黄博士网: 教育网, AI数学手册计算器软件,电化学虚拟实验室,虚拟电化学工作站,电化学软件
首页
| 目录
| 世界
| 学科
| 文科
| 科学
| 数学
| 物理
| 化学
| 书单
| 计算
| 软件
| 帮助
| 打赏
+
+
+
=
拓扑学
二级学科, 专业名称:拓扑学, 门类/类别:理学 学科/类别:数学
在数学里,拓扑学(英语:topology),或意译为"位相几何学", 又称“连续几何学”, "柔性几何", 是一门研究拓扑空间的学科,主要研究空间内,在连续变化(如拉伸或弯曲,但不包括撕开或黏合)下维持不变的性质。在拓扑学里,重要的拓扑性质包括连通性与紧致性。
拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼兹,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与
欧拉示性数被认为是该领域最初的定理。“拓扑学”一词由利斯廷于19世纪提出,虽然直到20世纪初,拓扑空间的概念才开始发展起来。到了20世纪中叶,拓扑学已成为数学的一大分支.
▪ 3110:点集拓扑学 ▪ 3115:代数拓扑学 ▪ 3120:同伦论
▪ 3125:低维拓扑学 ▪ 3130:同调论 ▪ 3135:维数论
▪ 3140:格上拓扑学 ▪ 3145:纤维丛论 ▪ 3150:几何拓扑学
▪ 3155:奇点理论 ▪ 3160:微分拓扑学 ▪ 3199:拓扑学其他学科
◾一般拓扑学 - 建立拓扑的基础,并研究拓扑空间的性质,以及与拓扑空间相关的概念。一般拓扑学亦被称为点集拓扑学,被用于其他数学领域(如紧致性与连通性等主题)之中。
◾代数拓扑学 - 运用同调与同伦群等代数结构量测连通性的程度。
◾微分拓扑学 - 研究在微分流形上的可微函数,与微分几何密切相关,并一齐组成微分流形的几何理论。
◾几何拓扑学 - 主要研究流形与其对其他流形的嵌入。几何拓扑学中一个特别活跃的领域为“低维拓扑学”,研究四维以下的流形。几何拓扑学亦包括“纽结理论”,研究数学上的纽结。
应用
生物学
纽结理论是拓扑学的一个分支,用于生物学中,以研究DNA内特定酵素的影响。这些酵素会切断、扭曲且重新连接DNA,形成电泳速率较慢的可观察结果[15]。拓扑学也被用于演化生物学里,以表示表现型与基因型间的关系。基因型的改变对表现型的改变之影响方式,
可决定是否只需少数的突变,即可呈现出极为不同的表现型来。
计算机科学
在计算机科学, 拓扑数据分析使用代数拓扑学里的技术,以确认一个集合的大尺度结构(如确认许多点组成的云是球形或环形)。拓扑数据分析使用的主要方法为:
1.将一组数据线以单纯复形替代,并以邻近参数索引。
2.使用代数拓扑学(具体来说,是使用持续同调的理论)分析这些拓扑复形。
3.以参数形式的贝蒂数编码一组数据的持续同调,称之为“条码”。
物理学
在物理学里,拓扑学被用于量子场论及宇宙论等领域。
拓扑量子场论(或称拓扑场论)是一个用来计算拓扑不变量的量子场论。
虽然拓扑量子场论是由物理学家所发明,但亦与数学相关,与代数拓扑学里的纽结理论及四维流形之理论,以及代数几何里的模空间之理论等,均有关连。唐纳森、琼斯、维腾与孔采维奇等菲尔兹奖得主,其工作均与拓扑场论有关。
在宇宙论里,拓扑学可用来描述宇宙的整体形状。这个领域被称为时空拓扑学。
机器人
机器人的各种可能姿势可透过被称为位形空间的流形来描述。在运动规划里,会找出在位形空间内两个点间的路径。这些路径表示机器人关节等部分移至所需位置与姿势的运动。
书单
数学分析讲义
高等数学讲义
拓扑学
更多
问题 ?
请发到 论坛
参阅
- 数学 - 数学符号 - 数学索引
- 手册 = 初中数学手册 + 高中数学手册 + 数学手册 + 实用数学手册
- 初等数学 = 小学数学 + 中学数学
( 初中数学 + 高中数学 )
- 高等数学 = 基础数学 ( 代数 + 几何 + 分析 ) + 应用数学
- 公式 - 定理 - 图
- 函数图 - 曲线图 - 平面图 - 立体图 - 动画 - 画画
- 书单 = 数学 + 物理 + 化学 +
计算 + 医学 + 英语 + 教材 - QQ群下载书
- 数学手册计算器 = 数学 +
手册 + 计算器 + 计算机代数系统
- 检测 - 例题 :