The integrals below involve `csc ax`.
1) `int csc ax dx = 1/a ln(csc ax-cot ax)=1/a ln tan ((ax)/2)`
2) `int csc^2 ax dx = -(cot ax)/a`
3) `int csc^3 ax dx = -(csc ax*cot ax)/(2a)+1/(2a)ln tan((ax)/2)`
4) `int csc^n ax*cot ax dx = -(csc^n ax)/(na)`
5) `int 1/(csc ax) dx = -(cos ax)/a`
6) `int x*csc ax dx = 1/a^2{ax+(ax)^3/18+(7(ax)^5)/1800+...+(2(2^(2n-1)-1)B_n(ax)^(2n+1))/((2n+1)!)+...}`
7) `int (csc ax)/x dx = -1/(ax)+(ax)/6+(7(ax)^3)/1080+...+(2(2^(2n-1)-1)B_n(ax)^(2n-1))/((2n-1)(2n)!)+...`
8) `int x*csc^2 ax dx = -(x cot ax)/a+1/a^2 ln sin ax`
9) `int 1/(q+p csc ax) dx = x/q-p/qint 1/(p+q sin ax) dx`
**[See integral #22 in the table involving `sin ax`]
10) `int csc^n ax dx = -(csc^(n-2)ax*cot ax)/(a(n-1))+(n-2)/(n-1) int csc^(n-2) ax dx`