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This book 1s dedicated to Alain Bensoussan, Ivar Ekeland, Pierre-Marie Larnac
and Francine Roure, in memory of the adventure which brought us together
more than twenty years ago to found the U.E.R. and the Centre de Recherche
de Mathématiques de la Décision (CEREMADE).

Jean-Pierre Aubin

Doubtless you have often been asked about the purpose of
mathematics and whether the delicate constructions which we
conceive as entities are not artificial and generated at whim.
Amongst those who ask this question, I would single out the
practical minded who only look to us for the means to make money.
Such people do not deserve a reply.

Henri Poincaré

La Valeur de la Science

Chapter V

In his use of mathematical techniques to study general economic
phenomena relating to countries or individuals Mr. Léon Walras
has truly instituted a science.

Charles Péguy

Un économiste socialiste, Mr. Léon Walras

La Revue Socialiste, no. 146, 1897

It may be that the coldness and the objectivity for which we
often reproach scientists are more suitable than feverishness and
subjectivity as far as certain human problems are concerned. It
1s passions which use science to support their cause. Science does
not lead to racism and hatred. Hatred calls on science to justify
its racism. Some scientists may be reproached for the ardour with
which they sometimes defend their ideas. But genocide has never
been perpetrated in order to ensure the success of a scientific theory.
At the end of this the XXth century, it should be clear to everyone
that no system can explain the world in all its aspects and detail.
Quashing the idea of an intangible and eternal truth is possibly not
the least claim to fame of the scientihc approach.

Francois Jacob

Le Jeu des possibles

Fayard (1981) p. 12

I enjoy talking to great minds and this is a taste which I like to instil
in my students. I find that students need someone to admire; since
they cannot normally admire their teachers because their teachers
are examiners or are not admirable, they must admire great minds
while, for their part, teachers must interpret great minds for their
students.

Raymond Aron

Le Spectateur engage
Julliard (1981) p. 302






Foreword

By Way of Warning

As in ordinary language, metaphors may be used in mathematics to explain a
given phenomenon by associating it with another which is (or is considered to
be) more familiar. It is this sense of familiarity, whether individual or collective,
innate or acquired by education, which enables one to convince oneself that one
has understood the phenomenon in question.

Contrary to popular opinion, mathematics is not simply a richer or more
precise language. Mathematical reasoning is a separate faculty possessed by all
human brains, just like the ability to compose or listen to music, to paint or
look at paintings, to believe in and follow cultural or moral codes, etc.

But it is impossible (and dangerous) to compare these various faculties
within a hierarchical framework; in particular, one cannot speak of the superi-
ority of the language of mathematics.

Naturally, the construction of mathematical metaphors requires the au-
tonomous development of the discipline to provide theories which may be substi-
tuted for or associated with the phenomena to be explained. This is the domain
of pure mathematics. The construction of the mathematical corpus obeys its
own logic, like that of literature, music or art. In all these domains, a tem-
porary aesthetic satisfaction is at once the objective of the creative activity
and a signal which enables one to recognise successful works. (Likewise, in all
these domains, fashionable phenomena — reflecting social consensus — are used
to develop aesthetic criteria).

That is not all. A mathematical metaphor associates a mathematical the-
ory with another object. There are two ways of viewing this association. The
first and best-known way is to search for a theory in the mathematical corpus
which corresponds as precisely as possible with a given phenomenon. This is the
domain of applied mathematics, as it is usually understood. But the association
is not always made in this way; the mathematician should not be simply a pur-
veyor of formulae for the user. Other disciplines, notably physics, have guided
mathematicians in their selection of problems from amongst the many arising
and have prevented them from continually turning around in the same circle by
presenting them with new challenges and encouraging them to be daring and
question the ideas of their predecessors. These other disciplines may also pro-
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vide mathematicians with metaphors, in that they may suggest concepts and
arguments, hint at solutions and embody new modes of intuition. This is the
domain of what one might call motivated mathematics from which the examples
you will read about in this book are drawn.

You should soon realize that the work of a motivated mathematician 1s
daring, above all where problems from the soft sciences, such as social sciences
and, to a lesser degree, biology, are concerned. Many hours of thought may
very well only lead to the mathematically obvious or to problems which cannot
be solved in the short term, while the same effort expended on a structured
problem of pure or applied mathematics would normally lead to visible results.

Motivated mathematicians must possess a sound knowledge of another dis-
cipline and have an adequate arsenal of mathematical techniques at their fin-
gertips together with the capacity to create new techniques (often similar to
those they already know). In a constant, difficult and frustrating dialogue they
must investigate whether the problem in question can be solved using the tech-
niques which they have at hand or, if this is not the case, they must negotiate
a deformation of the problem (a possible restructuring which often seemingly
leads to the original model being forgotten) to produce an ad hoc theory which
they sense will be useful later. They must convince their colleagues in the other
disciplines that they need a very long period for learning and appreciation 1n
order to grasp the language of a given theory, its foundations and main results
and that the proof and application of the simplest, the most naive and the
most attractive results may require theorems which may be given in a number
of papers over several decades; in fact, one’s comprehension of a mathematical
theory is never complete. In a century when no more cathedrals are being built,
but impressive skyscrapers rise up so rapidly, the profession of the motivated
mathematician is becoming rare. This explains why users are very often not
aware of how mathematics could be used to improve aspects of the questions
with which they are concerned. When users are aware of this, the intersection
of their central areas of interest with the preoccupations of mathematicians is
often small — users are interested in immediate impacts on their problems and
not 1 the mathematical techniques that could be used and their relationship
with the overall mathematical structure.

It is these constraints which distinguish mathematicians from researchers
in other disciplines who use mathematics, with a different time constant. It
is clear that the slowness and the esoteric aspect of the work of mathemati-
cians may lead to impatience amongst those who expect them to come up with
rapid responses to their problems. Thus, it is vain to hope to pilot the math-
ematics downstream as those who believe that scientific development may be
programmed (or worse still, planned) may suggest.

In Part I, we shall only cover aspects of pure mathematics (optimisation
and nonlinear analysis) and aspects of mathematics motivated by economic
theory and game theory. It is still too early to talk about applying mathematics
to economics. Several fruitful attempts have been made here and there, but
mathematicians are a long way from developing the mathematical techniques
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(the domains of pure mathematics) which are best adapted to the potential
applications.

However, there has been much progress in the last century since pioneers
such as Quesnais, Boda, Condorcet, Cournot, Auguste and Léon Walras, despite
great opposition, dared to use the tools of mathematics in the economic domain.
Brouwer, von Neumann, Kakutani, Nash, Arrow, Debreu, Scarf, Shapley, Ky
Fan and many others all contributed to the knowledge you are about to share.

You will surely be disappointed by the fact that these difficult theorems
have little relevance to the major problems facing mankind. But, please don’t
be impatient, like others, in your desire for an overall, all-embracing explanation.
Professional mathematicians must be very humble and modest.

It 1s this modesty which distinguishes mathematicians and scientists in gen-
eral from prophets, ideologists and modern system analysts. The range of sci-
entific explanations is reduced, hypotheses must be contrasted with logic (this
1s the case in mathematics) or with experience (thus, these explanations must
be falsifiable or refutable). Ideologies are free from these two requirements and
thus all the more seductive.

But what is the underlying motivation, other than to contribute to an ex-
planation of reality? We are brains which perceive the outside world and which
intercommunicate in various ways, using natural language, mathematics, bodily
expressions, pictorial and musical techniques, etc.

It is the consensus on the consistency of individual perceptions of the en-
vironment, which in some way measures the degree of reality in a given social
group.

Since our brains were built on the same model, and since the ability to
believe in explanations appears to be innate and universal, there is a very good
chance that a social group may have a sufficiently broad consensus that its
members share a common concept of reality. But prophets and sages often
challenge this consensus, while high priests and guardians of the ideology tend
to dogmatise it and impose it on the members of the social group. (Moreover,
quite often prophets and sages themselves become the high priests and guardians
of the ideology, the other way round being exceptional.) This continual struggle
forms the framework for the history of science.

Thus, research must contribute to the evolution of this consensus, teach-
ing must disseminate it, without dogmatism, placing knowledge in its relative
setting and making you take part in man’s struggle, since the day when Homo
sapiens, sapiens . ..But we do not know what happened, we do not know when,
why or how our ancestors sought to agree on their perceptions of the world
to create myths and theories, when why or how they transformed their faculty
for exploration into an insatiable curiosity, when, why or how mathematical
faculties appeared, etc.

It is not only the utilitarian nature (in the short term) which has motivated
mathematicians and other scientists in their quest. We all know that with-
out this permanent, free curiosity there would be no technical or technological

Progress.
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Perhaps you will not use the techniques you will soon master and the results
you will learn in your professional life. But the hours of thought which you will
have devoted to understanding these theories will (subtly and without you being
aware) shape your own way of viewing the world, which seems to be the hard
kernel around which knowledge organizes itself as it is acquired. At the end of
the day, it is at this level that you must judge the relevance of these lessons and
seek the reward for your efforts.
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Introduction

This is a book on nonlinear analysis and its underlying motivations in economic
science and game theory. It is entitled Optima and Equilibria since, in the final
analysis, response to these motivations consists of perfecting mechanisms for
selecting an element from a given set. Such selection mechanisms may involve
either

e optinisation of a criterion function defined on this set (or of several
tunctions, in the case of multi-criterion problems in game theory),
Or

e searching in this set for an equilibrium of a given undelying dynam-
scal system, which is a stationary solution of this dynmical system.

The mathematical techniques used have their origins in what is known as
nonlinear analysis, and in particular, in convex analysis.

Progress in nonlinear analysis has proceeded hand in hand with that in the
theory of economic equilibrium and in game theory; there is interaction between
each of these areas, mathematical techniques are applied in economic science
which, in turn, motivates new research and provides mathematicians with new
challenges.

In the course of the book we shall have occasion to interrupt the logical
course of the exposition with several historical recollections. Here, we simply
note that it was Léon Walras who, at the end of the last century, suggested
using mathematics in economics, when he described certain economic agents
as automata seeking to optimise evaluation functions (utility, profit, etc.) and
posed the problem of economic equilibrium. However, this area did not blos-
som until the birth of nonlinear analysis in 1910, with Brouwer’s fixed-point
theorem, the usefulness of which was recognised by John von Neumann when
he developed the foundations of game theory in 1928. In the wake of von Neu-
mann came the works of John Nash, Kakutani, Aumann, Shapley and many
others which provided the tools used by Arrow, Debreu, Gale, Nikaido et al.
to complete Walras’s construction, culminating in the 1950s in the proof of the
existence of economic equilibria. Under pressure ifrom economists, operational
researchers and engineers, there was stunning progress in optimisation theory,
in the area of linear programming after the Second World War and following the
work of Fenchel, in the 1960s in convex analysis. This involved the courageous
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step of differentiating nondifferentiable functions by Moreau and Rockafellar at
the dawn of the 60’s, and set-valued maps ten years later, albeit in a diflerent
way and for different reasons than in distribution theory discovered by Lau-
rent Schwartz in the 1950s. (see for instance (Aubin and Frankowska 1990) and
(Rockafellar and Wets 1997)). These works provided for use of the rule hinted at
by Fermat more than three hundred years ago, namely that the derivative of a
function is zero at points at which the function attains its optimum, 1n increas-
ingly complicated problems of the calculus of variations and optimal control
theory. The 1960s also saw a re-awakening of interest in nonlinear analysis for
the different problem of solving nonlinear, partial-differential equations. A pro-
fusion of new results were used to clarify many questions and simplify proois,
notably using an inequality discovered in 1972 by Ky Fan.

At the time of writing, at the dawn of the 1980s, it is appropriate to take
stock and draw all this together into a homogeneous whole, to provide a con-
cise and self-contained appreciation of the fundamental results in the areas of
nonlinear analysis, the theory of economic equilibrium and game theory.

Our selection will not be to everyone’s taste: it i1s partial. For example,
in our description of the theory of economic equilibrium, we do not describe
consumers in terms of their utility functions but only in terms of their demand
functions. A minority will certainly hold this against us. However, conscious of
the criticisms made of the present-day formalism of the Walrasian model, we
propose an alternative which, like Walras, retains the explanation of prices in
terms of their decentralising virtues and also admits dynamic processing.

Our succinct introduction to game theory is not orthodox, in that we have
included the theory of cooperative games in the framework of the theory of
fuzzy games.

In the book we accept the shackles of the static framework that are at the
origin of the inadequacies and paradoxes which serve as pretexts for rejection
of the use of mathematics in economic science. J. von Neumann and O. Mor-
genstern were also aware of this when, m 1944, at the end of the first chapter
of Theory of Games and Economic Behaviour, they wrote:

‘Our theory is thoroughly static. A dynamic theory would unquestionably be
more complete and, therefore, preferable. But there is ample evidence from other
branches of science that it is futile to try to build one as long as the static side
s not thoroughly understood. . .’

‘Finally, let us note a point at which the theory of social phenomena will
presumably take a very definite turn away from the existing patterns of math-
ematical physics. This is, of course, only a surmise on a subject where much
uncertainty and obscurity prevail. ..’

‘Our static theory specifies equilibria. .. A dynamic theory, when one is found
— will probably describe the changes in terms of simpler concepts.’

Thus, this book describes the static theory and the tool which may be used
to develop it, namely nonlinear analysis.
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It 1s only now that we can hope to see the birth of a dynamic theory calling
upon all other mathematical techniques (see (Aubin and Cellina 1984), (Aubin
1991) and (Aubin 1997)). But, as in the past, so too now, and in the future,
the static theory must be placed in its true perspective, even though this may
mean questioning its very foundations, like March and Simon (who suggested
replacing optimal choices by choices that are only satisfactory) and many (less
fortunate) others. Imperfect yet perfectible, mathematics has been used to put
the finishing touches to the monument the foundation of which was laid by
Walras. Even if this becomes an historic monument, it will always need to
be visited in order to construct others from it and to understand them once
constructed.

Of course, the book only claims to present an introduction to nonlinear
analysis which can be read by those with the basic knowledge acquired in a first-
level university mathematics course. It only requires the reader to have mastered
the fundamental notions of topology in metric spaces and vector spaces. Only
Brouwer’s fixed-point theorem is assumed.

This is a book of motivated mathematics, i.e. a book of mathematics moti-
vated by economics and game theory, rather than a book of mathematics applied
to these fields. We have included a Foreword to take up this issue which deals
with pure, applied and motivated mathematics. In our view, this is important
in order to avoid setting too great store by the importance of mathematics in
its interplay with social sciences.

The book is divided into two parts. Part I describes the theory, while Part 11
is devoted to exercises, and problem statements and solutions. The book ends
with an Appendix containing a Compendium of Results.

In the first three chapters, we discuss the existence of solutions minimising a,
function, in the general framework (Chapter 1) and in the framework of convex
functions (Chapter 3). Between times, we prove the projection theorem (on
which so many results in functional analysis are based) together with a number
of separation theorems and we study the duality relationship between convex
functions and their conjugate functions.

The following three chapters are devoted to Fermat’s rule which asserts that
the gradient of a function is zero at any point at which the function attains its
minimum. Since convex functions are not necessarily differentiable in the cus-
tomary sense, the notion of the ‘differential’ had to be extended for Fermat’s
rule to apply. The simple, but unfamiliar idea consists of replacing the con-
cept of gradient by that of subgradients, forming a set called a subdifjerential.
We describe a subdifferential calculus of convex functions in Chapter 4 and in
Chapter 5, we exploit Fermat’s rule to characterise the solutions of minimisa-
tion problems as solutions of a set-valued equation (called an inclusion) or as
the subdifferential of another function.

In Chapter 6, we define the notion of the generalised gradient of a locally
Lipschitz function, as proposed by F. Clarke in 1975. This enables us to ap-
ply Fermat’s rule to functions other than differentiable functions and convex
functions. It will be useful in the study of cooperative games.
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Chapters 7 and 8 are devoted to the theory of two-person games; here, we
prove two fundamental minimax theorems due to von Neumann (1928) and
Ky Fan (1962).

In Chapter 9, we use Ky Fan'’s inequality to prove the existence theorems
for solutions of the inclusion

0 e C(7T)

(where C is a set-valued map) together with the fixed-point theorems which
we shall use to prove the existence of economic equilibria and non-cooperative
equilibria in the theory of n-person games.

In Chapter 10, we provide two explanations of the role of prices in a decen-
tralisation mechanism which provides economic agents with access to sufficient
information for them to take their decisions without knowing the global state
of the economic system or the decisions of other agents. The first explanation
is provided by the Walrasian model, as formalised since the fundamental work
of Arrow and Debreu in 1954. The second explanation is compatible with dy-
namic models which go beyond the scope of this book and for which we refer
to (Aubin, 1997).

Chapter 11 is devoted to a study of the von Neumann growth model and
provides us with the opportunity to prove the Perron—Frobenius theorem on the
eigenvalues of positive matrices.

In Chapter 12 we adapt the concepts introduced in Chapter 7 for 2-person
games to study n-person games.

Chapter 13 deals with standard cooperative games (using the behaviour of
coalitions of players) and fuzzy cooperative games (involving fuzzy coalitions of
players).

The collection of 165 exercises and 48 problems with solutions in Part 11
has two objectives in view. Firstly, it will provide the reader of Part I with the
wherewithal to practise the manipulation of the new concepts and theorems
which he has just read about.

Whilst, once assimilated, the mathematics may appear simple (and even
self-evident), a great deal of time (and energy) is needed to familiarise oneself
with these new cognitive techniques.

[f a passive approach is taken, the assimilation will be difficult; for, strange
as it may seem, emotional mechanisms (or, in the terminology of psycholo-
gists, motivational mechanisms) play a crucial role in the acquisition of these
new methods of thinking. This mathematics book should be read (or skimmed
through) quickly when the reader is looking for a piece of information which is
indispensable to the solution of problem which is occupying his mind day and
night!

Thus, it is best to approach this work as dispassionately as possible. You will
then realise how easy it is to acquire a certain mastery of the subject. You will
also see that old knowledge takes on a new depth, when it is replaced in a new
perspective. You will improve (or at least modify) your understanding of aspects
you thought you had already understood, since there is no end to understanding,
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either in the theory of mathematics or in other areas of knowledge. That is
why we advise the reader to skim through the book to determine what it is
about. You will then begin to understand it in a more active way by proving
for yourself the results listed for each chapter of Part I at the beginning of
the relevant section of the Exercises (Chapter 14). Both the pleasure of success
and the lessons of partial failure will help you to overcome the difficulties you
encounter. The pleasure of discovery is not a vain sentiment; the more ambitious
1s the challenge, the more intense is the pleasure.

These exercises (and above all the solutions) were also designed to provide
the reader with additional information which could not be given in an introduc-
tory text. The results which the reader will discover will convince him of the
richness of nonlinear analysis.

The exercises (Chapter 14) are grouped according to chapters and follow the
order of Part I. Except for certain exceptions (which are explicitly mentioned),
they only use results that have already been proved. However, some exercises
do assume that one or two immediately preceding exercises have been solved.

The problems (Chapter 15) use a priori all the material in Part I and are
largely grouped according to topic.

‘The first nine problems concern various topological properties of set-valued
maps. The description of the notion of set-valued maps and their properties
given in Part I is a bare minimum and is insufficient for profound applications
of nonlinear analysis. The tenth problem generalises Banach’s theorem (closed
graph or open image) either to the case of continuous linear operators defined on
a closed convex cone or to that of set-valued maps (Robinson—Ursescu theorem).
[t goes together with Problem 14 which extends the inverse function theorem
to set-valued maps and which thus plays an important role in applications.
Problem 11 returns to the proof of Ekeland’s theorem in the very instructive
context of discrete dynamical systems. Problems 12, 13, 14 and 28 provide
applications of Ekeland’s theorem, which turns out to be the most manageable
and the most effective theorem in the whole family of results equivalent to the
fixed-point theorem for contractions. This is complemented by a fixed-point
theorem for non-expansive mappings (Problem 16) which uses an interesting
notion (the asymptotic centre of sequences, which is a sort of virtual limit)
which is the subject of Problem 15.

The solution of Problem 17 on the properties of orthogonal projectors
onto convex closed cones (discovered by Jean-Jacques Moreau, co-founder with
R.T. Rockafellar of convex analysis) is indispensable. Problem 18 studies a class
of functions with properties analogous to those of convex functions.

A continuous mapping is ‘proper’ if it transforms closed sets to closed sets
and if its inverse has compact images. As one might imagine, such functions play
an important role. Their properties are the subject of Problem 19. Problems
20, 21, 23 and 26 are designed to extend the results of Chapters 3 to 5 for the
functions £ — f(z) + g(Az) to the functions x — L(z, Az); they will help the
reader to assimilate the above chapters properly. Problem 24 is devoted to the
application of Chapter 5 to linear programming. Variational principles form the
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subject of Problems 26, 27, 45 and 46; these last two problems use Ky Fan's
inequality.

The graph of a continuous linear operator is a closed vector subspace. 'The
set-valued maps analogous to continuous linear operators are set-valued maps
with graphs a convex closed cone. These are known as ‘closed convex processes’
and inherit numerous properties of continuous linear operators, as Problems 10
(closed graph) and 29 (transposition) show.

Since the derivatives of differentiable mappings are continuous linear oper-
ators, we might expect to look for candidates for the role of the derivative of
a set-valued map among such closed convex processes. It is sufhicient to return
to the origins, that is to say to Pierre de Fermat who introduced the notion ot
the tangent to a curve. This idea is taken up in Problem 33, which provides an
introduction to the differential calculus of set-valued maps. Over recent years,
this latter has become the subject of intense activity, because of its intrinsic
attraction and its numerous potential applications. This ‘geometric’ view of the
differential calculus is taken up again in Problem 34 to complete the study of
subdiflerentials of convex functions, whilst Problem 35 leads to a very elegant
formula for calculating the subdifterential of a marginal function. This differ-
ential calculus of set-valued maps is the topic of (Aubin and Frankowska 1990)
which contains a thorough investigation of set-valued maps. Problems 36, 37,
38, 39 and 40 describe refinements of the minimax inequalities of von Neumann
and Ky Fan which are very useful in infinite-dimensional spaces. Problems 41
and 48 provide variants and applications of the Gale-Nikaido-Debreu theorem,
whilst Problem 42 shows how to trade the compactness of the domain of a
set-valued map for ‘coercive’ properties. The existence of eigenvectors of set-
valued maps forms the subject of Problems 43 (general case) and 44 (positive
set-valued maps).

Problem 47 provides an introduction to maximum monotonic set-valued
maps and their numerous properties.

We could have included many other problems, but forced ourselves to make
a difficult selection. One area of applications of nonlinear analysis, namely the
calculus of variations and optimal control, is not touched on by this collection
of problems, although it is a most rich and exciting area which remains the
subject of active research.

This requires a reasonable mastery of topological vector spaces (weak
topologies) and of function and distribution spaces (Sobolev spaces) which is
not demanded of the reader (Aubin 1979a). If the latter has a knowledge of the
basic tools of convex analysis, non-regular analysis and nonlinear analysis, he
will be well equipped to tackle these theories effectively.

[t remains to wish the reader (in fact, the explorer) deserved success in
mastering this exciting area of mathematics, nonlinear analysis.
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Nonlinear Analysis: Theory






1. Minimisation Problems: General Theorems

1.1 Introduction

The aim of this chapter is to show that a minimisation problem:
find z € K such that f(z) < f(z) Vz € K

has a solution when the set K is compact and the function f from K into IR is
lower semi-continuous.

This leads us to define semi-continuous functions and to describe some of
their properties.

1.2 Definitions

First, we shall study minimisation problems in a general framework: we assume
we have

e a subset K of X
e a function f from K to R
and we seek a solution ¥ of the problem

(%) zec K
(1) f(z) = inf f(x). (1)

€K

For ease of notation, we begin by introducing a convenient method which

avolds explicit mention of the subset K on which the function f is defined. We
set

ZCR A g

where fr i1s no longer a real-valued function but a function from X to
IR U {4+00} such that

K = {z € X|fx(z) < +00}. (3)

Moreover, any solution of (1) is a solution of the problem
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fk(Z) = inf fx(x) (4)

TEX

and conversely.
We are thus led to introduce the class of functions f from X to IRU {+00}
and to associate them with their domain

Dom f := {z € X|f(z) < +oo}. (5)

Equation (3) may thus be written as K = Dom (fx). In order to exclude the
degencrate case in which Dom f = 0, that is to say where f is the constant
function equal to +00, we shall use the following definition.

Definition 1.1. We shall say that a function f from X to IRU {400} is non-
trivial if its domain is non-empty, that is to say if f is finite at at least one
noint.

We shall often use the indicator function of a set, which characterises the
set in the same way as characteristic functions in other areas of mathematics.

Definition 1.2. Let K be a subset of X. We shall say that the function ¥k -
X - IRU {40} defined by

7’bk__(gs):{o ifz e K

+oo ifzxé K (6)
1s the indicator function of K.

Note that the sum f + ¢, of a function f and the indicator function of
a subset K may be identified with the restriction of f to K and that the
minimisation problem (1) is equivalent to the problem

f(Z) + ¢k (Z) = inf (f(z) + ¥k (2)). (7)

zEIX

We shall see that this new formulation of the problem will enable us to derive
interesting properties of its possible solutions in a convenient and fast way.

1.3 Epigraph
We may characterise a function f from X to IRU {+oc0} by its epigraph, which
is a subset of X x R.

Definition 1.3. Let f be a function from X to R U {+o0}. We shall call the
subset

Ep (f) :={(z,A) € X x R|f(z) < A} (8)

the epigraph of f.

The epigraph of f is non-empty if and only if f is nontrivial.
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1'he following property of epigraphs will be useful.

Proposition 1.1. Consider a family of functions f; from X to IRU {+o0} and
its upper envelope sup;.; f;. Then

Ep (Sup fi) = (1 Ep (fi)- (9)

Proof. Exercise. o

1.4 Lower Sections

Definition 1.4. Let f be a function from X to RU {+o0}. The sets
S(f,A) =={z € X|f(z) < A} (10)

are called sections (lower, wide) of f.

Let a := inf cx f(x). By the verry definition of the infimum of a function,
the set M of solutions of problem (1) may be written in the form

M= () S(fk, )

A>a

Thus, the set of solutions M ‘inherits’ the properties of the sections of f
which are ‘stable with respect to intersection’ (for example, closed, compact,
convex, etc.).

Proposition 1.2. Consider a family of functions f; from X to RU {400} and
its upper envelope sup;c f;- Then

S (sup £ )) = ()50 (11)

Proof. Exercise. C

1.5 Lower Semi-continuous Functions

Let X be a metric space.
We recall that a function f from X to IR U {400} is continuous at a point

zo (which necessarily belongs to the domain of f) if, for all € > 0, there exists

n > 0 such that Vx € B(zg,n) we have both A\ := f(z¢) — € < f(x) and
f(z) < f(zg) + €o- Demanding only one of these properties leads to a notion of

semi-continuity introduced by René Baire.

Definition 1.5. We shall say that a function f from X to RU {400} is lower
semi-continuous at zq if for all A < f(xo), there exists n > 0 such that
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Vz € B(zo,n), X< f(z). (12)

We shall say that f is lower semi-continuous if it is lower semi-continuous
at every point of X. A function is upper semi-continuous if —f is lower
semi-continuous.

We begin by proving the characteristic properties. We recall that, by defi-
nition,
iminf f(z) :=sup inf f(z). (13)
=0 n>0 TE€B(x0,7)
Proposition 1.3. A function f from X to IRU {+o0} is lower semi-conlinuous

at xq if and only if
f(zo) < liminf f(x). (14)

T—rIQ

Proof.
a) Suppose that f is lower semi-continuous at zg. For all A < f(zg), there exists
1 such that

A< inf f(z) <liminf f(z).

x€B(z0,n) I—rIQ

Inequality (14) now follows.

b) Conversely, given any A < sup, o inf ez, f(z), by definition of the supre-
mum, there exists 7 > 0 such that XA < inf ep(z,.) f(z). Thus, condition (14)
implies that f is lower semi-continuous at zg. L

Proposition 1.4. Let f be a function from X to IR U {+o0}. The following
assertions are equivalent

a) f is lower semi-continuous;

b) the epigraph of f is closed;

c) all sections S(f, ) of f are closed.

Proof.

a) We assume that f is lower semi-continuous and show that its epigraph is
closed. For this, we take a sequence of elements (z,, \,) € Ep (f) converging to

(z, ) and show that (z, ) belongs Ep (f), whence that f(z) < A. But Propo-
sition 1.3 then implies that

f(z) < liminf f(z,) < liminf A, = lim A, = ),

n—o0 T o0 n—>o0

since f(zn) < A, for all n.

——

b) We now suppose that Ep (f) is closed and show that an arbitrary section
S(f, ) is also closed. For this, we consider a sequence of elements z,, € S(f, \)
converging to x and show that z € S(f, A), whence that (z,)\) € Ep(f). But
this is a result of the fact that the sequence of elements (z,, \) of the epigraph
of f, which is closed, converges to (z, A).

c) We suppose that all the sections of f are closed. We take o € X and
A < f(xo). Then (zo, A) does not belong to S(f, A), which is a closed set. Thus,
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there exists 7 > 0 such that B(zg,n) NS(f, A) = 0, that is to say that XA < f(z)
for all z € B(zo,n). Thus, f is lower semi-continuous at . L

Remark. If a function f is not lower semicontinuous, one can associate with it
the function f the epigraph of which is the closure of the epigraph of f:Ep(f) :=
Ep(f). It is the largest lower semicontinuous function smaller than or equal to

f.

We deduce the following corollary

Corollary 1.1. A subset K of X is closed if and only if its indicator function
s lower semi-continuous.

Proof. In fact, Ep (¢x) = K x IR, is closed if and only if K is closed. C

Proposition 1.5. The functions f, g, f; from X to IRU {4+oc0} are assumed to

be lower semi-continuous. Then

a) f + g is lower semi-continuous;

b) if o > 0, then oof is lower semi-continuous;

c) inf(f, g) is lower semi-continuous;

d) if A is a continuous mapping from 'Y to X then f o A is lower semi-
continuous;

e) sup;cs [i ts lower semi-continuous.

Proof. The proof of the first four assertions is elementary. The fifth results from
the fact that Ep (sup,c; fi) = Nier Ep (f;) is closed (see Proposition 1.1). O

We shall see how to generalise the third assertion (see Proposition 1.7).

Remark. If f : X — IRU{400} is lower semi-continuous, the same is true of the
restriction to Dom f, fo : Dom f — IR, when Dom f has the induced metric.
There is no exact converse. Only the following theorem holds.

Proposition 1.6. Suppose that K is a closed subset of X and that f is a lower
semi-continuous function from the metric subspace K to IR. Then the function
fk from X to RU {400} is lower semi-continuous.

Proof. In fact, the sections S(fx,A) and S(f,\) are identical. Since S(f, \) is
closed in K, and since K is closed in X, it follows that S(fx,A) = S(f, A) is

closed 1n X. C

1.6 Lower Semi-compact Functions

Study of the minimisation problem suggests that we should distinguish the
following class of functions.

Definition 1.6. We shall say that a function f from X to RU {400} is lower
semi-compact (or inf-compact) if all its lower sections are relatively compact.

We then have the following theorem.
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Theorem 1.1. Suppose that a nontrivial function f from X to RU{+o0} is both
lower semi-continuous and lower semi-compact. Then the set M of elements at
which [ attains its minimum is non-empty and compact.

Proof. Let o = inf cx f(z) € RU {4+00} and g > o. For all X €]a, Ag|, there
exists ) € S(f,A) C S(f, Xo). Since the set S(f, \o) is compact, a subsequence
of elements zy converges to an element T of S(f, \g). Since f is lower semi-
continuous, we deduce that

f(z) <liminf f(zy) <liminf A = o < f(Z).

Thus, f(Z) = «, which implies that « is finite. Moreover, M = Noca<n, S(fr A)
being an intersection of compact sets, is compact. L

Corollary 1.2. Any lower semi-continuous function from a compact subset
K C X to IR is bounded below and attains its minimum.

Proof. We apply Theorem 1.1 to the function fx defined by fx(z) = f(z) if
z € K and fi(z) = 00 if x ¢ K, noting that fx is lower semi-continuous (since
K is closed and f is lower semi-continuous) and that fg is lower semi-compact,
K being relatively compact. L

Remark. This very simple theorem is a rare general theorem for the existence
of solutions of an optimisation problem.

The difficulty essentially arises in the verification of the assumptions. For
instance, when the vector space E 1s infinite dimensional, we can supply it with
topologies which are not equivalent, contrary to the case of finite dimensional
vector spaces (supplied with topologies for which the addition and the multipli-
cation by scalars are continuous) are all equivalent. In this case, since compact
subsets remain compact when the topology is weaker, supplying £ with weaker
topologies increases the possibilities of having f lower semicompact. But contin-
uous or lower semicontinuous functions remain continuous or lower semicontin-
uous respectively whenever the topology of E is stronger, so that strengthening
the topology of E is advantageous. Hence, for applying Theorem 1.1, we have
to construct topologies on E satisfying opposite requirements.

We shall see another existence result which does not use compactness, but
instead requires stronger assumptions on the regularity of the function to be
minimised.

Proposition 1.7. Suppose that K is a compact topological space and that g is
a lower semi-continuous function from X X K to RU{+c0}. Then the function
f: X - IRU{+00} defined by

Vz € X,  f(z):= inf g(z,y) (15)

yeK

s also lower semi-continuous.

Proof. We take A € IR and consider a sequence of elements z, € S(f, )
converging to an element zo. We shall prove that o € S(f,)\). Because
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Y = f(xn,y) is lower semi-continuous, and since K 1s compact, there exists
Yn € K such that f(z,) = g(zn,y.) (Corollary 1.2). Thus, the sequence y,
contains a subsequence of elements vy, which converges to an element o of
K. Then, the sequence of pairs (Zn, yrr) Of S(g, A\) converges to (xg, yo), which
belongs to S(g, ) since g is a lower semi-continuous function. Consequently,
To € S(f, A), since f(zo) < g(zo,y0) < A, =

Finally, we note the following interesting result.

Proposition 1.8. Consider n lower semi-continuous functions fi from X to

IRU {400} and suppose that one of these is lower semi-compact. We associate
them with the mapping F' from K := N, Dom f; to IR" defined by

Vz € K, F(z):= (fi(z),.--, fa(z)). (16)

Then
the set F(K)+ IRY is closed in IR™. (17)

Proof. We consider a sequence of elements z,, € K and elements u,, € IR} such
that the sequence of elements y,, := F(z,) + u, converges to an element y of
IR", and show that y belongs to F(K) + IR”} .

Let f;, be the function which is both lower semi-continuous and lower semi-
compact. Since f; () + Uni, converges to y;,, there exists ng such that |y;, —
fio(Tn) — Uniy| < 1 whenever n > ny. Since f; (z,) < ¥iy — Uni, + 1 < v3, + 1,
we deduce that for n > ng, the z,, belong to S(f;,,y:;, + 1), which is compact.
Thus, there exists a subsequence of elements z,, which converges to an element

T. We take an index 7 = 1,...,n. Since f; is lower semi-continuous, we deduce
that

fi(Z) < Iminf fi(z,) = liminf(y,, — 4,,) < liminf y,,. = y;.

n—ro0 n— o0 n— 00

Thus, setting u; := y; — fi(Z), which is positive or zero, we have shown that
y = F(Z) + u where £ € K and u € IR. »

1.7 Approximate Minimisation of Lower
Semi-continuous Functions on a Complete Space

In the statement of Theorem 1.1, and its Corollary 1.2 on the existence of a
solution to a minimisation problem, compactness plays a crucial role. However,
it is remarkable that simply with the condition that the set over which f is
minimised is complete, we nonetheless obtain an existence result for an approx-

imate minimisation problem.

Theorem 1.2 (Ekeland). Suppose that E is a complete metric space and
that f : E — IR, U {400} is nontrivial, positive and lower semi-continuous.
Consider zo € Dom (f) and € > 0. There exists T € E such that
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(2) f(@) + ed(zo, T
(

)
(i%) Vz # 7, z7) < f(z) + ed(z, Z). (18)

The first property is a localization property stating that & belongs to a ball
centered around z, and of radius at least equal to £ (:") . The second property
states that Z minimizes the function z — f(z) + ed(z, ) (which depends upon
the unknown solution 7 !)

Before proving this theorem, we state a corollary which clarifies the notion
of approximate solution.

Corollary 1.3. The assumptions are as in Theorem 1.2. Suppose e, A > 0 and
that zg is a point with f(xo) < inf f(x) +eX. Then there exists T € E such that

(2) f(Z) < f(zo)
(44%) Vz € E, f(@) < f(z) + ed(z, T). (19)

Proof of Theorem 1.2. We may naturally take e = 1.
We shall associate the function f with the correspondence F' of E into itself
which associates a point z with the set F'(z) defined by

F(z) == {ylf(v) + d(,y) < f(2)}. (20)

The sets F'(z) are closed and the correspondence F' has the following prop-
erty:

(2) y € F(y) (reflexivity)
(2) if y € F(z), then F(y) C F(x) (transitivity). (21)

Condition (21)(ii) is evident if £ ¢ Dom f, since in this case F(z) = E.
Thus, we suppose that f(x) is finite. Take y € F'(z) and z € F(y). Adding
the inequalities:

f(z) +d(y,z) < f(y) and f(y)+d(z,y) < f(z)

and using the triangle inequality, we obtain the inequality

f(z) +d(z,z) < f(=),

which implies that z € F(x).
We associate the function f with the function v defined on Dom f by

v(y) := inf f(2). (22)

z€ F(y)

It 1s clear that
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Vy € F(z),  d(z,y) < f(z) —v(z), (23)
which implies the following upper bound on the diameter of F(x)
Diam (F(z)) < 2(f(z) — v(z)) (24)

Next, we define the following sequence beginning with zo: we take z,4, in F(z,)
such that f(z,41) < v(z,) + 2" (this is possible by definition of the infimum).
Since F(zn41) C F(x,), by virtue of (21)(ii), we have

v(mn) S v($n+1)' (25)
On the other hand, since we always have v(y) < f(y), we obtain the inequalities
U(Tnt+1) < f(Tnn) S v(zn) + 27" S 0(Tpgr) +277 (26)

and thus the inequalities
0 < f(Zny1) — V(Tpg1) <277 (27)

Consequently, formula (24) implies that the diameter of the closed sets F'(z,)
converges to (. As these closed sets are nested and since the space is complete,

it follows that
ﬂ F(z,) ={z}. (28)

n>0

Since Z belongs to F'(xg), the inequality (18)(i) is satisfied. On the other hand,
Z belongs to all the F'(z,); it follows that F(Z) C F(z,) and consequently that

F(z) ={z}. (29)

Thus, we deduce that if £ # Z then = ¢ F(Z), whence f(z) + d(Z,z) > f(Z).
Thus, we have proved (18)(ii). O

1.8 Application to Fixed-point Theorems

If G is a correspondence of E into itself, a solution Z of the inclusion
T € G(T) (30)
is called a fized point of G.

Theorem 1.3 (Caristi). Let G be a nontrivial correspondence of a complete
metric space E into itself. We suppose that there exists a proper, positive, lower
semi-continuous function f from E to IR, U {+oo} such that

Ve € E, dy € G(x) such that f(y) + d(z,y) < f(=). (31)

Then the correspondence G has a fixed point.
If f is linked to G by the stronger relationship
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Vz € E, Yy € G(z), f(y)+d(y,z) < f(z), (32)

then there exists T € E such that G(Z) = {Z}.

Proof. Suppose that Z satisfies (18)(ii), with € < 1 and that § € G(Z) satishes
f(9) + d(Z,y) < f(&). If § is not equal to Z, inequality (18)(ii) with z := y
implies that d(Z,y) < ed(Z,7), which is impossible since € < 1. Thus, ¥ 1s
equal to Z. There is at least one such if condition (31) is satisfied, whilst all the
7 € G(Z) are equal to Z if condition (32) is satisfied. G

Since we are discussing fixed-point theorems, we shall prove another result
in which f is no longer assumed to be lower semi-continuous; however the corre-
spondence G must have a closed graph. The graph of a correspondence G from
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