The integrals below involve `sinh ax` and `cosh ax`.
1) `int sinh ax*cosh ax dx = (sinh^2 ax)/(2a)`
2) `int sinh px*cosh qx dx = (cosh(p+q)x)/(2(p+q))+(cosh(p-q)x)/(2(p-q))`
3) `int sinh^n ax*cosh ax dx = (sinh^(n+1)ax)/((n+1)a)`
**[If `n=-1`, see integral #1 in the table involving `coth ax`]
4) `int cosh^n ax*sinh ax dx = (cosh^(n+1)ax)/((n+1)a)`
**[If `n=-1`, see integral #1 in the table involving `tanh ax`]
5) `int sinh^2 ax*cosh^2 ax dx = (sinh 4ax)/(32a)-x/8`
6) `int 1/(sinh ax*cosh ax) dx = 1/a ln tanh ax`
7) `int 1/(sinh^2 ax*cosh ax) dx = -1/a tan^-1 sinh ax-(\text{csch}\ ax)/a`
8) `int 1/(sinh ax*cosh^2ax) dx = (\text{sech}\ ax)/a+1/a ln tanh((ax)/2)`
9) `int 1/(sinh^2 ax*cosh^2 ax) dx = -(2 coth 2ax)/a`
10) `int (sinh^2 ax)/(cosh ax) dx = (sinh ax)/a-1/atan^-1 sinh ax`
11) `int (cosh^2 ax)/(sinh ax) dx = (cosh ax)/a+1/a ln tanh ((ax)/2)`
12) `int 1/(cosh ax (1+sinh ax)) dx = 1/(2a) ln ((1+ sinh ax)/(cosh ax))+1/a tan^-1 e^(ax)`
13) `int 1/(sinh ax(cosh ax+1)) dx = 1/(2a) ln tanh ((ax)/2)+1/(2a(cosh ax+1))`
14) `int 1/(sinh ax(cosh ax-1)) dx = -1/(2a) ln tanh ((ax)/2)-1/(2a(cosh ax-1))`