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PREFACE

Once upon a time students of mathematics and students of science or
engineering took the same courses in mathematical analysis beyond calculus.
Now it is common to separate "advanced mathematics for science and engi-
neering" from what might be called "advanced mathematical analysis for
mathematicians." It seems to me both useful and timely to attempt a
reconciliation.

The separation between kinds of courses has unhealthy effects. Mathe-
matics students reverse the historical development of analysis, learning the
unifying abstractions first and the examples later (if ever). Science students
learn the examples as taught generations ago, missing modern insights. A
choice between encountering Fourier series as a minor instance of the repre-
sentation theory of Banach algebras, and encountering Fourier series in
isolation and developed in an ad hoc manner, is no choice at all.

It is easy to recognize these problems, but less easy to counter the legiti-
mate pressures which have led to a separation. Modern mathematics has
broadened our perspectives by abstraction and bold generalization, while
developing techniques which can treat classical theories in a definitive way.
On the other hand, the applier of mathematics has continued to need a variety
of definite tools and has not had the time to acquire the broadest and most
definitive grasp-to learn necessary and sufficient conditions when simple
sufficient conditions will serve, or to learn the general framework encompass-
ing different examples.

This book is based on two premises. First, the ideas and methods of the
theory of distributions lead to formulations of classical theories which are
satisfying and complete mathematically, and which at the same time provide
the most useful viewpoint for applications. Second, mathematics and science
students alike can profit from an approach which treats the particular in a
careful, complete, and modern way, and which treats the general as obtained
by abstraction for the purpose of illuminating the basic structure exemplified
in the particular. As an example, the basic L2 theory of Fourier series can be
established quickly and with no mention of measure theory once L2(0, 27r) is
known to be complete. Here L2(0, 21r) is viewed as a subspace of the space of
periodic distributions and is shown to be a Hilbert space. This leads to a dis-
cussion of abstract Hilbert space and orthogonal expansions. It is easy to
derive necessary and sufficient conditions that a formal trigonometric series
be the Fourier series of a distribution, an L2 distribution, or a smooth
function. This in turn facilitates a discussion of smooth solutions and distri-
bution solutions of the wave and heat equations.

The book is organized as follows. The first two chapters provide back-
ground material which many readers may profitably skim or skip. Chapters
3, 4, and 5 treat periodic functions and distributions, Fourier series, and
applications. Included are convolution and approximation (including the
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viii preface

Weierstrass theorems), characterization of periodic distributions, elements of
Hilbert space theory, and the classical problems of mathematical physics. The
basic theory of functions of a complex variable is taken up in Chapter 6.
Chapter 7 treats the Laplace transform from a distribution-theoretic point of
view and includes applications to ordinary differential equations. Chapters 6
and 7 are virtually independent of the preceding three chapters; a quick
reading of sections 2, 3, and 5 of Chapter 3 may help motivate the procedure
of Chapter 7.

I am indebted to Max Jodeit and Paul Sally for lively discussions of what
and how analysts should learn, to Nancy for her support throughout, and
particularly to Fred Flowers for his excellent handling of the manuscript.

Added for second printing: I am very grateful to several colleagues, in partic-
ular to Ronald Larsen and to S. Dierolf, for their lists of errors.

Richard Beals
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Chapter 1

Basic Concepts

§1. Sets and functions

One feature of modern mathematics is the use of abstract concepts to
provide a language and a unifying framework for theories encompassing
numerous special cases and examples. Two important examples of such
concepts, that of "metric space" and that of "vector space," will be taken up
later in this chapter. In this section we discuss briefly the concepts, even more
basic, of "set" and of "function."

We assume that the intuitive notion of a "set" and of an "element" of a
set are familiar. A set is determined when its elements are specified in some
manner. The exact manner of specification is irrelevant, provided the elements
are the same. Thus

A={3,5,7}

means that A is the set with three elements, the integers 3, 5, and 7. This is the
same as

A = {7, 3, 5},
or

A = {n I n is an odd positive integer between 2 and 8}
or

A={2n+IIn=1,2,3}.
In expressions such as the last two, the phrase after the vertical line is sup-
posed to prescribe exactly what precedes the vertical line, thus prescribing
the set. It is convenient to allow repetitions; thus A above is also

{5, 3, 7, 3, 3),

still a set with three elements. If x is an element of A we write

xeA or A3x.
If x is not an element of A we write

xOA or Aox.
The sets of all integers and of all positive integers are denoted by Z and

Z.+ respectively:

Z = {0, 1, -1, 2, - 2, 3, - 3, ...
Z+ ={1,2,3,4,...}.

As usual the three dots ... indicate a presumed understanding about what
is omitted.

1



2 Basic concepts

Other matters of notation :

0 denotes the empty set (no elements).
A V B denotes the union, {x I x e A or x e B (or both)}.
A n B denotes the intersection, {x I x e A and x e B).

The union of A1, A2, ..., A. is denoted by
m

A1LAauA3u IJA, or UA,,
r=1

and the intersection by
m

A1nA2nA3n... (Am or nAf.
i=1

The union and the intersection of an infinite family of sets A1i A2 ... indexed
by Z+ are denoted by

W 00

U Ar
i=1

and nA,.
i=1

More generally, suppose J is a set, and suppose that for each j e J we are
given a set A,. The union and intersection of all the Af are denoted by

U A, and n A,.
IEJ f6J

A set A is a subset of a set B if every element of A is an element of B; we
write

ACB or BMA.
In particular, for any A we have 0 C A. If A a B, the complement of A in B
is the set of elements of B not in A:

B\A=(xI xeB,x0A).
Thus C = B\A is equivalent to the two conditions

AUC=B, AnC=m.
The product of two sets A and B is the set of ordered pairs (x, y) where

x e A and y e B; this is written A x B. More generally, if A1, As, ..., An are
the sets then

A1xA2x...xAn
is the set whose elements are all the ordered n-tuples (x1, x2, ... , where
each xf a A!. The product

A x A x ... x A
of n copies of A is also written A.

A function from a set A to a set B is an assignment, to each element of A,
of some unique element of B. We write

f:A -+B
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for a function f from A to B. If x e A, then f(x) denotes the element of B
assigned by f to the element x. The elements assigned by f are often called
values. Thus a real-valued function on A is a function f: A -- 68, 118 the set of
real numbers. A complex-valued function on A is a function P. A - C, C the
set of complex numbers.

A function P. A -->. B is said to be 1-1 ("one-to-one") or ijective if it
assigns distinct elements of B to distinct elements of A: If x, y e A and
x 0 y, then f(x) fly). A function f: A -- B is said to be onto or surjective
if for each element y e B, there is some x e A such thatf(x) = y. A function
f: A - B which is both 1-1 and onto is said to be bijective.

If P. A ---> B and g: B -* C, the composition off and g is the function
denoted by g -P.

g -P. A -+ C, g -f(x) = g(f(x)), for all x e A.

UP. A -* B is bijective, there is a unique inverse function f-1 : B ---> A with the
properties: f-1 o f(x) = x, for all x e A; f of-1(y) = y, for all y e B.

Examples

Consider the functions f: 7L ---> 7L+, g: 7L -* 7L, h: Z -> 7L, defined by

f(n) = n2 + n e 7L,

g(n) = 2n, n e 7L,

h(n) = 1 - n, n e Z.

Then f is neither 1-1 nor onto, g is 1-1 but not onto, h is bijective, h-1(n) _
1 - n, and f o h(n) = n2 - 2n + 2.

A set A is said to be finite if either A = 0 or there is an n e 7L+, and a
bijective function f from A to the set {1, 2, ..., n}. The set A is said to be
countable if there is a bijective f: A - 7L+. This is equivalent to requiring that
there be a bijective g: 7L+ -* A (since if such an f exists, we can take g = f-1;
if such a g exists, take f = g-1). The following elementary criterion is
convenient.

Proposition 1.1. If there is a surjective (onto) function f: L. -* A, then A
is either finite or countable.

Proof. Suppose A is not finite. Define g: 7L+ --> 71+ as follows. Let
g(1) = 1. Since A is not finite, A {f(l)}. Let g(2) be the first integer m such
thatf(m) f(1). Having defined g(1), g(2),. . ., g(n), let g(n + 1) be the first
integer m such that f(m) 0 {f(1), f(2),. . ., f(n)}. The function g defined
inductively on all of 7L+ in this way has the property that f o g: 7L+ A is
bijective. In fact, it is 1-1 by the construction. It is onto because f is onto and
by the construction, for each n the set {f(l)j(2),. .., f(n)} is a subset of
{.fog(1),.fog(2),...,.fog(n)}. 0

Corollary 1.2. If B is countable and A - B, then A is finite or countable.



4 Basic concepts

Proof. If A= 0, we are done. Otherwise, choose a function f: 7L+ -->.B
which is onto. Choose an element x0 e A. Define g: 7+ -* A by: g(n) = f(n)
if f(n) e A, g(n) = x0 iff(n) 0 A. Then g is onto, so A is finite or countable. p

Proposition 1.3. If A1f A2, A3, ... are finite or countable, then the sets
n w

U Aj and
1=1

U Aj
J=1

are finite or countable.

Proof. We shall prove only the second statement. If any of the Ay are
empty, we may exclude them and renumber. Consider only the second case.
For each Ay we can choose a surjective function fj: Z+ A p Define f: Z. -
Ui 1 Af by .f(1) _ fi(l), .f(3) = fi(2), f(5) _ .fi(3), ..., f(2) _ f2(1), .f(6) _
f2(2), f(10) =f2(3), ..., and in general f(2r-1(2k - 1)) = fXk), j, k = 1, 2,
3, .... Any x e U; 1 Al is in some A,, and therefore there is k e p+ such that

fAk) = x. Then f(2i-1(2k - 1)) = x, sofis onto. By Proposition 1.1, U , Ay

is finite or countable. p

Example

Let O be the set of rational numbers: O = {m/n I m e Z, n e 7L+}. This is
countable. In fact, let An = {jln I j e 7L, -n2 <- j 5 n2}. Then each An is
finite, and 0 = U'°=1 A.

Proposition 1.4. If A1i A2, ... , A. are countable sets, then the product set
Al x A2 x x A,, is countable.

P r o o f . Choose bijective functions f i : A, - + - 7L+, j = 1, 2, ..., n. For each
me7L+, let B. be the subset of the product set consisting of all n-tuples
(x1, x2,. . ., xn) such that each ff(xj) <_ m. Then B. is finite (it has mn ele-
ments) and the product set is the union of the sets Bm. Proposition 1.3 gives
the desired conclusion. p

A sequence in a set A is a collection of elements of A, not necessarily
distinct, indexed by some countable set J. Usually J is taken to be 7l+ or
7L+ v {0}, and we use the notations

(an)n ==1 - (a,, a2, a3....
(an)n o - (ao, a,, a2,. .

Proposition 1.5. The set S of all sequences in the set {0, 1} is neither finite
nor countable.

Proof. Suppose f: p+ -> S. We shall show that f is not surjective. For
each m e p+, f(m) is a sequence (an.m)n , = (a,,m, a2..,. . .), where each
an,m is O or 1. Define a sequence (an)n 1 by setting an = 0 if an,n = 1, an = 1
if an,n = 0. Then for each m e 7L+, (a,), =1 96 (a,,,.)n 1 = f(m). Thus f is not
surjective. 0
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We introduce some more items of notation. The symbol means
"implies"; the symbol G means "is implied by"; the symbol a means "is
equivalent to."

Anticipating §2 somewhat, we introduce the notation for intervals in the
set R of real numbers. If a, b e R and a < b, then

(a, b) {xIxeR,a<x<b},
(a, b]{xIxel8,a<x<_b},
[a, b)={xIxeR,a<_x<b},
[a, b] _ {x x e R, a <_ x <- b}.

Also,

(a, oo) = {x I x e R, a < x),
(-oo, a] = {x I x e R, x <_ a}, etc.

§2. Real and complex numbers

We denote by R the set of all real numbers. The operations of addition
and multiplication can be thought of as functions from the product set
R x R to R. Addition assigns to the ordered pair (x, y) an element of R
denoted by x + y; multiplication assigns an element of O denoted by xy.
The algebraic properties of these functions are familiar.

Axioms of addition

Al. (x+y)+z=x+(y+z),for anyx,y,zeR.
A2. x + y = y + x, for any x,yeR.
A3. There is an element 0 in R such that x + 0 = x for every x e R.
A4. For each x e R there is an element -x a 03 such that x + (-x) = 0.

Note that the element 0 is unique. In fact, if 0' is an element such that
x + 0' = x for every x, then

0' = 0' + 0 = 0 + 0' = 0.

Also, given x the element - x is unique. In fact, if x + y = 0, then

y=y+0=y+(x+(-x))=(y+x)+(-x)
=(x+y)+(-x)=0+(-x)=(-x)+0= -x-

This uniqueness implies -(-x) = x, since (-x) + x = x + (-x) = 0.

Axioms of multiplication

M1. (xy)z = x(yz), for any x, y, z e R.
M2. xy=yx,foranyx,yeR.
M3. There is an element 1 # 0 in R such that xl = x for any x e R.
M4. For each x e R, x # 0, there is an element x-1 in R such that

xx-1=1.
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Note that 1 and x are unique. We leave the proofs as an exercise.

Distributive law

DL. x(y + z) = xy + xz, for any x, y, z e R.

Note that DL and A2 imply (x + y)z = xz + yz.
We can now readily deduce some other well-known facts. For example,

(0 + 0).x =

so 0-x = 0. Then

x+(-1).x=
so (-1).x = -x. Also,

-xy.

The axioms Al-A4, M1-M4, and DL do not determine R. In fact there
is a set consisting of two elements, together with operations of addition and
multiplication, such that the axioms above are all satisfied: if we denote the
elements of the set by 0, 1, we can define addition and multiplication by

0+0=1+1=0,
0.0=1.0=0.1=0, 1.1=1.

There is an additional familiar notion in R, that of positivity, from which
one can derive the notion of an ordering of R. We axiomatize this by intro-
ducing a subset P a R, the set of "positive" elements.

Axioms of order

01. If x e Il8, then exactly one of the following holds: x e P, x = 0, or
-xeP.

02. Ifx,yeP, then x + yeP.
03. If x, y e P, then xy a P.

It follows from these that if x # 0, then x2 a P. In fact if x e P then this
follows from 03, while if - x e P, then (- x)2 e P, and (- x)2 = - (x(- x))
- (- x2) = x2. In particular, 1 = 12 a P.

We definex<yify-xeP,x>yify<x.Itfollows that xePeo
x > 0. Also, if x < y and y < z, then

z-x=(z-y)+(y-x)eP,
so x < z. In terms of this order, we introduce the Archimedean axiom.

04. If x, y > 0, then there is a positive integer n such that nx = x +

(One can think of this as saying that, given enough time, one can empty
a large bathtub with a small spoon.)
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The axioms given so far still do not determine 118; they are all satisfied by
the subset Q of rational numbers. The following notions will make a distinc-
tion between these two sets.

A nonempty subset A - O is said to be bounded above if there is an x e R
such that every y e A satisfies y < x (as usual, y < x means y < x or y = x).
Such a number x is called an upper bound for A. Similarly, if there is an
x e R such that every y E A satisfies x < y, then A is said to be bounded below
and x is called a lower bound for A.

A number x a 118 is said to be a least upper bound for a nonempty set
A c: 118 if x is an upper bound, and if every other upper bound x' satisfies
x' >- x. If such an x exists it is clearly unique, and we write

x = lub A.

Similarly, x is a greatest lower bound for A if it is a lower bound and if every
other lower bound x' satisfies x' <- x. Such an x is unique, and we write

x = glb A.

The final axiom for Q8 is called the completeness axiom.

05. If A is a nonempty subset of Fl which is bounded above, then A has
a least upper bound. .

Note that if A c Q8 is bounded below, then the set B = {x I x c- U8, - x e Al
is bounded above. If x = lub B, then -x = glb A. Therefore 05 is equiva-
lent to: a nonempty subset of F which is bounded below has a greatest lower
bound.

Theorem 2.1. 0 does not satisfy the completeness axiom.

Proof. Recall that there is no rational p/q, p, q a Z, such that (plq)2 = 2:
in fact if there were, we could reduce to lowest terms and assume either p or q
is odd. But p2 = 2q2 is even, sop is even, sop = 2m, m e Z. Then 4m2 = 2q2,
so q2 = 2m2 is even and q is also even, a contradiction.

Let A = {x I x e 0, x2 < 2}. This is nonempty, since 0, 1 e A. It is
bounded above, since x >- 2 implies x2 >- 4, so 2 is an upper bound. We shall
show that no x e 0 is a least upper bound for A.

If x < 0, then x < 1 e A, so x is not an upper bound. Suppose x > 0 and
x2 <2. Suppose h e (D and 0< h < 1. Then x + h e 0 and x + h > x.
Also, (x + h)2 = x2 + 2xh + h2 < x2 + 2xh + h = x2 + (2x + I)h. If we
choose h > 0 so small that h < 1 and h < (2 - x2)/(2x + 1), then (x + h)2
< 2. Then x + h e A, and x + h > x, so x is not an upper bound of A.

Finally, suppose x e 0, x > 0, and x2 > 2. Suppose h e 0 and 0 < h < x.
Thenx-he0andx-h>0.Also, (x-h)2=x2-2xh+h2>x2-
2xh. If we choose h > 0 so small that h < 1 and h < (x2 - 2)/2x, then
(x - h)2 > 2. It follows that if y e A, then y < x - h. Thus x - h is an
upper bound for A less than x, and x is not the least upper bound. p

We used the non-existence of a square root of 2 in 0 to show that 05 does
not hold. We may turn the argument around to show, using 05, that there is
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a real number x > 0 such that x2 = 2. In fact, let A = {y y e R, y2 < 2}.
The argument proving Theorem 2.1 proves the following: A is bounded
above; its least upper bound x is positive; if x2 < 2 then x would not be an
upper bound, while if x2 > 2 then x would not be the least upper bound.
Thus x2 = 2.

Two important questions arise concerning the above axioms. Are the
axioms consistent, and satisfied by some set ll ? Is the set of real numbers the
only set satisfying these axioms?

The consistency of the axioms and the existence of 112; can be demonstrated
(to the satisfaction of most mathematicians) by constructing 118, starting with
the rationals.

In one sense the axioms do not determine 118 uniquely. For example, let
R° be the set of all symbols x°, where x is (the symbol for) a real number.
Define addition and multiplication of elements of 118° by

x° + Y° = (x + Y)°, x°Y° = (xY)°.

Define P° by x° e P° - x e P. Then 118° satisfies the axioms above. This is
clearly fraudulent: 118° is just a copy of R. It can be shown that any set with
addition, multiplication, and a subset of positive elements, which satisfies all
the axioms above, is just a copy of R.

Starting from II8 we can construct the set C of complex numbers, without
simply postulating the existence of a "quantity" i such that i2 = -1. Let CO
be the product set R2 = R X R, whose elements are ordered pairs (x, y) of
real numbers. Define addition and multiplication by

(x, y) + (x', y') = (x + x', y + y'),
(X, Ax" A = (xx' - YY', xY' + x'Y)

It can be shown by straightforward calculations that CO together with these
operations satisfies Al, A2, Ml, M2, and DL. To verify the remaining
algebraic axioms, note that

(x, y) + (0, 0) _ (x, y).
(x, y) + (-X, -Y) _ (0, 0),

(x, Al, 0) _ (x, Y),
(x, y)(x/(x2 + y2), -y/(x2 + y2)) _ (1, 0) if (x, y) 0 (0, 0).

If x e R, let x° denote the element (x, 0) e CO. Let i ° denote the element
(0, 1). Then we have

(x, y) _ (x, 0) + (0, y) = (x, 0) + (0,1)(y, 0) = x° + i °y°.

Also, (i°)2 = (0, 1)(0, 1) = (-1, 0) = -1°. Thus we can write any element
of CO uniquely as x° + i °y°, x, y e IR, where (i°)2 = -1 °. We now drop the
superscripts and write x + iy for x° + i °y° and C for CO: this is legitimate,
since for elements of Q8 the new operations coincide with the old: x° + y° =
(x + y)°, x°y° = (xy)°. Often we shall denote elements of C by z or w. When
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we write z = x + ly, we shall understand that x, y are real. They are called
the real part and the imaginary part of z, respectively:

z = x + ly, x = Re (z), y = Im (z).

There is a very useful operation in C, called complex conjugation, defined
by:

z* = (x + iy)* = x - iy.

Then z* is called the complex conjugate of z. It is readily checked that

(z + w)* = z* + w*, (zw)* = z*w*,
(z*)* = z, z*z = x2 + y2.

Thus z*z 0 0 if z 0. Define the modulus of z, IzI, by

IzI = (z*z)h12 = (x2 + y2)1/2, z=x+iy.
Then if z 96 0,

1 = z*zlzl-2 = z(z*IzI-2),

or

z-1 = z*IzI -2.

Adding and subtracting gives

z+z*=2x, z-z*=2iy ifz=x+iy.
Thus

Re (z) = +(z + z*), Im (z) = }i-1(z - z*).

The usual geometric representation of C is by a coordinatized plane:
z = x + ly is represented by the point with coordinates (x, y). Then by the
Pythagorean theorem, IzI is the distance from (the point representing) z to
the origin. More generally, Iz - wI is the distance from z to w.

Exercises

1. There is a unique real number x > 0 such that x3 = 2.
2. Show that Re (z + w) = Re (z) + Re (w), Im (z + w) = Im (z) + Im (w).
3. Suppose z = x + iy, x, y e R. Then

IxI s IZI, IYI s IZI, IzI s IxI + IYI.
4. For anyz,weC,

Izw*I = IzI H.
5. For any z, we C,

Iz + WI < IzI + IWI.
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(Hint: Iz + W12 = (z + w)*(z + w) _ Iz12 + 2 Re (zw*) + Iw12; apply Ex-
ercises 3 and 4 to estimate IRe (zw*)I.)

6. The Archimedean axiom 04 can be deduced from the other axioms for
the real numbers. (Hint: use 05).

7. If a > 0 and n is a positive integer, there is a unique b > 0 such that
bn=a.

§3. Sequences of real and complex numbers

A sequence (zn)n=, of complex numbers is said to converge to z e C if for
each e > 0. there is an integer N such that Izn - zj < e whenever n >- N.
Geometrically, this says that for any circle with center z, the numbers zn all
lie inside the circle, except for possibly finitely many values of n. If this is the
case we write

Zn --> z, or lim zn = z, or lim zn = z.
n-w

The number z is called the limit of the sequence (Zn)tt ,. Note that the limit is
unique: suppose zn --> z and also zn -+ w. Given any e > 0, we can take n so
large that Izn - zI < e and also Izn - WI < e. Then

IZ - WI <IZ - ZnI+IZn - WI < e+e=2e.

Since this is true for all e > 0, necessarily z = w.
The following proposition collects some convenient facts about con-

vergence.

Proposition 3.1. Suppose (zn)nCO=, and I are sequences in C.

(a) zn -3 z if and only r f Zn - z -* 0.
(b) Let zn = xn + iy,,, xn, y,, real. Then zn -a z = x + iy if and only if

x,-3xand
(c) If zn - Z and w, - w, then zn + Wn -* z + w.
(d) If z, z and Wn - x', then ZnVrn --* Z141-
(e) If z,, - z 0, then there is an integer M such that z,, 0 if n >_ M.

Moreover (zn- 1)n=M converges to z-1.

Proof. (a) This follows directly from the definition of convergence.

(b) By Exercise 3 of §2,

21xn-xI +lYn - YI < Izn - zI < 21xn-x1+2Jyn-YI
It follows easily that zn - z -+ 0 if and only if xn - x -+ 0 and yn - y -* 0.

(c) This follows easily from the inequality

l(zn+W.)-(z+w)I=I(zn-z)+(W.-w)I<Izn-zI+!Wn-WI.
(d) Choose M so large that if n >_ M, then Izn - zI < 1. Then for

n>-M,
Izn! = I(zn - z) + ZI < 1 + W.
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Let K = 1 + IwI + IzI. Then for all n >- M,

IZnWn - ZWI = IZn(Wn - W) + (Zn - Z)WI
IZnI IN - WI + IZn - ZI IWI

< K(IWn - WI + IZn - ZI).

Since wn - w --> 0 and Zn - z -> 0, it follows that znwn - zw -> 0-
(e) Take M so large that Izn - zI 4-IZI when n >- M. Then for n >- M,

IZnI = IZnI + 2IzI 1IZI
IZnI + IZ - Znl - IIZI IZn + (Z - Zn)I - IN = +I=I

Therefore, Zn # 0. Also for n M.
Izn-1 - z-'.I = I(z - zn)z-lzn-'l

Iz - znI.jZI-1.(+IZI)-1 = KIZ - ZnI,

where K = 2Iz1-2. Since z - zn -* 0 we have zn-1 - z-1 -> 0. 0

A sequence (zn)n=1 in C is said to be bounded if there is an M >- 0 such that
IZnI < M for all n; in other words, there is a fixed circle around the origin
which encloses all the zn's.

A sequence (xn)n=1 in D is said to be increasing if for each n, xn < xn+1;
it is said to be decreasing if for each n, Xn ? xn+1

Proposition 3.2. A bounded, increasing sequence in 6& converges. A bounded,
decreasing sequence in R converges.

Proof. Suppose (xn)n=1 is a bounded, increasing sequence. Then the set
{Xn I n = 1, 2, ...} is bounded above. Let x be its least upper bound. Given
e > 0, x - e is not an upper bound, so there is an N such that xr, >- x - e.
If n >- N, then

x-a<xx<_xn<_x,

so Ixn - xI <- e. Thus xn -> x. The proof for a decreasing sequence is
similar. p

If A c IIB is bounded above, the least upper bound of A is often called the
supremum of A, written sup A. Thus

sup A = lub A.

Similarly, the greatest lower bound of a set B c R which is bounded below
is also called the inftmum of A, written inf A:

inf A = glb A.

Suppose (xn)n 1 is a bounded sequence of reals. We shall associate with
this given sequence two other sequences, one increasing and the other
decreasing. For each n, let An = {xn, xn+1, xn+2.... }, and set

x;, = inf An, xn = sup An.
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Now An Ai+1, so any lower or upper bound for A. is a lower or upper
bound for An+,. Thus

xn 5 Xn + 1, 4.1:5 X.
Choose M so that Ixnl 5 M, all n. Then - M is a lower bound and M an
upper bound for each A. Thus

(3.1) -M<-xh x' 5M, all n.

We may apply Proposition 3.2 to the bounded increasing sequence 1

and the bounded decreasing sequence (xn)n 1 and conclude that both
converge. We define

lim inf x = lim x;,,
lim sup x = lira xn.

These numbers are called the lower limit and the upper limit of the sequence
(x )n 1, respectively. It follows from (3.1) that

(3.2) - M <_ lim inf xn 5 lim sup x -< M.

A sequence (zn)n 1 in C is said to be a Cauchy sequence if for each e > 0
there is an integer N such that Izn - zml < e whenever n >- N and m >- N.
The following theorem is of fundamental importance.

Theorem 3.3. A sequence in C (or 11) converges if and only if it is a Cauchy
sequence.

Proof. Suppose first that z,, -+ z. Given e > 0, we can choose N so that
IZn - ZI 5 +8 if n >_ N. Then if n, m z N we have

IZn - Zml 5 IZn - ZI + IZ - Zml < +8++8=e.

Conversely, suppose (Zn)n 1 is a Cauchy sequence. We consider first the
case of a real sequence (x,,)n 1 which is a Cauchy sequence. The sequence
(xn)n 1 is bounded: in fact, choose M so that Ixn - xml < 1 if n, m z M.
Then if n >- M,

IXnI 5 IXn - XMI + IXMI < 1 + IXMI.

Let K = max {Ix1I, Ix2I,..., IXM_1I, I XMl + 1). Then for any n, Ixnl 5 K.
Now since the sequence is bounded, we can associate the sequences (xn)n 1
and (xn)n 1 as above. Given e > 0, choose N so that IXn - Xml < 8 if
n, m >_ N. Now suppose n z m z N. It follows that

xm-85xnxm+8, nzm>--N.
By definition of x'n we also have, therefore,

Xm-85X'n5Xm+8, n>:m-N.
Letting x = lim inf xn = lim xn, we have

Xm-85X5Xm+8, m>- N,
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orIxm - xl < e,m>_N.Thus xn+x.
Now consider the case of a complex Cauchy sequence (zn)n 1. Let

zn = Xn + iyn, xn, yn a R. Since Ixn - Xml < Izn - zml, (xn)n 1 is a Cauchy
sequence. Therefore xn -* x e R. Similarly, y,, -* y e R. By Proposition
3.1(b), zn -* x + iy. U

The importance of this theorem lies partly in the fact that it gives a cri-
terion for the existence of a limit in terms of the sequence itself. An im-
mediately recognizable example is the sequence

3, 3.1, 3.14, 3.142, 3.1416, 3.14159,...,

where successive terms are to be computed (in principle) in some specified
way. This sequence can be shown to be a Cauchy sequence, so we know it has
a limit. Knowing this, we are free to give the limit a name, such as "jr".

We conclude this section with a useful characterization of the upper and
lower limits of a bounded sequence.

Proposition 3.4. Suppose (xn)n-1 is a bounded sequence in R. Then lim inf xn
is the unique number x' such that

(i)' for any e > 0, there is an N such that x,, > x' - e whenever n >_ N,
(ii)' for any e > 0 and any N, there is an n >_ N such that xn < x' + C.

Similarly, lim sup xn is the unique number x" with the properties

(i)" for any e > 0, there is an N such that x < x" + e whenever n >_ N,
(ii)" for any e > 0 and any N, there is an n >_ N such that xn > x - e.

Proof. We shall prove only the assertion about lim inf xn. First, let
x'n = inf {xn, xn .,.1,1,. } = inf An as above, and let x' = lim xn = lim inf xn.
Suppose e > 0. Choose N so that xN > x' - e. Then n z N implies x,, >-
xr, > x' - e, so (i)' holds. Given e > 0 and N, we have xN 5 x' < x' + j e.
Therefore x' + le is not a lower bound for AN, so there is an n Z N such that
xn < x' + le < x' + e. Thus (ii)' holds.

Now suppose x' is a number satisfying (1)' and (ii)'. From (i)' it follows
that inf A. > x' - e whenever n >_ N. Thus lim inf xn >_ x' - e, all 8, so
lim inf xn >_ x'. From (ii)' it follows that for any N and any e, inf AN <
x' + e. Thus for any N, inf AN < x', so lim inf xn < x'. We have lim inf
xn=x'. 0

Exercises

1. The sequence (1/n)n 1 has limit 0. (Use the Archimedean axiom, §2.)
2. If xn > 0 and xn -* 0, then x,,112 -* 0.
3. If a > 0, then all,, - 1 as n -* oo. (Hint: if a >_ 1, let all,, = I + xn.

By the binomial expansion, or by induction, a = (1 + xn)n z 1 + nxn. Thus
xn < n-'a -* 0. If a < 1, then alto = (b"n)-1 where b = a'1 > 1.)
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4. lim n11n = 1. (Hint: let n1/n = I + yn. For n >- 2, n = (1 + yn)n >-
1 + nyn +.n(n - 1)yn2 > #n(n - l)y,2, so y,,2 < 2(n - 1)-1-.0. Thus
Yn-* 0.)

5. If z e C and IzI < 1, then zn -. 0 as n -* oo.
6. Suppose (xn)n 1 is a bounded real sequence. Show that xn -- x if and

only if lim inf xn = x = lira sup xn.
7. Prove the second part of Proposition 3.4.
8. Suppose (x,,)n 1 and (an)n 1 are two bounded real sequences such that

an -+ a > 0. Then

lim inf anxn = a lim inf xn, lim sup anxn = a lim sup xn.

§4. Series

Suppose (zn)..1 is a sequence in C. We associate to it a second sequence
(sn)n1, where

n

Sn= Zn=Z1 +Z2+...+Z,n.
n=1

If (sn)n 1 converges to s, it is reasonable to consider s as the infinite sum
In 1 zn. Whether (sn)n 1 converges or not, the formal symbol an 1 Zn or I Zn
is called an infinite series, or simply a series. The number zn is called the nth
term of the series, sn is called the nth partial sum. If sn -+ s we say that the
series I zn converges and that its sum is s. This is written

(4.1) S = Zn.
n=1

(Of course if the sequence is indexed differently, e.g., (zn)n 0, we make the
corresponding changes in defining sn and in (4.1).) If the sequence (sn)n 1 does
not converge, the series I Zn is said to diverge.

In particular, suppose (xn)n 1 is a real sequence, and suppose each xn >- 0.
Then the sequence (sn)n 1 of partial sums is clearly an increasing sequence.
Either it is bounded, so (by Proposition 3.2) convergent, or for each M > 0
there is an N such that

n

Sn = Xm > M whenever n N.
M-1

In the first case we write

(4.2) :, xn < 00
n=1

and in the second case we write

(4.3) 1 Xn = CO.
A=1
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Thus (4.2) .- x,, converges, (4.3) - 2 x,, diverges.

Examples

1. Consider the series n 1 n-'. We claim n n -1 = co. In fact
(symbolically),

n-1 = 1 + 2 + 3 + 4 + 55 + 6 + 7 + 8 + .
I+I+(4+4)+(4+4+4+4)+

= 4 +4+2(4)+4(4)+8(i+.
_ +- + z +...=co.

2. ;n=In oo. In fact (symbolically),

in- 2 + (2)2 + (3)2 + . + (7)2 + .. .
...< 1 + (1)2 + (2)2 + (4)2 + (4)2 + (4)2 + (4)2 +

= 1 + 2(4)2 + 4(4)2 + 8(8)2 +=1+z+4+e+...=2.
(We leave it to the reader to make the above rigorous by considering the
respective partial sums.)

How does one tell whether a series converges? The question is whether the
sequence (sn)n=1 of partial sums converges. Theorem 2.3 gives a necessary and
sufficient condition for convergence of this sequence: that it be a Cauchy
sequence. However this only refines our original question to: how does one
tell whether a series has a sequence of partial sums which is a Cauchy
sequence? The five propositions below give some answers.

Proposition 4.1. If : '=1 _ converges, then z - 0.

Proof. If z,, converges, then the sequence (Sn)n of partial sums is a
Cauchy sequence, SO Sn - Sn -1 -* 0. But Sn - Sn -1 = Zn 0

Note that the converse is false: I/n -* 0 but I/n diverges.

Proposition 4.2. If I zj < 1. then ti n- o _° converges; the sum is (1 - z)
If i_i >_ 1, then n=o _n diverges.

Proof. The nth partial sum is

Sn = I + Z + 22 + .. + Zn-1.

Then Sn(I - z) = 1 - zn, So Sn = (1 - zn)/(l - z). If IzI < 1, then as
n -3W co, Zn - 0 (Exercise 5 of §3). Therefore Sn -+ (1 - z) - 1. If Izj >_ 1, then
IznI >_ 1, and Proposition 4.1 shows divergence. 0

The series 7n_o zn is called a geometric series.

Proposition 4.3. (Comparison test). Suppose is a sequence in C
and (a ), _ 1 a sequence in R irith each a >_ 0. If there are constants M, N
such that

lznj <_ Man 1t'henever n >_ N,
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and if an converges, then zn converges.

Proof. Let sn = m=1 zm, bn = Gm=1 an. If n, m >- N then

Isn - SmI = I Zi 15 1 Izil
i=m+1 i=m+1

n

5 M an = M(bn - bm).
i=m+1

But (bn)n 1 is a Cauchy sequence, so this inequality implies that (sn)n 1 is
also a Cauchy sequence. p

Proposition 4.4. (Ratio test). Suppose (zn)n=1 is a sequence in C and
suppose zn # 0, all n.

(a) If

lira sup Izn+1/znl < 1,

then zn converges.

(b) If
lim inf Izn+1/znI > 1,

then zn diverges.

Proof. (a) In this case, take r so that lira sup Izn+1/znl < r < I. By
Proposition 3.4, there is an N so that Izn+1/znl r whenever n >_ N. Thus if
n > N,

Iznl 5 rizn-1I 5 r.rizn_a1 5 ... < rn-NIzNI = Mrn,

where M = r-NI zNI. Propositions 4.2 and 4.3 imply convergence.
(b) In this case, Proposition 3.4 implies that for some N, Izn+1/znl >_ 1 if

n _ N. Thus for n > N.

Iznl > Izn-1l > ... > IkNI > 0.

We cannot have zn 0, so Proposition 4.1 implies divergence. U

Corollary 4.5. If zn 0 0 for n = 1, 2, ... and if lim I zn+ 1/zn I exists,
then the series zn converges if the limit is < l and diverges if the limit is > 1.

Note that for both the series 11/n and 11/n2, the limit in Corollary 4.5
equals 1. Thus either convergence or divergence is possible in this case.

Proposition 4.6. (Root test). Suppose (zn)n-=1 is a sequence in C.

(a) If
lira sup Iznll/n < 1,

then Zn converges.

(b) If
lira sup IZ,I11n > 1,

then 2 zn diverges.
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Proof. (a) In this case, take r so that lim sup lznl ltn < r < 1. By Propo-
sition 3.4, there is an N so that lznliun <- r whenever n >_ N. Thus if n > N,
then lznl 5 rn. Propositions 4.2 and 4.3 imply convergence.

(b) In this case, Proposition 3.4 implies that lznllun ? 1 for infinitely
many values of n. Thus Proposition 4.1 implies divergence. p

Note the tacit assumption in the statement and proof that (lznlltn)n=1 is a
bounded sequence, so that the upper and lower limits exist. However, if this
sequence is not bounded, then in particular lZnl >_ I for infinitely many
values of n, and Proposition 4.1 implies divergence.

Corollary 4.7. If lim lznll1" exists, then the series Z zn converges if the
limit is < I and diverges if the limit is > 1.

Note that for both the series 1/n and 1/n2, the limit in Corollary 4.7
equals I (see Exercise 4 of §3). Thus either convergence or divergence is
possible in this case.

A particularly important class of series are the power series. If (an)n 0 is
a sequence in C and z° a fixed element of C, then the series

(4.2) an(z - z0)n
n=0

is the power series around z0 with coefficients (an)n 0. Here we use the conven-
tion that w° = I for all w e C, including w = 0. Thus (4.2) is defined, as a
series, for each z e C. For z = z° it converges (with sum a0), but for other
values of z it may or may not converge.

Theorem 4.8. Consider the power series (4.2). Define R by

R = 0 if (lanl'"")- , is not a bounded sequence,
R = (lim sup lan1 l'n)-1 if lim sup lanl1'n > 0,
R=co iflimsup lanI in=0.

Then the power series (4.2) converges if lz - zal < R, and diverges if
lz - zol > R.

Proof. We have

(4.3) lan(z - z°)nl,tn = lanlitn9Z - Z°l.

Suppose z z0. If (lanlirn)n i is not a bounded sequence, then neither is
(4.3), and we have divergence. Otherwise the conclusions follow from (4.3)
and the root test, Proposition 4.6. 0

The number R defined in the statement of Theorem 4.8 is called the radius
of convergence of the power series (4.2). It is the radius of the largest circle in
the complex plane inside which (4.2) converges.

Theorem 4.8 is quite satisfying from a theoretical point of view: the
radius of convergence is shown to exist and is (in principle) determined in all
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cases. However, recognizing lim sup Ia,Il"n may be very difficult in practice.
The following is often helpful.

Theorem 4.9. Suppose an O for n >_ N, and suppose lim Ian+,/anI exists.
Then the radius of convergence R of the power series (4.2) is given by

R = (lim Ian+1/anl)-1 if lim Ian+1/anl > 0.
R = oo if lira Ian+1/anl = 0.

Proof. Apply Corollary 4.5 to the series (4.2), noting that if z # z0 then

Ian+1(Z - Z0)n+1/an(z - ZO)nl = Ian+1/anI ' I Z - ZoI 0

Exercises

1. If :En==1 Zn converges with sum s and In 1 wn converges with sum t,
then 'En1(zn + wn) converges with sum s + t.

Suppose an and I bn each have all non-negative terms. If there are
constants M > 0 and N such that bn >- Man whenever n N, and if I an =
co, then 2 bn = 00-

3. Show that n=1(n + 1)/(2n2 + 1) diverges and In (n + 1)/(2n' + 1)
converges. (Hint: use Proposition 4.3 and Exercise 2, and compare these to
I 1/n, I 1/n2.)

4. (2k-Test). Suppose a, >- a2 an >- 0, all n. Then n 1 an <
ao p 2k 1 2ka2k < oo. (Hint: use the methods used to show divergence of
11/n and convergence of I 1/n2.)

5. (Integral Test). Suppose a, >- a2 >_ >_ an 0, all n. Suppose
f: [1, co) -+ 11 is a continuous function such that f(n) = an, all n, and fly) <
f(x) if > x. Then 2n , an < co q fl' f(x) dx < oo.

6uppose p > 0. The series 2n 1 n-' converges if p > 1 and diverges
if p <- 1. (Use Exercise 4 or Exercise 5.)

7. The series 2n 2 n - '(log n) -2 converges; the series In 2 n -'(log n)
diverges.

8.JThe series ono zn/n! converges for any z e C. (Here 0! = 1, n! _

9. Determine the radius of convergence of

W CO CO

2nz'i/n, nnZn/n !, 2 n ! Zn,
n=0 n=1 n=0

OD

0 n! zn/(2n)!
n=0

10. (Alternating series). Suppose Ixil ? Ix2l >- ... >- IxnI, all n, xn >- 0
if n odd, xn <_ 0 if n even, and xn -# 0. Then I xn converges. (Hint: the partial
sums satisfy s2 < s4 < s6 < ... < s5 < s3 < s1,)

11. In 1(- 1)"/n converges.
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§5. Metric spaces

A metric on a set S is a function d from the product set S x S to 18, with
the properties

Dl. d(x, x) = 0, d(x, y) > O, if x, y e S, x y.
D2. d(x, y) = d (y, x), all x, y e S.
D3. d(x, z) < d(x, y) + d(y, z), all x, y, z e S.

We shall refer to d(x, y) as the distance from x to y. A metric space is a set S
together with a given metric d. The inequality D3 is called the triangle
inequality. The elements of S are often called points.

As an example, take S = Q82 = R x R, with

(5.1) d((x, y), (x', y')) = [(x - x')2 + (y - y')2]112.

If we coordinatize the Euclidean plane in the usual way, and if (x, y), (x', y')
are the coordinates of points P and P' respectively, then (5.1) gives the length
of the line segment PP' (Pythagorean theorem). In this example, D3 is the
analytic expression of the fact that the length of one side of a triangle is at
most the sum of the lengths of the other two sides. The same example in
different guise is obtained by letting S = C and taking

(5.2) d(z, w) = Iz - wI

as the metric. Then D3 is a consequence of Exercise 5 in §2.
Some other possible metrics on R2 are:

dl((x,Y), (x', y')) = Ix - x'I + IY - Y'j,
d2((x, y), (x', y')) = max {Ix - x'I, I Y - Y'l),
d3((x, y), (x', y')) = 0 if (x, y) = (x', y'), and 1 otherwise.

Verification that the functions dl, d2, and d3 satisfy the conditions D1, D2, D3
is left as an exercise. Note that d3 works for any set S: if x, y e S we set
d(x, y) = 1ifx0yand0ifx=y.

A still simpler example of a metric space is R, with distance function d
given by

(5.3) d(x, y) = Ix - yl.
Again this coincides with the usual notion of the distance between two points
on the (coordinatized) line.

Another important example is R", the space of ordered n-tuples x =
(x1, x2, ..., x") of elements of R. There are various possible metrics on R"
like the metrics d1, d2, d 3 defined above for R , but we shall consider here
only the generalization of the Euclidean distance in R2 and R3. If x =
(xl, x29 ..., x") and y = (Y1, Y2, ..., Y") we set

(5.4) d(x, y) = [(x1 - yl)2 + (x2 - Y2)2 + ... + (x" - y")2]"2
When n = I we obtain R with the metric (5.3); when n = 2 we obtain R2
with the metric (5.1), in somewhat different notation. It is easy to verify that
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d given by (5.4) satisfies D1 and D2, but condition D3 is not so easy to verify.
For now we shall simply assert that d satisfies D3; a proof will be given in a
more general setting in Chapter 4.

Often when the metric d is understood, one refers to a set S alone as a
metric space. For example, when we refer to Q8, C, or 18" as a metric space with
no indication what metric is taken, we mean the metric to be given by (5.3),
(5.2), or (5.4) respectively.

Suppose (S, d) is a metric space and T is a subset of S. We can consider
T as a metric space by taking the distance function on T x T to be the
restriction of d to T x T.

The concept of metric space has been introduced to provide a uniform
treatment of such notions as distance, convergence, and limit which occur in
many contexts in analysis. Later we shall encounter metric spaces much more
exotic than R" and C.

Suppose (S, d) is a metric space, x is a point of S, and r is a positive real
number. The ball of radius r about x is defined to be the subset of S consisting
of all points in S whose distance from x is less than r:

B,(x) ={yIyeS,d(x,y) <r}.
Clearly x e B,(x). If 0 < r < s, then B,(x) B,(x).

Examples

When S = R (metric understood), B,(x) is the open interval (x - r, x + r).
When S = 182 or C, B,(z) is the open disc of radius r centered at z. Here we
take the adjective "open" as understood; we shall see that the interval and
the disc in question are also open in the sense defined below.

A subset A a S is said to be a neighborhood of the point x e S if A con-
tains B,(x) for some r > 0. Roughly speaking, this says that A contains all
points sufficiently close to x. In particular, if A is a neighborhood of x it
contains x itself.

A subset A a S is said to be open if it is a neighborhood of each of its
points. Note that the empty set is an open subset of S: since it has no points
(elements), it is a neighborhood of each one it has.

Example

Consider the interval A = (0, 1] R. This is a neighborhood of each of
its points except x = 1. In fact, if 0 < x < 1, let r = min {x, 1 - x}. Then
A B,(x) = (x - r, x + r). However, for any r > 0, B,(1) contains 1 + Jr,
which is not in A.

We collect some useful facts about open sets in the following proposition.

Proposition 5.1. Suppose (S, d) is a metric space.

(a) For any x e S and any r > 0, B,(x) is open.
(b) If A1, A2, ..., A,,, are open subsets of S, then (1m=1 A. are also open.
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(c) If (As)feD is any collection of open subsets of S, then UpEB Ap is also
open.

Proof. (a) Suppose y e B,(x). We want to show that for some s > 0,
Bs(y) - B,(x). The triangle inequality makes this easy, for we can choose
s = r - d(y, x). (Since y e B,(x), s,s positive.) If z e B,(y), then

d(z, x) < d(z, y) + d(y, x) < s + d(y, x) = r.

Thus z e B,(x).
(b) Suppose x E nm- 1 Am. Since each Am is open, there is r(m) > 0 so that

B,(m)(x) C Am. Let r = min {r(1), r(2),..., r(n)}. Then r > 0 and B,(x) C
B,(m)(x) C Am, so B,(x) c nm=1 Am. (Why is it necessary here to assume that
A1i A2, ... is a finite collection of sets?)

(c) Suppose x E A = UpEB As. Then for some particular jS, x e Ap. Since
Ap is open, there is an r > 0 so that B,(x) C Ap C A. Thus A is open. 0

Again suppose (S, d) is a metric space and suppose A C S. A point x e S
is said to be a limit point of A if for every r > 0 there is a point of A with
distance from x less than r:

B,(x)nA96 0 ifr>0.
In particular, if x e A then x is a limit point of A. The set A is said to be
closed if it contains each of its limit points. Note that the empty set is closed,
since it has no limit points.

Example

The interval (0, 1] a l has as its set of limit points the closed interval
[0, 1]. In fact if 0 < x < 1, then x is certainly a limit point. If x = 0 and
r > 0, then B(0)r(0, 1] = (-r, r) n (0, 1] 0. If x < 0 and r = jxj, then
B,(x)n(0,1]=0,while ifx> landr=x - 1, then B,(x)n(0,1]=o.
Thus the interval (0, 1] is neither open nor closed. The exact relationship
between open sets and closed sets is given in Proposition 5.3 below.

The following is the analogue for closed sets of Proposition 5.1.

Proposition 5.2. Suppose (S, d) is a metric space.

(a) For wry x E Sand any r > 0, the closed ball C = {y I y e S, d (x, y) < r}
is a closed set.

(b) If A,, A2, ..., A,, are closed subsets of S, then Un., Ais closed.
(c) If (A0)feD is any collection of closed subsets of s, then n,'., Ap is closed.

Proof. (a) Suppose z is a limit point of the set C. Given e > 0, there is
a point y c- B8(z) n C. Then

d(z, x) <_ d(z, y) + d(y, x) < e + r.

Since this is true for every e > 0, we must have d(z, x) < r. Thus z e C.



22 Basic concepts

(b) Suppose x A = Um Am. For each m, x is not a limit point of Am,
so there is r(m) > 0 such that B,( )(x) n A. = 0. Let

r = min {r(1), r(2),. ., r(n)}.

Then B,(x) n Am = 0, all m, so B,(x) n A = 0. Thus x is not a limit point
of A.

(c) Suppose x is a limit point of A= I IpeB A. For any r > 0, B,(x) n
A 0. But A Ae, so B,(x) n AQ # 0. Thus x is a limit point of As, so it
is in Ar. This is true for each fi, so x e A. p

Proposition 5.3. Suppose (S, d) is a metric space. A subset A - S is open
if and only if its complement is closed.

Proof. Let B be the complement of A. Suppose B is closed, and suppose
x e A. Then x is not a limit point of B, so for some r > 0 we have B,(x) n
B = o. Thus B,(x) c A, and A is a neighborhood of x.

Conversely, suppose A is open and suppose x 0 B. Then x e A, so for
some r > 0 we have B,(x) A. Then B,(x) n B = 0, and x is not a limit
point of B. It follows that every limit point of B is in B. 0

The set of limit points of a subset A c S is called the closure of A; we
shall denote it by A-. We have A c A- and A is closed if and only if A = A
In the example above, we saw that the closure of (0, 1] -- R is [0, 1].

Suppose A, B are subsets of S and A c B. We say that A is dense in B if
B c A-. In particular, A is dense in S if A - = S. As an example, Q (the
rationals) is dense in R. In fact, suppose x e IR and r > 0. Choose a positive
integer n so large that 1/n < r. There is a unique integer m so that m/n <
x < (m + 1)/n. Then d(x, m/n) = x - m/n < (m + 1)/n - m/n = 1/n < r,
so m/n a B,(x). Thus x e 0-.

A sequence (xn)n 1 in S is said to converge to x e S if for each e > 0 there
is an N so that d(xn, x) < e if n >_ N. The point x is called the limit of the
sequence, and we write

Jim xn =x or xn -+ x.
n-.m

When S = l or C (with the usual metric), this coincides with the definition
in §3. Again the limit, if any, is unique.

A sequence (xn)n 1 in S is said to be a Cauchy sequence if for each e > 0
there is an N so that d(xn, xm) < e if n, m >_ N. Again when S = IR or C, this
coincides with the definition in §3.

The metric space (S, d) is said to be complete if every Cauchy sequence in
S converges to a point of S. As an example, Theorem 3.3 says precisely that
R and C are complete metric spaces with respect to the usual metrics.

Many processes in analysis produce sequences of numbers, functions,
etc., in various metric spaces. It is important to know when such sequences
converge. Knowing that the metric space in question is complete is a powerful
tool, since the condition that the sequence be a Cauchy sequence is then a
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necessary and sufficient condition for convergence. We have already seen this
in our discussion of series, for example.

Note that l is complete. To see this note that in IIBn,

max {fix; - y;l, j = 1, . . ., n} < d(x, y) < {fix;-y;l, j = 1, ..., n}.

It follows that a sequence of points in l8n converges if and only if each of the
n corresponding sequences of coordinates converges in R. Similarly, a se-
quence of points in R n is a Cauchy sequence if and only if each of the n
corresponding sequences of coordinates is a Cauchy sequence in R. Thus
completeness of Rn follows from completeness of R. (This is simply a general-
ization of the argument showing C is complete.)

Exercises

1. If (S, d) is a metric space, x E S, and r >_ 0, then

{yI yc- S,d(y,x)>r}

is an open subset of S.
2. The point x is a limit point of a set A S if and only if there is a

sequence (xn)n 1 in A such that xn -- X-
3. If a sequence (xn)n 1 in a metric space converges to x e S and also

converges to y e S, then x = y.
4. If a sequence converges, then it is a Cauchy sequence.
5. If (S, d) is a complete metric space and A c S is closed, then (A, d) is

complete. Conversely, if B c S and (B, d) is complete, then B is a closed
subset of S.

6. The interval (0, 1) is open as a subset of 118, but not as a subset of
7. Let S = 0 (the rational numbers) and let d(x, y) _ x - yI, x, y e Q.

Show that (S, d) is not complete.
8. The set of all elements x = (x1i x2, ..., xn) in IRn such that each x, is

rational is a dense subset of R' .

9. Verify that 118n is complete.

§6. Compact Sets

Suppose that (S, d) is a metric space, and suppose A is a subset of S. The
subset A is said to be compact if it has the following property: suppose that
for each x a A there is given a neighborhood of x, denoted N(x); then there
are finitely many points x1i x2, ..., xn in A such that A is contained in the
union of N(x1), N(x2), ..., N(xn). (Note that we are saying that this is true
for any choice of neighborhoods of points of A, though the selection of
points x1, x2,. .. may depend on the selection of neighborhoods.) It is
obvious that any finite subset A is compact.
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Examples

1. The infinite interval (0, oo) c R is not compact. For example, let
N(x) = (x - 1, x + 1), x e (0, oo). Clearly no finite collection of these
intervals of finite length can cover all of (0, co).

2. Even the finite interval (0, 1] 118 is not compact. To see this, let
N(x) = (+x, 2), x e (0, 1]. For any x1i x2, ..., xn a (0, 1], the union of the
intervals N(xi) will not contain y if y < 1 min (x1, x2, ... , X,,)-

3. The set A = {0} U {1, 1, 1, 1, ...} c 1l is compact. In fact, suppose
for each x e A we are given a neighborhood N(x). In particular, the neigh-
borhood N(0) of 0 contains an interval (-e, e). Let M be a positive integer
larger than 1/e. Then 1/n e N(0) for n >_ M, and it follows that A C N(0) U
N(l)uN(+)u...uN(1/M).

The first two examples illustrate general requirements which compact sets
must satisfy. A subset A of S, when (S, d) is a metric space, is said to be
bounded if there is a ball B,(x) containing A.

Proposition 6.1. Suppose (S, d) is a metric space, S 0 0, and suppose
A - S is compact. Then A is closed and bounded.

Proof. Suppose y 0 A. We want to show that y is not a limit point of A.
For any x e A, let N(x) be the ball of radius -4d(x, y) around x. By assump-
tion, there are x1, x2i . . ., x,, E A such that A c U,"n=1 N(xm). Let r be the
minimum of the numbers 4d(x1, y),. . ., #d(xn, y). If x e A, then for some m,
d(x, xm) < jd(xm, y). But then

d(xm, y) < d(xm, x) + d(x, y)
< }d(xm, y) + d(x, y).

so d(x, y) > Jd(xm, y) r. Thus B,(y) r A = 0, and y is not a limit point
of A.

Next, we want to show that A is bounded. For each x e A, let N(x) be the
ball of radius I around x. Again, by assumption there are x1, x2,. . ., x,, e A
such that A c Ums1 N(xm). Let

r = 1 + max {d(x1f x2), d(x1f x3), ..., d(x1, xn)}.

If y e A then for some in, d(y, xm) < 1. Therefore d(y, x1) < d(y, xm) +
d(xm, x1) < 1 + d(xm, x1) < r, and we have A a B,(xl). 0

The converse of Proposition 6.1, that a closed, bounded subset of a metric
space is compact, is not true in general. It is a subtle but extremely important
fact that it is true in F", however.

Theorem 6.2. (Heine-Borel Theorem). A subset of ll or of C is compact
if and only if it is closed and bounded.

Proof. We have seen that in any metric space, if A is compact it is
necessarily closed and bounded. Conversely, suppose A c Fl" is closed and
bounded. Let us assume at first that n = 1. Since A is bounded, it is contained
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in some closed interval [a, b]. Suppose for each x e A, we are given a neigh-
borhood N(x) of x. We shall say that a closed subinterval of [a, b] is nice if
there are points x1, x2,. . ., xm e A such that Ui 1 N(x1) contains the inter-
section of the subinterval with A; we are trying to show that [a, b] itself is
nice. Suppose it is not. Consider the two subintervals [a, c] and [c, b], where
c = j(a + b) is the midpoint of [a, b]. If both of these were nice, it would
follow that [a, b] itself is nice. Therefore we must have one of them not nice;
denote its endpoints by al, bl, and let cl = +(a1 + b1). Again, one of the
intervals [al, c1] and [cl, b1] must not be nice; denote it by [a2, b2]. Continu-
ing in this way we get a sequence of intervals [am, bm], m = 0, 1, 2, ... such
that [ao, bo] = [a, b], each [am, bm] is the left or right half of the interval
[am-1, bm-1], and each interval [am, bm] is not nice. It follows that ao <- al <-
... 5 am 5 bm 5 ... 5 b1 5 bo and bm - am = 2 - m(bo - ao) --> 0. There-
fore there is a point x such that am -+ x and bm -> x. Moreover, am 5 x 5 bm,
for all m. We claim that x e A; it is here that we use the assumption that A is
closed. Since [am, bm] is not nice, it must contain points of A: otherwise
A n [am, bm] = 0 would be contained in any Ur=,, N(x1). Let

xm a [am, bm] n A.

Clearly xm -> x, since am --o. x and bm ---> x. Since A is closed, we get x e A.
Now consider the neighborhood N(x). This contains an interval (x - e,
x + e). If we choose m so large that bm - am < e, then since am 5 x 5 bm
this implies [am, bm] a N(x). But this means that [am, bm] is nice. This contra-
diction proves the theorem for the case n = 1.

The same method of proof works in 18n, where instead of intervals we use
squares, cubes, or their higher dimensional analogues. For example, when
n = 2 we choose M so large that A is contained in the square with corners
(± M, ± M). If this square were not nice, the same would be true of one of
the four equal squares into which it can be divided, and so on. Continuing we
get a sequences of squares So = S1 = S2 = , each of side # the length of
the preceding, each intersecting A, and each not nice. The intersection
I mo =o S. contains a single point x, and x is in A. Then N(x) contains S. for
large m, a contradiction. Since as metric space C = 182, this also proves the
result for C. 0

Suppose (xn)n 1 is a sequence in a set S. A subsequence of this sequence is
a sequence of the form (yk)k 1, where for each k there is a positive integer nk
so that

nl <n2 < <nk <nk+1 <" ,
Yk = Xnk

Thus, (yk)k 1 is just a selection of some (possibly all) of the xn's, taken in
order. As an example, if (xn)n 1 a R has xn = (-1)nIn, and if we take
nk = 2k, then (xn)n 1 = (-1,1, -1 ....) and (Yk)k 1 = (1, 1, *, ... ).
As a second example, let (xn)n 1 be an enumeration of the rationals. Then for
any real number x, there is a subsequence of (xn)n 1 which converges to x.
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Suppose (S, d) is a metric space. A set A S is said to be sequentially
compact if, given any sequence (xn)n , c A, some subsequence converges
to a point of A.

Examples

1. Any finite set is sequentially compact. (Prove this.)
2. The interval (0, oo) c 01 is not sequentially compact; in fact let

xn = n. No subsequence of (xn)n 1 converges.
3. The bounded interval (0, 1] c 68 is not sequentially compact; in fact

let xn = ]In. Any subsequence of (xn)n=1 converges to 0, which is not in
(0111.

Proposition 6.3. Suppose (S, d) is a metric space, S 0 r, and suppose
A - S is sequentially compact. Then A is closed and bounded.

Proof. Suppose x is a limit point of A. Choose xn E B,1n(x) n A,
n = 1, 2, 3, .... Any subsequence of (xn)n , converges to x, since xn -> x. It
follows (since by assumption some subsequence converges to a point of A)
that x e A. Thus A is closed.

Suppose A were not bounded. Take x E S and choose x, c- A such that
x, 0 B1(x). Let r, = d(x, x,) + 1. By the triangle inequality, B&1) C B,1(x).
Since A is not bounded, there is x2 E A such that x2 0 B1(x). Thus also
d(x,, x2) >_ 1. Let r2 = max {d(x, x1), d(x, x2)) + l and choose x3 E A such
that xs 0 B,a(x). Then d(x1f x3) >- 1 and d(x2, x3) >_ 1. Continuing in this
way we can find a sequence (xn)n , c A such that d(xm, xn) > 1 if m 96 n.
Then no subsequence of this sequence can converge, and A is not sequentially
compact. Q

Theorem 6.4. (Bolzano-Weierstrass Theorem). A subset A of Din or of C
is sequentially compact if and only if it is closed and bounded.

Proof. We have shown that A sequentially compact implies A closed and
bounded. Suppose A is closed and bounded, and suppose first that n = 1.
Take an interval [a, b] containing A. Let c = J(a + b). One (or both) of the
subintervals [a, c] and [c, b] must contain x,, for infinitely many integers n;
denote such a subinterval by [a,, b1], and consider [a,, c1], [c,, b1] where
c1 = J(a1 + b1). Proceeding in this way we can find intervals [am, bm] with
the properties [ao, bo] = [a, b], [am, bm] c [am-,, bm-1], bm - am =
2-m(bo - ao), and [am, bm] contains x,, for infinitely many values of n. Then
there is a point x such that am -+ x, bm --->. x. We choose integers n1i n2, .. .
so that x,1 E [a,, b1], n2 > n1 and xn2 E [a2, b2], n3 > n2 and xn3 E [as, b3], etc.
Then this subsequence converges to x. Since A is closed, x e A.

The generalization of this proof to higher dimensions now follows as in
the proof of Theorem 6.2. 0

Both the terminology and the facts proved suggest a close relationship
between compactness and sequential compactness. This relationship is made
precise in the exercises below.
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Exercises

1. Suppose (x,,)n 1 is a sequence in a metric space (S, d) which converges
to x e S. Let A = {x} U 1. Then A is compact and sequentially compact.

2. Let 0, the rationals, have the usual metric. Let A = {x I x e 0, x2 < 2).
Then A is bounded, and is closed as a subset of 0, but is not compact.

3. Suppose A is a compact subset of a metric space (S, d). Then A is
sequentially compact. (Hint: otherwise there is a sequence 1 in A with
no subsequence converging to a point of A. It follows that for each x e A.
there is an r(x) > 0 such that the ball N(x) = Br(X)(x) contains x for only
finitely many values of n. Since A is compact, this would imply that
{1, 2, 3, ...} is finite, a contradiction.)

4. A metric space is said to be separable if there is a dense subset which is
countable. If (S, d) is separable and A c S is sequentially compact, then A is
compact. (Hint: suppose for each x e A we are given a neighborhood N(x).
Let {x1, x2, x3f ... } be a dense subset of S. For each x e A we can choose an
integer m and a rational rm such that x e Brm(xm) N(x). The collection of
balls Brm(xm) so obtained is (finite or) countable; enumerate them as C1,
C2, .... Since each C5 is contained in some N(x), it is sufficient to show that
for some n, Ut=1, C1 A. If this were not the case, we could take yR a A,
yn U7= 1 C5, n = 1, 2, .... Applying the assumption of sequential com-
pactness to this sequence and noting how the C1 were obtained, we get a
contradiction.)

§7. Vector spaces

A vector space over R is a set X in which there are an operation of addi-
tion and an operation of multiplication by real numbers which satisfy certain
conditions. These abstract from the well-known operations with directed line
segments in Euclidean 3-space.

Specifically, we assume that there is a function from X x X to X, called
addition, which assigns to the ordered pair (x, y) e X x X an element of X
denoted x + y. We assume

V1. (x + y) + z = x + (y + z), all x, y, z e X.
V2. x + y = y + x, all x, y e X.
V3. There exists 0 e X such that x + 0 = x, all X.
V4. For all x e X, there exists -x e X such that x + (-x) = 0.

We assume also that there is a function from R x X to X, called scalar
multiplication, assigning to the ordered pair (a, x) e R x X an element of X
denoted ax. We assume

V5. (ab)x = a(bx), all a, b e R, x e X.
V6. a(x + y) = ax + ay, all a e R, x, y e X.
V7. (a + b)x = ax + bx, all a, b e R, x e X.
V8. 1x=x,allxeX.
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Summarizing: a vector space over R, or a real vector space, is a set X with
addition satisfying VI-V4 and scalar multiplication satisfying V5-V8. The
elements of X are called vectors and the elements of R, in this context, are
often called scalars.

Similarly, a vector space over C, or a complex vector space, is a set X
together with addition sstisfying Vl-V4 and scalar multiplication defined
from C x X to X and satisfying V5-V8. Here the scalars are, of course,
complex numbers.

Examples

1. O is a vector space over R, with addition as usual and the usual
multiplication as scalar multiplication.

2. The set with one element 0 is a vector space over R or C with 0 + 0 =
0, aO = 0, all a.

3. R" is a vector space over R if we take addition and scalar multiplication
as

(xi, x2'. - -, x") + (Yi, Y2'- - -, Y") = (xl + y1, X2 + Y2'- - -, X. + Yn),
a(xl, x2,. . ., x") _ (axl, axe, ... , ax").

4. C is a vector space over R or C with the usual addition and scalar
multiplication.

5. Let S be any set, and let F(S; 62) be the set whose elements s are the
functions from S to R. Define addition and scalar multiplication in F(S; III) by

(J + $)(s) = J(s) + g(s), s E S,
(af)(s) = af(s), s e S, a E R.

Then F(S; O3) is a vector space over R.
6. The set F(S; C) of functions from S to C can be made a complex

vector space by defining addition and scalar multiplication as in 5.
7. Let X be the set of all functions J: R -+ l8 which are polynomials, i.e.,

for some a0i alt..., a" a lt,

J(x) = a0 + al + a,x2 + + ax", all x e R.

With addition and scalar multiplication defined as in 5, this is a real vector
space.

8. The set of polynomials with complex coefficients can be considered as
a complex vector space.

Let us note two elementary facts valid in every vector space: the element
0 of assumption V3 is unique, and for any x e X, Ox = 0. First, suppose
0' E X has the property that x + 0' = x for each x e X. Then in particular
0' = 0' + 0 = 0 + 0' = 0 (using V2 and V3). Next, if x e X, then

Ox=Ox+0=Ox+ [Ox+(-Ox)]
= [Ox+Ox]+(-Ox)=(0+ 0)x+(-Ox)
=Ox+(-Ox)=0.
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Note also that the element -x in V4 is unique. In fact if x + y = 0, then

y=y+0=y+[x+(-x)]=[y+x]+(-x)
[x+y]+(-x)=0+(-x)=(-x)+0= -x.

This implies that (- 1)x = -x, since

x+(-1)x= [1 +(-1)]x=Ox=0.
A non-empty subset Y of a (complex) vector space X is called a subspace

of X if it is closed with respect to the operations of addition and scalar multi-
plication. This means that if x, y e Y and a e C, then x + y and ay are in Y.
If so, then Y itself is a vector space over C, with the operations inherited
from X.

Examples

1. Any vector space is a subspace of itself.
2. The set {0} is a subspace.
3. {x I x,, = 0} is a subspace of IIB".
4. In the previous set of examples, the space X in example 7 is a subspace

of F(01; R).
5. Let X again be the space of polynomials with real coefficients. For each

n = 0, 1, 2, ..., let X be the subset of X consisting of polynomials of degree
<- n. Then each X,, is a subspace of X. For m < n, X. is a subspace of X,,.

Suppose X1, x2, ... , x are elements of the vector space X. A linear
combination of these vectors is any vector x of the form

x = a1x1 + a2x2 + ... + anxn,

where a1, a2,. . ., an are scalars.

Proposition 7.1. Let S be a nonempty subset of the vector space X, and let
Y be the set of all linear combinations of elements of S. Then Y is a subspace of
XandVDS.

If Z is any other subspace of X which contains the set S, then Z D Y.

Proof. If x, y e Y, then by definition they can be expressed as finite
sums x = I a fx f, y = biy1, where each x1 e S and each y j e S. Then
ax = I (aa,)xj is a linear combination of the x!'s, and x + y is a linear
combination of the x1's and the yj's. If x e S, then x = lx e Y. Thus Y is a
subspace containing S.

Suppose Z is another subspace of X containing S. Suppose x e Y. Then
for some x1, x2f ..., xn a S, x = I a1x1. Since Z is a subspace and x1, x2, ...,
xn e Z, we have a1x1f a2x2, ..., anxn e Z. Moreover, a1x1 + a2x2 a Z, so
(a1x1 + a2x2) + a3x3 a Z. Continuing we eventually find that x e Z. p

We can paraphrase Proposition 7.1 by saying that any subset S of a
vector space X is contained in a unique smallest subspace Y. This subspace is
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called the span of S. We write Y = span (S). The set S is said to span Y. Note
that if S is empty, the span is the subspace {0}.

Examples

Let X be the space of all polynomials with real coefficients. Let fm be the
polynomial defined by fm(x) = xm. Then span {fo, f1, ..., fn} is the subspace
X,, of polynomials of degree -< n.

A linear combination alx1 + a2x2 + + anxn of the vectors x1, x2, ...,
x,, is said to be nontrivial if at least one of the coefficients a1, a2, ..., an is not
zero. The vectors x1, x2, ..., x are said to be linearly dependent if some non-
trivial linear combination of them is the zero vector. Otherwise they are said
to be linearly independent. More generally, an arbitrary (possibly infinite)
subset S is said to be linearly dependent if some nontrivial linear combination
of finitely many distinct elements of S is the zero vector; otherwise S is said
to be linearly independent. (Note that with this definition, the empty set is
linearly independent.)

Lemma 7.2. Vectors x1, x2i ... , x in X, n >_ 2, are linearly dependent if
and only ij'some x; is a linear combination of the others.

Proof. If x1, x2, ..., xn are linearly dependent, there are scalars a1,
a2,. . ., a,,, not all 0, such that .1 a,xi = 0. Renumbering, we may suppose
a1 # 0. Then x1 = J1=2 (-a1_lai)xf.

Conversely, suppose x1, say, is a linear combination 7i=2 bfx,. Letting
a1 = 1, and a j = - b1 for j >- 2, we have I a fxj = 0. 0

The vector space X is said to be finite dimensional if there is a finite subset
which spans X. Otherwise, X is said to be infinite dimensional. A basis of a
(finite-dimensional) space X is an ordered finite subset (x1, x2, ..., x,) which
is linearly independent and spans X.

Examples

1. Rn has basis vectors (e1, e2f ..., en), where e1 = (1, 0, 0, ..., 0),
e2 = (0, 1, 0, ..., 0), ..., en = (0, 0, ..., 0, 1). This is called the standard
basis in R".

2. The set consisting of the single vector I is a basis for C as a complex
vector space, but not as a real vector space. The set (1, i) is a basis for C as a
real vector space, but is linearly dependent if C is considered as a complex
vector space.

Theorem 7.3. A finite-dimensional vector space X has a basis. Any two
bases of X have the same number of elements.

Proof. Let {x1, x2,. . ., x,} span X. If these vectors are linearly inde-
pendent then we may order this set in any way and have a basis. Otherwise
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if n >_ 2 we may use Lemma 7.2 and renumber, so that x,, is a linear combina-
tion :E1=i ajxj. Since span {x1, x2i ..., xn} = X, any x c X is a linear com-
bination

n

ajxj2 )
J=1 j=1 1=1

n-1

_ (b j + bna j)x1.
j=1

Thus span {x1i x2, ... , xn _ 1} = X. If these vectors are not linearly inde-
pendent, we may renumber and argue as before to show that

span {x1i x2, .. ., xn_2} = X.

Eventually we reach a linearly independent subset which spans X, and thus
get a basis, or else we reach a linearly dependent set {x1} spanning X and con-
sisting of one element. This implies x1 = 0, so X = {0}, and the empty set is
the basis.

Now suppose (x1, x2, ... , x,,) and (y1, Y2, , y,,,) are bases of X, and
suppose m < n. If n = 0, then m = 0. Otherwise x1 0. The yj's span X, so
x1 = ajyj. Renumbering, we may assume a1 0. Then

M

Yl = a1-1x1 - > a1-1ajyj

1=2

Thus yi is a linear combination of x1, y2,. . ., y, It follows easily that
span {x1, Y2,..., ym} span {y1, Y2, ,Ym} = X. If m = 1 this shows that
span {x1} = X, and the linear independence of the xj's then implies n = 1.
Otherwise x2 = bx1 + _7j"'=2 bjyj. The independence of x1 and x2 implies
some bj 0. Renumbering, we assume b2 0. Then

m

Y2 = b2-1 x2 - bx1 - 2 bjyj
J=3

This implies that

span {x1, x2, y3, ..., Ym) span {x1, y2,. . .' Ym} = X.

Continuing in this way, we see that after the yj's are suitably renumbered,
each set {x1i x2f ..., Xk, Yk+1, , Y,,} spans X, k < m. In particular, taking
k = m we have that {x1f x2, ..., xm} spans X. Since the xj's were assumed
linearly independent, we must have n < m. Thus n = m. p

If X has a basis with n elements, n = 0, 1, 2, ..., then any basis has n
elements. The number n is called the dimension of n. We write n = dim X.

The argument used to prove Theorem 7.3 proves somewhat more.

Theorem 7.4. Suppose X is a finite-dimensional vector space with dimen-
sion n. Any subset of X which spans X has at least n elements. Any subset of X
which is linearly independent has at most n elements. An ordered subset of n
elements which either spans X or is linearly independent is a basis.
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Suppose (x,, x2i ..., xn) is a basis of X. Then any x e X can be written as
a linear combination x = aixl. The scalars a,, a2,. . ., a, are unique; in
fact if x = b1xl, then

0=x-x=J(af-bi)x5.
Since the xf's are linearly independent, each a! - b1 = 0, i.e., of = b,. Thus
the equation x = I a!x1 associates to each x e X a unique ordered n-tuple
(a,, a2,. . ., a,) of scalars, called the coordinates of x with respect to the basis
(x,, . . ., xn). Note that if x and y correspond respectively to (a,, a2, ..., an)
and (b,, b2 ,- .. , b,), then ax corresponds to (aa1, aa2,... , aan) and x + y
corresponds to (a, + b,, a2 + b2, ... , a, + bn). In other words, the basis
(x,, x2,.. ., x,) gives rise to a function from X onto R" or Cn which preserves
the vector operations.

Suppose X and Y are vector spaces, either both real or both complex.
A function T: X -> Y is said to be linear if for all vectors x, x' e X and all
scalars a,

T(ax) = aT(x), T(x + y) = T(x) + T(y).
A linear function is often called a linear operator or a linear transformation.
A linear function T: X -* R (for X a real vector space) or T: X -+ C (for X
a complex vector space) is called a linear functional.

Examples

1. Suppose X is a real vector space and (x,, x2, ..., xn) a basis. Let
T(j a,x1) = (a,, a2, .. ., an). Then T: X -+ R is a linear transformation.

2. Let T(z) = z*, z e C. Then T is a linear transformation of C into itself
if C is considered as a real vector space, but is not linear if C is considered as
a complex vector space.

3. Let f!: R" -+ R be defined by f!(x,, x2i ... , xn) = x j. Then f is a linear
functional.

4. Let X be the space of polynomials with real coefficients. The two func-
tions S, T defined below are linear transformations from X to itself. If
f(x) = j7=o a5xs, then

S(f)(x) _ (j + 1)-lalxr*',,

t-o
A

T(f)(x) = I jaxi-1,

f=1

Note that T(S(f)) = f, while S(T(f)) = f if and only if ao = 0.

Exercises

1. If the linearly independent finite set {x11 x2, ..., xn} does not span X,
then there is a vector xn+1 e X such that {x1, x2, ..., x,, xn+1} is linearly
independent.
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2. If X is finite-dimensional and x1, x2, ..., x,a are linearly independent,
then there is a basis of X containing the vectors x1, x2, ..., x,a.

3. If X is a finite-dimensional vector space and Y c X is a subspace, then
Y is finite-dimensional. Moreover, dim Y < dim X, and dim Y < dim X
unless Y = X.

4. If Y and Z are subspaces of the finite-dimensional vector space X and
Y n Z = {0}, then dim Y + dim Z < dim X.

5. Suppose Y and Z are subspaces of the finite-dimensional vector space
X, and suppose span (Y U Z) = X. Then dim Y + dim Z >_ dim X.

6. If Y is a subspace of the finite dimensional vector space X, then there
is a subspace Z with the properties Y n Z = {0}; dim Y + dim Z = dim X;
any vector x e X can be expressed uniquely in the form x = y + z, where
y e Y, z e Z. (Such subspaces are said to be complementary.)

7. Prove Theorem 7.4.
8. The polynomials fm(x) = xm, 0 < m < n, are a basis for the vector

space of polynomials of degree < n.
9. The vector space of all polynomials is infinite dimensional.
10. If S is a non-empty set, the vector space F(S; R) of functions from

S to R is finite dimensional if and only if S is finite.
11. If X and Y are vector spaces and T: X -* Y is a linear transformation,

then the sets

N(T) = {x I x e X, T(x) = 0)
R(T) = {T(x) I x e X)

are subspaces of X and Y, respectively. (They are called the null space or
kernel of T, and the range of T, respectively.) T is 1-1 if and only if N (T) = {0).

12. If X is finite dimensional, the subspaces N(T) and R(T) in problem 11
satisfy dim N(T) + dim R(T) = dim X. In particular, if dim Y = dim X,
then T is 1-1 if and only if it is onto. (Hint: choose a basis for N(T) and use
problem 2 to extend to a basis for X. Then the images under T of the basis
elements not in N(T) are a basis for R(T).)



Chapter 2

Continuous Functions

§1. Continuity, uniform continuity, and compactness

Suppose (S, d) and (S', d') are metric spaces. A function P. S> S' is
said to be continuous at the point x e S if for each e > 0 there is a S > 0 such
that

d'(f(x),f(y)) < e if d(x, y) < S.

In particular, if S and S' are subsets of ll or of C (with the usual metrics) then
the condition is

I.f(Y) - f(x)I < e if l y - xI < s.

(This definition is equivalent to the following one, given in terms of con-
vergence of sequences: f is continuous at x if f(xn) > f(x) whenever 1

is a sequence in S which converges to x. The equivalence is left as an
exercise.)

Recall that we can add, multiply, and take scalar multiples of functions
with values in C (or R) : if f, g: S > C and a e C, x e S, then

(f + g)(x) = f(x) + g(x),
(af)(x) = af(x),
(fg)(x) = f(x)g(x),

(flg)(x) =.f(x)lg(x) if g(x) 0 0.

Proposition 1.1. Suppose (S, d) is ari_y Metric space, and suppose
f, g: S-> C are finctions which are continuous at x. Then f + g, of and fig are
continuous at x. #g(x) 0, then f/g is defined in a ball B,(x) and is continuous
at X.

Proof. Continuity off + g and of at x follow from the definition of
continuity and the inequalities

U + g)(Y) - U + g)(x) I = I fly) - f(x) + g(Y) - g(x) I
< If(Y) -f(x)I + I g(Y) - AX) 1,

(af)(Y) - (af)(x)I = Ial If(Y) -f(x)I.

To show continuity offg at x we choose Sl > 0 so small that if d(y, x) < S1
then I fly) - f(x) I < 1. Let M be the larger of I g(x) I and I f(x)I + 1. Given
e > 0, choose S > 0 so small that

If(Y) - f(x) I < e/2M, I g (y) - g(x) I < e/2M
34
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if d(y, x) < S. Then d(y, x) < S implies

I(fg)(y) - (fg)(x)I = If(y)g(y) - f(x)g(x)I

= If(y)g(y) - f(y)g(x) + f(y)g(x) - f(x)g(x)1

If(y)I 1 g(y) - g(x)I + If(y) - f(x)I I &A
If(y) I . e/2M + M e/2M
If(y) I ' e12M + e/2.

But also

NA = Iffy) -f(x) +f(x)I < If(y) -f(x)I + If(x)I
<1+If(x)I<M,

so I (fg)(y) - (fg)(x)I < e.
Finally, suppose g(x) 0. Choose r > 0 so that I g(y) - g(x)I < 11 g(x)I

if d(y, x) < r. Then if d(y, x) < r we have

Ig(x)I = Ig(y) + g(x) - g(y) I

< Ig(y)1 + +1g(x)I,

so I g(y) 1 ? 41 g(x) I > 0. Thus 1 /g is defined on BB(x). Since the product of
functions continuous at x is continuous at x, we only need show that 1/g is
continuous at x. But if y e B,-(x), then

II/g(y) - 1/g(x)I = Ig(y) - g(x)I/Ig(y)I Ig(x)I
5 K1g(y) - g(x)1,

where K = 211g(x)12. Since g is continuous at x, it follows that 1/g is. p

A function P. S -> S' is said to be continuous if it is continuous at each
point of S.

The following is an immediate consequence of Proposition 1.1.

Corollary 1.2. Suppose f, g: S C are continuous. Then f + g, af, and
fg are also continuous. If g(x) 54 0, all x, then f/g is continuous.

A function f: S -* S' is said to be uniformly continuous if for each e > 0
there is a 8 > 0 such that

d'(f(x), f(y)) < e if d(x, y) < S.

In particular, if S, S' c C, then this condition reads

If(y) - f(x) I < e if l y - xI < s.

The distinction between continuity and uniform continuity is important.
If f is continuous, then for each x and each e > 0 there is a S > 0 such that
the above condition holds; however, S may depend on x. As an example, let
S = S' = R,f(x) = x2.Then lf(y) -f(x)I = Iy2 - x21 = Iy + xI Iy - x1.
If 1x1 is very large, then Iy - x1 must be very small for If(y) - f(x)I to be
less than 1. Thus this function is not uniformly continuous. (However it is
clear that any uniformly continuous function is continuous.)

In one important case, continuity does imply uniform continuity.
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Theorem 1.3. Suppose (S, d) and (S', d') are metric spaces and suppose
f: S -* S' is continuous. If S is compact, then f is uniformly continuous.

Proof. Given e > 0, we know that for each x e S there is a number
S(x) > 0 such that

d'(f(x), f(y)) < Ie if d(x, y) < 28(x).

Let N(x) = B6(x)(x). By the definition of compactness, there are points
X1i x2, ..., Xn E S such that S c U N(xj). Let 8 = min {8(x1), 8(x2), ...,
S(xn)), and suppose d(x, y) < S. There is some x; such that x e N(x,). Then

d(x,, x) < S(x,) < 28(x,),
d(xi, y) < d(x,, x) + d(x, y) < S(x,) + S < 28(x,),

so

d'(f(x),f(y)) <- d'(f(x),f(xi)) + d'(f(xi),f(y))
< je + je = S. El

There are other pleasant properties of continuous functions on compact
sets. A function f: S -* C is said to be bounded if f(S) is a bounded set in C,
i.e., there is an M >- 0 such that

I f(x)I <_ M, all x e S.

Theorem 1.4. Suppose (S, d) is a compact metric space and suppose
f: S->- C is continuous. Then f is bounded and there is a point xo E S such that

I f(xo)I = sup {I f(x)I Ix E S}.

If f(S) - R, then there are x, x_ e S such that

f(x+) = sup {f(X) I x e S},
f(x_) = inf{f(x) I x e S}.

Proof. For each x e S, there is a number S(x) > 0 such that If(y) - f(x)I
< 1 if y e B6(x)(x) = N(x). Choose x1, ..., xn such that S U N(x5). If
x e S then x e N(x,) for some i, and

11(x)I < If(x+)I + If(x) - f(xi)I < If(xg)I + 1.
Thus we can take M = 1 + max {If(xl)I, ..., If(x,,)I} and we have shown
that f is bounded.

Let a = sup {I f(x)I I x e S}, and suppose I f(x)I < a, all x e S. Then for
each x e S there are numbers a(x) < a and e(x) > 0 such that I f(y)I <_ a(x)
if y e B$(,)(x) = M(x). Choose y1,.. ., ym such that S c U M(y,), and let
al = max {a(y1), ..., a(ym)) < a. If x e S then x e M(y,) for some i, so

If(x)I < a(y) < al < a.

This contradicts the assumption that a = sup {I f(x)I I x e S}. Thus there
must be a point xo with If(x)I = a.

The proof of the existence of x+ and x_ when f is real-valued is similar,
and we omit it. 0
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Both theorems above apply in particular to continuous functions defined
on a closed bounded interval [a, b] c R. We need one further fact about such
functions when real-valued: they skip no values.

Theorem 1.5. (Intermediate Value Theorem). Suppose f: [a, b] -* III is
continuous. Suppose either

f(a) <_ c <_ f(b) or f(b) <_ c <_ f(a).
Then there is a point xo E [a, b] such that f(xo) = c.

Proof We consider only the case f(a) <_ c <_ f(b). Consider the two
intervals [a, #(a + b)], [#(a + b), b]. For at least one of these, c lies between
the values of f at the endpoints; denote this subinterval by [a1, b1]. Thus
f(al) < c < f(b1). Continuing in this way we get a sequence of intervals
[an, bxi] with [a.+,, bn+1] c [a,,, b.], bn+1 - a.+1 = Mbn - a.), andf(a,) <-
c < Then there is xo a [a, b] such that a,, --> xo, b,, -* xo. Thus

f(xo) = lim 5 c.
f(xo) = limf(b,) >- c. 0

Exercises

1. Prove the equivalence of the two definitions of continuity at a point.
2. Use Theorem 1.6 to give another proof of the existence of A/2_. Prove

that any positive real number has a positive nth root, n = 1, 2,. . ..
3. Suppose f: S -> S', where (S, d) and (S', d') are metric spaces. Prove

that the following are equivalent:
(a) f is continuous;
(b) f o r each open set A' c S', f -1(A') is open;
(c) for each closed set A' c S', f-1(A') is closed.
4. Find continuous functions ff: (0, 1) -+ Q8, j = 1, 2, 3, such that

fl is not bounded,
f2 is bounded but not uniformly continuous,
f3 is bounded but there are no points x+, x_ a (0, 1) such thatf3(x+) _

sup {fa(x) I x e (0, 1)}, f3(x_) = inf {f3(x) I x e (0, 1)}.
5. Suppose P. S -> S' is continuous and S is compact. Prove that f(S) is

compact.
6. Use Exercise 5 and Theorem 6.2 of Chapter 1 to give another proof of

Theorem 1.4.
7. Use Exercise 3 of Chapter 1, §6 to give a third proof of Theorem 1.4.

(Hint: take (x,,)- 1 - S such that lim I f(x,) I = sup {f(x) I x e S}, etc.)
8. Suppose (S, d) is a metric space, x e S, and r > 0. Show that there is

a continuous function f: S ---> R with the properties: 0 <_ f(y) <_ 1, all y e S,
f(y) = 0 if y 0 B,(x), f(x) = 1. (Hint: take f(y) = max {1 - r-Ld(y, x), 0}.

9. Suppose (S, d) is a metric space and suppose S is not compact. Show
that there is a continuous f: S -* 118 which is not bounded. (Hint: use Exercise
8.)
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§2. Integration of complex-valued functions

A partition of a closed interval [a, b] c R is a finite ordered set of points
P = (xo, x,, ..., x,,) with

The mesh of the partition P is the maximum length of the subintervals
[XI-1, xi]:

IPI =max{xt-x,-,Ii= 1,2,...,n}.
1f f: [a, b] -p C is a bounded function and P = (xo, x,, ... , is a parti-

tion of [a, b], then the Riemann sum off associated with the partition P is the
number

S(.f; P) _ f(xt)(xi - x,-i)

The function f is said to be integrable (in the sense of Riemann) if there is
number z e C such that

lim S(f; P) = Z.
[PI-.o

More precisely, we mean that for any e > 0 there is a S > 0 such that

(2.1) IS(f;P) - zI < e if IPI < S.

If this is the case, the number z is called the integral off on [a, b] and denoted
by

f b f or I
b

f(x) dx.
a

If f: [a, b] -+ C is bounded, suppose I f(x)I -< M, all x e [a, b]. Then for
any partition P of [a, b],

I S(f; P) I <- If(x,)I(xi - x,-1) <- M I (xi - xi-1) = M(b - a).

Therefore, if f is integrable,

(2.2)
f f I <

M(b - a), M = sup {If(x)I I x e [a, b]}.
f.b

R ecall that P. [a, b] -+ C is a sum f = g + ih where g and h are real-
valued functions. The functions g and h are called the real and imaginary
parts off and are defined by

g(x) = Re (f(x)), h(x) = Im (f(x)), x e [a, b].

We denote g by Ref and h by Imf

Proposition 2.1. A bounded function f: [a, b] -a C is integrable if and onlj'
if the real and imaginary parts off are integrable. If'so,

b b b

1

f=J Ref+i
j -b
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Proof. Recall that if z = x + iy, x, y e IR, then

(2.3) ZIxI + 1YI <- IZI IxI + IYI
If P is any partition of [a, b], then

S(f;P) = S(Re f; P) + iS(Im f; P),

and S(Re f; P), S(Imf; P) are real. Let z = x + iy, x, y real, and apply
(2.3) to S(f; P) - z. We get

fIS(Ref; P) - xI + JIS(Imf; P) - YI
< I S(f; P) - zI < IS(Re f; P) - xI + IS(Im f; P) - yI.

Thus S(f;P)--zas IPl ifS(Ref;P)-> xandS(Imf;P)-
yasJPI->0. p

Proposition 2.2. Suppose f: [a, b] --+ C and g: [a, b] -* C are bounded
integrable finnctions, and suppose c e C. Then f + g and cf are integrable, and

b

lb

b

(.f+g) = f+ J. g, f
Jbef

= cJanb
.'

Proof. For any partition P of [a, b],

S(f + g; P) = S(f P) + S(g; P), S(cf; P) = cS(f; P).

The conclusions follow easily from these identities and the definition. p

Neither of these propositions identifies any integrable functions. We shall
see shortly that continuous functions are integrable. The following criterion
is useful in that connection.

Proposition 2.3. A bounded function f: [a, b] -k C is integrable if and only
if for each e > 0 there is a S > 0 such that

(2.4) I S(f; P) - S(f; Q)I < e if IPI, 101 < S.

Proof. Suppose f is integrable, and let z = fa f For any e > 0 there is a
S > 0 such that S(f; P) is in the disc of radius Is around z if I P I < S. Then
I P I < S, I QI < S implies S(f; P), S(f; Q) are at distance < e.

Conversely, suppose for each e > 0 there is a 8 > 0 such that (2.4) holds.
Take partitions P with IP,, I < 1/n, n = 1, 2, 3, ..., and let z,, = S(f;
It follows from our assumption that 1 is a Cauchy sequence. Let z be
its limit. If n is large, I F I is small and S(f; is close to z, and if IQ I is
small, S(f; Q) is close to S(f: Thus S(f; Q) -# z as I QI --->.O. p

Theorem 2.4. If f: [a, b] -- C is continuous, it is integrable.

Proof We know by §1 that f is bounded and uniformly continuous.
Given e > 0, choose S > 0 so that If(X) - f(y)I < e if Ix - yI < S. Suppose
P, Q are partitions of [a, b] with I P I < 8, I Q1 < S. Suppose P = (xo, x1,. ..
x.). Let P' be a partition which includes all points of P and of Q, P' _
(Yo, yl, , Y,,,) We examine one summand of S(; P). Suppose

xt-1 = Yi-1 < Yr < ... < Yk = Xt.
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Then

lftxxx! - x,-1) -
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k

I f(YI)(YI - YI-1)
J=J

: (Ax') - f(YI))(YI - YI-1) I
I=J

k
e (YI - YI -1) = e(xl - xl -1),

I=!

since each Ixl - yzI < S. Adding, we get

ISCf; P) - S(f; P')I < e(b - a).

Similarly,

IS(f; Q) - S(f; P')I < e(b - a),
so

I SCf; P) - SCf; Q)I < 2e(b - a).

By Proposition 2.3,f is integrable. fl

We now want to consider the effect of integrating over subintervals.

Proposition 2.5. Suppose a < b < c and f: [a, c] -* C is bounded. Then
f is integrable if and only if it is integrable as a filnction on [a, b] and on [b, c].
If so, then

(b fc

f.f-1
f is integrable on [a, b] and on [b, c]. Given e > 0,

choose S > 0 so that

(2.5) I S(f; P) - f, f l < 2 e, I S(f; Q) - fbCf
l < 2

if P, Q are partitions of [a, b], [b, c] respectively, I P I < S, I QI < S. Suppose
P' is a partition of [a, c], I P' l < S. If b is a point of P', then P' determines
partitions P of [a, b] and Q of [b, c], I P I < S, I QI < S. It follows from (2.5)
that

(2.6) IS(;P')-(bf-fcfI <e.
a b

If b is not a point of P', let P" be the partition obtained by adjoining b. Then
(2.6) holds with P" in place of P'. Suppose I f(x)I <- M, all x e [a, b]. The
sums S(f; P') and S(f; P") differ only in terms corresponding to the sub-
interval determined by P' which contains b. It is easy to check, then, that

I S(f; P') - S(f; P")I < 28M.
Thus

IS(f;

P') - fbf - f
b

I < e + 28M
a b
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if I P'I < S. It follows that f is integrable with integral fa f + fb f.
Conversely, suppose f is not integrable on [a, b] or [b, c]; say it is not

integrable on [a, b]. Then there is an e > 0 such that for any S > 0 there are
partitions P1, P2 of [a, b] with 1Pl < S, 1 PP21 < S, but

IS(f; Pl) - S(-f; P2)I > e.

Let Q be a partition of [b, c] with QI < S, and let Pi, P2' be the partitions of
[a, c] containing all points of Q and of P1, P2 respectively. Then I P'l < S,
I P2'1 < S, and

ISCA Pi) - S(.f; Pa)I = IS(f; Pl) - S(f; P2)I >
By Proposition 1.3, f is not integrable. p

Suppose f: [a0, bo] -+ C is integrable, and suppose a, b e [a0, bo]. If a < b,
then f is integrable on [a, b]. (In fact f is integrable on [a0, b], therefore on
[a, b], by two applications of Proposition 2.5.) If b < a, then f is integrable
on [b, a] and we define

fbf=-fbaf.
a

We also define

Then one can easily check, case by case, that for any a, b, c e [a0, bo],

(2.7) f acf = f bf + fb f.

It is convenient to extend the notion of the integral to certain unbounded
functions and to certain functions on unbounded intervals; such integrals are
called improper integrals. We give two examples, and leave the remaining
cases to the reader.

Suppose P. (a0, b] - C is bounded and integrable on each subinterval
[a, b], ao < a < b. We set

b b

(2.8) f f = lim f f
as a-aa a

if the limit exists.
Suppose f: [a, oo) -> C is bounded and integrable on each subinterval

[a, b], a < b < oo. We set

(2.9) f f= lim f bf
a b-.m a

if the limit exists; this means that there is a z e C such that for each e > 0

- z < e if b >_ b(e).
Lie

bf
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Exercises

1. Let f: [0, 1] ---> a8 with f(x) = 0 if x is irrational, f(x) = 1 if x is
rational. Show that f is not integrable.

2. Let f: [0, 1] - R be defined by: f(0) = 0, f(x) = sin (1/x) if x 0.

Sketch the graph. Show that f is integrable.
3. Suppose f, g: [a, b] -* C are bounded, f is integrable, and g(x) = f(x)

except on a finite set of points in [a, b]. Then g is integrable and fa g = fa f.
4. Suppose f: [a, b] ---> C is bounded and is continuous except at some

finite set of points in [a, b]. Show that f is integrable.
5. Suppose f: [a, b] --3 C is continuous and f(x) >_ 0, all x e [a, b]. Show

that f a f = 0 impliesf(x) = 0, all x e [a, b].
6. Suppose f: [a, b] -* C is bounded, integrable, and real-valued. Suppose

Jf I = M(b - a), where M = sup {lf(x) I I x e [a, b]}.
a

Show that f is constant.
7. Do Exercise 6 without the assumption that f is real-valued.
8. Let f: [0, 1] -* C be defined by: f(x) = 0 if x = 0 or x is irrational,

f(x) = 1/q if x = p/q, p, q relatively prime positive integers. Show that f is
continuous at x if and only if x is zero or irrational. Show that f is integrable
and of= 0.

§3. Differentiation of complex-valued functions

Suppose (a, b) is an open interval in a8 and that P. (a, b) C. As in the
case of a real-valued function, we say that the function f is differentiable at the
point x e (a, b) if the limit

lim Ay) - f(x)
v-.x y - x

exists. More precisely, this means that there is a number z e C such that for
any e > 0, there is a 8 > 0 with

(3.2) I(f(Y) -f(x))(Y - x)-1 - zI < e if0<Iy-XI<S.
If so, the (unique) number z is called the derivative off at x and denoted
variously by

f'(x), Df(x), or
dx

(x)-

Proposition 3.1. If f: (a, b) -+ C is differentiable at x c (a, b) then f is
continuous at x.
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Proof. Choose S > 0 so that (3.2) holds with z = f'(x) and e = 1. Then
when I y - xI < S we have

MY) - f(x)I < MY) - f(x) - z(Y - x)I + I z(Y - x)I
<(1+IzUIY-xl.

As y->x,fly) ->f(x) 0

Proposition 3.2. The function f: (a, b) - C is differentiable at x c (a, b) if
and only if the real and imaginary parts g = Re f and h = I m fare differentiable
at x. If so, then

f'(x) = g'(x) + ih'(x).

Proof. As in the proof of Proposition 2.1, the limit (3.1) exists if and
only if the limits of the real and imaginary parts of this expression exist. If so,
these are respectively g'(x) and h'(x). p

Proposition 3.3. Suppose f: (a, b) -* C and g: (a, b) --* C are differenti-
able at x c (a, b), and suppose c c C. Then the junctions f + g, cf, andfg are
differentiable at x, and

(f + g)'(x) = f'(x) + g'(x),
(cf)'(x) = cf'(x),
(fg)'(x) = f'(x)g(x) + f(x)g'(x)

If g(x) 0 then f/g is differentiable at x and

(f/g)'(x) = [f'(x)g(x) - f(x)g'(x)l g(x)-2

Proof. This can be proved by reducing it to the (presumed known)
theorem for real-valued functions, using Proposition 3.2. An alternative is
simply to repeat the proofs, which are no different in the complex case. We
shall do this for the product, as an example. We have

(fg)(Y) - (fg)(x) = f(Y)g(Y) - f(x)g(x)

_ [f(Y) - f(x)]g(Y) + f(x)[g(Y) - g(x)].

Divide by (y - x) and let y --> x. Since g(y) --> g(x), the first term converges
to f'(x)g(x). The second converges to f(x)g'(x). 0

We recall the following theorem, which is only valid for real-valued
functions.

Theorem 3.4. (Mean Value Theorem). Suppose f: [a, b] -* 11 is contin-
uous, and is differentiable at each point of (a, b). Then there is a c c (a, b) such
that

f'(c) = [f(b) -f(a)](b - a)-1.

Proof. Suppose first that f(b) = f(a). By Theorem 1.4 there are points
c+ and c_ in [a, b] such that f(c+) f(x), all x e [a, b] and f(c_) < f(x), all
x e [a, b]. If c+ and c_ are both either a orb, then f is constant andf'(c) = 0,
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all c e (a, b). Otherwise, suppose c+ E (a, b). It follows that [f(y) - f(c+)] x
(y - c+) -1 is >- 0 if y < c+ and < 0 if y > c+. Therefore the limit as y -+ c+
is zero. Similarly, if c_ 0 a and c_ 0 b, then f'(c_) = 0. Thus in this case
f'(c) = 0 for some c e (a, b).

In the general case, let

g(x) =.f(x) - (x - a)[f(b) -f(a)](b - a)-1.

Then g(a) = f(a) = g(b). By what we have just proved, there is a c e (a, b)
such that

0 = g'(c) = f '(c) - [f(b) - .f(a)](b - a)-'. 0

Corollary 3.5. Suppose f: [a, b] -* C is continuous, and is differentiable at
each point of (a, b). Iff'(x) = O for each x e (a, b), then f is constant.

Proof. Let g, h be the real and imaginary parts off. Then g'(x) = h'(x) _
0, x e (a, b). We want to show g, h constant. If [x, y] - [a, b], Theorem 3.1
applied to g, h on [x, y] implies g(x) = g(y), h(x) = h(y). 0

Theorem 3.6. (Fundamental Theorem of Calculus). Suppose f: [a, b] -
C is continuous and suppose c e [a, b]. The function F: [a, b] - C defined by

F(x)
=Jxf

is differentiable at each point x of (a, b) and

F'(x) = f(x).

Proof. Let g be the constant function g(y) = f(x), y e (a, b). Given
e > 0, choose S so small that MY) - g(Y)I = If(y) - f(x)I < e if I y - xI <
S. Then

(3.3) F(y) - F(x) = f of - f xf =f of
c c

= f v vg+ f (f - g)
x x

= .f(x)(Y - x) +
fv

U- g).

If Iy - xI < S, then
v

<ely - xl.
Thus dividing (3.3) by (y - x) we get

I [F(y) - F(x)](Y - x)-1 - f(x)I < e. 0

Theorem 3.7. Suppose f: [a, b] -- D1 is continuous and differentiable at each
point of (a, b) and suppose f'(x) > 0, all x e (a, b). Then f is strictly increasing
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on (a, b). For each y c [f(a), f(b)] there is a unique point x = g(y) E [a, b]
such that f(x) = y. The function g = f is differentiable at each point of
(f(a), f(b)) and

g'(Y) = [f'(g(Y))]-1.
Proof. If x, y c- [a, b] and x < y, application of Theorem 3.4 to [x, y]

shows that f(x) < f(y). In particular, f(a) < f(b). By Theorem 1.6, if
f(a) < y < f(b) there is x e [a, b] with f(x) = y. Since f is strictly increasing,
x is unique. Letting g = f-1 we note that g is continuous. In fact, suppose
y a (f(a), f(b)) and e > 0. Take y', y" such that

f(a) <- y' < y < y" < f(b)
and y" - y < e, y - y' < e. Let x' = g(y'), x = g(y), x" = g(Y"). Then
x' < x < x". Let S = min {x" - x, x - x'}. If Ix - wI < S then w e (x', x"),
sof(w) E (y', y"), so f(w) - f(x)l = If(w) - yj < e. Continuity at f(a) and
f(b) is proved similarly.

Finally, let x = g(y), x' = g(y'). Then

3 3
g(Y') - g(Y) = x' - x

( . )
Y, - Y .f(x') - f(x)

As y' ma y, we have shown that x' -+ x. Thus (3.3) converges to f'(x)-1 =
U'(g(Y))] -'. 0

Proposition 3.8. (Chain rule). Suppose g: (a, b) -* l1 is differentiable at
x, and suppose f: g((a, b)) C is differentiable at g(x). Then the composite
function f o g is differentiable at x and

(3.4) (f ° g)'(x) = f '(g(x))g'(x)
Proof. We have

(3.5) .f ° g(y) - f ° g(x) _ f(g(y)) - f(g(x))

= f(g(Y)) -.f(g(x)) g(y) - g(x).(Y
- x)

Ay) - g(x) Y - x

if g(y) # g(x). If g'(x) 0 then g(y) # g(x) if y is close to x and y x.
Taking the limit as y -* x we get (3.4). Suppose g'(x) = 0. For each y near x
either g(y) = g(x), so f o g(y) - f o g(x) = 0, or (3.5) holds. In either case,
[fog(y) - f a g(x)](y - x)-1 is close to zero for y near x. 0

Proposition 3.9. (Change of variables in integration). Suppose g: [a, b] -
R is continuous, and is differentiable at each point of (a, b). Suppose f: g([a, b])
-- C is continuous. Then

f
g(b) b

.f ° g)g'.f =
fa

(
g(a)

F(y) =
Cl!

f, G(x) = f
x

(.f ° g)g'.
g(a) a
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We want to prove that F(g(b)) = G(b); we shall in fact show that F o g = G
on [a, b]. Since F o g(a) = G(a) = 0, it suffices to prove that the derivatives
are the same. But

(F o g)' = (F'- g)g' _ (.f ° g)g' = G'. 0

A function f: (a, b) -. C is said to be differentiable if it is differentiable at
each point of (a, b). If f is differentiable, then the derivative f' is itself a
function from (a, b) to C which may (or may not) have a derivative f"(x) =
(f')'(x) at x e (a, b). This is called the second derivative off at x and denoted
also by

2

D2f(x), dxa (x)

Higher derivatives are defined similarly, by induction:

P>(x) = f(x), f(1U) =.f'(x),
f(k+l)(x) = (f(k))'(x), k = 0, 1, 2.....

The function f: (a, b) -* C is said to be of class C k, or k-times continuously
differentiable, if each of the derivatives f, f', ..., f(k) is a continuous function
on (a, b). The function is said to be a class C`°, or infinitely differentiable, if

f(k) is continuous on (a, b) for every integer k >- 0.

Exercises

1. Show that any polynomial is infinitely differentiable.
2. Show that the Mean Value Theorem is not true for complex-valued

functions, in general, by finding a differentiable function f such that f(0) _
0 = f(1) but f'(x) 0 for 0 < x < 1.

3. State and prove a theorem analogous to Theorem 3.7 whenf'(x) < 0,
all x e (a, b).

4. Suppose f, g are of class C k and c e C. Show that f + g, cf, andfg are
of class C k.

5. Suppose p is a polynomial with real coefficients. Show that between
any two distinct real roots of p there is a real root of p'.

6. Show that for any k = 0, 1, 2.... there is a function f: l -* R which
is of class Ck, such that f(x) = 0 if x <_ 0, f(x) > 0 if x > 0. Is there a
function of class CW having this property?

7. Prove the following extension of the mean value theorem: if f and g are
continuous real-valued functions on [a, b], and if the derivatives exist at each
point of (a, b), then there is c e (a, b) such that

[f(b) - f(a)]g'(c) = [g(b) - g(a)].f'(c).
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8. Prove L'Hopital's rule : if f and g are as in Exercise 7 and if
limf'(x)[g'(x)]-1

x-a

exists and f(a) = g(a) = 0, then

limf(x)[g(x)]-1
x-.a

exists and the two limits are equal.

§4. Sequences and series of functions

47

Suppose that S is any set and that f: S -* C is a bounded function. Let

IfI = sup {1f(X) I I x e S}-

A sequence of bounded functions (fn)n1 from S to C is said to converge
uniformly to f if

lim Ifn - f I = 0,n-,w

This sequence (fn)n--1 is said to be a uniform Cauchy sequence if for each e > 0
there is an integer N so that

(4.1) Ifn - f.1 < e if n, m >_ N.

It is not difficult to show that if the sequence converges uniformly to a
function f, then it is a uniform Cauchy sequence. The converse is also true.

Theorem 4.1. Suppose (f,),°°=1 is a sequence of bounded functions from a
set S to C which is a uniform Cauchy sequence. Then there is a unique bounded

function f: S-->- C such that (fn)n=1 converges uniformly to f If S is a metric
space and each fn is continuous, then f is continuous.

Proof. For each x e S, we have

Ifn(x) -fm(x)I < Ifn -fmI

Therefore (fn(x))n 1 is a Cauchy sequence in C. Denote the limit byf(x). We
want to show that (fn)n1 converges uniformly to the function f defined in
this way. Given e > 0, take N so large that (4.1) holds. Then for a fixed
m>_N,

Ifm(x) - f(x)I = Ifm(x) - lim fn(x)In- w

lim I fm(x) - fn(x) I < en-w

Thus I fm - f I < e if m >_ N, and (fn)n 1 converges uniformly to f. If the
sequence also converged uniformly to g, then for each x e S,

Ifn(x) - g(x)I < Ifn - gI
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so f,(x) -* g(x) as n -* oo, and g = f The function f is bounded, since

If(x)I = If(x) -fm(x) +fm(x)I < e + Ifm(x)I <- e + Ifml,

so If I <e+Ifml,if in - N.
Finally, suppose each f,, is continuous on the metric space S. Suppose

x e S and e > 0. Choose N as above. Choose S > 0 so small that

IfN(Y) -fN(x)I < e if d(y, x) < S.
Then

I f(y) - f(x)I < 1 f(Y) - fN(Y)I + I fN(Y) - fN(x)I + I fN(x) - f(x)I
If-ANl + IfN(Y) -fN(x)I + If - fNl

< 3e if d(y, x) < S.

Thus f is continuous. p

The usefulness of the notion of uniform convergence is indicated by the
next theorem and the example following.

Theorem 4.2. Suppose is a sequence of continuous complex-valued
functions on the interval [a, b], and suppose it converges uniformly to f. Then

f

b
fbf = lull I fn

a n " a

Proof. By (2.2),

f /(ffn- f fl= If .-f)Ifn-fl'lb-al.f b b b

As n -*. oo, this -* 0. Q

Example

For each positive integer n, let f : [0, 1] - R be the function whose graph
consists of the line segments joining the pairs of points (0, 0), ((2n)-1, 2n);
((2n)-1, 2n), (n-1, 0); (n-1, 0), (1, 0). Then fn is continuous, f(x) -* 0 as
n -* oo for each x e [0, 1], but fo fn = 1, all n.

Here we are interested particularly in sequences of functions which are
partial sums of power series. Associated with the sequence (a )n o in C and
the point zo e C is the series

(4.2) an(z - z0)n, z e C.
n=0

Recall from §3 of Chapter 1 that there is a number R, 0 < R < co, such that
(4.2) converges when Iz - zol < R and diverges when Iz - zoI > R; R is
called the radius of convergence of (3.2). The partial sums

n
(4.3) fn(z) _ am(z - zo)m

mo0
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are continuous functions on C which converge at each point z with Iz - zoI <
R to the function

(4.4) f(z) = I am(z - zo)m, 1z - zol < R.
M=O

Theorem 4.3. Let R be the radius of convergence of the power series (4.2).
Then the function f defined by (4.4) is a continuous function. Moreover, the

functions fn defined by (4.3) converge to f uniformly on each disc

D,={zIIz-zoI <r}, 0<r<R.
Proof. We prove uniform convergence first. Given 0 < r < R, choose s

with r < s < R. Take w with Iw - zo) = s. By assumption, an(w - zo)"
converges. Therefore the terms of this series -+ 0. It follows that there is a
constant M so that

lan(w - zo)n 5 M, n = 0, 1, ....

Since 1w - zol = s, this means

(4.5) lanl <_ Ms-n, n = 0, 1, ...,

Now suppose z e D, and m < n. Then

If-(Z) - .fm(Z) I = I af(z - Zo)!
m+1
n

5 Iarl Iz - zoli
M-1

n
Ms-rrt

m+1

8m+1 - 8n+1 MSm+18'-Mn 1-S 1-S'M+1

where 8 = r/s < 1. As m -* oo the final expression on the right -+ 0, so
V n)n o is a uniform Cauchy sequence on D,. It follows that it converges to f
uniformly on D, and that f is continuous on D,. Since this is true for each
r < R, f is continuous. 0

In particular, suppose xo a R. The power series

(4.6) 2 an(x - xo)n
n=o

defines a continuous function in the open interval (xo - R, xo + R). Is this
function differentiable?

Theorem 4.4. Suppose the power series (4.6) has radius of convergence R'
Then the function f defined by this series is differentiable, and

CO

(4.7) f'(x) = 2 nan(x - Xa)n-1, Ix - xoI < R.
n-1
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Proof. To simplify notation we shall assume xo = 0. We claim first that
the two series

I Ananx
U-1

OD

G
2

n-2

converge uniformly for IxI <_ r < R. Take r < s < R. Then (4.5) holds. It
follows that

n nI Imaxm-l9 5 M I ms-mrm-1
M-1 m-1

= Mr-1 mSm,
m-1

8 = r/s < I. Take e > 0 so small that (1 + e)S < 1. By Exercise 4 of
Chapter 1, §3, m 5 (1 + e)m for all large m. Therefore there is a constant M'
so that

m:M'(1+)m, m = 1,2,....
Then

n n
Ima,nxm-1I 5 r-'MM' (1 + e)m8m.

m=1 m-1

This last series converges, so the first series in (4.8) converges uniformly for
IxI 5 r. Similarly, m2 S (1 + e)m for large m, and the second series in (4.8)
converges uniformly for IxI <_ r.

Let g be the function defined by the first series in (4.8). Recall that we are
taking xo to be 0. We want to show that

(4.9) [f(Y) - f(x)](Y - x)-1 - g(x) -.. 0 as y - . x.

Assume IxI < r, I yI < r. Then the expression in (4.9) is

(4.10) an[Yn - xn - nxn-1(Y - x)](y - x)-1.
n-2

Now

yn - xA = (Y - x)gn(x, Y)
where

gn(x,Y) = Yn-1 + Xyn-2 +... + xn-2y + xn-1.
Thus

I gn(x, y) I 5 nrn-1 if IxI 5 r, IYI 5 r.
Then

yn - xn - nxn-1(Y - x)

_ (Y - x)[Yn-1 + xyn-2 + ... + xn-1 - nxn-17

_ (y - x)[(Y"-1 - xn-1) + (yn-2 - xn-2)X + ... +(y - ,x)xn-2

+ xn-1 - xn-1)
_ (Y - x)2[gA-1(X, Y) + gn-2(x,Y)x + ... + g1(x,Y)xn-21,
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so

IYn - Xn - nXn-1(Y - x)I <- IY -
It follows that for IxI < r, I yI < r we have

I U(Y) - f(x)](Y - x) -1 - g(x)I < 1 Ianl l y - xl2n2rn-2ly - xl -1
n=2

= lY - xl n2ianlrn-2 = Kly - xl,
n=2

K constant. Thus f'(x) = g(x). p

Corollary 4.5. The function f in Theorem 4.4 is infinitely differentiable,
and

(4.11) fck)(x) _ n(n - 1)(n - 2) (n - k + 1)an(x - xo)n-k,

n=k
Ix - xoI < R.

Proof. This follows from Theorem 4.4 by induction on k. 0

In particular, if we take x = x0 in (4.11) then all terms of the series except
the first are zero and (4.11) becomes

(4.12) ak = (k !) -1.f(k)(x0)

This means that the coefficients of the power series (4.6) are determined
uniquely by the function f (provided the radius of convergence is positive).

Exercises

1. Find the function defined for IxI < I by f(x) = :En'= 1 xn/n. (Hint:
f(x) = foxJo f'')

2. Show that if f is defined by (4.6), then
x

00f = 2 (n + 1)-1an(x - x0)"+1
xp n=0

3. Find the function defined for IxI < 1 byf(x) = In 1 nxn-1
4. Suppose there is a sequence(xn)a 1 such that lxn+l - x0l < Ixn - x0l,

xn -a x0, and f(xn) = 0 for each n, where f is defined by (4.6). Show that
f(x) = 0 for all x. (Hint: show that a0, a1, a2,. . . are each zero.)

§5. Differential equations and the exponential function

Rather than define the general notion of a "differential equation" here,
we shall consider some particular examples. We begin with the problem of
finding a continuously differentiable function E: R a C such that

(5.1) E(0) = 1, E'(x) = E(x), x e R.
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Suppose there were such a function E, and suppose it could be defined by a
power series

E(x) _ 57 anxn.
n=0

Then (5.1) and Theorem 4.4 imply
.0 OD

nanxn-1 = anxn'
n=1 n=0

or
00

(n + 1)an+1xn = anxn.
n=0 n=0

Since the coefficients are uniquely determined, this implies

an+l=anl(n+1), n=0,1,2,....
But

,ao = E(O) = 1

so inductively

an = (n!)-1 = [n(n - 1)(n - 2)... 1]-1

We have shown that if there is a solution of (5.1) defined by a power series,
then it is given by

(5.2) E(x) = (n!)-1xn.
n=0

The ratio test shows that (5.2) converges for all real or complex x, and
application of Theorem 4.4 shows that E is indeed a solution of (5.1). We
shall see that it is the only solution.

Theorem 5.1. For each a, c e C there is a unique continuously differenti-
able function P. R - C such that

(5.3) f(0) = c, f'(x) = af(x), x e R.

This function is

(5.4) f(x) = cE(ax) = c 57, (n!)-lanxn.
n=0

Proof. The function given by (5.4) can be found by the argument used
to find E, and Theorem 4.4 shows that it is a solution of (5.3). To show
uniqueness, suppose f is any solution of (5.3), and let g(x) = E(-ax), so that

g(0) = 1, g'(x) = -ag(x).

Thenfg is differentiable and

(.fg)' =.f'g+fg'=afg-afg=0.
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Therefore ft is constant and this constant value isf(O)g(O) = c. If c
impliesfg is never zero, so g is never zero. Then for any c,

0, this

f(x) = c/g(x), all x.

Thus f is unique. 0

This can be extended to more complicated problems.

Theorem 5.2. For each a, c e C and each continuous function h : R -+ C
there is a unique continuously differentiable function f: R -+ C such that

(5.5) f(0) = c, f'(x) = af(x) + h(x), x e R.

Proof. Let fo(x) = E(ax), g(x) = E(-ax). As in the preceding proof,
fog is constant, =-1. Therefore neither function vanishes. Any solution f of
(5.5) can be written as

f = fifo, where f1 = gf.
Then

f' =fi.fo +fifo =fi.fo + af,
so (5.5) holds if and only if

f1(0) = c, f'(x)fo(x) = h(x)-

These conditions are equivalent to

fi(x) = c + f, gh.
0

Thus the unique solution of (5.5) is given by

(5.6) f(x) = cfo(x) + fo(x)f
x

gh
0

= cE(ax) + E(ax) f E(-at)h(t) dt. 0
0

Now we consider equations involving the second derivative as well.

Theorem 5.3. For any b, c, do, d1 e C and any continuous function
h: I8 -+ C there is a unique f: R -+ C of class C' which satisfies

(5.7) f(0) = do, f'(0) = di,
(5.8) f"(x) + bf'(x) + cf(x) = h(x), x e R.

Proof. To motivate the proof, we introduce two operations on functions
of class C1 from R to C: given such a function g, let

Dg=g', Ig=g.
If g is of class C2, let D2g = g". Then (5.8) can be written

D2f+bDf+clf=h.
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This suggests the polynomial z' + 2bz + c. We know there are roots a1i a2
of this polynomial such that

z'+bz+c=(z-a1)(z-a2), allzEC.

Thus

b = -a1 - a2, c = a1a2.

From the properties of differentiation it follows that

(D - a1I)[(D - a2I)f] = D2f - (a1 + a2)Df + aaalf
=f"+bf'+cf.

Let

g=f'-aaf=(D-a2I)f.
We have shown that f is a solution of (5.8) if and only if

(D-a1I)g=g'-a1g=h.
If also (5.7) holds, then g(0) = f'(0) - a2f(0) = d1 - aado. Thus f is a
solution of (5.7), (5.8) if and only if

(5.9) f(0) = do, f'- a2/ = g,
where

(5.10) g(0) = d1 - aado, . g' - a1 g = h.

But (5.10) has a unique solution g, and once g has been found then (5.9) has
a unique solution. It follows that (5.7), (5.8) has a unique solution. 0

Now we return to the function E,

E(z) _ (n l) -1z", z e C.
n=0

Define the real number e by

(5.11) e = E(1) _ (nl)-1.00

n=0

Theorem 5.4. The function E is a function from R to R of class C`°.
Moreover,

(a) E(x) > 0, x e R,
(b) for each y > 0, there is a unique x e R such that E(x) = y,
(c) E(x + y) = E(x)E(y), all x, y e R,
(d) for any rational r, E(r) = e*.

Proof. Since E is defined by a power series, it is of class C'. It is clearly
real for x real, and positive when x z 0. As above, E(x)E(-x) = 1, all x,
so also E(x) > 0 when x < 0.
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To prove (b), we wish to apply Theorem 1. Taking the first two terms in
the series shows (since y > 0) that E(y) > I + y > y. Also, E(y-1) > y-
so

E(-y-1) = E(y-1)-1 < (y-1)-1 = y.

Thus there is x e (-y-1, y) such that E(x) = y. Since E' = E > 0, E is
strictly increasing and x is unique.

We have proved (c) when x = - y. Multiplying by E(-x)E(-y), we want
to show

E(x + y)E(-x)E(-y) = 1, all x, y e R.

Fix y. This equation holds when x = 0, and differentiation with respect to x
shows that the left side is constant.

Finally, repeated use of (c) shows that

E(nx) = E(x)n, n = 0, ± 1, ±2,.. ..

Thus

e = E(l) = E(n/n) = E(1/n)",
el/n = E(1/n), n = 1,2,3,....

em/n = (elln)m = E(1/n)m = E(m/n). 0

Because of (d) above and the continuity of E, it is customary to define
arbitrary complex powers of e by

Go

(5.12) e = E(z) = 2 (n!)-lzn.
n-0

The notation

(5.13) e$ = exp z

is also common.
We extend part of Theorem 5.4 to the complex exponential function.

(Recall that z* denotes the complex conjugate of z e C.)

Theorem 5.5. For any complex numbers z and w,

(5.14) E(z + w) = E(z)E(w), E(z*) = E(z)*.

Proof. The second assertion can be proved by examining the partial
sums of the series. To prove the first assertion, recall that we showed in the
proof of Theorem 5.1 that E(zx)E(-zx) is constant, x e R. Therefore
E(z)E(-z) = E(0)2 = 1. We want to show

E(z + w)E(-z)E(-w) = 1, all z, w e C.

Let

g(x) = E((z + w)x)E(- zx)E(- wx), x e R.

Differentiation shows g is constant. But g(0) = 1. 0
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The notation (5.12) and the identity (5.14) can be used to consolidate
expressions for the solutions of the differential equations above. The unique
solution of

f(0)=c, f'=af+h
is

ea(x-t)h(t) dt.(5.15) f(x) = ceax + f,
0

The unique solution of

.f(0) = do, f'(0) = di, ,f" + df' + cf = h

Jf(x) = doeaax + eaacx-011 dt,

x) = (d1 - aado)ealx + f x ea-(x-°>h(t) dt,g(
0

and al, a2 are the roots of za + bz + c.

Exercises

1. Find the solution of

f(0)= 1, f'(0)=0, f"-2f'+f=0
by the procedure in Theorem 5.3, and also by determining the coefficients in
the power series expansion off.

2. Let f, g be the functions such that

f(0) = 1, f'(0) = 0, f" + bf' + cf = 0,
g(0)=0, g'(0) = 1, g"+bg'+cg=0.

Show that for any constants dl, d2 the function h = dl f + d2g is a solution of

(*) h"+bh'+ch=0.
Show that conversely if h is a solution of this equation then there are unique
constants dl, d2 e C such that h = dl f + d g. (This shows that the set of
solutions of (*) is a two-dimensional complex vector space, and (f, g) is a
basis.)

3. Suppose h(x) _ n o d"x", the series converging for all x. Show that
the solution of

f(0) = 0 = f'(0), f" + bf' + cf = h
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is of the form a,,x°, where this series converges for all x. (Hint: deter-
mine the coefficients ap, a1, ... inductively, and prove convergence.)

4. Suppose z3 + bz2 + cz + d = (z - a1)(z - a2)(z - a3), all z e C.
Discuss the problem of finding a function f such that

f(0) = eo, f'(0) = e1, .f"(0) = e2, J 'w + df" + cf' + d = 0.

§6. Trigonometric functions and the logarithm

In §5 the exponential function arose naturally from study of the differen-
tial equation f' = f. In this section we discuss solutions of one of the simplest
equations involving the second derivative: f" + f = 0.

Theorem 6.1. There are unique functions S, C: R --> C of class C2 such
that

(6.1) S(0) = 0, S'(0) = 1, So + S = 0,

(6.2) C(0) =1, C'(0) = 0, C" + C = 0.

Proof. Existence and uniqueness of such functions is a consequence of
Theorem 5.3. 0

Let us obtain expressions for S and C using the method of Theorem 5.3.
The roots of z2 + I are z = t i. Therefore

e-lcx-°g(t) dtS(x) = f,
0

where

g(x) = eix.

Thus
x

S(x) =
fx

e-'(x-t)ett dt = e-ix f e2u dt
0 0

= e-ix(2i)-1e24t Ixp = (2i)-le-ix(e2tx - 1),

S(x) (eix - e-ix).

A similar calculation gives

(6.4) C(x) = 4'(eix + e-lx).

Theorem 6.2. The functions S, C defined by (6.3) and (6.4) are real-
valued functions of class C' on R. Moreover,

(a) S' = C, C' = - S,
(b) S(x)2 + C(x)2 = 1, all x e 13,
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(c) there is a smallest positive number p such that C(p) = 0,
(d) if p is the number in (c), then

S(x + 4p) = S(x), C(x + 4p) = C(x), all x e R.

Proof. Since the exponential function exp (ax) is of class C°° as a func-
tion of x for each a e C, S and C are of class C Since (exp (ix))* _
exp (- ix), S and C are real-valued. In fact,

C(x) = Re (e'"), S(x) = Im (etx),

so

e'x = C(x) + iS(x).

Differentiation of (6.3) and (6.4) shows S' = C, C' S. Differentiation
of S2 + C2 shows that S(x)a + C(x)a is constant; the value for x = 0 is 1.

To prove (c), we suppose that C(x) # 0 for all x > 0. Since C(0) = 1 and
C is continuous, the Intermediate Value Theorem implies C(x) > 0, all
x > 0. Since S' = C, S is then strictly increasing for x >_ 0. In particular,
S(x) >_ S(1) > 0, all x >- 1. But then

x
0 < C(x) = C(1) + f C'(t) d t = C(l) - f

x
S(t) dt

x
5 C(1) - f S(1) dt = C(l) - (x - 1)S(1), x >_ 1.

i
But for large x the last expression is negative, a contradiction. Thus C(x) = 0
for some x > 0. Let p = inf {x I x > 0, C(x) = 0}. Then p z 0. There is a
sequence such that 0, p 5 x 5 p + 1/n. Thus C(p) = 0, and
p is the smallest positive number at which C vanishes.

To prove (d) we note that

1 = S(p)a + C(p)a = S(P)a,

so S(p) 1. But S(0) = 0 and S' = C is positive on [0, p), so S(p) > 0,
Thus S(p) = 1. Consider S(x + p) as a function of x. It satisfies (6.2), and so
by uniqueness we must have

S(x + p) = C(x), x e R.

Similarly, - C(x + p) considered as a function of x satisfies (6.1), so

C(x + p) = -S(x), x e R.

Then

S(x + 4p) = C(x + 3p) = -S(x + 2p) = -C(x + p) = S(x),
C(x + 4p) = -S(x + 3p) = -C(x + 2p) = S(x + p) = C(x). 0

We define the positive number it by

7r =2p,
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p the number in (c), (d) of Theorem 6.3. We define the functions sine and
cosine for all z e C by

(6.5) sin z = ?i (e'' - e-'I) _ [(2n + 1)!]-1(- I)nz2n+1,
n=0

(6.6) cosz=2 a + e[2n!]1(- lJz .
n=0

Note that because of the way we have defined it and the sine and cosine
functions, it is necessary to prove that they have the usual geometric sig-
nificance.

Theorem 6.3. Let y: [0, 2ir] --> R2 be defined by

y(t) _ (cos t, sin t).

Then y is a 1-1 mapping of [0, 21r] onto the unit circle about the origin in 082.
The length of the arc of this circle from y(O) to y(t) is t. In particular, the
length of the unit circle is 21r.

Proof. We know from Theorem 6.2 that (cos t)2 + (sin t)2 = 1, so
(cos t, sin t) lies on the unit circle. The discussion in the proof of Theorem 6.2
shows that on the interval [0, 4_r], cos t decreases strictly from 1 to 0 while
sin t increases strictly from 0 to 1. Therefore, y maps [0, 4ir] into the portion
of the circle lying in the quadrant x >_ 0, y z 0 in a 1-I manner. Further-
more, suppose 0 5 x 5 1, 0 <- y 5 1, and x2 + y2 = 1. By the Intermediate
Value Theorem and the continuity of cosine, there is a unique t e [0,,r] such
that cos t = x. Then sin t >_ 0, (sin t)2 = 1 - x2 = y2, and y >_ 0, so
sin t = y. Thus y maps [0, Jr] onto the portion of the circle in question.

Since cos (t + 4rr) = -sin t and sin (t + 4ir) = cos t, the cosine de-
creases from 0 to -1 and the sine decreases from 1 to 0 on [for, or]. As above,
we find that y maps this interval 1-1 and onto the portion of the circle in the
quadrant x 5 0, y >: 0. Continuing in this way we see that y does indeed
map [0, 2ir) 1-1 onto the unit circle.

The length of the curve y from y(O) to y(t) is usually defined to be the
limit, if it exists, of the lengths of polygonal approximations. Specifically,
suppose

0 = t0 < t1 < t2 < < to = t.

The sum of the lengths of the line segments joining the points y(t, _ 1) and
At,), i = 1, 2, ..., n is

n

(6.7) [(cos t, - cos t, _ 1)2 + (sin ti - sin ti-1)2]1112.
s=1

By the Mean Value Theorem, there are is and t{ between t, _1 and t{ such that

cos t, - cos t, _ 1 = - sin t;(t, - t, - 1),
sin t{ - sin t,_1 = cos t;(t, - t,-1).
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Therefore, the sum (6.7) is

Continuous functions

,)2](t, - tt_1).[(sin tea + (cos t'
i=1

Since sine and cosine are continuous, hence uniformly continuous on [0, t],
and since (sin t)2 + (cos t)2 = 1, it is not hard to show that as the maximum
length I tt - tt_ 1I -> 0, (6.7) approaches t. p

This theorem shows that sine, cosine, and Tr as defined above do indeed
have the usual interpretation. Next we consider them as functions from
C to C.

Theorem 6.4. The sine, cosine, and exponential functions have the following
properties:

(a) exp (iz) = cos z + i sin z, all z e C,
(b) sin (z + 21r) = sin z, cos (z + 2r) = cos z, exp (z + 21ri) = exp z,

all z e C,
(c) if w e C and w 0 0, there is a z e C such that w = exp (z). If also

w = exp (z'), then there is an integer n such that z' = z + 2nnri.

Proof. The identity (a) follows from solving (6.5) and (6.6) for exp (iz).
By Theorem 2.2 and the definition of ir,

exp (2iri) = cos 2ir + i sin 2,r = 1.

Then since exp (z + w) = exp z exp w we get

exp (z + 21ri) = exp z.

This identity and (6.5), (6.6) imply the rest of (b).
Suppose w e C, w 0 0. Let r = I w l. If x, y are real,

lexp (iy)I2 = Icos y + i sin yI2 = (cos y)2 + (sin y)2 = 1.

Therefore

Iexp (x + iy)I2 = Iexp x exp (iy)I = Iexp xI = exp x.

To have exp (x + iy) = w, then, we must have exp x = r. By Theorem 5.4
there is a unique such x e R. We also want exp (iy) = r-1w = a + bi. Since
Ir-1wl = 1, a2 + b2 = 1. By Theorem 6.3 there is a unique y e [0, 21r) such
that cos y = a, sin y = b. Then exp (iy) = cosy + i sin y = a + ib. We
have shown that there are x, y e R such that if z = x + iy,

exp z = exp x exp (iy) = r r-1 w = w.

Suppose z' = x' + iy', x', y' real, and exp z' = w. Then

r = IwI = Iexp z'I = Iexp x'I = exp x',

x' = x. There is an integer n such that

2nvr5y'-y<2n7r+2ir,
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or

y'=y+2nir + h, he[0,27r).

Since exp z' = exp z, we have

exp (iy) = exp (iy') = exp (i(y + 2nmr + h)) = exp (iy + ih),

so

1 = exp (- iy) exp (iy + ih) = exp (ih).

Since h e [0, 2ir), this implies h = 0. Thus y' = y + 2nvr. p

The trigonometric functions tangent, secant, etc., are defined for complex
values by

tan z = sin z/cos z, z e C, cos z # 0,

etc.

If w, z e C and w = exp z, then z is said to be a logarithm of w,

z = log w.

Theorem 6.4 shows that any w 0 has a logarithm; in fact it has infinitely
many, whose imaginary parts differ by integral multiples of 21r. Thus log w is
not a function of w, in the usual sense. It can be considered a function by
restricting the range of values of the imaginary part. For example, if w # 0
the z such that exp z = w, Im z e [a, a + 21r) is unique, for any given choice
of a e R.

If x > 0, it is customary to take for log x the unique real y such that
exp y = x. Thus as a function from (0, oo) to R, the logarithm is the inverse
of the exponential function. Theorem 3.7 shows that it is differentiable, with

TX (log x) = dy evfvm,og) = e-104"11 = x-1.

Thus

logx=Jxt-1dt, x> 0.
1

Exercises

1. Prove the identities

sin (z + w) = sin z cos w + cos z sin w,
cos (z + w) = cos z cos w - sin z sin w

for all complex z, w. (Hint: use (6.5) and (6.6).)
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2. Show that tan x is a strictly increasing function from (- J r, jr) onto
R. Show that the inverse function tan-1 x satisfies

jj (tan-1 x) _ (1 + x2) -1

3. Show that f (1 + x2)-1 dx
4. Show that

log(1+x)= fx(1+t)-1dt, -1<x<00.
0

5. Show that

1

log(1+x)= I
_ A

xn, -1 <x< 1.60

n-1

(Hint: use Exercise 4.)

§7. Functions of two variables

Suppose A is an open subset of R2, i.e., for each (xo, yo) e A there is an
open disc with center (xo, yo) contained in A :

A {(x, y) I (x - xo)2 + (y - yo)2 < r2}, some r > 0.

In particular, A contains (x, yo) for each x in the open interval x0 - r <
x < x0 + r, and A contains (xo, y) for each y in the open interval yo - r <
Y<Yo+r.

Suppose f: A -+ C. It makes sense to ask whetherf(x, yo) is differentiable
as a function of x at x0. If so, we denote the derivative by

D1, f(xo, yo) = lim [f(x, yo) - f(xo, Yo)](x - x0) -1.
x*xo

Other common notations are

ax (xO, YO), ax I(x ,v ),
fx(xo, yo), Df(xo, Yo).

0 0

Similarly, if f(xo, y) is differentiable at yo as a function of y we set

D2f(xo, yo) = lim [f(xo, Y) - f(xo, Yo)](Y - Yo)-1.
v-.yo

The derivatives D, f, D2 f are called the first order partial derivatives of f.
The second order partial derivatives are the first order derivatives of the first
order derivatives:

D12f = D,(D1f), D22f = D2(D2f),
D,D2f = D,(D2f), D2D1f = D2(D,f).
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Other notations are

02f 02f 02f a02f
, etc.

axe aye

'
ax ay y ax

Higher order partial derivatives are defined similarly. An (n + 1)-order
partial derivative off is D1g or D2g, where g is an n-order partial derivative
of f. The function f: A -+ C is said to be n-times continuously differentiable,
or of class C' if all the partial derivatives off of order < n exist and are con-
tinuous at each point of A. If this is true for every integer n, then f is said to
be infinitely differentiable, or of class C

Theorem 7.1. (Equality of mixed partial derivatives). If f: A -+ C is of
class C2, then D1D2 f = D2D1 f.

Proof. Suppose (a, b) a A. Choose r > 0 so small that A contains the
closed square with center (a, b), edges parallel to the coordinate axes, and
sides of length 2r. Thus (x, y) e A if

Ix - al <-r and Iy - bJ _--g r.

In this square we apply the fundamental theorem of calculus to f as a function
of x with y fixed, and conclude

x

f(x, y) = f D1.f(s, y) ds + .f(a, y).
a

Let g(y) = f(a, y). We claim that
x

(7.1) D2f(x, y) = f D2D1f(s, y) ds + g'(y).
a

If so, then differentiation with respect to x shows D1 D2 f = D2D1 f. To prove
(7.1) we consider

x

8-1(f(x, y + e) - f(x, y)) - f D2D1f(s, y) is - g'(y)

I= fx
[e_

1(D1.f(s, y + e) - D1.f(s, y)) - D2D1f(s, y)] ds
a

L

+ [e-1(g(Y + e) - g(Y)) - g'(Y)].
The second term in brackets - . 0 as e - 0. If f is real-valued, we may apply
the Mean Value Theorem to the first term and conclude that for each s and y
and for each small e, there is a point y' = y'(s, y, e) between y and y + a such
that

(7.2) a-1(D1 f(s, y + e) - D1 f(s, y)) - D2D1f(s, y)
= D2D1f(s, y') - D2D1.f(s, y).

Now Iy' - yI < e, so I (s, y') - (s, y) I < e. Since D2D1f is uniformly con-
tinuous on the square Ix - al S r, I y - bj < r, it follows that the maximum
value of (7.2) converges to zero as e - 0. This implies convergence to zero of
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the integral of (7.1) with respect to s, proving (7.1) when f is real. In the
general case, we look at the real and imaginary parts off separately. p

Remarks. In the course of proving Theorem 7.1 we have, in effect,
proved the following. If f is a complex-valued function of class C' defined on
a rectangle Ix - al < r,, ly - bj < ra, then the derivative with respect to
y of

f xf(s, y) ds
a

Is

fx
D2f(s, y) ds.

a

Similarly, the derivative with respect to x of

f by f(x, t) dt

is

f" Dlf(x, t) A
b

We need one more result of this sort: if a = b, r1 = r2, then

F(y) = f v'((, y) ds
a

is defined for I y - al < r,. The derivative is

It

(7.3) J Daf(s, y) ds + fly, y).
a

In fact

v+
F(y + e) - F(y) = f

y

[f(s, y + e) - .f(s, y)] ds + f
s

f (s, y) dy
a y

Divide by a and let a --> 0. By the argument above, the first integral converges
to

fy
Daf(s, y) ds.

a

In the second integral, we are integrating a function whose values are very
close to fly, y), over an interval of length a. Then, dividing by a, we see that
the limit is fly, y).

We need two results on change of order of integration.

Theorem 7.2. Suppose f is a continuous complex valued function on the
rectangle

A={(x,y)IaSx-s b,c5 y :r. d}.
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Then the functions

dg(x) = f f(x, t) dt, h(Y) = fbf(s, y) ds
c

are continuous, and
rb

a

d

g(x) dx = f h(y) dy.

IProof. The preceding remarks show that g and hare not only continuous
but differentiable. More generally,

f yf(s, t) dt, f x f(s, t) ds
b a

are continuous functions of s and of t respectively. Define

Fi(x, y) = f." vF2(x,

y) = f
v

{fa
xf(s, t) ds } dt.

J

We want to show that F1(b, d) = F2(b, d). The remarks preceding this theo-
rem show that

ffs,D2F1(x, y) = y) ds = D2F2(x, Y)

Therefore, F2 - F1 is constant along each vertical line segment in the
rectangle A. Similarly, D1F1 = D1F2, so F2 - F1 is constant along each
horizontal line segment. Since F1(a, c) = F2(a, c) = 0, F1 =- F2. p

The next theorem describes the analogous situation for integration over
a triangle.

Theorem 7.3. Suppose f is a continuous complex-valued function defined
on the triangle

Then

A={(x,y)105x5a,0<_y5x}.

fa{fxf(xy)dy}dx
=
fa{fa}

f (x, y) dx dy.
0 0 v

Proof. Consider the two functions of t, 0 5 t :!9 a, defined by

f e
{fx1(x

, y) dy } dx, f
e

`{ff(x, y) dx } dy.
0 1 0J

By the remarks following Theorem 7.1, the derivatives of these functions with
respect to t are

f
e

f(t, y) dy, f f(t, y) dy + f0 {0} dy.
0 0
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Thus these functions differ by a constant. Since both are zero when t = 0,
they are identical. 0

Finally we need to discuss polar coordinates. If (x, y) e R2 and (x, y) 0
(0, 0), let

r = (x2 + y2)112.

Then

(r-1x)2 + (r-1y)2 = 1,

so there is a unique 0, 0 5 0 < 21r, such that cos 0 = r-1x, sin 0 = r-ly.
This means

x=rcos0, y=rsin0
r = (x2 + y2)112, 0 = tan-1(y/x)

Thus any point p of the plane other than the origin is determined uniquely
either by its Cartesian coordinates (x, y) or by its polar coordinates r, 9. A
function defined on a subset of R2 can be expressed either as f(x, y) or
g(r, 0). These are related by

(7.4) f(x, y) = g((x2 + y2)112, tan-1(y/x)),

(7.5) g(r, 9) = f(r cos 0, r sin 0).

Theorem 7.4. Suppose f is a continuous complex-valued function defined
on the disc

DR = {(x, y) I x2 + y2 < R}.

Suppose g is related to f by (7.5). Then

R r (R2-v2)112 1 R an
g(r, 9)r dOj dr.f { f f(x, y) dx } dy = f fo(R2-y2)112 l 0

Proof. Look first at the quadrant x z 0, y >_ 0. For a fixed y Z 0, if
x >_ 0 then x = (r2 - y2)112. Proposition 3.9 on coordinate changes gives

(R2 - y2)11S a
fAx, y) A = f f((r2 - y2)112, y)(r2 - y2)-112r dr.

o y

We integrate the integral on the right over 0 5 y 5 R, and use Theorem 7.3
to get

f

R 1

I fo
- y2)1/2, y)(r2 - y2)-11a dy,.r dr.

0 JJ

Let y = r sin 0, 9 e [0, rr]. Then (r2 - y2)112 = r cos 9. We may apply
Proposition 3.9 to the preceding integral of over 0 5 0 5 rr. Similar
arguments apply to the other three quadrants. 0
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Exercises

1. Suppose A c R2 is open and suppose g: A -- C and h: A -* C are of
class C1. Show that a necessary condition for the existence off: A -* C such
that

(*) D1f=g, DJ=h
is that D2g = D1h.

2. In Exercise 1, suppose A is a disc {(x, y) I (x - x(,)2 + (y - yo)2 < R2}.
Show that the condition D2g = D1h is sufficient. (Hint: consider

x
f(x, y) =

J
g(s, y) ds +

J

v
h(xo, t) dt.)

L. vo

§8. Some infinitely differentiable functions

In §4 it was shown that any power series with a positive radius of con-
vergence defines an infinitely differentiable function where it converges:

f(x) = 'I an(x - x0)".
n=0

We know

an = (n !) -1f(n)(x0).

In particular, if all derivatives of f are zero at x0, then f is identically zero.
There are infinitely differentiable functions which do not have this property.

Proposition 8.1. There is an infinitely differentiable function f: R -* R
such that

f(x)=0, x50,
f(x) > 0, x > 0.

Proof. We define f by

f(x) = 0, x 5 0
f(x) = exp (-1/x), x > 0.

Near any point x # 0, f is the composition of two infinitely differentiable
functions. Repeated use of the chain rule shows that f is, therefore, infinitely
differentiable except possibly at zero.

Let us show that f is continuous at 0. If y > 0, then

ew = (n!)-1yn > (m!)-1y,n, m = 0, 1, ....
n=o

Thus if x > 0,

0 < f(x) = exp (-1/x) = exp (1/x)-1 < m!(11x)-m = m! x'n,



68 Continuous functions

m = 0, 1, .... In particular,f(x) --* 0 as x -> 0.
It is easy to show by induction that for x > 0,

f(k)(x) = Pk(x-')f(x),

where pk(x) is a polynomial of degree <_ k + 1. Of course, this equation also
holds for x < 0. Suppose we have shown that f (k) exists and is continuous at
0; then of course f (k)(0) = 0. We have

(8.1) I[f(k)(x) -J(k)(0)]x-ii = If(k)(x)x-19

= I x-'pk(x-')f(x)I
Since pk is of order 5 k + 1 and

If(x)I 5 (k + 3)1 xk+s,

it follows that the right side of (8.1) converges to zero at x -+0. Thusf(k+l)(0)
exists and is zero. Similarly, f(k+l)(x) = pk+l(x-1)f(x) - 0 as x -+ 0, so

f(k+1) is continuous. 0

Note that all derivatives of the preceding function vanish at zero, but f is
not identically zero. Therefore f does not have a convergent power series
expansion around zero.

Corollary 8.2. Suppose a < b. There is an infinitely differentiable function
g: R --> R such that

g(x) = 0, x 0 (a, b),
g(x) > 0, x e (a, b).

Proof. Let f be the function in Theorem 8.1 and let

g(x) = f(x - a)f(b - x).

This is positive where x - a > 0 and where b - x > 0, and is zero else-
where. It is clearly of class C°°. 0

Corollary 8.3. Suppose a < b. There is an infinitely d? erentiable function
h : R -+ R such that

h(x) = 0, x < a,
0<h(x)<1, a<x<b,

h(x) = 1, x >_ b.

Proof. Let g be the function in Corollary 8.2 and let
x

h(x) = c f g(t) dt,

where c > 0 is chosen so that h(b) = 1. Then h' = cg z 0, h is constant
outside (a, b), etc. 0



Chapter 3

Periodic Functions and Periodic Distributions

§1. Continuous periodic functions

Suppose u is a complex-valued function defined on the real line R. The
function u is said to be periodic with period a 0 0 if

u(x + a) = u(x)

for each x e R. If this is so, then also

u(x + 2a) = u((x + a) + a) = u(x + a) = u(x),
u(x - a) = u((x - a) + a) = u(x).

Thus u is also periodic with period 2a and with period -a. More generally,
u is periodic with period na for each integer n. If u is periodic with period
a 96 0, then the function v,

v(x) = u(lajx/2ir)

is periodic with period 21r. It is convenient to choose a fixed period for our
study of periodic functions, and the period 27r is particularly convenient.
From now on the statement "u is periodic" will mean "u is periodic with
period 2ir." In this section we are concerned with continuous periodic
functions. We denote the set of all continuous periodic functions from R
to C by W. This set includes, in particular, the functions

sin nx, cos nx, exp (inx) = cos nx + i sin nx

for each integer n.
The set if can be considered a vector space in a natural way. We define the

operations of addition and scalar multiplication by

(1) (u + v)(x) = u(x) + v(x), u, v e ', x e R;

(2) (au)(x) = au(x), u e (f, a e C, x e R.

it is easily checked that the functions u + v and au are periodic. By Proposi-
tion 1.1 of Chapter 2, they are also continuous. Thus u + v e ', au e W. The
axioms Vl-V8 for a vector space are easily verified. We note also that there
is a natural multiplication of elements of ',

(uv)(x) = u(x)v(x), u, v e', x e R.

The set ' may also be considered as a metric space. Since the interval
[0, 21r] is a compact set in R and since u e % is continuous,

sup Iu(x)I < 00.
xe[O.2n]

69
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We define the norm of u e (f topp be the real number Jul where

(3) Jul .CR I u(x)I xupnl iu(x)I

The norm (3) has the following properties:

(4) Jul >: 0, and Jul = 0 only if u(x) = 0, all x;

(5) laul = lal Jul, a E C, u e %;

(6) lu+vl sJul+IvI, U,VEW

The properties (4) and (5) are easily checked. As for (6), suppose x c- R. Then

Ku + v)(x)I = 1u(X) + v(x)I <- Iu(x)l + I v(x) I <- I ul + IvI

Since this is true for every x E R, (6) is true.
To make (f a metric space, we set

(7) d(u, v) = Iu - vI.

Theorem 1.1. The set ' of continuous periodic functions is a vector
space with the operations defined by (1) and (2). The set `' is also a metric
space with respect to the metric d defined by (7), and it is complete.

Proof. As we noted above, checking that W satisfies the axioms for a
vector space is straightforward. The axioms for a metric space are also
easily checked, using (4), (5), and (6). For example,

d(u,w)= lu - wi = I(u-v)+(v-w)I
5 Iu - vi + Iv- wl = d(u, v) + d(v, w).

Finally, suppose 1 is a Cauchy sequence of functions in W. By Theorem
4.1 of Chapter 2, there is a continuous function u: R -+ C such that
l u,, - ul -*0. Clearly u is periodic, so u E (f and' is complete. fl

Sets which are simultaneously vector spaces and metric spaces of this
sort are common enough and important enough to have been named and
studied in the abstract. Suppose X is a real or complex vector space. A norm
on X is a function assigning to each u e X a real number Jul, such that

Jul z 0, and Jul = 0 implies u = 0;
Iaul = lal Jul, a scalar, u e X;
In + VI 5 IUI + IvI, U, v E X.

A normed linear space is a vector space X together with a norm Jul. Associated
to the norm is the metric

d(u,v)= In - vl.

If the normed linear space is complete with respect to this metric, it is said
to be a Banach space.

In this terminology, Theorem 1.1 has a very brief statement: % is a
Banach space.
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Suppose X is a complex normed linear space. A linear functional
F: X -* C is said to be bounded if there is a constant c >- 0 such that

IF(u)I < clul, all u e X.

Proposition 1.2. A linear functional F on a normed linear space X is
continuous if and only if it is bounded.

Proof. Suppose F is bounded. Then

IF(u) - F(v)I = IF(u - v)I < clu - vl,
so IF(u) - F(v)I < e if In - vI < c-le.

Conversely, suppose F is continuous. There is a S > 0 such that
Jul = In - OI < 8 implies

IF(u)I = IF(u) - F(0)I < 1.

For any u 0 0, u e X, the vector v = SIuI -'u has norm S. Therefore

IF(u)I = IF(S-1Iulv)I = 8-11ui IF(v)I 5 S-IIui,

and F is bounded. 0

It is important both in theory and practice to determine all the con-
tinuous linear functionals on a given space of functions. The reason is that
many problems, in theory and in practice, can be interpreted as problems
about existence or uniqueness of linear functionals satisfying given con-
ditions. The examples below show that it is not obvious that there is any
way to give a unified description of all the continuous linear functionals on
W. In fact one can give such a description (in terms of Riemann-Stieltjes
integrals, or integrals with respect to a bounded Borel measure), but we shall
not do this here. Instead we introduce a second useful space of periodic
functions and determine the continuous linear functionals on this second
space.

Exercises

1. Suppose (an)n°=-ao
such that

is a (two sided) sequence of complex

In-- eo
IanI < 00;

here we take the infinite sum to be
OD Go OD

I Ianl = I Ianl + Ia-ni.
n-- ro n-0 n-1

Show that the function u defined by

u(x) = I an exp (inx)

numbers

n- -do
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is continuous and periodic
2. Suppose u: R --* C is a continuous function and suppose there is a

constant M such that u(x) = 0 if Ixl >_ M. Show that for any x the series

v(x) = I u(x + 2nlr)
n-- m

converges. Show that the function v is in W.
3. If u e ', define the real number IuI' by

Jul,
= (21r) -1 f

27r

I

U(X)
I dx.

0

Show that Jul' is a norm on `' and that Jul' <_ Jul.
4. Suppose d' is the metric associated with the norm Jul' in Exercise 3.

Show that'' is not complete with respect to this metric. (Hint: take a sequence
of functions (un),° 1 of functions in ' such that

0 <_ un(x) < 1, xeIR,n = 1,2,...,
un(x) = 0, x e [0, 4r/2 - 1/n] v [3ir/2 + 1/n, 27r],
un(x) = 1, x e [7,/2,37,/2].

Then l u,, - u,nl' -. 0 as n, m -*oo. If u e %B, there is an open interval
(7r/2 - 8, w/2 + 8) on which either I u(x) I > I or I u(x) - 1 I > 1. Show that
I un - ul' > 8/6ir for large values of n.)

5. Which of the following are bounded linear functionals on (f, with
respect to the norm I u I ?

(a) F(u) = u(42),
(b) F(u) =un sin nx u(x) dx,

(c) F(u) = f o
n

(u(x))2 dx,
(d) F(u) = 17u(0) + f n 3 u(x) dx.
(e) F(u) = - 3lu(0) I.

6. Suppose X is a normed linear space. Let X' be the set of all bounded
linear functionals on X. Then X' is a vector space. For F e X', let

IFI = sup {IF(u)l I u e X, Jul < 1}.

Show that IFI is a norm on X'. Show that for any u e X and F e X',

IF(u)I s IFI Jul.

Show that X' is a Banach space with respect to this norm.

§2. Smooth periodic functions

Suppose u: R -+ C is a continuous periodic function, and suppose that
the derivative

Du(x) = u'(x)
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exists for each x e R. Then Du is also periodic:

Du(x + 2,r) = lim h -1 [u(x + 2,r + h) - u(x + 27r)]
h-.0

= lim h-1[4x + h) - u(x)] = Du(x).
h-*0

In particular, if u is infinitely differentiable and periodic, then each deriv-
ative Du, D2u, ... , Dku,... is in W.

We shall denote by 9 the subset of ' which consists of all functions
u e '( which are smooth, i.e., infinitely differentiable. Such a function will be
called a smooth periodic function. If u is in 9, then the derivatives Du, D2u, .. .
are also in 9.

The set 9 is a subspace of ' in the sense of vector spaces, so it is itself a
vector space. The function Isin xI is in %' but not in 9, so 9 W. We could
consider 9 as a metric space with respect to the metric on ' given in the
previous section, but we shall see later that 9 is not complete with respect
to that metric. To be able to consider 9 as a complete space we shall intro-
duce a new notion of convergence for functions in 9

A sequence of functions (u")n 1 a 9 is said to converge to u e 9 in the
sense of 9 if for each k = 0, 1, 2, ...,

I Dku - DkuI i 0 as n -+ oo.

(Here D°u = u.) We denote this by

u"-+u (9).
Thus (u")n 1 converges to u in the sense of 9 if and only if each derivative
of u converges uniformly to the corresponding derivative of u as n -; oo.

A sequence of functions (u,,),' 1 is said to be a Cauchy sequence in the
sense of 9 if for each k = 0, 1, ..., (Dku")n 1 is a Cauchy sequence in V.
Thus

Dku" - Dku," 1-* 0 as n, m -* oo

for each k.
When there is no danger of confusion we shall speak simply of "con-

vergence" and of a "Cauchy sequence," without referring to the "the sense
of 9" The statement of the following theorem is to be understood in this
way.

Theorem 2.1. The set 9 of all smooth periodic functions is a vector space.
If (u")n 1 a 9 is a Cauchy sequence, then it converges to a function u e 9

Proof. As noted above, 9 is a subspace of the vector space %B: if u, v e 9
then u -I- v e 9, au e 9 Thus 9 is a vector space.

Suppose (u")n 1 is a Cauchy sequence. For each k the sequence of
derivatives (Dku")n1 is a Cauchy sequence in W. Therefore it converges
uniformly to a function Vk aV. For k = 0, 1, 2,.. .,

xDku"(x) = Dku"(O) +
fo

Dk+lu"(t) dt.
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By Theorem 4.2 of Chapter 2,

x
vk(x) = lim Dku.(x) = lim Dkun(O) + llm

J
Dk+lvn(t) dt

n-.ao n- OD n- OD 0

= Vk(O) + vk+1(t) dt.

Therefore Dvk = vk+1, all k. This means that if u = v0, then vk = Dku and
Dku. - Dkul 0 as n --* oo. Thus u. -a u (in the sense of 9). 0

The remainder of this section is not necessary for the subsequent develop-
ment. We show that there is no way of choosing a norm on 9 so that con-
vergence as defined above is equivalent to convergence in the sense of the
metric associated with the norm. However, there is a way of choosing a
metric on 9 (not associated with a norm) such that convergence in the sense
of 9 is equivalent to convergence in the sense of the metric. Finally, we
introduce the abstract concept which is related to 9 in the way that the
concept of "Banach space" is related to W.

Suppose there were a norm Jul' on 9 such that a sequence (u.)n1 c 9
converges in the sense of 9 to u e 9 if and only if

Iun - ul' -> 0.

Then there would be a constant M and an integer N such that

(1) lul' < M(Iul + IDul +...+ IDNul), allue9
In fact, suppose (1) is false for every M, N. Then for each integer n there
would be a u. e 9 such that

Iunl' > n(I unI + I Dunl + ... + I Dnul)

Let

V. = (I unI ')-1u.

Then

IDkvnl = (Iunl')-'ID kunl < n-1 ifn >- k,

so vn -a 0 in the sense of _M But Iv,,I' = 1, all n. This shows that the norm Jul'
must satisfy (1) for some M, N. Now let

w.(x) = n-N-1 sin nx, n = 1, 2, ....

Then w. e 9 and

IDkwnl = nk-N-1 < n-1,

Thus by (1),

k<- N.

I wnI' _+ 0,

But IDN+1wnl = 1, all n, so (wn)A 1 does not converge to 0 in the sense of 9.
This contradicts our assumption -about the norm Jul'.
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Although we cannot choose a metric on 9, associated with a norm, which
gives the right notion of convergence, we can choose a metric as follows. Let

d'(u, v) = 12 -k- 'ID kU - DkvI [l + IDku - Dkvl]-1.
k=0

The term of this sum indexed by k is non-negative and is smaller than
2-k-1 Thus

d'(u, v) < 1, u, v e 9.

It is clear that

d'(u, v) 0, d'(u, v) = 0 implies u = v,
d'(u, v) = d'(v, u).

The triangle inequality is a little more difficult. Let

d(u, v) = Iu - vj, d*(u, v) = d(u, v)[1 + d(u, v)]-1.

The reader may verify that

d*(u, w) <- d*(u, v) + d*(v, w).

Then

d'(u, w) _ 2-k-ld*(Dku, Dkw)
k=0

... < d'(u, v) + d'(v, w).

Theorem 2.2. A sequence of functions (u )n 1 c -0 is a Cauchy sequence
in the sense of 9 if and only if it is a Cauchy sequence in the sense of the metric
d'. Thus (.q, d') is a complete metric space.

Proof. Suppose (u )n 1 is a Cauchy sequence in the sense of 91. Suppose
e > 0 is given. Choose k so large that 2 < e. Choose N so large that if
m >- N and n N, then

I D'un - Diuml < je, .1 = 0, 1, ... , k.

Then if m, n >- N,
M

d'(um, un) _ 12-1-ld*(Dium, D'un)
t=0

k m
< 12-,-1(+e) + 2-,-1

!-0 f-k+1
< je + 2-11-1 < le + je.

Conversely, suppose is a Cauchy sequence in the sense of the metric d'.
Given an integer k >_ 0 and an e > 0, choose N so large that if m, n >- N
then

d'(um, un) < 2-k-2e.
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For m, n >_ N,

IDkun - Dkuml = 2k+2.2-k-1,2-1lDkun - Dkuml
< 2k+2.2-k-1d*(Dku.,

Dkum)
< 2k+2d'(ua, um) < e.

Thus (un)n 1 is a Cauchy sequence in the sense of 9.
The same argument shows that d'(un, u) -+ 0 if and only if un -+ u (9).

Thus (9, d') is complete. 0

There is an important generalization of the concept of a Banach space,
which includes spaces like 9 Let X be a vector space over the real or complex
numbers. A seminorm on X is a function u Jul from X to R such that

Jul > 0, laul = Ial Jul, In + vl < Jul + IVI.

(Thus a seminorm is a norm if and only if Jul = 0 implies u = 0.) Suppose
there is given a sequence of seminorms on X, lul1,1u12, ..., with the property
that

(2) lulk = 0, all k implies u = 0.

Then we may define a metric on X by

d'(n, v) _ 2-k1u - V1'%[1 + 10 - VIk1-1
k-1

If X is complete with respect to the metric d', it is said to be a Frechet space.
Note that

d'(un,v)--.0 as n ->oo

is equivalent to

tun - VIk -+ 0 as n -+ oo, for all k.

In particular, if we take X = 9 and

Iulk =
IDk-1ul,

then d' agrees with d' as defined above. Thus Theorems 3.1 and 3.2 say that
9 is a Frechet space.

Exercises

1. Which of the following are Cauchy sequences in the sense of 9?

un(x) = n-3 cos nx,
vn(x) = (n!) sin nx,

n
wn(x) = I (m!)-1 sin mx.

M-1
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2. Suppose X is a complex vector space with a sequence of seminorms
lull, 1012, ..., satisfying (2). Let d' be the associated metric. Show that a
linear functional F: X --* C is continuous if and only if there are a constant
M and an integer N such that

IF(u)I 5 M(IuI1 + July + + IuIN), all u e X.

§3. Translation, convolution, and approximation

The aim of this section and the next is to show that the space .9 of smooth
periodic functions is dense in the space ' of continuous periodic functions;
in other words, any continuous periodic function u is the uniform limit of a
sequence (u )n 1 of smooth periodic functions. Even more important than
this theorem is the method of proof, because we develop a systematic
procedure for approximating functions by smooth functions.

The idea behind this procedure is that an average of translates of a
function u is smoother than u itself, while if the translated functions are
translated only slightly, the resulting functions are close to u. To illustrate
this the reader is invited to graph the following functions from R to lI:

u1(x) = I xI ,
U2(x) = +Ix - e1 + 1Ix + el,
us(x) = }Ix - e1 + IN + +Ix + el,

where e > 0.
If u e T and t e D, the translation of u by t is the function Ttu,

Ttu(x) = u(x - t), x e R.

Then Ttu a W. The graph of Tt is the graph of u shifted t units to the right
(i.e., shifted I t I units to the left, if t < 0). In these terms the functions above
are

ua = +Teu1 + +T-sul, u3 = +Teu1 + ITou1 +

More generally, one could consider weighted averages of the form

(1) w = aoTtou + a1Tt1u + + arTt,u,

where

ak> 0,

and most of the tk are near 0. If

O5to<t1 =27r

and we set
b(tk) = ak(tk - tk-1)-1

/then (1) becomes

(2) w = b(tk)(Ttku)(tk - tk-1)
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The natural continuous analog of (2) is the symbolic integral
an

v =
J

b(t)Ttu dt,
0

defining the function

(3) v(x) = J ax b(t)u(x - t) dt.
0

We wish to study integrals of the form (3). If u, v e ', the convolution of
u and v is the function u * v defined by

(4)

an
(u * v)(x) =

1

1 J u(x - y)v(y) dy.
0

It follows readily from (4) that

1
faA

(5) lu * vl -< Jul lv(x)l dx < Jul Ivl.

Proposition 3.1. If u, v e ', then u * v e W. Moreover

(6) u*v=v*u,
(7) (au) * v = a(u * v), a e C,

(8) (u+v)*w=u*w+v*w, wed,

(9) (u* v) * w = u * (v * w),

(10) Tt(u * v) _ (Ttu) * v = u * (Tv).

Proof. We begin with part of (10).

(11) Tt(u * v)(x) = (u * v)(x - t) = 2 J u(x - t - y)v(y) dy

=
2v J

Ttu(x - y)v(y) dy = (Tu) * v.

Therefore,

(12) I TA * v) - u * vl = I (Ttu - u) * v)
5 iTtu - ul lvl,

where we have assumed (7) and (8). Now u is uniformly continuous on [0, 2ar]
and is periodic; it follows easily that u is uniformly continuous on R. There-
fore I Ttu - ul -+ 0 as t - 0. Then (12) implies continuity of u * v. Also,

T2A(u * v) = (Tznu) * v = u * v,

so u * v is periodic.
The equality of (6) follows from a change of variables in (4): let y' _

x - y, and use the periodicity of u and v. Equalities (7), (8), and (9) are easy
computations. The last part of (10) follows from (11) and (6). 0
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Note that

t-1[u(t + x) - u(x)] = t-'[T_tu - u](x).

Lemma 3.2. If u e 9, then

It-1(T_tu - u) - Dud -*0 as t-*0.

Proof. By the Mean Value Theorem,

t-1[T_tu - u](x) - Du(x) = Du(y) - Du(x)

where y = y(t, x) lies between x and x + t. Since Du is uniformly continuous,
t-1(T_tu - u) converges uniformly to Du as t --0. Q

Corollary 3.3. If u e °.l, then

t-1(T_tu - u)-- Du (9)

ast -* 0.

Proof. It is easy to see that

Dk(T-tu) = T-t(Dku)

Then

Dk[t-1(T_tu - u)] = t-1(T_tDku -Dku),

which converges uniformly to D(Dku) = DY(Du). 0

Proposition 3.4. If u e 9 and v e W then u* v e 9 and

(13) Dk(u * v) _ (D kU) * v, all k.

Proof. By Proposition 3.1,

(14) t-1[T-t(u * v) - (u * v)] = [t-1(T_tu - u)] * v.

By Lemma 3.2 and (5), the expression on the right in (14) converges uni-
formly to (Du) * v as t - 0. Thus

D(u * v) = (Du) * v,

and u * v has a continuous derivative. But, Du e 01, so we also have

Da(u * v) = D((Du) * v) = (D2u) * v.

By induction, (13) holds for all k. 0

Corollary 3.5. Suppose (v,J° W, v e W, and I v. - v j - * 0. Then for
each u e _,

(9).

Proof. For each k,

Dk(u * v - u * v) = Dku * (v. - v).
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It follows from this and (5) that

IDk(u*vn-u*v)I->0,

allk. 0

Having established the general properties of convolution, let us return
to the question of approximation. Suppose u e W. If 1 is a sequence of
functions in 9 then each function

Un=c'n*U

is smooth. Thinking of un as a weighted average of translates of u, we can
expect un to be close to u if 9,n has average value 1 and is concentrated near
0 and 21r (as a function on [0, 27r]).

A sequence (q'n) 1 a ' is said to be an approximate identity if

(i) ggn(x) e- 0, all n, x;
(ii) 1/2,7 fon q'n(x) dx = 1, all n;

(iii) for each 0 < 8 <
fen-a

gpn(x) dx -- 0 as n --> co.
a

Theorem 3.6. Suppose (q'n)i a W is an approximate identity. Then for
each u e W,

197. * u - ul -> 0 as n -* oo.

Moreover, if u e 9 then

9)A * u -+ u (9) as n -+ oo.

Proof. Since (2ir) -1 f o n q'a(y) dy = 1 and 'n * u = u * q'n, we have

en

u)(x) - u(x)I = Ifo
u(x

- Y)4'n(Y) dY - u(x) f
29q,n(Y)

dY
o

=
fen

[u(x - Y) - u(x)]pn(Y) dy
0

5 oa
+ I fa2u-a

I+ as a

2n 2-a
5 sup JT,u - uI (fo n + q,n)

+ 21u1 can

a

f2X-6IsIs2e a

2n-a
5 sup I TBu - ul + 21 u1 f n

Isls2a a

Given e > 0, we first choose 8 > 0 so small that 8 < it and

IT,u - uJ 5 ors if Is1 5 8.

Then choose N so large that
2A-a

21ul f cn < 2,rs, n 2 N.
a
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If n >- N, then

frn*u-u1 <e.
This proves the first assertion. Now suppose u e . For each k,

D'(cn * u) = Dk(u * rn) = (Dku) * 4pn = n * (Dku),

which converges uniformly to Dku. Thus

9'n*u-+u (9). 0

In the next section we shall construct a sequence in 9 which is an approxi-
mate identity. It will follow, using Proposition 3.4 and Theorem 3.6, that 9
is dense in W.

Exercises

1. Let ek(x) = exp (ikx), k = 0, ± 1, ±2, .... These functions are in 9
(see §6 of Chapter 2). Suppose u e W. Show that

ek * U= akek.

where

1 '"ak =
2v

(o e-"vu(y) dy.
0

2. Show that ek * ek = 1, and eJ * ek = 0 if j # k.

§4. The Weierstrass approximation theorems

A trigonometric polynomial is a function of the form

n

(1) 9,(x) = ak exp (ikx),
km-n

where the coefficients ak are in C. The reason for the terminology is that for
k > 0,

exp (± ikx) = [exp (± ix)]k = (cos x ± i sin x)k.

Therefore any function of the form (1) can be written as a polynomial in the
trigonometric functions cos x and sin x. Conversely, recall that

cos x = J[exp (ix) + exp (-ix)],

sin x = - [exp (ix) - exp (-ix)].

Therefore any polynomial in cos x and sin x can be written in the form (1).
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Lemma 4.1. There is a sequence (9).)10 of trigonometric polynomials which
is an approximate identity.

Proof. We want to choose a non-negative trigonometric polynomial 97

such that
9,(0) = 9,(21') = 1,
g7(x)<1 for 0<x<2ir.

Then successive powers of 9' will take values at points near 0 and 2ir which
are relatively much greater than those taken at points between 0 and 27r.
We may take

T(x) = I(l + cos x)

and set

mn(x) = Cn(1 + Cos X)a

where cn is chosen so that
an

J0
T,,(x) dx = 21r.

We need to show that for each 0 < 8 < ir,

r2n-6
(2)

J
rp,,(x) dx -+ 0 as n ->. oo

a

There is a number r, 0 < r < 1, such that

(3)

if

(4)

I + cosx < r(1 + cos y)

x e [8, 2ir - 8], y e [0,18].

Then (3) and (4) imply

97n(X) = cn(1 + cos x)n 5 r

so

or

}e

1Yn\x) 5 r'J 9'n(Y) dy 5 2irrn,
0

opn(x) 5 44r8-lr°, x e [8, 21r - 8]

Thus q'n -+ 0 uniformly on [S, 27r - 8]. p

Lemma 4.2. If 9) is a trigonometric polynomial and u e %, then 97 * u is a
trigonometric polynomial.

Proof. This follows from Exercise 1 of the preceding section. p

Theorem 4.3. The trigonometric polynomials are dense in the space ' of
continuous periodic functions, and in the space 9 of smooth periodic functions.
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That is, if u e W and v e .9, there are sequences (un)i and (vn)1 of trigonometric
polynomials such that

lun - uJ -*0
and

V. -+ v (.9).

Proof Let be a sequence of trigonometric polynomials which is
an approximate identity, as in Lemma 4.1. Let

un=9)n*u, vn=9)n*V.

By Lemma 4.2, the functions un and vn are trigonometric polynomials. By
Theorem 3.6, un -+ u uniformly and vn -+ v in the sense of.9 p

Note that if u, v are real-valued, then so are the sequences (un)i , (vn)i
constructed here.

Corollary 4.4. 9 is dense in W.

Theorem 4.3 is due to Weierstrass. There is a better-known approxima-
tion theorem, also due to Weierstrass, which can be deduced from Theorem
4.3.

Theorem 4.5. (Weierstrass polynomial approximation theorem). Let u be
a complex-valued continuous function defined on a closed interval [a, b] C R.
Then there is a sequence (pn)1 of polynomials which converges uniformly to u
on the interval [a, b].

Proof. Suppose first that [a, b] = [0, in. We can extend u so that it is a
function in '; for example, let u(-x) = u(x), x e [0, 1r] and take the unique
periodic extension of this function. Then there is a sequence (un)1 of trigono-
metric polynomials converging uniformly to u. Now the partial sums of the
power series

I (m!) -1(ikx)m = exp (ikx)

converge to exp (ikx) uniformly on [0, 1r]. Therefore for each n, we may
replace the functions exp (ikx) in the expression of the form (1) for u by
partial sums, so as to obtain a polynomial pn with

Pn(x) - un(x)I < nx e [0, 2ir].
Then pn --+ u uniformly on [0, 2ir].

In the case of an arbitrary interval [a, b], let

v(x) = u(a + (b - a)x/ir), x e [0, in].

Then v is continuous on [0, 1r], so there is a sequence (qn)1 of polynomials
with qn -+ v uniformly on [0, 1r]. Let

Pn(Y) = gn(in(Y - a)l (b - a)), y e [a, b].
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Then p,, is also a polynomial and pA -* u uniformly on [a, b]. 0

Exercises

1. Suppose u e ' and suppose that for each integer k,

f u(x) exp (ikx) dx = 0.
0

Show that u = 0.
2. Suppose u: [a, b] -- C is continuous, and for each integer n >_ 0,

IJ
b

u(x)x" dx = 0.
a

Show that u = 0.

§5. Periodic distributions

In general, a "distribution" is a continuous linear functional on some
space of functions. A periodic distribution is a continuous linear functional
on the space 9 Thus a periodic distribution is a mapping F: 9 -+ C such
that

F(au) = aF(u), a e C, u e 9;
F(u + v) = F(u) + F(v), u, v e 9;

F(u) U. -* u (9).

If v is a continuous periodic function defined on [0, 2ir], then we define a
linear functional F = F by

1 aA

(1) 2f v(x)u(x) dx, u e W.
0

Then F,: W -+ C is linear, and

IFF(ua) - s Iv) j u. - uI.

Therefore FF is continuous on W. Its restriction to the subspace 9 is a periodic
distribution. We say that a periodic distribution F is a function if there is a
v e V such that F = F. If so, we may abuse notation and write F = v.

Note that different functions v, w e rB define different distributions. In
fact, suppose F = F.. Choose (u )1 c 9 such that u -+ w* - v* uni-
formly, where w*(x) = w(x)*, the complex conjugate. Then

0 = 2v(F.(u,J - I
aA

(w(x) - v(x))uu(x) dx -> f
,

I w(x) - v(x)I2 dx,
0 0

90 w=V.
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Not every periodic distribution is a function. For example, let 8: C - . C
be defined by

(2) 6(u) = u(0), u e W.

Then the restriction of 8 to 9 is a periodic distribution. It is called the 8-
distribution, or Dirac 8-distribution. To see that it is not a function, let

un(x) = (I + I Cos x)n.

Then 8(un) = 1, all n. But 0 uniformly for x e [e, 27r - a], any
e > 0. Also 0 5 ua(x) <_ 1, all x, n. It follows from this that for any v e rB,

0. Thus 8 9& F,,.
The set of all periodic distributions is denoted by 9'. We consider 9'

as a vector space in the usual way: if F, G e 9', u e 9 a e C, then

(F + G)(u) = F(u) + G(u),
(aF)(u) = aF(u).

Note that if v, w are continuous periodic functions, then

F. + F. = F.+ w , Fay , = a F ti .

A sequence (F.)i s 9' is said to converge to F e 9' in the sense of 9' if

F,,(u) -* F(u), all u e 9

We denote convergence in the sense of 9' by

F. -* F (9%

or simply by

F -.F
when it is understood in what sense convergence is understood.

We want to define operations of complex conjugation, reversal, transla-
tion, and differentiation for periodic distributions. For any such operation
there is a standard procedure for extending the operation from functions to
distributions. For example, if v e W, the complex conjugate function v* is
defined by

v*(x) = v(x)*.

Then

&(u) 2. fo
v(x)*u(x) dx = (2,, f v(x)u*(x) dx) * = (F,(u*))*.

0

Then we define F* for an arbitrary F e 9' by

(3) F*(u) = F(u*)*, u e 9

Similarly, if v e W we define the reversed function v by

OW = v(-x).
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Then
1 2a 1 2a

FO(u) = 2 f v(-x)u(x) dx = 2 fv(x)u(-x) dx = F,,(u).
o

We define F-, F c- 60', by

(4) F"'(u) = F(fl), u e 9

If v e ' and t e R, recall that the translate Ttv is defined by

Tev(x) = v(x - t).

Then

i:
f2a

T v(x)u(x) dx = 2 fo X v(x - t)u(x) A2. 0

as

= r fo v(x)u(x + t) dx =

F c-.9', by

(5) TTF(u) = F(T_tu), u e 9

If v e.9 and u e 9', then integration by parts gives
2a 2a

2 f Dv(x)u(x) dx = 2 f v(x)Du(x) A =
0 0

We define DF, F e.9', by

(6) (DF)(u) = -F(Du), u e 9
Then inductively,

(7) (DkF)(u) _ (-1)kF(Dku), u e M

Each of the linear functionals so defined is a periodic distribution. For
example, if u -+ u (9) then Dua -+ Du (9). It follows that

(DF)(u,) = -F(Du,) -> -F(Du) = DF(u),

so the derivative DF is continuous. Similarly, F*, P, TTF, and DkF are in 9'.
In particular, let us take F = S. Then

(8) S=S*=fi
(9) T AU) = u(t),

(10) Dk8(u) = (-1)kDku(O), u e

Proposition 5.1. The operations in 9' defined by equations (3), (4), (5),
and (6) are continuous, in the sense that Y 'F. -+ F (9') then

F.* F* (9'),
Fa- -* F-

(9'),
TTF -+ TeF (9'),
DF -, DF (9').
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Proof. Each of these assertions follows trivially from the definitions.
For example, if u e 9 then

-F(Du) = DF(u).

Thus DF,, -* DF (9'), etc. 0

Recall that if u e 9 then Du is the limit of the "difference quotient"
t-1(T_tu - u).

Proposition 5.2. If F e 9', then

(11) t-1(T_tF- F)-> DF(9)
as t-+0.

Proof. Suppose u e 9 By definition,

(12) t-1(T_tF - F)(u) = t-1F(Ttu) - t-1F(u) _ -F(t-1[u - Ttu]).

Now

(13) t-1[u - Ttu](x) = t-1[u(x) - u(x - t)].

An argument like that proving Lemma 3.2 and Corollary 3.3 shows that the
expression in (13) converges to Du in the sense of 9 as t -* 0. From this fact
and (12) we get (11). 0

As an example,

t-1(T_tS - 6)(u) = t-1[u(-t) - u(0)]- . -Du(0) = (D8)(u).

The real and imaginary parts of a function v e T can be defined by

Re v = 3(v + v*),

Im v =
21

(v - v*).

Similarly, we define the real and imaginary parts of a periodic distribution F
by

Re F = I(F + F*),

Im F = 2t (F - F*).

F is said to be real if F = F*. A function v e 1 is said to be even if v(x) =
v(-x), all x; it is said to be odd if v(x) = -v(-x), all x. These conditions
may be written

v=v", v=-15.
Similarly, we say a periodic distribution F is even if

F=F";
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we say F is odd if

F = -F".

Exercises

1. Which of the following define periodic distributions?

(a) F(u) = Du(1) - 3u(2ir).
(b) F(u) = f o (u(x))a dx.
(c) F(u) = f0*1 u(x) dx.

(d) F(u) = fog u(x)(1 + x)' dx.
(e) F(u) = -f2x D3u(x)lcos 2xJ dx.
(f) F(u) = 7_7=o a1Diu(t1)
(g) F(u) = ,ji o (.li)-1D'u(0)

2. Verify (8), (9), (10)
3. Express the distributions in parts (a) and (f) of Exercise 1 in terms of the

8-distribution and its translates and derivatives.
4. Compute DF when F is the distribution in part (c) or (d) of Exercise 1.
5. Show that Re F and Im F are real. Show that F = Re F + i Im F.
6. Show that F real and u real, u e 9, imply F(u) is real.
7. Show that F even and u odd, u e 9, imply F(u) = 0. Show that F odd

and u even, u e 9 imply F(u) = 0.
8. Show that any F e 9' can be written uniquely as F = G + H, where

G, H e 9' and G is even, H is odd.
9. Suppose that v e W is differentiable at each point of R and Dv = w is

in W. Show that

D(FF) = Fw

in other words, if F = v, then DF = Dv.
10. Suppose v is a continuous complex-valued function defined on the

interval [0, 2ir] and that Dv = w is continuous on (0, 2ir) and bounded. Define
F9 e9' by

1 as

F (u) = 2 J v(x)u(x) dx, u e 9
0

Show that
1 as

DFF(u) = (v(0) - v(2ir))u(0) +
2- J

w(x)u(x) dx.
o

In other words,

DF = F. + [v(0) - v(21r)]8.

11. Let v(x) = sin#xj. Compute

u e 9
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§6. Determining the periodic distributions

We know that any continuous periodic function v may be considered as a
periodic distribution F. The derivatives DkFti are also periodic distributions,
though in general they are not (defined by) functions. It is natural to ask
whether all periodic distributions are of the form DkFV, v e T. The answer is
nearly yes.

Theorem 6.1. Suppose F is a periodic distribution. Then there is an integer
k >_ 0, a continuous periodic function v, and a constant function f, such that

(1) F = DkFti + Fr.

The proof of this theorem will be given later in this section, after several
other lemmas and theorems. First we need the notion of the order of a
periodic distribution. A periodic distribution F is said to be of order k (k an
integer z 0) if there is a constant c such that

IF(u)I <_ cflul + IDul IDkuI}, all ue9
For example, S is of order 0. If v e 1 then DkF is of order k. It is true, but
not obvious, that any F e 9' is of order k for some integer k >_ 0.

Theorem 6.2. If F e 9', then there is an integer k >_ 0 such that F is of
order k.

Proof. If F is not of order k, there is a function uk e 9 such that

I F(uk)I z (k+ 1){Iukl + I Dukl +...+ IDkukl }.
Let

vk = (k+ 1)-1{Iukl + I Dukl +...+ IDkukl }-luk.

Then we have

(2) IF(vk)I ? 1,
while

(3) IVkl + I Dvkl +...+ IDkukl s (k + 1)-l.

Suppose now that F were not of order k for any k z 0. Then we could find a
sequence (vk)k 1 9 satisfying (2) and (3) for each k. But (3) implies

vk -+ 0 (9).

Then (2) contradicts the continuity of F. Thus F must be of order k, some k. p

Lemma 6.3. Suppose F e 9' is of order 0. Then there is a unique con-
tinuous linear functional Fl : %B -+ C such that

F(u) = Fl(u), all u e 9

Proof. By assumption there is a constant c such that

IF(u)I 5 clul, ue9.
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If u e', there is a sequence (un),°,° 1 c 9 such that u ->. u uniformly. Then

I F(un) - F(um) I < CI un - um I -*0,

so (F(un)),, 1 is a Cauchy sequence. Let

(4) Fl(u) = lira F(un).

We want to show that Fl(u) is independent of the particular sequence used
to approximate u. If (vn)i and vn -* u uniformly, then

Iun - vnl -* 0

so

I F(un) - F(vn)I < cI un - vnI -+ 0.

Thus

lim F(un) = lim F(vn).

The functional F1:' -+' defined by (4) is easily seen to be linear. It is
continuous (= bounded), because

IF(u)l = lim I F(un)I < c lim Iunl = cI uI.

Conversely, suppose F2: % -* 9 is continuous and suppose F2(u) = F(u),
all u e 9. For any u e ', let (un)1 c 9 be such that un -- u uniformly. Then

F2(u) = lim F2(un) = lim F(un) = Fl(u). 0

(The remainder of this section is not needed subsequently.)

Lemma 6.4. Suppose F e 9' is of order 0, and suppose F(w) = 0 if w is
a constant function. Then there is a function v e % such that

D2Fn = F.

Proof. Let us suppose first that F = Ff, where f e %. We shall try to find
a periodic function v such that D2v = f. Then we must have

xDv(x) = Dv(0) + fo f(t) dt = a + f x f(t) dt,.

o

where a is to be chosen so that v is periodic. We may require v(0) = 0. Then

XV(X)
= j Dv(t) dt = fox I

LLLL

a +
fto

f(s) dsI dt
0

X t

= ax + f f f(s) ds dt.
0 0

We use Theorem 7.3 of Chapter 2 to reverse the order of integration and get

xv(x) = ax + f f(s)(x - s) A
0
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Let

(x-s)+=0 ifx<s, (x-s)+=x-s ifx>-s.
Then

(5)

By assumption on f,

aftv(x) = ax + f f(s)(x - s)+ ds.
0

f ax

bf(s) ds = 0, b e L.
0

Now we want to choose a in (5) so that v is periodic. This will be true if
v(2ir) = 0, i.e.,

2s

0 = 27ra + J (2,,r - s)f(s) ds = 2-a -
J

sf(s) A
0 0

Thus

1
as

a=2- f0 sf(s)ds

and

1 aR

(6) v(x) = 2 f f(s)[xs + 2ir(x - s)-Ids.
0

Now suppose only that F e 9' is of order 0 and that F(w) = 0 if w is
constant. Let F1 be the extension of F to a continuous linear functional on W.
Let

ux(s)=xs+2ir(x-s)+, 05s5 27r.

Then ux(0) = 2,rx = ux(21r). We can extend ux so that it is a continuous
periodic function of s. Then (6) suggests that we define a function v by

(7) v(x) = F1(ux.)

We want to show that v e T and D'F = F. It is easy to check that

l ux - 5 2nrlx - yl, ux+as = ux.

Therefore

Iv(x) - v(y)I 5 IFi(ux) - F1(u.)I 5 clux - uyj 5 c27iI x - yl,
v(x + 27r) = F1(ux+2.) = Fa(ux) = v(x).

Thus v e W. Let us compute DF,,. If w e 9 then

2Irt[T-tFF - Fv](w) = t J a [v(x + t) - v(x)]w(x) A.
0
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Approximate the integral by Riemann sums. These give expressions of the
form

(8) t-1 [v(xr + t) - v(xf)]w(xf)(x, -xf-1)

= F1(j w(x,)(xi - x,-1)t-'. [ux,+t - uj),

since F1 is linear. As partitions (x0, x1, . . ., of (0, 21r) are taken with
smaller mesh, the functions on which Fl acts in (8) converge uniformly to
the function gt. Here

n

gt(s) = f t lux+t(s) - u.(s)]w(x) dx.
0

Now I t -1(ux+t - ux)I 5 2ar. For fixed s e (0, 21r), and 0 < x < s,

t-1(ux+t - ux) -* s as t -+ 0.

This convergence is uniform for x in any closed subinterval of (0, s). Similarly,

t-1(ux+t - ux) -> s + 2ir as t -* 0,

uniformly for x in any closed subinterval of (s, 21r). It follows that

(9)

where

Then

where

lim t-'[T_tv - v](w) = F1(g),

g(s) = s f
aA aR

w(x) dx + 2ir f w(x) dx.
0 0

-Fi(h),

aA

h(s) = s f Dw(x) dx + 2irf'R Dw(x) dx = 21rw(s).
o a

Since F1 applied to a constant function gives zero, we have

2w(D2FF)(w) _ -Fl(h) = 27rF1(w) = 21rF(w).

Thus D'F = F. p

Lemma 6.5. Suppose F e 9' and suppose F(w) = 0 If w is a constant
function. Then there is a unique G e 00' such that DG = F and G(w) = 0 If
w is a constant function. If F is of order k z 1, then G is of order k - 1.

Proof. If u e 9, it is not necessarily the derivative of a periodic function.
We can get a periodic function by setting

Su(x) = f
x
u(t) dt - x

fo

ax

u(t) dt =
fx

u(t) dt - xF,(u),
0 2'r 0
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where

e(x) = 1, all x,
Then

D(Su) = u - Fe(u)e.

It follows that if DG = F and G(e) = 0, then

(10) G(u) = G(u - Fe(u)e) = G(D(Su)) = - DG(Su) _ -F(Su).

Thus G is unique. To prove existence, we use (10) to define G. Since S:.9 --> 9
is linear, G is linear. Also

ISuI < 4orlul,
I D(Su)I -< 21ul,

IDk(Su)I = IDk-lul, k > 2.

Then if uA -- u (69) we have

G(u) = - F(Su) -
G e 9'. Also

DG(u) = -G(Du) = F(S(Du)) = F(u).

Finally, suppose F is of order k >- 1. Then

I G(u)I = I F(Su)I - c{ISuI + I DSul + .. + I DkSuI}
< 5irc(IuI + IDul + + IDk-luI},

and G is of order k - 1. 0

Corollary 6.6. If G e -O' and DG = 0, then G = Ff, where f is constant.

Proof. Again let e(x) = 1, all x. Let f = (2ir)-'G(e)e, and

H=G - Ff.
Then DH = 0 and H(e) = 0. By Lemma 6.5 (uniqueness), H = 0. Thus
G = Ff. 0

Finally, we can prove Theorem 6.1. Suppose F e -0'. Take an integer k
so large that F is of order k - 2 ;-> 0. Again, let e(x) = 1, all x, f =
(21r) -1F(e)e, and

Fo=F - Ff.
Then FO is of order k - 2 and Fo(e) = 0. By repeated applications of Lemma
6.5 we can find F1, F2,. . ., Fk_a e -9' so that

DFf = Ff-1, F,(e) = 0,

and F, is of order k - 2 - j. Then Fk_a is of order 0. By Lemma 6.4, there
is a v e % such that D'F = Fk_a. Then

DkF = Dk-2Fk_a = Dk-1Fk_1 = ... = FO
=F- Ff. 0
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Exercises

1. To what extent are the functions v and f in Theorem 6.1 uniquely
determined?

2. Find v e S' such that D2F = F, Where

F=8-TS,
i.e.,

F(u) = u(O) - u(lr).

3. Find v e 'f and a constant function f such that

§7. Convolution of distributions

Suppose v E ' and u E 9. The convolution v * u can be written as

u(x - y)v(y) dy
1

(v * u)(x) = (u * v)(x) 2, f2x
0

1
2X

= 2 f v(y)il(y - x) dy = Fv(TT*2)o

here again ti(x) = u(-x). Because of this it is natural to define the convolu-
tion of a periodic distribution F and a smooth periodic function u by the
formula

(1) (F * u)(x) = F(Txta).

Proposition 7.1. If F is a periodic distribution and u is a smooth periodic
function, then the function F * u defined by (1) is a smooth periodic function.
Moreover,

(2) (aF) * u = a(F * u) = F* (au), Fe 9', u e a e C;

(3) (F+G)*u=F*u+G*u, Fe9",ue9;
(4) F*(u+v) =F*u+F*v, Fe 9', u,ve9;
(5) TT(F * u) _ (TTF) * u = F * (TTu), FE 9', u e 9;

(6) D(F * u) _ (DF) * u = F* (Du), Fe 9', u e 9

Proof. The identities (2)-(5) follow from the definition (1) by elementary
manipulations. For example,

TT(F * u)(x) = (F * u)(x - t) = F(Tx-euI)
= F(T _ tTxf4) = (TTF)(T fi) _ ((TTF) * u)(x).

Also,

F(TT_ tu) = F(TT(TTu)") = (F * (TTu))(x).
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This proves (5). It follows that

(F * u)(x + 2or) = (F * (T2nu))(x) = (F * u)(x).

We know that

t-1[T-tF - F] - DF (p) as t -* 0.

Therefore
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t'1[(F* u)(x + t) - (F* u)(x)] = t-1[T_(F* u)(x) - (F* u)(x)]
= t-1[T-tF- TF](Txtl)--> DF(Txi1)
= ((DF) * u)(x).

This shows that F * u is differentiable at each point x e R, with derivative
(DF) * u(x). By induction, Dk(F * u) = (DkF) * u. Thus F * u e 9 Finally,
using (5) again,

t-1[(F* u)(x + t) - (F * u)(x)] = F * [t-1(T_,u - u)](x)
= F(TT[t-1(T-tu - u)]") -b F(Tx(Du)-)
= (F * (Du))(x).

By induction, Dk(F * u) = F* (Dku), all k. We leave the proofs of (2), (3),
(4) as an exercise. U

As an example:

(7) 8 * u = u, (Dk8) * U = Dku.

In using (1) to define F * u, we departed from the procedure in §4, where
operations on distributions were defined in terms of their actions on functions.
Suppose u e %, v e w e-0 Then

.
2m

g

2*

(8) F,,..(w) = F..(w) = (2-)-2

J J
u(x - y)v(y)w(x) dy dx

0 0

1

_ (2ir)-2 f0
ZA

v(y){ f
22

0(y - x)w(x) dx } dy
o JJJ

= w).

This suggests that we could have defined F * u as a distribution by letting it
assign to w e & the number F(il * w). We shall see that this distribution
corresponds to the function defined by (1).

Lemma 7.2. If u e ' and v e %, then w = u * v is the uniform limit of
the functions w,, where

a(9) w = (2,,r) - 2 I n -1v(2,rm/n)TZ*mrnu.

Proof. Let xmn = 2mzr/n. Then it is easy to see that

a xms

2ir(wn(x) - w(x)) = f [v(xm,.)u(x - v(y)u(x - y)] dy,
m-1 xm-1,n
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Now u, v are uniformly continuous and over the range of integration of the
m-th summand,

Iy - xnnI < 21r1n.

Therefore I wn - wI 0 as n -+ oo. 0

Corollary 7.3. If u e 9 and v e ', then the functions wn given by (9)
converge to w = u * v in the sense of 9 as n -* oo.

Proof. Since DY(Txu) = TT(Dku), Dkwn is the corresponding sequence of
functions for (Dku) * u = Dk(u * v). Therefore Dkwn -+ Dkw uniformly as
n - oo, for each k. 0

Proposition 7.4. If F e 9' and u, v e 9 then

F,(v) = F(il * v),

where

f=F*u.
Proof. Let w = a * v and let wn be the corresponding function defined

by (9), with tl replacing u. Then wn -+ a * v (9), so

F(!l * v) = lim F(wn)

But
n

F(wn) _ (27r) 2 1 n -1v(27rm/n)F(T m,na)
M-1

v(27rm/n)f(2irm/n) 1
2,r n,1 Nn

2n

J v(x)f(x) dx = F,(v) 0
0

We shall now define the convolution of two periodic distributions F, G by

(10) (F * G)(u) = F(G" * u), u e 9

If G = F,, f = F * v, then Proposition 7.4 shows that F, = F * G. In general,
we must verify that (10) defines a periodic distribution. Clearly F * G: R'--* C
is linear. If un -+ u (9) and G is of order k, then

I (G- * ua(x) - G" * u(x)I/
1(G- * (un - u))(x) I
I G"(TT(un - u)")I

s c{ITT(un - u) I + I DTT(un - u) I + ... + I DkTx(un - u)I }
= c{Iun - uI + I D(un - u)I + ... + I Dk(un - u)I}.

Thus G" * un -+ G" * u uniformly. Similarly, for each j, D'(G" * un) _
G * Diun -+ D'(G" * u) uniformly. Thus

G"*un-+G"*u (9),
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so

(F * G)(u)

This shows that F * G e 9'. As an example,

(11) 8 * F = F * 8 = F.

In the course of showing that F* G is continuous, we have given an
argument which proves the following.

Lemma 7.5. If F e 9', a 9, and u -> u (9), then F * u ->
F * u (9).

Corollary 7.6. Suppose (f )1 9, (g.) 'O and set

F. = Ff., G. = F9,.
Suppose

F,, -* F (9) and G,, -> G (9').

Then

FA*G->F*G (9')
and

(9').

Proof. Suppose u e 9 Then

(F * G)(u) = F (G" * u) -> F(G" * u) = (F * G)(u)

Also, G,, *u->G"*u (49) so

(F * G,)(u) = u) -+ F(G" * u) = (F * G)(u). 0

We can now prove approximation theorems for periodic distributions
analogous to those for functions.

Theorem 7.7. Suppose (p.)1' a 9 is an approximate identity, and suppose
F e 9'. Let F,, = Ffa, where f = F * qp,,. Then F -> F (9').

In particular, there is a sequence (,J° of trigonometric polynomials such
that Ffa -> F (9').

Proof. We have, by Proposition 7.4,

F (u) = F(in * u), u e 9.

But (p,,),,',.1 is also an approximate identity, so

Tn * u --> u (9).

Therefore

F(u) -+ F(u).
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If (p,,)' 1 is an approximate identity consisting of trigonometric poly-
nomials, then the functions fn = F * pn are also trigonometric polynomials.
In fact, let

ek(x) = exp (21dkx).

Then

(F * gk)(x) = F(Txek)

But
(Txd'k)(Y) = ek(x -/Y) = ek(x)ek(y)

= ek(x)ek(Y),

so

(F* ek)(x) = F(gk)ek(x)
Thus

F(7 akek) = I akF(ek)ek

is a trigonometric polynomial. p

Finally, we prove the analog of Proposition 7.1 and Proposition 3.1.

Proposition 7.8. Suppose F, G, H e s', a e C. Then

(12) F*G=G*F,
(13) (aF) * G = a(F * G) = F* (aG),

(14) (F+G)*H=F*H+G*H,
(15) (F*G)*H=F*(G*H),
(16) Tt(F * G) _ (TtF) * G = F * (TtG),

(17) Dk(F * G) _ (DkF) * G = F* (DkG).

Proof. All of these identities except (12) and (15) follow from the
definitions by a sequence of elementary manipulations. As an example, we
shall prove part of (16):

[Tt(F * G)](u) = F * G(T_tu) = F(G * T-tu)
= F((T-tG") * u)
= F((TtG)" * u) = (F * TtG)(u).

Here we used the identity

(18) (TTG)" = T-t(G").

To prove (12) and (15) we use Theorem 7.7 and Corollary 7.6. First, suppose
G = Fg, g e R. Take (f )1 c -' such that

F. = Fra-+F (9').



Summary of operations on periodic distributions

Let

hn=fn*g, Hn=Fh..

It follows from (8), (10), and Corollary 7.6 that

H,, = F,, * G F * G (i').

But

so also

hn = g *fn,
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H,, = G*Fn-+G*F (p').
Thus (12) is true when G = Fg, g e 91. In the general case, take (g,,)i a 9
so that

G. = Fgn -+ G.

Then, in the sense of 9',

F*G = limF*G,, = limG.*F= G*F.
The proof of (15) is similar. In the first place, (15) is true when

F = Ff, G = Fg, H - Fh,

since

F * (G * H) = F * Fg.h = (F * G) * H.

We then approximate an arbitrary F by Ff. and get (15) when G = Fg,
H = Fh. Then approximate G, H successively to get (15) for all F, G, H e 9'.
The rest of the proof is left as an exercise.

Exercises

1. Prove the identities (2), (3), (4).
2. Prove the identities (7), (11).
3. Prove the identities (13), (14), (16), (17), (18) directly from the de-

finitions.
4. Prove the identities in Exercise 3 by approximating the distributions

F, G, H by smooth periodic functions.

§8. Summary of operations on periodic distributions

In this section we simply collect for reference the definitions and results
concerning 9'. The space 9 is the set of infinitely differentiable periodic
functions u: R -+ C. We say

uA -+ u (6') if Dkun - Dkul -+ 0, all k.
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A periodic distribution is a mapping F: -' -+ C with

F(u + v) = F(u) + F(v), F(au) = aF(u),
F(un) -- F(u) if u,, -* u (M).

If V E ', the space of continuous periodic functions, then F a P1' is defined by
i auf v(x)u(x) dx.o

The S-distribution is defined by

S(u) = u(0).

The sum, scalar multiple, complex conjugate, reversal, and translation of
distributions are defined by

(F + G)(u) = F(u) + G(u),
(aF)(u) = aF(u),

F*(u) = (F(u*))* (u*(x) = u(x)*),
F"'(u) = F(a) (il(x) = u(-x)),

(TtF)(u) = F(T_tu) (Ttu(x) = u(x - t)).

Derivatives are defined by

(D'F)(u) = (-1)kF(Dku).

We say

F.-+F (P1)

F,,(u) -+ F(u), all u e 9

t-l(T_tF - F)-> DF as t-+0

S=S*=S"
(Tt8)(u) = u(t),

(D''S)(u) (-l)kDku(0).
If v e W then

(F.)* = F,.,
(F.)- = Fv,
Tt(F,) = F,,, where w = Ttv.

If vet'
IV,) = F. where w = Dkv.

The convolution F * u is the function

(F * u)(x) = F(TM, u e
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Then F* u e -0 If v e 1, then

FF*u=v*u.
If 9 is an approximate identity, then

F*pn-> F (p').
More precisely,

In particular,

Ff. ->. F (p'), where fA = F * qp,,.

S*u=u, ue'.
The convolution F * G is the distribution

(F * G)(u) = F(G u), u e

In particular if v E then

F * F = Ff, where f = F * v.
Clearly

If

then

S*F=F*S=F.

F. -* F (p')

F*G (9').
The convolution of distributions satisfies
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F*G=G*F,
(aF) * G = a(F * G) = F* (aG),

(F+G)*H=F*H+G*H,
(F*G)*H=F*(G*H),

TT(F * G) _ (TtF) * G = F * (TAG),
D'c(F * G) _ (DkF) * G = F * (DkG).

A periodic distribution F is real if F = F*. Any F e 9' can be written
uniquely as

F = G + IH, G, H real.

In fact

G = Re F = J(F + F*),

H = Im F =
Zi

(F - F*).

A periodic distribution F is even if F = F" and odd if F = -F". Any
F e 9' can be written uniquely as

F= G + H, G even, H odd.
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In fact
G = J(F + F-),
H = J(F - F").

The 8-distribution is real and even.
A periodic distribution is of order k if there is a constant c such that

IF(u)I <_ c(Iul + IDul IDkuI), all ue9..

Any F e -9' is of order k for some k.
If v e ' and f is constant,

DkF + Ff e.9'.

Conversely, if F e.9' is of order k + 2, k >_ 0, then there are v e 6 and con-
stant function f such that

F= DkF+Ff.



Chapter 4

Hilbert Spaces and Fourier Series

§1. An inner product in ', and the space L2

Suppose u and v are in ', the space of continuous complex-valued periodic
functions. The inner product of u and v is the number (u, v) defined by

1 2A

(1) (u, v) =
2-. J

u(x)v(x)* dx.
0

It is easy to verify the following properties of the inner product:

(2) (au, v) = a(u, v) = (u, a*v),

(3) (u1 + u2, v) = (u1, v) + (u2i v),

(4) (u, v1 + v2) = (u, v1) + (u, v2),

(5) (v, u) = (u, v)*,

(6) (u, u) >- 0, (u, u) = 0 only if u = 0.

We define llull for u e ' by

(7) (lull = (u, u)112 = (2,

f22 lu(x)I2 dx)112.

0

Lemma 1.1. If u, v e ', then

(8) I(u, v)l :5 (lull IIvIl.

Proof. If v = 0 then

(u, v) = (u, Ov) = 0(u, v) = 0,

and (8) is true. Suppose v 0 0. Note that for any complex number a,

(9) 0 :5 (u - av, u - av) = (u, u) - (av, u) - (u, av) + (av, av)
= llull2 - a(u, v)* - a*(u, v) + lal2llvll2.

Let
a = (u, v)IIvII-2

Then (9) becomes

0 5 IIu1I2 - 2I(u, v)121Iv11-2 + I(u, v)12IIv1I -2,

and this implies (8). 0

The inequality (8) is known as the Schwarz inequality. Note that only the
properties (2)-(6) were used in the proof, and no other features of the inner
product (1).
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Corollary 1.2. The function u -* lull is a norm on W.

Proof. Recall that this means that Ilull satisfies

(10) Ilull >_ 0, Ilull = 0 only if u = 0,

(11) IIauii = lal IIuII, a e C,

(12) Ilu + vll s IIuII + IIvII

Property (10) follows from (6) and property (11) follows from (2). To prove
(12), we take the square and use the Schwarz inequality:

Ilu+vp2=(u+v,u+v)= IIuhI2+(u,v)+(v,u)+ IIvhi2
Ilu112 + 2IIuli IIvII + Ilvll2

_ (IIuII + IIvII)2 0

The new norm on ' is dominated by the preceding norm:

(13) Ilull < lul = sup {lu(x)I}.

It is important to note that '' is not complete with respect to the metric
associated with this new norm. For example, let u,,: R -* 18 be the periodic
function whose graph contains the line segments joining the pairs of points

(0, 0), (2 " 0);

(ir,o), (ir+!i);
(1ir
2

+n,l), G7r-n-, I);

(ZIr -n, 1)
Q

ir,0)

(21r, 0), (2ir, 0).

Then

Ilun-umll2=2
1

foIun-uml2 < 1 .2.1 =n

so (un); is a Cauchy sequence in the new metric. However, there is no u e W
such that

Ilun-ull-0.
In order to get a complete space which contains ' with this inner product,

we turn to the space of periodic distributions. Suppose c T is a
Cauchy sequence with respect to the metric induced by the norm IIuII, i.e.

Ilun - umll -*0 as n, m -i Oo.
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Let (Fu)r be the corresponding sequence of distributions:

F. = F,.,,.
Thus ifve9

FF(v)
= 2 J

2n

un(x)v(x) dx = (v, u.*),

where again un denotes the complex conjugate function. By the Schwarz
inequality,

IFn(v) - Fr(v)I = 1(v, un - um)I 5 IIvll Ilun - umll
5 IvI Ilun - umli.

Therefore (FF(v))i has a limit. We define

(14) F(v) = lim FF(v).

The functional F: 9 --> C defined by (14) is clearly linear, since each F. is
linear. In fact, F is a periodic distribution. To see this, we take N so large
that

Ilun - umll 5 1 if n, m >_ N.
Let

M = Max (IIunII, IIunII, ..., IIuNII) + 1.

Then for any n 5 N,

IIunII 5 M,
while if n > N,

Therefore

so

IIunII = U. - UN + UNIT 5 llun - UNIT + IIuNII
<1+IIUN II5M.

IF,(v)l = I(v,un*)I <- Ilvll IIunII <- MIvI,

IF(v)I =1im IF,(v)l 5 MIvI.

We have proved the following lemma.

Lemma 1.2. If (un)i a `' is a Cauchy sequence with respect to the
norm IIu1I, then the corresponding sequence of distributions

F. = Fun

converges in the sense of 9' to a distribution F, which is of order 0.

It is important to know when two Cauchy sequences in ' give rise to the
same distribution.

Lemma 1.3. Suppose (u,,)1 c ' and (vn)1 a %' are Cauchy sequences
with respect to the norm IIu1I. Let F. = Fu. and G. = F,,,, be the corresponding
distributions, and let F, G be the limits:

F,, -+ F (9') and G,, -> G (9').
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Then F = G if and only if

I1 un-vn11 -+0.

Proof. Let wn = un - vn and let H. = Fn - G. = F.p. We want to
show

Hn --+ 0 (9) if and only if IIwnII -> 0.

Suppose
IIwnII -+ 0.

Then for any u e 9,

I Hn(u)I = I(u, wn)I < lull IIwnII - 0.

Conversely, suppose

(15) H. -+ 0 (9').

Given e > 0, take N so large that n, m >- N implies

(16) II wn - W.11 = II (un - um) + (vn - Vm) II < e.

Fix, in >- N. Then if n >- N we use (16) to get

Ilwm 11a = (wm, wm) _ (wm, wm - wn) + wm, wn
= (wm, wm - wn) + Hn(wm)*
< ellwmll + IHn(wm)*l.

Letting n - oo, from (15) we get

Ilwmlla 5 ellwmll,
or

IIwrlISe, N. 0

We define L2 to be the set consisting of all periodic distributions F with
the property that there is a sequence (un)1 a W such that

IIun - umIl -+0 as n, m -+ co,
F.. -+ F (9').

If (un)i c'' is such a sequence, we say that it converges to F in the sense of
L2 and write

un -+ F (L2).

Lemma 1.2 can be rephrased: if

un -+ F (L2), vn -+ G (L2),

then

F= G if and only if Ilun - vnII -; 0.

Clearly L2 is a subspace of 9' in the sense of vector spaces. In fact, if

un -; F (L2) and vn -+ G (L2),
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then

au,, -* aF (L2), u + v -+ F + G (L2).

We may extend the inner product on 'B to L2 as follows. If

u -+ F (L2), vn -* G (L2),

let

(17) (F, G) = lim (us, v.).

The existence of this limit is left as an exercise. Lemma 1.2 shows that the
limit is independent of the particular sequences (u. )I' and That is,
if also

u;, --> F (La), v;, -> G (La)

then

(18) lim (us, vn) = llm (un, v;,).

Theorem 1.3. The inner product in La defined by (17) satisfies the identities
(2), (3), (4), (5), (6). If we define

(19) IIFII = (F, F)"a,

then this is a norm on L2. The space L2 is complete with respect to this norm.

Proof. The fact that (2)-(6) hold is a consequence of (17) and (2)-(6)
for functions. We also have the Schwarz inequality in L2:

1(F, G)I 5 IIFII IIGII.

It follows that IIFII is a norm.
Finally, suppose (F, ,)l" a L2 is a Cauchy sequence with respect to this

norm. First, note that if

u -* F (L')

and v e W, and if we take vR = v, all n, then

2=liml1 y-un11 2.

It follows that

IIFFa - Fpa-+O as n-->oo,

i.e., F can be approximated in L2 by functions. Therefore, for each n =
1, 2, ... we can find a function vn e ' such that

IIFF - FV.II < n-1

Then

IIv. - vmll = IIF - F..11 5 Fall + IIFF - Fmll + IIFm - FF.l
< IIF - Fmii + n-1+m-1-> 0 as n,m -moo.
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Thus there is an F e La such that

v71 F (La).

But then

Hilbert spaces and Fourier series

IIFn - FII <- IIFn-F.J1 + IIFF. - FII
< n-1+ IIFF - FII -* 0. 0

Exercises

1. Carry out the proof that ' is not complete with respect to the norm
IIuII

2. Show that the limit in (17) exists.
3. Show that (18) is true.
4. Suppose f: [0, 2ir] -* O is such that

f(x) = 1, x e [a, b),
f(x) = 0, x 0 [a, b).

Define

F(v) = Z f f(x)v(x) dx = 2vf v(x) dx, v e 9.
a

Show that F e L2.

5. Suppose f: [0, 2or] -+ C is constant on each subinterval [x1_1, x1),
where

Define
1 as

F(v) = 2
1

f(x)v(x) dx.
0

Show that F e La.
6. Show that 8, the 8-distribution, is not in L2.

7. Show that if F e L2 there is a sequence (uf1)i of smooth periodic
functions such that

u -.F (L2).
8. Let Tt denote translation. Show that if u e ' then

IITtu-T.uIj-+0 as t-->s.

If F e L2, show that

IITtF-T.FII-->O as 1-;s.
9. For any F e La, show that

IIFII = sup{IF(u)I I ue, lull <_ 1).
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§2. Hilbert space

In this section we consider an abstract version of the space L2 of §1.
This clarifies the nature of certain theorems. In addition, the abstract version
describes other spaces which are obtained in very different ways.

Suppose H is a vector space over the real or complex numbers. An
inner product in H is a function assigning to each ordered pair of elements
u, v e H a real or complex number denoted by (n, v), such that

(au, v) = a(u, v), a a scalar,
(u1 + u2, v) = (n1, v) + (u2, v),

(v, u) = (u, v)* ((v, u) = (u, v) in the real case),
(u, u) > 0 if u # 0.

The argument of Lemma 1.1 shows that

(1) I(u, v)I < llull III,
where

(2) Ilnli = (u, u)1/2

Then IIull is a norm on H. If H is complete with respect to the metric associ-
ated with this norm, then H is said to be a Hilbert space. In particular, L2
is a Hilbert space. Clearly any Hilbert space is a Banach space.

A more mundane example than L2 is the finite-dimensional vector space
CN of N-tuples of complex numbers, with

N

(a, b) = I anbn
R-1

when

a = (a1, a2,. . ., aN), b = (bi, b2, ..., bN).

In this case the Schwarz inequality is

G anbn Iz 5 I Ianl2 1 IbnI2.
n=1 n-1 n=1

Notice in particular that if we let

a' = (fail, la2l,..., IaNl), V = (lb1l, lb2l,..., lbNl),

then
N 2

(I lanl Ibnl) s G lanl2 IbnI2.
n=1 X=1 R-1

A still more mundane example is the plane 182, with

a b = a1b1 + a2b2

when a = (a1, a2), b = (b1, b2); here we use the dot to avoid confusing the
inner product with ordered pairs. It is worth noting that the law of cosines
of trigonometry can be written

Ial lbI cos 0,
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where 0 is the angle between the line segments from 0 to a and the line
segment from 0 to b. Therefore Ial IbI if and only if the segments
lie on the same line. Similarly, a b = 0 if and only if the segments form a
right angle.

Elements u and v of a Hilbert space H are said to be orthogonal if the
inner product (u, v) is zero. In 682 this means that the corresponding line
segments are perpendicular. We write

ulv
when u and v are orthogonal. More generally, u e H is said to be orthogonal
to the subset S a H if

u 1 v, all v e S.

If so we write

u 1 S.

If u 1 v then

(3) Ilu + vll2 = (u + v, u + v) = (u, u) + (u, v) + (v, n) + (v, v)
= IIul12 + Ilvll2.

In R2, this is essentially the Pythagorean theorem, and we shall give the
identity (3) that name in any case. Another simple identity with a classical
geometric interpretation is the parallelogram law:

(4) lu-v112+11u+v112=211u112+211v112.

This follows immediately from the properties of the inner product. In R2
it says that the sum of the squares of the lengths of the diagonals of the
parallelogram with vertices 0, u, v, u + v is equal to the sum of the lengths
of the squares of the (four) sides.

When speaking of convergence in a Hilbert space, we shall always mean
convergence with respect to the metric associated with the norm. Thus

un -; u means llu - ull -; 0.

The Schwarz inequality shows that the inner product is a continuous function.

Lemma 2.1. If (un)i , (v,,)i a H and

then

un-.u, Vniv,

(un, Vn) -* (u, v).

Proof. Since the sequences converge, they are bounded. In particular,
there is a constant M such that llvnll 5 M, all n. Then

(U., Vn) - (u, V) l = I (un - u, Vn) + (u, V. - v)
5 IN - ull II'nII + (lull llon - VII

5 Mllun - U11 + 11 u1111 on - V11 -* 0. 0
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Corollary 2.2. If u e H, S a H, and a 1 S, then u is orthogonal to the
closure of S.

The general theory of Hilbert space essentially rests on the following
two geometric lemmas.

Lemma 2.3. Suppose H1 is a closed subspace of the Hilbert space H,
and suppose u e H. Then there is a unique v e H1 which is closest to u, in the
sense that

IIu - vII 5 IIu - wII, all w e H1.

Proof. The set

{IIu - will w e H1}

is bounded below by 0. Let d be the greatest lower bound of this set. For each
integer n > 0 there is an element vn e H1 such that

IIu - v,,11 < d + n-1.

If we can show that (vn)i is a Cauchy sequence, then it has a limit v e H.
Since H1 is closed, we would have v e H1 and 11u - v11 = d as desired.

Geometrically the argument that (vn)i is a Cauchy sequence is as follows.
The midpoint 1(vn + vm) of the line segment joining vn and vm has distance
>_ d from u, by the definition of d. Therefore the square of the length of
one diagonal of the parallelogram with vertices u, vn, vm, vn + vm is nearly
equal to the sum of squares of the lengths of the sides. It follows that the
length IIv - v,,J of the other diagonal is small. Algebraically, we use (4)
to get

0 5 IIY.-v,,, 11 2=2IIVn- a112+2IIvm-a112- II(vn+vm)-2uQ2
<2(d+n-1)2+ 2(d+m-1)2-4II1(vn+vm)-u1I2
5 2(d + n-1)2 + 2(d + M-1)2 - 4d2 -* 0.

To show uniqueness, suppose that v and w both are closest to u in the above
sense. Then another application of the parallelogram law gives

IIu-J(v+w)112=1IIu-v1I2+1IIu-w112-1IIv-wII$
=d2- IIv-w1I2.

Since the left side is >_ d2, we must have v = w. 0

As an example, take H = R2, H1 a line through the origin. The unique
point on this line closest to a given point u is obtained as the intersection of
H1 and the line through u perpendicular to H1. This connection between
perpendicularity (orthogonality) and the closest point is also true in the
general case.

Lemma 2.4. Under the hypotheses of Lemma 2.3, the element v e H1 is
closest to u if and only if

u-v1Ell.



112 Hilbert spaces and Fourier series

Proof. First, suppose v e H1 is closest to u, and suppose w e H1. We
want to show (u - v, w) = 0, and we may assume w # 0. Let ul = u - v.
For any a e C, v + aw e H1. Therefore

IIn1-awll'= Ilu-(v+aw)II' z Ilu - vll'= Huhll',
or

JJu1II' - (n1, aw) - (aw, n1) + IaI'IIwII' z Iluill'.

Let

(5) a = (u,, w)IIwjI -'

Then (5) becomes

-I(01, w)12IIwII-' >- 0.

Thus (u1, w) = 0.
Conversely, suppose u - v J. H1, and suppose w e H1. Then v - w e H1,

so
(u- v)1 (v-w).

The Pythagorean theorem gives

Iln-w112= ll(u-v)+(v-w)112= Ilu - vll'+ llv - wll'
z llp - vlI'. 0

Corollary 2.5. Suppose H1 is a closed subspace of a Hilbert space H.
Then either H1 = H, or there is a nonzero element u e H such that u 1 H1.

Proof. If H1 # H, take no a H, no 0 H1. Take vo a H1 such that vo is
closest to no. Then u = no - vo is nonzero and orthogonal to H1. 0

As a first application of these results, we determine all the bounded
linear functionals on H. The following theorem is one of several results
known as the Riesz Representation Theorem.

Theorem 2.6. Suppose H is a Hilbert space and suppose v e H. The
mapping L,,: H -* C (or R) defined by

L,(u) = (u, v), u e H,

is a bounded linear functional on H. Moreover, UL is any bounded linear
functional on H, then there is a unique v e H such that L = 4.

Proof. Clearly L, is linear. By the Schwarz inequality

IL(n)I 5 Ilvll Unll
Thus L is bounded.

Suppose L is a bounded linear functional on H. If L = 0 we may take
v = 0. Otherwise, let

H1 = {u e H I L(u) = 0).
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Then H1 is a subspace of H, since L is linear; H1 is closed, since L is con-
tinuous. Since L # 0, H1 is not H. Take a nonzero u e H which is orthog-
onal to H1, and let

Then also v 1 H1, so

Moreover,

v = fluJJ-2L(u)*u.

La(w) = L(w), w e Hl.

L,(u) = Il u 11 - 2L(u)(u, u) = L(u).

If w is any element of H,

w - L(u)-1L(w)u a H1.

Thus any element of H is of the form

au + w1

for some a e C (or R) and w1 a H1. It follows that L, = L.
To show uniqueness, suppose 4 = L,,. Then

O=4(v-w)-4(v-w)= JIv-w112.

Exercises

0

1. Prove the law of cosines as stated above.
2. Suppose F e -0'. Show that F e L2 if and only if there is a constant c

such that
IF(u)l 5 c1lull, all ueOP

3. Let H be any Hilbert space and let H1 be a closed subspace of H. Let

H2 = {ueHIu.LH1).

Show that H2 is a closed subspace of H. Show that for any u e H there are
unique vectors ul e H1 and u2 e H2 such that

u=u1+u2.

§3. Hilbert spaces of sequences

In this section we consider two infinite dimensional analogs of the finite
dimensional complex Hilbert space CN. Recall that if

x = (a1, a2,. . ., aN) c- CN

then

IIX112 laal2.1
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Let 1+2 denote the set of all sequences

x = (an)1 C C

IanI2 < 00.

n=1

(2)

x = (an)i a 1+2, y = (bn)° e 1.x.2,

(x, Y) = anonCO

n=1

provided this series converges.

Theorem 3.1. The space 1+2 of complex sequences satisfying (1) is a
Hilbert space with respect to the inner product (2).

Proof. Suppose

x = (an)1 a 1+2 and y = (bn)i a 1+2.

If a e C, then clearly

ax = (aan)1 e 1+2.

As for x + y, we have

Ian + bnl2 S I (IanI2 + 2lanbnl + Ibn12)

< 2 1 IanI2 + 2 1 IbnI2 <00.

Thus 1+2 is a vector space. To show that the inner product (2) is defined for
all x, y e 1+2, we use the inequality (1) from §2. For each N,

112

11 anbn
I

< (nN-1

I IanI21 12112

n=1 n=1
ao

Ian

I2)112 ao

IbnI2

)112

(
Therefore

I IanbnI < o0
X-1

and (2) converges. It is easy to check that (x, y) has the properties of an inner
product. The only remaining question is whether 1+2 is complete.

Suppose

xm = (am.n)n 1 e 1+2, m = 1, 2, ....
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Suppose (xm)i is a Cauchy sequence in the metric corresponding to the
norm

IIxII = (x, x)12.

For each fixed n,

Iam.n - a,.nI2 < Ilxm - XPII2 -->.0

as in, p --+ oo. Thus (am,n),n= 1 is a Cauchy sequence in C, and

am,n -+ an as m --a oo.

Let x = (an)i . We want to show that x e 1+2 and Ilxm - xll - 0. Since
(xm)i is a Cauchy sequence, it is bounded:

IIxmII 5 K, all m.

Therefore for any N,
N cN

la 12 = llm G Iam.nl2 5 K2.not m-.m n=1

Finally, given e > 0 choose M so large that m, p >_ M implies

Ilxm - XPII < e.

Then for any N and any m >_ M,
N N

lam.n - QnI2 = urn IQ.,. - QP,nI2 5 82.
nm1 P-00 n=1

Thus

Ilxm-xll5a ifm>_M. 0

It is often convenient to work with sequences indexed by the integers,
rather than by the positive integers; such sequences are called two-sided
sequences. We use the notation

x = (an)m _ (..., a-2, a-1, a0, a1, a2, . .

Let 12 denote the space of two-sided sequences

x = (an)!!m C C

such that

(3) 2 IanI2 < oo.

Here a two-sided infinite sum is defined to be the limit
m N

Cn = llm I Cn
n.-OD M,N-»+m n- -M

if this limit exists.
If

x = (an)!!m e 12, y = (bn)°-° m e 12,
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(x,y) = I abA,
n= -00

provided the series converges.

Theorem 3.2. The space 12 of two-sided complex sequences satisfying (3) is
a Hilbert space with respect to the inner product (4).

The proof of this theorem is very similar to the proof of Theorem 3.1.

Exercises

1. Prove Theorem 3.2

2. Let e,n a l+2 be the sequence

em = (am,n]n 1

with am,n = 0 if in # n, an,n = 1. Show that

(a) Ilemll =1;
(b) emlenif m #p;
(c) (x, em) -> 0 as m -+ oo, for each x e l+a;
(d) the set of linear combinations of the elements em is dense in 1+2;
(e) if x e 1+2 there is a unique sequence (bn)i a C such that

11x

nIl
bnell -a 0 as N -*oo.

3. Show that the unit ball in 1+2, the set

B={xal+21lixil51},
is closed and bounded, but not compact.

4. Show that the set

C = {x e 1+2 1 x = (an)1, each Ian s n-1}

is compact; C is called the Hilbert cube.

§4. Orthonormal bases

The Hilbert space CN is a finite dimensional vector space. Therefore any
element of CN can be written uniquely as a linear combination of a given
set of basis vectors. It follows that the inner product of two elements of CN
can be computed if we know the expression of each element as such a linear
combination. Conversely, the inner product makes possible a very convenient
way of expressing a given vector as a linear combination of basis vectors.
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Specifically, let en a CN be the N-tuple

en = (0,0,...,0, 1,0,...,0),
where the 1 is in the n-th place. Then {ej, e2, ..., eN} is a basis for C'. More-
over it is clear that

(1) (en, em) = 1 if n = m, (en, em) = 0 if n 96 m.

If x = (a1, a2, ..., aN) a CN then the expression for x as a linear combination
of the basis vectors en is

N

(2) x = Z anen.
n=1

Because of (1),

(x, em) = am.

Thus we may rewrite (2) as

(3)

N

x = (x, en)en.
n=1

If x = (a1, a2, ... , aN) and y = (b1, b2, ... , ba), then
N

(x, Y)
=

2, anon
X-1

Using (3) and the corresponding expression for y, we have

N N

(4) (x, y) = I (x, en)(Y, en)* = Z (x, en)(en, Y)
n=1 nm1

In particular,
N

(5) 11x112 = 2' I(x, en)I2.
n=1

The aim of this section and the next is to carry this development over
to a class of Hilbert spaces which are not finite dimensional. We look for
infinite subsets (en)i with the properties (1), and try to write elements as
convergent infinite sums analogous to (3).

A subset S of a Hilbert space H is said to be orthonormal if each u e S
has norm 1, while

(u, v) = 0 if u, v e S, u # v.

The following procedure for producing orthonormal sets is called the Gram-
Schmidt method.

Lemma 4.1. Suppose {u1, a2, ... } is a finite or countable set of elements of
a H i l b e r t s p a c e H. T h e n t h e r e i s afnite or countable set S = {e1, e2,. ..} of
elements of H such that S is orthonormal and such that each un is in the sub-
space spanned by {e1, e2f ..., en}.
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(If S has m elements, m < oo, we interpret the statement as saying that
un e span lei, ..., em) when n >- m.)

Proof The proof is by induction. If each u, = 0, we may take S to be
the empty set. Otherwise let vl be the first nonzero u,, and let

e1= llvill-lvi.

Then tell is orthonormal and ul a span {e1}. Suppose we have chosen
e1,..., em such that {el,..., em) is orthonormal and u1,..., um e
span {e1, ... , em}. If each u, e span {e1,.. . , em} we may stop. Otherwise
choose the first j such that ui is not in this subspace. Let

Vm+1 = U1 - I (u,, en)e..
n-1

Since {e1, ... , em} is orthonormal, it follows that

(vm+l, en) = 0, 1 <_ n 5 m.

Since u! 0 span {e1, ..., em}, vm+1 96 0. Let

em+1 = llVm+lll-iVm+1

Then {e1, ..., em+1) is orthonormal and um+1 is in the span. Continuing,
we get the desired set S. q

Note that completeness of H was not used. Thus Lemma 4.1 is valid in
any space with an inner product.

An orthonormal basis for a Hilbert space H is an orthonormal set S a H
such that span (S) is dense in H. This means that for any u e H and any
e > 0, there is a v, which is a linear combination of elements of S, such that
llu - vll < 8.

A Hilbert space H is said to be separable if there is a sequence (un)i a H
which is dense in H. This means that for any u e H and any e > 0, there is
an n such that llu - o,11 < e.

Theorem 4.2. Suppose H is a separable Hilbert space. Then H has an
orthonormal basis S, which is finite or countable.

Conversely, if H is a Hilbert space which has a finite or countable ortho-
normal basis, then H is separable.

Proof. Suppose (un)1 is dense in H. By Lemma 4.1, there is a finite or
countable orthonormal set S = lei, e2,. ..) such that each un is a linear
combination of elements of S. Thus S is an orthonormal basis.

Conversely, suppose S is a finite or countable orthonormal basis for H.
Suppose H is a complex vector space. Let T be the set of all elements of H
of the form

u = anen.
n-1
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where N is arbitrary, the e are in S, and the an are complex numbers whose
real and imaginary parts are rational. It is not difficult to show that T is
countable, so the elements of T may be arranged in a sequence (un)i. Any
complex number is the limit of a sequence of complex numbers with rational
real and imaginary parts. It follows that any linear combination of elements
of S is a limit of a sequence of elements in T. Since S is assumed to be an
orthonormal basis, this implies that (un)1a0 is dense in H. 0

To complete Theorem 4.2, we want to know whether two orthonormal
bases in a separable Hilbert space have the same number of elements.

Theorem 4.3. Suppose H is a separable Hilbert space. If dim H =
N < oo, then any orthonormal basis for H is a basis for H as a vector space,
and therefore has N elements.

If H is not finite dimensional, then any orthonormal basis for H is countable.

Proof. Suppose dim H = N < oo, and suppose S a H is an ortho-
normal basis. If e1,. .. , em are distinct elements of S and

N

57 anen = 0,
n=1

then

0 = (I anon, em) = am, m = 1, ..., M.

Thus the elements of S are linearly independent, so S has < N elements.
Let S = {e1, e2,. . ., eM}. We want to show that S is a basis. Let H1 be the
subspace spanned by S. Given u e H, let

M

Vl = (u, en)e..
n-1

Then
(u - u1,em)=0, m = 1,...,M.

It follows that u - u1 is orthogonal to the subspace H1. The argument used
to prove Lemma 2.4 shows that u1 is the element of H1 closest to u. But by
assumption on S, there are elements of H1 arbitrarily close to u. Therefore
u = u1 e H1, and S is a basis.

The argument just given shows that if H has a finite orthonormal basis S,
then S is a basis in the vector space sense. Therefore if H is not finite di-
mensional, any orthonormal basis is infinite. We want to show, therefore,
that if H is separable and not finite dimensional then any orthonormal basis
is at most countable. Let (un)1 be dense in H, and let S be an orthonormal
basis. For each element e e S, there is an integer n = n(e) such that

Ile - unll < 2-1/a

Suppose e, f e S and e # f. Let n = n(e), p = n(f). Then

Ile-fll1= I1 ell2+(e,f)+(f,e)+ I1 fll2=1+0+0+1=2,
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so

pun - uPII =
IIe - fll - Ilnn - e+f - u,ll

>- Ile - fll - Iinn - ell - Ilf - u,ll
> 2112-2-112-2-112=0

Thus u # u,. We have shown that n(e) # n(f) if e # f, so the mapping
e -+ n(e) is a 1-1 function from S to a subset of the integers. It follows that S
is finite or countable. p

Exercises

1. Let X1 be. the vector space of continuous complex-valued functions
defined on the interval [-1, 1]. If u, v e X1, let an inner product (u, v)1 be
defined by

1(u, v)1 = f u(x)v(x)* A.
1

Let un(x) = x"-1, n = 1, 2,.. .. Carry out the Gram-Schmidt process of
Lemma 4.1 to find polynomials p,,, n = 1, 2, 3, 4 such that pn is of degree
n - 1, pn has real coefficients, the leading coefficient is positive, and

(p,,, pm)1 = 1 if n = m, (pn, Pm)i = 0 if n # m.

These are the first four Legendre polynomials.
2. Let X2 be the set of all continuous functions u: R -* C such that

0i. Iu(x)Iae-x dx < oo.

Show that X2 is a vector space. If u, v e X2, show that the integral
CO

(u, V)2 = f u(x)v(x)e-x dx

exists as an improper integral, and that this defines an inner product on X2.
Show that there are polynomials pn, n = 1, 2, 3,... such that pn is of degree
n - land

(Pn, Pm)a = 1 if n = m, (Pn, Pm)a = 0 if n :A m.

Determine the first few polynomials of such a sequence. Except for constant
factors these are the Laguerre polynomials.

3. Show that there is a sequence (pJ1 of polynomials such that pn is
of degree n - 1 and

J_m

foo Pn(x)Pm(x)e-c11a'' dx = 0 if n # m.

Except for constant factors these are the Hermite polynomials.
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4. Suppose H is a finite dimensional complex Hilbert space, of dimension
N. Show that there is a linear transformation U from H onto CN such that

(Uu, Uv) = (u, v), all u, v e H.

(Hint: choose an orthonormal basis for H.)
5. Suppose H and H' are two complex Hilbert spaces of dimension

N < oo. Show that there is a linear transformation U from H onto H'
such that

(Uu, Uv) _ (u, v), all u, v e H.

6. In the space 12 of two-sided complex sequences, let en be the sequence
with entry I in the nth place and all other entries 0. Show that (en)°°. is an
orthonormal basis for 12.

7. Show that there is a linear transformation U from 12 onto 1+2 such
that

(Ux, Uy) = (x, y), all x, y e 12

§5. Orthogonal expansions

Suppose H is a Hilbert space of dimension N < oo. We know that H
has an orthonormal basis {e1, e2, ..., es). Any element u e H is a linear
combination

(1)

and as in §4 we see that

(2)

It follows that if u, v e H then

N

U = 57 anen,
n-1

an = (u, en)-

(u, v) = I (u, en)(en, v).'V
n-1

N

IIuII2 = 1(u, en)Ia
n-1

The expression (1) for u e H with coefficients given by (2) is called the
orthogonal expansion of u with respect to the orthonormal basis {e1, . . ., eN}.

We are now in a position to carry (1)-(4) over to an infinite-dimensional
separable Hilbert space.

Theorem 5.1. Suppose H is a Hilbert space with an orthonormal basis
(en)i . If u e H, there is a unique sequence (an)i of scalars such that

(5) u = G anen,
n-1
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11u - G anentI -+ 0 as N --> oo.
n=1

The coefficients are given by

(7)

and they satisfy

an = (u, en),

OD

(8) 1 lanla = IIuII'-
n=1

More generally, if
00 OD

(9) u = anen and v = bnen
n=1 n=1

then

(10) (u, v) = I anbn = (u, en)(en, v).
n=1 n=1

Conversely, suppose (an)i is a sequence of scalars with the property

00

1E Ianl2 < coo.
n=1

Then there is a unique element u e H such that (5) is true.

Proof. First let us prove uniqueness. Suppose (an)1 is a sequence of
scalars such that (6) is true. Let

(12)
N

uN = anen.
n=1

Since the sequence (en)2' is orthonormal,

(uN, en) = an if N > n.

Using Lemma 2.1 we get

an = Jim (UN, en) = (u, en).
N-.

Thus (an)1 is unique.
To prove existence, set an = (u, en). Define uN by (12). Then

(uN, en) _ (u, en), 1 <- n <- N.

This implies that u - UN is orthogonal to the subspace HN spanned by
{e1i..., eN}. Now given e > 0, there is a linear combination v of the en
such that

Ilu - vll < 8.
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Then there is an No such that v e HN when N >_ No. As in the proof of
Lemma 2.3, the facts that uN a HN and that u - uN J. HN imply

IIu - UNIT < IIU - VII

Thus UN - . u. Since the en are orthonormal,

N

IIUN112 = (UN, UN) = lama.
n=1

Thus

IIuHI2 = Jim IIUNIIa = Ianla.
n=1

More generally, suppose u and v are given by (9). Let uN be defined by (12),
and let vN be defined in a similar way. Then by Lemma 2.1,

N co

(U, V) = Jim (UN, VN) = Jim I anbn = anbn.
n=1 n=1

Finally, suppose (an)i is any sequence of scalars satisfying (11). Define
UN by (12). All we need do is show that (uN)i is a Cauchy sequence, since we
can then let u be its limit. But if N > M,

N

(13) IIVN - UMII2 = (UN - UM, UN - UM) = Z, Ianla.
n-M+1

Since (12) is true, the right side of (13) converges to zero as M, N-*oo. p

It is convenient to have the corresponding statement for a Hilbert space
with an orthonormal basis indexed by all integers. The proof is essentially
unchanged.

Theorem 5.2. Suppose H is a Hilbert space with an orthonormal basis
(en)°-°.o. If u e H, there is a unique two-sided sequence (a.)`0.o of scalars such
that

(14)

in the sense that

00

U = 2 anen,
- co

(15) In'
N

anent l -+ 0 as N -+ oo.

The coefficients are given by

(16)

and they satisfy

an = (u, en),

(17) 1 lama

= IIu1I2
n= - Go
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More generally, if
CO CD

n = a,,en and v bnea,

then

Go co(18) (u, v) = I anbn = I (u, en)(e,,, v).
- OD -00

Conversely, suppose (a,,)°°. is a sequence of scalars with the property

I lanI2 < oo.

Then there is a unique u e H such that (15) is true.

The equations (5), (6), or (14), (15) give the orthogonal expansion of u
with respect to the respective orthonormal bases. The identity (8) or (17) is
called Bessel's equality. It implies Bessel's inequality:

(19) (u, en)12 <- Ilu112
n=1

or

(20) I(u, en)I2 < IluII2.
n= -N

The identity (10) or (18) is called Parseval's identity. The coefficients a,,
given by (6) or (14) are often called the Fourier coefficients of u with respect to
the respective orthonormal basis.

Exercises

1. Suppose H and H1 are two infinite-dimensional separable complex
Hilbert spaces. Use Theorems 4.2, 4.3, and 5.1 to show that there is a linear
transformation U from H onto H1 such that

(Un, Uv) = (u, v), all u, v e H.

Show that U is invertible and that

(U-1u1, U- 1v1) = (u1, v1), all u1i v1 a H1.

Such a transformation U is called a unitary transformation, or a unitary
equivalence.

2. Let U: l+2 -* 1.,2 be defined by

U((a1, a2, a3, ... )) = (0, a1, a2, as....

Show that U is a 1-1 linear transformation such that

(Ux, Uy) = (x, y), all x, y e 1+2.

Show that U is not onto.
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§6. Fourier series

Let L2 be the Hilbert space introduced in §1. Thus L2 consists of each
periodic distribution F which is the limit, in the sense of L2, of a sequence
(u)n l c W, i.e.,

Iiun umll -*0,
F..-* F (1').

We can identify the space ' of continuous periodic functions with a subspace
of L2 by identifying the function u with the distribution F,,. Then

IIFFII2 = IIuII2 =
Zn Iu(x)I2

dx.2f0

In particular, we may consider the two-sided sequence of functions e,,,

en(x) = exp (inx), n = 0, ± 1, ±2,...

as elements of L2.

Lemma 6.1. The sequence of functions considered as elements
of L2, is an orthonormal basis for L.

Proof. Clearly IIe,,II = 1. If m 0 n, then

J
en(x)em(x)* dx =

J

Zn

exp (inx - imx) dx
0 0

_ [i(n - m)] -1 exp (i(n - m)x)I on = 0.

Thus (e.)'-. is an orthonormal set. Now suppose Fn L2. Given e > 0,
there is a function u e ' such that

IIFv - FII<e.
There is a linear combination v = I anen such that

Iv - ul < e.

Then

IIFu - FII_ IIFv - Full + IIFu - FII
= IIu - vII+IIFv - FII
< I v - uI + e < 2e. 0

Since (en)° is an orthonormal basis, we may apply Theorem 5.2 and
obtain orthogonal expansions for distributions in L2.

Theorem 6.2. Suppose F e L2. There is a unique two-sided sequence
(an)°-° C C such that

(1) F = 2 an exp (inx)OD

nm - co
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in the sense that the functions

(2) a e -> F(L2) as co.
_ - Qo

The coefficients are given by

(3)

and they satisfy

(4)

More generally, if

an = F(e-A),

la.la = IIFII1.

OD Go

F = I a exp (inx) and G = bA exp (inx)
- cc - OD

in the sense of (2), then

(5) (F, G) _ a,,bx* _ F(e-n)G*(ea)
-00 CO

Conversely, suppose (a,,) °° , c C and

cc

I Ia.1 < oo.
- CO

Then there is a unique F e L2 such that (1) is true, in the sense of (2).

Proof. In view of Lemma 6.1 and Theorem 5.2, we only need to verify
that

(F, F..) = F(eG(e-A)* = G*(e.)
The second identity follows from the first and the definition of G*. To prove
the first, take (u.)1 W,

um -> F (L2)

Then

(F, F..) = lim (u.,, lim F(e-*) 0

The aA in (3) are called the Fourier coefficients of the distribution F. The
formal series on the right in (1) is called the Fourier series of F.

Suppose F = F. where u e W. Then (2) is equivalent to

(6) f Iu(x) - a exp (inx)I a dx --> 0,
0 .o -N

where

aR = 2 f"u(x)exp(_mnx)ix.
0
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In fact, (6) and (7) remain valid when u is simply assumed to be an integrable
function on [0, 2ir]. In this case the a are called the Fourier coefficients of
the function u, and the formal series

an exp (mx)

is called the Fourier series of the function u. The fact that (6) and (7) remain
valid in this case is easily established, as follows. If u: [0, 2.r] -* C is integ-
rable, then again it defines a distribution F by

I as

2- J
u(x)v(x) dx.

0

Then an extension of the Schwarz inequality gives

1

J

an
lu(x)I2 dx)l,allvll

= lull llvll.I FF(v)I <
17 0

By Exercise 2 of §2, F e L2.
When u e', it is tempting to interpret (1) for F,, as

u(x) = I a exp (tnx).
- OD

In general, however, the series on the right may diverge for some values of
x, and it will certainly not converge uniformly without further restrictions
on u. It is sufficient to assume that u has a continuous derivative.

Lemma 6.3. If (a )°° . a Chas the property

(8)

then the functions

OD

2 lanl < Oo,
- OD

N

uN = I anen
n.-N

converge uniformly to a function u e W, and (a.)is the sequence of Fourier
coefficients of u.

Proof. Since l e (x)l = Iexp (inx)l = 1 for all x e C, it follows from (8)
that the sequence of functions (uN)i is a uniform Cauchy sequence. Therefore
it converges uniformly to a function u e W. For N >_ m we have

(uN, em) = am.

Thus

am = lim (uN, em) = (u, em)

is the mth Fourier coefficient of u. 0
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Theorem 6.4. If u e ' and u is continuously differentiable, then the
partial sums of the Fourier series of u converge uniformly to u. Thus

CO

u(x) = I (u, en) exp (inx), all x e R.
- cc

Moreover, if u e 9 then the partial sums converge to u in the sense of °J'.

Proof. Let v = Du. There is a relation between the Fourier coefficients
of v and those of u. In fact integration by parts gives

1 2n

(9) bn = (v, en) = 2- J
Du(x) exp (- inx) dx

0

= in r2n
u(x) exp (-inx) dx

2Ir o

= in(u, en) = inan.
We can apply the Schwartz inequality for sequences to show 7_ lanl < co.
In fact

lanl = laol + 2 lanl = laol + n-1l bnl
n4O n#0

<
laol + (n#b

n-2) 1/2 ( Ibnl2)1/2

= gaol + (2

n1

n_2) u2
11 Dull

<
oo.

By Lemma 6.3, the partial sums of the Fourier series of u converge uniformly
to U.

Now suppose u e.; and let
N

um = I anen.
n- -N

Then (9) shows that
N N

DuN = I inanen = I been
n- -N n- -N

is the Nth partial sum of the Fourier series of Du. Similarly, DkuN is the Nth
partial sum of Dku. Each Dku is continuously differentiable, so each DkuN
Dku uniformly. p

Fourier series expansions are very commonly written in terms of sine
and cosine functions, rather than the exponential function. This is partic-
ularly natural when the function u or distribution F is real. Suppose F e L2.
Let

(10) an = F(e_n), bn = 2F(cos nx), cn = 2F(sin nx).

Since
e _ (x) = cos nx - i sin nx
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we have

Also

an = J(bn - icn).

b-n = bn, c-n = -cn.
Thus for n > 0,

anen(x) + a _ ne _ n(x) = an(cos nx + i sin nx) + a_n(cos nx - i sin nx)
= bn cos nx + cn sin nx.

Then

I an exp (inx) = k'bo + I bn cos nx + cn sin nx.
n= -N n-1

The formal series

129

w

(11) 4bo + I bn cos nx + cn sin nx
n=1

is also called the Fourier series of F, and the coefficients bn, cn given by (10)
are also called the Fourier coefficients of F. If F is real, then bn, cn are real,
and (11) is a series of real-valued functions of x. Theorems 6.2 and 6.4 may
be restated using the series (11).

Exercises

1. Find the Fourier coefficients of the following integrable functions on
[0, 21r]:

(a) u(x) = 0, x e [0, ir], u(x) = 1, x e (ir, 27r].
(b) u(x) = 0, x e [0, n], u(x) = x - ir, x e (n, 21r].
(c) u(x) = Ix - orl.
(d) u(x) = (x - 7l)2.
(e) u(x) = x
(f) u(x) = Icos xl.

2. Suppose u e' and suppose b,,, cn are as in (10). Show that if u is even
then cn = 0, all n. Show that if u is odd, then b,, = 0, all n. (It is convenient
to integrate over [-or, 1r] instead of [0, 2ir].) Show that if u is real then

1
CO

1
2n

b02 + I (bna + cna) = u(x)2 dx.2n-1 2'r fo

3. Suppose u e W,

N

my = : (u, a-.)e..
n= -N
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Show that

1 2'
UN(x) = 2n J o DN(x - y)u(y) dy,

where

DN(x) = sin (N + J)x/sin 4x.

The function DN is called the Dirichlet kernel. Thus

uN = DN * u.

4. Extend the result of Exercise 3 to the partial sums of the Fourier
series of a distribution F e L2.

5. For F e 9', define

a,, = F(en = 0, ± 1, ± 2, ....
Show that F e L2 if and only if

I oo.
- CO

6. Suppose F e 9' and DF e L2. Show that F = F for some continuous
function u. (Hint: find the Fourier coefficients of u.)



Chapter 5

Applications of Fourier Series

§1. Fourier series of smooth periodic functions
and of periodic distributions

If u is a smooth periodic function with Fourier coefficients then
we know that the sequence uniquely determines the function u; in
fact, the partial sums

(1)

NU"' (X)

= a exp (inx)
-N

of the Fourier series converge to u in the sense of . Therefore it makes sense
to ask: what are necessary and sufficient conditions on a two sided sequence

c-- C that it be the sequence of Fourier coefficients of a function
u e'? The question is not hard to answer.

A sequence (a,,)'- c C is said to be of rapid decrease if for every r > 0
there is a constant c = c(r) such that

(2) Ianl <_ cl nl all n 0.

Theorem 1.1. A sequence (a.)'-. a C is the sequence of Fourier coeffi-
cients of a function u e 9 if and only if it is of rapid decrease.

Proof. Suppose first that u e .9 has (a.)!. as its sequence of Fourier
coefficients. Given r > 0, take an integer k >_ r. In proving Theorem 6.4 of
Chapter 4 we noted that is the sequence of Fourier coefficients of Du.
It follows that

((in)ka.)Of ao

is the sequence of Fourier coefficients of Dku. But then

InIklanl < I Dkul

which gives (2) with c = I Dkul.
Conversely, suppose (an)°° . C C is a sequence which is of rapid decrease.

Define functions uN by (1). From (2) with r = 2 we deduce

I la, < oo.

By Lemma 6.3 of Chapter 4, the functions (1) converge uniformly to u e W,
and are the Fourier coefficients of u. Also

N

DkuN = 2 (In)kanen,
-N

131
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and (2) with r = k + 2 implies
CO

Iniklanl < oo.
CO

Thus each derivative DkuN also converges uniformly as N -* oo. Therefore
ue-M 0

If F is a periodic distribution which is in L2, then we have defined its
Fourier coefficients by

(3) a = F(e_n), e_ (x) = exp (- inx).

Since e_ e A, the expression in (3) makes sense for any periodic distribution
F, whether or not it is in L2. Thus given any Fe 9', we define its Fourier
coefficients to be the sequence defined by (3). We know that if all the
a are zero, then F = 0 (see Chapter 3, Theorem 4.3). Therefore, F e 9'
is uniquely determined by its Fourier coefficients, and we may ask : what are
necessary and sufficient conditions on a sequence C C that it be the
sequence of Fourier coefficients of a periodic distribution F? Again, the
answer is not difficult.

A sequence (a,)'. a C is said to be of slow growth if there are some
positive constants c and r such that

(4) Ianl 5 clnl*, all n 0 0.

Theorem 1.2. A sequence (an)`!W a C Is the sequence of Fourier co-
efcients of a distribution F e 9' if and only if it is of slow growth.

Proof. Suppose first that Fe 9' has as its sequence of Fourier
coefficients. Recall that for some integer k, F is of order k. Thus for u e 9,

IF(u)I 5 c(lul + IDul +...+ IDkuI).

With u = e_,, this means

la. 1 = IF(u)I 5 c(I i + Inl + ... + Inik) < 2clnik+

Thus (a.)2 W is of slow growth.
Conversely, suppose (as)! . = C is a sequence which is of slow growth.

Then there is an integer k > 0 such that

(5) lanl 5 clnik-2 n # 0.
Let bo = 0 and

Let
b = (in)-kan, n # 0.

N

vN = b,,e,,.

From (5) we get
CO

I Ibnl < oo.
- CD
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Therefore vN converges uniformly to v e W. Let

F= DkFv+Ff, f=aoeo.
This is a distribution; we claim that its Fourier coefficients are the (a,,)°_° W.

In fact, for n 9& 0,

F(e-n) = F.((-D)ke-n)
= (in)kF,,(e_n) = (1n)kbn = an.

Also

F(eo) = DIF (eo) + F1(eo) = 0 + ao. ()

In the course of the preceding proof we gave a second proof of the

characterization theorem for periodic distributions, Theorem 6.1 of Chapter 3.
In fact, the whole theory of 9 and 9' in Chapter 3 can be derived from the
point of view of Fourier series. We shall do much of such a derivation in this
section and the next. An important feature of such a program is to express
the action of F e 9' on u e 9 in terms of the respective sequences of Fourier
coefficients.

Theorem 1.3. Suppose F e 9' has (an)°_° W as its sequence of coefficients,
and suppose u e 9 has (bn)°_° W as its sequence of Fourier coefficients. Then

(6)

Proof. Let

F(u) = I anb-n = I a_nbn.
W - W

NUN(X)
= I bn exp (inx).

We know

Therefore

But

N N N

F(uN) _ I b,,F(en) = I a -,,b,, = I anb _ n []
-N -N

Implicit in the proof of Theorem 1.3 is the proof that the series in (6)
converges. A more direct proof uses the criteria in Theorem 1.1 and 1.2.
In fact,

Iani <_ clnlr, n :O 0,
IbnI S c'InJ -r-s, n # 0

and convergence follows.
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Corollary 1.4. If Fe &' has Fourier coefficients (a,,)'-., and if FN is
the distribution defined by the function

N

a exp (inx),.2
-N

then

FN-+ F(sa').

Proof. With u, uN as in Theorem 1.3,

FN(u) = F(uN) -+ F(u).

Exercises

a

1. Compute the Fourier coefficients of 8 and Dk8.
2. If Fe.+' has Fourier coefficients compute the Fourier coeffi-

cients of
TTF, F*, F.

3. Give necessary and sufficient conditions on the Fourier coefficient
(a,,)'-* .. of a distribution F that F be real; or even; or odd.

4. Suppose (9'm)° a % is an approximate identity. Let

(a.,.),'*. - Cc

be the sequence of Fourier coefficients of 9)m Show that

lam,nl 5 1, m >- 1, n = 0, ± 1, ±2,. .. ;
Jim am,,, = 1, all n.
M- cc

§2. Fourier series, convolutions, and approximation

Recall that if F, G e 9' and u e 00, the convolutions F * u and F * G are
defined by

F * u(x) = F(Txa),
(F * G)(u) = F(G" * u).

We want to compute the Fourier coefficients of the convolutions in terms of
the Fourier coefficients of F, G, and u.

Theorem 2.1. Suppose Fe g' has Fourier coefficients (a,,) W ..; suppose
G e 9' has Fourier coefficients (b.)'- .,; and suppose u e -' has Fourier coeffi-
cients (c.)'- ... Then F * u has Fourier coefficients (a c )°°.. and F * G has
Fourier coefficients

Proof. Note that

(Tj91,)(y) = e_n(y - x) = ea(x)e-,,(y)
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Therefore

(F * en)(x) = en(x)F(e-n) = anen(x),

and

N l N

F * ( cnen I = 2 ancnen.
N / -N

135

Taking the limit as N --> oo, we find that F * u has Fourier coefficients
(a,, ca)`-'..

Now
(G-

* en)(x) = G-(T.9.) = en(x)G"(en)
= en(x)G(en) = b _ nen(x)

Therefore

(F * G)(e _n) = F(G- * e _n) = bnF(e- n) = anon. a

Using Theorem 2.1 and Theorems 1.1 and 1.2, we may easily give a
second proof that F * u e -0 Similarly, if u e 9 and G = Fu, then

F* G = F,,, where v = F* u;

in fact F * G and F * u have the same Fourier coefficients.
The approximation theorems of Chapter 3 may be proved using Theorem

2.1 and the following two general approximation theorems.

Theorem 2.2. Suppose (u,n)i c Suppose the Fourier coefficients of
u,n are

am,n)n= - rn

Suppose that for each r > 0 there is a constant c = c(r) such that

lam.nl 5 clnl-r, all in, all n 0 0.

Suppose, finally, that for each n,

a n,n -+ an as m -* oo.

Then (an)2D is the sequence of Fourier coefficients of a function u e 9. More-
over,

un -+u (9.
Proof. The conditions imply that also

lanl 5 clnl -', n # 0.

Thus (an)`_'. is the sequence of Fourier coefficients of a function u e y.
Given e > 0, choose N so large that

CO

c(2) 2 n-2 < e.
n-N
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Choose M so large that m >_ M implies
N

I Ian,,. - an l < e.
-N

It follows that if m z M then

I Ian.n - aol

Since

this implies

< 5e.
CO_u

aen, un an.nen,

Iun - ul < 5e ifm>-M.

Thus um -+ u uniformly. A similar argument shows each Dkum -* Dku. 0

Theorem 2.3. Suppose (Fm)1 c 9'. Suppose the Fourier coefficients of
F. are

am.n n=-.o

Suppose that for some r > 0 there is a constant c such that

Ian.nI 5 clnlr, all m, all n # 0.

Suppose, finally, that for each n,

am,n -+ an and m -+ oo.

Then (a.)°_°.. is the sequence of Fourier coefficients of a distribution Fe 9'.
Moreover,

Fm+F (9').
Proof. The conditions imply that also

IanI 5 cInI', alln # 0.

Thus (an)°_°.. is the sequence of Fourier coefficients of a distribution Fe 9'.
Take an integer k z r + 2, and let

bm,o = bo = 0,
b,n,n = (in)-"a.,., n # 0

bn = (in)-kan, n # 0.

As in the proof of Theorem 1.2, (bm,n)n _ .. is the sequence of Fourier
coefficients of a function vm a ', with

F. = Ffm, .fm = an.oeo

Similarly, (bn)!.. is the sequence of Fourier coefficients of v e `' with

F = DIFF + F,, f = aoeo.



The heat equation: distribution solutions

The hypotheses of the theorem imply

1bm.nI <_ cI nI -2, n 0 0,
bm,n bn as m -*oo.

As in the proof of Theorem 2.1, these conditions imply that

vm -*v uniformly as m -->oo.

Also,
am.o -* ao.

It follows that F. -+ F (p'). 0

Exercises
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1. Suppose (lPm)i c `' is an approximate identity. Use the theorems of
this section and Exercise 4 of §1 to prove that:

9)m*uu (9) ifue';
F * 9m F (p') if

2. State and prove a theorem for L2 which is analogous to Theorem 2.2
for -M and Theorem 2.3 for 9'.

3. Use the result of Exercise 2 to show that if (9'm)i a is an approxi-
mate identity and F e L', then

F * 9)m -+ F (L').

4. Prove the converse of Theorem 2.2: if um - u (60) then the Fourier
coefficients satisfy the hypotheses of Theorem 2.2.

§3. The heat equation: distribution solutions

Many physical processes are approximately described by a function zz,
depending on time and on position in space, which satisfies a type of partial
differential equation called a heat equation or diffusion equation. The simplest
case is the following. Find u(x, t), a continuous function defined for x e [0, 7r]
and for t 0, satisfying the equation

(1) a u(x, t) = K( ) u(x, t), x e (0, 10, t > 0,

the initial condition

(2) u(x, 0) = g(x), x e [0"7r],
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and one of the following two sets of boundary conditions:

(3) u(0, t) = u(7r, t) = 0, t >_ 0;

(3)' x u(0, t) =
ax u(rr, t) = 0, t > 0.

The function u describes the temperature distribution in a thin homo-
geneous metal rod of length it. The number x represents the distance of the
point P on the rod from one end of the rod, the number t represents the time,
and the number u(x, t) the temperature at the point P at time t. Equation (1)
expresses the assumption that the rod is in an insulating medium, with no
heat gained or lost except possibly at the ends. The constant K > 0 is pro-
portional to the thermal conductivity of the metal, and we may assume units
are chosen so that K = 1. Equation (2) expresses the assumption that the
temperature distribution is known at time t = 0. Equation (3) expresses the
assumption that the ends of the rod are kept at the constant temperature 0,
while the alternative equation (3)' applies if the ends are assumed insulated.
Later we shall sketch the derivation of Equation (1) and indicate some other
physical processes it describes.

Let us convert the two problems (1), (2), (3) and (1), (2), (3)' into a single
problem for a function periodic in x. Note that if (2) and (3) are both to hold,
we should have

(4) g(0) = g(1r) = 0.

Let g(-x) = -g(x), x e (-ar, 0). Then g has a unique extension to all of
OI which is odd and periodic (period 2ir). Because of (4) the resulting function
is still continuous. Suppose u were a function defined for all x e R and t Z 0,
periodic in x, and satisfying (1) for all x e R, t > 0. Then u(x, 0) = g(x) is
odd. If g is smooth, then also

(ayu(x, 0)= D2g(x)

is odd, and we might expect that u is odd as a function of x for each t >- 0.
If this is so, then necessarily (3) is true.

Similarly, if (2) and (3)' are both to hold, we would expect that if g is
smooth then

Dg(0) = Dg(ir) = 0.

In this case, let g(-x) = g(x), x e (-1r, 0). Then g has a unique extension
to all of R which is even and periodic. If g is of class C1 on [0, 2ir], the ex-
tension is of class C' on R. Again, if u were a solution of (1), (2) which is
periodic in x for all t, we might expect u to be even for all t. Then (3)' is
necessarily true.

The above considerations suggest that we replace the two problems
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above by the single problem: find u-defined for x e R, t Z 0, such that u is
periodic in x,

(5) at u(x, t) = (I_)2u(x,t), x e 1F, t > 0,

(6) u(x, 0) = g(x), x e R,

where g e ( is given.
It is convenient and useful to ask for solutions of an analogous problem

for periodic distributions. We formulate this more general problem as follows.
Suppose that to each tin some interval (a, b) e R we have assigned a distri-
bution Ft a j9'. Ifs a (a, b), G e s', and

(t-s)-'(Ft-F,)-+G (a')
as t -+ s, it is natural to consider G as the derivative of Ft with respect to t
at t = s. We do so, and write

G dtFtle-s

Our formulation of the problem for distribution is as follows: given G E Y',
find distributions Ft e j9' for each t > 0, such that

(7)

(8)

dt Ft It_, = D2& all s > 0,

Ft-.G (e) as t-* 0.

Theorem 3.1. For each G e 9' there is a unique family (Ft)t> o a 9'
such that (7) and (8) hold. For each t > 0, Ft is a function ut(x) = u(x, t)
which is infinitely differentiable in both variables and satisfies (5).

Proof. Let us prove uniqueness first. Suppose (Ft)t .0 is a solution of
(7), (8). Each Ft has Fourier coefficients (an(t))°°W,

an(t) = Ft(e-n). t > 0, n = 0, t 1, ....

Then

(t - s)-1[as(t) - an(s)] -' D2FF(e-n) = F,(D2e_n) = -n2F,(e-n)

as t -+ s. In other words,

(9) Dan(t) _ -n2an(t), t > 0.

As t --s 0 we have

(10) an(t) = Ft(e-n) --> G(e-n) = bn.

The unique function a(t), t > 0 which satisfies (9) and (10) is

(11) an(t) = bn exp (-n't).
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This shows that an(t) are uniquely determined, so the distributions Ft are
uniquely determined.

To show existence, we want to show that the an(t) defined by (11) are the
Fourier coefficients of a smooth function for t > 0. Recall that if y > 0
then

so

Therefore

But

ev = (n!)-lyn > (m!)-lym

e-' < m! y-m.

Iao(t)I 5 Ib.Im! n-2m, t-m, m = 0, 1; 2,....

Ibnl 5 clnik, all n,

for some c and k. Therefore

I an(t)i 5 cm! Inik-am. t m, m = 0, 1, 2,....

It follows that for each t > 0, (an(t))'° . is the sequence of Fourier coeffi-
cients of a function ut e 9 Then ut is the uniform limit of the functions

N

uN(x. t) _ an(t) exp (inx)

N

_ bn exp (inx - n2t).

Then
N

at O)UN(x, t) _ bn(-n')'(fn)r exp (inx - nat)
ar ax

_ a..j.,(t) exp (inx).

As above,

lan,,,(t)I 5 cm! Inik+2l+r-am. t-m, m

It follows that each partial derivative of uN converges as N-+ oo, uniformly
for x e !R and t z 8 > 0. Thus

u(x, t) = ut(x)

is smooth for x e R, t > 0. For each N, uN satisfies (5). Therefore u satisfies
(5).

Let Ft be the distribution determined by ug, t > 0. Thus the Fourier
coefficients of Ft are the same as those of ut.

It follows from (11) that

Iaa(t)I 5 Ibnl, an(t) --> bn as t -* 0.
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By Theorem 2.3, therefore, (8) is satisfied. Finally, each partial derivative
of u is bounded on the region x e R, t >_ 8 > 0. It follows from this and the
mean value theorem that

(t - s)-1(ut - u3)
8t us

uniformly as t -+ s > 0. Therefore (7) also holds. 0

Exercises

1. In Theorem 3.1, suppose G is even or odd. Show that each Ft is re-
spectively even or odd. Show that if G is real, then each Fe is real.

2. Discuss the behavior of Ft as t --o- oo.
3. Formulate the correct conditions on the function u if it represents the

temperature in a rod with one end insulated and the other held at constant
temperature.

4. In Theorem 3.1, suppose G = F,o, the distribution defined by a
function w e 9 Show that the functions ut - w (9) as t -+ 0.

5. Let
0

gg(x) _ exp (-n2t + inx), t > 0, x e R.
n=-1D

Show that gg e °J'. In Theorem 3.1, show that

ut = G * gg.

6. With g, as in Exercise 5, show that

ga * gs = gt+s.

7. The backwards heat equation is the equation (1) considered for t <_ 0,
with initial (or "final") condition (2). Is it reasonable to expect that solutions
for this problem will exist? Specifically, given G e p1', will there always be a
family of distributions (FF)o<o a 9' such that

d
Ft Ite, = D2FBi all s < 0,

Ft -+G (/') as t-.0?
8. The Schrvdinger equation (simplest form) is the equation

8u .82u
8t

ax2

Consider the corresponding problem for periodic distributions: given
G e 9', find a family (Fg)t>o of periodic distributions such that

d- FFEs$=iD2F alls>0,

Ft-*G (9') as t-o-O.

Discuss the existence and uniqueness of solutions to this problem.
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§4. The heat equation: classical solutions; derivation

Let us return to the problem given at the beginning of the last section:
find u(x, t), continuous for x e [0, 22r] and t >- 0, and satisfying

(1)
at
u(x, t) _ (x) au(x, t), x e (0,ar), t > 0;

(2) u(x, 0) = g(x), where g e C[0, ir) is given;

(3) u(O, t) = u(Tr, t) = 0, t >- 0
or

(3)' x u(0, t)
2x

u(tr, t) = 0, t > 0.

Such a function u is called a classical solution of the problem (1), (2), (3)
or (1), (2), (3)', in contrast to the distribution solution for the periodic
problem given by Theorem 3.1. In this section we complete the discussion
by showing that a classical solution exists and is unique, and that it is given
by the distribution solution. We consider the problem (1), (2), (3), and leave
the problem (1), (2), (3)' as an exercise.

Given g e C[0, sr] with g(0) = g(w) = 0 (so that (3) is reasonable),
extend g to be an odd periodic function in ', and let G = Fg. By Theorem 3.1,
there is a function u(x, t) = ut(x) which is smooth in x, t for x e R, t > 0,
satisfies (1) for all such x, t, and which converges to G in the sense of 9' as
t -+ 0. By Exercise 1 of §3, u is odd as a function of x for each t > 0. Since u
is also periodic as a function of x, this implies that (3) holds when t > 0.
If we knew that uj -+ g uniformly as t -s 0, it would follow that the restriction
of u to 0 5 x 5 it is a classical solution of (1), (2), (3). Note that this is true
when (the extension of) g is smooth: see Exercise 4 of §3. Everything else we
need to know follows from the maximum principle stated in the following
theorem.

Theorem 4.1. Suppose u is a real-valued classical solution of (1), (2).
Then for each T > 0, the maximum value of u(x, t) in the rectangle

05x5ir, 05t5T
is attained on one of the three edges t = 0, x = 0, or x = gr.

Proof. Given e > 0, let

v(x, t) = u(x, t) - et.
It is easy to see that the maximum value of v is attained on one of the edges
in question. Otherwise, it would be attained at (x0, to), where

xo a (0, 1r), to > 0.

For v to be maximal here, we must have

2t v(xo, to) z 0.
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But then

(_) av(xo, to) = (_)au(xo, to) = at u(xo, t o) = at v(xo, to) + e

>-e>0,
so xo cannot be a maximum for v(x, to) on [0, 21r].

Now u and v differ by at most eT on the rectangle. Therefore for any
(x, t) in the rectangle,

u(x, t) 5 M + 2eT,

where M is the maximum of u for t = 0, x = 0, or x =7r. Since this is true
for every e > 0, the conclusion follows. 0

Theorem 4.2. For each continuous g with g(0) = g(vr) = 0, there is a
unique classical solution of problem (1), (2), (3).

Proof. Note that u is a classical solution with initial values given by g
if and only if the real and imaginary parts of u are classical solutions with
initial values given by the real and imaginary parts of g, respectively. There-
fore we may assume that g and u are real-valued. Applying Theorem 4.1
we see that

u(x,t) <- Ig1, all x e [0, 7r], t >_ 0.

Applying Theorem 4.1 to -u, which is a solution with initial values given
by -g, we get

Thus
- u(x, t) 5 I g I, all x, t.

Iu(x, t)I 5 IgI, all x, t.

This proves uniqueness.
To prove existence, let g be extended so as to be odd and periodic. Let

9 be an approximate identity. Let

gm=9'm*gEa
We can choose T. to be even, so that gm is odd. Let um be the distribution
solution given by Theorem 3.1 for gm as initial value, and let u be the distri-
bution solution with g as initial value. Then we know um(x,t)-+gm(x)
uniformly with respect to x as t -+ 0, so we may consider um as continuous
for t >_ 0, x e R. Moreover, since gm -+ g uniformly as m -+ oo, it follows
that um(x, t) -+ u(x, t), at least in the sense of R', for each t > 0. On the
other hand, since I gm - g I -+ 0 we find that for x e [0, 7r]

Ium(x, t) - u,(x, t)I i 0
as m, p -+ oo, uniformly in x and t, t > 0. Thus we must have um -* u
uniformly. It follows that u has a continuous extension to t = 0, and there-
fore that u (restricted to x e [0, 7r]) is a classical solution. p

A second proof of the uniform convergence of u to g as t -+ 0 is sketched
in the exercises below.
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The heat equation, (1), may be derived as follows. Again we consider a
homogeneous thin metal rod in an insulating medium. Imagine the rod
divided into sections of length e, and suppose x is the coordinate of the
midpoint of one section. We consider only this and the two adjacent sections,
and approximate the temperature distribution at time t by assuming u to be
constant in each section. The rate of flow of heat from the section centered
at x + e to that centered at x is proportional to the temperature difference
u(x + e, t) - u(x, t), and inversely proportional to the distance e. The
temperature in each section is the amount of heat divided by the volume, and
the volume is proportional to e. Considering also the heat flow from the
section centered at x - e to that centered at x, we get an approximate ex-
pression for the rate of change of temperature at (x, t):

e at u(X, t) Ke'1[u(x + 8, t) - u(x) + u(x - e, t) - u(X)]

or

2t
u(x, t) me-2[u(x + e, t) - u(x - e, t) - 2u(x)].

Consider the expression on the right as a function of e and let e -+ 0. Two
applications of L'Hopital's rule give

z
(4) at u(x, t) = K ax u(X, t).

Note that essentially the same reasoning applies to the following general
situation. A (relatively) narrow cylinder contains a large number of individual
objects which move rather randomly about. The random motion of each
object is assumed symmetric in direction (left or right is equally likely) and
essentially independent of position in the cylinder, past motion, or the
presence of the other objects. As examples one can picture diffusion of
molecules or dye in a tube of water kicked about by thermal motion of the
water molecules, or the late stages of a large cocktail party in a very long
narrow room. If u(x, t) represents the density of the objects near the point x
at time t, then equation (4) arises again. Boundary conditions like (3)'
correspond to the ends of the cylinder being closed, while those like (3)
correspond to having one way doors at the ends, to allow egress but not
ingress.

Exercises

1. Suppose G = F,,, w e -; and suppose (ut)t, 0 is the family of functions
in Theorem 3.1. Show that if w >- 0, then each ut is Z 0.

2. As in Exercise 5 of §3, let

ge(x) = I exp (-n't + inx), t > 0.00
-00
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Show that

f 2x

g:(x) dx = 1.
o

Show that if w e 9 and w 0, then gt * w 0. Show, by using any approxi-
mate identity in 9, that gt 0.

3. Show that (gt)t> o is an approximate identity as t 0, i.e., (in addition
to the conclusions of Exercise 2) for each 0 < S < or,

ran-6
lim

J
gt(x) dx = 0.

t-.o 6

(Hint: choose w e 9 such that w >_ 0, w(0) = 0, and w(x) = 1 for 8 < x S
21r - S. Then consider gt * w(0).)

4. Use Exercise 3 to show that if w e If, G = F. and (ut)t>o is the family
of functions given in Theorem 3.1, then ut -* w uniformly as t -* 0.

5. In a situation in which heat is being supplied to or drawn from a rod
with ends at a fixed temperature, one is led to the problem

a u(x, t) _ (a)2U(X, t) + f(x, t), x e (0, ir), t > 0,

u(x, 0) = g(x), u(0, t) = u(ir, t) = 0.
Formulate and solve the corresponding problem for periodic distributions,
and discuss existence and uniqueness of classical solutions.

§5. The wave equation

Another type of equation which is satisfied by the functions describing
many physical processes is the wave equation. The simplest example occurs
in connection with a vibrating string. Consider a taut string of length it
with endpoints fixed at the same height, and let u(x, t) denote the vertical
displacement of the string at the point with coordinate x, at time t. If there
are no external forces, the function u is (approximately) a solution of the
equation

(1) ()2u(x, t) =
c2

(z)2u(x, t), x e (0, t > 0.

Here c is a constant depending on the tension and properties of the string.
The condition that the endpoints be fixed is

(2) u(0, t) = u(lr, t) = 0, t >- 0.

To complete the determination of u it is enough to know the position and
velocity of each point of the string at time t = 0:

(3) u(x, 0) = g(x), at u(x, 0) = h(x), x e [0, ir].

We shall discuss the derivation of (1) later in this section.
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As in the case of the heat equation we begin by formulating a corre-
sponding problem for periodic distributions and solving it. The conditions
(2) suggest that we extend g, h to be odd and periodic and look for a solution
periodic in x. The procedure is essentially the same as in §3.

Theorem 5.1. For each G, H e 9' there is a unique family (FF)t, o c 9'
with the following properties:

dt Ftl
exists for each s > 0,

$

(d)2
Fl D2F,

Ft G (9) as

all s> 0,

t-* 0,

(6) d Ftl - H (9') as s 0.

Proof. Let (bn)°_°. be the sequence of Fourier coefficients of G, and let
be the sequence of Fourier coefficients of H. If (Ft)r,o is such a family

of distributions, let the Fourier coefficients of Ft be

(an(t))2..

As in the proof of Theorem 3.1, conditions (4), (5), (6) imply that an is
twice continuously differentiable for t > 0, an and Dan have limits at t = 0,
and

D2an(t) = -naan(t),
an(0) = bn, Dan(0) = cn.

The unique function satisfying these conditions (see §6 of Chapter 2) is

(7) an(t) = bn cos nt + n-1cn sin nt, n # 0,

(8) ao(t) = bo + cot.

Thus we have proved uniqueness. On the other hand, the functions (7), (8)
satisfy

(9) Ian(t)I <_ Ibnl + InI -IIcI, n # 0,
(10) an(t)-.bn as t-+0, alln;

(11) I Dan(t)I s Inbnl + Icnl, all n,

(12) Dan(t) -* cn as t -+ 0, all n.

It follows from (9) and Theorem 1.2 that (an(t))°_° is the sequence of Fourier
coefficients of a distribution Ft. It follows from (10) and Theorem 2.3 that
(5) is true. It follows from (11), the mean value theorem, and Theorem 1.2
that

t-a
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exists for s > 0 and has Fourier coefficients (Dan(s))°_° Then (12) gives (6).
Finally,

D2an(t)I 5 Inabnl + all n.
It follows that

t- S

exists, s > 0. The choice of an(t) implies that (4) holds. 0

Let us look more closely at the distribution Ft in the case when G and H
are the distributions defined by functions g and h in 9. First, suppose h = 0.
The Fourier series for g converges:

g(x) _ a exp (inx).

Inequality (9) implies that the Fourier series for Ft also converges; then Ft
is the distribution defined by the function ut a 9, where

u(x, t) = uA) _ I as cos nt exp (inx)oo

= 1 2 an[exp (int) + exp (-int)] exp (inx)
- OD

OD ao

= 2 2 a exp (in(x + t)) + 57 an exp (in(x - t)),
00- cc

or

(13) u(x, t) = g(x + t) + 1g(x - t).
It is easily checked that u is a solution of

82u 82u
ata = a,3' u(x, 0) = g(x), at (x, 0) = 0.

Next, consider the case g = 0. Again (an(t))°° is the sequence of Fourier
coefficients of a function ut a P,

u(x, t) = ut(x) = I n-icn sin (inx) + cot.
noo

To get rid of the n factor, we differentiate:

F u(x, t) _ ic, sin nt exp (inx)

= 1 cn[exp (int) - exp (-int)] exp (inx)

00

= 2 c exp (in(x + t)) - 2 c exp (in(x - t))
CO

=}h(x+t)-+h(x-t).
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Integrating with respect to x gives
1 x+t

h(y) dy + a(t)(13)' u(x, t) =
2 f - tx

where a(t) is a constant to be determined so that u is periodic as a function
of x. But the periodicity of h implies that a(t) should be taken to be zero.
Then u so defined is a solution of

au aau'
ra

u(x' 0)=0' au(x' 0)=h(x).a=axa at

Equation (1) for the vibrating string may be derived as follows. Approxi-
mate the curve ut representing the displacement at time t by a polygonal line
joining the points ... (x - e, u(x - e, t)), (x, u(x, t)), (x + e, u(x + e, t)), ....
The force on the string at the point x is due to the tension of the string. In
this approximation the force due to tension is directed along the line seg-
ments from (x, u(x, t)) to (x ± e, u(x ± e, t)). The net vertical component
of force is then proportional to

(a)2u(x, t) N cae-a[u(x + e) + u(x - e) - 2u(x)]

where c is constant. We take the limit as a-* 0. Two applications of
L'Hapital's rule to the right side considered as a function of a give (1).

The constant ca can be seen to be equal to

Krr-a,

where r is the diameter of the string or wire, r is the tension, and K is pro-
portional to the density of the material. Let us suppose also that the length
of the string is 7rl instead of in. The solution of the problem corresponding
to (1), (2), (3) when g is real and h = 0 can be shown to be of the form

CO

(14) u(x, t) = b,, cos (cnt/1) sin (nx/l).
n-1

A single term
bn cos (cnt/l) sin (nx/1)

represents a "standing wave", a sine curve with n maxima and minima in
the interval [0, irl ] and with height varying with time according to the term
cos (cnt/1). Thus the maximum height is bn, and the original wave is repeated
after a time interval of length

2or1/cn.

Thus the frequency for this term is

cn/2irl = n(Kr)112/27r[r,

an integral multiple of the lowest frequency

(15) (Kr)112/2,rlr.
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In hearing the response of a plucked string the ear performs a Fourier
analysis on the air vibrations corresponding to u(x, t). Only finitely many
terms of (14) represent frequencies low enough to be heard, so the series
(14) is heard as though it were a finite sum

N

(16) 1 bn cos (cnt/l) sin (nx/l).
n=1

In general, if the basic frequency (15) is not too low (or high) it is heard as
the pitch of the string, and the coefficients b1, b2, ..., bN determine the
purity: a pure tone corresponds to all but one bn being zero. Formula (15)
shows that the pitch varies inversely with length and radius, and directly
with the square root of the tension.

Exercises

1. In Theorem 5.1, suppose DG and H are in La. Show that

DFt and dt Ft

are in L2 for each t, and

IIDFtII2 + IldtFell IIDGII2 + 11HII2 .

2. In the problem (1), (2), (3) with c = I suppose g, h, and u are smooth
functions. Show, by computing the derivative with respect to t, that

f
R ka z R a

a
o at u(x, t) dx

is constant. (This expresses conservation of energy: the first term represents
potential energy, from the tension, while the second term represents kinetic
energy.)

3. Use Exercise 2 and the results of this section to prove a theorem about
existence and uniqueness of classical solutions of the problem (1), (2), (3).

4. Show that if H(f) = 0 when f is constant, then the solution (Ft)t>0
in Theorem 5.1 can be written in the form

Ft = +(TtG + T_tG) + +(T_tSH - TtSH).

Here again Tt denotes translation, while S is the operator from 9' to 9'
defined by

SH(u) = H(v), u e 9,

where
an

v(x) = f v(t) dt + 2v f n v(t) A
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This is the analog for distributions of formulas (13) and (13)'.

§6. Laplace's equation and the Dirichlet problem

A third equation of mathematical and physical importance is Laplace's
equation. In two variables this is the equation

(1)
8a a

axa+ y0.

A function u satisfying this equation is said to be harmonic. A typical
problem connected with this equation is the Dirichlet problem for the disc:
find a function continuous on the closed unit disc

{(x, y) I xa + ya < 1)

and equal on the boundary to a given function g:

(2) u(x, y) = g(x, y), xa + ya = 1.

A physical situation leading to this problem is the following. Let u(x, y, t)
denote the temperature at time t at the point with coordinates (x, y) on a
metal disc of radius 1. Suppose the temperature at the edge of the disc is
fixed, though varying from point to point, while the interior of the disc is
insulated. Eventually thermal equilibrium will be reached: u will be inde-
pendent of time. The resulting temperature distribution u is approximately a
solution of (1), (2).

To solve this equation we express u and g by polar coordinates:

u = u(r, 0), g = g(0)

where

x = r cos 0, y = r sin 0; r = (x2 + y2)"2, 0 = tan-' (yx-1).

Then

au au Or au M au _ sin 0 au
8x

__

8r 8x + 8x = cos 0
Or r 8B'

and similarly for aulay. An elementary but tedious calculation gives

aau aau aau 1 Ou 1 aau
8xa

+ aya _
Bri + r Br

+ ra _ap'

Thus we want to solve

(3)
raa +rar+ama = <r< e0, 0 1, BR,

(4) u(1, 0) = g(B), 0 e R,
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where u and g are periodic in 0. We proceed formally. Suppose g has Fourier
coefficients (bn)`_° ., and u,(O) = u(r, 0) has Fourier coefficients

(an(r))0 < r < 1.
Then (3) leads to the equation

(5) r2Daan + rDan - naa = 0, 0 < r < 1.

From (4) we get

(6) an(1) = bn,

and since u0(0) is constant we want

(7) an(0) = 0, n 0 0.

We look for a solution an(r) of the form bnrc, where c = c(n) is a constant,
for each n. This will be a solution if and only if

c(c - 1)+c-n2=0,
or ca = n2. Then (7) gives c = Ind. We are led to the formal solution

u(r, 0) = I bnr"n' exp (MO).
-00

Formally, this should be the convolution of g with the distribution whose
Fourier coefficients are

(r In I)!!

For r < 1 these are the Fourier coefficients of a function P, e A In fact,

(8) P,(0) _ rIn IeinO
00

cc

= 1 + (re4°)n + (re-4°)'

r2)I 1 - ref°1 2 = (1 - r2)(1 - 2r cos 0 + r2)-1.

Note that P,(0) is an approximate identity as r -+ 1: the first expression on
the right in (8) shows

1 anfo P,(O) d0 = 1

and the last expression shows that P,(0) >_ 0 and
as-e

Jim
J

P,(O) d0 = 0
r41 6

for each 0 < 8 < ,r. The function

P(r, 0) = PT(O)

is called the Poisson kernel for the Dirichlet problem in the unit disc.
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Theorem 6.1. Suppose F is a periodic distribution. There is a unique
function u(r, 0) defined and smooth in the open unit disc, satisfying (3), and
such that the distributions defined by the functions u,(9) = u(r, 0) converge
to Fin the sense of 9' as r 1. Moreover, if F = F9 where g e ', then u, -> g
uniformly as r - 1. The functions u, are given by convolution with the Poisson
kernel:

u, = F * P,.

Proof. Uniqueness was proved in the derivation above. Let u, = F * P,.
Since P, is an approximate identity, we do have u, -+ F ((') as r - 1, and
u, -+ g uniformly if F = F9, g e W. We must show that u is smooth and
satisfies (3). Note that when F = F9, g e W, then explicitly

1 n

P(r, 9 - 4p)g(rp) d9o
u(r,

0)

= 21r f o'

and we may differentiate under the integral sign to prove that u is smooth.
Moreover, since P(r, 9) satisfies (3), so does u.

Finally, suppose u has merely a distribution Fas its value on the boundary.
Note that if 0 <- r, s < 1 then (by computing Fourier coefficients, for example)

P, * P. = P,,.

In particular, choose any R > 0, R < 1. It suffices to show that u is smooth
in the disc r < R and satisfies (3) there. But when r < R,

s=rR-1<I
and

u. = F*PR = F*(P,*P9) = (F*PR)*P, = uR*P,.

Since PR e 9 uR is a smooth function of 9. Then
1 2n

u(r, 0) = 2 f P(rR' 9 - p)u.(,) d49,
0

0 5 r < R. Again, differentiation under the integral sign shows that u is
smooth and satisfies (3). p

The preceding theorem leads to the remarkable result that a real-valued
harmonic function is (locally) the real part of a function defined by a con-
vergent power series in z = x + iy.

Theorem 6.2. Suppose u is a harmonic real-valued function of class C2
defined In an open subset of 182 containing the point (xo, yo). Then there Is a
function f defined by a convergent power series:

0
f(z) = I zo)', Iz - zol < e, zo = xo + iy0,

0

such that

u(x, y) = Re f(x + 1y)
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when

Ix+iy-Z0I <e.
Proof. Suppose first that (xo, yo) = (0, 0) and that the set in which u is

defined contains the closed disc x2 + y2 <- 1. Let

g(O) = u(cos 0, sin 0), O e R.

Then u is the unique solution of the Dirichlet problem in the unit disc with
g as value on the boundary. If (b")'-. are the Fourier coefficients of g,
then we know that in polar coordinates u is given by

r """b" exp (in9).

Since u is real, g is real. Therefore b" = b*_" and the series is

bo+2Re(r'bnexp(In0)).I

f(z) = az"
0

where

ao=bo; a"=2b", n>0.
Then

u(x, y) = Re 2 a"(reo)") = Re (f(re'O))(
0

= Re (f(x + iy)), x2 + y2 < 1.

In the general case, assume that u is defined on a set containing the closed
disc of radius e centered at (xo, yo), and let

u1(x, Y) = u(xo + ex, Yo + ey).

Then ul is harmonic in a set containing the unit disc, so

ul = Ref1,

f1 defined by a power series in the unit disc. Then

u=Ref, (x-xo)2+(y-Yo)2 <e,
where

f(x, Y) = .fi(e-1(x - x0), 8 -1(Y - Yo))

is defined by a power series in the disc of radius a around zo = xo + iyo. 0
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Exercises

1. Prove the converse of Theorem 6.2: if

f(z) = I an(z - zo)", Iz - zol < R,
0

and we let

u(x, y) = Re f(x + iy), Ix + iy - zoo < R,

then u is harmonic.
2. There is a maximum principle for harmonic functions analogous to

the maximum principle for solutions of the heat equation discussed in §4.
(a) Show that if u is of class C2 on an open set A in i82 and

02U
$

'0
8xa +

.92U

at each point of A, then u does not have a local maximum at any point of A.
(b) Suppose u is of class C2 and harmonic in an open disc in R2 and

continuous on the closure of this disc. Show, by considering the functions

ue(x, y) = u(x, y) + eX2 + eye

that u attains its maximum on the boundary of the disc.
3. Use the result of Exercise 2 to give a second proof of the uniqueness

of the solution of the Dirichlet problem for a continuous boundary function g.
4. Suppose u is continuous on the closed disc x2 + y2 5 R and harmonic

in the open disc x2 + y2 < R. Give a formula for u(x, y) (or u(r, 0)) for
x2 + y2 < R in terms of the values of u for x2 + y2 = R. Give formulas
for the derivatives au/ar and au/a9 also.

5. Suppose u is defined on all of R2 and is harmonic. Use the result of
Exercise 4 to show that if u is bounded, then it is constant.
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Complex Analysis

P. Complex differentiation

Suppose KI is an open subset of the complex plane C. Recall that this
means that for each zo e fl there is a 8 > 0 so that c contains the disc of
radius 8 around zo :

zeQ iflz - zol < 6.

A function f: S2 ->. C is said to be differentiable at z e S2 if the limit

lim
f(w) - f(z)

w-.z W -Z

exists. If so, the limit is called the derivative off at z and denotedf'(z).
These definitions are formally the same as those given for functions

defined on open subsets of R, and the proofs of the three propositions below
are also identical to the proofs for functions of a real variable.

Proposition 1.1. If f: S2 -* C is differentiable at z e S2, then it is con-
tinuous at z.

Proposition 1.2. Suppose P. 11-+ C, g: it --- C and a e C. If f and g are
differentiable at z = S2, then so are the functions af, f + g, andfg:

(af)'(z) = af'(z)
(f + g)'(z) =.f'(z) + g'(z)

(fg)'(z) = .f'(z)g(z) + f(z)g'(z)

If also g(z) # 0, then flg is differentiable at z and

(f/g)'(z) = U'(z)g(z) - f(z)g'(z)1g(z)-2

Proposition 1.3 (Chain rule). Suppose f is differentiable at z e C and g
is differentiable at f(z). Then the compositive function g of is differentiable
at z and

(g of)'(z) = g'(f(z))f'(z)

The proof of the following theorem is also identical to the proof of the
corresponding Theorem 4.4 of Chapter 2.

Theorem 1.4. Suppose f is defined by a convergent power series:

f(Z) an(z - z0)' , I z - zol < R.

155
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Then f is differentiable at each point z with Iz - zoo < R, and
CO

f(z) = ;l na (z - zo)"-1.
ne

In particular, the exponential and the sine and cosine functions are
differentiable as functions defined on C, and (exp z)' = exp z, (cos z)' _
-sin z, (sin z)' = cos z.

A remarkable fact about complex differentiation is that a converse of
Theorem 2.4 is true: if f is defined in the disc Iz - zol < R and differentiable
at each point of this disc, then f can be expressed as the sum of a power
series which converges in the disc. We shall sketch one proof of this fact in
the Exercises at the end of this section, and give a second proof in §3 and a
third in §7 (under the additional hypothesis that the derivative is continuous).
Here we want to give some indication why the hypothesis of differentiability
is so much more powerful in the complex case than in the real case. Consider
the function

f(z) = z*, or f(x + iy) = x - iy.

Take t e l8, t # 0. Then

t-1[f(z + t) -f(z)] = 1,

(it)-'AZ + it) - f(z)] = -1,
so the ratio

W-1 V(W) - f(z)]
depends on the direction of the line through w and z, even in the limit as
w -+ z. Therefore this function f is not differentiable at any point.

Given f: SI -+ C, define functions u, v by

u(x, y) = Ref(x + ty) = +f(x + iy) + +(f(x + iy))*,

v(x,Y)=Imf(x+iY)=2(f(x+iy))*-2f(x+ly).

Thus
f(x + iY) = u(x, Y) + iv(x, Y)

We shall speak of u and v as the real and imaginary parts off and write

f=u+iv.
(This is slightly incorrect, since f is being considered as a function of z e
SI a C, while u and v are considered as functions of two real variables x, y.)

Theorem 1.5. Suppose SI a C is open, f: SI C, f = u + iv. Then if f
is differentiable at z = x + iy a SI, the partial derivatives

(1) au au av av
ax' ay' ax' ay
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all exist at (x, y) and satisfy

(2)
TX_

u(x, Y) = ay v(x, Y)

(3)

y
u(x, Y) _ -ax v(x, Y)

Conversely, suppose that the partial derivatives (1) all exist and are con-
tinuous in an open set containing (x, y) and satisfy (2), (3) at (x, y). Then f is
differentiable at z = x + iy.

The equations (2) and (3) are called the Cauchy-Riemann equations.
They provide a precise analytical version of the requirement that the limit
definingf'(z) be independent of the direction of approach. Note that in the
example f(z) = z* we have

Ou 8v 8u ev - 0
ax l' ay -1' ay ax

Proof. Suppose f is differentiable at z = x + iy. Then

(4) lim t-1[f(z + t) - f(z)] = f'(z) = lim (it)[f(z + it) - f(z)].
t-.o t-o

The left side of (4) is clearly

ax u(x, Y) + i a v(x, Y

while the right side is

- i y u(x, Y) +
ay v(x, Y)

Equating the real and imaginary parts of these two expressions, we get (2)
and (3).

Conversely, suppose the first partial derivatives of u and v exist and are
continuous near (x, y), and suppose (2) and (3) are true. Let

h=a+ib
where a and b are real and near zero, h # 0. We apply the Mean Value
Theorem to u and v to get

f(z+h)-f(z)=f(z+a+tb)-f(z+a)+f(z+a)-f(z)

y u(x + a, y + t1b)b + i

Y

v(x + a, y + t2b)b

+ ax u(x + t3a, y)a + i ± v(x + t4a, y)a,
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where 0 < ti < 1, j = 1, 2, 3, 4. Because of (2) and (3),

I ax u(x, y) + i ay v(x, Al h
L

a a a a
= ay u(x, y)b + i ay v(x, y)b + ax u(x, y)a + i ex v(x, y)a.

Therefore

h-'[f(z + h) - f(z)] - I ax u(x, y) + 1 ay v(x, Al

is a sum of four terms similar in size to

ay u(x + a, y + tlb) - ay u(x, y).

Since the partial derivatives were assumed continuous, these terms -+ 0 as
h-*0. p

A function P. 0 -* C, 0 open in C, is said to be holomorphic in S2 if it is
differentiable at each point of S2 and the derivative f' is a continuous function.
(Actually, the derivative is necessarily continuous if it exists at each point;
later we shall indicate how this may be proved.) Theorem 1.5 has the following
immediate consequence.

Corollary 1.6. f: S2 - C is holomorphic in S2 if and only if its real and
imaginary parts, u and v, are of class C' and satisfy the Cauchy-Riemann
equations (2) and (3) at each point (x, y) such that x + iy a Q.

Locally, at least, a holomorphic function can be integrated.

Corollary 1.7. Suppose g is holomorphic in a disc Iz - zol < R. Then
there is a function f, holomorphic for Iz - zoI < R, such that f' = g.

Proof. Let u, v be the real and imaginary parts of g. We want to deter-
mine real functions q, r such that

f = q + ir
has derivative g. Because of Theorem 1.5 we can see that this will be true
if and only if

aq Or aq =- Or

ax
=

ey
=

u' ay 8x =
-V.

The condition that u, - v be the partial derivatives of a function q is (by
Exercises I and 2 of §7, Chapter 2)

au av
8y 8x

The condition that v and u be the partial derivatives of a function r is

av au
ay - ax
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Thus there are functions q, r with the desired properties. p

Exercises

1. Let f(x + iy) = x2 + y2. Show that f is differentiable only at z = 0.
2. Suppose P. C -+ R. Show that f is differentiable at every point if and

only if f is constant.
3. Let f(0) = 0 and

f(x+iy)=2xy(x2+y2)-1, x+iy00.
Show that the first partial derivatives of f exist at each point and are both
zero at x = y = 0. Show that f is not differentiable (in fact not continuous)
at z = 0. Why does this not contradict Theorem 1.5?

4. Suppose f is holomorphic in 0 and suppose the real and imaginary
parts u, v are of class C2 in 0. Show that u and v are harmonic.

5. Suppose f is as in Exercise 4, and suppose the disc Iz - zol 5 R is
contained in Q. Use Exercise 4 together with Theorem 6.2 of Chapter 5 to
show that there is a power series I an(z - zo)n converging to f(z) for
Iz - zol < R.

6. Suppose g is holomorphic in S2, and suppose 0 contains the disc
lz - zol 5 R. Let f be such that f'(z) = g(z) for Iz - zol 5 R (using
Corollary 1.7). Show that the real and imaginary parts off are of class C2.

7. Use the results of Exercises 5 and 6, together with Theorem 1.4, to
prove the following theorem.

If g is holomorphic in SZ and zo e S2, then there is a power series such that

g(z) = I an(z - z0)4, Iz - zol < R,
n=0

for any R such that S2 contains the disc of radius R with center zo.

§2. Complex integration

Suppose S2 a C is open. A curve in Cl is, by definition, a continuous
function y from a closed interval [a, b] c R into Cl. The curve y is said to be
smooth if it is a function of class C1 on the open interval (a, b) and if the
one-sided derivatives exist at the endpoints:

(t - a)-1[y(t) - y(a)] converges as t - a, t > a;
(t - b)-[y(t) - y(b)] converges as t -+ b, t < b.

The curve y is said to be piecewise smooth if there are points ao, a1, ..., a,,
with

a=ao <a1 <<a,=b
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such that the restriction of y to [a,-1, aj] is a smooth curve, 1 <_ j <- r. An
example is

y(t) = zo + e exp (it), t e [0, 21r];

then the image

{y(t) I t e [0, 2vr]}

is the circle of radius 8 around zo. This is a smooth curve. A second example is

y(t) = t, t e [0, 1],
y(t) = 1 + i(t - 1), t e (1, 21,
y(t) = 1 + i - (t - 2), t e (2, 3],
y(t) = i - (t - 3)i, t e (3, 4].

Here y is piecewise smooth and the image is a unit square.
Suppose y: [a, b] -- 0 is a curve and f:.0 -* C. The integral off over y,

f, A

is defined to be the limit, as the mesh of the partition P = (to, t1, ..., t,) of
[a, b] goes to zero, of

I f(Y(ts))[Y(ti) - Y(ti-1)]
,_1

Proposition 2.1. If y is a piecewise smooth curve in 0 and f: Q - C is
continuous, then the integral off over y exists and

(1) f f = f bf(Y(t))Y'(t) dt.
V a

Proof. The integral on the right exists, since the integrand is bounded
and is continuous except possibly at finitely many points of [a, b]. To prove
that (1) holds we assume first that y is smooth. Let P = (to, t1i ..., tn) be a
partition of [a, b]. Then

(2)

where

jf(Y(ti))[Y(ti) - Y(ti-1)] = jf(Y(t+))Y'(t)[tt - is-1] + R,

IRI s sup If(t)I.2 IY(ts) - Y(ts-1) - y (ts)(tj - t,-1)I

Applying the Mean Value Theorem to the real and imaginary parts of y on
[t,-1i t,] and using the continuity of y', we see that

R-+0 as the mesh IPI-+0.

On the other hand, the sum on the right side of (2) is a Riemann sum for
the integral on the right side of (1). Thus we have shown that the limit exists
and (1) is true.
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If y is only piecewise smooth, then the argument above breaks down on
intervals containing points of discontinuity of y'. However, the total contri-
bution to the sums in (2) from such intervals is easily seen to be bounded in
modulus by a constant times the mesh of P. Thus again the limit exists as
IPA-* Oand(1)istrue. fl

Note that the integral f j f depends not only on the set of points

{y(t) I t e [a, b]}

but also on the "sense," or ordering, of them. For example, if

yl(t) = exp (it), Y2(t) = exp (-it), t e [0, 2ir],

then the point sets are the same but

Furthermore, it matters how many times the point set is traced out by y: if

y3(t) = exp (int),
then

fr9 .f=nf
Yi

f.

A curve y: [a, b] -+ 0 is said to be constant if y is a constant function.
If so, then

f f=0, all f.
Y

A curve y: [a, b] -> f is said to be closed if y(a) = y(b). (All the examples
given so far have been examples of closed curves.) Two closed curves
yo, yi : [a, b] -* 91 are said to be homotopic in SZ if there is a continuous
function

r: [a, b] x [0, I]--> (

such that

r(t, o) = yo(t), r(t, 1) = yl(t), all t e [a, b],
r(a, s) = r(b, s), all s e [0, 1].

The function r is called a homotopy from yo to yl. If r is such a homotopy,
let

ye(t) = r(t, s), s e (o, 1).

Then each y8 is a closed curve, and we think of these as being a family of
curves varying continuously from yo to yl, within Q.

Theorem 2.2 (Cauchy's Theorem). Suppose £l a C is open and suppose
f is holomorphic in 0. Suppose yo and yl are two piecewise smooth closed
curves in SZ which are homotopic in Q. Then

f f=f.f.
ro Yi
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The importance of this theorem can scarcely be overestimated. We
shall first cite a special case of the theorem as a Corollary, and prove the
special case.

Corollary 2.3. Suppose S2 is either a disc

{z I 1z - zol < R)

or a rectangle

{x+iyIx1<x<x2iy1 <y<y2}.

Suppose f is holomorphic in S2 and y is any piecewise smooth closed curve
in Q. Then

fYf=0.

Proof. It is easy to see that in this case y is homotopic to a constant
curve yo, so that the conclusion follows from Cauchy's Theorem. However,
let us give a different proof. By Corollary 1.7, or by the analogous result
for a rectangle in place of a disc, there is a function h, holomorphic in SZ,
such that h' = f. But then

f f = fbf(y(t))y'(t) dt = f
b

h'(y(t))y'(t) dt
y a a

b=f [h ° y]'(t) dt = h(y(b)) - h(y(a)) = 0,

since y(a) = y(b). p

Proof of Cauchy's Theorem. Let r be a homotopy from yo to yl and let

y8(t) = r(t, s), t e [a, b], s e (0, 1).

Assume for the moment that each curve y8 is piecewise smooth. We would like
to show that the integral off over y8 is independent of s, 0 5 s 5 1.

Assume first that 1' is of class C2 on the square [a, b] x (0, 1), that the
first partial derivatives are uniformly bounded, and that

,y, -*,yo' as s-* 0,
as s-+ 1

uniformly on each interval (c, d) C [a, b] on which yo or yl, respectively, is
continuous. These assumptions clearly imply that

F(s) f = f
ti

f(r(t, s)) at (t, s) dt
Ye a
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is a continuous function of s, s e [0, 1]. Furthermore under these assumptions
we may apply results of §7 of Chapter 2 and differentiate under the integral
sign when s e (0, 1) to get

P(s) = f
b

s (iir't, s))
Ti

I'(t, s)) dt

= Jf't, s)) as P(t, s) a 1'(t, s) dt
a

+ ff(r(t,° s)) aaas r(t, s) dt
a

= fbat [j' s)) . r(t, s)] dt

= f(r(b, s)) as r(b, s) - f(r(a, s)) as r(a, s)

=0

(since P(b, s) = P(a, s)). Thus F(0) = F(1).
Finally; do not assume r is differentiable. We may extend r in a unique

way so as to be periodic in the first variable with period b - a, and even and
periodic in the second variable with period 2; then r: R x R -* Q. Let
-p: R -* R be a smooth function such that

yo(x) 0, all x,

f T(x) dx = 1

y,(x) = 0 if 1xI 2: 1.

Let pn(x) = ny (nx), n = 1, 2, 3, .... Then

f vo,(x) dx = 1, qn(x) = 0 if jxI >: n-1.

Let

P (t, s) = f r(t - x, s - y)4,n(x)4,n(y) dx dy,

(t, s) e R x R. Then (see the arguments in §3 of Chapter 3) r is also periodic
with the same periods as r, and r. -* r uniformly as n -* oo. It follows
from this (and the fact that P(R x R) is a compact subset of 12) that

x R) a S1 if n is sufficiently large. Furthermore, the argument above
shows that

f f=f f,
YO,n Yl,n

where

y,,,,(t) = s), t e [a, b], s e [0, 1].
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All we need do to complete the proof is show that

(3) f f -*f f as n - . oo, s = 0 or 1.
y$.n y,

Note that we may choose the homotopy r so that y, = yo for 0 5 s 5 $
and y, = y,, for j 5 s 5 1; to see this, let Po be any homotopy from yo to
y, in Q, and let

r(t, s) = yo(t), 05s5+,
r(t, s) = ro(t, 3s - 1), < s < ,

r(t, s) = y1(t), <- s 5 1.

If r has these properties, then when n >: 3 we have

rn(t, s) = f r(t - x, s)ypn(x) dx, s = 0 or 1.

It follows that y,,,, -* ys uniformly, s = 0 or 1. It also follows, by differen-
tiating with respect to t, that y8,,, is uniformly bounded and

YB.n - ys

on each interval of [0, 1] where 78 is continuous, s = 0 or 1. Therefore (3)
is true. fl

Exercises

1. Suppose y,: [a, b] -*S2 and ya: [c, d] - 11 are two piecewise smooth
curves with the same image:

C = {y,(t) I t e [a, b]} = {V2(t) I t e [c, d]}.

Suppose these curves trace out the image in the same direction, i.e., if

s, te[a,b], s', t'e[c,d]
and

yi(s) = ya(s') # yl(t) = ya(t)

and

s<t
then

Si < t'.

Show that for any continuous P. SZ -+ C (not necessarily holomorphic),
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This justifies writing the integral as an integral over the point set C:

if = f f(z) dz,
rl c

where we tacitly assume a direction chosen on C.
2. Suppose C in Exercise 1 is a circle of radius R and suppose I f(z)J <_ M,

all z e C. Show that

If/(z) A I <

3. Let y(t) = zo + eeit, t e [0, 21r], where e > 0. Show that

J
(z - zo) -1 = 27d.

Y

4. Let exp (int), t e [0, 2ir], n = 0, ± 1, ±2, .... Show that

5 z-1=2mri.
ra

5. Let S2 = {z e C j z 0}. Use the result of Exercise 4 to show that the
curves y,, and ym are not homotopic in SZ if n # m. Show that each y,, is
homotopic to yo in C, however.

6. Use Exercise 4 to show that there is no function f, defined for all z # 0,
such thatf'(z) = z-1, all z A 0. Compare this to Corollary 1.7.

7. Let Q be a disc with a point removed:

S2 = {z I Iz - zo I < R, z A zj),

where Iz - ziI < R. Let yo and yl be two circles in H enclosing z1, say

yo(t) = zl + eel', t e [0, 21r],
y1(t) = z + rest, t e [0, 27r].

Here Iz - zil < r < R and e > 0 is chosen so that Iyl(t) - z1I > e, all t.
Construct a homotopy from yo to yl.

8. Suppose 0 contains the square

{x+iy10_<x,y<1}.

Suppose f is differentiable at each point of .0; here we do not assume that f
is continuous. Let C be the boundary of the square, with the counterclockwise
direction. Show that

fo f(z) dz = o.

This extension of Corollary 2.3 is due to Goursat. (Hint: for each integer
k > 0, divide the square into 4k smaller squares with edges of length 2-k.
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Let Ck.1, ..., Ck.2k be the boundaries of these smaller squares, with the
counterclockwise direction. Then show that

f f(z) dz = f f(z) dz.
C i Ck.1

It follows that if

1j." f(z) dz I = M > 0,

then for each k there is a j = j(k) such that

IfOk

f(z) dz I >_ 4-kM,

where Ck = Ck.I. Let Zk be the center of the square with boundary Ck.
There is a subsequence zkn of the sequence zk which converges to a point
z of the unit square. Now derive a contradiction as follows. Since f is
differentiable at z,

where
f(w) = f(z) + f'(z)(w - z) + r(w)

I r(w)(w - z)-11-0 as w-,.z
Therefore for each e > 0 there is a S > 0 such that if Co is the boundary
of a square with sides of length h lying in the disc I w - zI < 8, then

I f f(z) dz I < eha.
Cp

§3. The Cauchy integral formula

There are many approaches to the principal results of the theory of
holomorphic functions. The most elegant approach is through Cauchy's
Theorem and its chief consequence, the Cauchy integral formula. We begin
with a special case, which itself is adequate for most purposes.

Theorem 3.1. Suppose f is holomorphic in an open set 0. Suppose C is a
circleor rectangle contained in S2 and such that all points enclosed by C are
in Q. Then if w is enclosed by C,

(1) f(w) = 2,_.
fc f(z)(z - w) dz.

(Here the integral is taken in the counterclockwise direction on C.)

Proof. Let yo: [a, b] ->. 0 be a piecewise smooth closed curve whose
image is C, traced once in the counterclockwise direction. Given any positive
e which is so small that C encloses the closed disk of radius and center w,
let C, be the circle of radius a centered at w.



The Cauchy integral formula 167

We can find a piecewise smooth curve yl : [a, b] -* S2 which traces out C,
once in the counterclockwise direction and is homotopic to yo in the region
S2 with the point w removed. Granting this for the moment, let us derive (1).
By Exercise 1 of §2, and Cauchy's Theorem applied to g(z) = f(z)(z - w)-1,
we have

f f(z)(z - w)-1 dz = f g = f g = f f(z)(z - w)'' dz,
c ro rl c,

so

(2) f .f(z)(z - w)-1 dz = f f(w)(z - w) dz + f [.f(w) -f(z)l(z - w)-1 dz.
c, c,

By Exercise 2 of §2, the first integral on the right in (2) equals 2irif(w). Since
f is differentiable, the integrand in the second integral on the right is bounded
as e -* 0. But the integration takes place over a curve of length 27re, so this
integral converges to zero as e - 0. Therefore (1) is true.

Finally, let us construct the curve yl and the homotopy. For t e [a, b],
let y1(t) be the point at which C, and the line segment joining w to yo(t)
intersect. Then for 0 < s < 1, let

r(t, s) _ (1 - s)yo(t) + syl(t)

It is easily checked that yo and r have the desired properties. 0

The preceding proof applies to any situation in which a given curve yl is
homotopic to all small circles around w e !Q. Let us make this more precise.
A closed curve y in an open set 92 is said to enclose the point w e 0 within S1
if the following is true: there is a 8 > 0 such that if 0 < e < S then y is
homotopic, in S2 with w removed, to a piecewise smooth curve which traces
out once, in a counterclockwise direction, the circle with radius 8 and center
w. We have the following generalization of Theorem 3.1.

Theorem 3.2. Suppose f is holomorphic in an open set 0. Suppose y is a
piecewise smooth closed curve in S2 which encloses a point w within Q. Then

ff(z)(z - w)-1 dz.(3) f(w) = 27d r

Equation (3) is the Cauchy integral formula, and equation (1) is essentially
a special case of (3). (In section 7 we shall give another proof of (1) when C
is a circle.)

The Cauchy integral formula makes possible a second proof of the result
of Exercise 5, §1: any holomorphic function can be represented locally as a
power series.

Corollary 3.3. Suppose f is holomorphic in Q, and suppose S2 contains
the disc

{zIlz-zo1 <R}.
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Then there is a unique power series such that

(4) f(w) = 2 a (w - zo)n, all w with I w - z0! < R.
n-0

Proof. Suppose 0 < r < R, and let C be the circle of radius r centered
at zo, with the counterclockwise direction. If I w - zoo < r and z e C then

(w - ZO)(Z - zo) -1 I = s < I.

We expand (z - w) in a power series:

z-w=z-zo-(w-zo)=(z-zo)[1 -(w-zo)(z-zo)-1],
so

(z - w)-' = (z - zo) -1 ( Z _ ZOn
n-o \z zo

The sequence of functions
N

n/gN(z) = f(Z) 2 (w - ZO) \Z - Z0)-n-1

converges uniformly for z e C to the function

f(Z)(z - w) -1.

Therefore we may substitute in equation (1) to get (4) with

(5) a
27ri

ff(z)(z - zo)-n-1 dz.
c

This argument shows that the series exists and converges for Jw - zol < r.
The series is unique, since repeated differentiation shows that

(6) n ! aA = Pn)(zo).

Since r < R was arbitrary, and since the series is unique, it follows that it
converges for all Jw - zol < R. Q

Note that our two expressions for a can be combined to give

(7) f(-)(z0) = Eli ff(z)(z - zo) - n -1 dz.

This is a special case of the following generalization of the Cauchy integral
formula.

Corollary 3.4. Suppose f is holomorphic in an open set containing a circle
or rectangle C and all the points enclosed by C. If w is enclosed by C then the
nth derivative off at w is given by

(8) fcm(w) = 2Tri f f(z)(z - w) -1 dz.
c



The Cauchy integral formula 169

Proof. Let Cl be a circle centered at w and enclosed by C. Then by the
Cauchy integral theorem, and the argument given in the proof of Theorem
3.1, we may replace C by Cl in (8). But in this case the formula reduces to
the case given in (7). 0

A function f defined and holomorphic on the whole plane C is said to be
entire. The following result is known as Liouville's Theorem.

Corollary 3.5. If f is an entire function which is bounded, then f is constant.

Proof We are assuming that there is a constant M such that I f(z)I < M,
all z e C. It is sufficient to show that f' _- 0. Given w e C and R > 0, let C
be the circle with radius R centered at w. Then

fe(w)
tat f f (z)(z - w) - 2 dz,

so

If'(w)I <- MR-1.

Letting R -+ 0 we get f'(w) = 0. 0

A surprising consequence of Liouville's Theorem is the "Fundamental
Theorem of Algebra."

Corollary 3.6. Any nonconstant polynomial with complex coefficients has
a complex root.

Proof. Suppose p is such a polynomial. We may assume the leading
coefficient is 1:

p(z) = zn + an _ lzn _ 1 + ... + al(z) + a0.

It is easy to show that there is an R > 0 such that

(8) jp(z)j Z. jjzIn if jzj Z R.

Now suppose p has no roots: p(z) # 0, all z e C. Then f(z) = p(z) -I would
be an entire function. Then f would be bounded on the disc I z 1 < R, and
(8) shows that it would be bounded by 2R -n for Iz z R. But then f would be
constant, a contradiction. p

Exercises

1. Verify the Cauchy Integral Formula in the form (1) by direct com-
putation when f(z) = e$ and C is a circle.

2. Compute the power series expansion (4) in the following cases. (Hint:
(6) is not always the simplest way to obtain the an.)

(a) f(z) = sin z, zo = ir.

(b) e$, zo arbitrary.
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(c) f(z) = z3 - 2z2 + z + i, zo = -i.
(d)f(z)=(z- 1)(z2+ 1)-1,zo=2.
3. Derive equation (8) directly from (1) by differentiating.
4. Suppose f is an entire function, and suppose there are constants M

and n such that

If(z)I s M(1 + IzI)A, all z e C.

Show that f is a polynomial of degree < n. Show that, conversely, any
polynomial of degree <n satisfies such an inequality.

5. The Cauchy integral formula can be extended to more general situa-
tions, such as the case of a region bounded by more than one curve. For
example, suppose S2 contains the annulus

A={zIr<Iz-zoI <R),
and also the two circles

C1={zI Iz - zoI = r}, C2={zI Iz - zoI = R}

which bound A. Give C1 and C2 the counterclockwise direction. Then if
we A, and f is holomorphic in 12, show that

(*) .f(w) = 27ri
f ca.f(z)(z - w) dz - 2L- fclf(z)(z - w)-i dz.

ffi

(Hint: choose a e C, IaI = I so that w does not lie on the line segment
L = {zo + to I r < t < R} joining C1 to C2. There is a curve y tracing out
L, then C2 in the counterclockwise direction, then L in the reverse direction,
then C1 in the clockwise direction. This curve is homotopic in 92 to any
small circle about w. Moreover, the integral of f(z)(z - w)-1 over y equals
the right side of (*), since the two integrations over L are in the opposite
directions and cancel each other.)

6. Extend the result of Exercise 5 to the following situation: f contains
a circle or rectangle C, together with all points enclosed by C except
Zip Z2.... , Z. Let C1, C2, ... , C. be circles around these points which do
not intersect each other or C. If f is holomorphic in Q and w e 0 is enclosed
by C, then

f(w) = 21ri
f f(z)(z - w) -1 dz - f f(z)(z - w) dz;

C !=1 c'

again, all integrals are taken in the counterclockwise direction.
7. Suppose f S2 - C is merely assumed to be differentiable at each

point of the open set 0, and suppose S2 contains a rectangle C and all points
enclosed by C. Suppose w is enclosed by C. Modify the argument of Exercise
8, §2, to show that the integral in (1) remains unchanged if we replace C by
any rectangle enclosed by C and enclosing w. Therefore show that (1) holds
in this case also.

8. Use the result of Exercise 7 to show that if f is differentiable at each
point of an open set S2, the derivative is necessarily a continuous function.
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§4. The local behavior of a holomorphic function

In this section we investigate the qualitative behavior near a point zo e C
of a function which is holomorphic in a disc around zo. If f is not constant,
then its qualitative behavior near zo is the same as that of a function of the
form

f (z) = ao + am(Z - Zo)m

where ao and am are constants, am 0 0, and m >- 1.

Lemma 4.1. Suppose f is holomorphic in an open set 92 and zo e f2. If
f is not constant near zo, then

(1) f(z) = ao + am(Z - zo)mh(z)

where ao and am are constants, m >- 1, and h is holomorphic in f2 with h(zo) = 1.

Proof. Near zo, f is given by a power series expansion

(2) f(z) = ao + al(z - zo) + - - + zo)" +

Let m be the first integer >- I such that am # 0. Then (2) gives (1) with

h(z) = anam-1(Z - Zo)n m.

n=m

This function is holomorphic near zo, and h(zo) = 1. On the other hand,
(1) defines a function h in C except at zo, and the function so defined is
holomorphic. Thus there is a single such function holomorphic through-
out f2. 0

Our first theorem here is the Inverse Function Theorem for holomorphic
functions.

Theorem 4.2. Suppose f is holomorphic in an open set 0, and suppose
zo e f2, f'(zo) # 0. Let wo = f(zo). Then there is an el > 0 and a holomorphic
function g defined on the disc 1w - wol < el such that

g({w I 1 w - wol < el}) is open,
f(g(w)) = w if 1w - wol < el.

In other words, f takes an open set containing zo in a 1-1 way onto a disc
about wo, and the inverse function g is holomorphic.

Proof. We begin by asking: Suppose the theorem were true. Can we
derive a formula for g in terms off? The idea is to use the Cauchy integral
formula for g, using a curve y around wo which is the image by f of a curve
around zo, because then we may take advantage of the fact that g(f(z)) = z.
To carry this out, let 8 > 0 be small enough that f2 contains the closed disc
Iz - zoI < S; later we shall further restrict 8. Let

yo(t) = zo + 8ei&, t e [0, 27r],

y(t) = f(yo(t)),
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and let C be the circle of radius 8 around zo. Assuming the truth of the
theorem and assuming that y enclosed w1, we should have

Awl) = f g(w)(w - wl) -1

1 2

g((t))Y(t)(Y(t) - wl]-1 dt
171i f,

an

.- f Yo(t)f'(Yo(t))Yo(t)[f(Yo(t)) - w1] dt
o

or

(3) g(w1) = 21ri
f zf'(z)V(z) - wl]-1 dz.

Our aim now is to use (3) to define g and show that it has the desired prop-
erties. First, note that (1) holds with m = 1. We may restrict 8 still further,
so that jh(z)l >- # for z e C. This implies that f(z) 0 wo if z e C. Then we
may choose e > 0 so that

f(z) # wl if awl - wol <e and z e C.

With this choice of S and e, (3) defines a function g on the disc Iwl - woI < e.
This function is holomorphic; in fact it may be differentiated under the
integral sign.

Suppose

Izi - zoJ < 8, f(z1) = w1, and awl - wok < e.

We can, and shall, assume that 8 is chosen so small that f'(z) # 0 when
Iz - zo J < S. Then

f(z) - wl = f(z) - f(zl) = (z - z1)k(z)
where k is holomorphic in S2 and k(zl) = f'(zl) # 0. Therefore k is nonzero
in t). We have

zf'(z)k(z)
-1(z - z1) -1 dz.

Awl) = i-. fo

But the right side is the Cauchy integral formula for

zl.f'(zl)k(z1) -1 = z1.

Thus g(f(zl)) = z1 for z1 near zo, and we have shown that f is 1-1 near zo.
Also

1 = (g °f)'(zo) = g'(wo)f'(zo),

so g'(wo) # 0. Therefore g is 1-1 near wo. We may take no > 0 so small that
so 5 e, and so that g is 1-1 on the disc Iw - woJ < so. We may also assume
el 5 so so small that

Jw - wo l < el implies I g(w) - zo l < 8
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and

Lf(g(w)) - W0I < -0-

But then for Iw - wol < el we have

g(f(g(w))) = g(w),

and since g is 1-1 on 1w - wol < eo this implies

f(g(w)) = w. 0

As an example, consider the logarithm. Suppose woe C, wo 0 0. We
know by results of §6 of Chapter 2 that there is a zo e C such that ezo = wo.
The derivative of e= at zo is ezo = wo 0 0. Therefore there is a unique way of
choosing the logarithm

z = log w,

z near zo, in such a way that it is a holomorphic function of w near wo.
(In fact, we know that any two determinations of log w differ by an integral
multiple of 2lri; therefore the choice of log w will be holomorphic in an
open set 11 if and only if it is continuous there.) By definition a branch of
the logarithm function in 0 is a choice z = log w, w e 0, such that z is a
holomorphic function of w in Q.

As a second example, consider the nth root, n a positive integer. If wo 0 0,
choose a branch of log w holomorphic in a disc about wo. Then if we set

w1/n = exp (!log w),

this is a holomorphic function of w near wo and

(w"n)n = exp (n.!
n

log w) = exp (log w) = w.

We refer to w11n as a branch of the nth root.
There are exactly n branches of the nth root holomorphic near wo. In

fact, suppose
Zon = WO = Z14.

Then for any choice of log zo and log z1,

exp (n log zo) = exp (n log z1),
so

n log zo = n log z1 + 2miri,

some integer m. This implies

(4) zo = exp (log zo) _ = z1 exp (2mlrin

Since
exp (2m7rin-1) = exp (2m'win-1)

if and only if (m - m')n-1 is an integer, we get all n distinct nth roots of wo
by letting z1 be a fixed root and taking m = 0, 1, ..., n - 1 in (4).
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We can now describe the behavior of a nonconstant holomorphic function
near a point where the derivative vanishes.

Theorem 4.3. Suppose f is holomorphic in an open set S2, and suppose
zo e 0. Suppose f is not constant near zo, and let m be the first integer >_ 1 such
that f (m)(zo) # 0. Let wo = f(zo). There are e > 0 and 8 > 0 such that if

0<1w-wo1 <e
there are exactly m distinct points z such that

Iz - zol < S and f(z) = w.

Proof. By Lemma 4.1,

f(z) = wo + (z - zo)mh(z),

where h is holomorphic in 0 and h(zo) 0. Choose a branch g of the mth
root function which is holomorphic near h(zo). Then near zo,

f(z) = wo + [(z - zo)(g(h(z)))m = wo + k(z)m,

where k is holomorphic near zo. Then k(zo) = 0, k'(zo) = g'(h(zo)) 0 0. For
z near zo, z zo, we have

f(z) = w if and only if k(z) = (w - wo)ulm

for some determination of the mth root of w - wo. We can apply Theorem
4.2 to k: there are e, 8 so that

k(z) = t

has a unique solution z in the disc Iz - zol < S for each t in the disc
It I < e1Im. But if

0<1w-woI <e
then w - wo has exactly m mth roots t, all with It I < auim a

The following corollary is called the open mapping property of holo-
morphic functions.

Corollary 4.4. If S2 is open and f: S2 -> C is holomorphic and not constant
near any point, then f(S1) is open.

Proof. Suppose wo e f(f). Then wo = f(zo), some zo e Q. We want to
show that there is an a > 0 such that the disc Iw - wol < e is contained in

f(f). But this follows from Theorem 4.3. 0

Exercises

1. Use Corollary 4.4 to prove the Maximum Modulus Theorem: if f is
holomorphic and not constant in a disc Iz - zol < R, then g(z) = I f(z)j
does not have a local maximum at zo.
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2. With f as in Exercise 1, show that g(z) = I f(z)I does not have a local
minimum at zo unless f(zo) = 0.

3. Use Exercise 2 to give another proof of the Fundamental Theorem of
Algebra.

4. Suppose z = log w. Show that Re z = log Iwl.
5. Suppose f is holomorphic near zo and f(zo) 0 0. Show that log I f(z)I

is harmonic near zo.
6. Use Exercise 5 and the maximum principle for harmonic functions to

give another proof of the Maximum Modulus Theorem.
7. Use the Cauchy integral formula (for a circle with center zo) to give

still another proof of the Maximum Modulus Theorem.
8. Use the Maximum Modulus Theorem to prove Corollary 4.4. (Hint:

let wo = f(zo) and let C be a small circle around zo such that f(z) 0 wo if
z e C. Choose e > 0 so that I f(z) - woI >_ 2e if z e C. If Iw - woI < e, can
(f(z) - w)-1 be holomorphic inside C?

9. A set 2 C is connected if for any points zo, zl a 0 there is a (con-
tinuous) curve y: [a, b] - - S2 with y(a) = zo, y(b) = z1. Suppose 0 is open
and connected, and suppose f is holomorphic in Q. Show that if f is identically
zero in any nonempty open subset S21 a S2, then f =- 0 in 0.

10. Let S2 be the union of two disjoint open discs. Show that S2 is not
connected.

§5. Isolated singularities

Suppose f is a function holomorphic in an open set S2. A point zo is said
to be an isolated singularity off if zo 0 tZ but if every point sufficiently close
to zo is in 0. Precisely, there is a 8 > 0 such that

zeS2 if0<Iz-zoI<8.
For example, 0 is an isolated singularity forf(z) = z-°, n a positive integer,
and for g(z) = exp (I 1z). On the other hand, according to the definition, 0
is also an isolated singularity for the function f which is defined byf(z) = 1,
z # 0 and is not defined at 0. This example shows that a singularity may
occur through oversight: not assigning values to enough points. An isolated
singularity zo for f is said to be a removable singularity if f can be defined at zo
in such a way as to remain holomorphic.

Theorem 5.1. Suppose zo is an isolated singularity for the holomorphic
function f. It is a removable singularity if and only if f is bounded near zo,
i.e., there are constants M, 8 > 0 such that

(1) I f(z)I < M if 0 < Iz - zoI < 8.

Proof. Suppose zo is a removable singularity. Then f has a limit at zo,
and it follows easily that (1) is true.
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Conversely, suppose (1) is true. Choose r with 0 < r < S and let e > 0
be such that 0 < e < r. Let C be the circle with center zo and radius r. Given
w with 0 < Iw - zo < r, choose e so small that 0 < e < 1w - zol, and let
C, be the circle with center zo and radius e. By Exercise 5 of §3,

f(w) f(z)(z - w) dz - 2rif f(z)(z - w)-1 dz.
c CB

Sincef is bounded on C independent of e, the second integral goes to zero as
e-+0. Thus

(2) f(w) = Jf(z)(z - w) dz, 0 < 1w - zol < r.

We may define f(zo) by (2) with w = zo, and then (2) will hold for all w,
1w - zo I < r. The resulting function is then holomorphic. 0

An isolated singularity zo for a function f is said to be a pole of order n
for f, where n is an integer >_ 1, if f is of the form

(3) f(z) = (z - zo)-ng(z)

where g is defined at zo and holomorphic near zo, while g(zo) 96 0. A pole of
order 1 is often called a simple pole.

Theorem 5.2. Suppose zo is an isolated singularity for the holomorphic
function f. It is a pole of order n if and only if the function

(z - ZO)nf(z)

is bounded near zo, while the function

(z - zO)n-1f(z)
is not.

Proof. It follows easily from the definition that if z0 is a pole of order n
the asserted consequences are true.

Conversely, suppose (z - zo)nf(z) = g(z) is bounded near zo. Then zo is
an isolated singularity, so we may extend g to be defined at zo and holo-
morphic. We want to show that g(zo) # 0 if (z - z0)' -1f(z) is not bounded
near zo. But if g(zo) = 0 then by Lemma 4.1,

g(z) = (z - zo)"'h(z)

for some m z 1 and some h holomorphic near zo. But then (z - ZO)n-1f(z) _
(z - z0)"-1h(z) is bounded near zo. 0

An isolated singularity which is neither removable nor a pole (of any
order) is called an essential singularity. Note that if zo is a pole or a removable
singularity, then for some a e C or a = oo

f(z) -+ a as z -- zo

This is most emphatically not true near an essential singularity.
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Theorem 5.3 (Casorati-Weierstrass). Suppose zo is an isolated singularity
for the holomorphic function f. If zo is an essential singularity for f, then for
any a> 0 and any a e C there is a z such that

Iz - zoI < e, If(z) - al < e.
Proof. Suppose the conclusion is not true. Then for some e > 0 and

some a e C we have

If(z) - al >- e where 0 < Iz - zoI < e.

Therefore h(z) = (f(z) - a)-1 is bounded near zo. It follows that h can be
extended so as to be defined at zo and holomorphic near zo. Then for some
m >- 0,

h(z) = (z - zo)mk(z)

where k is holomorphic near zo and k(zo) # 0. We have

f (z) = a + h(z) -1 = a + (z - zo) - mk(z) -1, 0 < I z - zoI < e.

Therefore zo is either a removable singularity or a pole for f. 0

Actually, much more is true. Picard proved that if zo is an isolated essen-
tial singularity for f, then for any e > 0 and any a e C, with at most one
exception, there is a z such that 0 < Iz - zol < e andf(z) = a. An example
is f(z) = exp (liz), z 0 0, which takes any value except zero in any disc
around zero.

Isolated singularities occur naturally in operations with holomorphic
functions. Suppose, for example, that f is holomorphic in a and zo e 0.
If f(zo) 0 0, then we know that f(z)-1 is holomorphic near zo. The function
f is said to have a zero of order n (or multiplicity n) at zo, n an integer >- 0, if

f(k)(zo) = 0, 0 <- k < n.
f(n)(zo) 0.

(In particular, f has a zero of order zero at zo if f(zo) 96 0.) A zero of order
one is called a simple zero.

Lemma 5.4. If f is holomorphic near zo and has a zero of order n at zo,
then f(z) -1 has a pole of order n at zo.

Proof. By Lemma 4.1,

(4) f(z) = (z - zo)nh(z),

where h is holomorphic near zo and h(zo) 0 0. The desired conclusion
follows. 0

For example, the function

sec z = (cos z)

is holomorphic except at the zeros of cos z, where it has poles (of order 1).
The same is then true of

tan z = sin z(cos z)-1 = sin z sec z.
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It is convenient to assign the "value" oo at zo to a holomorphic function
with a pole at zo. Similarly, if zo is a removable singularity for f we shall
consider f as being extended to take the appropriate value at zo. With these
conventions we may work with the following extension of the notion of
holomorphic function.

Suppose S2 e C is an open set. A function f: SI -* C U {oo} is said to
be meromorphic in S2 if for each point zo e Q, either zo is a pole off, or f is
holomorphic in the disc Iz - zol < 8 for some 8 > 0.

Theorem 5.5. Suppose S2 is open and f, g are meromorphic in Sl. Suppose
a e C. Then the functions

af, .f + g, fg

are meromorphic in Q. If 12 is connected and g 0 0 in S2, then f/g is mero-
morphic in Q.

Proof. We leave all but the last statement as an exercise. Suppose a is
connected, i.e. for each zo, z1 a S2 there is a continuous curve y: [0, 1] - . 0
with y(O) = zo, y(l) = z1. Given any zo e d2, either g(z)-1 is meromorphic
near zo or g vanishes in a disc around zo. We want to show that the second
alternative implies g = 0 in all of Q.

Suppose g vanishes identically near zo a S2 and suppose z1 is any other
point of a. Let y be a curve joining zo to z1: y(O) = zo, y(l) = z1. Let A be
the subset of the interval [0, 1] consisting of all those t such that g vanishes
identically near y(t). Let c = lub A. There is a sequence (t )1 a A such that
t -* c. If g did not vanish identically near y(c) then either g(y(c)) 0, or
y(c) is a zero of order n for some n, or y(c) is a pole of order n for some n.
But then (see (3) and (4)) we could not have g identically zero near for
those n so large that is very close to y(c). Thus g vanishes identically
near c. This means that c = 1, since otherwise g vanishes identically near
y(c + e) for small e > 0. Therefore g(z1) = g(y(l)) = g(y(c)) = 0.

We know now that given zo e 0, either g(z0) # 0 or zo is either a zero or
pole of order n for g. It follows that either g(z)-1 is holomorphic near zo,
or, by (4), that zo is a pole of order n, or, by (3), that zo is a zero of order n.
Thus g(z)-1 is meromorphic in 0, and so f/g is also. 0

Exercises

1. Prove the rest of the assertions of Theorem 5.5.
2. Show that tan z is meromorphic on all of C, with only simple poles.

What about (tan z)2?
3. Determine all the functions f, meromorphic in all of C, such that

I f(z) - tan zI < 2

at each point z which is not a pole either off or of tan z.
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4. Suppose f has a pole of order n at zo. Show that there are an R > 0
and a 8 > 0 such that if Iwl > R then there are exactly n points z such that

f(z) = w, 1z - zo1 < 6.

(Hint: recall Theorem 4.3.)
5. A function f is said to be defined near oo if there is an R > 0 such that

{zIIzi>R}
is in the domain of definition off. The function f is said to be holomorphic
at oo if 0 is a removable singularity for the function g defined by

g(z) = Al /Z),

11z in the domain off. Similarly, oo is said to be a zero or pole of order n
for f if 0 is a zero or pole of order n for g. Discuss the status of oo for the
following functions:

(a) f(z) = z", n an integer.
(b) f(z) = ez.
(c) f(z) = sin z.
(d) f(z) = tan z.

6. Suppose zo is an essential singularity for f, while g is meromorphic near
zo and not identically zero near zo. Is zo an essential singularity forfg? What
if, in addition, zo is not an essential singularity of g?

§6. Rational functions; Laurent expansions; residues

A rational function is the quotient of two polynomials:

f(z) = P(z)lq(z)

where p and q are polynomials, q 0- 0. By Theorem 5.4, a rational function is
meromorphic in the whole plane E. (In fact it is also meromorphic at oo;
see Exercise 5 of §5.)

It is easy to see that sums, scalar multiples, and products of rational
functions are rational functions. If f and g are rational functions and g 0- 0,
then fig is a rational function. In particular, any function of the form

(1) f (z) = a1(Z - z0)-1 + a2(Z - Zp)-2 + ... + a"(Z - zo)-"

is a rational function with a pole at zo. We can write

(2) f(z) = P((z - Zo)-1)

where p is a polynomial with p(O) = 0. It turns out that any rational function
is the sum of a polynomial and rational functions of the form (1).

Theorem 6.1. Suppose f is a rational function with poles at the distinct
points z1i z2, ..., z, and no other poles. There are unique polynomials po,
Pl, . . ., p,, such that pj(0) = 0 if j 0 0 and
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(3) f(z) = Po(z) + P1((z - z1)-1) + ... + Pm((z - zm)-1).

Proof. We induce on m. If m = 0, then f has no poles. Thus f is an entire
function. We have f = p/q where p and q are polynomials and q 0 0. Suppose
p is of degree r and q is of degree s. It is not hard to show that there is a
constant a such that

z8-*f(z) -->a as z -> oo.

This and Exercise 4 of §3 imply that f is a polynomial.
Now suppose the assertion of the theorem is true for rational functions

with m - 1 distinct poles, and suppose f has m poles. Let zo be a pole off,
of order r. Then

f(z) = (z - zo)-'h(z),

where h is holomorphic near zo. Near zo,

OD

h(z) = , aa(z - zo)".
"=1

Therefore

f(z) = a0(z - z0)-* + al(z - z0)1-r +... + a,-1(z - z0)-1 + k(z),

where k is holomorphic near zo. Now k is the difference of two rational
functions, hence is rational. The function g = f - k has no poles except at
zo, so the poles of k are the poles off which differ from zo. By the induction
assumption, k has a unique expression of the desired form. Therefore f has
an expression of the desired form.

Finally, we want to show that the expression (3) is unique. Suppose po
is of degree k. The coefficient bk of zk in po can be computed by taking limits
on both sides in (3) :

lim z-kf(z) = lim z-kpo(z) = bk.
X- CO X-CD

Therefore the coefficient of zk-1 can be computed:

lim zl-k[f(z) - b kl = bk_i, etc.
ZyW

Continuing in this way, we determine all coefficients of po. Similarly, if pl
is of order r then the coefficient of the highest power of (z - z1)-1 in (3) is

lira (z - zl)*f(z) = c*,

the coefficient of the next power is

lim (z - zl)*-1[f(z) - cf(z - z1)-1.

All coefficients may be computed successively in this way. 0

The expression (3) is called the partial fractions decomposition of the
rational function f.
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Let us note explicitly a point implicit in the preceding proof. If f has a
pole of order r at zo, then

OD

f(z) = bn(z - z0)-", 0 < Iz - zol < 8,
n=-r

some 8 > 0. This generalization of the power series expansion of a holo-
morphic function is called a Laurent expansion. It is one case of a general
result valid, in particular, near any isolated singularity.

Theorem 6.2. Suppose f is holomorphic in the annulus

A={zlr<Iz-zol<R}.
Then there is a unique two sided sequence (a,,) °_°. C such that

(4) f(z) = I an(z - zo)n, r < Iz - zol < R.
- co

Proof. Suppose r < Iz - zol < R. Choose r1, R, such that

r<r,<Iz-zol <R,<R.
Let C, be the circle of radius r, and C2 the circle of radius R, centered at zo.
By Exercise 5 of §3,

f(z) = 2zri
f f(w)(w - zo) -1 dw -

2rri
ff(w)(w - zo) dw

, ,

_ ,f2(z) + A(z)

Here f2 and f, are defined by the respective integrals. We consider f2 as
being defined for Iz - zol < R1 and f, as being defined for Iz - zoI > r1.
Then f2 is holomorphic and has the power series expansion

(5) f2(z) = I an(z - z0)n, Iz - zol < R1.
n-O

Moreover, by the Cauchy integral theorem we may increase R, without
changing the values of f2 on Iz - zol < R,; thus the series (5) converges
for Iz - zol < R.

The function f, is holomorphic for Iz - zol > r,. Again, by moving the
circle C1, we may extend f, to be holomorphic for Iz - zol > r. To get an
appropriate series expansion we proceed as in the proof of Corollary 3.3.
Whenlz - zol > r1and1w-zol =r,,
(w - z)-1= ((w - zO) - (z - zO))-1 = -(z - z0)-1[1 - (w - z0)(z - zo)-1]-1

_ n-
n=1

The series converges uniformly for w e C1, so
CO

(6) fl(z) = a_n(Z - zo)-n

n-1
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where

a-n = 'ri f clf(w)(w -
z0)n-i dw.

Equations (5) and (6) together give (4).
Finally, we want to prove uniqueness. Suppose (4) is valid. Then the

power series

I an(z - zo)n
n-- co

converges for r < Iz - zol < R, so it converges uniformly on any smaller
annulus. It follows that if C is any circle with center zo, contained in A, then
(3) may be integrated term by term over C. Since

f (Z - Zo)n dz
C

is zero for n 96 1 and 2iri for n = -1, this gives

(7) a_1 = 1 f f(z) dz.
c

More generally we may multiply f by (z - zo)-m-1 and integrate to get

(8) am = ff(z)(z - zo) _ m -1 dz,

all in. Thus the coefficients are uniquely determined. 0

In particular, Theorem 6.2 applies when f has an isolated singularity at
zo. In this case the Laurent expansion (3) is valid for

0 < Iz-zo1 <R,
some R > 0. The coefficient a_1 is called the residue off at zo. Equation (7)
determines the residue by evaluating an integral; reversing the viewpoint
we may evaluate the integral if we can determine the residue. These observa-
tions are the basis for the "calculus of residues." The following theorem is
sufficient for many applications.

Theorem 6.3. Suppose C is a circle or rectangle. Suppose f is holomorphic
in an open set S2 containing C and all points enclosed by C, except for isolated
singularities at the points z1, z2, ..., zm enclosed by C. Suppose the residue of
fat zj is by. Then

(9) f f(z) dz = 27ri(b1 + b,2 +... + b,,,).
e

Proof. Let C1, ..., C. be nonoverlapping circles centered at z1,. .., zm
and enclosed by C. Then

2irib! = f f(z) dz.
c,
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Applying Exercise 6 of §3, we get (9). 0

If f has a pole at zo, the residue may be computed as follows. If n is the
order of the pole,

f(z) = (z - zo) -" h(z) = (z - zo) - n I zo)m,
m=0

so the residue at zo is

bm-1 = [(m - l)!]-1h(m-1)(zo)

In particular, at a simple pole m = 1 and the residue is h(zo).

Let us illustrate the use of the calculus of residues by an example. Suppose
we want to compute

f
OD

(1+t2)-'dt
0

and have forgotten that (1 + t2)p-1 is the derivative of tan t. Now

I=2
f00

(l+t2)-1dt.

Let CR, R > 0, be the square with vertices ± R and ± R + Ri. Let f(z) =
(1 + z2)-1. The integral off over the three sides of CR which do not lie on
the real axis is easily seen to approach zero as R oo. Therefore

f
W

(1 + t2)-1 dt = li m f
R

(1 + t2)-1 dt
R

f(z) dz.= lim f0j,
R- Go

For R > l, f is holomorphic inside CR except at z = i, where it has a simple
pole. Since

f(Z) = (Z - i)-1(z + 0-1,

the residue at i is (2i)1. Therefore when R > 1,

ff(z)dz = 21ri(2i) -' = IT.
cR

We get I = 4rr (which is tan-1(+oo) - tan-10, as it should be).
We conclude with some further remarks on evaluating integrals by this

method. Theorem 6.3 is easily shown to be valid for other curves C, such as
a semicircular arc together with the line segment joining its endpoints, or a
rectangle with a portion or portions replaced by semicircular arcs. The
method is of great utility, depending on the experience and ingenuity of the
user.



184 Complex Analysis

Exercises

1. Compute the partial fractions decomposition of

z3(z2 - 3z + 2) -1, (z3 + 2z2 + Z)- 1.

2. Find the Laurent expansion of exp (1/z) and sin (I/z) at 0.
3. Compute the definite integrals

J(t + l)(t3 - 2it2 + t - 2i)'dt

t2(t4 + 1) -1 dt.
0f,00

4. Show that fo t-1 sin t dt = 1r. (Hint: this is an even function, and
it is the imaginary part of f(z) = z-leiz. Integrate f over rectangles lying in
the half-plane Im z > 0, but with the segment - e < t < e replaced by a
semicircle of radius a in the same half-plane, and let the rectangles grow long
in proportion to their height.)

5. Show that a rational function is holomorphic at oo or has a pole at oo.
6. Show that any function which is meromorphic in the whole plane and

is holomorphic at co, or has a pole there, is a rational function.
7. Show that if Re z > 0, the integral

r(z) =
J

t$-le-b dt
0

exists and is a holomorphic function of z for Re z > 0. This is called the
Gamma function.

8. Integrate by parts to show that

r(z + 1) = zr(z), Re z > 0.

9. Define r(z) for -1 < Re z 5 0, z # 0, by

r(z) = z-1r(z + 1).

Show that r is meromorphic for Re z > -1, with a simple pole at zero.
10. Use the procedure of Exercise 9 to extend r so as to be meromorphic

in the whole plane, with simple poles at 0, -1, -2, ....
11. Show inductively that the residue of r at -n is (-1)'I(n!)-1.
12. Is r a rational function?

§7. Holomorphic functions in the unit disc

In this section we discuss functions holomorphic in the unit disc D =
{z I jzj < 1) from the point of view of periodic functions and distributions.
This point of view gives another way of deriving the basic facts about the
local theory of holomorphic functions. It also serves to introduce certain
spaces of holomorphic functions and of periodic distributions.
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Note that if f is defined and holomorphic for Iz - zol < R, then setting

fi(w) = f(zo + Rw)

we get a function f1 holomorphic for Iwl < 1. Similarly, if f has an isolated
singularity at zo, we may transform it to a function with an isolated singu-
larity at zero and holomorphic elsewhere in the unit disc. Since f can be
recovered from f1 by

f(z) =f,(R-1(z - zo)),

all the information about local behavior can be deduced from study of f1
instead.

Suppose f is holomorphic in D. Then the function

g(r, 9) = f(re`B)

is periodic as a function of 9 for 0 <- r < 1 and constant for r = 0. It is also
differentiable, and the assumption that f is holomorphic imposes a condition
on the derivatives of g. In fact

h-1[g(r + h, 0) - g(r, 0)] = h-1[f(re'B + heie) -f(Yeie)l
= efe(he'B)-1[f(re1e + heie) - f(re'B)].

Letting h -+ 0 we get

Similarly,

h-1[g(r, 0

so

89g(r, 0) = ire'ef'(re'B).

Combining these equations we get

8g 2g
.(1) tra a9.

Now let g,(9) = g(r, 0), 0 5 r < 1. Since g, is continuous, periodic, and
continuously differentiable as a function of 0, it is the sum of its Fourier
series:

(2) g.(0) = I an(r)e"n°.

The coefficients a,,(r) are given by

ar g(r, 0) = Of '(re")

+ h) - g(r, 0)] = h-1[ f(reue+h>) - f(re'B)]

,., re'B]

_m

1 as

an(r) g(r, 0)e-ine d2r 0
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It follows that an(r) is continuous for 0 <_ r < 1 and differentiable for
0 < r < 1, with derivative

a'n(r) _ 2- (f0
2x

ag (r) B)eine dB.

Using (1) and integrating by parts we get

(3) an(r) = r-lnan(r), n 96 0,

and a'0(r) = 0. Thus ao is constant. The equation (3) may be solved for an
as follows, n 0. The real and imaginary parts of an are each real solutions of

u'(r) = r-lnu(r).

On any interval where u(r) # 0 this is equivalent to

d
dr log I u(r)I = d log rn

so on such an interval u(r) = Cr", c constant. Since an is continuous on [0, 1)
and vanishes at 0 if n 0 0 (because g0 is constant), we must have an(r) = anrn,
with an constant and an = 0 if n < 0.

We have proved the following: if f is holomorphic in D, then

(4) f(rete) _ I anrne'"B, 0 < r < 1.
n-0

Thus
0

f(z) _ anzn, IzI < 1.
n-0

Suppose f is holomorphic in D and defined and continuous on the
closure: {z I IzI < 1}. Then the functions an(r) = anrn are also continuous
at r = 1, and an = an(l) is the nth Fourier coefficient of g1. It follows that gr
is a convolution:

(5) g.= Qf*g1,
where Qf is the periodic distribution with Fourier coefficients bn = r", n > 0
and bn = 0, n < 0. Then

Q,(9) = 2 rnetne = (ret6)n
n-0 n-0

or

(6) Q.(B) = (1 - rete)-1.

Equation (5) can be written
an

f(re10) f(1= - reue-e))-1f(ea) dt

fas
(e't - ret°)-lf(eft)ieit dt.
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Setting w = rei° and z = ell, we recover the Cauchy integral formula

(7) f(w) = tai Jf(z)(z - w) dz,
c

where C is the unit circle. Thus (5) may be regarded as a version of the Cauchy
integral formula.

Note that Q, is a smooth periodic function when 0 <- r < 1. Therefore
(5) defines a function in the disc if g, is only assumed to be a periodic distri-
bution. In terms of the Fourier coefficients, if g, has Fourier coefficients
(a,,)`_° . then those of g, are (an(r))°_°. where an(r) = 0, n < 0, arn,
n >_ 0. These observations and the results of §§1 and 2 of Chapter 5 leads
to the following theorem.

Theorem 7.1. Suppose F is a periodic distribution with Fourier coefficients
(a) °°,,, where a,,= O for n < 0. Let f be the function defined in the unit disc by

(8) f(rei0) = (F * Q,)(B),

with Q. given by (6). Then f is holomorphic in the unit disc and

00

(9) f(z) = IzI < 1.
n-0

Moreover, F is the boundary value of f, in the sense that the distributions
F, defined by the functions f,(9) = f(re'B) converge to Fin the sense of 9' as
r -> 1.

Conversely, suppose f is holomorphic in the unit disc. Then f is given by a
convergent power series (9). If the sequence (an)0 is of slow growth, i.e., if
there are constants c, r such that

(10) lanl <- cn', n > 0,

then there is a distribution F such that (8) holds. If we require that the Fourier
coefficients of F with negative indices vanish, then F is unique and is the boundary
value off in the sense above.

Condition (10) is not necessarily satisfied by the coefficients of a power
series (9) converging in the disc. An example is

an=n/", n>0.
Thus the condition (10) specifies a subset of the set of all holomorphic
functions in the disc. This set of holomorphic functions is a vector space.
Theorem 7.1 shows that this space corresponds naturally to the subspace of
9' consisting of distributions whose negative Fourier coefficients all vanish.

Recall that F e 9' is in the Hilbert space 22 if and only if its Fourier
coefficients (a.)'-. satisfy

(11) 2 Janj2 < oo.

For such distributions there is a result exactly like the preceding theorem.
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Theorem 7.2. Suppose F is a periodic distribution with Fourier coefficients
an = 0 for n < 0. If F e L2, then F is the boundary value of a function f,

(12) f(z) _ I anzn, IzI < 1
n=O

with
OD

(13) IanI2 < oo.
n=O

The functions fr(o) = f(re1B) converge to F in the sense of L2 as r -+ 1, and

IIFII2 = usupl

Jo R

If(reie)I2 do.

Conversely, suppose f is defined in the unit disc by (12). Suppose either that
(13) is true or that

(14)
f2a

sup
I

I f(rete)I2 dO < oo.
OSr51,o

Then both (13) and (14) hold, and the boundary value off is a distribution
Fe L2.

Proof. The first part of the theorem follows from Theorem 7.1 and the
fact that (11) is a necessary condition for F to be in L2. The second part of
the theorem is based on the identity

2a(15) 1 f
I f(re4O)I2 do=

2,,r

Ianl2r2n, 0 5 r < 1,
o n-o

which is true because the Fourier coefficients of fr are anrn for n z 0 and
zero for n < 0. If (13) is true then (14) follows. Conversely, if (13) is false,
then (15) shows that the integrals in (14) will increase to co as r - 1. Thus
(13) and (14) are equivalent. By Theorem 7.1, if (13) holds then f has a
distribution F as boundary value. The an are the Fourier coefficients of F,
so (13) implies F e L2. 0

The set of holomorphic functions in the disc which satisfy (14) is a vector
space which can be identified with the closed subspace of L2 consisting of
distributions whose negative Fourier coefficients are all zero. Looked at
either way this is a Hilbert space, usually denoted by

H2 or H2(D).

Exercises

1. Verify that
W

f(z) _ 57 n--nzn
n=1

converges for IzI < 1 but that the coefficients do not satisfy (10).
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2. Suppose f is holomorphic in the punctured disc 0 < Izi < 1. Carry
out the analysis of this section for

g(r, 0) = f(Yeie)

to deduce:

(a) f(z) = Ga -ao az", 0 < IzI < 1,
(b) If I f(z)I <_ MIzI -m for some M, m, then

f(z) = :, az".
n=-m



Chapter 7

The Laplace Transform

§1. Introduction

It is useful to be able to express a given function as a sum of functions
of some specified type, for example as a sum of exponential functions. We
have done this for smooth periodic functions: if u e 9, then

(1)

where

(2)

u(x) _ a,,einx,
l / CD

1 2,

an = 2
f u(x)e-inx dx.

0

Of course the particular exponential functions which occur here are precisely
those which are periodic (period 21r). If u: R -* C is a function which is not
periodic, then there is no such natural way to single out a sequence of
exponential functions for a representation like (1). One might suspect that
(1) would be replaced by a continuous sum, i.e., an integral. This suspicion
is correct. To derive an appropriate formula we start with the analogue of
(2). Let

(3) g(z) = f u(t)e-," dt,

when the integral exists. (Of course it may not exist for any z e C unless
restrictions are placed on u.)

If we are interested in functions u defined only on the half-line [0, oo),
we may extend such a function to be zero on (-oo, 0]. Then (3) for the
extended function is equivalent to

(4) g(z) = J , u(t)e-$1 A
0

If u is bounded and continuous, then the integral (4) will exist for each
z e C which has positive real part. More generally, if a e R and e-atu(t) is
continuous and bounded for t > 0, then the integral (4) exists for Re z > a.
Moreover, the function

(5) g = Lu

is holomorphic in this half plane:

g'(z) tu(t)e-z° dt, Re z > a.0*

190
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In particular, let
uw(t) = ewt, t > 0;

=0, t<0, weC.

Then for Re z > Re w,
0

Lu.(z) = f (z - w)-1.
Jo

The operator L defined by (3) or (4) and (5) assigns, to certain functions
on R, functions holomorphic in half-planes in C. This operator is clearly
linear. We would like to invert it: given g = Lu, find u. Let us proceed
formally, with no attention to convergence. Since Lu is holomorphic in some
half-plane Re z > a, it is natural to invoke the Cauchy integral formula.
Given z with Re z > a, choose b such that

a < b < Re z.

Let C be the vertical line Re w = b, traced in the upward direction. We
consider C as "enclosing" the half-plane Re w > b, though traced in the
wrong direction. A purely formal application of the Cauchy integral formula
then gives

g(z) = Lu(z)
2W,

Jf(w)(w - z) dw

= I f f(w)Lu,o(z) dw.
c

If L has an inverse, then L is also linear. Then we might expect to be able
to interchange L and integration in the preceding expression, to get

(6) u(t) = TL f g(w)ewt dw,

or

u(t) = 2, J

W

g(a + is)e(a+is)t A

Thus (3) or (4) and (6) are our analogues of (2) and (1) for periodic functions.
It is convenient for applications to interpret (3) and (6) for an appropriate

class of distributions F. Thus if F is a continuous linear functional on a suitable
space 2 of functions, we interpret (3) as

LF(z) = F(e=), a=(t) = e

The space 2 will be chosen in such a way that each such continuous linear
functional F can be extended to act on all the functions e= for z in some
half-plane Re z > a. Then the function LF will be holomorphic in this half-
plane. We shall characterize those functions g such that g = LF for some F,
and give an appropriate version of the inversion formula (6).
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The operator L is called the Laplace transform. It is particularly useful
in connection with ordinary differential equations. To see why this might be
so, let u' = Du be the derivative of a function u. Substitution of u' for u in
(3) and integration by parts (formally) yield

(7) [Lu'](z) = zLu(z).

More generally, suppose p is a polynomial

p(z) = az'" + am _ 1Zm -1 + ... + a1z + ao.

Let p(D) denote the corresponding operator

p(D) = amDm + am-1Dm-1 +... + a1D + ao,

p(D)u(z) = amu(m)(x) + + a1u'(x) + aou(x).

Then formally

(8) [Lp(D)u](z) = p(z)Lu(z).

Thus to solve the differential equation

p(D)u = v

we want

p(z)Lu(z) = Lw(z).

From (6), this becomes

(9) u(t) f estp(z) -1Lv(z) dz.

As we shall see, all these purely formal manipulations can be justified.

Exercises

1. Show that the inversion formula (6) is valid for the functions u,,,, i.e.,
ifa> RewandC={zIRez=a}then

J
(z - W)- le2t dz = e'°t, t > 0;

2zri o

=0, t <0.
2. Suppose u: [0, oo) -+ C is bounded and continuous and suppose the

derivative u' exists and is bounded and continuous on (0, oo). Show that

,00J
e-2tu'(t) dt = z f

,
e-$tu(t) dt - u(0),

0 0

Re z > 0. Does this conflict with (7)?
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§2. The space

Recall that a function u: R - C is said to be smooth if each derivative
D"u exists and is continuous at each point of R, k = 0, 1, 2, .... In this
section we shall be concerned with smooth functions u which have the
property that each derivative of u approaches 0 very rapidly to the right.
To be precise, let 2' be the set of all smooth functions u: R - . C such that
for every integer k >_ 0 and every a e O8,

(1) lim ea6Dku(t) = 0.
t-+00

This is equivalent to the requirement that for each integer k > 0, each a e R,
and each M e R the function
(2) e°LDku(t)

is bounded on the interval [M, oo). In fact (1) implies that (2) is bounded on
every such interval. Conversely if (2) is bounded on [M, oo) then (1) holds
when a is replaced by any smaller number a' < a.

It follows that if u e P then for each k, a, M we have that

(3) I uI k.a.M = sup {eatI Dku(t)I I t e [M, ao)}

is finite. Conversely, if (3) is finite for every integer k >_ 0 and every a e R,
McR,then ue2'

The set of functions -' is a vector space: it is easily checked that if u, v e 3
and b e C then bu and u + v are in Y. Moreover,

(4) I bul k,a,M = IGI I uI k,a,M,

( 5) It' + vlk,a,M 5 I uI k.a,M + I VI k,a,M

A sequence of functions a 2' is said to converge to u e 2' in the
sense of 3 if for each k, a, M,

Iua - ulk.a.M-* 0 as n -+co.

If so, we write

ua-+u (3).

The sequence (ua)i 3 is said to be a Cauchy sequence in the sense of -w
if for each k, a, M,

I un - uml k.a.M -+ O as m, n -m oo.

As usual, a convergent sequence in this sense is a Cauchy sequence in this
sense. The converse is also true.

Theorem 2.1. 3 is a vector space. It is complete with respect to conver-
gence as defined by the expressions (3); i.e., if (ua)i C 3 is a Cauchy sequence
in the sense of , then there is a unique u e 3 such that u --> u (3).
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Proof. Let (ua)1 be a Cauchy sequence in the sense of - Taking (3)
with a = 0, we see that each sequence of derivatives is a uniform
Cauchy sequence on each interval [M, oo). It follows, by Theorem 4.1 of
Chapter 2, that there is a unique smooth function u such that Dku Dku
uniformly on each [M, oo). Now let a be arbitrary. Since is also
a uniform Cauchy sequence on [M, oo) it follows that this sequence converges
uniformly to eatDku. Thus u e 2 and u -* u (2). 0

It follows immediately from the definition of 2 that certain operations
on functions in 2 give functions in . In particular, this is true of differen-
tiation:

translation:

where

and complex conjugation:

where

Dkue9 ifue2;

T,ue2 ifue2

(T,u)(t) = u(t - s);

u*e2 if ue P

u*(t) = u(t)*.

It follows that if u e so are the real and imaginary parts:

Reu=.(u+u*),

Im u =
2

(u* - u).

Moreover, if u e 9, so is the integral of u taken from the right:

S+u(t) _ - f u(s) ds.
t

In fact, DS+u = u so

(6) I S+UI k.a.M = I uI k-1.a.M, k > 1.

For k = 0, note that for t M, a > 0,

I S+u(t)I 5
fo

Iu(S)I ds 5 IUIO,a,M ft'O e-a8 ds

= a-1Iulo a,Me-at.

Thus

(7) IS+uIO,a,M 5 a-1IuIo.a,Me aM, a > 0.
The finiteness of

l S+UIO,a,M

for a 5 0 follows from finiteness for any a > 0. Thus S+u e Y.



The space 2' 195

Lemma 2.2. The operations of differentiation, translation, complex con-
jugation, and integration are continuous from 2' to 2' with respect to conver-
gence in the sense of Y. Moreover, if u e 2' then the difference quotient

s-l(T_$u - u) Du (Y)

ass -> 0.

Proof. These statements chiefly involve routine verifications. We shall
prove the final statement. Given an integer k >- 0, let v = Dku. Suppose
t >- M and 0 < Is 15 1. The Mean Value Theorem implies

s-'[T_$v(t) - v(t)] = Dv(r)

where It - r I< IsI. Then

Dk{s-'[T_,u(t) - u(t)]} - DkDu(t) = Dv(r) - Dv(t)
= Dk+1u(r) - Dk+lu(t)

But

(8) I Dk+lu(r) - Dk+1u(t)I <_ c(a, M)e_0t, t M.

The left side of (8) converges to zero as s -+ 0, uniformly on bounded inter-
vals. It follows that

Is-'[T-,u - u] - Dulk.a'.M->0

as s -* 0, for any a' < a. p

The functions ezi

(9) ez(t) = e C

are not in 3 for any z e C. However, they may be approximated by functions
from 3 in a suitable sense.

Lemma 2.3. Suppose Re z > a. There is a sequence (un)i c 3 such that

I un - ezl k.a.M -* 0 as n - o

for each integer k >- 0 and each M e R.

Proof. Choose a smooth function q) such that 99(t) = 1 if t 5 1 and
4p(t) = 0 if t >- 2. (The existence of such a function is proved in §8 of Chapter
2.) Let

an(t) = 9o(t/n), U. = 9nez.

Then un is smooth and vanishes for t >_ 2n, so un e 3. We shall consider in
detail only the (typical) case k = 1.

eat(Dun(t) - Dez(t)) = eat(in(t)Dez(t) + ez(t)D94t) - Dez(t))
= (1 - 9n(t))Ze(a-8)t + D9a(t)e(a-z)t.
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Now both 1 - p,,(t) and are bounded independent of t and n, and
vanish except on the interval [n, 2n]. Therefore

I eab(Du (t) - Dealt )) I < c exp (na - n Re z),

c independent of n and t. Thus

Iu,, - ezI0 as n-* co,
all M. The argument for other values of k is similar. 0

The following lemma relates the I uI k.a,M for different values of the indices
k, a, M.

Lemma 2.4. Suppose k, k' are integers, and

0<k<k', a<-a', M>-M'.
Suppose also either that k = k' or that a' > 0. Then there is a constant c such
that

(10) I uI k.a,M s CIUIk'.a'.M', all u ET

Proof. It is sufficient to prove (10) in all cases when two of the three
indices are the same. The case k = k', a = a' is trivial. The case k = k',
M = M' is straightforward. Thus, suppose a = a' > 0 and M = M'. Let
k' = k + j and set v = Dk'u. We may obtain Dku from v by repeated inte-
grations:

Dku = (S+)'v.

We use (7) repeatedly to get

I ul k.a,M = I DkulO,a,M 5 a-f I vI o,a,M
= a-'I Dk'UIO.a.M
= a-ilulk',a.M

If u e we set

Iulk = Iulk,k.-k = sup{Ie1ctDku(t)I I t -k}.

Then the following is an easy consequence of Lemma 2.4.

Corollary 2.5. Suppose (ua)1 c -Z Then

un -* u (3°)

ff and only if for each integer k >- 0,

Iua - uIk-* 0 as n

Exercises

0

1. Show that u(t) = exp (-t2) is in Y.
2. Show that if u, v e P then the product uv is in T



The space .8' 197

3. Show that u e g z e C implies ezu e Y.
4. Complete the proof of Lemma 2.2.

§3. The space 2'

A linear functional on the vector space 2' is a function F: 2 -* C such
that

F(au) = aF(u), F(u + v) = F(u) + F(v).

A linear functional F on 2 is said to be continuous if

ua -a u (2)
implies

F(ua) F(u).

The set of all continuous linear functionals on 2 will be denoted 2'. An
element F e 2' will be called a distribution of type 2', or simply a distribution.
An example is the 8-distribution defined by

(1) 8(u) = u(0).

A second class of examples is given by

(2) F(u) = f
-

e2`u(t) dt,
0

ZEC.

Suppose f: R -+ C is a continuous function such that for some a e R,
M e R,

(3) f(t) = 0, t <_ M,

(4) e-af(t) is bounded.
We may define

Ft:L -+C
by

(5) F,(u) = f f(t)u(t) dt.

In fact the integrand is continuous and vanishes for t 5 M. If a' > a then
on [M, oo) we have

I f(t)u(t) I= l e- af(t) I I eca - a't I I ea'`u(t)
:5 C u O.a',Me a-a'k,

where c is a bound for I e-a f(t)I. Therefore the integral (5) exists and

(6) I F,(u)I 5 f e(a -a')t dt.
M
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It follows from (6) that Ff is continuous on . i.e., Fr e 2.
We say that F e 2' is a function, or is defined by a function, if there is a

continuous function f satisfying (3) and (4), such that F = Ff.
Suppose F e 2' is defined by f. The translates T8 f and the complex

conjugate function f* also define distributions. It is easy to check that if
g = T,f, i.e., g(t) = f(t - s), t e R, then

F9(u) = F,(T_,u), u e Y.

Similarly,

Ff *(u) = Fj(u*)*, u e Y.

We shall define the translates and the complex conjugate of any arbitrary
Fe 2' by
(7) (T,F)(u) = F(T_,u), u e Y.

(8) F*(u) = F(u*)*, u e Y.

Similarly, the real and imaginary parts of F e 2' are defined by

(9) Re F = J(F + F*),

(10) Im F =
2

(F* - F).

We say that F is real if F = F*.
Suppose F e 2' is defined by f and suppose the derivative Df exists, is

continuous, and satisfies (3) and (4). Integration by parts gives

FD,(u) = -F(Du), u c -.V

Therefore we shall define the derivative DF of an arbitrary F e 2' by

(11) DF(u) = -F(Du), u e 9.

Generally, for any integer k >_ 0 we define

(12) DhF(u) = (-1)kF(Dku).

Proposition 3.1. The set 2' is a vector space. If F e 2', then the translates
T,F, the complex conjugate F*, and the derivatives DkF are in 2'.

Proof. All these statements follow easily from the definitions and the
continuity of the operations in 9; see Lemma 2.2. For example, DkF: 2 -+ C
is certainly linear. If u,, --> u (2), then

Dku -> Dku (`.F),
so

(-1)kF(Dkun) (-1)kF(Dku) = DYF(u).

Thus DkF is continuous. 0
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A sequence (F,,)" a 2' is said to converge to F E 2' in the sense of 2"
if for each u e 2

F,,(u) -> F(u) as n -* oo.

We denote this by

F. -* F (2').

The operations defined above are continuous with respect to this notion of
convergence.

Proposition 3.2. Suppose

F. -+ F (2'), G. -+ G (2'),

and suppose a e C, s e R. Then

aFn -. aF (2'),
F. + G (2'),

T.F. -> T,F (2'),
DkF -+ DkF (2').

Moreover, the difference quotient

s-1[T-,F - F] -> F (2')

ass->0.

Proof. All except the last statement follow immediately from the defi-
nitions. To prove the last statement we use Lemma 2.2:

s-1[T-,F - F](u) = F(s-1[T,u - u])
F(- Du) = (DF)(u). 0

The following theorem gives a very useful necessary and sufficient con-
dition for a linear functional on 2' to be continuous.

Theorem 3.3. Suppose F: 2 --> C is linear. Then F is continuous if and
only if there are an integer k >_ 0 and constants a, M, K c 18 such that

(13) IF(u)I <- KIuIk.d.u, all ue2
Proof. Suppose (13) is true. If u,, -+ u (4 then

F(u)I 5 KIu - ulk.a.M 0.

Thus F is continuous.
To prove the converse, suppose that (13) is not true for any k, a, M, K.

In particular, for each positive integer k we may find a Vk E 2 such that

I F(vk)I kI vkI k = klvlk.k.-k # 0.

Let uk e 2 be
uk = k-1Ivklk-1vk.
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Then

ukI k = k-1, I F(uk)I >- 1.

But Corollary 2.5 implies that

uk --+ 0 (2).

Since F(uk) does not converge to 0, F is not continuous. p

The support of a function u: R -a C is defined as the smallest closed subset
A of R such that u(t) = 0 for every t 0A. Another way of phrasing this is
that t is not in the support of u if and only if there is an e > 0 such that u is
zero on the interval (t - e, t + e). The support of u is denoted

supp (u).

Condition (3) on a function f can be written

supp f) a IM, co).
The support of a distribution F e 2' can be defined similarly. A point

t e R is not in the support of F if and only if there is an e > 0 such that

F(u) = 0

whenever u e 2 and supp (u) a (t - e, t + e). We denote the support of F
also by

supp (F).

Theorem 3.3 implies that any F e 3' has support in a half line.

Corollary 3.4. If F e 2', there is M e R such that

supp (F) C [M, oo).

Proof. Choose k, a, M such that (13) is true for some K. If u e 3 and

supp (u) = (-cc, M),
then

Iulk.a;M = 0

so F(u) = 0. Therefore each t < M is not in the support of F. 0

Exercises

1. Compute the following in the case F = 8:

T3F(u), F*(u), Re F, Im F, DkF(u).

2. Show that if F is given by (2), then

DF=8+zF.
3. Suppose F = D'8. For what constants k, a, M, K is (13) true?
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4. Find supp (D7S).
5. Prove that if F is defined by a function f, then

supp (F) = supp (f).

§4. Characterization of distributions of type 2'

If f: R -> C is a function satisfying the two conditions (3) and (4) of §3
and if k is an integer 0, then

(1) DkFf

is a distribution of type 2'. In this section we shall prove that, conversely,
any Fe 2' is of the form (1) for some k and some function f. The proof
depends on two notions: the order of a distribution and the integral (from
the left) of a distribution.

A distribution F e 3' is said to be of order k if (13) of §4 is true, i.e., if
for some real constants a, M, and K,

(2) IF(u)I 5 KI u Ik,a.M, all u e Y.

By Theorem 3.3, each Fe 2' is of order k for some k >_ 0.
Suppose F e L' is defined by a function f. Let g be the integral off from

the left:

g(t) = f
t

f(s) ds = f
t

f(s) ds,
m M

where supp (f) a [M, oo). If u e 3 and v = S+ u, then Dv = u. Integration
by parts gives

CO

g(t)v'(t) dt = - f
CO

g'(t)v(t) dt = -F,(S+u).

For an arbitrary Fe 3' we define the integral of F (from the left), denoted
S_F, by

(3)

S_F(u) = -F(S+u).

Proposition 4.1. If Fe 2' then the integral S_ F is in 2' and

D(S_F) = F = S_(DF).

If F is of order k >: 1, then S_F is of order k - 1.

Proof. Clearly S_Fis linear. The continuity follows from the definition
and the fact that S+ is continuous in 2. The identity (3) is a matter of
manipulation:

D(S_ F)(u) = -S-F(Du) = F(S+ Du) = F(u), u e 3,

and similarly for the other part. 0
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To prove that every Fe 3' is of the form (1), we want to integrate F
enough times to get a distribution defined by a function. To motivate this,
we consider first a function f: R -* C such that the first and derivatives are
continuous and such that

supp (f) C [M, co),

some M. Then by integrating twice and changing the order
(see §7 of Chapter 2) we get

t
f(t) = f t

Df(s) ds = f f8

D2f(r) dr ds
CO QG

f

t Jt

Daf(r) ds dr
ao r

f9

(t - r)D2f(r) dr._
CO

h(r)=It1, t50,
=0, t> 0.

Then our equation is

f(t) = f
W

h(r - t)D2f(r) dr

or

of integration

(5) f(t) = f D2f(r)Tth(r) dr.

We would like to interpret (5) as the action of the distribution defined
by D2f on the function Tth; however Tth is not in `2 Nevertheless, h can be
approximated by elements of Y.

Lemma 4.2. Let h be defined by (4). There is a sequence (h.)1' 3 such
that

(6) Ih - hlo.a..M -* 0 as n -+ oo

for each a e R, M e R.

Proof. There is a smooth function pi: R -* R such that 0 5 pi(t) 5 1 for
all t and p(t) = 1, t <_ -2, pi(t) = 0, t z -1; see §8 of Chapter 2. Let

h (t) = qi(t/n)h(t) = gia(t)h(t).

Then hR is smooth, since 4ia is zero in an interval around 0 and h is smooth
except at 0. Also h(t) in the interval (- 2/n, 0), and

h(t)I 5 2/n, t e (-2/n, 0).

Thus h,, e 3 and (6) is true. 0
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Theorem 4.3. Suppose Fe 2' is of order k - 2, where k is an integer
2. Then there is a unique function f such that

F = D'`(Fr)

Proof. Suppose first that k = 2, F is of order 0. Let h be the function
defined by (4) and let (hn)i c 2 be as in Lemma 4.2. Choose a, M, Ke R
such that

(7) I F(u)I 5 KI uI o.a.M, all u e L.

We may suppose a >- 0. For each s e R the translates Tahn also converge to h:

(8) ITehn - TJzIo.O.M -+ 0 as n -* co.

It follows from (7) and (8) that for each s e R

F(T,hn) converges as n oo.

Let f(s) be the limit of this sequence. Then

(9) If(s)I - lim KITshnlo.a.M = KITshIo.a.Mn-.co

But

(10) I TBhIo.a.M = 0 ifs <- M,

(11) IT,hIO.e.M 5 (s - M)ea$ if s > M.

Thus

supp (f) a [M, co)
and for any a' > a there is a constant c such that

I f(s)I 5 ce", all s e R.

If f is continuous, it follows that f defines a distribution F, e 9'. Suppose
s < t. Taking limits we get

1f(t) - f(s)I 5 KITdh - TBhI o.a.M
5 Kea'(t - s).

Thus f is continuous.

Let fn(s) = F(Tehn). Then fn(s) = 0 ifs <- M. For s > M,

Ifn(s) - f(s)I 5 KI TSiin - TShI o.a.M
5 2Kea8(s - M)/n.

Therefore if u e
W

F,(u) = f-
Go

f(s)u(s) ds = Jim Gn(u)

where G. is the distribution defined by fn. Then

D2Gn(u) = Gn(D2u) =
J

F(TBhn)D2u(s) ds.
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Let vn be the function defined by

vn(t) =
J

T,hn(t)D2u(s) ds00

= f hn(t - s)D2u(s) ds.

Since D2u e 2 and hn(t - s) = 0 ifs < t, the integral converges. Moreover,
it is not difficult to see that the integral is the limit of its Riemann sums

1 N2

vn.N(t) = N m
N$

hn(t - m/N)D2u(m/N),

in the sense that

In fact, for t >_ M,

I vn.N - valO.a.M -+ 0 as N-* 00.

N2 mtn

I vn,N(t) - vn(t)I = I f - [hn(t - m/N)D2u(m/N) - h(t - s)D2u(s)] dsN2
m 1)/n

< V I t- sl e-as ds = C e-ate
fto

i

where c and c' are independent of t and N. Therefore

F(vn) = lim F(vn,N)
N

Now let

Then

In fact, for t z M

I
N2

= lim - fn(m/N)D2u(m/N)
N AIM.S

= f
W

fa(s)D2u(s) ds = D2Gn(u)
00

v(t) = f h(t - s)D2u(s) ds.'0

Ivn - vlO.a.M_*O as n-*co.

vn(t) - v(t)I 5 f I hn(t - s) - h(t - s)I ID2U(S)I ds
t

1a

s f' D2u(s + t)I ds s ce-°t/n.
0

Therefore

D2Ff(u) = Ff(D2u) = lim Gn(D2u)
= lim F(vn) = F(v).
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But

v(t) = ft'O (s - t)Dau(s) ds

= -J 'O Du(s) ds = u(t).

Thus D2Ff = F.

Now suppose F is of order k - 2 > 0. Let G = (S_)k-2F. Then G is of
order 0, and by what we have just shown, there is an f such that

D2Ff = G.

But then

DkFf = Dk-2G = F.

Finally, we must prove uniqueness. This is equivalent to showing that
DF = 0 implies F = 0. But F = S_(DF), so this is the case. 0

Exercises

1. Show that DkS is of order k but not of order k - 1.
2. Find the function f of Theorem 4.3 when F = S. Compute DFf = S_ S.
3. Show that if supp (F) a [M, oo), then supp (S_F) c [M, oo), and

conversely.
4. Suppose F e .' and the support of F consists of the single point 0.

Show that F is of the form
m

akDkS,
k=0

where the ak's are constants.

§5. Laplace transforms of functions

Suppose that f is a function which defines a distribution of type .', i.e.,
f: R -* C is continuous, and

(1) supp (f) C IM, ce),

(2) I f(t)I 5 Kea*, all t.

If z e C, let es be as before:

e,(t) = e-14, t e R.

If Re z = b > a then

I f(t)e.(t)I s Ke(a-11)1.
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Since f(t) = 0 for t < M, the integral
00 00

(3) f f(t)e$(t) dt = f f(t)e$(t) dt
00 M

exists when Re z > a. The Laplace transform of the function f is the function
Lf defined by (3):

(4) Lf(z) =
J

e-a f(t) dt, Re z > a.

Theorem 5.1. Suppose f: R-+ C is continuous and satisfies (1) and (2).
Then the Laplace transform Lf is holomorphic in the half plane

{z I Re z > a}.

The derivative is

(5) (Lf)'(z) _ -f e-$`tf(t) dt.

The Laplace transform satisfies the estimate

(6) ILf(z)I < K(Re z - a) exp (M(a - Re z)), Re z > a.

Proof
W

(w - z)[Lf(w) - Lf(z)] = f g(w, z, t)f(t) dt
m

where

g(w, z, t) _ (w - z)--1[e-we - e-89.

Suppose Re z and Re w are z b > a. Let

h(s) = exp [-(1 - s)z - sw]t, 0 5 s 5 1.

Then

g(w, z, t) = (w - z)-1[h(l) - h(0)].

An application of the Mean Value Theorem to the real and imaginary parts
of h shows that

Ih(1) - h(0)I < ciw - zle-o'e, t >- 0

where b' = b if b > 0, b' = max (Re w, Re z) otherwise. Thus as w -+ z,

Ig(w, z, t)f(t)I s cle-se, where 8 > 0.

Moreover,

g(w, z, t)f(t) -+ -to-If(t)

as w -; z, uniformly on each interval [M, N]. It follows that Lf is differen-
tiable and that (5) is true.
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The estimate (6) follows easily from (1) and (2):

ILf(z)I- I f(t)e-ZtI dt

<_ K f exp t(a - Re z) dt.
C,

= K(Re z - a)-1 exp (M(a - Re z)). 0

We want next to invert the process: determine f, given Lf.

Theorem 5.2. Suppose f satisfies the conditions of Theorem 5.1, and let
g = Lf. Given b > max {a, 0), let C be the line

{z I Re z = b}.

Then f is the second derivative of the function F defined by

(7) F(t) = J
eatz-ag(z) dz.

c

Proof. By (6), g is bounded on the line C. Therefore the integral (7)
exists. Moreover, if

gN(z) =
J

e-2 f(t) dt
NN

then the gN are bounded uniformly on the line C and converge uniformly to
g. Thus F(t) is the limit as N -+ oo of FN, where

FN(t) 2vi fc ez-2gN(z) dz

e:tz-2 a-28f(s) ds dz
2zri

fc N

pct-s)a l
N fo e z- dz }f(s) Af-'

Let us consider the integral in braces. When. s > t the integrand is holo-
morphic to the right of C and has modulus <- klzl -2 for some constant k.
Let CR be the curve consisting of the segment {Re z = b I Iz - bI --e, N) and
the semicircle {Re z > b I Iz - bI = N}. Then the integral of

es(t-8)Z-2

over CR in the counterclockwise direction is zero, and the limit as R - . oo is

-f e.a-e)z-2 dz.
C
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Thus the integral in braces vanishes for s > t. When s < t, let CR be the
reflection of CR about the line C. Then for R > b,

2Iri
ea(e-B)z-2 dz = A eace-B)

IZ-0fcR

=t - s.
Taking the limit as R -> co we get

1 f dz = t - s, s < t.
2Vi

F(t) = f
e

(t - s)f(s) ds.

It follows that D2F = f. p

We can get a partial converse of Theorem 5.1.

Theorem 5.3. Suppose g is holomorphic in the half plane

{zIRez>a)
and satisfies the inequality

(8) Ig(z)I 5 K(1 + IzI)-a exp (-M Re z).

Then there is a unique continuous function f: R -* C with the properties

(9) suppf c [M', oo), some M',
(10) I f(t)I 5 Kebe, all t, for some b,

(11) Lf(z) = g(z) for Re z > b.

Moreover, we may take M' = M in (9) and any b > a in (10) and (11).

Proof. Choose b > a and let C(b) be the line {z I Re z = b}. Let

(12) f(t) = 1 e-tg(z) dz.2"fc(b)

It follows from (8) that the integral exists and defines a continuous function.
It follows from (8) and an elementary contour integration argument that (12)
is independent of b, provided b > a. Moreover, (8) gives the estimate

(13) I f(t)I 5 Cebu-m), b > a,

where C is independent of b and t. This implies (10). If t < M we may take
b -* +co in (13) and get

f(t)=0,t<M.
Thus the Laplace transform of f can be defined for Re z > a. If Re w > a,
choose

a < b < Re w.
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Then

e-we{ f eg(z) dz } dt.Lf(w) = f *0

M i C(b) J

Since

Ie-w°+ g(z)I 5 c(1 + IzI)-2 exp [-Mb + t(b - Re w)]

for t e R and z e C, we may interchange the order off integration. This gives

LAW) _ 2I f g(z)I f e(z-wk dt } dz
C(b) l M JJ

= 2zri
g(z)e(z-w)M(z - w)-1 dz.

C(b)

In the half plane Re z > b we have

I
g(z)e(z-w)MI 5 c(1 + IzI)-a.

Therefore a contour integration argument and the Cauchy integral formula
give

Lf(w) = g(z)e(x-1j.=w
= g(w).

Finally, we must show that f is unique. This is equivalent to showing that
Lf = 0 implies f = 0. But this follows from Theorem 5.2. 0

Exercises

1. Let f(t) = 0, t < 0; f(t) = tee, t > 0. Compute Lf and verify that

f(t) = fc e'Lf(z) dz,

where C is an appropriate line.
2. Show that the Laplace transform of the translate of a function f

satisfies
L(Tef)(z) = e28Lf(z)

3. Suppose both f and Df are functions satisfying (1) and (2). Show that

L(Df)(z) = zLf(z).

4. Compute Lf when

f(t)=0, t<0; f(t)=t t>0,
where n is a positive integer.

5. Suppose f satisfies (1) and (2), and let g = ef. Show that

L9(z) = Lf(z - w).
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6. Compute Lf when

f(t) = 0, t < 0; f(t) = ewtt n, 1 > 0.

7. Compute Lfwhen f(t) = 0, t < 0;

f(t) = fsinsds, t>0.
0

§6. Laplace transforms of distributions

Suppose F e 2'. Theorem 3.3 states that there are constants k, a, M, K
such that

(1) IF(u)I 5 KI uI k.a.M, all u e 2

If Re z > a, then Lemma 2.3 states that there is a sequence (un)i c 2 such
that

(2) I u - e2I k.a.M -+ 0 as n -+ oo,

where e2(t) = e-z. Now (1) and (2) imply that (F(un))n 1 is a Cauchy
sequence in C. We shall define the Laplace transform LF by

(3) LF(z) = lim F(un).
n- CO

In view of (2) we shall write, symbolically,

(4) LF(z) = F(e$)

even though ea 0 2. Note that if (vn)1' C 2 and

Ivn - eZIk.a.M -* O as n -*oo
then

I F(vn) - F(un)I <_ KI vn - UnI k.a.M -* 0

as n -; oo. Thus LF(z) is independent of the particular sequence used to
approximate e,.

Proposition 6.L Suppose F, G e 2' and b e C. Then on the common
domain of definition

(5) L(bF) = bLF;

(6) L(F + G) = LF + LG;

(7) L(T8F)(z) = e-A'LF(z);

(8) L(DkF)(z) = zkLF(z);

(9) L(S_F)(z) = z'1LF(z), z :A 0.

Moreover,

(10) L(e.F)(z) = LF(z + w),
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where e,,,F is the distribution defined by

(11) e7.F(u) = F(ewu), ueY.

If F is defined by a function f, then

(12) LF = Lf.

Proof. The identities (5) and (6) follow immediately from the definitions.
If c 2 satisfies (2) then the sequence approximates T_,e. in
the same sense. But

T_,ez = e-Z'e2,

so

L(T,F)(z) = lim lim F(T_,u,,)
= e-X8lim e-2'LF(z).

This proves (7), and the proofs of (8), (9) and (10) are similar. Note that
u e 2 implies e,,,u e 2 and

(2)
implies

e7eun --> eu,u (2).

Therefore (11) does define a distribution.
Finally, (12) follows from the definitions. 0

We can now generalize Theorems 5.1 and 5.2 to distributions.

Theorem 6.2. Suppose F e 2' and suppose F satisfies (1). Then the
Laplace transform LF is holomorphic in the half plane

{z I Re z > a).

Moreover,

f,(13) F=D k+2F

where f is the function defined by

(14) f(t) = f e:ez-k-sLF(z)dz.c

Here C is the line {z I Re z = b}, where b > max {a, 0).

Proof. We know by Theorem 4.3 that there is a function f such that
F = Dk+2Ff.

It was shown in the proof of Theorem 4.3 that for any b > max {a, 0) there
is a constant c such that

I f(t)I < ce°b, all t.
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Therefore Lf is holomorphic for Re z > max {a, 01. By Proposition 6.1,

(15) LF(z) = zk+2Lf(z), Re z > max {a, 0}.

Therefore LF is holomorphic in this half plane. This completes the proof
of the first statement in the case a >_ 0. When a < 0, let G = egF. Then (1)
implies

IG(u)I <- KIulk,O.M.

Thus by the argument just given, LG is holomorphic for Re z > 0. Since
LF(z) = LG(z - a), LF is holomorphic for Re z > a.

Now let C be the line {z I Re z = b}, where b > max (a, 01. Let f be the
function such that (13) is true. Then by Theorem 5.2 and equation (15),f is
the second derivative of the function

(16) g(t) = 2;.J etz-k-4LF(z)dz.
c

From the definition of LF it follows that on C

(17) ILF(z)I 5 KIe=Ik.a.M = KIzIkeaM-I".

Using (17) we may justify differentiating (16) twice under the integral sign
to get (14). U

Theorem 6.2 implies, in particular, that if LF =- 0 then F = 0.
Given a holomorphic function g, how can one tell whether it is the

Laplace transform of a distribution?

Theorem 6.3. Suppose g is holomorphic in a half plane

{z I Re z > a}.

Then g is the Laplace transform of a distribution F e 2' if and only if there
are constants k, a, M, Kl such that

(18) Ig(z)I 5 K1(1 + IzI)k exp (-M Re z), Re z > a.

Proof. Suppose g = LF, where F e 2'. Then there are k, a, M, K such
that (1) is true. Then Re z > a implies

ILF(z)I 5 KIe=Ik.a.M 5 Kl(1 + IzI)k exp (-M Re z),

where Kl = KeaM.
Conversely, suppose (18) is true. Take b > max {a, 0}. We may apply

Theorem 5.3 to

h(z) = z-k-'g(z)
to conclude that

h = Lf,
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where f is continuous,

Let F = D11+2 f. Then

suppf a [M, 00),
I f(t)I 5 ceb0.

LF(z) = zk+2h(z) = g(z), Re z > b.

Since this is true whenever b > max {a, 0}, the proof is complete in the case
az0.

When a < 0, let

g1(z) = g(z + a).

Then g1 is holomorphic for Re z > 0 and satisfies

jg1(z)j 5 K2(1 + Izl)k exp (-M Re z).

It follows that g1 = LF1 for Re z > 0, some F1 c -Y'. Then

g = LF, F = e_4F1. 0

Exercises

1. Compute the Laplace transforms of Dk6, k = 0, 1, 2,. .. and of T86,
seat.

2. Compute the Laplace transform of F when

F(u) =
J

,
e1 "u(t) dt.

0

§7. Differential equations

In §§5, 6 of Chapter 2 we discussed differential equations of the form

u'(x) + au(x) = f(x),

and of the form

u"(x) + bu'(x) + cu(x) = f(x).

In this section we turn to the theory and practice of solving general nth order
linear differential equations with constant coefficients:

(1) anu(n) + an_1u(n-1) +... a1u' + aou =f
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where the ar are complex constants. Using D to denote differentiation, and
understanding D° to be the identity operator, D°u = u, we may write (1) in
the form

(1)'

Let p be the polynomial

n

akDku =f
k-0

n

p(z) = I akzk.
k-0

Then it is natural to denote by p(D) the operator
n

(2) P(D) = akDk
k-0

Equation (1) becomes

(1)" p(D)u = f.

We shall assume that the polynomial is actually of degree n, that is

an 0.

Before discussing (1)' for functions, let us look at the corresponding
problem for distributions: given H e 2', find F e 2' such that

p(D)F = H.

Theorem 7.1. Suppose p is a polynomial of degree n > 0, and suppose
H e .e'. Then there is a unique distribution F e 2' such that

(3) p(D)F = H.

Proof. Distributions in 2' are uniquely determined by their Laplace
transforms. Therefore (3) is equivalent to

(4) L(p(D)F)(z) = LH(z), Re z > a

for some a e R. But

L(p(D)F)(z) = p(z)LF(z).

We may choose a so large that p(z) A 0 if Re z >_ a, and so that LH is holo-
morphic for Re z > a and satisfies the estimate given in Theorem 6.3. Then
we may define

g(z) = p(z)-'LH(z), Re z > a.

Then g is holomorphic, and it too satisfies estimates

Ig(z)1 5 K(1 + IzJ)k exp (-M Re z), Re z > a.

Theorem 6.3 assures us that there is a unique F e 2' such that LF = g, and
then (4) holds. 0
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The proof just given provides us, in principle, with a way to calculate F,
given H. Let us carry out the calculation formally, treating F and H as
though they were functions:

F(t) f etzLF(z) dz
c

27ri fc
e`p(z)-1LH(z) dz

where

(5)

JJ etzp(z)_le_8zH(s) ds dz
2n1 c

= f
L

1
f e(t-8)p(z)-1 dz]H(s) ds

21r iR c

= f G(t - s)H(s) ds.
ft

G(t) if.Jetzp(z)_1dz
c

and C is a line Re z = b > a.

We emphasize that the calculation was purely formal. Nevertheless the
integral (5) makes sense if p has degree -a2, and defines a function G.
Equivalently,

(5)' G(t) = lim 1 f . etzp(z)-1 dz,
R-. ro 2ir1 JCR

where CR is the directed line segment from b - iR to b + iR, R > 0. We
shall show that the limit (5)' also exists when p has degree 1, except when
t = 0. The function defined by (5)' is called the Green's function for the
operator p(D) defined by the polynomial p. Our formal calculation suggests
that G plays a central role in solving differential equations. The following two
theorems provide some information about it.

Theorem 7.2. Suppose p is a polynomial of degree n 1; suppose
z1, z2, ..., z7 are the distinct roots of p, and suppose that zi has multiplicity mi.
Then (5)' defines a function G for all t # 0. This function is a linear combination
of the functions gik, 1 < j < r, 0 < k < m1, where

gik(t) = 0, t < 0;
gik(t) = tk exp (zit), t > 0.

Proof. Suppose t < 0. Let DR denote the rectangle with vertices b ± iR,
(b + R"2) ± iR. When Re z b,

(6) le°tp(z)-1I 5 c(t)(1 + jzI)-" exp t(Re z - b),
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where c(t) is independent of z. Now the line segment CR is one side of the
rectangle DR, and the estimates (6) show that the integral of eatp(z)-1 over
the other sides converges to 0 as R -* oo. On the other hand, the integral
over all of DR vanishes, because the integrand is holomorphic inside DR.
Thus the limit in (5)' exists and is 0 when t < 0 (and also when t = 0, if
n > 1).

Suppose t > 0. Let DR now be the rectangle with vertices b ± iR,
(b - R112) ± iR, with the counterclockwise direction, and suppose R is so
large that DR contains all roots of p(z). Then the integral of eatp(z)-1 over
DR is independent of R, and the integral over the sides other than CR tends
to 0 as R -+ oo. Thus again the limit in (5)' exists, and

(5)" G(t) = _L IcR e`tp(z)'1 dz, t > 0.

Now we may apply Theorem 6.3 of Chapter 6: G(t) is the sum of the residues
of the meromorphic function eatp(z)' 1. The point z1 is a pole of order m1,
so near zi we have a Laurent expansion

p(z)-1 = I bm(z - zf)m.
ma-ml

Combining this with

eat = eat (m!)-1(z - zj)mtm,
mao

we see that the residue (the coefficient of (z - z1) in the Laurent expansion)
at z1 is a linear combination of

tk exp (z,t), 0 5 k < m,;

moreover, it is the same linear combination whatever the value of t. 0

Suppose f is a complex-valued function defined on an interval (a, b).
We write

f(a+) = lim f(a)

when the limit on the right exists as t approaches from the right.
We take the Green's function for p(D) to be 0 at t = 0; when n > 1 this

agrees with (5)'.

Theorem 7.3. Let p be a polynomial of degree n > 0, with leading co-
efficient an # 0. Let G be the Green's function for p(D). Then G is the unique
function from R to C having the following properties:

(7) all derivatives DkG exist and are continuous when t # 0;

(8) the derivatives DkG exist and are continuous at 0 when k 5 n - 2;

(9) G(t) = 0, t 5 0;
(10) p(D)G(t) = 0, t > 0;
(11) anDn-1G(0+) = 1.
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Proof. We know that G is a linear combination of functions satisfying
(7) and (9), so G does also. When t > 0 we may differentiate (5)" and get

(12)

Thus

DkG(t) 2' JDR zkeatp(Z) -1 dz.

D zkp(z) -1 dz.kG(0+) = 2'i fD.

We may replace DR by a very large circle centered at the origin and conclude
that

DkG(0+)=0, k<-n-2.
Therefore (8) is true. Let us apply the same argument when k = n - I.
Over the large circle the integrand is close to

zn-1(anZn) 1 = an -1Z-1l ,

so

Finally, (12) gives

D"-1G(0+) = a,,-1.

p(D)G(t) = 2f f eat dz = 0, t > 0.
Dn

Now we must show that G is uniquely determined by the properties
(7)-(l 1). Suppose Gl also satisfies (7)-(11), and let f = G - G. Then f
satisfies (7)-(10); moreover Dn-1f(0)= 0. We may factor

p(z) = an(Z - Z1)(Z - z2) ... (z - Za),

where we do not assume that the z1 are distinct. Let fo = f, and let

fk = Dfk-1 - Zkfk-1, k>0.
Then each fk is a linear combination of D%,, 0 5 3 5 k, so

fk(0)=0, k5n-1.
Moreover,

Thus

so

Then

fn = (D - z)(D - zn_1) ... (D - zj)f
= an-lp(D)f = 0.

fn-1(0)=0, Dfn-1-Zafa-1=fn=0,

fn-1 = 0.

fa-a(0) = 0, Dfn_2 - Zn.-lfn-2 = 0,
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so f,,-2 = 0. (We are using Theorem 5.1 of Chapter 2). Inductively, each
fk=O,kSn,sof=OandG=G1. p

Now let us return to differential equations for functions.

Theorem 7.4. Suppose p is a polynomial of degree n > 0, and suppose
f: [0, oo) -k C is a continuous function. Then there is a unique solution
u: [0, oo) - C to the problem

(13) p(D)u(t) = f(t), t > 0;

(14) Diu(O+)=0, 05j<-n-1.
This solution u is given by

(15) u(t) = f G(t - s)f(s) ds,
0

where G is the Green's function for the operator p(D).

Proof. We use properties (7)-(11) of G. Let u be given by (15) fort _> 0.
Then successive differentiations yield

(16)

(17)

(18)

Thus

Du(t) = G(0+)f(t) + f
e

DG(t - s)f(s) ds
0

= f e

DG(t - s)f(s) as, ...,
0

Dku(t) = f
e

DkG(t - s)f(s) ds, k 5 n - 1,
0

D"u(t) = a"' If(t) + f, DnG(t - s)f(s) A
0

p(D)u(t) = f(t) + f0tp(D)G(t - s)f(s) ds

= f(t).

Moreover, (17) implies (14). Thus u is a solution. The uniqueness of u is
proved in the same way as uniqueness of G. 0

We conclude with a number of remarks.

1. The problem (13)-(14) as a problem for distributions: Let us define
f(t) = 0 for t < 0. If f does not grow too fast, i.e., if for some a e R

e-af(t) is bounded,

then we may define a distribution H e 2' by

H(v) = f f(t)v(t) dt, v e Y.
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Suppose u is the solution of (13)-(14). Then it can be shown that u defines a
distribution F, and

(19) p(D)F = H.

Thus we have returned to the case of Theorem 7.1.

2. If the problem (13)-(14) is reduced to (19), then the proof of Theorem
7.1 shows that the solution may be found by determining its Laplace trans-
form. Since there are extensive tables of Laplace transforms, this is of
practical as well as theoretical interest. It should be noted that Laplace
transform tables list functions which are considered to be defined only for
t >- 0; then the Laplace transform of such a function f is taken to be

Lf(z) = f e--!f(t) dt.
0

In the context of this chapter, this amounts to setting f(t) = 0 for t < 0 and
considering the distribution determined by f, exactly as in Remark 1.

3. Let us consider an example of the situation described in Remark 2.
A table of Laplace transforms may read, in part,

f Lf

sin t (z2 + 1)-1
sinh t (z2 - 1)-1

(As noted in Remark 2, the function sin tin the table is considered only for
t >_ 0, or is extended to vanish for t < 0.)

Now suppose we wish to solve:

(20) u"(t)-u(t)-sint=0, t>0;
(21) u(0) = u'(0) = 0.

Let p(z) = za - 1. Our problem is

p(D)u = sin t, t > 0;
u(0) = Du(0) = 0.

The solution u is the function whose Laplace transform is

p(z)-1L(sin t)(z) = (z2 - 1)-'(z2 + 1)-1.

But

(z2 - 1)-1(z2 + 1)-1 = J(Z2 - 1)-1 - J(Z2 + 1)-1.

Therefore the solution to (20)--(21) is

u(t) = # sinh t - I sin t, t z 0.
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4. In cases where the above method fails, either because the given
function f grows too fast to have a Laplace transform or because the function
Lu cannot be located in a table, one may wish to compute the Green's
function G and use (15). The Green's function may be computed explicitly
if the roots of the polynomial p are known (of course (5)" gives us G in
principle). In fact, suppose the roots are z1, z2,. . ., z,. with multiplicities
m1, m2, ..., m,. We know that G for t > 0, is a linear combination of the n
functions

tic exp (z1t), k < m5.

Thus

G(t) = I clktk exp (zit), t > 0,

where we must determine the constants cjk. The conditions (8) and (11) give
n independent linear equations for these n constants. In fact,

G(0+) = clo,

DG(O+) = ztclo + I c11,

etc.
5. The more general problem

(22) p(D)u(t) = f(t), t > 0;

(23) Dku(0+) = bk, 0 5 k < n

may be reduced to (13)-(14). Two ways of doing this are given in the exercises.
6. The formal calculation after Theorem 7.1 led to a formula

F(t) = f G(t - s)H(s) ds

which it is natural to interpret as a convolution (see Chapter 3). A brief
sketch of such a development is given in the exercises.

Exercises

1. Compute the Green's function for the operator p(D) in each of the
following cases:

p(z)=z2-4z-5
p(z) = z2 - 4z + 4
p(z)=zs+2z2-z-2
p(z)=za-3z+2.



Differential equations 221

2. Solve for u:

u"(t) - 4u'(t) + 4u(t) = et, t > 0,
u(0+)=u'(0+)=0.

3. Solve for u:

u"(t) - 3u'(t) + 2u(t) = to - cos t, t > 0,
u(0+)=u(0+)=u"(0+)=0

4. Let uo: (0, oo) -> C be given by

n-1
Uo(t) = : (k!)-'bktk.

k=0

Show that

Dkuo(0+)=bk, 05k5n-1.
5. Suppose uo: (0, co) -> R is such that

Dkuo(0+) = bk, 0 5 k 5 n- 1.

Show that u is a solution of (22)-(23) if and only if u = uo + ul, where ul is
the solution of

p(D)ui(t) =.f(t) - p(D)uo(t), t > 0,
Dkul(0+)=0, 05k5n-1.

6. Show that problem (22)-(23) has a unique solution.
7. Show that the solution of

p(D)u(t) = 0, t > 0,
Dku(0+)=0, 05k<j and j<k5n-1,
D'u(0+) = 1

is a linear combination of functions tk exp zt.
8. Show that any solution of

p(D)u(t) = 0, t > 0

is a linear combination of the functions tk exp zt, where z is a root of p(D)
with multiplicity greater than k, and conversely.

9. Suppose u: (0, oo) C is smooth and suppose Dku(0+) exists for
each k. Suppose also that each Dkru defines a distribution Fk by

Fk(v) =
J

Dku(t)v(t) dt.
0

Show that

DFo=Fl+u(0+)8,
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and in general
k=1

DkFo = Fk + D'u(0+)Dk-1''S.
A=

10. In Exercise 9 let u(t) = G(t), t > 0, where G is the Green's function
for p(D). Show that

p(D)F0 = S.

11. Use Exercise 9 to interpret the problem (22)-(23) as a problem of
finding a distribution (when the function f defines a distribution in Y j.
Discuss the solution of the problem.

12. Use Exercise 11 to give another derivation of the result of Exercise 5.
13. Again let

U(t) = u(-t), Tsu(t) = u(t - s).

IfFe2'andueY, set
P* u(t) = F(T_tu).

(a) Suppose F = F,,, where v: R -> C is continuous, v(t) = 0 for t < - M,
and e-atv(t) is bounded. Show that for each u e $8' the convolution integral

v" * u(t) = f 15(t - s)u(s) ds

exists and equals

P * u(t).

(b) Show that for each F e .e' and u e 2°, the function F` * u is in Y.
14. If F, H e 2', set

(F * H)(u) = F(17 * u), u e.F

Show that F * He F'.
15. Compute (D k8)- * u, u e 9 Compute (V18) * F, F e .e'.
16. Show that

L(F * H) = L(F)L(H).

17. Let G be the distribution determined by the Green's function for
p(D). Show that

LG = p(z)-1

18. Show that the solution of

p(D)F = H
is

F=G*H,
where G is as in Exercise 17.
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Chapters 1 and 2. The book by Kaplansky [9] is a very readable source of
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and Watson [25] and the more modern one by Rudin [18] treat the real and
complex number systems, compactness and continuity, and the topics of Chapter
2. Vector spaces, linear functionals, and linear transformations are the subject of
any linear algebra text, such as Halmos [7]. Infinite sequences and series may be
pursued further in the books of Knopp [10], [11]. More problems (and theorems)
in analysis are to be found in the classic by Polya and Szego [15].

Chapters 3, 4, and 5. The Weierstrass theorems (and the technique of approx-
imation by convolution with an approximate identity) are classical. A direct proof
of the polynomial approximation theorem and a statement and proof of Stone's
generalization may be found in Rudin [18].

The general theory of distributions (or "generalized functions") is due to
Laurent Schwartz, and is expounded in his book [20]. The little book by Lighthill
[12] discusses periodic distributions and Fourier series. Other references for dis-
tribution theory and applications are the books of Bremermann [2], Liverman [13],
Schwartz [21], and Zemanian [27].

Banach spaces, Frechet spaces, and generalizations are treated in books on
functional analysis: that by Yosida [26] is comprehensive; the treatise by Dunford
and Schwartz [4] is exhaustive; the sprightly text by Reed and Simon [16] is
oriented toward mathematical physics. Good sources for Hilbert space theory in
particular are the books by Halmos [6], [8] and by Riesz and Sz.-Nagy [17].

The classical L2-theory of Fourier series treats L2 (0, 2,r) as a space of functions
rather than as a space of distributions, and requires Lebesgue integration. Chap-
ters 11 through 13 of Titchmarsh [24] contain a concise development of Lebesgue
integration and the L2-theory. A more leisurely account is in Sz.-Nagy [14]. The
treatise by Zygmund [28] is comprehensive.

Chapter 6. The material in §1-§6 is standard. The classic text by Titchmarsh
[24] and that by Ahlfors [1] are good general sources. The book by Rudin [19]
also treats the boundary behavior of functions in the disc, related to the material
in §7.

Chapter 7. The Laplace transform is the principal subject of most books on
"operational mathematics" and "transform methods." Doetsch [3] is a compre-
hensive classical treatise. Distribution-theoretic points of view are presented in
the books of Bremermann [2], Erdelyi [5], Liverman [13], and Schwartz [21].
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NOTATION INDEX

C complex numbers, 8
0 rational numbers, 4
18 real numbers, 5
z integers, 1
Z positive integers, 1
L2 Hilbert space of periodic distributions, 106

continuous periodic functions, 69
smooth functions of fast decrease at + oo, 193
distributions acting on L, 197
smooth periodic functions, 73
periodic distributions, 84

D differentiation operator, 72, 86, 198
L Laplace transform operator, 192, 206, 210
u * v, F* u, F* G convolution, 78, 94, 96, 100, 101, 222

u ('9) 73
u -* F (L2) 106
Fn - F (2') 199
F. -+ F (9') 85, 100
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SUBJECT INDEX

approximate identity, 80

ball, in metric space, 20
Banach space, 70
basis, 30
Bessel's equality, inequality, 124
Bolzano-Weierstrass theorem, 26
bounded function, 36
- linear functional, 71
- sequence, 11
- set, 7, 24
branch of logarithm, 173

Casorati-Weierstrass theorem, 177
Cauchy integral formula, 166, 187
Cauchy-Riemann equations, 157
Cauchy sequence, in a metric space, 22
- in 2, 193
- in 9, 73
- of numbers, 12
- uniform, 47
Cauchy's theorem, 161
chain rule, 45, 155
change of variables in integration, 45
characterization of distributions in Y',

203
- of periodic distributions, 89, 102
class Cl,, CO, 46
closed set, 21
closure, 22
compact set, 23
- in R11, C, 24
comparison test, 15
complement, of set, 2
complementary subspace, 33
complete metric space, 22
completeness axiom for real numbers,

7
completeness of 9?, 70
- of L2, 107
- of R, C, 12
- of R11, 23
complex conjugate of complex num-

ber, 9

- of distribution in 2', 198
- of function, 38
- of periodic distribution, 85, 100
composition of functions, 3
connected set, 175
continuous function, 35
continuity, at a point, 34
- uniform, 35
convergence, in a metric space, 22
- in Hilbert space, 110
- in 2', 199
- in L2, 106
-in9,73
- in 9', 85, 100
- of numerical sequences, 10
- of series, 14
convolution, in 2', 222
- in 9', 96, 101
- of functions, 78
- of functions with periodic distri-

butions, 94, 100
coordinates of vector, 32
countable set, 3
curve, 159
- smooth, piecewise smooth, 159

8- distribution, 85, 197
dense set, 22
derivative, of distribution in 2', 198
- of function, 42, 155
- of periodic distribution, 86, 100
differentiable function, 42, 155
differential equations, first order and

second order, 51-56
- higher order, 213-222
diffusion equation, 137
- derivation, 144
dimension, of vector space, 31
Dirac S- distribution, 85, 197
Dirichlet kernel, 130
Dirichlet problem, 150
distribution, of type 2', 197
-, periodic, 84, 100
divergence of series, 14
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essential singularity, 176
even function, 87
even periodic distribution, 87, 101

finite dimensional vector space, 30
Fourier coefficients, 124
- in L2, 126, 129
- of a convolution, 134
- of periodic distributions, 132
Fourier series, 126, 129
Frechet space, 76
function, 2
- bounded, 36
- class CC, CO, 46
- complex-valued, 3
- continuous, 35
- differentiable, 42, 155
- holomorphic, 158
- injective, 3
- infinitely differentiable, 46
- integrable, 38
- meromorphic, 178

1-1, 3
- onto, 3
- periodic, 69
- rational, 179
- real-valued, 3
- smooth, 73
- surjective, 3
- uniformly continuous, 35
fundamental theorem of algebra, 169
fundamental theorem of calculus, 44

gamma function, 184
geometric series, 15
glb, 7
Goursat's theorem, 165
Gram-Schmidt method, 117
greatest lower bound, 7
Green's function, 215

H2,188
harmonic function, 150
heat equation, 137
- derivation, 144
Heine-Bore] theorem, 24
Hermite polynomials, 120
Hilbert cube, 116

Subject Index

Hilbert space, 109
holomorphic function, 158
homotopy, 161

imaginary part, of complex number, 9
- of distribution in .', 198
- of function, 38
- of periodic distribution, 87, 101
improper integral, 41
independence, linear, 30
inf, infimum, 11
infinite dimensional vector space, 30
infinitely differentiable function, 46
inner product, 103, 109
integrable function, 38
integral, 38
- improper, 41
- of distribution in _T', 201
intermediate value theorem, 37
intersection, 2
interval, 5
inverse function, 3
inverse function theorem, for holo-

morphic functions, 171
isolated singularity, 175

kernel, of linear transformation, 33

Laguerre polynomials, 120
Laplace transform, of distribution,

210
- of function, 192, 206
Laplace's equation, 150
Laurent expansion, 181
least upper bound, 7
Legendre polynomials, 120
L'H8pital's rule, 47
lim inf, lim sup, 12
limit of sequence, 10, 22
limit point, 21
linear combination, 29
- nontrivial, 30
linear functional, 32
- bounded, 71
linear independence, 30
linear operator, linear transformation,

32



Subject Index

Liouville's theorem, 169
logarithm, 61, 173
lower bound, 7
lower limit, 12
lub, 7

maximum modulus theorem, 174
maximum principle, for harmonic

functions, 154
- for heat equation, 142
mean value theorem, 43
meromorphic function, 178
mesh, of partition, 38
metric, metric space, 19
modulus, 9

neighborhood, 20
norm, normed linear space, 70
null space, 33

odd function, 87
odd periodic distribution, 88, 101
open mapping property, 174
open set, 20
order, of distribution in 2', 201
- of periodic distribution, 89, 102
- of pole, 177
- of zero, 177
orthogonal expansion, 121, 124
orthogonal vectors, 110
orthonormal set, orthonormal basis,

117

parallelogram law, 110
Parseval's identity, 124
partial fractions decomposition, 180
partial sum, of series, 14
partition, 38
period, 69
periodic distribution, 84, 100
periodic function, 69
Poisson kernel, 151
polar coordinates, 66
pole, simple pole, 176
power series, 17
product, of sets, 2
Pythagorean theorem, in Hilbert

space, 110

229

radius of convergence, 17
rapid decrease, 131
ratio test, 16

rational function, 179
rational number, 4
real part, of complex number, 9
- of distribution in T', 198
- of function, 38
- of periodic distribution, 87, 101
real distribution in 2', 198
real periodic distribution, 87, 101
removable singularity, 175
residue, 182
Riemann sum, 38
Riesz representation theorem, 112
root test, 16

scalar, 28
scalar multiplication, 27
Schrodinger equation, 141
Schwarz inequality, 103, 109
seminorm, 76
separable, 27
sequence, 4
sequentially compact set, 26
series, 14
simple pole, simple zero, 177
singularity, essential, 176
- isolated, 175
- removable, 175
slow growth, 132
smooth function, 73
span, 30
standard basis, 30
subset, 2
subsequence, 24
subspace, 29
sup, 11
support, 200
supremum, 11

translate, of distribution in 2', 198
- of periodic distribution, 86, 100
- of function, 77
triangle inequality, 19
trigonometric polynomial, 81
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uniform Cauchy sequence of func-
tions, 47

uniform continuity, 35
uniform convergence, 47
union, 2
unitary transformation, 124
upper bound, 7
upper limit, 12

Subject Index

wave equation, 145
- derivation, 148
Weierstrass approximation theorem,

82
Weierstrass polynomial approxima-

tion theorem, 83

vector, vector space, 28 zero, of holomorphic function, 177



Graduate Texts in Mathematics

Soft and hard cover editions are available for each volume.

For information

A student approaching mathematical research is often discouraged by the sheer
volume of the literature and the long history of the subject, even when the actual
problems are readily understandable. Graduate Texts in Mathematics, is intended
to bridge the gap between passive study and creative understanding; it offers intro-
ductions on a suitably advanced level to areas of current research. These introduc-
tions are neither complete surveys, nor brief accounts of the latest results only.
They are textbooks carefully designed as teaching aids; the purpose of the authors
is, in every case, to highlight the characteristic features of the theory.

Graduate Texts in Mathematics can serve as the basis for advanced courses.
They can be either the main or subsidiary sources for seminars, and they can be
used for private study. Their guiding principle is to convince the student that
mathematics is a living science.

Vol. 1 TAKEUTI/ZARING: Introduction to Axiomatic Set Theory. vii, 250 pages.
1971.

Vol. 2 OxTOBY: Measure and Category. viii, 95 pages. 1971.

Vol. 3 SCHAEFER: Topological Vector Spaces. xi, 294 pages. 1971.

Vol. 4 HILTON/STAMMBACH: A Course in Homological Algebra. ix, 338 pages.
1971.

Vol. 5 MAC LANE: Categories for the Working Mathematician. ix, 262 pages.
1972.

Vol. 6 HUGHES/PIPER: Projective Planes. xii, 291 pages. 1973.

Vol. 7 SERRE: A Course in Arithmetic. x, 115 pages. 1973.

Vol. 8 TAKEUTI/ZARING: Axiomatic Set Theory. viii, 238 pages. 1973.

Vol. 9 HUMPHREYS: Introduction to Lie Algebras and Representation Theory.
xiv, 169 pages. 1972.

Vol. 10 COHEN: A Course in Simple-Homotopy Theory. xii, 114 pages. 1973.
Vol. 11 CONWAY: Functions of One Complex Variable. xiv, 314 pages. 1973.

In preparation

Vol. 12 BEALS: Advanced Mathematical Analysis. xii, 248 pages. Tentative
publication date: November, 1973.

Vol. 13 ANDERSON/ FULLER: Rings and Categories of Modules. xiv, 370 pages
approximately. Tentative publication date: October, 1973.

Vol. 14 GOLUBITSKY/GUILLEMIN: Stable Mappings and Their Regularities. xii,
224 pages approximately. Tentative publication date: October, 1973.



Vol. 15 BERDERIAN: Lectures In Functional Analysis and Operator Theory. xii,
368 pages approximately. Tentative publication date: January, 1973.

Vol. 16 WINTER: The Structure of Fields. xii, 320 pages approximately. Tenta-
tive publication date: January, 1973.



Richard Beals

Richard Beals studied mathematics at Yale University (B.A. 1960,

Ph.D. 1964) and economics at Harvard (1960-1961). Held positions at

Yale (Instructor, 1964-1965; Assistant Professor 1965-1966) and the

University of Chicago (since 1966) before returning to Yale in 1977.

Principal mathematical interests are partial differential equations and

operator theory. Published papers on elliptic and hyperbolic partial

differential equations, local solvability of linear partial differential equa-

tions, operator theory, differential equations in Banach spaces,

mathematical psychology, mathematical economics.

ISBN 0-387-90065-9

ISBN 3-540-90065-9


	Cover
	Title Page
	Copyright
	Dedication
	Preface
	TABLE OF CONTENTS�
	Chapter One Basis concepts�
	1. Sets and functions�
	2. Real and complex numbers�
	3. Sequences of real and complex numbers�
	4. Series�
	5. Metric spaces�
	6. Compact sets�
	7. Vector spaces�

	Chapter Two Continuous functions�
	1. Continuity, uniform continuity, and compactness�
	2. Integration of complex-valued functions�
	3. Differentiation of complex-valued functions�
	4. Sequences and series of functions�
	5. Differential equations and the exponential function�
	6. Trigonometric functions and the logarithm�
	7. Functions of two variables�
	8. Some infinitely differentiable functions�

	Chapter Three Periodic functions and periodic distributions�
	1. Continuous periodic functions�
	2. Smooth periodic functions�
	3. Translation, convolution, and approximation�
	4. The Weierstrass approximation theorems�
	5. Periodic distributions�
	6. Determining the periodic distributions�
	7. Convolution of distributions�
	8. Summary of operations on periodic distributions�

	Chapter Four Hilbert spaces and Fourier series�
	1. An inner product in W, and the space 22�
	2. Hilbert space�
	3. Hilbert spaces of sequences�
	4. Orthonormal bases�
	5. Orthogonal expansions�
	6. Fourier series�

	Chapter Five Applications of Fourier series�
	1. Fourier series of smooth periodic functions and periodic distributions�
	2. Fourier series, convolutions, and approximation�
	3. The heat equation: distribution solutions�
	4. The heat equation: classical solutions; derivation�
	5. The wave equation�
	6. Laplace's equation and the Dirichlet problem�

	Chapter Six Complex analysis�
	1. Complex differentiation�
	2. Complex integration�
	3. The Cauchy integral formula�
	4. The local behavior of a holomorphic function�
	5. Isolated singularities�
	6. Rational functions; Laurent expansions; residues�
	7. Holomorphic functions in the unit disc�

	Chapter Seven The Laplace transform�
	1. Introduction�
	2. The space \Phi�
	3. The space \Phi'�
	4. Characterization of distributions of type \Phi'�
	5. Laplace transforms of functions�
	6. Laplace transforms of distributions�
	7. Differential equations�

	Notes and bibliography�
	Notation index�
	Subject index�
	Back Cover

