The integrals below involve `ln x`
1) `int ln x dx = x lnx-x`
2) `int x lnx dx = x^2/2(ln x-1/2)`
3) `int x^m lnx dx = x^(m+1)/(m+1)(ln x-1/(m+1))`
**[If `m=-1`, see integral #4 in this table]
4) `int ln x/x dx = 1/2 ln^2x`
5) `int ln x/x^2 dx = -ln x/x-1/x`
6) `int ln^2x dx = x ln^2x-2x ln x+2x`
7) `int ln^nx/x dx = (ln^(n+1)x)/(n+1)`
**[If `n=-1`, see integral #8 in this table]
8) `int 1/(x lnx) dx = ln(lnx)`
9) `int 1/ln x dx = ln(ln x)+ln x+ln^2x/(2*2!)+ln^3x/(3*3!)+...`
10) `int x^m/ln x dx = ln(ln x)+(m+1)ln x+((m+1)^2ln^2x)/(2*2!)+((m+1)^3ln^3 x)/(3*3!)+...`
11) `int ln^nx dx = x*ln^n x-nint ln^(n-1)x dx`
12) `int x^m ln^n x dx = (x^(m+1)ln^n x)/(m+1)-n/(m+1)int x^m ln^(n-1) x dx`
**[If `m=-1`, see integral #7 in this table]
13) `int ln(x^2+a^2) dx = x*ln(x^2+a^2)-2x+2a*tan^-1(x/a)`
14) `int ln(x^2-a^2) dx = x*ln(x^2-a^2)-2x+a*ln((x+a)/(x-a))`
15) `int x^m ln(x^2+-a^2) dx = (x^(m+1)ln(x^2+-a^2))/(m+1)-2/(m+1)int x^(m+2)/(x^2+-a^2) dx`