =
(∫

G
| f (h)− ϕ̃(h)|2 dh

) 1
2

=
(∫

G

∣∣∣∣∫
G

(
f (g−1hg)− ϕ(g−1hg)

)
dg

∣∣∣∣2 dh

) 1
2

≤
∫

G

(∫
G

∣∣ f (g−1hg)− ϕ(g−1hg)
∣∣2 dh

) 1
2

dg

=
∫

G

(∫
G
| f (h)− ϕ(h)|2 dh

) 1
2

dg = ‖ f − ϕ‖L2(G) < ε.

The proof is finished by the Schur orthogonality relations and elementary Hilbert
space theory. �

3.3.3.3 Classification of Irreducible Representation of SU (2). From §2.1.2.2, re-
call that the representations Vn(C2) of SU (2) were shown to be irreducible in §2.3.1.
By dimension, each is obviously inequivalent to the others. In fact, they are the only
irreducible representations up to isomorphism (c.f. Exercise 6.8 for a purely alge-
braic proof).

Theorem 3.32. The map n → Vn(C2) establishes an isomorphism N ∼= ŜU (2).

Proof. Viewing S1 as a subgroup of SU (2) via the inclusion eiθ → diag(eiθ , e−iθ ),
Equation 2.25 calculates the character of Vn(C2) restricted to S1 to be

χVn(C2)(e
iθ ) =

n∑
k=0

ei(n−2k)θ .(3.33)
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A simple inductive argument (Exercise 3.21) using Equation 3.33 shows that
span{χVn(C2)(eiθ ) | n ∈ N} equals span{cos nθ | n ∈ N}.

Since every element of SU (2) is uniquely diagonalizable to elements of the form
e±iθ ∈ S1, it is easy to see (Exercise 3.21) that restriction to S1 establishes a norm
preserving bijection from the set of continuous class functions on SU (2) to the set
of even continuous functions on S1.

From elementary Fourier analysis, span{cos nθ | n ∈ N} is dense in the set of
even continuous functions on S1. Thus span{χVn(C2)(eiθ ) | n ∈ N} is dense within
the set of continuous class functions on SU (2) and therefore dense within the set of
L2 class functions. Part (3) of Theorem 3.30 therefore shows that there are no other
irreducible characters. Since a representation is determined by its character, Theorem
3.7, the proof is finished. �


Notice dim Vn(C2) = n + 1, so that the dimension is a complete invariant for
irreducible representations of SU (2).

3.3.4 Exercises

Exercise 3.16 Recall that Ŝ1 ∼= Z (c.f. Exercise 3.13). Use the theorems of this
chapter to recover the standard results of Fourier analysis on S1. Namely, show that
the trigonometric polynomials, span{einθ | n ∈ Z}, are dense in C(S1) and that
{einθ | n ∈ Z} is an orthonormal basis for L2(S1).

Exercise 3.17 (a) Let G be a compact Lie group. Use the fact that Ĝ × G ∼= Ĝ × Ĝ
(Exercise 3.10) and the nature of G-finite vectors to show that any G×G-submodule
of C(G)G-fin corresponds to

⊕
[π ]∈A E∗

π ⊗ Eπ for some A ⊆ Ĝ under the correspon-
dence C(G)G-fin

∼=⊕
[π ]∈Ĝ E∗

π ⊗ Eπ .
(b) Let π : G → GL(n,C) be a faithful representation of G with πi, j (g), denoting
the (i, j)th entry of the matrix π(g) for g ∈ G. Show that the set of functions {πi, j ,
πi, j | 1 ≤ i, j,≤ n} generate MC(G) = C(G)G-fin as an algebra over C. In particu-
lar, C(G)G-fin is finitely generated.
(c) Let V be a faithful representation of G. Show that each irreducible representation
of G is a submodule of

(⊗n V
)⊕ (⊗m V

)
for some n,m ∈ N.

Exercise 3.18 Let G be a compact Lie group. The commutator subgroup of G, G ′,
is the subgroup generated by {g1g2g−1

1 g−1
2 | gi ∈ G} and G is Abelian if and only

if G ′ = {e}. Use the fact that G ′ acts trivially on 1-dimensional representations to
show that all irreducible representations of a compact Lie group are one-dimensional
if and only if G is Abelian (c.f. Exercise 2.21).

Exercise 3.19 Let G be a finite group.
(a) Show that

∫
G f (g) dg = 1

|G|
∑

g∈G f (g).
(b) Use character theory to show that the number of inequivalent irreducible repre-
sentations is the number of conjugacy classes in G.
(c) Show that |G| equals the sum of the squares of the dimensions of its irreducible
representations.
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Exercise 3.20 If a compact Lie group G is not finite, show that Ĝ is countably infi-
nite.

Exercise 3.21 (a) Viewing S1 ↪→ SU (2) via the inclusion eiθ → diag(eiθ , e−iθ ),
show that the span{χVn(C2)(eiθ ) | n ∈ N} equals the span{cos nθ | n ∈ N}.
(b) Show restriction to S1 establishes a norm preserving bijection from the set of
continuous class functions on SU (2) to the set of even continuous functions on S1

(c.f. §7.3.1 for a general statement).

Exercise 3.22 (a) Continue to view S1 ↪→ SU (2). For the representations Vn(C2)

of SU (2), show χVn(C2)(eiθ ) = sin(n+1)θ
sin θ

when θ /∈ πZ.
(b) Let f be a continuous class function on SU (2). Show that∫

SU (2)
f (g) dg = 2

π

∫ π

0
f (diag(eiθ , e−iθ )) sin2 θ dθ

by first showing the above integral equation holds when f = χVn(C2), c.f. Exer-
cise 7.9.

Exercise 3.23 (a) Let V be an irreducible representation of a compact Lie group G.
Show that

dim V
∫

G
χV (g

−1hgk) dg = χV (h)χV (k)

for h, k ∈ G.
(b) Conversely, if f ∈ C(G) satisfies

∫
G f (g−1hgk) dg = f (h) f (k) for all h, k ∈

G, show that there is an irreducible representation V of G, so that f = (dim V )−1χV .

Exercise 3.24 (a) Use the isomorphism SO(3) ∼= SU (2)/{±I }, Lemma 1.23, to
show that the set of inequivalent irreducible representations of SO(3) can be indexed
by {V2n(C2) | n ∈ N}.
(b) Using a dimension count, Theorem 2.33, and Exercise 2.30, show that V2n(C2) ∼=
Hn(R3) as SO(3)-modules. Conclude that {Hn(R3) | n ∈ N} comprises a complete
set of inequivalent irreducible representations for SO(3).
(c) Use Exercise 3.5 to show that

Hn(R3)⊗Hm(R3) ∼=
min{n,m}⊕

j=0

Hn+m− j (R3).

3.4 Fourier Theory

Recall that the Fourier transform on S1 can be thought of as an isomorphism ∧ :
L2(S1)→ l2(Z), where

f̂ (n) =
∫

S1
f (eiθ )e−inθ dθ

2π
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with ‖ f ‖ = ∥∥ f̂
∥∥. The inverse is given by the Fourier series

f (θ) =
∑
n∈Z

f̂ (n)einθ ,

where convergence is as L2(S1) functions. It is well known that even when f ∈
C(S1), the Fourier series may not converge pointwise to f . However continuity and
any positive Lipschitz condition will guarantee uniform convergence.

Since we recognize dθ
2π as the invariant measure on S1 and Z as parametrizing Ŝ1

with n corresponding to the (one-dimensional) representation eiθ → einθ , it seems
likely this result can be generalized to any compact Lie group G. In fact, the scalar
valued Fourier transform in Theorem 3.43 will establish a unitary isomorphism

{L2(G) class functions} ∼= l2(Ĝ).

Note in the case of G = S1, the class function assumption is vacuous since S1 is
Abelian.

In order to handle all L2 functions when G is not Abelian, the operator valued
Fourier transform in the Plancherel Theorem (Theorem 3.38) will establish a unitary
isomorphism

L2(G) ∼=
⊕̂

[π ]∈Ĝ
End(Eπ ).

Remarkably, this isomorphism will also preserve the natural algebra structure of both
sides. Note that for G = S1, the right-hand side in the above equation reduces to
l2(Ĝ) since End(Eπ ) ∼= C.

In terms of proofs, most of the work needed for the general case is already done in
Corollary 3.26. In essence, only some bookkeeping and definition chasing is required
to appropriately rescale existing maps.

3.4.1 Convolution

Let G be a compact Lie group. Write End(V ) = Hom(V, V ) for the set of endomor-
phisms on a vector space V . Since G has finite volume, L2(G) ⊆ L1(G), so that the
following definition makes sense.

Definition 3.34. (1) For [π ] ∈ Ĝ, define π : L2(G)→ End(Eπ ) by

(π( f )) (v) =
∫

G
f (g)gv dg

for f ∈ L2(G) and v ∈ Eπ .
(2) Define f̃ ∈ L2(G) by f̃ (g) = f (g−1).

From a standard analysis course (Exercise 3.25 or see [37] or [73]), recall that
the convolution operator ∗ : L2(G)× L2(G)→ C(G) is given by

( f1 ∗ f2)(g) =
∫

G
f1(gh−1) f2(h) dh

for fi ∈ L2(G) and g ∈ G.
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Lemma 3.35. Let G be a compact Lie group, [π ] ∈ Ĝ with G-invariant inner prod-
uct (·, ·) on Eπ , fi , f ∈ L2(G), and vi ∈ Eπ .
(1) π( f1 ∗ f2) = π( f1) ◦ π( f2).
(2) (π( f )v1, v2) =

(
v1, π( f̃ )v2

)
, i.e., π( f )∗ = π( f̃ ).

Proof. For part (1) with v ∈ Eπ , use Fubini’s Theorem and a change of variables
g → gh to calculate

π( f1 ∗ f2)(v) =
∫

G

∫
G

f1(gh−1) f2(h)gv dh dg

=
∫

G

∫
G

f1(g) f2(h)ghv dg dh

=
∫

G
f1(g)g

(∫
G

f2(h)hv dh

)
dg = π( f1) (π( f2)(v)) .

For part (2), calculate the following:

(π( f )v1, v2) =
∫

G
f (g)(gv1, v2) dg =

∫
G
(v1, f (g)g−1v2) dg

=
∫

G
(v1, f̃ (g)gv2) dg = (

v1, π( f̃ )v2
)

. �


3.4.2 Plancherel Theorem

The motivation for the next definition comes from Corollary 3.26 and the decomposi-
tion L2(G) ∼= ⊕̂

[π ]∈Ĝ E∗
π⊗Eπ coupled with the isomorphism E∗

π⊗Eπ
∼= End(Eπ ).

Definition 3.36. (1) Let G be a compact Lie group and [π ] ∈ Ĝ with a G-invariant
inner product (·, ·) on Eπ . Then End(Eπ ) is a Hilbert space with respect to the
Hilbert–Schmidt inner product

(T, S)H S = tr(S∗ ◦ T ) =
∑

i

(T vi , Svi )

with T, S ∈ End(Eπ ), S∗ the adjoint of S with respect to (·, ·), and {vi } an orthonor-
mal basis for Eπ . The corresponding Hilbert–Schmidt norm is

‖T ‖H S = tr(T ∗T )
1
2 =

(∑
i

‖T vi‖2

) 1
2

.

Write End(Eπ )H S when viewing End(Eπ ) as a Hilbert space equipped with the
Hilbert–Schmidt inner product.
(2) Let Op(Ĝ) be the Hilbert space

Op(Ĝ) =
⊕̂

[π ]∈Ĝ

End(Eπ )H S .
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Equip Op(Ĝ) with the algebra structure

(Tπ )[π ]∈Ĝ(Sπ )[π ]∈Ĝ = ((dim Eπ )
− 1

2 Tπ ◦ Sπ )[π ]∈Ĝ

and the G × G-module structure

(g1, g2)(Tπ )[π ]∈Ĝ =
(
π(g2) ◦ T ◦ π(g−1

1 )
)

[π ]∈Ĝ

for gi ∈ G and T ∈ End(Eπ ).

Some comments are in order. First, note that the inner product on End(Eπ )H S is
independent of the choice of invariant inner product on Eπ since scaling the inner
product on Eπ does not change S∗. Secondly, it must be verified that the algebra
structure and G × G-module structure on Op(Ĝ) are well defined. Since these are
straightforward exercises, they are left to the reader (Exercise 3.26).

Definition 3.37. (1) Let G be a compact Lie group. The operator valued Fourier
transform, F : L2(G)→ Op(Ĝ), is defined by

F f =
(
(dim Eπ )

1
2 π( f )

)
[π ]∈Ĝ

.

(2) For Tπ ∈ End(Eπ ), write tr(Tπ ◦ g−1) for the smooth function on G defined by
g → tr(Tπ ◦π(g−1)). The inverse operator valued Fourier transform, I : Op(Ĝ)→
L2(G), is given by

I(Tπ )[π ]∈Ĝ =
∑

[π ]∈Ĝ

(dim Eπ )
1
2 tr(Tπ ◦ g−1)

with respect to L2 convergence.

It is necessary to check that F and I are well defined and inverses of each other.
These details will be checked in the proof below. In the following theorem, view
L2(G) as an algebra with respect to convolution and remember that L2(G) is a G ×
G-module with (g1, g2) ∈ G × G acting as rg1 ◦ lg2 so ((g1, g2) f ) (g) = f (g−1

2 gg1)

for f ∈ L2(G) and gi , g ∈ G.

Theorem 3.38 (Plancherel Theorem). Let G be a compact Lie group. The maps
F and I are well defined unitary, algebra, G × G-intertwining isomorphisms and
inverse to each other so that

F : L2(G)
∼=→ Op(Ĝ)

with ‖ f ‖L2(G) = ‖F f ‖Op(Ĝ), F( f1 ∗ f2) = (F f1) (F f2), F((g1, g2) f ) =
(g1, g2)(F f ), and F−1 = I for f ∈ L2(G) and gi ∈ G.
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Proof. Recall the decomposition L2(G) ∼= ⊕̂
[π ]∈Ĝ E∗

π ⊗ Eπ from Corollary 3.26
that maps λ ⊗ v ∈ E∗

π ⊗ Eπ to fλ⊗v where fλ⊗v(g) = λ(g−1v) for g ∈ G. Since
Op(Ĝ) = ⊕̂

[π ]∈Ĝ End(Eπ )H S and since isometries on dense sets uniquely extend
by continuity, it suffices to check that F restricts to a unitary, algebra, G × G-
intertwining isomorphism from span{ fλ⊗v | λ ⊗ v ∈ E∗

π ⊗ Eπ } to End(Eπ ) with
inverse I. Here End(Eπ ) is viewed as a subspace of Op(Ĝ) under the natural inclu-
sion End(Eπ ) ↪→ Op(Ĝ).

Write (·, ·) for a G-invariant inner product on Eπ . Any λ ∈ E∗
π may be uniquely

written as λ = (·, v) for some v ∈ Eπ . Thus the main problem revolves around
evaluating π ′( f(·,v1)⊗v2) for [π ′] ∈ Ĝ and vi ∈ Eπ . Therefore choose wi ∈ Eπ ′ and a
G-invariant inner product (·, ·)′ on Eπ ′ and calculate

(π ′( f(·,v1)⊗v2)(w1), w2)
′ =

∫
G
(π(g−1)v2, v1)(π

′(g)w1, w2)
′ dg

=
∫

G
(π ′(g)w1, w2)

′(π(g)v1, v2) dg.

If π ′ �∼= π , the Schur orthogonality relations imply that (π ′( f(·,v1)⊗v2)(w1), w2)
′ = 0,

so that π ′( f(·,v1)⊗v2) = 0. Thus F maps span{ fλ⊗v | λ⊗ v ∈ E∗
π ⊗ Eπ } to End(Eπ ).

On the other hand, if π ′ = π , the Schur orthogonality relations imply that

(π( f(·,v1)⊗v2)(w1), w2) = (dim Eπ )
−1 (w1, v1)(w2, v2).

In particular, π( f(·,v1)⊗v2) = (dim Eπ )
−1 (·, v1)v2, so

F f(·,v1)⊗v2 = (dim Eπ )
− 1

2 (·, v1)v2.

Viewed as a map from span{ fλ⊗v | λ⊗ v ∈ E∗
π ⊗ Eπ } to End(Eπ ), this shows that

F is surjective and, by dimension count, an isomorphism.
To see that I is the inverse of F , calculate the trace using an orthonormal basis

that starts with ‖v2‖−1 v2:

tr([(·, v1)v2] ◦ π(g−1)) =
([

[(·, v1)v2] ◦ π(g−1)
]
(

v2

‖v2‖ ),
v2

‖v2‖
)

= (
π(g−1)v2, v1

) = f(·,v1)⊗v2(g).

Thus

I
(
(dim Eπ )

− 1
2 (·, v1)v2

)
= f(·,v1)⊗v2(3.39)

and I = F−1.
To check unitarity, use the Schur orthogonality relations to calculate(

f(·,v1)⊗v2 , f(·,v3)⊗v4

)
L2(G)

=
∫

G

(
g−1v2, v1

) (
g−1v4, v3

)
dg

= (dim Eπ )
−1 (v2, v4)(v1, v3).
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To calculate a Hilbert–Schmidt norm, first observe that the adjoint of (·, v3)v4 ∈
End(Eπ )H S is (·, v4)v3 since

((v5, v3)v4, v6) = (v5, v3) (v4, v6) = (v5, (v6, v4) v3).

Hence(
F f(·,v1)⊗v2 ,F f(·,v3)⊗v4

)
H S = (dim Eπ )

−1 ((·, v1)v2, (·, v3)v4)H S

= (dim Eπ )
−1 tr [((·, v1)v2, v4)v3]

= (dim Eπ )
−1 (v2, v4) tr [(·, v1)v3]

= (dim Eπ )
−1 (v2, v4)

(
(

v3

‖v3‖ , v1)v3,
v3

‖v3‖
)

= (dim Eπ )
−1 (v2, v4)(v3, v1)

= (
f(·,v1)⊗v2 , f(·,v3)⊗v4

)
L2(G)

,

and so F is unitary.
To check that the algebra structures are preserved, simply use Lemma 3.35 to

observe that π( f1 ∗ f2) = π( f1) ◦ π( f2). Thus

F( f1 ∗ f2) = (dim Eπ )
1
2 π( f1) ◦ π( f2)

= (dim Eπ )
− 1

2 F f1 ◦ F f2 = (F f1) (F f2) ,

as desired.
Finally, to see F is a G × G-map, first observe that(

(g1, g2) f(·,v1)⊗v2

)
(g) = f(·,v1)⊗v2(g

−1
2 gg1) = (g−1

1 g−1g2v2, v1)

= (g−1g2v2, g1v1) = f(·,g1v1)⊗g2v2(g).

Thus

F((g1, g2) f(·,v1)⊗v2) = F f(·,g1v1)⊗g2v2 = (dim Eπ )
− 1

2 (·, g1v1)g2v2

= π(g2) ◦ (·, v1)v2 ◦ π(g−1
1 ) = (g1, g2)(F f ),

which finishes the proof. �

Corollary 3.40. Let G be a compact Lie group and f, fi ∈ L2(G).
(1) Then the Parseval–Plancherel formula holds:

‖ f ‖2
L2(G)

=
∑

[π ]∈Ĝ

dim Eπ ‖π( f )‖2
H S .

(2) Under the natural inclusion End(Eπ ) ↪→ Op(Ĝ), I IEπ
= (dim Eπ )

1
2 χEπ

where
IEπ

∈ End(Eπ ) is the identity operator. Moreover,

f =
∑

[π ]∈Ĝ

(dim Eπ ) f ∗ χEπ
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with respect to L2 convergence.
(3)

( f1, f2)L2(G) =
∑

[π ]∈Ĝ

(dim Eπ ) trπ( f̃2 ∗ f1).

Proof. Part (1) follows immediately from the Plancherel Theorem. Similarly, part (2)
will also follow from the Plancherel Theorem once we show I IEπ

= (dim Eπ )
1
2 χEπ

since (dim Eπ )
1
2 IEπ

acts on Op(Ĝ) by projecting to End(Eπ ). Although this result
is implicitly contained in the proof of Theorem 3.30, it is simple to verify directly.
Let {xi } be an orthonormal basis for Eπ where (·, ·) is a G-invariant inner prod-
uct. Hence IEγ

= ∑
i (·, xi )xi . Equation 3.39 shows I IEπ

= (dim Eπ )
1
2
∑

i f(·,xi )⊗xi

where f(·,xi )⊗xi (g) = (g−1xi , xi ). Thus I IEπ
= (dim Eπ )

1
2 χEπ

by Theorem 3.5.
For part (3), the Plancherel Theorem and Lemma 3.35 imply that

( f1, f2)L2(G) = (F f1,F f2)H S =
∑

[π ]∈Ĝ

(dim Eπ ) tr
(
π ( f2)

∗ ◦ π ( f1)
)

=
∑

[π ]∈Ĝ

(dim Eπ ) trπ( f̃2 ∗ f1). �


Definition 3.41. Let G be a compact Lie group and f ∈ L2(G). Define the scalar
valued Fourier transform by

f̂ (π) = trπ( f )

for [π ] ∈ Ĝ.

Note that f̂ can also be computed by the formula

f̂ (π) =
∫

G
f (g)χEπ

(g) dg = ( f, χEπ
)L2(G)

since f̂ (π) =∑
i (π( f )vi , vi ) =

∫
G f (g)

∑
i (gvi , vi ) dg, where {vi } is an orthonor-

mal basis for Eπ .

Theorem 3.42 (Scalar Fourier Inversion). Let G be a compact Lie group and f ∈
span

(
L2(G) ∗ L2(G)

) ⊆ C(G). Then

f (e) =
∑

[π ]∈Ĝ

(dim Eπ ) f̂ (π).

Proof. If f = f1 ∗ f2 for fi ∈ L2(G), then by Corollary 3.40,

f (e) =
∫

G
f1(g

−1) f2(g) dg =
∫

G
f2(g) f̃1(g) dg

= (
f2, f̃1

)
L2(G)

=
∑

[π ]∈Ĝ

(dim Eπ ) trπ( f1 ∗ f2). �
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As already noted, even for G = S1 the Scalar Fourier Inversion Theorem can fail
if f is only assumed to be continuous. However, using Lie algebra techniques and
the Plancherel Theorem, it is possible to show that the Scalar Fourier Inversion The-
orem holds when f is continuously differentiable. In particular, the Scalar Fourier
Inversion Theorem holds for smooth f .

Theorem 3.43. Let G be a compact Lie group. The map f → ( f̂ (π))[π ]∈Ĝ estab-
lishes a unitary isomorphism

{L2(G) class functions} ∼= l2(Ĝ).

For [γ ] ∈ Ĝ, the image of χEγ
under this map is (δπ,γ )[π ]∈Ĝ , where δπ,γ is 1 when

π ∼= γ and 0 when π �∼= γ .

Proof. This result is implicitly embedded in the proof of Theorem 3.30. However it
is trivial to check directly. Observe that

χ̂Eγ
(π) =

∫
G
χEγ

(g)χEπ
(g) dg,

so that Theorem 3.7 implies χEπ
is mapped to (δπ,γ )[π ]∈Ĝ . Since {χEπ

| [π ] ∈ Ĝ} is
an orthonormal basis for {L2(G) class functions}, the result follows. �


3.4.3 Projection Operators and More General Spaces

Let G be a compact Lie group and (γ, V ) a unitary representation of G on a Hilbert
space. For [π ] ∈ Ĝ, it will turn out that the operator (dim Eπ ) γ (χEπ ) is the orthog-
onal G-intertwining projection of V onto V[π ]. In fact, the main part of this result is
true in a much more general setting than Hilbert space representations.

Now only assume V is a Hausdorff complete locally convex topological space.
The notions of G-finite vector and isotypic component carry over from §3.2.2 and
§3.2.3 in the obvious fashion.

Definition 3.44. Let V be a representation of a compact Lie group G on a Hausdorff
complete locally convex topological space.
(1) The set of G-finite vectors, VG-fin, is the set of v ∈ V where span{π(G)v} is finite
dimensional.
(2) For [π ] ∈ Ĝ, let V 0

[π ] be the sum of all irreducible submodules equivalent to Eπ .

(3) The closure V[π ] = V 0
[π ] is called the π -isotypic component of V .

Theorem 3.45. Let (γ, V ) be a representation of a compact Lie group G on a com-
plete Hausdorff locally convex topological space.
(1) For [π ], [π ′] ∈ Ĝ, the operator (dim Eπ ) γ (χEπ ) is a G-intertwining projection
of V onto V[π ] that acts as the identity on V[π ] and acts as zero on V[π ′] for π ′ �∼= π .
(2) If (γ, V ) is a unitary representation on a Hilbert space, then (dim Eπ ) γ (χEπ ) is
also self-adjoint, i.e., orthogonal.
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Proof. For part (1), let g ∈ G and v ∈ V , and observe that(
gγ (χEπ )g

−1
)
v =

∫
G
χEπ (h)ghg−1v dh =

∫
G
χEπ (g

−1hg)hv dh

=
∫

G
χEπ (h)hv dh = γ (χEπ )v,

so that γ (χEπ ) is a G-map. Applying this to the representation Eπ ′ , Schur’s Lemma
shows that π ′(χEπ ) = cπ ′,π IEπ ′ for cπ ′,π ∈ C. Taking traces,

(dim Eπ ′)cπ ′,π =
∫

G
χEπ (g) trπ ′(g) dg =

∫
G
χEπ ′(g)χEπ (g) dg.

By Theorem 3.7, cπ ′,π is 0 when π ′ �∼= π and (dim Eπ )
−1 when π ′ = π . Since any

v ∈ V 0
[π ′] lies in a submodule of V that is isomorphic to Eπ ′ , (dim Eπ ) π

′(χEπ ) acts
on V 0

[π ′] as the identity when π ′ = π and by zero when π ′ �∼= π . Continuity finishes
part (1).

For part (2), Lemma 3.35 implies that γ (χEπ )
∗ = γ (χ̃Eπ ). But Theorem 3.5

shows χ̃Eπ = χEπ . �

Theorem 3.46. Let (γ, V ) be a representation of a compact Lie group G on a Haus-
dorff complete locally convex topological space.
(1) VG-fin =

⊕
[π ]∈Ĝ V 0

[π ].
(2) VG-fin is dense in V .
(3) If V is irreducible, then V is finite dimensional.

Proof. For part (1), the definitions and Corollary 2.17 imply VG-fin =
∑

[π]∈Ĝ V 0
[π ],

so it only remains to see the sum is direct. However, the existence of the projections
in Theorem 3.45 trivially establish this result.

For part (2), suppose λ ∈ V ∗ vanishes on VG-fin. By the Hahn–Banach Theorem,
it suffices to show λ = 0. For x ∈ V , define fx ∈ C(G) by fx (g) = λ(gx). Clearly
λ = 0 if and only if fx = 0 for all x . Looking to use Corollary 3.40, calculate(

fx ∗ χEπ

)
(g) =

∫
G
λ(ghx)χEπ

(h−1) dh = λ(

∫
G
χEπ

(h)ghx dh)

= λ(gπ(χEπ
)x) = fπ(χEπ )x

(g).

Since Theorem 3.45 shows that π(χEπ
)x ∈ V[π ] and since λ vanishes on each V[π ]

by continuity, fx ∗ χEπ
= 0. Thus fx = 0 and part (2) is finished.

For part (3), observe that part (2) shows V contains a finite-dimensional irre-
ducible submodule W . Since finite-dimensional subspaces are closed, irreducibility
implies that V = W . �


In particular, notice that even allowing the greater generality of representations
on complete locally convex topological spaces still leaves us with the same set of
irreducible representations, Ĝ.

The following corollary will be needed in §7.4.
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Corollary 3.47. Let G be a compact Lie group. Suppose S ⊆ C(G) is a subspace
equipped with a topology so that:
(a) S is dense in C(G),
(b) S is a Hausdorff complete locally convex topological space,
(c) the topology on S is stronger than uniform convergence, i.e., convergence in S
implies convergence in C(G), and
(d) S is invariant under lg and rg and, with these actions, S is a G × G-module.
Then SG-fin = C(G)G-fin.

Proof. Clearly S[π ] ⊆ C(G)[π ] for [π ] ∈ Ĝ. Note C(G)[π ]
∼= E∗

π ⊗ Eπ by Theorem
3.24. Arguing by contradiction, suppose S[π ] � C(G)[π ] for some [π ] ∈ Ĝ. Then
there exists a nonzero f ∈ C(G)[π ] that is perpendicular to S[π ] with respect to the
L2 norm. By Corollary 3.26 and Theorem 3.46, it follows that f is perpendicular to
all of SG-fin. However, this is a contradiction to the fact that SG-fin is dense in L2(G)

by (a) and (c). �

As an example, S could be the set of smooth functions on G or the set of real

analytic functions on G. One interpretation of Corollary 3.47 says that C(G)G-fin is
the smallest reasonable class of test functions on G that are usually useful for rep-
resentation theory. Thus the topological dual C(G)∗G-fin of distributions is the largest
class of useful generalized functions on G.

3.4.4 Exercises

Exercise 3.25 Let G be a compact Lie group. For fi ∈ L2(G) and g ∈ G, examine
suph∈G

∣∣(lg ( f1 ∗ f2)
)
(h)− ( f1 ∗ f2) (h)

∣∣ to show f1 ∗ f2 ∈ C(G).

Exercise 3.26 (a) If V is a (finite-dimensional) vector space and ‖·‖ is the operator
norm on End(V ), show that ‖T ◦ S‖H S ≤ ‖T ‖ ‖S‖H S and ‖T ‖ ≤ ‖T ‖H S for T, S ∈
End(V ).
(b) Let G be a compact Lie group. Show that ((dim Eπ )

− 1
2 Tπ ◦ Sπ )[π ]∈Ĝ ∈ Op(Ĝ)

when (Tπ )[π ]∈Ĝ, (Sπ )[π ]∈Ĝ ∈ Op(Ĝ). Is the factor (dim Eπ )
− 1

2 even needed for this
statement?
(c) Show (g2 ◦ Tπ ◦ g−1

1 )[π ]∈Ĝ ∈ Op(Ĝ) for gi ∈ G and that this action defines a
representation of G × G on Op(Ĝ).

Exercise 3.27 Let G be a compact Lie group and f ∈ span
(
L2(G) ∗ L2(G)

) ⊆
C(G). Show that

f (g) =
∑

[π ]∈Ĝ

(dim Eπ )
(̂
rg f

)
(π).

Exercise 3.28 With respect to convolution, show that C(G)G-fin is an algebra with
center spanned by the set of irreducible characters, i.e., by {χEπ

| [π ] ∈ Ĝ}.
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Exercise 3.29 For this problem, recall Exercise 3.22. Let f be a smooth class func-
tion on SU (2). Show that

f (I ) = 2

π

∞∑
n=0

(n + 1)
∫ π

0
f (diag(eiθ , e−iθ )) sin θ sin(n + 1)θ dθ .

Exercise 3.30 Let G be a compact Lie group. Show that G is Abelian if and only if
the convolution on C(G) is commutative (c.f. Exercise 3.18).

Exercise 3.31 Let V be a representation of a compact Lie group G on a Hausdorff
complete locally convex topological space. For [π ] ∈ Ĝ, show that V 0

[π ] is the largest
subspace of V that is a direct sum of irreducible submodules equivalent to Eπ .

Exercise 3.32 (a) Let (π, V ) be a representation of a compact Lie group G on a
Hausdorff complete locally convex topological space and f a continuous class func-
tion on G. Show that π( f ) commutes with π(g) for g ∈ G.
(b) Show that π( f ) acts on V[π ], [π ] ∈ Ĝ, by (dim Eπ )

−1( f, χEπ
)L2(G).

Exercise 3.33 Let (π, V ) be a representation of a compact Lie group G on a Haus-
dorff complete locally convex topological space, v ∈ V 0

[π ] for [π] ∈ Ĝ, and
S = span{π(G)v}. For λ ∈ S∗, define fλ ∈ C(G) by fλ(g) = λ(g−1v). Show
that dim S ≤ (dim Eπ )

2.
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Lie Algebras

By their nature, Lie groups are usually nonlinear objects. However, it turns out there
is a way to linearize their study by looking at the tangent space to the identity. The
resulting object is called a Lie algebra. Simply by virtue of the fact that vector spaces
are simpler than groups, the Lie algebra provides a powerful tool for studying Lie
groups and their representations.

4.1 Basic Definitions

4.1.1 Lie Algebras of Linear Lie Groups

Let M be a manifold. Recall that a vector field on M is a smooth section of the
tangent bundle, T (M) = ∪m∈M Tm(M). If G is a Lie group and g ∈ G, then the map
lg : G → G defined by lgh = gh for g ∈ G is a diffeomorphism. A vector field X
on G is called left invariant if dlg X = X for all g ∈ G. Since G acts on itself simply
transitively under left multiplication, the tangent space of G at e, Te(G), is clearly
in bijection with the space of left invariant vector fields. The correspondence maps
v ∈ Te(G) to the vector field X where Xg = dlgv, g ∈ G, and conversely maps a
left invariant vector field X to v = Xe ∈ Te(G).

Elementary differential geometry shows that the set of left invariant vector fields
is an algebra under the Lie bracket of vector fields (see [8] or [88]). Using the bi-
jection of left invariant vector fields with Te(G), it follows that Te(G) has a natural
algebra structure which is called the Lie algebra of G.

Since we are interested in compact groups, there is a way to bypass much of this
differential geometry. Recall from Theorem 3.28 that a compact group G is a linear
group, i.e., G is isomorphic to a closed Lie subgroup of GL(n,C). In the setting of
Lie subgroups of GL(n,C), the Lie algebra has an explicit matrix realization which
we develop in this chapter. It should be remarked, however, that the theorems in this
chapter easily generalize to any Lie group.

Taking our cue from the above discussion, we will define an algebra structure on
Te(G) viewed as a subspace of TI (GL(n,C)). Since GL(n,C) is an open (dense)
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set in Mn,n(C) ∼= R2n2
, we will identify TI (GL(n,C)) with gl(n,C) where

gl(n,F) = Mn,n(F).

The identification of TI (GL(n,C)) with gl(n,C) is the standard one for open sets
in R2n2

. Namely, to any X ∈ TI (GL(n,C)), find a smooth curve γ : (−ε, ε) →
GL(n,C), ε > 0, so that γ (0) = I , and so X ( f ) = d

dt ( f ◦ γ )|t=0 for smooth func-
tions f on GL(n,C). The map sending X to γ ′(0) is a bijection from TI (GL(n,C))

to gl(n,C).

Definition 4.1. Let G be a Lie subgroup of GL(n,C).
(a) The Lie algebra of G is

g = {γ ′(0) | γ (0) = I and γ : (−ε, ε)→ G, ε > 0, is smooth} ⊆ gl(n,C).

(b) The Lie bracket on g is given by

[X, Y ] = XY − Y X .

Given a compact group G, Theorem 3.28 says that there is a faithful representa-
tion π : G → GL(n,C). Identifying G with its image under π , G may be viewed
as a closed Lie subgroup of GL(n,C). Using this identification, we use Definition
4.1 to define the Lie algebra of G. We will see in §4.2.1 that this construction is well
defined up to isomorphism.

Theorem 4.2. Let G be a Lie subgroup of GL(n,C).
(a) Then g is a real vector space.
(b) The Lie bracket is linear in each variable, skew symmetric, i.e., [X, Y ] =
−[Y, X ], and satisfies the Jacobi identity

[[X, Y ], Z ]+ [[Y, Z ], X ]+ [[Z , X ], Y ] = 0

for X, Y, Z ∈ g.
(c) Finally, g is closed under the Lie bracket and therefore an algebra.

Proof. Let Xi = γ ′i (0) ∈ g. For r ∈ R, consider the smooth curve γ that maps a
neighborhood of 0 ∈ R to G defined by γ (t) = γ1(r t)γ2(t). Then

γ ′(0) = (
rγ ′1(r t)γ2(t)+ γ1(r t)γ ′2(t)

) |t=0 = r X1 + X2

so that g is a real vector space.
The statements regarding the basic properties of the Lie bracket in part (b) are

elementary and left as an exercise (Exercise 4.1). To see that g is closed under the
bracket, consider the smooth curve σs that maps a neighborhood of 0 to G defined
by σs(t) = γ1(s)γ2(t) (γ1(s))

−1. In particular, σ ′s(0) = γ1(s)X2 (γ1(s))
−1 ∈ g. Since

the map s → σ ′s(0) is a smooth curve in a finite-dimensional vector space, tangent
vectors to this curve also lie in g. Applying d

ds |s=0, we calculate

d

ds

(
γ1(s)X2 (γ1(s))

−1) |s=0 = X1 X2 − X2 X1 = [X1, X2],

so that [X1, X2] ∈ g. �
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4.1.2 Exponential Map

Let G be a Lie subgroup of GL(n,C) and g ∈ G. Since G is a submanifold of
GL(n,C), Tg(G) can be identified with

{γ ′(0) | γ (0) = g and γ : (−ε, ε)→ G, ε > 0, is smooth}(4.3)

in the usual manner by mapping γ ′(0) to the element of Tg(G) that acts on a smooth
function f by d

dt ( f ◦ γ )|t=0. Now if γ (0) = I and γ : (−ε, ε) → G, ε > 0,
is smooth, then σ(t) = gγ (t) satisfies σ(0) = g and σ ′(0) = gγ ′(0). Since left
multiplication is a diffeomorphism, Equation 4.3 identifies Tg(G) with the set

gg = {gX | X ∈ g}.
We make use of this identification without further comment.

Definition 4.4. Let G be a Lie subgroup of GL(n,C) and X ∈ g.
(a) Let X̃ be the vector field on G defined by X̃g = gX , g ∈ G.
(b) Let γX be the integral curve of X̃ through I , i.e., γX is the unique maximally
defined smooth curve in G satisfying

γX (0) = I

and

γ ′X (t) = X̃γX (t) = γX (t)X .

It is well known from the theory of differential equations that integral curves
exist and are unique (see [8] or [88]).

Theorem 4.5. Let G be a Lie subgroup of GL(n,C) and X ∈ g.
(a) Then

γX (t) = exp(t X) = et X =
∞∑

n=0

tn

n!
Xn.

(b) Moreover γX is a homomorphism and complete, i.e., it is defined for all t ∈ R, so
that et X ∈ G for all t ∈ R.

Proof. It is a familiar fact that the map t → et X is a well-defined smooth homomor-
phism of R into GL(n,C) (Exercise 4.3). Hence, first extend X̃ to a vector field on
GL(n,C) by X̃g = gX , g ∈ GL(n,C). Since e0X = I and d

dt et X = et X X , t → et X

is the unique integral curve for X̃ passing through I as a vector field on GL(n,C).
It is obviously complete. On the other hand, since G is a submanifold of GL(n,C),
γX may be viewed as a curve in GL(n,C). It is still an integral curve for X̃ passing
through I as a vector field on GL(n,C). By uniqueness, γX (t) = et X on the domain
of γX . In particular, there is an ε > 0, so that γX (t) = et X for t ∈ (−ε, ε). Thus
et X ∈ G for t ∈ (−ε, ε). But since ent X = (et X )n for n ∈ N, et X ∈ G for all t ∈ R,
which finishes the proof. �
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Note that Theorem 4.5 shows that the map t → et X is actually a smooth map
from R to G for X ∈ g.

Theorem 4.6. Let G be a Lie subgroup of GL(n,C).
(a) g = {X ∈ gl(n,C) | et X ∈ G for t ∈ R}.
(b) The map exp : g → G is a local diffeomorphism near 0, i.e., there is a neighbor-
hood of 0 in g on which exp restricts to a diffeomorphism onto a neighborhood of I
in G.
(c) When G is connected, exp g generates G.

Proof. To see g is contained in {X ∈ gl(n,C) | et X ∈ G for t ∈ R}, use Theorem
4.5. Conversely, if et X ∈ G for t ∈ R for all X ∈ gl(n,C), apply d

dt |t=0 and use the
definition to see X ∈ g.

For part (b), by the Inverse Mapping theorem, it suffices to show the differential
of exp : g → G is invertible at I . In fact, we will see that the differential of exp at
I is the identity map on all of GL(n,C). Let X ∈ gl(n,C). Then, under our tangent
space identifications, the differential of exp maps X to d

dt et X |t=0 = X , as claimed.
Part (c) follows from Theorem 1.15. �


Note from the proof of Theorem 4.6 that X ∈ gl(n,C) is an element of g if
et X ∈ G for all t on a neighborhood of 0. However, it is not sufficient to merely
verify that eX ∈ G (Exercise 4.9). Also in general, exp need not be onto (Exercise
4.7). However, when G is compact and connected, we will in fact see in §5.1.4 that
G = exp g.

4.1.3 Lie Algebras for the Compact Classical Lie Groups

We already know that the Lie algebra of GL(n,F) is gl(n,F). The Lie algebra of
SL(n,F) turns out to be

sl(n,F) = {X ∈ gl(n,F) | tr X = 0}.

To check this, use Theorem 4.6. Suppose X is in the Lie algebra of SL(n,F). Then
1 = det et X = et tr X for t ∈ R (Exercise 4.3). Applying d

dt |t=0 implies 0 = tr X . On
the other hand, if tr X = 0, then det et X = et tr X = 1, so that X is in the Lie algebra
of SL(n,F).

It remains to calculate the Lie algebras for the compact classical Lie groups.

4.1.3.1 SU (n) First, we show that the Lie algebra of U (n) is

u(n) = {X ∈ gl(n,C) | X∗ = −X}.

Again, this follows from Theorem 4.6. Suppose X is in the Lie algebra of U (n).
Then I = et X

(
et X

)∗ = et X et X∗
for t ∈ R (Exercise 4.3). Applying d

dt |t=0 implies
that 0 = X + X∗. On the other hand, if X∗ = −X , then et X et X∗ = et X e−t X = I , so
that X is in the Lie algebra of U (n).
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To calculate the Lie algebra of SU (n), simply toss the determinant condition into
the mix. It is handled as in the case of SL(n,F). Thus the Lie algebra of SU (n) is

su(n) = {X ∈ gl(n,C) | X∗ = −X , tr X = 0}.
Using the fact that the tangent space has the same dimension as the manifold, we

now have a simple way to calculate the dimension of U (n) and SU (n). In particular,
since dim u(n) = 2 n(n−1)

2 +n, dim U (n) = n2 and, since dim su(n) = 2 n(n−1)
2 +n−1,

dim SU (n) = n2 − 1.

4.1.3.2 SO(n) Working with Xt instead of X∗ for X ∈ gl(n,R), O(n) and SO(n)
are handled in the same way as U (n) and SU (n). Thus the Lie algebras for O(n) and
SO(n) are, respectively,

o(n) = {X ∈ gl(n,R) | Xt = −X}
so(n) = {X ∈ gl(n,R) | Xt = −X , tr X = 0} = o(n).

Both groups have the same tangent space at I since SO(n) = O(n)0. In par-
ticular, both groups also have the same dimension and, since dim o(n) = n(n−1)

2 ,
dim O(n) = dim SO(n) = n(n−1)

2 .

4.1.3.3 Sp(n) Recall from §1.1.4.3 that two realizations were given for Sp(n). We
give the corresponding Lie algebra for each.

The first realization was Sp(n) = {g ∈ GL(n,H) | g∗g = I }. Since GL(n,H)

is an open dense set in gl(n,H) = Mn,n(H) ∼= R4n2
, gl(n,H) can be identified with

the tangent space TI (GL(n,H)). It is therefore clear that Definition 4.1 generalizes
in the obvious fashion so as to realize the Lie algebra of Sp(n) inside gl(n,H).
Working within this scheme and mimicking the case of U (n), it follows that the Lie
algebra of this realization of Sp(n) is

sp(n) = {X ∈ gl(n,H) | X∗ = −X}.
Since dim sp(n) = 4 n(n−1)

2 + 3n, we see that dim Sp(n) = 2n2 + n.
The second realization of Sp(n) was as Sp(n) ∼= U (2n) ∩ Sp(n,C), where

Sp(n,C) = {g ∈ GL(2n,C) | gt Jg = J } and

J =
(

0 −In

In 0

)
.

The Lie algebra of this realization of Sp(n) is

sp(n) ∼= u(2n) ∩ sp(n,C),

where the Lie algebra of Sp(n,C) is

sp(n,C) = {X ∈ gl(2n,C) | Xt J = −J X}.
The only statement that needs checking is the identification of sp(n,C). As usual,
this follows from Theorem 4.6. Suppose X is in the Lie algebra of Sp(n,C). Then
et Xt

J et X = J for t ∈ R. Applying d
dt |t=0 implies 0 = Xt J + J X . On the other hand,

if Xt J = −J X , then J X J−1 = −Xt , so et Xt
J et X J−1 = et Xt

et J X J−1 = et Xt
e−t X t =

I , so that X is in the Lie algebra of Sp(n,C).
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4.1.4 Exercises

Exercise 4.1 Let G be a Lie subgroup of GL(n,C). Show that the Lie bracket is
linear in each variable, skew-symmetric, and satisfies the Jacobi identity.

Exercise 4.2 (1) Show that the map ϑ̃ : H → M2,2(C) from Equation 1.13 in
§1.1.4.3 induces an isomorphism Sp(1) ∼= SU (2) of Lie groups.
(2) Show that

ϑ̃i =
(

i 0
0 −i

)
, ϑ̃ j =

(
0 −1
1 0

)
, ϑ̃k =

(
0 −i
−i 0

)
.

(3) Let Im(H) = spanR{i, j, k} and equip Im(H) with the algebra structure [u, v] =
2 Im(uv) = uv − uv = uv − vu for u, v ∈ Im(H). Show ϑ̃ induces an isomorphism
Im(H) ∼= su(2) as (Lie) algebras.

Exercise 4.3 (1) Let X, Y ∈ gl(n,C). Show that the map t → et X is a well-defined
smooth homomorphism of R into GL(n,C).
(2) If X and Y commute, show that eX+Y = eX eY . Show by example that this need
not be true when X and do not Y commute.
(3) Show that det eX = etr X ,

(
eX
)∗ = eX∗

,
(
eX
)−1 = e−X , d

dt et X = et X X = Xet X ,

and AeX A−1 = eAX A−1
for A ∈ GL(n,C).

Exercise 4.4 (1) For x, y ∈ R, show that

exp

(
x −y
y x

)
= ex

(
cos y − sin y
sin y cos y

)
exp

(
x y
y x

)
= ex

(
cosh y sinh y
sinh y cosh y

)
exp

(
x 0
y x

)
= ex

(
1 0
y 1

)
.

(2) Show every matrix in gl(2,R) is conjugate to one of the form

(
x −y
y x

)
,(

x y
y x

)
, or

(
x 0
y x

)
.

Exercise 4.5 (1) The Euclidean motion group on Rn consists of the set of transfor-
mations of Rn of the form x → Ax + b, where A ∈ GL(n,R) and b ∈ Rn for
x ∈ Rn . Show that the Euclidean motion group can be realized as a linear group of
the form

{
(

A b
0 1

)
| A ∈ GL(n,R), b ∈ Rn}.

(2) Use power series to make sense of (eA−I)
A .

(3) Show that the exponential map is given in this case by
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exp

(
A b
0 1

)
=
(

eA (eA−I)
A b

0 1

)
.

Exercise 4.6 (1) Let X ∈ sl(2,C) be given by

X =
(

a b
c −a

)
with a, b, c ∈ C and let λ ∈ C so that λ2 = a2+bc. Show eX = (cosh λ) I + sinh λ

λ
X .

(2) Let X ∈ so(3) be given by

X =
⎛⎝ 0 a b
−a 0 c
−b −c 0

⎞⎠
for a, b, c ∈ R and let θ = √

a2 + b2 + c2. Show eX = I + sin θ
θ

X + 1−cos θ
θ2 X2. Also

show that eX is the rotation about (c,−b, a) through an angle θ .

Exercise 4.7 (1) Show that the map exp: sl(2,R)→ SL(2,R) is not onto by show-
ing that the complement of the image of exp consists of all g ∈ SL(2,R) that are
conjugate to (−1 ±1

0 −1

)
(i.e., all g �= −I with both eigenvalues equal to −1).
(2) Calculate the image of gl(2,R) under exp.

Exercise 4.8 (1) Use the Jordan canonical form to show exp: gl(n,C)→ GL(n,C)

is surjective.
(2) Show that exp: u(n)→ U (n) and exp: su(n)→ SU (n) are surjective maps.
(3) Show that exp: so(n)→ SO(n) is surjective.
(4) Show that exp: sp(n)→ Sp(n) is surjective.

Exercise 4.9 Find an X ∈ gl(2,C) so that eX ∈ SL(2,C), but X /∈ sl(2,C).

Exercise 4.10 Let G be a Lie subgroup of GL(n,C). Show G0 = {I } if and only if
g = {0}.
Exercise 4.11 Let G be a Lie subgroup of GL(n,C) and ϕ : R → G a continuous
homomorphism.
(1) Show that ϕ is smooth if and only if ϕ is smooth at 0.
(2) Let U be a neighborhood of 0 in g on which exp is injective. Show it is possible
to linearly reparametrize ϕ, i.e., replace ϕ(t) by ϕ(st) for some nonzero s ∈ R, so
that ϕ([−1, 1]) ⊆ exp U .
(3) Let X ∈ U so that exp X = 1. Show that ϕ(t) = et X for t ∈ Q.
(4) Show that ϕ (t) = et X for t ∈ R and conclude that ϕ is actually real analytic and,
in particular, smooth.
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Exercise 4.12 (1) Let G be a Lie subgroup of GL(n,C). Let {Xi }ni=1 be a basis for
g. By calculating the differential on each standard basis vector, show that the map

(t1, . . . , tn)→ et1 X1 · · · etn Xn

is a local diffeomorphism near 0 from Rn to G. The coordinates (t1, . . . , tn) are
called coordinates of the second kind.
(2) Show that the map

(t1, . . . , tn)→ et1 X1+···+tn Xn

is a local diffeomorphism near 0 from Rn to G. The coordinates (t1, . . . , tn) are
called coordinates of the first kind.

Exercise 4.13 Suppose G and H are Lie subgroups of general linear groups and
ϕ : H → G is a continuous homomorphism. Using Exercises 4.11 and 4.12, show
that ϕ is actually a real analytic and therefore smooth map.

Exercise 4.14 Suppose B(·, ·) is a bilinear form on Fn . Let

Aut(B) = {g ∈ GL(n,F) | (gv, gw) = (v,w), v,w ∈ Fn}
Der(B) = {X ∈ gl(n,F) | (Xv,w) = −(v, Xw), v,w ∈ Fn}.

Show that Aut(B) is a closed Lie subgroup of GL(n,F) with Lie algebra Der(B).

Exercise 4.15 Suppose Fn is equipped with an algebra structure ·. Let

Aut(·) = {g ∈ GL(n,F) | g(v · w) = gv · gw, v,w ∈ Fn}
Der(·) = {X ∈ gl(n,F) | X (v · w) = Xv · w + v · Xw, v,w ∈ Fn}.

Show that Aut(·) is a closed Lie subgroup of GL(n,F) with Lie algebra Der(·).
Exercise 4.16 Let G be a Lie subgroup of GL(n,C). Use the exponential map to
show G has a neighborhood of I that contains no subgroup of G other than {e}.
Exercise 4.17 For X, Y ∈ gl(n,C), show that eX+Y = limn→∞(e

X
n e

Y
n )n .

4.2 Further Constructions

4.2.1 Lie Algebra Homomorphisms

Definition 4.7. Suppose ϕ : H → G is a homomorphism of Lie subgroups of gen-
eral linear groups. Let the differential of ϕ, dϕ : h → g, be given by

dϕ(X) = d

dt
ϕ(et X )|t=0.
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This is well defined by Theorem 4.6 and Definition 4.1. Note by the chain rule
that if γ : R → G is any smooth map with γ ′(0) = X , then dϕ can be alternately
computed as dϕ(X) = d

dt ϕ(γ (t))|t=0. If one examines the identifications of Lie
algebras with tangent spaces, then it is straightforward to see that the above definition
of dϕ corresponds to the usual differential geometry definition of the differential
dϕ : TI (H)→ TI (G). In particular, dϕ is a linear map and d(ϕ1 ◦ ϕ2) = dϕ1 ◦ dϕ2.
Alternatively, this can be verified directly with the chain and product rules (Exercise
4.18).

Theorem 4.8. Suppose ϕ, ϕi : H → G are homomorphisms of Lie subgroups of
general linear groups.
(a) The following diagram is commutative:

h
dϕ→ g

exp ↓ ↓ exp

H
ϕ→ G

so that exp ◦dϕ = ϕ ◦ exp, i.e., edϕX = ϕ(eX ) for X ∈ h.
(b) The differential dϕ is a homomorphism of Lie algebras, i.e.,

dϕ[X, Y ] = [dϕX, dϕY ]

for X, Y ∈ h.
(c) If H is connected and dϕ1 = dϕ2, then ϕ1 = ϕ2.

Proof. For part (a), observe that since ϕ is a homomorphism that

d

dt
ϕ(et X ) = d

ds
ϕ(e(t+s)X )|s=0 = ϕ(et X )

d

ds
ϕ(es X )|s=0 = ϕ(et X )dϕX .

Thus t → ϕ(et X ) is the integral curve of d̃ϕX through I . Theorem 4.5 therefore
implies ϕ(et X ) = etdϕX .

For part (b), start with the equality ϕ(et X esY e−t X ) = etdϕX esdϕY e−tdϕX that fol-
lows from the fact that ϕ is a homomorphism and part (a). Apply ∂

∂s |s=0 and rewrite

et X esY e−t X as eset X Y e−t X
(Exercise 4.3) to get

dϕ(et X Y e−t X ) = etdϕX dϕY e−tdϕX .

Next apply d
dt |t=0 to get

d

dt

(
dϕ(et X Y e−t X )

) |t=0 = dϕXdϕY − dϕY dϕX = [dϕX, dϕY ]

and use the fact that dϕ is linear to get

dϕ([X, Y ]) = dϕ(XY − Y X) = d

dt
dϕ(et X Y e−t X )|t=0 = [dϕX, dϕY ].

For part (c), use part (a) to show that ϕ1 and ϕ2 agree on exp h. By Theorem 4.6 and
since ϕi is a homomorphism, the proof is finished. �
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As a corollary of Theorem 4.8, we can check that the Lie algebra of a compact
group is well defined up to isomorphism. To see this, suppose Gi are Lie subgroups
of general linear groups with ϕ : G1 → G2 an isomorphism. Since ϕ◦ϕ−1 and ϕ−1◦ϕ
are the identity maps, taking differentials shows dϕ is a Lie algebra isomorphism
from g1 to g2.

A smooth homomorphism of the additive group R into a Lie group G is called a
one-parameter subgroup. The next corollary shows that all one-parameter subgroups
are of the form t → et X for X ∈ g.

Corollary 4.9. Let G be a Lie subgroup of GL(n,C) and let γ : R → G be a
smooth homomorphism, i.e., γ (s + t) = γ (s)γ (t) for s, t ∈ R. If γ ′(0) = X, then
γ (t) = et X .

Proof. View the multiplicative group R+ as a Lie subgroup of GL(1,C). Let γ̃ , σ :
R+ → G be the two homomorphisms defined by γ̃ = γ ◦ ln and σ(x) = e(ln x)X .
Then

dγ̃ (x) = d

dt
γ̃ (etx )|t=0 = d

dt
γ (t x)|t=0 = x X

dσ(x) = d

dt
σ(etx )|t=0 = d

dt
etx X |t=0 = x X .

Theorem 4.8 thus shows that γ̃ = σ so that γ (t) = et X . �

In the definition below any choice of basis can be used to identify GL(g) and

End(g) with GL(dim g,R) and gl(dim g,R), respectively. Under this identification,
exp corresponds to the map exp : End(g) → GL(g) with eT = ∑∞

k=0
1
k! T k for

T ∈ End(g) where T k X = (T ◦ · · · ◦ T )X (k copies) for T ∈ End(g) and X ∈ g.

Definition 4.10. Let G be a Lie subgroup of GL(n,C).
(a) For g ∈ G, let conjugation, cg : G → G, be the Lie group homomorphism given
by cg(h) = ghg−1 for h ∈ G
(b) The Adjoint representation of G on g, Ad : G → GL(g), is given by Ad(g) =
d
(
cg
)
.

(c) The adjoint representation of g on g, ad : g → End(g), is given by ad = d Ad,
i.e., (ad X) Y = d

dt (Ad(et X )Y )|t=0 for X, Y ∈ g.

Some notes are in order. Except for the fact that g is a real vector space instead
of a complex one, Ad is seen to satisfy the key property of a representation,

Ad(g1g2) = Ad(g1)Ad(g2),

by taking the differential of the relation cg1g2 = cg1 ◦ cg2 for gi ∈ G. More explicitly,
however, dcg(X) = d

dt (get X g−1)|t=0 so that

Ad(g)X = gXg−1.

Applying Theorem 4.8, we see that
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cgeX = eAd(g)X .

Since this is simply the statement geX g−1 = egXg−1
, the equality is already well

known from linear algebra.
Secondly, ((d Ad) (X)) Y = d

dt et X Y e−t X |t=0 so that

(ad X) Y = XY − Y X = [X, Y ].

Applying Theorem 4.8, we see that

Ad(eX ) = ead X .(4.11)

The notion of a representation of a Lie algebra will be developed in §6.1. When that
is done, ad will, in fact, be a representation of g on itself.

4.2.2 Lie Subgroups and Subalgebras

If M is a manifold and ξi are vector fields, the Lie bracket of vector fields is defined
as [ξ1, ξ2] = ξ1ξ2 − ξ2ξ1. For M = Rn , it is easy to see (Exercise 4.19) that the Lie
bracket of the vector fields ξ =∑

i ξi (x)
∂
∂xi

and η =∑
i ηi (x)

∂
∂xi

is given by

[ξ, η] =
∑

i

∑
j

(
ξ j

∂ηi

∂x j
− η j

∂ξi

∂x j

)
∂

∂xi
.(4.12)

For M = GL(n,C), recall that GL(n,C) is viewed as an open set in Mn,n(C) ∼=
R2n2 ∼= Rn2 × Rn2

by writing Z ∈ Mn,n(C) as Z = X + iY , X, Y ∈ Mn,n(R), and
mapping Z to (X, Y ). For A ∈ gl(n,C), the value of the vector field Ã at the point
Z ∈ GL(n,C) is defined as Z A. Unraveling our identifications (see the discussion
around Equation 4.3 for the usual identification of Tg(G) with gg), this means that
the vector field Ã on GL(n,C) corresponds to the vector field

∂A =
∑
i, j

∑
k

Re(zik Ak j )
∂

∂xi j
+
∑
i, j

∑
k

Im(zik Ak j )
∂

∂yi j

on the open set of R2n2
cut out by the determinant.

Lemma 4.13. For A, B ∈ Mn(C), [∂A, ∂B] = ∂[A,B].

Proof. For the sake of clarity of exposition, we will verify this lemma for Mn(R) and
leave the general case of Mn(C) to the reader. In this setting and with A ∈ Mn(R), ∂A

is simply
∑

i, j

∑
k xik Ak j

∂
∂xi j

. Writing δi,p for 0 when i �= p and for 1 when i = p,
Equation 4.12 shows that

[∂A, ∂B] =
∑
i, j

∑
p,q

(∑
k

x pk Akqδi,p Bq j −
∑

k

x pk Bkqδi,p Aq j

)
∂

∂xi j

=
∑
i, j

∑
q,k

xik
(

Akq Bq j − Bkq Aq j
) ∂

∂xi j

=
∑
i, j

∑
k

xik[A, B]k j
∂

∂xi j
= ∂[A,B]. �
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For us, the importance of Lemma 4.13 is that if h is a k-dimensional subalge-
bra of gl(n,C), then the vector fields {∂X | X ∈ h} form a subalgebra under the Lie
bracket of vector fields. Moreover, on GL(n,C), their value at each point determines
a smooth rank k subbundle of the tangent bundle. Thus Frobenius’ theorem from dif-
ferential geometry (see [8] or [88]) says this subbundle foliates GL(n,C) into inte-
gral submanifolds. In particular, there is a unique maximal connected k-dimensional
submanifold H of GL(n,C) so that I ∈ H and Th(H) = {(∂X )h | X ∈ h}, h ∈ H ,
where (∂X )h is the value of ∂X at h. Under our usual identification, this means that
the tangent space of H at h corresponds to hh, i.e., that {γ ′(0) | γ (0) = h and
γ : (−ε, ε) → H , ε > 0, is smooth} = hh. Finally, it is an important fact that
integral submanifolds such as H , as was the case for regular submanifolds, satisfy
the property that when f : M → G is a smooth map of manifolds with f (M) ⊆ H ,
then f : M → H is also a smooth map (see [88]).

Theorem 4.14. Let G be a Lie subgroup of GL(n,C). There is a bijection between
the set of connected Lie subgroups of G and the set of subalgebras of g. If H is a
connected Lie subgroup of G, the correspondence maps H to its Lie algebra h.

Proof. Suppose h is a subalgebra of g. Let H be the unique maximal connected
submanifold of G so that I ∈ H , and so the tangent space of H at h corresponds to hh
for h ∈ H . Now the connected submanifold h−1

0 H , h0 ∈ H , contains I . Moreover,
since d

dt (h
−1
0 γ (t))|t=0 = h−1

0 γ ′(0), the tangent space of h−1
0 H at h−1

0 h corresponds
to h−1

0 hh. Uniqueness of the integral submanifold therefore shows h−1
0 H = H . A

similar argument shows that h0 H = H , so that H is a subgroup of G. By the remark
above the statement of this theorem, the multiplication and inverse operations are
smooth as maps on H , so that H is a Lie subgroup of G. Hence the correspondence
is surjective.

To see it is injective, suppose H and H ′ are connected Lie subgroups of G, so that
h = h′. Using the exponential map and Theorem 4.6, H and H ′ share a neighborhood
of I . Since they are both connected, this forces H = H ′. �


4.2.3 Covering Homomorphisms

Theorem 4.15. Let H and G be connected Lie subgroups of general linear groups
and ϕ : H → G a homomorphism of Lie groups. Then ϕ is a covering map if and
only if dϕ is an isomorphism.

Proof. If ϕ is a covering, then there is a neighborhood U of I in H and a neighbor-
hood V of I in G, so that ϕ restricts to a diffeomorphism ϕ : U → V . Thus the
differential at I , dϕ, is an isomorphism.

Suppose now that dϕ is an isomorphism. By the Inverse Mapping theorem, there
is a neighborhood U0 of I in H and a neighborhood V0 of I in G so that ϕ restricts to
a diffeomorphism ϕ : U0 → V0. In particular, kerϕ∩U0 = {I }. Let V be a connected
neighborhood of I in V0 so that V V−1 ⊆ V0 (Exercise 1.4) and let U = ϕ−1V ∩U0

so that U is connected, UU−1 ⊆ U0, and ϕ : U → V is still a diffeomorphism.
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As ϕ is a homomorphism, ϕ−1V = U kerϕ. To see that ϕ satisfies the covering
condition at I ∈ G, we show that the set of connected components of ϕ−1V is
{Uγ | γ ∈ kerϕ}. For this, it suffices to show that Uγ1 ∩ Uγ2 = ∅ for distinct
γi ∈ kerϕ. Suppose u1γ1 = u2γ2 for ui ∈ U and γi ∈ kerϕ. Then γ2γ

−1
1 = u−1

2 u1

is in U0 ∩ kerϕ and so γ2γ
−1
1 = I , as desired.

It remains to see that ϕ satisfies the covering condition at any g ∈ G. For this, first
note that ϕ is surjective since G is connected, ϕ is a homomorphism, and the image
of ϕ contains a neighborhood of I (Theorem 1.15). Choose h ∈ H so that ϕ(h) = g.
Then gV is a connected neighborhood of g in G and ϕ−1(gV ) = hU kerϕ. The
set of connected components of hU kerϕ is clearly {hUγ | γ ∈ kerϕ}. Since ϕ

restricted to hUγ is obviously a diffeomorphism to gV , ϕ is a covering map. �

Theorem 4.16. Let H and G be connected Lie subgroups of general linear groups
with H simply connected. If ψ : h → g is a homomorphism of Lie algebras, then
there exists a unique homomorphism of Lie groups ϕ : H → G so that dϕ = ψ .

Proof. Uniqueness follows from Theorem 4.8. For existence, suppose H is a Lie
subgroup of GL(n,C) and G is a subgroup of GL(m,C). Then we may view H×G
as a block diagonal Lie subgroup of GL(n+m,C). When this is done, the Lie algebra
of H × G is clearly the direct sum of h and g in gl(n + m,C). More importantly,
note h and g commute and define

a = {X + ψX | X ∈ h} ⊆ h⊕ g.

Using the fact that ψ is a homomorphism of Lie algebras, if follows that a is a
subalgebra of h⊕ g since

[X + ψX, Y + ψY ] = [X, Y ]+ [ψX, ψY ] = [X, Y ]+ ψ[X, Y ]

for X, Y ∈ h.
Let A be the connected Lie subgroup of H × G with Lie algebra a (Theorem

4.14) and let πH and πG be the Lie group homomorphisms projecting A to H and
G, respectively. By the definitions, dπH (X +ψX) = X and dπG(X +ψX) = ψX .
Then dπH is a Lie algebra isomorphism of a and h, so that Theorem 4.15 implies
πH is a covering map from A to H . Since H is simply connected, this means that
πH : A → H is an isomorphism. Define the Lie group homomorphism ϕ : H → G
by ϕ = πG ◦ π−1

H to finish the proof. �

Note Theorem 4.16 can easily fail when H is not simply connected (Exercise

4.20).

4.2.4 Exercises

Exercise 4.18 (1) Let ϕ : H → G be a homomorphism of linear Lie groups. Use
the fact that d

dt

(
etr X etY

) |t=0 = r X + Y , X, Y ∈ h, to directly show that dϕ : h → g
is a linear map.
(2) Let ϕ′ : K → H be a homomorphism of linear Lie groups. Show that d(ϕ◦ϕ′) =
dϕ ◦ dϕ′.
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Exercise 4.19 Verify that Equation 4.12 holds.

Exercise 4.20 Use the spin representations to show that Theorem 4.16 can fail when
H is not simply connected.

Exercise 4.21 (1) Let

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, and F =

(
0 0
1 0

)
.

Show that [H, E] = 2E , [H, F] = −2F , and [E, F] = H .
(2) Up to the Ad action of SL(2,R), find all Lie subalgebras of sl(2,R).

Exercise 4.22 (1) Let G be a Lie subgroup of a linear group and H ⊆ G. Show that
the centralizer of H in G,

ZG(H) = {g ∈ G | gh = hg, h ∈ H},
is a Lie subgroup of G with Lie algebra the centralizer of H in g,

zg(H) = {X ∈ g | Ad(h)X = X , h ∈ H}.

(2) If h ⊆ g, show that the centralizer of h in G,

ZG(h) = {g ∈ G | Ad(g)X = X , X ∈ h},
is a Lie subgroup of G with Lie algebra the centralizer of h in g,

zg(h) = {Y ∈ g | [Y, X ] = 0, X ∈ h}.

(3) If H is a connected Lie subgroup of G, show ZG(H) = ZG(h) and zg(H) =
zg(h).

Exercise 4.23 (1) Let G be a Lie subgroup of a linear group and let H be a connected
Lie subgroup of G. Show that the normalizer of H in G,

NG(H) = {g ∈ G | gHg−1 = H},
is a Lie subgroup of G with Lie algebra the normalizer of h in g,

ng(h) = {Y ∈ g | [Y, h] ⊆ h}.

(2) Show H is normal in G if and only if h is an ideal in g.

Exercise 4.24 (1) Let ϕ : H → G be a homomorphism of Lie subgroups of linear
groups. Show that kerϕ is a closed Lie subgroup of H with Lie algebra ker dϕ.
(2) Show that the Lie subgroup ϕ(H) of G has Lie algebra dϕh.
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Exercise 4.25 If G is a Lie subgroup of a linear group satisfying span[g, g] = g,
show that tr (ad X) = 0 for X ∈ g.

Exercise 4.26 (1) For X, Y ∈ gl(n,C), show that et X etY = et (X+Y )+ 1
2 t2[X,Y ]+O(t3)

for t near 0.
(2) Show that et X etY e−t X = etY+t2[X,Y ]+O(t3) for t near 0.

Exercise 4.27 For X, Y ∈ gl(n,C), show that e[X,Y ] = limn→∞
(

e
X
n e

Y
n e−

X
n e−

Y
n

)n2

.

Exercise 4.28 This exercise gives a proof of Theorem 1.6. Recall the well-known
fact that an n-dimensional submanifold N of an m-dimensional manifold M is regu-
lar if and only each n ∈ N lies in an open set U of M with the property that there is
a chart ϕ : U → Rm of M so that N ∩U = ϕ−1(Rn), where Rn is viewed as sitting
in Rm in the usual manner ([8]). Such a chart is called cubical. Let G ⊆ GL(n,C)

be a Lie subgroup and H ⊆ G be a subgroup (with no manifold assumption).
(1) Assume first that H is a regular submanifold of G and hi → h with hi ∈ H
and h ∈ G. Show that there is a cubical chart U of G around e and open sets
V ⊆ W ⊆ U , so that V−1V ⊆ W ⊆ U . Noting that h−1

i h j ∈ V−1V for big
i, j , use the definitions to show that H is closed.
(2) For the remainder, only assume H is closed. Let h = {X ∈ g | et X ∈ H , t ∈ R}.
Show that et X etY = et (X+Y )+O(t2), X, Y ∈ g, and use induction to see that

et (X+Y ) = lim
n→∞

(
e

t
n X e

t
n Y
)n

.

Conclude that h is a subspace and choose a complementary subspace s ⊆ g, so that
s⊕ h = g.
(3) Temporarily, assume there are no neighborhoods V of 0 in g with exp(h ∩ V ) =
H ∩ exp V . Using this assumption and the fact that the map (Y, Z) → eY eZ is a
local diffeomorphism at (0, 0) from s⊕h to G, construct a nonzero sequence Yn ∈ s,
so that Yn → 0 and eYn ∈ H . Show that you can pass to a subsequence and further
assume Yn/ ‖Yn‖ → Y for some nonzero Y ∈ s.
(4) For any t ∈ R, show that there is kn ∈ Z so that kn ‖Yn‖ → t . Conclude that(
eYn

)kn → etY .
(5) Obtain a contradiction to the assumption in part (3) by showing that Y ∈ h.
Conclude that there is a neighborhood V of 0 in g, so that exp is a diffeomorphism
from V to its image in G and exp(h ∩ V ) = H ∩ exp V .
(6) Given any h ∈ H , consider the neighborhood U = h exp V of h in G and the
chart ϕ = exp−1 ◦l−1

h : G → g of G. Show that ϕ−1(h) = H ∩ U , so that H is a
regular submanifold, as desired.



5

Abelian Lie Subgroups and Structure

Since a compact Lie group, G, can be thought of as a Lie subgroup of U (n), The-
orems 3.28 and 2.15, it is possible to diagonalize each g ∈ G using conjugation in
U (n). In fact, the main theorem of this chapter shows it is possible to diagonalize
each g ∈ G using conjugation in G. This result will have far-reaching consequences,
including various structure theorems.

5.1 Abelian Subgroups and Subalgebras

5.1.1 Maximal Tori and Cartan Subalgebras

If G is a Lie group, recall G is called Abelian if g1g2 = g2g1 for all gi ∈ G. Similarly,
if a is a subalgebra of gl(n,C), a is called Abelian if [X, Y ] = 0 for all X, Y ∈ a.

Theorem 5.1. Let G be a Lie subgroup of GL(n,C).
(a) For X, Y ∈ g, [X, Y ] = 0 if and only if et X and esY commute for s, t ∈ R. In this
case, eX+Y = eX eY .
(b) If A is a connected Lie subgroup of G with Lie algebra a, then A is Abelian if
and only if a is Abelian.

Proof. Since part (b) follows from part (a) and Theorems 1.15 and 4.6, it suffices to
prove part (a). It is a familiar fact (Exercise 4.3) that when X and Y commute, i.e.,
[X, Y ] = 0, that et X+sY = et X esY . Since et X+sY = esY+t X , it follows that et X and esY

commute. Conversely, if et X and esY commute, then et X esY e−t X = esY . Applying
∂
∂s |s=0 and then d

dt |t=0 yields XY − Y X = 0, as desired. �

It is well known (Exercise 5.1) that the discrete (additive) subgroups of Rn , up to

application of an invertible linear transformation, are of the form

�k = {x = (x1, . . . , xn) ∈ Rn | x1, . . . , xk ∈ Z and xk+1 = · · · xn = 0}.
In the next theorem, recall that a torus is a Lie group of the form T k = (

S1
)k ∼=

Rk/�k = Rk/Zk .
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Theorem 5.2. (a) The most general compact Abelian Lie group is isomorphic to
T k × F, where F is a finite Abelian group. In particular, the most general com-
pact connected Abelian Lie group is a torus.
(b) If G is a compact Abelian Lie group, then exp is a surjective map to G0, the
connected component of G.

Proof. Let G be a compact Abelian group. By Theorem 5.1, exp : g → G0 is a
homomorphism. By Theorems 1.15 and 4.6 it follows that exp is surjective, so G0 ∼=
g/ ker(exp). Since g ∼= Rdim g as a vector space and since Theorem 4.6 shows that
ker(exp) is discrete, ker(exp) ∼= �k for some k ≤ dim g. But as G is compact with
G ∼= Rdim g/�k

∼= T k × Rdim g−k , k must be dim g, so that G0 ∼= T dim g.
Next, G/G0 is a finite Abelian group by compactness. It is well known that a

finite Abelian group is isomorphic to a direct product of (additive) groups of the
form Z/(niZ), ni ∈ N. For each such product, pick gi ∈ G whose image in G/G0

corresponds to 1+niZ in Z/(niZ). Then gni
i ∈ G0. Choose Xi ∈ g so that eni Xi = gni

i
and let hi = gi e−Xi . Then hi is in the same connected component as is gi , but now
hni

i = I . It follows easily that the map G0 ×∏
i Z/(niZ) → G given by mapping

(g, (mi + niZ))→ g
∏

i hmi
i is an isomorphism. �


Definition 5.3. (a) Let G be a compact Lie group with Lie algebra g. A maximal
torus of G is a maximal connected Abelian subgroup of G.
(b) A maximal Abelian subalgebra of g is called a Cartan subalgebra of g.

By Theorem 5.2, a maximal torus T of a compact Lie group G is indeed isomor-
phic to a torus T k . It should also be noted that the definition of Cartan subalgebra
needs to be tweaked when working outside the category of compact Lie groups.

Theorem 5.4. Let G be a compact Lie group and T a connected Lie subgroup of
G. Then T is a maximal torus if and only if t is a Cartan subalgebra. In particular,
maximal tori and Cartan subalgebras exist.

Proof. Theorems 4.14 and 5.1 show that T is a maximal torus of G if and only t is
a Cartan subalgebra of g. Since maximal Abelian subalgebras clearly exist, this also
shows that maximal tori exist. �


5.1.2 Examples

Recall that the Lie algebras for the compact classical Lie groups were computed in
§4.1.3.

5.1.2.1 SU (n) For U (n) with u(n) = {X ∈ gl(n,C) | X∗ = −X}, let

T = {diag(eiθ1 , . . . , eiθn ) | θi ∈ R}(5.5)

t = {diag(iθ1, . . . , iθn) | θi ∈ R}
Clearly t is the Lie algebra of the connected Lie subgroup T . Since it is easy to
see t is a maximal Abelian subalgebra of u(n) (Exercise 5.2), it follows that T is a
maximal torus and t is its corresponding Cartan subalgebra.
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For SU (n) with su(n) = {X ∈ gl(n,C) | X∗ = −X , tr X = 0}, a similar
construction yields a maximal torus and Cartan subalgebra. Simply use the defini-
tion for T and t as in Equation 5.5 coupled with the additional requirement that∑n

i=1 θi = 0.

5.1.2.2 Sp(n) For the first realization of Sp(n) as

Sp(n) = {g ∈ GL(n,H) | g∗g = I }

with sp(n) = {X ∈ gl(n,H) | X∗ = −X}, use the definition for T and t as in Equa-
tion 5.5 to construct a maximal torus and Cartan subalgebra. It is straightforward to
verify that t is a Cartan subalgebra (Exercise 5.2).

For the second realization of Sp(n) as

Sp(n) ∼= U (2n) ∩ Sp(n,C)

with sp(n) ∼= u(2n) ∩ sp(n,C), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn ) | θi ∈ R}
t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R}

for θi ∈ R. Then T is a maximal torus and t is its corresponding Cartan subalgebra
(Exercise 5.2).

5.1.2.3 SO(2n) For SO(2n) with so(2n) = {X ∈ gl(2n,R) | Xt = −X , tr X = 0},
define the set of block diagonal matrices

T = {

⎛⎜⎜⎜⎜⎜⎝
cos θ1 sin θ1

− sin θ1 cos θ1

. . .

cos θn sin θn

− sin θn cos θn

⎞⎟⎟⎟⎟⎟⎠ | θi ∈ R}

t = {

⎛⎜⎜⎜⎜⎜⎝
0 θ1

−θ1 0
. . .

0 θn

−θn 0

⎞⎟⎟⎟⎟⎟⎠ | θi ∈ R}.

Then T is a maximal torus and t is its corresponding Cartan subalgebra (Exercise
5.2).

5.1.2.4 SO(2n + 1) For SO(2n) with so(2n) = {X ∈ gl(2n + 1,R) | Xt = −X ,
tr X = 0}, define the set of block diagonal matrices
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T = {

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos θ1 sin θ1

− sin θ1 cos θ1

. . .

cos θn sin θn

− sin θn cos θn

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
| θi ∈ R}

t = {

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 θ1

−θ1 0
. . .

0 θn

−θn 0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
| θi ∈ R}.

Then T is a maximal torus and t is its corresponding Cartan subalgebra (Exercise
5.2).

5.1.3 Conjugacy of Cartan Subalgebras

Lemma 5.6. Let G be a compact Lie group and (π, V ) a finite-dimensional repre-
sentation of G.
(a) There exists a G-invariant inner product, (·, ·), on V and for any such G-invariant
inner product on V , dπX is skew-Hermitian, i.e., (dπ(X)v,w) = −(v, dπ(X)w)

for X ∈ g and v,w ∈ V ;
(b) There exists an Ad-invariant inner product, (·, ·), on g, that is, (Ad(g)Y1,
Ad(g)Y2) = (Y1, Y2) for g ∈ G and Yi ∈ g. For any such Ad-invariant inner product
on g, ad is skew-symmetric, i.e., (ad(X)Y1, Y2) = −(Y1, ad(X)Y2).

Proof. Part (b) is simply a special case of part (a), where π is the Adjoint represen-
tation on g. To prove part (a), recall that Theorem 2.15 provides the existence of a G-
invariant inner product on V . If (·, ·) is a G-invariant inner product on V , apply d

dt |t=0

to (π(et X )Y1, π(et X )Y2) = (Y1, Y2) to get (dπ(X)Y1, Y2)+ (Y1, dπ(X)Y2) = 0. �

Lemma 5.7. Let G be a compact Lie group and t a Cartan subalgebra of g. There
exists X ∈ t, so that t = zg(X) where zg(X) = {Y ∈ g | [Y, X ] = 0}.
Proof. By choosing a basis for t and using the fact that t is maximal Abelian in g,
there exist independent {Xi }ni=1, Xi ∈ t, so that t = ∩i ker(ad Xi ). Below we show
that there exists t ∈ R, so that ker(ad(X1 + t X2)) = ker(ad X1) ∩ ker(ad X2). Once
this result is established, it is clear that an inductive argument finishes the proof.

Let (·, ·) be an invariant inner product on g for which ad is skew-symmetric.
Let kX = ker(ad X) and rX = (ker(ad X))⊥. It follows that rX is an ad X -invariant
subspace. Since g = kX ⊕ rX , it is easy to see rX is the range of ad X acting on g.

If non-central X, Y ∈ t, then the fact that ad X and ad Y commute, Theorem 4.8,
implies that ad Y preserves the subspaces kX and rX . In particular,
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g = (kX ∩ kY )⊕ (kX ∩ rY )⊕ (rX ∩ kY )⊕ (rX ∩ rY ) .

If rX ∩ rY = {0}, then kX ∩ kY = ker(ad(X + Y )). Otherwise, restrict ad(X + tY ) to
rX ∩ rY and take the determinant. The resulting polynomial in t is nonzero since it is
nonzero when t = 0. Thus there is a t0 �= 0, so ad(X + t0Y ) is invertible on rX ∩ rY .
Hence, in either case, there exists a t0 ∈ R, so that ker(ad(X + t0Y )) = kX ∩ kY . �

Definition 5.8. Let G be a compact Lie group and X ∈ g. If zg(X) is a Cartan
subalgebra, then X is called a regular element of g.

We will see in §7.2.1 that the set of regular elements is an open dense set in g.

Theorem 5.9. Let G be a compact Lie group and t a Cartan subalgebra. For X ∈ g,
there exists g ∈ G so that Ad(g)X ∈ t.

Proof. Let (·, ·) be an Ad-invariant inner product on g. Using Lemma 5.7, write t =
zg(Y ) for some Y ∈ g. It is necessary to find g0 ∈ G so that [Ad(g0)X, Y ] = 0. For
this, it suffices to show that ([Ad(g0)X, Y ], Z) = 0 for all Z ∈ g. Using the skew-
symmetry of ad, Lemma 5.6, this is equivalent to showing (Y, [Z ,Ad(g0)X ]) = 0.

Consider the continuous function f on G defined by f (g) = (Y,Ad(g)X). Since
G is compact, choose g0 ∈ G so that f has a maximum at g0. Then the function
t → (Y,Ad(et Z )Ad(g)X) has a maximum at t = 0. Applying d

dt |t=0 therefore
yields 0 = (Y, [Z ,Ad(g0)X ]), as desired. �


The corresponding theorem is true on the group level as well, although much
harder to prove (see §5.1.4).

Corollary 5.10. (a) Let G be a compact Lie group with Lie algebra g. Then Ad(G)

acts transitively on the set of Cartan subalgebras of G.
(b) Via conjugation, G acts transitively on the set of maximal tori of G.

Proof. For part (a), let ti = zg(Xi ), Xi ∈ g, be Cartan subalgebras. Using Theorem
5.9, there is a g ∈ G so that Ad(g)X1 ∈ t2. Using the fact that Ad(g) is a Lie algebra
homomorphism, Theorem 4.8, it follows that

Ad(g)t1 = {Ad(g)Y ∈ g | [Y, X1] = 0}
= {Y ′ ∈ g | [Ad(g)−1Y ′, X1] = 0}
= {Y ′ ∈ g | [Y ′,Ad(g)X1] = 0} = zg(Ad(g)X1).

Since Ad(g)X1 ∈ t2 and t2 is Abelian, Ad(g)t1 ⊇ t2. Since Ad(g) is a Lie alge-
bra homomorphism, Ad(g)t1 is still Abelian. By maximality of Cartan subalgebras,
Ad(g)t1 = t2.

For part (b), let Ti be the maximal torus of G corresponding to ti . Use Theorem
5.2 to write Ti = exp ti . Then Theorem 4.8 shows that

cgT1 = cg exp t1 = exp (Ad(g)t1) = exp t2 = T2. �
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5.1.4 Maximal Torus Theorem

Lemma 5.11. Let G be a compact connected Lie group. The kernel of the Adjoint
map is the center of G, i.e., Ad(g) = I if and only if g ∈ Z(G), where Z(G) =
{h ∈ G | gh = hg}.
Proof. If g ∈ Z(G), then cg is the identity, so that its differential, Ad(g), is trivial
as well. On the other hand, if Ad(g) = I , then cgeX = eAd(g)X = eX for X ∈ g.
Thus cg is the identity on a neighborhood of I in G. Since G is connected and cg is
a homomorphism, Theorem 1.15 shows that cg is the identity on all of G. �

Theorem 5.12 (Maximal Torus Theorem). Let G be a compact connected Lie
group, T a maximal torus of G, and g0 ∈ G.
(a) There exists g ∈ G so that gg0g−1 ∈ T .
(b) The exponential map is surjective, i.e., G = exp g.

Proof. Use Theorems 5.2, 4.8, and 5.9 to observe that⋃
g∈G

cgT =
⋃
g∈G

cg exp t =
⋃
g∈G

exp (Ad(g)t) = exp g.

Thus
⋃

g∈G cgT = G if and only if exp g = G. In other words parts (a) and (b) are
equivalent.

We will prove part (b) by induction on dim g. If dim g = 1, then g is Abelian,
and so Theorem 5.2 shows that exp g = G. For dim g > 1, we will use the inductive
hypothesis to show that exp g is open and closed to finish the proof. Since

⋃
g∈G cgT

is the continuous image of the compact set G × T , exp g is compact and therefore
closed. Thus it remains to show that exp g is open.

Fix X0 ∈ g and write g0 = exp X0. It is necessary to show that there is a neigh-
borhood of g0 contained in exp g. By Theorem 4.6, assume X0 �= 0. Using Lemma
5.6, let (·, ·) be an Ad-invariant inner product on g so that Ad(g0) is unitary. Define

a = zg(g0) = {Y ∈ g | Ad(g0)Y = Y }
b = a⊥,

so g = a ⊕ b with Ad(g0) − I an invertible endomorphism of b. Note that X0 ∈ a
since Ad(exp X0)X0 = ead(X0)X0 = X0.

Consider the smooth map ϕ : a ⊕ b → G given by ϕ(X, Y ) = g−1
0 eY g0eX e−Y .

Under the usual tangent space identifications, the differential of ϕ can be computed
at 0 by

dϕ(X, 0) = d

dt
ϕ(t X, 0)|t=0 = d

dt
et X |t=0 = X

dϕ(0, Y ) = d

dt
ϕ(0, tY )|t=0 = d

dt

(
g−1

0 etY g0e−tY
) |t=0 = (Ad(g0)− I ) Y .

Thus dϕ is an isomorphism, so that {g−1
0 eY g0eX e−Y | X ∈ a, Y ∈ b} contains a

neighborhood of I in G. Since lg−1
0

is a diffeomorphism,
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{eY g0eX e−Y | X ∈ a, Y ∈ b}

contains a neighborhood of g0 in G.
Let A = ZG(g0)

0 = {g ∈ G | gg0 = g0g}0, a closed and therefore compact Lie
subgroup of G. Rewriting the condition gg0 = g0g as cg0 g = g, the usual argument
using Theorem 4.6 shows that the Lie algebra of A is a (Exercise 4.22). In particular,
ea ⊆ A, so that g0ea ⊆ A since g0 ∈ A. Thus

{eY g0eX e−Y | X ∈ a, Y ∈ b} ⊆ {eY Ae−Y | Y ∈ b},

and so
⋃

g∈G g−1 Ag certainly contains a neighborhood of g0 in G.
Note that dim a ≥ 1 as X0 ∈ g. If dim a < dim g, the inductive hypothesis shows

that A = exp a, so that
⋃

g∈G g−1 Ag = ⋃
g∈G exp (Ad(g)a) ⊆ exp g. Thus exp g

contains a neighborhood of g0, as desired.
On the other hand, if dim a = dim g, then Ad(g0) = I so that Lemma 5.11

shows g0 ∈ Z(G). Let t be a Cartan subalgebra containing X0. By Theorem 5.9, g =⋃
g∈G Ad(g)t. For any X ∈ t, use the facts that g0 = eX0 ∈ Z(G) and [X0, X ] = 0

to compute

g0 exp(Ad(g)X) = g0cgeX = cg
(
eX0 eX

) = cgeX0+X = exp(Ad(g) (X0 + X))

for g ∈ G. Since X0 + X ∈ t, g0 exp g ⊆ exp g. However, Theorem 4.6 shows exp g
contains a neighborhood of I so that g0 exp g contains a neighborhood of g0. The
inclusion g0 exp g ⊆ exp g finishes the proof. �

Corollary 5.13. Let G be a compact connected Lie group with maximal torus T .
(a) Then ZG(T ) = T , where ZG(T ) = {g ∈ G | gt = tg for t ∈ T }. In particular,
T is maximal Abelian.
(b) The center of G is contained in T , i.e., Z(G) ⊆ T .

Proof. Part (b) clearly follows from part (a). For part (a), obviously T ⊆ ZG(T ).
Conversely, let g0 ∈ ZG(T ) and consider the closed, therefore compact, connected
Lie subgroup ZG(g0)

0. Using the Maximal Torus Theorem, write g0 = eX0 . Looking
at the path t → et X0 ∈ ZG(g0), it follows that g0 ∈ ZG(g0)

0. Moreover, since T
is connected and contains I , clearly T ⊆ ZG(g0)

0, so that T is a maximal torus in
ZG(g0)

0. By the Maximal Torus theorem applied to ZG(g0)
0, there is h ∈ ZG(g0)

0,
so that ch g0 ∈ T . But by construction, ch g0 = g0, so g0 ∈ T , as desired. �


Note that there exist maximal Abelian subgroups that are not maximal tori (Ex-
ercise 5.6).

5.1.5 Exercises

Exercise 5.1 Let � be a discrete subgroup of Rn . Pick an indivisible element e1 ∈ �

and show that �/Ze1 is a discrete subgroup in Rn/Re1. Use induction to show that
� is isomorphic to �k .
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Exercise 5.2 For each compact classical Lie group in §5.1.2, show that the given
subgroup T is a maximal torus and that the given subalgebra t is its corresponding
Cartan subalgebra.

Exercise 5.3 Show that the most general connected Abelian Lie subgroup of a gen-
eral linear Lie group is isomorphic to T k × Rn .

Exercise 5.4 Classify the irreducible representations of T k × (Z/n1Z) × · · · ×
(Z/nkZ).

Exercise 5.* (Kronecker’s Theorem). View T k ∼= Rk/Z2 and let x = (xi ) ∈ Rk .
Show that the following statements are equivalent.
(a) The set {1, x1, . . . , xn} is linearly dependent over Q.
(b) There is a nonzero n = (ni ) ∈ Zk , so n · x ∈ Z.
(c) There is a nontrivial homomorphism π : Rk/Zk → S1 with x + Zk ∈ kerπ .
(d) The set Zx + Zk �= Rk/Zk .

Exercise 5.5 Working in Spin2n(R) or Spin2n+1(R), let

T = {(cos t1 + e1e2 sin t1) · · · (cos tn + e1e2 sin tn) | tk ∈ R}.

Show that T is a maximal torus (c.f. Exercise 1.33).

Exercise 5.6 Find a maximal Abelian subgroup of SO(3) that is isomorphic to
(Z/2Z)2 and therefore not a maximal torus.

Exercise 5.7 If H is a closed connected Lie subgroup of a compact Lie group G,
show that exp h = H .

Exercise 5.8 Let G be a connected Lie subgroup of a general linear group. Show
that the center of G, Z(G), is a closed Lie subgroup of G with Lie algebra z(g) (c.f.
Exercise 4.22).

Exercise 5.9 Let G be a compact connected Lie group. Show that the center of G,
Z(G), is the intersection of all maximal tori in G.

Exercise 5.10 Let G be a compact connected Lie group. For g ∈ G and positive
n ∈ N, show that there exists h ∈ G so that hn = g.

Exercise 5.11 Let T be the maximal torus of SO(3) given by

T =
⎧⎨⎩
⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠ | θ ∈ R

⎫⎬⎭ .

Find g ∈ SO(3), so that ZG(g)0 = T but with ZG(g) disconnected.
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Exercise 5.12 Let G be a compact connected Lie group. Suppose S is a connected
Abelian Lie subgroup of G.
(1) If g ∈ ZG(S), show that there exists a maximal torus T of G, so that g ∈ T and
S ⊆ T .
(2) Show that ZG(S) is the union of all maximal tori containing S and therefore is
connected.
(3) For g ∈ G, show that ZG(g)0 is the union of all maximal tori containing g.

Exercise 5.13 Let G be a compact connected Lie group. Suppose that G is also a
complex manifold whose group operations are holomorphic. Then the map g →
Ad(g), g ∈ G, is holomorphic. Show that G is Abelian and isomorphic to Cn/� for
some discrete subgroup � of Cn .

5.2 Structure

5.2.1 Exponential Map Revisited

5.2.1.1 Local Diffeomorphism Let G be a Lie subgroup of GL(n,C). We already
know from Theorem 4.6 that exp : g → G is a local diffeomorphism near 0. In fact,
more is true. Before beginning, use power series to define

I − e− ad X

ad X
=

∞∑
n=0

(−1)n

(n + 1)!
(ad X)n

for X ∈ g.

Theorem 5.14. (a) Let G be a Lie subgroup of GL(n,C) and γ : R → g a smooth
curve. Then

d

dt
eγ (t) = eγ (t)

(
I − e− ad γ (t)

ad γ (t)

) (
γ ′(t)

)
=
[(

ead γ (t) − I

ad γ (t)

) (
γ ′(t)

)]
eγ (t).

(b) For X ∈ g, the map exp : g → G is a local diffeomorphism near X if and only if
the eigenvalues of ad X on g are disjoint from 2π iZ\{0}.
Proof. In part (a), consider the special case of, say, γ (t) = X + tY for Y ∈ g. Using
the usual tangent space identifications at t = 0, the first part of (a) calculates the
differential at X of the map exp : g → G evaluated on Y . If (ad X) Y = λY for
λ ∈ C, then (

I − e− ad X

ad X

)
(Y ) =

{
1−e−λ

λ
Y if λ ∈ 0

Y if λ = 0
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which is zero if and only if λ ∈ 2π iZ\{0}. Since Lemma 5.6 shows that ad X is
normal and therefore diagonalizable, part (b) follows from the Inverse Mapping The-
orem and part (a).

With sufficient patience, the proof of part (a) can be accomplished by explicit
power series calculations. As is common in mathematics, we instead resort to a trick.
Define ϕ : R2 → G by

ϕ(s, t) = e−sγ (t) ∂

∂t
esγ (t).

To prove the first part of (a), it is necessary to show ϕ(1, t) =
(

I−e− ad γ (t)

ad γ (t)

) (
γ ′(t)

)
.

Begin by observing that ϕ(0, t) = 0, and so ϕ(1, t) = ∫ 1
0

∂
∂s ϕ(s, t) ds. However,

∂

∂s
ϕ(s, t) = −γ (t)e−sγ (t) ∂

∂t
esγ (t) + e−sγ (t) ∂

∂t

[
γ (t)esγ (t)

]
= −e−sγ (t)γ (t)

∂

∂t
esγ (t) + e−sγ (t)γ ′(t)esγ (t) + e−sγ (t)γ (t)

∂

∂t
esγ (t)

= e−sγ (t)γ ′(t)esγ (t),

so that ∂
∂s ϕ(s, t) = Ad(e−sγ (t))γ ′(t) = e−s ad γ (t)γ ′(t) by Equation 4.11. Thus

ϕ(1, t) =
∫ 1

0
e−s ad γ (t)γ ′(t) ds =

∫ 1

0

∞∑
n=0

(−s)n

n!
(ad γ (t))n γ ′(t) ds

=
( ∞∑

n=0

(−1)nsn+1

(n + 1)!
(ad γ (t))n γ ′(t)

)
|s=1
s=0 =

(
I − e− ad γ (t)

ad γ (t)

)
γ ′(t),

as desired. To show the second part of (a), use the relation leγ (t) = reγ (t) ◦Ad(eγ (t)) =
reγ (t) ◦ ead γ (t), where leγ (t) and reγ (t) stand for left and right multiplication by eγ (t). �

5.2.1.2 Dynkin’s Formula Let G be a Lie subgroup of GL(n,C). For Xi ∈ g, write
[Xn, . . . , X3, X2, X1] for the iterated Lie bracket[

Xn, . . . ,
[
X3,

[
X2,X1

]]
, . . .

]
and write [X (in)

n , . . . , X (i1)

1 ] for the iterated Lie bracket

[

in copies︷ ︸︸ ︷
Xn, . . . , Xn, . . . ,

i1 copies︷ ︸︸ ︷
X1, . . . , X1].

Although now known as the Campbell–Baker–Hausdorff Series ([21], [5], and
[49]), the following explicit formula is actually due to Dynkin ([35]). In the proof
we use the well-known fact that ln (X) inverts eX on a neighborhood of I , where
ln(I + X) = ∑∞

n=1
(−1)n+1

n Xn converges absolutely on a neighborhood 0 (Exercise
5.15).



5.2 Structure 107

Theorem 5.15 (Dynkin’s Formula). Let G be a Lie subgroup of GL(n,C). For
X, Y ∈ g in a sufficiently small neighborhood of 0,

eX eY = eZ ,

where Z is given by the formula

Z =
∑ (−1)n+1

n

1

(i1 + j1)+ · · · + (in + jn)

[X (i1), Y ( j1), . . . , X (i1), Y ( jn)]

i1! j1! · · · in! jn!
,

where the sum is taken over all 2n-tuples (i1, . . . , in, j1, . . . , jn) ∈ N2n satisfying
ik + jk ≥ 1 for positive n ∈ N.

Proof. The approach of this proof follows [34]. Using Theorem 4.6, choose a neigh-
borhood U0 of 0 in g on which exp is a local diffeomorphism and where ln is
well defined on exp U . Let U ⊆ U0 be an open ball about of 0 in g, so that
(exp U )2 (exp U )−2 ⊆ exp U0 (by continuity of the group structure as in Exercise
1.4). For X, Y ∈ U , define γ (t) = et X etY mapping a neighborhood of [0, 1] to
exp U . Therefore there is a unique smooth curve Z(t) ∈ U0, so that eZ(t) = et X etY .
Apply d

dt to this equation and use Theorem 5.14 to see that[(
ead Z(t) − I

ad Z(t)

) (
Z ′(t)

)]
eZ(t) = XeZ(t) + eZ(t)Y .

Since Z(t) ∈ U0, exp is a local diffeomorphism near Z(t). Thus the proof of

Theorem 5.14 shows that
(

I−e− ad Z(t)

ad Z(t)

)
is an invertible map on g. As eZ(t) = et X etY ,

Ad(eZ(t)) = Ad
(
et X

)
Ad

(
etY

)
, so that ead Z(t) = et ad X et ad Y by Equation 4.11. Thus

Z ′(t) =
(

ad Z(t)

ead Z(t) − I

) (
X + Ad(eZ(t))Y

) = (
ad Z(t)

ead Z(t) − I

) (
X + ead Z(t)Y

)
=
(

ad Z(t)

ead Z(t) − I

) (
X + et ad X et ad Y Y

) = (
ad Z(t)

ead Z(t) − I

) (
X + et ad X Y

)
.

Using the relation A = ln(I + (eA − I )) = ∑∞
n=1

(−1)n−1

n

(
eA − I

)n
for A =

ad Z(t) and eA = et ad X et ad Y , we get

ad Z(t)

ead Z(t) − I
=

∞∑
n=1

(−1)n−1

n

(
et ad X et ad Y − I

)n−1
.

Hence

Z ′(t) =
∞∑

n=1

(−1)n−1

n

(
et ad X et ad Y − I

)n−1 (
X + et ad X Y

)

=
∞∑

n=1

(−1)n−1

n

[ ∞∑
i, j=0, (i, j)�=(0,0)

t i+ j

i! j!
(ad X)i (ad Y ) j

]n−1(
X +

( ∞∑
i=0

t i

i!
(ad X)i

)
Y

)
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=
∞∑

n=1

(−1)n−1

n

[∑ t i1+ j1+···in−1+ jn−1

i1! j1! · · · in−1! jn−1!
[(X)i1 , (Y ) j1 , . . . , (X)ik−1 , (Y ) jk−1 , X ]

+
∑ t i1+ j1+···in−1+ jn−1+in

i1! j1! · · · in−1! jn−1!in!
[(X)i1 , (Y ) j1 , . . . , (X)ik−1 , (Y ) jk−1 , (X)in , Y ]

]
where the second and third sum are taken over all ik, jk ∈ N with ik + jk ≥ 1. Since
Z(0) = 0, Z(1) = ∫ 1

0
d
dt Z(t) dt . Integrating the above displayed equation finishes

the proof. �

The explicit formula for Z in Dynkin’s Formula is actually not important. In

practice it is much too difficult to use. However, what is important is the fact that
such a formula exists using only Lie brackets.

Corollary 5.16. Let N be a connected Lie subgroup of GL(n,C) whose Lie algebra
n lies in the set of strictly upper triangular matrices, i.e., if X ∈ n, then Xi, j = 0
when i ≥ j . Then the map exp: n → N is surjective, i.e., N = exp n.

Proof. It is a simple exercise to see that [Xn, . . . , X3, X2, X1] = 0 for any strictly
upper triangular X, Xi ∈ gl(n,C) and that eX is polynomial in X (Exercise 5.18).
In particular, for X, Y ∈ n near 0, Dynkin’s Formula gives a polynomial expression
for Z ∈ n solving eX eY = eZ . Since both sides of this expression are polynomials in
X and Y that agree on a neighborhood, they agree everywhere. Because the formula
for Z involves only the algebra structure of n, Z remains in n for X, Y ∈ n. In other
words, (exp n)2 ⊆ exp n. Since exp n generates N by Theorem 1.15, this shows that
exp n = N . �


5.2.2 Lie Algebra Structure

If Gi are Lie subgroups of a linear group, then, as in the proof of Theorem 4.16,
recall that the direct sum of g1 and g2, g1 ⊕ g2, may be viewed as the Lie algebra of
G1 × G2 with [X1 + X2, Y1 + Y2] = [X1, X2]+ [Y1, Y2] for Xi , Yi ∈ gi .

Definition 5.17. (a) Let g be the Lie algebra of a Lie subgroup of a linear group.
Then g is called simple if g has no proper ideals and if dim g > 1, i.e., if the only
ideals of g are {0} and g and g is non-Abelian.
(b) The Lie algebra g is called semisimple if g is a direct sum of simple Lie algebras.
(c) The Lie algebra g is called reductive if g is a direct sum of a semisimple Lie
algebra and an Abelian Lie algebra.
(d) Let g′ be the ideal of g spanned by [g, g].

Theorem 5.18. Let G be a compact Lie group with Lie algebra g. Then g is reductive.
If z(g) is the center of g, i.e., z(g) = {X ∈ g | [X, g] = 0}, then

g = g′ ⊕ z(g),

g′ is semisimple, and z(g) is Abelian. Moreover, there are simple ideals si of g′, so
that
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g′ =
k⊕

i=1

si

with [si , s j ] = 0 for i �= j and span[si , si ] = si .

Proof. Using Lemma 5.6, let (·, ·) be an Ad-invariant inner product on g, so that
ad X , X ∈ g, is skew-Hermitian. If a is an ideal of g, then a⊥ is also an ideal. It
follows that g can be written as a direct sum of minimal ideals

g = s1 ⊕ · · · ⊕ sk ⊕ z1 ⊕ · · · ⊕ zn,(5.19)

where dim si > 1 and dim z j = 1. Since si is an ideal, [si , s j ] ⊆ si ∩ s j . Thus
[si , s j ] = 0 for i �= j and [si , si ] ⊆ si . Similarly, [si , z j ] = 0 and [zi , z j ] = 0 for
i �= j . Moreover, [zi , zi ] = 0 since dim zi = 1 and [·, ·] is skew-symmetric.

In particular, z1 ⊕ · · · ⊕ zn ⊆ z(g). On the other hand, if Z ∈ z(g) is decomposed
according to Equation 5.19 as Z =∑

i Si +
∑

j Z j , then 0 = [Z , si ] = [Si , si ]. This
suffices to show that Si ∈ z(g) which, by construction of si as a minimal ideal with
dim si > 1, implies that Si = 0. Thus z(g) = z1 ⊕ · · · ⊕ zn . The remainder of the
proof follows by showing that span[si , si ] = si . However, this too follows from the
construction of si as a minimal ideal. Since si is not central, dim(span[si , si ]) ≥ 1.
As a result, dim(span[si , si ]) cannot be less than dim si either, or else span[si , si ]
would be a proper ideal. �


It is an important theorem from the study of Lie algebras (see [56], [61], or
[70]) that the simple Lie algebras are classified. It is rather remarkable that there are,
relatively speaking, so few of them. In §6.1.2 we will discuss the complexification
of our Lie algebras. In that setting, there are four infinite families of simple complex
Lie algebras. They arise from the compact classical Lie groups SU (n), SO(2n+1),
Sp(n), and SO(2n). Beside these families, there are only five other simple complex
Lie algebras. They are called exceptional and go by the names G2, F4, E6, E7, and
E8. They have dimensions are 14, 52, 78, 133, and 248, respectively.

5.2.3 Commutator Theorem

Definition 5.20. Let G be a Lie subgroup of a linear group. The commutator sub-
group, G ′, is the normal subgroup of G generated by

{g1g2g−1
1 g−1

2 | gi ∈ G}.

In a more general setting, G ′ need not be closed, however this nuisance does not
arise for compact Lie groups.

Theorem 5.21. Let G be a compact connected Lie group. Then G ′ is a connected
closed normal Lie subgroup of G with Lie algebra g′.



110 5 Abelian Lie Subgroups and Structure

Proof. As usual, Theorem 3.28, assume G is a closed Lie subgroup of U (n). With
respect to the standard representation on Cn , decompose Cn into its irreducible sum-
mands under the action of G, Cn ∼= Cn1 ⊕ · · · ⊕ Cnk with n1 + · · · + nk = n and
ni ≥ 1. Thus G can be viewed as a closed Lie subgroup of U (n1)× · · · ×U (nk), so
that the induced projection πi : G → U (ni ) yields an irreducible representation of
G.

Let ϕ : G → S1 × · · · × S1 (k copies) be the homomorphism induced by taking
the determinant of each πi (g). Define H to be the closed Lie subgroup of G given
by H = kerϕ. We will show that h = g′ and that H 0 = G ′, which will finish the
proof.

Recall that it follows easily from Theorem 4.6 that h = ker dϕ (Exercise 4.24)
and that the Lie algebra of Z(G) is z(g) (c.f. Exercises 4.22 or 5.8). Now if Z ∈ z(g),
then et Z ∈ Z(G), so that Schur’s Lemma implies πi et Z = ci (t)I for some scalar
ci (t) with ci (0) = 1. Evaluating at d

dt |0, this means that

Z = diag(

n1 copies︷ ︸︸ ︷
c′1(0), . . . , c′1(0), . . . ,

nk copies︷ ︸︸ ︷
c′k(0), . . . , c′k(0)).

Hence dϕ(Z) = (n1c′1(0), . . . , nkc′k(0)) and Z ∈ kerϕ if and only if Z = 0. On the
other hand, since g′ is spanned by [g, g], clearly tr(dπi X) = 0 for X ∈ g′ (Exercise
5.20). Thus detπi et X = 1 (Exercise 4.3), so that g′ ⊆ ker dϕ. Combined with the
decomposition from Theorem 5.18, it follows that h = g′.

Turning to G ′, let U = {g1g2g−1
1 g−1

2 | gi ∈ G}. Since U is the continuous image
of G × G under the obvious map, U is connected. As I ∈ U , I ∈ U j and since
G ′ = ∪ jU j , G ′ is therefore connected.

Next, by the multiplicative nature of determinants and the definition of the com-
mutator, it follows that πi G ′ ⊆ SU (ni ) so that G ′ ⊆ H . It only remains to see
H 0 ⊆ G ′ since G ′ is connected. For this, it suffices to show that G ′ contains a neigh-
borhood of I in H by Theorem 1.15.

To this end, for X, Y ∈ h, define cX,Y (t) ∈ H ∩ G ′, t ∈ R, by

cX,Y (t) =
{

e
√

t X e
√

tY e−
√

t X e−
√

tY t ≥ 0
e
√|t |X e−

√|t |Y e−
√|t |X e

√|t |Y t < 0.

Using either Dynkin’s Formula (Exercise 5.21, c.f. Exercises 4.26 and 5.16) or ele-

mentary power series calculations, it easily follows that cX,Y (t) = et[X,Y ]+O(|t | 3
2 ) for

t near 0, so that cX,Y is continuously differentiable with c′X,Y (0) = [X, Y ].
Let {[Xi , Yi ]}p

i=1 be a basis for g′ and consider the map c : Rp → H given by
c(t1, . . . , tp) =

∏
i cXi ,Yi (t). As c′X,Y (0) = [X, Y ], the differential of c at 0 is an

isomorphism to h (c.f. Exercise 4.12). Thus the image of c contains a neighborhood
of I in H and, since c(t) is also in G ′, the proof is finished. �


5.2.4 Compact Lie Group Structure

Theorem 5.22. (a) Let G be a compact connected Lie group. Then G = G ′Z(G)0,
Z(G ′) = G ′ ∩ Z(G) is a finite Abelian group, Z(G)0 is a torus, and
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G ∼= [
G ′ × Z(G)0

]
/F,

where the finite Abelian group F = G ′ ∩ Z(G)0 is embedded in G ′ × Z(G)0 as
{( f, f −1) | f ∈ F}.
(b) Decompose g′ = s1 ⊕ · · · ⊕ sk into simple ideals as in Theorem 5.18 and let
Si = exp si . Then Si is a connected closed normal Lie subgroup of G ′ with Lie
algebra si . The only proper closed normal Lie subgroups of Si are discrete, finite,
and central in G. Moreover, the map (s1, . . . , sk) → si · · · sk from S1 × · · · × Sk to
G ′ is a surjective homomorphism with finite central kernel, F ′, so that

G ′ ∼= [S1 × · · · × Sk] /F ′.

Proof. For part (a), first note that G ′ is closed and therefore compact. It follows from
the Maximal Torus Theorem that G ′ = exp g′. Using the decomposition g = g′⊕z(g)
and the fact that the Lie algebra of Z(G) is z(g), Theorems 5.1 and 5.2 show exp g =
G ′Z(G)0. Thus G = G ′Z(G)0. This relation also shows that Z(G ′) = G ′ ∩ Z(G).

Using the machinery from the proof Theorem 5.21, any Z ∈ Z(G) must be
of the form Z = diag(c1, . . . , c1, . . . , ck, . . . , ck). If also Z ∈ G ′, then cn1

1 =
. . . , cnk

k = 1, so that ci is an nth
i -root of unity. In particular, G ′ ∩ Z(G) is a finite

Abelian group. Finally, consider the surjective homomorphism mapping (g, z)→ gz
from G ′ × Z(G)0 → G. Clearly the kernel is {( f, f −1) | f ∈ F}, as desired.

For part (b), the fact that si and s j , i �= j , commute and G ′ = exp g′ show
G ′ = S1 · · · Sk with Si and Sj , i �= j , commuting. It is necessary to verify that Si

is a closed Lie subgroup. To this end, write Ad(g)|s j for Ad(g) restricted to s j and
let Ki = {g ∈ G ′ | Ad(g)|s j = I , j �= i}0. Obviously Ki is a connected closed Lie
subgroup of G ′. We will show that Ki = Si .

Now X ∈ ki if and only if et X ∈ Ki , t ∈ R, if and only if Ad(et X )|s j =
et ad(X)|s j = I for j �= i . Using d

dt |t=0, X ∈ ki if and only if [X, s j ] = 0 for
j �= i . Since s j is an ideal with span[s j , s j ] = s j and [si , s j ] = 0, decomposing X
according to s1 ⊕ · · · ⊕ sk shows ki = si . Thus Ki = exp ki = Si and in particular,
Si is a closed connected normal Lie subgroup with Lie algebra si .

If N is a normal Lie subgroup of Si , then cs N = N for s ∈ Si . Since Ad(s) is
the differential of cs , Ad(s)n = n. Since ad is the differential of Ad, ad(X)n ⊆ n,
X ∈ si , so that n is an ideal (c.f. Exercise 4.23). By construction, this forces n to
be si or {0}, so that N = Si or N 0 = I . Assuming further that N is proper and
closed, therefore compact, N must be discrete and finite. Lemma 1.21 shows that N
is central. Finally, the differential of the map (s1, . . . , sk) → si · · · sk is obviously
the identity map, so that F ′ is discrete and normal. As above, this shows that F ′ is
finite and central as well. �


The effect of Theorem 5.22 is to reduce the study of connected compact groups
to the study of connected compact groups with simple Lie algebras.

5.2.5 Exercises

Exercise 5.14 Let X ∈ gl(n,C) be diagonalizable with eigenvalues {λi }ni=1. Show
that ad(X) has eigenvalues {λi − λ j }ni, j=1.
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Exercise 5.15 Show that ln(I + X) = ∑∞
n=1

(−1)n+1

n Xn is well defined for X in a
neighborhood of I in GL(n,C). On that neighborhood, show that ln X is the inverse
function to eX .

Exercise 5.16 Let G be a Lie subgroup of GL(n,C). For X, Y ∈ g in a sufficiently
small neighborhood of 0, show that

eX eY = eX+Y+ 1
2 [X,Y ]+ 1

12 [X,[X,Y ]]+ 1
12 [Y,[Y,X ]]+ 1

24 [Y,[X,[Y,X ]]]+···.

Exercise 5.17 Let G be a Lie subgroup of GL(n,C). For X, Y ∈ g in a sufficiently
small neighborhood of 0, write eX eY = eZ . Modify the proof of Dynkin’s Formula
to show Z is also given by the formula

Z =
∑ (−1)n

n + 1

1

i1 + · · · + in + 1

[X (i1), Y ( j1), . . . , X (i1), Y ( jn), X ]

i1! j1! · · · in! jn!

by starting with eZ(t) = et X eY .

Exercise 5.18 Let X, Xi ∈ gl(n,C) be strictly upper triangular. Show that
Xn · · · X2 X1 = 0, so that

[
Xn, . . .

[
X3,

[
X2,X1

]]
. . .

] = 0 and eX is a polynomial in
X .

Exercise 5.19 Let Ni be connected Lie subgroups of GL(n,C) whose Lie algebras
ni lie in the set of strictly upper triangular matrices. Suppose ψ : n1 → n2 is a linear
map. Show ψ descends to a well-defined homomorphism of groups ϕ : N1 → N2

by ϕ(eX ) = eψX if and only if ψ is a Lie algebra homomorphism.

Exercise 5.20 For X, Y ∈ gl(n,C), show that tr XY = tr Y X .

Exercise 5.21 In the proof of Theorem 5.21, verify that cX,Y (t) = et[X,Y ]+O(|t | 3
2 ).

Exercise 5.22 (1) Take advantage of diagonalization to show directly that U (n)′ =
SU (n).
(2) Show that GL(n,F)′ = SL(n,F).

Exercise 5.23 For a Lie subgroup G ⊆ U (n), show that the differential of the deter-
minant det : G → S1 is the trace.

Exercise 5.24 (1) Let G be a Lie subgroup of GL(n,C). Show that G ′ is the smallest
normal subgroup subgroup of G whose quotient group in G is commutative.
(2) Show that g′ is the smallest ideal of g whose quotient algebra in g is commutative.

Exercise 5.25 Let G be a compact connected Lie group and write G =
S1 · · · Sk Z(G)0 as in Theorem 5.22. Show that any closed normal Lie subgroup of G
is a product of some of the Si with a central subgroup.



6

Roots and Associated Structures

By examining the joint eigenvalues of a Cartan subalgebra under the ad-action, a
great deal of information about a Lie group and its Lie algebra may be encoded. For
instance, the fundamental group can be read off from this data (§6.3.3). Moreover,
this encoding is a key step in the classification of irreducible representations (§7).

6.1 Root Theory

6.1.1 Representations of Lie Algebras

Definition 6.1. (a) Let g be the Lie algebra of a Lie subgroup of GL(n,C). A
representation of g is a pair (ψ, V ), where V is a finite-dimensional complex
vector space and ψ is a linear map ψ : g → End(V ), satisfying ψ([X, Y ]) =
ψ(X) ◦ ψ(Y )− ψ(Y ) ◦ ψ(X) for X, Y ∈ g.
(b) The representation (ψ, V ) is said to be irreducible if there are no proper ψ(g)-
invariant subspaces, i.e., the only ψ(g)-invariant subspaces are {0} and V . Otherwise
(ψ, V ) is called reducible.

As with group representations, a Lie algebra representation (ψ, V ) may simply
be written as ψ or as V when no ambiguity can arise. Also similar to the group case,
ψ(X)v, v ∈ V , may be denoted by X · v or by Xv.

It should be noted that if V is m-dimensional, a choice of basis allows us to
view a representation of g as a homomorphism ψ : g → gl(m,C), i.e., ψ is linear
and satisfies ψ[X, Y ] = [ψX, ψY ]. We will often make this identification without
comment.

Theorem 6.2. (a) Let G be a Lie subgroup of GL(n,C) and (π, V ) a finite-dimen-
sional representation of G. Then (dπ, V ) is a representation of g satisfying edπX =
π(eX ), where the differential of π is given by dπ(X) = d

dt π(e
t X )|t=0 for X ∈ g. If G

is connected, π is completely determined by dπ .
(b) For connected G, a subspace W ⊆ V is π(G)-invariant if and only if it is dπ(g)-
invariant. In particular, V is irreducible under G if and only if it is irreducible un-
der g.
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(c) For connected compact G, V is irreducible if and only if the only endomorphisms
of V commuting with all the operators dπ(g) are scalar multiples of the identity
map.

Proof. Part (a) follows immediately from Theorem 4.8 by looking at the homomor-
phism π : G → GL(V ) and choosing a basis for V . Part (b) follows from the
relation edπX = π(eX ), the definition of dπ , and the fact that exp g generates G. For
part (c), let T ∈ End(V ) and embed G in GL(n,C). Observe that [T, dπX ] = 0 if
and only if et ad(dπX)T = T , t ∈ R, if and only if Ad(etdπX )T = T if and only if T
commutes with etdπX = π(et X ). Using the fact that G is connected, part (c) follows
from part (b) and Schur’s Lemma. �


As an example, let G be a Lie subgroup of GL(n,C) and let (π,C) be the trivial
representation of G. Then dπ = 0. This representation of g is called the trivial
representation.

As a second example, let G be a Lie subgroup of GL(n,C) and let (π,Cn) be
the standard representation. Then dπ(X)v = Xv for v ∈ Cn . This representation is
called the standard representation. In the cases of G equal to GL(n,F), SL(n,F),
U (n), SU (n), or SO(n), the standard representation is known to be irreducible on
the Lie group level (§2.2.2), so that each is irreducible on the Lie algebra level.

As a last example, consider the representation Vn(C2) of SU (2) from §2.1.2.2
given by (

a −b
b a

)
· zk

1zn−k
2 = (az1 + bz2)

k(−bz1 + az2)
n−k .

From §4.1.3, su(2) = {X =
(

i x −w

w −i x

)
| x ∈ R, w ∈ C}. Using either power series

calculations or Corollary 4.9, exp t X = (cos λt) I + (
1
λ

sin λt
)

X where λ = √
det X

(Exercise 6.2). It follows that the Lie algebra acts by

X · (zk
1zn−k

2 ) = d

dt

((
cos λt + i x

λ
sin λt −w

λ
sin λt

w
λ

sin λt cos λt − i x
λ

sin λt

)
· zk

1zn−k
2

)
|t=0

= k (−i xz1 + wz2) zk−1
1 zn−k

2 + (n − k) (−wz1 + i xz2) zk
1zn−k−1

2

= kw zk−1
1 zn−k+1

2 + i (n − 2k) x zk
1zn−k

2 + (k − n)w zk+1
1 zn−k−1

2 .(6.3)

It is easy to use Equation 6.3 and Theorem 6.2 to show that Vn(C2) is irreducible. In
fact, this is the idea underpinning the argument given in §2.1.2.2.

As in the case of representations of Lie groups, new Lie algebra representations
can be created using linear algebra. It is straightforward to verify (Exercise 6.1) that
differentials of the Lie group representations listed in Definition 2.10 yield the fol-
lowing Lie algebra representations.

Definition 6.4. Let V and W be representations of a Lie algebra g of a Lie subgroup
of GL(n,C).
(1) g acts on V ⊕ W by X (v,w) = (Xv, Xw).
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(2) g acts on V ⊗ W by X
∑

vi ⊗ w j =
∑

Xvi ⊗ w j +
∑

vi ⊗ Xw j .
(3) g acts on Hom(V, W ) by (XT ) (v) = XT (v)− T (Xv).
(4) g acts on

⊗k V by X
∑

vi1⊗· · · vik =
∑(

Xvi1

)⊗· · · vik+· · ·
∑

vi1⊗· · ·
(
Xvik

)
.

(5) g acts on
∧k V by X

∑
vi1 ∧· · · vik =

∑(
Xvi1

)∧· · · vik +· · ·
∑

vi1 ∧· · ·
(
Xvik

)
.

(6) g acts on Sk(V ) by X
∑

vi1 · · · vik =
∑(

Xvi1

) · · · vik + · · ·
∑

vi1 · · ·
(
Xvik

)
.

(7) g acts on V ∗ by (XT ) (v) = −T (Xv).
(8) g acts on V by the same action as it does on V .

6.1.2 Complexification of Lie Algebras

Definition 6.5. (a) Let g be the Lie algebra of a Lie subgroup of GL(n,C). The
complexification of g, gC, is defined as gC = g⊗RC. The Lie bracket on g is extended
to gC by C-linearity.
(b) If (ψ, V ) is a representation of g, extend the domain of ψ to gC by C-linearity.
Then (ψ, V ) is said to be irreducible under gC if there are no proper ψ(gC)-invariant
subspaces.

Writing a matrix in terms of its skew-Hermitian and Hermitian parts, observe
that gl(n,C) = u(n) ⊕ iu(n). It follows that if g is the Lie algebra of a compact
Lie group G realized with G ⊆ U (n), gC may be identified with g ⊕ ig equipped
with the standard Lie bracket inherited from gl(n,C) (Exercise 6.3). We will often
make this identification without comment. In particular, u(n)C = gl(n,C). Similarly,
su(n)C = sl(n,C), so(n)C is realized by

so(n,C) = {X ∈ sl(n,C) | Xt = −X},

and, realizing sp(n) as u(2n) ∩ sp(n,C) as in §4.1.3, sp(n)C is realized by sp(n,C)

(Exercise 6.3).

Lemma 6.6. Let g be the Lie algebra of a Lie subgroup of GL(n,C) and let (ψ, V )

be a representation of g. Then V is irreducible under g if and only if it is irreducible
under gC.

Proof. Simply observe that since a subspace W ⊆ V is a complex subspace, W is
ψ(g)-invariant if and only if it is ψ(gC)-invariant. �


For example, su(2)C = sl(2,C) is equipped with the standard basis

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)

(c.f. Exercise 4.21). Since E = 1
2

(
0 1
−1 0

)
− i

2

(
0 i
i 0

)
, Equation 6.3 shows that

the resulting action of E on Vn(C2) is given by
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E · (zk
1zn−k

2 ) = 1

2

[−k zk−1
1 zn−k+1

2 − (k − n) zk+1
1 zn−k−1

2

]
− i

2

[−ik zk−1
1 zn−k+1

2 + i(k − n) zk+1
1 zn−k−1

2

]
= −k zk−1

1 zn−k+1
2 .

Similarly (Exercise 6.4), the action of H and F on Vn(C2) is given by

H · (zk
1zn−k

2 ) = (n − 2k) zk
1zn−k

2(6.7)

F · (zk
1zn−k

2 ) = (k − n) zk+1
1 zn−k−1

2 .

Irreducibility of Vn(C2) is immediately apparent from these formulas (Exercise 6.7).

6.1.3 Weights

Let G be a compact Lie group and (π, V ) a finite-dimensional representation of G.
Fix a Cartan subalgebra t of g and write tC for its complexification. By Theorem
5.6, there exists an inner product, (·, ·), on V that is G-invariant and for which dπ
is skew-Hermitian on g and is Hermitian on ig. Thus tC acts on V as a family of
commuting normal operators and so V is simultaneously diagonalizable under the
action of tC. In particular, the following definition is well defined.

Definition 6.8. Let G be a compact Lie group, (π, V ) a finite-dimensional represen-
tation of G, and t a Cartan subalgebra of g. There is a finite set �(V ) = �(V, tC) ⊆
t∗
C

, called the weights of V , so that

V =
⊕

α∈�(V )

Vα,

where

Vα = {v ∈ V | dπ(H)v = α(H)v, H ∈ tC}

is nonzero. The above displayed equation is called the weight space decomposition
of V with respect to tC.

As an example, take G = SU (2), V = Vn(C2), and t to be the diagonal matrices
in su(2). Define αm ∈ t∗

C
by requiring αm(H) = m. Then Equation 6.7 shows that

the weight space decomposition for Vn(C2) is Vn(C2) = ⊕n
k=0 Vn(C2)αn−2k , where

Vn(C2)αn−2k = Czk
1zn−k

2 .

Theorem 6.9. (a) Let G be a compact Lie group, (π, V ) a finite-dimensional repre-
sentation of G, T a maximal torus of G, and V = ⊕

α∈�(V,tC)
Vα the weight space

decomposition. For each weight α ∈ �(V ), α is purely imaginary on t and is real
valued on it.
(b) For t ∈ T , choose H ∈ t so that eH = t . Then tvα = eα(H)vα for vα ∈ Vα .
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Proof. Part (a) follows from the facts that dπ is skew-Hermitian on t and is Her-
mitian on it. Part (b) follows from the fact that exp t = T and the relation
edπH = π(eH ). �


By C-linearity, α ∈ �(V ) is completely determined by its restriction to either t
or it. Thus we permit ourselves to interchangeably view α as an element of any of
the dual spaces t∗

C
, (it)∗ (real valued), or t∗ (purely imaginary valued). In alternate

notation (not used in this text), it is sometimes written tC(R).

6.1.4 Roots

Let G be a compact Lie group. For g ∈ G, extend the domain of Ad(g) from g to gC

by C-linearity. Then (Ad, gC) is a representation of G with differential given by ad
(extended by C-linearity). It has a weight space decomposition

gC =
⊕

α∈�(gC,tC)

gα

that is important enough to warrant its own name. Notice the zero weight space is
g0 = {Z ∈ gC | [H, Z ] = 0, H ∈ tC}. Thus

g0 = tC

since t is a maximal Abelian subspace of g. In the definition below, it turns out to be
advantageous to separate this zero weight space from the remaining nonzero weight
spaces.

Definition 6.10. Let G be a compact Lie group and t a Cartan subalgebra of g. There
is a finite set of nonzero elements �(gC) = �(gC, tC) ⊆ t∗

C
, called the roots of gC,

so that

gC = tC ⊕
⊕

α∈�(gC)

gα,

where gα = {Z ∈ gC | [H, Z ] = α(H)Z , H ∈ tC} is nonzero. The above displayed
equation is called the root space decomposition of gC with respect to tC.

Theorem 6.11. (a) Let G be a compact Lie group, (π, V ) a finite-dimensional rep-
resentation of G, and t a Cartan subalgebra of g. For α ∈ �(gC) and β ∈ �(V ),
dπ(gα)Vβ ⊆ Vα+β .
(b) In particular for α, β ∈ �(gC) ∪ {0}, [gα, gβ] ⊆ gα+β .
(c) Let (·, ·) be an Ad(G)-invariant inner product on gC. For α, β ∈ �(gC) ∪ {0},
(gα, gβ) = 0 when α + β �= 0.
(d) If g has trivial center (i.e., if g is semisimple), then �(gC) spans t∗

C
.

Proof. For part (a), let H ∈ tC, Xα ∈ gα , and vβ ∈ Vβ and calculate
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dπ(H)dπ(Xα)vβ = (dπ(Xα)dπ(H)+ [dπ(H), dπ(Xα)]) vβ
= (dπ(Xα)dπ(H)+ dπ [H, Xα]) vβ
= (dπ(Xα)dπ(H)+ α(H)dπ (Xα)) vβ

= (β(H)+ α(H)) dπ(Xα)vβ,

so that dπ(Xα)vβ ∈ Vα+β as desired. Part (b) clearly follows from part (a).
For part (c), recall that Lemma 5.6 shows that ad is skew-Hermitian. Thus

α(H)(Xα, Xβ) = ([H, Xα], Xβ) = −(Xα, [H, Xβ]) = −β(H)(Xα, Xβ).

For part (d), suppose H ∈ tC satisfies α(H) = 0 for all α ∈ �(gC). It suffices to
show that H = 0. However, the condition α(H) = 0 for all α ∈ �(gC) is equivalent
to saying that H is central in gC. Since it is easy to see that z(gC) = z(g)C (Exercise
6.5), it follows from semisimplicity and Theorem 5.18 that H = 0. �


In §6.2.3 we will further see that dim gα = 1 for α ∈ �(gC) and that the only
multiples of α in �(gC) are ±α.

6.1.5 Compact Classical Lie Group Examples

The root space decomposition for the complexification of the Lie algebra of each
compact classical Lie group is given below. The details are straightforward to verify
(Exercise 6.10).
6.1.5.1 su(n) For G = U (n) with t = {diag(iθ1, . . . , iθn) | θi ∈ R}, gC =
gl(n,C) and tC = {diag(z1, . . . , zn) | zi ∈ C}. For G = SU (n) with t =
{diag(iθ1, . . . , iθn) | θi ∈ R,

∑
i θi = 0}, gC = sl(n,C) and tC = {diag(z1, . . . , zn) |

zi ∈ C,
∑

i zi = 0}. In either case, it is straightforward to check that the set of roots
is given by

�(gC) = {±(εi − ε j ) | 1 ≤ i < j ≤ n},
where εi (diag(z1, . . . , zn)) = zi . In the theory of Lie algebras, this root system is
called An−1. The corresponding root space is

gεi−ε j = CEi, j ,

where {Ei, j } is the standard basis for n × n matrices.
6.1.5.2 sp(n) For G = Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) with
t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R}, gC = sp(n,C) and tC =
{diag(z1, . . . , zn,−z1, . . . ,−zn) | zi ∈ C}. Then

�(gC) = {±(εi − ε j ) | 1 ≤ i < j ≤ n} ∪ {± (
εi + ε j

) | 1 ≤ i ≤ j ≤ n},
where εi (diag(z1, . . . , zn,−z1, . . . ,−zn)) = zi . In the theory of Lie algebras, this
root system is called Cn . The corresponding root spaces are

gεi−ε j = C
(
Ei, j − E j+n,i+n

)
gεi+ε j = C

(
Ei, j+n + E j,i+n

)
, g−εi−ε j = C

(
Ei+n, j + E j+n,i

)
g2εi = CEi,i+n , g−2εi = CEi+n,i .



6.1 Root Theory 119

6.1.5.3 so(En) For SO(n), it turns out that the root space decomposition is a bit
messy (see Exercise 6.14 for details). The results are much cleaner if we diagonalize
by making a change of variables. In other words, we will examine an isomorphic
copy of SO(n) instead of SO(n) itself. Define

T2m = 1√
2

(
Im Im

i Im −i Im

)
, E2m =

(
0 Im

Im 0

)
,

T2m+1 =
(

T2m 0
0 1

)
, E2m+1 =

(
E2m 0

0 1

)
,

SO(En) = {g ∈ SL(n,C) | g = EngEn , gt Eng = En},

so(En) = {X ∈ gl(n,C) | X = En X En , Xt En + En X = 0},

so(En,C) = {X ∈ gl(n,C) | Xt En + En X = 0}.
Notice that En = T t

n Tn and T n = T−1,t
n . The following lemma is straightforward and

left as an exercise (Exercise 6.12).

Lemma 6.12. (a) SO(En) is a compact Lie subgroup of SU (n) with Lie algebra
so(En) and with complexified Lie algebra so(En,C).
(b) The map g → T−1

n gTn induces an isomorphism of Lie groups SO(n) ∼= SO(En).
(c) The map X → T−1

n XTn induces an isomorphism of Lie algebras so(n) ∼= so(En)

and so(n,C) ∼= so(En,C).
(d) For n = 2m, a maximal torus is given by

T = {diag(eiθ1 , . . . , eiθm , e−iθ1 , . . . , e−iθm ) | θi ∈ R}
with corresponding Cartan subalgebra

t = {diag(iθ1, . . . , iθm,−iθ1, . . . ,−iθm) | θi ∈ R}
and complexification

tC = {diag(z1, . . . , zm,−z1, . . . ,−zm) | zi ∈ C}.

(e) For n = 2m + 1, a maximal torus is given by

T = {diag(eiθ1 , . . . , eiθm , e−iθ1 , . . . , e−iθm , 1) | θi ∈ R}
with corresponding Cartan subalgebra

t = {diag(iθ1, . . . , iθm,−iθ1, . . . ,−iθm, 0) | θi ∈ R}
and complexification

tC = {diag(z1, . . . , zm,−z1, . . . ,−zm, 0) | zi ∈ C}.
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6.1.5.4 so(2n) Working with G = SO(E2n) and the Cartan subalgebra from
Lemma 6.12, the set of roots is

�(gC) = {± (
εi ± ε j

) | 1 ≤ i < j ≤ n},
where εi (diag(z1, . . . , zn,−z1, . . . ,−zn)) = zi . In the theory of Lie algebras, this
root system is called Dn . The corresponding root spaces are

gεi−ε j = C
(
Ei, j − E j+n,i+n

)
, g−εi+ε j = C

(
E j,i − Ei+n, j+n

)
gεi+ε j = C

(
Ei, j+n − E j,i+n

)
, g−εi−ε j = C

(
Ei+n, j − E j+n,i

)
.

6.1.5.5 so(2n + 1) Working with G = SO(E2n+1) and with the Cartan subalgebra
from Lemma 6.12, the set of roots is

�(gC) = {± (
εi ± ε j

) | 1 ≤ i < j ≤ n} ∪ {±εi | 1 ≤ i ≤ n},
where εi (diag(z1, . . . , zn,−z1, . . . ,−zn, 0)) = zi . In the theory of Lie algebras,
this root system is called Bn . The corresponding root spaces are

gεi−ε j = C
(
Ei, j − E j+n,i+n

)
, g−εi+ε j = C

(
E j,i − Ei+n, j+n

)
gεi+ε j = C

(
Ei, j+n − E j,i+n

)
, g−εi−ε j = C

(
Ei+n, j − E j+n,i

)
.

gεi = C
(
Ei,2n+1 − E2n+1,i+n

)
, g−εi = C

(
Ei+n,2n+1 − E2n+1,i

)
.

6.1.6 Exercises

Exercise 6.1 Verify that the differentials of the actions given in Definition 2.10 give
rise to the actions given in Definition 6.4.

Exercise 6.2 For X =
(

i x z
−z −i x

)
, x ∈ R and z ∈ C, let λ =

√
x2 + |z|2. Show

that exp X = (cos λ) I + sin λ
λ

X .

Exercise 6.3 (1) Show that gl(n,C) = u(n)⊕ iu(n).
(2) Suppose g is the Lie algebra of a compact Lie group G with G a Lie subgroup
of U (n). Show that there is an isomorphism of algebras g⊗R C ∼=g⊕ ig induced by
mapping X ⊗ (a + ib) to aX + ibX for X ∈ g and a, b ∈ R.
(3) Show that su(n)C = sl(n,C) and that so(n)C = so(n,C).
(4) Show that sp(n)C ∼= sp(n,C) and that

sp(n,C) = {
(

X Y
Z −Xt

)
| X, Y, Z ∈ gl(n,C), Y t = Y , Zt = Z}.

(5) Show that so(E2n)C = so(E2n,C) and that
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so(E2n,C) = {
(

X Y
Z −Xt

)
| X, Y, Z ∈ gl(n,C), Y t = −Y , Zt = −Z}.

(6) Show thatso(E2n+1)C = so(E2n+1,C) and that

so(E2n+1,C)

= {
⎛⎝ X Y u

Z −Xt v

−vt −ut 0

⎞⎠ | X, Y, Z ∈ gl(n,C), Y t = −Y , Zt = −Z , u, v ∈ Cn}.

Exercise 6.4 Verify Equation 6.7.

Exercise 6.5 Let G be a compact Lie group. Show that z(gC) = z(g)C.

Exercise 6.6 (1) Let G be a Lie subgroup of GL(n,C) and assume g is semisimple.
Show that any one-dimensional representation of g is trivial, i.e., g acts by 0.
(2) Show that any one-dimensional representation of G is trivial.

Exercise 6.7 Use Equation 6.7 to verify that Vn(C2) is an irreducible representation
of SU (2).

Exercise 6.8 This exercise gives an algebraic proof of the classification of irre-
ducible representations of SU (2) (c.f. Theorem 3.32).
(1) Given any irreducible representation V of SU (2), show that there is a nonzero
v0 ∈ V , so that Hv0 = λv0, λ ∈ C, and so that Ev0 = 0.
(2) Let vi = Fiv0. Show that Hvi = (λ− 2i)vi and Evi = i(λ− i + 1)vi−1.
(3) Let m be the smallest natural number satisfying vm+1 = 0. Show that {vi }mi=0 is a
basis for V .
(4) Show that the trace of the H action on V is zero.
(5) Show that λ = m and use this to show that V ∼= Vm(C2).

Exercise 6.9 (1) Find the weight space decomposition for the standard representa-
tion of SU (n) on Cn .
(2) Find the weight space decomposition for the standard representation of SO(n)
on Cn .

Exercise 6.10 Verify that the roots and root spaces listed in §6.1.5 are correct (c.f.,
Exercise 6.3).

Exercise 6.11 Let G be a compact Lie group and t a Cartan subalgebra of g. Use root
theory to show directly that there exists X ∈ t, so that t = zg(X) (c.f. Lemma 5.7).

Exercise 6.12 Prove Lemma 6.12.

Exercise 6.13 (1) Let g be the Lie algebra of a Lie subgroup of a linear group. Then
gC is called simple if gC has no (complex) proper ideals and if dimC g > 1, i.e., if
the only ideals of gC are {0} and gC and if gC is non-Abelian. Show that g is simple
if and only if gC is simple.
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(2) Use the root decomposition to show that sl(n,C) is simple, n ≥ 2.
(3) Show that sp(n,C) is simple, n ≥ 1.
(4) Show that s0(2n,C) is simple for n ≥ 3, but that so(4,C) ∼= sl(2,C)⊕ sl(2,C).
(5) Show that so(2n + 1,C) is simple, n ≥ 1.

Exercise 6.14 (1) For G = SO(2n) and

t = {blockdiag

((
0 θ1

−θ1 0

)
, . . . ,

(
0 θn

−θn 0

))
| θi ∈ R}

as in §5.1.2, gC = so(2n,C) and

tC = {blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

))
| zi ∈ C}.

Show that

�(gC, tC) = {± (
εi − ε j

)
, ± (

εi + ε j
) | 1 ≤ i < j ≤ n},

where ε j (blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

))
) = −i z j . Partition each 2n ×

2n matrix into n2 blocks of size 2× 2. For α = ±εi ± ε j , show that the root space is
gα = CEα , where Eα is 0 on all 2 × 2 blocks except for the i j th block and the j i th

block. Show that Eα is given by the matrix Xα on the i j th block and by −Xt
α on the

j i th block, where

Xεi−ε j =
(

1 i
−i 1

)
, X−εi+ε j =

(
1 −i
i 1

)
Xεi+ε j =

(
1 −i
−i −1

)
, X−εi−ε j =

(
1 i
i −1

)
.

(2) For G = SO(2n + 1) and

t = {blockdiag

((
0 θ1

−θ1 0

)
, . . . ,

(
0 θn

−θn 0

)
, 0

)
| θi ∈ R}

as in §5.1.2, gC = so(2n + 1,C) and

tC = {blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

)
, 0

)
| zi ∈ C}.

Show that

�(gC, tC) = {± (
εi ± ε j

) | 1 ≤ i < j ≤ n} ∪ {±εi | 1 ≤ i ≤ n},
where

ε j (blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

)
, 0

)
) = −i z j .
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For α = ± (
εi ± ε j

)
, show that the root space is obtained by embedding the corre-

sponding root space from so(2n,C) into so(2n + 1,C) via the map X →
(

X 0
0 0

)
.

For α = ±ε j , show that the root space is gα = CEα , where Eα is 0 except on the
last column and last row. Writing v ∈ C2n+1 for the last column, show the last row
of Eα is given by −vt , where v is given in terms of the standard basis vectors by
v = e2 j−1 ∓ ie2 j .

6.2 The Standard sl(2, C) Triple

6.2.1 Cartan Involution

Definition 6.13. Let G be a compact Lie group. The Cartan involution, θ , of gC with
respect to g is the Lie algebra involution of gC given by θ(X ⊗ z) = X ⊗ z for
X ∈ g and z ∈ C. In other words, if Z ∈ gC is uniquely written as Z = X + iY for
X, Y ∈ g⊗ 1, then θ Z = X − iY .

It must be verified that θ is a Lie algebra involution, but this follows from a
simple calculation (Exercise 6.15). Under the natural embedding of g in gC, notice
that the +1 eigenspace of θ on gC is g and that the −1 eigenspace is ig. Notice also
that when g ⊆ u(n), then θ Z = −Z∗ for Z ∈ gC since X∗ = −X for X ∈ u(n). In
particular,

θ Z = −Z∗

when g is u(n), su(n), sp(n), so(n), or so(En).

Lemma 6.14. Let G be a compact Lie group and t be a Cartan subalgebra of g.
(a) If α ∈ �(gC), then −α ∈ �(gC) and g−α = θgα .
(b) θ tC = tC.

Proof. Let α ∈ �(gC) ∪ {0}. Recalling that θ is an involution, it suffices to show
θgα ⊆ g−α . Write Z ∈ gα uniquely as Z = X + iY for X, Y ∈ g ⊗ 1. Then for
H ∈ t,

α(H)(X + iY ) = [H, X + iY ] = [H, X ]+ i[H, Y ].

Since α(H) ∈ iR by Theorem 6.9 and since [H, X ], [H, Y ] ∈ g⊗ 1,

α(H)X = i[H, Y ] and α(H)Y = −i[H, X ].

Thus

[H, θ Z ] = [H, X ]− i[H, Y ] = −α(H)(X − iY ) = −α(H) (θ Z) ,

so that θ Z ∈ g−α , as desired. �

In particular, notice that g is spanned by elements of the form Z+θ Z for Z ∈ gα ,

α ∈ �(gC) ∪ {0}.
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6.2.2 Killing Form

Definition 6.15. Let g be the Lie algebra of a Lie subgroup of GL(n,C). For X, Y ∈
gC, the symmetric complex bilinear form B(X, Y ) = tr(ad X ◦ ad Y ) on gC is called
the Killing form.

Theorem 6.16. Let g be the Lie algebra of a compact Lie group G.
(a) For X, Y ∈ g, B(X, Y ) = tr(ad X ◦ ad Y ) on g.
(b) B is Ad-invariant, i.e., B(X, Y ) = B(Ad(g)X,Ad(g)Y ) for g ∈ G and X, Y ∈
gC.
(c) B is skew ad-invariant, i.e., B(ad(Z)X, Y ) = −B(X, ad(Z)Y ) for Z , X, Y ∈ gC.
(d) B restricted to g′ × g′ is negative definite.
(e) B restricted to gα × gβ is zero when α + β �= 0 for α, β ∈ �(gC) ∪ {0}.
(f) B is nonsingular on gα×g−α . If g is semisimple with a Cartan subalgebra t, then
B is also nonsingular on tC × tC.
(g) The radical of B, rad B = {X ∈ gC | B(X, gC) = 0}, is the center of gC, z(gC).
(h) If g is semisimple, the form (X, Y ) = −B(X, θY ), X, Y ∈ gC, is an Ad-invariant
inner product on gC.
(i) Let g be simple and choose a linear realization of G, so that g ⊆ u(n). Then there
exists a positive c ∈ R, so that B(X, Y ) = c tr(XY ) for X, Y ∈ gC.

Proof. Part (a) is elementary. For part (b), recall that Ad g preserves the Lie bracket
by Theorem 4.8. Thus ad(Ad(g)X) = Ad(g) ad(X)Ad(g−1) and part (b) follows.
As usual, part (c) follows from part (b) by examining the case of g = exp t Z and
applying d

dt |t=0 when Z ∈ g. For Z ∈ gC, use the fact that B is complex bilinear.
For part (d), let X ∈ g. Using Theorem 5.9, choose a Cartan subalgebra t con-

taining X . Then the root space decomposition shows B(X, X) = ∑
α∈�(gC)

α2(X).
Since G is compact, α(X) ∈ iR by Theorem 6.9. Thus B is negative semidefinite on
g. Moreover, B(X, X) = 0 if and only if α(X) = 0 for all α ∈ �(gC), i.e., if and
only if X ∈ z(g). Thus the decomposition g = z(g)⊕ g′ from Theorem 5.18 finishes
part (d).

For part (e), let Xα ∈ gα and H ∈ t. Use part (c) to see that

0 = B(ad(H)Xα, Xβ)+ B(Xα, ad(H)Xβ) = [(α + β)(H)] (Xα, Xβ).

In particular (e) follows.
For part (f), recall that g−α = θgα . Thus if Xα = Uα+ iVα with Uα, Vα ∈ g, then

Uα − i Vα ∈ g−α and

B(Uα + iVα,Uα − iVα) = B(Uα,Uα)+ B(Vα, Vα).(6.17)

In light of part (d), the above expression is zero if and only if Xα ∈ Cz(g) = z(gC)

(Exercise 6.5). Since gα ⊆
(
g′
)
C

for α �= 0, part (f) is complete.
For part (g), first observe that z(gC) ⊆ rad B since ad Z = 0 for Z ∈ z(gC). On

the other hand, since gC = z(gC)⊕
(
g′
)
C

, the root space decomposition and part (f)
finishes part (g).
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Except for verifying positive definiteness, the assertion in part (h) follows from
the definitions. To check positive definiteness, use the root space decomposition, the
relation g−α = θgα , parts (d), (e) and (f), and Equation 6.17.

For part (i), first note that the trace form mapping X, Y ∈ gC to tr(XY ) is Ad-
invariant since Ad(g)X = gXg−1. For X ∈ u(n), X is diagonalizable with eigen-
values in iR. In particular, the trace form is negative definite on g. Arguing as in
Equation 6.17, this shows the trace form is nondegenerate on gC. In particular, both
−B(X, θY ) and − tr(XθY ) are Ad-invariant inner products on gC. However, since
g is simple, gC is an irreducible representation of g under ad (Exercise 6.17) and
therefore an irreducible representation of G under Ad by Lemma 6.6 and Theorem
6.2. Corollary 2.20 finishes the argument. �


6.2.3 The Standard sl(2, C) and su(2) Triples

Let G be a compact Lie algebra and t a Cartan subalgebra of g. When g is semisimple,
recall that B is negative definite on t by Theorem 6.16. It follows that B restricts to
a real inner product on the real vector space it. Continuing to write (it)∗ for the
set of R-linear functionals on it, B induces an isomorphism between it and (it)∗ as
follows.

Definition 6.18. Let G be a compact Lie group with semisimple Lie algebra, t a
Cartan subalgebra of g, and α ∈ (it)∗. Let uα ∈ it be uniquely determined by the
equation

α(H) = B(H, uα)

for all H ∈ it and, when α �= 0, let

hα = 2uα

B(uα, uα)
.

In case g is not semisimple, define uα ∈ it′ ⊆ it ⊆ t by first restricting B to
it′. For α ∈ �(gC), recall that α is determined by its restriction to it. On it, α is
a real-valued linear functional by Theorem 6.9. Viewing α as an element of (it)∗,
define uα and hα via Definition 6.18. Note that the equation α(H) = B(H, uα) now
holds for all H ∈ tC by C-linear extension. An alternate notation for hα is α∨, and
so we write

�(gC)
∨ = {hα | α ∈ �(gC)}.

When g ⊆ u(n) is simple, Theorem 6.16 shows that there exists a positive c ∈ R,
so that B(X, Y ) = c tr(XY ) for X, Y ∈ gC. Thus if α ∈ (it)∗ and u′α, h′α ∈ it

are determined by the equations α(H) = tr(Hu′α) and h′α = 2u′α
tr(u′αu′α)

, it follows that
u′α = cuα but that h′α = hα . In particular, hα can be computed with respect to the
trace form instead of the Killing form.

For the classical compact groups, this calculation is straightforward (see §6.1.5
and Exercise 6.21). Notice also that h−α = −hα .
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For SU (n) with t = {diag(iθ1, . . . , iθn) | θi ∈ R,
∑

i θi = 0}, that is the An−1

root system,

hεi−ε j = Ei − E j ,

where Ei = diag(0, . . . , 0, 1, 0, . . . , 0) with the 1 in the i th position
For Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) with

t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R},
that is the Cn root system,

hεi−ε j =
(
Ei − E j

)− (
Ei+n − E j+n

)
hεi+ε j =

(
Ei + E j

)− (
Ei+n + E j+n

)
h2εi = Ei − Ei+n .

For SO(E2n) with t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R}, that is
the Dn root system,

hεi−ε j =
(
Ei − E j

)− (
Ei+n − E j+n

)
hεi+ε j =

(
Ei + E j

)− (
Ei+n + E j+n

)
.

For SO(E2n+1) with t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn, 0) | θi ∈ R}, that
is the Bn root system,

hεi−ε j =
(
Ei − E j

)− (
Ei+n − E j+n

)
hεi+ε j =

(
Ei + E j

)− (
Ei+n + E j+n

)
hεi = 2Ei − 2Ei+n .

Lemma 6.19. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC).
(a) Then α(hα) = 2.
(b) For E ∈ gα and F ∈ g−α ,

[E, F] = B(E, F)uα = 1

2
B(E, F)B(uα, uα)hα .

(c) Given a nonzero E ∈ gα , E may be rescaled by an element of R, so that [E, F] =
hα , where F = −θE.

Proof. For part (a) simply use the definitions

α(hα) = 2α(uα)

B(uα, uα)
= 2B(uα, uα)

B(uα, uα)
= 2.

For part (b), first note that [E, F] ⊆ tC by Theorem 6.11. Given any H ∈ tC,
calculate
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B([E, F], H) = B(E, [F, H ]) = α(H)B(E, F) = B(uα, H)B(E, F)

= B(B(E, F)uα, H).

Since B is nonsingular on tC by Theorem 6.16, part (b) is finished. For part (c),
replace E by cE , where

c2 = 2

−B(E, θE)B(uα, uα)
,

and use Theorem 6.16 to check that −B(E, θE) > 0 and B(uα, uα) > 0. �

For the next theorem, recall that B is nonsingular on gα × g−α by Theorem 6.16

and that −B(X, θY ) is an Ad-invariant inner product on g′
C

for X, Y ∈ gC.

Theorem 6.20. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC). Fix a nonzero Eα ∈ gα and let Fα = −θEα . Using Lemma 6.19,
rescale Eα (and therefore Fα), so that [Eα, Fα] = Hα where Hα = hα .
(a) Then sl(2,C) ∼= spanC{Eα, Hα, Fα} with {Eα, Hα, Fα} corresponding to the
standard basis

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
of sl(2,C).
(b) Let Iα = i Hα , Jα = −Eα + Fα , and Kα = −i(Eα + Fα). Then Iα,Jα,Kα ∈ g
and su(2) ∼= spanR{Iα,Jα,Kα} with {Iα,Jα,Kα} corresponding to the basis(

i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 −i
−i 0

)
of su(2) (c.f. Exercise 4.2 for the isomorphism Im(H) ∼= su(2)).
(c) There exists a Lie algebra homomorphism ϕα : SU (2) → G, so that dϕ :
su(2) → g implements the isomorphism in part (b) and whose complexification
dϕ : sl(2,C)→ gC implements the isomorphism in part (a).
(d) The image of ϕα in G is a Lie subgroup of G isomorphic to either SU(2) or
SO(3) depending on whether the kernel of ϕα is {I } or {±I }.
Proof. For part (a), Lemma 6.19 and the definitions show that [Hα, Eα] = 2Eα ,
[Hα, Fα] = −2Fα , and [Eα, Fα] = Hα . Since these are the bracket relations for
the standard basis of sl(2,C), part (a) is finished (c.f. Exercise 4.21). For part (b),
observe that θ fixes Iα , Jα , and Kα by construction, so that Iα,Jα,Kα ∈ g. The
bracket relations for sl(2,C) then quickly show that [Iα,Jα] = 2Kα , [Jα,Kα] =
2Iα , and [Kα, Iα] = 2Jα , so that su(2) ∼= spanR{Iα,Jα,Kα} (Exercise 4.2). For
part (c), recall that SU (2) is simply connected since, topologically, it is isomorphic
to S3. Thus, Theorem 4.16 provides the existence of ϕα . For part (d), observe that
dϕα is an isomorphism by definition. Thus, the kernel of ϕα is discrete and normal
and therefore central by Lemma 1.21. Since the center of SU (2) is ±I and since
SO(3) ∼= SU (2)/{±I } by Lemma 1.23, the proof is complete. �
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Definition 6.21. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC). Continuing the notation from Theorem 6.20, the set {Eα, Hα, Fα} is
called a standard sl(2,C)-triple associated to α and the set {Iα,Jα,Kα} is called a
standard su(2)-triple associated to α.

Corollary 6.22. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC).
(a) The only multiple of α in �(gC) is ±α.
(b) dim gα = 1.
(c) If β ∈ �(gC), then a(hβ) ∈ ±{0, 1, 2, 3}.
(d) If (π, V ) is a representation of G and λ ∈ �(V ), then λ(hα) ∈ Z.

Proof. Let {Eα, Hα, Fα} be a standard sl(2,C)-triple associated to α and
{Iα,Jα,Kα} the standard su(2)-triple associated to α with ϕα : SU (2) → G the
corresponding embedding. Since e2π i H = I , applying Ad ◦ϕα shows that

I = Ad(ϕαe2π i H ) = Ad(e2πdϕα i H ) = Ad(e2π i Hα ) = e2π i ad Hα

on gC. Using the root decomposition, it follows that β(Hα) = 2B(uβ ,uα)

‖uα‖2 ∈ Z where
‖·‖ is the norm corresponding to the Killing form. Now if kα ∈ �(gC), then ukα =
kuα , so that 2

k = 2B(uα,kuα)

‖kuα‖2 = α(Hkα) ∈ Z and 2k = 2B(kuα,uα)

‖uα‖2 = (kα)(Hα) ∈ Z.

Thus k ∈ ±{ 1
2 , 1, 2}.

For part (a), it therefore suffices to show that α ∈ �(gC) implies ±2α /∈ �(gC).
For this, let lα = spanR{Iα,Jα,Kα} ∼= su(2), so that (lα)C = spanC{Eα, Hα, Fα} ∼=
sl(2,C). Also let V = g−2α⊕g−α⊕CHα⊕gα⊕g2α , where g±2α is possibly zero in
this case. By Lemma 6.19 and Theorem 6.11, V is invariant under (lα)C with respect
to the ad-action. In particular, V is a representation of lα . Of course, (lα)C ⊆ V is an
lα-invariant subspace. Thus V decomposes under the l-action as V = (lα)C ⊕ V ′ for
some submodule V ′ of V . To finish parts (a) and (b), it suffices to show V ′ = {0}.

From the discussion in §6.1.3, we know that Hα acts on the (n + 1)-dimensional
irreducible representation of su(2) with eigenvalues {n, n − 2, . . . ,−n + 2,−2n}.
In particular, if V ′ were nonzero, V ′ would certainly contain an eigenvector of Hα

corresponding to an eigenvalue of either 0 or 1. Now the eigenvalues of Hα on V are
contained in ±{0, 2, 4} by construction. Since the 0-eigenspace has multiplicity one
in V and is already contained in (lα)C, V ′ must be {0}.

For part (c), let β ∈ �(gC) and write B(uβ, uα) =
∥∥uβ

∥∥ ‖uα‖ cos θ , where

θ is the angle between uβ and uβ . Thus 4 cos2 θ = 2B(uα,uβ )

‖uβ‖2
2B(uβ ,uα)

‖uα‖2 ∈ Z. As

cos2 θ ≤ 1, 4 cos2 θ = α(Hβ)β(Hα) ∈ {0, 1, 2, 3, 4}. To finish part (c), it only
remains to rule out the possibility that {α(Hβ), β(Hα)} = ±{1, 4}. Clearly
α(Hβ)β(Hα) = 4 only when θ = 0, i.e., when α and β are multiples of each other.
By part (a), this occurs only when β = ±α in which case α(Hβ) = β(Hα) = ±2. In
particular, {α(Hβ), β(Hα)} �= ±{1, 4}. Thus α(Hβ), β(Hα) ∈ ±{0, 1, 2, 3}.

For part (d), simply apply π ◦ ϕα to e2π i H = I to get e2π i(dπ)Hα = I on V . As in
the first paragraph, the weight decomposition shows that λ(Hα) ∈ Z. �


It turns out that the above condition α(hβ) ∈ ±{0, 1, 2, 3} is strict. In other
words, there exist compact Lie groups for which each of these values are achieved.
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6.2.4 Exercises

Exercise 6.15 Show that θ is a Lie algebra involution of gC, i.e., that θ is R-linear,
θ2 = I , and that θ [Z1, Z2] = [θ Z1, θ Z2] for Zi ∈ gC.

Exercise 6.16 Let G be a connected compact Lie group and g ∈ G. Use the Maxi-
mal Torus Theorem, Lemma 6.14, and Theorem 6.9 to show that det Ad g = 1 on gC

and therefore on g as well.

Exercise 6.17 Let G be a compact Lie group with Lie algebra g. Show that g is
simple if and only if gC is an irreducible representation of g under ad.

Exercise 6.18 (1) Let G be a compact Lie group with simple Lie algebra g. If (·, ·)
is an Ad-invariant symmetric bilinear form on gC, show that there is a constant c ∈ C
so that (·, ·) = cB(·, ·).
(2) If (·, ·) is nonzero and B(·, ·) is replaced by (·, ·) in Definition 6.18, show that hα

is unchanged.

Exercise 6.19 Let G be a compact Lie group with a simple (c.f. Exercise 6.13)
Lie algebra g ⊆ u(n). Theorem 6.16 shows that there is a positive c ∈ R, so that
B(X, Y ) = c tr(XY ) for X, Y ∈ gC. In the special cases below, show that c is given
as stated.
(1) c = 2n for G = SU (n), n ≥ 2
(2) c = 2(n + 1) for G = Sp(n), n ≥ 1
(3) c = 2(n − 1) for G = SO(2n), n ≥ 3
(4) c = 2n − 1 for G = SO(2n + 1), n ≥ 1.

Exercise 6.20 Let G be a compact Lie group with semisimple Lie algebra g, t a
Cartan subalgebra of g, and α ∈ �(gC). If β ∈ �(gC) with β �= ±a and B(uα, uα) ≤
B(uβ, uβ), show that a(hβ) ∈ ±{0, 1}.
Exercise 6.21 For each compact classical Lie group, this section lists hα for each
root α. Verify these calculations.

Exercise 6.22 Let G be a compact Lie group with semisimple Lie algebra g, t a Car-
tan subalgebra of g, and α ∈ �(gC). Let V be a finite-dimensional representation of
G and λ ∈ �(V ). The α-string through λ is the set of all weights of the form λ+nα,
n ∈ Z.
(1) Make use of a standard sl(2)-triple {Eα, Hα, Fα} and consider the space⊕

n Vλ+nα to show the α-string through β is of the form {λ + nα | −p ≤ n ≤ q},
where p, q ∈ Z≥0 with p − q = λ(hα).
(2) If λ(hα) < 0, show show λ+ α ∈ �(V ). If λ(hα) > 0, show that λ− α ∈ �(V ).
(3) Show that dπ(Eα)

p+q Vλ−pα �= 0.
(4) If α, β, α + β ∈ �(gC), show that [gα, gβ] = gα+β .

Exercise 6.23 Show that SL(2,C) has no nontrivial finite-dimensional unitary rep-
resentations. To this end, argue by contradiction. Assume (π, V ) is such a rep-
resentation and compare the form B(X, Y ) on sl(2,C) to the form (X, Y )′ =
tr (dπ(X) ◦ dπ(Y )).



130 6 Roots and Associated Structures

6.3 Lattices

6.3.1 Definitions

Let G be a compact Lie group, t a Cartan subalgebra of g, and α ∈ �(gC). As noted
in §6.1.3, α may be viewed as an element of (it)∗. Use Definition 6.18 to transport
the Killing form from it to (it)∗ by setting

B(λ1, λ2) = B(uλ1 , uλ2)

for λ1, λ2 ∈ (it)∗. In particular, for λ ∈ (it)∗,

λ(hα) = 2B(λ, α)

B(α, α)
.

For the sake of symmetry, also note that

α(H) = 2B(H, hα)

B(hα, hα)

for H ∈ it.

Definition 6.23. Let G be a compact Lie group and T a maximal torus of G with
corresponding Cartan subalgebra t.
(a) The root lattice, R = R(t), is the lattice in (it)∗ given by

R = spanZ{α | α ∈ �(gC)}.

(b) The weight lattice (alternately called the set of algebraically integral weights),
P = P(t), is the lattice in (it)∗ given by

P = {λ ∈ (it)∗ | λ(hα) ∈ Z for α ∈ �(gC)},
where λ ∈ (it)∗ is extended to an element of (tC)

∗ by C-linearity.
(c) The set of analytically integral weights, A = A(T ), is the lattice in (it)∗ given by

A = {λ ∈ (it)∗ | λ(H) ∈ 2π iZ whenever exp H = I for H ∈ t}.
To the lattices R, P , and A, there are also a number of associated dual lattices.

Definition 6.24. Let G be a compact Lie group and T a maximal torus of G with
corresponding Cartan subalgebra t.
(a) The dual root lattice, R∨ = R∨(t), is the lattice in it given by

R∨ = spanZ{hα | α ∈ �(gC)}.

(b) The dual weight lattice, P∨ = P∨(t), is the lattice in it given by
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P∨ = {H ∈ it | α(H) ∈ Z for α ∈ �(gC)}.

(c) Let ker E = ker E(T ) be the lattice in it given by

ker E = {H ∈ it | exp(2π i H) = I }.

(d) In general, if �1 is a lattice in (it)∗ that spans (it)∗ and if �2 is a lattice in it that
spans it, define the dual lattices, �∗

1 and �∗
2 in it and (it)∗, respectively, by

�∗
1 = {H ∈ it | λ(H) ∈ Z for λ ∈ �1}

�∗
2 = {λ ∈ (it)∗ | λ(H) ∈ Z for H ∈ �2}.

It is well known that �∗
1 and �∗

2 are lattices and that they satisfy �∗∗
i = �i

(Exercise 6.24). Notice ker E is a lattice by the proof of Theorem 5.2.

6.3.2 Relations

Lemma 6.25. Let G be a compact connected Lie group with Cartan subalgebra t.
For H ∈ t, exp H ∈ Z(G) if and only if α(H) ∈ 2π iZ for all α ∈ �(gC).

Proof. Let g = exp H and recall from Lemma 5.11 that g ∈ Z(G) if and only if
Ad(g)X = X for all X ∈ g. Now for α ∈ �(gC) ∪ {0} and X ∈ gα , Ad(g)X =
ead H X = eα(H)X . The root decomposition finishes the proof. �

Definition 6.26. Let G be a compact Lie group and T a maximal torus. Write χ(T )

for the character group on T , i.e., χ(T ) is the set of all Lie homomorphisms ξ :
T → C\{0}.
Theorem 6.27. Let G be a compact Lie group with a maximal torus T .
(a) R ⊆ A ⊆ P.
(b) Given λ ∈ (it)∗, λ ∈ A if and only if there exists ξλ ∈ χ(T ) satisfying

ξλ(exp H) = eλ(H)(6.28)

for H ∈ t, where λ ∈ (it)∗ is extended to an element of (tC)
∗ by C-linearity. The

map λ→ ξλ establishes a bijection

A ←→ χ(T ).

(c) For semisimple g, |P/R| is finite.

Proof. Let α ∈ �(gC) and suppose H ∈ t with exp H = e. Lemma 6.25 shows that
α(H) ∈ 2π iZ, so that R ⊆ A. Next choose a standard sl(2,C)-triple {Eα, hα, Fα}
associated to α. As in the proof of Corollary 6.22, exp 2π ihα = I . Thus if λ ∈ A,
λ(2π ihα) ∈ 2π iZ, so that A ⊆ P which finishes part (a).
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For part (b), start with λ ∈ A. Using the fact that exp t = T and using Lemma
6.25, Equation 6.28 uniquely defines a well-defined function ξλ on T . It is a homo-
morphism by Theorem 5.1. Conversely, if there is a ξλ ∈ χ(T ) satisfying Equation
6.28, then clearly λ(H) ∈ 2π iZ whenever exp H = I , so that λ ∈ A. Finally, to
see that there is a bijection from A to χ(T ), it remains to see that the map λ → ξλ
is surjective. However, this requirement follows immediately by taking the differ-
ential of an element of χ(T ) and extending via C-linearity. Theorem 6.9 shows the
differential can be viewed as an element of (it)∗.

Next, Theorem 6.11 shows that R spans (it)∗ for semisimple g. Part (c) there-
fore follows immediately from elementary lattice theory (e.g., see [3]). In fact, it is
straightforward to show |P/R| is equal to the determinant of the so-called Cartan
matrix (Exercise 6.42). �

Theorem 6.29. Let G be a compact Lie group with a semisimple Lie algebra g and
let T be a maximal torus of G with corresponding Cartan subalgebra t.
(a) R∗ = P∨.
(b) P∗ = R∨.
(c) A∗ = ker E .
(d) P∗ ⊆ A∗ ⊆ R∗, i.e., R∨ ⊆ ker E ⊆ P∨.

Proof. The equalities R∗ = P∨,
(
R∨

)∗ = P , and (ker E)∗ = A follow immediately
from the definitions. This proves parts (a), (b), and (c) (Exercise 6.24). Part (d) fol-
lows from Theorem 6.27 (Exercise 6.24). �


6.3.3 Center and Fundamental Group

The proof of part (b) of the following theorem will be given in §7.3.6. However, for
the sake of comparison, part (b) is stated now.

Theorem 6.30. Let G be a connected compact Lie group with a semisimple Lie al-
gebra and maximal torus T .
(a) Z(G) ∼= P∨/ ker E ∼= A/R.
(b) π1(G) ∼= ker E/R∨ ∼= P/A.

Proof (part (a) only). By Theorem 5.1, Corollary 5.13, and Lemma 6.25, the expo-
nential map induces an isomorphism

Z(G) ∼= {H ∈ t | α(H) ∈ 2π iZ for α ∈ �(gC)} / {H ∈ t | exp H = I }
= (2π i P∨) / (2π i ker E),

so that Z(G) ∼= P∨/ ker E . Basic lattice theory shows R∗/A∗ ∼= A/R (Exercise
6.24) which finishes the proof. �


While the proof of part (b) of Theorem 6.30 is postponed until §7.3.6, in this
section we at least prove the simply connected covering of a compact semisimple
Lie group is still compact.
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Let G be a compact connected Lie group and let G̃ be the simply connected
covering of G. A priori, it is not known that G̃ is a linear group and thus our devel-
opment of the theory of Lie algebras and, in particular, the exponential map is not
directly applicable to G̃. Indeed for more general groups, G̃ may not be linear. As
usual though, compact groups are nicely behaved. Instead of redoing our theory in
the context of arbitrary Lie groups, we instead use the lifting property of covering
spaces. Write expG : g → G for the standard exponential map and let

expG̃ : g → G̃

be the unique smooth lift of expG satisfying expG̃(0) = ẽ and expG = π ◦ expG̃ .

Lemma 6.31. Let G be a compact connected Lie group, T a maximal torus of G, G̃
the simply connected covering of G, π : G̃ → G the associated covering homomor-
phism, and T̃ = [

π−1(T )
]0

.
(a) Restricted to t, expG̃ induces an isomorphism of Lie groups T̃ ∼= t/

(
t ∩ ker expG̃

)
.

(b) If g is semisimple, then T̃ is compact.

Proof. Elementary covering theory shows that T̃ is a covering of T . From this it
follows that T̃ is Abelian on a neighborhood of ẽ and, since T̃ is connected, T̃ is
Abelian everywhere. Since π expG̃ t = expG t = T and since expG̃ t is connected,
expG̃ t ⊆ T̃ . In particular, expG̃ : t → T̃ is the unique lift of expG : t → T satis-
fying expG̃(0) = ẽ. In turn, uniqueness of the lifting easily shows expG̃(t0 + t) =
expG̃(t0) expG̃(t). To finish part (a), it suffices to show expG̃ t contains a neighbor-
hood ẽ in T̃ . For this, it suffices to show the differential of expG̃ at 0 is invertible. But
since π is a local diffeomorphism and since expG is a local diffeomorphism near 0,
we are done.

For part (b), it suffices to show that T̃ is a finite cover of T when g is semisim-
ple. For this, first observe that ker expG̃ ⊆ ker expG = 2π i ker E since expG =
π ◦ expG̃ . As T ∼= t/ (2π i ker E), it follows that the kerπ restricted to T̃ is isomor-
phic to (2π i ker E) /

(
t ∩ ker expG̃

)
. By Theorems 6.27 and 6.29, it therefore suffices

to show that 2π i R∨ ⊆ t ∩ ker expG̃ .
Given α ∈ �(gC), let {Iα,Jα,Kα} be a standard su(2)-triple in g associated to

α. Write ϕα : SU (2) → G for the corresponding homomorphism. Since SU (2) is
simply connected, write ϕ̃α : SU (2) → G̃ for the unique lift of ϕα mapping I to ẽ.
Using the uniqueness of lifting from su(2) to G̃, if follows easily that ϕ̃α ◦expSU (2) =
expG̃ ◦dϕα . Therefore by construction,

ẽ = ϕ̃α(I ) = ϕ̃α(expSU (2) 2π i H) = expG̃ (2π i dϕα H) = expG (2π i hα) ,

which finishes the proof. �

Lemma 6.32. Let G be a compact connected Lie group, T a maximal torus of G,
G̃ the simply connected covering of of G, π : G̃ → G the associated covering
homomorphism, and T̃ = [

π−1(T )
]0

.
(a) G̃ =⋃

g̃∈G̃

(
cg̃ T̃

)
.

(b) G̃ = expG̃(g).
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Proof. The proof of this lemma is a straightforward generalization of the proof of
the Maximal Torus theorem, Theorem 5.12 (Exercise 6.26). �

Corollary 6.33. Let G be a compact connected Lie group with semisimple Lie alge-
bra g, T a maximal torus of G, G̃ the simply connected covering of of G, π : G̃ → G
the associated covering homomorphism, and T̃ = [

π−1(T )
]0

.
(a) G̃ is compact.
(b) g may be identified with the Lie algebra of G̃, so that expG̃ is the corresponding
exponential map.
(c) T̃ = π−1(T ) and T̃ is a maximal torus of G̃.
(d) kerπ ⊆ Z(G̃) ⊆ T̃ .

Proof. For part (a), observe that G̃ = ⋃
g̃∈G̃

(
cg̃ T̃

)
by Lemma 6.32. Thus G̃ is the

continuous image of the compact set G̃/Z(G̃)× T̃ ∼= G/Z(G)× T̃ (Exercise 6.26).
For part (b), recall from Corollary 4.9 that there is a one-to-one correspondence

between one-parameter subgroups of G̃ and the Lie algebra of G̃. By the uniqueness
of lifting, expG̃(t X) expG̃(s X) = expG̃((t + s)X) for X ∈ g and t, s ∈ R, so that
t → expG̃(t X) is a one-parameter subgroup of G̃. On the other hand, if γ : R →G̃ is
a one-parameter subgroup, then so is π ◦ γ : R → G. Thus there is a unique X ∈ g,
so that π(γ (t)) = expG(t X). As usual, the uniqueness property of lifting from R to
G̃ shows that γ (t) = expG̃(t X), which finishes part (b).

For parts (c) and (d), we already know from Lemma 6.31 that T̃ = expG̃(t).
Since t is a Cartan subalgebra, Theorem 5.4 shows that T̃ is a maximal torus of
G̃. By Lemma 1.21 and Corollary 5.13, kerπ ⊆ Z(G̃) ⊆ T̃ so that π−1(T ) =
T̃ (kerπ) = T̃ is, in fact, connected. �


6.3.4 Exercises

Exercise 6.24 Suppose �i is a lattice in (it)∗ that spans (it)∗.
(1) Show that �∗

i is a lattice in it.
(2) Show that �∗∗

i = �i .
(3) If �1 ⊆ �2, show that �∗

2 ⊆ �∗
1.

(4) If �1 ⊆ �2, show that �2/�1
∼= �∗

1/�
∗
2.

Exercise 6.25 (1) Use the standard root system notation from §6.1.5. In the follow-
ing table, write (θi ) for the element diag(θ1, . . . , θn) in the case of G = SU (n),
for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn) in the cases of G = Sp(n) or
SO(E2n), and for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn, 0) in the case of
G = SO(E2n+1). Verify that the following table is correct.
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G R∨ ker E P∨ P∨/R∨

SU (n)
{(θi ) | θi ∈ Z,∑n

i=1 θi = 0} R∨ {(θi + θ0
n ) | θi ∈ Z,∑n

i=0θ i = 0} Zn

Sp(n) {(θi ) | θi ∈ Z} R∨ {(θi + θ0
2 ) | θi ∈ Z} Z2

SO(E2n)
{(θi ) | θi ∈ Z,∑n

i=1 θi ∈ 2Z} {(θi ) | θi ∈ Z} {(θi + θ0
2 ) | θi ∈ Z} Z2×Z2 n even

Z4 n odd

SO(E2n+1)
{(θi ) | θi ∈ Z,∑n

i=1 θi ∈ 2Z} P∨ {(θi ) | θi ∈ Z} Z2.

(2) In the following table, write (λi ) for the element
∑

i λiεi . Verify that the follow-
ing table is correct.

G R A P P/R

SU (n)
{(λi ) | λi ∈ Z,∑n

i=1 λi = 0} P
{(λi + λ0

n ) | λi ∈ Z,∑n
i=0 λi = 0} Zn

Sp(n)
{(λi ) | λi ∈ Z,∑n

i=1 λi ∈ 2Z} P {(λi ) | λi ∈ Z} Z2

SO(E2n)
{(λi ) | λi ∈ Z,∑n

i=1 λi ∈ 2Z} {(λi ) | λi ∈ Z} {(λi + λ0
2 ) | λi ∈ Z} Z2×Z2 n even

Z4 n odd
SO(E2n+1) {(λi ) | λi ∈ Z} R {(λi + λ0

2 ) | λi ∈ Z} Z2.

Exercise 6.26 Let G be a compact connected Lie group, T a maximal torus of G, G̃
the simply connected covering of of G, π : G̃ → G the associated covering homo-
morphism, and T̃ = [

π−1(T )
]0

. This exercise generalizes the proof of the Maximal
Torus theorem, Theorem 5.12, to show that G̃ =⋃

g̃∈G̃

(
cg̃ T̃

)
and G̃ = expG̃(g).

(1) Make use of Lemma 5.11 and the fact that kerπ is discrete to show that
ker(Ad ◦π) = Z(G̃).
(2) Suppose ϕ̃ : g → G̃ is lift of a map ϕ : g → G. Use the fact that π is a local
diffeomorphism to show that ϕ̃ is a local diffeomorphism if and only if ϕ is a local
diffeomorphism.
(3) Use the uniqueness property of lifting to show that expG̃ ◦Ad(πg) = cg ◦ expG̃
for g ∈ G̃.
(4) Show that

⋃
g∈G̃ cg T̃ = expG̃(g).

(5) If dim g = 1, show that G ∼= S1 and g ∼= G̃ ∼= R with expG̃ being the identity
map. Conclude that G̃ = expG̃(g).
(6) Assume dim g > 1 and use induction on dim g to show that G̃ = expG̃(g) as
outlined in the remaining steps. First, in the case where dim g′ < dim g, show that
G ∼= [

G ′ × T k
]
/F , where F is a finite Abelian group. Conclude that G̃ ∼= G̃ss×Rk .

Use the fact that the exponential map from Rk to T k is surjective and the inductive
hypothesis to show G̃ = expG̃(g).
(7) For the remainder, assume g is semisimple, so that T̃ is compact. Use Lemma
1.21 to show that kerπ ⊆ Z(G̃). Conclude that G̃/Z(G̃) ∼= G/Z(G) and use this to
show that expG̃(g) is compact and therefore closed.
(8) It remains to show that expG̃(g) is open. Fix X0 ∈ g and write g0 = expG̃(X0).
Use Theorem 4.6 to show that it suffices to consider X0 �= 0.
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(9) As in the proof of Theorem 5.12, let a = zg(πg0) and b = a⊥. Consider the map
ϕ̃ : a⊕ b → G̃ given by ϕ̃(X, Y ) = g−1

0 expG̃(Y ) g0 expG̃(X) expG̃(−Y ). Show that
ϕ̃ is a local diffeomorphism near 0. Conclude that {expG̃(Y )g0 expG̃(X) expG̃(−Y ) |
X ∈ a, Y ∈ b} contains a neighborhood of g0 in G̃.
(10) Let Ã = (

π−1 A
)0

, a covering of the compact Lie subgroup A = ZG(πg0)
0 of

G. Show that expG̃(a) ⊆ Ã. Conclude that
⋃

g∈G̃ g−1 Ãg contains a neighborhood of

g0 in G̃.
(11) If dim a < dim g, use the inductive hypothese to show that Ã = expG̃(a).
Conclude that

⋃
g∈G̃ g−1 Ãg = ⋃

g∈G̃ expG̃ (Ad(πg)a), so that expG̃(g) contains a
neighborhood of g0.
(12) Finally, if dim a = dim g, show that g0 ∈ Z(G̃). Let t′ be a Cartan subalge-
bra containing X0 so that g = ⋃

g∈G̃ Ad(πg)t′. Show that g0 expG̃(g) ⊆ expG̃(g).
Conclude that expG̃(g) contains a neighborhood of g0.

6.4 Weyl Group

6.4.1 Group Picture

Definition 6.34. Let G be a compact connected Lie group with maximal torus T . Let
N = N (T ) be the normalizer in G of T , N = {g ∈ G | gT g−1 = T }. The Weyl
group of G, W = W (G) = W (G, T ), is defined by W = N/T .

If T ′ is another maximal torus of G, Corollary 5.10 shows that there is a g ∈ G, so
cgT = T ′. In turn, this shows that cg N (T ) = N (T ′), so that W (G, T ) ∼= W (G, T ′).
Thus, up to isomorphism, the Weyl group is independent of the choice of maximal
torus.

Given w ∈ N , H ∈ t, and λ ∈ t∗, define an action of N on t and t∗ by

w(H) = Ad(w)H(6.35)

[w(λ)] (H) = λ(w−1(H)) = λ(Ad(w−1)H).

As usual, extend this to an action of N on tC, it, t∗
C

, and (it)∗ by C-linearity. As
Ad(T ) acts trivially on t, the action of N descends to an action of W = N/T .

Theorem 6.36. Let G be a compact connected Lie group with a maximal torus T .
(a) The action of W on it and on (it)∗ is faithful, i.e., a Weyl group element acts
trivially if and only it is the identity element.
(b) For w ∈ N and α ∈ �(gC) ∪ {0}, Ad(w)gα = gwα .
(c) The action of W on (it)∗ preserves and acts faithfully on �(gC).
(d) The action of W on it preserves and acts faithfully on {hα | α ∈ �(gC)}. More-
over, whα = hwα .
(e) W is a finite group.
(f) Given ti ∈ T , there exists g ∈ G so cgt1 = t2 if and only if there exists w ∈ N, so
cwt1 = t2.
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Proof. For part (a), suppose w ∈ N acts trivially on t via Ad. Since exp t = T and
since cw ◦ exp = exp ◦Ad(w), this implies that w ∈ ZG(T ). However, Corollary
5.13 shows that ZG(T ) = T so that w ∈ T , as desired.

For part (b), let w ∈ N , H ∈ tC, and Xα ∈ gα and calculate

[H,Ad(w)Xα] = [Ad(w−1)H, Xα] = α(Ad(w−1)H)Xα = [(wα)(H)] Xα,

which shows that Ad(w)gα ⊆ gwα . Since dim gα = 1 and since Ad(w) is invertible,
Ad(w)gα = gwα and, in particular, wα ∈ �(gC). Noting that W acts trivially on
z(g) ∩ t, we may reduce to the case where g is semisimple. As �(gC) spans (it)∗,
parts (b) and (c) are therefore finished.

For part (d), calculate

B(uwα, H) = B(wα)(H) = α(w−1 H) = B(uα, w
−1 H) = B(wuα, H),

so that uwα = wuα . Since the action of w preserves the Killing form, it follows that
whα = hwα , which finishes part (d). As �(gC) is finite and the action is faithful, part
(e) is also done.

For part (f), suppose cgt1 = t2 for g ∈ G. Consider the connected compact
Lie subgroup ZG(t2)0 = {h ∈ G | ct2 h = h}0 of G with Lie algebra zg(t2) =
{X ∈ g | Ad(t2)X = X} (Exercise 4.22). Clearly t ⊆ zg(t2) and t is still a Cartan sub-
algebra of zg(t2). Therefore T ⊆ ZG(t2) and T is a maximal torus of ZG(t2). On the
other hand, Ad(t2)Ad(g)H = Ad(g)Ad(t1)H = Ad(g)H for H ∈ t. Thus Ad(g)t
is also a Cartan subalgebra in zg(t2), and so cgT is a maximal torus in ZG(t2)0. By
Corollary 5.10, there is a z ∈ ZG(t2), so that cz

(
cgT

) = T , i.e., zg ∈ N (T ). Since
czgt1 = czt2 = t2, the proof is finished. �


6.4.2 Classical Examples

Here we calculate the Weyl group for each of the compact classical Lie groups.
The details are straightforward matrix calculations and are mostly left as an exercise
(Exercise 6.27).

6.4.2.1 U (n) and SU (n) For U (n) let TU (n) = {diag(eiθ1 , . . . , eiθn ) | θi ∈ R} be
a maximal torus. Write Sn for the set of n × n permutation matrices. Recall that an
element of GL(n,C) is a permutation matrix if the entries of each row and column
consists of a single one and (n−1) zeros. Thus Sn

∼= Sn where Sn is the permutation
group on n letters. Since the set of eigenvalues is invariant under conjugation, any
w ∈ N must permute, up to scalar, the standard basis of Rn . In particular, this shows
that

N (TU (n)) = SnTU (n)

W ∼= Sn

|W | = n!.

Write (θi ) for the element diag(θ1, . . . , θn) ∈ t and (λi ) for the element
∑

i λiεi ∈
(it)∗. It follows that W acts on itU (n) = {(θi ) | θi ∈ R} and on (itU (n))

∗ =
{(λi ) | λi ∈ R} by all permutations of the coordinates.
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For SU (n), let TSU (n) = TU (n)∩SU (n) = {diag(eiθ1 , . . . , eiθn ) | θi ∈ R,
∑

i θi =
0} be a maximal torus. Note that U (n) ∼= (

SU (n)× S1
)
/Zn with S1 central, so that

W (SU (n)) ∼= W (U (n)). In particular for the An−1 root system,

N (TSU (n)) =
(
SnTU (n)

) ∩ SU (n)

W ∼= Sn

|W | = n!.

As before, W acts on itSU (n) = {(θi ) | θi ∈ R,
∑

i θi = 0} and (itSU (n))
∗ =

{(λi ) | λi ∈ R,
∑

i λi = 0} by all permutations of the coordinates.
6.4.2.2 Sp(n) For Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn ) | θi ∈ R}.
For 1 ≤ i ≤ n, write s1,i for the matrix realizing the linear transformation that
maps ei , the i th standard basis vector of R2n , to −ei+n , maps ei+n to en , and fixes the
remaining standard basis vectors. In particular, s1,i is just the natural embedding of(

0 1
−1 0

)
into Sp(n) in the i × (n + i)th submatrix. By considering eigenvalues, it

is straightforward to check that for the Cn root system,

N (T ) =
{(

s 0
0 s

)
| s ∈ Sn

} {∏
i

ski
1,i | 1 ≤ i ≤ n, ki ∈ {0, 1}

}
T

W ∼= Sn � (Z2)
n

|W | = 2nn!.

Write (θi ) for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn) ∈ it and (λi ) for the
element

∑
i λiεi ∈ (it)∗. Then W acts on it = {(θi ) | θi ∈ R} and on (it)∗ = {(λi ) |

λi ∈ R} by all permutations and all sign changes of the coordinates.
6.4.2.3 SO(E2n) For G = SO(E2n), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn ) | θi ∈ R}
be a maximal torus. For 1 ≤ i ≤ n, write s2,i for the matrix realizing the linear
transformation that maps ei , the i th standard basis vector of R2n , to ei+n , maps ei+n

to en , and fixes the remaining standard basis vectors. In particular, s2,i is just the

natural embedding of

(
0 1
1 0

)
into O(E2n) in the i × (n + i)th submatrix. Then for

the Dn root system,

N (T ) = {
(

s 0
0 s

)
| s ∈ Sn} {

∏
i

ski
2,i | 1 ≤ i ≤ n, ki ∈ {0, 1},

∑
i

ki ∈ 2Z} T

W ∼= Sn � (Z2)
n−1

|W | = 2n−1n!.

Write (θi ) for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn) ∈ it and (λi ) for the
element

∑
i λiεi ∈ (it)∗. Then W acts on it = {(θi ) | θi ∈ R} and on (it)∗ = {(λi ) |

λi ∈ R} by all permutations and all even sign changes of the coordinates.
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6.4.2.4 SO(E2n+1) For G = SO(E2n+1), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn , 1) | θi ∈ R}
be a maximal torus. For 1 ≤ i ≤ n, write s3,i for the matrix realizing the linear
transformation that maps ei , the i th standard basis vector of R2n+1, to ei+n , maps
ei+n to en , maps e2n+1 to −e2n+1, and fixes the remaining standard basis vectors. In

particular, s3,i is just the natural embedding of

⎛⎝ 0 1 0
1 0 0
0 0 −1

⎞⎠ into SO(E2n+1) in the

i × (n + i)× (2n + 1)th submatrix. Then for the Bn root system,

N (T ) =
⎧⎨⎩
⎛⎝ s

s
1

⎞⎠ | s ∈ Sn

⎫⎬⎭
{∏

i

ski
3,i | 1 ≤ i ≤ n, ki ∈ {0, 1}

}
T

W ∼= Sn � (Z2)
n

|W | = 2nn!.

Write (θi ) for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn, 0) ∈ it and (λi ) for the
element

∑
i λiεi ∈ (it)∗. Then W acts on it = {(θi ) | θi ∈ R} and on (it)∗ = {(λi ) |

λi ∈ R} by all permutations and all sign changes of the coordinates.

6.4.3 Simple Roots and Weyl Chambers

Definition 6.37. Let G be compact Lie group with a Cartan subalgebra t. Write t′ =
g′ ∩ t.
(a) A system of simple roots, � = �(gC), is a subset of �(gC) that is a basis of

(
it′
)∗

and satisfies the property that any β ∈ �(gC) may be written as

β =
∑
α∈�

kαα

with either {kα | α ∈ �} ⊆ Z≥0 or {kα | α ∈ �} ⊆ Z≤0, where Z≥0 = {k ∈ Z | k ≥
0} and Z≤0 = {k ∈ Z | k ≤ 0}. The elements of � are called simple roots.
(b) Given a system of simple roots �, the set of positive roots with respect to � is

�+(gC) = {β ∈ �(gC) | β =
∑
α∈�

kαα with kα ∈ Z≥0}

and the set of negative roots with respect to � is

�−(gC) = {β ∈ �(gC) | β =
∑
α∈�

kαα with kα ∈ Z≤0},

so that �(gC) = �+(gC)
∐

�−(gC) and �−(gC) = −�+(gC).

As matters stand at the moment, we are not guaranteed that simple systems exist.
In Lemma 6.42 below, this shortcoming will be rectified using the following defini-
tion.
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Definition 6.38. Let G be compact Lie group with a Cartan subalgebra t.
(a) The connected components of (it′)∗\ (∪α∈�(gC)α

⊥) are called the (open) Weyl
chambers of (it)∗. The connected components of it′\ (∪α∈�(gC)h

⊥
α

)
are called the

(open) Weyl chambers of it.
(b) If C is a Weyl chamber of (it)∗, α ∈ �(gC) is called C-positive if B(C, α) > 0
and C-negative if B(C, α) < 0. If α is C-positive, it is called decomposable with
respect to C if there exist C-positive β, γ ∈ �(gC), so that α = β + γ . Otherwise α

is called indecomposable with respect to C .
(c) If C∨ is a Weyl chamber of it, α ∈ �(gC) is called C∨-positive if α(C∨) > 0 and
C-negative if α(C∨) < 0. If α is C∨-positive, it is called decomposable with respect
to C∨ if there exist C∨-positive β, γ ∈ �(gC), so that α = β + γ . Otherwise α is
called indecomposable with respect to C∨.
(d) If C is a Weyl chamber of (it)∗, let

�(C) = {α ∈ �(gC) | α is C-positive and indecomposable}.
If C∨ is a Weyl chamber of it, let

�(C∨) = {α ∈ �(gC) | α is C∨-positive and indecomposable}.
(e) If � is a system of simple roots, the associated Weyl chamber of (it)∗ is

C(�) = {λ ∈ (it)∗ | B(λ, α) > 0 for α ∈ �}
and the associated Weyl chamber of it is

C∨(�) = {H ∈ it | α(H) > 0 for α ∈ �}.
Each Weyl chamber is a polyhedral convex cone and its closure is called the

closed Weyl chamber. For the sake of symmetry, note that the condition α(H) > 0
above is equivalent to the condition B(H, hα) > 0. In Lemma 6.42 we will see that
the mapping C → �(C) establishes a one-to-one correspondence between Weyl
chambers and simple systems. For the time being, we list the standard simple sys-
tems and corresponding Weyl chamber of (it)∗ for the classical compact groups. The
details are straightforward and left to Exercise 6.30 (see §6.1.5 for the roots and
notation).

In addition to a simple system and its corresponding Weyl chamber, two other
pieces of data are given below. For the first, write the given simple system as � =
{α1, . . . , αl}. Define the fundamental weights to be the basis {π1, . . . , πl} of (it)∗

determined by 2 B(πi ,αi )

B(αi ,αi )
= δi, j and define ρ = ρ(�) ∈ (it)∗ as

ρ =
∑

i

πi(6.39)

Notice ρ(hαi ) = 2 B(ρ,αi )

B(αi ,αi )
= 1, so that ρ ∈ P (c.f. Exercise 6.34).

The second piece of data given below is called the Dynkin diagram of the sim-
ple system �. The Dynkin diagram is a graph with one vertex for each simple
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root, αi , and turns out to be independent of the choice of simple system. When-
ever B(αi , α j ) �= 0, i �= j , the vertices corresponding to αi and α j are joined by
an edge of multiplicity mi j = αi (hα j )α j (hαi ). In this case, from the proof of Corol-

lary 6.22 (c.f. Exercise 6.20), it turns out that mi j = m ji = ‖αi‖2

‖α j‖2 ∈ {1, 2, 3} when

‖αi‖2 ≥ ∥∥α j

∥∥2
. Furthermore, when two vertices corresponding to roots of unequal

length are connected by an edge, the edge is oriented by an arrow pointing towards
the vertex corresponding to the shorter root.

6.4.3.1 SU (n) For SU (n) with t = {diag(iθ1, . . . , iθn) | θi ∈ R,
∑

i θi = 0}, i.e.,
the An−1 root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1}
C = {diag(θ1, . . . , θn) | θi > θi+1, θi ∈ R}
ρ = 1

2
((n − 1)ε1 + (n − 3)ε2 + · · · + (−n + 1)εn)

and the corresponding Dynkin diagram is

An
�

α1

�

α2

�

α3

. . . �

αn−3

�

αn−2

�

αn−1

6.4.3.2 Sp(n) For Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) with

t = {diag(iθ1, . . . , iθn, −iθ1, . . . ,−iθn) | θi ∈ R},
i.e., the Cn root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1} ∪ {αn = 2εn}
C = {diag(θ1, . . . , θn, −θ1, . . . ,−θn) | θi > θi+1 > 0, θi ∈ R}
ρ = nε1 + (n − 1)ε2 + · · · + εn

and the corresponding Dynkin diagram is

Cn
�

α1

�

α2

�

α3

. . . �

αn−2

�

αn−1

�

αn

〈

6.4.3.3 SO(E2n) For SO(E2n) with t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) |
θi ∈ R}, i.e., the Dn root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1} ∪ {αn = εn−1 + εn}
C = {diag(θ1, . . . , θn, −θ1, . . . ,−θn, 0) | θi > θi+1, θn−1 > |θn| , θi ∈ R}
ρ = nε1 + (n − 1)ε2 + · · · + εn−1

and the corresponding Dynkin diagram is



142 6 Roots and Associated Structures

Dn
�

α1

�

α2

�

α3

. . . �

αn−3

�

αn−2

�
��

�
��

�αn−1

�αn

6.4.3.4 SO(E2n+1) For SO(E2n+1) with

t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn, 0) | θi ∈ R},

i.e., the Bn root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1} ∪ {αn = εn}
C = {diag(θ1, . . . , θn, −θ1, . . . ,−θn, 0) | θi > θi+1 > 0, θi ∈ R}
ρ = 1

2
((2n − 1)ε1 + (2n − 3)ε2 + · · · + εn)

and the corresponding Dynkin diagram is

Bn
�

α1

�

α2

�

α3

. . . �

αn−2

�

αn−1

�

αn

〉
It is an important fact from the theory of Lie algebras that there are only five other

simple Lie algebras over C. They are called the exceptional Lie algebras and there
is a simple compact group corresponding to each one. The corresponding Dynkin
diagrams are given below (see [56] or [70] for details).

G2 �

α1

�

α2

〈

F4 �

α1

�

α2

�

α3

�

α4

〉

E6 �

α1

�

α3

�

α4

�

�

α5

�

α6

α2
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E7 �

α1

�

α3

�

α4

�

α5

�

α6

�

α7

�

α2

E8 �

α1

�

α3

�

α4

�

�

α5

�

α6

�

α7

�

α8

α2

6.4.4 The Weyl Group as a Reflection Group

Definition 6.40. Let G be compact Lie group with a Cartan subalgebra t.
(a) For α ∈ �(gC), define rα : (it)∗ → (it)∗ by

rα(λ) = λ− 2
B(λ, α)

B(α, α)
α = λ− λ(hα)α

and rhα
: it → it by

rhα
(H) = H − 2

B(H, hα)

B(hα, hα)
hα = H − α(H)hα .

(b) Write W (�(gC)) for the group generated by {rα | α ∈ �(gC)} and write
W (�(gC)

∨) for the group generated by {rhα
| α ∈ �(gC)}.

As usual, the action of W (�(gC)) and W (�(gC)
∨) on (it)∗ and it, respectively,

is extended to an action on t∗ and t, respectively, by C-linearity. Also observe that rα
acts trivially on (z(g) ∩ t)∗ and acts on (it′)∗ as the reflection across the hyperplane
perpendicular to α. Similarly, rhα

acts trivially on z(g) ∩ t and acts on it′ as the
reflection across the hyperplane perpendicular to hα (Exercise 6.28). In particular,
r2
α = I and r2

hα
= I .

Lemma 6.41. Let G be compact Lie group with a maximal torus T .
(a) For α ∈ �(gC), there exists wα ∈ N (T ), so that the action of wα on (it)∗ is given
by rα and the action of wα on it is given by rhα

.
(b) For α, β ∈ �(gC), rα (β) ∈ �(gC) and rhα

(
hβ

) = hrα(β).

Proof. Using Theorem 6.20, choose a standard su(2)-triple, {Iα,Jα,Kα}, and a
standard sl(2,C)-triple, {Eα, Hα, Fα}, corresponding to α and let ϕα : SU (2) → G
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be the corresponding homomorphism. Let w = exp( π2 J ) =
(

0 −1
1 0

)
∈ SU (2),

where J = −E + F ∈ su(2). Thus dϕα(J ) = Jα = −Eα + Fα . Define wα ∈ G by
wα = ϕα(w). For H ∈ it, calculate

ad(dϕα(
π

2
J ))H = π

2
ad(−Eα + Fα)H = α(H)

π

2
[Eα + Fα].

In particular if B(H, hα) = 0, then α(H) = 0, so that ad(dϕα(
π
2 J ))H = 0. Thus, if

B(H, hα) = 0,

Ad(wα)H = Ad(ϕα(exp(
π

2
J )))H = Ad(exp(dϕα(

π

2
J )))H

= ead(dϕα(
π
2 J ))H = H .

On the other hand, consider the case of H = hα . Since cϕα(w) ◦ ϕα = ϕα ◦ cw, the
differentials satisfy Ad(wα) ◦ dϕα = dϕα ◦ Ad(w). Observing that wHw−1 = −H
in sl(2,C), where dϕα(H) = hα , it follows that

Ad(wα)hα = Ad(wα)ϕα(H)

= dϕα (Ad(w)H) = −dϕα(H) = −hα .

Thus Ad(wα) preserves t and acts on it as the reflection across the hyperplane per-
pendicular to hα . In other words, Ad(wα) acts as rhα

on it. Since T = exp t and
cwα

(exp H) = exp(Ad(wα)H), this also shows that wα ∈ N (T ). To finish part (a),
calculate

(wαλ)(H) = λ(w−1
α H) = B(uλ,Ad(wα)

−1 H) = B(Ad(wα)uλ, H)

for λ ∈ (it)∗. Thus for λ = α, Ad(wα)uα = −uα , so wαα = −α. For λ ∈ α⊥,
uλ ∈ h⊥α , so Ad(wα)uλ = uλ and wαλ = λ. In particular, Ad(wα) acts on (it)∗ by
rα . Part (b) now follows from Theorem 6.36. �

Lemma 6.42. Let G be compact Lie group with a Cartan subalgebra t.
(a) There is a one-to-one correspondence between

{systems of simple roots} ←→ {Weyl chambers of (it)∗}.

The bijection maps a simple system � to the Weyl chamber C(�) and maps a Weyl
chamber C to the simple system �(C).
(b) There is a one-to-one correspondence between

{systems of simple roots} ←→ {Weyl chambers of it}.

The bijection maps a simple system � to the Weyl chamber C∨(�) and maps a Weyl
chamber C∨ to the simple system �(C∨).
(c) If � is a simple system with α, β ∈ �, then B(α, β) ≤ 0.
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Proof. Suppose � = {α1, . . . , αl} is a simple system. From Equation 6.39, recall
that ρ ∈ (it)∗ satisfies B(ρ, α j ) = ‖α‖2

2 > 0, so that ρ ∈ C(�). For any λ ∈ C(�),
examining the map t → B(tλ + (1 − t)ρ, α) quickly shows that the line segment
joining λ to ρ lies in C(�), so that C(�) is connected. Moreover, B(λ, α) > 0 for
α ∈ �+(gC) and B(λ, β) < 0 for β ∈ �−(gC), so that C(�) ⊆ (it)∗\ (∪α∈�(gC)α

⊥).
In particular, C(�) ⊆ C for some Weyl chamber C of (it)∗. As the sign of B(γ, α j )

is constant for γ ∈ C , the fact that ρ ∈ C forces α j (C) > 0. Thus, C ⊆ C(�), so
that C(�) = C is a Weyl chamber and the first half of part (a) is done.

Next, let C be a Weyl chamber of (it)∗ and fix λ ∈ C . If α = β1 + β2 for
C-positive roots α, βi , then B(α, λ) > B(βi , λ). Since {B(λ, α) | α ∈ �(gC) is
C-positive} is a finite (nonempty) subset of positive real numbers, it is easy to see
that �(C) is nonempty. It now follows from the definition of �(C) that any β ∈
�(gC) may be written as β = ∑

α∈� kαα with either {kα | α ∈ �} ⊆ Z≥0 or
{kα | α ∈ �} ⊆ Z≤0 depending on whether β is C-positive or C-negative. Since
�(gC) spans (it)∗, it only remains to see �(C) is an independent set.

Let α, β ∈ �(C) be distinct and, without loss of generality, assume B(α, α) ≤
B(β, β). Positivity implies α �= −β so that the proof of Corollary 6.22 (c.f. Exercise
6.20) shows that β(hα) = 2 B(α,β)

B(β,β) ∈ ±{0, 1}. If B(α, β) > 0, then rα(β) = β − α ∈
�(gC) by Lemma 6.41. If β − α is C-positive, then β = (β − α) + α. If β − α is
C-negative, then α = −(β − α) + β. Either violates the assumption that α, β are
indecomposable. Thus α, β ∈ �(C) implies that B(α, β) ≤ 0 and will finish part (c)
once part (a) is complete.

To see that �(C) is independent, suppose
∑

α∈I1
cαα =

∑
β∈I2

cββ with cα, cβ ≥
0 and I1

∐
I2 = C(�). Using the fact that B(α, β) ≤ 0, calculate

0 ≤
∥∥∥∥∥∑
α∈I1

cαα

∥∥∥∥∥
2

= B(
∑
α∈I1

cαα,
∑
β∈I2

cββ) =
∑

α∈I1, β∈I2

cαcb B(α, β) ≤ 0.

Thus 0 =∑
α∈I1

cαα. Choosing any γ ∈ C , 0 =∑
α∈I1

cα B(γ, α). Since B(γ, α) >
0, cα = 0. Similarly cβ = 0 and part (a) is finished. As the proof of part (b) can either
be done is a similar fashion or derived easily from part (a), it is omitted. �

Theorem 6.43. Let G be compact Lie group with a maximal torus T .
(a) The action of W (G) on it establishes an isomorphism W (G) ∼= W (�(gC)

∨).
(b) The action of W (G) on (it)∗ establishes an isomorphism W (G) ∼= W (�(gC)).
(c) W (G) acts simply transitively on the set of Weyl chambers.

Proof. Using the faithful action of W = W (G) on it via Ad from Theorem 6.36,
identify W with the corresponding transformation group on it for the duration of this
proof. Then Lemma 6.41 shows rhα

∈ W for each α ∈ �(gC), so that W (�(gC)
∨) ⊆

W . It remains to show that W ⊆ W (�(gC)
∨) to finish the proof of part (a).

Reduce to the case where g is semisimple. Fix a Weyl chamber C of it and fix
H ∈ C . If w ∈ W , then W preserves {hα | α ∈ �(gC)}. Since w leaves the Killing
form invariant, w preserves {h⊥α | α ∈ �(gC)}, so that wC is also a Weyl chamber.

Let � be the union of all intersections of hyperplanes of the form h⊥α for distinct
α ∈ �(gC). As this is a finite union of subspaces of codimension at least 2, (it)\�
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is path connected (Exercise 6.31). Thus there exists a piecewise linear path γ (t) :
[0, 1] → it from H to wH that does not intersect �. Modifying γ (t) if necessary
(Exercise 6.31), there is a partition {si }N

i=1 of [0, 1], Weyl chambers Ci with C0 = C
and CN = wC , and roots αi , so that γ (si−1, si ) ⊆ Ci , 1 ≤ i ≤ N , and γ (si ) ∈ h⊥αi

,
1 ≤ i ≤ N − 1.

As γ (t) does not intersect �, there is an entire ball, Bi , around γ (si ) in h⊥αi
(of

codimension 1 in it) lying on the boundary of both Ci−1 and Ci , 1 ≤ i ≤ N − 1. For
small nonzero ε, it follows that Bi + εhα lies in Ci−1 or Ci , depending on the sign
of ε. Since rhαi

(Bi + εhα) = Bi − εhα and since rhαi
preserves Weyl chambers, it

follows that rhαi
Ci−1 = Ci . In particular, rhα1

· · · rhαN
wC = C .

Now suppose w0 ∈ N (T ) satisfies Ad(w0)C = C . To finish part (a), it suffices
to show that w0 ∈ T , so that w0 acts by the identity operator on it. Let � = �(C)

and define ρ as in Equation 6.39. By Lemma 6.42, it follows that w� = �, so that
Ad(w0)ρ = ρ. Thus cw0 eituρ = eituρ , t ∈ R.

Choose a maximal torus S′ of ZG(w0)
0 containing w0. Note that S′ is also a

maximal torus of G by the Maximal Torus Theorem. Since eiRuρ is in turn contained
in some (other) maximal torus of ZG(w0)

0, Corollary 5.10 shows that there exists
g ∈ ZG(w0)

0, so cgeiRuρ ⊆ S′. Let S be the maximal torus of G given by S = cg−1 S′.
Then w0 ∈ S and eiRuρ ⊆ S (c.f. Exercise 5.12). By definition of ρ and a simple a
system, the root space decomposition of gC shows zgC

(uρ) = t so zg(iuρ) = t. But
since s ⊆ zg(iuρ) = t, maximality implies s = t, and so S = T . Thus w0 ∈ T , as
desired.

Part (b) is done in a similar fashion to part (a). Part (c) is a corollary of the proof
of part (a). �


6.4.5 Exercises

Exercise 6.27 For each compact classical group G in §6.4.2, verify that the Weyl
group and its action on t and (it)∗ is correctly calculated.

Exercise 6.28 Let G be compact Lie group with semisimple Lie algebra and t a
Cartan subalgebra. For α ∈ �(gC), show that rα is the reflection of (it)∗ across the
hyperplane perpendicular to α and rhα

is the reflection of it across the hyperplane
perpendicular to hα .

Exercise 6.29 Let G be a compact connected Lie group with a maximal torus T .
Theorem 6.36 shows that the conjugacy classes of G are parametrized by the W -
orbits in T . In fact, more is true. Show that there is a one-to-one correspondence
between continuous class functions on G and continuous W -invariant functions on
T (c.f. Exercise 7.10).

Exercise 6.30 For each compact classical Lie group in §6.4.3, verify that the given
system of simple roots and corresponding Weyl chamber is correct.

Exercise 6.31 Suppose G is compact Lie group with semisimple Lie algebra g and
a Cartan subalgebra t.
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(1) If � is the union of all intersections of distinct hyperplanes of the form h⊥α for
α ∈ �(gC), show (it)\� is path connected.
(2) Suppose γ (t) : [0, 1] → it is a piecewise linear path that does not intersect �
with γ (0) and γ (1) elements of (different) Weyl chambers. Show there is a piecewise
linear path γ ′(t) : [0, 1] → it that does not intersect �, satisfies γ ′(0) = γ (0) and
γ ′(1) = γ (1), γ (si−1, si ) ⊆ Ci , 1 ≤ i ≤ N , and γ (si ) ∈ h⊥αi

, 1 ≤ i ≤ N − 1, for
some partition {si }N

i=0 of [0, 1], some Weyl chambers Ci , and some roots αi .

Exercise 6.32 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a basis of (it)∗. With respect to this basis, the lexico-
graphic order on (it)∗ is defined by setting α > β if the first nonzero coordinate
(with respect to the given basis) of α − β is positive.
(1) Let � = {α ∈ �(gC) | α > 0 and α �= β1 + β2 for any βi ∈ �(gC) with
βi > 0}. Show � is a simple base of �(gC) with �+(gC) = {α ∈ �(gC) | α > 0}
and �−(gC) = {α ∈ �(gC) | α < 0}.
(2) Show that all simple systems arise in this fashion.
(3) Show that there is a unique δ ∈ �+(gC), so that δ > β, β ∈ �+(gC)\{δ}. The
root δ is called the highest root. For the classical compact Lie groups, show δ is given
by the following table:

G SU (n) Sp(n) SO(E2n) SO(E2n+1)

δ ε1 − εn 2ε1 ε1 + ε2 ε1 + ε2.

(4) Show that B(δ, β) ≥ 0 for all β ∈ �+(gC).
(5) For G = SO(E2n+1), n ≥ 2, show that there is another root besides δ satisfying
the condition in part (4).

Exercise 6.33 Let G be compact Lie group with semisimple Lie algebra g and
t a Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC). For any
β ∈ �+(gC), show that β can be written as β = αi1 + αi2 + · · · + αiN , where
αi1 + αi2 + · · · + αik ∈ �+(gC) for 1 ≤ k ≤ N .

Exercise 6.34 Let G be compact Lie group with a Cartan subalgebra t. Fix a simple
system � of �(gC).
(1) For α ∈ � and β ∈ �+(gC)\{α}, write rαβ = β − 2 B(β,α)

B(α,α) α to show that
β ∈ �+(gC). Conclude that rα(�+(gC)\{α}) = �+(gC)\{α}.
(2) Let

ρ ′ = 1

2

∑
β∈�+(gC)

β

and conclude from part (1) that rαρ ′ = ρ ′ − α. Use the definition of rα to show that
ρ ′ = ρ.

Exercise 6.35 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC) and let W (�(gC))

′



148 6 Roots and Associated Structures

be the subgroup of W (�(gC)) generated {rαi }.
(1) Given any β ∈ �(gC), choose x ∈ (±β)⊥ not lying on any other root hyperplane.
For all sufficiently small ε > 0, show that x + εβ lies in a Weyl chamber C ′ and that
β ∈ �′ = �(C ′).
(2) Write ρ� for the element of (it)∗ satisfying 2 B(ρ�,αi )

B(αi ,αi )
= 1 from Equation 6.39

(c.f. Exercise 6.34) and choose w ∈ W (�(gC))
′ so that B(wρ�′ , ρ�) is maximal. By

examining B(rαiwρ�′ , ρ�), show that wρ�′ ∈ C(�). Conclude that wβ ∈ �.
(3) Show that rβ = w−1rwβw. Conclude that W (�(gC))

′ = W (�(gC)).

Exercise 6.36 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC) and recall Exercise
6.35. For w ∈ W (�(gC)), let n(w) = ∣∣{β ∈ �+(gC) | wβ ∈ �−(gC)}

∣∣. For w �= I ,
write w = rα1 · · · rαN with N as small as possible. Then rα1 · · · rαN is called a reduced
expression for w. The length of w, with respect to �, is defined by l(w) = N . For
w = I , l(I ) = 0.
(1) Use Exercise 6.34 to show

n(wrαi ) =
{

n(w)− 1 if wαi ∈ �−(gC)

n(w)+ 1 if wαi ∈ �+(gC).

Conclude that n(w) ≤ l(w).
(2) Use Theorem 6.43 and induction on the length to show that n(w) = l(w).

Exercise 6.37 (Chevalley’s Lemma) Let G be compact Lie group with semisim-
ple Lie algebra g and t a Cartan subalgebra of g. Fix λ ∈ (it)∗ and let Wλ =
{w ∈ W (�(gC)) | wλ = λ}. Choose a Weyl chamber C , so that λ ∈ C and let
� = �(C).
(1) If β ∈ �(gC) with B(λ, β) > 0, show that β ∈ �+(gC).
(2) If α ∈ � and w ∈ Wλ with wα ∈ �−(gC), show B(λ, α) ≤ 0.
(3) Chevalley’s Lemma states Wλ is generated by W (λ) = {rα | B(λ, α) = 0}.
Use Exercise 6.36 to prove this result. To this end, argue by contradiction and let
w ∈ Wλ\ 〈W (λ)〉 be of minimal length.
(4) Show that the only reflections in W (�(gC)) are of the form rα for α ∈ W�(gC).
(5) If Wλ �= {I }, show that there exists α ∈ �(gC) so λ ∈ α⊥.

Exercise 6.38 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC). For w ∈ W (�(gC)),
let sgn(w) = (−1)l(w) (c.f. Exercise 6.36). Show that sgn(w) = det(w).

Exercise 6.39 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a Weyl chamber C and H ∈ (it)∗.
(1) Suppose H ∈ C ∩ wC for w ∈ W (�(gC)). Show that wH = H .
(2) Let H ∈ (it)∗ be arbitrary. Show that C is a fundamental chamber for the action
of W (�(gC)), i.e., show that the Weyl group orbit of H intersects C in exactly one
point.

Exercise 6.40 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � of �(gC).
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(1) Show that there is a unique w0 ∈ W (�(gC)), so that w0� = −�.
(2) Show that w0 = −I ∈ W (�(gC)) for G equal to SU (2), SO(E2n+1), Sp(n), and
SO(E4n).
(3) Show that w0 �= −I , so −I /∈ W (�(gC)) for G equal to SU (n) (n ≥ 3) and
SO(E4n+2).

Exercise 6.41 Let G be compact Lie group with simple Lie algebra g and t a Cartan
subalgebra of g. Fix a simple system � = {αi } of �(gC).
(1) If αi and α j are joined by a single edge in the Dynkin diagram, show that there
exists w ∈ W (�(gC)), so that ωαi = α j .
(2) If G is a classical compact Lie group, i.e., G is SU (n), Sp(n), SO(E2n), or
SO(E2n+1), show the set of roots of a fixed length constitutes a single Weyl group
orbit.

Exercise 6.42 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC) and let πi ∈ (it)∗

be defined by the relation 2 B(πi ,α j )

B(α j ,α j )
= δi, j .

(1) Show that {αi } is a Z-basis for the root lattice R and {πi } is a Z-basis for the
weight lattice P .

(2) Show the matrix
(
B(αi , α j )

)
is positive definite. Conclude det

(
2 B(αi ,α j )

B(α j ,α j )

)
> 0.

(3) It is well known from the study of free Abelian groups ([3]) that there exists a
Z-basis {λi } of P and ki ∈ Z, so that {kiλi } is a basis for R. Thus there is a change
of basis matrix from the basis {λi } to {πi } with integral entries and determinant ±1.

Show that |P/R| = det
(

2 B(αi ,α j )

B(α j ,α j )

)
. The matrix

(
2 B(αi ,α j )

B(α j ,α j )

)
is called the Cartan

matrix of gC.

Exercise 6.43 Let G be a compact Lie group with semisimple Lie algebra g and
t a Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC). For each
β ∈ �(gC), choose a standard sl(2,C)-triple associated to β, {Eβ, Hβ, Fβ}. Let h =∑

β∈�+(gC)
Hβ and define kαi ∈ Z>0, so h = ∑

αi∈� kαi Hαi . Set e = ∑
i

√
kαi Eαi ,

f =∑
i kαi Fαi , and s = spanC{e, h, f }.

(1) Show
B(h,hαi )

B(hαi ,hαi )
= 1 (c.f. Exercise 6.34).

(2) Show that s ∼= sl(2,C). The subalgebra s is called the principal three-dimensional
subalgebra of gC.

Exercise 6.44 Let G be a compact Lie group with semisimple Lie algebra g and let
T be a maximal torus of G. Fix a Weyl chamber C of it and let NG(C) = {g ∈ G |
Ad(g)C = C}. Show that the inclusion map of NG(C) → G induces an isomor-
phism NG(C)/T ∼= G0/G.



7

Highest Weight Theory

By studying the L2 functions on a compact Lie group G, the Peter–Weyl Theorem
gives a simultaneous construction of all irreducible representations of G. Two im-
portant problems remain. The first is to parametrize Ĝ in a reasonable manner and
the second is to individually construct each irreducible representation in a natural
way. The solution to both of these problems is closely tied to the notion of highest
weights.

7.1 Highest Weights

In this section, let G be a compact Lie group, T a maximal torus, and �+(gC) a
system of positive roots with corresponding simple system �(gC). Write

n± =
⊕

α∈�±(gC)

gα,

so that

gC = n− ⊕ tC ⊕ n+(7.1)

by the root space decomposition. Equation 7.1 is sometimes called a triangular
decomposition of gC since n± can be chosen to be the set of strictly upper, re-
spectively lower, triangular matrices in the case where G is GL(n,F). Notice that
[tC ⊕ n+, n+] ⊆ n+ and [tC ⊕ n−, n−] ⊆ n−.

Definition 7.2. Let V be a representation of g with weight space decomposition V =⊕
λ∈�(V ) Vλ.

(a) A nonzero v ∈ Vλ0 is called a highest weight vector of weight λ0 with respect to
�+(gC) if n+v = 0, i.e., if Xv = 0 for all X ∈ n+. In this case, λ0 is called a highest
weight of V .
(b) A weight λ is said to be dominant if B(λ, α) ≥ 0 for all α ∈ �(gC), i.e., if λ lies
in the closed Weyl chamber corresponding to �+(gC).
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As an example, recall that the action of su(2)C = sl(2,C) on Vn(C2), n ∈ Z≥0,
from Equation 6.7 is given by

E · (zk
1zn−k

2 ) = −k zk−1
1 zn−k+1

2

H · (zk
1zn−k

2 ) = (n − 2k) zk
1zn−k

2

F · (zk
1zn−k

2 ) = (k − n) zk+1
1 zn−k−1

2 ,

and recall that {Vn(C2) | n ∈ Z≥0} is a complete list of irreducible representa-
tions for SU (2). Taking it = diag(θ,−θ), θ ∈ R, there are two roots, ±ε12, where
ε12(diag(θ,−θ)) = 2θ . Choosing �+(sl(2,C)) = {ε12}, it follows that zn

2 is a high-
est weight vector of Vn(C2) of weight n ε12

2 . Notice that the set of dominant analyti-
cally integral weights is {n ε12

2 | n ∈ Z≥0}. Thus there is a one-to-one correspondence
between the set of highest weights of irreducible representations of SU (2) and the set
of dominant analytically integral weights. This correspondence will be established
for all connected compact groups in Theorem 7.34.

Theorem 7.3. Let G be a connected compact Lie group and V an irreducible repre-
sentation of G.
(a) V has a unique highest weight, λ0.
(b) The highest weight λ0 is dominant and analytically integral, i.e., λ0 ∈ A(T ).
(c) Up to nonzero scalar multiplication, there is a unique highest weight vector.
(d) Any weight λ ∈ �(V ) is of the form

λ = λ0 −
∑

αi∈�(gC)

niαi

for ni ∈ Z≥0.
(e) For w ∈ W , wVλ = Vwλ, so that dim Vλ = dim Vwλ. Here W (G) is identified
with W (�(gC)), as in Theorem 6.43 via the Ad-action from Equation 6.35.
(f) Using the norm induced by the Killing form, ‖λ‖ ≤ ‖λ0‖ with equality if and only
if λ = wλ0 for w ∈ W (gC).
(g) Up to isomorphism, V is uniquely determined by λ0.

Proof. Existence of a highest weight λ0 follows from the finite dimensionality of V
and Theorem 6.11. Let v0 be a highest weight vector for λ0 and inductively define
Vn = Vn−1 + n−Vn−1 where V0 = Cv0. This defines a filtration on the (n− ⊕ tC)-
invariant subspace V∞ = ∪n Vn of V . If α ∈ �(gC), then [gα, n

−] ⊆ n− ⊕ tC. Since
gαV0 = 0, a simple inductive argument shows that gαVn ⊆ Vn . In particular, this
suffices to demonstrate that V∞ is gC-invariant. Irreducibility implies V = V∞ and
part (d) follows.

If λ1 is also a highest weight, then λ1 = λ0 −
∑

niαi and λ0 = λ1 −
∑

miαi

for ni ,mi ∈ Z≥0. Eliminating λ1 and λ0 shows that −∑
niαi =

∑
miαi . Thus

−ni = mi , so that ni = mi = 0 and λ1 = λ0. Furthermore, the weight decomposition
shows that V∞ ∩ Vλ0 = V0 = Cv0, so that parts (a) and (c) are complete.

The proof of part (e) is done in the same way as the proof of Theorem 6.36. For
part (b), notice that rαiλ0 is a weight by part (e). Thus
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λ0 − 2
B(λ0, αi )

B(αi , αi )
αi = λ0 −

∑
α j∈�(gC)

n jα j

for n j ∈ Z≥0. Hence 2 B(λ0,αi )

B(αi ,αi )
= ni , so that B(λ0, αi ) ≥ 0 and λ0 is dominant.

Theorem 6.27 shows that λ0 (in fact, any weight of V ) is analytically integral.
For part (f), Theorem 6.43 shows that it suffices to take λ dominant by using the

Weyl group action. Write λ = λ0 −
∑

niαi . Solving for λ0 and using dominance in
the second line,

‖λ0‖2 = ‖λ‖2 + 2
∑

αi∈�(gC)

ni B(λ, αi )+
∥∥∥∥∥ ∑
αi∈�(gC)

niαi

∥∥∥∥∥
2

≥ ‖λ‖2 +
∥∥∥∥∥ ∑
αi∈�(gC)

niαi

∥∥∥∥∥
2

≥ ‖λ‖2 .

In the case of equality, it follows that
∑

αi∈�(gC)
niαi = 0, so that ni = 0 and λ = λ0.

For part (g), suppose V ′ is an irreducible representation of G with highest weight
λ0 and corresponding highest weight vector v′0. Let W = V ⊕ V ′ and define
Wn = Wn−1 + n−Wn−1, where W0 = C(v0, v

′
0). As above, W∞ = ∪n Wn is a

subrepresentation of V ⊕ V ′. If U is a nonzero subrepresentation of W∞, then U
has a highest weight vector, (u0, u′0). In turn, this means that u0 and u′0 are highest
weight vectors of V and V ′, respectively. Part (a) then shows that C(u0, u′0) = W0.
Thus U = W∞ and W∞ is irreducible. Projection onto each coordinate establishes
the G-intertwining map V ∼= V ′. �


The above theorem shows that highest weights completely classify irreducible
representations. It only remains to parametrize all possible highest weights of irre-
ducible representations. This will be done in §7.3.5 where we will see there is a
bijection between the set of dominant analytically integral weights and irreducible
representations of G.

Definition 7.4. Let G be connected and let V be an irreducible representation of G
with highest weight λ. As V is uniquely determined by λ, write V (λ) for V and write
χλ for its character.

Lemma 7.5. Let G be connected. If V (λ) is an irreducible representation of G, then
V (λ)∗ ∼= V (−w0λ), where w0 ∈ W (�(gC)) is the unique element mapping the
positive Weyl chamber to the negative Weyl chamber (c.f. Exercise 6.40).

Proof. Since V (λ) is irreducible, the character theory of Theorems 3.5 and 3.7 show
that V (λ)∗ is irreducible. It therefore suffices to show that the highest weight of
V (λ)∗ is −w0λ.

Fix a G-invariant inner product, (·, ·), on V (λ), so that V (λ)∗ = {µv | v ∈ V (λ)},
where µv(v

′) = (v′, v) for v′ ∈ V (λ). By the invariance of the form, gµv = µgv

for g ∈ G, so that Xµv = µXv for X ∈ g. Since (·, ·) is Hermitian, it follows that
Zµv = µθ(Z)v for Z ∈ gC.
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Let vλ be a highest weight vector for V (λ). Identifying W (G) with W (�(gC)
∨)

and W (�(gC)) as in Theorem 6.43 via the Ad-action of Equation 6.35, it follows
from Theorem 7.3 that w0vλ is a weight vector of weight w0λ (called the lowest
weight vector). As θ(Y ) = −Y for Y ∈ it and since weights are real valued on it, it
follows that µw0vλ is a weight vector of weight −w0λ.

It remains to see that n−w0vλ = 0 since Lemma 6.14 shows θn+ = n−. By
construction, w0�

+(gC) = �−(gC) and w2
0 = I , so that Ad(w0)n

− = n+. Thus

n−w0vλ = w0
(
Ad(w−1

0 )n−
)
vλ = w0n

+vλ = 0

and the proof is complete. �


7.1.1 Exercises

Exercise 7.1 Consider the representation of SU (n) on
∧p Cn . For T equal to the

usual set of diagonal elements, show that a basis of weight vectors is given by vectors
of the form el1 ∧ · · · ∧ elp with weight

∑p
i=1 εli . Verify that only e1 ∧ · · · ∧ ep is a

highest weight to conclude that
∧p Cn is an irreducible representation of SU (n) with

highest weight
∑p

i=1 εi .

Exercise 7.2 Recall that Vp(Rn), the space of complex-valued polynomials on Rn

homogeneous of degree p, and Hp(Rn), the harmonic polynomials, are representa-
tions of SO(n). Let T be the standard maximal torus given in §5.1.2.3 and §5.1.2.4,
let h j = E2 j−1,2 j − E2 j,2 j−1 ∈ t, 1 ≤ k ≤ m ≡ ⌊

n
2

⌋
, i.e., h j is an embedding of(

0 1
−1 0

)
, and let ε j ∈ t∗ be defined by ε j (h j ′) = −iδ j, j ′ (c.f. Exercise 6.14).

(1) Show that h j acts on Vp(Rn) by the operator −x2 j∂x2 j−1 + x2 j−1∂x2 j .
(2) For n = 2m + 1, conclude that a basis of weight vectors is given by polynomials
of the form

(x1 + i x2)
j1 · · · (x2m−1 + i x2m)

jm (x1 − i x2)
k1 · · · (x2m−1 − i x2m)

km xl0
2m+1,

l0 +
∑

i ji +
∑

i ki = p, each with weight
∑

i (ki − ji )εi .
(3) For n = 2m, conclude that a basis of weight vectors is given by polynomials of
the form

(x1 + i x2)
j1 · · · (xn−1 + i xn)

jm (x1 − i x2)
k1 · · · (xn−1 − i xn)

km ,∑
i ji +

∑
i ki = p, each with weight

∑
i (ki − ji )εi .

(4) Using the root system of so(n,C) and Theorem 2.33, conclude that the weight
vector (x1 − i x2)

p of weight pε1 must be the highest weight vector of Hp(Rn) for
n ≥ 3.
(5) Using Lemma 2.27, show that a basis of highest weight vectors for Vp(Rn) is
given by the vectors (x1 − i x2)

p−2 j ‖x‖2 j of weight (p − 2 j)ε1, 1 ≤ j ≤ m.

Exercise 7.3 Consider the representation of SO(n) on
∧p Cn and continue the no-

tation from Exercise 7.2.
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(1) For n = 2m+1, examine the wedge product of elements of the form e2 j−1± ie2 j

as well as e2m+1 to find a basis of weight vectors (the weights will be of the form
±ε j1 · · · ± ε jr with 1 ≤ j1 < . . . < jr ≤ p). For p ≤ m, show that only one is
a highest weight vector and conclude that

∧p Cn is irreducible with highest weight∑p
i=1 εi .

(2) For n = 2m, examine the wedge product of elements of the form e2 j−1 ± ie2 j to
find a basis of weight vectors. For p < m, show that only one is a highest weight vec-
tor and conclude that

∧p Cn is irreducible with highest weight
∑p

i=1 εi . For p = m,
show that there are exactly two highest weights and that they are

∑m−1
i=1 εi ± εm . In

this case, conclude that
∧m Cn is the direct sum of two irreducible representations.

Exercise 7.4 Let G be a compact Lie group, T a maximal torus, and �+(gC) a
system of positive roots with respect to tC with corresponding simple system �(gC).
(1) If V (λ) and V (λ′) are irreducible representations of G, show that the weights of
V (λ)⊗V (λ′) are of the form µ+µ′, where µ is a weight of V (λ) and µ′ is a weight
of V (λ′).
(2) By looking at highest weight vectors, show V (λ + λ′) appears exactly once as a
summand in V (λ)⊗ V (λ′).
(3) Suppose V (ν) is an irreducible summand of V (λ)⊗ V (λ′) and write the highest
weight vector of V (ν) in terms of the weights of V (λ)⊗V (λ′). By considering a term
in which the contribution from V (λ) is as large as possible, show that ν = λ+µ′ for
a weight µ′ of V (λ′).

Exercise 7.5 Recall that Vp,q(Cn) from Exercise 2.35 is a representations of SU (n)
on the set of complex polynomials homogeneous of degree p in z1, . . . , zn and ho-
mogeneous of degree q in z1, . . . , zn and that Hp,q(Cn) is an irreducible subrepre-
sentation.
(1) If H = diag(t1, . . . , tn) with

∑
j t j = 0, show that H acts on Vp,q(Cn) as∑

j t j (−z j∂z j + z j∂z j ).

(2) Conclude that zk1
1 · · · zkn

n z1
l1 · · · zn

ln ,
∑

j k j = p and
∑

j l j = q, is a weight vec-
tor of weight

∑
j (l j − k j )ε j .

(3) Show that −pεn is a highest weight of Vp,0(Cn).
(4) Show that qε1 is a highest weight of V0,q(Cn).
(5) Show that qε1 − pεn is the highest weight of Hp,q(Cn).

Exercise 7.6 Since Spinn(R) is the simply connected cover of SO(n), n ≥ 3, the
Lie algebra of Spinn(R) can be identified with so(n) (a maximal torus for Spinn(R)

is given in Exercise 5.5).
(1) For n = 2m+1, show that the weights of the spin representation S are all weights
of the form 1

2 (±ε1 · · · ± εm) and that the highest weight is 1
2 (ε1 + · · · + εm).

(2) For n = 2m, show that the weights of the half-spin representation S+ are all
weights of the form 1

2 (±ε1 · · · ± εm) with an even number of minus signs and that
the highest weight is 1

2 (ε1 + · · · + εm−1 + εm).
(3) For n = 2m, show that the weights of the half-spin representation S− are all
weights of the form 1

2 (±ε1 · · · ± εm) with an odd number of minus signs and that
the highest weight is 1

2 (ε1 + · · · + εm−1 − εm).
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7.2 Weyl Integration Formula

Let G be a compact connected Lie group, T a maximal torus, and f ∈ C(G). We
will prove the famous Weyl Integration Formula (Theorem 7.16) which says that∫

G
f (g) dg = 1

|W (G)|
∫

T
d(t)

∫
G/T

f (gtg−1) dgT dt,

where d(t) = ∏
α∈�+(gC)

|1− ξ−α(t)|2 for t ∈ T . Using Equation 1.42, the proof
will be based on a change of variables map ψ : G/T ×T → G given by ψ(gT, t) =
gtg−1. In order to ensure all required hypothesis are met, it is necessary to first
restrict our attention to a distinguished dense open subset of G called the set of
regular elements.

7.2.1 Regular Elements

Let G be a compact Lie group with maximal torus T and X ∈ g. Recall from Def-
inition 5.8 that X is called a regular element of g if zg(X) is a Cartan subalgebra.
Also recall from Theorem 6.27 the bijection between the set of analytically integral
weights, A(T ), and the character group, χ(T ), that maps λ ∈ A(T ) to ξλ ∈ χ(T )

and satisfies

ξλ(exp H) = eλ(H)

for H ∈ t.

Definition 7.6. Let G be a compact connected Lie group with maximal torus T .
(a) An element g ∈ G is said to be regular if ZG(g)0 is a maximal torus.
(b) Write greg for the set of regular element in g and write Greg for the set of regular
elements in G.
(c) For t ∈ T , let

d(t) =
∏

α∈�(gC)

(1− ξ−α(t)).

Theorem 7.7. Let G be a compact connected Lie group.
(a) greg is open dense in g,
(b) Greg is open dense in G,
(c) If T is a maximal torus and t ∈ T , t ∈ T reg if and only if d(t) �= 0,
(d) For H ∈ t, eH is regular if and only if H ∈ � = {H ∈ t | α(H) /∈ 2π iZ,
α ∈ �(gC)},
(e) Greg = ∪g∈G

(
gT regg−1

)
.

Proof. Let l be the dimension of a Cartan subalgebra and n = dim g. Any element
X ∈ g lies in at least one Cartan subalgebra, so that dim(ker(ad(X))) ≥ l. Thus

det(ad(X)− λI ) =
n∑

k=l

ck(X)λk,
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where ck(X) is a polynomial in X . Since ad(X) is diagonalizable, X is regular if and
only if dim(ker(ad(X))) = l. In particular, X is regular if and only if cl(X) �= 0.
Thus greg is open in g. It also follows that greg is dense since a polynomial vanishes
on a neighborhood if and only if it is zero.

For part (b), similarly observe that each g ∈ G lies in a maximal torus so that
dim(ker(Ad(g)− I )) ≥ l. Thus

det(Ad(g)− λI ) =
n∑

k=l

c̃k(g)(λ− 1)k,

where c̃k (g) is a smooth function of g. From Exercise 4.22, recall that the Lie algebra
of ZG(g) is zg(g) = {X ∈ g | Ad(g)X = X}. Since ZG(g)0 is a maximal torus if
and only if zg(g) is a Cartan subalgebra, diagonalizability implies g is regular if and
only if c̃l(g) �= 0. Thus Greg is open in G.

To establish the density of Greg, fix a maximal torus T of G. Since the eigenval-
ues of Ad(eH ) are of the form eα(H) for α ∈ �(gC)∪{0}, it follows that eH is regular
if and only if H ∈ �. Since � differs from t only by a countable number of hyper-
planes, � is dense in t by the Baire Category Theorem. Because exp is onto and con-
tinuous, T reg is therefore dense in T . Since the Maximal Torus Theorem shows that
G = ∪g∈G

(
gT g−1

)
, counting eigenvalues of Ad(g) shows Greg = ∪g∈G

(
gT regg−1

)
.

Density of Greg in G now follows easily from the density of T reg in T . �

Definition 7.8. Let G be a compact connected Lie group and T a maximal torus.
Define the smooth, surjective map ψ : G/T × T → G by

ψ(gT, t) = gtg−1.

Abusing notation, we also denote by ψ the smooth, surjective map ψ : G/T ×
T reg → Greg defined by restriction of domain.

It will soon be necessary to understand the invertibility of the differential dψ :
TgT (G/T ) × Tt (T ) → Tgtg−1(G) for g ∈ G and t ∈ T . Calculations will be sim-
plified by locally pulling G/T × T back to G with an appropriate cross section for
G/T . Write π : G → G/T for the natural projection map.

Lemma 7.9. Let G be a compact connected Lie group and T a maximal torus. Then
g = t ⊕ (

g ∩ ⊕
α∈�(gC)

gα

)
and there exists an open neighborhood Ug of 0 in(

g ∩⊕
α∈�(gC)

gα

)
so that, if UG = exp Ug and UG/T = πUG, then:

(a) the map Ug
exp→ UG

π→ UG/T is a diffeomorphism,
(b) UG/T is an open neighborhood of eT in G/T ,
(c) UG T = {gt | g ∈ UG, t ∈ T } is an open neighborhood of e in G
(d) The map ξ : UG T → G/T × T given by ξ(gt) = (gT, t) is a smooth, well-
defined diffeomorphism onto UG/T × T .

Proof. The decomposition g = t⊕ (
g ∩⊕

α∈�(gC)
gα

)
follows from Theorem 6.20.

In fact,
(
g ∩⊕

α∈�(gC)
gα

)
is spanned by the elements Jα and Kα for α ∈ �(gC).
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Since the map (H, X) → eH eX , H ∈ t and X ∈ (
g ∩⊕

α∈�(gC)
gα

)
, is therefore a

local diffeomorphism at 0, it follows that there is an open neighborhood Ug of 0 in(
g ∩⊕

α∈�(gC)
gα

)
on which exp is a diffeomorphism onto UG .

Recall that TeT (G/T ) may be identified with g/t. Thus by construction, the dif-
ferential of π restricted to Te(UG) at e is clearly invertible, so that π is a local diffeo-
morphism from UG at e. Thus, perhaps shrinking Ug and UG , we may assume that

UG/T is an open neighborhood of eT in G/T and that the maps Ug
exp→ UG

π→ UG/T

are diffeomorphisms. This finishes parts (a) and (b).
For part (c), UG T is a neighborhood of e since the map (H, X) → eH eX is a

local diffeomorphism at 0. In fact, there is a subset V of T so that UG V is open.
Taking the union of right translates by elements of T , it follows that UG T is open.

For part (d), suppose gt = g′t ′ with g, g′ ∈ UG and t, t ′ ∈ T . Then πg = πg′,
so that g = g′ and t = t ′. Thus the map is well defined and the rest of the statement
is clear. �


Using Lemma 7.9, it is now possible to study the differential dψ : TgT (G/T )×
Tt (T ) → Tgtg−1(G). This will be done with the map ξ and appropriate translations
to pull everything back to neighborhoods of e in G.

Lemma 7.10. Let G be a compact connected Lie group and T a maximal torus.
Choose UG ⊆ G as in Lemma 7.9. For g ∈ G and t ∈ T , let φ : UG T → G be given
by

φ = lgt−1g−1 ◦ ψ ◦ (lgT × lt ) ◦ ξ,
where ξ is defined as in Lemma 7.9. Then the differential dφ : g → g is given by

dφ(H + X) = Ad(g)
[(

Ad(t−1)− I
)

X + H
]

for H ∈ t and X ∈ (
g ∩⊕

α∈�(gC)
gα

)
and

det(dφ) = d(t).

Proof. Calculate

dφ(H) = d

ds
φ(es H )|s=0 = d

ds
ges H g−1|s=0 = Ad(g)H

dφ(X) = d

ds
φ(es X )|s=0 = d

ds
gt−1es X te−s X g−1|s=0 = Ad(gt−1)X − Ad(g)X,

so that the formula for dφ is established by linearity. For the calculation of the de-
terminant, first note that det Ad(g) = 1. This follows from the three facts: (1) the
determinant is not changed by complexifying, (2) each g lies in a maximal torus, and
(3) the negative of a root is always a root. The problem therefore reduces to show-
ing that the determinant of

(
Ad(t−1)− I

)
on

⊕
α∈�(gC)

gα is
∏

α∈�(gC)
(1− e−α(H)).

Since dim gα = 1 and Ad(t−1) acts on gα by e−α(ln t), where eln t = t , the proof fol-
lows easily. The extra negative signs are taken care of by the even number of roots
(since �(gC) = �+(gC)��−(gC)). �
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Theorem 7.11. Let G be a compact connected Lie group and T a maximal torus.
The map

ψ : G/T × T reg → Greg given by

ψ(gT, t) = gtg−1

is a surjective, |W (G)|-to-one local diffeomorphism.

Proof. For g ∈ G and t ∈ T reg, Lemma 7.10 and Theorem 7.7 show that ψ is a
surjective local diffeomorphism at (gT, t). Moreover if w ∈ N (T ), then

ψ(gw−1T, wtw−1) = ψ(gT, t).(7.12)

Since gw−1T = gT if and only if w ∈ T , it follows that
∣∣ψ−1(gtg−1)

∣∣ ≥ |W (G)|.
To see that ψ is exactly |W (G)|-to-one, suppose gtg−1 = hsh−1 for h ∈ G

and s ∈ T reg. By Theorem 6.36, there is w ∈ N (T ), so that s = wtw−1. Plugging
this into gtg−1 = hsh−1 quickly yields w′ = g−1hw ∈ ZG(t). Since t is regular,
ZG(t)0 = T . Being the identity component of ZG(T ), cw′ preserves T , so that w′ ∈
N (T ). Hence

(hT, s) = (gw′w−1T, wtw−1) = (gw′w−1T, ww′−1tw′w−1).

Since this element was already known to be in ψ−1(gtg−1) by Equation 7.12, we
seethat

∣∣ψ−1(gtg−1)
∣∣ ≤ |W (G)|, as desired. �


7.2.2 Main Theorem

Let G be a compact connected Lie group and T a maximal torus. From Theorem
1.48 we know that ∫

G
f (g) dg =

∫
G/T

(∫
T

f (gt) dt

)
d(tT )

for f ∈ C(G). Recall that the invariant measures above are given by integration
against unique (up to ±1) normalized left-invariant volume forms ωG ∈ ∧∗

top(G)

and ωG/T ∈ ∧∗
top(G/T ). In this section we make a change of variables based on

the map ψ to obtain Weyl’s Integration Formula. To this end write n = dim G,
l = dim T (also called the rank of G when g is semisimple), and write ι : T → G
for the inclusion map. Recall that π : G → G/T is the natural projection map.

Lemma 7.13. Possibly replacing ωT by −ωT (which does not change integration),
there exists a G-invariant form ω̃T ∈

∧∗
l (G), so that

ωT = ι∗ω̃T

and

ωG =
(
π∗ωG/T

) ∧ ω̃T
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Proof. Clearly the restriction map ι∗|e : g∗ → t∗ is surjective. Choose any (ω̃T )e ∈∧∗
l (G)e, so ι∗ (ω̃T )e = (ωT )eT . Using left translation, uniquely extend (ω̃T )e to a

left-invariant form ω̃T ∈ ∧∗
l (G). Since ι commutes with left multiplication by G,

it follows that ι∗ω̃T = ωT . Since π also commutes with left multiplication by G,
π∗ωG/T ∈ ∧∗

n−l(G) is left-invariant as well. Thus
(
π∗ωG/T

) ∧ ω̃T ∈ ∧∗
n(G) is

left-invariant and therefore
(
π∗ωG/T

) ∧ ω̃T = cωG for some c ∈ R by uniqueness.
Write πi for the two natural coordinate projections π1 : G/T × T → G/T and

π2 : G/T × T → T . Using the notation from Lemma 7.9, observe that π |UG T =
π1 ◦ ξ , so that

π∗ωG/T = ξ ∗π∗1 ωG/T

on UG T . Similarly, observe that I |T = π2 ◦ ξ ◦ ι, so that ι∗
(
ξ ∗π∗2 ωT

) = ωT . Thus

ξ ∗π∗2 ωT = ω̃T + ω

on UG T for some ω ∈∧∗
l (UG T ) with ι∗ω = 0.

We claim that
(
π∗ωG/T

) ∧ ω = 0 on UG T . Since ξ is a diffeomorphism, this is
equivalent to showing

(
π∗1 ωG/T

) ∧ ω′ = 0, where ω′ = (
ξ−1

)∗
ω ∈ ∧∗

l (UG/T × T )

satisfies ι∗ξ ∗ω′ = 0. Now ω′ can be written as a sum ω′ = ∑l
j=0 f j

(
π∗1 ω

′
j

)
∧(

π∗2 ω
′′
l− j

)
, where f j is a smooth function on G/T ×T , ω′j ∈

∧∗
j (UG/T ), and ω′′l− j ∈∧∗

l− j (T ). Without loss of generality, we may take π∗1 ω
′
0 = 1. As I |T = π2 ◦ ξ ◦ ι

and (π1 ◦ ξ ◦ ι) (t) = eT for t ∈ T , it follows that 0 = ι∗ξ ∗ω′ = f0ω
′′
l . Therefore

ω′ =∑l
j=1 f j

(
π∗1 ω

′
j

)
∧
(
π∗2 ω

′′
l− j

)
. Since ωG/T is a top degree form, ωG/T∧ω′j = 0,

j ≥ 1, so that
(
π∗1 ωG/T

) ∧ ω′ = 0, as desired.
It now follows that

cωG =
(
π∗ωG/T

) ∧ ω̃T =
(
π∗ωG/T

) ∧ (ω̃T + ω)

= ξ ∗[
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
](7.14)

on UG T . Looking at local coordinates, it is clear that
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

) �= 0,
so c �= 0. Replacing ωT by −ωT if necessary, we may assume c > 0. Choose any
continuous function f supported on UG T and use the change of variables formula to
calculate

c
∫

G/T

∫
T

f ◦ ξ−1(gT, t) dt dgT = c
∫

G/T

∫
T

f (gt) dt dgT = c
∫

G
f (g) dg

=
∫

UG T
f cωG =

∫
UG T

f ξ ∗[
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
]

=
∫

UG/T×T
f ◦ ξ−1

(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
.

Since it follows immediately from the definitions (Exercise 7.7) that
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UG/T×T

f ◦ ξ−1
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

) = ∫
G/T

∫
T

f ◦ ξ−1(gT, t) dt dgT ,(7.15)

c = 1, as desired. �

Theorem 7.16 (Weyl Integration Formula). Let G be a compact connected Lie
group, T a maximal torus, and f ∈ C(G). Then∫

G
f (g) dg = 1

|W (G)|
∫

T
d(t)

∫
G/T

f (gtg−1) dgT dt,

where d(t) =∏
α∈�+(gC)

|1− ξ−α(t)|2 for t ∈ T .

Proof. Since Theorem 7.7 shows that Greg is open dense in G and T reg is open dense
in T , it suffices to prove that∫

Greg
f (g) dg = 1

|W (G)|
∫

T reg
d(t)

∫
G/T

f (gtg−1) dgT dt .

To this end, recall that Theorem 7.11 shows that ψ : G/T × T reg → Greg is a
surjective, |W (G)|-to-one local diffeomorphism. We will prove that

ψ∗ωG = d(t)
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)
,(7.17)

where π1 and π2 are the projections from Lemma 7.13. Once this is done, the theorem
follows immediately from Equation 1.42.

To verify Equation 7.17, first note that there is a smooth function δ : G/T×T →
R, so that

ψ∗ωG |gtg−1 = [
δ
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)] |(gT,t)

since the dimension of top degree form is 1 at each point. Since UG/T × T is
a neighborhood of (eT, e), Equation 7.14 shows

[(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)] |(eT,e) =(
ξ−1

)∗
ωG |e, so that

ψ∗l∗gt−1g−1ωG |e = ψ∗ωG |gtg−1 = (
lg−1 × lt−1

)∗ [
δ
(
π∗1 ωG/T

) ∧ (
π∗2 ωT

)] |(eT,e)

= (
lg−1 × lt−1

)∗ (
ξ−1

)∗ [
δ ◦ (lg × lt

) ◦ ξ ωG
] |e.

Thus

φ∗ωG |e =
(
lgt−1g−1 ◦ ψ ◦ (lg × lt ) ◦ ξ

)∗
ωG |e =

[
δ ◦ (lg × lt

) ◦ ξ ωG
] |e.

By looking at a basis of
∧∗

1(G)e, it follows that δ(gT, t) = δ ◦ (lg × lt
) ◦ ξ |e =

det(dφ). This determinant was calculated in Lemma 7.10 and found to be

d(t) =
∏

α∈�(gC)

(1− ξ−α(t)) =
∏

α∈�+(gC)

|1− ξ−α(t)|2 . �
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7.2.3 Exercises

Exercise 7.7 Verify Equation 7.15.

Exercise 7.8 Let G be a compact connected Lie group and T a maximal torus. For
H ∈ t, show that

d(eH ) = 2|�(gC)|
∏

α∈�+(gC)

sin2

(
α(H)

2i

)
.

Note that α(H) ∈ iR.

Exercise 7.9 Let f be a continuous class function on SU (2). Use the Weyl Integra-
tion Formula to show that∫

SU (2)
f (g) dg = 2

π

∫ π

0
f (diag(eiθ , e−iθ )) sin2 θ dθ ,

c.f. Exercise 3.22.

Exercise 7.10 Let G be a compact connected Lie group and T a maximal torus (c.f.
Exercise 6.29).
(1) If f is an L1-class function on G, show that∫

G
f (g) dg = 1

|W (G)|
∫

T
d(t) f (t) dt .

(2) Show that the map f → |W (G)|−1 d f |T defines a norm preserving isomorphism
between the L1-class functions on G and the W -invariant L1-functions on T .

(3) Show that the map f → |W (G)|−
1
2 D f |T defines a unitary isomorphism between

the L2 class functions on G to the W -invariant L2 functions on T , where D(eH ) =∏
α∈�+(gC)

(
1− e−α(H)

)
for H ∈ t (so DD = d).

Exercise 7.11 For each group G below, verify d(t) is correctly calculated.
(1) For G = SU (n), T = {diag(eiθk ) |∑k θk = 0}, and t = diag(eiθk ),

d(t) = 2n(n−1)
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
.

(2) For either G = SO(2n + 1), T as in §5.1.2.4, and

t = blockdiag

((
cos θk sin θk

− sin θk cos θk

)
, 1

)
or G = SO(E2n+1), T as in Lemma 6.12, and t = diag(eiθk , e−iθk , 1),

d(t) = 22n2
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
sin2

(
θ j + θk

2

) ∏
1≤ j≤n

sin2

(
θ j

2

)
.
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(3) For either G = SO(2n), T as in §5.1.2.3, and

t = blockdiag

((
cos θk sin θk

− sin θk cos θk

))
or G = SO(E2n), T as in Lemma 6.12, and t = diag(eiθk , e−iθk ),

d(t) = 22n(n−1)
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
sin2

(
θ j + θk

2

)
.

(4) For G = Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) and T =
{t = diag(eiθk , e−iθk )},

d(t) = 22n2
∏

1≤ j<k≤n

sin2

(
θ j − θk

2

)
sin2

(
θ j + θk

2

) ∏
1≤ j≤n

sin2
(
θ j
)

.

7.3 Weyl Character Formula

Let G be a compact Lie group with maximal torus T . Recall that Theorem 3.30
shows that the set of irreducible characters {χλ} is an orthonormal basis for the set of
L2 class functions on G.

Assume G is connected and, for the sake of motivation, momentarily assume G
is simply connected as well. In §7.3.1 we will choose a skew-W -invariant function
� defined on T , so that |�(t)|2 = d(t). It easily follows from the Weyl Integra-
tion Formula that {�χλ|T } is therefore an orthonormal basis for the set of L2 skew-
W -invariant functions on T with respect to the measure |W (G)|−1 dt (c.f. Exercise
7.10).

On the other hand, it is simple to write down another basis for the set of L2 skew-
W -invariant functions on T by looking at alternating sums over the Weyl group of
certain characters on T . By decomposing χλ|T into characters on T , it will follow
rapidly that these two bases are the same. In turn, this yields an explicit formula for
χλ called the Weyl Character Formula.

7.3.1 Machinery

Let G be a compact Lie group with maximal torus T . Recall that Theorem 6.27
shows there is a bijection between the set of analytically integral weights and the
character group given by mapping λ ∈ A(T ) to ξλ ∈ χ(T ). The next definition sets
up similar notation for more general functions on t.

Definition 7.18. Let G be a compact Lie group with maximal torus T .
(a) Let f : t → C be a function. We say f descends to T if f (H + Z) = f (H) for
H, Z ∈ t with Z ∈ ker(exp). In that case, write f : T → C for the function given by

f (eH ) = f (H).
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(b) If f : t → C satisfies f (wH) = f (H) for w ∈ W (�(gC)
∨), f is called W -

invariant.
(c) If F : T → C satisfies F(cwt) = F(t) for w ∈ N (T ), F is called W -invariant.
(d) If f : t → C satisfies f (wH) = det(w) f (H) for w ∈ W (�(gC)), f is called
skew-W -invariant.
(e) If F : T → C satisfies F(cwt) = det(Ad(w)|t) F(t) for w ∈ N (T ), F is called
skew-W -invariant.

In particular, for λ ∈ A(T ), the function H → eλ(H) on t descends to the function
ξλ on T . Also note that detw ∈ {±1} since w is a product of reflections.

Lemma 7.19. Let G be a compact connected Lie group with maximal torus T .
(a) If f : t → C descends to T and is W -invariant, then f : T → C is W -invariant.
(b) Restriction of domain establishes a bijection between the continuous class func-
tions on G and the continuous W -invariant functions on T .

Proof. For part (a), recall that the identification of W (G) with W (�(gC)
∨) from

Theorem 6.43 via the Ad-action of Equation 6.35. It follows that when f descends
to T and is W -invariant, then f (cwt) = f (t) for w ∈ N (T ) and t ∈ T .

For part (b), suppose F : T → C is W -invariant and fix g0 ∈ G. By the Maximal
Torus Theorem, there exists h0 ∈ G, so t0 = ch0 g0 ∈ T . Extend F to a class func-
tion on G by setting F(g0) = F(t0). This is well defined by Theorem 6.36. It only
remains to see that if F is continuous on T , then its extension to G is also continuous.

For this, suppose gn ∈ G with gn → g0. Choose hn ∈ G, so tn = chn gn ∈ T .
Since G is compact, passing to subsequences allows us to assume there is h′0 ∈ G
and t ′0 ∈ T , so that hn → h′0 and tn → t ′0. In particular, t ′0 = ch′0 g0 so that, by
Theorem 6.36, there exists w ∈ N (T ) with wt0 = t ′0. Thus

F(gn) = F(tn)→ F(t ′0) = F(t0) = F(g0).

Since we began with an arbitrary sequence gn → g0, the proof is complete. �

Let G be a compact Lie group, T a maximal torus, and �+(gC) a system of

positive roots with corresponding simple system �(gC) = {α1, . . . , αl}. Recall from
Equation 6.39 the unique element ρ ∈ (it)∗ satisfying ρ(hαi ) = 2 B(ρ,αi )

B(αi ,αi )
= 1,

1 ≤ j ≤ l.

Lemma 7.20. Let G be a compact Lie group with a maximal torus T .
(a) ρ = 1

2

∑
α∈�+(gC)

α.

(b) For w ∈ W (�(gC)), wρ − ρ ∈ R ⊆ A(T ), and so the function ξwρ−ρ descends
to T .

Proof. For part (a), write �(gC) = {α1, . . . αl} and let ρ ′ = 1
2

∑
α∈�+(gC)

α (c.f.
Exercise 6.34). By the definitions, it suffices to show that rα jρ

′ = ρ ′. For this, it
suffices to show that rα j preserves the set �+(gC)\{α j }. If α ∈ �+(gC)\{α j } is
written as α = !knkαk with nk0 > 0, k0 �= j , then the coefficient of αk0 in rα jα =
α − α(hα j )α j is still nk0 , so that rα jα ∈ �+(gC)\{α j }.

Part (b) is straightforward. In fact, it is immediate that

wρ − ρ =
∑

α∈[w�+(gC)]∩�−(gC)

α. �
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Definition 7.21. For G a compact Lie group with a maximal torus T , let � : t → C
be given by

�(H) =
∏

α∈�+(gC)

(
eα(H)/2 − e−α(H)/2

)
for H ∈ t.

Lemma 7.22. Let G be a compact Lie group with a maximal torus T .
(a) The function � is skew-symmetric on t.
(b) The function � descends to T if and only if the function H → e−ρ(H) descends
to T .
(c) The function |�|2 always descends to T and there |�(t)|2 = d(t), t ∈ T .

Proof. For part (a), it suffices to show that � ◦ rhα
= −� for α ∈ �+ (gC).

This follows from three observations. The first is that composition with rhα
maps(

eα/2 − e−α/2
)

to − (
eα/2 − e−α/2

)
. The second is that if β ∈ �+ (gC) satisfies

rαβ = β, then composition with rhα
fixes

(
eβ/2 − e−β/2

)
. For the third, suppose

β ∈ �+ (gC) \{α} satisfies rαβ �= β. Choose β ′ ∈ �+ (gC), so that either rαβ = β ′

or rαβ = −β ′. Then composition with rhα
fixes

(
eβ/2 − e−β/2

) (
eβ

′/2 − e−β ′/2
)
.

For part (b), write ρ = 1
2

∑
α∈�+(gC)

α to see that

e−ρ(H)�(H) =
∏

α∈�+(gC)

(
1− e−α(H)

)
(7.23)

for H ∈ t. Since the function H → ∏
α∈�+(gC)

(
1− e−α(H)

)
clearly descends to T ,

part (b) is complete. For part (c), calculate

|�(H)|2 = e−ρ(H)�(H)e−ρ(H)�(H) =
∏

α∈�+(gC)

∣∣1− e−α(H)
∣∣2

to complete the proof. �

Note that although e−ρ often descends to a function on T , it does not always

descend (Exercise 7.12). Also note that the function d(t) plays a prominent role
in Weyl Integration Formula. In particular, we can now write the Weyl Integration
Formula as ∫

G
f (g) dg = 1

|W (G)|
∫

T
|�(t)|2

∫
G/T

f (gtg−1) dgT dt(7.24)

for connected G and f ∈ C(G).
For the next definition, recall from the proof of Theorem 7.7 that

� = {H ∈ t | α(H) /∈ 2π iZ for all roots α}

is open dense in t and exp� = T reg.
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Definition 7.25. Let G be a compact Lie group with a maximal torus T . Fix an ana-
lytically integral weight λ ∈ A(T ). Let "λ : �→ C be given by

"λ(H) =
∑

w∈W (�(gC))
det(w) e[w(λ+ρ)](H)

�(H)

=
∑

w∈W (�(gC))
det(w) e[w(λ+ρ)−ρ](H)∏

α∈�+(gC)

(
1− e−α(H)

)
for H ∈ �.

Lemma 7.26. Let G be a compact connected Lie group with a maximal torus T . Fix
an analytically integral weight λ ∈ A(T ). The function "λ descends to a smooth
W -invariant function on T reg. In turn, this function, still denoted by "λ, uniquely
extends to a smooth class function on Greg.

Proof. The first expression for "λ shows that it is symmetric since the numerator and
denominator are skew-symmetric. The second expression for "λ shows it descends
to a function on T reg since the numerator and denominator both descend to T and the
denominator is nonzero on �. The final statement follows as in Lemma 7.19. �


7.3.2 Main Theorem

Let G be a compact connected Lie group with a maximal torus T . For λ, λ′ ∈ A(T ),
the function ξλ : T → C can be viewed as a 1-dimensional irreducible representation
of T . As a result, ξλ and ξλ′ are equivalent if and only if the are equal as functions.
This happens if and only if λ = λ′. By the character theory of T , it follows that∫

T
ξλ(t)ξ−λ′(t) dt =

{
1 if λ = λ′

0 if λ �= λ′.(7.27)

Theorem 7.28 (Weyl Character Formula). Let G be a compact connected Lie
group with a maximal torus T . If V (λ) is an irreducible representation of G with
highest weight λ, then the character of V (λ), χλ, satisfies

χλ(g) = "λ(g)

for g ∈ Greg.

Proof. First note it suffices to prove the theorem for g = eH , H ∈ �. Next for
γ ∈ A(T ), let Dγ : t → C be the skew-symmetric function defined by

Dγ (H) =
∑

w∈W (�(gC))

det(w) e(wγ )(H).

The proof will be completed by showing that χλ(eH )�(H) = Dλ+ρ(H) for H ∈ t.
To this end, by considering the weight decomposition of V (λ), write χλ =∑

γ j∈A(T ) n jξγ j as a finite sum on T for n j ∈ Z≥0. Thus
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χλ(e
H )�(H) = eρ(H)

∏
α∈�+(gC)

(
1− e−α(H)

) ∑
γ j∈A(T )

n j e
γ j (H)

=
∑

γ j∈A(T )

m j e(
γ j+ρ)(H)

for some m j ∈ Z. Since χλ is symmetric and � is skew-symmetric, χλ(eH )�(H)

is skew-symmetric as well. Noting that the set of functions {eγ j+ρ | γ j ∈ A(T )}
is independent, the action of rα coupled with skew-symmetry shows that m j = 0
if γ j + ρ is on a Weyl chamber wall. Recalling that the Weyl group acts simply
transitively on the open Weyl chambers (Theorem 6.43), examination of the the Weyl
group orbits of A(T )+ ρ and skew-symmetry imply that

χλ(e
H )�(H) =

∑
γ j∈A(T ), γ j+ρ strictly dominant

m j Dγ j+ρ(H),

where strictly dominant means B(γ j + ρ, αi ) > 0 for αi ∈ �(gC), i.e., γ j + ρ lies
in the open positive Weyl chamber.

Next, character theory shows that
∫

G |χλ|2 dg = 1. Thus the Weyl Integration
Formula gives

1 = 1

|W (G)|
∫

T
|�|2 |χλ|2 dt(7.29)

= 1

|W (G)|
∫

T

∣∣∣∣∣∣
∑

γ j∈A(T ), γ j+ρ str. dom.

m j Dγ j+ρ

∣∣∣∣∣∣
2

dt .

Here
∣∣∣∑γ j∈A(T ), γ j+ρ str. dom. m j Dγ j+ρ

∣∣∣2 descends to T since |�|2 |χλ|2 descends to

T . In fact, the function H → e−ρ(H)Dγ j+ρ(H) descends to T since ew(γ j+ρ)−ρ does.

Therefore Dγ j+ρ Dγ j ′+ρ =
(
e−ρ Dγ j+ρ

) (
e−ρ Dγ j ′+ρ

)
descends to T and

1

|W (G)|
∫

T
Dγ j+ρ Dγ j ′+ρ dt = 1

|W (G)|
∑

w,w′∈W (�(gC))

det(ww′)
∫

T
ξw(γ j+ρ)ξ−w′(γ j ′+ρ) dt .

Since γ j + ρ and γ j ′ + ρ are in the open Weyl chamber, w(γ j + ρ) = w′(γ j ′ + ρ) if
and only if w = w′ and j = j ′. Thus

1

|W (G)|
∫

T
Dγ j+ρ Dγ j ′+ρ dt =

{
1 if j = j ′

0 if j �= j ′.

In particular, this simplifies Equation 7.29 to

1 =
∑

γ j∈A(T ), γ j+ρ str. dom.

m2
j .

Finally, since m j ∈ Z, all but one are zero. Thus there is a γ ∈ A(T ) with γ + ρ

strictly dominant so that χλ(eH )�(H) = ±Dγ+ρ(H). To determine γ and the ±
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sign, notice that the weight decomposition shows that χλ(eH ) = eλ(H) + . . . where
the ellipses denote weights strictly lower than λ. Writing

χλ(e
H )�(H) = eρ(H)χλ(e

H )e−ρ(H)�(H) = (
e(λ+ρ)(H) + . . .

) ∏
α∈�+(gC)

(
1− e−α(H)

)
,

we see χλ(eH )�(H) = e(λ+ρ)(H) + . . . . In particular, expanding the function H →
χλ(eH )�(H) in terms of {eγ j+ρ | γ j ∈ A(T )}, it follows that eλ+ρ appears with
coefficient 1. On the other hand, similarly expanding ±Dγ+ρ , we see that the only
term of the form eγ j+ρ appearing for which γ j + ρ is dominant is ±eγ+ρ . Therefore
λ = γ , the undetermined ± sign is a +. �


7.3.3 Weyl Denominator Formula

Theorem 7.30 (Weyl Denominator Formula). Let G be a compact connected Lie
group with a maximal torus T . Then

�(H) =
∑

w∈W (�(gC))

det(w) e(wρ)(H)

for H ∈ t.

Proof. Simply take the trivial representation V (0) = C with χ0(g) = 1 and apply
the Weyl Character Formula to g = eH for H ∈ �. The formula extends to all t by
continuity. �


Note the Weyl Denominator Formula allows the Weyl Character Formula to be
rewritten in the form

χλ(e
H ) =

∑
w∈W (�(gC))

det(w) e[w(λ+ρ)](H)∑
w∈W (�(gC))

det(w) e(wρ)(H)
(7.31)

for H ∈ t with eH ∈ T reg, i.e., H ∈ �.

7.3.4 Weyl Dimension Formula

Theorem 7.32 (Weyl Dimension Formula). Let G be a compact connected Lie
group with a maximal torus T . If V (λ) is the irreducible representation of G with
highest weight λ, then

dim V (λ) =
∏

α∈�+(gC)

B(λ+ ρ, α)

B(ρ, α)
.

Proof. Since dim V (λ) = χλ(e), we ought to evaluate Equation 7.31 at H = 0.
Unfortunately, Equation 7.31 is not defined at H = 0, so we take a limit. Let uρ ∈ it,
so that ρ(H) = B(H, uρ) for H ∈ t. Then it is easy to see that i tuρ ∈ � for small
positive t (Exercise 7.13), so that
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dim V (λ) = lim
t→0

"λ(i tuρ)

= lim
t→0

∑
w∈W (�(gC))

det(w) e[w(λ+ρ)](i tuρ)∑
w∈W (�(gC))

det(w) e(wρ)(i tuρ)
.(7.33)

Now observe that

(w(λ+ ρ))(i tuρ) = i t (λ+ ρ)(w−1uρ) = i t B(uλ+ρ, w
−1uρ)

= i t B(wuλ+ρ, uρ) = i tρ(wuλ+ρ) = (w−1ρ)(i tuλ+ρ).

Since detw = det(w−1), the Weyl Denominator Formula rewrites the numerator in
Equation 7.33 as∑

w∈W (�(gC))

det(w) e[w(λ+ρ)](i tuρ) =
∑

w∈W (�(gC))

det(w) e(wρ)(i tuλ+ρ) = �(i tuλ+ρ)

=
∏

α∈�+(gC)

(
eα(i tuλ+ρ)/2 − e−α(i tuλ+ρ)/2

)
=

∏
α∈�+(gC)

(
i tα(uλ+ρ)+ · · ·

)
= (i t)|�+(gC)| ∏

α∈�+(gC)

B(α, λ+ ρ)+ · · ·

where the ellipses denote higher powers of t . Similarly, the Weyl Denominator For-
mula rewrites denominator in Equation 7.33 as∑

w∈W (�(gC))

det(w) e(wρ)(i tuρ) = (i t)|�+(gC)| ∏
α∈�+(gC)

B(α, ρ)+ · · ·

which finishes the proof. �


7.3.5 Highest Weight Classification

Theorem 7.34 (Highest Weight Classification). For a connected compact Lie group
G with maximal torus T , there is a one-to-one correspondence between irreducible
representations and dominant analytically integral weights given by mapping
V (λ)→ λ for dominant λ ∈ A(T ).

Proof. We saw in Theorem 7.3 that the map V (λ) → λ is well defined and injec-
tive. It remains to see it is surjective. For any λ ∈ A(T ), Lemma 7.26 shows the
function "λ descends to a smooth class function on Greg. The Weyl Integral Formula
to calculates∫

G
|"λ|2 dg = 1

|W (G)|
∫

T reg

|�(t)"λ|2 dt

= 1

|W (G)|
∫

T

∣∣∣∣∣ ∑
w∈W (�(gC))

det(w) ξw(λ+ρ)

∣∣∣∣∣
2

dt

= 1

|W (G)|
∑

w,w′∈W (�(gC))

det(ww′)
∫

T
ξw(λ+ρ)ξ−w′(λ+ρ) dt .
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When λ is also dominant, λ + ρ is strictly dominant so that, as in the proof of the
Weyl Character Formula, Equation 7.27 shows that∫

T
ξw(λ+ρ)ξ−w′(λ+ρ) dt = δw,w′ .

As a result,
∫

G |"λ|2 dg = 1 for any dominant λ ∈ A(T ). In particular, "λ is a
nonzero L2 class function on G.

Now choose any irreducible representation V (µ) of G and note that the function
"µ extends to the character χµ. By the now typical calculation,∫

G
χµ"λ dg = 1

|W (G)|
∫

T reg

|�(t)|2 "µ"λ dt

= 1

|W (G)|
∑

w,w′∈W (�(gC))

det(ww′)
∫

T reg
ξw(µ+ρ)ξw′(λ+ρ) dt

=
{

1 if µ = λ

0 if µ �= λ.

Since Theorems 7.3 and 3.30 imply that {χµ | there exists an irreducible representa-
tion with highest weight µ} is an orthonormal basis for the set of L2 class functions
on G, the value of

∫
G χµ"λ dg cannot be zero for every such µ. In particular, this

means that there is an irreducible representation with highest weight λ. �


7.3.6 Fundamental Group

Here we finish the proof of Theorem 6.30. This is especially important in light of
the Highest Weight Classification. Of special note, it shows that when G is a simply
connected compact Lie group with semisimple Lie algebra, then the irreducible rep-
resentations are parametrized by the set of dominant algebraic weights, P . In turn,
this also classifies the irreducible representations of g (Theorem 4.16). At the oppo-
site end of the spectrum, Theorem 6.30 shows that the irreducible representations of
Ad(G) ∼= G/Z(G) (Lemma 5.11) are parametrized by the dominant elements of the
root lattice, R. The most general group lies between these two extremes.

Lemma 7.35. Let G be a compact connected Lie group with maximal torus T . Let
Gsing = G\Greg. Then Gsing is a closed subset with codim Gsing ≥ 3 in G.

Proof. It follows from Theorem 7.7 that Gsing is closed and the map ψ : G/T ×
T sing → Gsing is surjective. Moreover t ∈ T sing if and only if there exists α ∈
�+(gC), so ξα(t) = 1 so that T sing = ∪∈�+(gC) ker ξα . As a Lie subgroup of T , ker ξα
is a closed subgroup of codimension 1. Let Uα = {gtg−1 | g ∈ G and t ∈ ker ξα}, so
that Gsing = ∪∈�+(gC)Uα .

Recall that zg(t) = {X ∈ g | Ad(t)X = X} (Exercise 4.22). Since Ad(t) acts on
gα as ξα(t), it follows that g ∩ (g−α ⊕ gα) ⊆ zg(t) when t ∈ ker ξα . Now choose a
standard embedding ϕα : SU (2)→ G corresponding to α and let Vα be the compact
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manifold Vα = G/(ϕα(SU (2))T ) × ker ξα . Observe that dim Vα = dim G − 3 and
that ψ maps Vα onto Uα . Therefore the precise version of this lemma is that Gsing is
a finite union of closed images of compact manifolds each of which has codimension
3 with respect to G. �


Thinking of a homotopy of loops as a two-dimensional surface, Lemma 7.35 cou-
pled with standard transversality theorems ([42]), show that loops in G with a base
point in Greg can be homotoped to loops in Greg. As a corollary, it is straightforward
to see that

π1(G) ∼= π1(G
reg).

Let G be a compact Lie group with maximal torus T . Recall from Theorem 7.7
that eH ∈ T reg if and only if H ∈ {H ∈ t | α(H) /∈ 2π iZ for all roots α}. The
connected regions of {H ∈ t | α(H) /∈ 2π iZ for all roots α} are convex and are
given a special name.

Definition 7.36. Let G be a compact Lie group with maximal torus T . The connected
components of {H ∈ t | α(H) /∈ 2π iZ for all roots α} are called alcoves.

Lemma 7.37. Let G be a compact connected Lie group with maximal torus T and
fix a base t0 = eH0 ∈ T reg with H0 ∈ t.
(a) Any continuous loop γ : [0, 1] → Greg with γ (0) = t0 can be written as

γ (s) = cgs e
H(s)

with g0 = e, H(0) = H0, and the maps s → gs T ∈ G/T and s → H(s) ∈ treg

continuous. In that case, g1 ∈ N (T ) and

H(1) = Ad(g1)
−1 H0 + Xγ

for some Xγ ∈ 2π i ker E . The element Xγ is independent of the homotopy class of
γ .
(b) Write A0 for the alcove containing H0. Keeping the same base t0, the map

π1(G
reg)→ A0 ∩ {wH0 + Z | w ∈ W (�(gC)

∨) and Z ∈ 2π i A(T )∗}
induced by γ → Xγ is well defined and bijective.

Proof. Using the Maximal Torus Theorem, write γ (s) = cgs τ(s) with τ(s) ∈ T reg,
τ(0) = t0, and g0 = e. In fact, since ψ : G/T × T reg → Greg is a covering, the lifts
s → τ(s) ∈ T reg and s → gs T ∈ G/T are uniquely determined by these conditions
and continuity. Since exp : treg → T reg is also a local diffeomorphism (Theorem
5.14), there exists a unique continuous lift s → H(s) ∈ treg of τ , so H(0) = H0 and
γ (s) = cgs e

H(s).
As γ is a loop, γ (0) = γ (1), so eH0 = cg1 eH(1). Because eH0 and eH(1) are

regular, T = ZG(eH0)0 = cg1 ZG(eH(1))0 = cg1 T , so that g1 ∈ N (T ) is a Weyl group
element. Writing w = Ad(g1), it follows that H0 ≡ wH(1) modulo 2π i ker E , the
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kernel of exp : t → T . Therefore write H(1) = w−1 H0 + Xγ for some Xγ ∈
2π i ker E .

To see that Xγ is independent of the homotopy class of γ , suppose γ ′ : [0, 1] →
Greg with γ ′(0) = t0 is another loop and that γ (s, t) is a homotopy between γ and
γ ′. Thus γ (s, 0) = γ (s), γ (s, 1) = γ ′(s), and γ (0, t) = γ (1, t) = t0. Using the
same arguments as above and similar notational conventions, write γ ′(s) = cg′s e

H ′(s)

and H ′(1) = w′−1 H0 + X ′
γ . Similarly, write γ (s, t) = cgs,t e

H(s,t) and H(1, s) =
w−1

s H0 + Xγ (s). Notice that w0 = w, w1 = w′, Xγ (0) = Xγ , and Xγ (1) = X ′
γ .

Since ws and Xγ (s) vary continuously with s and since W (T ) and 2π i ker E are
discrete, ws and Xγ (s) are constant. This finishes part (a).

For part (b), first note that continuity of H(s) implies that H(1) is still in A0,
so that the map is well defined. To see surjectivity, fix H ′ ∈ A0 ∩ {wH0 + Z |
w ∈ W (�(gC)

∨) and Z ∈ 2π i A(T )∗} and write H ′ = w′−1 H0 + Z ′ for w′ ∈
W (�(gC)

∨) and Z ′ ∈ 2π i ker E . Choose a continuous path s → g′s ∈ G, so that
g′0 = e and Ad(g′1) = w′. Let H ′(s) = H0 + s(H ′ − H0) ∈ A0 and consider the
curve γ ′(s) = cgs e

H ′(s). Since γ ′(0) = t0 and γ ′(1) = ew
′H ′ = eH0+Z ′ = t0, γ ′ is

a loop with base point t0. By construction, Xγ ′ = H ′, as desired. To see injectivity,
observe that if Xγ = Xγ ′′ with γ (s) = cgs e

H(s) and γ ′′(s) = cgs e
H ′′(s), then γ (s, t) =

cgs e
(1−t)H ′(s)+t H ′′(s) is a homotopy between the two. �


Lemma 7.38. Let G be a compact connected Lie group with maximal torus T .
(a) Each homotopy class in G with base e can be represented by a loop of the form

γ (s) = es Xγ

for some Xγ ∈ 2π i ker E , i.e., for some Xγ in the kernel of exp : t → T . The surjec-
tive map from 2π i ker E to π1(G) induced by Xγ → γ is a homomorphism.
(b) Fix an alcove A0 and H0 ∈ A0. The above map restricts to a bijection on
{Z ∈ 2π i ker E | wH0 + Z ∈ A0 for some w ∈ W (�(gC)

∨)}.
Proof. Lemma 7.37 shows that each homotopy class in G with base t0 can be repre-
sented by a curve of the form γ (s) = cgs e

H(s) with H(1) = Ad(g1)
−1 H0 + Xγ for

some Xγ ∈ 2π i ker E . Using the homotopy γ (s, t) = cgs e
(1−t)H(s)+t[H0+s(H(1)−H0)],

we may assume H(s) is of the form H(s) = H0 + s
(
Ad(g1)

−1 H0 + Xγ − H0
)
.

Translating back to the identity, it follows that each homotopy class in G with
base e can be represented by a curve of the form

γ (s) = e−H0 cgs e
H0+s(Ad(g1)

−1 H0+Xγ−H0).

Using the homotopy γ (s, t) = e−t H0 cgs e
t H0+s(t Ad(g1)

−1 H0+Xγ−t H0), we may assume
γ (s) = cgs e

s Xγ . Finally, using the homotopy γ (s, t) = cgst e
s Xγ , we may assume

γ (s) = es Xγ . Verifying that the map γ → Xγ is a homomorphism is straightforward
and left as an exercise (Exercise 7.24). Part (b) follows from Lemma 7.37. �


Note that a corollary of Lemma 7.38 shows that the inclusion map T → G
induces a surjection π1(T )→ π1(G).
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Definition 7.39. Let G be a compact connected Lie group with maximal torus T .
The affine Weyl group is the group generated by the transformations of t of the form
H → wH + Z for w ∈ W (�(gC)

∨) and Z ∈ 2π i R∨.

Lemma 7.40. Let G be a compact connected Lie group with maximal torus T .
(a) The affine Weyl group is generated by the reflections across the hyperplanes
α−1(2π in) for α ∈ �(gC) and n ∈ Z.
(b) The affine Weyl group acts simply transitively on the set of alcoves.

Proof. Recall that hα ∈ R∨ and notice the reflection across the hyperplane
α−1(2π in) is given by rhα,n(H) = rhα

H + 2π ihα (Exercise 7.25). Since the Weyl
group is generated by the reflections rhα

, part (a) is finished. The proof of part (b) is
very similar to Theorem 6.43 and the details are left as an exercise (Exercise 7.26).

�

Theorem 7.41. Let G be a connected compact Lie group with semisimple Lie alge-
bra and maximal torus T . Then π1(G) ∼= ker E/R∨ ∼= P/A(T ).

Proof. By Lemma 7.38, it suffices to show that the loop γ (s) = es Xγ , Xγ ∈
2π i ker E , is trivial if and only if Xγ ∈ 2π i R∨. For this, first consider the stan-
dard su(2)-triple corresponding to α ∈ �(gC) and let ϕα : SU (2) → G be the
corresponding embedding. The loop γα(s) = e2π ishα is the image under ϕα of the
loop s → diag(e2π is, e−2π is) in SU (2). As SU (2) is simply connected, γα is trivial.
Thus there is a well-defined surjective map 2π i ker E/2π i R∨ → π1(G).

It remains to see that it is injective. Fix an alcove A0 and H0 ∈ A0. Since
2π i ker E ⊆ 2π i P∨, A0 − Xγ is another alcove. By Lemma 7.40, there is a
w ∈ W (�(gC)

∨) and H ∈ 2π i R∨, so that wH0 + H ∈ A0 − Xγ . Thus
wH0 + (Xγ + H) ∈ A0. Because the loop s → es H is trivial, we may use a ho-
motopy on γ and assume H = 0, so that wH0 + Xγ ∈ A0. But as H0 + 0 ∈ A0,
Lemma 7.38 shows that γ must be homotopic to the trivial loop s → es0. �


7.3.7 Exercises

Exercise 7.12 Show that the function eρ descends to the maximal torus for SU (n),
SO(2n), and Sp(2n), but not for SO(2n + 1).

Exercise 7.13 Let G be a compact Lie group with a maximal torus T . Let uρ ∈ it,
so that ρ(H) = B(H, uρ) for H ∈ t. Show that i tuρ ∈ � for small positive t .

Exercise 7.14 Show that the dominant analytically integral weights of SU (3) are
all expressions of the form λ = nπ1 + mπ2 for n,m ∈ Z≥0 where π1, π2 are the
fundamental weights π1 = 2

3ε1,2 + 1
3ε2,3 and π2 = 1

3ε1,2 + 2
3ε2,3. Conclude that

dim V (λ) = (n + 1)(m + 1)(n + m + 2)

2
.
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Exercise 7.15 Let G be a compact Lie group with semisimple g and a maximal torus
T . The set of dominant weight vectors are of the form λ = ∑

i niπi where {πi } are
the fundamental weights and ni ∈ Z≥0. Verify the following calculations.
(1) For G = SU (n),

dim V (λ) =
∏

1≤i< j≤n

(
1+ ni + · · · + n j−1

j − i

)
.

(2) For G = Sp(n),

dim V (λ) =
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1

j − i

)

·
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1 + 2

(
n j + · · · + nm−1

)
2n + 2− i − j

)

·
∏

1≤i≤m

(
1+ ni + · · · + nm−1 + nm

n + 1− i

)
.

(3) For G = Spin2m+1(R),

dim V (λ) =
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1

j − i

)

·
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1 + 2

(
n j + · · · nm−1

)+ nm

2m + 1− i − j

)

·
∏

1≤i≤m

(
1+ 2 (ni + · · · + nm−1)+ nm

2n + 1− 2i

)
.

(4) For G = Spin2m(R),

dim V (λ) =
∏

1≤i< j≤m

(
1+ ni + n j−1

j − i

)

·
∏

1≤i< j≤m

(
1+ ni + · · · + n j−1 + 2

(
n j + · · · + nm−1

)+ nm

2m − i − j

)
.

Exercise 7.16 For each group G below, show that the listed representation(s) V of
G has minimal dimension among nontrivial irreducible representations.
(1) For G = SU (n), V is the standard representation on Cn or its dual.
(2) For G = Sp(n), V is the standard representation on C2n .
(3) For G = Spin2m+1(R) with m ≥ 2, V = C2m+1 and the action comes from the
covering Spin2m+1(R)→ SO(2m + 1).
(4) For G = Spin2m(R) with m > 4, V = C2m and the action comes from the
covering Spin2m(R)→ SO(2m).
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Exercise 7.17 Let G be a compact Lie group with a maximal torus T . Suppose V
is a representation of G that possesses a highest weight of weight λ. If dim V =
dim V (λ), show that V ∼= V (λ) and, in particular, irreducible.

Exercise 7.18 Use Exercise 7.17 and the Weyl Dimension Formula to show that the
following representation V of G is irreducible:
(1) G = SU (n) with V =∧p Cn (c.f. Exercise 7.1).
(2) G = SO(n) with V = Hm(Rn) (c.f. Exercise 7.2).
(3) G = SO(2n + 1) with V =∧p C2n+1, 1 ≤ p ≤ n (c.f. Exercise 7.3).
(4) G = SO(2n) with V =∧p C2n , 1 ≤ p < n (c.f. Exercise 7.3).
(5) G = SU (n) with V = Vp,0(Cn) (c.f. Exercise 7.5).
(6) G = SU (n) with V = V0,q(Cn) (c.f. Exercise 7.5).
(7) G = SU (n) with V = Hp,q(Cn) (c.f. Exercise 7.5).
(8) G = Spin2m+1(R) with V = S (c.f. Exercise 7.6).
(9) G = Spin2m(R) with V = S± (c.f. Exercise 7.6).

Exercise 7.19 Let λ be a dominant analytically integral weight of U (n) and write
λ = λ1ε1+· · ·+λnεn , λ j ∈ Z with λ1 ≥ · · · ≥ λn . For H = diag(H1, . . . , Hn) ∈ t,
show that the Weyl Character Formula can be written as

χλ(e
H ) =

det
(

e(λ j+ j−1)Hk

)
det

(
e( j−1)Hk

) .

Exercise 7.20 Let G be a compact connected Lie group with maximal torus T .
(1) If G is not Abelian, show that the dimensions of the irreducible representations
of G are unbounded.
(2) If g is semisimple, show that there are at most a finite number of irreducible
representations of any given dimension.

Exercise 7.21 Let G be a compact connected Lie group with maximal torus T . For
λ ∈ (it)∗, the Kostant partition function evaluated at λ, P(λ), is the number of ways
of writing λ =∑

α∈�+(gC)
mαα with mα ∈ Z≥0.

(1) As a formal sum of functions on t, show that∏
α∈�+(gC)

(
1+ e−α + e−2α + · · · ) =∑

λ

P(λ)e−λ

to conclude that

1 =
(∑

λ

P(λ)e−λ

) ∏
α∈�+(gC)

(
1− e−α

)
.

For what values of H ∈ t can this expression be evaluated?
(2) The multiplicity, mµ, of µ in V (λ) is the dimension of the µ-weight space in
V (λ). Thus χλ =

∑
µ mµξµ. Use the Weyl Character Formula, part (1), and gather

terms to show that mµ is given by the expression
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mµ =
∑

w∈W (�(gC))

det(w)P (w(λ+ ρ)− (µ+ ρ)) .

This formula is called the Kostant Multiplicity Formula.
(3) For G = SU (3), calculate the weight multiplicities for V (ε1,2 + 3ε2,3).

Exercise 7.22 Let G be a compact connected Lie group with maximal torus T . The
multiplicity, mµ, of V (µ) in V (λ)⊗V (λ′) is the number of times V (µ) appears as a
summand in V (λ)⊗ V (λ′). Thus χλχλ′ =

∑
µ mµχµ. Use part (1) of Exercise 7.21

and compare dominant terms to show mµ is given by the expression

mµ =
∑

w,w′∈W (�(gC))

det(ww′)P
(
w(λ+ ρ)+ w′(λ′ + ρ)− (µ+ 2ρ)

)
.

This formula is called Steinberg’s Formula.

Exercise 7.23 Let G be a compact connected Lie group with maximal torus T and
α ∈ �(gC). Show that ker ξα in T may be disconnected.

Exercise 7.24 Show that the map γ → Xγ from Lemma 7.38 is a homomorphism.

Exercise 7.25 Let G be a compact connected Lie group with maximal torus T .
Show that the reflection across the hyperplane α−1(2π in) is given by the formula
rhα,n(H) = rhα

H + 2π inhα for H ∈ t.

Exercise 7.26 Let G be a compact connected Lie group with maximal torus T . Show
that the affine Weyl group acts simply transitively on the set of alcoves.

7.4 Borel–Weil Theorem

The Highest Weight Classification gives a parametrization of the irreducible repre-
sentations of a compact Lie group. Lacking is an explicit realization of these repre-
sentations. The Borel–Weil Theorem repairs this gap.

7.4.1 Induced Representations

Definition 7.42. (a) A complex vector bundle V of rank n on a manifold M is a man-
ifold V and a smooth surjective map π : V → M called the projection, so that: (i)
for each x ∈ M , the fiber over x , Vx = π−1(x), is a vector space of dimension n
and (ii) for each x ∈ M , there is a neighborhood U of x in M and a diffeomorphism
ϕ : π−1(U )→ U × Cn , so that ϕ(Vy) = (y,Cn) for y ∈ U .
(b) The set of smooth (continuous) sections of V are denoted by �(M,V) and con-
sists of all smooth (continuous) maps s : M → V , so that π ◦ s = I .
(c) An action of a Lie group G on V is said to preserve fibers if for each g ∈ G and
x ∈ M , there exists x ′ ∈ M , so that gVx ⊆ Vx ′ . In this case, the action of G on V
naturally descends to an action of G on M .
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(d) V is a homogeneous vector bundle over M for the Lie group G if (i) the action
of G on V preserves fibers; (ii) the resulting action of G on M is transitive; and (iii)
each g ∈ G maps Vx to Vgx linearly for x ∈ M .
(e) If V is a homogeneous vector bundle over M , the vector space �(M,V) carries
an action of G given by

(gs)(x) = g(s(g−1x))

for s ∈ �(M,V).
(f) Two homogeneous vector bundles V and V ′ over M for G are equivalent if there
is a diffeomorphism ϕ : V → V ′, so that π ′ ◦ ϕ = ϕ ◦ π .

Note it suffices to study manifolds of the form M = G/H , H a closed subgroup
of G, when studying homogenous vector bundles.

Definition 7.43. Let G be a Lie group and H a closed subgroup of G. Given a rep-
resentation V of H , define the homogeneous vector bundle G ×H V over G/H by

G ×H V = (G × V ) /∼,

where ∼ is the equivalence relation given by

(gh, v) ∼ (g, hv)

for g ∈ G, h ∈ H , and v ∈ V . The projection map π : G×H V → G/H is given by
π(g, v) = gH and the G-action is given by g′(g, v) = (g′g, v) for g′ ∈ G.

It is necessary to verify that G×H V is indeed a homogeneous vector bundle over
G/H . Since H is a regular submanifold, this is a straightforward argument and left
as an exercise (Exercise 7.27).

Theorem 7.44. Let G be a Lie group and H a closed subgroup of G. There is a
bijection between equivalence classes of homogenous vector bundles V on G/H and
representations of H.

Proof. The correspondence maps V to VeH . By definition VeH is a representation of
H . Conversely, given a representation V of H , the vector bundle G×H V inverts the
correspondence. �

Definition 7.45. Let G be a Lie group and H a closed subgroup of G. Given a repre-
sentation (π, V ) of H , define the smooth (continuous) induced representation of G
by

IndG
H (V ) = IndG

H (π) = {smooth (continuous) f : G → V | f (gh) = h−1 f (g)}
with action (g1 f )(g2) = f (g−1

1 g2) for gi ∈ G.

Theorem 7.46. Let G be a Lie group, H a closed subgroup of G, and V a represen-
tation of H. There is a linear G-intertwining bijection between �(G/H, G ×H V )

and IndG
H (V ).
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Proof. Identify (G ×H V )eH with V by mapping (h, v) ∈ (G ×H V )eH to h−1v ∈
V . Given s ∈ �(G/H, G ×H V ), let fs ∈ IndG

H (V ) be defined by fs(g) =
g−1(s(gH)). Conversely, given f ∈ IndG

H (V ), let s f ∈ �(G/H, G ×H V ) be de-
fined by s f (gH) = (g, f (g)). It is easy to use the definitions to see these maps are
well defined, inverses, and G-intertwining (Exercise 7.28). �

Theorem 7.47 (Frobenius Reciprocity). Let G be a Lie group and H a closed sub-
group of G. If V is a representation of H and a W is a representation of G, then as
vector spaces

HomG(W, IndG
H (V )) ∼= HomH (W |H , V ).

Proof. Map T ∈ HomG(W, IndG
H (V )) to ST ∈ HomH (W |H , V ) by ST (w) =

(T (w))(e) for w ∈ W and map S ∈ HomH (W |H , V ) to TS ∈ HomG(W, IndG
H (V ))

by (TS(w))(g) = S(g−1w). Verifying these maps are well defined and inverses is
straightforward (Exercise 7.28). �


In the special case of H = {e} and V = C, the continuous version gives
�(G/H, G ×H V ) ∼= IndG

H (V ) = C(G). In this setting, Frobenius Reciprocity al-
ready appeared in Lemma 3.23.

7.4.2 Complex Structure on G/T

Definition 7.48. Let G be a compact connected Lie group with maximal torus T .
(a) Choosing a faithful representation, assume G ⊆ U (n) for some n. By Theorem
4.14 there exists a unique connected Lie subgroup of GL(n,C) with Lie algebra gC.
Write GC for this subgroup and call it the complexification of G.
(b) Fix �+(gC) a system of positive roots and recall n+ =⊕

α∈�+(gC)
gα . The corre-

sponding Borel subalgebra is b = tC ⊕ n+.
(c) Let N , B, and A be the unique connected Lie subgroups of GL(n,C) with Lie
algebras n+, b, and a = it, respectively.

For example, if G = U (n) with the usual positive root system, GC = GL(n,C),
N is the subgroup of upper triangular matrices with 1’s on the diagonal, B is the sub-
group of all upper triangular matrices, and A is the subgroup of diagonal matrices
with entries in R>0. Although not obvious from Definition 7.48, GC is in fact unique
up to isomorphism when G is compact. More generally for certain types of non-
compact groups, complexifications may not be unique or even exist (e.g., [61], VII
§1). In any case, what is important for the following theory is that GC is a complex
manifold.

Lemma 7.49. Let G be a compact connected Lie group with maximal torus T .
(a) The map exp : n+ → N is a bijection.
(b) The map exp : a → A is a bijection.
(c) N, B, A, and AN are closed subgroups.
(d) The map from T ×a×n+ to B sending (t, X, H)→ teX eH is a diffeomorphism.
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Proof. Since T consists of commuting unitary matrices, we may assume T is con-
tained in the set of diagonal matrices of GL(n,C). By using the Weyl group of
GL(n,C), we may further assume uρ = diag(c1, . . . , cn) with ci ≥ ci+1. Therefore
if X ∈ gα , α ∈ �+(gC), with X =∑

i, j ki, j Ei, j , then∑
i, j

(ci − c j )ki, j Ei, j = [uρ, X ] = α(uρ)X =
∑
i, j

B(α, ρ)ki, j Ei, j .

Since B(α, ρ) > 0, it follows that ki, j = 0 whenever ci − c j ≤ 0. In turn, this shows
that X is strictly upper triangular.

It is well known and easy to see that the set of nilpotent matrices are in bijection
with the set of unipotent matrices by the polynomial map M → eM with polynomial
inverse M → ln (I + (M − I )) = ∑

k
(−1)k+1

k (M − I )k . In particular if X, Y ∈ n+,
there is a unique strictly upper triangular Z ∈ gl(n,C), so that eX eY = eZ .

Dynkin’s formula is usually only applicable to small X and Y . However, �+(gC)

is finite, so [X (in)
n , . . . , X (i1)

1 ] is 0 for sufficiently large i j for X j ∈ n+. Thus all
the sums in the proof of Dynkin’s formula are finite and the formula for Z is a
polynomial in X and Y . Coupled with the already mentioned polynomial formula for
Z , Dynkin’s Formula therefore actually holds for all X, Y ∈ n+. As a consequence,
Z ∈ n+ and exp n+ is a subgroup. Since N is generated by exp n+, part (a) is finished.
The group N is closed since exp : n+ → N is a bijection and the exponential map
restricted to the strictly upper triangular matrices has a continuous inverse.

Part (b) and the fact that A is closed in GC follows from the fact that a is
Abelian and real valued. Next note that AN is a subgroup. This follows from the
two observations that (an)(a′n′) = (aa′)((ca′−1 n) n′), a, a′ ∈ A and n, n′ ∈ N ,
and that ceH eX = exp

(
ead(H)X

)
, H ∈ a and X ∈ n+. Since the map from

b = t ⊕ a ⊕ n+ → GC given by (H1, H2, X) → eH1 eH2 eX is a local diffeomor-
phism near 0, products of the form tan, t ∈ T , a ∈ A, and n ∈ N , generate B. Just
as with AN , T AN is a subgroup, so that B = T eaen+ . It is an elementary fact from
linear algebra that this decomposition is unique and the proof is complete. �


The point of the next theorem is that G/T has a G-invariant complex structure
inherited from the fact that GC/B is a complex manifold. This will allow us to study
holomorphic sections on G/T .

Theorem 7.50. Let G be a compact connected Lie group with maximal torus T . The
inclusion G ↪→ GC induces a diffeomorphism

G/T ∼= GC/B.

Proof. Recall that g = {X+θX | X ∈ gC}, so that g/t and gC/b are both spanned by
the projections of {Xα + θXα | Xα ∈ gα , α ∈ �+(gC)}. In particular, the differential
of the map G → GC/B is surjective. Thus the image of G contains a neighborhood
of eB in GC/B. As left multiplication by g and g−1, g ∈ G, is continuous, the image
of G is open in GC/B. Compactness of G shows that the image is closed so that
connectedness shows the map G → GC/B is surjective.
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It remains to see that G ∩ B = T . Let g ∈ G ∩ B. Clearly Ad(g) preserves
g∩b = t, so that g ∈ N (T ). Writing w for the corresponding element of W (�(gC)),
the fact that g ∈ B implies that w preserves �+(gC). In turn, this means w preserves
the corresponding Weyl chamber. Since Theorem 6.43 shows that W (�(gC)) acts
simply transitively on the Weyl chambers, w = I and g ∈ T . �


7.4.3 Holomorphic Functions

Definition 7.51. Let G be a compact Lie group with maximal torus T . For λ ∈ A(T ),
write Cλ for the one-dimensional representation of T given by ξλ and write Lλ for
the line bundle

Lλ = G ×T Cλ.

By Frobenius Reciprocity, �(G/T, Lλ) is a huge representation of G. However
by restricting our attention to holomorphic sections, we will obtain a representation
of manageable size.

Definition 7.52. Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ).
(a) Extend ξλ : T → C to a homomorphism ξC

λ : B → C by

ξC

λ (te
i H eX ) = ξλ(t)e

iλ(H)

for t ∈ T , H ∈ t, and X ∈ n+.
(b) Let LC

λ = GC ×B Cλ where Cλ is the one-dimensional representation of B given
by ξC

λ .

Lemma 7.53. Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ). Then �(G/T, Lλ) ∼= �(GC/B, LC

λ ) and IndG
T (ξλ)

∼= IndGC

B (ξC

λ ) as G-
representations.

Proof. Since the map G → GC/B induces an isomorphism G/T ∼= GC/B, any
h ∈ GC can be written as h = gb for g ∈ G and b ∈ B. Moreover, if h = g′b′,
g′ ∈ G and b′ ∈ B, then there is t ∈ T so g′ = gt and b′ = t−1b.

On the level of induced representations, map f ∈ IndG
T (ξλ) to Ff ∈ IndGC

B (ξC

λ )

by Ff (gb) = f (g)ξC

−λ(b) for g ∈ G and b ∈ B and map F ∈ IndGC

B (ξC

λ ) to fF ∈
IndG

T (ξλ) by fF (g) = F(g). It is straightforward to verify that these maps are well
defined, G-intertwining, and inverse to each other (Exercise 7.31). �

Definition 7.54. Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ).
(a) A section s ∈ �(G/T, Lλ) is said to be holomorphic if the corresponding func-
tion F ∈ IndGC

B (ξC

λ ), c.f. Theorem 7.46 and Lemma 7.53, is a holomorphic function
on GC, i.e., if

d F(i X) = id F(X)

at each g ∈ GC and for all X ∈ Tg(GC) where d F(X) = X (Re F)+ i X (Im F).
(b) Write �hol(G/T, Lλ) for the set of all holomorphic sections.
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Since the differential d F is always R-linear, the condition of being holomorphic
is equivalent to saying that d F is C-linear. Written in local coordinates, this condition
gives rise to the standard Cauchy–Riemann equations (Exercise 7.32).

Definition 7.55. Let G be a connected (linear) Lie group with maximal torus T .
Write C∞(GC) for the set of smooth functions on GC and use similar notation for
G.
(a) For Z ∈ gC and F ∈ C∞(GC), let

[dr(Z)F] (h) = d

dt
F(het Z )|t=0

for h ∈ GC. For X ∈ g and f ∈ C∞(G), let

[dr(X) f ] (g) = d

dt
f (get X )|t=0

for g ∈ G.
(b) For Z = X + iY with X, Y ∈ g, let

drC(Z) = dr(X)+ idr(Y ).

Note that drC(Z) is a well-defined operator on C∞(G) but that dr(Z) is not
(except when Z ∈ g).

Lemma 7.56. Let G be a compact connected Lie group with maximal torus T , λ ∈
A(T ), F ∈ IndGC

B (ξC

λ ), and f = F |G the corresponding function in IndG
T (ξλ).

(a) Then F is holomorphic if and only if

drC(Z)F = 0

for Z ∈ n+.
(b) Equivalently, F is holomorphic if and only if

drC(Z) f = 0

for Z ∈ n+.

Proof. Since dlg : Te(GC) → Tg(GC) is an isomorphism, F is holomorphic if and
only if

d F(dlg (i Z)) = id F(dlg Z)(7.57)

for all g ∈ GC and X ∈ gC where, by definition,

d F(dlg Z) = d

dt
F(get Z )|t=0 = [dr(Z)F] (g).

If Z ∈ n+, then et Z ∈ N , so that F(get Z ) = F(g). Thus for Z ∈ n+, Equation
7.57 is automatic since both sides are 0. If Z ∈ tC, F(get Z ) = F(g)e−tλ(Z). Thus for
Z ∈ tC, Equation 7.57 also holds since both sides are −iλ(Z)F(g).
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Since gC = n− ⊕ tC ⊕ n+, part (a) will be finished by showing Equation 7.57
holds for Z ∈ n−. However, Equation 7.57 is equivalent to requiring dr(i Z)F =
idr(Z)F which in turn is equivalent to requiring dr(Z)F = drC(Z)F . If Z ∈ n−,
then θ Z ∈ n+ and Z + θ Z ∈ g. Thus

dr(Z)F = dr(Z + θ Z)F − dr(θ Z)F = drC(Z + θ Z)F = drC(Z)+ drC(θ Z),

so that dr(Z)F = drC(Z)F if and only if drC(θ Z) = 0, as desired.
For part (b), first, assume F is holomorphic. Since f = F |G , it follows that

drC(n
+) f = 0. Conversely, suppose drC(n

+) f = 0. Restricting the above argu-
ments from GC to G shows dr(Z)F |g = drC(Z)F |g for g ∈ G and Z ∈ gC. Hence
if X ∈ g,

(dr(X)F)(gb) = d

dt
F(gbet X )|t=0 = d

dt
F(get Ad(b)X b)|t=0

= ξ−λ(b)
d

dt
F(get Ad(b)X )|t=0

= ξ−λ(b) (dr(Ad(b)X)F)(g) = ξ−λ(b) (drC(Ad(b)X)F)(g)

for g ∈ G and b ∈ B. Thus if Z = X + iY ∈ n+ with X, Y ∈ g, note Ad(b)Z ∈ n+

and calculate

(drC(Z)F)(gb) = (dr(X)F)(gb)+ i(dr(Y )F)(gb)

= ξ−λ(b) [(drC(Ad(b)X)F)(g)+ (drC(i Ad(b)Y )F)(g)]

= ξ−λ(b) (drC(Ad(b)Z)F)(g) = 0,

as desired. �


7.4.4 Main Theorem

The next theorem gives an explicit realization for each irreducible representation.

Theorem 7.58 (Borel–Weil). Let G be a compact connected Lie group and λ ∈
A(T ).

�hol(G/T, Lλ) ∼=
{

V (w0λ) for − λ dominant
{0} else,

where w0 ∈ W (�(gC)) is the unique Weyl group element mapping the positive Weyl
chamber to the negative Weyl chamber (c.f. Exercise 6.40).

Proof. The elements of �hol(G/T, Lλ) correspond to holomorphic functions in
IndG

T (ξλ). It follows that the elements of �hol(G/T, Lλ) correspond to the set of
smooth functions f on G, satisfying

f (gt) = ξ−λ(t) f (g)(7.59)
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for g ∈ G and t ∈ T and

drC(Z) f = 0(7.60)

for Z ∈ n+.
Using the C∞-topology on C∞(G), Corollary 3.47 shows that C∞(G)G-fin =

C(G)G-fin so that, by Theorem 3.24 and the Highest Weight Theorem,

C∞(G)G-fin
∼=

⊕
dom. γ∈A(T )

V (γ )∗ ⊗ V (γ )

as a G × G-module with respect to the r × l-action. In this decomposition, trac-
ing through the identifications (Exercise 7.33) ?? shows that the action of G on
�hol(G/T, Lλ) intertwines with the trivial action on V (γ )∗ and the standard action
on V (γ ). Recalling that Lemma 7.5, write ϕ for the intertwining operator

ϕ :
⊕

dom. γ∈A(T )

V (−w0γ )⊗ V (γ )
∼→ C∞(G)G-fin.

Given f ∈ C∞(G), use Theorem 3.46 to write f =∑
dom. γ∈A(T ) fγ with respect to

convergence in the C∞-topology, where fγ = ϕ(xγ ) with xγ ∈ V (−w0γ )⊗ V (γ ).
Equation 7.60 is then satisfied by f if and only if it is satisfied by each fγ .

Tracing through the identifications, the action of drC(Z) corresponds to the standard
(complexified) action of Z on V (−w0γ ) and the trivial action on V (γ ). In particular,
Theorem 7.3 shows that xγ can be written as xγ = v−w0γ ⊗ yγ where v−w0γ is a
highest weight vector of V (−w0γ ) and yγ ∈ V (γ ).

Tracing through the identifications again, Equation 7.59 is then satisfied if and
only if tv−w0γ = ξ−λ(t)v−w0γ . But since tv−w0γ = ξ−w0γ (t)v−w0γ , it follows that
Equation 7.59 is satisfied if and only if w0γ = λ and the proof is complete. �


As an example, consider G = SU (2) with T the usual subgroup of diagonal ma-
trices. Realizing �hol(G/T, ξ−n ε12

2
) as the holomorphic functions in IndGC

B (ξC

−n ε12
2
),

�hol(G/T, ξ−n ε12
2
) ∼=

{holomorphic f : SL(2,C)→ C | f (g

(
a b
0 a−1

)
) = an f (g), g ∈ SL(2,C)}.

Since

(
z1 z3

z2 z4

)(
1 b
0 1

)
=

(
z1 bz1 + z3

z2 bz2 + z4

)
, the induced condition in the case of

a = 1 shows f ∈ IndGC

B (ξC

−n ε12
2
) is determined by its restriction to the first column of

SL(2,C). Since

(
z1 z3

z2 z4

)(
a 0
0 a−1

)
=

(
az1 a−1z3

az2 a−1z4

)
, the induced condition for

the case of b = 0 shows that f is homogeneous of degree n as a function on the first
column of SL(2,C). Finally, the holomorphic condition shows �hol(G/T, ξ−n ε12

2
)

can be identified with the set of homogeneous polynomials of degree n on the first
column of SL(2,C). In other words, �hol(G/T, ξ−n ε12

2
) ∼= Vn(C2) as expected.
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As a final remark, there is a (dualized) generalization of the Borel–Weil Theorem
to the Dolbeault cohomology setting called the Bott–Borel–Weil Theorem. Although
we only state the result here, it is fairly straightforward to reduce the calculation to
a fact from Lie algebra cohomology ([97]). In turn this is computed by a theorem of
Kostant ([64]), an efficient proof of which can be found in [86].

Given a complex manifold M , write Ap(M) = ∧∗
pT 0,1(M) for the smooth dif-

ferential forms of type (0, p) ([93]). The ∂M operator maps Ap(M) to Ap+1(M) and
is given by

(
∂Mω

)
(X0, . . . , X p) =

p∑
k=0

(−1)k Xkω(X0, . . . , X̂k, . . . , X p)

+
∑
i< j

(−1)i+ jω([Xi , X j ], X0, . . . , X̂i , . . . , X̂ j , . . . , X p)

for antiholomorphic vector fields X j . If V is a holomorphic vector bundle over M ,
the sections of V

⊗
Ap(M) are the V-valued differential forms of type (0, p) and

the set of such is denoted Ap(M,V). The operator ∂ : Ap(M,V)→ Ap+1(M,V) is

given by ∂ = 1 ⊗ ∂M and satisfies ∂
2 = 0. The Dolbeault cohomology spaces are

defined as

H p(M,V) = ker ∂/ Im ∂ .

Theorem 7.61 (Bott–Borel–Weil Theorem). Let G be a compact connected Lie
group and λ ∈ A(T ). If λ+ρ lies on a Weyl chamber wall, then H p(G/T, Lλ) = {0}
for all p. Otherwise,

H p(G/T, Lλ) ∼=
{

V (w(λ+ ρ)− ρ) for p = ∣∣{α ∈ �+(gC) | B(λ+ ρ, α) < 0}∣∣
{0} else,

where w ∈ W (�(gC)) is the unique Weyl group element making w(λ+ρ) dominant.

7.4.5 Exercises

Exercise 7.27 Let G be a Lie group and H a closed subgroup of G. Given a repre-
sentation V of H , verify G ×H V is a homogeneous vector bundle over G/H .

Exercise 7.28 Verify the details of Theorems 7.46 and 7.47.

Exercise 7.29 Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ).
(1) Show that ξC

λ is a homomorphism.
(2) Show that ξC

λ is the unique extension of ξλ from T to B as a homomorphism of
complex Lie groups.

Exercise 7.30 Let G be a compact connected Lie group with maximal torus T and
λ ∈ A(T ). If V is an irreducible representation, show that V ∼= V (λ) if and only if
there is a nonzero v ∈ V satisfying bv = ξC

λ (b)v for b ∈ B. In this case, show that v
is unique up to nonzero scalar multiplication and is a highest weight vector.
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Exercise 7.31 Verify the details of Lemma 7.53.

Exercise 7.32 Let GC be a complex (linear) connected Lie group with maximal torus
T . Recall that a complex-valued function F on GC is holomorphic if
d F(dlg (i X)) = id F(dlg X) for all g ∈ GC and X ∈ gC, where d F(dlg X) =
d
dt F(get X )|t=0. Note that d F is R-linear.
(1) In the special case of GC = C\{0} ∼= GL(1,C), z ∈ GC, and X = 1, show that
d F(dlz(i X)) = ∂

∂y F |z and id F(dlz X) = i ∂
∂x F |z , where z = x + iy. Conclude that

d F is not C-linear for general F and that, in this case, F is holomorphic if and only
if ux = vy and uy = −vx , where F = u + iv.
(2) Let {X j }nj=1 be a basis over C for gC. For g ∈ GC, show that the map
ϕ : R2n → GC given by

ϕ(x1, . . . , xn, y1, . . . , yn) = gex1 X1 · · · exn Xn eiy1 X1 · · · eiyn Xn

is a local diffeomorphism near 0, c.f. Exercise 4.12.
(3) Identifying gC with Te(GC), show dϕ(∂x j |0) = dlg X j and dϕ(∂y j |0) = dlg(i X j ).
(4) Given a smooth function F on GC, write F in local coordinates near g as f =
ϕ∗F . Show that F is holomorphic if and only if for each g ∈ GC, ux j = vy j and
uy j = −vx j where f = u + iv. In other words, F is holomorphic if and only if it
satisfies the Cauchy–Riemann equations in local coordinates.

Exercise 7.33 In the proof of the Borel–Weil theorem, trace through the various
identifications to verify that the claimed actions are correct.

Exercise 7.34 Let B be the subgroup of upper triangular matrices in GL(n,C). Let
λ = λ1ε1 + · · · + λnεn be a dominant integral weight of U (n), i.e., λk ∈ Z and
λ1 ≥ . . . λn .
(1) Let f : GL(n,C) → C be smooth. For i < j , show that dr(i E j,k) f |g =
idr(E j,k) f |g if and only if

0 =
n∑

l=1

zl, j
∂ f

∂zl,k
|g,

where g = (z j,k) ∈ GL(n,C) and ∂
∂z j,k

= 1
2

(
∂

∂x j,k
+ i ∂

∂y j,k

)
with z j,k = x j,k + iy j,k .

Conclude that dr(i E j,k) f = idr(E j,k) f if and only if ∂ f
∂zl,k

= 0.
(2) Show that the irreducible representation of U (n) with highest weight λ is realized
by

Vλ =
{
holomorphic F : GL(n,C)→ C | F(gb) = ξC

−λnε1 ··· −λ1εn
(b)F(g),

g ∈ GL(n,C), b ∈ B
}

with action given by left translation of functions, i.e., (g1 F)(g2) = F(g−1
1 g2).

(3) Let Fw0λ : GL(n,C)→ C be given by

Fw0λ(g) = (det1 g)λn−1−λn · · · (detn−1 g)λ1−λ2 (detn g)−λ1 ,
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where detk(gi, j ) = deti, j≤k(gi, j ). Show that Fw0λ is holomorphic, invariant under
right translation by N , and invariant under left translation by N t .
(4) Show that Fw0λ ∈ Vλ and show Fw0λ has weight λnε1+· · ·+λ1εn . Conclude that
Fw0λ is the lowest weight vector of Vλ, i.e., that Fw0λ is the highest weight vector for
the positive system corresponding to the opposite Weyl chamber.
(5) Let Fλ(g) = Fw0λ(w0g), where w0 = E1,n + E2,n−2 + . . . , En,1. Write Fλ in
terms of determinants of submatrices and show Fλ is a highest weight for Vλ.

Exercise 7.35 Let G be a compact Lie group. Show G is algebraic by proving the
following:
(1) Suppose G acts on a vector space V and O and O′ are two distinct orbits. Show
there is a continuous function f on V that is 1 on O and −1 on O′.
(2) Show there is a polynomial p on V , so that |p(x)− f (x)| < 1 for x ∈ O ∪O′.
Conclude that p(x) > 0 when x ∈ O and p(x) < 0 when x ∈ O′.
(3) Let P be the convex set of all polynomials p on V satisfying p(x) > 0 when
x ∈ O and p(x) < 0 when x ∈ O′. With respect to the usual action, (g · p) (x) =
p(g−1x) for g ∈ G, use integration to show that there exists p ∈ P that is G-
invariant.
(4) Show that G-invariant polynomials on V are constant on G-orbits.
(5) Let I be the ideal of all G-invariant polynomials on V that vanish on O. Show
that there is p ∈ I, so that p is nonzero on O′. Conclude that the set of zeros of I is
exactly O.
(6) By choosing a faithful representation, assume G ⊆ GL(n,C) and consider the
special case of V = Mn,n(C) with G-action given by left multiplication of matrices.
Show that G is itself an orbit in V and is therefore algebraic.
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rotation group, 4

S, 30
S±, 31
S1, 2
Sk(V ), 34, 114
Sn , 1
Sn , 137
SL(n,F), 4
SO(En), 119
SO(n), 4
SO(n,C), 19
SO(p, q), 19
Sp(n), 5
Sp(n,C), 6
SU(n), 5
Sn , 137
sl(n,F), 84
so(En), 119
so(En,C), 119, 120
so(n), 85
so(n,C), 115
sp(n), 85
sp(n,C), 85, 120
su(n), 85
scalar valued Fourier transform, 76
Schur

orthogonality relations, 48
lemma, 36, 55

second countable, 1
section, 176
semisimple, 108
sgn(w), 148
simple, 108, 121

roots, 139
simply connected, 10

cover, 10
skew W -invariant, 164
special

linear group, 4
orthogonal group, 4
unitary group, 5

sphere, 1
Spinn(C), 19
Spinn(R), 12, 16
Spinp,q (R), 19
spin representation, 30
spinors, 30
stabalizer, 9
standard

basis, 14, 115, 127
representation, 28, 114
triple, 127

Steinberg’s Formula, 176
strictly

dominant, 167
upper triangular, 108

submanifold, 2
submodule, 36, 54
subrepresentation, 36, 54
symmetric algebra, 34
symplectic group, 5

T (M), 81
Tλ, 63
T n , 1
Tn , 119
Tp(M), 19
(T, S)H S , 72
‖T ‖H S , 72
T (Rn), 13, 34, 114
t′, 139
tC(R), 117
tangent bundle, 81
tangent space, 19
tensor algebra, 13
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topological vector space, 54
torus, 1, 97
tr(Tπ ◦ g−1), 73
transitive, 9
triangular decomposition, 151
trivial representation, 28, 114

U (n), 4
U−1, 8
U n , 8
uα , 125
u(n), 84
unitary, 36

group, 4

V ⊗ W , 34, 51, 114
V ⊕ W , 34, 114
V (λ), 153
V , 34, 114
V ∗, 34, 114
V1 ⊗̂ V2, 59
Vα , 116
Vπ , 58, 77
V 0
π , 77

V G , 50
VG-fin, 57, 77
Vm(Rn), 29
V ′

n , 29
Vn(C2), 28
Vp,q (Cn), 46, 155
[v]B , 35
vector

bundle, 176

field, 81
valued integration, 56

volume form, 20

W , 136
W -invariant, 164
W (�(gC)), 143
W (�(gC)

∨), 143
W(G), 136
weight, 116
weight lattice, 130
weight space decomposition, 116
Weyl

chamber, 140
Character Formula, 166, 168
Denominator Formula, 168
Dimension Formula, 168
group, 136

affine, 172
Integration Formula, 161, 165

X · v, 113
Xv, 113
Xγ , 171
X̃ , 83
[X, Y ], 82

Z(G), 7, 102, 104
ZG(H), 94
ZG(h), 94
z(g), 104, 108
zg(H), 94
zg(h), 94, 100




