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Introduction

Commutative algebra is the theory of commutative rings. Its historic roots are
in invariant theory, number theory, and, most importantly, geometry. Con-
sequently, it nowadays provides the algebraic basis for the fields of algebraic
number theory and algebraic geometry. Over recent decades, commutative al-
gebra has also developed a vigorous new branch, computational commutative
algebra, whose goal is to open up the theory to algorithmic computation. So
rather than being an isolated subject, commutative algebra is at the cross-
roads of several important mathematical disciplines.

This book has grown out of various courses in commutative algebra that I
have taught in Heidelberg and Munich. Its primary objective is to serve as a
guide for an introductory graduate course of one or two semesters, or for self-
study. I have striven to craft a text that presents the concepts at the center
of the field in a coherent, tightly knitted way, with streamlined proofs and a
focus on the core results. Needless to say, for an imperfect writer like me, such
high-flying goals will always remain elusive. To introduce readers to the more
recent algorithmic branch of the subject, one part of the book is devoted to
computational methods. The connections with geometry are more than just
applications of commutative algebra to another mathematical field. In fact,
virtually all concepts and results have natural geometric interpretations that
bring out the “true meaning” of the theory. This is why the first part of the
book is entitled “The Algebra Geometry Lexicon,” and why I have tried to
keep a focus on the geometric context throughout. Hopefully, this will make
the theory more alive for readers, more meaningful, more visual, and easier
to remember.

How To Use the Book

The main intention of the book is to provide material for an introductory
graduate course of one or two semesters. The duration of the course clearly
depends on such parameters as speed and teaching hours per week and on
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10 Introduction

how much material is covered. In the book, I have indicated three options
for skipping material. For example, one possibility is to omit Chapter 10 and
most of Section 7.2. Another is to skip Chapters 9 through 11 almost entirely.
But apart from these options, interdependencies in the text are close enough
to make it hard to skip material without tearing holes into proofs that come
later. So the instructor can best limit the amount of material by choosing
where to stop. A relatively short course would stop after Chapter 8, while
other natural stopping points are after Chapter 11 or 13.

The book contains a total of 143 exercises. Some of them deal with ex-
amples that illustrate definitions (such as an example of an Artinian module
that is not Noetherian) or shed some light on the necessity of hypotheses of
theorems (such as an example where the principal ideal theorem fails for a
non-Noetherian ring). Others give extensions to the theory (such as a series
of exercises that deal with formal power series rings), and yet others invite
readers to do computations on examples. These examples often come from
geometry and also serve to illustrate the theory (such as examples of desingu-
larization of curves). Some exercises depend on others, as is usually indicated
in the hints for the exercise. However, no theorem, lemma, or corollary in
the text depends on results from the exercises. I put a star by some exercises
to indicate that I consider them more difficult. Solutions to all exercises are
provided on a CD that comes with the book. In fact, the CD contains an
electronic version of the entire book, with solutions to the exercises.

Although the ideal way of using the book is to read it from the beginning
to the end (every author desires such readers!), an extensive subject index
should facilitate a less linear navigation. In the electronic version of the book,
all cross-references are realized as hyperlinks, a feature that will appeal to
readers who like working on the screen.

Prerequisites

Readers should have taken undergraduate courses in linear algebra and ab-
stract algebra. Everything that is assumed, is contained in Lang’s book [33],
but certainly not everything in that book is assumed. Specifically, readers
should have a grasp of the following subjects:

• definition of a (commutative) ring,
• ideals, prime ideals and maximal ideals,
• zero divisors,
• quotient rings (also known as factor rings),
• subrings and homomorphisms of rings,
• principal ideal domains,
• factorial rings (also known as unique factorization domains),
• polynomial rings in several indeterminates,
• finite field extensions, and
• algebraically closed fields.
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In accordance with the geometric viewpoint of this book, it sometimes uses
language from topology. Specifically, readers should know the definitions of
the following terms:

• topological space,
• closure of a set,
• subspace topology, and
• continuous map.

All these can be found in any textbook on topology, for example Bourbaki [6].

Contents

The first four chapters of the book have a common theme: building the “Al-
gebra Geometry Lexicon”, a machine that translates geometric notions into
algebraic ones and vice versa. The opening chapter deals with Hilbert’s Null-
stellensatz, which translates between ideals of a polynomial ring and affine
varieties. The second chapter is about the basic theory of Noetherian rings
and modules. One result is Hilbert’s basis theorem, which says that every
ideal in a polynomial ring over a field is finitely generated. The results from
Chapter 2 are used in Chapter 3 to prove that affine varieties are made up
of finitely many irreducible components. That chapter also introduces the
Zariski topology, another important element of our lexicon, and the notion
of the spectrum of a ring, which allows us to interpret prime ideals as gen-
eralized points in a more abstract variant of geometry. Chapter 4 provides a
summary of the lexicon.

In any mathematical theory connected with geometry, dimension is a cen-
tral, but often subtle, notion. The four chapters making up the second part of
the book relate to this notion. In commutative algebra, dimension is defined
by the Krull dimension, which is introduced in Chapter 5. The main result
of the chapter is that the dimension of an affine algebra coincides with its
transcendence degree. Chapter 6 is an interlude introducing an important
construction which is used throughout the book: localization. Along the way,
the notions of local rings and height are introduced. Chapter 6 sets up the con-
ceptual framework for proving Krull’s principal ideal theorem in Chapter 7.
That chapter also contains an investigation of fibers of morphisms, which
leads to the nice result that forming a polynomial ring over a Noetherian
ring increases the dimension by 1. Chapter 8 discusses the notions of integral
ring extensions and normal rings. One of the main results is the Noether
normalization theorem, which is then used to prove that all maximal chains
of prime ideals in an affine domain have the same length.

The third part of the book is devoted to computational methods. Theoret-
ical and algorithmic aspects go hand in hand in this part. The main compu-
tational tool is Buchberger’s algorithm for calculating Gröbner bases, which
is developed in Chapter 9. As a first application, Gröbner bases are applied to
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compute elimination ideals, which have important geometric interpretations.
Chapter 10, the second chapter of this part, continues the investigation of
fibers of morphisms started in Chapter 7. This chapter contains a construc-
tive version of Grothendieck’s generic freeness lemma, probably a novelty.
This is one of the main ingredients of an algorithm for computing the im-
age of a morphism of affine varieties. The chapter also contains Chevalley’s
result that the image of a morphism is a constructible set. The results of
Chapter 10 are not used elsewhere in the book, so there is an option to skip
that chapter and the parts of Chapter 7 that deal with fibers of morphisms.
Finally, Chapter 11 deals with the Hilbert function and Hilbert series of an
ideal in a polynomial ring. The main result, whose proof makes use of Noether
normalization, states that the Hilbert function is eventually represented by
a polynomial whose degree is the dimension of the affine algebra given by
the ideal. This result leads to an algorithm for computing the dimension of
an affine algebra, and it also plays an important role in Chapter 12 (which
belongs to the fourth part of the book). Nevertheless, it is possible to skip
the third part of the book almost entirely by modifying some parts of the
text, as indicated in an exercise.

The fourth and last part of the book deals with local rings. Geometrically,
local rings relate to local properties of varieties. In Chapter 12 introduces the
associated graded ring and presents a new characterization of the dimension
of a local ring. Chapter 13 studies regular local rings, which correspond to
non-singular points of a variety. An important result is the Jacobian criterion
for calculating the singular locus of an affine variety. A consequence is that an
affine variety is non-singular almost everywhere. The final chapter deals with
topics related to rings of dimension one. The starting point is the observation
that a Noetherian local ring of dimension one is regular if and only if it is
normal. From this it follows that affine curves can be desingularized. After an
excursion to multiplicative ideal theory for more general rings, the attention
is focused to Dedekind domains, which are characterized as “rings with a
perfect multiplicative ideal theory.” The chapter closes with an application
that explains how the group law on an elliptic curve can be defined by means
of multiplicative ideal theory.

Further Reading

The contents of a book may also be described by what is missing. Since this
book is relatively short and concentrates on the central issues, it pays a price
in comprehensiveness. Homological concepts and methods should probably
appear at the top of the list of what is missing. In particular, the book does
not treat syzygies, resolutions, and Tor- and Ext-functors. As a consequence,
depth and the Cohen-Macaulay property cannot be dealt with sensibly (and
would require much more space in any case), so only one exercise touches
on Cohen-Macaulay rings. Flat modules are another topic that relates to
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homological methods and is not treated. The subject of completion is also
just touched on. I have decided not to include associated primes and primary
decomposition in the book, although these topics are often regarded as rather
basic and central, because they are not needed elsewhere in the book.

All the topics mentioned above are covered in the books by Matsumura [37]
and Eisenbud [17], which I warmly recommend for further reading. Of these
books, [37] presents the material in a more condensed way, while [17] shares
the approach of this book in its focus on the geometric context and in its
inclusion of Gröbner basis methods. Eisenbud’s book, more than twice as
large as this one, is remarkable because it works as a textbook but also
contains a lot of material that appeals to experts.

Apart from deepening their knowledge in commutative algebra, readers of
this book may continue their studies in different directions. One is algebraic
geometry. Hartshorne’s textbook [26] still seems to be the authoritative source
on the subject, but Harris [25] and Smith et al. [47] (to name just two) provide
more recent alternatives. Another possible direction to go in is computational
commutative algebra. A list of textbooks on this appears at the beginning of
Chapter 9 of this book. I especially recommend the book by Cox et al. [12],
which does a remarkable job of blending aspects of geometry, algebra, and
computation.
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The Algebra Geometry Lexicon





Chapter 1

Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz may be seen as the starting point of algebraic geom-
etry. It provides a bijective correspondence between affine varieties, which are
geometric objects, and radical ideals in a polynomial ring, which are algebraic
objects. In this chapter, we give proofs of two versions of the Nullstellensatz.
We exhibit some further correspondences between geometric and algebraic
objects. Most notably, the coordinate ring is an affine algebra assigned to an
affine variety, and points of the variety correspond to maximal ideals in the
coordinate ring.

Before we get started, let us fix some conventions and notations that will
be used throughout the book. By a ring we will always mean a commutative
ring with an identity element 1. In particular, we have a ring R = {0}, the
zero ring, in which 1 = 0. A ring R is called an integral domain if R has
no zero divisors (other than 0 itself), and R 6= {0}. A subring of a ring R
must contain the identity element of R, and a homomorphism R→ S of rings
must send the identity element of R to the identity element of S.

If R is a ring, an R-algebra is defined to be a ring A together with a
homomorphism α: R → A. In other words, by an algebra we will mean a
commutative, associative algebra with an identity element. A subalgebra
of and algebra A is a subring which contains the image α(R). If A and B
are R-algebras with homomorphisms α and β, then a map ϕ: A → B is
called a homomorphism of (R-)algebras if ϕ is a ring-homomorphism,
and ϕ ◦ α = β. If A is a non-zero algebra over a field K, then the map α
is injective, so we may view K as a subring of A. With this identification, a
homomorphism of non-zero K-algebras is just a ring-homomorphism fixing
K element-wise.

One of the most important examples of an R-algebra is the ring of
polynomials in n indeterminates with coefficients in R, which is written
as R[x1, . . . , xn]. If A is any R-algebra and a1, . . . , an ∈ A are elements,
then there is a unique algebra-homomorphism ϕ: R[x1, . . . , xn] → A with
ϕ(xi) = ai, given by applying α to the coefficients of a polynomial and sub-
stituting xi by ai. Clearly the image of ϕ is the smallest subalgebra of A
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18 1 Hilbert’s Nullstellensatz

containing all ai, i.e., the subalgebra of A generated by the ai. We write this
image as R[a1, . . . , an], which is consistent with the notation R[x1, . . . , xn] for
a polynomial ring. A is called finitely generated if there exist a1, . . . , an
with A = R[a1, . . . , an]. Thus an algebra is finitely generated if and only if it
is isomorphic to the quotient ring R[x1, . . . , xn]/I of a polynomial ring by an
ideal I ⊆ R[x1, . . . , xn]. By an affine (K-)algebra we mean a finitely gen-
erated algebra over a field K. An affine (K-)domain is an affine K-algebra
which is an integral domain.

Recall that the definition of a module over a ring is identical to the def-
inition of a vector space over a field. In particular, an ideal in a ring R is
the same as a submodule of R viewed as a module over itself. Recall that a
module does not always have a basis (= a linearly independent generating
set). If it does have a basis, it is called free. If M is an R-module and S ⊆M
is a subset, we write (S)R = (S) for the submodule of M generated by S, i.e.,
the set of all R-linear combinations of S. (The index R may be omitted if it
is clear which ring we have in mind.) If S = {m1, . . . ,mk} is finite, we write
(S)R = (m1, . . . ,mk)R = (m1, . . . ,mk). In particular, if a1, . . . , ak ∈ R are
ring elements, then (a1, . . . , ak)R = (a1, . . . , ak) denotes the ideal generated
by them.

1.1 Maximal Ideals

Let a ∈ A be an element of a non-zero algebra A over a field K. As in
field theory, we say that a is algebraic (over K) if there exists a non-zero
polynomial f ∈ K[x] with f(a) = 0. A is said to be algebraic (over K) if
every element from A is algebraic. Almost everything that will be said about
affine algebras in this book has its starting point in the following lemma.

Lemma 1.1 (Fields and algebraic algebras). Let A be an algebra over a field
K. Then we have:

(a) If A is an integral domain and algebraic over K, then A is a field.
(b) If A is a field and is contained in an affine K-domain, then A is algebraic.

Proof. (a) We need to show that every a ∈ A \ {0} is invertible in A. For
this, it suffices to show that K[a] is a field. We may therefore assume
that A = K[a]. With x an indeterminate, let I ⊆ K[x] be the kernel of
the map K[x]→ A, f 7→ f(a). Then A ∼= K[x]/I. Since A is an integral
domain, I is a prime ideal, and since a is algebraic over K, I is non-
zero. Since K[x] is a principal ideal domain, it follows that I = (f) with
f ∈ K[x] irreducible, so I is a maximal ideal. It follows that A ∼= K[x]/I
is a field.

(b) By way of contradiction, assume that A has an element a1 which is
not algebraic. By hypothesis, A is contained in an affine K-domain
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B = K[a1, . . . , an] (we may include a1 in the set of generators). We
can reorder a2, . . . , an in such a way that {a1, . . . , ar} forms a maxi-
mal K-algebraically independent subset of {a1, . . . , an}. Then the field
of fractions Quot(B) of B is a finite field extension of the subfield L :=
K(a1, . . . , ar). For b ∈ Quot(B), multiplication by b gives an L-linear
endomorphism of Quot(B). Choosing an L-basis of Quot(B), we obtain
a map ϕ: Quot(B) → Lm×m assigning to each b ∈ Quot(B) the repre-
sentation matrix of this endomorphism. Let g ∈ K[a1, . . . , ar] \ {0} be a
common denominator of all the matrix entries of all ϕ(ai), i = 1, . . . , n.
So ϕ(ai) ∈ K[a1, . . . , ar, g

−1]m×m for all i. Since ϕ preserves addition
and multiplication, we obtain

ϕ(B) ⊆ K[a1, . . . , ar, g
−1]m×m.

K[a1, . . . , ar] is isomorphic to a polynomial ring and therefore factorial
(see, for example, Lang [33, Ch. V, Corollary 6.3]). Take a factorization
of g, and let p1, . . . , pk be those irreducible factors of g which happen
to lie in K[a1]. Let p ∈ K[a1] be an arbitrary irreducible element. Then
p−1 ∈ A ⊆ B since K[a1] ⊆ A and A is a field. Applying ϕ to p−1

yields a diagonal matrix with all entries equal to p−1, so there exists a
non-negative integer s and an f ∈ K[a1, . . . , ar] with p−1 = g−s · f , so
gs = p · f . By the irreducibility of p, it follows that p is a K-multiple
of one of the pi. Since this holds for all irreducible elements p ∈ K[a1],
every element from K[a1] \K is divisible by at least one of the pi. But
none of the pi divides

∏k
i=1 pi+1. This is a contradiction, so all elements

of A are algebraic. ut

The following proposition is an important application of Lemma 1.1. A
particularly interesting special case of the proposition is that A ⊆ B is a
subalgebra and ϕ is the inclusion.

Proposition 1.2 (Preimages of maximal ideals). Let ϕ: A→ B be a homo-
morphism of algebras over a field K, and let m ⊂ B be a maximal ideal. If B
is finitely generated, then the preimage ϕ−1(m) ⊆ A is also a maximal ideal.

Proof. The map A → B/m, a 7→ ϕ(a) + m has the kernel ϕ−1(m) =: n.
So A/n is isomorphic to a subalgebra of B/m. By Lemma 1.1(b), B/m is
algebraic over K. Hence the same is true for the subalgebra A/n, and A/n is
also an integral domain. By Lemma 1.1(a), A/n is a field and therefore n is
maximal. ut

Example 1.3. We give a simple example which shows that intersecting a max-
imal ideal with a subring does not always produce a maximal ideal. Let
A = K[x] be a polynomial ring over a field and let B = K(x) be the rational
function field. Then m := {0} ⊂ B is a maximal ideal, but A ∩ m = {0} is
not maximal in A. /
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Before drawing a “serious” conclusion from Proposition 1.2 in Proposi-
tion 1.5, we need a lemma.

Lemma 1.4. Let K be a field and P = (ξ1, . . . , ξn) ∈ Kn a point in Kn.
Then the ideal

mP := (x1 − ξ1, . . . , xn − ξn) ⊆ K[x1, . . . , xn]

in the polynomial ring K[x1, . . . , xn] is maximal.

Proof. It is clear from the definition of mP that every polynomial f ∈
K[x1, . . . , xn] is congruent to f(ξ1, . . . , ξn) modulo mP . It follows that mP is
the kernel of the homomorphism ϕ: K[x1, . . . , xn] → K, f 7→ f(ξ1, . . . , ξn),
so K[x1, . . . , xn]/mP

∼= K. This implies the result. ut

Together with Lemma 1.4, the following proposition describes all maximal
ideals in a polynomial ring over an algebraically closed field. Recall that a
field K is called algebraically closed if every non-constant polynomial in K[x]
has a root in K.

Proposition 1.5 (Maximal ideals in a polynomial ring). Let K be an alge-
braically closed field, and let m ⊂ K[x1, . . . , xn] be a maximal ideal in a
polynomial ring over K. Then there exists a point P = (ξ1, . . . , ξn) ∈ Kn

such that
m = (x1 − ξ1, . . . , xn − ξn) .

Proof. By Proposition 1.2, the intersection K[xi] ∩ m is a maximal ideal in
K[xi] for each i = 1, . . . , n. Since K[xi] is a principal ideal domain, K[xi]∩m
has the form (pi)K[xi] with pi an irreducible polynomial. Since K is alge-
braically closed, we obtain (pi)K[xi] = (xi − ξi)K[xi] with ξi ∈ K. So there
exist ξ1, . . . , ξn ∈ K with xi − ξi ∈ m. With the notation of Lemma 1.4, it
follows that mP ⊆ m, so m = mP by Lemma 1.4. ut

We make a definition before giving a refined version of Proposition 1.5.

Definition 1.6. Let K[x1, . . . , xn] be a polynomial ring over a field.

(a) For a set S ⊆ K[x1, . . . , xn] of polynomials, the affine variety given by
S is defined as

V(S) = VKn(S) := {(ξ1, . . . , ξn) ∈ Kn | f(ξ1, . . . , ξn) = 0 for all f ∈ S} .

The index Kn is omitted if no misunderstanding can occur.
(b) A subset X ⊆ Kn is called an affine (K-)variety if X is the affine

variety given by a set S ⊆ K[x1, . . . , xn] of polynomials.

Remark. In the literature, affine varieties are sometimes assumed to be
irreducible. Moreover, the definition of an affine variety is sometimes only
made in the case that K is algebraically closed. /
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Theorem 1.7 (Correspondence points - maximal ideals). Let K be an alge-
braically closed field and S ⊆ K[x1, . . . , xn] a set of polynomials. Let MS be
the set of all maximal ideals m ⊂ K[x1, . . . , xn] with S ⊆ m. Then the map

Φ: V(S)→MS , (ξ1, . . . , ξn) 7→ (x1 − ξ1, . . . , xn − ξn)

is a bijection.

Proof. Let P := (ξ1, . . . , ξn) ∈ V(S). Then Φ(P ) is a maximal ideal by
Lemma 1.4. All f ∈ S satisfy f(P ) = 0, so f ∈ Φ(P ). It follows that
Φ(P ) ∈ MS . On the other hand, let m ∈ MS . By Proposition 1.5,
m = (x1 − ξ1, . . . , xn − ξn) with (ξ1, . . . , ξn) ∈ Kn, and S ⊆ m implies
(ξ1, . . . , ξn) ∈ V(S). This shows that Φ is surjective.

To show injectivity, let P = (ξ1, . . . , ξn) and Q = (η1, . . . , ηn) be points
in V(S) with Φ(P ) = Φ(Q) =: m. For each i, we have xi − ξi ∈ m and
also xi − ηi ∈ m, so ξi − ηi ∈ m. This implies ξi = ηi, since otherwise
m = K[x1, . . . , xn]. ut

Corollary 1.8 (Hilbert’s Nullstellensatz, first version). Let K be an alge-
braically closed field and let I $ K[x1, . . . , xn] be a proper ideal in a polyno-
mial ring. Then

V(I) 6= ∅.

Proof. Consider the set of all proper ideals J $ K[x1, . . . , xn] containing I.
Using Zorn’s lemma, we conclude that this set contains a maximal element
m. (Instead of Zorn’s lemma, we could also use the fact that K[x1, . . . , xn] is
Noetherian (see Corollary 2.13). But even then, the axiom of choice, which is
equivalent to Zorn’s lemma, would have to be used to do the proof without
cheating. See Halmos [24] to learn more about Zorn’s lemma and the axiom
of choice.) So m is a maximal ideal with I ⊆ m. Now V(I) 6= ∅ follows by
Theorem 1.7. ut

Remark. (a) To see that the hypothesis that K be algebraically closed can-
not be omitted from Corollary 1.8, consider the example K = R and
I = (x2 + 1) $ R[x].

(b) Hilbert’s Nullstellensatz is really a theorem about systems of polynomial
equations. Indeed, let f1, . . . , fm ∈ K[x1, . . . , xn] be polynomials. If there
exist polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that

m∑
i=1

gifi = 1, (1.1)

then obviously the system of equations

fi(ξ1, . . . , ξn) = 0 for i = 1, . . . ,m (1.2)
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has no solutions. But the existence of g1, . . . , gm satisfying (1.1) is equiv-
alent to the condition (f1, . . . , fm) = K[x1, . . . , xn]. So Hilbert’s Null-
stellensatz says that if the obvious obstacle (1.1) to solvability does not
exist, and if K is algebraically closed, then indeed the system (1.2) is solv-
able. In other words, for algebraically closed fields, the obvious obstacle
to the solvability of systems of polynomial equations is the only one! In
Chapter 9 we will see how it can be checked algorithmically whether the
obstacle (1.1) exists (see (9.4) on page 133). /

1.2 Jacobson Rings

The main goal of this section is to prove the second version of Hilbert’s
Nullstellensatz (Theorem 1.17). We start by defining the spectrum and the
maximal spectrum of a ring.

Definition 1.9. Let R be a ring.

(a) The spectrum of R is the set of all prime ideals in R:

Spec(R) := {P ⊂ R | P is a prime ideal} .

(b) The maximal spectrum of R is the set of all maximal ideals in R:

Specmax(R) := {P ⊂ R | P is a maximal ideal} .

(c) We also define the Rabinovich spectrum of R as the set

Specrab(R) := {R ∩m | m ∈ Specmax(R[x])} ,

where R[x] is the polynomial ring over R. This is an ad hoc definition,
which is not found in the standard literature and will only be used within
this section.

Remark. The idea of using an additional indeterminate for proving the sec-
ond version of Hilbert’s Nullstellensatz goes back to J. L. Rabinovich [45],
and is often referred to as Rabinovich’s trick. This made my student Martin
Kohls suggest to call the set from Definition 1.9(c) the Rabinovich spectrum.
/

We have the inclusions

Specmax(R) ⊆ Specrab(R) ⊆ Spec(R).

Indeed, the second inclusion follows since for any prime ideal P ⊂ S in a
ring extension S of R, the intersection R ∩ P is a prime ideal in R. The first
inclusion is proved in Exercise 1.3. Only the second inclusion will be used in
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this book. Exercise 1.4 gives an example where both inclusions are strict. The
importance of the Rabinovich spectrum is highlighted by Proposition 1.11.

Recall that for an ideal I ⊆ R in a ring R, the radical ideal of I is defined
as √

I :=
{
f ∈ R | there exists a positive integer k with fk ∈ I

}
.

I is called a radical ideal if
√
I = I. For example, a non-zero ideal (a) ⊆ Z

is radical if and only if a is square-free. Recall that every prime ideal is a
radical ideal.

Lemma 1.10. Let R be a ring, I ⊆ R an ideal, andM⊆ Spec(R) a subset.
Then √

I ⊆
⋂

P∈M,
I⊆P

P.

If there exist no P ∈ M with I ⊆ P , the intersection is to be interpreted as
R.

Proof. Let a ∈
√
I, so ak ∈ I for some k. Let P ∈ MI . Then ak ∈ P . Since

P is a prime ideal, it follows that a ∈ P . ut

Proposition 1.11 (The raison d’être of the Rabinovich spectrum). Let R
be a ring and I ⊆ R an ideal. Then

√
I =

⋂
P∈Specrab(R),

I⊆P

P.

If there exist no P ∈ Specrab(R) with I ⊆ P , the intersection is to be inter-
preted as R.

Proof. The inclusion “⊆” follows from Lemma 1.10 and the fact that
Specrab(R) ⊆ Spec(R).

To prove the reverse inclusion, let a be in the intersection of all P ∈MI .
Consider the ideal

J = (I ∪ {ax− 1})R[x] ⊆ R[x]

generated by I and by ax − 1. Assume that J $ R[x]. By Zorn’s lemma,
there exists m ∈ Specmax(R[x]) with J ⊆ m. We have I ⊆ R ∩ J ⊆ R ∩ m ∈
Specrab(R), so R ∩ m ∈ MI . By hypothesis, a ∈ m. But also ax− 1 ∈ m, so
m = R[x]. This is a contradiction, showing that J = R[x]. In particular, we
have

1 =
n∑
j=1

gjbj + g(ax− 1) (1.3)

with g, g1, . . . , gn ∈ R[x] and b1, . . . , bn ∈ I. Let R[x, x−1] be the ring of
Laurent polynomials and consider the map ϕ: R[x]→ R[x, x−1], f 7→ f(x−1).
Applying ϕ to both sides of (1.3) and multiplying with some xk yields
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xk =
n∑
j=1

hjbj + h(a− x) with hj = xkϕ(gj) and h = xk−1ϕ(g).

For k ≥ max{deg(g1), . . . ,deg(gn),deg(g)+1}, all hj and h lie in R[x], so we
may substitute x = a in the above equation and obtain

ak =
n∑
j=1

hj(a)bj ∈ I,

so a ∈
√
I. This completes the proof. ut

We get the following important consequence.

Corollary 1.12 (Intersecting prime ideals). Let R be a ring and I ⊆ R an
ideal. Then √

I =
⋂

P∈Spec(R),
I⊆P

P.

If there exist no P ∈ Spec(R) with I ⊆ P , the intersection is to be interpreted
as R.

Proof. This follows from Lemma 1.10 and Proposition 1.11. ut

Theorem 1.13 (Intersecting maximal ideals). Let A be an affine algebra
and I ⊆ A an ideal. Then

√
I =

⋂
m∈Specmax(A),

I⊆m

m.

If there exist no m ∈ Specmax(A) with I ⊆ m, the intersection is to be inter-
preted as A.

Proof. The inclusion “⊆” again follows from Lemma 1.10.
Let P ∈ Specrab(A). Then P = A ∩ m with m ∈ Specmax(A[x]). But A[x]

is finitely generated as an algebra over a field, so by Proposition 1.2 it follows
that P ∈ Specmax(A). We conclude that

Specrab(A) ⊆ Specmax(A).

(In fact, equality holds, but we do not need this.) Now the inclusion “⊇”
follows from Proposition 1.11. ut

We pause here to make a definition, which is inspired by Theorem 1.13.

Definition 1.14. A ring R is called a Jacobson ring if for every proper
ideal I $ R we have
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√
I =

⋂
m∈Specmax(R),

I⊆m

m.

So Theorem 1.13 says that every affine algebra is a Jacobson ring. A further
example is the ring Z of integers (see Exercise 1.6). So one wonders if the
polynomial ring Z[x] is Jacobson, too. This is indeed the case. It is an instance
of the general fact that every finitely generated algebra A over a Jacobson ring
R is again a Jacobson ring. A proof is given in Eisenbud [17, Theorem 4.19].
There we also find the following: If α is the homomorphism making A into
an R-algebra, then for every m ∈ Specmax(A) the preimage α−1(m) is also
maximal. This is in analogy to Proposition 1.2.

A typical example of a non-Jacobson ring is the formal power series ring
K[[x]] over a field K (see Exercise 1.2). A similar example is the ring of all
rational numbers with odd denominator.

We can now prove the second version of Hilbert’s Nullstellensatz. To for-
mulate it, a bit of notation is useful.

Definition 1.15. Let K be a field and X ⊆ Kn a set of points. The (van-
ishing) ideal of X is defined as

I(X) = IK[x1,...,xn](X) :=
{f ∈ K[x1, . . . , xn] | f(ξ1, . . . , ξn) = 0 for all (ξ1, . . . , ξn) ∈ X} .

The index K[x1, . . . , xn] is omitted if no misunderstanding can occur.

Remark 1.16. It is clear from the definition that the ideal of a set of points
always is a radical ideal. /

Theorem 1.17 (Hilbert’s Nullstellensatz, second version). Let K be an al-
gebraically closed field and let I ⊆ K[x1, . . . , xn] be an ideal in a polynomial
ring. Then

I (V(I)) =
√
I.

Proof. We start by showing the inclusion “⊇”, which does not require K to
be algebraically closed. Let f ∈

√
I, so fk ∈ I for some k. Take (ξ1, . . . , ξn) ∈

V(I). Then f(ξ1, . . . , ξn)k = 0, so f(ξ1, . . . , ξn) = 0. This shows that f ∈
I (V(I)).

For the reverse inclusion, assume f ∈ I (V(I)). In view of Theorem 1.13,
we need to show that f lies in every m ∈MI , where

MI = {m ∈ Specmax (K[x1, . . . , xn])| I ⊆ m} .

So let m ∈ MI . By Theorem 1.7, m = (x1 − ξ1, . . . , xn − ξn)K[x1,...,xn] with
(ξ1, . . . , ξn) ∈ V(I). This implies f(ξ1, . . . , ξn) = 0, so f ∈ m. This completes
the proof. ut

The following corollary is the heart of what we call the Algebra Geometry
Lexicon. We need an (easy) lemma.
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Lemma 1.18. Let K be a field and X ⊆ Kn an affine variety. Then

V (I(X)) = X.

Proof. By assumption, X = V(S) with S ⊆ K[x1, . . . , xn]. So S ⊆ I(X), and
applying V yields

V (I(X)) ⊆ V(S) = X ⊆ V (I(X)) .

The lemma follows. ut

Corollary 1.19 (Ideal-variety correspondence). Let K be an algebraically
closed field and n a positive integer. Then there is a bijection between the
sets

A := {I ⊆ K[x1, . . . , xn] | I is a radical ideal}

and
B := {X ⊆ Kn | X is an affine variety} ,

given by
A → B, I 7→ V(I)

and the inverse map
B → A, X 7→ I(X).

Both maps reverse inclusions, i.e., for I, J ∈ A we have

I ⊆ J ⇐⇒ V(J) ⊆ V(I),

and the corresponding statement holds for the inverse map.

Proof. If I ∈ A is a radical ideal, it follows from the Nullstellensatz 1.17
that I (V(I)) = I. On the other hand, take X ∈ B. Then I(X) ∈ A by
Remark 1.16, and V (I(X)) = X by Lemma 1.18. This shows that the given
maps are inverses to each other. The last statement follows since I ⊆ J
implies V(J) ⊆ V(I) for I, J ∈ A, and X ⊆ Y implies I(Y ) ⊆ I(X) for
X,Y ∈ B. Now apply I and V to get the converse implications. ut

1.3 Coordinate Rings

The next part of the algebra geometry lexicon is provided by assigning to an
affine variety X an affine algebra, the coordinate ring K[X], which encodes
the properties of X.

Definition 1.20. Let K be a field and X ⊆ Kn an affine variety. Let I :=
I(X) ⊆ K[x1, . . . , xn] be the ideal of X. Then the coordinate ring of X is
the quotient ring
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K[X] := K[x1, . . . , xn]/I.

The coordinate ring is sometimes also called the ring of regular functions
on X.

Remark 1.21. (a) Every element of the coordinate ring K[X] of an affine
variety is a class f + I with f ∈ K[x1, . . . , xn]. Such a class yields a
well-defined function X → K, given by (ξ1, . . . , ξn) 7→ f(ξ1, . . . , ξn), and
different classes yield different functions. So K[X] can be identified with
an algebra of functions X → K. The functions from K[X] are called
regular functions. They are precisely those functions X → K that are
given by polynomials.

(b) If X = V(J) with J ⊆ K[x1, . . . , xn] an ideal, then it is not necessarily
true that K[X] = K[x1, . . . , xn]/J . However, if K is algebraically closed,
then K[X] = K[x1, . . . , xn]/

√
J by the Nullstellensatz 1.17. /

The following lemma compares ideals in a quotient ring R/I to ideals in
R. It is rather boring and elementary, but very important.

Lemma 1.22 (Ideals in quotient rings). Let R be a ring and let I ⊆ R be
an ideal. Consider the sets

A := {J ⊆ R | J is an ideal and I ⊆ J}

and
B := {J ⊆ R/I | J is an ideal} .

The map
Φ: A → B, J 7→ {a+ I | a ∈ J} = J/I

is an inclusion-preserving bijection with inverse map

Ψ : B → A, J 7→ {a ∈ R | a+ I ∈ J } .

For J ∈ A we have
R/J ∼= (R/I)

/
Φ(J), (1.4)

and the equivalences

J is a prime ideal ⇐⇒ Φ(J) is a prime ideal

and
J is a maximal ideal ⇐⇒ Φ(J) is a maximal ideal

hold. Moreover, if J = (a1, . . . , an)R with ai ∈ R, then Φ(J) = (a1 +
I, . . . , an + I)R/I .

Proof. It is easy to check that Φ and Ψ are inclusion-preserving maps and
that Ψ ◦Φ = idA and Φ◦Ψ = idB. The isomorphism (1.4) follows since Φ(J) is
the kernel of the epimorphism R/I → R/J, a+I 7→ a+J . Both equivalences
follow from (1.4). The last statement is also clear. ut
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If X ⊆ Kn is an affine variety, then a subvariety is a subset Y ⊆ X
which is itself an affine variety in Kn. We can now prove a correspondence
between subvarieties of a variety and radical ideals in the coordinate ring.

Theorem 1.23 (Correspondence subvarieties - radical ideals). Let X be an
affine variety over an algebraically closed field K. Then there is an inclusion-
reversing bijection between the set of subvarieties Y ⊆ X and the set of radical
ideals J ⊆ K[X]. The bijection is given by mapping a subvariety Y ⊆ X to
I(Y )/I(X) ⊆ K[X], and mapping an ideal J ⊆ K[X] to

VX(J) := {x ∈ X | f(x) = 0 for all f ∈ J} .

If J ⊆ K[X] is the ideal corresponding to a subvariety Y , then

K[Y ] ∼= K[X]/J,

with an isomorphism given by K[X]/J → K[Y ], f + J 7→ f |
Y
.

Restricting our bijection to subvarieties consisting of one point yields a
bijection

X → Specmax (K[X]) , x 7→ I({x})/I(X).

Proof. All claims are shown by putting Corollary 1.19 and Lemma 1.22 to-
gether. ut

Another correspondence between points and algebraic objects which relate
to the coordinate ring is given in Exercise 1.11. The next theorem tells us
which types of rings occur as coordinate rings of affine algebras. To state it,
we need a definition.

Definition 1.24. Let R be a ring.

(a) An element a ∈ R is called nilpotent if there exists a positive integer k
with ak = 0.

(b) The set of all nilpotent elements is called the nilradical of R, written as
nil(R). (So the nilradical is equal to the radical ideal

√
{0} of the zero-

ideal, which by Corollary 1.12 is the intersection of all prime ideals.)
(c) R is called reduced if nil(R) = {0}. (In particular, every integral domain

is reduced.)

Theorem 1.25 (Coordinate rings and reduced algebras). Let K be a field.

(a) For every affine K-variety X, the coordinate ring K[X] is a reduced affine
K-algebra.

(b) Suppose that K is algebraically closed, and let A be a reduced affine K-
algebra. Then there exists an affine K-variety X with K[X] ∼= A.

Proof. (a) With I = I(X), we have K[X] = K[x1, . . . , xn]/I, so K[X] is an
affine algebra, and it is reduced since I is a radical ideal.
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(b) Choose generators a1, . . . , an of A. Then the epimorphism ϕ:
K[x1, . . . , xn] → A, f 7→ f(a1, . . . , an) yields A ∼= K[x1, . . . , xn]/I with
I = ker(ϕ). Since A is reduced, I is a radical ideal. Set X := V(I). By
the Nullstellensatz 1.17, I = I(X), so A ∼= K[X]. ut

Remark. The affine variety X in Theorem 1.25(b) is not uniquely deter-
mined. In fact, in the proof we have given, X depends on the choice of the
generators of A. However, given the correct concept of an isomorphism of
varieties (see Definition 3.4), it can be shown that all affine varieties with
coordinate ring A are isomorphic. In fact, we get a bijective correspondence
between isomorphism classes of affine K-varieties and isomorphism classes of
reduced affine K-algebras. /

Exercises to Chapter 1

1.1 (Some counter examples). Give examples which show that none of
the hypotheses in Lemma 1.1(a) and (b) and in Proposition 1.2 can be omit-
ted. (Solution on page 227)

1.2 (Formal power series ring). Consider the formal power series ring

K[[x]] :=
{ ∞∑
i=0

aix
i | ai ∈ K

}
over a field K.

(a) Show that K[[x]] is an integral domain.
(b) Show that all power series f =

∑∞
i=0 aix

i with a0 6= 0 are invertible in
K[[x]].

(c) Show that K[[x]] has exactly one maximal ideal m, i.e., K[[x]] is a local
ring.

(d) Show that K[[x]] is not a Jacobson ring.
(e) Show that the ring

L :=
{ ∞∑
i=k

aix
i | k ∈ Z, ai ∈ K

}
of formal Laurent series is a field. The field L of formal Laurent series is
often written as K((x)).

(f) Is K[[x]] finitely generated as a K-algebra?

(Solution on page 227)

1.3 (Maximal spectrum and Rabinovich spectrum). Let R be a ring.
Show that

Specmax(R) ⊆ Specrab(R).
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(Solution on page 228)

*1.4 (Maximal spectrum, Rabinovich spectrum, and spectrum).
Let R = K[[y]] be the formal power series ring over a fieldK, and let S = R[z]
be a polynomial ring over R. Show that

Specmax(S) $ Specrab(S) $ Spec(S).

Hint: Consider the ideals (y)S and (z)S .
(Solution on page 228)

1.5 (Jacobson rings). Show that for verifying that a ring R is a Jacob-
son ring, it is enough to check that every prime ideal P ∈ Spec(R) is an
intersection of maximal ideals. (Solution on page 228)

1.6 (Z is a Jacobson Rings). Show that the ring Z of integers is a Jacob-
son ring. (Solution on page 229)

1.7 (Explicit computations with a variety). Consider the ideal

I =
(
x4

1 + x4
2 + 2x2

1x
2
2 − x2

1 − x2
2

)
⊆ R[x1, x2].

(a) Determine X := V(I) ⊆ R2 and draw a picture.
(b) Is I a prime ideal? Is I a radical ideal?
(c) Does Hilbert’s Nullstellensatz 1.17 hold for I?

(Solution on page 229)

1.8 (Colon ideals). If I and J ⊆ R are ideals in a ring, the colon ideal is
defined as

I : J := {a ∈ R | a · b ∈ I for all b ∈ J} .

In this exercise we give a geometric interpretation of the colon ideal.

(a) SetM := {P ∈ Spec(R) | I ⊆ P and J 6⊆ P} and show that
√
I : J =

⋂
P∈M

P.

(b) Let K be a field and X,Y ⊆ Kn such that Y is an affine variety. Show
that

I(X) : I(Y ) = I (X \ Y ) .

(Solution on page 229)

1.9 (A generalization of Hilbert’s Nullstellensatz). Let K be a field
and K its algebraic closure. Let I ⊆ K[x1, . . . , xn] be an ideal in a polynomial
ring. Show that



Exercises 31

IK[x1,...,xn] (VKn(I)) =
√
I.

(Solution on page 230)

1.10 (Order-reversing maps). This exercise puts Corollary 1.19 and its
proof in a more general framework. Let A′ and B′ be two partially ordered
sets. Let ϕ: A′ → B′ and ψ: B′ → A′ be maps satisfying the following
properties:

(1) For a1, a2 ∈ A′ with a1 ≤ a2 we have ϕ(a1) ≥ ϕ(a2);
(2) for b1, b2 ∈ B′ with b1 ≤ b2 we have ψ(b1) ≥ ψ(b2);
(3) for a ∈ A′ we have ψ(ϕ(a)) ≥ a;
(4) for b ∈ B′ we have ϕ(ψ(b)) ≥ b;

Set A := ψ(B′) and B := ϕ(B′), and show that the restriction

ϕ|A: A → B

is a bijection with inverse map ψ|B.
Remark: In the light of this exercise, all that is needed for the proof of Corol-
lary 1.9 is that all radical ideals in K[x1, . . . , xn] occur as vanishing ideals
of sets of points in Kn (which is a consequence of Theorem 1.17). Another
typical situation where this exercise applies is the correspondence between
subgroups and intermediate fields in Galois theory.
(Solution on page 230)

1.11 (Points of a variety and homomorphisms). Let K be a field
(which need not be algebraically closed) and X a K-variety. Construct a
bijection between X and the set

HomK (K[X],K) := {ϕ: K[X]→ K | ϕ is an algebra-homomorphism} .

Remark: In the language of affine schemes, an algebra-homomorphism
K[X] → K induces a morphism Spec(K) → Spec(K[X]). Such a morphism
is called a K-rational point of the affine scheme associated to X.
(Solution on page 231)





Chapter 2

Noetherian and Artinian Rings

In this chapter we develop the theory of Noetherian and Artinian rings. In
the first section, we will see that the Artin property, although in complete
formal analogy to the Noether property, implies the Noether property and
is, in fact, much more special (see Theorem 2.8). Both properties will also be
considered for modules. In the second section, we concentrate on the Noether
property. The most important results are Hilbert’s Basis Theorem 2.13 and
its consequences. Using the Noether property often yields elegant but non-
constructive proofs. The most famous example is Hilbert’s proof [27] that
rings of invariants of GLn and SLn are finitely generated, which for its non-
constructive nature drew sharp criticism from Gordan, the “king of invariant
theory” at the time, who exclaimed: “Das ist Theologie und nicht Mathe-
matik!”1.

2.1 The Noether and Artin Property for Rings and
Modules

Definition 2.1. Let R be a ring and M an R-module.

(a) M is called Noetherian if the submodules of M satisfy the ascend-
ing chain condition, i.e., for submodules M1,M2,M3, . . . ⊆ M with
Mi ⊆ Mi+1 for all positive integers i, there exists an integer n such
that Mi = Mn for all i ≥ n. In other words, every strictly ascending
chain of submodules is finite.

(b) R is called Noetherian if R is Noetherian as a module over itself. In
other words, R is Noetherian if the ideals of R satisfy the ascending chain
condition.

(c) M is called Artinian if the submodules of M satisfy the descending chain
condition, i.e., for submodules M1,M2,M3, . . . ⊆M with Mi+1 ⊆Mi for

1 “This is theology and not mathematics”
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34 2 Noetherian and Artinian Rings

all positive integers i, there exists an integer n such that Mi = Mn for
all i ≥ n.

(d) R is called Artinian if R is Artinian as a module over itself, i.e., if the
ideals of R satisfy the descending chain condition.

Example 2.2. (1) The ring Z of integers is Noetherian, since ascending chains
of ideals correspond to chains of integers a1, a2, . . . with ai+1 a divisor of
ai. So the well-ordering of the natural numbers yields the result.

(2) By the same argument, a polynomial ring K[x] over a field is Noetherian.
More trivially, every field is Noetherian.

(3) Let X be an infinite set and K a field (in fact, any non-zero ring will
do). The set R := KX of all functions from X to K forms a ring with
point-wise operations. For every subset Y ⊆ X, the set

IY := {f ∈ R | f vanishes on Y }

is an ideal of R. Since there are infinite strictly descending chains of
subsets of X, there are also infinite strictly ascending chains of ideals in
R. So R is not Noetherian.

(4) The rings Z and K[x] considered above are not Artinian.
(5) Every field and every finite ring or module is Artinian.
(6) The ring KX , as defined in (3), is Artinian if and only if X is a finite set.
(7) Let R := K[x] be a polynomial ring over a field. Then S := R/(x2) is

Artinian. S is also Artinian as an R-module. /

The ring from Example 2.2(3) is a rather pathological example of a non-
Noetherian ring. In particular, it is not an integral domain. The following
provides a less pathological counter example.
Example 2.3. Let S := K[x, y] be the polynomial ring in two indeterminates
over a field K. Consider the subalgebra

R := K + S · x = K[x, xy, xy2, xy3, . . .].

It is shown in Exercise 2.1 that R is not Noetherian. /

The following proposition shows that the Noether property and the Artin
property behave well with submodules and quotient modules.

Proposition 2.4 (Submodules and quotient modules). Let M be a module
over a ring R, and let N ⊆M be a submodule. Then the following statements
are equivalent.

(a) M is Noetherian.
(b) Both N and the quotient module M/N are Noetherian.

In particular, every quotient ring of a Noetherian ring is Noetherian.
All statements of this proposition hold with “Noetherian” replaced by “Ar-

tinian”.
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Proof. First assume that M is Noetherian. It follows directly from Defini-
tion 2.1 that N is Noetherian, too. To show that M/N is Noetherian, let
U1, U2, . . . ⊆M/N be an ascending chain of submodules. With ϕ: M →M/N
the canonical epimorphism, set Mi := ϕ−1(Ui). This yields an ascending
chain of submodules of M . By hypothesis, there exists an n with Mi = Mn

for i ≥ n. Since ϕ(Mi) = Ui, it follows that Ui = Un for i ≥ n. So we have
shown that (a) implies (b).

Now assume that (b) is satisfied. To show (a), let M1,M2, . . . ⊆ M be
an ascending chain of submodules. We obtain an ascending chain ϕ(M1),
ϕ(M2), . . . ⊆ M/N of submodules of M/N . Moreover, the intersections N ∩
Mi ⊆ N yield an ascending chain of submodules of N . By hypothesis, there
exists an n such that for i ≥ n we have ϕ(Mi) = ϕ(Mn) andN∩Mi = N∩Mn.
We claim that also Mi = Mn for all i ≥ n. Indeed, let m ∈ Mi. Then there
exists an m′ ∈Mn with ϕ(m) = ϕ(m′), so

m−m′ ∈ N ∩Mi = N ∩Mn ⊆Mn.

We conclude m = m′ + (m−m′) ∈Mn. So the equivalence of (a) and (b) is
proved.

To show the statement on quotient rings, observe that the ideals of a
quotient ring R/I are precisely the submodules of R/I viewed as an R-
module.

To get the proof for the case of Artinian modules, replace every occur-
rence of the word “ascending” in the above argument by “descending”, and
exchange “Mi” and “Mn” in the proof of Mi = Mn. ut

We need the following definition to push the theory further.

Definition 2.5 (Ideal product). Let R be a ring, I ⊆ R and ideal, and M
an R-module.

(a) The product of I and M is defined to be the abelian group generated by
all products a ·m of elements from I and elements from M . So

IM =
{ n∑
i=1

aimi

∣∣∣n ∈ N, ai ∈ I, and mi ∈M
}
.

Clearly IM ⊆M is a submodule.
(b) An interesting special case is the case where M = J is another ideal of R.

Then the product IJ is called the ideal product. Clearly the formation
of the ideal product is commutative and associative, and we have

IJ ⊆ I ∩ J and
√
IJ =

√
I ∩ J

(check this!).
(c) For n ∈ N0, In denotes the product of n copies of I, with I0 := R.

The following lemma gives a connection between ideal powers and radical
ideals.
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Lemma 2.6 (Ideal powers and radical ideals). Let R be a ring and I, J ⊆ R
ideals. If I is finitely generated, we have the equivalence

I ⊆
√
J ⇐⇒ there exists k ∈ N0 such that Ik ⊆ J.

Proof. We have I = (a1, . . . , an). Suppose that I ⊆
√
J . Then there exists

m > 0 with ami ∈ J for i = 1, . . . , n. Set k := n · (m−1)+1. We need to show
that the product of k arbitrary elements from I lies in J . So let x1, . . . , xk ∈ I
and write

xi =
n∑
j=1

ri,jaj with ri,j ∈ R.

When we multiply out the product x1 · · ·xk, we find that every summand has
some amj as a subproduct. Therefore x1 · · ·xk ∈ J . This shows that Ik ⊆ J .

The converse statement is clear (and does not require finite generation of
I). ut

Theorem 2.8, which we start proving now, gives a comparison between the
Noether property and the Artin property for rings. Readers who are mainly
interested in the Noether property can continue with reading Section 2.2.
Theorem 2.8 will not be used before Chapter 7.

Lemma 2.7. Let R be a ring and m1, . . . ,mn ∈ Specmax(R) maximal ideals
(which are not assumed to be distinct) such that for the ideal product we have

m1 · · ·mn = {0}.

Then R is Artinian if and only if it is Noetherian. Moreover,

Spec(R) = {m1, . . . ,mn} .

Proof. Setting
Ii := m1 · · ·mi,

we get a chain

{0} = In ⊆ In−1 ⊆ · · · ⊆ I2 ⊆ I1 ⊆ I0 := R

of ideals. Applying Proposition 2.4 repeatedly, we see that R is Noetherian
(Artinian) if and only if every quotient module Ii−1/Ii is Noetherian (Ar-
tinian). But mi · (Ii−1/Ii) = {0}, so Ii−1/Ii is a vector space over the field
Ki := R/mi, and a subset of Ii−1/Ii is an R-submodule if and only if it is
a Ki-subspace. So both the Noether and the Artin property for Ii−1/Ii are
equivalent to dimKi (Ii−1/Ii) <∞. This yields the claimed equivalence.

To prove the second claim, take P ∈ Spec(R). By hypothesis, m1 · · ·mn ⊆
P . From the primality of P and the definition of the ideal product, we con-
clude that there exists i with mi ⊆ P , so P = mi. ut
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Theorem 2.8 (Artinian and Noetherian rings). Let R be a ring. Then the
following statements are equivalent.

(a) R is Artinian.
(b) R is Noetherian and every prime ideal of R is maximal.

Using the concept of dimension as defined in Definition 5.1, the condi-
tion (b) in Theorem 2.8 can be rephrased as: “R is Noetherian and has
dimension 0 or -1” (where -1 occurs if and only if R is the zero ring). We
only prove the implication “(a) ⇒ (b)” here and postpone the proof of the
converse to the end of Chapter 3 (see page 52).

Proof of “ (a) ⇒ (b)”. Suppose that R is Artinian. The first claim is that R
has only finitely many maximal ideals. Assume the contrary. Then there exist
infinitely many pairwise distinct maximal ideals m1,m2,m3, . . . ∈ Specmax(R).
Setting Ii :=

⋂i
j=1 mj yields a descending chain of ideals, so by hypothesis

there exists n such that In+1 = In. This implies
⋂n
j=1 mj ⊆ mn+1, so there

exists j ≤ n with mj = mn+1, a contradiction. We conclude that there exist
finitely many maximal ideals m1, . . . ,mk. Setting

I := m1 · · ·mk,

we obtain a descending chain of ideals Ii, i ∈ N0, so there exists n ∈ N0 with

Ii = In =: J for i ≥ n. (2.1)

By way of contradiction, assume J 6= {0}. Then the set

M := {J ′ ⊆ R | J ′ is an ideal and J ′J 6= {0}}

is non-empty. There exists a minimal element Ĵ in M, since otherwise M
would contain an infinite, strictly descending chain of ideals. Pick an x ∈ Ĵ
with xJ 6= {0}. Then Ĵ = (x) by the minimality. Moreover, (2.1) implies that
J2 = J , so

(x)J · J = (x)J2 = (x)J 6= {0},

so (x)J = (x) again by the minimality of Ĵ . Therefore there exists y ∈ J
with xy = x. By the definition of J , y lies in every maximal ideal of R, and
so y − 1 lies in no maximal ideal. This means that y − 1 is invertible, and
(y − 1)x = 0 implies x = 0. This contradicts xJ 6= {0}. We conclude that
J = {0}. So we can apply Lemma 2.7 and get that R is Noetherian and that
every prime ideal is maximal. ut

Theorem 2.8 raises the question whether it is also true that every Ar-
tinian module over a ring is Noetherian. This is answered in the negative by
Exercise 2.2.
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2.2 Noetherian Rings and Modules

The following theorem gives an alternative definition of Noetherian modules.
There is no analogue for Artinian modules.

Theorem 2.9 (Alternative definition of Noetherian modules). Let R be a
ring and M an R-module. The following statements are equivalent.

(a) M is Noetherian.
(b) For every subset S ⊆M there exist finitely many elements m1, . . . ,mk ∈

S such that
(S)R = (m1, . . . ,mk)R.

(c) Every submodule of M is finitely generated.

In particular, R is Noetherian if and only if every ideal of R is finitely gen-
erated, and then every generating set of an ideal contains a finite generating
subset.

Proof. Assume that M is Noetherian, but there exists S ⊆M which does not
satisfy (b). We define finite subsets Si ⊆ S (i = 1, 2, . . .) recursively, starting
with S1 = ∅. Suppose Si has been defined. Since S does not satisfy (b), there
exists mi+1 ∈ S \ (Si)R. Set

Si+1 := Si ∪ {mi+1}.

(In fact, the axiom of choice is needed to make this definition precise.) By
construction we have (Si)R $ (Si+1)R for all i, contradicting (a). So (a)
implies (b), and it is clear that (b) implies (c).

So suppose that (c) holds, and let M1,M2, . . . ⊆M be an ascending chain
of submodules. Let N := ∪i∈NMi be the union. It is easy to check that N
is a submodule, so by (c) we have N = (m1, . . . ,mk)R with mj ∈ N . Each
mj lies in some Mij . Let n := max{i1, . . . , ik}. Then all mj lie in Mn, so for
i ≥ n we have

Mi ⊆ N = (m1, . . . ,mk)R ⊆Mn ⊆Mi,

which implies equality. Therefore (a) holds. ut

Theorem 2.9 implies that every Noetherian module over a ring is finitely
generated. This raises the question whether the converse is true, too. But
this is clearly false in general: If R is a non-Noetherian ring, then R is not
Noetherian as a module over itself, but it is finitely generated (with 1 the
only generator). The following theorem shows that if the converse does not
go wrong in this very simple way, then in fact it holds.

Theorem 2.10 (Noetherian modules and finite generation). Let R be a
Noetherian ring and M an R-module. Then the following statements are
equivalent.

(a) M is Noetherian.
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(b) M is finitely generated.

In particular, every submodule of a finitely generated R-module is also finitely
generated.

Proof. We only need to show that (b) implies (a), since the converse impli-
cation is a consequence of Theorem 2.9. So let M = (m1, . . . ,mk)R. We use
induction on k. There is nothing to show for k = 0, so assume k > 0. Consider
the submodule

N := (m1, . . . ,mk−1)R ⊆M.

By induction, N is Noetherian. The homomorphism

ϕ: R→M/N, a 7→ amk +N

is surjective, so M/N ∼= R/ ker(ϕ). By hypothesis and by Proposition 2.4,
R/ ker(ϕ) is Noetherian, so M/N is Noetherian, too. Applying Proposi-
tion 2.4 again shows that M is Noetherian. ut

The following theorem is arguably the most important result on Noethe-
rian rings.

Theorem 2.11 (Polynomial rings over Noetherian rings). Let R be a Noe-
therian ring. Then the polynomial ring R[x] is Noetherian, too.

Proof. Let I ⊆ R[x] be an ideal. By Theorem 2.9, we need to show that I is
finitely generated. For a non-zero integer i, set

Ji :=
{
ai ∈ R

∣∣∣there exist a0, . . . , ai−1 ∈ R such that
i∑

j=0

ajx
j ∈ I

}
.

Clearly Ji ⊆ R is an ideal. Let ai ∈ Ji with f =
∑i
j=0 ajx

j ∈ I. Then
I 3 xf =

∑i
j=0 ajx

j+1, so ai ∈ Ji+1. It follows that the Ji form an ascending
chain of ideals of R. By hypothesis, there exists an n such that for i ≥ n we
have Ji = Jn. Again by hypothesis, every Ji is finitely generated, so

Ji = (ai,1, . . . , ai,mi
)R for i ≤ n. (2.2)

and
Ji = Jn = (an,1, . . . , an,mn)R for i > n. (2.3)

By the definition of Ji, there exist polynomials fi,j ∈ I of degree at most i
whose i-th coefficient is ai,j . Set

I ′ :=
(
fi,j

∣∣∣i = 0, . . . , n, j = 1, . . . ,mi

)
R[x]
⊆ I.

We claim that I = I ′. To prove the claim, consider a polynomial f =∑d
i=0 bix

i ∈ I with deg(f) = d. We use induction on d. We first consider
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the case d ≤ n. Since bd ∈ Jd, we can use (2.2) and write bd =
∑md

j=1 rjad,j
with rj ∈ R. Then

f̃ := f −
md∑
j=1

rjfd,j

lies in I and has degree less than d, so by induction f̃ ∈ I ′. This implies f ∈ I ′.
Now assume d > n. Then we can use (2.3) and write bd =

∑mn

j=1 rjan,j with
rj ∈ R. So

f̃ := f −
mn∑
j=1

rjx
d−nfn,j

lies in I and has degree less than d, so by induction f̃ ∈ I ′. Again we conclude
f ∈ I ′. So indeed I = I ′ is a finitely generated ideal. ut

The corresponding statement for formal power series rings is contained
in Exercise 2.4. By applying Theorem 2.11 repeatedly and using the second
statement of Proposition 2.4, we obtain

Corollary 2.12 (Finitely generated algebras). Every finitely generated al-
gebra over a Noetherian ring is Noetherian. In particular, every affine algebra
is Noetherian.

A special case is the celebrated Basis Theorem of Hilbert.

Corollary 2.13 (Hilbert’s Basis Theorem). Let K be a field. Then
K[x1, . . . , xn] is Noetherian. In particular, every ideal in K[x1, . . . , xn] is
finitely generated.

The name Basis Theorem comes from the fact that generating sets of
ideals are sometimes called bases. One consequence is that every affine variety
X ⊆ Kn is the solution set of a finite system of polynomial equations: X =
V(f1, . . . , fm).

Exercises to Chapter 2

2.1 (A non-Noetherian ring providing many counter examples).
Consider the polynomial ring S = K[x, y] and the subalgebra R := K +S · x
given in Example 2.3. Show that R is not Noetherian. Conclude that R is
not finitely generated as an algebra. Explain why this provides an example
for the following caveats:

• Subrings of Noetherian rings need not be Noetherian.
• Subalgebras of finitely generated algebras need not be finitely generated.

In Exercise 7.4 we will also see that Krull’s Principal Ideal Theorem 7.4 fails
for R. In Exercise 2.6 we explore whether Example 2.3 is, in some sense, the
smallest of its kind. (Solution on page 231)



Exercises 41

2.2 (An Artinian module that is not Noetherian). Let p ∈ N be a
prime number and consider the Z-modules

Zp :=
{
a/pn ∈ Q | a, n ∈ Z

}
⊂ Q and M := Zp/Z.

Show that M is Artinian but not Noetherian. (Solution on page 232)

2.3 (Modules over an Artinian ring). Show that a finitely generated
module M over an Artinian ring R is Artinian. (Solution on page 232)

2.4 (The Noether property for formal power series rings). Let R be
a Noetherian ring and

R[[x]] :=
{ ∞∑
i=0

aix
i | ai ∈ R

}
the formal power series ring over R. Show that R[[x]] is Noetherian. (Solution
on page 232)

2.5 (Separating subsets). Let K be a field and A ⊆ K[x1, . . . , xn] a sub-
algebra of a polynomials algebra (which, as we have seen in Example 2.3,
need not be finitely generated). Every polynomial from A defines a func-
tion Kn → K. A subset S ⊆ A is called (A-)separating if for all points
P1, P2 ∈ Kn we have:

If there exists f ∈ A with f(P1) 6= f(P2), then there exists f ∈ S with f(P1) 6=
f(P2).

(Loosely speaking, this means that S has the same capabilities of separating
points as A.)

(a) Show that if S ⊆ A generates A as an algebra, then S is separating. (In
other words, “separating” is a weaker condition than “generating”. It is
seen in (b) and (c) that it is in fact substantially weaker.)

*(b) Show that A has a finite separating subset.
(c) Exhibit a finite R-separating subset of the algebra R ⊂ K[x, y] from

Example 2.3.

(Solution on page 234)

*2.6 (Subalgebras of K[x]). Let K be a field and K[x] a polynomial ring
in one indeterminate. Is every subalgebra of K[x] finitely generated? Give a
proof or a counter example. (Solution on page 234)

2.7 (Graded rings). A ring R is called graded if it has a direct sum de-
composition

R = R0 ⊕R1 ⊕R2 ⊕ · · · =
⊕
d∈N0

Rd
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(as an Abelian group) such that for all a ∈ Ri and b ∈ Rj one has ab ∈
Ri+j . Then an element from Rd is called homogeneous of degree d. A
standard example is R = K[x1, . . . , xn] with Rd the space of all homogeneous
polynomials of degree d (including the zero-polynomial). Let R be graded and
set

I =
⊕
d∈N>0

Rd,

which obviously is an ideal. I is sometimes called the irrelevant ideal. Show
the equivalence of the following statements.

(a) R is Noetherian.
(b) R0 is Noetherian and I is finitely generated.
(c) R0 is Noetherian and R is finitely generated as an R0-algebra.

Remark: By Corollary 2.12, a finitely generated algebra over a Noetherian
rings is Noetherian. However, Noetherian algebras are not always finitely
generated. So graded rings constitute a special case where this converse holds.
(Solution on page 235)

2.8 (The Noether property and subrings). In Exercise 2.1 we have seen
that in general the Noether property does not go down to subrings. In this
exercise we look at a situation where it does.

(a) Let S be a Noetherian ring and R ⊆ S a subring such that there exists a
homomorphism ϕ: S → R of R-modules with ϕ|

R
= idR. Show that R is

Noetherian, too.
(b) Show that for a ring R, the following three statements are equivalent: (i)

R is Noetherian; (ii) R[x] is Noetherian; (iii) R[[x]] is Noetherian.

(Solution on page 235)

2.9 (Right or wrong?). Decide if the following statements are true or false.
Give reasons for your answers.

(a) Every finitely generated module over an Artinian ring is Artinian.
(b) Every Artinian module is finitely generated.
(c) Every ring has a module that is both Noetherian and Artinian.
(d) The set of all ideals of a ring, together with the ideal sum and ideal

product, forms a commutative semiring (i.e., we have an additive and a
multiplicative commutative monoid, and a distributive law).

(Solution on page 236)

2.10 (The ring of analytic functions). Let R be the ring of all analytic
functions R → R, i.e., all functions which are given by power series that
converge on all of R. Show that R is not Noetherian.

Can your argument be used for showing that other classes of functions
R→ R form non-Noetherian rings, too? (Solution on page 236)



Chapter 3

The Zariski Topology

In this chapter we will put a topology on Kn and on affine varieties. This
topology is quite weak, but surprisingly useful. We will define an analogous
topology on Spec(R). In both cases, there are correspondences between closed
sets and radical ideals. As a consequence of some general topological con-
siderations, affine varieties can be decomposed into irreducible components.
Another consequence is that a Noetherian ring only contains finitely many
minimal prime ideals.

Readers who are unfamiliar with the language of topology can find all
that is needed for this book in any textbook on topology (for example
Bourbaki [6]), usually on the first few pages.

3.1 Affine Varieties

In this section we define the Zariski topology on Kn and on its subsets. We
first need a proposition.

Proposition 3.1 (Unions and intersections of affine varieties).
Let K[x1, . . . , xn] be a polynomial ring over a field K.

(a) Let I, J ⊆ K[x1, . . . , xn] be ideals. Then

V(I) ∪ V(J) = V(I ∩ J).

(b) Let M be a non-empty set of subsets of K[x1, . . . , xn]. Then⋂
S∈M

V(S) = V
( ⋃
S∈M

S
)
.

Proof. We first prove (a). It is clear that V(I) ∪ V(J) ⊆ V(I ∩ J). To prove
the reverse inclusion, let P ∈ V(I ∩ J). Assume P /∈ V(I), so there exists
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f ∈ I with f(P ) 6= 0. We need to show that P ∈ V(J), so let g ∈ J . Then
fg ∈ I ∩ J , so f(P )g(P ) = 0. But this implies g(P ) = 0.

Part (b) is clear. ut

Proposition 3.1 tells us that finite unions and arbitrary intersections of
affine varieties in Kn are again affine varieties. Since Kn and ∅ are also affine
varieties, this suggests that we can define a topology by using the affine
varieties as closed sets. This is exactly what we will do.

Definition 3.2. Let K be a field and n a positive integer. Then the Zariski
topology is defined on Kn by saying that a subset X ⊆ Kn is (Zariski-)
closed if and only if X is an affine variety. On a subset Y ⊆ Kn, we define
the Zariski topology to be the subset topology induced by the Zariski topology
on Kn, i.e., the closed subsets in Y are the intersections of closed subsets in
Kn with Y .

We make a few remarks.

Remark 3.3. (a) By definition, the closed subsets ofKn have the form V(S)
with S ⊆ K[x1, . . . , xn] a subset. By Lemma 1.18, we may substitute S
by I(X), i.e., we may assume S to be an ideal, and in fact even a radical
ideal.

(b) For a subset X ⊆ Kn, the topological closure (also called the Zariski-
closure) is

X = V (I(X)) .

(c) If Y ⊆ Kn is an affine variety, then by definition the Zariski topology on
Y has the subvarieties of Y as closed sets.

(d) On Rn and Cn, the Zariski topology is coarser than the usual Euclidean
topology.

(e) Every finite subset of Kn is Zariski-closed. In other words, Kn is a T1

space. This also applies to every subset Y ⊆ Kn.
(f) On the “affine line” K1, the closed subsets are precisely the finite subsets,

and all of K1. So the Zariski topology is the coarsest topology for which
singletons (i.e., sets with one element) are closed. This illustrates how
much coarser the Zariski topology is compared to the usual topology on
R or C.

(g) All polynomials f ∈ K[x1, . . . , xn], viewed as functions Kn → K, are
continuous w.r.t. the Zariski topology. In fact, the Zariski topology is
the coarsest topology such that all polynomials are continuous (assuming
that {0} ⊂ K1 is closed).
On the other hand, there exist continuous functions Kn → K which are
not polynomials, e.g. the function C→ C, x 7→ x (complex conjugation).

(h) The Zariski-open subsets of Kn are unions of solution sets of polynomial
inequalities.

(i) Recall that a Hausdorff space (also called a T2 space) is a topological
space in which for any two distinct points P1 6= P2 there exist disjoint
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open sets U1 and U2 with Pi ∈ Ui. If K is an infinite field, then Kn

with the Zariski topology is never Hausdorff. In fact, it is not hard to see
that two non-empty, open subsets U1, U2 ⊆ Kn always intersect. This is
extended in Exercise 3.7, where it is shown that no infinite subset of Kn

is Hausdorff. /

Further examples of continuous maps are morphisms of varieties, which
we deal with now.

Definition 3.4. Let K be a field and let X ⊆ Km and Y ⊆ Kn be affine
varieties. A map f : X → Y is called a morphism (of varieties) if there
exist polynomials f1, . . . , fn ∈ K[x1, . . . , xm] such that f is given by

f(P ) = (f1(P ), . . . , fn(P )) for P ∈ X.

We write Mor(X,Y ) for the set of all morphisms X → Y . Since composi-
tions of morphisms are obviously again morphisms, this definition makes the
collection of affine K-varieties into a category.

A morphism f : X → Y is called an isomorphism if there exists a mor-
phism g: Y → X with f ◦ g = idY and g ◦ f = idX . In particular, every
isomorphism is a homeomorphism (i.e., a topological isomorphism).

In particular, the regular functions on X are precisely the morphisms
X → K1 (see Remark 1.21 (a)).

Let f : X → Y be a morphism given by polynomials f1, . . . , fn. Then we
have a homomorphism of K-algebras ϕ: K[Y ] → K[X] given as follows: If
K[X] = K[x1, . . . , xm]/I(X) and K[Y ] = K[y1, . . . , yn]/I(Y ), then

ϕ (yi + I(Y )) := fi + I(X).

It is routine to check that this is well-defined. The homomorphism ϕ is said
to be induced from f . Assigning coordinate rings to affine varieties and
assigning induced homomorphisms to morphisms provides a contravariant
functor from the category of affine K-varieties to the category of affine K-
algebras.

We have a reverse process. Indeed, if ϕ: K[Y ] → K[X] is an algebra-
homomorphism, then we have polynomials f1, . . . , fn ∈ K[x1, . . . , xm] with
ϕ (yi + I(Y )) = fi + I(X), and it is easy to check that these fi define a
morphism f : X → Y , which does not depend on the choice of the fi. Again,
it is routine to check that the assignment of a homomorphism K[Y ]→ K[X]
to a morphism X → Y and vice versa provides a pair of inverse bijections
Mor(X,Y )↔ HomK(K[Y ],K[X]).

Finally, we remark that a bijective morphism X → Y is not necessarily
an isomorphism. For example, if X ⊆ K2 is the union of the hyperbola{
(ξ1, ξ2) ∈ K2 | ξ1ξ2 = 1

}
and the singleton {(0, 1)}, and f : X → K1 is the

first projection, then f is a bijective morphism, but not an isomorphism. This
is shown in Figure 3.1.
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Figure 3.1. A bijective morphism which is not an isomorphism

3.2 Spectra

In Theorem 1.23 we have seen a one-to-one correspondence between maximal
ideals of K[X] and points of X. This suggests that prime ideals can be seen
as some sort of “generalized points”. Following this idea, we will define a
topology on Spec(R) for any ring R.

Definition 3.5. Let R be a ring. For a subset S ⊆ R we write

VSpec(R)(S) := {P ∈ Spec(R) | S ⊆ P} .

For a subset X ⊆ Spec(R) we write

IR(X) :=
⋂
P∈X

P ⊆ R if X 6= ∅, and IR(∅) := R.

The Zariski topology on Spec(R) is defined by saying that all sets of the
form VSpec(R)(S) with S ⊆ R are closed. By (a) and (b) of the following
Proposition 3.6, and since ∅ = VSpec(R)({1}) and Spec(R) = VSpec(R)(∅), this
indeed defines a topology.

A subset of Spec(R) is equipped with the subspace topology induced from
the Zariski topology on Spec(R).

The following proposition contains all the important general facts about
the maps VSpec(R) and IR defined above. In particular, part (e) is an analogy
to the ideal-variety correspondence in Corollary 1.19.

Proposition 3.6 (Properties of VSpec(R) and IR). Let R be a ring.

(a) Let S, T ⊆ R be subsets. Then

VSpec(R)(S) ∪ VSpec(R)(T ) = VSpec(R)

(
(S)R ∩ (T )R

)
.

(b) Let M be a non-empty set of subsets of R. Then
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S∈M

VSpec(R)(S) = VSpec(R)

( ⋃
S∈M

S
)
.

(c) Let X ⊆ Spec(R) be a subset. Then IR(X) is a radical ideal of R.
(d) Let I ⊆ R be an ideal. Then

IR
(
VSpec(R)(I)

)
=
√
I.

(e) We have a pair of inverse bijections between the set of radical ideals of R
and the set of closed subsets of Spec(R), given by VSpec(R) and IR. Both
bijections are inclusion-reversing.

Proof. (a) If P ∈ VSpec(R)(S), then S ⊆ P , so also (S)R ⊆ P and (S)R ∩
(T )R ⊆ P . The same follows if P ∈ VSpec(R)(T ), so in both cases P ∈
VSpec(R)

(
(S)R ∩ (T )R

)
. Conversely, let P ∈ VSpec(R)

(
(S)R ∩ (T )R

)
and

assume S 6⊆ P . So there exists f ∈ S \ P . Let g ∈ T . Then fg ∈
(S)R ∩ (T )R, so fg ∈ P . Since P is a prime ideal, g ∈ P follows, so
P ∈ VSpec(R)(T ).

(b) is clear.
(c) This follows since prime ideals are always radical ideals, and intersections

of radical ideals are again radical ideals.
(d) is a restatement of Corollary 1.12.
(e) In the light of (c) and (d), we only need to show VSpec(R) (IR(X)) = X

for X ⊆ Spec(R) a closed subset. We have X = VSpec(R)(S) with S ⊆ R,
so S ⊆ IR(X). Since the map VSpec(R) is inclusion-reversing, we obtain

VSpec(R) (IR(X)) ⊆ VSpec(R)(S) = X ⊆ VSpec(R) (IR(X)) .

This completes the proof. ut

In Theorem 1.23 we have exhibited a bijection between points from an
affine variety and maximal ideals of its coordinate ring. In Exercise 3.3 it is
shown that this map is actually a homeomorphism. This emphasizes our point
that prime ideals can be seen as generalized points. It may also be interesting
to note that a ring R is a Jacobson ring if and only if for every closed subset
Y ⊆ Spec(R) we have that Specmax(R) ∩ Y is dense in Y . (Recall that a
subset in a topological space is called dense if its closure is the whole space.)
In fact, this is nothing but a translation of the Jacobson property.

To every ring R we have assigned a topological space Spec(R). We will
make this assignment into a contravariant functor as follows. Let R and S
be rings and let ϕ: R→ S be a homomorphism. For every P ∈ Spec(S), the
preimage ϕ−1(P ) is obviously a prime ideal of R, so we obtain a map

ϕ∗: Spec(S)→ Spec(R), P 7→ ϕ−1(P ).
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We will often say that ϕ∗ is induced from ϕ. For I ⊆ R a subset, we have
(ϕ∗)−1

(
VSpec(R)(I)

)
= VSpec(S) (ϕ(I)), so ϕ∗ is continuous. Maps between

spectra of rings that are induced from ring-homomorphisms are called mor-
phisms.

Going from ϕ to ϕ∗ is compatible with, and a generalization of the process
of obtaining a morphism X → Y of affine varieties from a homomorphism
K[Y ] → K[X] described on page 45. However, there is no return path from
ϕ∗ to ϕ. In fact, different ring homomorphisms can yield the same induced
map even if the rings are reduced. Consider, for example, complex conjugation
C→ C on one hand, and the identical map C→ C on the other. This behavior
is a little unsatisfactory, and it is due to the fact that we have been too naive
when we assigned ϕ∗ to ϕ. In algebraic geometry, a morphism between two
spectra (more generally, between two ringed spaces) consists of a continuous
map between the spectra as topological spaces, together with a morphism of
sheaves (see Hartshorne [26, p. 72]). This richer concept of a morphism does
allow going back and forth between ring-homomorphisms and morphisms of
spectra.

3.3 Noetherian and Irreducible Spaces

Motivated by the correspondence between ideals and Zariski-closed subsets,
we can transport the definition of the Noether property to topological spaces
in general.

Definition 3.7. Let X be a topological space.

(a) X is called Noetherian if the closed subsets of X satisfy the descending
chain condition, i.e., for closed subsets Y1, Y2, Y3, . . . ⊆ X with Yi+1 ⊆ Yi
for all positive integers i, there exists an integer n such that Yi = Yn
for all i ≥ n. An equivalent condition is that the open subsets satisfy the
ascending chain condition.

(b) X is called irreducible if X is not the union of two proper, closed sub-
sets, and X 6= ∅. An equivalent condition is that any two non-empty,
open subsets of X have a non-empty intersection, and X 6= ∅.

Example 3.8. (1) R and C with the usual Euclidean topology are neither
Noetherian nor irreducible.

(2) Every finite space is Noetherian.
(3) Every singleton is irreducible.
(4) If K is an infinite field, then X = K1 with the Zariski topology is ir-

reducible, since the closed subsets are X and its finite subsets. More
generally, we will see that Kn is irreducible. (This is a consequence of
Theorem 3.10). /

The topological spaces that we normally deal with in analysis are almost
never Noetherian or irreducible. For example, a Hausdorff space can only be
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irreducible if it is a singleton (this is obvious), and it can only be Noetherian
if it is finite (see Exercise 3.7). However, the following two theorems show
that the situation is much better when we consider spaces with the Zariski
topology.

Theorem 3.9 (Noether property of the Zariski topology).

(a) Let K be a field and X ⊆ Kn a set of points, equipped with the Zariski
topology. Then X is Noetherian.

(b) Let R be a Noetherian ring and X ⊆ Spec(R) be a set of prime ideals,
equipped with the Zariski topology. Then X is Noetherian.

Proof. First observe that ifX is any Noetherian topological space and Y ⊆ X
is a subset equipped with the subset topology, then Y is also Noetherian. So
we may assume X = Kn in part (a), and X = Spec(R) in part (b). To
prove (a), let Y1, Y2, Y3, . . . ⊆ Kn be a descending chain of closed subsets.
Then Ii := IK[x1,...,xn](Yi) yields an ascending chain of ideals, so by Hilbert’s
Basis Theorem 2.13, there exists n with Ii = In for i ≥ n. By Lemma 1.18,
Yi = VKn(Ii), so Yi = Yn for i ≥ n.

Part (b) follows directly from Proposition 3.6(e). ut

In particular, Spec(R) is a Noetherian space if R is a Noetherian ring.
Exercise 3.5 deals with the question whether the converse also holds.

Theorem 3.10 (Irreducible subsets of Kn and Spec(R)).

(a) Let K be a field and X ⊆ Kn a set of points, equipped with the Zariski
topology. Then X is irreducible if and only if IK[x1,...,xn](X) is a prime
ideal.

(b) Let R be a ring and X ⊆ Spec(R) be a set of prime ideals, equipped
with the Zariski topology. Then X is irreducible if and only if IR(X) is
a prime ideal.

Proof. (a) First assume that X is irreducible. Then I := IK[x1,...,xn](X) $
K[x1, . . . , xn], since X 6= ∅. To show that I is a prime ideal, let f1, f2 ∈
K[x1, . . . , xn] with f1f2 ∈ I. Then

X = (X ∩ VKn(f1)) ∪ (X ∩ VKn(f2)) ,

so by the irreducibility of X there exists i ∈ {1, 2} with X ⊆ VKn(fi).
This implies fi ∈ I. So indeed I is a prime ideal.
Conversely, assume that I is a prime ideal. Then X 6= ∅, since
IK[x1,...,xn](∅) = K[x1, . . . , xn]. To show that X is irreducible, let X =
X1∪X2 withXi closed inX, soXi = X∩VKn(Ii) with Ii ⊆ K[x1, . . . , xn]
ideals. Then

X ⊆ VKn(I1) ∪ VKn(I2) = VKn(I1 ∩ I2),

where we used Proposition 3.1(a) for the equality. This implies
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I1 ∩ I2 ⊆ IK[x1,...,xn] (VKn(I1 ∩ I2)) ⊆ IK[x1,...,xn](X) = I.

Since I is a prime ideal, there exists i with Ii ⊆ I, so

X ⊆ VKn(I) ⊆ VKn(Ii).

This implies Xi = X. Therefore X is irreducible.
(b) The proof of this part is obtained from the proof of part (a) by changing

K[x1, . . . , xn] to R, Kn to Spec(R), and “Proposition 3.1(a)” to “Propo-
sition 3.6(a)”. ut

The following theorem allows us to view irreducible spaces as the “atoms”
of a Noetherian space.

Theorem 3.11 (Decomposition into irreducibles). Let X be a Noetherian
topological space.

(a) There exist a non-negative integer n and closed, irreducible subsets
Z1, . . . , Zn ⊆ X such that

X = Z1 ∪ · · · ∪ Zn and Zi 6⊆ Zj for i 6= j. (3.1)

(b) If Z1, . . . , Zn ⊆ X are closed, irreducible subsets satisfying (3.1), then
every irreducible subset Z ⊆ X is contained in some Zi. (Observe that
we do not assume Z to be closed.)

(c) If Z1, . . . , Zn ⊆ X are closed, irreducible subsets satisfying (3.1), then
they are precisely the maximal irreducible subsets of X. In particular, the
Zi are uniquely determined up to order.

Proof. First observe that every non-empty set of closed subsets of X has a
minimal element, since otherwise it would contain an infinite strictly descend-
ing chain. Assume that there exists a non-empty, closed subset Y ⊆ X which
is not a finite union of closed, irreducible subsets. Then we may assume Y to
be minimal with this property. Y itself is not irreducible, so Y = Y1∪Y2 with
Y1, Y2 $ Y closed subsets. By the minimality of Y , the Yi are finite unions of
closed irreducible subsets, so the same is true for Y . This is a contradiction.
Hence in particular

X = Y1 ∪ · · · ∪ Ym
with Yi ⊆ X closed and irreducible (where m = 0 if X = ∅). We may assume
the Yi to be pairwise distinct. By deleting those Yi for which there exists a
j 6= i with Yi ⊆ Yj , we obtain a decomposition as in (3.1).

Now assume that (3.1) is satisfied, and let Z ⊆ X be an irreducible subset.
Then

Z = (Z ∩ Z1) ∪ · · · ∪ (Z ∩ Zn),

so Z = Z∩Zi for some i, which implies Z ⊆ Zi. This shows (b). Moreover, if Z
is maximal among the irreducible subsets of X, then Z = Zi. So all maximal
irreducible subsets of X occur among the Zi. To complete the proof of (c),
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we need to show that every Zi is maximal among the irreducible subsets.
Indeed, if Zi ⊆ Z with Z ⊆ X irreducible, then by (b) there exists j with
Z ⊆ Zj , so Zi ⊆ Z ⊆ Zj , which by (3.1) implies i = j and Z = Zi. ut

Remark. As we see from the proof, it is only for part (a) of the theorem
that we need to assume that X is Noetherian. So if X is not Noetherian but
a decomposition as in (a) does exist, then (b) and (c) hold. /

Theorem 3.11 has statements on existence and uniqueness, which justifies
the following definition.

Definition 3.12. Let X be a Noetherian topological space. Then the Zi from
Theorem 3.11 are called the irreducible components of X.

Example 3.13. Let K be an algebraically closed field and g ∈ K[x1, . . . , xn]
a non-zero polynomial. Let p1, . . . , pr be the distinct prime factors of g. Then

VKn(g) =
r⋃
i=1

VKn(pi).

The (pi) ⊆ K[x1, . . . , xn] are prime ideals, so by the Nullstellensatz 1.17,
IK[x1,...,xn] (VKn(pi)) = (pi). By Theorem 3.10(a), the VKn(pi) are the irre-
ducible components of the hypersurface VKn(g). /

We make the obvious convention of calling a prime ideal P ∈ Spec(R)
minimal if for all Q ∈ Spec(R) the inclusion Q ⊆ P implies Q = P . So
an integral domain has precisely one minimal prime ideal, namely {0}. By
Proposition 3.6(e) and by Theorem 3.10(b), the minimal prime ideals corre-
spond to the maximal closed, irreducible subsets of X := Spec(R), i.e., to
the irreducible components of X (if X is Noetherian).

Corollary 3.14 (Minimal prime ideals). Let R be a Noetherian ring.

(a) There exist only finitely many minimal prime ideals P1, . . . , Pn of R.
(b) Every prime ideal of R contains at least one of the Pi.
(c) We have

nil(R) =
n⋂
i=1

Pi.

(d) Let I ⊆ R be an ideal. Then the set VSpec(R)(I) has finitely many minimal
elements Q1, . . . , Qr, and we have

√
I =

r⋂
i=1

Qi.

Proof. By Proposition 3.6(e) and by Theorem 3.10(b), the (maximal) closed,
irreducible subsets of X := Spec(R) correspond to (minimal) prime ideals of
R. So for (a) and (b), we need to show that X has only finitely many max-
imal closed, irreducible subsets, and that every closed, irreducible subset is
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contained in a maximal one. By Theorem 3.9(b), X is Noetherian, so by The-
orem 3.11(c), X has finitely many maximal irreducible subsets Z1, . . . , Zn,
which are all closed. By Theorem 3.11(b), every closed, irreducible subset is
contained in a Zi.

Part (c) follows from (b) and Corollary 1.12, and part (d) follows from ap-
plying (a) and (c) to R/I and using the correspondence given by Lemma 1.22.

ut

Let us remark here that part (b) of Corollary 3.14 generalizes to non-
Noetherian rings: It us always true that a prime ideal contains a minimal
prime ideal (see Exercise 3.6).

Part (d) of Corollary 3.14 is sometimes expressed by saying that there are
only finitely many prime ideals which are minimal over I.

All parts of Corollary 3.14 will be applied in many places throughout this
book. As a first application, we complete the proof of Theorem 2.8 from
page 36. The implication “(a) ⇒ (b)” of that theorem was already proved in
Chapter 2.

Proof of the implication “ (b) ⇒ (a)” in Theorem 2.8. We assume that R is
Noetherian and Spec(R) = Specmax(R), and we need to show that R is
Artinian. By Corollary 3.14(c), there exist finitely many prime ideals whose
intersection is the nilradical. So

nil(R) =
n⋂
i=1

mi with mi ∈ Specmax(R).

This implies I := m1 · · ·mn ⊆ nil(R) =
√
{0}, so by Lemma 2.6 there exists k

with Ik = {0}. Therefore we can apply Lemma 2.7 and conclude that R is
Artinian. ut

Exercises to Chapter 3

3.1 (Properties of maps). Let X = {(ξ1, ξ2) ∈ C2 | ξ1ξ2 = 1}. Which of
the following maps ϕi: X → X are morphisms, isomorphisms, or Zariski-
continuous?

(a) ϕ1(ξ1, ξ2) = (ξ−1
1 , ξ−1

2 ).
(b) ϕ2(ξ1, ξ2) = (ξ21 , ξ

2
2).

(c) ϕ3(ξ1, ξ2) = (ξ1, ξ2) (complex conjugation).

(Solution on page 237)

3.2 (Separating sets by polynomials). Let K be an algebraically closed
field and let X,Y ⊆ Kn be two subsets. Show that the following statements
are equivalent.
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(a) There exists a polynomial f ∈ K[x1, . . . , xn] such that f(x) = 0 for all
x ∈ X, and f(y) = 1 for all y ∈ Y .

(b) The Zariski-closures of X and Y do not meet: X ∩ Y = ∅.

(Solution on page 237)

3.3 (A homeomorphism). Let K be an algebraically closed field and X
an affine variety. Show that the bijection Φ: X → Specmax (K[X]) from The-
orem 1.23 is a homeomorphism. (Here Specmax (K[X]) is equipped with the
subset topology induced from the Zariski topology on Spec (K[X]).) (Solu-
tion on page 237)

3.4 (Another homeomorphism). Let R be a ring and I ⊆ R an ideal.
Lemma 1.22 gives a bijection VSpec(R)(I) → Spec(R/I). Show that this bi-
jection is actually a homeomorphism. (Here VSpec(R)(I) is equipped with the
subset topology induced from the Zariski topology on Spec(R).) (Solution
on page 238)

*3.5 (A converse of Theorem 3.9?). Let R be a ring. If Spec(R) is a
Noetherian space, does this imply that R is a Noetherian ring? Give a proof
or a counter example. (Solution on page 238)

The following exercise is due to Martin Kohls.

3.6 (Minimal prime ideals). Let R be a (not necessarily Noetherian) ring
and Q ∈ Spec(R) a prime ideal. Show that there exists a minimal prime ideal
P ∈ Spec(R) with P ⊆ Q. In particular, if R 6= {0}, there exist minimal
prime ideals in R.
Hint: Use Zorn’s lemma with an unusual ordering. (Solution on page 238)

3.7 (Hausdorff spaces). Let X be a Noetherian topological space. Show
that the following two statements are equivalent.

(a) X is a Hausdorff space.
(b) X is finite and has the discrete topology.

In particular, no infinite subset Y ⊆ Kn with the Zariski topology is Haus-
dorff. (Solution on page 239)

3.8 (Quasi-compact spaces). Recall that a topological space X is called
quasi-compact if for every set M of open subsets with X =

⋃
U∈M U , there

exist U1, . . . , Un ∈M with X =
⋃n
i=1 Ui.

(a) Show that a topological space X is Noetherian if and only if every subset
of X is quasi-compact.

(b) Let R be a ring and X = Spec(R). Then X is quasi-compact (even if it
is not Noetherian).

(Solution on page 239)
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3.9 (Products of irreducible varieties). Let X ⊆ Km and Y ⊆ Kn be
two irreducible affine varieties over a field. Show that the product variety
X × Y ⊆ Km+n is also irreducible.
Hint: This may be done as follows: For X × Y = Z1 ∪ Z2 with Zi closed,
consider the sets Xi := {x ∈ X | {x} × Y ⊆ Zi}. Show that X = X1 ∪ X2

and that the Xi are closed. (Solution on page 240)

3.10 (Diagonalizable matrices form a dense subset). Let K be an al-
gebraically closed field, and let D ⊂ Kn×n be the set of all diagonalizable
n× n matrices. Show that the Zariski-closure D of D is Kn×n. (Here Kn×n

is identified with affine n2-space Kn2
.) Is D open in Kn×n? (Solution on

page 240)



Chapter 4

A Summary of the Lexicon

In this chapter we give a brief summary of the algebra geometry lexicon. All
the statements we make here have been proved in Chapter 1 or 3, but for the
sake of brevity we will not give any references. This lexicon really comes in
two parts. The first links algebraic objects (such as affine algebras) to truly
geometric objects (such as affine varieties). The second part is more general
and links algebraic objects (such as rings) to objects that are geometric in a
more abstract sense (such as spectra of rings).

4.1 True Geometry: Affine Varieties

In this section, K is assumed to be an algebraically closed field. We have the
following correspondences between algebraic and geometric objects:

(1) Hilbert’s Nullstellensatz gives rise to a bijective correspondence

affine varieties in Kn ←→ radical ideals in K[x1, . . . , xn]. (4.1)

In fact, assigning to any set X ⊆ Kn of points the vanishing ideal I(X)
yields a map from the power set of Kn to the set of radical ideals in
K[x1, . . . , xn], and assigning to a set S ⊆ K[x1, . . . , xn] of polynomials
the affine variety V(S) yields a map from the power set of K[x1, . . . , xn]
to the set of affine varieties in Kn. Restricting both maps gives the cor-
respondence (4.1). The correspondence is inclusion-reversing. An affine
variety is irreducible if and only if its vanishing ideal is a prime ideal. So
we have a sub-correspondence

irreducible affine varieties in Kn ←→ prime ideals in K[x1, . . . , xn].

(2) Every affine K-variety X has a coordinate ring K[X], whose elements
give rise to regular functions X → K. This leads us to identify K[X]

55
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with the ring of regular functions on X. Assigning to an affine K-variety
X its coordinate ring yields a map

affine K-varieties −→ reduced affine K-algebras.

Conversely, every reduced affine K-algebra is isomorphic to the coordi-
nate ring of an affine K-variety, which is unique up to isomorphism. For
X an affine K-variety, we have the equivalence

X is irreducible ⇐⇒ K[X] is an affine domain.

(3) Let X be an affine K-variety with coordinate ring K[X]. Then we have
an inclusion-reversing, bijective correspondence

Zariski-closed subsets of X ←→ radical ideals in K[X]. (4.2)

A closed subset of X is irreducible if and only if the corresponding ideal
in K[X] is a prime ideal. So chains of closed, irreducible subsets of X
correspond to chains of prime ideals in K[X], but with all inclusions
reversed. The above correspondence has sub-correspondences

irreducible components of X ←→ minimal prime ideals in K[X],

and
X ←→ Specmax (K[X]) . (4.3)

(4) Given two affine K-varieties X and Y , we have a bijective correspondence

morphisms X → Y of varieties ←→
homomorphisms K[Y ]→ K[X] of K-algebras.

This correspondence translates isomorphisms into isomorphisms, but be-
haves less well with respect to injectiveness (see Exercise 4.1). The com-
position of two morphisms of varieties corresponds to the composition of
the homomorphisms of the coordinate rings, but in reversed order.

We should mention that some parts of the lexicon stay intact if we drop
the hypothesis that K be algebraically closed.

4.2 Abstract Geometry: Spectra

There is no variety associated to a general ring R. However, we always have
the spectrum Spec(R), which is an abstract substitute for an affine variety.
By (4.3), affine varieties over algebraically closed fields are embedded into the
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spectrum of the coordinate ring, so, taking a somewhat generous view, we
can regard the spectrum as a generalization of an affine variety. In particu-
lar, statements about spectra of rings almost always imply statements about
affine varieties as special cases. As in the previous section, we will summarize
some algebra-geometry correspondences. We will also see that they are gen-
eralizations of the correspondences from Section 4.1. In the sequel, R stands
for a ring.

(1) We have an inclusion-reversing bijective correspondence

Zariski-closed subsets of Spec(R) ←→ radical ideals in R. (4.4)

In fact, assigning to any subset X ⊆ Spec(R) the intersection of all prime
ideals inX yields a map from the power set of Spec(R) to the set of radical
ideals in R, and assigning to a set S ⊆ R of ring-elements the set of all
prime ideals which contain S yields a map from the power set of R to the
set of Zariski-closed subsets of Spec(R). Restricting both maps gives the
correspondence (4.4).
A closed subset of Spec(R) is irreducible if and only if the corresponding
ideal in R is a prime ideal. So chains of closed, irreducible subsets of
Spec(R) correspond to chains of prime ideals in R, but with all inclusions
reversed.
In the special case that R = K[X] is the coordinate ring of an affine
variety over an algebraically closed field, we can compose (4.4) with the
correspondence (4.2), and get a correspondence

Zariski-closed subsets of Spec (K[X]) ←→
Zariski-closed subsets of X,

given by intersecting a closed subset of Spec (K[X]) with Specmax (K[X])
and then applying (4.3) to the points. Via the above correspondence, (4.4)
can be viewed as a generalization of (4.2).

(2) A ring-homomorphism ϕ: R→ S induces a morphism

ϕ∗: Spec(S)→ Spec(R), Q 7→ ϕ−1(Q).

of spectra. In the special case that R ⊆ S and ϕ is the inclusion, we
have ϕ∗(Q) = R ∩ Q. Notice that the correspondence between ring-
homomorphisms and morphisms of spectra is not bijective. Given a fur-
ther ring-homomorphism ψ: S → T , we have (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
In general, ϕ∗ does not restrict to a map Specmax(S) → Specmax(R);
but if ϕ is a homomorphism of affine K-algebras, it does. If in addition
R = K[Y ] and S = K[X] are coordinate rings of affine varieties over an
algebraically closed field, then (4.3) translates this restriction of ϕ∗ into
a map X → Y , which is exactly the morphism from (4) in Section 4.1
corresponding to ϕ.
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Exercises to Chapter 4

4.1 (Dominant and injective morphisms). Let X and Y be affine vari-
eties over a field K, and let f : X → Y be a morphism with induced homo-
morphism ϕ: K[Y ]→ K[X]. We say that f is dominant if the image f(X)
is dense in Y , i.e., f(X) = Y .

(a) Show that f is dominant if and only if ϕ is injective.
(b) Show that if ϕ is surjective, then f is injective.
(c) Give examples where f is dominant but not surjective, and where the

converse of part (b) does not hold.

(Solution on page 241)

4.2 (When is ϕ∗ dominant?). Let ϕ: R→ S be a homomorphism of rings.
Show that the following two statements are equivalent.

(a) The map ϕ∗: Spec(S)→ Spec(R) is dominant.
(b) The kernel ker(ϕ) is contained in the nilradical nil(R) of R.

(Solution on page 241)

4.3 (The coproduct of spectra and affine varieties). Let R1, . . . , Rn
be rings. Recall that the direct sum R := R1⊕· · ·⊕Rn is defined as the carte-
sian product of the Ri with component-wise addition and multiplication. The
projections πi: R → Ri induce morphisms fi: Spec(Ri) → Spec(R). Show
the following.

(a) If S is a ring with morphisms gi: Spec(Ri)→ Spec(S), then there exists
a unique morphism g: Spec(R)→ Spec(S) with g ◦ fi = gi for all i. This
is expressed by saying that Spec(R) together with the fi is a coproduct
in the category of spectra of rings.

(b) Spec(R) is the disjoint union of the images of the fi. For each i, the image
of fi is closed in Spec(R).

(c) If X1, . . . , Xn are affine varieties over an algebraically closed field K,
then there exists a coproduct X in the category of affine K-varieties.
The analogue of part (b) also holds in this case, and for every i the image
of Xi in X is isomorphic to Xi. The universal property of the coproduct
is shown in the following diagram.

Xi
fi - X

gi

?

�
�

�
�	

g

Y

(Solution on page 242)
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Chapter 5

Krull Dimension and Transcendence
Degree

In this chapter, we introduce the Krull dimension, which is the “correct”
concept of dimension in algebraic geometry and commutative algebra. Then
we prove that the dimension of an affine algebra is equal to its transcendence
degree. This makes the dimension more accessible both to computation and
to interpretation.

We start by introducing the following ad hoc notation. Let M be a set
whose elements are sets. By a chain inM we mean a subset C ⊆M which is
totally ordered by inclusion “⊆”. The length of C is defined to be length(C) :=
|C| − 1 ∈ N0 ∪ {−1,∞}. A finite chain of length n is usually written as

X0 $ X1 $ · · · $ Xn.

We write

length(M) := sup {length(C) | C is a chain inM} ∈ N0 ∪ {−1,∞}

(the length -1 occurs ifM = ∅).
Observe that the dimension of a vector space V is the maximal length of

a chain of subspaces, i.e.

dim(V ) = length
(
{U ⊆ V | U subspace}

)
.

With this in mind, the following definition does not appear too far-fetched.

Definition 5.1 (Krull dimension).

(a) Let X be a topological space. SetM to be the set of all closed, irreducible
subsets of X. Then the dimension of X (also called the Krull dimen-
sion) is defined as

dim(X) := length(M).

(b) Let R be a ring. Then the dimension of R (also called the Krull di-
mension) is defined as

61
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dim(R) := dim (Spec(R)) .

So dim(R) = length (Spec(R)), since the closed, irreducible subsets of
Spec(R) correspond to prime ideals of R by Proposition 3.6(e) and The-
orem 3.10(b). In other words, the dimension of R is the maximal length
of a chain of prime ideals of R.

(c) Let K be a field. The dimension of a subset X ⊆ Kn is the dimension of
X with the Zariski topology. So if K is algebraically closed and X is an
affine variety, then

dim(X) = dim (K[X]) ,

since the closed, irreducible subsets of X correspond to prime ideals in
the coordinate ring K[X] by Theorem 1.23 and Theorem 3.10(a).

Example 5.2. (1) If X = {P} is a singleton or (more generally) a non-empty,
finite, discrete topological space, then dim(X) = 0. Moreover, dim(∅) =
−1.

(2) If K is an infinite field and X = K1, then the closed, irreducible subsets
are the singletons and all of X, so dim(K1) = 1.

(3) Let X ⊆ R3 be the union of a plane P and a line L which is not contained
in the plane. We can see two types of non-refinable chains of closed,
irreducible subsets:

a. a point of L not lying in P , followed by all of L;
b. a point of P , followed by a line in P which contains the point, followed

by all of P .

From this, we see that dim(X) ≥ 2. Intuition tells us that the dimension
should be equal to 2, but we cannot verify this yet.

(4) Every field has Krull dimension 0.
(5) The ring Z of integers has Krull dimension 1, with all maximal chains of

prime ideals of the form {0} $ (p) with p a prime number.
More generally, every principal ideal domain which is not a field has Krull
dimension 1.

(6) In particular, a polynomial ring K[x] over a field has dim (K[x]) = 1.
(7) Let K be a field and R = K[x1, x2, . . .] a polynomial ring in countably

many indeterminates xi, i ∈ N. Then Pi = (x1, . . . , xi) provides an infi-
nite chain of prime ideals, so dim(R) =∞. /

Remark. The ring in Example 5.2(7) is not Noetherian. It is tempting to
hope that Noetherian rings are always finite-dimensional. However, Exer-
cise 7.7 dashes this hope. The converse is also not true: Combining Exam-
ple 2.3 and Exercise 5.3 yields a non-Noetherian integral domain of Krull
dimension 2. /

Remark. IfX is a Noetherian topological space with irreducible components
Z1, . . . , Zn, then

dim(X) = max {dim(Z1), . . . ,dim(Zn),−1} .
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This follows from Theorem 3.11(b). We will call X equidimensional if all
Zi have the same dimension. Likewise, a Noetherian ring R is called equidi-
mensional if Spec(R) is equidimensional. /

As we see from Example 5.2, it is very difficult to apply Definition 5.1
directly for determining the dimension of a variety. At this point we are
not even able to determine the dimension of Kn (or of the polynomial ring
K[x1, . . . , xn]), although we easily get n as a lower bound. Another disad-
vantage is that at this point it is far from clear that the Krull dimension of
an affine variety coincides with what we intuitively understand by dimension.
The main result of this chapter is an “alternative definition” of the dimension
of an affine algebra, which is much more accessible and more intuitive (see
Remark 5.4). Another, less well-known alternative definition, which holds for
general rings, is given in Exercise 6.8.

Recall that a subset {a1, . . . , an} ⊆ A of size n of an algebra A over a
field K is called algebraically independent if for all non-zero polynomials
f ∈ K[x1, . . . , xn] we have f(a1, . . . , an) 6= 0.

Definition 5.3. Let A be an algebra over a field K. Then the transcen-
dence degree of A is defined as

trdeg(A) := sup {|T | | T ⊆ A is finite and algebraically independent} .

So trdeg(A) ∈ N0 ∪ {−1,∞}, where -1 occurs if A = {0} is the zero ring.
(We set sup ∅ := −1.)

Our next goal is to show that the dimension and the transcendence degree
of an affine algebra coincide. The following remark is intended to convince
the reader that this is a worthy goal.

Remark 5.4. (a) Let A = K[X] be the coordinate ring of an affine variety
over an infinite field. Finding an algebraically independent subset of size n
of A is equivalent to finding an injective homomorphism K[x1, . . . , xn]→
A. By Exercise 4.1(a), this is the same as giving a dominant morphism
X → Kn. So trdeg(A) is the largest number n such that there exists
a dominant morphism X → Kn. This already links the transcendence
degree to an intuitive concept of dimension. In fact, we will be able to
do even better: In Chapter 8, we will see that such a morphism can be
chosen to be surjective, and such that every point in Kn has only finitely
many preimages (see after Remark 8.20 on page 115).

(b) If A = K[x1, . . . , xn]/I is an affine algebra given by generators of an ideal
I ⊆ K[x1, . . . , xn], then trdeg(A) can be computed algorithmically by
Gröbner basis methods. We will see this in Chapter 9 (see on page 138).
So equating dimension and transcendence degree brings the dimension
into the realm of computability. /

Theorem 5.5 (Dimension of algebras, upper bound). Let A be a (not nec-
essarily finitely generated) algebra over a field K. Then
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dim(A) ≤ trdeg(A).

Proof. This is the special case S = A of the following lemma. ut

Lemma 5.6. Let A be an algebra over a field K, and let S ⊆ A be a subset
which generates A as an algebra. Then

dim(A) ≤ sup {|T | | T ⊆ S is finite and algebraically independent} .

Proof. Let n be the supremum on the right-hand side of the claimed inequal-
ity. There is nothing to show if n =∞, and the lemma is correct if n = −1.
So assume n ∈ N0. We need to show dim(A/P ) ≤ n for all P ∈ Spec(A). If
we substitute A by A/P and S by {a + P | a ∈ S}, then n cannot increase.
Therefore we may assume that A is an integral domain.

First consider the case n = 0. Then all elements from S are algebraic,
so the field of fractions Quot(A) is generated as a field extension of K by
algebraic elements. It follows that Quot(A) is algebraic, so A is algebraic,
too. By Lemma 1.1(a), this implies that A is a field, so dim(A) = 0.

Now assume n > 0, and let

P0 $ P1 $ · · · $ Pm

be a chain in Spec(A) of length m > 0. Factoring by P1 yields a chain
in Spec(A/P1) of length m − 1 (see Lemma 1.22). If we can show that all
algebraically independent subsets T ⊆ {a + P1 | a ∈ S} ⊆ A/P1 have size
|T | < n, then we can use induction on n and conclude that dim(A/P1) < n,
so m− 1 < n, which yields the lemma.

By way of contradiction, assume that there exist a1, . . . , an ∈ S such that
{a1 + P1, . . . , an + P1} ⊆ A/P1 is algebraically independent of size n. Then
also {a1, . . . , an} ⊆ S is algebraically independent. By the definition of n, all
a ∈ S are algebraic over L := Quot (K[a1, . . . , an]), so Quot(A) is algebraic
over L, too. There exists a non-zero element a ∈ P1. We have a non-zero
polynomial G =

∑k
i=0 gix

i ∈ L[x] with G(a) = 0. Since a 6= 0, we may
assume g0 6= 0. Furthermore, we may assume gi ∈ K[a1, . . . , an]. Then

g0 = −
k∑
i=1

gia
i ∈ P1,

so viewing g0 as a polynomial in n indeterminates over K, we obtain g0(a1 +
P1, . . . , an+P1) = 0, contradicting the algebraic independence of the ai+P1 ∈
A/P1. This completes the proof. ut

We can now determine the dimension of polynomial rings over fields and
of affine n-space Kn.

Corollary 5.7 (Dimension of a polynomial ring). For a polynomial ring
K[x1, . . . , xn] over a field K, we have
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dim (K[x1, . . . , xn]) = n.

Moreover,

dim (Kn) =

{
n if K is infinite
0 if K is finite

.

Proof. With S := {x1, . . . , xn}, Lemma 5.6 yields dim (K[x1, . . . , xn]) ≤ n.
Since we have the chain

{0} $ (x1) $ (x1, x2) $ · · · $ (x1, . . . , xn) (5.1)

of length n in Spec (K[x1, . . . , xn]), equality holds.
Moreover, a chain of length m of closed, irreducible subsets Xi ⊆ Kn

gives rise to a chain of length m of ideals I(Xi) ⊂ K[x1, . . . , xn], which are
prime by Theorem 3.10(a), so m ≤ n by the above. On the other hand, if K is
infinite, the affine varieties corresponding to the ideals in (5.1) are irreducible
and provide a chain of the length n, so dim (Kn) = n. If K is a finite field,
then dim (Kn) = 0 by Example 5.2(1). ut

Example 5.8. The bound from Theorem 5.5 is not always sharp. Indeed, con-
sider the rational function field A = K(x1, . . . , xn) := Quot (K[x1, . . . , xn]).
We have

dim(A) = 0 < n = trdeg(A).

/

In Chapter 7 we will prove that for a Noetherian ring R 6= {0} we have

dim (R[x]) = dim(R) + 1

(Corollary 7.13), generalizing Corollary 5.7. In Exercise 7.10, the analogous
result will be proved for the formal power series ring R[[x]]. For the formal
power series ring in n indeterminates over a field K, this implies

dim (K[[x1, . . . , xn]]) = n.

Theorem 5.9 (Dimension and transcendence degree). Let A be an affine
algebra. Then

dim(A) = trdeg(A).

We will prove the theorem together with the following proposition, which
often facilitates the computation of the transcendence degree since the set S
can be taken to be finite.

Proposition 5.10 (Calculating the transcendence degree). Let A be an
affine algebra, and let S ⊆ A be a generating set. Then

trdeg(A) = sup {|T | | T ⊆ S is finite and algebraically independent} .
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Proof of Theorem 5.9 and Proposition 5.10. By Lemma 5.6 we have

dim(A) ≤ sup {|T | | T ⊆ S is finite and algebraically independent} ,

and this supremum is clearly less than or equal to trdeg(A). So we only need
to show that trdeg(A) ≤ dim(A). Using induction on n, we will show that if
trdeg(A) ≥ n, then dim(A) ≥ n. We may assume n > 0. So let a1, . . . , an ∈
A be algebraically independent. By Corollary 2.12, A is Noetherian, so by
Corollary 3.14(a), there exist finitely many minimal prime ideals M1, . . . ,Mr

of A. Assume that for all i ∈ {1, . . . , r} we have that a1 + Mi, . . . , an +
Mi ∈ A/Mi are algebraically dependent. Then there exist polynomials fi ∈
K[x1, . . . , xn] \ {0} such that fi(a1, . . . , an) ∈Mi, so

a :=
r∏
i=1

fi(a1, . . . , an) ∈
r⋂
i=1

Mi = nil(A),

where the last equality follows from Corollary 3.14(c). So there exists a k with
ak = 0, so with f :=

∏r
i=1 f

k
i 6= 0 we have f(a1, . . . , an) = 0, contradicting

the algebraic independence of the ai. Hence for some Mi the elements a1 +
Mi, . . . , an + Mi ∈ A/Mi are algebraically independent. It suffices to show
that dim(A/Mi) ≥ n, so by replacing A by A/Mi, we may assume that A is
an affine domain.

Consider the field L := Quot(K[a1]), which is a subfield of Quot(A),
and the subalgebra A′ := L · A ⊆ Quot(A). A′ is an affine L-domain,
and a2, . . . , an ∈ A′ are algebraically independent over L. By induction,
dim(A′) ≥ n− 1, so there exists a chain

P ′0 $ P ′1 $ · · · $ P ′n−1

in Spec(A′). Set Pi := A∩P ′i ∈ Spec(A). Then Pi−1 ⊆ Pi for i = 1, . . . , n−1.
These inclusions are strict since clearly L · Pi = P ′i for all i. Moreover, L ∩
Pn−1 = {0}, since otherwise P ′n−1 would contain an invertible element from
L, leading to P ′n−1 = A′. It follows that a1 +Pn−1 ∈ A/Pn−1 is not algebraic
over K. By Lemma 1.1(b), A/Pn−1 is not a field, so Pn−1 is not a maximal
ideal. Let Pn ⊂ A be a maximal ideal containing Pn−1. Then we have a chain

P0 $ P1 $ · · · $ Pn−1 $ Pn

in Spec(A), and dim(A) ≥ n follows. ut

In Exercise 5.3, the scope of Theorem 5.9 will be extended to all subal-
gebras of affine algebras. In Chapter 8, we will learn more about chains of
prime ideals in affine domains (see Theorem 8.22).

We will now use Theorem 5.9 in order to characterize 0-dimensional affine
algebras. To avoid ambiguities, we write dimK(V ) for the dimension (= size
of a basis) of a vector space V over a field K.
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Theorem 5.11 (0-dimensional affine algebras). Let A 6= {0} be an affine
K-algebra. Then the following statements are equivalent.

(a) dim(A) = 0.
(b) A is algebraic over K.
(c) dimK(A) <∞.
(d) A is Artinian.
(e) |Specmax(A)| <∞.

Proof. If dim(A) = 0, then A is algebraic by Theorem 5.9. Assume that A
is algebraic. We can write A = K[a1, . . . , an], so there exist non-zero polyno-
mials gi ∈ K[x] with gi(ai) = 0. It is easy to see that the set{ n∏

i=1

aei
i | 0 ≤ ei < deg(gi) for all i

}
generates A as a K-vector space. Now assume that A is finite-dimensional
as a K-vector space. Then the linear subspaces satisfy the descending chain
condition. Therefore so do the ideals, so A is Artinian.

Assume that A is Artinian. By Corollary 3.14(a) and (b), every maxi-
mal ideal of A contains one of the minimal prime ideals P1, . . . , Pn. But by
Theorem 2.8, the Pi themselves are maximal. This implies (e).

Finally, assume that there exist only finitely many maximal ideals, and let
P ∈ Spec(A). By Theorem 1.13, P is the intersection of all maximal ideals
of A containing P , so P is a finite intersection of maximal ideals. Since P is
a prime ideal, it follows that P itself is maximal. Therefore dim(A) = 0. ut

Exercise 5.4 gives an interpretation of dimK(A) in the case that A = K[X]
is the coordinate ring of a finite set X. The following proposition describes
0-dimensional subsets of Kn. For K algebraically closed, this is just a refor-
mulation of Theorem 5.11(e).

Proposition 5.12 (0-dimensional sets). Let K be a field and X ⊆ Kn non-
empty. Then dim(X) = 0 if and only if X is finite.

Proof. Assume dim(X) = 0. Since X is a subset of a Noetherian space, X is
Noetherian, too. By Theorem 3.11(a), X is a finite union of closed, irreducible
subsets Zi. Choose xi ∈ Zi. Then {xi} ⊆ Zi is a chain of closed, irreducible
subsets, so Zi = {xi}. It follows that X is finite.

Conversely, if X is finite, then the irreducible subsets are precisely the
subsets of size 1, so dim(X) = 0. ut

The following theorem deals with a situation that is, in a sense, opposite to
the one from Theorem 5.11: equidimensional algebras whose dimension is only
1 less than the number of generators. These correspond to equidimensional
affine varieties in Kn of dimension n − 1. Such varieties are usually called
hypersurfaces.
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Theorem 5.13 (Hypersurfaces). Let I ⊆ K[x1, . . . , xn] be an ideal in a poly-
nomial ring over a field, and A := K[x1, . . . , xn]/I. Then the following state-
ments are equivalent.

(a) A is equidimensional of dimension n− 1.
(b) I 6= K[x1, . . . , xn], and every prime ideal in K[x1, . . . , xn] that is min-

imal over I is minimal among all non-zero prime ideals. (According to
Definition 6.10, this means that I has height 1.)

(c)
√
I = (g) with g ∈ K[x1, . . . , xn] a non-constant polynomial.

Proof. In the proof we will make frequent use of the bijection between
Spec(A) and VSpec(K[x1,...,xn])(I) given by Lemma 1.22. Let M ⊆
Spec(K[x1, . . . , xn]) be the set of all prime ideals that are minimal over I.
M is finite by Corollary 3.14(d), and the minimal prime ideals of A are the
P/I, P ∈M.

First assume that A is equidimensional of dimension n−1, so for all P ∈M
we have

dim (K[x1, . . . , xn]/P ) = dim (A/(P/I)) = n− 1. (5.2)

It follows from Corollary 5.7 that P 6= {0}. If P were not minimal among all
non-zero primes, we could build a chain of prime ideals in Spec(K[x1, . . . , xn])
by going two steps down from P , and, using (5.2), going n− 1 steps up from
P . This chain would have length n+1, contradicting Corollary 5.7. Since (a)
also implies that I 6= K[x1, . . . , xn], (b) follows.

Now assume (b), and again take P ∈M. By Lemma 5.14, which we prove
below, there exists an irreducible polynomial gP such that P = (gP ). With
Corollary 3.14(d), it follows that

√
I =

⋂
P∈M

P =
⋂
P∈M

(gP ) = (g),

where we set g :=
∏
P∈M gP . Since I 6= K[x1, . . . , xn], g is non-constant,

so (c) holds.
Finally, assume (c), and let g = g1 · · · gr be a decomposition into irre-

ducible polynomials. For i 6= j, gi does not divide gj since (g) is a rad-
ical ideal. We obtain prime ideals Pi := (gi) ∈ Spec(K[x1, . . . , xn]), and⋂r
i=1 Pi =

√
I. It follows that M = {P1, . . . , Pr}. Since dim (A/(Pi/I)) =

dim (K[x1, . . . , xn]/Pi) we need to show that dim (K[x1, . . . , xn]/(gi)) = n−1
for all i. But it is clear that by excluding an indeterminate xj that occurs in gi
from the set {x1, . . . , xn}, we obtain a maximal subset of {x1, . . . , xn} that is
algebraically independent modulo gi. So the claim follows by Proposition 5.10
and Theorem 5.9. ut

The following lemma was used in the proof. Recall that a factorial ring is
the same as a unique factorization domain.

Lemma 5.14 (Height-one prime ideals in a factorial ring). Let R be a fac-
torial ring and let P ∈ Spec(R) be prime ideal that is minimal among all
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non-zero prime ideals. (According to Definition 6.10, this means that I has
height 1.) Then P = (a) with a ∈ R a prime element.

Proof. Let a ∈ P \ {0}. Since P is a prime ideal, at least one factor of a
factorization of a into prime elements also lies in P , so we may assume a to
be a prime element. Then (a) is a prime ideal and {0} $ (a) ⊆ P , so (a) = P
be the minimality hypothesis. ut

Part (c) of Theorem 5.13 talks about principal ideals. This should be
compared to Theorem 8.25 in Chapter 8, which talks about ideals generated
by n polynomials. Readers may also take a look at Theorem 7.4, where the
implication (c) ⇒ (b) of Theorem 5.13 is generalized from K[x1, . . . , xn] to
arbitrary Noetherian rings.

As a further application of Theorem 5.9 and Proposition 5.10, we deter-
mine the dimension of a product of affine varieties.

Theorem 5.15 (Dimension of a product variety). Let X ⊆ Kn and Y ⊆
Km be non-empty affine varieties over an algebraically closed field K. Then
the product variety X × Y ⊆ Kn+m satisfies

dim(X × Y ) = dim(X) + dim(Y ).

Proof. The proof is very easy and straightforward, even if it takes some space
to write it down.

Write d = dim(X) = dim (K[X]) and e = dim(Y ) = dim (K[Y ]). By The-
orem 5.9 and Proposition 5.10, d is the largest non-negative integer m such
that there exist pairwise distinct indeterminates xi1 , . . . , xim ∈ {x1, . . . , xn}
such that

{f ∈ K[xi1 , . . . , xim ] | f ∈ I(X)} = {0}. (5.3)

So we have xi1 , . . . , xid ∈ {x1, . . . , xn} and yj1 , . . . , yje ∈ {y1, . . . , ym} (with
y1, . . . , ym a new set of indeterminates) satisfying (5.3) for X and Y , re-
spectively. To show that the union of these satisfy (5.3) for X × Y , let
f ∈ K[xi1 , . . . , xid , yj1 , . . . , yje ] be a polynomial that vanishes on X × Y .
Write f =

∑r
k=1 gktk with gk ∈ K[xi1 , . . . , xid ] and tk pairwise distinct

products of powers of the yjν . Let (ξ1, . . . , ξn) ∈ X. Then the polynomial∑r
k=1 gk(ξ1, . . . , ξn)tk ∈ K[yj1 , . . . , yje ] lies in I(Y ), so it is zero. Since the

tk are linearly independent over K, this implies gk(ξ1, . . . , ξn) = 0 for all k.
Since this holds for all points in X, we conclude gk = 0, so f = 0. This shows
that dim(X × Y ) ≥ d+ e.

To see that dim(X × Y ) is not greater than d + e, let T ⊆ {x1, . . . , xn,
y1, . . . , ym} be a subset with |T | > d + e. Then |T ∩ {x1, . . . , xn}| > d or
|T ∩ {y1, . . . , ym}| > e. By symmetry, we may assume the first case, so there
exist pairwise distinct xi1 , . . . , xim ∈ T with m > e. Therefore we have f ∈
K[xi1 , . . . , xim ] \ {0} which vanishes on X. So f , viewed as a polynomial in
the indeterminates from T , vanishes on X×Y . This completes the proof. ut
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Exercises to Chapter 5

5.1 (The dimension of a subset). Let X be a topological space and let
Y ⊆ X be a subset equipped with the subset topology.

(a) Show that Y is irreducible if and only if the closure Y is irreducible.
(b) Show that dim(Y ) ≤ dim(X).

(Solution on page 242)

5.2 (Dimension of the power series ring). Let K be a field and R =
K[[x]] the formal power series ring over K. Show that dim(R) = 1. (Solution
on page 243)

*5.3 (Subalgebras of affine algebras). Let A be a (not necessarily finite-
ly generated) subalgebra of an affine algebra. Show that Theorem 5.9 and
Proposition 5.10 hold for A. (Solution on page 243)

5.4 (Coordinate rings of finite sets of points). Let K be a field X ⊆
Kn a finite set of points. Show that

dimK (K[X]) = |X|,

(Solution on page 244)

5.5 (The ring of Laurent polynomials). Let K be a field, K(x) the ra-
tional function field, and R = K[x, x−1] ⊂ K(x) the ring of Laurent polyno-
mials. Determine the Krull dimension of R. (Solution on page 244)

5.6 (Right or wrong?). Decide if the following statements are true or false.
Give reasons for your answers.

(a) If R ⊆ S is a subring, then dim(R) ≤ dim(S).
(b) If A is an affine algebra and B ⊆ A a subalgebra, then dim(B) ≤ dim(A).
(c) If R is a ring and I ⊆ R an ideal, then dim(R/I) ≤ dim(R).
(d) If A is an affine K-algebra, then the transcendence degree of A is the size

of a maximal algebraically independent subset of A.
(e) If A is an affine K-domain, then the transcendence degree of A is the size

of a maximal algebraically independent subset of A.
(f) Let A be a zero-dimensional algebra over a field K. Then dimK(A) <∞.

(Solution on page 244)

5.7 (Matrices of small rank). Let K be an infinite field and Kn×m the
set of all n × m matrices with entries in K, which we identify with affine
n ·m-space Kn·m. For an integer k with 0 ≤ k ≤ min{n,m}, let

Xk :=
{
A ∈ Kn×m | rank(A) ≤ k

)
⊆ Kn×m.
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(a) Show that Xk is closed and irreducible.
Hint: Pick a matrixM ∈ Kn×m of rank k and consider the map f :Kn×n×
Km×m → Kn×m, (A,B) 7→ AMB.

(b) Show that
dim(Xk) = k · (n+m− k).

Hint: Determine the transcendence degree of K[Xk] by using (a), Exer-
cise 5.6(e), and Remark 5.4(a).

(Solution on page 245)

5.8 (Images of morphisms). Let X and Y be affine varieties over an alge-
braically closed field K, f : X → Y a morphism, and im(f) the Zariski-closure
of its image. Show that

dim
(
im(f)

)
≤ dim(X). (5.4)

Does (5.4) extend to the case where f is a morphism of spectra?
Remark: By Exercise 5.1, the inequality (5.4) implies dim (im(f)) ≤ dim(X).
(Solution on page 245)

5.9 (The polynomial ring over a principal ideal domain). Let R be a
principal ideal domain which is not a field. Show that the polynomial ring
R[x] has dimension 2.
Hint: For a chain of prime ideals Pi in R[x], consider the ideals in Quot(R)[x]
generated by the Pi. Show that R ∩ P2 6= {0}.
Remark: This result is a special case of Corollary 7.13 on page 93, which
requires much more work. (Solution on page 246)





Chapter 6

Localization

In commutative algebra, localization is a construction that is almost as im-
portant as the formation of quotient structures. In this chapter we define
localization and give the basic properties. In particular, we will see what lo-
calization does to the spectrum of a ring. Localization naturally leads to the
topics of local rings and of the height of an ideal, which will be dealt with
here.

The construction of Q from Z or, more generally, of Quot(R) from an inte-
gral domain R is a model for the following definition of localization. However,
localization is more general in two ways: It allows to make only a selection
of ring elements invertible, which may include zero-divisors, and we extend
the definition to modules.

Definition 6.1. Let R be a ring, M an R-module (where M = R is an
important special case) and U ⊆ R a submonoid of the multiplicative monoid
of R (i.e., 1 ∈ U , and with a, b ∈ U the product a · b also lies in U ; we do not
assume that 0 /∈ U). Such a set U is called a multiplicative subset of R.
Define a relation ∼ on the Cartesian product U ×M by

(u1,m1) ∼ (u2,m2) :⇐⇒ there exists u ∈ U such that uu2m1 = uu1m2.

(It is routine to check that this is indeed an equivalence relation.) We will
write the equivalence class of (u,m) ∈ U ×M as a fraction:

[(u,m)]∼ =:
m

u
.

(This notation makes it clear that the intention of the equivalence relation
is to allow cancellation and raising of fractions.) The localization of M
w.r.t. U , written as U−1M , is the set of equivalence classes:

U−1M := ( U ×M)/ ∼ =
{m
u
| m ∈M, u ∈ U

}
.

We have a canonical map given by

73
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ε: M → U−1M, m 7→ m

1
.

U−1M is made into an R-module by

m1

u1
+
m2

u2
:=

u2m1 + u1m2

u1u2
for mi ∈M and ui ∈ U

and
a · m

u
:=

am

u
for a ∈ R, m ∈M, and u ∈ U.

(Again, it is routine to check that these operations are well-defined and the
axioms of a module are satisfied.)

In the special case that U = R \ P with P ∈ Spec(R), we write

U−1M =: MP

and call this the localization of M at P .

The generality and flexibility of localization is best demonstrated by ex-
amples.
Example 6.2. (1) Let R be an integral domain and U = R \ {0}. Then

U−1R = Quot(R), the field of fractions. Quot(R) is the localization of R
at the prime ideal {0}.

(2) More generally, let R be any ring and

U := {a ∈ R | a is not a zero-divisor},

which is a multiplicative subset. U−1R is called the total ring of frac-
tions of R. The canonical map R→ U−1R is injective, and U is maximal
with this property. In fact, if S ⊆ R is any multiplicative subset, then
the canonical map R→ S−1R is injective if and only if S ⊆ U .

(3) Consider R = Z and P = (2) ∈ Spec(Z). Then RP is (isomorphic to) the
ring of all rational numbers with odd denominator. We have mentioned
this ring on page 25 as an example of a non-Jacobson ring.

(4) Let R = Z/(6) and P = (2) ∈ Spec(R). In RP , we have 2
1 = 0

1 , since
3 /∈ P and

3 · 1 · 2 = 3 · 1 · 0.

With this, it is easy to see that RP ∼= Z/(2). So a localization can be
“smaller” than the original ring.
Also notice that the total ring of fractions of Z/(6) is isomorphic to Z/(6).

(5) Let K be a field and X ⊆ Kn an affine variety with coordinate ring
K[X]. For x ∈ X, consider the maximal ideal mx ∈ Specmax(K[X]) of all
regular functions vanishing at x. Then

K[X]x := K[X]mx
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consists of all fractions of regular functions on X whose denominator
does not vanish at x. This example gives a first hint that localization has
something to do with locality. A second hint is contained in Exercise 6.6.
K[X]x is also called the localization of K[X] at x.

(6) Let R be a ring and a ∈ R. Then U = {1, a, a2, . . .} = {ak | k ∈ N0} ⊆ R
is a multiplicative subset. It is customary to write

Ma := U−1M,

although this may sometimes lead to confusion. For example, with this
notation Z2 is (isomorphic to) the ring of all rational numbers with a
2-power as denominator.

(7) If 0 ∈ U , then U−1M = {0} for every R-module M , including M = R.
This follows from Definition 6.1.

(8) Let (G,+) be a finite, abelian group, which becomes a Z-module by
defining a · σ :=

∑a
i=1 σ and (−a) · σ := −(a · σ) for σ ∈ G and a ∈ Z

non-negative. Let U = Z\{0}. Then U−1G is the zero module, since each
σ ∈ G has positive order ord(σ) ∈ U , and ord(σ) · σ = 0. /

The following proposition is a collection of basic properties of localization.
The proofs of all parts are straightforward but sometimes a little tedious. We
leave them as an exercise for the reader, who should be prepared to spend a
small pile of paper on them.

Proposition 6.3 (Properties of localization). Let R be a ring, U ⊆ R a
multiplicative subset, and M an R-module.

(a) U−1R becomes a ring with the addition defined as in U−1M , and multi-
plication defined as multiplying numerators and denominators.

(b) The canonical map ε: R→ U−1R is a homomorphism of rings. So U−1R
becomes an R-algebra.

(c) U−1M becomes a U−1R-module, with multiplication of an element of
U−1R and an element of U−1M defined as multiplying numerators and
denominators.

(d) All ε(u) with u ∈ U are invertible in U−1R.
(e) Let ϕ: R→ S be a ring-homomorphism such that all ϕ(u) with u ∈ U are

invertible in S. Then there exists a unique homomorphism U−1R→ S of
R-algebras. This universal property tells us that S−1R is the “smallest”
and “freest” R-algebra in which the elements from U become invertible.

(f) If R is an integral domain and 0 /∈ U , then U−1R is embedded in Quot(R)
in the obvious way. Therefore we may (and often will) identify U−1R with
a subalgebra of Quot(R).

(g) If V ⊆ R is a multiplicative subset containing U , we have

V −1(U−1M) ∼= ε(V )−1(U−1M) ∼= V −1M

(isomorphisms of R-modules). So “step-by-step” localization is the same
as “all-at-once” localization. For M = R, the second isomorphism is also
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a ring-isomorphism

ε(V )−1(U−1R) ∼= V −1R.

(h) Let N ⊆ M be a submodule. Then U−1N is isomorphic to a submodule
of U−1M . In fact, with εM : M → U−1M the canonical map, the map

U−1N →
(
εM (N)

)
U−1R

= U−1R · εM (N),
n

u
7→ 1

u
· εM (n)

is an isomorphism of U−1R-modules. Therefore we may (and will) iden-
tify U−1N with (εM (N))U−1R ⊆ U−1M . In particular, for an ideal I ⊆ R
we identify U−1I with the ideal (ε(I))U−1R ⊆ U−1R.

(i) Let N ⊆ U−1M be a U−1R-submodule. With εM : M → U−1M the canon-
ical map, the preimage N := ε−1

M (N) ⊆M is a submodule, and

U−1N = N.

In particular, for an ideal I ⊆ U−1R we have

U−1ε−1(I) = I.

The above properties of localization will often be used without explicit
reference to Proposition 6.3. As an immediate consequence of part (i), we get

Corollary 6.4 (Localization preserves the Noether property). Let R be a
ring, U ⊆ R a multiplicative subset, and M an R-module. If M is Noetherian,
then so is U−1M (as a U−1R-module). In particular, if R is Noetherian, then
so is U−1R.

The following result gives a description of the spectrum of a localized ring
U−1R. It is a counterpart of Lemma 1.22, which deals with quotient rings.

Theorem 6.5 (The spectrum of a localized ring). Let R be a ring and U ⊆
R a multiplicative subset. Let ε: R→ U−1R be the canonical map and

A := {Q ∈ Spec(R) | U ∩Q = ∅} .

Then the map
Spec

(
U−1R

)
→ A, Q 7→ ε−1(Q)

is an inclusion-preserving bijection with inverse map

A → Spec
(
U−1R

)
, Q 7→ U−1Q.

In particular, for a prime ideal P ∈ Spec(R), the prime ideals of RP corre-
spond to prime ideals Q ∈ Spec(R) with Q ⊆ P .

Proof. Since preimages of prime ideals under ring-homomorphisms are al-
ways prime ideals, ε−1(Q) ∈ Spec(R) for Q ∈ Spec

(
U−1R

)
. Moreover,
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U ∩ ε−1(Q) = ∅, since otherwise Q would contain an invertible element from
U−1R. So ε−1(Q) ∈ A. By Proposition 6.3(i) we also have

U−1ε−1(Q) = Q.

Now let Q ∈ A. We claim that

ε−1
(
U−1Q

)
= Q. (6.1)

It is clear that Q ⊆ ε−1
(
U−1Q

)
. For the reverse inclusion, take a ∈

ε−1
(
U−1Q

)
. Then there exist q ∈ Q and u ∈ U with

a

1
=
q

u
,

so u′ua = u′q with u′ ∈ U . With the definition of A, this implies a ∈ Q,
proving (6.1).

We still need to show that U−1Q is a prime ideal. U−1Q is an ideal
by Proposition 6.3(h), and it follows from (6.1) that U−1Q 6= U−1R. Take
a1, a2 ∈ R and u1, u2 ∈ U with

a1

u1
· a2

u2
∈ U−1Q.

Then ε(a1a2) ∈ U−1Q, so a1a2 ∈ Q by (6.1). This implies that at least one
of the ai lies in Q, so ai

ui
∈ U−1Q, and U−1Q is a prime ideal indeed.

It is immediately clear that our maps preserve inclusions. This completes
the proof. ut

In Exercise 6.5 it is shown that the bijections from Theorem 6.5 are actu-
ally homeomorphisms. Theorem 6.5 has two immediate consequences, Corol-
laries 6.6 and 6.8.

Corollary 6.6 (Dimension of a localized ring). Let R be a ring and U ⊆ R
a multiplicative set. Then

dim
(
U−1R

)
≤ dim (R) .

Definition 6.7. Let R be a ring. R is called a local ring if it has precisely
one maximal ideal.

Corollary 6.8 (Localizing at a prime ideal gives a local ring). Let R be a
ring and P ⊂ R a prime ideal. Then the localization RP is a local ring
with PP as unique maximal ideal.

Example 6.9. The rings in Example 6.2(1), (3), and (5) are examples of local
rings. We give a few more.

(1) Every field is a local ring.
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(2) Let K[x] be a polynomial ring over a field. Then K[x]/(x2) is a local ring
with (x)/(x2) as unique maximal ideal.

(3) The formal power series ring K[[x]] over a field is a local ring with (x) as
unique maximal ideal (see Exercise 1.2).

(4) The zero ring R = {0} is not a local ring. /

Definition 6.10. Let R be a ring.

(a) Let P ⊂ R be a prime ideal. Then the height of P is defined as

ht(P ) := dim (RP ) ∈ N0 ∪ {∞}.

So by Theorem 6.5, ht(P ) is the maximal length n of a chain

P0 $ P1 $ · · · $ Pn = P

of prime ideals Pi ∈ Spec(R) ending with P .
(b) Let I ⊆ R be an ideal. If I 6= R, the height of I is defined as

ht(I) := min
{
ht(P ) | P ∈ VSpec(R)(I)

}
.

If I = R, we set
ht(I) := dim(R) + 1.

Since the height, as defined in (a), gets smaller when passing to a sub-prime
ideal, the definitions in (a) and (b) are consistent.

Remark 6.11. (a) If P ⊂ R is a prime ideal, then Lemma 1.22 tells us that
dim(R/P ) is the maximal length of a chain of prime ideals in Spec(R)
starting with P . Therefore

ht(P ) + dim(R/P ) ≤ dim(R). (6.2)

This is often an equality, for example in the case that R = K[X] with
X an equidimensional affine variety (see Corollary 8.23). For this reason,
some authors use the term codimension for the height. Example 6.12(3)
shows that the inequality (6.2) can also be strict.

(b) It is not hard to give a geometric interpretation of height. If X is an
affine variety over an algebraically closed field, then the prime ideals in
the coordinate ring K[X] correspond to the closed, irreducible subsets
of X (see Theorem 1.23 and Theorem 3.10(a)). So if P ∈ Spec(K[X])
corresponds to Y ⊆ X, i.e., Y = VX(P ), then ht(P ) is the maximal
length k of a chain

Y = Y0 $ Y1 $ · · · $ Yk

of closed, irreducible subsets of X starting with Y . On the other hand,
dim (K[X]/P ) is the maximal length of a chain ending with Y . So ht(P )+
dim(K[X]/P ) is the maximal length of a chain passing through Y . /
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Example 6.12. (1) Every minimal prime ideal has height 0. If R is a Noethe-
rian ring, then ht({0}) = 0. By Exercise 3.6, this is also true for R not
Noetherian.

(2) Let K be a field, (ξ1, . . . , ξn) ∈ Kn, and P = IK[x1,...,xn] ({(ξ1, . . . , ξn)}).
Then ht(P ) = n, since we have a chain of prime ideals

{0} $ (x1 − ξ1) $ (x1 − ξ1, x2 − ξ2) $ · · · $ (x1 − ξ1, . . . , xn − ξn) = P,

and on the other hand ht(P ) ≤ dim(K[x1, . . . , xn]) = n by (6.2).
(3) Let X = Z1∪Z2 be an affine variety over an algebraically closed field with

irreducible components Z1 and Z2 such that dim(Z1) < dim(Z2). Let x be
a point of Z1 not lying in Z2. Then a chain of closed, irreducible subsets
of X which starts with {x} lies completely in Z1, so for P := IK[X](x)
we have

ht(P ) ≤ dim(Z1).

(In fact, equality holds as a consequence of Corollary 8.24.) Since
dim (K[X]/P ) = 0, we have

ht(P ) + dim (K[X]/P ) < dim(K[X]),

so the inequality (6.2) is strict here. /

We conclude this chapter with a definition.

Definition 6.13. Let R be a ring and M an R-module.

(a) For an element m ∈M , the annihilator of m is

Ann(m) := {a ∈ R | a ·m = 0} .

This is an ideal in R.
(b) The annihilator of M is

Ann(M) :=
⋂
m∈M

Ann(m) ⊆ R.

Clearly one can restrict this intersection to the elements m of a generating
set of M .

(c) The (Krull) dimension of M is

dim(M) := dim (R/Ann(M)) ,

where the dimension on the right hand side denotes the Krull dimension of
the ring. Readers should notice that for R a field and M a non-zero vector
space, dim(M) is always 0, so this has nothing to do with dimension as
a vector space.

(d) The support of M is

Supp(M) := {P ∈ Spec(R) |MP 6= {0}} ⊆ Spec(R).
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So a P ∈ Spec(R) lies in the support if and only if there exists m ∈ M
with Ann(m) ⊆ P .

Example 6.14. Let I ⊆ R be an ideal in a ring, and consider the quotient
ring M := R/I as an R-module. Then it is easy to see that Ann(M) = I and
Supp(M) = VSpec(R)(I). A generalization can be found in Exercise 6.10. /

Exercises to Chapter 6

6.1 (Properties of localization). Check all assertions made in Defini-
tion 6.1 and Proposition 6.3. (Solution on page 246)

6.2 (Some examples of localization). In each of the following examples,
we give a ring R, a multiplicative subset U ⊆ R, and an R-module M . Give
a description of the localization U−1M . K is always a field and x is always
an indeterminate.

(a) M = R = K[x], U = {xk | k ∈ N0}.
(b) M = R = Z, U = {1} ∪ {12n | n ∈ Z, n > 0}.
(c) R = Z, U = Z \ {0}, M = Z[x].
(d) R = K[x], M = K[x]/(x2), U = {xk | k ∈ N0}.
(e) R = K[x], M = K[x]/(x2), U = K[x] \ (x).

(Solution on page 249)

6.3 (Localization is an exact functor). Let R be a ring and U ⊆ R a
multiplicative set. Let ϕ: M → N be a homomorphism of R-modules. Show
that the map

U−1ϕ: U−1M → U−1N,
m

u
7→ ϕ(m)

u

is a homomorphism of U−1R-modules. (Since passing from ϕ to U−1ϕ is com-
patible with composition of homomorphisms, this makes localization w.r.t.
U into a functor from the category of R-modules to the category of U−1R-
modules.)

By an exact sequence of R-modules, we mean a sequence

· · · ϕ−2−→M−1
ϕ−1−→M0

ϕ0−→M1
ϕ1−→M2

ϕ2−→M3
ϕ3−→ · · · (6.3)

with Mi modules over R and ϕi: Mi →Mi+1 module-homomorphisms, such
that im(ϕi) = ker(ϕi+1) for all i ∈ Z. More formally, a sequence is a direct
sum M =

⊕
i∈Z Mi of R-modules together with a homomorphism ϕ: M →M

such that ϕ(Mi) ⊆Mi+1 for all i, and exactness means that im(ϕ) = ker(ϕ).
Assume that the sequence (6.3) is exact and show that the localized sequence

· · · −→ U−1M0
U−1ϕ0−→ U−1M1

U−1ϕ1−→ U−1M2 −→ · · · (6.4)
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is also exact. We express that by saying that localization is an exact functor.
Remark: Most exact sequences appearing in the real life of a mathematician
are finite, meaning that only finitely many Mi are non-zero. The most fre-
quent example is a “short exact sequence”, in which all Mi except M1, M2,
and M3 are zero. In that case, exactness implies M3

∼= M2/M1.
A consequence of this exercise is that injective (surjective) homomorphisms

localize to injective (surjective) maps.
(Solution on page 249)

6.4 (Local-global principle). A local-global principle is a theorem that
states that some property holds “globally” if and only if it holds everywhere
“locally”. Here are two examples.

(a) Let M be a module over a ring R with submodules L,N ⊆M . Show the
equivalence

L ⊆ N ⇐⇒ Lm ⊆ Nm for all m ∈ Specmax(R).

(b) Let ϕ: M → N be a homomorphism of modules over a ring R. For
m ∈ Specmax(R) we have a homomorphism ϕm: Mm → Nm as defined in
Exercise 6.3. Show that ϕ is injective or surjective if and only if the same
property holds for every ϕm with m ∈ Specmax(R).

(Solution on page 250)

6.5 (Homeomorphisms). Show that the bijections from Theorem 6.5 are
homeomorphisms. (HereA is equipped with the subset topology induced from
the Zariski topology on Spec(R).) (Solution on page 250)

6.6 (Localization hides components). Let X = Y1∪Y2 be an affine vari-
ety over a fieldK, decomposed as a union of two closed subsets. Let x ∈ Y1\Y2

be a point. Show that the restriction homomorphism ϕ: K[X] → K[Y1] in-
duces an isomorphism (of K-algebras)

ϕx: K[X]x → K[Y1]x,
f

u
7→ ϕ(f)

ϕ(u)

of the coordinate rings localized at x.
Remark: This result may be expressed as: “Localization at x only sees those
components in which x lies” — a further hint that localization has something
to do with locality.
(Solution on page 251)

6.7 (A characterization of local rings). Let R be a ring. Prove the fol-
lowing.

(a) R is local if and only if the set of non-invertible elements of R is an ideal.
Then this is the unique maximal ideal.
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(b) Let m $ R be a proper ideal. Then R is local with m as maximal ideal if
and only if all elements from R \m are invertible.

(Solution on page 251)

6.8 (An alternative definition of Krull dimension). In this exercise we
develop a prime-ideal-free definition of the Krull dimension of a ring. It is
based on an article by Coquand and Lombardi [11], which was brought to
my attention by Peter Heinig.

Let R be a ring. For a ∈ R, define the multiplicative set

Ua := {am(1 + xa) | m ∈ N0, x ∈ R} .

(a) For a ∈ R and P ∈ Spec(R) a prime ideal, show the following equivalence.

Ua ∩ P = ∅ ⇐⇒ a /∈ P and P + (a)R 6= R.

(b) For n ∈ N0 a non-negative integer, show the following equivalence.

dim(R) ≤ n ⇐⇒ dim
(
U−1
a R

)
≤ n− 1 for all a ∈ R.

(c) For n ∈ N0 a non-negative integer, show that dim(R) ≤ n holds if and
only if for every a0, . . . , an ∈ R there exist m0, . . . ,mn ∈ N0 such that

n∏
i=0

ami
i ∈

(
aj ·

j∏
i=0

ami
i

∣∣∣ j = 0, . . . , n
)
R
. (6.5)

Remark: Part (c) provides the desired alternative definition of the Krull di-
mension. The condition (6.5) looks a bit messy at first glance, but it is easy
to understand and to remember in terms of the lexicographic monomial or-
dering, which we will introduce in Example 9.2(1) on page 129. In fact, (c)
says that dim(R) ≤ n if and only if for every a0, . . . , an ∈ R there exists a
monomial in the ai that can be written as an R-linear combination of lexi-
cographically larger monomials in the ai. As a nice application, it is easy to
derive Theorem 5.5 and the first part of Corollary 5.7 from (c) by using the
lexicographic ordering (see Exercise 9.5). (Solution on page 251)

6.9 (Localizing an affine domain). Let A be an affine domain and a ∈
A\{0}. Show that the localization Aa has the same dimension as A. Does this
remain true for A an affine algebra or A an integral domain? Does it remain
true if one localizes w.r.t. an arbitrary multiplicative subset U ⊆ A \ {0}?
(Solution on page 252)

6.10 (Support of modules). Let R be a ring and M an R-module.

(a) Assume that M is finitely generated and show that

Supp(M) = VSpec(R) (Ann(M)) .
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In particular, Supp(M) is Zariski-closed in Spec(R).
*(b) Give an example where Supp(M) is not Zariski-closed.

(Solution on page 253)

6.11 (Associated primes). Let R be a Noetherian ring and M an R-
module. A prime ideal P ∈ Spec(R) is called an associated prime of M if
there exists m ∈M with P = Ann(m). (But notice that not all annihilators
of elements of M are prime ideals!) We write the set of all associated primes
as Ass(M).

(a) Let I be an ideal that is maximal among all Ann(m) with m ∈M \ {0}.
Show that I ∈ Ass(M). So in particular Ass(M) 6= ∅ if M 6= {0}.

(b) Let U ⊆ R be a multiplicative subset and consider the R-module U−1M .
Show that

Ass(U−1M) = {P ∈ Ass(M) | U ∩ P = ∅} .

(c) Consider the special case M = R/I with I a radical ideal. Show that
Ass(M) is the set of all prime ideals that are minimal over I.

(d) Let R = K[x1, x2] be a polynomial ring over a field and M = R/I with
I := (x2

1, x1x2). Determine Ass(M). Does the conclusion of part (c) hold?

Remark: Part (c) suggests that associated primes may be seen as a generaliza-
tion of irreducible components. The theory of associated primes and primary
decomposition is treated in most text books on commutative algebra, but not
in this one. (Solution on page 254)





Chapter 7

The Principal Ideal Theorem

This chapter has very few definitions, but many results. In the first section we
prove Krull’s principal ideal theorem, which says, roughly speaking, that an
ideal generated by n elements has height at most n. This theorem is one of the
work horses of commutative algebra. As corollaries, we obtain the existence
of systems of parameters of Noetherian local rings, and the fact that every
Noetherian local ring has finite dimension. Along the way, two important
lemmas are proved: Nakayama’s lemma and the prime avoidance lemma.

The second section of this chapter deals with the dimension of fibers of a
morphism of spectra of rings. The principal ideal theorem leads to a lower
bound for the fiber dimension. From this, we obtain a formula for the di-
mension of a polynomial ring over an arbitrary Noetherian ring. More work
is required to show that under suitable hypotheses, the lower bound is exact
“almost everywhere”. This project will be completed in Chapter 10. Large
parts of the second section may be skipped by readers who are not interested
in fiber dimension. Details are given at the beginning of the section.

7.1 Nakayama’s Lemma and the Principal Ideal
Theorem

For a square matrix A ∈ Rn×n with entries in a ring R, the determinant
det(A) is defined by the Leibniz formula.

Lemma 7.1 (Adjugate matrix over rings). Let A = (ai,j)1≤i,j≤n ∈ Rn×n be
a square matrix with entries in a ring R. For i, k ∈ {1, . . . , n}, let ci,k ∈ R be
the determinant of the matrix obtained from A by deleting the i-th row and
the k-th column. Then for j, k ∈ {1, . . . , n}, we have

n∑
i=1

(−1)i+kci,kai,j = δj,k · det(A) with δj,k :=

{
1 if j = k,

0 if j 6= k
.

85
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Proof. If determinant theory is developed over a ring, this is the standard
result on the adjugate matrix. For readers who are only familiar with deter-
minants over a field, we present a proof by reduction to the field case.

For i, j ∈ {1, . . . , n}, let xi,j be an indeterminate over Q, and consider
the matrix Â := (xi,j) ∈ Q(x1,1, x1,2, . . . , xn,n)n×n with coefficients in the
rational function field in n2 indeterminates. Let ĉi,k ∈ Q(x1,1, x1,2, . . . , xn,n)
be the minors of Â, formed as the ci,k from A. The rule of the adjugate matrix
states that

n∑
i=1

(−1)i+k ĉi,kxi,j = δj,k · det(Â). (7.1)

Both sides of (7.1) lie in the polynomial ring Z[x1,1, x1,2, . . . , xn,n]. There
exists a (unique) ring-homomorphism

ϕ: Z[x1,1, x1,2, . . . , xn,n]→ R with ϕ(xi,j) = ai,j .

Applying ϕ to both sides of (7.1) yields the lemma. ut

The following lemma will be used in the proof of Nakayama’s lemma,
but also in the development of the theory of integral ring extensions (see
Lemma 8.3).

Lemma 7.2. Let R be a ring, M = (m1, . . . ,mn)R a finitely generated R-
module, and ai,j ∈ R ring elements (i, j ∈ {1, . . . , n}) with

n∑
j=1

ai,jmj = 0 for i ∈ {1, . . . , n}.

Then
det(ai,j)1≤i,j≤n ∈ Ann(M).

Proof. Let A := (ai,j) ∈ Rn×n, and let ci,k ∈ R be as in Lemma 7.1. For
every k ∈ {1, . . . , n}, it follows from Lemma 7.1 that

det(A) ·mk =
n∑
j=1

δj,k det(A)mj =
n∑
j=1

n∑
i=1

(−1)i+kci,kai,jmj = 0,

so indeed det(A) ∈ Ann(M). ut

Nakayama’s lemma, which we prove now, is one of the key tools in com-
mutative algebra. It is one of those results which seldom arouse spontaneous
enthusiasm, but then develop a habit of appearing at crucial steps in many
proofs. (Readers may look up the index-entry for “Nakayama’s lemma” at the
end of this book to locate some examples.) If R is a ring, then the intersection

J :=
⋂

m∈Specmax(R)

m
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is called the Jacobson radical of R. (For R = {0}, we define the Jacobson
radical to be J = R.) For example, if R is a local ring, then J is the unique
maximal ideal.

Lemma 7.3 (Nakayama’s lemma). Let R be a ring with Jacobson radical J ,
and let M be a finitely generated R-module. If

J ·M = M,

then M = {0}.

Proof. Write M = (m1, . . . ,mn)R. By hypothesis, mi =
∑n
j=1 ai,jmj with

ai,j ∈ J . By Lemma 7.2,

d := det(δi,j − ai,j)1≤i,j≤n ∈ Ann(M).

But d ≡ 1 mod J , so d lies in no maximal ideal of R. This implies that d is
invertible, so M = {0}. ut

We can now prove the first version of Krull’s principal ideal theorem. This
is a generalization of the implication (c) ⇒ (b) of Theorem 5.13 (which is
about polynomial rings) to arbitrary Noetherian rings. Recall that a prime
ideal P ∈ Spec(R) is said to be minimal over an ideal I ⊆ R if P is a
minimal element of VSpec(R)(I), i.e., I ⊆ P , but no proper sub-prime ideal of
P contains I.

Theorem 7.4 (Principal ideal theorem, 1st version). Let R be a Noetherian
ring and P ∈ Spec(R) a prime ideal that is minimal over a principal ideal
(a) ⊆ R. Then

ht(P ) ≤ 1.

In particular, a proper principal ideal of R has height at most 1.

Proof. Let RP be the localization at P . Using Theorem 6.5, we see that PP
is a prime ideal that is minimal over

(
a
1

)
RP

, and ht(PP ) = ht(P ). So by
replacing R with RP , we may assume that R is local with maximal ideal P .
Then the quotient ring R/(a) has the unique prime ideal P/(a), so R/(a) is
Artinian by Theorem 2.8. We will transport the Artin property from R/(a) to
the localization Ra by using the canonical maps ε and ϕ shown in Figure 7.1.
Let I, J ⊆ Ra be ideals with I ⊇ J and ϕ

(
ε−1(I)

)
= ϕ

(
ε−1(J)

)
. If we

R

�
�

��	

@
@

@@R

ε ϕ

Ra R/(a)

Figure 7.1. The canonical maps ε and ϕ
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can prove that this implies I = J , it follows that a descending chain of
ideals In in Ra stops at the same point or earlier than the chain of ideals
ϕ
(
ε−1(In)

)
⊆ R/(a). To prove the claim, let x ∈ ε−1(I). Then there exist

y ∈ ε−1(J) and z ∈ R with x = y + az. This implies az ∈ ε−1(I). Since
ε(a) is invertible in Ra, we obtain z ∈ ε−1(I), so x ∈ ε−1(J) + (a) · ε−1(I).
Therefore the R-module M := ε−1(I)/ε−1(J) satisfies

M ⊆ (a)M ⊆ PM ⊆M.

Nakayama’s Lemma 7.3 yields M = {0}, so ε−1(I) = ε−1(J). By Proposi-
tion 6.3(i), this implies I = J . So indeed Ra is Artinian. Applying Theo-
rem 2.8 again, we obtain dim(Ra) ∈ {0,−1}, with 0 occurring if Ra 6= {0}.

Let Q ∈ Spec(R) be a prime ideal with Q $ P . The minimality of P
implies a /∈ Q, so by Proposition 6.3(g), RQ is a localization of Ra (which
implies Ra 6= {0}). By Corollary 6.6, this implies dim(RQ) ≤ dim(Ra) = 0,
so ht(Q) = 0. It follows that ht(P ) ≤ 1. ut

The principal ideal theorem can fail badly for non-Noetherian rings. Ex-
amples are given in Exercise 7.4.

Theorem 7.4 will be used in the proof of a second version of the principal
ideal theorem, which generalizes from principal ideals to ideals generated by n
elements.

Theorem 7.5 (Principal ideal theorem, generalized version). Let R be a
Noetherian ring and P ∈ Spec(R) a prime ideal that is minimal over an
ideal (a1, . . . , an) ⊆ R generated by n elements. Then

ht(P ) ≤ n.

Proof. We use induction on n. The result is correct for n = 0, so assume
n > 0. As in the proof of Theorem 7.4, we may assume that R is a local
ring with maximal ideal P . Let Q $ P be a prime ideal such that no other
prime ideals lie between Q and P . We need to show that ht(Q) ≤ n− 1. By
assumption, Q does not lie over (a1, . . . , an), so by relabeling we may assume
that a1 /∈ Q. So P is a prime ideal that is minimal over Q+ (a1), and since
P is the unique maximal ideal of R, it is the only prime ideal over Q+ (a1).
By Corollary 1.12, we obtain P =

√
Q+ (a1), so for i ∈ {2, . . . , n} we have

aki
i = bi + xia1 with ki > 0, bi ∈ Q, and xi ∈ R.

This implies (a1, a
k2
2 , . . . , a

kn
n ) = (a1, b2, . . . , bn). Therefore P is minimal over

(a1, b2, . . . , bn), so by Lemma 1.22, P/(b2, . . . , bn) ∈ Spec (R/(b2, . . . , bn)) is
minimal over (a1, b2, . . . , bn)/(b2, . . . , bn). But this last ideal is a principal
ideal in R/(b2, . . . , bn), so

ht (P/(b2, . . . , bn)) ≤ 1
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by Theorem 7.4. This implies ht (Q/(b2, . . . , bn)) = 0, so Q is a prime ideal
that is minimal over (b2, . . . , bn). By induction, this implies ht(Q) ≤ n − 1,
which completes the proof. ut

In the case that R is an affine domain, Theorem 7.5 translates into a
statement on dimension, which is given in Theorem 8.25. Readers may be
interested in taking a look at that theorem already now, along with its geo-
metric interpretation that is discussed after Theorem 8.25.

Theorem 7.5 has some important consequences. Here is a first corollary.

Corollary 7.6 (Finiteness of height). Let R be a Noetherian ring and P ∈
Spec(R). If P is generated by n elements, then

ht(P ) ≤ n.

In particular, every Noetherian local ring has finite Krull dimension, bounded
above by the number of generators of the maximal ideal.

Exercise 7.7 shows that it is not always true that a Noetherian ring has
finite Krull dimension.

Just like Nakayama’s lemma, the following result is rather technical and
inconspicuous, but often used.

Lemma 7.7 (Prime avoidance). Let R be a ring and I, P1, . . . , Pn ⊆ R ide-
als, with n a positive integer. Assume that Pi is a prime ideal for i > 2.
Then

I ⊆
n⋃
i=1

Pi

implies that there exists an i with I ⊆ Pi.

Proof. The proof is by induction on n. There is nothing to show for n = 1, so
assume n > 1. By way of contradiction, assume that for each i ∈ {1, . . . , n}
there exists

xi ∈ I \
⋃
j 6=i

Pj .

So by assumption, xi ∈ Pi. It follows that x1 + x2 lies in I but neither in P1

nor in P2, so n > 2. But then x1 ·x2 · · ·xn−1 +xn lies in I but in none of the
Pi, a contradiction. Therefore there exists i with

I ⊆
⋃
j 6=i

Pj ,

and the result follows by induction. ut

The prime avoidance lemma is about interchanging quantifiers: If for each
x ∈ I there exists i ∈ {1, . . . , n} such that x ∈ Pi, then there exists i such
that for all x ∈ I one has x ∈ Pi. The name “prime avoidance” comes from
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reading the lemma backwards: If I is contained in none of the Pi, then there
exists an element x of I which lies in none of the Pi, i.e., x avoids all Pi.

Using prime avoidance, we will now see that Theorem 7.5 has its own
converse as a consequence.

Theorem 7.8 (A converse of the principal ideal theorem). Let R be a Noe-
therian ring and P ∈ Spec(R) a prime ideal of height n. Then there exist
a1, . . . , an ∈ R such that P is minimal over (a1, . . . , an).

Proof. We will show that there exist a1, . . . , an ∈ P with

ht ((a1, . . . , ak)) = k for all k ≤ n.

Assume that a1, . . . , ak−1 have been found. LetM⊆ Spec(R) be the set of all
prime ideals that are minimal over (a1, . . . , ak−1). By Definition 6.10(b), every
Q ∈M has height at least k−1, so by Theorem 7.5 we must have ht(Q) = k−1
(and this is also true in the case k = 1). This implies P 6⊆ Q. Since M is
finite by Corollary 3.14(d), Lemma 7.7 yields the existence of ak ∈ P with
ak /∈ Q for all Q ∈ M. Every prime ideal Q′ lying over (a1, . . . , ak) also lies
over (a1, . . . , ak−1), so Q′ contains a Q ∈M. Since ak /∈ Q, the containment
is proper, so ht(Q′) > ht(Q) = k − 1. This implies ht ((a1, . . . , ak)) ≥ k, and
Theorem 7.5 yields equality.

For k = n, we obtain that P lies minimally over (a1, . . . , an), since other-
wise ht(P ) > n. ut

Corollary 7.9 (Systems of parameters). Let R be a Noetherian local ring
with maximal ideal m. Then dim(R) is the least number n such that there
exist a1, . . . , an ∈ m with

m =
√

(a1, . . . , an). (7.2)

A sequence a1, . . . , an ∈ m satisfying (7.2) with n = dim(R) will be called a
system of parameters of R.

Proof. Using Corollary 1.12, we see that (7.2) is equivalent to the condition
that m is minimal over (a1, . . . , an). The existence of a1, . . . , an with n =
ht(m) = dim(R) is guaranteed by Theorem 7.8. By Theorem 7.5, n cannot
be chosen smaller than dim(R). ut

In Exercise 8.10, a connection between systems of parameters and Noether
normalization is given. This gives rise to a (rather rough) geometric interpre-
tation of a system of parameters as a “good local coordinate system”.
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7.2 The Dimension of Fibers

In this section we study images of morphisms and the dimensions of fibers,
a project that will be completed in Chapter 10. The results of Chapter 10
will not be used anywhere else in this book, and of this section, only Proposi-
tion 7.11 and the term going down will be used outside of Chapter 10. There-
fore it is possible to restrict the reading of this section to Proposition 7.11 and
the discussion of going down on page 95, and to skip Chapter 10 altogether.

In algebraic geometry, a fiber is the preimage f−1({x}) of a point x
under a morphism f . In this section we study the dimension of fibers.
In the case that f is a surjective linear map between vector spaces V
and W , we know from linear algebra that all fibers have the dimension
dim

(
f−1(x)

)
= dim(V ) − dim(W ), so it is reasonable to expect a similar

formula in more general cases. It may be instructive to take a look at Exam-
ple 7.14 already now to get an impression of what can happen in the affine
variety case. As we will see, it requires a good deal of work to transport the
above formula to situations beyond linear maps. We start by considering the
algebraic counterpart of fibers. The following lemma, which deals with the
local case, is a consequence of Corollary 7.9. After giving the proof, we will
discuss why we refer to the lemma under the keyword fiber dimension, and
in particular we will see that the quotient ring S/I in the lemma belongs to
the fiber (see the discussion after Proposition 7.11).

Lemma 7.10 (Fiber dimension, lower bound, local case). Let R and S be
Noetherian local rings with maximal ideals m and n, respectively. Let ϕ: R→
S be a homomorphism with ϕ(m) ⊆ n, and let I := (ϕ(m))S be the ideal in S
generated by the image of m. Then

dim (S/I) ≥ dim(S)− dim(R).

Proof. Let a1, . . . , am ∈ m be a system of parameters of R, so m = dim(R)
by Corollary 7.9. By Lemma 2.6, there exists a non-negative integer k with
mk ⊆ (a1, . . . , am)R. It is easy to check that this implies

Ik ⊆ (ϕ(a1), . . . , ϕ(am))S . (7.3)

Since S/I is local and Noetherian by Lemma 1.22 and Proposition 2.4, there
exists a system of parameters b1 + I, . . . , bn + I ∈ n/I (with bi ∈ n) of S/I,
so n = dim (S/I) by Corollary 7.9. We claim that

n =
√

(ϕ(a1), . . . , ϕ(am), b1, . . . , bn)S . (7.4)

It is clear that the right hand side of (7.4) is contained in the left hand
side. Conversely, let x ∈ n. There exists a positive integer l with (x + I)l ∈
(b1 + I, . . . , bn + I)S/I , so xl ∈ (b1, . . . , bn)S + I. With (7.3), this yields
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xkl ∈ (b1, . . . , bn)S + Ik ⊆ (ϕ(a1), . . . , ϕ(am), b1, . . . , bn)S .

So (7.4) is proved. By Corollary 7.9, this implies dim(S) ≤ m+ n. ut

Given a homomorphism ϕ: R→ S of rings, we have an induced map

f : Spec(S)→ Spec(R), Q 7→ ϕ−1(Q) (7.5)

(see on page 47; if R and S are coordinate rings of affine varieties, f corre-
sponds to a morphism of varieties). For P ∈ Spec(R), the set f−1({P}) is
called the fiber of f over P . We now wish to give an algebraic counterpart
of the fiber. The answer is as follows. Consider the ideal I = (ϕ(P ))S in S
generated by the image of P , and the multiplicative subset

U := {ϕ(a) + I | a ∈ R \ P} ⊆ S/I.

Then form the ring
S[P ] := U−1 (S/I) .

With the canonical homomorphisms π: S → S/I and ε: S/I → S[P ], we get
the following result.

Proposition 7.11. In the above situation, the map

Φ: Spec
(
S[P ]

)
→ f−1({P}), Q 7→ π−1

(
ε−1(Q)

)
is an inclusion-preserving bijection.

Proof. By Lemma 1.22 and Theorem 6.5, Φ is an inclusion-preserving injec-
tion Spec

(
S[P ]

)
→ Spec(S), and its image is

im(Φ) = {Q ∈ Spec(S) | I ⊆ Q and U ∩ (Q/I) = ∅} .

It is easy to verify that the above conditions on Q are equivalent to P =
ϕ−1(Q), i.e., Q ∈ f−1({P}). ut

In fact, the bijection Φ from Proposition 7.11 can be shown to be a home-
omorphism (this follows from Exercises 3.4 and 6.5). So S[P ] is the desired
algebraic counterpart of the fiber, and the fiber dimension is equal to the
Krull dimension of S[P ]. Motivated by Proposition 7.11, we call S[P ] the fiber
ring of ϕ over P . Notice that S[P ]

∼= S/I if P is a maximal ideal, since in
that case all ϕ(a)+I with a ∈ R\P are already invertible in S/I. The reader
should be warned that the symbol S[P ] for the fiber ring is not standard no-
tation. In Exercise 7.9 we will study a more abstract way of defining the fiber
ring, and introduce an alternative notation that is more standard.

Theorem 7.12 (Fiber dimension, lower bound). Let ϕ: R → S be a homo-
morphism of Noetherian rings. Moreover, let Q ∈ Spec(S) and P := ϕ−1(Q).
Then for the fiber ring S[P ] we have
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dim
(
S[P ]

)
≥ ht(Q)− ht(P ). (7.6)

In fact, if Q ∈ Spec
(
S[P ]

)
is the image of Q in S[P ] (i.e., Q = U−1 (Q/I)

with the above notation), then

ht (Q) ≥ ht(Q)− ht(P ). (7.7)

Proof. The second inequality (7.7) implies the first, so we only need to
prove (7.7). We do this by reduction to the local case. We have a (well-
defined) homomorphism

ψ: RP → SQ,
a

b
7→ ϕ(a)

ϕ(b)

mapping PP into QQ. Setting J := (ψ(PP ))SQ
and applying Lemma 7.10, we

obtain
dim (SQ/J) ≥ dim(SQ)− dim(RP ) = ht(Q)− ht(P ). (7.8)

We claim that dim (SQ/J) = ht(Q). To prove this, we study the spectrum of
SQ/J . With the canonical homomorphisms ε: S → SQ and π: SQ → SQ/J ,
we get a map

Spec (SQ/J)→ Spec(S), q 7→ ε−1
(
π−1(q)

)
.

By Lemma 1.22 and Theorem 6.5, this map is inclusion-preserving and injec-
tive, and its image is

M := {Q′ ∈ Spec(S) | ϕ(P ) ⊆ Q′ and Q′ ⊆ Q}
=
{
Q′ ∈ Spec(S) | ϕ−1(Q′) = P and Q′ ⊆ Q

}
.

So dim (SQ/J) is the maximal length of a chain inM. On the other hand, by
Proposition 7.11, M is in an inclusion-preserving, bijective correspondence
with {

Q′ ∈ Spec
(
S[P ]

)
| Q′ ⊆ Q

}
.

So ht(Q) is also the maximal length of a chain inM, and we conclude ht(Q) =
dim (SQ/J). ut

The most important special case of Theorem 7.12 is the “truly geometric”
case where ϕ comes from a morphism of affine varieties. Readers may already
take a look at the inequality (10.8) in Corollary 10.6 on page 152, which gives
a translation of Theorem 7.12 into geometric terms.

We will continue to investigate whether (or when) the inequalities in Theo-
rem 7.12 are actually equalities (see Theorem 10.5 for the final result). Before
we start doing that, we draw an important conclusion, which only requires
the lower bound from Theorem 7.12.
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Corollary 7.13 (Dimension of polynomial rings). Let R 6= {0} be a Noethe-
rian ring and R[x] the polynomial ring in one indeterminate. Then

dim (R[x]) = dim(R) + 1.

Proof. Let ϕ: R→ R[x] =: S be the natural embedding. For an ideal I ⊆ R
we have S/ (ϕ(I))S ∼= (R/I) [x] and ϕ−1 ((ϕ(I))S) = I. Let P0 $ P1 $ · · · $
Pn be a chain of prime ideals in Spec(R). By the above, Qi := (ϕ(Pi))S
yields a strictly ascending chain of prime ideals in S. Qn is not maximal
since S/Qn ∼= (R/Pn) [x] is not a field. Therefore dim(S) ≥ n + 1, and we
conclude

dim(S) ≥ dim(R) + 1.

For showing the reverse inequality, let Q ∈ Spec(S) be a prime ideal and set
P := ϕ−1(Q) ∈ Spec(R). We are done if we can show that ht(Q) ≤ ht(P ) +
1. S is Noetherian by Theorem 2.11, so we may apply Theorem 7.12. The
inequality (7.6) yields ht(Q) ≤ ht(P ) + dim(S[P ]), so it remains to show that
dim(S[P ]) ≤ 1. We have S/ (ϕ(P ))S ∼= (R/P ) [x], and under this isomorphism
the set U = {ϕ(a) + (ϕ(P ))S | a ∈ R \ P} maps to (R/P ) \ {0}, so the fiber
ring is

S[P ]
∼= ((R/P ) \ {0})−1 (R/P ) [x] = Quot(R/P )[x].

So by Example 5.2(6) we get dim(S[P ]) = 1. ut

By repeated application of Corollary 7.13 we obtain a new proof of the
first part of Corollary 5.7. In Exercise 7.10, the analogous result is shown for
power series rings.

When are the inequalities of Theorem 7.12 actually equalities? We first
look at two examples.
Example 7.14. We assume that K is an algebraically closed field.

(1) Let X = VK2(x1 · x2) be the “coordinate cross”, Y = K1 and

f : X → Y, (ξ1, ξ2) 7→ ξ1

the first projection. This is the morphism of varieties induced by ϕ:
K[x] → K[x1, x2]/(x1 · x2), x 7→ x1 + (x1 · x2). Every maximal ideal
in K[x] corresponds to a point ξ ∈ K1, and has height 1 by the geomet-
ric interpretation of height (Remark 6.11(b)). Likewise, every maximal
ideal in K[x1, x2]/(x1 ·x2) has height 1. For ξ ∈ K1\{0}, the fiber f−1(ξ)
consists of one point, so both inequalities from Theorem 7.12 are equali-
ties. But for ξ = 0, the fiber is the entire x2-axis, so here the inequalities
are strict.

(2) The variety X in the previous example is reducible. Now consider the
irreducible variety

X = VK3(x2
1 + x2

2 − x2
3) = VK3

(
x2

1 + (x2 + x3)(x2 − x3)
)
,
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which in R3 visualizes as a circular cone, and the morphism

f : X → Y := K2, (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2 + ξ3).

We assume that K is not of characteristic 2. As above, we see that all
maximal ideals in the coordinate rings K[X] and K[Y ] have height 2. For
(α, β) ∈ K2 with β 6= 0, we have

f−1(α, β) =
{(

α,
β2 − α2

2β
,
β2 + α2

2β

)}
,

so the fiber dimension is 0 and we have equality in Theorem 7.12. But for
β = 0 and α 6= 0, the fiber is empty (so Theorem 7.12 does not apply),
and for α = β = 0 we have

f−1(0, 0) = {(0, η,−η) | η ∈ K} ,

which is one-dimensional. So here the inequalities are strict. /

In both of the above examples, the inequalities from Theorem 7.12 are
equalities on an open, dense subset of Y . But we could easily destroy equality
by substituting Y with a larger affine variety of higher dimension. This shows
that for Y an irreducible affine variety, equality can only hold if the morphism
is dominant. So Exercise 4.2 tells us that a reasonable hypothesis where we
can expect equality almost everywhere is that ϕ: R → S is injective. This
explains why Theorem 10.5, our final result on fiber dimension, has this
hypothesis.

To push the theory further, we need a few lemmas. Before stating the first,
we introduce the following terminology. We will say that going down holds
for a homomorphism ϕ: R → S of rings if for every P ∈ Spec(R) and every
Q′ ∈ Spec(S) with ϕ(P ) ⊆ Q′, there exists Q ∈ Spec(S) with Q ⊆ Q′ and
ϕ−1(Q) = P . This is illustrated in Figure 7.2.

P

ϕ−1(Q′)

Q

���
��

Q′

����

R

S

Figure 7.2. Going down



96 7 The Principal Ideal Theorem

The term “going down” refers to the descent from Q′ to Q. Exercise 8.8
contains an example where going down fails. It is easy to see that if U ⊆ R is a
multiplicative subset and going down holds for the homomorphism U−1R→
ϕ(U)−1S induced by ϕ, then it also holds for the original homomorphism
ϕ: R→ S with the additional hypothesis that ϕ(U) ∩Q′ = ∅.

Lemma 7.15 (Going down and fiber dimension). In the situation of Theo-
rem 7.12, let U := ϕ(R \ P ). If going down holds for the homomorphism
RP → U−1S induced by ϕ, then we have equality in (7.7).

Proof. By Proposition 7.11, ht(Q) is the maximal length of a chain

Q0 $ Q1 $ · · · $ Qm = Q (7.9)

of prime ideals Qi ∈ Spec(S) with ϕ−1(Qi) = P . We have a chain P0 $
· · · $ Pn = P in Spec(R) of length n = ht(P ). Since U ∩ Q0 = ∅ and
ϕ(Pn−1) ⊆ ϕ(P ) ⊆ Q0, we can use the remark preceding Lemma 7.15 to work
downwards along the chain of Pi and find Q−1, . . . , Q−n ∈ Spec(S) extending
the chain (7.9) downwards. This yields ht(Q) ≥ n + m = ht(P ) + ht(Q),
so (7.7) is an equality. ut

A ring-homomorphism R → S makes S into an R-module. Recall that
modules over a ring do not always have a basis (= a linearly independent
generating set). If a module does have a basis, it is called free.

Lemma 7.16 (Freeness implies going down). Let ϕ: R → S be a ring-
homomorphism with S Noetherian.

(a) If S is free as an R-module, then going down holds for ϕ.
(b) If additionally there exists a basis B of S over R with 1 ∈ B, then the

induced map ϕ∗: Spec(S)→ Spec(R) is surjective.

Proof. For the proof of (a), let P ∈ Spec(R) and Q′ ∈ Spec(S) with ϕ(P ) ⊆
Q′. Set I := (ϕ(P ))S , and let Q ∈ Spec(S) be minimal among the prime
ideals which lie between I and Q′. In particular, Q is a minimal prime ideal
over I. Let Q1, . . . , Qn be the other minimal prime ideals over I. (There are
finitely many of them by Corollary 3.14(d).) We have

⋂n
i=1Qi 6⊆ Q, so we

may choose y ∈
⋂n
i=1Qi \ Q. We claim that ϕ−1(Q) ⊆ P , which together

with I ⊆ Q yields ϕ−1(Q) = P , showing (a). So take a ∈ ϕ−1(Q). Then

ϕ(a)y ∈ Q ∩
n⋂
i=1

Qi =
√
I,

where Corollary 3.14(d) was used. So there exists a positive integer k with
ϕ(a)kyk ∈ I. We have yk /∈ I, since the contrary would imply y ∈ Q. So the
smallest j with ϕ(a)jyk ∈ I is positive. Set z := ϕ(a)j−1yk. Then z /∈ I but
ϕ(a)z ∈ I, so
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ϕ(a)z =
m∑
i=1

xiϕ(ai) (7.10)

with xi ∈ S and ai ∈ P . If B is a basis of S as an R-module, we can write
z =

∑
b∈B ϕ(zb) · b and xi =

∑
b∈B ϕ(xi,b) · b with zb, xi,b ∈ R (where only

finitely many coefficients in the sums are non-zero). From (7.10) and the
linear independence of B we get

a · zb =
m∑
i=1

xi,bai ∈ P

for all b ∈ B. But there exists b ∈ B with zb /∈ P (otherwise, z ∈ I), so a ∈ P .
This completes the proof of (a).

The hypothesis of (b) implies that there exists a homomorphism ψ: S → R
of R-modules with ψ ◦ ϕ = idR. Let P ∈ Spec(R). In view of (a), we only
have to show that there exists Q′ ∈ Spec(S) with ϕ(P ) ⊆ Q′. Assume the
contrary. Then (ϕ(P ))S = S, so we have 1 =

∑m
i=1 siϕ(ai) with si ∈ S

and ai ∈ P . Applying ψ yields 1 =
∑m
i=1 ψ(si)ai ∈ P , a contradiction. This

proves (b). ut

In Chapter 8, we will obtain another set of conditions under which going
down holds (see Theorem 8.17).

This is how far we can push the theory with the present methods. We
will continue the investigation of fiber dimensions in Chapter 10. There we
will prove the generic freeness lemma (Corollary 10.2), which under rather
weak assumptions says that the hypotheses of Lemma 7.16(a) and (b) are
satisfied after localization at all prime ideals lying in an open, dense subset
of Spec(R). Putting things together, this yields exact formulas for the fiber
dimension, which hold almost everywhere (see Theorem 10.5).

Exercises to Chapter 7

7.1 (The Cayley-Hamilton theorem). Deduce the Cayley-Hamilton the-
orem (“substituting a square matrix A ∈ Rn×n over a ring into its own char-
acteristic polynomial f yields f(A) = 0”) from Lemma 7.2. (Solution on
page 255)

7.2 (Hypotheses of Nakayama’s lemma). Give an example which shows
that the hypothesis on finite generation of M cannot be dropped from
Nakayama’s Lemma 7.3. (Solution on page 255)

7.3 (Nakayama’s lemma and systems of generators). Let R be a ring
with Jacobson radical J ⊆ R, and let M be a finitely generated R-module.
Write π: M →M/JM for the canonical map. Observe that M/JM = π(M)
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is an R/J-module, and for an R-submodule N of M , π(N) ⊆ π(M) is an
R/J-submodule.

(a) Let N ⊆M be a submodule. Show the equivalence

N = M ⇐⇒ π(N) = π(M).

(b) Let x1, . . . , xn ∈M . Show the equivalence

M = (x1, . . . , xn)R ⇐⇒ π(M) = (π(x1), . . . , π(xn))R/J .

(c) Assume that R is local with maximal ideal m, and write K := R/m. Show
that all minimal systems of generators of M have the same number n of
elements, namely n = dimK (M/mM).

(d) Give an example of a ring R and a finitely generated module M , where
not all minimal systems of generators have the same size.

(Solution on page 255)

*7.4 (Hypotheses of the principal ideal theorem). This exercise
shows that Krull’s Principal Ideal Theorem 7.4 may fail for non-Noetherian
rings. The example is adapted from Gilmer [20, p. 321, Exercise 21]. Let
K[x, y] be a polynomial ring over a field, and consider the subalgebra
R := K[x, xy, xy2, xy3, . . .] ⊂ K[x, y], that we have already seen as an exam-
ple of a non-Noetherian domain (Example 2.3).

(a) Show that there exists precisely one prime ideal P ∈ Spec(R) lying over
the principal ideal (x)R.

(b) Show that ht(P ) = 2.
(c) By generalizing this, construct a ring Rn for each n ∈ N∪{∞} which has

a proper principal ideal of height n.

(Solution on page 255)

7.5 (Can the spectrum be just one chain?). This exercise originated
from the question whether there exists a Noetherian ring with just three
prime ideals P0 $ P1 $ P2. When I posed this question to Viet-Trung Ngo,
he immediately answered it in the negative. His answer led to the following
statement, which should be proved in this exercise: If P ⊆ Q are two prime
ideals in a Noetherian ring R which have at most finitely many prime ide-
als in between, than in fact there exists no prime ideal which properly lies
between P and Q. (Solution on page 256)

7.6 (Semilocal rings). A ring R is called semilocal if it has (at most)
finitely many maximal ideals. For example, semilocal rings occur as coordi-
nate rings of affine varieties consisting of finitely many points. Here is how
semilocal rings can be constructed by localization. Let P1, . . . , Pn ∈ Spec(R)
be finitely many prime ideals in a ring such that Pi 6⊆ Pj for i 6= j. Show that
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U := R \
n⋃
i=1

Pi ⊆ R

is a multiplicative subset. Furthermore, show that the localization U−1R is
semilocal with maximal ideals U−1Pi. (Solution on page 256)

*7.7 (An infinite-dimensional, Noetherian ring). In this exercise we
study an example of a Noetherian ring which has infinite Krull dimension.
The example is due to Nagata [41, Appendix, Example E1], and the hints
given for the proof are adapted from Eisenbud [17, Exercise 9.6]. Let K be a
field and R = K[x1, x2, . . .] a polynomial ring in countably many indetermi-
nates xi, i ∈ N. Consider the prime ideals

Pi :=
(
xi2+1, xi2+2, . . . , x(i+1)2

)
⊂ R (i ∈ N0)

and set U := R \ ∪i∈N0Pi. Show that S := U−1R is Noetherian but has
infinite Krull dimension.
Hint: The hard part is to show that S is Noetherian. For this, consider a
non-zero ideal I ⊆ R, take f ∈ I \ {0}, and choose n ∈ N0 such that all
indeterminates xj occurring in f satisfy j ≤ (n+ 1)2. Show that there exist
f1, . . . , fm ∈ I such that (I)RPi

= (f1, . . . , fm)RPi
for i ≤ n. Now take g ∈ I

and set
J := {h ∈ R | h · g ∈ (f1, . . . , fm, f)R} .

Use Lemma 7.7 to show that there exists h ∈ J \ ∪ni=0Pi. Assume that
J ⊆ ∪i∈N0Pi and derive a contradiction. From this, conclude that g ∈
(f1, . . . , fm, f)S , and that S is Noetherian. (Solution on page 257)

7.8 (Systems of parameters). Parts (a)–(c) of this exercise give examples
of affine varieties X ⊆ Kn over an algebraically closed field. Consider the
localization Rx of the coordinate ring R = K[X] at the point x = (0, . . . , 0) ∈
X and find a system of parameters of Rx. Does there exist a system of
parameters which generates the maximal ideal?

(a) X = {(ξ1, ξ2) ∈ K2 | ξ1ξ2 = 0} (see Example 7.14(1)).
(b) X = {(ξ1, ξ2, ξ3) ∈ KL3 | ξ21 + ξ22 − ξ23 = 0} (see Example 7.14(2)).
(c) X = {(ξ1, ξ2) ∈ K2 | ξ22 − ξ1(ξ21 + 1) = 0} (an elliptic curve, shown as X3

Figure 12.1 on page 189).

Hint: You may use Exercise 7.3(c) for answering the second question.
Remark: A local ring whose maximal ideal is generated by a system of pa-
rameters is called regular (see Definition 13.2). (Solution on page 258)

7.9 (The fiber ring as a tensor product). This exercise gives a more
abstract description of the fiber ring. Let ϕ: R → S be a homomorphism
of rings and P ∈ Spec(R). Let K := Quot(R/P ) and ψ: R → K, a 7→ a+P

1+P
the canonical map.



100 7 The Principal Ideal Theorem

(a) Show that the fiber ring S[P ] is the pushout of ϕ and ψ. Here is the
definition of the pushout.
For two R-algebras A and B (given by homomorphisms α and β), the
pushout of α and β is defined to be a ring C together with homomor-
phisms γ: A→ C and δ: B → C making the square in the below diagram
commutative (i.e., γ ◦ α = δ ◦ β), such that the following universal prop-
erty holds: For a ring T with homomorphisms Γ : A→ T and ∆: B → T
with Γ ◦α = ∆ ◦β, there exists a unique homomorphism Θ: C → T such
that the diagram

R α - A

β

?

γ

?

B δ - C

A
A
A
A
A
A
A
A
AU

Γ
HHH

HHHHHHj

∆

p p p p p p p p p p p p p p p p pR
Θ

T

commutes (i.e., Θ ◦ γ = Γ and Θ ◦ δ = ∆). As usual with universal
properties, this implies that the pushout (if it exists) is unique up to
isomorphism. More precisely, between two pushouts there exists a unique
map which is simultaneously an isomorphism of A-algebras and of B-
algebras.

(b) Conclude that Spec
(
S[P ]

)
is the pullback of the maps f : Spec(S) →

Spec(R) and g: Spec(K)→ Spec(R) induced by ϕ and ψ. (The pullback
is defined as the pushout, but with all arrows reversed, and the maps
considered are morphisms of spectra of rings.)

(c) Describe the map g: Spec(K) → Spec(R) explicitly, and show that the
pullback of f and g is the fiber f−1({P}). So Spec

(
S[P ]

) ∼= f−1({P}) by
the uniqueness of pullbacks, which re-proves Proposition 7.11.

Remark: The pushout of two homomorphisms α: R → A and β: R → B is
isomorphic to the tensor product A⊗R B, which is equipped with a natural
structure as a ring (see Lang [33, Ch. XVI, Proposition 6.1]). So by (a) we
have S[P ]

∼= K⊗RS. In fact, a notation the fiber ring over P more commonly
found in the literature is κ(P )⊗R S, where κ(P ) := Quot(R/P ) = K stands
for the residue class field at P . (Solution on page 258)

7.10 (Dimension of the formal power series ring). Let R 6= {0} be a
Noetherian ring and R[[x]] the formal power series ring over R. Show that

dim (R[[x]]) = dim(R) + 1.

The proof may be broken up into the following steps.
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(a) If I ⊆ R is an ideal, then the kernel of the epimorphism S := R[[x]] →
(R/I) [[x]], obtained from applying the canonical map R → R/I coeffi-
cient-wise, is (I)S . Conclude that dim(S) ≥ dim(R) = 1.

(b) Show that 1− xf is invertible in S for every f ∈ S. Let m ∈ Specmax(S)
be a maximal ideal. Conclude that x ∈ m. Show that n := R ∩ m is a
maximal ideal in R.

(c) Show that
ht(m) ≤ ht(n) + 1.

This finishes the proof.

Remark: By repeatedly using this result, we obtain

dim (K[[x1, . . . , xn]]) = n

for the formal power series ring in n indeterminates over a field.
(Solution on page 260)

7.11 (Free modules and the locus of freeness). Parts (a)–(c) of this ex-
ercise give examples of ring extensions R ⊆ S. Decide if S is free as an R-
module. Determine the “locus of freeness”, i.e., the set Xfree ⊆ Spec(R) of all
P ∈ Spec(R) such that (R\P )−1S is free as an RP -module. Draw conclusions
on the fibers of the induced morphism Spec(S) → Spec(R). K[x1, x2, . . .] is
always a polynomial ring over a field.

(a) R = Z and S = Z[1/2].
(b) S = K[x1, x2]/(x2

2 − x2
1(x1 + 1)) and R = K[x1], where xi ∈ S denotes

the residue class of xi. See Example 8.9(4) for the variety belonging to S.
(c) S = K[x1, x2, x3]/(x2

1 + x2
2 − x2

3) and R − K[x1, x2 − x3] (see Exam-
ple 7.14(2)). We assume char(K) 6= 2.

(Solution on page 261)





Chapter 8

Integral Extensions

The concept of an integral ring extension is a generalization of the concept
of an algebraic field extension. In the first section of this chapter, we develop
the algebraic theory of integral extensions, and introduce the concept of a
normal ring. Section 8.2 studies the morphism Spec(S) → Spec(R) induced
from an integral extension R ⊆ S. In Section 8.3, we turn our attention to
affine algebras again. We prove the Noether normalization theorem, and use
it to prove, among other results, that all maximal ideals of an affine domain
have equal height.

8.1 Integral Closure

In the previous section we have considered ring-homomorphisms ϕ: R → S.
We will now assume that ϕ is injective, so we view R as a subring of S or
(equivalently) S as a ring extension of R.

Definition 8.1. Let S be a ring and R ⊆ S a subring.

(a) Let s ∈ S. A monic polynomial

g = xn + a1x
n−1 + · · ·+ an−1x+ an ∈ R[x]

with g(s) = 0 is called an integral equation for s over R.
(b) An element s ∈ S is called integral over R if there exists an integral

equation for s over R. (The difference to the definition of “algebraic” is
that we insist that the polynomial equation for s must be monic.)

(c) S is called integral over R if all elements from S are integral over R.
In this case we call S an integral extension of R.

Example 8.2. (1)
√

2 ∈ R is integral over Z. The ring Z[
√

2] is an integral
extension of Z.

103
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(2) 1/
√

2 ∈ R is not integral over Z (although it is algebraic). To see this,
assume

1
√

2
n + a1

1
√

2
n−1 + · · ·+ an−1

1√
2

+ an = 0

with ai ∈ Z. Observe that 1 and
√

2 are linearly independent over Q.
Multiplying the above equation by

√
2
n

and picking out the summands
that lie in Q yields

1 + 2a2 + 4a4 + · · · = 0,

a contradiction.
(3) s = 1+

√
5

2 ∈ R is integral over Z, since s2 − s− 1 = 0. Therefore s is also
integral over R := Z

[√
5
]
⊂ R (the subalgebra generated by

√
5). What

is remarkable about this is that there exists an algebraic equation for s
over R of degree 1 (so s ∈ Quot(R)), but the smallest integral equation
has degree 2. /

We wish to prove that products and sums of integral elements are again
integral. The proof is quite similar to the standard proof of the analogous
result in field theory, and requires the following lemma.

Lemma 8.3 (Integral elements and finite modules). Let S be a ring, R ⊆ S
a subring and s ∈ S. Then the following statements are equivalent.

(a) The element s is integral over R.
(b) The subalgebra R[s] ⊆ S generated by s is finitely generated as an R-

module.
(c) There exists an R[s]-module M with Ann(M) = {0}, such that M is

finitely generated as an R-module.

Proof. Assume that s is integral over R, so we have an integral equation
xn+ a1x

n−1 + · · ·+ an−1x+ an ∈ R[x] for s. We claim that R[s] is generated
by the si, i ∈ {0, . . . , n− 1}, i.e.,

R[s] =
(
1, s, . . . , sn−1

)
R

=
n−1∑
i=0

Rsi =: N.

Indeed, for k ≥ n, we have sk = −
(
a1s

k−1 + · · ·+ ans
k−n), so it follows by

induction that all sk lie in N . So (a) implies (b). Moreover, it is clear that (b)
implies (c): Take M = R[s], then 1 ∈M , so Ann(M) = {0}.

Now assume (c). We have M = (m1, . . . ,mr)R, so for each i ∈ {1, . . . , r}
there exist ai,j ∈ R with s ·mi =

∑r
j=1 ai,jmj . By Lemma 7.2 this implies

det (δi,js− ai,j)1≤i,j≤r ∈ Ann(M),

so by hypothesis the determinant is zero. Therefore det (δi,jx− ai,j)1≤i,j≤r ∈
R[x] is an integral equation for s. ut
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The following theorem is in perfect analogy to the result that a finitely
generated field extension is finite if and only if it is algebraic. It also implies
that sums and products of integral elements are again integral.

Theorem 8.4 (Generated by integral elements implies integral). Let S be a
ring and R ⊆ S a subring such that S = R[a1, . . . , an] is finitely generated as
an R-algebra. Then the following statements are equivalent.

(a) All ai are integral over R.
(b) S is integral over R.
(c) S is finitely generated as an R-module.

Proof. Clearly (b) implies (a). We use induction on n to show that (a) im-
plies (c). We may assume n > 0. By induction, S′ := R[a1, . . . , an−1] is
finitely generated as an R-module, so S′ = (m1, . . . ,mr)R =

∑r
i=1Rmi with

mi ∈ S′. We also have that an is integral over S′, so Lemma 8.3 yields
S′[an] =

∑l
j=1 S

′nj with nj ∈ S. Putting things together, we obtain

S = S′[an] =
l∑

j=1

r∑
i=1

Rminj ,

so (c) holds.
Finally, (c) implies (b) by Lemma 8.3 (Take M = S in Lemma 8.3(c)). ut

Corollary 8.5 (Integral elements form a subalgebra). Let S be a ring and
R ⊆ S a subring. Then the set

S′ := {s ∈ S | s is integral over R} ⊆ S

is an R-subalgebra.

Proof. Clearly all elements from R lie in S′. So all we need to show is that if
a, b ∈ S′, then also a+ b ∈ S′ and a · b ∈ S′. But this follows since R[a, b] is
integral over R by Theorem 8.4. ut

We obtain a further consequence of Lemma 8.3 and Theorem 8.4.

Corollary 8.6 (Towers of integral extensions). Let T be a ring and R ⊆
S ⊆ T subrings. If T is integral over S and S is integral over R, then T
is integral over R.

Proof. For every t ∈ T we have an integral equation

tn + s1t
n−1 + · · ·+ sn−1t+ sn = 0

with si ∈ S. So t is integral over S′ := R[s1, . . . , sn] ⊆ S. By Lemma 8.3,
S′[t] is finitely generated as an S′-module, and by Theorem 8.4, S′ is finitely
generated as an R-module. It follows that S′[t] is finitely generated as an
R-module, so applying Lemma 8.3 again shows that t is integral over R. ut
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Corollary 8.5 prompts the following definition.

Definition 8.7.

(a) Let S be a ring and R ⊆ S a subring. Then the set S′ of all elements
from S that are integral over R is called the integral closure of R in S.
If S′ = R, we say that R is integrally closed in S.

(b) An integral domain R is called normal if it is integrally closed in its field
of fractions Quot(R). One can extend this definition to rings that need
not be integral domains by calling a ring normal if it is integrally closed
in its total ring of fractions. In this book, normality is understood in the
above narrower sense.

(c) If R is an integral domain, the normalization of R, often written as R̃,
is the integral closure of R in its field of fractions Quot(R). Observe that
R̃ is normal by Corollary 8.6.

(d) An irreducible affine variety X over a field K is called normal if the
coordinate ring K[X] is normal.

Before giving some examples, we prove an elementary result.

Proposition 8.8. Every factorial ring is normal.

Proof. Let R be a factorial ring, and let a/b ∈ Quot(R) be integral over R
with a, b ∈ R coprime. So we have

an

bn
+ a1

an−1

bn−1
+ · · ·+ an−1

a

b
+ an = 0

with ai ∈ R. Multiplying this by bn shows that b divides an, so every prime
factor of b divides a. By the coprimality, b has no prime factors, so it is
invertible in R. Therefore a/b ∈ R. ut

Example 8.9. (1) By Proposition 8.8, Z is normal, and so is every polynomial
ring K[x1, . . . , xn] over a field.

(2) By Example 8.2(3), R := Z
[√

5
]

is not normal. In fact, the normalization
is

R̃ = Z
[(

1 +
√

5
)
/2
]

=: S.

To see this, let a+ b
√

5 ∈ Q
[√

5
]

= Quot(S) (with a, b ∈ Q) be integral
over S. Since S is integral over Z by Theorem 8.4, a + b

√
5 is integral

over Z by Corollary 8.6, and so is a − b
√

5 (satisfying the same integral
equation over Z). So the sum 2a and the product a2 − 5b2 of these two
elements are also integral over Z. Since Z is integrally closed, it follows
that 2a ∈ Z and a2 − 5b2 ∈ Z. Now it is easy to see that this implies
a+ b

√
5 ∈ S.

It may be interesting to note that the ring S is actually factorial.
(3) A rather different case is R = Z

[√
−5
]
⊆ C. For an element a+ b

√
−5 ∈

Q
[√
−5
]
, we obtain the conditions 2a ∈ Z and a2+5b2 ∈ Z for integrality
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over Z. It is easy to see that this implies a, b ∈ Z, so R is normal. However,
R is not factorial, as the non-unique factorization

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) (8.1)

shows. In fact, one needs to show that the factors in (8.1) really are
irreducible, and that the factorizations are essentially distinct, i.e., not
the same up to the order of the factors and up to invertible elements. For
z = a + b

√
−5 ∈ R, write N(z) := a2 + 5b2 = z · z (z times its complex

conjugate) for the so-called norm of z. Assume that 2 = z1z2 with zi ∈ R.
Since the norm is multiplicative, it follows that 4 = N(z1) · N(z2). But
2 does not occur as a norm of an element of R, so z1 or z2 has norm 1.
But this means z1 = ±1 or z2 = ±1, so z1 or z2 is invertible. Since
every invertible element of R has norm 1, 2 itself is not invertible, so 2
is irreducible in R. Since 3 is not a norm, either, it follows by the same
argument that 3 and 1 ±

√
−5 are irreducible, too. Finally, none of the

quotients (1 ±
√
−5)/2 and (1 ±

√
−5)/3 lie in R, so the factorizations

in (8.1) are essentially different.
This example shows that the converse of Proposition 8.8 does not hold.

(4) Let K be an algebraically closed field. An example from geometry is the
singular cubic curve

X = VK2

(
y2 − x2(x+ 1)

)
over a field K, which is shown in Figure 8.1, and which has a (visible)
singular point at the origin. The coordinate ring of X is

Figure 8.1. A singular cubic curve

A := K[X] = K[x, y]
/(
y2 − x2(x+ 1)

)
=: K[x, y].

We have
(y/x)2 − x− 1 = 0,
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so y/x ∈ Quot(A) is integral over A. The above equation also tells us
that x and y = (y/x) ·x lie in K [y/x], so A ⊆ K [y/x] ⊆ Ã. Since K [y/x]
is normal by Example 8.9(1), we obtain

Ã = K [y/x] .

It is interesting to consider the morphism of varieties induced by the
embedding A ↪→ Ã. This is given by

K1 → X, ζ 7→ (ζ2 − 1, ζ3 − ζ).

Observe thatK1 has no singular points, and that every non-singular point
of X has precisely one preimage in K1, whereas the unique singular point
of X has two preimages. So the normalization amounts to a desingular-
ization here. As we will see later, these observations are no coincidence.
In fact, we will prove in Section 14.1 that normality and non-singularity
coincide in dimension 1. This is one (but not the only) reason why normal
rings are interesting. /

As the following proposition shows, normality is a local property, meaning
that it holds globally if and only if it holds locally everywhere.

Proposition 8.10 (Normal rings and localization). For an integral domain
R, the following statements are equivalent.

(a) R is normal.
(b) For every multiplicative subset U ⊂ R with 0 /∈ U , the localization U−1R

is normal.
(c) For every maximal ideal m ∈ Specmax(R), the localization Rm is normal.

Proof. Let K = Quot(R) be the field of fractions. Assume that R is normal,
and let U ⊂ R be a multiplicative subset with 0 /∈ U . We have U−1R ⊆ K
and Quot(U−1R) = K. To show that U−1R is normal, let a ∈ K be integral
over U−1R. Then there exist u ∈ U and a1, . . . , an ∈ R such that

an +
a1

u
an−1 + · · ·+ an−1

u
a+

an
u

= 0.

Multiplying this by un yields an integral equation for ua over R. So by as-
sumption, ua ∈ R, so a ∈ U−1R. We have shown that the statement (a)
implies (b). Clearly (b) implies (c).

Now assume that (c) holds, and let a ∈ K be integral over R. Consider the
ideal I := {b ∈ R | ba ∈ R} ⊆ R. For every m ∈ Specmax(R), we have that
a is integral over Rm, so a ∈ Rm by assumption. It follows that there exists
b ∈ I \ m. This means that I is not contained in any maximal ideal. But if
I $ R, Zorn’s lemma would yield the existence of a maximal ideal containing
I. So 1 ∈ I, and a ∈ R follows. So we have shown that (c) implies (a). ut
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Proposition 8.10 implies that an irreducible affine variety X is normal if
and only if for every point x ∈ X the local ring K[X]x is normal. Normal-
ity also behaves well when passing from R to the polynomial ring R[x], as
Exercise 8.6 shows.

We finish the section with a lemma that will be used in Chapter 12. If R
is an integral domain, then an element s ∈ Quot(R) is said to be almost
integral (over R) if there exists a non-zero c ∈ R such that csn ∈ R for all
non-negative integers n.

Lemma 8.11 (Almost integral elements). In the above setting, if s is inte-
gral, then it is almost integral. If R is Noetherian, the converse holds.

Proof. By Lemma 8.3, s is integral if and only if R[s] ⊆ Quot(R) is finitely
generated as an R-module. In this case there exists c ∈ R \ {0} such that
cf ∈ R for all f ∈ R[s]. In particular, csn ∈ R for all n.

Conversely, if s is almost integral, then R[s] is contained in c−1R ⊆
Quot(R), which is finitely generated (by c−1) as an R-module. If R is Noethe-
rian, it follows with Theorem 2.10 that the same holds for R[s]. ut

8.2 Lying Over, Going Up and Going Down

If R ⊆ S is an extension of rings, we have a map f : Spec(S)→ Spec(R), Q 7→
R ∩Q induced from the inclusion. We know from Exercise 4.2 that this map
is dominant. The following theorem shows that if S is integral over R, then f
is, in fact, surjective, and its fibers are finite if S is finitely generated as an
R-algebra.

Theorem 8.12 (Lying over and going up). Let R ⊆ S be an integral exten-
sion of rings, P ∈ Spec(R) a prime ideal, and I ⊆ S an ideal with R∩I ⊆ P .
(Notice that the zero ideal always satisfies the condition on I.) Set

M := {Q ∈ Spec(S) | R ∩Q = P and I ⊆ Q} .

Then the following holds.

(a) M is non-empty.
(b) There exist no Q,Q′ ∈M with Q $ Q′.
(c) If S is finitely generated as an R-algebra, then M is finite.

The keywords “lying over” and “going up”, with which we advertised The-
orem 8.12, refer to the following: A prime ideal Q ∈ Spec(S) with R∩Q = P
is said to lie over P . If additionally I is contained in Q, we say that we are
going up from I. The situation is illustrated in Figure 8.2.

Proof of Theorem 8.12. With S′ := S/I, R′ := R/(R ∩ I), and P ′ :=
P/(R∩ I), we have an integral extension R′ ⊆ S′, and Lemma 1.22 yields an
inclusion-preserving bijection
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R ∩ I

P

I

�
�

��

Q

�
�

��

R

S

Figure 8.2. Lying over and going up

M→ {Q′ ∈ Spec(S′) | R′ ∩Q′ = P ′} .

Substituting all objects by their primed versions, we may therefore assume
that I = {0}. By Proposition 7.11, we have to show that the fiber ring S[P ] is
not the zero ring (implying (a)), has Krull dimension 0 (implying (b)), and
has a finite spectrum if S is finitely generated (implying (c)).

By way of contradiction, assume that S[P ] = {0}. By the definition of S[P ],
this is equivalent to the existence of u ∈ R \ P with u ∈ (P )S . Forming the
localization SP := (R \ P )−1S, we obtain 1 ∈ (PP )SP

, so

1 =
n∑
i=1

siai with si ∈ SP , ai ∈ PP .

Form S̃ := RP [s1, . . . , sn] ⊆ SP . Then the above equation implies (PP )eS = S̃,
which we may write as PP S̃ = S̃. Since S̃ is an integral extension of RP , it is
finitely generated as an RP -module by Theorem 8.4. Applying Nakayama’s
Lemma 7.3 yields S̃ = {0}. Since RP is embedded into S̃, this contradicts
the fact that local rings are never zero. So we conclude that S[P ] is non-zero.

The homomorphism

K := Quot (R/P )→ S[P ],
a+ P

b+ P
7→ a+ (P )S

b+ (P )S

makes S[P ] into a K-algebra. The hypothesis that S is integral over R trans-
lates into the fact that S[P ] is algebraic over K. So if Q ∈ Spec

(
S[P ]

)
, then

the quotient ring S[P ]/Q is algebraic over K as well, and Lemma 1.1(a) yields
that S[P ]/Q is a field. This shows that dim

(
S[P ]

)
= 0.

Finally, if S is finitely generated as an R-algebra, then S[P ] is an affine
K-algebra, so Theorem 5.11 yields that Specmax

(
S[P ]

)
is finite. Since S[P ]

has dimension 0, Spec
(
S[P ]

)
= Specmax

(
S[P ]

)
, so we are done. ut

Let R ⊆ S be an integral extension of rings. If P0 $ P1 $ · · · $ Pn is a
chain of prime ideals Pi ∈ Spec(R), we can use Theorem 8.12 to construct
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a chain Q0 ⊆ · · · ⊆ Qn of prime ideals in Spec(S) with R ∩ Qi = Pi. In
particular, all inclusions of the Qi are proper. So dim(S) ≥ n, which implies

dim(R) ≤ dim(S). (8.2)

On the other hand, if Q ∈ Spec(S) is a prime ideal and Q0 $ Q1 $ · · · $
Qn ⊆ Q is a chain of prime ideals in Spec(S), then Pi := R ∩ Qi yields a
chain in Spec(S), and it follows from Theorem 8.12(b) that the inclusions of
the Pi are proper. So with P := R ∩Q we obtain

ht(Q) ≤ ht(P ). (8.3)

This implies
dim(S) ≤ dim(R). (8.4)

By putting (8.2) and (8.4) together, we obtain

Corollary 8.13. Let R ⊆ S be an integral extension of rings. Then

dim(R) = dim(S).

We now pose the question whether the reverse inequality of (8.3) also
holds, i.e., whether (8.3) is in fact an equality. For proving this, we need to
start with a chain of prime ideals in Spec(R) which are all contained in P ,
and construct an equally long chain of prime ideals in Spec(S) which are all
contained in Q. The way to do this is to work our way downwards from Q.
But what we need for being able to do this is the going down property which
was discussed in Section 7.2 (see on page 95). We have shown:

Corollary 8.14. Let R ⊆ S be an integral extension of rings such that going
down holds for the inclusion R ↪→ S. Then for Q ∈ Spec(S) and P := R∩Q
we have

ht(P ) = ht(Q).

Unfortunately, going down does not always hold for integral ring exten-
sions, as Exercise 8.8 shows. We have proved that a sufficient condition for
going down is freeness (see Lemma 7.16). However, freeness is rarely found
for integral extensions. We will exhibit another sufficient condition for going
down (see Theorem 8.17). For proving this, we need two lemmas. The effort
is worth it, since the reverse inequality of (8.3) is of crucial importance for
proving some important results about affine algebras, such as Theorem 8.22
and its corollaries. The first lemma is a result from field theory. The proof uses
some standard results from field theory, which we will quote from Lang [33].

Lemma 8.15 (Elements fixed by field-automorphisms). Let N be a field of
characteristic p ≥ 0 and let K ⊆ N a subfield such that N is finite and
normal over K (see Lang [33, Ch. VII, Theorem 3.3] for the definition of a
normal field extension). Let G := AutK(N) be the group of automorphisms
of N fixing K element-wise. Then for every α ∈ NG in the fixed field of G,



112 8 Integral Extensions

there exists n ∈ N0 such that αp
n ∈ K. If N is separable over K, then n = 0,

so α ∈ K.

Proof. In the separable case, the lemma follows directly from Galois theory.
The proof we give works for the separable case, too.

Let g = irr(α,K) ∈ K[x] be the minimal polynomial of α over K. Let
N be the algebraic closure of N , and let β ∈ N be a zero of g. Since
K[α] ∼= K[x]/(g) ∼= K[β] with an isomorphism sending α to β, we have a
homomorphism σ: K[α] → N of K-algebras with σ(α) = β. By Lang [33,
Ch. VII, Theorem 2.8], this extends to a homomorphism σ: N → N . The
normality of N implies σ ∈ G (see Lang [33, Ch. VII, Theorem 3.3]). Since
σ(α) = β, the hypothesis of the lemma implies β = α. So α is the only zero
of g, and we obtain g = (x−α)m with m ∈ N. Write m = k · pn with p - k. If
N is separable over K, then g has to be separable, so m = 1 and n = 0. We
have

g = (x− α)m = (xp
n

− αp
n

)k = xkp
n

− k · αp
n

· x(k−1)pn

+ (lower terms),

so g ∈ K[x] implies ap
n ∈ K. ut

Lemma 8.16. Let N be a field and K ⊆ N a subfield such that N is finite
and normal over K. Let R ⊆ K be a subring that is integrally closed in K,
and let S ⊆ N be the integral closure of R in N . Then for two prime ideals
Q, Q̃ ∈ Spec(S) with R ∩ Q = R ∩ Q̃, there exists σ ∈ G := AutK(N) with
Q̃ = σ(Q).

Proof. Let a ∈ Q̃. Then the product
∏
σ∈G σ(a) lies in NG, so by Lemma 8.15

there exists n ∈ N0 with

b :=
∏
σ∈G

σ(a)p
n

∈ K, (8.5)

where p = char(K) and n = 0 if p = 0. Since a is integral over R and all
σ ∈ G fix R element-wise, all σ(a) are integral over R as well. So b is integral
over R, too, and (8.5) implies b ∈ R. Moreover, b is an S-multiple of a, so
b ∈ R ∩ Q̃ = R ∩Q ⊆ Q. Since Q is a prime ideal, it follows from (8.5) that
there exists σ ∈ G with σ(a) ∈ Q. Since this holds for all a ∈ Q̃, we conclude

Q̃ ⊆
⋃
σ∈G

σ(Q).

By the Prime Avoidance Lemma 7.7, this implies that there exists σ ∈ G with
Q̃ ⊆ σ(Q). Since σ fixes R element-wise, we have R∩σ(Q) = R∩Q = R∩ Q̃,
so by Theorem 8.12(b), the inclusion Q̃ ⊆ σ(Q) cannot be strict. ut

Theorem 8.17 (Going down for integral extensions of normal rings). Let S
be a ring and R ⊆ S a subring such that
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(1) S is an integral domain,
(2) R is normal,
(3) S is integral over R, and
(4) S is finitely generated as an R-algebra.

Then going down holds for the inclusion R ↪→ S. In particular, the conclusion
of Corollary 8.14 holds.

Proof. The proof is not difficult but a bit involved. Figure 8.3 shows what is
going on. Given prime ideals P ∈ Spec(R) and Q′ ∈ Spec(S) with P ⊆ Q′,
we need to produce Q ∈ Spec(S) with R ∩ Q = P and Q ⊆ Q′. The field
of fractions L := Quot(S) is a finite field extension of K := Quot(R). By
Lang [33, Ch. VII, Theorem 3.3], there exists a finite, normal field extension
N of K such that L ⊆ N . Let T ⊆ N be the integral closure of R in N , so
S ⊆ T . By Theorem 8.12, there exist Z̃, Z ′ ∈ Spec(T ) such that R ∩ Z̃ = P

and S ∩ Z ′ = Q′. We cannot assume that Z̃ is contained in Z ′. However,
applying Theorem 8.12 again, we see that there exists Z̃ ′ ∈ Spec(T ) such
that R ∩ Z̃ ′ = R ∩Q′ and Z̃ ⊆ Z̃ ′. We have

R ∩ Z ′ = R ∩ S ∩ Z ′ = R ∩Q′ = R ∩ Z̃ ′.

So by Lemma 8.16 there exists σ ∈ AutK(N) with Z ′ = σ(Z̃ ′). Set Z := σ(Z̃)
and Q := S ∩ Z ∈ Spec(S). Then

R ∩Q = R ∩ Z = R ∩ σ(Z̃) = R ∩ Z̃ = P

and
Q = S ∩ σ(Z̃) ⊆ S ∩ σ(Z̃ ′) = S ∩ Z ′ = Q′.

This finishes the proof. ut

P

R ∩Q′

R

����� Q

���� Q′

S

����� Z

����� Z′

� σ eZ

� σ eZ′�
�
�

S
S

S
T

Figure 8.3. Going down: given P and Q′, construct Q
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We finish this section by drawing some conclusions about geometric prop-
erties of normalization.

Proposition 8.18 (Geometric properties of normalization). Let R be an in-
tegral domain with normalization R̃, and consider the morphism f :
Spec(R̃)→ Spec(R) induced from the inclusion R ⊆ R̃. Then

(a) dim(R̃) = dim(R).
(b) The morphism f is surjective.
(c) Let P ∈ Spec(R) such that RP is normal. Then the fiber f−1 ({P}) con-

sists of one point.

Proof. Parts (a) and (b) follow from Corollary 8.13 and Theorem 8.12(a).
To prove (c), take P ∈ Spec(R) with RP normal. Both RP and R̃ are con-

tained in Quot(R). With U := R\P we have U−1R̃ ⊆ Quot(R) = Quot(RP ),
and U−1R̃ is integral over RP , so U−1R̃ = RP by the normality of RP . Let
Q ∈ Spec(R̃) be in the fiber of P , so R∩Q = P . By Theorem 6.5 it follows that
U−1Q ∈ Spec(U−1R̃) = Spec(RP ), and R̃ ∩ U−1Q = Q, so R ∩ U−1Q = P .
But Theorem 6.5 also says that PP is the only prime ideal in RP whose in-
tersection with R is P , so U−1Q = PP . It follows that Q = R̃ ∩ PP , showing
uniqueness. ut

8.3 Noether Normalization

We now turn our attention to the special case of affine algebras. Let A be an
affine K-algebra with dim(A) = n. By Theorem 5.9, there exist algebraically
independent elements a1, . . . , an ∈ A such that A is algebraic over the sub-
algebra K[a1, . . . , an]. As we will see in the following theorem, more can be
said.

Theorem 8.19 (Noether normalization). Let A 6= {0} be an affine K-
algebra. Then there exist algebraically independent elements c1, . . . , cn ∈ A
(with n ∈ N0) such that A is integral over the subalgebra C := K[c1, . . . , cn].
In particular, A is finitely generated as a C-module, and C is isomorphic to
a polynomial ring (with C = K if n = 0).

If c1, . . . , cn ∈ A are algebraically independent and A is integral over
K[c1, . . . , cn], then n = dim(A).

Proof. Write A as a quotient ring of a polynomial ring: A = K[x1, . . . , xm]/I.
We use induction on m for proving the first statement. There is nothing to
show for m = 0. If I = {0}, we can set ci = xi+ I, and again there is nothing
to show. If I 6= {0}, choose f ∈ I \ {0}. We can write f as

f =
∑

(i1,...,im)∈S

αi1,...,im · x
i1
1 · · ·ximm
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with ∅ 6= S ⊂ Nm0 a finite subset and αi1,...,im ∈ K \ {0}. Choose d > deg(f)
(in fact, it suffices to choose d bigger than all xi-degrees of f). Then the
function s: S → N0, (i1, . . . , im) 7→

∑m
j=1 ij ·dj−1 is injective. For i = 2, . . . ,m

set yi := xi − xd
i−1

1 . Then

f = f
(
x1, y2 + xd1, . . . , ym + xd

m−1

1

)
=∑

(i1,...,im)∈S

αi1,...,im

(
x
s(i1,...,im)
1 + gi1,...,im(x1, y2, . . . , ym)

)
with gi1,...,im polynomials satisfying degx1

(gi1,...,im) < s(i1, . . . , im). We have
exactly one (i1, . . . , im) ∈ S such that k := s(i1, . . . , im) becomes maximal.
Since A 6= {0}, f is not constant, so k > 0. We obtain

f = αi1,...,im · xk1 + h(x1, y2, . . . , ym)

with degx1
(h) < k, so

xk1 + α−1
i1,...,im

h(x1, y2, . . . , ym) ∈ I.

Set B := K[y2 + I, . . . , ym + I] ⊆ A. Then A = B[x1 + I], and the above
equation and Theorem 8.4 show that A is integral over B. By induction, there
exist algebraically independent c1, . . . , cn ∈ B such that B is integral over
K[c1, . . . , cn], and the same follows for A by Corollary 8.6.

The statement n = dim(A) follows from Corollaries 5.7 and 8.13. ut

The above proof can be turned into an algorithm for computing c1, . . . , cn.
This algorithm uses Gröbner bases and is dealt with in Exercise 9.12.

Remark 8.20. In Exercise 8.9, the following stronger (but slightly less gen-
eral) version of Noether normalization is shown: If the field K is infinite and
A = K[a1, . . . , am], then the elements c1, . . . , cn satisfying Theorem 8.19 can
be chosen as linear combinations

ci = ai +
m∑

j=n+1

γi,j · aj (γi,j ∈ K)

of the “original” generators ai. /

It is not hard to give geometric interpretations of Noether normalization.
In fact, Theorem 8.19 tells us that for an affine variety X of dimension n over
a field K, there exists a morphism

f : X → Kn

induced by the inclusion C ⊆ K[X], and by Theorem 8.12, f is surjective and
has finite fibers. So Noether normalization tells us that every affine variety
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may be interpreted as a “finite covering” of some Kn. A slightly different in-
terpretation is that Noether normalization provides a new coordinate system
such that the first n coordinates can be set to arbitrary values, which will
be attained by finitely many points from the variety. So the first n coordi-
nates act as “independent parameters”. With both interpretations, it makes
intuitive sense that X should have dimension n, which is a further indication
that our definition of dimension is a good one. In Exercise 8.10, a further
interpretation of Noether normalization as a “global system of parameters”
is given.
Example 8.21. Consider the affine variety X = VK2(x1x2 − 1), which is a
hyperbola as shown in Figure 8.4. We write xi for the image of xi in the co-
ordinate ring K[X] = K[x1, x2]/(x1x2 − 1) = K[x1, x2]. K[X] is not integral
over K[x1] or over K[x2]. Motivated by Remark 8.20, we try c = x1−x2 and
find

0 = x1x2 − 1 = x2
1 − x1c− 1,

so K[X] is integral over C := K[c]. The morphism induced by the embedding
C ↪→ K[X] is f : X → K1, (ξ1, ξ2) 7→ ξ1 − ξ2. It is surjective, and all η ∈ K
with η2 6= −4 have two preimages, as indicated by the arrows in Figure 8.4.
/
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Figure 8.4. A hyperbola and Noether normalization

We now turn our attention to chains of prime ideals in an affine algebra.
Generally, in a setM whose elements are sets, a maximal chain is a subset
C ⊆M that is totally ordered by inclusion “⊆”, such that C ⊆ D ⊆M with
D totally ordered implies C = D. In particular, a chain

P0 $ P1 $ · · · $ Pn

of prime ideals Pi ∈ Spec(R) in some ring is maximal if no further prime ideal
can be added into the chain by insertion or by appending at either end. In
general rings, it is not true that all maximal chains of prime ideals have equal
length. Examples for this are affine algebras that are not equidimensional,
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or, more subtly, the ring studied in Exercise 8.11. However, the following
theorem says that this is the case for affine domains.

Theorem 8.22 (Chains of prime ideals in an affine algebra). Let A be an
affine algebra and let

P0 $ P1 $ · · · $ Pn (8.6)

be a maximal chain of prime ideals Pi ∈ Spec(A). Then

n = dim (A/P0) .

In particular, if A is equidimensional (which is always the case if A is an
affine domain), then every maximal chain of prime ideals of A has length
equal to dim(A).

Proof. We use induction on n. Substituting A by A/P0, we may assume that
A is an affine domain and P0 = {0}. If n = 0, then P0 is a maximal ideal, so
A is a field and we are done. So we may assume n > 0. Applying Lemma 1.22
yields a maximal chain P1/P1 $ P2/P1 $ · · · $ Pn/P1 of prime ideals in
A/P1. Using induction, we obtain n − 1 = dim (A/P1). So we need to show
that dim (A/P1) = dim(A)− 1.

Using the Noether Normalization Theorem 8.19, we obtain C ⊆ A with A
integral over C and C isomorphic to a polynomial ring. By the maximality
of (8.6), we have ht(P1) = 1. By Proposition 8.8, C is normal, so all hypothe-
ses of Theorem 8.17 are satisfied. We obtain ht(C ∩P1) = 1. By the implica-
tion (b)⇒ (a) of Theorem 5.13, this implies dim (C/(C ∩ P1)) = dim(C)−1.
Since A/P1 is integral over C/(C ∩ P1), Corollary 8.13 yields

dim (A/P1) = dim (C/(C ∩ P1)) = dim(C)− 1 = dim(A)− 1.

This finishes the proof. ut

A ring R is called catenary if for two prime ideals P ⊆ Q in Spec(R), all
maximal chains of prime ideals between P and Q have the same length. So
Theorem 8.22 implies that all affine algebras are catenary. It is not easy to
find examples of non-catenary rings (see Nagata [41, Appendix, Example E2],
Matsumura [37, Example 14E], or Hutchins [28, Example 27]). We get two
immediate consequences of Theorem 8.22. The first one says that in affine
domains, the height of an ideal and the dimension of the quotient ring behave
complementary.

Corollary 8.23 (Dimension and height). Let A be an affine domain or,
more generally, an equidimensional affine algebra. Then for every ideal I ⊆ A
we have

ht(I) = dim(A)− dim (A/I) .

Proof. If I is a prime ideal, there exists a maximal chain C ⊆ Spec(A) with
I ∈ C, so the result follows from Theorem 8.22, Lemma 1.22, and Defini-
tion 6.10(a). For I = A, it follows from Definition 6.10(b). For all other I,
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Definition 6.10(b) and the fact that

dim(A/I) = max
{
dim(A/P ) | P ∈ VSpec(A)(I)

}
allow reduction to the case that I is a prime ideal. ut

The following corollary is about the height of maximal ideals in affine
algebras. In the case of a maximal ideal m ∈ Specmax(K[X]) belonging to a
point x ∈ X of an affine variety, it says that the height of m is equal to the
largest dimension of an irreducible component of X containing x.

Corollary 8.24 (Height of maximal ideals). Let A be an affine algebra with
minimal prime ideals P1, . . . , Pn. (There are finitely many Pi by Corollar-
ies 2.12 and 3.14(a).) Then for a maximal ideal m ∈ Specmax(A) we have

ht(m) = max {dim(A/Pi) | Pi ⊆ m} .

In particular, if A is an affine domain or, more generally, equidimensional,
then all maximal ideals have ht(m) = dim(A).

Proof. This is an immediate consequence of Theorem 8.22. ut

To get a better appreciation of the last three results, it is important to
see an example of a Noetherian domain (= a Noetherian integral domain) for
which they fail. Such an example is given in Exercise 8.11.

The following result restates the Principal Ideal Theorem 7.5 for the special
case of affine domains. Corollary 8.23 allows us to convert the statement
from Theorem 7.5 on height into a statement on dimension. The theorem
exemplifies the common paradigm that “imposing n further equations makes
the dimension of the solution set go down by at most n”.

Theorem 8.25 (Principal ideal theorem for affine domains). Let A be an
affine domain or, more generally, an equidimensional affine algebra, and let
I = (a1, . . . , an) ⊆ A be an ideal generated by n elements. Then every prime
ideal P ∈ Spec(A) which is minimal over I satisfies

dim(A/P ) ≥ dim(A)− n.

In particular, if I 6= A, we have

dim(A/I) ≥ dim(A)− n,

and if equality holds, then A/I is equidimensional.

Proof. By Theorem 7.5, every P ∈ Spec(A) which is minimal over I satisfies
ht(P ) ≤ n, so

dim(A/P ) ≥ dim(A)− n

by Corollary 8.23. The other claims follows directly from this. ut
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If f1, . . . , fn ∈ K[x1, . . . , xm] are polynomials over an algebraically closed
field, then by Theorem 8.25, the affine variety in X = VKm(f1, . . . , fn) is
empty or has dimension at least m − n. If the dimension is equal to m − n,
then X is called a complete intersection (“intersection” referring to the
intersection of the hypersurfaces given by the fi). So the second assertion of
Theorem 8.25 tells us that complete intersections are equidimensional. By a
slight abuse of terminology, an affine K-algebra A is also called a complete
intersection if A ∼= K[x1, . . . , xm]/(f1, . . . , fn) with dim(A) = m− n ≥ 0.

Geometrically, the first part of Theorem 8.25 gives a dimension bound for
the intersection of affine varieties X,Y ⊆ Km, where X is equidimensional
and Y is given by n equations. A generalization is contained in Exercise 8.13.

We will close this chapter by proving that the normalization of an affine
domain is again an affine domain, and applying this result to affine varieties.
Although this material is interesting, it will be used in this book only in
Chapter 14 to prove two results: the existence of a desingularization of an
affine curve, and the fact that the integral closure of Z in a number field is
Noetherian (which follows from Lemma 8.27). So readers may choose to skip
the rest of this chapter.

Theorem 8.26. Let A be an affine domain. Then the normalization Ã of A
is an affine domain, too.

Proof. By the Noether Normalization Theorem 8.19, we have a subalgebra
R ⊆ A which is isomorphic to a polynomial algebra, such that A is integral
over R. In particular, N := Quot(A) is a finite field extension of Quot(R), and
Ã is the integral closure of R in N . So the result follows from the following
Lemma 8.27. ut

Lemma 8.27 (Integral closure in a finite field extension). Let R be a Noe-
therian domain and N be a finite field extension of L := Quot(R). Assume
that

(a) R is normal and N is separable over L, or
(b) R is isomorphic to a polynomial ring over a field.

Then the integral closure S of R in N is finitely generated as an R-module
(and therefore also as an R-algebra).

Proof. Choose generators of N as an extension of L, and let N ′ be the split-
ting field of the product of the minimal polynomials of the generators. Then
N ′ is a finite, normal field extension of L with N ⊆ N ′, and if N is separable
over L, so is N ′. Since S is a submodule of the integral closure S′ of R in
N ′, it suffices to show that S′ is a finitely generated R-module (use Theo-
rem 2.10). So we may assume that N is normal over L. Let G := AutL(N)
and consider the trace map

Tr : N → NG, x 7→
∑
σ∈G

σ(x).
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It follows from the linear independence of homomorphisms into a field (see
Lang [33, Ch. VIII, Theorem 4.1]) that Tr is non-zero. It is clearly L-linear.
Let b1, . . . , bm ∈ N be an L-basis of N . By Lemma 8.15, there exists a power
q of the characteristic of L (with q = 1 if N is separable over L) such that
Tr(bi)q ∈ L for all i.

We first treat the (harder) case that R ∼= K[x1, . . . , xn] with K a field. In
fact, we may assume R = K[x1, . . . , xn]. Let K ′ be a finite field extension of
K containing q-th roots of all coefficients appearing in the Tr(bi)q as rational
functions in the xj . Then Tr(bi) ∈ K ′(x1/q

1 , . . . , x
1/q
n ) =: L′. (For this contain-

ment to make sense without any homomorphism linking L′ and N , it is useful
to embed both fields in an algebraic closure of L.) So R′ := K ′[x1/q

1 , . . . , x
1/q
n ]

satisfies the following properties: (i) R′ is finitely generated as an R-module,
(ii) R′ is normal (by Example 8.9(1)), and (iii) Tr(bi) ⊆ Quot(R′) for all i.

In the case that R is normal and N is separable over L, these three prop-
erties are satisfied for R′ := R.

Since L ⊆ Quot(R′), property (iii) implies Tr(N) ⊆ Quot(R′). For s ∈ S,
Tr(s) is integral over R, and therefore Tr(s) ∈ R′ by (ii). Every x ∈ N is
algebraic over L, so there exists 0 6= a ∈ R with ax ∈ S. Indeed, choosing
a common denominator a ∈ R of the coefficients of an integral equation of
degree n for x over L = Quot(R), and multiplying the equation by an yields
an integral equation for ax over R. Therefore we may assume that the basis
elements bi lie in S. So S is contained in the R-module

M := {x ∈ N | Tr(xbi) ∈ R′ for all i = 1, . . . ,m} ⊆ N.

We have an R-linear map

ϕ: M → (R′)m, x 7→ (Tr(xb1), . . . ,Tr(xbm)) .

To show that ϕ is injective, let x ∈ M with ϕ(x) = 0. By the L-linearity of
the trace map, this implies Tr(xy) = 0 for all y ∈ N , so x = 0 since Tr 6= 0.
So S is isomorphic to a submodule of (R′)m. But (R′)m is finitely generated
over R by the property (i) of R′, and the result follows by Theorem 2.10. ut

It is tempting to hope that for every Noetherian domain R, the normaliza-
tion R̃ is finitely generated as an R-module. However, Nagata [41, Appendix,
Example E5] has an example where R̃ is not even Noetherian.

Corollary 8.28 (Normalization of an affine variety). Let X be an irredu-
cible, affine variety over an algebraically closed field K. Then there exists
an normal affine variety X̃ with a surjective morphism f : X̃ → X such that:

(a) dim(X̃) = dim(X).
(b) All fibers of f are finite, and if x ∈ X is a point where the local ring

K[X]x is normal, then the fiber of x consists of one point.
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Proof of Corollary 8.28. By Theorem 8.26, the normalization Ã of the co-
ordinate ring A := K[X] is an affine domain, so by Theorem 1.25(b) there
exists an affine variety X̃ with K[X̃] ∼= Ã. The inclusion A ⊆ Ã induces a
morphism f : X̃ → X. Clearly X̃ is normal, and from Proposition 8.18 we
obtain part (a), the surjectivity of f , and the statement on the fibers of points
with Ax normal. The finiteness of the fibers follows from Theorem 8.12(c). ut

The behavior of the morphism f from Corollary 8.28 can be observed very
well in Example 8.9(4). Exercise 8.7 deals with a universal property of X̃, as
constructed in the above proof. Together with (a) and (b) of Corollary 8.28,
this characterizes X̃ up to isomorphism. X̃, or sometimes also X̃ together
with the morphism f , is called the normalization of X. In Section 14.1 we
will see that if X is a curve, normalization is the same as desingularization.

Exercises to Chapter 8

8.1 (Rings of invariants of finite groups). In this exercise we prove that
rings of invariants of finite groups are finitely generated under very general
assumptions. The proof is due to Emmy Noether [43]. Let S be a ring with
a subring R ⊆ S, and let G ⊆ AutR(S) be a finite group of automorphisms
of S as an R-algebra (i.e., the elements of G fix R point-wise). Write

SG := {a ∈ S | σ(a) = a for all σ ∈ G} ⊆ S

for the ring of invariants. Observe that SG is a sub-R-algebra of S.

(a) Show that S is integral over SG. In particular, dim
(
SG
)

= dim(S).
(b) Assume that S is finitely generated as an R-algebra. Show that SG has

a finitely generated subalgebra A ⊆ SG such that S is integral over A.
(c) Assume in addition that R is Noetherian. Show that SG is finitely gen-

erated as an R-algebra. In particular, SG is Noetherian.

(Solution on page 262)

8.2 (Rings of invariants are normal). Let R be a normal ring, and let
G ⊆ Aut(R) be a group of automorphisms of R. Show that RG, the ring of
invariants, is normal, too. (Solution on page 262)

*8.3 (The intersection of localizations). Let R be a normal, Noetherian
domain. Show that

R =
⋂

P∈Spec(R),
ht(P )=1

RP .

(Notice that all RP are contained in Quot(R), so the intersection makes
sense.)
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Hint: For a/b ∈ Quot(R) \ R, consider an ideal P which is maximal among
all colon ideals (b) : (a′) with a′ ∈ (a) \ (b). (Solution on page 262)

8.4 (Quadratic extensions of polynomial rings).
Let f ∈ K[x1, . . . , xn] be a polynomial with coefficients in a field of char-
acteristic not equal to 2. Assume that f is not a square of a polynomial.
Show that the ring R := K[x1, . . . , xn, y]/(y2 − f) (with y a further indeter-
minate) is normal if and only if f is square-free. (Solution on page 263)

8.5 (Normalization). Assume that K contains a primitive third root of
unity. Compute the normalization R̃ of R = K[x3

1, x
2
1x2, x

3
2].

Hint: You may use Exercise 8.2. Alternatively, you may do the exercise with-
out using the hypothesis on K. (Solution on page 263)

*8.6 (Normalization of polynomial rings). Let R be a Noetherian do-
main. Show that

R̃[x] = R̃[x]

(i.e., the normalization of the polynomial ring over R is equal to the polyno-
mial ring over the normalization). Conclude that R[x] is normal if and only
if R is normal.
Hint: The hard part is to show that a polynomial f =

∑n
i=0 aixi ∈ Quot(R)[x]

that is integral over R[x] lies in R̃[x]. This can be done as follows: Show that
there exists 0 6= u ∈ R such that ufk ∈ R[x] for all k ≥ 0. Conclude that
R[an] is finitely generated as an R-module. Then use induction on n.
Remark: The result is also true if R is not Noetherian. In fact, one can reduce
to the Noetherian case by substituting R with a finitely generated subring in
the above proof idea.
(Solution on page 264)

8.7 (The universal property of normalization). Show that the variety
X̃ constructed in the proof of Corollary 8.28 satisfies the following universal
property. If Y is a normal affineK-variety with a dominant morphism g: Y →
X (this means that the image g(Y ) is dense in X), then there exists a unique
morphism h: Y → X̃ with f ◦ h = g. (Solution on page 264)

8.8 (Where going down fails). In this exercise we study an example of
an integral extension of rings where going down fails. Let K be a field of
characteristic 6= 2, S = K[x, y] the polynomial ring in two indeterminates,
and

R := K[a, b, y] ⊂ S with a = x2 − 1 and b = xa.

(a) Show that S is the normalization of R.
(b) Show that

P :=
(
a− (y2 − 1), b− y(y2 − 1)

)
R
⊂ R
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is a prime ideal, and P is contained in the prime idealQ′ := (x− 1, y + 1)S
∈ Spec(S).

(c) Show that the unique ideal Q ∈ Spec(S) with R ∩Q = P is

Q := (x− y)S

and conclude that going down fails for the inclusion R ↪→ S.
(d) Compare this example to Example 8.9(4). Try to give a geometric inter-

pretation to the failure of going down for R ↪→ S.
Hint: The generators of R satisfy the equation b2 − a2 · (a+ 1) = 0.

(Solution on page 264)

8.9 (Noether normalization with linear combinations). Prove the
statement in Remark 8.20.
Hint: Mimic the proof of Theorem 8.19, but set yi := xi− βixm with βi ∈ K
(i = 1, . . . ,m− 1). (Solution on page 265)

*8.10 (Noether normalization and systems of parameters).
Let X 6= ∅ be an equidimensional affine variety over a field K and let
c1, . . . , cn ∈ A := K[X] be as in the Noether Normalization Theorem 8.19.
Let x ∈ X be a point with corresponding maximal ideal m := {f ∈ A |
f(x) = 0}. Show that

ai :=
ci − ci(x)

1
∈ Am (i = 1, . . . , n)

provides a system of parameters of the local ring K[X]x = Am at x. An
interpretation of this result is that Noether normalization provides a global
system of parameters or, from a reverse angle, that systems of parameters
are a local version of Noether normalization.
Hint: With I := (c1 − c1(x), . . . , cn − cn(x))A, first prove that A/I is Ar-
tinian. Then use Nakayama’s lemma to show that mk

m ⊆ Im for some k.
(Solution on page 266)

8.11 (A Noetherian domain where Theorem 8.22 fails). Let R =
K[[X]] be a formal power series ring over a field, and S = R[y] a poly-
nomial ring. Exhibit two maximal ideals in Specmax(S) of different height.
So S is a Noetherian domain for which Theorem 8.22 and Corollaries 8.23
and 8.24 fail. (Solution on page 266)

8.12 (Hypotheses of Theorem 8.25). Use the following example to show
that the hypothesis on equidimensionality cannot be dropped from Theo-
rem 8.25:

A = K[x1, x2, x3, x4]/(x1 − x4, x
2
1 − x2x4, x

2
1 − x3x4)
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and a = x1 − 1, the class of x1 − 1 in A. Explain why this also shows that
if K[x1, . . . , xm]/(f1, . . . , fn) is a complete intersection, this need not imply
that K[x1, . . . , xm]/(f1, . . . , fn−1) is a complete intersection, too. (Solution
on page 267)

8.13 (A dimension theorem). LetX and Y be two equidimensional affine
varieties, which both lie in Kn. Show that every irreducible component Z of
X ∩ Y satisfies

dim(Z) ≥ dim(X) + dim(Y )− n.

Hint: With ∆ := {(x, x)|x ∈ Kn} ⊂ K2n the diagonal, show that X ∩ Y ∼=
(X × Y ) ∩∆ and conclude the result from that. (Solution on page 267)

8.14 (Right or wrong?). Decide if the following statements are true or
false. Give reasons for your answers.

(a) Let K be a finite field and let X be a set. Then the ring S = {f : X →
K | f is a function} (with pointwise operations) is an integral extension
of K (which is embedded into S as the ring of constant functions).

(b) If R ⊆ S is an integral ring extension, then for every P ∈ Spec(R) the
set {Q ∈ Spec(S) | R ∩Q = P} is finite.

(c) If A is an affine domain which can be generated by dim(A) + 1 elements,
then A is a complete intersection.

(d) If A is an affine algebra which can be generated by dim(A) + 1 elements,
then A is a complete intersection.

(e) If an affine domain is a complete intersection, it is normal.

(Solution on page 268)
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Chapter 9

Gröbner Bases

A large part of commutative algebra is formulated in non-constructive ways.
A typical example is Hilbert’s Basis Theorem 2.13, which guarantees the
existence of finite ideal bases without giving a method to construct them.
But commutative algebra also has a large computational part, which has
developed into a field of research of its own, called computational commutative
algebra. This field has its own conferences, its own research community, and
it has produced a considerable number of books within a short period of
time. The goal of this part of the book is to give readers a glimpse into
this rich field. To learn more, readers should consult any of the following
books, which I list roughly chronologically: Becker and Weispfenning [3], Cox
et al. [12 and 13], Adams and Loustaunau [1], Vasconcelos [51], Kreuzer and
Robbiano [31 and 32], Greuel and Pfister [22], and Decker and Lossen [15].
Eisenbud’s book [17] also has a chapter on Gröbner bases.

However, readers who are not interested in computational matters can skip
Chapters 9 through 11, which make up the third part of the book, almost
entirely. In fact, only a small part of Chapter 11 needs to be incorporated in
a modified way. How this can be done is the topic of Exercise 12.1.

In this chapter we introduce the notion of a Gröbner basis and present
Buchberger’s algorithm, which computes Gröbner bases. In commutative al-
gebra, Gröbner bases and Buchberger’s algorithm play a similar role as does
Gaussian elimination in linear algebra. In fact, virtually all computations
in commutative algebra come down to the computation of one or several
Gröbner bases, so Buchberger’s algorithm is the common engine that they
all have under the hood. For example, even for determining whether an ideal
I ⊆ K[x1, . . . , xn] in a polynomial ring over a field is proper, one normally
uses a Gröbner basis. Several applications of Gröbner basis will be discussed
in this and the following chapters. In this chapter, we will see how Gröbner
bases can be used for testing membership in ideals, for computing the dimen-
sion of an affine algebra, for computing kernels of homomorphisms of affine
algebras, for solving systems of polynomial equations, for computing inter-

127
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sections of ideals, and for making Noether normalization constructive. More
applications will be discussed in Chapters 10 and 11.

Of course this book only presents a small selection of the huge range of
applications that Gröbner bases have. The most notable omissions are:

• The computation of radical ideals. This is surprisingly difficult, and meth-
ods can be found in Becker and Weispfenning [3, Chapter 9], Matsumoto
[36], and Kemper [30].

• The computation of irreducible components of an affine variety (and,
more generally, primary decomposition). This, too, is rather cumbersome,
in part because it involves factorization of polynomials. See Becker and
Weispfenning [3, Chapter 9].

• The computation of normalization and integral closure. There exist very
nice algorithms for this, which can be found in de Jong [29], Vasconcelos [51,
Chapter 6] and Derksen and Kemper [16, Section 1.3].

• The computation of syzygies, i.e., kernels of homomorphisms of free mod-
ules. This is the starting point of homological computations in commu-
tative algebra. Algorithms for syzygy computation can be found in many
sources, for example Eisenbud [17, Chapter 15.5].

9.1 Buchberger’s Algorithm

In this chapter, K will always be a field and K[x1, . . . , xn] will be the poly-
nomial ring in n indeterminates. A polynomial of the form

t = xe11 · · ·xen
n (ei ∈ N0)

will be called a monomial. A polynomial of the form c · t, with c ∈ K \ {0}
and t a monomial, will be called a term. For f ∈ K[x1, . . . , xn] a polynomial,
T (f) denotes the set of all terms in f , so f =

∑
ct∈T (f) ct. Moreover, Mon(f)

denotes the set of all monomials in f . In particular, f = 0 if and only if
Mon(f) = ∅. The reader should be advised that in part of the literature (e.g.,
Becker and Weispfenning [3]), the meanings of the words “monomial” and
“term” are reversed; but recently the trend has gone towards using the same
convention as we do in this book.

When dealing with univariate polynomials, we can compare monomials,
which leads to such notions as degree, leading coefficient and division with
remainder. With multivariate polynomials, we have no canonical way of com-
paring monomials. As ever so often, mathematicians deal with this problem
by making a definition.

Definition 9.1. Let M be the set of all monomials in K[x1, . . . , xn].

(a) A monomial ordering on K[x1, . . . , xn] is an ordering “≤” on M with
the following properties:
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(1) “≤” is a total ordering, i.e., for all s, t ∈M we have s ≤ t or t ≤ s;
(2) for all t ∈M we have 1 ≤ t;
(3) for s, t1, t2 ∈M with t1 ≤ t2 we have st1 ≤ st2.

Observe that this implies that if t1 ∈ M divides t2 ∈ M , it follows that
t1 ≤ t2; so a monomial ordering refines the partial ordering given by
divisibility. (Exercise 9.1 explores whether the converse is true.)

(b) Assume that “≤” is a monomial ordering. If f ∈ K[x1, . . . , xn]is a non-
zero polynomial, we write LM(f) for the greatest element of Mon(f).
Moreover, we write LC(f) ∈ K for the coefficient of LM(f) in f , and
LT(f) := LC(f) · LM(f).
LM(f) is called the leading monomial, LT(f) the leading term, and
LC(f) the leading coefficient of f . For f = 0, we set LM(f) = LT(f) =
LC(f) := 0, and we extend “≤” to M ∪ {0} by the convention 0 < 1.

It follows directly from the definition that for two polynomials f, g ∈
K[x1, . . . , xn] we have

LT(f · g) = LT(f) · LT(g) (9.1)

and
LM(f + g) ≤ max {LM(f),LM(g)} . (9.2)

There are many different monomial orderings onK[x1, . . . , xn] (provided that
n > 1). As we will see soon, different monomial orderings often serve different
purposes.
Example 9.2. We give some examples of monomial orderings. Let t =
xe11 · · ·xen

n and t′ = x
e′1
1 · · ·x

e′n
n be monomials.

(1) The lexicographic ordering is given by saying t ≤ t′ if t = t′ or
ei < e′i for the smallest index i with ei 6= e′i. As we will see on page 140,
the lexicographic ordering is useful for solving systems of polynomial
equations. It is surely the most famous monomial ordering.

(2) A more complicated monomial ordering is the graded reverse lexi-
cographic ordering (often nicknamed grevlex). It is given by saying
that t ≤ t′ if t = t′ or deg(t) :=

∑n
i=1 ei < deg(t′) :=

∑n
i=1 e

′
i, or

deg(t) = deg(t′) and ei > e′i for the largest index i with ei 6= e′i. For
example, x1x3 < x2

2; with the lexicographic ordering, we would have the
reverse inequality. As we will see in Chapter 11, the graded reverse lex-
icographic ordering is useful for computing Hilbert Series. According to
a vast amount of practical experience, it is also the ordering with which
computations tend to be fastest, a phenomenon that is still not completely
understood.

(3) Assume we are given two monomial orderings “≤1” and “≤2” on
K[x1, . . . , xk] and on K[xk+1, . . . , xn], respectively. Then the block or-
dering (sometimes also called product ordering) is defined as an order-
ing on K[x1, . . . , xn] by saying that t ≤ t′ if xe11 · · ·x

ek

k <1 x
e′1
1 · · ·x

e′k
k ,
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or xe11 · · ·x
ek

k = x
e′1
1 · · ·x

e′k
k and x

ek+1
k+1 · · ·xen

n ≤2 x
e′k+1
k+1 · · ·x

e′n
n . To be more

precise, we speak of the block ordering with “≤1” dominating, and it is
clear how to define the block ordering with “≤2” dominating. We will see
in Section 9.2 that block orderings are useful for computing elimination
ideals. /

For the rest of Section 9.1, we will fix a monomial ordering “≤” on
K[x1, . . . , xn].

Recall that a set M with an ordering is called well-ordered if every non-
empty subset N ⊆ M has a least element y ∈ N , meaning that y ≤ x for
all x ∈ N . The most prominent example of a well-ordered set is the set N of
natural numbers.

Lemma 9.3 (Monomial orderings are well-orderings). The set M ⊂
K[x1, . . . , xn] of monomials is well-ordered by the monomial ordering “≤”.
In particular, M satisfies the descending chain condition.

Proof. Let N ⊆M be a non-empty subset. By Hilbert’s Basis Theorem 2.13,
there exist t1, . . . , tm ∈ N generating the ideal (N)K[x1,...,xn]. Since “≤” is a
total ordering, there exists i with ti ≤ tj for 1 ≤ j ≤ m. Let t ∈ N . Then
t = f1t1 + · · ·+ fmtm with fi ∈ K[x1, . . . , xn], so t occurs as a monomial in
at least one of the fjtj . It follows that t is a multiple of tj , so t ≥ tj ≥ ti.
Therefore ti is the desired least element of N . ut

Definition 9.4.

(a) Let S ⊆ K[x1, . . . , xn] be a set of polynomials. The ideal

L(S) := (LM(f) | f ∈ S)K[x1,...,xn]

is called the leading ideal of S.
(b) Let I ⊆ K[x1, . . . , xn] be an ideal. A finite subset G ⊆ I is called a

Gröbner basis (w.r.t the chosen monomial ordering “≤”) of I if

L(I) = L(G).

This condition can be expressed more explicitly by saying that for each
non-zero f ∈ I there exists g ∈ G such that LM(g) divides LM(f).

We will see in Corollary 9.10 that every Gröbner basis of I generates I as an
ideal. (This also follows by an easy argument using Lemma 9.3; we postpone
the proof to save space.) Observe that it follows from the Noether property
of K[x1, . . . , xn] that every ideal has a Gröbner basis. It is Buchberger’s
algorithm that makes this existence statement constructive.
Example 9.5. K[x1, . . . , xn] (as an ideal in itself) has the Gröbner basis G =
{1}. However, the generating set S := {x1, x1 + 1} is not a Gröbner basis,
since L(S) = (x1). /
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The above example seems to suggest that Gröbner bases tend to be nice
and small. Unfortunately, this is not the case: They tend to be large and
ugly! In general, it depends on the choice of the monomial ordering whether
a given generating subset G ⊆ I is a Gröbner basis or not.

Definition 9.6. Let S = {g1, . . . , gr} ⊂ K[x1, . . . , xn] be a finite set of poly-
nomials, and f ∈ K[x1, . . . , xn].

(a) We say that f is in normal form w.r.t. S if no t ∈ Mon(f) is divisible
by the leading monomial LM(gi) of any gi ∈ S.

(b) A polynomial f∗ ∈ K[x1, . . . , xn] is said to be a normal form of f w.r.t.
S if the following conditions hold:

(1) f∗ is in normal form w.r.t. S.
(2) There exist h1, . . . , hr ∈ K[x1, . . . , xn] with

f − f∗ =
r∑
i=1

higi and LM(higi) ≤ LM(f) for all i (9.3)

(in particular, f and f∗ are congruent modulo the ideal generated by
S);

Example 9.7. Let S = {x1, x1 + 1}, as in Example 9.5. Then 1 is congruent
to 0 modulo (S), but 0 is not a normal form of 1. Moreover, f = x1 has
two normal forms: 0 and −1. So in general, normal forms are not uniquely
determined. /

Observe that the set S from the above example is not a Gröbner basis. We
will see that normal forms w.r.t. a Gröbner basis are unique (Theorem 9.9).
But first we present an algorithm for computing a normal form, thereby also
proving its existence. To actually run the algorithm on a computer, we need
to assume that there exists a subfield K ′ ⊆ K containing the coefficients of
all polynomials from the input of the algorithm, such that we can perform the
field operations of K ′ on a computer. This remark applies to all algorithms
from this chapter.

Algorithm 9.8 (Normal form).

Input: A finite set S = {g1, . . . , gr} ⊆ K[x1, . . . , xn], and a polynomial
f ∈ K[x1, . . . , xn].

Output: A normal form f∗ of f w.r.t. S and, if desired, polynomials
h1, . . . , hr ∈ K[x1, . . . , xn] satisfying (9.3).

(1) Set f∗ := f and hi := 0 for all i ∈ {1, . . . , r}.
(2) Repeat Steps 3–6.
(3) Set

M := {(t, i) | t ∈ Mon(f∗), i ∈ {1, . . . , r} such that LM(gi) divides t} .

(4) IfM = ∅, terminate and return f∗ and, if desired, the hi.
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(5) Choose (t, i) ∈ M with t maximal, and let c ∈ K be the coefficient of t
in f∗.

(6) Set

f∗ := f∗ − ct

LT(gi)
gi and hi := hi +

ct

LT(gi)
.

In Step 6, the term ct is deleted from f∗, and only monomials which are
smaller than t may be added to f∗. It follows that the monomials t from each
pass through the loop form a strictly descending sequence, so Lemma 9.3
guarantees that Algorithm 9.8 terminates after finitely many steps. It is clear
that (9.3) is satisfied during the entire run, and that f∗ is in normal form
when the algorithm terminates.

Theorem 9.9 (The normal form map). Let G be a Gröbner basis of an ideal
I ⊆ K[x1, . . . , xn].

(a) Every f ∈ K[x1, . . . , xn] has precisely one normal form w.r.t. G. So
we have a map NFG : K[x1, . . . , xn] → K[x1, . . . , xn] assigning to each
polynomial its normal form w.r.t. G.

(b) The map NFG is K-linear, and ker (NFG) = I.
(c) If G̃ is another Gröbner basis of I (but w.r.t. the same monomial order-

ing), then NF eG = NFG. So the normal form map NFG only depends on
I and the chosen monomial ordering.

Proof. We prove (a) and (c) together. To this end, let f∗ and f̃ be normal
forms of f w.r.t. G and G̃, respectively. It follows from (9.3) that f∗− f̃ ∈ I,
so

LM
(
f∗ − f̃

)
∈ L(I) = L(G) = L(G̃).

Assume f∗ 6= f̃ . Then there exist g ∈ G and g̃ ∈ G̃ such that LM(g) and
LM(g̃) divide LM(f∗ − f̃). But LM(f∗ − f̃) lies in Mon(f∗) or in Mon(f̃),
contradicting the first part of Definition 9.6(b). So f∗ = f̃ , and (a) and (c)
follow.

The following argument for linearity of the normal form map was shown
to me by Martin Kohls. Let f, g ∈ K[x1, . . . , xn] and c ∈ K. Then h :=
NFG(f+cg)−NFG(f)−cNFG(g) is congruent to f+cg−f−cg = 0 modulo
(G), so h ∈ I. If h 6= 0, LM(h) would be divisible by LM(g) for some g ∈ G,
contradicting the fact that h is in normal form w.r.t. G. So h = 0, and the
linearity follows.

Finally, for f ∈ ker (NFG) we have f = f−NFG(f) ∈ I. Conversely, if f ∈
I, then also f∗ := NFG(f) ∈ I. If f∗ 6= 0, there would exist g ∈ G such that
LM(g) divides LM(f∗), contradicting the first part of Definition 9.6(b). ut

Theorem 9.9 tells us that if we have a Gröbner basis G of an ideal I ⊆
K[x1, . . . , xn], then we also have a membership test: f ∈ I if and only if
NFG(f) = 0. In the special case f = 1, we obtain the equivalence
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1 ∈ I ⇐⇒ G contains a non-zero constant polynomial. (9.4)

So we have a test for the properness of an ideal. By Hilbert’s Nullstellen-
satz 1.8, this yields a method to test an affine variety over an algebraically
closed field for emptiness.

Apart from providing a membership test, the normal form map NFG in-
duces an embedding A := K[x1, . . . , xn]/I ↪→ K[x1, . . . , xn], so the Gröbner
basis provides a way to make explicit computations in the affine algebra A.
This is one of the most important applications of Gröbner bases.

Corollary 9.10 (Gröbner bases are ideal bases). Let G be a Gröbner basis
of an ideal I ⊆ K[x1, . . . , xn]. Then I = (G)K[x1,...,xn].

Proof. By definition, G ⊆ I, so (G) ⊆ I. Conversely, for f ∈ I we have
NFG(f) = 0 by Theorem 9.9(b), so f ∈ (G) by (9.3). ut

Remark 9.11 (Gröbner bases over rings). Part of what we have done so far
in this section carries over to the case that K is an arbitrary ring, not a field.
First of all, Definition 9.1 really has nothing to do with the properties of K.
So Lemma 9.3 carries over to polynomial rings over arbitrary rings as well.
We can and will also use Definitions 9.4 and 9.6 in the more general situation.
However, Algorithm 9.8 needs to be modified by replacing Step 6 with

(6’) Set

f∗ := LC(gi) · f∗ −
ct

LM(gi)
· gi and hi := LC(gi) · hi +

ct

LM(gi)
.

With this modification, Algorithm 9.8 computes a normal form not of f ,
but of some u · f with u ∈ K a product formed from leading coefficients
of polynomials from S. Moreover, Theorem 9.9 and Corollary 9.10 do not
carry over to the case where K is a ring. So the term Gröbner basis is a bit
misleading in this case. Gröbner bases over rings will be used in this book
only in Proposition 9.18 and Lemma 10.1. In what follows, we go back to
assuming that K is a field. /

We will shortly present Buchberger’s algorithm for computing Gröbner
bases. This is based on Buchberger’s criterion, which we prove first. To for-
mulate it, we need the following construction: For f, g ∈ K[x1, . . . , xn] two
non-zero polynomials, let t be the gcd of LM(f) and LM(g) (so t is a mono-
mial). Then

spol(f, g) :=
LT(g)
t
· f − LT(f)

t
· g

is called the s-polynomial of f and g. Observe that the s-polynomial is
formed in such a way that the leading terms of the two summands are can-
celled. For example, for f = x2

1+x2
2 and g = x1x2 we have (assuming x1 > x2)

spol(f, g) = x2 · f − x1 · g = x3
2.
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The following theorem gives a test for Gröbner bases that can be performed
in finitely many steps. This is the center piece of Buchberger’s algorithm 9.13.

Theorem 9.12 (Buchberger’s criterion). Let G ⊆ K[x1, . . . , xn] be a finite
set of non-zero polynomials. Then the following statements are equivalent.

(a) G is a Gröbner basis of the ideal I ⊆ K[x1, . . . , xn] generated by G.
(b) For all g, h ∈ G, 0 is a normal form of spol(g, h) w.r.t. G.

Proof. Clearly all s-polynomials of elements from G lie in I, so if G is a
Gröbner basis, the s-polynomials have normal form 0 by Theorem 9.9(b).
So (a) implies (b).

To prove the converse, assume that (b) holds but G is not a Gröbner basis.
Then there exists f ∈ I with LM(f) /∈ L(G). Writing G = {g1, . . . , gr}, we
have hi ∈ K[x1, . . . , xn] with

f =
r∑
i=1

higi. (9.5)

By Lemma 9.3 we may choose the hi in such a way that

t := max {LM(higi) | i = 1, . . . , r}

becomes minimal. Because of (9.5) there exists i with LM(f) ∈ Mon(higi),
and since LM(f) /∈ L(G), this implies LM(higi) > LM(f). So t > LM(f).
Therefore the coefficient of t in the right hand side of (9.5) is zero, so with

ci :=

{
LC(hi) if LM(higi) = t,

0 otherwise

we have
r∑
i=1

ci LC(gi) = 0. (9.6)

By reordering the gi, we may assume c1 6= 0.
Let i ∈ {2, . . . , r} with ci 6= 0. Then LM(gi) divides t. If ti is the least

common multiple of LM(gi) and LM(g1), then also ti divides t. The definition
of the s-polynomial gives

spol(gi, g1) =
LC(g1)ti
LM(gi)

· gi −
LC(gi)ti
LM(g1)

· g1,

and we have LM(spol(gi, g1)) < ti. By the hypothesis (b), there exist hi,j ∈
K[x1, . . . , xn] with

spol(gi, g1) =
r∑
j=1

hi,jgj and LM(hi,jgj) ≤ LM(spol(gi, g1)) < ti
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for all j. Set si := t/ti · spol(gi, g1). Since

LM(hi) LM(gi) = t = LM(h1) LM(g1),

we get
si = LC(g1) LM(hi)gi − LC(gi) LM(h1)g1, (9.7)

and on the other hand

si =
r∑
j=1

t

ti
hi,jgj with LM

(
t

ti
hi,jgj

)
< t for all j. (9.8)

Now we set g :=
∑r
i=1 ci LM(hi)gi and write LC(g1) · g as

LC(g1) · g =
r∑
i=2

ci

(
LC(g1) LM(hi)gi − LC(gi) LM(h1)g1

)
+(

r∑
i=2

ci LC(gi) + c1 LC(g1)

)
LM(h1)g1.

With (9.7), (9.6), and (9.8), this yields

g =
r∑
i=2

ci
LC(g1)

· si =
r∑
j=1

h̃jgj with LM
(
h̃jgj

)
< t for all j.

By (9.5), we have

f = (f − g) + g =
r∑
j=1

(
hj − cj LM(hj) + h̃j

)
gj ,

and it follows from the definition of t and cj that LM ((hj − cj LM(hj)) gj) < t
for all j, so

LM
((
hj − cj LM(hj) + h̃j

)
gj

)
< t,

contradicting the minimality of t. This contradiction shows that G is a
Gröbner basis. ut

Having proved Buchberger’s criterion, we are ready to present an algorithm
for computing Gröbner bases.

Algorithm 9.13 (Buchberger’s algorithm).

Input: A finite set S ⊆ K[x1, . . . , xn] of polynomials.
Output: A Gröbner basis G (w.r.t. the chosen monomial ordering “≤”) of

the ideal I ⊆ K[x1, . . . , xn] generated by S.

(1) Set G := S \ {0}.
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(2) For all g, h ∈ G, perform Steps 3–4.
(3) Compute the s-polynomial s := spol(g, h) and a normal form s∗ of s w.r.t.

G.
(4) If s∗ 6= 0, set G := G ∪ {s∗} and go to Step 2.
(5) (This step is only reached if no non-zero s∗ occurred in the previous loop.)

Terminate the computation and return G.

Each time that a new polynomial s∗ is added into G in Algorithm 9.13,
the ideal L(G) increases strictly. Therefore the termination of the algorithm
is guaranteed by Hilbert’s Basis Theorem 2.13. Since clearly all s∗ lie in I,
the correctness of the algorithm follows from Buchberger’s criterion 9.12.

Algorithm 9.13 has numerous optimizations. Some of them are rather triv-
ial (such as not considering pairs (g, h) ∈ G × G where (g, h) or (h, g) have
been considered before) and would occur to any reasonable programmer, but
many others are much more subtle and artful. A good implementation has
criteria for discarding superfluous pairs (g, h) ∈ G × G (see Exercise 9.3 for
such a criterion), a good strategy for first choosing pairs with a high poten-
tial for pushing up L(G) fast, and good heuristics for choosing polynomials
gi for the reduction step 6 in Algorithm 9.8. Apart from this, there is almost
no limit to the creativity of a good programmer for finding variants of the
algorithm and implementation tricks for speeding up the performance.

Algorithm 9.13 has a number of variants. One of them, sometimes called
the extended Buchberger algorithm, keeps track of how the new elements s∗ of
the Gröbner basis arise as K[x1, . . . , xn]-linear combinations of the original
generators. This information is useful for some purposes, e.g. the compu-
tation of syzygies, which we will not treat in this book. A further variant
computes a reduced Gröbner basis G, which by definition has the additional
property that every g ∈ G has leading coefficient 1 and is in normal form
w.r.t. G \ {g}. Reduced Gröbner bases are uniquely determined by the ideal
I they generate and, of course, by the choice of the monomial ordering (see
Exercise 9.4). A third variant of Buchberger’s algorithm computes Gröbner
bases of submodules of a free module K[x1, . . . , xn]m over the polynomial
ring. Of course, this requires extending the definitions of a monomial order-
ing and a Gröbner basis. Gröbner bases of submodules in K[x1, . . . , xn]m are
useful for computations in homological algebra, particularly free resolutions.

Buchberger’s algorithm is the workhorse of computational commutative al-
gebra. It is therefore part of every computer algebra system that specializes in
commutative algebra, such as CoCoA [9], MACAULAY (2) [21], MAGMA [5],
or SINGULAR [23]. The competition between these systems is strong, and it
is rare for a conference on computational commutative algebra to pass with-
out at least one talk which reports that one system outperforms all others.

The cost, in terms of running time and memory requirement, of Buch-
berger’s algorithm tends to be extremely high. Its complexity is usually de-
scribed as “doubly exponential”, although the true story is a bit more com-
plicated. More details on the complexity can be found in the book by von zur
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Gathen and Gerhard [19, Section 21.7]. However, practical experience shows
that the algorithm often does terminate after a reasonable time. Whether
or not a particular Gröbner basis computation is feasible is usually hard to
predict in advance, so Gröbner basis computations are still an adventurous
business.

9.2 First Application: Elimination Ideals

As in the previous section, K[x1, . . . , xn] will denote a polynomial ring over
a field throughout this section. Let I ⊆ K[x1, . . . , xn] be an ideal. In the
previous section we have already seen that having a Gröbner basis of I yields
a membership test for I and a way to make explicit computations in the affine
algebra K[x1, . . . , xn]/I (see before Corollary 9.10). In particular, if we have
another ideal J ⊆ K[x1, . . . , xn] given by a finite set of generators, we can
also test whether J is contained in I. These applications work independently
of the chosen monomial ordering.

In this section we will study some further “immediate” applications. These
are all linked to the computation of elimination ideals, which we define now.

Definition 9.14. Let S = {xi1 , . . . , xik} a set of indeterminates.

(a) For an ideal I ⊆ K[x1, . . . , xn], the S-elimination ideal of I is defined
to be the intersection

IS := K[xi1 , . . . , xik ] ∩ I

(where I∅ is understood to be the set of constants lying in I).
(b) A monomial ordering “≤” on K[x1, . . . , xn] is called an S-elimination

ordering if

t < xj for all monomials t ∈ K[xi1 , . . . , xik ] and all xj ∈ S,

where S := {x1, . . . , xn} \ S.

Elimination orderings exist, as the following example shows.
Example 9.15. (1) Let “≤” be an arbitrary monomial ordering on

K[x1, . . . , xn] and let S be a set of indeterminates with complement
{x1, . . . , xn}\S = {xj1 , . . . , xjr}. We define a new monomial ordering “�”
by saying t = xe11 · · ·xen

n � t′ = x
e′1
1 · · ·x

e′n
n if ej1 +· · ·+ejr < e′j1 +· · ·+e′jr

or if ej1 + · · · + ejr = e′j1 + · · · + e′jr and t ≤ t′. It is easy to check that
“�” is an S-elimination ordering.

(2) The block ordering from Example 9.2(3) is an {xk+1, . . . , xn}-elimination
ordering.

(3) In particular, the lexicographic ordering is an {xk+1, . . . , xn}-elimination
ordering for every k.
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(4) On the other hand, the grevlex ordering is an S-elimination ordering only
for S = ∅ and S = {1, . . . , n}, and in fact every monomial ordering is an
elimination ordering for these two extremes. /

The following theorem tells us how elimination ideals can be computed
with Gröbner bases. Notice that restricting a monomial ordering “≤” on
K[x1, . . . , xn] to the set of all monomials in K[xi1 , . . . , xik ] gives a mono-
mial ordering on K[xi1 , . . . , xik ], which we call the restricted monomial
ordering.

Theorem 9.16 (Computing elimination ideals). Let I ⊆ K[x1, . . . , xn] be
an ideal and S = {xi1 , . . . , xik} a set of indeterminates. Let G be a Gröbner
basis of I w.r.t. an S-elimination ordering “≤”. Then

GS := K[xi1 , . . . , xik ] ∩G

is a Gröbner basis of the S-elimination ideal IS w.r.t. the restricted monomial
ordering.

Proof. Clearly GS ⊆ IS . To prove that L(IS) = L(GS), let f ∈ IS be non-
zero. Since LM(f) ∈ L(I), there exists g ∈ G such that LM(g) divides LM(f).
This implies that LM(g) lies in K[xi1 , . . . , xik ]. But then every monomial
t ∈ Mon(g) lies inK[xi1 , . . . , xik ], too, since otherwise t would be greater than
LM(g) by the hypothesis on “≤”. So g ∈ GS , and the proof is finished. ut

So all we need to do for getting the elimination ideal is to compute a
Gröbner basis G w.r.t. an elimination ordering, and pick out those polyno-
mials from G which only involve the indeterminates from S.

Elimination ideals can be used to compute the dimension of an affine va-
riety given as A = K[x1, . . . , xn]/I, with I an ideal. Indeed, Theorem 5.9
and Proposition 5.10 tell us that dim(A) is the maximal size of a set
S = {xi1 , . . . , xik} of indeterminates such that {xi1 + I, . . . , xik + I} ⊆ A is
algebraically independent. But this condition is equivalent to IS = {0}, so it
can be checked by means of Gröbner bases. This gives the desired method for
computing dim(A). Unfortunately, even after some optimizations this method
requires the computation of a considerable number of Gröbner bases of I
w.r.t. different monomial orderings. A test for dimension zero, which is much
cheaper than this method, is discussed in Exercise 9.7. A better way to cal-
culate the dimension of an affine algebra is discussed in Section 11.2 (see
Corollary 11.14 on page 169).

A further application of elimination ideals is the computation of kernels
of homomorphisms between affine K-algebras. Let A = K[y1, . . . , ym]/I and
B = K[x1, . . . , xn]/J be two affine K-algebras (with I and J ideals in poly-
nomial rings), and let ϕ: B → A be a homomorphism of K-algebras. Com-
posing ϕ with the canonical map K[x1, . . . , xn]→ B yields a homomorphism
ψ: K[x1, . . . , xn] → A, and ker(ϕ) = ker(ψ)/J . So it is enough to compute
ker(ψ). In other words, for computing the kernel of a homomorphism between
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affine K-algebras, we may assume that the first algebra is a polynomial ring.
The following proposition tells us that in this situation the kernel can be
calculated as an elimination ideal.

Proposition 9.17 (Kernel of a homomorphism of affine algebras). Let ϕ:
K[x1, . . . , xn] → A := K[y1, . . . , ym]/I be a homomorphism of K-algebras.
Write ϕ(xi) = gi + I with gi ∈ K[y1, . . . , ym], and form the ideal

J :=
(
I ∪ {g1 − x1, . . . , gn − xn}

)
K[x1,...,xn,y1,...,ym]

.

Then
ker(ϕ) = K[x1, . . . , xn] ∩ J.

Proof. It follows from the definition of J that for every f ∈ K[x1, . . . , xn] we
have

f(g1, . . . , gn)− f ∈ J. (9.9)

Assume f ∈ ker(ϕ). Then f(g1, . . . , gn) ∈ I, which with (9.9) yields f ∈ J ,
so f ∈ K[x1, . . . , xn] ∩ J .

Conversely, if f ∈ K[x1, . . . , xn] ∩ J , then (9.9) yields f(g1, . . . , gn) ∈ J ,
so

f(g1, . . . , gn) =
r∑
i=1

hifi +
n∑
j=1

pj(gj − xj)

with hi, pj ∈ K[x1, . . . , xn, y1, . . . , ym] and fi ∈ I. Setting xi = gi on both
sides of the above equation yields f(g1, . . . , gn) ∈ I, so f ∈ ker(ϕ). ut

If we put together Proposition 9.17 and Theorem 9.16, we obtain the fol-
lowing algorithm: With the notation from Proposition 9.17, form the ideal
J ⊆ K[x1, . . . , xn, y1, . . . , ym] and choose an {x1, . . . , xn}-elimination order-
ing “≤” on K[x1, . . . , xn, y1, . . . , ym]. Compute a Gröbner basis G of J w.r.t.
“≤”, and set Gx := K[x1, . . . , xn] ∩ G. Then Gx is a Gröbner basis of the
kernel of ϕ. It may seem odd that only one part of the Gröbner basis G is
used, and the rest is “thrown away”, and one might wonder if the other part
of G has any significance in the context of the map ϕ. This is indeed the case,
as we will see in Proposition 9.18.

Observe that the kernel in Proposition 9.17 is nothing else but the ideal
of relations between the elements gi + I ∈ A. So we have an algorithm for
computing relation ideals of elements of affine algebras. In particular, we can
compute relation ideals between polynomials. A nice application is a construc-
tive version of Noether normalization, which is explored in Exercise 9.12.

A homomorphism ϕ: R → S of rings induces a map ϕ∗: Spec(S) →
Spec(R), P 7→ ϕ−1(P ). We claim that for the Zariski-closure of the image
we have

im(ϕ∗) = VSpec(R) (ker(ϕ)) . (9.10)
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This gives a geometric interpretation of the kernel. To prove (9.10), observe
that im(ϕ∗) = VSpec(R)

(⋂
P∈Spec(S) ϕ

∗(P )
)
, and

⋂
P∈Spec(S)

ϕ∗(P ) = ϕ−1
( ⋂
P∈Spec(S)

P
)

= ϕ−1
(√
{0}
)

=
√

ker(ϕ),

where the second equality follows from Corollary 1.12.
If f : X → Y is a morphism of affine varieties over an algebraically closed

field, given by a homomorphism ϕ: K[Y ]→ K[X], then (9.10) becomes

f(X) = VY (ker(ϕ)) .

So by using Proposition 9.17, we can compute image closures of morphisms
of affine varieties. At first glance it may seem disappointing that the kernel
of ϕ only describes the image closure and not the image itself. But the image
closure is in fact the best we can reasonably expect, since the variety given
by the kernel is always closed, but the image of a morphism is, in general,
not closed. A typical example of this phenomenon is a hyperbola X with a
morphism f given by projecting to the x-axis. This is shown in Figure 9.1.

b ? ?

6f

X

6

Figure 9.1. A morphism whose image is not closed

In Chapter 10 we will develop an algorithm that computes the image of a
morphism, and we will learn more about the nature of images of morphisms.

By a very similar (but simpler) argument, we obtain a geometric interpre-
tation of elimination ideals themselves: If X ⊆ Kn is an affine variety over
an algebraically closed field, given by an ideal I ⊆ K[x1, . . . , xn], and if S =
{xi1 , . . . , xik}, then the S-elimination ideal describes the closure of the image
of X under the projection πS : Kn → K |S|, (ξ1, . . . , ξn) 7→ (ξi1 , . . . , ξik):

πS(X) = VK|S|(IS). (9.11)

This leads to a further application of elimination ideals: solving systems
of polynomial equations. Suppose that I ⊆ K[x1, . . . , xn] is an ideal in a
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polynomial ring over an algebraically closed field, and suppose we know that
the variety X := V(I) is finite. (This is equivalent to dim (K[x1, . . . , xn]/I) ≤
0, so it can be checked with elimination ideals.) Then in (9.11) the Zariski-
closure can be omitted, and in particular all I{xk,...,xn} are non-zero. By
Theorem 9.16, all I{xk,...,xn} can be computed from a single lexicographic
Gröbner basis of I. Since K[xn] is a principal ideal ring, we have I{xn} = (g)
with g ∈ K[xn] non-zero. Equation (9.11) tells us that the zeros of g are
precisely those ξn ∈ K for which there exists at least one point of X having ξn
as last component. For each such ξn, substituting xn = ξn in the generators
of I{xn−1,xn} yields some polynomials in K[xn−1], and every common zero
ξn−1 of these polynomials yields a pair (ξn−1, ξn) which can be extended
to at least one point from X. Continuing this way, we can work our way
down until we reach I{x1,...,xn} = I. Then we have found all points from
X. In other words, we have solved the system of polynomial equations given
by I. What is required for this method to work in practice is that we are
able to compute zeros of polynomials in K[x]. But it also works if K is not
algebraically closed, provided that we know that dim (K[x1, . . . , xn]/I) ≤ 0.
For K not algebraically closed, it may happen that a zero ξn of g does not
extend to a point (ξ1, . . . , ξn) of X.

This last application probably points to the origin of the term “elimination
ideal”: It can be used for eliminating unknowns from a system of equations.

The following proposition may be seen as a sequel of Proposition 9.17 and
Theorem 9.16. It answers the question about the significance of the part of a
Gröbner basis that is “thrown away” when computing an elimination ideal.
The proposition is rather technical, but it is crucial for getting a constructive
version of the generic freeness lemma in Chapter 10. The proposition will
only be used in Chapter 10, so readers who plan to skip that chapter can also
skip the rest of this section and go directly to Chapter 11.

Proposition 9.18 (The forgotten part of the Gröbner basis).
Let ϕ: K[x1, . . . , xn] → A := K[y1, . . . , ym]/I be a homomorphism of K-
algebras, given by ϕ(xi) = gi+I with gi ∈ K[y1, . . . , ym]. With R := im(ϕ) ⊆
A, consider the homomorphism

ψ: R[y1, . . . , ym]→ A, yi 7→ yi + I

of R-algebras. Also consider the homomorphism Φ: K[x1, . . . , xn,
y1, . . . , ym] → R[y1, . . . , ym] given by applying ϕ coefficient-wise. Let “≤”
be an {x1, . . . , xn}-elimination ordering on K[x1, . . . , xn, y1, . . . , ym], and let
G be a Gröbner basis w.r.t. “≤” of the ideal

J :=
(
I ∪ {g1 − x1, . . . , gn − xn}

)
K[x1,...,xn,y1,...,ym]

.

With Gx := K[x1, . . . , xn]∩G and Gy := G \Gx (the “rest” of G), we have:
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(a) Gx is a Gröbner basis of ker(ϕ) w.r.t. the restriction of “≤” to
K[x1, . . . , xn].

(b) ker(ψ) = (Φ(Gy))R[y1,...,ym].
(c) If “≤” is the block ordering of monomial orderings “≤x” on K[x1, . . . , xn]

and “≤y” on K[y1, . . . , ym] with “≤y” dominating, then Φ(Gy) is a
Gröbner basis of ker(ψ) w.r.t. “≤y”. (See Remark 9.11 for Gröbner bases
over a ring.)

Proof. Part (a) follows from Proposition 9.17 and Theorem 9.16.
To prove (b), take g ∈ Gy. Then g ∈ J , and our definitions imply

ψ (Φ(g)) = 0. So (Φ(Gy))R[y1,...,ym] ⊆ ker(ψ). Conversely, take f ∈ ker(ψ).
We can write f = Φ(F ) with F ∈ K[x1, . . . , xn, y1, . . . , ym]. Then F ∈ J =
(Gx ∪Gy)K[x1,...,xn,y1,...,ym]. So

f ∈ (Φ(Gx) ∪ Φ(Gy))R[y1,...,ym] .

But by (a), every g ∈ Gx lies in ker(ϕ), so Φ(g) = ϕ(g) = 0. This completes
the proof of (b).

For proving part (c) we need the following lemma. ut

Lemma 9.19. In the situation of Proposition 9.18(c), let f ∈ K[x1, . . . , xn,
y1, . . . , ym] such that there exists no g ∈ Gx with LM(g) dividing LM(f).
Write LMy(f) and LCy(f) for the leading monomial and leading coefficient
of f considered as a polynomial in the indeterminates yi and with coefficients
in K[x1, . . . , xn]. Then

LC (Φ(f)) = ϕ (LCy(f)) (9.12)

and
LM(f) = LMy (Φ(f)) · LM(LCy(f)) . (9.13)

Proof. We may assume f 6= 0. Since “≤” is a block ordering, we obtain

LM(f) = LMy(f) · LM(LCy(f)) . (9.14)

By way of contradiction, assume that LMy (Φ(f)) 6= LMy(f). Then
ϕ (LCy(f)) = 0, and by Proposition 9.18(a) this implies the existence of
g ∈ Gx such that LM(g) divides LM(LCy(f)). So by (9.14), LM(g) di-
vides LM(f), contradicting our hypothesis. We conclude that LMy (Φ(f)) =
LMy(f). This implies (9.12) directly, and together with (9.14) it implies (9.13).

ut

Proof of Proposition 9.18(c). We need to show that for every non-zero f ∈
ker(ψ) there exists g ∈ Gy such that LMy (Φ(g)) divides LMy(f). As shown
in the proof of part (b), there exists F ∈ J with f = Φ(F ). By part (a),
we may substitute F by a normal form of F w.r.t. Gx. Since F 6= 0, there
exists g ∈ Gy such that LM(g) divides LM(F ). Applying (9.13) to F and
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to g shows that LMy (Φ(g)) divides LMy (Φ(F )) = LMy(f). This completes
the proof. ut

The last part of Proposition 9.18 works under the stronger hypothesis that
the elimination ordering is a block ordering. This raises the question whether
in fact every elimination ordering is a block ordering (formed from orderings
on the set of indeterminates that are eliminated and on its complement).
After trying in vain to prove this for various days, I posed the question to
my students Kathi Binder and Tobias Kamke, who immediately answered it
in the negative. Exercise 9.8 deals with this.

In Exercise 9.9 it is shown how the Gröbner basis G from Proposition 9.18
can be used to obtain a membership test for the subalgebra R.

Exercises to Chapter 9

In the following exercises, K[x1, . . . , xn] stands for a polynomial ring over
a field. If not stated otherwise, K[x1, . . . , xn] is equipped with a monomial
ordering.

9.1 (Refining the ordering by divisibility). We have seen that mono-
mial orderings refine the partial ordering given by divisibility. Conversely, let
“≤” be a total ordering on the set M of monomials such that if t1 ∈ M di-
vides t2 ∈M , it follows that t1 ≤ t2. Does this imply that “≤” is a monomial
ordering? (Solution on page 268)

*9.2 (The convex cone of a monomial ordering, weight vectors). In
this exercise we will study a fundamental geometric object, called the con-
vex cone, that belongs to a monomial ordering. If e = (e1, . . . , en) and
f = (f1, . . . , fn) ∈ Nn0 are two tuples of non-negative integers, we write
e ≤ f if

∏n
i=1 x

ei
i ≤

∏n
i=1 x

fi

i (using a given monomial ordering “≤” on
K[x1, . . . , xn]). Define the set

C := {e− f | e, f ∈ Nn0 with f < e} .

C is called the convex cone associated to the monomial ordering “≤”. Show
the following.

(a) If c1, . . . , cm ∈ C, and if α1, . . . , αm ∈ R>0 are positive real numbers such
that c :=

∑m
i=1 αici ∈ Zn, then c ∈ C.

Hint: Show that C is closed under addition, and that if k · c ∈ C for
k ∈ N>0 and c ∈ Zn, then c ∈ C. Conclude the result for αi ∈ Q>0, then
for αi ∈ R>0.

(b) If c1, . . . , cm ∈ C, there exist positive integers w1, . . . , wn ∈ N>0 such
that

∑n
j=1 wjci,j > 0 for all i = 1, . . . ,m.

Hint: Conclude from part (a) that 0 ∈ Rn does not lie in the convex hull
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H :=
{∑m

i=1αici | αi ∈ R≥0 with
∑m
i=1αi = 1

}
of the ci. Then consider

a vector w′ ∈ H which is closest to 0.

Before formulating the next statement, we need to introduce a new monomial
ordering “≤w” that depends on a “weight vector” w = (w1, . . . , wn) ∈ Nn>0.
This is defined by saying that e ≤w f if

∑n
j=1 wjej <

∑n
j=1 wjfj , or∑n

j=1 wjej =
∑n
j=1 wjfj and e ≤ f .

(c) Let I ⊆ K[x1, . . . , xn] be an ideal, and let G be a Gröbner basis of I w.r.t.
“≤”. Then there exists a weight vector w ∈ Nn>0 such that G is also a
Gröbner basis w.r.t. ≤w, and the leading ideals w.r.t. the two monomial
orderings coincide: L≤(I) = L≤w(I).
Hint: You can use (b) to make sure that the leading monomials of some
polynomials (of your choice) do not change when going from “≤” to
“≤w”.

Remark: It is part (a) that earns C the name “convex cone”. To get a better
appreciation of part (c), notice that if “≤” is the lexicographical ordering,
there is no weight vector w with ≤=≤w. So w has to depend on G. The
ordering “≤w” has the special property that every monomial has only finitely
many monomials below it. Part (c) will be used in Exercise 11.7 to generalize
Corollary 11.14. (Solution on page 268)

9.3 (S-polynomials). Let g and h ∈ K[x1, . . . , xn] be non-zero polynomials
such that LM(g) and LM(h) are coprime. Show that 0 is a normal form of
spol(g, h) w.r.t. G := {g, h}. So pairs of polynomials with coprime leading
monomials need not be considered in Buchberger’s Algorithm 9.13.
Hint: Show that

spol(g, h) = (LT(h)− h) · g − (LT(g)− g) · h, (9.15)

and conclude the result from that. (Solution on page 270)

9.4 (Reduced Gröbner bases). Let I ⊆ K[x1, . . . , xn] be an ideal.

(a) Find an algorithm that converts a Gröbner basis of I into a reduced
Gröbner basis of I.

(b) Let G and G′ be two reduced Gröbner bases of I. Show that G = G′.

(Solution on page 270)

9.5 (Another proof of dim(A) ≤ trdeg(A)). Use Exercise 6.8(c) to give
another proof of Theorem 5.5 and the first part of Corollary 5.7. (Solution
on page 271)

9.6 (Radical membership test). It is rather complicated to compute the
radical ideal

√
I of an ideal I ⊆ K[x1, . . . , xn]. However, it is much easier to
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decide the membership of a given polynomial f ∈ K[x1, . . . , xn] in the radical
ideal. In fact, take an additional indeterminate y and form the ideal

J := (I ∪ {y · f − 1})K[x1,...,xn,y]
⊆ K[x1, . . . , xn, y].

Show the equivalence
f ∈
√
I ⇐⇒ 1 ∈ J.

This yields the desired test for radical membership, since the condition 1 ∈ J
can be tested by computing a Gröbner basis of J . (Solution on page 271)

9.7 (Testing affine algebras for dimension zero).
Let I $ K[x1, . . . , xn] be a proper ideal, and let G be a Gröbner basis of
I. Show that the following statements are equivalent.

(a) dim (K[x1, . . . , xn]/I) = 0.
(b) For every i ∈ {1, . . . , n}, there exists a positive integer di and gi ∈ G

with LM(gi) = xdi
i .

This yields a test for determining if the affine algebra A := K[x1, . . . , xn]/I
has dimension 0 by computing just one Gröbner basis w.r.t. an arbitrary
monomial ordering.
Remark: A generalization of this test is contained in Algorithm 11.15, which
computes the dimension of an affine algebra. (Solution on page 272)

9.8 (Elimination orderings vs. block orderings). Give an example of
an {x1, . . . , xk}-elimination ordering on K[x1, . . . , xn] which is not a block or-
dering formed from monomial orderings on K[x1, . . . , xk] and on
K[xk+1, . . . , xn]. (Solution on page 272)

9.9 (Subalgebra membership test). Let A = K[y1, . . . , ym]/I be an
affine K-algebra and R = K[g1 + I, . . . , gn + I] ⊆ A a subalgebra given
by polynomials gi ∈ K[y1, . . . , ym]. With x1, . . . , xn additional indetermi-
nates, form the ideal J := (I ∪ {g1 − x1, . . . , gn − xn})K[x1,...,xn,y1,...,ym] (as
in Proposition 9.18). Let G be a Gröbner basis of J w.r.t. an {x1, . . . , xn}-
elimination ordering “≤” on K[x1, . . . , xn, y1, . . . , ym]. Show that for f ∈
K[y1, . . . , ym] the equivalence

f + I ∈ R ⇐⇒ f̃ := NFG(f) ∈ K[x1, . . . , xn]

holds. Furthermore, show that if the above conditions are satisfied, then f +
I = f̃(g1 + I, . . . , gn + I). So we have an algorithm for testing membership
in R. (Solution on page 272)

9.10 (Computing intersections of ideals). Let I1, I2 ⊆ K[x1, . . . , xn] be
two ideals. With y an additional indeterminate, form the ideal

J := (y · I1 ∪ (1− y) · I2)K[x1,...,xn,y]
⊆ K[x1, . . . , xn, y].
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Show that
I1 ∩ I2 = K[x1, . . . , xn] ∩ J.

Since the right hand side is an elimination ideal, this yields an algorithm for
computing intersections of polynomial ideals. Can you think of an extension
of this algorithm that computes intersections of m ideals by computing just
one elimination ideal and using just one additional indeterminate? (You may
assume that K contains at least m elements.) (Solution on page 273)

9.11 (Colon ideals). Find an algorithm for computing the colon ideal I : J
of two ideals I, J ⊆ K[x1, . . . , xn]. Assume that the ideals are given by finitely
many generators. (Solution on page 273)

9.12 (A constructive version of Noether normalization). Write an
algorithm that finds the elements c1, . . . , cn from Theorem 8.19. Can the
version of Noether normalization discussed in Remark 8.20 be made con-
structive in similar ways?
Hint: Take another look at the proof of Theorem 8.19, and turn this proof
into an algorithm. (Solution on page 274)

9.13 (Elementary symmetric polynomials). In this exercise it is shown
that the ring of invariants of the symmetric group is generated by the so-
called elementary symmetric polynomials. These are defined as

sk :=
∑

1≤i1<i2<···<ik≤n

xi1 · · ·xik ∈ K[x1, . . . , xn] (k = 1, . . . , n).

The symmetric group Sn acts on K[x1, . . . , xn] by algebra-automorphisms
given by π(xi) = xπ(i) for π ∈ Sn. Show that

K[x1, . . . , xn]Sn = K[s1, . . . , sn].

Does this also hold if K is a ring, not a field?
Hint: Determine the leading monomials of the si w.r.t. the lexicographic
ordering, and use this information in the proof. (Solution on page 274)



Chapter 10

Fibers and Images of Morphisms
Revisited

In this chapter we will continue the investigation that was started in Sec-
tion 7.2. First we use Gröbner basis theory to prove the generic freeness
lemma. This leads to an algorithm for computing the image of a morphism
of affine varieties. Then we will draw more theoretical consequences on the
images of morphisms and the dimension of fibers. Finally, we will apply our
results to the topic of invariant theory. As mentioned before, the results of
this chapter will not be used anywhere else in the book, so there is an option
to skip it.

10.1 The Generic Freeness Lemma

Roughly speaking, the generic freeness lemma asserts that (under suitable
hypotheses) a ring extension becomes a free module after localizing almost
everywhere. The following lemma is a constructive version of the generic
freeness lemma. When reading it, one should bear Proposition 9.18 in mind,
since this proposition tells us how the Gröbner basis G appearing in the
lemma can be constructed in the case that R and S are affine algebras.

Lemma 10.1 (Generic freeness, constructive version). Let R ⊆ S be a
finitely generated ring extension, so that we have an epimorphism ψ:
R[x1, . . . , xn] → S (with xi indeterminates). Let G ⊆ R[x1, . . . , xn] be a
Gröbner basis of ker(ψ) w.r.t. some monomial ordering (see Remark 9.11 for
Gröbner bases over rings). If U ⊆ R is a multiplicative subset containing the
product

∏
g∈G LC(g), then U−1S is free as a U−1R-module, and there exists

a basis containing 1 ∈ U−1S.

Remark. In Lemma 10.1, if R is not an integral domain, it is possible that
the product

∏
g∈G LC(g) becomes zero. If that happens, the lemma is mean-

ingless. /

147
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Proof of Lemma 10.1. Let B ⊂ R[x1, . . . , xn] be the set of all monomials
which are not divisible by any leading monomial LM(g) with g ∈ G. Since ψ
is injective on R, we have 1 ∈ B. Moreover, ψ(B) ⊆ S is linearly independent
over R, since if

∑m
i=1 aiψ(ti) = 0 with t1, . . . , tm ∈ B pairwise distinct and

ai ∈ R, then h :=
∑m
i=1 aiti ∈ ker(ψ), so h = 0 since no monomial of h is

divisible by an LM(g) for g ∈ G.
Let M := (ψ(B))R ⊆ S be the (free) R-module generated by ψ(B). We

claim that for every s ∈ S there exists a u ∈ U such that us ∈ M . To prove
this, take f ∈ R[x1, . . . , xn] with s = ψ(f). By the modification of the Normal
Form Algorithm 9.8 discussed in Remark 9.11, there exists f∗ ∈ R[x1, . . . , xn]
which is a normal form w.r.t. G of some u·f , where u is a product formed from
leading coefficients of elements of G. By multiplying u with further leading
coefficients of elements of G, we can achieve that u is a power of

∏
g∈G LC(g),

so u ∈ U . The definition of a normal form implies that f∗ lies in (B)R and
u · f − f∗ ∈ (G)R[x1,...,xn] ⊆ ker(ψ). So

u · s = u · ψ(f) = ψ(u · f) = ψ(f∗) ∈M,

which proves the claim.
Now it is straightforward to check that B̃ :=

{
ψ(t)

1 | t ∈ B
}
⊆ U−1S is a

basis of U−1S as a U−1R-module. This completes the proof. ut

By combining Lemma 10.1 with Proposition 9.18 and Lemma 7.16, we get
an algorithm for computing the image of a morphism between the spectra
of affine algebras (which, in the case of an algebraically closed ground field,
comes down to computing the image of a morphism of affine varieties). Be-
fore we state the algorithm, we derive the “existence-version” of the generic
freeness lemma.

Corollary 10.2 (Generic freeness lemma). Let R be an integral domain and
let S be a ring extension of R that is finitely generated as an R-algebra. Then
there exists a non-zero element a ∈ R such that for every multiplicative subset
U ⊆ R with a ∈ U , the localization U−1S is free as a U−1R-module, and there
exists a basis containing 1 ∈ U−1S.

Proof. We have an epimorphism ψ: R[x1, . . . , xn]→ S. Let I := ker(ψ), K :=
Quot(R), and J := (I)K[x1,...,xn] = K · I. Choose a monomial ordering on
K[x1, . . . , xn], and let G ⊆ J\{0} be a Gröbner basis of J . By multiplying the
polynomials in G with suitable non-zero elements of R, we can achieve that
G is contained in I, so G is a Gröbner basis of I. With a :=

∏
g∈G LC(g) ∈

R \ {0}, the result follows from Lemma 10.1. ut

Loosely speaking, Corollary 10.2 says that freeness holds “almost every-
where” (assuming the hypotheses of the lemma). More precisely, it holds after
localization at all P ∈ Spec(R) with a /∈ P . These P form an open, dense sub-
set of Spec(R). (Proof of density: We have a /∈ {0} ∈ Spec(R), and the closure
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of {0} is Spec(R).) The generic freeness lemma is due to Grothendieck, and
it has been traditionally referred to as the generic flatness lemma. In fact,
in its original version, the assertion is flatness of the map U−1R → U−1S,
a property which is weaker than freeness and is not treated in this book. In
Exercise 10.1 we explore the necessity of the hypotheses of Corollary 10.2.
Exercise 10.2 contains a version of the generic freeness lemma for modules
over S. Exercise 10.3 contains a surprising application of the generic freeness
lemma: A special case of this application says that a subalgebra of an affine
K-domain has a localization which is again an affine K-domain.

As announced above, we now get to the algorithm for computing the im-
age of a morphism ϕ∗: Spec(A) → Spec(B) of spectra of affine algebras.
Defining B as a quotient ring of a polynomial ring is the same as giving an
embedding Spec(B) ↪→ Spec (K[x1, . . . , xn]). Therefore we may assume that
B is a polynomial ring. In the following, K[x1, . . . , xn] and K[y1, . . . , ym] are
polynomial rings over a field.

Algorithm 10.3 (Image of a morphism of spectra).

Input: An ideal I ⊆ K[y1, . . . , ym] defining an affine algebra A :=
K[y1, . . . , ym]/I, and polynomials g1, . . . , gn ∈ K[y1, . . . , ym] defining a
K-algebra-homomorphism ϕ: K[x1, . . . , xn]→ A, xi 7→ gi + I.

Output: Ideals J1, . . . , Jl ⊆ K[x1, . . . , xn] and polynomials f1, . . . , fl ∈
K[x1, . . . , xn] such that the image of the induced morphism ϕ∗: Spec(A)→
Spec (K[x1, . . . , xn]) =: Y is

im(ϕ∗) =
l⋃
i=1

(
VY (Ji) \ VY (fi)

)
(10.1)

and the image closure is

im(ϕ∗) = VY (J1). (10.2)

(1) Choose monomial orderings “≤x” on K[x1, . . . , xn] and “≤y” on
K[y1, . . . , ym], and let “≤” be the block ordering on K[x1, . . . , xn,
y1, . . . , ym] with “≤y” dominating.

(2) Form the ideal

J :=
(
I ∪ {g1 − x1, . . . , gn − xn}

)
K[x1,...,xn,y1,...,ym]

and compute a Gröbner basis G of J w.r.t. “≤”.
(3) Set

Gx := K[x1, . . . , xn] ∩G, Gy := {NFGx(g) | g ∈ G} \ {0},

and
M := {LCy(g) | g ∈ Gy} \K ⊆ K[x1, . . . , xn].
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Here LCy(g) denotes the leading coefficient w.r.t. “≤y” of g considered
as a polynomial in the yi-variables.

(4) Initialize the lists J1, . . . , Jl and f1, . . . , fl by setting l = 1,

J1 := (Gx)K[x1,...,xn] , and f1 :=
∏

f∈M∪{1}

f.

(5) For all f ∈M , perform Step (6).
(6) Apply the algorithm recursively with (I ∪ {f(g1, . . . , gn)})K[y1,...,ym] as

first argument and g1, . . . , gn as second argument. Append the resulting
lists of ideals and polynomials to the current lists J1, . . . , Jl and f1, . . . , fl.

Theorem 10.4. Algorithm 10.3 terminates after finitely many steps and cal-
culates the image of ϕ∗ and its closure correctly.

Proof. We use the notation from the algorithm. By way of contradiction,
assume that there exists an ideal I ⊆ K[y1, . . . , ym] such that the algorithm
applied to I does not terminate after finitely many steps. By Hilbert’s Basis
Theorem 2.13, we may assume I to be maximal with this property. Since
all steps except (6) clearly terminate after finitely many steps, there exists
f = LCy(g) ∈ M (with g ∈ Gy) such that Step (6) does not terminate
for f . By the maximality of I, this implies f(g1, . . . , gn) ∈ I, so f ∈ J
by the definition of J . Since f ∈ K[x1, . . . , xn] \ {0}, Theorem 9.16 yields
a g′ ∈ Gx whose leading monomial divides LM(f). Since “≤” is a block
ordering, LM(g) = LMy(g) · LM(f), so LM(g′) divides LM(g), too. This
contradicts the fact that all g ∈ Gy are in normal form w.r.t. Gx, showing
the termination of the algorithm.

We proceed with showing the correctness. The correctness of (10.2) follows
from (9.10), Proposition 9.17 and Theorem 9.16. To show (10.1), consider the
decomposition

im(ϕ∗) =
(

im(ϕ∗) \ VY (f1)
)
∪
⋃
f∈M

(
im(ϕ∗) ∩ VY (f)

)
, (10.3)

which follows from the definition of f1 in Step (4). We claim that

im(ϕ∗) \ VY (f1) = VY (J1) \ VY (f1). (10.4)

Indeed im(ϕ∗) \ VY (f1) ⊆ im(ϕ∗) \ VY (f1) = VY (J1) \ VY (f1), where we
used (10.2). Conversely, take P ∈ VY (J1) \ VY (f1). In the following we use
the notation from Proposition 9.18. By (9.12), we obtain∏
g∈Gy

LC (Φ(g)) =
∏
g∈Gy

ϕ (LCy(g)) = ϕ(cf1) ∈ ϕ (K[x1, . . . , xn] \ P ) =: U,

where c ∈ K \{0}. Moreover, the definition of Gy in Step (3) implies Φ(Gy) =
Φ(G\Gx)\{0}, so Proposition 9.18(c) tells us that Φ(Gy) is a Gröbner basis
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of the kernel of ψ. So by Lemma 10.1, U−1A is free as a U−1R-module,
and there exists a basis containing 1. By Lemma 7.16, this implies that the
map Spec(U−1A) → Spec(U−1R) is surjective. By Theorem 6.5, this means
that for every p ∈ Spec(R) with U ∩ p = ∅, there exists Q ∈ Spec(A) with
R∩Q = p. Particularly, p := ϕ(P ) ∈ Spec(R) satisfies the condition U∩p = ∅,
since otherwise there would exist h ∈ P and u ∈ K[x1, . . . , xn] \ P with
ϕ(h) = ϕ(u), leading to the contradiction u = (u− h) + h ∈ ker(ϕ) + P = P
since ker(ϕ) = J1 ⊆ P . So we have Q ∈ Spec(A) with R ∩ Q = p = ϕ(P ),
which is equivalent to P = ϕ−1(Q). So P ∈ im(ϕ∗) \ VY (f1), and (10.4) is
proved.

By induction on the recursion depth, we can assume that for every
f ∈ M the recursive call of the algorithm computes the image of ϕ∗f , where
ϕf : K[x1, . . . , xn]→ A/(ϕ(f))A is given by xi 7→ ϕ(xi)+(ϕ(f))A. So in view
of (10.3) and (10.4), it suffices to show that

im(ϕ∗) ∩ VY (f) = im(ϕ∗f ). (10.5)

Indeed, im(ϕ∗f ) consists of all P ∈ Spec (K[x1, . . . , xn]) such that P = ϕ−1
f (q)

with q ∈ A/(ϕ(f))A. This condition is equivalent to P = ϕ−1(Q) with Q ∈
Spec(A), ϕ(f) ∈ Q. This in turn is equivalent to P = ϕ−1(Q) and f ∈ P ,
i.e., P ∈ im(ϕ∗) ∩ VY (f). This shows (10.5), and the proof is complete. ut

Exercise 10.4 contains an explicit example to which the algorithm is ap-
plied.

Algorithm 10.3 also computes the image of a morphism f : X → Y of affine
varieties over an algebraically closed fieldK. In fact, Y (just likeX) is embed-
ded in some Kn, so for computing the image one may assume Y = Kn. The
morphism f induces a homomorphism ϕ: K[x1, . . . , xn] → K[X] =: A. Ap-
plying Algorithm 10.3 to ϕ yields J1, . . . , Jl ⊆ K[x1, . . . , xn] and f1, . . . , fl ∈
K[x1, . . . , xn] such that

im(ϕ∗) =
l⋃
i=1

(
VSpec(K[x1,...,xn])(Ji) \ VSpec(K[x1,...,xn])(fi)

)
.

Using the algebra geometry lexicon, it is easy to see that this implies

im(f) =
l⋃
i=1

(VKn(Ji) \ VKn(fi)) .
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10.2 Fiber Dimension and Constructible Sets

Corollary 10.2 is exactly what we need to draw consequences on the fibers of
morphisms. By putting it together with Lemmas 7.15 and 7.16, we obtain

Theorem 10.5. Let ϕ: R→ S be ring-homomorphism such that

(1) R is a Noetherian integral domain,
(2) S is finitely generated as an R-algebra, and
(3) ϕ is injective.

Then there exists a non-zero a ∈ R such that for all P ∈ Spec(R) with
a /∈ P , the fiber MP :=

{
Q ∈ Spec(S) | ϕ−1(Q) = P

}
is non-empty. For

every Q ∈MP we have

ht (Q) = ht(Q)− ht(P ), (10.6)

where Q ∈ Spec
(
S[P ]

)
is the image of Q in fiber ring S[P ] (i.e., Q =

U−1 (Q/I) with the notation used before Proposition 7.11). In particular,
the fiber dimension is

dim
(
S[P ]

)
= max {ht(Q) | Q ∈MP } − ht(P ). (10.7)

Proof. Corollary 10.2 yields a ∈ R\{0} such that for P ∈ Spec(R) with a /∈ P
the localization U−1S (with U := R\P ) is a free RP -module with 1 contained
in a basis. S and U−1S are Noetherian by Corollary 2.12 and Corollary 6.4,
so Lemma 7.16 applies. By Lemma 7.16(b), there exists Q′ ∈ Spec(U−1S)
with RP ∩Q′ = PP . It is routine to check that the preimage Q ∈ Spec(S) of
Q′ satisfies ϕ−1(Q) = P . Now Lemma 7.16(a) and Lemma 7.15 yield (10.6),
and (10.7) follows directly. ut

We now specialize Theorems 7.12 and 10.5 to the case of coordinate rings
of affine varieties.

Corollary 10.6. Let f : X → Y be a morphism of equidimensional affine
varieties over an algebraically closed field. For a point y ∈ Y , every irreducible
component Z ⊆ f−1({y}) of the fiber has dimension

dim(Z) ≥ dim(X)− dim(Y ). (10.8)

If f is dominant and Y is irreducible, there exists an open, dense subset
U ⊆ Y such that for every y ∈ U , the fiber f−1({y}) is non-empty and
equidimensional of dimension dim(X)− dim(Y ).

Proof. Let P ∈ Specmax (K[Y ]) be the maximal ideal corresponding to a
point y ∈ Y . The fiber over y is an affine variety, so by Corollary 8.24,
the inequality (10.8) follows if we can show that every maximal ideal in the
coordinate ring of the fiber has height at least d := dim(X) − dim(Y ). By
Proposition 7.11, this is the same as showing that every maximal ideal Q
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in the fiber ring over P has height at least d. Such a Q corresponds to a
maximal ideal Q ∈ Specmax (K[X]), so ht(Q) = dim(X) by Corollary 8.24.
Since ht(P ) = dim(Y ) (again by Corollary 8.24), the inequality (7.7) in
Theorem 7.12 guarantees ht (Q) ≥ d, so (10.8) is proved.

If f is dominant and Y is irreducible, the induced homomorphism ϕ:
K[Y ]→ K[X] is injective and K[Y ] is an integral domain, so Theorem 10.5
is applicable. This yields a ∈ K[Y ] \ {0}, so U := {y ∈ Y | a(y) 6= 0} is open
and non-empty, and therefore dense because of the irreducibility of Y . If y
lies in U , then a /∈ P , so Theorem 10.5 tells us that f−1({y}) is non-empty
and has dimension d. By (10.8), it must be equidimensional. ut

Corollary 10.6 has a consequence that is sometimes referred to as the
“upper semicontinuity of fiber dimension”. For more, see Exercise 10.5.

An important consequence of Theorem 10.5 is Chevalley’s theorem on
images of morphisms. A typical example for the nature of an image of a
morphism is Example 7.14(2): The image consists of all (α, β) ∈ K2 with
β 6= 0 or α = β = 0, as shown in Figure 10.1.

q

Figure 10.1. An image of a morphism

So the image is neither closed nor open. However, according to the follow-
ing definition, it is a constructible subset of K2.

Definition 10.7. Let X be a topological space. A subset L ⊆ X is called
locally closed if L is the intersection of an open and a closed subset. A
subset C ⊆ X is called constructible if C is the union of finitely many
locally closed subsets.

In Kn with the Zariski topology, a constructible set can be described by
giving finitely many polynomial equations and using the logical operators
“and” and “not”. It can be shown that the constructible sets are precisely
the sets which have such a description.

Corollary 10.8 (Chevalley’s theorem on images of morphisms).
Let ϕ: R → S be a homomorphism of Noetherian rings making S into
a finitely generated R-algebra. Then the image im(ϕ∗) of the induced map
ϕ∗: Spec(S)→ Spec(R) is a constructible subset of Spec(R).
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Proof. The proof technique we use here is sometimes called Noetherian in-
duction. This works as follows. We assume that the assertion is false. Since S
is Noetherian, there exists an ideal I ⊆ S that is maximal with the property
that

Y (I) := ϕ∗
(
VSpec(S)(I)

)
⊆ Spec(R)

is not constructible. Replacing S by S/I, we may assume that Y (J) is con-
structible for every non-zero ideal J ⊆ S.

Let Q1, . . . , Qn be the minimal prime ideals of S. Since im(ϕ∗) =⋃n
i=1 Y (Qi), there exists i such that Y (Qi) is not constructible. It follows

that Qi = {0}, so S is an integral domain. With P := ker(ϕ), the map ϕ∗

factors through Spec(R/P ). Since the natural map Spec(R/P ) → Spec(R)
takes constructible subsets of Spec(R/P ) to constructible subsets of Spec(R),
the map Spec(S) → Spec(R/P ) has a non-constructible image. So we may
assume that ϕ is injective and therefore R is an integral domain. Now The-
orem 10.5 yields a non-zero a ∈ R with Spec(R) \ VSpec(R)(a) ⊆ im(ϕ∗),
so

ϕ∗
(
Spec(S) \ VSpec(S)(ϕ(a))

)
= Spec(R) \ VSpec(R)(a)

is open in Spec(R). But Y (ϕ(a)) is constructible, and it follows that im(ϕ∗)
is constructible, too. ut

Specializing Corollary 10.8 to the case of coordinate rings of affine vari-
eties, we obtain that the image of a morphism f : X → Y of affine varieties
over an algebraically closed field is constructible. The example of the natural
embedding ϕ: Z → Q shows that the finite generation hypothesis cannot be
dropped from Corollary 10.8: The image of ϕ∗ consists only of the zero ideal,
and it is easily checked that this is not a constructible subset of Spec(Z). An
extended version of Chevalley’s theorem says that images of constructible set
under morphisms are always constructible (see Exercise 10.9). Corollary 10.8
and Exercise 10.7 imply that the image of a morphism has a subset which is
open and dense in the image closure. This “thickness” result is much stronger
and more useful than it appears at first glance.

10.3 Application: Invariant Theory

In this section we consider the theory of algebraic group actions and invariant
theory as an example where our result on fiber dimension (Corollary 10.6)
is applied several times. This yields some fundamental information on the
dimensions of orbits, fixed groups, and of the invariant ring.

In the following, let K be an algebraically closed field. A linear alge-
braic group over K is an affine K-variety G, together with morphisms
G × G → G, (g1, g2) 7→ g1 · g2 and G → G, g 7→ g−1 making G into a
group. Typical examples are the classical groups. A G-variety is an affine
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K-variety X together with a morphism G × X → X, (g, x) 7→ g(x) defin-
ing an action of G on X. Typical examples are the natural module Kn of
a classical group, symmetric powers of the natural module, and direct sums
of such modules. For the sake of simplicity, we assume that G and X are
both irreducible varieties. (The “opposite” case, where G is a finite group,
was considered in Exercise 8.1.) Readers who are interested in learning more
about invariant theory will find a vast amount of literature. Good sources to
start are Springer [48], Sturmfels [50], or Popov and Vinberg [44]. Here we
set ourselves the goal to find out as much as possible about the dimensions
of G-orbits, point-stabilizers, and of the ring of invariants. We proceed in
several steps.

First, fix a point x ∈ X and consider the morphism

fx: G→ X, g 7→ g(x),

whose image is the orbit G(x). Since G is irreducible, the Zariski-closure G(x)
of the orbit is also irreducible. For x′ = g0(x) ∈ G(x), the fiber is

f−1
x ({x′}) = {g ∈ G | g(x) = g0(x)} = g0 ·Gx,

where Gx stands for the point-stabilizer. Since multiplication by g0 is a
topological automorphism of G, we have dim

(
f−1
x ({x′})

)
= dim(Gx) for

all x′ ∈ G(x). By Corollary 10.6, there exist points x′ ∈ fx(G) where (10.8)
is an equality, so we obtain

dim(Gx) = dim(G)− dim
(
G(x)

)
. (10.9)

This is a fundamental connection between the orbit dimension and the sta-
bilizer dimension. Notice that the orbit G(x) often fails to be closed. An
example of this phenomenon is the natural action of the multiplicative group
(K \ {0}, ·) on K, which has the non-closed orbit K \ {0}.

From what we have seen up to now, the function X → N0, x 7→ dim(Gx)
could behave in a totally erratic way. To study this function, we consider the
morphism

h: G×X → X ×X, (g, x) 7→ (x, g(x)) .

The image Γ := h(G × X) is sometimes called the graph of the action.
G×X is irreducible by Exercise 3.9, so the same holds for the image closure
Γ . For (x, g(x)) ∈ Γ , the fiber is

h−1 ({(x, g(x))}) = (g ·Gx)× {x} ∼= Gx.

Applying Corollary 10.6 and Theorem 5.15 yields

dim(Gx) ≥ dim(G) + dim(X)− dim
(
Γ
)

=: d0
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for all x ∈ X, and there exists an open, dense subset U ′ ⊆ Γ such that for
(x, x′) ∈ U ′ we have equality. With π: X ×X → X the first projection, we
have

U ′ ⊆ π−1
(
π(U ′)

)
,

so
X = π(Γ ) ⊆ π

(
U ′
)
⊆ π (U ′) ⊆ X.

By Exercises 10.7 and 10.9, there exists a subset U ⊆ π(U ′) which is open
and dense in π (U ′) = X. By the above, all x ∈ U satisfy

dim(Gx) = d0 = min {dim (Gx′) | x′ ∈ X} . (10.10)

So the minimal value d0 for dim(Gx) is attained on an open, dense subset; in
other words, points with a stabilizer of greater dimension are exceptional. It
also follows that if we have found a dense subset of X where dim(Gx) takes
a constant value, then this value is d0.

We now consider the ring of invariants, which is the main object of study
in invariant theory. We have a G-action on the coordinate ring K[X] given
by g(f) = f ◦ g−1 for g ∈ G and f ∈ K[X]. The ring of invariants is

K[X]G := {f ∈ K[X] | g(f) = f for all g ∈ G} .

So a regular function is an invariant if and only if it is constant on every
G-orbit. Let f1, . . . , fn ∈ K[X]G be invariants. They generate a subalgebra
A := K[f1, . . . , fn] ⊆ K[X]. By Theorem 1.25, A is the coordinate ring of an
irreducible affine variety Y , and the inclusion A ⊆ K[X] induces a dominant
morphism F : X → Y . (Explicitly, Y ⊆ Kn is given by the ideal of relations of
the fi, and F is given by x 7→ (f1(x), . . . , fn(x)).) For y = F (x) with x ∈ X,
the invariance and continuity of the fi implies G(x) ⊆ F−1({y}), so

dim
(
F−1({y})

)
≥ dim

(
G(x)

)
= dim(G)− dim(Gx),

where we used (10.9). It is easy to see that the dominance of F implies that
F (U) = Y . By Exercises 10.7 and 10.9, F (U) has a subsetO which is open and
dense in F (U) = Y . Applying Corollary 10.6 to F , we can shrink O further
such that for all y ∈ O, the dimension of F−1({y}) equals dim(X)−dim(Y ).
So choose y ∈ O and x ∈ U with F (x) = y. Then

dim(X)− dim(Y ) = dim
(
F−1({y})

)
≥ dim(G)− d0

(with d0 the minimal, and typical, dimension of a point stabilizer Gx), so

dim(Y ) ≤ dim(X)− dim(G) + d0 := d.

Therefore trdeg(A) ≤ d by Theorem 5.9. Since this holds for any choice of
f1, . . . , fn ∈ K[X]G, it follows that trdeg

(
K[X]G

)
≤ d. So applying Theo-
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rem 5.9 again (or Exercise 5.3 in the case thatK[X]G is not finitely generated)
yields the nice inequality

dim
(
K[X]G

)
≤ dim(X)− dim(G) + dim(Gx), (10.11)

with x ∈ X a point where dim(Gx) becomes minimal.
It is an interesting question when (10.11) is an equality. This is the case

in many examples. However, counter examples are also easy to find. For in-
stance, if the multiplicative group (K \ {0}, ·) acts on X = K2 by normal
multiplication, the zero-vector lies in all orbit closures, as shown in Fig-
ure 10.2.
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Figure 10.2. Orbits of an action of the multiplicative group

It follows that all invariants are constant, and we get a strict inequality

dim
(
K[X]G

)
= 0 < 2− 1 + 0 = dim(X)− dim(G) + dim(Gx).

This example can be interpreted by saying that the invariant f := x1/x2

is missing, since it is not a regular function. But if we exclude K × {0}
from X, f becomes a regular function and (10.11) becomes an equality. By
a famous theorem of Rosenlicht (see Popov and Vinberg [44, Theorem 2.3]
or Springer [49, Satz 2.2]), this behavior is universal: One can always restrict
X in such a way that (10.11) becomes an equality, and even such that every
fiber of F is precisely one G-orbit (provided one chooses enough invariants
for forming F ). In particular, for the field of invariants K(X)G, we always
have the equality

trdeg
(
K(X)G

)
= dim(X)− dim(G) + dim(Gx)

with x ∈ X a point with dim(Gx) minimal. Notice that K(X)G is not always
the field of fractions of K[X]G; but if it is, the above equation implies equal-
ity in (10.11). For example, if X = Kn is affine n-space and there exists no
surjective homomorphism from G to the multiplicative group GL1(K), then
it is not hard to show that K(X)G = Quot

(
K[X]G

)
, so (10.11) is an equal-

ity. Typical examples of groups G which have no surjective homomorphism
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to GL1(K) are G = SLn(K) and the additive group G = Ga := (K,+).
Exercise 10.10 studies two examples where (10.11) is an equality.

Exercises to Chapter 10

10.1 (Hypotheses of the generic freeness lemma). Give an example
which shows that the hypothesis on finite generation of S as an R-algebra
cannot be dropped from the Generic Freeness Corollary 10.2. (Solution on
page 275)

*10.2 (Generic freeness for modules). Prove the following version of
the generic freeness lemma: If R is an integral domain, S a finitely gener-
ated R-algebra and M a Noetherian S-module, then there exists a ∈ R \ {0}
such that for every multiplicative subset U ⊆ R with a ∈ U , the localization
U−1M is free as a U−1R-module. (Solution on page 275)

10.3 (Subalgebras of finitely generated algebras). We know that sub-
algebras of finitely generated algebras need not be finitely generated (see
Exercise 2.1). However, in this exercise it is shown that under very general
hypotheses there exists a localization which is finitely generated.

Let R be a ring, A an R-domain (= an integral domain which is a finitely
generated R-algebra), and B ⊆ A a subalgebra. Show that there exists a ∈
B \ {0} such that Ba is an R-domain.
Hint: You may use the fact that subextensions of finitely generated field
extensions are also finitely generated (see Bourbaki [7, Chapter IV, § 15,
Corollary 3]). (Solution on page 275)

10.4 (Computing the image of a morphism). Let K be an algebraical-
ly closed field of characteristic not 2. Let X := {(ξ1, ξ2, ξ3) ∈ K3 | ξ21 + ξ22 −
ξ23 = 0} and consider the morphism

f : X → K2, (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2 + ξ3)

(see Example 7.14(2)). Use Algorithm 10.3 to determine the image of f .
(Solution on page 276)

10.5 (Upper semicontinuity of fiber dimension). Let f : X → Y be a
morphism of affine varieties over an algebraically closed field. For a non-
negative integer d, show that the set

Xd :=
{
x ∈ X | f−1({f(x)}) has an irreducible component Z

with x ∈ Z and dim(Z) ≥ d
}
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is closed in X.
Remark: In the jargon of the trade, this result is often referred to as the
“upper semicontinuity of fiber dimension”. Intuitively speaking (and over-
simplifying), this means that the fiber dimension goes up only at exceptional
points. Unfortunately, the definition of Xd is a bit complicated. In Exer-
cise 10.6, two tempting, but false simplifications are explored. (Solution on
page 276)

10.6 (Two false statements on fiber dimension). Find examples which
show that the following two statements (which are nicer than the result of
Exercise 10.5) are false.

(a) If f : X → Y is a morphism of affine varieties over an algebraically closed
field, then for every non-negative integer d the set

Yd :=
{
y ∈ Y | dim

(
f−1({y})

)
≥ d
}

is closed in Y .
(b) If f : X → Y is a morphism of affine varieties over an algebraically closed

field, then for every non-negative integer d the set

Xd :=
{
x ∈ X | dim

(
f−1({f(x)})

)
≥ d
}

is closed in X.

Is (b) true if X is assumed to be irreducible? (Solution on page 277)

10.7 (Constructible subsets). Let X be a Noetherian topological space
and let Y ⊆ X be a constructible subset. Show that there exists a subset
U ⊆ Y which is open and dense in the closure Y .
Hint: You can proceed as follows. Let Y be the union of locally closed sets
Li. Show that each irreducible component Zj of Y is contained in at least
one Li. Exclude all components other than Zj from the open set belonging to
Li. If the resulting open set is U ′j , show that U ′j ∩Zj ⊆ Y and U ′j ∩ Zj = Zj .

Then form U := Y ∩
(⋃

j U
′
j

)
, and show that this is a subset of Y which is

open and dense in Y . (Solution on page 278)

10.8 (Open and dense subsets of image closures). Let f : X → Y be
a map of topological spaces. From which of the following hypotheses does it
follow that the image im(f) has a subset U which is open and dense in the
image closure im(f)?

(a) X and Y are affine varieties (over a field which need not be algebraically
closed), and f is a morphism.

(b) X and Y are affine varieties over an algebraically closed field, and f is
continuous (w.r.t. the Zariski topology).

(c) X = Y = R with the usual Euclidean topology, and f is continuous.
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(Solution on page 278)

10.9 (Images of constructible sets). Let ϕ: R→ S be a homomorphism
of Noetherian rings making S into a finitely generated R-algebra, and let
X ⊆ Spec(S) be a constructible subset. Show that ϕ∗(X) ⊆ Spec(R) is
constructible, too.
Hint: Reduce to the case that X := VSpec(S)(I) \ VSpec(S)(a) with I ⊆ S an
ideal and a ∈ S. (Solution on page 279)

10.10 (Some invariant theory). Consider the following examples of a lin-
ear algebraic group G over an algebraically closed field K, together with a
G-variety X.

(a) G = GLn(K) and X = Kn×n (the space of n by n-matrices, which as a
variety is just Kn2

) with G acting by g(A) := g ·A · g−1.
(b) G = SLn(K) and X = Kn×m (the space of n by m-matrices) with G

acting by g(A) := g ·A (matrix-product).

For each example, determine the minimal dimension of a point-stabilizer Gx
and an open, dense subset of X where this dimension is attained. Try to find
enough invariants f1, . . . , fm ∈ K[X]G to show that (10.11) is an equality.
(Solution on page 279)



Chapter 11

Hilbert Series and Dimension

An affine algebra A of positive Krull dimension is always infinite-dimensional
as a vector space (see Theorem 5.11). The goal of introducing the Hilbert
series is to nevertheless measure the size in some way. The trick is to break
up A into finite-dimensional pieces, given by the degrees. The Hilbert series
then is the power series whose coefficients are the dimensions of the pieces. So
instead of measuring the dimension by a number, we measure its growth as
the degrees rise, and encode that information into a power series. In the first
section of this chapter, we show the surprising fact that the Hilbert series
can always be written as a rational function, and almost all its coefficients
are given by a polynomial, the Hilbert polynomial. We also learn how the
Hilbert series can be computed algorithmically. In fact, as in the last chapter,
algorithms and theory go hand in hand here. In the second section we show
that the degree of the Hilbert polynomial is equal to the Krull dimension
of A. Apart from being an interesting result in itself, this leads to a new
and better algorithm for computing the dimension. The result also plays an
important role in Chapter 12.

Throughout this chapter, K[x1, . . . , xn] will denote a polynomial ring over
a field.

11.1 The Hilbert-Serre Theorem

The following definition sets the theme of this chapter.

Definition 11.1. For a monomial t = xe11 · · ·xen
n , the degree of t is defined

as deg(t) := e1 + · · · + en. For a non-zero polynomial f ∈ K[x1, . . . , xn] we
set

deg(f) := max {deg(t) | t ∈ Mon(f)} ,

and deg(0) := −1.

161
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For I ⊆ K[x1, . . . , xn] an ideal, let A := K[x1, . . . , xn]/I, and for d a
non-negative integer, set

A≤d := {f + I | f ∈ K[x1, . . . , xn], deg(f) ≤ d} .

Observe that A≤d is a finite-dimensional K-vector space. The function hI :
N0 → N0 defined by

hI(d) := dimK(A≤d)

is called the Hilbert function of I. The formal power series

HI(t) :=
∞∑
d=0

hI(d)td ∈ Z[[t]]

is called the Hilbert series of I.

Example 11.2. (a) Let I = (x1, . . . , xn). Then hI(d) = 1 for all d, so

HI(t) =
∞∑
d=0

td =
1

1− t
.

(b) Let I = (x1 − x2
2) ⊂ K[x1, x2] and A = K[x1, x2]/I. For d ∈ N0, the

residue classes of 1, x1, . . . , x
d
1, x2, x1x2, . . . , x

d−1
1 x2 form a basis of A≤d,

so hI(d) = 2d+ 1. We obtain

HI(t) =
1 + t

(1− t)2
.

/

Remark 11.3. (a) In the definition of the Hilbert series, we need not worry
about convergence issues, since HI(t) is defined as an element of the for-
mal power series ring over Z. This also applies to the representations of
the Hilbert series as “rational functions” in Example 11.2: The polyno-
mial 1 − t is an invertible element of Z[[t]], and its inverse is

∑∞
d=0 t

d.
Of course, these representations could also be interpreted as identities of
real or complex functions which are defined for |t| < 1.

(b) It is tempting to define the Hilbert function and Hilbert series of an
affine algebra A as follows. By choosing generators of A, we obtain a
presentation of A as A ∼= K[x1, . . . , xn]/I. Then set hA(d) := hI(d) and
HA(t) := HI(t). However, these objects will depend on the choice of the
generators. For instance, choosing the (rather unusual) generators x2 and
x for the polynomial ring A = K[x] yields the Hilbert function 2d+ 1 by
Example 11.2(b). But choosing just x yields d+1 by Remark 11.5 below.
So the Hilbert function and Hilbert series are not invariants of an affine
algebra.

(c) Our definition of the A≤d provides an ascending filtration of A, in the
sense that A≤d ⊆ A≤d+1 for all d and A =

⋃
d∈N0

A≤d. In the literature,
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Hilbert series are often defined for graded vector spaces, i.e., vector spaces
V which have a direct sum decomposition

V =
⊕
d∈N0

Vd

with Vd finite-dimensional K-vector spaces. A special case of a graded
vector space is a graded algebra, where the grading provides a structure
of a graded ring. In this setting, the graded Hilbert series is defined as

Hgrad
V (t) :=

∞∑
d=0

dimK(Vd)td ∈ Z[[t]].

But this is strongly related to our definition of the Hilbert series. In fact,
a grading can be turned into an ascending filtration by setting V≤d :=⊕d

i=0 Vi. Then Hgrad
V (t) and HV (t) :=

∑∞
d=0 dimK(V≤d)td are obviously

connected by
Hgrad
V (t) = (1− t)HV (t).

Exercise 12.3 studies the Hilbert series of a graded module over a graded
ring. /

We now calculate the Hilbert series of a principal ideal. As we will see
later, this has much more importance than just providing a further example.

Proposition 11.4 (Hilbert series of a principal ideal). Let I = (f) ⊆
K[x1, . . . , xn] be a principal ideal. Then

HI(t) =
1− tdeg(f)

(1− t)n+1
if f 6= 0

and
HI(t) =

1
(1− t)n+1

if f = 0.

Proof. We start with the case f = 0. Since the Hilbert function and Hilbert
series of the zero-ideal depend on the number n of indeterminates, we will
write them in this proof as hn(d) and Hn(t), respectively. We use induction
on n, starting with n = 0. We have h0(d) = 1 for all d, so H0(t) = 1

1−t . For
n > 0, we use the direct sum decomposition

K[x1, . . . , xn]≤d =
⊕
i,j∈N0,
i+j=d

K[x1, . . . , xn−1]≤i · xjn. (11.1)

With the induction hypothesis, this implies

Hn(t) = Hn−1(t) ·
( ∞∑
j=0

tj
)

= Hn−1(t) ·
1

1− t
=

1
(1− t)n+1

.
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Now assume that f 6= 0. For every d ∈ N0 we have

(K[x1, . . . , xn]/(f))≤d ∼= K[x1, . . . , xn]≤d/
(
f ·K[x1, . . . , xn]≤d−deg(f)

)
.

Since multiplication with f is injective on K[x1, . . . , xn], we obtain

HI(t) = (1− tdeg(f)) ·H{0}(t) =
1− tdeg(f)

(1− t)n+1
.

ut

Remark 11.5. We can also determine the Hilbert function h{0}(d) of the
zero-ideal. Since h{0}(d) equals the number of monomials of degree at most d,
it can be determined combinatorially. Taking a different route, we expand the
Hilbert series as a binomial series. This yields

H{0}(t) = (1− t)−n−1 =
∞∑
d=0

(
−n− 1
d

)
(−t)d,

so

h{0}(d) = (−1)d
(
−n− 1
d

)
=
(
d+ n

d

)
=
(
d+ n

n

)
.

In particular, we see that h{0}(d) is given by a polynomial of degree n in d.
This will be generalized in Corollary 11.10. /

Our next goal is to link the topic of Hilbert series to the theory of Gröbner
bases. For this, we need the concept of a total degree ordering. By defini-
tion, this is a monomial ordering on K[x1, . . . , xn] such that two monomials
t, t′ with t ≤ t′ satisfy deg(t) ≤ deg(t′). The most important example of a
total degree ordering is the grevlex ordering. A counter example is the lexi-
cographic ordering (if n > 1). Recall that if I ⊆ K[x1, . . . , xn] is an ideal, we
write L(I) for the leading ideal, which depends on the choice of the monomial
ordering.

Theorem 11.6 (Hilbert series of the leading ideal). Suppose
that K[x1, . . . , xn] is equipped with a total degree ordering, and let I ⊆
K[x1, . . . , xn] be an ideal. Then

HI(t) = HL(I)(t).

Proof. Set A := K[x1, . . . , xn]/I. By Theorem 9.9, the normal form map
NFG, given by a Gröbner basis G of I, induces an injective linear map
ϕ: A → K[x1, . . . , xn]. For every d ∈ N0 we have a restriction ϕd: A≤d →
K[x1, . . . , xn]. Let Vd ⊆ K[x1, . . . , xn] be the subspace spanned by all mono-
mials t with deg(t) ≤ d and t /∈ L(I). Since all f ∈ Vd are in normal form
w.r.t. G, we get f = NFG(f) = ϕd(f + I), so Vd ⊆ im(ϕd). On the other
hand, Definition 9.6(b) and the hypothesis on the monomial ordering imply
im(ϕd) ⊆ Vd. We conclude that
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hI(d) = dim(Vd).

Observe that the definition of Vd only depends on L(I). So two ideals with
the same leading ideal have the same Hilbert function and Hilbert series.
Since L (L(I)) = L(I), the result follows. ut

Exercise 11.2 shows that the hypothesis on the monomial ordering cannot
be dropped from Theorem 11.6.

A polynomial f ∈ K[x1, . . . , xn] is called homogeneous if all monomi-
als of f have the same degree. So every polynomial can be written uniquely
as a sum of homogeneous polynomials of pairwise distinct degrees, its ho-
mogeneous parts. An ideal I ⊆ K[x1, . . . , xn] is called homogeneous if
it is generated by homogeneous polynomials. For example, the leading ideal
L(I) of any ideal I is homogeneous. For more on homogeneous ideals, see
Exercise 11.3.

Lemma 11.7 (Hilbert series of the sum and intersection of ideals). Let I, J
⊆ K[x1, . . . , xn] be homogeneous ideals. Then

HI+J(t) +HI∩J(t) = HI(t) +HJ(t).

Proof. Let d be a non-negative integer. For an ideal L ⊆ K[x1, . . . , xn] we
write L≤d := {f ∈ L | deg(f) ≤ d}. It follows from the hypothesis that I + J
is generated by homogeneous polynomials g1, . . . , gm ∈ I ∪ J , so every f ∈
(I + J)≤d can be written as f =

∑m
i=1 higi, with hi ∈ K[x1, . . . , xn]. This

equation still holds if from each hi we delete all homogeneous parts of degree
> d− deg(gi). This shows that the map I≤d → (I + J)≤d/J≤d, f 7→ f + J≤d
is surjective. Its kernel is (I ∩ J)≤d, so

dimK(I≤d)− dimK ((I ∩ J)≤d) = dimK ((I + J)≤d)− dimK(J≤d).

Passing to the dimensions of the quotient spaces inK[x1, . . . , xn]≤d and form-
ing power series yields the result. ut

The reduction step given by Theorem 11.6 is crucial in the following algo-
rithm for computing the Hilbert series of an ideal.

Algorithm 11.8 (Hilbert series of a polynomial ideal).

Input: An ideal I ⊆ K[x1, . . . , xn], given by generators.
Output: The Hilbert series HI(t).

(1) Choose a total degree ordering “≤” on K[x1, . . . , xn] and compute a
Gröbner basisG of I w.r.t. “≤”. Letm1, . . . ,mr be the leading monomials
of the non-zero elements of G.

(2) If r = 0, return HI(t) := 1
(1−t)n+1 .

(3) Set

J := (m2, . . . ,mr) and J̃ := (lcm(m1,m2), . . . , lcm(m1,mr)) .
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(4) Compute the Hilbert series HJ(t) and H eJ(t) by a recursive call of the
algorithm. (Notice that J and J̃ are generated by monomials, so there is
nothing to do when performing Step (1) on J and J̃ .)

(5) Return

HI(t) :=
1− tdeg(m1)

(1− t)n+1
+HJ(t)−H eJ(t).

Notice that Algorithm 11.8 requires just one Gröbner basis computation,
and we can use the grevlex ordering, which tends to make computations
fastest.

Theorem 11.9. Algorithm 11.8 terminates after finitely many steps and cal-
culates HI(t) correctly.

Proof. With each recursive call of the algorithm, the number r decreases
strictly. This guarantees termination.

Let Ĩ := (m1, . . . ,mr) = L(I). By Theorem 11.6, we need to show that
Steps (2) through (5) calculate HeI(t) correctly. We use induction on r.

For r = 0, the Hilbert series in Step (2) is correct by Proposition 11.4.
Assume r > 0. By induction, the Hilbert series of J and J̃ are calculated
correctly. We claim that

J̃ = J ∩ (m1). (11.2)

Clearly every least common multiple of m1 and an mi (i ≥ 2) lies in J and
in (m1), so J̃ ⊆ J ∩ (m1). Conversely, take f ∈ J ∩ (m1). Then f = g1m1

and f =
∑r
i=2 gimi with g1, . . . , gr ∈ K[x1, . . . , xn]. For every monomial

t ∈ Mon(g1) there exists i ≥ 2 such that tm1 ∈ Mon(gimi), so mi divides
tm1. This implies that lcm(m1,mi) divides tm1, so tm1 ∈ J̃ . We conclude
that f ∈ J̃ , so (11.2) is established.

Since Ĩ = J + (m1), Lemma 11.7 and Proposition 11.4 yield

HeI(t) = H(m1)(t) +HJ(t)−H eJ(t) =
1− tdeg(m1)

(1− t)n+1
+HJ(t)−H eJ(t),

completing the proof. ut

A consequence of the correctness of Algorithm 11.8 is that the Hilbert
series HI(t) can be written as a rational function with (1− t)m+1 as denom-
inator. Going one step further, we can extract information about the Hilbert
function from this. The results are stated in the following corollary.

Corollary 11.10 (Hilbert-Serre theorem). Let I ⊆ K[x1, . . . , xn] be an
ideal. Then the Hilbert series has the form

HI(t) =
a0 + a1t+ · · ·+ akt

k

(1− t)n+1
(11.3)
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with k ∈ N0 and ai ∈ Z. Moreover, the Hilbert function hI(d) is a polynomial
for large d. More precisely, the polynomial

pI :=
k∑
i=0

ai

(
x+ n− i

n

)
∈ Q[x] (11.4)

satisfies
hI(d) = pI(d) (11.5)

for all sufficiently large integers d.

Proof. Induction on the recursion depth in Algorithm 11.8 immediately
yields (11.3). By Remark 11.5, we can write 1

(1−t)n+1 =
∑∞
d=0

(
d+n
n

)
td, so

HI(t) =
k∑
i=0

∞∑
d=i

ai

(
d+ n− i

n

)
td =

∞∑
d=0

min{d,k}∑
i=0

ai

(
d+ n− i

n

)
td, (11.6)

and we see that the definition of pI according to (11.4) yields (11.5) for
d ≥ k. ut

It is not hard to determine the largest integer d for which (11.5) fails. This
is done in Exercise 11.5. Corollary 11.10 prompts the following definition.

Definition 11.11. The polynomial pI ∈ Q[x] from Corollary 11.10 is called
the Hilbert polynomial of I.

The Hilbert polynomial can be calculated by using Algorithm 11.8 and
then applying (11.4). Having assigned a polynomial pI to an ideal I, it is
natural to ask if such numbers as the degree or the leading coefficient of pI
mean anything interesting for I. These questions will be addressed in the
following section.

11.2 Hilbert Polynomials and Dimension

We have seen in Remark 11.3(b) that the Hilbert series and the Hilbert
polynomial are not invariants of an affine algebra. However, the following
lemma tells us that the degree of the Hilbert polynomial is an invariant.

Lemma 11.12 (The degree of the Hilbert polynomial is an invariant). Let
I ⊆ K[x1, . . . , xn] and J ⊆ K[y1, . . . , ym] be ideals in polynomial rings such
that the K-algebras A := K[x1, . . . , xn]/I and B := K[y1, . . . , ym]/J are
isomorphic. Then

deg(pI) = deg(pJ)

Proof. We have an isomorphism ϕ: A → B of K-algebras, so there exist
polynomials g1, . . . , gm ∈ K[x1, . . . , xn] such that ϕ(gi + I) = yi + J . Set
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k := max{deg(g1), . . . ,deg(gm)}. Then for every d ∈ N0, B≤d is contained in
ϕ(A≤kd), so

hJ(d) ≤ dimK (ϕ(A≤kd)) = hI(kd).

This implies that pJ cannot have a greater degree than pI . By symmetry, the
degrees are equal. ut

So if A is an affine algebra, we may choose generators a1, . . . , an and
consider the kernel I of the map K[x1, . . . , xn] → A, xi 7→ ai. Then A ∼=
K[x1, . . . , xn]/I, so by Lemma 11.12, deg(pI) is independent of the choice
of the generators. We will use this by choosing a very convenient generating
set, coming from Noether normalization, to prove that this degree is actually
equal to the Krull dimension of A

Theorem 11.13 (Degree of the Hilbert polynomial and Krull dimension).
Let A ∼= K[x1, . . . , xn]/I be an affine algebra. Then

deg(pI) = dim(A).

Proof. The result is correct (by our various conventions) if A is the zero-
ring, so we may assume that A 6= {0}. By the Noether Normalization Theo-
rem 8.19 and by Theorem 8.4, there exist algebraically independent elements
c1, . . . , cm ∈ A with m = dim(A), and further elements b1, . . . , br ∈ A such
that A =

∑r
j=1 C · bj , where C := K[c1, . . . , cm] ⊆ A. We may assume

that b1 = 1. Let y1, . . . , ym and z1, . . . , zr be indeterminates and let J ⊂
K[y1, . . . , ym, z1, . . . , zr] be the kernel of the map K[y1, . . . , ym, z1, . . . , zr]→
A, yi 7→ ci, zj 7→ bj . By Lemma 11.12, deg(pI) = deg(pJ), so we need to
show that deg(pJ) = m. Write

B≤d := {f + J | f ∈ K[y1, . . . , ym, z1, . . . , zr], deg(f) ≤ d}

and
C≤d := {f + J | f ∈ K[y1, . . . , ym], deg(f) ≤ d} .

Since C≤d ⊆ B≤d for every d ∈ N0, we obtain

hJ(d) ≥ dimK(C≤d) =
(
d+m

m

)
,

where we used the algebraic independence of the ci and Remark 11.5. This
implies deg(pJ) ≥ m.

To prove the reverse inequality, observe that for 0 ≤ i ≤ j ≤ r, the
product bibj can be written as bibj =

∑r
k=1 ai,j,kbk with ai,j,k ∈ C. There

exists a positive integer e such that ai,j,k ∈ C≤e for all i, j, k. So bibj ∈∑r
k=1 C≤e · bk, and by induction we see that the product of s of the bi lies in∑r
k=1 C≤(s−1)e · bk (for s > 0). It follows that
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B≤d ⊆ C≤d · b1 +
d∑
s=1

r∑
k=1

C≤d−s · C≤(s−1)e · bk ⊆
r∑

k=1

C≤ed · bk =: Vd

for all d ≥ 0. We obtain that

hJ(d) ≤ dimK(Vd) ≤ r · dimK(C≤ed) = r ·
(
ed+m

m

)
,

where we used Remark 11.5 again. As a polynomial in d, this upper bound
has degree m, so we conclude deg(pJ) ≤ m. This completes the proof. ut

Theorem 11.13 provides a new interpretation of the concept of the dimen-
sion of an affine variety X. Indeed, if X is given by an ideal I, then hI(d) is
a measure for the quantity of regular functions on X of degree at most d. So
the dimension of X may be seen as the rate at which the quantity of regular
functions grows with the degree.

Since the Hilbert polynomial can be calculated with just one Gröbner
basis computation, we also have an improved algorithm for computing the
dimension of an affine algebra. Recall that the first method for this, which we
discussed in Section 9.2 on page 138, requires several Gröbner basis computa-
tions. The following corollary will enable us to make a further optimization.

Corollary 11.14 (Computing dimension via the leading ideal). Let I ⊆
K[x1, . . . , xn] be an ideal, and let L(I) be its leading ideal w.r.t. a total degree
ordering. Then

dim (K[x1, . . . , xn]/I) = dim (K[x1, . . . , xn]/L(I)) .

Proof. This follows from Theorems 11.6 and 11.13. ut

Corollary 11.14 is actually true for arbitrary monomial orderings. This is
shown in Exercise 11.7 by generalizing the results from this chapter to the case
of weighted degrees. Another way of showing Corollary 11.14 for arbitrary
monomial orderings is by working with a so-called flat deformation. This
method is more difficult but conceptually very interesting, so let us say a
few words about it. Geometrically speaking, one constructs an affine variety
Z together with a morphism f : Z → K1 such that the fiber over 1 ∈ K1

is X := V(I), the variety of the given ideal, and the fiber over 0 ∈ K1 is
Y := V (L(I)). Z together with f can be considered as a family of varieties,
given by the fibers of f , and since X and Y occur as fibers, we can view
the passage from X to Y as a deformation. The important point is that Z is
constructed in such a way that the homomorphismK[t]→ K[Z] induced by f
makes K[Z] into a free K[t]-module. So we could speak of a free family and a
free deformation. Since freeness implies flatness, we may follow the traditional
way of speaking of flatness, enabling us to utter very nice sentences such as:
“The passage from an ideal to its leading ideal constitutes a flat deformation”.
This flatness, or freeness, property means that an ideal and its leading ideal
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are strongly related, and may be seen as one of the sources of the usefulness
of Gröbner bases. But why does it imply equality of the dimensions of X and
Y ? This follows from applying the tools that we developed in Section 7.2, in
particular Lemmas 7.15 and 7.16, but more considerations are needed. Let
us give a hint how Z is constructed. One uses a weighted degree as given by
Exercise 9.2(c), and then forms an ideal Ĩ ⊆ K[t, x1, . . . , xn] from a Gröbner
basis of I by homogenization. The freeness then follows by applying the
constructive version of the Generic Freeness Lemma 10.1. See Eisenbud [17,
Section 15.8] or Greuel and Pfister [22, Section 7.5] for more on Gröbner
bases and flatness.

The leading ideal J := L(I) is a monomial ideal, i.e., it is generated by
monomials m1, . . . ,mr. It is especially simple to compute the dimension of
A := K[x1, . . . , xn]/J for a monomial ideal J by using Theorem 5.9 and
Proposition 5.10. In fact, a set M ⊆ {x1, . . . , xn} of indeterminates is al-
gebraically dependent modulo J if and only if there exists a monomial mj

among the generators of J which only involves indeterminates from M . So
M is algebraically independent modulo J if and only if every mj involves an
indeterminate xi which is not in M . And the complement {x1, . . . , xn} \M
is algebraically independent modulo J if and only if every mj involves an
xi ∈M . This leads to the following algorithm.

Algorithm 11.15 (Dimension of an affine algebra).

Input: An ideal I ⊆ K[x1, . . . , xn] defining an affine algebra A :=
K[x1, . . . , xn]/I.

Output: The Krull dimension dim(A).

(1) Choose a total degree ordering “≤” on K[x1, . . . , xn] and compute a
Gröbner basisG of I w.r.t. “≤”. Letm1, . . . ,mr be the leading monomials
of the non-zero elements of G. (In fact, by Exercise 11.7 the algorithm
works for arbitrary monomial orderings)

(2) If mj = 1 for some j, return dim(A) = −1.
(3) By an exhaustive search, find a set M ⊆ {x1, . . . , xn} of minimal size

such that every mj involves at least one indeterminate from M .
(4) Return dim(A) = n− |M |.

Let us emphasize again that Algorithm 11.15 requires just one Gröbner ba-
sis computation, and this can be performed w.r.t. the grevlex ordering, which
tends to be the fastest. After the Gröbner basis computation, the algorithm
is purely combinatorial. Even when implemented in a crude way, the cost of
Step (3) (where the combinatorics happens) will in most cases be dwarfed
by the cost of the preceding Gröbner basis computation. Nevertheless, it is
interesting to think about optimizing this step. An optimized version can be
found in Becker and Weispfenning [3, Algorithm 9.6].

We close this chapter with a definition.

Definition 11.16. For I ⊆ K[x1, . . . , xn] a proper ideal, let m = deg(pI) be
the degree and LC(pI) the leading coefficient of the Hilbert polynomial. Then
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deg(I) := m! · LC(pI)

is called the degree of I.

This is certainly a valid definition, but does the degree of an ideal have
any meaning, and is it useful? Exercises 11.8 through 11.10 deal with the
degree, and there we learn that the degree is a positive integer, and how the
classical theorem of Bézout can be proved by using it. Suffice it to make a
few additional comments here. The degree of a principal ideal I = (f) with
f ∈ K[x1, . . . , xn] non-constant is deg(I) = deg(f). The easiest way to see
this is to use Proposition 11.4 and Exercise 11.8. This may be a first indication
that the definition of the degree is a good one. Moreover, if X ⊆ Kn is a finite
set of points and I := I(X) its ideal, then deg(I) = |X|. This follows from
Exercise 5.4. Finally, notice that the degree is not an invariant of an affine
algebra (see the example in Remark 11.3(b)).

Exercises to Chapter 11

11.1 (Comparing ideals by their Hilbert functions). Let I and J be
ideals in K[x1, . . . , xn] such that I ⊆ J and hI = hJ . Show that I = J .
(Solution on page 280)

11.2 (Hypotheses of Theorem 11.6). Find an example that shows that
the hypothesis on the monomial ordering cannot be dropped from Theo-
rem 11.6. (Solution on page 281)

11.3 (Homogeneous ideals). In this exercise we assume K to be infinite.

(a) Let I ⊆ K[x1, . . . , xn] be an ideal. For a ∈ K, let ϕa: K[x1, . . . , xn] →
K[x1, . . . , xn] be the algebra-endomorphism given by ϕa(xi) = axi. Show
that the following statements are equivalent.

(1) I is homogeneous.
(2) The inclusion

ϕa(I) ⊆ I (11.7)

holds for all a ∈ K.
(3) The inclusion (11.7) holds for infinitely many a ∈ K.
(4) For every f ∈ I, all homogeneous parts of f also lie in I.

(b) Let I ⊆ K[x1, . . . , xn] be a homogeneous ideal. Show that all prime ideals
P ⊂ K[x1, . . . , xn] which are minimal over I are homogeneous.

Remark: Part (b) and the equivalence of (1) and (4) also hold if K is a finite
field (see Eisenbud [17, Theorem 3.1(a) and Proposition 3.12] for part (b)).
(Solution on page 281)
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11.4 (Hypotheses of Lemma 11.7). Give an example which shows that
the homogeneity hypothesis in Lemma 11.7 cannot be dropped. (Solution
on page 281)

11.5 (For which d is the Hilbert polynomial correct?).
Let I $ K[x1, . . . , xn] be a proper ideal. Use the proof of Corollary 11.10
to show that the largest integer dfail for which (11.5) fails is given by

dfail = deg (HI(t)) ,

where the degree of the rational function is defined as the difference between
the degrees of the numerator and denominator. (As we are talking about
integer values for d here, we need to extend hI to Z by setting hI(d) := 0 for
d < 0.) Notice that dfail may be negative.
Remark: The number dfail is closely related to the so-called a-invariant of a
graded algebra A. This is defined as the degree of the graded Hilbert series
Hgrad
A (t). So if in the above setting I is homogeneous, then the a-invariant is

dfail + 1. (Solution on page 282)

11.6 (Computing The Hilbert series). Let I ⊆ K[x1, x2, x3] be the ideal
given by

I = (x2
1x

2
2, x

2
1x

2
3, x

2
2x

2
3).

Determine the Hilbert series, Hilbert function, and Hilbert polynomial of I.
For which d do the Hilbert function and the Hilbert polynomial coincide?
Determine dim (K[x1, x2, x3]/I) and deg(I). (Solution on page 282)

11.7 (Weighted degrees and Hilbert series). Let w = (w1, . . . , wn) be
a “weight vector” with wi ∈ N>0 positive integers. Define the weighted
degree of a monomial t = xe11 · · ·xen

n as degw(t) :=
∑n
i=1 wiei. Starting

with this definition, go through the definitions and results of this chapter,
and adjust everything to the “weighted situation”. Which modifications are
necessary? Develop the theory to include a version of Corollary 11.14 for
“weighted degree orderings”. Then use Exercise 9.2 to conclude that Corol-
lary 11.14 holds for arbitrary monomial ordering. (Solution on page 283)

11.8 (Extracting dimension and degree from the Hilbert series).
For I $ K[x1, . . . , xn] a proper ideal, show the following statements.

(a) The dimension of K[x1, . . . , xn]/I is the smallest integer m such that the
Hilbert series can be written as

HI(t) =
g(t)

(1− t)m+1
(11.8)

with g(t) ∈ Z[t].
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(b) If m = dim (K[x1, . . . , xn]/I) and g(t) as in (11.8), the degree of I is

deg(I) = g(1).

In particular, the degree is a positive integer.

Remark: The results of this exercise can be restated as follows: One plus the
dimension m is the pole order at t = 1 of the Hilbert series, and the degree
is (−1)m times the first non-zero coefficient in a Laurent series expansion of
HI(t) about t = 1. (Solution on page 284)

11.9 (The degree of intersections of ideals). In this exercise we deal
with the degree of intersections of homogeneous ideals. If I ⊆ K[x1, . . . , xn] is
an ideal, we will write dim(I) instead of dim (K[x1, . . . , xn]/I) for shortness.

(a) Let I, J ⊆ K[x1, . . . , xn] be homogeneous ideals such that dim(I) =
dim(J) < dim(I + J). Show that

deg(I ∩ J) = deg(I) + deg(J).

(b) Let I, J ⊆ K[x1, . . . , xn] be homogeneous ideals such that dim(I) >
dim(J). Show that

deg(I ∩ J) = deg(I).

(c) Let I ⊆ K[x1, . . . , xn] be a homogeneous ideal, and let P1, . . . , Pr ∈
Spec (K[x1, . . . , xn]) be those minimal prime ideals over I which satisfy
dim(Pi) = dim(I). Show that

deg
(√

I
)

=
r∑
i=1

deg(Pi).

In this part, you may assume K to be infinite, so that Exercise 11.3(b)
can be used, or you may use the remark at the end of Exercise 11.3.

(d) Let I $ K[x1, . . . , xn] be a proper ideal. Show that

deg
(√

I
)
≤ deg(I).

(Solution on page 285)

*11.10 (The degree and Bézout’s theorem). In this exercise we use the
degree of an ideal for proving the theorem of Bézout, which is a well-known,
classical result from algebraic geometry. If necessary in order to use the results
from Exercise 11.3 and Exercise 11.9, assume K to be infinite. Show the
following statements.

(a) If I ⊆ K[x1, . . . , xn] is a homogeneous prime ideal and f ∈ K[x1, . . . , xn]\
I a homogeneous polynomial, then
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deg (I + (f)) = deg(I) · deg(f).

(b) Let I = (f1, . . . , fm) with fi ∈ K[x1, . . . , xn] homogeneous, and let
P1, . . . , Pr ∈ Spec (K[x1, . . . , xn]) be the prime ideals which are minimal
over I. If dim (K[x1, . . . , xn]/I) = n−m, then

r∑
i=1

deg(Pi) ≤
m∏
j=1

deg(fj).

(c) Let f1, . . . , fn−1 ∈ K[x1, . . . , xn] be homogeneous polynomials such that
dim (K[x1, . . . , xn]/(f1, . . . , fn−1)) = 1. Then f1, . . . , fn−1 have at most∏n−1
j=1 deg(fj) common zeros in the projective space Pn−1(K).

(d) Let f1, f2 ∈ K[x1, x2] be two coprime polynomials (which need not be
homogeneous). Then the number of common zeros (in K2) of f1 and f2
is at most deg(f1) · deg(f2).

Remark: Part (c) is Bézout’s theorem. There are a number of refinements.
Most importantly, if we assume K to be algebraically closed and count the
common zeros of the fi by (adequately defined) multiplicities, then we obtain
an equality instead of an upper bound. It should also be noted that in the
situation of part (b), the equality deg(I) =

∏m
j=1 deg(fj) holds. The proof

requires some results from the theory of Cohen-Macaulay rings, which is not
treated in this book. (Solution on page 286)
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Local Rings





Chapter 12

Dimension Theory

Recall that a ring is called local if it has precisely one maximal ideal. One of
the reasons for the interest in local rings is the idea that they describe the
local behavior of a global object (such as an affine variety). A large part of
the research in commutative algebra is devoted to local rings. A typical talk
at a typical commutative algebra conference has the speaker start with: “Let
R be a Noetherian local ring with maximal ideal m . . . ” Therefore it seems
more than appropriate to devote the last part of this book to local rings.

In this chapter we develop a central element in the theory of local rings,
often referred to as dimension theory. To R (as introduced by our typical
speaker), we associate a graded algebra gr(R) over the field R/m. The main
result is that R and gr(R) have the same Krull dimension. This result is
obtained by comparing “sizes” of R and gr(R). For gr(R), the notion of
“size” is given by the Hilbert function, which in Chapter 11 was shown to be
eventually equal to a polynomial function. For R, “size” is measured by the
so-called lengths of the modules R/md. So we need to discuss the concept of
length first. This will be done in the following section.

Readers who have skipped Chapters 9 through 11 find instructions in Ex-
ercise 12.1 on what is needed to continue without tearing any holes into the
proofs.

12.1 The Length of a Module

The goal of the following definition is to measure the size of a module M
over a ring R. In the theory of vector spaces, size is measured by the number
of vectors in a basis. But in general, modules have no basis (if they do, they
are called free). In view of this, we resort to the idea of considering chains of
submodules.

Definition 12.1. Let M be a module over a ring R. The length of M ,
written as length(M), is the supremum of the lengths n of chains

177
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M0 $ M1 $ · · · $ Mn

of submodules Mi ⊆M . So length(M) ∈ N0 ∪ {∞}.

Example 12.2. (1) For m a positive integer, the Z-module M = Z/(m) has
length equal to the number of prime factors (with multiplicities) of m.

(2) Z has infinite length as a module over itself.
(3) If R = K is a field and V a vector space, then length(V ) = dimK(V ).
(4) An R-module M is simple (i.e., M 6= {0} and there exist no non-zero,

proper submodule) if and only if length(M) = 1. Moreover, M = {0} if
and only if length(M) = 0. /

Recall the definition of a maximal chain on page 116. In particular, a finite
chain M0 $ M1 $ · · · $ Mn of submodules of M is maximal if no further
submodule can be added into the chain by insertion or by appending at either
end. This means that M0 = {0}, Mn = M , and all Mi/Mi−1 (i = 1, . . . , n)
are simple modules. A finite maximal chain of submodules of M is also called
a composition series of M .

Theorem 12.3 (Basic facts about length). Let M be a module over a ring
R.

(a) If M has a finite, maximal chain M0 $ M1 $ · · · $ Mn of submodules,
then length(M) = n. So in particular, all maximal chains have the same
length.

(b) M has finite length if and only if it is Artinian and Noetherian. In par-
ticular, R has finite length as a module over itself if and only if it is
Artinian.

(c) Let N ⊆M be a submodule. Then

length(M) = length(N) + length(M/N).

Proof. (a) We use induction on n. If n = 0, then M = {0} and so
length(M) = 0. Therefore we may assume n > 0. Let N $ M be a
proper submodule, and set Ni := N ∩Mi. The Ni need not be distinct,
but the set C := {N0, . . . , Nn} is a chain of submodules of N . We have
N0 = {0} and Nn = N . Moreover, for 1 ≤ i ≤ n, the natural map
Ni → Mi/Mi−1 induces an isomorphism from Ni/Ni−1 to a submodule
ofMi/Mi−1, so Ni/Ni−1 is either simple or zero. Therefore C is a maximal
chain of submodules of N . Clearly length(C) ≤ n. By way of contradic-
tion, assume that length(C) = n. We will show by induction on i that this
implies Ni = Mi for all i. This is true for i = 0. For i > 0, Ni/Ni−1 is
non-zero by assumption, so the map Ni →Mi/Mi−1 is surjective. Using
induction, we conclude Mi ⊆ Ni+Mi−1 = Ni+Ni−1 = Ni ⊆Mi, proving
our claim. In particular, we obtain N = Nn = Mn = M , a contradiction.
So length(C) < n. By induction on n, this implies length(N) < n. Since
this holds for all proper submodules N , we conclude length(M) ≤ n. On
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the other hand, we are given a chain of submodules of M of length n, so
part (a) follows.

(b) If is clear from the definition that a module of finite length has to be
Artinian and Noetherian. Conversely, if M is Noetherian and M 6= {0},
there exists a maximal proper submodule M1 $ M . If M1 6= {0}, we
can continue and find M2 $ M1 with no submodules in between, and so
on. If M is Artinian, this process stops, so we end up with a finite chain
{0} = Mk $ Mk−1 $ · · · $ M1 $ M0 := M . This chain is maximal by
construction, so length(M) = k by part (a). The last statement follows
since every Artinian ring is Noetherian by Theorem 2.8.

(c) If length(N) =∞ or length(M/N) =∞, then by part (b) at least one of
these modules fails to be Noetherian or Artinian, so by Proposition 2.4
the same is true for M , and length(M) =∞, too. So we may assume that
N and M/N have finite length. Taking maximal chains of submodules
of N and of M/N , lifting the latter into M , and putting these chains
together yields a maximal chain of submodules of M . So (c) follows by
part (a). ut

By applying Theorem 12.3(c) several times, we see that if {0} = M0 ⊆
M1 ⊆ · · · ⊆Mk = M is a chain of submodules, then

length(M) =
k∑
i=1

length (Mi/Mi−1) . (12.1)

A special case of Theorem 12.3(c) says that a direct sum M⊕N of R-modules
has length(M ⊕ N) = length(M) + length(N). With Theorem 12.3(b), this
shows that the free module M = Rn over an Artinian ring R has finite length.
Since any finitely generated module is a factor module of some Rn, another
application of Theorem 12.3(c) shows that a finitely generated module over an
Artinian ring has finite length. Exercise 12.2 deals with a further consequence
of Theorem 12.3(c) on exact sequences of modules.

An important example where Theorem 12.3(b) applies is the following.
If R is a Noetherian local ring with maximal ideal m and q ⊆ R is an
ideal with

√
q = m, then R/q has dimension 0. Therefore it is Artinian and

Noetherian (as a ring and therefore also as an R-module) by Theorem 2.8,
so length (R/q) < ∞. In particular, this applies to q = md, a power of the
maximal ideal. The following result is about the lengths of the modules R/md.

Lemma 12.4. Let R be a Noetherian local ring with maximal ideal m. Then
there exists a polynomial p ∈ Q[x] of degree n = dim(R) such that

length
(
R/md

)
≤ p(d) for all d ∈ N0.

Proof. The main idea is to use a system of parameters a1, . . . , an ∈ m, whose
existence is guaranteed by Corollary 7.9. Setting q := (a1, . . . , an), we have
qd ⊆ md for all d ∈ N0, so there is an epimorphism R/qd → R/md. By
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Theorem 12.3(c), this implies

length
(
R/md

)
≤ length

(
R/qd

)
. (12.2)

Consider the chain

{0} = qd/qd ⊆ qd−1/qd ⊆ · · · ⊆ q2/qd ⊆ q/qd ⊆ R/qd,

which has factors qi/qi+1. For every i, qi is generated (as an R-module) by
the monomials of degree i in a1, . . . , an. By Remark 11.5, there are ki :=(
i+n
n

)
−
(
i−1+n
n

)
such monomials. So qi/qi+1 can be generated by ki elements

as an R/q-module, giving an epimorphism (R/q)ki → qi/qi+1. Using (12.2),
(12.1) and Theorem 12.3(c), we conclude that

length
(
R/md

)
≤ length

(
R/qd

)
=
d−1∑
i=0

length
(
qi/qi+1

)
≤

d−1∑
i=0

length
(
(R/q)ki

)
=
d−1∑
i=0

ki · length (R/q) =
(
d− 1 + n

n

)
· length (R/q) .

By Corollary 7.9 we have
√

q = m, so length (R/q) < ∞ by the discussion
preceding the lemma. Therefore the above inequality yields the desired upper
bound. ut

In Chapter 11, we have found that the Hilbert function of an ideal is
essentially a polynomial function. Somewhat similarly, Lemma 12.4 relates
the function d 7→ length

(
R/md

)
to a polynomial. Is there a connection? The

answer is yes. In fact, we will interpret the function d 7→ length
(
R/md+1

)
as

the Hilbert function of the associated graded ring, to be defined in the next
section.

12.2 The Associated Graded Ring

Throughout this section, R will be a Noetherian local ring with maximal
ideal m. We will write K := R/m for the residue class field.

We first consider the subalgebra

R∗ := R[m · t] ⊆ R[t]

of the polynomial ring R[t] generated by all at with a ∈ m. R∗ is called
the blowup algebra by Eisenbud [17], and the first associated graded ring by
Lang [33]. A close relative of R∗ is the Rees Ring (see Matsumura [38, § 15,
Section 4]).

Recall that a ring S is called graded if it has a direct sum decomposition
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S = S0 ⊕ S1 ⊕ S2 ⊕ · · · =
⊕
d∈N0

Sd

(as an Abelian group) such that Si ·Sj ⊆ Si+j for all i, j ∈ N0. Then elements
of Sd are called homogeneous of degree d. R[t] is graded by R[t]d := R · td,
and since R∗ is generated by homogeneous elements, it is graded by

R∗d := R · td ∩R∗ = md · td ∼= md

(where the second equality is obvious from the definition of R∗). Now we
define the associated graded ring of R as the quotient ring gr(R) :=
R∗/(m)R∗ . Since gr(R) is formed by factoring out an ideal generated by ho-
mogeneous elements (of degree 0), gr(R) is graded, too. Moreover, gr(R) is
annihilated by m, so it is a graded K-algebra. There is an important descrip-
tion of the graded components:

gr(R)d = R∗d/(R
∗
d ·m) ∼= md/md+1. (12.3)

In particular, gr(R)0 ∼= K. If we view the graded components of gr(R) as
md/md+1 according to the above isomorphism, multiplication of homogeneous
elements works as follows: For a ∈ mi and b ∈ mj , the product of the residue
classes is

(a+ mi+1) · (b+ mj+1) = ab+ mi+j+1 ∈ mi+j/mi+j+1. (12.4)

Some textbooks define gr(R) as a graded algebra with components md/md+1,
and multiplication is given by (12.4). It should be pointed out that gr(R) and
R∗ can be (and often are) defined in greater generality, where R is any ring
and m is substituted by any ideal I ⊆ R. Exercise 12.5 gives a presentation of
the associated graded ring of the coordinate ring of an affine variety, localized
at a point. This is very interesting since it provides a geometric interpretation
in terms of the so-called tangent cone. Some explicit examples of associated
graded rings are computed in Exercise 12.6.

Is gr(R) Noetherian? The answer is yes, for a very simple reason: Every
ideal in R is finitely generated, so in particular m = (c1, . . . , ck)R. There-
fore R∗ = R[c1t, . . . , ckt] is Noetherian by Corollary 2.12, and so gr(R) is
Noetherian, too. In fact, it is generated as a K-algebra by the elements
ai := cit + (m)R∗ . Notice that these generators lie in the graded component
gr(R)1 of degree 1. Graded algebras which are generated by their degree-1
component are called standard graded. To make the connection to Hilbert
functions, let K[x1, . . . , xk] be a polynomial ring and let I ⊆ K[x1, . . . , xk]
be the kernel of the map K[x1, . . . , xk]→ gr(R), xi → ai. It is clear from the
definitions that gr(R)d is generated as a K-vector space by the monomials of
degree d in the ai. Setting A := K[x1, . . . , xk]/I ∼= gr(R), we get
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A≤d ∼=
d⊕
i=0

gr(R)i ∼=
d⊕
i=0

mi/mi+1

for all d, so using (12.1) yields

length
(
R/md+1

)
=

d∑
i=0

length
(
mi/mi+1

)
=

d∑
i=0

dimK

(
mi/mi+1

)
= dimK(A≤d) = hI(d). (12.5)

With Corollary 11.10 and Theorem 11.13 we have proved:

Proposition 12.5 (The Hilbert-Samuel polynomial of R). There exists a
polynomial pR ∈ Q[x] such that

length
(
R/md+1

)
= pR(d)

for all sufficiently large d, and deg(pR) = dim (gr(R)).

The function hR given by hR(d) := length
(
R/md+1

)
is called the Hilbert-

Samuel function of R, and the polynomial pR from Proposition 12.5 is
called the Hilbert-Samuel polynomial. With this notation, (12.5) becomes

hR(d) = hI(d) and pR = pI . (12.6)

With Proposition 12.5, Lemma 12.4 reads as

dim (gr(R)) ≤ dim(R). (12.7)

The next goal is to prove that this is actually an equality. For this we need
two lemmas. The first one is a version of the Artin-Rees lemma, and its proof
makes essential use of the Noether property of R∗.

Lemma 12.6 (Artin-Rees lemma). Let I ⊆ R be an ideal. Then there exists
a non-negative integer r such that

I ∩mn = mn−r · (I ∩mr)

for all n ≥ r.

Proof. Let Jd :=
∑d
i=0R

∗(I ∩ mi)ti be the ideal in R∗ generated by the
(I ∩ mi)ti with i ≤ d. Since R∗ is Noetherian, there exists a non-negative
integer r such that Jn = Jr for n ≥ r. Let n ≥ r. Observe that (I ∩mn)tn is
contained in the homogeneous part R∗n of R∗ of degree n. Therefore
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(I ∩mn)tn ⊆ R∗n ∩ Jn = R∗n ∩
r∑
i=0

R∗(I ∩mi)ti =
r∑
i=0

R∗n−i(I ∩mi)ti

=
r∑
i=0

mn−i(I ∩mi)tn =
r∑
i=0

mn−rmr−i(I ∩mi)tn ⊆ mn−r(I ∩mr)tn.

So mn−r · (I ∩mr) ⊇ I ∩mn ⊇ mn−r · (I ∩mr), and the lemma is proved. ut

In most textbooks, the Artin-Rees lemma is presented in a more general
setting. In fact, R may be replaced by any Noetherian ring, m by any ideal J ,
and I by a submodule of a Noetherian R-module M . Then instead of mn one
considers the filtration JnM of M . One can also generalize this filtration to
what is called a J-stable filtration. The proofs of the more general versions
of the Artin-Rees lemma work essentially as the above proof. For details, see
Eisenbud [17, Lemma 5.1]. Now we come to the second lemma.

Lemma 12.7. Let a ∈ m be non-zero-divisor. Then

dim (gr(R/Ra)) < dim (gr(R)) .

Proof. By Proposition 12.5, we need to show that deg
(
pR/Ra

)
< deg (pR).

So we need to compare the Hilbert-Samuel functions hR/Ra and hR. Since
m/Ra is the maximal ideal of R/Ra, hR/Ra(d) is the length of the module

Md := (R/Ra)
/

(m/Ra)d+1
.

The natural epimorphism R → Md has kernel Ra + md+1, so we ob-
tain an epimorphism R/md+1 → Md with kernel

(
Ra+ md+1

)
/md+1 ∼=

Ra/
(
Ra ∩md+1

)
. Therefore

length(Md) = length
(
R/md+1

)
− length

(
Ra/

(
Ra ∩md+1

))
, (12.8)

where Theorem 12.3(c) was used. Applying the Artin-Rees Lemma 12.6 to
I = Ra yields an r such that Ra ∩md+1 = md+1−r(Ra ∩mr) ⊆ md+1−ra for
d+ 1 ≥ r. So for sufficiently large d we have an epimorphism

Ra/
(
Ra ∩md+1

)
� Ra/md+1−ra ∼= R/md+1−r,

where the isomorphism comes from the fact that multiplication with a in-
duces isomorphisms mi ∼= mia of R-modules for all i (including i = 0). By
Theorem 12.3(c), this gives a lower bound for the length of Ra/

(
Ra ∩md+1

)
,

and substituting this into (12.8) yields

hR/Ra(d) = length(Md) ≤
length

(
R/md+1

)
− length

(
R/md+1−r) = hR(d)− hR(d− r)
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for sufficiently large d. From this we conclude that deg
(
pR/Ra

)
< deg (pR),

as desired. ut

We are now ready to prove that R and gr(R) have the same dimension.
This is a central result of what is referred to as dimension theory in many
textbooks (i.e., Atiyah and Macdonald [2], Matsumura [38], Eisenbud [17]),
and that is why this chapter is called dimension theory, too. However, the
results on parameter systems from Section 7.1 are usually considered as part
of dimension theory. In fact, the main assertion of dimension theory is often
stated as the equality of the following three numbers: (1) the dimension of
R, (2) the size of a system of parameters of R, and (3) the degree of the
Hilbert-Samuel polynomial of R.

Theorem 12.8 (The dimensions of R and gr(R)). Let R be a Noetherian
local ring and let gr(R) be its associated graded ring. Then

dim(R) = dim (gr(R)) .

Equivalently, the Hilbert-Samuel polynomial of R has degree equal to dim(R).

Proof. From (12.7) we know that dim (gr(R)) ≤ dim(R). For the reverse in-
equality we use induction on dim (gr(R)). We first reduce to the case that
R is an integral domain. We need to prove that dim (R/P ) ≤ dim (gr(R))
for every P ∈ Spec(R). For every d, the natural epimorphism R/md+1 �

(R/P )
/

(m/P )d+1 shows that hR/P (d) ≤ hR(d), so dim (gr(R/P )) ≤
dim (gr(R)) by Proposition 12.5. Therefore it suffices to show that dim (R/P )
≤ dim (gr(R/P )) for every P ∈ Spec(R). In other words, we may assume that
R is an integral domain.

For the induction, we first treat the case that dim (gr(R)) = 0. Since
gr(R) is an affine K-algebra, Theorem 5.11 yields dimK (gr(R)) < ∞. This
means that only finitely many graded components of gr(R) are non-zero, so
md+1 = md for some d. By Nakayama’s Lemma 7.3, this implies md = {0},
so m = {0} since R is a domain. Therefore R is a field, and dim(R) = 0.

Now assume that dim (gr(R)) > 0 and let P0 $ P1 $ · · · $ Pk be
a chain of prime ideals in R of length k > 0. Choose a ∈ P1 \ {0}. By
Lemma 12.7, dim (gr(R/Ra)) < dim (gr(R)), so by induction dim (R/Ra) =
dim (gr(R/Ra)) < dim (gr(R)). But we have a chain P1/Ra $ · · · $ Pk/Ra
of prime ideals in R/Ra, so dim (R/Ra) ≥ k − 1. Putting the inequalities
together, we conclude that k ≤ dim (gr(R)) and are done. ut

We will finish this chapter by exploring more connections between R and
and its associated graded ring gr(R). We first need to prove the following
theorem, which is a consequence of the Artin-Rees lemma and Nakayama’s
lemma.

Theorem 12.9 (Krull’s intersection theorem). If R is a Noetherian local
ring with maximal ideal m (as always in this section), then
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n∈N

mn = {0}.

Proof. Set I :=
⋂
n∈N mn, and let r be the integer given by the Artin-Rees

Lemma 12.6. Then I ∩mr+1 = m · (I ∩mr). By the definition of I, this means
that I = m · I. Now Nakayama’s Lemma 7.3 shows that I = {0}. ut

A more general version of Krull’s intersection theorem can be found in
Eisenbud [17, Corollary 5.4]. In Exercise 12.7 we will see that Theorem 12.9
may fail if R is not Noetherian.

It is a consequence of Theorem 12.9 that for every non-zero a ∈ R there
exists a non-negative integer d such that a ∈ md but a /∈ md+1. We write
this d as d =: ord(a), the order of a. Using the description (12.3) of the
graded components of gr(R), we also define gr(a) := a+md+1 ∈ gr(R)d \{0}.
Setting gr(0) := 0, we obtain a map R → gr(R). Unfortunately, this map
is neither additive nor multiplicative in general. However, for two non-zero
elements a and b ∈ R of orders ord(a) = d and ord(b) = e, the formula (12.4)
yields gr(a) · gr(b) = ab+ md+e+1 ∈ gr(R)d+e, so gr(a) · gr(b) 6= 0 if and only
if ab /∈ md+e+1, and in this case multiplicativity holds, i.e.,

gr(ab) = gr(a) gr(b). (12.9)

We are now ready to prove the following theorem about heredity of some
properties from gr(R) to R.

Theorem 12.10 (Properties passing from gr(R) to R). Let R be a Noethe-
rian local ring and let gr(R) be its associated graded ring.

(a) If gr(R) is an integral domain, then the same is true for R.
(b) If gr(R) is normal, then the same is true for R.

Proof. (a) R is not the zero-ring since it is local. Let a, b ∈ R be non-zero
elements of orders d and e, respectively. By hypothesis, gr(a) · gr(b) 6= 0,
so ab /∈ md+e+1 by the discussion preceding (12.9). This implies ab 6= 0.

(b) By (a), R is an integral domain. Let a, b ∈ R with b 6= 0 such that
a/b ∈ Quot(R) is integral over R. We need to show that a ∈ (b)R. Using
induction on n, we will prove the (seemingly) weaker statement

a ∈ mn + (b)R for all non-negative integers n. (12.10)

This is true for n = 0, so assume n > 0. By induction, there exist ã ∈
mn−1 and r ∈ R with

a = ã+ rb. (12.11)

We are done if ã ∈ mn, so assume ord(ã) = n − 1. From (12.11) we
see that ã/b = a/b − r is integral over R. By Lemma 8.11, it is almost
integral, so there exists c ∈ R \ {0} such that cãn ∈ (bn)R for all n ∈ N0.
Since gr(R) is an integral domain, (12.9) holds for all elements of R,
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so gr(c) gr(ã)n ∈ (gr(b)n)gr(R) for all n. This means that gr(ã)/ gr(b) ∈
Quot (gr(R)) is almost integral over gr(R). Since gr(R) is Noetherian,
we can use Lemma 8.11 to conclude that gr(ã)/ gr(b) lies in gr(R). Since
gr(ã) ∈ gr(R)n−1 and gr(b) ∈ gr(R)ord(b) are homogeneous, their fraction
must be homogeneous of degree n − 1 − ord(b), so it can be written as
gr(s) with s ∈ mn−1−ord(b) \mn−ord(b). Using (12.9) again, we obtain

0 = gr(ã)− gr(s) gr(b) = gr(ã)− gr(sb) = ã− sb+ mn,

so ã = (ã−sb)+sb ∈ mn+(b)R. With (12.11), we conclude a ∈ mn+(b)R,
so (12.10) is proved. We may assume b ∈ m, since otherwise b is invertible
in R and so a ∈ (b)R is certainly true. Therefore R := R/(b)R is a
Noetherian local ring with maximal ideal m := m/(b)R. Applying the
canonical map R → R, x 7→ x to (12.10) yields a ∈ mn for all n. By
Krull’s Intersection Theorem 12.9, this implies a = 0, so a ∈ (b)R and we
are done. ut

Exercises to Chapter 12

12.1 (Proving Theorem 12.8 with minimal use of Part III).
The goal of this exercise it to make it possible to skip the third part of
the book almost entirely. Modify parts of Chapters 11 and 12 in such a way
that the assertion dim(R) = dim (gr(R)) from Theorem 12.8 can be proved
with minimal dependence on the material from Part III. In particular, the
proof should not depend on the material on monomial orderings and Gröbner
bases.
Hint: Instead of showing that the Hilbert function becomes a polynomial
eventually, consider the least integer δ such that the Hilbert function can be
bounded above by a polynomial of degree δ. With this modification, the con-
cepts of Hilbert polynomial and Hilbert-Samuel polynomial will be omitted.
(Solution on page 288)

12.2 (Length and exact sequences). Let

{0} −→M1 −→M2 −→ · · · −→Mn−1 −→Mn −→ {0}

be a finite exact sequence of modules over a ring R (see Exercise 6.3 for the
definition of an exact sequence). Assume that at most one of the Mi has
infinite length. Show that

n∑
i=1

(−1)i length(Mi) = 0.
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In particular, all Mi have finite length. (Solution on page 289)

12.3 (Hilbert series of a graded module over a graded ring). In this
exercise the Hilbert-Serre theorem is shown in a rather general situation. Let
R = R0⊕R1⊕R2⊕ · · · be a graded ring. An R-module M is called graded
if it has a direct sum decomposition

M =
⊕
i∈Z

Mi

(as an Abelian group) such that RiMj ⊆Mi+j for all i ∈ N0 and j ∈ Z. (So as
an important special case, R itself is a graded R-module.) In particular, every
Mi is an R0-module. We make the following assumptions: R0 is a Artinian, R
is finitely generated as an R0-algebra, and M is a finitely generated, graded
R-module. First show that

R = R0[a1, . . . , an]

with ai homogeneous and di := deg(ai) positive, and that there exists m ∈ Z
such that Mi = {0} for i < m. Show that every Mi has finite length as an
R0-module. So we may define the Hilbert series of M as a formal Laurent
series by

HM (t) :=
∑
i∈Z

length(Mi)ti ∈ Z((t)).

(Observe that in the important special case that R0 is a field K, the length
is equal to the K-dimension.) Show that the Hilbert series has the form

HM (t) =
cmt

m + cm+1t
m+1 + · · ·+ ckt

k

(1− td1) · · · (1− tdn)
(12.12)

with k ≥ m and ci ∈ Z.
Remark: If R is standard graded, i.e., if all ai can be chosen of degree 1, then
it follows as in Corollary 11.10 that there exists a polynomial pM ∈ Q[x] such
that length(Mi) = pM (i) for all sufficiently large i.
Hint: For every i consider the map Mi−d1 →Mi given by multiplication with
a1. Complete this map to an exact sequence {0} → X → Mi−d1 → Mi →
Y → {0}. Use Exercise 12.2 and induction on n. (Solution on page 290)

12.4 (Easier computation of the Hilbert-Samuel function). Let m ⊂
R be a maximal ideal of a ring, and consider the localization Rm with maximal
ideal mm. Show that for every non-negative integer i there is an isomorphism

mi
m/m

i+1
m
∼= mi/mi+1

of R-modules. With K := R/m ∼= Rm/mm, show that the isomorphism is
K-linear, so dimK

(
mi

m/m
i+1
m

)
= dimK

(
mi/mi+1

)
. (Solution on page 290)
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*12.5 (The associated graded ring and the tangent cone). Let I ⊆
K[x1, . . . , xn] be an ideal in a polynomial ring over a field. If f ∈ I \ {0},
write fin for the initial form of f , defined to be the non-zero homogeneous
part of f of least degree. Using this, define the initial form ideal as

Iin := (fin | f ∈ I \ {0})K[x1,...,xn] .

Set A := K[x1, . . . , xn]/I and assume that I ⊆ (x1, . . . , xn) =: n, so m := n/I
is a maximal ideal in A. Show that there is an isomorphism

gr(Am) ∼= K[x1, . . . , xn]/Iin,

which sends homogeneous elements to homogeneous elements of the same
degree.
Remark: Our assumption means that (0, . . . , 0) ∈ V(I). Since any point in
V(I) can be shifted to (0, . . . , 0) by changing coordinates, we obtain a presen-
tation of the associated graded ring of the coordinate ring of an affine variety,
localized at a point. The affine variety V(Iin) is called the tangent cone. The
geometric interpretation of the tangent cone is contained in its very name: It
is the best approximation of V(I) by a cone, i.e., an affine variety made up
of lines through the origin. Iin can be computed by Mora’s tangent cone al-
gorithm [39], which essentially is a subtle variant of Buchberger’s algorithm
applied to a “monomial ordering” which does not satisfy (2) from Defini-
tion 9.1(a). The book by Greuel and Pfister [22] has a systematic treatment
of such orderings. (Solution on page 291)

12.6 (Examples of associated graded rings). For the following exam-
ples of local rings R, determine the Hilbert-Samuel function hR(d) and the
associated graded ring gr(R). Here gr(R) should only be determined up to
isomorphism.

(a) R = K[[x1, . . . , xn]], the formal power series ring in n indeterminates over
a field. Why is R local? Hint: You may use Exercise 11.1.

(b) Let X1, X2, X3 ⊆ K2 be the cubic curves over an algebraically closed
field K given by the equations ξ31 − ξ22 = 0, ξ22 − ξ21(ξ1 + 1) = 0, and
ξ22 − ξ1(ξ21 + 1) = 0, respectively, as shown in Figure 12.1. Let Ri be the
localization of the coordinate ring of Xi at the point (0, 0). If you own this
book, you can draw the tangent cones into the pictures in Figure 12.1.
Hint: You may use Exercise 12.5.

(c) This example is from algebraic number theory. Let A = Z[
√
−3] ⊂ C,

m =
(
2, 1 +

√
−3
)
⊆ A, and R = Am. Why is m a maximal ideal? Hint:

You may use Exercise 12.4. It may also be helpful to determine the powers
of m as Z-modules.

(Solution on page 292)
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X1 X2 X3

Figure 12.1. Affine cubic curves, displaying a cusp, a double point, and smoothness

12.7 (Hypotheses of Krull’s intersection theorem). This exercise
gives an example of a (non-Noetherian) local ring where Krull’s Intersec-
tion Theorem 12.9 fails. We will consider the ring R of germs of continuous
functions, which we define as follows. Let I be the set of all continuous func-
tions R→ R which vanish on a neighborhood of 0. (Here R is equipped with
the Euclidean topology.) Obviously I is an ideal in the ring C0(R,R) of all
continuous functions R→ R. The ring R is defined as R := C0(R,R)/I.

(a) Show that R is a local ring. Hint: You may use Exercise 6.7(b).
(b) Expose a non-zero element of R which lies in every power mn of the

maximal ideal of R. So Theorem 12.9 fails for R.

(Solution on page 293)

12.8 (Does Theorem 12.10 have a converse?). Construct an example
of a normal local ring R such that the associated graded ring gr(R) is
not an integral domain. This shows that the converse statements of The-
orem 12.10(a) and (b) do not hold.
Hint: You may use Exercises 8.4 and 12.5. (Solution on page 294)





Chapter 13

Regular Local Rings

As mentioned before, local rings serve for the study of the local behavior
of a global object, such as an affine variety. In particular, notions of local
“niceness” can be defined as properties of local rings. There is a range of
much-studied properties of local rings. This includes the Cohen-Macaulay
property, the Gorenstein property, normality, and regularity. In this book
only normality and regularity are dealt with at some length, and one exercise,
13.3, is devoted to the Cohen-Macaulay property. It turns out that regularity
is the nicest of these properties, meaning that it implies all others. After
defining the notion of regularity of a Noetherian local ring R, we will see
that this is equivalent to the condition that the associated graded ring gr(R)
is isomorphic to a polynomial ring. If R is the coordinate ring of an affine
variety, localized at a point, gr(R) can be interpreted as the coordinate ring
of the tangent cone at that point (see Exercise 12.5). So in this situation
regularity means that the tangent cone is (isomorphic to) affine n-space.

How can we determine the points x of an affine variety X where the local-
ized coordinate ring K[X]x is regular? This is the topic of the second section
of this chapter, where we prove the Jacobian criterion. A consequence is that
an affine variety is “nice” at “most” of its points.

13.1 Basic Properties of Regular Local Rings

Throughout this section, let R be a Noetherian local ring with maximal ideal
m and residue class field K := R/m. If M is an R-module, then M/mM
is annihilated by m, so it is a K-vector space. The following lemma is a
consequence of Nakayama’s lemma. If you have done Exercise 7.3, you can
skip the proof, since it is contained in the exercise.

Lemma 13.1 (Generating modules over a local ring). In the above setting,
assume M to be finitely generated. Let m1, . . . ,mn ∈M . Then the following
statements are equivalent.

191
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(a) M is generated by m1, . . . ,mn as an R-module.
(b) M/mM is generated by m1 + mM, . . . ,mn + mM as a K-vector space.

In particular, all minimal generating systems of M have the same size,
namely dimK (M/mM).

Proof. It is clear that (a) implies (b). Conversely, assume (b) and set N :=
(m1, . . . ,mn) ⊆ M . Then (b) implies M ⊆ N + mM , so M/N ⊆ m ·M/N .
By Nakayama’s Lemma 7.3, this implies M/N = {0}, so M = N . ut

Applying Lemma 13.1 to M = m shows that every minimal generating
systems of m hat the size dimK

(
m/m2

)
. Since we know from the principal

ideal theorem (more precisely, from Corollary 7.6) that m cannot be generated
by fewer than dim(R) (the Krull dimension) elements, we obtain

dimK

(
m/m2

)
≥ dim(R). (13.1)

This inequality prompts the definition of regularity.

Definition 13.2. (a) R is called regular if

dimK

(
m/m2

)
= dim(R).

(Here dim(R) signifies the Krull dimension.) So R is regular if and only
if m can be generated by dim(R) elements, which in turn is equivalent to
the condition that R has a system of parameters which generates m. Such
a system of parameters is called a regular system of parameters.

(b) Let S be a Noetherian ring and X := Spec(S). An element P ∈ X is
called a non-singular point if the localization SP is regular. Otherwise,
P is called a singular point. S is called a regular ring if X has no
singular points.

(c) A point x ∈ X of an affine variety is called non-singular if the localiza-
tion K[X]x of the coordinate ring at x is regular. Otherwise, x is called
singular. X is called non-singular if every point is non-singular.

Remark. The above definition of a regular ring raises the following question:
Is a regular local ring R also a regular ring in the sense of Definition 13.2(b)?
In other words, is RP regular for every P ∈ Spec(R)? This is indeed true,
but not at all easy to prove (see Matsumura [37, Corollary 18.G]). /

Example 13.3. By Definition 13.2(a), a zero-dimensional local ring is regular
if and only if it is a field (equivalently, if and only if it is reduced). /

Before treating more examples, it is useful to establish the following regu-
larity criterion in terms of the associated graded ring. It is a consequence of
Theorem 12.8.

Theorem 13.4 (Associated graded ring and regularity). R is regular if and
only if the associated graded ring gr(R) is isomorphic to a polynomial ring
over K.
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Proof. Write A := gr(R). By Theorem 12.8 we have dim(A) = dim(R) =: n.
First assume that R is regular, so the maximal ideal m is generated by n

elements. By the discussion preceding (12.5) on page 182, it follows that A
is generated by n elements as a K-algebra, so by Theorem 5.9 and Proposi-
tion 5.10 these elements must be algebraically independent. It follows that A
is isomorphic to a polynomial ring.

Conversely, assume that A is isomorphic to a polynomial ring. By Corol-
lary 5.7 it follows that A is generated by n elements b1, . . . , bn. By the dis-
cussion preceding (12.3) on page 181 we have a grading A =

⊕
d∈N0

Ad with
A0
∼= K and A1

∼= m/m2. We may assume that the homogeneous component
of degree 0 of every bi is 0. Let π: A→ A1 be the projection on the component
of degree 1. Every a ∈ A can be written as a polynomial over K in the bi,
and it follows that π(a) is a K-linear combination of the π(bi). Therefore A1

is generated by π(b1), . . . , π(bn), and we get dimK

(
m/m2

)
= dimK(A1) ≤ n.

With (13.1) this implies that R is regular. ut

To get a geometric interpretation of regularity, consider the case where
R = K[X]x is the coordinate ring of an affine variety, localized at a point
x ∈ X. Exercise 12.5 gives a presentation gr(R) ∼= K[x1, . . . , xn]/J of gr(R)
in this case, where the variety VKn(J) can be interpreted as the tangent cone
at x, i.e., the best approximation of X by an affine variety made up of lines
passing through x. So roughly speaking, Theorem 13.4 tells us that x is a
non-singular point if and only if the tangent cone at x is an affine n-space.
Geometrically, this makes a lot of sense since non-singularity should mean
that the variety looks “nice” locally. However, there is a catch. Even if the
tangent cone is some affine n-space, gr(R) need not necessarily be isomorphic
to a polynomial ring, since J need not be a radical ideal. This happens, for
example, if x is a cusp of X. In such a case, the geometric interpretation may
be saved by viewing the affine variety of a non-radical ideal J has having
“double components” or “hidden embedded components”.
Example 13.5. (1) The formal power series ring R := K[[x1, . . . , xn]] in n

indeterminates over a field is a regular local ring. This can be seen by
doing Exercise 12.6(a) (the result is gr(R) ∼= K[x1, . . . , xn]) and applying
Theorem 13.4, or by observing that the maximal ideal is generated by
x1, . . . , xn and using Exercise 7.10 to conclude that dim(R) = n.

(2) Let X1, X2, X3 be the cubic curves from Exercise 12.6(b), shown in Fig-
ure 12.1 on page 189. Let Ri be the localization of the coordinate ring
of Xi at the point x := (0, 0). In Exercise 12.6(b) the associated graded
rings gr(Ri) are determined, and the result is isomorphic to a polynomial
ring only for R3. So x is a singular point of X1 and X2, but not of X3. X1

is particularly interesting, since it has a cusp at x. Here the tangent cone
may be viewed as a “double line”. By changing coordinates one can also
determine the associated graded ring of the localization at other points.
The result is that all points other than the origin are non-singular. This
is what one expects from looking at Figure 12.1. /
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This may be a good place for a short digression on completions. By con-
sidering two elements from R as “near” if their difference lies in a high power
of m, we get a concept of convergence. Krull’s Intersection Theorem 12.9 guar-
antees that with this concept, the limit of a convergent series is unique. Ex-
ercise 13.4 gives more background on this. We also have a concept of Cauchy
sequences. R is called complete if every Cauchy sequence has a limit in R.
Most of the local rings we have seen in this book are not complete. However,
one can construct an extension R̂ of R which is a complete local ring. R̂ also
is Noetherian, and it has the property that all of its elements are limits of
R-valued sequences. R̂ is called the completion of R. In a sense, the con-
struction of completion mimics the passage from the rational numbers to the
real numbers. From the construction of R̂ it can be shown that that R and
R̂ have the same associated graded ring. So the associated graded ring may
serve to transport properties from R to R̂ and vice versa. For example, it
follows from Theorem 12.8 that dim(R̂) = dim(R), and it follows from The-
orem 13.4 that R̂ is regular if and only if R is regular. A nice example of a
complete local ring is the formal power series ring K[[x1, . . . , xn]] in n inde-
terminates over a field. In fact, it is the completion of K[x1, . . . , xn](x1,...,xn)

(see Exercise 13.5). Another well-known example of a complete ring is the
ring Zp of p-adic integers (with p a prime number), which plays an important
role in algebraic number theory and computer algebra. Zp is the completion
of Z(p), the ring of rational numbers with denominator not divisible by p.

Completion is an important tool in commutative algebra. Philosophically,
the idea is that localization is not “local enough”, but completion describes
the behavior of a variety on a smaller scale. For example, the local ring at a
point of an irreducible affine variety X contains all the information of the va-
riety that is invariant under birational equivalence, since the field of fractions
of the local ring is the function field K(X) = Quot(K[X]), and birational
equivalence is just defined as isomorphicness of the function fields. So the
local ring still contains some sort of global information, even if it is regular.
However, if we assume that the local ring is regular, it turns out that its
completion is isomorphic to the formal power series ring K[[x1, . . . , xn]] with
n = dim(X) (see Matsumura [37, Corollary 2 to Theorem 60, p. 206]). So
in this case completion eliminates global information. Another illustration of
this philosophy is contained in Exercise 13.6. For more on completion, we
refer to Eisenbud [17, Chapter 7].

By putting together Theorem 13.4, Proposition 8.8 and Theorem 12.10,
we obtain

Corollary 13.6. (a) Every regular local ring is an integral domain.
(b) Every regular local ring is normal.

In fact, a bit more is true: Every regular local ring is factorial. This is
clear for zero-dimensional rings by Example 13.3, and will be proved for one-
dimensional rings on page 207. In dimension > 1, the result is much harder
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to prove (see Eisenbud [17, Theorem 19.19]), and it will not be used in this
book. By Exercise 12.8 there exist normal local rings which are not regular.
So in general, the converse of Corollary 13.6 does not hold. However, the
converse of Corollary 13.6(b) holds if R has dimension 1 (see Theorem 14.1).
Example 13.7. (1) Let S be a Noetherian ring, and suppose that P ∈ Spec(S)

is contained in more than one irreducible components of Spec(S). This
means that P contains more than one minimal prime ideals of S. By The-
orem 6.5, it follows that the localization SP has more than one minimal
prime ideals. But since an integral domain has {0} as the only minimal
prime ideal, SP is not an integral domain, and by Corollary 13.6(a) we
conclude that SP is not regular. So P is a singular point of Spec(S).

(2) A special case of (1) is the following: Every point of an affine variety
that lies in the intersection of more than one irreducible components is a
singular point.

(3) The last example is from algebraic number theory. Let A = Z[
√
−3] ⊂

C, m =
(
2, 1 +

√
−3
)
⊆ A, and R = Am (see Exercise 12.6(c)). R is

not normal since z := 1+
√
−3

2 ∈ Quot(R) \ R, but z2 − z + 1 = 0. By
Corollary 13.6(b), R is not regular. The result of Exercise 12.6(c) also
shows that gr(R) is not isomorphic to a polynomial ring. /

13.2 The Jacobian Criterion

In this section we study the singular locus (which by definition is the set of
all singular points) in the spectrum of an affine algebra. So as a special case
we are also treating the singular locus of an affine variety.

We need some preparations from field theory, concerning separable field
extensions. Recall that every algebraic field extension of a field of character-
istic 0 is separable. In contrast, an algebraic element α of a field extension
of a field K in characteristic p > 0 is separable if and only if its minimal
polynomial irr(α,K) ∈ K[x] cannot be written as a polynomial in xp, i.e.,
irr(α,K) /∈ K[xp]. We say that a finitely generated (but not necessarily fi-
nite) field extension L of K is separable if there exists a transcendence
basis T such that L is separable (as an algebraic extension) over K(T ), the
subfield generated by T . In this case T is called a separating transcendence
basis. We need the following proposition, which is not part of the standard
curriculum of an abstract algebra course. Readers who are only interested in
characteristic 0 can skip the proposition and Lemma 13.9.

Proposition 13.8 (Facts about separable field extensions).

(a) Every finitely generated field extension of a perfect field is separable.
(b) If L is a finitely generated, separable field extension of K, then every

generating set of L over K contains a separating transcendence basis.
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Proof. (a) The proof follows Mac Lane [35]. LetK be a perfect field, which we
may assume to have positive characteristic p. We will show the following
by induction on n: If L is a finitely generated extension of K with a
transcendence basis T such that L has degree n over the separable closure
of K(T ) in L, then L is separable over K. There is nothing to show for
n = 1, so assume n > 1. This means that there exists α ∈ L which is not
separable over K(T ), so g := irr (α,K(T )) ∈ K(T )[xp]. We write T p for
the set of all p-th powers of elements of T . If all coefficients of g lay in
K(T p), then g would be a p-th power of a polynomial in K(T )[x], since by
hypothesis every element of K has a p-th root in K. This contradicts the
irreducibility of g, so g /∈ K(T p)[x]. Applying Lemma 13.9 below yields
a new transcendence basis T ′ such that the separable closure of K(T ′)
in L contains that of K(T ). Since α ∈ T ′, the inclusion is strict, so the
result follows by induction.

(b) If char(K) = 0, every transcendence basis is separating. In the case
char(K) = p > 0 we proceed by induction on the transcendence degree
n := trdeg(L/K). If n = 0, then T = ∅ is a separating transcendence ba-
sis by hypothesis. So we may assume n > 0. By hypothesis there exists a
separating transcendence basis T . For every element α ∈ L, the minimal
polynomial irr (α,K(T )) is separable, so if all it coefficients lie in the sub-
field K(T p), then α is separable over K(T p). Assume that this happens
for every element of a given generating set S of L over K. Then L would
be separable over K(T p) (see Lang [33, Ch. VII, Theorem 4.8]). But an
element t from T has irr (t,K(T p)) = xp − tp, which is inseparable. This
contradiction shows that there exists α ∈ S such that g := irr (α,K(T ))
does not lie in K(T p)[x]. Applying Lemma 13.9 below yields a new tran-
scendence basis T ′ such that L is separable over K(T ′), and α ∈ T ′. So
viewed as an extension of K(α), L has the separating transcendence basis
T ′ \ {α}, and it is still generated by S. By induction, L has a separating
transcendence basis T ′′ ⊆ S over K(α), so as an extension of K it has
the separating transcendence basis T ′′ ∪ {α} ⊆ S. ut

The following lemma was used in the proof.

Lemma 13.9. Let L be an extension of a field K of characteristic p > 0.
Let T be a finite transcendence basis, and write write T p for the set of all
p-th powers of elements of T . If the minimal polynomial g := irr (α,K(T ))
of an α ∈ L does not lie in K(T p)[x], then there exists t ∈ T such that
T ′ := (T \ {t}) ∪ {α} is a transcendence basis, and all elements from L that
are separable over K(T ) are also separable over K(T ′).

Proof. Since K[T ] is factorial, there exists 0 6= h ∈ K[T ] such that f := hg ∈
K[T ][x] is a primitive polynomial, so by the Gauss Lemma, f is irreducible
(see Lang [33, Ch. V, Theorem 6.3]). Since h is the leading coefficient of f
(as a polynomial in x), f does not lie in K[T p][x], so there exists t ∈ T
such that f , viewed as a polynomial in t, is separable. This shows that t
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is separable over K(T ′). Therefore T ′ is a new transcendence basis, and all
elements of T are separable over K(T ′). This implies that all elements from L
that are separable overK(T ) are separable overK(T ′) (see Lang [33, Ch. VII,
Theorem 4.9]). ut

We come back to the goal of calculating the singular locus in the spec-
trum of an affine algebra A. If A = K[x1, . . . , xn]/I is given as a quotient
ring of a polynomial ring over a field, then an element of X := Spec(A) is
given as P/I, where P ⊂ K[x1, . . . , xn] is a prime ideal with I ⊆ P . The
main goal of this section is to prove the Jacobian criterion for the regu-
larity of the local ring AP/I . This criterion involves an irreducible compo-
nent of X containing P/I. Such a component corresponds to a prime ideal
Q ⊂ K[x1, . . . , xn] which is minimal over I, and contained in P . The criterion
also involves the rank of a matrix of polynomials modulo P , defined as fol-
lows: If (gi,j) ∈ K[x1, . . . , xn]m×k, then rank (gi,j mod P ) denotes the rank
of the matrix (gi,j + P ) ∈ Quot (K[x1, . . . , xn]/P )m×k. The matrix that ap-
pears in the Jacobian criterion is made up of the (formal) partial derivatives
of polynomials generating I. This is often called the Jacobian matrix.

Theorem 13.10 (Jacobian criterion). Let I = (f1, . . . , fm) ⊆ K[x1, . . . , xn]
be an ideal in a polynomial ring over a field, and let P ⊂ K[x1, . . . , xn] be
a prime ideal containing I. Furthermore, let Q ⊂ K[x1, . . . , xn] be a prime
ideal which is minimal over I, and which is contained in P . Then

(a)

rank
(
∂fi
∂xj

mod P
)
≤ ht(Q).

(b) If equality holds in (a), then the local ring (K[x1, . . . , xn]/I)P/I is regular.
(c) If Quot (K[x1, . . . , xn]/P ) is a (not necessarily finite) separable field ex-

tension of K, then the converse of (b) holds. The separability hypothesis
is automatically satisfied if K is a perfect field or if P = (x1−ξ1, . . . , xn−
ξn) corresponds to a point (ξ1, . . . , ξn) ∈ VKn(I).

If the separability hypothesis of Theorem 13.10(c) is not satisfied, it does
happen that the converse of (b) fails (see Exercise 13.7).

Before we turn to the proof of Theorem 13.10, let us note that it can
be reformulated as follows: The nullity of the Jacobian matrix modulo P
is greater than or equal to the dimension of every irreducible component of
Spec (K[x1, . . . , xn]/I) which contains P , with equality if and only if the local
ring is regular (provided the hypothesis of part (c) holds). Moreover, notice
that if P = (x1−ξ1, . . . , xn−ξn) corresponds to a point (ξ1, . . . , ξn) ∈ VKn(I),
then the Jacobian matrix modulo P is

(
∂fi

∂xj
(ξ1, . . . , ξn)

)
∈ Km×n. The kernel

of the Jacobian matrix modulo P can be interpreted as the tangent space at
the point P . So for an affine variety X we have a tangent space attached to
every point, and its dimension is greater than or equal to the dimension of an
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irreducible component on which the point lies. The singular points are those
where the dimension of the tangent space exceeds that lower bound.

We need two lemmas for proving Theorem 13.10.

Lemma 13.11. Let P ⊂ K[x1, . . . , xn] be a prime ideal of height m in a
polynomial ring over a field.

(a) There exist f1, . . . , fm ∈ P generating the localized ideal PP ⊆
K[x1, . . . , xn]P

(b) If Quot (K[x1, . . . , xn]/P ) is a separable field extension of K, then

rank
(
∂fi
∂xj

mod P
)

= m.

Proof. As a field extension ofK, L := Quot (K[x1, . . . , xn]/P ) is generated by
α1, . . . , αn with αi := xi+P . We express this by writing L = K(α1, . . . , αn).
By Corollaries 5.7 and 8.23, K[x1, . . . , xn]/P has dimension k := n − m,
so by Theorem 5.9, L has transcendence degree k. Since every generating
set of a field extension contains a transcendence basis, we may assume that
α1, . . . , αk form a transcendence basis, so they are algebraically independent,
and L is a finite extension of L0 := K(α1, . . . , αk). If L is separable over K,
we may use Proposition 13.8(b) and additionally assume that L is separable
over L0. For every l ∈ {0, . . . ,m}, consider the map

ϕl: K(x1, . . . , xk)[xk+1, . . . , xk+l]→ L, xi 7→ αi.

We claim that im(ϕl) = K(α1, . . . , αk+l) =: Ll and ker(ϕl) = (f1, . . . , fl)
with fi ∈ K[x1, . . . , xk+i] ∩ P . Additionally, if L is separable over L0,
then ∂fi/∂xk+i /∈ P . All this is true for l = 0. Using induction on l, we
may assume that l > 0 and that f1, . . . , fl−1 have already been found.
Since αk+l is algebraic over Ll−1, it follows that Ll = Ll−1[αk+l] (see
Lang [33, Ch. VII, Proposition 1.4]), and so Ll = L0[αk+1, . . . , αk+l] by
induction. This shows im(ϕl) = Ll. Set g := irr (αk+l, Ll−1) ∈ Ll−1[xk+l].
Since Ll−1 = L0[αk+1, . . . , αk+l−1], there exist fl ∈ K[x1, . . . , xk+l] and
h ∈ K[x1, . . . , xk] \ P such that g = fl(α1,...,αk+l−1,xk+l)

h(α1,...,αk) . It follows that
fl ∈ K[x1, . . . , xk+l] ∩ P . Moreover, if L is separable over L0, then Ll is
also separable over Ll−1 (see Lang [33, Ch. VII, Theorem 4.9]), and it follows
that g has no multiple roots, so ∂g

∂xk+l
(αk+l) 6= 0. This implies ∂fl/∂xk+l /∈ P .

Clearly fl ∈ ker(ϕl). For proving ker(ϕl) = (f1, . . . , fl), take f ∈ ker(ϕl).
Then g divides f(α1, . . . , αk+l−1, xk+l), so there exist r ∈ K[x1, . . . , xk+l]
and s ∈ K[x1, . . . , xk] \ P with

f(α1, . . . , αk+l−1, xk+l) · h(α1, . . . , αk)
fl(α1, . . . , αk+l−1, xk+l)

=
r(α1, . . . , αk+l−1, xk+l)

s(α1, . . . , αk)
.
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Therefore all coefficients of hsf−rfl (as a polynomial in xk+l) lie in ker(ϕl−1).
So by induction hsf − rfl ∈ (f1, . . . , fl−1)K(x1,...,xk)[xk+1,...,xk+l]. Since h, s 6=
0, this implies f ∈ (f1, . . . , fl), and the claim is proved.

For l = m we get ker(ϕm) = (f1, . . . , fm)K(x1,...,xk)[xk+1,...,xn]. The alge-
braic independence of α1, . . . , αk implies that K(x1, . . . , xk)[xk+1, . . . , xn] ⊆
K[x1, . . . , xn]P , so (ker(ϕm))K[x1,...,xn]P

= (f1, . . . , fm)K[x1,...,xn]P follows.
We obtain

PP ⊆ (ker(ϕm))K[x1,...,xn]P
= (f1, . . . , fm)K[x1,...,xn]P ⊆ PP ,

showing (a).
For showing (b), consider the last m columns of the Jacobian matrix,

which form the square matrix A := (∂fi/∂xk+j) ∈ K[x1, . . . , xn]m×m. Since
fi ∈ K[x1, . . . , xk+i], A is a lower triangular matrix with diagonal entries
∂fi/∂xk+i. Since these entries do not lie in P under the hypothesis of (b),
det(A) /∈ P follows, showing (b). ut

Notice that in Lemma 13.11, K[x1, . . . , xn]P is a local ring of dimension m
with maximal ideal PP . Therefore part (a) says thatK[x1, . . . , xn]P is regular,
so K[x1, . . . , xn] is a regular ring. This is generalized in Exercise 13.1.

The following lemma gives an interpretation of the rank of the Jacobian
determinant of f1, . . . , fm modulo a prime ideal in terms of the ideal generated
by the fi.

Lemma 13.12. Let I = (f1, . . . , fm) ⊆ K[x1, . . . , xn] be an ideal in a
polynomial ring over a field, and let P ⊂ K[x1, . . . , xn] be a prime ideal
containing I. With L := K[x1, . . . , xn]P /PP (which is isomorphic to
Quot (K[x1, . . . , xn]/P )) we have

(a)

rank
(
∂fi
∂xj

mod P
)
≤ dimL

((
IP + P 2

P

)/
P 2
P

)
.

(b) If L is a separable field extension of K, then equality holds in (a).

Proof. We will construct linear maps ϕ: Lm → PP /P
2
P and ψ: PP /P 2

P → Ln.
First

ϕ: Lm → PP /P
2
P , (g1 + PP , . . . , gm + PP ) 7→

m∑
j=1

gjfj + P 2
P

gives a well-defined, L-linear map with image im(ϕ) =
(
IP + P 2

P

)
/P 2

P . To
define ψ, consider f ∈ P 2

P . This means that hf =
∑r
j=1 gjhj with h ∈

K[x1, . . . , xn] \ P and gj , hj ∈ P . For 1 ≤ i ≤ n we get

h
∂f

∂xi
+ f

∂h

∂xi
=

r∑
j=1

(
gj
∂hj
∂xi

+ hj
∂gj
∂xi

)
∈ P,
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so ∂f/∂xi ∈ PP . Therefore the map

ψ: PP /P 2
P → Ln, f + P 2

P 7→
(
∂f

∂x1
+ PP , . . . ,

∂f

∂xn
+ PP

)
is well-defined. An easy calculation shows that ψ is L-linear. By considering
the images of the standard basis vectors of Lm under the composition ψ ◦
ϕ: Lm → Ln, we see that ψ ◦ ϕ is given by the Jacobian matrix modulo PP .
It follows that

rank
(
∂fi
∂xj

mod P
)

= dimL

(
im(ψ ◦ ϕ)

)
≤

dimL

(
im(ϕ)

)
= dimL

((
IP + P 2

P

)/
P 2
P

)
,

with equality if ψ is injective. So we have proved (a), and for proving (b)
it suffices to show that ψ is injective under the hypothesis of (b). Un-
der this hypothesis, Lemma 13.11(b) is applicable. Notice that ψ is inde-
pendent of f1, . . . , fm. So for showing the injectivity of ψ we may assume
that f1, . . . , fm are the polynomials given by Lemma 13.11. Then IP =
PP by Lemma 13.11(a), so ϕ is surjective. Moreover, dimL (im(ψ ◦ ϕ)) =
rank (∂fi/∂xj mod P ) = m by Lemma 13.11(b), so ψ ◦ ϕ: Lm → Ln is
injective. Therefore ψ has to be injective, and the proof is complete. ut

We are now ready for the proof of the Jacobian criterion.

Proof of Theorem 13.10. Let Q0 ∈ Spec (K[x1, . . . , xn]) be a prime ideal
with I ⊆ Q0 ⊆ P having minimal height among all prime ideals between
I and P . Assume that the theorem is proved for Q0 in the place of Q. Then
part (a) also follows for Q, since ht(Q0) ≤ ht(Q). Moreover, if Q 6= Q0, then
(K[x1, . . . , xn]/I)P/I is not regular by Example 13.7(1). So (b) tells us that
the inequality in (a) is strict for Q0 and therefore also for Q. Moreover, the
converse of (b) is trivially true since (K[x1, . . . , xn]/I)P/I is not regular. So
we may assume that Q has minimal height among the prime ideals between
I and P . By Lemma 1.22 and Theorems 6.5 and 8.22, this implies

dim (K[x1, . . . , xn]P /IP ) = ht(P )− ht(Q).

R := K[x1, . . . , xn]P /IP is a Noetherian local ring with maximal ideal
PP /IP and residue class field L := K[x1, . . . , xn]P /PP . Since R ∼=
(K[x1, . . . , xn]/I)P/I , we are interested in whether R is regular or not.
From (13.1) we obtain

dimL

(
(PP /IP )

/
(PP /IP )2

)
≥ dim(R) = ht(P )− ht(Q),

with equality if and only if R is regular. We have L-linear isomorphisms
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(PP /IP )
/

(PP /IP )2 ∼= PP
/(
IP + P 2

P

) ∼= (
PP /P

2
P

)/((
IP + P 2

P

)/
P 2
P

)
,

so
dimL

(
PP /P

2
P

)
− dimL

((
IP + P 2

P

)/
P 2
P

)
≥ ht(P )− ht(Q),

with equality if and only if R is regular. Since Lemma 13.11(a) shows that
K[x1, . . . , xn]P is regular, dimL

(
PP /P

2
P

)
is equal to ht(P ), so combining the

above inequality with Lemma 13.12(a) yields

rank
(
∂fi
∂xj

mod P
)
≤ dimL

((
IP + P 2

P

)/
P 2
P

)
≤ ht(Q), (13.2)

and R is regular if and only if the second inequality is in fact an equality.
Parts (a) and (b) follow immediately from this. Moreover, if the hypothesis
of part (c) is satisfied, then Lemma 13.12(b) shows that the first equality
of (13.2) is in fact an equality, so (c) also follows.

The remark that the hypothesis of (c) is satisfied if K is a perfect field
follows from Proposition 13.8(a). ut

The Jacobian criterion gives a straightforward procedure for determining
the singular locus of an affine variety X ⊆ Kn. Assume for simplicity that
X is equidimensional of dimension m. Then a point x ∈ X is singular if and
only if the Jacobian matrix of the polynomials defining X, evaluated at x,
has rank less than h := n −m. This is equivalent to the condition that all
h×h-minors of the Jacobian matrix vanish at x. So the singular locus is given
by the polynomials defining X together with the h×h-minors of the Jacobian
matrix. In particular, we see that the singular locus is Zariski-closed. But we
do not (yet) know whether it may happen that X consists entirely of singular
points. Also notice that in the case of a hypersurface X = V(f), the singular
locus consists of the points in X where all partial derivatives ∂f/∂xi vanish.
Exercises 13.9 and 13.10 have some explicit examples.

The following result states the closedness of the singular locus in a slightly
more general situation. To address the question whether all points may be
singular, we consider the non-singular locus, the set of all non-singular
points, and show that under reasonable hypotheses this set is dense. The
upshot is that in most situations singular points may be regarded as “rare”.
For example, it follows that an affine curve (= an affine variety over an
algebraically closed field which is equidimensional of dimension 1) has only
finitely many singular points.

Corollary 13.13 (The singular locus and the non-singular locus).

(a) If A is an affine algebra over a perfect field, then the singular locus Xsing

in X := Spec(A) is closed.
(b) If R is a reduced, Noetherian ring, then the non-singular locus in Spec(R)

is dense.
(c) The singular locus Xsing in an affine variety X is closed.
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(d) The non-singular locus in an affine variety over an algebraically closed
field is open and dense.

Proof. (a) Write A = K[x1, . . . , xn]/I with I = (f1, . . . , fm), and let
Q1, . . . , Qk ∈ Spec (K[x1, . . . , xn]) be the prime ideals which are mini-
mal over I. For a positive integer h, let Jh ⊆ K[x1, . . . , xn] be the ideal
generated by the h× h-minors of the Jacobian matrix of the fi, and set
J0 := K[x1, . . . , xn]. With this, Theorem 13.10 yields

Xsing =
k⋃
i=1

VX
((
Jht(Qi) +Qi

)
/I
)
,

which is closed.
(b) Since the Zariski-closure of the non-singular locus consists of those prime

ideals containing the intersection of all prime ideals P ∈ Spec(R) such
that RP is regular, it suffices to show that RP is regular for all minimal
prime ideals P of R. An easy calculation shows that every localization
of a reduced ring is reduced, so in particular nil(RP ) = {0} for P a
minimal prime ideal. By Theorem 6.5, RP has precisely one prime ideal.
By Corollary 3.14(c), this prime ideal is equal to nil(RP ) = {0}. It follows
that RP is a field and therefore a regular local ring.

(c) Let I ⊆ K[x1, . . . , xn] be the ideal corresponding to the affine variety X.
Let Q1, . . . , Qk and Jh be as in the proof of part (a). With this notation,
Theorem 13.10 yields

Xsing =
k⋃
i=1

VKn

(
Jht(Qi) +Qi

)
,

which is closed.
(d) With I and Q1, . . . , Qk as above, we have K[X] = K[x1, . . . , xn]/I, and

the Qi/I are the minimal prime ideals of K[X]. By (a) there exists an
ideal J ⊆ K[x1, . . . , xn] such K[X]P/I (with P ⊂ K[x1, . . . , xn] a prime
ideal containing I) is regular if and only if J 6⊆ P . Part (b) applies to
K[X] by Theorem 1.25(a), so by the proof of (b), J is not contained in
any of the Qi. So Xi := V(Qi) 6⊆ V(J) = Xsing holds for all i. In other
words, Xi ∩ Xsing is properly contained in Xi. If Y ⊆ X is the Zariski
closure of the non-singular locus, we obtain Xi = (Xi∩Xsing)∪ (Xi∩Y ).
Since K is algebraically closed we have I(Xi) = Qi, so Xi is irreducible
by Theorem 3.10(a), and it follows that Xi = Xi ∩ Y . Therefore X =
X1 ∪ · · · ∪Xk ⊆ Y . This shows that the non-singular locus is dense. ut

Example 13.14. Consider the algebra A = K[x]/(x2) with K a field. P = (x)
is the only prime ideal in K[x] containing I := (x2). The Jacobian matrix
reduced modulo P is zero. So by the Jacobian criterion 13.10, the local ring
R := AP/I is not regular. (This is also clear since R is zero-dimensional but
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not a field.) This example shows that for non-reduced rings the non-singular
locus may be empty. /

It holds in much more generality that the singular locus is a closed subset
of the spectrum of a ring. For example, all so-called excellent rings satisfy
this. In fact excellence is defined by a list of properties, among them the
closedness of the singular locus and the Noether property. The notion of an
excellent ring is due to Grothendieck. His objective was to capture some prop-
erties which many Noetherian rings share with affine algebras, but to exclude
other, more pathological rings. The notion has led to some fruitful research.
Important results are that every localization of an excellent ring and every
finitely generated algebra over an excellent ring are excellent again. More-
over, all fields and the ring Z are excellent, and so are formal power series
rings over fields. So informally speaking, all Noetherian rings that mathemati-
cians usually deal with are excellent. More on excellent rings can be found in
Matsumura [37, Chapter 13]. But there do exist Noetherian rings where the
singular locus is not closed. One such example was given by Nagata [40, § 5].

Exercises to Chapter 13

13.1 (Regular rings). Show the following.

(a) If R is a regular local ring with maximal ideal m and P ∈ Spec(R[x]) is
a prime ideal with m ⊆ P , then R[x]P is regular.

(b) If S is a regular Noetherian ring , then so is S[x].
(c) Z and all polynomial rings Z[x1, . . . , xn] are regular rings.

(Solution on page 294)

*13.2 (Quotient rings of regular local rings). Let R be a regular local
ring and I ⊆ R an ideal. Show that the following statements are equivalent.

(a) R/I is a regular local ring.
(b) I = (a1, . . . , ak), where the ai are taken from a regular system of param-

eters of R.

Show that if (b) is satisfied, then dim(R/I) = dim(R)− k. Give an example
where I is proper but R/I is not regular. (Solution on page 294)

13.3 (Cohen-Macaulay rings). In this exercise we look at Cohen-Macau-
lay rings. A regular sequence of length n is a sequence a1, . . . , an of elements
of a ring R such that (a1, . . . , an) 6= R and such that for every i ∈ {1, . . . , n},
multiplication with ai induces an injective map on R/(a1, . . . , ai−1). If R is a
Noetherian local ring, then R is called Cohen-Macaulay if R has a regular
sequence of length equal to dim(R). In general, a Noetherian ring is called
Cohen-Macaulay if the localization at every prime ideal is Cohen-Macaulay.
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(a) Show that every regular local ring is Cohen-Macaulay.
(b) Give an example of a Cohen-Macaulay local ring which is not regular.
(c) Show that the affine algebra A := K[x1, x2]/(x2

1, x1x2) is not Cohen-
Macaulay.

Cohen-Macaulay rings are an important topic in commutative algebra. In
this exercise we have barely scratched the surface. Readers can find more on
the subject in Eisenbud [17, Chapters 17 and 18] and Bruns and Herzog [8].
(Solution on page 295)

13.4 (The Krull topology). Let R be a ring and let I0 ⊇ I1 ⊇ I2 ⊇ · · · be
a descending chain (also known as a filtration) of ideals in R. An important
special case is In = In with I ⊆ R an ideal. We define the Krull topology
on R (w.r.t. the chain (In)) by calling a subset U ⊆ R open if for every a ∈ U
there exists a non-negative integer n such that the residue class a + In is
contained in U .

(a) Show that this defines a topology on R.
(b) We say that an R-valued sequence (ak)k∈N0 converges to an a ∈ R if for

every neighborhood U of a there are at most finitely many k with ak /∈ U .
Show the equivalence of the following three statements.

(1) R is a Hausdorff space.
(2) Every R-valued sequence converges to at most one a ∈ R.
(3)

⋂
n∈N0

In = {0}.

So if R is a Noetherian local ring with maximal ideal m and In = mn,
these statements hold by Krull’s Intersection Theorem 12.9 .

(c) Let (ak)k∈N0 and (bk)k∈N0 be two R-valued sequences converging to a
and b, respectively. Show that (ak + bk) and (ak · bk) converge to a + b
and a · b, respectively.

(Solution on page 295)

13.5 (The formal power series ring is complete).
Let S = K[[x1, . . . , xn]] be the formal power series ring in n indeterminates
over a field. Recall that S is a local ring with maximal ideal m = (x1, . . . , xn)S
(see Exercise 12.6(a)).

(a) Let (fk)k∈N be a sequence with fk ∈ S such that for every non-negative
integer m there exists km such that fk′ − fk ∈ mm for all k, k′ ≥ km.
In other words, assume that (fk) is a Cauchy sequence. Show that there
exists f ∈ S such that limk→∞ fk = f . So S is a complete local ring.

(b) Show that every polynomial f ∈ K[x1, . . . , xn] \ (x1, . . . , xn)K[x1,...,xn] is
invertible in S. So the local ring R := K[x1, . . . , xn](x1,...,xn) is embedded
in S.

(c) Show that every f ∈ S is the limit of a convergent sequence (fk)k∈N0

with fk ∈ K[x1, . . . , xn]. So S is the completion of R.



Exercises 205

(d) Assume that char(K) 6= 2. Show that the polynomial 1+x1 has a square
root in S. Conclude that R $ S, so R is not complete.

Remark: By the result of Exercise 12.6(a), we have gr(S) ∼= K[x1, . . . , xn].
From Exercise 12.5 it follows that gr(R) ∼= K[x1, . . . , xn], too. This exem-
plifies that a local ring and its completion have the same associated graded
ring. (Solution on page 296)

13.6 (Completion is more local than localization). The goal of this
exercise is to illustrate the idea that completion provides a look at a smaller
scale than localization. The exercise, and in particular Figure 13.1, was in-
spired by Eisenbud [17, Section 7.2 and Figure 7.3]. Consider the cubic curve
X ⊆ K2 given by the equation ξ22−ξ21(ξ1+1) = 0, where K is an algebraically
closed field of characteristic not equal to 2. Let R be the localization of the
coordinate ring K[X] at the (singular) point (0, 0).

(a) Show that R is an integral domain, so that Spec(R) is irreducible.
(b) Show that the completion R̂ is not an integral domain. So Spec(R̂) de-

composes into components. Hint: Inspired by Exercise 13.5(d), construct
two R-valued Cauchy sequences whose product converges to 0. Then use
Exercise 13.4(c).

Remark: In fact, it is not hard to prove that Spec(R̂) has two irreducible com-
ponents. Since X has a double point at (0, 0), we should expect to see two
components on a small scale. So completion meets this expectation, but lo-
calization does not. See Figure 13.1 for an illustration. (Solution on page 297)

"!
# 
i

Figure 13.1. Local and “more local”: enlarged area represents completion

13.7 (Hypotheses of the Jacobian criterion). Give an example where
the converse of Theorem 13.10(b) fails. (Solution on page 297)

13.8 (A nicer version of the Jacobian criterion?). It would be nice to
have the following unified version of parts (b) and (c) of Theorem 13.10:
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(b’) Equality holds in (a) if and only if (K[x1, . . . , xn]/I)P/I is regular and
Quot (K[x1, . . . , xn]/P ) is a separable extension of K.

Is this true? Give a proof or a counter example. (Solution on page 297)

13.9 (The singular locus). Determine the singular locus of the affine va-
rieties X over K = C given by the following equations:

(a) x3
1 − x2

2 = 0 (see Figure 12.1 on page 189);

(b) x2
2 − x2

1(x1 + 1) = 0 (see Figure 12.1 on page 189);

(c) x2
2 − x1(x2

1 + 1) = 0 (see Figure 12.1 on page 189);

(d)
(
(x1 − 3)2 + x2

2 − 25
)
·
(
(x1 + 3)2 + x2

2 − 25
)
;

(e) x2
1 − x2

2x3 = 0 (this surface is called the Whitney umbrella);

(f) (x3
1 − x2

2) · (x2
1 + x2

2 − 2) = 0 and (x3
1 − x2

2) · x3 = 0.

Visualize the results by a drawing or in your imagination. (Solution on
page 298)

13.10 (Elliptic curves). Let K be an algebraically closed field of charac-
teristic not equal to 2. Let a, b ∈ K. Show that the cubic curve E in K2 given
by the equation

x2
2 = x3

1 + ax1 + b

is non-singular if and only if 4a3 + 27b2 6= 0.
Remark: The above equation if the so-called Weierstrass normal form of a
cubic curve. If E is non-singular, it is called an elliptic curve. (Solution on
page 298)

13.11 (The singular locus of Z[
√
−3]). This is an example from algebraic

number theory. Consider the ring R := Z[
√
−3] ⊂ C.

(a) Show that the ring S = Z
[
(1 +

√
−3)/2

]
is Euclidean. Hint: You may

use the norm function N : C→ R, z 7→ |z|2.
(b) Use (a) and Example 13.7(3) to determine the singular locus Xsing ⊆

X := Spec(R).

(Solution on page 298)



Chapter 14

Rings of Dimension One

Noetherian rings of dimension 0 are rather well understood: They are semilo-
cal, and a Noetherian local ring of dimension 0 is regular if and only if it is
a field. The next step is to study one-dimensional rings. In geometry, one-
dimensional rings occur as coordinate rings of affine curves. In algebraic num-
ber theory, they occur as rings of algebraic integers. The final chapter of this
book is devoted to rings of dimension one. We first show that a Noetherian
local ring of dimension one is regular if and only if it is normal. As a conse-
quence, we see that the process of normalization, when applied to an affine
curve, amounts to desingularization.

In the second section of this chapter we look at the multiplicative theory of
ideals. We extend the notion of ideals by including so-called fractional ideals,
and ask which ideals are invertible as fractional ideals. This is closely linked
having height one.

The last section is about Dedekind domains. These can be characterized
as normal, Noetherian domains of dimension ≤ 1. It turns out that this is
equivalent to the condition that all non-zero ideals are invertible (as fractional
ideals). Yet another equivalent condition is that every ideal can be written
as a product of prime ideals. If this is satisfied, then the factorization of an
ideal as a product of prime ideals is unique. So ideals in Dedekind domains
enjoy the unique factorization property, while elements in general do not. The
extent to which a Dedekind domain fails to be factorial is measured by the
ideal class group, which we introduce. As an application, we will see that the
group law on an elliptic curve can be defined by a correspondence between
points and elements of the ideal class group of the coordinate ring.

14.1 Regular Rings and Normal Rings

We start by taking a closer look at one-dimensional, regular local rings. By
definition, the maximal ideal of a one-dimensional, regular local ring R is

207
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a principal ideal m = (π). A generator π is often called a uniformizing
parameter. It follows that mn = (πn) for all non-negative integers n. Krull’s
Intersection Theorem 12.9 shows that for every non-zero a ∈ R there exists a
maximal integer n such that a ∈ mn, so a = u · πn with u ∈ R× an invertible
element. Since R is an integral domain by Corollary 13.6(a), we can form
K := Quot(R) and write every a ∈ K× (:= the multiplicative group K \{0})
as a = u · πn with n ∈ Z and u ∈ R×. It is easy to see that n and u are
unique (and n does not depend on the choice of the uniformizing parameter).
A consequence is that R is factorial with exactly one prime element, up to
invertible elements. (As mentioned before, it is true but much harder to
show that regular local rings of any dimension are factorial.) Mapping a to n
defines a map ν: K× → Z. This map is a group-homomorphism, and if we
set ν(0) := ∞, then ν satisfies ν(a + b) ≥ min{ν(a), ν(b)} for all a, b ∈ K,
and ν(a) = ∞ if and only if a = 0. A map with these properties is called a
discrete valuation on K. We can retrieve R from K by means of ν since

R = {a ∈ K | ν(a) ≥ 0}.

This is usually expressed by saying that R is the valuation ring belonging
to the valuation ν. One also says that R is a discrete valuation ring
(abbreviated DVR). Viewing regular local rings of dimension one as discrete
valuation rings has become so common that these rings are often just referred
to as DVR’s. This is justified since as a converse of what we have just found,
all DVR’s are one-dimensional, regular local rings (see Exercise 14.1).

Theorem 14.1. A Noetherian local ring of dimension one is regular if and
only if it is normal.

Proof. Regularity implies normality by Corollary 13.6(b).
For the converse, assume that R is a one-dimensional, normal, Noetherian

local domain with maximal ideal m. By Corollary 7.9 there exists a ∈ m
with

√
(a) = m. By the Noether property there exists an ideal P which is

maximal among all colon ideals (a) : (y) := {x ∈ R | xy ∈ (a)} ⊆ R with
y ∈ R \ (a). So P := (a) : (b) with b ∈ R \ (a). We claim that P is a prime
ideal. Indeed, P 6= R since b /∈ (a), and if x, y ∈ R \ P , then xb /∈ (a)
and (a) : (b) ⊆ (a) : (xb), so (a) : (xb) = P by the maximality. Therefore
y /∈ (a) : (xb), so xy /∈ P . We have (a) ⊆ P , and since m is the only prime
ideal of R which contains (a), we conclude m = (a) : (b). Clearly a 6= 0, so
we may consider the R-submodule

I :=
b

a
·m ⊆ Quot(R).

From m = (a) : (b) we get I ⊆ R, so I is an ideal. By way of contradiction
assume that I ⊆ m. Then m is an R

[
b
a

]
-module, so by Lemma 8.3, b/a is

integral over R. By hypothesis, this implies b/a ∈ R, so b ∈ (a), a contra-
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diction. We conclude that I = R. Multiplying this equation by a/b yields
m = R · ab , so m is a principal ideal. Therefore R is regular. ut

Exercise 12.8 shows that this result does not extend to higher dimensions.
In fact, there are examples of non-regular, normal, Noetherian local rings of
all dimensions ≥ 2.

Theorem 14.1 has some nice consequences. For example, if R is a Noethe-
rian, normal ring, then RP is normal for all P ∈ Spec(R) by Proposition 8.10,
so Theorem 14.1 says that RP is regular for all P with ht(P ) ≤ 1. Geomet-
rically, this means that if X is a normal variety over an algebraically closed
field, then the singular locus has codimension at least 2 in X. Both these
statements are referred to as regularity in codimension 1. However, regularity
in codimension 1 does not imply normality; a second condition, usually called
“S2” is required (see Eisenbud [17, Theorem 11.15], and Exercise 14.3 for an
explicit example). The situation is better for rings of dimension 1. In fact,
it follows from Proposition 8.10 and Theorem 14.1 that a one-dimensional
Noetherian domain is normal if and only if it is regular, and an irreducible
affine curve is normal if and only if it is non-singular. An important point is
that normality is a property that can be achieved by normalization (whereas
there is no such process as “regularization” in general). So in particular, by
combining Corollary 8.28 with Theorem 14.1 we get the following result.

Corollary 14.2 (Desingularization of affine curves). Let X be an irreducible
affine curve. Then there exists an affine curve X̃ with a surjective morphism
f : X̃ → X such that:

(a) X̃ is non-singular.
(b) All fibers of f are finite, and if x ∈ X is a non-singular point, then the

fiber of x consists of one point.

Generalizing Corollary 14.2, we could speak of “desingularization in codi-
mension 1” of a higher-dimensional irreducible affine variety. Moreover, in
Exercise 14.4, the corollary is generalized to arbitrary affine curves. What
Corollary 14.2 does can be best pictured in the situation of a double point:
The two branches of the curve that cross are taken apart by rising one to
a higher dimension, thereby deleting the double point. Sometimes one also
speaks of blowing up a singularity. Example 8.9(4) illustrates this. The ex-
ample also shows that the “higher” dimension can in fact be smaller. The
following is an example where the dimension does go up.
Example 14.3. We wish to desingularize the plane complex curve X ⊆ C2

given by the equation x4
1+x4

2−x2
1 = 0, which is irreducible by the Einsenstein

criterion (see Lang [33, Ch. V, Theorem 7.1]). X is shown in Figure 14.1. The
idea is to desingularize X by forming the normalization of the coordinate
ring A := C[X]. How can we find quotients of elements of A which are
integral over A? The Jacobian criterion 13.10 yields (0, 0) as the only singular
point. By Theorem 14.1, the localization of the coordinate ring A = C[X]
is normal at all points except (0, 0). So the normalization Ã is contained in
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Figure 14.1. A “butterfly” curve

all Ax with x 6= (0, 0). This means that an f/g ∈ Ã satisfies g(x) 6= 0 for
x 6= (0, 0). From this is it straightforward to try the the residue class of x1

as the denominator g. By trial and error, we find that a := x2
2/x1 (with

xi := xi + (x4
1 + x4

2 − x2
1) ∈ A) is integral over A, since dividing the defining

equation by x2
1 yields x2

1 + a2 − 1 = 0. Putting this equation together with
the defining equation for a, we consider the variety

X̃ :=
{
(ξ1, ξ2, ξ3) ∈ C3 | ξ21 + ξ23 − 1 = ξ1ξ3 − ξ22 = 0

}
⊂ C3.

We hope and guess that X̃ is the desired desingularization. To verify this, we
first check that

f : X̃ → X, (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2)

is a morphism since (ξ1, ξ2, ξ3) ∈ X̃ obviously implies ξ41 + ξ42 − ξ21 = 0.
Secondly, every point (ξ1, ξ2) ∈ X \ {(0, 0)} has the unique preimage
(ξ1, ξ2, ξ22/ξ1), and the singular point (0, 0) has two preimages: (0, 0, 1) and
(0, 0,−1). Finally, the Jacobian matrix of X̃ is

J =
(

2x1 0 2x3

x3 −2x2 x1

)
.

For points (ξ1, ξ2, ξ3) ∈ X̃ with ξ2 6= 0, also ξ1 and ξ3 are non-zero, so
J(ξ1, ξ2, ξ3) has rank 2. On the other hand, if ξ2 = 0, then ξ1 or ξ3, but not
both, are zero, and again rank (J(ξ1, ξ2, ξ3)) = 2. By the Jacobian criterion,
this shows that X̃ is non-singular. So we have indeed found a desingulariza-
tion. With a bit more work (i.e., by verifying that the equations for X̃ define
a prime ideal) we could also establish that X̃ is exactly the normalization of
X.

This example shows very nicely what happens: The original plane curve
is wound around the cylinder given by the equation ξ11 + ξ23 − 1 = 0 in such
a way that the branches of the curve are on different sides of the cylinder.
This way the double point is blown up. /
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More examples are contained in Exercise 14.5. In dimension greater than
one, the existence and calculation of a desingularization is a much harder
problem. In fact, in positive characteristic the existence problem is still open.
For a good overview and an in depth treatment, readers should turn to
Cutkosky [14].

14.2 Multiplicative Ideal Theory

For any ring R, the set of ideals together with the ideal product forms an
abelian monoid with R as neutral element. The only invertible element in
this monoid is R itself. The situation becomes more interesting if we enlarge
our view by including fractional ideals, according to the following definition.

Definition 14.4. Let R be an integral domain and K := Quot(R) its field
of fractions.

(a) A fractional ideal is an R-submodule I ⊆ K. The product of two
fractional ideals is defined as the product of ordinary ideals (see Defi-
nition 2.5), making the set of fractional ideals into an abelian monoid
with neutral element R. (It should be noted that some authors require
fractional ideals to be non-zero, and/or impose the additional condition
that there exists a non-zero a ∈ R with aI ⊆ R.)

(b) A fractional ideal is called invertible if there exists a fractional ideal J
with I · J = R. So the invertible fractional ideals form an abelian group,
which we write as C(R). (We will give an explanation for the choice of
the letter C on page 215.)

It is possible to generalize the above definition to rings which need not
be integral domains by considering the total ring of fractions instead of the
field of fractions. However, almost none of the theory that we will develop
here carries over to this case. So we continue to assume that R is an integral
domain.

If a product I · J of fractional ideals is invertible then so are I and J
(multiply the inverse of I · J by J and by I), and conversely. For every non-
zero a ∈ K, the principal fractional ideal (a)R is invertible (with inverse(
a−1

)
R
). This gives a homomorphism from K× into C(R) with kernel R×.

In general, this is not surjective, i.e., there may exist non-principal invertible
ideals, as the following example shows.
Example 14.5. In the ring R := Z

[√
−5
]
⊆ C, consider the ideal I =(

2, 1 +
√
−5
)
R
⊆ R. With J :=

(
1, 1−

√
−5

2

)
R
⊆ Quot(R), we have

I · J =
(
2, 1−

√
−5, 1 +

√
−5, 3

)
R

= R,
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so I is invertible. But I is not a principal ideal. Indeed, from the assumption
I = (z)R with z = a+b

√
−5, a, b ∈ Z, we deduce that a2+5b2 (the norm of z,

which be definition is the product of z with its complex conjugate) divides 4
and 6, the norms of 2 and of 1 +

√
−5. This implies a = ±1 and b = 0, so

I = R. But I =
{
x+ y

√
−5 | x, y ∈ Z, x ≡ y mod 2

}
6= R.

We have already studied this ring R in Example 8.9(3), and seen that it
is normal but not factorial. /

So invertible ideals generalize principal ideals. But they are not very far
away from being principal, as the following result shows.

Proposition 14.6 (Invertible ideals are locally principal). Let R be an in-
tegral domain and I ⊆ K := Quot(R) a fractional ideal. Then the following
statements are equivalent.

(a) I is invertible.
(b) With I ′ := {a ∈ K | aI ⊆ R}, we have I · I ′ = R.
(c) I is non-zero, finitely generated, and for every prime ideal P ∈ Spec(R)

there exists a ∈ I such that the localization of I satisfies

IP = (a)RP
.

We describe the latter property of I by saying that I is locally principal.

Proof. We start by showing that (a) implies (c). So we assume that there
exists a fractional ideal J ⊆ K with I · J = R. In particular, we have 1 =∑n
i=1 aibi with ai ∈ I and bi ∈ J . So every x ∈ I satisfies x =

∑n
i=1 xbiai,

and xbi ∈ I · J = R. Therefore I is generated by a1, . . . , an. Clearly I is
non-zero. Moreover, for every P ∈ Spec(R) there exist a ∈ I and y ∈ J with
ay ∈ R\P (otherwise, I ·J would be contained in P ). So for a general element
b/u ∈ IP (with b ∈ I and u ∈ R \ P ) we have

b

u
=

by

uay
· a ∈ (a)RP

,

since by ∈ I · J = R and uay ∈ R \ P . So I is locally principal.
Now we assume (c) and wish to deduce (b). By the definition of I ′, I ·I ′ ⊆ R

is an ideal. By way of contradiction, assume that it is proper. Then there
exists a maximal ideal P ∈ Spec(R) with I ·I ′ ⊆ P . (This conclusion requires
Zorn’s lemma). By hypothesis we have a ∈ I with IP = (a)RP

, and I =
(a1, . . . , an). It follows that there exists u ∈ R \ P with uai ∈ (a)R for all i,
so uI ⊆ (a)R. Since I 6= {0}, a is non-zero, and it follows that u/a ∈ I ′, so
u = a · u/a ∈ I · I ′, in contradiction to I · I ′ ⊆ P . Therefore (b) holds.

Finally, (b) implies (a) since I ′ is a fractional ideal, and we are done. Let
us add that that (b) can easily be deduced directly from (a). ut

In view of part (b) of the above proposition, we define

I−1 := {a ∈ Quot(R) | aI ⊆ R}
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for any fractional ideal of an integral domain. The finiteness condition in
part (c) cannot be omitted: Although it may seem unlikely, there are examples
of Noetherian domains with fractional ideals that are locally principal but
not finitely generated (see Exercise 14.6).

We draw a few consequences from Proposition 14.6.

Corollary 14.7 (Properties of invertible ideals). Let I ∈ C(R) be an invert-
ible fractional ideal of a Noetherian domain R.

(a) There exist invertible non-fractional ideals J1, J2 ⊆ R with I = J1 · J−1
2 .

(b) If I ⊆ R is a non-fractional ideal, then every prime ideal P ∈ Spec(R)
which is minimal over I has height 1.

(c) If I =: P is a prime ideal of R, then P has height 1 and RP is regular.

Proof. (a) By Proposition 14.6, I is finitely generated. If a ∈ R \ {0} is
a common denominator of all elements in a generating set, then J1 :=
I · (a) ⊆ R and I = J1 · (a)−1. Since J2 := (a) and I are invertible, the
same holds for J1.

(b) Let P ∈ Spec(R) be minimal over I. Then PP is minimal over IP , which
by Proposition 14.6 is a principal ideal. So ht(PP ) ≤ 1 by the Principal
Ideal Theorem 7.4. Since {0} 6= I ⊆ PP , the height must be equal to 1.
So ht(P ) = ht(PP ) = 1.

(c) By part (b), P has height 1, so dim(RP ) = 1. By Proposition 14.6, the
maximal ideal of RP is principal, so RP is regular. ut

So we cannot hope that prime ideals of height other than 1 are invert-
ible. But when are all height-one prime ideals invertible? By the corollary, a
necessary condition for this is regularity in codimension 1. So a Noetherian,
normal domain would be a good candidate. However, in Exercise 14.7 we find
an example of a Noetherian, normal domain with a prime ideal of height 1
which is not invertible. So more is required. Recall that by Proposition 8.8,
factoriality is a stronger condition than normality, and by Proposition 8.10,
the condition that every localization at a prime ideal is factorial lies between
the two. We call an integral domain R locally factorial if RP is factorial
for every P ∈ Spec(R).

Theorem 14.8 (Invertible ideals in a locally factorial ring).
Let R be a Noetherian domain.

(a) If R is locally factorial, then every height-one prime ideal of R is invert-
ible.

(b) If every height-one prime ideal of R is invertible, then an ideal I ⊆ R is
invertible if and only if it is a finite product of prime ideals of height 1
(where I = R occurs as the empty product).

Remark. As mentioned before, every regular ring is locally factorial. (We
have only proved this for rings of dimension at most 1, see on page 207.) So
all regular domains lie within the scope of the theorem. /
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Proof of Theorem 14.8. (a) Let Q ⊂ R be a prime ideal of height 1. We
use Proposition 14.6. Clearly Q is finitely generated and non-zero, so we
only need to show that QP ⊆ RP is a principal ideal for every P ∈
Spec(R). If Q 6⊆ P , then Q contains elements that are invertible in RP ,
so QP = (1)RP

is a principal ideal. On the other hand, if Q ⊆ P , then by
Theorem 6.5, QP is a prime ideal of RP of height 1. Since RP is factorial,
it follows by Lemma 5.14 that QP is a principal ideal in this case, too.

(b) It follows from the hypothesis that every product of height-one prime
ideals is also invertible. We prove the converse by Noetherian induction.
So assume that there exists an invertible ideal which is not a product
of height-one prime ideals. By the Noether property we can choose I be
maximal among all counter examples. R is not a counter example, so
I 6= R, and therefore there exists a prime ideal P ∈ Spec(R) which is
minimal over I. By Corollary 14.7(b), P has height 1, so it is invertible.
Using Lemma 14.9 below we obtain I $ J := I · P−1 ⊆ R. Since I is
invertible, so is J . With the maximality of I, this implies that J is a
product of height-one prime ideals. So the same holds for I, and we are
done. ut

In the proof we have used the following lemma.

Lemma 14.9. Let R be a Noetherian domain and let I ⊆ R be a non-zero
ideal which is contained in an invertible prime ideal P . Then I $ I ·P−1 ⊆ R.

Proof. From I ⊆ P it follows that J := I · P−1 ⊆ P · P−1 = R. Moreover,
I = J · P ⊆ J . Assume that I = J . Then I = P · I. This localizes to
IP = PP · IP , which by Nakayama’s Lemma 7.3 gives IP = {0}. Since there
are no zero-divisors, we obtain I = {0}, contradicting the hypothesis. ut

Theorem 14.8(b) becomes even more interesting if we combine it with the
following unique factorization result.

Proposition 14.10 (Unique factorization of invertible ideals). Let R be an
integral domain and let I ⊆ R be an invertible ideal which has a factorization

I = P1 · · ·Pn

with Pi prime ideals (where n = 0 occurs if I = R). Then this factorization
is unique up to the order of the factors.

Proof. We use induction on n. Let I = Q1 · · ·Qm be another factorization
with Qi ∈ Spec(R). If n = 0 then m = 0 since otherwise I ⊆ Q1 $ R =
I. Consider the case n > 0. By renumbering, we may assume that P1 is
minimal among the Pi. Since Q1 · · ·Qm ⊆ P1, there exists i with Qi ⊆ P1.
By renumbering, we may assume i = 1. Since P1 · · ·Pn ⊆ Q1, there exists j
with Pj ⊆ Q1, so Pj ⊆ Q1 ⊆ P1. With the minimality of P1, this implies
P1 = Q1. Since I is invertible, so are all Pi. Multiplying by P−1

1 = Q−1
1 gives

P2 · · ·Pn = Q2 · · ·Qm, and the result follows by induction. ut



14.2 Multiplicative Ideal Theory 215

Assume that R is a locally factorial, Noetherian domain, or more generally
a Noetherian domain in which all height-one prime ideals are invertible. We
can extend Theorem 14.8(b) and Proposition 14.10 to invertible fractional
ideals. In fact, if I ⊆ Quot(R) is an invertible fractional ideal, then it fol-
lows by Corollary 14.7(a) and Theorem 14.8(b) that I can be written as a
product of height-one prime ideals and inverses of height-one prime ideals.
Conversely, it follows from the group property of C(R) that every such prod-
uct is invertible. More formally, let M ⊆ Spec(R) be the set of all prime
ideals of height 1. Then a fractional ideal I is invertible if and only if it can
be written as

I =
∏
Q∈M

QeI,Q (14.1)

with eI,Q ∈ Z, and all but finitely many eI,Q equal to 0. It follows from
Proposition 14.10 that the eI,Q are unique. In fact, if there existed two dif-
ferent factorizations, we could multiply both by height-one prime ideals until
reaching two factorizations of a non-fractional ideal, contradicting Proposi-
tion 14.10. It also follows that I ⊆ R if and only if all eI,Q are non-negative.

If we multiply two invertible ideals, the corresponding exponents eI,Q
in (14.1) get added. So our results can be expressed by saying that the group
C(R) of invertible fractional ideals is isomorphic to the free abelian group
generated by the height-one prime ideals. This motivates the following def-
inition. For any ring R, the group Div(R) of Weil divisors is defined to
be the free abelian group generated by the height-one prime ideals of R. In
contrast to C(R), the group of Weil divisors is usually written additively, so
a Weil divisor is a “formal” Z-linear combination of height-one prime ideals.
In particular, if R is the coordinate ring of an affine curve, a Weil divisor can
be written as a formal Z-linear combination of points.

In this context, an invertible ideal of an integral domain R is called a
Cartier divisor, and C(R) is the group of Cartier divisors. This explains
the use of the letter C. (It should be noted that the standard definition
of Cartier divisors in algebraic geometry is different; see Hartshorne [26,
p. 141].) So if R is a locally factorial, Noetherian domain (or, more gen-
erally, a Noetherian domain where all height-one prime ideals are invertible),
we have C(R) ∼= Div(R). Using the isomorphism, we can speak of the Weil
divisor associated to an invertible ideal or to a non-zero element a ∈ R: The
latter is

∑n
i=1 ei ·Pi if (a) =

∏n
i=1 P

ei
i . The situation becomes less nice when

we relax the conditions on R. Exercise 14.8 deals with the case that R is a
normal, Noetherian domain.
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14.3 Dedekind Domains

In this theory, the most well-behaved domains are those in which every non-
zero ideal is invertible. We will study these rings now, and see that the invert-
ibility of non-zero ideals is equivalent to various other interesting conditions.

Theorem 14.11 (Rings with a perfect multiplicative ideal theory). For an
integral domain R, the following statements are equivalent.

(a) Every non-zero ideal of R is invertible.
(b) R is Noetherian and every ideal of R is locally principal.
(c) R is Noetherian and normal and has dimension at most 1.
(d) Every ideal I ⊆ R is a finite product of prime ideals (where I = R occurs

as the empty product).

If these conditions are satisfied, then the factorization of a non-zero ideal as
a product of prime ideals is unique up to the order of the factors. Moreover,
every finitely generated, non-zero fractional ideal has a unique factorization
as (14.1).

Proof. It follows from Proposition 14.6 that (a) implies (b).
We now assume (b) and wish to deduce (c). It follows that for every

P ∈ Spec(R), PP ⊆ RP is a principal ideal. If ht(P ) = 0, then P = {0} and
RP = Quot(R) is regular. Otherwise, it follows that RP is one-dimensional
and regular. Therefore R is regular (and hence normal by Corollary 13.6(b)
and Proposition 8.10) and of dimension at most 1. So we have deduced (c).

Next we assume (c) and wish to show (d). By (c), R is locally factorial
since for every P ∈ Spec(R), the local ring RP is a field (in the case P = {0})
or a discrete valuation ring (by Theorem 14.1 and the discussion preceding
it). So by Theorem 14.8(a), every height-one prime ideal of R is invertible.
By way of contradiction, assume that there exists an ideal I ⊆ R which is
not a finite product of prime ideals. Since R is Noetherian, we may assume
I to be maximal with this property. We have {0} 6= I $ R, so there exists
a prime ideal P which contains I. Since dim(R) ≤ 1 and P 6= {0}, P must
have height 1, so it is invertible. Lemma 14.9 yields I $ I · P−1 ⊆ R, so by
the maximality of I, I ·P−1 is a finite product of prime ideals. Therefore the
same is true for I.

The most work is required for deducing (a) from (d). We will first show
that (under the assumption (d)) every invertible prime ideal is maximal.
From this we will draw the (at first sight surprising) consequence that every
non-zero prime ideal is invertible, which together with the hypothesis (d)
implies (a) directly. So let P ⊆ R be an invertible prime ideal. To show that
P is maximal, we need to prove that P + (a) = R for every a ∈ R \ P . We
have factorizations

P + (a) = P1 · · ·Pn and P + (a2) = P ′1 · · ·P ′m
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as products of prime ideals. Computing modulo P and writing a := a+ P ∈
R := R/P , we get

(a)R = P1 · · ·Pn and (a2)R = P ′1 · · ·P ′m.

This gives two factorizations of (a2), which is an invertible ideal of R.
By Proposition 14.10 it follows that m = 2n and, after renumbering,
P i = P ′2i−1 = P ′2i for i = 1, . . . , n. By Lemma 1.22, the same holds for
the original Pi and P ′j , and we conclude P + (a2) = (P + (a))2. In particu-
lar, every x ∈ P can be written as x = y + az + a2w with y ∈ P 2, z ∈ P
and w ∈ R. But then w ∈ P since a2w = x − y − az ∈ P and a2 /∈ P . So
x ∈ P 2 + a · P , and we obtain

P ⊆ P · (P + (a)) ⊆ P.

Multiplying by P−1 yields P + (a) = R, as claimed.
The second (and final) step is to show that every non-zero prime ideal is

invertible. So assume that {0} 6= Q ∈ Spec(R). Choose a non-zero b ∈ Q.
By hypothesis, we have (b) = Q1 · · ·Qr with Qi ∈ Spec(R). Since (b) is
invertible, the Qi are invertible, too, so by what we have shown they are
maximal. Since Q1 · · ·Qr ⊆ Q, there exists an i with Qi ⊆ Q, so Q = Qi
by the maximality of Qi. Therefore Q is invertible, and the proof of the
equivalence of (a) through (d) is complete.

The uniqueness of a factorization of a non-zero ideal follows from (a), (d)
and Proposition 14.10. If I is a finitely generated, non-zero fractional ideal,
there exists a non-zero a ∈ R such that J := aI ⊆ R. Since J and (a) are
products of prime ideals, I has a factorization as (14.1). If there are two
such factorizations, we can multiply both by prime ideals until reaching two
factorizations of a non-fractional ideal. So the factorizations are unique after
all. ut

An integral domain that satisfies the equivalent conditions from Theo-
rem 14.11 is called a Dedekind domain. Of these conditions, (c) is the one
which tends to be easiest to verify. The condition (b) shows that Dedekind
domains are not too far away from principal ideal domains. Although our
investigation has originated from studying condition (a), condition (d) and
the unique factorization statement may be the most interesting. Notice that
elements of a Dedekind domain do not always enjoy the unique factorization
property that holds for ideals: consider Example 8.9(3). So ideals are “ide-
alized” elements. Many more properties which are equivalent to R being a
Dedekind domain can be found in the literature. For instance, Larsen and
McCarthy [34, Theorem 6.20] list 16.

An important class of Dedekind domains comes from algebraic geometry:
If X is an irreducible, non-singular affine curve, then the coordinate ring
K[X] is a Dedekind domain since it satisfies (c) from Theorem 14.11.
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Another class of arguably even more importance comes from number the-
ory: Let K be a number field, i.e., a finite field extension of Q. Then the
ring of algebraic integers in K is defined as the integral closure of Z in K,
and is written as OK . It follows from Lemma 8.27 that OK is Noetherian.
Being an integral closure of a ring in a field, it is also normal. Since OK
is an integral extension of Z, it has dimension 1 by Corollary 8.13. So OK
satisfies condition (c) and is therefore a Dedekind domain. Rings of algebraic
integers are the central object of study in the field of algebraic number the-
ory. Historically, much of the interest in rings of algebraic integers originated
from the study of diophantine problems. For instance, the question which
integers can be represented as x2 + dy2 (with x, y, d ∈ Z, but d fixed) can be
translated into a question about algebraic integers by using the factorization
x2+dy2 =

(
x+ y

√
−d
) (
x− y

√
−d
)
. So one is lead to calculations in the ring

OK of algebraic integers in the number field K = Q(
√
−d). Clearly the ques-

tion whether OK is factorial plays a central role in this game. The answer is
yes for some d (e.g. d = 1), but no for most (e.g. d = 5; see Example 8.9(3)).
Another extremely well-known diophantine equation is the Fermat equation
xn + yn = zn. With ζ2n a primitive (2n)-th root of unity, this translates to

n∏
i=1

(
x− ζ2i−1

2n y
)

= zn,

an equation in the ring OK of algebraic integers in the cyclotomic field
K = Q(ζ2n). Again, the question whether OK is factorial arises naturally. In
fact, there were attempts of proving Fermat’s last theorem which hinged on
the assumption that OK is factorial. Again, this is false for most n. The fol-
lowing example illustrates how the non-uniqueness of factorization in a ring
of algebraic integers is resolved by turning to ideals.
Example 14.12. Consider the ring R = Z

[√
−5
]
. In Example 8.9(3) we have

seen that R is normal, so R is the ring of algebraic integers in Q(
√
−5). There

we have also exhibited an example of a non-unique factorization:

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√
−5
)
. (14.2)

How do the corresponding principal ideals (2)R, (3)R etc. factorize? In Ex-
ercise 14.9 it is shown that every ideal of a Dedekind domain is generated
by two elements. With this in mind, it is not too hard to find the following
factorizations, which are easy to verify:

(2)R =
(
2, 1 +

√
−5
)2
R
,

(3)R =
(
3, 1 +

√
−5
)
R

(
3, 1−

√
−5
)
R
,(

1 +
√
−5
)
R

=
(
2, 1 +

√
−5
)
R

(
3, 1 +

√
−5
)
R
, and(

1−
√
−5
)
R

=
(
2, 1 +

√
−5
)
R

(
3, 1−

√
−5
)
R
.
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To see that
(
2, 1 +

√
−5
)
R

and
(
3, 1±

√
−5
)
R

are prime ideals, observe that
they are the kernels of the ring-homomorphisms R→ F2, a+ b

√
−5 7→ a+ b

mod 2 and R → F3, a + b
√
−5 7→ a ∓ b mod 3, respectively. So we get the

unique factorization

(6)R =
(
2, 1 +

√
−5
)2
R

(
3, 1 +

√
−5
)
R

(
3, 1−

√
−5
)
R
.

of ideals, and the non-uniqueness in (14.2) is explained by re-groupings of
the above factors. /

We have mentioned before that for any integral domain R, the principal
ideals (a) with a ∈ Quot(R) \ {0} form a subgroup of C(R). The quotient
group

Cl(R) := C(R)
/{

(a) | a ∈ Quot(R) \ {0}
}

is called the ideal class group of R. This name is most intuitive in the case
where R is a Dedekind domain, and some authors restrict the definition to
that case. Since C(R) and Div(R) are isomorphic if R is a Dedekind domain,
Cl(R) is isomorphic to the group of equivalence classes of Weil divisors, where
two Weil divisors are called linearly equivalent if they map to a principal
fractional ideal in C(R). For a Dedekind domain R, the ideal class group is
trivial if and only if R is a principal ideal domain (which by the following
theorem is equivalent to R being factorial). So the Cl(R) can be viewed as
quantifying the extent to which a Dedekind domain fails to be factorial.

Theorem 14.13 (Factorial Dedekind domains). For a Dedekind domain R,
the following statements are equivalent.

(a) R is factorial.
(b) R is a principal ideal domain.

Proof. First assume that R is factorial. By Lemma 5.14, it follows that every
prime ideal of height 1 is principal. Since every non-zero ideal is a product of
height-one prime ideals, this implies (b).

The fact that every principal ideal domain is factorial is usually part of
an abstract algebra course (see Lang [33, Ch. II, Theorem 4.2]). We give a
(shorter) proof for the case of Dedekind domains here. Let a ∈ R be a non-
zero, non-invertible element. Then (a) = P1 · · ·Pn with Pi prime ideals. After
assumption, we have Pi = (pi) with pi ∈ R prime elements. By multiplying
p1 with an invertible element if necessary, it follows that a = p1 · · · pn. Now
suppose that we have another factorization a = q1 · · · qm with qj ∈ R irre-
ducible. Since p1 is a prime element that divides the product of the qj , it
divides one of the qj , say q1. Therefore we can achieve q1 = p1 by multiplying
q1 with an invertible element if necessary. Continuing in this way, we end up
with pi = qi for i = 1, . . . , n and 1 = qn+1 · · · qm, so m = n. This shows the
uniqueness of factorization. ut

A generalization of Theorem 14.13 is given in Exercise 14.10.
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How large can ideal class groups become? For rings OK of algebraic inte-
gers in a number field, the answer is that the ideal class group is finite. Its
order is called the class number. This is one of the central results of algebraic
number theory. For a proof, see Neukirch [42, Chapter I, Theorem 6.3]. This
is in sharp contrast to the behavior in more general cases. In fact, we will
see in the following example that for a non-singular, irreducible affine curve
X, Cl(K[X]) can become infinite. (In fact, it is finite only in exceptional
cases.) Moreover, Claborn [10] proved that any abelian group whatsoever is
isomorphic to the ideal class group of a suitable Dedekind domain.

We finish this chapter by an example which shows how the ideal class
group can be used to give an elliptic curve the structure of an abelian group.
Example 14.14 (The group law on an elliptic curve). Let E ⊆ K2 be an el-
liptic curve over an algebraically closed field K of characteristic not equal
to 2, given by the equation

x2
2 = x3

1 + ax1 + b

with a, b ∈ K such that 4a3 + 27b2 6= 0 (see Exercise 13.10). The goal of
this example is to give E (enriched by a point at infinity) the structure of an
abelian group, which is isomorphic to the ideal class group of the coordinate
ring R := K[E]. For some details and proofs we will refer to the exercises. E
is non-singular by Exercise 13.10, so R is a Dedekind domain. For two points
P1, P2 ∈ E, let L be the line passing through P1 and P2. If P1 = P2, take
the tangent line to E through P1. (The remark at the end of Exercise 14.11
says exactly how this is done.) If L is not parallel to the x2-axis, then L
meets E at another point P3. This is shown in Figure 14.2, and proved in
Exercise 14.11. Notice that P3 may be equal to P1 or to P2 if P1 6= P2 and

rP1

rP2

r P3

rP3 = P1 + P2

r
P1 = P2

r
P3

rP3 = 2P1

r
P1 + P3

r
P1 = P2 = P3

r
P1 = 2P1

Figure 14.2. The group law on the elliptic curve y2 = x3 − x + 1

L is tangent to E at this point, or if P1 = P2 is an inflection point of E.
If l ∈ K[x1, x2] is a polynomial of degree 1 defining L and l ∈ R is the
corresponding regular function on X, then l vanishes at the points Pi, so
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it lies in the corresponding maximal ideals mPi ∈ Specmax(R). It is very
plausible that (l)R = mP1mP2mP3 . Exercise 14.11 gives an exact proof. (The
subtlety lies in the multiplicities in the case that some Pi coincide.) So the
Weil divisor P1 + P2 + P3 is linearly equivalent to 0. We write this as

P1 + P2 + P3 ∼ 0. (14.3)

Next we consider the case that L is parallel to the x2-axis. This happens if
and only if P2 = P1, where for any point P = (ξ1, ξ2) we write P := (ξ1,−ξ2).
In this case, P1 and P1 are the only intersections of L and E. So for every
P ∈ E we obtain

P + P ∼ 0. (14.4)

Putting this together with (14.3) yields

P1 + P2 ∼ P 3. (14.5)

This already looks like an addition on E. To show that it really defines a
group law, consider the map

ϕ: E → Cl(R), P 7→ [mP ] (the class of mP in Cl(R)) .

So in terms of Weil divisors, ϕ maps every point to its equivalence class. Let
d =

∑m
i=1 niPi ∈ Div(R) (with coefficients ni ∈ Z and Pi ∈ E) be a Weil

divisor. Obtain another Weil divisor d =
∑m
i=1 kiQi by substituting every Pi

with ni < 0 in d by −Pi. Then d ∼ d by (14.4), and all coefficients ki in d are
non-negative. If the coefficient sum of d is greater than 2, we can use (14.5)
to find a Weil divisor that is linearly equivalent to d, but has coefficient sum
one smaller than that of d. So by induction on the coefficient sum, we see
that every Weil divisor is linearly equivalent to a point P ∈ E or to 0. We
conclude that every non-trivial element of Cl(R) lies in the image of ϕ.

The most difficult part of this discussion is to prove that ϕ is injective,
i.e., that for two distinct points P,Q ∈ E, there exists no f ∈ Quot(R) with
(f)R = mP ·m−1

Q . This is the contents of Exercise 14.12. In this Exercise, it is
also shown that the trivial class is not in the image of ϕ, i.e., there exists no
f ∈ Quot(R) such that (f)R = mP with P ∈ E. With this, we can extend ϕ
to a bijection between Ê := E ∪{∞} and Cl(R) by mapping∞ to the trivial
class. The geometric interpretation of the additional point ∞ is that it is the
point at infinity. This makes sense since we can think of the line through P
and P as meeting E at infinity. Having a bijection between Ê and the abelian
group Cl(R), we can use this to transfer the group law from Cl(R) to Ê. With
this, (14.5) indeed defines the sum of two points P1, P2 ∈ E as given by the
following recipe: Draw the line through P1 and P2 and take the third point
P3 of E meeting this line (always counting intersections with multiplicities).
Then mirror P3 at the x1-axis to obtain the desired point P3 = P1 + P2.
Special cases apply: P +∞ := P , and P + P :=∞.
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It is of course possible to define the addition on Ê directly by this recipe.
Then the main difficulty is to verify the associative law (e.g., this takes 12
pages in the book of Washington [52]). But by using the bijection with Cl(R),
we get the associative law automatically. This approach also gives a concep-
tual explanation of why the group law is defined in such a seemingly arbi-
trary way. On the other hand, it provides the ideal class group Cl(R) with
the structure of a projective variety. In this way, elliptic curves act as the
first significant example for the theories of Jacobian varieties and abelian
varieties, which are deep and fascinating subjects in algebraic geometry.

Another important aspect is rational points. Suppose that k ⊆ K is a
subfield with a, b ∈ k (i.e., the equation defining E lies in k[x1, x2]). A point
P ∈ E(k) := k2∩E is called (k-)rational. If P is a rational point, then clearly
the same is true for −P = P . Moreover, if P1, P2 ∈ E(k) with P1 6= −P2,
then substituting a parametrization of the line through P1 and P2 into the
equation defining E gives a polynomial of degree 3 with coefficients in k.
(Exercise 14.11 has more details on this.) Since this polynomial has two zeros
in k, corresponding to the points P1 and P2 (or a double zero if P1 = P2), its
third zero lies in k, too. This means that P1 + P2 is also a rational point. So
we have seen that Ê(k) := E(k) ∪ {∞} is a subgroup of Ê.

This has applications in cryptography. In fact, if k is a (large) finite field,
then Ê(k) provides a finite group G in which the discrete logarithm problem
(i.e., determining n from the given data g and gn, with g ∈ G, written multi-
plicatively) is supposedly very hard. This gives rise to public-key cryptosys-
tems. In this business, the choice of the elliptic curve and of a “base point”
P ∈ E with large order are crucial for the security of the cryptosystem. Ap-
plications to cryptography are among the reasons why elliptic curves have
become very fashionable (and useful) in recent years. See Washington [52]
for a good introduction to elliptic curves and their use in cryptography. /

Exercises to Chapter 14

14.1 (Discrete valuation rings). Let K be a field and let ν: K → Z∪{∞}
be a discrete valuation. Assume that ν is non-trivial, i.e., im(ν) 6= {0,∞}
Show that the valuation ring R := {a ∈ K | ν(a) ≥ 0} is a one-dimensional,
regular local ring. (Solution on page 299)

14.2 (Discrete valuations on the rational function field). Let K(x)
be the rational function field over a field. Classify all non-trivial discrete
valuations on K(x) which vanish on K×.
Hint: You will find that the valuation rings are in bijective correspondence
with the set of all monic irreducible polynomials in K[x] together with one
extra element, usually written as ∞ (why?). (Solution on page 299)
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14.3 (Regular in codimension 1 does not imply normal). This exer-
cise deals with an example of an affine domain which is regular in codimen-
sion 1 but not normal. The example is drawn from Shafarevich [46, Chapter II,
§ 5.1], where is appears in geometric terms. The example is the subalgebra

A := K[f1, f2, f3, f4] ⊆ K[x1, x2]

with

f1 = x1, f2 = x1x2, f3 = x2(x2 − 1), and f4 = x2
2(x2 − 1),

where K[x1, x2] is the polynomial algebra in two indeterminates over a field.

(a) Show that K[x1, x2] is the normalization of A.
(b) Show that there exist two maximal ideals n1, n2 ∈ Specmax (K[x1, x2])

with A ∩ ni = (f1, f2, f3, f4)A =: m.
*(c) Show that K[x1, x2] ⊆ AP for all P ∈ Spec(A) \ {m}, and conclude that

there exists Q ∈ Spec (K[x1, x2]) with AP = K[x1, x2]Q. Hint: Two of
the relations of the fi are f2

1 f3 +f2(f1−f2) = 0 and f3
3 +f4(f3−f4) = 0.

(d) Conclude that A is a two-dimensional, non-normal domain such that the
singular locus in Spec(A) is {m}, so regularity in codimension 1 holds.

(Solution on page 300)

14.4 (Desingularization of non-irreducible curves). Show that Corol-
lary 14.2 holds for all (not necessarily irreducible) affine curves.
Hint: Use Exercises 4.3 and 6.6. (Solution on page 300)

14.5 (Examples of desingularization). Find desingularizations of the
plane complex curves given by the following equations.

(a) x3
1 − x2

2 = 0 (the cubic curve with a cusp shown in Figure 12.1);
(b) x4

1 − x2
1 + x2

2 = 0 (lemniscate of Gerono, an ∞-shaped curve);
(c) x6

1 + x6
2 − x2

1 (butterfly-shaped, similar to Figure 14.1);
(d) x4

1 + x4
2 − x1x2 (another figure-eight curve, but tilted by 45◦ and with

perpendicular crossing)

Hint: It may be hard to do (d) by hand. If you have access to MAGMA [5]
you can use the function Normalization. (Solution on page 301)

14.6 (Finite generation of fractional ideals). (a) Give an example of a
fractional Z-ideal I ⊆ Q which is locally principal but not finitely gener-
ated.

(b) Show that for a non-zero fractional ideal I ⊆ Quot(R) of a Noetherian
domain R, I−1 is finitely generated.

(c) For your example in (a), what are I−1, I · I−1, and (I−1)−1?
(Solution on page 301)
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14.7 (A non-invertible prime ideal of height 1). This example is taken
from Hutchins [28, Example 47] (with a slight modification), and due to
Gilmer [20, p. 554, Exercise 2]. Consider the ring R = Z[x, x2/2] ⊂ Q[x].

(a) Show that R is a normal, Noetherian domain. Hint: For this part, it may
lead to a nicer notation to consider the isomorphic ring S := Z

[
x,
√

2x
]
.

You may look at Example 8.9(3) for inspiration.
(b) Show that the ideal P :=

(
x, x2/2

)
R

is a prime ideal of height 1.
(c) Show that P is not invertible.

(Solution on page 302)

14.8 (Cartier divisors and Weil divisors). Let R be a normal, Noethe-
rian domain. The goal of this exercise is to construct an injective homomor-
phism C(R)→ Div(R). WriteM for the set of height-one prime ideals of R,
and write F for the set of all finitely generated, non-zero fractional ideals.
For each Q ∈ M, RQ is a Dedekind domain, so for I ∈ F there exists a
unique eI,Q ∈ Z with IQ = Q

eI,Q

Q .

(a) Show that
Φ: F → Div(R), I 7→

∑
Q∈M

eI,Q ·Q

defines a homomorphism of monoids. Hint: The hardest part is to show
that eI,Q = 0 for all but finitely many Q.

(b) Show that the restriction Ψ := Φ|C(R): C(R) → Div(R) of Φ to C(R) is
an injective group-homomorphism. Hint: Use Exercise 8.3.

(c) Show that Ψ is surjective if and only if every P ∈M is invertible. In this
case, Ψ coincides with the isomorphism described on page 215. Hint: If
Ψ(I) = P ∈M, consider P · I−1.

Remark: It follows that Exercise 14.7 gives an example where Ψ is not sur-
jective. (Solution on page 302)

14.9 (Properties of Dedekind domains). Let R be a Dedekind domain.
Show the following.

(a) If P1, . . . , Pn ∈ Spec(R) are pairwise distinct, non-zero prime ideals and
e1, . . . , en are non-negative integers, there exists a ∈ R \ {0} such that

(a) = P e11 · · ·P en
n · J

with J ⊆ R an ideal in whose factorization none of the Pi appear.
(b) Every ideal of R is generated by at most two elements.

(Solution on page 303)

14.10 (Factorial rings). Show that for an integral domain R, the following
statements are equivalent.
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(a) R is factorial of dimension ≤ 1.
(b) R is a principal ideal domain.

If these conditions are satisfied, then R is Noetherian. Is it true that every
factorial ring is Noetherian? (Solution on page 304)

Exercises 14.11 and 14.12 fill the gaps in Example 14.14. Together with
the example, they form a nice application project of our methods.

14.11 (Divisor of a line intersecting a curve). In this exercise we study
a situation that seems rather special, but is general enough to handle elliptic
curves, for example. Let K be an algebraically closed field and let X ⊂ K2

be a non-singular, irreducible affine curve. So I(X) = (g) with g ∈ K[x1, x2]
irreducible (see Theorem 5.13). Consider a line

L = {(aξ + b, cξ + d) | ξ ∈ K} ⊂ K2 (with a, b, c, d ∈ K, a or c non-zero),

and assume L 6= X. With t a new indeterminate, set f := g(at+ b, ct+ d) ∈
K[t] and let f = an ·

∏n
i=1(t − ξi) with an ∈ K \ {0} and ξi ∈ K, not

necessarily distinct. So the Pi := (aξi + b, cξi + d) are the points of the
intersection L ∩ X, counted with “multiplicities”. Multiplicity greater than
one means that L is “tangent” to X in Pi. Let mi ∈ Specmax (K[X]) be the
maximal ideal belonging to Pi. Furthermore, let l := cx1 − ax2 + ad − bc
(which defines L), and let l := l + (g) ∈ K[X] be the corresponding regular
function on X. Show that

(l) = m1 · · ·mn.

So the Weil divisor P1 + · · ·+ Pn is linearly equivalent to 0.
Remark: If X is an elliptic curve defined as in Example 14.14, then f has
degree 3 if a 6= 0, i.e., if L is not parallel to the x2-axis. So in this case we get
three points whose sum is linearly equivalent to 0. Otherwise, f has degree 2,
so the sum of two points is linearly equivalent to 0. It is also clear that (for
general X) if P is a point of X, then by setting a := ∂g

∂x2
(P ), b := − ∂g

∂x1
(P ),

and (b, d) := P , one achieves that the polynomial f will become divisible by
t2, which geometrically means that L is tangent to X in P . (Solution on
page 304)

*14.12 (Rational functions on an elliptic curve). Let K be an alge-
braically closed field of characteristic not equal to 2, and let E ⊂ K2 be
an elliptic curve given by the equation

x2
2 = x3

1 + ax1 + b

with a, b ∈ K, 4a3 + 27b2 6= 0 (see Exercise 13.10). Let R := K[E] be the
coordinate ring and L := Quot(R) the field of rational functions on E. By
a place of L we mean a discrete valuation ring O such that K ⊂ O ⊂ L
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and Quot(O) = L. So giving a place of L is the same as giving a non-trivial
discrete valuation on L (see Exercise 14.1).

(a) Show that L has the following places: (1) the localizations RP =: OP of
R at points P ∈ E, and (2) one further place, which we will write as O∞.
We will write the maximal ideals of the places as pP and p∞. Also show
that R ∩ p∞ = {0}. Hint: The last statement can be shown by using a
suitable K-automorphism ϕ: L→ L.

(b) Show that L is not isomorphic (as a K-algebra) to the rational func-
tion field K(x). This result is usually expressed by saying that E is not
a rational curve. Hint: This can be done by giving a K-automorphism
ϕ: L→ L which fixes four places of L (in the sense that ϕ(O) = O), and
showing that K(x) has no such automorphism.

(c) Assume that there exists f ∈ L such that (f)R = mP ·m−1
Q with P,Q ∈ E

distinct points, or (f)R = mP (:= the maximal ideal of R belonging to
P ). In other words, assume that as a Weil divisor, P is linearly equivalent
to Q or to 0. Show that this implies L ∼= K(f), contradicting (b). Hint:
Consider the integral closure A of K[f ] in L. Apply the structure theorem
for finitely generated modules over a principal ideal domain (see Lang [33,
Ch. XV, Theorem 2.2]) to A.

Remark: Part (c) shows that for a non-rational, non-singular, irreducible
affine curve which has only one point at infinity, no point is linearly equivalent
to another point or to 0. In this context, it would be more natural to consider
projective curves. Then zeros and poles at infinity would be included in the
divisor of a rational function, and the hypothesis on the number of points at
infinity would vanish. (Solution on page 305)



Solutions of Exercises

1.1. We only give examples for a few interesting cases. Let K be a field and
x an indeterminate. Then

• K[x]/(x2) is algebraic, but not a field.
• K[x] is an integral domain (and finitely generated), but not a field, and

not algebraic.
• The rational function field K(x) is a field, but not algebraic.
• The zero-ideal is maximal in K(x), but K[x] ∩ {0} = {0} is not maximal

in K[x]. The hypothesis that B be finitely generated in Proposition 1.2 is
violated here.

1.2.

(a) Let f and g be non-zero elements from K[[x]], and let ai and bk be the
first non-zero coefficient of f and g, respectively. Then aibk 6= 0 is the
(i+ k)-th coefficient of fg, so fg 6= 0.

(b) Define a sequence (bk)k∈N0 recursively by

b0 := a−1
0 and bk := −a−1

0

k−1∑
i=0

ak−ibi for k > 0.

Then
∑∞
i=0 bix

i is an inverse of f .
(c) Let m be the set of all formal power series with a0 = 0. Then m is a

proper ideal, and by part (b), all proper ideals are contained in m. This
implies (c).

(d) By part (a), {0} is a prime ideal. But by part (c), it is not the intersection
of maximal ideals.

227
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(e) Let f =
∑∞
i=k aix

i ∈ L \ {0}. We may assume ak 6= 0. By part (b), x−kf
is invertible in K[[x]], so f is invertible in L.

(f) Assume A := K[[x]] is finitely generated. Then so is the formal Laurent
series ring L = A[x−1]. By part (e) and by Lemma 1.1(b), it follows that
L is algebraic over K. But x ∈ L is not algebraic. So K[[x]] is not finitely
generated.

1.3. Let n ∈ Specmax(R) and consider the homomorphism

ϕ: R[x]→ R/n, f 7→ f(0) + n.

The kernel m of ϕ is a maximal ideal of R[x], and R ∩ m = n, so n ∈
Specrab(R).

1.4. We have S/(y)S ∼= K[z], so (y)S ∈ Spec(S). Assume there exists m ∈
Specmax(S[x]) with S∩m = (y)S . Then S/(y)S is isomorphic to a subalgebra
of S[x]/m. We have y ∈ m. Since R/(y)R ∼= K, S[x]/m is a K-algebra. It
is also a field, and finitely generated over K (by the residue classes of x
and z). By Lemma 1.1(b), S[x]/m is an algebraic field extension of K. But
then S/(y)S ∼= K[z] cannot be isomorphic to a subalgebra of S[x]/m. This
contradiction shows that (y)S /∈ Specrab(S).

Moreover, we have S/(z)S ∼= R, so (z)S /∈ Specmax(S). Consider the ideal
n := (xy − 1, z)S[x] ⊆ S[x]. We have S ∩ n = (z)S . Moreover, S[x]/n ∼=
R[x]/(xy − 1)R[x]

∼= R[y−1]. But R[y−1] is the ring of formal Laurent series,
which by Exercise 1.2(e) is a field. So n ∈ Specmax(S[x]), and we conclude
(z)S ∈ Specrab(S).

1.5. By hypothesis, for every P ∈ Spec(R) there is a set MP ⊆ Specmax(R)
with P =

⋂
m∈MP

m. In particular, P ⊆ m for all m ∈ MP . For an ideal
I $ R, we have⋂

m∈Specmax(R),
I⊆m

m ⊆
⋂

P∈Spec(R),
I⊆P

⋂
m∈MP

m =
⋂

P∈Spec(R),
I⊆P

P =
√
I ⊆

⋂
m∈Specmax(R),

I⊆m

m,

where the last equality follows from Theorem 1.12, and the last inclusion
follows from Lemma 1.10.
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1.6. We use Exercise 1.5. The prime ideals in Z are {0} and (p) with p a
prime number. The ideals (p) are maximal, and

{0} =
⋂

p prime number

(p).

1.7.

(a) We have

x4
1 + x4

2 + 2x2
1x

2
2 − x2

1 − x2
2 = (x2

1 + x2
2 − 1) · (x2

1 + x2
2), (14.6)

so
X =

{
(ξ1, ξ2) ∈ R2 | ξ21 + ξ22 = 1

}
∪ {(0, 0)},

shown in Figure 14.3.

&%
'$q

Figure 14.3. A real affine variety

(b) By (14.6), I is not a prime ideal, but a radical ideal.
(c) Hilbert’s Nullstellensatz does not hold. For example, the polynomial f :=

x1 · (x2
1 + x2

2 − 1) lies in I(X), but f /∈ I =
√
I.

1.8.

(a) First let a ∈
√
I : J . For every P ∈ M, there exists b ∈ J with b /∈ P .

We have ab ∈
√
I, so ab ∈ P . This implies a ∈ P .

Conversely, let a be an element of all P ∈ M. Let b ∈ J , and take
P ∈ Spec(R) with I ⊆ P . If J 6⊆ P , then a ∈ P , and otherwise b ∈ P , so
in every case ab ∈ P . It follows that
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ab ∈
⋂

P∈Spec(R),
I⊆P

P =
√
I,

where we used Corollary 1.12. Therefore a ∈
√
I : J .

(b) Let f ∈ I (X \ Y ), and let g ∈ I(Y ). Then f · g vanishes at every point
from X, so f · g ∈ I(X). It follows that f ∈ I(X) : I(Y ).
Conversely, assume f ∈ I(X) : I(Y ), and let x ∈ X \ Y . By hypothesis
we have Y = V(S) with S ⊆ K[x1, . . . , xn], so there exists g ∈ S with
g(x) 6= 0. Since g ∈ I(Y ), it follows that f · g ∈ I(X), so f(x) · g(x) = 0.
This implies f(x) = 0, so f ∈ I (X \ Y ).

1.9. The inclusion “⊇” follows as in the proof of Theorem 1.17. For the
reverse inclusion, let f ∈ IK[x1,...,xn] (VKn(I)). Let J ⊆ K[x1, . . . , xn] be the
ideal generated by I. Then

f ∈ IK[x1,...,xn] (VKn(J)) ,

so f ∈
√
J by Theorem 1.17. Therefore there exists k with

fk ∈ J ∩K[x1, . . . , xn].

Since K is a K-vector space over, there exists a K-linear projection K →
K. Applying this coefficient-wise to polynomials gives a K[x1, . . . , xn]-linear
projection

ϕ: K[x1, . . . , xn]→ K[x1, . . . , xn].

Being an element of J , fk is a K[x1, . . . , xn]-linear combination of elements
from I. Applying ϕ to this linear combination yields fk ∈ I, so f ∈

√
I.

1.10. The proof is shorter than the statement: Let a ∈ A, so a = ψ(b) with
b ∈ B′. By (4), we have ϕ(ψ(b)) ≥ b, so by (2)

ψ(ϕ(a)) = ψ (ϕ(ψ(b))) ≤ ψ(b) = a.

On the other hand, ψ(ϕ(a)) ≥ a by (3), so ψ(ϕ(a)) = a. In the same way,
ϕ(ψ(b)) = b follows for all b ∈ B.
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1.11. Let I = I(X) ⊆ K[x1, . . . , xn], so K[X] = K[x1, . . . , xn]/I. We define
maps

Φ: HomK (K[X],K)→ X, ϕ 7→ (ϕ(x1 + I), . . . , ϕ(xn + I))

and
Ψ : X → HomK (K[X],K) , P 7→ ϕ

P

with
ϕ

P
(f + I) := f(P ) for f + I ∈ K[X].

First, we show that the image of Φ does indeed lie in X, and that ϕ
P
(f + I)

is well-defined. Let ϕ ∈ HomK (K[X],K) and f ∈ I. Then

f (Φ(ϕ)) = ϕ (f(x1 + I, . . . , xn + I)) = ϕ(f + I) = ϕ(0) = 0,

so Φ(ϕ) ∈ X. Furthermore, let P ∈ X and take f, g ∈ K[x1, . . . , xn] with
f + I = g + I. Then ϕ

P
(f + I) = ϕ

P
(g + I), so ϕ

P
is well-defined.

Now take ϕ ∈ HomK (K[X],K). Then Ψ (Φ(ϕ)) = ϕ
P

with P =
(ϕ(x1 + I), . . . , ϕ(xn + I)), so

ϕ
P
(f + I) = ϕ (f(x1 + I, . . . , xn + I)) = ϕ(f + I) for f + I ∈ K[X].

This shows that Ψ ◦ Φ = id. Finally, for P ∈ X we have

Φ (Ψ(P )) = (ϕ
P
(x1 + I), . . . , ϕ

P
(xn + I)) = P,

which shows Φ ◦ Ψ = id.

2.1. Consider the set

M := {xyi | i = 0, 1, 2, . . .} ⊆ R

and the ideal I = (M)R generated by it. If R were Noetherian, a finite subset
of M would generate I, so there would exist a positive integer n such that
x, xy, . . . , xyn generate I. But xyn+1 is not an R-linear combination of these
elements. Therefore R is not Noetherian. By Corollary 2.12, R cannot be
finitely generated. This yields the second caveat, and the first one is seen by
applying Corollary 2.13 to S.
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2.2. For n ∈ N0, consider the submodule

Mn :=
(
1/pn + Z

)
Z
⊆M.

Since 1/pn = p · 1/pn+1, we have Mn ⊆ Mn+1. This inclusion is strict,
since 1/pn+1 + Z ∈ Mn would imply 1 ≡ 0 mod p. This shows that M
is not Noetherian. To show that M is Artinian, we claim that every proper
submoduleN $ M is one of theMn. (This clearly implies the Artin property.)
In fact, let N ⊆M be a (not necessarily proper) submodule. Then 1/p0+Z =
0M ∈ N , so

d := sup
{
n ∈ N0

∣∣∣1/pn + Z ∈ N
}
∈ N0 ∪ {∞}.

The first case is d <∞. We claim that N = Md in that case. ClearlyMd ⊆ N .
Conversely, let a/pn + Z ∈ N . We may assume that a is not divisible by p,
so there exist x, y ∈ Z with xa+ ypn = 1. It follows that

1
pn

+ Z =
xa

pn
+ Z = x ·

(
a

pn
+ Z

)
∈ N,

so n ≤ d. Therefore a/pn + Z = apd−n ·
(
1/pd + Z

)
∈Md.

The second case is d = ∞. We need to show N = M . So let a/pn +
Z ∈ M . There exists m ≥ n such that 1/pm + Z ∈ N , so a/pn + Z =
apm−n (1/pm + Z) ∈ N . This completes the proof.

2.3. A proof is given by replacing every occurrence of the word “Noetherian”
by “Artinian” in the proof of Theorem 2.10.

2.4. The proof is similar to that of Theorem 2.11. Let I ⊆ R[[x]] be an ideal.
For a non-zero integer i, set

Ji :=
{
ai ∈ R

∣∣∣there exist ai+1, ai+2, ai+3, . . . ∈ R such that
∞∑
j=i

ajx
j ∈ I

}
.

As in the proof of Theorem 2.11, the Ji form an ascending chain of ideals
of R, and by the Noether property of R we obtain non-negative integers n
and mi and ring elements ai,j ∈ R (i = 0, . . . , n, j = 1, . . . ,mi) such that
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Ji =

{
(ai,1, . . . , ai,mi

)R for i ≤ n,
(an,1, . . . , an,mn

)R for i > n
. (14.7)

By the definition of the Ji, there exist power series fi,j ∈ I of the form

fi,j = ai,jx
i + higher terms.

Set
I ′ :=

(
fi,j

∣∣∣i = 0, . . . , n, j = 1, . . . ,mi

)
R[[x]]

⊆ I.

We claim that I = I ′. To prove the claim, consider a power series f =∑∞
i=0 bix

i ∈ I. It is convenient to write

subdeg(f) := min {i ≥ 0 | bi 6= 0} if f 6= 0, and subdeg(0) :=∞.

First assume that d := subdeg(f) ≤ n. Since bd ∈ Jd, we can use (14.7) and
write bd =

∑m
j=1 rjad,j with rj ∈ R. Setting

f̃ := f −
m∑
j=1

rjfd,j ,

we obtain subdeg(f̃) > d, and f − f̃ ∈ I ′. Replacing f by f̃ and continuing
that way, we may therefore assume that subdeg(f) > n.

Write m := mn. We make a recursive definition of a sequence of m-tuples
(rk,1, . . . , rk,m) ∈ Rm (k = 0, 1, 2, . . .), which have the property

subdeg(f̃k) > n+ k, where f̃k := f −
m∑
j=1

(
k∑
i=0

ri,jx
i

)
fn,j . (14.8)

We may start by setting r0,j := 0 for all j. So let k be a positive integer and
assume that (ri,1, . . . , ri,m) have been defined for 0 ≤ i < k. Then f̃k−1 =
cn+kx

n+k + (higher terms). Since cn+k ∈ Jn+k, we can use (14.7) and write
cn+k =

∑m
j=1 rk,jan,j . This defines (rk,1, . . . , rk,m). We have

m∑
j=1

rk,jx
kfn,j =

m∑
j=1

rk,jan,jx
n+k+ higher terms = cn+kx

n+k+ higher terms,

so (14.8) is satisfied. To finish the proof, set

gj :=
∞∑
i=0

ri,jx
i ∈ R[[x]] (j = 1, . . . ,m).

By (14.8), all coefficients of f −
∑m
j=1 gjfn,j are zero, so f ∈ I ′ as claimed.
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2.5.

(a) That S generates A means that for every element f ∈ A there exist
finitely many elements f1, . . . , fm ∈ S and a polynomial F ∈
K[T1, . . . , Tm] in m indeterminates such that f = F (f1, . . . , fm). Let
P1, P2 ∈ Kn be points with f(P1) 6= f(P2). Then

F (f1(P1), . . . , fm(P1)) 6= F (f1(P2), . . . , fn(P2)) ,

so fi(P1) 6= fi(P2) for at least one i. This yields part (a).
(b) Consider the polynomial ring B := K[x1, . . . , xn, y1, . . . , yn] in 2n inde-

terminates. Polynomials from B define functions Kn × Kn → K. For
f ∈ K[x1, . . . , xn], define

∆f := f(x1, . . . , xn)− f(y1, . . . , yn) ∈ B.

So for P1, P2 ∈ Kn we have ∆f(P1, P2) = f(P1) − f(P2). Consider the
ideal

I := (∆f | f ∈ A)B ⊆ B.

By Hilbert’s Basis Theorem 2.13, B is Noetherian, so by Theorem 2.9
there exist f1, . . . , fm ∈ A such that

I = (∆f1, . . . ,∆fm)B .

We claim that S := {f1, . . . , fm} is A-separating. For showing this, take
two points P1 and P2 in Kn and assume that there exists f ∈ A with
f(P1) 6= f(P2). Since ∆f ∈ I, there exist g1, . . . , gm ∈ B with

∆f =
m∑
i=1

gi∆fi,

so
m∑
i=1

gi(P1, P2)∆fi(P1, P2) = ∆f(P1, P2) 6= 0.

Therefore we must have ∆fi(P1, P2) 6= 0 for some i, so fi(P1) 6= fi(P2).
(c) S = {x, xy} is R-separating.

2.6. The solution of this exercise is due to Gale [18]. The answer is yes:
Every subalgebra A ⊆ K[x] is finitely generated (and therefore Noetherian
by Corollary 2.12). Here is a proof. We may assume that A contains a non-
constant polynomial f ∈ A. Set n := deg(f). We claim that K[x] is generated
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as a module over the subalgebra K[f ] ⊆ A by 1, x, . . . , xn−1:

K[x] =
(
1, x, . . . , xn−1

)
K[f ]

=: M.

To prove this, let g ∈ K[x] be a polynomial of degree d, and use induction
on d. Division with remainder yields

g = q · f + r

with q, r ∈ K[x] and deg(r) < n. So r ∈ M and deg(q) < d, so q ∈ M by
induction. This shows that g ∈ M , and the claim is proved. A is a K[f ]-
submodule of K[x], so Corollary 2.12 and Theorem 2.10 yields that A is
finitely generated as a K[f ]-module, too. But if A = (h1, . . . , hk)K[f ], then
also A = K[f, h1, . . . , hk]. This completes the proof.

2.7. Assume (a). Then I is finitely generated by Theorem 2.9, and R/I is
Noetherian by Proposition 2.4. The projection R→ R0 to the first component
is a ring-homomorphism with kernel I, so R0

∼= R/I. This shows (b).
We proceed by assuming (b), so I = (a1, . . . , an)R. By substituting every

ai by all of its non-zero homogeneous components, we may assume that the
ai are homogeneous. We claim that

R = R0[a1, . . . , an] =: S.

To prove the claim, it suffices to show that all homogeneous a ∈ R lie in S.
So take a ∈ Rd and use induction on d. There is nothing to show for d = 0.
If d > 0, then a ∈ I, so

a =
n∑
i=1

biai

with bi ∈ R. By considering the degree-d component of this equation, we see
that it still holds if we substitute every bi by its homogeneous component of
degree d−deg(ai), so we may assume that bi is homogeneous with deg(bi) =
d − deg(ai) < d. By induction, bi ∈ S, so also a ∈ S. This proves the claim,
so (c) holds.

Finally, (c) implies (a) by Corollary 2.12.

2.8.
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(a) Let I ⊆ R be an ideal and J := R ∩ (I)S . Clearly I ⊆ J . We claim
equality. Indeed, let a ∈ J . Then a =

∑r
i=1 siai with si ∈ S and ai ∈ I.

Applying ϕ yields

a = ϕ(a) =
r∑
i=1

ϕ(si)ai ∈ I.

Now take an ascending chain I1 ⊆ I2 ⊆ · · · ⊆ R of ideals in R. By
hypothesis there exists n such that (Ii)S = (In)S for i ≥ n, so by the
above also Ii = In. This shows that R is Noetherian.

(b) If R is Noetherian, then so are R[x] and R[[x]] by Theorem 2.11 and
Exercise 2.4. To get the converses, consider the map

ϕ: R[[x]]→ R,

∞∑
i=0

aix
i 7→ a0.

This is clearly a homomorphism of R-modules that restricts to the iden-
tity on R, and its restriction to R[x] has the same properties. So both
converses follow from part (a).

2.9. Statement (a) is true, since the proof of the implication “(b) ⇒ (a)” in
Theorem 2.10 carries over word by word to the Artinian case.

Statement (b) is false. The module from Exercise 2.2 cannot be finitely
generated, since otherwise it would be Noetherian by Theorem 2.10.

Statement (c) is true, since the zero module {0} is Noetherian and Ar-
tinian.

Statement (d) is true. We already know that the associative and commu-
tative laws hold for the ideal sum and the ideal product. Neutral elements
are the zero-ideal {0} and the one-ideal (1)R. To prove the distributive law,
let I, J1 and J2 be ideals. For a ∈ I and bi ∈ Ji we have

a(b1 + b2) = ab1 + ab2 ∈ IJ1 + IJ2 and abi ∈ I(J1 + J2),

so I(J1+J2) ⊆ IJ1+IJ2 and IJi ⊆ I(J1+J2). The distributive law follows.

2.10. If an analytic function f has a zero at x = 0, then it is divisible by x
(as an element of R). More generally, by considering the expansion about
an arbitrary point a ∈ R, we see that if f has a zero at a, it is divisible by
x− a. Dividing the sinus function by x, x− π, x− 2π and so on, we obtain
a sequence of analytic functions fi such that fi+1 divides fi for each i, and
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the set of zeros of fi is precisely

Z · π \ {0, π, . . . , (i− 1)π}

The principal ideals Ii := (fi) form a strictly ascending chain, since no fi+1

can be written as a multiple of fi. In fact, multiplying fi by any function
R→ R yields a function which has all the zeros of fi (possibly more), so the
product cannot be fi+1. This shows that R is not Noetherian, and neither is
any ring of functions that contains the analytic functions.

3.1. The map ϕ1 is an isomorphism, ϕ2 is a morphism but not an isomor-
phism, and ϕ3 is continuous but no morphism.

3.2. First assume that (a) holds. Then X ⊆ V(f) and Y ⊆ V(f − 1), so

X ∩ Y ⊆ V(f) ∩ V(f − 1) = ∅.

Conversely, assume that (b) holds. We write I := I(X) and J := I(Y ), and
conclude

V(I + J) = V(I ∪ J) = V(I) ∩ V(J) = X ∩ Y = ∅,

where Proposition 3.1(b) was used for the second equality. By Hilbert’s Null-
stellensatz 1.8, this implies I + J = K[x1, . . . , xn], so there exist f ∈ I and
g ∈ J with 1 = f + g. So for x ∈ X we have f(x) = 0, and for y ∈ Y we
obtain g(y) = 0, so f(y) = f(y) + g(y) = 1.

3.3. We first show that Φ is continuous. Let J ⊆ K[X] be an ideal defining a
closed subset Z = Specmax (K[X])∩VSpec(K[X])(J) of Specmax (K[X]). Then
it is elementary to see that

Φ−1(Z) = VX(J).

So Φ is continuous. It remains to show that Φ is a closed map. So let Y ⊆ X
be a closed subset. We have Y = VX(J ′) with J ′ ⊆ K[X] an ideal. Again, it
is elementary to show that
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Φ(Y ) = Specmax (K[X]) ∩ VSpec(K[X])(J ′),

so Φ(Y ) is closed. This completes the proof.

3.4. We need to show that the restrictions of the maps Φ and Ψ from
Lemma 1.22 to prime ideals are continuous. First, let Y ⊆ Spec(R/I) be
closed, so Y = VSpec(R/I)(J ) with J ⊆ R/I an ideal. For P ∈ VSpec(R)(I) we
have

Φ(P ) ∈ Y ⇔ J ⊆ Φ(P ) ⇔ Ψ(J ) ⊆ P,

so Φ−1(Y ) = VSpec(R) (Ψ(J )) is closed. Now let Z ⊆ VSpec(R)(I) be closed,
so Z = VSpec(R)(I) ∩ VSpec(R)(J) = VSpec(R)(I + J) with J ⊆ R an ideal. For
P ∈ Spec(R/I) we have

Ψ(P) ∈ Z ⇔ I + J ⊆ Ψ(P) ⇔ Φ(I + J) ⊆ P,

so Ψ−1(Z) = VSpec(R/I) (Φ(I + J)) is closed, too. This completes the proof.

3.5. The converse of Theorem 3.9 does not hold in general. The following is
a counter example, which is related to Example 2.3. Let S := K[x, y] be the
polynomial ring in two indeterminates over a field K, and consider the ring

R := (K + Sx)/Sx2.

The ideal I := Sx/Sx2 has infinite K-dimension. Since multiplication of
elements from I by elements from R is the same as multiplication by elements
from K, it follows that I is not finitely generated as an ideal, so R is not
Noetherian. Let P ∈ Spec(R) be a prime ideal. For a ∈ I we have a2 = 0, so
a2 ∈ P , and a ∈ P follows. Therefore I ⊆ P . On the other hand R/I ∼= K, so
I is maximal. It follows that P = I, so Spec(R) = {I}. In particular, Spec(R)
is Noetherian.

3.6. Define a partial ordering “≤” on set M := {P ∈ Spec(R) | P ⊆ Q} by

P ≤ P ′ ⇐⇒ P ′ ⊆ P

for P, P ′ ∈ M. Let C ⊆ M be a chain (= totally ordered subset) in M. Set
C′ := C ∪ {Q} and P :=

⋂
P ′∈C′ P

′. Clearly P is an ideal of R, and P ⊆ Q.



14 Solutions 239

For showing that P is a prime ideal, take a, b ∈ R with ab ∈ P but b /∈ P .
There exists P0 ∈ C′ with b /∈ P0. Let P ′ ∈ C′. Since C′ is a chain, we have
P ′ ⊆ P0 or P0 ⊆ P ′. In the first case, b /∈ P ′ but ab ∈ P ′, so a ∈ P ′. In
particular, a ∈ P0. From this, a ∈ P ′ follows in the case that P0 ⊆ P ′. We
have shown that a ∈ P , so P ∈ M. By the definition of the ordering, P is
an upper bound for C. Now Zorn’s lemma yields a maximal element of M,
which is a minimal prime ideal contained in Q.

If R 6= {0}, there exists a maximal ideal m of R (by Zorn’s lemma applied
to {I $ R | I ideal} with the usual ordering), and by the above, m contains
a minimal prime ideal.

3.7. Let Z1, . . . , Zn be the irreducible components of X. Assume that X is
Hausdorff. Then every Zi has to be a singleton, since two non-empty, open
subsets of an irreducible space always intersect. Therefore X is finite. Since
all Hausdorff spaces are T1, the topology on X must be discrete. Conversely,
any space with the discrete topology is Hausdorff.

3.8.

(a) If X is Noetherian, then so is every subset of X. Therefore it suffices to
show that X is quasi-compact. Since the open subsets of X satisfy the as-
cending chain condition, every non-empty set of open subsets has a max-
imal element. Given a set M as in the definition of quasi-compactness,
consider the set N of all finite unions of sets from M. Then ∅ ∈ N , so
N contains a maximal element Y . If Y 6= X, there exists U ∈ M with
U 6⊆ Y , so Y $ Y ∪ U ∈ N , a contradiction. So Y = X.
Conversely, assume that all subsets of X are quasi-compact, and let
U1, U2, U3, . . . ⊆ X be an ascending chain of open subsets. By the quasi-
compactness of U :=

⋃∞
i=1 Ui, there exists a positive integer n with

U =
⋃n
i=1 Ui = Un. Then Ui = Un for i > n. Therefore X is Noetherian.

(b) We need to show the following: If M is a set of closed subsets of X
with

⋂
Y ∈M Y = ∅, then a finite sub-intersection is empty. By Proposi-

tion 3.6(e), we have a set I of ideals of R corresponding to M, and by
Proposition 3.6(b), the intersection condition is equivalent to

R =
∑
I∈I

I.



240 14 Solutions

So 1 ∈ R is an R-linear combination of elements of ideals from I. But
only a finite subset of I is needed for this. This corresponds to a finite
subset ofM whose intersection is empty.

3.9. All that we will use is that for x0 ∈ X and y0 ∈ Y , the maps fx0 : Y →
X × Y, y 7→ (x0, y) and gy0 : X → X × Y, x 7→ (x, y0) are continuous. Let
X × Y = Z1 ∪ Z2 with Zi closed. Set

Xi := {x0 ∈ X | f−1
x0

(Zi) = Y } (i = 1, 2).

For every x0 ∈ X we have

f−1
x0

(Z1) ∪ f−1
x0

(Z2) = Y,

so x0 ∈ X1 or x0 ∈ X2 by the irreducibility of Y . So X = X1 ∪X2. But

Xi =
⋂
y0∈Y

g−1
y0 (Zi),

so the Xi are closed. It follows that X = X1 or X = X2, so X × Y = Z1 or
X × Y = Z2.

3.10. Let C ⊆ Kn×n be the set of all n × n matrices whose characteristic
polynomial has discriminant 0. C is a closed subset, and it is proper since a
diagonal matrix with n distinct entries in the diagonal does not lie in C. We
have

Kn×n = C ∪Kn×n \ C,

so Kn×n \ C = Kn×n since Kn×n is irreducible by Theorem 3.10 (a). From
linear algebra we know that a matrix with n distinct eigenvalues is diagonal-
izable, so Kn×n \ C ⊆ D. It follows that D = Kn×n.

For n ≥ 2, D is not open. To see this, let Aξ ∈ Kn×n be the matrix whose
entry in the first row and second column is ξ ∈ K, and all other entries are 0.
For ξ 6= 0, Aξ is not diagonalizable, so f(Aξ) = 0 for all f ∈ I (Kn×n \D).
But then also f(A0) = 0. This means that

A0 ∈ V
(
I
(
Kn×n \D

))
= Kn×n \D.

But A0 is the zero-matrix, so A0 ∈ D. Therefore Kn×n \D is not closed, and
so D is not open.
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4.1.

(a) Assume that f is dominant, and let ϕ(g) = 0 with g ∈ K[Y ]. Viewing g
as a regular function Y → K, we have g ◦ f = 0, so the restriction of g to
f(X) is zero. Since g is continuous and f(X) is dense, this implies g = 0.
Conversely, assume that ϕ is injective. Write K[X] = K[x1, . . . , xm]/I,
K[Y ] = K[y1, . . . , yn]/J , and let f be given by f1, . . . , fn ∈ K[x1, . . . , xm].
Take g ∈ IK[y1,...,yn] (f(X)). Then the polynomial g(f1, . . . , fn) ∈
K[x1, . . . , xm] vanishes on X, so ϕ(g + J) = 0. This implies g ∈ J .
We have shown that IK[y1,...,yn] (f(X)) ⊆ J , so

Y ⊆ VKn(J) ⊆ VKn

(
IK[y1,...,yn] (f(X))

)
= f(X) ⊆ Y.

The dominance of f follows.
(b) By hypothesis, there exist g1, . . . , gm ∈ K[y1, . . . , yn] with ϕ(gi + J) =

xi + I. For P = (ξ1, . . . , ξm) ∈ X we have

ξi = (xi + I)(P ) = ϕ(gi + J)(P ) = gi(f1, . . . , fn)(P ) = gi (f(P )) .

This implies the injectiveness of f .
(c) Let X = {(ξ1, ξ2) ∈ K2 | ξ1ξ2 = 1}, Y = K1, and consider

f : X → Y, (ξ1, ξ2) 7→ ξ1.

Then f is dominant but not surjective. Moreover, f is injective, but the
induced homomorphism

ϕ: K[x]→ K[x1, x2]/(x1x2 − 1) ∼= K[x1, x
−1
1 ], x 7→ x1

is not surjective.

4.2. We have

IR (ϕ∗ (Spec(S))) =
⋂

P∈Spec(S)

ϕ−1(P ) = ϕ−1
( ⋂
P∈Spec(S)

P
)

= ϕ−1 (nil(S)) ,

since the nilradical nil(S) equals the intersection of all prime ideals by
Corollary 1.12. The map ϕ∗ is dominant if and only if IR (ϕ∗ (Spec(S))) =
IR (Spec(R)) = nil(R), which by the above is equivalent to

ϕ−1 (nil(S)) = nil(R). (14.9)
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This condition implies ker(ϕ) ⊆ nil(R). For showing the converse, assume
ker(ϕ) ⊆ nil(R) and take a ∈ ϕ−1 (nil(S)). Then ϕ(a)k = 0 for some k, so
ak ∈ ker(ϕ) ⊆ nil(R), and it follows that a ∈ nil(R). Since the inclusion
nil(R) ⊆ ϕ−1 (nil(S)) always holds, (14.9) is satisfied.

4.3.

(a) The gi are induced by homomorphisms ϕi: S → Ri. The homomorphism
ϕ: S → R, s 7→ (ϕ1(s), . . . , ϕn(s)) is unique such that πi ◦ ϕ = ϕi for
all i. Therefore g := ϕ∗: Spec(R) → Spec(S) is unique with g ◦ fi = gi
for all i.

(b) For every i, πi is surjective and has kernel

ker(πi) = {(ai, . . . , an) ∈ R | ai = 0} =: Ii.

We claim that this implies im(fi) = VSpec(R)(Ii). Clearly every element
in the image of fi contains Ii. Conversely, if P ∈ VSpec(R)(Ii), it is easy
to check that πi(P ) ∈ Spec(Ri) and P = π−1

i (πi(P )), so P ∈ im(fi).
In particular, im(fi) is closed. Now let P ∈ Spec(R). Then P ⊇ {0} =
I1 ∩ · · · ∩ In, so there exists i with Ii ⊆ P , so P ∈ im(fi). Therefore
Spec(R) = im(f1) ∪ · · · ∪ (fn), and the disjointness follows from

im(fi) ∩ im(fj) = VSpec(R)(Ii + Ij) = VSpec(R)(R) = ∅

for all i 6= j.
(c) The direct sum A := K[X1] ⊕ · · · ⊕ K[Xn] of the coordinate rings is

a reduced, affine algebra, so by Theorem 1.25(b) there exists an affine
variety X with A ∼= K[X]. The coproduct property of X follows as in
part (a) since all homomorphisms involved are homomorphisms of K-
algebras. As in part (b), we get that the π−1

i (Q) with Q ∈ Spec(K[Xi])
are precisely the prime ideals containing Ii. Restricting this to maximal
ideals yields im(fi) = V(Ii). The disjoint union property follows from this
and (b). Finally, the coordinate ring of im(fi) is K[X]/Ii ∼= K[Xi], so
im(fi) ∼= Xi.

5.1.

(a) Assume that Y is irreducible and let Y = Z1 ∪ Z2 with Zi closed in Y
and therefore in X. Then Y = (Y ∩Z1)∪ (Y ∩Z2), so there exists i with
Y ⊆ Zi. This implies Y = Zi. Therefore Y is irreducible.
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Conversely, if Y is irreducible and Y = Y1 ∪ Y2 with Yi closed in Y , then
there exist closed sets Zi ⊆ X with Yi = Y ∩Zi. Therefore Y ⊆ Z1 ∪Z2,
so there exists i with Y ⊆ Zi. This implies Y = Yi, so Y is irreducible.

(b) Let
Y0 $ Y1 $ · · · $ Yn

be a chain of closed, irreducible subsets of Y . The closedness of Yi implies
Yi = Y ∩ Yi, and by part (a) all Yi are irreducible. So we get a chain of
length n of closed, irreducible subsets Yi of X. Part (b) follows.

5.2. We claim that {0} and (x) are the only prime ideals in R. First observe
that {0} is prime by Exercise 1.2(a), and (x) is maximal since R/(x) ∼= K.
For the converse, let I ⊂ R be a non-zero ideal. It follows from Exercise 1.2(b)
that xk ∈ I for some non-negative integer k. If I is a prime ideal, then k > 0
and x ∈ I, so I = (x).

5.3. As in the proof of Theorem 5.9 and Proposition 5.10, we only have
to show that trdeg(A) ≤ dim(A). By hypothesis, A ⊆ B with B an affine
K-algebra. By induction on n, we will show the following, stronger claim:
Claim. If trdeg(A) ≥ n, then there exists a chain

Q0 ⊆ Q1 ⊆ · · · ⊆ Qn

in Spec(B) such that with Pi := A∩Qi ∈ Spec(A) there are strict inclusions
Pi−1 $ Pi for i = 1, . . . , n.

The claim is correct for n = 0. To prove it for n > 0, let a1, . . . , an ∈ A
be algebraically independent. As in the proof of Theorem 5.9, we see that
there exists a minimal prime ideal Mi of B (not A!) such that the ai are
algebraically independent modulo Mi. Replacing B by B/Mi and A by A/A∩
Mi, we may assume that B is an affine domain. Set L := Quot(K[a1]),
A′ := L · A and B′ := L · B, which are all contained in Quot(B). A′ has
transcendence degree at least n− 1 over L. By induction, there is a chain

Q′0 ⊆ Q′1 ⊆ · · · ⊆ Q′n−1

in Spec(B′) such that with P ′i := A′∩Q′i ∈ Spec(A′) there are strict inclusions
P ′i−1 $ P ′i for i = 1, . . . , n−1. Set Qi := B∩Q′i ∈ Spec(B) and Pi := A∩Qi =
A ∩ P ′i ∈ Spec(A). For i = 1, . . . , n − 1, we have Pi−1 $ Pi, since Pi−1 = Pi
would imply
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P ′i ⊆ (L ·A) ∩ P ′i ⊆ L · Pi = L · Pi−1 ⊆ L · P ′i−1 = P ′i−1 ⊆ P ′i .

As in the proof of Theorem 5.9, we see that A/Pn−1 is not algebraic over
K. Since A/Pn−1 is contained in B/Qn−1, it follows from Lemma 1.1(b)
that A/Pn−1 is not a field. Choose a maximal ideal Qn ⊂ B which contains
Qn−1. By Proposition 1.2, Pn := A ∩ Qn is a maximal ideal of A. Clearly
Pn−1 ⊆ Pn. Since A/Pn−1 is not a field, the inclusion is strict. So we have
shown the claim, and the result follows.

5.4. Let X = {P1, . . . , Pn}. The map

ϕ: K[X]→ Kn, f 7→ (f(P1), . . . , f(Pn))

is well-defined (this follows from the definition of the coordinate ring) and
K-linear. It also follows from the definition of the coordinate ring that ϕ is
injective. Moreover, since Pi does not lie in the Zariski-closure of X \ {Pi},
there exists f ∈ K[X] with f(Pj) = 0 for j 6= i but f(Pi) 6= 0. It follows
that ϕ is surjective. This completes the proof.

5.5. We claim dim(R) = 1. An easy way to see this is to observe that R ∼=
K[x, y]/(xy − 1) with y a further indeterminate. Theorem 5.13 yields the
result.

5.6.

(a) Counter example: Z ⊆ Q.
(b) This is true by Exercise 5.3, since trdeg(B) ≤ trdeg(A).
(c) This is true by Lemma 1.22.
(d) Counter example: A = K[x1, x2, x3]/(x1x2, x1x3). In A, the residue class

of x1 forms a maximal algebraically independent subset, but trdeg(A) = 2
since the residue classes of x2 and x3 are algebraically independent.

(d) This is true: Let T ⊆ A be a maximal algebraically independent subset.
Then T is a maximal algebraically independent subset of Quot(A), so it
is a transcendence basis. Therefore trdeg (Quot(A)) = |T | (see Lang [33,
Chapter X, Theorem 1.1]), and trdeg(A) = |T | follows.

(f) Counter example: A = K(x), the rational function field over K.
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5.7.

(a) A matrix A ∈ Kn×m lies in Xk if and only if all (k+ 1)× (k+ 1) minors
of A vanish. This shows that Xk is closed in Kn×m.
By standard results from linear algebra, the image of the morphism f is
precisely Xk. Let Xk = Y1 ∪ Y2 with Yi ⊆ Kn×m closed. Then

Z := Kn×n ×Km×m = f−1(Y1) ∪ f−1(Y2).

Since f is continuous and Z ∼= Kn2+m2
is irreducible, there exists i with

Z = f−1(Yi), so Xk = Yi. Therefore Xk is irreducible.
(b) The coordinate ringK[Xk] is generated by the maps fi,j which map a ma-

trixA = (aν,µ) to its entry ai,j . By (a), Exercise 5.6(e) and Remark 5.4(a),
dim(Xk) is the size of a subset S ⊆ {fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} that
is maximal with the property that the maps from S define a dominant
morphism Xk → K |S|. Write a matrix M ∈ Kn×m as M = (A B

C D ) with
A ∈ Kk×k and B, C and D matrices of the appropriate formats. If A is
regular, it can be seen by using the surjection f that M lies in Xk if and
only if D = CA−1B. From this it follows that the set

S := {fi,j | i ≤ k or j ≤ k}

qualifies. Since |S| = k · (n+m− k), the result follows.

5.8. Writing K[X] = K[x1, . . . , xm]/I and K[Y ] = K[y1, . . . , yn]/J , let f be
given by polynomials f1, . . . , fn ∈ K[x1, . . . , xm]. Then

IK[y1,...,yn] (im(f)) = {g ∈ K[y1, . . . , yn] | g(f1, . . . , fn) ∈ I} ,

so the ideal in K[Y ] corresponding to im(f) is the kernel of the homomor-
phism ϕ: K[Y ] → K[X] induced by f . So the coordinate ring of im(f)
is isomorphic to K[Y ]/ ker(ϕ), and we need to show dim (K[Y ]/ ker(ϕ)) ≤
dim (K[X]). But this follows from Theorem 5.9, since trdeg (K[Y ]/ ker(ϕ)) ≤
trdeg (K[X]).

The inequality (5.4) does not extend to the case of morphisms of spectra.
For example, the morphism f : Spec(Q) → Spec(Z) induced by the embed-
ding Z ↪→ Q has only the zero ideal in its image, so im(f) = Spec(Z),
violating (5.4).
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5.9. R has at least one prime element p ∈ R, giving rise to a chain

{0} $ (x)R[x] $ (x, p)R[x]

of prime ideals. So dim(R[x]) ≥ 2. To show the reverse inequality, consider a
chain

P0 $ P1 $ · · · $ Pm

of prime ideals in R[x] with m ≥ 2. With K := Quot(R), set Qi := (Pi)K[x].
If R ∩ Pi = {0}, then R ∩ Qi = Pi and Qi is a prime ideal. Assume that
R ∩ P2 = {0}. Then we get a chain Q0 $ Q1 $ Q2 of prime ideals in
K[x], contradicting Corollary 5.7. It follows that R ∩ P2 = (p)R with p a
prime element. We claim that P2 also contains a polynomial f which is not
divisible by p. This is true if p ∈ P1 since P2 % P1. On the other hand, P1

contains a non-zero polynomial, and also an irreducible factor f of it lies in
P1. (Observe that R[x] is a unique factorization domain.) If p /∈ P1, then f
is not divisible by p. This proves the claim. Now it follows that R[x]/P2,
viewed as an algebra over the field R/(p)R, is an algebraic affine domain,
so by Lemma 1.1(a) it is a field. This shows that P2 is a maximal ideal, so
m ≤ 2.

6.1.

Definition 6.1: It is clear that the relation ∼ is reflexive and symmetric. To
show transitivity, let (u1,m2) ∼ (u2,m2) and (u2,m2) ∼ (u3,m3) with
ui ∈ U and mi ∈ M , so uu2m1 = uu1m2 and u′u3m2 = u′u2m3 with
u, u′ ∈ U . Therefore

uu′u2u3m1 = u′u3uu1m2 = uu′u2u1m3.

Since uu′u2 ∈ U , this implies (u1,m2) ∼ (u3,m3).
To show that the addition on U−1M is well-defined, let mi

ui
= m′

i

u′i
with

ui, u
′
i ∈ U , mi,m

′
i ∈ M (i = 1, 2), so there exist vi ∈ U with viu

′
imi =

viuim
′
i. Therefore

v1v2u
′
1u
′
2 (u2m1 + u1m2) = v1v2u1u2 (u′2m

′
1 + u′1m

′
2) ,

so u2m1+u1m2
u1u2

= u′2m
′
1+u

′
1m

′
2

u′1u
′
2

. To show that multiplication with elements

from R is well-defined, let m
u = m′

u′ with u, u′ ∈ U and m,m′ ∈ M . So
vu′m = vum′ with v ∈M , and for a ∈ R we obtain
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vu′am = vuam′,

which means am
u = am′

u′ . Now one checks by straightforward computation
that the addition on U−1M satisfies the associative law and commutative
law and has a neutral element ( 0

1 ) and inverse elements (−mu = −m
u ). In the

same manner, one checks the two distributive laws and the associative law
for multiplication with elements from R, and that 1 ∈ R acts as identity.

Proposition 6.3(a): To show that the multiplication on U−1R is well-
defined, let ai

ui
= a′i

u′i
with ui, u

′
i ∈ U and ai, a

′
i ∈ R (i = 1, 2), so

viu
′
iai = viuia

′
i with vi ∈ U . Then

v1v2u
′
1u
′
2a1a2 = v1v2u1u2a

′
1a
′
2,

so a1a2
u1u2

= a′1a
′
2

u′1u
′
2
. The associative law and commutative law of multipli-

cation are clear, and the distributive law is checked by straightforward
computation. The unit element of U−1R is 1

1 .
Proposition 6.3(b): It is checked by straightforward computation that ε is

additive, multiplicative, and sends 1 to 1
1 .

Proposition 6.3(c): Substituting a2 and a′2 by m,m′ ∈ M in the above
computation for Proposition 6.3(a) shows that the multiplication of an
element of U−1R with an element of U−1M is well-defined. By straight-
forward computation, one checks the distributive laws and the associative
law, and that 1

1 ∈ U
−1R acts as identity.

Proposition 6.3(d): For u ∈ U , we have 1
u · ε(u) = 1

1 , so ε(u) is invertible in
U−1R.

Proposition 6.3(e): We first prove uniqueness. So let ψ: U−1R → S be a
homomorphism of R-algebras, i.e., a ring-homomorphism with ψ ◦ ε = ϕ.
The for a ∈ R and u ∈ U we must have

ψ
(a
u

)
= ϕ(u)−1ϕ(u)ψ

(a
u

)
= ϕ(u)−1ψ

(
ε(u)

a

u

)
=

ϕ(u)−1ψ (ε(a)) = ϕ(u)−1ϕ(a).

This shows the uniqueness of ψ. To prove the existence, define ψ by
ψ
(
a
u

)
:= ϕ(u)−1ϕ(a). We need to show that this is well-defined, so let

a
u = a′

u′ with a, a′ ∈ R, u, u′ ∈ U . Then vu′a = vua′ with v ∈ U , so
ϕ(v)ϕ(u′)ϕ(a) = ϕ(v)ϕ(u)ϕ(a′). Multiplying this by ϕ(v)−1ϕ(u)−1ϕ(u′)−1

yields ϕ(u)−1ϕ(a) = ϕ(u′)−1ϕ(a′), so ψ is well-defined. Now one checks
by straightforward computation that ψ is a ring-homomorphism with
ψ ◦ ε = ϕ.

Proposition 6.3(f): To get a notational distinction, we will write elements
of Quot(R) as a/b in this part of the proof. The map ϕ: U−1R →
Quot(R), a

u 7→ a/u is clearly well-defined. It is also clear that ϕ is a ho-
momorphism of R-algebras. If a

u ∈ ker(ϕ), then v · a = 0 with v ∈ R \ {0},
so a = 0. It follows that ϕ is injective.
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Proposition 6.3(g): First notice that ε(V ) ⊆ R is a multiplicative subset
by Proposition 6.3(b). To distinguish elements of different localizations
notationally, we write elements of U−1M as

(
m
u

)
U

with u ∈ U and m ∈M ,
etc. We define a map

ϕ: V −1
(
U−1M

)
→ ε(V )−1

(
U−1M

)
,
(m
v

)
V
7→
(
m

ε(v)

)
ε(V )

(for m ∈ U−1M). To show that ϕ is well defined and injective, let m,m′ ∈
U−1M and v, v′ ∈ V . Then

(m
v

)
V

=
(
m′

v′

)
V

⇔ ∃v̂ ∈ V : v̂v′m = v̂vm′ ⇔

∃v̂ ∈ V : ε(v̂)ε(v′)m = ε(v̂)ε(v)m′ ⇔
(
m

ε(v)

)
ε(V )

=
(
m′

ε(v′)

)
ε(V )

.

It is clear that ϕ is surjective. It is also clear that it is R-linear. Now we
define

ψ: ε(V )−1
(
U−1M

)
→ V −1M,

((
m
u

)
U

ε(v)

)
ε(V )

7→
(m
uv

)
V
.

To show that ψ is well defined and injective, let m,m′ ∈ M , u, u′ ∈ U ,
and v, v′ ∈ V . Using the above equivalence, we get

((
m
u

)
U

ε(v)

)
ε(V )

=


(
m′

u′

)
U

ε(v′)


ε(V )

⇔

∃v̂ ∈ V, û ∈ U : ûu′v̂v′m = ûuv̂vm′ ⇔ ∃ṽ ∈ V : ṽu′v′m = ṽuvm′

⇔
(m
uv

)
V

=
(
m′

u′v′

)
V

.

It is clear that ψ is surjective. One checks by straightforward compu-
tation that ψ is R-linear. In the same manner one checks that ϕ is a
ring-homomorphism if M = R.

Proposition 6.3(h): Since two element from U−1N are equal if and only if
they are equal as element from U−1M , the map ϕ: U−1N → (εM (N))U−1R

given in the proposition is well-defined and injective. It is also clearly
U−1R-linear. To show surjectivity, let a1

u1
· εM (n1) + · · · + ak

uk
· εM (nk)

with ai ∈ R, ui ∈ U , and ni ∈ N be an element of (εM (N))U−1R. With
u :=

∏k
i=1 ui, this element can be written as

a′1
u
· εM (n1) + · · ·+ a′k

u
· εM (nk) = ϕ

(
a′1n1 + · · · a′knk

u

)
,
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where a′i ∈ R. This shows surjectivity. The equality (εM (N))U−1R =
U−1R · εM (N) follows from this.

Proposition 6.3(i): N = ε−1
M (N) ⊆ M is a submodule since εM is R-linear.

Let n
u ∈ U−1N with n ∈ N and u ∈ U . Then εM (n) ∈ N, so n

u =
1
uεM (n) ∈ U−1R ·N = N. Conversely, if m

u ∈ N with m ∈ M and u ∈ U ,
then εM (m) = u

1
m
u ∈ N, so m ∈ N and m

u ∈ U
−1N .

6.2.

(a) M ∼= K[x, x−1], the ring of Laurent polynomials.
(b) U−1M ∼= Q.
(c) U−1M ∼= Q[x].
(d) U−1M = {0}, since every element of M is annihilated by an element of

U .
(e) U−1M ∼= M , since every polynomial in U is invertible modulo (x2). This

implies that the canonical map M → U−1M is bijective.

6.3. To check that U−1ϕ is well-defined, let m1
u1

= m2
u2

with mi ∈M and ui ∈
U . Then there exists u′ ∈ U such that u′u2m1 = u′u1m2, so u′u2ϕ(m1) =
u′u1ϕ(m2) by the linearity of ϕ. This implies ϕ(m1)

u1
= ϕ(m2)

u2
, establishing

the well-definedness of U−1ϕ. The U−1R-linearity of U−1ϕ is verified by
straightforward computation.

We now check the exactness of localization. In view of the more formal
definition of an exact sequence, it suffices to show that for a homomorphism
ϕ: M → M of R-modules with im(ϕ) = ker(ϕ) we have im

(
U−1ϕ

)
=

ker
(
U−1ϕ

)
. So first take m ∈ M and u ∈ U with m

u ∈ im(U−1ϕ). Then
m
u = ϕ(m′)

u′ with m′ ∈M , u′ ∈ U , so

U−1ϕ
(m
u

)
=
ϕ (ϕ(m′))

u′
= 0.

Conversely, if m
u ∈ ker

(
U−1ϕ

)
, then there exists u′ ∈ U such that u′ϕ(m) =

0, so ϕ(u′m) = 0. By hypothesis, there existsm′ ∈M such that ϕ(m′) = u′m,
so

U−1ϕ

(
m′

uu′

)
=
u′m

uu′
=
m

u
.

This shows m
u ∈ im

(
U−1ϕ

)
, completing the proof.
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6.4.

(a) It is clear that L ⊆ N implies Lm ⊆ Nm for all m ∈ Specmax(R). Con-
versely, assume Lm ⊆ Nm for all m ∈ Specmax(R). For l ∈ L, consider the
ideal

I := {a ∈ R | al ∈ N} ⊆ R.

For every m ∈ Specmax(R) there exist u ∈ R \m and n ∈ N with l
1 = n

u ,
so u′ul ∈ N with u′ ∈ R\m. It follows that uu′ ∈ I, so I 6⊆ m. So I lies in
no maximal ideal, and we conclude I = R. This implies l ∈ N . Therefore
L ⊆ N .

(b) By (a), ϕ is injective if and only if ker(ϕ)m ⊆ {0} for all m ∈ Specmax(R).
We have an exact sequence

{0} → ker(ϕ)→M
ϕ→ im(ϕ)→ {0},

which by Exercise 6.3 localizes to an exact sequence

{0} → ker(ϕ)m →Mm
ϕm−→ im(ϕ)m → {0}

for every m ∈ Specmax(R), so ker(ϕ)m = ker(ϕm), and likewise for the im-
age. So ϕ is injective if and only if ϕm is injective for all m ∈ Specmax(R),
and the same follows for surjectivity.

6.5. We need to show that preimages of closed sets under the bijections from
Theorem 6.5 are again closed. First, let I ⊆ R be an ideal, giving a closed
subset

AI := {Q ∈ Spec(R) | U ∩Q = ∅ and I ⊆ Q} ⊆ A.

A prime ideal Q ∈ Spec
(
U−1R

)
lies in the preimage of AI under the map

Spec
(
U−1R

)
→ A if and only if ε−1(Q) ∈ AI , which is equivalent to ε(I) ⊆ Q

and to (ε(I))U−1R ⊆ Q. So indeed the preimage is closed.
Now let I ⊆ U−1R be an ideal defining a closed subset VSpec(U−1R)(I) ⊆

Spec
(
U−1R

)
. A prime ideal Q ∈ A lies in the preimage of VSpec(U−1R)(I)

under the map A → Spec
(
U−1R

)
if and only if I ⊆ U−1Q, which implies

ε−1(I) ⊆ ε−1(U−1Q) = Q. Conversely, ε−1(I) ⊆ Q implies I ⊆ U−1Q by
Proposition 6.3(i). Therefore the preimage of VSpec(U−1R)(I) is the closed set
Aε−1(I). This completes the proof.
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6.6. It is straightforward to check that ϕx is a well-defined homomorphism
of K-algebras. The restriction map ϕ is surjective, since every regular map
Y1 → K extends to a polynomial map on the ambient space Kn of X, and
therefore also to a regular map on X. So ϕx is surjective, too. The interesting
part is the injectiveness. So take f

u ∈ ker(ϕx). Then there exists u′ ∈ K[Y1]
with u′(x) 6= 0 and u′ · ϕ(f) = 0. Extension of u′ to X yields a g ∈ K[X]
with u′ = ϕ(g), so

g(x) 6= 0 and ϕ(gf) = 0.

Since x /∈ Y2 and Y2 is closed, there exists h ∈ K[X] such that h vanishes
on Y2 but h(x) 6= 0. Since gf vanishes on Y1, it follows that hgf = 0. Since
h(x)g(x) 6= 0, this implies f

u = 0 ∈ K[X]x. This completes the proof.

6.7.

(a) Let S ⊆ R be the set of all non-invertible elements. Then S $ R, and
every proper ideal of R is contained in S. If S is an ideal, this implies
that S is the unique maximal ideal, so R is local. Conversely, if R is local
with unique maximal ideal m, then m ⊆ S. Moreover, for a ∈ S the ideal
(a) ⊆ R is proper, so a ∈ m. This shows S = m, so S is an ideal.

(b) If R is local with maximal ideal m, then by part (a) the set of invertible
elements is precisely R \ m. Conversely, suppose that all elements from
R\m are invertible. Let I $ R be a proper ideal. Then I has no invertible
elements, so I ⊆ m. This shows that m is the unique maximal ideal.

6.8.

(a) We prove that the negations of both statements are equivalent. First, if
a ∈ P , then Ua ∩ P 6= ∅ since a ∈ Ua. If P + (a)R = R, then 1 = b+ xa
with b ∈ P and x ∈ R, so b = 1−xa ∈ Ua ∩P . Conversely, if Ua ∩P 6= ∅,
then am(1 + xa) ∈ P with m ∈ N0 and x ∈ R. This implies a ∈ P or
1 + xa ∈ P . In the second case we obtain P + (a)R = R.

(b) Assume that dim(R) ≤ n, and let Q0 $ · · · $ Qk be a chain of prime
ideals in U−1

a R, with a ∈ R. By Theorem 6.5, setting Pi := ε−1(Qi)
(with ε: R → U−1

a R the canonical map) yields a chain of length k in
Spec(R), and we have Ua ∩ Pi = ∅. By part (a), this implies that Pi is
not a maximal ideal (otherwise, P +(a)R would be R), so we can append
a maximal ideal to this chain. Therefore k + 1 ≤ dim(R) ≤ n, and we
conclude dim

(
U−1
a R

)
≤ n− 1.
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Conversely, assume dim
(
U−1
a R

)
≤ n− 1 for all a ∈ R. Let P0 $ · · · $ Pk

be a chain in Spec(R) of length k > 0. Choose a ∈ Pk \ Pk−1. Then
Pk−1 + (a)R 6= R (both ideals are contained in Pk), so Ua ∩ Pk−1 = ∅ by
part (a). By Theorem 6.5, setting Qi := U−1

a Pi (i = 0, . . . , k− 1) yields a
chain of length k − 1 in Spec

(
U−1
a R

)
. Therefore k − 1 ≤ dim

(
U−1
a R

)
≤

n − 1. We conclude dim(R) ≤ n if n > 0. If n = 0, the above argument
shows that there cannot exist a chain of prime ideals in R of positive
length, so dim(R) ≤ 0.

(c) We use induction on n, starting with the case n = 0. By part (b),
dim(R) ≤ 0 is equivalent to U−1

a R = {0} for all a ∈ R. This condi-
tion is equivalent to 0 ∈ Ua, which means that there exist m ∈ N0 and
x ∈ R with am(1 − xa) = 0. This is equivalent to am ∈ (am+1)R, which
is (6.5) for n = 0.
Now assume n > 0. By part (b), dim(R) ≤ n is equivalent to dim

(
U−1
a R

)
≤ n − 1 for all a ∈ R. By induction, this is equivalent to the follow-
ing: For all a0, . . . , an−1 ∈ R and all u0, . . . , un−1 ∈ Ua, there exist
m0, . . . ,mn−1 ∈ N0 such that

n−1∏
i=0

(
ai
ui

)mi

∈
(
aj
uj
·
j∏
i=0

(
ai
ui

)mi
∣∣∣∣ j = 0, . . . , n− 1

)
U−1

a R

.

Multiplying generators of an ideal by invertible ring elements does not
change the ideal. Since the ε(ui) are invertible in U−1

a R, it follows that
the above condition is independent of the ui. In particular, the condition
is equivalent to

n−1∏
i=0

ε(ai)mi ∈
(
ε(aj) ·

j∏
i=0

ε(ai)mi

∣∣∣ j = 0, . . . , n− 1
)
U−1

a R
.

By the definition of localization, this is equivalent to the existence of
m ∈ N0 and x ∈ R with

am(1 + xa) ·
n−1∏
i=0

ami
i ∈

(
aj ·

j∏
i=0

ami
i

∣∣∣ j = 0, . . . , n− 1
)
R
.

Writing an and mn instead of a and m, we see that this condition is
equivalent to (6.5).

6.9. A finite subset S ⊆ A is a maximal algebraically independent subset if
and only if it is maximally algebraically independent as a subset of Quot(A).
This implies

trdeg(A) = trdeg (Quot(A)) .
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Since Aa is also an affine domain, this implies trdeg(Aa) = trdeg(A) and
dim(A) = dim(Aa) by Theorem 5.9.

The answer to all the additional questions is “no”, due to the following
counter examples:

• A = K[x]/(x2) and a = x+(x2). Then Aa = {0}, so dim(Aa) = −1 6= 0 =
dim(A).

• A = K[[x]] and a = x. Then Aa is the ring of formal Laurent series, which
by Exercise 1.2(e) is a field, so dim(Aa) = 0 6= 1 = dim(A).

• A = K[x] and U = A \ {0}. Then U−1A = Quot(A), so dim(U−1A) = 0 6=
1 = dim(A).

6.10.

(a) As we remarked in Definition 6.13, a prime ideal P ∈ Spec(R) lies in the
support if and only if there exists m ∈ M with Ann(m) ⊆ P . This con-
dition implies Ann(M) ⊆ P . Therefore Supp(M) ⊆ VSpec(R) (Ann(M))
even without the hypothesis that M is finitely generated. Now suppose
M is generated by m1, . . . ,mn ∈M , and Ann(M) ⊆ P . Then

n⋂
i=1

Ann(mi) ⊆ P.

Since P is a prime ideal, there exists an i with Ann(mi) ⊆ P . This implies
P ∈ Supp(M), completing the proof.

(b) Let R = Z and S = Z[x], which we consider as a Z-module. Let N ⊂ S
be the submodule generated by all (n+ 1) · xn, n ∈ N0, and set

M := S/N.

(In fact, M is isomorphic to the direct sum of all Z/(n+ 1), n ∈ N0.) We
claim that

Supp(M) = {(p)Z | p is a prime number} .

To see this, let f ∈ S and set

k := lcm{n > 0 | xn−1 occurs in f},

and k := 1 if f = 0. Then kf ∈ N , so k ∈ Ann(f+N). This shows that no
element-annihilator is contained in {0}, so {0} /∈ Supp(M). On the other
hand, let p be a prime number. Then Ann(xp−1 +N) = (p)Z (this does
not require p to be prime), so (p)Z ∈ Supp(M). This completes the proof
of the claim. Since the Zariski-closed subsets of Spec(Z) are the finite sets
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of maximal ideals and all of Spec(Z), we conclude that Supp(M) is not
closed.

6.11.

(a) I = Ann(m) with m ∈ M \ {0}, so I $ R is a proper ideal. Let a, b ∈ R
with ab ∈ I. Assume that a /∈ I. Then am 6= 0 and b ∈ Ann(Am). Since
also I ⊆ Ann(am), the maximality of I implies b ∈ I. Therefore I is a
prime ideal, so I ∈ Ass(M).

(b) Let P ∈ Ass(U−1M), so P = Ann
(
m
u

)
with m ∈ M and u ∈ U . Then

U ∩ P = ∅, since otherwise m
u = 0. We need to show that P is the

annihilator of an element of M . Since R is Noetherian, we have P =
(a1, . . . , an)R. Since ai · mu = 0 for every i, there exists ui ∈ U with
uiaim = 0. Setm′ := u1 · · ·un ·m. Then P ⊆ Ann(m′). We claim equality.
Indeed, for a ∈ Ann(m′) we have

a · m
u

=
am′

u · u1 · · ·un
= 0.

so a ∈ P . We have shown the first inclusion of (b).
For the reverse inclusion, let P = Ann(m) ∈ Ass(M) with U ∩P = ∅. We
have P ⊆ Ann

(
m
1

)
. Conversely, if a ∈ Ann

(
m
1

)
, there exists u ∈ U with

uam = 0, so ua ∈ P , which implies a ∈ P . This shows P = Ann
(
m
1

)
∈

Ass(U−1M).
(c) By Corollary 3.14, we have I =

⋂n
i=1 Pi, where the Pi are the prime

ideals that are minimal over I. With S := {i ∈ {1, . . . , n} | a /∈ Pi}, the
annihilator of m is given as

Ann(m) = {b ∈ R | ab ∈ Pi for all i} =
⋂
i∈S

P,

and (c) follows from this.
(d) Every element m ∈M can be written as m = a+bx1 +fx2 with a, b ∈ K

and f ∈ K[x2]. We distinguish four cases. If a 6= 0, then Ann(m) = I.
If a = 0 and f 6= 0, then Ann(m) = (x1)R =: P1. If a = f = 0 and
b 6= 0, then Ann(m) = (x1, x2)R =: P2. Finally, if a = f = b = 0, then
Ann(m) = R. So we conclude that

Ass(M) = {P1, P2} .

But P1 is the only prime ideal that is minimal over I since
√
I = P1.
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7.1. Rn becomes an R[x]-module by gv := g(A) · v for g ∈ R[x] and v ∈ Rn.
With A = (ai,j) and e1, . . . , en ∈ Rn the standard basis vectors, we have

n∑
j=1

(δi,jx− aj,i)ej = 0

for all i. Lemma 7.2 yields det(δi,jx − aj,i)1≤i,j≤n ∈ Ann(Rn). But this de-
terminant is the characteristic polynomial, and the result follows.

7.2. Let R = Z(2) ⊆ Q be the ring of all rational numbers with odd denomi-
nator, and let M = Q. R is local with maximal ideal m = (2) and mM = M ,
but M 6= {0}.

7.3.

(a) We only need to show that π(N) = π(M) implies N = M . This is
equivalent to M/N = {0}, so by Nakayama’s Lemma 7.3 it suffices to
show that J · (M/N) = M/N . Let m ∈ M . By hypothesis, there exists
n ∈ N with π(m) = π(n), so m − n =

∑k
i=1 aimi with ai ∈ J and

mi ∈M . Therefore m+N =
∑k
i=1 ai(mi +N) ∈ J · (M/N). This yields

part (a).
(b) Set N := (x1, . . . , xn)R. Then π(N) = (π(x1), . . . , π(xn))R/J , so (b) fol-

lows from (a).
(c) Let x1, . . . , xn ∈M . By (b), these elements generate M if and only if the

π(xi) generate the K-vector space π(M). So they generate M minimally
if and only if they form a basis of π(M). With this, the result follows
from linear algebra.

(d) For the module M = R over R = Z, the systems {1} and {2, 3} are
minimal generating systems of different size.

7.4.

(a) Let P ∈ Spec(R) be a prime ideal containing I := (x)R. For all non-
negative integers i we have (xyi)2 = x · xy2i ∈ I, so xyi ∈ P . Therefore
P contains the ideal (x, xy, xy2, . . .)R, which is maximal. So
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P = (x, xy, xy2, . . .)R.

(b) The ideal
Q := (xy, xy2, xy3, . . .)R

is properly contained in P , and R/Q ∼= K[x], so Q is a prime ideal. The
chain

{0} $ Q $ P

shows that ht(P ) ≥ 2. But dim(R) ≤ trdeg(R) = 2 by Theorem 5.5, so
ht(P ) = 2.

(c) Let Sn = K[x, y1, . . . , yn−1] be a polynomial ring in n indeterminates
(countably many for n = ∞), and set Rn := K + Sn · x. As in (a), we
see that P = Sn ·x is the unique prime ideal of Rn containing (x)Rn . For
0 ≤ k < n, we have prime ideals

Qk := x · (y1, . . . , yk)Sn = R ∩ (y1, . . . , yk)Sn ∈ Spec(R)

forming a strictly ascending chain. Since all Qk are properly contained
in P , we obtain ht(P ) ≥ n, and equality follows by Theorem 5.5.

7.5. By factoring out P and localizing at Q, we may assume that R is a local
domain with maximal ideal Q, and P = {0}. The hypothesis means that R
has a finite spectrum. For every element a ∈ Q there exists a Pa ∈ Spec(R)
which is minimal over (a). By the Principal Ideal Theorem 7.4, Pa has height
at most 1. So Q is contained in a union of ideals of height at most 1. By the
Prime Avoidance Lemma 7.7, Q is contained in one of them, so Q itself has
height at most 1. This means that no prime ideal lies properly between P
and Q.

7.6. If a, b ∈ U , then also the product ab lies in none of the Pi, so ab ∈ U .
By Theorem 6.5, a prime ideal Q ∈ Spec(U−1R) corresponds to a P ∈

Spec(R) with

P ⊆
n⋃
i=1

Pi. (14.10)

By Lemma 7.7, this implies that there exists i with P ⊆ Pi. So if Q is
maximal, then Q = U−1Pi. On the other hand, all Pi are maximal among
the ideals P satisfying (14.10).
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7.7. We first show that S is infinite-dimensional. For i ∈ N0, we have strictly
ascending chains of prime ideals

Qi,j =
(
xi2+1, . . . , xi2+j

)
R
⊂ R (1 ≤ j ≤ 2i+ 1)

with Qi,j ∩ U = ∅. By Theorem 6.5, this corresponds to a chain of length 2i
in Spec(S). It follows that dim(S) =∞.

For showing that S is Noetherian, we first remark that RPi is Noetherian
for all i ∈ N0. Indeed, with Ri := K[x(i+1)2+1, x(i+1)2+2, x(i+1)2+3, . . .] ⊆ R
we have Ri\{0} ⊂ R\Pi, so RPi

is a localization of Quot(Ri)[x1, . . . , x(i+1)2 ].
Therefore RPi is Noetherian by Corollaries 2.13 and 6.4. Now let I ⊆ R
be a non-zero ideal. Take f ∈ I \ {0}, and choose n ∈ N0 such that all
indeterminates xj occurring in f satisfy j ≤ (n+1)2. Since RPi is Noetherian,
there exist f1, . . . , fm ∈ I such that

(I)RPi
= (f1, . . . , fm)RPi

for 0 ≤ i ≤ n. (14.11)

Take g ∈ I and consider the ideal

J := {h ∈ R | h · g ∈ (f1, . . . , fm, f)R} ⊆ R.

Clearly f ∈ J . By (14.11), for 0 ≤ i ≤ n there exists hi ∈ R \Pi with hi ∈ J .
By Lemma 7.7, there exists h ∈ J \ ∪ni=0Pi. Assume that J ⊆ ∪i∈N0Pi. Then
there exists i > n with h ∈ Pi. With ϕi: R→ R the homomorphism sending
xi2+1, xi2+2, . . . , x(i+1)2 to 0 and fixing all other indeterminates, this means
ϕi(h) = 0. The choice of n implies that ϕi(f) = f . Since f + h ∈ J , there
exists j ∈ N0 with f + h ∈ Pj , so ϕj(f + h) = 0. We obtain

ϕj(h) = ϕj (f + h− ϕi(f + h)) = ϕj(f + h)− ϕi (ϕj(f + h)) = 0, (14.12)

so ϕj(f) = ϕj(f + h) − ϕj(h) = 0. This implies j ≤ n. Since h ∈ Pj
by (14.12), this is a contradiction to the choice of h. We conclude that there
exists u ∈ J \ ∪i∈N0Pi. In other words, u ∈ U and ug ∈ (f1, . . . , fm, f)R, so
g ∈ (f1, . . . , fm, f)S . It follows that

(I)S = (f1, . . . , fm, f)S .

Since every ideal I ′ ⊆ S in S can be written as I ′ = (I)S with I = R∩I ′ ⊆ R,
we conclude that every ideal in S is finitely generated, so S is Noetherian.
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7.8. We always write xi for the residue class of xi in R = K[X] =
K[x1, . . . , xn]/I, and m := {f ∈ K[X] | f(0, . . . , 0) = 0} for the maximal
ideal corresponding to (0, . . . , 0).

(a) We have R = K[x1, x2], and m = (x1, x2) has height 1 since we have a
chain of length 1 of closed, irreducible subsets of X starting with {(0, 0)}.
With a1 := x1 + x2, we have

x2
1 = x1 · a1 and x2

2 = x2 · a1,

so a1
1 ∈ mm forms a system of parameters. We claim that there exists no

system of parameters which generates mm. By Exercise 7.3(c), it suffices
to show that dimK

(
mm/m

2
m

)
> 1. We claim that the residue classes of

x1
1 and x2

1 are linearly independent. So let

α1
x1

1
+ α2

x2

1
∈ m2

m

with αi ∈ K. This means that there exists u ∈ K[x1, x2] with u(0, 0) 6= 0
such that

u · (α1x1 + α2x2) ∈ (x2
1, x1x2, x

2
2)K[x1,x2].

Considering the coefficient of x1 and of x2 of this shows that α1 = α2 = 0.
(b) By arguments that are analogous to the ones for part (a), we obtain

that a1 = x1
1 and a2 = x2

1 form a system of parameters, and that
dimK

(
mm/m

2
m

)
> 2, so there exists no system of parameters that gener-

ates mm.
(c) With a1 := x2 we have

x1

1
=

a2
1

x2
1 + 1

∈
(a1

1

)
Rm

,

so a1
1 forms a system of parameters that generates mm.

7.9.

(a) We first give the maps γ and δ. With I := (ϕ(P ))S , define

γ: S → S[P ], s 7→
s+ I

1 + I
for s ∈ S

and
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δ: K → S[P ],
a+ P

b+ P
7→ ϕ(a) + I

ϕ(b) + I
for a ∈ R, b ∈ R \ P.

By a straightforward computation, using the definition of localization,
we see that the definition of δ does not depend on the choice of a and b.
It is clear that γ ◦ ϕ = δ ◦ ψ. To verify the universal property, let T
be a ring with homomorphisms Γ : S → T and ∆: K → T such that
Γ ◦ ϕ = ∆ ◦ ψ. We need to show the existence and uniqueness of a
homomorphism Θ: C → T with Θ ◦ γ = Γ and Θ ◦ δ = ∆. We start with
uniqueness. An element of S[P ] can be written as s+I

ϕ(b)+I with s ∈ S and

b ∈ R \ P . We have s+I
ϕ(b)+I = δ

(
1+P
b+P

)
· γ(s), so

Θ

(
s+ I

ϕ(b) + I

)
= Θ

(
δ

(
1 + P

b+ P

))
·Θ (γ(s)) = ∆

(
1 + P

b+ P

)
· Γ (s).

(14.13)
So if Θ exists, it needs to be defined by (14.13), yielding uniqueness. The
main task in the proof of existence is to show that the right hand side
of (14.13) only depends on s+I

ϕ(b)+I and not on the choice of s and b. We
first show that I ⊆ ker(Γ ). Indeed, for t =

∑n
i=1 siϕ(ai) ∈ I with si ∈ S

and ai ∈ P , we have

Γ (t) =
n∑
i=1

Γ (ϕ(ai)) · Γ (si) =
n∑
i=1

∆ (ψ(ai)) · Γ (si) = 0,

since ψ(ai) = 0 for all i. Now let s′+I
ϕ(b′)+I = s+I

ϕ(b)+I ∈ S[P ] with s′ ∈ S and
b′ ∈ R \ P . This means that there exist c ∈ R \ P and t ∈ I with

ϕ(c)ϕ(b)s′ = ϕ(c)ϕ(b′)s+ t.

We obtain

∆

(
1 + P

b′ + P

)
· Γ (s′) = ∆

(
ψ(bc) · 1 + P

bb′c+ P

)
· Γ (s′) =

Γ (ϕ(bc)) ·∆
(

1 + P

bb′c+ P

)
· Γ (s′) = ∆

(
1 + P

bb′c+ P

)
· Γ (ϕ(c)ϕ(b′)s) =

∆

(
ψ(b′c) · 1 + P

bb′c+ P

)
· Γ (s) = ∆

(
1 + P

b+ P

)
· Γ (s).

This establishes that (14.13) can be used to define Θ. It is clear that Θ is
a ring-homomorphism. It is also clear that Θ◦γ = Γ . To prove Θ◦δ = ∆,
take a ∈ R and b ∈ R \ P . Then
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Θ

(
δ

(
a+ P

b+ P

))
= Θ

(
ϕ(a) + I

ϕ(b) + I

)
= ∆

(
1 + P

b+ P

)
Γ (ϕ(a)) =

∆

(
ψ(a) · 1 + P

b+ P

)
= ∆

(
a+ P

b+ P

)
.

So we are done.
(b) The only thing that needs to be remarked here is that going from a

homomorphism ϕ of rings to the induced map ϕ∗ of the spectra reverses
the directions of the maps.

(c) We first see that g maps the unique maximal ideal {0} ofK to ψ−1({0}) =
P . We have the constant map from the fiber f−1({P}) to Spec(K), and
the natural embedding f−1({P})→ Spec(S). This gives the commutative
square in the below diagram. For showing that f−1({P}) is the pullback,
let X be the spectrum of a ring (in fact, X may be any set here) with
maps F : X → Spec(S) and G: X → Spec(K) such that f ◦ F = g ◦ G.
Since g maps everything to P , it follows that F (X) ⊆ f−1({P}), so the
map H: X → f−1({P}), x 7→ F (x) makes the diagram

X p p p p p p p p p p p p p p p p pR
H

HH
HHHHH

HHj

G
A
A
A
A
A
A
A
A
AU

F f−1({P})-Spec(K)

? ?

g

Spec(S) f-Spec(R)

commutative.

7.10.

(a) It is clear that (I)S lies in the kernel. To prove the reverse inclusion, let
f =

∑∞
i=0 aix

i ∈ S be in the kernel, so ai ∈ I for all i. For n ∈ N, set

In := (a0, a1, . . . , an)R ⊆ I.

This gives an ascending chain of ideals, so by the Noether property there
exists n ∈ N with Ii = In for i ≥ n. It follows that for each non-negative
integer i there exist bi,0, . . . , bi,n ∈ R with ai =

∑n
j=0 bi,jaj . Therefore
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f =
∞∑
i=0

n∑
j=0

bi,jajx
i =

n∑
j=0

( ∞∑
i=0

bi,jx
i

)
aj ∈ (I)S .

So the kernel is (I)S as claimed. We also remark that R∩ (I)S = I. Now
the proof of dim(S) ≥ dim(R) + 1 proceeds exactly as in the proof of
Corollary 7.13.

(b) Write xfn =
∑∞
i=1 aix

i. Define bn ∈ R recursively by b0 := 1 and

bn :=
n−1∑
i=0

an−ibi for n > 0.

Then (1− xf) ·
∑∞
i=0 bix

i = 1.
By way of contradiction, assume that x /∈ m. Then there exists f ∈ S \m
with 1 − xf ∈ m. This contradicts the invertibility of 1 − xf . Now let
a ∈ R \ n. Then a /∈ m, so there exists f =

∑n
i=0 cix

i with af − 1 ∈ m.
Since x ∈ m, this implies ac0 − 1 ∈ m, so ac0 − 1 ∈ n. So a is invertible
modulo n. We conclude that n ∈ Specmax(R).

(c) By Exercise 2.4, S is Noetherian, so we may apply Theorem 7.12. This
reduces to showing that the dimension of the fiber ring S[n] is at most 1.
Since n is maximal, we have S[n]

∼= S/(n)S (see the discussion preceding
Theorem 7.12), so

S[n]
∼= (R/n) [[x]]

by (a). But the latter has Krull dimension 1 by Exercise 5.2.

7.11. In all examples, S is an integral domain, so the maximal number of R-
linearly independent elements of S is the degree of the field extension Quot(S)
over Quot(R). This maximal number is 1,2, and 1 for (a), (b), and (c).

(a) Let U ⊂ Z be a multiplicative subset with 0 /∈ U . By the above, U−1S is
free over U−1Z if and only if there exists x ∈ U−1S with U−1S = U−1R·x.
A necessary and sufficient condition for this is 2 ∈ U . So the locus of
freeness is

Xfree = Spec(Z) \ {(2)}.

Using Lemmas 7.15 and 7.16, we conclude that all P ∈ Spec(Z) except
P = (2) lie in the image of the induced morphism, and the fibers are
zero-dimensional. By inspection, we see that the image of the induced
morphism is exactly Xfree, and all fibers have one point.

(b) The equation x2
2 = x2

1(x1 + 1) shows that S has the basis {1, x2} as an
R-module. So S is free, and therefore Xfree = Spec(R). We conclude that
the induced morphism is surjective with zero-dimensional fibers. Again,
this can be verified by inspection.
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(c) Since
S = R[x2 − x3] = R

[ −x2
1

x2 + x3

]
,

the solution is analogous to the one of (a). So the locus of freeness con-
sists of all prime ideals in R which do not contain x2 + x3. So all these
prime ideal lie in the image of the induced morphism and have fibers of
dimension 0. This is verified in Example 7.14(2).

8.1. Let G act on the polynomial ring S[x] coefficient-wise. For every a ∈ S,
the polynomial

fa :=
∏
σ∈G

(x− σ(a))

is G-invariant. Therefore its coefficients lie in SG, providing an integral equa-
tion for a. This yields (a). Assume S = R[a1, . . . , an] and let A be the sub-
algebra of SG generated by all coefficients of the polynomials fai . Then A is
finitely generated, and S is integral over A by Theorem 8.4, so (b) is done.
S is finitely generated as an A-algebra. Since it is also integral over A, The-

orem 8.4 yields that S is finitely generated as an A-module. If R is Noetherian,
the same is true for A by Corollary 2.12. Then by Theorem 2.10, the sub-A-
module SG ⊆ S is also finitely generated. Putting together generators of SG

as an A-module and generators of A as an R-module yields a finite system
of generators of SG as an R-algebra. So we have proved (c).

8.2. Clearly RG is a subring of R, so it is an integral domain. To show that
RG is normal, take a = b

c ∈ Quot(RG) which is integral over RG. Then a is
also integral over R and a ∈ Quot(R), so a ∈ R by the normality of R. For
σ ∈ G we obtain

σ(a) · c = σ(a) · σ(c) = σ(ac) = σ(b) = b = a · c,

so σ(a) = a, and a ∈ RG follows.

8.3. Write M for the set of all height-one prime ideals of R. It is clear (and
does not require normality) that R ⊆

⋂
P∈MRP . To show the converse, let

a/b ∈ Quot(R) \ R with a, b ∈ R, b 6= 0. We need to show the existence
of P ∈ M with a/b /∈ RP . Among all colon ideals (b) : (a′) ⊆ R with
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a′ ∈ (a) \ (b), let P = (b) : (a′) be maximal. Clearly P 6= R. To show that P
is a prime ideal, take x, y ∈ R\P . Then a′x ∈ (a)\ (b) and P ⊆ (b) : (a′x), so
(b) : (a′x) = P by the maximality of P . Therefore y /∈ (b) : (a′x), so xy /∈ P .
If a′/b = c/d with c, d ∈ R, d 6= 0, then d ∈ P . Therefore a′/b /∈ RP , which
implies a/b /∈ RP since a divides a′.

The next goal is to show that P has height 1. We have a′

b · P ⊆ R, so
a′

b · PP ⊆ RP . By way of contradiction, assume that the inclusion is strict.
Then a′

b · PP ⊆ PP , so PP is an RP [a′/b]-module which is finitely generated
over RP . Therefore a′/b is integral over RP by Lemma 8.3. Since RP is
normal by Proposition 8.10, this implies a′/b ∈ RP , which is not true. From
this contradiction we conclude that a′

b PP = RP , so PP =
(
b
a′

)
RP

. By the
Principal Ideal Theorem 7.4, it follows that ht(PP ) = 1 (since PP 6= {0}),
so also ht(P ) = 1. In summary, we have shown that P ∈ M and a/b /∈ RP .
This completes the proof.

8.4. Since y2 − f is irreducible, R is isomorphic to the subring
K[x1, . . . , xn,

√
f ] of the quadratic field extension N := L(

√
f) of the rational

function field L := K(x1, . . . , xn). We may substitute R byK[x1, . . . , xn,
√
f ],

so N = Quot(R). Every element of N can be written as s = a + b
√
f

with a, b ∈ L. Assume that s is integral over R. Since R is integral over
K[x1, . . . , xn], it follows by Corollary 8.6 that s is integral over K[x1, . . . , xn].
Then the same is true for s∗ := a − b

√
f , since s∗ satisfies the same equa-

tions over K[x1, . . . , xn] as s. By Corollary 8.5, s + s∗ and s · s∗ are also
integral over K[x1, . . . , xn]. But s + s∗ = 2a and s · s∗ = a2 − b2f both lie
in L, so it follows by the normality of K[x1, . . . , xn] that 2a and a2 − b2f lie
in K[x1, . . . , xn]. Since char(K) 6= 2, this implies a ∈ K[x1, . . . , xn], so also
b2f ∈ K[x1, . . . , xn]. If f is square-free, then b ∈ K[x1, . . . , xn] follows, and
we conclude s ∈ R, so R is normal.

On the other hand, if f is not square-free, i.e., there exists a non-constant
polynomial g ∈ K[x1, . . . , xn] such that g2 divides f , then s :=

√
f/g satisfies

the integral equation s2 − f/g2 = 0, but s /∈ R. So in this case R is not
normal.

8.5. Write f := x1x
2
2. Then f = (x2

1x2)
2

x3
1
∈ QuotR and f2 = x2

1x2 · x3
2 ∈ R,

so f ∈ R̃. We claim that R̃ = K[x3
1, x

2
1x2, x

2
2, f ] =: S. This is true since S

is the ring of invariants of the action of the cyclic group of order 3 given by
mapping each xi to ωxi with ω a third root of unity.
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8.6. Set K := Quot(R). For showing that R̃[x] ⊆ R̃[x], let f ∈ Quot (R[x]) =
K(x) be integral over R[x], so

fm =
m−1∑
i=1

gif
i with gi ∈ R[x]. (14.14)

Then f is integral over K[x], so f ∈ K[x] by Example 8.9(1). Therefore there
exists u ∈ R\{0} with ufk ∈ R[x] for all 0 ≤ k < m. In order to reduce to the
case that R is Noetherian, we may substitute R by the subring generated by
the coefficients of all ufk (0 ≤ k < m) and of all gi from (14.14). By (14.14),
ufk ∈ R[x] holds for all k ≥ 0. If an ∈ K is the highest coefficient of f ,
this implies uakn ∈ R for all k, so R[an] ⊆ u−1R. By Theorem 2.10 (and
using that R is Noetherian), this implies that R[an] is finitely generated as
an R-module, so an ∈ R̃ by Lemma 8.3. This implies that f̂ := f − anxn is
integral over R[x], so by induction on n we obtain f̂ ∈ R̃[x]. This completes
the proof of R̃[x] ⊆ R̃[x].

Conversely, let f ∈ R̃[x]. Then all coefficients of f are integral over R
and therefore also over R[x], so f itself is integral over R[x]. This implies
f ∈ R̃[x]. The equivalence R[x] normal ⇐⇒ R normal is now clear.

8.7. We use the notation of the proof of Corollary 8.28. With B := K[Y ],
the morphism g induces a homomorphism ϕ: A → B. By Exercise 4.1(a), ϕ
is injective, so we may view A as a subalgebra of B. Being a normal domain
containing A, B also contains Ã. So we have

A ⊆ Ã ⊆ B.

Giving a morphism h: Y → X̃ with f ◦ h = g is the same as giving a
homomorphism ψ: Ã → B whose restriction to A is the embedding A ⊆ B.
Such a ψ exists since Ã ⊆ B, and it is unique since every element from Ã is
a quotient of elements from A. So h exists and is unique.

8.8.

(a) Since x2 ∈ R and y ∈ R, S is generated by integral elements and therefore
integral over R. Moreover, S is normal by Example 8.9(1). Finally, x =
b/a ∈ Quot(R), so S ⊆ Quot(R). This shows (a).
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(b) We obviously have
R/P ∼= K[y],

so P ∈ Spec(R). Setting x = 1 and y = −1 in the generators of P yields 0,
so the generators lie in Q′ and therefore P ⊆ Q′.

(c) Let Q ∈ Spec(S) be a prime ideal with R ∩ Q = P . Then x2 − y2 =
a − (y2 − 1) ∈ Q, so x − y ∈ Q or x + y ∈ Q. By way of contradiction,
assume that x + y ∈ Q. Since (x3 − x) − (y3 − y) ∈ Q, this implies
2(x3 − x) ∈ Q, so x ∈ Q or x+ 1 ∈ Q or x− 1 ∈ Q. In every case, Q is a
maximal ideal, so by Proposition 1.2, P is maximal, too. But this is not
the case. So x − y ∈ Q. Using once again that Q cannot be a maximal
ideal, we conclude Q = (x− y)S . This show the uniqueness of Q.
But Q is not contained in Q′, so there exists no prime ideal lying over P
which is contained in Q′.

(d) With X the affine variety of Example 8.9(4), R is the coordinate ring of
X ′ := X ×K1, and the inclusion R ↪→ S corresponds to the morphism

f : K2 → X ′, (ξ, η) 7→ (ξ2 − 1, ξ3 − ξ, η).

Moreover, Q corresponds to the diagonal D in K2 given by ξ = η, and
P corresponds to the image Y ⊆ X ′ of the diagonal under f . However,
the preimage of f−1(Y ) consists of D and the “additional” points Z1 =
(1,−1) and Z2 := (−1, 1), the first of which corresponds to Q′. These
points do not lie in any irreducible variety in K2 whose f -image is Y .
Therefore going down fails.
The provenance of the points Z1 and Z2 can be explained as follows: The
curve Y ⊆ X ′ passes twice through the singular line {(0, 0)}×K1 ⊆ X ′ of
X ′ (namely, at (0, 0, 1) and (0, 0,−1)). Since every point of this singular
line has two preimages in K2 (as f acts as a desingularization), the two
points of Y on the singular line have four preimages in K2. Two of these
preimages lie in D, and the other two are Z1 and Z2.

8.9. Let I ⊆ K[x1, . . . , xn] be the kernel of the homomorphism
K[x1, . . . , xn] → A, xi 7→ ai. As in the proof of Theorem 8.19, we may
assume I 6= {0} and choose f =

∑
(i1,...,im)∈S αi1,...,im · x

i1
1 · · ·ximm ∈ I \ {0}.

Set yi := xi − βixm with βi ∈ K (i = 1, . . . ,m − 1). Then with s: S →
N0, (i1, . . . , im) 7→

∑m
j=1 ij we get

f = f (y1 + β1xm, y2 + β2xm, . . . , ym−1 + βm−1xm, xm) =∑
(i1,...,im)∈S

αi1,...,im

(
βi11 · · ·β

im−1
m−1 · xs(i1,...,im)

m + gi1,...,im(y1, y2, . . . , ym−1, xm)
)
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with gi1,...,im polynomials satisfying degxm
(gi1,...,im) < s(i1, . . . , im). Let fd ∈

K[x1, . . . , xm] be the homogeneous part of f of degree d := deg(f). Then

f = fd(β1, . . . , βm−1, 1) · xdm + h(y1, . . . , ym−1, xm)

with degxm
(h) < d. Since fd(x1, . . . , xm−1, 1) 6= 0 and K is infinite, there

exist βi ∈ K such that fd(β1, . . . , βm−1, 1) 6= 0, and the above equality shows
that A is integral over B := K[y1 + I, . . . , ym−1 + I]. By induction, there
exists algebraically independent c1, . . . , cn ∈ B such that B is integral over
C := K[c1, . . . , cn], and the ci have the form

ci = (yi + I) +
m−1∑
j=n+1

βi,j(yj + I)

with βi,j ∈ K. So A is integral over C. Since yj + I = aj − βjam, we see that
the ci are linear combinations as claimed in Remark 8.20.

8.10. Clearly ci − ci(x) ∈ m for all i, so

I := (c1 − c1(x), . . . , cn − cn(x))A ⊆ m.

By Corollary 8.24, ht(m) = dim(A) = n. So all we need to show is that
mm ⊆

√
Im.

A is integral over K[c1, . . . , cn], so for every a ∈ A there exist polynomials
g1, . . . , gm ∈ K[x1, . . . , xn] such that

am + g1 (c1, . . . , cn) am−1 + · · ·+ gm−1 (c1, . . . , cn) a+ gm (c1, . . . , cn) = 0.

Computing modulo I and setting γi := ci(x) ∈ K, this yields

am + g1 (γ1, . . . , γn) am−1 + · · ·+ gm−1 (γ1, . . . , γn) a+ gm (γ1, . . . , γn) ∈ I,

so A/I is algebraic. By Theorem 5.11, it follows that it is Artinian. The ideals
(m/I)k ⊆ A/I form a descending chain, so there exists k ∈ N with (m/I)k =
(m/I)k+1. Localizing at m, we obtain M := (mm/Im)k = (mm/Im)k+1. So
M is a finitely generated Rm-module satisfying mmM = M . Nakayama’s
Lemma 7.3 yields M = {0}, so mk

m ⊆ Im. This implies mm ⊆
√
Im.

8.11. The ideal m := (x, y)S is maximal since S/m ∼= K, and it has height at
least 2 since (y)S and {0} lie below it. (In fact, ht(m) = 2 since dim(S) = 2 by
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Exercise 5.2 and Corollary 7.13.) On the other hand, the ideal n = (xy− 1)S
is maximal since S/n ∼= R[x−1] is isomorphic to the formal Laurent series ring
over K, which by Exercise 1.2(e) is a field. But ht(n) ≤ 1 by the Principal
Ideal Theorem 7.4. (In fact, ht(n) = 1 since {0} is contained in n.)

8.12. Write A = K[x1, . . . , x4]/I with I the given ideal. I is contained in
P = (x1, x4), so

dim(A) ≥ dim (K[x1, . . . , x4]/P ) = 2.

(In fact, the dimension is equal to 2, but we do not need this.) However,
I + (x1 − 1) = (x1 − 1, x4 − 1, x2 − 1, x3 − 1), so

dim(A/(a)) = dim (K[x1, . . . , x4]/(I + (x1 − 1))) = 0.

This shows that the inequalities from Theorem 8.25 do not hold in this case.
Moreover, K[x1, . . . , x4]/((x1−x4, x

2
1−x2x4, x

2
1−x3x4, x1−1) is a complete

intersection, but A = K[x1, x2, x3, x4]/(x1−x4, x
2
1−x2x4, x

2
1−x3x4) is not.

8.13. There is nothing to show if X or Y is empty, so assume that both are
non-empty. If X = X1∪· · ·∪Xr and Y = Y1∪· · ·∪Ys are decompositions into
irreducible components, thenX∩Y is the union of allXi∩Yj , so an irreducible
component of X ∩Y is contained in some Xi ∩Yj . So we may assume X and
Y to be irreducible. By Exercise 3.9, X × Y ⊆ K2n is irreducible, too, and
by Theorem 5.15, its dimension is dim(X) + dim(Y ). The morphisms

X ∩ Y → (X × Y ) ∩∆, x 7→ (x, x)

and
(X × Y ) ∩∆→ X ∩ Y, (x, x) 7→ x

are inverses to each other, so X ∩ Y ∼= (X × Y ) ∩∆. Notice that by defini-
tion ∆ ⊂ K2n is given by the n equations x1 − y1, . . . , xn − yn (with obvious
notation). Therefore it follows from Theorem 8.25 that every irreducible com-
ponent Z of (X × Y ) ∩∆ satisfies

dim(Z) ≥ dim(X × Y )− n = dim(X) + dim(Y )− n.
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8.14.

(a) This is true since every f ∈ R satisfies the equation f |K| − f = 0.
(b) Counter example: R = K a finite field and S = {f : X → K |

f is a function} as in part (a), with X infinite. For x ∈ X, let Qx ⊆ S be
the maximal ideal of all functions vanishing at x. Then R∩Qx = {0}, so
there are infinitely many prime ideals of S lying over P = {0}.

(c) This is true since A ∼= K[x1, . . . , xn]/I is equidimensional of dimension
n− 1, so I is a principal ideal by Theorem 5.13.

(d) Counter example: A := K[x1, x2]/(x1(x1−1), x2(x1−1)) is 1-dimensional
and generated by 2 elements, but it is not a complete intersection since
it is not equidimensional. (A simpler but pathological counter example is
A = {0}, which is generated by 0 elements.)

(e) Counter example: Example 8.9(4).

9.1. The answer is no. Example: Modify the grevlex ordering by defining
x1 < x2 (instead of x1 > x2) but keeping all other comparisons as defined by
grevlex. This yields a total ordering refining the ordering by divisibility, but
x2

1 > x1x2, violating the third condition of Definition 9.1(a).

9.2.

(a) It is clear from the definition that C is closed under addition. From this,
the result follows for αi ∈ N>0. Take c ∈ Zn such that kc = e − f with
k ∈ N>0 and e, f ∈ Nn0 such that f < e. There exists x ∈ Nn0 with x ≡ −e
mod k (component-wise congruence), so also x ≡ −f mod k since f ≡ e
mod k. Set e′ := (e+x)/k and f ′ := (f+x)/k. Then e′, f ′ ∈ Nn0 , e′−f ′ = c,
and kf ′ < ke′ (where we used (3) from Definition 9.1(a)). If e′ ≤ f ′, then
also ke′ ≤ kf ′ by induction on k (using (3) from Definition 9.1(a) again),
a contradiction. By (1) from Definition 9.1(a), we conclude f ′ < e′ and
so c ∈ C.
Since we already have the result for αi ∈ N>0, it follows for αi ∈ Q>0

from the above.
Now assume αi ∈ R>0 and ci ∈ C such that c :=

∑m
i=1 αici ∈ Zn. We

will see that the αi can be modified in such a way to make them rational.
The set

L :=
{

(β1, . . . , βm) ∈ Rm |
m∑
i=1

βici = c
}
⊆ Rm
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is the solution set of an inhomogeneous system of linear equations with
coefficients in Q, so L is the image of a map ϕ: Rl → Rm, (γ1, . . . , γl) 7→
v0 +

∑l
j=1 γjvj with v0, . . . , vl ∈ Qm. By hypothesis (α1, . . . , αm) ∈

im(ϕ)∩Rm>0, so the preimage U := ϕ−1(Rm>0) ⊆ Rl is non-empty. Since ϕ
is continuous, U is open. It follows that there is a point (γ1, . . . , γl) ∈
U ∩Ql. So (α′1, . . . , α

′
m) := ϕ(γ1, . . . , γl) ∈ Qm ∩L∩Rm>0 = Qm

>0 ∩L, and
therefore

∑m
i=1 α

′
ici = c. By what we have shown already, it follows that

c ∈ C.
(b) It follows from (2) in Definition 9.1(a) that the standard basis vectors

ej ∈ Rn lie in C, so we may include them into the given list of ci. By
definition, 0 /∈ C, and so 0 /∈ H by part (a). (Notice that if some αi are
zero, this means that we are just considering fewer vectors ci.)
H is the image of the compact set

D :=
{
(α1, . . . , αm) ∈ Rm≥0 | α1 + · · ·+ αm = 1

}
under the map ψ: Rm → Rn, (α1, . . . , αm) 7→

∑m
i=1 αici. Also consider

the map δ: D → R≥0, x 7→ 〈ψ(x), ψ(x)〉, where 〈·, ·〉 denotes the Eu-
clidean scalar product. With d := inf (im(δ)), there exists a D-valued se-
quence (xk) such that δ(xk) converges to d. By the Bolzano-Weierstrass
theorem we may substitute (xk) by a convergent subsequence. With x =
limk→∞ xk ∈ D, the continuity of δ implies δ(x) = limk→∞ δ(xk) = d.
Setting, w′ := ψ(x) ∈ H, we get d = 〈w′,w′〉. Since 0 /∈ H, this implies
d > 0. We claim that 〈w′, c〉 ≥ d for all c ∈ H. Indeed, for all α ∈ R with
0 ≤ α ≤ 1 we have w′ + α(c−w′) ∈ H, so the definition of d implies

d ≤ 〈w′ + α(c−w′),w′ + α(c−w′)〉 =

d+ 2 (〈w′, c〉 − d)α+ 〈c−w′, c−w′〉α2.

Applying this with α small yields 〈w′, c〉 ≥ d, so in particular 〈w′, ci〉 > 0
for all i. So the preimage of Rm>0 under the map Rn → Rm, w →
(〈w, c1〉, . . . , 〈w, cm〉) is non-empty. Since the map is continuous, the
preimage is open, and it follows that it contains points in Qn. So there
exists w ∈ Qn with 〈w, ci〉 > 0 for all i. Multiplying w by a common de-
nominator of the components, we may assume w ∈ Zn. Since the standard
basis vectors ej are contained among the ci, it follows that w ∈ Nn>0.

(c) Let G = {g1, . . . , gr}. For 1 ≤ i < j ≤ r set gi,j := spol(gi, gj). By
Buchberger’s criterion 9.12, we have gi,j =

∑r
k=1 gi,j,k · gk with gi,j,k ∈

K[x1, . . . , xn] such that LM(gi,j,k ·gk) ≤ LM(gi,j). LetM ⊂ K[x1, . . . , xn]
be the set of all gi, gi,j , and gi,j,k. For a monomial t = xe11 · · ·xen

n , write
e(t) := (e1, . . . , en). Observe that for g ∈ K[x1, . . . , xn] and t ∈ Mon(g)
with t 6= LM(g), we have e(LM(g))− e(t) ∈ C. Form the finite set

D :=
{
e (LM(g))− e(t) | g ∈M and LM(g) 6= t ∈ Mon(g)

}
⊂ C.
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By part (b) there exists w ∈ Nn>0 such that 〈w, c〉 > 0 for all c ∈ D. By
the definition of “≤w” it follows that LM≤w(g) = LM≤(g) for all g ∈M .
Here the subscripts indicate the monomial ordering that is used. This
implies

spol≤w
(gi, gj) = spol≤(gi, gj) = gi,j =

r∑
k=1

gi,j,k · gk

and LM≤w(gi,j,k · gk) = LM≤(gi,j,k · gk) ≤ LM≤(gi,j) = LM≤w(gi,j).
Applying Buchberger’s criterion 9.12 again yields that G is a Gröbner
basis w.r.t. “≤w”. Moreover, we obtain

L≤w(I) = (LM≤w(g1), . . . ,LM≤w(gr)) =
(LM≤(g1), . . . ,LM≤(gr)) = L≤(I).

9.3. By hypothesis we have spol(g, h) = LT(h) · g − LT(g) · h, and (9.15)
follows. With t1 := LM(g), t2 := LM(g − LT(g)), s1 := LM(h), and s2 :=
LM(h− LT(h)) we find

LM((LT(h)− h) · g) = s2t1 and LM((LT(g)− g) · h) = t2s1.

By way of contradiction assume that s2t1 ∈M ((LT(g)− g) · h). Then there
exist t′ ∈ Mon(g) and s′ ∈ Mon(h) with s2t1 = s′t′ and t′ < t1. This
implies s2 < s′, so s′ = s1. Now the coprimality of s1 and t1 yields that t1
divides t′, contradicting t′ < t1. So s2t1 /∈ M ((LT(g)− g) · h), and by the
same argument t2s1 /∈ M ((LT(h)− h) · g). By (9.15), this implies that s2t1
and t2s1 both appear as monomials in spol(g, h), so s2t1 ≤ LM(spol(g, h)),
and the same for t2s1. Therefore (9.15) shows that 0 is a normal form of
spol(g, h).

9.4.

(a) We present the following algorithm.

Input: A Gröbner basis G of an ideal I ⊆ K[x1, . . . , xn].
Output: A reduced Gröbner basis G′ of I.

(1) Set G′ := G. For all g ∈ G, perform Step 2.
(2) Let g′ be a normal form of g w.r.t. G′ \ {g}, and set

G′ := (G′ \ {g}) ∪ {g′}.
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(3) Set
G′ := {g/LC(g) | g ∈ G′, g 6= 0}

and return G′.

The correctness of the algorithm can be seen as follows: If LM(g′) 6=
LM(g) in Step 2, then LM(g) is divisible by some LM(h) with h ∈ G′\{g},
and in this case g′ = 0. It follows that L(G′) = L(G) throughout the run
of the algorithm, so G′ is a Gröbner basis of I. Moreover, after each pass
through Step 2, g′ is in normal form w.r.t. G′ \ {g′}, and it remains in
normal form since the set {LM(g) | g ∈ G′, g 6= 0} can only decrease
during the run. So at the end, all g ∈ G′ have leading coefficient 1 and
are in normal form w.r.t. G′ \ {g}.

(b) Let g ∈ G. Since g ∈ I, there exists g′ ∈ G′ with LM(g′) dividing LM(g),
and by the same argument there exists g′′ ∈ G with LM(g′′) dividing
LM(g′). Since G is reduced, this implies LM(g′) = LM(g). Since g and g′

have leading coefficients 1, we conclude LM(g − g′) < LM(g). Assume
that g 6= g′. Then LM(g − g′) lies in Mon(g) or in Mon(g′). On the
other hand, LM(g− g′) ∈ L(I) is divisible by the leading monomial of an
element from G, so it cannot lie in Mon(g), and by the same argument
it cannot lie in Mon(g′), either. So g = g′. This shows G ⊆ G′, and by
symmetry we obtain G = G′.

9.5. To prove Theorem 5.5, let A be an algebra over a field K of finite
transcendence degree n. Then for a0, . . . , an ∈ A there exists a non-zero
polynomial f ∈ K[x0, . . . , xn] with f(a0, . . . , an) = 0. Let t be the smallest
monomial of f w.r.t. lexicographical ordering. Then t(a0, . . . , an) can be ex-
pressed as a K-linear combination of lexicographically larger monomials in
the ai, and therefore also as an A-linear combination. By Exercise 6.8(c), it
follows that dim(A) ≤ n.

In particular, we obtain dim (K[x1, . . . , xn]) ≤ n. Since every monomial
ordering refines the ordering by divisibility, no monomial t in x1, . . . , xn can
be written as a K[x1, . . . , xn]-linear combination of monomials t′ which are
lexicographically larger than t. By Exercise 6.8(c), this implies
dim (K[x1, . . . , xn]) > n− 1, and the first part of Corollary 5.7 is proved.

9.6. First assume that fk ∈ I for a positive integer k. Then (yf)k ∈ J . But
also

(yf)k − 1 = (yf − 1) ·
k−1∑
i=0

(yf)i ∈ J,
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so 1 ∈ J . Conversely, assume 1 ∈ J , so

1 =
m∑
i=1

hi · fi + h · (yf − 1)

with h, hi ∈ K[x1, . . . , xn, y] and fi ∈ I. We may assume f 6= 0. Viewing the
polynomials in the above equation as elements of K(x1, . . . , xn)[y], we may
substitute y = 1/f and obtain

1 =
m∑
i=1

hi(1/f) · fi.

Multiplying this by a suitable power of f yields fk ∈ I. (In fact, this argument
is a variant of Rabinovich’s trick.)

9.7. First assume that (a) holds. By Theorem 5.11, every xi + I ∈ A is
algebraic over K, so K[xi] ∩ I 6= {0}. So there exist fi ∈ I and ei ∈ N with
LM(f) = xei

i . This implies the existence of gi ∈ G with LM(gi) dividing xei
i .

Now assume that (b) holds. Then every monomial xe11 · · ·xen
n that occurs

in a polynomial that is in normal form w.r.t. G satisfies ei < di for all i. It
follows that the image of the normal form map NFG is contained in a vector
space of dimension d1 · · · dn. With Theorem 9.9, this yields dimK(A) < ∞,
so dim(A) = 0 by Theorem 5.11.

9.8. We define a monomial ordering “≤” on K[x1, x2, x3] as follows: t :=
xe11 x

e2
2 x

e3
3 ≤ t′ := x

e′1
1 x

e′2
2 x

e′3
3 if and only if e2 +e3 < e′2 +e′3 or e2 +e3 = e′2 +e′3

and t ≤lex t
′ with “≤lex” the lexicographic ordering. By Example 9.15(1), “≤”

is an {x1}-elimination ordering. We have

x1 < x2 and x3 < x2, but x2 < x1x3.

This shows that “≤” is not a block ordering formed from monomial orderings
on K[x1] and on K[x2, x3].

9.9. First notice that for every h ∈ K[x1, . . . , xn] we have
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h− h(g1, . . . , gn) ∈ J.

Now assume that f̃ ∈ K[x1, . . . , xn]. Then

f − f̃(g1, . . . , gn) ∈ J ∩K[y1, . . . , ym] = I,

so f + I = f̃(g1 + I, . . . , gn + I) ∈ R.
Conversely, if f + I ∈ R, then there exists h ∈ K[x1, . . . , xn] with f +

I = h(g1 + I, . . . , gn + I), so f − h ∈ J . By Theorem 9.9(b), this implies
NFG(f) = NFG(h). But since “≤” is an {x1, . . . , xn}-elimination ordering,
NFG(h) lies in K[x1, . . . , xn].

9.10. Write g1 := y and g2 := 1 − y. Assume that f ∈ K[x1, . . . , xn] ∩ J .
Then

f =
r∑
j=1

h1,jg1f1,j +
s∑
j=1

h2,jg2f2,j (14.15)

with hi,j ∈ K[x1, . . . , xn, y] and fi,j ∈ Ii. Setting y = 1 in (14.15) leaves f
unchanged and yields f =

∑r
j=1 h1,j(1)f1,j ∈ I1. Setting y = 0 yields f =∑s

j=1 h2,j(0)f2,j ∈ I2, so f ∈ I1∩I2. Conversely, if f ∈ I1∩I2, then g1+g2 = 1
implies

f = g1f + g2f ∈ J,

so f ∈ K[x1, . . . , xn] ∩ J .
To extend the algorithm to m ideals, choose pairwise distinct elements

ξ1, . . . , ξm ∈ K. There exist unique polynomials g1, . . . , gm ∈ K[y] of degree
less than m such that gi(ξj) = δi,j , and it follows that g1 + · · · + gm = 1.
With

J :=
( m⋃
i=1

(gi · Ii)
)
K[x1,...,xn,y]

⊆ K[x1, . . . , xn, y]

we obtain I1∩ · · · ∩ Im = K[x1, . . . , xn]∩J by the same argument as above.

9.11. Observe that if J = (g1, . . . , gm), then

I : J =
m⋂
i=1

(I : (gi)) ,

and if J = (g) 6= {0}, then

I : J = {f/g | f ∈ I ∩ (g)} .



274 14 Solutions

This reduces the computation of I : J to the computation of intersections of
ideals, which can be done with the methods from Exercise 9.10.

9.12. The proof of Theorem 8.19 translates into the following algorithm.

Input: Generators of an ideal I $ K[x1, . . . , xm] in a polynomial ring
defining an affine algebra A := K[x1, . . . , xm]/I.

Output: Polynomials f1, . . . , fn ∈ K[x1, . . . , xm] such that the ci := fi +
I ∈ A satisfy the assertions from Theorem 8.19.

(1) If I = {0}, terminate and return f1 := x1, . . . , fm := xm.
(2) Choose a non-zero f ∈ I and set d := max

{
degx1

(f), . . . ,degxm
(f)
}

+1.
(3) With y2, . . . , ym new indeterminates, let ϕ: K[y2, . . . , ym] →

K[x1, . . . , xm] be the algebra-homomorphism given by yi 7→ xi − xd
i−1

1 ,
and let ψ: K[y2, . . . , ym]→ A be the composition of ϕ with the canonical
map K[x1, . . . , xm]→ A.

(4) Compute J := ker(ψ) by using Proposition 9.17.
(5) Apply the algorithm recursively to J . Let g1, . . . , gn ∈ K[y2, . . . , ym] be

the resulting polynomials.
(6) Set fi := ϕ(gi) and terminate by returning these fi.

The version from Remark 8.20 can be made constructive in very similar ways.
The only difference is that ϕ maps yi to xi − βixm with βi ∈ K suitable.

9.13. Since the si are Sn-invariant, we need to show that K[x1, . . . , xn]Sn ⊆
K[s1, . . . , sn]. Assume the contrary. Then by Lemma 9.3 there exists f ∈
K[x1, . . . , xn]Sn \ K[s1, . . . , sn] with LM(f) minimal. Write LM(f) =
xe11 · · ·xen

n . The invariance of f implies e1 ≥ e2 ≥ · · · ≥ en. It is clear that
LM(sk) = x1 · · ·xk. Therefore

LM(f) = LM(s1)e1−e2 LM(s2)e2−e3 · · ·LM(sn−1)en−1−en LM(sn)en .

So setting
f̃ := f − LC(f) · se1−e21 se2−e32 · · · sen−1−en

n−1 sen
n

yields LM(f̃) < LM(f). But f̃ ∈ K[x1, . . . , xn]Sn \K[s1, . . . , sn], contradict-
ing the minimality of LM(f). This shows the claim.

The statement remains true for K an arbitrary ring, since the hypothesis
that K be a field was not used in the proof.
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10.1. The generic freeness lemma fails for the extension Z ⊂ Q. In fact, for
a ∈ Z \ {0}, the localization Za consists of all rational numbers with a power
of a as denominator, and Qa = Q. But a Za-linearly independent subset of
Q has at most one element q ∈ Q, and Za · q 6= Q.

10.2. Assume that the assertion is false. Since M is Noetherian, there exists
a submodule M ′ ⊂M which is maximal with the property that the assertion
does not hold for M/M ′. Substituting M by M/M ′, we may therefore assume
that the assertion holds for all M/N with N ⊆ M a non-zero submodule.
M is not zero (otherwise, it would be free), so there exists m ∈ M \ {0}.
Then for N := (m)S there exists a ∈ R \ {0} such that (M/N)a is free as an
Ra-module. So there exists B ⊆M such that

{
m+N

1 | m ∈ B
}
⊆ (M/N)a is

an Ra-basis of (M/N)a.
With J := Ann(m) ⊆ S we have N ∼= S/J (as S-modules and therefore

also as R-modules). If R ∩ J = {0}, then S/J is is a finitely generated
ring extension of R, so by Corollary 10.2 there exists b ∈ R \ {0} such that
(S/J)b ∼= Nb is free as an Rb-module. On the other hand, if R ∩ J 6= {0}, we
can choose b ∈ R ∩ J \ {0}. Then Nb = {0}, so in every case Nb is free as an
Rb-module. Therefore there exists C ⊆ N such that

{
n
1 | n ∈ C

}
is a basis

of Nb over Rb.
Let U ⊆ R be a multiplicative subset with ab ∈ U . It is now routine

(though a bit tedious) to check that
{
m
1 | m ∈ B

}
∪
{
n
1 | n ∈ C

}
⊆ U−1M is

a basis of U−1M as a U−1R-module.

10.3. By substituting R by its image in A, we may assume that R ⊆ A is a
subring. Quot(A) is finitely generated as a field extension of Quot(R), so the
same is true for Quot(B). It follows that there exists a subalgebra C ⊆ B
such that Quot(C) = Quot(B), and C is finitely generated. Since A is finitely
generated as a C-algebra, Corollary 10.2 applies and yields an a ∈ C \ {0}
such that Aa is free as a module over Ca, and there exists a basis M with
1 ∈M. We claim that Ba = Ca. The inclusion Ca ⊆ Ba is clear. Conversely,
for every x ∈ Ba we have

x =
∑
b∈M

cb · b

with cb ∈ Ca, and only finitely many cb are non-zero. Since Quot(B) =
Quot(C), there exists y ∈ C \ {0} such that yx ∈ C, so
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yx · 1 =
∑
b∈M

ycb · b.

The linear independence of M yields cb = 0 for b 6= 1, so x = c1 · 1 ∈ Ca.
We have shown that Ba = Ca. This completes the proof, since Ca is clearly
finitely generated.

10.4. The input data for Algorithm 10.3 is

I = (y2
1 + y2

2 − y2
3), g1 = y1, and g2 = y2 + y3,

so
J = (y2

1 + y2
2 − y2

3 , y1 − x1, y2 + y3 − x2).

Using the lexicographical ordering with x2 < x1 < y3 < y2 < y1, we obtain
the Gröbner basis

G =
{
x2

1 + (x2 − y3)2 − y2
3 , y1 − x1, y2 + y3 − x2

}
,

so Gx = ∅ and Gy = G. Extracting leading coefficients w.r.t. the yi-variables
yields M = {−2x2}, so J1 = {0} and f1 = −2x2.

In the recursive call, the ideal J is

J = (y2
1 + y2

2 − y2
3 ,−2(y2 + y3), y1 − x1, y2 + y3 − x2),

which has the Gröbner basis

G =
{
x2

1, y2 + y3, y1 − x1, x2

}
.

So
Gx = {x2

1, x2}, Gy = {y2 + y3, y1 − x1} , and M = ∅.

So the algorithm terminates with J2 = (x1, x
2
2) and f2 = 1, and the image is

im(f) =
{
(η1, η2) ∈ K2 | η2 6= 0 or η1 = η2 = 0

}
.

10.5. Using Noetherian induction, we may assume that the result holds for
all restrictions of f to proper, closed subsets of X. Let C1, . . . , Cr be the
irreducible components of X, and let fi: Ci → Y be the restrictions of f . So
we have the subsets (Ci)d defined as Xd. We claim that



14 Solutions 277

Xd = (C1)d ∪ · · · ∪ (Cr)d.

Indeed, let x ∈ Xd, so there is an irreducible component Z ⊆ f−1({f(x)})
with x ∈ Z and dim(Z) ≥ d. Since f−1({f(x)}) =

⋃r
i=1 f

−1
i ({f(x)}), there

exists i such that Z ⊆ f−1
i ({f(x)}). So Z is contained in an irreducible com-

ponent Z ′ of f−1
i ({f(x)}). It follows that x ∈ Z ′ and dim(Z ′) ≥ dim(Z) ≥ d,

so x ∈ (Ci)d. Conversely, if x lies in (Ci)d for some i, there exists an ir-
reducible component Z ′ ⊆ f−1

i ({f(x)}) with x ∈ Z ′ and dim(Z ′) ≥ d.
Since Z ′ ⊆ f−1({f(x)}), it is contained in an irreducible component Z of
f−1
i ({f(x)}), and we conclude x ∈ Xd. So the claim is proved.

If r > 1, then the (Ci)d are closed in Ci (and therefore in X) by Noetherian
induction, so Xd is closed, too. So we may assume that r = 1, i.e., X is
irreducible. Replacing Y by the image closure f(X) does not change the sets
Xd, so we may also assume that f is dominant. In particular, Y is irreducible,
too, so we can invoke Corollary 10.6.

First consider the case d ≤ dim(X) − dim(Y ). Every point x ∈ X is
contained in the fiber f−1({f(x)}), so it is contained in some irreducible
component Z of the fiber. By Corollary 10.6, dim(Z) ≥ dim(X)−dim(Y ) ≥ d,
so x ∈ Xd. It follows that Xd = X, so Xd is closed.

Now consider the case d > dim(X)− dim(Y ). Corollary 10.6 yields a non-
empty, open subset U ⊆ Y such that every y ∈ U has a non-empty fiber of
dimension dim(X)− dim(Y ) < d. It follows that the set X̂ := f−1(Y \ U) is
proper and closed in X. By Noetherian induction, the set X̂d (defined as Xd

by the restriction of f to X̂) is closed in X̂ and therefore in X. So we are
done if we can show that Xd = X̂d. But this is clear, since for x ∈ Xd, f(x)
lies in Y \ U , so the fiber f−1({f(x)}) is contained in X̂.

10.6.

(a) X = {(ξ1, ξ2) ∈ K2 | ξ1ξ2 = 1}, Y = K1, f the first projection, and
d = 0. Then Y0 = im(f) = Y \ {0} is not closed.

(b) Let

X :=
{
(ξ1, ξ2, ξ3) ∈ K3 | ξ2(ξ1ξ2 − 1) = ξ3(ξ1ξ2 − 1) = 0

}
and f : X → Y := K1, (ξ1, ξ2, ξ3) 7→ ξ1. Then

X1 =
{
(ξ1, ξ2, ξ3) ∈ K3 | ξ1ξ2 − 1 = 0 or ξ2 = ξ3 = 0, ξ1 6= 0

}
,

which is not closed.

Even if X is assumed to be irreducible, (b) remains false: Let X = Y = K3

and f : X → Y, (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2(ξ1ξ2 − 1), ξ3(ξ1ξ2 − 1)). Then we get the
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same set X1 as above. (This is straightforward, though a bit tedious, to work
out).

10.7. According to the hypothesis, we have Y =
⋃m
i=1 Li with Li ⊆ X locally

closed. Being a subset of a Noetherian space, the closure Y is Noetherian,
too, so Theorem 3.11 yields

Y =
n⋃
j=1

Zj

with Zj the irreducible components, which are closed in X. Pick a Zj and let
Z∗j be the union of all other components. Since

Zj = Zj ∩ Y =
m⋃
i=1

(
Zj ∩ Li

)
,

there exists i with Zj ⊆ Li. Li is not a subset of Z∗j , since otherwise Zj ⊆ Z∗j ,
so Zj would be contained in a component other than itself. Write Li = Ci∩Ui
with Ci closed and Ui open, and form U ′j := Ui \ Z∗j , which is also open.
Then Li 6⊆ Z∗j and Li ⊆ Y = Zj ∪ Z∗j imply U ′j ∩ Zj 6= ∅. We have Zj =
(U ′j ∩ Zj) ∪

(
Zj \ U ′j

)
. With the irreducibility of Zj , this yields

Zj = U ′j ∩ Zj .

Moreover,
U ′j ∩ Zj ⊆ Ui ∩ Zj ⊆ Ui ∩ Li = Li ⊆ Y.

Form the open set U ′ :=
⋃n
j=1 U

′
j . Then

U := U ′ ∩ Y =
n⋃
j=1

(
U ′j ∩ (Zj ∪ Z∗j )

)
=

n⋃
j=1

(
U ′j ∩ Zj

)
⊆ Y,

and

U =
n⋃
j=1

U ′j ∩ Zj =
n⋃
j=1

Zj = Y .

So U is a subset of Y which is open and dense in Y .

10.8.
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(a) The existence of U does not follow. Example: X = Y = R, f(ξ) = ξ2, so
im(f) = R≥0. The (Zariski-)closed subsets of R are the finite subsets and
all of R, so im(f) = R, and the only subset U ⊆ R≥0 which is open in R
is U = ∅, which is not dense in R.

(b) The existence of U does not follow. In the following example, we use the
well-known fact that C and R have the same cardinality. So there exists
an injective map f : C → C with im(f) = R. By the injectivity, every
finite subset of C has a finite preimage, so f is Zariski-continuous. But
by the same argument as above, there exists no subset U as desired.

(c) Here the answer is yes. From the intermediate value theorem and the
existence of supremum and infimum, it follows that im(f) is empty or
an interval (bounded or unbounded). The corresponding open interval
provides a set U as desired.

10.9. SinceX is a union of finitely many locally closed sets, it suffices to prove
the result for the case that X itself is locally closed. So X = VSpec(S)(I) \
VSpec(S)(J) with I, J ⊆ S ideals. If J = (a1, . . . , an)S , then X is the union of
all VSpec(S)(I) \ VSpec(S)(ai). So we may assume

X := VSpec(S)(I) \ VSpec(S)(a) = {Q ∈ Spec(S) | I ⊆ Q and a /∈ Q}

with a ∈ S. With ψ: S → Sa/Ia the canonical map, Lemma 1.22 and Theo-
rem 6.5 yield X = ψ∗ (Spec(Sa/Ia)). So

ϕ∗(X) = (ψ ◦ ϕ)∗ (Spec(Sa/Ia)) .

Observe that Sa is generated as an R-algebra by 1
a and the images of the

generators of S, so Sa/Ia is finitely generated as an R-algebra, too. Applying
Corollary 10.8 to ψ ◦ ϕ: R→ Sa/Ia shows that ϕ∗(X) is constructible.

10.10.

(a) For A ∈ Kn×n, the stabilizer GA is precisely the centralizer of A. If A
has n distinct eigenvalues, then an element g ∈ G lies in the centralizer of
A if and only if g maps every eigenspace of A into itself. So GA is isomor-
phic to the subgroup of all diagonal matrices, and dim(GA) = n. Since
A ∈ Kn×n has n distinct eigenvalues if and only if the discriminant of the
characteristic polynomial of A is non-zero, these matrices form an open,
dense subset. We have found an open, dense subset where the dimension
of the stabilizer is constant, so this must be the minimal dimension. The
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inequality (10.11) reads

dim
(
K[X]G

)
≤ n2 − n2 + n = n.

We have n invariants f0, . . . , fn−1 ∈ K[X]G, given by assigning to an n
by n-matrix the i-th coefficient of its characteristic polynomial. Since
all monic polynomials occur as characteristic polynomials, we obtain a
surjective morphism F : Kn×n → Kn, showing that dim

(
K[X]G

)
≥ n.

So (10.11) is an equality here.
(b) Set k := min{m,n} and consider the set U ⊆ Kn×m of all matrices whose

upper left k by k-subdeterminant is non-zero. U is open and dense. If m <
n, then every g ∈ Kn×n fixing an A ∈ U must fix all columns v1, . . . , vm
of A, but can send the vectors vm+1, . . . , vn of a basis containing the
first m of the vi to arbitrary vectors in Kn. Restricting to g ∈ SLn(K),
we obtain

dim (GA) = n(n−m)− 1.

Since this holds on the open, dense subset U , the minimal dimension of
a point stabilizer is n(n−m)− 1. So for m < n, (10.11) reads

dim
(
K[X]G

)
≤ n ·m− (n2 − 1) + n(n−m)− 1 = 0,

so this has to be an equality, implying that there exist no non-constant
invariants.
On the other hand, if m ≥ n, then for all A ∈ U we have GA = {id}, so
the minimal dimension of a point stabilizer is 0, and (10.11) becomes

dim
(
K[X]G

)
≤ n ·m− (n2 − 1) = n(m− n) + 1.

We now exhibit n(m − n) + 1 invariants. For 1 ≤ i ≤ n < j ≤ m,
let fi,j(A) be the determinant of the matrix obtained from taking the
columns 1, 2, . . . i−1, j, i+1, . . . , n of A. Also consider fn,n. Putting these
invariants together yields a morphism F : Kn×m → Kn(m−n)+1. This
morphism is dominant, since for A = (ai,j) with ai,j = a · δi,j for j ≤ n
and ai,j arbitrary for j > n, we have fn,n(A) = an and fi,j(A) = an−1ai,j .
This shows dim

(
K[X]G

)
≥ n(m− n) + 1. So (10.11) is an equality here,

too.

11.1. With Ad := {f + I | f ∈ K[x1, . . . , xn] deg(f) ≤ d} and Id :=
{f ∈ I | deg(f) ≤ d}, we have Ad ∼= K[x1, . . . , xn]d/Id, so the hypothesis im-
plies dimK(Id) = dimK(Jd) for all d. Since Id ⊆ Jd, equality follows. This
implies I = J .
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11.2. Let I = (x1 − x2
2) ⊂ K[x1, x2]. By Example 11.2(b), I has the Hilbert

series
HI(t) =

1 + t

(1− t)2
.

But with the lexicographic ordering we have L(I) = (x1), so Proposition 11.4
yields

HL(I)(t) =
1

(1− t)2
6= HI(t).

11.3.

(a) Assume (1). If f is a homogeneous polynomial of degree d, then ϕa(f) =
adf . In particular, the homogeneous generators of I are mapped into I,
and (2) follows. Since K is infinite, (2) implies (3). Now assume (3), and
let f ∈ I. We can write f =

∑d
i=0 fi with fi homogeneous of degree i.

Choose a0, . . . , ad ∈ K pairwise distinct such that (11.7) holds for all
aj . Then

∑d
i=0 a

i
jfi ∈ I for all j, and the invertibility of the Vander-

monde matrix guarantees that fi ∈ I for all i. So (4) is shown. Finally,
assume (4). Then we may substitute every element of a generating set by
all of its homogeneous parts, and (1) follows.

(b) Let P1, . . . , Pr ∈ Spec (K[x1, . . . , xn]) be the prime ideals which are mini-
mal over I. For every a ∈ K\{0}, ϕa is an automorphism ofK[x1, . . . , xn],
so the ϕa(Pi) are the prime ideals that are minimal over ϕa(I). Since
ϕa(I) ⊆ I = ϕa (ϕa−1(I)) ⊆ ϕa(I) by part (a), ϕa permutes the Pi. Since
ϕab = ϕa ◦ ϕb for a, b ∈ K \ {0}, we obtain a group-homomorphism from
the multiplicative group of K to the symmetric group Sr. Since K is
infinite, the kernel of this homomorphism has infinite order, so there are
infinitely many a ∈ K \ {0} such that ϕa(Pi) = Pi for all i. By part (a),
the homogeneity of the Pi follows.

11.4. Let I = (x) and J = (x− 1) ⊂ K[x]. Proposition 11.4 yields

HI(t) = HJ(t) =
1

1− t
, HI∩J(t) =

1 + t

1− t
and HI+J(t) = 0,

so the assertion from Lemma 11.7 does not hold of I and J .
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11.5. Comparing the formulas (11.4) and (11.6), we obtain

pI(d)− hI(d) =
k∑

i=min{d,k}+1

ai

(
d+ n− i

n

)

for every integer d. Observe that
(
d+n−i
n

)
= 0 for d < i ≤ d+ n, so

pI(d)− hI(d) =
k∑

i=min{d+n,k}+1

ai

(
d+ n− i

n

)
=


0 if d ≥ k − n
(−1)nak if d = k − n− 1
? else

.

Since I is a proper ideal, HI(t) 6= 0, so we may assume ak 6= 0 and obtain

dfail = k − n− 1 = deg (HI(t)) .

11.6. We use Algorithm 11.8 to determine HI(t). We get J = (x2
1x

2
3, x

2
2x

2
3)

and J̃ = (x2
1x

2
2x

2
3). Applying the algorithm to J , step (3) yields ideals J ′ =

(x2
2x

2
3) and J̃ ′ = J̃ . Proposition 11.4 (or another recursive application of the

algorithm) yields

HJ′(t) =
1− t4

(1− t)4
and H eJ(t) =

1− t6

(1− t)4
, so HJ(t) =

1− 2t4 + t6

(1− t)4

and

HI(t) =
(1− t4) + (1− 2t4 + t6)− (1− t6)

(1− t)4
=

1− 3t4 + 2t6

(1− t)4
=

1 + 2t+ 3t2 + 4t3 + 2t4

(1− t)2
.

By (11.4), applied to the last form of HI(t), the Hilbert polynomial is

pI = 1 · (x+ 1) + 2 · x+ 3 · (x− 1) + 4 · (x− 2) + 2 · (x− 3) = 12x− 16.

By Exercise 11.5, hI(d) = pI(d) for d > 2. By counting monomials or by
using (11.6), we get hI(0) = 1, hI(1) = 4, and hI(2) = 10. Extracting
degree and leading coefficient from pI yields dim (K[x1, x2, x3]/I) = 1 and
deg(I) = 12.
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11.7. In order to avoid introducing a lot of additional notation, it is useful
to choose and fix the weight vector w = (w1, . . . , wn) ∈ Nn>0 throughout,
and from now on write deg for degw. Everything in Definition 11.1 carries
over to the weighted situation. (Notice that dimK(A≤d) <∞ since all wi are
positive.) The formulas in Proposition 11.4 need to be modified as follows:

HI(t) =
1− tdeg(f)∏n
i=0(1− twi)

if f 6= 0, HI(t) =
1∏n

i=0(1− twi)
if f = 0,

where we set w0 := 1. The induction step in the proof works by using the
direct sum decomposition

K[x1, . . . , xn]≤d =
⊕
i,j∈N0,
i+wnj=d

K[x1, . . . , xn−1]≤i · xjn,

which implies

Hn(t) = Hn−1(t) ·
( ∞∑
j=0

twnj
)

= Hn−1(t) ·
1

1− twn
=

1∏n
i=0(1− twi)

.

The definition of a weighted degree ordering is straightforward, and Theo-
rem 11.6 and its proof carry over word by word to the weighted situation.
Ditto for the concept of homogeneity and Lemma 11.7. In Algorithm 11.8,
the proof of Theorem 11.9, and Corollary 11.10, every occurrence of the
denominator (1 − t)n+1 should be replaced by

∏n
i=0(1 − twi). Obtaining

an analogue of the Hilbert polynomial is a bit less straightforward. Write
w := lcm{w1, . . . , wn}. Since 1

1−twi
= 1+twi+t2wi+···tw−wi

1−tw , the formula from
the first part of Corollary 11.10 can be rewritten as

HI(t) =
a0 + a1t+ · · ·+ akt

k

(1− tw)n+1
.

Since

1
(1− tw)n+1

=
∞∑
d=0

(
d+ n

n

)
twd =

∑
d∈N0,

d≡0 mod w

(
d/w + n

n

)
td

we get

HI(t) =
∞∑
d=0

∑
0≤i≤min{k,d},
i≡d mod w

ai

(
(d− i)/w + n

n

)
td.

So if we define



284 14 Solutions

pI,j :=
∑

0≤i≤k,
i≡j mod w

ai

(
(x− i)/w + n

n

)
∈ Q[x] (j = 0, . . . , w − 1),

we get hI(d) = pI,j(d) for d ≥ k with d ≡ j mod w. So instead of one
Hilbert polynomial we obtain w polynomials to choose from according to the
congruence class modulo w. We could substitute the degree of the Hilbert
polynomial by the maximal degree of the pI,j . Equivalently (and more con-
veniently), we define deg(hI) to be the minimal k such that the Hilbert
function is bounded above by a polynomial of degree k. With this, we get
an analogue of Lemma 11.12, where K[y1, . . . , ym] may be equipped with
another weighted degree. The proof remains unchanged. Now consider the
proof of Theorem 11.13. By the freedom of the choice of the weight vector
in Lemma 11.12, we may equip K[y1, . . . , ym, z1, . . . , zr] with the “standard”
weight vector (1, 1, . . . , 1). Therefore the proof of deg(pJ) = m remains valid,
and we obtain the generalized form deg(hI) = dim(A) of Theorem 11.13. So
Corollary 11.14 follows for “≤” a weighted degree ordering.

Finally, let “≤” be an arbitrary monomial ordering and I ⊆ K[x1, . . . , xn]
an ideal. By Exercise 9.2(c) there exists a weight vector w ∈ Nn>0 such that
L≤(I) = L≤w(I). Clearly “≤w” is a weighted degree ordering, so with the
generalized version of Corollary 11.14 we get

dim (K[x1, . . . , xn]/I) = dim (K[x1, . . . , xn]/L≤(I)) .

11.8. By Corollary 11.10, the Hilbert series has the form HI(t) = f(t)/(1−
t)n+1 with f ∈ Z[t]. Since I is a proper ideal, f is non-zero. Cancelling
the fraction, we get a representation as in (11.8) with g(1) 6= 0, and m is
the smallest possible integer such that such a representation exists. Writing
g(t) = b0 + b1t+ · · ·+ bkt

k, we obtain

pI =
k∑
i=0

bi

(
x+m− i

m

)
as in the proof of Corollary 11.10. So deg(pI) ≤ m. On the other hand, the
coefficient of xm in pI is

LC(pI) =
k∑
i=0

bi/m! = g(1)/m! 6= 0,
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so dim (K[x1, . . . , xn]/I) = deg(pI) = m and deg(I) = g(1) ∈ Z \ {0}. The
degree cannot be negative, since otherwise the Hilbert function hI(d) would
become negative for large d.

11.9.

(a) The equation from Lemma 11.7 for the Hilbert series translates into an
equation for the Hilbert functions and therefore also for the Hilbert poly-
nomials, so

pI+J + pI∩J = pI + pJ (14.16)

By hypothesis and by Theorem 11.13, deg(pI+J) < deg(pI) = deg(pJ).
Since the leading monomial of a Hilbert polynomial is non-negative (oth-
erwise, the Hilbert function would eventually become negative), it follows
that deg(pI∩J) = deg(pI) = deg(pJ), and comparing leading coefficients
in (14.16) yields the claim.

(b) Equation (14.16) holds in this case, too. But by the hypothesis and by
Theorem 11.13 we have

deg(pI) > deg(pJ) ≥ deg(pI+J),

so again comparing leading coefficients in (14.16) yields the claim.
(c) Let Pr+1, . . . , Ps ∈ Spec (K[x1, . . . , xn])] be those minimal prime ideals

over I satisfying dim(Pi) < dim(I). We use induction on s. There is noth-
ing to show for s ≤ 1, so assume s > 1. Let J :=

⋂s−1
i=1 Pi, so J ∩Ps =

√
I

by Corollary 3.14(d). All Pi are homogeneous by Exercise 11.3(b), so J is
homogeneous, too. We first treat the case s > r. Then dim(Ps) < dim(I),
and therefore also dim(Ps) < dim(J), so deg(

√
I) = deg(J) by part (b).

By induction, we have deg(J) =
∑r
i=1 deg(Pi), and the result follows.

Now assume s = r, so dim(Ps) = dim(I) = dim(J). The definition of J
implies J 6⊆ Ps, so dim(J + Ps) < dim(Ps). Therefore part (a) yields

deg
(√

I
)

= deg(J) + deg(Ps) =
r∑
i=1

deg(Pi),

where the last equality follows by induction.
(d) For every d we have an epimorphism(

K[x1, . . . , xn]/I
)
≤d
→
(
K[x1, . . . , xn]/

√
I
)
≤d
,

so h√I(d) ≤ hI(d), and the same inequality holds for the Hilbert polyno-
mials. K[x1, . . . , xn]/I and K[x1, . . . , xn]/

√
I have the same dimension,

so the Hilbert polynomials have the same degree, and the claim follows.
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11.10.

(a) Set e := deg(f). Lemma 11.7 and Proposition 11.4 yield

HI+(f)(t) = HI(t) +
1− te

(1− t)n+1
−HI∩(f)(t). (14.17)

Since I is a prime ideal and f /∈ I, we get I ∩ (f) = f · I, so I≤d :=
K[x1, . . . , xn]≤d ∩ I ∼= (I ∩ (f))≤d+e for every d. We obtain

dim
(
K[x1, . . . , xn]/(I + (f)

)
≤d+e

=

dim (K[x1, . . . , xn]≤d+e)− dim(I≤d) = dim (K[x1, . . . , xn]≤d+e)−

dim (K[x1, . . . , xn]≤d) + dim
(
K[x1, . . . , xn]/I

)
≤d
,

and, using Proposition 11.4,

HI∩(f)(t) =
1

(1− t)n+1
− te

(1− t)n+1
+ teHI(t).

Substituting this into (14.17) gives HI+(f)(t) = (1 − te) ·HI(t). By Ex-
ercise 11.8 we can write HI(t) = g(t)/(1 − t)m+1 with g(t) ∈ Z[t] and
g(1) = deg(I). Therefore

HI+(f)(t) =
g(t)(1− te)
(1− t)m+1

=
g(t)

∑e−1
i=0 t

i

(1− t)m
,

and it follows (again by Exercise 11.8) that deg(I+(f)) = g(1)
∑e−1
i=0 1 =

deg(I) · e.
(b) We may assume that all fi have positive degree, since otherwise I =

K[x1, . . . , xn], and the result is true. We use induction on m. The result is
correct form = 0 (interpreting the empty product as 1), so assumem > 0.
Let Q1, . . . , Qs ∈ Spec(K[x1, . . . , xn]) be the minimal prime ideals over
J := (f1, . . . , fm−1). Qi is homogeneous by Exercise 11.3(b), so Qi+(fm)
is homogeneous, too, and therefore a proper ideal. Theorem 8.25 tells us
that dim (K[x1, . . . , xn]/Qi) ≥ n −m + 1 for all i. By way of contradic-
tion, assume that there exists i with dim (K[x1, . . . , xn]/Qi) > n−m+1.
Then dim (K[x1, . . . , xn]/(Qi + (fm))) > n − m by Theorem 8.25, so
dim (K[x1, . . . , xn]/I) > n − m since I ⊆ Qi + (fm), contradicting the
hypothesis. We conclude that K[x1, . . . , xn]/J is equidimensional of di-
mension n−m+ 1. By induction, we obtain
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s∑
i=1

deg(Qi) ≤
m−1∏
j=1

deg(fj). (14.18)

Now assume that fm ∈ Qi for some i. Then dim (K[x1, . . . , xn]/I) ≥
dim (K[x1, . . . , xn]/Qi) = n−m+ 1, a contradiction. Therefore fm /∈ Qi
for all i. This implies dim (K[x1, . . . , xn]/(Qi + (f)m)) ≤ n − m, so
K[x1, . . . , xn]/(Qi+(fm)) is equidimensional of dimension n−m by Theo-
rem 8.25. Let Pi,1, . . . , Pi,ri

∈ Spec (K[x1, . . . , xn]) be the minimal prime
ideals over Qi + (fm). Applying Exercise 11.9(a) and (c) and part (a)
from this exercise yields

ri∑
j=1

deg(Pi,j) = deg
(√
Qi + (fm)

)
≤ deg (Qi + (fm)) = deg(Qi) deg(fm).

Since I ⊆ Qi + (fm) and since K[x1, . . . , xn]/I is also equidimen-
sional of dimension n − m, it follows that every Pi,j is minimal over
I. Conversely, let Pk ∈ Spec (K[x1, . . . , xn]) be minimal over I. Then⋂s
i=1Qi =

√
J ⊆

√
I ⊆ Pk, so there exists i with Qi ⊆ Pk. Since

fm ∈ Pk, this implies Qi + (fm) ⊆ Pk, so Pk contains a minimal prime
Pi,j over Qi+(fm). By Theorem 8.25, dim (K[x1, . . . , xn]/Pk) = n−m =
dim (K[x1, . . . , xn]/Pi,k), so Pk = Pi,j . We conclude that the Pi,j cover all
Pk, but some Pk may appear more than once among the Pi,j . Therefore

r∑
k=1

deg(Pk) ≤
s∑
i=1

ri∑
j=1

deg(Pi,j) ≤

s∑
i=1

deg(fm) deg(Qi) ≤ deg(fm)
m−1∏
j=1

deg(fj).

(c) By part (b), it follows that there are at most e :=
∏n−1
j=1 deg(fj) prime ide-

als Pi ∈ Spec (K[x1, . . . , xn]) that are minimal over I := (f1, . . . , fn−1).
By Theorem 8.25, every Pi satisfies dim (K[x1, . . . , xn]/Pi) = 1. But
a common projective zero of the fj corresponds to a prime ideal Q ∈
Spec (K[x1, . . . , xn]) with dim (K[x1, . . . , xn]/Q) = 1 and I ⊆ Q, so Q is
one of the Pi. This implies that there are at most e such projective zeros.

(d) There is nothing to show if one of the fi is constant, so we may assume
deg(fi) > 0 for both i. Using a technique called homogenization, we
reduce to part (c). With x0 a new indeterminate, set gi := x

deg(fi)
0 ·

fi(x1/x0, x2/x0) ∈ K[x0, x1, x2]. The gi are the homogenizations of the
fi. Every gi is homogeneous with deg(gi) = deg(fi). Furthermore, setting
x0 = 1 in gi yields fi, and gi is not divisible by x0. We need to verify
that d := dim (K[x0, x1, x2]/(g1, g2)) = 1. Since the gi are of positive
degree, Theorem 8.25 tells us that d ≥ 3 − 2 = 1. Since the gi are non-
zero, we also have d < 3. Assume, by way of contradiction, that d = 2.
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Then there exists a minimal prime ideal P ⊂ K[x0, x1, x2] over (g1, g2)
with dim (K[x0, x1, x2]/P ) = 2, so Theorem 5.13 tells us that P = (p)
with p ∈ K[x0, x1, x2] a non-constant polynomial. By Exercise 11.3(b), p
is homogeneous. Since (g1, g2) ⊆ P , p is a common divisor of the gi, so
setting x0 = 1 in p yields a common divisor q of the fi. By hypothesis, q
is constant. But setting x0 = 1 in a homogeneous polynomial causes no
cancellation of terms, so p must be a constant times a power of x0. Since
the fi are not divisible by x0, p is constant, a contradiction. This shows
that d = 1, so part (c) is applicable. If (ξ1, ξ2) ∈ K2 is a common zero
of the fi, then (1 : ξ1 : ξ2) ∈ P2(K) is a common zero of the gi, so by
part (c), there exist at most deg(f1) · deg(f2) such (ξ1, ξ2).

12.1. We keep Definition 11.1 except for the definition of the Hilbert series,
which we omit. We omit Example 11.2 and Remark 11.3(a). The other parts
of Remark 11.3 are optional. Remark 11.5 is relpaced by the following

Lemma. For the zero ideal {0} ⊂ K[x1, . . . , xn] the formula

h{0}(d) =
(
d+ n

n

)
holds.

Proof. Since the Hilbert function of the zero-ideal depends on the number n
of indeterminates, we will write it in this proof as hn(d). We proceed by
induction on n. For n = 0, h0(d) = 1, so the formula is correct. For n > 0,
we use the direct sum decomposition (11.1) on page 163, which implies

hn(d) =
d∑
i=0

hn−1(i) =
d∑
i=0

(
i+ n− 1
n− 1

)
,

where induction was used for the second equality. We now show by induction
on d that the latter sum equals

(
d+n
n

)
. This is correct for d = 0. For d > 0,

we obtain

hn(d) =
d∑
i=0

(
i+ n− 1
n− 1

)
=
(
d+ n− 1

n

)
+
(
d+ n− 1
n− 1

)
=
(
d+ n

n

)
,

using a well-known identity of binomial coefficients in the last step. ut

The Lemma implies that the Hilbert function of an ideal I ⊆ K[x1, . . . , xn]
is bounded above by a polynomial. So we can define δ(I) ∈ N0 ∪ {−1} to be
the smallest integer δ such that hI can be bounded above by a polynomial in
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Q[x] of degree δ. We skip the rest of Section 11.1. We modify the assertion
of Lemma 11.12 to δ(I) = δ(J). The proof works for the modified assertion
with a slight change of last two sentences. The assertion of Theorem 11.13 be-
comes δ(I) = dim(A). In the proof of Theorem 11.13, we replace deg(pI) and
deg(pJ) by δ(I) and δ(J), and use the above Lemma instead of Remark 11.5.
Otherwise, the proof needs no modification. We skip everything else from
Section 11.2. So only the following material is required from Part III: The
shortened Definition 11.1, the above Lemma, the definition of δ(I), and the
modified versions of Lemma 11.12 and Theorem 11.13.

We make no change to Section 12.1, except using the above Lemma in-
stead of Remark 11.5 in the proof of Lemma 12.4. In Section 12.2, we mod-
ify the assertion of Proposition 12.5 to: dim (gr(R)) is the least degree of
a polynomial providing an upper bound for length

(
R/md+1

)
. This follows

from (12.5) and the modified Theorem 11.13. We omit the definition of the
Hilbert-Samuel polynomial. The modified version of Proposition 12.5 and
Lemma 12.4 yield (12.7). The next modification is to the proof of Lemma 12.7.
We start with: “In order to use Proposition 12.5, we compare the Hilbert-
Samuel functions hR/Ra and hR.” We replace the last sentence of the proof
by: “From this, the lemma follows by Proposition 12.5”. Finally, we delete
the last sentence from Theorem 12.8. The proof of the theorem remains un-
changed. Observe that the Hilbert-Samuel polynomial is not used anywhere
outside Chapter 12 in the book.

12.2. We use induction on n. By adding zero-modules to the sequence, we
may assume n ≥ 2. Since the map M1 → M2 is injective, we may view M1

as a submodule of M2. The sequence

{0} −→M2/M1 −→M3 −→ · · · −→Mn−1 −→Mn −→ {0}

is exact, too. Theorem 12.3(c) yields

length(M2) = length(M1) + length(M2/M1), (14.19)

so in the above sequence at most one module has infinite length. By induction,
we get

length(M2/M1) +
n∑
i=3

(−1)i length(Mi) = 0,

and M2/M1 and all Mi with i ≥ 3 have finite length. By (14.19), this implies
that either both M1 and M2 have infinite length, or none of them. By hy-
pothesis, it must be none of them. Combining (14.19) with the above equality
now yields the desired result.
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12.3. Each generator of R as an R0-algebra may be replaced by all of its non-
zero homogeneous parts, so we may assume that R is generated by finitely
many homogeneous elements ai. Since an element of degree 0 lies in R0, gen-
erators of degree 0 are unnecessary, so we may assume all di to be positive.
If m is the least degree of a non-zero homogeneous part of a generator of M ,
then Mi = {0} for i < m. Observe that R is Noetherian by Theorem 2.8
and Corollary 2.12, so every submodule of M is finitely generated by Theo-
rem 2.10.

We use induction on n for the proof of the other statements. First assume
n = 0, so R = R0. Then M and the submodules Mi are finitely generated
over an Artinian ring, so they have finite length. By Theorem 12.3(c), this
implies that only finitely many Mi have positive length, so (12.12) is shown.

Now assume n > 0. Multiplication with a1 gives a map ϕ: M →M whose
kernel is the graded submodule N := {m ∈ M | a1m = 0}. For every i, ϕ
restricts to a map Mi−d1 →Mi, and we obtain an exact sequence

{0} −→ Ni−d1 −→Mi−d1 −→Mi −→ (M/a1M)i −→ {0} (14.20)

of R0-modules. Notice that N and M/a1M are annihilated by a1, so they
are modules over R := R/(a1). Since R is a graded R0-algebra generated by
the residue classes of a2, . . . , an, we conclude by induction that Ni−d1 and
(M/a1M)i have finite length. Since length(Mi) = 0 for i < m, we can use
induction on i and Exercise 12.2 to conclude from (14.20) that all Mi have
finite length. Exercise 12.2 also shows that the alternating sum of lengths
corresponding to (14.20) is zero. Multiplying this sum by ti and summing
over all i yields

td1 ·HN (t)− td1 ·HM (t) +HM (t)−HM/a1M (t) = 0,

so

HM (t) =
HM/a1M (t)− td1 ·HN (t)

1− td1
.

Since N and M/a1M are finitely generated, graded R-modules, the result
follows from the above equation by induction.

12.4. The map ψ: mi → mi
m/m

i+1
m , f 7→ f

1 +mi+1
m is clearly a homomorphism

of R-modules. To show that ψ is surjective, take a ∈ mi
m. We can write a as

a = b
u with b ∈ mi and u ∈ R \ m. Since m is maximal there exists v ∈ R

with uv − 1 ∈ m, so
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vb

1
− a =

(vu− 1) b
u

∈ mi+1
m .

This implies a+ mi+1
m = ψ(vb), showing surjectivity. Clearly mi+1 ⊆ ker(ψ).

To show the reverse inclusion, take a ∈ ker(ψ), so a
1 = b

u with b ∈ mi+1 and
u ∈ R \m. So there exists u′ ∈ R \m with u′ua = u′b ∈ mi+1. We have v ∈ R
with u′uv − 1 ∈ m, so

a = (1− u′uv)a+ vu′ua ∈ mi+1.

This shows ker(ψ) = mi+1, so ψ induces the desired isomorphism mi/mi+1 →
mi

m/m
i+1
m . Since both sides of the isomorphism are annihilated by m, the

isomorphism is K-linear, and the dimension equality follows. The case i = 0
yields Rm/mm

∼= R/m = K.

12.5. The elements ci := xi+I
1 ∈ Am =: R generate the maximal ideal

mm of R. By Exercise 12.4 we have R/mm
∼= A/m ∼= K. By the discussion

before Proposition 12.5, gr(R) is generated as a K-algebra by the elements
ai := cit + (mm)R∗ , and the ai are homogeneous of degree 1. Let J be the
kernel of the map K[x1, . . . , xn] → gr(R), xi 7→ ai. We are done if we can
show that J = Iin.

To prove that Iin is contained in J , take f ∈ I \ {0} and write f̂ :=
fin − f . So fin ≡ f̂ mod I, and every monomial in f̂ has degree larger than
deg(fin) =: d. Therefore

fin(c1t, . . . , cnt) = fin(c1, . . . , cn)td = f̂(c1, . . . , cn)td ∈ md+1
m td ⊆ (mm)R∗ ,

where the last inclusion follows from the definition of R∗. We conclude fin ∈
J , so Iin ⊆ J .

For proving the reverse inclusion, take f ∈ J . Since J is a homogeneous
ideal, we may assume that f is homogeneous of some degree d, and f 6= 0. We
have 0 = f(a1, . . . , an) = f(c1, . . . , cn)td + (mm)R∗ , so f(c1, . . . , cn) ∈ md+1

m

by the definition of R∗. This means that there exists a ∈ A \ m such that
a · (f + I) ∈ md+1. We may write a = h + I with h ∈ K[x1, . . . , xn], so
hf + I ∈ md+1. This means that there exists g ∈ nd+1 with hf − g ∈ I. From
a /∈ m we conclude h /∈ n, so h(0) 6= 0 and (hf)in = h(0) · f . The condition
g ∈ nd+1 means that every monomial of g has degree > d, so by the above

(hf − g)in = h(0) · f.

We conclude that h(0) · f ∈ Iin, so also f ∈ Iin. This completes the proof.
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12.6.

(a) As in Exercise 1.2(b), it is seen that f ∈ K[[x1, . . . , xn]] is invertible iff its
constant coefficient as a power series with coefficients in K[[x1, . . . , xn−1]]
is invertible. By induction, it follows that the non-invertible elements are
those with constant coefficient 0, so they form the ideal m := (x1, . . . , xn).
By Exercise 6.7(a), R is local with maximal ideal m, and R/m ∼= K.
For computing the Hilbert-Samuel function, observe that theK-dimension
of mi/mi+1 is equal to the number of monomials of degree i, which is(
i+n
n

)
−
(
i−1+n
n

)
by Remark 11.5. Applying (12.5), we conclude

hR(d) = length(R/md+1) =
d∑
i=0

((
i+ n

n

)
−
(
i− 1 + n

n

))
=
(
d+ n

n

)
.

Since m is generated as an ideal by n elements, gr(R) is also generated as
a K-algebra by n elements a1, . . . , an. If I ⊆ K[x1, . . . , xn] is the kernel
of the map K[x1, . . . , xn] → gr(R) sending xi to ai, then hI(d) =

(
d+n
n

)
by (12.6). So hI = h{0}, and by Exercise 11.1 it follows that I = {0}, so

gr(R) ∼= K[x1, . . . , xn].

(b) We will use Exercise 12.5 to determine gr(R). To this end, we need to
determine the initial form ideals of the given ideals. It is clear that for
a non-zero principal ideal I = (f) ⊆ K[x1, . . . , xn] one has Iin = (fin).
Therefore we obtain

gr(R1) ∼= K[x1, x2]/(x2
2),

gr(R2) ∼= K[x1, x2]/(x2
2 − x2

1), and
gr(R3) ∼= K[x1, x2]/(x1) ∼= K[x2].

We can use (12.6) and Proposition 11.4 for computing the Hilbert-Samuel
function. For the first two rings, the Hilbert series of the relation ideal
I is 1−t2

(1−t)3 . Extracting the Hilbert function by (11.4) yields the Hilbert-
Samuel functions

hR1(d) = hR2(d) = 2d+ 1.

The calculation is easier for the third ring and yields hR3(d) = d+ 1.
(c) We will use the relation(

1 +
√
−3
)2

= 2
(
1 +
√
−3
)
− 22 (14.21)

for showing that

mi = Z2i ⊕ Z2max{i−1,0} (1 +
√
−3
)

for all i ≥ 0. (14.22)
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Indeed, the inclusion “⊇” and the directness of the sum are clear. For
i = 0, the reverse inclusion is also clear. Assume that (14.22) has been
shown for an i ≥ 0. Then

mi+1 = 2 ·mi +
(
1 +
√
−3
)
mi ⊆

2
(
Z2i + Z2i−1

(
1 +
√
−3
))

+
(
1 +
√
−3
) (

Z2i + Z2i−1
(
1 +
√
−3
))

⊆ Z2i+1 + Z2i
(
1 +
√
−3
)
,

where (14.21) was used in the last step. So (14.22) is shown. From this
is follows that K := A/m = m0/m ∼= F2, the field with two elements. In
particular, m is maximal. Moreover, for i > 0 we get mi/mi+1 ∼= F2⊕F2.
Using this and Exercise 12.4 and (12.5), we determine the Hilbert-Samuel
function as

hR(d) = 2d+ 1 for all d.

Now we determine the associated graded ring. Observe that mm is gen-
erated by c1 := 2

1 and c2 := 1+
√
−3

1 , so gr(R) is generated as a K-algebra
by the ai := cit+(mm)R. The relation (14.21) implies a2

1−a1a2 +a2
2 = 0,

so the polynomial f := x2
1 − x1x2 + x2

2 is contained in the kernel I of the
homomorphism K[x1, x2] → gr(R). As in part (b), the Hilbert function
of the principal ideal (f) is h(f)(d) = 2d + 1, so by comparing Hilbert
functions as in part (a) it follows that

gr(R) ∼= K[x1, x2]/(f) = F2[x1, x2]/(x2
1 + x1x2 + x2

2).

12.7.

(a) The first idea that comes to mind for getting a candidate for the maximal
ideal is that it may be formed by the functions vanishing at 0. So let
J $ C0(R,R) be the ideal of all continuous functions vanishing at 0.
Clearly I ⊆ J , so m := J/I is a proper ideal of R. If we can show that
every function from C0(R,R) \ J is invertible modulo I, we are done by
Exercise 6.7(b). So let f : R→ R be a continuous function which does not
vanish at 0. Then there exists a positive real number δ such that |f(x)| ≥
|f(0)/2| for all x with |x| ≤ δ. So we can define a continuous function g
on the interval [−δ, δ] by g(x) := 1/f(x), and we may extend g to obtain
a continuous function on R, which we also call g. By construction, fg−1
lies in I, so part (a) is shown.

(b) The function f : R → R given by f(x) = |x| lies in C0(R,R) \ I, so
f+I ∈ R\{0}. For n ∈ N, the function gn: R→ R given by gn(x) = n

√
|x|

lies in the ideal J defined above. We have gn = f , so f+I = (g+I)n ∈ mn.
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12.8. Let K[x1, x2, x3] be a polynomial ring over a field of characteristic
not equal to 2. By Exercise 8.4, the algebra A := K[x1, x2, x3]/I with I :=
(x2

3 − x2
1 − x3

2) is normal. We have I ⊆ (x1, x2, x3) =: n, so m := n/I is a
maximal ideal in A. By Proposition 8.10, the localization R := Am is normal.
But by Exercise 12.5 we have

gr(R) ∼= K[x1, x2, x3]/Iin = K[x1, x2, x3]/(x2
3 − x2

1),

which is not an integral domain since the residue classes of x3−x1 and x3+x1

have product 0.

13.1.

(a) It suffices to show that P is generated by ht(P ) elements. By hypothesis,
m is generated by n := dim(R) elements. For every p ∈ Spec(R) we have
R[x]/(p)R[x]

∼= (R/p) [x] and R ∩ (p)R[x] = p. Using this, we obtain

n = ht(m) ≤ ht
(
(m)R[x]

)
≤ ht(P ).

If ht(P ) = n, then P = (m)R[x], so it is generated by the same n elements
as m. If ht(P ) > n, we use that P/(m)R[x] is an ideal in the principal
ideal domain R[x]/(m)R[x]

∼= (R/m) [x] to conclude that P is generated
by n+ 1 elements.

(b) Let Q ∈ Spec (S[x]). Set P := S ∩ Q, U := S \ P , and Q̂ := U−1Q ∈
Spec (SP [x]). Then PP ⊆ Q̂ and (SP [x]) bQ ∼= S[x]Q. (This isomorphism
is almost trivial if S is an integral domain, but a bit tedious to show in
general.) By hypothesis, SP is regular, so (SP [x]) bQ ∼= S[x]Q is regular by
part (a). Therefore S[x] is a regular ring.

(c) Since Z is a principal ideal domain, every P ∈ Spec(Z) is generated by
ht(P ) ∈ {0, 1} elements. Therefore Z is a regular ring. This carries over
to Z[x1, . . . , xn] by several applications of part (b).

13.2. Let m be the maximal ideal of R and set d := dim(R/I).
First assume (b), and let a1, . . . , an be a regular system of parameters of

R. Since I is proper, R/I is a Noetherian local ring with maximal ideal m/I =
(ak+1 + I, . . . , an + I). We are done if we can show that n− k = d. Applying
Corollary 7.9 to R/I yields n − k ≥ d, and there exist b1, . . . , bd ∈ m such
that the bi+I form a system of parameters of R/I. Then a1, . . . , ak, b1, . . . , bd



14 Solutions 295

generate an ideal whose radical is m, so k+d ≥ dim(R) = n by Corollary 7.9
applied to R. So d = n− k, and (a) follows.

Now assume (a), so there exist a1, . . . , ad ∈ m such that

m/I = (a1 + I, . . . , ad + I). (14.23)

By Lemma 13.1, the ai + I are linearly independent over K := R/m modulo
(m/I)2, so the ai are linearly independent modulo m2. Applying Lemma 13.1
again shows that there exist ad+1, . . . , an ∈ m such that a1, . . . , an gener-
ate m minimally. So n = dim(R) by hypothesis. By (14.23) we can as-
sume ad+1, . . . , an ∈ I, so I ′ := (ad+1, . . . , an) ⊆ I. By what we have
already shown, R/I ′ is a regular local ring of dimension d. By Corol-
lary 13.6(a) it follows that I ′ is a prime ideal. So I ′ $ I would imply
dim(R/I) < dim(R/I ′) = d, and we conclude I = I ′.

If dim(R) > 0 and a1, . . . , an is a regular system of parameters, then with
I := (a2

1), R/I is not regular.

13.3.

(a) Let a1, . . . , an be a regular system of parameters of a regular local ring
R. We claim that this is a regular sequence. Clearly (a1, . . . , an) 6= R.
Moreover, Exercise 13.2 shows that Ri := R/(a1, . . . , ai−1) is a regular
local ring of dimension n− i+1 for all i ∈ {1, . . . , n}. So Ri is an integral
domain by Corollary 13.6(a), and the image of ai in Ri is non-zero. This
implies that multiplication with ai is injective on Ri.

(b) Every zero-dimensional, Noetherian local ring that is not a field qualifies.
One such ring is given in Example 13.14, another is Z/(4).

(c) Set I := (x2
1, x1x2), P := (x1, x2), and consider the localization R :=

AP/I . R is one-dimensional since I ⊂ (x1) $ P . But every element f ∈ P
is a zero-divisor modulo I, since xf ∈ I. Therefore every non-unit of R
is a zero-divisor, so there is no regular sequence in R.

13.4.

(a) Clearly ∅ and R are open. LetM be a set whose elements are open sets.
Then for a ∈ X :=

⋃
U∈M U there exists U ∈ M with a ∈ U . Therefore

a+In ⊆ U for some n, so a+In ⊆ X. This shows that a union of open sets
is again open. Finally, let U1, . . . , Um be finitely many open sets. Then
for a ∈ Y := U1 ∩ · · · ∩Um there exist n1, . . . , nm ∈ N0 with a+ Ini ⊆ Ui.
With n := max{n1, . . . , nm}, we conclude a+ In ⊆ Y , so Y is open.
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(b) Assume (1) and let (ak) be an R-valued sequence converging to a and to
b ∈ R. If a and b were distinct, they would have disjoint neighborhoods
U and V by assumption. So it would be impossible for all but finitely
many k that ak lies in U and in V , contradicting the convergence to a
and to b. So (2) follows. Now assume (2) and let a ∈

⋂
n∈N0

In. Then
the constant sequence (an) with an = a converges to 0 but also to a.
By (2), a = 0 follows, so we have shown (3). Finally, assume (3) and let
a, b ∈ R be distinct. Then there exists n such that a − b /∈ In, so the
neighborhoods a+ In and b+ In are disjoint. (In fact, a+ In and b+ In
are open.) This shows (1).

(c) Let c ∈ {a+ b, a · b}, and set ck := ak + bk if c = a+ b and ck := ak · bk
if c = a · b. Let U be a neighborhood of c. So there exists n such that
c + In ⊆ U . The sets a + In and b + In are (open) neighborhoods of a
and b, respectively. By hypothesis, for all but finitely many k, ak lies in
a + In, and for all but finitely many k, bk lies in b + In. So for all but
finitely many k, ck lies in c+In ⊆ U . This shows that (ck) converges to c.

13.5.

(a) The property fk′−fk ∈ mm means that fk′ and fk share all homogeneous
parts of degree up to m − 1. So the Cauchy property means that for
every m there exists a homogeneous polynomial gm ∈ K[x1, . . . , xn] such
that for all but finitely many k, the homogeneous part of degree m of
fk is equal to gm. Set f :=

∑∞
m=0 gm. Then for every m, all but finitely

many fk have the same homogeneous parts up to degree m as f , i.e., all
but finitely many fk satisfy fk − f ∈ mm+1. So (fk) converges to f .

(b) As in Exercise 1.2(b), it is seen that f ∈ K[[x1, . . . , xn]] is invertible iff its
constant coefficient as a power series with coefficients in K[[x1, . . . , xn−1]]
is invertible. By induction, it follows that f is invertible iff its constant
coefficient as a multivariate power series with coefficients inK is non-zero.
This implies (b).

(c) Let f ∈ S. For m ∈ N0, let gm be the homogeneous part of degree m
of f . Set fk :=

∑k
m=0 gm ∈ K[x1, . . . , xn]. Then f − fk ∈ mk+1, so

limk→∞ fk = f .
(d) Define a0, a1, a2, . . . recursively by

a0 := 1, a1 :=
1
2
, and ak :=

−1
2

k−1∑
i=1

aiak−i for k > 1.

Set f :=
∑∞
k=0 akx

k
1 ∈ S. Then it is easy to verify that f2 = 1 + x1.

Since 1 + x1 does not have a square root in the rational function field
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K(x1, . . . , xn), it does not have a square root in R, either. So R is properly
contained in S.

13.6.

(a) Since the polynomial x2
2 − x2

1(x1 + 1) ∈ K[x1, x2] is irreducible, K[X] is
an integral domain. Therefore the same holds for its localization R.

(b) By Exercise 13.5(d) there exists f =
∑∞
i=0 aix

i
1 ∈ K[[x1]] with f2 =

x1 + 1. For k ∈ N0, form the polynomials

Ak := x2 − x1

k∑
i=0

aix
i
1 and Bk := x2 + x1

k∑
i=0

aix
i
1 ∈ K[x1, x2].

Clearly (Ak) and (Bk) are Cauchy sequences w.r.t. the Krull topology
given by the filtration In := nn with n := (x1, x2), and the product
sequence (Ak ·Bk) converges to x2

2−x2
1(x1 +1). Also observe that none of

the Ak or Bk lie in n2. Applying the canonical map K[x1, x2]→ R to the
Ak and Bk yields Cauchy sequences in R whose product converges to 0,
and no element of these sequences lies in m2, the square of the maximal
ideal of R. The sequences have limits, A and B, in the completion R̂. A
and B must be non-zero, since the Ak and Bk lie outside m2. Since the
limit of the product sequence is 0, it follows with Exercise 13.4(c) that
A ·B = 0. So R̂ has zero-divisors.

13.7. Let K = Fp(t), the rational function field in one indeterminate over
the prime field Fp, and I = P = Q := (f) ⊂ K[x] with f := xp − t. Since f
is irreducible, K[x]/I is a field, so (K[x]/I)P/I ∼= K[x]/I is regular. But

rank
(
∂f

∂x
mod P

)
= 0 < 1 = ht(Q).

13.8. Counter example: K = Fp(t), P = (xp − t) ⊆ K[x], I = Q = {0}. We
have equality in (a), but Quot (K[x]/P ) is not separable over K.
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13.9.

(a) Xsing = {(0, 0)} ⊂ C2.
(b) Xsing = {(0, 0)} ⊂ C2.
(c) Xsing = ∅ ⊂ C2.
(d) Xsing = {(0, 4), (0,−4)} ⊂ C2.
(e) Xsing = {(0, 0, ξ) | ξ ∈ C} ⊂ C3.
(f) Xsing = {(0, 0, ξ) | ξ ∈ C} ∪ {(1, 1, 0), (1,−1, 0), (−1 + i, a + bi, 0), (−1 +

i,−a − bi, 0), (−1 − i, a − bi, 0), (−1 − i,−a + bi, 0)} ⊂ C3, where a :=√√
2 + 1 and b :=

√√
2− 1.

13.10. With f(x1) := x3
1 +ax1 + b, the Jacobian matrix is (2x2,−f ′(x1)). So

a point (ξ1, ξ2) ∈ E is singular if and only if ξ2 = 0 and f(ξ1) = f ′(ξ1) = 0.
Therefore singular points exist if and only if f has discriminant zero, which
is exactly the desired condition.

13.11.

(a) Let a, b ∈ S with b 6= 0. Then there exists q ∈ S such that a/b − q =
x + y 1+

√
−3

2 with x, y rational numbers of absolute value at most 1/2.
Therefore

N(a/b− q) =
(
x+ y

1 +
√
−3

2

)(
x+ y

1−
√
−3

2

)
= x2 + xy + y2 ≤ 3

4
,

so N(a − bq) < N(b). The above calculation also shows that the norm
maps S into the set of non-negative integers. So S is Euclidean. In par-
ticular, S is a principal ideal domain.

(b) If P = {0} ∈ X, then RP = Quot(R) is regular. Now let P ∈ X be a
non-zero prime ideal with 2 /∈ P . Then RP ⊇ R[1/2] ⊇ S. By part (a) the
ideal (P )S is a principal ideal, and so (P )RP

= PP is a principal ideal,
too. Since P has height at least one (in fact, equal to one), this means
that RP is regular.
Finally, let P ∈ X be a prime ideal with 2 ∈ P . Then (1 +

√
−3)(1 −√

−3) = 4 ∈ P , so at least one of the factors lie in P . But then the other
factor lies in P , too, since their difference is divisible by 2. It follows
that (2, 1 +

√
−3) ⊆ P . But the left ideal is already maximal by Exer-

cise 12.6(c), so P = (2, 1 +
√
−3). Now Example 13.7(3) tells us that RP
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is not regular. Summing up, we get

Xsing = {(2, 1 +
√
−3)}.

14.1. It follows from the properties of a discrete valuation that R is a subring
of K. It also follows that the subset m := {a ∈ R | ν(a) > 0} is an ideal with
1 /∈ m, and all elements of R \ m are invertible. So R is local with maximal
ideal m by Exercise 6.7(b). Let π be an element of m with n0 := ν(π) minimal.
The non-triviality of ν implies n0 < ∞. For every a ∈ R \ {0} we can write
ν(a) = qn0 + r with q, r ∈ Z, 0 ≤ r < n0, so ν(a/πq) = r, and the minimality
of n0 implies r = 0. So n0 divides ν(a) for every a ∈ R \ {0}. From this we
see that all non-zero ideals of R are of the form (πn), n ∈ N0. Therefore R is
Noetherian and regular.

14.2. Let ν: K(x) → Z be a non-trivial discrete valuation which vanish on
K×. As the first case, assume that ν(x) ≥ 0. Then ν(f) ≥ 0 for all f ∈ K[x].
For ν to be non-trivial, there must exist f ∈ K[x] \ {0} with n0 := ν(f) > 0.
We may assume f to have minimal degree with this property. Since ν vanishes
on K×, f has positive degree, and we may assume f to be monic. If f = gh
with g, h ∈ K[x], then ν(g) > 0 or ν(h) > 0, so one of the factors has the same
degree as f . It follows that f is irreducible. Let g ∈ K[x] be a polynomial
that is not divisible by f . We can write g = qf + r with q, r ∈ K[x] and
0 ≤ deg(r) < deg(f). Then

0 = ν(r) = ν(g − qf) ≥ min{ν(g), ν(q) + n0},

which implies ν(g) = 0. It follows that if f occurs k times in the factorization
of a polynomial g, then ν(g) = kn0. Since ν(g/h) = ν(g)−ν(h) for g, h ∈ K[x],
we have determined ν completely.

The second case is ν(x) < 0. Clearly composing a discrete valuation with a
K-automorphism of K(x) gives another valuation. In particular, this applies
to ι ∈ AutK (K(x)) with ι(x) = x−1. But ν′ := ν ◦ ι has n0 := ν′(x) =
ν(x−1) = −ν(x) > 0, so ν′ is the discrete valuation for f = x described
above. From this we see that ν = ν′ ◦ ι is given by ν(f) = −n0 deg(f), where
deg(g/h) := deg(g)− deg(h) for g, h ∈ K[x], and deg(0) := −∞.

It remains to check that the functions defined by an irreducible polynomial
are indeed discrete valuations, which is obvious. The valuation νx given by
f = x corresponds to the zero-point in K1, and since the degree valuation
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is obtained by composing νx with ι, the degree valuation corresponds to the
point at infinity on the projective line.

14.3.

(a) K[x1, x2] is integral over A since x1 ∈ A and x2
2−x2− f3 = 0. Moreover,

K[x1, x2] ⊂ Quot(A) since x2 = f2/f1. So K[x1, x2] ⊆ Ã ⊆ ˜K[x1, x2].
We have equality since K[x1, x2] is normal by Example 8.9(1).

(b) This clearly holds for n1 := (x1, x2)K[x1,x2] and n2 := (x1, x2− 1)K[x1,x2].
In particular, it follows by Proposition 1.2 that m is a maximal ideal.

(c) It is routine to verify the relations given in the hint. They imply that
if f1 ∈ P and f3 ∈ P , then also f2 ∈ P and f4 ∈ P , so P = m.
Since m was excluded, f1 /∈ P or f3 /∈ P , so f1 or f3 become invertible
in AP . Since x2 = f2/f1 = f4/f3, this implies K[x1, x2] ⊆ AP . Therefore
Q := K[x1, x2] ∩ PP is the intersection of a prime ideal of AP with a
subring, so Q ∈ Spec (K[x1, x2]). Let f/g ∈ AP with f, g ∈ A and g /∈ P .
Then g /∈ Q since otherwise g ∈ PP ∩ A = P (the equality follows from
Theorem 6.5). So f/g ∈ K[x1, x2]Q. Conversely, let f/g ∈ K[x1, x2]Q
with f, g ∈ K[x1, x2] and g /∈ Q. Since K[x1, x2] ⊆ AP , we can write
f = a/u and g = b/v with a, b, u, v ∈ A, u, v /∈ P , and also b /∈ P since
otherwise g ∈ Q. So f/g = av

bu ∈ AP .
(d) By (a) and Corollary 8.13, dim(A) = dim (K[x1, x2]) = 2. A is not normal

since Ã = K[x1, x2], and it follows from (b) that A $ K[x1, x2]. Since
K[x1, x2]Q is regular for all Q ∈ Spec (K[x1, x2]) by Lemma 13.11(a), it
follows from (c) that AP is regular for all P ∈ Spec(A) \ {m}. So the
singular locus is contained in {m}. On the other hand, Am cannot be
regular, since otherwise Am would be normal and therefore A would be
normal by Proposition 8.10. Being a maximal ideal, m has height 2 by
Corollary 8.24. So regularity in codimension 1 holds.

14.4. Let X1, . . . , Xn be the irreducible components of X. For each i, let
X̃i → Xi be the desingularization according to Corollary 14.2. With the
embedding Xi ⊆ X, this gives a morphism gi: X̃i → X. By Exercise 4.3
there exists a coproduct X̃ of the X̃i, so we have morphisms fi: X̃i → X̃,
and X̃ is the disjoint union of the subvarieties Yi := im(fi) ∼= X̃i. By the
universal property we have a morphism g: X̃ → X with g ◦ fi = gi for
all i. Every x ∈ X̃ is contained in exactly one Yi, so K[X̃]x ∼= K[Yi]x by
Exercise 6.6. Since K[Yi] ∼= K[X̃i], every localization of K[Yi] at a point is
regular. We conclude that X̃ has no singular points. Now let x ∈ X, and
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consider the fiber g−1({x}). We have

∣∣g−1({x})
∣∣ = n∑

i=1

∣∣Yi ∩ g−1({x})
∣∣ =

n∑
i=1

∣∣(g ◦ fi)−1({x})
∣∣ = ∑

i∈{1,...,n},
x∈Xi

∣∣g−1
i ({x})

∣∣ .
Since every x lies in at least one component Xi, the surjectivity of g follows
from the surjectivity of the gi. Since the gi have finite fibers, the same follows
for g. Finally, if x is non-singular, it lies in exactly one component Xi by
Example 13.7(2). Then K[X]x ∼= K[Xi]x by Exercise 6.6, so x is a non-
singular point of Xi. So it follows by Corollary 14.2(b) that g−1

i ({x}) has
only one point, and we get

∣∣g−1({x})
∣∣ = 1. This completes the proof.

14.5.

(a) X̃ = C1, f : X̃ → X, ξ 7→ (ξ2, ξ3).
(b) X̃ =

{
(ξ1, ξ2) ∈ C2 | ξ21 + ξ22 = 1

}
, f : X̃ → X, (ξ1, ξ2) 7→ (ξ1, ξ1ξ2).

(c) X̃ =
{
(ξ1, ξ2, ξ3) ∈ C3 | ξ41 + ξ23 − 1 = ξ1ξ3 − ξ32 = 0

}
,

f : X̃ → X, (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2).
(d) X̃ =

{
(ξ1, ξ2, ξ3) ∈ C3 | ξ21ξ22 + ξ23 − ξ3 = ξ1ξ3 − ξ32 = ξ31 − ξ2 + ξ2ξ3

= 0
}
, f : X̃ → X, (ξ1, ξ2, ξ3) 7→ (ξ1, ξ2).

14.6.

(a) Let I ⊆ Q be the submodule generated by all 1/p with p a prime number.
I is not finitely generated since the least common multiple of the denomi-
nators of a finite generating set would be a multiple of all prime numbers.
On the other hand, for P = (p) ∈ Spec(Z) with p a prime number, we
have 1/q = p/q · 1/p ∈ ZP · 1/p for all prime numbers q, so IP = (1/p)ZP

,
and for P = {0} we have ZP = Q, so IP = (1)Q.
A similar example can be produced for R = K[x] with K a field.

(b) If 0 6= a ∈ I, then a·I−1 ⊆ R, so I−1 ⊆ a−1R. From this, finite generation
of I−1 follows by Theorem 2.10.

(c) I−1 = {0}, I · I−1 = {0}, and (I−1)−1 = Q.
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14.7.

(a) Being a finitely generated Z-subalgebra of Q[x], R is clearly a Noetherian
domain. Sending

√
2x to x and x to x2/2 provides an isomorphism S → R

of Z-algebras, so it suffices to show that S is normal. An f ∈ Quot(S) can
be written as f = a+ b

√
2x with a, b ∈ Q(x). Suppose that f is integral

over S. Since S is integral over Z[x], f is also integral over Z[x], and
hence so is f̂ := a− b

√
2x. Therefore f + f̂ = 2a and f · f̂ = a2−2xb2 are

integral over Z[x], too. Since Z[x] is integrally closed by Proposition 8.8,
it follows that

2a ∈ Z[x] and (2a)2 − 2x(2b)2 ∈ 4Z[x].

This first implies 2b ∈ Z[x] and then (2a)2 ∈ 2Z[x], so 2a has even
coefficients. We obtain a ∈ Z[x], so 2x(2b)2 ∈ 4Z[x], and this implies
b ∈ Z. So we have shown f ∈ S, and the normality of S is established.

(b) P is the intersection of (x)Q[x] ∈ Spec (Q[x]) with R, so P is a prime
ideal. Moreover, every prime ideal Q ∈ Spec(R) which contains x2/2 also
contains x, so P ⊆ Q. It follows that P is minimal over the principal ideal
(x2/2), so ht(P ) ≤ 1 by the Principal Ideal Theorem 7.4. Since P 6= {0},
P has height 1.

(c) Let f ∈ P−1. Then xf ∈ R ⊂ Q[x], so f = a/x + g with a ∈ Q and
g ∈ Q[x]. Moreover, ax/2 + g · x2/2 = f · x2/2 ∈ R, so a is an even
integer. It follows that the constant coefficients of x ·f and of x2/2 ·f are
even. This implies that every element of P · P−1 has an even constant
coefficient, so P · P−1 6= R.

14.8.

(a) For I, J ∈ F and Q ∈ M we have (I · J)Q = IQ · JQ. Since RQ is a
Dedekind domain, it follows that

eIJ,Q = eI,Q + eJ,Q.

If I ⊆ R is an ideal, then eI,Q is zero for all but finitely many Q ∈ M,
since eI,Q 6= 0 implies IQ ⊆ QQ and therefore I ⊆ Q, and then Q is
minimal over I since ht(Q) = 1 and I 6= {0}. More generally, for every
I ∈ F , the finite generation implies that there exists a ∈ R \ {0} with
J := aI ⊆ R. By the above equation, we have eI,Q = eJ,Q − e(a),Q, so
eI,Q is zero for all but finitely many Q ∈M. The above equation and the
fact that eR,Q = 0 for all Q show that Φ is a monoid-homomorphism.



14 Solutions 303

(b) It follows from (a) that Ψ is a group-homomorphism. Let I ∈ C(R) with
Ψ(I) = 0. Then eI,Q = 0 for all Q ∈ M, so IQ = RQ and therefore
I ⊆ RQ. By Exercise 8.3, it follows that I ⊆ R. Since Ψ(I−1) = 0, we
also have I−1 ⊆ R. If I were strictly contained in R, it would follow that
I · I−1 is a proper ideal, too. But I · I−1 = R, so I = R. We conclude
that Ψ is injective.

(c) First notice that for P ∈M we have Φ(P ) = 1·P . Assume that every P ∈
M is invertible. Then by Theorem 14.8(b), every I ∈ C(R) can be written
as I =

∏
Q∈MQfI,Q with fI,Q ∈ Z, and since Ψ is a homomorphism we

get
Ψ(I) =

∑
Q∈M

fI,QΨ(Q) =
∑
Q∈M

fI,Q ·Q.

It follows that Ψ is the isomorphism described on page 215. Conversely,
assume that Ψ is surjective, and let P ∈M. Then there exists I ∈ C(R)
with Ψ(I) = 1 · P . This implies I ⊆ P , and therefore R = I · I−1 ⊆
P · I−1 =: J . By (a) we get Φ(J) = Φ(P )− Ψ(I) = 0, so J ⊆ RQ for all
Q ∈ M. Using Exercise 8.3 again yields J ⊆ R, so J = R. This shows
P = I, so P is invertible.

14.9.

(a) Let i ∈ {1, . . . , n}. By the unique factorization property of non-zero ideals
we have Pi 6⊆ P 2

i . Since all Pj have height 1, we also have Pi 6⊆ Pj for
j 6= i. Now the Prime Avoidance Lemma 7.7 yields the existence of ai ∈ Pi
with ai /∈ P 2

i and ai /∈ Pj for j 6= i. So in the factorization of (ai) as a
product of prime ideals, Pi appears once, and no other Pj appear. So
(ai) = Pi · Ji with Ji ⊆ R an ideal in whose factorization none of the
Pj (j = 1, . . . , n) appear. It follows that a :=

∏n
i=1 a

ei
i has the desired

property (with J =
∏n
i=1 J

ei
i ).

(b) Since the claim is true for the zero-ideal, we only need to show it for
{0} 6= I ⊆ R. Let

I = P e11 · · ·P en
n

be the factorization as a product of powers of pairwise distinct prime
ideals. By (a) there exists a ∈ R with

(a) = P e11 · · ·P en
n ·Q

f1
1 · · ·Qfm

m

with fj ∈ N0 and Qj pairwise distinct prime ideals with Pi 6= Qj for all
i, j. Applying (a) again yields b ∈ R with

(b) = P e11 · · ·P en
n · J
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with J ⊆ R an ideal in whose factorization none of the Pi or Qj appear.
In particular, J 6⊆ Qj for all j. By construction, we have

(a, b) · I−1 = (a) · I−1 + (b) · I−1 = Qf11 · · ·Qfm
m + J.

All Qj are maximal, and it follows that Qf11 · · ·Qfm
m + J is not contained

in any maximal ideal, so (a, b) · I−1 = R. Therefore I = (a, b).

14.10. Let R be factorial of dimension ≤ 1. We will show that the condi-
tion (a) of Theorem 14.11 is satisfied. From this, it follows by Theorem 14.13
that R is a principal ideal domain. So let I ⊆ R be a non-zero ideal. We will
prove the following claim by induction on k: If I contains an element that is
a product of k prime elements, then I is invertible. If k = 0 then I = R and
the claim is true. Now assume I 6= R. Then I is contained in a maximal ideal
P ∈ Specmax(R). By hypothesis, P has height 1, so by Lemma 5.14 we get
P = (p) with p ∈ R a prime element. I ⊆ P implies that J := I · (p)−1 ⊆ R,
and every element of I is divisible by p. So from an element a ∈ I which is a
product of k prime elements, we obtain b = p−1a ∈ J , which is a product of
k − 1 prime elements. So J is invertible by induction, and the same follows
for I.

Conversely, if R is a principal ideal domain, then the condition (a) of
Theorem 14.11 is clearly satisfied. So it follows by Theorem 14.11 that R
is Noetherian of dimension ≤ 1, and it follows by Theorem 14.13 that R is
factorial.

An example of a non-Noetherian factorial ring is provided by the polyno-
mial ring K[x1, x2, . . .] in infinitely many indeterminates over a field.

14.11. Since R := K[X] is a Dedekind domain and l 6= 0, (l) is a finite
product of maximal ideals. A maximal ideal m ∈ Specmax(R) occurs in this
product if and only if l ∈ m, i.e., if and only if m corresponds to a point in
the intersection L ∩X. So the mi are precisely the maximal ideals occurring
in the product. The difficulty lies in the fact that some mi may coincide, so
we have to get the multiplicities right. If ξi has multiplicity ni as a zero of f ,
we need to show that (l) ∈ mni

i , but (l) /∈ mni+1
i . Fix an i. By a change of

coordinates, we may assume that

Pi = (0, 0), L = {(ξ, 0) | ξ ∈ K} , ξi = 0, and l = x2.
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Then g = x2 · h + f(x1) with h ∈ K[x1, x2] and f ∈ K[t] as defined in
the exercise. So ni is the maximal k such that xk1 divides f(x1). With n :=
(x1, x2) ∈ Specmax (K[x1, x2]), we need to show that ni is the maximal k
with x2 + (g) ∈ (n/(g))k. The condition on k is equivalent to the existence
of u ∈ K[x1, x2] such that all monomials in x2 − ug have degree ≥ k. First
consider the case that h(0, 0) = 0. Since X is non-singular, it follows by the
Jacobian criterion 13.10 that f ′(0) 6= 0, so ni = 1. In this case, x2 occurs
as a monomial in x2 − ug = x2(1 − uh) − uf(x1) for every u ∈ K[x1, x2],
so the maximal k with x2 + (g) ∈ (n/(g))k is 1 = ni. Now consider the case
h(0, 0) 6= 0. Then h is invertible as an element of the formal power series ring
K[[x1, x2]]. In particular, there exists u ∈ K[x1, x2] such that all monomials in
uh−1 have degree ≥ ni, so the same is true for x2−ug = x2(1−uh)−uf(x1).
On the other hand, for every u ∈ K[x1, x2], x2−ug has monomials of degree
≤ ni, since x2 occurs if u(0, 0) = 0, and otherwise xni

1 occurs. Therefore in
this case the maximal k with x2 + (g) ∈ (n/(g))k is ni again. This finishes
the proof.

14.12.

(a) We have L = K (x1, x2) with x2
2 − x3

1 − ax1 − b = 0, and R = K[x1, x2].
Let O be a place of L with maximal ideal p, and let ν: L → Z be the
corresponding discrete valuation. If ν were trivial on K(x1), then K(x1)
would be contained in O, so O = L since L is integral over K(x1) and
O is integrally closed in L. This contradiction shows that ν is non-trivial
on K(x1). Consider two cases.
(1) ν(x1) ≥ 0. Then by the results of Exercise 14.2, K[x1] ⊆ O, and there
exists ξ1 ∈ K such that x1 − ξ1 ∈ p. We have x2

2 ∈ O, so x2 ∈ O and
hence R ⊆ O. Choose ξ2 ∈ K with ξ22 = ξ31 + aξ1 + b. Then

(x2 − ξ2) (x2 + ξ2) = x3
1 + ax1 + b−

(
ξ31 + aξ1 + b

)
∈ p,

so x2 − ξ2 ∈ p or x2 + ξ2 ∈ p. We may assume the first possibility. With
P := (ξ1, ξ2) ∈ E, we get mP = (x1 − ξ1, x2 − ξ2)R ⊆ p, so R ∩ p = mP .
This implies R \ mP ⊆ O \ p = O×, so RP := RmP

⊆ O. But RP is
a place of L since E is non-singular by Exercise 13.10. Therefore if RP
were strictly contained in O, O would be equal to L. This contradiction
shows that O = RP .
(2) ν(x1) < 0. Then y1 := 1/x1 ∈ p. With y2 := x1/x2 we have the
relation

y2
2 ·
(
1 + ay2

1 + by3
1

)
= y1,

so y2 ∈ p. Therefore S := K[y1, y2] ⊆ O, and m := (y1, y2)S ⊆ p. Using
the Jacobian criterion 13.10, we conclude from the above relation that
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Sm is regular. By the same argument as above, we obtain O = Sm. So
there exists exactly one place for which ν(x1) < 0. We write this place as
O∞, and its maximal ideal as p∞.
We now show that R ∩ p∞ = {0}. It follows from the equation defining
E that we have a K-automorphism ϕ of L mapping x1 to itself and x2

to −x2. If f ∈ R, then clearly f ·ϕ(f) ∈ K[x1]. Moreover, ϕ maps p∞ to
itself, so for f ∈ R ∩ p∞ we obtain

f · ϕ(f) ∈ K[x1] ∩ p∞ = {0},

so f = 0.
(b) Let ϕ: L→ L be as above. By assumption, the polynomial x3

1 + ax1 + b
has three pairwise distinct zeros α1, α2, α3 ∈ K. With Pi := (0, αi) ∈ E,
ϕ fixes the places OPi . Looking at the results from (a), we see that ϕ also
fixes O∞.
Now we consider K(x) and claim that for every K-automorphism ψ:
K(x)→ K(x) there exist α, β, γ, δ ∈ K with

ψ(x) =
αx+ β

γx+ δ
.

(Notice that this gives an automorphism only if αδ − βγ 6= 0, but we
do not need this here.) Indeed, if we write ψ(x) = g/h with g, h ∈ K[x]
coprime, then K(x) = K(g/h). We have g(x)− g

h · h(x) = 0. With a new
indeterminate t, the polynomial g(x) − th(x) ∈ K[t, x] is irreducible, so
it is also irreducible in K(t)[x]. Since g/h is transcendental over K, it
follows that g(x)− g

h · h(x) = 0 is a minimal equation for x over K(g/h).
So its degree must be one, and we get g = αx + β and h = γx + δ as
claimed. If ψ = id, then ψ fixes infinitely many places. Which places are
fixed if ψ 6= id? The places of K(x) are determined in Exercise 14.2. A
place corresponding to a point ξ ∈ K is fixed if and only if αξ+β

γξ+δ = ξ, so
at most two such places are fixed. In addition, the place corresponding
to the point at infinity may be fixed, giving at most three fixed places.
This concludes the proof of (b).

(c) If (f)R = mP , then f ∈ R, so f /∈ p∞ by (a). On the other hand, if
(f)R = mP · m−1

Q and f ∈ p∞, then by interchanging P and Q and
substituting f by f−1, we also get f /∈ p∞. (In fact, the latter case turns
out to be impossible by the theory of divisors of projective curves.) So in
both cases, f ∈ pP \ p2

P , and f does not lie in the maximal ideal of any
place O 6= OP of L.
Since f /∈ K, f is transcendental over K, so L is a finite field extension
of K(f). We are done if we can show that the degree d := [L : K(f)]
is one. Let A be the integral closure of K[f ] in L. By Lemma 8.27, A
is finitely generated as a module over K[f ]. Since A is torsion-free, the
structure theorem for finitely generated modules over a principal ideal
domain (see Lang [33, Ch. XV, Theorem 2.2]) implies that A is free. A
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contains a basis of L over K(f), and on the other hand no more than d
elements of A can be linearly independent. So A is a free K[f ]-module of
rank d. This implies that A/(f)A has dimension d as a vector space over
K[f ]/(f)K[f ] = K.
From f ∈ pP it follows that K[f ] ⊆ OP , so also A ⊆ OP since OP is
integrally closed in L. Since OP = RP , we have a map ψ: A → K, a 7→
a(P ), which is clearly K-linear. We claim that ker(ψ) = (f)A. If we can
show this, then A/(f)A ∼= K, so d = 1, and we are done. Since f ∈ pP ,
f lies in ker(ψ). Conversely, take a ∈ ker(ψ) and consider the quotient
b := a/f ∈ L. We need to show that b ∈ A. This is true if b ∈ Am for
every m ∈ Specmax(A), since then the ideal {c ∈ A | c · b ∈ A} ⊆ A is
not contained in any maximal ideal. (One could also use Exercise 8.3 for
this conclusion.) So let m ∈ Specmax(A). Since A is a normal, Noetherian
domain of dimension 1, Am is a DVR. We also have K ⊆ Am ⊆ L and
L = Quot(Am). Therefore Am is a place of L. If Am 6= OP , then f does
not lie in the maximal ideal of Am, so 1/f ∈ Am. Since also a ∈ A ⊆ Am,
we get b ∈ Am. On the other hand, if Am = OP , then b also lies in Am

since a ∈ pP and f /∈ p2
P . So b ∈ Am for every m ∈ Specmax(A), and the

proof is complete.
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Notation

(a1, . . . , ak), 18
(a1, . . . , ak)R, 18
A≤d, 162
Ann(M), 79
Ann(m), 79
Ass(M), 83
a
u

, see m
u

AutK(N), 111

Cl(R), 219
C(R), 211

deg(f), 161
deg(I), 171
degw, 172
δi,j , 85
det(A), 85
∂f/∂xj , 197
dimK(V ), 66
dim(M), 79
dim(R), 62
dim(X), 61
Div(R), 215

ε: M → U−1M , 73

fin, 188

gr(a), 185
gr(R), 181
G(x), 155
Gx, 155

hI(d), 162
HI(t), 162
HomK(A, B), 31

hR(d), 182
ht(I), 78
ht(P ), 78

Hgrad
V (t), 163

√
I, 23

Iin, 188
IJ , see IM
I : J , 30
IK[x1,...,xn](X), 25
IM , 35
I−1, 212
In, 35
IP , see MP

irr(α, K), 195
IR(X), 46
IS , 137
I(X), 25

K[a1, . . . , an], see R[a1, . . . , an]
κ(P )⊗R S, 100
K×, see R×

Kn×m, 70
K[X], 27
K((x)), 29
K[[x]], 29
K[x], see K[x1, . . . , xn]
K(x1, . . . , xn), 65
K[x1, . . . , xn], see R[x1, . . . , xn]
K[X]G, 156
K[X]x, 74

LC(f), 129
LCy(f), 142
length(M), 177
length(M), 61
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L(I), see L(S)
LM(f), 129
LMy(f), 142
L(S), 130
LT(f), 129

(m1, . . . , mk), 18
(m1, . . . , mk)R, 18
Ma, 75
M/N , 34
Mon(f), 128
Mor(X, Y ), 45
MP , 74
m
u

, 73

NFG, 132
NG, 111
nil(R), 28

OK , 218
ord(a), 185

ϕ∗, 47
pI , 167
PP , see MP

pR, 182

Quot(R), 19

eR, 106
Ra, see Ma

R[a1, . . . , an], 18
rank (gi,j mod P ), 197
R×, 208
RG, 121

R/I, see quotient ring
Rn×m, 85
RP , see MP

R∗, 180
R[[x]], 41
R[x1, . . . , xn], 17
R[x1, . . . , xn]/I, 18

(S), 18
S[P ], 92
Specmax(R), 22
Spec(R), 22
Specrab(R), 22
spol(f, g), 133
(S)R, 18
Supp(M), 79

T (f), 128
trdeg(A), 63

U−1M , 73
U−1R, see U−1M

VX(S), 28
V(I), see V(S)
VKn(S), 20
V(S), 20
VSpec(R)(S), 46

≤w, 144

X, 44
Xsing, 201
X × Y , 54
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abelian variety, 222
adjugate matrix, 85
affine algebra, 18

chains of prime ideals, 117
dimension, 65
explicit computation, 133
is a Jacobson ring, 25
is Noetherian, 40
subalgebra, 40, 70

affine curve, 201, 207, 209, 215, 217,
223, 225

affine domain, 18
chains of prime ideals, 117

affine n-space, 64, 65
affine scheme, 31
affine variety, 20

test for emptiness, 133
a-invariant, 172
algebra, 17

finitely generated, 18
algebra-homomorphism, see homo-

morphism of algebras
algebraic, 18, 67
algebraic integer, 207, 218
algebraic number theory, 218, 220
algebraically closed field, 20
algebraically independent, 19, 63, 114
almost integral, 109, 185
analytic function, 42
annihilator, 79
Artin-Rees lemma, 182, 184
Artinian module, 33, 41, 178

need not be Noetherian, 41
Artinian ring, 34, 37, 67, 87, 123, 178

characterization, 37
is Noetherian, 37

ascending chain condition, 33, 48
associated graded ring, 181, 183–186,

188, 192
dimension, 184
presentation, 188

associated prime, 83
axiom of choice, 21, 38

Basis Theorem, see Hilbert’s Basis
Theorem

Benson, David, 13
Bézout’s theorem, 173
Binder, Anna Katharina, 143
birational equivalence, 194
block ordering, 129, 137, 142, 145, 149

dominating, 130
blowing up, 209
blowup algebra, 180
Buchberger’s algorithm, 135

extended, 136
Buchberger’s criterion, 134, 269
butterfly, 210, 223

canonical map
of localization, 73

Cartier divisor, 215
category

of affine K-algebras, 45
of affine K-varieties, 45

catenary, 117
Cauchy sequence, 194, 204
Cayley-Hamilton theorem, 97
chain, 61

maximal, 116
Chevalley, 153
class number, 220

315



316 Index

CoCoA, 136
codimension

of an ideal, see height
Cohen-Macaulay ring, 174, 191, 203
colon ideal, 30, 122, 146, 208
complete intersection, 119, 124
complete ring, 194
completion, 194, 194, 204–205
composition series, 178
computational commutative algebra,

9, 127
computer algebra system, 136
cone, 95, 188
constructible subset, 153, 160
convergence, 194
convex cone, 143
convex hull, 143
coordinate ring, 26, 28, 55, 62, 78

is reduced, 28
coproduct, 58
cryptography, 222
cubic curve, 107, 188, 193, 205, 223
curve, see affine curve

rational, see rational curve
cusp, 189, 193, 223
Cutkosky, Dale, 13

Dedekind domain, 207, 217, 216–220,
224

degree
of a polynomial, 161
of an ideal, 171, 173–174
weighted, see weighted degree

dense subset, 47
descending chain condition, 33, 48,

130
desingularization, 108, 207, 209–211,

223
dimension, 61

and Hilbert polynomial, 168
and transcendence degree, 63, 65
can be infinite, 62, 99
computation, 138, 169–170
is maximal dimension of a com-

ponent, 62
of a field, 62
of a module, 79
of a polynomial ring, 64, 94
of a ring, 61
of a topological space, 61
of an affine variety, 62
of an intersection, 124
of Kn, 65
prime-ideal-free definition, 82

zero, 67, 145
dimension theory, 184
diophantine equation, 218
direct sum of rings, 58
discrete logarithm problem, 222
discrete valuation, 208, 222, 226

non-trivial, 222
discrete valuation ring, 208, 216, 222
divisor, see Cartier divisor or Weil di-

visor
domain

integral, see integral domain
dominant morphism, 58, 58, 95, 122,

152
double point, 189, 205, 209
DVR, see discrete valuation ring

elementary symmetric polynomials,
146

elimination ideal, 137, 137–141
geometric interpretation, 140

elimination ordering, 137, 145
elliptic curve, 99, 206, 220–222, 225–

226
equidimensional, 63, 68, 117, 118, 152
Euclidean topology, 44, 48, 189
exact functor, 80
exact sequence, 80, 186
excellent ring, 203
extended Buchberger algorithm, 136

factor ring, see quotient ring
factorial ring, 19, 68, 106, 194, 208,

213, 218, 219, 225
is normal, 106
locally, 213
of dimension one, 225

Fermat equation, 218
Fermat’s last theorem, 218
fiber, 91, 92, 169
fiber dimension, 92, 91–97, 152–153,

159, 170
upper semicontinuity, 159

fiber ring, 92, 99
as tensor product, 99

field of fractions, 19
field of invariants, 157
figure-eight curve, 223
filtration, 162, 183, 204
first associated graded ring, 180
flat deformation, 169
flatness, 149, 169
formal Laurent series, 29, 187, 228
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formal power series ring, 29, 30, 41, 70,
78, 100, 162, 188, 193, 194,
204

dimension, 70, 100
is complete, 204
is local, 29
is Noetherian, 41

fractional ideal, 211, 223
invertible, 211
need not be finitely generated,

223
free module, 18, 96, 101, 147, 148, 307
free resolution, 136
functor, 45, 47, 80

Galois theory, 31
generic flatness lemma, 149
generic freeness lemma, 147–149, 158,

170
for modules, 158
hypotheses, 158

germs of functions, 189
Gilbert, Steve, 13
going down, 95, 96, 111, 112, 122

and fiber dimension, 96
and freeness, 96
and normal rings, 112
counter example, 122

going up, 109
Gordan, Paul, 33
graded algebra, 163

standard, see standard graded al-
gebra

graded module, 187
graded reverse lexicographic ordering,

see grevlex
graded ring, 41, 163, 180, 187

associated, see associated graded
ring

graded vector space, 163
Greuel, Gert-Martin, 13
grevlex, 129, 138, 164, 166, 170
Gröbner basis, 130, 130–137

complexity, 137
over a ring, 133, 142
reduced, see reduced Gröbner

basis
Grothendieck, Alexandre, 149, 203
G-variety, 154

Hartshorne, Robin, 13
Hausdorff space, 44, 48, 53, 204
height, 78

complementary to dimension,
117

is finite, 89
not always complementary to di-

mension, 123
height-one prime ideal, see prime ideal

of height 1
Heinig, Peter, 13, 82
Hilbert function, 162
Hilbert polynomial, 167, 167–169
Hilbert series, 162, 163, 187

graded case, 163
of a graded module, 187

Hilbert’s Basis Theorem, 40, 49
Hilbert’s Nullstellensatz, 21, 25, 30,

55, 133
first version, 21
second version, 25

Hilbert, David, 33
Hilbert-Samuel function, 182
Hilbert-Samuel polynomial, 182
Hilbert-Serre theorem, 166, 187
homeomorphism, 45, 53, 81
homogeneous

element, 42, 181
ideal, 165, 171
part, 165, 171, 188
polynomial, 165

homogenization, 170, 287
homomorphism

induced, 45
of algebras, 17, 45
of rings, 17

hypersurface, 51, 67, 201

ideal
of a set of points, see vanishing

ideal
ideal class group, 219
ideal power, 35
ideal product, 35
identity element, 17
image

of a morphism, see morphism
image closure, 140, 149, 154, 159
induced homomorphism, 45
induced map, 48, 92

surjectivity, 96, 109
induced morphism, see induced map
initial form, 188
integral closure, 106, 128

computation, 128
integral domain, 17
integral element, 103
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integral equation, 103
integral extension, 103, 103–113

and finite modules, 105
and height, 111
preserves dimension, 111
towers, 105

integrally closed, 106
invariant ring, see ring of invariants
invariant theory, 13, 121, 146, 154, 160
invertible fractional ideal, 211
irreducible components, 51

computation, 128
irreducible space, 48, 49

and Zariski topology, 49
irrelevant ideal, 42
isomorphism

of varieties, 29, 45, 45

Jacobian criterion, 197, 205
Jacobian matrix, 197
Jacobian variety, 222
Jacobson radical, 87
Jacobson ring, 24, 29, 30, 47

Kamke, Tobias, 143
Kohls, Martin, 13, 22, 53, 132
Krull dimension, see dimension
Krull topology, 204, 204, 297
Krull’s intersection theorem, 184, 186,

189, 194, 204, 208
Krull’s principal ideal theorem, see

principal ideal theorem
K-variety, 20

Laurent polynomials, 23, 70, 249
Laurent series, see formal Laurent se-

ries
leading coefficient, 129
leading ideal, 130, 164
leading monomial, 129
leading term, 129
lemniscate, 223
length

of a chain, 61
of a module, 177

lexicographic ordering, 82, 129, 137,
141, 146

linear algebraic group, 154
linearly equivalent, 219
local ring, 29, 77, 81, 89, 90, 179–195

finite dimension, 89
invertible elements, 81

local-global principle, 81
localization

and dimension, 77
and Noether property, 76
at a point, 75
at a prime ideal, 74
hides components, 81
universal property, 75
w.r.t. a multiplicative subset, 73

locally closed, 153
locally factorial, 213
locally principal, 212, 216, 223
locus of freeness, 101
lying over, 109

MACAULAY, 136
MAGMA, 136, 223
maximal chain, 116, 178
maximal ideal

in a polynomial ring, 20
maximal spectrum, 22
membership test, 132, 144, 145
minimal polynomial, 195
minimal prime ideal, 51, 53

over an ideal, 52, 87
module, 18
monic polynomial, 103
monomial, 128
monomial ideal, 170
monomial ordering, 128

grevlex, see grevlex
lexicographic, see lexicographic

ordering
restricted, 138

Mora, Teo, 188
morphism, 48

and homomorphism of algebras,
45

computing image, 149–151
image is constructible, 153
in algebraic geometry, 48
of spectra, 48, 57
of varieties, 45, 56

multiplicative ideal theory, 211–215
multiplicative subset, 73

Nakayama’s lemma, 87, 88, 97, 110,
123, 184, 191, 214

and systems of generators, 97
hypotheses, 97

Ngo, Viet-Trung, 13, 98
nilpotent, 28
nilradical, 28, 51, 58

is intersection of minimal primes,
51
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Noether normalization, 114–116, 119,
123, 146, 168

and systems of parameters, 123
constructive, 146
with linear combinations, 115

Noetherian domain, 118
Noetherian induction, 154, 214
Noetherian module, 33, 38

alternative definition, 38
finite generation, 38

Noetherian ring, 33
counter example, 34
subring, 40

Noetherian space, 48, 49
and Zariski topology, 49

non-singular locus, 201
non-singular point, 192, 193
non-singular variety, 192
norm, 107, 212
normal field extension, 111
normal form, 131, 131–133

not unique, 131
unique for S a Gröbner basis, 132

normal ring, 106, 106–109, 185, 194,
208–209

and localization, 108
and regularity, 194, 208

normal variety, 106, 209
normalization, 106, 114, 119–122,

128, 207, 209
computation, 128
need not be Noetherian, 120
of a polynomial ring, 122
of a variety, 120, 121
of an affine domain, 119

Nullstellensatz, see Hilbert’s Nullstel-
lensatz

number field, 218
number theory, 188, 194, 195, 206,

207, 218

order, 185

p-adic integers, 194
partial derivative, 197
partially ordered set, 31
perfect field, 197
place, 225
polynomial ring, 17

dimension, 62, 64, 94
is Noetherian, 39, 40

polynomials
are Zariski-continuous, 44

power series, see formal power series
ring

prime avoidance lemma, 89, 90, 112,
303

prime ideal
of height 1, 69, 121, 213–215
over an ideal, 52

principal ideal domain, 62, 71, 217,
219

principal ideal theorem, 87–90, 98,
118, 192, 213, 263, 302

converse, 90
fails for non-Noetherian rings, 98
for affine domains, 118

product ordering, 129
product variety, 54, 69
pullback, 100
pushout, 100

quadratic extension, 122
quasi-compact, 53
quotient module, 34
quotient ring, 18

Rabinovich spectrum, 22
Rabinovich’s trick, 22, 272
radical ideal, 23, 25, 128, 145

computation, 128
membership test, 145

rational curve, 226
rational function field, 19, 65, 86, 222,

227
rational point, 222
R-domain, 158
reduced Gröbner basis, 136, 144
reduced ring, 28, 192, 201
Rees Ring, 180
regular function, 27, 45, 55
regular local ring, 99, 192, 192–195,

208
is an integral domain, 194
is factorial, 194, 208, 213
is normal, 194

regular ring, 192, 203, 213
regular sequence, 203
regular system of parameters, 192,

203
regularity in codimension 1, 209, 213,

223
relation ideal, 139
residue class field, 100, 180
restricted monomial ordering, 138
ring, 17
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of algebraic integers, see alge-
braic integer

of invariants, 33, 121, 121, 146,
156

of polynomials, see polynomial
ring

of regular functions, see coordi-
nate ring

ring extension, 103
ring-homomorphism, see homomor-

phism of rings

s-polynomial, 133
S2, 209
semilocal ring, 98, 207
semiring, 42
separable field extension, 195
separating subset, 41
separating transcendence basis, 195
short exact sequence, 81
simple module, 178
singleton, 44, 48, 62
SINGULAR, 136
singular locus, 195, 201–203, 206
singular point, 107, 192, 193, 195

on intersection of components,
195

singularity, see singular point
spectrum, 22
standard graded algebra, 181, 187
Sturmfels, Bernd, 13
subalgebra, 17

not finitely generated, 40, 158
subring, 17
subset topology, 44, 70
subvariety, 28, 44
support, 79, 83

Zariski-closed, 83
symmetric group, 146
system of parameters, 90, 99, 123,

179, 184, 192
regular, see regular system of pa-

rameters
systems of polynomial equations, 21,

140
syzygies, 128, 136

T1 space, 44, 239

T2 space, see Hausdorff space
tangent cone, 181, 188, 191, 193
tangent space, 197
term, 128
theology, 33
total degree ordering, 164, 165, 169,

170
total ring of fractions, 74, 106, 211
trace, 119
transcendence basis, 195
transcendence degree, 63

equals dimension, 65

Ulrich, Bernd, 13
uniformizing parameter, 208
unique factorization domain, see fac-

torial ring
universal property

of localization, 75
of normalization, 122
of the coproduct, 58
of the pushout, 100

upper semicontinuity, 153, 159

valuation ring, 208
vanishing ideal, 25
variety

affine, see affine variety

Weierstrass normal form, 206
weight vector, 144, 172
weighted degree, 169, 172
weighted degree ordering, 283
Weil divisor, 215, 219, 221, 225, 226

linearly equivalent, 219
well-ordered set, 130
Whitney umbrella, 206

Z[
√
−3], 188, 195, 206

Z[
√
±5], 104, 106, 107, 211, 218

Zariski topology, 44, 44–48, 62
on Spec(R), 46

Zariski-closed, 44
Zariski-closure, 44
Zariski-open, 44
zero ring, 17, 63
Zorn’s lemma, 21, 23, 53, 212
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