M. M. Cohen

A Course in SimpleHomotopy Theory

Springer-Verlag New York•Heidelberg•Berlin

Marshall M. Cohen

Associate Professor of Mathematics, Cornell University, Ithaca

$$
\begin{gathered}
H 612 \\
7 \\
C 68 \\
\text { CI } \\
E C K
\end{gathered}
$$

No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.
© 1973 by Springer-Verlag New York Inc.
Library of Congress Catalog Card Number 72-93439.
Printed in the United States of America.

ISBN 0-387-90055-1 Springer Verlag New York Heidelberg Berlin (soft cover) ISBN 0-387-90056-X Springer-Verlag New York Heidelberg Berlin (hard cover) ISBN 3-540-90055-1 Springer-Verlag Berlin Heidelberg New York (soft cover)

To
Avis

PREFACE

This book grew out of courses which I taught at Cornell University and the University of Warwick during 1969 and 1970. I wrote it because of a strong belief that there should be readily available a semi-historical and geometrically motivated exposition of J. H. C. Whitehead's beautiful theory of simple-homotopy types; that the best way to understand this theory is to know how and why it was built. This belief is buttressed by the fact that the major uses of, and advances in, the theory in recent times-for example, the s-cobordism theorem (discussed in §25), the use of the theory in surgery, its extension to non-compact complexes (discussed at the end of §6) and the proof of topological invariance (given in the Appendix)-have come from just such an understanding.

A second reason for writing the book is pedagogical. This is an excellent subject for a topology student to "grow up" on. The interplay between geometry and algebra in topology, each enriching the other, is beautifully illustrated in simple-homotopy theory. The subject is accessible (as in the courses mentioned at the outset) to students who have had a good onesemester course in algebraic topology. I have tried to write proofs which meet the needs of such students. (When a proof was omitted and left as an exercise, it was done with the welfare of the student in mind. He should do such exercises zealously.)

There is some new material here ${ }^{1}$-for example, the completely geometric definition of the Whitehead group of a complex in $\S 6$, the observations on the counting of simple-homotopy types in §24, and the direct proof of the equivalence of Milnor's definition of torsion with the classical definition, given in §16. But my debt to previous works on the subject is very great. I refer to [Kervaire-Maumary-deRham], [Milnor 1] and above all [J. H. C. Whitehead $1,2,3,4]$. The reader should turn to these sources for more material, alternate viewpoints, etc.

I am indebted to Doug Anderson and Paul Olum for many enlightening discussions, and to Roger Livesay and Stagg Newman for their eagle-eyed reading of the original manuscript. Also I would like to express my appreciation to Arletta Havlik, Esther Monroe, Catherine Stevens and Dolores Pendell for their competence and patience in typing the manuscript.

My research in simple-homotopy theory was partly supported by grants from the National Science Foundation and the Science Research Council of Great Britain. I and my wife and my children are grateful to them.

Cornell University Marshall M. Cohen
Ithaca, New York
February, 1972

[^0]
TABLE OF CONTENTS

Preface vii
I. Introduction
§1. Homotopy equivalence 1
§2. Whitehead's combinatorial approach to homotopy theory. 2
§3. CW complexes 4
II. A Geometric Approach to Homotopy Theory
§4. Formal deformations 14
§5. Mapping cylinders and deformations 16
§6. The Whitehead group of a CW complex 20
§7. Simplifying a homotopically trivial CW pair 23
§8. Matrices and formal deformations 27
III. Algebra
§9. Algebraic conventions 36
§10. The groups $\mathrm{K}_{\mathrm{G}}(\mathrm{R})$ 37
§11. Some information about Whitehead groups 42
§12. Complexes with preferred bases [= (R,G)-complexes] 45
§13. Acyclic chain complexes 47
§14. Stable equivalence of acyclic chain complexes 50
§15. Definition of the torsion of an acyclic complex 52
§16. Milnor's definition of torsion 54
§17. Characterization of the torsion of a chain complex 56
§18. Changing rings 58
IV. Whitehead Torsion in the CW Category
§19. The torsion of a CW pair - definition 62
§20. Fundamental properties of the torsion of a pair 67
§21. The natural equivalence of $W h(L)$ and $\oplus W h\left(\pi_{1} L_{j}\right)$ 70
§22. The torsion of a homotopy equivalence 72
§23. Product and sum theorems 76
§24. The relationship between homotopy and simple-homotopy 79
§25. Invariance of torsion, h-cobordisms and the Hauptvermutung 81
V. Lens Spaces
§26. Definition of lens spaces 85
§27. The 3-dimensional spaces $L_{\mathrm{p}, \mathrm{q}}$ 87
§28. Cell structures and homology groups 89
§29. Homotopy classification 91
§30. Simple-homotopy equivalence of lens spaces 97
§31. The complete classification 100
Appendix: Chapman's proof of the topological invariance of Whitehead Torsion 102
Selected Symbols and Abbreviations 107
Bibliography 109
Index 113

A Course in Simple-Homotopy Theory

Chapter I

Introduction

This chapter describes the setting which the book assumes and the goal which it hopes to achieve.

The setting consists of the basic facts about homotopy equivalence and CW complexes. In $\S 1$ and $\S 3$ we shall give definitions and state such facts, usually without formal proof but with references supplied.

The goal is to understand homotopy theory geometrically. In $\S 2$ we describe how we shall attempt to formulate homotopy theory in a particularly simple way. In the end (many pages hence) this attempt fails, but the theory which has been created in the meantime turns out to be rich and powerful in its own right. It is called simple-homotopy theory.

§1. Homotopy equivalence and deformation retraction

We denote the unit interval $[0,1]$ by I. If X is a space, 1_{X} is the identity function on X.

If f and g are maps (i.e., continuous functions) from X to Y then f is homotopic to g, written $f \simeq g$, if there is a map $F: X \times I \rightarrow Y$ such that $F(x, 0)=f(x)$ and $F(x, 1)=g(x)$, for all $x \in X$.
$f: X \rightarrow Y$ is a homotopy equivalence if there exists $g: Y \rightarrow X$ such that $g f \simeq 1_{X}$ and $f g \simeq 1_{Y}$. We write $X \simeq Y$ if X and Y are homotopy equivalent.

A particularly nice sort of homotopy equivalence is a strong deformation retraction. If $X \subset Y$ then $D: Y \rightarrow X$ is a strong deformation retraction if there is a map $F: Y \times I \rightarrow Y$ such that
(1) $\mathrm{F}_{0}=1_{Y}$
(2) $F_{t}(x)=x$ for all $(x, t) \in X \times I$
(3) $F_{1}(y)=D(y)$ for all $y \in Y$.
(Here $F_{t}: Y \rightarrow Y$ is defined by $F_{t}(y)=F(y, t)$.) One checks easily that D is a homotopy equivalence, the homotopy inverse of which is the inclusion map $i: X \subset Y$. We write $Y \succeq X$ if there is a strong deformation retraction from Y to X.

If $f: X \rightarrow Y$ is a map then the mapping cylinder M_{f} is gotten by taking the disjoint union of $X \times I$ and Y (denoted $(X \times I) \oplus Y)$ and identifying $(x, 1)$ with $f(x)$. Thus

$$
M_{f}=\frac{(X \times I) \oplus Y}{(x, 1)=f(x)}
$$

The identification map $(X \times I) \oplus Y \rightarrow M_{f}$ is always denoted by q. Since
$q \mid X \times[0,1)$ and $q \mid Y$ are embeddings, we usually write $q(X \times 0)=X$ and $q(Y)=Y$ when no confusion can occur. We also write $q(z)=[z]$ if $z \in(X \times I) \oplus Y$.
(1.1) If $f: X \rightarrow Y$ then the map $p: M_{f} \rightarrow Y$, given by

$$
\begin{array}{ll}
p[x, t]=[x, 1]=[f(x)], & t<1 \\
p[y]=[y] & y \in Y
\end{array}
$$

is a strong deformation retraction.
The proof consists of "sliding along the rays of $M_{\text {. }}$." (See [HU, p. 18] for details.)
(1.2) Suppose that $f: X \rightarrow Y$ is a map. Let $i: X \rightarrow M_{f}$ be the inclusion map. Then
(a) The following is a commutative diagram

(b) i is a homotopy equivalence iff f is a homotopy equivalence.

Part (a) is clear and (b) follows from this and (1.1).

§2. Whitehead's combinatorial approach to homotopy theory

Unfortunately, when given two spaces it is very hard to decide whether they are homotopy equivalent. For example, consider the 2-dimensional complex H-"the house with two rooms"-pictured at the top of page 3. H is built by starting with the wall $S^{1} \times I$, adding the roof and ground floor (each a 2 -disk with the interior of a tangent 2-disk removed), adding a middle floor (a 2-disk with the interiors of two 2-disks removed) and finally sewing in the cylindrical walls A and B. As indicated by the arrows, one enters the lower room from above and the upper room from below. Although there seems to be no way to start contracting it, this space is actually contractible (homotopy equivalent to a point). It would be nice if homotopy theory could tell us why in very simple terms.

In the 1930's one view of how topology ought to develop was as combinatorial topology. The homeomorphism classification of finite simplicial complexes had been attacked (most significantly in [Alexander]) by introducing elementary changes or "moves", two complexes K and L being "combinatorially equivalent" if one could get from K to L in a finite sequence of such moves. It is not surprising that, in trying to understand homotopy equivalence, J. H. C. Whitehead-in his epic paper, "Simplicial spaces, nucleii and

m-groups"-proceeded in the same spirit. We now describe the notions which he introduced.

If K and L are finite simplicial complexes we say that there is an elementary simplicial collapse from K to L if L is a subcomplex of K and $K=L \cup a A$ where a is a vertex of K, A and $a A$ are simplexes of K, and $a A \cap L=a \dot{A}$. Schematically,

We say that K collapses simplicially to L--written $K \searrow L$-if there is a finite sequence of elementary simplicial collapses $K=K_{0} \rightarrow K_{1} \rightarrow \ldots \rightarrow K_{q}=L$. For example, any simplicial cone collapses simplicially to a point.

If $K \unlhd L$ we also write $L \leadsto K$ and say that L expands simplicially to K. We say that K and L have the same simple-homotopy type ${ }^{2}$ if there is a finite

[^1]sequence $K=K_{0} \rightarrow K_{1} \rightarrow \ldots \rightarrow K_{q}=L$ where each arrow represents a simplicial expansion or a simplicial collapse．

Since an elementary simplicial collapse easily determines a strong deforma－ tion retraction（unique up to homotopy）it follows that，if K and L have the same simple－homotopy type，they must have the same homotopy type． Whitehead asked

If two finite simplicial complexes have the same homotopy type，do they necessarily have the same simple－homotopy type？

Despite the apparent restrictiveness of expanding and collapsing，it is quite conceivable that the answer to this question might be yes．To illustrate this and to show that simple－homotopy type is a useful notion，let us return to the house with two rooms．

Think of H as being triangulated as a subcomplex of the solid cylinder $D^{2} \times I$ where $D^{2} \times I$ is triangulated so that $D^{2} \times I 乌 D^{2} \times 0 乌 *$ （＝point）．Now，if the solid cylinder were made of ideally soft clay，it is clear that the reader could take his finger，push down through cylinder A，enter the solid lower half of $D^{2} \times I$ and，pushing the clay up against the walls， ceiling and floor，clear out the lower room in H ．Symmetrically he could then push up the solid cylinder B，enter the solid upper half and clear it out． Having done this，only the shell H would remain．Thus we can see（although writing a rigorous proof would be unpleasant）that

$$
* s\left(D^{2} \times I\right) \searrow H
$$

Hence H has the same simple－homotopy type as a point and，a fortiori，H is contractible．

So we shall study the concept of simple－homotopy type，because it looks like a rich tool in，its own right and because，lurking in the background，there is the thought that it may be identical with homotopy type．

In setting out it is useful to make one technical change．Simplicial com－ plexes are much too hard to deal with in this context．Whitehead＇s early papers［J．H．C．Whitehead 1，2］are a marvel in that，besides the central concepts introduced，he overcame an enormous number of difficult technical problems related to the simplicial category．These technical difficulties later led him to create CW complexes［J．H．C．Whitehead 3］and it is in terms of these that he brought his theory to fruition in［J．H．C．Whitehead 4］．In the next section we summarize the basic facts about CW complexes．In Chapter II the expanding and collapsing operations are defined in the CW category and it is in this category that we set to work．

§3．CW complexes

In this section we set the terminology and develop the theorems which will be used in the sequel．Because of the excellent treatments of CW complexes
which exist (especially [SChubert] and [G. W. Whitehead]) proofs of standard facts which will be used in a standard fashion are sometimes omitted. The reader is advised to read this section through (3.6) now and to use the rest of the section for reference purposes as the need arises.

A $C W$ complex K is a Hausdorff space along with a family, $\left\{e_{\alpha}\right\}$, of open topological cells of various dimensions such that-letting $K^{j}=\bigcup\left\{e_{\alpha} \mid \operatorname{dim} e_{\alpha}\right.$ $\leq j\}$-the following conditions are satisfied:

CW 1: $K=\bigcup_{\alpha} e_{\alpha}$, and $e_{\alpha} \cap e_{\beta}=\varnothing$ whenever $\alpha \neq \beta$.
CW 2: For each cell e_{α} there is a map $\varphi_{\alpha}: Q^{n} \rightarrow K$, where Q^{n} is a topological ball (homeomorph of $I^{n}=[0,1]^{n}$) of dimension $n=\operatorname{dim} e_{\alpha}$, such that
(a) $\varphi_{\alpha} \mid Q^{n}$ is a homeomorphism onto e_{α}.
(b) $\varphi_{\alpha}\left(\partial Q^{n}\right) \subset K^{n-1}$

CW 3: Each $\bar{e}_{\alpha_{0}}$ is contained in the union of finitely many e_{α}.
CW 4: A set $A \subset K$ is closed in K iff $A \cap \bar{e}_{\alpha}$ is closed in \bar{e}_{α} for all e_{α}.
Notice that, when K has only finitely many cells, CW 3 and CW 4 are automatically satisfied.

A map $\varphi: Q^{n} \rightarrow K$, as in CW 2, is called a characteristic map. Clearly such a map φ gives rise to a characteristic $\operatorname{map} \varphi^{\prime}: I^{n} \rightarrow K$, simply by setting $\varphi^{\prime}=\varphi h$ for some homeomorphism $h: I^{n} \rightarrow Q^{n}$. Thus we usually restrict our attention to characteristic maps with domain I^{n}, although it would be inconvenient to do so exclusively. Another popular choice of domain is the n-ball $J^{n}=$ Closure $\left(\partial I^{n+1}-I^{n}\right)$.

If $\varphi: Q^{n} \rightarrow K$ is a characteristic map for the cell e then $\varphi \mid \partial Q^{n}$ is called an attaching map for e.

A subcomplex of a CW complex K is a subset L along with a subfamily $\left\{e_{\beta}\right\}$ of the cells of K such that $L=\bigcup e_{\beta}$ and each \bar{e}_{β} is contained in L. It turns out then that L is a closed subset of K and that (with the relative topology) L and the family $\left\{e_{\beta}\right\}$ constitute a CW complex. If L is a subcomplex of K we write $L<K$ and call (K, L) a $C W$ pair. If e is a cell of K which does not lie in (and hence does not meet) L we write $e \in K-L$.

Two CW complexes K and L are isomorphic (denoted $K \cong L$) if there exists a homeomorphism h of K onto L such that the image of every cell of K is a cell of L. In these circumstances h is called a CW isomorphism. Clearly h^{-1} is also a CW isomorphism.

An important property of CW pairs is the homotopy extension property:
(3.1) Suppose that $L<K$. Given a map $f: K \rightarrow X$ (X any space) and a homotopy $f_{t}: L \rightarrow X$ such that $f_{0}=f \mid L$ then there exists a homotopy $F_{t}: K \rightarrow X$ such that $F_{0}=f$ and $F_{t}\left|L=f_{t}\right| L, 0 \leq t \leq 1$. (Reference: [SChubert, p. 197]).

As an application of (3.1) we get
(3.2) If $L<K$ then the following assertions are equivalent:
(1) $K \preceq L$
(2) The inclusion map $i: L \subset K$ is a homotopy equivalence.
(3) $\pi_{n}(K, L)=0$ for all $n \leq \operatorname{dim}(K-L)$.

COMMENT ON PROOF: The implications (1) $\Rightarrow(2)$ and $(2) \Rightarrow(3)$ are elementary. The implication (3) $\Rightarrow(1)$ is proved inductively, using (3) and the homotopy extension property to construct first a homotopy (rel L) of 1_{K} to a map $f_{0}: K \rightarrow K$ which takes K^{0} into L, then to construct a homotopy (rel L) of f_{0} to $f_{1}: K \rightarrow K$ such that $f_{1}\left(K^{1}\right) \subset L$, and so on.

If K_{0} and K_{1} are CW complexes, a map $f: K_{0} \rightarrow K_{1}$ is cellular if $f\left(K_{0}^{n}\right) \subset K_{1}^{n}$ for all n. More generally, if (K_{0}, L_{0}) and (K_{1}, L_{1}) are CW pairs, a map $f:\left(K_{0}, L_{0}\right) \rightarrow\left(K_{1}, L_{1}\right)$ is cellular if $f\left(K_{0}^{n} \cup L_{0}\right) \subset\left(K_{1}^{n} \cup L_{1}\right)$ for all n. Notice that this does not imply that $f \mid L_{0}: L_{0} \rightarrow L_{1}$ is cellular. As a typical example, suppose that I^{n} is given a cell structure with exactly one n-cell and suppose that $f: I^{n} \rightarrow K$ is a characteristic map for some cell e. Then $f:\left(I^{n}, \partial I^{n}\right)$ $\rightarrow\left(K, K^{n-1}\right)$ is cellular while $f \mid \partial I^{n}$ need not be cellular.

If $f \simeq g$ and g is cellular then g is called a cellular approximation to f.
(3.3) (The cellular approximation theorem) Any map between CW pairs, $f:\left(K_{0}, L_{0}\right) \rightarrow\left(K_{1}, L_{1}\right)$ is homotopic (rel. $\left.L_{0}\right)$ to a cellular map. (Reference: [SChubert, p. 198]).

If A is a closed subset of X and $f: A \rightarrow Y$ is a map then $X \cup_{f} Y$ is the identification space $[X \oplus Y / x=f(x)$ if $x \in A]$.
(3.4) Suppose that $K_{0}<K$ and $f: K_{0} \rightarrow L$ is a map such that, given any cell e of $K-K_{0}, f\left(\bar{e} \cap K_{0}\right) \subset L^{n-1}$ where $\operatorname{dim} e=n$. Then $K \cup_{f} L$ is a CW complex whose cells are those of $K-K_{0}$ and those of L. (More precisely the cells of $K \cup_{f} L$ are of the form $q(e)$ where e is an arbitrary cell of $K-K_{0}$ or of L and $q: K \oplus L \rightarrow K \cup L$ is the identification map. We suppress q whenever possible).

Using (3.4) and the natural cell structure on $K \times I$ we get
(3.5) If $f: K \rightarrow L$ is a cellular map then the mapping cylinder M_{f} is a CW complex with cells which are either cells of L or which are of the form $e \times 0$ or $e \times(0,1)$, where e is an arbitrary cell of K.

Combining (1.2), (3.2) and (3.5) we have
(3.6) A cellular map $f: K \rightarrow L$ is a homotopy equivalence if and only if $M_{f} \leftrightharpoons K$.

Cellular homology theory
If (K, L) is a CW pair, the cellular chain complex $C(K, L)$ is defined by letting $C_{n}(K, L)=H_{n}\left(K^{n} \cup L, K^{n-1} \cup L\right)$ and letting $d_{n}: C_{n}(K, L) \rightarrow C_{n-1}(K, L)$ be the boundary operator in the exact sequence for singular homology of the triple ($K^{n} \cup L, K^{n-1} \cup L, K^{n-2} \cup L$).
$C_{n}(K, L)$ is usually thought of as "the free module generated by the n-cells of $K-L$ ". To make this precise, let us adopt, now and forever, standard orientations ω_{n} of $I^{n}(n=0,1,2, \ldots)$ by choosing a generator ω_{0} of $H_{0}\left(I^{0}\right)$ and stipulating that the sequence of isomorphisms

$$
H_{n-1}\left(I^{n-1}, \partial I^{n-1}\right) \xrightarrow{\text { excision }} H_{n-1}\left(\partial I^{n}, J^{n-1}\right) \stackrel{\sim}{\longleftarrow} H_{n-1}\left(\partial I^{n}\right) \stackrel{\partial}{\longleftarrow} H_{n}\left(I^{n}, \partial I^{n}\right)
$$

takes ω_{n-1} onto $-\omega_{n}$. (Here $I^{n-1} \equiv I^{n-1} \times 0$). If $\varphi_{\alpha}: I^{n} \rightarrow K$ is a characteristic map for $e_{\alpha} \in K-L$ we denote $\left\langle\varphi_{\alpha}\right\rangle=\left(\varphi_{\alpha}\right)_{*}\left(\omega_{n}\right)$ where $\left(\varphi_{\alpha}\right)_{*}$: $H_{n}\left(I^{n}, \partial I^{n}\right) \rightarrow H_{n}\left(K^{n} \cup L, K^{n-1} \cup L\right)$ is the induced map. Then the situation is described by the following two lemmas.
(3.7) Suppose that a characteristic map φ_{α} is chosen for each n-cell e_{α} of $K-L$. Denote $K_{j}=K^{j} \cup L$. Then
(a) $H_{j}\left(K_{n}, K_{n-1}\right)=0$ if $j \neq n$
(b) $H_{n}\left(K_{n}, K_{n-1}\right)$ is free with basis $\left\{\left\langle\varphi_{\alpha}\right\rangle \mid e_{\alpha}^{n} \in K-L\right\}$
(c) If c is a singular n-cycle of $K \bmod L$ representing $\gamma \in H_{n}\left(K_{n}, K_{n-1}\right)$ and if $|c|$ does not include the n-cell $e_{\alpha_{0}}$ then $n_{\alpha_{0}}=0$ in the expression $\gamma=\sum_{\alpha} n_{\alpha}\left\langle\varphi_{\alpha}\right\rangle$. (Reference: [G. W. Whitehead, p. 58] and [Schubert, p. 300]).

A cellular map $f:(K, L) \rightarrow\left(K^{\prime}, L^{\prime}\right)$ clearly induces a chain map $f_{*}: C(K, L) \rightarrow C\left(K^{\prime}, L^{\prime}\right)$ and thus a homomorphism, also called f_{*}, from $H(C(K, L))$ to $H\left(C\left(K^{\prime}, L^{\prime}\right)\right)$. Noting this, the cellular chain complex plays a role in the category of CW complexes analogous to that played by the simplicial chain complex in the simplicial category because of
(3.8) There is a natural equivalence T between the "cellular homology" functor and the "singular homology" functor. In other words, for every CW pair (K, L) there is an isomorphism $T_{K, L}: H(C(K, L)) \rightarrow H(|K|,|L|)$, and for every cellular map $f:(K, L) \rightarrow\left(K^{\prime}, L^{\prime}\right)$ the following diagram commutes

The isomorphism $T_{K, L}$ takes the homology class of a cycle $\sum_{i} n_{i}\left\langle\varphi_{\alpha_{i}}\right\rangle \in C_{n}(K, L)$ onto the homology class of the cycle $\sum_{i} n_{i} \bar{\varphi}_{\alpha_{i}} \in S_{n}(K, L)$, where $\bar{\varphi}_{\alpha_{i}}$ is a singular chain representing $\left\langle\varphi_{\alpha_{i}}\right\rangle$. (Reference: [G.W. Whitehead, p. 65] and [SChUbert, p. 305]).
(3.9) Suppose that $f: K \rightarrow L$ is a cellular map with mapping cylinder M_{f}. Then $C\left(M_{f}, K\right)$ is naturally isomorphic to the chain complex (\mathscr{C}, ∂)-"the mapping cone" of $f_{*}: C(K) \rightarrow C(L)$-which is given by

$$
\begin{gathered}
\mathscr{C}_{n}=C_{n-1}(K) \oplus C_{n}(L) \\
\partial_{n}(x+y)=-d_{n-1}(x)+\left[f_{*}(x)+d_{n}^{\prime}(y)\right], \quad x \in C_{n-1}(K), \quad y \in C_{n}(L)
\end{gathered}
$$

where d and d^{\prime} are the boundary operators in $C(K)$ and $C(L)$ respectivel y.
By "naturally isomorphic" we mean that, for each n, the isomorphism constructed algebraically realizes the correspondence between n-cells of $M_{f}-K$ and cells of $K^{n-1} \cup L^{n}$ given by $e^{n-1} \times(0,1) \leftrightarrow e^{n-1}$ and $u^{n} \leftrightarrow u^{n}$ (e^{n-1} a cell of K, u^{n} a cell of L).

PROOF OF (3.9): Let $\left\{e_{\alpha}\right\}$ be the cells of K and suppose that characteristic maps φ_{α} have been chosen. Then $(K \times I, K \times 0)$ is a CW pair with relative cells of the form $e_{\alpha} \times 1$ and $e_{\alpha} \times(0,1)$ possessing the obvious characteristic maps $\varphi_{\alpha, 1}$ and $\varphi_{\alpha} \times 1_{I}$. If $\operatorname{dim} e_{\alpha}=n-1$, let $\left\langle\varphi_{\alpha}\right\rangle=\varphi_{\alpha, 1 *}\left(\omega_{n-1}\right)$ and $\left\langle\varphi_{\alpha}\right\rangle \times I=\left(\varphi_{\alpha} \times 1_{I}\right)_{*}\left(\omega_{n}\right) \quad$ be the corresponding basis elements of $C(K \times I, K \times 0)$. In general, if $c=\sum_{i} n_{i}\left\langle\varphi_{\alpha_{i}}\right\rangle$ is an arbitrary element of $C_{n-1}(K)$, set $c \times I=\sum_{i} n_{i}\left(\left\langle\varphi_{\alpha_{i}}\right\rangle \times I\right)$. In the product cell structure for I^{n} we have $\omega_{n} \in C_{n}\left(I^{n}\right)$ and (exercise-induction on n suggested) $d \omega_{n}=\sum_{j=1}^{n}(-1)^{n-j}$ $\left(i_{j, 1 *} \omega_{n-1}-i_{j, 0 *} \omega_{n-1}\right) \in C_{n-1}\left(I^{n}\right)$ where $i_{j, \varepsilon}: I^{n-1} \rightarrow I^{n}$ is the characteristic $\operatorname{map} i_{j, \varepsilon}\left(t_{1}, \ldots, t_{n-1}\right)=\left(t_{1}, \ldots, t_{j-1}, \varepsilon, t_{j}, \ldots, t_{n-1}\right), \varepsilon=0,1$. This gives $d \omega_{n}=$ $i_{n, 1 *} \omega_{n-1}-i_{n, 0 *} \omega_{n-1}-\left(d \omega_{n-1} \times I\right)$. Interpreted in $C\left(I^{n}, I^{n-1} \times 0\right)$ this becomes $d \omega_{n}=i_{n, 1 *} \omega_{n-1}-\left(d \omega_{n-1} \times I\right)$, and applying the chain map $\left(\varphi_{\alpha} \times 1_{I}\right)_{*}$ we get

$$
\left.\left.d\left(\left\langle\varphi_{\alpha}\right\rangle \times I\right)=\left\langle\varphi_{\alpha}\right\rangle-(d\rangle \varphi_{\alpha}\right\rangle \times I\right) \in C_{n-1}(K \times I, K \times 0) .
$$

Let $\left\{u_{\beta}\right\}$ be the cells of L, with characteristic maps ψ_{β}. Then $q_{*}: C(K \times I, K \times 0) \oplus C(L) \rightarrow C\left(M_{f}, K\right)$, and $C\left(M_{f}, K\right)$ has as basis-from the natural cell structure of M_{f}-the set

$$
\left\{q_{*}\left(\left\langle\varphi_{\alpha}\right\rangle \times I\right) \mid e_{\alpha} \in K\right\} \cup\left\{q_{*}\left\langle\psi_{\beta}\right\rangle \mid u_{\beta} \in L\right\},
$$

Define a degree-zero homomorphism $T: C\left(M_{f}, K\right) \rightarrow \mathscr{C}$ by stipulating that $T\left(q_{*}\left(\left\langle\varphi_{\alpha}\right\rangle \times I\right)\right)=\left\langle\varphi_{\alpha}\right\rangle$ and $T\left(q_{*}\left\langle\psi_{\beta}\right\rangle\right)=\left\langle\psi_{\beta}\right\rangle$. Notice that (with the obvious identifications) $T q_{*} \mid C(K \times 1)=f_{*}: C(K) \rightarrow C(L)$ and $T q_{*}(c \times I)=c$ for all $c \in C(K)$. Thus

$$
\begin{aligned}
T d\left[q_{*}\left(\left\langle\varphi_{\alpha}\right\rangle \times I\right)\right] & =T q_{*} d\left[\left\langle\varphi_{\alpha}\right\rangle \times I\right] \\
& =T q_{*}\left[\left\langle\varphi_{\alpha}\right\rangle-\left(d\left\langle\varphi_{\alpha}\right\rangle \times I\right)\right] \\
& =T q_{*}\left(\left\langle\varphi_{\alpha}\right\rangle\right)-T q_{*}\left(d\left\langle\varphi_{\alpha}\right\rangle \times I\right) \\
& =f_{*}\left\langle\varphi_{\alpha}\right\rangle-d\left\langle\varphi_{\alpha}\right\rangle \\
& =\partial\left\langle\varphi_{\alpha}\right\rangle=\partial T\left[q_{*}\left(\left\langle\varphi_{\alpha}\right\rangle \times I\right)\right]
\end{aligned}
$$

It follows trivially that T is a chain isomorphism.

Covering spaces

We turn now to covering spaces. Connectivity of the base space will be assumed throughout this discussion
(3.10) If K is a $C W$ complex then K is locally contractible. Thus for any subgroup $G \subset \pi_{1}(K)$ there is a covering space $p: E \rightarrow K$ such that $p_{\#}\left(\pi_{1} E\right)=G$. In particular K has a universal covering space. (Reference: [SCHUBERT, p. 204]).

We define $p: E \rightarrow K$ to be a covering in the CW category provided that p is a covering map and that E and K are CW complexes such that the image of every cell of E is a cell of K. By a covering we shall always mean a covering in the CW category if the domain is a CW complex. Nothing is lost in doing this because of
(3.11) Suppose that K is a CW complex and $p: E \rightarrow K$ is a covering of K. Then

$$
\left\{\tilde{e}_{\alpha} \mid e_{\alpha} \in K, \tilde{e}_{\alpha} \text { is a lift of } e_{\alpha} \text { to } E\right\}
$$

is a cell structure on E with respect to which E becomes a CW complex. If $\varphi_{\alpha}: I^{n} \rightarrow K$ is a characteristic map for the cell e_{α}, if \tilde{e}_{α} is a lift of e_{α} and if $\tilde{\varphi}_{\alpha}: I^{n} \rightarrow E$ is a lift of φ_{α} such that $\tilde{\varphi}_{\alpha}(x) \in \tilde{e}_{\alpha}$ for some $x \in I^{n}$, then $\tilde{\varphi}_{\alpha}$ is a characteristic map for \tilde{e}_{α}. (Reference: [SChUBERT, p. 251]).
(3.12) If $p: E \rightarrow K$ is a covering and $f: K^{\prime} \rightarrow K$ is a cellular map which lifts to $\tilde{f}: K^{\prime} \rightarrow E$ then \tilde{f} is cellular. If f is a covering (in the $C W$ category), so is \tilde{f}.

Since a covering which is also a homeomorphism is a cellular isomorphism, (3.12) implies that the universal covering space of K is unique up to cellular isomorphism.
(3.13) Suppose that (K, L) is a pair of connected CW complexes and that $p: \tilde{K} \rightarrow K$ is the universal covering. Let $\tilde{L}=p^{-1} L$. If $i_{\#}: \pi_{1} L \xrightarrow{c} \pi_{1} K$ is an isomorphism then $p \mid \widetilde{L}: \tilde{L} \rightarrow L$ is the universal covering of L. If, further, $K 』 L$ then $\tilde{K} \leadsto \tilde{L}$.
$P R O O F$: \tilde{L} is a closed set which is the union of cells of \tilde{K} (namely, the lifts of the cells of L). Thus \tilde{L} is a subcomplex of \tilde{K}. Clearly $p \mid \tilde{L}$ is a covering of L. We shall show that, if $i_{\#}$ is an isomorphism, \tilde{L} is connected and simply connected. Notice that, by the covering homotopy property, $p_{\#}: \pi_{i}(\tilde{K}, \tilde{L}) \cong \pi_{i}(K, L)$ for all $i \geq 1$. To see that \tilde{L} is connected, notice that $\pi_{1}(K, L)=0$ since we have exactness in the sequence

$$
\pi_{1}(L) \xrightarrow{\cong} \pi_{1}(K) \rightarrow \pi_{1}(K, L) \rightarrow \pi_{0}(L) \xrightarrow{\cong} \pi_{0}(K) .
$$

Thus $\pi_{1}(\tilde{K}, \tilde{L})=0$. Hence by the connectedness of \tilde{K} and the exactness of the sequence

$$
\left.\left.0=\pi_{1}\right) \tilde{K}, \tilde{L}\right) \rightarrow \pi_{0}(\tilde{L}) \rightarrow \pi_{0}(\tilde{K})
$$

it follows that \tilde{L} is connected.

Lis 1-connected because of the commutativity of the diagram

Hence $p: \tilde{L} \rightarrow L$ is the universal covering.
Finally, $K \leadsto L$ implies $\pi_{i}(K, L)=0$ and hence $\pi_{i}(\widetilde{K}, \tilde{L})=0$ for all $i \geq 1$. Thus \tilde{K} 子 \tilde{L} by (3.2).
(3.14) Suppose that $f: K \rightarrow L$ is a cellular map between connected complexes such that $f_{\#}: \pi_{1} K \rightarrow \pi_{1} L$ is an isomorphism. If \tilde{K}, \tilde{L} are universal covering spaces of K, L and $\tilde{f}: \tilde{K} \rightarrow \tilde{L}$ is a lift of f, then $M_{\tilde{f}}$ is a universal covering space of M_{f}.

Exercise: Give a counter-example when $f_{\#}$ is not an isomorphism.
PROOF OF (3.14): \tilde{f} is cellular and $M_{\tilde{f}} \downarrow \tilde{L}$, so $M_{\tilde{F}}$ is a simply connected CW complex. Let $p: \widetilde{K} \rightarrow K$ and $p^{\prime}: \tilde{L} \rightarrow L$ be the covering maps. Define $\alpha: M_{\tilde{f}} \rightarrow M_{f}$ by

$$
\begin{aligned}
\alpha[w, t] & =[p(w), t], & & 0 \leq t \leq 1, w \in \tilde{K} \\
\alpha[z] & =\left[p^{\prime}(z)\right], & & z \in \tilde{L}
\end{aligned}
$$

If $[w, 1]=[z]$ then $\tilde{f}(w)=z$, so $\alpha[w, 1]=[p(w), 1]=[f p(w)]=\left[p^{\prime} \tilde{f}(w)\right]$ $=\left[p^{\prime}(z)\right]$. Hence α is well-defined. It is clearly continuous. Notice that $\alpha\left|\left(M_{\tilde{J}}-\tilde{L}\right)=\alpha\right| \tilde{K} \times[0,1)=p \times 1_{[0,1)}$ and $\alpha \mid \tilde{L}=p^{\prime}$. Thus $\left.\alpha \mid M_{\tilde{f}}-\tilde{L}\right)$ and $\alpha \mid \tilde{L}$ are covering maps, and α takes cells homeomorphically onto cells.

Let $\beta: \hat{M}_{f} \rightarrow M_{f}$ be the universal cover of M_{f}, with $\hat{K}=\beta^{-1}(K)$, $\hat{L}=\beta^{-1}(L)$. By (3.13), $\beta \mid \hat{L}: \hat{L} \rightarrow L$ is a universal covering. Since $f_{\#}: \pi_{1} K \rightarrow \pi_{1} L$ is an isomorphism, so, by (1.2), is $i_{\#}: \pi_{1} K \rightarrow \pi_{1} M_{f}$. Hence \hat{K} is simply connected, using (3.13) again. But clearly $\beta \mid\left(\hat{M}_{f}-\hat{L}\right): \hat{M}_{f}-\hat{L}$ $\rightarrow M_{f}-L$ is a covering and $\pi_{i}\left(M_{f}-L, K\right)=\pi_{i}\left(\hat{M}_{f}-\hat{L}, \hat{K}\right)=0$ for all i. So $\hat{M}_{f}-\hat{L}$ is simply connected and $\beta \mid\left(\hat{M}_{f}-\hat{L}\right)$ is a universal covering also.

Now let $\hat{\alpha}: M_{\tilde{J}} \rightarrow \hat{M}_{f}$ be a lift of α. By uniqueness of the universal covering spaces of $M_{f}-L$ and $L, \hat{\alpha}$ must take $M_{\tilde{f}}-\widetilde{L}$ homeomorphically onto $\hat{M}_{f}-\hat{L}$ and \tilde{L} homeomorphically onto \hat{L}. Thus $\hat{\alpha}$ is a continuous bijection. But it is clear that $\hat{\alpha}$ takes each cell e homeomorphically onto a cell $\hat{\alpha}(e)$. Then $\hat{\alpha}$ takes \bar{e} bijectively, hence homeomorphically, onto $\hat{\alpha}(\bar{e})$. The latter is just $\overline{\hat{\alpha}(e)}$ because if φ is a characteristic map for $e, \hat{\alpha} \varphi$ is a characteristic map for $\hat{\alpha}(e)$, so that $\overline{\hat{\alpha}(e)}=\hat{\alpha} \varphi\left(I^{n}\right)=\hat{\alpha}(\bar{e})$. Since $M_{\hat{f}}$ and \hat{M}_{f} have the weak topology with respect to closed cells it follows that $\hat{\alpha}$ is a homeomorphism. Since $\beta \hat{\alpha}=\alpha$ it follows that α is a covering map.

Consider now the cellular chain complex $C(\widetilde{K}, \widetilde{L})$, where \widetilde{K} is the universal covering space of K and $L<K$. Besides being a \mathbb{Z}-module with the properties given by (3.7) and (3.8), $C(\tilde{K}, \tilde{L})$ is actually a $\mathbb{Z}(G)$-module where G is the
group of covering homeomorphisms of \tilde{K} or, equivalently, the fundamental group of K. We wish to explain how this richer structure comes about.

Recall the definition: If G is a group and \mathbb{Z} is the ring of integers then $\mathbb{Z}(G)$-the integral group ring of G-is the set of all finite formal sums $\sum_{i} n_{i} g_{i}, n_{i} \in \mathbb{Z}, g_{i} \in G$, with addition and multiplication given by

$$
\begin{aligned}
& \sum_{i} n_{i} g_{i}+\sum_{i} m_{i} g_{i}=\sum_{i}\left(n_{i}+m_{i}\right) g_{i} \\
& \left(\sum_{i} n_{i} g_{i}\right) \cdot\left(\sum_{j} m_{j} g_{j}\right)=\sum_{i, j}\left(n_{i} m_{j}\right)\left(g_{i} g_{j}\right)
\end{aligned}
$$

One can similarly define $\mathbb{R}(G)$ for any ring \mathbb{R}.
Let $p: \widetilde{K} \rightarrow K$ be the universal covering and let $G=\operatorname{Cov}(\widetilde{K})=$ [the set of all homeomorphisms $h: \widetilde{K} \rightarrow \widetilde{K}$ such that $p h=p$]. Suppose that $L<K$ and $\tilde{L}=p^{-1} L$. Each $g \in G$ is (3.12) a cellular isomorphism of \widetilde{K} inducing, for each n, the homomorphism $g_{*}: C_{n}(\widetilde{K}, \tilde{L}) \rightarrow C_{n}(\tilde{K}, \tilde{L})$ and satisfying $d g_{*}=g_{*} d$ (where d is the boundary operator in $C(\tilde{K}, \tilde{L})$). Let us define an action of G on $C(\tilde{K}, \tilde{L})$ by $g \cdot c=g_{*}(c),(g \in G, c \in C(\tilde{K}, \tilde{L}))$. Clearly $d(g \cdot c)=g \cdot(d c)$. Thus $C(\tilde{K}, \tilde{L})$ becomes a $\mathbb{Z}(G)$-complex if we define

$$
\left(\sum_{i} n_{i} g_{i}\right) \cdot c=\sum_{i} n_{i}\left(g_{i} \cdot c\right)=\sum_{i} n_{i}\left(g_{i}\right)_{*}(c)
$$

The following proposition shows that $C(\tilde{K}, \tilde{L})$ is a free $\mathbb{Z}(G)$-complex with a natural class of bases.
(3.15) Suppose that $p: \widetilde{K} \rightarrow K$ is the universal covering and that G is the group of covering homeomorphisms of \tilde{K}. Assume that $L<K$ and $\tilde{L}=p^{-1} L$. For each cell e_{α} of $K-L$ let a specific characteristic map $\varphi_{\alpha}: I^{n} \rightarrow K(n=n(\alpha))$ and a specific lift $\tilde{\varphi}_{\alpha}: I^{n} \rightarrow \tilde{K}$ of φ_{α} be chosen. Then $\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle \mid e_{\alpha} \in K-L\right\}$ is a basis for $C(\widetilde{K}, \tilde{L})$ as a $\mathbb{Z}(G)$-complex.
$P R O O F$: Let $*=*_{n}$ be a fixed point of i^{n} for each n. For each $y \in p^{-1} \varphi_{\alpha}(*)$, let $\hat{\varphi}_{\alpha, y}$ be the unique lift of φ_{α} with $\hat{\varphi}_{\alpha, y}(*)=y$. Since $p: \widetilde{K} \rightarrow K$ is the universal covering, G acts freely and transitively on each fibre $p^{-1}(x)$. Thus each $\hat{\varphi}_{\alpha, y}$ is uniquely expressible as $\hat{\varphi}_{\alpha, y}=g \circ \tilde{\varphi}_{\alpha}$ for some $g \in G$ and $\left\{\hat{\varphi}_{\alpha, y} \mid y \in p^{-1} \varphi_{\alpha}(*)\right\}$ $=\left\{g \circ \tilde{\varphi}_{\alpha} \mid g \in G\right\}$. But, by (3.7) and (3.11), $C(\widetilde{K}, \tilde{L})$ is a free \mathbb{Z}-module with basis

$$
\left\{\left\langle\hat{\varphi}_{\alpha, y}\right\rangle\right\}=\left\{\left\langle g \circ \tilde{\varphi}_{\alpha}\right\rangle\right\}=\left\{g_{*}\left\langle\tilde{\varphi}_{\alpha}\right\rangle\right\}=\left\{g \cdot\left\langle\tilde{\varphi}_{\alpha}\right\rangle\right\}
$$

where g varies over G and φ_{α} varies over the given characteristic maps for $K-L$. Thus each $c \in C(\tilde{K}, \tilde{L})$ is uniquely representable as a finite sum

$$
\begin{aligned}
c & =\sum_{i, \alpha} n_{i, \alpha}\left(g_{i} \cdot\left\langle\tilde{\varphi}_{\alpha}\right\rangle\right) \\
& =\sum_{\alpha}\left(\sum_{i} n_{i, \alpha} g_{i}\right) \cdot\left\langle\tilde{\varphi}_{\alpha}\right\rangle \\
& =\sum_{\alpha} r_{\alpha}\left\langle\tilde{\varphi}_{\alpha}\right\rangle, r_{\alpha} \in \mathbb{Z}(G)
\end{aligned}
$$

Therefore $\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle \mid e_{\alpha}\right.$ is a cell of $\left.K-L\right\}$ is a basis of $C(\tilde{K}, \tilde{L})$ as a $\mathbb{Z}(G)$-module.

The fundamental group and the group of covering transformations

If we choose base points $x \in K$ and $\tilde{x} \in p^{-1}(x)$ then there is a standard identification of the group of covering transformations G with $\pi_{1} K=\pi_{1}(K, x)$. Because of its importance in the sequel, we review this in some detail.

For each $\alpha:(I, \dot{I}) \rightarrow(K, x)$, let $\tilde{\alpha}$ be the lift of α with $\tilde{\alpha}(0)=\tilde{x}$. Let $g_{[\alpha]}: \tilde{K} \rightarrow \tilde{K}$ be the unique covering homeomorphism such that $g_{[\alpha]}(\tilde{x})=\tilde{\alpha}(1)$. We claim that, if $y \in \widetilde{K}$ and if $\omega:(I, 0,1) \rightarrow(\widetilde{K}, \tilde{x}, y)$ is any path, then

$$
g_{[\alpha]}(y)=\widetilde{\alpha * p \omega}(1)
$$

where $p \omega$ is the composition of ω and p, and "*" represents concatenation of loops. To see this, note that $\overparen{\alpha * p \omega(1)}=\widehat{p \omega}(1)$ where $\widehat{p \omega}$ is the unique lift of $p \omega$ with $\widehat{p \omega}(0)=\tilde{\alpha}(1)$. But $g_{[\alpha]}(\widetilde{p \omega}(0))=g_{[\alpha]}(\tilde{x})=\tilde{\alpha}(1)$, so $g_{[x]} \circ \widetilde{p \omega}$ is such a lift. Hence $\widehat{p \omega}=g_{[\alpha]} \circ \widetilde{p \omega}$ and

$$
\widetilde{\alpha * p \omega}(1)=g_{[\alpha]}(\widetilde{p \omega}(1))=g_{[\alpha]}(y) .
$$

The function $\theta=\theta(x, \tilde{x}): \pi_{1} K \rightarrow G$, given by $[\alpha] \rightarrow g_{[\alpha]}$, is an isomorphism. For example, it is a homomorphism because, for arbitrary $[\alpha],[\beta] \in \pi_{1} K$, we have (by the preceding paragraph)

$$
\begin{aligned}
g_{[\alpha]}\left(g_{[\beta]}(\tilde{x})\right) & =g_{[\alpha]}(\tilde{\beta}(1)) \\
& =\overparen{\alpha * p \tilde{\beta}}(1) \\
& =\widetilde{\alpha * \beta}(1) \\
& =g_{[\alpha][\beta]}(\tilde{x})
\end{aligned}
$$

Hence $g_{[\alpha]} \circ g_{[\beta]}=g_{[\alpha][\beta]}$, since they agree at a point.
Suppose that $p: \widetilde{K} \rightarrow K$ and $p^{\prime}: \widetilde{L} \rightarrow L$ are universal coverings with $p(\tilde{x})=x$ and $p^{\prime}(\tilde{y})=y$, and that G_{K} and G_{L} are the groups of covering transformations. Then any map $f:(K, x) \rightarrow(L, y)$ induces a unique map $f_{\#}: G_{K} \rightarrow G_{L}$ such that the diagram

commutes. (We believe that it aids the understanding to call both maps $f_{\#}$.) This map satisfies
(3.16) If $g \in G_{K}$ and $\tilde{f}:(\tilde{K}, \tilde{x}) \rightarrow(\tilde{L}, \tilde{y})$ covers f, then $f_{\#}(g) \circ \tilde{f}=\tilde{f} \circ g$.

PROOF: Since these maps both cover f, it suffices to show that they agree at
a single point—say \tilde{x}. So we must show that $\left(f_{\#}(g)\right)(\tilde{y})=\tilde{f} g(\tilde{x})$. Letting α be a loop such that $[\alpha]$ corresponds to g under $\theta(x, \tilde{x})$, we have

$$
\begin{aligned}
\tilde{f g}(\tilde{x}) & =\tilde{f \tilde{\alpha}}(1) \\
& =(\overparen{f \circ \alpha})(1), \quad \text { since } \quad \tilde{f} \tilde{\alpha}(0)=\tilde{y}=\tilde{f \alpha}(0) \\
& =\left(\theta(y, \tilde{y})\left(f_{\#}[\alpha]\right)\right)(\tilde{y}), \quad \text { where } \quad f_{\#}: \pi_{1}(K, x) \rightarrow \pi_{1}(L, y) \\
& =\left(\left(\theta(y, \tilde{y}) f_{\#} \theta(x, \tilde{x})^{-1}\right)(g)\right)(\tilde{y}) \\
& =\left(f_{\#}(g)\right)(\tilde{y}), \quad \square
\end{aligned}
$$

Chapter II

A Geometric Approach to Homotopy Theory

From here on all CW complexes mentioned will be assumed finite unless they occur as the covering spaces of given finite complexes.

§4. Formal deformations

Suppose that (K, L) is a finite CW pair. Then $K \bigvee L$-i.e., K collapses to L by an elementary collapse-iff
(1) $K=L \cup e^{n-1} \cup e^{n}$ where e^{n} and e^{n-1} are not in L,
(2) there exists a ball pair $\left(Q^{n}, Q^{n-1}\right) \approx\left(I^{n}, I^{n-1}\right)$ and a map $\varphi: Q^{n} \rightarrow K$ such that
(a) φ is a characteristic map for e^{n}
(b) $\varphi \mid Q^{n-1}$ is a characteristic map for e^{n-1}
(c) $\varphi\left(P^{n-1}\right) \subset L^{n-1}$, where $P^{n-1} \equiv C 1\left(\partial Q^{n}-Q^{n-1}\right)$.

In these circumstances we also write $L \& K$ and say that L expands to K by an elementary expansion. It will be useful to notice that, if (2) is satisfied for one ball pair (Q^{n}, Q^{n-1}), it is satisfied for any other such ball pair, since we need only compose φ with an appropriate homeomorphism.

Geometrically, the elementary expansions of L correspond precisely to the attachings of a ball to L along a face of the ball by a map which is almost, but not quite, totally unrestricted. For, if we set $\varphi_{0}=\varphi \mid P^{n-1}$ in the above definition, then $\varphi_{0}:\left(P^{n-1}, \partial P^{n-1}\right) \rightarrow\left(L^{n-1}, L^{n-2}\right)$ and

$$
(K, L) \cong\left(L \cup \varphi_{\varphi_{0}} Q^{n}, L\right)
$$

Conversely, given L, any map $\varphi_{0}:\left(P^{n-1}, \partial P^{n-1}\right) \rightarrow\left(L^{n-1}, L^{n-2}\right)$ determines an elementary expansion. To see this, set $K=L \varphi_{\varphi_{0}}^{\cup} Q^{n}$. Let $\varphi: L \oplus Q^{n} \rightarrow K$ be the quotient map and define $\varphi\left(Q^{n-1}\right)=e^{n-1}, \varphi\left(Q^{n}\right)=e^{n}$. Then $K=$ $L \cup e^{n-1} \cup e^{n}$ is a CW complex and $L \triangleleft K$.

(4.1) If $K \searrow L$ then (a) there is a cellular strong deformation retraction $D: K \rightarrow L$ and (b) any two strong deformation retractions of K to L are homotopic rel L.

PROOF. Let $K=L \cup e^{n-1} \cup e^{n}$. By hypothesis there is a map $\varphi_{0}: I^{n-1} \rightarrow L^{n-1}$ such that $(K, L) \approx\left(L \cup \bigcup_{\varphi_{0}} I^{n}, L\right)$. But $L \cup \varphi_{\varphi_{0}} I^{n}$ is just the mapping cylinder of φ_{0}. Hence, by (1.1) and its proof there is a strong deformation retraction $D: K \rightarrow L$ such that $D\left(\overline{e^{n}}\right)=\varphi_{0}\left(I^{n-1}\right) \subset L^{n-1}$. Clearly D is cellular.

If D_{1} and $D_{2}: K \rightarrow L$ are two strong deformation retractions and $i: L \subset K$ then $i D_{1} \simeq 1_{K} \simeq i D_{2}$ rel L. So $D_{1}=D_{1} i D_{1} \simeq D_{1} i D_{2}=D_{2}$.

We write $K \searrow L$ (K collapses to L) and $L \not \subset K(L$ expands to $K)$ iff there is a finite sequence (possibly empty) of elementary collapses

$$
K=K_{0} \lesseqgtr K_{1} \searrow \cdots \searrow K_{q}=L
$$

A finite sequence of operations, each of which is either an elementary expansion or an elementary collapse is called a formal deformation. If there is a formal deformation from K to L we write $K \wedge L$. Clearly then, $L \wedge K$. K and L are then said to have the same simple-homotopy type. If K and L have a common subcomplex K_{0}, no cell of which is ever removed during the formal deformation, we write $K \wedge L$ rel K_{0}.

Suppose that $K=K_{0} \rightarrow K_{1} \rightarrow \ldots \rightarrow K_{q}=L$ is a formal deformation. Define $f_{i}: K_{i} \rightarrow K_{i+1}$ by letting f_{i} be the inclusion map if $K_{i} \not{ }^{夕} K_{i+1}$ and, (4.1), letting f_{i} be any cellular strong deformation retraction of K_{i} onto K_{i+1} if $K_{i} \leqq K_{i+1}$. Then $f=f_{q-1} \ldots f_{1} f_{0}$ is called a deformation. It is a cellular homotopy equivalence which is uniquely determined, up to homotopy, by the given formal deformation. If $K^{\prime}<K$ and $f=f_{q-1} \ldots f_{0}: K \rightarrow L$ is a deformation with each $f_{i} \mid K^{\prime}=1$ (so $K_{\wedge} L$ rel K^{\prime}), then we say that f is a deformation rel K^{\prime}.

Finally, we define a simple-homotopy equivalence $f: K \rightarrow L$ to be a map which is homotopic to a deformation. f is a simple-homotopy equivalence rel K^{\prime} if it is homotopic, rel K^{\prime}, to a deformation rel K^{\prime}.

Some natural conjectures are
(I) If $f: K \rightarrow L$ is a homotopy equivalence then f is a simple-homotopy equivalence.
(II) If there exists a homotopy equivalence from K to L then there exists a simple-homotopy equivalence.

In general, both conjectures are false. ${ }^{3}$ But in many special cases (e.g., if $\pi_{1} L=0$ or \mathbb{Z} (integers)) both conjectures are true. And for some complexes L, (I) is false while (II) is true.

In the pages ahead, we shall concentrate on (I)-or, rather, on the equivalent conjecture (I^{\prime}) which is introduced in §5. Roughly, we will follow Whitehead's path. We try to prove that (I) is true, run into an obstruction,

[^2]get some partial results，start all over and algebraicize the theory，and finally end up with a highly sophisticated theory which is，in the light of its evolution， totally natural．

Exercises：

4．A．If $K \searrow L$ then any given sequence of elementary collapses can be reordered to yield a sequence $K=K_{0} 乌 K_{1} 乌 \ldots 乌 K_{q}=L \quad$ with $K_{i}=K_{i+1} \cup e^{n_{i}} \cup e^{n_{i}-1}$ where $n_{0} \geq n_{1} \geq \ldots \geq n_{q-1}$ ．

4．B．If K is a contractible 1 －dimensional finite CW－complex and x is any 0 －cell then $K \searrow x$ ．

4．C．If $K \searrow x$ for some $x \in K^{0}$ then $K \searrow y$ for all $y \in K^{0}$ ．
4．D．If $K \wedge L$ then there are CW complexes P and L^{\prime} such that $K \not \subset P \downarrow L^{\prime} \cong L$ ．（In essence：all the expansions can be done first．）

§5．Mapping cylinders and deformations

In this section we introduce some of the important facts relating mapping cylinders and formal deformations．The section ends by applying these facts to get a reformulation of conjecture I of $\S 4$ ．
（5．1）Iff：$K \rightarrow L$ is a cellular map and if $K_{0}<K$ then $M_{f} \searrow M_{f \mid K_{0}}$ ．
PROOF：Let $K=K_{0} \cup e_{1} \cup \ldots \cup e_{r}$ where the e_{i} are the cells of $K-K_{0}$ arranged in order of increasing dimension．Then $K_{i}=K_{0} \cup e_{1} \cup \ldots \cup e_{i}$ is a subcomplex of K ．We set $M_{i}=M_{f \mid K_{i}}$ and claim that $M_{i} \leqq M_{i-1}$ for all i ．For let φ_{i} be a characteristic map for e_{i} and let $q:\left(K_{i} \times I\right) \oplus L \rightarrow M_{i}$ be the quotient map．Then $M_{i}=M_{i-1} \cup e_{i} \cup\left(e_{i} \times(0,1)\right)$ and $q \circ\left(\varphi_{i} \times 1\right): I^{n_{i}} \times I \rightarrow M_{i}$ is a characteristic map for $\left(e_{i} \times(0,1)\right)$ which restricts on $I^{n_{i}} \times 0$ to a characteristic map for e_{i} ．Clearly the complement of $I^{n_{i}} \times 0$ in $\partial\left(I^{n_{i}} \times I\right)$ gets mapped into $M_{i-1}^{n_{i}}$ ．Hence $M_{i} \geqq M_{i-1}$ ．Therefore $M_{f} \downarrow M_{f \mid K_{0}}$ ．

Corollary（5．1A）：If $f: K \rightarrow L$ is cellular then $M_{f} \downarrow L$ ．
Corollary（5．1B）：If $K_{0}<K$ then $(K \times I) \downarrow\left(K_{0} \times I\right) \cup(K \times i), i=0$ or 1 ．

Corollary（5．1C）：If $K_{0}<\psi K$ and K is the cone on K then $v K \searrow v K_{0}$ ．
Since we shall often pass from given CW complexes to isomorphic com－ plexes without comment，we give the following lemma at the very outset．
（5．2）：（a）If $\left(K, K_{1}, K_{2}\right)$ is a triple which is $C W$ isomorphic to $\left(J, J_{1}, J_{2}\right)$ and if $K \wedge K_{1}$ rel K_{2} then $J_{\wedge} J_{1}$ rel J_{2} ．
（b）If K_{1}, K_{2} and L are CW complexes with $L<K_{1}$ and $L<K_{2}$ and if $h: K_{1} \rightarrow K_{2}$ is a CW isomorphism such that $h \mid L=1$ then $K_{1} \wedge K_{2}$ rel L ．

PROOF: (a) is trivial and we omit the proof. To prove (b) it suffices to consider the special case where $\left(K_{1}-L\right) \cap\left(K_{2}-L\right)=\varnothing$. For if this is not the case we can (by renaming some points) construct a pair (K, L) and isomorphisms $h_{i}: K \rightarrow K_{i}, i=1,2$, such that $(K-L) \cap\left(K_{i}-L\right)=\varnothing$ and such that $h_{i} \mid L=1$. Then, by the special case, $K_{1} \wedge K_{\wedge} K_{2}$, rel L.

Consider the mapping cylinder M_{h}. By (5.1),

$$
M_{h} \downarrow M_{h \mid L}=(L \times I) \cup\left(K_{2} \times 1\right),
$$

and, h being a CW isomorphism, the same proof can be used to collapse from the other end and get $M_{h} \downarrow(L \times I) \cup\left(K_{1} \times 0\right)$. Now let \bar{M}_{h} be gotten from M_{h} by identifying $(x, t)=x$ if $x \in L, 0 \leq t \leq 1$. Since $\left(K_{1}-L\right) \cap\left(K_{2}-L\right)$ $=\varnothing$, we may (by taking an appropriate copy of \bar{M}_{h}) assume that K_{1} and K_{2} themselves, and not merely copies of them are contained in the two ends of \bar{M}_{h}. Then the collapses of $M_{h}($ rel $L \times I)$ may be performed in this new context, since ${ }^{4} M_{h}-(L \times I)$ is isomorphic to $\bar{M}_{h}-L$, to yield $K_{1} \nearrow \bar{M}_{h} \searrow K_{2}$ rel L.

If we let $f: L \times I \rightarrow L$ be the natural projection, the argument in the last sentence is a special case of:
(5.3) (The relativity principle.) Suppose that $L_{1}<K$ and $f: L_{1} \rightarrow L_{2}$ is a cellular map. If $K \wedge_{A} J$ rel L_{1}, then $K \cup_{f} L_{2} \wedge J \cup_{f} L_{2}$ rel L_{2} (by the "same" sequence of expansions and collapses).

REMARK: In forming $K \cup_{f} L_{2}$ and $J \bigcup_{f} L_{2}$ one uses a "copy" of L_{2} disjoint from K and J. By (5.2a) it doesn't matter which copy. In particular if f is an inclusion map we have as corollary:
(5.3'): Suppose that $K \cup L_{2}$ and $J \cup L_{2}$ are $C W$ complexes, with subcomplexes K, L_{2} and J, L_{2} respectively, and suppose that $K \cap L_{2}=J \cap L_{2}=L_{1}$. If $K \wedge J$ rel L_{1} then $K \cup L_{2} \wedge J \cup L_{2}$ rel L_{2}.

PROOF of (5.3): Suppose that $K=K_{0} \rightarrow K_{1} \rightarrow \ldots \rightarrow K_{p}=J$ is a sequence of elementary deformations rel L_{1}. Let $q_{i}: K_{i} \oplus L_{2} \rightarrow K_{i} \cup_{f} L_{2}$ be the quotient maps $\left(0 \leq i \leq p\right.$). If $K_{i \pm 1} \not \nearrow K_{i}=K_{i \pm 1} \cup e^{n-1} \cup e^{n}$, and $\varphi: I^{n} \rightarrow K_{i}$ is a characteristic map for e^{n} restricting to a characteristic map $\varphi \mid I^{n-1}$ for e^{n-1} then $q_{i} \varphi$ and $q_{i}\left(\varphi \mid I^{n-1}\right)$ are characteristic maps for $q_{i}\left(e^{n}\right)$ and $q_{i}\left(e^{n-1}\right)$, since $q_{i} \mid K_{i}-L_{1}$ is a homeomorphism and f is cellular. Thus

$$
\left(K_{i \pm 1} \cup_{f} L_{2}\right) \nearrow\left(K_{i} \cup L_{2}\right)=\left(K_{i \pm 1} \cup L_{2}\right) \cup q_{i}\left(e^{n-1}\right) \cup q_{i}\left(e^{n}\right)
$$

The result follows by induction on the number of elementary deformations.
(5.4) If $f: K \rightarrow L$ is a cellular map and $K \searrow K_{0}$ then $M_{f} \downarrow K \cup M_{f \mid K_{0}}$.

PROOF: Suppose that $K=K_{p} \searrow K_{p-1} \searrow \ldots \bigvee K_{0}$. For fixed i let $K_{i+1}=K_{i} \cup\left(e^{n-1} \cup e^{n}\right)$ and let $\varphi:\left(I^{n}, I^{n-1}\right) \rightarrow\left(e^{n}, e^{n-1}\right)$ be an appropriate

[^3]characteristic map. Then
$$
K \cup M_{f \mid K_{i}+1}=K \cup M_{f \mid K_{i}} \cup\left[e^{n-1} \times(0,1) \cup e^{n} \times(0,1)\right]
$$

Then, q being the quotient map, $q \circ(\varphi \times 1):\left(I^{n} \times I, I^{n-1} \times I\right) \rightarrow K \cup M_{f \mid K_{i+1}}$ gives characteristic maps for these cells and meets the specifications for an elementary collapse. Hence $K \cup M_{f \mid K_{i+1}} \searrow K \cup M_{f \mid K_{i}}$. The result follows by induction.
(5.5) If $f, g: K \rightarrow L$ are homotopic cellular maps then $M_{f} \wedge M_{g}$ rel $K \cup L$.

PROOF: Let $F: K \times I \rightarrow L$ be a homotopy with $F_{0}=f$ and $F_{1}=g$. By the cellular approximation theorem we may assume that F is cellular. Then, by (5.4),

$$
M_{F_{0}} \cup(K \times I) \not \nearrow M_{F} \searrow M_{F_{1}} \cup(K \times I)
$$

since $(K \times I) \downarrow K \times i(i=0,1)$. Now let $\pi: K \times I \rightarrow K$ be the natural projection and let $M=M_{F} \cup K$. By the relativity principle (5.3) the above deformation gives

$$
M_{j} \not \nearrow M \searrow M_{g} r e l K \cup L .
$$

(5.6) If $f: K_{1} \rightarrow K_{2}$ and $g: K_{2} \rightarrow K_{3}$ are cellular maps then $M_{g f} \wedge M_{f} \cup M_{g}$ $\operatorname{rel}\left(K_{1} \cup K_{3}\right)$ where $M_{f} \cup M_{g}$ is the disjoint union of M_{f} and M_{g} sewn together by the identity map on K_{2}.

PROOF: Let $F=g p: M_{f} \rightarrow K_{3}$ where $p: M_{f} \rightarrow K_{2}$ is the natural retraction. Then F is a cellular map, $F \mid K_{1}=g f$, and $F \mid K_{2}=g$. Since $M_{f} \downarrow K_{2}$ by (5.1A), it follows from (5.4) that $M_{F} \searrow M_{f} \cup M_{g}$. On the other hand, since $K_{1}<M_{f}$, (5.1) implies that $M_{F} \searrow M_{g f}$. Thus $M_{g f} \nearrow M_{F} \searrow M_{f} \cup M_{g}$, where all complexes involved contain $K_{1} \cup K_{3}$.

More generally we have
(5.7) If $K_{1} \xrightarrow{f_{1}-} K_{2} \xrightarrow{f_{2}} \ldots \xrightarrow{f_{q-1}} K_{q}$ is a sequence of cellular maps and $f=f_{q-1} \ldots f_{1}$ then $M_{f} \wedge M_{f_{1}} \cup M_{f_{2}} \cup \ldots \cup M_{f_{q-1}}$, rel $\left(K_{1} \cup K_{q}\right)$, where this union is the disjoint union of the $M_{f_{i}}$ with the range of one trivially identified to the domain of the next.

PROOF: This is trivial if $q=2$. Proceeding inductively, set $g=f_{q-1} \ldots f_{3} f_{2}$ and assume $M_{g} \curvearrowright M_{f_{2}} \cup \ldots \cup M_{f_{q-1}} r e l\left(K_{2} \cup K_{q}\right)$. Then by (5.6) and (5.3')

$$
\begin{aligned}
M_{f}=M_{g f_{1}} & \wedge M_{f_{1}} \cup M_{g}, r e l \\
& \wedge K_{1} \cup K_{q} \\
& \wedge\left(M_{f_{2}} \cup \ldots \cup M_{f_{q-1}}\right), \text { rel } M_{f_{1}} \cup K_{q} .
\end{aligned}
$$

(5.8) Given a mapping $f: K \rightarrow L$, the following are equivalent statements:
(a) f is a simple-homotopy equivalence.
(b) There exists a cellular approximation g to f such that $M_{g} \wedge K$, rel K.
(c) For any cellular approximation g to $f, M_{g} \wedge K$, rel K.

PROOF: (a) \Rightarrow (b): By the definition of a simple-homotopy equivalence, there is a formal deformation

$$
K=K_{0} \rightarrow K_{1} \rightarrow \ldots \rightarrow K_{q}=L
$$

such that f is homotopic to any deformation associated with this formal deformation. Let $g=g_{q-1} \ldots g_{1} g_{0}$ be such a deformation, where $g_{i}: K_{i} \rightarrow K_{i+1}$. Notice that, for all $i, M_{g_{i}} \searrow \operatorname{dom} g_{i}=K_{i}$.
For if $K_{i} \not{ }^{\prime} K_{i+1}$, then

$$
M_{g_{i}}=\left(K_{i} \times I\right) \cup_{g_{i}}^{\cup} K_{i+1} \searrow\left(K_{i} \times I\right) \searrow\left(K_{i} \times 0\right) \equiv K_{i}
$$

and if $K_{i} 乌 K_{i+1}$ then, by (5.4)

$$
M_{g_{i}} \searrow M_{g_{i} \mid K_{i+1}} \cup K_{i}=\left(K_{i+1} \times I\right) \cup\left(K_{i} \times 0\right) \searrow K_{i} \times 0 \equiv K_{i}
$$

Thus

$$
\begin{aligned}
& M_{g} \wedge M_{g_{0}} \cup \ldots \cup M_{g_{q-1}} \text { rel } K_{0}, \quad \text { by }(5.7) \\
& \searrow\left(M_{g_{0}} \cup \ldots \cup M_{g_{q-2}}\right) \searrow \ldots \searrow M_{g_{0}} \searrow K_{0}=K .
\end{aligned}
$$

(b) \Rightarrow (c): Suppose that g is a cellular approximation to f such that $M_{g} \wedge K$ rel K and that g^{\prime} is any cellular approximation to f. Then, by (5.5), $M_{g} \wedge^{\wedge} M_{g} \wedge K$ rel K.
(c) \Rightarrow (a): Let g be any cellular approximation to f. By hypothesis $M_{g} \wedge K$, rel K. Thus the inclusion map $i: K \subset M_{g}$ is a deformation. Also the collapse $M_{g} \downarrow L$ determines a deformation $P: M_{g} \rightarrow L$. Since any two strong deformation retractions are homotopic, P is homotopic to the natural projection $p: M_{g} \rightarrow L$. So $f \simeq g=p i \simeq P i=$ deformation. Therefore f is a simplehomotopy equivalence.
(5.9) (The simple-homotopy extension theorem). Suppose that $X<K_{0}<K$ is a CW triple and that $f: K_{0} \rightarrow L_{0}$ is a cellular simple-homotopy equivalence such that $f \mid X=1$. Let $L=K \cup_{f} L_{0}$. Then there is a simple-homotopy equivalence $F: K \rightarrow L$ such that $F \mid K_{0}=f$. Also $K_{\wedge} L$ rel X.

PROOF: Let $F: K \rightarrow L$ be the restriction to K of the quotient map $K \oplus L_{0} \rightarrow L$. Then $M_{F}=(K \times I) \cup_{q} M_{f}$ where $q: K_{0} \times I \rightarrow M_{f}$ is also the restriction of a quotient map. But $K \times I \searrow\left(K_{0} \times I\right) \cup(K \times 0)$, so

$$
\begin{gathered}
M_{F} \searrow M_{f} \cup(K \times 0) \equiv M_{f} \cup K, \quad \text { by }(5.3) \\
\wedge K \operatorname{rel} K, \quad \text { by }(5.8) \text { and }\left(5.3^{\prime}\right) .
\end{gathered}
$$

Clearly $F \mid K_{0}=f$ and, by (5.8) again, F is a simple-homotopy equivalence.
The last assertion of the theorem is true because

$$
K \wedge M_{F} \searrow M_{F \mid X}=(X \times I \cup L) \nsucc L \times I \searrow L \times 0 \equiv L
$$

and this is all done rel $X=X \times 0 .{ }^{5}$

[^4]In the light of (5.8), Conjecture (I) of $\S 4$ is equivalent to

$$
\text { (I'): If }(X, Y) \text { is a } C W \text { pair and } X \text { \& } Y \text { then } X_{\wedge} Y \text { rel } Y .
$$

For, assuming (\mathbf{I}^{\prime}), suppose that $f: K \rightarrow L$ is a cellular homotopy equivalence. By (1.2), $M_{f} z^{2} K$. Hence by (\mathbf{I}^{\prime}), $M_{f} \wedge K$ rel K; and by (5.8) f is a simplehomotopy equivalence, proving (I). Conversely, assuming (I), suppose that $X_{2} Y$-i.e., $i: Y \subset X$ is a homotopy equivalence. Then by (I), i is a (cellular) simple-homotopy equivalence, so (5.8) implies that $M_{i} \wedge Y$ rel Y. Therefore

$$
X=X \times 0 \nearrow X \times I=M_{1 X} \searrow M_{i} \wedge Y \text { rel } Y
$$

proving (\mathbf{I}^{\prime}).
We turn our attention therefore to Conjecture (\mathbf{I}^{\prime}) and (changing notation) to CW pairs (K, L) such that $K \leadsto L$.

§6. The Whitehead group of a CW complex ${ }^{6}$

For a given finite CW complex, L, we wish to put some structure on the class of CW pairs (K, L) such that $K z_{\neq} L$. We do so in this section, thus giving the first hint that our primitive geometry can be richly algebraicized.

If (K, L) and $\left(K^{\prime}, L\right)$ are homotopically trivial CW pairs, define $(K, L) \sim\left(K^{\prime}, L\right)$ iff $K_{\wedge} K^{\prime}$ rel L. This is clearly an equivalence relation and we let $[K, L]$ denote the equivalence class of (K, L). An addition of equivalence classes is defined by setting

$$
[K, L]+\left[K^{\prime}, L\right]=\left[K \cup_{L} K^{\prime}, L\right]
$$

where $K \bigcup_{L} K^{\prime}$ is the disjoint union of K and K^{\prime} identified by the identity map on L. \{By 5.2 it doesn't matter which 'disjoint union of K and K^{\prime} identified..." we take. Also by (5.2) the equivalence classes form a set, since the isomorphism classes of finite CW complexes can easily be seen to have cardinality $\leq 2^{\text {c }}$.\} The Whitehead group of L is defined to be the set of equivalence classes with the given addition and is denoted $W h(L)$.
(6.1) $W h(L)$ is a well-defined abelian group.

PROOF: A strong deformation retraction of K to L and one of K^{\prime} to L combine trivially to give one of $K \cup_{L} K^{\prime}$ to L. Thus $\left[\mathcal{K}_{L} K^{\prime}, L\right]$ is an element of $W h(L)$ if $[K, L]$ and $\left[K^{\prime}, L\right]$ are. Moreover, if $[K, L]=[J, L]$, then $K \cup_{L} K^{\prime} \wedge J \cup_{L} K^{\prime}$ rel L by (5.3'), so $\left[K \cup_{L} K^{\prime}, L\right]=\left[J \cup_{L} K^{\prime}, L\right]$. Similarly, if $\left[K^{\prime}, L\right]=\left[J^{\prime}, L\right]$, then $\left[J \cup_{L} K^{\prime}, L\right]=\left[J \cup_{L} J^{\prime}, L\right]$. Thus the addition is well defined.

[^5]That the addition is associative and commutative follows from the fact that the union of sets has these properties.

The element $[L, L]$ is an identity, denoted by 0 .
If $[K, L] \in W h(L)$, let $D: K \rightarrow L$ be a cellular strong deformation retraction. Let $2 M_{D}$ consist of two copies of the mapping cylinder M_{D}, identified by the identity on K. Precisely, let $2 M_{D}=K \times[-1,1]$ with the identifications $(x,-1)=(D(x),-1)$ and $(x, 1)=D(x)$ for all $x \in K$. We claim that $\left[2 M_{D}, L\right]=-[K, L]$.

A picture of $2 M_{D} \bigcup_{L} K$:

Proof of the claim:

$$
\begin{aligned}
{\left[2 M_{D}, L\right]+[K, L] } & =\left[2 M_{D} \cup_{L} K, L\right] \\
& =\left[\left(M_{D} \cup K\right) \cup M_{D}^{\prime}, L\right] \\
& =\left[M_{i D} \cup M_{D}^{\prime}, L\right] \text { where } i: L \subseteq K .
\end{aligned}
$$

[But $i D \simeq 1_{K}$, so by (5.5), $M_{i D} \wedge K \times I$ rel $(K \times 0) \cup K$. So by (5.3') we have]

$$
\left.\begin{array}{l}
=\left[K \times I \cup M_{D}^{\prime}, L\right] \\
=\left[L \times I \cup M_{D}^{\prime}, L\right] \\
\text { since }
\end{array} \quad K \times I \searrow(L \times I \cup K \times 0)\right] \text { (} \begin{array}{lll}
& \text { since } & M_{D}^{\prime} \searrow L \times[-1,0] \\
=[L \times[-1,1], L] & \text { since } & L \times[-1,1] \searrow L \equiv L \times 1 .
\end{array}
$$

In pictures, these equations represent

This completes the proof.

If $f: L_{1} \rightarrow L_{2}$ is a cellular map, we define $f_{*}: W h\left(L_{1}\right) \rightarrow W h\left(L_{2}\right)$ by

These definitions are equivalent because the natural projection $p: M_{f} \rightarrow L_{2}$ is a simple-homotopy equivalence with $p \mid L_{2}=1$ which, by (5.9), determines the deformation

$$
\left(M_{f} \cup_{L_{1}} K\right) \AA\left(M_{f} \cup_{L_{1}} K\right) \cup_{p} L_{2}=K \cup_{f} L_{2} \text {, rel } L_{2} .
$$

It follows directly from the second definition that f_{*} is a group homomorphism. From the first definition and (5.6) it follows directly that $g_{*} f_{*}=(g f)_{*}$. Leaving these verifications to the reader we now have
(6.2) There is a covariant functor from the category of finite CW complexes and cellular maps to the category of abelian groups and group homomorphisms given by $L \mapsto W h(L)$ and $\left(f: L_{1} \rightarrow L_{2}\right) \mapsto\left(f_{*}: W h\left(L_{1}\right) \rightarrow W h\left(L_{2}\right)\right)$. Moreover if $f \simeq g$ then $f_{*}=g_{*}$.
$P R O O F$: The reader having done his duty, we need only verify that if $f \simeq g$ then $f_{*}=g_{*}$. But this is immediate from the first definition of induced map and (5.5).

We can now define the torsion $\tau(f)$ of a cellular homotopy equivalence $f: L_{1} \rightarrow L_{2}$ by

$$
\tau(f)=f_{*}\left[M_{f}, L_{1}\right]=\left[M_{f} \bigcup_{L_{1}} M_{f}, L_{2}\right] \in W h\left(L_{2}\right) .
$$

A great deal of formal information about Whitehead groups and torsion can then be deduced from the following facts (exercises for the reader):

Fact 1: If K, L and M are subcomplexes of the complex $K \cup L$, with $M=K \cap L$ and if $K _M$ then $[K \cup L, L]=j_{*}[K, M]$ where $j: M \rightarrow L$ is the inclusion.

Fact 2: If $K \leadsto L \leadsto M$ and $i: M \rightarrow L$ is the inclusion then $[K, M$] $=[L, M]+\left(i_{*}\right)^{-1}[K, L]$.

However it seems silly to extract this formal information when we cannot
do meaningful computations. Conceivably every $W h(L)$ is 0 and this entire discussion is vacuous. Thus we shall delay drawing out the formal consequences of the preceding discussion until §22-§24, by which time we will have shown that the functor described in (6.2) is naturally equivalent to another functor-one which is highly non-trivial.

Finally we remark that the entire preceding discussion can be modified to apply to (and was developed when the author was investigating) pairs (K, L) of locally finite CW complexes such that there is a proper deformation retraction from K to L. The notion of "elementary collapse" is replaced in the non-compact case by "countable disjoint sequence of finite collapses". For a development of the non-compact theory see [Siebenmann] and [Farrell-Wagoner]. Also the discussion in [Eckmann-Maumary] is valid for locally finite complexes. Finally, the author thinks that [COHEN, §8] is relevant and interesting.

§7. Simplifying a homotopically trivial CW pair

In this section we take a CW pair (K, L) such that $K Z_{d} L$ and simplify it by expanding and collapsing rel L. We start with a lemma which relates the simple-homotopy type of a complex to the attaching maps by which it is constructed.
(7.1) If $K_{0}=L \cup e_{0}$ and $K_{1}=L \cup e_{1}$ are $C W$ complexes, where the $e_{i}(i=0,1)$ are n-cells with characteristic maps $\varphi_{i}: I^{n} \rightarrow K_{i}$ such that $\varphi_{0} \mid \partial I^{n}$ and $\varphi_{1} \mid \partial I^{n}$ are homotopic maps of ∂I^{n} into L, then $K_{0} \wedge K_{1}$, rel L.

PROOF: We first consider the case where $e_{0} \cap e_{1}=\varnothing$ and, under this assumption, give the set $L \cup e_{0} \cup e_{1}$ the topology and CW structure which make K_{0} and K_{1} subcomplexes.

Let $F: \partial I^{n} \times I \rightarrow L$ with $F_{i}=\varphi_{i} \mid \partial I^{n}(i=0,1)$. Give ∂I^{n} a CW structure and $\partial I^{n} \times I$ the product structure. Then, by the cellular approximation theorem (3.3) the $\operatorname{map} F:\left(\partial I^{n} \times I, \partial I^{n} \times\{0,1\}\right) \rightarrow\left(L, L^{n-1}\right)$ is homotopic to a map G such that $G\left|\partial I^{n} \times\{0,1\}=F\right| \dot{\partial} I^{n} \times\{0,1\}$ and $G\left(\hat{c} I^{n} \times I\right) \subset L^{n}$. Define $\varphi: \hat{c}\left(I^{n} \times I\right) \rightarrow\left(L \cup e_{0} \cup e_{1}\right)^{n}$ by setting

$$
\varphi\left|\partial I^{n} \times I=G ; \quad \varphi\right| I^{n} \times\{i\}=\varphi_{i}, \quad i=0,1 .
$$

We now attach an $(n+1)$-cell to $L \cup e_{0} \cup e_{1}$ by φ to get the CW complex

$$
K=\left(L \cup e_{0} \cup e_{1}\right) \cup\left(I_{\varphi}^{n} \times I\right) .
$$

Since $\varphi \mid I^{n} \times\{i\}$ is a characteristic map for e_{i} we have

$$
K_{0}=L \cup e_{0} \not q K \searrow L \cup e_{1}=K_{1}, \text { rel } L .
$$

If $e_{0} \cap e_{1} \neq \varnothing$, construct a $C W$ complex $\hat{K}=L \cup \hat{e}_{0}$ such that $\hat{e}_{0} \cap\left(e_{0} \cup e_{1}\right)=\varnothing$ and such that \hat{e}_{0} has the same attaching map as e_{0}. Then, by the special case above, $K_{0} \wedge \hat{K}_{0} \wedge K_{1}$, rel L.

As an example, (7.1) may be used to show that the dunce hat D has the same simple-homotopy type as a point. D is usually defined to be a 2 -simplex Δ^{2} with its edges identified as follows

Now D can be thought of as the 1-complex $\partial \Delta^{2}$ with the 2 -cell Δ^{2} attached to it by the map $\varphi: \partial \Delta^{2} \rightarrow \partial \Delta^{2}$ which takes each edge completely around the circumference once in the indicated direction. Since this map is easily seen to be homotopic to $1_{\partial \Delta^{2}}$,

$$
D=\left(\partial \Delta^{2} \bigcup_{\varphi}^{\cup} \Delta^{2}\right) \wedge\left(\partial \Delta^{2} \cup_{1} \Delta^{2}\right)=\Delta^{2} \searrow 0 .
$$

See [Zeeman] for more about the dunce hat.
Before proceeding to the main task of this section we give the following useful consequence of (7.1), albeit one which will not be used in this volume.
(7.2) Every finite CW complex K has the simple-homotopy type of a finite simplicial complex of the same dimension.

SKETCH OF PROOF: We shall use the following fact [J. H. C. Whitehead 3 (§15)]
(*) If J_{1} and J_{2} are simplicial complexes and $f: J_{1} \rightarrow J_{2}$ is a simplicial map then the mapping cylinder M_{f} is triangulable so that J_{1} and J_{2} are subcomplexes.
If K is a point the result (7.2) is trivial. Suppose that $K=L \cup e^{n}$ where e^{n} is a top dimensional cell with characteristic map $\varphi: I^{n} \rightarrow K$. Set $\varphi_{0}=\varphi \mid \partial I^{n}$. By induction on the number of cells there is a simple-homotopy equivalence $f: L \rightarrow L^{\prime}$ where L^{\prime} is a simplicial complex. So, by (5.9),

$$
K=L \cup e^{n} \curvearrowright K \cup_{f} L^{\prime}=L^{\prime} \cup_{f \varphi_{0}} I^{n} .
$$

Triangulate ∂I^{n} and let $g: \partial I^{n} \rightarrow L^{\prime}$ be a simplicial approximation to $f \varphi_{0}$. Then (7.1) implies that

$$
L^{\prime} \bigcup_{f \varphi_{0}} I^{n} \curvearrowright L^{\prime} \cup_{g} I^{n} .
$$

Now $L^{\prime} \bigcup_{g} I^{n}$ can be subdivided to become a simplicial complex as follows. Consider I^{n} as $I_{0}^{n} \cup\left(\partial I^{n} \times I\right)$ where I_{0}^{n} is a concentric cube inside I^{n} and $\partial I_{0}^{n} \equiv \partial I^{n} \times 0$. Then $\left|L^{\prime} \cup{ }_{g} I^{n}\right|=\left|M_{g} \cup I_{0}^{n}\right|$. If M_{g} is triangulated according to (*) and I_{0}^{n} is triangulated as the cone on ∂I_{0}^{n} we get a simplicial complex K^{\prime} with $\left|K^{\prime}\right|=\left|L^{\prime} \cup_{g} I^{n}\right|$. It is a fact that

$$
L^{\prime} \cup_{g} I^{n} \wedge K^{\prime}, \text { rel } L^{\prime}
$$

This can be proved by an ad-hoc argument, but it is better for the reader to think of it as coming from the general principle that "subdivision does not change simple-homotopy type", which will be proved in §25. Thus we conclude that $K \wedge K \bigcup_{f} L^{\prime} \wedge L^{\prime} \cup I^{n} \wedge K^{\prime}=$ simplicial complex.

We now give the basic construction in simplifying a CW pair-that of trading cells.
(7.3) If (K, L) is a pair of connected $C W$ complexes and r is an integer such that
(a) $\pi_{r}(K, L)=0$
(b) $K=L \cup \bigcup_{i=1}^{k_{r}} e_{i}^{r} \cup \bigcup_{i=1}^{k_{r+1}} \cdot e_{i}^{r+1} \cup \ldots \cup \bigcup_{i=1}^{k_{n}} e_{i}^{n}$.

Then $K_{\wedge} M$ rel L where M is a $C W$ complex of the form

$$
M=L \cup \bigcup_{i=1}^{k_{r}+1} f_{i}^{r+1} \cup \bigcup_{i=1}^{k_{r}+k_{r}+2} f_{i}^{r+2} \cup\left(\bigcup_{i=1}^{k_{r}+3} f_{i}^{r+3} \cup \ldots \cup \bigcup_{i=1}^{k_{n}} f_{i}^{n}\right) .
$$

[Here the e_{i}^{j} and f_{i}^{j} denote j-cells.]
PROOF: Let $\varphi_{i}^{r}: I^{r} \rightarrow K$ be a characteristic map for $e_{i}^{r}\left(i=1,2, \ldots, k_{r}\right)$. So $\varphi_{i}^{r}\left(\partial I^{r}\right) \subset K^{r-1}=L^{r-1}$ and $\varphi_{i}^{r}:\left(I^{r}, \partial I^{r}\right) \rightarrow(K, L)$. Since $\pi_{r}(K, L)=0$ there is a map $F_{i}: I^{r+1} \rightarrow K$ such that

$$
\begin{aligned}
& F_{i} \mid I^{r} \times 0=\varphi_{i} \\
& F_{i}\left|\partial I^{r} \times t=\varphi_{i}\right| \partial I^{r}, \quad 0 \leq t \leq 1 \\
& F_{i}\left(I^{r} \times 1\right) \subset L
\end{aligned}
$$

We may assume that, in addition,

$$
F_{i}\left(\partial I^{r+1}\right) \subset K^{r}
$$

and

$$
F_{i}\left(I^{r+1}\right) \subset K^{r+1}
$$

This is because, if F_{i} did not have these properties, we could use the cellular approximation theorem as follows. First we would homotop $F_{i} \mid \partial I^{r+1}$, relative to $\left(I^{r} \times 0\right) \cup\left(\partial I^{r} \times I\right)$, to a map G_{i} with $G_{i}\left(I^{r} \times 1\right) \subset L^{r}$. By the homotopy extension property, G_{i} would extend to a map, also called G_{i}, of I^{r+1} into K. Then $G_{i}: I^{r+1} \rightarrow K$ could be homotoped, relative to ∂I^{r+1}, to $H_{i}: I^{r+1} \rightarrow K^{r+1}$, and H_{i} would have the desired properties.

Let $P=K \cup_{F_{1}}^{\cup} I^{r+2} \cup_{F_{2}} I^{r+2} \cup \ldots \cup_{F_{k_{r}}}^{\cup} I^{r+2}$ and let $\psi_{i}: I^{r+2} \rightarrow P$ be the identification map determined by the condition that $\psi_{i} \mid I^{r+1} \times 0=F_{i}$. Recalling that $J^{m} \equiv \mathrm{Cl}\left(\partial I^{m+1}-I^{m}\right)$, we set

$$
E_{i}^{r+2}=\psi_{i}\left(\mathfrak{i}^{r+2}\right) \quad \text { and } \quad E_{i}^{r+1}=\psi_{i}\left(\mathfrak{g}^{r+1}\right), \quad 1 \leq i \leq k_{r}
$$

Then, by definition of expansion,

$$
K \nearrow P=K \cup \bigcup E_{i}^{r+2}
$$

Consider $P_{0}=L \cup \bigcup e_{i}^{r} \cup \bigcup E_{i}^{r+1}$. Thus, when there is a single r-cell and $r=0$ the situation looks like this:

Picture of P

Picture of P_{0}

Since $\psi_{i}\left(\partial J^{r+1}\right)=F_{i}\left(\partial I^{r+1}\right) \subset K^{r}, P_{0}$ is a well-defined subcomplex of P. Also I^{r} is a face of $J^{r^{+1}}$ such that $\psi_{i} \mid I^{r}=\varphi_{i}$, a characteristic map for e_{i}^{r}. So we have

$$
\begin{aligned}
& P_{0} \searrow L \\
& P-P_{0}=\bigcup e_{i}^{r+1} \cup\left(\bigcup e_{i}^{r+2} \cup \bigcup E_{i}^{r+2}\right) \cup \bigcup e_{i}^{r+3} \cup \ldots \cup \bigcup e_{i}^{n} .
\end{aligned}
$$

Let $g: P_{0} \rightarrow L$ be a cellular deformation corresponding to this collapse. Applying (5.9), and letting $G: P \rightarrow P \cup_{g} L$ be the map induced by g, we have

$$
K \nearrow P A A_{g} L, \text { rel } L
$$

where

$$
P \cup_{g} L=L \cup \bigcup G\left(e_{i}^{r+1}\right) \cup\left[\bigcup G\left(e_{i}^{r+2}\right) \cup \bigcup G\left(E_{i}^{r+2}\right)\right] \cup \ldots \cup \bigcup G\left(e_{i}^{n}\right)
$$

The proof is completed by setting $M=P \cup_{g} L$.
(7.4) Suppose that (K, L) is a pair of connected $C W$ complexes such that $K _$L. Let $n=\operatorname{dim}(K-L)$ and let $r \geq n-1$ be an integer. Let e^{0} be a 0 -cell of L. Then $K_{\wedge} M$, rel L, where

$$
M=L \cup \bigcup_{j=1}^{a} e_{j}^{r} \cup \bigcup_{i=1}^{a} e_{i}^{r+1}
$$

and where the e_{j}^{r} and e_{i}^{r+1} have characteristic maps $\psi_{j}: I^{r} \rightarrow M$ and $\varphi_{i}: I^{r+1} \rightarrow M$ such that $\psi_{j}\left(\partial I^{r}\right)=e^{0}=\varphi_{i}\left(J^{r}\right)$.

Definition: If L is connected, $M\} L$, and (M, L) satisfies the conclusion of (7.4) with $r \geq 2$, then (M, L) is in simplified form.

PROOF: Since $K _L, \pi_{i}(K, L)=0$ for all i. Thus, by (7.3), we may trade the relative 0 -cells of K for 2-cells, then the 1 -cells of the new complex for 3 -cells, and so on, until we arrive at a complex \hat{K} for which the lowest dimensional cells of $\hat{K}-L$ are r dimensional. Because $r \geq n-1$ there will
not be any cells of dimension greater than $r+1$. Thus we may write $\hat{K}=L \cup \bigcup_{j=1}^{a} \hat{e}_{j}^{r} \cup \bigcup_{i=1}^{b} \hat{e}_{i}^{r+1}$. Let the \hat{e}_{j}^{r} have characteristic maps $\hat{\psi}_{j}$.

We claim that, for each $j, \hat{\psi}_{j} \mid \partial I^{r}$ is homotopic in L to the constant map $\partial I^{r} \rightarrow e^{0}$. For, since $\hat{K} \longleftrightarrow L$, there is a retraction $R: \hat{K} \rightarrow L$. Then $R \hat{\psi}_{j}: I^{r} \rightarrow L$ and $R \hat{\psi}_{j}\left|\partial I^{r}=\hat{\psi}_{j}\right| \partial I^{r}$ since $\hat{\psi}_{j}\left(\partial I^{r}\right) \subset \hat{K}^{r-1} \subset L$. Thus $\hat{\psi}_{j} \mid \partial I^{r}$ is null homotopic in L and, L being arc-wise connected, it is homotopic to the constant map at e^{0}. Therefore by (7.1),

$$
L \cup \bigcup \hat{e}_{j}^{r} \wedge L \cup \bigcup e_{j}^{r}, \operatorname{rel} L
$$

where the e_{i}^{r} are trivially attached at e^{0}. Hence by (5.9)

$$
L \cup \bigcup \hat{e}_{j}^{r} \cup \bigcup \hat{e}_{i}^{r+1} \wedge L \cup \bigcup e_{j}^{r} \cup \bigcup f_{i}^{r+1}
$$

Now let the f_{i}^{r+1} have characteristic maps $\hat{\varphi}_{i}$. Since J^{r} is contractible to a point by a homotopy of ∂I^{r+1} the attaching map $\hat{\varphi}_{i} \mid \partial I^{r+1}$ is homotopic to a map $\varphi_{i}: \partial I^{r+1} \rightarrow L \cup \bigcup e_{j}^{r}$ such that $\varphi_{i}\left(J^{r}\right)=e^{0}$. Then, by (7.1) again

$$
L \cup \bigcup e_{j}^{r} \cup \bigcup f_{i}^{r+1} \wedge L \cup \bigcup e_{j}^{r} \cup \bigcup e_{i}^{r+1}, \text { rel } L
$$

where the e_{i}^{r+1} have characteristic maps φ_{i} such that $\varphi_{i}\left(J^{r}\right)=e^{0}$. We call this last complex M.

Finally, to see that the number of r-cells of $M-L$ is equal to the number of ($r+1$)-cells of $M-L$, notice that, by (3.7), these 'numbers are precisely equal to the ranks of the free (integral) homology modules $H_{r}\left(M^{r} \cup L, L\right)$ and $H_{r+1}\left(M, M^{r} \cup L\right)$. But since $M \wedge L$, the exact sequence of the triple $\left(M, M^{r} \cup L, L\right)$ contains

$$
\rightarrow H_{r+1}(M, L) \rightarrow H_{r+1}\left(M, M^{r} \cup L\right) \xrightarrow{d} H_{r}\left(M^{r} \cup L, L\right) \rightarrow H_{r}(M, L) \rightarrow
$$

where $H_{r+1}(M, L)=H_{r}(M, L)=0$. Thus d is an isomorphism and these ranks are equal.

§8. Matrices and formal deformations

Given a homotopically trivial CW pair, we have shown that it can be transformed into a pair in simplified form. So consider a simplified pair $(K, L) ; K=L \cup \bigcup e_{j}^{r} \cup \bigcup e_{i}^{r+1}$ where the e_{j}^{r} are trivially attached at e^{0}. If, given r and L, we wish to distinguish one such pair from another, then clearly the crucial information lies in how the cells e_{i}^{r+1} are attached-i.e., in the maps $\varphi_{i} \mid \partial I^{r+1}: \partial I^{r+1} \rightarrow L \cup \bigcup e_{j}^{r}$, where φ_{i} is a characteristic map for e_{i}^{r+1}. Denoting $K_{r}=L \cup \bigcup e_{j}^{r}$, we study these attaching maps in terms of the boundary operator $\partial: \pi_{r+1}\left(K, K_{r} ; e^{0}\right) \rightarrow \pi_{r}\left(K_{r}, L ; e^{0}\right)$ in the homotopy exact sequence of the triple (K, K_{r}, L). Since, however, freely homotopic attaching maps give (7.1) the same result up to simple-homotopy type, we do not wish to be bound to homotopies keeping the base point fixed. To capture this extra degree of freedom formally, we shall think of the homotopy
groups not merely as abelian groups, but as modules over $\mathbb{Z}\left(\pi_{1}\left(L, e^{0}\right)\right)$. This is done as follows:

Given a pair of connected complexes $\left(P, P_{0}\right)$ and a point $x \in P_{0}$, it is well-known [Spanier, §7.3] that $\pi_{1}=\pi_{1}\left(P_{0}, x\right)$ acts on $\pi_{n}\left(P, P_{0} ; x\right)$ by the condition that $[\alpha] \cdot[\varphi]=\left[\varphi^{\prime}\right]$, where α and φ represent the elements $[\alpha]$ and $[\varphi]$ of π_{1} and $\pi_{n}\left(P, P_{0} ; x\right)$ respectively, and $\varphi^{\prime}:\left(I^{n}, I^{n-1}, J^{n-1}\right) \rightarrow\left(P, P_{0}, x\right)$ is homotopic to φ by a homotopy dragging $\varphi\left(J^{n-1}\right)$ along the loop α^{-1}. This action has the properties that
(0) $[*] \cdot[\varphi]=[\varphi]$, where $[*]$ is the identity element in π_{1},
(1) $[\alpha] \cdot\left(\left[\varphi_{1}\right]+\left[\varphi_{2}\right]\right)=[\alpha] \cdot\left[\varphi_{1}\right]+[\alpha] \cdot\left[\varphi_{2}\right]$,
(2) $([\alpha][\beta]) \cdot[\varphi]=[\alpha] \cdot([\beta] \cdot[\varphi])$,
(3) It commutes with all the homomorphisms in the homotopy exact sequence of the pair $\left(P, P_{0}\right)$.

It follows that $\pi_{n}\left(P, P_{0} ; x\right)$ becomes a $\mathbb{Z} \pi_{1}$-module ${ }^{7}$ if we define multiplication by

$$
\left(\sum n_{j}\left[\alpha_{j}\right]\right)[\varphi]=\sum n_{j}\left(\left[\alpha_{j}\right] \cdot[\varphi]\right), \quad\left[\alpha_{j}\right] \in \pi_{1},[\varphi] \in \pi_{n}\left(P, P_{0} ; x\right)
$$

and the homotopy exact sequence of $\left(P, P_{0} ; x\right)$ becomes an exact sequence of $\mathbb{Z} \pi_{1}$-modules. In the case of a simplified pair (K, L), the following lemma will be applied to give us the structure of $\pi_{r+1}\left(K, K_{r} ; e^{0}\right)$ and of $\pi_{r}\left(K_{r}, L ; e^{0}\right)$.
(8.1) Suppose that $\left(P, P_{0}\right)$ is a CW pair with $P=P_{0} \cup \bigcup_{i=1}^{a} e_{i}^{n}$, where P_{0} is connected. Suppose that $\varphi_{i}:\left(I^{n}, I^{n-1}, J^{n-1}\right) \rightarrow\left(P, P_{0} ; e^{0}\right)$ are characteristic maps for the e_{i}^{n} and that either: a) $n \geq 3$, or b) $n=2$ and $\varphi_{i}\left(\partial I^{n}\right)=e^{0}$ for all i. Then $\pi_{n}\left(P, P_{0} ; e^{0}\right)$ is a free $\mathbb{Z} \pi_{1}$-module with basis $\left[\varphi_{1}\right],\left[\varphi_{2}\right], \ldots,\left[\varphi_{a}\right]$.

PROOF: We claim first that the inclusion map induces an isomorphism $i_{\#}: \pi_{1}\left(P_{0}, e^{0}\right) \rightarrow \pi_{1}\left(P, e^{0}\right)$, For all $n \geq 2, i_{\#}$ is onto because, by the cellular approximation theorem, any map of ($I^{1}, \partial I^{1}$) into (P, e^{0}) can be homotoped rel ∂I^{1} into P_{0}. Similarly, for all $n \geq 3, i_{\#}$ is one-one, because any homotopy $F:\left(I^{2}, \partial I^{2}\right) \rightarrow\left(P, P_{0}\right)$ between maps F_{0} and F_{1} can be replaced by a map $G: I^{2} \rightarrow P_{0}$ such that $G\left|\partial I^{2}=F\right| \partial I^{2}$. Finally, if $n=2, \varphi_{i}\left(\partial I^{2}\right)=e^{0}$, by assumption. Let $R: P \rightarrow P_{0}$ be the retraction such that $R\left(\bigcup e_{i}^{2}\right)=e^{0}$. Then, if two maps $f, g:(I, \partial I) \rightarrow\left(P_{0}, e_{0}\right)$ are homotopic in P by the homotopy F_{t}, they are homotopic in P_{0} by the homotopy $R \circ F_{r}$. Hence $i_{\#}$ is one-one in this case also.

Let $p: \widetilde{P} \rightarrow P$ be the universal covering of P. Let $\widetilde{P}_{0}=p^{-1} P_{0}$. Then \widetilde{P}_{0} is the universal covering space of P_{0} with covering map $p \mid \widetilde{P}_{0}$ (by 3.13). Let G be the group of covering homeomorphisms of \widetilde{P}. Choose a base point $\tilde{e}^{0} \in p^{-1}\left(e^{0}\right)$. For each $i\left(l_{0} \leq i \leq a\right)$, let $\tilde{\varphi}_{i}:\left(I^{n}, J^{n-1}\right) \rightarrow\left(\widetilde{P}, \tilde{e}^{0}\right)$ cover φ_{i}. Then (3.15) says that $H_{*}\left(\widetilde{P}, \widetilde{P}_{0}\right)$ is a free $\mathbb{Z}(G)$-module with basis $\left\{\left\langle\tilde{\varphi}_{i}\right\rangle\right\}$ where $\left\langle\tilde{\varphi}_{i}\right\rangle \equiv\left(\tilde{\varphi}_{i}\right)_{*}\left(\omega_{n}\right), \omega_{n}$ being a generator of $H_{n}\left(I^{n}, \partial I^{n}\right)$. We may first identify

[^6]G with $\pi_{1}\left(P, e^{0}\right)$ (see page 12) and then use the isomorphism $i_{\#}$ to identify G with $\pi_{1}\left(P_{0}, e^{0}\right)=\pi_{1}$. If $[\alpha] \in \pi_{1}$, let $g_{[\alpha]}$ be the corresponding covering homeomorphism. Hence $H_{*}\left(\widetilde{P}, \widetilde{P}_{0}\right)$ is a free $\mathbb{Z} \pi_{1}$-module with basis $\left\{\left\langle\tilde{\varphi}_{i}\right\rangle\right\}$. We complete the proof by demonstrating that $H_{n}\left(\widetilde{P}, \widetilde{P}_{0}\right)$ is isomorphic to $\pi_{n}\left(P, P_{0} ; e^{0}\right)$ as a $\mathbb{Z} \pi_{1}$-module, by an isomorphism which takes $\left\langle\tilde{\varphi}_{i}\right\rangle$ onto [φ_{i}] for each i.

To demonstrate this, consider the isomorphism T of \mathbb{Z}-modules given by

$$
H_{n}\left(\widetilde{P}, \widetilde{P}_{0}\right) \xrightarrow{h^{-1}} \pi_{n}\left(\widetilde{P}, \widetilde{P}_{0} ; \tilde{e}^{0}\right) \xrightarrow{p_{\#}} \pi_{n}\left(P, P_{0} ; e^{0}\right)
$$

Here h is the Hurewicz homomorphism which takes each $[\psi] \in \pi_{n}\left(\widetilde{P}, \widetilde{P}_{0}, \tilde{e}^{0}\right)$ onto $\psi_{*}\left(\omega_{n}\right)$. In fact, applying the Hurewicz theorem [Spanier, p. 397], h is an isomorphism because \widetilde{P}_{0} and \widetilde{P} are connected and simply connected and because, by the cellular approximation theorem, $\pi_{i}\left(\widetilde{P}, \widetilde{P}_{0}\right)=0$ for $i \leq n-1$. Also $p_{\#}$ is an isomorphism for all $n \geq 1$, by the homotopy lifting property. Thus T is an isomorphism and, clearly, $T\left(\left\langle\tilde{\varphi}_{i}\right\rangle\right)=p_{\#}\left[\tilde{\varphi}_{i}\right]=\left[p \tilde{\varphi}_{i}\right]=\left[\varphi_{i}\right]$. Finally to see that T is a homomorphism of $\left(\mathbb{Z} \pi_{1}\right)$-modules, it suffices to show that $T\left(\sum a_{i}\left\langle\tilde{\varphi}_{i}\right\rangle\right)=\sum a_{i}\left[\varphi_{i}\right]$ for all $a_{i}=\sum_{j} n_{i j}\left[\alpha_{j}\right] \in \mathbb{Z} \pi_{1}$. But, by definition of scalar multiplication and our identification of $\mathbb{Z} \pi_{1}$ with $\mathbb{Z}(G)$,

$$
\sum_{i} a_{i}\left\langle\tilde{\varphi}_{i}\right\rangle=\sum_{i}\left(\sum_{j} n_{i j}\left[\alpha_{j}\right]\right)\left(\tilde{\varphi}_{i *}\left(\omega_{n}\right)\right)=\sum_{i, j} n_{i j}\left(\left(g_{\left[\alpha_{j}\right.} \tilde{\varphi}_{i}\right)_{*}\left(\omega_{n}\right)\right) .
$$

But $g_{\left[\alpha_{j}\right]} \tilde{\varphi}_{i}$ is freely homotopic to the map $\tilde{\alpha}_{j} \cdot g_{\left[\alpha_{j}\right]} \tilde{\varphi}_{i}$, which is gotten from it by dragging the image of J^{n-1} (namely $g_{\left[\alpha_{j}\right]}\left(\tilde{e}^{0}\right)$) along the path $\tilde{\alpha}_{j}^{-1}$. Thus, by the homotopy property in homology

$$
\begin{aligned}
& \sum_{i} a_{i}\left\langle\tilde{\varphi}_{:}\right\rangle=\sum_{i, j} n_{i j}\left(\left(\tilde{\alpha}_{j} \cdot g_{\left[\alpha_{j}\right]} \tilde{\varphi}_{i}\right)_{*}\left(\omega_{n}\right)\right) \\
& \xrightarrow{h^{-1}} \sum_{i, j} n_{i, j}\left[\tilde{\alpha}_{j} \cdot g_{\left[\alpha_{j}\right]} \tilde{\varphi}_{j}\right] \\
& \xrightarrow{p *} \sum_{i, j} n_{i, j}\left[p \circ\left(\tilde{\alpha}_{j} \cdot g_{\left[\alpha_{j} j\right.} \tilde{\varphi}_{i}\right]\right. \\
&=\sum_{i, j} n_{i, j}\left(\left[\alpha_{j}\right] \cdot\left[\varphi_{i}\right]\right) \\
&=\sum_{i}\left(\sum_{j} n_{i, j}\left[\alpha_{j}\right]\right)\left[\varphi_{i}\right] \\
&=\sum_{i} a_{i}\left[\varphi_{i}\right] . \quad \square
\end{aligned}
$$

Suppose now that (K, L) is in simplified form, where

$$
K=L \cup \bigcup_{j=1}^{a} e_{j}^{r} \cup \bigcup_{i=1}^{a} e_{i}^{r+1} .
$$

Let $\left\{\varphi_{i}\right\}$ and $\left\{\psi_{j}\right\}$ be characteristic maps for the e_{i}^{r+1} and e_{j}^{r} respectively. Then by the preceding lemma, $\left\{\left[\varphi_{i}\right]\right\}$ and $\left\{\left[\psi_{j}\right]\right\}$ are bases for the $\mathbb{Z} \pi_{1}$-modules $\pi_{r+1}\left(K, K_{r}\right)$ and $\pi_{r}\left(K_{r}, L\right)$, where $K_{r}=L \cup \bigcup e_{j}^{r}$. We define the matrix of
(K, L) with respect to the characteristic maps $\left\{\varphi_{i}\right\}$ and $\left\{\psi_{j}\right\}$ to be the $(a \times a)$ $\mathbb{Z} \pi_{1}$-matrix $\left(a_{i j}\right)$, given by $\partial\left[p_{i}\right]=\sum a_{i j}\left[\psi_{j}\right]$ where $\partial: \pi_{r+1}\left(K, K_{r}\right) \rightarrow \pi_{r}\left(K_{r}, L\right)$ is the usual boundary operator. Notice that this matrix must be non-singular (i.e., have a 2 -sided inverse). For $\pi_{r+1}(K, L)=\pi_{r}(K, L)=0$, since $K \imath_{\perp} L$; so, by exactness of the homotopy sequence, ∂ is an isomorphism.

The simplest example of a pair in simplified form occurs when the characteristic maps φ_{i}, ψ_{j} satisfy $\varphi_{i}\left(J^{r}\right)=e^{0}$ and $\varphi_{i} \mid I^{r}=\psi_{i}$. In this case we have, algebraically, that the matrix of (K, L) with respect to the given bases is the $a \times a$ identity matrix and, geometrically, that $K \searrow L$. (In fact $K=L \cup$ [wedge product of balls].) More generally, when the matrix is right we can cancel cells as follows:
(8.2) If (K, L) is a simplified pair and if the matrix of (K, L) with respect to some choice of characteristic maps $\left\{\varphi_{i}\right\},\left\{\psi_{j}\right\}$ is the identity, then $K_{\wedge} L$, rel L.

PROOF: Consider the characteristic maps $\varphi_{1}:\left(I^{r+1}, I^{r}, J^{r}\right) \rightarrow\left(K, K_{r}, e^{0}\right)$ and $\psi_{1}:\left(I^{r}, \partial I^{r}\right) \rightarrow\left(K_{r}, e^{0}\right)$. By hypothesis, $\left[\psi_{1}\right]=\partial\left[\varphi_{1}\right] \equiv\left[\varphi_{1} \mid I^{r}\right] \in \pi_{r}\left(K_{r}, L ; e^{0}\right)$. Thus there is a homotopy $h_{t}:\left(I^{r}, I^{r-1}, J^{r-1}\right) \rightarrow\left(K_{r}, L ; e^{0}\right)$ such that $h_{0}=\varphi_{1} \mid I^{r}$ and $h_{1}=\psi_{1}$. By the homotopy extension theorem (3.1) we may extend $h_{t} \mid \partial I^{r}$ to a homotopy $g_{t}: J^{r} \rightarrow L$ such that $g_{0}\left|J^{r}=\varphi_{1}\right| J^{r}$. Combining h_{t} and g_{t} we have a homotopy $H_{t}:\left(\partial I^{r+1}, I^{r}, J^{r}\right) \rightarrow\left(K_{r}, K_{r}, L\right)$ with $H_{0}=\varphi_{1} \mid \partial I^{r+1}$ and $H_{1} \mid I^{r}=\psi_{1}$. By the cellular approximation theorem H_{1} can be homotoped, rel I^{r}, to $\hat{\varphi}_{1}$ where $\hat{\varphi}_{1}\left(J^{r}\right) \subset L^{r}$. If we attach an $(r+1)$-cell \hat{e}_{1}^{r+1} to K_{r} by $\hat{\varphi}_{1}: \partial I^{r+1} \rightarrow K_{r}$ then, by (7.1) we have

$$
\begin{array}{rl}
K=L \cup \bigcup_{j} e_{j}^{r} \cup \bigcup_{i} e_{i}^{r+1} & A\left(L \cup \bigcup_{j} e_{j}^{r} \cup \bigcup_{i>1} e_{i}^{r+1}\right) \cup e_{1}^{r+1}, \text { rel } L \\
& \searrow L \cup \bigcup_{j>1} e_{j}^{r} \cup \bigcup_{i>1} e_{1}^{r+1} \equiv K^{\prime} .
\end{array}
$$

The last collapse takes place because $\hat{\varphi}_{1} \mid I^{r}=\psi_{1}$.
Finally, the matrix of $\left(K^{\prime}, L\right)$ with respect to the remaining characteristic maps is the identity matrix with one fewer row and column. For suppose that $\partial^{\prime}: \pi_{r+1}\left(K^{\prime}, K_{r}^{\prime}\right) \rightarrow \pi_{r}\left(K_{r}^{\prime}, L\right)$, that $i^{\prime}: K^{\prime} \subset K$ and that $\varphi_{i}=i^{\prime} \varphi_{i}^{\prime}, \psi_{j}=i^{\prime} \psi_{j}^{\prime}$. If $\hat{\partial}^{\prime}\left[\varphi_{i}^{\prime}\right]=\sum a_{i j}^{\prime}\left[\psi_{j}^{\prime}\right]$ then $\left[\psi_{i}\right]=\partial\left[\varphi_{i}\right]=i_{\#}^{\prime} \partial^{\prime}\left[\varphi_{i}^{\prime}\right]=i_{\#}^{\prime} \sum a_{i j}^{\prime}\left[\psi_{j}^{\prime}\right]=\sum a_{i j}^{\prime}\left[\psi_{j}\right]$. So $a_{i j}^{\prime}=\delta_{i j}$. Thus we may proceed by induction on the number of cells of $K-L$.

Exercise: Go through the preceding proof in the example where $L=$ $e^{0} \cup e_{0}^{2}$ (the 2 -sphere), $K_{r}=L \cup e^{2}$ and the sole 3 -cell is attached by $\varphi: \partial I^{3} \rightarrow L \cup e^{2}$ such that

$$
\begin{aligned}
& \varphi\left(J^{2} \cup\left\{\left.\left(\frac{1}{2}, y, 0\right) \right\rvert\, 0 \leq y \leq 1\right\}\right)=e^{0} \\
& \varphi \left\lvert\,\left\{(x, y, 0) \left\lvert\, 0 \leq x \leq \frac{1}{2}\right., 0 \leq y \leq 1\right\}=\right.\text { characteristic map for } e_{0}^{2} \\
& \varphi \left\lvert\,\left\{(x, y, 0) \left\lvert\, \frac{1}{2} \leq x \leq 1\right.,0 \leq y \leq 1\right\}=\right.\text { characteristic map for } e^{2}
\end{aligned}
$$

If the matrix of the simplified pair (K, L) is not the identity we might nevertheless be able to expand and collapse to get a new pair (M, L) whose
matrix is the identity. The following lemma shows that certain algebraic changes of the matrix of a given pair can be realized by expanding and collapsing.
(8.3) Assume that the pair (K, L) is in simplified form and has matrix $\left(a_{i j}\right)$ with respect to some set of characteristic maps. Suppose further that the matrix $\left(a_{i j}\right)$ can be transformed to the matrix $\left(b_{i j}\right)$ by one of the following operations
I. $\quad R_{i} \rightarrow \pm \alpha R_{i} \quad\left(\alpha \in \pi_{1} \subset \mathbb{Z} \pi_{1}\right)$
(Multipiy the i 'th row on the left by plus or minus an element of the group)
II. $\quad R_{k} \rightarrow R_{k}+\rho R_{i} \quad\left(\rho \in \mathbb{Z} \pi_{1}\right)$
(Add a left group-ring multiple of one row to another)
III. $\left(a_{i j}\right) \rightarrow\left(\begin{array}{cc}a_{i j} & 0 \\ 0 & I_{q}\end{array}\right)$
(Expand by adding a corner identity matrix)
Then there is a simplified pair (M, L) such that $K_{\wedge} M$ rel L and a set of characteristic maps with respect to which (M, L) has the matrix $\left(b_{i j}\right)$.
PROOF: Suppose, as usual, that $K=L \cup \bigcup e_{j}^{r} \cup \bigcup e_{i}^{r+1}$, and denote the given characteristic maps for the r and $(r+1)$ cells by $\left\{\psi_{j}\right\}$ and $\left\{\varphi_{i}\right\}$ respectively. For notational simplicity we consider I. when $R_{1} \rightarrow \pm \alpha R_{1}$ and II. when $R_{1} \rightarrow R_{1}+\rho R_{2}$.

To realize $R_{1} \rightarrow-R_{1}$, set $M=K$ and introduce the new characteristic map $\hat{\varphi}_{1}$ to replace φ_{1}, where $\hat{\varphi}_{1}=\varphi_{1} \circ R$ and $R: I^{r+1} \rightarrow I^{r+1}$ by $R\left(x_{1}, x_{2}, \ldots, x_{r+1}\right)=\left(1-x_{1}, x_{2}, \ldots, x_{r+1}\right)$. Clearly $\quad\left[\hat{p}_{1}\right]=-\left[\varphi_{1}\right]$, so $\partial\left[\hat{\phi}_{1}\right]=-\partial\left[\varphi_{1}\right]=-\sum a_{i j}\left[\psi_{j}\right]$. To realize $R_{1} \rightarrow \alpha R_{1}$, let $f:\left(I^{r}, \partial I^{r}\right) \rightarrow\left(K_{r}, e^{0}\right)$ represent $\alpha \cdot\left[\varphi_{1} \mid I^{r}\right] \in \pi_{r}\left(K_{r}, L\right)$. Extend f trivially to ∂I^{r+1}. Set

$$
M=L \cup \bigcup_{j} e_{j}^{r} \cup \bigcup_{i>1} e_{i}^{r+1} \cup \hat{e}_{1}^{r+1}
$$

where \hat{e}_{1}^{r+1} has characteristic map $\hat{\varphi}_{1}$ with $\hat{\varphi}_{1} \mid \partial I^{r+1}=f$. Clearly $\partial\left[\hat{\varphi}_{1}\right]=\alpha \cdot \partial\left[\varphi_{1}\right]$. But $\hat{\varphi}_{1} \mid \partial I^{r+1}$ is freely homotopic in K_{r} to $\varphi_{1} \mid \partial I^{r+1}$. Thus, by (7.1), $K_{\wedge} M$ rel L.

To realize the operation $R_{1} \rightarrow R_{1}+\rho R_{2}$, let $\varphi:\left(I^{r+1}, I^{r}, J^{r}\right) \rightarrow\left(K, K_{r}, e^{0}\right)$ be the canonical representative of $\left[\varphi_{1}\right]+\left[\varphi_{2}^{\prime}\right]$, where φ_{2}^{\prime} represents $\rho \cdot\left[\varphi_{2}\right]$

Then $\partial[\varphi]=\partial\left[\varphi_{1}\right]+\rho \cdot \partial\left[\varphi_{2}\right]=\sum_{j}\left(a_{1 j}+\rho a_{2 j}\right)\left[\psi_{j}\right]$. Notice that $\varphi\left(\partial I^{r+1}\right) \subset K_{r}$
$\subset K_{r} \cup e_{2}^{r+1}$. Also $\varphi \mid \partial I^{r+1}$ is homotopic in $K_{r} \cup e_{2}^{r+1}$ to $\varphi_{1} \mid \partial I^{r+1}$ because $\varphi_{2}^{\prime} \mid I^{r}$ is homotopic (rel ∂I^{r}) in $K_{r} \cup e_{2}^{r+1}$ to the constant map at e^{0}. (In fact φ_{2}^{\prime} is the homotopy!) Therefore we may attach a new cell with characteristic map $\hat{\varphi}_{1}$ such that $\hat{\varphi}_{1}\left|\partial I^{r+1}=\varphi\right| \partial I^{r+1}$ and thus construct a new complex M with the desired matrix such that

$$
K=\left[K_{r} \cup \bigcup_{i} e_{i}^{r+1}\right] \curvearrowright\left[K_{r} \cup \bigcup_{i>1} e_{i}^{r+1} \bigcup_{\varphi \mid \partial r+1} I^{r+1}\right]=M, \text { rel } K_{r} \cup \bigcup_{i>1} e_{i}^{r+1}
$$

Finally, a matrix operation of type III may be realized by elementary expansions of K.
(8.4) Suppose that (K, L) is a pair in simplified form which has matrix A with respect to some set of characteristic maps. Suppose further that A can be transformed to an identity matrix I_{q} by operations of type (I)-(V), where (I), (II) and (III) are as in (8.3) and (IV) and (V) are the analogous column operations.

$$
\begin{array}{ll}
\text { IV. } C_{j} \rightarrow \pm C_{j} \cdot \alpha & \left(\alpha \in \pi_{1} \subset \mathbb{Z} \pi_{1}\right) \\
\text { V. } C_{k} \rightarrow C_{k}+C_{i} \rho & \left(\rho \in \mathbb{Z} \pi_{1}\right)
\end{array}
$$

Then $K \wedge L$ rel L.
$P R O O F$: Suppose that $\left(a_{i j}\right) \rightarrow I_{q}$ by these five types of operations. Obviously thetype III operations may all be done first. Then, as is well known, operations of type I and II (IV and V) correspond to left (right) multiplication by elementary matrices. [By an elementary matrix we mean either a diagonal matrix with all l's except a single $\pm \alpha\left(\alpha \in \pi_{1}\right)$ on the diagonal, or a matrix which has all ones on the diagonal and a single non-zero entry $a_{i j}=\rho\left(\rho \in \mathbb{Z} \pi_{1}\right)$ off of the diagonal.] Thus we have

$$
\begin{aligned}
I_{q} & =B\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right) C, \quad[B, C \text { products of elementary matrices }] \\
C^{-1} & =B\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right) \\
I_{q} & =C B\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right) \quad[C B \text { a product of elementary matrices }]
\end{aligned}
$$

So A can be transformed to the identity by operations (l), (II), (III) only. Hence by (8.2) and (8.3), $K_{\wedge} L$ rel L.

We come now to our first major theorem.
(8.5) If (K, L) is a $C W$ pair such that K and L are 1-connected and $K\}_{1} L$ then $K_{\wedge} L$ rel L.

PROOF: By (7.4) $K \wedge J \operatorname{rel} L$, where (J, L) is in simplified form. Let A be the matrix of (J, L) with respect to some set of characteristic maps. Then since $\pi_{1} L=\{1\}, \mathbb{Z} \pi_{1}=\mathbb{Z}$. Thus A is a non-singular matrix with integral coefficients. It is well-known that such a matrix can be transformed to the
identity matrix by operations of types (I), (II), (IV) and (V). Therefore, by (8.4), $J_{\wedge} L$ rel L.

The proof in (8.5) depends on the fact that \mathbb{Z} is a ring over which nonsingular matrices can be transformed to the identity. The next lemma shows that the algebra is not always so simple.

If G is a group then a unit in $\mathbb{Z}(G)$ is an element with a two-sided multiplicative inverse. The elements of the group $\pm G=\{g \mid g \in G\} \cup\{-g \mid g \in G\}$ are called the trivial units, and all others are called the non-trivial units of $\mathbb{Z}(G)$.
(8.6) A. Suppose that G is an abelian group such that $\mathbb{Z}(G)$ has non-trivial units. Then there is a non-singular $\mathbb{Z}(G)$ matrix A which cannot be transformed to an identity matrix by any finite sequence of the operations (I)-(V).
B. The group $G=\mathbb{Z}_{5}$ is an abelian group such that $\mathbb{Z}\left(\mathbb{Z}_{5}\right)$ has non-trivial units. (Infinitely many such groups will be given in (11.3).)
$P R O O F$: Let a be a non-trivial unit of $\mathbb{Z}(G)$ and let $A=(a)$ be the one-by-one matrix with a as entry. Since G is abelian, $\mathbb{Z}(G)$ is a commutative ring. Thus the determinant operation gives a well-defined map from the square matrices over $\mathbb{Z}(G)$ to $\mathbb{Z}(G)$ which satisfies the usual properties of determinants. The operations (II), (III) and (V) transform any given matrix into another matrix with the same determinant. Operations (I) and (IV) multiply the determinant by a trivial unit. Thus if B is a matrix into which A can be transformed, $\operatorname{det} B=g \cdot(\operatorname{det} A)=g a$ for some trivial unit g. Therefore $\operatorname{det} B$ is a nontrivial unit and, in particular, B cannot be an identity matrix.

To see that $\mathbb{Z}\left(\mathbb{Z}_{5}\right)$ has non-trivial units, let $\mathbb{Z}_{5}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$. Then $a=1-t+t^{2}$ is a non-trivial unit since $\left(1-t+t^{2}\right)\left(t+t^{2}-t^{4}\right)=1$.

The next lemma shows that the algebraic difficulties illustrated in (8.6) can, in fact, always be realized geometrically.
(8.7) If G is a group which can be finitely presented and A is a non-singular $\mathbb{Z}(G)$ matrix then
(1) There is a connected CW complex L with $\pi_{1}\left(L, e^{0}\right)=G$.
(2) For any connected complex L with $\pi_{1}\left(L, e^{0}\right)=G$, there is a CW pair (K, L) in simplified form such that the matrix of (K, L) with respect to some set of characteristic maps is precisely A.

PROOF: Suppose that G is given by generators x_{1}, \ldots, x_{m} and relations $R_{i}\left(x_{1}, \ldots, x_{m}\right)=1, \quad(i=1,2, \ldots, n)$. Let $L^{1}=e^{0} \cup\left(e_{1}^{1} \cup \ldots \cup e_{m}^{1}\right)$, a wedge product of circles, and let x_{j} be the element of the free group $\pi_{1}\left(L^{1}, e^{0}\right)$ represented by a characteristic map for e_{j}^{1}. Let $\varphi_{i}: \partial I^{2} \rightarrow L^{1}$ represent the element $R_{i}\left(x_{1}, \ldots, x_{m}\right)$. Finally let $L=L^{1} \underset{\varphi_{1}}{\cup} I^{2} \bigcup_{\varphi_{2}} \ldots \bigcup_{\varphi_{n}} I^{2}$. By successive applications of Van Kampen's theorem. $\tau_{1}\left(L, e^{0}\right)$ is precisely G.

In proving (2), write $A=\left(a_{i j}\right)$, a $p \times p$ matrix. Let $K_{2}=L \cup e_{1}^{2} \cup \ldots \cup e_{p}^{2}$ where the e_{j}^{2} have characteristic map ψ_{j} with $\psi_{j}\left(\partial I^{2}\right)=e^{0}$. As usual $\left[\psi_{j}\right]$ denotes the element of $\pi_{2}\left(K_{2}, L\right)$ represented by $\psi_{j}:\left(I^{2}, I^{1}, J^{1}\right) \rightarrow\left(K_{2}, L, e^{0}\right)$.

Let $\left\langle\psi_{j}\right\rangle$ denote the element of $\pi_{2}\left(K_{2}, e^{0}\right)$ represented by ψ_{j} and let $\alpha:\left(K_{2}, e^{0}, e^{0}\right) \leftrightharpoons\left(K_{2}, L, e^{0}\right)$. Clearly $\alpha_{\#}\left\langle\psi_{j}\right\rangle=\left[\psi_{j}\right]$. Let $f_{i}:\left(I^{2}, \partial I^{2}\right) \rightarrow\left(K_{2}, e^{0}\right)$ represent $\sum_{j} a_{i j}\left\langle\psi_{j}\right\rangle$. Finally, attach 3-cells to K_{2} to get $K=K_{2} \cup e_{1}^{3}$ $\cup \ldots \cup e_{p}^{3}$ where the e_{i}^{3} have characteristic maps $\varphi_{i}:\left(I^{3}, I^{2}, J^{2}\right) \rightarrow\left(K, K_{2}, e^{0}\right)$ with $\varphi_{i} \mid I^{2}=\alpha \circ f_{i}$. Then $\partial\left[\varphi_{i}\right]=\left[\varphi_{i} \mid I^{2}\right]=\left[\alpha \circ f_{i}\right]=\alpha_{\#}\left(\sum_{j} a_{i j}\left\langle\psi_{j}\right\rangle\right)=\sum a_{i j}\left[\psi_{j}\right]$. Thus we have constructed a pair (K, L) with $K-L=\bigcup e_{j}^{2} \cup \bigcup e_{i}^{3}$ such that the boundary operator $\partial: \pi_{3}\left(K, K_{2}, e^{0}\right) \rightarrow \pi_{2}\left(K_{2}, L, e^{0}\right)$ has matrix A.

It remains only to show that $K{ }_{d} L$. It suffices by (3.2) to show that $\pi_{n}(K, L)=0$ for $n \leq 3$. For $n \leq 1$, this is clear from the cellular approximation theorem and the connectivity of K and L. For $n=2,3$ we use the fact that ∂ is an isomorphism because A was assumed non-singular. Thus, for $n=2$, we have the sequence

$$
\pi_{3}\left(K, K_{2}\right) \xrightarrow[\cong]{\cong} \pi_{2}\left(K_{2}, L\right) \rightarrow \pi_{2}(K, L) \rightarrow \underbrace{\pi_{2}\left(K, K_{2}\right)}_{0}
$$

and by exactness it follows that $\pi_{2}(K, L)=0$. (Here $\pi_{2}\left(K, K_{2}\right)=0$ because $K-K_{2}$ is the union of 3-cells.) Finally note that $\pi_{3}(K, L) \cong \pi_{3}(\tilde{K}, \tilde{L})$ $\cong H_{3}(\tilde{K}, \tilde{L})$, the last isomorphism coming from the Hurewicz theorem which applies because $0=\pi_{i}(K, L) \cong \pi_{i}(\widetilde{K}, \tilde{L})$ for $i=1,2$ and because \tilde{L} is 1 -connected by (3.13). To see that $H_{3}(\tilde{K}, \tilde{L})=0$ consider the commutative diagram

$$
\begin{aligned}
& 0=H_{3}\left(\tilde{K}_{2}, \tilde{L}\right) \rightarrow H_{3}(\tilde{K}, \tilde{L}) \rightarrow H_{3}\left(\tilde{K}, \tilde{K}_{2}\right) \xrightarrow{\tilde{j}} H_{2}\left(\tilde{K}_{2}, \tilde{L}\right) \\
& \text { Hurewicz } \downarrow \cong \quad \text { Hurewicz } \downarrow \cong \\
& \begin{array}{cc}
\pi_{3}\left(\tilde{K}, \tilde{K}_{2}\right) & \longrightarrow \pi_{2}\left(\tilde{K}_{2}, \tilde{L}\right) \\
\downarrow & \\
\downarrow & \downarrow \cong \\
\pi_{3}\left(K, K_{2}\right) & \xrightarrow{\cong} \pi_{2}\left(K_{2}, L\right)
\end{array}
\end{aligned}
$$

Clearly $\tilde{\partial}$ is an isomorphism so that, by exactness of the top line, $H_{3}(\tilde{K}, \tilde{L})=0$. Hence $\pi_{3}(K, L)=0$.

Summarizing the situation: It has been shown that in certain cases a homotopically trivial pair (K, L) must have $K \wedge L$ rel L. This occurs (8.5) when $\pi_{1} L=0$ or, more generally, (8.4), when all non-singular matrices over $\mathbb{Z}\left(\pi_{1} L\right)$ can be transformed into identity matrices. Thus, by $\S 4$ and $\S 5$, the concepts of homotopy equivalence and simple-homotopy equivalence coincide among CW complexes with sufficiently nice fundamental groups. On the other hand we have exhibited ((8.6) and (8.7)) simplified pairs with matrices which cannot be transformed to an identity matrix. We must ask now whether these matrices-or better, their equivalence classes under operations (I)-(III)—are intrinsic to the problem or whether they are
merely artif acts. Starting with a pair (K, L) such that $K \iota_{1} L$, does the equivalence class of the matrix which appears when (K, L) is expanded and collapsed to a pair in simplified form depend on the particular choice of formal def ormation?

Two observations are crucial. First, the equivalence classes of nonsingular matrices form a group, the Whitehead group of $\pi_{1} L$-written $W h\left(\pi_{1} L\right)$. (This will be proved in the next chapter.) Second, if $K_{A} J$ rel L where (J, L) is in simplified form then it is implicit in the proof of (8.1) that the matrix of (J, L) is the matrix of the boundary operator

$$
H_{r+1}\left(\tilde{J}, \tilde{J}_{r}\right) \rightarrow H_{r}\left(\tilde{J}_{r}, \tilde{L}\right)
$$

By definition of the cellular chain complex (page 7), this is the boundary operator in $C(\tilde{J}, \tilde{L})$ where $C(\tilde{J}, \tilde{L})$ is the chain complex

$$
0 \rightarrow C_{r+1}(\tilde{J}, \tilde{L}) \xrightarrow{\partial} C_{r}(\tilde{J}, \tilde{L}) \rightarrow 0 .
$$

Since $\tilde{J} z_{d} \tilde{L}, C(\tilde{J}, \tilde{L})$ is an acyclic $\mathbb{Z}\left(\pi_{1} L\right)$-complex. Thus to an acyclic $\mathbb{Z}\left(\pi_{1} L\right)$-complex we have associated an element of $W h\left(\pi_{1} L\right)$. We would like to show that the element which is thus determined by $C(\tilde{J}, \tilde{L})$ is pre-determined by $C(\tilde{K}, \tilde{L})$ and, indeed, by (K, L).

At this point a more sophisticated and algebraic approach is necessary. The next chapter will consist of a purely algebraic study of acyclic chain complexes, of the Whitehead groups of groups, and of the rich tapestry which can be woven from these strands.

Chapter III

Algebra

§9. Algebraic conventions

Rings and modules:

Throughout Chapter III, R will denote a ring with unity satisfying:
(*) If M is any finitely generated free module over R then any two bases of M have the same cardinality.
All modules will be assumed to be finitely generated left modules-i.e., when multiplying, ring elements are written to the left of module elements.

It is an elementary exercise that a finitely generated free module has only finite bases. Thus, by these conventions, a "free R-module" always means an R-module with finite bases, any two of which have the same cardinality.

It is well known that division rings satisfy (*). More generally we have:
(9.1) The condition (*) is satisfied by the ring R if there is a division ring D and a non-zero ring homomorphismf: $R \rightarrow D$.

PROOF: By considering the matrices which occur in changing bases, one can see that (*) is satisfied by a given ring if and only if every matrix A, with entries in R, for which there is a matrix B with $A B=I_{m}$ and $B A=I_{n}$ is square (i.e. has $m=n$).

Let f_{*} be the induced map taking matrices over R into matrices over D given by $f_{*}\left(\left(a_{i j}\right)\right)=\left(f\left(a_{i j}\right)\right)$. Since f is a ring homomorphism $f_{*}(A B)$ $=f_{*}(A) f_{*}(B)$ for all A, B. Now suppose that A and B are arbitrary matrices such that $A B=I_{m}$ and $B A=I_{n}$. Because $f(1)$ is a unit, it follows that $f(1)=1$. So $f_{*}\left(I_{q}\right)=I_{q}$ for all q. Thus $f_{*}(A) f_{*}(B)=I_{m}$ and $f_{*}(B) f_{*}(A)=I_{n}$. Hence, since D is a division ring, $f_{*}(A)$ is square, implying that A is square. Therefore R satisfies (*).
(9.2) If G is a group then $\mathbb{Z}(G)$ satisfies (*).

PROOF: The augmentation map $A: \mathbb{Z}(G) \rightarrow$ (rationals) given by $A\left(\sum_{i} n_{i} g_{i}\right)$
$=\sum n_{i}$, is a non-zero ring homomorphism. Apply (9.1).
$=\sum_{i} n_{i}$, is a non-zero ring homomorphism. Apply (9.1).

Matrices:

If $f: M_{1} \rightarrow M_{2}$ is a module homomorphism where M_{1} and M_{2} have ordered bases $x=\left\{x_{1}, \ldots, x_{p}\right\}$ and $y=\left\{y_{1}, \ldots, y_{q}\right\}$, respectively, then $\langle f\rangle_{x, y}$ denotes the matrix $\left(a_{i j}\right)$ where $f\left(x_{i}\right)=\sum_{j} a_{i j} y_{j}$. Thus each row of $\langle f\rangle_{x, y}$ gives the image of a basis element of x. When the bases are clear from
the context we simply write $\langle f\rangle$ to denote this matrix. When the meaning is extraordinarily unambiguous we may sometimes write f instead of $\langle f\rangle$.

Beware of the fact that these conventions lead to

$$
\left\langle f_{2} \circ f_{1}\right\rangle=\left\langle f_{1}\right\rangle\left\langle f_{2}\right\rangle .
$$

If $x=\left\{x_{1}, \ldots, x_{p}\right\}$ and $y=\left\{y_{1}, \ldots, y_{p}\right\}$ are two ordered bases of the same module, M, then $\langle x / y\rangle$ denotes the non-singular matrix ($a_{i j}$) where $x_{i}=\sum_{j} a_{i j} y_{j}$. If x, y, z are bases of M then $\langle x / z\rangle=\langle x / y\rangle\langle y / z\rangle$.

Suppose that $f: M_{1} \rightarrow M_{2}$ is a module homomorphism, and that x and x^{\prime} are bases for M_{1}, and y and y^{\prime} are bases for M_{2}. Then

$$
\langle f\rangle_{x^{\prime}, y^{\prime}}=\left\langle x^{\prime} \mid x\right\rangle\langle f\rangle_{x, y}\left\langle y / y^{\prime}\right\rangle
$$

a simple formula to remember.
The fact that a matrix can represent either a map or a change of basis has the following expression in this notation. If $x=\left\{x_{1}, \ldots, x_{p}\right\}$ and $y=\left\{y_{1}, \ldots, y_{p}\right\}$ are two bases for the module M and if $f: M \rightarrow M$ is the isomorphism given by $f\left(y_{i}\right)=x_{i}$ for all i, then $\langle f\rangle_{y, y}=\langle x / y\rangle$.

Direct sums:

If $f: A \rightarrow C$ and $g: B \rightarrow D$ then $f \oplus g: A \oplus B \rightarrow C \oplus D$ is defined by $(f \oplus g)(a, b)=(f(a), g(b))$.

§10. The groups $K_{G}(R)$

The group of non-singular $n \times n$ matrices (i.e., matrices which have a twosided inverse) over the ring R is denoted by $G L(n,-R)$. There is a natural injection of $G L(n, R)$ into $G L(n+1, R)$ given by

$$
A \mapsto\left(\begin{array}{ll}
A & \\
& 1
\end{array}\right)
$$

Using this, the infinite general linear group of R is defined as the direct limit $G L(R)=\underset{\longrightarrow}{\lim } G L(n, R)$. (Alternatively, $G L(R)$ may be thought of as the group consisting of all infinite non-singular matrices which are eventually the identity.) For notational convenience we shall identify each $A \in G L(n, R)$ with its image in $G L(R)$.

Let $E_{i, j}^{n}(i \neq j)$ be the $n \times n$ matrix with all entries 0 except for a 1 (unity element in R) in the (i, j)-spot. An elementary matrix is a matrix of the form $\left(I_{n}+a E_{i, j}^{n}\right)$ for some $a \in R$. We let $E(R)$ denote the subgroup of $G L(R)$ generated by the elementary matrices. Elements of $E(R)$ will be denoted by E, E_{1}, E_{2}, etc.

In order to study $G L(R) / E(R)$, define an equivalence relation on $G L(R)$ by:
$A \sim B \Leftrightarrow$ there are elements $E_{1}, E_{2} \in E(R)$ such that $A=E_{1} B E_{2}$.

We will shortly prove (10.2) that $E(R)$ is normal, so that this is just the relationship of belonging to the same coset of $E(R)$. In the meantime it is clear that $A \sim B$ iff A can be gotten from B by a finite sequence of operations which consist of adding a left multiple of one row to another, or a right multiple of one column to another. More generally, instead of using rows, if P_{1} and P_{2} are disjoint $p \times n$ and $q \times n$ submatrices of the non-singular $n \times n$ matrix A and if X is a $p \times q$ matrix, the following hold

$$
\begin{gathered}
I_{R}: A=\left(\begin{array}{c}
==== \\
P_{1} \\
==-= \\
P_{2} \\
====
\end{array}\right) \sim B=\left(\begin{array}{c}
========= \\
P_{1}+X P_{2} \\
======== \\
P_{2} \\
=========
\end{array}\right) \\
I_{R}: \text { If } p=q, \\
A=\left(\begin{array}{c}
==== \\
P_{1} \\
==== \\
P_{2} \\
===:
\end{array}\right) \sim B=\left(\begin{array}{c}
====== \\
P_{2} \\
===== \\
-P_{1} \\
=====
\end{array}\right)
\end{gathered}
$$

I_{R} is immediate from the definition of matrix multiplication. I_{R} follows from I_{R} by the sequence

The corresponding operations on columns give rise to analogous equivalences which we call I_{C} and $I I_{C}$.
(10.1) If A, B are elements of $G L(R)$ then $A B \sim B A$.

PROOF: For sufficiently large n we may assume that A and B are both $n \times n$ matrices. Then

$$
A B=\left(\begin{array}{cc}
A B & 0 \\
0 & I_{n}
\end{array}\right) \sim\left(\begin{array}{cc}
A B & A \\
0 & I_{n}
\end{array}\right) \sim\left(\begin{array}{cc}
0 & A \\
-B & I_{n}
\end{array}\right) \sim\left(\begin{array}{cc}
0 & A \\
-B & 0
\end{array}\right)
$$

Similarly $B A \sim\left(\begin{array}{cc}0 & B \\ -A & 0\end{array}\right)$
Finally, using $I I_{C}$ and $I I_{R}$

$$
\left(\begin{array}{cc}
0 & A \\
-B & 0
\end{array}\right) \sim\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) \sim\left(\begin{array}{cc}
0 & B \\
-A & 0
\end{array}\right) .
$$

(10.2) $E(R)$ is the commutator subgroup of $G L(R)$.

PROOF: If $E \in E(R)$ and $X \in G L(R)$, then $(X E) X^{-1} \sim X^{-1}(X E)$ by (10.1),
so $X E X^{-1}=E_{1} E E_{2} \in E(R)$. Given a commutator $A B A^{-1} B^{-1}$ we apply this with $X=B A$ to get

$$
(A B)\left(A^{-1} B^{-1}\right) \stackrel{(10.1)}{=}\left[E_{1}(B A) E_{2}\right](B A)^{-1}=E_{1}\left[(B A) E_{2}(B A)^{-1}\right] \in E(R) .
$$

Hence the commutator subgroup is contained in $E(R)$.
Conversely, a typical generator of $E(R)$ is of the form $\left(I_{n}+a E_{i, k}^{n}\right)$. Noticing that $\left(I_{n}+a E_{i, j}^{n}\right)^{-1}=\left(I^{n}-a E_{i, j}^{n}\right)$, we can see that this generator is a commutator because

$$
\left(I_{n}+a E_{i, k}^{n}\right)=\left(I_{n}+a E_{i, j}^{n}\right)\left(I_{n}+E_{j, k}^{n}\right)\left(I_{n}-a E_{i, j}^{n}\right)\left(I_{n}-E_{j, k}^{n}\right)
$$

From elementary algebra this gives immediately
(10.3) If H is a subgroup of $G L(R)$ containing $E(R)$ then H is a normal subgroup and $G L(R) / H$ is abelian.

Suppose that G is a subgroup of the group of units of R. Let E_{G} be the group generated by $E(R)$ and all matrices of the form

where $g \in G$. Then we define

$$
K_{G}(R) \equiv \frac{G L(R)}{E_{G}}
$$

By (10.3) this is an abelian group. We denote the quotient map by $\tau: G L(R) \rightarrow K_{G}(R)$ and we call $\tau(A)$ the torsion of the matrix A. Since $K_{G}(R)$ is abelian and will be written additively, we have $\tau(A B)=\tau(A)+\tau(B)$.

Examples of $\mathbf{K}_{\mathbf{G}}(\mathbf{R})$ for the most popular choices of \mathbf{G} :

1. $K_{1}(R)=\frac{G L(R)}{E(R)}, \quad G=\{1\}$
2. $\bar{K}_{1}(R)=K_{G}(R), \quad G=\{+1,-1\}$
3. $W h(G)=K_{T}(\mathbb{Z}(G))$, where G is a given group, $R=\mathbb{Z}(G)$ and $T=G \cup(-G)$ is the group of trivial units of $\mathbb{Z}(G)$.
$\bar{K}_{1}(R)$ has the advantage, as does any $K_{G}(R)$ with $-1 \in G$, that multiplying a row (or column) by (-1) does not change the torsion of a matrix, and so,
by $I I_{R}$ ($I I_{C}$) neither does the interchange of two rows (or columns). The Whitehead group of $G, W h(G)$, is the most important example for our purposes.

If G and G^{\prime} are subgroups of the units of R and R^{\prime} respectively then any ring homomorphism $f: R \rightarrow R^{\prime}$ such that $f(G) \subset G^{\prime}$ induces a group homomorphism $f_{*}: K_{G}(R) \rightarrow K_{G},\left(R^{\prime}\right)$ given by

$$
f_{*} \tau\left(\left(a_{i j}\right)\right)=\tau\left(\left(f\left(a_{i j}\right)\right)\right)
$$

f_{*} is well-defined because, if $\left(a_{i j}\right) \in E_{G}$, then $\left(f\left(a_{i j}\right)\right) \in E_{G^{\prime}}$. Thus we have a covariant functor

$$
\left\{\begin{array}{l}
\text { pairs }(R, G) \\
\text { ring homomorphisms } \\
f: R \rightarrow R^{\prime} \text { with } f(G) \subset G^{\prime}
\end{array}\right\} \rightarrow\left(\begin{array}{l}
\text { abelian groups } K_{G}(R) \\
\text { group homomorphisms } \\
f_{*}: K_{G}(R) \rightarrow K_{G},\left(R^{\prime}\right)
\end{array}\right)
$$

This then gives rise to a covariant functor from the category of groups, and group homomorphisms to the category of abelian groups and group homomorphisms given by

$$
\begin{aligned}
G & \mapsto W h(G) \\
\left(f: G \rightarrow G^{\prime}\right) & \mapsto\left(f_{*}: W h(G) \rightarrow W h\left(G^{\prime}\right)\right)
\end{aligned}
$$

where f first induces the ring homomorphism $\mathbb{Z}(G) \rightarrow \mathbb{Z}\left(G^{\prime}\right)$ given by $\sum n_{i} g_{i} \rightarrow \sum n_{i} f\left(g_{i}\right)$, and this in turn induces f_{*} as in the previous paragraph.

As an exercise in using these definitions we leave the reader to prove the following lemma. (When we return to topology, this lemma will relieve some anxieties about choice of base points.)
(10.4) If $g \in G$ and if $f: G \rightarrow G$ is a group homomorphism such that $f(x)=g x g^{-1}$ for all x then $f_{*}: W h(G) \rightarrow W h(G)$ is the identity map.

The groups $W h(G)$ will be discussed further in the next section.
In computing torsion the following lemma will be quite useful.
(10.5) If A, B and X are $n \times n, m \times m$, and $n \times m$ matrices respectively and if $\tau: G L(R) \rightarrow K_{G}(R)$, where G is any subgroup of the units of R, and if A has a right inverse or B a left inverse, then
(1) $\left(\begin{array}{ll}A & X \\ 0 & B\end{array}\right)$ is non-singular $\Leftrightarrow A$ and B are non-singular.
(2) If A and B are non-singular then

$$
\tau\left(\begin{array}{ll}
A & X \\
0 & B
\end{array}\right)=\tau(A)+\tau(B)
$$

PROOF: (1) holds (for example, when B has a left inverse) because

$$
\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & -X B^{-1} \\
0 & I_{m}
\end{array}\right)\left(\begin{array}{cc}
A & X \\
0 & B
\end{array}\right)
$$

where the middle matrix is in $E(R)$ (it is the result of row operations on I_{n+m}), and hence is non-singular.

When A and B are non-singular, the above equation shows that

$$
\tau\left(\begin{array}{ll}
A & X \\
0 & B
\end{array}\right)=\tau\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)=\tau\left(\begin{array}{cc}
A & 0 \\
0 & I_{m}
\end{array}\right)+\tau\left(\begin{array}{cc}
I_{n} & 0 \\
0 & B
\end{array}\right)=\tau(A)+\tau\left(\begin{array}{cc}
I_{n} & 0 \\
0 & B
\end{array}\right) .
$$

But a sequence of applications of $I I_{R}$ and then of $I I_{C}$ yields

$$
\left(\begin{array}{ll}
I_{n} & 0 \\
0 & B
\end{array}\right) \sim\left(\begin{array}{cc}
0 & B \\
(-1)^{m} I_{n} & 0
\end{array}\right) \sim\left(\begin{array}{cc}
B & 0 \\
0 & (-1)^{2 m I_{n}}
\end{array}\right)
$$

Thus $\tau\left(\begin{array}{ll}A & X \\ 0 & B\end{array}\right)=\tau(A)+\tau(B)$.
For commutative rings the usual theory of determinants is available and can be used to help keep track of torsion because the elementary operations which take a matrix to another of the same torsion in $K_{G}(R)$ can only change the determinant by a factor of g for some $g \in G$. A precise statement, the proof of which is left to the reader, is
(10.6) Suppose that R is a commutative ring and G is a subgroup of the group U of all units of R. Let $S K_{1}(R)=\tau_{G}(S L(R))$ where $\tau_{G}: G L(R) \rightarrow K_{G}(R)$ and $S L(R)$ is the subgroup of $G L(R)$ of matrices of determinant 1 . Then there is a split short exact sequence

$$
0 \rightarrow S K_{1}(R) \stackrel{c}{\longleftrightarrow} K_{G}(R) \stackrel{[\operatorname{det}]}{\rightleftarrows} \frac{U}{G} \rightarrow 0
$$

where $[\operatorname{det}](\tau A) \equiv($ the coset of $(\operatorname{det} A)$ in $U / G)$, and $s(u \cdot G)$ is the torsion of the 1×1 matrix (u). In particular, if R is a field, [det] is an isomor phism.

Exercise: The group $S K_{1}(R)=\tau_{G}(S L(R))$ defined in (10.6) is independent of G. For we have

and $\pi \mid \tau_{1}(S L(R)): \tau_{1}(S L(R)) \xrightarrow{\cong} \tau_{G}(S L(R))$.
Finally, we close this section with an example due to Whitehead which shows that two $n \times n$ matrices may be equivalent by elementary operations while the equivalence cannot be carried out within the realm of $n \times n$ matrices. Let G be the (non-commutative) group generated by the elements x and y subject to the sole relation that $y^{2}=1$. In $\mathbb{Z}(G)$ let $a=1-y$ and $b=x(1+y)$. Notice that $a b \neq 0$ while $b a=0$. Then the 1×1 matrix $(1-a b)$ is not an elementary matrix, but since it represents the same element in $W h(G)$ as

$$
\left(\begin{array}{cc}
1-a b & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)^{-1}
$$

its torsion is 0 .

§11. Some information about Whitehead groups

In the last section we defined, for any group G, the abelian group $W h(G)$ given by

$$
W h(G)=K_{T}(\mathbb{Z} G)
$$

where T is the group of trivial units of $\mathbb{Z} G$. The computation of Whitehead groups is a difficult and interesting task for which there has developed, in recent years, a rich literature. (See [Milnor 1], [Bass 1].) We shall content ourselves with first deriving some facts about Whitehead groups of abelian groups which are accessible by totally elementary means and then quoting some important general facts.
(11.1) $W h(\{1\})=0$.

PROOF: This was proven in proving (8.5).
(11.2) $W h(\mathbb{Z})=0$ [Higman].
$P R O O F$: We think of the group \mathbb{Z} as $\left\{t^{i} \mid i=0, \pm 1, \pm 2, \ldots\right\}$ so that $\mathbb{Z}(\mathbb{Z})$ is the set of all finite sums $\sum n_{i} t^{i}$. Notice that $\mathbb{Z}(\mathbb{Z})$ has only trivial units because the equation

$$
\left(a t^{\alpha}+\ldots+b t^{\beta}\right)\left(c t^{\gamma}+\ldots d t^{\delta}\right)=1,(\alpha \leq \ldots \leq \beta, \gamma \leq \ldots \leq \delta, a b c d \neq 0)
$$

implies that $\alpha+\gamma=\beta+\delta=0$. Hence $\alpha=\beta, \gamma=\delta$, and these units are trivial.

Suppose that $\left(a_{i j}(t)\right)$ is an $(n \times n)$-matrix, representing an arbitrary element W of $W h(\mathbb{Z})$. Multiplying each row by a suitably high power of t, if necessary, we may assume that each entry $a_{i j}(t)$ contains no negative powers of t. Let q be the highest power of t which occurs in any $a_{i j}(t)$. If $q>1$ then we could obtain another matrix representing W in which the highest power of t which occurs would be $q-1$. For, writing $a_{i j}(t)=b_{i j}(t)+k_{i j} t^{q}\left(k_{i j} \in \mathbb{Z}\right)$ we would have

$$
\left(a_{i j}(t)\right) \sim\left(\begin{array}{cc}
\left(a_{i j}(t)\right) & t \cdot I_{n} \\
0 & I_{n}
\end{array}\right) \sim\left(\begin{array}{cc}
\left(b_{i j}(t)\right) & t \cdot I_{n} \\
\left(-k_{i j} t^{q-1}\right) & I_{n}
\end{array}\right)
$$

Thus, proceeding by induction down on q we may assume that, for all $i, j, a_{i j}(t)=b_{i j}+c_{i j} t\left(b_{i j}, c_{i j} \in \mathbb{Z}\right)$. Thus W may be represented by a matrixsay $m \times m$-with linear entries.

Since $\left(a_{i j}(t)\right)$ is non-singular its determinant is a unit which, by the first paragraph, is $\pm t^{p}$ for some p. Expanding the determinant, it follows that either $\operatorname{det}\left(b_{i j}\right)=0$ or $\operatorname{det}\left(c_{i j}\right)=0$. We assume that $\operatorname{det}\left(b_{i j}\right)=0$. (The treatment of the other case is similar.) As is well known, integral row and column operations on the matrix ($b_{i j}$) will transform it to a diagonal matrix of the form

$$
\left(\begin{array}{cccccc}
b_{11}^{\prime} & & & & & \\
& b_{22}^{\prime} & & & & \\
\\
& & \cdot & & & \\
\\
& & & b_{k k}^{\prime} & & \\
\\
& & & & 0 & \\
& & & & & \\
& & & & & \\
& & & & & \\
& &
\end{array}\right), k<m
$$

Performing the same operations on the matrix $a_{i j}(t)$ leads to $a_{i j}^{\prime}(t)$ $=b_{i j}^{\prime}+c_{i j}^{\prime} t$ where $b_{i j}^{\prime}=0$ unless $i=j \leq k$. In particular, the bottom row is of the form

$$
\left(c_{m 1}^{\prime} t \quad c_{m 2}^{\prime} t \ldots c_{m m}^{\prime} t\right)
$$

Multiplying the bottom row by t^{-1} and applying integral column operations (i.e. multiply a column by -1 or add an integral multiple of one column to another), the matrix ($a_{i j}^{\prime}(t)$) can be transformed into an $n \times n$ matrix ($a_{i j}^{\prime \prime}(t)$) with linear entries and bottom row of the form

$$
\left(00, \ldots 0, c_{m m}^{\prime \prime}\right)
$$

for some $c_{m m}^{\prime \prime} \in \mathbb{Z}$. But $\operatorname{det}\left(a_{i j}^{\prime \prime}(t)\right)= \pm t^{p}$, so $c_{m m}^{\prime \prime}= \pm 1$. Hence the last column may be transformed to $\left(\begin{array}{l}0 \\ 0 \\ \cdot \\ . \\ 0 \\ 1\end{array}\right)$ and W is represented by an $(m-1)$ $\times(m-1)$ matrix with linear entries. Proceeding inductively, W may be represented by a 1×1 matrix (a). But then a is a trivial unit, so $W=0$.

More generally, we cite the theorem of [Bass-Heller-Swan]
(11.3) $W h(\mathbb{Z} \oplus \ldots \oplus \mathbb{Z})=0$.

This is a difficult theorem which has been of great use in recent work ([Kirby-Siebenmann]) in topology in which the n-torus $S^{1} \times S^{1} \times \ldots \times S^{1}$ has played a role. (The point is that $\pi_{1}\left(S^{1} \times \ldots \times S^{1}\right)=\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}$, so the Bass-Heller-Swan theorem implies, along with the s-cobordism theorem, ${ }^{8}$ that an h-cobordism ${ }^{8}$ with an n-torus at one end ($n \geq 5$) is a product). It would be very nice to have a simple geometric proof that $W h\left(S^{1} \times \ldots \times S^{1}\right)$ $=0$. This is a fact which, as we shall see in $\S 21$, is equivalent to (11.3).

We can also exhibit many non-zero Whitehead groups. If G is an abelian group, let U be the group of all units of $\mathbb{Z}(G)$, and T the subgroup of trivial units. Then, by (10.6),

$$
W h(G) \cong S K_{1}(\mathbb{Z} G) \oplus \frac{U}{T}
$$

${ }^{8}$ Introduced in $\S 25$.

In (8.6) we showed that $W h\left(\mathbb{Z}_{5}\right) \neq 0$ because $U / T \neq 0$. More generally, we have
(11.4) If G is an abelian group which contains an element x of order $q \neq 1,2,3$, 4,6 then $W h(G) \neq 0$. In fact let j, k and a be integers such that

$$
\begin{aligned}
& j>1, k>1 \\
& j+k<q \\
& j k=a q \pm 1
\end{aligned}
$$

Such integers always exist. Then a non-trivial unit u of $\mathbb{Z}(G)$ is given by the formula ${ }^{9}$

$$
u=\left(1+x+\ldots+x^{j-1}\right)\left(1+x+\ldots+x^{k-1}\right)-a\left(1+x+\ldots+x^{q-1}\right)
$$

PROOF: Let $j>1$ be a prime number less than $(q / 2)$ such that j does not divide q. [It is an exercise that such a j exists provided $q \neq 1,2,3,4,6$.] Then $(j, q)=1$, so there is an integer $\hat{k}, 0<\hat{k}<q$, such that $j \hat{k}=1(\bmod q)$. Set $k=\hat{k}$ if $\hat{k} \leq q / 2$ and set $k=(q-\hat{k})$ if $\hat{k}>q / 2$. Then $j k=a q \pm 1$ for some integer a.

If the element u, given by the formula in the statement of the theorem, is a unit then it certainly is a non-trivial unit. For, since $0<(j+k-2)<q-1$, either $a=0$ and $u=1+(\ldots)+x^{j+k-2}$, or $a \neq 0$ and $u=1+(\ldots)-a x^{q-1}$.

Consider the case where $j k=a q-1$. Set $\bar{k}=q-k, j=q-j$ and $\bar{a}=q-k-j+a$. We claim that $u v=1$ where

$$
\begin{aligned}
& v=\left(1+x^{j}+x^{2 j}+\ldots+x^{(k-1) j}\right)\left(1+x^{k}+\ldots+x^{(j-1) k}\right) \\
& \quad-\bar{a}\left(1+x+x^{2}+\ldots+x^{q-1}\right)
\end{aligned}
$$

To prove this claim it will suffice to consider the polynomials with integral coefficients, $U(t)$ and $V(t)$, gotten by replacing x by the indeterminate t in the formulas given for u and v respectively, and to show that

$$
U(t) V(t)=1+\left(t^{q}-1\right) P(t)
$$

for some polynomial $P(t)$. We shall show in fact that $(t-1)$ and $\Sigma(t)$ $\equiv\left(1+t+\ldots+t^{q-1}\right)$ both divide $U(t) V(t)-1$.
$U(t) V(t)-1$ is divisible by $(t-1)$ because

$$
U(1) V(1)-1=(j k-a q)(j \bar{k}-\bar{a} q)-1=(-1)(-1)-1=0
$$

On the other hand

$$
\begin{aligned}
& U(t)=\left(\frac{t^{j}-1}{t-1}\right)\left(\frac{t^{k}-1}{t-1}\right)-a \Sigma(t) \\
& V(t)=\left(\frac{t^{j k}-1}{t^{j}-1}\right)\left(\frac{t^{k j}-1}{t^{k}-1}\right)-\bar{a} \Sigma(t)
\end{aligned}
$$

[^7]So

$$
U(t) V(t)=\left(\frac{t^{j k}-1}{t-1}\right)\left(\frac{t^{k_{j}^{j}}-1}{t-1}\right)+A(t) \Sigma(t)
$$

But each of the quotients shown is of the form $1+B(t) \Sigma(t)$. For $j k \equiv-1$ $(\bmod q)$, so we may write $j \bar{k}=1+b q$ for some b. Then

$$
\begin{aligned}
&\left(\frac{t^{j k}-1}{t-1}\right)= 1+\left(t+t^{2}+\ldots+t^{q}\right)+\left(t^{q+1}\right. \\
&\left.\quad+\ldots+t^{2 q}\right) \\
& \quad+\ldots+\left(t^{(b-1) q+1}+\ldots+t^{b q}\right) \\
&= 1+t \Sigma(t)+t^{q+1} \Sigma(t)+\ldots+t^{(b-1) q+1} \Sigma(t) \\
&= 1+B(t) \Sigma(t)
\end{aligned}
$$

Thus $U(t) V(t)=[1+B(t) \Sigma(t)][1+C(t) \Sigma(t)]+A(t) \Sigma(t)$ and it follows that $\Sigma(t)$ divides $U(t) V(t)-1$. Thus $u v=1$.

In the case where $j k=a q+1$, set $\bar{k}=k, j=j$ and $\bar{a}=a$. The same argument works.

For cyclic groups (11.4) can be greatly sharpened. In fact we have from [Higman], [Bass 2; p. 54], and [Bass-Milnor-Serre; Prop. 4.14],
(11.5) If \mathbb{Z}_{q} is the cyclic group of finite order q then
a) $W h\left(\mathbb{Z}_{q}\right)$ is a free abelian group of $\operatorname{rank}[q / 2]+1-\delta(q)$ where $\delta(q)$ is the number of divisors of q. (In particular $W h\left(\mathbb{Z}_{q}\right)=0$ if $q=1,2,3,4,6$.)
b) $S K_{1}\left(\mathbb{Z}\left(\mathbb{Z}_{q}\right)\right)=0$ so (by 10.6) the determinant map gives an isomorphism [det]: $W h\left(\mathbb{Z}_{q}\right) \rightarrow U / T$.

Added in proof: Let G be a finite group. Then $S K_{1}(\mathbb{Z} G)$ is finite [Bass 1 ; p. 625]. But, in contrast to (11.5b), recent work of R. C. Alperin, R. K. Dennis and M. R. Stein shows that, even for finite abelian $G, S K_{1}(\mathbb{Z} G)$ is usually not zero. For example, $S K_{1}\left(\mathbb{Z}_{2} \oplus\left(\mathbb{Z}_{3}\right)^{3}\right) \cong\left(\mathbb{Z}_{3}\right)^{6}$.

From (11.5) one sees that the functor $W h(G)$ does not behave very well with respect to direct products. However for free products we have
(11.6) [Stallings 1] If G_{1} and G_{2} are any groups then $W h\left(G_{1} * G_{2}\right)=W h\left(G_{1}\right)$ $\oplus W h\left(G_{2}\right)$.

§12. Complexes with preferred bases [= (R,G)-complexes]

From this point on we assume that G is a subgroup of the units of R which contains the element (-1). For other tacit assumptions the reader is advised to quickly review §9.

An (R, G)-module is defined to be a free R-module M along with a "preferred" or "distinguished" family B of bases which satisfies:

If b and b^{\prime} are bases of M and if $b \in B$ then

$$
b^{\prime} \in B \Leftrightarrow \tau\left(\left\langle b / b^{\prime}\right\rangle\right)=0 \in K_{G}(R) .
$$

If M_{1} and M_{2} are (R, G)-modules and if $f: M_{1} \rightarrow M_{2}$ is a module isomorphism then the torsion of f-written $\tau(f)$-is defined to be $\tau(A) \in K_{G}(R)$, where A is the matrix of f with respect to any distinguished bases of M_{1} and M_{2}. One can easily check that $\tau(f)$ is independent of the bases chosen (within the preferred families). We say that f is a simple isomorphism of (R, G)-modules if $\tau(f)=0$. In this case we write $f: M_{1} \cong M_{2}(\Sigma)$.

We have introduced the preceding language in order to define an (R, G)-complex which is the object of primary interest: An (R, G)-complex is a free chain complex over R

$$
C: 0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \ldots \rightarrow C_{0} \rightarrow 0
$$

such that each C_{i} is an (R, G)-module. A preferred basis of C will always mean a basis $c=\bigcup c_{i}$ where c_{i} is a preferred basis of C_{i}.

If G is a group then a $W h(G)$-complex is defined to be an (R, T)-complex, where $R=\mathbb{Z}(G)$ and $T=G \cup(-G)$ is the group of trivial units of $\mathbb{Z}(G)$.

A simple isomor phism of (R, G)-complexes, $f: C \rightarrow C^{\prime}$, is a chain mapping such that $\left(f \mid C_{i}\right): C_{i} \cong C_{i}^{\prime}(\Sigma)$, for all i. We write $f: C \cong C^{\prime}(\Sigma)$. To see that, in fact, this is exactly the right notion of isomorphism in the category of (R, G)-complexes, notice that $f: C \cong C^{\prime}(\Sigma)$ iff there are preferred bases with respect to which, for each integer i, the matrix of $f \mid C_{i}$ is the identity and the matrix of $d_{i}: C_{i} \rightarrow C_{i-1}$ is identical with that of $d_{i}^{\prime}: C_{i}^{\prime} \rightarrow C_{i-1}^{\prime}$.

Notice that a simple isomorphism of chain complexes is not merely a chain map $f: C \rightarrow C^{\prime}$ which is a simple isomorphism of the (R, G)-modules C and C^{\prime}. For example, let A be a non-singular $n \times n$ matrix over R with $\tau(A) \neq 0$. Let $C_{1}, C_{1}^{\prime}, C_{2}$ and C_{2}^{\prime} be free modules of rank n with specified preferred bases. Let $C=C_{1} \oplus C_{2}$ and $C^{\prime}=C_{1}^{\prime} \oplus C_{2}^{\prime}$. Define $f: C \rightarrow C^{\prime}$ and boundary operators d, d^{\prime} by the diagram

Then f is a chain map and, clearly f is not a simple isomorphism of chain complexes. But f is a module isomorphism with matrix

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right)
$$

Hence by (10.5), $\tau(f)=0$.
Our purpose in studying chain complexes is to associate to every acyclic (R, G)-complex C a well-defined "torsion element" $\tau(C) \in K_{G}(R)$ with the following properties:

$$
\text { P1: If } C \cong C^{\prime}(\Sigma) \text { then } \tau(C)=\tau\left(C^{\prime}\right)
$$

P2: If $C^{\prime} \oplus C^{\prime \prime}$ is the direct sum of C^{\prime} and $C^{\prime \prime}$ in the category of (R, G)-complexes ${ }^{10}$ then $\tau\left(C^{\prime} \oplus C^{\prime \prime}\right)=\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right)$

P3: If C is the complex

$$
C: 0 \rightarrow C_{n} \xrightarrow{d} C_{n-1} \rightarrow 0
$$

then $\tau(C)=(-1)^{n-1} \tau(d)$
We shall show that, in fact, there is a unique function τ satisfying these properties and that these properties generate a wealth of useful information.

§13. Acyclic chain complexes

In this section we develop some necessary background material concerning acyclic complexes.

An R-module M is said to be stably free if there exist free R-modules F_{1} and F_{2} such that $M \oplus F_{1}=F_{2}$. (Remember, "free" always means with finite basis.)

Notice that if M is a stably free R-module and if $j: A \rightarrow M$ is a surjection then there is a homomorphism (i.e. a section) $s: M \rightarrow A$ such that $j s=1_{M}$. For suppose that $M \oplus F$ is free. Then $j \oplus 1: A \oplus F \rightarrow M \oplus F$ is a surjection and there is certainly a section $S: M \oplus F \rightarrow A \oplus F$ (gotten by mapping each basis element to an arbitrary element of its inverse image). Then $s=p_{1} S i_{1}$ is the desired section, where $i_{1}: M \rightarrow M \oplus F$ and $\pi_{1}: A \oplus F \rightarrow A$ are the natural maps.
(13.1) Suppose that C is a free acyclic chain complex over R with boundary operator d. Denote $B_{i}=d C_{i+1}$, for all i. Then
(A) B_{i} is stably free for all i.
(B) There is a degree-one module homomorphism $\delta: C \rightarrow C$ such that $\delta d+d \delta=1$. [Such a homomorphism is called a chain contraction.]
(C) If $\delta: C \rightarrow C$ is any chain contraction then, for each $i, d \delta \mid B_{i-1}=1$ and $C_{i}=B_{i} \oplus \delta B_{i-1}$.
REMARK: The δ constructed in proving (B) also satisfies $\delta^{2}=0$, so that there is a pleasant symmetry between d and δ. Moreover, given any chain contraction δ, a chain contraction δ^{\prime} with $\left(\delta^{\prime}\right)^{2}=0$ can be constructed by setting $\delta^{\prime}=\delta d \delta$.
PROOF: $B_{0}=C_{0}$ because C is acyclic. So B_{0} is free. Assume inductively that B_{i-1} is known to be stably free. Then there is a section $s: B_{i-1} \rightarrow C_{i}$. Because C is acyclic the sequence

$$
0 \rightarrow B_{i} \xrightarrow{c} C_{i} \xrightarrow[{\underset{s}{s}}_{d}^{d}]{R_{i-1}} \rightarrow 0
$$

is thus a split exact sequence. Hence $C_{i}=B_{i} \oplus s\left(B_{i-1}\right)$ where $s\left(B_{i-1}\right)$,

[^8]being isomorphic to B_{i-1}, is stably free. So there exist free modules F_{1}, F_{2} such that $s\left(B_{i-1}\right) \oplus F_{1}=F_{2}$. Therefore
\[

$$
\begin{aligned}
B_{i} \oplus F_{2} & =B_{i} \oplus s\left(B_{i-1}\right) \oplus F_{1} \\
& =C_{i} \oplus F_{1} .
\end{aligned}
$$
\]

Since C_{i} is free, this shows that B_{i} is stably free, and (A) is proven.
By (A), we may choose, for each surjection $d_{i}: C_{i} \rightarrow B_{i-1}$, a section $\delta_{i}: B_{i-1} \rightarrow C_{i}$. As in the proof of (A) it follows that $C_{i}=B_{i} \oplus \delta_{i}\left(B_{i-1}\right)$. Define $\delta: C \rightarrow C$ by the condition that, for all i,

$$
\delta\left|B_{i}=\delta_{i+1} ; \quad \delta\right| \delta_{i}\left(B_{i-1}\right)=0
$$

This yields:

Clearly $d \delta+\delta d=1$. This proves (B).
Suppose finally we are given $\delta: C \rightarrow C$ such that $d \delta+\delta d=1$. Then $d \delta\left|B_{i-1}=(d \delta+\delta d)\right| B_{i-1}=1_{B_{i-1}}$. Hence $\left(\delta \mid B_{i-1}\right): B_{i-1} \rightarrow C_{i}$ is a section and, as in $(A), C_{i}=B_{1} \oplus \delta B_{i-1}$.
(13.2) If $0 \rightarrow C^{\prime} \xrightarrow{i} C \xrightarrow{j} C^{\prime \prime} \rightarrow 0$ is an exact sequence of chain complexes over R, where $C^{\prime \prime}$ is free and acyclic, then there exists a section $s: C^{\prime \prime} \rightarrow C$ such that s is a chain map and $i+s: C^{\prime} \oplus C^{\prime \prime} \rightarrow C$ is a chain isomor phism.

PROOF: Let d, d^{\prime} and $d^{\prime \prime}$ be the boundary operators in C, C^{\prime} and $C^{\prime \prime}$ respectively. Let $\delta^{\prime \prime}: C^{\prime \prime} \rightarrow C^{\prime \prime}$ be a chain contraction. Since each $C_{k}^{\prime \prime}$ is free, there are sections $\sigma_{k}: C_{k}^{\prime \prime} \rightarrow C_{k}$. These combine to give a section $\sigma: C^{\prime \prime} \rightarrow C$.
[Motivation: The map ($\sigma d^{\prime \prime}-d \sigma$) is a homomorphism of degree (-1) which measures the amount by which σ fails to be a chain map. If we wish to add a correction factor to σ-i.e., a degree-zero module homomorphism f such that $\sigma+f$ is a chain map-then a reasonable candidate is the map $f=\left(d \sigma-\sigma d^{\prime \prime}\right) \delta^{\prime \prime}$. Noticing that then $\sigma+f=d \sigma \delta^{\prime \prime}+\sigma \delta^{\prime \prime} d^{\prime \prime}$, we are led to the ensuing argument.]

Let $s=d \sigma \delta^{\prime \prime}+\sigma \delta^{\prime \prime} d^{\prime \prime}$. Then $d s=d \sigma \delta^{\prime \prime} d^{\prime \prime}=s d^{\prime \prime}$. So s is a chain map. Also

$$
\begin{aligned}
j s=j\left(d \sigma \delta^{\prime \prime}+\sigma \delta^{\prime \prime} d^{\prime \prime}\right)=j d \sigma \delta^{\prime \prime}+\delta^{\prime \prime} d^{\prime \prime} & =d^{\prime \prime}(j \sigma) \delta^{\prime \prime}+\delta^{\prime \prime} d^{\prime \prime} \\
& =d^{\prime \prime} \delta^{\prime \prime}+\delta^{\prime \prime} d^{\prime \prime}=1
\end{aligned}
$$

Thus s is a section. Finally, the isomorphism $i+s$ which comes from the split exact sequence

$$
0 \rightarrow C^{\prime} \xrightarrow{i} C_{k} \xrightarrow{j} C^{\prime \prime} \rightarrow 0
$$

is clearly a chain map, since i and s are chain maps.

We close this section with a lemma which essentially explains why, in matters concerning torsion, it will not matter which chain contraction of an acyclic complex is chosen.
(13.3) Suppose that C is an acyclic (R, G)-complex with chain contractions δ and $\bar{\delta}$. For fixed i, let $1 \oplus \delta d: C_{i} \rightarrow C_{i}$ be defined by

$$
1 \oplus \delta d: B_{i} \oplus \delta B_{i-1}=C_{i} \rightarrow B_{i} \oplus \delta B_{i-1}=C_{i}
$$

Then (A) $1 \oplus \delta d$ is a simple isomorphism.
(B) If B_{i} and B_{i-1} happen to be free modules with bases b_{i} and b_{i-1} and if c_{i} is a basis of C_{i} then $\tau\left\langle b_{i} \cup \delta b_{i-1} / c_{i}\right\rangle=\tau\left\langle b_{i} \cup \delta b_{i-1} / c_{i}\right\rangle$.

PROOF: Denote $g=1 \oplus \delta d$. Clearly g is an isomorphism since, by (13.1C), $\delta d: \bar{\delta} B_{i-1} \xrightarrow{\cong} \delta B_{i-1}$. If B_{i} and $\bar{\delta} B_{i-1}$ were free then we could, by using a basis for C_{i} which is the union of a basis for B_{i} and a basis of $\bar{\delta} B_{i-1}$, write down a matrix which clearly reflects the structure of g. This observation motivates the following proof of (A).
B_{i} and $\bar{\delta} B_{i-1}$ are stably free, so there exist free modules F_{1} and F_{2} such that $F_{1} \oplus B_{i}$ and $\delta B_{i-1} \oplus F_{2}$ are free. Fix bases for F_{1} and F_{2} and take the union of these with a preferred basis for C_{i} to get a basis c of $F_{1} \oplus C_{i} \oplus F_{2}$. Let $G=1_{F_{1}} \oplus g \oplus 1_{F_{2}}: F_{1} \oplus C_{i} \oplus F_{2} \rightarrow F_{1} \oplus C_{i} \oplus F_{2}$. Then

$$
\langle G\rangle_{c, c}=\left(\begin{array}{cc}
I & \\
& \langle g\rangle \\
& \\
&
\end{array}\right) .
$$

So $\tau\left(\langle G\rangle_{c, c}\right)=\tau(g)$.
Now choose bases b_{1} and b_{2} for ($F_{1} \oplus B_{i}$) and ($\delta B_{i-1} \oplus F_{2}$) and let $b=b_{1} \cup b_{2}$, another basis for C_{i}. Notice that $\langle G\rangle_{c, c}=\langle c / b\rangle\langle G\rangle_{b, b}\langle c / b\rangle^{-1}$, so $\tau\left(\langle G\rangle_{c, c}\right)=\tau\left(\langle G\rangle_{b, b}\right)$. But in fact

$$
\langle G\rangle_{b, b}=\begin{gathered}
F_{1} \oplus B_{i} \\
\bar{\delta} B_{i-1} \oplus F_{2}
\end{gathered}\left(\begin{array}{c:c}
F_{1} \oplus B_{i} & \bar{\delta} B_{i-1} \oplus F_{2} \\
\hdashline I & O \\
\hdashline X & I
\end{array}\right) .
$$

To see this, suppose $y=\bar{\delta} z+w$ where $z \in B_{i-1}$ and $w \in F_{2}$. Then $G(y)=\delta d(\bar{\delta} z)+w=\delta z+w$. Because $d(\delta z-\bar{\delta} z)=z-z=0$, we can write $\delta z=\bar{\delta} z+x$ for some $x \in B_{i}$. Thus $G(y)=(\delta z+x)+w=x+y$ where $x \in F_{1} \oplus B_{i}$.

Therefore $\tau(g)=\tau\left(\langle G\rangle_{c, c}\right)=\tau\left(\langle G\rangle_{b, b}\right)=0$.
To prove (B), suppose that $b_{i}=\left\{u_{1}, \ldots, u_{p}\right\}$ and $b_{i-1}=\left\{v_{1}, \ldots, v_{q}\right\}$ are bases of B_{i} and B_{i-1} respectively. Let $b=b_{i} \cup \bar{\delta} b_{i-1}$. Then
$(1 \oplus \delta d)\left(u_{j}\right)=u_{j}$ and $(1 \oplus \delta d)\left(\bar{\delta} v_{k}\right)=\delta v_{k}$, and it follows, as pointed out in §9, (page 37), that

$$
\left\langle b_{i} \cup \delta b_{i-1} / b_{i} \cup \bar{\delta} b_{i-1}\right\rangle=\langle 1 \oplus \delta d\rangle_{b, b} .
$$

By the proof of $(\mathrm{A}), \tau\left(\langle 1 \oplus \delta d\rangle_{b, b}\right)=0$. Thus

$$
\begin{aligned}
0=\tau\left\langle b_{i} \cup \delta b_{i-1} / b_{i} \cup \bar{\delta} b_{i-1}\right\rangle & =\tau\left(\left\langle b_{i} \cup \delta b_{i-1} / c_{i}\right\rangle\left\langle b_{i} \cup \bar{\delta} b_{i-1} / c_{i}\right\rangle^{-1}\right) \\
& =\tau\left\langle b_{i} \cup \delta b_{i-1} / c_{i}\right\rangle-\tau\left\langle b_{i} \cup \bar{\delta} b_{i-1} / c_{i}\right\rangle .
\end{aligned}
$$

§14. Stable equivalence of acyclic chain complexes

An (R, G)-complex C is defined to an elementary trivial complex if it is of the form

$$
C: 0 \rightarrow C_{n} \xrightarrow{d} C_{n-1} \rightarrow 0
$$

where d is a simple isomorphism of (R, G)-modules. (Thus, with respect to appropriate preferred bases of C_{n} and $C_{n-1},\langle d\rangle$ is the identity matrix.) An (R, G)-complex is trivial if it is the direct sum, in the category of (R, G)-complexes, of elementary trivial complexes.

Two (R, G)-complexes C and C^{\prime} are stably equivalent-written $C \stackrel{s}{\sim} C^{\prime}$ -if there are trivial complexes T and T^{\prime} such that $C \oplus T \cong C^{\prime} \oplus T^{\prime}(\Sigma) .{ }^{11}$ It is easily checked that this is an equivalence relation.

Just as we showed (§7) that any homotopically trivial $C W$ pair (K, L) is simple-homotopy equivalent to a pair which has cells in only two dimensions, we wish to show that any acyclic (R, G)-complex is stably equivalent to a complex which is zero except in two dimensions.
(14.1) If C is an acyclic (R, G)-complex of the form

$$
C: 0 \rightarrow C_{n} \xrightarrow{d_{n}} \ldots \xrightarrow{d_{i+3}} C_{i+2} \xrightarrow{d_{i+2}} C_{i+1} \xrightarrow{d_{i+1}} C_{i} \rightarrow 0 \quad(n \geq i+1)
$$

and if $\delta: C \rightarrow C$ is a chain contraction then $C \stackrel{s}{\sim} C_{\delta}$ where C_{δ} is the complex

$$
C_{\delta}: 0 \rightarrow C_{n} \xrightarrow{d_{n}} \ldots \xrightarrow{d_{i+3}} C_{i+2} \xrightarrow{d_{i+2}} C_{i+1} \rightarrow 0
$$

$P R O O F$: For notational simplicity we shall assume that $i=0$. This will in no way affect the proof.

Let T be the trivial complex with $T_{1}=T_{2}=C_{0}, T_{i}=0$ otherwise, and $\partial_{2}=1: T_{2} \rightarrow T_{1}$. Let T^{\prime} be the trivial complex with $T_{0}^{\prime}=T_{1}^{\prime}=C_{0}, T_{i}^{\prime}=0$

[^9]otherwise, and $\partial_{1}^{\prime}=1: T_{1}^{\prime} \rightarrow T_{0}^{\prime}$. We claim that $C \oplus T \cong C_{\delta} \oplus T^{\prime}(\Sigma)$. The relevant diagrams are

Define $f: C \oplus T \rightarrow C_{\delta} \oplus T^{\prime}$ by

$$
\begin{aligned}
& f_{i}=1, \text { if } i \neq 1 \\
& f_{1}\left(c_{0}+c_{1}\right)=\delta_{1} c_{0}+\left(c_{1}+d_{1} c_{1}\right), \text { if } c_{0} \in C_{0} \text { and } c_{1} \in C_{1} .
\end{aligned}
$$

We leave it to the reader to check that f is a chain map. To show that f is a simple isomorphism we must show that each f_{i} is a simple isomorphism. This is obvious except for $i=1$. But

$$
\left\langle f_{1}\right\rangle=\begin{gathered}
C_{0}\left(\begin{array}{cc}
C_{0} & C_{1} \\
C_{1} & \left\langle\delta_{1}\right\rangle \\
\left\langle d_{1}\right\rangle & I
\end{array}\right)=\left(\begin{array}{cc}
-I & \left\langle\delta_{1}\right\rangle \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\left\langle d_{1}\right\rangle & I
\end{array}\right) .
\end{gathered}
$$

(This is because, by the conventions of $\S 9,\left\langle\delta_{1}\right\rangle\left\langle d_{1}\right\rangle=\left\langle d_{1} \delta_{1}\right\rangle$ $=\left\langle d_{1} \delta_{1}+\delta_{0} d_{0}\right\rangle=I$.) Thus, by (10.5), $\tau\left(f_{1}\right)=0$.

If C is an acyclic (R, G)-complex an inductive use of (14.1) immediately yields the result that $C \stackrel{\stackrel{s}{\sim}}{\sim} C^{\prime}$ for some (R, G)-complex C^{\prime} which is 0 except in two dimensions.. This is the only consequence of (14.1) which we will use. However, in order to motivate the definition to be given in the next section we give here a precise picture (at least in the case when $\delta^{2}=0$) of the complex C^{\prime} which is constructed by repeated application of (14.1).
(14.2) Let C be an acyclic (R, G)-complex with boundary operator d and chain contraction δ satisfying $\delta^{2}=0$ and let

$$
\begin{gathered}
C_{\text {odd }}=C_{1} \oplus C_{3} \oplus \ldots \\
C_{\text {even }}=C_{0} \oplus C_{2} \oplus \ldots
\end{gathered}
$$

Then C is stably equivalent to an (R, G)-complex of the form

$$
C^{\prime}: 0 \rightarrow C_{m}^{\prime}=C_{\mathrm{odd}} \xrightarrow{(d+\delta) \mid C_{\mathrm{odd}}} C_{m-1}^{\prime}=C_{\mathrm{even}} \rightarrow 0
$$

for some odd integer m.
PROOF: Let m be an odd integer such that C is of the form $0 \rightarrow C_{m} \rightarrow C_{m-T}$ $\rightarrow \ldots \rightarrow C_{0} \rightarrow 0$. (We allow the possibility that $C_{m}=0$.) If $j \leq m$, let
$C_{j}^{\prime}=C_{j} \oplus C_{j-2} \oplus C_{j-4} \oplus \ldots$. Let D^{i} be the chain complex

$$
D^{i}: 0 \rightarrow C_{m} \xrightarrow{d} \ldots \rightarrow C_{i+2} \xrightarrow{d} C_{i+1}^{\prime} \xrightarrow{d^{\prime}} C_{i}^{\prime} \rightarrow 0
$$

where d is the boundary operator in C and $d^{\prime}=\left(d \mid C_{i+1}\right)+(d+\delta) \mid C_{i-1}^{\prime}$. It is easily checked that D^{i} is a chain complex, $D^{0}=C$ and $D^{m-1}=C^{\prime}$. Now define $\Delta^{i}=\Delta: D^{i} \rightarrow D^{i}$, a degree-one homomorphism, by

$$
\begin{aligned}
& \Delta\left|C_{j}=\delta\right| C_{j} \text { if } j \geq i+2, \\
& \Delta \mid C_{i+1}^{\prime}=\left(\delta \mid C_{i+1}\right) \circ \pi \text {, where } \pi: C_{i+1}^{\prime} \rightarrow C_{i+1} \text { is the natural projection, } \\
& \Delta\left|C_{i}^{\prime}=(d+\delta)\right| C_{i}^{\prime} .
\end{aligned}
$$

Then Δ is a chain contraction of D^{i}. This is easily checked once one notes (with d^{i} denoting the boundary operator of D^{i}) that

$$
\begin{aligned}
\left(d^{i} \Delta+\Delta d^{i}\right) \mid C_{i+1}^{\prime} & =(d \delta+\delta d)\left|C_{i+1} \oplus(d+\delta)^{2}\right| C_{i-1}^{\prime} \\
& =1_{c_{i+1}^{\prime}}
\end{aligned}
$$

since $d^{2}=\delta^{2}=0$.
Thus D^{i} and Δ^{i} satisfy the hypothesis of (14.1). The conclusion of (14.1) says precisely that $D^{i} \stackrel{\sim}{\sim} D^{i+1}$. By induction, $C \sim C^{\prime}$.

§15. Definition of the torsion of an acyclic complex

Motivated by (14.2) we make the following definition:
Let C be-an acyclic (R, G)-complex with boundary operator d. Let δ be any chain contraction of C. Set

$$
\begin{aligned}
& C_{\text {odd }}=C_{1} \oplus C_{3} \oplus \ldots \\
& C_{\text {even }}=C_{0} \oplus C_{2} \oplus \ldots \\
& (d+\delta)_{\text {odd }}=(d+\delta) \mid C_{\text {odd }}: C_{\text {odd }} \rightarrow C_{\text {even }} .
\end{aligned}
$$

Then $\left.\left.\tau(C) \equiv \tau\left((d+\delta)_{\text {odd }}\right) \in K_{G}\right) R\right)$.
In particular, if C is a $W h(G)$-complex then $\tau(C)=\tau\left((d+\delta)_{\text {odd }}\right) \in W h(G)$.
Unlike (14.2), the definition does not assume that $\delta^{2}=0$. This would be a totally unnecessary assumption, although it would be a modest convenience in proving that $\tau(C)$ is well-defined.

We shall write $d+\delta$ instead of $(d+\delta)_{\text {odd }}$ when no confusion can occur. It is understood that $\tau(C)$ is defined in terms of preferred bases of $C_{\text {odd }}$ and $C_{\text {even }}$. If $c=\bigcup c_{i}$ is a preferred basis of C then $\tau(C)=\tau\left(\langle d+\delta\rangle_{c_{\text {codd }}, c_{\text {ven }}}\right)$ where $c_{\text {odd }}=\left(c_{1} \cup c_{3} \cup \ldots\right)$ and $c_{\text {even }}=\left(c_{0} \cup c_{2} \cup \ldots\right)$. For convenience $\langle d+\delta\rangle_{\text {codd, }, \text { ceven }}$ will be abbreviated to $\langle d+\delta\rangle_{c}$ or simply to $\langle d+\delta\rangle$ when the context is unambiguous.

The form of $\langle d+\delta\rangle$ is

However, the reader must not fall into the trap of concluding that " $\tau(d+\delta)$ $=\tau\left(d_{1}\right)+\tau\left(d_{3}\right)+\ldots$ ". For the matrices $\left\langle d_{i}\right\rangle$ are usually not invertible, or even square.

To show that $\tau(C)$ is well-defined, we must show that $\langle d+\delta\rangle$ is nonsingular and that $\tau(d+\delta)$ is independent of which preferred basis is used and of which chain contraction δ is used.
(15.1) Let c be a basis for ${ }^{-} C$. Then $\left\langle(d+\delta)_{\text {odd }}\right\rangle_{c}$ and $\left\langle(d+\delta)_{\text {even }}\right\rangle_{c}$ are nonsingular with $\tau\left(\left\langle(d+\delta)_{\text {odd }}\right\rangle_{c}\right)=-\tau\left(\left\langle(d+\delta)_{\text {even }}\right\rangle_{c}\right)$.

PROOF: $\quad(d+\delta)_{\text {even }} \circ(d+\delta)_{\text {odd }}=\left(d^{2}+d \delta+\delta d+\delta^{2}\right)\left|C_{\text {odd }}=\left(1+\delta^{2}\right)\right| C_{\text {odd }}$. Therefore

$$
\left\langle(d+\delta)_{\text {odd }}\right\rangle_{c}\left\langle(d+\delta)_{\text {even }}\right\rangle_{c}=C_{3}\left(\begin{array}{cc}
C_{1} \\
& C_{5} \\
\left.\hdashline \begin{array}{cc}
C_{1} & C_{3} \\
I & \left\langle\delta_{3} \delta_{2}\right\rangle \\
I & I
\end{array}\right)
\end{array}\right.
$$

By (10.5) this matrix is non-singular and has zero torsion. A similar assertion holds for $\left\langle(d+\delta)_{\text {even }}\right\rangle_{c}\left\langle(d+\delta)_{\text {odd }}\right\rangle_{c}$ and the result follows.
(15.2) Let $c=\bigcup c_{i}$ and $c^{\prime}=\bigcup c_{i}^{\prime}$ be bases of C, where the c_{i} and c_{i}^{\prime} are arbitrary bases of C_{i}. Then

$$
\tau\left(\langle d+\delta\rangle_{c}\right)=\tau\left(\langle d+\delta\rangle_{c^{\prime}}\right)+\sum_{i}(-1)^{i} \tau\left(\left\langle c_{i}^{\prime} / c_{i}\right\rangle\right) .
$$

In particular, if the c_{i} and c_{i}^{\prime} are preferred bases, $\tau\left(\langle d+\delta\rangle_{c}\right)=\tau\left(\langle d+\delta\rangle_{c^{\prime}}\right)$, so $\tau(d+\delta)$ is independent of which preferred basis is used.

PROOF: $\langle d+\delta\rangle_{c}=\left\langle c_{\text {odd }} / c_{\text {odd }}^{\prime}\right\rangle\langle d+\delta\rangle_{c^{\prime}}\left\langle c_{\text {even }}^{\prime} / c_{\text {even }}\right\rangle$.

$$
=\binom{\left\langle c_{1} / c_{1}^{\prime}\right\rangle}{\left.\hdashline c_{3} / c_{3}^{\prime}\right\rangle .}\langle d+\delta\rangle_{c^{\prime}}\left(\begin{array}{cc}
\left\langle c_{0}^{\prime} / c_{0}\right\rangle & \\
\left\langle c_{2}^{\prime} / c_{2}\right\rangle & .
\end{array}\right)
$$

Therefore, using (10.5),

$$
\begin{aligned}
\tau\left(\langle d+\delta\rangle_{c}\right) & =\sum_{i} \tau\left\langle c_{2 i+1} / c_{2 i+1}^{\prime}\right\rangle+\tau\left(\langle d+\delta\rangle_{c^{\prime}}\right)+\sum_{i} \tau\left\langle c_{2 i}^{\prime} / c_{2 i}\right\rangle \\
& =\sum_{i} \tau\left(\left\langle c_{2 i+1}^{\prime} / c_{2 i+1}\right\rangle^{-1}\right)+\tau\left(\langle d+\delta\rangle_{c^{\prime}}\right)+\sum_{i} \tau\left\langle c_{2 i}^{\prime} / c_{2 i}\right\rangle \\
& =\tau\left(\langle d+\delta\rangle_{c^{\prime}}\right)+\sum_{i}(-1)^{i} \tau\left(c_{i}^{\prime} / c_{i}\right\rangle .
\end{aligned}
$$

(15.3) Suppose that C is an acyclic (R, G)-complex with chain contractions δ and δ. Then $\tau(d+\delta)=\tau(d+\bar{\delta})$.

PROOF: (All calculations will be with respect to a fixed preferred basis.)

$$
\begin{aligned}
\tau(d+\bar{\delta})-\tau(d+\delta) & =\tau\left\langle(d+\bar{\delta})_{\text {odd }}\right\rangle+\tau\left\langle(d+\delta)_{\text {even }}\right\rangle, \text { by }(15.1) \\
& =\tau\left\langle(d+\delta) \circ(d+\bar{\delta}) \mid C_{\text {odd }}\right\rangle \\
& =\tau\left\langle(\delta d+d \bar{\delta}+\delta \bar{\delta}) \mid C_{\text {odd }}\right\rangle
\end{aligned}
$$

$$
=\text { torsion of } \begin{gathered}
C_{1} \\
C_{3}\left(\begin{array}{ccc}
C_{1} & C_{3} & C_{5} \\
C_{5}
\end{array} \sum^{\langle\delta d+d \bar{\delta}\rangle}\right. \\
\end{gathered}
$$

$=\sum_{i} \tau<(\delta d+d \bar{\delta})\left|C_{2 i+1}\right\rangle$, by (10.5), if each $(\delta d+d \bar{\delta}) \mid C_{2 i+1}$ is non-singular.
Notice, however, that $(\delta d+d \bar{\delta}) \mid C_{j}=1 \oplus \delta d: B_{j} \oplus \bar{\delta} B_{j-1} \rightarrow B_{j} \oplus \delta B_{j-1}$. (Here $B_{k}=d C_{k+1}$.) For, if $b_{j} \in B_{j}$ and $b_{j-1} \in B_{j-1}$ we have

$$
\begin{aligned}
(\delta d+d \bar{\delta})\left(b_{j}\right) & =b_{j} \\
(\delta d+d \bar{\delta})\left(\bar{\delta} b_{j-1}\right) & =(\delta d)\left(\bar{\delta} b_{j-1}\right)+(1-\bar{\delta} d)\left(\bar{\delta} b_{j-1}\right) \\
& =\delta d\left(\bar{\delta} b_{j-1}\right)+\bar{\delta} b_{j-1}-\bar{\delta} b_{j-1} \\
& =\delta d\left(\bar{\delta} b_{j-1}\right)
\end{aligned}
$$

Hence, by (13.3A), $(\delta d+d \bar{\delta}) \mid C_{2 i+1}$ is a simple isomorphism. Thus $\tau(d+\bar{\delta})$ $=\tau(d+\delta)$.

This completes the proof that $\tau(C)$ is well-defined.

§16. Milnor's definition of torsion

In [Milnor 1] the torsion of an acyclic (R, G)-complex C with boundary operator d is formulated as follows:

For each integer i, let $B_{i}=d C_{i+1}$ and let c_{i} be a preferred basis for C_{i}. Let F_{i} be a free module with a distinguished basis such that $B_{i} \oplus F_{i}$ is also free. For notational convenience, set $G_{i}=F_{i-1}$. Choose bases b_{i} for $B_{i} \oplus F_{i}$
in an arbitrary manner and let c_{i}^{\prime} be the natural distinguished basis for $C_{i} \oplus F_{i} \oplus G_{i}$. Then

$$
0 \rightarrow B_{i} \oplus F_{i} \xrightarrow{c} C_{i} \oplus F_{i} \oplus G_{i} \xrightarrow{d_{i} \oplus 0 \oplus 1} B_{i-1} \oplus F_{i-1} \rightarrow 0
$$

is an exact sequence of free modules. Let $\Delta_{i}: B_{i-1} \oplus F_{i-1} \rightarrow C_{i} \oplus F_{i} \oplus G_{i}$ be a section. Set $b_{i} b_{i-1}=b_{i} \cup \Delta_{i}\left(b_{i-1}\right)$, a basis for $C_{i} \oplus F_{i} \oplus G_{i}$. Milnor's torsion, $\tau_{M}(C)$, is defined by

$$
\tau_{M}(C)=\sum_{i}(-1)^{i} \tau\left\langle b_{i} b_{i-1} / c_{i}^{\prime}\right\rangle
$$

(16.1) If C is an acyclic (R, G)-complex then $\tau(C)=\tau_{M}(C)$.
$P R O O F$: Let T_{i} be the trivial complex $0 \rightarrow G_{i+1} \xrightarrow{1} F_{i} \rightarrow 0$, where T_{i} is 0 except in dimensions i and $i+1$, and $G_{i+1}=F_{i}$ with the same distinguished basis. Let $C^{\prime}=C \oplus T_{0} \oplus T_{1} \oplus \ldots T_{n-1} \quad(n=\operatorname{dim} C)$. We claim that $\tau\left(C^{\prime}\right)=\tau(C)$. For let d^{\prime} be the boundary operator in C^{\prime}. Let δ be a chain contraction of C and let $\delta^{\prime}=\delta \oplus \varepsilon_{0} \oplus \ldots \oplus \varepsilon_{n-1}$ where $\varepsilon_{i}: F_{i} \xrightarrow{1} G_{i+1}$. Clearly δ^{\prime} is a chain contraction of C^{\prime}. Moreover, $\left\langle d^{\prime}+\delta^{\prime}\right\rangle$ is gotten from $\langle d+\delta\rangle$ simply by adding identity blocks of the form

These cannot change the torsion, so $\tau(C)=\tau\left(C^{\prime}\right)$. It remains to show that $\tau\left(C^{\prime}\right)=\tau_{M}(C)$.

Let $\Delta_{i}: B_{i-1} \oplus F_{i-1} \rightarrow\left(C_{i} \oplus F_{i} \oplus G_{i}\right)=C_{i}^{\prime}$ be the section and c_{i}^{\prime} the preferred basis of C_{i}^{\prime} given in the definition of $\tau_{M}(C)$. Let $B_{i}^{\prime}=d^{\prime}\left(C_{i+1}\right)$ $=B_{i} \oplus F_{i}$. So $C_{i}^{\prime}=B_{i}^{\prime} \oplus \Delta_{i} B_{i-1}^{\prime}$. Let the chain contraction $\Delta: C^{\prime} \rightarrow C^{\prime}$ be given by

$$
\Delta\left|B_{i}^{\prime}=\Delta_{i+1} ; \quad \Delta\right| \Delta_{i} B_{i-1}^{\prime}=0
$$

Set $b=\bigcup_{i}\left(b_{i} b_{i-1}\right)$, a basis of C^{\prime}. Then $\tau\left(\left\langle d^{\prime}+\Delta\right\rangle_{b}\right)=0$ because the basis b has been chosen so that, for each i,

$$
\left\langle\left(d^{\prime}+\Delta\right) \mid C_{2 i+1}\right\rangle_{b}=B_{2 i+1}^{\prime}\left(\square B_{2 i}^{\prime}\left(\left.\begin{array}{ll}
B_{2 i}^{\prime} & \Delta B_{2 i+1}^{\prime} \\
\hdashline 0^{-} & -\cdots \\
I & 0
\end{array} \right\rvert\,-\cdots\right)\right.
$$

Letting $c^{\prime}=\bigcup c_{i}^{\prime}$, (15.2) then gives

$$
\begin{aligned}
\tau\left(C^{\prime}\right)=\tau\left(\left\langle d^{\prime}+\Delta\right\rangle_{c^{\prime}}\right) & =\tau\left(\left\langle d^{\prime}+\Delta\right\rangle_{b}\right)+\sum(-1)^{i} \tau\left\langle b_{i} b_{i-1} / c_{i}^{\prime}\right\rangle \\
& =\sum(-1)^{i} \tau\left\langle b_{i} b_{i-1} / c_{i}^{\prime}\right\rangle \\
& =\tau_{M}(C) .
\end{aligned}
$$

Though we shall not use the greater generality, it is interesting to note how Milnor used this formulation to define $\tau(C)$ not only when $H_{*}(C)=0$, but also in the case when each $H_{i}(C)$ is free with a given preferred basis h_{i} and each C_{i} is free with preferred basis c_{i}. In these circumstances one has short exact sequences

$$
\begin{aligned}
& 0 \rightarrow Z_{i} \rightarrow C_{i} \rightarrow B_{i-1} \rightarrow 0 \\
& 0 \rightarrow B_{i} \rightarrow Z_{i} \rightarrow H_{i} \rightarrow 0 .
\end{aligned}
$$

Arguing as in (13.1) all the B_{i} and Z_{i} can be seen to be stably free, and there are sections $\delta_{i}: B_{i-1} \rightarrow C_{i}$ and $s_{i}: H_{i} \rightarrow Z_{i}$. Thus

$$
C_{i}=Z_{i} \oplus \delta_{i} B_{i-1}=s_{i}\left(H_{i}\right) \oplus B_{i} \oplus \delta_{i} B_{i-1}
$$

Clearly $s_{i}\left(h_{i}\right)$ is a basis of $s_{i}\left(H_{i}\right)$. Choose $F_{i}=G_{i+1}$ so that $B_{i} \oplus F_{i}$ is free. Let $\Delta_{i}=\delta_{i} \oplus 1_{F_{i-1}}$, and let b_{i} be any basis of $B_{i} \oplus F_{i}$. Then $s_{i}\left(h_{i}\right) \cup b_{i} \cup \Delta_{i}\left(b_{i-1}\right)$ is a basis for $C_{i} \oplus F_{i} \oplus G_{i}$. This basis is denoted $b_{i} h_{i} b_{i-1}$. Again let c_{i}^{\prime} denote the trivial extension of c_{i} to a basis of $C_{i} \oplus F_{i} \oplus G_{i}$. Then Milnor defines

$$
\tau(C)=\sum_{i}(-1)^{i} \tau\left\langle b_{i} h_{i} b_{i-1} / c_{i}^{\prime}\right\rangle
$$

For more details the reader is referred to [Milnor 1].

§17. Characterization of the torsion of a chain complex

In this section we prove (as promised earlier) that the torsion operator τ satisfies properties P1-P3 below and is, in fact, the only operator to do so. Moreover τ induces an isomorphism of stable equivalence classes of acyclic (R, G)-complexes with $K_{G}(R)$.
(17.1) If R is a ring and G is a subgroup of the units of R containing (-1), and if \mathscr{C} is the class of acyclic (R, G)-complexes, then the torsion map $\tau: \mathscr{C} \rightarrow K_{G}(R)$ defined in $\S 15$ satisfies
P1: $C \cong C^{\prime}(\Sigma) \Rightarrow \tau(C)=\tau\left(C^{\prime}\right)$
P2: $\tau\left(C^{\prime} \oplus C^{\prime \prime}\right)=\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right)$
P3: $\tau\left(0 \rightarrow C_{n} \xrightarrow{d} C_{n-1} \rightarrow 0\right)=(-1)^{n-1} \tau(d)$.
$P R O O F$: In what follows, $d, d^{\prime}, d^{\prime \prime}$ denote boundary operators for $C, C^{\prime}, C^{\prime \prime}$ respectively.

Suppose that $f: C \cong C^{\prime}(\Sigma)$. As pointed out in $\S 12$, this means that there are distinguished bases of C and C^{\prime} such that $\left\langle d_{n}\right\rangle=\left\langle d_{n}^{\prime}\right\rangle$ and $\left\langle f_{n}\right\rangle=I$, for all n. Choose a chain contraction $\delta: C \rightarrow C$ and let $\delta^{\prime}=f \delta f^{-1}$. Then $\langle d+\delta\rangle=\left\langle d^{\prime}+\delta^{\prime}\right\rangle$. Therefore $\tau(C)=\tau\left(C^{\prime}\right)$ and $\mathbf{P 1}$ is verified.

Assume that $C=C^{\prime} \oplus C^{\prime \prime}$ (so $d=d^{\prime} \oplus d^{\prime \prime}$) and that $\delta^{\prime}, \delta^{\prime \prime}$ are chain contractions for C^{\prime} and $C^{\prime \prime}$. It follows that $\delta=\delta^{\prime} \oplus \delta^{\prime \prime}$ is a chain contraction for C. Since permutation of rows or columns does not change the torsion of a matrix, we have

$$
\begin{aligned}
\tau(C) & =\tau\langle d+\delta\rangle=\tau\left\langle\left(d^{\prime} \oplus d^{\prime \prime}\right)+\left(\delta^{\prime} \oplus \delta^{\prime \prime}\right)\right\rangle \\
& =\tau(\overbrace{\left\langle d^{\prime \prime}+\delta^{\prime \prime}\right\rangle}^{\left\langle d^{\prime}+\delta^{\prime}\right\rangle} \overbrace{}^{?} \\
& =\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right) .
\end{aligned}
$$

Finally, suppose that C is:

$$
0 \rightarrow C_{n} \xrightarrow{d} C_{n-1} \rightarrow 0 .
$$

Set $\delta_{j}=0$ if $j \neq n$ and $\delta_{n}=d_{n}^{-1}: C_{n-1} \rightarrow C_{n}$. If n is odd, $\delta \mid C_{\text {odd }}=0$ so $\tau C=\tau(d)=(-1)^{n-1} \tau(d)$. We leave the case where n is even to the reader.

The property $\mathbf{P 2}$, as stated, is too restrictive for practical situations where more general short exact sequences usually occur. We diverge briefly to prove a more general form of $\mathbf{P 2}$ which we call $\mathbf{P 2}$.
(17.2) Suppose that $0 \rightarrow C^{\prime} \xrightarrow{i} C \xrightarrow{j} C^{\prime \prime} \rightarrow 0$ is a short exact sequence of acyclic chain complexes and that $\sigma: C^{\prime \prime} \rightarrow C$ is a degree-zero section (but not necessarily a chain map). Assume further that C, C^{\prime} and $C^{\prime \prime}$ are (R, G)-complexes with preferred bases c, c^{\prime} and $c^{\prime \prime}$. Then

$$
\tau(C)=\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right)+\sum(-1)^{k} \tau\left\langle c_{k}^{\prime} c_{k}^{\prime \prime} \mid c_{k}\right\rangle
$$

where $c_{k}^{\prime} c_{k}^{\prime \prime} \equiv i\left(c_{k}^{\prime}\right) \cup \sigma\left(c_{k}^{\prime \prime}\right)$. In particular, if $i\left(c_{k}^{\prime}\right) \cup \sigma\left(c_{k}^{\prime \prime}\right)$ is a preferred basis of C_{k} for all k, then $\tau(C)=\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right)$.

PROOF: By (13.2) there is a chain map section $s: C^{\prime \prime} \rightarrow C$ such that $i+s: C^{\prime} \oplus C^{\prime \prime} \rightarrow C$ is an isomorphism. The bases $\gamma_{k}=i\left(c_{k}^{\prime}\right) \cup s\left(c_{k}^{\prime \prime}\right)$ of the C_{k} make C into a new (R, G) complex C^{γ}. Clearly $i+s: C^{\prime} \oplus C^{\prime \prime} \cong C^{\gamma}(\Sigma)$. Hence, using property $\mathbf{P 2}, \tau\left(C^{\prime}\right)=\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right)$. Let δ be a chain contraction of C. Then,

$$
\begin{aligned}
\tau(C) & =\tau\left(\langle d+\delta\rangle_{c}\right) \\
& =\tau\left(\langle d+\delta\rangle_{\nu}\right)+\sum_{k}(-1)^{k} \tau\left\langle\gamma_{k} / c_{k}\right\rangle, \quad \text { by }(15.2) \\
& =\tau\left(C^{\gamma}\right)+\sum(-1)^{k} \tau\left\langle\gamma_{k} / c_{k}\right\rangle \\
& =\tau\left(C^{\prime}\right)+\tau\left(C^{\prime \prime}\right)+\sum(-1)^{k} \tau\left\langle\gamma_{k} / c_{k}\right\rangle .
\end{aligned}
$$

Finally, $\tau\left\langle c_{k}^{\prime} c_{k}^{\prime \prime} / c_{k}\right\rangle=\tau\left\langle\gamma_{k} / c_{k}\right\rangle$. For, the short exact sequence of free
(R, G)-modules $0 \rightarrow C_{k}^{\prime} \rightarrow C_{k} \rightarrow C_{k}^{\prime \prime} \rightarrow 0$ may be thought of as an acyclic (R, G)-complex, and the result follows from (13.3B).
(17.3) If \mathscr{C} is the class of acyclic (R, G)-complexes then the torsion map $\tau: \mathscr{C} \rightarrow K_{G}(R)$ is the only function satisfying properties P1-P3 of (17.1).
PROOF: By (17.1), τ does satisfy these properties. Suppose that $\mu: \mathscr{C} \rightarrow K_{G}(R)$ also does so. Using (14.2), $C \stackrel{s}{\sim}_{\sim}^{\prime}$ where C^{\prime} is $0 \rightarrow C_{m}^{\prime} \xrightarrow{d^{\prime}} C_{m-1}^{\prime} \rightarrow 0$. Then $C \oplus T \cong C^{\prime} \oplus T^{\prime}(\Sigma)$ for some trivial complexes T, T^{\prime}. Properties P1-P3 imply that $\tau(C)=\tau(C)+\tau(T)=\tau\left(C^{\prime}\right)+\tau\left(T^{\prime}\right)$ $=\tau\left(C^{\prime}\right)$. Similarly $\mu(C)=\mu\left(C^{\prime}\right)$. But by P3, $\tau\left(C^{\prime}\right)=(-1)^{m-1} \tau\left(d^{\prime}\right)=\mu\left(C^{\prime}\right)$. Thus $\tau(C)=\mu(C) . \square$
(17.4) Let \mathscr{C}_{0} be the set of all stable equivalence classes of acyclic (R, G) complexes, viewed as a semi-group under the operation

$$
[C]+\left[C^{\prime}\right]=\left[C \oplus C^{\prime}\right]
$$

where $[C]$ denotes the equivalence class of C. Let $\tau_{0}: \mathscr{C}_{0} \rightarrow K_{G}(R)$ by

$$
\tau_{0}[C]=\tau(C)
$$

Then \mathscr{C}_{0} is a group and τ_{0} is a group isomorphism. ${ }^{12}$
$P R O O F$: Since $K_{G}(R)$ is a group, the result will follow once we show that τ_{0} is a semi-group isomorphism.

The proof that τ_{0} is a well-defined, surjective homomorphism is left to the reader.

To see that τ_{0} is one-one, suppose that $\tau_{0}[C]=\tau_{0}[D]$. Choose an odd integer $p>\max \{\operatorname{dim} C, \operatorname{dim} D\}$. Repeated use of (14.1) allows us to assert that

$$
\begin{aligned}
& C \stackrel{s}{\sim} C^{\prime}=\left(0 \rightarrow C_{p}^{\prime} \xrightarrow{d^{\prime}} C_{p-1}^{\prime} \rightarrow 0\right) \\
& D \stackrel{s}{\sim} D^{\prime}=\left(0 \rightarrow D_{p}^{\prime} \xrightarrow{\Delta} D_{p-1}^{\prime} \rightarrow 0\right) .
\end{aligned}
$$

Adding a trivial complex to C^{\prime} or D^{\prime} if necessary, we may assume that C_{p}^{\prime} and D_{p}^{\prime} have equal rank. Choose distinguished bases for C^{\prime} and D^{\prime}. We define $f: C^{\prime} \rightarrow D^{\prime}$ by defining $f_{p}: C_{p}^{\prime} \rightarrow D_{p}^{\prime}$ to satisfy the condition that $\left\langle f_{p}\right\rangle=I$ and by setting $f_{p-1}=\Delta f_{p}\left(d^{\prime}\right)^{-1}$. Clearly f is a chain isomorphism. Also $\tau\left(f_{p}\right)=0$ and $\tau\left(f_{p-1}\right)=\tau(\Delta)+\tau\left(f_{p}\right)-\tau\left(d^{\prime}\right)=\tau_{0}[D]-\tau_{0}[C]=0$. Thus f is a simple isomorphism. This proves that $[C]=\left[C^{\prime}\right]=\left[D^{\prime}\right]=[D]$, so τ_{0} is one-one.

§18. Changing rings

As usual, (R, G) and $\left(R^{\prime}, G^{\prime}\right)$ each denotes a ring and a subgroup of the units of this ring which contains -1 .

[^10]If C is an (R, G)-complex and $h: R \rightarrow R^{\prime}$ is a ring homomorphism with $h(G) \subset G^{\prime}$ then we may construct an $\left(R^{\prime}, G^{\prime}\right)$-complex C_{h} as follows: Choose a preferred basis $c=\left\{c_{k}^{i}\right\}$ for C, and let C_{h} be the free graded R^{\prime}-module generated by the set c. We denote $c=\hat{c}$ when c is being thought of as a subset of C_{h}. Define $\hat{d}: C_{h} \rightarrow C_{h}$ by setting $\hat{d}\left(\hat{c}_{k}^{i}\right)=\sum_{j} h\left(a_{k j}\right) \hat{c}_{j}^{i-1}$ if $d\left(c_{k}^{i}\right)=\sum_{j} a_{k j} c_{j}^{i-1}$. We stipulate that \hat{c} is a preferred basis of C_{h}, thus making C_{h} into an (R^{\prime}, G^{\prime})-complex. [That C_{h} is independent, up to simple isomorphism, of the choice of c follows from the fact that the induced map $h_{*}: G L(R) \rightarrow G L\left(R^{\prime}\right)$ takes matrices of 0 torsion to matrices of 0 torsion. This will be made clear in step 6 at the end of this section when we redefine C_{h} as $R^{\prime} \otimes_{h} C$.]

This change of rings is useful for several reasons. One reason is that C_{h} may be acyclic even when C is not. Thus we gain an algebraic invariant for C-namely $\tau_{h}(C)$-defined by

$$
\tau_{h}(C)=\tau\left(C_{h}\right) \in K_{G^{\prime}}\left(R^{\prime}\right)
$$

The following example of this phenomenon occurs in the study of lens spaces.
(18.1) Suppose that

$$
\begin{aligned}
& \mathbb{Z}_{p}=\left\{1, t, \ldots, t^{p-1}\right\} \text {, a cyclic group of order } p(1<p \in \mathbb{Z}) \\
& R=\mathbb{Z}\left(\mathbb{Z}_{p}\right) \\
& G=\left\{ \pm t^{j} \mid j \in \mathbb{Z}\right\} \subset R \\
& R^{\prime}=\mathbb{C}(\text { the field of complex numbers }) \\
& \xi \text { is a } p^{\prime} \text { th root of unity } ; \xi \neq 1 \\
& G^{\prime}=\left\{ \pm \xi^{j} \mid j \in \mathbb{Z}\right\} \subset R^{\prime} \\
& \left(r_{1}, \ldots, r_{n}\right)=\text { a sequence of integers relatively prime to } p \\
& \Sigma(t)=1+t+\ldots+t^{p-1} \in R \\
& h: R \rightarrow R^{\prime} \text { by } h\left(\sum_{j} n_{j} t^{j}\right)=\sum_{j} n_{j} \xi^{j}
\end{aligned}
$$

Suppose further that C is the (R, G)-complex

$$
0 \rightarrow C_{2 n-1} \xrightarrow{\left\langle\mid r_{n-1}\right\rangle} C_{2 n-2} \xrightarrow{\langle\Sigma(t)\rangle} C_{2 n-3} \xrightarrow{\left\langle\left\langle r_{n}-1-1\right\rangle\right.}
$$

where each $C_{j}(0 \leq j \leq 2 n-1)$ has rank 1 and the 1×1 matrix of d_{j} is written above the arrow $C_{j} \rightarrow C_{j-1}$. Then C is not acyclic while C_{h} is acyclic with $\tau\left(C_{h}\right) \in K_{G}$ (C) equal to the torsion of the 1×1 matrix $\left\langle\prod_{j=1}^{n}\left(\xi^{r j}-1\right)\right\rangle$.

PROOF: C is a chain complex because

$$
\Sigma(t) \cdot\left(t^{r_{j}}-1\right)=\Sigma(t)(t-1)\left(1+t+\ldots+t^{r_{j}-1}\right)=\left(t^{p}-1\right)\left(1+\ldots+t^{r_{j}-1}\right)=0
$$

C is not acyclic. For, if $\left\{c_{i}\right\}$ is a basis for C_{i}, then $\Sigma(t) \cdot c_{2 n-1}$ is not a boundary
while $d\left[\Sigma(t) \cdot c_{2 n-1}\right]=\Sigma(t) \cdot\left(t^{r_{n}}-1\right) c_{2 n-2}=0$, so it is a cycle. However C_{h} is acyclic. For $\left(1+\xi+\ldots+\xi^{p-1}\right)=\left[\left(\xi^{p}-1\right) /(\xi-1)\right]=0$, and consequently C_{h} is of the form

$$
0 \rightarrow C_{2 n-1} \xrightarrow{\left\langle\xi r_{n}-1\right\rangle} C_{2 n-2} \xrightarrow{0} C_{2 n-3} \xrightarrow{\left\langle\xi r_{n-1}-1\right\rangle} C_{2 n-4} \xrightarrow{0} \ldots
$$

Since r_{j} is prime to p, we have $\xi^{r_{j}} \neq 1$. Thus each matrix $\left\langle\xi^{r_{j}}-1\right\rangle$ is nonsingular and C_{h} is acyclic. It is an exercise for the reader that $\tau\left(C_{h}\right)=$ $\tau\left\langle\prod_{j=1}^{n}\left(\xi^{r_{j}}-1\right)\right\rangle$.

Sometimes, when C is acyclic, $\tau(C)$ is very hard to compute while $\tau_{h}(C)$ is very easy to compute. When such a homomorphism h can be found it often pays to change rings because of
(18.2) If C is an acyclic (R, G)-complex and $h:(R, G) \rightarrow\left(R^{\prime}, G^{\prime}\right)$ is a ring homomorphism then C_{h} is acyclic and $\tau_{h}(C)=h_{*} \tau(C)$ where $h_{*}: K_{G}(R) \rightarrow K_{G^{\prime}}\left(R^{\prime}\right)$ is the induced map.

PROOF: Choose a chain contraction δ of C and suppose that $\delta\left(c_{k}^{i}\right)=\sum_{j} b_{k j} c_{j}^{i+1}$. Define $\hat{\delta}: C_{h} \rightarrow C_{h}$ by $\hat{\delta}\left(\hat{c}_{k}^{i}\right)=\sum_{j} h\left(b_{k j}\right) \hat{c}_{j}^{i+1}$. Clearly, since $h(G) \subset G^{\prime}$, we have $h(1)=1$ so that: $\langle\hat{d} \hat{\delta}+\hat{\delta} \hat{d}\rangle=h_{*}\langle d \delta+\delta d\rangle=$ $h_{*}(I)=I$, and $h_{*}\langle d+\delta\rangle=\langle\hat{d}+\hat{\delta}\rangle$. Thus $\hat{\delta}$ is a chain contraction and $\tau_{h}(C)$ $=\tau\left(C_{h}\right)=h_{*} \tau(C)$.

As a simple but important application of (18.2) we have
(18.3) Suppose that C is an acyclic $W h(G)$-complex with boundary operator d. If there is a preferred basis c of C with respect to which $\langle d\rangle$ has only integral entries. (i.e. $\langle d\rangle=\left(a_{i j}\right)$ where $\left.a_{i j} \in \mathbb{Z} \subset \mathbb{Z}(G)\right)$ then $\tau(C)=0$.
$P R O O F$: Let $C^{\prime} \subset C$ be the free \mathbb{Z}-module generated by c. Let $d^{\prime}=d \mid C^{\prime}$. Since d is integral, $d^{\prime}: C^{\prime} \rightarrow C^{\prime}$, so that C^{\prime} becomes a chain complex and, indeed, a free $(\mathbb{Z},\{ \pm 1\})$-complex if we specify c as preferred basis. Let $h:(\mathbb{Z},\{ \pm 1\}) \rightarrow(\mathbb{Z}(G), G \cup-G)$ be the inclusion map. Clearly we can identify $C \equiv C_{h}^{\prime}$.

We claim that C^{\prime} is acyclic. For suppose that $d^{\prime}(x)=0$ where $x \in C_{i}^{\prime}$. Then $x=d(y)$ for some $y \in C_{i+1}$, since C is acyclic. Suppose that $x=\sum_{k} n_{k} c_{k}^{i}$ and $y=\sum_{j} r_{j} c_{j}^{i+1}\left(n_{k} \in \mathbb{Z}, r_{j} \in \mathbb{Z}(G)\right)$. We have

$$
d(y)=\sum r_{j} \sum_{k} a_{j k} c_{k}^{i} \quad\left(a_{j k} \in \mathbb{Z}\right)
$$

so

$$
n_{k}=\sum r_{j} a_{j k}
$$

Let $A: \mathbb{Z}(G) \rightarrow \mathbb{Z}$ be the ring homomorphism given by $A\left(\sum_{j} m_{j} g_{j}\right)=\sum_{j} m_{j}$
and set $y^{\prime}=\sum A\left(r_{j}\right) c_{j}^{i+1} \in C_{i+1}^{\prime}$. and set $y^{\prime}=\sum_{j} A\left(r_{j}\right) c_{j}^{i+1} \in C_{i+1}^{\prime}$.

Then

$$
\begin{aligned}
d^{\prime}\left(y^{\prime}\right) & =\sum_{j, k} A\left(r_{j}\right) a_{j k} c_{k}^{i} \\
& =\sum_{j, k} A\left(r_{j} a_{j k}\right) c_{k}^{i} \\
& =\sum_{k} A\left(\sum_{j} r_{j} a_{j k}\right) c_{k}^{i} \\
& =\sum_{k} A\left(n_{k}\right) c_{k}^{i} \\
& =\sum_{k} n_{k} c_{k}^{i}=x
\end{aligned}
$$

Thus every cycle is a boundary and C^{\prime} is acyclic.
By (18.2), $\tau(C)=\tau\left(C_{h}^{\prime}\right)=h_{*} \tau\left(C^{\prime}\right)$. But $\tau\left(C^{\prime}\right) \in W h(\{1\})=0$. Hence $\tau(C)=0$.

To put the construction $C \mapsto C_{h}$ into proper perspective and to allow ourselves access to well-known algebraic facts in dealing with it, we now outline a richer description of C_{h}. We leave the reader to check the elementary assertions about tensor algebra being used. (A good reference is [Chevalley; Ch. III, §8, 11])

1. R^{\prime} becomes a right R-module if we define $r^{\prime} \cdot r=r^{\prime} h(r)$ for all $r \in R$, $r^{\prime} \in R^{\prime}$.
2. $R^{\prime} \otimes_{R} C$ then becomes a well-defined abelian group such that $r^{\prime} \otimes r x=r^{\prime} h(r) \otimes x$ for all $\left(r^{\prime}, r, x\right) \in R^{\prime} \times R \times C$. We denote $R^{\prime} \otimes_{R} C=R^{\prime} \otimes_{h} C$.
3. $R^{\prime} \otimes_{h} C$ becomes a left R^{\prime}-module if we define $\rho\left(r^{\prime} \otimes x\right)=\rho r^{\prime} \otimes x$ for all $\left.\left(\rho, r^{\prime}, x\right) \in R^{\prime} \times R^{\prime} \times C\right)$.
4. If $f: C \rightarrow D$ is a homomorphism in the category of R-modules then $1 \otimes f: R^{\prime} \otimes_{h} C \rightarrow R^{\prime} \otimes_{h} D$ is a homomorphism in the category of R^{\prime}-modules.
5. $\left(R^{\prime} \otimes_{h} C, 1 \otimes d\right)$ is a chain complex over R^{\prime}.
6. If $c=\left\{c_{k}^{i}\right\}$ is a basis of C then $\bar{c}=\left\{1 \otimes c_{k}^{i}\right\}$ is a basis of $R^{\prime} \otimes_{h} C$. If b is another basis of C giving rise similarly to the basis \bar{b} of $R^{\prime} \otimes_{h} C$ then $\langle\bar{c} \mid \bar{b}\rangle=h_{*}(\langle c \mid b\rangle)$. If $\left(a_{k j}\right)$ is the matrix of d_{i} with respect to c then ($h\left(a_{k j}\right)$) is the matrix of $1 \otimes d_{i}$ with respect to \bar{c}.
7. There is a simple isomorphism of (R^{\prime}, G^{\prime}) complexes, $R^{\prime} \otimes_{h} C \cong C_{h}$ which takes the basis elements $1 \otimes c_{k}^{i}$ onto the basis element \hat{c}_{k}^{i}.

Thus we may and do identify: $R^{\prime} \otimes_{h} C \equiv C_{h}$.
8. If $0 \rightarrow C^{\prime} \xrightarrow{\alpha} C \xrightarrow{\beta} C^{\prime \prime} \rightarrow 0$ is a split exact sequence of (R, G)-complexes with preferred bases c^{\prime}, c and $c^{\prime \prime}$ such that $c=\alpha\left(c^{\prime}\right) \cup b$ where $\beta(b)=c^{\prime \prime}$ then

$$
0 \rightarrow C_{h}^{\prime}=R^{\prime} \otimes_{h} C^{\prime} \xrightarrow{1 \otimes \alpha} C_{h}=R^{\prime} \otimes_{h} C \xrightarrow{1 \otimes \beta} C_{h}^{\prime \prime}=R^{\prime} \otimes_{h} C^{\prime \prime} \rightarrow 0
$$

is an exact sequence of $\left(R^{\prime}, G^{\prime}\right)$-complexes whose preferred bases have the analogous property.

Chapter IV

Whitehead Torsion in the CW Category

§19. The torsion of a CW pair-definition

The geometry in Chapter II and the algebraic analysis of Chapter III are synthesized in the definition:

If (K, L) is a pair of finite, connected $C W$ complexes such that $K \swarrow_{\downarrow} L$ then the torsion of (K, L)-written $\tau(K, L)$-is defined by

$$
\tau(K, L)=\tau(C(\tilde{K}, \tilde{L})) \in W h\left(\pi_{1} L\right)
$$

where (\tilde{K}, \tilde{L}) is the universal covering of (K, L).
In this section we explain this definition, show that $\tau(K, L)$ is well-defined and extend the definition to non-connected complexes. In the rest of the chapter we develop the basic properties of torsion in the CW category. This development allows us on the one hand (§24) to answer the questions about the relationship between homotopy type and simple-homotopy type which initiated our discussion. On the other hand, (§25), it yields the results on which the modern applications of simple-homotopy type are based.

In this chapter, as usual, all CW complexes mentioned, except those which arise as covering spaces, will be assumed to be finite.

Starting from the beginning, suppose that (K, L) is a connected CW pair and that $K _L$. Let $p: \widetilde{K} \rightarrow K$ be a universal covering, and let $G=\operatorname{Cov}(\widetilde{K})$, the group of covering homeomorphisms. Then $p^{-1} L=\tilde{L}$ is a universal covering space of L and $\tilde{K}\} \tilde{L}$, by (3.13). The cellular chain complex $C(\tilde{K}, \widetilde{L})$ is a $\mathbb{Z}(G)$-complex (see page 11). If we choose, for each cell $e_{\alpha} \in K-L$, a characteristic map φ_{α} and a specific lift $\tilde{\varphi}_{\alpha}$ of φ_{α}, then by (3.15) $B=\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle \mid e_{\alpha} \in K-L\right\}$ is a basis for $C(\tilde{K}, \tilde{L})$ as a $\mathbb{Z}(G)$-complex. Let \mathscr{B} be the set of all bases constructed in this fashion.
(19.1) The complex $C(\tilde{K}, \tilde{L})$, along with the family of bases \mathscr{B}, determines an acyclic $W h(G)$-complex.

PROOF: $\quad C(\tilde{K}, \tilde{L})$ is acyclic because $\tilde{K} \longleftrightarrow \tilde{L}$ so, by (3.8), $H(C(\tilde{K}, \tilde{L}))$ $\cong H(|\tilde{K}|,|\tilde{L}|)=0$.

Suppose that $c, c^{\prime} \in \mathscr{B}$ restrict to bases $c_{n}=\left\{\left\langle\tilde{\varphi}_{1}\right\rangle, \ldots ;\left\langle\tilde{\varphi}_{q}\right\rangle\right\}$ and $c_{n}^{\prime}=\left\{\left\langle\tilde{\psi}_{1}\right\rangle, \ldots,\left\langle\tilde{\psi}_{q}\right\rangle\right\}$ of $C_{n}(\tilde{K}, \tilde{L})$. Then

$$
\begin{aligned}
\left\langle\tilde{\psi}_{j}\right\rangle & =\sum_{k} a_{j k}\left\langle\tilde{\varphi}_{k}\right\rangle \quad \text { for some } \quad a_{j k}=\sum_{i} n_{i}^{j k} g_{i} \in \mathbb{Z}(G) \\
& =\sum_{i, k} n_{i}^{j, k}\left\langle g_{i} \tilde{\varphi}_{k}\right\rangle .
\end{aligned}
$$

But the cell $\tilde{\psi}_{j}\left(I^{n}\right)$, as a lift of e_{j}, is equal to one of the cells $g_{i j} \tilde{\varphi}_{j}\left(i^{n}\right)$ and is disjoint from all of the others. Thus, by (3.7C), the coefficients in the last sum are all 0 except for $N=n_{i j}^{j, j}$. But then $\tilde{\varphi}_{j}\left(\dot{I}^{n}\right)=g_{i j}^{-1} \tilde{\psi}_{j}\left(i^{n}\right)$ so, by the same argument, $\left\langle\tilde{\varphi}_{j}\right\rangle=N^{\prime}\left\langle g_{i_{j}}^{-1} \tilde{\psi}_{j}\right\rangle$. Hence $\left\langle\tilde{\psi}_{j}\right\rangle=N N^{\prime}\left\langle\tilde{\psi}_{j}\right\rangle$. So $N= \pm 1$ and $\left\langle\tilde{\psi}_{j}\right\rangle= \pm g_{i_{j}}\left\langle\tilde{\varphi}_{j}\right\rangle$. Therefore
and $\tau\left(\left\langle c_{n} / c_{n}^{\prime}\right\rangle\right)=0 \in W h(G)$.

$$
\left\langle c_{n} / c_{n}^{\prime}\right\rangle=\binom{ \pm g_{i_{1}}}{\hdashline g_{i_{q}}}
$$

Thus $C(\tilde{K}, \tilde{L})$ becomes a $W h(G)$ complex if we stipulate that b is a preferred basis iff $\tau\langle c / b\rangle=0$ for all $c \in \mathscr{B}$.

Recall from §10, that there is a covariant functor which takes every group to its Whitehead group and every group homomorphism $G_{1} \rightarrow G_{2}$ to a naturally induced homomorphism $W h\left(G_{1}\right) \rightarrow W h\left(G_{2}\right)$. In particular we now consider the induced isomorphisms $W h\left(\pi_{1}(X, x)\right) \rightarrow W h\left(\pi_{1}(X, y)\right)$ corresponding to the change of base-point isomorphisms $\pi_{1}(X, x) \rightarrow \pi_{1}(X, y)$.
(19.2) If X is an arcwise connected space containing the points x and y then all of the paths from x to y induce the same isomorphism $f_{x, y}$ of $\operatorname{Wh}\left(\pi_{1}(X, x)\right)$ onto $W h\left(\pi_{1}(X, y)\right)$. Moreover $f_{y, z} \circ f_{x, y}=f_{x, z}$.
PROOF: If $\alpha:(I, 0,1) \rightarrow(X, x, y)$, let $f_{\alpha}: \pi_{1}(X, x) \rightarrow \pi_{1}(X, y)$ denote the usual isomorphism given by $f_{\alpha}[\omega]=[\bar{\alpha} * \omega * \alpha]$. Then, if α, β are two such paths, $f_{\beta}^{-1} f_{\alpha}([\omega])=[\beta * \bar{\alpha}] \cdot[\omega] \cdot[\beta * \bar{\alpha}]^{-1}$ for all $[\omega] \in \pi_{1}(X, x)$. Hence ${\dot{f_{\beta}^{-1}} f_{\alpha}}^{-1}$ is an inner automorphism and, by (10.4), $\left(f_{\beta}\right)_{*}^{-1}\left(f_{\alpha}\right)_{*}=\left(f_{\beta}^{-1} f_{\alpha}\right)_{*}=1$. Thus $\left(f_{\alpha}\right)_{*}=\left(f_{\beta}\right)_{*}$ for all such α, β and we may set $f_{x, y}=\left(f_{\alpha}\right)_{*}$. It is obvious that $f_{y, z} \circ f_{x, y}=f_{x, z}$.

Suppose as before that $p: \tilde{K} \rightarrow K$ is a universal covering, with $G=\operatorname{Cov}(\tilde{K})$ and K connected. Choosing base points $x \in K$ and $\tilde{x} \in p^{-1}(x)$ there is (page 12) an isomorphism $\theta=\theta(x, \tilde{x}): \pi_{1}(K, x) \rightarrow G$, given-if \dagger we denote $\theta([\alpha])=\theta_{[\alpha]}$, for all $[\alpha] \in \pi_{1}(K, x)$-by

$$
\theta_{[x]}(y)=\overparen{\alpha * p \omega(1)}
$$

 $\pi_{1}(K, x)$ with G via θ then, by (19.1), $C(\tilde{K}, \tilde{L})$ is an acyclic $W h\left(\pi_{1}(K, x)\right)$ complex and we may define $\tau(K, L) \in W h\left(\pi_{1}(K, x)\right)$.

To make the last sentence more precise (something worth doing only at the outset when we are worried about foundational questions) the isomorphism $\psi=\theta^{-1}: G \rightarrow \pi_{1}(K, x)$ induces a ring isomorphism of the same name, $\psi: \mathbb{Z}(G) \rightarrow \mathbb{Z}\left(\pi_{1}(K, x)\right.$), and we wish to change rings as in $\S 18$ to construct from $C(\tilde{K}, \tilde{L})$ the $W h\left(\pi_{1}(K, x)\right.$-complex $C(\tilde{K}, \tilde{L})_{\psi}$. That $\tau(K, L)$ is independent of all choices will follow from
(19.3) Let $\tilde{p}: \tilde{K} \rightarrow K$ and $\hat{p}: \hat{K} \rightarrow K$ be universal coverings of the connected complex K, with \widetilde{G} and \hat{G} as the groups of covering homeomorphisms. Let $x, y \in K, \tilde{x} \in \tilde{p}^{-1}(x)$ and $\hat{y} \in \hat{p}^{-1}(y)$. Let $\tilde{\psi}: \widetilde{G} \rightarrow \pi_{1}(K, x)$ and $\hat{\psi}: \widehat{G} \rightarrow \pi_{1}(K, y)$
\dagger Thus $\theta_{[\alpha]}$ is the same as $g_{[\alpha]}$ of page 12.
be the group isomorphisms determined by (x, \tilde{x}) and (y, \hat{y}). Then $\tau\left(C(\hat{K}, \hat{L})_{\psi}\right)$ $=f_{x, y} \tau\left(C(\tilde{K}, \tilde{L})_{\Psi}\right)$

PROOF: Let $h: \tilde{K} \rightarrow \hat{K}$ be a homeomorphism covering the identity (hence a cellular isomorphism) and let $H: \widetilde{G} \rightarrow \hat{G}$ by $H(g)=h g h^{-1}$. We claim first that $\tau C(\hat{K}, \hat{L})=H_{*}(\tau C(\tilde{K}, \tilde{L}))$, where $H_{*}: W h(\widetilde{G}) \rightarrow W h(\hat{G})$ is the induced map. To see this let $\left\{\left\langle\tilde{\varphi}_{k}^{i}\right\rangle\right\}$ be a basis for $C_{i}(\tilde{K}, \tilde{L})$ as in (19.1) and let $\hat{\varphi}_{k}^{i}=h \circ \tilde{\varphi}_{k}^{i}$ for all i, k. Then, by (19.1), the torsions of $C(\tilde{K}, \tilde{L})$ and $C(\hat{K}, \hat{L})$ can be computed using these bases. But, since h induces a chain isomorphism $C(\tilde{K}, \tilde{L}) \rightarrow C(\hat{K}, \hat{L})$ when these are thought of as complexes over \mathbb{Z}, one can check immediately that if the matrix of the boundary operator \tilde{d}_{i} is $\left(a_{k j}\right) \in G L(\mathbb{Z} \widetilde{G})$ then the matrix of the corresponding boundary operator d_{i} is $\left(H\left(a_{k j}\right)\right)$, where $H: \mathbb{Z}(\widetilde{G}) \rightarrow \mathbb{Z}(\hat{G})$ is induced from $H: \widetilde{G} \rightarrow \hat{G}$. Thus, by the proof of $(18.2), \tau C(\hat{K}, \hat{L})=H_{*}(\tau C(\widetilde{K}, \tilde{L}))$.

Now let $\hat{x}=h(\tilde{x})$ and choose a path $\Omega:(I, 0,1) \rightarrow(\hat{K}, \hat{x}, \hat{y})$. Let $\omega=\hat{p} \Omega$ and let $f_{\omega}: \pi_{1}(K, x) \rightarrow \pi_{1}(K, y)$ as usual. Then denoting $\tilde{\theta}=\theta(x, \tilde{x})=\tilde{\psi}^{-1}$ and $\hat{\theta}=\theta(y, \hat{y})=\hat{\psi}^{-1}$, the following diagram commutes

For if $[\alpha] \in \pi_{1}(K, x)$ we have

$$
\begin{aligned}
\left(\hat{\theta} f_{\omega}[\alpha]\right)(\hat{y}) & =\hat{\theta}_{[[\omega * * * \omega]}(\hat{y}) \\
& =\widehat{\alpha * \omega(1) \quad \text { where } \quad \widehat{\alpha * \omega}(0)=\bar{\Omega}(1)=\hat{x}} \\
& =h(\widetilde{\alpha * \omega(1))} \text { because } h(\widetilde{\alpha * \omega)}(0)=\hat{x} \\
& =h\left(\widetilde{\left.\alpha \tilde{p} h^{-1} \Omega(1)\right) \quad \text { because } \omega=\hat{p} \Omega=\tilde{p} h^{-1} \Omega}\right. \\
& =h\left(\tilde{\theta}_{[\alpha]} h^{-1} \Omega(1)\right) \\
& =\left(h \tilde{\theta}_{[\alpha]} h^{-1}\right)(\hat{y}) \\
& =(H \tilde{\theta}[\alpha])(\hat{y}) .
\end{aligned}
$$

Since $\hat{\theta} f_{\omega}[\alpha]$ and $H \tilde{\theta}[\alpha]$ agree at a point they agree everywhere. Since [α] was arbitrary, $\hat{\theta} f_{\omega}=H \tilde{\theta}$.

From the preceding paragraphs and (18.2) we have,

$$
\begin{aligned}
f_{x, y} \tau\left(C(\tilde{K}, \tilde{L})_{\tilde{\psi}}\right. & =f_{\omega *} \tilde{\psi}_{*}(\tau C(\tilde{K}, \tilde{L})) \\
& =\hat{\psi}_{*} H_{*}(\tau C(\tilde{K}, \tilde{L}) \\
& =\hat{\psi}_{*}(\tau C(\hat{K}, \hat{L})) \\
& =\tau\left(C(\hat{K}, \hat{L})_{\tilde{\psi}}\right)
\end{aligned}
$$

Since it would sometimes be nice to have $\tau(K, L)$ defined as a single element of a single group we introduce some formalism. Let us (using (19.2)) define

$$
W h\left(\pi_{1} K\right)=\left[\bigcup_{x \in K} W h\left(\pi_{1}(K, x)\right)\right] / " \sim "
$$

where $a \sim b$ if $\mathrm{a} \in W h\left(\pi_{1}(K, x)\right), b \in W h\left(\pi_{1}(K, y)\right)$ and $f_{x, y}(a)=b$. Let $j_{x}: W h\left(\pi_{1}(K, x)\right) \rightarrow W h\left(\pi_{1} K\right)$ be the natural bijection. The stipulation that j_{x} be a group isomorphism gives $W h\left(\pi_{1} K\right)$ a group structure which is independent of x. Note that $j_{y}^{-1} j_{x}=f_{x, y}$.

If $f:(K, x) \rightarrow\left(K^{\prime}, x^{\prime}\right)$, then the induced homomorphism on fundamental groups gives rise to a composite homomorphism

$$
f_{*}: W h\left(\pi_{1} K\right) \xrightarrow{j_{x}^{-1}} W h\left(\pi_{1}(K, x)\right) \xrightarrow{f_{\#}} W h\left(\pi_{1}\left(K^{\prime}, x^{\prime}\right)\right) \xrightarrow{j_{x^{\prime}}} W h\left(\pi_{1} K^{\prime}\right)
$$

The proof of the following is left to the reader.
(19.4) The homomorphism f_{*} is independent of which pair (x, x^{\prime}) with $f(x)=x^{\prime}$ is chosen. Thus there is a covariant functor from the category of finite connected $C W$ complexes and maps to the category of abelian groups and homomorphisms defined by

$$
\begin{gathered}
K \mapsto W h\left(\pi_{1} K\right) \\
\left\{f: K \rightarrow K^{\prime}\right\} \mapsto\left\{f_{*}: W h\left(\pi_{1} K\right) \rightarrow W h\left(\pi_{1} K^{\prime}\right)\right\} .
\end{gathered}
$$

Moreover, if $f \simeq g$ then $f_{*}=g_{*}$.
Putting all this together, $\tau(K, L) \in W h\left(\pi_{1} L\right)$ is defined (in the connected case) as follows: Choose a point $x \in K$, a universal covering $p:(\widetilde{K}, \tilde{L}) \rightarrow(K, L)$ and a point $\tilde{x} \in p^{-1}(x)$. Let $i: L \rightarrow K$ be the inclusion. Then $\tau(K, L)$ is the end of the sequence

$\tau(K, L)$ is well-defined by (19.1)-(19.4).

The reader may wonder why we don't omit i_{*}^{-1} and put $\tau(K, L)$ into $W h\left(\pi_{1} K\right)$ instead of $W h\left(\pi_{1} L\right)$. It's a matter of taste. The discussion in $\S 6$ seems to lend weight to the view that L is the central object in our discussion.

Non-Connected Case

Finally, we generalize to the non-connected case. Assume that K and L are finite CW complexes and that $K 2_{1} L$. Let $K_{1}, \ldots K_{q}$, and L_{1}, \ldots, L_{q} be the components of K and L respectively, ordered so that $K_{j} L_{j}$ for all j. We define

$$
\tau(K, L)=\sum_{j} \tau\left(K_{j}, L_{j}\right) \in \oplus W h\left(\pi_{1} L_{j}\right)
$$

In $\S 21$ we shall justify, and thereafter we shall use, the notational convention

$$
W h(L) \equiv \oplus W h\left(\pi_{1} L_{j}\right) .
$$

Note that (19.4) generalizes to
(19.5) There is a covariant functor from the category of finite $C W$ complexes and maps to the category of abelian groups and homomorphisms defined by

$$
\begin{gathered}
K \mapsto \bigoplus_{j=1}^{q} \dot{W} h\left(\pi_{1} K_{j}\right) \\
\left\{f: K \rightarrow K^{\prime}\right\} \rightarrow\left\{f_{*}=\sum_{j=1}^{q} f_{j_{*}}: \oplus_{j=1}^{q} W h\left(\pi_{1} K_{j}\right) \rightarrow \oplus_{i=1}^{r} W h\left(\pi_{1} K_{i}^{\prime}\right)\right\}
\end{gathered}
$$

where K_{1}, \ldots, K_{q} and $K_{1}^{\prime}, \ldots, K_{r}^{\prime}$ are the components of K and K^{\prime} respectively, and $f_{j_{*}}: W h\left(\pi_{1} K_{j}\right) \rightarrow W h\left(\pi_{1} K_{i j}^{\prime}\right)$ is induced from f with $f\left(K_{j}\right) \subset K_{i_{j}}^{\prime}$. Moreover, if $f \simeq g$ then $f_{*}=g_{*}$.

Two comments are in order:
First, the reader must NOT confuse $\oplus W h\left(\pi_{1} K_{j}\right)$ with $W h\left(\oplus \pi_{1} K_{j}\right)$. For example, (11.5) implies that $W h\left(\mathbb{Z}_{3}\right) \oplus W h\left(\mathbb{Z}_{4}\right) \neq W h\left(\mathbb{Z}_{12}\right)$. Torsion considerations are first done for each component K_{j}, and then formally added.

Second, despite the first comment, it is not a sterile generalization to consider the non-connected case. Sometimes connected spaces are expressed as the union of non-connected spaces, or as the union of connected spaces along a non-connected intersection. The Excision Lemma (20.3) and the Sum Theorem (23.1) would be much less useful if the theory were developed with the connectivity restrictions. The point is that formal addition becomes real addition under f_{*} if f carries different components into the same component.

Having rigorously defined $\tau(K, L)$ we can allow ourselves some laxity in the ensuing discussion. Thus, for sake of clarity, we shall (when K is connected) sometimes speak of $\tau(K, L)$ as an element of $W h(G)$, or as an element of $W h\left(\pi_{1}(L, x)\right.$), for some $x \in L$. At other times (also in the name of clarity) we shall be completely rigorous and consider $\tau(K, L)$ as an element of $W h\left(\pi_{1} L\right)$.

§20. Fundamental properties of the torsion of a pair

(20.1) If (K, L) is a $C W$ pair such that $K \longleftrightarrow L$ and if each component of $K-L$ is simply connected then $\tau(K, L)=0$.
PROOF: Clearly it suffices to prove this when K is connected. Let c be a component of $K-L$. Then c is closed in $K-L$, so $\bar{c} \subset L \cup c$ and $L \cup c$ is a closed set. If e is a cell of K which meets c then e cannot lie totally in L, so, L being a subcomplex, $e \cap L=\varnothing$. Hence $e \subset K-L$ and consequently $e \subset c$. Combining these facts we see that $L \cup c$ is a subcomplex of K and $c=(L \cup c)-L$ is a union of cells.

As usual let $p: \widetilde{K} \rightarrow K$ be a universal covering with G the group of covering homeomorphisms. Since c is simply connected it lifts homeomorphically to \tilde{K}. Let C be one lift of c, so $p \mid C: C \rightarrow c$ is a homeomorphism. Let $\{g C \mid 1 \neq g \in G\}$ be the other lifts. These lifts are pairwise disjoint since c is connected. For each p-cell e_{α} of c let $\tilde{\varphi}_{\alpha}$ be a lift of a characteristic map such that $\tilde{\varphi}_{\alpha}\left(I^{p}\right) \subset C$. Doing this for all components c of $K-L$, and all such cells e_{α}, we get a preferred basis $\left\{\left\langle\tilde{\varphi}_{x}\right\rangle\right\}$ for $C(\tilde{K}, \tilde{L})$ (which we are thinking of as a $W h(G)$-complex).

For a fixed n-cell e_{α} of the component c of $K-L$,

$$
\partial\left\langle\tilde{\varphi}_{\alpha}\right\rangle \in H_{n-1}\left(\tilde{K}^{n-1} \cup \tilde{L}, \tilde{K}^{n-2} \cup \tilde{L}\right)
$$

is represented by a singular cycle carried by $\tilde{\varphi}_{\alpha}\left(\partial I^{n}\right)$. However $\tilde{\varphi}_{\alpha}\left(I^{n}\right) \subset C$ and $\varphi_{\alpha}\left(I^{n}\right) \subset L \cup c$, so $\tilde{\varphi}_{\alpha}\left(\partial I^{n}\right) \subset \tilde{L} \cup C$. Thus any $(n-1)$-cell of $\tilde{K}-\tilde{L}$ which meets $\tilde{\varphi}_{\alpha}\left(\partial I^{\prime \prime}\right)$ must lie in C. It follows from (3.7c) that in the expression

$$
\partial\left\langle\tilde{\varphi}_{\alpha}\right\rangle=\sum_{\beta, j} n_{\alpha \beta j} g_{j}\left\langle\tilde{\varphi}_{\beta}\right\rangle=\sum n_{\alpha \beta j}\left\langle g_{j} \tilde{\varphi}_{\beta}\right\rangle, \quad\left(n_{\alpha \beta j} \in \mathbb{Z}, g_{j} \in G\right)
$$

we must have $n_{\alpha \beta j}=0$ unless $g_{j} \tilde{\varphi}_{\beta}\left(I^{n-1}\right) \subset C$. But, by choice of our preferred basis $g_{j} \tilde{\varphi}_{\beta}\left(I^{n-1}\right) \subset C$ only if $g_{j}=1$. Thus

$$
\partial\left\langle\varphi_{\alpha}\right\rangle=\sum_{\beta} n_{\alpha \beta}\left\langle\tilde{\varphi}_{\beta}\right\rangle
$$

and we see that the matrix of ∂ has only integer entries. Thus, by (18.3), $\tau(C(\widetilde{K}, \tilde{L}))=0 \in W h(G)$.
(20.2) If $K>L>M$ where $K \triangleleft L$ and $L 〕 M$ then

$$
\tau(K, M)=\tau(L, M)+i_{*}^{-1} \tau(K, L)
$$

where $i: M \leftrightharpoons L$.
PROOF: We may assume K is connected. Let $p: \tilde{K} \rightarrow K$ be the universal covering. Set $\tilde{L}=p^{-1} L, G^{\prime}=\operatorname{Cov}(\tilde{L})$ and $G=\operatorname{Cov}(\tilde{K})$. If $j: L \subsetneq K$ then (page 12) $j_{\#}: G^{\prime} \rightarrow G$ is an isomorphism. Note [using (3.16) with $\tilde{j}: \tilde{L} \subseteq \tilde{K}$] that $j_{\#}\left(g^{\prime}\right) \in G$ is the unique extension of g^{\prime}. Set $J=j_{\#}$ and also let J denote the induced $\operatorname{map} \mathbb{Z}\left(G^{\prime}\right) \xrightarrow{\cong} \mathbb{Z}(G)$.

By (19.1), $C(\tilde{K}, \tilde{M})$ and $C(\tilde{K}, \tilde{L})$ are $W h(G)$-complexes and $C(\tilde{L}, \tilde{M})$ is a
$W h\left(G^{\prime}\right)$-complex. But $C(\tilde{L}, \tilde{M})$ may also be viewed as a $W h(G)$-complex if, given $g \in G$ and $x \in C(\tilde{L}, \tilde{M})$, we define $g \cdot x=g^{\prime} \cdot(x)$ where $J\left(g^{\prime}\right)=g$. Choose a preferred basis $\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle \mid e_{\alpha} \in K-M\right\}$ for $C(\tilde{K}, \tilde{M})$ as a $\mathbb{Z}(G)$-module and use the same lifts $\tilde{\varphi}_{\alpha}$ to give preferred bases $\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle \mid e_{\alpha} \in K-L\right\}$ and $\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle \mid e_{\alpha} \in L-M\right\}$ to the $\mathbb{Z}(\mathrm{G})$-modules $C(\tilde{K}, \tilde{L})$ and $C(\tilde{L}, \tilde{M})$. Then the inclusion maps induce a short exact sequence

$$
0 \rightarrow C(\tilde{L}, \tilde{M}) \rightarrow C(\tilde{K}, \tilde{M}) \rightarrow C(\tilde{K}, \tilde{L}) \rightarrow 0
$$

of acyclic $W h(G)$-complexes in which preferred bases correspond. Hence, by (17.2), $\tau C(\tilde{K}, \tilde{M})=\tau C(\tilde{L}, \tilde{M})+\tau C(\tilde{K}, \tilde{L})$.

Now think of $C(\tilde{L}, \tilde{M})$ as a $W h\left(G^{\prime}\right)$-complex and notice that, by definition of $C(\tilde{L}, \tilde{M})_{J}$ there is a trivial basis preserving isomorphism of $C(\tilde{L}, \tilde{M})_{J}$ with the complex " $C(\tilde{L}, \tilde{M})$ viewed as a $W h(G)$-complex" discussed above. Thus the torsion of the latter complex is equal to $\tau\left(C(\tilde{L}, \tilde{M})_{J}\right)=J_{*} \tau C(\tilde{L}, \tilde{M})$. Hence $\tau C(\tilde{K}, \tilde{M})=\left[\tau C(\tilde{K}, \tilde{L})+J_{*} \tau C(\tilde{L}, \tilde{M})\right] \in W h(G)$. The theorem now follows immediately if one traces each term in this equation to its image in $W h\left(\pi_{1} M\right)$ via the following commutative diagram

Here i, j, k are inclusions and the vertical arrows are the result of the discussion in $\S 19$. The commutativity of the diagram is left as an exercise for the reader.
(20.3) (The Excision Lemma) If K, L, and M are subcomplexes of the complex $K \cup L$, with $M=K \cap L$, and if $K _M$ then $\tau(K \cup L, L)=j_{*} \tau(K, M)$ where $j: M \rightarrow L$ is the inclusion map.
PROOF: First, we claim, it suffices to prove this when L is connected. (This does not say that K and M are connected.) For suppose that L and $K \cup L$ have components L_{1}, \ldots, L_{q} and P_{1}, \ldots, P_{q} where $P_{i} \geq_{1} L_{i}$ for all i. Let $M_{i}=M \cap L_{i}$ and $K_{i}=K \cap P_{i}$ have components $M_{i 1}, M_{i 2}, \ldots$ and $K_{i 1}, K_{i 2}, \ldots$ respectively, where $\left.K_{i k}{ }^{2}\right] M_{i k}$. Then, assuming the Excision Lemma for each L_{i}, we have

$$
\begin{aligned}
\tau(K \cup L, L) & \equiv \sum_{i} \tau\left(P_{i}, L_{i}\right) \\
& =\sum_{i} j_{i *} \tau\left(K_{i}, M_{i}\right) \quad \text { where } \quad j_{i}: M_{i} \subsetneq L_{i} \\
& =\sum_{i} j_{i *}\left(\sum_{k} \tau\left(K_{i k}, M_{i k}\right)\right) \\
& =\sum_{i, k}\left(j_{i} \mid M_{i k}\right)_{*} \tau\left(K_{i k}, M_{i k}\right) \\
& \equiv j_{*} \tau(K, M) .
\end{aligned}
$$

So assume that L (hence also $K \cup L$) is connected and that M and K have components M_{1}, \ldots, M_{s}, and K_{1}, \ldots, K_{s} with $K_{i}{ }_{4} M_{i}$. The proof of the theorem consists of a technical rendering of the fact that $(K \cup L)-L$ $=\bigcup_{i}\left(K_{i}-M_{i}\right)$ where the $K_{i}-M_{i}$ are disjoint.

Let $p: \overparen{K \cup L} \rightarrow K \cup L$ be a universal covering of $K \cup L$ and denote $\tilde{X}=p^{-1} X$ if $X \subset K \cup L$. [Beware: In general $\tilde{K}_{i}=p^{-1} K_{i}$ is not a universal covering of K_{i}.] Let $G=\operatorname{Cov}(\overparen{K \cup L})$. Note that $C(\overparen{K \cup L}, \tilde{L})$ $=\underset{i}{\oplus} C\left(\overparen{K_{i} \cup L}, \tilde{L}\right)$, where all the chain complexes in this equation can be viewed as acyclic $W h(G)$-complexes. Hence, by (17.1),

$$
\tau(K \cup L, M)=\sum_{i} \tau C\left(\overparen{K_{i} \cup L}, \tilde{L}\right) \in W h(G)
$$

To compute $\tau C\left(\overparen{K_{i} \cup L}, \tilde{L}\right)$ we consider a universal covering $\hat{p}:\left(\hat{K}_{i}, \hat{M}_{i}\right) \rightarrow\left(K_{i}, M_{i}\right)$ with $\hat{G}_{i}=\operatorname{Cov}\left(\hat{K}_{i}\right)$. Fixing base points $x \in M_{i}$, $\hat{x} \in \hat{p}^{-1}(x)$, and $\tilde{x} \in p^{-1}(x)$ and letting $J_{i}:\left(K_{i}, x\right) \rightarrow(K \cup L, x)$ be the inclusion, the following commutative diagrams are determined:

We shall use the fact (3.16) that $\tilde{J}_{i} \circ g=\lambda(g) \circ \tilde{J}_{i}$, if $g \in \hat{G}$. (In the notation of (3.16) the map λ should also be denoted by $J_{i \#}$.)

Now for each cell $e_{\alpha} \in K_{i}-M_{i}$ with characteristic map φ_{α} choose a fixed lift $\hat{\varphi}_{\alpha}$ to \hat{K}_{i} and define $\tilde{\varphi}_{\alpha}=\tilde{J}_{i} \circ \hat{\varphi}_{\alpha}$. Then $\left\{\left\langle\tilde{\varphi}_{\alpha}\right\rangle\right\}$ is a basis for the $W h(G)$ complex $C\left({\widetilde{K_{i} \cup L},}^{\sim}, \tilde{L}\right)$. Also \tilde{J}_{i} induces a chain map (over \mathbb{Z}), since it is cellular. Hence if $\partial\left\langle\hat{\varphi}_{\alpha}\right\rangle=\sum n_{\alpha \beta \gamma} g_{\gamma}\left\langle\hat{\varphi}_{\beta}\right\rangle$, where $g_{\gamma} \in \hat{G}_{i}$, we have,

$$
\begin{aligned}
\partial\left\langle\tilde{\varphi}_{\alpha}\right\rangle & =\tilde{J}_{i^{*}} \partial\left\langle\hat{\varphi}_{\alpha}\right\rangle \\
& =\sum n_{\alpha \beta \gamma}\left(\tilde{J}_{i} \circ g_{\gamma}\right)_{*}\left\langle\hat{\varphi}_{\beta}\right\rangle \\
& =\sum n_{\alpha \beta \gamma}\left(\lambda\left(g_{\gamma}\right) \circ \tilde{J}_{i}\right)_{*}\left\langle\hat{\varphi}_{\beta}\right\rangle \\
& =\sum n_{\alpha \beta \gamma} \lambda\left(g_{\gamma}\right)\left\langle\tilde{\varphi}_{\beta}\right\rangle .
\end{aligned}
$$

Hence $C\left(\widetilde{K_{i} \cup L}, \tilde{L}\right)$ is simply isomorphic to $C\left(\hat{K}_{i}, \hat{M}_{i}\right)_{\lambda}$. So $\tau C\left(\widetilde{K_{i} \cup L}, \tilde{L}\right)$ $=\lambda_{*} \tau C\left(\hat{K}_{i}, \hat{M}_{i}\right) \in W h(G)$. This corresponds, by the right-hand diagram above, to $\left(j \mid M_{i}\right)_{*} \tau\left(K_{i}, M_{i}\right) \in W h\left(\pi_{1} L\right)$. Thus

$$
\tau(K \cup L, L)=\sum_{i}\left(j \mid M_{i}\right)_{*} \tau\left(K_{i}, M_{i}\right) \equiv j_{*} \tau(K, M)
$$

As an immediate consequence of (20.2) and (20.3) we get
(20.4) If K, L and M are subcomplexes of the complex $K \cup L$, with $M=K \cap L$ and if $K \leadsto M$ and $L \leadsto M$ then $\tau(K \cup L, M)=\tau(K, M)+\tau(L, M)$.
(20.5) Suppose that (K, L) is a connected $C W$ pair in simplified form (see page 26), $K=L \cup \bigcup_{j} e_{j}^{n} \cup \bigcup_{i} e_{i}^{n+1}(n \geq 2)$, and that $\left\{\psi_{j}\right\}$ and $\left\{\varphi_{i}\right\}$ are characteristic maps for the e_{j}^{n} and e_{i}^{n+1}. Set $K_{n}=L \cup \bigcup_{j} e_{j}^{n}$. Let $\langle\partial\rangle$ be the matrix—with entries in $\mathbb{Z}\left(\pi_{1}\left(L, e^{0}\right)\right)$-of the boundary operator $\partial: \pi_{n+1}\left(K, K_{n} ; e^{0}\right) \rightarrow \pi_{n}\left(K_{n}, L ; e^{0}\right)$ with respect to the bases $\left\{\left[\psi_{j}\right]\right\}$ and $\left\{\left[\varphi_{i}\right]\right\}$ given by (8.1). Then $\tau(K, L)=(-1)^{n} \tau\langle\partial\rangle$.

PROOF: It follows from the proof of (8.1) and the fact that the Hurewicz map commutes with boundary operators that there is a commutative diagram

in which the preferred bases $\left\{\left\langle\tilde{\varphi}_{i}\right\rangle\right\}$ and $\left\{\left\langle\tilde{\psi}_{j}\right\rangle\right\}$ go to the bases $\left\{\left[\varphi_{i}\right]\right\}$ and $\left\{\left[\psi_{j}\right]\right\}$. Since the left-hand column is just $C(\tilde{K}, \tilde{L})$, the result follows from P3 of (17.1).

§21. The natural equivalence of $W h(L)$ and $\oplus W h\left(\pi_{1} L_{j}\right)$

We have considered two functors from the category of finite CW complexes and maps to the category of abelian groups and group homomorphisms. In §6 we defined the functor

$$
\begin{gathered}
L \mapsto W h(L) \\
\left\{f: L \rightarrow L^{\prime}\right\} \mapsto\left\{f_{*}: W h(L) \rightarrow W h\left(L^{\prime}\right)\right\}
\end{gathered}
$$

and in $\S 19$ we defined (19.5) the functor

$$
\begin{aligned}
& L \rightarrow \underset{j}{\oplus} W h\left(\pi_{1} L_{j}\right), \quad\left(L_{1}, \ldots, L_{q} \text { the components of } L\right) \\
&\left\{f: L \rightarrow L^{\prime}\right\} \mapsto\left\{f_{*}=\sum_{j} f_{j_{*}}: \underset{j}{\oplus} W h\left(\pi_{1} L_{j}\right) \rightarrow \underset{i}{\oplus} W h\left(\pi_{1} L_{i}^{\prime}\right)\right\} .
\end{aligned}
$$

(It will be up to the reader to keep the two meanings of f_{*} straight.) The purpose of this section is to prove
(21.1) For every finite $C W$ complex L define $T_{L}: W h(L) \rightarrow \underset{j}{\oplus} W h\left(\pi_{1} L_{j}\right)$, where the L_{j} are the components of L, by $T_{L}([K, L])=\tau(K, L)$. Then $T=\left\{T_{L}\right\}$ is a natural equivalence of functors.

REMARK: After having proved this we shall adopt the habit of writing $W h(L)$ for $\oplus W h\left(\pi_{1} L_{j}\right)$.

PROOF: For each L, T_{L} is well-defined: For if $L<K<K^{\prime}$ where $K^{\prime} \bigvee K$, (recall: " $£$ " denotes an elementary collapse) then $K^{\prime} \imath_{1} K$ and K ' $-K$ is simply connected. Thus, by (20.1) and (20.2)

$$
\tau\left(K^{\prime}, L\right)=\tau(K, L)+i_{*}^{-1} \tau\left(K^{\prime}, K\right)=\tau(K, L)
$$

By induction on the number of elementary collapses and expansions we see that $\tau(K, L)=\tau\left(K^{\prime}, L\right)$ if $K_{\wedge} K^{\prime}$ rel L. Hence $T_{L}([K, L])=T_{L}\left(\left[K^{\prime}, L\right]\right)$ if $[K, L]=\left[K^{\prime}, L\right]$.

For each L, T_{L} is a homomorphism: This is exactly the content of (20.4).
T_{L} is one-one: For suppose that $T_{L}([K, L])=\tau(K, L)=0$. We may assume, by (7.4) and the fact that T_{L} is well-defined, that each component of (K, L) is in simplified form. Hence, by (20.5), $\tau\left\langle\partial^{j}\right\rangle=0$, where ∂^{j} is the usual boundary operator in homotopy for the $j^{\text {th }}$ component. But by (8.4) this implies that $K_{\wedge} L$ rel L. Thus $[K, L]=0$ and, T_{L} is injective.
T_{L} is onto by (20.5) and (8.7).
Thus for each L, T_{L} is an isomorphism. To prove that T is a natural equivalence it remains to show that, if $f: L \rightarrow L^{\prime}$, the following diagram commutes.

We may assume that f is cellular. So, given $[K, L] \in W h(L)$,

$$
\begin{aligned}
& T_{L^{\prime}} f_{*}[K, L]=\tau\left(K_{L} M_{f}, L^{\prime}\right) \text {, by def. of } f_{*} \text { (page 22) } \\
& (20.2) \stackrel{\downarrow}{=} \tau\left(\dot{M}_{f}, L^{\prime}\right)+i_{*}^{-1} \tau\left(K_{L} \cup_{f}, M_{f}\right), \quad \text { where } i: L^{\prime} \subset M_{f} \\
& =i_{*}^{-1} \tau\left(K_{L} \cup_{f}, M_{f}\right), \quad \text { since } M_{f} \downarrow L^{\prime} \\
& =p_{*} \tau\left(K \cup_{L} M_{f}, M_{f}\right) \text {, where } p: M_{f} \rightarrow L^{\prime} \text { is the natural } \\
& \text { projection } \\
& \text { excision (20.3)- } \stackrel{\downarrow}{=} p_{*} \dot{j}_{*} \tau(K, L) \text {, } \\
& =f_{*} \tau(K, L) \\
& \text { where } j: L \xrightarrow{c} M_{f} \\
& \text { since } p j=f \text {. }
\end{aligned}
$$

\$22. The torsion of a homotopy equivalence

Suppose that $f: K \rightarrow L$ is a cellular homotopy equivalence between finite CW complexes. Then $M_{f}{ }^{2} K$ and $f_{*}: W h(K) \rightarrow W h(L)$ is an isomorphism. We define

$$
\tau(f)=f_{*} \tau\left(M_{f}, K\right) \in W h(L)
$$

In this section we give some formal properties of the torsion of a homotopy equivalence and show how it may sometimes be computed. We shall tacitly and frequently use the equivalence of $\S 21$.
(22.1) If $f, g: K \rightarrow L$ are homotopic cellular homotopy equivalences then $\tau(f)=\tau(g)$.

PROOF: $f_{*}=g_{*}$ by (19.5). Thus it suffices to show that $\tau\left(M_{f}, K\right)=\tau\left(M_{g}, K\right)$. This is true because $M_{f} \wedge M_{g}$ rel K, by (5.5).

As a consequence of this lemma we may define $\tau(f)$ when $f: K \rightarrow L$ is an arbitrary homotopy equivalence by setting $\tau(f)=\tau(g)$, where g is any cellular approximation to f. Thus, while the propositions and proofs in this section are stated for cellular maps, one often thinks of them as propositions about arbitrary maps.
(22.2) A cellular homotopy equivalence $f: K \rightarrow L$ is a simple-homotopy equivalence if and only if $\tau(f)=0$.
(Although this statement is a theorem for us-simple-homotopy equivalence having been defined geometrically in $\S 4$-it is of ten taken as the definition of simple-homotopy equivalence.)
PROOF: Since f_{*} is an isomorphism, $\tau(f)=0$ iff $\tau\left(M_{f}, K\right)=0$. But by (21.1), this is true iff $M_{j} \wedge K$ rel K. And that is true (5.8) iff f is a simplehomotopy equivalence.
(22.3) If $L<K$ and $K _L$ then $\tau(i)=i_{*} \tau(K, L)$ where $i: L \rightarrow K$ is the inclusion map.
PROOF: $M_{i}=(L \times I) \underset{L \times 1}{\cup} K \times 1$, where $L \equiv L \times 0<M_{i}$. Then

$$
M_{i} \nearrow(K \times I) \searrow K \times 0 \equiv K \text { rel } L
$$

Hence $\tau\left(M_{i}, L\right)=\tau(K, L)$, so that $\tau(i)=i_{*} \tau\left(M_{i}, L\right)=i_{*} \tau(K, L)$.
(22.4) If $f: K \rightarrow L$ and $g: L \rightarrow M$ are cellular homotopy equivalences then $\tau(g f)=\tau(g)+g_{*} \tau(f)$.

$$
\begin{aligned}
\text { PROOF: } \tau(g f) & =g_{*} f_{*} \tau\left(M_{g f}, K\right) \\
& =g_{*} f_{*}\left[\tau\left(M_{f} \cup M_{g}, K\right)\right], \quad \text { by }(5.6) \\
& =g_{*} f_{*}\left[\tau\left(M_{f}, K\right)+i_{*}^{-1} \tau\left(M_{f} \cup_{L} M_{g}, M_{f}\right)\right]
\end{aligned}
$$

$$
\text { where } i: K \subsetneq M_{f} \text {, using (20.2) }
$$

$$
\begin{aligned}
& =g_{*} \tau(f)+g_{*} f_{*}\left[i_{*}^{-1} j_{*} \tau\left(M_{g}, L\right)\right], \\
& \quad \quad \text { where } j: L \subsetneq M_{f}, \text { using "excision" (20.3), } \\
& =g_{*} \tau(f)+g_{*} \tau\left(M_{g}, L\right), \\
& \quad \text { since } f=p i \text { and } 1_{L}=p j \text { imply } f_{*} i_{*}^{-1} j_{*}=1_{W h(\pi, L)} \\
& =g_{*} \tau(f)+\tau(g) . \quad \square
\end{aligned}
$$

As a corollary we get
(22.5) If $f: K \rightarrow L$ and $g: L \rightarrow K$ are cellular homotopy equivalences which are homotopy inverses of each other then $\tau(g)=-g_{*} \tau(f)$.

PROOF: Since $g f \simeq 1_{K}$ we have $0=\tau(g f)=\tau(g)+g_{*} \tau(f)$.
(22.6) If $f:\left(K, K_{0}\right) \rightarrow\left(L, L_{0}\right)$ where $K 乙 K_{0}, L \iota_{0}$, and if $f: K \rightarrow L$ and $f=f \mid K_{0}: K_{0} \rightarrow L_{0}$ are cellular homotopy equivalences, ${ }^{13}$ then
(a) $\tau(f)=j_{*} \tau\left(f^{\prime}\right)+\left[\tau(j)-f_{*} \tau(i)\right]$
(b) $\tau\left(L, L_{0}\right)=f_{*} \tau\left(K, K_{0}\right)+\left[D_{*} \tau(f)-\tau(\bar{f})\right]$
where $i: K_{0} \subset K, j: L_{0} \subset L$, and $D: L \rightarrow L_{0}$ is a deformation retraction.
PROOF: Clearly $f i=j f$. Thus

$$
\tau(f)+f_{*} \tau(i)=\tau(j)+j_{*} \tau(f), \text { proving }(\mathbf{a})
$$

Further:

$$
\tau(j)=f_{*} \tau(i)+\tau(f)-j_{*} \tau\left(f^{*}\right)
$$

$$
\begin{aligned}
j_{*} \tau\left(L, L_{0}\right) & =f_{*} i_{*} \tau\left(K, K_{0}\right)+\tau(f)-j_{*} \tau(f), \text { by }(22.3) \\
\tau\left(L, L_{0}\right) & =(D F i)_{*} \tau\left(K, K_{0}\right)+D_{*} \tau(f)-\tau(\bar{f}) \\
& =f_{*} \tau\left(K, K_{0}\right)+\left[D_{*} \tau(f)-\tau(\bar{f})\right]
\end{aligned}
$$

proving (b).
As a corollary we get
(22.7) If $f:\left(K, K_{0}\right) \rightarrow\left(L, L_{0}\right)$ as in (22.6) and if f and f are simple-homotopy equivalences, then (a) $\tau(j)=f_{*} \tau(i)$ and (b) $\tau\left(L, L_{0}\right)=f_{*} \tau\left(K, K_{0}\right)$.

The brute force calculation of torsion

To actually get down to the nuts and bolts of computing $\tau(f)$, one proceeds as follows.

Suppose that $f: K \rightarrow L$ is a cellular homotopy equivalence between connected spaces and that $\tilde{f}: \tilde{K} \rightarrow \tilde{L}$ is a lift of f to universal covering spaces inducing $\tilde{f}_{*}: C(\tilde{K}) \rightarrow C(\tilde{L})$. Let G_{K} and G_{L} be the groups of covering homeomorphisms of \tilde{K} and \tilde{L}, and let $C(\tilde{K})$ and $C(\tilde{L})$ be viewed as $W h\left(G_{K}\right)$ -

[^11]and $W h\left(G_{L}\right)$-complexes with boundary operators d and d^{\prime} respectively. Choose base points, x, y, and points covering them \tilde{x}, \tilde{y} such that $f(x)=y$ and $\tilde{f}(\tilde{x})=\tilde{y}$. Let $f_{\#}: G_{K} \rightarrow G_{L}$ be induced from $f_{\#}: \pi_{1}(K, x) \rightarrow \pi_{1}(L, y)$ as in (3.16). [Also let $f_{\#}$ denote the corresponding maps $\mathbb{Z} G_{K} \rightarrow \mathbb{Z} G_{L}$ and $\left.G L\left(\mathbb{Z} G_{K}\right) \rightarrow G L\left(\mathbb{Z} G_{L}\right)\right]$. In these circumstances we have
(22.8) $\tau(f) \in W h\left(G_{L}\right)$ is the torsion of the $W h\left(G_{L}\right)$-complex \mathscr{C} which is given by
(1) $\mathscr{C}_{n}=\left[C(\tilde{K})_{f *}\right]_{n-1} \oplus C_{n}(\tilde{L})$
(2) $\partial_{n}: \mathscr{C}_{n} \rightarrow \mathscr{C}_{n-1}$ has matrix

	$\left[C(\tilde{K})_{f_{*}}\right]_{n-2}$	$C_{n-1}(\tilde{L})$
$\left[C(\tilde{K})_{S_{*}}\right]_{n-1}$	f	
$C_{n}(\underline{L})$	\bigcirc	

In particular if we let $\bar{C}(\tilde{K})$ be the $W h\left(G_{L}\right)$-complex with $\bar{C}_{n}(\tilde{K})=\left[C(\tilde{K})_{f \#}\right]_{n-1}$ and boundary operator \bar{d} given by $\left\langle\bar{d}_{n}\right\rangle=-f_{\#}\left\langle d_{n-1}\right\rangle$ then $\tau(f)=\tau(\mathscr{C})$ where there is a basis-preserving ${ }^{14}$ short exact sequence of $W h\left(G_{L}\right)$-complexes

$$
0 \rightarrow C(\tilde{L}) \rightarrow \mathscr{C} \rightarrow \bar{C}(\tilde{K}) \rightarrow 0
$$

PROOF: In computing $\tau\left(M_{f}, K\right)$ we may (19.3) use any universal covering of M_{f}. So, let us choose (see (3.14) and its proof) the natural projection $\alpha: M_{\tilde{f}} \rightarrow M_{f}$ such that $\alpha \mid \widetilde{K}$ and $\alpha \mid \tilde{L}$ are the universal coverings of K and L implicit in our hypothesis. Let G be the group of covering homeomorphisms of M_{j}. If $\cdot g \in G_{K}$ define $E(g) \in G$ to be the unique extension of g to M_{j}. If $h \in G$ define $R(h) \in G_{L}$ to be restriction of h to \tilde{L}. It is an exercise [use (3.16), as in proving (20.2)] that in the commutative diagram

we have $E=i_{\#}: G_{K} \rightarrow G$ and (because $\left.\tilde{f}(\tilde{x})=\tilde{y}\right) R=p_{\#}: G \rightarrow G_{L}$. Hence $f_{\#}=R E: G_{K} \rightarrow G_{L}$.

We view $C\left(M_{\tilde{f}}, \tilde{K}\right)$ as a $W h(G)$-complex, so that $E_{*}^{-1}\left(\tau C\left(M_{\tilde{f}}, \tilde{K}\right)\right.$ $=\tau\left(M_{f}, K\right) \in W h\left(G_{K}\right)$ and $\tau(f)=f_{*} \tau\left(M_{f}, K\right)=R_{*}\left(\tau C\left(M_{f}, \tilde{K}\right)\right)$. Thus by (18.2), $\tau(f)=\tau(\mathscr{C})$ where \mathscr{C} is the $W h\left(G_{L}\right)$-complex $\left[C\left(M_{\tilde{f}}, \widetilde{K}\right)\right]_{R}$. To show that \mathscr{C} satisfies the conclusion of our theorem, we first study $C\left(M_{\tilde{f}}, \tilde{K}\right)$.

[^12]$C\left(M_{\tilde{f}}, \tilde{K}\right)$ is (see (3.9)) naturally isomorphic as a complex over \mathbb{Z} to the well-known "algebraic mapping cone" of \tilde{f}_{*} which is given by
\[

$$
\begin{aligned}
C_{n} & =C_{n-1}(\tilde{K}) \oplus C_{n}(\tilde{L}) & & \\
\partial_{n}(a) & =-d_{n-1}(a)+\tilde{f}_{*}(a), & & a \in C_{n-1}(\tilde{K}) \\
\partial_{n}(b) & =d_{n}^{\prime}(b), & & b \in C_{n}(\tilde{L}) .
\end{aligned}
$$
\]

A typical cell e^{n-1} of K gives rise, upon choosing a fixed lift, to an element $\left\langle\tilde{e}^{n-1}\right\rangle$ of $C_{n-1}(\widetilde{K})$. [We will suppress the characteristic maps here to simplify the notation.] The image of $\left\langle\tilde{e}^{n-1}\right\rangle$ under the isomorphism of (3.9) is the element $\left\langle\tilde{e}^{n-1} \times(0,1)\right\rangle$ of $C_{n}\left(M_{\tilde{f}}, \tilde{K}\right)$. Suppose that, when $d\left\langle\tilde{e}^{n-1}\right\rangle$ is written as a linear combination in $\mathbb{Z}\left(G_{K}\right)$ we get

$$
d\left\langle\tilde{e}^{n-1}\right\rangle=\sum_{i, j} n_{i j} g_{i}\left\langle\tilde{e}_{j}^{n-2}\right\rangle, \quad g_{i} \in G_{K}
$$

Then, over the ring \mathbb{Z} we get

$$
d\left\langle\tilde{e}^{n-1}\right\rangle=\sum_{i, j} n_{i j}\left\langle g_{i} \tilde{e}_{j}^{n-2}\right\rangle
$$

Applying the isomorphism of (3.9), the corresponding boundary in $C\left(M_{\tilde{f}}, \tilde{K}\right)$ is

$$
\begin{aligned}
\partial\left\langle\tilde{e}^{n-1} \times(0,1)\right\rangle & \left.=-\left(\sum_{i, j} n_{i j}\left\langle g_{i} \tilde{e}_{j}^{n-2}\right\rangle(0,1)\right\rangle\right)+\tilde{f}_{*}\left\langle\tilde{e}^{n-1}\right\rangle \\
& =-\left(\sum_{i, j} n_{i j} E\left(g_{i}\right)\left\langle\tilde{e}_{j}^{n-2} \times(0,1)\right\rangle\right)+\tilde{f}_{*}\left\langle\tilde{e}^{n-1}\right\rangle
\end{aligned}
$$

The last equation gives the boundary with $\mathbb{Z}(G)$-coefficients, and this equation holds because $E\left(g_{i}\right)\left|\left(M_{\tilde{j}}-\tilde{L}\right)=E\left(g_{i}\right)\right|(\tilde{K} \times[0,1))=g_{i} \times 1_{[0,1)}$.

In the same vein, if $\tilde{f}_{*}\left\langle\tilde{e}^{n-1}\right\rangle$ is written as a linear combination with coefficients in $\mathbb{Z}\left(G_{L}\right)$, and if the cells in L are denoted by u 's, we get

$$
\begin{aligned}
\tilde{f}_{*}\left\langle\tilde{e}^{n-1}\right\rangle & =\sum_{p, q} m_{p q}\left\langle h_{p} \tilde{u}_{q}^{n-1}\right\rangle, \quad h_{p} \in G_{L} \\
& =\sum_{p, q} m_{p q}\left\langle\left(R^{-1} h_{p}\right) \tilde{u}_{q}^{n-1}\right\rangle, \quad \text { since } h_{p}\left|\tilde{L}=\left(R^{-1} h_{p}\right)\right| \tilde{L} \\
& =\sum_{p, q} m_{p q}\left(R^{-1} h_{p}\right)\left\langle\tilde{u}_{q}^{n-1}\right\rangle .
\end{aligned}
$$

A similar discussion holds for $\partial_{n}\left\langle\tilde{u}_{n}\right\rangle$ and we conclude that the matrix, when $C\left(M_{\tilde{\tilde{K}}}, \tilde{K}\right)$ is considered as a $\mathbb{Z}(G)$-module, of $\partial_{n}: C_{n}\left(M_{\tilde{f}}, \tilde{K}\right) \rightarrow$ $C_{n-1}\left(M_{\tilde{f}}, \tilde{K}\right)$ is given by

$$
\left\langle\partial_{n}\right\rangle=\left(\begin{array}{c:c}
-E\left\langle d_{n-1}\right\rangle & R^{-1}\left\langle\tilde{f}_{*}\right\rangle \\
\hdashline \hdashline & R^{-1}\left\langle d_{n}^{\prime}\right\rangle
\end{array}\right)
$$

where $\left\langle d_{n-1}\right\rangle$ is a $\mathbb{Z}\left(G_{K}\right)$ matrix and $\left\langle\tilde{f}_{*}\right\rangle$ and $\left\langle d_{n}^{\prime}\right\rangle$ are $\mathbb{Z}\left(G_{L}\right)$ matrices. It follows then from the equation $f_{\#}=R E$ that the complex $\mathscr{C}=C\left(M_{\tilde{f}}, \tilde{K}\right)_{R}$,
with $\tau(f)=\tau(\mathscr{C})$ ，has the boundary operator of，and is simply isomorphic to， the complex given in the statement of the theorem．

The assertion that the sequence $0 \rightarrow C(\tilde{L}) \rightarrow \mathscr{C} \rightarrow \bar{C}(\tilde{K}) \rightarrow 0$ is exact and basis－preserving follows immediately from the first part of the theorem．

§23．Product and sum theorems

（23．1）（The sum theorem）Suppose $K=K_{1} \cup K_{2}, K_{0}=K_{1} \cap K_{2}$ ， $L=L_{1} \cup L_{2}, L_{0}=L_{1} \cap L_{2}$ and that $f: K \rightarrow L$ is a map which restricts to homotopy equivalences $f_{\alpha}: K_{\alpha} \rightarrow L_{\alpha}(\alpha=0,1,2)$ ．Let $j_{\alpha}: L_{\alpha} \rightarrow L$ and $i_{\alpha}: K_{\alpha} \rightarrow K$ be the inclusions．Then f is a homotopy equivalence and
（a）$\tau(f)=j_{1 *} \tau\left(f_{1}\right)+j_{2 *} \tau\left(f_{2}\right)-j_{0 *} \tau\left(f_{0}\right)$
（b）If f is an inclusion map，

$$
\tau(L, K)=i_{1 *} \tau\left(L_{1}, K_{1}\right)+i_{2 *} \tau\left(L_{2}, K_{2}\right)-i_{0 *} \tau\left(L_{0}, K_{0}\right)
$$

PROOF：Let M_{α} denote the mapping cylinder of $f_{\alpha}(\alpha=0,1,2)$ ．Then $M_{\alpha}{ }^{\perp} K_{\alpha}$ since f_{α} is a homotopy equivalence．It follows that $\left(M_{0} \cup K_{1}\right) \imath_{\downarrow} K_{1}$ ． So，by the exact sequence of the triple $\left(M_{1}, M_{0} \cup K_{1}, K_{1}\right)$ ，we have $\pi_{i}\left(M_{1}\right.$ ， $\left.M_{0} \cup K_{1}\right)=0$ for all i ．Hence（3．2），$M_{1} 孔\left(M_{0} \cup K_{1}\right)$ ．Similarly M_{2} 子 $\left(M_{0} \cup K_{2}\right)$ ．Then $M_{f}=\left(M_{1} \cup M_{2}\right) 孔\left(M_{1} \cup K\right) 孔\left(M_{0} \cup K\right) \imath_{\downarrow} K$ ；whence f is a homotopy equivalence．

Now（20．2）and（20．4）give us：
（1）$\tau\left(M_{f}, K\right)=D_{*} \tau\left(M_{f}, M_{0} \cup K\right)+\tau\left(M_{0} \cup K, K\right)$
（2）$\tau\left(M_{f}, M_{0} \cup K\right)=\tau\left(M_{1} \cup K, M_{0} \cup K\right)+\tau\left(M_{2} \cup K, M_{0} \cup K\right)$
（3）$\tau\left(M_{\alpha} \cup K, K\right)=D_{*} \tau\left(M_{\alpha} \cup K, M_{0} \cup K\right)+\tau\left(M_{0} \cup K, K\right), \alpha=1,2$
where $D: M_{0} \cup K \rightarrow K$ is a deformation retraction．Consequently

$$
\tau\left(M_{f}, K\right)=\tau\left(M_{1} \cup K, K\right)+\tau\left(M_{2} \cup K, K\right)-\tau\left(M_{0} \cup K, K\right)
$$

Note that $f i_{\alpha}=j_{\alpha} f_{\alpha}$ and，using（20．3），that $\tau\left(M_{\alpha} \cup K, K\right)=i_{\alpha * \tau} \tau\left(M_{\alpha}, K_{\alpha}\right)$ ． Thus，if we apply f_{*} to the last equation we get

$$
\begin{aligned}
\tau(f) & =\left(f i_{1}\right)_{*} \tau\left(M_{1}, K_{1}\right)+\left(f i_{2}\right)_{*} \tau\left(M_{2}, K_{2}\right)-\left(f i_{0}\right)_{*} \tau\left(M_{0}, K_{0}\right) \\
& =\left(j_{1} f_{1}\right)_{*} \tau\left(M_{1}, K_{1}\right)+\left(j_{2} f_{2}\right)_{*} \tau\left(M_{2}, K_{2}\right)-\left(j_{0} f_{0}\right)_{*} \tau\left(M_{0}, K_{0}\right) \\
& =j_{1 *} \tau\left(f_{1}\right)+j_{2 *} \tau\left(f_{2}\right)-j_{0 *} \tau\left(f_{0}\right), \text { proving (a). }
\end{aligned}
$$

Finally，assertion（b）follows from（a）and（22．3）and the observation that $f_{*}^{-1} j_{\alpha *} f_{\alpha *}=i_{\alpha *}$ ．

The behavior of torsion under the taking of Cartesian products is quite interesting．For example，if $K 乙 K_{0}$ then，regardless of what $\tau\left(K, K_{0}\right)$ is，
we have $\tau\left(K \times S^{1}, K_{0} \times S^{1}\right)=0$ where S^{1} is the 1 -sphere. The complete picture is given by ${ }^{15}$
(23.2) (The product theorem) (a) If P, K, K_{0} are finite $C W$ complexes where $K \imath_{\perp} K_{0}$ and P is connected then

$$
\tau\left(K \times P, K_{0} \times P\right)=\chi(P) \cdot i_{*} \tau\left(K, K_{0}\right)
$$

where $i: K_{0} \rightarrow K_{0} \times P$ by $i(x)=(x, y)$ for some fixed y, and $\chi(P)$ denotes the Euler characteristic of P.
(b) If $f \times g: K \times K^{\prime} \rightarrow L \times L^{\prime}$ where f, g are homotopy equivalences between connected complexes and if $i: L \rightarrow L \times L^{\prime}$ and $j: L^{\prime} \rightarrow L \times L^{\prime}$ as in (a) then

$$
\tau(f \times g)=\chi\left(L^{\prime}\right) \cdot i_{*} \tau(f)+\chi(L) \cdot j_{*} \tau(g)
$$

PROOF ${ }^{16} O F(\mathrm{a}):$ We start with two preliminary remarks:
First if P is not connected but instead has components $P_{1}, P_{2}, \ldots, P_{q}$, the connected case immediately implies that

$$
\tau\left(K \times P, K_{0} \times P\right)=\sum_{j} \chi\left(P_{j}\right) \cdot i_{j *} \tau\left(K, K_{0}\right)
$$

where $i_{j}: K_{0} \rightarrow K_{0} \times P_{j}$ by $i_{j}(x)=\left(x, y_{j}\right)$ for fixed y_{j}.
Secondly, if the assertion (a) is true for a complex Q simple-homotopy equivalent to P, it is true for P. For suppose that $f: Q \rightarrow P$ is a cellular simplehomotopy equivalence. Then (5.8) $M_{f} \wedge Q$ rel Q. Hence (exercise) $K \times M_{f} \wedge K \times Q$ rel $K \times Q$. But $K \times M_{f}=M_{1_{K} \times f}$, so $l_{K} \times f: K \times Q \rightarrow K \times P$ is a simple-homotopy equivalence. Similarly $1_{\kappa_{0}} \times f$ is a simple-homotopy equivalence. Denote these by F and F respectively. By assumption $\tau\left(K \times Q, K_{0} \times Q\right)=\chi(Q) \cdot \hat{\imath}_{*} \tau\left(K, K_{0}\right)$ where $\hat{i}(x)=(x, y)$ for some fixed y; and by (22.7), $\left.\tau(K \times P), K_{0} \times P\right)=F_{*} \tau\left(K \times Q, K_{0} \times Q\right)$. Hence $\tau\left(K \times P, K_{0} \times P\right)$ $=\chi(Q) \cdot(F \hat{i})_{*} \tau\left(K, K_{0}\right)=\chi(P) \cdot i_{*} \tau\left(K, K_{0}\right)$ where $i(x)=(x, f(y))$ for all x.

The proof of (a) now proceeds by induction on $n=\operatorname{dim} P$. When $n=0$, P is a point and the result is trivial. Suppose $n>0$ and the result is known for integers less than n. Let e_{1}, \ldots, e_{q} be the n-cells of P, with characteristic maps $\varphi_{\alpha}: I^{n} \rightarrow P$. Fixing a CW structure on ∂I^{n}, we may assume that the attaching maps $\varphi_{x} \mid \partial I^{n}$ are cellular. For, if not, we could homotop each of them to a cellular map to get, by (7.1), a new complex simple-homotopy equivalent to P and then prove the assertion for this new complex. Taking q disjoint copies $\left\{I_{\alpha}^{n}\right\}$ of I^{n}, define $\varphi:\left(\partial I_{1}^{n}\right) \oplus \ldots \oplus\left(\partial I_{q}^{n}\right) \rightarrow P^{n-1}$ by the condition $\varphi\left|\partial I_{\alpha}^{n}=\varphi_{\alpha}\right| \partial I_{\alpha}^{n}$. Then M_{φ} is a CW complex and we set $Q=M_{\varphi} \cup I_{1}^{n} \cup \ldots \cup I_{q}^{n}$ where I_{α}^{n} is attached to M_{φ} by the identity along λI_{α}^{n}. Q is simple-homotopy equivalent to P by the simple-homotopy extension theorem (5.9), since the natural projection $p: M_{\varphi} \rightarrow P^{n-1}$ is a cellular simple-homotopy equivalence and $Q \cup_{\varphi} P^{n-1}$ is isomorphic to P. Thus we may prove our assertion for Q.

[^13]Let $R=I_{1}^{n} \cup \ldots \cup I_{q}^{n}$, a subcomplex of Q, and let $\partial R=\partial I_{1}^{n} \cup \ldots \cup \partial I_{q}^{n}$. So $Q=M_{\varphi} \cup R$ and $M_{\varphi} \cap R=\partial R$. If $n>1$ choose constant sections $j: K_{0} \rightarrow K_{0} \times M_{\varphi}, k_{\alpha}: K_{0} \rightarrow K_{0} \times \partial I_{\alpha}^{n}$ and $m_{\alpha}: K_{0} \rightarrow K_{0} \times I_{\alpha}^{n}(1 \leq \alpha \leq q)$. If $n=1$, notice that M_{φ} has as many components $M_{\varphi, \beta}$ as P^{0} has points-say r components-and let $j_{\beta}: K_{0} \rightarrow K_{0} \times M_{\varphi, \beta}$ be constant sections ($1 \leq \beta \leq r$). Let $k_{\alpha, 1}$ and $k_{\alpha, 2}$ be constant sections into the components of $K_{0} \times \partial I_{\alpha}^{1}$ and let $m_{\alpha}: K_{0} \rightarrow K_{0} \times I_{\alpha}^{1}$ also be constant sections ($1 \leq \alpha \leq q$).

First consider the case $n \neq 1$. From the sum theorem we have

$$
\text { (1) } \begin{aligned}
\tau\left(K \times Q, K_{0} \times Q\right)= & f_{1_{*}} \tau\left(K \times M_{\varphi}, K_{0} \times M_{\varphi}\right)+f_{2_{*}} \tau\left(K \times R, K_{0} \times R\right) \\
& -f_{0_{*}} \tau\left(K \times \partial R, K_{0} \times \partial R\right)
\end{aligned}
$$

where f_{0}, f_{1}, f_{2} are inclusion maps into $K_{0} \times Q$. But
(2) $\tau\left(K \times M_{\varphi}, K_{0} \times M_{\varphi}\right)=\chi\left(M_{\varphi}\right) \cdot j_{*} \tau\left(K, K_{0}\right)$
(3) $\tau\left(K \times R, K_{0} \times R\right)=\sum_{\alpha} m_{\alpha *} \tau\left(K, K_{0}\right)$
(4) $\tau\left(K \times \partial R, K_{0} \times \partial R\right)=\sum_{\alpha} \chi\left(S^{n-1}\right) \cdot k_{\alpha *} \tau\left(K, K_{0}\right)$.
(2) holds because M_{φ} has the same simple-homotopy type as P^{n-1}, to which the induction hypothesis applies. (3) comes from the first preliminary remark and the fact that each component of R has the simple-homotopy type of a point. (4) follows by induction because each component of ∂R is an ($n-1$)sphere. But now the connectedness of P implies that all the maps $f_{1} j, f_{2} m_{\alpha}$, and $f_{0} k_{\alpha}$ are homotopic to any given constant section $i: K_{0} \rightarrow K_{0} \times P$. Hence, substituting into (1),

$$
\begin{aligned}
\tau\left(K \times Q, K_{0} \times Q\right) & =\left[\chi\left(M_{\varphi}\right)+q-q \chi\left(S^{n-1}\right)\right] i_{*} \tau\left(K, K_{0}\right) \\
& =\left[\chi\left(M_{\varphi}\right)+\dot{q}(-1)^{n}\right] i_{*} \tau\left(K, K_{0}\right) \\
& =\chi(Q) \cdot i_{*} \tau\left(K, K_{0}\right)
\end{aligned}
$$

In the case $n=1$ the equations above become

$$
\begin{aligned}
& \text { (2') } \tau\left(K \times M_{\varphi}, K_{0} \times M_{\varphi}\right)=\sum_{\beta=1}^{r} j_{\beta *} \tau\left(K, K_{0}\right) \\
& \text { (3') } \tau\left(K \times R, K_{0} \times R\right)=\sum_{\alpha=1}^{q} m_{\alpha *} \tau\left(K, K_{0}\right) \\
& \left(4^{\prime}\right) \tau\left(K \times \partial R, K_{0} \times \partial R\right)=\sum_{\alpha=1}^{a}\left[k_{\alpha, 1} \tau\left(K, K_{0}\right)+k_{\alpha, 2} \tau\left(K, K_{0}\right)\right]
\end{aligned}
$$

Using the connectedness of P as above these yield

$$
\begin{aligned}
\tau\left(K \times Q, K_{0} \times Q\right) & =(r+q-2 q) \cdot i_{*} \tau\left(K, K_{0}\right) \\
& =\chi(P) \cdot i_{*} \tau\left(K, K_{0}\right) \\
& =\chi(Q) \cdot i_{*} \tau\left(K, K_{0}\right) .
\end{aligned}
$$

PROOF OF (b): We must find $\tau(f \times g)$ where $(f \times g): K \times K^{\prime} \rightarrow L \times L^{\prime}$. First consider the special case $K^{\prime}=L^{\prime}=P, g=1_{P}$. Then

$$
\begin{aligned}
\tau\left(f \times 1_{P}\right) & =\left(f \times 1_{P}\right)_{*} \tau\left(M_{f \times 1_{P}}, K \times P\right) \\
& =\left(f \times 1_{P}\right)_{*} \tau\left(M_{f} \times P, K \times P\right) \\
& \stackrel{\text { (a) }}{=} \chi(P) \cdot\left(f \times 1_{P}\right)_{*} \alpha_{*} \tau\left(M_{f}, K\right) \text { where } \alpha: K \rightarrow K \times P \text { by } \alpha(x)=\left(x, p_{0}\right) \\
& =\chi(P) \cdot(i \circ f)_{*} \tau\left(M_{f}, K\right) \text { since }(i \circ f)=\left(f \times 1_{P}\right) \circ \alpha \\
& =\chi(P) \cdot i_{*} \tau(f) .
\end{aligned}
$$

The general case now follows easily from the fact that

$$
(f \times g)=\left(1_{L} \times g\right) \circ\left(f \times 1_{K^{\prime}}\right) .
$$

§24. The relationship between homotopy and simple-homotopy

We first show that any torsion element can be realized as the torsion of some homotopy equivalence. Thus Conjecture I of $\S 4$ ("Every homotopy equivalence is a simple-homotopy equivalence") is decidedly false.
(24.1) If $\tau_{0} \in W h(L)$ then there is a $C W$ complex K and a homotopy equivalence $f: K \rightarrow L$ with $\tau(f)=\tau_{0}$.
PROOF: Let K be a CW complex such that $K \leadsto L$ and such that $\tau(K, L)$ $=-\tau_{0}$. Such a complex exists by the first definition (§6) of $W h(L)$. Let f : $K \rightarrow L$ be a homotopy inverse to the inclusion map $i: L \rightarrow K$. Then (22.3)-(22.5) yield $\tau(f)=-f_{*} \tau(i)=-f_{*} i_{*} \tau(K, L)=-\tau(K, L)=\tau_{0}$.

Conjecture II of $\S 4$ ("If there exists a homotopy equivalence $f: K \rightarrow L$ then there exists a simple-homotopy equivalence") is more elusive. Its answer depends not only on $W h(L)$, but also on how rich is the group $\mathscr{E}(L)$ of equivalence classes (under homotopy) of self-homotopy equivalences of L. This is explained by the next three propositions. ${ }^{17}$
(24.2) Suppose that L is a given $C W$ complex. If K is homotopy equivalent to L (written " $K \simeq L$ ") define $S_{K} \subset W h(L)$ by

$$
S_{K}=\{\tau(f) \mid f: K \rightarrow L \text { is a homotopy equivalence }\} .
$$

Then, if $K \simeq L \simeq K^{\prime}$, the following are equivalent assertions:
(a) $S_{K} \cap S_{K^{\prime}} \neq \varnothing$.
(b) K and K^{\prime} have the same simple-homotopy type.
(c) $S_{K}=S_{K^{\prime}}$.

Thus $\mathscr{F}=\left\{S_{K} \mid K \simeq L\right\}$ is a family of sets which partitions $W h(L)$. The cardinality of \mathscr{F} is exactly that of the set of simple-homotopy equivalence classes within the homotopy equivalence class of L.

[^14]PROOF: (a) \Rightarrow (b). Suppose that $S_{K} \cap S_{K^{\prime}} \neq \varnothing$. Then there are homotopy equivalences $f: K \rightarrow L$ and $g: K^{\prime} \rightarrow L$ such that $\tau(f)=\tau(g)$. Let \bar{g} be a homotopy inverse to g. Then $\bar{g} f: K \rightarrow K^{\prime}$, and by (22.4) and (22.5),

$$
\tau(\bar{g} f)=\tau(\bar{g})+\bar{g}_{*} \tau(f)=-\bar{g}_{*} \tau(g)+\bar{g}_{*} \tau(f)=0 .
$$

(b) \Rightarrow (c): Suppose that $s: K^{\prime} \rightarrow K$ is a simple homotopy equivalence. If $\tau_{0} \in S_{K}$ choose $f: K \rightarrow L$ with $\tau(f)=\tau_{0}$. Then $f s: K^{\prime} \rightarrow L$ and $\tau(f s)=\tau(f)$ $+f_{*} \tau(s)=\tau(f)=\tau_{0}$. Thus $S_{K} \subset S_{K^{\prime}}$. By symmetry $S_{K}=S_{K^{\prime}}$.
(c) \Rightarrow (a): This is trivial since, by definition, $S_{K} \neq \varnothing$.

Exercise: ([Cockroft-Moss]) The sets S_{K} are the orbits of the action of $\mathscr{E}(L)$ on $W h(L)$ given by $f \cdot \alpha=\tau(f)+f_{*}(\alpha) . \dagger$

Let us adopt the notation:

$$
\begin{aligned}
|S|= & \text { cardinality of the set } S \\
\nu_{L} & =|\mathscr{F}|, \mathscr{F} \text { as in (24.2) } \\
\mathscr{E}(L) & =\text { the group of equivalence classes (under homotopy) of self- } \\
& \text { homotopy equivalences of } L \\
W h_{0}(L) & =\left\{\tau(f) \in W h(L) \mid f_{*}: W h(L) \rightarrow W h(L) \text { is the identity }\right\} .
\end{aligned}
$$

Notice that $W h_{0}(L)$ is a subgroup of $W h(L)$.
$\nu_{L} \cdot\left|W h_{0}(L)\right| \leq|W h(L)| \leq \nu_{L} \cdot|\mathscr{E}(L)|$.
$P R O O F$: If $g: K \rightarrow L$ is a fixed homotopy equivalence then the correspondence $f \rightarrow f g(f$ a self homotopy equivalence of L) induces a bijection of $\mathscr{E}(L)$ to the set $\mathscr{E}(K, L)$ of equivalence classes of homotopy equivalences $K \rightarrow L$. Thus, by (22.1), $\left|S_{K}\right| \leq|\mathscr{E}(K, L)|=|\mathscr{E}(L)|$ for all K, and the inequality $|W h(L)|$ $\leq \nu_{L} \cdot|\mathscr{E}(L)|$ follows from (24.2).

On the other hand, if $g_{0}: K \xrightarrow{\cong} L$ then, for any f which induces the identity on $W h(L)$, we have $\tau\left(f g_{0}\right)=\tau(f)+\tau\left(g_{0}\right) \in S_{K}$. So the $\operatorname{coset} \tau\left(g_{0}\right)+W h_{0}(L)$ is contained in S_{K}, and $\left|S_{K}\right| \geq\left|W h_{0}(L)\right|$. Hence, from (24.2), $\nu_{L} \cdot\left|W h_{0}(L)\right|$ $\leq|W h(L)|$.
(24.4) Suppose that L is a $C W$ complex. Then
(1) [Every complex homotopy equivalent to L is simple-homotopy equivalent to $L] \Leftrightarrow[W h(L)=\{\tau(f) \mid f \in \mathscr{E}(L)\}]$.
(2) If $W h(L)$ is infinite and $\mathscr{E}(L)$ is finite, there are infinitely many simplehomotopy equivalence classes within the homotopy equivalence class of L.
(3) Every finite connected 2-complex L with $\pi_{1} L \cong \mathbb{Z}_{p}, p \neq 1,2,3,4,6$ is a space with infinite Whitehead group satisfying the conditions of (1). Every lens space $L=L\left(p ; q_{1}, q_{2}, \ldots, q_{n}\right), p \neq 1,2,3,4,6$, satisfies the hypothesis of (2).
$P R O O F$: The assertions in (1) are logically equivalent because, by (24.2), each is equivalent to the assertion that $S_{K}=S_{L}$ for all K.

[^15](2) follows trivially from (24.2) and (24.3).

To prove (3), note that if p is a positive integer, $p \neq 1,2,3,4,6$ and if \mathbb{Z}_{p} is the cyclic group of order p then $W h\left(\mathbb{Z}_{p}\right)$ is infinite. (See (11.4) and (11.5).) In Chapter V, on the other hand, we shall discuss the lens spaces $L=L\left(p ; q_{1}\right.$, \ldots, q_{n}) and show that $\pi_{1} L=\mathbb{Z}_{p}$, and that $\mathscr{E}(L)$ is in one-one correspondence with $\left\{a \mid 0<a<p, a^{n} \equiv \pm 1(\bmod p)\right\}$. Thus the hypothesis of (2) is satisfied by these lens spaces.

The pseudo-projective plane P_{p} is the 2-dimensional complex gotten by attaching a single 2-cell to the unit circle S^{1} by the map $f: S^{1} \rightarrow S^{1}$ which is given in complex coordinates by $f(z)=z^{p}$. Clearly $\pi_{1}\left(P_{p}\right)=\mathbb{Z}_{p}$. Paul Olum studies the pseudo-projective planes in [Olum 1, 2] and shows that any τ_{0} $\in W h\left(P_{p}\right)$ is the torsion of a self equivalence $f:\left(P_{p}, e^{0}\right) \rightarrow\left(P_{p}, e^{0}\right)$ such that f induces the identity on $\pi_{1}\left(P_{p}, e^{0}\right)$. Thus these spaces satisfy the assertions of (1).

Finally, [DYER-Sieradski] shows that any finite connected 2-complex with finite cyclic fundamental group \mathbb{Z}_{p} is homotopy equivalent to a complex of the form $P_{p} \vee S^{2} \vee S^{2} \vee \ldots \vee S^{2}$. Thus, as these authors point out (and the reader should verify), Olum's work implies that the assertions of (1) are satisfied byany such 2-complex. ([DYER-SIERADSKI] alsoproves this directly.) \square

At present it is unknown whether homotopy type equals simple-homotopy type for arbitrary finite 2-complexes.

§25. Invariance of torsion, h-cobordisms and the Hauptvermutung

The following question is still unanswered in general. \dagger
Topological invariance of Whitchead torsion: If $h: K \rightarrow L$ is a homeomorphism between finite $C W$ complexes, does it follow that $\tau(h)=0$?
In this section we shall give affirmative answers in some. very special cases and try to indicate how this relates to some of the most exciting deyelopments in modern topology.
Definition: A subdivision of the $C W$ complex K is a pair $\left(K_{*}, h\right)$ where K_{*} is a CW complex and $h: K_{*} \rightarrow K$ is a homeomorphism such that for each cell e of K_{*} there is a cell e^{\prime} of K with $h(e) \subset e^{\prime}$. (As always, "cell" means "open cell".)
(25.1) If $\left(K_{*}, h\right)$ is a subdivision of K then h is a simple-homotopy equivalence.

PROOF: Let $g=h^{-1}: K \rightarrow K_{*}$. Clearly g is a cellular map and it suffices, by (22.5), to show that $\tau(g)=0$ or, what is the same thing, that $\tau\left(M_{g}, K\right)=0$.

Let $K=e_{0} \cup e_{1} \cup \ldots \cup e_{n}=K_{n}$, where $\operatorname{dim} e_{j} \leq \operatorname{dim} e_{j+1}$. Let K_{j} $=e_{0} \cup \ldots \cup e_{j}$ and let M_{j} be the mapping cylinder of the induced map $K_{j} \rightarrow g\left(K_{j}\right)$. Then (M_{j}, K_{j}) is homeomorphic to ($K_{j} \times I, K_{j} \times 0$), so $M_{j}-M_{j-1}$ $\approx e_{j} \times(0,1]$ and (20.1) and (20.2) imply that

$$
\begin{aligned}
\tau\left(M_{j} \cup K, K\right) & =\tau\left(M_{j-1} \cup K, K\right)+i_{*}^{-1} \tau\left(M_{j} \cup K, M_{j-1} \cup K\right) \\
& =\tau\left(M_{j-1} \cup K, K\right) .
\end{aligned}
$$

[^16]Thus, starting with $\left(M_{g}, K\right)=\left(M_{n}, K\right)$, an induction argument shows that $\tau\left(M_{g}, K\right)=\tau(K, K)=0$.
(25.2) If $\tau(K, L)=0$ and if $\left(K_{*}, L_{*}\right)$ subdivides (K, L) [i.e. there is a subdivision $\left(K_{*}, h\right)$ of K with $\left.L_{*}=h^{-1}(L)\right]$ then $\tau\left(K_{*}, L_{*}\right)=0$.

PROOF: Let $h: L_{*} \rightarrow L$ be the restriction of h. Clearly $\left(L_{*}, h\right)$ is a subdivision of L, so h is a simple-homotopy equivalence. Hence, by (22.7), $\tau\left(K_{*}, L_{*}\right)$ $=h_{*}^{-1} \tau(K, L)=0$.

The invariance of torsion under subdivision is of importance in piecewiselinear (and, consequently, in differential) topology. If K and L are finite simplicial complexes then a map: $f:|K| \rightarrow|L|$ is piecewise linear (p. 1.) if there are simplicial subdivisions K_{*} and $L_{*}\left\{\left(K_{*}, 1_{|K|}\right)\right.$ and $\left(L_{*}, 1_{|L|}\right)$ in the notation of the preceding paragraphs $\}$ such that $f: K_{*} \rightarrow L_{*}$ is a simplicial map. ${ }^{18}$ Our results on CW subdivision easily imply
(25.3) If $h: K \rightarrow L$ is a p.1. homeomorphism then $\tau(h)=0$. If $h:\left(K, K_{0}\right)$ $\rightarrow\left(L, L_{0}\right)$ is a p.1. homeomorphism of pairs then $\tau\left(K, K_{0}\right)=0$ if and only if $\tau\left(L, L_{0}\right)=0$.

Recent results, which we cannot prove here, show that the assumption that h is $p .1$. can sometimes be dropped. These results are summarized by
(25.4): Suppose that $h: K \rightarrow L$ is a homeomorphism between polyhedra. If either (a) $\operatorname{dim} K=\operatorname{dim} L \leq 3$ or (b) K and L are p.1. manifolds ${ }^{19}$ then $\tau(h)=0$.

REFERENCES: (a) follows from the result of [Brown] that every homeomorphism between polyhedra of dimension ≤ 3 is isotopic to a $p .1$. homeomorphism. (b) is a result of [Kirby-Siebenmann] (despite the fact that they also have examples of $p .1$. manifolds which are homeomorphic but not p.1. homeomorphic!)

The Kirby-Siebenmann examples mentioned in the last paragraph are counterexamples to the following classical conjecture:

The Hauptvermutung: If P and Q are homeomorphic finite simplicial complexes then they are p.1. homeomorphic.

The first counterexample to this conjecture was given in [Milnor 2]. Later Stallings showed ([Stallings 2]) how Milnor's idea could be used to generate myriads of examples. Proceeding in their spirit we now explain how torsion, and in particular (25.3), can be used to construct counterexamples to the Hauptvermutung. Crucial to this approach and fundamental in the topology of manifolds is the concept of an h-cobordism.

An h-cobordism is a triple (W, M_{0}, M_{1}) where W is a compact $p .1$. $(n+1)$-manifold whose boundary consists of two components, M_{0} and M_{1}

[^17] with $W_{2} M_{0}$ and $W{ }_{2} M_{1}$. The following are basic facts about h-cobordisms. (In each case we assume $n=\operatorname{dim} M_{0}$.)
(A) If $n \geq 4$ it follows (from "engulfing") that $W-M_{0} \stackrel{p .1 .}{\cong} M_{1} \times(0,1]$ and $W-M_{1} \stackrel{p .1 .}{\cong} M_{0} \times[0,1)$, and from this that
$$
a * M_{0} \cup b * M_{0}=\operatorname{susp}\left(M_{0}\right) \stackrel{\text { top }}{\cong} c * M_{0} \cup W \cup d * M_{1}
$$
where a, b, c, d are points, "susp" denotes suspension and "*" means "join".

> top \cong

\{A reference is [Hudson; Part 1, Theorem 7.11].\}
(B) The s-cobordism theorem: If $n \geq 5$ and $\tau\left(W, M_{0}\right)=0$ then $\left(W, M_{0}, M_{1}\right) \stackrel{p .1 .}{\cong}\left(M_{0} \times I, M_{0} \times 0, M_{0} \times 1\right)$ \{The proof is analogous to the proof in $\S 7$ and $\S 8$ that if $\tau(K, L)=0$ then $K_{\wedge} L$ rel L. One trades and cancels handles rather than cells. Reference: [Hudson; Part 2, Theorem 10.10].\}
(C) Realization: If M_{0} is a closed p.1. n-manifold, where $n \geq 5$, and if $\tau_{0} \in W h\left(M_{0}\right)$ then there is an h-cobordism $\left(W, M_{0}, M_{1}\right)$ with $\tau\left(W, M_{0}\right)=\tau_{0}$. \{The proof is analogous to that of (8.7). Reference: [Hudson; Part 2, Theorem 12.1].\}
(D) Classification: If $\left(W, M_{0}, M_{1}\right)$ and ($W^{\prime}, M_{0}, M_{1}^{\prime}$) are h-cobordisms with $\tau\left(W, M_{0}\right)=\tau\left(W^{\prime}, M_{0}\right)$ and if $n \geq 5$ then $\left(W, M_{0}, M_{1}\right) \stackrel{p . l .}{\cong}\left(W^{\prime}, M_{0}, M_{1}^{\prime}\right)$. \{This follows from (B) and (C). Reference: [Hudson; Part 2, Theorem 12.2]\}.
(E) Duality: If $\left(W, M_{0}, M_{1}\right)$ is an h-cobordism then $i_{0 *} \tau\left(W, M_{0}\right)=(-1)^{n}$ $i_{1 *} \tau *\left(W, M_{1}\right)$ where $i_{j}: M_{j} \xrightarrow{c} W, j=0,1$, and $\tau *\left(W, M_{1}\right)$ is the image of . $\tau\left(W, M_{1}\right)$ under "conjugation" of $W h\left(M_{1}\right)$, or "twisted conjugation" if M_{1} is not orientable. \{Reference: Hudson; page 273\}.

Now, using (C) let (W, M_{0}, M_{1}) be an h-cobordism with $\tau\left(W, M_{0}\right) \neq 0$, and let $V=c * M_{0} \cup W \cup d * M_{1}$. By (A), susp $\left(M_{0}\right)$ is homeomorphic to V. Suppose that there were a $p .1$. homeomorphism $h: \operatorname{susp}\left(M_{0}\right) \rightarrow V$. Then $h(\{a, b\})=\{c, d\}$ since these are the points where the spaces fail to be topological manifolds. Thus, being p.1., h would take a regular neighborhood (see [COHEN]) of $\{a, b\}$ to a regular neighborhood of $\{c, d\}$ and, from the equiva-
lence of regular neighborhoods via ambient p.l. homeomorphism, we could assume that h restricts to a $p .1$. homeomorphism

$$
\left(M_{0} \times\left[-\frac{1}{2}, \frac{1}{2}\right], M_{0} \times\left\{-\frac{1}{2}\right\}\right) \stackrel{p .1 .}{\cong}\left(W, M_{0}\right) .
$$

Then (25.3) implies that $\tau\left(W, M_{0}\right)=0$, which contradicts the choice of W. Thus V and susp (M_{0}) are not $p .1$. homeomorphic, although they are homeomorphic.

It is interesting to note [MILNOR 1; p. 400] that there are h-cobordisms (W, M_{0}, M_{1}) with $M_{0} \stackrel{p .1 .}{=} M_{1}$ and $\tau\left(W, M_{0}\right) \neq 0$. Using such an h-cobordism in the preceding construction, one can conclude that susp (M_{0}) and V are examples of spaces which are homeomorphic and locally $p .1$. homeomorphic, but are not $p .1$. homeomorphic. Of course the later Kirby-Siebenmann examples, which are p.l. manifolds, are more striking illustrations of this phenomenon.

Chapter V

Lens Spaces

§26. Definition of lens spaces

In this chapter we give a detailed introduction to the theory of lens spaces. ${ }^{20}$ These spaces are fascinating in their own right and will supply examples on which to make the preceding theory concrete.

We shall at times use the language and setting of the piecewise linear (p.1.) category. (See [HUDSON]). However, the reader who is willing to settle for "manifolds" and "maps" whenever "p.1. manifolds" and "p.1. maps" appear, can proceed with equanimity.

A p.1. n-manifold (without boundary) is a pair (M, \mathscr{A}) where M is a separable metric space and \mathscr{A} is a family of pairs $\left(U_{i}, h_{i}\right)$ such that $\left\{U_{i}\right\}$ is an open cover of $M, h_{i}: U_{i} \rightarrow R^{n}$ is a homeomorphism onto an open subset of R^{n}, and $h_{j} h_{i}^{-1}: h_{i}\left(U_{i} \cap U_{j}\right) \rightarrow R^{n}$ is $p .1$. for all $i, j . \mathscr{A}$ is called a $p .1$. atlas and the (U_{i}, h_{i}) are called coordinate charts.

If M_{1} and M_{2} are p.1. manifolds of dimensions m and n respectively then $f: M_{1} \rightarrow M_{2}$ is a $p .1$. map if, for each $x \in M_{1}$, there is a coordinate chart (U, h) about x and a coordinate chart (V, g) about $f(x)$ such that the map $g f h^{-1}: h\left[U \cap f^{-1} V\right] \rightarrow R^{m}$ is $p .1$.

If M is a topological space and G is a group of auto-homeomorphisms of M, then G acts freely on M if: $[x \in M, 1 \neq g \in G] \Rightarrow[g(x) \neq x]$. The set $G\left(x_{0}\right)=\left\{g\left(x_{0}\right) \mid g \in G\right\}$ is called the orbit of x_{0} under G. We denote by M / G the quotient space of M under the equivalence relation: $x \sim y \Leftrightarrow G(x)$ $=G(y)$. Thus the points of M / G are the orbits under G.
(26.1) If M is a connected p.1. manifold and G is a finite group of p.1. homeomorphisms acting freely on M then
(a) The quotient map $\pi: M \rightarrow M / G$ is a covering map.
(b) The group G is precisely the group of covering homeomorphisms.
(c) π induces a p.1. structure on M / G with respect to which π is $p .1$.

PROOF: (a) and (b) are left as exercises for the reader (or see [Spanier, p. 87]). To prove (c), let $\left\{\left(U_{i}, h_{i}\right)\right\}_{i \in J}$ be a $p .1$. atlas for M with coordinate charts chosen small enough that $\pi \mid U_{i}: U_{i} \rightarrow \pi\left(U_{i}\right)$ is a homeomorphism for each U_{i}. Denote $\pi_{i}=\pi \mid U_{i}$. Then $\left\{\left(\pi\left(U_{i}\right), h_{i} \pi_{i}^{-1}\right)\right\}_{i \in J}$ is a $p .1$. atlas for M / G. To prove this we must show that, for $i, j \in J$, the homeomorphism $h_{j} \pi_{j}^{-1} \pi_{i} h_{i}^{-1}$, with domain $h_{i} \pi_{i}^{-1}\left[\pi\left(U_{i}\right) \cap \pi\left(U_{j}\right)\right]$, is $p .1$. But on each component of

[^18]$\pi_{i}^{-1}\left[\pi\left(U_{i}\right) \cap \pi\left(U_{j}\right)\right]$ the homeomorphism $\pi_{j}^{-1} \pi_{i}$ agrees with some element of G. Since the elements of G are $p .1 ., \pi_{j}^{-1} \pi_{i}$ is $p .1$. But h_{j}^{-1} and h_{i} are certainly p.1. So $h_{j} \pi_{j}^{-1} \pi_{i} h_{i}{ }^{1}$ is also $p .1$., as desired.

We leave the reader to check that now $\pi: M \rightarrow M / G$ is $p .1$.
Suppose that $p \geq 2$ is an integer (not necessarily prime) and that q_{1}, q_{2}, \ldots, q_{n} are integers relatively prime to p. [i.e. $\left(p, q_{j}\right)=1$ where (,) denotes the greatest common divisor.] Then the lens space $L\left(p ; q_{1}, q_{2}, \ldots, q_{n}\right)$ is a $(2 n-1)$-dimensional $p .1$. manifold which we now define as $\Sigma^{2 n-1} / G$ for appropriate $\Sigma^{2 n-1}$ and G.

If $p>2$, let Σ^{1} be the regular polygon (simplicial 1-sphere) in R^{2} with vertices $v_{q}=e^{2 \pi i q / p}, q=0,1,2, \ldots, p-1$. Let $\Sigma^{2 n-1}$ be the polyhedron in $R^{2 n}=R^{2} \times R^{2} \times \ldots \times R^{2}$ gotten by taking the iterated join

$$
\begin{aligned}
\Sigma^{2 n-1} & =\Sigma_{1} * \Sigma_{2} * \ldots * \Sigma_{n} \\
& =\left\{\lambda_{1} z_{1}+\ldots+\lambda_{n} z_{n} \mid \sum_{j} \lambda_{j}=1, \lambda_{j} \geq 0, z_{j} \in \Sigma_{j}\right\}
\end{aligned}
$$

Here Σ_{j} is the copy of Σ^{1} in $\underbrace{0 \times 0 \times \ldots R^{2}}_{j} \times 0 \times \ldots \times 0$ and each $z \in \Sigma^{2 n-1}$ is uniquely expressible as such a sum. $\Sigma^{2 n-1}$ is a simplicial complex and, as a join of circles, is a $p .1 .(2 n-1)$-sphere.

When $p=2$ we must vary the above procedure (since two points don't determine a circle). Let Σ^{1} be the regular polygon with vertices $v_{0}=1$, $A=e^{\pi i / 2}, v_{1}=e^{\pi i}$ and $B=e^{3 \pi i / 2} . \Sigma^{2 n-1}$ is then described as above.

To construct a group G which acts on $\Sigma^{2 n-1}$, let R_{j} be the rotation of Σ_{j} by q_{j} notches, a notch consisting of $\frac{2 \pi}{p}$ radians. Let $g=R_{1} * R_{2} * \ldots * R_{n}$: $\Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$; i.e.,

$$
g\left(\sum_{j} \lambda_{j} z_{j}\right)=\sum_{j} \lambda_{j} R_{j}\left(z_{j}\right)
$$

As a join of simplicial isomorphisms g is a simplicial isomorphism. Clearly $g^{p}=1$. But, if $1 \leq k \leq p-1, g^{k}$ can fix no point of $\sum^{2 n-1}$. For let $z=$ $\sum_{j=1}^{n} \lambda_{j} z_{j}$ where $\lambda_{j_{o}} \neq 0$. Then

$$
\begin{gathered}
\left(q_{j_{0}}, p\right)=1 \Rightarrow\left(R_{j_{0}}\right)^{k}\left(z_{j_{0}}\right) \neq z_{j_{0}} \\
\Rightarrow g^{k}(z)=\sum_{j} \lambda_{j} R_{j}^{k}\left(z_{j}\right) \neq \sum_{j} \lambda_{j} z_{j}=z
\end{gathered}
$$

Hence $G=\left\{1, g, g^{2}, \ldots g^{p-1}\right\}$ is a group of order p of $p .1$. homeomorphisms which acts freely on $\Sigma^{2 n-1}$, and it is with this G that we define

$$
L\left(p ; q_{1}, \ldots, q_{n}\right)=\Sigma^{2 n-1} / G
$$

$\mathrm{By}(26.1), L=L\left(p ; q_{1}, \ldots, q_{n}\right)$ is a $p .1$. manifold and $\pi: \Sigma^{2 n-1} \rightarrow L$ is a $p .1$. covering map with G as the group of covering transformations.

REM ARK: $L\left(p ; q_{1}, q_{2}, \ldots, q_{n}\right)$ can also be naturally defined as a differentiable manifold by thinking of it as a quotient of the (round) sphere $S^{2 n-1}$. Let \bar{g} : $R^{2 n} \rightarrow R^{2 n}$ by $\bar{g}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(R_{1}\left(z_{1}\right), R_{2}\left(z_{2}\right), \ldots, R_{n}\left(z_{n}\right)\right)$ where R_{j} is the
rotation of R^{2} through $\left(2 \pi q_{j} / p\right)$ radians. Then \bar{g} is an orthogonal transformation such that $\bar{g}, \bar{g}^{2}, \ldots, \bar{g}^{p-1}$, have no fixed points other than 0 . Hence \bar{G} $=\left\{\bar{g}^{k} \mid S^{2 n-1}: 0 \leq k \leq p-1\right\}$ is a group of diffeomorphisms.of $S^{2 n-1}$ and $S^{2 n-1} / \bar{G}$ is a smooth manifold (by a proof analogous to that of (26.1)).

The connection with $\Sigma^{2 n-1} / G$ is gotten by noting that $g=\bar{g} \mid \Sigma^{2 n-1}$ and that, if $T: \Sigma^{2 n-1} \rightarrow S^{2 n-1}$ by $T(z)=z /|z|$, the following diagram commutes.

From this it follows that there is a piecewise-differentiable homeomorphism $H: \Sigma^{2 n-1} / G \rightarrow S^{2 n-1} / \bar{G}$ which is covered by T. This homeomorphism can be used (as in the proof of (26.1c)) to give $S^{2 n-1} / \bar{G}$ a $p .1$. structure which is "compatible with its smooth structure" and with respect to which H is a $p .1$. homeomorphism.

§27. The 3-dimensional spaces $\mathbf{L}_{\mathrm{p}, \mathrm{q}}$

Let B^{3} be the closed unit ball in R^{3} and let D_{+}^{2} and D_{-}^{2} be the closed upper and lower hemispheres of Bdy B^{3}. Suppose that integers p, q are given with $p \geq 2,(p, q)=1$. Let R be the rotation of R^{2} through $2 \pi q / p$ radians, and define $h: D_{-}^{2} \rightarrow D_{+}^{2}$ by $h(x, y, z)=(R(x, y),-z)$. In this setting the $3-$ dimensional lens space $L_{p, q}$ is often defined (see [Seifert-Threllfall]) as the quotient space under the equivalence relation generated by h.

In this section we wish to point out intuitively why $L_{p, q}$ is, up to homeomorphism, the space that we called $L(p ; q, 1)$ in the last section.

Consider the 3-sphere S^{3} as the one-point compactification of R^{3}. Let Σ_{1} be the unit circle in $R^{2} \times 0$ and let $\Sigma_{2}=(z$-axis $) \cup\{\infty\}$. Then S^{3} can be seen as $\Sigma_{1} \cdot * \Sigma_{2}$ by viewing it as the union of a suitable family of curved "cones" $v * \Sigma_{1}$ as v varies over Σ_{2}.

For example, as shown in the figure,

$$
\begin{array}{ll}
\text { when } v=(0,0,0), & v * \Sigma_{1}=B^{2} \times 0 \\
\text { when } v=(0,0,1), & v * \Sigma_{1}=D_{+}^{2} \\
\text { when } v=(0,0,-1), & v * \Sigma_{1}=D_{-}^{2} \\
\text { when } v=\infty, & v * \Sigma_{1}=\left\{(x, y, 0) \mid x^{2}+y^{2} \geq 1\right\}
\end{array}
$$

and when $v=(0,0, t),|t|>1, v * \Sigma_{1}$ looks like a turban. Each of these "cones" is gotten by rotating an arc from v to $(0,1,0)$, which lies in the $y-z$ plane, about the z-axis, the rotated arcs giving us the cone lines.

Now let $R_{1}: \Sigma_{1} \rightarrow \Sigma_{1}$ be rotation through $2 \pi q / p$ radians. Break Σ_{2} into p line segments, one of which is the finite line segment from ($0,0,-1$) to $(0,0,1)$ and one of which is an infinite line segment which has ∞ as an interior point. Let $R_{2}: \Sigma_{2} \rightarrow \Sigma_{2}$ be the simplicial isomorphism which shifts each vertex to the next higher one, except that the highest vertex now becomes the lowest. Since every point of $S^{3}-\left(\Sigma_{1} \cup \Sigma_{2}\right)$ lies on a unique arc from Σ_{1} to Σ_{2} we may define $g=R_{1} * R_{2}: S^{3} \rightarrow S^{3}$ by $g\left[z_{1}, z_{2}, t\right]=\left[R_{1}\left(z_{1}\right), R_{2}\left(z_{2}\right), t\right]$ where $[a, b, t]$ denotes the point which is $t \cdot L_{a b}$ units of arc-length along the arc from a to $b, L_{a b}$ being the length of this arc.

If in this setting we let $G=\left\{1, g, g^{2}, \ldots, g^{p-1}\right\}$ it is clear that S^{3} / G $\approx L(p ; q, 1)$ as defined in the last section. On the other hand, if $\pi: S^{3} \rightarrow S^{3} / G$ is the quotient map it follows from the facts that $\pi g^{k}=\pi$ and $S^{3}=$ $\bigcup_{k} g^{k}\left(B^{3}\right)$, that $\pi\left(B^{3}\right)=S^{3} / G$. So S^{3} / G is homeomorphic to the quotient space of B^{3} under the identifications induced by $\pi \mid B^{3}$. But this quotient space is precisely B^{3} / h since $g\left|D_{-}^{2}=h\right| D_{-}^{2}$ and $g\left(B^{3}\right) \cap B^{3}=D_{+}^{2}$ and $g^{k}\left(B^{3}\right) \cap B^{3}$ $=\varnothing$ if $k \not \equiv \pm 1(\bmod p)$. Hence

$$
L(p ; q, 1) \approx S^{3} / G \approx B^{3} / h=L_{p, q}
$$

§28. Cell structures and homology groups

When $p>2$ we denote the vertices of Σ^{1} by $v_{j}=e^{2 \pi i j / p}$ and the 1 -simplices by $I_{j}=\left[v_{j}, v_{j+1}\right], 0 \leq j \leq p-1$. When $p=2$ the vertices are v_{0}, A, v_{1}, B (as in §26) and we set $I_{0}=\left[v_{0}, A\right] \cup\left[A, v_{1}\right]$ and $I_{1}=\left[v_{1}, B\right]$ $\cup\left[B, v_{0}\right]$. For $0 \leq i \leq n-1$, the following simplicial subcomplexes of $\Sigma^{2 n-1}$ play an important role:

$$
\begin{aligned}
\Sigma^{2 i-1} & =\Sigma_{1} * \Sigma_{2} * \ldots * \Sigma_{i} \subset R^{2 i} \\
E_{j}^{2 i} & =\Sigma^{2 i-1} * v_{j} \quad\left(v_{j} \in \Sigma_{i+1}\right) \\
E_{j}^{2 i+1} & =\Sigma^{2 i-1} * I_{j}<\Sigma^{2 i+1} .
\end{aligned}
$$

(Here $\Sigma^{-1} \equiv \varnothing, E_{j}^{0} \equiv v_{j}$, and $E_{j}^{1} \equiv I_{j}$.) For example, $B^{3}, D_{-}^{2}, D_{+}^{2}$ of $\S 27$ correspond to $E_{j}^{3}, E_{j}^{2}, E_{j+1}^{2}$ where $v_{j}=(0,0,-1)$ and $v_{j+1}=(0,0,1)$.

The E_{j}^{k} are closed cells-in fact $p .1$. balls-which give a CW decomposition of $\sum^{2 n-1}$ with cells $e_{j}^{k}=\stackrel{\circ}{E}_{j}^{k}(0 \leq j \leq p-1,0 \leq k \leq 2 n-1)$. Elementary facts about joins imply that
(1) $\partial E_{j}^{2 i}=\Sigma^{2 i-1}$
(2) $\partial E_{j}^{2 i+1}=E_{j}^{2 i} \cup E_{j+1}^{2 i}$
(3) $E_{j}^{2 i} \cap E_{k}^{2 i}=\Sigma^{2 i-1}, \quad$ if $j \neq k$

$$
E_{j}^{2 i+1} \cap E_{k}^{2 i+1}= \begin{cases}\Sigma^{2 i-1} & \text { if } j-k \neq 0, \pm 1(\bmod p) \\ E_{j+1}^{2 i} & \text { if } k=j+1(\bmod p), p \neq 2 \\ E_{0}^{2 i} \cup E_{1}^{2 i} & \text { if } j=0, k=1, p=2\end{cases}
$$

Let us orient the balls E_{j}^{k}-think of them for the moment as simplicial chains-by stipulating that $E_{j}^{0}=v_{j}$ is positively oriented and, inductively, that then $E_{j}^{2 i+1}$ is oriented $(i \geq 0)$ so that $\partial E_{j}^{2 i+1}=E_{j+1}^{2 i}-E_{j}^{2 i}, \Sigma^{2 i+1}$ is oriented so that $E_{j}^{2 i+1} \subseteq \Sigma^{2 i+1}$ is orientation preserving, and $E_{i}^{2 i+2}$ is oriented so that $\partial E_{j}^{2 i+2}=\Sigma^{2 i+1}=E_{0}^{2 i+1}+E_{1}^{2 i+1}+\ldots+E_{p-1}^{2 i+1}$.
The orientations of the E_{j}^{k} naturally determine basis elements for the cellular chain complex $C_{k}\left(\sum^{2 n-1}\right)$ determined by this CW structure and we shall also use e_{j}^{k} to denote these basis elements (rather than $\left\langle\varphi_{j}^{k}\right\rangle$ for some characteristic $\operatorname{map} \varphi_{j}^{k}$, as we did earlier).

Now view $\Sigma^{2 n-1}$ as the universal covering space of $L\left(p ; q_{1}, \ldots, q_{n}\right)$ $=\Sigma^{2 n-1} / G$. It is natural, as we shall see shortly, to denote $e_{0}^{k}=\tilde{e}_{k}$ $(0 \leq k \leq 2 n-1)$. If $g=R_{1} * R_{2} * \ldots * R_{n}$, as before, notice that $g^{t} \mid \sum^{2 i-1}$: $\Sigma^{2 i-1} \rightarrow \Sigma^{2 i-1}$ is an orientation preserving simplicial isomorphism (since it's homotopic to the identity) such that $g^{t} \mid E_{0}^{2 i}=\left(g^{t} \mid \Sigma^{2 i-1}\right) *\left(g^{t} \mid v_{0}\right)$ and $g^{t} \mid E_{0}^{2 i+1}=\left(g^{t} \mid \sum^{2 i-1}\right) *\left(g^{t} \mid I_{0}\right)$. Thus g^{t} takes oriented cells isomorphically in an orientation preserving manner to oriented cells and the basic cellular chains satisfy

$$
\begin{aligned}
& e_{j}^{k}=g^{t} \tilde{e}_{k} \text { where } t q_{j} \equiv j(\bmod p)\left[t \text { exists because }\left(q_{j}, p\right)=1\right] \\
& \partial \tilde{e}_{2 i+1}=g^{r_{i+1}} \tilde{e}_{2 i}-\tilde{e}_{2 i}, \text { where } r_{i+1} q_{i+1} \equiv 1(\bmod p)
\end{aligned}
$$

$$
\begin{align*}
& \partial \tilde{e}_{2 i}=\tilde{e}_{2 i-1}+g \tilde{e}_{2 i-1}+\ldots+g^{p-1} \tilde{e}_{2 i-1} \tag{*}\\
& \partial g=g \partial: C^{k}\left(\Sigma^{2 n-1}\right) \rightarrow C^{k}\left(\Sigma^{2 n-1}\right)
\end{align*}
$$

$L\left(p ; q_{1}, \ldots, q_{n}\right)$ obtains a natural CW structure, with exactly one cell in each dimension from the cell structure on $\Sigma^{2 n-1}$ via the projection $\pi: \Sigma^{2 n-1} \rightarrow L\left(p ; q_{1}, \ldots, q_{n}\right)$. The cells are the sets $e_{k}=\pi\left(\tilde{e}_{k}\right)=\pi\left(e_{j}^{k}\right)$, $(0 \leq j<p, 0 \leq k \leq 2 n-1) \quad$ with characteristic maps $\pi \mid E_{0}^{k}$: $E_{0}^{k} \rightarrow L\left(p ; q_{1}, \ldots, q_{n}\right)$. The orientation we have chosen for \tilde{e}_{k} induces an orientation for e_{k}. Or, more technically speaking, the chain map induced by the cellular map π takes the basis element \tilde{e}_{k} of $C_{k}\left(\Sigma^{2 n-1}\right)$ to a basis element, denoted e_{k}, of $C_{k}\left(L\left(p ; q_{1}, \ldots, q_{n}\right)\right)$. To compute $H_{*}\left(L\left(p ; q_{1}, \ldots, q_{n}\right)\right)$ we simply note that

$$
\begin{aligned}
\partial e_{2 i} & =\partial \pi\left(\tilde{e}_{2 i}\right)=\pi \partial\left(\tilde{e}_{2 i}\right) \\
& =\pi\left(\tilde{e}_{2 i-1}+g \tilde{e}_{2 i-1}+\ldots+g^{p-1} \tilde{e}_{2 i-1}\right)=p e_{2 i-1} \\
\partial e_{2 i+1} & =\pi \partial\left(\tilde{e}_{2 i+1}\right)=\pi\left(g^{r_{i+1}} \tilde{e}_{2 i}-\tilde{e}_{2 i}\right)=0 .
\end{aligned}
$$

Thus the cellular chain complex is

$$
0 \rightarrow C_{2 n-1} \xrightarrow{0} C_{2 n-2} \xrightarrow{\times p} C_{2 n-3} \xrightarrow{0} \ldots \xrightarrow{\times p} C_{1} \xrightarrow{0} C_{0} \rightarrow 0 .
$$

Hence the homology groups of $L\left(p ; q_{1}, \ldots, q_{n}\right)$ with integral coefficients are

$$
\begin{aligned}
& H_{2 n-1}=\mathbb{Z} \\
& H_{2 i-1}=\mathbb{Z}_{p}, \quad 1 \leq i<n \\
& H_{2 i}=0, \quad i>0 \\
& H_{0}=\mathbb{Z} .
\end{aligned}
$$

Since the sphere is the universal covering space of the lens space and G is the group of covering homeomorphisms, $\pi_{1} L\left(p ; q_{1}, \ldots, q_{n}\right)=\mathbb{Z}_{p}$ and $\pi_{i} L\left(p ; q_{1}, \ldots, q_{n}\right)=\pi_{i} S^{2 n-1}$ for $i \neq 1$.

The preceding discussion shows that the different ($2 n-1$)-dimensional lens spaces determined by a fixed p all have the same homology and homotopy groups. Nevertheless we shall show in the next section that they do not all have the same homotopy type.

§29. Homotopy classification ${ }^{21}$

We suppose throughout this section that $p \geq 2$ is given and that $\left(q_{1}, \ldots, q_{n}\right),\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ are given n-tuples of integers relatively prime to p. Let R_{j} and R_{j}^{\prime} be rotations of Σ_{j} through q_{j} and q_{j}^{\prime} notches respectively. Set $g=R_{1} * \ldots * R_{n}, g^{\prime}=R_{1}^{\prime} * \ldots * R_{n}^{\prime}$ and let G, G^{\prime} be the cyclic groups (of order p) generated by g, g^{\prime}. Denote $L=L\left(p ; q_{1}, \ldots, q_{n}\right)=\Sigma^{2 n-1} / G$ and $L^{\prime}=L\left(p ; q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)=\Sigma^{2 n-1} / G^{\prime}$ with quotient maps π and π^{\prime}. Also set $e_{k}=\pi\left(\tilde{e}_{k}\right)$ and $e_{k}^{\prime}=\pi^{\prime}\left(\tilde{e}_{k}\right)$, where \tilde{e}_{k} is as in $\S 28$.

Definition: If $f: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ is a map and if $h \in G^{\prime}$ then f is (g, h) equivariant iff $f g=h f$. Two (g, h)-equivariant maps f_{0} and f_{1} are equivariantly homotopic if there is a homotopy $\left\{f_{t}\right\}: \Sigma^{2 n-1} \rightarrow . \Sigma^{2 n-1}$ such that f_{t} is (g, h) equivariant for all t.

Exercise: A map $f: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ is (g, h)-equivariant for at most one h.
The relationship between equivariant maps of $\Sigma^{2 n-1}$ and maps between lens spaces is given by the next two theorems.
(29.1) (a) If $h \in G^{\prime}$ and F is a (g, h)-equivariant map of $\Sigma^{2 n-1}$, then F covers a well-defined map $f: L \rightarrow L^{\prime}$.
(b) If $\left\{F_{t}\right\}$ is a homotopy of $\Sigma^{2 n-1}$, where each F_{t} is $\left(g, h_{t}\right)$-equivariant for some $h_{t} \in G^{\prime}$, then $h_{t}=h_{0}$ for all t and $\left\{F_{t}\right\}$ covers a well-defined homotopy $\left\{f_{t}\right\}: L \rightarrow L^{\prime}$.

PROOF: (a) Define f so that the following diagram commutes

It is well-defined because $\pi(x)=\pi(y)$ implies $g^{k}(x)=y$ for some k and, hence, that $\pi^{\prime} F(y)=\pi^{\prime} F g^{k}(x)=\pi^{\prime} h^{k} F(x)=\pi^{\prime} F(x)$.
(b) Write $h_{0}=h$ and let $S=\left\{t \in[0,1] \mid h_{t} \neq h\right\}$. Suppose, contrary to our claim, that $S \neq \varnothing$. Set $u=g .1 . \mathrm{b}$. (S). We first note that $u \notin S$. To see this, choose a sequence $t_{i} \rightarrow u$ such that $t_{i} \leq u$ and $h_{t_{i}}=h$. Fix a point z and note that $h_{u}^{-1}\left(F_{u} g(z)\right)=h_{u}^{-1}\left(h_{u} F_{u}(z)\right)=F_{u}(z)=\lim _{i} h^{-1} h_{t_{i}} F_{t_{i}}(z)=\lim _{i}$ $h^{-1} F_{t_{i}} g(z)=h^{-1}\left(F_{u} g(z)\right)$. Thus h_{u}^{-1} and h^{-1} agree at a point. So $h_{u}=h$ and $u \notin S$.

Now let t_{i} be a sequence in S such that $t_{i} \rightarrow u$. So $h_{t_{i}} \neq h$. Fix $z \in \Sigma^{2 n-1}$. If V is a neighborhood of $F_{u} g(z)$ such that $\pi^{\prime} \mid V$ is one-one, then $h^{-1}(V) \cap h_{t_{i}}^{-1}(V)=\varnothing$ for all i. But $h^{-1} F_{u} g(z)=F_{u}(z)=\lim _{i} h_{t_{i}}^{-1} F_{t_{i}} g(z)$ and we have a contradiction, since $F_{t_{i}} g(z)$ eventually lies in V, so $h_{t_{i}}^{-1} F_{t_{i}} g(z)$

[^19]eventually lies outside the neighborhood $h^{-1}(V)$ of $h^{-1} F_{u} g(z)$. Therefore S is empty and we see that each F_{t} is (g, h)-equivariant.

From (a) each F_{t} covers a map $f_{t}: L \rightarrow L^{\prime}$, and the resultant function $f: L \times I \rightarrow L^{\prime}$ is continuous since

is a commutative diagram and $\pi \times 1$ is a closed map.
(29.2) If $f: L \rightarrow L^{\prime}$, and if $f_{\#}: G \rightarrow G^{\prime}$ comes from the induced map of fundamental groups (as in (3.16)) then the map $f_{\#}$ is independent of all possible choices of base points. In fact, if $h \in G^{\prime}$ the following are equivalent assertions.
(1) $f_{\#}(g)=h$.
(2) Any map $\tilde{f}: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ which covers f is (g, h)-equivariant.
(3) There is some mapf covering f which is (g, h)-equivariant.

Moreover, if $f_{0} \simeq f_{1}: L \rightarrow L^{\prime}$ (free homotopy) then $f_{0 \#}=f_{1 \#}$.
REMARK: Because of this theorem almost no references to base points will be made in this chapter, and statements about what the map $f: L \rightarrow L^{\prime}$ does on fundamental groups will be given in terms of the map $f_{\#}: G \rightarrow G^{\prime}$.
PROOF: If \tilde{f} covers f, choose points x, y and points \tilde{x}, \tilde{y} covering them such that $\tilde{f}(\tilde{x})=\tilde{y}, f(x)=y$. Then, by (3.16), $f_{\#}(g) \circ \tilde{f}=\tilde{f} g$. Thus every lift \tilde{f} is (g, h)-equivariant for some h-namely $h=f_{\#}(g)$. where $f_{\#}=$ $\theta(y, \tilde{y}) \circ$ (induced map on $\left.\pi_{1}\right) \circ \theta(x, \tilde{x})^{-1}$.

If \tilde{f} is (g, h)-equivariant and \hat{f} is another lift, then $\hat{f}=k \tilde{f}$ for some $k \in G^{\prime}$ and we have $\hat{f g}=k \tilde{f} g=k h \tilde{f}=h k \tilde{f}=h \tilde{f}$. Thus (3) \Rightarrow (2). Trivially then $(3) \Leftrightarrow(2)$.

If \tilde{f} and \hat{f} are two lifts, each giving rise to an $f_{\#}$, one with $f_{\#}(g)=h$ and the other with $f_{\#}(g)=h^{\prime}$, then as noted above \tilde{f} and \hat{f} are (g, h) - and $\left(g, h^{\prime}\right)$ equivariant. Since (3) $\Rightarrow(2)$, we see that $h=h^{\prime}$, so in fact $f_{\#}$ is well-defined, independently of all choices.

From the above, the equivalence $(1) \Leftrightarrow(2) \Leftrightarrow(3)$ is now obvious.
Finally, if $\left\{f_{t}\right\}: L \rightarrow L^{\prime}$ is a homotopy from f_{0} to f_{1}, let $\left\{\tilde{f}_{t}\right\}$ be a lift to a homotopy of $\Sigma^{2 n-1}$. Each \tilde{f}_{t} is $\left(g, h_{t}\right)$-equivariant, where $f_{t \#}(g)=h_{t}$. But by (29.1b), $h_{t}=h_{0}$ for all t. Hence $f_{0 \#}=f_{1 \#}$.

In the light of (29.1) and (29.2) we shall first derive some results about equivariant maps of $\Sigma^{2 n-1}$ and then interpret these as results concerning homotopy classes of maps $L \rightarrow L^{\prime}$.
(29.3) If f_{0} and f_{1} are any two (g, h)-equivariant maps of $\Sigma^{2 n-1}$ then degree $f_{0} \equiv$ degree $f_{1}(\bmod p)$. If, in fact, degree $f_{0}=$ degree f_{1} then f_{0} and f_{1} are equivariantly homotopic.

PROOF: Let $\Sigma^{2 n-1}$ be viewed as a cell complex-call it K-as in $\S 28$, and
let $P=K \times I$, a $2 n$-dimensional complex. We claim first that there is a map $F: P^{2 n-1} \rightarrow \Sigma^{2 n-1}$ (where P^{i} denotes the i-skeleton of P) such that

$$
\begin{gathered}
F_{t}=f_{t} \quad(t=0,1) \\
F_{t} g(x)=h F_{t}(x) \quad \text { for all } \quad(x, t) \in P^{2 n-1}
\end{gathered}
$$

where $F_{t}=F \mid(K \times\{t\}) \cap P^{2 n-1}$.
The function F is constructed inductively over the complexes $P_{i}=P^{i} \cup K \times\{0,1\}$. We set $F^{0} \mid P_{0}=f_{0} \cup f_{1}$. Suppose that $F^{i} \mid P_{i}$ has been defined and satisfies the equivariant property, where $0 \leq i<2 n-1$. In particular $F^{i} \mid \partial\left(E_{0}^{i} \times I\right)$ has been defined. Since $\operatorname{dim} \partial\left(E_{0}^{i} \times I\right)<2 n-1$, there is an extension $F^{i+1}: E_{0}^{i} \times I \rightarrow \Sigma^{2 n-1}$. Now define $F^{i+1}: E_{j}^{i} \times I \rightarrow \Sigma^{2 n-1}$ for $j \geq 1$ by

$$
F_{t}^{i+1}(x)=h^{-q}\left(F_{t}^{i+1} \mid E_{0}^{i}\right) g^{q}(x) \quad \text { where } g^{q}\left(E_{j}^{i}\right)=E_{0}^{i}
$$

This is well-defined on all of P_{i+1} because, since $\left(q_{j}, p\right)=1$, there is exactly one $q(\bmod p)$ with $g^{q}\left(E_{j}^{i}\right)=E_{0}^{i}$, and because, if $(x, t) \in \partial\left(E_{j}^{i} \times I\right) \subset P_{i}$ the induction hypothesis $F_{t}^{i}(y)=h^{-1} F_{t}^{i} g(y)$ applied to $y=g^{k}(x), k=0,1, \ldots$, $q-1$, implies

$$
\begin{aligned}
F_{t}^{i}(x) & =h^{-1} F_{t}^{i}(g(x))=h^{-2} F_{t}^{i} g^{2}(x)=\ldots=h^{-q} F_{t}^{i} g^{q}(x) \\
& =h^{-q}\left(F_{t}^{i} \mid E_{0}^{i}\right) g^{q}(x)=F_{t}^{i+1}(x) .
\end{aligned}
$$

F^{i+1} has the equivariant property on P_{i+1} because if $x \in E_{j}^{i}$ then $g(x) \in E_{k}^{i}$ where $g^{q-1}\left(E_{k}^{i}\right)=E_{0}^{i}$. Hence

$$
F_{t}^{i+1} g(x)=h^{-(q-1)}\left(F_{t}^{i+1} \mid E_{0}^{i}\right) g^{q-1}(g(x))=h F_{t}^{i+1}(x)
$$

Setting $F=F^{2 n-1}$, the proof of the claim is completed.
As in §28 we assume that $\Sigma^{2 n-1}$ and the $E_{j}^{2 n-1}$ are oriented so that each inclusion $E_{j}^{2 n-1} \subset \Sigma^{2 n-1}(0 \leq j<p)$ is orientation preserving. Give $\Sigma^{2 n-1} \times I$ the product orientation so that $\partial\left(\sum^{2 n-1} \times I\right)=\left(\Sigma^{2 n-1} \times 1\right)$ $-\left(\Sigma^{2 n-1} \times 0\right)$. This induces an orientation on each $E_{j}^{2 n-1} \times I$ and hence also on $\partial\left(E_{j}^{2 n-1} \times I\right)$. Let $F_{j}=F \mid \partial\left(E_{j}^{2 n-1} \times I\right): \partial\left(E_{j}^{2 n-1} \times I\right) \rightarrow \Sigma^{2 n-1}$. Since the range and domain of F_{j} are oriented $(2 n-1)$-spheres the degree of F_{j} is well-defined. Notice that $F_{j}\left|E_{j+1}^{2 n-2} \times I=F_{j+1}\right|\left(E_{j+1}^{2 n-2} \times I\right)$ and, thinking of cellular chains, that $\partial\left(E_{j}^{2 n-1} \times I\right)=\left(E_{j}^{2 n-1} \times 1\right)-\left(E_{j}^{2 n-1} \times 0\right)+\left(E_{j+1}^{2 n-2} \times I\right)$ $-\left(E_{j}^{2 n-2} \times I\right)$. Then it is an elementary exercise (or use [Hilton-Wylie, II.1.30] and the Hurewicz homomorphism) that

$$
\sum_{j} \operatorname{deg} F_{j}=\operatorname{deg} f_{1}-\operatorname{deg} f_{0}
$$

But $F_{j}=h^{-q} F_{0}\left(g^{q} \times 1\right)$ where $g^{q} \times 1$ takes $\partial\left(E_{j}^{2 n-1} \times I\right)$ onto $\partial\left(E_{0}^{2 n-1} \times I\right)$ by a degree 1 homeomorphism, and $h^{-q}: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ is also of degree 1 . Hence $\operatorname{deg} F_{j}=\operatorname{deg} F_{0}$. So $\operatorname{deg} f_{1}-\operatorname{deg} f_{0}=\sum_{j} \operatorname{deg} F_{j}=p \cdot \operatorname{deg} F_{0} \equiv 0$ $(\bmod p)$, proving the first assertion of our theorem.

If, in fact, $\operatorname{deg} f_{1}=\operatorname{deg} f_{0}$ the last sentence shows that $\operatorname{deg} F_{0}=0$. By Brouwer's theorem F_{0} may then be extended over $E_{0}^{2 n-1} \times I$ and so, as
above, F may be extended to $P_{2 n}=\Sigma^{2 n-1} \times I$ by stipulating that $F_{t} \mid E_{j}^{2 n-1}$ $=h^{-q}\left(F_{t} \mid E_{0}\right) g^{q}$. This extension is the desired equivariant homotopy.

The question of which residue class mod p it is which is determined by the degree of an equivariant map, and whether all numbers in the residue class can be realized, is answered by
(29.4) If $(d, a) \in \mathbb{Z} \times \mathbb{Z}$ then there is $a\left(g, g^{\prime a}\right)$ equivariant map $f: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ of degree d if and only if $d \equiv a^{n} r_{1} \ldots r_{n} q_{1}^{\prime} \ldots q_{n}^{\prime}(\bmod p)$ where $r_{j} q_{j} \equiv 1$ $(\bmod p)$.

PROOF: For each j fix an r_{j} with $r_{j} q_{j} \equiv 1(\bmod p)$. An equivariant map of degree $d_{0}=a^{n} r_{1} \ldots r_{n} q_{1}^{\prime} \ldots q_{n}^{\prime}$ can be constructed by simply wrapping each Σ_{j} about itself $r_{j} a q_{j}^{\prime}$ times and taking the join of these maps. To make this precise we use the notation of complex numbers. Define $T: \Sigma^{1} \rightarrow S^{1}$ by $T(z)=(z /|z|)$. Think of the rotations R_{j}, R_{j}^{\prime} as acting on all R^{2}. These commute with T. Let $m_{j}(z)=z^{r_{j} a q_{j}^{\prime}}\left(z\right.$ complex) and define $f_{j}: \Sigma^{1} \rightarrow \Sigma^{1}$ by $f_{j}=T^{-1} m_{j} T$. Then we claim that $f=f_{1} * f_{2} * \ldots * f_{n}: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ is a ($g, g^{\prime a}$) equivariant map of degree d_{0}.

The equivariance will follow immediately once we know that $\left(R_{j}^{\prime}\right)^{a} f_{j}$ $=f_{j} R_{j}$, and this is true because

$$
\begin{aligned}
\left(R_{j}^{\prime}\right)^{a} f_{j}(z) & =\left(R_{j}^{\prime}\right)^{a} T^{-1} m_{j} T(z)=T^{-1}\left(R_{j}^{\prime}\right)^{a} m_{j} T(z) \\
& =T^{-1}\left(R_{j}^{\prime}\right)^{a r_{j} q_{j}} m_{j} T(z)=T^{-1}\left(e^{2 \pi i \cdot q_{j}^{\prime} a r_{j} q_{j} / p} \cdot T(z)^{a r_{j} q_{j}^{\prime}}\right) \\
& =T^{-1}\left(\left(R_{j} T(z)\right)^{a r_{j} q_{j}^{\prime}}\right)=T^{-1} m_{j} R_{j} T(\mathrm{z}) \\
& =T^{-1} m_{j} T R_{j}(z)=f_{j} R_{j}(z)
\end{aligned}
$$

That the degree of f is indeed d_{0} can be seen directly by counting. \{We give the argument when $p \neq 2$. Slight adjustments in notation are necessary when $p=2$.\} There is a subdivision $\hat{\Sigma}_{j}$ of Σ_{j} into $\left|p r_{j} a q_{j}^{\prime}\right| 1$-simplexes-say [v_{k}, v_{k+1}] gets divided into $v_{k}=v_{k, 0}, v_{k, 1}, \ldots, v_{k,\left|r_{j} a q_{j}^{\prime}\right|}=v_{k+1}$-such that f_{j} takes simplexes of $\hat{\Sigma}_{j}$ homeomorphically onto simplexes of Σ_{j}; i.e., $f_{j}\left[v_{k, b}, v_{k, b+1}\right]=\left[v_{s}, v_{s \pm 1}\right]$ for some s, the sign agreeing with the sign of $r_{j} a q_{j}^{\prime}$. Let $\hat{\Sigma}^{2 n-1}=\hat{\Sigma}_{1} * \ldots * \hat{\Sigma}_{n}$. Then one generator α of the simplicial cycles $Z_{2 n-1}\left(\hat{\Sigma}^{2 n-1}\right)$ is the chain which is the sum of ($2 n-1$)-simplexes of the form

$$
\left[v_{k, a}, v_{k, a+1}\right] *\left[v_{\ell, b}, v_{\ell, b+1}\right] * \ldots *\left[v_{m, c}, v_{m, c+1}\right]<\hat{\Sigma}_{1} * \hat{\Sigma}_{2} * \ldots \hat{\Sigma}_{n}
$$

Such a simplex goes under f to \pm a typical simplex in the similarly chosen generator β of $Z_{2 n-1}\left(\sum^{2 n-1}\right)$, the sign being the product of the signs of $r_{j} a q_{j}^{\prime}$; i.e. the sign of d_{0}. Counting the possible simplexes involved, one concludes that $f *(\alpha)=d_{0} \beta$ as claimed.

From (29.3) and the fact that there is an equivariant map of degree d_{0} we conclude that if d is the degree of any $\left(g, g^{\prime a}\right)$-equivariant map then $d \equiv d_{0}\left(=a^{n} r_{1} \ldots r_{n} q_{1}^{\prime} \ldots q_{n}^{\prime}\right)(\bmod p)$. Conversely suppose that $d=$ $d_{0}+N p$ where d_{0} is the degree of a $\left(g, g^{\prime a}\right)$ - equivariant map f. We modify f as follows to get a $\left(g, g^{\prime a}\right)$-equivariant map of degree d :

Let Q_{0} be a round closed ball in the interior of a top dimensional simplex of $E_{0}^{2 n-1}$. Using a coordinate system with origin at the center of Q_{0} we write

$$
\begin{aligned}
& Q_{0}=\left\{t x \mid x \in \text { Bdy } Q_{0}, 0 \leq t \leq 1\right\} ; \frac{1}{2} Q_{0}=\left\{t x \left\lvert\, 0 \leq t \leq \frac{1}{2}\right.\right\} . \\
& Q_{j}=g^{j}\left(Q_{0}\right),(0 \leq j \leq p) ; \quad \frac{1}{2} Q_{j}=g^{j}\left(\frac{1}{2} Q_{0}\right) .
\end{aligned}
$$

Define $h: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ by
(A) $h \mid\left(\Sigma^{2 n-1}-\bigcup_{j}\right.$ Int $\left.Q_{j}\right)=f \mid\left(\Sigma^{2 n-1}-\bigcup_{j}\right.$ Int $\left.Q_{j}\right)$
(B) $h(t x)=f((2 t-1) x)$, if $\frac{1}{2} \leq t \leq 1$
$h:\left(\frac{1}{2} Q_{0}, \operatorname{Bdy}\left(\frac{1}{2} Q_{0}\right)\right) \rightarrow\left(\sum^{2 n-1}, f(0)\right)$ is any map of degree N you like
(C) $h \mid Q_{j}=\left(g^{\prime a}\right)^{j}\left(h \mid Q_{0}\right) g^{-j}$.

The check that h is equivariant is straightforward, as in the proof of (29.3). To check the degree of h, let $C=\Sigma^{2 n-1}-\bigcup_{j}$ Int $\left(\frac{1}{2} Q_{j}\right)$. Consider $(h \mid C)_{*}$: $H_{n}(C$, Bdy $C) \rightarrow H_{n}\left(\Sigma^{2 n-1}, f(0)\right) \quad$ and $\quad\left(h \left\lvert\, \frac{1}{2} Q_{j}\right.\right)_{*}: H_{n}\left(\frac{1}{2} Q_{j}\right.$, Bdy $\left.\frac{1}{2} Q_{j}\right) \rightarrow$ $H_{n}\left(\Sigma^{2 n-1}, f(0)\right)$. It is an elementary exercise (or use [Hilton-Wylie, II.1.31] and the Hurewicz homomorphism) that $\operatorname{deg} h=\operatorname{deg}(h \mid C)+\sum_{j} \operatorname{deg}\left(h \left\lvert\, \frac{1}{2} Q_{j}\right.\right)$. But g^{-j} takes Q_{j} in an orientation preserving manner onto Q_{0} and $\left(g^{\prime a}\right)^{j}$ is just a rotation of $\Sigma^{2 n-1}$. Hence $\left(h \left\lvert\, \frac{1}{2} Q_{j}\right.\right)_{*}$ (generator) $=\left(h \left\lvert\, \frac{1}{2} Q_{0}\right.\right)_{*}$ (generator) $=$ $N \cdot$ (generator). Since clearly, $\operatorname{deg} f=\operatorname{deg}(h \mid C)$, we have $\operatorname{deg} h=\operatorname{deg} f+\sum_{j} N$ $=d_{0}+N p$, as desired.

We now turn to the interpretation of these equivariant results as results about maps between lens spaces.
(29.5) Suppose that $L=L\left(p ; q_{1}, \ldots, q_{n}\right)$ and $L^{\prime}=L\left(p ; q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ are oriented by choosing $e_{2 n-1}$ and $e_{2 n-1}^{\prime}$ as generators of $H_{2 n-1}$ (see §28).
(A) If $f_{0}, f_{1}: L \rightarrow L^{\prime}$ then $\left[f_{0} \simeq f_{1}\right] \Leftrightarrow\left[\operatorname{deg} f_{0}=\operatorname{deg} f_{1}\right.$ and $f_{0 \#}=f_{1 \#}$: $\left.G \rightarrow G^{\prime}\right]$. (See the Remark following (29.2).)
(B) If $(d, a) \in \mathbb{Z} \times \mathbb{Z}$ then [there is a map $f: L \rightarrow L^{\prime}$ such that $\operatorname{deg} f=d$ and

(C) If $f: L \rightarrow L^{\prime}$ then f is a homotopy equivalence $\Leftrightarrow \operatorname{deg} f= \pm 1$.

PROOF: (A) Suppose that $\operatorname{deg} f_{0}=\operatorname{deg} f_{1}$ and $f_{0 \#}(g)=f_{1 \#}(g)=h$. Choose lifts $\tilde{f}_{i}: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}, i=0,1$. These are both (g, h)-equivariant by (29.2). They have the same degree because if $z=\sum_{i=0}^{p-1} g^{i} \tilde{e}_{2 n-1}=$ $\sum_{i=0}^{p-1} g^{\prime} \tilde{e}_{2 n-1}$ is chosen as basic cycle for $C_{2 n-1}\left(\sum^{2 n-1}\right)$ then $\pi_{*}(z)=\pi_{*}^{\prime}(z)$ $=p \cdot e_{2 n-1}$, and the commutative diagram

shows that $\operatorname{deg} \tilde{f}_{0}=\operatorname{deg} f_{0}=\operatorname{deg} f_{1}=\operatorname{deg} \tilde{f}_{1}$. Hence, by (29.3) \tilde{f}_{0} and \tilde{f}_{1}
are equivariantly homotopic. So by (29.1), $f_{0} \simeq f_{1}$. The converse is trivial using (29.2).
(B) Given f such that $\operatorname{deg} f=d$ and $f_{\#}(g)=g^{\prime a}$, let $f: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ lift f. Then \tilde{f} is a $\left(g, g^{\prime a}\right)$-equivariant map which, by the argument for (A), has degree d. Hence by (29.4), $d \equiv a^{n} r_{1} \ldots r_{n} q_{1}^{\prime} \ldots q_{n}^{\prime}(\bmod p)$.

Conversely, if d satisfies this congruence, there is, by (29.4), a ($g, g^{\prime a}$) equivariant map $F: \Sigma^{2 n-1} \rightarrow \Sigma^{2 n-1}$ of degree d. By (29.1) and (29.2), F covers a map $f: L \rightarrow L^{\prime}$ such that $f_{\#}(g)=\left(g^{\prime}\right)^{\prime}$. As before degree $f=\operatorname{degree} F=d$.
(C) Suppose that $f: L \rightarrow L^{\prime}$ has degree ± 1. Assume $f_{\#}(g)=g^{\prime a}$. Then

$$
\operatorname{deg} f= \pm 1 \equiv a^{n} r_{1} \ldots r_{n} q_{1}^{\prime} \ldots q_{n}^{\prime}(\bmod p)
$$

i.e.,
(*) $a^{n} \equiv \pm q_{1} \ldots q_{n} r_{1}^{\prime} \ldots r_{n}^{\prime}(\bmod p)$, where $r_{j}^{\prime} q_{j}^{\prime} \equiv 1(\bmod p)$.
Thus $(a, p)=1$ and we may choose b such that $a b \equiv 1(\bmod p)$. From (*)

$$
1 \equiv b^{n} a^{n} \equiv \pm b^{n} q_{1} \ldots q_{n} r_{1}^{\prime} \ldots r_{n}^{\prime}(\bmod p)
$$

Hence, by (B), there is a map $\bar{f}: L^{\prime} \rightarrow L$ with $\operatorname{deg} f=\operatorname{deg} f= \pm 1$ and $f_{\#}\left(g^{\prime}\right)$ $=\left(g^{\prime}\right)^{b}$. Then $\operatorname{deg}(f f)=1$ and $(f f)_{\#}(g)=g^{a b}=g$. So by (A), $f f \simeq 1_{L}$. Similarly $f f \simeq 1_{L}$, and f is a homotopy equivalence.

Notice that, when $p=2, L=L^{\prime}=L(2 ; 1,1, \ldots, 1)=\mathbb{R} P^{2 n-1}$ (real projective space). The preceding proposition tells us that there are exactly two self-homotopy equivalences of $\mathbb{R} P^{2 n-1}$, one of degree +1 and one of degree -1 . All other cases are given by the following classification of homotopy equivalences.
(29.6) Suppose that $L=L\left(p ; q_{1}, \ldots, q_{n}\right)$ and $L^{\prime}=L\left(p ; q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ where $p>2$, and that $r_{j}^{\prime} q_{j}^{\prime} \equiv 1(\bmod p)$ for all j. Let $\mathscr{E}\left[L, L^{\prime}\right]$ denote the set of equivalence classes under homotopy of homotopy equivalences $f: L \rightarrow L^{\prime}$. Then there is a bijection

$$
\varphi: \mathscr{E}\left[L, L^{\prime}\right] \rightarrow\left\{a \mid 0<a<p \text { and } a^{n} \equiv \pm q_{1} \ldots q_{n} r_{1}^{\prime} \ldots, r_{n}^{\prime}(\bmod p)\right\}
$$

given by $\varphi[f]=a$ if $f_{\#}(g)=g^{\prime a}$. Moreover, if $\varphi[f]=a$ then degree $f= \pm 1$ where the sign agrees with that above.

PROOF: A straightforward application of (29.5).
The following applications of (29.6) are left as exercises in arithmetic.
(I) $\mathscr{E}[L, L]$ is isomor phic to the group consisting of those units a in the ring \mathbb{Z}_{p} such that $a^{n} \equiv \pm 1(\bmod p)$, provided $p \neq 2$.
(II) Any homotopy equivalence of $L_{7, q}$ onto itself is of degree +1 . Thus $L_{7, q}$ admits no orientation reversing self-homeomorphism. Such a manifold is called asymmetric.
(III) $L_{p, q}$ and $L_{p, q}$, have the same homotopy type \Leftrightarrow there is an integer b such that $q q^{\prime} \equiv \pm b^{2}(\bmod p)$. Thus we have the examples:

$$
\begin{aligned}
& L_{5,1} \not ⿻ L_{5,2} \\
& L_{7,1} \simeq L_{7,2}
\end{aligned}
$$

where " \simeq " denotes homotopy equivalence. We shall show in the next section that $L_{7,1}$ and $L_{7,2}$ do not have the same simple-homotopy type. (Compare (24.4).)

§30. Simple-homotopy equivalence of lens spaces

The purpose of this section is to prove
(30.1) Let $L=L\left(p ; q_{1}, \ldots, q_{n}\right)$ and $L^{\prime}=L\left(p ; q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ and suppose that f : $L \rightarrow L^{\prime}$ is a simple-homotopy equivalence. If $f_{\#}(g)=\left(g^{\prime}\right)^{a}$ (as explained by (29.2)) then there are numbers $\varepsilon_{i} \in\{+1,-1\}$ such that $\left(q_{1}, \ldots, q_{n}\right)$ is equal $(\bmod p)$ to some permutation of $\left(\varepsilon_{1} a q_{1}^{\prime}, \varepsilon_{2} a q_{2}^{\prime}, \ldots, \varepsilon_{n} a q_{n}^{\prime}\right)$.

Our proof will not be totally self-contained in that we shall assume the following number-theoretic result. (For a proof see [Kervaire-MaumarydeRham, p. 1-12].)

Franz' theorem: Let $S=\{j \in \mathbb{Z} \mid 0<j<\mathrm{p},(j, p)=1\}$. Suppose that $\left\{a_{j}\right\}_{j \in S}$ is a sequence of integers, indexed by S, satisfying
(1) $\sum_{j \in S} a_{j}=0$
(2) $a_{j}=a_{p-j}$
(3) $\prod_{j \in S}\left(\xi^{j}-1\right)^{a_{j}}=1$ for every $p^{\text {th }}$ root of unity $\xi \neq 1$.

Then $a_{j}=0$ for all $j \in S$.
PROOF OF (30.1): We give $\Sigma^{2 n-1}=\tilde{L}=\tilde{L}^{\prime}$ the cell structure of $\S 28$. Then $C\left(\tilde{L}^{\prime}\right)$ and $C(\tilde{L})_{f_{*}}$ are $\mathbb{Z}\left(G^{\prime}\right)$-complexes with basis $\left\{\tilde{e}_{k}\right\}$ in dimension k and boundary operators gotten from equations (*) on page 90. Denoting $\Sigma(x)=$ $1+x+\ldots+x^{p-1}, C_{j}\left(\tilde{L}^{\prime}\right)=C_{j}^{\prime}$, and $\left[C_{j}(\tilde{L})\right]_{j *}=C_{j}$, these complexes look like

$$
\begin{array}{r}
C\left(\tilde{L^{\prime}}\right): 0 \rightarrow C_{2 n-1}^{\prime} \xrightarrow{\left(g^{\prime}\right)^{r_{n}^{\prime}}-1} C_{2 n-2}^{\prime} \xrightarrow{\Sigma\left(g^{\prime}\right)} C_{2 n-3}^{\prime} \xrightarrow{\left(g^{\prime}\right)^{r_{n-1}^{\prime}}-1} \\
\cdots \xrightarrow{\Sigma\left(g^{\prime}\right)} C_{1}^{\prime} \xrightarrow{\left(g^{\prime}\right)^{r_{1}^{\prime}-1}-1} C_{0}^{\prime} \rightarrow 0 \\
C(\tilde{L})_{f_{*}:}: 0 \rightarrow C_{2 n-1} \xrightarrow{\left(g^{\prime}\right)^{a r_{n}-1}} C_{2 n-2} \xrightarrow{\Sigma\left(g^{\prime} a\right)} C_{2 n-3} \rightarrow \cdots \\
\cdots \xrightarrow{\Sigma\left(g^{\prime} a\right)} C_{1} \xrightarrow{\left(g^{\prime}\right)^{r_{1}-1}-1} C_{0} \rightarrow 0 .
\end{array}
$$

Now invoke (22.8). Thus $0=\tau(f)=\tau(\mathscr{C})$ where \mathscr{C} is an acyclic $W h\left(G^{\prime}\right)$ complex which fits into a based short exact sequence of $W h\left(G^{\prime}\right)$-complexes

$$
O \rightarrow C\left(\tilde{L}^{\prime}\right) \rightarrow \mathscr{C} \rightarrow \bar{C}(\tilde{L}) \rightarrow 0
$$

where $C(\tilde{L})$ is the complex $C(\tilde{L})_{f_{*}}$ shifted in dimension by one and with boundary operator multiplied by (-1).

It would be quite useful if the complexes in this last sequence were all acyclic. To achieve this we change rings. Suppose that ξ is any $p^{\text {th }}$ root of unity other than 1 . Let \mathbb{C} be the complex numbers and let $h: \mathbb{Z}\left(G^{\prime}\right) \rightarrow \mathbb{C}$ by $h\left(\sum_{j} n_{j}\left(g^{\prime}\right)^{j}\right)=\sum_{j} n_{j} \xi^{j}$. Then, by the discussion at the end of $\S 18$-namely point 8 . on page 61 -we have a based short exact sequence

$$
0 \rightarrow C\left(\tilde{L}^{\prime}\right)_{h} \rightarrow \mathscr{C}_{h} \rightarrow \bar{C}(\tilde{L})_{h} \rightarrow 0
$$

But now $C\left(\tilde{L}^{\prime}\right)_{h}$ and $\bar{C}(\tilde{L})_{h}$ are acyclic (\mathbb{C}, \bar{G})-complexes, by (18.1), where \bar{G} $=\left\{ \pm \xi^{j} \mid j \in \mathbb{Z}\right\}$. [To apply (18.1) one must note that the fact that $(a, p)=1$ implies that $\Sigma\left(g^{\prime}\right)=\Sigma\left(g^{\prime a}\right)$ and $\left(a r_{j}, p\right)=1$ for all j.] Moreover, also by (18.1)

$$
\begin{aligned}
& \tau\left(C\left(\tilde{L}^{\prime}\right)_{h}\right)=\tau\left\langle\prod_{k=1}^{n}\left(\xi^{r_{k}^{\prime}}-1\right\rangle \in K_{G}(\mathbb{C})\right. \\
& \tau\left(\bar{C}(\tilde{L})_{h}\right)=-\tau\left\langle\prod_{k=1}^{n}\left(\xi^{a r_{k}}-1\right)\right\rangle \in K_{G}^{\prime}(\mathbb{C}) .
\end{aligned}
$$

The minus sign in the last equation comes from the shift in dimension. The change of sign of the boundary operator has no effect since $\tau(d+\delta)$ $=\tau(-d-\delta)$. In this setting (17.2) and (18.2) yield

$$
\begin{aligned}
0 & =h_{*}(\tau \mathscr{C})=\tau\left(\mathscr{C}_{h}\right) \\
& =\tau\left(C\left(\tilde{L}^{\prime}\right)_{h}\right)+\tau\left(\bar{C}(\tilde{L})_{h}\right) \\
& =\tau\left\langle\prod_{k=1}^{n}\left(\xi^{r_{k}^{\prime}}-1\right)\right\rangle-\tau\left\langle\prod_{k=1}^{n}\left(\xi^{a r_{k}}-1\right)\right\rangle .
\end{aligned}
$$

The determinants of these 1×1 matrices can only differ by a factor lying in \bar{G} (using (10.6)). So we conclude

$$
\begin{equation*}
\prod_{k=1}^{n}\left(\xi^{r_{k}^{\prime}}-1\right)= \pm \xi^{s} \prod_{k=1}^{n}\left(\xi^{a r_{k}}-1\right) \tag{*}
\end{equation*}
$$

for every $p^{\text {th }}$ root of unity $\xi \neq 1$.
From here on its just a case of doing some manipulating to show that our theorem follows from equation (*) and the Franz Theorem. But without Franz' Theorem the reader should pause and do the

Exercise: If $f: L_{7},{ }_{2} \rightarrow L_{7},{ }_{1}$ is a homotopy equivalence, so that, according to (29.6), $f_{\#}(g)=g^{\prime a}$ where $a^{2} \equiv 2$ or $a^{2} \equiv 5(\bmod 7)$, and if $\xi=e^{2 \pi i / 7}$, then

$$
\left|(\xi-1)^{2}\right| \neq\left|\left(\xi^{a}-1\right)\left(\xi^{4 a}-1\right)\right|
$$

Hence f is not a simple-homotopy equivalence.
Now simplify notation by writing $s_{k}=r_{k}^{\prime}, t_{k}=a r_{k}$. Equation (*) gives, for every non-trivial p^{\prime} th root of unity,

$$
\left|\prod_{k=1}^{n}\left(\xi^{s_{k}}-1\right)\right|^{2}=\left|\prod_{k=1}^{n}\left(\xi^{t_{k}}-1\right)\right|^{2}
$$

or

$$
\begin{equation*}
\prod_{k=1}^{n}\left(\xi^{s_{k}}-1\right)\left(\xi^{-s_{k}}-1\right)=\prod_{k=1}^{n}\left(\xi^{t_{k}}-1\right)\left(\xi^{-t_{k}}-1\right) \tag{**}
\end{equation*}
$$

since $\left(\xi^{-d}-1\right)$ is the complex conjugate of $\left(\xi^{d}-1\right)$.
If $j \in S$, let S_{j} be the subsequence of $\left(s_{1},-s_{1}, s_{2},-s_{2}, \ldots, s_{n},-s_{n}\right)$ consisting of those terms x such that $x \equiv j(\bmod p)$. Let m_{j} be the length of S_{j}. Similarly define the sequence T_{j} with length m_{j}^{\prime} from the sequence $\left(t_{1},-t_{1}, \ldots, t_{n},-t_{n}\right)$. Since $\left(s_{k}, p\right)=1$ implies $\pm s_{k} \equiv j(\bmod p)$ for some $j \in S$, and $i \neq j$ implies $S_{i} \cap S j=\varnothing$, the sequence ($s_{1},-s_{1}, \ldots, s_{n},-s_{n}$) is the disjoint union of the S_{j}. Hence $\sum_{j \in S} m_{j}=2 n$. Also the correspondence $x \mapsto-x$ gives a bijection from S_{j} to S_{p-j}, so $m_{j}=m_{p-j}$. Of course, similar equations hold for the m_{j}^{\prime}. Let $a_{j}=m_{j}-m_{j}^{\prime}$. Then
(1) $\sum_{j \in S} a_{j}=2 n-2 n=0$
(2) $a_{j}=m_{j}-m_{j}^{\prime}=m_{p-j}-m_{p-j}^{\prime}=a_{p-j}$
(3) If $\xi \neq 1$ is any root of unity and if
$S_{j}=\left(\varepsilon_{j 1} s_{j 1}, \ldots, \varepsilon_{j m_{j}} s_{j m_{j}}\right), T_{j}=\left(\delta_{j 1} t_{j 1}, \ldots, \delta_{j m_{j}^{\prime} t_{j m_{j}^{\prime}}}\right)$
with $\varepsilon_{j \alpha}, \delta_{j \beta}= \pm 1$, then

$$
\begin{aligned}
\prod_{j \in S}\left(\xi^{j}-1\right)^{a_{j}} & =\prod_{j \in S}\left(\xi^{j}-1\right)^{m_{j}}\left(\xi^{j}-1\right)^{-m_{j}^{\prime}} \\
& =\prod_{j \in S}\left[\left(\prod_{i=1}^{m_{j}}\left(\xi^{\epsilon_{j i} s_{j i}}-1\right)\right)\left(\prod_{i=1}^{m_{j}^{\prime}}\left(\xi^{\delta_{j i} t_{j i}}-1\right)\right)^{-1}\right] \\
& =\prod_{k=1}^{n}\left(\xi^{s_{k}}-1\right)\left(\xi^{-s_{k}}-1\right)\left(\xi^{t_{k}}-1\right)^{-1}\left(\xi^{-t_{k}}-1\right)^{-1} \\
& =1 \text { from }(* *) .
\end{aligned}
$$

Hence, by Franz' theorem, each $a_{j}=0$ and $m_{j}=m_{j}^{\prime}$. But, if $p \neq 2, m_{j}$ is just the number of terms among ($r_{1}^{\prime}, \ldots, r_{n}^{\prime}$) which are congruent to $\pm j$, $\bmod p$; and similarly for m_{j}^{\prime} and $\left(a r_{1}, \ldots, a r_{n}\right)$. Hence under some reordering $r_{i 1}^{\prime}, \ldots, r_{i n}^{\prime}$ we have

$$
\varepsilon_{i_{k}} r_{i_{k}}^{\prime} \equiv a r_{k}(\bmod p), \varepsilon_{i_{k}} \in\{+1,-1\}, k=1,2, \ldots, n
$$

So $\quad \varepsilon_{i_{k}} q_{i k}^{\prime} \equiv a^{-1} q_{k}(\bmod p)$
and

$$
\varepsilon_{i_{k}} a q_{i_{k}}^{\prime} \equiv q_{k}(\bmod p)
$$

If $p=2$, then $a=1$ and $\left(q_{1}, \ldots, q_{n}\right)=\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)=(1,1, \ldots, 1)(\bmod$ p), so there was nothing to prove in the first place.

§31. The complete classification

If $L=L\left(p ; q_{1}, \ldots, q_{n}\right)$ and $L^{\prime}=L\left(p ; q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$, the following assertions are equivalent: ${ }^{22}$
(A) There is a number a and there are numbers $\varepsilon_{j} \in\{-1,1\}$ such that $\left(q_{1}, \ldots, q_{n}\right)$ is a permutation of $\left(\varepsilon_{1} a q_{1}^{\prime}, \ldots, \varepsilon_{n} a q_{n}^{\prime}\right)(\bmod p)$.
(B) L is simple-homotopy equivalent to L^{\prime}.
(C) L is p.1. homeomorphic to L^{\prime}.
(D) L is homeomorphic to L^{\prime}.

Moreover every simple-homotopy equivalence (and thus by [K-S] every homeomorphism) between lens spaces is homotopic to a p.1. homeomorphism.

PROOF: Clearly $(C) \Rightarrow(D)$. The implication $(D) \Rightarrow(B)$ is true because of (25.4) Thus the equivalence of $(A)-(D)$ will follow from the equivalence of (A)-(C).

We have already proved [(25.3) and (30.1)] that $(C) \Rightarrow(B) \Rightarrow(A)$. To prove $(A) \Rightarrow(C)$, suppose that $q_{i}=\varepsilon_{j_{i}} a q_{j_{i}}^{\prime}$ where $\left(j_{1}, \ldots, j_{n}\right)$ is a permutation of $(1,2, \ldots, n)$. Think of $\Sigma^{2 n-1}$ as $\Sigma_{1} * \Sigma_{2} * \ldots * \Sigma_{n}$ where $\Sigma_{i} \subset \underbrace{0 \times \ldots \times R^{2}}_{i}$ $\times \ldots \times 0$. Let $T_{i}: \Sigma_{i} \rightarrow \Sigma_{j_{i}}$ be the simplicial isomorphism given by

$$
\begin{aligned}
& T_{i}(\underbrace{0, \ldots, 0, z}_{i}, \ldots, 0)=(\underbrace{0,0, \ldots, z}_{j_{i}}, 0, \ldots, 0), \text { if } \varepsilon_{j_{i}}=1 \\
& T_{i}(\underbrace{0, \ldots, 0, z}_{i}, 0, \ldots, 0)=(\underbrace{0,0, \ldots, 0, \bar{z}}_{j_{i}}, 0, \ldots, 0), \text { if } \varepsilon_{j_{i}}=-1
\end{aligned}
$$

where \bar{z} is the complex conjugate of z. With R and R^{\prime} as in $\S 26,\left(R_{j_{i}}^{\prime}\right)^{a}\left(w^{\prime}\right)$ $=\left(e^{2 \pi i q_{j}^{\prime}{ }_{i} / p} \cdot w\right)$ and $R_{i}(w)=\left(e^{2 \pi i q_{i} / p} \cdot w\right)$; so it follows that $\left(R_{j_{i}}^{\prime}\right)^{a} T_{i}=T_{i} R_{i}$. Then the simplicial isomorphism $T\left(\sum_{i} \lambda_{i} z_{i}\right)=\sum_{i} \lambda_{i} T_{i}\left(z_{i}\right)$ is a $\left(g, g^{\prime a}\right)$ equivariant $p .1$. homeomorphism of $\Sigma^{2 n-1}$. This induces a map $h: L \rightarrow L^{\prime}$ via the diagram

h is $p .1$. since π, π^{\prime} and T are $p .1$., and h is a homeomorphism because T, being both equivariant and a homeomorphism, cannot take points in two different fibers into the same fiber. Thus $(A) \Rightarrow(C)$ as claimed.

[^20]Finally suppose that $f: L \rightarrow L^{\prime}$ is a simple-homotopy equivalence with $f_{\#}(g)=g^{\prime a}$. By (30.1), a satisfies the hypothesis of (A). Let $h: L \rightarrow L^{\prime}$ be the ($g, g^{\prime a}$)-equivariant $p .1$. homeomorphism constructed in the last paragraph. Then by (29.2) $h_{\#}(g)=g^{\prime a}$. Hence, if $p>2, f$ is homotopic to the $p .1$. homeomorphism h, by (29.6). When $p=2$ there is, up to homotopy, exactly one homotopy-equivalence of each degree (an immediate consequence of (29.5)). The map $\lambda_{1} z_{1}+\lambda_{2} z_{2}+\ldots+\lambda_{n} z_{n} \rightarrow \lambda_{1} \bar{z}_{1}+\lambda_{2} z_{2}+\ldots+\lambda_{n} z_{n}$ induces a $p .1$. homeomorphism of degree (-1) on $\mathbb{R} P^{2 n-1}$. We leave it to the reader to find a $p .1$. homeomorphism of degree +1 .

Appendix

Chapman's Proof of the Topological Invariance of Whitehead Torsion

As this book was being prepared for print the topological invariance of Whitehead torsion (discussed in §25) was proved by Thomas Chapman ${ }^{23}$. In fact he proved an even stronger theorem, which we present in this appendix. Our presentation will be incomplete in that there are several results from infinite dimensional topology (Propositions A and B below) which will be used without proof.

Statement of the theorem

Let $I_{j}=[-1,1], j=1,2,3, \ldots$, and denote

$$
\begin{aligned}
Q & =\prod_{j=1}^{\infty} I_{j}=\text { the Hilbert cube } \\
I^{k} & =\prod_{j=1}^{k} I_{j} \\
Q_{k+1} & =\prod_{j=k+1}^{\infty} I_{j}
\end{aligned}
$$

It is an elementary fact that these spaces are contractible.
Main Theorem: If X and Y are finite $C W$ complexes then $f: X \rightarrow Y$ is a simple-homotopy equivalence if and only if $f \times 1_{Q}: X \times Q \rightarrow Y \times Q$ is homotopic to a homeomorphism of $X \times Q$ onto $Y \times Q$.

Corollary 1 (Topological invarance of Whitehead torsion): If $f: X \rightarrow Y$ is a homeomorphism (onto) then f is a simple-homotopy equivalence.

PROOF: $f \times 1_{Q}: X \times Q \rightarrow Y \times Q$ is a homeomorphism.
Corollary 2: If X and Y are finite $C W$ complexes then $X \wedge Y \Leftrightarrow X \times Q \approx$ $Y \times Q$.
$P R O O F$: If $F: X \times Q \rightarrow Y \times Q$ is a homeomorphism, let f denote the composition $X \xrightarrow{\times 0} X \times Q \xrightarrow{F} Y \times Q \xrightarrow{\pi} Y$. Then $f \times 1_{Q} \simeq F$. Hence, by the

[^21]Main Theorem, f is a simple homotopy equivalence. The other direction follows even more trivially.

Results from infinite-dimensional topology

Proposition A: If X and Y are finite $C W$ complexes and $f: X \rightarrow Y$ is a simple-homotopy equivalence then $f \times 1_{Q}: X \times Q \rightarrow Y \times Q$ is homotopic to a homeomorphism of $X \times Q$ onto $Y \times Q$.

COMMENT ON PROOF: This half of the Main Theorem is due to James E. West [Mapping cylinders of Hilbert cube factors, General Topology and its Applications 1, (1971), 111-125]. It comes directly (though not easily) from the geometric definition of simple-homotopy equivalence. For West proves that, if $g: A \rightarrow B$ is a map between finite $C W$ complexes and $p: M_{g} \rightarrow B$ is the natural projection, then $p \times 1: M_{g} \times Q \rightarrow B \times Q$ is a uniform limit of homeomorphisms of $M_{g} \times Q$ onto $B \times Q$. This implies without difficulty that $p \times 1$ is homotopic to a homeomorphism. Recalling (proof of (4.1)) that an elementary collapse map be viewed as the projection of a mapping cylinder, it follows that if $f: X \rightarrow Y$ is a simple-homotopy equivalence ($=$ a map homotopic to a sequence of elementary expansions and collapses) then $f \times 1: X \times Q \rightarrow Y \times Q$ is homotopic to a homeomorphism.

Proposition B (Handle straightening theorem): If M is a finite dimensional p. 1. manifold (possibly with boundary) and if $\alpha: R^{n} \times Q \rightarrow M \times Q$ is an open embedding, with $n \geq 2$, then there is an integer $k>0$ and a codimension-zero compact p.1. submanifold V of $M \times I^{k}$ and a homeomorphism $G: M \times Q \rightarrow$ $M \times Q$ such that
(i) $G \mid \alpha\left(\left(R^{n}-\right.\right.$ Int $\left.\left.B^{n}(2)\right) \times Q\right)=1,\left(B^{n}(r)=\right.$ ball of radius $\left.r\right)$
(ii) $G \alpha\left(B^{n}(1) \times Q\right)=V \times Q_{k+1}$,
(iii) Bdy V (the topological boundary of V in $M \times I^{k}$, not its manifold boundary) is $p .1$. bicollared in $M \times I^{k}$.

COMMENT: This theorem is due to Chapman [to appear in the Pacific Journal of Mathematics]. It is a (non-trivial) analogue of the Kirby-Siebenmann finite dimensional handle straightening theorem $[K-S]$. In the ensuing proof it will serve as "general position" theorem, allowing us to homotop a homeomorphism $h: K \rightarrow L, K$ and L simplicial complexes, to a map (into a stable regular neighborhood of L-namely $M \times I^{k}$) which is nice enough that the Sum Theorem (23.1) applies.

Proof of the Main Theorem

In what follows $X, Y, X^{\prime}, Y^{\prime}$, will denote finite $C W$ complexes unless otherwise stipulated.

Because Q is contractible, there is a covariant homotopy functor from the category of spaces with given factorizations of the form $X \times Q$ and maps between such spaces to the category of finite $C W$ complexes and maps which is given by $X \times Q \mapsto X$ and $(F: X \times Q \rightarrow Y \times Q) \mapsto\left(F_{0}: X \rightarrow Y\right)$ where F_{0} makes the following diagram commute

Explicitly, the correspondence $F \mapsto F_{0}$ satisfies
(1) $F \simeq G \Rightarrow F_{0} \simeq G_{0}$
(2) $(G F)_{0} \simeq G_{0} F_{0}$
(3) If $f: X \rightarrow Y$ then $(f \times 1)_{0}=f$.
[In particular $\left(1_{X \times Q}\right)_{0}=1_{X}$.]
Definition:-The ordered pair $\langle X, Y\rangle$ has Property P iff $\tau\left(H_{0}\right)=0$ for every homeomorphism $H: X \times Q \rightarrow Y \times Q$. (The torsion of a non-cellular homotopy equivalence is defined following (22.1).)

From Proposition A and from properties (1) and (3) above, the Main Theorem will follow once we know that every pair $\langle X, Y\rangle$ has Property P.

Lemma 1:-If $\langle X, Y\rangle$ has Property P then $\langle Y, X\rangle$ has Property P.
PROOF: If $H: Y \rightarrow X$ is a homeomorphism then so is $H^{-1}: X \rightarrow Y$ and, by assumption, $\tau\left(\left(H^{-1}\right)_{0}\right)=0$. But $\left(H^{-1}\right)_{0}$ is a homotopy inverse to H_{0}. Hence $\tau\left(H_{0}\right)=0$, by (22.5).

Lemma 2:-If $\langle X, Y\rangle$ has Property P and if $X \wedge X^{\prime}, Y \wedge Y^{\prime}$ then $\left\langle X^{\prime}, Y^{\prime}\right\rangle$ has Property P.

Proof: Consider the special case where $Y=Y^{\prime}$. Suppose that $H: X^{\prime} \times Q$ $\rightarrow Y \times Q$ is a homeomorphism. If $f: X \rightarrow X^{\prime}$ is a simple-homotopy equivalence then, by Proposition A, there is a homeomorphism $F: X \times Q \rightarrow X^{\prime} \times Q$ with $F \simeq f \times 1_{Q}$. Thus we have

$$
\begin{gathered}
X \times Q \xrightarrow{F} X^{\prime} \times Q \xrightarrow{H} Y \times Q \\
X \xrightarrow{f} X^{\prime} \xrightarrow{H_{0}} Y .
\end{gathered}
$$

Since $\langle X, Y\rangle$ has Property $P,(H F)_{0}$ is a simple-homotopy equivalence. But $(H F)_{0} \simeq\left(H_{0} F_{0}\right) \simeq H_{0} f$ where f is a simple-homotopy equivalence. Hence H_{0} is a simple-homotopy equivalence. Therefore $\left\langle X^{\prime}, Y\right\rangle$ has Property P.

The general case now follows easily from the special case and Lemma 1.

From this point on which shall introduce polyhedra into our discussion as though they were simplicial complexes (whereas in fact a polyhedron is a topological space X along with a family of piecewise-linearly related triangulations of X). This will in every case make sense and be permissible because of invariance under subdivision. (See (25.1) and (25.3).)

Lemma 3:-If $\langle X, M\rangle$ has Property P whenever X is a simplicial complex and M is a p.1. manifold then all $C W$ pairs have Property P.

PROOF: If $\left\langle X^{\prime}, Y^{\prime}\right\rangle$ is an arbitrary $C W$ pair then (7.2) there are simplicial complexes X and $Y^{\prime \prime}$ such that $X^{\prime} \wedge X$ and $Y^{\prime} \wedge Y^{\prime \prime}$. Now let $j: Y^{\prime \prime} \rightarrow R^{N}$ be a simplicial embedding into some large Euclidean space and let M be a regular neighborhood (see [Hudson]) of $j\left(Y^{\prime \prime}\right)$ in R^{N}. Then M is a p.1. manifold and $M \searrow j\left(Y^{\prime \prime}\right)$. Hence $Y^{\prime \prime} \xrightarrow{j} j\left(Y^{\prime \prime}\right) \subsetneq M$ is a simple-homotopy equivalence, so $Y^{\prime} \wedge M$. Now lemma 3 follows from Lemma 2.

In the light of Lemma 3, the Main Theorem will follow immediately from
Lemma 4:-If X is a connected simplicial complex and M is a $p .1$. manifold then $\langle X, M\rangle$ has Property P.
$P R O O F$: The proof is by induction on the number r of simplexes of X which have dimension ≥ 2.

If $r=0$ then dimension X is 0 or 1 , in which case X has the homotopy type of a point or a wedge product of circles. Thus $\pi_{1} X=\{1\}$ or $\pi_{1} X=$ $\mathbb{Z} * \mathbb{Z} * \ldots * \mathbb{Z}$, and, by (11.1) and (11.6), $W h(X)=0$. So Property P holds automatically

If $r>0$ let σ be a top dimensional simplex of X; say $n=\operatorname{dim} \sigma \geq 2$. Let $\sigma_{0} \dot{b e}$ an n-simplex contained in Int σ such that σ - Int $\sigma_{0} \stackrel{p .1}{\cong} \dot{\sigma} \times I$. Denote $X_{0}=X$-Int σ_{0} and note that X_{0} has a cell structure from (X-Int σ) $\cup(\dot{\sigma} \times I)$. The induction hypothesis applies to the complex X - Int σ, so $\left\langle X-\right.$ Int $\left.\sigma, M^{\prime}\right\rangle$ has Property P for any $p .1$. manifold M^{\prime}. Since $X_{0} \downarrow(X-$ Int σ), Lemma 2 implies that $\left\langle X_{0}, M^{\prime}\right\rangle$ has Property P for all p.1. manifolds M^{\prime}.

Suppose that $H: X \times Q \rightarrow M \times Q$ is a homeomorphism. We must show that $\tau\left(H_{0}\right)=0$.

Let $\beta:\left(R^{n}, B^{n}(1)\right) \rightarrow\left(\right.$ Int $\left.\sigma, \sigma_{0}\right)$ be a homeomorphism. Then $\alpha=H \circ(\beta \times$ $\left.1_{Q}\right): R^{n} \times Q \rightarrow M \times Q$ is an open embedding with $n \geq 2$. Let k be a positive integer, V a $p .1$. submanifold of $M \times I^{k}$, and $G: M \times Q \rightarrow M \times Q$ a homeomorphism satisfying the conclusion of Proposition B. Condition (i), that $G \mid \alpha\left(\left(R^{n}-\right.\right.$ Int $B^{n}(2)$ should be: $\left.) \times Q\right)=1$, implies $G \simeq 1_{M \times Q}$ since any homeomorphism of $B^{n}(2) \times Q$ onto itself which is the identity on $\dot{B}^{n}(2) \times Q$ is homotopic, rel $\dot{B}^{n}(2) \times Q$, to the identity on $B^{n}(2) \times Q$. (One simply views this as a homeo-morphism of

$$
\left(B^{n}(2) \times \prod_{j=1}^{\infty}\left[\frac{-1}{2^{j}}, \frac{1}{2^{j}}\right]\right) \subset \ell_{2}(\text { Hilbert space })
$$

and takes the straight line homotopy). Thus $H \simeq G H$ and $H_{0} \simeq(G H)_{0}$.

Let $\pi_{k}: M \times Q \rightarrow M \times I^{k}$ be the natural projection, and let $i: M \rightarrow M \times I^{k}$ be the zero section. We have the homotopy-commutative diagram

Denote $M_{0}=$ Closure $\left(\left(M-I^{k}\right)-V\right)$. Conclusion (ii) of Proposition B implies that
(a) $G H\left(\sigma_{0} \times Q\right)=V \times Q_{k+1}$
(b) $G H\left(B d y \sigma_{0} \times Q\right)=B d y V \times Q_{k+1}$,
(c) $G H\left(X_{0} \times Q\right)=M_{0} \times Q_{k+1}$.

Let $f=\pi_{k} G H(\times 0) \simeq i H_{0}$. Then (a)-(c) and the contractibility of Q and Q_{k+1} show that f restricts to homotopy equivalences $\sigma_{0} \rightarrow V, B d y \sigma_{0} \rightarrow B d y$ V and $X_{0} \rightarrow M_{0}$. But ($M \times I^{k}, V, M_{0}$) is a polyhedral triad (which can be triangulated as a simplicial triad), so we can use the Sum Theorem (23.1) to compute $\tau(f)$. Obviously $f \mid \sigma_{0}: \sigma_{0} \rightarrow V$ and $f \mid B d y \sigma_{0}: B d y \sigma_{0} \rightarrow B d y V$ are simple-homotopy equivalences since the Whitehead groups involved vanish. To study $\left(f \mid X_{0}\right): X_{0} \rightarrow M_{0}$ consider the commutative diagram

where $h: Q_{k+1} \rightarrow Q$ is the most obvious homeomorphism. Here M_{0} is a $p .1$. manifold since $B d y V$ is $p .1$. bicollared by conclusion (iii) of Proposition B. Hence $\left\langle X_{0}, M_{0}\right\rangle$ has Property P. Thus $\tau\left(f \mid X_{0}\right)=0$. Therefore, by the Sum Theorem, $\tau(f)=0$.

But $f \simeq i H_{0}$ and $i: M \rightarrow M \times I^{k}$ is clearly a simple-homotopy equivalence. Hence H_{0} is a simple-homotopy equivalence, as desired.

Selected Symbols and Abbreviations

	bibliographical reference
	the discussion of the proof is ended or omitted
$I=[0,1]$	
$I^{r}=I \times$.	$\ldots \times I \quad\left(r\right.$-copies) $; \quad I^{r} \equiv I^{r} \times 0 \subset I^{r+1}$
$\partial=$ bound	ndary
$J^{r}=$ closu	sure of $\partial I^{+1}-I^{r}$
$3 \quad$	- strongly deformation retracts to
± 1	- collapses to (in CW category) (\$4)
π	- expands to (in CW category) (\$4)
A	- expands and collapses to
\oplus	- direct sum of algebraic objects or disjoint union of spaces
$M_{\text {f }}$	- the mapping cylinder of f
K^{r}	- the r -skeleton of the complex K
く	- is a subcomplex of
f_{*}	- the map between fundamental groups induced by f, or the map between groups of covering homeomorphisms of the universal covering spaces induced by f (depends on base points in either case) (§3)
$\theta(x, \tilde{x})$	- the isomorphism from fundamental group to the group of covering transformations of the universal cover (depends on choice of x and \tilde{x}) (§3)
\mathbb{Z}	- the integers
\mathbb{Z}_{p}	- the integers modulo p
$\mathbb{Z}(G)$	- the group ring of G
$W h(L)$	- the Whitehead group of the complex L (§6; also §21)
$K_{G}(R)$	- an abelian group depending on ring the R and the subgroup G of its units ($\$ 10$)
$W h(G)$	- the Whitehead group of the group G (equals $K_{T}(\mathbb{Z}(G))$ where $T=$ group of trivial units)
$W h\left(\pi_{1} L\right)$) - a group constructed by canonically identifying all the groups $W h\left(\pi_{1}(L, x)\right), L$ a connected complex ((19)
$(R, G)-\mathrm{co}$	omplex - a based chain complex over R with preferred class of bases (§12)
$W h(G) \text {-co }$	complex - an (R, T)-complex, where $R=\mathbb{Z}(G)$ and $T=$ group of trivial units of R
$\langle f\rangle_{x, y}$	- matrix of the homomorphism f with respect to bases x, y (§9)
$\langle x \mid y\rangle$	- matrix expressing elements of basis x in terms of elements of basis y (§9)
¢ g :	$\oplus B \rightarrow A^{\prime} \oplus B^{\prime}$ by $(f \oplus g)(a, b)=(f(a), g(b))$

$$
\begin{aligned}
& f+g: A \oplus B \rightarrow C \text { by }(f+g)(a, b)=f(a)+g(b) \\
& f+g: A \rightarrow B \oplus C \text { by }(f+g)(a)=(f(a), g(b)) \\
& \simeq \quad \text { - homotopy of maps or homotopy equivalence of spaces } \\
& \approx \\
& \stackrel{\text { - homeomorphism of spaces }}{\sim} \\
& \cong \quad \text { - stable equivalence of chain complexes }(\S 14) \\
& \cong \quad \text { - isomorphism in the category under discussion } \\
& C_{h} \\
& \omega_{n} \\
& \left\langle\text { - complex over } R^{\prime} \text { induced by } h: R \rightarrow R^{\prime}(\S 18)\right. \\
& \left\langle\varphi_{\alpha}\right\rangle
\end{aligned} \quad \text { - equals } \varphi_{\alpha *}\left(\omega_{n}\right) .
$$

Bibliography

J. W. Alexander

The combinatorial theory of complexes, Ann. of Math. 31, (1930), 292-320.
D. R. Anderson

1. The Whitehead torsion of the total space of a fiber bundle, Topology 11 (1972), 179-194.
2. Whitehead torsions vanish in many S^{1} bundles, Inventiones Math. 13, (1971) 305-324.
3. A note on the Whitehead torsion of a bundle modulo a subbundle, Proc. AMS 32 (1972), 593-595.
4. Generalized product theorems for torsion invariants with applications to flat bundles, Bull. AMS 78 (1972), 465-469.

H. Bass

1. Algebraic K-theory, W. A. Benjamin, Inc., New York, 1968.
2. K-theory and stable algebra, Publ. de l'Inst. des Hautes Etudes Sci., \#22 (1964).
H. Bass, A. Heller, and R. Swan

The Whitehead group of a polynomial extension, Publ. de l'Inst. des Hautes Etudes Sci. \#22 (1964).
H. Bass, J. Milnor and J.-P. Serre

Solution of the congruence subgroup problem for $S L_{n}(n \geq 3)$ and $S P_{2 n}$ ($n \geq 2$), Publ. Inst. des Hautes Etudes Sci. \#33 (1967).
E. M. Brown

The Hauptvermutung for 3-complexes, Trans. AMS, 144 (1969), 173-196.
C. Chevalley

Fundamental concepts of algebra, Academic Press, New York, 1956.
W. H. Cockroft and J. A. Combes

A note on the algebraic theory of simple equivalences, Quart. J. Math., 22 (1971), 13-22.
W. H. Cockroft and R. M. F. Moss

On the simple homotopy type of certain two-dimensional complexes, preprint.
M. COHEN

A general theory of relative regular neighborhoods, Trans AMS 136 (1969), 189-229.
M. N. Dyer and A. J. Sieradski

Trees of homotopy types of two-dimensional CW-complexes, preprint.
B. Eckmann and S. Maumary

Le groupe des types simple d'homotopie sur un polyèdre, Essays on Topology and Related Topics, Mémores dediés à Georges deRham, Springer-Verlag, New York, 1970, 173-187.
F. T. Farrell and J. B. Wagoner

Algebraic torsion for infinite simple homotopy types, preprint.
G. Higman

The units of group rings, Proc. London Math Soc. 46 (1940), 231-248.
P. J. Hilton and S. Wylie

Homology theory, Cambridge U. Press, Cambridge, England, 1962.
H. Hosokawa

Generalized product and sum theorems for Whitehead torsion Proc. Japan Acad. 44 (1968) 910-914.
S. T. Hu

Homotopy theory, Academic Press, New York (1959).
J. F. P. Hudson

Piecewise linear topology, W. A. Benjamin, Inc. New York, 1968.
M. A. Kervaire, S. Maumary and G. derham

Torsion et type simple d'homotopie, Lecture Notes in Mathematics, 48 (1967).
R. C. Kirby and L. C. Siebenmann

On the triangulation of manifolds and the Hauptvermutung, Bull. AMS 75 (1969), 742-749.
K. W. Kwun and R. H. Szczarba

Product and sum theorems for Whitehead torsion, Ann. of Math. 82 (1965), 183-190.
J. Milnor

1. Whitehead Torsion, Bull. AMS 72, 1966, 358-426.
2. Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. 74 (1961), 575-590.
P. Olum
3. Self-equivalences of pseudo-projective planes, Topology, 4 (1965), 109-127.
4. Self-equivalences of pseudo-projective planes, II Topology, 10 (1971), 257-260.
H. Schubert

Topology, Allan and Bacon, Inc., 1968, Boston.
Seifert and Threllfall
Lehrbuch der topologie, Chelsea Publishing, New York N.Y.
L. C. Siebenmann

Infinite simple homotopy types, Indag. Math., 32 No. 5, 1970.
E. H. Spanier

Algebraic topology, McGraw-Hill Book Co., New York, 1966.
J. Stallings

1. Whitehead torsion of free products, Annals of Math. 82, (1965), pp. 354-363.
2. On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology, (A Symposium in honor of M. Morse), Princeton University Press, Princeton, N.J., (1965) 245-254.
R. Stöcker

Whiteheadgruppe topologischer Räume, Inventiones Math. 9, 271-278 (1970).
G. W. Whitehead

Homotopy theory, M.I.T. Press, Cambridge, Mass (1966).
J. H. C. Whitehead

1. Simplicial spaces, nucleii and m-groups, Proc. London Math. Soc. 45, 1939, 243-327.
2. On incidence matrices nucleii and homotopy types, Ann. of Math. 42, (1941) 1197-1239.
3. Combinatorial homotopy, I, Bull AMS, 55 (1949), 213-245.
4. Simple homotopy types, Amer. J. Math., 72, 1952, pp. 1-57.
E. C. Zeeman

On the dunce hat, Topology, 2 (1964), 341-358.

Index

acyclic chain complexes, 47
asymmetric manifold, 96
attaching map, 5
brute force calculation, 73
$\mathrm{C}_{\text {odd }}, \mathrm{C}_{\text {even }}, 52$
cellular
-approximation, 6
—approximation theorem, 6
-chain complex, 7
-homology, 7
-map, 6
chain contraction, 47
characteristic map, 5
collapse
—simplicial, 3
—CW, 14-15
combinatorial topology, 2
$\operatorname{Cov}(\tilde{\mathrm{K}}), 11$
covering spaces, 9
CW complex
-definition, 5
-isomorphism of, 5
CW pair, 5
free action, 85
free product, 45

GL(R), 37
Grothendieck group of acyclic (R,G)complexes, 58

Hauptvermutung, 82
h-cobordism, 43, 82
homology
-cellular, 7
-of lens space, 90
homotopic maps, 1
homotopy equivalence, 1
homotopy extension property, 5
house with two rooms, 2
infinite general linear group, 37
infinite simple-homotopy, 23
integral group ring, 11
invariance of torsion
-topological, 81, 102
—under subdivision, 81
join (denoted *), 86
deformation, 15
distinguished basis (see preferred basis)
dunce hat, 24
elementary matrix, 37
equivariant
-map, 91
-homotopy, 91
excision lemma, 68
expansion
-simplicial, 3
-CW, 14-15
formal deformation, 15
Franz' theorem, 97
$K_{G}(R), 39$
$\mathbf{L}_{\mathrm{p}, \mathrm{q}}, 87$
$\mathrm{L}\left(\mathrm{p} ; \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right), 86$
lens spaces, 85
-3-dimensional, 87
mapping cone (algebraic), 8, 75
mapping cylinder, 1
matrix
-of module homomorphism, 36
—of change of basis, 37
—of pair in simplified form, 29-30
Milnor's definition, 54
notch, 86
nucleus, 3
orbit, 85
piecewise linear ($=$ p.l.)
-map, 82, 85
-manifold, 82, 85
-atlas, 85
-coordinate chart, 85
p.l. (see piecewise linear)
preferred basis
-of (R,G)-module, 45
-of (R,G)-complex, 46
product theorem, 77
realization of given torsion, 33,70
(R,G)-complex, 46
-trivial, 50
-elementary trivial, 50
-stable equivalence of, 50
(R,G)-module, 45
Reidemeister torsion ($=\tau\left(\mathrm{C}_{\mathrm{h}}\right)$ in (18.1)), 59
s-cobordism theorem, 43, 83
simple-homotopy
-equivalence, 15, 72
-extension theorem, 19
-infinite, 23
-from CW to simplicial complex, 24
simple-homotopy type
-simplicial, 3
-CW, 15
simple isomorphism
-of (R,G)-modules, 46
-of (R,G)-complexes, 46
simplified form, 26
-matrix of, 29-30
$\mathrm{SK}_{1}(\mathrm{R}), 41$
stable equivalence of (R, G)-complexes, 50
stably free, 47
strong deformation retraction, 1
subcomplex, 5
subdivision, 81
sum theorem, 76
tensor products, 61
topological invariance, 81, 102
torsion
-of a homotopy equivalence, 22, 72
-of a matrix, 39
-of a module isomorphism, 46
-of an acyclic (R,G)-complex, 52
-of a CW pair, 62
-Milnor's definition, 54
trading cells, 25
trading handles, 83
trivial units in $\mathbb{Z}(G), 33$
unit in $\mathbb{Z}(G), 33$

Whitehead group
-of a CW complex, 20, 70
-of a group, 39-40, 42

Graduate Texts in Mathematics

Soft and hard cover editions are available for each volume.

For information

A student approaching mathematical research is often discouraged by the sheer volume of the literature and the long history of the subject, even when the actual problems are readily understandable. The new series, Graduate Texts in Mathematics, is intended to bridge the gap between passive study and creative understanding; it offers introductions on a suitably advanced level to areas of current research. These introductions are neither complete surveys, nor brief accounts of the latest results only. They are textbooks carefully designed as teaching aids; the purpose of the authors is, in every case, to highlight the characteristic features of the theory.

Graduate Texts in Mathematics can serve as the basis for advanced courses. They can be either the main or subsidiary sources for seminars, and they can be used for private study. Their guiding principle is to convince the student that mathematics is a living science.

Vol. 1 Takeuti/Zaring: Introduction to Axiomatic Set Theory. vii, 250 pages. 1971.

Vol. 2 Охтову: Measure and Category. viii, 95 pages. 1971.
Vol. 3 Schaefer: Topological Vector Spaces. xi, 294 pages. 1971.
Vol. 4 Hilton/Stammbach: A Course in Homological Algebra. ix, 338 pages. 1971.

Vol. 5 Mac Lane: Categories for the Working Mathematician. ix, 262 pages. 1972.

Vol. 6 Hughes/ Piper: Projective Planes. xii, 291 pages. 1973.
Vol. 8 Takeuti/Zaring: Axiomatic Set Theory. viii, 238 pages. 1973.
Vol. 9 Humphreys: Introduction to Lie Algebras and Representation Theory. xiv, 169 pages. 1972.
Vol. 10 Cohen: A Course in Simple-Homotopy Theory. xii, 114 pages. 1973.

In preparation

Vol. 7 Serre: A Course in Arithmetic. x, 115 pages. Tentative publication date: April, 1973.

[^0]: ${ }^{1}$ Discovered by me and, in most instances, also by several others. References will be given in the text.

[^1]: ${ }^{2}$ This is modern language. Whitehead originally said "they have the same nucleus."

[^2]: ${ }^{3}$ See (24.1) and (24.4).

[^3]: ${ }^{4}$ This is spelled out in the next proof.

[^4]: ${ }^{5}$ The reader who is squeamish about " $\mathrm{L} \times 0 \equiv \mathrm{~L}$ " may invoke (5.2b).

[^5]: 6 The viewpoint of this section has recently been arrived at by many people independently. It is interesting to compare [Stöcker], [Siebenmann], [Farrell-Wagoner], [EckmannMaumary] and the discussion here.

[^6]: ${ }^{7}$ See page 11 for the definition of the group ring $\mathbb{Z}(\mathbf{G}$.)

[^7]: 9 This formula is implicit in the general arguments of [OLUM 1] and in (12.10) of [Milnor 1].

[^8]: 10 i.e., the preferred bases for $\left(C^{\prime} \oplus C^{\prime \prime}\right)_{i}$ are determined by a basis which is the union of preferred bases of C_{i}^{\prime} and of $C_{i}^{\prime \prime}$.

[^9]: 11 Whitehead called this relation "simple equivalence" and wrote $C \equiv C^{\prime}(\Sigma)$. However, as it is too easily confused with "simple isomorphism" we have adopted the terminology indicated.

[^10]: 12 This theorem has also been observed by [Cockroft-Combes].

[^11]: 13 The hypothesis $L \zeta_{1} L_{0}$ is redundant.

[^12]: 14 As in the last part of (17.2).

[^13]: 15 For the generalization of this to fiber bundles see [ANDERSON 1, 2, 3].
 16 The idea here is due to D. R. Anderson. Other proofs have been given in [KwUNSzczarba], [Stöckfr] and [Hosokawa].

[^14]: 17 Compare [Cockroft-Moss].

[^15]: \dagger Added in Proof: P. Olum has shown, when $L=L_{5.2}$ (§27), that $\left|S_{L}\right|=1$ while $\left|S_{K}\right|=2$ if $S_{K} \neq S_{L}$. This implies that $|\{\tau(f) \mid f \in \mathscr{E}(L)\}| \neq|\{\tau(f) \mid f \in \mathscr{E}(K)\}|$ although $K \simeq L$!

[^16]: \dagger Added in proof: An affirmative response, due to T. Chapman, is given in the Appendix.

[^17]: 18 See [HUDSON] for an exposition of the piecewise-linear category.
 19 For a definition see [HUDSON] or §26.

[^18]: 20 A more advanced treatment which goes much further is given in [MilnOR 1].

[^19]: 21 The material in this section is essentially that of deRham's exposition [Kervaire-Maumary-deRham; p. 96-101].

[^20]: 22 Had we considered lens spaces as smooth manifolds, as at the end of §26, we could also add $(E): L$ is diffeomorphic to L^{\prime}.

[^21]: ${ }^{23}$ His paper will appear in the American Journal of Mathematics. A proof not using infinite-dimensional topology of Corollary 1 for polyhedra has subsequently been given by R. D. Edwards (to appear).

