The integrals below involve `csch ax`.
1) `int csch ax dx = 1/a ln tanh ((ax)/2)`
2) `int csch^2 ax dx = -(coth ax)/a`
3) `int csch^3 ax dx = -(csch ax*coth ax)/(2a)-1/(2a) ln tanh ((ax)/2)`
4) `int csch^n ax*coth ax dx = -(csch^n ax)/(na)`
5) `int 1/(csch ax) dx = 1/a cosh ax`
6) `int x csch ax dx = 1/a^2 {ax-(ax)^3/18+(7(ax)^5)/1800+...+(2(-1)^n(2^(2n-1)-1)B_n(ax)^(2n+1))/((2n+1)!)+...}`
7) `int x csch^2 ax dx = -(x coth ax)/a+1/a^2 ln sinh ax`
8) `int (csch ax)/x dx = -1/(ax)-(ax)/6+(7(ax)^3)/1080+...((-1)^n2(2^(2n-1)-1)B_n(ax)^(2n-1))/((2n-1)(2n)!)+...`
9) `int 1/(q+p csch ax) dx = x/q-p/q int 1/(p+q sinh ax) dx`
**[See integral #14 in the table involving `sinh ax`]
10) `int csch^n ax dx = (-csch^(n-2) ax*coth ax)/(a(n-1))-(n-2)/(n-1) int csch^(n-2) ax dx`