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Preface to the English Edition

A book about numbers sounds rather dull. This one is not. Instead it is a
lively story about one thread of mathematics—the concept of "number"—
told by eight authors and organized into a historical narrative that leads
the reader from ancient Egypt to the late twentieth century. It is a story
that begins with some of the simplest ideas of mathematics and ends with
some of the most complex. It is a story that mathematicians, both amateur
and professional, ought to know.

Why write about numbers? Mathematicians have always found it diffi-
cult to develop broad perspective about their subject. While we each view
our specialty as having roots in the past, and sometimes having connec-
tions to other specialties in the present, we seldom see the panorama of
mathematical development over thousands of years. Numbers attempts to
give that broad perspective, from hieroglyphs to K-theory, from Dedekind
cuts to nonstandard analysis. Who first used the standard notation for
ir (and who made it standard)? Who were the "quaternionists" (and can
their zeal for quaternions tell us anything about the recent controversy
concerning Chaos)? What happened to the endless supply of "hypercom-
plex numbers" or to quaternionic function theory? How can the study of
maps from projective space to itself give information about algebras? How
did mathematicians resurrect the "ghosts of departed quantities" by rein-
troducing infinitesimals after 200 years? How can games be numbers and
numbers be games? This is mathematical culture, but it's not the sort of
culture one finds in scholarly tomes; it's lively culture, meant to entertain
as well as to inform.

This is not a book for the faint-hearted, however. While it starts with
material that every undergraduate could (and should) learn, the reader is
progressively challenged as the chapters progress into the twentieth century.
The chapters often tell about people and events, but they primarily tell
about mathematics. Undergraduates can certainly read large parts of this
book, but mastering the material in late chapters requires work, even for
mature mathematicians. This is a book that can be read on several levels,
by amateurs and professionals alike.

The German edition of this book, Zahien, has been quite successful.
There was a temptation to abbreviate the English language translation
by making it less complete and more compact. We have instead tried to
produce a faithful translation of the entire original, which can serve as a
scholarly reference as well as casual reading. For this reason, quotations
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are included along with translations and references to source material in
foreign languages are included along with additional references (usually
more recent) in English.

Translations seldom come into the world without some labor pains. Au-
thors and translators never agree completely, especially when there are
eight authors and one translator, all of whom speak both languages. My
job was to act as referee in questions of language and style, and I did so in
a way that likely made neither side happy. I apologize to all.

Finally, I would like to thank my colleague, Max Zorn, for his helpful
advice about terminology, especially his insistence on the word "octonions"
rather than "octaves."

March 1990 John Ewing



Preface to Second Edition

The welcome which has been given to this book on numbers has pleasantly
surprised the authors and the editor. The scepticism which some of us had
felt about its concept has been dispelled by the reactions of students, col-
leagues and reviewers. We are therefore very glad to bring out a second
edition—much sooner than had been expected. We have willingly taken up
the suggestion of readers to include an additional chapter by J. NEUKIRCH
on p-adic numbers. The chapter containing the theorems of FROBENIUS
and HOFF has been enlarged to include the GELFAND—MAZUR theorem.
We have also carefully revised all the other chapters and made some im-
provements in many places. In doing so we have been able to take account
of many helpful comments made by readers for which we take this opportu-
nity of thanking them. P. ULLRICH of Münster who had already prepared
the name and subject indexes for the first edition has again helped us with
the preparation of the second edition and deserves our thanks.

Oberwolfach, March 1988 Authors and Publisher





Preface to First Edition

The basic mathemaiical knowledge acquired by every mathematician in the
course of his studies develops into a unified whole only through an aware-
ness of the multiplicity of relationships between the individual mathemat-
ical theories. Interrelationships between the different mathematical disci-
plines often reveal themselves by studying historical development. One of
the main underlying aims of this series is to make the reader aware that
mathematics does not consist of isolated theories, developed side by side,
but should be looked upon as an organic whole.

The present book on numbers represents a departure from the other vol-
umes of the series inasmuch as seven authors and an editor have together
contributed thirteen chapters. In conversations with one another the au-
thors agreed on their contributions, and the editor endeavored to bring
them into harmony by reading the contributions with a critical eye and
holding subsequent discussions with the authors. The other volumes of the
series can be studied independently of this one.

While it is impossible to name here all those who have helped us by
their comments, we should nevertheless like to mention particularly Herr
Cericke (of Freiburg) who helped us on many occasions to present the
historical development in its true perspective.

K. Peters (at that time with Springer-Verlag) played a vital part in
arranging the first meeting between the publisher and the authors. The
meetings were made possible by the financial support of the Volkswagen
Foundation and Springer-Verlag, as well as by the hospitality of the Math-
ematical Research Institute in Oberwolfach.

To all of these we extend our gratitude.

Oberwolfach, July 1983 Authors and Editor
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Introduction
K. Lamotke

Mathematics, according to traditional opinion, deals with numbers and
figures. In this book we do not begin, as EUCLtD began, with figures but
with numbers.

Mathematical research over the last hundred years has created abstract
theories, such as set theory, general algebra, and topology, whose ideas
have now penetrated into the teaching of mathematics at the elementary
level. This development has not been ignored by the authors of this book;
indeed, they have willingly taken advantage of it in that the authors assume
the reader to be familiar with the basic concepts of (naive) set theory and
algebra. On the other hand, a first volume on numbers should emphasize
the fact that modern research in mathematics and its applications is, to a
considerable extent, linked to what was created in the past. In particular,
the traditional number system is the most important foundation of all
mathematics.

The book that we now present is divided into three parts, of which the
first, which may be regarded as the heart, describes the structure of the
number-system, from the natural numbers to the complex and p-adic num-
bers. The second part deals with its further development to 'hypercomplex
numbers,' while in the third part two relatively new extensions of the real
number system are presented. The six chapters of the first part cover those
parts of the subject of 'numbers' that every mathematician ought to have
heard or read about at some time. The other two parts are intended to
satisfy the appetite of a reader who is curious to learn something beyond
the basic facts. On the whole, "the structure of number systems" would be
a more accurate description of the content of this book.

We should now like to say a few words in more detail about the various
contributions, the aims that the authors have set out to achieve, and the
reasons that have induced us to bring them together in the form in which
they are presented here.
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PAwFA

Since the end of the last century it has been customary to construct the
number system by beginning with the natural numbers and then extending
the structure step-by-step to include the integers, the rational numbers,
the real numbers, and finally the complex numbers. That is not, however,
the way in which the concept of number developed historically. Even in
ancient times, the rational numbers (fractions and ratios) and certain irra-
tional numbers (such as the ratio of the circumference to the radius of
a circle, and square-roots) were known in addition to the natural numbers.
The system of (positive) rational and irrational numbers was also described
theoretically by Greek philosophers and mathematicians, but it was done
within the framework of an autonomous theory of commensurable and in-
commensurable proportions, and it was not thought of as an extension of
the natural numbers. It was not until after many centuries of working nu-
merically with proportions that the realization dawned in the 17th century
that a number is something that bears the same relationship to (the unit)
one as a line segment bears to another given segment (of unit length). Neg-
ative numbers, which can be shown to have been in use in India in the 6th
century, and complex numbers, which CARDAN took into consideration in
1545 as a solution of a quadratic equation, were still looked upon as ques-
tionable for a long time afterwards. In the course of the 19th century the
construction that we use today began to emerge.

Each chapter contains a contribution that includes a description of the
historical development of the fundamental concepts. These contributions
are not intended to replace a history of the number concept, but are aimed
at contributing towards a better understanding of the modern presentation
by explaining the historical motivation.

In this sense, Chapter 1, §1 begins with the oldest of the representations
of numbers that have been handed down to us by tradition, and leads into
§2 in which the ideas involved in counting are given axiomatically following
the methods introduced by DEDEKIND, by using the concepts of set-theory.

In the ensuing step-by-step construction of the number-system certain
themes constantly recur. (1) The step from one stage to the next is prompted
each time by the desire to solve problems that can be formulated but not
solved in terms of numbers defined so far. (2) The number system of the
next stage is constructed, with the help of the operations of set-theory, as
an extension of the existing system designed to make the initial problem
solvable. For this the following items are necessary. (3) The existing compu-
tational operations and relations must be carried over to the new system.
(4) The validity of all the computational rules in the new context has to
be checked. The processes (1) to (3) are always carried out, in the chapters
that follow, but item (4) usually involves tedious verifications, which soon
become a matter of routine. Here the authors allow themselves to carry out
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only a few of them by way of example, and to leave the rest as a routine
exercise for the reader.

By the end of Chapter 1 the rational numbers have thus been reached.
In Chapter 2, §2 they are extended to the real number system, by means
of Dedekind cuts. The preceding §1 begins with the discovery of the irra-
tional numbers by the Pythagoreana and describes the philosophical and
mathematical attempts in earlier times that finally led to DEDEKIND'S con-
struction. CANTOR'S method of completing the rational number system,
through the use of fundamental sequences, is described in §3. Here the his-
torical roots stretched back only a few decades, but the procedure turned
out later to be fruitful, because valuation rings, metric spaces, topological
vector spaces, and general uniform structures can all be completed in ex-
actly the same way. The third approach to the real numbers, described in
§4, follows WEIERSTRASS. It is based on the idea, going back to ancient
times, of enclosing a number whose exact value is not easily determined,
within small intervals bounded by rational numbers. This idea still finds
application today in the estimation of errors in numerical computation.

By §2 of Chapter 2, a system of axioms for the real numbers has been for-
mulated. In §5 it is shown that they characterize these numbers to within
isomorphism. In that section the structure of the number system is re-
constituted from these axioms, and numerous different formulations of the
concept of the "completeness" of the real numbers are compared with one
another.

Chapters 3 to 5 are devoted to the complex numbers. Using linear al-
gebra as a tool, it is easy for us today to describe them as pairs of real
numbers, which can be added like vectors and multiplied according to an
explicitly specified rule. This definition, in §2 of Chapter 3, is preceded
by a summary of the historical development that shows how it took 300
years from the discovery of the complex numbers until, with the advent of
GAUSS, they became generally understood and accepted. One basic thought
runs through the history until GAUSS: The complex numbers make possible
the impossible. Above all, they make it possible to solve all equations of
the second or higher degree. Chapter 4 is devoted to demonstrating this
result, known as the fundamental theorem of algebra. Two proofs, going
back to AROAND and LAPLACE respectively, are presented which require
no complex function theory.

As far as complex numbers are concerned, the reader may be surprised
to find that the whole of Chapter 5 is devoted to the special number
Now as explained in Chapter 3, and used in Chapter 4, the representation
by polar co-ordinates is an essential feature of the complex number system.
To provide a deeper understanding of this representation, the complex ex-
ponential function exp is treated in Chapter 5. This function is closely
connected with ir, because exp(z) = 1 if and only if z is an integral multi-
ple of 2,ri. Indeed this relation serves as a definition of ,r, and all the other
commonly used descriptions of (that is, as a number associated with the
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circle, as the value of an integral, as the limit of an infinite series or infinite
product) may be deduced from it.

The complex numbers formed the point of departure for one of the great-
est creations of 19th century mathematics, complex function theory.

In modern number theory, the p-a.dic numbers have equal importance
with the reals. Chapter 6 contains two approaches to the p-adic numbers.
At the beginning of the twentieth century, HENSEL created the p-adic num-
bers by modeling them on the power series and Laurent series of complex
function theory. One can also view them, however, in a different way as a
natural completion of the field of rationals. Just as the reals are the com-
pletion of the rationals using the usual absolute value, the p-adic numbers
can be thought of as the completion when the absolute value is replaced by
a p-adic valuation. We only hint at the importance of the p-adic numbers
for number theory in this chapter.

PART B

With the complex numbers the construction of the number system is in
a sense completed. If, following the model provided by the complex num-
bers, which form a two-dimensional real vector-space, one tries to make
higher-dimensional real vector spaces into hypercomplex number systems
(nowadays usually called algebras), then either infinite dimension must be
allowed or else familiar field axioms must be given up such as the commu-
tativity or associativity of multiplication, or the possibility of performing
division. If too many of such axioms are given up, then there is an over-
whelming flood of new number systems. To act as a kind of flood barrier, in
Part B of this book, we shall confine ourselves mostly to finite-dimensional
systems in which division is possible.

The four-dimensional division algebra of quaternions, and the eight di-
mensional one of octonions, which were discovered shortly after one another
in the year 1843, are discussed in detail in Chapters 7 and 9 respectively.
Just as the complex numbers allow the Euclidean geometry of the plane
to be described in an often amazingly simple way Chapter 3 contains
a few samples), so the quaternions are suited to description of three- and
four-dimensional geometry. All this is gone into in Chapter 7 as well.

The other chapters in Part B deal, from various points of view, with the
uniqueness of the four algebras of the real numbers, the complex numbers,
the quaternions and the octonions. If commutativity alone is abandoned,
then the quaternion algebra is the only possibility (FftOBENIUS 1877; proof
in the second part of Chapter 8). If one retains commutativity but is pre-
pared to give up associativity, real and complex numbers are the only pos-
sibilities (H. HOFF 1940; proof in the third part of Chapter 8). The proof
uses non-trivial topological methods. By the same methods the theorem
of GELFOND and MAZUR can be proved (1938; fourth part of Chapter
8): The real numbers, the complex numbers, and the quaternions are the
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only possible normal associative real division algebras, even when infinite-
dimensional algebras are admitted. If both commutativity and associativity
are abandoned but still a weaker form of associativity represented by the
law z(zy) = z2y and (zy)y = zy2 is retained, then the octonions represent
the only possibility (Zoaii 1933; proof at the end of Chapter 9).

Another characterization of the four algebras was found by HUR.WITZ
in 1898; they are the only possible division algebras with unit element,
which are at the same time Euclidean vector-spaces with a norm-preserving
multiplication (Uxil livil = liz yll). This is closely connected with the fact
that the product of two natural numbers, each of which is the sum of 2,
4 or 8 squares, is itself a sum of a like number of squares, and that the
corresponding statement for n squares is true only when n = 2, 4 or 8.
Chapter 10 deals with these things.

So far all the results are given with proofs that assume some linear alge-
bra, differential calculus of several variables, and the rudiments of algebra
and topology. Chapter 11 deals with the most far-reaching result; namely,
that finite-dimensional division algebras are possible only when the number
of dimensions is 1, 2, 4 or 8. Here the conclusion can be drawn without any
other assumption. This theorem was proved, to the great surprise of alge-
braists, in 1958 by BOTT, KERVAIRE and MILNOR, and moreover, as with
HOPF's results, by topological methods. This time however the whole ex-
tensive apparatus of algebraic topology has to be employed, and in Chapter
11 only an outline of the proof can be sketched.

HAMILTON regarded his discovery of quaternions in the year 1843 as one
of the most important events in the history of mathematics. However, it
turned out, that quaternions (and even more so octonions) come far behind
complex numbers in importance. Non-commutativity has proved to be an
insurmountable obstacle to the creation of a quaternionic analysis.

PART C

The real number system has appeared for some time to be a completed
edifice from the standpoint of mathematical research, but some new ideas
have emerged fairly recently.

In the year 1960 ROBINSON discovered how an infinitesimal calculus mod-
elled on that of the 17th and 18th century, and operating with infinitesimal
quantities, could be precisely defined and operated on a secure foundation.
To do this, he extended the field of real numbers to an ordered field of non-
standard numbers incorporating infinitely small as well as infinitely large
numbers. The construction of this extension is described in Chapter 12. It
requires no greater effort than, for example, CANTOR'S construction of the
real numbers (cf. §3 of Chapter 2); and the differential and integral calculus
based on infinitesimal quantities will seem to some readers to be simpler
and more intuitive than the customary methods. Unfortunately there is a
price to be paid. All statements needing 'translation' from real numbers
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to non-standard numbers, have first to be expressed in a formal language;
and this means that mathematicians need to delve rather more deeply into
formal logic than most of them are accustomed to do.

CONWAY'S ingenious idea is still more recent, about ten years later. lie
hit upon a way of defining a large ordered number field ab initlo without
any intermediate steps by a process of iterated Dedekind-cut operations,
and to interpret the elements of this field as "games" that could be ordered
by making use of the concept of a winning strategy. All this is defined and
explained in Chapter 13.

In the two Chapters, 12 and 13, it is ideas in the main that are presented
and we do not go into all the details. For Conway's construction, naive set
theory does not entirely suffice. Chapter 14 therefore contains an account
of the fundamental principles of the axiomatic set theory developed by
ZERMELO and FRAENKEL. This chapter is also intended for a reader of the
first two chapters of this book who, when the natural numbers and their
extensions to this system are introduced, does not wish to rely on a naively
understood set theory. From a strictly logical standpoint this chapter should
be at the beginning, but we have taken heed of SCHILLER'S advice (in a
Letter to GOETHE, dated the 5th February 1796): "Wo es die Sache leidet,
halte ich es immer für besser, nicht mit dem Anfang anzufangen, der immer
das Schwerste ist." which could be roughly translated as "I always think
it better, whenever possible, not to begin at the beginning, as it is always
the most difficult part."
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Natural Numbers, Integers,
and Rational Numbers
K. Mainzer

Die ganzen Zahien hat der liebe Gott gemacht, allee andere
let Menachenwerk (KRONECKER, iahreeber. DMV 2, S. 19).

(God made the whole numbers, all the rest is the work
of Man.]

Die Zahien sind freie Sch&pfungen des menschlichen Geistes,
sie dienen ale em Mittel, urn die Verechiedenheit der Dinge
leichter und sch&rfer aufzufassen (DEDEKIND, Was sind
und was soflen die Zahien? Braunschweig 1887, S. III).

[Numbers axe free creations of the human intellect,
they serve as a means of grasping more easily and more
eharply the diversity of things.)

§1. HISTORICAL

1. Egyptians and Babylonians. Symbols for numbers are found in the
earliest remains of human writing. Even in the early stone age we find them
in the form of notches in bones or as marks on the walls of caves. IL was
the age when man lived as a hunter and today we can only speculate as
to whether liii for example was intended to represent the size of the kill.
Number systems mark the beginning of arithmetic. The first documents go
back to the earliest civilizations in the valley of the Nile, Euphrates and
Tigris. Hieroglyphs for the numbers 10 000, 100 000 and 1 000 000 are to
be found on a mace of King Narmer, of the first Egyptian dynasty (circa
3000 BC). The numbers are reproduced schematically below:

1 10 100 1000

n e

10000 100000 1000000

w
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The pictures used may refer to practical occurrences connected with the rel-
evant numbers; for example G may be a symbol for a measuring tape with
100 units. On the other hand it is also possible that the symbols represent
objects whose initial letter is the same as that for the word for the corre-
sponding number. New numbers are formed by an additive notation based
on juxtaposition, for example, = 221000 or fl = 10010.
Thus addition and subtraction present no problem. For example, fl II = 12
added to fl I = 11 gives fl (liii = 23. MultipLication and division are reduced
to a succession of doubling and halving operations. The resulting fractions
are expressed as sums of unit fractions (fractions whose numerator is 1),
the sign being used to indicate that the number symbol above which it
is placed represents the denominator of a unit fraction. Thus for example
the fraction 1/12 is written as To represent the fraction 3/12, the
calculation three times one-twelfth is performed as follows:

I (that is once times =

2 (doubling)

so that the fraction 3/12 is written as that is,

To perform calculations of this kind with general fractions, one needs to
be able to express the halves and doubles of unit fractions as sums of
unit fractions with odd denominators. The Rhind papyrus (about 1650
BC) contains tables giving such decompositions of the fraction 2/n for odd
integers n. (For details of Egyptian calculation, see the Moscow papyrus
[28] and the Rhind papyrus [23].)

The Babylonians used cuneiform symbols on clay tablets. These were
based on a mixed decimal and sexagesimal position notation: V stood for
1, 60', 602,...; while < stood for 10, 10 . 601, 10 . 602,... and so on. A
zero symbol was not always used by the Babylonians, and they never used
a mark like our decimal point. In a positional notation the role of the zero
is that of a sign marking a "gap." A sign of this kind, two small wedge
marks , is already to be found in an old Babylonian text from Susa (Text
12, p. 4), but only in isolated instances (TROPFKE [29], p. 28).

In the absence of such a sign, the positional value has to be deduced in
each case from the context. Thus, for example, << V < could mean any
of the numbers 21 . 60 + 10 or 21 . 602 + 10 . 60' or 21 602 + 10 and so
on. Examples of sexagesimal fractions are <<< for 0.30 = 30/60 = 1/2
or for 0.64 = + 40. = (For details of Babylonian
calculation see NEUGEBAUER [20], BRUINS—RIJTTEN [7].)

The Babylonians show themselves to have been highly talented arith-
meticians and algebraists. They developed sophisticated tables for use in
calculations involving multiplication and division, and for solving quadratic
and cubic equations. They gave rules for solving mixed quadratic equations
by the process of "completing the square" and even for solving mixed cubic
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equations with the help of tables of x2(x + 1). We shall also be mentioning
their methods of approximating the roots of equations in Chapter 2. At
all events it is safe to assert that the Babylonians, with their skillful and
ingenious methods of calculation exercised a considerable influence on the
subsequent development of arithmetic and algebra.

2. Greece. The number system of the Greeks was decadic, though not
positional. The earlier system used individual symbols for the decadic steps,
which were the initial letters of the corresponding words for the numbers
concerned. By combining the symbol for 5 with the other symbols, the
intermediate steps of 50, 500,... could be represented, so that the set of
symbols ran as follows:

M rw

1 5 10 50 100 500 1000 5000 10000 50000

The later system of representing numbers by letters (about 450 BC) was
used in mathematical texts. It comprised the 24 letters of the standard
Greek alphabet with three further symbols from oriental tradition:

1—9 ( c =6)
10—90 ( ç =90)

100—900 p,tY,r,v,o,x,?1),w,?)( 1 =900)
1000 — 9000 ,a, ,fl,... (written with a subscript accent

on the left)
10000 M (M=Mvpiác)

Addition of numbers was indicated by the juxtaposition of the corre-
sponding symbols, so that for example if3 = 10 + 2 = 12, = 200 + 20 +
2 = 222, ,c,re = 1000 + 300 + 5 = 1305. The number of tens of thousands
(myriads) was written above the symbol M, so that, for example

M ,cpy=25000+40-f3= 25043.

Unit fractions were usually indicated by a superscript accent to the right of
the letter denoting the denominator of the fraction. More general fractions
were written in various different ways (for example, by writing the letter
for the numerator underneath the letter for the denominator). The Greek
system, unlike our decimal notation, was therefore not purely positional
and calculation was rather tedious.

Alongside an arithmetic with numbers represented by symbols, one can
find from an early stage a representation of numbers by counters (such
as the beads of an abacus, pebbles and so on), which was a means by
which arithmetical theorems were discovered. Thus ARISTOTLE mentions
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the Pythagorean EURYTOS who is said "to have determined what is the
number (àpiOj.&óç) of what object and imitated the shapes of living things
by pebbles after the manner of those who bring numbers into the
forms of triangle or square" (ARISTOTLE [1), 1092b, 10.12). For example,
the odd numbers can be arranged in succession in the manner illustrated
below to form the squares

000
00

0 •o ••o
1 1+3 1+3+5

By dividing the squares into sections parallel to one of the diagonals and
counting the number of pebbles in each line we can read off

22=1+2+1, 321+2÷3÷2+1,

and, in general,

so that . 1) = [2], 1114, 203a, 13—15,
BECKER (3], p. 34ff).

While the Egyptians and Babylonians contented themselves with devel-
oping highly sophisticated numerical techniques, the Pythagoreans became
primarily interested in the philosophical significance of numbers. In their
philosophy the entire universe was characterized by numbers and their rela-
tionships, and thus the problem arose of defining generally what a number
was. EUCLID defines in the Elements, VII, 2, a number as "the multitude
made up of units" having previously (Elements, VII, 1) said that a unit 18
"that by virtue of which each of existing things is called one." As a unit is
not composed of units, neither EUCLID nor ARIs'roTr.E regard a unit as a
number, but rather as "the basis of counting, or as the origin of number."
There is an echo of this Euclidean definition in CANTOR'S definition of the
cardinal number as a set composed of nothing but units (CANTOR [8], p.
283).

Apart from this definition of number, which is oriented towards the idea
of counting, one can also find in ARISTOTLE the following statement: that
which is divisible into discrete parts is called (multitude), and the
bounded (finite) multiplicity is called the number (ARIsTOTLE [1], 1020a,
7.14).

The Greeks thus regarded as numbers, only the natural numbers ex-
cluding unity; fractions were treated as ratios of numbers, and irrational
numbers as relationships between incommensurable magnitudes in geome-
try (ci. Chapter 2).
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3. Indo-Arabic Arithmetical Practice. Between 300 BC and 600 AD
the present-day positional decimal notation with 0 and its own particular
symbols I, . . . , 9, came into existence in India, presumably under Babylo-
nian influence. Thus, for example, from the primitive forms —, =, there
arose at first the symbols which eventually developed into 1, 2. The
Indian notation was taken over by the Arabs, not least by their astronomers.
The Indians had signs for positive and negative numbers; namely, "dhana"
or "sva" (denoting ownership) and "rina" or (diminution, debit).
Arithmetic rules for handling positive and negative numbers are found in
the works of BRAHMAOUPTA (born 598) (JUSHKEWITSCH [15], p. 126).
However, there is nothing to indicate that negative numbers were generally
recognized as solutions of equations. Thus negative solutions to such prob-
lems as those where it was a question of finding the number of monkeys in a
horde were regarded as meaningless. On the other hand, a negative solution
to a problem involving distances was on at least one occasion interpreted
as a distance measured in the opposite direction.

The Indian mathematician SRIDHARA (about 850—950) laid down arith-
metical rules for operations with zero, symbols for which had already ap-
peared among the Egyptians (the symbol —'-- is to be found in an inscrip-
tion of the second century BC in a temple of Edfu), the Greeks (the symbol
o, which is possibly the initial letter of the word = nothing), and
the Indians (who from the 5th century AD used the word "sunya" for the
void). The Arabs used the word "al-sifr" for zero, from which was derived
the word "cifra,"1 which was still used by GAuss with the meaning zero
(JUSCHKEWITZ [15], p. 107, LEPSIUS [19) and GAUSS [12], p. 8). A dot or
a circle was used as a symbol for zero in India, from the seventh century
AD onwards.

4. Modern Times. Indo-arabic arithmetical practices were disseminated
throughout the Western world by arithmetical textbooks in the 13th to the
16th centuries (for example, those of LEONARDO of PISA, RIESE, STIFEL)
and made possible the subsequent successes of the Italian mathematicians
of the Renaissance (such as DEL FERRO, CARDAN, and FERRARI) in the
solution of algebraic equations. STIFEL says, in talking about negative num-
bers, that they are not just "meaningless twaddle" but on the contrary that
it is "not without usefulness" to feign numbers below zero, that is to fab-
ricate fictitious numbers that are less than nothing (STIFEL [27], p. 248 et
seq.).

In the new algebra of the Renaissance, zero and the negative numbers
acquired a new function as they made it possible to assimilate several types
of equations under one category. From the time of DESCARTES equations

the English word 'cypher' one of whose meanings is zero.
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have been written in the form

+ + + a0 = 0

(though without coefficient suffixes in the case of where the
coefficients a may be positive, negative or zero.

Although mathematicians have, from the very beginning of their science,
operated with numbers and discovered theorems about numbers, it was not
until the 19th century that they gave mathematically serviceable definitions
of the concept of number. Their foremost consideration was initially to
provide secure foundations for analysis by defining more precisely the real
numbers. It was not until after DEDEKIND and CANTOR (and others) had
defined real numbers by means of sets of rational numbers (see Chapter
2) that the classical definitions of the natural numbers in terms of logic
and set theory then followed. The realization that the extensions of the
natural numbers to the integers and the rationals could still essentially be
regarded as a topic of algebra was closely bound up with the introduction
of the fundamental algebraic ideas of ring theory and field theory.

§2. NATURAL NUMBERS

Counting with the help of number symbols marks the beginning of arith-
metic. Computation counting. Until well into the nineteenth
century, efforts were made to trace the idea of number back to its ori-
gins in the psychological process of counting. The psychological and philo-
sophical terminology used for this purpose met with criticism, however,
after FREGE'S logic and CANTOR'S set theory had provided the logico-
mathematical foundations for a critical assessment of the number concept.
DEDEKIND, who had been in correspondence with CANTOR since the early
1870's, proposed in his book Was sind und was sollen die Zahlen? [91 (pub-
lished in 1888, but for the most part written in the years 1872—1878) a
"set-theoretical" definition of the natural numbers, which other proposed
definitions by FREGE and CANTOR and finally PEANO'S axiomatization
were to follow. That the numbers, axiomatized in this way, are uniquely
defined, (up to isomorphism) follows from DEDEKIND'S recursion theorem.

From now on we shall take as known the basic concepts of set theory
(although the reader may consult the last chapter of this book).

1. Definition of the Natural Numbers. The natural numbers form a
set N, containing a distinguished eLement 0, called zero, together with a
successor function S: N N, of N into itself, which satisfies the following
axioms:

(Si) S is injective,

(S2) 0 S(N),
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(S3) If a subset M C N contains zero and is mapped into itself by S, then
M =N.

The successor function S describes, in the language of set theory, the
process of counting. The idea is that S assigns to every natural number n
its successor S(n). Thus 1 := 5(0), 2 := S(1), 3 S(2) and so on. The
first axiom asserts that in counting one never encounters the same number
more than once. The second axiom expresses the fact that 0 is the starting
point of the counting process, or, alternatively that 0 is never encountered
as a successor during the process. Many mathematicians prefer, as did
DEDEKIND, to begin the counting process with 1. The third axiom is the
set theoretic formulation of the

Principle of complete induction. If a certain property E is possessed by the
number 0 (the commencement of the induction) and if, for every number n
which has the property E, its successor S(n) also has the property E (the
induction step), then this property is possessed by all the natural numbers.

The equivalence of this principle to the third axiom is seen when the
property E is replaced by the subset M of numbers possessing the property.
Instead of saying "n has the property E" we can also say "the proposition
E applies to n" or "E(n) holds." The principle of induction is not some
new kind of syllogism of mathematicians set apart from the ordinary rules
of inference in logic; it is merely the use of axiom S3 to prove that certain
statements are valid for all natural numbers.

A set M is said to be infinite if there exists an injective mapping 1: M
M, of M into itself, such that 1(M) M. This definition expresses the fact
that only infinite sets can be mapped injectively onto one of their proper
subsets. Historically this was the definition given by DEDEKIND in Was
sind und was sollen die Zahien? Instead of speaking of injective mappings,
DEDEKIND used the term (S5, No. 64) "ähnliche Abbildungen" [similarity
mappingsl.

Theorem. There exists an infinite set, if and only if there is a set N
satisfying the axioms (S1)—(S3).

Proof. If there is such a set N, then by axioms (Si) and (S2), there must
also exist an infinite set (putting I = S).

Let A be an infinite set. Then by definition there is an injective mapping
f:A —' A with f(A) A. Consequently there must also be an element
0 E A with 0 1(A). Let I be the class of all sets M CA with OEM
and f(M) C M. By hypothesis I 0. Thus we can define the intersection
liME! M. This set satisfies the axioms (S1)-(S3), if one takes I I M as the
successor function S. 0
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Remark. DEDEKIND also gave a proof of the existence of an infinite set, but
it was based on the inconsistent concept of the set of all sets (5, No. 66). A
similar unsuccessful attempt is to be found in BOLZANO'S Paradoxien des
Unendlichen [4, §13]. We assume, under the axiom of infinity (see Chapter
13), that there are infinite sets. In our proof N is a "smallest" infinite set
contained in an infinite set. DEDEKIND therefore speaks of "simple infinite
systems" (S6, No. 71). The construction of N given in the proof depends
on the choice of A, I and 0. The fact that N, the successor function S,
and 0, are all uniquely defined to within isomorphism, will be shown in
paragraph 2 (uniqueness theorem). According to VON NEUMANN, there is
a canonically defined set-theoretic model for N, on the basis of the Zermelo—
Fraenkel set theory (VON NEUMANN [21], see also Chapter 13).

FREGE and CANTOR defined the natural numbers as "finite potencies"
and "finite cardinal numbers" respectively (FREGE [11], p. 73 et seq., CAN-
TOR [8], p. 119, see also Chapter 13). This formulation is also found in
RUSSELL [25], p. 116 and I3OURBAKI [6], 1, Chap. III, §4, Del. 1.

2. The Recursion Theorem and the Uniqueness of N. New concepts
for natural numbers are for the most part introduced recursively. One also
talks of inductive definitions. For example, addition may be defined in-
ductively by successively stipulating that m + 0 := m, rn + 1 := S(m),
m +2 := S(m + 1), and generally m + S(n) S(m + n). The justification
establishing that this recursive procedure gives a meaningful definition, is
provided by the following result.

Recursion Theorem (DEDEKIND 1888). Let A be an arbitrary set con-
taining an element a E A, and g a given mapping g: A —. A of A into itself.
Then there is one and only one mapping N — A with the two properties

and ipoS=gof.

The mapping ço is said to be defined recursively starting from w(O) = a,
by the recursion formula + 1) = g(çp(n)).

Proof. To show the uniqueness of the mapping we consider two map-
pings from N to A with the stated properties. We show, by in-
duction on n, that = %03(n) for all n. The induction begins with

= a = Since, by the inductive hypothesis, p1(n) = it
follows that

= g(pi(n)) = g(w2(n)) = Sp2(S(n)).

To prove the existence of ço, we consider all subsets H C N x A having
the two properties (1) (0,a) H and (2) for all n, b, if (n,b) E H, then
(S(n),g(b)) E H. Since the whole set N x A is such aset H, and all sets H
contain the element (0, a), the intersection D of all the H is the smallest
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subset of H x A satisfying (1) and (2). We now assert that D is the graph
of a mapping N A, and prove this assertion by complete induction:

(*) To every n N, there is just one 6, such that (n,b) ED.

To begin the induction we note that, by (1), (O,a) E D. If (0,c) E D
were possible with c a, then one could remove (0,c) from D, and the
remaining set D \ {(0,c)} would still have the properties (1) and (2), in
contradiction to the fact that D is the smallest set of this kind.

We now complete the inductive argument as follows. By the inductive
hypothesis there is just one 6, such that (n, 6) E D. By (2) we then have
(S(n),g(b)) E D. If (S(n),c) D and c g(6) were possible, then one
could remove (S(n), c) from D and by the same argument as was used at
the start of the induction, we should arrive at a contradiction. Now that
the proposition (a) has been proved, D can be written, as the graph of a
mapping 'p:N A, namely D = In N}. The property (I) of
D means that = a, and the property (2) that E D,
and hence for all n. 0

Exampie. The nth power c" of a real number c is defined by the recursion
formula c starting from c0 = 1. Here we apply the Recursion
theorem with A = R (the set of real numbers), a = 1 and g(b) = b . c.

As a first application of the Recur8ion theorem we shall now prove the
uniqueness of N.

Uniqueness Theorem. Let N' be a set with a successor function S', a dis-
tin guished element 0' and satisfying the azioma (S1}—(S3). Then N and H'
are canonically isomorphic, that is, there exists just one bijective mapping

N' with çp(0) = 01 and S' o = ço oS.

Proof. By the Recursion theorem, applied to A = H', a = 0' and çp = SI,
there is just one mapping ço:N —' H' with = 0' and = By
interchanging the roles of H and H' one obtains a corresponding mapping

o N' —. N with = 0 and o S' = S o To prove that o = Id
(the identity mapping), we use the uniqueness assertion of the Recursion
theorem for A = N, a = 0, and g = S. Both o and Id are mappings

—, N, for which 4'(O) 0 and = and therefore must
0

3. Addition, Multiplication and Ordering of the Natural Num-
bers. For every fixed natural number m, the addition m + n is defined,
starting from in + 0 = in, by the recursion formula m + S(n) = S(m + n).
Here again the Recursion theorem is being applied for A = N, a = m, g S
and ip(n) = m+n. In particular, it follows for I := 5(0) that m+ 1 = S(m)
is the successor of m.
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All the well-known rules of addition now must be proved. We shall confine
ourselves to the proof of the associative law and refer the reader to the
classical work by LANDAU [18], Chapter 1, §2.

Theorem. For all k,m, n N, (k + m) + n = k + (m + n).

Proof. The induction begins with n =0, for which n = 0: (k + m) + 0 =
k + m = k + (m + 0). The inductive argument from n to n + 1 runs as
follows:

(k+m)+(n+1)
k+(m+(n+1)).

The steps marked with * use the recursive formula for addition. Those
marked with ** use the inductive hypothesis. 0

One can easily convince one's self in this way that N is a commutative
semigrvup with cancellation law, in respect of addition. The cancellation
law asserts that n + k = m + k implies n m, for all k,m, n E N.

Analogously to addition, the operation of multiplication m . n, by a fixed
number m, can be defined, starting from m . 0 = 0, recursively by the
formula m (n + 1) = m n + m. All the well-known arithmetical rules
of multiplication again require proofs, for which we refer the reader to
LANDAU [18], Chapter 1, §4.

An order relation < may be defined on N as follows: the relation n m
holds if and only if there is a t N such that n + C = rn The usual
properties of an order relation, namely 1) reflexivity, 2) antisymmetry and
3) transitivity hold good, that is to say for all m,n,l EN:

1) n

2) ifn<vnandm<n,thenm=n.
3) Ifn<mandm<l,thenn(l.

We write m < n if and only if m n and m n. The ordering is linear
(or total, as opposed to a partial order), that is to say for all I,m, n E
Fl it follows from rn n that m + I n + I (and the corresponding
statements are true with < in place of �). Analogous statements also hold
for multiplication, that is, m n implies <ni with the corresponding
statements with < instead of being true (provided I 0).

4. PEANO's Axioms. Following the Italian mathematician PEANO (1858—
1932) the natural numbers can also be described in terms of the following
axioms for the basic concepts N, 0 and S:

(P1) OEN.
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KRONECKER [17] in his "Grundzüge einer aritbmetischen Theorie der alge-
braischen Grossen" [Foundations of an arithmetical theory of algebraic
magnitudes] as the so-called "Integritätsbereicb."

1. The Additive Group Z. The systematic introduction of the integers is
motivated by the following considerations. Every integer can be expressed
as a difference a — b between two natural numbers a and b. This suggests
that the integer a — 6 should be described by the pair (a, b), but of course
one must be careful to remember that other pairs (c,d) can describe the
same number a — 6 = c — d, in fact whenever a + d = b + c. We therefore
proceed as follows.

We consider the relation, defined on N x N, by

(a,b)—.(c,d) ifandonlyif a+d=b+c.

We then establish that this is an equivalence relation. For example, tran-
sitivity may be proved as follows: if (a, 6) (c, d) and (c, d) (e, f) then
by definition, a + d = b + c and c + f = d + e. By addition we obtain
a + d + c + f = 6 + c + d + e and by cancellation of c + d we obtain
a+f = 6+e, that is (a,6) (e,f). (We have also made use of the corn-
mutativity and associativity of addition.)

The integers may now be defined as equivalence classes of the relation —.
The class represented by (a, 6), is denoted by [a,b]. The set of all integers
(a set of equivalence classes) is denoted by Z.

We can define on N x N a componentwise addition, (a,6) + (c,d) :=
(a + c, 6 + d). The commutative and associative laws hold, and the zero
element is (0,0). This addition is compatible with the relation —.., that is to
say, if(a',b') — (a,b) and (c',d') (c,d) then (a'+c',b'+d') (a+c,b+d).
it is therefore meaningful to introduce in Z, an additwn Z x Z —'
[a, 1,) + [c, d] := [a + c, 6 + d], which is likewise commutative and associative
and which has [0,0) as zero element. By passing to equivalence classes
(integers) we have gained more. Every integer [a, 6] has an inverse, namely,
the integer [b, a). We have established the following.

Theorem.. The integers form a commuta five group with respect to addition.

The element inverse to a Z is uniquely determined, and is denoted by
—a. Subtraction in Z is defined by a — 8 := a +

The mapping t:N Z, a —. [a,0] is injective and compatible with addi-
tion. It is usual to identify N with the subset of Z, t(N) C Z, isomorphic
to it. The integer [a, b] is then written as a — 6, and we have thus justified
the notation, which provided the motivation. If one uses = N \ 40), one
can represent Z as a union of three disjoint sets Z = _N+ U 40) U N+.
Depending on whether a> b, a = 6 or a < 6 the integer [a,b] = a — b lies
in in 40) or in
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The construction of the integers is an algebraic one. Instead of starting
from N, one could have begun with any commutative semigroup H and
constructed from it as above a commutative group G. If the cancellation law
does not hold in H some modifications are required: we define (a, 6) (c, d)
if and only if there is an e such that a + d + e = 6 + c + e. However in this
case i: H G is no longer injective.

2. The Integral Domain Z. The representation of integers as differences
provides a motivation for the definition of their multiplication. We should
like (a —6) (c — d) to be equal to (ac + bd) — (ad + be) and accordingly this
leads to the following definition:

[a,bJ.[c,dJ=[ac+bd,ad+bcj for a,b,c,dEN.

This definition is independent of the particular choice of the representative
pairs.

Theorem. The integers form an integral domain with respect to addition
and multiplication (that is, a commutative ring without zero divisors and
with identity element).

Incidentally, Z is the smallest integral domain containing N as a subset:
to every domain of integrity R D N there is just one monomorphism (that
is, injective mapping, compatible with + and .) ço:Z —, R with N =
inclusion of N in

3. The Order Relation in is defined by

a�b ifandonlyif b—aEN.

Theorem. The ring Z of integers is linearly (completely) ordered by the
relation <. For all a, b, c E Z the relation a � 6 implies a + c 6 + c and,
when c> 0, a.c<bc as well.

The natural numbers other than zero are thus the integers > 0, the so-
called positive integers. A number a is said to be negative whenever —a is
positive.

Remarks. Every commutative ring R expressible as a disjoint union R =
—P U (0) U P where P is additively and multiplicatively closed, can be
totally ordered by the relation a � 6 if 6 — a PU {0).

Historically, it was also DEDEKIND who introduced the idea of defining
integers by pairs from N xN. In a letter from the 82-year-old mathematician
written in 1913 to a former student, DEDEKIND ([10], p. 490) describes an
extension of the domain N of natural numbers to the domain G of the
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integers. LANDAU [18] first constructs the rational numbers � 0 from
and then extends this set by means of the negative rational numbers, to
the field Q (see §4) obtaining Z as a subring of Q.

THE RATIONAL NUMBERS

1. Historical. Division, as the inverse of multiplication, cannot be done
without restriction in the domain of integers. Fractions, which make di-
vision always possible, were already considered in early times. They were
never surrounded by such mystery as were the negative numbers, which
were thought of as being in some never-never land below "nothing," or
the irrational and imaginary numbers, which we still have to discuss. The
first systematic treatment of rationals is found in Book VII of EUCLID'S
Elements, which deals with the ratios of natural numbers. The idea, which
is so familiar to us, of interpreting ratios as fractions and of extending in
this way the domain of whole numbers first arises in comparatively modern
times. The first theoretical investigations stem from the nineteenth century.

BOLZANO [5J in a posthumously published paper entitled "Reine Zahien-
lehre" developed a theory of rational numbers, and in fact a theory of those
sets of numbers that are closed with respect to the four elementary arith-
metic operations. One also finds, in a paper by OHM [22] (the brother of
the famous physicist) an intention to define the rational numbers "solely
through the basic truths relating to addition, substxaction, multiplication
and division."

Their foremost consideration was therefore the investigation of certain
arithmetical relationships, and not a philosophical question about the na-
ture of number. Finally, with HANKEL ([13], p. 2), in his Theorie dei' corn-
plezen Zahiensysieme of 1867, it comes down to this: The laws of these
operations determine "the system of conditions ... which are necessary and
sufficient to define the operation formally." Apart from the rational num-
bers, the notion of a field (as a concept, even if not yet under this name)
had also been discussed in the writings of ABE!.. and GAL0Is, where, for
example, a root of an equation is adjoined to the rationals and an inves-
tigation is made of all possible expressions that can be formed from it by
means of the four operations, addition, subtraction, multiplication and di-
vision. KRONECKER in 1853 speaks in his theory of algebraic quantities of
"domains of rationality" (KRONECKER [17], §1), and DEDEKIND, at first of
"rational domains" and finally of "fields" in the case of real and complex
numbers (DEDEKIND (121, p. 224). Number fields were also investigated by
WEBER [30] and HILBERT [141. In 1910 STEINITZ [261 gave an abstract def-
inition of this fundamental algebraic concept. STEINITZ also brought out
clearly the fact that behind this extension of the integers to the rational
numbers there lies a general algebraic construction, namely, that of the
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embedding of an integral domain in a field by the formation of fractions.

2. The Field Q. Following the example of WEBER in his Lehrbuch der Al-
gebr'ti of 1895, we shall introduce fractions as equivalence classes of integers,
and guided by the relation

ifandonlyif ad=bc,

we start from the equivalence relation defined on Z x (Z \ {O)) by

(a, 6) (c, d) if and only if ad = bc.

These definitions are independent of the particular choice of representa-
tives. In LANDAU [18], Chapter 2, is given a detailed proof of the

Theorem. The set Q of rational numbers, with the addition and multipli-
cation defined above, constitutes a field.

Z is mapped isomorphically on the subring i(Z) C Q by the mapping
Q, a Z is usually identified with e(Z). The field Q is the

smallest field containing Z as a subring.

3. The Ordering of Q. A fraction a/b is said to be positive if a, b are
both positive or both negative. The set P of positive fractions is closed
with respect to the operations + and .. Q is expressible as a union of
disjoint sets —P U (0) U P. As in the remark in 3.3 a total order relation
on Q can be defined by r s if and only ifS— r E Pu (0) which coincides
with the order on Z defined in 3.3.

The order relation in Q is Archimed eon, that is, for all positive rational
numbers r,s E Q there exists a natural number n with .c < n r. To prove
this, we write a = p/h and r = q/h as fractions whose numerators and
denominators are natural numbers and with a common denominator h.
The truth of the statement then follows as soon as it has been proved that
p < n . q for natural numbers > 0. The latter can be demonstrated for a
fixed q � 1 by induction over p = 1,2,... A noteworthy property, which
distinguishes the field Q from the ring of integers Z is its density: for all
r,s EQ with r < s, a t E Q can always be found such that r < t <8. One
can, for example, choose the arithmetic mean I := + s).
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Real Numbers
K. Mainzer

&' EIVCLt cYUVEXèc ötUV wore ICaL re
olç icul aiijw(vct

(ARISTOTLE, Physics 227a, 11—12).

[1 call it holding together if it is the same and a single thing
that becomes the boundary for each of the parts to which
they cling and, as the word signifies, it is kept together.]

Continuum est totum cuius duse quaevis partes cointegrantes
(sen quac simul sumtae toti coincidunt) habent aliquid com-
mune, ... saltem habent communem terminum)
(G.W. LEtBNIz, Mathem. Schr. VII, 284).
(A continuum is a whole when any two component parts
thereof (or more precisely any two parts which together make
up the whole) have something in common, ... at the very
least they have a common boundary.]
Zerfallen alle Punkte der Geraden in zwei Klassen von dci Art,
dafi jeder Punkt dci ersten Klasse links von jedem Punkt dci
sweiten Klasse liegt, so existiert em und nur em Punkt, weicher
diese Einteilung slier Punkte in zwei Kiassen, diese Zerschnci-
dung dci Geraden in zwei Stücke, hervorbringt (R. DEDEKIND,
Stetigkeit und irrationale Zahien, Braunschweig 1872, 10).

(If the points of a line are divided into two classes, in such a
way that each point of the first class lies to the left of every
point of the second class, then there exists one and only
one point of division which produces this particular subdivision
into two classes, this cutting of the line into two parts.]

§1. HISTORICAL

1. HIPPASUS and the Pentagon. When today we define the real num-
bers as elements of a completely ordered field, we tend to forget the mag-
nitude of the intellectual and philosophical crisis brought about by the
discovery that there were things outside the grasp of the rational numbers.
Indeed, if we can trust later legends, the discoverer incurred the wrath of
the Gods. We mean of course the discovery ascribed to the 5th century
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B.C. Pythagorean, HIPPASUS of METAPONT, that there are line segments
whose ratios are incommensurable. The discovery is said to have caused a
great shock in Pythagorean circles because it finally called into question
one of the basic tenets of their philosophy, that everything was expressible
in terms of whole numbers.

To understand the effects of thi8 crisis, one has to remember that the
Pythagoreans were not only active as a highly influential mathematical
school, who were the first to raise the requirement for exact mathematical
science and who insisted on a strict education in arithmetic, geometry,
astronomy and music for their members, but that in addition to all this
they pledged themselves to an orderly way of life. Until the uprising of 445
BC, they had been a dominant force throughout Southern Italy. In this
political turmoil, HIPPASUS is presumed to have played an important role
(see IAMB[,ICHUS [14), p. 77, 6f; also FRITz [10], HEu.ER [11)).

The treatment of ratios of line-segments had come out of traditionally
employed practices in measurement. A segment a of a line had traditionally
been measured by laying along the line unit, measures e, one after the other,
along the line, as many times as were necessary:

a=e+1-e=me.
m times

Two segments a0 and a1 are said to be commensurable if they can both
be measured, in this sense, with the same unit of measurement e, so that
00 = m e and = n . e with in, n being two natural numbers. In this
case the ratio 00 : a1 of the line segments is equal to the ratio m: n of two
natural numbers.

The method of finding a common measure of two line segments ao, 01 had

already been practiced, before the days of Greek philosophy and 8CieflCe,
by craftsmen, by a process of alternate "taking away." EucLiD described
the process in his Elements which now goes by the name of the Euclidean
algorithm. The smaller segment 01 is taken away from the larger segment
00 as many times as possible, until the residue left is smaller than a1, so
that, if 02 is this residue, then

ao=nlal+02 with 02<01.

One then continues in the same way:

01 = fl202 + with 03 <02,
02 = fl303 + 04 with 04 <03,

If 00 and have a common measure, the process comes to an end after
a finite number of steps, so that there is a k with ak—i = fl*ak, and is
a common measure of GO and
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At first, it was probably felt intuitively that thi8 process would always
terminate, and that therefore there would always be a common measure.
In modern language, however, all that this procedure shows 18 that every
ratio of line segments can be developed as a continued fraction

at = ni + : 01

1 1=nl+ =nl+01:02
1 1=nl+ =...=flt+

which is finite when 00 and a1 is commensurable.
The badge or symbol of their order used by the Pythagoreans was the

Penta gram, which still retained its magical potency in mediaeval astrology
and according to legend was used by Faust to exorcize Mephistopheles.
There is good reason to believe that 1-IIPPASUS by working from this symbol
found that two of the lines therein were incommensurable (see IAMBL.ICHUS
[151, p. 132, 11—12; for references to the sources see FRITZ [10], HELLER
[11), TROPFKE [23)).

8

To see this, we begin with the regular pentagon ABCDE in which all
five diagonals have been drawn. The diagonals intersect to form a smaller
regular pentagon A'JJ'C'D'E' in the middle. Because of symmetry, each
side of a regular pentagon is parallel to one of the diagonals. Thus, the
triangle AED and BE'C have their corresponding sides parallel and are
therefore similar, so that AD: AE = BC: BE'. Now BE' = BD — BC,
since BC = AE = DE', as EA is parallel to DB, and DE is parallel to
AC. Consequently for any regular pentagon

diagonal: side = side:(diagonal — side).
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If we denote the diagonal by a0, the side by and their difference by
a2 = 00— 01, then 00 : a1 = 01 : a2 and in particular <a1. If we now
form the difference 03 = a1 — a2, we obtain the same equation between the
ratios : a2 = : 03, and in particular 03 < 02. The process can dearly
be continued indefinitely:

02=00—01, a3=al—a2,

ao:aj=a1 :a2=a2:aa=a3:04=•
The Euclidean algorithm for 00 and namely

a0 = 1 . al + 02,
Cj = I . + 03,
02 = 1.03 + 04

never terminates, thus the side ai and diagonal 00 of the pentagon are not
commensurable.

We obtain for the ratio, the continued fraction

a001l+ 11
1+

1
1+

1+1+...

It follows from aO a1 = 01 (00 — ai) that ao 01 = + This ratio
is known as the golden section. The fact that the Euclidean algorithm never
terminates can be seen at once from the diagram, which shows that each
pentagon always has a smaller one within it so that there is an infinity of
pentagons, whose sides are of length 01, a3, a5,... and diagonals of length
a2, a4, 06,... respectively.

2. EUDOXUS and the Theory of Proportion. The Babylonians
worked with rational approximations to irrational (incommensurable) ra-
tios. For example, they used the sexagesimal fractions 1; 25 and 1; 24, 51,
10 as approximations to But we owe to Greek mathematics the funda-
mental discovery that the ratio of the diagonal to the side of a square,
is incommensurable. In EUCLID'S Elements X, §115a, we find the following
proof. Let a be the side and d the diagonal of a square. If they were com-
mensurable then the same number would have to be both odd and even,
which is absurd. For, clearly d2 = 2a2, and since d and a have been assumed
to be commensurable, d: a = m : n where m, n are natural numbers which
may be taken to be the smallest possible. Then d2 : a2 = m2 : n2, but
since d2 = 2a2 it follows that vn2 2n2. Thus m2 is even, and hence m is
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even, say m = 21. Now since m, n are by hypothesis the smallest numbers
satisfying d : a = m : n, they must be relatively prime and this implies
that n must be odd. Since m = 21, it follows that m2 = 412 and thus since
m2 = 2n2, we have n2 2,2 which implies that n2 and hence n are both
even.

However, the irrationality of was certainly known before EucLID. Ac-
cording to PLATO (Theaeteftss 147d) the irrationality of certain square roots
such as had been demonstrated earlier by THE000Rus of
CYRENE. In PLATo'S Laws (819d—820c) there is a passage where the Athe-
nian stranger speaks of the shameful ignorance of the generality of Greeks
who are unaware that not all geometrical quantities are commensurable
with one another and adds that it was only late (in life, or possibly late in
the day) that he himself learned the truth. (See HEATH'S History of Greek
Mathematics, p. 156.)

A decisive factor in the rapid progress of Greek mathematics was the
distinctive logic. 'I'he form of inference known as reduclio ad absurdum
(proving the truth of a proposition by showing that the assumption of its
falsity leads to a contradiction) allows them to give the first. "impossibility"
proofs and the first precise statements about the "infinite." As IIERMANN
WEYL wrote, Mathematics became for the first time, in the hands of the
Greeks, the "science of the infinite."

It was the brilliant stroke of a genius, Eunoxus of KNIDOS, the contem-
porary and acquaintance of PLATO, that created a geometrical theory of
proportion capable of dealing with incommensurable as well as commensu-
rable magnitudes. This theory has come down to us in Book V of EUCLID'S
Elemenl3. EUDOXUS starts off from (positive) geometrical magnitudes of a
like kind; for example, line segments a,b, ... or areas A, B He postu-
lates that magnitudes of the same kind can be added, and tacitly assumes
that the addition obeys the commutative and associative law. Magnitudes
of the same kind are ordered: a < 6 if and only if there exists a c such that
a + c = 6. It is assumed that when a 6, one of the two relations a < b

or 6 < a must hold. Integral multiples are defined by repeated addition, so
that m a = a + + a with rn summands on the right.. The axiom now
usually called the axiom of ARCHIMEDES is assumed. This states that for
any given a, b there exists a natural number n for which a < n 6. Thus
infinitely small quantities are excluded. (it was reserved for a later age to
allow these, see Chapter 12 in this connection.)

The ratios between geometrical magnitudes of the same kind, which do
not necessarily have to be commensurable with one another (ratios of line
segments, of areas, and so on) form the subject of the theory. To enable such
ratios to be compared with one another, the following is given (Definition
5 in Book V of EUCLtD'S Elements in Heath's translation): "Magnitudes
are said to be in the same ratio, the first to the second and the third to
the fourth when, if any equimultipies whatever be taken of the first and
third, and any equimultiples whatever of the second and fourth, the former
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equimultiples alike exceed, are alike equal to, or alike fall short of, the
latter equimultiples respectively taken in corresponding order." Expressed
in modern mathematical language this means: we define a : 6 = A: B as
being equivalent to the statement "n . a > m & if and only if nA > mB,
n•a = m•b ifand only ifn•A = m•B, and n•a < n.b if andonly if
nA < nB," where m,n are any two natural numbers.

Many of the theorems in the theory of proportion can nowadays be inter-
preted simply as arithmetical laws governing calculations with real num-
bers. It should always be remembered, however, that the Greeks never at
any Lime regarded rational ratios, let alone irrational ratios, as extensions
of the domain of natural numbers. They saw them as a concept generis.
The objectives of the theory of proportion were geometrical results such
as, for instance, the accurate substantiation of numerous formulae relating
to areas and volumes. The geometrical proofs of these, which for the most
part use reducgio ad absurdum arguments, may seem to us long-winded and
involved. But it was not until the 19th century, that more elegant methods,
developed mainly since the Renaissance, could be provided with a justifica-
tion as rigorous as that which had been customary in Greek mathematics.

3. Irrational Numbers in Modern (that is, post-mediae'val) Math-
ematics. After the geometrical theory of proportion of the Greeks, we now
turn to the arithmetic aspect which becomes important for the develop-
ment of mathematics in the modern era. Its history can be traced back
to the practical calculation of approximate values, which had been prac-
ticed since very early times by mathematicians interested in astronomy and
civil engineering. After the Babylonians, we need especially to remember
ARCHIMEDES who, in his determination of the circumference of a circle,
succeeded in showing that lay between 34 and and PTOLEMY (circa
150 AD) the great astronomer of the Ancient and Mediaeval world, who
chose the sexagesimal fraction 3;8,30 as a mean between 34 = 3; 8,34 and

= 3; 8,27. The process of nesting of intervals is applied here.
While Greek mathematics was showing little interest in arithmetical cal-

culations, which were kept very much in the background compared with
geometrical constructions and proofs of propositions by logical inference,
the development of the number concept gained a decisive impetus from
the influence of Indo-Arabic algebra. Thus, for example, the Arab mathe-
matician ABU KAMIL (circa 850—930) was able to work with expressions
involving square roots, using such rules as, among others:

(TROPFKE [23], p. 135). One begins to operate with new expressions with-
out realizing that they are a new type of number. This process received a
further impetus through the discovery, in the 16th century, of the formulae
for the solution of cubic and biquadratic equations. The reader will find
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more on this subject in Chapter 3, §1.
M. STIFEL [22J still wrote, in his Arztlzmetica integra of 1544 "So wie

elne unendliche Zahi keine ZahI 1st, 80 ist eine irrationale Zahi keine wahre
ZahI, weil sie sozusagen unter einem Nebel der Unendlichkeit verborgen
1st." [Just as an infinite number is no number, so an irrational number
is not a true number, because it is so to speak concealed under a fog of
infinity.]

This "fog of infinity" is already defined rather more precisely by STEVIN
(1548—1620) as an infinite sequence of decimal fractions, representing a se-
quence of nested intervals, which he develops, for example, in finding succes-
sive approximations to the solution of the equation z3 = 300x +33900000.
He writes: "... et procédant ainsi infiniment, l'on approche infiniment plus
près au requis" (and proceeding in this way unendingly, one approaches
infinitely closer to the required valuej (S. STEVIN [21], p. 353).

In the Geometrie of 1637 by DESCARTES, the operations of addition,
subtraction, multiplication, division and root extraction of line segments
are defined in such a way that the result of the operation is again a line seg-
ment in each case. Whereas the product of two line segments had hitherto
always been interpreted as a rectangle, DESCARTES obtains the product as
the fourth proportional in the Intercept, theorem, when the first intercept
is taken to be of unit length, so that 1 is to b as a is to a b.

The development of the number concept received a new boost through
the infinitesimal calculus in the 17th and 18th century. Here the theory of
series, especially from the time of LEIBNIZ and the brothers BERNouLLI,
opened up new possibilities for the representation of numbers. In the Arals-
metica infinitorum of 1655, by WALLIS (1616—1703), we find, for example,
theinfiniteproduct

Representations of numbers by infinite sums and infinite products were
not defined however—as has usually been the case since CAUCHY and
WEIERSTRASS—a8 convergent sequences, using the concept of a limit. In-
stead, a sum such as

00

k=1
k(k + 1)

was said to differ from I by an "infinitesimal" or "infinitely small" quan-
tity. EULER [9] formulated in 1734 a convergence criterion for series in
the language of infinitesimals. Apart from the "finite" and "actual" (real)
numbers, which found their application as values in measurement, there ap-
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peared to be also "infinitesimal" numbers and "ideal" numbers. In the 19th
century such terms were banned from mathematics as being too imprecise
and "psychologizing" a form of expression, and were felt to be Buperfiuous
after the clarification which had been brought about by the introduction
of the concept of a limit. It is only with the comparatively recent non-
standard analysis (see Chapter 12) that infinitely small numbers have once
more come into fashion and achieved full respectability.

4. The Formulation of More Precise Definitions in the Nineteenth
Century. CAUCHY in his Cow-s d'analyse of 1821, formulated the conver-
gence criterion called after him and considered it as self-evident as the
laws of arithmetic. The completeness of the system of real numbers, the
property which CAUCHY is here expressing, had however already been as-
sumed before him. Thus, for example, LEIBNIz assumed that a continuous
line drawn on a surface, and lying partly within and partly without some
portion of that surface, must intersect the boundary of that portion.

In 1817, BOLZANO [4] proved the Intermediate value theorem under the
assumption of the CAUCHY criterion. However, it should be pointed out
that he already had this criterion at his disposal before CAUCHY. Recently,
a BOLZANO manuscript was discovered containing an unpublished draft of
a book entitled Grössenlehre (Theory of Quantities) in which he attempted
to base the theory of real numbers on firmer foundations by using sequences
of intervals.

With WEIER.STRASS consideration of the foundations of the real number
system entered into the basic mathematical curriculum. All that has come
down to us of this, however, are some notes written by his pupils and which
were in part criticized by WEIERSTRASS. The central idea of the concept
of a real number as visualized by WEIERSTRASS [24:) is expressed in terms
of the principle of nesting of intervals. He also uses this to prove his well-
known Limit-point Theorem (see, also DUGAC [8]). A systematic definition
of real numbers in terms of nested intervals was given by BACHMANN [1]
in 1892.

Another method of defining real numbers was introduced by CANTOR in
his theory of fundamental sequences (see 2). Shortly before, MERAY (1835—
1911) had used (though CANTOR was not aware of this) this approach to
the definition of irrational numbers by regarding them as "fictive" limits of
convergent sequences and, harking back to the discovery in classical times,
calling them "nombres incommensurables."

Finally, DEDEKIND (1831—1916) in his famous book Stetigkeit und Ir-
rat:onalzahlen [7) published in 1872 took up the theory of proportion of
EUDOXUS and presented it in a modernized form with exemplary clarity.
DEDEKIND'S definition expresses our geometrical intuition of the contin-
uum, which has been so deeply rooted since the days of classical antiq-
uity. This intuition tells us that the points of a straight line are defined
by "the bisection of a line into two parts" (DEDEKIND) by "the common
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boundary between two parts, which together constitute the whole" (LEIB-
NIZ) or by the "extremities of two parts which touch" (AaIsTo'FLE) see
§1). The question of whether EUDOXUS and EUCLID with their theory of
proportion had satisfactorily settled the matter of defining the irrational
numbers led to some controversy in connection with the work published by
DEDEKIND in 1872. Thus LIPsciuTz wrote to DEDEKIND in 1876: "... Ich
kann nur sagen, daB (ich) die von Euclid V, 5 aufgestellte Definition .. . für
genauso befriedigend halte, als lhre Definition. Aus diesem Grunde würde
ich wünschen, daB namentlich die Behauptung wegfiele, daB solche Sätze
wie = bisher nicht wirk)ich bewiesen seien." (1 can only say
that I personally find the definition in Euclid V, 5 just as satisfactory as
yours. For this reason I would have liked to have seen omitted, in particu-
lar, the statement that such propositions as = have never yet
really been proved.) Characteristic is LWScHITz's remark: "Was Sie an der
Vollständigkeit des Gebietes erwähnen, die aus thren Principien abgeleitet
wird, so failt dieselbe in der Sache mit der Grundeigenschaft einer Linie
zusammen, ohne die kein Mensch sich eine Linie vorstellen kann." (What
you say in regard to the completeness of the domain, deduced from your
principles, in point, of fact merely coincides with the basic property of a
line, without which no one can possibly imagine a line.)

While LIPSCHITZ thus expresses an attitude recalling that of the math-
of the previous century who were frequently content to rely on

an intuitive understanding of the foundations of their science, DEDEKIND
stands at the start of an era heralding a new methodical approach. He
is concerned—as were CANTOR, FREGE, PEANO and others—to formulate
explicitly and precisely the concepts on which mathematics is founded. And
so DEDEKIND writes to LIPSCHITZ with particular reference to the concept
of completeness: ".. .Aber Euklid schweigt vollständig über diesen, für die
Arithmetik wichtigsten Punkt, und deshaib kann ich lhrer Ansicht nicht
zustimmen, daB bei Euklid die vollstandigen Grundlagen für die Theorie
der irrationalen Zahien zu linden seien." ["...But Euclid is completely silent
on this, the most important point for arithmetic, and therefore I cannot
share your opinion that a complete theory of irrational numbers is to be
found in Euclid.")

The real number concept became a problem area once more in the dis-
cussions of the nineteen twenties between IIILBERT and BROUWER on the
foundations of mathematics, after RUSSELL had derived contradictions from
the so-called "naive" set theory of CANTOR and FREGE, and after it was
found that even the new axiomatized versions of set theory could not be
proved to be consistent, and, as GÔDEL showed, were inherently incapable
of being proved consistent by finite methods. Within mathematical logic
these considerations led to an interesting discussion, which continues up to
the present day, of more limited concepts such as, for example, computable
numbers, and constructive real numbers (see, BISHOP [3], HERMES [12],
LORENZEN [18)).
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§2. DEDEKIND CUTS
The incompleteness of the field Q of rational numbers can be repaired by
making "cut? in Q, which in an entirely natural way can be completely
and totally (= linearly) ordered. Addition and multiplication are defined
for these new objects in such a way that they form a field. Altogether
these cuts possess the following properties (R1)—(R3), which are nowadays
usually taken as a set of axioms for the real numbers.

A set (K, +, ., <) with the two (internal) compositions + and •, and the
binary relation < is said to be the set of real numbers if and only if the
following axions are satisfied:

(Ri) (K, -F, •) is a field.

(R2) < is a linear order relation on K, compatible with addition and misl-
tiplication.

(R3) Completeness: any non-empty subset M of K, bounded below, has an
infimum in K.

A lower bound s of an ordered set M is said to be an infimum of M (the
standard abbreviation is inf M) if all lower bounds of M are < a. Thus
inf M is clearly the greatest lower bound of M.

1. The Set R of Cuts. A Dedekind cut is an ordered pair (a,f3) of two
sets, a (the "left" or "lower" set) and (the "right" or "upper" set) with
a,/3 C Q, satisfying the following conditions:

(Di) Every rational number belongs to one of the two sets a, fi.

(D2) Neither a nor f3 are empty.

(D3) Every element of a is less than every element of fi.

(D4) fi has no least element has no minimum).

Every cut is uniquely determined by its left and right set each of which
determines the other. We may therefore from now on identify it with its
right-hand set /3, which has the following properties:

(D'i) /3 and its complementary set = Q \ /3 are non-empty.

(D'2) lfrEI3,sEQandr<sthensEfl.
(D'3) /3 has no least element (minimum).
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In the following treatment we shall use Greek letters a, to denote
right-hand sets and call a Dedekind cut a real number. The set of all
Dedekind cuts is denoted by M.

Every rational number a defines the cut: := fr: r Q, $ < r), which
is described as rtthonal. A cut a is rational, if and only if a has a largest
element (maximum). Q is embedded in JR by the mapping Q —e IR, a

Not all cuts are rational. For example that is the cut defined by
a := fr: r E Q, r > 0, r2 > 2}, is not rational. It is easily verified that a
satisfies the first two axioms for a cut. To verify the third we need to show
that for every r E a, there is an a E a satisfying a < r. To this end we
choose 8 := > 0. Since r — a = r+2 and r2 > 2, the inequality r 0

entails a < r. Since 82 — 2 = and r2 > 2 we have a2 > 2. The cut a
is irrational because the complementary set a has no maximum element.
For r a with r 0 (and thus r2 <2) we again choose a as above. It then
follows, since <2, that 8 a and r < 8.

2. The Order Relation in JR. For any two cuts (right-hand sets) the order
relation a </9 is defined by the set-theoretic inclusion relation /3 C a. The
reflexivity, transitivity and antisymmetry of this relation is easily proved.
The ordering is total (linear). For, suppose a /3, and say r E a, with
r /3. Then r E /9, and for every a E /3 it follows that r < a, and hence
a E a, or in other words, /9 C a. The ordering is complete in the sense of
the axiom (R3). To see this, let A be a set of cuts bounded from below.
Then /3 = UaEA a is a cut. (Since A is bounded below there is a c Q
with c /3.) The second and third cut axioms for /3 are easily checked as
is the fact that /3 is an infimum of A.

If we carry out the Dedekind cut construction once again on lR, we obtain
nothing new. To every cut a in JR there corresponds a 7 JR such that
a = (a IR: 7 < cv). In fact, we simply take the infimum = UaEd a of a.

This fact is expressed by the third of the quotations which stand at
the head of this chapter. The other two quotations (from ARIsTOTLE and
LEIBNIZ) show that the basic underlying idea of the connected continuum
is very old.

The embedding of Q in JR (see 1) is compatible with the order relation.
The rational numbers are dense in R: given any two cuts (real numbers) a
and /3, there exists an r Q such that a < /3.

3. Addition in JR. For any two cuts a and /3 in R, the a+/3 is defined
as the set {r + s:r a, a /3). The three characteristic properties of a
cut follow for a + from the corresponding properties of a and f3, and so
a + E JR. On the subset Q of JR the sum coincides with the one defined
by the usual addition of rational numbers. As far as the order relation is
concerned it is immediately clear that if a, /3 are any two cuts such that
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a < /3, then a +7 < /3+7 for every 7 belonging to JR.

Theorem. The set JR is an ordered commutative grvup with respect to
addition, with (the cut) zero as its neutral element.

Proof. Associativity, commutativity and a + Q = a follow immediately
from the definition of addition. The inverse of a cut a E JR is defined as
—a := {—r:r E a, r maxa). (—maxa has to be excluded to ensure
that the condition (D'3) is satisfied.) For the proof that a + (—a) = Q, the
inclusion C is easily checked. Conversely, suppose r E Q and thus r > 0;
we have to show that r E a + (—a). Since a and a come arbitrarily close
to each other, there is an a E a and a I a such that 0 < t — a < r.
Without loss of generality we may suppose a maxã, —s —a, and there-
fore I — a E a + (—a), and because r > I — a, we must also have r E a+
(—a). 0

4. Multiplication in JR. In the case where the cuts a, /3 are both � 0,
the product is defined in the way that obviously suggests itself, namely, by
a /3 = {r. a: r E a, a E /3). One can then check in routine fashion that
a ./3 satisfies the axioms (D'l) to (D'3) for a cut; that this multiplication is
associative and commutative; that I is a unit element; that the distributive
law holds; and that multiplication is order preserving.

The difficulties begin with the existence of multiplicatively inverse ele-
ments. If a > 0 is a cut, we define

a1
We leave it for the reader to check that a1 is in fact a cut and that C
I. To prove that = lit only remains to show that IC which
can be seen as follows. Suppose r EL and thus r— 1 > 0. Suppose q
By the principle of Archimedes (see Chapter I, §4.2) for rational numbers,
there is a natural number n for which q < n (r — 1). We now follow the
same procedure as that used in the proof that a + (—a) = fi (see 3 above).
Since a and a come arbitrarily close to one another, an a a and a I E a
can be found such that 0 <1—8 < n 1, where, without loss of generality, it
may be assumed that a maxä and q' <a. Then E a1, and hence
I a •a1. Now I = 1 + < <r
and therefore r E a a1.

A further difficulty lies in the fact that the definition given above, namely,
a ./3 = {r.s:r E a, sE 8), makes sense only when a 0, /3 � 0 because
otherwise it does not define a cut. In order to multiply with negative cuts
as well, we adopt the procedure already used in defining the multiplication
of integers (see Chapter 1, §3.2). We first show that every cut can be
written as the difference of two non-negative cuts a � 0 and � 0, so that
7 = a — /3. The product of 7 = a — /3 and y' = a' — /3' where a', /3' are also
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0, can then be defined by the expression obtained by multiplying out

It is easily checked that the cut so defined depends only on and y' and
not on the particular difference representations chosen. When and y' are
both � 0 the new definition agrees with the old. This latter point is easily
seen by considering the representation = — 0, y' = — 0. However, it
is a tedious if routine business to verify that all the axioms for a field are
verified. E. LANDAU who carries out this task in detail in [16], writes in
his "Vorwort für den Kenner" [Foreword for the expert]: "Em anderer hat
sich meine zum Tell langweilige Mühe nicht gemacht." [... but no one else
has undertaken this task which is in part rather boring.] In his "Vorwort
für den Lernenden" [Foreword for the student) on the other hand, he says:
"Bitte vergiB alles, was Du auf der Schule gelernt hast; denn Du hast es
nicht gelernt." [Please forget all you learnt at school because you never
learnt it.]

It is undoubtedly true that when we set out to justify all the operations
with numbers which have been so familiar to us from our school days, we
have to take great care to use only what has already been proved, and not
to assume things to be true merely because they are so familiar to us.

§3. FUNDAMENTAL SEQUENCES

1. Historical Remarks. The definition of real numbers by means of fun-
damental sequences, which goes back to CANTOR and MERAY [19), uses the
idea that every real number is the limit of a sequence of rational numbers,
in which the differences between the successive terms become arbitrarily
small. Such a sequence is known as a "fundamental sequence," and is illus-
trated below, the successive terms r1, r2,... being indicated by subscripts.

lim

$ i 4 $ •

r3 r, r,

CANTOR'S contribution to the theory of irrational numbers forms part
(S9) of a larger work, Grundhxgen einer aligemeinen Mannigfalügkeitslehre
[Foundations of a general theory of manifolds (that is, sets in present-
day terminology)] published in 1883, in which he develops his new theory
of sets. In addition to his own definition, CANTOR also mentions the ap-
proach taken by WEIERSTRASS and the work of DEDEKIND. In CANTOR'S
view the logical clarity of definition has to be set against the
"great disadvantage" that "numbers in analysis never present themselves
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in the form of "cuts," and therefore have first of all to be brought into this
form by elaborate artifices." On the other hand, CANTOR leaves no doubt
that he regards his form of definition as the "simplest and most natural
of all." He mentions as contributing to the historical development of this
approach a paper of his own published in 1871 (Math. Ann: 5, p. 123) and
a book by LIPscuITz [17J.

Quite apart from its use in the definition of real numbers, the CANTOR
construction with fundamental sequences has turned out to be the most
fruitful, inasmuch as it can also be used for the completion of metric spaces.
In this sense one has to agree with CANTOR. when he asserts, in speaking of
his construction: "Man hat an ihr den Vorteil, daB sic sich dem analytischen
KaIkül am unmittelbarsten anpa6t." [It has the advantage of being the one
most immediately suited to analytical calculations.) In the following section
the basic facts about sequences will be assumed.

2. CAUCHY's Criterion for Convergence. In accordahce with
CANTOR'S basic idea, real numbers can be described by convergent rational
sequences. Two rational sequences (r,,) and have the same (real) limit,
if and only if the sequence of their differences — converges to zero.
It is natural therefore to define the real numbers as equivalence classes of
convergent rational sequences; two sequences being equivalent when their
difference sequence converges to zero. For this definition to be meaningful,
the convergence of a sequence has to be characterized without making use
of its limit. This can be done with the help of Cauchy's criterion, which
will be used to define the sequences concerned.

A sequence (r,,) of rational numbers is said to be a fundamental sequence
or Cauchy sequence, if, for every rational e> 0, there is an index k, such
that I?m — ri,I < e for all m,n � k.

The rational sequence (ri,) is said to be rationally convergent if there is
a rational number r, such that for every e > 0, there exists an index k,
with — r( <c for all n /c. In that case r is defined uniquely, and one
writes r = urn Every rationally convergent sequence is a fundamental
sequence.

On the other hand there are fundamental sequences which do not con-
verge rationally. Every decimal fraction provides an example,
for example, the one for v'2, where

= 1; r1 = 1.4; r2 1.41; r3 = 1.414; r4 = 1.4142;...

To give another example, where the law for formation of the terms of the
sequence is shown explicitly, we consider the continued fraction for the ratio
4(1 + corresponding to the golden section (see, 1.1). This continued
fraction is defined recursively by the sequence r0 = 1, = 1+ j-.fr. To
prove that this is a fundamental sequence, we shall show that — <
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— For

1 1 1 '\= 1+ — i+rn_i) =
and r, � 1. It follows therefore, by complete induction, that

I — < — rol =

and hence

— — rfl+k_iI + Irfl÷k_i — rfl+k_2I + + —

+ 2—n—k—i + + 2_n_i

For any given c> 0, we can choose I so that 2_Z e. Consequently —

<e for all n � 1 and all k.

3. The Ring of Fundamental Sequences. The set F of all fundamental
sequences becomes a ring when addition and multiplication are defined
termwise:

and (rn).(sn)=(rn

It is verified as follows, that the sum and product are likewise fundamental
sequences. For any given e > 0, k may be chosen large enough to ensure that
Irm—rnl < and < for all m, n k. Then Irm+8m—Tn—snl �
Irm — + IBm — <c. In the case of the product we first use the fact
that fundamental sequences are bounded so that there is a c 1, such that

<c. For any given e> 0, we choose k large enough to ensure that

Irm — IBm — Sf1 < for all m,n � k. Then

I — = Irm(sm — + sn(rm —

le lc

Q can be embedded as a subring in F by associating with each r E Q the
constant sequence (r,r,r,. .

4. The Residue Class Field F/N of Fundamental Sequences Mod-
ulo the Null Sequence. A rational sequence (re) is said to be a null

sequence when urn = 0. The set N of null sequences is an ideal in F, or
in other words, (1) if (rn) and (8,,) are null sequences, then so is +
and (2) if(r,,) is a null sequence and (se) any fundamental sequence, then

(r,, . is a null sequence.

Two fundamental sequences are said to be equivalent if their difference
is a null sequence. (The reader should check that this does in fact define an

equivalence relation.) The equivalence class represented by (r,,) is (r,,) +
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N := + ha): (ha) N). It is called the residue class of modulo N.
As N is an ideal, the residue classes can be added and multiplied: ((r,,) +

= and = (r.,
The set F/N of residue classes in this way constitutes a commutative ring
with unit element. It contains Q as a subset, where we identify each rational
r with its associated class of constant sequences modulo N.

Theorem. The residue classes of the fundamental sequences modulo 1/ic
null sequences form a field F/N.

Proof. For every )+ N with (rn) N we have to be able to define a class
which is its multiplicative inverse. The obvious candidate is (1/rn) + N.
However, for this we need to have 0. In point of fact we are entitled to
assume this. Since (rn) N, only a finite number of terms of the sequence
are equal to zero. We replace these by I. This does not alter the class of
(rn) + N. We now have to show that (1/re) is a fundamental sequence:
since (re) N and all are nonzero, there is 6 > 0 such that > 6 for
all n. For any given c > 0 we choose the index k large enough to ensure
that frrn — ml <62€ for all m,n � k. Thenii
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Following CANTOR we now define the field of real numbers as
F/N. 0

5. The Completely Ordered Residue Class Field F/N. A rational
fundamental sequence (rn) is said to be positive if there is a rational c > 0
such that > c for almost all (that is, for all but a finite number of) indices
n. Let P be the set of positive fundamental sequences. Clearly P + N C P,
P + P C P and P P C P. The set F of all fundamental sequences can be
expressed as a union of disjoint subsets F = —PUNUP. We can therefore
obtain a well defined total ordering on F/N by defining

(re) +N � ifand only if —sn) PUN.

The sum and product of positive elements in F/N are themselves positive.
On the subset Q C F/N, the ordering coincides with the usual ordering of
the rational numbers.

It follows from the definition of positive rational fundamental sequences
that for every p F/N with p > 0, there is an r E Q, with 0 < r < p.
It makes no difference, therefore, to the definition of convergence in F/N,
whether one allows all positive F/N, or only those that belong to Q.
It is equally true that for every a F/N there is an a E Q, with a a.
(This is trivial for a < 0, and if not one can choose an r E Q, such that
0< r and takes =
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The ordering of F/N is Archimedean, for if a, are both positive and
belong to F/N, a natural number n such that no > can be found in the
following manner. We chooee a, b E Q, such that 0 < a < a and < b.
Since Q is Archimedically ordered there is an n such that no > b, and thus
na�

The field F/N was so constructed that (1) every p F/N is the limit
of a rational sequence (re) and (2) every rational fundamental sequence in
F/N converges. We can improve (2) to the following.

Theorem. Couch ys criterion for convergence is valid in F/N. A sequence
in F/N converges if and only if the following condition is satisfied: for

every c > 0 there is an index k, such that

IPmPnI<E forall m,n�k.

Proof. By (I) there is, for every an Q, such that — <
Then (re) is a fundamental sequence: for any given C > 0 we choose the
index k so that and PPm — M for all m, n k. Then

11 1
Prm—rnl<Irm—pml+Ipm—pnl+Ipn--rn(<

By (2) the sequence (re) converges to a p F/N, and hence also
converges to p, because to any given e > 0 one can choose the index I
sufficiently large to ensure that < and ti' — < for all n I and
thus Ip— —pet < £ for alln �l. 0

Numerous different formulations for the completeness of totally ordered
fields will be given in 5.2 and compared with one another. In particular
it will emerge among other things that the completeness axiom (R3) is
equivalent to the assertion that the ordering is Archimedean and that the
Cauchy criterion for convergence holds. Thus the Cantor field F/N satisfies
all tile azioms for the real numbers. Any two fields satisfying these axioms
will be shown in 5.3 to be canonically isomorphic. In particular therefore
F/N is isomorphic to the field of Dedekind cuts.

§4. NESTING OF INTERVALS

1. Historical Remarks. The idea of fitting intervals, one within another,
to form a so-called nest of intervals is an old one and is found above all in
applied mathematics in connection with the calculation of approximate
values. In Babylonian times, we already find the sexagesimal fractions
l;25 = 1 + and 1;24,51,10 = 1 + + + as approximations
for (see, NEUOEBAUER AND SACHS [20J, p. 42). These can be obtained
by the following general process for enclosing within smaller and smaller
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intervals, which is applicable to any a> 1:

a>
1 a

20 = 1)> —,
20if a\ a

= — I > —,
201

if a'\ a

In fact, when a = 2, we obtain the values 20 = = 1;30, 21 = + =
= 1;25 and 22 = + = = 1;24,51, 10. However, the general

process is not explicitly given as such in the Babylonian texts, so that
we are relying on a plausible assumption. This process can be regarded
as an application of the proposition that the geometric mean lies between
the harmonic mean and the arithmetic mean: < < to the
particular case b = 1. This was already known to the Pythagoreans, as a
fragment from ARCHYTAS OF TARENTUM shows (see BECKER [2], p. 78 ei
seq.).

The determination of the area of a circle as lying between those of in-
scribed and circumscribed polygons is another example of the nesting of
intervals. It was STEVIN wh around the year 1594 used the technique of
calculating with decimals and defined a real number by the nesting of in-
tervals (see, 1.3). in the 19th century nested intervals were used in proving
some of the central theorems of analysis. An attempt to define real num-
bers by certain sequences of intervals in order to prove CAUCHY'S criterion
for convergence goes back to BOLZANO [4]. WEIERSTRASS [24] uses the
nesting of intervals to prove his theorem on limit points (the theorem that
a bounded infinite set has a limit point). Finally, BACHMANN in his Vor-
lestrngen die Tizeorie der Irroiionalzahlen (Leipzig, 1892) introduces
real numbers by systematically making use of nested intervals.

2. Nested Intervals and Completeness. The introduction of real num-
bers by means of nested intervals is motivated by the following situation.
We consider a sequence of intervals '2,.. . , on the arithmetical
line continuum (or real axis) each of which is contained within the one
which precedes it, and such that the length of 1,,, the nth interval, tends to
zero as n increases. (In the particular case of decimal intervals the length
of I,, is and the endpoints of are integral multiples of 10".) We
require that corresponding to every such sequence of nested intervals there
should exist one and only one point on the real axis which is contained in
all the intervals of the sequence:
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I I

I I

A rational sequence of nested intervals, or more shortly a rational net, is a
sequence of closed intervals [r1,, with Q, such that D for

=0. A is said to be finer than (Ia), c
I,, for alln. We say that (Ia) and are equivalent if there is a net (Jo)
which is finer than each, and we say that is a refinement of

and only if = = 4) because
= 4'] is then a common refinement. We can now define real numbers

as equivalence classes of nets. The rational numbers are embedded in these
real numbers inasmuch as to every r E Q, corresponds the equivalence class
containing the (constant) net (Ia) defined by I, : [r, r) for all n.

An example of a net of nested intervals is where := (1 +

and 4 (1 + This net defines the real number e = 2.71828
introduced by EULER, which is of fundamental importance in analysis in
the theory of the logarithmic and exponential functions (see also Chapter
5).

At this point addition, multiplication and an ordering for these equiva-
lence classes of nets ought to be defined and the axioms (R1)—(R3) stated at
the beginning of §2 ought to be verified. We shall not adopt this course, how-
ever, but instead set up a direct correspondence between nets and Dedekind
cuts on the one hand, and between nets and fundamental sequences

on the other.
Corresponding to a given net ([re, sn]) we form the sets a := (z: x Q,

and z for all n} and /3' := {y: y Q and y> for all n). 11/3' contains
a least element, we remove it and form the set 13 /3' — {min8'}. Then
(a,8) has the properties (D1)—(D4) of the Dedekind cut (see 2.1). If we
refine the net, the cut remains unchanged. Conversely, to every Dedekind
cut (a,fl) there corresponds a net with a and s, E /3. We
begin with any r0 a, /3 and proceed recursively: having obtained

Sn we form the arithmetic mean = + and define

— f if 4 G,
[rn+I,sn+1)

— jf €13.

All nets [rn, with a and /3 are equivalent. We associate (a,$)
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with the equivalence class. The two correspondences that have thus been
defined are mappings inverse to one another. If the rational numbers are
regarded firstly as equivalence classes of constant nets, and secondly as
rational cuts, then the former is the image of the latter and vice versa in
the correspondence which has just been described.

The direct relationship between nets and fundamental sequences rests on
the following facts: (1) every bounded, monotone sequence is a fundamen-
tal sequence. (2) to every rational fundamental sequence (an) corresponds
a monotonically increasing rational sequence (re) and a monotonically de-
creasing rational sequence (sn), such that — and — are null
sequences. Now if ([rn, is a given net of nested intervals, (rn) and (se)
are fundamental sequences, and — is a null sequence. If the net
is refined to — r,,,) is a null sequence. The correspondence
((rn, .— (re) therefore induces a well defined mapping of equivalence
classes of rational nets of nested intervals into the Cantor field F/N of fun-
damental sequences modulo the null sequences. Conversely, corresponding
to any given fundamental sequence (an) one can choose a monotonically
increasing sequence (re) and a monotonically descreasing sequence by
the rule (2), and then ([rn, sn]) will be a net. If one had started from an-
other fundamental sequence instead of from (an) so that — an)
were a null sequence, and had then chosen (r,) and (4) by the rule (2),
then clearly ([rn, sn]) would be equivalent to 4]). We therefore have
a well defined mapping of the fundamental sequences modulo the null se-
quence into the set of equivalence classes of nets of nested intervals. This
mapping is inverse to the one described above.

The practical advantages of nested intervals over cuts or fundamental
sequences are as follows. If the real number z is described by (la) the
position of x on the number axis is fixed within defined bounds by each
4,. On the other hand with a fundamental sequence (re), the knowledge of
one still tells us nothing about the position of z. Again, the description
of z as a cut (a, /3) can result from a definition of the set a by means of
statements which say nothing directly about the position of z.

The theoretical disadvantage of using the nested interval approach is that
introducing the � relation between equivalence classes of nets of nested
intervals and verifying the field properties for addition and multiplication
is somewhat troublesome.

§5. AxIoMATIc DEFINITION OF REAL NUMBERS

While axiomatic methods were at first used only in geometry (see, EUCLID'S
Elements), it was not until comparatively recently with the publication of
HILBERT'S Grundlagen der Geometric [13] [Foundations of geometry] that
they were also used for real numbers. The axiomatic treatment that follows
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will however be based not on the system of axioms proposed by HILBERT (in
§13 of [13], where it is called "the theory of ratios," following the tradition
set by EUCLID in his Elements), but on the axioms (Rl)—(R3) of §2.

1. The Natural Numbers, the Integers, and the Rational Numbers
in the Real Number Field should all be recoverable once the latter has
been defined axiomatically by (R1)-(R3). For this purpose only (RI) and
(R2) are needed. Thus let K be a totally ordered field, or in other words
Let K satisfy the axioms (Ri) and (R2) of §2. We shall say that a subset
M c K is inductive, if 0 E M and x+ 1 M whenever x E M. For example,
K itself and the subset KF = {x:x E K, x 0) are both inductive.
The intersection N of all inductive subsets of K, is the smallest inductive
subset of K. It fulfils, with the successor function S(x) z + I the axioms
(S1)—(S3) for the natural numbers, formulated in 2.1 of Chapter 1. By the
Uniqueness theorem (2.2 of Chapter 1) the set N C K can therefore be
identified unambiguously with N.

Let Z c K be the smallest subring containing 1. By complete induction,
it follows that N c Z. Thus Z, as the smallest ring that contains N, is in a
unique way isomorphic to Z (see 3.2 of Chapter 1).

Let Q C K be the smallest subfield. It contains the smallest subring Z,
and hence Q is in a unique way isomorphic to Q (see Chapter 1, §4.2).

The ordered field K has the Archimedean properly (that is, given any two
elements a, 6> 0 in K, an n E N can always be found such that no > b) if
and only if Q is dense in K, that is to say, between any two elements x < y
in 1i, there is an r E Q, such that x < r < y.

This proposition has already been proved in one direction (when Q is
dense in K) in §3.5 (with K = F/N). Conversely, if a = 1 and b = (y—z)—1
there is an n N with (y—x)1 <n. Moreover, we can now find an m E Z,
such that? <x < and then x < < y, the last inequality
being a consequence of (y — x)-1 <in.

2. Completeness Theorem. Each of the three different methods of con-
structing the real numbers, by cuts, by fundamental sequences, and by
nested intervals, is based on a different formulation of the idea of com-
pleteness. We shall now show that each is equivalent to the completeness
axiom (R3) of §2.

Let K be a totally ordered field, that is, suppose the axioms (Ri) and (R2)
of §2 to be satisfied for K. Then the following statements are equivalent.

(a) Every subset of K that is bounded below possesses an infimum (greatest
lower bound).

(a') Every subset of K that is bounded above possesses a supremum (least
upper bound).

(b) If (a,f3) is a cut in K (that is, the axioms (D1)—(D4) of §2 are
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satisfied when elements of K instead of rational numbers are taken)
then a contains a maximum element.

(c) Every monotonically decreasing sequence, bounded Below, converges
in K.

(c') Every monotonically increasing sequence, bounded above, converges
in K.

(d) The field K has an Archimedean ordering and every fundamental se-
quence (Cauchy sequence) of elements of K converges in K.

(e) The field K has an Archsmedean ordering and for every sequence of
nested intervals 1o D Jz j ... in K, for which the lengths of
I,, converge to zero with increasing n, there exists one and only one
s lying in all the intervals

(a) and (a') are obviously equivalent: if and only if M is bounded below
is —M = {—z:z M} bounded above, and — infM = sup(—M). Similarly
(c) and (c') are equivalent. The complete equivalence of all the assertions
will follow from the implications (a) (b) —. (c) (d) —+ (e) —' (a) which
we shall prove in turn.

(a) —+ (b): The set /3 is bounded below, every a a is a lower bound.
By (a) /3 has an infimum. Since /3 has no minimum, inf/3 E a. Since a < B

holdsforallaEoandb€13,wehavea<inf/3forallaEa,thatisinffl
is the maximum of a.

(b) —. (c): Let (ba) be a monotonically decreasing sequence, bounded
below. We can define a cut (a,13) by a = {x:z <b, for all n} and /3 = {y:
there is an n such that <y). By (b) the set a has a maximum s. We can
now show that (ba) converges to s. To prove this suppose e > 0 be given,
then there is an index k such that bk < a + c because ifs + c were < b,, for
all k, we should have s + c E a, in contradiction to a = maxa. As is
monotonically decreasing, bm � b,, for all m � k, and since a <bm for Sil
m, we therefore have s < bm <bk <8+ c for all m � k.

(c) (d): The Archimedean property of the ordering of K can be proved
as follows. Let o,b be > 0, and suppose that no B for all n N. Then
(no) would be a monotonically increasing sequence bounded above, which
by (c) would converge to some a. There would therefore also be an index
k such that s — a < no < s for all n k. Between a — a and s there is
however room for only one term no of the sequence (no).

To prove that every fundamental sequence converges, we need two lem-
mas.

(1) Every sequence (as) has a monotonic subsequence.

(2) Every fundamental sequence is bounded.
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We shall postpone the proof of (1) and (2) for a moment and first show
that every fundamental sequence (an) converges. Let (an) be a monotonic
subsequence. It is bounded and hence s = exists. We assert
that s = for given any > 0, one can choose the index k so
that 1Gm — < for all m, n k, and there is then a j such that rz 2 k
and — SI < It now follows that — —an,l+ Ian, — si <c
for all n k.

Proof of Lemma (1). We shall say that the sequence (an) has a peak ak
for the index k, if for all n k. If there is an infinity of peaks then
they form a monotonic non-increasing sequence. If there are no peaks or
only a finite number of peaks, there is a last index k beyond which there
are no peaks. We begin our subsequence with = k + 1. Since
a is an n1 > n0, for which a peak,
there is an > n1, such that > and so on. We have thus found
by recursion a monotonically increasing subsequence (as,).

Proof of Lemma (2). Let (an) be a fundamental sequence. There is an
index k such that lam — < 1 for all m, n k. In particular therefore all
subsequent terms for n � k lie within the bounded interval (ak — 1, ak +
1). The finitely many initial terms a0, ... ,ak_I of the sequence obviously
also form a bounded set, and consequently the set of all terms with
n E is also bounded.

(d) —+ (e): Let ([an,bnJ) be a sequence of nested intervaLs. Then (an) is
a fundamental sequence, because, for every k and all m, n k, Gm,Gn lie
in [ak,bk], and hence lam — < — ak. Since — = 0 we can
therefore ensure that lam — < e by choosing k large enough. By (d),
8 = exists. Since (an) increases monotonely, $ for all n. As

for all k and n, we also have s < 6,, for all n, and thus s [a,,, b,]
for every n. Since b,, — a,, becomes arbitrarily small as n increases, a is
defined unambiguously.

(e) (a): Let M be a non-empty subset of K, bounded below. We
can construct a sequence of nested intervals ([a,,, 6,,]), in which all the a,,
are lower bounds of M, while none of the b,, are lower bounds of M. We
begin with any lower bound a0 and a which is not. We then proceed
recursively: having already defined [a,,, 6,,] we form the arithmetic mean
d,, = + b,,) and define

b J — f [dn,b,,J, jf d,, is a lower bound
n+1

— j [a,,, d,,], if d, is not a lower bound.

Then b,,+i — a,,+j = — so that b,, = 2"(b0 — ao). As the
ordering is Archimedean, lim(b,, — a,,) = 0. By (e) there is just one s which
lies in all the intervals [a,,,b,,j. Now c is a lower bound of M, for otherwise
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there would be an x E M with x < c, and since every < z we should
have 6,, — a,, c — a,, c — x which would contradict lim(6,, — a,,) = 0.
This c is the greatest of the lower bounds, because if 6> c were a lower
bound, we should have to have 6,, > 6 and b,, — a,, > 6 — a,, > b — c in
contradiction to lim(b,, — a,,) = 0.

The list (a)—(e) of equivalent statements by no means exhausts all the
possible formulations. One could for example also mention the HEINE—
BOREL covering property or the fact that every bounded infinite subset
contains a limit point. The student learns about these and other results, as
consequences of the property of completeness, in every introductory course
on analysis.

There are totally ordered fields in which every fundamental sequence
converges, but in which the ordering is not Archimedean. An example of
this will be given in Chapter 12 where the real numbers will be extended
to the field *R of non-standard numbers. In this extended field there are
infinitely small and infinitely large numbers, and for this reason is not
Archimedean, while every fundamental sequence is constant and therefore
convergent. Just how much the Archimedean axiom restricts the possibili-
ties is shown clearly by the following result due to HoLDER [13a], see also
CARTAN [6]: An ordered group is Archimedean if and only if it is isomor-
phic to a subgroup of the additive group of real numbers. One does not
even have to assume that the group is commutative; it follows from the
other hypotheses.

3. Existence and Uniqueness of the Real Numbers. We now show
that the axiom system (R1)—(R3) for the real numbers characterizes them
unambiguously. Let F/N be the Cantor field of fundamental sequences
modulo the null sequences.

Theorem. Every onlered field K satisfying the axioms (R1)—(R3) is iso-
morphic to F/N in one and only one way.

Proof. The mapping K —.. F/N is defined as follows. Let z be an element
of K; since is dense in K, there is a rational fundamental sequence (x,,)
with limx, = z. We set so(z) = (z,,)modN. This definition does not
depend on the choice of (x,,) because, for any other choice, say (x,) the
differences — x,, form a null sequence. As the limit is compatible with
the sum and product, is a homomorphism. Clearly maps the rationals
on to themselves, and in particular is not the null homomorphism, while
its kernel must be the null ideal, or in other words ço is injective. So far we
have used only the fact that K is Archimedean. From the hypothesis that
every (rational) fundamental sequence in K converges, it follows that is
also surjective, and hence an isomorphism.

The uniqueness of is a consequence of the following result, which is
also of interest in itself.



References 51

The field of real numbers has no automorphisms apart from the identity
mapping.

By the "field of real numbers" is here meant any field K which satisfies
the (R1)—(R3). To prove this we start from the fact that K must
contain the field Q of the rationals. Every automorphism a of K maps
Q identically on to itself, since a(O) = 0 and o(1) = 1 and it follows
therefore by complete induction that a N = IdN. As every element of Q
can be expressed in the form (a — b)/c with a,b, c E N, it then follows that
0 Q = ide.

The ordering relation in K can be defined on the basis of the field struc-
ture alone. We have z y if and only if there exists a z E K such that

= — y. It follows that every automorphi8m a is order preserving. If now
a sequence (xv) converges to z in K, the image sequence must con-
verge to a(z), or in other words a is continuous. As Q is dense in K, there
is, for every z K, a sequence in Q which converges to x. This sequence
is mapped identically on to itself by a. Regarded as an image sequence it
converges to o(z). Since a limit is uniquely defined, a(x) = z. 0

In Chapters 1 and 2, we have created starting from an infinite set, and
using the methods of set theory to construct in succession the sets N, Z and
Q on the way. The existence of Ilk is therefore assured, provided that we
accept the validity of this set theory. Expressed in other words we may say
that the axioms (R1)—(R3) are consistent (that is, free from contradiction),
provided that the set theory we have used is consistent. The problem of
the consistency of set theory is dealt with in the last chapter.
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Complex Numbers
R. Remmert1

Ex irrationalibus oriuntur quantitates imposaibiles sen
imaginariae, quarum mira est natura, et tamen non
contemnenda utiitas (LEIRNIz).
[From the irrationals are born the impossible or imaginary
quantities whose nature is very strange but whose use-
fulness is not to be despised.]

The quadratic equation x2 + 1 = 0 has no solutions in the field R of real
numbers, because every sum of squares r2 + 1 with r E It 18 positive.
A new epoch in the mathematics of modern times was inaugurated by
the recognition that this incompleteness of the real number system could
be obviated by yet another simple extension of the number domain, the
extension of It to the field C of complex numbers.

The development of the theory of complex numbers makes an impressive
chapter in the hi8tory of mathematical concepts. When they first made
their appearance at the time of the Renaissance these new numbers were
called impossible quantities (quantitates impossibiles), just as had hap-
pened earlier with the negative numbers. Mathematicians began to use
complex numbers in their calculations but at first warily and without really
accepting them. Until the end of the eighteenth century there was no pre-
cise foundation for the theory of imaginary numbers. A quantity i =
whose square i2 = —1 was negative, remained unimaginable. Nevertheless,
despite this awkward fact, from the days of BOMBELLI, and certainly from
EULER onwards, imaginary numbers were used ever more successfully and
with greater assurance. Their applicability, exceeding all expectations; the
unassailabiity of the results achieved by their use; and above all the va-
lidity of the Fundamental Theorem of Algebra (see Chapter 4), eventually
helped to ensure their full recognition, especially after their representation
as points on a plane had enabled everyone to visualize them.

The genesis of the complex numbers is described in §1 of this chapter.
In to 5 we develop the elementary theory of these numbers as far as

am indebted to the Volkswagen Foundation for the award of a research grant
during the academic year 1980/81, as a result of which the work on Chapters 3,
4 and 5 of this book was very considerably facilitated.
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can be done with oezt using the methods of analysii. In §6 we deal with the
polar coordinate representation of complex numbers

z = = IzI(cosw+isinso).

Here we have to draw upon properties of the exponential and of trigono-
metrical functions, whose proofs lie deeper. In particular we shall need x,
the ratio of the circumference to the diameter of a circle. This number x
forms the subject of Chapter 5 where it is discussed in detail.

Complex numbers provide the basis for the theory of holomorphic func-
tions. This theory is dealt with in ft. R.emmert, Theory of Complex Func-
tions, GTM/IUM 122, Springer-Verlag, 1990.

§1. GENESIS OF THE COMPLEX NUMBERS

It is almost impossible for anyone today who already hears at school about
I = being a solution of z2 + 1 = 0 to understand what difficulties the
complex (that is, imaginary) numbers presented to mathematicians and
physicists in former times.

We summarize below the important historical dates. As secondary source
material we have made use of the following books:

ARNOLD, W. UND WussiNo, H. (Herausgeber): Biographien bedeutender
Mathematiker, Aulis Verlag Deubner u. Co KG, Köln 1978

B0YER, C.B.: A History of Mathematics, John Wiley and Sons, Inc., New
York, London, Sidney 1968

CARTAN, E.: Nombres complexes. Exposé, d'après l'article allemand de E.
Study (Bonn), Encyclop. Sci. Math. edition française 15, 1908; see also
E. Cartan OEuvres II, 1, 107—247

CooLIDGE, J.L.: The Geometry of the Complex Domain. Oxford Univer-
sity Press 1924; especially Chapter I

HANKEL, H.: Theorie der complexen Zahlensysteme, Leipzig 1867
KLINE, M.: Mathematical Thought from Ancient to Modern Times, Oxford

University Press, New York 1972
MARKUSCHEWITSCB, A.!.: Skizzen zur Geschichte der Analytischen Funk-

tionen, VEB Deutscher Verlag der Wissenschaften, Berlin 1955
STUDY, E.: Theorie der gemeinen und höheren complexen Grössen, Encyki.

Math. Wiss. 1.1, 147—183, Thubner Verlag Leipzig, 1898—1904
TROPFKE, J.: Geschichte der Elementarmathematik, 4. Aufi., Bd. 1: Arith-

metik und Algebra, Vollständig neu bearbeitet von Kurt Vogel, Karin
Reich und Helmuth Gericke; Walter de Gruyter, Berlin, New York 1980

The article by CAR.TAN essentially complements the one by STUDY and
goes into greater depth.
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1. CARDANO (1501—1576). Imaginary quantities make their first ap-
pearance during the Renaissance. In 1539, Girolamo CARDANO, a math-
ematician and renowned physician in Milan, learned from TARTAGLIA a
process for solving cubic equations; in 1545 he broke his promise never to
divulge the secret to anyone. In 1570 he was imprisoned on a charge of hav-
ing cast the horoscope of Christ. In 1571 he became a of Pope Pius
V who granted him an annuity for life. (See Dictionary of Scient:fic Biog-
raphy, vol. 3.) In his book entitled Artis magnae sive de regulis algebraicis
liber unus he tries to work with imaginary roots in dealing with quadratic
equations: in Chapter 37 he boldly ascribes the solution 5 + and
5 — to the equation x(1O — x) = 40, saying: "Manifestum est, quod
casus seu quaestio eat impossibilis, sic tamen operabimus...". As the sym-
bole written down appear to be meaningless, he calls a "quantitas
sophistica" which should perhaps be translated as a "formal number."2

It is not clear whether CARDAN (to use the name by which he is usually
known in English) was led to complex numbers through cubic or quadratic
equations. While quadratic equations x2 + b = ax, where the solution is
given by the formula x = ± — b have no real roots (and are
therefore impossible equations) when a2 <4b, cubic equations z3 = px + q
have real roots which are given as sums of imaginary cube roots.3

Cardan points out in Chapter 12 that his formula

x = + — with d := (q/2)2 —(p/3)3

fails in the case (p13)3> (q/2)2. He gives examples such as the equations
= 20x + 25 and x3 = 30x + 36 (which can be derived from the identity
= (x2 — x)x + x2 by substituting 5 and 6 respectively): his formula leads

to roots of negative numbers, but the equations are not impossible because
the solutions x = 5 and x = 6 are obvious. Whether Cardan had seen this
clearly is questionable.

2. BOMBELLI (1526—1572). CARDAN'S algebra was further developed
by Rafael BOMBELLI, whose "L'algebra," published in Bologna in 1572
probably originated between 1557 and 1560. BOMBELLI, without having
thought too much about the nature of complex numbers, laid down eight

21n discussing the product (5 + — Cardan writes "dismissis
incruciationibus," meaning no doubt that the (imaginary) cross product terms
cancel each other. It is tempting to read in these words the additional meaning
given by the translation "setting aside any intellectual scruples" (from friciatus—
torture, mental anguish, etc.) and to assume that Cardan was indulging in a play
on words—but this interpretation is probably unjustified.

3Nowadays it is well known that it is impossible to solve, by real radicals, an
irreducible cubic equation over Q whose three roots are all real (the so-called
casus irredtzcthilis). For further details on this see Van Der Waerden, Algebra,
Part I, Springer-Verlag, Berlin-Heidelberg-New York, 7th ed. 1966, p. 194.



58 3. Complex Numbers

fundamental rules of computation. The last (in modern notation) is
(—i)(—i) = —1. BoMnEw carries out correctly a few calculations and
knows for example that

(2±i)3=2±lli, sothat

He applies this identity to the equation z3 = 15z + 4, where Cardan's
formula yields the solution

z= 'V2+V—121+

The obvious solution 4 is given by (2 + + (2— so that he arrives
with the help of complex numbers at real solutions. BOMBELLI was the first
to teach the art of correct formal computation with complex numbers.

3. DESCARTES (1596—1650), NEWTON (1642—1727) and
LEIBNIZ (1646— 1716). René DESCARTES in his "La géométrie" (Ley-
den 1637) brings out the antithesis between real and imaginary. He says,
in essence, that one can imagine, for every equation, as many roots as are
indicated by the degree of the equation, but these imagined roots do not
always correspond to any real quantity. Incidentally, DESCARTES candidly
confesses that one is quite unable to visualize imaginary quantities.

Isaac NEWTON regarded complex roots as an indication of the insolu-
bility of a problem, expressing himself as follows: "But it is just that the
Roots of Equations should be impossible, lest they should exhibit the cases
of Problems that are impossible as if they were possible" (Universal arith-
metic, 2nd ed., 1728, p. 193). In Newtonian times complex numbers had
not yet arisen anywhere in physics. Gottfried Wilhelm LEIBNIZ in a letter
to HUYGENS written in 1674 or 1675 (see LEIBN1Z Math. Schriften, ed.
GERHARDT, vol. 1, II, p. 12) enriched the theory of imaginaries by noting
the surprising relation

In 1702, in an article appearing in the Leipzig Acts Eruditorum, a journal
which he had founded, and the first scientific periodical to be published in
Germany4 (see also Math. Schriften, ed. GERHARDT, vol. 5, p. 357) he calls
imaginary roots . .. a subtle and wonderful resort of the divine spirit, a. kind
of hermaphrodite between existence and non-existence (inter Ens et non
Ens Amphibio). LEIRNIZ had already, by 1712, claimed that log(—1) is an
imaginary number.

4The true founder of this periodical, modeled on the Journal des Savants was
Mencke. The Acts Eruditorum ceased publication in 1782.
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4. EULER (1707—1783). This great Swiss mathematician had no scru-
ples about making use of complex numbers in his calculations but intu-
itively used them correctly and in a masterly fashion. He was already aware,
by 1728, of the transcendental relationship

1 . •iz logi = — or, what amounts to the same thing z = e 3

but he made no attempt to give a rigorous proof. In his famous textbook,
the "lntroductio in Analysin infinitorum" imaginary numbers first appear
in §30, quite suddenly and completely unmotivated. They play a decisive
role in §138 in the derivation of the "Euler formulae"

coax = + and sinx = —
2 2z

Leonhard EULER'S elementary textbook on algebra5 was first published
in 1768 in Russian in St. Petersburg and then later in a German edition in
1770 as the "Vollständige Anleitung zur Algebra" (Opera Omnia 1, 1—498,
ed. WEBER, also reprinted in English translation as "Elements of Alge-
bra" by Springer-Verlag, 1983). Euler had great difficulty in explaining and
defining just what the imaginary numbers, which he had been handling so
masterfully during the past forty years and more, really were. He points
out that the square root of a negative number can be neither greater than
zero, nor smaller than zero, nor yet equal to zero, and writes in Chapter 13,
Article 143: "it is clear therefore that the square roots of negative numbers
cannot be reckoned among the possible numbers: consequently we have to
say that they are numbers which are impossible. This circumstance leads us
to the concept of numbers, which by their very nature are impossible, and
which are commonly called imaginary numbers or fancied numbers because
they exist only in our fancy or imagination." One would smile nowadays
at such a sentence if it had not been written by the great EULER. In his
book on algebra, EULER. occasionally makes some mistakes, for example,
he argues that = = 2, because =

5. WALLIS (1616—1703), WESSEL (1745—1818) and ARGAND
(1768—1822). The first vague notions on a correspondence between com-
plex numbers and points on a plane were put forward by the English math-
ematician John WALLIS is his "De algebra tractatus," a work published in
1685. However his ideas remained muddled and exercised no influence on his
contemporaries. The first representatios of the points of a plane by complex
numbers which has to be taken seriously was proposed by the Norwegian

5Euler, who had by then already become blind, dictated the book to an amanu-
ensis who had formerly been a tailor by profession. It is said that Euler let the
text stand only when he had satisfied himself that the writer had fully understood
it (the ultimate aim of all applied didactics).
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surveyor Caspar WESSEL. WESSEL, who was self-taught, wrote a memoir
"On the analytical representation of direction—an essay" which is to be
found in the Transactions of the Danish Academy for 1798. WESSEL'S pri-
mary object was to be able to operate with directed line segments and he
thus hit upon the idea of representing them as complex numbers—not the
other way around. WESSEL introduced an imaginary axis, perpendicular to
the axis of real numbers (he wrote e for and interpreted vectors in the
plane as complex number8. He defined the usual operations for vectors and
thus for complex numbers geometrically in a perfectly satisfactory manner.
Despite its considerable merit WESSEL'S work remained unnoticed until a
French translation appeared in 1897.

A somewhat different geometrical interpretation of complex numbers was
given by the Swiss accountant Jean Robert ARGAND in his "Essai sur
une manière de représenter Les quantités imaginaires dans les constructions
géometriques." ARGAND, who like WESSEL was also an amateur, interprets

as a rotation through a right angle in the plane and justifies this on
the grounds that two such rotations, that is, the product —1,

are equivalent to a rotation through two right angles or in other words,
a reflection. (We shall describe this interpretation more fully in 6.2.) AR-
GAND's work also remained largely without influence, although in the older
literature there are frequently references to the ARGAND pLane (or ARGAND
diagram).

There are good grounds for believing that, as early as 1749, EULER had
visualized complex numbers as points of a plane. In his paper "De Ia con-
troverse entre Mrs. LEIBNIz et BERNOULLI sur les logarithmes des nombres
négatifs et imaginaires" (Mémoires de l'Académie des Sciences de Berlin
[5), (1749), 1751, 139—179; Opera Omnia, 1, Ser. XVII, 195—232) he says
(in French p. 230): . . . "In every other case the number x is imaginary: to
find it. one has only to take an arc g of the unit circle and determine its
sine and cosine. The number sought is then

x = cosg +

6. GAUSS (1777—1855). Views on complex numbers first began to change
through the influence of Carl Friedrich GAUSS. He was aware of the inter-
pretation of complex numbers as points of the complex plane from about
1796 and made use of it in 1799 in his dissertation where he proves the
fundamental theorem of algebra (see on this point, Chapter 4), though in a
carefully disguised form. In the year 1811 GAUSS wrote to BESSEL (Werke
8, p. 90): "...Just as one can think of the whole domain of real magnitudes
as being represented by an infinite straight line, so the complete domain of
all magnitudes, real and imaginary numbers alike, can be visualized as an
infinite plane, in which the point defined by the ordinate a and the abscissa
6, likewise represents the magnitude a + bi." This is the representation by
real number pairs expressed in geometric language.
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By 1815, at the latest, GAuss was in full possession of the geometrical
theory. But true dissemination of the idea of the complex number plane
did not occur until 1831 with the publication of GAUSS'S Theoria Resid-
uortim Biqtiadniticorum. Commenlatio Secttnda (Werke 2, 93-148). In the
now classical introductory review which he wrote summarizing this sec-
ond memoir ( Werke 2, 169—178) he sets out clearly his views in a manner
which overcomes all logical objections. He coins the expression "complex
number" and describes the attitude of his contemporaries to these numbers
as follows: "but these imaginary numbers, as opposed to real quantities—
formerly, and even now occasionally, though improperly called impossible—
have been merely tolerated rather than given full citizenship and appear
therefore more like a game played with symbols devoid of content in itself,
to which one refrains absolutely from ascribing any visualizable substra-
tum. In saying this one has no wish to belittle the rich tribute which this
play with symbols has contributed to the treasury of relations between real
numbers." As regards the aura of mystery which still clung to complex
numbers, he writes (pp. 177—178): "If this subject has hitherto been con-
sidered from the wrong viewpoint and thus enveloped in mystery and sur-
rounded by darkness, it is largely an unsuitable terminology which should
be blamed. Had +1, —1 and instead of being called positive, negative
and imaginary (or worse still impossible) unity, been given the names, say,
of direct, inverse and lateral unity, there would hardly have been any scope
for such obscurity." And later (after 1831, Werke 10, 1, p. 404) he says,
looking back:
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Reproduced by kind permission of the State and University Library, Göttingen.
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[It could be said in all this that so long as imaginary quantities were still
based on a fiction, they were not, so to say, fully accepted in mathematics
but were regarded rather as something to be tolerated; they remained far
from being given the same status as real quantities. There is no longer any
justification for such discrimination now that the metaphysics of imaginary
numbers has been put in a true light and that it has been shown that they
have just as good a real objective meaning as the negative numbers.]

It was the authority of GAUSS that first removed from complex num-
bers all aura of mysticism: his simple interpretation of complex numbers as
points in the plane freed these fictive magnitudes from all mysterious and
speculative associations and gave them the same full citizenship rights in
mathematics as those enjoyed by the real numbers. "You have made pos-
sible the impossible" is a phrase used in a congratulatory address made to
GAUSS in 1849 by the Collegium Carolinum in Brunswick (now the Tech-
nical University) on the occasion of the 50-year jubilee of his doctorate.
The German Post Office issued a stamp in 1977 illustrating the Gaussian
number plane to celebrate the bicentenary of his birth.

7. CAUCHY (1789—1857). The French mathematician Augustin-Louis
CAUCHY did not regard the geometric interpretation of complex numbers
as the last word on the subject. He wrote in 1821, in his "Cours d'Analyse
de l'Ecole Itoyale Polytechnique": "On appelle expression imaginaire toute
expression symbolique6 de Ia forme a, b désignant deux quantités
réeiles ... toute equation imaginaire n'est que Ia representation symbolique
de deux equations entre quantités réelles." [We call an imaginary expres-
sion, any symbolic expression of the form a + where a, 6 denote
two real quantities ... Every imaginary equation is only just the symbolic
representation of two equations between real quantities.) (Oeavres 3, 2
Ser., 17—331, p. 155). This conception of imaginary expressions as symbolic

6Cauchy also tries to explain what a symbolic expression is. He says (p. 153):
uEn analyse, on appefle expression symbolique ou symbole toute combinaison de
signes algébriques qul ne signifie rien par elle-méme ou a laquelle on attribue
une valeur différente de ceile qu'elle doit naturellement avoir." Hankel, who in
1867, in his book "Theorie des coinpiexen Zahiensysteme" was wrestling with the
metaphysics of the foundations of mathematics, called this amazing definition a
Gaukelspiel (conjuring trick or illusion) and (p. 73) a golimatias (a meaningless
jumble of words, nonsense). Incidentally the origin of this word is unknown, but
according to Meyers Ens. Lexik. 1973, it is probably compounded from the low
Latin galli a term used for certain disputants at the Sorbonne, and the Creek

(learning). He writes, somewhat aggressively (p. 14): "Ich glaube nicht
zu viel zu sagen, wenn ich dies em unerhörtes Spiel mit Worten nenne, dan der
Mathematik, die auf die Kiarheit und Evidens ihrer Begriffe stolz ist und stolz
sein soil, schlecht ansteht." [1 do not think I am exaggerating in calling this an
outrageous play on words, ill becoming Mathematics, which is proud and rightly
proud of the clarity and convincingness of its concepts.]
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representations of two real numbers is, in contrast to GAUSS'S geometric
interpretation, purely algebraic.

CAUCHY was still, in 1847, and thus long after HAMILTON (see next
paragraph) unsatisfied with the interpretation of the symbol i. In a note in
the Comptes rendus entitled "Mémoire sur une nouvelle théorie des imag-
inaires, et stir les racines symboliques des equations et des equivalences"
(Oetivres 10, 1 Ser., 312—323) he gives a definition which makes it possible
"...à réduire les expressions imaginaires, et Ia lettre I cUe même, è. n'être
plus que des quantités réelles." Using the concept of equivalence (with an
explicit reference to the work of GAUSS on classes of quadratic forms) he
now interprets computations involving complex numbers as computations
with real polynomials modulo the polynomial X2 + 1. In modern terminol-
ogy this is equivalent to interpreting the field C of complex numbers as the
splitting field of X2 + I that is, C = IR[XJ/(X2 + 1). CAUCHY thus proves
here a special case of what is now known as KRONECKER'S theorem, the
theorem that for every (abstract) field K and every irreducible polynomial
/ E K[X] the residue class ring L = K[X]/(f) is a finite extension field of
K, in which f has at least one zero.

8. HAMILTON (1805—1865). However helpful the geometric interpre-
tation of complex numbers as points, or vectors on a plane may be ("seeing
is believing"), a geometrical foundation for computation with such numbers
is not entirely satisfactory ("On ne cherche pas a voir, mais a. comprendre").
The important (if now seemingly trivial) step to the formal definition as an
ordered paIr of real numbers stilL remained to be taken. This first occurred
in 1835 through Sir William Rowan HAMILTON, probably in the course of
the preliminary studies preceding his discovery of quaternions. In his work
with the strange title7 "Theory of Conjugate Functions, or Algebraic Cou-
ples, with a Preliminary and Elementary Essay on Algebra as the Science of
Pure Time" (Math. Papers 3, 3—96) is to be found (p. 81) for the first time
the definition of complex numbers as ordered pairs of real numbers. HAMIL-
TON defines addition and multiplication in such a way that the well-known
arithmetical laws (the distributive, associative and commutative laws) re-
main valid. We shall be following HAMILTON'S example when we introduce
complex numbers in 2.1. GAUSS, in a letter of 1837 to Wolfgang BOLYAI,
says that the representation by ordered pairs had already been familiar to

TThis remarkable title owes its origin to Kant. Real numbers at that time
were usually defined as the ratio of the length of a line segment to that of a
given unit tine segment. Now Kant had said that geometry belongs to space,
and arithmetic—and therefore numbers—to time. Accordingly Hamilton, with
Kant's perception of numbers in mind, defined numbers as ratios of time intervals.
Naturally, from a purely mathematical standpoint, nothing was gained by this,
but it is interesting to note that, long before Weierstrass and in ignorance of
Boizano, he sought to give a new definition of real numbers.
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him since 1831.

9. Later Developments. Complex numbers during the last century be-
gan their tempestuous and triumphant march through every field of math-
ematics. For Bernhard RAEMANN (1826—1866) they are already a matter
of course. In his 1851 Gottingen inaugural dissertation "Grundlagen für
eine aligemeine Theorie der Funktionen einer veränderlichen complexen
Grösse" (Werke 5-43) he philosophizes (pp. 37,38) "Die Einführung der
complexen Gröflen in die Mathematik hat ihren Ursprung und nächsten
Zweck in der Theorie einfacher durch Grôfienoperationen ausgedrückter
Abhängigkeitsgesetze zwischen veränderlichen Gröflen. Wendet man diese
Abhängigkeitsgesetze in einem erweiterten Umfang an, indem man den
veränderliclien Gröl3en, auf weiche sie sich beziehen, complexe Werte gibt,
so trjtt elne sonst versteckt bleibende Harmonie und Regelmäfiigkeit her-
vor." fThe original purpose and immediate objective in introducing com-
plex numbers into mathematics is to express laws of dependence between
variables by simpler operations on the quantities involved. If one applies
these laws of dependence in an extended context, by giving the variables
to which they relate complex values, there emerges a regularity and har-
mony which would otherwise have remained concealed.] On the other hand,
in 1854, the 23-year-old mathematician Richard DEDEKIND (1831—1916),
who was a friend of RIEMANN'S and who, in the words of BELL (Men of
mathematscs, p. 518) "... occupied a relatively obscure position for fifty
years while men who were not fit to lace his shoes filled important and influ-
ential university chairs," judged the position differently. In his habilitation
presentation8 at Göttingen at which GAUSS was present (Math. Werke 3, p.
434), DEDEICIND said "Bis jetzt ist bekanntlich eine vorwurfsfreie Theorie
der imaginären... Zahlen entweder nicht vorhanden, oder doch wenigstens
noch nicht publiziert." [Until now we have had available no theory of com-
plex numbers entirely free from reproach... or at least none has so far been
published.]

Complex numbers soon begin to be used in Physics as well. Already
in 1823 FRESNEL used complex numbers in his theory of total reflection
(published in 1831). Nowadays physicists think nothing of talking about
complex-valued physical objects: the basic equations of quantum mechanics
are written, without any compunction, in the form:

h
pq — qp = i—, =

Complex numbers have also long been used in electrical engineering; the
electrical engineer writes j instead of i (as i is reserved as the symbol for
current intensity). It is a little known fact that one of the first comput-
ers ever built was a "complex number computer" to multiply and divide

8The oral thesis presented at German universities to qualify as a lecturer.
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complex numbers. It was developed during the years 1938 to 1940 by the
engineer STIBrrz in the Bell Telephone laboratories, and thus before ZUSE'S
programmable computer, and before the ENIAC in Princeton. Admittedly
STlBrrz's machine, which worked with relays, was not a program-controlled
machine. It was used successfully from 1940 to 1949 on network analysis
computations, particularly on telephone switching problems.

The nurneri impossibiles have thus during the course of the last few
centuries taken a firm place in science and engineering; they are used con-
fidently and consistently in calculations, without fear of encountering any
contradictions, and mathematicians no longer worry about such philosoph-
ical questions as the ens or non-ens of i =

§2. THE FIELD C

We shall introduce complex numbers9 following HAMILTON (see 1.8), as
ordered pairs of real numbers. They form a commutative, 2-dimensional
extension field C of the field R. There is an element i C with i2 + 1 = 0,
and every complex number z can be written uniquely in the form z + iy,
with x, y E R. Complex numbers can also be described elegantly as real
2 x 2 matrices.

I. Definition by Pairs of Real Numbers. The set IR x R of all ordered
pairs of real numbers z := (x,y) is an Abelian group with respect to the
natural addition defined by

(1) (Xi, yi) + (z2, y2) := + Z2, 3/I + 3/2).

We introduce a multiplication in R x R by the definition

(2) (z1,y1) . (x1x2 — + y1x2)

which may at first sight appear to be rather artificial. It can then be easily
verified that the commutative, associative and distributive laws hold. The
element e := (1,0) is the unit element. Direct calculation shows that if

then

z —y
Z

is the inverse of Z? that is zz1 = e.

9The adjective "complex" was first used in its present technical sense by Gauss
in 1831. Until then he had also used the word "imaginary." Bézout had earlier
used the expression complex number in an entirely different sense in his "Cours
de mathématiques I l'usage des gardes du paviHon ct de la marine. I partie.
Elements d'arithmetique" published in Paris in 1773 where, on page 105 et seq.
he uses it to denote a number involving several different units of measure, e.g.
days, hours and minutes.
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The set R x R is therefore a commutative field with respect to the laws
of composition (I) and (2). It is called the field C of complex numbers.

Since (x2,0) = (z1 + X2,0) and (z1,O)(z3,O) = (x1z310), the
mapping R C, x i—. (x,0) is an embedding of the field P into the field
C. The real number x is identified with the complex number (x, 0). Thus
C is afield extension of JR with the unit element e = (1,0) = 1. As C is a
2-dimensional real vector space, C is of degree 2 over R in the language of
algebra.

The set C\{0} of all non-zero complex numbers is denoted by Cx. cx jg

an Abelian group with respect to multiplication in C, whose neutral element
is the unit element 1 (the multiplicative group of the field C).

One can motivate the particular definition of multiplication in (2) by the
following considerations. In the JR-vector space JR2 with the natural basis
(1,0), (0, 1) the first vector is to represent the unit element, and the second
vector should have the property that its square is the negative of the unit
element, in other words we require (0,1)2 = —(1,0). It then follows, if the

ordinary laws are to hold, that

(xl,yl)(x2,y2)=[xl(1,0)+yl(0,1)][x2(1,0)+y2(0,1)]
= xix2(1, 0) + (x1y2 + yjz2)(0, 1) + YLY2(O, 1)2

= (x1z2 — y1Y2)(l,O) + (z1y2 + 1)

= (z1x2 — y1y2,Zly2 + y1X2).

Note. The motivation for (2) is rather different with HAMU.T0N: first he
finds it suggestive to define products with real numbers by the rule
r(xi,yi) (rxi,ryi) (JR vector space structure). One then already has

(x1,y1) = xte+yie with e (1,0), c := (0,1).

Now if e is to be the unit element and the distributive laws are to hold,
then one must have

(*) (ne + yje)(x2e + = X1X2e + (t1y3 + y1X2)C +

The multiplication law is therefore determined as soon as which must
be of the form pe + qe is known. There are however infinitely many ways of
choosing p and q so that the resulting multiplication has an unique inverse.
(The reader may care to find examples.) HAMILTON therefore postulates
(as he does later in the case of his quaternions, see, 6.E.2) the product nile:
the length of the product of two factors is equal to the product of the lengths
of the factors, where the length Izi of z = (x, y) is defined as + y2.
It is then only necessary to apply this product rule to

c2 =pe+qc and (e+c)(e—c)=e—2 =(1—p)e—qc
to deduce that p = —1, q = 0 (since = IcI.IcI = 1 and Ie+cI = Ic—cl =

so that (*) becomes the same as equation (2).
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On the product rule, see also 3.4.

2. The Imaginary Unit i. one uses the notation which
has been customary since the time of EULER and which became common
practice through the influence of G*uss

i (0, 1) E C.

This symbol is often called the imaginary unit of C, and we have i2 = —1.

In the field C the real polynomial X2 + 1 has the two zeros i and —i. In
the complex polynomial ring X2 + I decomposes into linear factors.

For all z = (z, y) E C the equation (x, y) = (z, 0) + (0, l)(y, 0) holds and
we therefore obtain the usual notation for complex numbers:

z=x+iy, z,yEilt.

The real and imaginary parts of z = z + iy are defined by Rez :=
Im z := y. Two complex numbers 21, 22 are equal if, and only if, they have
equal real parts and equal imaginary parts:

21 = 22 Re 21 = Re 22 and Im Zj = Im 22.

A number z C is called real if Im z = 0, and purely imaginary if
Rez = 0, so that in the latter case z = iy. The mappings Re:C —'
Im: C are linearly independent linear forms of the R-vector space C.

3. Geometric Representation. Since the days of WESSEL, ARGAND and
GAUSS (see 1.5 and 1.6) complex numbers have been visualized geometri-
cally as points in the plane with a rectangular coordinate system (Fig. a).
Addition of complex numbers is then represented by the familiar vector
addition, in accordance with the parallelogram law illustrated in Fig. b.

Re
x- ax is I

Fig. a Fig. b

Multiplication of complex numbers is entirely governed by the one equa-
tion i2 = —1. It follow8 automatically (see Para. 1) that

(x1 + iy1)(x2 + i1i2) = (z1z2 — Y1Y2) + i(z1y2 + y1x2).
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The geometrical interpretation of complex numbers in polar coordinates is
no longer completely elementary and will be postponed until 6.2. 0

The unique representability of complex numbers in the form z + iy to-
gether with the equation i2 = —1, expressed in the language of algebra,
says:

The field C a 2-dimensional (algebraic) extension of the field R and is
isomorphic to the splitting field of the irreducible polynomial X3+1 E R[XJ.

We are now already in a position to prove a first uniqueness theorem for
C.

Theorem. Every 2-dimensional ring extension K of R which has a unit
and no divisors of zero is isomorphic to the field C.

Proof. Since dim1K = 2 there exists a u K \ R. Then 1 E R C K and u
together form a basis of the R-vector space K. Consequently u2 = c + 2du
with numbers c,d E R. For v := u — d R, it follows that v2 = r where
r := c + d2 E R. r must be negative because otherwise would belong
to and we should have n = E R. Accordingly there exists an s E R
with = Hence for w := sv K \ R, we have u.,2 = —1. The
mapping C K, x + iy i-.. x + wy is now a field isomorphism. 0

The foregoing theorem will be significantly generalized in 4.3.5 using the
fundamental theorem of algebra.

4. Impossibility of Ordering the Field C. The field R of real numbers
is an ordered field (see Chapter 2, §2). The field of complex numbers, on
the other hand, cannot be ordered, that is to say it is impossible to define
a relation "> 0", a relation of "being positive" in such a way that the
following two rules are both satisfied:

1) For every z E C, one and only one of the three relations z > 0, z = 0,
—z > 0 is valid.

2) Ifw>0 andz>0 lhenw+z>0 and wz>0.

Proof. Suppose there were such an ordering relation ">0" in C. Then, as
in the real case, we should have z2 > 0 for every non-zero z. In particular
we should have 12 > 0, i2 > 0 and consequently 0 = + 1 > 0, which is
absurd. 0

The impossibility of ordering C is a further reason for the difficulties en-
countered in the 18th and 19th centuries with complex numbers. Eloquent
evidence of this is afforded by the extracts from EULER'S Anleitung zur
Algebra quoted in 1.4.
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5. Representation by Means of 2 x 2 Real Matrices. Instead of pairs
of real numbers, real 2 x 2 matrices can be used for introducing complex
numbers. With every complex number c = a + ib we associate the C-linear
mapping

(the so-called left regular representation as defined in Algebra). This spec-
ifies more precisely, and generalizes, AROAND'S interpretation of complex
numbers. Thus, for example, the linear transformation z iz correspond-
ing to i is the counterclockwise rotation through one right angle, which
sends I into i,i into —1, and so on (see also 1.5). If one identifies C with

R2 by z = x + iy
= (i'), then it follows that

—b\(x

The linear transformation determined by c = a + ib is thus described by

the matrix One is thus led to consider the following mapping

F:C—iMat(2,R),

of the field C into the non-commuiative ring Mat(2, R) of real 2 x 2 ma-
trices (forgetting the motivation via Ti). This mapping is R-linear and
multiplicative, that is

F(rc+r'c') = rF(c)+r'F(c'), F(cc') = F(c)F(c'), r,r' ER; c,c' E C

where F(c)F(c') is the matrix product. Clearly F(l) = E := and

it can be seen that:
The set C := {( _b)

:a,b R} is, with respect to the operation of

matrix addition and matrix multiplication, a commutative field whose unit
element is the unit matrix E. The R-linear transformation

a-fbi
.—e (

with I := F(i) =
(0 _.1) j2 =

is a field isomorphism; the matrix I is the "imaginary unit" in C.
Introducing complex numbers through 2 x 2 matrices has the advantage

over introducing them through ordered pairs of real numbers, that it is
unnecessary to define an ad hoc multiplication. Current textbooks do not
normally define complex numbers in terms of real 2 x 2 matrices; an excep-
tion is the book by COPSON, An Introduction to the Theory of Functions
of a Complex Variable (Oxford: Clarendon Press, 1935).
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There are infinitely many other avbfields, apart from C, isomorphic to C
in Mat(2, R). The following theorem gives a complete picture of what they
are.

Theorem. a) For every invertible real 2 x 2 matrix W the mapping

a monomorphism of real algebras (compare R.3).
b) Every R-linear homomorphism g:C —. Mat(2,R), g 0, is of the

form

Proof, a) The case W := E = the unit matrix was treated above. Since
the mapping Mat(2,R), A — is an 1k-algebra
automorphism, a) follows from the fact that = ogs.

b)ForA:=g(1),B:=g(i)EMat(2,R)wehaveA2=A,BA=AB=
B, B2 = —A. Since C is a field, g is injective, and therefore A 0. We
choose a column vector v E R2 such that w Av 0. Then
(*)

Aw=A2v=Av=w, A(Bw)=BAw=Bw, B2w=—Aw=—w.

In view of the last equation, w, Bw are linearly independent, because oth-
erwise there would be an equation Bw = Aw, with A E 1k, and this would
lead to the contradiction A2 = —1. The matrix W := (w, Bw) Mat(2,llk)
is thus invertible, and by (*) it follows that AW = W, whence A = E, and

furthermore BW = (Bw, —to) = (to, Bw) (? = WI It has thus

been shown that g(1) = E = g(i) = = From the
1k-linearity of g and g = g,,,. 0

(2 3\By way of example, forW:= 2) wehave

IIa+8b —13b\ 1

5b

(8 —13\. . .in this example
8 )

is the imaginary unit.
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§3. ALGEBRAIC PROPERTIES OF THE FIELD C

The field C possesses the conjugatton automorphism C —. C, z which
is fundamental in many contexts.

The scalar product (w, z) in C, and the associated absolute value function
itt can be introduced by

(w, z) Re(wi) = ux + vy, : = y2,

where w = ii + iv, z = x + iy. With the help of the function izi it will
be shown in §5, by elementary arguments, that every quadratic equation
x2 + az + b = 0, a, b C is solvable in C. This statement is a first indication
that the field C is more "complete" than the field 2. The theorem on the
solvability of all quadratic equations in C was already known long before
EULER; it is a particular case of the famous and profound fundamental
theorem of algebra which states that every non-constant polynomial with
complex coefficients has at least one zero. This theorem will be discussed
in Chapter 4.

1. The Conjugation C —+ C, z i—p 1. As is well known, the field 2 has
no automorphism apart from the identity (see Chapter 2, 5.3). In contrast
with this the field C has an infinity of automorphisms. Among them is one
which is distinguished from all others by the fact that it maps 2 onto itself,
and sends i into the second zero —i (which, in principle, has precisely the
same status) of the polynomial X2 + 1.

For every complex number z = x + ip, z, v E 2, the complex number

i : x — iy = 2 Ret — z

is known as the complex conjugate of z.1° In the Gaussian number plane i
is represented by the reflection of z in the real axis (see figure). We have

Rex = + Im z = — i), = z2 + p2 E 2, xi > 0 for z

In particular z is real if and only if z = i, and purely imaginary if and only
if z = —1.

Operations with complex conjugate numbers are governed by the follow-
ing

'°The term (conjugué) was introduced in 1821 by Cauchy in his
Cours d'analyse.
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Theorem. The conjugation mapping C C, z '—+ i, is an automorphism
of the field C, that is, 1 = 1 and

w+z=ti)+i, forall w,ZEC.

The relation i = z always holds. The fixed point set {z E C: i = z) is the
field IL

All these statements follow without difficulty from the definition of we
shall content ourselves with verifying the multiplication rule. Let w = u+iv,
z = x + iy. Then wz = ux — vy + i(vx + uy) while

= ux — vy — i(ox + uy) = (u — iv)(x — iy) = iii. 0

Exercise. Show that, for all a, 6, c, d E C with aä = = we have

(a — b)(c — d)(ã — J)(ë — + i(cë — dd)Im(cb — cã — E IL 0

The proof of the following criterion for linear independence is straight-
forward: Two numbers w, z C are linearly dependent over it, if and only
if WI E it.

The conjugation transformation can be used advantageously to describe
all it-linear irnnsformaiions T:C .— C. it-linearity means that, for z =
x + iy we have T(z) = xT(1) + yT(i). This immediately gives us:

The following assertions about a transformation T: C —. C are equivalent:

i) T is k-linear.

ii) T(z) = az + where a, 6 are constants belonging to C.

An k-linear transformation T:C —, C is C-linear if and only if T(i) =
iT(1); this applies if and only if T(z) =az.

The isomorphism F: C —' C introduced in 2.5 has the property that

= F(c)t for c C
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where the transpose of a matrix A is denoted by A'. Thus conjugation in
C is nothing else but transposition in C.

2. The Field Automorphisms of C. The mapping z h—. j can be simply
characterized.

Theorem. The conjugation mapping is the only field automorphism of C
which maps R into itself, and which is different from the identity mapping.

Proof. If f: C .—. C is an automorphism with 1(1k) C 1k, then in the first
place f(x) = z for all z 1k. It then follows that, for all z = x+iy, z,y E 1k

1(z) = f(x + iy) = f(z) + f(i)f(y) = x + f(i)y.

Since i2 = —1, we have 1(i)2 = 1(i2) = f(—1) = —1, hence 1(i) = ±i. The
case 1(i) = i gives I = id, the case 1(1) = —i gives conjugation. 0

At the beginning of this century (1901), no less famous an authority than
DEDEKIND wrote: "die Zahien des reellen Körpers scheinen mir durch die
Stetigkeit so unlöslich miteinander verbunden zu scm, daB ich vermute, er
könne aufier der identischen gar keine andere Permutation [= Automor-
phismus] besitzen, und hieraus würde folgen, daB der Körper aller Zahien
[= Körper C] nut die beiden genannten Permutationen besitzt. Nach eini-
gen vergeblichen Versuchen, hierüber Gewifiheit zu erlangen, habe ich diese
Untersuchung aufgegeben; urn so mehr würde es mich erfreuen, wenn em
anderer Mathematiker mit eine entscheidende Antwort aufdiese Frage mit-
teilen woilte." (Math. Werke 2, S.277). [The numbers of the real field seem
to me to be so inextricably connected to one another, that I would con-
jecture that this field has no automorphism other than the identity; and
it would follow from this that the field of all numbers (the field C) would
possess only the two above-mentioned automorphisms. After a few unsuc-
cessful attempts to establish this proposition on a rigorous basis, I have
abandoned this investigation; I would therefore be all the more delighted
if some other mathematician would let me have a decisive answer to this
question.] It is now known that there are, in fact, infinitely many other
automorphisms of C (which necessarily do not map 1k into itself). Such
mapping are constructed by appealing to the axiom of choice. No one has
yet actually seen such an automorphism. See Gr-undwissen Mathematik,
Vol. 2, Lineare Algebra und analytische Geometric, p. 44.

3. The Natural Scalar Product and Euclidean Length Izi.
The Euclidean scalar product in the real vector space C = Ilk2 is given by

(w,z) := Re(wi)=ux+vy, where w= u+iv, z= x+iy.
As = z2 + y2 is never negative, the nonnegative real square root

:= = = + y2
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always exists; it measures the Euclidean distance of the point z from the
origin in the Gaussian number plane, or in other words the length of the
vector z. The number Izi is known as the absolute value'1 of z. When z is
real, Izi coincides with the absolute value, as defined in the usual way for
real numbers. Clearly

Izi = Iii for all z E C.

Since zi = 1z12 we have the following elegant representation of the inverse

forall zECx.
Iz

The mapping C x C —i R, (w, z) —' (w, z) is lIt-bilinear, symmetric, and
positive definite, that is, for all w, w'z E C we have

(w+ w',z) = (wz)+ (w',z); (aw,z) = a(w,z), a lIt;

(w,z) = (z,w); (z,z) >0 whenever z 0;

these rules follow immediately from the definition of ( , ). D

Two vectors w, z are called orthogonal (are perpendicular to one another)
when (w, z) = 0. The vectors iz and z are always perpendicular to each
other because Re(izi) = IzI2Re(i) = 0. More generally, since E It we
have the result:

the vectors z,cz E are orthogonal if and only if c is purely imaginary.

Ic

The reader may like to use this for a simple proof of the theorem that
the altitudes of a triangle meet in a common point, the orthocenter (see
the figure above where the orthocenter is —vi).

it is amusing to interpret the scalar product in the field C of real
ía —b\2 x 2 matrices i i. We set the following as an\b

Exercise. Show that

A,BEC,

"Weierstra.ss used the term "absolute value" (absoluter Betrag) in his lectures:
until then the usual expression had been "modulus."
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is a positive-definite, symmetric bilinear form. Show that the isomorphism
F:C C is length preserving, that is, (F(w), F(z)) = (w, z). Show further
that

(A,A) = detA.

4. Product Rule and the "Two Squares" Theorem. For calculating
with absolute values we have the product rule:

jwzl = Iwlizi for all w,z E C.

To prove this we write IwzI2 = = wthzi = 1w121z12. 0

The product rule contains a famous theorem, already known to Dio-
PHANTUS OF ALEXANDRIA (Greek mathematician of the second half of the
third century A.D.).

"Two Squares" Theorem. For all u, v, x, y E R we have

(u2 + v2)(x2 + y2) = (ux — vy)2 + (uy + vx)2.

Proof. We apply the product rule to w := u + iv, z := x + iy. 0

Here complex numbers serve only to discover the two-squares theorem.
Once found it can easily be verified, by "multiplying out," that the iden-
tity is valid for any commutative ring, and in particular for the ring Z of
integers. This fact is important in elementary number theory. Thus for ex-
ample it shows that a natural number 12 > I is a sum of two squares of
natural numbers if each of its prime factors has this property. It is shown
in elementary number theory that the primes of the form ,2 + m2, with
1, m N, are just the odd primes of the form 4k + I and the prime 2.

Generalizations of the "two-squares" theorem will play an important role
in the later chapters of this book (see, for example, 6.2.3, 8.2.4 and Chapter
9). 0

The product rule implies the

division rule w E C, z E CX.

The product rule also implies, as an immediate corollary:

The set S' := {z E C: Izi = 1) of all complex numbers of unit length is
a subgroup of (CX,.) with respect to multiplication in C.

S1 is represented in the Gaussian plane by the circumference of the unit
circle centered on the origin. We shall call S' the circle group, and it will
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be used in 5.2 in defining the orthogonal group 0(C). It plays a decisive
role in the introduction of polar coordinates in §6.

There is an important relationship between the three multiplicative groups
CX,Sl

The mapping —i x S1, z (izi,z/izI is a (topological) isomor-
ph*sm of the (topological) group CX onto the product of the (topological)
groups and S'.

Exercise. Let c S1. Show that there is a w {1,—1, i, —i) such that
fc— WI < 1. (See also 4.2.4 in this connection.)

5. Quadratic Roots and Quadratic Equations. To every real number
r � 0, there is precisely one real number s 0 such that. = r; a is called
the nonnegative square root of r, and is written as (this fact has already
been used in the definition of izi). It is not possible to extract a real square
root. from a negative real number. With complex numbers the situation is
better.

Existence Theorem. Let c = a + ib where a, 6 E R, be any complex
number. Let be defined by

(1) := + a) + — a)

where := ±1 with the sign chosen so that 6 = vilbI. Then = c.

The proof is straightforward. We arrive at (1) automatically by starting
from the equation (x-f-iy)2 = a+ib which is equivalent to the two equations

— = a, 2zy = b. It follows, since x2 + y2 = fri1 that 2x2 = id + a
and 2y2 = id — a, thus verifying (1). As in the real case, the number is
called a square root of c and is denoted by Apart from the only other
square root of c is The symbol is therefore two-valued.

All quadratic equations, in standard form

z2+2cz-4-d=0, c,dEC,

can now be solved immediately. Using the age-old trick of the Babylonians,
the device of completing the square, the equation becomes

(z-4-c)2+d—c2=0

whose two solutions z1, z2 can be read off at once:

z1 z2 := —c—
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where — d in both cases denote the same square root. One obtains the
linear factorization

z2+2cz+d=(z—zi)(z—z2)

and in particular the well-known rule taught at school.

Vieta's Rule.'2 + = —2c, z1z2 = d.

In 6.3 we shall give the solution of quadratic equations in polar coordi-
nates.

In 5.2 we shall use the proposition:
To every number c = a + ib E S' with a � 0 there exists a E 5' such

(1') = c and <

Proof. Let be chosen to satisfy (1). Since = id = 1, E S'. Since
1 = a2+62 and a a2 asO <a <1, it follows by (1) that =
1 — a < 1 — a2 = b2, which is equivalent to (1'). 0

The existence theorem for square roots has some unsuspected conse-
quences. We give a first sample in the next paragraph.

6. Square Root8 and nth Roots. Let n � 1 be a natural number, and
let c E C. Every complex number such that r = c is called an nih root
of c. The existence theorem 5 is so powerful that the existence of nth roots
can be speedily deduced from it.

Theorem. Every complex number c has nih roots for 1 � n <oo.

Proof. We use induction on n and make use of the proposition

(i) Every real polynomial of odd degree has a real root, that is, it vanishes
for some real value of the variable (by the intermediate value theorem) and
in particular every number r R has a (2m+ 1)th root in K, m = 1,2

By Theorem 5 the proposition is true for n = 2 (it is trivial for n = 1).
Suppose n > 2. In the case n = 2m, there is in the first place an E C

12Francois Vieta (1540—1603, Paris, Government official) introduced calculation
with letters as symbols for numbers, using vowels for unknown and consonants
for known quantities.
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such that = c. Since m < n, there is then, by the inductive hypothesis,
a E C such that = q. It follows that = c.

Now suppose n to be odd. Because of(*) we may assume that c lit and
id = 1. We choose a d E C such that d2 = c. Then dd = 1. Consider the
polynomial

p(X) := i[1(X + — d(X — = i(d— d)X'1 + lower order terms.

Since = p(z) for all z E lit, p 18 a real polynomial. Since d lit, p has
the odd degree n. By (s) there is therefore a ..\ E lit such that p()i) = 0.

We conclude

hence 0\.)—zJ d

The theorem can also be formulated as follows:

Every polynomial in C(z) of the form z" — c of degee n � 1 has a complex
zero.

This is an important special case of the fundamental theorem of algebra.

Historical Note. The existence of nth roots is usually shown with the help
of the complex exponential function, see 6.4, this method being particularly
simple and economical. The fact that nth roots can be constructed in an
elementary fashion without a knowledge of the exponential function had
already been pointed out by DEDEKIND in a letter of 1878 to LwscIuTz (see
LIPSCHITZ Briefwechsel ed. SCHARLAU, Vol. 2, Brunswick, Vieweg, 1986,
p. 91). HURWITZ in 1911 beautifully demonstrated the power of the process
of (iterated) square root extraction in his method of introducing the real
logarithm function (see Uber die Einführung der elementaren Funktionen
in der algebraischen Analysis, Math. Ann. 70, 33—47; Math. Werke 1, 706—
72 1).

We shall see in 4.2 that the existence of square roots in the final analysis
leads to the fundamental theorem of algebra; we shall furthermore show
in 7.4 that the famous CELFAND—MAZUR theorem in functional analysis is
really based on nothing more than the existence of square roots and simple
topological properties of normed vector spaces.

GEOMETRIC PROPERTIES OF THE FIELD C

In this paragraph, the scalar product (w, z), the length function Izi, and
the cross ratio of four points in C, will constitute the focus of our attention.

We shall prove, among other things, PTOLEMY'S famous theorem, now
almost two thousand years old, on the diagonals of a cyclic quadrilateral,
and the theorem on the WALLACE lines. We should like to make it clear
that these particular geometric applications have been chosen on historkal
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grounds. Many other equally striking and less well known applications could
easily be found. We refer those interested to YAGLOM, Complex Numbers
in Geometry, New York, Academic Press, 1988.

1. The Identity (w, z)2 + (1w, z)2 = 1w121z12. Since we always have
Re(iz) = —Im z, it follows that (iw, z) = —Im wi. We can therefore de-
duce, with the help of the product rule 3.4 the following useful identity

(1) (w, z)2 + (1w, z)2 = 1w121z12, w, z E C.

Proof. (w,z)2 + (iw,z)2 = (Rewi)2 + = = 1w121z12. 0

As a corollary we obtain

The CAUCHY-SCHWARZ Inequality. J(w,z)I � Iwl Izi for all w, z E C with
the equality sign applying if and only if w, z are linearly dependent.

Proof. The inequality is implicit in the identity (1), which also im-
plies that there is equality when (iw,z) = = 0, that is, when
wiElL 0

We give a second proof which uses the product rule and the inequalities
IFtezj � IzI, IlmzI < z C which clearly follow from the respective
definitions. We have I(w, z)I = (Re(wi)I < = Iwl = Iwl IzI from
which we deduce that IR.e(wi)I = if and only if IL

2. Cosine Theorem and the Triangle Inequality. Just as for every
scalar product, we have

1w + z12 = 1w12 + 1z12 + 2 Re (wi) (cosine)

Proof. Thanks to the additivity and symmetry of (w, z) we have

1w + = (w + z, w + z) = (w, to) + (w, z) + (z, w) + (z, z)

= 1w12 0

We shall return to the cosine theorem in 6.2, where the reason for the
choice of name will be explained. With the help of the CAUCRY—SCHWARZ
inequality one can prove the

Triangle Inequality. For all w, z E C, we have 1w + zI � Iwl + Izi. The
equality sign applies if and only if Wi 0.

Proof. + z12 = 1w12 + 2(w, z) + 1z12 � 1w12 + Izi + 1z12 = (IwI +
lzI)2. By the CAUCHY—SCHWARZ inequality I(w, z)I = IwI IzI wE JR.

Consequently the case (w, z) = Iwl Izi applies if and only if wE > 0.

A mapping II: K —i JR of a (commutative) field K into JR is called a
valuation of K, when, for all w, z E K, the following relations hold:
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1) IzI�0,
2) = IwI Izl (Product rule)

3) Iw+zI + (Triangle inequality).

A field together with a valuation is called afield with valuation. The fields Q
and R are fields with valuation. We have seen that C can be provided with
a valuation, by means of the absolute value function II:C —' R, z —. Izi,
and that this valuation is an extension of the valuation of R by means of
the absolute value.

A subtle interplay between the absolute value function and the field
operations is revealed in the following

"Three-party" Theorem. Let zj, z2, Z3 be three distinct complex num-
bers such that Izil = 1z21 = fzsI. Then the following statements are equiva-
lent:

i) z1, z2, z3 are the vertices of an equilateral triangle

ii) z1 + z2 + z3 = 0

iii) z1, z2, z3 are the roots of an equation Z3 = c where CE C.

If one thinks of z1, z2, as political parties, interpreting equal in length
as equal in strength then the implication (1) to (ii) provides the motivation
for the name of the theorem.

The proof may be left to the reader. It can be reduced to the case
Z1Z2z3 = 1, and to prove ii) iii) one can consider the expression z1z2z3(i1+
Z2+Z3). 0

Ifone defines the centroid of a triangle with vertices z1, z2, as the point
+ z2 + z3), the equivalence of i) and ii) asserts that the centroid of

a triangle is at the center of its circumcircle if and only if the triangle is
equilateral.

In analogy with the foregoing, if z1,z2,z3,z4 E C and Izil = =
the following three statements are equivalent:

i) z1,z2,z3,z4 are the vertices of a rectangle.

ii) z1+z2+zs+z4=O.

iii) . , z4 are the roots of an equation (Z2 — a2)(Z2 — b2) with lal =

3. Numbers on Straight Lines and Circles. Cross-Ratio. Two num-
bers a,b C lie on astraight line through 0, if and only if ab R (see 3.1).
More generally:
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Three numbers a,b, c E C, a b, are collinear if and only if

(1) ER, that is, if and only if lit

The proof is trivial because the line through a, & has the parametric
representation a + (b — a)s, $ E R. 0

If a,b,c,d R with a d, 6 c, then the cross-ratio or anharmonic
ratio, denoted by CR(a, 6, c, d) is defined by

'2' CR' b d'
a — 6 c — 6 — (a — b)(e — d)

—

— )a—dI2lc—b12

This number depends on the order of the four points, a, 6, c, d. The recip-
rocal value is obtained when the points undergo a cyclic permutation:

CR(b,c,d,a) =

We now prove:

Theorem. Four numbers a,b,c,d E C, a d, b c, not all on the same
straight line, lie on a circle if and only if their cross-ratio is real.

Proof. Suppose say that a, 6, c are not collinear. Since this property and the
cross-ratio are both translation invariant, we may assume that the center of
the circumcircle of the triangle with vertices a, b, c lies at the origin. Then
IaI=IbI=lcland

(a — b)(c — d)(ã — d)(ë — + i(1c12 — )Im(c6 — cã — a6) E R

by exercise 3.1. Since a,b,c are not collinear, cü— 0 by (1).
It follows therefore that

(a — b)(c — d)(ã — J)(i — 1) R id = Idi

and by (2) this is what the theorem asserts. 0

In the theory of fractional linear transformations z the cross-
ratio plays a central role. In this theory the argument z is allowed to assume
the value Co. The cross-ratio is invariant under all fractional linear trans-
formations, and this makes possible a new proof of the preceding theorem.
See, for example CONWAY, Functions of One Complez Variable, Springer,
1978, p. 43.

4. Cyclic Quadrilaterals and Cross-Ratio. Any four distinct points
a, b, c, d E C define a quadrilateral a&cd in C with vertices a, 6, c, d, whose
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sides are the line-segments joining a to b, b to c, c to d and d to a. A
quadrilateral is said to be cyclic when its vertices all lie on a circle and
when two different sides intersect in a vertex, if they intersect at all. (The
figure in the next paragraph illustrates a cyclic quadrilateral abcd; the
quadrilateral abcd which would be obtained by interchanging the vertices
b and c would not he a cyclic quadrilateral.)

Theorem. A quadrilateral abed is cyclic if and only if the cross-ratio
CR(a, 6, c, d) is negative.

Proof (using a continuity argument). Let 5' be the given circle. The
squares Q, Q' whose vertices are respectively the points 1, i, —i, —i and 1,
—i, —1, i are cyclic and the cross-ratio of their vertices is —1. It is "obvi-
ous" that a quadrilateral V can be obtained from Q or Q' by a continuous
displacement of the vertices along the circumference of S1 in such a way
that two vertices never coincide during the displacement.

Since the cross-ratio of four different points on S1 is, by Theorem 3, a real
number and since it is a continuous non-vanishing function of its arguments,
it follows from the intermediate value theorem that a quadrilateral with
vertices a, 6, c, d E S' is cyclic if and only if CR(a, b, c, d) < 0.

5. PTOLEMY's Theorem. The Egyptian mathematician Claudius
PTOLEMY (Alexandria, circa 150 A.D.) proved in his Almagest, Book 1,
Chapter 10 the following theorem which is still occasionally discussed in
school geometry:

In any cyclic quadrilateral abcd Ike sum of the products of the opposite
sides is equal to the product of the diagonals

Ia—bIIc—dI+Ia—dtIc—bIfri—cIIb—dI.

PTOLEMY made this theorem serve Astronomy and used it as a tool in
the computation of his famous table of chords. If, in fact, one of the sides
is a diameter, then it is an easy matter to derive the addition theorem

sin(a — 8) = sin a cos fi — cos a sinfl.

PTOLEMY proved his theorem by an elegant trick of elementary geometry.
He constructs a point e on the line ac so that L abe = L cbd. The triangles
abe and bed are then similar, and a simple argument then leads to the
desired conclusion. D
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d

To prove PTOLEMY'S theorem and more, with the aid of complex num-
bers, we assign to every quadrilateral abcd in C the "PTOLEMY number"

P(abcd) := I(a — b)(c — d)I + I(o — d)(c — 6)1 — — c)(b — d)I.

Since (a—b)(c—d)—(a--d)(c—b) = (a—c)(b—d) holds for every commutative
ring, and since CR(a,b,c,d) = (a — b)(c — d)(a — d)'(c — b)', a direct
verification shows that

P(abcd) = l(a — d)(b — c)I )CR(a,b,c,d)I + 1 — ICR(a,b,c,d) — 'I.

Since, by the triangle inequality — = + 1 if and only if w is real
and 0, we have, thanks to Theorem 4, demonstrated

Theorem. The following two statements about a quadrilateral abcd in C
are equivalent:

i) The assertion in PTOLEMY 's theorem holds for abcd: P(abcd) = 0.

ii) The quadrilateral abcd is cyclic.

The converse of PTOLEMY'S theorem, that is the implication i) ii),
was proposed in 1832 in CRELLE's Journal, Vol. 8, p. 320 as an exercise.
Solutions are to be found in Volumes 10, p. 41; 11, 264—271 and 13, 233—236.
CLAUSEN among others gave an elegant solution.

6. WALLACE's Line. Suppose a,b,u C, a 6. The foot v of the
perpendicular from u on to the line L := {z = a + s(b — a): a R) through
a and 6 is, since i(b — a) is orthogonal to (b — a), the point of intersection
of L with the line L' := {z = u + it(6 — a)), (see Fig. a). This gives for s,i
the condition s — ii = (u — a)(b — a)', and thus 2s = (u — a)(b — a)' +
(u — ã)(b — and therefore

ii b—av=
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In the case = we have = —b(ä)' and consequently

if _ab\(*) v = + b + ii — if = Ibi.

We make use of (*) to prove a little-known statement about three
"remarkable"'3 points of a triangle.

Fig. a Fig. b

Theorem. Let a, b, c C be the vertices of a triangle, and v1, v3, v3 the feet
of the perpendiculars from an arbitrary point u E C onto the lines through
the pair of points a, b; b, C; C, a respectively. Then the following statements
are equivalent (see Fig. b):

i) The points vj, v2, V3 are collinear.

ii) The point u hes on the czrcumcircle of the triangle whose vertices are
a, b, c.

Proof. We may assume that the circumcircle is S'. We then have, by (ic),
if we make the initial hypothesis that v2 v3, u 0.

— b—c—üab+üac — (c—b)(üa—1) — c—b a—b
V2—V3 b—a—übc+uac — (a—b)(üc— 1) c—ü'

The equivalence 1) ii) now follows from the results of Section 3, since
S1 is equivalent to u S'. The case V3 = v3 is, by virtue of a b,

possible only if üc = 1, that is, if u E S'. In the case u = 0, we have

'3The word "remarkable" is used in classical elementary geometry in the sense
of "worthy of notice."

'I

L SI

0 L

/
/ WALLACES

line

= CR(c,b,a,i1').
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(v1 — v3):(v2 — V3) = (c — b):(a — b), so that v1, v3, V3 are not collinear
because a,b,c are not. 0

In the case where u lies on the circumcircle, the line through Vi, V2, V3
is called WALLACE'S line,14 after the self-taught Scottish mathematician
William WALLACE (1768—1843) who, after having been a teacher in Perth,
was Professor of Mathematics at Edinburgh University from 1819. This
line is also sometimes (in fact more usually, if mistakenly) known as the
SIMSON line, after the Scottish mathematician Robert SIMSON (1687—1768)
who successfully sought to revive the study of ancient Greek geometry in
England. However MACKAY showed, in two articles in the Proceedings of
Edinburgh Mathematical Society 9, 1891, 83—91 and 23, 1905, 80—85, that
no comparable result is to be found in the published works of SIMs0N,
whereas the implication ii) i) appears, obviously for the first time, in an
article by WALLACE in the Mathematical Repository 2, 1799—1800, p. 111.

THE GROUPS 0(c) AND S0(2)
In the following paragraphs we shall show, among other things, that the
circle group S' is isomorphic to the orthogonal group 50(2) of orthogonal
2 x 2 matrices with determinant 1, under the mapping F: C —' C, a + bi i—.
ía —b\ .

b a
We shall also obtain a classical parametric representation of

the group S0(2).

1. Distance Preserving Mappings of C. A (not necessarily R-linear)
mapping f:C —e C is called distance preserving (or isometric), if

)f(w) — = 1w — zI for w, z C.

Theorem. The following statements about f: C .—. C are equivalent:

i) I satisfies 1(z) = 1(0) + cz or 1(z) = f(0) + ci with CE S'.

ii) f is distance preserving.

Proof. 1) ii). This is trivial since f(w) — 1(z) = c(w — z) or = c(t1 — i)
respectively.

ii) i). As c := f(1)—f(0) E S', the mappingg:C —' C, z
1(0)) is certainly distance preserving. Since g(0) = 0 and g(1) = 1 we
have = fz(2 and — jf2 = — 112. It follows from this that
R.eg(z) = R.ez, and in particular that g(i) = ±1. In the case where g(i) =
then := —ig(iz) is distance preserving with 1(0) = 0, 1(1) = 1, and

14Not to be confused with the well-known Wallace line in geography and natural
history.
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therefore (from what has just been proved) R.e(—ig(iz)) = Rez, that is,
Img(z) = Imz, whence g(z) = z and 1(z) = 1(0) + cz. In the other case
where g(i) = —i, it follows similarly with := ig(iz) that R.e(ig(iz)) =
R.ez, that is Img(z) = —lmz, and hence 1(z) = 0

In particular every distance preserving mapping of C into itself which
fixes the origin is JR-linear.

In linear algebra every distance preserving mapping of an Euclidean vec-
tor space V into itself is called a motion (or displacement). The statement
which we have just proved above is thus a special case of the general theo-
rem that every (Euclidean) motion 1: V —, V has the form z —. f(0)+h(z)
where h: V — V is orthogonal.

2. The Group 0(C). An JR-linear mapping 1: C —. C is called orthogonal if
(1(w), 1(z)) = (w, z) for all w, z C. Every orthogonal mapping 1: C —. C
is length preserving: If(z)I = lzl, and therefore because of s-linearity, also
distance preserving.

Theorem. A mapping 1: C — C is orthogonal if and only if

f(z)=cz or f(z)=ci with cES1.

Proof. The specified mappings are orthogonal. For example in the second
case

(1(w), f(z)) = = = (w, z)

since c ES1.
Conversely, if I is orthogonal it is distance preserving and the statement

follows from Theorem 1 because 1(0) = 0. 0

Exercise. Prove the theorem directly by using the characterization of R-
linear mappings in 3.1 and showing, by verification, that

andb=Oora=OandbES1.

The orthogonal mappings of C form a non-Abelian group, under the oper-
ation of composition, the so-called orthogonal group 0(C). The orthogonal
mappings of the form = cz, c S1, are called rotations, and con-
stitute a normal subgroup 50(C) of S(C). It follows from the foregoing
considerations that:

The mapping —e S0(C), c is a group isomorphism.



§5. The Groups 0(C) and S0(2) 87

In particular the group S0(C) is Abelian. The mappings 1(z) =
c S1 are called reflections; they constitute the only other coset in 0(C)
relative to S0(C).

3. The Group S0(2) and the Isomorphism S1 —. S0(2). The set

(1) 0(2) := {A E GL(2, AA' = E}

of all real orthogonal 2 x 2 matrices is an important subgroup of the group
GL(2, R) of all real invertible 2 x 2 matrices. Since det A = det A' we have
detA = E1 for all A E 0(2). The set

S0(2) := {A E 0(2): det A = 1)

is a normal subgroup of 0(2), and is the group of all proper orthogonal
2 x 2 real matrices. Denoting by C the subfield of Mat(2,R) which was
introduced in 2.5, we then have the following:

Theorem. S0(2) = {A E C: det A = 1).

Proof. For A
= (

6) we can verify immediately that AA' = (det A)E,

from which it follows that (A E C: det A = 1) C S0(2).

For A = ((1 S0(2) we have = At
=

by (1). On

the other hand since A = on account of det A = 1, it follows
\—C 0)

that d = a, c = —b, or in other words A C. 0

This immediately yields the:

Isomorphism Theorem. The circle group 51 is mapped isomorphically

onto the group 50(2) by the mapping F:C—.C, a+bii—'

Proof. The statement is clearly true since

F(S1)= {A= -b) EC:detA =a2 -f b2 = i}. 0

The orthogonal groups 50(3) and 50(4) will be described in Chapter
6, §3 with the help of quaternions.

4. Rational Parametrization of Properly Orthogonal 2 x 2 Matri-
ces. The set S' \ {—1} is mapped bijectively on to the imaginary axis, by
mapping the point a + ij3 of S' onto i.\, the point of intersection between
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the line joining —1 to a + i/3 and the imaginary axis (see figure). A simple
calculation (intercept theorem of THALES) gives:

(1)
1—A2a=
1+A2'

2A

= 1+A2' 1+a

It follows that a + i/i = so that we have the rational parametrization

(2)

where the real and imaginary pails of c are rational, that is, belong
to Q, if and only if A is rational.

In view of F(S') = 50(2), this result can be expressed in the form

(3) S0(2)\{_E}{l+1A2

the matrix is rational if and only if A is rational.

Remark. One can get rid of the exceptional role of —1 and —E in the
equations (2) and (3) if one replaces A by A/sc and simplifies. We then
have, without any restriction

(2')

= {,c2

:(sc,A) ER2\{O}}.

We shall make our acquaintance in 6.3.5 with EULER'S famous rational
parametric representation of the group S0(3), which includes, as a special
case, the representation (3') of S0(2).

+ ifi

—I

SI

( 1 f,c2—A2
(3') S0(2) = t'c2+A2 2,cA
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The representation (3) for proper orthogonal 2 x 2 matrices is really
nothing more than CAYLEY'S representation

(*) A = (E — X E Mat(2,R) is skew symmetric,

for all 2 x 2 skew symmetric matrices are of the form E R,

and since X2 = —X2E, the equation (i.) is the analogue of the equation
a+i13 = (1—Ai)1(1+Ai). Since (E—X)' = (1+X2)1(E+X) we have

A = (1 + + X)2 = (1 + )i2)_1[(i — )i2)E + 2X1

The equations (1) for the rational points on S1 contain the so-called

"Indian formulae" for Pythagorean triplets. A triplet of nonzero natural
numbers k, I, m is said to be Pythagorean if k2 + j2 = m2. It is obvious
that at least one of the numbers k, I must be even. We shall show that:

If k, 1, m is a Pythagorean triplet and I is even, then there are nonzero
natural numbers r,s,i such that

k = (r2 — I = 2r81, m =(r2 + s2)t (the Indian formulae).

Proof. Corresponding to each S'\{—l) there isaA = s/r,
with r,s N\O such that by (I)

2 2 m Tflk=(r —s ) , l=2rs
r2+s2 r2+s2

If we now choose r, 8 to be relatively prime, then r2 + 82, rs also are
relatively prime (the reader should prove this). As = E N, it
follows that t := r12 E N which proves the proposition. 0

§6. POLAR COORDINATESAND nTH ROOTS

Polar coordinates are introduced in the complex number plane by writing
every point z E C = in the form (rcosço,rsinço) as in the figure. here
r := IzI is the distance of the point z from the origin, and ço is the angle
in circular measure (radians) between the positive x-axis and the position
vector of z. Every complex number z 0 thus has the form

z = r(cos + i sin çø),
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where the angle jo is uniquely determined apart from an arbitrary integral
multiple of 2T.

Although these things are clear enough intuitively, it is another matter
to establish them precisely and a rigorous proof is not trivial. One needs
properties of the sine and cosine function which despite being well known
have which lie rather deeper. In the treatment which follows we shall
work mainly with the complex exponential function

00

expz=

defined everywhere in C.
We write := and appeal essentially to the

Epimorphism Theorem. The mapping p: lR —' S1, i—. is a group
epimorphism of the (additive) group R onto the (multiplicative) circle group
S. There is exactly one positive real number such that:

a) She group is the kernel {r E R:p(r) = 1) of p; in particular:

p([0,2T))=S'.

b) p(ir/2) = i.

It follows automatically from b) that
p the polar coordinate epimorphism. The connection between p and the
trigonometrical functions

cosz := sinz := zE C,

is obtained by means of EULER'S formula

exp iz = cos z + lain z

which obviously implies:

c)
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EULER'S formula and above all the epimorphism theorem are discussed
at length in Chapter 5, see in particular 5.3.1 and 5.3.6.

1. Polar Coordinates. One of the consequences of the epimorphism the-
orem is the following:

Theorem. Every complex number z E can be written uniquely in the
form

(1) z = req' = isinço) with r := Izi and E [0,2w).

For every other representation z = = p(cos + sin with p, E R,
p> 0, the numbers p,p are given ôyp = r and = p+2nw with nEZ.

Proof. Since r1z E S', there is a [0,2w) such that p(ço) = r1z. This
means that z = = r(cosçp + isinçp). If z = with p> 0,
then Izi = p since S1. Hence = so that — E 2wZ. 0

The equation (1) is called a representation in polar coordinates, the num-
bers r, ço, or more generally r, where = + 2nw, are called polar
coordinates of z. The number ço E [0,2wJ is known as the argument or
amplitude of z E

Polar coordinates were already used by NEWTON in 1671 in investigating
plane spirals. The representation of complex numbers in polar coordinates
first appears in EULER and D 'ALEMBERT; the factor cos ço + i sin is called
by CAUCHY in 1821 (in his Cours d'analyse) an "expression réduite."

The numbers 1, i, —1, —i have the following polar coordinate represen-
tations

1= 1.(cos0+isin0),

—1= 1.(cosw+isinw),

i= 1.

1 3w . . 3w\
—s=

so that we have the classical diagram illustrated below with the four values

2
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c"2 = i, e" = —1, g$3T/2 = —1, = 1;

these are particular cases of the identity

jm = (eul12)m = m E Z.

The representation of conjugate complex numbers and of inverses is sim-
ple in polar coordinates. Since coa(—ço) = cos and sin(—ço) = — sin ço, it
follows that:

liz = = Izt(cosw+isinsp), then
(2)

= = 1z1'e" =

The second equation follows from the first since z1 = 1z12i.

The real polar coordinate mapping

{r E R:r>0} x R —. Cx, (r,çø) i—+ (z,y) := (rcosço,rsinço)

is differentiable arbitrarily often in the real domain. We have

det (Zr = det (c?8 çø —r sin çO = r
YcoJ \SIflçO rCO64QJ

and therefore there exists everywhere a real differentiable inverse mapping
(which is given by

(x,y)i—'
x)

assuming the appropriate branch of the arccosine function is chosen).

2. Multiplication of Complex Numbers in Polar Coordinates. Since
= we have immediately for w, z E CX, the following.

Theorem. If

w = = z = =

then

(1) wz = IwI = IwI + + i + v,)),

and hence aLw

= = — çø) + isin(tI' —
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The products and quotients of two complex numbers are therefore ob-
tained by respectively multiplying and dividing their absolute values, and
respectively adding and subtracting their amplitudes (see Fig. a). The equa-
tion (1) is fundamental and far more than simply a convenient calculating
rule which makes the use of polar coordinates obviously advantageous in
multiplying complex numbers. It is a profound and unexpected justifica-
tion for the geometric interpretation of complex numbers in the plane. The
mathematical power of this equation was already known to EuLER.15

w — + isin*)
z + iSnQ)

x

Fig. b

The scalar product (w, z) = Re(wi) takes the well known form (w, z) =
Iwl Izi cos where x := — ço is the "angle between the vectors w and z,"
as in seen by using the equation (1) in the form

= Iwl IzI(cos(%b — cp) + — p))

(see Fig. b). It now becomes clear why the equation lw+z12 = 1w12+1z12+
2Re(wi) was referred to as the cosine theorem in 4.2; since a + x =
(see Fig. b) we have coax = —cosa and hence 1w + z12 = 1w12 + 1z12

2lwllzlcosa.

3. de MOIVRE's Formula. + = + isinnçp for
n Z. This is clear from = more generally, we have the
following

Theorem. For every compler number z = = r(cos ço + isin E
the eqsalion z" = = r'(cosnço+ holds/or all n Z.

The French huguenot mathematician Abraham DE M0IvRE (1667—1754)
emigrated to London after the revocation of the Edict of Nantes in 1685. He
became a member of the Royal Society in 1697 and later of the Academies

150n page 154 of Cauchy's Cours d'analyse of 1821, we read however the sen-
tence, so astounding to modern ears "L'équation cos(a + b) + + b) =
(coss +VCTsino)(cosb+.vCisjnb) elle-même, prise àlalettre, se trouve inex-
acts et n'a pas de seas."

wz — IwlI:Kcos(* +
+ isin(* + w+z

Fig. a
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in Paris and Berlin. His famous book on probability theory, the Dochine
of chances was published in 1718; he discovered the well known "Stirling's
formula" n! before Stirling; and in 1712 he was appointed by
the Royal Society to adjudicate on the merits of the rival claims of NEWTON
and LEIBNIZ in the discovery of the infinitesimal calculus. NEWTON in his
old age, is said to have replied, when asked about anything mathematical
"Go to Mr. DE MOJVRE; he knows these things better than I do." DE
MOIVRE gave the first indication in 1707 of his "magic" formula by means
of some numerical examples. By 1730 he seems to have been aware of the
general formula

cosço= isinn%o, n>O.

In 1738 he describes (in a rather long-winded fashion) a procedure for
finding roots of the form + ib, which is equivalent as far as content
goes, to the formula now known by his name. The formula in the form in
which it is now usually expressed is first found in EULER in Chapter VIII
of his Introduciio in analysin infinitorum published in 1748. It was also
EULER who, in 1749, gave the first valid proof of the formula for all n Z
and who stripped DE MOIVRE'S formula of all its mystery by the equation

=
DE MOIVRE'S formula provides a very simple method of expressing cos nw

and sin nio as polynomials in and 5mw, for all n 1. Thus for exam-
ple, we obtain for n = 3, by separating the real and imaginary parts:

cos3w= cos3w— 3coswsin2w, sin3w= 3cos2wsinw—sin3w.

The trigonometrical representation of the solutions of the quadratic equa-
tion z2 + az + b = 0 foreshadowed in 3.5 arises in the following way: we
write — 46) = r(cos + i sin w) and the roots then take the form

z1

4. Roots of Unity. As one of the most important applications of polar
coordinates, we shall demonstrate the following.

Lemma. Let n I be a natural number. Then there are precisely n differ-
ent complex numbers z, such that z" = 1, namely

2xi
CXI)

In particular (v = where ( :=



§6. Polar Coordinates and nth Roots 95

Proof. The equations = and = 1 clearly hold (DE M0IvRE). Since

2,ri
c1,ç =exp—(v—p),

it follows that = if and only if — p) Z because the kernel
of p is 2,r7L. Since —n < v — p < n it follows that ii = p, or in other
words . . are all distinct from each other. For z =

I if and only if IzI = 1 and es" = 1, that is, if so =
with k Z. As 0 < < it follows that k E (0,1,... ,n — 1), that

z = Accordingly there are no other complex numbers z, apart from
Ca, . . , satisfying the equation = 1. 0

The n numbers 1,(,(2,.. are called the nIh roots of unity. Ge-
ometrically, they represent the vertices of a regular n-sided polygon (the
figure shows the fifth roots of unity). An nth root of unity is said to be
primitive if all the other nth roots can be represented by one of its powers;
the root ( is always a primitive nth root, that is, for n = 5

/

The lemma above can be immediately generalized. Writing

for

where denotes the positive real nth root of (ci, we have the following:

Existence and Uniqueness Theorem for nth Roots. Every complex
number c = has precisely n different complex nih roots, for
every n E N, n 1, namely the roots .. . where ( :=
exp

This provides a new proof of the theorem 3.6.

x

/
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Realization of the many-valuedness of roots gradually developed during
the 17th century. For example, the theorem that nth roots have n distinct
values was, by 1690, already very familiar to Michael ROLLE (1652—1719),
a mathematician who worked in Paris and was a member of the Académie
Française. Incidentally R0LLE found the well known theorem in the differ-
ential calculus which bears his name in the course of researches into the
roots of polynomials, when he observed that between any two neighboring
real roots of a real polynomial, there must always lie a root of the first
derivative.

The British mathematician Roger COTES (1682—1716) who was a student
and then Professor at Cambridge, and a friend of NEWTON, investigated in
1714 the factorizat ion of the polynomials — 1 and + aZ' +1 into real
quadratic factors, in connection with his researches into the integration of
rational functions by the method of decomposition into partial fractions.
He was aware for example of the formula

Z2"-i- 1 = (Z2_2Zcos2 1+i)

COTES'S results were first published posthumously in 1722 under the title
Harmonia mensurarum. It was the desire to round off and improve upon
these results which motivat.ed DE M0IvRE among others.
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The Fundamental Theorem
of Algebra
R. Remmert

Was beweisbar 1st, soil in der Wissenschaft nicht ohne
Beweis geglaubt werden (DEDEKIND 1887).

[In science, what is provable should never be believed
without proof.]

We saw in 3.3.5 that every quadratic polynomial vanishes at two (possibly
coincident) points in C, the zeros of the polynomial, as they are often
called. This statement is a special case of a far more general theorem,
which GAUSS in 1849 ( Werke 3, 73) called the fundamental theorem of the
theory of algebraic equations, and which is now generally known in the
literature as the so-called fundamental theorem of algebra.

Every nonconslant complez polynomial has at least one zero in the field
C.

In Algebra, a field is said to be algebraically closed if every polynomial
/ E K[X] \ K has a zero in K. The fundamental theorem can therefore
also be stated in the form:

The field C of compler numbers is algebraically closed.

The designation of this statement as the fundamental theorem of algebra
dates from a time when the word algebra was still understood as being
broadly synonymous with the theory of polynomials with real or complex
coefficients. This existence theorem, which is in fact nontrivial even for
polynomials of the form Z" — a (see 3.3.6 and 3.6.4), will be discussed in
some detail in this chapter, and proved in an "elementary" manner. It is
equivalent to the theorem that every real polynomial can be expressed as
a product of real linear and real quadratic factors.

The fundamental theorem of algebra is of outstanding significance in the
history of the theory of complex numbers because it was the possibility of
proving this theorem in the complex domain that, more than anything else,
paved the way for a general recognition of complex numbers.
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The genesis of the fundamental theorem will be fully explained in Section
1. In Section 2 we shall give what is possibly the simplest of all the proofr,
one based on an old and beautiful idea used by AROAND, which goes back
to D'ALEMBERT. In Section 2 we shall give some first applications of the
fundamental theorem, which will be called upon more and more in the later
chapters on algebras. In particular we shall prove in 3.5 the theorem first
published by HANKEt. in 1867 on the uniqueness of the field C.

In a supplementary paragraph we also discuss LAPLACE'S elegant proof
which is more "algebraic" than ARGAND'S. The reader should consult the
article by ZASSENHAUS, On the Fundamental Theorem of Algebra, Amer.
Math. Monthly, 74(1967), 485—497. A review of nearly a hundred classical
proofs of the fundamental theorem was given in 1907 by NE'rro and LE
VAVASSEUR in their article "Les fonctions rationelles," Enc. Sciences Math.
Pizres Appl., I, 2, 1—232, on pages 189—205.

§1. ON THE HISTORY OF THE FUNDAMENTAL THEOREM

In this paragraph / = 00 + o,X + . . . a real
polynomial of degree n (and therefore R, 0). We consider only
nonconstant polynomials, or in other words, we assume that n 1. By a
zero or root off we mean any element c of any field K which is an extension
of R, such that 1(c) = 0. The element c is also said to be a solution of the
polynomial equation f(z) = 0. By equation we always mean a polynomial
equation.

The most natural and straightforward way of showing that real equations
always have complex solutions is to give an ezplicit procedure for finding the
roots which does not lead outside C. This happens with quadratic equations
(see 3.3.5); it is what CARDAN succeeded in doing for cubic equations, and
the same thing applies to biquadratic equations. We have formulae for the
solutions which are "nested radical expressions" in which each radicand
is a polynomial in the coefficients On,... and radical expressions of
lower order. It can at once be verified without difficulty that the solutions
constructed in this way are complex numbers (see VAN DER WAERDEN
Algebra I, Berlin 1955, §59).

The situation is quite different with equations of the fifth and higher
degrees. No method of solving such equations by radicals could be found;'
until GAUSS all mathematicians believed in the existence of solutions in
some sort of no-man's land (nowadays we would say in an unknown exten-
sion field of C) and tried imaginatively to show that these solutions were

N.H. Abel showed in 1826 in a paper published in the first volume of Crdlie's
Jow-nol "Beweis der UnmSglichkeit, algebraischc Gleichungen von h&heren
Graden, ais den vierten, ailgemein aufrul&sen," 65-84 (see also Oeuvres com-
pletes, 1, 66—87) that it is fundamentally impossible to solve general equations of
degree higher than the fourth by means of radicals.
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in fact complex numbers.
We summarize below the main dates, starting from the first mystical

appearance of the fundamental theorem to its present-day acceptance as a
virtually self-evident truth. In addition to the references to the literature
given in 3.1 we may also mention: AbrIgé d'!ustoire des mathImatiques,
I, sous Ia direction de Jean Dieudonnd, Paris, Hermann, 1978, especially
Chapter IV.

1. GIRARD (1595—1632) and DESCARTES (1596—1650). Peter
Rom in 1608 stated that equations of the nth degree have at most n solu-
tions; VIETA (1540—1603), thanks to his theorem on the roots of equations,
had been able to write down equations of the nth degree which actually
have n roots. It was the now forgotten Flemish mathematician Albert Gi-
RARD who was the first to assert that there are always n solutions. In his
L 'invention en algêbre, a work which appeared in 1629, he wrote "Toutes
les equations d'algèbre reçoivent autant de solutions, que Ia denomination
de Ia plus haute quantite le démonstre ..." GIRARD gives no proof or any
indication of one, but merely explains his proposition by some examples,

that of the equation x4 — 4x + 3 = 0 whose solutions are 1, 1.
—1+iv"2,

GIRARD does not assert that the solutions must always be of the form
a + b E R, apart from real solutions "(those that are > 0 and
those that are < are "autres enveloppiées, comme celles qui ont
des comme ou autres nombres semblables." He thus leaves open
the possibility of solutions which are not complex. In modern language he
was putting forward the following proposition:

GIRARD's Thesis. For every polynomial f R[X) of degree n there
ezists a field K, an extension of R, such that f has exactly n zeros (not
necessarily distinct) in K. The field K may perhaps be a proper overfield
of C.

DESCARTES in 1637, in the third and last book of his La géométrie,
gives a brief summary of what was then known about equations. He notes
the important theorem2 that a polynomial which vanishes at c is alway8
divisible by the factor X — C; he also described the so-called "Descartes'
rule of signs" named after him. (See HAUPT, "Einfuhrung in die Algebra,"
2. Tell, Akad. Verl. Ges. Geest u. Portig 1954, S. 411.)

2This theorem was probably already known to Thomas Harriot (1560—1621)
who in 1585 surveyed, on behalf of Sir Walter Raleigh, the colony of Virginia and
was thas the first mathematician to live in North America.
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DESCARTES takes a rather vague position on the thesis put forward by
GIRARD (see 3.1.3).

2. LEIBNIZ (1646—1716). Through his efforts to integrate rational func-
tions by decomposition into partial fractions, LEIBNIZ was led to consider
the question of whether every real polynomial can be expressed as a prod-
uct of factors of the first and second degrees. He put forward in 1702 in a
work published in the Ada Ertgditornm the view that this is not so, and
supported this contention by pointing out that in the decomposition

X4+a4 = (X2—a2i)(X2-f.a3i) =

the product of any two linear factors on the right is never a quadratic real
polynomial. It does not seem to have occurred to LEIRNIZ that could
be of the form a + bi; because if he had seen that

and

he would have noticed that the product of the first and third factors, and
of the second and fourth factors are both real, and instead of his false
assertion he would have obtained

X4 + a4 = (X2 + + a2)(X2 — + a2).

It is remarkable that he should not have been led to this factorization by
the simple device of writing X4 + a4 = (X2 + a2)2 — 2a2X2.

3. EULER (1707—1783). In a letter to Nikolaus BERNOULLI of the 1
November 1742 EULER enunciates the factorization theorem for real poly-
nomials in precisely the form which LEUNIZ had maintained was false.
The presumed counter-example proposed by BERNouLLI, the polynomial
X4 — 4X +4 with zeros

was shown to be devoid of force, by proving that (X — x1)(X — x3) and
(X — x2)(X — x4) are real polynomials, namely

X2—(2+a)X-f1+v'V+a and

with a := + 2v'V.
Soon afterwards, in a letter of the 15 February 1742 to his faithful cor-

respondent GOLDBACII, EULER repeats his assertion but adds that he has
not been able to prove it completely, but only "ungefähr, wie gewisse Fer-
matsche [only roughtly, as with certain theorems of Fermat]. In this
letter he also mentions incidentally—something that seems perfectly clear
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to us nowadays and that has nothing to do with the problem of the exis-
tence of complex roots—that the imaginary roots of real polynomials can
always be grouped together in pairs so as to produce real polynomials of
the second degree after multiplication of the corresponding factors.3 GoLD-
BACH remains sceptical even about this simple assertion and adduces as a
counter-example the polynomial Z4+72Z2—20, which EULER immediately
factorizes.

EULER'S factorization theorem goes beyond GIRARD'S thesis of which
EULER must have been well aware. Since quadratic equations always have
complex solutions, his statement is nothing else but the

Fundamental Theorem of Algebra for Real Polynomials. Every
polynomial of the nih degree / R[XJ has precisely n zeros in the extension
field C.

EULER was able to prove this theorem rigorously for all polynomials of
degree <6. In 1749 (Recherches sur len racines imaginaires des equations.
Histoire de l'AcadImie Royale des Sciences ci Belles Lettres, Année MD-
CCXLIX, Berlin 1751, 222—228, see also Opera omnia 6, 1 aer., 78—147) he
attacked the general case. His idea was to decompose every monic polyno-
mial P of degree � 4 into a product of two monic polynomials
of degree rn := If this could be done then his theorem would be
proved because an arbitrary polynomial 0 can always be converted into
such a polynomial by multiplication by aXd and iteration of the decom-
position procedure finally yields a decomposition of P into real quadratic
polynomials.

makes the initial assumption that P is of the form

P(X) + +

which is permissible since the coefficient A of X2m_1 can always be made
to vanish by a translation X i—. X — This reduction had been known
since the days of CARDANO (Ars magna, Chapter 17) if not earlier; VIETA
had called the process "expurgatio." The polynomials P1, P2 now take the
form

Xm + uXml + aXm2 +
xm — + + +

because the coefficients of differ only in sign, in view of the vanishing
of the coefficient of in P(X). By multiplying out and comparing co-
efficients, one obtains equations involving B, C,... and u, a, . ,A, p
EULER asserts that a,f3, .. . ,A,p,... are rational functions in B,C,... and
ii, and that by elimination of a, f',. .. , A, p,... a monic real polynomial in

3This had already been remarked by Bombelli around 1560.
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u of degree (2n2)
is obtained whose constant term is negative. Now this

polynomial has a zero u, by the intermediate value theorem (B0LzAN0—
CAUCHY theorem) as EULER clearly saw. All this is carried out explicitly
for 2m = 4 (see loc.cit. pp. 93/94) but the proof in the general case is only
sketchy (see pp. 105/106), and EULER passes over in silence many details
(as GUASS was to criticize later—see Section 6).

EULER also stated his theorem in terms of complex numbers (loc.cii. p.
112):

Si une equation algCbrique, de degrC qu 'cite soil, a des racines imagi-
naires, chacune sera comprise dans ceite formule ginCrale M+

N marquant des quanhitCs rCelles.

4. d'ALEMBERT (1717—1783). Three years before EULER, lean le
Rond D'ALEMBERT in 1746 made the first serious attempt to prove the fac-
torization theorem (R.echerches sur le calcul integral, Histoire de l'Academie
Royale des Sciences ci Belles Lettres, annde MDCCXL VI, Berlin 1748, 182—
224). Accordingly this theorem has ever since been referred to in the French
literature as D'ALEMBERT's theorem. The basic idea is simple, even if heav-
ily concealed. ISis So try to minimize the absolute value of the polynomial /
by an appropriate choice of its argument. D'ALEMBERT uses the following
auxiliary proposition which he assumes without proof, and which was first
correctly derived in 1851 by PulsEux (on the implicit assumption of the
Fundamental theorem!):

To every pair (b, c) of complex numbers With 1(b) = c, there corresponds
a natural number q � 1, and a series

h(w) = b+ >cv(w — c)",

convergent in a neighbor*ood of c, such that for all numbers w near c,
f(h(w)) = w.

D'ALEMBERT now starts from real numbers b, c satisfying f(b) = c (in
fact he chooses b so that the real function has a minimum at 6) and then
finds, if c 0, with the help of his PulsEux expansion, complex numbers
21, with Iwil <c, such that f(zi) = Wi. Repetition of this process leads
to smaller and smaller values for the absolute value of f, and by using
a simple compactness argument (which D'ALEMBERT was unable to do),
eventually to a zero of 1.

The weaknesses in D'ALEMDERT's argument, which were inevitable in the
prevailing circumstances, are subject to the criticisms which were rightly
made by GAUSS (see paragraph 6). Nevertheless GAUSS also says, almost
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prophetically (Werke 3, p. 11): "Aus diesen Gründen vermag ich den
d'Alembertschen Beweis nicht für ausreichend zu halten. Allein das verhin-
dert mich nicht, daB mir der wahre Nerv des Beweises trotz slIer Einwände
unberührt zu sein scheint; ich glaube . . ., daB man auf dieselben Grundlagen
einen strengen Beweis unseres Satzes aufbauen kann." [For these reasons I
am unable to regard the proof by d'Alembert as entirely satisfactory, but
that does not prevent, in my opinion, the essential idea of the proof from
being unaffected, despite all objections; I believe that ... a rigorous proof
could be constructed on the same basis.]

This is precisely what ARGAND did in 1814 (see paragraph 8).
As a result of this work of D'ALEMBERT and EULER the view gradually

came to prevail that it required only the existence of a single imaginary
quantity in order to ensure that n roots could be assigned to every
algebraic equation of degree n (GAUSS, Werke 10, 1, p. 404).

5. LAGRANGE (1736—1813) and LAPLACE (1749—1827). Already
by 1772 Joseph Louis LAGRANGE in his memoir "Sur Ia forme des racines
imaginaires des equations" (Nouveaux mémoires de l'Académie Royale des
Sciences ci Belles Letires, Année MDCCLXX VII, Berlin 1774, 222—258
and Oeuvres completes, 3, 477—5 16) had raised objections against EULER'S
proof. lie remarked, among other things, that EULER'S equation for u could
have undefined coefficients of the form LAGRANGE made a new attempt
to demonstrate the existence of the factorization P = sought by
EULER. Thanks to his results on the permutation of roots of equations he
succeeded to a large extent in closing the gaps in EULER'S proof: but he
also had to appeal to fictitious roots.

In the year 1795, Pierre Simon de LAPLACE4 in his "Leçons de mathéma-
tiques données a l'Ecole Normale" (Journal de l'Ecole Polyteclznique,

ci Huitieme cahier, Tome II, 1—278, Paris, 1812, especially pp.
56—58; see also Oeuvres compiCtes 14, 10—111,especially 63—65) made an at-
tempt to prove the Fundamental theorem, quite different from the EULER—
LAGRANGE attempt. He uses ideas involving the discriminant of a poly-
nomial. LAPLACE, like his predecessors, assumes that roots of polynomials
"exist" in the platonic sense of the word. His extremely elegant proof has
long been forgotten, and we reproduce it in modernized form as an ap-
pendix to this chapter.

4Laplace was appointed Minister of the Interior by Napoleon, who removed
him from office alter only six weeks because he brought the spirit of the infinitely
small into the government [il portait enfin l'esprit des infiniment petits dans
l'administration] (Napoleon I. Mémoires pour servir a l'hisloire de France,
d Sainte.Héiène, sous Ia dictie de l'empereur, dicté au général Gourgaud, London
1823, Vol. 1, 111—112). After the restoration of the Bourbons, he was made a
marquis and a peer of France.
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6. GAUSS's Critique. In October 1797 GAUSS writes in his diary "Ae-
quationes habere radices imaginarias methodo genuina demonstratum" (see
Math. Ann. 57, p. 18, 1903). He published the above-mentioned proof of
the Fundamental theorem, which however by no means meets modern stan-
dards of rigor, in 1799 in his doctoral thesis "Demonstratlo nova theore-
matis omnem functionem algebraicam rationalem integram unius variabibs
in factores reales primi vet secundi grad us resolvi posse" (Werke 3, 1.30)
which he submitted in absentia to PFAFF (1765—1825) at the University of
Helmst.edt, and through which he obtained hi8 doctorate. GAuss begins his
dissertation by a detailed critical examination of all previous attempts to
prove the theorem known to him. This is not the place to discuss in detail
the objections raised by the twenty-two year old student against the proofs
of D'ALEMBERT, EULER, and LAGRANGE—and thus against the leading
mathematicians of the time—(the reader interested in thi8 may refer, for
example, to TROPFKE, Vol. 1, 1980, 494—499). GAuss's main objection was
that the existence of a point at which the polynomial takes the value zero is
always assumed and that this existence needs to be proved. Thus for exam-
ple he reproaches EULER for using hypothetical roots ( Werke 3, pp. 5,
"...,wenn man dann mit diesen unmôglichen Wurzeln so verfährt, ala ob ale
etwas Wirkliches seien, und bei8pielsweise sagt, die Summe alter Wurzeln
der Gleichung Xm + AX"' + ... = 0 sei = —A, obschon unmögliche
unter ihnen sind (das heifit eigentlich: wiewolil cinige fehien), so kann ich
dies durchaus nicht billigen." [... if one carries out operations with these
impossible roots, as though they really existed, and says for example, the
sum of all the roots of the equation zm + =0 is equal to —A,
even though some of them may be impossible (which really means: even if
some are nonexistent and hence are missing), then I can only say that I
thorougly disapprove of this type of argument.)

The improved proof by LAGRANGE is likewise disallowed. GAUSS writes
(Werke 3, p. "Dieser grofie Mathematiker bemühte sich vor Allem, die
Lücken in Eulers erstem Beweise auszufüllen, und wirklich hat er das, was
oben §8 den zweiten und den vierten Einwurfauamacht, so tief durchforscht,
dalI nichts Weiteres zu wünschen übrig bleibt. ... Den dritten Einwurf
dagegen berührt er überhaupt nicht; ja auch seine ganze Untersuchung
ist auf der Voraussetzung aufgebaut, jede Gleichung rn-ten Grades habe
wjrkljch m Wurzeln." [This great mathematician tried above all to fill in
the gaps in EULER'S first proof, and indeed, as regards what constitutes
the second and fourth objections referred to in §8 above, he has pursued
his investigations so profoundly that nothing more remains to be desired.

5See next footnote.
6Citations based on the German translation in Ostwald'a Kiassikern der Es-

akten Wissenachoften, No. 14. "Die vier GauBachen Beweise für die Zerlegung
ganzex algebraischer Funktionen in ree)le Faktoren ersten und sweiten Grades
(1799—1849)," made by Netto in 1899.
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On the other hand he has not touched at all the third objection; in fact
his whole investigation is based on the assumption that every equation of
the mth degree actually has m roots.] And in 1815 ( Werke 3, p. 105) he
even talks in this connection of a "true petitio principil."

GAUSS in 1799 was not yet aware of LAPLACE'S proof. However later on,
even this attempt did not find favor in his eyes; he comments on it in 1815 in
the Gôttingische gelehrlen Anzeigen (Werke 3, p. 105) writing "die scharf-
sinnige Art, wie später LAPLACE diesen Gegenstand behandelt hat, [kann]
gerade von dem Hauptvorwurfe, weicher alle jene versuchten Beweise trifft,
nicht freigesprochen werden." [The ingenious way in which LAPLACE dealt
with this matter cannot be absolved from the main objections affecting all
these attempted proofs.]

We would now like to take another look at the situation from our modern
point of view. In all the pre-Gaussian attempts, the question asked at the
outset was not so much "do roots of an equation exist?" but rather "what
form do they have?" and "are they of the form GIRARD's thesis
is tacitly taken as an axiom, and no reasons of any kind are put forward
in justification. It was even believed for a long time, that there existed a
whole hierarchy of imaginary quantities—called by GAUSS in his dissertation
(Werke 3, p. 14) "vera umbrae umbra" [veritable shadows of shadows]—of
which the complex numbers a + b E were the simplest. It was
not until the 18th century when the idea had gained general acceptance
that the solutions of polynomial equations were capable of being defined
by "algebraic/analytical methods which never led outside the domain C,"
that the following problem (which no longer seems so paradoxical knowing
the background) began to be seriously considered:

'tShow that every imaginary quantity has the form a +

Interpreted with a little goodwill, the statement to be proved is nothing
more than the assertion that the field C is complete and not capable of
any further algebraic extension. In the work quoted in paragraph 3, the
"Recherches sur les racines..." by EULER can be read (p. 147) the words:
"Puisque donc toutes ces quantités imaginaires, qui sont formées par des
operations transcendantes, sont aussi comprises dans Ia forme générale M +

nous pourrons soutenir sans balancer, que généralement toutes
les quantités imaginaires, quelques compliquées qu'elles puissent étre, sont
t.oujours réductibles a Ia forme M + Nv'T." [Since all these imaginary
quantities, produced by transcendental operations, are also comprized in
the general form M + we can maintain, without hesitation, that
generally all imaginary quantities, no matter how complicated, are always
reducible to the form M + Nii/1.J

The Gaussian objection against the attempts of EULER—LAGRANGE and
LAPLACE was invalidated as soon as Algebra was able to guarantee the
existence of a splitting field for every polynomial. From that moment on,
as Adolf KNESER already observed in 1888 (Crelle's Journal 102, p. 21),
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the attempted proofs became in effect fully valid. In 1907 FROBENIUS said
(Ges. Abhandl. 3, p. 733) on the occasion of the official ceremony at Basle
University to commemorate the bicentenary of Leonhard EULER'S birth:
"Für die Existenz der Wurzeln einer Gleichung fiihrt er jenen am meisten
algebraischen Beweis, der darauf fufit, daB jede reelle Gleichung unpaaren
Grades eine reelle Wurzel besitzt. Ich halte es für unrecht, diesen Beweis
ausschlieBlicb GAUSS zuzuschreiben, der doch nur die letzte Feile daran
gelegt hat." tile gave the most algebraic of the proofs of the existence of
roots of an equation, the one which is based on the proposition that every
real equation of odd degree has a real root. I regard it as unjust to ascribe
this proof exclusively to GAUSS, who merely added the finishing touches.]

7. GAUSS's Four Proofs. The fundamentally new element in GAUSS'S
proof of 1799 is that he does not set out to calculate a root, but to prove
its existence. To do this required, in the words of HANKEL (p. 97): "einen
eminenten Aufwand von Scharfe des Gedankens und Productionskraft, wie
beides in GauB wunderbar vereinigt war." [a high degree of perspicacity of
thought and fertility of invention which in GAUSS were wonderfully com-
bined). GAUSS in his doctoral dissertation does not however claim that he
was the first to produce a correct proof of the Fundamental theorem, as
is already made clear by the word "Nova" in the title, and as his remarks
on D'ALEMBERT's attempted proof also bear witness (see paragraph 4),
GAUSS gave, in all, four proofs of the Fundamental theorem of algebra,
the fourth being published in 1849 in the year of the golden jubilee of his
doctorate (see Osiwald's classics No. 14).

The first proof, of 1799, is topological, but has some significant gaps
when judged in the light of present-day understanding. Let us take a closer
look at the problem involved: the complex zeros of the real polynomial I
of degree n are the points of intersection of the two real algebraic curves
(R.ef)(z) = 0 and (Imf)(z) = 0. If R is sufficiently large, then exactly
2n points of each curve will lie on every circle = r for which r > fl.
Outside the circular disc {z E C: R) these points can each be asso-
ciated with 2n continuous branches A, and B,, 1 < v < 2n, extending to
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infinity, and in fact these branches are so situated that between any two
consecutive "branches" of the curve (Re f)(z) = 0, there lies a branch of
the curve (Im f)(z) = 0 and vice versa. The figure illustrates the example
1(Z) := Z3+Z2 —2 whose zeros are the points 1, —1±i. Gauss says (Art.
21): "Nun hOt sich aus der gegenseitigen Lage der in die Kreisscheibe em-
tretenden Zweige der Schiuss, dass innerhaib des Kreises em Schnitt elnes
Zweiges der ersten mit einem Zweige der zweiten Linie vorhanden sein
müsse, auf so viele Arten ziehen, daB ich fast nicht weiss, weiche Methode
an erst.er Stelle vor den übrigen zu bevorzugen eel." [Now this alternation
in the positions of the points of entry of the branches entering the disc
allows us to draw the conclusion that a branch of the first curve must in-
tersect with a branch of the second curve at some point in the interior of
the circular disc. This conclusion can be drawn in so many different ways
that I hardly know which method should be given pride of place.] In the
subsequent geometrical argument on which he bases his proof, GAUSS uses
results from higher geometry and in particular the theorem that "... if a
(non-compact) branch of an algebraic curve enters a bounded space (here,
a circular disc) it must necessarily emerge from this space." This theorem
whose truth was taken for granted for over a hundred years, lies at the
heart of the proof. Topologists have so far been able to prove it only by so-
phisticated arguments. GAUSS remarks in an explanatory footnote (Werke
3, p. 27, Ostwald's classics No. 14, p. 33): "Wie mir scheint, 1st es wohi
hinreichend sicher bewiesen, daB eine algebraische Curve weder plötzlich ir-
gendwo abbricht, noch sich nach unendlich vielen Umläufen gewissermal3en
in einem Punkt verhieren kann (wie die logarithmische Spiral)." [It seems
to me that it can be taken as sufficiently securely established, that an al-
gebraic curve can neither suddenly end abruptly anywhere, nor lose itself,
so to speak, in a point after an infinity of circuits (as in the case of a
logarithmic spiral).]

A careful and balanced criticism together with a completion of the first
Gaussian proof was first given in 1920 by A. OsTaowsKI: ("Uber den er-
sten und vierten Gau6schen Beweis des Fundamentalsatzes der Algebra,"
GAUSS Werke 10.2, Abh. 3). OsTRowsKI began with the words: "Während
die im ersten Tell der Gau6schen Dissertation enthaltene Besprechung der
früheren Beweisversuche des Fundamentalsatzes der Algebra sich durch
ganz auBerordenthiche Sorgfalt auszeichnet, daneben der Am zweiten
Tell entwickelte Beweis dieses Satzes etwas ab. Nicht etwa, well dieser Be-
weis in geometrischer Einkleidung vorgetragen wird, sondern, well bei ihm
Eigenschaften der algebraischen Kurven verwendet werden, die weder in
der Dissertation selbet, noch in der vorgauflechen Literatur bewiesen sind."
(While the discussion, in the first part of GAUSS'S dissertation, of the earlier
attempts at proving the Fundamental theorem of algebra is distinguished
by extraordinarily thorough and painstaking care, the proof of this theorem
developed in the second half falls away somewhat from this high standard.
Not so much because it is presented in a geometrical guise but rather be-
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cause the proof makes use of geometrical properties of algebraic curves
which are neither proved in the dissertation it.self nor had been proved in
the pre-Gaussian literature.]

In 1816 GAUSS gave a second proof of the Fundamental theorem which
is almost completely algebraic. The only fact used taken from analysis is
the theorem that any real polynomial of odd degree always has a real zero.
GAUSS takes up the basic algebraic idea from EULER with a simplification
proposed by DE FONCENEX in 1759, and uses the truly algebraic device
of indeterminates, even though he does not have at his disposal the gen-
eral concept of a field. He carries out mathematical operations which his
predecessors had performed on illegitimaidy assumed roots, and which are
perfectly valid in his case precisely because the operands are legitimately
regarded as indeterminates. Such considerations still underlie the usual
modern proof of the existence of a splitting field. GAUSS'S second proof is,
even by modern standards, absolutely correct.

GAuss's third proof likewise dates from 1816; it is once more topological,
but this time the idea is to count—by means of a double integral—the num-
ber of circuits which the image point 1(z) makes around the origin 0 E C
when the point z describes a closed curve around the origin z = 0. The ba-
sic idea of this proof is still to be found in the modern "function-theoretic"
proofs based on evaluating the contour integral (1/2xi) f(f'(z)/f(z))dz

theorem).
Until 1849 all proofs, including those found in the intervening period by

CAUCHY, ABEL, JACOBI and others, dealt with real polynomials only. It
was only in his fourth proof, which is a variant of the first, that GAUSS
in 1849, the time now being ripe for this step, allowed arbitrary complex
polynomials. However this apparent generalization is not one of any real
significance, because one can immediately switch from a complex polyno-
mial f C[Z] to a real polynomial g IR[Z], by means of g(z) :=
If c is a zero of g, then c or is a zero of f. To modern eyes the proof for real
polynomials is no simpler than for complex polynomials (and vice versa).

8. ARGAND (1768—1822) and CAUCHY (1798—1857). What may
well be the simplest of all the proofs of the Fundamental theorem of algebra
was published in 1814 by ft. ARGAND in his "Réfiexions sur Is. nouvelle
théorie d'analyse" Annales de Mathématiques 5, 197—209. ARGAND who
had already sketched the essence of his proof in his essay on the repre-
sentation of complex numbers, simplifies astonishingly the application of
D'ALEMBERT's basic idea. He uses the general theorem on the existence of
a minimum of a (continuous) function and so arrives at a completely new
kind of proof. As ARGAND says nothing to justify the existence of the mini-
mum, his elementary proof was not at first accepted. CAUCHY in 1820 gave
what is essentially the same proof in his paper, "Sur les racines imaginaires
des equations" (Oeuvres 1, 2, Ser., 258—263) but in a more accessible form,
thereby contributing greatly to a wider dissemination of ARGAND'S ideas.
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Even with CAUCRY the proposition that If(z)I must somewhere attain
its minimum is not properly established; it only became possible to do
this after the general concept of the lower bound had been introduced.
CAUCHY devotes a whole chapter (Chapitre X) of his Cours d'analyse to
the fundamental theorem, but without mentioning AROAND.

In the 19th century AROAND'S method of proof was adopted in various
textbooks, e.g. in LIPSCHITZ'S Lehrbuch der Analysis, Vol. 1 of 1877, and in
the book published in 1886 by CHRYSTAL, Algebra, An elementary textbook
for higher classes of secondary schools and for colleges. CHRYSTAL, whose
textbook had an unusually great influence (see the discussion on CIJRYS-
TAL's algebra by ABI1YANKAR in The mathematical intelligencer 1, 1978,
p. 37) called ARGAND'S proof "both ingenious and profound" (p. 248).

AROAND'S proof has nowadays tended to fall into oblivion. Towards the
end of the twenties, SCHREIER reproduced this proof in his Hamburg Lec-
tures on Analytical geometry and algebra; it is given for example in the first
volume of the first edition of the book by and SPERNER (Teub-
ner Verlag, pp. 221 ci seq.). LANDAU, in 1934, also presented a version of
the ARGAND proof in his characteristic style (pp. 233 ci seq.); the ARGAND
proof is also to be found in the second volume of MANGOLDT and KNOPP
(11th edn., Hirzel Verlag, Stuttgart 1958, pp. 546 ci seq.). The ARGAND
proof is reproduced in this chapter.

9. The Fundamental Theorem of Algebra: Then and Now. Nowa..
days one can only speculate about how mathematicians before the begin-
ning of the nineteenth century had visualized the solutions of equations in
their mind's eye. It is difficult for us to understand why, until the time of
GAUSS, they had an unshakable belief in a kind of "extraterrestrial" ex-
istence of such solutions "somewhere or other," and then sought to show
that these solutions were complex numbers. Still less can one conceive why
it should be that, until far into the nineteenth century, algebra textbooks
hardly ever troubled to enunciate this Fundamental theorem but juggled
with it in a most amazing fashion (see HANKEL, 1867, p. 98). An honorable
exception to this general attitude was the Göttingen mathematician and
physicist Abraham Gotthelf KAsTNER (1719—1800) who was GAUSS'S pre-
decessor at the Observatory (and who also wrote epigrams, satirical pieces,
aphorisms and pointed comments on the latest literary novelties, and was
friendly with GOTTSCIIED). In 1767, KiSTNER, in Article 210 of his An-

der endlichen Analysis expressly postulated the Fundamental
theorem as an azsom.

Nowadays the Fundamental theorem of algebra is one of the established
propositions of algebra and of the theory of holomorphic functions respec-
tively which students accept without protest. All proofs require, in the final
analysis, the aid of non-algebraic (analytic, transcendental) methods and
concepts. Either—like D'ALEMBERT, ARGAND and CAUCHY—One reduces
successively the absolute value of the polynomial by a suitable choice of
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its argument, in which case one has to solve pure binomial equations and
one needs to have available some theorem guaranteeing the existence of a
minimum; or else—like EULER, LAGRANGE and LAPLACE—One splits off
factors, and then the contribution needed from analysis can be kept more
in the background. We require "only" the existence of square roots of com-
plex numbers and the theorem that real polynomials of odd degree have a
real zero.

Particularly favored are proofs which draw on results from CAUCHY'S the-
ory of functions: for instance the maximum modulus principle or the open
mapping theorem, or LIOUVILLE'S theorem to the effect that any function
which is holomorphic and bounded throughout C is necessarily a constant.
(See J. CONWAY, Functions of One Complex Variable, Springer-Verlag,
1978, p. 7?.) Many mathematicians believe that there can be no purely
algebraic proof, because the field and consequently its extension field C,
is a construct belonging to analysis.

10. Brief Biographical Notes on Carl Friedrich GAUSS. He was
born on the 30th April 1777 in Brunswick. He was a mathematician, as-
tronomer, geodesist and physicist. In 1792 at the age of fifteen he had al-
ready conjectured the Prime number theorem (first proved a hundred years
later) by counting from tables of primes and tables of which
he had been given. He studied at Göttingen from 1795 to 1798 as holder
of a special scholarship from the Duke of Brunswick. In 1796 he discov-
ered thr ruler and cotnpass construction of the regular 17-sided pQlygon. In
1799. lie was awarded his doctorate in absentia by PFAFF at the University
of Helmstedt which then belonged to the State of Brunswick. In 1801 he
published the immortal, Disquisitiones arithmeticac, the "bible" of number
theory. The same year he was appointed corresponding member of the St.
Petersburg Academy. 1801 also saw his calculation of the orbit of Ceres
by numerical analysis using only scanty observational data. In 1807 he was
appointed Professor of Astronomy and Director of Göttingen Observatory
and 1810 he refused the offer of a post in Berlin. In 1818 he began his
work on the survey of the Kingdom of Hanover. In 1820 he invented the
heliotrope—an instrument with a movable mirror for reflecting the sun's
rays, used especially in geodesy. From 1821 to 1825 he directed survey
work in the field. In 1828, he was guest of Alexander von HUMBOLDT in
Berlin and made the acquaintance of Wilhelm WEBER. In 1841 he decided
to learn Russian so as to be able to read the works of LOBACHEVSKY on
non-Euclidean geometry which he had known about for a long time. In
1842 he was a founder member of the order "Pour le mérite" for the Arts
and Sciences.7 In 1845 he carried out long and wearisome calculations in

'Other founder members of the civilian division of the Pour Ic order
founded in 1842 by King William IV of Prussia were: i.I. Berzelius (chemist),
F.W. Besad (astronomer), J. Daguerre (painter and inventor of the daguer-
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connection with the reorganization of the pension fund for the widows of
Göttingen professors. He died in Göttingen the 23rd February 1855. Large
parts of his mathematical knowledge were not made public until the papers
which he left at his death were published; his motto was: Pauca sed matura.
After his death medals were struck in the Kingdom of Hanover at the initia-
tive of the King, on which he was described as "Princeps mathematicorum"
a name by which he had already been called during his lifetime. By careful
reading of foreign and other newspapers in a reading room in Göttingen
and a systematic evaluation of the financial news, GAUSS managed to accu-
mulate a considerable private fortune through stock exchange speculation.
An obituary memoir Gauss zum Geddchtnis written by his friend Sarto-
rius von WALTER.SHAUSEN came out in 1856. A very stimulating book is
the critical study by W.K. BUiLER published in 1981 by Springer-Verlag,
GA USS, a Bibliographical Study.

§2. PROOF OF THE FUNDAMENTAL THEOREM BASED ON
ARGAND
ARGAND'S proof makes use of three auxiliary propositions:

0) Every complex polynomial is a continuous function in C.

1) Every continuous function f: K —* JR on a compaclum K in JR2 as-
sumes a minimum in K.

2) Every compler number has square roots.

The first two statements belong to the foundations of analysis; statement
2) was proved in 3.3.5, and it was deduced therefrom in 3.3.6 (cf. also 3.6.4)
that:

2') Every complex number has klh roots, 1 <k <oo.

We prove the theorem in three stages. First we show by a simple growth
argument that the absolute value function (or modulus) If(x)I of any com-
plex polynomial 1(z) in C always assumes a minimum value; this is the
so-called Minimum theorem of CAUCHY. The D'ALEMBERT—GAIJSS theo-
rem now states that, for a nonconstant polynomial this minimum is al-
ways zero. The proof of this is given in three lines in 2.3 with the help of
ARGAND'S inequality, which provides a bound for the value of a complex

rotype), i.L. Gay-Lussac (chemist and physicist), J. Grimm (Germanist), F.H.A.
v. Humboldt (Naturalist and geographer first chancellor of the order), C.G.J.
Jacobi (mathematician), F. Liszt (musician), J.L.F. Mendelssohn- Bartholdy
(composer), F. Rückert (poet and orientalist), A.W. v. Schiegel (poet), and L.
Tieck (poet). Details taken from "Orden Pour Le Mérite für Wissenschaften Und

Gebr. Mann Verlag, Berlin 1975.
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polynomial. This inequality, which is the core of ARGAND'S argument, will
be derived in 3, and depends on a simple inequality for polynomials of the
type 1 + bZk + Zkg(Z) where g(0) = 0.

1. CAUCHY's Minimum Theorem. For every polynomial 1(Z) ao+
a1Z + + a,Z" E C[Z] there is a CE C such that If(c)I = inflf(C)I.

Proof. We can assume that 0 with n � 1. We need a statement about
growth:

(*) there exists an r E R such that If(z)I > 11(0)1 for all z E C with
Izi > r.

For
C[WJ. Since h is continuous at 0, there is 6 > 0 such that lh(w)l �

whenever JWJ < 6. It follows that If(z)I � IzI"(IanI — Ih(z1)I) �
lzI", when > It suffices therefore to choose r> 61 in order

to ensure that >
After this preliminary work the proof of the minimum theorem can be

swiftly concluded. Since f(z) is continuous in C, the same is true of If(z)I
and therefore lf(z)l assumes a minimum in the compact circle K := {z
C: Izi r) by reason of statement 1) of the introduction. There is therefore
a c E K with lf(c)l = inflf(K)I. As s 11(0)1 s inflf(C \ by
virtue of (*), it follows that. lf(c)l = inf If(C)l. 0

CAUCHY likewise drew upon the existence of the minimum in his Cours
d'analyse of 1821 for a proof of the D'ALEMBER.T—GAUSS theorem (Chapitre
X). The existence of minima in compact sets, which we have taken without
proof from real analysis, had of course not yet been proved in CAUCHY's
time.

Some statement about the growth of polynomials, such as the one repre-
sented here by (a) is also needed in most of the function theoretical proofs.

2. Proof of the Fundamental Theorem. In addition to the minimum
theorem we need:

ARGAND's Inequality: Let f(Z) be a nonconstant polynomial. Then for
every point c C with f(c) 0 there is another point c' C with

If(c')I < If(c)I.

This inequality will be proved in the next paragraph, by the extraction
of kth roots. It follows at once from the inequality that every nonconstant
complex polynomial f(Z) E C[Z] must have a zero c in C. For by the
minimum theorem there exists a c C such that If(c)l � lf(z)I for all
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z E C. If f(c) were nonzero there would, by ARGAND'S inequality, be a
c' C with If(c')I which would be absurd.

3. Proof of ARGAND's Inequality. The decisive role in the proof is
played by the following.

Lemma. Let k be a natural number, not zero, and let

h:=l+bZk+Zkg with bECX, 9EC[Z], g(O)=O.

Then there is a ii C such that Ih(u)I < 1.

Proof. We choose a kth root d E C, of—i/b, so that = —1 (proposition
2' of the introduction). For all real I with 0 < I < 1, we then have

Ih(dt)I � — + = 1 — +

Since g, being a polynomial, is continuous at 0 (proposition 0 of the intro-
duction), and since g(0) = 0, there exists a 6, with 0 < 6 < 1, such that

< for all I satisfying the inequality 0 < I < 6. For every such I,
it then follows that Ih(di)I < 1 — 1k + < 1.

The reader will notice that, apart from g(0) = 0, the only property of
g: C C which has been used, is that of continuity at the origin. The
lemma therefore holds for all such functions. The argument shows that h
assumes values less than 1 in an arbitrurilg, small neighborlzood of the origin.

ARGAND'S inequality now quickly follows: a nonconstant 1(Z) implies
that 1(Z) := f(c + Z)/f(c) E C[Z] is not constant. Now

/(Z)= 1+bkZk with bk 0, 1 <k � n•

Writing g(Z) := bk+IZ + + we have / = 1 + + Zkg

with g(0) = 0. By the Lemma there exists therefore an u E C, such that
I < 1. For c' := c + u, we then have

If(c')I = Ih(u)i If(c)I <If(c)I. 0

In function theory ARGAND'S inequality is a special case of the gen-
eral "open mapping theorem" which asserts that nonconstant holomorphic
functions always map open sets on to open sets. (See J. Conway, Functions
of One Compkz Variable, Springer-Verlag, 1978, p. 95.)

4. Variant of the Proof. We describe here a variant of the proof of the
Fundamental theorem in which the existence of kth roots, with k > 2, is
assumed only for positive real numbers, and their existence for arbitrary
complex numbers is proved as a consequence. We use induction on the
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degree of the polynomial f, the initial step in the induction being clear.
Since the polynomial / defined in the previous paragraph has the same
degree as f and since the truth of of Lemma 3 for all polynomials h of
degree < n follows from the truth of the Fundamental theorem for all
polynomials of degree < n (via the ARGAND inequality) it suffices to show
that:

If the Fundamental theorem holds for all polynomials of degree < n,
n 2, then Lemma 3 holds for cli polynomials h of degree n.

Let h be any of the admissible polynomials of degree n in Lemma 3. We
distinguish three cases:

(1) k < n. Then by hypothesis the Fundamental theorem holds for all
polynomials — a, a E C; all a C therefore have kth roots and the
lemma can be proved as in 3.

(2) k = n, with n even. Then h = 1 + bz" with b 0. Choose a square
root 'i of —1/b and let u be a k/2th root of (which is allowable since
k/2 < n); it then follows that h(u) = 0 < 1.

(3) k = n, with n odd. Again h = 1 + with b 0. One can then
find a u C satisfying Ii + < 1 in the following amusing way: for
c := —IbI/b E S' there is a w E {1, —1,i, —i) such that Ic — wI < 1 (see
Exercise 3.3.4). As n is odd, the set { 1,—i, 1, —i) is mapped onto itself
by the transformation z i—. z", and there is therefore a v E C such that

= w. For u := v/ C we have . = w and hence = —w/c.
Since id = 1 it follows that

1. 0

The first inductive proof of this kind was given in 1941 by J .E. LITTLE-
WOOD: "Mathematical notes (14): every polynomial has a root." J. Lond.
Math. Soc., 16, 95-98. An even simpler proof was given in 1956 by T. Es-
TERMANN "On the fundamental theorem of algebra," J. Lond. Math. Soc.,
31, 238—240.

5. Constructive Proofs of the Fundamental Theorem. The AROAND-
CAUCHY proof is purely an existence proof and is non-constructive. As early
as 1859 WEIERSTRASS in his note "Neuer Beweis des Fundamentalsatzes
der Algebra" (Math. Werke 1, 247—256) had made the following start to-
wards a constructive proof: given a polynomial 1(Z), a number z0 := c E C
is chosen arbitrarily and the sequence := — I defined recur-
sively. WEIERSTRASS says (p. 247) "... it can be shown that when ii is
increased indefinitely, z,, under certain conditions, tends to a limit z satis-
fying the equation 1(z) = 0." More than 30 years later (1891, Math. Werke
3, 25 1—269) WEIERSTRASS once again discusses in detail the problem of a
constructive proof by asking the following question:
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"Is it possible for any given polynomial f E C[Z], to produce a sequence
of complex numbers by an effectively defined procedure, so that

is sufficiently small in relation to that it converges to a zero of
f?" H. KNESER in 1940 in his paper entitled "Der Fundamentalsatz der
Algebra und der Intuitionismus," Math. Z., 46, 287—302, defined such a
process which yields a constructive variant of the AROAND—CAUCHY proof
and which also satisfies the criticisms of the intuitionists. M. KNEsER in
1981 further simplified his father's process in a paper entitled "Ergänzung
zu einer Arbeit von Heilmuth KNESER über den Fundamentalsatz der Al-
gebra," Math. Z., 177, 285—287.

In 1979 HIRSCH and SMALE described a "sure fire algorithm" which
produces, for any nonconstant polynomial 1(Z) CEZI and any arbitrary
initial point c E C a sequence z,1, with Zo = c, which converges to a zero of
1. More precisely it is shown that:

(*) n0,1,2,...
with a positive real constant K < 1, depending only on the degree off, not
on I itself. For details, see the article "On algorithms for solving 1(z) = 0"
in Comm. Pure Appi. Math., 32, 281—312 and in particular pp. 303 ci seq.
The inequality (*), and with it a "sure fire algorithm" is already to be
found in KNESER, bc. cii., p. 292, formula (6), except that, to satisfy the
demands of the intuitionists, If(c)I is replaced by Max(1, If(c)I).

§3. APPLICATION OF THE FUNDAMENTAL THEOREM

The existence of at least one zero for every nonconstant complex polyno-
mial already implies that complex polynomials decompose into linear and
that real polynomials decompose into linear and quadratic factors. These
consequences of the Fundamental theorem are completely elementary, and
are a result of the simple fact that a polynomial with a zero at c always
has the factor z — c.

1. Factorization Lemma. If c C is a zero of the polynomial f E C[Z]
of degree n, then there is just one polynomial g C[Z] of degree n — 1, such
that f(Z) = (Z — c)g(Z).

Proof. Let f = . 0. Since Z"—c" = (Z—c)q,.(Z)
with := + Z"2c + .. + it follows that

1(Z) = 1(Z) - f(c) = - c") = (Z - c)g(Z),

where

g(Z) :=
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It is clear that f is of degree n — 1: since g(z) = (z — z c, g is
uniquely determined by f and c. 0

The factorization lemma holds for alt commutative rings, provided that
one gives up the uniqueness of g. By induction on ii we at once obtain the

Corollary. A polynomial f E C[ZJ of degree n has at most n zeros.

2. Factorization of Complex Polynomials. Every complex polynomial
I E C[Z] of degree n � 1 is, disregarding the order of the factors, uniquely
representable in the form

(1) 1(Z) = a(Z — — . . (Z —

where a E CX; r E N, C1, .. . , C,. E C are distinct from one another, and
flu ... , t2,. EN\ {O} fli+ + + flr = fl

Proof. We use induction on n, the case n = I being clearly true. Suppose
n > 1. By the Fundamental theorem of algebra there exists a C for
which f vanishes. By lemma!, 1(Z) = (Z—ci)g(Z), where g(Z) E C[ZJ is
of degree n — 1. By the inductive hypothesis there is a unique factorization

g(Z) = o(Z — — . ... . (Z —

with
distinct from one another, and a E CX. Consequently (1) holds. 0

The theorem just proved is often stated in the form:

Every complex polynomial of the nih degree has precisely n zeros where
each of the zeros c, is counted according to its multiplicity

3. Factorization of Real Polynomials. Every real polynomial I =
Ea,XM is a complex polynomial satisfying the additional condition

= f(s) for all z C,

for since = it follows that E a,, Z" = E a,,?. In particular is a zero
of f[X], whenever c zs. We easily deduce from this the

Theorem. Every real polynomial f E R[X] of degree n � 1 is (disregarding
the order of the factors) uniquely representable in the form

(1) f(X) = a(X — ... (X — .... .

where the following conditions hold:
(a) a E IR, a 0; s,1 EN; cl.. - ,c, €11 are distinct from one another;

m1,.. . ,m,, fli, . . . E N\ {0} with m1 + . +m, +2n1 . = n.
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(b)qj(X)=X2—bjX—ajwithb,2+4a,<Oforj=l,...,t;qi,...,qg
are distinct from one another.

Proof. We regard f as a complex polynomial and factorize it in accordance
with Theorem 2. We denote by c1,. . . ,c1 the real zeros. The other truly
complex zeros are taken in conjugate pairs to form real quadratic polyno-
mials q(x) = (x — c)(x — = x2 — (c + e)x + c + ë,
a we have b2 + 4a <0, for otherwise q(x) = (x — — + 4a)
would have a real zero. The assertion in the theorem now follows immedi-
ately. 0

Complex numbers no longer appear in the above enunciation of the pre-
ceding theorem. In the proof however they play an essential role as a deus
cx machina. GAUSS himself, incidentally, in his dissertation formulated the
fundamental theorem of algebra as a theorem on the factorization of real
polynomials, as its title already indicates (see 1.6). The latter form of the
theorem is used, among other places, in finding the indefinite integrals of
rational functions by partial fractions (see, for example, any standard Cal-
culus text).

4. Existence of Eigenvalues. If E — E is a C-linear mapping of a
C-vector space E into itself, the C is called an eigenvahie of çp, if
there is a vector v 0 in E such that ço(v) = Ày. With the help of the
fundamental theorem of algebra we can prove the following:

Theorem. If E 0 is a finite dimensional C-vector space, then every
C-linear mapping E —e E has at least one eigenvalue.

Proof (without using determinants). The set of all C-linear mappings of
E into itself is a finite dimensional C-algebra, with respect to the compo-
sition of mappings (which is isomorphic to the algebra of all complex n x n
matrices). The elements id, .. . are therefore linearly depen-
dent, that is, there is a polynomial f C[Z}, f 0 such that = 0. By
the factorization theorem 2 there exists an equation f =
Consequently

(ci, — cud)"1 — ... (ço — crld)'1' = 0.

Thus the mappings — c1,id: E E are not all invertible. Suppose that,
say, := — c1id is not invertible, then since E is finite dimensional, ',b
is not injective. There must therefore be a v 0 in E with = 0. It
follows that cø(v) = c1 v, that is, c1 is an eigenvalue of ço. 0

A far-reaching generalization of this theorem will be found in 8.4.7.
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5. Prime Polynomials in C[Z] and REX]. We reformulate the results
of paragraphs 2 and 3 in a wider context. Let K be any (commutative)
field whatsoever. Then a polynomial p E K[X] \ K whose term of highest
degree has the coefficient 1 is said to be a monic prime polynomial, if p
is not expressible as a product of two polynomials g, h E K[X] \ K. All
polynomials X — c, c E K are monic prime polynomials. We shall take
from Algebra the following result:

The polynomial ring K[X] has unique factorization, that is to say, every
polynomial f E K[X] \ {O} is (disregarding the order in which the factors
are arranged) expressible uniquely in the form

f = with r E N; m1,. . . , m,. N \ {O),

where a K \ (0) and P11P2,. . K[x} are monic prime polynomials
distinct from one another.

In the cases K = C and K = lit the decomposition of polynomials into
prime factors is described more precisely by theorems 2 and 3 respectively.

In the polynomial ring C[Z] every monic prime polynomial p is linear,
that is, p(Z) = Z — c, c C.

In the polynomial ring R[Z] every monic prime polynomial p is either
linear or quadratic: p(X) = X — c, c E R, or p(X) = X2 — bX — a with
b2 + 4a < 0.

Each of the last two statements is equivalent to the Fundamental the-
orem of algebra. In arbitrary base fields K there exist in general prime
polynomials of arbitrarily high degree in K[X). For example in Q[X] the
polynomial X" — 2 is a monic prime polynomial for every n 1.

6. Uniqueness of C. The choice of the field C of complex numbers is
neither arbitrary nor haphazard. We have already become aware in 3.2.3 of
one uniqueness result for C. We shall now, with the help of the Fundamental
theorem of algebra, establish a more general

Uniqueness Theorem for C. Let K be a commutative extension ring of R
without divisors of zero and with unit element 1 and such that every element
of K is algebraic over IR, that is, a zero of a real nonzero polynomial. Then
K is isomorphic to lit or to C.

To prove this theorem we use the following simple lemma, based on the
Fundamental theorem.

Lemma. On the hypotheses of the Uniqueness theorem every element v
K \ R satisfies an equation v2 = a + by with a,b ER.
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Proof. By hypothesis there exists a nonzero polynomial I such that 1(v) =
0. As K has no divisors of zero, it follows by Theorem 3 that there is also
a polynomial p of degree 1 or 2 which vanishes for the argument v. Since
p cannot be linear because v lit, p(X) must be of the form p(X) =
X2 — bX — a, that is, v2 = a + by.

We now come to the actual proof of the Uniqueness theorem. Suppose
K lit. We choose an element v E K \ R and consider the 2-dimensional
real vector space V = lit+lRv generated by 1 and v. Since v, by the lemma,
satisfies an equation v2 = a + by with a, b E lit, it follows that for any
arbitrary elements z1 + ytv, x2 + y2v V:

(z1 + ylv)(x3 + y3v) = (x1x2 + yly2a) + (z1y2 + Y1z2 + yiy2b)v V.

Thus V is a commutative, 2-dimensional ring over lit without zero divisors
and with unit element, and is therefore, by theorem 3.2.3 isomorphic to C.

It only remains to show that K = V. Let u be any element of K \ lit.
There is a real polynomiaL f 0 with 1(u) = 0. Over C V C K, I splits
into linear factors X — c, c E V. Since K has no divisors of zero, one of
these linear factors must vanish at is, that is, u = C E V. We have therefore
verified that K = V C.

The hypothesis in the Uniqueness theorem, that every element w E K is
algebraic is always satisfied when K is a finite dimensional vector space over
lit: for the powers 1, w, w2,.. . , are then linearly dependent, that is,
there is an equation ao + a1w + ... + = 0, in which the coefficients
a,, do not all vanish.

7. The Prospects for "Hypercomplex Numbers." The Uniqueness
theorem asserts in particular:

The field C is (up to isomorphism) the only proper commutative algebraic
field over lit, and in particular there is no commutative algebraic extension
field of C other than C itself.

This theorem was presented by WEIERSTRASS in his Berlin lectures from
1863 onwards. It was published for the first time by IIANKEL in his book
Theorie der complexen Zahiensysteme. It is stated by HANKEL in the words
(p. 107):

"Em höheres complexes Zahlensystem, dessen formale Itechenoperatio-
nen nach den Bedingungen des §28 bestimmt sind, und dessen Einheitspro-
dukte in's Besondere lineare Functionen der ursprünglichen Einheiten sind,
und in weichem kein Product verschwinden kann, ohne dass einer seiner
Factoren Null würde, enthält also in sich einen Widerspruch und kcnn
nicht existieren." [A higher complex number system, whose formal laws of
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operation are determined by the conditions of §288 and whose products of
units are in particular linear functions of the original units, and in which
no product can vanish unless one of its factors is zero, is a contradiction of
terms and cannot exist.]

HANKEL proudly declares (p. 107): "Damit 1st die Frage beantwortet,
deren Lösung 1831 GAUSS (Werke 2, S. 178) versprochen, aber nicht gegeben
hat, "warum die Relaüonen zwischen Dingen, die eine Mann igfaltigkeit von
mehr ala zwei Dimensionen darbieten, nichi noch andere in der ailgemeinen
Arithmetik zulãssige Arten von Gröfien liefern kJnnen." [This answers a
question whose solution GAUSS had promised in 1831 ( Werke, 2, p. 178)
but never gave: the question of why relations between objects, which rep-
resent a manifold of more than two dimensions, cannot give rise to other
permissible kinds of magnitudes in generalized arithmetic.]

The hypothesis of commutativity is essential in the Uniqueness theo-
rem. As is well known the hypertomplex system of quaternions described
by HAMILTON in the year 1843 is a 4-dimensional noncommut alive field ex-
tension of R. Moreover there is also the 8-dimensional hypercomplex system
of octonions which is a further extension of that is neither commuta-
tive nor associative, but yet has no divisors of zero. We shall discuss these
algebras in depth in Chapters 7 and 8 of this volume.

The hypothesis that the system must not contain divisors of zero is also
an immediate condition for the validity of the Uniqueness theorem. For
example the system JR x JR with a "ring-direct multiplication" defined by

(a,b)(c,d) := (ac,bd)

is a 2-dimensional commutative ring extension of JR with unit element
e := (1, 1) which has, for example, (1,0) as a divisor of zero, and con-
sequently is not isomorphic to C. WEIERSTRASS (1884) and DEDEKIND
(1885) showed that this example is significant and that every finite dimen-
sional, commutative ring extension of JR with unit element but no nilpotent
elements, is isomorphic to a ring direct sum of copies of JR and C. (An
element x 0 is said to be nilpotent if there is an exponent n � 2 such
that = 0.)

Appendix: Proof of the Fundamental Theorem, after LAPLACE

We shall discuss here the beautiful algebraic proof, which LAPLACE sketched
in 1795 and which is somewhat different and perhaps simpler than the
second proof that GAUSS gave in 1816. This proof is to be found in N.
BOUR.BAKI'S Algêbre, Chap. VI, 1952, pp. 40—41. In the Note historique
BOURBAKI ascribes the proof to GAUSS (p. 150). Our source is an article

8The conditions of §28 state in effect that the system is a commutative ring
with unit element, which is a finite dimensional vector spare over IR.
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by Heilmuth KNESER entitled "Laplace, Gauss und der Fundainentalsatz
der Algebra" which was published in 1939 in Deutsche Mathematik 4, 318—

322.

1. Results Used. We shall use the following well-known results.

1) Every real polynomial of odd degree has at least one real zero (Corollary
of the Intermediate value theorem).

2) Given any real polynomial f which is not a constant, there exists an
extension field K of the field such that f splits in K[XJ into linear
factors (existence of a splitting field).

3) Let K be an extension field of R, let .. , be elements of K, and
let

I�&,I<.

be the symmetric functions in (i,... , (,, (so that '11 =
+. . . +Cn,. . . = Then (with X as indeterminate)

— = X" — + — ... +

and every polynomial symmetric9 in Ci, . . . , belonging to
is a real polynomial in . , (Main theorem on sym-

metric functions).

4) Every quadratic complex polynomial spiiis into linear factors in C[Z].

Of these four statements only the main theorem on symmetric functions,
which was proved by NEWTON in 1673 would not necessarily be covered in
a general mathematical education.

2. Proof. For ease in utilizing the statement (1.3) we shall write the co-
efficients of the given polynomial with alternating signs. The Fundamental
theorem of algebra will have been proved as soon as it is shown that:

Every polynomial h = — + — . .. + R[XJ,
n 1, has a zero c C.

Proof (following LAPLACE). We write a in the form 2kq, where q N
is an odd number, and use induction on k. The start of the induction,
k = 0, is clear, since the statement holds by virtue of 1). Suppose that

9A polynomial .. is said to be symmetric, if it is invariant under
any permutation of the indices 1, .. ., n.
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k � 1. By 2) there is a field K D R and elements .. E K, such
that 4 = (X — — ... . (X — E K(X]. Using an artifice due to
LAPLACE, we now form, for any real number t, the polynomial

:= [J (X — — — E K[X].

When this polynomial is expanded in powers of X, all the coefficients are
real symmetric polynomials in . . , because by its definition, re-
mains invariant when the . . , are permuted in any way. By 3) these
coefficients are real polynomials in the elementary symmetric functions
of the .. . ,(,, that is, in the real numbers .. It follows that
L1 E REX]. Since is of degree — I) = — 1) and as
q(2kq — 1) is odd when q is odd, because k � 1, it follows from the induc-
tive hypothesis that has a zero in C. The product form of now shows
that for every t R, there must be indices p < '.', such that + +
lies in C. As there are only —1) index pairs (p, v) with 1 � p < v n
and infinitely many real numbers, it must always be possible to find r, 8 E R
with r s and K, A with 1 <K < A < n, such that

EC, EC.

Since r s it follows from this that

and that ,CA are the roots of the polynomial

Z2—vZ+u €C[Z]

and that consequently, by 4), E C.

3. Historical Note. LAGRANGE said in 1797/98 about LAPLACE'S proof
that it "ne laisse rien a comme simple demonstration" but held
against it the fact that the calculations required would be virtually "impos-
sible" to carry out in practice (Dc Ia rIsolution des equations numCriques
de toes les degrCs, Paris, An VI, 1797/98, pp. 200—201). In the 2nd edi-
tion of this treatise by LAGRANGE, which appeared in 1808, no mention is
made, incidentally, of GAUSS'S first proof of 1799, and doubtless this was
due to the limited circulation which the latter had enjoyed. H. KNESER
commented in this connection "it is perhaps even more remarkable that in
the third edition (which came out in 1828, after LAGRANGE'S death, in a
new version rearranged and edited by PoiNsoT) nothing had changed. Not
only was POINSOT completely unaware of GAUSS'S second and third proofs,
which had appeared in 1816 in the Göttinger Comment ationes, but he also
expresses his complete satisfaction at what LAGRANGE and LAPLACE had
achieved. Thus GAUSS'S criticisms and ideas had not yet penetrated to
Paris after nearly thirty years, twelve of which had been years of peace."
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What is ii?
R. Remmert

And he made a molten sea, ten cubits from the
one brim to the other; it was round all about and his
height was five cubita, and a line of thirty cubita
did compass it round about.
(I KINGS, Chapter 7, verse 23).

There are many possible ways of introducing the number w, associated with
the circle. We shall obtain w from the complez exponential function

z z2
expz 1 + +

There is a (uniquely defineJ) real number ir > 0, such that the numbers
n E Z, constitute the set of numbers mapped on to 1 by the ezponenticl

mapping exp z; or, in other words, there is a unique number x with the
property that

(1) {wEC:expw= 1) =2TiZ.

We shall take(1) as the definition of x, and deduce from it all its well-known
properties. To go into more detail, we shall adopt the following procedure;
after describing the history of the number in Section 1, we shall begin by
developing the theory of the exponential function in the complex domain
as far as is necessary for our purpose, and we shall assume that the reader
has a certain familiarity with the basic ideas of real analysis. Absolutely
convergent series are defined as in the real domain. The field C inherits
the completeness of the field R so that CAUCHY'S Multiplication theorem
remains valid for absolutely convergent series of complex numbers. We shall
use these elementary things without stopping to substantiate them afresh
for the complex domain, and we shall also have nothing to say about the
general limit concept for series of functions.1 The central result of Section 2
is the Epimorphism Theorem 2.3, which describes the exponential function

'We justify this unsystematic procedure by appealing to a fundamental prin-
ciple of applied didactics, which Schiller expressed in a letter to Goethe of the
5th February 1796 in the following words: "Wo es die Sache leidet, halt.e ich
es immer für besser, nicht mit dem Anfang anzufangen, der immer das Schw-
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as a homomorphism exp: C —, Cx, mapping the additive group C onto
the multiplicative group C*. This is quickly established once it is known
that the image set exp(C) contains a neighborhood of the point 1. We
give two proofs for this: a very short one based on differentiation, and a
completely elementary one, which uses no differential calculus but merely
the Intermediate value theorem for real continuous functions (see 2.3 and
the appendix to §2).

Once the Epimorphism theorem is available, it is easy to verify the equa-
tion (1). After that the existence of the polar coordinate epimorphism,
indispensable to the introduction of polar coordinates, can then be quickly
established. This is the epimorphism p : R —. , ço '-+ whose kernel is
2irZ. However the proof that = i requires the use of the Intermediate
Value Theorem (see 3.5 and 3.6).

"After ... exponentials ... the sine and cosine need to be considered,
because they ... arise from exponential quantities as soon as these involve
imaginary numbers." So wrote EULER in 1748 in §126 of his Introductio in
analysin True to this sentiment we shall introduce in Section
3 the trigonometric functions by means of the exponential function. The
famous EULER formulae

cosz = sinz = —

are raised to the status of definitions. EULER'S discovery of the relationship
between the trigonometric functions and the exponential function com-
pletely recast the whole of analysis from its foundations. All the proposi-
tions of the elementary theory of the circular functions now follow almost
by themselves and in particular the BALTZER.—LANDAU characterization of

(see 1.5 and 1.6). In Section 4 we discuss some classical formulae for
we refer there also to the questions of irrationality and transcendence.

The key to the solution of the problem of squaring of the circle lies in the
fundamental relation = 1.

ON THE HISTORY OF ir

We summarize the important historical facts. Our sources are:

TROPFKE, J.: Geschichte der Elementar-Mathematik, 4, Ebene Geometrie,
3rd ed., pp. 260ff., De Gruyter, Berlin 1940

JuscHKEwITscH, A.P.: Geschichte der Mathematik im Mittelalter,
Teubner-Verlag, Leipzig 1964

crate ist." (Whenever the subject allows, I always think it better not to begin
at the beginning, which is always the mast difficult.) This to which
mathematicians can hardly do justice in lectures and textbooks, was found, in-
cidentally recorded in Riemann's posthumous papers right in the middle of some
calculations.
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RuDlo, F.: ARCHIMEDES, HUYGENS, LAMBERT, LEGENDRE. Vier Ab-
bandlungen über die Kreismessung, Deutech herausgegeben und mit
einer Ubersicht uber die Geschichte des Problems von der Quadratur
des Zirkels, von den ältesten Zeiten bia auf unsere Tage, Teubner Verlag,
Leipzig 1892. Reprint Dr. Martin SIndig OHC 1971

BECKMANN, P.: A history of w (Pi), The Golem Press, Boulder, Colorado,
4th ed., 1977

1. Definition by Measuring a Circle. In any circle the ratio of the
circumference C to the diameter, and the ratio of the area A to the square
of the radius is constant. ARCHIMEDES (287—212 B.C.) recognized that in
each case the constant is the same. Since the time of EULER (1737) this
constant has been denoted by so that if we write r for the radius, we
have:

A=irr2.

The letter appears for the first time in a book by the English math-
ematician W. OUGHTRED (1575—1660), who taught J. WALLIS, entitled

in libris Archimedis de sphaera ci cylindro declaruiio, Oxo-
niae 1663. Whether EULER knew of OUGHTRED is difficult to determine,
but he may well have thought of this symbol as the initial letter of the
ordinary Greek word for circumference Until 1735 EULER
still wrote p rather than

2. Practical Approximations. For the architects of the "molten sea"
in the courtyard of the temple of King Solomon, mentioned in the Book
of Kings, was 3. This value was also the one used in the main by the
Babylonians. A surprisingly good approximation is found in the Egyptian
arithmetic book of AHMES (circa 1900 B.C.) which gives the rule that
the area of a circle of diameter d is (d — This corresponds to an
approximation of by 3.16. How this value was found is not
recorded.

In the Indian Sulbasutras (literally "cord-rules," that is, rules for con-
structing altars of specified form by means of cords or ropes) are found two
rules:

1) to find a square equal in area to a given circle, deduct 2/15 from the
diameter, which leads to an approximate value for of 3.0044;

2) to find a circle equal in area to a given square, take as radius the
line MQ in the figure below, where RQ = which corresponds to

3.088.
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The were written down about 500 B.C. It is not known how
long before then their content had been handed down by oral tradition.

P

Albrecht DURER (1471—1528) of Nuremburg gives the following solution
for the second problem:3 divide the diagonal of the square into 10 parts
and take 8 of them as the diameter of the circle. This amounts to saying
that 1 that is, Thus DtiRER does not take the then
generally accepted value of 3+, which is probably to be explained by the
fact that he liked to draw rather than calculate, and that there is no rational
geometrical construction based on division which leads to (The reader
may care to try to prove this.)

According to K.R. POPPER. (The open socieiy and its enemies, volume
1, the spell of Plato, 5, revised ed., Routledge and Kegan Paul, London
and Henley, 1966), PLATO (427—348/47) already knew a surprisingly
approximation for he is said to have given the estimate + V'3
3.14626 which has an error of less than 1.5 parts in a thousand.

3. Systematic Approximation. ARCHIMEDES was the first to give upper
and lower bounds for He compared the circumference of the circle with
the total length of the sides of the inscribed and circumscribed regular n-
sided polygons and obtained for n = 96 the inequalities

3 is trivial because an inscribed regular hexagon has a
periphery of length 6r. The value 3.14 is still used today as a
sufficiently close approximation for many practical purposes.

With ARCHIMEDES'S method it became possible to determine the value of
w more accurately. Already AP0LL0NIUs who was about 25 years younger
than ARCHIMEDES calculated some better approximations. This is reported
by EuToclus in his commentary on ARCHIMEDES'S On the measurement
of a circle [ARCHIMEDES, Opera, Vol. 3, Leipzig, Teubner 1915, Reprint

2Underweysung der Messung mit dem Zirckel und Richtscheyt in Linien,
Ebnen, und gantzen Corporen, Nuremberg 1525, 21528; end of the 2nd Book,
figure 34 (facsimile edition published by A. JaeggJi und Chr. Papesch, Zurich
1966).
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1972, pp. 258—9]; unfortunately he gives no numbers. PTOLEMY (around 150
AD.) chose a mean between the two values of ARCHIMEDES, namely

3.14166... (Handbuch der Astronomie, Deutsch von K. MANITIIJS,
2nd ed., Leipzig 1963, pp. 384—5).

Since then astronomers in all nations strove to find improved values
for The Chinese knew of some already in the first century A.D. Thus
the astronomer and philosopher ZHANG HENG (78—139) worked with the
value 3.162; while the scholar and warlord WANG FAN (died 267)
was aware of the better fractional approximation 3.155. Lw Hul
calculated (circa 263) from a regular polygon of 192 sides the bounds

< < and later from one of 3,072 sides an approxi-
mate value corresponding to the decimal fraction 3.14159. Finally, from Zu
CH0NG-ZHI (430—501) came the approximation x which is accurate
to the first six decimal places. This approximation, as is well known, is one
of the convergents in the expansion of as a regular continued fraction
(see 5.6). This fraction was rediscovered by the Dutchman Valentin OTilo
towards the end of the 16th century. Whether the Chinese had learnt any-
thing from the discoveries of ARCHIMEDES or PTOLEMY is not known, but
anyhow there were already cultural contacts at the time because Chinese
silk was being sold in Rome.

In the Indan astronomical work, the Suryasiddhanta (circa 400 A.D.)
is used, ARAYSHATA gives in 498 A.D. This value also appears in

the works of al-HwARIzM1 (Baghdad, beginning of the 9th century A.D.).
The height of achievement of the Islamic astronomers in such calculations
was reached, though much later, by who was an astronomer at
the observatory in Samarkand founded by ULUG BEG. He calculated the
circumference of a circle of unit radius by means of a regular polygon of

sides and thus found 2,r in the form of a sexagesimal fraction 6; 16,
59, 28, 1, 34, 51, 46, 14, 50 with an error of less than a quarter-unit in the
last place. He then converted this to the decimal fraction 6.283 185 307 179
586 5 (one of the earliest appearances of decimal fractions).

Rules for the mensuration of circles, equivalent to taking a value of
for x, seem to have spread through the western world through the activities
of Roman surveyors and the writings of I3OETHIUS (circa 480—524 A.D.).
LEONARDO of PIsA (circa 1170—1240?) who made himself master of the
mathematical knowledge of the time in the course of his travels in the Ori-
ent, calculated from a 96-sided polygon to obtain 3.141818...
(La pratica di geometria. In ScriUi di Leonardo Pisano, B. Boncompagni,
ed., Vol. 2, Rome 1862, pp. 90 et seq.); LUDOLPH VAN CEULEN (1540—
16 10, Leyden) gave the value correct to 35 decimal places, and so is often
called after him, LUDOLPH'S number. The first twenty correct decimals are
as follows:

= 3.14159265358979323846...
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The House of Representatives of the State of Indiana in the U.S.A. unan-
imously passed in 1897 an "Act introducing a new mathematical truth,"
which proposed two values for namely 4 and 3.2. The Senate of Indiana
postponed "indefinitely" the adoption of this measure. Fortunately for the
people of Indiana, the "indefinitely" still continues (see D. SINOMASTER,
The legal values of pi, Maih. !nielligencer, 7(2), 1985, 69—72).

4. Analytical Formulae. The first analytical representation of s was
found by VIETA in 1579 in the form of the infinite product

2 IT Ii 1 IT Ii 1 /1 1 IT

This is probably the very first infinite product in the history of mathemat-
ics. WALLIS in 1655 discovered, in the course of investigations to do with
integration, his famous product

4.4 66 2n2n
2 — 3.5 5.7 (2n— 1).(2n-f1)

It is remarkable that these first formulae for are not infinite series.
The next great advances towards an understanding of the number w had

to await the development of the infinitesimal calculus and the theory of
infinite series. In 1671 James GREGORY gave the classical series represen-
tation 111
which was rediscovered in 1674 by LEIBNIZ, but which, like WALLIs's prod-
uct, is unsuitable for numerical calculations, because of the slowness of its
convergence. NEWTON by putting z := in the arc sin series

1z3 1arcslnz=z+23+245++ 2n+1+
obtained, around 1665, the representation

11111311 13511
which enabled him to calculate with great ease the first 14 decimal places
of w.

5. BALTZER's Definition. If one wishes to express the geometric def-
initions of given in paragraph 1 in an analytical form, one has to use
integrals. The unit circle may be described by z2 + y2 = I; the arc length
of its upper half and its total area are given by
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and
j1 t1 1

/ j 2dx=T
J—i

respectively.
These equations can be elevated to the status of definitions of It is

worth pointing out here that WEIERSTRASS as early as 1841 in his func-
tion theoretic proof of the Expansion theorem now usually known as the
LAURENT series theorem, had already introduced the idea of defining s by
the improper integral

dx
:= I 1+x2

(Math. Werke 1, p. 53).
In lectures and books on the infinitesimal calculus, integrals are not

normally used to define *, because as a general rule the integral calculus
is not treated until after the differential calculus, while and need to
be introduced at an early stage as zeros of the sine and cosine functions
respectively. It is more usual therefore to define as the smallest positive
zero of the cosine function defined by its power series; the existence of such
a zero being proved with the help of the Intermediate value theorem. This
method of introducing the number was already used by Richard BALTZER
(1818—1887), who was a professor at Giessen from 1869 onwards, and a
friend of KRONECKER. In the first volume of his Elemente der Mathematik
one reads (see, for example, 5th ed., 1875, p. 195) "Während x den realen
Weg von 1 bis 2 zurücklegt, geht cos x ohne Unterbrechung der Continuität
aus dem Positiven ins Negative:

1 11 l\
1 26 22

also giebt es zwischen 1 und 2 einen realen Werth x, bei weichem cos x null
ist. Dieser Werth ... wird durch bezeichnet." [While x travels along the
real path from 1 to 2, cos x goes without any break in continuity from a
positive value to a negative value:

1 11

1 26 22

so that there is a real value of x between I and 2 for which cos x has the
value zero. This value ... is denoted by

6. LANDAU and His Contemporary Critics. BALTZER'S method of
introducing ir is not geometrical, but it is probably the most convenient way
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of arriving rapidly at in the real domain. Eduinund LANDAU (1877—1938)
advocated and publicized this approach in his Ci6ttingen lectures and his
EinfiV&rting in die Differentialrechnung und Iniegrizlrechnung (Verlag No-.
ordoff, Groningen) published in 1934, and written in his characteristic "tele-
graphic" style. On page 193 of this book can be read "Die Welt konstanie
aus Satz 262 werde dauernd mit bezeichneL" [The universal constant in
Theorem 262 will always be denoted by LANDAU, who was a pupil of
FROBENIUS, was appointed in 1909 Professor of Mathematics in Gcttingen
as successor to MINKOWSKI. In 1933 he was dismissed on racial grounds.
There is an obituary notice by K. KNOPP in Jahresber. DMV, 54, 1951,
55—62.

The definition of 4ir as the smallest positive zero of cos z is now com-
monplace. It is therefore all the more incomprehensible to us nowadays
that this particular method of defining should have unleashed in 1934 an
academic dispute for which the epithet "disgraceful" would be far too mild
a description. A highly distinguished colleague in Berlin attacked LANDAU
savagely. It will be enough to quote two of his sentences: "Uns Deutsche
lãBt eine soiche Rumpftheorie unbefriedigt" (Sonderausg. Sitz. Ber. Preuss.
Akad. Wiss., Phys.-Math. KI. XX, p. 6); und weitaus deutlicher: "So 1st

die mannhafte Ablehnung, die em groBer Mathematiker, Edmund LAN-
DAU, bei der Gôttinger Studentenachaft gefunden hat, letzten Endes darin
begründet, daB der undeutsche Stil dieses Mannes in Forschung und Lehre
deutsehem Empfinden unertraglich 1st. Em Yolk, das eingesehen hat, ... wie
Volk8fremde damn arbeiten, ihm fremde Art aufzuzwingen, muB Lehrer von
einem ihm fremden Typus ablehnen." (Persönlichkeitsstruktur und math-
ematisches Schaffen, Forach. u. Fortschr., 10. Jahrg. Nr. 18, 1934, p. 236.)
[Such a tail-end of a theory leaves us Germans quite unsatisfied) and more
specifically: [Thus ... the valiant rejection by the Göttingen student body
which a great mathematician, Edmund LANDAU, has experienced is due in
the final analysis to the fact that the un-German style of this man in his
research and teaching is unbearable to German feelings. A people who have
perceived, ... how members of another race are working to impose ideas
foreign to its own must refuse teachers of an alien culture.]

Such abstruse, outrageous, and monstrous opinions were immediately
and sharply rejected by the British mathematician G.H. HARDY in August
1934 in his note "The J-type and the S-type among the mathematicians"
(Collected Papers, 7, 1979,610—611) he wrote: "There are many of us, many
Englishmen and many Germans, who said things during the War which we
scarcely meant and are sorry to remember now. Anxiety for one's own
position, dread of falling behind the rising torrent of folly, determination
at all costs not to be outdone, may be natural if not particularly heroic
excuses. Prof. Bieberbach's reputation excludes such explanations of his
utterances; and I find myself driven to the more uncharitable conclusion
that he really believes them true."
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§2. THE EXPONENTIAL HOMOMORPHISM exp:C —' Cx

The exponential series, first written down for real arguments by NEWTON
in a letter to LEIBNIz of the 24th October 1676 (see Math. Schriften, ed.
GERHARDT, vol. 1, p. 138)

Z2 Z3
°°

Zt'

2! 3! n!

is absoltttely convergent for all z E C. This can be proved in exactly the same
way as in the real case. We have thus defined in the whole of C a complex
function exp: C —. C, which is called the (complex) exponential function,
and which is the natural extension of the real exponential function into
the complex domain. This function plays, ever since the days of EULER, a
dominant role among the so-called "elementary transcendental functions."
We shall derive the Addition theorem which is of fundamental importance
for the theory of the function exp z, from CAUCHY'S theorem on the product
of two series:

Let b,, be absolutely convergent series. Then their "Cauchy
product" PA, where p,, := is absolutely convergent, and

= EPA.

The reader will find a proof of this theorem in the famou8 Cours d'onalyse
of CAUCHY, which appeared in Paris in 1821 (see, for example, Oeuvres,
3, Ser. 2, p. 237) and also in any modern Advanced Calculus text. The
Addition theorem states that the mapping

exp:C_.CX, zi—.expz

is a homomorphism of the additive group C into the multiplicative group
CX. Whenever a mathematician sees a group homomorphism o: C H,
he immediately looks for the image group o(G), and the kernel

Kero := {g E C: o(g) = neutral element of H).

We shall show that, for the exponential homomorphism,

exp(C) = CX, Ker(exp) = 2,riZ,

where is a positive real number. To prove that exp(C) = CX we use a
simple

Convergence Lemma. Corresponding to any w E there is a sequence
in CX with w and = 1.
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We shall prove this straightaway. We write w = Iwic with c E S'. There
is a c1 = a1 + it'1 E with 0 and c? = c. In view of the concluding
remark in 3.3.5 we can now find a succession of numbers Cf% = E S',
such that = 0, � *Ibn_iI. We see that ca" = c and

� It'll �

Since > 1 it follows that limb, = 0, and therefore =
lim(1 — = 1, so that = 1 since � 0. It is thus clear that
urn c,, = + = 1. For the sequence defined by w, we
now have = wand = 1, because as is well known 1

foranyr>O. 0

Apart from the convergence lemma, we shall also make use of two ele-
mentary facts taken from the theory of functions (see J. Conway, Functions
of One Complez Variable, Springer-Verlag, 1978, p. 37).

1) Any power series f(z) = a,,z" is holomorphic inside its circle of
convergence, and within this circle f'(z) =

2) 1ff is holomorphic and f' vanishes at every point inside some circle,
then f is constant.

1. The Addition Theorem. (exp w)(exp z) = exp(w + z). To prove this
we write

(expw)(expz) = with = (A _v)!v!WZ
A=O M+V=A v0

by CAUCHY'S theorem on the multiplication of series. Now

1 1 1('A'\
(A_ri)!z4ARV)'

and consequently, by the Binomial theorem,

= = ÷

so that
A

(exp w)(exp z) =
(w = exp(w + z). 0

The Addition theorem asserts that the exponential function obeys the
"rule for powers." To bring out this point more clearly one often prefers to
write

1 1e2 :=expz, where (EULER 1728).
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If one uses this notation, which is not without its dangers, then the Addition
theorem takes the suggestive form of the

Power Rule. = for all w, z C.

If one puts w := —z in the Addition theorem, it follows from exp 0 = 1,

that
(expz)' =exp(—z) for all ZEC;

and in particular that the function exp(z) has no zeros, so that it maps C
into CX. The Addition theorem now states that

The mapping exp:C — CX is a homomorphssm of the additive group C
into the multiplicative group CX.

2. Elementary Consequences. The conjugation of convergent sequences
is compatible with the formation of the limit. Consequently exp z = exp
from which it follows that

(1) Iexpzl=exp(Rez) forall zEC.

Proof. Since z + = 2 Re z, we have, by the addition theorem

1 2 1 1 1

Iexpzi = exp = (exp = (exp

=exp(R.ez). ci

Since it is clear, from the form of the exponential series, that exp z > I
forx > 0,itfollowsthatexpx =(exp(—z))1 <1 forx <0.Thestatement
(1) therefore implies

(2)

and in particular y i— exp(iy) is a mapping of into the unit circle S'. As
regards the behavior of its functional values we shall show that

(3) Im(exp(iy)) > 0 for 0 < y <

Proof. Since exp(iy) = and since R, we have

Im(exp(iy)) y — + . .. +
—

(the sine series; cf. 3.1(2)). By writing this in the form

1 1 2"
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we deduce at once that Im(exp(iy)) > 0 for 0 < y < 0

Since exp(—iy) = we deduce directly from (3) the following.

Lemma. The only point in the open interval (—1, +1) at which the function
JR —. S', y exp(iy) has a real value is the pointy = 0.

The continuity of exp z is easily deduced from the Addition theorem.
Writing q =1 +1/2!+ 1/3!+•.. wehave lwlll+w/2!+
w2/3! + .. .J < for all w C with Iwi � 1. It follows therefore for
anycECandallzECwithiz—cl<1that:

— expci = Iexpcllexp(z — c) — � qiexpciiz — ci

and hence lexp z — expe' provided that iz — ci <min(1, Jqexp
0

It follows from the continuity of exp z with the help of the Intermediate
value theorem, that, since exps> 1 + s for 8> 0 and exp(—z) = 1/expz,
we have

(4) expR={rEllt:r>O}.

3. Epiniorphism Theorem. The ezponential homomorphism exp C —i
za an epimorphism, that is, ii is surjective.

Our proof is based on the following.

Lemma. There is a neighborhood U of the point 1 C such that U C
exp(C).

Proof. The logarithmic series := z — + — converges for

izi < 1 and is therefore holomorphic with = 1 — z + z2 — z3 + — =
(1 + z)'1 for Izi < 1, by the first statement in the Introduction. Similarly
exp z is holomorphic in C, and (exp z)' = exp z in C. Consequently 1(z)
(1 + z)exp(—)h(z)) also is holomorphic inside the unit circle, and it follows
by the chain rule that f'(z) is identically zero for all Izi < 1. Consequently,
by statement 2 of the Introduction, 1(z) is a constant, and since 1(0) = 1,

we must have = 1 + z for all Izl < 1. It now directly follows
that the disc U := {z E C: Iz — < 1) lies in exp(C), because for any
a E C satisfying a — < 1 the number 6 := )(a — 1) is well defined, and
expb=a. 0

The proof of the Epimorphism theorem can now be quickly completed.
By the convergence lemma in the introduction there exists, corresponding
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to every w E CX, a sequence E C with = wand = 1. By the
lemma in the preceding paragraph there exists also an index m � 1 and a
I E C such that wm = exp I. For z := 2"I we then have, by virtue of the
Addition theorem, exp z = (exp I)2m = w, and we see that exp(C) = C. 0

We sketch a second proof of the Epimorphism theorem which works
without the sequence For any WE the set of points W := {wz:z E
U} is a neighborhood of w in CX. If w E exp(C) then W c exp(C) by the
lemma above and the group property of exp(C). Thus exp(C) is an open
subgroup of the connected group CX. However, by an elementary theorem
of the general theory of topological groups a connected group G has no
open subgroups other than G.

In the proof of the above lemma the identity exp A(z) = 1 + z plays
the deci8ive role. It is possible to prove this identity in an elemenhzry way
without use of the differential calculus. I am indebted to M. KNESER for
the following argument. The proof is based on using the formulae:

(1) = lim n[(1 + — 11, z E F.,

(2) expw = Jim (i + if =

where

ZEE.

From (1) and (2) may be deduced immediately, by taking := n[(1 +
— 1)

exp.X(z) = urn [(1
n—co

The statement asserted by the theorem now follows, if one also remembers
that

(3) (1 + z)G(1 + = (1 + z F..

The statements (1)—(3) can be proved by elementary arguments, thus (3)

is equivalent to identities involving binomial coefficients and

(a-I- b)
which hold for all natural numbers a, 6 and hence generally, by

the binomial theorem.
In an appendix to this section we shall give another elementary proof of

the lemma.

4. The Kernel of the Exponential Homomorphism. Definition of
With the help of the equation exp(C) = CX we can determine without

trouble the kernel, Ker(exp) = {w E C:expw = 1).
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Theorem. There is a uniquely determined positive real number with the
prvperty that

Ker(exp) = 2RIZ.

Proof. We put K := Ker(exp). Now K 0 because exp:C — CX is not
an isomorphism as CX contains the element —1 of order 2 whereas the
additive group C haB no elements of finite order. For any c E K, we have
I = exp cj, so that it follows by 2(2) that K C llLi. There are therefore
numbers 8> 0 such that si E K (note that —c is in K whenever c is). Since,
by Lemma 2 there is no nonzero number iy, with y (—1, 1), that belongs
to K, there must, by reason of the continuity of exp z, be a least positive
real number such that K. Then C K is trivial. Conversely
if r E R with ri E K, there must, since > 0, be an n E Z such that
2rnr < r < 2(n + As K is an additive subgroup of C, it follows that
i(r — E K. Since 0 r — < 2ir, it follows that r = because
of the choice of T as the least number with the specified property. We have
thus shown that K = 2iriZ, and the uniqueness of R is clear. 0

In what follows we shall use the statement asserted by this theorem as
the definition of

Since = 1 and wi Ker(exp) we must have = —1. In the one
equation

0 = 1 +

the five fundamental numbers 0, 1, i, e, R are "interwoven in a truly wonder-
ful manner" which has given rise on occasions to metaphysical speculation.

Appendix. Elementary Proof of Lemma 3. We use Lemma 2 and
the following proposition, which is a consequence of the Intermediate value
theorem of the infinitesimal calculus.

1) If 1 is a compact interval in and if :1 R is continuous, then

the image set f(I) is a compact interval.

To prove the lemma we now define u(y) := Re exp(iy) and v(y) :=

Im exp(iy). Since

(*) expz=e2u(y)+i?v(y) for z=x+iy,
and since continuous complex functions necessarily have continuous real
and imaginary parts and absolute value functions, it follows from the con-
tinuity of exp z that u(y) = (Re exp z)/I exp zI is continuous throughout R
and that the function h(y) := (Im exp z)/(Re exp z) = u(y)/v(y) is continu-
ous wherever v(y) does not vani8h. (Of course it is known that u(y) = cosy,
v(y) = sin y and h(y) = tany, but this is irrelevant to our argument.) Since
u(0) = I and u is continuous, there exists an e > 0 such that u is positive
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in the closed interval I := E—e, eJ. Thus h is well defined and continuous in
I and we assert:

The image h(I) is an interval [c,d] with c < d; the image exp(R x I) is
the "sector" S := {s(1 + it): 8> 0, t h(I)} (see figure).

ii)

Proof. By 1), h(I) is a compact interval [c, d] in R. Since v(0) = 0 we have
0 = h(O) E I. If c were equal to d, h and thus v would vanish identicaLly
in 1. In view of (s) this would mean that E JR for all y I, which is
impossible by Lemma 2. Consequently c <d.

For z = (z, y) JR x I we have exp z = exu(y)[1 + ih(y)J. Since u(y) > 0
for any y E I, and since Ct runs through all positive real numbers, it follows
that exp(k x I) = S. Since I C is the image of (0,0) E JR x I, S C exp(C)
is a neighborhood of the point 1 with the required property.

§3. CLASSICAL CHARACTERIZATIONS OF ir

In this section we show that the number defined in 2.4 has all the prop-
erties one normally learns in real analysis. The characterization of and

as the least positive zero of the sine and cosine function respectively
is a simple matter with the help of the results of the preceding sections,
if one makes use of the relationship between the exponential function and
the trigonometrical functions

e1 =cosz4-isinz

which was discovered by EULER, and which remains invisible as Long as one
is confined to the real domain. To determine the circumference and area of
a circle in terms of we take over the basic definitions from analysis.

1. Definitions of cos z and sin z. We define the complex cosine and
sine fsnctiona throughout C by:

+ . e" — e1'
(1) cosz:=

2
smz:=

2i
zEC,

and note immediately that these are the well-known trigonometrical func-
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tions, usually defined directly through their power series

(2) = sirir = z C,

For, writing := zw/v!, we have for all m E

52m+i(±1Z) = E C

and the equations (2) follow immediately by addition and subtraction re-
spectively, since = 0

From (1), the classical Eulerian formula

exp(iz)=cosz+isinz, zEC

is obtained by addition.
For real arguments z = z, we have cosz, sinx I; consequently

exp(ix) = cosx + isinx, x E R,

is the decomposition of exp(iz) into its real and imaginary parts. This
representation was repeatelly used in 3, §6. It follows now, for example,
since e2'1 = I and e1' = —1 that

= 1, = 0; COST = —1, sins = 0.

It also follows at once from (1), that the cosine function is even and the
sine function odd, that is, that

cos(—z) = cosz, sin(—z) = —sinz.

2. Addition Theorem. For all w, z E C

cos(w + z) = coswcosz — sinwsinz,
(1)

sin(w + z) = sin w cos z + cos w sin z.

Proof. We start from the identity

= e"4' = (cos w + isin w)(cosz + isin z)
= cos wcos z — sin wsin z + i(sin wcosz + coswsin z).

Writing —w and —z in place of w and z, we obtain:

= cos w cos z — sin wain z — i(sin w cos z + cos wsin z).
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The equations (1) are then obtained by addition and subtraction respec-
tively. 0

Innumerable other formulae, for example, coS2 z + 81fl2 z = 1 and the
"halving formulae"

siflz = 28in coe2 = + cosz)

can be derived from the Addition theorem.
In Section 4 we shall make essential use of the relations:

cos w — cos z = —2 sin + z)sin —

(2)
sinw—sinz

Proof. It follows from the equations (1), by subtraction, that

cos(w + z) — cos(w — z) = —2 sin w sin z,

sin(w + z) — sin(w — z) = 2 cos wsin z.

(2) then follows by writing + z), — z) instead of w, z respectively.

3. The Number T and the zeros of cos z and sin z. In contrast to
exp z, the function cos z and sin z have zeros.

Theorem on Zeros. The only (real or complex) zeros of sin z are Size real
nlimbers E Z, and She only (real or complex) zeros of cosz are She
real n E Z.

Proof. In view of = —1 we have

2isinz = — 1), 2cosz = — 1).

Theorem 2.4 now gives:

nEZ,
nEZ. 0

We see that and are in fact the least positive zeros of sin z and cos z
respectively. Even though all the real zeros of cos and sin are known from
the real theory, it still had to be shown that there are no properly complex
zeros in the extended domain of the argument.

4. The Number w and the Periods of exp z, cos z and sin z. A
function f: C C is said to be periodic, when there is a complex number
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$ 0, such that f(z+&rj) = 1(z) for all z E C. The number is then called
a period off. If f is periodic, then the set

Per(f) := E is a period off) LI {0)

of all periods of f, including 0, is an additive subgroup of C.

Periodicity Theorem. The functions exp, cos and sin are periodic and

Per(exp) = Ker(exp) = Per(cos) = Per(sin) =

Proof. For a number E C, the function exp(z+w) = exp z exp coincides
with the function exp z, if and only if = 1. This proves, by Theorem
2.4 that Per(exp) = Ker(exp) =

Since cos(z + — cos z = —2sin(z + sin we have w E Per(cos) if
and only if sin = 0, that is, whenever w 27Z. The statement for the
sine function follows similarly from sin(z + w) — sin z = 2 cos(z + sin
0

There is an essential difference between the behavior of the exponential
function in the real and complex domain. In the real domain it assumes,
since Ker(exp) fl = (0), every positive real value once and once only,
whereas in the complex domain it possesses the purely imaginary "minimal
period" 2iri (not seen in the real case) and assumes every value c 0—
including negative real valut$—countably often.

We see also that the number 2ii can be characterized as the smallest
positive number that is a period of both the functions cos and sin. Even
though one knows that cos and sin as real functions have 2T as least com-
mon period, one still needs to show that 2ir remains a period in the complex
domain and that there are no new additional properly complex periods.

5. The Inequality sin y > 0 for 0 < y < T and the Equation =
i. The equation e"' = —1 naturally raises the question of the values of

:= cf and cf and so on. Since e2 = = there are
respectively two and four possible values to be considered, namely =
and = 1). To determine the sign we note that

(1) siny>0 for

Proof. The sine function is continuous in R and by 2.2(3) it is positive in
the interval (0, If sin y were negative anywhere in (0, i') it would, by
the Intermediate value theorem vanish for some r, with 0 < r < w, and this
would contradict the theorem on zeros in Section 3. 0

It follows from (1) that only the plus sign in the expression for and
can be valid, that is, that

(2) c't = i, =
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The first equation here was already known to BERNOULLI in 1702; in the
form

or fl2——
2

it played an important part in the controversy between LEIBNIZ and
BERNOULLI over the true values of the natural logarithms of —I
andi. 0

It must clearly be said that without appealing to the Intermediate value
theorem, the minus sign cannot be excluded in the formula = ±i. All
the conclusions drawn so far apply equally well to the function exp(—z)
which assumes the value —i at as the reader may care to check for
himself. To arrive at the important equation = i recourse to the Inter-
mediate value theorem is therefore again essential.

The equations (2) assert, when written in real form, that

• 7r . 5 lj—

With the help of the Intermediate value theorem and cosO = 1, it can be
shown, as above, that

(1') cosy>0 for

6. The Polar Coordinate Epimorphism p:R S'. In Chapter 3,
§6 polar coordinates were introduced. The statements made at the time
without proof are now clear. From the Epimorphism theorem 2.3 and the
fact that lexpzl = 1 holds if and only if z E Ri (see 2.2(2)), it can be
deduced that exp(iR) = S', where S' again denotes the (multiplicative)
circle group (see 3.3.4), and from this the theorem which was decisively
used in 3.6.1 namely the

Epimorphism Theorem. The mapping p: IR — S1, e"° is a group
epimorphism whose kernel is the group 2,rZ, and we have: = i.

Proof. For 'p, lit we have
p is an epimorphism, since p(R) = exp(iR) S1.

As Ker(exp) = it also follows that Kerp = {t lit: it E Ker(exp)) =
(1 E IL I This last statement was proved in the previous sec-
tion. 0

7. The Number s and the Circumference and Area of a Circle. A
mapping I —. C, i z(t) = x(t) + iy(t) of a closed interval [a,bJ of lit
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into C is called a continuously differentiable path in C, if the functions z(t)
and y(t) are continuously differentiable in I. For such paths 7 the integral

b

L(7) := j Iz'(t)Idt exists where z'(t) := x'(l) + iy'(t).

Since Iz'(i)I = + y'(t)2 this expression—as is shown in analysis—
represents the (Euclidean) length L(7) of the path 7.

If C E C is a point and r > 0, the continuously differentiable path
—. C, jo z(ço) := c ÷ where 0 < < is a circular

arc of center c and radius r, which runs from c ÷ r to c + req' (see figure).

p.

As = we have Iz'(so)t = r and consequently =
= The length of the circular arc is thus Since

is the full circumference, it follows in particular that:
The circumference of a c*rcle of radius r zs 2xr. 0

If f: [a,b] R is continuous, the integral f(z)dx exists; it measures
the area under the graph of f. As the semicircle about the origin of radius
r > 0 is represented by the function sir2 — x2, x E [—r,rJ, the area I of
the whole circle is given by

I : 2j —z2dz.

Substituting for x, and using the identity sin2çp = — cos2çp)

we obtain

pT
1I = 2rJ 2r2J =

0 &
Q

The area of a circle of radius r is r2w.

§4. CLASSICAL FORMULAE FOR 7r

From the countless formulae for ir (whose sheer number makes it impossible
to review them all) we shall select those of LEIBNIz, VIETA, WALLIS and
EULER which stand out because of their special historical significance.
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In Section 5 we give a representation of by an integral, which WEIER-
STRASS in 1841 in a work written in his youth entitled "Darstellung einer
analytischen Function einer complexen Veränderlichen, deren absoluter Be-
trag zwischen zwei gegebenen Grenzen liegt" (Math. Werke 1, 51—66) used
precisely for the purpose of defining Finally we discuss some expressions
for in the form of continued fractions, and the transcendence problem for

1. LEIBNIZ's Series for R. The tangent function tan x is a monotonic
strictly increasing function in the interval (— since its derivative
1/ cos2 x is strictly positive; moreover, tan x assumes all real values. There
exists therefore an inverse function arctan: Ilk —. fir) whose deriva-
tive is given by

1 1
arctan'(x) = = cos2(arctan x) =

tan'(arctan x) 1 + x2

the last equation being obtained by putting y := arctan x and noting
that x2 = tan2 y = (1/ cos2 y) — 1. The geometric series (1 + i2)1 =

which is uniformly convergent for < 1, yields, on term by
term integration, after interchanging the order of integration and summa-
tion, which is valid in these conditions, the ar'ctan gent series

Z d Z

(1) arctan a,

= j +
=

j

a,3 a,5 a,?
= ,xI<1.

By ABEL's theorem on the limit of a power series (see L. AHLroas, Com-
plex Analy8is, 2nd ed., McGraw-Hill, 1966, p. 42) and K. KNOPP, Theorie
und Anwendung der unendlichen Reihen, Springer-Verlag, 4, Aufi. 1947, p.
179) the expansion is also valid for x := 1, its value there being arctan

1 = In this way we obtain the "only just" convergent series

00
1 1 1 (—1)

This is LEIBNIZ'S series for which he discovered by geometrical consid-
erations. it is a formula which so to speak "yields the number by purely
arithmetic operations. It is as though, by this representation, the veil had
been lifted from this strange number" as KNOPP pointed out (bc cit. p.
220).

LEIBNIZ'S series, which interestingly enough, was already known in India
around 1500, is entirely unsuitable for practical calculation. To calculate
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to an accuracy of about terms would be needed; in fact for
n> 1:

1 1 1 1

42n+1 <4 2v+1 <42n_1

2. VIETA's Product Formula for The halving-formula sin z =
2sin cos for the sine function gives, by induction,

zEC, n=1,2

Since sin = z, we obtain the infinite products

sin z = z fi

2 1
(*)

This, as it stands, is almost VIETA'S formula. Since cos2 = + cosz)
by_3.2 and since cosx 0 for x E [0, by 3.5(1'), we have cos =

cosx for such z; and in particular therefore:

IT I iT 1 1 Ii i iT

so that (*) becomes VIE'rA's formula:

The "VIETA'S sequence" v,, := cos = (2" sin con-
verges rapidly:

2 1 21 31
(1)

Proof. Since v,, decreases monotonically v,, > As sin x > z — for
0 < x < (by estimation of the real Thylor series) we have >
1 — and the inequalities (1) then follow on multiplying by v,,, since
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The following numerical examples show the good convergence:

n 2v;'

5 0.6368755077217... 3.140331156954...
15 0.6366197726114... 3.141592652386...
21 0.6366197723676... 3.141592653589...

The last value is already correct to the 12th decimal.
The estimation (I) can, by the way, easily be improved to the equation

2\
lim4

3. EULER's Product for the Sine and WALLIS's Product for ir.
The French mathematician J. HADAMARD (1865—1963) is supposed to have
said "Le plus court chemin entre deux dnoncés reels passe par le compleze."
As an example of this principle that the "shortest way is via the complex,"
we shall deduce EULER'S product formula for the sine function, and with
it WALLIS'S formula for

From de MoJvaE's formula (cost + isint)k = sinkt + isin kt, 2 IR, we
obtain, on separating real and imaginary parts:

sin kt = sin 2 [k I
—

cosk3 I sin2 t +...] , k E N,

and hence, since coe2kt = (1 _81n21)b:

Me function sin kt is, for odd k = 2n + 1, a rational polynomial p (sin I)
insini of degree k.

From now on everything stays in R: as p(sin 1) = sin ki has the k distinct
real zeros sin v = 0, ±1, .. . , ±n it follows that:

n

sin ki = C fl (sin i — sin

where the constant C is determined by dividing through by I and taking
the limit as I tends to zero, so that we have

k = cñ'
(where the dash attached to the product sign indicates the omission of the
term corresponding to v = 0). If we now write x instead of ki, we obtain

sinz = ksinz/kll' (i
—

= ksinz/kH (i — sin2:/k)
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where n = — 1). Since

sinx/k zhm ksinx/k = z, lim = —'
k—co k—oo sill mr/k

this yields after a "naive" passage to the limit,

EULER's Product Formula: sin z = x fi (i
—

of course, this

last step involving the proof of the convergence of the infinite product,
need8 to be, and can easily be, justified.

If we now put z we obtain after slight rearrangement

WALLIS's Formula.
2 2 446 6 2n 2n

3 3 5 5 7 2n—1 2n+1

It follows from this, for example, that

.24 2n 1

which can also be expressed as an asymptotic equation for the binomial

coefficient

12n\

The monotonically increasing "WAUls's sequence"

2242 . ... . (2n)2 1

converges very poorly; an elementary computation shows that

11 11 . '7 '7
— <——wfl<——, hmn(—_wn)=_.3n+1 2 2n n—co 2 8

With slightly more trouble it can be shown that

1 /1 31
2 4 \fl 4n ni

where isa bounded sequence. For the modified WALLIS'S sequence
wn(1 + we therefore have

2( 3imn 1w,,——1——w.
n—co 2i 32
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The convergence of and to thus involve error terms of the
order of 1/n and 1/n2 respectively. The following table illustrates the slow-
ness of the convergence:

n

10 3.067703807... 3.144396403...
1023.133787491. ..3.141621960...

3.140807746.. .3.141592948...
3.141514119... 3.141592658...
3.141584800... 3.141592655...

the values in the last row being correct only to 4 and 8 decimal places
respectively.

4. EULER's Series for ir2, EULER in his Dc summis scrienim
reciprocaram (Opera omnia, Ser. 1, XIV, 73—86) succeeded in 1734 in de-
riving, from his product formula for the sine, the famous series

2 00 4 00 5 00 00

()
Jacob and John BEaNouw had long sought in vain to find the sum of
the series 1 + + + +... EULER obtained the formulae (*) from the
identity

00 2

(1) 1 — + — ... = H (i — x)

which holds, by virtue of 3.1(2) and his product formula, for all z E R, x
0. His method was to compare coefficients of the powers of z after expanding
the product on the right. In his Introdtsctio in analysin infinitort.sm he
describes the process as follows (Chapter 10, §165):

"If 1+Az+Bz2+Cz3+Dz4 = (1 +az)(1 +13z)(1
then these factors, whether finite or infinite in number, must reproduce the
expressIon 1 + Az + Bz2 + Cz3 + Dz4 when actually multiplied out
by one another." This gives him

etc. Application to (1) gives immediately = and then with this,
similarly

00 00 /00

p1
°° '2

1

p2
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which yields the second formula in (*). EULER shows by his method that
every sum is a rational multiple of more precisely

00 ac,
V.' ' i ',',•••

where B2, B4, B6,... are the BERNOULLI numbers. Proofs of this general
formula will be found in (Sansone and Gerretsen, Leclsres on ihe Theory of
Fttnciions of a Complex Variable, P. Noordhoff—Groningen, 1960, p. 143).

The convergence of the series is very poor: about 100 million terms
of EULER's first series are needed to give 72/6 correctly to the first seven
places of decimals.

5. The WEIERSTR.ASS Definition of '. The integral formula

(1)

is fundamental for the theory of functions. It can be obtained immediately,
if is described by z(co) : 0< 27, and one notes that z'(ço) =

so that:

t d:
/ — = / ' = j i dp = 27i.: j0 z(ço)

WEIERSTRASS, in 1841 in his proof of the theorem on the expansion of a
function in a LAURENT series, calculated the integral (1) as follows (Maih.
Werke 1, pp. 52—53). He defines S' by

1 + iA —oo<A<oo;

this is the rational parametrization of S' discussed in 3.5.4. Since =
it follows that = and consequently, if one also notes that

dA dr
J1 J0

(using the substitution A := r'), we have:

f dz (00 z'(A) dA . dA . (1 dA

1+A2
=8J

If the formula (1) is available, then we also know that:

(00 dA 1' dA
(2)

1+A2
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This identity is pointed out by WELERSTRASS as a possible definition for

More generally f = arc tan x, so that (2)18 nothing more than the
statement that arc tan 1 = ir/4, or in other words, tan i/4 = 1, which is
clear if one knows that sin = cos (

6. The Irrationality of and Its Continued Fraction Expansion.
The statement that the circumference and diameter of a circle are incom-
mensurable had already been asserted by ARISTOTLE, but the first proof
of the irrationality of was given in 1766 by Johann Heinrich LAMBERT
(1728-1777) in his VorlIufige Kenninisse fur' die, so die Quadratur and
Rectification dci C*rculs suchen (Werke 1, 194—212), a sort of manual for
would-be circle squarers, written in highly original language. The proof was
based on the theory of continued fractions. He found the infinite continued
fraction

z
tanz =

1—

5 7—...

and deduced from it the irrationality of tan(z) for all real rational argu-
ments z 0, and in particular the result that Qsince tan = 1. How-
ever LAMBER.T'S proof is not completely rigorous because it lacks a lemma
on the irrationality of certain infinite continued fractions (having particu-
larly good convergence). This lemma was proved in 1806 by Adrien-Marie
LEGENDRE (1752-1833) in the 6th edition of his Elements de geometric,
Note JV. LECENDRE also shows there that

is irrational.

LAMBERT'S continued fraction for is, in fact, irrational, by
virtue of LEGENDRE'S lemma, for all q E Q, q 0, and therefore R
q E Q is impossible, because tan 11 = 0. 0

LAMBERT's and LEGENDRE'S work on the subject is readily accessible
in the article by RuDlo mentioned in the introduction to this chapter.
Perhaps the simplest modern proof of the irrationality of runs as follows.
We introduce the polynomial pn(Z) := — xv', n 1, and begin by
noting that

1) 0 <p,,(z) < for 0 < x < 1; E Z for all ii.
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2) For := — + — +
(2n)(—1) (a,)) we have

— = b IL

The inequalities in 1) are trivial; the statement that is an integer
follows, by induction on n, from the equation = (1 the
statement 2) is easily proved by first noting that the derivative on the left
is simply + sin

If now were rational, say .r2 = a/b with a, 6 � 1 natural numbers, then
the values of and formed with this 6 would, by 1), be rational
integers. Consequently we should have, by 2), since =

j pn(x) sin dx = — con

= P,(1) Z.

On the other hand, since 0< sin irx < 1 for 0< x < 1, we deduce from 1)
that:

p,(x)sinTzdx<w—1<1 forlargen,
o Ti.

since = 0 for every a IR, in view of the convergence of the
exponential series.

Thus, for all large enough n, we should have

0 < + < I in contradiction to + E Z. 0

This proof is based on an idea of I. NIvEN: A simple proof that is

irrational, in Bull. Amer. Math. Soc., 53, 1947, 509. The extension to
is due to Y. IWAMOTO: A proof that x2 is irrational, in I. Osaka Inst. Sci.
Tech., 1, 1949, 147—148. The reader should also compare the proof given in
the book by G.H. HARDY and E.M. WRIGHT An introduction to the theory
of numbers, 3rd edn., Oxford, Clarendon Press, 1954, especially p. 47. Also
compare a paper by J. "A simple proof of the irrationality of ir4,"
Amer. Math. Monthly 93 (1986), 374—375. 0

The following two continued fractions among others exist for the number

it I

4 12

32 7+
2+ 52 15+

2+272
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The expansion on the Left was found in 1656 by Lord BROUNCKER (1620—
1684), the first President of the Royal Society, by transforming WALLIS'S
product. EULER, in §369 of his used the LEIBNIZ series instead.
The expansion on the right is the so-called regular continued fraction for

Every positive real number has a unique representation in the form of a
regular continued fraction, in which only positive integers appear, and in
which all the "numerators in the denominators" are 1. There is no known
law governing the successive terms in the regular continued fraction for
The successive integers 3, 7, 15, 1, 292,.. . shown are simply calculated from
the decimal representation of w by using the continued fraction algorithm.

BROUNCKER'S continued fraction has a very poor convergence. Regu-
lar continued fractions on the other hand have excellent convergence. The
first few convergents to w, for example, give the approximations 3,

the approximation in 1.3 given by Zu CH0NO-Zm is thus the
fourth convergent. For further details on the relation between w and contin-
ued fractions we refer the reader to the two volume work by 0. PERRON:
Die Ldire von den KeUenbriichen, Stuttgart, Teubner Verlag, 3rd edn.,
1954—1957. The approximation of and ,r2 by rational numbers p/q has
some fundamental limitations. For example, a result of M. MIGNOTTE, Ap-

ralionelles de quelgucs aufres nombres, Bull. Soc. Math.
France, Mem. 37, 121—132 shows that:

p 1 2 p 1Wq >q206 for q>1, —— for

7. Transcendence of The problem of constructing a square equal in
area to a given circle by means of a ruler and compass construction had
already engaged the attention of the ancient Greeks. This is the problem
usually referred to as "squaring the circle." It is shown in Algebra that a real
number can be constructed by these means if and only if it lies in a finite
extension of the field Q formed by successive adjunction of square roots. In
particular therefore the numbers constructible by ruler and compass are at
most those which are algebraic (over Q), that is to say which annihilate a
polynomial p E Q[X] \ {O}.

The problem of squaring the circle is equivalent to the question of whether
is constructible by ruler and compass. In view of the foregoing remarks,

would then have to be an algebraic number. EULER, LAMBERT and LEGEN-
DRE were already of the opinion that this is not so. Thus LEGENDRE at the
end of his paper on the irrationality of says quite clearly (see RUDIO,
p. 59) "It is probable that i is not even contained among the algebraic
irrationals, in other words it cannot be the root of an algebraic equation
with a finite number of terms, and rational coefficients. However it seems
difficult to prove this theorem rigorously."

Numbers which are not algebraic are called "transcendental" (omnem
rationem transcendunt). Thus LEGENDRE in 1806 conjectured that is
transcendental. This was an extraordinarily bold conjecture, because at
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that time, no one even knew that there were such things as transcendental
numbers (in contrast to irrational numbers, such as, for example, whose
existence had been known to the Greeks). It was not until 1844 that Joseph
LIOUVILL.E (1809—1882) first proved that all (irrational) numbers having
"very good" rational approximations, such as for example the number

10.hI + + 10_3! = 0.1100010000...

are transcendental. In 1874 Georg CANTOR (1845—1918) gave his sensa-
tional proof, using an enumerative argument, that there are only countably
many algebraic numbers, but uncountably many transcendental numbers
(see on this, for example, 0. PERRON: Irrntionalzahlen, Berlin, de Gruyter,
1960, 174—181).

The great breakthrough in the theory of transcendental numbers came in
1873 when the French mathematician Charles HERMI'rE (1822—1901) devel-
oped methods by which he was able to prove that the number e is transcen-
dental. By a refinement of HERMITE'S argument the German mathemati-
cian Carl Louis Ferdinand von LINDEMANN (1852—1939) who had taught

and HURWITZ in Königsberg, and subsequently went to Munich
in 1893, proved in 1882 in a short paper "Uber die Zahi published in
Math. Ann., 20, 213—225, his famous theorem that:

is transcendental.

In this way the thousand-year-old question about the quadrature of the
circle was finally answered in the negative. Oblivious to this fact, amateur
mathematicians still try to tackle this problem as they did before; they
often find good approximation processes, and in most cases it is difficult to
convince them that their "solution" does not contradict the transcenden-
talityofir. 0

LINDEMANN himself seems to have been quite surprised at having been
able to solve a thousand-year-old problem. Thus we read in the introduction
to his paper (p. 213): "Man wird sonach die Unmöglichkeit der Quadratur
des Kreises darthun, wenn man nachweist, dass die ZahI iiberhaupt nicht
Wurzel einer algebraischen Gleichung irgend welchen Grades mit rutionalen
Coefficienten scm kann. Den dafür nothigen Beweis zu erbringen, 1st im
Folgenden versucht worden." [The impossibility of the quadrature of the
circle will thus have been established when one has proved that the number

can never be the root of any algebraic equation of any degree with rational
coefficients. We seek to prove this in the following pages.] The propositions
of HERMITE and LINDEMANN are included in the following general theorem.

The LINDEMANN-WEIERSTRASS Theorem (see WEIERSTRASS:
Zu Lindemann's Abhandlung: "Uber die Ludolph'sche Zahi," in Math.
Werke, 2, 341—462, particularly 360—361). Let c1,. .. ,c,, E C be pairwise
distinct algebraic numbers belonging to C. Then there exists no equation
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aiedl + • = 0 in which are algebraic numbers and are
not all equal to zero.

If, in this theorem, we put n := 2, := c, c2 := 0, we obtain the result:
for every algebraic number c E C* the number a := ec is transcendental.

The case c := 1 proves the transcendence of e, and since 1 = e2ti the
transcendence of w follows as well. 0

Meanwhile it is also known that ew = is transcendental (GELFOND,
1929). As for the number w nothing is known for certain, and on the whole
our knowledge about transcendental numbers is still extremely limited. As
e is transcendental, the numbers ew and e + w cannot both be algebraic;
but it is still not known whether ew or e + w is rational.
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The p-Adic Numbers
J. Neukirch

§1. NUMBERS AS FUNCTIONS

The p-adic numbers were invented at the beginning of the twentieth century
by the German mathematician Kurt HENSEL (1861—1941). The aim was to
make the methods of power series expansions, which play such a dominant
role in the theory of functions, available to the theory of numbers as well.
The idea sprang from the observation that numbers behave in many ways
just like functions, and in a certain sense numbers may also be regarded as
functions on a topological space.

To explain this, we begin by considering polynomials

with complex coefficients a E C, which we can regard as functions on the
complex plane. This characteristic property can be formulated in purely
algebraic terms in the following way. Let a C be a point of the complex
plane. The totality of all functions belonging to the polynomial ring CEz]
that vanish at the point a forms a maximal ideal of C[z], namely, the prime
ideal

p=(z—a)= {(z—a)g(z)Ig(z)EC[zJ).
Thus, there is a one-to-one correspondence between points of the complex
plane and maximal ideals p of

We denote the set of all these ideals by

X — Max(C[z]).

If we regard X as a new space, we can interpret the elements 1 = 1(z) of
the ring C[zJ as functions on X, by defining the valve of f at the point
p = (z —. a) E X, as the residue class

f(p) I modp

in the residue class field = C[zJ/p. (This definition is justified because
of the canonical isomorphism
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by which the residue class fmodp is mapped onto 1(a).) The topology
on C cannot be carried algebraically onto X; all that can be defined by
algebraic means are the point sets defined by the equations

1(z) = 0.

These finite sets are defined to be closed.
The promised interpretation of numbers as functions is now based on an

analogy between the ring Z and the ring C[z], in which the prime numbers
p Z are the analogues of the prime elements z — a C[z) and the elements
I Z, the analogues of the elements 1(z) E C[z]. Accordingly we form the
set

X = Max(Z)

of all maximal ideals (p) = pZ of Z, that is, the set of all prime numbers p.
We regard X as a topological space, by defining the closed sets in X to be
its finite subsets. For the elements f E Z, which are now to take over the
role of functions on X, we define their "value" at the point p E X to be

f(p) := fmodp.

f(p) is an element of the residue class field = Z/pZ = IF,,, and thus
the values of f do not all lie in one and the same field.

This way of looking at things at once raises the further question of
whether, in addition to the "value" of the number at p one could not also
define the higher derivatives of f in some meaningful way. In the case of
the polynomials 1(x) E C[z] the higher derivatives at the point z = a are
given (almost) by the coefficients of the expansion

and more generally, in the case of rational functions 1(z) = E C(z) by
the Laurent series expansion

1(z)
=

— a)v.

We are now led to the concept of the p.adic number by observing that
every rational number f Q can be given an analogous expansion with
respect to every prime element p of 7L. First of all, every natural number
I E N possesses a p-adic expansion

I = Go + a1p+ . .. +

in which the coefficients a1 lie in (0, 1.. . ,p — 1), that is, in a fixed rep-
resentative system of the "field of values." This representation is clearly



§1. Numbers as Functions 157

unique. It is found by repeatedly dividing by p, using the algorithm:

f +pfi
fi =a1 +pf2 etc.
In—i = an_i +
In =°n.

In these equations a, E {O, 1,. .. ,p — 1) denotes the representative of
mod p E Z/pZ. In concrete cases the number f is often simply denoted

by the ao, al . . . thus for example

216 = 0.0011011 (2-adic)
216 = 0.0022 (3-adic)
216 = 1.331 (5-adic)

If we now wish to find a p-adic expansion for negative and even for
fractional numbers, then we are forced to consider infinite series of the
form

This is initially meant in a purely formal sense, that is, m app" simply
denotes the sequence of the partial sums

= > Ti = 1,2

Definition. Let p be a fired prime. A p-adic number is a formal infinite
series

a_mp_m + . +00 +aip-I- a2p2 +...,
inwhicha1E{O,l,...,p—l).

The p-adic integers are the series

00 + °ip + a2p2

The complete set of all p-adic numbers is denoted by and that of all
p-adsc integers by 74.

The p-adic expansion of an arbitrary rational number f results from the
following theorem on residue classes in Z/p"Z.

Theorem 1. The residue classes a modp" E Z/p'tZ are expressible
uniquely in the form

a ao +alp+02p2 + ... + modp'2

where 0�a, <pfor i=0,...,n— 1.
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Proof (by induction). The complete theorem is obviously true for n = 1.

If we assume the statement to be true for n — 1, then we have an unique
representation

a = a0 + a1p + a2p2 + . . . + an...2p" 2 +

g with 0 < <p then is
uniquely defined, and the asserted congruence therefore holds. 0

Every integer f, and more generally every rational number I = g/h
whose denominator h is not divisible by p, now defines a sequence of residue
classes

= f mod p" E n = 1,2,...

and by the theorem above, we have

10 = Go modp
Ii = ao + a1pmodp2

= a0 +aip+a2mod?

with uniquely defined and unchanging coefficients

ao,ai,a2,...E{0,1,...,p—1}.

The number sequence

n=1,2,...

defines a p-adic integer

Zp.

We call this the p-adic expansion (or p-adic representation) of f. If, more
generally, f E Q is an arbitrary rational number, we write

with (gh,p)=1,

and if

is the p-adic expansion of g/h, then we assign to f the p-adic number

+ a1pm41+ + am + t2m+IP+ Qp

as its p-adic expansion.
In this way we obtain a canonical mapping
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which maps Z into Zr,, and which by virtue of the uniquenes8 statement ifl
Theorem 1, is injective. We now identify Q with its image in
Q ç Q,, and Z c Z,,, thus obtaining for every rational number f E Q an
equation

f =

and thereby establishing the analogue which we sought of the power series
expansion in the theory of functions.

Ezamples.a) —1=(p—1)+(p—1)p+(p—1)p2+...
We have

—1 =(p— l)+(p— l)p+•••+(p— —p's,

also
—1 (p — 1) + (p — l)p + .. + (p — mod p'.

b)

We have

also

Addition and multiplication can be defined for p-adic numbers, whereby
7h,, becomes a ring whose quotient field is A straightforward attempt
to detIne the sum and product by adopting the usual "carry" rules to
which we are accustomed in ordinary decimal operations leads, however, to
some significant complications. These disappear if we make use of a slightly
different representation of the p-adic numbers I = avp" in which we
regard them, not as a sequence of the integer partial sums

=
avpv Z,

but as a sequence of the residue classes

= s, mod pfl

The terms of this sequence lie in different rings but they are all
related to one another through the canonical projections

7L/p7L Z/p2Z Z/p3Z

and the relation = i, holds.
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We now consider, in the direct product

= {(xfl)flEu I Zn E Z/,?Z}

all those elements (xfl)flEs having the property

forall n=1,2
This set is called the inverse limit of the ring Z/p"Z and is denoted by

= E fl = n = 1,2,.. .}.

The modified representation of the p-adic numbers to which we referred
earlier is now obtained through the following.

Theorem 2. If we associate with each p-adic integer

I = =

the sequence (in)nEM of residue classes i,, = mod p' E we obtain
a bijection

-c-. 0

The proof is an immediate consequence of Theorem 1. The projective
limit limZ/p"Z now has the advantage of being a ring, in a direct fashion,

namely a subring of the direct product Z/p'Z, in which addition and
multiplication are defined componentwise. If we identifS Z,, with limZ/p"Z,

then Z,, also becomes a ring, the ring of p-adic integers.
As every element I Q,, has a representation

f=p-.mg

with g E addition and multiplication in Z,, can be extended to and
0,, becomes the quotient field of Z,,.

In Z,, we were able to rediscover the rational integers a Z in the guise
of those p-adic numbers whose expansions ao+alp+a2p2+ .• were derived
from the congruences

a + a1p + ... +

0 a1 <p. Through the identification

= Jim Z/p'Z
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Z therefore goes over into the set of tuples

(amodp,amodp2,amodp3,...)

and thus becomes a subring of Similarly Q becomes a subfield of Q,,,
the field of p-adic numbers.

In we shall give a new definition of the p-adic numbers closely imitating
that of the real numbers, which will bring out in an entirely straightforward
way the ring and field structure of and

Corresponding to the familiar results on the decimal representation of
rational numbers, we have, for p-adic numbers the following expansion the-
orem.

Theorem 3. A p-adic number a = avp" E Q,, is rational if and
only if the sequence of digits (as) is periodic from some point onwards

(that is, a finite number of digits before the beginning of the first period is
allowed).

Proof. We may obviously assume that m = 0 and a0 0. Let the sequence
of digits (as) be periodic, that is to say, of the form

(a0, Oi, .. .) = (b0, b1, .. . c0, cj, ... , ce_i),

where the line above the letters c indicates the principal period. We write

— n—i
,

sothat

a be rational. To prove the periodicity of the p-adic rep-
resentation of a, it suffices to bring a into the above form, namely

a
— — 1) —

c being integers such that

0�b<ph, 0<c<p".

For we then have

0 b1
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and the substitution of these p-adic representations gives us, by the argu-
ment above, the (non-periodic) pre-period b0, b1, .. . , and the principal
period

Since m = 0, the denominator f of a is prime top and thus pft 1 mod f
for a suitable n. We can therefore write

a power such that

or _ph<g<0

depending on whether a 0 or a < 0. Since (p's — i,ph) = 1, we can put

9 = b(? — 1) —

with 6, c Z, and at the same time prescribe that c shall belong to any
arbitrarily specified system of representatives mod(p" — 1). We stipulate

0<c<p"—2 or

depending on whether a � 0 or a < 0. In both cases 0 <c < p's, as required,
and it follows from

b(p"—

in both cases that 0 ( 6 <p" as required. 0

§2. THE ARITHMETIC SIGNIFICANCE OF THE p-ADIC
NUMBERS

Despite being colored by their function theoretic origin, the p-adic numbers
fulfill their true destiny in the realms of arithmetic, and indeed in one of its
classical heartlands, the theory of Diophantine equations. A Diophan tine

problem is one in which we are given an equation

F is a given polynomial in one or more variables, z1, ... ,x,, and are
asked for its solutions in integers. This difficult problem can be attacked
by weakening the question and considering instead the set of congruences
for all m:

F(zi, ... , x,,) = 0 mod m

or, what amounts to the same thing because of the Chinese Remainder
Theorem, the set of congruences
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for all prime powers. We might hope that from the exi8tence or nonexistence
of 9olutions to the congruences, we might be able to draw corresponding
conclusions about the original equation. For a fixed prime p, the infinite set
of these congruences can now, with the help of the p-adic numbers, again
be expressed as a single equation. This comes from the following.

Theorem 4. Let F(xi,.. , x,) be a polynomial whose coefficients are ra-
tional integers and p a fixed prime. The con gruence

is solvable for arbitrary i' � 1 if and only if the equation

is solvable in p-adic integers.

Proof. We interpret the ring as in §1, as the inverse limit

= limZ/p"7Z C

The equation F = 0 factorizes, in the ring on the right, into components
over the individual rings and thus into the congruences

If now
, (v)

— ,. .. )vEN E

(v)
(z1 )vEN Z1, = limZ/p Z, is a p-adic solution of F(xj, .. . , = 0, then

the congruences are solved by

&'=1,2

Conversely, let us suppose that for every ii I we are given a solution
(zr,. .. , of the congruence

If the elements E Z/pt17L aleady lay in limZ/p"Z for all

i = 1,. . . , n, then we would have a p-adic solution of the equation F =
0. Since this is not automatically the case, we shall form the sequence

. . , a subsequence that meets our wishes. To keep the notation
simple we shall deal only with the case of one variable (n = 1) and write
for The general case can be proved in exactly the same way. As Z/pZ



164 6. The p-Adic Numbers

is finite, there are infinitely many terms of which are congruent modulo
p to a fixed element E Z/pZ. We can therefore choose a subsequence

of with

yj modp and 0 mod p.

In the same way we can select from {$1)}
a subsequence with

mod p2 and Omodp2,

where 112 E Z/p2Z since obviously 112 = 111 mod p. If we continue in this way
we obtain, for every k � 1, a subsequence of whose terms
satisfy the congruences

and F(4k))EOmodpk

with certain 11k E Z/pkZ, for which

mod

The 11k thus define a p-adic number y = E limZ/pkZ Z,, such

that
F(yk) Omodpk

forallk?1,thatis,F(y)=0. 0

Example. Consider for v � 1 the congruences

2 mod 7".

For v = 1 the congruence has the solutions

(1)

Now let a' = 2. CLearly

(2)

x2 = mod y, and thus a solution of (2) must be of the form + 7t,
so that a solution of (2) must be of the form +3 + 7t. If we substitute

= 3 + 7t1 in (2), we obtain

(3+7t1)2

14-6i1
lmod7
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and we thus get as a solution to z2 2 mod 72,

3+1 •7mod72.

For v = 3, we find z2 = + 72f2, the value t2 2mod73, and thus, for
the congruence

2 mod 73

the solution
3+1

It is easily seen that this process can be continued indefinitely, so that one
obtains a 7-adic solution

of the equation x2 = 2. This is denoted by but is nevertheless to be
strictly distinguished from the square root of 2 lying in the field JR.

If the polynomial F(xt, .. , z,,) is homogeneous and of degree d � 1, then
the equation F = 0, obviousLy always has the trivial solution (0,.. . , 0), and
the question of interest is whether it has any nontrivial solutions, and if
so what they are. The proof of Theorem 4 can now be modified slightly to
show that the congruences

pTM

have a nontrivial solution for all ii � 1 if and only if the equation

has a nontrivial p-adic solution.
At the beginning of this section we mentioned the question of whether

from the solvability of an equation F = 0 in Z,, for all primes p (that is, the
existence of a common solution to all the congruences F 0 mod m) one
can deduce the solvability of F = 0 in rational integers. This deduction can
very seldom be made (that is, the condition mentioned, though obviously
necessary is rarely sufficient). However, in the case of quadratic forms we
have the following so-called "local-global principle" of Minkowski—Hasse,
which we state here without giving any proof (see [lJ, §7).

Theorem 5. Let F(zi,. .. , z,,) be a quadratic form with rational coeffi-
cients. The equation

has a nontrivial solution in Q, if and only if it has a nontrivzal solution in
JR and in for all primes p.
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THE ANALYTICAL NATURE OF p-ADIC NUMBERS

The series representation

(1)

a p-adic integer bears a close ainularity to the representation of a real
number between 0 and 10 as a decimal, that is, as the sum of a series of
decimal fractions

ao+ai +02(1)2 0< aj <10.

However, unlike the latter, the p-adic series does not converge. Despite
this nonconvergence however, the field Q, of the p-adic numbers can be
constructed from the field Q in virtually the same way as the field R is
constructed from Q. This is done by replacing the usual absolute value
in Q by a new "p-adic" absolute value which has the effect of making the
series (1) converge, and which enables the p-adic numbers to be regarded,
in the usual way, as limits of Cauchy sequences of rational numbers.

The p-adic absolute value is defined as follows. Let a = E Q be a
nonzero rational number with b, c E Z and E Q. We divide 6 and c by
the prime p as many times as is possible, so that

(2) (b'c",p)=1,

and define
1

lal =—.
ptm

The p-adic value is thus no longer a measure of the absolute magnitude
of a number a N, but rather has the property of being small when a is
divisible by a high power of p. In particular the partial sums associated
with a p-adic series 00 + alp + +... form a convergent sequence with
respect to the valuation

The exponent m in the representation (2) of the number a is denoted
by and one writes formally v,(0) = oo. We have thus obtained a
function

—. ZU{oo}

with the following three properties, which are easily verified:

1)

2) = v9(a) +

3) + b) �
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where oo is a symbol 8atisfying the relations x + 00 = oo and oo > x for
all x Z. The function is called the p-adic exponential valuation of Q.

The p-adic absolute value is given by

I Q R, a '—. laip

and, in view of the relations 1), 2), 3) it satisfies the conditions for a norm
on Q, namely:

1)

Ia + bI,, maxflalp, +

It can be shown that with (,, and
I

I we have essentially exhausted
the norms which can exist on Q, in the sense that any other norm is a
power or I' of one of these, where 8 is a positive real number. The
ordinary absolute value (is, for good reasons which we shall not go into
here, denoted by ( Along with the absolute values I it satisfies the
following important closure relation.

Theorem 6. For every nonzero rational integer a

HIalp=1

where p runs through all the primes, including the so-called infinite prime.

Proof. In the canonical factorization of a

a—± Hp"

the exponent of p is simply the exponential valuation and the sign
is equal to The equation can therefore be written in the form

so that in fact = 1. 0

We shall now redefine the field Q,, of p-adic numbers, following the same
procedure as in the construction of the field of real numbers. We shall then
go on to show that this new analytical definition is completely equivalent
to the Hensel definition which was motivated by ideas from the theory of
functions.
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By a Cauchy sequence, with respect to we mean a sequence
of rational numbers such that, to every s > 0 there corresponds a natural
number flo for which

Ixn — <c for all n,m> n0.

Example. Any formal series

>avp",

provides, through its partial sums

=

an example of a Cauchy sequence, since for all n > m,

— XmIp = � �
A sequence {x,) in Q is called a null sequence w.r.t. ',,, if is a
sequence converging to zero in the usual sense.

Example. 1,p,p21p3

The Cauchy sequences form a ring R; the null sequences a maximal ideal
m in R. We define the field of p-adic numbers as the residue class field

R/m.

We can embed Q in Q,,, by assigning to every a E Q the residue class rep-
resented by the constant sequence (a, a, a,.

. .). The p-adic absolute value
can be extended from Q to by defining, for any element z =
mod in Rim the value

urn E R.
n—. 00

The limit exists, because is a Cauchy sequence in R, and it is indepen-
dent of the choice of the sequence in its residue class mod m, because
for any p-adic null sequence {yn) E in the relation lYnjp 0 cer-
tamly holds.

The exponential valuation Vp of Q can also be extended to the exponential
valuation

-.
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by defining Vp(Z) = — Log,, or what amounts to the same thing, by
defining Vp(Z) = where x is the class of rational Cauchy
sequences We again have

= p_vF(r)

Since the image of QS under the mapping is the discrete set Z, the same
is true of the image of Q, that is, v9 is a surjective homomorphism

As with the real numbers, it can be proved that the field Q,, is complete
with respect to the p-adic absolute value i,,, that is, every Cauchy sequence
in is convergent with respect i,,. Accordingly, for each prime number
p, we can associate, a

the field of fields

Q2, Qs, =IR.

An important peculiarity of the p-adic valuation I,, is that it not only
satisfies the usual triangle inequality, but also the stronger inequality

Jz + yip <max{IxJ,,,

this can be deduced a remarkable result.

Theorem 7. The set

Z1:= (xEQp IixIp� fl
is a subring of 0,, whose units form the group

z;={ZEQ,,114,=1}.

The elements of Z,, are called p-adic integers. The connection with the
Hensel definition given in §1 is made clear by the following:

Theorem 8. (1) Every p-adic number z has a unique representation

x=pmu with mEZ, uEZ;

(ii) The ideal pZ,, is a maximal ideal with residue class

Z,,/pZ,, Z/pZ

(iii) The complete set of ideals of is given by p"Z,,, n � 1, and by

Z/p"Z.



170 6. The p-Adic Numbers

Proof. If E and Vp(Z) = in Z, then vp(xpm) = 0, and hence
= 1, so that u = z;. This proves (i), while (ii) is a special

case of (iii). Suppose h 0, Z,, to be an ideal of Let x = ptmu, 7L;,

be an element of ?i with the smallest m (since IxIp < 1 in must be greater
than 0). Then h = because if y = h, ii' E z;, then n m
and thus y = E pmZ,,. 0

We now consider the homomorphism

Z — Z,, a '—' a mod

whose kernel is p"Z. This homomorphism is surjective. To prove this one
can easily see that the numbers z E are alrea4y limits of rational inte-
gers, and if a E Z with

Iz-aI

then — a) = m n, that is, z — a = pmu E and so a =

The homomorphism is therefore in fact an isomorphism

.Z

In §1, we defined p-adic integers as formal series

>awp",

and identified them with the sequences
- —

— , n — A,

where runs through the partial sums defined by

=

These sequences define the inverse limit

= {(Xfl)flEii E JJZ/I?'Z i xn÷i xn}

and we looked upon the p-a.dic integers as the elements of this ring. Since

we obtain, for each n 1, a surjective homomorphism
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and it is clear that the family of these homomorphisms gives us a homo-
morphism

—' limZ/p'Z.

The identification of the new analytical definition of Z1, (and thus of Q,,)
with the older Hensel definition can now be made.

Theorem 9. The homomorphism

—' hmZ/p"Z

is an isomorphism.

Proof. If z is mapped onto zero, this means that z E for all n,
that is, for all n, and hence = 0 so that z = 0. This proves
injectivity.

An element limZ/p"Z is given by a sequence of partial sums

a,, = 0 � <p".

We saw earlier that this sequence is a Cauchy sequence in Z,, and thus
converges to an element

z = E 4
Since

x — = > a,,p'

it follows that z s, for all n, that is, that x is mapped onto the
element of limZ/p"Z corresponding to the sequence (sn)nEN defined above.

This proves surjectivity. 0

We emphasize that the elements of the right-hand side of

-*

are given formally by the sequence of partial sums

= a,,p", n = 1,2
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On the left-hand side, however, these sequences considered with respect
to their absolute values converge and represent in the familiar fashion the
elements of 74, as convergent infinite series

x =

The isomorphism 74, limZ/p"Z gives us additional information about
the topology on Q1,, defined by the absolute value j,. The direct product

Z/i?'Z

in fact, has the product topology, in which the individual factors are re-
garded as topological spaces endowed with the discrete topology. Since
these factors are compact, the product is compact as well (by Tychonoff's
theorem).

It can now easily be shown that the inverse limit is a closed

subset of this product, and is likewise a compact space. It is also not difficult
to verify that the ring isomorphism

74, — limZ/p"Z

is also a homeomorphism between topological spaces. Consequently, 74, is
a compactum, and since

also an open subset of Q,,. Every element a E therefore possesses, in
a + 74,, an open compact neighborhood. We have therefore proved the
following.

Theorem 10. The field is locally compact. 0

The considerations in this section appear to release the p-adic numbers
from their original role, modeled on that of the analytic functions, and to
bring them into a closer analogy with the complex numbers themselves. It
is particularly remarkable that in recent time a p-adic theory of analytic
functions has been developed, in which p-adic numbers have replaced com-
plex numbers both as arguments of the functions and as functional values.
This theory was initiated by the American mathematician .1. Tate, and has
been widely developed by the two German mathematicians H. Grauert and
ft. Remmert.
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§4. THE p-ADIC NUMBERS

A far-reaching theory can be built up on the basis provided by the p-adic
numbers, namely, the theory of algebraic extensions of the field 0,,, or, to
express it in another way, the theory of algebraic equations

f(x) = + + + a0 = 0

in one variable. We saw, in Section 2, that the solvability of such an equa-
tion in the ring Z,,, is equivalent to the solvability of the congruences
f(x) 0 mod pP for all ii. Of fundamental importance here is the fact
that a sufficient condition for this is that the congruence

f(z)E Omodp

should be solvable, as long as one restricts oneself to simple zeros. More
generally, we have the important result.

Hensel's Lemma. If a polynomial f(z) Z,,[x] has the decomposition
modulo p

1(x) go(x)ho(x)modp

where the polynomials go,ho Z1,[xl are coprime modulo p, and ifgo is
monic, then there exists a decomposition over

f(x) = g(x)h(x)

with polynomials g, h E Zp[x), such that g(r) is monic and

g(z) 90(z) mod p, 4(z) ho(x) mod p.

Proof. Let d = deg(f), ni = deg(go) and without. loss of generality let us
suppose that deg(ho) <d—m. We then put the polynomials g and 4, which
have to be determined, into the form

g = go+ YIP+Y2P2 +
h = h0 + z1p+ 22P2 +"

with polynomials y•, z Z,,[x] of degrees <m and <d — in respectively.
We now determine the polynomials

n—i9n90+Y1P+"+.Yn_1P
L ....L n—I

— "0+ Zjp+ •+ Zn-.IP

successively, in such a way that

(*)
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holds for each n in turn. The equation f = gh will then hold by a passage
to the limit. For n = 1, the congruence (*) is the hypothesis stated in
the lemma, and we assume that its truth has been established for n. The
requirement for g,,+i, in view of

— fl 8. _I. 0
— + YnP , "n+i — "n + Z,7)

then becomes

or, after division by p"

9nZn + + 1, modp,

where = — Since go and h0 are coprime in ]F,,[x),
there must be polynomials y, E Zp[xJ of the required kind, and
can be chosen to be reduced to its minimum residue modulo go, so that

d in and deg(f0) d, it follows that
deg(goz0) <d and hence d — in as required. 0

Example. The polynomial — 1 splits into separate linear factors in
the residue class field = By (repeated) application of Hensel's
lemma, therefore, it also snlits into linear factors in (that is, linear
factors whose coefficients belong to Q,,) and we obtain the surprising result
that Q, contains the (p — 1)th roots of unity.

We now consider the finite algebraic extensions of Q,,. In contrast to the
field R, the field possesses many such extensions. However, just as in
the case CuR the topological structure of the ground field is extended
on each extension field. More precisely, we have the following.

Theorem 11. Let be a finite extension of degree n. Then the absolute
value I of Q,, can be extended to an absolute value 'p on K, namely, by
defining

=

where N denote8 the norm of K is likewise complete with
respect to

Proof. The properties alp = 0 a = 0 and

1a131p = Iafp

clearly hold, the latter because of the multiplicativity of the norm. We shall
prove the stronger version of the triangle inequality

Ia + � max{IaIp,IflIp}
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with the help of Hensel's Lemma. After dividing by a or /3, this reduces to
checking that

IaIp <1 Ia— 1.

In view of the transitivity of the norm we may assume for this purpose that
K = If therefore

1(x) = + +••• +

a, then N(a) =

a —1, that is, N(a — 1) = ±(1 +aj +. .

We have to show therefore that Ii + + + � 1 if Ianlp � 1, or in
other words

We shall in fact show that E Z,, implies that as,. .. , E Assume
for the sake of argument that .. . , were not all in Z,,.

We then multiply 1(z) by ptm, the smallest positive power of p required
to ensure that all the coefficients b of

fo(z) = ptm 1(x) = 60x" + + + +

lie in 74,. These coefficients have the property that

Omodp, while ba,.. .

are not all congruent to zero mod p. Among those coefficients is therefore
a last nonzero coefficient satisfying 0 mod p. This means that there
is now a factorization

fo(x) (bog + + .. + modp

into factors which are relatively prime modulo p. By Hensel's lemma it
follows that 1(x) is reducible, which contradicts the definition of 1(x) thus
disprovLng the assumption.

The completeness of K is established by the familiar arguments, just as
with R-vector spaces, by choosing a basis w1,.. . of and showing
that a sequence

=

a Cauchy sequence in K if and only if the coefficient sequences lai,},...,
{anj} are Cauchy sequences in

To prove the uniqueness of the extension let I I be any arbitrary extension
of I ', on K. Then, for

< 1 — lirn&' = 0.
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If we write, in terms of the basis w1, ... of K,

= + .•. +

then this is equivalent to the statement that = 0 in for all
I = 1,. .. , n. The inequality IaI < 1 thus does not depend on the choice of
the extension. In other words if I Ii and I

are any two extefl8iOns

(s) lou < 1 < 1.

Suppose now that a fixed element with 0 < looli < 1. For an
arbitrary a 0 we now consider all k,l Z, I 0 such that < la'lj,
or, in other words, such that

log bit
I

By virtue of(s) the fractions are at the same time all rational numbers
satisfying

log 10012

It follows from this that

log lOlt = log 1012 that is Jog lou

log baola log ' log 1012 log 10012

so that font = As I It and 112 coincide on S must be equal to 1,
and hence Iii = 112. This completes the proof of Theorem 11. 0

The field C),, of the p-adic numbers passes on many of its properties to
its finite extension K. The subset

o = {or K I lam,, 111

again forms, just like 74, a ring with the group of units

0' = (a E K I lamp 1}

and the single maximal ideal

p = (or K I 1a1p < 1).

The residue class field = 0/p is a finite extension of the residue class
field ic(p) = Z,,/pZ,, = IF,, and consequently, a finite field W,. For these
reasons K is known as a p-adic number field and its elements are known
as p-adic numbers.

As 0,, is locally compact, it is clear from the basis representation K =
Q,,w1 + ... + that every finite extension K of is likewise locally
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compact. Conversely, it can be shown that the finite extensions of the fields
.. ., = JR constitute precisely the totality of all the nondis-

crete locally compact topological fields of characteristic zero (see [8], Ch. I
§3, Th. 9).

An important objective of the theory of numbers is that of obtaining
an overall view of the finite extensions of the field One of the most
beautiful and profound theorems gives a complete answer to this question,
as long as we confine ourselves to Abelian extensions, that is, to finite Galois
extensions whose Galois group is commutative. In these circumstances we
can take as ground field an arbitrary p-adic number field K instead of Q.
If LIK is a finite extension, then we may take NLIK(L') ç K to be its
norm group.

Theorem. Let K be a p-adic number field. The mapping

LIK u—' NLIK(L)

is a one-to-one correspondence between the Abelian extension L of K and
the subgroups I of K of finite index. With this relationship we even have,
for Galois group G(LJK), a canonical isomorphism

G(LIK) K/NLIK(L).

This theorem, which reflects the structure of the Abelian extensions L/K
in the structure of the multiplicative group K of the ground field K, is
known as the fundamental theorem of local class field theory (see [5]). In
a certain sense the classification of all finite extensions LIK has recently
been achieved. These extensions correspond in fact under Galois theory
in one—to-one fashion to the open subgroups of the Galois group GK =
G(K/K) of the algebraic closure K of K, and this group GK was explicitly
defined in terms of generators and relations in 1982, by the two German
mathematicians Uwe JANNSEN and Kay WINGBERG. Another classification
of the extensions of K is being attempted with the help of "LANCLAND'S
conjecture," which seeks to put them into a close relationship with the
representations of the groups
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Real Division Algebras





Introduction
M. Koecher, R. Remmert

Erst durch die Behandlung der gewôhnlichen
imaginiren Zahlen ... in Gemeinschaft mit
den hóheren complexen Zahien kann ihre
wabre Bedeutung in das voile Licht gesetzt werden
(HANKEL 1867).

[It is not until the ordinary imaginary numbers are
treated ... in common with the higher complex num-
bers that their true meaning can be brought
into full daylight.]

1. GAUSS in 1831 was convinced that, outside the system of complex num-
bers, there were no "hypercomplex" number systems in which the basic
properties of complex numbers persist; however, he expressed himself in
thoroughly sibylline utterances (see 4.3.6). The Uniqueness theorem for the
field C appears to be a convincing pointer in support of GAUSS'S thesis. In
the 1880's, a friendly dispute arose between WEIERSTRASS and DEDEKJND
about the proper interpretation of GAUSS'S words. Described in modern
language, the controversy revolved around the question of characterizing
all finite-dimensional, commutative and associative algebras with unit
element, divisors of zero being allowed.

In the year 1843 HAMILTON discovered his quaternions, and shortly af-
terwards GRAVES and CAYLEY constructed their octaves. These new by-
percomplex systems are no longer fields—in the case of quaternions the
commutative law of multiplication no longer holds, while in the case of
octaves even the associative law of multiplication is abandoned—but every
non-zero element still has an inverse. Division can be performed and re-
mains unambiguous; this property of the ordinary (rational) numbers was
regarded as indispensable by the founding fathers of the theory. Divisors
of zero, or even nilpotent elements, which are nowadays encountered by
first-year students learning about matrices, were not allowed.' Indeed the

'Weierstrass was the first to introduce, in 1883, in his "Zur Theorie der ass
n Haupteinheiten gebildeten komplexen Grôfien" (Math. Werke 2, 311—339) the
concept of a "divisor of zero" (p. 314); he also struggles with nilpotent elements
(p. 319). The significance of the property of "absence of divisors of zero" had
alrea*Iy been clearly perceived by Eankel in 1867 (see 4.3.6).
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idea that it was worthwhile concerning one's self with hypercomplex num-
bers was by no means undisputed. As late as 1890 E. STUDY, in his article
"Uber Systeme complexer Zahien und ihre Anwendungen in der Theorie
der 'flansformationsgruppen" (Monatsli. Math. ti. Phys. 1, 283—355, spe-
cially pp. 341/42) wrote: "In weiten Kreisen, namentlich in Deutschland,
1st die Ansicht verbreit.et, dass die Systeme von complexen Zahlen oder
ähnliche Algorithmen überhaupt gar keinen Nutzen hätten, ausgenommen
allein die gewöhnlichen complexen Zahien; und man begrUndet dies damit,
dass durch sie nichts geleistet werden was nicht 'ebenso gut' such
ohne sie zu Leisten ware." [In a number of circles, particularly in Germany,
there is a widely held view that systems of complex numbers or similar
algorithms have actually been of hardly any real use, with the single ex-
ception of the ordinary complex numbers. The reason given as justification
for this attitude has been that no results could ever be provided by these
systems that could not equally well have been provided without their help.]

2. Since the beginning of the 20th century hypercomplex systems of num-
bers have been (loosely but more succinctly) called real algebras. If division
can be performed unambiguously, we speak of a division algebra. We shall
adopt an historical approach focusing our attention on division algebras.
The classical division algebra is the four-dimensional quaternion algebra.
We 8h&ll deal with quaternions in detail in Chapter 7. We prove the famous
theorem of FROBENIUS on the uniqueness of quaternions in Chapter 8, and
we shall also establish there the beautiful theorem of H0PF that every
finite-dimensional commutative division algebra with unit element, other
than lit, must be isomorphic to C. In that same Chapter 8 we shall also give
an "elementary" proof of the celebrated GELFAND—MAZUR theorem, which
states that every normed, commutative, associative, real, division algebra

0 is isomorphic to lit or C.
The eight-dimensional division algebra of CAYLEY numbers will be stud-

ied in Chapter 9, and ZORN's theorem on the uniqueness of the CAYLEY
numbers will be proved. We deal with composition algebras in Chapter 10
and we shall discuss their characterization by HURWITZ; by way of appli-
cation, we shall determine the class of all real vector product algebras. In
Chapter 11, written by F. HIRZEBRUCH, we shall use topological methods
to obtain a deep result due to KERVAIRE and MILNOR which asserts that
division algebras are possible only in 1, 2, 4, and 8 dimensions.

To enable us to formulate our results precisely, we begin with a prelimi-
nary section in which we summarize the basic concepts and facts from the
general theory of algebras. This is largely in the form of a repertory, and
subsequent references to this chapter will be indicated by the letter R.



Repertory. Basic Concepts
from the Theory of Algebras
M. Koecher, R. Remmert

Die gróBten und fruchtbarsten Fortschritte in der
Mathematik sind vorzugsweise durch die Schópfung neuer
Begriffe gemacht, nachdem die hãufige Wiederkehr
zusammengesetzter Erscheinungen dazu gedr&ngt hat
(R. DEDEKIND, Was sind und was sollen
die Zahlen? 1888).

[The greatest and most fruitful advances in Math-
ematics are chiefly made by the creation of new ideas
and concepts, after the frequent reoccurrence of com-
posite (or complex) phenomena has driven us to this.
(R. DEDEKEND: What are numbers, and what
are they good for?J

We take as the basic field, though in place of one could equally well
have chosen any commutative field K. Real numbers will always be denoted
in Chapters 7 to 11 by small Greek letters. Every n-dimensional IR-vector
space is isomorphic to the number space of n-tupks x = (h,. . .

1. Real Algebras. A vector space V over lR with a "product mapping"
(or multiplication) V x V — V, (x,y) '—. zy is said to be an algebra over
R, or au lit-algebra or (real) algebra, if the two distributive laws

(c'x + 13y)z = cv(xz) + /3(yz), x(oy + f3z) =

c all z,y, 2 E V (bilinearity of the product). In
particular, the relations = (ax)y = are always valid. If the
associative law xfyz) = (zy)z holds for all x,y, z E V, then the algebra
is said to be associative; if the commutative law zy = yx holds for all

y E V1 then we speak of a commutative algebra. Under these definitions
an lit-algebra is, in general, neither associative nor commutative.

An element e E V is called an identsty element (or unit element) of the
algebra, if ez = ze = x for all x V, and it can be seen at once that every
algebra has at. most one identity element.
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To distinguish between different algebras defined on V, the multiplication
symbol is often indicated explicitly as part of the notation, so that one
writes A : (V,.). The dimension of the JR-vector space V is called the
dimension of the algebra; dimA := dim V.

In every algebra, powers are defined inductively by 2m := Great
care is needed in calculating with powers; thus, for example, in general
x z, and even in the commutative case it is not possible to
show that x4 = (z2)2 necessarily holds. An algebra .4 is said to be power-
associative if the

exponential rule = for all x E .4 and all m 1, � 1

always holds.

Every associative algebra is power associative.
An element x of an algebra A is said to be a divisor of zero in A if there

is an element y 0 in A such that zy = 0 or yx = 0. An algebra is said
to have no zero divisors, if it contains no divisors of zero. In this case the
equation zy = 0 holds if and only if z = 0 or y = 0.

2. Examples of Real Algebras. We give seven instructive examples.
0) The fields JR and C are associative and commutative JR-algebras of

dimensions 1 and 2 respectively, each with identity element and without
zero divisors.

1) The JR-vector space Mat(n, IR) of all real n x n matrices is an n2-
dimensional, associative JR-algebra with identity element (the unit matrix)
with respect to matrix multiplication.

2) The JR-vector space Mat(n, C) of all complex n x n matrices is a 2n2-
dimensional, associative JR-algebra with identity element, with respect to
matrix multiplication. The algebras Mat(n, JR) and Mat(n, C) are noncom-
mutative when n> 1.

3) For any two vectors a = (o1,a2,o3), 6 = (f.31,132,133) E we may
define the vector product by

a x b 1= (02/33 — 03/32, 03131 — 01133,a1132 — 02/31) E 1R3.

The vector space JR3 thus becomes a three-dimensional JR-algebra which is
non-associative and anti-commutative. This algebra is the simplest non-
trivial example of a LIE-algebra. Such algebras play an important role in
many parts of modern mathematics (see also 6.1.4 and 9.3).

4) The JR-vector space Sym(n, IR) of all real symmetric n x n matrices is,
with respect to the symmetrical matrix product (A, B) i.—. + BA), a
commutative algebra which is not associative when n> 1.

5) Any JR-vector space V 0 can be made into an associative and com-
mutative JR-algebra with identity element. We fix a nonzero element e V,
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choose any supplementary space U to the line Re C V and define for ar-
bitrary vectors x = ae + u, x' = a'e + u' Re U a multiplication by
xx' := (cxa')e + at? + c?u. Then e is an identity element, and ut? = 0 for
all u,u' E U. In this algebra every element belonging to U is a divisor of
zero.

6) If A1 = (V1,.),. A, = (V.,.) are real algebras, then we can define
in the vector space V := V1 . . V, the direct sum of these vector spaces,
a product by the rule

zy := x1yj + ... + x,y, (component-wise multiplication)

A : (V,.) obtained in this way is called the direct sum of the algebras
A,, and we write A = . . A,. If A1, .. . , A, are all commu-

tative or all associative, then so is A. In the case where a > 1, A always
has divisors of zero. If is an identity element of A, 1 i a, then
e e1 + . . . + e, is the identity element of A.

All the algebras in O)—5) are power associative.

3. Subalgebras and Algebra Homomorphisms. A real subspace U of
an R-algebra .4 = (V,.) is said to be an R-subalgebra of A, if zy E U for
all z,y EU.

Examples. 1) The set {( _8) R} is an R-subalgebra of

Mat(2,IR) (see Chapter 3.2.5).
2) The sets of upper triangular matrices form in each case IR-subalgebras

of Mat(n, IR) and Mat(n, C) of dimension 4n(n+1) and n(n+l) respectively.
If A = (V,.) and B = (W,.) are any two algebras, an IR-linear mapping

f: V —. W is said to be an R-algebra homomorphism, if

f(xy) = f(x)f(y) for all x, y E V.

One 8peaks of a mono-, epi-, iso-, endo- or auto-morphism when the R-
linear mapping f: V — W is a morphism of the corresponding type.

Example. The mapping f:C —e Mat(2,R), a + fii
i—. (

.fi) is an

algebra monomorphism.

Remark. If A is an algebra with identity element e, then f:R —e A, a i—e

ae, is an algebra monomorphism. In particular every one-dimensional real
algebra with identity element is isomorphic to R.

4. Determination of All One-Dimensional Algebras. Every real vec-
tor space V trivially becomes an algebra, if one chooses as multiplication
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V x V — V, the zero mapping (x, y) e—. 0. We shall show that, in the
one-dimensional case, this pathological behavior is the only exception.

Theorem. Any one-dimensional algebra, whose multiplication is not the
zero mapping, is isomorphic to the algebra JR.

Proof. In view of the remark in 3 above, it suffices to show that A has an
identity element. Clearly A = Ma with a A \ {0}. Since zy = 0 does not
always hold, it follows that a2 0, and hence also A = Ma2. Consequently
there is an equation a = ca2 with c E IR, and therefore e ca is an identity
element of A. 0

5. Division Algebras. Since the time of HAMILTON (finite-dimensional)
division algebras have played a central role. An algebra A 0 is said to be
a division algebra, if for all a, b E V, a 0, the two equations ax = 6 and
ya = 6 have unique solutions in A.

The fields JR and C are associative and commutative division algebras
of dimensions 1 and 2, respectively. The matrix algebras Mat(n, ILL) and
Mat(n,C) are not division algebras when n > 1. The JR-vector space C
is a 2-dimensional commutative, non-associative division algebra without
identity element with respect to the multiplication w o z

Lemma. If A is an associative division algebra, then C A \ (0) is a
group with respect to the multiplication in A. The neutral element of G is
the identity element of A.

Proof. Since within G every equation ax = b and ya = b has a unique
solution, G must be a group. 0

Every division algebra is without zero divisors. As regards a converse, we
have merely the following:

Criterion. The following statements about a finite-dimensional algebra A
are equivalent:

1) A is a division algebra,

ii) A is without zero divisors.

Proof. We have only to show that ii) i). Let a E A \ (0). The mapping
A —. A, x ax is injective by hypothesis, and in fact, since dimA <
is actually bijective. Thus every equation ax = 6 has an unique solution.
Similarly, by considering the mapping A — A, y i—. ya we see that the
equation ya = 6 has an unique solution. 0
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It is not a trivial matter to give an example of a real division algebra
other than JR and C. The simplest such algebra is the Hamiltonian algebra
of quaternions, described in the next chapter.

6. Construction of Algebras by Means of Bases. There is a simple
process whereby a real n-dimensional vector space V is made into an algebra
A = (V,.). We first take a base el,e2,...,en in V. If z =

E V are arbitrary vectors of V, then, for any product (x, y) xv
we have, by virtue of the distributive law,

xy =
p,v=l

A muLtiplication in V is therefore already completely defined once the n2
individual products have been assigned. Their values can be arbitrarily
chosen in V, and in this way every possible JR-algebra on V can be obtained.
Most of these algebras are of no interest at alL If one wishes to construct
algebras with an identity element then one may conveniently postulate that
e1 should be this element. It will then follow that e1e,, = = for all

= 1,.. .,n; but the remaining (n — 1)2 products 2 n, can
be assigned freely.

If in addition to A = (V,.) another JR-algebra B (W,.) is given, then
the lit-linear mapping f: V —, W is an algebra homomorphism, if and only

for all ,i,v= 1,2,...,n.
There is an obvious criterion for associativity and commutativity:

The algebra A = (V,.) is associative if and only =
for all A,p,&' = 1,2,... ,n; it is commutative if and only = for
allp,i.'=1,2,...,n.

It IS extremely tedious to verify by practical calculation that the n3
associativity conditions are satisfied. Even in the case where Cl IS an identity
element, there are still (n — equations to test. For this reason algebras
are hardly ever defined today by specifying the products of the base
vectors. Nevertheless, it was this classical procedure that HAMILToN used
to define his quaternions. DEDEKIND and WEIERSTRASS also used bases
(the so-called principal units) in the commutative and associative case.

ADDITIONAL READING (for Chapters 7—11):

[1) I.L. KANTOR and A.S. SoLoDovNIKov, Hypercomplex Numbers:
An Elementary Introduction to Algebras, Springer-Verlag (1989)

[2] K.H. PARSHALL: In pursuit of the finite division algebra theorem and
beyond: Joseph H.M. Wedderburn, Leonard E. Dickson and Oswald
Veblen, Anh. Internat. fist. Scs. 33, no. 111 (1983), 274—299.
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Hamilton's Quaternions
M. Koecher, R. Remmert

Love of fame moves and cheers great mathe-
maticians (W.R. HAMILTON).

INTRODUCTION

1. Sir William Rowan Hamilton was born in Dublin in 1805, and at the age
of five was already reading Latin, Greek and Hebrew. lie entered Trinity
College Dublin in 1823, and while still an undergraduate was, in 1827, ap-
pointed Andrewes Professor of Astronomy at that university, and Director
of the Dunsink Observatory with the title "Royal Astronomer of Ireland."
In that same year he began to develop geometric optics on extremal princi-
ples and in 1834/35 extended these ideas to dynamics, with the introduction
of the principle of least action, the Hamiltonian function, and his canonical
equations of motion. He was knighted in 1835 and was President of the
Royal Irish Academy from 1837 to 1845. His great discovery of quaternions
was made in 1843. He died in 1865 at Dunsink.

One of hAMILTON'S earlier achievements in 1835 had been to legitimize
the traditional use of complex numbers in mathematics. He showed that
calculating with complex numbers z + iy was logically equivalent to per-
forming operations on ordered pairs (z, y) of real numbers in accordance
with certain postulated rules (see 3.1.8). This was the origin of his interest
in the question of whether the geometrical interpretation of addition, and
more particularly of multiplication of complex numbers in the plane R2,
might not somehow—through the creation of hypercompler numbers—have
an analogue in the three dimensional space 1R3 of our visual intuition.

HAMILTON had been hoping for many years to find a satisfactory form
of multiplication for real number triples with the right properties. Shortly
before his death in 1865 he wrote to his son (Math. Papers 3, p. XV):
"Every morning, on my coming down to breakfast, you used to ask me:
'Well, Papa, can you multiply triplets?' Whereto I was always obliged to
reply, with a sad shake of the head: 'No, I can only add and subtract them'."

It is easy enough to see nowadays that there can be no mul-
tiplication of all real number triples in R3 which simply extends
the multiplication inC = C of the pairs (a,$). For if e := (1,0,0),
i := (0,1,0), j := (0,0,1) be the canonical base of R3, then ij would have
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to be of the form pe + oi + Ti. It would then follow, if one assumes i2 = —e
and 1(u) = ii(j) = —j, that

—j = pi—oe+rij = pi—oe+r(pe+oi+rj)= (rp—0)e+(ro+p)i+r2j,

and thus (since e, 1, j are linearly independent) that r2 = —1, which would
imply r

2. HAMILTON'S efforts are at first unsuccessful: He is looking for a mul-
tiplication with triplets in which, as with number pairs, the usual rules
would still apply (in other words he assumes a principle of permanence).
He begins by trying

a+13i+yj with i2=j2=—1,

(in which the existence of a neutral element is already implied) and con-
siders the simplest case

(*) (a + 13 + 7j)2 = a2 — p2 _i2+ 21afl + 2ja7 + 2ijfl7,

where the expression on the right is calculated in the ordinary way using
the commutative laws.

The "touchstone" which he uses to test the value of the product of two
vectors is, as in the case of C (where we have the modulus law) the princi-
ple that the length of the "product" of two vectors should be equal to the
product of their individual lengths; the length of a + f3i + 7j being its "Eu-
clidean" length + (32 + 72. The sum of the squares of the coefficients
of 1, i and j on the right hand side of (*) yields

— ,32 — 72)2 + (2cwfi)2 + (2ay)2 = (a2 + p2 + 72)2;

and thus HAMILTON has established the fact that the product rule will
certainly hold provided ij is made equal to zero. But he does not like this.
And then he notices that the term on the right of (*) should really be
ij+ji rather than 2ij. This has to vanish so that ji = —if; and so he is led
to sacrifice the commutative law. One can see all this very clearly from a
letter which HAMILTON wrote to John GRAVES on the 17th October 1843
(Math. Papers 3, 106—110): "Behold me therefore tempted for a moment to

fact, one can prove the better
Theorem. Every real division algebra .4 of odd dimension with unit element e
is isomorphic to R, and therefore has dimension I.
Proof. Let a E .4. The Li,: A —. .4, x ax is a vector space
endomorphism. Since dim A is odd, has a real eigenvslue (by the Boizano-
Cauchy intermediate value theorem). If v 0 is an associated eigenvector, then
av = Jtv, that is (a — Ae)v = 0. Since A is a division algebra, it follows that
a = Xc, or in other words a E Re, from which we see that A = Re.
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fancy that ij = 0. But this seemed odd and uncomfortable, and I perceived
that the same suppression of the term which was de trop might be attained
by assuming what seemed to me less harsh, namely that ji = —ij. I made
therefore ij = k, ji = —k, reserving to myself to inquire whether k was 0
or not."

And now HAMILTON hit upon the ingenious idea that gave a new and
decisive direction to the whole problem: he "jumped with k into a fourth
dimension." In other words, he took k to be linearly independent of 1, i
and j. In his letter to GRAVES he wrote (bc. cit.) "and there dawned on
me the notion that we must admit, in some sense, a fourth dimension of
space for the purpose of calculating with triplets."

HAMILTON now carefully investigates what k2 should be. If one were to
use the associative law it would be immediately apparent that

k2 = (ij)(ij) = i(ji)j = —i(ij)j = —i2j2 = —1;

but he does not use this argument, because he is not sure whether his
multiplication is associative (his notes on this point are to be found in
Math. Papers 3, 103—105).

Later on he brings out clearly the validity of the associative law; thus
he writes (Math. Papers 3, p. 114): "... the commutative character is lost

However it will be found that another important property of the old
multiplication is preserved, or extended to the new, namely, that which
may be called the associative character of the operation ...." This could
well be the first introduction of the word "associative" in Mathematics.

3. The breakthrough came to HAMILTON on the 16th October 1843 on
his way to a meeting of the Royal Irish Academy; during that meeting
he announced his discovery of quaternions. He devoted the remainder of
his life exclusively to their further exploration. He himself described in
1858 the moment of discovery in the following words (North British Rev.
14, 1858): "...Tomorrow will be the fifteenth birthday of the Quaternions.
They started into life, or light, full grown, on the 16th of October, 1843, as
I was walking with Lady Hamilton to Dublin, and came up to Brougham
Bridge. That is to say, I then and there felt the galvanic circuit of thought
closed, and the sparks which fell from it were the fundamental equations
between i,j, k exactly such as I have used them ever since. I pulled out, on
the spot, a pocketbook, which still exists, and made an entry, on which,
at the very moment, I felt that it might be worth my while to expend the
labour of at least ten (or it might be fifteen) years to come. But then it
is fair to say that this was because I felt a problem to have been at that
moment solved, an intellectual want relieved, which had haunted me for
at least fifteen years before. . ." And in the letter, which we have already
mentioned, to his son, he says, referring to that memorable October day:
"Nor could I resist the impulse—unphilosophical as it may have been—to
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cut with a knife on a stone of Brougham Bridge the fundamental formula
with the symbols i,j,k:

i2=j2=k2=ijk_— —I."

With great delight HAMILTON verifies the validity of the product rule for
his quaternion multiplication, and writes (Math. Papers 3, p. 108): "But I
considered it essential to try whether [my] equations were consistent with
the law of moduli,..., without which consistence being verified, I should
have regarded the whole speculation as a failure."

Neither HAMILTON nor anyone else at the time was aware that EULER
had already been in possession of the characteristic laws applying to quater.
nions, as earLy as 1748. In a letter to GOLDBACH on the 4th of May he gives
the product rule in the form of the "four squares theorem" (see 2.3 on this
point). GAUSS also knew about the rules for calculating with quaternions;
he wrote in 1819 a short note (not published at the time) on "Mutations
of space," in which the quaternion formulae appear ( Werke 8, 357—362).

4. HAMILTON regarded the creation of his quaternions as being on a par
with the creation of the infinitesimal calculus. He acknowledged no con-
temporary mathematicians other than GAUSS and GRASSMANN as having
played any part. F. ENGEL, on page 208 of his very readable account of
GRASSMANN'S life, wrote: "GraBmann teilt sich mit Gaufi in die Ehre, daB
Hamilton ihm zutraut, er könne die Quaternionen gefunden haben, und
sich immer von Nenem freut, daB es allem Anscheine nach doch nicht der
Fall 1st" ("Grafimanns Leben," Teubner Verlag, Leipzig 1911). [GRAss-
MANN shares with GAUSS the honor, accorded to him by HAMILTON, that
he (GRASSMANN) could have discovered quaternions, and that he (HAMIL-
TON) is always delighted with the news that to all appearances this is not
the case.]

HAMILTON believed that his quaternions would play a key role in physics.
With missionary zeal he strove to get them accepted by the mathemat-
ical world. Thus in Dublin, quaternions became an official examination
subject; a "cosmic" significance was attributed to them. Felix KLEIN in
his well-known Vorlesungen die Enhvicklung der Mathematik im 19.
Jahrhundert (Vol. 1, p. 184) [Lectures on the development of mathematics
in the 19th century) gave a very harsh judgement when he wrote: "Hamil-
ton selbst gestaltete ale [= Quateniionen] für sich zu einer Art orthodoxer
Lehre des mathematischen Credo, in die er alle seine geometriachen und
sonstigen Interessen hineinzwang, je mehr sich gegen Ende seines Lebens
sein Geist vereinseitigte und ...." [Hamilton himself regarded quaternions
as a kind of orthodox doctrine of the mathematical Credo, into which all
his geometrical and other intere8ts were forced, and this tendency became
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more pronounced as towards the end of his life his mind set and he became
obsessed with a single idea...]

5. In Ireland and England, HAMILTON became the figurehead of a school
of "quaternionists" who "outdid their master in intolerance and rigidity."
At the center stood a mystic formalism treated with due reverence by the
initiated. One dreamt of a quaternionistic theory of functions and expected
to gain new and profound insights into the whole realm of mathematics. To
promote these utopian aims there was even founded, in 1895, an "Interna-
tional Association for promoting the study of quaternions," at Yale Univer-
sity in New Haven, Connecticut. Even now there are still faint echos from
the great days of the quaternionists in Ireland. Thus Eamon de VALERA,
the President of Ireland from 1959 to 1973, during his period of office,
would occasionally attend a mathematical colloquium in Dublin, whenever
the announcement of the discourse contained the word "quaternions."

The history of algebra has shown that the significance of quaternions
was vastly overestimated in the last century. Nowadays it has become clear
that the quaternion algebra is only a particular algebra of complex 2 x
2 matrices (see §1). It was not the discovery of quaternions which was
the great achievement, but rather the recognition which came about as
a result of that discovery, of the great freedom which one has available,
to construct hypercomplex systems. Lord KELVIN (1824—1907) the famous
Scottish physicist and writer on thermodynamics, commented caustically:
"Quaternions came from Hamilton after his really good work had been
done; and though beautifully ingenious, have been an unmixed evil to those
who have touched them in any way."

In contrast to this opinion is a well-known saying by Thomas HILL (who
was a student of B. PEIRCE, the President of Harvard in 1862): "In the
great mathematical birth of 1843, the Quaternions of HAMILTON, there is
as much real promise of benefit to mankind as in any event of Victoria's
reign."

We refer readers who would like further historical details to:

CROWE, M.J.: A History of Vector Analysis, University of Notre Dame
Press, Notre Dame, London 1967

ROTHE, H.: Die Hamiltonschen Quaternionen und ihre Verailgemeinerun-
gen, Encykl. Math. Wiss. III, 1.2, 1300—1423, Teubner Verlag, Leipzig
19 14—1931.

VAN DER WAER.DEN, B.L.: Hamiltons Entdeckung der Quaternionen,
Veroffentlichungen der Joachim Jungius Gesellschaft der Wissenschaften,
Vandenhoeck u. Ruprecht, Göttingen 1973, 14 Seiten
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§1. THE QUATERNION ALGEBRA H

We introduce quaternions in § 1.1, following HAMILTON'S example, by means
of the multiplication table for the natural basis. In §1.2 quaternions are rep-
resented as special complex 2 x 2 matrices. A subalgebra 11 of Mat(2, C)
and a natural isomorphism F: IHE ii of the quaternion algebra H onto
11 is constructed, which was already known to CAYLEY in 1858. With this
isomorphism it becomes obvious among other things that H is an associa-
tive division algebra over R. HAMILTON had to find a direct verification of
the associativity of H, because in the year of the discovery 1843, matrices
were as yet unknown. It was not until 1858, that CAYLEY introduced ma-
trices and the matrix calculus in his "A memoir on the theory of matrices"
(Math. Papers 2, 475—496), which includes the quaternion calculus as a
special case. The algebra fl and the isomorphism F can be usefully applied
throughout the whole of this chapter.

In paragraphs §1.3 to §1.7 the basic algebraic properties of the quater-
nions will be discussed.

1. The Algebra H of the Quaternions. In the four-dimensional IR-vector
space of ordered real number quadruples, we choose the standard basis

e1 :=(1,0,0,0), e2 := (0,1,0,0), e3 e4 := (0,0,0,1).

We now introduce the so-called Hamilionian multiplication. Let ci, be the
unit element; then the nine products 2 < z, ii < 4, still have to be
specified, and we define them by the following relations

e2e2 := —e1, e2e3 := e4, e2e4 := —e3)
e3e2 := —e4, e3e3 := —e1, e3e4 := e2 (HAMILTON relations)
e4e2 := e3, e4e3 := —e2, e4e4 := —ei )

This is often set out in the form of a multiplication table

C2 e3 e4

e2 —e1 e4 —e3

e3 —e4 e2

e4 C3 C2 —e1

The four-dimensional real constructed in this way is called the
quaternion algebra and denoted by H. The elements of H were given the
name of quaternions by HAMILTON.2 Since e2e3 it is clear that the
quaternion algebra H is not commutative.

2The word means any group of four persons or things, and was used, for
example, in the New Testament to describe the four groups of four soldiers used
by King Herod to guard Peter. (Acts of the apostles, 12, 4): "... he put him in
prison, and delivered him to four quaternions of soldiers to keep him" (see Temple
100 years of mathematics, London, Duckworth, 1981, p. 46).
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The validity of the 27 equations = 2 � A, /4, z' < 4,
can be checked directly from the multiplication table, thus verifying that
the quaternion algebra is associative. We refrain from doing this because
associativity and more will emerge in the next paragraph in a more elegant
way. '.fladitionally e1,e21e3,e4 are denoted by e,i,j,k respectively so that

i2=j2=k2_—ijk=—e, ij=—ji=k.

The other products are derived from these by cyclic interchange of i, j, k.
Using the distributive law we thus obtain the

Product formula:

(oe + f3i + 7j + 6k)(&e + 13'i + -(j + 8'k)

= — /3(3' — — 66')e + (o(3' + $a' + —

— (36' + 7a' + 6/3')j + (aö' +137' — + öa')k.

The classical method of writing quaternions with the symbols i, j, k has
certain hidden dangers, for example, if we try to deal with quaternions
with complex instead of real numbers as coefficients.

IRe is an R-subalgebra of H. In contrast to our practice with C, we do
not however identify IRe with R, and therefore we consistently write e and
not 1 for the unit element of E[.

2. The Matrix Algebra fl and the Isomorphism F: H 11. The set

C of all real 2 x 2 matrices ( or,J3 E IlL, is an IR-subalgebra of

Mat(2,R), and the mapping Ck + (
is an IlL-algebra isomor-

phism C —. C (see 3.2.5). In analogy with this, we have the following.

Theorem. The set 1( := { Tz) : w, z E c} is an IlL-subalgebra of

Mat(2,C),withunitelementE:= ?).EverYmairizA= e

fl satisfies, over R, the quadratic equation

(1) A2 — (traceA)A + (detA)E 0

where trace A = 2R.ew, detA = 1w12 + 1z12

11 is a 4-dimensional, associative division algebra.

Proof. 1) It is easily verified, by direct calculation, that 71 is a four-
dimensional IlL-vector subspace of Mat(2, C) which is closed under matrix
multiplication. The matrix equation A2 — (trace A)A + (det A)E = 0 can
be checked in the same way.
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2) The algebra Ii is associative because Mat(2, C) is. To see that Ii is
a division algebra we need to use the criterion L5. Accordingly suppose
A,B Eli and AB = 0. It then follows that detA •detB = 0, and hence

detA = 0 or detB = 0. As det iz) = + 1z12 vanishes only for

w = z = 0, the required statement follows. 0

The equation (1) is the statement of the so-called CAYLEY theorem (or
of the CAYLEY—HAMILTON theorem for the 8pecial case of 2 x 2 matrices)
(See S. Lang, An Introduction to Linear Algebra, 2nd ed., Springer-Verlag.)

Lemma. The mapping

fa+fii —7—öi\F:E—.fl,

is an P-algebra isomorphism, and

F(ei) = E, F(e2)
=

0) =:

10 —i\ 10F(ea) = 't%+i 0 ) =: J, F(e4) = )
=: K.

Proof. The mapping F is obviously P-linear and bijective. It remains to
be shown (see R.6) that = for p,v = 1,2,3,4. This
however is clear, because the matrices E, I, J, K are the images under F
of el, e2, C3, e4 and satisfy the same laws of multiplication as C2, e3, C4.
The relations j2 = J2 = —E, IJ = —JI = K are easily checked and the
remaining relations can be derived from the associative law, for example,
K2 = (IJ)(—JI) = —1J21 = = —E. 0

Corollary. The Hamiltonian algebra M is an associative division algebra.

By Lemma R.5, Ii \ {Q) is a group with respect to multiplication. One
can immediately verify that:

The set {E,—E,I,--I,J,--J,K,—K) is a noncommutative seibgroup of
Ii \ {0), each of whose elements other than ±E is of order 4.

This group, and any group isomorphic to it, is known, in the literature,
as the (finite) quaternion group.

The representation of quaternions by complex 2 x 2 matrices which we
have used here was already familiar to CAYLEY in 1858. In his famous
"Memoir on the theory of matrices" (Math. Papers 2, p. 491) he writes:
"It may be noticed in passing, that if L, M are skew convertible matrices



§1. The Quaternion Algebra H 197

of the order 2, and if these matrices are also such that L2 = —1, M2 = —1,

then putting N = LM = —ML, we obtain

L2=—1, M2=—l, N2=—1,

L=MN=-NM, M=NL=-NL[sicJ, N=LM=-ML,
which is a system of relations precisely similar to that in the theory of
quaternions." CAYLEY does not however give explicit examples for L, M.

As calculations with complex matrices can be performed more elegantly
than with quaternions, it is often preferable—as above—to prove theorems
about liii, by first proving them for the algebra N, and then using the
isomorphism F:H —+ N to "lift" them to IHI. We shall use this principle
again later. 0

As with complex numbers earlier, there are many possible ways of rep-
resenting the quaternion algebra H as an R-subalgebra of Mat(2, C). One
can choose three matrices 13, 14 E Mat(2, C), in any way one likes as
long as the nine }Iamiltonian conditions are satisfied. The mapping

H —' Mat(2,C), (cw,fl, 6) i-+ oE + /313 + na +

is then an ilL-algebra monomorphism. It can be shown, as a generalization
of the theorem in 3.2.5, that:

If g:H —. Mat(2,C) is an IlL-algebra monomorphism, then there is an
invertible matrix W E Mat(2, C), such that the associated "inner auto-
morphism" LW:Mat(2,C) —ø Mat(2,C), A ø—ø W1AW has the property
9 = Lw 0 F.

3. The Imaginary Space of fill. We use the standard basis e, 1, j, k. The
three-dimensional vector subspace

(1) ImH:=lRi+Rj+Rk

of H is called—in analogy to the complex numbers—the imaginary space
of H. Its elements are called "purely imaginary." Ill! is a direct sum of the
vector spaces Re and Im UI!

(2)

The line IRe is defined invariantly by the unit element e. The definition
of Imilfi is initially dependent on the basis. In order to characterize ImH
invariantly, we note that the quaternion z = .re + /3i + yj + 6k satisfies, by
Theorem 2, the quadratic equation

(3) z2=2ax—(G2+fl2+y2+62)e.
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As r 1mM if and only if a = 0, we obtain the basis-free representation

(4) ImH={xEEl:z2ERe and

1mM is not an IR-subalgebra of El. We note that:

For purely imaginary quaternions u, v, the following relations hold: u2 =
—we with w�O and uv-f-vuERe.

Proof. If ti = flu + 7j + 6k then ti2 = _(fl2 + 72 + 62)e with 82 + 72 +
62 � 0. Since u, v, u + v all belong to 1mM, it follows that ut, + vu =
(u+v)2—u2—v2ERe. 0

In particular for every ti 1mM, u 0, a scalar p (namely p :
can be found such that (pu)2 = —e (normalization).

The imaginary space 1mM plays a dominant role in the theory of quater-
nions. Its elements are also called vectorial (or pure) quaternions. The
expression "vector" first appears in HAMILTON'S writings in 1845, (Q. Jl.
Math. 1, p. 56). In the long drawn-out war of resistance against the vector
calculus, Lord KELVIN was even in 1896 expressing the opinion that: "Vec-
tor is a useless survival, or offshoot from quat.ernions, and has never been
of the slightest use to any creature."

By (2) every quaternion z can be expressed uniquely in the form

(5) z = ae + u with a R and u E ImEl.

In this expression ae is sometimes called the scalar part (or real part) and
u the veclor(ial) part (or imaginary part) of z.

Every plane in H, containing the straight line Re, is a subalgebra of
El, isomorphic to C. It is however fundamentally impossible to make El
"somehow or other" into a C-algebra.3

4. Quaternion Product, Vector Product and Scalar Product. For
vectorial quaternions u = flu + + 6k, v = pi + oj + i-k we have

(1) uv = —(fip + + 6r)e + — 6o)i + (öp — flr)j + (fib — 7p)k.

here the "scalar part" is, apart from sign, the canonical Euclidean scalar
product (u, v) of the vectors u = (/3,7,6), V = (p, c, r) R3; the "vectorial

31n fact we can improve on this with the following.
Theorem. Every finite dimensional complex division algebra with unit element
is isomorpluc to C.

This is proved in the same way as the theorem in the footnote on page 190: the
left-muLtiplication La now has a. complex eigenvalue A (Fundamental theorem of
algebra).
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part" of uv is the vector product (cross product) of these two vectors. We
thus obtain the aesthetically pleasing formula

(2) uv = —(u,v)e+u xv, u,v,u x v Elmill,

The mapping (u, v) u x v is by definition bilinear and anticommutative:

(3) uxv=—vxu, u,vElmH.

From (3) we get immediately using (2)

(4) ux v = — vu), (u,v)e = + vu) for all u,v Elm11.

The vector product is not associative. We note that

(5) u x (v x w) = — vwu), u, v, w ImH.

Proof. Since uvw = —(v, w)u + u(v x w) and vwu = —(v, w)u + (v x w)u
by (2), the identity (5) follows from u(v x w) — (v x w)u = 2u x (v x w). 0

Exercise. Show that every quaternion a E H can be represented (in in-
finitely many different ways) as the product a = bc of two purely imaginary
quaternions b, c.

As a substitute to some extent for the associative law we have the

GRASSMANN Identity: u x (v x w) = (u, w)v — (u, v)w.

Proof. This follows from (5) with the help of (3), since

uvtv — vwu = (uv + vu)w — v(uw + wu) = —2(u, v)w + 2(u, w)v. 0

If we introduce u, v, w cyclically in (5) or in the GRASSMAN identity, and
add, we obtain the

JACOBI Identity: u x (v x w) + v x (w x u) + w x (u x v) = 0.

This identity and (4) assert that the span R3 Imil, with the vector
product, is a LIE algebra (see R.2.3).

It follows directly from (1), or from (2) with the product rule 2.2(4),
that:

(6) (u,v)2 + Iu x V12 = 1u121v12.

This is a strengthened version of the CAVCHY—SCHWARZ inequality. If we
write (u,v) = lut lvi cosço with çoE we obtain

x vJ Iullvtsinco.
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Thus lu xvi is the area of the parallelogram spanned by the vectors u, v. The
equation (6) plays a central role in the theory of vector product algebras
(see 10.3.1).

The triple (scalar) product of three vectors u, v, w Im is the real
number (u x v, w). Since and ImE are orthogonal, it follows from (2)
that

(u x v,w) = (uv,w), u,v,w EImH.

We can immediately deduce from (1) that (ii x v, u) = 0. After replacing u
by u + v, and taking account of (4), we get the

Interchange Rule: (u x v, w) = (u, v x w), u, v, w ImH.

It is at once clear from this that the mapping (u, v, w) (u x v, w) is a
determinant function of the vector space Imfi.

Exercise. Show that, for 2 x 2 matrices A,B,C

[A, [B, C]] = {2ti(AB) — o(A)a(B)}C — {2o(AC) —

+ — u(C)r(AB))E,

where [A, B] := AB — BA, o(A) trace A, E unit matrix. Show also
that, in the case where A, B, C F(Im Ill), this is the GR.ASSMANN identity.

Historical Remarks. Vector multiplication was discovered by H. GRAss-
MANN in 1844 (one year after HAMILTON'S discovery of quatermons) as a
special case of a much more general so-called "exterior product." The alge-
bra of vectors in R3 first became popular however in the eighties of the last
century through the works of the American physicist and mathematician
Josiah Willard GIBBs (1839—1903) who was a professor at Yale University.
GIBBs maintained amongst other arguments—what seems to us nowadays
airiEst self-evident-—that the scalar product (u, v) and the vector product
u x v have their own independent meaning and that the quaternion prod-
uct uv in which these two products are combined with one another has
no essential significance in many problems. GIBBS was an opponent of the
quaternionists, and it was because of this controversy that a colleague of
GIBBS founded in 1895 at Yale the association for the worldwide promotion
of quaternions, mentioned earlier in the introduction.

5. Noncommutativity of The Center. The fact that is not com-
mutative leads to many unusual consequences. Thus polynomials can have
more zeros than is indicated by their degree. For example, the quadratic
polynomial X2 + e has, as zeros, all purely imaginary quaternions u =
48i + yj + 6k, whose length" 82 + 72 + 62 equals one. These quaternions
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represent the surface of the unit sphere in the three-dimensional space 1R3
or the real number triples

Another statement we can make is that:

There are cubic polynomials over H, for ezample, X21Xi + iX2iX —
iXiX2 — XX21, which assume the value zero for all quaternions.

As every quaternion satisfies an equation X2 = aX + lie the truth of
this statement can be proved by substituting aX + fie for X2 in the above
polynomial. a

Since 111 is not commutative, the naive definition of determinants fails.
For example neither

(a b\ ía b\
det i j := ad — bc nor det i := ad — cbdj dj

would be a suitable definition. In the first case, we would have

det
2/

and in the second case we would have

so that neither determinant would vanish even though the first has equal
columns and the second equal rows.

To measure the departure from commutativity of an algebra A, we con-
8ider its center

forall zEA).

If A is associative, Z(A) is a subalgebra of A, and Z(A) = A if and only
if A is commutative. For algebras with a unit element e, Re E Z(A). The
extreme case Z(.4) = Re can occur.

For the algebra H we have Z(H) = Re = {z E H:xu = uz for all
ImE}.

This is included in the following statement:

For all u E ll1\Re, {z H:xu = ux) = Re +lltu.

Proof. Since (z E H: zu = ux) = {z H: zv = vz} for v := u — (like u)e
one can assume that u E 1mM, u 0. One can even assume u2 = —e and

4The reason for this phenomenon is that polynomials over H no longer factor
in the usual way. For example (X — z)(X — = X2 — zX — Xy + ry, and the
linear terms cannot be combined into —(x + p)X.
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= —e (we pass from x to z — oe and normalize). It then follows that
(z—u)(r+u)=z2--uz+xu—u2 = 0, so that z= ±u. 0

The noncomrnutativity of H is also the reason why H has many k-algebra
automorphisms: every a H, a 0 induces a so-called inner auiomorphi.sm
h4:IHI —p H, z —. aza1. Since Z(A) = IRe, we have h3 = h6, if and only
if b1a Re. We shall show in 3.2 that the k-algebra H has no other
automorphisms.

Ezertise. Show that, for any two elements a, b E H, the following statements
are equivalent:

i) ab=ba.

ii) e,a,b are linearly independent.

iii) there is a subalgebra of H, isomorphic to C, and containing a and b.

6. The Endomorphisms ofthe Ilk-Vector Space IlL For any two quater-
nions a, 6 the mapping H —. H, z '—. azb is an IR-linear mapping of H into
itself (an endomorphism). We denote by End IHI the k-vector space of all
endomorphisms of H.

Theorem. If as,. . . , a4 is a basis of H, the mapping H4 —. End H,

(61,b2, 63, 64) f€ End Ill with f(z) :

is Ilk-linear and bijective.

Proof. The k-linearity is obvious. Since dimEI4 = dim(EndlHI) = 16, as
dimH = 4, it only remains to prove the injectivity of the mapping in
question. This is the case n 4 of the following auxiliary proposition:

Let n = 1,2,3 or 4 and suppose = 0 for all z H then
= ••= = 0.

We argue by induction, the case n = 1 being clear. Suppose n> 1, then
if 61 were not zero, we should have

('i') with

If we now multiply this equation on the right by y, and subtract from it
the equation obtained by replacing z by zy (in the original equation) we
obtain

andhence q,,y=yq, forall yEH
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by the inductive hypothesis. Since Z(H) = lae it follows that qp = age,
E IL We now deduce from (*) that

(ai + x = o, that i8 + = 0,

or in other words a1,.. . ,a would be linearly dependent. It follows that
b1=0,andsimilarlyb2=b3=64=0. 0

Example. The conjugation x (see §2.1) beLongs to End III, and with
respect to the basis 1, 1, j, k, we have:

1
= + + jxj + kxk).

The theorem proved here is to be found in HAMILTON'S work Elements
of qualernions, which was published by his son in 1866. The analogue of
this theorem does not hold for the field C, where (see 3.3.1) the R-linear
mapping C —. C have the form z '—. az + bi. The fact that one can work
without conjugate quaternions is really tied in with the fact that H has a
one-dimensional center, whereas this is not true of C.

7. Quaternion Multiplication and Vector Analysis. HAMILTON ap-
plied quaternion multiplication to derive important formulae in vector anal-
ysis in an elegant fashion. He introduced the "Nabla" operator

0. 0. 0V:= —s+—j+—k
Ox Oy Oz

(he chose the word nabla because of the similarity of the shape of the symbol
to that of an Hebrew musical instrument of that name). The application
of V to a differentiable function f(x, y, z) of three real variables, gives the
gradient of f

Of. Of. Of

V to a "differentiable quaternion field" F(z, y, z) =
u(x,y,z)i+v(x,y,z)j+ w(z,y,z)k gives, when formally expanded:

IOu Ot, Ow\ (Ow Ov\.
\Ox Oy Ozj \Oy Ozj

IOu Ow\ . /Ov 8u\+
Oz Ox Ox Oy

The real part, up to sign, is the divergence of F, and the imaginary part
is the curl F, of the vector field F:

VF= —divF+curlF.
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Applying the operator V twice to a function f leads to the well-known
LAPLACE operator of potential theory, more precisely:

—

— (02f
+

02f
+

ô2f
—

— ôy2 ôz2

All this works amazingly well. Felix KLEIN, in the first volume of his Vor-
lesungen uber dze Entwicklung der Mat hematik znz 19. fahrhunderi (p. 188)
writes: "Die Leichtigkeit und Eleganz ist in der Tat überraschend, und es
laB sich wohl von hier aus die alles andere ablehnende Begeisterung der
Quaternionisten für ihr System begreifen, die bald über verniinftige Gren-
zen hinauswuchs, in einer weder der Mathematik als Ganzem noch der
Q uaternionentheorie selbst förderlichen Weise." [The ease and elegance is
indeed astonishing, and may well account for the enthusiasm of the quater-
nionists for their system and their rejection of all others; an enthusiasm
which soon outgrew all reasonable bounds and advanced neither the the-
ory of quaternions itself nor mathematics as a whole.}

8. The Fundamental Theorem of Algebra for Quaternions. It is
easily seen that

Every polynomial X'3 — a, a E IHI, of degree n > 0 has zeros in every
plane in H containing 0, e, an.d a.

Proof. Every such plane E is a subalgebra of H, isomorphic to C, and
so — a, by the fundamental theorem of algebra for complex numbers,
always has zeros in E. 0

The number of zeros of X" — a can be infinite, for example, for X2 + c.
The reader may care to show that:

If Ima 0, then — a has exactly n zeros in H. 0

The exponential series

exp x : = x E H

converges absolutely, and uniformly on compact subsets (that is, w.r.t. the
norm) of H. By multiplication of series, or by reduction to the complex
case (see the proof above and Exercise 7.1.5), one obtains the

Addition Theorem. (exp x)(exp y) = exp(x + y), if zy = yx.

Q uaternions have a "representation in polar coordinates":

a = IaI(expu) with u E 1mM.
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To see this, we again consider a plane in IHI, containing 0, e, and a, and
transfer to it what we know about C. With this representation, the roots
of — a can be given an explicit solution:

if a = Ial(exp u), then 6 := is a zerv of X" — a. 0

It is not immediately apparent that quadratic polynomials X2 + aX + b,
a,b E H, always have zeros in Ill (the reduction to pure polynomials by
"completing the square" only works if ab = ba). Nevertheless as we shall
see a fundamental theorem of algebra does in fact hold for 1111 as well. We
first define, inductively, the concept of a monomial (over IHI). Any constant
a 0 is a monomial of degree 0. The "indeterminate" X is a monomial
of degree 1. If m1 and m3 are monomials of degree k1 and k2 respectively,
their product vn1m2 is a monomial of degree k1 +k2. The general monomial
of the nth degree accordingly has the form

Any finite sum of monomials is said to be a polynomial (over IHI). Every
polynomial p defines a continuous mapping p:IHI IHI, x '—i p(x).

Fundamental Theorem of Algebra for Quaternions. Let p be a poly-
nomial over H of degree n > 0 of the form m + q where m is a monomial
of degree n and q a polynomial of degree < n. Then the mapping p:IHI — IHI
is surjective, and in particular p has zeros in 1111.

Remark. The hypothesis that only one monomial of highest degree is present
in p, is essential to the validity of this theorem. Thus, for example, the lin-
ear polynomial iX — Xi + 1 has no zero in H (because for any a E 111!, the
polynomial aX — Xa assumes values only in ImH, since for all a = ae + U,
z = + v, u,v E ImIHI, we have ax— za = 2u x v). 0

The usual proofs of the fundamental theorem for C do not carry over
to 1111. With the help of the more powerful methods of topology a proof
can be given as follows. Since in p, the monomial of the nth degree dom-
inates the remaining terms for large x E 1111, we have the growth equation:

= oo. Thus p can be extended to a continuous mapping
fr S4 —. S4 of the four-dimensional sphere into itself with p(oo) := 00. (54
is regarded as the compactification of 1111 1R4 by the addition of a point
oo). It can now be shown that the mapping j5 has degree n (in the sense of
topology). Since n 0, it follows from a general theorem of topology that
p is surjective, and this means that p(IHI) = (H).

Historical Note. The fundamental theorem was proved in 1944 by ElLEN-
BERG and NIVEN, using the notion of the degree of a mapping, in the pa-
per: The "fundamental theorem of algebra for quaternions," in Bull. A MS
50, 246-248, after NIvEN had already resolved the special case in which all
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terms in p have the form a
in quaternions, in Am. Math. Monthly 48, 654—

661). The topological proof is also given in the textbook of S. EILENSERO
and N. STEENROD: Foundations of algebraic topology, Princeton University
Press, 1952, 306—311. It is rather surprising that, until the year 1941, the
subject of the fundamental theorem for quaternions was never treated in
the literature.

THE ALGEBRA H AS A EUCLIDEAN VECTOR SPACE

If V is a real vector space, then a bilinear form V x V R, (x,y) i—+ (x,y),
is said to be a scalar product, if it is symmetric and positive definite, that
is

(z,y) = (y,x) and (x,x) >0 for x 0.

V together with a scalar product is called a Euclidean vector space. The
number := � 0 is called the (Euclidean) length, or the norm,
of the vector z V. Two vectors z, y V are said to be orthogonal (or to
be perpendicular to each other), if (z,y) = 0.

The object of this section is to introduce a scalar product in the quater-
nion algebra H, which fits in well with the multiplication in H. In C =
the scalar product (w, z) = Re(wi) is an optimal choice which is compatible
with multiplication in C, as the product rule IwzI = Iwl Izi shows (see 3.3.4).
We shall see that an analogous situation applies to 1111 = lit4, if one defines,
for any two quaternions x = xl = H,
the canonical scalar product

(1)

Then it is clear that e,i,j,k constitute an orthonormal basis of H. By (1)
the length lxi of x is given by

(2) 1x12:(x,x)a2+132+72+52.

1. Conjugation and the Linear Form Re. By 1.3(5) every quaternion
x has the basis-independent representation x = + u, u E ImEl. We
shall discuss the lit-linear conjugation (mapping) defined (by analogy with
conjugation in C) by

(1) 111—.INI,

We then have

(2) x=x, ImlHl={zEMI:2=—x),

and the fixed point set is the straight line IRe. It is also clear that

(3) = lxi, z E 1111 (preservation of length).
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We shall continually make use of the multiplication rule

(4)

which follows, for example, from the product formula 1.1, though one need
verify it only for the basis quaternions e, i,j, k, because its general validity
is then a consequence of the fact that the mapping (z, y) '—' — is

bilinear. In view of the identities (2) and (4) the mapping z S is called
an involution of the quaternion algebra H.

We also simulate the real part mapping in C, and introduce the jR-linear
form

(5) Re;IHI —, IR, x i— Re(x) where z = ae + u, u E ImH.

Clearly Re is characterized by the properties

Re(e) = 1 and kernel Re = Imill.

It is also clear from the definition that (analogously to 3.3.1)

(6) x + 2 = 2 Re(z)e and Re(S) = Re(z).

The important quadratic equation (3) in 1.3 can now be written as

(7) = 2Re(z)x —IzI2e.

Since (x,y) Re(xy) — R.e(yz) is bilinear,

(8) Re(xy) = Re(yz),

holds generally, because it obviously holds for c, i,j, k. Incidentally it may
be mentioned that Re(zy) is the bilinear form of the Lorentz metric in R4,
because (by the product formula 1.1)

Re(xy) = cwo' — — — 66'

for
x = ac + fJi + yj + 6k, x' = a'e + /3'i + + 6'k E III.

Remark. The proofs of the rules (4) and (8) become more readily under-
standable if one makes use of the algebra isomorphism introduced in 1.2,
namely

_z)

w:=a4-i/3, z:=7+;6EC,
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and works in the matrix algebra N. Thus, writing A' for the transpose of
a matrix A, so that

= Rex =

the familiar rules of the matrix calculus give us

= F(xy)' = (F(x)F(y))t = (F(x)F(y))' = F(y)'F(x)'
=

F is injective. Since Re(xy) =
(8) follows immediately from the commutativity of the trace: trace(AB) =
trace(BA).

2. Properties of the Scalar Product. In the introduction, the scalar
product (x,x') was defined by (1) in terms of the basis e,i,j,k of if It is
easy to describe it in terms independent of the basis by means of conjuga-
tion. We first verify

(1) xi = ix = (x,x)e, and in particular x

x + y in place of x, we have
1_ —

(2) (x,y)e=

in view of the bilinearity of (x, y). We deduce at once from (2) the

Orthogonality Criterion: (x, y) = 0 = —yi E ImH.

The scalar product in C is given by The same formula applies
for Ill:

(3) (x,y) = = Re(iy), in particular (x,e) = Re(z).

If one wishes to avoid the straightforward but tedious deduction of(3) from
the product formula, one can argue as follows. Since + = 2

by 1(6), and since = yi by 1(4), the relation (3) fpllows from (2). A
second proof of (3) is contained in the remark that the mapping 1111 x
R, (z,y) i—. is easily seen to be bilinear, symmetric and positive
definite and that e, i,j, k form an orthonormal basis. 0

The fundamental property is

(4) IxwI = In (prvduct rule).

Proof. Using (1), 1(4), the associative law, and then (1) a second time, we
have

IxyI2e = (xy, xy)e = = = (x,
= (x,x)(y,y)e = IxI2IyI2e. 0
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Finally we prove yet another formula, which will prove useful in 3.2, and
which expresses in a surprising way a triple product of the form yxy as a
linear combination of y and

(5) yzy = 2(i,y)y — x,y E IHI (triple product idenhiy).

Proof. The identity (2) is equivalent to y)e = + yx. Right-multi-
plication by y now gives the required result, since = (yy)e. 0

Remark. If we consider, in the algebra 71, the mapping

71 x 71—k, (A,B) '— (A,B) :=

it is clear, from the remark in §2.1, that the algebra isomorphism F: H —. 71

has the property (F(x),F(y)) = Formula (3) says therefore that
(F(z),F(y)) = (x,y). This means that (A,B) is a scalar product in 71
(which could of course be verified directly) and that F: H — 71 is an or-
thogonal mapping (see 3.1 for this concept). Since (4) trace(AA') = 2det A,
it follows that det F(z) = 1z12, so that the product rule (4) translates into
the product rule for determinants.

3. The "Four Squares Theorem." In 3.3.4 we deduced the "two-squares"
theorem from the product rule for C. In the same way we deduce, from the
product rule for H, the famous

Four Squares Theorem. For all E lit we have:

+ /32 + 72 + + + 7'2 + 5'2)

= (aa' — /3/3' — 77' — 661)2 + (a13' + /3a' + —

+ (oi' + -to' + 5/3' — /361)2 + (aS' + Scv' + 137' _7/31)2.

Proof. The identity follows from the product rule 2(4) and the product
formulainl.1. 0

The "four squares theorem" was discovered by EULER in 1748 (letter to
GOLDBACH of the 4th May; see "Correspondance entre Leonhard EULER et
Clii. Goldbach 1729—1763," in Correspondance math ématique ci physique
de quelqucs célêbres géomètres dts siêcle, ed. P.-H. Fuss, St. Pe-
tersbourg 1843, vol. 1, p. 452). EULER was trying to prove the theorem,
which had already been stated by FERMAT in 1659, that every natural
number is the sum of four squares of natural numbers; by means of his
identity he was able to reduce this theorem to the corresponding assertion
for primes. The first complete proof of the theorem stated by FERMAT was
given in 1770 by LAGRANGE (further information on this will be found
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in the book by W. Scharlau and H. Opolka: From Fermat to Minkowsk;,
Springer-Verlag, 1985).

GAUSS remarked (in an unpublished manuscript found after his death,
Werke 3, 383—4) that, if complex numbers are used, the "four squares
theorem" is contained in the identity

(1u12 + + 1z12) = juw + vzJ2 + lui — vti,j2, u, v, w, z C,

which is nothing else than the theorem on the product of determinants

applied to the matrices ( ".. and ('° in ii.\—V U) \Z W)
HAMILTON, as we have already pointed out in the introduction to this

chapter, elevated the "four squares theorem" into a "touchstone" to test
the value of his quaternions. Once the four squares formula has been found,
it is obvious (as in the case of two squares) that it must be true in any
commutative ring.

4. Preservation of Length, and of the Conjugacy Relation Under
Automorphisms. The excellent interplay within H between the opera-
tions of conjugation, multiplication, and the formation of the scalar product
is again underlined by the following.

Theorem. Every R-algebra automorphism h: H —. H has the following two
properties:

(1) = h(z), Ih(x)l = JzI, z E H,

which assert that the mapping h preserves conjugacy and length respectively.

Proof. Since h(e) = e and ImH = {z H: a,2 = with w 0) it
follows that h(ImH) C ImH. Hence, for z = ae + u E H, a E IL, U E Imil,
it also follows that h(z) = ac + h(u) with h(u) E ImH. This
h(z) = ae — h(u) = h(cre — ti) = Moreover Ih(z)12e = h(z)h(z) =

= IxI2e, that is Ih(z)I = lxI.

In the theorem we have just proved, the bijectivity of h is used nowhere.
In fact the statement holds good for all IL-algebra endomorphisms h 0
of H, because we always have kernel h = 0, as H is a division algebra, and
h(e) = e. The above theorem was used in 3.2 to prove that all automor-
phisms of H are of the form x u—. axa1, a 0. For the IL-algebra C the cor-
responding statement is trivial because C has only two IL-automorphisms,
namely, the identity mapping and the conjugation mapping (see 3.3.2).

5. The Group 53 of Quaternions of Length 1. As with complex num-
bers (see 3.3.4) the product rule gives us immediately
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The set S3 := {x E IHI: IxI = 1) of all quaternions of length 1 constitutes
a group with respect to multiplication in IHI, which is a subgroup of the
multiplicative group := (IHI\ {O),.).

As e, i, j, k E S3 it is clear that the group S3 is not abehan. In IHI,

the set S3 is the "surface of the unit (hyper)sphere" whose center is at
the origin. S3 is compact, it is also called the three-dimensional sphere;
topologically S3 can be obtained from R3, the familiar space of our physical
intuition, by compactification through the addition of a point at infinity.
The group S3 will play a central role in the next section when we come to
study the orthogonal mappings of H and of Im IHI.

The group 53 is its own commutator subgroup. In particular, for every
x S3 there are elements u, v E S3 fl Im H with x =

Proof. For any such x there is a y E S3 with y2 = x. From Exercise 7.1.4
there are elements u, v E Irn H with y = uv. We may assume that u, v E S3.
Then = —u and = —v. Therefore x = (uv)2 = 0

of(n+1)-tuplesx with
the scalar product (x, y) = we define the "n-dimensional sphere,"
by 5" := R'"1:IzI = 1). A nontrivial theorem states that S' and S3
are the only spheres with a "continuous" group structure.

The following relationship exists between the multiplicative groups IHIX,
:={xEll(,x>0}:

The mapping UP —. x S3, x i—s (IxI,z/lzf) is a (topological) isomor-
phism of the (topological) group lIP onto the product of the (topological)
groups and S3.

For every quaternion z 0, E S3. One can verify directly that:

The mapping h:llhI\ (0) —, 53, x i—s = 1x11x2, is surjectivc:

(1) h(e+ =Ck+b, if ae+bES3\{—e), aER, beImlHl;

h(i) —e. 0

If one puts x = + b, 6 ImIHI, then b2 = —IbI2e and hence

IC2 — IbIs 2K
(2) h(z)

= K2 +
bI2e + 2 + 1b12";

we have thus obtained the following parametric representation for the group

s3
= { K2 +

— 1612)e + 2IC6]:(Ic,b) (R x Imil) \ (O}}

as a generalization of the parametric representation 3.5.4(2') of the circle
group S1. The equations (1) and (2) also yield the result (whose proof is
left as an exercise):
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Every tmrational" quaternion ae + f31i + /32j + f33k E S3 \ {e), a, E Q,
has the form

(4) a= l+q2 with q,:=

q2

This representation can be utilized (by analogy with 3.5.4) to parametrize
Pythagorean quintuplets, that is (.0 say 5-tuples (k, I, m, n, p) of nonzero
natural numbers satisfying the equation k2 + ,2 + m2 + n2 = p2. The reader
interested in this may care to work through the simple calculations.

6. The Special Unitary Group SU(2) and the Isomorphism S3 —'
SU(2). The set

(1) U(2) := {U E GL(2,C):UU' = E)

of all unitary 2 x 2 matrices is an important subgroup of the group GL(2, C)
of all complex, nonsingular 2 x 2 matrices. Since det A' = det A we have
I det U U(2). The special unitary group SU(2) is the normal
subgroup of the group U(2) defined by

SU(2) := (U U(2):detU = 1).

In terms of the subalgebra Ii of Mat(2,C) defined as in 1.2, we now have
the

Theorem. SU(2) = {A E fl:detA = 1), and in particular SU(2) C 71.

Proof. The equation AA' = (det A) E can be immediately verified for

\Z WI
and from this follows the inclusion relation (A E fl.detA = 1) C SU(2).

For U = E SU(2) we have U' = U'
=

by (1).

Since however U = , it follows that d = a, c = —b, that is
\—c aj

U€fl. 0

This immediately yields the

Isomorphism Theorem. The algebra isomorphism F:UJ —. Ii maps the
group S3 of all quaternions of length 1 iso morphically onto the special uni-
tary group SU(2).

Proof. Since 1x12 = det F(x) we have F(S3) = (A E 71: detA = 1) =
SU(2). 0
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An "Eulerian parametrization" of the group SU(2) can now be obtained
from 5(3)

SU(2) =

J I — A2 — p2 — p2 + 2'cAi 2scp +
K2 + A2 + p2 + v2 + 2swi ic2 — p2 — — 2scAi

where run through all real quadruples 0.
The reader should compare the results discussed in this section with

those considered in 5.3 and 5.4 of Chapter 3.

§3. THE ORTHOGONAL GROUPS 0(3), 0(4) AND
QUATERNIONS

HAMILTON tried for many years to find an algebraic structure in the space of
our physical world, with whose help the Euclidean geometry of the 1R3 would
be more easily understood. We have seen that the structure of a division
algebra cannot be realized until we have embedded the R3 in an and
that there are interesting connections between quaternion multiplication
and the natural scalar product in R4. It now turns out that with the "purely
imaginary quaternions" one can also give a very elegant interpretation of
rotations in in terms of quaternion multiplication.

Already in 1844, that is within a year after the discovery of quaternions,
HAMILTON and CAYLEY were aware that every properly orthogonal mappzng
of R3 has the form

ImH— 1mM, u s—.

a runs through all quaternions 0. (See HAMILTON, Quaternions:
applications in geometry, in Math. Papers 3, 353—362, in particular formula
(i') in the footnote on page 361; and CAYLEY: On certain results relating
to quaternions, in Math. Papers 1, 123—126). CAYLEY himself assigns the
priority to HAMILTON: "the discovery of the formula q(ix + jy + kz)q' =
ix' + jy' + kz', as expressing a rotation, was made by Sir Wit. HAMILTON
some months previous to the date of this paper" (Math. Papers 1, p. 586).

In 1855 CAYLEY remarked in a paper which appeared in Vol. 50 of
Crelle 's Journal (p. 312; Math. Papers 2, p. 214), that every properly
orthogonal mapping of R4 = H has the form

azb
H—s-H,

falibi

where a, 6 independently of each other run through all quaternions 0. In
the paragraphs which follow these theorems of HAMILTON and CAYLEY will
be discussed in some detail. We shall, departing from the usual procedure,
first deal with the situation in It4 = 1111, and then obtain the perhaps more
interesting case of lit3 as a "gift" from the natural embedding of = Im H
in H.
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1. Orthogonal Groups. Let V denote a finite dimensional inner product
space. A linear mapping f: V —. V is said to be orthogonal, if

(f(x),f(y))=(z,y) for x,yEV;

this holds if and only if f is length-preserving: lf(z)I = IzI for all x E V.
Every orthogonal mapping is bijective, and its inverse mapping is likewise
orthogonal. The orthogonal mappings of V form a group 0(V) under corn-
position; 0(V) is called the orthogonal group of the inner product space
V.

Every endomorphism f: V —. V has a determinant. The determinant has
the value

detf=±1 when fEO(V).
The subgroup S0(V) of the properly orthogonal mappings is defined by

S0(V) = {f E 0(V):detf = 1);

the coset of reflections is given by

0(V) {f 0(V):detf = —1),

and thus 0(V) = U0(V).
The groups 0(R") and of the Euclidean number space la" are

traditionally denoted by 0(n) and 50(n) and are often identified with the
matrix groups {A E GL(n,k):AtA = E} and (A e GL(n,R):AtA = E
and det A 1) respectively.

The mappings

s4:V—.V, xi—.x—2(a,z)a, aEV, IaJ=1,

play a particularly important role. S0 is always orthogonal, and represents
a reflection in the hyperplone {z E V: (a, z) = 0) orthogonal to the line Ra.
We have

1) 0(V), = id, fOSs for I E 0(V).
2) fos4 =s/(4)ofjorfEO(V).
We state the following theorem taken from S. Lang, An Introduction to

Linear Algebru, 2nd ed., Springer-Verlag.

Generation Theorem for the Orthogonal Group. The group 0(V)
is generated by its reflections. The mappings I E 50(V) are (just) the
prodscts of an even number k of reflections, where k � dim V.

2. The Group 0(31). CAYLEY's Theorem. Every mapping

31—.H, IHI—.H, a,bES3,

is orthogonal by virtue of the product rule 2.2(4). To show that these
exhaust the orthogonal mappings of H, we invoke the mappings H —. K.
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It follows directly from the triple product identity 2.2(5) that

(1) for all aES3,xEIHI;

in particular: se(x) = We denote by Pa the mapping x i—' axa, a E S3.
It follows from (1) that

(2) forall a,bES3,

and in particular Pa = 0

We can now immediately deduce from (1), (2) and the generation theo-
rem in 1 above the

Generation Theorem for 0(11). Every orthogonal mapping f E S0(IHI)
is a product of at most four mappings Pa, a E S3.

The group 0(11) is generated by the two mappings z aza, a E S3, and
x

Example. For the mapping g:IHI —. H, z —+ —x, we have

0

An immediate deduction from the generation theorem for 0(1111) is the fol-
lowing result:

Theorem (CAYLEY). To every orthogonal mapping f:IHI —' 1111 corre-
spond two quaiernions a, b S3 with the following properties:

a) f(z) = axb, if f E

b) 1(x) = if I E 0-(1HI).

Proof. a) When I E 0+(H)we have f = Pai°" with a1,... ,a4 ES3.
If we put a := ala2a3a4, b := a4a3a2al, then a,b ES3 and 1(x) = axb.

b) When f E 0-(lHI) we have fO8e E hence =
cxb with b, c E 53 by a). We thus see that 1(z) = with a := —c. 0

From this theorem of CAYLEY can be obtained the result already an-
nounced in 1.5.

Theorem. Every IR-algebra automorphism h:H 1111 has the form h(x) =
aza1, a E S3.

Proof. By Theorem 2.4, h E 0(1111). As h(e) = e it follows that

h(x) = axa' or h(z) = with a S3.

The second case is impossible since we should then have

= = = fl
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3. The Group 0(IinH). HAMILTON's Theorem. Every orthogonal
mapping H —. II, z i—. ±azã, a S3, maps the subspace ImIHI = {u
H: i = —u} of all purely imaginary quaternions onto itself, since =
aüä = —auã, and thus induces an orthogonal mapping ImIHI ImIHI,
u ±auã. We assert that all orthogonal mappings of Im H can be obtained
in this way, for, since the space ImE! is orthogonal to the line Re, every
orthogonal mapping f of ImIHI can be extended uniquely to an orthogonal
mapping f:H H by defining

J:=id on Re, J:_f on ImEl.

In matrix notation the matrix associated with / is where B is

the 3 x 3 matrix associated with f. It is therefore clear that

detf = detf, so that in particular f E * 1€

We can now easily derive

HAMILTON's Theorem. To every orthogonal mapping f: Im lEt —, Im IHI

there corresponds a quaternion a S3 w3lh the following property

a) /(u) = auã, if f
b) f(u) = if fE 0(Iml}ll).

Proof. a) Suppose f E Then f so that, by a) of
Theorem 2, f(r) = a2b with a,b S3. From f(e) = e it follows that
ab = e, or in other words 6 = a' = a.

b) This clearly follows from a) since f E 0(lmEl) implies —f E
as ImIHI is of dimension 3. 0

4. The Epiinorphisms S3 —' S0(3) and S3xS3 S0(4). The theorems
of HAMILTON and CAYLEY provide some important information about the
classical groups 50(3) and S0(4). With every a E S3, and with every pair
(a, 6) E S3 x S3 we may associate the orthogonal mappings

—. ImIHI, u i—. auã, and —. El, z axb.

We consider the mappings 0(ImlHI), x S3 —. 0(H). Just
as S3 forms a compact non-abelian multiplicative group, so the Cartesian
product S3 x S3 forms a compact non-abelian group with respect to the
composition (a,b) (c,d) = (ac,bd).

Theorem. The mappings — and ip:53 x S3 0(H)
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are group homomorphisms.5 The kernel groups each have two elements:
= {±e}, = {±(e,e)}. The image groups satisfy p(S3) =

S0(ImH), x S3) = S0(H).

Proof. That each is a homomorphism is a direct consequence of the defi-
nitions of the mappings concerned. For example b) (c, d)) = 6)0

because

b) d))(x) = b)(cxd) = (ac)x(bd)
= x E 111!.

Suppose that a E kernel so that u = auã for all u E 1mM. By 1.5 such
is the case if and only if a Re. Since lal = 1, it follows that a = ±e, and
hence kernelço = {±e}. Suppose furthermore that (a,b) E and
thus azb z for all x E IHI. If z := e then a = 6 and thus a E kernel that
is a = ±e whence = {d(e,e)}.

Theorems 2 and 3 yield the non-trivial inclusion relations 3
3 50(1111). In both cases we in fact have equal-

ity: this follows immediately on continuity grounds (by the usual argument
based on determinants) or directly, as follows. If there were, for example,
a E 0(H), then by b) of Theorem 2 there would be elements
c,d E S3, such that axb = cid for all z H. Thus we should always have

= pzq1 with p := C1a, q := db. For z := c it would follow that p = q
and for z := p, we should therefore have = p, and hence p E Re. This
however leads to the absurdity i = x. 0

We see from the foregoing that there are natural group epimorphisms
S3 50(3), S3 x S3 50(4), whose kernels each have 2 elements. As 53,
by 2.6 is isomorphic to SU(2) there are also correspondingly epimorphisms
SU(2) —* S0(3), SU(2) x SU(2) S0(4), with kernels of 2 elements.

As S3 is of dimension 3, and S3 x S3 of dimension 6, the following
consequences among others may be noted:

The group S0(3) is 3-dimensional, the group S0(4) 6-dimensional, (and
generally dimS0(n) = — 1)).

The sets G := Xe), G' := x S3) are normal subgroups of S0(4),
which are isomorphic to the group 53 under the isomorphisms a e),
6 i—. b), respectively. While C C' = S0(4), we have C fl 0' = ±id as
is readily proved. We see in particular that:

The group S0(4) contains normal subgroups isomorphic to the group S3
and is therefore not a "simple" LIE group. On the other hand all groups

5As multiplication in and x is non-abeban, one would no longer
have a homomorphism if one associated with every a E S3, and with every
(o,b) E S3 x S3, the isometric mappings u — aua and x '-. arb, respectively.
Note that 4 = a S3.
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SO(n), n > 4 are simple, that is to say they contain no nontrivial connected
normal subgroups. The groups SO(2n + 1) in fact have no proper normal
subgroups {e} at all; the groups SO(2n) have just the one nontrivial
normal subgroup {(±e)}.

5. Axis of Rotation and Angle of Rotation. For a let Im 1111

ImIHI be defined by f4(u) := auã. Clearly f4 O(ImE), and is the
identity if and only if a = ±e (note that f4 = ço(a) by 4).

If id, it follows thaI 0 a — a ImE and fa(a — a) = a — a; each
point of the line generated op a — a is invariant under the mapping fa.

Proof. Since a ±e, it follows that 0 a — a Imill and also that
a —a. 0

To describe the mapping ía in a different way we use the following

Lemma. Every quaternion a E 53 \ {±e} has a unique representation in
the form

(1) a = cos e + sin . q with q E ImUil, = 1, and 0 <w <2ir.

Proof. We write a = ae + 13q with q E 1mM, = 1 and /3> 0. Since
a2 + /32 = 1 there is just one w such that a = cos /3 =

0

We shall now show that is a rotation about the axis lltq through the
angle w, or in other words that the plane in 1mM perpendicular to the
line Rq is rotated through the angle This and more is implicit in the
following

Theorem. If for any a 53 \ {±e} the quantities w and q are chosen to
satisfy the equations (I) then

foralluEImllL

Proof. Using the abbreviations a cos /3 sin we have

auä = (ac + f3q)u(ae — /3q) = or2U + /3aqu — a/3uq — 132quq.

From the definition of the vector product (see 1.4) we have 2qxu = qu—uq.
As ü = —u and (q, q) = 1, it follows that quq = u — 2(q, u)q by the triple
product identity (2.2(5)), and consequently

fa(u)(a'/32)u+2a/3qx u+2/32(q,u)q, uEImEl.
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From the definitions of a, /3 and the elementary formulae of trigonometry,
it follows that a2 — = cosw, 2afi = sinw, 2/32 = 1 — (a2 — /32) =

1—cosu. 0

Corollary. f,(q) = q and (f4(u),u) = for all u E ImH with = 1

and (u,q) = 0.

We deduce from the foregoing results that f0 is a rotation about the axis
Rq through the angle w. Incidentally it is easily shown that =
If a is purely imaginary then w = w and f4 = is a rotation of 1800
about the axis 0

Remark. As is well known every properly orthogonal mapping id of R3
is a rotation about a uniquely defined axis. Every I S0(ImH) \ (id)
is therefore a rotation about an axis lRq, q E 1mM, = 1, through an
angle 0 < < 2r. If we now define a E S3 by (1), then a = ±e and

E S0(Im 1111) is by the theorem a rotation through w about the axis
Rq. We have thus proved afresh statement a) of HAMILTON'S theorem in 3,
namely every / E SO(ImH) has the form f with a E S3.

6. EULER's Parametric Representation of S0(3). The mapping

llU\ {0} —. S0(ImllU), a i—i h4 with h4:lmM —i 1mM,

1u'—.—aua=aua 1,

1a12

is by Theorem 4, an epimorphism of the multiplicative group ff11 \ {0} with
Re\{0) as kernel. If one sets a := and writes u := xi+yj+zk
as a column vector, we have

ha(u)=A(Y)

where A is a properly orthogonal matrix A S0(3). This matrix is found
by expressing IaI2auu in terms of the basis i, j, k of Im 1111. One obtains in
this way the result discovered by EULER in 1770 (Opera omnia 6, Ser. 1,
287—315), the well-known

Rational Parametric Representation of Orthogonal 3 x 3 Matrices.
For every R4 \ (0) the 3 x 3 matrix

1
(1)

•1 ,c2..2+1L2_&,2
\
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is properly orthogonal, and all properly orthogonal 3 x 3 matrices can be
expressed in this form.

Proof. If we set a := sce+b E then auã = (ice+b)u(Ke—b) =
K2IZ + 2icb x u — bub. As bub = J6J2u — 2(6, u)b by the triple product identity
since ii = —u, it is clear that auã = (K2 — 1b12)u + 2Kb x u + 2(6, u)b. The
representation (1) follows at once from this if 6 : )ti + pj + uk. 0

The parametric representation for properly orthogonal 2 x 2 matrices
given in 3.5.4 follows from (1), if we put p = 0, ii = 0 (and write —A for A)
in the leading minor.

As the epimorphism H\{0) —. SO(lm H), a ha, has the group Re\{0)
as its kernel, the same matrix A defined by (1) appertains to the two distinct
quadruples a, a' E \ {0) if and only if a' = aa with 0, or in other
words if and only if a and a' define the same point in the real projective
3.-dimensional space with the homogeneous coordinates ic, A, p, ii.
EULER's theorem can therefore also be expressed as follows:

The mapping F3(R) SO(3) defined by (1) is bijective, and in partuculor
SO(3) is a rational manifold.

This statement was generalized by CAYLEY in 1846 (Math. Papers 1,
332—336):

The group 50(n) is an — 1)-dimensional rational manifold. The
— 1)-dimensional real projective space is mapped birationally into

50(n) by the CAYLEY mapping

X (icE —

X is skew-symmetric.

The case n = 3 of this CAYLEY representation is none other than the
EULER parametric representation.
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The Isomorphism Theorems of
Frobenius, Hopf and
Gelfand—Mazur
M. Koecher, R. Remmeri

Introduction
1. In the second half of the nineteenth century, many other hypercomplex
systems were discovered and investigated, in addition to that of the quater-
nions. Especially in England, this became almost an art and was held in
high esteem. Shortly after the discovery of quaternions and before the in-
troduct ion of matrices, John T. GRAVES and Arthur CAYLEY devised the
non-associative division algebra of octonior&s (also called octaves).
TON introduced, in his "Lectures on quaternions" of 1853,
that is quat.ernions with complex coefficients, and noted that they do not
form a division algebra. William Kingdon CLIFFORD created
in 1878, the associative algebras now called after him.

A flood of new hypercomplex systems now inundated the whole of al-
gebra. The important question of how much freedom there really exists in
this apparent profusion of examples, was one which moved only slowly into
the foreground of interest. While GAUSS in 1831, had still been convinced
at that time that no hypercomplex number systems existed for which the
basic properties of the complex numbers would still hold (see 4.3.6), it was
at first generally believed after the discovery of quaternions and octonions
that new and interesting hypercomplex systems could now be everlastingly
invented. It is nevertheless significant that HAMILTON was unable to prove
that 3-dimensional, commutative and associative division algebras (that is
to say fields) over R do not exist. GRASSMANN as well had nothing to say on
this point. In 1871 Benjamin PEIacE (1809—1880) who was a Professor of
Mathematics at Harvard, published an article entitled "Linear associative
algebras" in which he gave a summary of all the then known algebras of
this type (the article was reprinted in the Amer. J. Math. 4, 1881, 97—229).

2. An insight into the true situation that there are far fewer interesting
IR-algebras than one might have expected, was first gained in the next gen-
eration of mathematicians. One of the first precise uniqueness theorems
was proved in 1877 by Ferdinand Georg FR0BENJUS, who was born in 1849
in Berlin, was a pupil of WEIERSTRASS, was appointed in 1875 Professor at
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the Zurich Polytechnic, and from 1892 onwards was a Professor at Berlin
University. He promoted the development of abstract methods in algebra,
and his theory of group representations was to find applications later in
quantum theory after his death in 1917 in Charlottenburg. In his paper
"Uber lineare Substitutionen und bilineare Formen" [On linear substitu-
tions and bilinear forms] published in Crelle 's Journal (reproduced in Ges.
Abhandl. 1, 343—405) he shows that there are only three isomorphicalty dis-
tinct real finite-dimensional associative division algebras, namely R itself,
C and This famous theorem which was proved independently in 1881
by the American mathematician Charles Sanders PEIRCE (1839—1914), the
son of Benjamin PEIRCE in an Appendix to a work of his father (Amer.
J. Math. 4), showed algebraists for the first time that there were limits
to the construction processes which they had hitherto regarded as om-
nipotent. Had HAMILTON known of FROBENJUS'S theorem, he would have
been spared years of hard work in his fruitless search for three-dimensional
associative division algebras.

The theorem of FP.OBENIUS is proved in the first two sections of this chap-
ter. The central result is an Existence theorem for HAMILTONIAN triples,
from which FROBENLUS'S result follows. To avoid repetition later, we shall
not assume from the outset that the algebras with which we shalt be con-
cerned are associative. Instead we shall in each case deliberately point out
the (weaker) properties assumed, such as power-aasociatzve, or alternative
or quadratic. This abstract point of view should not put off any reader
nowadays, in the post-BouRBAICI era.

3. In the year 1940 Heinz HOPF posed the problem of specifying all finite-
dimensional real commutative division algebras (dropping the requirement
that they be associative). HOPF was a Swiss mathematician of German ori-
gin, born in 1894 in Grätschen (Silesia), who studied in Berlin, Heidelberg
and Göttingen, where in 1925 he made the acquaintance of Paul ALEXAN-
DR.OFF and Emmy NOETHER. In 1931 he succeeded Hermann WEYL at the
Federal Technische Hochschule in Zurich and died in his adopted homeland
at Zollikon in the Canton of Zurich in 1971. He did pioneering work on the
topology of manifolds and their mappings as well as in differential geome.-
try. A master of the true art of exposition, HOPF always gave the solutions
to an individual problem, and at the same time created the method by
which its difficulties could be overcome, in such a way as to bring out the
main theme or guiding principle, and the deep underlying reason, so that
further possibilities became clear.

The problem which HOPF had set himself, and which may appear at first
sight to be somewhat contrived and artificial, leads to astonishing and unex-
pected insights. HOPF in his paper "Systeme symmetrischer Bilinearformen
und euklidische Modelte der projektiven Räume" [Systems of symmetric
bilinear forms and Eudlidean models of projective spaces] which was to
become famous ( Vierteljahr'eszeitschr-ift der Naturforschenden Gesellschaft
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in Ztirich, LXXXV, 1940, Beibl. No. 32, Festschrift Rudolf FEUTER: see
also H. Hopf SELECTA, Springer-Verlag, 1964) showed that any real, com-
mutative division algebra of finite dimension is at most 2-dimensional. The
remarkable thing about HOPF'S problem is that an algebraic question which
can be formulated so simply, and which has such a simple answer, requires
for its solution nontrivial topological methods. This is the first manifestation
of the "topological thorn in the flesh of algebra" which many algebraists
have found so painful to this very day.

4. In the year 1938 a Polish mathematician Stanislav MAZUR recognized
that lit, C and IHI are the only BANACH division algebras, and in 1940
the Russian mathematician Izrail' Moiseevich GELFAND gave a proof by
function theoretic methods.

MAZUR was born in 1905 in Lemberg (now Lvov), he studied in Lemberg
and Paris, and was Professor at Lemberg in 1939, Lodz in 1946, and Warsaw
in 1948. During 1946—1954 he was a member of the Sejm and died in 1981.

GELFAND was born in Odessa in 1913. In 1930 he worked as a porter
at the Lenin Library in Moscow, and was a student in Moscow in 1932.
He obtained his doctorate in 1939 and became president of the Moscow
Mathematical Society in 1968. He was three times winner of the Lenin
Prize. The GELFAND—MAZUR theorem can be placed into the framework
of the ideas introduced by HOFF, and thus, as we shall show in §4, easily
proved.

§1. HAMILTONIAN TRIPLES IN ALTERNATIVE ALGEBRAS

The multiplicative behavior of HAMILTON's basis quaternions i,j, k turns
out to be of such importance for the general theory of algebras, that we
shall find it useful to introduce a special definition.

In an algebra A with unit element e, we shall call three elements u, v, w
a Hamiltonian triple if the nine Hamiltonian conditions

u2=v2=w2=—e, w=uv=—vu, u=vw=—wv, v=wu=—uw
are all satisfied.

The object of this preliminary section is to verify the existence of Hamil-
tonian triples in appropriately chosen algebras.

1. The Purely Imaginary Elements of an Algebra. In the lit-algebras
C and there is an imaginary space consisting of all elements x Re\ (0),
whose square is "real": z2 E Re. We now introduce, for any algebra A with
unit element e the set

ImA := (x E A:z2 E Re and x lRe\(0)}
of "purely imaginary" elements. It is then trivial that

ReflImA={O},
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However it is by no means obvious that Im A is a subspace of A consid-
ered as a vector apace. In other words, it does not automatically follows
from u,v E ImA, that u + v ImA (see in this connection 2.1). Quite
generally (and thus in particular for liii) the following proposition holds.

Independence Lemma. If u,v E ImA are linearly independent, then so
also are e,u,v.

Proof. If this were not the case, one could assume without restriction that
v = ac + Ou with E R. It would then follow that = v2 — cr2e —

E Re, and hence a/3 = 0. Since a 0, because u,v are linearly
independent, and fi 0 because v ImA is impossible, we should have a
contradiction.

Since uv + vu = (u + v)2 — u2 — v2 it is also clear that:

(1)

We now show that:

If A has no zero divisors, then u2 = with > 0 for u ImA,

Proof. By hypothesis u2 = ae for some a R. If a were 0 we could
write a = j92 with E R, and we should have (u—/3e)(u+fle) = u2—fi2e =

— = 0. As A has no divisors of zero one of the two factors on the left
must vanish and we should have u E Re which is impossible. 0

In algebras without zero divisors one can therefore always (as in the case
of C and H) transform any purely imaginary element u' 0, by scalar
multiplication, into a normalized element u = 7u', satisfying u2 = —e.

2. Hamiltonian Triple. Every element of a Hamiltonian triple is purely
imaginary. We can in fact assert more than this.

Theorem. If u,v,w is a Hamiltonian triple in A, then

1) the mapping f:N —. A, (a,fi,7,8) '—. ae+flu+7v+öw is an algebra
monomorphism,

2) Ru + Rv + Rw C ImA, and in particular ImA contains a 3-dimen-
sional vector subspace.

Proof. 1) Since 1(e) = e, f(i) = u, f(j) = v, f(k) = w, the mapping f
is an algebra homomorphism. To prove that f is injective is equivalent to
showing that e, it, v, w E A are linearly dependent. Clearly u, v are linearly
independent because otherwise we should have v E Ru and also uv = vu,
which would imply w = —w, and hence w = 0 in contradiction to w2 =
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—e. From the Independence Lemma 1 it follows that e, ti, v are linearly
independent. If now c, ti, v, w were linearly independent there would be
uniquely defined numbers p, a, r R such that w = uv = pe + ou + rv.
Left-multiplication by u gives —v = pti — ce + rw and the uniqueness of
the representation means that r has to satisfy the equation r2 = —1 which
would contradict r L

2) It is easily verified (by multiplying out) that (13u + 7V + 6w)2

Re. 0

An important preliminary stage in the construction of a Hamilt.onian
triple consists in finding for any given vector p E ImA, a corresponding
vector q satisfying the HAMILTON condition pq + qp = 0. We first prove
the:

Lemma. Let A have no divisors of zerv and let U be a 2-dimensional vector
subspace of ImA. Then to every p E U, there crisis a q E U \ Rp, such
that pq + qp = 0.

Proof. We may assume so that p2 = with Choose zEU
such that p and z are linearly independent, so that px + xp = fle with

E 2 (see 1). Then q := z + with : has the required
property.

3. Existence of Hainiltonian Thples in Alternative Algebras. The
next stage in the process is marked out by the lemma (in 2 above). If one has
two vectors defined as in the lemma, we can immediately, in the case of an
algebra without divisors of zero (by scala.r multiplication, see the remark at
the end of 1) find two vectors ti, v ImA with u2 = v2 = —e and uv = —vu.

Then ti, v and w := uv are now candidates for a Hamiltonian triple. One
cannot however "without further ado" show for example that the equation
vw u holds; the removal of the brackets in the equation v(uv) = —v(vu)
is a step which would require justification. We can however make a virtue
out of necessity and postulate this weak assoctaitvity.

An algebra A is said to be alternative, if for all z, y E A

1) x(xy) = x2y, (zy)y = xy2.

Every associative algebra is alternative.' If A is alternative, then

2) (xy)x=x(yz) for all x,y€A.

To prove this we replace the element y by x + y in (zy)y = xy2 and expand
the left-hand side.

'The word alternative is used here as an adjective derived from the verb
to alternate, and is intended to refer to the fact the associalor (ry)z — x(yz)
alternates in sign when any two of its arguments are interchanged.
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Ezervise. Show that any two of the three identities z(zy) = x2y, (xy)y =
xy2, (xy)z = z(yz) together imply the third.

Existence Theorem for Haniiltonian Triples. Let A be an alternative
algebra without divisors of zero and with unit element e, and let U be a 2-
dimensional vector subspace of ImA. Then for every element u E U such
that u3 = —e, there is a v E U such that u, v, uv form a Hamiltonian
triple.

Proof. The previous arguments show that there is a v E U with v2 = —e
and = —vu. As A is alternative the HAMILTON conditions are satisfied
for u, v and w := uv; namely, it follows that first vw = v(uv) = —v(vu) =
—v2u = u and wv = (uv)v = uv3 = —u. It can similarly be shown that

= v = —uw. It remains to be shown that to2 = —e. Since vw2 =
(uw)w = uw = —v, it follows that v(w3 + e) = 0 and hence, since there are
no divisors of zero, w2 = —c. 0

4. Alternative Algebras. Alternative algebras acquire a special meaning
through this last Existence theorem. We note two propositions which hold
for such algebras and which will prove useful later on:

Every alternative algebra A is power associative.

We have to verify that the exponentiation rule ZmXn = Zm+n, x E A,
applies. This is easily done by induction using the rules in the definition.
Thus for example if Xm_lXt1 = is known to be true for all n, then

= = = We leave the reader to fill in the
details of this proof by induction. 0

The assumption made in the Existence theorem of paragraph 3 that A
has a unit element, is automatically satisfied for alternative algebras:

Every alternative division algebra A has a unit element.

Proof. Choose a E A, a 0. Since A is a division algebra there is an e A
with ea = a. We have e 0, because a 0. Furthermore e(ea) = ea and
therefore, since .4 is alternative, e2a = ea which implies (e2 — e)a = 0 and
hence e2 = e. It now follows that e(ex — z) = e(ez) —cx = e2x — cx = 0,
and therefore cx = x, for all x E A. Similarly it can be seen that ze = z. 0

We may also mention, without proof, another interesting theorem:

E. ARTIN's Theorem. An algebra A is alternative if and only if any
two of its elements z, y A generate an associative subalgebra of A.

The proof can be found on page 127 of a paper by Z0RN, Abh. Math.
Seminar Hamburg 8 (1931), 123—147.
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§2. FROBENIUS'S THEOREM

Wir sind also zu dem Resultate gelangt,
dam ausser den reellen Zahien, den
Zahien und den Quaternionen keine andern complexen
Zahlen in dem oben definirten Sinus existiren
(G. FROBENIUS 1877).

(We have thus arrived at the result that, apart from
the real numbers, the imaginary numbers, and the
quaternions, no other complex numbers in the sense
defined above, exist.]

In order to be able to apply the Existence theorem for Hamiltonian triples,
proved in 1.3 above, one first needs to have a 2-dimensional vector subspace
of the imaginary space ImA. In this section we show that, in important
cases which go well beyond C and l}K, the set Im A itself is a vector subspace
of A. In particular this is true for all so-called quadratic algebras. An algebra
A with unit element e is called a quadratic algebra if every element x E A
satisfies a quadratic equation x2 = ae + fix with a, 13 E 11 The algebras C
and IHI are quadratic (the latter by virtue of Theorem 6.1.2); and so also
is the algebra Mat(2, R) of real 2 x 2 matrices. Quadratic algebras play
an essential role in the general theory of algebras.2 It turns out that every
finite dimensional alternative division algebra is quadratic.

The main result of this section is the Quaternion lemma in 3 below,
which leads immediately to the theorem of FROBENIUS.

1. FROBENIUS's Lemma. If A is a quadratic algebra, then ImA is a
vector subspace of A, and A = Re ImA.

Proof. 1) We show that u,v E ImA u + v ImA. If u,v are linearly
dependent,say v = au, then u+v = (l+ck)u ImA isobvious. Accordingly
let u, v be linearly independent. Since A is quadratic, the equations

(u+v)2 = a1e+fli(u+v), (u—v)2=a2e+fi2(u—v)

hold with Oj, a2, 13i ,132 E ilk. After multiplying out and adding, we obtain

+/32)u+ —/12)v=2u7+2v2 —(a1 +a2)e Eil(e

2The reader may want to become familiar with quadratic algebras by consid-
ering the following:
Theorem. If.4 is a quadralic algebra, then for every z A the vector subspoce

+ is a commutative and associative ilk-subatgebra of A; in particular A is
power associative.
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since u,v ImA. It follows, from the Independence lemma 1.1 that th +
132 = th = 0, whence =th =0 and thus(u+ v)2 = a1e EIRe. As
u + v Re (by the Independence lemma), it follows that u + v E ImA.

2) Suppose x E A, x IRe (but otherwise arbitrary). By hypothesis
a,2 = ae+2/3x with a,fi E Ilk. Hence (x—13e)2 =x2—213x+/32e = (a+/32)e.
Since x — 13e Re, it follows that x = fie + u with u := x — /3e E ImA. We
have thus shown that A = Re + ImA. Since Re fl ImA = {0}, this implies
A=Re€ImA. 0

Remark. The device used in the first part of the proof, of taking the equa-
tions for (u + v)2 and (u — v)2 and adding them, is already to be found in
FROBENIUS (Ges. Abhandl. 1, p. 403).

2. Examples of Quadratic Algebras. In power associative algebras, the
exponential law = (R.1) holds. An immediate generalization
is the

Substitution Law. Let A be a power associative algebra with unit element
e;for any polynomial / = ao+aiX+• . R[X] let f(r) be defined
6y 1(x) a0e + oiz + .. . + A (that is, by substituting z A for
X). Then

(f . g)(x) = f(x)g(x) for all polynomials f, g E REX] and all x E A.

The proof is simple and is taught in algebra. The Substitution law can
also be stated in the following form:

If A is power associative and has a unit element then every element
x E A defines an algebra homomorphism through the mapping REX] —. A,
f i—. f(x) (the so-called substitution homomorphism corresponding to x).

The substitution law and the Fundamental theorem of algebra, quickly
yield the

Theorem. Every finite dimensional, alternative algebra A is quadratic.

Proof. By 1.4 A is a power associative algebra with unit element e. Thus
for every z E A the substitution homomorphism R[xJ .—. A, 1 '—. f(x), is
defined; its kernel is an ideal, and in fact a principal ideal, since REX] is a
principal ideal ring. Since dimA < oo, this principal ideal is not the zero
ideal and since A has no divisors of zero, the kernel in question must be
a prime ideal. There is therefore a monic prime polynomial p E REX] with
p(z) = 0. Since every such polynomial has the form X or X2 — fiX —

(see 4.3.4), this proves the theorem. 0

3. Quaternious Lemma. Every alternative quadratic real algebra A with-
out divisors of zero contains, in the case dimA 3, a Hamiltonian triple
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and therefore svbalgebras B with c B isomorphic to the quaternion algebra
a
Proof. By FROBENIUS'S lemma ImA is a vector subspace of A, and
dimlmA � 2, since dimA � 3. By the Existence theorem 1.3 there are
therefore Hamiltonian triples in A and consequently also subalgebras B in
A with e E B isomorphic to H. 0

In the associative case we derive the stronger

4. Theorem of FROBENIUS (1877). Let A 0, be an associative,
quadratic real algebra without divisors of zero (for example, an associative,
finite-dimensional, division algebra). Then there are three and only three
possibilities:

1) A is isomorphic to the field R of the real numbers.

2) A is isomorphic to the field C of the complex numbers.

3) A is isomorphic to the algebra H of the quaternions.
Proof. Since .4 0, it follows that dim .4 � 1 and that A has a unit
element e. If dim A = 1, case 1) of R.4, the Repertory applies. If dim
A = 2, there isau EAwith u2 = —e.Then f A,x+yi '—. xc+yu is

an algebra homomorphism. Since e, u are linearly independent, f is injective
and, since dim C = dim A, bijective, that is, case 2) applies.

Suppose dimA � 3. Then, by the Quaternions lemma a Hamiltonian
triple u,v,w E ImA must exist with w = uv. Let x ImA be chosen
arbitrarily. By 1.1(1)

xv+vx=f3e, xw+wx=7e with a,fl,7EIR.

If we poatmultiply the first equation by v, premultiply the second by u and
subtract, we obtain zw — wx = av — flu, since .4 is associative. Therefore
after combining with the third 2zw = av — flu + -ye. Postmultiplication
by w gives —2x = + 13v + and we have thus shown that ImA =
Ru + Rv + Rw and therefore .4 H.

If A is an associative, finite-dimensional division algebra, A has no divi-
sors of zero, and by Theorem 2 is quadratic. 0

Note. In 8.1.1 we shall, with the help of the natural scalar product in A,
give a second (and simpler) proof of the fact that A is isomorphic to H in
the case when dim..4 > 3.

Another elementary proof of FROBENIUS's theorem for the case of finite-
dimensional division algebras will be found in R.S. PALAIs: The classifica-
tion of real division algebras, Am. Math. Monthly 75, 1968, 366—368.

FROSENIUS'S theorem gave a decisive impetus to the problem of the clas-
sification of all finite dimensional associative algebras. D. HAPPEL in an



230 8. Isomorphism Theorems of Frobenius, Hopf and Gelfand—Mazur

article "Klassifikaiionstheorie endlich-dimensionaler Algebren in der Zeil
von 1880 bis 1920" (L 'Enseignement Math. 26, 2e ser. 1980, 9 1—102) re-
ports on subsequent developments in this theory.

§3. HOPF'S THEOREM

Auch wenn man die Gültigkeit dee aseoziativen
Geseizes der Multipliltation nicht ausdrücklich poetuliert,
let der Körper der komplexen Zalilen der eiazige
kommutative Erweiterungskörper endlichen Grades
über dciii K&rper der reellen Zahlen
(H. H0PF 1940).
[Even where the validity of the associative law of
multiplication is not explicitly postulated, the field
of the complex numbers still remains the only com-
mutative extension field of finite degree over
the field of the real numbers.]

In the previous sections we found, with the theorem of FROBENIUS, all
finite-dimensional, real associative division algebras. We now turn our at-
tention in this section to finite-dimensional real commutative division alge-
bras, which no longer need necessarily be associative. We prove the theorem
of HOPF that all algebras of this kind are at most 2-dimensional; that if
they possess a unit element, then C is the only such algebra apart from Ilk,
to within an isomorphism; and that therefore the associative law of multi-
plication is a consequence of the commutative law. The arguments leading
to 11oP1"s theorem are topological, the fundamental theorem of algebra is
not needed, but emerges as a by-product.

A central role in the investigations is played by the quadratic mapping

A—.A,

defined for any algebra A. Topological properties of this mapping are re-
sponsible for the validity of H0PF's theorem, and these are summarized in
the IIOPF lemma in 2. From this lemma follows not only HOPF's theorem,
but also as we shall see in §4, the famous GELFAND—MAZUR theorem in
functional analysis.

In the present section (S3) we shall require the Implicit Function Theorem
for differentiable and also use the fact that every space r \
is connected for n 2. However, the decisive step in the actual proof itself
is a theorem belonging to the theory of coverings, which states that every
connected covering of a space R" \ {0}, n 3 is one-to-one (see 3.2).

1. Topologization of Real Algebras. Let V be a (not necessarily finite-
dimensional) real vector space. A mapping V Ilk, z lxi, is called a
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norm (function), if for all z,y E V, a E the following conditions are
satisfied:

IzI>O for and

(the triangle inequality). Every norm on a vector space V induces through
(x, y) '-. — yi, a metric on V, so that the usual topological concepts and
expressions such as "convergent sequence, open, closed, compact, connected
set, continuity and so on" become available for these so-called normed vec-
tor spaces. The mapping V .-. R, x s—' in is continuous; and so are vector
addition and scalar multiplication, that is, the two mappings

V x V—.V, and RxV—.V, (a,z)i—.az.

The proof may be left to the reader. In finite-dimensional spaces one can
work with any norm because they all lead to the same topology. In any
normed space V, the unit sphere is defined by

S := {z E V: ml 1);

S is always compact for finite-dimensional spaces (HEINE—B0REL). Every
Euclidean vector space V with scalar product (z,y) has the norm

V R, z i—. : (Euclidean length).

Lemma. If A = (V,.) is a finite-dimensional real algebra and x i—. ri
norm in V, then:

(1) the multiplication A x A —, A, (x,y) 1.- zy is continuous;

(2) there ezisls a a 0, such that S olnI lvI for all z,y E V;

(3) if A has no divisors of zero, then there is a p > 0, such that Izv( �
pin lvi for all z,y A.

Proof. To prove (1): let v1,... , be a basis of V, and let z := v1 +
andy = Then zy, being asum of terms of

the form is clearly continuous. Each function A —. R, z i—. 6.,,, is

continuous since the function A —. z .. is continuous.
To prove (2) and (3): since loni = lol ml it suffices to show that there

exist numbers a p> 0, such that p � lxvi S a. For allz,y A satisfying
ml = lvi = 1. But this is clearly true since the mapping S x S —,
(z,y) '•- IzyI is continuous by (1) and therefore, since S x S is compact,
attains a maximum a 0 and a minimum p; in the case of a division algebra
we necessarily have p> 0, since points z,y E Sc A\{O) satisfyIng zy = 0

cannot exist. 0

Remark. The norm can be chosen so that (2) holds with a = 1. For if a > 0,
then lIzH := olzl, z V is a norm in V with finyji � Ilnil. IMI (proof left
as an exercise).
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As an application of (1) and (3) we prove the

Theorem. If A is finite-dimensional and has no divisors of zero, the set
z E A \ {O}} of all non-zero squares is closed in A \ {O).

Proof. We have to show that is a sequence in A and = a, then
there is a 6 .4 with b2 = a. The convergent sequence (xi) is bounded. By
(3) there is a p> 0 such that for all n; and so the sequence
(zn) is likewise bounded. By the BOLZANO—WEIERSTRASS theorem it has
a convergent subsequence. If its limit is 6 E A then b2 = a, by (1). 0

This theorem is needed in 3.3.

2. The quadratic Mapping A —' A, x s-. x2. HOPF's Lemma.
For every R-algebra A, the quadratic mapping is well defined. We write

A A has no divisors of zero, then z2 E AX whenever
x AX and we thus have a mapping

q:AX _., AX, x I—' x2.

This mapping will play a predominant role in this and in the following
section. We note straight away that

(1) If A is commutative and without divisors of zero, then every point of
the image q(AX) has exactly two inverse images in Ax.

Proof. Suppose w E q(Ax), and a2 = w and a E AX. Then we also have
= w with —a There are no other points c E with c2 =

because we should have then

0 = c2 — a2 = (c — a)(c + a) which implies c = ±a.

As a $ —a, q1(w) consists of exactly two points. 0

A mapping f: X —. Y between topological spaces is said to be a local
homeomorplzism of x X if there is an open neighborhood U of x, whose
image 1(U) is open in Y, and if the induced mapping I I U: U — 1(U) is
a homeomorphism. Of decisive importance in all that follows is now

HOPF's Lemma. Let A = (V,.) be a commutative real algebra without
divisors of zero, and having the two properties that:

a) there is a norm on V such that the quadratic mapping q: AX —. AX
is a local homeomorphism at all points of AX; and

b) every element of A is a square (existence of square roots in A).
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Then A is 2-dimensional.

The inequality dimA � 2 clearly holds, because otherwise A would be
isomorphic to R, by Theorem 4 in the repertory (preceding Chapter 7), and
this cannot be so, since —1 is not a square in 1k. The difficulty is to exclude
the possibility dimA > 2. This is done by arguments from the theory of
coverings.

A mapping X Y between topological spaces is called a covering, if
it has the following property.

(c) Every point y Y has an open neighbor*ood W, such that
is the disjoint union of sets U,, j J, open in X, and which are such that
all the mappings U, —. W induced by are homeomorphisms.

A covering X Y is said to be connected, if the space X is connected;
it is a covering of degree k, k E N, k � 1, if every point of Y has exactly k
different inverse images under the mapping r.

The proof of Hopr's Lemma is based on the following observation.

The mapping q: AX AX is a connected covering of degree 2.

Proof. Since q(AX) = AX, by b) and since AX is connected because
dimA � 2, we need only, in view of the remark (1), verify that the condi-
tion (c) is satisfied. Suppose w E AX is fixed, and that q'(w) = {a,—a).
By a) there are open neighborhoods U, U of a, —a which are mapped
homeomorphically onto open neighborhoods of w by the mapping q. As A
is a Hausdorif space, we may assume that U fl U = 0. Now

W := q(U)nq(U), U := q'(W)fl U, U q1(W)fl U

are open neighborhoods of w, a, and —a respectively, the induced mappings
U —. W, U- —+ W are homeomorphisms and UflU = 0. However we also
have q'(W) = U Li U because, of the two inverse image points of any
given point in W, one lies in U and the other in U. 0

The proof of HOPF's Lemma can now be brought abruptly to a conclu-
sion, with the observation that

(*) If V isa nor-med 1k-vector space with dimV � 3, then every connected
covering w: X —. V \ {O} is of degree 1.

It follows directly from this remark that in the situation described in
HOPF'S Lemma only the case dim A < 2 is possible. 0

A few comments may be added in explanation of (*). The assertion is a
direct consequence of the following two facts:

(a) In the case dim V � 3, V \ {O) is simply connected, that is, every
closed path in V\{O) is continuously contractible to a point, for example,
to its initial point.
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(b) if r: X —. Y is a covering and if X, y are path connected and Haus-
dorff and if in addition Y is simply connected, then r is of degree 1.

To elucidate (a), consider first V, an with 3 < n <co. If denotes
the set of all positive real numbers and 5' 1 the Euclidean unit sphere in

the mapping R" \ {O} —. x z (IxI,xfIzI) is a homeomor-
phism. We therefore need to remember that all spheres k < oo, are
simply connected. Let -y be a closed path in Sk. Since k> 1 we can assume
that there is a point p E Sk, which does not lie Ofl (this can always be
achieved by a suitable deformation of 'y). On this "North Pole" p, the path

can now be continuously contracted to a point along the great circles on
Sk through p•

Now suppose V to be infinite-dimensional and -y a closed path in V\ {O}.
We can first subdivide into a finite number of parts each lying in a ball in
V\{0). As balls are convex, these partial paths can be deformed inside their
balls into line segments. We thus obtain a deformation of 7 lfl V \ {0} into
a closed polygonal path in V\{0). This however lies in afinite-dimensional
subspace R", n 3 of V and is thus contractible continuously to a point
in It" \ {O).

We now say a few words about (b). Let z1, X2 be points for which ir(xt) =
and let us choose a path j in X from x1 to z2. Then := 0

is a closed path in Y which, by hypothesis, is contractible in Y to its
initial point by defornation through a continuous family of paths

,, 0 < s < 1. Since X —. Y is a covering, every path 7, can be lifted
in one and only one way to a path y, above , with initial point Then

0<s< lisa continuous family of paths in X, with i'o = and the
path consisting of the point x1 only. As all paths have the same end-point
(Monodromy Theorem), it follows that x2 = end-point of j'o = end-point
of = x1. Consequently every set yE Y reduces to a8ingle point.

3. HOPF's Theorem. In this subsection A = (V,) denotes a finite-
dimensional real division algebra. We topologize by choosing a norm in A
and study the mapping q: A —+ A, x i—' x2. We use the methods of the
differential calculus which are familiar from a second calculus course. A
mapping f: V —i V is said to be differentiable at the point v E V if there
is a linear mapping f'(v): V V such that:

F
If(v + — 1(v) f'(v)(h)I

—
jhI —

the mapping f'(v) is then uniquely defined, and is called the differential
(or sometimes the derivative) of f in v.

Each element a E .4 defines, through multiplication on the left and on
the right respectively, the two linear mappings

L4: V —. V, x ax; R4: V —. V, x u—' za.
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We now assert that:

(1) the mapping q:A — A, :.—' is differentiable at every point a E A,
and q'(a) = + Ra. IJA is commutative, then q'(a), a E AX is always
bijective.

Proof. By 1(2) we have IhI < alhI2. Since

q(a+h)—q(a)=(a+h)2—a2=ah+ha+h2=(La+R4)h+h2

it follows that

Ihi
Ihi 1h1

which tends to zero in the limit.
If A is commutative, L0 = R0, then q'(a)h = 2Lah = 2ah, h V.

Since A has no divisors of zero, q'(a) is injective for all a and, because
dim V <oo, is indeed bijective. 0

An everywhere differentiable mapping / : V V induces the mapping
f' : V Hom(V, 1/), v f'(v). We calif continuously different:able if 1' is
continuous. (Note that when V is finite-dimensional, Hoin(V. V) is likewise
finite-dimensional, so that one can talk of continuity without running into
any problems.) In differential calculus courses one proves the following as
a special case of the theorem on implicit functions.

Local Implicit Function Theorem (for Differentiable Functions).
Let f: V — V be contznuously differentiable, and let v V be a point such
that the derivative f'(v): V V is bijecitve. Then f is a local homeomor-
phism at v.

A corollary of this is

(2) If A is commutative, then q:AX AX is a local homeomorphism.

Proof. The mapping q induces, by (1) the mapping

q':V—. llom(V,V),

It is easily verified (by choosing bases and representing q' by a matrix) that
q' is continuous. By virtue of (1) and the local implicit function theorem,
q is therefore a local homeomorphism at. every point a E AX. 0

We can now complete in a few lines the proof of the famous

HOPF's Theorem (1940). Every finite-dimensional real commutative
division algebra A = (V,.) is at most two-dimensional.

Proof. By (2), the condition a) of HoPF's lemma is satisfied. Let n
dimA � 2. Then AX is connected. The set q(AX) is, by Theorem 1, closed
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in AX. But, in view of (2), it is also open in AX. It follows therefore that
q(AX) = AX, that is, A also satisfies the condition b) of Hops's lemma,
and consequently n = 2. 0

HOPF generalized his theorem considerably, immediately after its discov-
ery in the year 1940, in his paper ("Em topologischer Beitrag zur reellen
Algebra," in Comment. Math. Helv. 13, 1940, 219—239, in particular p. 229)
[A topological contribution to real algebra] where he was able to show,
without any requirement of commutativity that:

The dimension of a finite-dimensional real division algebra is necessarily
a power of 2.

The reader will find more details on this given in greater depth in Chapter
11.

4. The Original Proof by HOPF. Our proof of HOPF's theorem is
an adaptation of his original proof. HOPF himself in 1940 dealt with the
continuous mapping

x2
x I—. —.

1x21

Each image vector is of ur.t length so that A \ (0) is mapped into the
(n — 1)-dimensional sphere

:= {v 6 V: lvi = 1), n := dimA.

Obviously g(az) = g(x) for all z A \ {0}, a R \ (0) so that the
mapping g maps every straight line through 0 onto the same point. Now
the real projective plane P'' is nothing more than the space of all straight
lines in V through 0, and so we have the famous "HOPF mapping"

—'

All this still applies for arbitrary division algebras A; but in addition:

If .4 is commutative then —. S"' is injeclive.

Proof. Let E be points with h(i) = We represent î,ü by
points x, y V \ (0). h I = then means, when we use
the abbreviations := '1 := a E R

= that is y2 = a2x2.

As A is commutative and without divisors of zero, it follows that

0 = y2 — a2z2 = (y — ax)(y + ax), and hence y = ±ax, i.e. = 1. 0
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Thus corresponding to every n-dimensional, real, commutative divisic*i
algebra, HoPr defined an associated topological mapping of the projective
space into the sphere He now argued as follows (see Selecta,
p. 112) where we translate from the German original: "...as and

are closed manifolds of the same dimension n — 1, must be
identical to the image of and the manifolds S"1 and must
therefore be homeomorphic. For n— 1 = I this is indeed the case: the circle
S1 and the projective line are both (homeomorphic to) a simple closed
line. if however n — 1 > 1, the sphere is, in contrast to the case
n — 1 = 1, simply connected, whereas the projective space F'-' is never
simply connected, because the projective line can never be contracted into
a point; the homeomorphism in question does not therefore exist when

— 1 > 1."
Thus HOPF showed that n — 1 = 1, that is, n = 2. 0

To this day no "elementary" proof of HOFF's theorem is known. in 1954
the Dutch mathematician SPRINGER in a paper entitled "An algebraic proof
of a theorem of H. HoFF" (Indagationes Mathematicae 16, 33—35) gave
a proof which uses results from algebraic geometry, amongst others the
theorem of BEZOUT, instead of the argument of simple-connectedness.

5. Description of All 2-Dimensional Algebras with Unit Element.
Every 2-dimensional real algebra A with unit element e, has a basis e, w
with w2 = we, where w = 0 or w = 1 or w = —1. (The proof is left to the
reader.) From this follows the

Lemma. Every 2-dimensional real algebra A with unit element is both com-
mutative and associative. There are the following three mutually exclusive
possibilities:

1) A is isomorphic to the algebra (lit27.) of "dual numbers," that is
(1,0) E lit2 is the unit element, and e := (0, 1) E lit2 satisfies the
equation c2 = 0.

2) A is isomorphic to the direct sum lit lit, that is, for a := (1,0),
6 := (0, 1) K2 we have the relations a2 = a, b2 = 6, ab = 0 (see R.2,
6).

3) A is isomorphic to the algebra C.

Proof. The three cases w = 0, w = 1, w = —l lead to the cases 1), 2), 3)
respectively. When w = 1, u := + w), v := — w) form a basis of A
with u2 = u, v2 = v, uv = 0, and hence A —. REBUt, cru+flv oa+136 is
an isomorphism. 0

From this lemma and HOFF'S theorem follows at once (since A has dlvi-
of zero in the first two cases of the lemma) the
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Corollary to HOPF's Theorem. Every finite-dimensional, real, com-
mutative division algebra with unit element e is isomorphic to or to C.

The fundamental theorem of algebra is implicitly contained in this state-
ment, and has thus been proved anew.

Exercise. Find the fallacy in the following "direct proof' of the above corol-
lary. If n := dimA > 1, there is aj E A with j2 —e. Then B :=
is a subalgebra of A, isomorphic to C. For every a E A, the characteristic
polynomial det(La — X . Id) of the left-multiplication L0:A —p A, x '—+ ax,
has, by the Fundamental theorem of algebra, a zero 6 E B; that is, there is
a c 0 in A such that (a — be)c = 0. It follows that a = be = b E B, that
is,A=B.

The assumption that A has a unit element is an essential part of the
argument in the foregoing considerations. There are infinitely many non-
isomorphic commutative 2-dimensional division algebras. For example we
can derive one from C by defining multiplication of w, z E C by woz
The family of all these (non-isomorphic) algebras is two-dimensional and
not connected.

Exercise. Show that every 2-dimensional alternative and commutative al-
gebra is isomorphic to C.

§4. THE GELFAND—MAZUR THEOREM

Chaque domaine de rationalité du type (B') est
isomorphe au domaine de rationalité des nombres
reels, des nombres complexes ou des quaternions
(S. MAZUR 1938).

[Every domain of rationality of type (B') is iso-
morphic to the domain of rationality of the real
numbers, the complex numbers, or the quaternions.]

The theorem quoted above is nowadays known, mainly in the commutative
case, as the theorem of GELFAND—MAZUR. In functional analysis it is usu-
ally obtained from the fact that in a complex BANACH algebra with unit
element, every element has a non-empty spectrum. For this purpose one
usually invokes LIOUVILLE'S theorem (that a bounded entire holomorphic
function is a constant) and thus in the final analysis the CAUCHY theory
of functions.

It does not appear to be generally known in the literature that the
GELFAND—MAZUR theorem is a simple corollary of IIOPF's lemma. This
will be explained in the following account and will again demonstrate the
power of the quadratic mapping. If HorF had known in 1940 of MAZUR'S
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note in the Corn pies Rendus he would undoubtedly have taken the oppor-
tunity to prove the theorem then and there.

1. BANACH Algebras. An R-algebra A = (V,.) is said to be a normed
algebra, if a norm is defined on the vector space V, such that:

(1) lxyl�lxlIyl forall x,yEA.

In that case the multiplication A x A A, (z,y) i— zy is continuous, (as
well as the addition), as can immediately be seen from the inequality

lZY—XOYoI<IZ—Z0IIY—YoI+lX—ZOtiYOI+IXOIIY—YOl.

If A has a unit element e, then tel � 1.

An associative normed R-algebra A = (V,.) with norm I 118 called a real
Banaclz algebra, if V is a Banach space, that is, if every CAUCHY sequence
in V converges, where convergence is defined with respect to the metric
lx—vt.

Examples. 1) The IR-algebras IR, C, with their natural norms are BANACH
algebras.

2) The IR-algebra Mat(n,R) of all real n x n matrices, 1 n < 00, is a
BANACH algebra with the norm

I Al := VtraceAtA = where A =

N
p,v1

(Note that (El =
3) The R-algebra CEO, 1] of all functions continuous in the closed in-

terval [0, 1] is a BANACH algebra with respect to the maximum norm
Ill := If(x)I.

4) If A = (V,.) is any finite-dimensional associative real algebra, there
are always norms on V, such that A is a BANACH algebra. (This follows
from the remark in 3.1, since finite-dimensional normed vector spaces are
BANACH spaces.)

Normed C-algebras, and complex BANACH algebras are defined almost
word for word as above, and are not treated until §4.6 and §4.7. 0

In the following paragraphs A always denotes a real BANACH algebra
with unit e. A power series

(*)

is said to be absolutely convergent at the point a E A, if E <00
It then converges absolutely and uniformly in the ball {x E A: Izl � lat) of
radius fal around 0 (Abel's lemma). Since all CAUCHY sequences converge



240 8. Isomorphism Theorems of Frobenius, Hopf and Gelfand—Mazur

in A, this can be proved word for word as in the particular cases of A = 1k

and A = C. Uniformity of convergence implies that:

(2) If the series (*) converges absolutely at the point a E A, a 0, then
the function

f: U A, z '—' 1(x) :=

is continuous in the ball U of radius lal with center 0.

In the following argument, we shall make use of the binomial series
(1/2)

with whose help we shall be able to extract square roots.

2. The Binomial Series with exponent a E 1k is defined by

b0(X) : (:)xv = e + ocX + — 1)X2

%\v)

As this series has a radius of convergence � 1 in 1k, it converges absolutely
and locally uniformly in the unit ball {z E A: Izi < 1} and therefore defines
a continuous mapping of this ball into A.

In what follows a fundamental role is played by the Addition theorem

(1) b0(x)b0(x) = for alix €A, lxi <I, and alba,f3ER.

Proof. The Multiplication theorem for absolutely convergent series holds
for BAZJACH algebras as it does for 1k. It follows therefore that, for all z E A
with lxi < I, we have

The coefficient on the right is equal to (a + 13) and this proves (1). 0

3This so-called Addition theorem for the brnovnioi coefficients is proved by
induction on n. One can also however argue as follows: the binomial formula

= (1 + holds for all rational numbers z and all natural numbers n.
The Addition theorem for binomial coefficients must therefore be true for all
a, n N, and hence for all a, $ 1k, n E N (Identity theorem for polynomials.)
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We need (1) only for a = /3 = Since bi(z) = e + x this equation is
then equivalent to

(2) q(b(z)) =e+z forall zEA with IzI< 1,

where we have written b(x) in place of bi,2(z) and where q is the quadratic
mapping q: A A, x i-+ x2.

3. Local Inversion Theorem. Let A be a commutative BANACH algebra
without divisors of zero and with unit element, let a E A be invertible
(that is, there is an A with = e). Then the quadratic mapping
q: A" AX is a local homeomorphism at a.

Proof. The open ball K C A" of radius IaI and center a is mapped
injectively by q, for if a + u, a + v are two distinct points satisfying
(a + u)2 = (a + v)2, then u + v = —2a, so that lul < IaI, IvI < 101 cannot
both hold.

As a is invertible, a2 is also invertible with inverse a_2. In the open ball
L C A" of radius 1/Ia21 around a2, the function

:= a b((x — a2)a2) with p(a2) = a

is thus well-defined and continuous. It follows directly from 2(2) that

(s) qop=id onL.

If therefore one chooses an open neighborhood W C L of a2 with p(W) C
C, the open neighborhood U := fl K is mapped onto W continu-
ou8ly and injectively by q.

Corollary. If, additionally, A is a field, then q: A" AX is a local home-
omorphism (for now every element a Ax is invertible).

Remark. The local inversion theorem can also be proved directly without
power series if one is prepared to use the general local inversion theorem
for Banach spaces which states:

Let f: V W be a continuous differentiable mappsng between BANACH
spaces, and let v E V be a point such that the linear mapping f'(v): V W
is an isomorphism. Then f is a local homeomorphism at v.

It can be verified—as in 3.3—that q satisfies the hypotheses of this the-
orem: the derivative q'(a): V —i V, x 2ax, is a homeomorphism since a
is invertible.

4. The Multiplicative Group AX. In every associative division algebra
the set AX of non-zero elements forms a group with respect to multiplica-
tion. The following can be said about the topology of this group.
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If A is a BANACH division algebra of dimension � 2 there is no open
subgroup of AX other than AX itself.

Proof. Suppose there were such a group G. For every point a E AX \G we
have aG C AX \ G, because ab = c with b, CE G implies a = cb' G. As
aG is open in AX when G is (the mapping AX AX, x .—e ax is topological
since x atx is continuous) it follows that all points ofAX \G are interior
points of AX \ G. Consequently G is not only open, but also closed in
This means that AX is not connected in contradiction to dimA > 2. 0

We can now complete in a few lines the proof of

5. The GELFAND-MAZUR Theorem. Every commutative BANACH
division algebra A, is isomorphic to the field JR or C.

Proof. We show that A, in the case dimA � 2, has the properties a) and
b) of HOPF'S lemma 3.2. Corollary 3 asserts that a) holds. To verify b),
that is, q(AX) = AX, we observe that q(Ax) is a subgroup of the group AX
which, by Corollary 3, is open in Thus = Ax, by 4. 0

This theorem again contains the fundamental theorem of algebra, be-
cause every finite dimensional extension field of JR is a commutative BA-
NACH algebra (see 1.4).

Remark. The proof may also be carried out with the exponential mapping
x '—. expx := Ex"/v!, which yieLds a group homomorphism A —. AX.
This mapping is also a covering; in place of 2(2) we have:

(*) exp log(e + z) = e+x for xI<lwhere

log(e+x) :=

This covering would be of degree one in the case dimA > 2, that is, the
groups A, AX would be isomorphic, which is untrue. The proof of (*) is
incidentally somewhat troublesome, because we have to consider a power
series whose terms are power series, and not as in 2 merely the product of
two power series.

Corollary. Let A 0 be a commutative BANACH algebra with unit e, and
let in be a maximal ideal in A. Then the quotient algebra A/rn is isomorphic
to JR or to C.

Proof. The closure th of in is an ideal in A with in C iii. If in were different
from iii, we should have = A, that is e E fit. There would then be an
a E A, such that e — a in and id <1. Now e — a is invertible in A (with
inverse e + a + a2 + ...) so that e E in and it would follow that in = A
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which is absurd. Hence rn is a closed ideal in .4 and thus A/rn (endowed
with the residue class norm) is likewise a BANACH algebra. As A/rn is also
a commutative field, this proves the corollary. 0

6. Structure of Normed Associative Division Algebras. In proving
the GELFAND—MAZUR theorem, the use of the "BANACH algebra" assump-
tion was essential. From now on however we can dispense with the com-
pleteness of the algebra. This is made possible by the following embedding
theorem:

Every normed associative R-algebra A with e is an IR-subalgebra of
a BANACn algebra A with e as unit element

We can, for example, choose for A, a completion of A. 0

There now folLows, as an almost immediate consequence the

GELFAND—MAZUR Theorem for Normed Algebras. Every normed
commutative associative real division algebra A 0 is isomorphic to R or
C.

Proof. Let A be a BANACH algebra with e as unit, of which A is a sub-
algebra. We choose a maximal ideal rn in A (Zorn's lemma). By Corollary
5, dim A/rn < 2. As A fl m = {0), the residue class mapping A —4 A/rn
induces an lit-algebra monomorphism A —' .4/rn. Hence dimA � 2. 0

Corollary (OSTROWSKI 1918). Every valuated commutative and as-
sociative lit-algebra A with unit is isomorphic So lit or C.

Proof. By hypothesis Izid = In lid for all z, y A, and so A is an integral
domain. The valuation can be extended to a valuation of K, the quotient
field of A. The normed field K is isomorphic to lit or C by the theorem. As
A is an R-subalgebra of K, this proves the corollary. 0

Remark. The corollary becomes false if the condition "valuated" is replaced
by the condition "normed and without divisors of zero." A counterexample
is the polynomial algebra REX] with the norm := maxo.<r<l Ip(z)l. The
completion of this algebra is the BANACH algebra C([0, 1]) of all functions
continuous in [0, 1] (WEIERSTRASS'S approximation theorem), and this al-
gebra has (infinitely) many divisors of zero.

Structure Theorem (MAZUR 1938). Let A be a normed associative
real division algebra. Then A is isomorphic either to P or to C, or else to
H.

Proof. If we can show that A is a quadratic algebra, the statement will
follow from FROBENIUS'S theorem. Suppose z E A. All non-zero elements
of the commutative polynomial algebra REx] are, by hypothesis, invertible
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in A, so that K := {u/v: is, v E v 0) is a normed commutative,
associative, real division algebra, and hence dim K < 2 by the theorem.
Consequently x K satisfies a quadratic equation over R. 0

Consequence (GELFAND-MAZUR Theorem for C-Algebras). Ev-
ery norrned associative complex division algebra A is isomorphic to C.

Proof. Since A is also an lit-algebra, dimA < oo. It follows from the
foonote on page 198 that A C.

7. The Spectrum. If A is a normed associative C-algebra with unit e,
then the spectrum of an element a E A is the set

Spec a := {A E C: a — Ac is not invertible in A).

Fundamental Lemma. Let A be a normed associative C-algebra with unit
e. Then Spec a 0 for every a E A.

Proof. Let a A be fixed. Every element x 0 of the commutative
polynomial algebra C(s) can (by the Fundamental theorem of algebra) be
written as:

If Specs were void, all the factors a—Are and hence all z $ 0 in C(s) would
be invertible in A, and then K := {u/v: U, V C[aJ, v 0) would be a
normed commutative field. By the GEL.FAND—MAZUR theorem K would be
Cc, and a — Ac would be zero for some A C, contradicting the assumption
thatspeca=0. 0

Remark. Usually one proves the fundamental lemma for complex BANACH
algebras by means of LIOUVILLE's theorem. The fundamental lemma, on
the other hand, implies the GELFAND—MAZUR theorem for C-algebras A:
if every x $ 0 in A is a unit, then x = Ac for A Specx, that is A Ce.

A simple consequence of the fundamental lemma is:

For every continuous (= bounded) endomorphism w: E E of a normed
C-vector space E $ 0 there is a A E C, such that — A Id is not invertible.

Proof. The set End E of all continuous endomorphisms of 1!. is an asso-
ciative C-algebra with unit, with respect to composition. End E becomes a
normed C-algebra when the norm is defined by

Hull := sup {Iu(x)I) <00, U E End E.
1r11

For E EndE it now follows that $0. 0
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In the statement which has ju8t been proved is included the assertion
that every endomorphism ço of a finite-dimensional C-vector space E 0,
has an eigenvalue in C (see Theorem 4.3.4). In the case dimE < oo, we
have in fact

:E—.Eisnotinjective};

but in the case dim E = oo, does not always have eigenvalues.

8. Historical Remarks on the GELFAND--MAZUR Theorem. The
starting point of the GELFAND—MAZUR theorem was the theorem of Os-
TROWSKI, proved in 1918, that every complete, commutative field with
Archimedean valuation is isomorphic to the field R or C (see Corollary 6
in this connection).

The original proof of OSTROWSKI is computational. In 1938 S. MAZUR
in a note in the Corn ptes rendus generalized this theorem and outlined a
proof; in 1941 IM. GELFAND proved MAZUR'S theorem with the help of

theorem.
In 1952 E. WITr derived the GELFAND—MAZUR theorem in six lines: "Jn

the case K R, R(i) is of rank [K : Rj > 2 and therefore the domain (z
0) is simply connected. The differential equation x1dz = y then engenders
a global isomorphism between the multiplicative group (x 0) and the
additive group (y). This however is impossible because the multiplicative
group contains the element 1 of order 2, whereas the additive group is of
characteri8tic zero." This is, of course, the proof mentioned in 5 based on
the exponential function.
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9. Further Developments. The GELFAND-MAZUR theorem has been
generalized in several directions. The starting point is the following

Remark 1. Let A be a BANACH algebra with unit e, and having the property
that for every y 0 in .4, a real number > 0 can be found such that:
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(o) forall zE.4.
Then A is a division algebra.

Proof. We may assume that dimA > 1. It is well known that the set E
of all invertible elements of A is open in .4 \ {O). If we can show that E is
also closed in A\{0), it will then follow that E =A\{0), because A\{0)
is connected, since dimA> 1.

Let U,, E E be a sequence with limit u 0. Choose an m> 0, such that
lu— < for all n m. Then, since it is always true that

(s) = — u,,) + e,

it follows, by (o), that for n m

— + � +

that is < for n m. The sequence tç1 is therefore bounded,
and it follows from (s) that limu;1u = e. As E is open in ..4\{0), it follows
that tç1u is invertible for large enough n, and hence u itself is invertible,
thatis,u€E. 0

We can now rapidly deduce the following result, if we invoke a classical
theorem of BANACH.

Theorem. A BANACH algebra A with unit and without divisors of zero,
and in which every principal ideal Ay, y E A, is closed, is isomorphic to

C, or H.

Proof. Let y 0. The linear mapping ço,:A Ay, x '—' zy, is bounded
and bijective. As Ày is, by hypothesis, a BANACH space, cc1 is bounded
(BANACH). There is therefore an M, > 0, such that lxi = lcf1(xy)l <

for all z A. The statement now follows from Remark 1, by virtue
of the structure theorem 6. 0

To apply the theorem, we need

Remark 2. Let A be a commutative BANACH algebra With unit e, and let a
be an ideal in A, whose topological closure a in A, can be finitely generated.
Then a =

Proof. If aj, ... , a,, is a system of generators of a, the mapping
(x1,. .. ,x,,) Expa, is linear, surjective and bounded. By BANACH'S
theorem is therefore open. If D(c) denotes the ball of radius c> 0 about
0, then E D(c)a,, is a 0-neighborhood in As a is dense in a, it follows
that

c>O.
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For every c > 0 there are therefore elements b1, ... a, D(e),
such that

Witho :=(aj,...,an)t,b:=(bi,...,bn)*,
that

b=(I—C)a.
We now have det(I—C) = e—p, where p is a polynomial in the without a
constant term. For small c, the element c—p is therefore invertible, and thus
also is the matrix f—C. It follows from a = that a1,... a,
or in other words that a C a. 0

Consequence. In commutative, Noetherian, BANACH algebras with unit
element and without divisors of zero, all ideals are closed.

We have thus obtained from the above proposition the

Corollary. Every commutative, Noetherian, BANACH algebra with unit el-
ement and without divisors of zero is isomorphic to R or to C.

If we give up the condition regarding zero-divisors, the folLowing gener-
alization can be proved by purely algebraic arguments, which we omit:

Theorem. Every commutative, Noetherian, BANACH algebra with unit cl-
ement is finite-dimensional.

In real or complex analysis there are therefore no function algebras, which
possess on the one hand the NOETHER property, which is so convenient
algebraically, and on the other hand the BANACH property which is so con-
venient analytically. The situation is better in p-adic analysis. The TATE
algebras (which play such a fundamental role there) are commutative, val-
uated, Noetherian, BANACH algebras with unit element.
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Cayley Numbers or
Alternative Division Algebras
M. Koecher, R. Remmert

It is possible to form an analogous
theory with seven imaginary roots of (—1)
(A. CAYLEY 1845).

With the creation by HAMILTON of a "system of hypercomplex numbers"
a process of rethinking began to take place. Mathematicians began to real-
ize that, by abandoning the vague principle of permanence, it was possible
to create "out of nothing" new number systems which were still further
removed from the real and complex numbers than were the quaternious.
In December 1843 for example, only two months after HAMILTON'S dis-
covery, GRAVES discovered the eight-dimensional division algebra of octo-
nions (octaves) which—as HAMILTON observed—is no longer associative.
GRAVES communicated his results about octonions to HAMILTON in a letter
dated 4th January 1844, but they were not published until 1848 (Note by
Professor Sir W.R. Hamilton, respecting the researches of John T. Graves,
esq. Thins. R. Irish Acad., 1848, Science 338—341). Octonions were redis-
covered by CAYLEY in 1845 and published as an appendix in a work on
elliptic functions (Math. Papers 1, p. 127) and have since then been called
CAYLEY numbers.

As the associative law does not hold in the CAYLEY algebra it is no longer
possible, on principle, to draw on the resources of the matrix calculus to
facilitate calculations, as was the case with quaternions. It is therefore in-
evitable that the derivation of the essential formulae, which are thoroughly
familiar to us in the algebras of C and IHI, should be more tedious. In the
introductory §1 we have systematically gathered together the main iden-
tities that are valid for alternative quadratic algebras (without dwisors of
zero). In §2 the algebra of octonions will be explicitly constructed by a
duplication process applied to the quaternion algebra IHI.

There is a uniqueness theorem for octonions, analogous to FROBENIUS's
Uniqueness theorem for quaternions. This theorem was discovered in 1933
by Max ZORN (well-known for his famous lemma) and published in his pa-
per "Alternativkörper und quadratische Systeme" Abh. Math. Scm. Ham-
burg 9, 395—402. We derive ZORN's theorem in §3.
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§1. ALTERNATiVE QUADRATIC ALGEBRAS

Every real quadratic algebra A has the property A = like ImA, where
the imaginary space ImA is a vector subspace of .4 (FROBENIUS'S lemma,
8.2.1). There is therefore just one linear form

(1) with A(e)=1 and Ker)=ImA

which we call the linear form of the quadrulic algebra.
in the cases A = C, H, the form A is the one introduced in 3.2.2 and

7.2.1 respectively and used to a considerable extent in those chapters under
the name of the real part linear form Re. In the general case the notation
Re is not normally used.

In the algebras C and K the conjugation mapping x '—. 2 proved to be
very useful. This mapping can be defined in any quadratic R-algebra, in
terms independent of the basis, by

(2) x i—. 2 := 2A(z)e — z.

It is JR-linear, and

2 = A(z)e — u for z = A(x)e + u, u ImA;

consequently z '-.. 2 is, as in the case of C, K a reflection of .4 in the line
Re. In particular

= z (Involution), A(2) = A(x)

and the fired point set {x E A: 2 = x) is the R-subalgebra Re. 0

One would therefore expect, to judge from the examples C and H, that
(x,y) := )i(xD) would give us a "natural" scalar product for A. We shall
see in this section, that this is indeed true for algebras without divisors of
zero. Nevertheless we shall initially define (x, y) somewhat differently in
§1.1 and derive the "desired equation" in §1.3 only under the additional
assumption that A is alternative. Thus, as with C and K, the important
product rule Ixyl = 121 will be valid for alternative algebras as well.

1. Quadratic Algebras. The identity (x, y) = 2A(z)A(y) — A(xy) holds in
C (trivially), and in H. We shall make this equation, in a slightly modified
form, serve as a base for the definition of a certain bilinear form in general
quadratic algebras. We shall in fact prove the following

Lemma. Let A be a quadratic algebra whose linear form is A. Then

1
A x A JR, (x,y) .—. (z,y) := 2A(z)A(y) — + yx)
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is a symmetric bilinear form, and for all x, y E .4

(1) (z,x) = 2A(x)2 — A(z2)

(2) (x,e) = A(x), (e,e) = 1,

(3) x2 = 2A(x)z — (x,x)e,

(4) zy + yr = 2A(x)y + 2A(y)x — 2(x, y)e.

If in addition, A has no divisors of zero, then (x, x) > 0 for all x 0.

Proof. By definition (x, y) is a symmetric bilinear form for which (1) and
(2) bold. To verify (3) we first note that x — A(z)e kernelA = ImA. It
follows from the definition of ImA (cf. 8.1.1) that (z — A(x)e)2 = —w(x)e
with w(z) R, z A. If we write this in the form x2 = 2A(x)x — [A(x)2 +
w(z)le and apply A to it, we obtain (x,x) = A(x)2 + in view of (1),
and this proves (3). When A has no divisors of zero, w(x) � 0 (see 8.1.1),
and from this we deduce the last inequality (r, r) > 0 for all r 0, since
A(x) = w(x) = 0 is possible only when x = 0.

The equation (4) follows by linearization of (3) (putting x + y instead of
x). 0

The bilinear form (z, y) introduced in the last lemma will play a cen-
tral role in what follows. We shall call it the bilinear form of the quadratic
algebra. The reader should observe carefully that the equation (3) is a unz-
versal quadratic equation which holds for every x. In the original definition
of quadratic algebras (see 8.2.E) the only requirement was that to every
z there should exist "somehow or other" elements a, R, such that

= fix + ae. Now it has been shown that a, fi can be chosen in a natural
fashion by taking a = —(z, x), f3 = 2A(x).

Corollary. For all x,y E ImA

(5) xy+yx = —2(x,y)e.

In particular (x, y) = 0 is equivalent to zy + yr = 0.

With the help of the identities (4) and (5) the product ry can be ex-
pressed in terms of yr and hence formulae can be simplified. Moreover, in
the verification of identities applying to all elements of A, one can often
confine oneself to checking the identity for elements of ImA.

We can now deduce from (5) by right-multiplication and left-multiplica-
tion respectively, and from (4) by replacing of y by yz, the following iden-
tities, valid for x, y, z E Im A:
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(A) zy.z+yz.z—_—2(z,y)z,

(B) y.zz+y.zx= —2(z,z)y,

(C) z yz + yz x = 2A(yz)x — 2(z,yz) e.

Despite their simple derivation, these identities for alternative algebras are
of crucial importance in ff2 and 4.

2. Theorem on the Bilinear Form. The following identities hold for
elements x, y, z of an alternative quadratic algebra A:

(1) A(zy) = A(yx) and hence (x,y) = 2A(x)A(y) — A(zy),

(2) A(xyz) := A(zy. z) = A(z . yz) (associativity of A),

(3) (zy,z) + (zz,y) =

(4) (zy,xy) = (x,x)(y,y) (product rule).

If the bilinear form of A is positive definite, then A has no divisors of zero.

A cyclic permutation of the elements in (2), yields, in combination with
(1), the additional identity

(5) A(zyz) = A(xy z) = A(yz . x) = A(zx y).

In general however A(xy. z) is different from A(yz .

Proof. As multilinear identities such as (1), (2) or (3) remain unchanged
if one adds scalar multiples of e to arbitrary elements of A, one can assume
without restriction during the proof that x, y, z E ImA, and hence that
A(z) = A(y) = A(z) = 0.

a) In 1(A) and 1(C) we put z = z, subtract and take account of 8.1.3(2),
thus obtaining

0 = — = —2((z,y) + A(xy))x+ 2(z,yx)e,

so that (z, y) + A(xy) = 0 and (x, yx) = 0 for x, y ImA. Comparison with
Lemma 1 and linearization yields the identities (1) and (3), respectively.

b) Since A is alternative, the relation A(x . yx) = A(xy . x) follows from
8.1.3(2). If we replace x by x + z and compare the terms linear in x,y,z
we obtain

(*) yz) + A(z yx) = A(xy z) + A(zy . x)
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for x,y,z E ImA. By 1(A) and 1(B) we have .yx) = .xy) and
• x) = x) respectively, so that (2) follows from (1) and (*).

c) We put z = zy in (3) and apply the equations x2y = x zy for x, y E A.
It then follows that

(xy,zy) = 2A(x)(y,xy) — (x2y,y) = —((x2 — 2A(x)x)y,y),

and 1(3) gives us (4).

d) From zy 0 it follows that (x,x) = 0 or (y,y) = 0 by (4). In the
positive definite case this implies i = 0 or y = 0. 0

From (1) and Corollary (1) we now obtain the

Corollary. The three following statements are equivalent for x,y E ImA

i) z and y are orthogonal, that is, (z, y) = 0,

ii) xy+yx=O,

iii) A(xy) = 0.

Remark 1. With the help of these results we can obtain the following simple
proof of FROBENIUS'S theorem 8.2.4. Let A be an associative quadratic
algebra without divisors of zero and let u, v, w be a Hamiltonian triplet in
ImA. For every x E ImA, orthogonal to u, v, w we then have x = —xuvw =
uxvw = —uvxw = uvwx = —z, and hence x = 0.

Remark For the quadratic algebra Mat(2, R) we have X2 —Trace X . X +
detX . E = 0 so that 2A(X) = TraceX and (X,X) = detX. Equation (4)
is then the product rule for determinants. Of course Mat(2, has divisors
of zero.

3. Theorem on the Conjugation Mapping. The following three iden-
tities hold for all elements x, y, z of an alternative quadratic algebra A.

(1)

(2) = ±(xy) = (x,x)y, and in particular x± = =

(3) (x,y) = = and in particular (xy,z) = =

Proof. Equation (1) follows from

— = — — [2A(y)e — y][2A(x)e — x]

= — 2.A(x).A(y)]e + 2A(x)y + 2A(y)x — (zy + yx),

because by 1(4) and 2(1) the right-hand side vanished. Equation (2) follows

from 1(3):

= x[(2)i(x)e — x)y] = — xy) = — x2y = (x, x)y;
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and = (x,x)y is proved the same way.
To verify (3) we note that since x = 2A(x)e — we have =

2A(x)A(y) — Hence (3) follows using 2(1).
Now (zy, z) = A(zy. = . yE) = (x, by 2(2) and (1). Similarly

(y, Ez) = . Ex) = x) = (x, 0

Along with (2) we also have the identity

(2') = = (y, y)z.

This can be proved either by conjugation of (2) or in the same way as (2).

4. The Triple Product Identity. If A is an alternative quadratic algebra,
then the triple product identity

(1) xy z + z yz = — + +

holds for all x, y, z E ImA. In particular, for x, y A

(2) zyx := xy• x = yx = 2A(xy)x — (x, x)

Proof. By linearizing yx x = y . x2 we first obtain

yx.z+yz.x=y.xz+y.zx
for x, y, z A. If one now forms the expression (A) — (B) + (C) from the
identities in 1, the identity (1) now follows from 2(1).

Putting z x in (1) we immediately get zyx = — +
\(xyx)e. By 1(3) we have = (x,x)e, and after 2(1) and 2(2) we
have A(xyx) = = —(x,x).\(y) = 0 which proves (2) for x,y E ImA.
The general case may be deduced from this by replacing x by x —

0

Corollary. If x,y,z E ImA are pairwise orthogonal then xy. z—zy . x.

For by Corollary 2, we then have

xyz= 2A(xyz)e—x.yz=x.yz = Ey.E —zy.x.

A subalgebra B ofA which contains e, is conjugation invariant, in other
words if u belongs to B so does ü = 2A(u)e — u.

Lemma. Let A be an alternative quadratic algebra, B a subalgebra of A
containing e, and q a given element of A with (B, = 0. Then

a) (B, Bq) = 0, in particular 13q C ImA and )i(B . !3q) = 0.

b) Foru,vEB

(3) u.vq=vu.q,
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(4) • v = ui q, in partictslar qv =

(5) uq-vq=—(q,q) .iu.

c) B + Bq := {u + vq: u, v E B) ss a subalgebnz of A.

Proof. Since e E B, the algebra B is conjugation invariant.
a) By 3(3) we have (u,vq) = = 0 for u,v E 8.
We now apply Lemma 1.
b) To prove

(*) qv=vq for vEB

we confine ourselves to v E 1mB and then apply Corollary 2. For a or
v equations (3) and (4) are now trivial and (5) reduces to 8.1.3(1).
It is therefore permissible to assume throughout that u,v E 1mB.

Toprove(3)wenote that a .vq—vuq u.vq+uv.q—(uv+vu)q—_
2)i(uv)q + 2A(uv q)e + 2(u, v)q = 0 by (1) and Corollary (2).

To prove (4) we can deduce from (3) by taking conjugates that qv . U =
q . uv apply (*) and obtain —vq a = 111 . q = vu . q, whence vq a = vu . q.

To prove (5) we note that u,q, vq are pairwise orthogonal in ImA because
of a) and of )i(vq . q) = )i(vq2) = —(q, q)A(v) = 0. If we now put z = U,

v = q, z = vq in the corollary, we obtain uq . vq = —(vq . q)u = —(q,q)iiu.
Statement c) follows from b). 0

Remark. The calculation leading to (1) can be performed for any elements
of A. We thus obtain for all x,y,z of an alternative quadratic algebra the
identity

(6) z + z yz = + 2A(y)xz + 2A(z)xy

— 2(y,z)x— 2A(zz)y—2(z,y)z
+ (4A(z)(x,y) —2(z,yz))e.

This identity is, even for the associative algebras H and Mat(2, little
known. A proof for 2 x 2 matrices is implicit in a paper by H. HELLUJG
(mv. Math. 17, 1972, 217—229).

5. The Euclidean Vector Space A and the Orthogonal Group 0(A).
In the results of I to 4 is included the

Theorem. If A is a quadratw, alternative algebra without divisors of zero,
then A is an inner product space with respect to the bilinear form ( ,

The product rule

IzyI=IxIIyI holdsforall x,YEA
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and in particular all the mappings p4:A A, z '— axa, a E A, = 1,

are isometries of A.

A8 a generalization of the generation theorem 7.3.2 for we have
the

Generation Theorem for 0(A). Let A be a finite-dimensional, alterna-
tive, division algebra (and hence, in a quadratic algebra by 8.2.2).

Then every proper isomeiry f E is a product of at most n := dimA
mappings Pa.

The full group 0(A) is generated ôy the mappings

z '—. azo, jal = 1 and z i—. —1.

Proof (analogous to that of Theorem 6.3.2). 1) Every / is a
product of an even number k < n of reflections 84. For any two reflections

we have o = o just as before, because = —aia.
2) for f 0(A) we have fose E so that 0(A) is generated by

the mappings and the mapping (note that = s1). 0

Warning. Since the associative law is no longer available there is no ana-
logue of CAYLEY'S theorem in 7.3.2. Every mapping z i—. a(xb) or x
(az)b, = = 1, is, of course, orthogonal by the product rule, but A in
the non-associative case has other such mappings, and so for example, the
orthogonal mappings z i—i [a(zb)Jc for = = fcj = 1 cannot in general
be written in the form z i—. u(zv) or z i-. (ux)v.

§2. EXISTENCE AND PROPERTiES OF OCTONIONS

As HAMILTON showed, the algebra C arises from the algebra R when, in
the Cartesian product R x R of real number pairs, one introduces a new
product defined by

(ai,a2)(bi,b2) = (aibi — b2a2,c2bl + b2ai), a1,a2,b1,b2 E IL

By means of an analogous duplication process, the quaternion algebra IRE
(defined to within isomorphism) can be derived from the algebra C. One
defines a multiplication in the product space C x C of complex numbers by

(ai,a2)(bi,b2) = (aibi — 62a2,a2ibj + b2ai), for a1,a2,b1,b2 E C.

This procedure is completely canonical: by means of the bijection

a1 a2CxC—.fl, (aj,a2)—. - - I,\—03 a11
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the matrix multiplication in fl is carried over to C xC (see 7.1.2). We shall
see below that this duplication process can again be carried out in H, to
give the new CAYLEY-algebra of octonions 0.

1. Construction of the Quadratic Algebra 0 of Octonions. Moti-
vated by the considerations outlined in the introduction, we define a prod-
uct 1111 x H by

xy= (zi,x2)(yi,y2) := (ziyi , z2yi +y2xi),

where z = (z1 , z2), y = ,Y2) are any two elements of lii x 1111. It is easily
verified that both the distributive laws hold, and thus H x H becomes an 8-
dimensional R-algebra, which we call the CAYLEY algebra of octonions and
denote by 0. It must be emphasized that in the definition of the octonion
product the order of the factors in the right-hand brackets is ab8olutely
vital. If, for example, one were to write x1y2 instead of in the second
component, an uninteresting algebra would be obtained.

If we denote by e' the unit element of H, then e := (e',O) is the unit
element of 0. We can also deduce directly that:

0 is a quadratic algebra: for every x = (x1, X2) E 0,

(1) = 2R.e(z1)x — ((z1,z3) + (z2,x2))e.

Proof. It follows from the definition that z2 = (z? — z2x2, +z2x1). We
know (see 7.2.1 and 7.2.2) that for quaternions = 2R.e(x1)xi —(x1, z1)e',
x2X2 = (x2, x2)e', 2i + x1 = 2 Re(xi)e'. Hence

= (2Re(xi)xi — ((z1,x1) + (z21x2))e',2Re(zi)z2). 0

2. The Imaginary Space, Linear Form, Bilinear Form, and Conju-
gation of 0. A8 0 is a quadratic algebra, the imaginary space ImO, the
linear form the bilinear form (x,y) and the conjugation mapping z
are all defined invariantly. The relationships with the corresponding con-
structs in IHI, if octonions are written as quaternion-pairs (x1, x2), (y1,y2)
are simple. It is easily checked that

(1)

(2) (z,y) = (z1,y1)+(z2,y2),

(3) ImO=ImHxIHI,

(4)
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As the bilinear form of H is po8itive definite, the relation (2) has the
consequence that:

The bilinear form of 0 is positive definite, that is, 0 is a Euclidean
vector space.

3. 0 as an Alternative Division Algebra. As with quaternions, the
following identities hold

(1) z,yEO,

(2) = (x, z)y = z, y E 0.

Proof. The statements (1) follow directly from the definition of octonion
multiplication, since =

As regards (2) we have, with z = (zj, x2), y =

ly = (2j, = (iiYi + +

and consequently, since H is associative

= + — [—yji2 + z2[yizi + z2y2J
+ +

= + YLX2Z2,Z2Z2Y2 + = ((x1,z1) + (x2,t2))y,

which, by 2(2), is equivalent to the assertion made. 0

Theorem. The algebra 0 is an alternative division algebra.

Proof. With = 2.)i(z)e — x the identity (2) can be written as z(2A(z)y —
zy) = — x2)y, from which it follows at once that z(zy) = z2y for
all z, y E 0. Conjugation gives = p22. Since run through all
elements of 0 when x, y do, it follows that (yz)z = yz2 for all x, y E 0.
Hence 0 is alternative.

As the bilinear form of 0 is positive definite, 0 has no divisors of zero
(see Theorem 1.2). As a finite dimensional algebra 0 is thus a division
algebra (R.5). 0

By Theorem 1.3 the following identity holds for the algebra 0

(z,y) = = x,y €0,

which can of course also be verified directly.
The algebra 0 is, by FROBENIUS'S theorem, non-associative. Thus, for

example, if e,i,j,k denote the standard basis of H:

(0, e)[(O, i)(0, j)] = —(0, e)(k, 0) = (0, k),
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[(0, e)(O, i)](0,j) = (i, 0)(0,j) = —(0, k);

see also 6 on this point.

4. The "Eight Squares" Theorem. By 1.2(4),

The product rule: IxyI = IxI lvi for z, y E 0

likewise holds for the alternative algebra 0.

This can of course also be proved directly, though somewhat tediously,
from the definitions of 0. In view of the product rule for quaternions, if
one writes x = (XL,Z2), y = (yl,y2) and takes account of zy = —

y2z2,z2yi +y2zl) as well as 2(2), one has to show that

(*) Iziyi — J/3X212 + + 7/2Xl12 = (lz112 + 1Z212)(1Y112 + 111212),

ri, X2, 112 This leads, after some work, to =
which is true by 7.2.1(8). The analogy between (i) and GAUSS'S identity
in 7.2.3 should be noted.

From the product rule for octonions, follows an

"Eight-squares theorem." For all p, q, r, s,t, u, v, w R and all P, Q, R,
5, T, U, V, W E the following formula holds:

=(Pp—Qq-Rr-Ss—Tt-Uu-Vv—Ww)2
+(Pq+Qp+Rs-Sr+Tu—Ut--Vw+Wv)2
+ (Pr-Qs+Rp+Sq+Tv+Uw— Vt — Wu)2

+(Ps+Qr-Rq+Sp+Tw-Uv+Vu-1Vi)2
+ (Pt - Qu - Rv — Sw + Tp + Uq + Vr + Ws)2
+(Pu+Qt_Rw+Sv_Tq+Up-Vs+Wr)2
+(Pv+Qw+Rt_Su—Tr+Us+Vp—Wq)2
+(Pw—Qv+Ru+St--Ts--Ur+Vq+Wp)2.

Proof. We apply the product rule to the two octonions

(Pe+Qi+Rj+Sk,Te+Ui+Vj+ Wk),

(pe + qi +rj +sk,te + ui-f vj + wk). 0

The "eight-squares theorem" was found by GRAVES in 1844 and by CAY-
LEY in 1845 with the help of his octonions. The theorem had, however, al-
ready been discovered in 1818 by C.F. DEGEN (Adnmbratio dcmonst ratio-
nis theorcmaiis arithmetici maxame unit'ersalis). DEGEN thought, wrongly,
that the result could be extended to 2" squares; GRAVES at first also be-
lieved in such an extension. Further historical information will he found in
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L.E. DICKSON: On qtialernions and their generalization and the history of
the eight square theorem, Ann. Math. 20, 1919, 155—171. In this paper are
also given eight.squares formulae which go back to DEGEN.

5. The Equation 0 = H Hp. For the algebras C and H, we have the
following representations

and

respectively, as direct sums of real vector spaces, If in C, is identified
with the pairs (a,0), a E and C in H is identified with the quaternions
(a,/3,O,O), a,fl E R. In this way R is asubalgebraC containing the identity
element of C, and similarly C is a subalgebra of H containing the identity
element of H. The sum representations are orthogonal with respect to the
natural scalar product in C and H respectively.

An analogous situation obtains for the algebra 0. In the first place it is
clear that:

The set {(u, 0): u H} is a subalgebra of 0, isomorphic to the quaternion
algebra H, and containing the unit element e of 0.

We identify this subalgebra with H and the following multiplication rules
then hold for all u E H and all (as, 02) E 0:

u(aa,a2)=(uai,a2u), (a1,a2)u=(aiu,o2ü).

For p := (0,e') it can be verified directly that

p2 = —e, (al,a2) = aj for all (ai,a2) E 0,

and there follows easily the

Theorem. Considered as a vector space, 0 = This sum is orthog-
onal with respect to the Euchdean scalar product of 0. For all u, v H the
following relations hold:

(1) u(vp) = (vu)p,

(2) (up)v = zn particular pv = 1p,

(3) (up)(vp) = —iu.

Proof. Since (al,a2) = a1e+azp it is clear that 0 = l}fl+Hp. As we always
have (aie,a2p) = ((ai,0),(0,a2)) = (ai,0)+(0,a2) = 0, this representation
is orthogonal and hence a direct sum. The rules (1)—(3) are easily checked
by straightforward calculation, for example in the case of

(1): u(vp) = u(0,v) = (0,vu) = (vtz)p,
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(2): (up)v = (0, u)v = (0, = (ui,)p,

(3): (up)(vp) = (O,u)(0,v) = (—iiu,0) = —iiu. 0

Equations of type (1)—(3) will play an important role in the next section.

6. Multiplication Table for 0. We know (R.6) that every multiplication
in a vector space V with basis es,. .. , is completely determined by the
li2 individual products eye,,, I p, < n. In the case V := with the
natural basis e1 := (1,0,... ,O),..., e8 := (0,... ,0,1) the table

— e2 e3 e4 e5 e6 e7 e8

e3 —ej e4 e6 —4 —e8 C7

e3 —e4 C1 e2 e7 —e5 —e6

e4 e3 —e2 —e1 e8 —e7 e6 —e5

4 —e6 —e7 —e1 C2 e3 e4

C6 C5 —e8 e7 —C2 —e1 —e4 e3

C7 e5 —e6 —e3 e4 —e1 —e2

e8 —e7 4 e5 —e4 —e3 e2 —e1

defines the octave multiplication, if is the unit element. We can imme-
diately read from this table the non-associativity of 0, since for example
e5(e6e7) = e8, whereas (e5e6)e7 = —e8. On the other hand, it would be
extremely tedious to verify from this table that 0 is alternative.

§3. UNIQUENESS OF THE CAYLEY ALGEBRA

Em gróBeres System kann nicht mehr alternativ
sein (M. Z0RN 1933).

[A larger sy8tem can no longer be alternative.]

In this section A denotes an alternative quadratic algebra without divisors
of zero. Our object is to prove ZORN'S theorem which asserts that A is
either associative or else isomorphic to the CAYLEY algebra.

As in 9.1.1 the bilinear form of A is denoted by (x,y) (x,y), and by
Lemma 9.1.1 it is positive definite.

1. Duplication Theorem. Let B be a proper sabalgebra of A containing
e. Then:

a) B is associative.

b) There exists an element q ImA with q2 = —e and (13,q) = 0.
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c) For q E Im..4 with q2 = —e and (B,q) = 0, the set B + Bq is a
subalgebra of A with dim(B+Bq) = 2dimB, and the rules 4(3), 4(4)
and 4(5) hold.

Proof. b) By the FROBENIUS lemma 8.2.1, we have A = ImA and
B = Since B A there is a q ImA with q 0 and (B, q) = 0.

Appropriate normalization of q yields the required result.
c) Let q E ImA be chosen such that q2 = —e and (B,q) = 0. Lemma 1.4

can then be applied, so that by part c) of that lemma B+ Bq is a subalgebra
of A, and by part a) the sum is direct and the mapping v vq of B onto
B is injective, since vq . q = —v. Furthermore

(*) (13,Bq)=0.

a) By 4(3) we have, in the first place (uv . w)q = w(uv . q) = w(v . uq)
for u, v, w E B. In view of (*) we can now apply Lemma 1.4 for uq instead
of q. By 4(3) for q and for nq, we thus have in the second place (u . vw)q =
vw . uq = w(v . uq), and comparing the first terms of these two sets of
equations we have (uv. w)q = (u . vw)q, and hence uv w u vw.

2. Uniqueness of the Cayley Algebra (ZORN 1933). Every alterna-
tive, quadratic, real, but non-associative algebra without divisors of zero is
isomorphic to the CAYLEY algebra 0.

Proof. By FROBENIUS'S theorem 8.2.4, dimA > 4, and by the Quaternion
lemma 8.2.3 there is a subalgebra B of A, and an algebra monomorphism
f: IHI —+ A with f(IHI) = B. Since A is non-associative, B A. By part
b) of the Duplication theorem 1, there is an element q in A such that
q2 = —e and (B, q) = 0. By part c) of the Duplication theorem 1, B e Bq
is a subalgebra of A containing e. On the other hand 0 = IHIe IFlip, by

Theorem 2.5. The mapping

(*) f(u)+f(v)q,

is certainly bijective and As the rules (1)—(3) of Theorem 2.5
coincide with the rules (3)—(5) of Lemma 1.4, the mapping (*) is in fact an
algebra isomorphism.

If B Bq were not equal to A, B Bq would be associative by part a)
of the Duplication theorem, in contradiction to 2.3, which says that 0 is
non-associative. Consequently A = B Bq 0. 0

We can now state this result in the form of a generalization of FR0BE-
NIUS's theorem 8.2.4.

Structure Theorem. Every alternative, quadratic, real algebra without
divisors of zero is isomorphic to IR, C, IHI or 0.
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It should be remembered by Theorem 8.2.2, every finite dimensional
alternative real division algebra is quadratic, and is thus likewise isomorphic

C, 0.

Remark. The structure theorem is itself capable of considerable general-
ization. The final result is associated with the names, among others, of
BR.UCK, KLEINFELD (Proc. Am. Math. Soc. 2, 1951, 878—890), SIflRsHov
and SLATER (Proc. Am. Math. Soc. 19, 1968, 712—715) and states that a
simple alternative but non-associative algebra is a Cayley algebra over its
center.

3. Description of 0 by ZORN's Vector Matrices. We introduced
octonions in 2.1 as pairs (x1,x3) of quaternions. Max Z0RN in his classical
work in 1933 gave a description of alternative algebras which comes closer
to meeting the desire to facilitate explicit calculation. To bring out the
motivation of ZORN's definition we start from the octonion product (see
2.1)

(1) = (z1,z2)(y1,y2) — +

With zk = ake + Uk, Yk = /ike + vk, where Ok,13k E and uk,vk E ImIHI,
this product zy, when we also bear in mind that uv = —(u,v)e + u x v,
has the form

(2) ([aifli — — + (u2, V3))C

+ + 131u3 + 021)2 f32u2 ÷ U1 X V1 — U2 x v2,

[03/31 + 01/32 + (u2,v1) — (u1, v3))e

—a3vj+/33u1+o1v2+/31u3—u2xvi—u1 xv2).

We now regard as vectors of R3 and "complexify"

(3) a : 01 + i02, 13 : fi1 + i/32 E C; u := u1 + H13, V V1 + iv2 E C3.

now on a bar will be used only for complex conjugation; for vectors
w = (w1,w3,w3), z = (z1,z2,z3) C3 we write

(4) (w, z) := wxz =: (w2z3—w3z2,w3z1—w1z3, W1Z2—W3Z1).

The expression (2) now takes the form

(5) (Re([a13—(u,v)]ei-&v+flu+u x

Im([o/i — (u, v)Je + at, + flu + ü x
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after using identities such as ü x = ti1 x v1 x v2 +i(—u2 x v1 —ui x v2).
The formula (5) can be expressed particularly conveniently if one takes the
eight-dimensional real vector space £ := Ce C3 with elements ae + u,
a E C, v E C3, and introduces the mapping

(6) F:O £, x = (zi,z1) = (aie+ui,a2e+u2) '—p ae+u = x1 +ix2.

We can then, to summarize, say that:

The mapping F is an 11k-vector space isomorphism; for any two octonions
x,y with F(x) = ae + u, F(y) = fie + v we have

(7) F(zy) = [at3 — (ii, v)]e + [&v + f3u + ii x

It is now clear how we should multiply in £: we define

(8) (ae + u)(/3e + v) := [a/3 — (i, v)]e + [ãv + flu + u x i3]

and we know that in view of the foregoing:

C, with the multiplication defined by (8), is an 11k-algebra; the mapping
F:O C is an 11k-algebra isomorphism.

Following ZORN's example we can also write the elements ae + u of £

as vector matrices (that is, matrices with vector entries) Their

product is then the "matrix product"

( a u\ ( fi v'\ ( a/3—(u,v)
&fl—(u,i7)

Rem ark. One sometimes finds the octave product defined in the literature
in a different way from that used here or in 2.1. Often an isomorphism
is given, which is obtained by changing the product (x, y) i—p zy into the
"reversed" product (x, y) yx. In view of the uniqueness theorem 3 all
these different representations are of course isomorphic.

ADDITIONAL READING

E. KLEINFELD: A characterization of the Cayley numbers, in Studies in
Modern Analysis (A.A. Albert, editor), MAA (1963), pp. 126—143.
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Composition Algebras.
Hurwitz s Theorem Vector-
Product Algebras
M. Koecher, R. Remmert

Durch diesen Nachweis wird die site Streitfrage, ob sich
die bekanaten Produktformeln für Summea von 2, 4 und 8
Quadraten auf Summen von mehr als 8 Qnadraten ausdehnen
lassen, eadgültig, und zwar in verneinendem Sinne
entschieden (A. HURWITZ 1898).

[By this proof, the long-debated question of whether
the well-known product formulae for sums of 2, 4 and 8
squares can be extended to more than 8 squares, has finally
been answered in the negative.]

1. For multiplication in the algebras R, C, El and 0, the formula IzyI2 =
IzFIyI2, holds, where I denotes the Euclidean length. If one expresses the
vectors z, y and z := zy in terms of their coordinates with respect to an
orthonormal basis, as (ifl,), and (c,), respectively, then we obtain, in
view of the bilinearity of the product zy the

Squares Theorem. In thefourcasesn= 1,2,4,8 there aren real(in fact
rational integral) bilinear forms

n
I. — —1

— V — . .

such that, forall ER

(*)

We have already discussed this theorem in detail in 3.3.4, 7.2.3 and 9.2.4.
The French mathematician LEGENDRE (1752—1833) was the first to give

a proof of the impossibility of such an equation for n = 3. In his great
work Theorie des nombres which appeared in Paris in 1830 he remarks
on page 198 that although 3 = + 12 + 12 and 21 = 42 + 22 + 12 their
product 3 . 21 = 63 is not the sum of three squares of natural numbers,
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so that it follows that the squares theorem cannot possibly be valid for
n = 3 with rahonal bilinear forms "Had HAMILTON known of this
remark of LEGENDRE he might perhaps have there and then abandoned his
attempt to multiply triplets. Fortunately he had not read LEGENDRE: he
was self-taught." So wrote van der WAERDEN in "Hamiftons Enldeckting
der Quaternionea" (p. 14).

2. The question, which at once imposes itself, is for what values of vi 1

does the equation (*)

have solutions in which Ci,. .. are suitably chosen bilinear forms in
and . The question was finally solved in 1898 by Adolf

HuawITz. HuawITz was born in 1859 in Hildesheim, Germany, and was
taught at the gymnasium by H.C.H. SCHUBERT, the father of "enumera-
tive algebraic geometry." In 1877 he studied under KLEIN, WEIERSTRASS
and KRONECKER and obtained his doctorate in 1881 in Leipzig. In 1882 he
took his postdoctoral lecturing qualification in Göttingen, because those
who had received their degrees via a Realgymnasium were not allowed to
qualify as university lecturers in Leipzig. In 1884, at the age of 25, he
became an "extraordinarius" (a sort of supernumerary lecturer of junior
status, roughly equivalent to a reader in a British university, or associate
professor in an American university) at Königsberg, where he became a
friend of HILBERT and MINKOWSKI. In 1892 he declined the offer of be-
coming SCHWARZ'S successor in Göttingen and took over as FROBENIUS'S
successor at the Federal Polytechnic in Zurich, where he died in 1919.

Huawrrz's main contributions were in the theory of functions and in
particular the theory of modular functions, algebra and algebraic num-
ber theory. In his paper published in the Nachrichten der k. Gesdlschaft
der Wissenschaften zu Göttingen: Uber die Komposition der quadratis-
chen Formen von beliebig vielen Variablen, 1898, 309—316 (Math. Werke
2,565—571), he proved with the help of the matrix calculus, that the cases
n = 1,2,4,8 are the only ones for which the squares theorem holds.

In this chapter we shall derive HURWITZ'B result from a structure theorem
on composition algebras, which is itself based on the main theorem on
alternative algebras.

3. In Euclidean 1R3, we have, as is well known, a vector product. To any two
vectors u, V E corresponds the vector u x v R3, of length lul lvi sin 9z

(u,v), which is perpendicular to u and v, and directed in such a way that
the three vectors u, v, u x v form a "right-handed screw." By means of the
mapping R3 x R3 —+ (u, v) — ux v, the vector space becomes a vector
product algebra. Such algebras will be studied systematically in §3. As an
application of the HURWrFZ structure theorem for composition algebras
we shall show that there are vector-product algebras of dimensions 1, 3,
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and 7 only, and that two such algebras of the same dimension are always
isometrically isomorphic.

COMPOSITION ALGEBRAS

Let V be a real vector space and (x, y) i—+ (a,, y) a scalar product on V. An
algebra A = (V,.) {0} is called a composition algebra (with respect to
the given scalar product), if multiplication in A is isometric, that is to say,
if

forall Z,YEV (product rule).

A composition algebra cannot have divisors of zero. The algebras R, C,
1111, 0 are composition algebras with unit element. The object of this section
is to show that these four algebras are the only non-isomorphic composition
algebras of finite dimension with a unit.

1. Historical Remarks on the Theory of Composition. To explain the
choice of the word "composition" in this context, we shall briefly outline
the historical origins of the concept. In the famous Disquisitiones arith-
meticae, the masterpiece which GAUSS wrote as a young man and which
was published in 1801 (Werke 1), there is a section, beginning at Article
153, devoted to a systematic study of the arithmetic of binary quadratic
forms, that is to say polynomials of the form f(ei, = + +
whose coefficients are rational integers. Since the days of FERMAT mathe-
maticians had been interested in questions of the representation of integers
by such forms, or in other words in the question of whether the equation

= n where n E Z is given, possesses solutions in integers. This
arithmetical problem is significantly more difficult than those which were
considered in the arithmetic of the Ancient Greeks (Euclid, Book 9), and
the first general results were obtained by LAGRANGE.

In the context of his researches into the problem of the representability
of natural numbers by quadratic forms, GAUSS introduced the concept of
the composition of quadratic forms (Disq. Arith. Art. 235 et seq.) If f, g, h
are any three given binary quadratic forms with coefficients a,b,c; a',b',c';
A, B, C respectively, then he said that h is composed off and g (or is the
result of the composition of f and g), if the equation

(*) + 2B(1(2 + = + + + +

holds identically for all , and all where (' and (2 are suitably
chosen bilinear forms in and with integer coefficients. GAUSS'S
theory of composition is one of the culminating points attained in the
Disquisitiones. It is now known that this theory is essentially equivalent to
the theory of ideals in quadratic number fields (for details, see SCHARLAU
and OPOLKA: From Fermat to Minkowski, Springer-Verlag, 1985, p. 88ff.).



268 10. Composition Algebras. Hurwitz's Theorem

One of the main results of the Gaussian theory (to simplify greatly) is
that the "equivalence-classes" of integral quadratic forms of a given dis-
criminant d := b2 — cc form a finite Abelian group (the so-called class
group). GAUSS, in effect, proves the group properties without knowing the
group concept. The theory is pureLy arithmetic; if one allows the coefficients
to be any real numbers and restricts one's self to positive definite forms
(that is, a, c, —d positive) then (*) is transformed by a suitable change
of variables into the two-squares formula + = (u2 + v2)(z2 + y2),
which is solved by = uz — vy, = uy+ vx (Two-squares theorem 3.3.4).

Following in GAUSS'S footsteps, general compositions of quadratic forms
in n variables were considered. Some interesting problems also arose even
when the restrictive arithmetic requirement that the coefficients must be
integers was dropped. HURWITZ begins his paper on the squares theorem,
to which he gave, quite deliberately, the title "Uber die Komposition der
quadratisehen Formen ..." [On the composition of quadratic forms] with
the following words: "In the domain of quadratic forms in n variables, a
theory of composition exists, if for any three quadratic forms 'p, x of
non-vanishing determinant the equation

(1)

can be satisfied by replacing the variables z1, z2, . . . , z,, by suitably cho-
sen bilinear functions of the variables 21,22,... ,x,, and y,, .. .y,,. As a
quadratic form can be expressed as a sum of squares by a suitable linear
transformation of the variables,' one can consider, without loss of general-
ity, in place of the equation (1), the following equation:

(2)

In view of this the question as to whether a composition theory exists
for quadratic forms with n variables is essentially equivalent to this other
question, as to whether the equation (2) can be satisfied by suitably chosen
bilinear functions . of the 2n independent variables .. .

Y1,..,Yn.
We note a 8imple criterion for the existence of composition theories.

The identity

+ .. • + + + 'ia) = .. .. +
('I')

holds for n bilinear forms 1 < ii < n, if and only if (lit",.) with
x . y := (4,(z, y),. . . y)) is a composition algebnz.

Proof. Any n bilinear forms 4k,,... ,4,, make R", as already explained,
into an algebra. The product rule IxyI = IxI lyl holds if and only if (s) is
satisfied. Cl

'For Hurwitz quadratic forms here are always positive definite.
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As every n-dimensional Euclidean vector space V is isometrically isomor-
phic to the number space of n-tuples z = y = (11',... ,lin)
with its canonical scalar product (x, y) = it also follows that:

There is a theory of composition for real quadratic forms in n variables,
if and only if there is an n-dimensional composition algebra.

2. Examples. The algebras C, H, 0 give the classical composition
theories for n = 1,2,4,8. For C this is the identity

(1) + + (x1y1 — x2y2) + (x1y2 + x2y1)2

but we shall not repeat the corresponding identities for H and 0 which
were given in 7.2.3 and 9.2.4.

Every one—dimensional composition algebra is isomorphic to Ilk and in
particular has a unit element (see R.4). It is easy to give examples of
composition algebras of dimension 2, 4 or 8 which have no unit element.
Suppose first that n = 2. We define on Ilk2 three different multiplications
with the help of the ordinary complex product wz in ilk2 = C. We set

wOz:=w5,
1 2 3

It is easily verified that:

A,, := (Ilk2, 0), 1 < ii < 3 is a non-alternative composition algebra with-

out unit element, only A3, being commutative. Their associated composition
formulae are:

(2) + + = (zjyj + x2y2)2 + (xiy2 — .r2yi)2,

(3) + + = (x1y1 + x2y2)2 + (—x1y2 + x2y1)2,

(4) + + = (xi!ji — x2y2) + (—x1y2 — x2!,l)2.

The equations (1), (4) differ from one another only inessentially in sign,
and the same is true of the pair (2), (3). It can easily be shown that:

Of the algebras C, A1, A2, A3 no two are isomorphic, and every other
two-dimensional composition algebra A is isometrically isomorphic to one
of these four algebras.

Now suppose n = 4. By taking any two quaternions a, b E 1111 of unit
length, we can define a multiplication by adopting any of the four definitions

x 0 y := azyb, x 0 y := a2yb, x 0 y := x 0 y :=

where the expressions on the right denote the ordinary quaternion prod-
ucts. In this way we obtain infinitely many non-isomorphic composition
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algebras (R4, 0) without unit element. The same method can also be used
to construct infinitely many non-isomorphic composition algebras (1R8, 0)
when n = 8.

3. Composition Algebras with Unit Element. In this paragraph
.4 = (V,.) denotes a real, but not necessarily finite-dimensional compo-
sition algebra. We use the prodttct rule in the (squared) form:

(xy,zy)=(x,z)(y,y), z,yEV.

To appreciate the fairly drastic consequences of this condition, we shall
apply the linearization process twice. We write x + z' in place of z in (i)
and obtain after a straightforward reduction

(zy, zy) + 2(xy, x'y) + (z'y, z'y) = ((z, x) + 2(x, x') + (z', z'))(y, y).

It now follows from (*) that

(0) (zy,z'y) = (z,x')(y,y).

If we now write y + y' in place of y, we obtain

(x'y, zy) + (z'y', zy) + (x'y, zy') + (z'i,',
= (z,x')((y,y) + 2(y,y') + (v',y')).

By (0) the first and last terms on the left are equal to the corresponding
terms on the right and hence:

(1) (zy,z'y') + (zy',z'y) = 2(x,z')(y,y') for all z,z',y,y' E V.

If we now put z' := z, y' := y and then z' := z, y' := z, we obtain
(respectively)

(2) (zy,zy) = (z,z)(y,y) for all z,y,z E V.

(3) (zy,rz) = (z,z)(y,z) for all z,y,zE V.

On the other hand if we put z' := z, y' := e or z' := e, y' := z then (1)
gives

(4) (xy, z) + (z, zy) = 2(y, e)(z, z) and (zy, z) + (zz, y) = 2(z, e)(y, z).

After these preliminaries we are now in a position to demonstrate the
fundamental

Theorem. Every real composition algeôra A with unit element e is quadratic
and alternative.
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Proof. In the first equation of (4) we write zy for x and in the second
equation xz for z. In view of (2) and (3) respectively we obtain

(xy.y,z) + (y,y)(x,z)= 2(y,e)(xy,z),

(x . xz,y) + (x,z)(y,z) = 2(x,e)(y,xz).

From these formulae for real numbers we obtain, since the scalar product
(x, y) is non-singular,2 identities valid for all elements x, y E A

(5) zy 2(y,e)xy— (y,y)z,

(6) x xy= 2(x,e)xy— (z,x)y.

If we put y := e in the last equation we obtain

(7) x2=2(z,e)x—(x,x)e forall zEA,

whence A is quadratic. Right-multiplication of (7) by y yields x2 y = x xy
by (6); left-multiplication of y2 = 2(y,e)y — (y,y)e by x leads, by (5), to
x y2 = y. Consequently A is also alternative. 0

Analysis of the proof. The derivation of the equations (1)—(3) uses only
the symmetry of the bilinear form (x, y) and the fact that is a field of
characteristic 2. The derivation of (5), (6) needs the non-singularity of
(x,y). We have therefore in reality proved the more general result:

Let K be a commutative field of characteristic 2, and let A = (V,.) 0

be a K-algebra with unit element. Let (z, y) be a nonsingular K-bilinear
form on V, such that (xy,xy) = (x,x)(y,y) for all x,y E V. Then A is
quadratic and alternative.

4. Structure Theorem for Composition Algebras with Unit Ele-
ment. Composition algebras have no divisors of zero. In view of Theorem
3 and the structure theorem of 9.3.2, we can therefore state the

Structure Theorem. Let A be a composition algebra with unit element.
Then A is isometrically isomorphic to one of the four algebras C, H and
0.

This theorem can be generalized to arbitrary ground fields (even with
characteristic 2). We refer the reader to the article by KAPLANSKY: Infinite-
dimensional quadratic forms admitting composition, in Proc. Am. Math.
Soc. 4, 1954, 956—960.

2A bilinear form (z, is said to be non-singular, if (w, v) 0 for all v E V
implies w = 0. Positive definite bilinear forms are non-singular. The equation (5)
is obtained from the identity (zy . y — 2(y, e)xy + (y, y)z, z) = 0 which holds for
all z E V. The equation (6) follows similarly when one finally substitutes y for z.
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Historical Note. The dimension of a composition algebra with unit element
is, by the structure theorem, 1, 2, 4 or 8. This weaker statement can be
derived in a direct fashion, and in this connection we should mention a
note, published in l9SOLon Mteltiplication in n dimensions, in Noni. Mat.
Tidskr. 7, 111—116 by OGMUNDSSON. As regards the author of this note,
HELGASON writes to us: "He was a farmer on Snaefellsnes (West Iceland)
and had a very limited mathematical training, probably on the level of an
American High School. lie found the quaternions on his own."

Another proof of this theorem which works consistently with bases,
avoids alternative algebras, and does not use the fundamental theorem
of algebra either, is to be found in Bos: Multiplikation in evklidischen
Riumen, in Jber. Devisch. Math.- Verein. 73, 1971, 53—59.

The existence of a unit element in A is essential to the validity of the
Structure theorem, as the examples of the algebras A1, A2, A3 in paragraph
2 show.

§2. MUTATION OF COMPOSITION ALGEBRAS

In the light of 1.1 the statement that there exists a theory of composition
for forms in ii variables is equivalent to the assertion that there exists an n-
dimensional composition algebra. Such algebras do not need to have a unit
element, and as we saw in §1.2, they exist in bewildering profusion. The
structure theorem 1.4 appears therefore at first sight to be of no great help
in solving HURWITZ'S problem. And yet in reality the problem has already
been essentially solved. There is, in fact, a simple process which enables us
to go from any arbitrary composition algebra (V1.) to a composition algebra
(V, 0) with vail element. We shall begin by describing a general method of
changing the multiplication in an arbitrary algebra.

1. Mutation of Algebras. Let (V1.) be a K-algebra, and let f: V —+
g: V —. V be two K-linear mappings. Let the multiplication 0 be defined by

xOy :_—f(x)g(y) foroll x,yEV.
Then (V,0) is a K-algebra.
Proof. The distributive laws for 0 follow from the distributive laws for
and the linearity of f, g. 0

Every element a of an algebra A = (V,.) defines by right- and left-
multiplication two K-linear mappings

L4: V —' V, x i—. ax; Ra: V —' V, x s—' za.

If both the mappings La and R4 are bijective, then there exists by the
preceding argument the algebra .4(a) := (V1 0) with the product

x Dy := R1(x).



§2. Mutation of Composition Algebras 273

and we call .4(a) the mutation of A with respect to a. The mappings R;1,
serve as a substitute in .4 for the inverse a1 of a which does not in

general exist. If a1 does exist, then x 0 y = (xa')(a1y). In every case

(1) xa0ay=xy.

If A has a unit element, then .4(e) exists and Ac = A. In general however
mutations are entirely distinct from the original algebra (see §2.2 on this
point).

Existence Criterion for Mutations. If A is finite-dimensional, then the
mutation .4(a) exists for every element a A that is not a divisor of zero.
In particular the mutation .4(a) exists for every element a E A \ {O) in a
finite dimensional composition algebra.

Proof. When a is not a divisor of zero, the two mappings are
injective and thus, if .4 is finite-dimensional, bijective as well. 0

In the next paragraph we shall need the two following propositions on
mutations.

1) Every mutation A(a) of a finite-dimensional algebra has a2 as unit
element.

2) A mutation .4(a) of a composition algebra A is itself a composition
algebra if lal = 1.

Proof. By (1), we have a2 0 ax = ax and ra 0 a2 = xa. Since however the
mapping x ax and x i—' xa are bijective, it follows that a2 0 x = x =
x 0 a2, x A. This proves the first statement. As for the second, it follows
from (1) that Ixal layl = lzyI = Ixa 0 ayf and hence lul lvi = lu 0 for all
u,vEA. o

2. Mutation Theorem for Finite-Dimensional Composition Alge-
bras. Every finite-dimensional composition algebra .4 possesses a mutation
.4(a) with lal = 1, such that .4(a) is isometrically isomorphic to one of the
four algebras IR, C, 1111, 0; in particular, therefore, dimA = 1,2,4 or 8.

Proof. As A {O) there are elements a A with lal = 1. By 1.1) and
1.2), the algebra .4(a) is a composition algebra with unit element. The last
statement now follows from the Structure theorem 1.4. 0

All the composition algebras mentioned in 1.2 such as for example the
algebras A, = (ilk2, 0), 1 <p < 3, fall under the mutation theorem. Direct
verification gives immediately:

Every mutation Aj(I), .42(1), A3(1), where I := (1,0) denotes the "com-
plex unity" is isometrically isomorphic to the algebra C.
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This proposition is especially instructive because it illustrates how mu!-
tiplication can be altered by mutation: algebras which are neither commu-
tative nor alternative can become commutative and alternative after muta-
lion.

In contrast to this may be noted:

If A = (V,.) is a finite-dimensional associative division algebra, then

A(a) (V, 0) with x 0 y = za2y for every a E A \ {0};

and the mapping f:A(a) A, z a2x, is an algebra isomorphism.

Proof. By Lemma R.5 there exists a 0, so that, by
1.(1) x 0 y = As A is associative, it follows that x 0 y =
xa2y. The mapping f is linear and bijective, and furthermore f(x 0 y) =
a2(xa2y) = (a2x)(a2y) = f(z)f(y). 0

3. HURWITZ's Theorem (1898). Let n � 1 be a natural number and
let (i,... , be real bilinear forms in the real variables ci,. . . , and
?h,. such that

Then n = 1,2,4 or 8.

Proof. We use the mutation theorem 2 and the criterion 1.1. 0

At the end of his classical work HURWITZ formulated a generalization of
the composition problem:

Let m � 1, n � 1 be given natural numbers. Determine the largest
natural number p for which the equation

is solvable by bilinear forms (i,... ,(m in ... and ta,...
In 1923 this problem was solved completely for the case m = n in Hua-

WITZ'S paper: Uber die Komposilion der quadratischer Formen, Math. Ann.
88, 1—25, (published after his death, and reproduced in Math. Werke 2,
641—666). RADON in 1922 solved the problem by a different method in his
note: Lineare Scharen or! hogonaler Mat rizen, Abh. Math. Sem. Hamburg 1,
1—14. In his formulation the solution is given by the following proposition.

The HURWITZ—RADON Theorem (1923). Let n = where
1 < u odd and 0 < a, 0 < fi � 3. Then the following Iwo statements are
equivalent:

1) There aren real bilinearforms and
such that
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ii) p�8a+2".

It is trivial that p < n. An elementary argument shows that p = n if
and only if n = 1, 2, 4 or 8, as it must be in accordance with the original
HURwITz theorem. The cases it := 4k, P := 4 and n := 8k, p := 8 are
realized by the spaces Elk and 0k, respectively, with the norm
defined by

:= 1x112 + + where x := (x1, .. .

We put qz forqeH,xEElP orqEO,xEOk, as
the case may be and verify that PqxI2 = 1q121x12. As dimilHlk = 4k and
dimiOk = 8k, statement i) of the HURWITZ—RADON theorem clearly holds
in both cases.

The methods of proof used by HUR.WITZ and RADON were devised for
the purpose. In 1943 B. ECKMANN in a paper: Gruppeniheoretischer Beweis
des Saizes von HURWITZ—RADON ñber die Jt'omposthon der quadralisclzer
Formen, Comm. Math. Helv. 15,358-366, gave a proof based on the ideas of
the theory of group representations into which the theorem can be placed.

Today, one knows (from the theorem of ADAMS) that, after translation into
the language of vectorfields on spheres, the HURWITZ—RADON number p— I

can be interpreted as an upper bound for the number of independent vector
fields ott the (n — 1)-sphere (cf. the next chapter).

§3. VECTOR-PRODUCT ALGEBRAS

Anyone who has ever successfully worked with the vector product in ge-
ometrical investigations in R3 (see 6.1.4) is bound to wonder whether a
product with analogous properties exists in spaces of other dimensions.
The frequently voiced opinion that this is possible only in because it is
only in this space that there are only two choices for a product vector u x v
perpendicular to each of the two component vectors u, v is certainly not
a conclusive argument. We shall see that our question has a close connec-
tion with composition algebras. We shall show, among other results, that a
vector product also exists in P.!, but in no other spaces of dimension n> 1.

1. The Concept of a Vector-Product Algebra. Let W be an Euclidean
vector space with a Euclidean scalar product (u,v) (u, v), and let Jul :=

be the Euclidean length of the vector u W.

Lemma. Let W = (W, x) be an R-algebra, such that

(1) u x V = —v x u for all u, V E W

(2) (u x v, w) = (u, v x w) for all u, v, w E W (interchange rule).

Then the following three statements are equivalent:
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i) If IuI = lvi = 1 and (u,v) = 0 where u,v E W then iu x vi = 1.

ii) lu x v12 = 1ul21v12 — (u,v)2 for all u,v E W.3

iii) u x (u xv) = (u,v)u — iui2v for all u,v W.

In view of (1), it follows that, in particular

(3) uxu=O forall uEW.

Proof. i) ii): In view of (3) it will be sufficient to prove ii) for linearly
independent vectors u,v E W satisfying lul = lvi = 1. For such vectors

:= lv — (u,v)ul 0 and w := (v — satisfies iwl = 1 and
(u,w) = 0. Consequently, by i) we therefore have iu x wI = 1, so that

= Iu x (v — (u,v)u)12 = lu x v12, as u x n = 0 by (3).

On the other hand since

= Iv — (u,v)u12 = 1v12 — 2(tc,v)2 + (U, v)2 ui2 = 1— (u,v)2,

the statement ii) follows from lul = lvi = 1.
ii) i): This is obvious.
ii) iii): By linearization (with v + w in place of v) the statement ii) is

clearly equivalent to

(uxv,u.xw)=1u12(v,w)—(u,v)(u,w).

As, by (1) and (2), (u x (u x v),w) = —(u x v,u x w) the above can be
written as

(u x (u x v), w) = (q, w) with q := (u, v)u — Iul2v.

As this identity holds for all w W, it follows that ii) is equivalent to
iii). 0

We have already met the identities i) — iii) in 7.1.4 for the vector product
in the imaginary space of lHI. From now on we shall call an algebra W =
(W, x) {O} having the properties specified in the lemma, a vector-product
algebra and (u,v) (u,v) the associated scalar product.

The Euclidean vector space with the scalar product (u, v) i—# uv, is a
vector-product algebra with respect to the trivial multiplication (u, v) 0.

Furthermore it follows immediately from 7.1.4 that:

3The expression 1u121v12 — (u,v)2 is the GRAM determinant,

\ (v, zt), (v, v)
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The Euclidean vector space lmlHl—with the canonical scalar product—es
a three-dimensional vector-product algebra with respect to the multiplication

(u,v) — vu). If one identifies ImIHI with then u x v is simply

the well-known vector product in JR3.

Ezercise. Let W be an Euclidean vector space, and W = (W, x) an Ilk-
algebra, such that for all u, v W:

a) u x v is perpendicular to u, that is (u,u x v) = 0,

b) Iu x = 1u121v12 — (u,v)2.

Show that W is a vector-product algebra.

2. Construction of Vector-Product Algebras. Let A be a composition
with unit element e, scalar product (x,y) (x,y), norm IxI
and

(1) ImA := {tz A:(e,u) = 0).

By Theorem 1.3, A is an alternative quadratic algebra, whose imaginary
space is in fact given by (1). However knowledge of this relationship with
alternative quadratic algebras is not actually required for the construction
of vector-product algebras.

It follows directly from 1.3(4) that

(2) (uv, w) + (u, wv) = 0 = (uv, w) + (v, uw)

for u,v,w E ImA (cf. 9.1.3(3)). By 1.3(7), u2 = —(u,u)e for u ImA, and
hence

(3) uv-I-vu=—2(u,v)e for u,vEIm.A (see9.1.1(5)).

Theorem. If A is a composition algebra with unit element e and scalar
product (x,y) i—p (x,y), then ImA is a vector-product algebra with respect
to the product

(4) u x v := — vu) = uv + (u, v)e

with associated scalar product (u,v) i—i (u,v).

Proof. By (3), the second equality sign in (4) is valid, because (2) is equiv-
alent to 2(u x v,e) (uv—vu,e) = 0, and hence u xv ImA. Thus u xv
and e in (4) are orthogonal, and so IuvI2 = Iu x + (u, v)2. The remaining
property ii) of Lemma 1 now follows from the product rule for A. 0

We have therefore found a new vector-product algebra, apart from the
one in Ilk3, namely:



278 10. Composition Algebras. Hurwitz's Theorem

The imaginary space of the CAYLEY algebra, together with the product
defined by (4) is a 7-dimensional vector-product algebra (see 9.2.1—9.2.3).

With this result however as we shall now prove, all vector-product alge-
bras are now known.

3. Specification of all Vector-Product Algebras. If W = (W, x) is a
real algebra, (u, v) i—' (u, v) a scalar product of W and e an element not
belonging to W, one can define in the vector space W a scalar product
by

(1) (ae+u,fle+v) :=afl+(u,v),

and a product by

(2) (ore + u) . (fle + v) := (afi — (u, v))e + cxv ÷ flu + u x v.

The resulting algebra in the Euclidean vector space W will be denoted
by (W, (., .), e); it has e as unit element.

Lemma. If W = (W, x) is a vector-product algebra with associated scalar
product (u, v) i—* (u, v), then (W, (., .), e) is a composition algebra with unit
element.

Proof. In the first place, we have, by (1) and (2)

I(ae + u) . (fle + v)12 = (afi — (it, v))2 + lay + flu + u x v12.

However by 1(2) and 1(3), (ti, u x v) = (v, u x v) = 0, so that the right-hand
side becomes

(afi— (ti,v))2 + lav+flul2 +lu x v12

= a2fl2 + (ii, v)2 + aivl2 + 1921u12 + lu x v12.

By the property ii) of Lemma 1 this immediately becomes

+ 1u12)(fl2 + 1v12) = Pa'e + UI2 . lfle + v12.

Since the embedding of W in IRe W, as well as the projection of the
subspace W of IRe ® W onto W are isometric mappings, the structure
theorem of 1.4 gives the

Isometry Theorem for Vector-Product Algebras. To within an iso-
metric isomorphism, the three imaginary spaces

ImC (the null algebra on
Im El (the vector-product space in
ImO
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together with the product (u, v) — vu) are the only vector-product
algebras. fn particular therefore there are no infinite-dimens:onal vector-
product algebras.

The vector-product algebra ImIHI is a LIE algebra, for by 7.1.4 the JACOBI
identity

(3) ux(vxw)+vx(wxu)+wx(uxv)0
holds for this algebra.

On the other hand Im 0 is not a LIE algebra, since for example

The subalgebras of vector-product algebras are themselves vector-prod-
uct algebras, so that it follow8 at once from the isomorphism theorem that:

Every proper subalgebra (0) of ImO is a LIE algebra of dimension 1
or3.

Of course the one-dimensional subalgebras oflmO have the null product.

4. MALCEV-Algebras. Parallel to alternative algebras considered as a
generalization of associatve algebras, there exists a generalization of LIE
algebras, the so-called MALCEV algebras. An algebra W = (W, x) is called
a MALCEV algebra, if it is anticommutative, 80 that u x v = —V x u, and
if it also satisfies the MAL.CEV identity

(1) m(u,v,w):=(uxv)x(uxw)+ux[(uxv)xwj—ux[ux(vxw)]

+ v x (u x (u x w)J = 0

for all u, v, w E W.

Proposition. Every LIE algebra is a MALCEV algebra.

Proof. The JAcoBI-identity 3(2) implies

vx[ux(ux w))+ux[(uxw)xv]+(ux w)x(vxu)=0,

and hence

m(u,v,w)= u x [(ux v)x w—u x (v x w)—(u x w) x vJ=0. 0

Our object is now to prove the

Theorem. Im 0 together with the product (u, v) '—. is a MALcEv
algebra.
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Proof. We linearize the identity iii),

(2) u x (ti x w) = (u,w)ti —

u x (v x w) + v x (u x w) = (u, w)v + (v, w)u — 2(u, v)w.

We now substitute u x v for v and note that (u,u x v) = 0, thus obtaining

(3) UX((UXV)Xw)+(uXV)X(uXw)=(U,w)uXv+(uXv,w)U.
From (3) and (2) we now have

m(u, v, w) = (u, w)u x v + (u x v, w)u — (ti, v x w)u
+ IuI2v x w+v x [(u,w)u—IuI2w)=0. o

Note. In connection with so-called "analytical loops" MALCEV (1909—1967)
in the year 1955 was probably the first to consider anticommutative alge-
bras satisfying the condition (1) and to observe that such algebras could be
constructed from alternative algebras (Mat. Sbornik 78, 1955, 569—578). It
was shown by SAGLE (Pacific J. Math. 12, 1962, 1057—1078) that, subject
to a certain additional condition, Im 0 is the only simple proper MALCEV
algebra over the field C. The additional condition was shown to be superflu-
ous by Loos (Pacific J. Math. 18, 1966, 553—562). A systematic account
of the theory of MALCEV algebras is given in the book by HY0 CIIUN
MYUNG, Malcev-admissilile algebras, Birkhäuser, 1986.

5. Historical Remarks. The problem of determining all spaces with a
vector product does not appear to have been treated in the classical liter-
ature. It was first discussed in 1942 by ECKMANN and completely solved.
We know of only a few places in the literature which deal with the subject.
Among these are:

ECKMANN B. Stetige Lôsungen linearer Gleichungssysteme, Comm. Math.
Helv. 15, 1942/43, 318—339 (particularly p. 338—339).

ECKMANN B. Continuous solutions of linear equations—some exceptional
dimensions in topology, Battelle Rencontres 1967, 516—526, W.A. Ben-
jamin, 1968.

MASSEY W.S. Cross products of vectors in higher dimensional Euclidean
spaces, Am. Math. Monthly 90, 1983, 697—701.

WALSH B. The scarcity of cross products on Euclidean spaces, Am. Math.
Monthly 74, 1967, 188—194.

ZVENGROWSKI P. A 3-fold vector product in 1R8. Comm. Math. Helv. 40,
1965/66, 149—152.

The most elegant treatment is given by MASSEY. WALSH, who uses ex-
tremely simple arguments, is not mentioned in MASSEY's work.
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Division Algebras and
Topology
F. Hirzebruch

The preceding chapters examined the division algebras of the real numbers,
the complex numbers, the quaternions and the octonions. These are of di-
mension 1, 2, 4 and 8, respectively. So far no algebraist has been able to
show that every division algebra has to be of one of these four dimensions,
though this surprising fact can be proved by topological methods. IIOPF
was able to prove in 1940 [7], that the dimension of a division algebra must
be a power of 2. his proof, which used the honiology groups of projective
spaces, will be given in §1. In the year 1958, KERVAIRE and MILN0R inde-
pendently of one another proved that the power of 2 must be equal to 1,
2, 4 or 8 [9]. They used for this purpose the periodicity theorem of BOTT
on the homotopy groups of unitary and orthogonal groups. The periodicity
theorem had led to the development of K-theory ([4], [3]), a new cohomol-
ogy theory with whose help many of the classical problems of topology,
which had resisted the ordinary homology and cohomology theory, could
be solved. We shall describe in §2 a proof of the (1,2,4.8)-Theorem, which
is based on K-theory.

§1. THE DIMENSION OF A DivIsioN ALGEBRA Is A POWER
0F2
Following HoFF we shall prove a theorem on continuous odd mappings of
spheres, which yields the required theorem on division algebras as a corol-
lary. As the homology of projective spaces will be used, a brief introduction
to homology theory (see Dow: Lectures on algebraic Berlin, etc:
Springer, 1980, 2nd edn.) will be included in §1.2.

Projective spaces are examples of manifolds. These are topological spaces
which, in the neighborhood of any one of their points, admit of n real coor-
dinates, n being the dimension of the manifold. These coordinates can also
be regarded as a homeomorphism of the neighborhood onto an open subset
of the Euclidean space (Strictly speaking the topology should satisfy
the "Hausdorif" condition and have an enumerable basis; furthermore we
shall be considering only differentiable manifolds, that is, those in which
the different coordinate systems are related to one another by coordinate
transformations which are differentiable arbitrarily often.) We should also
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make it clear that we restrict ourselves to connected and compact manifolds
only. This assumption is of importance in §1.2.

1. Odd Mappings and HOP F's Theorem. If A is a division algebra of
dimension n, one can choose a vector space isomorphism of A onto and
transfer the multiplication defined in A over to

(x,y)i—+z=x.y.

Thevectorz = = .. = (iii,...
and in fact (, is a bilinear form in the and In Ilk" the usual Euclidean
length is defined by Dxli = + + + and the (n — 1)-dimensional
sphere of vectors of length 1 can be introduced. The above multipli-
cation mapping Ilk" x Ilk" Ilk" can be restricted to x and the
restriction denoted by f. As the algebra has no divisors of zero, f never
assumes the value 0 E Ilk" and hence the mapping g = 1/11111 is well-defined

S"'.
HOPF uses for his proof only the fact that the continuous mapping g is odd,
that is to say that

g(—x,y)= g(x,—y)= —g(x,y) for x,yE S"'.
(The mapping z —z associates with every point on the sphere its an-
tipodal point.)

Theorem. If there exists a continuous odd mapping of x S"_1 into
then n is a power of 2.

Corollary. The dimension of a division algebra over JR is a power of 2.

The theorem is considerably more general than its corollary. The odd
mapping could for example be given by real algebraic forms which are
homogeneous of odd degree in the and also homogeneous of odd degree in
the HOPF also turns to another generalization. He discusses continuous
odd mappings of the type x —' It does not appear to
be known, even today, for what values of p, n, m such mappings exist.
If the composition problem of HURW!TZ mentioned in 10.2.3 is solvable,
then there exists an odd mapping S"-' x S"' We shall confine
ourselves here to the case p = n = m.

To prove the above theorem of HOPF, we still have quite a long way to
go, because we have to make use of the homology of real projective spaces,
and before we can do that we shall first need to give a short introduction
to homology theory in the next paragraph.

The real projective space is the (n— 1)-dimensional manifold which
results from the sphere when we identify every point with its antipo-
dal point. We shall denote this identification by the mapping
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Every k-dimensional linear subspace of defines an embedding of
the sphere in and hence (as an image under the mapping a) a
(k — 1)-dimensional projective subspace of Pfl1, which can frequently be
denoted simply by IF'1. For k = 2 we obtain the great circles on S"',
whose images under a are the projective lines in ir—

An odd mapping x 5"-' induces a mapping

x —.

to which HOPF applies homology theory. (The homology of spheres is too
trivial to get any results!) But now it is time to turn to homology theory
itself.

2. Homology and Cohomology with Coefficients in F2. Let X be
a topological space. Two points P and Q in X are said to be homologous
if they can be joined to each other by a path in X. The set S0X of ho-
mology classes of points is therefore equivalent to the set of (pathwise)
connected components of X. The "zeroth" or zero-dimensional homology
group Ho(X) with coefficients in F2, the finite field with two elements, is
the Frvector space of all formal linear combinations of the elements of
S0X with coefficients in F'2. If X is path connected then Ho(X) F2.

To define the q-dimensional homology group Hq(X) for q > 0, one needs
to consider q-dimensional structures (cycles), instead of points, to construct
formal linear combinations of them with coefficients in F2, and to operate
with these combinations modulo a certain equivalence relation known as
a "homology." We cannot go into the full details here, but the following
salient points must be mentioned.

a) Every closed path w in X represents a homology class E If ,(X).
b) Every q-dimensional submanifold M of an n-dimensional manifold X

represents a homology class IMJ E Hq(X). If q = 0, then we come back to
the homology classes of points mentioned above. Moreover, F2,
and IXI is the nonzero element of

In general, not all homology classes are represented by a) and b), but for
spheres S" (n > 0) and the projective spaces F', this does apply. (Note,
incidentally, that the dimension index n — 1 in paragraph 1 has now been
replaced by n.)

The homology groups Ho(S") and both have rank I as F2-vector
spaces. Otherwise Hq(S") = 0. The nonzero elements are IPI Ho(S"),
where P is an arbitrary point, and IS"I E For the projective spaces
IF", the situation is as follows. The homology groups Hq(IP") are of rank 1
for 0 < q < n (that is to say Hq(IF") F2). Otherwise H9(W") = 0. All
q-dimensional projective subspaces C IF" (0 < q n) are homologous
to one another, and in fact is the nonzero element of Hq(P').
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We continue with our general description of homology. Any continuous
mapping f: X — Y between the topological spaces X, Y induces a homo-
morphism f.: H,(X) —.. H9(Y). The definition of f. for homology classes
of points and homology classes of paths runs as follows. For a point P E X,
f.IPI = For a closed path w in X, f w is a closed path in Y and
f.IwI = If.wI.

The transformation from f to f. is compatible with the operation of
composition, or, in other words, if f: X —. Y and g: Y —, Z then (g 1). =
g. f. Thus (Hg, f.) gives us a "covariant functor." Hopf's proof requires
cohomology as well as homology. The qth group of X with
coefficients in F'2 is the vector space, dual to H,(X)

H'(X) = F2),

whose elements are the linear mappings U: H,(X) —. F2. If x H,(X) then
the value of n on z is denoted by (u, x) E F2. Given a continuous mapping
f:X Y, to the homomorphism f.:Hq(X) — Hq(Y) corresponds the
dual homorphism f defined by

f':H9(Y)—. f'(u)= uf., so that (f'(u),z)= (u,f.x).

In the transformation from f to f, direction becomes reversed, and
(g.f)' =1' •g'.

So far cohomology contributes nothing essentially new. However, one can
now define a product, that is, a bilinear mapping

HP(X) x H'(X) —. (u,v) —. u

which makes the direct sum = H"(X) into an associative
and commutative ring (a graded How this is done cannot be
detailed here. The homomorphism 1' is compatible with the product, f'(u.
v) = f(u) f'(v), and is therefore a ring homomorphism

H(Y) —0 H'(X).

The rank of as an F2-vector space is denoted by (the pth Betti
number). If the Betti numbers are finite, as will always be the case for us,

is also equal to the rank of HP(X). For an n-dimensional manifold X,
= This is the Poincari duality theorem (1895), which today

can be expressed in the following form. There is a canonical isomorphism

!I"(X),

which makes it possible to give a geometrical uiterpretation of the cohomol-
ogy product in manifolds: if M and N are submanifokis of X of codimension
p and q, which lie transversely to one another, so that their intersection is
a submanifold of codimension p + q, then

7(IMI) . = fl NI).
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Thus the product in H(X) corresponds to the intersection operation. The
direct sum H.(X) = H,,(X) is likewise a ring, in view of the Poincaré
isomorphism for manifolas. The multiplication

X +

defines what is known as the intersection product. If X is connected,
110(X) F2, and then for z E y H9(X) the intersection
product x y E Ho(X) is to be regarded as an element of F2 (the intersec-
tion number), and we have

fr(z),y)= x•y.

The intersection ring for manifolds was known long before the cohomology
ring of an arbitrary topological space (see §1.4). The cohomology ring of
the projective space F' can now be easily determined. The intersection of
q projective subspaces of dimension n — 1 in general position is a projective
subspace F'—' of dimension n—q (0 < q <n). If we denote by u,
then u is the nonzero element of H1(IP") and u' = is the nonzero
element of Thus H(IF") is the polynomial ring over F3 in u with
the relation = 0, which results from H'(P) = 0 for q > n.

The cohomology ring of the Cartesian product ii" x F' is found equally
easily. The homology classes x with r + s = q and 0 � r
0 s n form a basis for H,(IP' x F'). In view of the intersection product
1P x x = x the cohomology ring is the polynomial
ring over F2 with indeterminates u and v modulo the relations = 0,

= 0, where u, v come, via the Poincaré isomorphism of IF" x F', from
the homology classes x and LIP" x IP"'j, respectively, which form
a basis of H2,2_i(IP" x IF"). By forming the intersection numbers one sees
that

x = 1, x = 0,

and correspondingly for v. This will be important for the next section.

3. Proof of HOPF's Theorem. In §1.1 the mapping

x pn-1
:

was considered. The first homology of x IP"' has IP' x pointi and
point x as basis, where 1?' is any one-dimensional projective subspace of
IP"' (arising from a great circle by identifying antipodes). We now assert
that

x pointi) = G.(Ipoint x = IlP'I.

Why is G.(IIP" x pointj) the nonzero element of H1(P"')? We use the
following criterion for the homology class H1(P"1) of a closed path
in P"'. There is a path ti' in S"' that under the antipodal identification
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—+ maps into the path w (traversed once). The path ii' is
either closed, or else it joins two antipodal points. In the first case Iwl = 0,
in the second case Iwl 0.

Now liDl x point is a closed path wx point in x and the
path is "half a great circle" and thus joins two antipodal points. As
the mapping g: x inducing G satisfies the equation
g(—x, y) = —g(x, y), the image path g.(ti'xpoint) in alsojoins two an-
tipodal points. Under the antipodal identification this path is transformed
into (w x point), which represents the homology class G.(flP' x pointi)
which is therefore, as asserted, nonzero.

The cohomology ring of can be written as a polynomial ring over
F2 in the indeterminate i, with the relation = 0, while the cohomology
ring of x is the polynomial ring in u, v with the relations if' = 0,

= 0 (see §1.2). We assert that

G(i) = u + v.

To prove this we note that

(Gt (I), Ipoint x I) = (I, G1 Ipoint x P' I) = (I, alP' I) = 1 E F2

and that a corresponding relation holds for )IP' x pointi. On the other hand,
we also have

(u+v,IpointxlP'I)=(u+v,IIP'

(see the last formula in §1.2). A cohomology class is however determined
by its value on the homology classes.

Now we come to the real proof of HOPF's theorem [7], which, once ho-
mology theory is known, is impressively short. From = 0 follows:

0 = = = (u +

Now

o = (u+ v)"
=

(because of the relations = 0, if' = 0). Thus the binomial coefficients
must all be even (1 <k < n) and hence n must be a power of 2.

4. Historical Remarks on Homology and Cohomology Theory.
The development of algebraic topology began with (1854—1912).
However, no homology groups Hq(X) are yet to be found in his writings,
but only the Betti numbers bq(X). (PoINcAni used the integers as his
coefficient domain. The coefficients F2 used by us have the advantage that
questions of sign and orientation can be ignored.) In those days one spoke
of combinatorial analysis situs rather than algebraic topology. The group
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theoretical formulation of homology is due to Emmy NOETHER (1882—
1935). The intersection product in manifolds was known a decade or two
before the cohomology ring. already used intersection numbers
for his duality theorem. The ring homomorphism f*:H*(Y) Jft(X)
for arbitrary topological spaces X, Y and continuous mappings f: X

was foreshadowed by the inverse homomorphism 4,:
introduced by HOPF in 1928—1930, and defined for manifolds M, N and a
continuous mapping f: M N. SAMELSON [12] writes about this:

"A continuous mapping f:M N induces a mapping of the intersec-
tion rings, which is linear, but unfortunately, not in general multiplicative.
This led HOPF to set himself the task of finding out whether something
multiplicative could be assigned to f. Now one knows that in set theory
a mapping f preserves the sum though not the intersection (analogously
to the fact just mentioned) whereas the operation f1 (= full inverse im-
age) is both additive and multiplicative. H0PF, perhaps prompted by this
analogy, defined for every homology class of N an "inverse image" as the
correctly interpreted full inverse image in M. (Roughly speaking, for any
cycle z in N, one intersects the cycle M x z (in M x N) with the graph off
and projects the result into M.) The construction yields a ring (algebra-)
homomorphism 4' of the ring of N into that of M, which is connected
with f by the formula . x) = z f.(x), analogous to the formula
f(f'(A)flB) = An 1(B) in set theory. Incidentally the construction does
not require that M and N should have the same dimension; 4, increases the
dimension by dim M — dim N

The construction of the inverse homomorphism, which H0PF had de-
rived with a sure feel from the analogy in set theory, turned out later to
have been the "first appearance of cohomology." Nowadays one interprets
4, as the composition of (a) Poincaré duality in N (from homology to coho-
mology), (b) the cohomology mapping ft induced by f, and (c) Poincaré
duality in M (from cohomology to homology). The cohomology mapping is
multiplicative for arbitrary spaces, and Poincaré duality maps the intersec-
tion (in homology) to the cup product (in cohomology). (The intersection
is often defined in this way.) It was not until a few years later, though, that
cohomology was discovered in 1935 (Alexander, Kolmogorov, Whitney)."

About the "first appearance of cohomology" HoFF had this to say in
the talk which he gave in 1966 entitled "Einige persönliche Erinnerungen
aus der Vorgeschichte der heutigen Topologie" [Some personal recollections
from the prehistory of present-day topology] [8]:

"The year 1935 was especially significant in the development of topol-
ogy for several reasons. In September the first International Conference on
Topology took place in Moscow. The presentations given at this conference,
completely independently of one another, by Alexander, Gordon and Kol-
mogorov, may be regarded as the beginning of cohomology theory (though
Lefschetz with his pseudocycles of 1930 played the role of a precursor).
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What surprised me—and probably many other topologists—at that time
were not so much the cohomology groups—these are, after all, nothing
more than the character groups of the homology groups—as the fact that,
in arbitrary complexes and more general spaces, a multiplication could be
defined, and hence a cohomology ring, which generalized the intersection
ring in manifolds. We had until then thought this to be possible only in
manifolds, thanks to their locally Euclidean nature."

5. STIEFEL's Characteristic Homology Classes. In addition to the
foregoing considerations, we need to bring the question of the dimension of
division algebras into relation with some other topological problems.

Let M be a manifold of dimension n. The tangent space is well
defined for every point x M. It is an n-dimensional vector space. A
vector field v in M is a function which assigns a vector v(x) E to
every x E M. Of course v is assumed to be continuous. When does there
exist a vector field v which vanishes nowhere? The answer is given in a
famous theorem of Hopv, dating from 1926 (P0INcARE, BROUWER and
HADAMARD were precursors). See also MILNOR'S book [10].

A vector field v without zeros exists if and only if the Euler—Poincaré

characteristic of M vanishes.

The Euler—Poincaré characteristic is the alternating sum of the
Betti numbers so that = For the sphere 5t'4
(n � 1), = 2 for even n and = 0 for odd n. For the projective
spaces x(Wmn) = 1 for even n and = 0 for odd n. Thus when n is odd,
there exist nonvanishing vector fields on S" and on whereas these do
not exist when n is even.

By a k-field we mean a k-tuple v1,. . . , of vector fields on M, such that
the vectors v1(x), .. . , vk(x) at each point x E M are linearly independent.
The largest k for which a k-field exists will be called Span(M). Clearly
0 Span(M) < n = dimM.

If Span(M) = n, then the manifold is said to be parallelizable (one also
says that there is a trivialization). This terminology arises from the fact
that one can then regard two vectors at different points x and y of M as
being parallel if they have the same coefficients with respect to the bases

of and vi(y),...,vn(y) of 7,M. The space of all
tangent vectors, that is, UXEM can then be mapped bijectively onto
Mxilk".

It is a difficult problem to determine Span(M) for any given manifold M,
for example for the spheres and projective spaces. Obviously Span(S'2) �

Span(r), since a vector field on is nothing but a vector field on
which is transformed into itself by the antipodal mapping.

It is now known that Span(Sn) = Span(IP"), and its precise value is also
known. A few remarks on this topic are given in S3.

There is a fairly close connection between division algebras and related
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algebraic structures and the existence of vector fields on spheres and pro-
jective spaces (see §3). The simplest example is the following

Theorem. If a division algebra of dimension n over R exists, then the
projective space and the sphere are parallelizable.

Proof. As in §1.1 we consider the multiplication x —. ((z,y) i—'

z = z . y). Let Cl,. . . pen be the standard basis vectors of W' and let
yE Then the vectors e1 . y, . . . . y are linearly independent. If we
orthonormalize them we obtain n vectors wi(y),... ,wn(y) with w1(y) =
e1 y/IIei till. The vectors w2(y),. . . are tangential to at the
point w1(y). As y u—i is a bijective mapping of onto itself, we
have found an (n — 1)-field on S"' which obviously remains unaltered by
the antipodal transformation.

HOFF (who from 1931 onwards was Professor at the Eidgenössische Tech-
nische Hochschule in Zurich) proposed the following problem to his first
pupil, STIEFEL:

In what manifolds M of dimension n does an rn-field exist? In other
words: when is Span(M) � m?

In his dissertation [14], STIEFEL developed the theory of characteristic
homology classes. He allowed rn-fields with singularities. A singular point
of an rn-field v1, .. . , is a point x E M at which v1(z),. . . ,Vm(X) are
linearly dependent. STIEFEL showed that there is always an rn-field whose
set of singularities is (rn— 1)-dimensional and which can be regarded as an
(rn — 1)-dimensional cycle for the homology with coefficients in F2.

The Main Result. The homology class E Hm_1(M) (m = 1,... ,n)
of the set of sin is independent of the choice of the rn-field.

(We have simplified theory; for certain m, STIEFEL uses ho-
mology with integer coefficients, but this can be reduced modulo 2 so that
our 8m..l is obtained.)

The 8m—I are the characteristic homology classes of STIEFEL. In the ho-
mology of M certain elements are therefore distinguished by the properties
of the tangent bundle UZEM We have

By HoFF's theorem on vector fields, s0 = 0 if and only if is even. The
calculation of the STIEFEL classes thus leads to statements about Span(M)
which, for example, for M = IF" have a good chance of producing successful
results, because the homology of P is not trivial. With M = S", however,
they are doomed to failure.

In a later paper [15] STIEFEL calculated the characteristic homology
classes of P by the construction of special rn-fields with singularities. This
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work was submitted for publication in the Commentarii on the same day
as paper [7]. STIEFEL.'S result can be given here in the form of an
almost word for quotation:

The characteristic homology class 8m.1 of is the null class or the
(n+1\.class which contains , according to whether i i is even or odd.

What conclusions can now be drawn from rn — I?
Answer:

Span(r1) � rn—i iseven for 0< k<rn.

In particular the parallelizability of implies that is even for

0 < k < n, and that n must therefore be a power of 2. We have thus given
a new proof, based on the above theorem, of the proposition that a division
algebra of dimension n can exist only when n is a power of 2.

§2. THE DIMENSION OF A DIVISION ALGEBRA Is 1, 2, 4
0R8
The following eight subsections contain a proof that there can be division
algebras only in the dimensions 1, 2, 4 or 8. The proof uses the methods of
algebraic topology, the cohomology theory discussed in §1.2 of this chapter,
as well as the theory of vector space bundles and the theory of characteristic
classes, to be introduced in §2.3 and §2.4 of this section (see [11) for a
more detailed exposition). The decisive element in the proof is the B0TT
periodicity theorem. It will be stated in §2.6 without any hint of the proof.
All proofs of the (1,2,4,8)-theorem make use of Borr periodicity. The proof
to be described here stems from ATIYAH and HIRZESRUCH [5]. The first
proofs were, as already mentioned at the beginning of this chapter, found
independently of one another by KERVAIRE and MILNOR in 1958 shortly
after the appearance of the Periodicity theorem.

1. The mod 2 Invariaints cx(f). Given a continuous mapping
we say that y is a regular value, if every z with = y has a neigh-

borhood which is mapped homeomorphically by onto a neighborhood of
y. In this case the number #qS1(y) is finite. Its parity modulo
2 does not depend on the choice of y. It is called the "degree mod 2" of

A homeomorphism has degree 0. SARD's theorem asserts that every
C°°-mapping (that is, every mapping which is differentiable arbitrarily
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many times) always has regular values and hence possesses a mapping de-
gree. If is merely continuous, it. can be approximated by C°°-mappings.
All sufficiently good approximations have the same degree, so that even
with continuous mappings —p one can talk of the degree mod
2 of the mapping (see MILN0F [10]). One can use the same method to
assign an integer as the degree of the mapping, which by reduction mod-
ulo 2 yields the degree mod 2. (The points in have to be counted
with multiplicity —1 or +1, depending on whether orientation is changed
or not.)

Let GL(n) be the topological group of n x n invertible matrices. If one
considers the n columns, one can also regard GL(n) as the set of bases of
R'2. We now consider continuous mappings

—'GL(n).

By choosing a fixed vector v we can define the continuous mapping

Its degree mod 2 does not depend on the choice of v. It is called the mod
2 invariant a(f) of f. We now have the following deep result

Theorem. If the mod 2 invariant of a continuous mapping f:
GL(n) differs from 0, then n 1, 2, 4 or 8.

In the following subsection this result will be applied to division algebras.
From the next subsection on we shall describe the methods by which this
theorem is proved.

2. Parallelizability of Spheres and Division Algebras. Suppose that
the sphere is parallelizable. Then, for every vector x C there
are n — 1 linearly independent vectors w2(x), .. . , perpendicular to
x and depending continuously on x. The n "columns" x, w2(x), . .. ,
form an element 1(x) E GL(n). If v is the vector (1, 0,.. ,0) of then
f(x)v = x and consequently = 1. If one assumes the theorem of §2.1,
then it follows that:

The sphere is parallelizable only for n = 1, 2 4, 8; and hence
a division algebra exists only in the dimensions 1,2,4,8 at most (see the
theorem in §1.5).

(Strictly speaking, the case n = 1 should be excluded because it leads to
additional, though trivial, considerations.)

If one starts directly from the division algebra (with multiplication x
—+ (x,y) x y), then one defines

GL(n)
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by f(z) . v = z . v for z E and v E and one then has cx(f) = 1.

3. Vector Bundles. The theorem of §2.1 will be reformulated at the
end of §2.4 as a statement about characteristic classes of vector bundles.
By an n-dimensional vector bundle over the topological apace X is meant
another topological space E together with a continuous mapping (bun-
dle projection) p:E —. X, such that each fibre E X) is
an n-dimensional real vector space. A further requirement is that E be
locally trivial in the following sense; for every point in X there exists a
neighborhood U and n cross-sections Vi,... , U —. E (that is, continu-
ous mappings with p. = id), such that for every x U, the n vectors

form a basis of Er. Vector bundles belong to the funda-
mental concepts of differential topology and differential geometry. Perhaps
the most important example is the tangent bundle E = TM of an n-
dimensional manifold M, which is constituted by forming the union of all
tangent spaces, TM = (see §1.5).

In the present case, however, we are interested in other bundles, namely,
the rn-dimensional bundles E1 over that are derived from a mapping
I ; —' GL(rn) by the following gluing process: S" is divided into its
upper and lower hemispheres

= H+ U H, H = (the equator)

and we form the trivial bundles H+ x Rm and H x Rm then join them
together along the equator S"' by identifying each point (x, v) x

Rm with (x, f(z) .v) E x Rm. The identification space (quotient space)
so obtained is denoted by Ej. The bundle projection p: E1 —# S" arises
from the projections H+ x Rm —, 11+ and H x H on the first
factor. Every bundle over S'1 can be obtained in this way. If f :
GL(n) is derived from a division algebra as in §2.2, the bundle E1, obtained
by this gluing process, is called the HOFF inindle of the algebra. (In the
case of n = 1 it represents the well-known Môaius strip.)

4. WHITNEY'S Characteristic Cohomology Classes. In defining the
n-dimensional vector bundle E over X it was required that locally there
were always n linearly independent cross sections. WHITNEY who was the
founder of the theory of bundles, concerned himself with the problem of
what obstacles might be encountered in trying to find k global (that is,
defined over the whole of X) everywhere linearly independent cross-sections
for an n-dimensional bundle. He succeeded in describing such obstacles in
cohomological terms. Let H'(X) denote the ith cohomology of X, with
coefficients in the two-element field F2 as already introduced in §1.2. Then
WHITNEY defines the so-called characteristic cohomology classes

w(E)EH1(X), i=l,...,n.
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We shall not present this definition here. Reference [11] may be recom-
mended as an appropriate textbook.

We may however mention that = 0 for 1> n — k, if k everywhere
linearly independent global cross-sections exist. If 0, then
such a k-dimensional cross-section does not exist.

We discussed in §1.5, the STIEFEL classes . of the tangent
bundle TM of an n-dimensional manifold M, which are homology classes
8k_i E H&_i(M). Under the Poincaré duality goes over into
the Whitney class of the tangent bundle. (8k_I and re—

ape ctively are the first obstacle to a k-cross-section.)
We now return to the n-dimensional bundles E1 over S's, which arose

from the mappings f : GL(n) by the gluing process. As =
0 for i 0, i n, the only class of interest is C F2. Now

= o(f), the mod 2 invariant introduced in §2.1. The reformulated
version of the theorem at the end of §2.1 therefore runs as follows:

Theorem. If there is an n-dimensional vector bundle E over S' with
0, then ii = 1, 2, 4 or 8.

The existence of the HOPF bundles corresponding to the division alge-
bras of the real numbers, the complex numbers, the quaternions and the
octonions, proves that such bundles E do in fact exist in these four dimen-
sions.

In order to prove this reformulated theorem one needs to make use of the
survey of all possible vector bundles over the spheres S's, which is given
by the periodicity theorem of BOTT. We shall formulate this theorem with
the help of the ring KO(X) which we introduce in the next paragraph.

5. The Ring of Vector Bundles. It is well known that, given two vector
spaces E and F' one can produce new vector spaces by forming their direct
sum E F or their tensor product E 0 F. The same applies to vector
bundles E and F over X. We can form the direct-sum bundle E F', so
that for the fibres on x E X, we have (E = F,. Similarly we
can define the tensor product E 0 F, with (E 0 = 0

We now consider the set N(X) of isomorphism classes of vector bundles
over X. In this set the compositions and 0 are defined and satisfy, like
ordinary addition and multiplication in N, the associative, commutative
and distributive laws, and one has elements which are neutral for and 0.
This suggests that N(X) should be made into a ring, just as N is extended
to Z. We form N(X) x N(X) and define the following equivalence relation

(a, b) (c, d) there is an f such that a d f = c b 1.

(We have to use f because the cancellation rule does not hold in N(X)
as it does in N.) The set of equivalence classes is denoted by KO(X).
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The compositions and 0 go over into + and in K0(X) thu8 turning
K0(X) into a commutative ring with unit element. The natural mapping
N(X) —e K0(X) is not injective, because the cancellation law does not
hold in N(X).

The correspondence X —. K0(X) behaves like a cohomology theory: if
f: Y —+ X is a continuous mapping, any n-dimensional vector space bundle
E over X (bundle projection p: E —e X) is lifted to the following vector
space bundle (likewise of dimension n) f'E over

= {(y,v) E Y x E:f(y) =p(v)}.

In this way a mapping f: N(X) —. N(Y) is induced, which is compatible
with and 0, and consequently we obtain a ring homomorphism

f:Ko(X) K0(Y)

with (f . = g! . jI for Z Y -1. X.

6. Bott Periodicity. If we assign to every vector space bundle its fibre
dimension, we obtain an epimorphism

c:K0(X) -+ Z.

(For this purpose X is assumed to be connected.) The kernel of c is denoted
by K0(X).

Bott's Periodicity Theorem. The following relations hold

KO(S') = K0(52) = Z/2, (S3) =0, K0(S4) =

KO(S5) = K0(S6) = K0(S7) =0, = Z.

In the dimensions n = 1, 2, 4 and 8 the generating elements are repre-
sented by the Ilopf bundles associated with the division algebras of the reai
numbers, complex numbers, quaternioris and octonions respectively (less the
n-dimensional trivial bundle).

For all n,

(All isomorphisms are merely additive and are not to be understood as
ring isomorphisms.)

As regards the proof of this theorem, which published by Borr in
1957 in another form (see §2.9), no details can be given here. What we shall
need is a description of the isomorphism

For any two spheres 5" and 5"' we form the Cartesian product x 5".
In addition we choose a base point on each, 20 Ofl S" and Yo on Then
the "axial cross" S" V S"' = {zO} x Stm U 5" x {Yo} lies in 5" x We

collapse it to a point. Then 5" x Stm becomes and we obtain the
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mapping VStm -'. 5" x -f+ 5fl+lfl This yields an exact sequence.
(We omit the proof.)

that is, is injective, 1' is surjective, and the kernel of i = Image
of the two factors. Given a E

and b E KO(Stm), we form

a . b = E x 5").

A.si'(a 6) = 0, a 6 is the image under p' of precisely one element in
which we shall also denote by a 6.

The Boil isomorphism KO(S") is described by a a•
(ps — 8) where PS denotes the Hopf bundle corresponding to Ike oclonions
and 8 denotes the 8-dimensional trivial bundle over

The survey of the possible vector bundles over the spheres which we
mentioned earlier as being needed for the proof of the theorem in §2.4 has
now been achieved. The only thing lacking is a method for calculating the
characteristic classes.

Remark. Our formulation of the Bott periodicity theorem will be found, in
essentials, in:

Borr R. Lectures on K(X), New York: WA. Benjamin, 1969, on page 73
but without proofs.

A detailed proof within the framework of K-theory is given in the textbook:

KAROUBI M. K-theory. An Introduction, Berlin, etc.: Springer, 1978.

The reader will have a certain amount of difficulty, however, in extracting
the results used here from KARousi's formulation.

Much simpler is the K-theory for complex vector bundles; see

ATIYAH M. K-theory, New York: W.A. Benjamin, 1967.

In the appendix to this book (On K-theory and reality) there is a concise
exposition of how one can arrive at KO by suitable modifications.

7. Characteristic Classes of Direct Sums and Tensor Products. In
§2.4 following WHITNEY, we assigned to an n-dimensional bundle £ over X
the classes w,(E) H(X) for i = I,. . . , ii. It is convenient to supplement
these by wo(E) = unit element H°(X) and = 0 for 1> ii and to
combine all these classes in the total Stiefel—Whitney class

w(E)= 1 + w1(E)+ . +w,,(E) = E H(X).
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Whitney showed (1941) that, for the direct sum

or, written out,

> wr(E)w,(F).

We now restrict ourselves to spaces X where H(X) = 0 for almost all
1. All elements a E H(X) whose 0-dimensional component equals I then
form a multiplicative group G(X). The Whitney sum formula means that:

The total Stiefel— Whitney class defines a homomorphism of the additive
group KO(X) into the multiplicative group G(X)

w: KO(X) -. G(X).

The Stiefel—Whitney classes are furthermore compatible with the lifting
of the bundles: w1(fE) = fw1(E). The diagram

KO(X) L. KO(Y)

wj Lw

G(X) G(Y)

is therefore commutative (for a continuous mapping f: Y —' X).
The vector bundles behave contravariantly under continuous mappings.

How lucky it was that Whitney introduced his classes as cohomology classes
thereby ensuring contravariance. For arbitrary vector bundles, however,
there was really no other possibility open to him. Making definitions in
mathematics is not just an arbitrary game.

Now for the characteristic classes of tensor products. In the case of one-
dimensional bundles E, F this is simple

wi(EØ F) = w1(E) + w1(F).

If E = E1 ® ... Em and F = F1 ... F,, are direct sums of one-
dimensional bundles, then EØ F = ® F,), where the summation is
over all i,j such that 1 � i < m, I <j <n. By the Whitney sum formula,
we then have w(EØ F) = + wi(E1) + wi(F,)).

For arbitrary vector bundles E, F of dimensions m and n, this result
remains true, in the following sense:

Consider the polynomial fL(' + + y,) with coefficients in F2. As it
is symmetric in the x8 and it can be expressed as a polynomial in the
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elementary symmetric functions . - of the z• and r1,. .. , of the

We then have

w(EØF)= P(wi(E),...,Wm(E),wi(F),...,Wn(F)).

8. End of the Proof. We remind the reader that the main result of §2.2
depended on the theorem of §2.1 and that the latter was reformulated in
§2.4. With the following proof of this last theorem we shall therefore have
achieved our objective.

If an n-dimensional vector bundle E over X is replaced by E — n E
KO(X) the Stiefel—Whitney class remains unchanged in view of the Whit-
ney formula. To prove the theorem it therefore suffices to show that w(c) =
1 (that is, = 0) for all c when n 1,2,4 or 8. The periods
given by the Bott theorem show that this is true for n = 3,5,6 and 7. If,
now, n > 9, we write n = rn +8 and, because of the we can
write c = a KO(Stm). By the definition of KO(Stm), a
can be represented in the form a = E— F, where E, F are equidimensional
bundles over Sm, so that the equation

c=(E—F)(p5—8)=E-p8 — Fp8 — 8-E + 8-F,
holds in KO(Sm x S8), and hence by the Whitney formula

It can now be shown that each of the four factors has the value 1. Consider,
for example, w(E.ps) where Ep8 E xS8) is the element determined
by wEOwp8. We use the following

Lemma. Let and be even-dimersstonal vector bundles over A' with
= 1 + and = I + s even and = = 0.

Then 0 = 1.

The lemma follows from the expression of the Stiefel—Whitney classes of
a tensor product in terms of symmetric polynomials with coefficients in F2
described at the end of §2.7.

We apply this lemma to X = Sm x S8, = zE and One
can assume, without further ado, that £ and F are of even dimensions
because if not one can add the trivial one-dimensional bundle to each of
them without altering a = E — F. We thus obtain wfr £® ip8) = 1.

9. Historical Remarks. The first textbook on fibre bundles is due to N.
STEENROD (13) who, in the preface to his work, wrote:
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"The recognition of the domain of mathematics called fibre bundles took
place in the period 1935—1940. The first general definitions were given by
H. Whitney. His work and that of H. Hopf and E. Stiefel demonstrated the
importance of the subject for the applications of topology to differential
geometry. Since then, some seventy odd papers dealing with bundles have
appeared. The subject has attracted general interest, for it contains some
of the finest applications of topology to other fields, and gives promise
of many more. It also marks a return of algebraic topology to its origin;
and after many years of introspective development, a revitalization of the
subject from its roots in the study of classical manifolds."

HOPF reports in [8] that at the Moscow conference in 1935 he gave a talk
on STIEFEL'S theory, and continues, writing: "After I had presented all this
in Moscow, H. Whitney pointed out in the discussion that a large part of it
was contained in his recent note on 'Sphere spaces' (Proc. Nat. A cad. Sd.
21, 1935). He was quite correct, but Stiefel and I had not known of this
note. In any case, it is entirely right that the characteristic classes should
now mostly be called "Stiefel—Whitney" classes. I find that in Whitney,
everything is treated somewhat more generally than in Stiefel, whereas
Stiefel's interest is more directed towards particular problems, which do
not occur in Whitney's work."

WHITNEY'S theory is indeed more general. He defines the characteristic
classes for an arbitrary vector bundle over a base space X and not just for
the tangent bundle of a manifold. He had to use cohomology. It is only for
manifolds that one can make do with homology alone.

It took a long time before one could really work with the Stiefel—Whitney
classes. We refrain from giving any detailed references to the literature on
the historical development of the subject, but would refer the interested
reader to the textbook by MILNOR and STASHEFF [11].

HOPF [8] would have regarded the subject matter of §1 of this chapter
as belonging to the prehistory of topology, but that of §2 together with
cohomology, vector bundles, the detailed theory of characteristic classes,
Bott periodicity, and K-theory as part of the modern era. Bott originally
formulated his theorem in the language of homotopy groups, and proved
it by the methods of differential geometry. It was first announced in Proc.
Nat. Acad. Sci. USA 43, 1957, 933—935, and a detailed exposition is given
in "The stable homotopy of the classical groups" Ann. Math. 70, 1959,
313—337. See also J. MILNOR, Morse theory, Princeton University Press,
1963. An essential tool was the theory of MoRsE.

In 1958, GR.OTHENDIECK in the context of algebraic geometry, introduced
with the help of algebraic vector bundles, a ring K(X) for an algebraic
variety X and used it for his generalized version of the RIEMANN—ROCH—
HIRZEBRUCH theorem. His ring of vector bundles behaves contravariantly,
like the cohomology ring H(X) of a topological space. (GROTHENDIECK
chose from the letters near H, and picked out K.) Following GROTHEN-
DIECK'S lead, the ring K(X) for topological spaces X was then introduced
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with the help of topological vector bundles whose fibres are complex vector
spaces ([4], [3]). If one takes real vector spaces, one arrives at K 0(X), the
0 being a reminder of the rote of the orthogonal group in real vector spaces.
In order to make K and KO into a complete cohomology theory, one needs
the Bott periodicity result, which is simpler for K than for KO. In fact

§3. ADDITIONAL REMARKS

Naturally, the main object of this chapter was to indicate how the (1,2,4,8)-
theorem for division algebras can be proved by topological methods, but
at the same time we have made a little excursion taking us from the "pre-
history" (the thirties and forties) up to the beginning of the sixties. This
account would however be incomplete if we were to leave out any mention
of the Ilopf invariant (HOFF [6]). We also take another brief look at vector
fields on spheres (see §2.5).

1. Definition of the HOPF Invariant (see [121). Let —.

(n � 2) be a continuous mapping. After deformation we can assume that
F has derivatives of all orders. The inverse image F1 (x) of a point x
is in general an (n — 1)-dimensional submanifold of I, which bounds
an n-dimensional manifold M; M is then mapped by F onto with a
certain mapping degree 7F (see §2.1). The integer 7a" is called the Hopf
invariant of F. Under this definition iF is also the intersection number of
F'(y) (y r, y in general position) with M, or also the linking number
(or looping coefficient) of F1(x) in relation to F'(y). An orientation
argument shows that vanishes when n is odd. The number iF depends
only on the homotopy class of F, and is a homomorphism of the homotopy
group to the integers.

2. The HOPF Construction (see [12]). HOFF proposed the following
problem. For a fixed even ii, determine the addstive subgroup consisting
of those integers that occur as invariant., for a continuous mapping
F:S2"' —p S's.

With the help of the Hopf construction, we can construct, from a given
mapping x —. S"' a mapping —i as follows:

The 8phere can be topologically described as the boundary of
x E" where E" is the n-dimensional balL. Consequently

= O(E" x = x E" U x

so that this sphere is divided into the two products x E" and x
with x as the common boundary.

The sphere is divided by into two hemispheres and H.
We extend g in the obvious way into a mapping of x into and
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of S"1 x into H. The mapping obtained in this way,
is the Hopf construction associated with g. Following Hopf 7F = C1 c2, if
g has the bidegree (ci,c2). (Here c1 is the degree with which point
is mapped to and c2 is defined analogously.)

x is odd then 7F is odd.

Every function GL(n) (see §2.1) defines a mapping g:S"1 x
by

f(x)v
- IIf(x)vII

of bidegree (c, 1) and by means of the Hopf construction a mapping
F: Sn with 7F = c. Here c is even or odd according to whether
wn(Ej) = 0 or Wn(Ej) 0 (see §2.4). If one takes, for even n, the glueing
function f of the tangent bundle of S's, then = 2. If one takes for f
the functions —p GL(n) derived from the division algebras (see §2.1),
then 7F = 1.

In answer to Ilopf's problem therefore we have the following result:

All integers occur as Hopf invariants for n = 2,4,8. For the other even
n, at least all even integers occur as Hopf invariants.

3. ADAMS's Theorem on the HOPF Invariants. ADAMS [1] showed
that mappings f : S2"' with odd exist only for n = 2,4,8. He
used the so-called secondary cohoinology operations. Meanwhile a proof
based on K-theory (ADAMS and ATIYAH, 1966, see [3]) has appeared, which
is very simple, once K-theory has been fully developed.

4. Summary. Suppose n 2. The results of §2 and §3 have shown that
the following "mathematical objects" exist only for n = 2,4,8.

Division algebras of dimension n,
Odd mappings x —p

Parallelization of P',
Parallelization of Sn',
Vector bundles E over with Stiefel—Whitney class 0,
Mappings f: with odd Hopf invariant.

Starting from a division algebra of dimension n, one can, as we have
seen, construct the other mathematical objects very simply. From any of
the objects listed here, one can fairly simply (using the Hopf construction)
obtain a mapping with an odd Hopf invariant. In this sense, the ADAMS
theorem on the nonexistence of mappings with an odd Hopf invariant is
the most general result; it implies the nonexistence of the other objects.

5. ADAMS's Theorem About Vector Fields on Spheres. We begin
by referring to the HURWJTZ—RA DON theorem of Chapter 10). If the
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statement 1) is satisfied, one can easily construct p— I linearly independent
tangent vector fields on This is fully analogous to the theorem in § 1.5.
Consequently � n =
1 < u is odd, 0 0 < fi < 3. ADAMS [2] showed that =

= 8a + — 1. This involved much highly sophisticated K-
theory. ADAMS'S theorem is a marvelous generalization of the theorem that
only the spheres S1,S31S7 are parallelizable (for example, Span(S'5) = 8),
and thus also a generalization of our (1,2,4,8)-theorem.

The theorem of ADAMS had many precursors. The inequality

even}

is one such (see 11.1.5). Together with the formula � 8a +
2" — 1 this immediately gives us, for example, Span(l1$m+l) = 1 and
Span(lFBm+3) = 3.

ECKMANN and WULTEHEAD had already proved in the forties that more-
over Span(S4m41) = 1 and Span(Ssm+3) = 3.
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Infinitesimals, Games, and Sets
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Nonstandard Analysis
A. Prestel

§1. INTRODUCTION

In this chapter, our objective will be to extend the field R of real num-
bers to a field 1R in which there are both infinitely small and infinitely
large "numbers." In particular we shall find that it is possible in 11k, to

define precisely the Leibniz differentials dx, dy and to establish a connec-
tion between the differential coefficient dy/dx and the derivative f'(x) of a
function y = f(z) at the point x.

Calculations involving infinitely small quantities such as dx were made
as a matter of course in the mathematics and physics of earlier centuries,
even if their legitimacy did not always go unchallenged. (Some insight into
this use of infinitesimals and the criticisms raised against such use can be
gained, for example, from the book by Edwards [1].) It was not until the
advent of "epsilon techniques," and the creation by WEIERSTRASS of a firm
foundation for analysis based on the concept of the limit, that infinitesimal
magnitudes were banished from mathematics. To be more accurate, they
were banned from use in exact proofs. For heuristic purposes in mathemat-
ics and physics they maintained their rightful place as before.

In the "epsilon technique" the differential quotient dy/dx of a function
y = f(x) is defined as the limit of the quotient of the difference

f(x+h)—f(x)
h

as h tends to zero, whenever this limit exists. Its value is then denoted
by f'(z). Although the notation dy/dz is still commonly used, it is always
emphasized that the quantities dy and dx by themselves are meaningless.
Of course this is true enough if one has in mind only the real numbers:
there is no real number, say, lying between 0 and all the strictly positive
real numbers.

If therefore one wishes to work with infinitely small quantities, one ob-
viously has to take these from a domain larger than UI Mathematicians of
earlier centuries worked with such quantities, as though it were the most
natural thing in the world, and just as with real numbers, but they were
always quite clear about the distinction. The fact that they did not bother
about the construction of such an enlarged domain need not surprise us. It
was not usual at that time to consider consistency problems of this kind.
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It was quite enough for most mathematicians that such quantities existed
in their mathematical intuition and that their use led to correct results.
Those among the mathematicians and philosophers who declined to have
any dealings with them probably did so because they felt that there was a
contradiction in treating these quantities like real numbers and yet refusing
to recognize them as "finite."

In the year 1960 Abraham ROBINSON constructed an extension 'lit of the
field JR of real numbers, in which quantities exist, which are infinitely small,
but whose properties in general are nevertheless indistinguishable in many
respects from those of the numbers of JR. ROBINSON used for this purpose
a construction which had been applied for the first time by SKOLEM to
obtain an extension of the natural numbers, which provided an alternative
model of a system satisfying the Peano axioms [6]. In this context the Peano
axioms were formulated in the so-called first-order predicate logic, which
represents a certain restriction, in comparison with the usual set-theory
formulation (see Chapter 1, §2). Such models were called "nonstandard"
models of the Peano system of axioms. The construction method used,
which essentially represents the present-day ultra power method, can be
applied to any structure and always leads to an extension which, within a
certain framework—the 1st order logic—possesses the same properties as
those of the original structure from which one started. RoBINsoN applied
this method to the field JR and obtained an extension field 'lit, whose ele-
ments he called nonstandard numbers. The term nonstandard analysis was
used to cover mathematical operations carried out within 'lit. A detailed
exposition of this method and its applications is given in ROBINSON's book
[5].

We now propose to mention briefly a few of the properties of 'lit, to
explain how the differential dy of a function y = f(x) can be defined in
this domain, and how the quotient dy/dx is connected with the limit f'(x)
of the quotient of the differences.

The field is an ordered overfield of JR, in which there are elements a
with the property that r < a for all r lit; in other words elements a which
are infinitely large. Clearly any element I/a is then infinitely small; it lies
between 0 and all positive c JR. The elements of the set

V={xE foranrElit)
are said to be finite; the elements of

M={xE 'lR:IxI<C
are said to be infintlely small. Here denotes the set of positive real num-
bers. Elements z, y E' JR are said to be neighboring elements or neighbors,
if a — y E M, and we then write a y. Every finite number a is a neighbor
of just one number r E JR. We write r = st(x), and call r the standard part
of a. To avoid any possible confusion with the real part of a complex num-
ber, one deliberately refrains from using the much more suggestive term
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"real part." An essential property of 1R is that every real function y = 1(x)
can be "canonically" extended to a function f in this is to be taken
in the sense that such properties as can be expressed in the language of
the first order predicate calculus, continue to hold. Using this extension,
we can define the value of f(x + dx) in R for every nonzero element dx
in M whenever x lies in the domain of definition of f. The difference

df= f(x+dx)—f(z)

is called the differential of the function f. As both df and dx are elements
of 1R, one can obviously form their quotient df/dx (for dx 0). This
differential quotient is thus an element of If f is differentiable at the
point x, that is to say, if limh_o(f(x + h) — f(x))/h = f'(x) exists, then it
can be shown that

f'(x)

that is, f'(x) is the standard part of df/dx. Note that the differential quo-
tient df/dx, unlike the limit of the quotient of the differences, always exists.
It does not necessarily have to be finite however and even where it happens
to be finite for all dx, its standard part need not necessarily be independent
of the choice of dx. If however this is the case, then the limit of the quotient
of the differences does exist and is equal to the standard part of df/dx.

Before we prove all this and more in the sections which follow, we should
now like to indicate a path which, after laying down a few very natural
requirements, and starting out from the kind of statements made by, say
LEIBNIZ and L'HOSPITAL on infinitesimals and the way in which they han-
dled them, leads almost inevitably to the domain used by ROBINSON.

As already mentioned, mathematicians of earlier times were quite clear
in their own minds that quantities such as dx or f(x + dx) could not simply
be real numbers. At the beginning of his textbook Analyse des infiniments
peists (Paris, 1696) the Marquis de l'Hospital gave the following definitions:

"Definitson I. Variable quantities are those which continually increase or
decrease. And constant quantities are those which always stay the same,
while others change ..."

"Definition II. The infinitely small part by which variable quantities con-
tinually increase or decrease, is called the differential of this quantity."

A quantity such as dx is therefore something variable, something which
can vary "with time." LEIBNIZ says in a letter written to the French Pro-
fessor Pierre VARIGNON in Paris, in 1702, among other things:

"It should however be borne in mind that the incomparably small quan-
tities, even taken in their popular sense, are by no means constant and
definite, and that rather, since one can assume them to be as small as one
wishes, they play the same role in geometrical considerations as do the
infinitely small in the strict sense of the term."
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By the words "incomparably small quantities" Leibniz means here the
differentials introduced by him.

These quotations suggest, in our opinion, that the quantity dx should be
regarded as a (variable) function—let us say a function of time—which in
the long run assumes ever smaller values. On the other hand, the number 2
say, can be thought of as a function of time which constantly has the value
2. Viewed in this way, our "quantities" would therefore all be mappings of
a time axis T onto the set R. In this context it is not particularly important
(as one can convince one's self later on) whether the time runs continuously
or not. We could in fact have taken IR+ for T but we have decided on tech-
nical grounds, and for typographical convenience, on T = N' = {1, 2,...).
Accordingly our quantities will be sequences of real numbers. The mapping
t —' 1/i, gives us for example the sequence

(11 1 1

The terms of this sequence assume smaller and smaller values in the course
of time. We are therefore entitled to regard it as infinitely small in com-
parison with the constant sequences

(e,c,.. .,c,...)

which represents the real numbers c. We would like the sequence of quo-
tients

(f(x + (1/i)) —
1/i

to represent the differential quotients for x E P.. The sequence of quotients
itself, be it emphasized, and not its limit as t tends to infinity, which may
or may not exist. However, here we are faced with a difficulty. Whereas for
sequences

(al,a2, .. .) and (61,62,...)

a formal addition, subtraction, and multiplication can easily be defined by
the obvious canonical termwise definition for sequences

(ai f61,a2±b2,...) and (a1 61,a2 62,...)

this procedure fails for division. In other words the set R of all sequences
indexed by N' and with terms belonging to P., constitutes a ring with respect
to the operations defined as above, but is not a field. To arrive at a field—
and this will be our one and only requirement—we shall have to enlarge
somewhat our concept of "quantity." If two sequences are indistinguishable
from one another from some point in time onwards, then we would like to
regard them as being equal, because in such cases they differ only trivially.
If we agree to regard sequences as equal only in such cases, then this is
tantamount to forming the residue classes of the ring R with respect to the
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ideal D, consisting of those sequences for which all but a finite
number of the terms are equal to 0. This residue class however still does
not lead to a field. We can only obtain a field by choosing a maximal ideal
M over D, (which means M J D), and taking as our new domain 5R the
residue class field RIM. It is well-known (see 2.3.4) that RIM is a field
when M is a maximal ideal. Our quantities are therefore the congruence
classes of the sequences with respect to the ideal M. In other
words two sequences are regarded as representing the same "quantity" if
and only if their difference lies in M, that is, they differ only by an element
of M.

We shall show in the following sections not only that the field *R = RIM
defined in this way contains infinitely small and infinitely large elements,
but also that all functions mapping IR into 5R can be extended canonically,
and that ]R and SR have in common all those properties which can be
formulated within a certain definite axiomatic framework. We stress once
again that all this follows merely from the single requirement that RIM
should be a field. It is immaterial which maximal ideal we choose provided
that it contains D. We shall go into this point in rather more detail in the
epilogue.

§2. THE NONSTANDARD NUMBER DOMAIN 5R

1. Construction of 111 As was already established in the introduction,
.1? is the ring of sequences a = of real numbers, with addition,
subtraction and multiplication each defined componentwise. Furthermore.
D is the ideal in R, which comprises just those sequences (a("))flEN' for
which is almost always zero (that is, for which all but a finite number
of the terms are zero). Finally M is a maximal ideal having D as a
subset (that is, M J D). The existence of such an ideal is guaranteed by
Zorn's lemma (see 14.3.2).

The ring R contains a canonical, isomorphic image of the field IR of real
numbers. This canonical embedding is given by

for r E JR. We shall identify JR with its image, that is to say, we shall regard
the constant sequences as real numbers. For sequences a, b E Ilk, we define

a b mod M: a —6 E M.

This is an equivalence relation on R. We denote the set of equivalence
classes by *11k, so that

11k = R/M.

The operations +, —, and . carry over in the usual way from R to the
quotient domain RIM, which thereby becomes a ring. The maximality of



310 12. Nonstandard Analysis

M ensures that R/M is indeed a field. As every nonzero constant sequence
in R is invertible the subfield R of R is not affected by the operation of
forming the residue class modulo M, or in other words an isomorphic image
of R is still to be found in RIM. Here again we shall identify Ift with its
isomorphic image. Finally therefore we have obtained = RIM as an
overfield of R (and as we shall see later, a proper one).

We next wish to show that every function f: Rm —i R can be extended
to a function f: SRrn 'JR which retains all the properties which are
expressible within the framework of the first-order logic (we shall explain
in §3 precisely what this means). We first define, for any given function
f: — JR a componentwise extension f on by:

f(aj,...,am) =

where a = for 1 < i ( m are sequences belonging to R. We
then set

where the sequences a1, ... ,am are representatives of certain residue classes
modulo M. It remains to be shown that this definition is independent of
the choice of these representatives. Suppose therefore that

a1 .. . , am 6m mod M.

We then have to show that

The proof of this rather general statement is not immediately obvious, as it
would be, say, in the case of addition where a1 — 61, 62 E M, naturally
imply (ai + a2) — + 62) M. The proof applies to any arbitrary ideal
M, the maximality of M not being an essential requirement. We shall first
give the proof for the ideal D, which will thus point the way. Obviously
a E bmodD simply means that = for almost all n (that is, for
all ii save for at most a finite number of possible exceptions). But we also
have, in our case,

= and ... and =

for almost all n N'. Thus, for almost all n

which naturally implies J(ai,.. . ... ,bm)modD.
For an arbitrary ideal M, we now proceed as follows: for a E R we define

Z(a) = {n E = O}.
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Next we form the set

U = UM = {Z(a):aE M).

U has the following properties:

(0)

U,

(ii)

(iii) ZEU,ZCACN'='AEU,
that is, to say U is a filter on N'. If M is a maximal ideal, then UM is an
alt rafihter, that is, it has the additional property

(iv) AcN' AE U orW\A EU.

If furthermore M includes D, then U is a non-trivial ultra filter, that is,
we also have

(v) ACN',IN'\AI<oo='AEU.

The verification of all these properties is very simple, as we exemplify by
carrying it out for (iv). We choose a sequence a of zeros and ones, such
that Z(a) = A holds, and assume A U. In particular therefore a 0 M.
As M is maximal, there are elements 6 M and c E R with 1 = 6 + ac.
It follows at once that Z(b) = Z(1 — ac) C N' \ A. Since b E M we have
Z(b) E U and hence, by (iii) we also have 14' \ A U.

Now, for a E R
a E M Z(a) U

holds generally. We need only to prove that Z(a) U implies a E M,
because the truth of the reverse implication follows from the definition
of U. Since Z(a) E U there is a b E M satisfying Z(a) = Z(b), or in
other words a and b have the same 0-components. We define a sequence
C by

— f

a = bc E M.
If we now observe that Z(a — b) = = 6(")), we get for a,b E R

(vi) EUM.



312 12. Nonstandard Analysis

This important relation now enables us to complete the still outstanding
independence proof and at the same time will serve as a guide to what
follows.

We return therefore to the definition of f• By hypothesis b mod M
for 1 <1 < m, that is, we have (n: = bN} E U for 1 � i < m, whence
also

= = . . . = EU.

Since

= br,. C = ..

it follows from this, in conjunction with (iii) that

— u
L 1 '"•' m / 1 '"' m iffi

With (vi) this is however equivalent to the statement which had to be
proved. We thus know how we can extend real function8 on RIM, for any
ideal M. Which of their properties carry over from R to 11t, is a matter
that we shall analyze precisely in §3. As one can easily see after thinking
about it, the relation

(fog)= 'fo
holds for the extensions of two functions f, g and their composition. We
shall make use of this property without specially drawing attention to it.

The fact that we have been dealing only with functions defined on the
whole set of ]Rtm need not trouble us, because it is a trivial matter to extend
the domain of definition to the whole of IRtm for any function initially defined
only on a subset of

R. We shall from now on again assume that M is a
maximal ideal over D. By doing so we shall on the one hand ensure that

= RIM is a field. On the other hand, the ordering of the real numbers,
defined by the relation <, can be extended canonically to an ordering of
1R. Let us frame our definition of the extension of the ordering relation <,

which we shall continue to denote by the same symbol on the relation
(vi). For a,b ER we set

a < {n:a(") E UM.

Like (vi) this asserts that the relation a < 6 modulo M holds if the cor-
responding property holds for "very many" components. It remains to be
shown that this definition is likewise independent of the particular repre-
sentatives chosen. Suppose therefore that a a1 and b b1 mod M. Then

{n:a(") � b(")) fl {n:a(") = fl {n:b(") = c
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By hypothesis and by (ii), the left-hand side is in U; and hence by (iii) so
also is the right, which is what had to be proved. It now follows immediately,
with the help of the properties (iii) and (iv) of U, that for any a,b E R:

EU or EU,

that is, that at least one of the two relations a <b mod M or b <a mod M
must hold. The other properties of an ordering, namely

a <a,
a<6,
a<b,
a<b
O<a,

all follow immediately by using the filter properties of
Until now we have made no use of the assumption D C M. This will be

used for the first time in proving that R has an element which exceeds all
real numbers. In fact the relation

r mod M,

holds for all r E R, if we set

This is clearly true since by (v) <w(fl)) = {n:r < n} E UM.
As already indicated in the introduction, we would now like to define the

ring of the finite elements of R. To do this we use the extension
I
of the

absolute value of the real numbers. Just as in IR, so also in 1R, we have

* f a, if O<a,
if a<O.

If here a E R is a representative, then strictly speaking we should interpret
both the equation and the inequality in the modulo M sense. Since however
we have chosen a fixed M once and for all, we shall in future omit the
qualification "mod M," at least when this entails no risk of confusion. We
shall also often omit the asterisk in denoting the extended form of the
function, particularly when the function already has a definite name or
notation associated with it, such as

The property of the extended version of which has just been indi-
cated above, follows by virtue of the general transference principle to be
discussed in §3, from the corresponding property of the absolute value of
real numbers. Nevertheless, it can also be deduced immediately from the
following considerations. If for a sequence a = we have 0 � a,
then this means that {n: 0 E U. This of course implies that the set
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(n: = a(hl)} is also an element of U, and hence it follows by (vi) that
1°! = amod M. A similar argument holds good for a 0.

If we now define

D={aE

we see at once that V is a proper convex subring of By the convexity
of V is meant the property that

In addition, we define

M={a€

One can see at once that M is a convex ideal in D, that is to say, that

a,b EM a+b EM,
a€ M,b ED a• b EM1

0< b � a M b E M.

M contains nonzero elements because since n w it obviously follows that
o < 1/w < 1/n for all n so that 11w M. The elements of M are
said to be infinitely small or infinitesimal quantities. The elements of V
are called finite quantities. All other elements of are said to be infinite.
For a, b we use the notation

a b a — 6 M,

to indicate that a and 6 differ from each other by an infinitesimal amount.
We therefore say that a and 6 are neighboring quantities. Obviously is
an equivalence relation on lii. We now prove the important

Theorem. Every finzte quantity a E R is a of just one real
number r, and r then is called the standard part st(a) of a.

Proof. To prove eristence we consider the sets = {r r < a) and
= {s s). Obviously define a cut in and because

of the completeness of (see Chapter 2, §2.2) there is a t such that
r < t <s for r sE Ya. We at once deduce that It—al <C for all
c R+. Hence a t R.

To prove uniqueness, let us assume that a t3 for t1,t2 E Then
t2, that is, $t1 — 12$ < e for all c E but this is possible only if

11—12=0. 0

From this theorem we see, in particular, that the mapping st: V
is an order preserving ring homomorphism whose kernel is M and that
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st P. = id. Thus we know in particular that all the field operations can be
validly performed with finite quantities, provided that we replace = by
and divide by an a E D, only if a 0.

It should also be noted that corresponding to every subfield K of P. a field
can be constructed in the same way as was constructed from P.. The

above theorem can therefore be sharpened to "In K every finite quantity
possesses a standard part if and only if K = P.." This theorem therefore
expresses the completeness (with respect to cuts) of P.; the calculation with
standard parts replaces the explicit application of the completeness of the
real number continuum in classical analysis.

We now turn to the continuity of a function f: P. —. P. at the point z P..

In the usual modern definition this is equivalent to asserting that to every
e E corresponds a 5 E such that for all h E P.,

<6 Jf(z + h) — f(z)I � e.

As we have seen previously, the function f can be extended to a function
R in such a way that for a =

f(a) mod M.

We now consider an h 'P., with IhI < 6, so that {n: � 6} E U.
Since (n: < 6) C {n: If(z + — f(z)I < e} this latter set is also
in U, or in other words 'f(z + h) — <e. If, in particular h E M,
then the statement that Ihi ( 6 for all S E is true. Consequently
'f(z + h) — 'f(z)I <e for all c P.' is also true, and hence

f(z).

We have therefore proved the 'only if' part of the following

Theorem. The functson I: —. P. is continuous at 1/ic point z P. if, and
only if'f(z + h) f(z) for allh 0.

Proof of the "if" part of the theorem. We have to prove that f is
continuous. Suppose f were not continuous at z. Then there would be an
e E such that, for every n N' an E P. exists satisfying the
two inequalities < and If(z + h(")) — f(z)I � c. If we now set

= then obviously IhI � 11w. Since 11w M it follows that
h E M, or in other words h 0. On the other hand, because of the
way in which was chosen, {n:If(z + — f(z)I 2 c} U, that
is I'f(z + h) — f(z)I � c. This however contradicts the hypothesis that
f(z + h) 1(z) for h 0 and thus proves the "ir part of the theorem. 0
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FEATURES COMMON TO IR AND *R

The proof of the last theorem and (even more clearly) the verification of the
characteristic property of the absolute value show that certain properties
of functions on R are transmitted via their components to the extensions
of these functions to In this section we shall try to formulate a general
principle governing the transference of properties from to It is clear
from the outset that not every property can be carried over—after all R and

are different entities. Nevertheless we shall attempt to find the largest
possible domain of transferable properties. We shall construct this domain
inductively, starting from very simple properties and proceeding to more
and more complex properties by means of a specifically designed procedure.

In order to carry out such a program we first need to consider how we can
describe general properties. One possibility is the following: we introduce
an artificial language—a formal language—in which we can describe the
properties in which we are interested. The inductive procedure which we
have just mentioned will then operate by an induction on these "descrip-
tions," for example, on the length of the description. The formal language
to which we have referred will naturally be very similar to the everyday
language of mathematics. This is anyhow advisable because it makes it
easier to read so that the correct interpretation is immediately suggested.

Let us consider an example. One of the properties which R and *R have in
common is the commutativity of addition. In the formal language which we
yet have to introduce, this property is described by the formal expression

VxVy x+y=y+x.
This is a row of symbols, consisting of eleven individual symbols. From the
notational viewpoint, the symbols have been chosen so that a momentary
glance at the row of symbols is enough to make one think at once of the right
interpretation. There is really only one interpretation left open, namely that
of Yx. This depends on whether we wish to interpret the above formula in
Ilk or in In the first case Vx should be interpreted as meaning "for all
a Ilk," but in the second "for all a We shall therefore also have to
define a relation between Ilk and formulae, or between *11k and formulae,
which expresses the validity of a formula in Ilk, or in 11( respectively.

We shall use for the basic symbols (the individual symbols) of the lan-
guage now to be defined, the known symbols

-'A =<), (

as well as the symbols for variables

VO Vi V2

We also use for each function f: Ilk a symbol with which we can
denote f or f, respectively. For convenience we shall use f itself as the



§3. Features Common to JR and 11L 317

symbol for this purpose. It should be noted therefore that the interpreta-
tion of / is simply f when interpreted as a function on IlL, but '/ when
interpreted as a function on 'lit. Lastly, we shall introduce, for every a E 'JR
a symbol g (the name of a). The interpretation of g is of course a.

From these basic 8ymbols we can now build up entities called terms,
defined as follows:

(1) variables and for a 'JR are terms;

(2) if tj,. .. ,tm are terms and f is a function of in arguments, then
I (tj, . . . , tm) is a term.

If a term I contains no variables it is said to be a constant. The inter-
pretation of a constant (term) in JR or in 'JR is obvious and is the same in
both cases, provided the only constants present are from lit.

Next we define formulae

(1) If and 12 are terms, then 11 t3 and t) < 12 are formulae (the
so-called primitive formulae).

(2) If and are formulae and v is a variable, then A S02),
are formulae.

We shall call a formula with no free variables a statement. In this connec-
tion a variable v which occurs as a free variable in a formula jo is no longer
a free variable in the formula 3V4Q. This can be put rather more precisely as
follows: for any term I let F(t) be the (finite) set of all variables occurring
in 1. We now define recursively

F(11 = 12) = F(t1 � t2) = F(tj) U F(12),
=

F(çp1 A =
= {v).

and is accordingly a statement in the case where = 0.
We now define what is meant by the validóty in JR or in 'lit as the case

may be, of a statement o. In other words we define the relation P & (read
as "the statement holds in R") or 'lit a (the statement a holds in 'lit).
The first case makes sense only if there are no constants with a E lR\lIt.
In this case we call a an lit-statement. As far as primitive formulae are
concerned, their validity in JR or in 'JR is immediately apparent. Suppose
now that the validity of and 02 in 'JR has already been defined. We then
put

'RI=—'ai
'P A ['lit and 'P as],
'lit 3vço there is an a E 'JR with 'lIt
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Here means the result of substituting for v in the formula Another
quantification which may possibly occur in is of course not allowed to
be replaced by because this is no longer a formula under the above
construction. In the last case of the definition the hypothesis that is
a statement naturally ensures the same property for The inductive
structure of the definition of the validity of R-statements in R is analogous
to that of the above definition. For example

there

We are now finally in a position to formulate and to prove the general
principle of transference.

General Transfer Principle. Let a be a statement in which, at most the
constants . appear, so that a = .. .

Then

Proof. Suppose first that a is a primitive statement, and therefore t1
or <t3. Then (vi) and the definition of� in R provide us with just the
equivalence asserted.

We now deduce the general result by induction on the structure of the
statement a. If a is of the form —'a1 and we assume that the above equiv-
alence holds for aj, then we can argue as follows:

This is clear since for any ultrafilter U on W

A €11.

If a is of the form (a1 A cr2), then we argue as follows:

...]

This again is right because

and BEU.
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Finally, if a is of the form Bvço, then obviously

there is an a E R with f

*Rwith

This follows from the inclusion

{n:R C {n:R

There remains the converse of the last implication to be proved. Suppose
therefore that {n: E U. We define a sequence a =

as follows. Let be an r E It, for which It holds, pro-

vided that such an r exists at all. Otherwise, we put
a

If the first set is in Uhf, then so is the second. This proves the required
converse. 0

As a corollary we obtain the

Tmnsfer Principle. Lel a be an It-sialemeni. Then a holds in It zf and
only if it holds in •R.

Proof. Since for numbers r Ia, all the component terms are equal
to r, it is clear that for a1 IR

or

depending on whether . . , is true or untrue in IR. Since N' U

and 0 U it therefore follows that

It 1= ..))
0

From now on we shall simply apply this transfer principle. We can forget
all about the way in which R was originally defined. This will actually
turn out to be very useful on most occasions, since fiddling about with
indices can be rather confusing. By simply using the transfer principle on
its own we can to a certain extent treat the elements of It and on an
equal footing as "atoms" or primitive elements. If however we work with
the particular construction of IR, then we have to deal on the one hand
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with real numbers, and on the other, with equivalence classes of sequences
of real numbers.

The onLy difficulty which arises in applying the transfer principle, and it
is one which should not be underestimated, is that involved in formalizing
the properties to be transferred. It needs a certain amount of practice before
one develops a feel for it. This is the price one has to pay for the convenience
of working with infinitesimals.

In formalizing the properties which are to carry over one will naturally
try to improve the intelligibility of the formal language used by employing
abbreviations which make it easier to read. For example one uses

for
for
for
for —'3v -'so.

We should like to conclude this section by giving another proof of the
theorem of §2 on continuity, this time using the transfer principle alone. At
the same time, with a view to a later application, we shall present a slight
generalization. We shall prove the

Limit Theorem. If r0,b E R and g is a function from to then the
statement g(zo + h) = b is equivalent to g(zo + h) b for all
h 0 with h 0.

Proof. If the limit statement holds for g, then for every c IR+ there exists
a 5 E such that

R1Vh(0< <a).

By the transfer principle, we deduce from this that

IhI<

Hence, since Ihi < 6 we obtain + h) — bJ < c for all !z 0 with h 0.
As this applies for every c E we have g(xo + h) b. Conversely, let
us assume that g(zo + h) b for h 0 with h 0. Suppose that h0 0

where h0 is fixed and 0 < h0. Then for 0 < JhJ < ho we have g(xo+h) 6,

and thus in particular, if we think of 6 = ho we have

Here C E IR+ can be any positive number, and the transfer principle then
gives us

R 35(0 < 6 A Vh(0 < < 6 + h) —

This however is precisely what the limit statement asserts. 0
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This proof shows clearly the convenience of applying the transfer prin-
ciple and its advantage over the use of sequences constructed specially for
the purpose. This is not really surprising because the constructed sequences
have been incorporated in the proof of the transfer principle.

§4. DIFFERENTIAL AND INTEGRAL CALCULUS

1. Differentiation. We now introduce, for a given function f: JR JR its
differential df(z) at the point z JR. To this end we fix an h 0 with
h 0 and set

df(x)= f(x-fh)—f(x).

In the case of the identity function 1(x) = x, we obtain, in particular,
dx = x + h — x = h. From now on therefore we shall always use dx instead
of h 0 with h 0. We thus obtain, for the differential of 1 at the point x

df(x) = f(x + dx) — 1(x).

Note however that this differential depends on the choice of the quantity
dxEM\{0).

The differential quotient df(x)/dx can be formed for every function
f: JR —. IR; it is a definite element of R. The connection with the derivative
of the function f at the point x is described by the following

Theorem. If, for a given function f: JR —. IR, the limit of the quotient
of the differences at the point x P. exists and has the value f'(x), then
df(z)/dx f'(x) for all dx E M \ {O), and the converse is also true.

Proof. If, in the limit theorem of §3, we put

f(x+h)—f(x)

and 20 = 0, then we obtain the result that the statement about the limit
is equivalent to the assertion that

df(x) = f(x + dx) — 1(x) = g(dz) f(z)
dx dx

for all dxEM\{O}.

The usual rules on the differentiation of functions can now easily be
obtained:

(1) 1ff is differentiable at the point x, then f is continuous there.

Since df(x)/dx f'(x) it follows that f(x + dx) — 1(x) = df(x)
f'(z)dx 0. Hence f(x + dx) f(x) for all dx. This is the continuity of
fat x.
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(2) 1ff and g are differentiable at x, then so are (f + g) and (1 g) and

(1 + g)'(x) = f'(x) + g'(x), (I g)'(x) = (1' g)(x) + (1 g')(x).

We shall carry out the proof of the rule for the case of multiplication:

d(f g)(x) = *(f
. g)(x + dx) — (I g)(x)

= *f(x + dx). *g(x + dx) — f(x)g(x)
= (df(x) + 1(x)) (dg(x) + g(x)) — f(x)g(x)
= df(x)dg(x) + f(x)dg(z) + g(x)df(x).

Division by dx then yields

d(f . g)(x)
—

dg(x)
+

df(x)
+

dg(x)
dx — '' ' dx dx '" / dx

f(x)g'(x) + g(x)f'(x).

This last line is a consequence of the hypothesis of the differentiability of
f and g at the point x which, by (1), implies in particular that df(x) 0.
We have thus shown that

(f . g)'(x) 1(x) . g'(x) + g(x) . f'(x).

As however both sides are elements of IR, they must be equal.

(3) 1ff is differentiable at the point x and 1(x) 0, then 1/f is differ-
entiable at x and (1/f)'(x) = —f'(x)/f(x)2.

Since f(x) *f(x+dx) then naturally 0 as well. We therefore
have

1

*f(x+dx) 1(x) — f(x).*f(x+dx)
It follows from this that

— —f'(x)
dx — f(x)*f(x + dx) f(x)*f(x + dx) f(x)2

which, as in (2) proves the assertion.

(4) 1ff is differentiable at the point x and g is differentiable at the point
1(x) then g o f is also differentiable at the point x and (g o f)'(x) =
g'(f(x)) f'(x).

In the case where df(x) 0 we obtain, with

d(g o f)(x) = *g(*f(x + dx)) — g(f(x))
= g(f(x) + df(x)) — g(f(x))
= dg(f(x))
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a differential of g at the point 1(z), formed with h = df(z). Division by dx
then yields

d(gof)(x) — dg(f(z)) df(x)
dx — df(z) dx

By taking the standard parts we obtain

st
(d(9 of)(x))

?(f(x)) f'(z).

This equation also holds when df(x) = 0. Indeed, it follows from this that,
on the one hand, f'(x) = st(df(z)/dz) = 0 and on the other hand that
d(g o f)(z) = 'g(f(x)) — g(f(x)) = 0. Therefore, as the above equation
holds for all dx E M \ {0}, (g o f) is also differentiable in x and has the
derivative stated. 0

It will certainly not have escaped the attention of the observant reader
that, in the course of the proof which has just been given, we made implicit
use of the transfer principle in a few places, for example, in asserting that

'(1 g)(y) = 'g(y).

Indeed, since the statement

Vv(f g)(v) = f(v) g(v)

is true in IR, it must also be true in R, that is to say, it holds for the
extensions of the three functions g and (1 g).

2. Integration. In this last section we should like to sketch how the integral
of a function f, continuous in the closed interval [a,b] can be described as
a sum of the areas of rectangles of infinitely small width. Understandably
enough the "sum" involved cannot be a finite sum, that is, the summation
cannot run from 0 to n, where n E N. This is clear because a finite sum
of elements of M must it.self be in M. We shall instead take as the upper
limit of summation an infinitely large "natural number." We still however
have to define what is meant by the word "sum" in this case.

First, as regards the infinitely large "natural" numbers. The character-
istic function x of N, defined for x E JR by

Ii, ifzEN
x(z) = 0, otherwise

has, like every other function, an extension defined on This extension
obviously retains (thanks to the transfer principle) the property of being a
0, 1-function. We now define

= {a E 1R: = 1).
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Since {n: = 1) = N' U it follows at once from the transfer
principle that w E N. There are therefore infinitely large natural numbers
in 51R. It is easy to satisfy one's self that N is a subset of N and that the
new elements of N are larger than any of the elements of N.

Before coming to integration, we shall use infinitely small subintervals to
prove the following well-known lemma.

Lemma. If a function f is continuous in the closed interval [a, bJ, it as-
sumes its mazimtim (and its minimum) value within that interval.

Proof. If n EN and we set a, a+((b—a)/n)(i—1) for 1 <i < n+1, then
naturally, among the finitely many values of f(a1) with 1 � i � n + 1 there
is a maximal one (that is, one which is not smaller than any of the others).
That this is true for all n E N, can be expressed in the form of a valid
statement in JR with the parameters and k (an exercise which will provide
good practice for the reader), and it therefore holds good for all elements
of N, for example, for w. Now suppose that f(a,) is maximal among the
values f(a1) for 1 <i + 1. Suppose also that x = st(a1) [a,b]. To
every real number y [a,b] corresponds an i <w with a, y � This
again follows from the transfer principle, because the statement is true for
every n N in place of w. Since a,+i — a, = (b — a)/w 0 we obtain
in particular the result that y = st(a1). Owing to the continuity of I it
follows therefore that f(y) 5f(a,) < f(a,) f(x). This at once implies
f(y) � f(z). 0

Now back to the integral. Let f be a function from lit to JR and suppose
a, b JR with a < b. To every h with h <6— a corresponds an n E N
such that nh < b — a < (n + 1)h. The function

Sj(a,b, h) = . h + —

where we have here set, a = a+(i— 1)h, is the sum of the areas of rectangles
of width h or and height 1(a). For infinitely small h, such asum
should adequately describe the area under the curve y = 1(x) between the
abscissa a and b, and this is in fact correct.

Like every other real function, S1 can also be extended to 1R (and indeed
in such a way as to retain its properties expressible by statements of the
type considered in §3). If for every positive hEM the value S1(a,b,h) is
finite and has the same standard part c, then we call c the integral of the
function from a to b. It can be established without much trouble that c is
equal to the Riemann integral of f over the closed interval [a, b], whenever
this integral, as normally defined, exists.

We shall now prove (at least in part) the following theorem.

Theorem. If the Junction f is continuous in the real interval [a, 6], then
its integrnl from a to 6 exists.
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Proof. We first show that S1(a,6,h) is finite for h E M \ {O). As f is
continuous on [a, 6] in R, 1)9 is bounded in view of the lemma proved earlier.
For h ]R+ with h � b — a we therefore have

S If(ai)I Ihi + — < (b — a)c,

where cE is an upper bound for Ill on [a,b1. We thus have

< h — �
The same statement holds in R. Consequently S1(a, b,h) is finite for every
positive h E M.

The proof that it does not depend on h is somewhat harder, and we leave
it to the interested reader. 0

Again suppose f to be continuous in [a,6]. Then f is also continuous in
[a, x] for every x E (a, 61. We write

I(a,x) = st(S1(a,z,h)),

where h is an arbitrary positive element of M. We now wish to demonstrate
the additivity of the integral, that is, we wish to show that for C E and

€[a,6]
I(a,x)+I(x,x+e) = I(a,x+e).

This follows at once from the relation

S1(a,x,h)+ S;(x,z+e,h)= S1(a,x+e,h),

where, because of the independence of the standard part, a suitable positive
h E M can be chosen. In fact this relation holds for h = (x — a)/w, because
the reLation

Sj(a,z,h)+Sj(z,x+c,h) = Sj(o,z+e,h)

holds in R for 1* = (x — a)/n and every sufficiently large n E

Main Theorem. If f a function continuous in the interval (a, 61 then
F(x) = I(a,x) is an antiderivative off, that is, F'(z) = f(x)forx E (a,6).

Proof. We have to show that

F(z + dx) — F(x)
dx

f(x)

for dx E M \ (0). Because of the additivity of I, which naturally carries
over to this means

1(z,x +dx)
dx
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where, for dx < 0, we naturally interpret 1(x,z ÷ dx) as —1(x + dz,x).
Now this can be shown as follows: by the transfer principle f has a max-
imum c1 and a minimum c2 in 'R within the interval [x,x + dx] and for
positive dx

c2dx < 1(x,x + dx) <c1dx.

Hence
1(z,x-I-dz)

f(x2) = C3
dx

ci = f(ri),

where x1, Z2 are appropriate elements of the interval [z, x + dx] in R.
Owing to the continuity of f however, 1(x1) f(x) 1(z2). This proves
the theorem. 0

EPILOGUE

We should now like to go briefly into three particular points in connection
with our presentation of the introduction of the nonstandard domain M:
these are, the uniqueness of 1R, extensions of context, and lastly other
approaches.

Uniqueness of IL If one assumes the truth of the continuum hypothesis
= then it follows from some general theorems of model theory (see,

for example, [4], Chapter 5, Corollary 23.6) that the ordered field •R is
uniquely determined to within an isomorphism. This means that does

not depend on the particular choke of the maximal ideal M in R, as long
as it has D as a subset. If this condition is satisfied the resulting ultrafilter
is nontrivial (called "free" in [4]). If on the other hand a maximal ideal
M is chosen such that D M, then UM becomes a so-called principal
ultra-filter which implies that RIM R.

The independence (to within an isomorphism) from the choice of the
maximal ideal M 3 D no longer holds for the extensions of all real functions
on R.

Extension of the Context. The principle proved in §3 allows certain
properties to be carried over from IR to R. The context (or universe of
discourse) within which this transference can take place is determined by
the formal language which was discussed there. This context can to a certain
extent, be chosen arbitrarily. In this particular case we have chosen it to
be as simple as possible. It can be widened considerably. If this is done a
difficulty which has so far remained unnoticed can, and as a rule will, arise.
We would like to explain this briefly.

To every subset A of corresponds (as with N) an extension A in IL
Not every subset of R however is of this form. Furthermore if one extends
the formal language in such a way that quantification over all subsets of R
becomes possible, then the quantification interpreted in R no longer runs
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over all subset,s, but only over the so-called "internal" subsets of YR. Thus,
for example, is such an internal subset, but not N. One can easily see
this, if one formalizes the following statement in the extended context

"every subset that contains 0, and z + 1 whenever it contains
z, 'exceeds' every element."

In JR this statement is true in an obvious sense. Interpreted in YR it cannot
validly refer to all subsets because N certainly satisfies the hypotheses, but
does not "exceed" every element of • It

Other Approaches. In the approach to nonstandard analysis adopted
here, we have constructed the domain YR from the already available do-
main JR. This approach corresponds to the construction of the real numbers
from the rational numbers by means of sequences. Another possibility—
analogous to the axiomatic introduction of real numbers (which then con-
tain the rational numbers as subsets)—is to introduce YR axiomatically as
well, so that JR is then a special or distinguished subset. This approach is
found for example in the book Elementary Calculus by H.J. Keisler [2].
While in Keisler the axiomatics are specially tailored to YR, those chosen
by E. Nelson in [3] are far more general and are based on set theory.
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Numbers and Games
H. Hermes

§1. INTRODUCTION

This penultimate chapter will be devoted to presenting a new method by
which the real numbers can be introduced. This method was published
in the seventies by the English mathematician John CONWAY. In contrast
to the previous chapters we shall not be giving a systematic exposition
of the subject matter. Our aim instead in the passages which follow will
primarily be to explain the ideas on which the Conway Theory is based.
The technical details of its implementation will be found in CONWAY'S book
[1], in [2] and—in a popularized version—rn [5].

1. The Traditional Construction of the Real Numbers. We shall
confine ourselves here to pointing out a few of the characteri8tic features (a
detailed exposition is given in Chapters 1 and 2). The basis is set theory.
The real numbers are constructed by a step-by-step procedure. There are
several variants but they are not fundamentally different. One of these
variants leads to the goal in three steps.

The natural numbers are introduced in the first step. By means of the
von Neumann construction the number 0 is identified with the empty set

and the number n + 1 with the set nU {n) (see 14.1.3 and 14.2.1).
In the second step (which in Chapter 1 is subdivided into two) the ra-

tional numbers are regarded as classes of number triples (ordered triples of
natural numbers); for example, to the class belongs the triple (13, 17,6),
since = (13 — 17)/6. The rational numbers constitute an ordered field.

The third step leads from the rational numbers to the real numbers. A
real number is a Dedekind cut [3] (see Chapter 2.2), that is, an (ordered)
pair (xi, z2), where x3 and x3 are sets of rational numbers. It is usual (in
German) to call Xi the upper and x3 the lower class, but we shall here
follow Conway and speak of the left class and the right class X2 of the
cut (x1,z2).

DEDEKIND lays down four requirements for a cut (xl,x2):

(Dl) Every rational number lies in precisely one of the two classes xl,x3.

(D2) x1 and x3 are (each) non-empty.

(D3) Every element of xi is smaller than every element of x2.
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(D4) z1 has no largest element.

In this three-stage construction of the real numbers the arithmetic op-
erations have to be defined three times, and at each stage the system of
numbers so far defined has to be isomorphically embedded in the system
defined by the next 8tage.

2. The CONWAY Method. Here again the starting point is set the-
ory. The real numbers are obtained in a single step. To achieve this CON-
WAY makes use of two ideas. The first involves a suitable generalization of
DEDEKIND cuts. However, it is not at first sight at all clear how to define
an order relation for these generalized cuts. This is where CONWAY'S sec-
ond idea comes in. He saw that the generalized cuts could be regarded as
defining a two-person game, and that the theory of such games provided a
key to a definition of order.

One of the great advantages of CONWAY'S method is that it avoids a
step-by-step construction of the real numbers and hence the tedious repe-
titions associated with this approach. It could also be considered to be a
further advantage that it links the number concept with the game concept.
Games belong to the oldest experiences of mankind as well as to the earliest
experiences of every individual (see [4]). Any link of this kind is of value to
a science like mathematics with its tendency to ever greater abstraction.

Of course we do not in way assert, or even suggest, that CoNWAY'S
method will supersede the traditional construction of the real numbers.
Indeed one cannot hide the fact that this method, besides having the ad-
vantages which have just been indicated, also has its adverse side. Among
the disadvantages is the often tedious verification of the validity of the
arithmetic rules of calculation. Furthermore, the primary product of the
CONWAY process is not just the real set of numbers, but an ordered field
which includes the real numbers as a proper subfield. The "nonstandard
numbers" which are the elements of this larger field are either infinitely
large or infinitely small or infinitely close to a real number (see Chapter
12). II one wishes to arrive at the real numbers one has to separate them
out from the other elements of the CONWAY field.

3. Synopsis. In §2, we shall discuss the DEDEKIND postulates (D1—D4)
with CONWAY'S proposed generalization in view and we 8hall introduce
the concept of a CONWAY game. CONWAY gaines may be regarded as a
particular type of game, and we shall define the relevant concept here in §3.
A few fundamental theorems about such games will be proved in §4, based
on the idea of a winning strategy. In §5, it will be shown that the games
concerned constitute (modulo an equivalence relation =) a partially ordered
group. We end our account of the game-theory part in §6 by proving the
result that CONWAY games can be regarded as "standard forms" of gaines
(of the type being considered here).
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CONWAY'S two basic postulates (Cl), (C2) will be formulated in §7.
They are motivated by the considerations in §2 and make use of the partial
ordering relation introduced in connection with games. Finally, §8 contains
the definition of the arithmetic operations for the ordered field of CONWAY
numbers and ends with a brief summary of C0NwAY'8 results.

A warning here may not be out of place. Although the basic ideas of CON-
WAY'S theory are very simple and illuminating, their precise implementa-
tion—which will mostly be waived here—proves to be quite troublesome
(see say 8.2) or at least non-trivial (for example, the proof of the closure
property of K0 mentioned in 8.3).

§2. CONWAY GAMES

Poesis doctrinae ta.mquain somnium (Francis BACON)

[The poetry of learning, a kind of dream ...]

CONWAY'S first idea, as already remarked in 1.2, consists in generalizing
DEDEKIND cuts. We propose to examine DEDEKIND'S postulates (D1)-(D4)
in greater detail in order to extract from them what is important for this
generalization. We shall then eventually come to the definition of CONWAY
games. This definition may be regarded as preparing the stage for the
CONWAY postulates (Cl), (C2) corresponding to (D1)-(D4) (see §7).

1. Discussion of the DEDEKIND Postulates. The purpose of (D4)
is to prevent a real number r from being represented by the two different
pairs of sets

(the set of rationals <r, the set of rationals> r)
(the set of rationals < r, the set of rationals � r).

If one is prepared to allow a real number to be represented by different
pairs of sets, then (D4) becomes superfluous.

(D2) forbids, for example, the pair of sets

(the set of all rational numbers, the empty set).

A "number" given by this set would, intuitively speaking, be a positive
infinite number. It would even be the only such number which is in con-
flict with the axioms of an ordered field. Such a conflict could possibly be
avoided if, by generalizing DEDEKIND'S construction, one could produce an
infinity of infinitely large positive numbers. Not so very long ago such num-
bers were banned in mathematics, after a period of critical examination of
the foundations had created a "horror infiniti." Nowadays however we have
ceased to be frightened by "infinite" objects (see also Chapter 12).
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(Dl) implies that the right class, say of a DEDEKIND cut, is uniquely de-
fined by the left class. Logically, therefore, it would be simpler always to op-
erate with the left class alone and to abandon DEDEKIND'S "poetic" concept
of a real number as a pair of sets. CONWAY, however, takes DEDEKIND'S
"poem" very much to heart: for him it is the left and right classes of the
set-pair which generate the number, not the reverse. CONWAY therefore
has to throw overboard (Dl). For example, it becomes possible to define
the real number 0 by the set-pair (the set of rational numbers —1/2's, the
set of rational numbers 1/2's) among an infinity of others. Moreover the
set-pair ({O),{1}) also defines, for him, a "number" (see 8.2).

(D3) remains as the last postulate. This requirement ensures, for DEDE-
KIND, that the real numbers form a fully ordered domain. CONWAY also
makes a corresponding demand. If we modify the formulation of (D3) by
using < instead of < we obtain the following version to which we shall come
back later:

(D3') no element of the right-hand class is less than or equal to an element
of the left-hand class.

2. CONWAY's Modification of the DEDEKIND Postulates. CON-
WAY, like DEDEKIND regards numbers as pairs of sets (x,y). However, while
DEDEKIND allows as elements of the sets x and y only rational numbers—
which have previously been constructed—CONWAY, in forming a number
(x,y), allows the elements of x and y to be any numbers whatsoever which
are capable of having already been constructed "earlier" by this method.

The formation of pairs is, however, (as with DEDEKIND) limited by the
restriction (D3'). Here a problem arises to which we have already alluded
in 1.2: with DEDEKIND (D3), or (D3'), is meaningful because an order is
already defined for the rational numbers. For CONWAY'S intended general-
ization to make sense it has to be assumed that an order relation < between
the elements of z and y has already been defined.

This suggests that until one can visualize what such a definition might be,
one should initially abandon the Limitation on pair formation imposed by
(D3') and investigate what sets can be formed when one ignores this restric-
tion. One would then naturally expect that other objects besides numbers
could be produced. We shall see in §3 that all the objects constructible
in this way can be thought of informally as games. In anticipation of the
definitions and explanations given later we shall therefore call the objects
constructible by the CONWAY pair formation process Conway games.

The theory of games provides us, in a suggestive manner, with a partial
order relation < between games (S6). This partial order is then finally used
in §7 to formulate the restriction (D3').

3. CONWAY Games. In accordance with the explanation in §2 we shall
introduce the concept of a CONWAY game by the postulate
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(CG) If x and y are Conway games, then the pair (r,y) is a
Conway game.

(CG) defines a CONWAY game inductively. With the help of the standard
techniques of set theory one could turn (CG) into an explicit definition, but
it is more convenient to work with the inductive definition.

Inductive definitions are well-known, for example, in elementary number
theory where, for example, addition can be defined inductively by the two
requirements that x + 0 = x and x + S(y) = S(x + y) (see 1.2.3).

A few examples should illustrate how (CG) can be applied.
Considering that to construct a CONWAY game (x, y), the elements of x

and y need already to have been constructed as CONWAY games, one might
think that it would be quite impossible to construct any CONWAY games at
all with (CG). However, this would be a wrong conclusion because if x and
y are both empty, then x and y are sets of CONWAY games (that is, every
member of x and every member of y is a CONWAY game). Accordingly, by
(CG) the pair 0) is a CONWAY game. It will be shown later that this
game can be identified with the number 0:

(1) O=(0,0).

Since 0 is a CONWAY game, (0) is a set of CONWAY games. Accordingly
one can now obtain, with the help of (CG), the CONWAY games ({0),O),
(0,{O}) and ({0},{0}). In particular it can be seen that the following sets
are CONWAY games:

2=({O,1},0),
(2)

and one recognizes that the process by which VON NEUMANN constructed
the ordinal numbers (see 14.1.3) also yields CONWAY games, so that

(3) All ordinal numbers are Conway games.

In order to show that a set z is a CONWAY game, there is only the one
postulate (CG) available. Thus z has to be a pair (x,y) in which x and
y are each sets of CONWAY games. We shall call the elements of x the
left elements of z, and the elements of y the right elements of z. We
therefore have

(4) Every Conway game is a pair of sets. The left and right elements of
a Conway game are themselves Conway games.
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§3. GAMES

We shall be concerned with a special class of games between two persons.
Th this class belong many well-known games and (which is of particular
interest here) all CONWAY games. Later we shall even be able to show
that to every game of the class considered here we can assign an "equiva-
lent" CONWAY game.

When we talk of "games" from now on, we generally mean games of the
particular class considered here.

1. The Concept of a Game. We consider games played between two per-
sons, L the left player and fl the right player. Before each piay it is agreed
which player is to begin, and thereafter the players play alternately (each
player making a move). A move leads from one positzon to another. There
is a set S of positions, one of which is distinguished as the initial position
80. Two binary (two-place) game relations —si.. and exist between the
positions. If the play has reached a position 8, in which it is, for example,
L's turn to move, then a move by L consists in changing the position from
s to a position s' where s 8'. If there is no such s' (that is, L has no
legal move), then L has (by the agreed rules of the game) lost the play
(and R has won). The same goes for R.

We define

(1) 8—'8' if and only if or

and lay down as a requirement of a game the

Finiteness Condition. There exists no infinite sequence of positions so,
s1,82,...suchlhats0—.s1--+82—-'....

It follows that every game must end after a finite number of moves and
that one of the two players must win. Henceforth there can be no draws.
There can also be no plays in which there is a return to the initial position.

A game is defined by the set S of positions, the initial position so, and
the two relations and (the permissible moves for £ and R), so that
it can be identified with the tuple (S,SO,—sL,—'R).

2. Examples of Games. One can easily convince one's self that the fol-
lowing examples fall within the scope of the games defined in the first
paragraph.

(a) NIM, for example in the following version. The initial position is
any prescribed ,n-tuple (N1,. .. , N,,,) of natural numbers. The positions are
the m-tuples (n1, .. . ,n,,,) with N, (i = 1,... ,m). Between any two
positions (nj,. .. ,n,,,) and (n'1, ... ,n,,) the relations and hold,
provided that n1 = n for all i except for one index i0, where n0 < a,0.
(Thus the player who has the move is obliged to remove something from
one of the remaining "heaps.")
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(b) The following DOMINO type game. The initial position is a finite
set of squares on a checkered plane. The positions are the subsets of
The relations s 8' resp. S hold if a' can be derived from s by
removing two vertically, resp. horizontally adjacent squares. (This game
can be played in practice by covering the squares with dominoes.)

(c) Conway games. Every CONWAY game x can be regarded as a game.
The initial position is identified with z. The positions are, apart from
the initial position, the left and right elements of z, then their left and
right elements, and so on. All positions are therefore, by (2.4), themselves
CONWAY games. The relations a —L s' resp. s 8' hold if and only ifs' is
a left resp. right element of s. The finiteness condition is satisfied, because
if there were an infinite sequence of positions such that SO S1 82

there would be an infinite sequence of sets such that each set
would be a left or right element of the preceding set. By the axiom of
foundation of the theory of sets, such a sequence cannot exist (see 14.2.2).

3. An Induction Principle for Games. Let x be a given game (S,so, —'L,
—R). To every 4 with —e 4 we can assign a game x' = (S',4, —.4,

as follows: let s E S' if and only if there is a chain 4 —. ... a

(including the case where s = 4). For s,s' E S', let a —4 a' if and only if
s —L a'. Let a s' be defined analogously.

Every game z' defined in this way will be called a predecessor (game) of
z. More specifically, we may talk of a game as being a left predecessor or
right predecessor, according as to whether 4 or 80 4.

The induction principle for games is concerned with a property P defined
for games. We write Px to mean that the game x has the property P.

Induction Principle for Games. If the statement Pz follows as a nec-
essary consequence of the induction hypothesis that P applies to every pre-
decessor game x' or x, then every game z has the property P.

Proof. Suppose that the induction statement Px follows from the induc-
tion hypothesis, but that there is nevertheless a game x0 which does not
have the property P. Then there would be a predecessor game 4 which
did not have the property, and 4 would have a predecessor z'j without the
property P, and so on. The initial positions 4, 4',... of the games ZO,
4, 4',... would therefore satisfy the relations

_ 4 .....4' .+

in contradiction to the finiteness condition for games, and this proves the
falsity of the original assumption. 0
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§4. ON THE THEORY OF GAMES

It signifies nothing to play well if you lose. (Proverb)

We shall show that in every game (as defined above), either the player L
or the player R or the player who begins (the "first" player) or the one
who does not (the "second" player) can force a win. The idea of a winning
strategy plays a decisive role here. In particular this idea can be used to
define "positive" and "negative" games. We can do this in such a way that
the natural numbers, which we have already learned in §2 to be CONWAY
games, are all positive in this sense.

I. Winning Strategies. The concept of a strategy is one of the funda-
mental ideas of the theory of games. Suppose that in an actual game played
according to the rules of the game z the player A is the one who has to
move (so that A may be either L or R). If there is no possible move open
to A then the game is over and A has lost, but if A has any options at all
then in general there will be several legitimate moves which he can make.
A strategy a for A in z in that case prescribes unambiguously the move to
be played by A.

The move prescribed by a given strategy can depend on the course of
the play up to that point. (It would be possible to restrict the definition of
a strategy so that it depended only on the position reached, but we shall
not use this simpler concept because we should have to prove more in this
case.)

We say that a player A in playing a game z plays a play with the strategy
a if o- is a strategy for A in z and each move made by A is the one prescribed
by a.

In defining a winning strategy we distinguish between the player using
it, and the player who has the first move.

a is called a winning strategy for L in the game z in the case where R
begins if (and only if) 0 is a strategy for L in x such that L wins every
play in which R begins, if L adopts the strategy a.

We shall write LxR to denote that L has a winning strategy in game z,
when R begins. We define LxL, RxL and RzR analogously.

Later on we shall use the two following lemmas:

(1) Let z' be a game which is a right predecessor of z, then R.z'L implies
RxR.

(2) If Lx'L for every game a? that is a right predecessor of the game x,
then LxR.

Proof of (1). Let a' be a winning strategy for R in a?, when L begins. A
winning strategy a for R in z, when R begins, can be devised as follows:
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R's first move is to bring about the initial position in x'; thereafter R plays
according to the strategy o-'. By hypothesis this strategy guarantees him a
win.

Proof of (2). A winning strategy for L in x, when R begins, is to allow R
to make any move (if there is no legitimate move available to R then L wins
immediately). This initial move leads to a game x', a right predecessor of
x, in which L has the move. Now L can use a winning stragegy o' which,
by the hypothesis Lx'L, must exist. 0

Note that, for reasons of symmetry, each of the statements (1) and (2)
(and the later statements using this terminology) has a valid dual obtained
by interchanging L and R and replacing the word "right" by "left" and
vice versa.

If in a particular game the player R, say, has the first move, then the play-
ers R and L cannot both have winning strategies. The following proposition
shows that at least one of the two players must have a winning strategy.
For every game z the statement is valid:

(3) (LxR or RxR) and (LxL or RzL).

The proof uses the induction principle for games. The first bracketed state-
ment may be proved as follows: if there exists a game x', which is a right
predecessor of z and which satisfies Rx'L, then RzR by (1), and the state-
ment is true. If not, Rz'L is false for every right predecessor x' of z, and
hence by the induction hypothesis Lx'L, so that LxR by (2) and again
the bracketed statement is true. The second bracketed statement in (3) is
proved in the same way with the help of the propositions dual to (I) and
(2). 0

2. Positive and Negative Games. If at the beginning of a play the
player R has no move, then LrR is trivially true. This applies to all the
CONWAY games named in 2.3(2). All these numbers are positive (in the
sense of � 0). These examples provide a motive for introducing a property
"0 <" defined by the following

Definition. 0 � z if and only if LzR.

Dual to this we introduce a property "negative," abbreviated to "<0"
by the

Definition. z <0 if and only if RxL.

With the help of this definition and of(3) the statements (1) and (2) can
be reformulated. We follow CONWAY here and use xR as variables for
the left and right predecessor games of z. We thus obtain:

(1') If an 0, then 0 < z is false.



338 13. Numbers and Games

(2') If for all 0 is false, then 0 < x.

By combining these two statements we obtain joint inductive character-
izations of "0 <" and "� 0", namely

(4) 0 � x if and only if, for all not 2R

and the dual of this

(5) x <0 if and only if, for all XL not 0 xi'.

3. A Classification of Games. Equivalence of games. By applying the
distributive Law of the Boolean and operation to (3) we have, for every
game x:

(LxR and LzL) or (LzR and RxL) or (RxR and LxL)
or (RxR and RaL).

H the first bracketed statement holds for x then L has a winning strategy
for any play in which L begins and also a winning strategy for any play
in which R begins. We shall say that such a game belongs to the class L.
Similarly a game belongs to the class R if the last bracketed statement
holds.

If the third bracketed statement applies then the player who begins has
a winning strategy, that is the first player. We shall say that a game of this
kind belongs to the class F.

Lastly if the second bracketed statement holds, the second player who
does not begin, has a winning strategy and we assign such a game to the
class S.

Clearly no game can belong to two different classes, so that

(6) Every,, game falls into one of the mutually exclusive classes L, It, F,
S.

Definition. Games which fall into the same class are said to be of equal
value.

Examples. The domino games with the initial positions H , cR , E
belong to the classes L, It, F, S respectively as is easily verified. Let
be a domino game whose initial position is an n x n square.

D0, D1, 1)5 belong to S and D3, D3, 1)4 to F. The CONWAY game
0 = (O,a) defined in §2(1) belongs to S because neither player in the initial
position can make a legitimate move.

One could naturally also define the above-mentioned classes with the
help of the relations ( 0 and � 0. Thus

(a) zES,if and only ifx�Oand0<x,
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(b) zEL, if and only ifo�z

and only if: 0 and 0

In particular 0 E S, and thus in the sense of the definitions for 0 <x and
x < 0, we have

(7)

If we define o < z as meaning 0 x and x 0, we see that L contains
all and only the strictly positive games, and in the same way ft contains
all and only the strictly negative games.

§5. A PARTIALLY ORDERED GROUP OF EQUIVALENT
GAMES

In the preceding paragraph we introduced the concepts of "positive" and
"negative" games. Instead of writing x is positive, we also wrote: z has
the property "0 <" or "0 S"x or more shortly 0 < z; in the same way
for z is negative we wrote z has the property "< 0",: 0", or z < 0.
The notations 0 x and z 0 suggest that z can be compared with 0,
although the property is not explicitly mentioned in the definitions.

In this paragraph we shall introduce a binary relation � between games
and show that "0 <"z if and only if 0 �: and that
z <0.

We shall also define two operations —z and z + y. We then interpret
z <V as "0<" y—z, where y—z is as usual an abbreviation for y+(—z).

The � relation (and this applies to — and + as well) is a contribution
from the theory of games to CoNwAY's theory of numbers. It is the relation
which we lacked in §2.

The relationship which exists between two games z and y, when z < y
and y z both hold is an equivalence relation compatible with respect to
<,— and +. The corresponding congruence classes constitute the elements
of a partially ordered Abelian group whose zero element is S.

1. The Negative of a Game. The negative of a game

z =

may be defined as the game

—x =

that is the game derived from z by transposing the game-relations for R
and L. Clearly we have

(1) —.(—z) = z, —0 = 0
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where (see §2,3(1)) the CONWAY game 0 must be interpreted as the game
with the one and only position 0) in which neither player has a legitimate
move.

(2) 110 < x, then —z < 0 (and conversely).

Proof. We have to show that R(—x)L, if LxR. This follows from the remark
that a winning 8trategy for L in z, when R has the first move, is also a
winning strategy for R in —z when L has the first move. 0

2. The Sum of Two Games. First an example: z1 could be a game
of NIM and z2 a game of dominoes. Then z1 + z2 would mean the game
in which x1 and x2 are played simultaneously, on the understanding that
each opponent when it is his turn to move has the option of making a move
either in z1 or in x2 (but not both).

The general definition is: if

= (i = 1,2)

then
xi + x2 = (S, 8o,

where S = S1 x S2 is the set of pairs of positions of the games x1, z2; is
the pair (801,802) and

(51,82)

if and only if

(si —'Li and = or (Si = S'j and 82 'L2 82).

(The relation is defined similarly.) It is clear that:

(3) —(z+y)=—z—y (=—z+(--y)).

Furthermore

(4) a)0<z—zandz—z<0.
b)IfO<zandO<y,theno�z+y.

c) IfO<x+yandy<0,then0�z.
Proof. a) 0 < z — x means that L(z — x)R. If R begins, L can win the
game x — x, if L copies the move played by R in the other component. The
second assertion follows by duality.

b) Let LzR and LyR. We have to show that L(z + y)R. We obtain a
winning strategy for L in the game z + y, when R begins, by adopting the
rule that L responds to every move of R by one in the same component
game as that chosen by R, and by making the move required by the winning
strategy for that component game.
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c) We show that 0 x and y < 0 together imply 0 x + y. By (4.3) it
will suffice to prove that

if RxR and RyL, then R(x + y)R.

R begins by making a move in the component x where R has a winning
strategy. Thereafter he always makes his move in the game in which his
opponent has chosen to move, and in accordance with the winning strategy
which exists for R in that game. 0

3. Isomorphic Games. Isomorphism for games can be defined in the
usual way.

It is easily seen that the game x + y is isomorphic to y + z and that
(x + y) + z is isomorphic to z + (y + z).

If y is isomorphic to x and LxR, then clearly LyR, and so on.

Example. The domino game with initial position (I] 8 is isomorphic to
the sum of the domino games with initial positions ED and B

4. A Partial Ordering of Games
Definition. x y if and only if 0 < y — x (where naturally the "0 on
the right means the property "0 introduced in §4).

We wish to show that 0 � y if and only if "0 y (see the opening
comment). (The proof that x 0 if and only if x 0" is proved similarly.)
We have to prove that, for the property 0 < we have:

0<y—0 ifandonlyif 0<y.

If 0< y, then 0 � y— 0 follows from 0<0(4.7), —0 = 0(1) and (4b).
If 0 < y — 0 then 0 < y follows from 0 < 0, —0 = 0 and (4c). 0

is a partial order relation. Reflexivity comes from (4a), and it only
mains to prove transitivity. Suppose z y and y < z, then

0 < (z — z)

0 z — x by (4a) and (4c)

and hence x < z.

(5) a) If x <y, then —y < —x.
b) Jfz�y, thenx+z�y+z.
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Proof. a) Let z y. Then 0 < y—z, 0 < —x—(—y) (isomorphy), —y < —x.

b) Let x < y. Then 0 < y—x, 0 < (y—x)+(z—z) (4b), 0 < (y+z)—(x+z)
(isomorphy) which proves the assertion C)

(6) No ZR <z and no z <

(see 4.2 for the definition8 of rR and 2L). We shall prove the the first
statement (the second is its dual). 2R — 2R is a right predecessor game
of z — By (4a) we have R(2R — 2R)L. It now follows from §4(1) that
R(z — 2R)R and hence that L(x — 2R)R and 2R <z are both false. 0

In §4 we characterized the property "<0" inductively. There is a corre-
sponding inductive characterization for the binary relation

Theorem. x <y if and only if (a) no y <

x < y. To prove (a) we note that x y and z, would
together imply y by transitivity, and this would contradict (6). The
statement (b) is proven similarly.

Suppose that we never have < z and never have y < 2L, but that
z y is false. Then we would have R(y — z)R. R thus has a winning
strategy for the game y — x, when R begins. There are two conceivable
cases to be considered for R's first move:

(i) R makes a move in the component y. This move yields a and
— x)L, so that L(z — yR)R, or in other words < x contrary to

hypothesis.
(ii) R makes a move in the component —x. This move yields a right

predecessor of —x, and thus a left predecessor 2L of x. This implies R(y —
2L)L and thus — y)R or in other words, y < contrary to hypothe-
sis. 0

5. Equality of Games. In the foregoing we have shown that has all
the properties which characterize the binary relation expressed by "z
and y < z" as an equivalence relation compatible with <, — and +. We
now follow CONWAY'S terminology and call two games equal (=) when this
relation holds between them. It should be noted that until now we have
always understood equality to mean logical identity. To avoid confusion we
shall from now on use the symbol to denote the latter. Accordingly we
now adopt the following definition of equality.

Definition. z = y means (x < y and y < z).

We shall spare ourselves the details of the construction of the equivalence
classes corresponding to this definition of equality and of the extension
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of the definition + and — to these classes and content ourselves with
formulating the result.

Theorem. The classes of equal games constitute a partially ordered Abelian
group with respect to <, —, + whose zero element is S.

Equal games are of course also of equal value in the sense defined in
4.3 (of having the same value). Each of the classes S, L, R, F thus splits
up into classes of equal games. All games of the class S are equal to one
another, but the other classes split up into more than one class of equal
games (indeed into an infinite number of such classes). For example, the
two domino games, x with initial position LIJ , and y with the initial posi-
tion III ELI are obviously both in R, but they are not equal. In fact
x is isomorphic to a For such a we have trivially z. We can
therefore deduce by the theorem in §4, that x y is false, and hence x

§6. GAMES AND CONWAY GAMES

We saw in 3.2 that every CONWAY game c can be regarded as a game.
More precisely, we have shown how given a CONWAY game c we can define
a corresponding game cG. We now propose to show that conversely to
every game x can be assigned a CONWAY game zc and the game ZCG
corresponding to this CONWAY game xc, is a game equal to z, where the
word "equal" is to be understood in the sense defined in the last paragraph.

One could denote ZC as the normal form of x. CONWAY bases his the-
ory from the outset on normal forms. This has the advantage of greater
mathematical simplicity though at the cost of intuitive appeal.

The two mappings c CG and x i—i xc enables the relations < and =
and the operations + and —, defined initially for games, to be carried over
to CONWAY games.

1. The Fundamental Mappings. We begin by repeating the definition
of CS which, in principle has already been given in 3.2 namely:

(1)

where the positions cG are, apart from the initial position c, the left and
right elements of c, their left and right elements, and so on indefinitely.
The move s s' is valid if and only if s, s' are positions and s' is a left
element of s; is defined analogously.

We introduced xR in 4.2 as variables for the left and right predeces-
sors of a game x. We shall similarly use CR as variables for the left and
right elements of a Conway game (see 2.3). It is easily verified that

(2) The CGL coincide with the CLG and the CG with the CRG.
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We now wish to assign a CoNwAY game zc to each game z. We define
this correspondence inductively on the assumption that zc has already been
defined for all predecessors z of the game z. (One can justify this procedure
with help of the inductive principle for games in 3.3.) Accordingly we define:

(3) (set of set of x's).

By induction over games one can see at once that xc is a CONWAY game;
and it is immediately apparent from (6.3) that

(4) The coincide with the x% and similarly the with the z%.

(5) For every Conway game CGC C.

To prove this we need a principle of induction for CONWAY games anal-
ogous to the one for games, and which can be proved in an analogous
fashion.

Induction Principle for Conway Games. If from the induction assumption
that Px' holds for every left or right element x' of an arbitrary CoNWAY
game z the induction consequence Px follows, then every CONWAY game
z has the property P.

We deduce from this that:

CGC (set of CGC, set of CGC) (3)

(the set of set of (2)

(set of ci', set of CR) (induction hypothesis)
C.

(6) z = ZCG for every game z.

We prove that x <ZCG (the proof that XCG x is similar). We use the
inductive characterization of the relation < given in 5.4, together with the
(2), (4) and the induction hypothesis.

x < if and only if no x and ZCG < no
if and only if no <x and ZCG no
if and only if no 2R z and ZCG no ZCG,

and the last conjunction holds by §5(6). 0

2. Extending to CONWAY Games the Definitions of the Relations
and Operations Defined for Games. We begin by defining the relation
<between CONWAY games c,c':

(7) c < c' means cc � 4.
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As with the definition of equality for games we write c = c' if c c' and
c' <c both hold.

The extension of the operations — and +, defined for games, to CONWAY
games is achieved canonically by means of the two following definitions:

(8) —c

(9) C1 + C2 (cIG + C2G)C.

One can also characterize the relation and the operations inductively
—, + by:

(71) c < c' when and only when,

(a) we never have c, and

(b) we never have c'

(81) —c (set of the _(cR), set of the _(cL)).

(91) (set of the (ef +c2)U set of the (c1 +4),
(set of the (ce) + c2)U set the (cj + cr)).

(7!) follows at once with the help of (2) from the inductive characteriza-
tion of the <relation between games.

We prove (81). By (8) and (3) we have

—c (the set of the (_.ccJ)Lc, set of the

We deduce from (8) using (6) that (—c)G = —CG and thus

—c (the set of the (—c)jc, set of the

and from this, together with (2) and (8)

—c (set of the set of the (_c)R).

We therefore have (81), if we take into account the fact that the sets of
the (_c)L and of the _(cR) have the same elements and that similarly the
set of the (_c)R has the same elements as the set of the _(cL). 0

From the result in 5.5 we can now easily deduce

Theorem. The classes of equal Conway games form a partraliy ordered
Abelian group with respect to <, — and

3. Examples. We shall determine by way of example the CONWAY games
corresponding to one or two of the games of dominoes discussed at the end
of 4.2. Since D0 and D1 have no predecessor, E (0,0) E 0. The
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domino game with initial position 9 has D0 as its left predecessor, but
has no right predecessor. The CONWAY game corresponding to this domino
game is therefore 1. In the same we see that the domino
games with the initial positions ED , and mH, correspond respectively
to the CONWAY games 0, {0J) -1 and ({—1), (1)). The domino game
with initial position which has D1 as its only left and only right
predecessor, corresponds to the CONWAY game ((0), {0)).

§7. CONWAY NUMBERS

In we discussed the DEDEKIND postulates (Dl) to (D4). In the intended
generalization, apart from the basic concept of regarding a number as a pair
of sets, whose elements were numbers that had already been constructed,
only the postulate D3 (or the version (D3'), see 2.1) was to have been
retained. This led to the problem of how the relation should be defined.
This problem has now been solved. The CONWAY numbers are, from the
way in which they are constructed, in any case CONWAY games, and we have
already introduced in 6.2 a partial ordering relation for CONWAY games,
motivated by game theory. We are therefore now in a position to formulate
the two CONWAY postulates (Cl) and (C2). (Cl) generalizes the DEDEKIND
postulate (D3') and (C2) contains the inductive characterization of < (see
6.2).

1. The CONWAY Postulates (Cl) and (C2). The CONWAY numbers,
whith from now on we shall simply call numbers, will be introduced by the
two following postulates. We shall use and as in 6.1, as variables to
denote the left and right elements of a pair of sets.

(Cl) liz = (z,y), where z andy are both sets of numbers, and zR <
is never true, then z is a number.

(C2) For numbers z, y the statement z y is equivalent So the combined
statement that y < is never true.

CONWAY develops his theory entirely on the basis of these two axioms—
apart of course from the definition of the arithmetic operations (see 8.1).
Thus we have to derive all the properties of < from these postulates and
we shall have no need to refer back to the game theory definition in S5.

We find ourselves here in a situation analogous to that in S2 where we
defined CONWAY games with the help of the postulate (CC).

From (CI) it follows that:

(1) Every number is a pair of sets. The left and right elements of a number
are themselves numbers. Every number is a CONWAY game.

If x is a set of numbers, then (z, 0) and (0, z) are numbers because the
restrictive condition in (Cl) is trivially satisfied. In particular therefore (see
2.3) it follows that:
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(2) All ordinal numbers are numbers.

As we shall repeatedly be giving inductive proofs, we shall formulate an
induction principle for numbers which corresponds to the one for CONWAY
games in 6.2 and the one for games in (3.4) and which is most simply
proved in the same way. In addition to formulating an induction principle
for a property, we shall also formulate one for a relation.

Induction Principle for Numbers (for a property P). If from the in-
duction hypothesis that Pr' holds for every left or right element z' of a
number z, the induction conclusion follows that Pr holds for every such
number x, then every number has the property P.

Induction Principle for Numbers (for a relation R).
Induction conclusion: Rx1, .. .

Induction hypothesis: .. for every n-tuple x'11. .. where, for
every i, z is equal to r or is a left or right element of x1 and where, for
at least one i, is a left or right element of x.

If (for all zr,. .. , the above conclusion follows from the above hy-
pothesis, then Rxb. . . is true for all numbers . .

2. Elementary Properties of the Order Relation. We first show using
the induction principle that is reflexive. At the same time we prove two
further statements:

For every number z

((a) for every
(3) (b) x 2L for every

((c) x<x.

Proof. As to (a) (the proof of (b) is analogous), if there were an
z z is

is a right element of x, so that we should have 2R xR, contrary
to part (c) of the induction hypothesis.

As to (c), ifz r then (7!) there is an ZR z or x 2L in
contradiction to (a) or (b) respectively. 0

As with CONWAY games and games we now introduce an equivalence
relation = for numbers by the following

Definition. x = p means x < p and p < z.

It follows from (3) that:

(4) For every number z, z = z.

We will now show that < is transitive:
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(5) For all number3 x,y, z we have: if z y and y z, then x z.

(Of course we already know from the earlier paragraphs that this applies
when the relation < is defined by the game theory definition. What we are
concerned with here is to deduce it from the CONWAY postulates.) We use
the induction principle for the ternary relation R, defined by

Rzyz holds if and only if (x y and y < z imply z z)
and (y�zandz<zimplyy<x)
and (z<zandx<yimplyz<y).

We have to 8how that the induction conclusion Rzyz is a consequence
of the induction hypothesis. On grounds of symmetry it suffices to show
that z < z, if z < y and y < z follows from the induction hypothesis.
Accordingly, suppose x y and y < z. If z z were true, there would be
by (C2) a zR with zR z and an XL with z XL. We confine ourselves
to the first case (the second can be dealt with in a similar way). It follows
from zR z and z <y by the induction hypothesis (in particular the third
term of the conjunction defining Rxyz) that ZR < y. It now follows from
ZR < y and y < z and the first term of this conjunction that ZR < z. This
contradicts (3).

In this proof of reflexivity and transitivity we have not made use of the
fact that there is a restriction in (Cl) on the formation of pairs of sets.
This restriction will however be essential in what follows.

We define z < y in the usual way by x < y and y z (or equivalently
by z<y and and assert:

(6) For every number x, <z and x <

(Note that the corresponding statement for Conway games is false for
it would then follow that ,, would always hold, whereas there are
of course CONWAY games x and z such that z is both a left element and a
right element of x.)

Inductive Proof for x <z. We have already shown in (3) that z
It will therefore be 8ufficient to prove that x < z. If x' x were true,
there would, by (C2), be an zR with zR < or an with x

zR contradicts (CI).
If z < XLL were true, then by the induction hypothesis zLL < and

by the transtivity of < we should also have x xL in contradiction to
(C3). 0

We now intend to show that the numbers are totally ordered by the
relation �. (This does not hold for games in general. We have in fact
already indicated in 4.3 an example of a game z of the class F, and for this
game x 0 and 0 z.)
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(7) For any numbers x, y, either z <y or y x.

Proof. We assume that y x and have to show that z <y. It follows from
y x, by (C2), that there is an z <

z y imply x

z and y (6) imply x < y. 0

3. Examples. We have seen that all ordinals are numbers. If the ordinats
are constructed in succession (see 2.3 where the first ordinals are defined)
one sees at once that each ordinal is different from (that is, to) any of its
predecessors. However, more than this is true because every ordinal number
is also unequal to any of its predecessors. We shaH content ourselves with
proving this for the natural numbers n. To do this it will be sufficient to
show that n < n + 1 always holds.

(a) n < n+ 1: we use (C2): (a1) (n-f I)R < n can never be true, because
there is no right element of n + 1. (a2) If n + 1 were < an flL, then by the
definition of n + 1 such an flL would also be an (ii + i)L and n + 1 would
be an (n + l)L contrary to (3).

(b) n+ 1 n; in view of(C2) it is enough to show that n an (n+ l)L;

but n is an (n + i)L and n n by (3).

§8. THE FIELD OF CONWAY NUMBERS

In the preceding paragraphs we introduced the CONWAY numbers, together
with the order relation <, and the equivalence relation =. We shall now
give the definitions for the arithmetic operations and a few examples (more
will be found in [1J, [2] and [5]), and outline the properties of the field of
CONWAY numbers.

1. The Arithmetic Operations for Numbers. These are defined induc-
tively. As regards — and + it will be recalled that we have already defined
such operations for CONWAY games in 6.2. We take over these inductive
definitions (8!) and (91) and recast them in the form of two postulates (C—)
and (C+) for numbers:

(C—) for every number z, let

—z (set of all set of all —

(C+) for any two numbers z,y let

X+yE(sei of all(z" +y)U set of all(z+ 31L),
set of all (zR + y)U set of all (z + yft)).
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It can be shown that the operations — and + never lead outside the
domain of numbers, and that the relation of equality defined in 7.2 is a
congruence relation for these operations.

As regards multiplication, there appears to be no model ready to hand
in the domain of games and CONWAY games. After some difficulty (see
[1]) CONWAY succeeded in finding the following inductive definition (C)
of multiplication formulated on the analogy of (C—) and (C+).

(C) For any two numbers x, y let

z * y (set of all xLy + xt — set of all (xRy + zyR — zRyR),

set of all (zLy + — z"yR)u set of all (zRy + zyL — zRyL)).

Multiplication does not lead outside the domain of numbers, and the
equality defined in 7.2 is a congruence relation for this operation.

CONWAY shows that the set of all numbers modulo equality constitute
an ordered field with respect to —, +, *.

2. Examples. The following examples are intended to illustrate the defi-
nitions in §1. We shall show by induction that z+0 x and z+y y+z,

1+1=2andthat = 1,for
We use the abbreviation S(...) to denote the set of elements (...).

(a) (andsimilarlyO+xEz)

(C+)
(S(xL + 0), + 0))

(induction hypothesis)

(b)

By induction over y:

(C+)
(S(z + U S(zL + y), S(x + U + y))

(induction hypothesis)

(C+).

(c) z-f-—z=0.
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(Here the sign = cannot be replaced by as can be seen for example by
putting z 1.)

We use the definition of = in 7.2 and restrict ourselves to show that
z + —z < 0. It is clear that no 0R + —z, because there is no if
there were a z (z + with 0 < z, then we should have, by (C+),
z z z+(—z)'. In the first case 0 would be < x1+—z, and
hence by (C2), + _z)R would never be < 0; but, by (C+) and (C—),

+ is such an (xL + and by virtue of the induction hypothesis
XL + <0. In the second case there would be an zR with z z + _zR,
and 0 would be � z + Consequently there would, by (C2), be no
(z + _zR)R <0; and this would contradict the induction hypothesis that

0

(d) 1+1=2.

In paragraph 2.2 we defined 1 ({0),O), 2 ((0, 1},ø). It follows that

1 + I (S(lL + 1)US(1 + 1)uS(l + 1R)) (Ci-)

(a).

(di) ({l),ø) < ((0, l},ø). As there can be no it will be sufficient to
show that 2 < no ({i},Ø)L, or in other words that 2 1. This follows from
1 <2 (see 7.3).

(d2) ((0, 1),ø) < ({1),ø). It suffices to show that ({1},ø) <no ((0, 1},ø),

that is, that 0 and ({1},0) 1. <0 were true then 0

would be < no contrary toO � 1.

(e) We define

E ({0},{1)).

is a number by (Cl) since 1 0. The notation will be justified by proving

that + = 1.

(f)0<

It suffices to show that no <0 and this is true because 1 0.

(g)

This follows from the fact that us a right element of and 1 1.

(h) I + + 1)).

This results from (C+) with (a) and (b).
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(i)

11

+ ({o+ + + 1)) (C+)

+ (a), (b).

It only remains therefore to prove (i1) and (i2).
(i1) 1< + i)). To do this we first prove (i11) 1 + 1; this

follows from 1 < 1 because I by (h), is a (1 + We then prove (i12),
(ft), {1 + 0, which results from 0 (f).

(13) {1 + 1. To prove this it suffices to show that 1 < no
+ or in other words that I which was done in (g). 0

3. Properties of the Field of Numbers. The totality of all numbers
forms a proper class, and is not therefore a set (see Chapter 14). This
already follows from the fact that every ordinal is a CONWAY number and
the ordinals do not form a set (see 14.2.4).

We have already mentioned that the class of all numbers constitutes
an ordered field K0 with respect to the operations defined in §1. K0 is
real, closed, and is uniquely defined (to within an isomorphism) by the
property of being a universal embedding ordered field. By this is meant the
following: To every ordered subfield K1 of K0 such that is a set, and to
every extension K2 of K1 such that K2 is both a set and an ordered field,
there is a subfield, of K0 which is isomorphic to K2 with respect to the
field operations and ordering relation and where the isomorphism on K1 is
the identity. It follows in particular that every ordered field is embeddable
in K0. AU the "nonstandard models" considered in Chapter 12 belong here.

If numbers are constructed by means of (Cl), but with finite sets only
being allowed, then one obtains just the dyadic numbers, that is, the num-
bers of the form where m, n are natural numbers. For every real
number z, let x1 and x2 denote the set of dyadic numbers < z and > z
respectively. Then x = (x1, x2). A number x is a real number if and only if
there exists a natural number n with —n <x <n and

z = (the set of all numbers x — 112k, set of all numbers z + i/2k).

For ordinal numbers the operations defined by (C+) and (C) yield the
so-called natural sum and natural product respectively.

There are infinite numbers, for example, the number w, and there are
also therefore infinitely small numbers, for example, I/w.
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14

Set Theory and Mathematics
H. -D. Ebbinghaus

Gesetzt, es gebe eine nützliche mathematische Wabr-
heit, auf die der Erfinder durch einen offenbaren 'flugschlufi
gekommen w5.re; — wenn es dergleichen nicht gibt, so kônnte
es doch dergleichen geben — leugnete ich darum diese Wahr-
heit, entsagte ich dann, mich dieser Wahrheit zu bedienen?
(LESSINO, Tbeologische Streitschriften)

Introduction. On the 7th of December 1873, the theory of sets left behind
forever its age of innocence, for on that day Georg CANTOR proved that the
set of real numbers is uncountable, or in other words that the real numbers
cannot be enumerated in the form r0,r11r2,... [2, p. 115 et seq.]. He thus
laid down, at a time when the idea of the existence of the actual infinite
in mathematics was still a matter of controversy, a foundation stone in the
theory of infinite cardinahtzes.

In 1878 he showed that the linear continuum of the real numbers could
be mapped bijectively onto contInua of higher dimensions, onto a plane or
space,... and so on, so that these various continua of different dimensions
have the same power or cardinality [2, p. 119 et seq.]. With this unexpected
result, he provided a motive and impulse for the development of dimension
theory. Afterwards he investigated the formation of the set H(A) of accu-
mulation points of a set A of real numbers, and by defining the sets

:= A, := H(A), . . ., :=

fl :=

was able to continue the process of forming new sets beyond the finite into
the transfinite, and by so doing to create the theory of iransfinite ordinals
[2, p. 145 et seq.). The occasion which gave rise to these researches was a
paper [2, p. 92 et seq.) on a uniqueness theorem for trigonometrical series,
a fact which caused ZERMELO [2, p. 102] to remark that the birthpLace of
CANTOR'S set. theory could be found in the theory of trigonometric series.

Long before CANTOR'S epoch-making work, however, the idea of a set
and of infinity had already been the subject of much deep thought and
perspicacious speculation. Thus in the height of the Middle Ages discus-
sions about the actual infinite had led to the comparison of infinite sets by
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means of one-to-one correspondences. ALBERT OF SAXONY (circa 1320—
1390) for example, proves in his Quesisones subtilzssime in libroa de caelo
ci mando that a beam of infinite length has the same volume as infinite
three-dimensional space. In an imaginary experiment he saws the beam
into finite pieces, which he then uses to make successive concentric wooden
shells that eventually fill the whole of space with wood.

Great clarity characterizes the thoughts and writing of Bernhard
BOLZANO, the famous theologician, philosopher and mathematician of
Prague (1781—1848). In his definition [1, p. 4] (1847) of a set or "multi-
plicity" as an "embodiment of the idea or concept which we conceive when
we regard the arrangement of its parts as a matter of indifference," we rec-
ognize the precursor of our present-day extensional conception, in which a
set is completely determined by its elements alone. BOLZANO defends the
existence of infinite sets against the critics who deny it. He also shows by
means of examples that infinite sets, unlike finite sets, can have the same
cardinality as one of their proper subsets Li, p. 28 et seq.]—an insight which
Dedekind in 1888 was to make the basis of his definition of finiteness.

Richard DEDEKIND (1831—1916), independently of CANTOR, developed
clear ideas on the concept of a set and on its significance for the foundations
of mathematics. In 1871 he proposed replacing KLJMMER'S idea! nsmbers—
which in his view were merely figments of the imagination—by the now
familiar concept of an ideal [3, Vol. III, p. 251] of whose existence there
could be no doubt since an ideal is just a certain collection of true numbers.
He pursued this idea even more consistently in his book SieLigkeit und
srriziionak Zahien (whose first edition came out in 1872 but which had
been conceived much earlier in 1858) in which the real numbers are, as it
were, "created" by Dedekind cuts [3, Vol. III, p. 315 et His views are
expressed in their purest form in the little tract which appeared in 1888,
a book entitled Was sind und was sollen d:e Zahlen, in which the natural
numbers as well are defined in terms of sets [3, Vol. III, p. 335 et seq.].
It was through this latter work in particular that DEDEKIND exercised a
decisive influence on the development of set theory.

Despite the considerable contributions of others, however, Georg CAN-
TOR who was born in St. Petersburg in 1845 and died in Halle in
must be regarded as the true founder of set theory. His imaginative ideas
were responsible for breaking down naive illusions and opened the door to
far-reaching developments. By his researches into infinite cardinalities and
transfinite ordinals he created, in the words of HILBERT [9, p. 167] "die
bewundernswerteste Blüte mathematischen Geistes und überhaupt eine
der höchsten Leistungen rein verstandesmifliger menschlicher Tätigkeit,"
which might be translated as "some of the most admirable and beautiful
creations of the mathematical imagination and, taken as a whole, one of
the greatest purely intellectual achievements of the human mind."
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CANTOR'S set theory is of a vivid, visualizable kind. It is based on con-
ceptual images, which he describes and expresses in various different ways.
For him a set is "em Vieles, weiches sich ala Eines denken laSt" [a multi-
plicity which can be thought of as a single entity], an "Inbegriff be8timmter
Elemente, weicher durch em Gesetz zu einem Ganzen verbunden werden
kann" (1883, [2, p. 204]), [the essence of certain elements which can be
associated by some rule into a single whole], or a "Zusamrnenfassung von
bestimmten wohlunterachiedenen Objekten unserer Anschauung oder un-
seres Denkens zu einem Ganzen" (1895, (2, p. 2821) [collection into a whole
of definite distinct objects of our perception or thought].

In the first decades of this century, in the birth pangs caused by the
discovery of the antinomies described in 2.1 below, the intuitive ideas of
CANTOR were put into more precise shape and suitable axiom-systems were
devised for set theory. New and sophisticated techniques, such as the theory
of constructible sets (GÔDEL 1938) or the forczng-method (COHEN 1963),
brought about a period of tempestuous development that still continues to
this day. For example, by means of these techniques it has proved possible
to demonstrate the logical independence of the continuum hypothesis, first
put forward by CANTOR in 1878, to the effect that every uncountable set
of real numbers has the same power as the set of all real numbers. In other
words, it was shown by CoHEN in 1963 that the continuum hypothesis
cannot be proved from the present-day systems of axioms of set theory, and
(by GÔDEL in 1938) that it. cannot be disproved.

A hundred years or so after CANTOR'S pioneering work, set theory has
now grown into a full-fledged mathematical discipline of its own; its influ-
ence has pervaded the whole of mathematics. Mathematics has more and
more taken on a character that bears the imprint of set theory, as the ideas
and intentions of DEDEKIND have borne fruit. On the one hand, this has led
to sharper and clearer definitions of many mathematical concepts, and on
the other hand to a considerable extension of the methods and aids avail-
able to the mathematician. HILBERT spoke of the "paradise which CANTOR
created for us" [9, p. 170].

In addition, the axiomat.ization of set theory allows us to close the gaps in
the axiomatic construction of mathematical theories, which otherwise had
some gaping deficiencies in these respects. Thus, for example, the axiom
systems for topological spaces certainly refer to facts from set theory, but do
not axiomatize these. And lastly, but by no means least, it is only after the
axiom systems of set theory had reached a certain degree of precision that
it became possible to prove independence results, such as the independence
of the continuum hypothesis.

We now propose in the sections that follow to explain in rather more
detail some of the aspects of the relations between mathematics and set
theory to which we have alluded. To do this we shall also need to describe
an axiomatic structure for set theory, but in doing so we shall have to
restrict ourselves to the basic facts, and to leave out many details. We refer
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the reader who would like further information to the books [4], [7), [15) and
[19).

§1. SETS AND MATHEMATICAL OBJECTS

1. Individuals and More Complex Objects. The set theoretical char-
acter of present-day mathematics stems mainly from the fact that the ob-
jects with which it is concerned can be described as sets. Before tackling
systematically any descriptions of this kind we would like to get a broad
view of the great variety of mathematical objects. To this end we shall be-
gin by first considering a "concrete" theory, say analysis. The objects from
which we start are in this case the real numbers. We then go on to n-tuples
of real numbers, and to more "complicated" objects such as real functions,
intervals, other sets of real numbers, relations between real numbers, and
so on and so forth.

Real functions possess an inner structure that is of importance for anal-
ysis; they represent a special type of relation between real numbers. On the
other hand, the real numbers themselves play the role of "atoms" for an
analyst. Their inner structure is of no interest, and it is only the relations
between them, the relations that are formulated in the usual axiom sys-
tenis for analysis, that are of significance. It is just for this reason that it
is possible to do analysis without knowing what the so-called real numbers
really are. The same applies to the natural numbers in arithmetic, or to
points in Euclidean geometry.

In the theory of sets the objects of a theory which have this "atomic"
character are known as urelements (that is, primitive elements) (ZERMEL.O
1930). The urelements form the lowest level in a hierarchy comprising the
objects of study of a given theory. They are accompanied by so-called ob-
jects of a lugher type, such as properties of urelements, relations between
urelement.s, sets and functions of urelements or n.tuples thereof. Above
these tower ever more complicated objects such as sets of sets of urele-
rnent.s, for example, open coverings in analysis, or rings of residue-classes
in arithmetic. Obviously this process of forming more and more compli-
cated objects can be continued indefinitely, and in this way a hierarchical
structure of mathematical objects can be formed of ever-increasing com-
plexity. To some extent, one can recognize distinct layers (uretements, sets
of urelements, sets of sets of urelements), but one can also define more com-
plicated relations. For example, functions can arise in analysis that map
functions of real numbers onto real numbers, such as those represented by
a definite integral between assigned limits. The technical name for a hierar-
chy of objects of this kind, which can be built up from a set of individuals,
is a hserarchy of types.

In an abstract mathematical theory, such as the theory of groups, the
elements of a group play a role comparable to that of the urelement in a
"concrete" theory. However, here the existence of its own urelements is not
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required. The situation here is that any mathematical object whatsoever
can be regarded as an element of a group, without one having to postulate
additional requirements or encountering any limitations.

2. Set Theoretical Definitions of More Complex Objects. It has
turned out in practice that the properties, relations, and functions that
are mostly used intuitively in mathematics can all be reduced to the set
concept. Consequently, it becomes possible to describe the whole hierarchy
of types derived from a particular field of urelements in terms of set theory.

We shall try to convince ourselves in the following paragraphs of this
possibility, and accordingly we shall make use of a few simple facts from
naive set theory. We begin with properties. Let M be a set of urelement.s
or other objects, say the set of real numbers. Let P be a property over M,
that is, a property which can apply to elements of M. For mathematical
purposes it now fully suffices to identify P with the set fr E M: P applies
to r} containing those elements of M which have the property P. The
properties over M thus correspond to the subsets of M.

This way of looking at things has an interesting consequence. Consider
the property over R of being the square of a real number: it is the property
of being non-negative, because both properties correspond to the set {r E

r 0), since a real number is a square if and only if it is non-negative.
Properties are now defined only by their scope, by the set of individuals
to which they apply, or in a word, by their extension. This extensional
conception is a characteristic feature of the set-theoretic approach because
sets themselves are likewise determined by their elements alone. One is
continually coming up against this in mathematics in all kinds of situations.
For example, one meets it with functions as well; a function defined over
a given domain of definition is completely defined once its value has been
specified for each of its possible arguments. How the value is arrived at
plays no part in the definition of the function.

Another vital idea that is fundamental in making it possible to describe
mathematical objects by the concepts of set theory is the set theoretic def-
inition of n-tuples. We begin with the case n = 2. Following KURATOWSKI
(1921), one can define an ordered pair (a,b) of the two objects a, b set
theoretically by

(*) (a,b) := { {a},{a,b)).
It is easily shown that

(a,b)=(a',b') ifandonlyif a=a' and b=b'.
This equivalence is the only fact about ordered pairs that the mathemati-
cian ever really needs; the KURATOWSKI definition therefore does all that
is required of it.

This is perhaps the time to make a remark that basically applies to all set-
theoretic definitions of mathematical objects. A set-theoretic definition such
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as (s) serves no ontological purpose. It does riot establish what an ordered
pair really is; it merely provides a model for the intuitive idea of an ordered
pair, which suits the requirements of mathematics. This "conventionalistic"
standpoint is also supported by the fact that, as a rule, different definitions
of various kinds are possible, and one would be hard put to give preference
to one definition rather than another on ontological grounds. Thu8, for
example, the definition

(a,b) :=

(WIENER, 1914) serves the same purpose as (ii).
Once ordered pairs have been defined set-theoretically, lripks can be

defined without further ado by:

(a,b,c) := ((a,b),c)

and the same idea can be extended to quadruples, quintuples, and so on.
In order to describe the concept of a binary—then similarly an n-ary—--

relation over a set M, we can regard a binary relation between elements of
M as a property of ordered pairs, over M. If we define in the usual way
the Cartesian product

Mx M := {(a,b):a,bE M},

then the binary relations over M, in the set-theoretical sense, are 8imply
the subsets of M x M. For example, the relation L := E R,
r < s}, the relation which expresses the fact that r is less than a, is the
"less than" relation over R, and 2 < 3 is equivalent to the assertion that
(2,3) L.

Similarly, in the well-known way a function f mapping a set M1 into a
set M2 can be defined set-theoretically by its graph

1= {(a,f(a)):aEM1).

In general therefore a function f is a set of ordered pairs such that for
every object a, there exists at most one object 6 with (a,b) E f. The
familiar mathematical notation f: M1 —. M3 now says that f C M1 x M2
is a function, so that to every a M1 there exists a b E M2 with (a, 6) I.
For a M1, f(a) is the one and only b for which (a,b) 1.

The same procedure can be followed for functions with more variables.
We can see from these examples that the multitude of objects that can

occur in any mathematical theory can be systematically described by using
the concepts of set theory. The starting point is in each case a certain
domain of urelements from which the more complicated objects can be built
up by repeatedly forming new sets. Thus, real functions of one variable are
sets of ordered pairs of real numbers. According to (s), ordered pairs of
real numbers are sets of sets of real numbers. Therefore, real functions are
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sets of sets of sets of real numbers. Ultimately, it is this reduction of the
hierarchy of mathematical objects to the notion of set that forms the basis
for the set theoretical treatment of mathematics.

Naturally not all the details of a program of this kind, in which math-
ematical concepts are clarified, sharpened and redefined in terms of the
concepts of set theory, are equally essential to the mathematician in his
everyday work. The mathematician would hardly need the definition (*)
of an ordered pair and tends to work with the "dynamic" intuitive idea of
a function than with the "static" concept defined earlier in terms of sets.
The value of formulating mathematical concepts and facts in the language
of set theory does not really come about from any systematic use of this
language. It lies far more in the possibilities that are opened up of using the
elegant and effective methods of set theory wherever they can be useful. In
other words, a set-theoretic formulation should never be a strait jacket but
an added weapon in the armory. We shall discuss some further aspects of
this question in §2 and in §3.3.

3. Urelements as Sets. In the previous section the urelements (numbers,
points,...) were still regarded as playing the role of atoms. Their nature
remained in the dark, but this need not be a disadvantage from a method-
ological standpoint. As we have already emphasized, in mathematics the
"true nature" of urelements is quite irrelevant. From the working mathe-
matician's point of view, it is even quite natural to retain these as atomic
individuals. Moreover, there is no difficulty about incorporating the various
facts borrowed from set theory which we have so far used only in a naive
way, in a precisely defined axiomatic set theory with ur'elements, — with
the same benefits as an axiomatic set theory without such individuals was
able to give (see the two following paragraphs). On the other hand, it is
very tempting to pursue the path described in 2. still further and try to
describe the urelements themselves in set-theoretic terms, in order to make
the concept of a set the sole foundation of mathematics.

Now it is one of the great conceptual achievements of mathematics and
set theory that this project has been fulfilled. The pioneering work here
was done by DEDEKIND to which we referred in more detail in the intro-
duction. By way of illustration, we mention the set-theoretic definitions of
the natural numbers by ZERMELO (1908) and by VON NEUMANN (1923).
For the moment we shall argue intuitively; later on in 2.3, we give a more
precise description in an axiomatic context.

ZERMELO defined the natural numbers by the sequence

0:=ø, 1:={ø}, 2:={{O}),...;

VON NEUMANN defined them by

0 0, 1 {0}, 2 (0,{0) ),...
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and generally by
n+l :=nU{n}.

His procedure has the technical advantage over ZERMELO'S that each num-
ber is the set of all the preceding numbers, so that the relation < coincides
with the relation E. From the cardinal standpoint, VON NEUMANN'S num-
bers represent a natural measure of the cardinality of finite sets, as the
number n is a set with exactly n elements. (This property is also shared by
a related definition given by CANTOR (1895; see [2, p. 289 et seq.].) Lastly,
the VON NEUMANN sequence can easily be extended to the transflnite.
Thus:

0,1,2,... := 1,2,.. .},w + 1 : U

The relations < and similarly coincide for the ordinal numbers defIned
in this way.

One now defines, for these set-theoretically defined numbers, a successor
function, in the usual way; that is n i—. n U {n} in the VON NEUMANN

case (or more precisely in the sense of 1.2 the set ((n,n U {n}):n E w})
and n i—. (n} in the ZER.MELO case. It can now easily be shown that the
PEAr4O axioms hold. Since these axioms are sufficient to ensure all the
properties of the natural numbers that the mathematician ever needs to
use, the set-theoretical defiitions of VON NEUMANN and ZERMELO (to-
gether with the appropriate successor function) provide adequate models.
Of course—repeating once again the point made earlier—a definition of
this kind cannot tell us what natural numbers really are.

There is now no further difficulty in providing set-theoretical definitions
for the arithmetic operations and the other kinds of numbers (integers,
rational, real, complex). We have only to follow one of the usual ways of
constructing the various number domains.

We have now reached the point where it has become possible to reduce to
the single concept of a set the multiplicity of mathematical objects whose
very bulk had at first seemed so overwhelming. If we begin, say, from the
VON NEUMANN definition of the natural numbers, then we proceed from
zero, through the natural numbers, the integers, etc. to any conceivable
mathematical object. They are all sets; at the start there is one single
atomic individual, the empty set. Rather more concisely, we can say that
the whole universe of mathematical objects can be built up "from nothing"
by the process of set creation.
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§2. AXIOM SYSTEMS OF SET THEORY

So far we have seen that mathematics can be represented with the help
of the single concept of a set, but we have been looking at this only in
the context of an intuitive set theory. The far-reaching implications of all
this invite us to a more thorough-going analysis of the set concept and a
more precise statement of our approach. This can best be done by laying
down a system of axioms for set theory. We propose in this paragraph
(S2) to describe a few such systems, and in fact systems for a set theory
without urelements. In doing so, we shall also go into some of the difficulties
that attended the birth of such systems, and that in a sense strengthened
the motivation for their development. By laying down sufficiently powerful
axiom systems, a unified axiomatic basis for the objects of mathematics in
its entirety has been successfully achieved.

1. The RUSSELL Antinomy. Gottlob FREGE (1848-1925) one of the
fathers of mathematical logic, gave in the first volume of his Grundgesetze
der Ari(hmetik [6] a system of axioms for Cantorian set theory. His goal
was to provide a logical/set-theoretical foundation for mathematics. One
of his axioms expresses in more precise form the idea of sets as extensions
or properties, an idea that appears in CANTOR'S visualization of a set as
DEDEKIND had often used it. In modern language it states:

FREGE's axiom of comprehension (used in the sense of comprising,
from the Latin corn prehenslo). For every property P there exists a set M,,
containing all those and only those sets which have the properly P. In the
usual notation,

Mp : {x:z is a set and z has the property P}.

In the summer of 1901 Bertrand RUSSELL (1872—1970) discovered the
inconsistency of the comprehension axiom. If one chooses for P the property
R of not being an element of itself, then according to the comprehension
axiom there exists the set

MR := {z:x isaset and

For this set, we obviously have

isaset and

MR

MR

a contradiction.
A few weeks earlier ZERMELO had told the philosopher HUSSERL of this

antinomy. A written note by HUSSER.L to this effect was found among the
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papers he left on his death. Apparently ZERMELO had not at first attached
any great importance to this discovery, and in any case other antinomies
were known in naive set theory. For example, there was the one published
by Buiuu-F0RTI in 1897, and expressed in a sharper form by RUSSELL in
1903. The construction of the ordinal numbers by VON NEUMANN's method
described in 1.3, in which the < relation coincides with the E relation,
leads to the conclusion that the set of all ordinaL numbers—supposing
this set were to exist—would, like w or w + w, itself be an ordinal number.
This would imply that 11 in contradiction to the fact that an ordinal
number cannot be smaller than itself (or also a contradiction to the axiom
of foundation or regularity; see 2).

CANTOR called such "dangerous" sets as MR or Q absolutely infinite or
inconsistent mulliplicities [2, p. 443 et seq.]. For him they were not true sets
in any proper sense; FREGE with his comprehension axiom was therefore
overstepping the boundaries which CANTOR had staked out in the naive
theory dictated by his intuition.

The discovery of RUSSELL'S antinomy brought out the opposition of the
reactionary opponents of set theory to the whole program. They saw the
origin of such contradictions as being rooted in the concepts of set theory
and mathematics, which were based on the assumption of the existence of
an actual infinity, and they wished to withdraw to the safety of construc-
tions whose existence could be controlled and verified. One of the precursors
of this attitude (and in this respect an opponent of DEDEKIND—and more
particularly of CANTOR—Was Leopold KRONECKER (1823—1891). A quo-
tation from the year 1886 (see [13, p. 336]) illustrates the point "...selbst
der aligemeine Begriff einer unendlichen Reihe ... ist ... nur mit dem Vor-
behalte zulässig, daB in jedem speziellen Falle auf Grund des arithmeti-
schen Bildungsgesetzes der Glieder ... gewisse Voraussetzungen als erfüllt
nachgewiesen werden, weiche die Reihen wie endliche Ausdrücke anzuwen-
den gestatten, und weiche also das Hinausgehen über den Begriff einer
endlichen Reihe eigentlich unnötig machen." [...even the general concept
of an infinite series ... is ... allowable only with the proviso that in each
particular case ... because of the arithmetical laws governing the formation
of the (successive) terms ... certain prerequisite conditions can be shown
to be satisfied which allow the series to be considered as a finite expres-
sion and therefore make it strictly speaking unnecessary to go beyond the
concept of a finite series.]

The differing episternological attitudes of CANTOR and KRONECKER. not
only led to scientific controversies, but also soured their personal relations
and caused much suffering to CANTOR.

A leading exponent of the critical constructivist tendency in the period
that followed was the Dutch mathematician L.E.J. BROUWER (1881-1966)
who founded the school of thought now known as intuiiionism [8].

On the other side, numerous mathematicians, including RUSSELL and
ZERMELO, tried to repair the concepts of set theory, which had been ten-
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dered untenable by the downfall of FREGE'S axioms, and to arrive at a
system of axioms free from contradiction that would re-open the possi-
bilities offered by CANTOR. One of the critical intellectual leaders of this
movement was David HILBERT (1862—1943); cf. [9].

In the following pages we shall briefly describe the best-known axiom
systems. They are regarded nowadays by set theorists as consistent. Until
the 1920's, a proof of consistency was thought to be possible. however, by a
theorem of mathematical logic, proved in 1931 by GÔDEL, the consistency
of these axiom systems cannot be proved without methodological means
beyond those they represent (see [5, p. 226 et seq.]). In 3.1 we shall discuss
certain mathematical arguments in support of their consistency.

2. ZERMELO's and the ZERMELO-FRAENKEL Set Theory. In
1908 Ernst ZERMELO (1871—1953) proposed a system of axioms which her-
alded a new approach [22]. With the addition of some later improvements
due to FRAENKEL and SKOLEM, it represents the most widely accepted sys-
tem so far devised. The influence of DEDEKIND'S ideas is unmistakeable.
ZERMELO described his undertaking in the following words:

Angesichts der RussELLschen Antinomie "bleibt . .. nichts anderes übrig,
als ..., ausgehend von der historisch bestehenden 'Mengenlehre' die Prinzi-
pien aufzusuchen, welche zur Begründung dieser mathematischen Disziplin
erforderlich sind ... in der Weise ..., daB man die Prinzipien einmal eng
genug einschränkt, urn alle Widersprüche auszuschlieBen, gleichzeitig aber
auch weit genug ausdehnt, urn alles Wertvolle dieser Lehre beizubehalten."
[In the face of RUSSELL'S paradox ... "there remains ... nothing else left
to us but ... to start out from the historically established 'set theory' and
to seek out those principles that are required for the foundation of this
mathematical discipline ... in such a way ... that the principles are narrow
enough to exclude all contradictions and at the same time wide enough to
allow everything of value in this discipline to be kept."]

We shall now present ZERMELO'S axioms in a slightly modified form,
which is now usual. As to their content, they may be regarded as describing
a "universe" of sets; there are no urelements.

The axiom of existence, Ex. There exists a set.

(Instead of this, ZERMELO postulated the existence of the empty set,
which on the basis of the other axioms is equivalent to Ex.)

The axiom of extensionalily, Ext. Two sets are equal if and only if they
have the same elements.

Ext reflects the extensional conception of a set, in which a set is deter-
mined by its members and by nothing else.

The axiom of separation, Sep. To every property P of sets and to every set
x there corresponds a set y which contains those and only those elements
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of x which have the property P. The set y is uniquely defined, by virtue of
Ext. In the usual notation y = {z E x: z has the property P}.

Sep takes over the role played by the axiom of comprehension in FREGE's
system, but in ZERMEL.O'S system the comprehension is restricted so that
it applies only to already pre-existing sets. By this precautionary mea-
sure, ZERMELO achieves his endeavor of not describing a universe that is,
so to speak, "finished or completed," but instead conceiving one that can
be built-up from below. This same idea underlies most of the remaining
axioms: They say how new sets can be formed from those already avail-
able. It is easily established, at least on an ad hoc basis, that RUSSELL'S
contradiction no longer arises.

What properties are allowed in Sep? ZERMELO was thinking of partic-
ularly "concrete" properties, which he called definit, but without giving
a satisfactory explanation of precisely what was to be understood by this
word. A sharper delimitation was achieved by the Norwegian mathemati-
cian and logician Thoraif SKOLEM (1922) who laid down the principle that
only those properties should be allowed which could be expressed in the
language of first-order predicate logic (see [5]). Here the only non-logical
symbol admitted is E, the sign of equality is allowed, and the variables
range over sets. A series of examples will be given in 3., but a particularly
simple example may already be mentioned here. The property P, which
applies to a set z, when and only when z z, satisfies the Skolem require-
ment. If we choose a set 20, whose existence is guaranteed by the axiom
Ex, then Sep implies the existence of the set {z E xo: z z), and thus of
the empty set. 0 (whose uniqueness follows from Ext).

The axiom of pairing, Pair. If x is a set and y is a set then there exists a
set z which contains x and y as elements but no other elements. (The set
z is unique by virtue of Ext.)

We write z = {x,y) and {x} for the set {x,x), which has the single
element x and is called a singleton. By virtue of Ext {x, y} is always equal
to {y, z} and therefore {x, y) does not have the property of an ordered
pair.

The axiom of union, U-Ax. For every set (which in this context is best
visualized as a system of sets) X there exists the set Y comprising all those
elements which are elements of at feast one of the elements of X (that is,
which belong to at least one of the sets of the given system).

We write Y = UX, or more often in mathematics Y = UXEX x. Thus,
for example, U0 = 0, U{x) = x.

The axiom of power sets, Pow. For every set z there exists the set y, the
so-called power set of x, defined as the set whose elements are the subsets
of x.
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We write
y =

The axioms described so far are satisfied by all those (finite) sets which
can be derived from the empty set by applying operations of the type
z i—. {x}, and/or x, y i-. z U y a finite number of times. We still want an
axiom that ensures the existence of infinite sets in order to allow set theory
to extend its sway into the realms of the transfinite. This is provided by:

The axiom of infinity, Inf. There exists an inductive set, that is, a set
containing the empty set and the successor of each of its elements. The
successor of an element z is z U {z). (As we have strictly speaking not yet
defined the symbol U, z U {z} is here simply an abbreviation for the set
whose elements are just the elements of z and z itself.)

Intuitively an inductive set must in any case contain the VON NEUMANN
natural numbers 0, {0), (0,{0)) and so on. As we shall see in §3 luf is
definitely needed to prove the existence of the set of these numbers.

We complete the ZERMELO axiom system with

The axiom of choice, AC. To every set corresponds a choice function. By
a choice function corresponding to a set X is meant a function f, defined
on X, such that 1(y) y for all yE X, y 0.

In this formulation we run into a slight initial difficulty. The ZERMELO
axiom system is conceived as one in which the only primitive undefined
ideas are those ofa set and the E-relation between sets. (This same intention
also underlies SKOLEM'S refinement of the axiom of separation.) In the
formulation of AC that we have chosen, however, the idea of a function
appears (see the equivalent formulation AC' in 3.2). However, functions
can be defined as sets, as we indicated in an intuitive way in 1.3, so that
any reference to the idea of a function can be eliminated from AC with
the help of the set-theoretic definition. The above formulation of AC can
then better be regarded simply as a convenient verbal abbreviation for the
resulting longer form expressed in terms of sets.

As we shall show by means of a few examples, ZERMELO'S axiom system
is sufficient to allow us to derive practically all the facts of set theory that
the mathematician ever needs. it is only seldom, and in fact in situations
where the set-theoretic framework becomes extraordinarily "demanding"
(for example, in connection with the definition of CONWAY games and
CONWAY numbers in Chapter 13, 2.3 and 7.1 respectively) and in set theory
itself that some further axioms are required: in particular, the axiom of
replacement, Rep; and the axiom of foundation, Found (also known as
the axiom of regularity).

Found was stated by VON NEUMANN in 1925, but in the formulation
given below, is due to ZERMELO (1930). It disallows pathological sets with
x E x or descending chains of sets of the type .. . E ri x0. It affirms
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that every non-empty set z has an E-minimal element, that is an element
y such that x fl y = 0. The axiom may be stated in words as follows:

Found. To every non-empty set z, there is a set y x which has no element
in common with x.

To see that Found always implies x z, we form from any given x the
set {z}, by using Pair. As x is the sole element of {z), x must be the
E-minimal element of {x}, and so in particular z z.

Rep (MIRIMANOFF 1917, FRAENKEL 1922, SKOLEM 1923) asserts, ex-
pressed informally, that if the elements of a set are replaced "reasonably"
by other elements, the result is a set. More formally, we may state the
axiom as:

Rep. Let R be a binary relation between sets such that to every set x
corresponds at most one set y with zRy; then for every set X there exists
the set {y: there is an x E X with xRy).

Similarly, as with the axiom of separation, the allowable relations R in
this definition are those which can be expressed in the language of first-
order predicate logic. Examples are the relations defined by

xRy x = y; xRy y = {x}.

One can immediately deduce from Rep and the latter relation that the
singletons of the elements of a set themselves constitute a set. (Instead of
using Rep one could argue from Sep and Pow.)

Rep is likewise a special case of FREGE'S axiom of comprehension. It
is stronger than Sep, and indeed Sep may be proved from Rep and the
other ZERMELO axioms.

The so-called ZERMELO—FRAENKEL system of axioms ZF comprises the
axioms described above with the exception of the axiom of choice. With
the inclusion of the latter we have the system ZFC, which is the axiomatic
basis most often used for dealing with problems of a set-theoretical nature.

3. Some Consequences. We now propose by a few simple examples to
show how the ZERMELO axioms already suffice—with a few exceptions—to
derive the facts of set theory that a mathematician needs. For the most
part, these axe the results that we used intuitively in 1.2 and 1.3.

(a) The empty set 0: its existence was proved in 2.

(b) The Boolean combinations. Let. z,y be given sets.

The intersection xfly, that is, the set {z x:z y), exists by virtue of
Sep.
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The union z U y consists of the elements of z and the elements of y, that
is, of the elements of U{x,y}. Its existence follows from the fact that {x, y}
exists by Pair, and U{x, y} exists by U-Ax.

The difference z \ y, the set of elements of z which are not elements of
y, exists because {z E x: z y) eXiSt8 by Sep.

(c) The generalized intersection. To every non-empty set X, which in this
context we think of as a family of sets, corresponds the generalized inter-
section flX = REX y. The existence of this set, written as

flx ={zEuX:zEyforallyEX},
is seen to follow from Sep.

it is not difficult now to derive the well-known laws for fl, U, \, fl, U.
(d) Ordered pairs and Cartesian products. By applying the axiom of pairing
three times, the ordered pair (x,y) may be defined as {{x), {z,y)). The
existence of the Cartesian product z x y = {(u, v): it E z and v E y) can
be derived as follows: if it z, then {u) C z, and so {u} C x U y whence
(u) E P(r U y). If furthermore v E y, then similarly {u, v) E P(x U y).

Since (u,v) = ((it), {u,vfl, it follows that (u,v) E P(P(rUy)).
Consequently, x x y = {z P(P(x U y)): there is a it x and a v E y

with z = (u,v)), so that the existence of the Cartesian product follows
from Sep. (The condition "z = (it, v)" can easily be expressed with the
symbol E alone.)

An extension of these considerations to relations of higher arity presents
no difficulty, and the same applies to the derivation of the basic properties
of relations and functions defined in terms of set theory (see 1.2).

(e) Natural numbers. Intuitively the set w = (0, (0), (0, (0)),...) of the
VON NEUMANN natural numbers is the smallest set which contains 0 and
with every z, the set z U {z} as well, or in other words, to use the terminol-
ogy introduced in connection with the axiom of infinity, w is the smallest
inductive set. If Yo is any inductive set, then we can define — at least
intuitively — without the use of dots as:

w = fl{vc yo:y inductive).

In this form the existence of w can be proved from the ZERMELO axioms:
Inf affirms the existence of at least one inductive set, say Yo. It can easily
be shown that inductivity is a property allowed by Sep. It follows since
P(yo) exists, that (y c yD: y inductive) which is the same as {y E
inductive) must exist and hence by (c) so must w itself.

It is easy to show that w is inductive. Therefore, if n then nU{n) E
and the successor function can be defined over in much the same way
as was used to derive the Cartesian product in (d), since

0 = {(n, n U {n)): n E w)
= {z E P(P(w)): there is an n E with z = (n, n U {n))).
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(The proof of the existence of a is even simpler if we use Rep.)
Nothing now stands in the way of demonstrating any desired properties

of and a. The principle of induction, for example, now becomes trivial:
The statement

If a property of the natural numbers /zoldsfor0, and if whenever
it holds for a natural number n it also holds for the successor
n + 1, then thai property holds for all natural numbers

becomes, when formulated for w and a in terms of set theory

If a suôsei contains and if it contarns z U {z) whenever
it contains z, then the subset is u. In other words, every induc-
tive subset of w isw itself.

This however follows at once from the definition of w.
Lastly, the idea of cardinality, or power, can now be defined precisely.

Two sets z, y are said to be equipotent or to have the same cardinality if
there is a bijective function from x to y. A set is finite if and only if it
has the same cardinality as an element of w; it is couniably infinite if it
has the same cardinality as w and uncountable if it is neither finite nor
countably infinite. It is easily shown that two different elements of w are
never equipotent. The VON NEUMANN natural numbers therefore represent
in a one-to-one fashion the cardinalities of the finite sets and under that
aspect they are also called the finite cardinal numbers. The set is the
smallest infinite cardinal number.

Ordinal numbers and cardinal numbers each can be equipped with an
addition, a multiplication, and an exponentiation that generalize the usual
arithmetical operations on w but differ for infinite arguments. Both the
ordinal and the cardinal arithmetic play an important role in the theory
of sets and their applications—the first one aiming more at the process of
counting and order, and the latter one more at the size of sets. In some
sense, the subject would fit well in a book on numbers. It would lead,
however, to a lengthy digression. The interested reader is referred to the
books on set theory mentioned below.

4. Set Theory with Classes. To get around the RUSSELL paradox, ZER-
MELO weakened FRECE'S comprehension axiom to the axiom of separation.
His aim was to build up the universe of sets "from below" and to ban any
constructions "traversing the whole universe." Nevertheless, it is possible
to retain the idea behind the axiom of comprehension, which seems so
reasonable and plausible, provided one builds into it a few precautionary
features. All that is required is to recognize that the process of comprehen-
sion need not lead to the formation of a new set, and to admit that it may
lead to objects that are "too large" to be regarded as sets, to collections
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of elements that in CANTOR'S phrase are "absolutely infinite." To distin-
guish verbally, the objects that arise from FREGE'S comprehension axiom
are called classes. Thus, one talks for example of the class V of all sets, the
so-called universal class

V={x:x isaset},

or of the class of all groups, the class of all sets of the form (x, 1) where x
is a non-empty set and f: z x z —' z a function which satisfies the group
axioms.

Classes therefore have their origin in the idea of the extensional range of
the properties of sets. Thus, the elements of a class are sets, but the classes
themselves need not be sets. This terminology does not agree completely
with the use of the word "class" in mathematics. In mathematics the word
class is often used for what are quite obviously sets. For example, one talks
of equivalence classes, residue classes and so forth.

The revised comprehension axiom asserts that to every property P of
sets (satisfying certain conditions explained below) corresponds the class

Cp {z:z is a set and x has the property P).

The clash with normal mathematical linguistic usage is to a certain extent
softened by the fact that, by this axiom, every set is a class, because any
set x can always be expressed as x = {z: z is a set and z x). The converse
does not always hold good. Thus for the RUSSELL class

CR = {z: x is a set and z z}

one deduces immediately from

CRECR*CR isaset and

CR is not a set, for otherwise we should have CR E CR if and only if
CR CR, which is absurd. Therefore CR is a proper class, that is, a class
which is not a set. This shows how the RUSSELL antinomy can be eluded
by distinguishing between sets and (proper) classes.

The classes mentioned earlier are also proper classes; if the universal class
V were a set then by Sep the "RUSSELL class" CR = {x V: z z} would
be a set and we should again have the RUSSELL antinomy. The proof is even
simpler using Found: if V were a set we should have V V in contradiction
to Found. In the case of the class of all groups the argument runs: As every
non-empty set can be the range of a group it is easily verified (by working
back) that (UUG) U {ø) = V. Hence, if G were a set, V would be as
well. Incidentally, the ordinal numbers constitute a proper class because
otherwise we could deduce Burali—Forti's paradox (see 1.3).
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In axiomatizing a set theory with classes, one has to lay down not only
the rules governing sets as well as the rules governing classes but also the
rules of the interplay between them. The revised comprehension axiom
here plays an essential role. Just as only certain properties definable in
elementary terms are allowed in Sep and Rep, so only such properties are
allowed in the comprehension process. The set axioms (say of ZFC) are
partially modified. Thus Ext is now stated for classes generally. Sep says
simply that the intersection of a set with a class is again a set. The most
important of systems with classes are:

(i) NBG set theory, based on the work of VON NEUMANN (1925 onwards)
and developed essentially by BERNAYS and (1937 onwards);

(ii) KELLEY—MORSE set theory, WANG (1949) and MORSE (1939 on-
wards), which became known through the appendix to KELLEY'S textbook
on topology [12]. It is distinguished from NBG mainly by more liberal
conditions on the definability of the properties P in the comprehension
axiom.

A set theory incorporating classes proves advantageous in branches of
mathematics where proper classes form part of the subject matter under
study, as for example in category theory. To a certain extent, however, the
advantages are more of a linguistic nature. For a discussion in greater depth
we refer the reader to LEVY [16].

§3. SOME METAMATIIEMATICAL ASPECTS

What have we achieved by an axiomatization of set theory? Certainly we
have created a more precisely formulated basis for set theoretical investi-
gations and thus raised set theory to the level of an axiomatic theory.

Warned by the inconsistency of FREGE's axiom system, we nevertheless
have to ask ourselves whether the systems used today are really consistent.
We have already had occasion to mention in 2.1 the so-called second in-
completeness theorem of GÔDEL, which implies that we can never convince
ourselves of this freedom from contradiction by means of a formal proof of
consistency. The most we can hope for therefore is to produce arguments
that appeal to our intuition, and we shall discuss some of these in 1 below.
For the moment, we shall ignore the axiom of choice to which we shall
return in 2. In 3 we shall outline another possibility, which can be useful
in mathematics as well. In certain circumstances, by making use of precise
systems of axioms for set theory, it is sometimes possible to prove rigorously
that certain problems of set theory or mathematics are insoluble.

1. The VON NEUMANN Hierarchy. We choose for our remarks the
ZFC system. The first point to be made in regard to its consistency is that
in several decades of intense activity no contradictions have emerged while
using it. On the other hand, it has to be admitted that some contradiction
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might turn up tomorrow.
Next we can say in their favor that the individual axioms of ZFC re-

flect properties that appeal to our intuition as being entirely reasonable.
However, the possibility cannot be excluded that the totality of these ax-
ioms, each reasonable enough by itself, may nevertheless be incompatible
and thus form an inconsistent whole. Moreover, at first glance, the system
appears perhaps to be rather too much determined by isolated individual
aspects and accidental features.

Against this last objection, however, there is a convincing argument re-
garding the content of the system, at least for ZF. This is that the universe
of all sets has what may be called a cumulative hierarchical structure. To
bring out this feature we consider the VON NEUMANN universes V0 for
the ordinals = O,1,2,...,w,w+ 1,...,w+w,... (see 1.3), which are
inductively defined by

V0:=ø,
V1 := P(@) =

and generally
Va+i P(Va),

and for the so-called limit ordinals, such as w or w + w, which have no
immediate predecessor, V0 is defined as the union of all the preceding

(*) Va_UVp.
/3E 0

The VON NEUMANN universes are thus formed by starting from the null
set, iterating the process of power-set formation over all ordinal numbers,
coupled with the formation process defined by (*) for the limit ordinals.
They constitute a hierarchical structure, the VON NEUMANN hierarchy,
illustrated diagrammatically below. This hierarchy is cumulative in the
sense that each V0 is a subset of all with /3> One can now prove in
ZF that every set is an element of some V0, or in other words that the VON
NEUMANN hierarchy exhausts the universe of sets. It has even been shown
by SCOTT (see [4, p. 141 et seq.]) that ZF is, in a sense which can be made
precise, just strong enough to ensure this cumulative-hierarchical structure
of the universe of sets. Our intuitive conviction that such a structure is
an admissible concept thus carries over into a corresponding conviction in
regard to ZF.
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2. The Axiom of Choice. The axiom of choice was first mentioned and
criticized as a principle of inference at the turn of the last century by the
Italians PEANO, BETTAZZI and LEvI. It had already been applied before
then by CANTOR and DEDEKIND in the context of set theory. The first
explicit formulation by ZERMELO (1904) is then to be found in the form
stated in 2.2:

AC. To every set corresponds a choice function. An equivalent statement
is: if X is a non-empty set of non-empty sets, then the direct product of the
elements of x is not void (because this product consists of the functions
f:X —+ UX with 1(x) x for x X, that is to say the choice functions
associated with X).

For his axiom system of the year 1908, ZERMELO used another form AC'
whose equivalence to AC was proved by RUSSELL in that same year.

AC'. If X is a set of mutually disjoint sets, then there exists a set which
has exactly one element in common with each element of X. In other words,
to equivalence relation corresponds a system of representatives.

The equivalence of AC to AC' is easily proved as follows.

AC AC': If X is a set of mutually disjoint non-empty sets, then the
image of a choice function associated with X is a set with the properties
required by AC'.

AC' AC: Let X be a set, without loss of generality, 0 X. We can
define an equivalence relation between the elements of the set {(y, z): y E
X and z E y} by

(y,z)—(y',z'): ifandonlyif y=y'.

V2

V1

V0
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Let S be a system of representatives corresponding to the equivalence re-
lation which exists by virtue of AC'. Then S is the graph of a choice
function associated with X. 0

A wealth of statements equivalent to AC, on the basis of the axioms of
ZF, are known today. One of these which is of particular significance to
mathematics, is a lemma that goes back to HAUSDORFF (1909, 1914), but
which became familiar to mathematicians through work of Zorn (1935)
and is now generally known as

ZORN's Lemma. Any partially ordered set, whose linearly ordered subsets
each have an upper bound, contains at least one maximal element.

The axiom of choice in the formulation AC appears intuitively very
plausible. Nevertheless, it has given rise to much controversy in set theory
and mathematics. The arguments and remarks of ZERMELO in [21] are
particularly instructive and refreshing in this connection. We shall mention
here a few points which illustrate the special position of the axiom of choice,
and try to explain some of the criticisms that have been levelled against it.

(a) "Lack of constructiveness." The ZF axioms are all formulated, or can
be formulated (as far as Inf in particular is concerned) in such a way that
the sets whose existence is postulated in the axioms (that is, the pair set in
the axiom of pairing, the power set in the axiom of power sets, the set w in
the reformulated axiom of infinity, and so on) can all be defined explicitly
starting from the appropriate initial set. With the axiom of choice this
is not the case: AC does not demand the existence of definable (in some
reasonable sense) choice functions; AC' does not demand the existence of
definable systems of representatives. One can readily appreciate the "non-
constructive" nature of the axiom of choice (which can be shown to be
unavoidable), if one tries to define a choice function on P(llk), or if one
tries to define a. system of representatives for the equivalence relation on
under which two real numbers are equivalent if and only if their difference
is rational.

Such systems of representatives provide examples of sets of real numbers
that are not Lebesgue-measurable (VITAL!, 1905). The use of AC here is
essential, because it was shown in the other direction by SOLOVAY [17]
that a weaker form of the axiom of choice, which suffices for analysis and
measure theory, is compatible with the requirement that every subset of
is Lebesgue-measurable.

The "non-constructiveness" of AC has the consequence that proofs which
make an essential use of the axiom of choice or ZORN'S lemma are them-
selves in a broad sense, non-constructive. For example, the usual proof that
every vector space has a basis gives no inkling of what such a base would
look like in an individual case. Thus ZFC does not, for example, guarantee
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the existence of a definable HAMEL basis, that is, a definable basis of as
a vector space over Q.

(b) "Paradoxes." AC—in conjunction with the other axioms—has led to
some presumably paradoxical consequences. We shall mention the sphere
paradox of TARSKI and BANACH (1924). A solid sphere of unit volume can
be broken up into a finite number of pieces in such a way that two new unit
spheres can be reassembled from the pieces. (Obviously the pieces cannot
be measurable, so that the original sphere could not be cut up into pieces
with a saw!)

In order to advance the discussion—as with the axiom of parallels in
Euclidean geometry—research has been done to find out whether the ax-
iom of choice could be proved or disproved from the other axioms. Neither
of these a priori possibilities is true (CoHEN 1963, GÔDEL 1938), so that
its independence from ZF has been demonstrated (of course under the as-
sumption that ZF is consistent). In particular, the consistency of ZF is not
destroyed by assuming AC (since otherwise AC could be refuted in ZF).
This justification in terms of proof theory also strengthens mathematics
in its judgement: as the numerous and far-reaching applications of ZORN's
lemma in the most varied branches of mathematics show, mathematicians
seem now to have decided in favor of the axiom of choice.

In a few cases, however, the axiom of choice is dispensable. Thus, it can
be shown without AC that to every finite set corresponds a choice function.
For countable sets or sets of countable sets this is no longer true in general.
On sets of sets of natural numbers a choice function can be defined by
choosing the smallest number in each set, and this can be done without the
help of the axiom of choice. Furthermore, it can be shown (using GöDEL's
constructible sets) that AC is not needed to prove any of the theorems of
number theory. The reference [11] contains an almost exhaustive account
of the axiom of choice.

3. Independence Proofs. There is a whole series of problems in math-
ematics which, despite intensive efforts have so far defied all attempts at
finding a solution. Thus, for example, FERMAT'S last theorem, the conjec-
ture that for n 3, and any positive natural numbers a, b, c

alZ +

falls into this category. The lack of success in solving such problems may
simply be due to trivial reasons: The solutions are there but have not yet
been found. On the other hand, there may be more deep-seated causes,
for example, reasons connected with the complexity of the problem. There
may exist solutions, but every solution is so inconceivably lengthy that it
could never be found in any foreseeable period of time. Ideas of this kind
are suggested by recent results of complexity theory (see, for example, [101
or [18]). Finally, there may be reasons of a more fundamental nature: the
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problem may have no solution in the sense that a solution is impossible in
principle.

Such results rest on the assumption that there is a methodological basis
for mathematics, to which one can refer. In the axiom systems of set the-
ory, such as ZFC, such a foundation is available to us. Meanwhile powerful
methods have been developed that allow us to arrive at results on unprov-
ability. Essentially, this requires using the methods of constructible sets
and the forcing methods to which we have already repeatedly referred. An
account of these methods will be found in [14]. The unprovability results—
for example, those in the preceding section—make use of these techniques
almost without exception.

One of the earliest single successes was the proof of the independence
of the continuum hypothesis. CANTOR had over and over again tried to
prove this hypothesis. On more than one occasion he had expressed him-
self confidently [2, p. 192, 244], particularly as he had been able to achieve
some partial results, such as the proof for open and closed sets of numbers.
HILBERT placed the continuum problem at the head of a list of twenty-
three unsolved problems, which he regarded as promising in a talk given at
the International Congress of Mathematics held in Paris in 1900: A proof
of the continuum hypothesis would have shown that the continuum pos-
sesses the smallest uncountable cardinal number and would thereby have
helped to bridge the gulf between the countable and the uncountable. The
independence proof shows that CANTOR'S efforts were doomed to failure.

Another example of an independent statement is the so-called SOUSLIN
hypothesis, which postulates that the ordered set of real numbers can be
characterized by the properties of being dense, having no first and last ele-
ment, and being complete and in addition cannot contain any uncountable
set of mutually disjoint open intervals.

One cannot so far exclude the possibility that the FERMAT conjecture
(FERMAT's last theorem) is independent of ZFC. However, unlike the sit-
uation in respect of the continuum hypothesis or SOUsLIN's hypothesis a
proof of its independence would automatically imply its truth. For if the
FERMAT conjecture were false there would have to be a counterexample
whose validity could be checked, on the basis of ZFC, by simply working
out the numbers on either side of the equation. Thus independence could
only occur if the conjecture were true. A similar argument applies to all
statements about natural numbers consisting of a finite set of universal
quantifiers associated with a quantifier-free nucleus, for example, any Dio-
phantine equation or its negation. One can make similar inferences in the
same way about statements equivalent to these. Examples are the GOLD-
BACH conjecture (that every even number � 4 is a sum of two primes) and,
despite its "analytic" appearance, the Riemann hypothesis.
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EPILOGUE

As we have seen by means of examples the present axiom systems of set
theory suffice to provide set-theoretic models for the various objects in
mathematics and the techniques for handling them. An understanding of
mathematics based on set-theoretical foundations is not only helpful be-
cause of the clarification of mathematical concepts, but also because it
opens the door to a well-stocked storeroom of methods from set theory,
and creates a unified axiomatic basis for mathematics.

How reliable is this basis? We cannot prove that it is consistent; we can
only produce intuitive supporting arguments, such as the naturalness of the
VON NEUMANN cumulative hierarchy. Suppose it is free from contradiction
(as we have hitherto assumed). How far would this take us? We have already
seen that there are limits, as the independence of the continuum hypothesis
and SOUSLIN'S hypothesis have taught us, and many other examples could
be adduced.

Furthermore, this incompleteness of the axiom systems of set theory is,
by a theorem of GÔDEL (see (5, p. 226 et seq.]), inescapable. All we can
do is to mitigate some of the consequences each time we try something
concrete, say by extending ZFC through the addition of axioms which
seem reasonable to us. A wealth of proposals in this connection have already
been discussed. So far no new principles have emerged that are generally
accepted on all sides. Faced with this dilemma, one could perhaps agree
to put up with having various different extensions, either because of their
reasonableness or plausibility, or because of their methodological interest,
perhaps even mutually incompatible extensions. Geometry has shown us
how fruitful such a development can be.

A more radical departure might be to cut loose completely from the
idea of basing mathematics on set theory in the Cantorian mould, and
some interesting experiments in this direction have already been started,
for example in category theory or in the so-called alternative set theory
[19], which is oriented towards the requirements of non-standard analysis.
How far these developments will succeed in challenging Cantorian set the-
ory, which is now extending into its second century in full vigor, only the
future—perhaps the remote future—can tell.
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