The integrals below involve `sqrt(ax+b)` and `sqrt(px+q)` appearing together in the integrand.
1) `int 1/(sqrt((ax+b)(px+q))) dx = 2/sqrt(ap) ln (sqrt(a(px+q))+sqrt(p(ax+b)))`
OR `= 2/sqrt(-ap) tan^-1 sqrt((-p(ax+b))/(a(px+q)))`
2) `int x/sqrt((ax+b)(px+q)) dx = sqrt((ax+b)(px+q))/(ap)-(bp+aq)/(2ap) int 1/(sqrt((ax+b)(px+q))) dx`
3) `int sqrt((ax+b)(px+q)) dx = (2apx+bp+aq)/(4ap) sqrt((ax+b)(px+q)) - (bp-aq)^2/(8ap) int 1/(sqrt((ax+b)(px+q))) dx`
4) `int sqrt((px+q)/(ax+b)) dx = sqrt((ax+b)(px+q))/a + (aq-bp)/(2a) int 1/(sqrt((ax+b)(px+q))) dx`
5) `int 1/((px+q)sqrt((ax+b)(px+q))) dx = (2sqrt(ax+b))/((aq-bp)sqrt(px+q))`