对于天然的等离子体,即天体、空间和地球大气中出现的等离子体,人们不可能用地面上实验室中的一般方法主动地调节实验条件或加以控制,而主要只能通过各种日益增多的天文和空间观测手段,如光学、射电、X射线以及现代的高空飞行器和人造卫星──“空间实验室”,来接收它们所发射的各种辐射(包括各种粒子)。根据大量的观测结果,并在天体物理学和空间物理学的认识基础上,依靠已建立的等离子体物理理论和已有的各项基本实验数据,进行分析和综合,方能深入地认识这些天然等离子体的现象、本质、结构、运动和演化的规律。 要研究或利用各种人造的等离子体,必须先把它们制造出来;而要制造任何一种新的等离子体或者扩展它的性能参量,又往往必须对它先有一定的认识。由此可见,对于人造等离子体,只能采取边制造边研究,研究和制造循环结合、逐步前进的办法。例如,受控核聚变等离子体的研究,就是通过一代又一代的实验装置,来产生具有特定性能的等离子体,逐步提高它们的温度和约束程度。而每一代装置的设计,又必须在已有等离子体实验的基础上,通过理论方面的外推和定量演算,加以确定。特别是较大类型装置的建造,必须立足于各项经过试验的、成熟的工程技术,辅之以必需和能够及时开发出来的单项新技术,例如强流电子束和离子束技术。装置建成后,实验的第一步是使用各种仪器手段,对装置中产生的等离子体进行测量;测量数据要按照已有的理论进行处理,以得出装置中等离子体具体形成过程和现象细节性质的定性和定量的结果,这些就是等离子体诊断学的内容。对实验条件的调节和控制也必需有测量诊断的结果作为依据,然后方可接上现代的信息和控制技术,构成闭环的操作,从而推进实验研究。 实验结果要同参量条件相对应的理论分析进行对比校验,以判定实验及理论的前进方向。等离子体实验的因素复杂多变,难度大,精确度不高,而理论描述又远未完善;实验中意料之外的结果常会出现,而成为理论创新的前导。
粒子轨道理论和磁流体力学都属于近似方法。粒子轨道理论是把等离子体看成由大量独立的带电粒子组成的集体,只讨论单个粒子在外加电磁场中的运动特性,而略去粒子间的相互作用,也就是近似地求解粒子的运动方程。这种理论只适用于研究稀薄等离子体。在一定条件下的稠密等离子体,通过每种粒子轨道的确定,也可对等离子体运动作适当的描写,也能提供稠密等离子体的某些性质。不过,由于稠密等离子体具有很强的集体效应,粒子间耦合得很紧,因此这种理论的局限性很大。 磁流体力学不讨论单个粒子的运动,而是把等离子体当作导电的连续媒质来处理,在流体力学方程中加上电磁作用项,再和麦克斯韦方程组联立,就构成磁流体力学方程组,这是等离子体的宏观理论。它适用于研究稠密等离子体的宏观性质如平衡、宏观稳定性等问题,也适用于研究冷等离子体中的波动问题。然而,由于它不考虑粒子的速度空间分布函数,因此,它无法揭示出波粒相互作用和微观不稳定性等一系列细致和重要的性质。 等离子体按其本性是一个含有大量带电粒子的多粒子体系,所以严格的处理方法就是统计方法,即求出粒子分布函数随时间的演化过程。这种理论就是等离子体动力论,也称为等离子体的微观理论。对于波动和微观不稳定性,动力论采用符拉索夫方程来研究。对于弛豫过程和输运问题,动力论采用福克-普朗克方程。 微观理论可以得到宏观理论所得不到的许多知识。例如在波动问题方面,只有动力论才能导出朗道阻尼。至于微观不稳定性,主要讨论速度空间中偏离平衡态所引起的不稳定性,这类问题是宏观理论无法研究的。从动力论方程出发,可以导出磁流体力学的连续方程、动量方程和能量方程。