3. 反双曲函数的定义、图形与特征 3. Definition of inverse hyperbolic functions, graphics and features

[ 反双曲函数的定义及其对数表达式 ] [Definition inverse hyperbolic function and its logarithmic expression]

  Letter     Number 
  Remember     Number 

对数表达式 Logarithmic expression

反双曲正弦 Inverse hyperbolic sine

x = sh y , If x = sh y,

y = Ar sh x Then y = Ar sh x

反双曲余弦 Inverse hyperbolic cosine

x = If x = ch y , ch y,

y = Ar ch x Then y = Ar ch x

反双曲正切 Inverse hyperbolic tangent

x = th y , If x = th y,

y = Ar th x Then y = Ar th x

反双曲余切 Inverse hyperbolic cotangent

x = cth y , If x = cth y,

y = Ar cth x Then y = Ar cth x

反双曲正割 Inverse Hyperbolic Secant

x = sech y , If x = sech y,

y = Ar sech x Then y = Ar sech x

反双曲余割 Inverse hyperbolic cosecant

x = csch x , If x = csch x,

y = Ar csch x Then y = Ar csch x

 [ 反双曲函数的图形与特征 ] [Graphics and features inverse hyperbolic function] 
    反双曲正弦曲线反双曲余弦曲线 Inverse hyperbolic sine curve inverse hyperbolic cosine curve 
     

  

 曲线关于原点对称 .  曲线关于x轴对称 . Curve symmetric about the origin of the curve on the x-axis symmetry. 
    拐点同曲线对称中心 ): Inflection (with the curve center of symmetry):                    顶点 Vertex:  
     该点切线斜率为 1 The slope of a tangent point 
    反双曲正切曲线 Inverse hyperbolic tangent curve                                     反双曲余切曲线 Inverse hyperbolic cotangent curve 
     

   

    曲线关于原点对称 . 曲线关于原点对称 . Curve symmetrical about the origin curve symmetrical about the origin. 
    拐点同曲线对称中心 ): 不连续点 Inflection (curve with the center of symmetry): discontinuity:  
     该点切线斜率为 1 渐近线 The slope of a tangent point asymptote:  
  反双曲正割曲线反双曲余割曲线 Inverse hyperbolic secant hyperbolic cosecant curve curve 
     

   

曲线关于x轴对称 . 曲线关于原点对称 . Curve on the x-axis symmetry. Curve symmetric about the origin.

    顶点 Vertex: 不连续点 Discontinuous points:

    拐点 Inflection point: 渐近线 Asymptote:

        And