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Preface

Il est vrai que M. Fourier avait l'opinion que le but principal des
mathematiques etait l'uilite publique et 1'explication des phdnomCnes
naturels; mais un philosophe comme lui aurait du savoir que le but
unique de la science, c'est l'honneur de 1'esprit humain, et que sous ce
titre, une question de nombres vaut autant qu'une question du systt me
du monde.'

C. G. J. Jacobi [71, vol. 1, p. 454]

The classical problems in additive number theory are direct problems, in which we
start with a set A of integers and proceed to describe the h-fold sumset hA, that
is, the set of all sums of h elements of A. In an inverse problem, we begin with the
sumset hA and try to deduce information about the underlying set A. In the last
few years, there has been remarkable progress in the study of inverse problems
for finite sets in additive number theory. There are important inverse theorems due
to Freiman, Kneser, Pliinnecke, Vosper, and others. In particular, Ruzsa recently
discovered a new method to prove a generalization of Freiman's theorem. One
goal of this book is to present Ruzsa's beautiful proof.

The prerequisites for this book are undergraduate courses in elementary number
theory, algebra, and analysis. Beyond this, the volume is self-contained. I include

'It is true that Fourier believed that the principal goal of mathematics was the public
welfare and the understanding of nature, but as a philosopher he should have understood
that the only goal of science is the honor of the human spirit, and, in this regard, a problem
in number theory is as important as a problem in physics.



viii Preface

complete proofs of results from exterior algebra, combinatorics, graph theory,
and the geometry of numbers that are used in the proofs of the Erdos-Heilbronn
conjecture, Plunnecke's inequality, and Freiman's theorem. Indeed, a second goal
of the book is to introduce different methods that have been used to obtain results
in this field.

This is the second of several books on additive number theory. It is independent
of the related volume Additive Number Theory: The Classical Bases [961, which
is a study of the direct problems that are historically at the center of this subject.
I had originally planned to write one short and comprehensive book on additive
problems, but the project has become a long and complex enterprise. I am grateful
to my publisher, Springer-Verlag, for its interest in and understanding of this work.

I wish to thank Antal Balog, Gregory Freiman, Yahya Ould Hamidoune, Vsevo-
lod F. Lev, Oystein Rodseth, Imre Z. Ruzsa, and Endre Szemeredi, who provided
me with preprints of their papers on additive number theory and made helpful
comments on preliminary versions of this book. I also benefited greatly from a
conference on Freiman's work that was organized by Jean-Marc Deshouillers at
CIRM Marseille in June, 1993, and from a workshop on combinatorial number
theory that was held at the Center for Discrete Mathematics and Theoretical Com-
puter Science (DIMACS) of Rutgers University in February, 1996. Much of this
book was written while I was on leave at the School of Mathematics of The In-
stitute for Advanced Study, and at DIMACS. I am especially grateful to Henryk
Iwaniec and the late Daniel Gorenstein for making it possible for me to work at
Rutgers.

I have taught additive number theory at Southern Illinois University at Car-
bondale, Rutgers University-New Brunswick, and the Graduate Center of the
City University of New York. I am grateful to the students and colleagues who
participated in my graduate courses and seminars.

This work was supported in part by grants from the PSC-CUNY Research Award
Program and the National Security Agency Mathematical Sciences Program.

I would very much like to receive comments or corrections from readers of this
book. My e-mail addresses are nathansn@alpha.lehman.cuny.edu and
nathanson@worldnet.att.net. A list of errata will be available on my homepage at
http://www.lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson.

Melvyn B. Nathanson
Maplewood, New Jersey

June 18, 1996
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Notation

N The positive integers 1, 2, 3, .. .
No The nonnegative integers 0, 1, 2, .. .
Z The integers 0, ± 1, ±2....
R The real numbers
R" n-dimensional Euclidean space
Z" The integer lattice points in R"
C The complex numbers
IzI The absolute value of the complex number z
9tz The real part of the complex number z
Zz The imaginary part of the complex number z
[x] The integer part of the real number x
{x } The fractional part of the real number x
IIx II The distance from the real number x to the nearest

integer, that is, Ilx II - min({x}, I - {x}).
(a l , a2, ... , ak) The greatest common divisor of the integers a,, a2, ... , ak
[a,, a2, ... , ak ] The least common multiple of the integers a,, a2, ... , ak
[a, b] The interval of integers n such that a < n < b

(Context will always make clear whether [a, b] denotes
an interval of integers or the least common multiple
of two integers.)

Q(qo; qi, ... , q,,;1, , ... ,1") An n-dimensional arithmetic progression of integers
G(V, E) A graph G with vertex set V and edge set E
1X I The cardinality of the set X
hA The h-fold sumset, consisting of all sums

of h elements of A
h^A The see of all sums of h distinct elements of A.
A - B The difference set, consisting of all elements a - b

with a E A and b E B
hA - kA The difference set formed from the sumsets hA and kA
A * A The set of all elements of the form la with a E A



xiv Notation

f << g If (x)I < cl g(x) I for some absolute constant c
and all x in the domain of f

f <<a.b.... g I f (x)I < clg(x)I for some constant c that depends
on a, b.... and for all x in the domain of f



1

Simple inverse theorems

1.1 Direct and inverse problems

Additive number theory is the study of sums of sets of integers. Let h > 2, and let
A,, A2, .... Ah be sets of integers. The sumset

is the set of all integers of the form a, + a2 + + as,, where a; E A; for i =
1 , 2, ... , h. If A is a set of integers and A; - A for i - 1, 2, ... , h, then we denote
the sumset A, + A2 + + A,, by hA. Thus, the h-fold sumset hA is the set of all
sums of h elements of A, with repetitions allowed.

Sumsets can also be defined in any abelian group and, indeed, in any set in which
there is a binary operation. For example, we shall consider sumsets in the group
Z/mZ of congruence classes modulo m, and in the group Z" of integer lattice
points in R".

A direct problem in additive number theory is a problem in which we try to
determine the structure and properties of the h-fold sumset hA when the set A
is known. An example of a direct theorem, indeed, the archetypical theorem in
additive number theory, is Lagrange's theorem that every nonnegative integer can
be written as the sum of four squares. Thus, if A is the set of all nonnegative
squares, then the sumset 4A is the set of all nonnegative integers.

There is a simple and beautiful solution of the direct problem of describing
the structure of the h-fold sumset hA for any finite set A of integers and for all
sufficiently large h. We require the following notation.

Let A and B be sets of integers. Let IAI denote the cardinality of A. We define
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the difference set
A-B={a-b:aEAandbEB}.

For any integers c and q, we define the sets

c+A-(c) +A,

c-A-{c}-A,
and

q*A-{gaIaEA).
Then q*(A+B)-q*A+q*B.

Denote by (aI, ... , ak) the greatest common divisor of the integers a1, ... , ak.
If A - (ao, aI, ... , ak_i } is a finite set of integers such that ao < ai < <
we define

d (A) - (a, - ao, a2 - ao, ... , ak_l - ao).
Let a; - (a; - ao)/d(A) for i - 0, 1, ..., k - 1, and let

A(N) - {ao, aj,... , a'_, }.

Clearly.

and

It follows that

0 -a' <a, < < ak_i,

d(A(N)) ak_,) - 1,

A - ao + d * A(x)

hA - (hao) + d(A) * hA(N).

JhAl - lhA(N)1. (1.1)

The set A(N) is called the normal form of the set A.
Let [a, b] denote the interval of integers n such that a < n < b.
For example, if A - 18, 29, 71, 92) and h - 2, then d(A) - 21, A(N)

(0, 1, 3, 41, 2A (N) - [0, 8], and 2A - {16+21n : n E [0, 8]).

Lemma 1.1 Let k 2 and let aI.... ak_I be positive integers such that

(a,,..-,ak-I) - I.

if
k-2

(ak_I - 1) a; < n < hak_1 - (k - 2)(ak-i - Oak-1,

then there exist nonnegative integers u 1, .... uk _ i such that

n -uia, +. ..+uk_jak-1

and

<h.
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Proof. Since (a,, .. . , ak _ 1 ) - 1 , there exist integers x j, ... , xA _ 1 such that

n -x1a1 +- +xk_,a&_,.

For i - 1, ... , k - 2, let u; be the least nonnegative residue of x1 modulo ak _ 1.
Then

n = (modak_,)
ulal + +uk_2ak_2 (mod ak_I),

and so there exists an integer uk _ 1 such that

n - ulal + +uk_2ak_2 +uk_1ak_1.

Since 0 < u1 < ak_I - 1 for i - 1, ... , k - 2, it follows that

k-2
uk_,ak_1-n-(ula,+ +uk_2ak_2)>n-(ak_1-1)a,>0,

r-i

and so uk_, > 0. Similarly,

uk_,ak_1 5 n < hak_1 - (k - 2)(ak_, - Oak-1

and

It follows that

uk_l < h - (k - 2)(ak_I - 0-

U1 + - - - + Uk-2 + Uk-1 <(k-2)(ak_1 -1)+uk_l <h.

This completes the proof.
By (1.1), the structure of the sumset h A is completely determined by the structure

of the sumset h km), and so it suffices to consider only finite sets in normal form.

Theorem 1.1 (Nathanson) Let k > 2 and let A - {ao, a,, ... , ak _ 1) be a finite
set of integers such that

0 = ao < a, < < ak_,

and

(a,,...,ak-,) - 1.

Then there exist integers c and d and sets C S [0, c - 2] and D C [0, d - 2] such
that

hA-CU[c,haL_I-d]U(hak_1-D) (1.2)

for all h > max(l, (k - 2)(aA - 1 - I )aA _, ).
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Proof. If k - 2, then ai = I, A - {0, 1), hA - [0, h), and the theorem holds
with c-d-0forallh> 1.

Let k > 3. Then ak -I > 2. We define

ho - (k - 2)(ak_, - 1)ak_I. (1.3)

Then
k-2

ho > (ak_, - 1) I + E a; (1.4)

and

r-

hoak_1 2ho

(k - 2)(ak_1 - 1)ak-I + ak_i - 1

k-2

+(ak_1 a;. (1.5)

The theorem is proved by induction on h > ho. Choose integers c and d such
that [c, hoak_I - d] is the largest interval of integers satisfying

k-2

[(ak_I - 1) T a;,hoak_i - (k - 2)(ak_I - 1)ak-1 c [c,hoak_I - d]

c h0A.

Lemma 1.1 implies that this maximal interval exists. It follows that c - I ¢ h0A
and hoak_i - (d - 1) ¢ hoA. Moreover,

k-2

c < (ak_, - 1)E a; < ho < h (1.6)

and

d < (k - 2)(ak_I - 1)ak_1. (1.7)

It follows that

c+d

and so

k-2

< (ak_i - 1) a; + (k - 2)(ak_i - 1)ak-i

i-i

< hoak_, - ak_1 +

[c,c+ak_i - I] c [c,hoak_I -d].

Let C and D be the finite sets of integers defined by

C=hoAf [0,c-2]

(1.8)
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and

hoak-i - D - hoA n [hoak_i - (d - 2), hoak-i J.

Then D c [0, d - 2] and

hoA - C U [c, hoak_i - d] U (hoak_i - D).

Thus, (1.2) holds for ho.
Suppose that (1.2) is true for some h > ho. Let

B - C U [c, (h + 1)ak_ i - d) U ((h + Oak-1 - D)
- CU[c,c+ak_1 - 1]U[c+ak_i,(h+l)ak_i -d]

U ((h + l)ak_ i - D).

The second equality follows from (1.8).
Since 0E A, wehavehA c (h+l)A and so

CU[c,c+ak_i - 1] c CU[c,hoak_1 -d]
c hA
c (h + l)A.

Since ak-1 E A, it follows that ak-1 + hA c (h + 1)A and

[c+ak_), (h+ 1)ak_1 -d] c ak-1 +[c,hak_) -d]
c ak-1 +hA
C (h+1)A.

Similarly,

(h + 1)ak_1 - D - ak_i +(hak_i - D)
C (h + 1)A.

Therefore, B c (h + 1)A.
Let b E (h + 1)A. If b < c, then (1.6) implies that b cannot be the sum of h + 1

nonzero elements of A, sob E hA, hence b E C c B. If c < b < c+ak_i - 1,
then b E [c, c+ak_) - I] c B.

Suppose that b E (h + 1)A and b > c + ak _ 1. If b - ak _ I V h A, then b is the
sum of h + I elements of A that are all strictly less than ak_ 1, and so

b < (h + 1)(ak_i - 1). (1.9)

Since [c, hak _ i -d] c h A, the conditions b - ak _ i > c and b - ak _ i ¢ h A imply
that

b - ak_., > hak_1 - d > hak_1 - (k - 2)(ak_i - I)ak_i. (1.10)

Combining inequalities (1.9) and (1.10), we obtain

h + I < (k - 2)(ak_i - 1)ak_1 - ho < h
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which is absurd. Therefore, b - ak_I E hA. By the induction hypothesis, either

b E ak_, + [c, hak _, -d]- [c + ak _, , (h + l )ak _ 1 -d] c B

or

b E ak_1 +(hak_, - D) - ((h + 1)ak_1 - D) c B.

Therefore, (h + 1)A a B. This completes the proof.
An inverse problem in additive number theory is a problem in which we attempt

to deduce properties of the set A from properties of the sumset hA. For example, if
A is a finite set of integers and if the cardinality of the h-fold sumset hA is small,
what can we conclude about the structure of the set A?

The following result is the simplest inverse theorem in additive number theory.

Theorem 1.2 If A is a set of k integers, then 12A1 > 2k - 1. If A is a set of k
integers and if 12A I - 2k - 1. then A is an arithmetic progression.

Proof. Let

where

A - {ao, a,, a2_., ak_, ],

ao < a, < a2 < ... < ak-1.

Then the sumset 2A contains the k integers 2a; for i - 0, 1, ... , k - 1, and the
k - I integers a; _, + a; fori - 1, ... , k - 1. Since

2a;_, < a,_, +a; <2a;

fori - 1, ... , k - 1, it follows that 12A1 > 2k - 1.
If 12A I - 2k- 1, then every element of 2A is of the form 2ai or a; _, +a;. Since

a; _, + a; < a; _, + a;+, < ai + a;+,

and

a;_, + ai < 2a; < a; + a;+,

for i - 1, ... , k - 2, it follows that

tai - ai_, + a;+,

or, equivalently,
a; - ai- i - ar+i -a;

for i - 1, ... , k - 2. Therefore, A is an arithmetic progression. This completes the
proof.

The most important inverse theorems in this book are due to Freiman, Kneser,
PlOnnecke, and Vosper. Vosper's theorem is an inverse to the Cauchy-Davenport
theorem (Theorem 2.2), which states that if A and B are nonempty sets of congru-
ence classes modulo p, then

IA+BI > min(p, IAI+IBI - 1).
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The Cauchy-Davenport theorem is a direct theorem in additive number theory.
Vosper's inverse theorem (Theorem 2.7) describes the structure of the "critical
pairs" A and B such that A + B ¢ Z/pZ and I A + BI -IAI + I B I - 1. In particular,
if IAI f I and 12A I < 21 A I < p, then A is an arithmetic progression in the group
Z/pZ.

A finite n -dimensional arithmetic progression is a set of the form

{qo+xiq, +. :0 <xi <li fori - 1,...,n}.

In 1964, Freiman [53] discovered a deep and beautiful fact (Theorem 8.10) about
the structure of finite sets of integers with small sumsets. Let c > 2. If A is a finite
set of integers such that I A I - k and

12A1 < ck,

then A is a subset of an n-dimensional arithmetic progression Q, where I Q 1 < c'k
and n and c' are constants that depend only on c. Ruzsa has extended this result to
sumsets of the form A + B, where A and B are finite subsets of any torsion-free
abelian group.

Nothing is known, however, about the structure of the finite set A if, for example,
IAI - k and

12A1 < k'+a

for some S > 0, or even if
12A1 <cklogk.

Nor is anything known about the structure of A if, for some h > 3,

IhAI < ckh-'

or even
IhAI < ck2.

These are important unsolved inverse problems.

1.2 Finite arithmetic progressions

Let k and q be positive integers, and let ao be an integer. An arithmetic progression
of length k with difference q and initial term ao is a set of the form

{ao,ao+q,a+2q,....ao+(k-1)q}-ao+q*[0.k-1].

Let A1, ... , Ah be nonempty, finite sets of integers, and let IAi 1 - ki for i
1, ... , k. We shall prove that

IAA +...+Ahl >_ -(h - 1)



8 1. Simple inverse theorems

and that this lower bound is attained if the sets Ai are arithmetic progressions with
the same common difference. This is a direct theorem. The corresponding inverse
theorem, Theorem 1.5, states that the lower bound is attained only for arithmetic
progressions with the same common difference. The proof is easy, but much of
the rest of this book will be devoted to proving an inverse theorem of Freiman
(Theorem 8.10) that generalizes this result.

The following are simple lower and upper bounds for the cardinality of sums of
finite sets of integers.

Theorem 1.3 Let h > 2. Let A be a finite set of integers with I A I - k. Then

hk-(h-1)<IhAI<(k+h-1/-hi+O(kh-')

Proof. Let A - {ao, a, , ... , ak_ 1 }, where ao < a, < . . . < ak_ I . Then

k-1
hA D {hao} U U{(h - i)aj_, +iaj : i E [1, h]}.

j-1

Since

haJ_1 <(h-l)aJ_1+aj < ... <aJ_1+(h-1)aj <haj,

for j - 1, ..., k - 1, it follows that

IhAI ? 1+(k- 1)h-hk-(h - 1).

This gives the lower bound.
The upper bound follows from the combinatorial fact (Exercise 5) that the num-

ber of expressions of the form ai, + + aih with a,, E A for j - 1, 2, ... , h and
0 < iI < ... < ih <k- I is exactly

k + h - 1 1)

h h!

Theorem 1.4 Let h > 2, and let A,, A2, ... , A,, be finite sets of integers. Then

IAII+...+IAr,I - (h - 1) < IA1 +...+Ahl < IAII ...IAh1.

Proof. We shall prove the lower bound by induction on h. Let h - 2, and let
AI -{ao,a,,...,ak_1}and A2-{bo,bi,...,b,_,},where ao <a, < <ak-1
andbo <b1 < <b,_1.Suppose that IA,I-k <1 -IAz1.ThesumsetA,+A2
contains the distinct elements

ao + bo < ao + b1 < a, + b1 < a, + b2 <

< ai + bi < ai + bi+, < ai+I + bi+1 <

< ak_I+bk_, <ak_1+bk <... <ak_I+b,_,,
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and so
IAi+A21 ? (2k- 1)+(i-k)-IA,i+IA21- 1.

Let h > 3, and suppose that the lower bound holds for the sum of any h - I finite
sets of integers. Then

IAA+...+Ah-1+Ahl - I(A,+...+A),-1)+Ahl

> IAI+...+Ah-iI+IAhI-I
IA11+...+IAh-il-(h-2)+IAhI- 1

IA1I+...+IAh_,I+IA1,I - (h - I).

The upper bound is a consequence of the fact that the number of expressions of
the form a, + +ah with a; a A; for i - 1, 2, ..., h is exactly I A, I I A n I. This
completes the proof.

Lemma 1.2 Let A and B be finite sets of integers with I A I - I BI - k. If I A + B I -
I A I + I B I - 1, then A and B are arithmetic progressions with the same common
difference.

Proof. Let A - {ao, a, , ... , ak_ 1 } and B - {bo, b1 , ... , bk _, ), where ao < a, <
< ak_1 and bo < b, < . . . < bt_,. The sumset A + B contains the following

strictly increasing sequence of 2k - I integers:

ao+bo < ao+b, <a,+b, <a,+b2
< a;_,+bi <a;+bi <a;+b,.1 <ai+l+bi+,

Since IA + BI - 2k - 1, it follows that this sequence of integers includes all the
integers in A + B. Since

and

it follows that

or, equivalently,

ai -1 + b, < ai + bi < ai + bi.,

ai-I +bi < ai_1 +bi+, < ai +b,.,.

ai_1 + bi+, - ai + bi

ai - a,_ 1 - bi+, - bi (1.11)

for i - 1, ... , k - 2. Similarly, the inequalities

ai_, +bi_1 < ai-I +bi < ai +b,

and

ai-1+b,_1 <a;+bi-, <ai+b,
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imply that
ai_1 +b, -ai +b,_,

ai -ai-1 =bi -bi-1 (1.12)
or, equivalently,

f o r i - 1, ... , k - 1. Equations (1.11) and (1.12) imply that the positive integer
q - al - ao satisfies

ai - ai_, =bi -bi_, = q

for i - 0, ... , k - 2. This completes the proof.

Lemma 1.3 Let A and B be finite sets of integers with I A I = k > 2 and I B I = t >
2. If I A + BI = k + f - 1, then A and B are arithmetic progressions with the same
common difference.

Proof. Let A - {ao, a,, ..., ak_1) and B - {bo, bi, ..., bt_ 1), where ao <
< ak_ I and bo < ... < b _ . Suppose that k < e, and let 0 < t < f - k. Let

B - Bo`) U B,') U BZ`), where

Bo`) _ {b0, b1, . b,_1 },

BI(`) _ {b,, b,+1, ... , b,+k-1 }.

BZ') {b,+k, b,+k+l,...,b1_1}.

Then
A + B 2 (ao+Bo)) U U (ak_1 +BZ')). (1.13)

The three sumsets on the right side of (1.13) are pairwise disjoint, since

[ao + bo, ao + b, -1 1,

[ao +b,, at-1 +b,+k-11,

[ak-1 +br+k, ak-I +bt-11.

Moreover,

Iao+BO)I - t,

IA + B10I > JAI + IB(,')I - I = 2k - 1,

Jak 1 + B2("I - C - t - k.

It follows that

k+e-1 -
>

IA+BI
Iao+Bo')I+IA+B,(')I+Iak-1 +BZ')I

t+(2k-1)+(e-t-k)
k+e - 1,
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and so
IA+B'I-2k-I

fort = 0, 1, ... , f - k. By Lemma 1.2, there exists a positive integer q such that the
set A is an arithmetic progression with difference q and the sets B"'1 are arithmetic
progressions with difference q for t - 0, 1, ... , f - k. Therefore, B is an arithmetic
progression with difference q.

Theorem 1.5 Let h > 2, and let A 1, A2, ... , Ah be h nonempty finite sets of
integers. Then

IAI+...+Ahl-IAII+...+IAhI-(h-1) (1.14)

if and only if the sets A,__ Ah are arithmetic progressions with the same common
difference.

Proof. Let IA, I - k, for i - 1, ... , h. We can assume without loss of generality
that k1 > 2 for all i. If A, - [0, k1 - 1 ] for i - 1, ... , h, then

and so

JAI +...+AhI =k1 +...+kh -h+l - IAII+...+IAhI - (h - 1).

Let the sets A, be arithmetic progressions with the same common difference q.
Then there exist integers a0.; such that

A,-ao.1+q*[0,k1-1].

It follows that

AI +. ..Ah -(a0.1+...+ao.h)+q*[0,k1+...+kh -h].

This implies (1.14).
We shall prove that equation (1.14) implies that the sets A, are arithmetic pro-

gressions with the same common difference. The proof is by induction on h. The
case h - 2 is Lemma 1.3 with A - AI and B - A2. Now let h > 3, and assume
that the theorem holds in the case of h - 1 sets. For j = I, ... h, consider the
sumset

Then

IB;I?A;I-(h-2).
.I,
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Since

IA,I-(h-1) = IA,+B11
r-i

> IA1I+IB l-I
h

> FIArI-(h-1),
i-I

it follows that

IB11IA,1-(h-2),

and so the h - I sets A,, ... , A1_1, Al+, , ... , Ah are arithmetic progressions with
the same common difference for j =, 1, ... , h. This completes the proof.

Theorem 1.6 Let h > 2. Let A be a finite set of integers with I A I = k. Then
IhAI = hk - (h - 1) if and only if A is a k-term arithmetic progression.

Proof. This follows from Theorem 1.5 by letting Ai = A for i = 1, ... , h.

Theorem 1.7 LetA be afinite set ofintegers with JAI k. Then hAl =hk-(h-1)
if and only if A('= [0, k - I J.

Proof. This follows from Theorem 1.6 and the fact that the set A is an arithmetic
progression if and only if its normal form A(e') is an interval of integers.

Let o(h) denote an arithmetic function such that lim,,..,,, o(h) = 0.

Theorem 1.8 Let A be a finite set of integers with I A I = k. If

I h A I = hk - (h - 1) + o(h)

for infinitely many h, then A is a k-term arithmetic progression.

Proof. Let A(') be the normal form of A. Then A(') = {ao, a...... a,,-,), where

0 = ao < a, < < a;.

and

Also,

Theorem 1.1 implies that

(a,,...,ax._,)= 1.

k - I <a' _l.

IhA(,v)l=ha,_,+I - r

for some integer r = r(A) > 0 and all h > ho. If

ha'_i + I - r = IhAt"'I = IhAI = hk - (h - 1) +o(h)
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for infinitely many h, then

r + o(h)aA_1-k-1+
h

=k - l,

and soA(N)=(0,k-1}.
Theorem 1.6 is a simple example of an inverse theorem in additive number

theory: If A is a finite set of integers and if, for some h > 2, the cardinality of
the sumset hA is as small as possible, then A must be an arithmetic progression.
By Theorem 1.7, the normal form AM must be an interval, and so A is the affine
image of an interval of consecutive integers. The set A(N) can also be described
as the set of lattice points contained inside some convex subset of the real line.
This geometrical point of view is important in connection with Freiman's inverse
theorem.

An important and general inverse problem in additive number theory can be
stated as follows: Let A be a finite set of integers. Suppose that the sumset hA is
"small." What does this imply about the arithmetic or geometric structure of A? In
Section 1.5, we shall prove that if IAI - k and 12A1 < 3k - 4, then A is a "large"
subset of a "small" arithmetic progression.

1.3 An inverse problem for distinct summands

Let A = {ao, aI , ... , ak_I) be a nonempty finite set of integers, where

Al I= k

and

ao < ai < . < ak_1.

For h > 1, let h^A denote the set of all sums of h distinct elements of A. If h > k,
then h^A = 0. We define 0^A - (0).

The direct problem for h^A is to find a lower bound for Ih^A1. The inverse
problem for h^A is determine the structure of the finite sets A of integers for
which I h ^ A I is minimal. In this section, we solve these two problems.

Let A' be a subset of A. We define the subset sum

s(A) = E a.
aEA'

In particular, s(0) - 0. Then

VA = {s(A) : A' C A, IA'1 = h)

and so O^A = {0}. If A' C A and 1A'1 = h, then lA \ A'1 = k - h and

s(A') + s(A \ A) = s(A).
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This identity establishes a natural bijection

defined by

It follows that

forh=0, 1,...,k.

Theorem 1.9 Let A be a set of k integers, and let 1 < h < k. Then

1h^AI>hk-h2+1-h(k-h)+1. (1.16)

This lower bound is best possible.

Proof. Let A - (ao, a1, ..., ak_I) be a finite set of integers, where

ao < aI < < ak_I.

Fori-0,1,...,k-h-landj-0,1,...,h,wedefine

so - ai+l

c:h^A-+(k-h)^A

c(s(A')) - s(A) - s(A').

IhAAI - 1(k - h)^AI (1.15)

(1.17)

Let
h-1

sk-h.0 - E ak-h+l (1.18)
/-0

Each of these numbers is a sum of h distinct elements of A, and so s, , E h^ A for
all i and j. Moreover, for i - 0, 1, ... , k - h - 1, we have

h h-1

si.h - E ai+1 - E ai+1+/ - si+1.o.
1-1 1-0

For j -0, 1,...,h - 1, we have

It follows that

si.j+l -si.j -ai+h-j -ai+h-j-1 > 0.

si.0 < si.I si.2 < ... < Si.h-I < SLh - si+1.0

and so
IhAAI > h(k-h)+I -hk-h2+1.
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This proves (1.16). Let A - [0, k -/1]. Since

h^A-I( /I,hk-(h+111-()+[0,hk_h2].
2 2

it follows that the lower bound in Theorem 1.9 is best possible.
An inverse problem for h^ A is to determine the extremal sets A such that

Ih^AI - hk - h2 + 1 - h(k - h) + 1. (1.19)

If ao and q are integers and q f 0, then

h^(ao+q *A)-hao+q *h^A,

and so
Ih^(ao +q * A)I - Ih^AI. (1.20)

This means that the function Ih^A I is an affine invariant of the set A. Since every
interval A of length k satisfies condition (1.19), it follows from (1.20) that every
k-term arithmetic progression also satisfies (1.19). Let IA I - k and h e [0, k]. The
symmetry (1.15) implies that if A is an arithmetic progression whenever Ih ^ A I
satisfies (1.19), then A is also an arithmetic progression whenever I(k - h)^AI
satisfies (1.19).

Not all extremal sets are arithmetic progressions. Here are some examples:

(i) Let A be any set of k integers. If h - 0 or h - k, then h(k - h) + 1 - 1 and

10-Al - Ih^AI - 1.

(ii) Let A be any set of k integers. If h - 1 or h - k - 1, then h(k - h) + 1 - k
and

11^Al - I(h - 1)^ Al -k.

(iii) Ifh-2andk-4,then h(k-h)+1 -5. Let

A-{ao,al,a2,a3}

be a set of integers such that ao < a1 < a2 < a3. Then

2^ A - (ao + at , ao + a2, ao + a3, a1 + a2, a1 + a3, a2 + a3)

and so 12AAI - 5 or 6. Since

ao + a, < ao + a2 < ao + a3 < a, + a3 < a2 + a3

and

ao+a2 < a, + a2 < a, +a3,

it follows that I2^ A I - 5 if and only if

a,-ao-a3-a2.
Thus, (ao, a,, a2, a2 + a, - ao} is an extremal set for all ao < a, < a2.



16 1. Simple inverse theorems

We shall prove that these three examples are the only examples of extremal sets
that are not arithmetic progessions.

Theorem 1.10 Let k > 5, and let 2 < h < k - 2. If A is a set of k integers such
that

IhAAI - hk - h2 + 1,

then A is an arithmetic progression.

Proof. Let A - (a0, a1, ... , ak_I ), where

ao < al.., < ak_I.

It follows from the proof of Theorem 1.9 that the set h^A consists precisely of
the numbers s,. j defined in (1.17) and (1.18). Let i - 0, 1, ... , k - h - 2 and
j - 2, 3, . .., h. Then

and

1-0

rah-

si.I < si.2 < si,3 < < si.h - si+1,0 < si+1.I

h-1

si. j - E(ai+:) +ai+h

Consider the integers

h-1

ui.j ° ai+i +ai+h+l E Sh(A)
1-0

si.1 < ui.2 < ui.3 < . < ui.h < si+l.1,

si. j - Ui. j

ai+h-j+l +ai+h -ai+h-j +ai+h+l-

Thus, foreach i -0, 1,...,k-h-2, we have

ai+h-j+1 - ai+h-j - ai+h+I - ai+h

f o r j - 2, 3, ... , h or, equivalently,

ai+l - ai

We must show that

- ai+2 - ai+l - - - . - ai+h-2 - ai+h-3

- ai+h-1 - ai+h-2 - ai+h+l - ai+h

ai+h - ai+h-I - ai+1 - ai.

(1.21)
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Suppose that 3<h<k-3.IfI <i<k-h-2, then

ai+h - ai+h-1 ai-1+(h+I) - ai-,+h

ai-1+(h-1) - ai-1+(h-2)

ai+h-2 - ai+h-3
ai+l - ai

If i - 0, then

ah - ah-1 al+(h-l) - al+(h-2)

al+(h-2) - al+(h-3)
ah-1 - ah-2

al - ao.

Therefore,

ai+1 - ai - al - ao
for all i - 1, ... , k - 2, and so A is an arithmetic progression.

Suppose that h - 2 and 12^A1 - 2k - 3. It follows from equation (1.21) that

ai+1 - ai - ai+3 - ai+2

f o r i - 0, 1, ... , k - 4. It suffices to prove that

al -ao-a4-a3.

Since k > 5, the six smallest elements of the set 2^ A are

ao+al <ao+a2 <al+a2 <a1+a3 <a2+a3 <a2+a4.

Since

ao+a3-al+a2
and

a l + a4 - a2 + a3,

it follows that

at +a2 -ao+a3 < ao+a4 < a1 +a4 -a2+a3,

and so
ao+a4-a1+a3.

(1.22)

This proves (1.22).
Finally, if h - k - 2, then

12^AI-1(k-2)^A1-2(k-2)+1 -2k-3

by (1.15), and so A is again an arithmetic progression. This completes the proof.
It would be interesting to prove a more general inverse theorem for distinct

summands: Let A be a set of k integers such that Ih^ A 1 is "small." Is A a "large"
subset of some arithmetic progression?
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1.4 A special case

Let k > 3, and let b be a nonnegative integer. Let a, = i f o r i - 0, 1, ... , k - 2 and

ak_I = k - 1 + b.

We shall consider the finite set

A-{ao,a,,...,ak_2,ak_I }-[0,k-2]U{k- 1+b}.

For fixed h > 2, we shall examine how the cardinality of the sumset hA increases
as the largest element ak _ i increases. We shall find that Ih A I is a strictly increasing,
piecewise-linear function of b - ak _ t - (k - 1) for 0 < b < (h - 1)(k - 2) and
that IhAI is constant for b > (h - 1)(k - 2). For h - 2 and h - 3, the graphs of
IhAI as a function of b are the following:

13AI

6k - 8

5k-6-

12A1 .
h=2

3k - 3

2k -

4k-4-

3k -

h-3

0 k-2 0 k-2 2(k-2)
b - ak_i -(k - I) b - ak_i -(k - I)

Theorem 1.11 Let h > 2 and k > 3. For b > 0, let

A=[0,k-2]U{k-l+b}
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and

b-q(k-2)+r,
where q>Oand0<r < k -3. If b < (h - 1)(k -2), then

IhAI
-hk-(h-1)+q(2h-g21)(k-2)+(h-q-1)r.

If b > (h - 1)(k - 2), then

lhAl-hk-(h-1)+h(h-1)(k-2)
2

Proof. If b - O, then q - r - O and A - [0, k-1 ]. It follows that h A - [0, hk-h],
andlhAl-hk-h+l-hk-(h-1).

Let b > 1. The sumset h A is a union of h + 1 not necessarily disjoint intervals:

h

hA - U ([0, (h - e)(k - 2)] + {t(k - 1 + b)})
t-0

h

U[t(k - 1 + b), t(k - 1 + b) + (h - t)(k - 2)]
e-0

h

U[t(k - 1 + b), h(k - 2) + t(b + 1)]
t-0
h

Ult.
t-0

where

1e - [t(k - l + b), h(k - 2) + e(b + 1)]

- [t(k - 1 + b), e(k - 1 + b) + (h - t)(k - 2)]

and

Iltl-(h-t)(k-2)+1.
Notice that the intervals It "move to the right" in the sense that, as a increases
from 0 to h, the sequence of right-hand endpoints of the intervals It is strictly
increasing, and the sequence of left-hand endpoints of the intervals It is strictly
increasing.

For t - I__ h, the set I,-, U !e will be the interval

[(t - 1)(k - I + b), t(k - 1 + b) + (h - t)(k - 2)]

if and only if

e(k - 1 + b) < (t - 1)(k - I + b) + (h - t + 1)(k - 2) + 1,
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which is equivalent to
b < (h - e)(k - 2).

If 1 < b < (h - 1)(k - 2), then there exists a unique t E [1, h - 1] such that

(h - t - 1)(k - 2) < b < (h - t)(k - 2).

It follows that It -I U It is an interval f o r e - 1, ... , t, and so

J-UIt-[0,h(k-2)+t(b+1)].
t-o

Ift+l <1:5h,thenh-t<h-t- land
(h - e)(k - 2) < (h - t - 1)(k - 2) < b.

It follows that the intervals J,1,+, , It+2, ..., Ih are pairwise disjoint. Therefore,

IhAI - U It
h

- IJI + U Ilrl
t-t+1

h

h(k-2)+t(b+1)+1+E((h-e)(k-2)+1)
t-r+1

h-t-1
h(k-2)+t(b+l)+(h-t+l)+(k-2) e

t-0

h(k - 2) + tb + h + 1 +
(h - t)(h - t - 1)(k - 2)

2

hk-(h-l)+rb+(h-t)(h-t-l)(k-2)

2

if r - 0, then b - q(k - 2), so q -h -t and

IhAI - hk - (h - 1) + (h - q)q(k - 2) +
q(q - 1)(k - 2)

2
hk-(h-1)+q(2h-q-1)(k-2)

2

If r > 1, then

q(k-2) <b-q(k-2)+r <(q+1)(k-2),
soq-h-t- land

IhAI - hk - (h - 1)+(h-q- 1)(q(k-2)+r)+q(q+1)(k-2)

2
q(2h- hk - (h - 1) + (h - q - 1)r + - q - 1)(k - 2)

2
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If b > (h - 1)(k - 2), then

(h-1)(k-2) <(h - 1)(k-2) <b

for t - 1, 2, ..., h, and so the intervals 10, 11, ... , Ih are pairwise disjoint. There-
fore,

IhAl -
h I h

r-0

h(h + 1)(k - 2)

- E((h - £)(k - 2) + 1)

U/cUllcl
t-0 r-0

h

+h+12

- hk - (h - 1)+ h(h - 1)(k - 2)
2

This completes the proof.

Theorem 1.12 Let k > 3, and let

A-[0,k-2]U(k-I+b).
1f0<b<k-3,then

Ifb>k-2, then

I2AI-2k-I+b<3k-4.

12AI-3k-3.

1.5 Small sumsets: The case 112AI < 3k - 4

We proved that the set A must be an arithmetic progression if A is a finite set
of integers whose twofold sumset is as small as possible. That is, if.IAI - k and
12A I - 2k - 1 , then AN - [0, k - 1]. In this section, we shall show that if J A I - k
and 12AI < 3k - 4, then A is a subset of a short arithmetic progression. More
precisely, we shall prove that if I A I - k and I2A I - 2k - 1 + b < 3k - 4, then
A(N) C [0, k - 1 + b]. Theorem 1.12 shows that these lower bounds are best
possible.

Theorem 1.13 Let k > 3. Let A - [a0, a1 , ... , ak _ 1 } be a set of integers such that

0-ao <a1 <... <ak_1 <2k-3.

Let ak _ 1 -k - I + r, where r E [O, k - 2]. Then

12AI > 2k - l +r - k+ak_1.
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Proof. Consider the set

S - A U (ak_I + A) c 2A c [0, 2aA_,1.

Then S consists of the 2k - I integers

0 < a, < a2 < < ak_2 < ak_,

< ak_1+a, <ak_1+a2 < <2ak_,.

Let W -[I, ak_i I\ A. Then

IWI - ak_i - (k- 1)-r.

For w E W, let
S(w) - (w, ak_1 + w) c [1, 2ak_11.

The r + 1 sets S and (S(w))WEw are pairwise disjoint, and

[0,2ak_I]-SU U S(w).

Therefore,

It suffices to prove that

WEW

2A - S U U (S(w) n 2A).
WE W

IS(w) n 2AI > I

for all w E W.
For each w E W - [ 1, ak- I ] \ A, there exists a unique t E [ 1, k - I ] such that

a,_, < w < a,. Define the sets 1, Y, and Z by

I - [w+1,w+ak_i-1]
Y - InS-{a,,a,*i,...,ak_I,ak_]+ai,..,ak_I+a,_,}
Z - {w+ak_i-ajlj-1,2,...,k-2}.

Then YC land Zc l.Also,IYI - k - IandIZI-k-2. Since

III-ak_I-1 <2k-4<2k-3-(k-1)+(k-2)-IYI+IZI,
it follows that Y n z f O. Therefore, there exist i E [1, k - 1] and j E [1, k - 2]
such that either

a; - w+ak_I - aj
or

In the first case, we have

ak_I+a; - w+ak_I - as.

w+ak_I -ai +aj E 2A,

and in the second case we have

w -a;+aj E 2A.

In both cases, 1 S(w) n 2AI > 1. This completes the proof.
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Theorem 1.14 Let k > 3. Let A - {ao, ai, ... , ak_, } be a finite set of integers in
normal form, that is,

and

If ak_ i > 2k - 3, then

0-ao<a,<...<ak_1

d(A)-(at,...,ak-1)- 1.

12AI>3k-3.

Proof. If ak_, - 2k - 3, then 12A I > 3k - 3 by Theorem 1.13. Therefore, we
can assume that

ak_, > 2k - 2.

The proof will be by induction on k - Al.ILet
k - 3. Then A - {0, at , a2), and a2 > 4. We must show that 12A I > 6. Since

2A - 10, a,, a2, 2ai, a, + a2, 2a2)

and

0 < a, < a2 < a, +a2 < 2a2,

it follows that 12AI - 5 or 6. Since

a, < 2a, <a,+ a2,

we see that 12A 1 - 5 if and only if a2 - 2a,, which implies that

I -(a,,a2)-(a,,2a,)-a,

and so a2 - 2a, - 2. This is impossible since a2 > 4. Therefore, 12A I - 6.
Let k > 4, and assume that the theorem holds for sets of cardinality k - 1. Let

A'-A\{ak_,}-(0,a,,....ak_2)

and

d'-d(A')-(a,,a2,...,ak_2).
If d' - d(A') > 2, then d' divides all elements of the sumset 2A'. Since d(A) - 1,
it follows that (ak_,, d') - I and so (ak_, + a;, d') - I for i - 0, I-_ , k - 2.
Therefore, 2A' fl (A' + ak _,) - 0. Also,

By Theorem 1.3,

Since

2ak_I > max (max(2A'), max(A' +ak_,)) .

l2A'l>2(k-1)-1-2k-3.

2A' U(A'+ak_,)U {2ak_1} C 2A,
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it follows that

12A1 > 12A'I+IA'+ak_II+I > (2k-3)+(k- 1)+I - 3k - 3.

Therefore, we can assume that d(A') - 1, and so A' is in normal form. There are
several cases to consider.

Case 1 . Suppose that a; < 2i f o r all i - 1 , 2, ... , k - 2. Then 0 < a, < 2 and
soar 1. Let

C - [0,2k-4]\A'.
Then

ICI-(2k-3)-(k- 1)-k-2.
If c e C, then c > a, - 1 and there exists a unique t E [1, k - 2] such that

a, < c < ar+1.

Consider the sets
D,-{ai:1E[I,t]}

and

D2-(c-ai: jC
Then 1Di1-ID21-land

Ift <k-2, then

D,UD2c[1,c-1].

c<a,+, <2(t+l)-2t+2
and so c < 2t or, equivalently, c - 1 < 2t. If t - k - 2, then c < 2k - 4 implies
that

c - I <2k-5<2k-4-2t.
In both cases, it follows that

D,nD2'0,
and so there exist i, j E [1, t] c [1, k - 2] such that

ai - c -a,.

Therefore, c - a; + ai E 2A' and

A'UC-[0,2k-4]c2A'c2A.

Since
2k-4 <2k-2 <ak_, <ak_l+a;

fori -0, 1,...,k- 1, it follows that

A'UCU(ak_,+A)-[0,2k-41U(ak_,+A)C2A
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and

12A1>(2k-3)+k-3k-3.
Case 2. Supposethatak_2 < 2(k-2),buta;_I > 2(i-1)forsomei E [2,k-2].

Chooses E [2, k - 2] such that aj < 2j for j - s, s + 1, ... , k - 2, and a,_, >
2(s - 1). Then

2s-2 <a.,_, <a, <2s,

and so a, - 2s - 1 and a, -I - 2s - 2. Define the sets AI and A2 by

AI - (ao,a,,...,as-1, as}

and

Since a, - a,_, - 1, it follows that d(A 1) - d(A2) - 1. Let

k1-IAII-s+1.

Then

and

3<k,<k-I

ak,_I-a,-2s-1-2k1-3-(k1-1)+(kl-2).
It follows from Theorem 1.13 that

12A i 1 > (2k1 - 1) + (k1 - 2) - 3k 1 - 3 - 3s.

Define the set AZ by

A2 - A2 - {a.:-1} - 10, 1 , a,+I - a.,-1, ... , ak_, - a,_1 }.

This set is also in normal form. Let

Then

k2-IA2*1-IA21-k-s+I.

3<k2<k-1.
The largest element of AZ is ak_I - a,_,. Since a,_, - 2s - 1, we have the
inequality

ak_I - a,_, > (2k - 2) - (2s - 2) - 2(k - s) - 2k2 - 2.

It follows from the induction hypothesis that

12A21 -12Az1 > 3k2-3-3k- 3s.

Since

2A1 U 2A2 C 2A
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and

2A1 l2A2 - {2as-1, as-1 +as, 2as}

(see Exercise 7), it follows that

12A1 > 12A1I+12A21 - 3 > 3s + (3k -3s)-3-3k - 3.

This proves that the theorem holds if ak_2 < 2k - 4.
Case 3. We can now assume that

ak_2>2k-4-2(k-2).

It follows from the induction hypothesis that 12A'1 > 3(k - 1) - 3 - 3k - 6. To
complete the proof the theorem, it suffices to show that 12A \ 2A'1 > 3. The two
largest elements of 2A' are ak_2 + ak_3 and 2ak_2. Since

{ak_1 +ak-3, ak_1 +ak_2, 2ak-1} C 2A,

it follows that 12A \ 2A'1 > 3 unless ak_1 + ak_3 - 2ak_2. Therefore, we can
assume that the numbers ak_3, ak_2, and ak_1 are in arithmetic progression.

If ak_1 - ak_2 - m > 2, then

ak-1 = ak-i (mod m)

for i - 1, 2, 3. Suppose that

ak-1 = ak-i (mod m)

for all i - 1, 2, ... , k. It follows that ak_1 =- ao - 0 (mod m), and so m divides
each ai, which contradicts the condition that d(A) - 1. Therefore, there exists an
integer t such that 4 < t < k and

ak_1 = ak_i (mod m)

fori-1,...,t-l,but
ak_I $ ak_, (mod m).

Moreover, ak _, + ak _, E 2A. If ak + a, E 2A', then there exist integers r and s
such that I < r < s < t and

ak_, +ak_s - ak_1 +ak_, < ak_I +ak_3.

This implies that

ak-1 -ak-, -(ak-) -ak-r)+(ak-1 -ak-s)=0 (mod m),

which is false. Therefore,

{ak-1 +ak-1, ak-1 +ak-2, 2ak_1 } 9 2A \ 2A',
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and 12A \ 2A'I > 3.
It follows that we can assume that

ak_I - ak_2 - ak_2 - ak_3 - I.

Consider the set

A' - {ak_1-ai:i E[0,k-l]}
- (0, 1,2,ak_1 -ak_4,...,ak_I -a2,ak_I -a1,ak_I}.

Then 2A' - 12ak_1 - b : b E 2A}, and so 12A'1 - 12A1. It follows from the
preceding analysis that if 12A'I < 3k - 3, then a1 - 1 and a2 - 2. Therefore, we
can assume that ao - 0, a1 - 1, a2 - 2, ak_3 - ak_I - 2, and ak_2 - ak_1 - 1.
Since ak_ I > 2k - 2 - 2(k - 1), it follows that ai > 2i for i - k - 1, k -2, k - 3.
Let P be the least positive integer such that

Then

at > U.

3<e<k-3

and

ai < 2i fori - 1,2,...,1 - 1.

Define the sets A 1 and A2 by

Al -{ao,a,,...,at-l, at}

and

A2-{at-I,at,...,ak_2,ak_1}.
Then d(A1) - 1. Moreover,

4<k1-IA1I-t+1 <k-2

and

ak,_I - at > 21 - 2k1 - 2.

The induction hypothesis implies that

12A11>3k1 -3- 3t.

Define the set AZ by

AZ - A2 - (at_I) - {0, at - a1_1,...,ak_2 - ae-1,ak_I - at- 1).

Then d(AZ) - 1. Since e E [3, k - 3], we have

4<k2-IA21-IA2*I-k-e+l <k-2
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and

ak_I - at_, > (2k - 2) - (2e - 2) - 2(k - f) - 2k2 - 2.

Again, the induction hypothesis implies that

12A21-12A21 > 3k2-3-3k- 31.

Since

and

2A1 U 2A2 C 2A

2A1 f1 2A2 - {2at_i, at_, +at, tat}

(see Exercise 7), it follows that

12A1> 12A1 I+12A21-3> 31 + (3k - 31) - 3 - 3k - 3.

This completes the proof of the theorem.

Theorem 1.15 Let k > 3. Let A - (ao, a, .... , ak _ I ) be a finite set of integers in
normal form. Then

12A I > min(3k - 3, k + ak _ 0-

Proof. If ak _ i < 2k - 3, then 12A I > k+ak _ i by Theorem 1.13. If ak _ 1 > 2k-3,
then 12A I > 3k - 3 by Theorem 1.14.

Theorem 1.16 (Freiman) Let A be a set o f integers such that J A I - k > 3. If

12A1-2k-I+b<3k-4,

then A is a subset of an arithmetic progression of length k + b < 2k - 3.

Proof. Let A(N) - (ao, a1 , ... , ak_i } be the normal form of A. Since

12A(N'I - 12AI < 3k - 4,

it follows from Theorem 1.14 that ak _ i < 2k - 4. Theorem 1.13 implies that

k+ak_) < 12A(N) I-2k- 1+b.

ans so ak_ I < k - 1 + b. It follows that

A(N) C [0, k - I + b],

and A is a subset of an arithmetic progression with k + b terms.
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1.6 Application: The number of sums and products

Let A be a nonempty, finite set of positive integers. Let

2A-(a+a'I a, a' E A)

denote the twofold sumset of A, and let

A2-(aa'Ia,a'EA)

denote the twofold product set of A. We let

E2(A) - 2A U A2

denote the set of all integers that can be written as the sum or product of two
elements of A. If I A I - k, then

12A1 < 2

and
2 k + I

IA I_<(2
'

and so the number of sums and products of two elements of A is

1E2(A)I <k2+k.

Erdos and Szemer6di [38, 44] made the beautiful conjecture that a finite set of
positive integers cannot have simultaneously few sums and few products. More
precisely, they conjectured that for every e > 0 there exists an integer ko(e) such
that, if A is a finite set of positive integers and

JAI - k > ko(c),

then

IE2(A)I »F k2-`.

We shall use Theorem 1.16 to prove this conjecture in the special case that the
number of sums of two elements of the set A is small in the sense that 12A I < 3k - 4.
This is the only case in which the conjecture has been proven.

For any set A of positive integers, let PA(n) denote the number of representations
of n in the form n - aa', where a. a' E A, and let dA(n) denote the number of
positive divisors of n that belong to the set A. Clearly, for every integer n,

PA(n) < dA(n)

If Q is a set of positive integers that contains A, then

PA(n) < PQ(n)
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and

dA(n) < dQ(n).

Let d(n) denote the usual divisor function, that is, the number of positive divisors
of n. We shall use the estimate

d(n) << ne14

for every s > 0.

Lemma 1.4 Let Q be a set of positive integers that is an arithmetic progression
of length 1. For any e > 0,

PQ(n) << It. (1.23)

Proof. Let Q - {r + xq : x - 0, 1, ... ,1 - I). and let e > 0. We can assume
without loss of generality that (r, q) - 1. If the integer n has an essentially unique
representation as the product of two elements of Q. then

pq(n) < 2 << l`.

By Exercise 18, we have {x, y} - (u, v} if and only if x+y - u +v and xy - uv.
If n has at least two essentially distinct representations, then there exist integers
0<x,y,u,v<Isuch that

(x, y} f (u, v) (1.24)

and

Then

(r + xq)(r + yq) - (r + uq)(r + vq).

(x+y)r+xyq -(u+v)r+uvq, 1.25)

and so x + y - u + v if and only if xy - u v. It follows from (1.24) that

x+yfu+V

and

xy f uv.

Since (r, q) - 1, it follows from (1.25) that

x+y=-u+v (modq)

and

Therefore,

and

xy=-uv (modr).

q<I(x+y)-(u+v)l <21

r < Ixy - uvl < 1Z.
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Consequently,
1 <r+xq,r+yq <12+212-312

and so
1 <n <91°.

It follows that
pQ(n) < dQ(n) < d(n) << n`/4 << 1`.

Theorem 1.17 Let A be a set of k positive integers such that

12A1 <3k-4,

and let e > 0. Then
IA21 >> k2-e.

Proof. By Theorem 1.16, the set A is a subset of an arithmetic progression Q
of length 1 < 2k. Let pQ(n) denote the number of representations of n in the form
n - qq', where q, q' E Q. By Lemma 1.4, we have

PA(n) < PQ(n) <4 if ,

and so

Therefore,

This completes the proof.

k2 - E Pa(n)
nEA2

< E pQ(n)
nEA2

<<, JA 211E

<< IA21k£

IA21 >> k2-F.

1.7 Application: Sumsets and powers of 2

Let n > 1, and let B' be the set of all multiples of 3 contained in the interval [ 1, n).
Then I B I < n/3, and every sum of elements of B' is divisible by 3. Certainly, no
such sum is a power of 2. This set B' is the extremal case: We shall prove that if
B is any subset of [1, n] such that I BI > n13, then some power of 2 can be written
as the sum of at most four (not necessarily distinct) elements of B.

Lemma 1.5 Let m > 1, and let C be a subset of [0, m] such that
m

ICI 2+1.

Then some power of 2 is either an element of C or the sum of two distinct elements
of C.
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Proof. The proof is by induction on m. It is easy to check that the result is true
for m - 1, 2, 3, and 4. Let m > 4, and assume that the result holds for all positive
integers m' < m. Choose s > 2 such that

2'<m<2'+I

and let
r-m-2'E[O,2'-1].

Let
C'-Cfl[0,2'-r-1]

and

C"-Cfl[2'-r,2'+r].
Then C is the disjoint union of C' and C", and

ICI - IC'I + IC"I.

Suppose that the lemma is false for the set C. Then ICI > m/2+ 1, but no power
of 2 either belongs to C or is the sum of two distinct elements of C. It follows that
2' ¢ C" and, f o r each i - 1, ... , r, the set C" contains at most one of the two
integers 2' - i, 2' + i. Therefore,

IC"I<r.

If m - 2` - 1, then r - 2' - I and C' c (0); thus

IC'I<1.

It follows that

2+1<ICI<1+r-2'-m21

which is impossible.
Similarly, if 2' <m <2'+1 -1,then 0<r <2'-Iand m'-2'-r-1

Since the set C contains C', it follows that no power of 2 either belongs to C' or
is the sum of two distinct elements of C'. By the induction hypothesis, we have

IC'I< 2+1-2-2-1+1r

m 2''-r-1 m+l
2

+ 1 <
ICI - ICI+ICI < 2 +1+r--2

which is also impossible.

Theorem 1.18 Let n > 1, and let B be a set of integers contained in the interval
[ 1, n J. If I B I > n /3, then there is a power of 2 that can be written as the sum of at
most four elements of B.
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Proof. Since B C [1, n], we have I B I > n/3 > max(B)/3. Thus, we can
assume that max(B) - n. Let d be the greatest common divisor of the elements of
B. The number of multiples of d in the interval [1, n] is [n/d], so

n n

3<IBI<d
Therefore, d = I or2.

If d = 2, we can consider the set

B'a{b/2:EB}c[1,2].

The greatest common divisor of the elements of B' is 1. The set B' also satisfies
the hypotheses of the theorem. If the theorem holds in the case d = 1, then there
exists h < 4 and there exist integers b,, ... , bh E B' such that b, + + bh = 2S.
It follows that 2b,, ..., 2b' E B and 2b, + + 2bh = 2'+'. Therefore, we can
assume that d = 1.

Let A = {0} U B. Then d(A) - 1, max(A) = max(B) = n, and

nk=IAI=CBI+l> 3+1.

It follows from Theorem 1.15 that

12A I > min(3k - 3, k + n) > n + 1.

Since 2A C [0. 2n], we can apply Lemma 1.5 with C = 2A and m = 2n. Since
2C = 4A, it follows that some power of 2 can be written as the sum of at most four
elements of A. This completes the proof.

In Exercise 19, we construct examples of finite sets B C [ 1, n ] such that I B I >
n/3, but no power of 2 can be written as the sum of three elements of B. This
shows that Theorem 1.18 is best possible.

1.8 Notes

The principal result in this chapter is Theorem 1.16, which was proved by Frei-
man [49, 54, 55]. Freiman [52] has extended this to sumsets of the form A + B.
Steinig [1211 has an expanded version of Freiman's proof. In Chapter 4 1 give
a different proof, discovered by Lev and Smeliansky [81], that uses a theorem
of Kneser on sumsets in abelian groups. Freiman's monograph Foundations of a
Structural Theory of Set Addition [54] is devoted to Freiman's work on inverse
theorems.

Theorem 1.1 is due to Nathanson [91 J. For some related results, see Lev [80].
The simple inverse theorem for hA (Theorem 1.5) is probably ancient, but I have
not seen it in print. The inverse theorems for the sets h ^ A are due to Nathanson (951.
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Very little is known about Erdos's conjecture that IE2(A)I »E k2-`. Erd6s and
Szemeredi [44] have shown that there exists a real number S > 0 such that

IE2(A)I >> k'+a

and Nathanson [97] proved that

IE2(A)I > ck3213i

where c - 0.00028.... Ford [47] has improved the exponent to 16/15. The proof
of Lemma 1.4 is due to Erd6s and Pomerance (personal communication). Us-
ing a theorem of Vinogradov and Linnik [125], Nathanson and Tenenbaum [99]
strengthened this result: They proved that if Q is an arithmetic progression of
length 1, then dQ(m) << 12(logl)3 for all m E Q2. This implies that if IAI = k and
12A1 < 3k - 4, then IA21 >> k2/(logk)3

Erd6s and Freud had conjectured that if A C [ 1, n] and I A I > n/3, then some
power of 2 can be written as the sum of distinct elements of A. This was proved by
Erdos and Freiman [39] (with an unbounded nun]ber of summands), and Nathanson
and Sarkozy [98] (with a bounded number of summands). Theorem 1.18, due to
Lev [79], improves results of Nathanson and Sark6zy [98] and of Freiman [58].

Closely related to the "structural" inverse problems is another class of inverse
problems in additive number theory that we can call recognition problems or de-
composition problems. We write A B if A and B are sets of integers that coincide
from some point on. If we are given a finite or infinite set B of integers, can we
determine whether B is a sumset or even asymptotically a sumset? This means
the following: Let h > 2. Does there exist a set A such that hA B? More
generally, do there exist sets A,, ... , Ah such that IAi I > 2 for i = 1, 2, ... , h
and A, + + Ah @ B? Do there exist sets At , ... , Ah such that IA; I > 2 for
i - 1, 2, ... , h and A, + + Ah ^- B? Ostmann [ 100] introduced this class of
inverse problems.

Sets of integers that decompose into sumsets are rare. Let us associate to each
set A of nonnegative integers the real number

E2-a-' E [0, 1].
aeA

Wirsing [128] proved that the Lebesgue measure of the set of real numbers that
correspond to sets A such that A B + C for some B and C is zero.

An important decomposition problem is the following: Do there exist infinite
sets A and B of nonnegative integers such that the sumset A + B and the set P of
odd prime numbers eventually coincide, that is,

P^-A+B. (1.26)

The answer is almost surely no, but there is no proof. Hornfeck [69, 70] proved
that (1.26) is impossible if the set A is finite and I A I > 2.

There are other kinds of recognition problems: Does the set B contain a sumset?
Given sets A and B, does there exist a set C such that B + C C A? The twin prime
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conjecture is a special case of this inverse problem: Let P be the set of odd prime
numbers. Does there exist an infinite set A such that

A + {0, 2} c P?

Practically nothing is known about these questions.
We do not consider "partition problems" in this book. A partition of a posi-

tive integer N is a representation of N as the sum of an unrestricted number of
elements taken from a fixed set of positive integers. A good reference for the clas-
sical approach to partitions is Andrews's monograph The Theory of Partitions [4].
For interesting examples of inverse theorems for partitions, see the papers of Cas-
sels [15], Erdos [35], Erdos, Gordon, Rubel, and Straus [41], and Folkman [46].

An early version of this chapter appeared in Nathanson [92].
In this book we investigate only h-fold sumsets of finite sets. A subsequent

volume (Nathanson [90]) will examine sums of infinite sets of integers in additive
number theory. For example, it includes a deep and beautiful inverse theorem of
Kneser [76] concerning the asymptotic density of sumsets, and an important recent
improvement of this due to Bilu [10).

For a comprehensive treatment of many of the most important results on War-
ing's problem and the Goldbach conjecture, see Nathanson, Additive Number The-
ory: The Classical Bases [96]. There is no other recent book on additive number
theory.

1.9 Exercises

1. Compute the sumset 2A for each of the following sets of integers:

(a) A = 10, 1, 3, 4}.

(b) A-{0, 1,3,7, 15,31}.

(c) A-{0, 1,4,9, 16,25}.

(d) A=( 3 ,5 ,7 ,1 1 ,1 3 ,1 7 ,1 9 ,2 3 ,2 9 ) .

(e) A={2x,+7x210<x1 <4,0<x2 <3}.

2. Let A - 10, 2, 3, 61. Compute the sumsets hA for all h > 1.

3. In Theorem 1.1, show that c = 0 if and only if a, = 1, and d - 0 if and only
ifak_I -ak_2 = 1.

4. Let A = {ao, a,, ... , ak_, } be a finite set of integers such that

0 - ao < a, < at_,

and

(a1....,ak-1)= 1.
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Define the integer ho by (1.3). Prove that

IhAI - I(h - 1)AI -ak-I

for all h > ho.

5. Let A be a set of integers with I A I - k. Prove that the number of expressions
of the form a; E A for i - 1, 2, ..., h and a, <... <ah
is exactly (k+h-I\

h I

6. Let A - {ao,a,,...,ak_1} be a set of integers such that a; > ha;-1 for

k - 1. Prove that Ih A I - (k+1-1 ).
l n

7. Let ao, I ,..- . , ak_1 be a strictly increasing sequence of integers, and let
1 <s <k-2.Let

Al - {ao,a,,...,as_I,a.)

and

Prove that
2A 1

8. Letk>3and

Show that

for0<r<k-4,and

forr>k-3.

A-[0,k-2]U(k-1+r).

12^AI -2k-3+r

12^AI-3k-6

9. Let k > 4 and A - (ao. a 1, ... , ak _ 1), where

0 - ao < a,... < ak_1 < 2k - 5.

Definer by a4, -I - k - 1 + r. Prove that

I2AAI-2k-3+r.

10. Let k > 4, and let A - {ao, al --, ak_ 1 }, where

0-ao <a, <ak_2 <ak_1.

Let A' - A \ (ak _ I }. Suppose that d' - d(A') > 1 and (ak_ I , d') - 1. Prove
that

A2 - {a,-I,as,...,ak_I}.

f12A2 - {gas-1, a:-I +as, 2as}.

12AAI>3k-6.
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11. The subset sum of a finite set A' of integers is defined by

s(A) _ >2 a.
aEA'

For any finite set A of positive integers, define

S(A) = {s(A) I A' C A, A' f 0}.

Prove that if A is a set of k positive integers, then

IS(A)I -
k+1 1

2 /J

12. Let A be a set of k positive integers such that

IS(A)I -

Prove that there exists a positive integer m such that

A-m*[1,k]-{m,2m,3m,.. ,km}.

13. For k > 3, let fk(n) denote the number of sets A c [0, n - 1] such that
Al I- k and 12A1 < (k21). Prove that

lim fk(n) - 0.
11-00

(1k1)

14. Let 0 be a positive real number, and let fo(n) denote the number of sets
A C [0, n - 1 ] such that I A I = [no ] and 12A 1 < (" i+i) Prove that there
exists 0 > 0 such that

fe(n)lim 11 -0.

Hint: Use Stirling's formula.

15. Determine the structure of all sets A such that I A I - k and 12AI - 2k.

16. Determine the structure of all sets A such that I A I - k and 12AI - 2k + 1.

17. Let h > 2 and k > 3. Let A - {ao, a1..... ak _ I } be a set of integers such
that

0-ao <a, <... <ak_I <2k-3.
Definer by ak_ i = k - I + r. Prove that

IhAI > hk - (h - 1)+(h - 1)r.
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18. Prove that {x, y} - {u, v} if and only if x + y - u + v and xy - uv.

19. The following construction, due to Alon (see [79]), shows that Theorem 1.18
is best possible. For r > 2, define the integer e > 6 by

4'-31:-2.

Letn-3e+1,andlet

Then

B-{3, 6,9,...,3Z,3e+1} C [1,n].

IBI-P+I>n/3.
Show that if t < 2r, then 2' is not the sum of any number of elements of B.
Show that if t > 2r + 2, then 2' is not the sum of three elements of B. Use
the congruence

22t - 2 (mod 3)

to show that 21*1 is not the sum of three elements of B.

20. A 2-dimensional arithmetic progression of integers is a set Q of the form

Q - Q(qo;gi,g2;11,12)

- {qo+xiq +x282:0<xi <11,0<x2<12},

where q,, g2,11,12 are positive integers and qo E Z. Prove that

IQI <1112

and

12Q1 < (211 - 1)(212 - 0-

21. Construct a 2-dimensional arithmetic progression Q - Q(qo; ql, g2;11,12)
such that

IQI -1,12

and

I2QI-(21, -1)(212-1).

22. Construct a 2-dimensional arithmetic progression Q - Q(qo; q>, q2;1,,12)
such that

IQI =1,12

and

I2QI < (211 - 1)(212 - 0-

23. Let k, , k2 be positive integers, and let k - k, +k2. For the nonnegative integer
r, consider the set

A, - [0, k, - 1 ] U [r + k, , r + k, + k2 - 1 ].

Prove that 12A I - 3k - 3 if and only if r > max(k, - 1, k2 - 1).
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24. Let A be a finite subset of the abelian group G, and let B be a finite subset of
the abelian group H. The map 0 : A -> B is a Freiman isomorphism if 0 is a
one-to-one correspondence between A and B and if the map (D : 2A -). 2B
defined by

(D(ai +a2) -0(al)+o(a2)

is well-defined and a one-to-one correspondence. Let k1, k2 be positive in-
tegers. For r > 0, let A, be the set of integers defined in the preceding
exercise. Let B be the subset of the group Z2 defined by

B-((1,0):0<i <kq}U((j,1):0< j <k2).

Prove that there exists a Freiman isomorphism between Ar and B if and
only if r > max(ki - 1, k2 - 0-

25. Fix r > 5, and let

A-(0, 1,2,r,r+1,2r) C Z.

Show that 12A1-31AI-3- 15. Let

B - ((0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 0)} c Z2.

Show that 12B I - 31 B I - 3 - 15. Construct a Freiman isomorphism between
AandB.

26. Let A - ((i, j) E Z2 1 0 < i < 11, 0 < j < 12}. Then A is the set of
lattice points inside the 2-dimensional parallelepiped ((x, y) E R2 10 <
x < 11, 0 < y < 12). Contruct a 2-dimensional arithmetic progression Q in
Z such that A and Q are Freiman isomorphic.
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Sums of congruence classes

2.1 Addition in groups

Let G be an abelian group, and let A and B be finite subsets of G. The sumset
A + B is the set of all elements of G that can be written in the form a + b, where
a e A and b e B. Forge G, let rA,a(g) denote the number of representations of
gas the sum of an element of A and an element of B, that is, rA.B(g) is the number
of ordered pairs (a, b) E A x B such that g - a + b.

The direct problem for addition in groups is to find a lower bound for IA + B I
in terms of IAI and IBI. This is easy for finite groups if Al I+ IBI is large.

Lemma 2.1 Let G be a finite abelian group, and let A and B be subsets of G such
that

IAI+IBI? IGI+t.
Then

rA.8(g) > t

for all g E G.

Proof. For9 E G,letg - B= {g - b: b E B). Since

IGI iA U (g - B)I

IAI+Ig-BI-IAn(g-B)I
IAI+IBI - IAn(g - B)I.

it follows that
IA n (b - G)I > IAI + IBI - IGI > t,
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and so there exist t distinct elements a,, .-a, a, E A and t distinct elements
b, , ... , b, E B such that

ai - g - bi,

that is,

g - a,+bi

for i - 1, ... , t. Therefore, rA,8(g) > t.

Lemma 2.2 Let G be a finite abelian group, and let A and B be subsets of G such
that J A I +IBI > I G I. Then A+ B- G.

Proof. Applying Lemma 2.1 with t - 1, we see that rA.B(g) > 1 for all g E G,
and so A + B - G. This completes the proof.

It follows from Lemma 2.2 that to study the direct problem for addition in
groups, it is enough to examine only subsets A, B c G such that JAI +IBI IG I
In this chapter, we shall consider addition in the group Z/mZ of congruence classes
modulo m.

2.2 The e-transform

A fundamental tool to prove many results in additive number theory is the e-
transform of an ordered pair (A, B) of nonempty subsets of an abelian group G.
Let e E G. The e-transform of (A, B) is the pair (A(e), B(e)) of subsets of G
defined by

A(e) - A U (B + e),
B(e) - B fl (A - e).

The e-transform has the following simple properties.

Lemma 23 Let A and B be nonempty subsets of the abelian group G, and let e
be any element of G. Let (A(e), B(e)) be the e-transform of the pair (A, B). Then

A(e) + B(e) c A + B (2.1)

and

A(e) \ A - e + (B \ B(e)). (2.2)

If A and B are finite sets, then

IA(e)I + IB(e)J - JAI + IBI (2.3)

If e E A and 0 E B, then e E A(e) and 0 E B(e).
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Proof. The set inclusion (2.1) follows immediately from the definition of the
e-transform of the pair (A, B). To prove (2.2), we observe that

A(e)\A - (B+e)\A
- (b+e:bEB,b+e 'A}
- e+{bE B:b'A-e)
- e+{bE B:b¢B(e)}
- e + (B \ B(e)).

Clearly, A C A(e) and B(e) C B. If A and B are finite sets, then

IA(e)I -IAI - IA(e) \ AI

- le+(B\B(e))I
- I B \ B(e)I

- IBI - IB(e)l.

This proves (2.3). If e E A C_ A(e) and 0 E B, then 0 E A - e and so 0 E
B fl (A - e) - B(e). This completes the proof.

2.3 The Cauchy-Davenport theorem

In this section we study the direct problem for addition in the group Z/mZ of
congruence classes modulo m. A basic result is the Cauchy-Davenport theorem,
which gives a lower bound for the cardinality of the sum of two sets of congru-
ence classes modulo a prime p. This is a consequence of the following result for
composite moduli.

Theorem 2.1 (I. Chowla) Let m >_ 2, and let A and B be nonempty subsets of
Z/mZ. /f0 E B and (b, m) - 1 for all b E B \ (0}, then

IA + BI > min (m, IAI + IBI - 1).

Proof. By Lemma 2.2, the result is true if Al I+ IBI > m. Therefore, we can
assume that I A I+ I B I< m, and so

min (m, IAI + IBI - 1) - IAI + IBI - 1 < m - 1.

The theorem also holds if IAI - I or IBI - 1, since in these cases I A + B I -
I A I +IBI - 1. If the theorem is false, then there exist sets A, B C Z/mZ such that
IAI>2,IBI>2,and

IA+BI < IAI+IBI - 1.

In particular, A 71 Z/mZ. Choose the pair (A, B) so that the cardinality of B is
minimal. Since I B I > 2, there exists an element b' E B, b' 7( 0. If a + b' E A for
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all a E A, then a + jb' E A for all j = 0, 1, 2, .... Since (b', m) = 1, this would
imply that

Z/mZ= {a+ jb' : j -0, 1,...,m - 1) C A C Z/mZ,

and so A = Z/mZ, which is false. Therefore, there exists an element e E A such
that e +b' ¢ A. Apply the e-transform to the pair (A, B). By Lemma 2.3, we have
A(e) + B(e) C A + B, and so

J A ( e ) J A J A I I

Since e E A and 0 E B, it follows that 0 E B(e) C B, and (b, m) - I for all
b E B(e) \ {0). Since e + b' ¢ A, we have b' it A - e, and so

b'VBfl(A-e)=B(e).

Therefore, I B(e)I < IBI, which contradicts the minimality of IBI. This completes
the proof.

Theorem 2.2 (Cauchy-Davenport) Let p be a prime number, and let A and B
be nonempty subsets of Z/pZ. Then

IA + BI > min(p, Al I+ IBI - 1).

Proof. Let bo E B and B'- B - bo. Then I B' I - IBI and

IA+B'I - IA+B - bol - IA+BI.

Since 0 E B' and (b, p) = 1 for all b E B' \ (0), we apply Theorem 2.1 to the pair
(A, B') and obtain

IA+BI = IA+B'I
> min(p, IAI + IB'I - 1)

- min(p, IAI+IBI - 1).

This completes the proof.

Theorem 2.3 Let h > 2. Let p be a prime number, and let A I , A2, ... , Ah be
nonempty subsets of Z/pZ. Then

IAI+A2+...+AhI>min (p.tlA;I-h+I).

Proof. By induction on h. The case h - 2 is the Cauchy-Davenport theorem.
Let h > 3, and suppose that the result holds for any h - I subsets of Z/pZ. Let
A 1, A2, ..., Ah be nonempty subsets of Z/pZ, and let B = A I + . + Ah_ 1. By
the induction hypothesis,

r,

IBI-JAI+...+Ah-II>min pIt IA,I-h+2
1
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and so

IAI+A2+...+Ahl - I(AI+...+Ah-I)+AhI

- IB+AhI

min(p,IBI+IAhI-1)
(h_I

2 min (p, hIA ,I-h+2 +IAhI-1

h

min p.EIA+l-h+11.- 1

This completes the proof.
It is easy to see that this result is best possible. Let h > 2, and let k1, ... , kh be

positive integers such that

p+h- 1.

Let A; - (0, 1, ... , k; - 1) c Z/pZ. Then IAi I - k; and

cZ/pZ

and
h

IAI+A2+...+AhI->IAil-h+1.
i_

Theorem 2.4 (Pollard) Let p be a prime number, and let A and B be nonempty
subsets of Z/pZ. Let

e - IBI < IAI - k.

For t - 1, ... , e, let N, denote the number of congruence classes in Z/pZ that
have at least t representations in the form a + b, where a E A and b E B. Then

N, min(tp,t(k+t -t)).

Note that the Cauchy-Davenport theorem is the case t - I of this result.
Proof. For X E Z/pZ, let rA.B(x) denote the number of solutions of x - a + b

with a E A and b E B. Then rA.tr(x) < f for all x E Z/pZ, and

S(A, B, t) - N, + N2 + + N, - F, min(t, rA.B(x)).
XEZ/pZ

For t - f, we have

S(A, B, e) - E min(f, rA.B(x))
XEZ/ pZ

-
E7

rA.B(x)

.[Eli/ pZ

k.
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Therefore, we can assume that

l < t < e. (2.4)

The proof will be by induction on E.
If e - 1, then t - l and

N1 - IA+BI -IAI - IAI+IBI- 1-min(p,k+e- 1).

Let t > 2, and suppose that the theorem holds whenever I B I < e. If k +e - t > p,
then

I <t<p-k+t<e<p.
Let e' - p - k +t. Choose B' e B such that I Y J - t'. By the induction hypothesis,
the theorem holds for the sets A and B', so

S(A, B, t) > S(A, B', t)

> min(tp, t(k + e' - t))

- tP
- min(tp, t(k + e - t)).

Therefore, it suffices to prove the theorem in the case

k+e-t<p.
Let A and B be subsets of Z/pZ such that

e - IBI 5 IAI - k.

(2.5)

where k, e, and t satisfy inequalities (2.4) and (2.5). These inequalities imply that
k < p, and so A 'I Z/pZ.

Let b E B. Replacing the set B with the difference set B - b, we can assume that
0 E B. Since e > 2, there exists b' E B with b' ' 0. If a +b' E A for every a e A,
then a + jb' E A for all j > 0, and so A - Z/pZ, which is impossible. Therefore,
there exists a E A such that a' +b' ¢ A, or, equivalently, b' ¢ A - a*. Replacing
AwithA -a',wecan assumethatO E A and B\A ,'O.Then I <IAnBI <1BI.
Let

Then

U-AUB and I-AnB

IUI+III - k+e
and

1 < III < f.

Let
A'-A\I and B'-B\1.

Then U is the disjoint union of A', B', and 1.
Let X E Z/pZ. Every representation of x in the form x - a + b with a E A,

b E B is of one of the following four types:
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(i) x-a'+b'with a' E A', b' E B'

(ii) x-a'+vwith a'EA',vEI

(iii) x - v + b' with v E 1, b' E B'

(iv) x - v + v' with v, v' E 1.

The number of representations of the first type is rA'.B'(x). The total number of
representations of the three other types is ru,t(x). It follows that

rA.B(x) - ru.1(x)+rA'.B'(x) ? ru.1(x)

for all x E Z/pZ.
Let 1 < r < 111. It follows from the induction hypothesis that the theorem holds

for the pair of sets U, I. Therefore,

S(A, B, t) - min(t, rA.B(x))
XEZ/pzi

1: mint, ru.1(x))
.FEZ/pZ

S(U, I, t)

min(tp, t(I UI + III - t))
min(tp, t(k + I - t)).

Let Ill <t <landt'-t-111. Since

rA.B(x) - ru.l (x) + rA'.a'(x),

it follows that

min(t, rA.B(x)) min(I/I, ru.t(x))+min(t', rA'.B'(x))
ru.l(x) + min(t', rA'.a'(x))

Let k'-IA'landl'-IB'I.Then

I <_1'-1- III <t-III-IBI-III-IB'I-f'

and

k'+e'-t' - (k-III)+(e-III)-(t-Ill)
IUI - t

< Jul

< p.
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It follows from the induction hypothesis that the theorem holds for the pair of sets
A', B'. Therefore,

1: min(t, TA.8(X)) > ru.,(x) + min(t',
XEZ/pZ XEZ/pZ .XEZ/pZ

IUIIII+t'(k'+e'-t')
- IUII/I + (t - I/I)(IUI - t)
- t(IUI+III-t)
- t(k+e-t).

This completes the proof.

2.4 The Erd6s-Ginzburg-Ziv theorem

We shall give two proofs of a simple but important theorem about addition of
congruence classes. The first proof uses the Cauchy-Davenport theorem, and the
second uses the Chevalley-Warning theorem on the number of solutions of systems
of polynomials over a finite field.

Theorem 2.5 (Erd&s-Ginzburg-Ziv) Let n >_ 1. If a0, a1, ... , a2,,_2 is a se-
quence of 2n - I not necessarily distinct integers, then there exists a subsequence
a,, , a,, , ... , a,,, such that

a,, +a,, + . + a,, =_ 0 (mod n).

Proof. We shall prove the theorem first in the case that n - p is a prime number.
Choose a; E Z such that a =- a, (mod p) and 0 < a< < p. Renumber the
integers a, so that

0 < ao < a, < ... < a'2p-2 < p - 1.

If a; - a, '+p_ 1 for some i E [ 1, p - 1), then

a, = a;+1 ai+p-1 (mod p)

and

a,+a,+, pai =0 (mod p).

If a' 71 a,' 1,_1 for alli E [1,p- 1], let

Ai - (a, + pZ, a,+p_i + pZ) c Z/pZ.

Then I A, I - 2 for i - 1, ... , p - 1. Applying the Cauchy-Davenport theorem in
the form of Theorem 2.3, we see that

min(p,2(p- 1) -(p - 1)+1)=p,
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and so
AI + ... + AP-1 - Z/PZ.

It follows that there exist congruence classes a j, + pZ E A; for i - 1, ... , p - 1
such that j, E {i,i+p- 1) and

-ao = ajo + a j, + ... ajo (mod p),

that is,
ao + a p + aj2 + ... ajo-, - 0 (mod p).

Thus, the theorem holds when n - p is prime.
We shall prove the theorem by induction on n. If n - 1, there is nothing to prove.

Suppose that n > I and that the theorem holds for all positive integers less than
n. If n is prime, we are done. If n is composite, then

n - uv,whereI < u<v<n,

and so the result holds for both u and v. From the sequence ao, ... , a2,,_2 of length
2n - I - 2uv - I there exists a subsequence al,;, , ... , al,;, such that

a 1 1 , - 0 (mod v).

There are 2n - 1 - v - (2u - 1)v - 1 integers in the original sequence that are
not in this subsequence. Since 2u - 1 > 2, we can find a disjoint subsequence

a2., of length v such that

a2J, =0 (mod v).

There are 2n - 1 - 2v - (2u - 2)v - 1 terms not in either of the two subsequences
already determined. Continuing inductively for j - 1, ... , 2u -1, we obtain 2u - I
pairwise disjoint subsequences a j.;, , ... , aj.;,, of length v such that

aj_;, + +

aj.r, + ... + a j.;, - bj v,

where bj E Z. Since the theorem holds for u, there is a subsequence bj...... bj
of the sequence b 1 . . . . . b2, ,-l such that

bj, + + bj - 0 (mod u),

that is,

for some c E Z. Then

bj, v - cu v - cn =-O (mod n).
r-I c-I r-I

This completes the proof.
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Theorem 2.6 (Chevalley-Warning) Let p be a prime number, and let Fq be the
finite field with q - p' elements. For i - 1, ..., m, let fj(x1, ..., x,,) be a polyno-
mial of degree d1 in n variables with coefficients in Fq. Let N denote the number
of n-tuples (x1..... xn) of elements of Fq such that

fi(x),....xn)-0
for all i - 1,...,m.If

then

m

E di < n,
i-

N - 0 (mod p).

Proof. The multiplicative group of the nonzero elements of a finite field is cyclic,
and so, for any x E Fq,

1 if x/ 0
i 0 if x-0.

Moreover, with the convention that 00 - 1, we have

Ex, -0 ifO<r<q-1.
xEFF

Let XI , ... , X. E Fq. Then

fl(1-fi(XI,...,Xn)q-1)
i-I

O

and so

if foralli
otherwise,

N- fl(I - fi(xl,...,xn)q-1).
xi..... x.EF, i-I

Since the degree of fi (x1.... , x,,) is di, it follows that
no

(2.6)

)q-1 r. r(1 - fi(XI.....X ) - ar,.....r.xl ...x
i-I

is a polynomial of degree at most (q - 1) d, with coefficients a....... r, E Fq.
Then

n,

N = E F1 (1 - fi(xl..... X.)q-1) (mod p)
A...... x.EF i-I

r (mod p)ail..... r. x1 ... Xn"
.,i._....EF r,.....r.

a.. .....r.
xr"

1 ... xrn (mod p)
ri ..... r, x, .....x.EFq

r
ar r. xr) (mod p),

r,....,r. j-I ,,EF,



2.4 The Erdos--Ginzburg-Ziv theorem 51

where the summation runs over all n-tuples r1, ... , r of nonnegative integers such
that

ri :5 (q-1)di <n(q-1).
i-1 i-1

This implies that 0 < ri < q - 1 for some j, and so
n

f E x, _= 0 (mod p).
j-1 r1EFa

Therefore,
N - 0 (mod p).

This completes the proof.
In the case when n is a prime number p, the Erdos-Ginzburg-Ziv theorem

(Theorem 2.5) is a corollary of the Chevalley-Warning theorem. Let a1, ... , a2p_ 1
be a sequence of elements in the finite field Fp - Z/pZ. Consider the polynomials
f1, f 2 E Fp [x1, ... , x2p_ 1 ] defined by

2p-1

f1(xl,...,x2p-1) - E

and

i-1

2p-1

f2(x1, ... , x2p-1) - E aix-1.1

i-1

Let d1 be the degree of the polynomial f . Then d1 - d2 - p - 1. Let N denote the
number of simultaneous solutions of these two polynomials. Since

d1+d2-2p-2<2p-1,
it follows from Theorem 2.6 that N =- 0 (mod p). Since

f(0,...,0)- f2(0,..., 0)-0,
it follows that N > 1 and so N > p > 2. Therefore, the polynomials f1 and f2
have a nontrivial solution, that is, there exist x1, ... , x2p_1 E Z/pZ not all zero
such that

2p-1

f1(x1, ... , x2p-1) - E xp-1 - 0

and

i-1

2p-1

f2(XI,...,x2p-1) - E aixp-1 - 0.

i-1

For X E Z/pZ, we have xp-1 - I if and only if x ¢ 0. It follows from the first
equation that xi f 0 for exactly p variables xi...... xip . Then the second equation
implies that

ai, + aio =- 0 (mod p).

This completes the proof.
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2.5 Vosper's theorem

The inverse problem for addition in groups is to describe the structure of the pairs
of subsets (A, B) for which the cardinality of the sumset A + B is small. For most
pairs (A, B) in an abelian group G, the sumset A + B will contain at least JAI + I BI
elements. The simplest inverse problem is to classify the pairs (A, B) of finite
subsets of G such that A + B ¢ G and IA + BI < I A I + IBI. Such pairs are called
critical. This is an open problem for arbitrary groups. However, Vosper completely
solved the problem of classifying the critical pairs for the groups Z/pZ, where p
is a prime number. He proved that if A, B C_ Z/pZ and IA + BI = I A I + I B I - 1,

then, except for two special cases, the sets A and B are arithmetic progressions
with the same common difference, where an arithmetic progression in an abelian
group G is a set of the form

(a+id:i=O,1,...,k-1).

The group element d is called the common difference of the progression, and k is
called the length of the progression. The order of the group element d in G must
be at least k.

Using exponential sums and analytic methods, Freiman generalized Vosper's
theorem for sumsets of the form 2A = A + A in Z/pZ. In particular, he proved
that if A C Z/pZ, IAI = k < p135, and 12A I - 2k - 1 + r < 12k/5 - 3, then A
is contained in an arithmetic progression of length k + r.

In this section, we shall denote the complement of the set S in G by S.

Theorem 2.7 (Vosper) Let p be a prime number, and let A and B be nonempty
subsets of the group G = Z/pZ such that A + B G. Then

IA+BI=IAI+IBI - I

if and only if at least one of the following three conditions holds:

(i) min(IA1. IBI) = 1,

(ii) IA+B1=p-IandB=c-A, where {c)=G\(A+B)
(iii) A and B are arithmetic progressions with the

same common difference.

Proof. By Lemma 2.2, if A + B ¢ G, then I A I + IBI < p. If min(IA1, IBI) _
IBI-1, then1A+BI-JAI=IAI+IBI-1, andso(A,B)isacriticalpair.

Let C E G, and let A be any subset of G such that I < I A 1 < p - 1. Let
B - c - A. Then c A + B, and so IA + 81 <p - 1. Since

IBI=Ic - AI=p - Ic - AI=p - GAI,

the Cauchy-Davenport theorem implies that

p - I=IAI+IBI - I < {A+BI <p-1,
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and so IA+BI = IAI+IBI - 1.
If A and B are arithmetic progressions in G with the same common difference

d, then there exist group elements a, b E G and positive integers k, I with k +1 < p
such that

A={a+id : i =0, 1,...,k- 1}
and

B={b+id:i=0,1,...,1-1}.
Since d E G \ {0}, the order of d is p. Then

A+B={a+b+id : i =0, 1,...,k+1-2),

and I A+ B I= k+1- I= I A I+ IBI -1. Therefore, if the sets A, B satisfy conditions
(i), (ii), or (iii), then the pair (A, B) is critical.

Conversely, let (A, B) be a critical pair, that is,

IA+BI=IAI+IBI- 1.

If J A I = 1 or IBI - 1, the pair is of the form (i).
If IA + BI = p - 1, then A + B = {c} for some c E G. Since c ¢ A + B, it

follows that B fl (c - A) = 0 and so

BCc - A.

Then
IBI <Ic-AI=p-Ic-AI=p-IAI.

Since
p-I=IA+BI=IAI+IBI-1 <p-1,

it follows that IBI = p - AI and so B = c - A. Thus, the pair (A, B) is of the
form (ii).

For the remainder of the proof, we can assume that (A, B) is a critical pair such
that

min(IAI, IBI) > 2

and

IA+BI<p-1.
We shall show that A and B are arithmetic progressions with the same common
difference. This will require several lemmas.

Lemma 2.4 Let A and B be subsets of Z/pZ such that

min(IAI, IBI) >- 2

and

IA+BI=IAI+IBI-1 <p-1.
If A is an arithmetic progression, then B is an arithmetic progression with the
same common difference.
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Proof. Let IAI - k and IBI - t. Since A is an arithmetic progression, there
exists d E Z/pZ such that d 7( 0 and

A-{ao+id:i-0,1,...,k-1}.
Then

A'-((a-ao)d-t IaEA) -{i+pZ:i-0,l....,k-1}cZ/pZ.
Choose bo E B, and let

B'-((b-bo)d-t IbEB}.

Then

and so

0 E B',

IA'I-IAI-k>-2,
IB'I-IBI-t>2,

A'+B'-((c-ao-bo)d-t IcEA+B),

IA'+B'I-IA+BI-IA'I+IB'I-I <p - 1.
Therefore, we can assume without loss of generality that A - A' and B - B'. We
shall prove that B - (b, b + 1, b + 2, ... , b + t - 1) for some b r= B.

LetB-(bo,b,,...,b(-,}.Forj -0, 1,...,t-1,choose ri E [0,p-1]such
that bi - ri + pZ. By appropriately renumbering the congruence classes bi, we
can assume that

<p.
Let rt - p. Since every element of A + B is of the form bi + i - ri + i + pZ for
some i E [0, k- 1 J and j E [0, t- I], it follows that

e-t
A+B-U[ri,ri+mink- 1,ri., -Ti - 1)]+pZ.

i-0

Since the t sets in this union are pairwise disjoint, we have

k+t-1 - IA+BI
e-t

i-0

(1+min(k-l,ri+,-ri-1))

t+
r-t

min(k- 1,ri+, -Ti - 1).
i-0

Ifri+,-r. -1 <k - l for all j-0,l....,t-1, then
t-t

k+t -I -t+E(ri+, -ri - 1) -re - ro - p,
i-0
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which is false. Therefore, r1041 - r1. - I > k - I for some jo E [0, e - I], and so

k+P-1 = IA+BI
f-I

- k + e - 1 + E min(k - l , rj+l - rj - 1).

It follows that r j+i - rj - 1 for all j E [0, e - 1 ], j f jo and so B is the arithmetic
progression

[rjo+1, rju+, +I - I) + pZ.

Lemma 2.5 Let A and B be subsets of Z/pZ such that

min(IAI, IBI) - 2

IA+BI-IAI+IBI-1 <p-1.
Then A and B are arithmetic progressions with the same common difference.

Proof. This follows immediately from Lemma 2.4 since a set with two elements
is an arithmetic progression.

Lemma 2.6 Let (A, B) be a critical pair in Z/pZ such that

min(IAI, IBI) >- 2

and

IA+BI - IAI+IBI - I < p- 1.

Let D - A + B. Then (D, -A) is a critical pair.

Proof. Let IAI - k and IBI -f. Since k + e - 1 < p -2, it follows that

I D I - IA+BI - p - (k+e - 1) > 2.

We must show that I D - A I -IDI + I - A I -1 - p - e. By the Cauchy-Davenport
theorem,

ID-Al min(p,IDI+I-AI-1)
min(p, (p - k - e + 1) +k - 1)
p-e.

Since (A+B)f1D-0, it follows that Bfl(D-A)-0andsoD-A C B.
Therefore,

ID - AI < IBI - p - IBI - p - e.

This completes the proof.
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Lemma 2.7 Let (A, B) be a critical pair in Z/pZ such that

min(IAI, IBI) > 2

and

IA+BI - IAI+IBI -I< p-1.
If A + B is an arithmetic progression, then A and B are arithmetic progressions
with the same common difference.

Proof. If A+B is an arithmetic progression, then D - A + B is also an arithmetic
progression. By Lemma 2.6, the pair (D, -A) is critical, and so, by Lemma 2.4, the
set -A is an arithmetic progression. It follows that A is an arithmetic progression,
and, since the pair (A, B) is critical, the sets A and B are arithmetic progressions
with the same common difference.

Lemma 2.8 Let (A, B) be a critical pair in Z/pZ such that

IAI-k>2,

IBI-e>>3,
0 E B,

and

IA+BI-IAI+IBI-1 <p-1.
Then there exists a congruence class e E A with the property that the e-transform
(A(e), B(e)) is a critical pair such that A(e)+B(e) - A+ B and 2 < I B(e)I < IBI

Proof. If (A(e), B(e)) is any e-transform of the critical pair (A, B), then it
follows from Lemma 2.3 and the Cauchy-Davenport theorem that

IAI + IBI - I IA(e)I + I B(e)I - 1
JA(e) + B(e)I

IA + BI

IAI+IBI - 1.

Therefore,

IA(e)I + I B(e)I - I - IA(e) + B(e)I - IA + BI,

and so (A(e), B(e)) is also a critical pair. Since A(e) + B(e) c A + B, it follows
that A(e) + B(e) - A + B.

Let

X - {eEA: B(e)¢B).

Since B(e) c R for all e E G, it follows that I B(e)I < IBI for all e E X.
We shall show that I X I > 2. Let

Y-A\X-leEA:B(e)-B).
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If Y - 0, then X - A and IXI - JAI > 2. If Y f 0, choose e E Y. Then
B - B(e) - B fl (A - e) and so B C A - e. It follows that e + B C A for all
e E Y, and so Y + B C A. By the Cauchy-Davenport theorem,

k - JAI

> IY+BJ
> min(p,IYJ+e-1)
- IYI+e-1
- k - IXI +e - 1,

andsolXl>e-1>2.
We shall show that I B(e)l > 2 for some e E X. Since e E X C A and 0 E B,

we have 0 E B(e). Suppose that B(e) - B fl (A - e) - (0) for all e E X. Let
B' - B \ {0}. Then B' fl (A - e) - 0 and so (e + B') fl A - 0 for all e E X.
Therefore, (X + B') fl A - 0. Since X + B' C A + B, it follows that

X+B'C(A+B)\A

and so, again by the Cauchy-Davenport theorem,

IXI+e-2-IXI+(e-1)-1 <IX+B'J <IA+BI-JAl-e-1,

which is impossible, because I X I > 2. This completes the proof.
Proof of Vosper's theorem, concluded. Let (A, B) be a critical pair with I B I -

1 > 2. The proof is by induction on 1. If! - 2, the result follows from Lemma 2.5.
Let I > 3, and assume that the theorem holds for all critical pairs (A, B) with
I BI < 1. By Lemma 2.8, there exists e E A such that (A(e), B(e)) is a critical pair
with A(e) + B(e) - A + B and 2 < I B(e)I < 1. The induction assumption implies
that A(e) and B(e) are arithmetic progressions with the same common difference.
Therefore, A(e)+B(e) - A+B is an arithmetic progression, and Lemma 2.7 implies
that A and B are arithmetic progressions with the same common difference. This
completes the proof of Vosper's theorem.

2.6 Application: The range of a diagonal form

Let k > I and p be a prime number. The polynomial

f(XI,...,X,)-c1x 1 $1

with coefficients in the field Z/pZ is called a diagonal form of degree k. We shall
assume that c; f 0 for all i. The range off is the set

R(f) - (f(xi....,x,,) : x1....,x,, E Z/pZ}.
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Lemma 2.9 Let p = 1 (mod k), and let f be a diagonal form of degree k over
the field Z/pZ. If p - ks + 1. then

IR(f)I = I (mod s).

Proof Let (Z/pZ)' denote the multiplicative group of the nonzero elements of
Z/pZ. This is a cyclic group of order p - 1. Since k divides p - 1, it follows
that Ak - {xk : x E (Z/pZ)'} is a subgroup of Z/pZ of order s. Note that
0- f(0,...,0)E R(f).LetR(f)*-R(f)\(0).Ifz E R(f)',then

for some x1, ... , xa E Z/pZ, and so, for any yk E Ak,

11

Therefore,

zyk - Eai(xiy)k E R(f)'.
i-i

zAk C R(f)*.

This implies that R(f )* is a union of cosecs of Ak, hence

IR(f)*I = 0 (mod s)

and

IR(f)I - IR(f)'1 + I as I (mod s).

This completes the proof.

Lemma 2.10 Let p > 3 be a prime number, let I < s < p - 1, and let A be a set
of s distinct elements from the field Z/pZ. If

`a-J:aZ-0,

aEA aEA

then the set A is not an arithmetic progression.

Proot If A is an arithmetic progression, then there exists d E (Z/pZ)' such
that

Then

A-(ao+id:i-0,I,....s-1).

s-
I

Ea - 1:(ao+id)
aEA i-0

s(s - 1)d
sao + 2

- 0,
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and so

It follows that

1:
a2

OEA

(s - 1)d
a0 -

2

s-I

>(ao + i d)2
i-0
s-I

E(ao + 2aoid + i2d2)
i-o

sae + s(s - 1)aod +
s(s - 1)(2s - 1)d2

6

s(s - 1)2d2 s(s - 1)(2s - 1)d2

4 6
(s - 1)s(s + 1)d2

0,

12

which is impossible. This completes the proof.

Lemma 2.11 Let p > 3 be a prime number, and let p =- 1 (mod k), where

I - t. - p-1
2

Let Ak - {xk : x E Z/pZ). Then Ak is not an arithmetic progression in Z/pZ.

Proof Let p - ks + 1. Since 2k < p - 1, it follows that s > 3. Let g be a
primitive root modulo p, that is, a generator of the cyclic group (Z/pZ)`. The
kth powers in this group are the s distinct elements I, gk, g2k,..., g(s-l)k. Since

s > 3, we have

s-I

E a - E gik
aEA& i-0

9A-1

- 0

and

-I
EEA a2 - E g2ik

OEA, ;-0
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0.

By Lemma 2.10, the set Ak is not an arithmetic progression.

Lemma 2.12 Fork > 1, let Ak - {xk : x E Z/pZ}. If d - (k, p - 1), then
Ak - Ad.

Proof. There exist integers u and v such that d - uk + v(p - 1). Let X E Z/ pZ.
If x f 0, then

xd - xuktv(P-I)
- (Xu)k(XP-I )v - (Xu)k E Ak,

and so Ad S Ak.
Similarly, since d divides k, we have k - rd for some integer r, and

xk - xrd - (Xr)d
E Ad.

Therefore, Ak C Ad.

Theorem 2.8 Let p > 3 be q prime number, and let k be a positive integer such
that

1<(k,p-1)<p-
2

Let c1, ... , c,, be nonzero elements of the field Z/ pZ, and let

J(XI.....x)-c1X
Let R(f) be the range of the diagonal form f . Then

\
IR(f)I>min(p

(2n-1)(p-1)+1
I.

\\ (k, p - 1) III

Proof. Let d - (k, p - 1), and let

}CnxQ

Let R(g) be the range of the diagonal form g. Let Ak - {xk : x E Z/pZ}
and Ad - (xd : x E Z/pZ). Since AA - Ad by Lemma 2.12, it follows that
R(f) - R(g), and so we can assume that k - (k, p - 1). Then

p - ks + 1,

where s > 3, and I Ak I - s + 1. We must prove that

IR(f)I > min(p, (2n - 1)s+ 1).
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The proof is by induction on n. If n = 1, then f (xi) = cix , where ci 710, and

I R(.f )I = I Ak I - s + I = min(p, s + 1).

Let n > 2, and assume that the theorem holds for n - 1. Let

so

and

B = x E Z/pZ}.
Then

IBI-IA*I-s+1.
Since the set A is the range of a diagonal form in n - 1 variables, the induction
hypothesis implies that

Al I> min(p, (2n - 3)s + 1).

Since

R(f)=A+B,
it follows from the Cauchy-Davenport theorem that

IR(f)I = IA+BI
> min(p, IAI+IBI - 1)

min (p, (2n - 2)s + 1).

If I R(f) I - p, we are done. If I R(f) I < p - 1, then

IR(f)l=IA+BI>IAI+IBI-1>(2n-2)s+I.
If IR(f)I - (2n - 2)s + 1, then it follows from Vosper's inverse theorem (Theo-
rem 2.7) that

(i) either min(IAI, IBI) - 1, which is false,

(ii) or
IR(f)I = IA + BI = p - I = ks,

which is also false since R(f) = I (mod s) by Lemma 2.9,

(iii) or, finally, A and B are arithmetic progressions with the same common
difference, which is false, since by Lemma 2.11 the sets Ak and B are not
arithmetic progressions.

Therefore,

JR(f)J (2n - 2)s + 2.

Since

it follows that

This completes the proof.

(R(f )I = 1 (mod s),

IR(f)I > (2n - 1)s+1.
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2.7 Exponential sums

Let m and x be integers such that m > 2, and let a - r + mZ be an element of the
group Z/mZ of congruence classes modulo m. We define

ebriax/m - ebrirx/m

This function on Z/mZ is well defined, since if r, r' E Z and r - r' (mod m),
then

e2rirx/m - e2rrir'x/m

for every x E Z.
Let A - lao, a1.... , ak-1 } be a sequence of k not necessarily distinct congru-

ence classes in the group Z/mZ. We define the exponential sum

k-I
SAW - Ee2niaix1m.

jj-o

(2.7)

For all x E Z,

ISA(x)I -< ISA(0)I - k.

The basic identity for exponential sums is the following.

Lemma 2.13 Let m> 2 and a E Z/mZ. Then

m-I ( m ifa-0/ -
E e2aiax m !

(2 8)
II

X-0

.
0 ifa '0.

Proof. Let a - r + mZ. If r - 0 (mod m), then

m-1 m-I
[, e2mirx/m - E 1 - M.
X-0 xx.O

If r $ 0 (mod m), then the series is a finite geometric progression and

m-I e2air-1 1-Ie7nirx/m
- - - 0.E 2air/m - 1 e2air/m - 1

X-0

This completes the proof.
Let z denote the complex conjugate of the complex number z, and let -A -

(-alaEA}.Then

k-1

YAW x) - £,k-0 e2nrrix/p - E e- -A(X)-- S-A(x)
j-0j-0
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Lemma 2.14 Let A1. , A,, BI...., Ba1 be nonempty subsets of Z/mZ, and
let N be the number of solutions of the equation

al +...+an -bl +...+ba,

in Z/mZ with a; E A; for i - 1, ..., n 1, and bj E Bj for j - 1, ..., n2. Then

1 m-1
N - - >2 SA, (x) ... SA., (X )SB, (x) ... Se,, W-

In x-0

Proof. This follows immediately from equation (2.8), since

m-1

X-0

and so

J m ifa(+...+a,,, -bl +...b,,
l 0 fbi+...bn,

m-1

SA, (x) ... SA., (X )SB, (x) ... SB., (x)
X-0

m-1

1 e2yri(al+...+a.,- ...-b'2)XIM

x-0 a,EA, a.,EA., b,EB, b.,EB.,

W-1

- > ... >2 > ... >2 >e2"',+...4 -bi-..._b,,)x/n,

a,EA, a.,EA., b,EB, b,,EB,, x-0

Nm.

Lemma 2.15 Let A be a nonempty subset of Z/mZ with Al I- k. Then

m-1

ISA(x)12 - km
x-0

and
m-1

SA(X)2S2A(x) -k 2M.
x-0

Proof. These identities follow from Theorem 2.14. The first comes from the fact
that

ISA(x)I2 - > SA(X)SA(X)
X-0 x-0

and the number of solutions of the equation a I - a2 with a 1, a2 E A is Al I- k. The
second follows from the observation that the number of solutions of the equation
al +a2 - b with al, a2 E A and b E 2A is IAI2 - V. This completes the proof.
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For a, a' E R, we write
ama' (mod1)

if a - a' E Z. If r - r' (mod m), then

rn r'n
m m

0 for a < t < ao
l+1 force r <t <a

for all n E Z. Let U be a set of real numbers. We write

a E U (mod 1)

if there exists a' E U such that a = a' (mod 1). This means that there exists
an integer n E Z such that a - n E U. For example, let U - [fl, $ + 1/2) be the
interval of all real numbers t such that P < t < 6 + 1/2. Then

a E [fl, 8 + 1/2) (mod 1)

if and only if there exists an integer n E Z such that

1
<a-n<f+1/2.

Lemma 2.16 Let ao, a,a , , ak_, be real numbers such that

a<ao<al <...<ak_I<b.

Let ak - b, and let n(t) : [a, b] -+ R be any function such that

n(t) - dl 0 k

Let f be a Riemann-integrable function on the interval a < t < b. Then

f f(t)dt - J n(t)f(t)dt.
a<a1<b , a

The function n(t) is a counting function for the sequence ao, a,, ... , ak_,.
Proof. Since n(t) - 0 for a < t < ao, and n(t) =1 + 1 for at, < t < a,+, and

1 - 0, 1, ... , k - 1, it follows by a simple interchange of summation that

b

f(t)dt
a <a, <b U,

- , 1,..., - 1.r+, an

f
- f(t)dt

(mod 1)

k-1 b'

k-I k-, a,.,

E E f f(t)dt
j-0 1-/ a,

k-1 I

E f(t)dt
a,
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a

LU
n(t) f(t)dt

1 n(t)f(t)dt.
a

Theorem 2.9 Let ao, al, ... , ak-I
such that

E R, and let N(fl) denote the number of aj

aj E [fl, P+ 1/2) (mod 1).

If

k- /gar.,
JJ (1+l)f(t)dt
a,1-0

k-I /ar.tE
n(t)f(t)dt

i-0 a,
4

k-I

T e2niai > Ok (2.9)

I j-0 I

for some 0 E [0, 1), then there exists fi E R such that

N(f) > (1 +9)k
2

Proof. Choose Y E R such that

k-I
S - `e2nia, - ISIe2><iY.

j-0

Then
k-I

ISI Y)

jL-0

Let aj - aj - y for j - 0, 1, ... , k - 1, and let N'(fl) denote the number of aj
such that

aj E [l9,,6 + 1/2) (mod 1).

Then N'(fi - y) - N(14) for all 0 E R, and so N()4) > (1 + 0)k/2 for P E R
if and only if N'(i8') > (I +8)k/2 for f' - rg - y E R. Therefore, without loss
of generality, we can replace aj with aj - y and assume that ISI - S. Since the
exponential function e2ii' has period 1, we can also replace each real number aj
by its fractional part and assume that 0 < aj < I f o r j - 0, 1, ... , k - I.

Suppose that N(fl) < (1 + 0)k/2 for all $ E R. Let I X I denote the cardinality
of the set X. For 0 < t < 1/4, we define the counting functions ni(t) by

n1(t) - I{j E [0, k - 1] 1 0 < aj < t]I
n2(t) - Ii j E [0, k - 111 1/2 - t < aj < 1/2)1
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Then

1{jE[0,k-1110<1/2-aj <t}I
n3(t) - 1{fE[0,k-1]I1/2<aj<1/2+t}I

1{jE[0,k-1]10<aj-1/2<t}I
n4(t) - I{iE[0,k-1111-t<aj <1}I

I{jE[0,k-1]10<I-aj<t}I.

ni(t)+n4(t) E [O, k -III a1 E (0, t) U [1 - t, 1)} 1
I{jE[0,k-1]Ia1E[1,1+t)U[I-t,1) (mod l)}1

and

n2(t)+n3(t) - I{j E [0,k- 1] l aj E [1/2-t, 1/2)U[1/2, 1/2+t)}I
- I(fE[O,k-I]1aj E[1/2-t,1/2+1)}I.

Therefore,

k-n2(t)-n3(t) - I{ j E [0, k - 1] 1 aj ¢ [1/2 - t, 1/2+t)}I
1{iE[0,k-111ajE(0,1/2-t)U[1/2+t, 1)}I
I{ j E [0, k - 1] 1 aj E [1, 3/2 - t) U [1/2+t, 1) (mod 1)}l

and so

k + n (t) - n2(t) - n3(t) + n4(t) -
I{j E [0,k- 11 Iaj E [1,3/2-t)U[1/2+t, 1) (mod 1)}I

+I{jE[0,k-11jajE[I-t,1)U[1,1+t) (mod 1)11
I{iE[0,k-111ajE[I-t,3/2-t) (mod 1)11

[ 0 , 1 1 1 [ 1 / 2 Ic- (mod l)}I

N(1 -t)+N(1/2+t)
< (I + 9)k.

Thus,
nI(t) - n2(t) - n3(t)+n4(t) < Ok

for 0 < t < 1/4. Applying Lemma 2.16 to the counting functions n1(t) for
i - 1, ..., 4, and using the fact that S - ISI is a real number, we obtain

k-1

E e2niajS

j-O
k-1 k-1
E cos(27ra j) + i E sin(27ra j )
j-0 j-0
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k-1

E cos(2n a j )
j-0

E cos 2na j + E cos 2naj
0<a, < 1 /4 1/4<a) < 1 /2

+ cos 2naj + cos 2,raj
1/2<a1 <3/4 3/4<a,<I

E cos2naj - E cos2n(1/2-aj)
0<a,<1/4 1/4<a,<1/2

- cos27r(aj - 1/2)+ cos2n(1 - c j)
1 /2<a1 <3/4 3/4<a1 <1

f
1/4

f
1/4

2n sin2ntdt-2n E sin2ntdt
0<a1<1/4 1 1/4<a1<1/2 /2-a1

1/4 1/4-2n E f sin2ntdt+2n sin2ntdt
1/2<a1<3/4 1-1/2 3/4<a,<l I-a1

rI/4
2,r (n1(t) - n2(t) - n3(t) + n4(t)) sin 2ntdt

0

< 27r
I

Ok sin 2ntdt
0I

- 9k,
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which contradicts condition (2.9). Therefore, N(AB) > (I +9)k/2 for some,6 E R.
This completes the proof.

2.8 The Freiman-Vosper theorem

In this section we prove Freiman's generalization of Vosper's inverse theorem
for the group of congruence classes modulo a prime number p. The proof uses
two fundamental methods in additive number theory. The first is the estimation of
exponential sums to construct a "large" subset of a set A C Z/pZ. The second is
the use of arithmetic arguments to replace the set A of congruence classes with
a set T of integers such that there is a one-to-one correspondence between the
elements of the sumsets 2A and 2T. We can then apply an inverse theorem for
sums of sets of integers.

Theorem 2.10 Let co and cl be real numbers such that

0<C < (2 10)O

12'
.

cl > 2, (2.11)
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and
2c, - 3 1 - coci

(2.12)3 <
c1/2

i

Let p be an odd prime number, and let A be a nonempty set of congruence classes
modulo p such that

3<k-IAl:5 cop (2.13)

and

12AI <c,k-3. (2.14)

Define the integer b by 12A I - 2k - 1 + b. Then A is contained in an arithmetic
progression in Z/pZ of length k + b.

Theorem 2.11 Let A be a nonempty set of congruence classes modulo p such that

IAI-k<35

and

12A1 <
lsk

- 3.

Define the integer r by 12AI - 2k - 1 + r. Then A is contained in an arithmetic
progression in Z/pZ of length k + r.

Proof. If co - 1/35 and c, - 12/5, then

2c, - 3 1 - coc,
- 0.6 < 0.601 <

3 c,12

The result follows from Theorem 2.10.
Proof of Theorem 2.10. Inequalities (2.10), (2.11), and (2.12) imply that

cl(2c, - 3)2 < 9.

Since the polynomial x(2x - 3)2 is strictly increasing for x > 3/2, it follows that

cl < 2.5. (2.15)

Let 12A1 - t. By inequalities (2.13) and (2.10), we have

2k-I<2cop<6

and so, by the Cauchy-Davenport theorem,

C-12AI-2k-1+b>mir(p,2k-1)-2k-1

and b > 0. Moreover, by inequality (2.14),

f-12A1 <c,k <coc,p. (2.16)



2.8 The Freiman-Vosper theorem 69

By inequality (2.12), we can choose a positive real number 9 such that

I 3
g

1-cocl2c1
(2 17cI/2

3

<

3
. )

Then
3(1 +9)

cI < 2 (2.18)

and
coc1 +9ci/2 < 1. (2.19)

Let A - {ao, al, ... , ak_I } c Z/pZ. Choose rj E 10, 1, ... , p - 1) such that
aj - rj + pZ for j -0,1 , ... , k - 1, and let R - {ro, rI, ... , rk_I } c Z. We
consider the exponential sums SA(x) and S2A(x) defined by

k-I
SA(x) - E e2niai/P - E e2niri.r/p

aEA j-0

and

S2A(x) - e2nibxlP
bE2A

We shall prove that there exists an integer z 0- 0 (mod p) such that ISA (z)I > 9k.
If not, thenISA(x)I <9kforallx 00 (mod p). Using Lemma 2.15, the Cauchy-
Schwartz inequality, and inequalities (2.17) and (2.16), we obtain

p-1

k2P - SA(X)2S2A(X)
.r-0

P-1

SA(0)2S2A(0)+ E SA(X)2S2A(X)
.r-1

P-1

k2e + SA(X)2S2A(X)
X-1

P-1

< k2e+EISA(X)121S2A(X)I
X-1

P-1
< k2e+tOk E ISA(X)IIS2A(X)1

.r-1

P-I

< k 21 + 0k ISA(X)I IS2A(X)I
-0

P-I 11/2 P-1 1/2

<

k 2t + 9k(kp)1 /2(ep)1 /2
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- k2f+9k3/2fij2p
< coclk2p+9c1l2k2P

- (cocl +OcII l2)k2p

< k2p,

which is absurd. Therefore,

ISA(Z)I -
P-1

E e2aii)zlP

j-0
E e2 riazlP

aEA

> Ok

for some integer z 0 0 (mod p).
Applying Theorem 2.9 to the real numbers aj - rjz/ p for j - 1, ... , k, we

obtain a real number lB and a subset R' C R such that

k'-IR'I> (2 >2

and
rjz

E +
1

2 (mod 1)
P

)for all rj E R'. Since p is odd, the interval [ fi,18+ 1/2) contains (p ± 1)/2 fractions
with denominator p, and these fractions are consecutive. This means that there is
an integer uo such that the fractions in the interval can be written in the form
(uo + s)/p with

S E 0,1,..., P
2

Therefore, for each rj E R' there exist integers mj and sj such that

sjE 0,1,...,P2

and

Then

rjz UO + sj 1

P
- mj -

P
</3+2

rjz ° uo + sj (mod p).

Since z # 0 (mod p), there exists an integer v1 such that viz = 1
Let u1 - v1uo. Then

r, u1 + vlsj

Reorder the elements of R st; that

(mod p)-

R' -(ro, -1,...,rk,-1) S R - (ro,r1,...,rk,-1, rk...... rk-1)

(mod p).

and

05 sp <S1 <... <gk,-1 < P-1
2
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Let

and let

for j -O, 1,...,k' - 1. Then

and

The set

(ti,...,tk--i)- I.

T' - (to, ti, .... tk,-i }

is in normal form. If rj E R', then

rj =uI+visj -ui+v1(so+dtj)-u2+v2tj (mod p),

where u2 - u1 + v1so and v2 - vid # 0 (mod p). Let

A' - (rj + pZ : rj E R'} - (u2 + v2tj + pZ : tj E T'} c A.

The following statement, which reduces sums of congruence classes to sums of
integers, is the key step in the proof of the theorem. Let j1, j2, .h, j4 E [0, k' - I].
Since each integer tj belongs to the interval [0, (p - 1)/2], it follows that

if and only if

if and only if

in Z. It follows that

d - (sl - SO,s2 -SO,...,sk-1 -so),

Sj - So

tj d

0-to <ti <... <tk'_i < P-

2

r j, + rj, rj, + rj, (mod p)

tji + t1, = tj, + tj. (mod p)

tj, + tj, - t j, + tj,

12T'I - 12A'I < 12AI < clk - 3, (2.20)

where 2T' is a set of integers and 2A' and 2A are sets of congruence classes modulo

P.
If tk,-i > 2k' - 3, then Theorem 1.14 and inequality (2.18) imply that

12T'I>3k'-3>
3(l + O)k

2 -3>cik-3,

which contradicts inequality (2.20). Therefore, tk-- i < 2k' - 4 and so

T' c [0, 2k' - 4)
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and

2T' C [0, 4k' - 81.

Let

T -It E [0, p - 1 ] : rj = u2 + vet (mod p) for some rJ E R}.

Then T' C T. If there exists an integer t' E T such that

4k'-7<t'<p-2k'+3,
then

and

Let r' as u2 + V2t'

T'+{r'}c[4k'-7,p-1]

2T'n(T'+{t'})-0.
(mod p). Since

t'>4k'-7>2k'-2,
it follows that r` E R\R'-{rk',rk'_i,...,rk_,}anda*-r'+pZ E A \ A'. Let
0$JI,J2.J3<k'-I.Since

r;, + rh as 2u2 + v2(tj, + t;,) (mod p)

and

rj,+r' m2u2+v2(tJ,+t) (mod p),

and since the sets 2T' and T' + {t} are disjoint subsets of [0, p - 1], it follows that
no integer in the set

2R'-{rj,+rh, :0 < ji, j2 <k' - 1)

is congruent modulo p to an integer in the set

R'+{r'}-{rj,+r':0<j3<k'-1}.
Since 2R' U (R' + {r'}) is a complete set of representatives of the congruence
classes in

2A' U (A'+ {a*)) c 2A C Z/pZ.

it follows from the Cauchy-Davenport theorem and from inequalities (2.18) and
(2.20) that

12A1 > 12A'I + IA' U {a'}I

(2k' - l)+k'
3k'-I

> 3(1 +B)k - l
2

> clk - 1
> cik-3
> 12A1,
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which is absurd. Therefore,

TC[0,4k'-8]U[p-(2k'-4),p-1].
The set [0, 4k' - 8] U [p - (2k' - 4), p - I] and the interval

[-(2k' -4),4k'-8] --(2k'-4)+10,6k'- 12]

represent exactly the same integers modulo p, and so for every a E A there exist
integers t E T and W E [0, 6k' - 12] such that

a = u2 + vet = u2 + v2(-(2k' - 4) + w) u3 + v2w (mod p),

where u3 - U2 - v2(2k' - 4). Let

W-{wE[0,6k'-12]:u3+v2w=a (modp)forsomeaEA).

Since k < co p < p/12 by inequality (2.10), it follows that

6k'-12<6k< 2
Since ci < 2.5 by inequality (2.15), it follows that

12W1=12A1-2k-I +r<cik-3<3k-3,

where 2W is a sumset of integers and 2A is a sumset of congruence classes modulo
p. By Theorem 1.16, the set W is contained in an arithmetic progression of length
k + b, and so A is contained in an arithmetic progression of length k + b in Z/pZ.
This completes the proof.

2.9 Notes

The Cauchy-Davenport theorem was proved by Cauchy [16] in 1813. Daven-
port [22] rediscovered the result in 1935.1. Chowla [18) immediately extended the
Cauchy-Davenport theorem to composite moduli. Other generalizations have been
obtained by Pillai [ 101 ], Shatrovskii [ 117], Brakemaier [ 13], and Hamidoune [611.
Pollard [ 106, 107) also extended Theorem 2.4 to the case of sums of It subsets of
Z/mZ forcomposite m. Davenport [25] discovered in 1947 that Cauchy had proved
the Cauchy-Davenport theorem first.

The Erdos-Ginzburg-Ziv theorem appears in [40). See Alon and Dubiner (I],
Bialostocki and Lotspeich [8), and Hamidoune, Ordaz, and Ortunio [67] for refine-
ments of this important result. There is a different proof of the Erdos-Ginzburg-Ziv
theorem in Bailey and Richter [5].

Vosper's inverse theorem [ 1261 was published in 1956. The application to diag-
onal forms (Theorem 2.8) is due to Chowla, Mann, and Straus [ 19].

The Freiman-Vosper theorem (Theorem 2.10) and Theorem 2.9 appear in Frei-
man (50, 511. The proof of Theorem 2.9 is due to Postnikova (108]. This result
has been generalized by Moran and Pollington [88].
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2.10 Exercises

1. Let G be a finite group, not necessarily abelian, with a multiplicative oper-
ation. For nonempty subsets A, B of G, let

AB-{ab:aEA,bEB}.

Show that Lemmas 2.1 and 2.2 are also true in the nonabelian case.

2. Let A be a nonempty subset of Z/ pZ such that I A I - k and 12A I - 2k -1 <
p. Prove that A is an arithmetic progression.

3. Let h > 2, and let A be a nonempty subset of Z/pZ such that I A I - k and
I h A I - hk - h + 1 < p. Prove that A is an arithmetic progression.

4. Extend 1. Chowla's theorem (Theorem 2.1) to sums of h > 3 subsets of
Z/mZ.

5. Let m > 2, and let u and v be integers such that (u - v, m) - 1. Let
a,, a2, . . , a sequence of 2m - 2 not necessarily distinct integers
such that exactly m - I integers a, satisfy

a; = u (mod m)

and exactly m - 1 integers a; satisfy

a; = v (mod m).

Prove that there does not exist a sequence 1 < i 1 < . < in, < 2m - 2
such that

a;, + a;, + a;,, - 0 (mod m).

This example shows that the Erd6s-Ginzburg-Ziv theorem is best possible.

6. Let p be a prime number, and let (ab, p) - 1. Let f (x, y) - ax2 + by2.
Use the Cauchy-Davenport Theorem to prove that f (x, y) = n (mod p)
is solvable for all n.

7. Let p be a prime number, and let k > 3. Let cI, c2, ... , ck be nonzero
elements of G - Z/pZ. Let

f(xi,x2,...,xk)-CIX

Prove that the congruence f (xi , x2.... , xk) - n (mod p) is solvable for
all n.

8. Let pbe a prime number, and let 1 <k <l < p. Let

A - (0, 1,2,....k - 1) c Z/pZ
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and

B - (0, 1, 2, ... ,1 - 1) c Z/pZ.

For t - 1, ... , k, let N, denote the number of x E Z/pZ such that x has at
least t representations in the form x - a + b with a E A, b E B. Prove that

Nr- p if1 <t<k+l-p
k + 1 + 1 -2t ifk+l+1 -p <t <k.

9. Let p > 3 be a prime number, and let k be a positive integer such that
(k, p - 1) < (p - 1)/2. Let

n>
(k,p-1)+1

- 2

and

f(xl.....X.)-CIXI +...+Cnxk,
where c 1 . . . . . c,, E (Z/ pZ)'. Prove that R(f) - Z/pZ.

10. Let ao, a 1, ... , ak _ 1 E R. Prove that if

k-1
E e2nia)

1-0

then

- k,

aj - ao (mod 1)

forj-1,...,k-1.
11. Let h, m, and t be positive integers such that h > 2 and m + I is divisible by

h. Let k - mt, and let A be the sequence of k real numbers ao, a1, ... , ak_1
defined by

j
aj-1+ti-1w" - m +

for j - 1, ... , m and l - 1, ... , t. Let N;, (p) denote the number of a j such
that

aj E [#,f+1/h) (mod 1),

and let
k-1

SA A -

j-0

Let 0 - 1 /m. Prove that I SA I - O k and

max N,,(/3) -
(I + O)k

hpeR

In the case h - 2, this example shows that Theorem 2.9 is best possible.
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Sums of distinct congruence classes

3.1 The Erdo"s-Heilbronn conjecture

Let A be a set of k congruence classes modulo a prime p. It follows from the
Cauchy-Davenport theorem that

12AI > min(p, 2k - 1)

and, more generally (by Theorem 2.3), that

IhAI > min(p, hk - h + 1)

for every h > 2. Denote by h^ A the set consisting of all sums of h distinct elements
of A, that is, all sums of the form a I + + ah, where a 1, ... , ah E A and a; ¢ aj
for i j. More than thirty years ago, Erdos and Heilbronn conjectured that

I2^AI > min(p, 2k - 3).

The hfold generalization of this conjecture is

Ih^AI > min(p, hk - hZ + 1)

for all h > 2. We shall give two proofs of this statement. The first uses the
combinatorics of the h-dimensional ballot numbers and some facts from exterior
algebra. These prerequisites are developed in the following sections. The second
proof uses only the simplest properties of polynomials.
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3.2 Vandermonde determinants

A permutation of a set X is a map a : X -+ X that is one-to-one and onto. The
s y m m e t r i c g r o u p S h is the group of all permutations of the set (0, 1, 2, ... , h -1 ).
Let F[xo, xi. ..., xh_ I ] be the ring of polynomials in h variables with coefficients
in a field F. The group Sh acts on F[xo,... , xh_ I ] as follows. For a E Sh and
p E F[xo, ... , xh-I ], we define ap E F[xo, ... , xh_I ] by

(aP)(xo,X1,...,xh-1)-P(xo(o),xap>....,Xa(h-4). (3.1)

Then

a(rp) - (ar)P (3.2)

for all a, r E Sh (see Exercise 1). The function

A(XO,X1...... h-1)- F1 (xj -xf)
Osi<j<h-I

is a homogeneous polynomial of degree (Z). We define the sign of the permutation
a E Sh as follows:

(aA)(Xo,X1,...,xh-1) 1I (x,(j) - Xa(i))
o<i<j<h-I

sign(a) fl (x j - xi )
O<i<j<h-1

sign(a)A(Xo,... , Xh-1),

and so
sign(a) - ±1.

It follows from (3.2) that

sign(ar) - sign(a)sign(r)

for all a, r E Sh, and so
sign:Sh1}

is a group homomorphism. Thus, sign(a-I) - sign(a) for all a E Sh.
A permutation a is called even if sign(a) - I and odd if sign(a) - -1. Every

transposition r - (i, j) E Sh is odd (Exercise 2). Let a, r E Sh, where r is a
transposition. Then a is even if and only if ra is odd.

Let

a0.o ao.l ao.: a0.h-I
a1.0 a1.1 a1.3 a1.n-I

A -

ah-I.o ah-1,1 ah-I.2 "' ah-I.h-i
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be an h x h matrix with coefficients in a ring. The determinant of A, denoted IAl,
is defined by

h-1

sign(er) fl ai. ,(1).
CESh i-0

We require only the basic properties of determinants.

Lemma 3.1 Let h > 2, and let xo, x1, ... , xh_I be variables. Then

1 xO X2 . .. xh-'

1 XI x2 X%-'

1 x2 x2 . ..
XZ_1

-A(xo,x',...,xh_I). (3.3)

1 Xh_1 xh_I . .. xh-

This polynomial identity is called the Vandermonde determinant.
Proof. The proof is by induction on h. For h = 2 we have

1 xo

1 x1
-XI -xo=A(xo,x1)-

Assume that the Lemma is true for some h -I > 2. Let A be the h x h determinant
in (3.3). Subtracting xo times the first column from the second column, we obtain

1 0 x20 xh-'0

1 x1 - xo x2 ... xi-'

1 x2 - XO x2 ...
x2_1

I Xh_1 - XO Xh-1 ... Xh_

In this new determinant, we subtract xo times the first column from the third column
and obtain

1 0 0 xo Xphh-'

1 x1 - XO X - X02 X ... X1-I

1 X2 - XO X2 - X02 X3 ... Xh-1

h_1 - 0
2 2 3 h-I

I X X X1i_1 - XO Xh_I Xh-1

After subtracting xo -' times the first column from the j th column for j - 2, 3, ..., h,
we obtain the determinant

1 0 0 0

1 x1 - xo X2 X2I - 0 ... Xh-1 Xh-1
1 - o

1 X 2 Xo X2 X22- 0 ...
Xh-1 Xh-I

2 - o

1 Xh - Xo X2 - X2 ... xh-1 - Xh-1
_1 h-1 0 h-I o
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which is equal to

- XX 2 - 2 ... xh-1 _ xh-I
o1

X2 - XO

1 0

x2 - x2

1 0
h-1 h-I
2 - XO

Xh_I - XO Xh_I - X0 .. xh_1 - x0-I

For j - 1, ... , h - 1, every polynomial in the jth row is a multiple of xj - xo,
and so this determinant equals

h-1

II(xj -xo)
j-

1 X +X x2+XX +2 xh-2+Xh-3x1 0 1 1 0 0 1 I o 0
1 X + X 2+xX +X2 xh-2+xh-3X2 0 2 2 0 0 2 2 0 0

2 2 h-2 h-3 h-2
1 Xy_1 +xO Xy_1 +Xh_lxo+xO ... xh_1

Continuing to subtract appropriate multiples of one column from another, we find
that this is equal to

1 XI x 2
xh-2

h-1
1 X2 x Z ... x2-2

J(Xj - XO)

I-1
2

1
h-2

Xh_I Xh
...

_I Xh-1

h-I h-1II(xj

- XO) (xj - xi)

j-1 1<i<j<h-I

h-1

fl (xj - Xi)

0<i<j<h-I

r,(xo,xl,...,Xh_I).

This completes the proof.
Let [x]o - 1. For r > 1, let [x]r be the polynomial of degree r defined by

[x]r-x(x-

Lemma 3.2 Let h > 2, and let xo, x1, ... , xh_1 be variables. Then

I IXoll

I [x1]1

[xo12 ... [x0]h-1

[x112 .
.

. (XI ]h-I
- 0(XO.X1,...,Xh_1).

I [xh-Il1 [Xh-112 . [Xh-Ilh-1

Proof. By elementary row and column operations, the determinant can be trans-
formed into the Vandermonde determinant, and the result follows.
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Lemma 3.3 Let A be a nonempty, finite subset of a field F, and let I A I - k. For
every m > 0 there exists a polynomial gm(x) E F[x] of degree at most k - 1 such
that

gm(a) - am

for all a E A.

Proof. Let A - lao, a,, ... , ak_ 1). We must show that there exists a polynomial
E F[x) such that

u(ai)-uO+ulai+U2a2+...+u&_Iak-1 -a"

for i - 0, 1, ... , k - 1. This is a system of k linear equations in the k unknowns
UO, I ,-- . , uk_1, and it has a solution if the determinant of the coefficients of the
unknowns is nonzero. The lemma follows immediately from the observation that
this determinant is the Vandermonde determinant

1 ao a2 ... ak-I

1 al ai .. a?-1

1 ak_I ak_I ... akk-I

-1

- fl (aj - ai) 710.
O<i<j<k-I

3.3 Multidimensional ballot numbers

The standard basis for Rh is the set of vectors [e1, ... , eh), where

el - (1,0,0,0,.. ,0)
e2 - (0, 1,0,0,...,0)

eh - (0,0,0..... 0, 1).

The lattice Zh is the subgroup of Rh generated by the set {e1, ... , eh), so Zh is the
set of vectors in Rh with integral coordinates. Let

a-(ao,a,,...,ah_1) E Zh

and

b-(bo,bl,...,bh_1) E Zh.

A path in Zh is a finite sequence of lattice points

a-vo,vl,....v.,-b

such that
vj - vj_i E lei,..., eh)
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for j = 1, ... , m. Let vj_ 1, vl be successive points on a path. We call this a step
in the direction e, if

vj = vj-1 + e1.

The vector a is called nonnegative if a; > 0 for i = 0, 1, ... , h - 1. We write

a<b

if b - a is a nonnegative vector.
Let P(a, b) denote the number of paths from a to b. The path function P(a, b)

is translation invariant in the sense that

P(a + c, b + c) - P(a, b)

for all a, b, c E Zh. In particular,

P(a, b) - P(0, b - a).

The path function satisfies the boundary conditions

P(a,a)- 1,

and

P(a, b) > 0 if and only if a < b.

Ifa-vo,v1,...,vm = b is a path with m > 1, then

v,,,-1 = b - e1

for some i = 1, ..., h, and there is a unique path from b - e; to b. It follows that
the path counting function P(a, b) also satisfies the difference equation

h

P(a, b) P(a, b - e1).

Let a < b. For i = 0, 1, ... , k - 1, every path from a to b contains exactly
b; - a; steps in the direction e;+1. Let

h-1

m = E(b1 - a;).
r-o

Every path from a to b has exactly m steps, and the number of different paths is
the multinomial coefficient

h-1
11: (b1 - ai) m,

P(a, b) = -1 h-1
R,

(3.4)
-0 (b, - ai )! i r[, -0 (b; - a,)!
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Let h > 2. Suppose that there are h candidates in an election. The candidates
will be labeled by the integers 0, 1, ..., h - 1. If mo votes have already been cast,
and if candidate i has received a; votes, then

mo - ao+al + +ah_l.

We shall call
vo-a-(ao,a,,...,ah-I)

the initial ballot vector. Suppose that there are m remaining voters, each of whom
has one vote, and these votes will be cast sequentially. Let Va.k denote the number
of votes that candidate i has received after k additional votes have been cast. We
represent the distribution of votes at step k by the ballot vector

Vk - (VO.k, V1.k, ... , Vh-l.k)

Then

fork-0,1,...,m. Let
vo.k + V1.k +...+vh-I.k - k+mo

vm -b-(bo,bl,...,bh-1)

be the final ballot vector. It follows immediately from the definition of the ballot
vectors that

vk - vk-I E (el,.... eh)

for k - I .... , m, and so

a - v0,vl,...,Vm - b

is a path in Zh from a to b. Therefore, the number of distinct sequences of m
votes that can lead from the initial ballot vector a to the final ballot vector b is the
multinomial coefficient

\E-0 (b; -a,))! m!
o

fl o
(bi - a,)'

f (b1 -
a;)l nh f

Let v-(vl,...,uh)and w-(wl,...,wh)be vectors in Rh.The vector vwill
be called increasing if

u1 < U2 < < Vh

and strictly increasing if
V1 <V2 <... <Vh.

Now suppose that the initial ballot vector is

a-(0,0,0,...,0)
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and that the final ballot vector is

b = (bo, b, , ... , b,,_, ).

Let
m =bo+b, +...+bh_,.

Let B(bo, b, , ..., bh_ I) denote the number of ways that m votes can be cast so that
all of the kth ballot vectors are nonnegative and increasing. This is the classical
h-dimensional ballot number. Observe that

B(0,0,...,0)= 1,

and that
B(bo,b,,...,bh_,)>0

if and only if (bo, b, , ... , bh_ i) is a nonnegative, increasing vector. These boundary
conditions and the difference equation

h- I

B(bo,b,,...,bh-i)=1: B(bo,...,bi-1,bi - 1,bi+i,...,bh-1)
i-o

completely determine the function B(bo, b, , .... bh_, ).
There is an equivalent combinatorial problem. Suppose that the initial ballot

vector is
a'=(0,1,2,...,h-1)

and that the final ballot vector is

Let

b=(bo,bi,....b,_1).

h
m=J(bi-i)=Ebi- (2)

Let B(bo, b, , ..., bh_,) denote the number of ways that m votes can be cast so
that all of the ballot vectors vA are nonnegative and strictly increasing. We shall
call this the strict h-dimensional ballot number.

A path vo, vi, .... vin Z" will be called a strictly increasing path if every
lattice point vk on the path is strictly increasing. Then B(bo, b,, ... , bh_i) is the
number of strictly increasing paths from a* to b = ( b 0 . . . . . b,, _ i ).

The strict h-dimensional ballot numbers satisfy the boundary conditions

8(0,1,...,h-1)=1

and

B(bo, bi..... b,,_,) > 0
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if and only if (bo, b1, ... , bh_ I) is a nonnegative, strictly increasing vector. These
boundary conditions and the difference equation

h-1

B(bo,b1,...,bh-1)-EB(bo,...,bi-1,bi - l,bi+l,...,bh-I)
i-o

completely determine B(bo, b1, ... , bh-I ).
There is a simple relationship between the numbers B(bo, b1..... bh_I) and

B(bo, b1..... bh_I). The lattice point

v-(vo,VI,...,vh-I)

is nonnegative and strictly increasing if and only if the lattice point

W-v-(0, 1,2,...,h- 1)-v-a'
is nonnegative and increasing. It follows that

a' -v0,v1,v2,...,um -b

is a path of strictly increasing vectors from a* to b if and only if

0, V1 -a",v2-a ..,b-a'
is a path of increasing vectors from 0 to b - a'. Thus,

B(bo,b1....,bh-I)-B(bo,b1 - 1,b2-2....,bh_I - (h - 1)).

For 1 < i < j < h, let Hij be the hyperplane in R' consisting of all vectors
(x1, ... , xh) such that xi - xJ. There are (Z) such hyperplanes. A path

a-vo,v1,v2,...,vm-b
will be called intersecting if there exists at least one vector vk on the path such that
vk E Hij for some hyperplane H1 1.

The symmetric group Sh acts on Rh as follows. For a E Sh and v = (vo, vI, .. .
uh_1) E Rh, let

av - (vo(0), un(I), ... , vo(h-I))

A path is intersecting if and only if there is a transposition r - (i, j) E Sh such
that rvk - vk for some lattice point vk on the path.

Let I(a, b) denote the number of intersecting paths from a to b. Let J(a, b)
denote the number of paths from a to b that do not intersect any of the hyperplanes
Hi.j. Then

P(a, b) - I(a, b) + J(a, b). (3.5)

Lemma 3.4 Let a be a lattice point in Zh, and let b - (b0..... bh_I) be a strictly
increasing lattice point in Z'. A path from a to b is strictly increasing if and only
if it intersects none of the hyperplanes H1 , and

B(bo,...,bh_1)-J(a',b).
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Proof. Let a path, and let

Vk - (VO.k,---,VIA, Uh - l.k)

f o r k - 0, 1, ... , m. If the path is strictly increasing, then every vector on the path
is strictly increasing, and so the path does not intersect any of the hyperplanes Hi, j.
Conversely, if the path is not strictly increasing, then there exists a greatest integer
k such that the lattice point vk_I is not strictly increasing. Then I < k < m, and

Vj.k-1 < Vj-I,k-I

f o r some j - 1, ... , h - 1. Since the vector vk is strictly increasing, we have

Vj-1.k : Vj.k - 1.

Since vk_I and vk are successive vectors in a path, we have

Vj-I.k-I : Vj-l.k

and

Vj.k - I < Vj.k-1

Combining these inequalities, we obtain

vj.k-1 : vj-l.k-I : vj-I.k < vj.k - 1 C Vj.k-1

This implies that
Vj.k-1 - Vj-l.k-I

and so the vector vk_I lies on the hyperplane Hj_1.j. Therefore, if b is a strictly
increasing vector, then a path from a to b is strictly increasing if and only if
it is non-intersecting. It follows that J(a, b) is equal to the number of strictly
increasing paths from a to b, and so J(a*, b) is equal to the strict ballot number
B(bo, ..., bh-I ).

Lemma 3.5 Let a and b be strictly increasing vectors. Then

P(aa, b) - I(aa, b)

for every a E Sh, a ' id.

Proof. If a is strictly increasing and a E Sh, a 7( id, then as is not strictly
increasing, and so every path from as to b must intersect at least one of the
hyperplanes Hi .j. and so P(aa, b) < 1(aa, b). On the other hand, we have
1(a a, b) < P(aa, b) by (3.5).

Lemma 3.6 Let a and b be strictly increasing lattice points. Then

E sign(a)l(aa, b) - 0.
oESA
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Proof. Since a is strictly increasing, it follows that there are h! distinct lattice
points of the form aa, where a E Sh, and none of these lattice points lies on a
hyperplane H1 j. Let £2 be the set of all intersecting paths that start at any one of
the h! lattice points as and end at b. We shall construct an involution from the set
12 to itself.

Let a E Sh, and let
aa-v0,v1,...,v.-b

be a path that intersects at least one of the hyperplanes. Let k be the least integer
such that Vk E Hi,j for some i < j. Then k > I since a is strictly increasing, and
the hyperplane Hi. j is uniquely determined since Vk lies on a path. Consider the
transposition r - (i, j) E Sh. Then

TVk - Vk E Hi, j

and

Moreover,

raa (an.

Taa - Tvo, rv1,... , TVk - Vk, Vk+I..... Vm - b

is an intersecting path in n f r o m Taa t o b. For i - 0, 1, ... , k - 1, none of the
vectors Tvo, rv1, ... , TVk_1 lies on any of the hyperplanes, and Hi,j is still the
unique hyperplane containing Vk. Since T2 is the identity permutation for every
transposition r, it follows that if we apply the same mapping to this path from raa
to b, we recover the original path from as to b. Thus, this mapping is an involution
on the set S2 of intersecting paths from the h! lattice points as to b. Moreover,
if a is an even (resp. odd) permutation, then an intersecting path from as is sent
to an intersecting path from ran, where r is a transposition and so ra is an odd
(resp. even) permutation. Therefore, the number of intersecting paths that start at
even permutations of a is equal to the number of intersecting paths that start at odd
permutations of a, and so

F 1(oa, b) - E 1(a a, b).
mesh oesh

sign(.., sign(.,,

This statement is equivalent to Lemma 3.6.
Recall that [x]r denotes the polynomial x(x - 1) (x - r + 1). If bi and a(i)

are nonnegative integers, then

[bilo(i) - bi(bi - 1)(bi -2)...(b1 -a(i)+1)
b.

(b, -aWY
0

if a(i) < bi
if a(i) > bi.

Theorem 3.1 Let h > 2, and let bo, b1..... bh_1 be integers such that

0<bo<bl<...<bh_1.
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Then

(bo+b, +...+bh_, _ (h))1
B(bo,bl,...,bh-1) - borb,l...bh_,1

2 fl (bj - b1)

0<i<j<h-1

ProoL Let a' _ (0, 1, 2, ..., h - 1) and b - (bo, bl, ..., bh-1) E Zh. Applying
the preceding lemmas, we obtain

B(bo,bl,...,bh-1)
J(a', b)
P(a*, b) - 1(a*, b)

P(a', b) + sign(a)1(aa-, b)
..Sb
eyed

P(a', b) + E sign(a)P(aa*, b)
..Sb
ayid

1: sign(a)P(aa', b)
aES,

sign(a)(b°+ti_; +bh-1 - (i))!
.:. ni-o (b; - a(i))!

a '<b

(bo+...+bh_1 - (?))!
sign(a)[bolaco>[bl]ap)

bo!b,!...bh_1!
.15

b h( 0 h-I - ())1
sign(a)[bola(o,[bl]oc,, [bh-Mah-,,b lb l...b 1

0 1 h-1 aES,

I [boll [bolt [bo]h-1

(bo + + bh_I - (Z))! 1 [bill [b112 ... [bllh-1

bo!b,!...bh_,!

I (bh-111 [bh-112 ... [bh-llh-1

(bo+...+bh_1 - (z))!

0<i<j<h-1

This completes the proof.
The following result will be used later in the proof of the Erdo"s-Heilbronn

conjecture.

Theorem 3.2 Let h > 2, let p be a prime number, and let io, il, ... , ih_) be
integers such that

0<io<il <...<ih-1 <p
and

(h)
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Then

B(io,ii,...,ih-1)00 (mod p).

Proof. This follows immediately from Theorem 3.1.

3.4 A review of linear algebra

Let V be a finite-dimensional vector space over a field F, and let T : V -+ V be
a linear operator. Let 1 : V -s V be the identity operator. For every nonnegative
integer i, we define T` : V -> V by

T°(v) - 1(v) - v,
T' (v) - T (T' -' (v))

for all v E V. To every polynomial

p(X) -CnX" +cn-Ix"-' + +C1x+Co E F[x]

we associate the linear operator p(T) : V -+ V defined by

p(T) -cAT" +...+c1T +col.

The set of all polynomials p(x) such that p(T) - 0 forms a nonzero, proper ideal
J in the polynomial ring F[x]. Since every ideal in F[x] is principal, there exists
a unique monic polynomial pT(x) - pT.v(x) E J such that PT (x) divides every
other polynomial in J. This polynomial is called the minimal polynomial of T over
the vector space V.

A subspace W of V is called invariant with respect to T if T(W) C W, that
is, if T(w) E W for all w E W. Then T restricted to the subspace W is a linear
operator on W with minimal polynomial PT,w(X). Since pT,v(T)(w) - 0 for all
w E W, it follows that pr.w(x) divides PT, v (x), and so

deg(pT.w) < deg(PT.v), (3.6)

where deg(p) denotes the degree of the polynomial p.
For V E V, the cyclic subspace with respect to T generated by v is the smallest

subspace of V that contains v and is invariant under the operator T. We denote this
subspace by CT(v). Let v, - T'(v) for i - 0, 1, 2, .... Then CTM is the subspace
generated by the vectors

(v, T(v), T2(v), T3(v), ...1 - (vo, v1, v2, v3, ...)

and

dim(CT(v)) -1,
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where l is the smallest integer such that the vectors vo, v1, ... , v1 are linearly
dependent. This means that there exist scalars co, c1, ..., c1_1 in the field F such
that

V1 +c/_JVJ_J +---+C1V1 +COVO -0.

Let

Then

p(x)-x,+ci_ix1-1

p(T)(vo) - T1(vo)+c1-1T'-'(vo)+...+cjT(vo)+col(vo)

- vl+cI_Jvl_J +--- +cIVI +covo

0,

and so
P(T)(v,) - p(T)(T'(vo)) - T' (p(T)(vo)) - T'(0) - 0

for i - 0, 1, 2, .... Therefore, p(T) - 0 on the cyclic subspace CT(V) - C, and so
p(x) is divisible by the minimal polynomial PT.c(x), and

m - deg (pr.c) 5 deg(p) -1.

On the other hand, since
Pr.c(v) - 0,

it follows that the vectors vo, v 1 . . . . . v,. are linearly dependent, and so

I < M.

This implies that ! - m and so, by inequality (3.6),

dim(Cr(v)) - deg (PT.c) < deg (PT. V)

for all v E V.
If T(f) - of for some a E F and some nonzero vector f E V, then a is called

an eigenvalue of T and f is called an eigenvector of T with eigenvalue a. The
spectrum of T, denoted a(T), is the set of all eigenvalues of T. If V has a basis
consisting entirely of eigenvectors of T, then T is called a diagonal operator.

The following inequality plays a central role in the proof of the Erdos-Heilbronn
conjecture.

Lemma 3.7 Let T be a diagonal linear operator on a finite-dimensional vector
space V, and let a (T) be the spectrum of T. Then

dim (Cr(v)) < I a(T )I (3.7)

for every V E V.
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Proof. Let a E a(T), and let f be an eigenvector with eigenvalue a. Let W be
the one-dimensional subspace generated by f. Then W is invariant with respect to
T, and PT.W(x) - x - a. It follows that x - a divides pr,v(x), and so

fl (x -a)
aEO(T)

divides pT,v(x). Let dim(V) - k. If T is a diagonal linear operator, then V has a
basis {fo, fi , ..., fk_, } of eigenvectors, and

fl (T -aI)(f;)-0
aEa(T)

for i - 0, 1, ..., k - 1. It follows that 1 laEo(T)(T - aI)(v) - 0 for all v E V, and
so

PT.v(x) - f j (x - a).
aEa(T)

In particular, the degree of pT. v(x) is equal to the number of distinct eigenvalues
of T. It follows that if T is a diagonal operator on a finite-dimensional vector space
V, then

dim (Cr(v)) < deg (pr.v) - Ia(T)I

for every v E V. This completes the proof.

Lemma 3.8 Let T : V -+ V be a linear operator on the vector space V, and let
{fo, fi , ... , fk_ 1) be eigenvectors of T with distinct eigenvalues. Let

and let CT(vo) be the cyclic subspace generated by vo. Then

dim (CT(vo)) - k

and

{vo, T(vo), TZ(vo).... , Tk-) (vo)}

is a basis for Cr(vo). Ifdim(V) - k, then Cr(vo) - V.

Proof. We first show that the vectors fo, f), ... , fk_1 are linearly independent.
If they are linearly dependent, then there is a minimal subset of the vectors
fo, ... , fk_) that is linearly dependent, say, t o ,. .. , fr_). Moreover, I > 2 since
f; 0 for i - 0, 1, ... , k - 1. There exist nonzero scalars co, c) , ... , cr _) such that

;-0 c;f, - 0. Let a; E a(T) be the eigenvalue corresponding to the eigenvector
f; . Then

T (cf1) - c;T(f;) - c;aifr - 0.
i-o i-o r-o

Since

Eciar-ifi -ar-, j:c,fr -0.
r-o r-0
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it follows that

i-1 I-2
ci(ai -a,-1)fi =1ci(ai -a,-1)fi a0,

i-0 i-0

which contradicts the minimality of 1, since ci (ai - a,-,) ¢ 0 for i < 1 - 1.
Thus, the vectors fo, ..., fk- I are linearly independent and span a k-dimensional
subspace W of V. Moreover, W is an invariant subspace since it has a basis of
eigenvectors of T. Since

vo=fo+...+fk-Ik E W,

it follows that
CT(vo) S W

and so
dim (CT(vo)) < dim(W) = k.

We have T'(vo) E CT(vo) for every nonnegative integer i. Since

T'(vo) ° aofo +a, f1 +... +a'_1fk_I.

the matrix of the set of vectors {vo, T(vo), T2(vo), ... , Tk-I(vo)) with respect to
the basis { f 0 . . . . . fk_I } is

1 ao a20 . ak-1
0

1 a a2 ... ak--1
1

I I

1 a2 a ... ak-1
2 2

1 ak_I ak_ ak
I

and its determinant is the Vandermonde determinant

f j (a) - ail T 0.

o<i- j<k- I

It follows that {v0, T(vo), T2(v0),... , Tk-1(vo)) is a set of linearly independent
vectors, and so

dim (Cl (vo)) > k - dim(W).

Therefore, dim (CT(vo)) a k. If dim(V) m k, then CT(vo) - V. This completes the
proof.

3.5 Alternating products

Let A" V denote the hth alternating product of the vector space V. Then A' V is a
vector space whose elements are linear combinations of expressions of the form

Vo A V1 A A V1i-1,
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where vo, V1 , ... , vh_I E V. These wedge products have the property that

Vo A VIA ---A Vh_1 -0

if vi - vj for some i ,' j, and

V,(O) A Vc(I) A ... A Vc(h-1) - sign(a)VO A VI A ... A Vh_1

for all a E Sh.
If dim V - k and {eo, ... , ek_ I) is a basis for V, then a basis for Ah V is the set

of all vectors of the form

e,0Aei A...Aei,

where
0<io <i1 <... <ih-1 <k - 1

and

dim(Ah V) ().
Every linear operator T : V -+ V induces a linear operator

h h

DT:AV-).AV
that acts on wedge products according to the rule

DT(VO A ... A Vh-I)
h-1

EVon...AVJ_I A T(VJ)AVJ+I...AVh_I. (3.8)
j-0

The operator DT is called the derivative of T.
Recall that h^A denotes the set of all sums of h distinct elements of A.

Lemma 3.9 Let T be a diagonal linear operator on V, and let a(T) be the spec-
trum of T. Let It > 2, and let DT : Ah V - Ah V be the derivative of T. If T
has distinct eigenvalues, that is, if la(T)I - dim(V), then

a(DT) - h^a(T)

and

I hAa(T )I >- dim (CDT(w))

for every w E Ah V.

Proof. Let a(T) - {ao, al, ..., ak_I }, and let {fo, f1, , ft-1 } be a basis of
eigenvectors of V such that T (fi) - ai fi for i - 0, 1, ... , k - 1. Then (3.8) implies
that

DT(fio A ... A fi,_,) = (a10 +... +ai,-,)(fi0 ,^ ... A fi_,).
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It follows that DT is a diagonal linear operator on nh V, and its spectrum a(DT)
consists of all sums of h distinct eigenvalues of T, that is,

a(DT) - h^a(T).

Applying inequality (3.7) to the vector space Ah V and the operator DT, we obtain

Ih^a(T)l - Ia(DT)j > dim(Cor(w))

for every w E Ah V. This completes the proof.

Theorem 33 Let T be a linear operator on the finite-dimensional vector space
V. Let h > 2, and let DT : AhV -> A h V be the derivative of T. For Vo E V,
define

vi - T`(VO) E V

for i > 1, and let

Then for every r > 0

w-VOAV1 A...AVh_1 E AhV.

(DT)r(w) - (DT)r(VO A V1 A ... A Vh-1)

- E B(iO, i1..... ih_1)V,0 A V1, A ... A Vie_,,

where the sum E is over all integer lattice points (io, i 1, ... , ih _ 1) E Zh such that

05 io <i1 <... <ih_1 <r+h - 1

and

(h)+

and where B(io, i1, ... , ih_1) is the strict h-dimensional ballot number corre-
sponding to the lattice point (io, i 1, ... , i,_ 1).

Proof. The proof will be by induction on r. For r - 0. we have

(DT)°(w) - w
- VOAV1A...AVh_1
-

B(0, 1, 2, ... , h - 1) - 1. Suppose the result holds for some integer r > 0.
Then

(DT)r+1 (w)

- DT ((DT)r(w))

- DT ( B(io, it..... ih_I V, A V,, n ... A Vie 1)
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e(io, i...... lh_l )DT (v,0 A Vi, n ... A Viw_, )

h-1
E(Vio A... A Vi,_, AT(v,) AVii n... AViw-i)
j-0
h-1

- 8(io, i...... ih_i) E (Vi, A ... A V,,_, A Vii+i A Vi,., n ... A Viw ,)
j-0

where the last sum is overall integer lattice points (io, it, ... , i,,_1) E Z" such that

0 : 5

and

io+ii+---+ih_i - (h)
2

+r+l,

and the integer C(io, it, ... , ih _ i) satisfies the difference equation

h-1

COO, it,...,ih-I)-EB(io,...,ii-l,ij - 1,ij+l,...,ih_0.
j-o

This difference equation determines the strict h-dimensional ballot numbers, and
so

C(io, i t ,-- . , ih-1) - B(io, il, ..., ih_i).

Therefore, the result holds in the case r + 1. This completes the induction.

3.6 Erd6s-Heilbronn, concluded

Theorem 3.4 (Dias da Silva-Hamidoune) Let p be a prime number, and let A C
Z/pZ, where I A I - k. Let 2 < h < k. Then

jh^AI > min(p, hk - h2 + 1).

Proof. Let A - {ao, a1..... ak_i }. Let V be a vector space of dimension k over
the field Z/pZ, and let {fo, fi, ... , fk-i } be a basis for V. We define the diagonal
linear operator T : V -+ V by

T(fi) - aifi

for i - 0, 1, ... , k - 1. The spectrum of T is

a(T) - A.

Let
vo-fo+fl+...+fk_1,
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and define
vi+i - T(v1) - T'(vo)

for i > 0. By Lemma 3.8, the cyclic subspace CT (vo) generated by vo is V. and the
set of vectors {vo, VI, ... , Vk_I } is a basis for V. The alternating product ^ h V is\
a vector space with a basis consisting of the (h) wedge products of the form

where

Let

By Lemma (3.9),

0<io<il <k-1.

h

W-VOAV1A...AVk_I EAV.

IhAAI - la(DT)I ? dimC0T(w).

Therefore, it suffices to prove that

dim CoT(w) > min(p, hk - h2 + 1);

this is equivalent to proving that the vectors

w, (DT)(w), (DT)2(w)....,

are linearly independent in the alternating product Ah V. where

n-min(p,hk-h2+1)-1-min(p- 1,hk-h2).

Let 0 < r < n. By Theorem 3.3, the vector (DT)'(w) is a linear combination
of vectors of the form

Vi0AV1, A...A Vi,,_,,

where

and

0<io<il 5 r+h-1 (3.9)

io+il 2 + (3.10)
(h)

Let I be the interval of integers [0, k - I). Since

h^I - [(h2), hk -
(h

2 1cIl - (2h)
+ [0, hk - h2J,

it follows that there is at least one basis vector V;o A V;, A A v;,_, in the expansion
of (DT)'(w) such that

0 < io < il < < ih_I < k - 1 < p (3.11)
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and \ hio+i1 +...+ir,-I - (h2) +r < (h2)
+n < 2)+p

By Theorem 3.3, the coefficient of this basis vector is the strict h-dimensional
ballot number B(io, i 1, ... , i_1). By Theorem 3.2,

BOO, i1, ... , ih-1) # 0 (mod P)

Since V - CT(vo) is cyclic of dimension k, every vector vt E V with t > k is a
linear combination of vo, v1, ... , Vk _ I . Let v,0 A V, A ... A v;F_, be a vector that
satisfies (3.9) and (3.10). If it > k for some t E 10, h -1 ], then vi AV;, A A

is a linear combination of basis vectors of the form vj0 A vj, A A v jh _, . where

0<1o<11 <...<Jh-1 <<k-1

and

.1o+11+...+.%h-I <
h

2
+r.

It follows that (DT)'(w) is a linear combination of basis vectors 11, A v1 A Av,,_1
such that

0 < io < i t < < ih-, < k - I

and either

or

(2)+r

(2h)
+

Moreover, in the second case the basis vector appears with a coefficient B(io, i 1 , ... ,
ih-1), and this number is nonzero modulo p. If the vectors w, (DT)(w), ... ,
(DT)"(w) are linearly dependent in the cyclic subspace CDT(w), then there ex-
ists a positive integer m < n such that

m-1

(DT)"'(w) - 1: Cr(DT)r(w)
r-0

for some Co, ... , c",_1 E Z/pZ. The right side of this dependence relation is a
linear combination of basis vectors v;o A V, A A Vi,-, satisfying (3.11) and

(h)
2

+m-

while the left side is a linear combination of basis vectors satisfying (3.11) and

\2/
+m,
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and including at least one basis vector such that

k
2}+m.

This is impossible, and the proof of the Erdiis-Heilbronn conjecture is complete.
Remark: This proof only requires that A be a subset of a field, and does not

require that the field be Z/pZ. Let K be an arbitrary field. Let p be the characteristic
of K if the characteristic is positive, and let p - oo if the characteristic is zero.
Then we have, in fact, proved that if A e K and JAI - k < p, then IhAAI
min(p,hk-h2+1)forallh > 1.

3.7 The polynomial method

In the following two sections we give a second proof of the Erd6s-Heilbronn
conjecture that uses only elementary manipulations of polynomials. To make the
idea of the method clear, we prove the conjecture first for h - 2. We require only
the following simple property of polynomials with coefficients in a field.

Lemma 3.10 Let h > 1 , and let A0, A I , ... , Ah _ I be nonempty subsets of a field
K with $ A; I - k; for i - 0, 1, ..., h - 1. Let f (xo, x1, ..., .r,_ 1) be a polynomial
with coefficients in K and of degree at most k; - I in x, for i - 0, 1, ..., h - 1. If

f(ao,a,,...,ah-I)-0
for all

(at,a,,...,ah_1) E AO X AI x ... X Ah_I,

then f (xo, x1, ... , xh_I) is the zero polynomial.

Proof. By induction on h. The case h - I follows immediately from the fact
that a nonzem polynomial in K[x] of degree at most k - I cannot have k distinct
roots in K.

Let h > 2, and assume that the lemma is true for polynomials in at most h - 1
variables. We can write

ko-I

f(xo,xi,...,xh-I)- E fi(z1,...,xh_1)x
j-0

where fj(x1,... , xh_ 1) is a polynomial in the h - I variables x1, ... , xh_ I and is
of degree at most k; - I in x1 for i - I..... h - 1. Fix

(a,,...,ah_1) E Al x ... x Ah_1.

Then
ko-I

g(xo) - f (xo, a I , ... , ah - I) - fj (a I , ... , ah- IN
j-0
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is a polynomial of degree at most ko - 1 in xo such that g(ao) - 0 for all ao E Ao.
Since g(x) has at least ko distinct roots, it follows that g(x) is the zero polynomial,
and so

fi(al,...,ah-t)-0
for all

(a1,...,ah_1)EAl

It follows from the induction hypothesis that the polynomial f1 (xi , ... , xh _ I) is
identically zero, and so f (xo, xt , ... , xh _ 1) is the zero polynomial.

Theorem 3.5 Let p be a prime member, and let A and B be nonempty subsets of
Z/pZ such that Al IIB1. Let

A+B-(a+b:aEA,bEB,a'b).

Then

IA+Bl >- min(p, JAI + IBI - 2).

Remark. This immediately implies the Erdo"s-Heilbronn conjecture in the case
h - 2, as follows. Let A C Z/pZ, I A I - k > 2. Choose a E A, and let B - A \ (a).
Then IBI - JAI - 1 and 2^A - A+B. By Theorem 3.5,

12"AI - IA+BI min(p, JAI + IBI - 2) min(p, 2k - 3).

Proof of Theorem 3.5. Let I A I - k and IBI -1. We can assume that

1I<k<p.
Ifk+l-2> p, letl'- p - k+2. Then

2<1'<1<k

and

k+l'-2-p.
Choose B' C B such that I B'I -1'. If the theorem holds for the sets A and B', then

I A+B I > I A+B' I > min(p, k + 1' - 2) - p - min(p, J A I +IBI - 2).

Therefore, we can assume that

k+l-2<p.
Let C - A+B. We must prove that I C l > k + 1 - 2. If

ICI < k+l - 3,

then we choose r > 0 so that

r+ICI - k+l - 3.
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We construct three polynomials fo, fi, and f in (Z/pZ)[x, y] as follows. Let

fo(x, Y) - fl(x + y - c).
(-EC

Then deg(fo) - ICI < k + 1- 3 and

fo(a, b) - 0 for all a E A, b E B, a ' b.

Let

f1 (X' Y) - (x - Y)fo(x, Y).

Thendeg(fl) - l+JCJ <k+I-2and

fl(a,b)-O foralla E A,bE B.

Multiplying f1 by (x + y)', we obtain the polynomial

.f (x, Y) - (x - Y)(x + y)' fl(x + y - c)
cEC

of degree exactly I + r + I C I - k + I - 2 such that

f(a,b)-0foralla E A,bE B.

There exist coefficients

a
nc4N-3

(x-y)(x+ y)'fl(x+y-c)
(-EC

(x - y)(x + y)k+1-3 + lower-order terms.

Since I < I < k < p and I < k+1- 3 < p, it follows that the coefficient uk_1.i_i
of the monomial xk' i y'-' in f (x, y) is

k+1-3 k+l-3 (k-1)(k+l-3)!
k - 2 k - 1 (k - 1)!(l - 1)!

0 (mod p).

By Lemma 3.3, for every m > k there exists a polynomial of degree at
most k - I such that gn,(a) - a' for all a E A, and for every n > I there exists a
polynomial h,, (y) of degree at most 1 - 1 such that h, (b) - b" for all b E B. We
use the polynomials and h,,(y) to construct a new polynomial f'(x, y) from
f (x, y) as follows. If x"' y" is a monomial in f (x, y) with m > k, then we replace
x"'y" with g,,,(x)y". Since deg(f (x, y)) - k +1 - 2, it follows that if m _> k, then
n < 1-2, andsog(.c)y" is a sum ofmonomials x'yJ withi < k- I and j < 1-2.
Similarly, if x"'y" is a monomial in f (x, y) with n > 1, then we replace xy" with

If n > 1, then m < k - 2, and so is a sum of monomials x'yj
withi <k-2and j <I - 1.
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This determines a new polynomial f *(x, y) of degree exactly k - I in x and
1 - I in y. The process of constructing f'(x, y) from f(x, y) does not alter the
coefficient of the term xk-1 y1-1 since the monomial xk-1 y" does not
occur in any of the polynomials g,"(x)y" or x'"h"(y). On the other hand,

f*(a,b)- f(a,b)-0

for all a E A and b E B. It follows immediately from Lemma 3.10 that the
polynomial f'(x, y) is identically zero. This contradicts the fact that the coefficient

of xk-Iyl-I in f *(x, y) is nonzero. This completes the proof.

3.8 Erdo"s-Heilbronn via polynomials

We shall again use the polynomial

0(xo, X1 --, xh- I) ° J (xj - x,),
o<i<j<h-I

which is of degree (2).

Theorem 3.6 Let K be a field. Let p be equal to the characteristic of K if the
characteristic is a prime number, and let p be equal to 0o if the characteristic is
zero. Let h > 2 and t > 0 be integers such that

Then

(xo + ... + xh- I )' &(xo, x, , ... , xh- I) - E B(bo, b, . ... . bh _, )xo' .. . h-I

where the summation runs over all h-tuples (bo, bI , ... , bh_ I) of nonnegative in-
tegers such that

bo+b,+...+bh-.I -m
and the coefficients are the strict ballot numbers

(bo+b, +bh_l - (z))!
B(bo,b,,...,bh-I)- b (bl - b;).lbl... bo -Ih

I 0<i<j<h-I

Proof. Recall that Sh is the symmetric group of all permutations of (0, I , ... .
h - I), and sign(a) - ±1 is the sign of the permutation Or E Sh. Using the
Vandermonde determinant (Lemmas 3.1 and 3.2), we obtain the formula for the
coefficients of the polynomial by the following computation:

(xo + ... + xh- I )' A(xo, X I .... , xh- I )
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(x0 + ... + xh _ I )' jj (xj - xi )
0<i<j<h-I

- (x0+...+xh_I)'

h-I
xh-I

tI --I h-I

h-I 1 lx
'n t li-0 t1 ! i-0 aeS r-0

10.11..6-1.

1 xI x2 ... xh-I
I I

X2 x2 ... xh-I
2 2

l
xh-I xh-I

h-I

(x0+...+xh_I)' E sign(a)j]xa(;>
oESh 1-0

1 h-I

t! E sign(a)
h

aESh IIi-0 t1! 1-0

t! E sign(a) E
h Z' [t1 +a(i)lo(s)x,,.a(i)

aESh "20 i-0 (t, +a(i))!
'o....Hh -, y

aESh h,>.0) 1-0 b1.

'" ftbilo(i) h,t! Y' sign(s) F x

2 h
l x0 x0 xo

j-j
-t!

sign(a) [blla(i>xb

aESh b,O 1-0 bit

h-1
E t! Esign(a)H [blla(1)xh,

br'eb aESh i-0
bi!

I h-I- F1
ht-I

(bj - b1)
x1b,E

h, >n IT-0 b. ! 0<i<j<l,-1 i-0

(bO+b1 +...+bh_I - (z))!
E a) bh- Ih-I I (bj - b1)xo ... xh-I

ni-0 b1' o<i<j<h-I

By Theorem 3.1, the coefficient of the monomial xo is the strict ballot

number B(b0, bl.... , bh - I). This completes the proof.

-I

Theorem 3.7 (Alon-Nathanson-Rum) Let K be afield. Let p be equal to the
characteristic of K if the characteristic is a prime number, and let p he equal to
0o if the characteristic is zero. Let h > 2, and let A0, A 1, ... , Ah - 1 be nonempty,
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f i n i t e subsets o f K. Let IA; I - k; f o r i - 0, 1, ... , k -I, and suppose that k; f kj
for i f j. Let

C - :a; EA;fori-0,1,...,h-I
and a; f ai fori ' j).

Then
h-1 /

ICI > min{p,'"k; - Ch

2

1)
+ 1}.

1.0 \
Proof. Without loss of generality, we can assume that

1 < ko < kl < ... < kh-1.

Then k; >i+l fori-0,1,...,h-1.Letl;-k;-i-lfori-0,1,...,h-1.
Then

and

0 < eo < el < ... < eh-1

h1 ((h+lll
-1 h-1

t-
We shall show that is the theorem holds for t < p, then it also holds fort > p. If

h-1
t-1:l;> p,

r-0

then we choose integers e; < l; such that

0<e0,
l

and
h-I

El;-p-1.

Let

1-o

k;-l;+i+I
fori -0. 1,...,h - 1.Theni+I <k; <k; and

h-1
((h+ Ill

h--1` h-Irkr-\ J-u(k`-i-1)-h-I-P-1.

Choose A; c A; such that l A' l - k,' for i - 0, 1, ... , h - 1, and let

C' - f o r ....,h - I
and a; f ai fori f j }.
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Then C' C C and

ICI > ICI
h-1

min p, E k; -
r-o

Therefore, we can assume that

1-0

We must prove that ICI > t + 1.
Suppose that

h-1
I )

ICI

:5 t=Ek, 2

2 J1-o

Choose the nonnegative integer r so that

(h llr+ICI -
h-1 +Ek; -

\ 2
1-o

W e define the polynomial f E K[xo, x1, ... , xh_I ] defined as follows:

f(xo,x1,...,xh-1)
_ &(XO,x1,...,Xh_I)(Xo+...+Xh_,)`fl(XO+...+xh_1 -C).

cEC

The degree of this polynomial is

m = ();r+icI

= t +
(2h)

k'h1)+(h)
2 2i-O

h-1

Ek; -h
,-o
h-1

E(k; - 1).
1-0
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Moreover,

for all

Since

f(ao,a,,...,an-i)-0

(ao, a,. ..., ah_,) E Ao x Al x x Ah_, .

f(xo,xi.....xn-i)
_ (xo + ... + xh _, ) 1(xo, x, , ... , xn _,) + lower order terms,

it follows from Theorem 3.6 that the coefficient of the monomial

k11-I k1-1 4h-1-1xo xi ...xh-I

is

B(ko - 1, k, - 1,...,kh_I - 1)

(ko+k, +...+kh_, - h - (z))!
(k - k )

(ko - l)!(k, - I)!...(kh_, - 1)!
, i

t!

- k )(k(ko - 1)!(k, - 1)! ... (kh j - 1)! ,r

and this number is nonzero in the field K.
By Lemma 3.3, for i = 0, 1, ... , h - I and for every m > ki there exists a

polynomial g;.,,, (xi) of degree at most ki - I such that gi.,,, (ai) = a,"' for all ai E A; .
W e use the polynomials gi,",(xi) to construct a new polynomial f'(xo, ... , xh_, )
from f (xo, ... , xh _, ), exactly as in Theorem 3.5. If xo' x1 " 1 is a monomial
in f (xo, ... , xh _, ), then we replace x ' with gi,b, (xi) for all i such that bi > ki.
Since deg(f) _ yho (ki - 1), it follows that if bi > ki for some i in a given
monomial, then b, < k, - 1 for some j ¢ i in the same monomial. It follows that
the coefficient of the monomial x0A"-1

. xh" I -I in f' is exactly the same as the
coefficient of this monomial in f, and this coefficient is

B(ko - 1 , k , - I__ k,-, - 1) ¢ 0.

On the other hand, the polynomial f ` has degree exactly ki - I in the variable xi,
and

f'(ao, ... , ah - i) = f (ao, ... , ah-i) = 0

for all (ao, ... , ah_,) E A0 x x Ah_, . By Lemma 3. 10, the polynomial f ` must
be identically zero. This is a contradiction, and so ICI > t + 1. This completes the
proof.

Theorem 3.8 Let K be a field, let p denote the characteristic of K if the charac-
teristic is a prime, and let p - oo if the characteristic is zero. Let h > 2, and let
A be a subset of K such that I A I - k > h. Then

jh^A! > min(p, hk - h2 + l }.
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Proof. Let A0, A 1, ... , Ah _ 1 be subsets of A such that

IAiI - ki - k - i.

Then

Let

Then

C

h-1

().-hk-i-O

-
and ai f aj for i 71 j).

C c h^A.

It follows from Theorem 3.7 than

IhAAI ICI
h-i

min(p,Fk,-(h+i)+1}

io

- h
2

11
+min(p, hk -2

min(p, hk - h2 + 1).

This completes the polynomial proof of the Erd6s-Heilbronn conjecture.

3.9 Notes

The Erdos-Heilbronn conjecture originated in the 1960s. Erdos and Heilbronn
did not include it in their paper on sums of sets of congruence classes [43], but
Erdos [36, pages 16-171 stated the conjecture at a number theory conference at
the University of Colorado in 1963 and subsequently has often mentioned the
problem in his lectures and papers (see, for example, Erd6s [37] and the book of
Erdos and Graham [42, page 95]. Partial results on the Erdos-Heilbronn conjecture
were obtained by Rickert [ 110], Mansfield [85], Rbdseth [ 111 ], Pyber [ 109], and
Freiman, Low, and Pitman [59].

Dias da Silva and Hamidoune [29] proved the complete conjecture by using re-
sults from representation theory and linear algebra. This algebraic technique had
previously been applied to additive number theory by Dias da Silva and Hami-
doune [28]. Spigler [ 120] had earlier applied additive number theory to problems
in linear algebra.

Nathanson [93] simplified the Dias da Silva-Hamidoune method by replacing
the representation theory with simple properties of the ballot numbers. The proof
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of the formula in Theorem 3.1 for the strict ballot number B(bo, ..., b, I) follows
a paper of Zeilberger [ 129). There is a vast literature on ballot numbers and other
lattice path counting problems (see, for example, Mohanty [87] and Narayana [891).

The polynomial proof of the Erd6s-Heilbronn conjecture is due to Alon, Nathan-
son, and Ruzsa [2, 3].

3.10 Exercises

1 . Let a, r E Sh, let f , g E F[xo, x), ... , xh_11, and let c E F. Prove that

(ar)f -a(rf),
a(f +g)-a(f)+a(g),

a(cf)-ca(f),
and

a(fg) -
a transposition. Prove that sign(r) - -I.

3. Use the polynomial method to prove the Cauchy-Davenport theorem.

4. Let A and B be nonempty subsets of Z/pZ, and let

C-(a+b:a E A,b E B,abf 1).

Prove that

JCJ > min(p, JAI + IBS - 3).

5. The division algorithm for polynomials with coefficients in a field F states
that if u(x), v(x) E F(x) and v(x) f 0, then there exist g(x), h(x) E F[x]
such that deg(g) < deg(v) and

u(x) - h(x)v(x)+g(x).

Use the division algorithm to prove Lemma 3.3.
Hint: Let v(x) - 1 1aeA(x - a).

6. Let A - {ao, a,, ..., ak _ i) be a set of k distinct elements of a field F, and
let bo, b,, ... , bk_1 be a sequence of k not necessarily distinct elements of
F. Consider the polynomial g(x) E F[x] defined by

A-1 R-1 x -a;
AX) - Eb;II

i-o
a; - aj

Check that deg(g) - k - I and g(a;) - b; f o r i - 0, 1, ... , k - 1. This
is the Lagrange interpolation formula. Use this to give another proof of
Lemma 3.3.
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Kneser's theorem for groups

4.1 Periodic subsets

The principal goal of this chapter is to prove a beautiful theorem of Kneser about
sums of finite subsets of an abelian group G. We need the following definitions.

Let S be a nonempty subset of the abelian group G. The stabilizer of S is the set

H(S) - {g E G I g+ S- S}.

Then 0 E H(S), and H(S) is the largest subgroup of G such that

H(S) + S - S.

In particular, H(S) - G if and only if S - G. An element g E H(S) is called a
period of S, and S is called a periodic set, if H(S) ¢ (0). For example, if S is an
infinite arithmetic progression in Z with difference d, then H(S) - dZ.

Kneser proved that if A and B are nonempty, finite subsets of an abelian group
G, then either IA + BI > IAI + IBI or

IA + BI - IA + HI + IB + HI - IHI,

where H - H(A + B) is the stabilizer of A + B. In the special case when G is a
finite cyclic group, Kneser's theorem implies the theorems of Cauchy-Davenport
and I. Chowla (see Exercises 5 and 6).

Kneser's theorem has many applications in additive number theory. We shall
use it to generalize the inverse theorem for sumsets of the form 2A (Theorem 1.16)
to sumsets of the form A + B, where A and B are nonempty, finite sets of integers.
We shall also use Kneser's theorem to obtain a density criterion for the order of
an additive basis for a o-finite abelian group.



1 10 4. Kneser's theorem for groups

4.2 The addition theorem

We begin by proving a special case of the main theorem. This simple result is
sufficient in many applications.

Theorem 4.1 (Kneser) Let G be an abelian group, G f {0}, and let A and B
be nonempty, finite subsets of G. If I A I + IBI < I G I, then there exists a proper
subgroup H of G such that

IA+BI> IAI+IBI - IHI.

Proof. By induction on IBI . If IBI - 1, then

IA+BI -IAI- IAI+IBI - 1 > I A I + I B I - IHI

for every subgroup H.
Let IBI > 1, and suppose that the theorem holds for all pairs A', B' of finite,

nonempty subsets of G such that I B' I < IBI . There are two cases.
Case 1. Suppose that

a, + b2 - b, E A

for all at E A and b,, b2 E B. Then

A+b2-b,-A

for all b, , b2 E B. Let H be the subgroup of G generated by all elements of the
form b2 - b, , where b, , b2 E B. Then

IBI < IHI

and

A+H - A 'G.
Therefore, H is a proper subgroup of G. and

IA + BI > Al I> IAI + IBI - IHI.

Case 2. Suppose that there exist at E A and b, , b2 E B such that

a, + b2 - b, ff A.

Let

Then

e- a, -b,.

b2 gA - (a, - b,)-A-e, 4.1)

but

b, E A - (a, -b,) -A -e (4.2)
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since 0 E A - a,. Applying the e-transform (Section 2.2) to the pair (A, B), we
obtain a new pair (A(e), B(e)) of subsets of G defined by

A(e) - A U (B + e)
B(e) - B n (A - e).

It follows from (4.1) that b2 1f B(e), and so B(e) is a proper subset of B. Also,
b, E B(e) by (4.2), so B(e) is a nonempty subset of B. Therefore, the induction
hypothesis applies to the pair (A(e), B(e)). Using properties (2.1) and (2.3) of the
e-transform, we conclude that there exists a proper subgroup H of G such that

IA+BI > IA(e)+B(e)I

? IA(e)I + IB(e)l - I HI

- Al I+ IBI - IHI

This completes the proof.
The proof of Theorem 4.2 uses the following three lemmas.

Lemma 4.1 Let G be an abelian group, and let C - C, U C2 be a finite subset of
G, where C, and C2 are nonempty, proper subsets of C. Then

IC1I + IH(C1)I <- ICI + IH(C)I

fori-Iori-2.
Proof. If ICi I + IH(Ci)1 < ICI for i - 1 or i - 2, then we are done. Therefore,

we can assume that

ICI < IC,I +IH(C,)I (4.3)

for i - 1 and i - 2. Let H(C,) - Hi, and let m; denote the index of the subgroup
Hi in H, + H2. Let H - H, n H2 and I H I - h. By a standard isomorphism theorem
of group theory,

(H, + H2)/H1 = H2/H

and

(Hi +H2)/H2 = Hi/H.

Therefore, IH,I - m2h, IHz1 - m,h, and IH, + H21 - m,m2h. Since H C H;, it
follows that H +Ci - Ci and C; is a union of cosecs of H in G. Therefore, C, \ C2
and C2 \ C, are unions of H-cosets, and

ICiIIC21ICi\C21IC2\C,10 (mod h).

Since C is the union of the proper subsets C, and C2, it follows that C, \ C2 and
C2 \ C, are nonempty. By (4.3),

0<ICI\C21-IC\C21-ICI-IC21<IH21-m1h,
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and so

h<ICI \C21<(m,-l)h. (4.4)

Similarly,

h < IC2 \ C, I < (m2 - 1)h. (4.5)

Choose C* E C1 \ C2, and let

D-c'+H,+ H2.

Then D is a union of H,-cosets of the form

D, -c'+h2+ H,, 4.6)

where h2 E H2, and D is also a union of H2-cosets of the form

D2-c'+h,+H2, (4.7)

where h, E H1. Let D, bean H, -coset of the form (4.6), and let D2 bean H2-coset
of the form (4.7). Since h2 + H C H2 and h, + H C H,, it follows that

c'+h,+h2+Hc D,nD2.

Conversely, if g E D, n D2, then there exist h, E H, and h2 E H2 such that

g-c'+h,+h2-c'+h,+h2.

This implies that
g - (c' + h, + h2) - h, - h, E H,

and

g-(c'+h,+h2)-h'2-h2 E H2,
and so

It follows that

and so

Thus,

g-(c'+h,+h2)E H, nH2-H.

gEc'+h,+h2+H

D,nD2cc'+h,+h2+H.

D,nD2=c'+h,+h2+H,
and the intersection of an H,-coset in D with an H2-coset in D is an H-coset.

Since the index of H; in H, + H2 is m;, the subgroup H, + H2 is the union of
m; pairwise disjoint H; -cosets, and so D - c' + H, + H2 is also the union of m;
pairwise disjoint H;-cosecs. Since H; +C; - C; is a union of H;-cosets, it follows
that C, n D is the union of, say, u, pairwise disjoint H; -cosets, and so C; n D is the
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union of m; - u; pairwise disjoint H;-cosecs. Since the intersection of an Hi-coset
in D and an H2-coset in D is an H-coset, it follows that

(C2\C,)nD-(C2nD)n(C, nD)

is the union of u2(m, - u 1) pairwise disjoint H-cosets. and so

1(C2 \ Cl) n DI - u2(m1 - u, )h. (4.8)

Similarly,
(Cl\C2)nD-(C,nD)n(C2nD)

is the union of u, (m2 - u2) pairwise disjoint H-cosets, and

1(C, \ C2) n DI - ut(m2 - u2)h. 4.9)

Since

c'E(C,\C2)nDSC1\C2,
it follows that

0 < 1(Ct \ C2) n DI - ui(m2 - u2)h < IC, \ C21 < (mi - 1)h.

Therefore, I < u,(m2 - u2) < m, - 1, and so

1<u,<m,-1
and

1<u2<m2-1.
It follows from (4.4), (4.5), (4.8), and (4.9) that

0 (m, - u, - 1)(u2 - 1)h + (M2 - U2 - 1)(u, - 1)h
u2(m, - u, )h -(M2 - 1)h + u, (m2 - u2)h - (m, - 1)h
I(C2 \ Ci) n DI - (m2 - 1)h + I (C1 \ C2) n D1 - (m, - 1)h

IC2\C11-(m2-1)h-I(C2\Ci)nDt
+IC1 \C21-(m, - 1)h-I(C1 \C2)nDi

< 0,

and so IC2\C1 1-(m2-1)hand IC,\C21-(m,-1)h.Since H-H,nH2,it
follows that

H+C - H+(C, UC2)-(H+C,)U(H+C2)-C, UC2 -C,

and so H c H(C). Therefore,

ICI - IC21 - IC \ C21

ICI \C21
m,h - h
IH21 - IHI

IH21 - I H(C)I.
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Similarly,
ICI-IC,I

and so

ICrI + I H(Cl)1 ICI + IH(C)I

for both i - 1 and i - 2. This completes the proof of the lemma.

Lemma 4.2 Let n > 2, and let G be an abelian group. Let C be a finite subset of
G such that

C-CiUC2U...UCn,
where C1..... Cn are nonempty, proper subsets of C. Then

ICrI+IH(C,)I <ICI+IH(C)I

for some i - 1, ... , n.

Proof. By induction on n. Lemma 4.1 is the case n - 2. Let n > 3, and
suppose that the result holds for n - I. If IC; I + IH(C;)I < ClIfor some i, then
ICrI + I H(C1)I < Cl I< ICI + I H(C)1, and we are done. If not, then

ICI < ICrI +IH(C1)1

for all i - 1, ... , n. If C is the union of n - I of the subsets C1.... , C, we are
done, since the result follows from the case n - 1. Thus, we can assume that C is
not the union of n - 1 of the sets C1, ... , Cn. Let

C'-C1U...UCn_i.

Then the sets C1.... , Cn_1 are proper subsets of C', and C' is a proper subset of
C. It follows from the case n - I of the lemma that

ICrI+IH(C1)I < ICI+IH(C')I (4.10)

for some i - 1.... , n - 1. Since

C - C'UC,,

Lemma 4.1 implies that either

IC,I+IH(C,)I <- ICI+IH(C)I

or

IC'I+IH(C')I <- ICI +IH(C)I.

and the result follows from (4.10).

Lemma 4.3 Let C1..... C,, be finite, nonempty subsets of the abelian group G,
and let

C-C1U...UC,.

>- IHI I-IH(C)I,

Then

min(IC,I+IH(Ca)I : i - 1,....n) < ICI+IH(C)I.
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Proof. If Ci - C for some i, we are done. If not, then each set Ci is a proper,
nonempty subset of C, and Lemma 4.2 implies that

IC1I+IH(C1)I <- ICI +IH(C)I

for some i - 1,...,n.

Theorem 4.2 (Kneser) Let G be an abelian group, and let A and B be finite,
nonempty subsets of G. Let

H - H(A + B) - (g E G I g+A+B-A+B)

be the stabilizer of A + B. If

IA+BI < IAI+IBI, (4.11)

then
IA+BI -IA+HI+IB+HI - IHI. (4.12)

Proof. Let C - A + B satisfy inequality (4.11). Let B - {bi, ... , b,,). For each
bi E B, we consider the collection of all pairs of finite subsets (Ai, Bi) of G such
that

ACAi,
bi E Bi,

Ai+Bi c A + B,

IA1I+IBrI - IA+HI+IB+HI.
This collection is nonempty since the sets Ai - A + H and Bi - B + H satisfy these
conditions. Fix a pair (Ai, B,) for which IAdI is maximal, and let Ci - Ai + Bi.
Then I Ai 15 ICr I, and

A+b, cAi+Bi - Ci c C. (4.13)

Let a E Ai and e - a - bi. Applying the e-transform to the sets Ar, Bi, we obtain
the sets

Ai(e) - Ai U (Bi+e)-Ai U(a+Bi -b,)
and

Bi (e) - Bi fl (Ai - e) - B, fl (-a + Ai + bi ).

Then Ai c Ai (e) and bi E Bi (e). By Lemma 2.3,

Ai (e) + Bi (e) c Ai + Bi c C - A + B

and

IA,(e)I+IB1(e)I - IA,I+IBrI - IA+HI+IB+HI.
It follows from the maximality of I Ai I that Ai(e) - Ai, and so

aea+Bi - b,cAi
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for each a E A, . Therefore,

AicAi+Bi - b, - Ci - bicAi

and soAi-Ci-bi.Then IA1I-ICi1.H(A1)-H(C1),and

B, - b, c H(A1) - H(C,);

hence IBiI < IH(Ci)I. We obtain

I A + H I + I B + H I - IAiI+IBAI <- ICiI+IH(C1)I

for all i - 1.... , n. Since
n

UC, -C- A+B
i-I

by (4.13), it follows from Lemma 4.3 that

IA+HI+IB+HI < min(IC,I+IH(C1)I)
<- ICI+IH(C)I
- IA+BI+IHI.

Since each of the integers IA + HI, I B + HI, and IA + BI is a multiple of IHI, it
follows that if

IA+HI+IB+HI < IA+BI+IHI,
then

IAI+IBI < IA+HI+IB+HI < IA+BI,

which contradicts (4.11). Therefore, I A + H I + I B + H I- I A + B I + IHI . This
completes the proof of the theorem.

Theorem 4.3 Let G be an abelian group, and let A and B be finite, nonempty
subsets of G. Let H - H(A + B). Then

IA+BI > IA+HI+IB+HI - IHI. (4.14)

Proof. We apply Kneser's theorem to the sets A + H and B + H. Then either

IA+BI - I(A+H)+(B+H)I
> IA+HI+IB+HI
> IA+HI+IB+HI-IHI

or

and so

I(A+H)+(B+H)I < IA+HI+IB+HI,

IA +BI -I(A+H)+(B+H)I -IA+HI+IB+HI -IHI.

This proves (4.14).
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Theorem 4.4 Let h > 2, let A,, A2, .... A,, be finite, nonempty subsets of an
abelian group G, and let H = H(AI + + A,,). Then

At +...+A,,I > IAiI+...+IAhI -(h- 1)IHI.

Proof. By induction on h. The case h = 2 comes from inequality (4.14).
Let h > 3, and suppose that the theorem holds for some h - 1. Let H'

H (A i + + A,,_). It follows from Exercise I that H' C H, and so

IAi+...+A,I > A,+...+A,,-ll+IAhI-IHI
> A, I+...+IAh-il -(h -2)IH'I+IAhI - IHI
> Al +...+IA,,-iI+IAhI -(h - 1)IHI.

Theorem 4.5 Let G be an abelian group, and let A be a finite, nonempty subset
of G. Let h A be the h fold sumset of A, and let

H,, =H(hA)={g E G lg+hA=hA}

be the stabilizer of h A. Then

IhAI > hIA + Hhi - (h - 1)IHhI

for all h > 1.

Proof. By Theorem 4.4, for any finite, nonempty subset B of the group G we
have

IhBI > hIBI - (h - 1)IH(hB)I

for all h > 2. Let

Then

B=A+H,,.

hB=h(A+H,,)=hA

and so H(hB) = H(hA) = H,,. Therefore,

IhAI - IhBI > hIA + H1,I - (h - 1)IH,,I

4.3 Application: The sum of two sets of integers

Let A and B be nonempty, finite sets of integers. Then IA + BI > IA; + IBI - 1.
By Theorem 1.3, I A + B I - J A I + IBI - I if and only A and B are arithmetic
progressions with the same common difference. Our goal in this section is to show
that if 1 A+BI is "small," then A and B are "large" subsets of arithmetic progressions
with the same common difference. This inverse theorem for the sumset A + B is
a generalization of Theorem 1.16.
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Theorem 4.6 Let k, 8 > 2, and let A - {ao, al, ... , ak_I } and B - {bo, b1, ... ,
bt_1 } be nonempty, finite sets of integers such that

0-ao <a, <... <ak-1,

0 - bo < bl < ... < bt-1,

bt-1 < ak-1,

and

(a1, a2,...,ak-1)-l.
Let

0 if bt_1 < ak-1

Then

d-
I if bt_1 - ak_1.

IA+BI > min(ak_I+l,k+2t-8-2}.

Proof. If I A + B I > k + 2f - 8 - 2, we are done. Therefore, we can assume that

We shall prove that

Let G - Z/ak _ 1 Z, and let

IA+BI <k+2t-S-3.

IA+BI > ak-1 +t.

r:Z -* G
be the canonical homomorphism onto the cyclic group G. Then

n(A + B) - tr(A) + 7r (B),

Itr(A)I -k - 1

since n (ao) - tr (ak _ 1) - 0, and

(4.15)

I,r(B)I-f-8

since n(bt_ 1) - 0 if and only if bt_1 - ak_1. We can rewrite (4.15) in the form

IA+BI < I,r(A)I+I,r(B)I+t-2. (4.16)

We shall show that there are at least e integers in A + B that lie in the same
congruence classes modulo ak-1 as other integers in A + B. If bt_1 < ak_1, then

tr(ao + b,) - a(ak_I + bi)

fori -0, 1,...,1 - 1, and

ao + bo <ao+b1 <... <ao+bc_1
< ak-1 +bo < ak-1 +bi < - < ak-1 +bt_I.
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If bt_, - ak-1, then

while

and

ao+bo<ao+bi < <ao+bt_2 <ao+bt_I-ak_I+bo
< ak_1 + bi < .. < ak_1 + be-2 < ak_t + bt_i,

n (ao + bo) - ,r (ao + bt_ t) - a(ak_ t + bt_, )

7r(ao+bi) - n(ak_i +bi)

for i - 1, ... , l - 2. Therefore, by inequality (4.16), we have

I,r(A)+rr(B)I < IA+BI -8 < I,r(A)1+In(B)l -2. (4.17)

We can apply Kneser's theorem to the sunset 7r (A) + rr(B) in the group G. Let
H - H(n(A)+rr(B) be the stabilizer of n(A)+n(B)). By Theorem 4.2, we have

I,r(A)+s(B)I - I,r(A)+HI+I,r(B)+HI - IHI. (4.18)

Since every subgroup of a cyclic group is cyclic, there is a divisor d of ak_ 1 such
that H - d G - d Z/ak_ i Z. We shall prove that d - 1.

Let a : G --> G/H be the canonical homomorphism from G onto the quotient
group G/H. We partition A + B as follows:

A+B-C,UC2,

where

Ci - {c E A + B : an(C) E a7r(B)}
- {c E A + B : 7r(c) E 7r(B) + H}

and

C2 - ICE A + B : aYr(C) E a2r(A + B) \ alr(B)}

{c E A + B : ,r(c) §t ,r(B)+H}.

Then C1 f1 C2 -0, and
IA+BI-IC1I+IC21

We shall estimate the cardinalities of the sets C1 and C2. Since

,r(B)+H c 7r(A)+7r(B)+H -rr(A+B)

and

Jr(ao+bi)-n(ak_i +bi)-n(b,) E,r(B) c,r(B)+H
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for i - 0, 1, ... , t- I, it follows (by the same argument used to derive (4.17)) that

ICiI - I{cEA+B:lr(c)EJr(B)+H}I
> £+I{7r(c)E7r(A+B):7r(c)E7r(B)+H}I
= Z+I,r(B)+HI

t+Ia,r(B)IIHI

Next we estimate ICz1. Let

r - Ia r(A+ B) \ a7r(B)I.

It follows from (4.18) that

a,r(A+B)I - Ia7r(A)I+Ia7r(B)I - I

and so
r - Ia r(A)I - 1.

Choose ci , ... , Cr E C2 such that

air(A + B) \ a,r(B) - {a7r(cl),... , a,r(c,)),

and choose ai E A and bi E B such that

ai + bi - ci

fori - 1,...,r. Foreachi - 1....,r, we have

I{c E A + B : a7r(c) - a7r(ci)}I

> I(a E A : a,r(a) - an(al)) + (b E B : a7r(b) - a7r(bi)}I

I{a E A a7r(a) - a7r(ai)}I + I{b E B : a,r(b) - a r(bi)}I - 1.

Since

I{a E A : a,r(a) - a7r(ai)}I

I(7r(ai)+H)n,r(A)I
17r(ai)+HI+17r(A)I - I(7r(ai)+H)Uir(A)I
IHI+17r(A)I-I,r(A)+HI

and

I{bE B: a,r(b)-a,r(bi)}I > IHI+I7r(B)I -17r(B)+HI,

it follows from (4.18) that

I{c E A + B ax(c) - a7r(ci)}I
21HI + I7r(A)I + 17r(B)I - Iir(A)+ HI - I7r(B)+ HI - I

- IHI + I,r(A)I + I,r(B)I - I,r(A + B)I - 1,
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and so

IC21 - E I{c E A + B : a7r(c) - o7r(c,)}I
i-I
r(IHI +17r(A)I+17r(B)I -17r(A+B)l - 1).

Using our estimates for IC, I and IC21, we obtain

IA+BI ICII+IC21
e+lan(B)IIHI+r(IHI +17r(A)I+17f(B)I - In(A+B)I - 1)
e+lan(B)IIHI +(lo7r(A)l - 1)IHI
+r (17f(A)I + I7r(B)I - 17r(A + B)I - 1)

l + lo,r(A + B)IIHI +r (17r(A)l + In(B)I -17r(A + B)l - 1)

E+ 17r(A+ B)I + r (In(A)l + l,r(B)I - 17r(A+ B)I - 1).

On the other hand, from (4.16) we have

IA+BI -< 17f(A)l+I7r(B)I+t-2.

Combining these upper and lower bounds for IA + B1, we obtain

e + 17r(A + B)I + r (17r(A)I + I7r(B)I - 17r(A + B)I - 1)

< IA+BI
< I71(A)I + 171(B)I + e - 2,

and so
(r - 1)(17C(A)I + I7r(B)I - 17r(A + B)I) -< r - 2.

By (4.17), we have

and so

Therefore,

17r(A + B)I <- 17r(A)I + 17r(B)I - 2,

2(r-1)<r-2.

r - Io7r(A)I - I - 0.

Then o7r(A) - H in Gill since 0 E A, and so 7r(A) C H, that is,

a, =0 (modd)

for every a, E A. Since (a1....,ak_I) - 1, we must have d - 1, hence H -
Z/ak -1 Z - G and

7r(A+B)-7r(A+B)+H-Z/ak_IZ.
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Suppose that S = 0. Then the congruence classes tr(ao + b,) are pairwise distinct
fori = 0, 1, ..., e - 1. Since tr (ao + bi) - tr (ak _, + bi) fori = 0, 1, ..., e - 1, it
follows that there are at least two distinct integers in A + B that belong to each of
the a congruence classes n (ao + bi ), and there is at least one integer in A + B in
each of the remaining ak_, - e congruence classes in Z/ak_IZ. Therefore,

I A + B I ? 2e+(ak_, - E)=ak_I +e.

Similarly, if S = 1, then the e - I congruence classes tr(ao+bi) are pairwise distinct
fori-0,1,...,e-2.Since it(ao+bi)_it(ak_,+bi)fori-l,...,e-2, and

n(ao + bo) = n (ak_, + bo) - n (ak_, + bt_,) = n(0),

it follows that there are at least two distinct integers in A + B that belong to each of
the e - 2 congruence classes n (ao + bi) f o r i - 1, ... , e - 2, that there are at least
three distinct integers in A + B in the congruence class and there is at least
one integer in A + B in each of the remaining ak_I - e + I congruence classes.
Therefore,

A+BI ? 2(e-2)+3+(ak_1 -e+l)-ak_,+

This completes the proof.

Theorem 4.7 Let k, e > 2, and let A - {ao, a, , ... , ak_ I } and B - {bo, b, , ... ,
bt_, } be nonempty, finite sets of integers such that

0 - ao < a, < < ak_,

0 = bo < b, < ... <

be-, 5 ak-1,

and

(a,,...,ak-I,bi,...,bt_,)= 1. (4.19)

Let

and let

Then

S =
( 0 if be-, < ak_,
t 1 if be-, = ak_,

m = min(k, e - S).

IA+BI > min(ak_,+e,k+e+m-2). (4.20)

Proof. If (a, , ... , ak _,) - 1, then inequality (4.20) follows immediately form
Theorem 4.6.

Let
d = (a,,...,ak-,) > 2.
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Fori -0, 1,...,d - 1, let

B,-{beB:b-i (modd)}
and let

ei-IB,I-I[0,ak_1-1]nB;I+S;,
where Si - 0 for i ¢ 0 and So - S. Then Bo f 0 since 0 E B. Let s denote the
number of nonempty sets B,, or, equivalently, the number of congruence classes
modulo d that contain at least one element of B. Then (4.19) implies that Bi 0
for some i f 0, and so 2 < s < d. If C E A + Bi, then c - i (mod d), and so
the sumsets A + B; are pairwise disjoint. Moreover,

d-1
A+B - U(A+B;).

e, R

It follows that
d-1

IA+BI - IA+Bil

e, R

d-1

> (k + ti - 1)

e, R

s(k-1)+e
> 2k+e-2
> k+e+m-2
> min(ak _ 1 + e, k + e + m - 2).

This completes the proof of inequality (4.20).
Recall that the diameter of a set A is

diam(A) - sup(la - a'I : a, a' E A).

If A is finite and A - {ao,a,,...,ak_I), where ao < a1 < ,ak_1, then
diam(A) - ak_I - ao.

Theorem 4.8 Let A and B be nonempty, finite sets of integers such that

diam(B) < diam(A).

Let
0 if diam(B) < diam(A)
I if diam(B) - diam(A)

Let I Al -k, I B I - e, and m - min(k, e - S). If

IA+BI-k+e-I+b<k+e+m-3,
then A and B are subsets of arithmetic progressions of length at most k + b with
the same common difference.
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Proof. Let A - {ao, a, , ... , ak_) } and B - {bo, b1, ... , bi_, }, where

ao < a, < ... < ak-1,

bo < b, < < bt_,,

and let

d - (at - ao, a2 - ao,...,ak_, - ao,b, - bo,...,bk_, - bo).

Let

and

Let

fori-0,1,...,k-I
'

forj-0,1,...,t-l.

A(N) - f a(iN): i -Q, I,...,k- I}
and

B lb(N): j -0, 1,...,e- I}.
Then

min(A(N)) - min(B(N)) - 0

and

(a(N), ... a,,-,, b,N). .. I t-1) - 1.
Since diam(B) < diam(A), it follows that

b(N) < a(N)l-1 - k-1
The sets A(N) and B(N) are constructed from A and B, respectively, by affine
transformations, and

IA(N)+B(N)I - JA+BI < k+f+m-3.

It follows from Theorem 4.7 that

SA(N)+B(N)I > a,((_ +B,

or, equivalently.

br_ <a,((Ni <JA(N)+B(N)j -e-k-1+b.
Since a; - ao ±a;N)d for i - 0, 1, ... , k - 1, it follows that

Ac {ao+xd:x-0,...,a,Ni} c {ao+xd:x-0,...,k-I+b}.

Similarly,

Bc{bo+yd:y-0,...,b(N)}c{bo+yd:y-0,...,k-I+b}.

This completes the proof.
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Theorem 4.9 Let k, t > 2, and let A - {ao, a, , ... , ak_, } and B = {bo, b, , ... ,

b_1 } be nonempty, finite sets of integers such that

0 - ao < a, < <

and

Let

If

then

ak_,,

0-bo<b,

be-, ak-1,

d-(a,,...,ak_,)> 1,

(a,,...,ak-1,b,,...,be_,) - 1.

8 - ( 0 if be_, < ak_,
if bf_, -ak_,I

ak_, <k+Z-S-2,

.

IA+BI>ak_,+P.

Proof. Since d divides a; f o r all i - 1, ... , k - 1, we have

d(k - 1):!j ak_,.

(4.21)

(4.22)

The interval [0, ak -I - I] contains exactly ak -I Id integers in each congruence
class modulo d. Let s denote the number of congruence classes modulo d that
contain at least one element of B. Since

BC[0,ak-,-1+31,

it follows that sak_I
C -IBI <

d
+S.

Inequalities (4.21) and (4.22) imply that

and so

It follows that

d

d(k - 1)(d - s) < ak_,(d - s) < d(k - 2).

s -d,

that is, B intersects every congruence class modulo d. Let

ak_, < k+e-8-2
< k+ sak-1 - 2,

B;-{bEB:b-i (modd)}
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and let
ti -IB11-I[O,ak_I - l]fl BI +S,

where Si - O for i 710 and So - S. By (4.21),

1[0,ak_) - 11\ BI - ak_I - e+S < k-2,

and so

ei - I[O,ak_) - l]nBiI+Si
ak-1 1[0,ak-1-1]\BI+Si

d

Therefore,
min(adl,k+ei-1, (4.23)

fori-O,1,...,d-1.
Letbi,o-min(Bi)fori -0,...,d- 1. Let

A(N)-(a aEA}
ld

and let
B'(N)- (b-b1.0 :bE B}.

d JJJJJJ

Since the elements of A(N) are relatively prime, and since

min (A(N) U B(N) ) - 0

and

max (A(N) U B,N)) - ak-1

d '
it follows from Theorem 4.6 and (4.23) that

IA + Bil - IA(N)+ Bi(N)I

> min(adl,k+ei -Si -2)+ei
ak-1

d
+ L.

Since the sets A + Bi are pairwise disjoint for i - 0, 1, ... , d - 1, and A U B -
Ud-0 (A + Bi ), we have

d-I

IA+BI - EIA+BiI
i-0

d-1
> E 1 a I +ei

1.0

- ak_I +e.

This completes the proof.
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4.4 Application: Bases for finite and or -finite groups

Let G be an abelian group, written additively, and let A c G. The set A is a basis
of order h for G if hA - G.

Theorem 4.10 Let G be a finite abelian group, and let A be a nonempty subset of
G. Let G' be the subgroup of G generated by A. Then A is a basis for G' of order
at most

max 2, 21 G" 1
1

IAI

Proof Without loss of generality we can assume that G' - G. Since h(A -
(go)) - hA - {hgo} for any go E G, it follows that hA - G if and only if
h(A - (go)) - G, and so we can assume that 0 E A.

Since A generates G and G is finite and abelian, it follows that A is a basis for
G of some finite order. Let h be the smallest positive integer such that hA - G. If
h - I or 2, we are done. Suppose that

Then

and so, by Lemma 2.2,

h>3.

(h - 1)A - A + (h -2)A ' G,

IGI >- IAI + I(h - 2)AI.

Let Hh_2 - H((h - 2)A) be the stabilizer of (h - 2)A. Then Hh_2 is the largest
subgroup of G such that

(h - 2)A + Hh_2 - (h - 2)A.

For some r > 1, the set A + Hh_2 is a union of r pairwise disjoint cosets of
Hh_2, Since 0 E A fl Hh_2, we have

Hh_2 c A + Hh_2

and

A C A + Hh_2.

Therefore,

Ifr-1,then

Al I< IA+Hh-21 -rlHh-21. (4.24)

A + Hh_2 - Hh_2.

Since Hh_2 is a subgroup, it follows that

G-hAcHh_29G,
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and so Hh-2 - G. This implies that (h - 2)A - G, which contradicts the minimality
of h. Therefore,

r>2.

By Theorem 4.5 and (4.24), we have

1(h - 2)AI > (h - 2)IA + Hh-21 - (h - 3)IHh-21

- (h - 2)rlHh-21 - (h - 3)IHh-21

- ((h
h-3

iH- 2) -
lr r h-z

((h_2)___)lAI

((h_2)___)AI
h - 1- 2 JAI,

and so

IAI.IGI ? JAI + I(h - 2)AI (--)
Solving for h, we obtain

21G1h<<--1.
IAI

This completes the proof.
Exercise 10 shows that the upper bound in Theorem 4.10 is sharp.
Let G be a countable abelian torsion group, and let GI S G2 c . . be an

increasing sequence of finite subgroups of G. Then G is a -finite with respect to
the sequence {Gn } if

Oc

G -UG
n-1

Let A be a subset of G, and define A - A f1 G,,. Then A - U00I An. The set A is
called a a-basis of order h for G with respect to the sequence {Gn} if hA - Gn
for n - 1, 2, .... Clearly, every a-basis of order h for G is a basis of order h for
G. The converse is not true (see Exercise 11.)

Let G - U,'I Gn be a a-finite abelian group, and let A be a subset of G. Let
A - A f1 G,,. The upper asymptotic density of the set A is defined by

du(A) = lim su p
IGnl

.

Clearly, 0 < du (A) < I for every subset A of G.
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Theorem 4.11 Let G - U"'.1 Gn be a a finite abelian group. Let A be a subset of
G such that 0 E A. and let G' be the subgroup of G generated by A.1f dU (A) > 0,
then A is a basis for G' of order at most

max 2, 2 1

dv(A)

Proof. Let A - A n G,,, and let G;, be the subgroup generated by An for
n - 1, 2, .. .. Then

and

AnG,,-An(G;,nG,,)-(AnG,,)nG,,-AnnG,,-An.
If g E G', then g is generated by some finite subset of A. Since this finite subset
belongs to An for some n, it follows that g E G and so

00

G;,.G-U
R-1

Thus, the group G' is a or -finite with respect to the sequence {G,,G,,). Let

d °I(A) - lim sup
1& 1

n-.oo IGnI

and

Ic>dU (A) - lim su
A

p
n-.oo IGnI

Since G,, c Gn, it follows that

0 < du 1(A) < d °''(A).

Choose e such that
0<e<d°"(A).

It follows from the definition of upper asymptotic density that there exists an
infinite sequence n 1 < n2 < . . of positive integers such that

IA An,
II > du (A) - e > 0

G;,,

for all i - 1, 2..... Moreover,

G - Ui_I G,

R"

If g E G', then g E G,,, for some i. By Theorem 4.10,

gEhit,,, ChA
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for some h such that

h < max 2I
G

I 1l< max 2, 1(2.
IA,,,I I ( d°1(A)-s

Therefore,

for some

hA - G'

h < max 2, cat
2

1

d, (A)-e
Since this is true for all sufficiently small positive e, it follows that A is a basis of
order h for G, where

h < max 2 1 < max 2, 2 1l(2.
du (A) du

)(A) /
This completes the proof.

Exercise 12 shows that the upper bound in Theorem 4.11 is sharp.

4.5 Notes

The proof of Kneser's theorem (76) for abelian groups in Section 4.2 follows
Kemperman [74]. Mann [84) gives a condensed proof of this result.

If A and B be nonempty, finite subsets of an abelian group such that IA + B I <
A I + J BI, then (A, B) is called a critical pair. Vosper (Theorem 2.7) classified the

critical pairs in the finite cyclic groups Z/pZ, where p is a prime number. It is an
open problem to classify the critical pairs of subsets of an arbitrary abelian group.
Important partial results are due to Kemperman [74], who used Kneser's addition
theorem for abelian groups to study this problem, and to Hamidoune [65, 661, who
used graph theory.

There are a few results about critical pairs in nonabelian groups. Diderrich [30]
extended Kneser's theorem to certain special pairs of subsets of nonabelian groups.
Hamidoune [621 showed that Diderrich's result followed from Kneser's theorem.
Brailovsky and Freiman [12] completely classified the critical pairs in arbitrary
torsion-free groups. Hamidoune [63) found a short proof of a theorem that includes
the Brailovsky-Freiman result as a special case.

The results in Section 4.3 on inverse theorem for sumsets of the form A + B
were originally obtained by Freiman [52]. Another version of Freiman's proof is
due to Steinig [ 1211. The proofs in this chapter use Kneser's theorem and are due
to Lev and Smeliansky [81]. Similar proofs were obtained by Hamidoune [64].
Theorem 4.9 has been applied recently to different problems in number theory,
for example, the structure theory of sum-free sets (see Deshouillers, Freiman, S6s,
and Temkin [26] and Freiman [57]).
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Lev [80] also used Kneser's theorem to prove that if A e (ao, a,.....a1 } is a
finite set of integers in normal form, then

IhAI > I(h - I)AI +min(ak_,, h(k - 2) + 1).

for all h > 2. For h - 2, this is Theorem 1.15. For large h this is weaker than
Theorem 1.1.

Theorem 4.1 1 is due independently to Deshouillers and Wirsing [27] and Hami-
doune and Rodseth [68]. It generalizes a result of Jia and Nathanson [73] for ar-
bitrary a-finite abelian groups, and of Cherly and Deshouillers [ 17] in the special
case of the a-finite group Fq[x] of polynomials over a finite field. Hamidoune
and Rodseth [68] prove their theorem for a-finite groups that are not necessarily
abelian.

4.6 Exercises

1. Let A and B be subsets of an abelian group G. Prove that H(A) c H(A+B).

2. Let A be a nonempty subset of an abelian group G. Prove that A is a subgroup
if and only if H(A) - A.

3. Let G be an abelian group, and let A,, A2, ..., Ar, be finite, nonempty
subsets of G. Prove that if A I + . + A,, is not periodic, then

IAI +...+Anl > IAII+...+IAnI -(h - 1).

4. Let G be an abelian group. For any subgroup H of G and for any subset S
of G, we define

S/H-{s+HIsES}cG/H.
Let A and B be subsets of G. and let H - H(A + B). Prove that either
IA+BI > IAI+IBI or

I(A+B)/HI -IA/HI+IB/HI - I.

5. Prove that Theorem 4.1 implies the Cauchy-Davenport theorem.

6. Prove that Kneser's theorem (Theorem 4.2) implies Chowla's theorem (The-
orem 2.1).

7. Let G be an abelian group. For A, B C G, let H(A + B) be the stabilizer of
the sumset A + B in G. Suppose that

I A + B I >- IAI+IBI - IH(A+B)I,

holds for all finite, nonempty subsets A, B of G. Show that this implies
Kneser's theorem (Theorem 4.2).
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8. Prove that Theorem 4.6 implies Theorem 1.16.

9. Let A and B be finite, nonempty sets of integers, and let I A I - k and I B I - Z.
Prove that if

IA+BI <k+f+min(k,f)-4,
then A and B are subsets of arithmetic progressions of length at most IA +
BI - min(k, l)+ I and with the same common difference.

10. Leth > 2and m-h+1.Let G-Z/mZand A-{0,1} g G. Show that
A is a basis for G of exact order

21GI

IAI

This example shows that the upper bound in Theorem 4.10 is best possible.

11. Let q be a power of the prime p, and let G - Fq[x] denote the ring of
polynomials with coefficients in the finite field Fq. Let G,, be the subgroup
of Fq[x] consisting of all polynomials f of degree at most n. Then Fq[x] -
U,°_, G,,. Choose N > 2, and let

A-{0}U{fEF[x]I degf ?N}.

Prove that A is a basis of order 2 for G. but not a a-basis of order 2 for G.

12. Let m > 3, and let G - [x] be the additive abelian group of polynomials
with coefficients in the ring Z,,, of integers modulo m. Then G - U001 G,,,
where G is the subgroup of G consisting of all polynomials of degree less
than n. Let A be the subset of G consisting of all polynomials with constant
term 0 or 1. Prove that du(A) - 2/n and that A is a a-basis for G of exact
order

h - m - i - 2 -1.
du(A)

This example shows that the upper bound in Theorem 4.11 is best possible.

13. Prove that there exists a basis A of order 2 for Z such that every integer has
a unique representation as the sum of two elements of A.
Hint: Construct the set A inductively. Let a, - 0. Suppose that integers
a, , ... , ak have been chosen so that the k(k + 1)/2 sums a; + aj are distinct
for 1 < i < j < k. Choose n so that n ¢ a; + aj and Inl is minimal. Let
ak+, - n + b and ak+2 - -b. Then n - (n + b) - b - ak,, + ak+2. Show that
it is possible to choose b so large that the (k + 2)(k + 3)/2 sums a; + aj are
distinct for 1 < i < j < k + 2.



5

Sums of vectors in Euclidean space

5.1 Small sumsets and hyperplanes

The "philosophy" of inverse problems is that if a finite set A has a small sumset
2A, then A must have "structure." We have already obtained simple results of this
kind, for example, Theorems 1.16 and 2.7. In Chapter 8, we shall prove Freiman's
theorem, which states that if a finite set A satisfies 12A 1 < C I A . then A must have
an arithmetical structure in the sense that A is a large subset of a multi-dimensional
arithmetic progression. In this chapter, we shall prove that if A is a finite set of
vectors in Euclidean space R" and if the cardinality of the sumset 2A is very
small, then A will have a geometrical structure. More precisely, if 12A1 < cIAI,
where I < c < 2", then a positive proportion of the elements of A must lie
on a hyperplane, or, equivalently, A is a subset of a bounded number of parallel
hyperplanes. This result is independent of Freiman's theorem and, indeed, played
an essential role in the original proof of that theorem.

Let n > 2, and let V be an n-dimensional Euclidean space with inner product
, ). Let h be a nonzero vector in V, and let y E R. The hyperplane H defined

by h and y is the set
H- {V E V I (h, v) - y}.

The vector h is called a normal vector to the hyperplane H. Let A be a finite subset
of V. Denote the cardinality of A by IA1. The h fold sumset hA is the set

hA-(ai+a2+...+ahjaiEA for i- 1.2....,h).
Theorem 5.1 Let n > 2, and let

I <c<2".
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There exist constants ko - ko(n, c) and so* - eo(n, c) > 0 such that, if A is a finite
subset of an n-dimensional Euclidean space V and if A satisfies

IAI->ko

and

12A1 <cIAI,

then there exists a hyperplane H in V such that

IA n HI > eoIAI.

The following example, in the case h - 2, shows that the upper bound for c in
Theorem 5.1 is best possible.

Theorem 5.2 Let n > 2, and let V be an n-dimensional Euclidean space. Let
h > 2. For any numbers ko and so > 0, there exists a finite subset A of V such that

and

but

IAI>>-ko

IhAI < h"IAI,

IA n HI -< eolAI

for every hyperplane H in V.

Proof. Choose an orthonormal basis {ei, ... , en } for V, and let u, v E V, where
u - F j u,ei and v - =i vie;. Then (u, v) - E°-1 ui vi is the inner product on
V. Choose ko and so > 0, and let t E Z satisfy

t>maxIk,eo'1

Let

Then

and

n

A- EvieiEVlviE{0,1,...,t-1}fori-1,2,...,n
i-

IAI - t" > ko

11

hA-I>vieiEVIviE{0,1,...,ht-h}fori-1,2,...,n

Therefore,

IhAI - (ht - h + 1)" < h"t" - h"IAI.
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Let h - !,_1 hiei 710 and let y E R. Let H be the hyperplane defined by h and y.
Then h; 7t 0 for some j. If v - F,".1 vie; E A fl H, then Li.1 hi v1 - y, and the
integer v; is uniquely determined by the n - 1 integers v i , . . . , vJ_ 1, vJ+1.... , v,,.
Since Vi E (0, 1, ... , t - 1) for i - 1, ... , n, it follows that

IAf HI <t"-1 <cot" -cOIAI

This completes the proof.

5.2 Linearly independent hyperplanes

Let n > 2, and let V be an n-dimensional Euclidean space with inner product
( , ). Let h be a nonzero vector in V. and let y E R. Define H, H(+'), and H(-')
as follows:

H - IV EV I (h,v)-y}
H(+') - IV E V I (h, v) > y)

H(-') - IV EV I (h,v)<y}.

The sets H(+') and H(-') are, respectively, the upper and lower open half-spaces
determined by H. The vector h is called a normal vector to the hyperplane H. If
0 E H. then H is an (n - 1)-dimensional subspace of V. Note that 0 E H if and
only if y - 0.

The set K in R" is convex if a, b E K implies that to + (1 - t)b E K for all
t E [0, 1 ]. The sets H, H("), and H(-') are convex. For any subset Sofa Euclidean
space V, the convex hull of S, denoted conv(S), is the smallest convex subset of V
that contains S. Since the intersection of convex sets is convex, it follows that the
convex hull of S is the intersection of all convex sets containing S. This intersection
is nonempty since the Euclidean space V is convex and contains S.

Let H1, ... , H. be hyperplanes, and let H' - U 1 Hi. Let (1, -1 }m denote
the set of all m-tuples (µ 1 , ... , µm) such that µi E ( 1 , -1 ) f o r i - 1, ... , m. For
(Iz1,... E (1, -1 }m, let

m-n (wµm) I Hi
i-

The 2m sets H(µ1, ..., µm) are pairwise disjoint, and

V \ H' - U H(Is1, .... Am).
(N...... R.)EI1.-l I'

Let V be an n-dimensional Euclidean space, and let Hl , ... , H be hyperplanes
with normal vectors h 1 , ... , hm, respectively. The hyperplanes H1, ... , H,,, are
linearly independent if the vectors h1, ... , hm are linearly independent. The hy-
perplanes Hl , ... , Hm are linearly dependent if the vectors h i , ... , h", are linearly
dependent.
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Lemma 5.1 Let Hl , ... , Hbe hyperplanes in an n-dimensional Euclidean space
V. Suppose that 0 E H; for all i - 1, ... , m. The hyperplanes Hl , ... , Hm are
linearly independent if and only if

H(E.1.1,...,µm)710

for all (µ1, ..., µm) E {1, -I }m.

Proof. There exist nonzero vectors h1, ... ,in V such that

Hi-IVEVI(hi,v)-0}
for i - I, ... , m. Suppose that H1, ... , Hm are linearly independent hyperplanes.
Then the vectors h 1, ... , hm are independent, and there exists a dual set of vectors
h , . . . , h,*, such that

(hr,hi)-s,. - l if i - j
0ifi7(j

fori, j - 1,...,m.Let(µ1,...,{Lm) E (1, -1)'. Let
m

v - Eµih! E V.
I-1

Then

and so

m

(hi, v)->µi(hi.hi)-tLi
i-1

V E 1

for all i - I, ... , m. It follows that N(µ1, ... µ) 710.
Suppose that H1, ... Hm are linearly dependent hyperplanes. Then the vectors

h 1, ... , hm are dependent, and there exist scalars a1, ... , am not all zero such that
E_1a;h;-0. Define

+1 if ai > 0
µi

(

-1 if ai < 0.

Then µiai > 0 for all i - and µiai > 0 for some j.
We shall show that H(µ1, ... , µm) - 0. If not, choose v E H(µ1, ... , µm).

Then V E H,1"'1 implies that
ai(hi, v) > 0

for i - 1, ..., m, and

It follows that

ai(hi,v) > 0.

m

0- (0, v)- (aaht.v -Eai(hi,v)>0,
r-1 .-1

which is impossible. This proves that N(µ1, ... , µm) - 0.
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Lemma 5.2 Let V be an n-dimensional Euclidean space, and let Hl .., Hr be
linearly independent hyperplanes in V such that 0 E H , f o r i - 1, ... , r. Then

r

dim (flH); -n-r.

In particular, if r - n, then
n

n Hi - (0).

Proof. Let h, , ... , hr be normal vectors for the hyperplanes Hl, ... H, respec-
tively. Then the set of vectors (h, , ... , hr ) is linearly independent, and (hi, v) - 0
for all v E H;. Let w - f;_, Hi, and let

Wl -{vE V I(v,w)-0forallwE W}.

Since h; E W -L for i - l , ... , r, it follows that dim(W ) > r, and so

dim(W) - n - dim(W') < n - r.

We shall prove that dim(W) > n - r by induction on r. If r - 1, then W - H,
and dim(W) - dim(HI) - n - 1. Let 2 < r < n, and assume that the assertion is
true for r - 1. Let W' -n it Hi. Then dim(W') > n - r + 1. Since W - W' n Hr,
it follows that

dim(W) - dim(W' n HH)

- dim(W') + dim (Hr) - dim (W' + Hr)

> dim(W') + dim (Hr) - dim V

> (n-r+I)+(n-1)-n
= n-r.

Therefore, dim(W)-n-r.Ifr-n, then dim(f =, H;)-0,andsof;_i Hi =(0}.

Lemma 5.3 Let V be an n-dimensional Euclidean space and let HI .., H,,, be
hyperplanes in V such that 0 E H; for i - 1, ... , m. Let S be a subset of V such
that

SnH(µ,,...,k,,,)-/ 0 (5.1)

forall(tl,,...,µ,,,)E (1,-1)m.Then

conv(S) n ; ,'0.

Proof. By induction on m. Let m - 1, and let h, be a normal vector for the
hyperplane Hl. By (5.1), there exist vectors s, E S n Hi+,, and S2 E S n HI- 1

such that
(h1,s,)-oil > 0
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and
(h i, s2) - -

Then

S - 1 I s) +
(

a) +a2
I S2 E conv(S).

Since
- ,a2 - (11 C12

- 0,
(h" S) -

a2(hI,s)) + ac(h1,s2) a

a ,+a2 a,+a2 a ,+a2
it follows that $ E HI, and so

conv(S)fl H) 1 0.

Let m > 2, and suppose that the lemma holds for m - 1. Define S(+)) and S(-))
by

S n H,(.-

Then (5.1) implies thatThen

m-i
S(+))n (n Hcµ,) -SnH(µ),...,IA.-,.+1)710

r-,

and
m-I

s(- 1) n H(N,)) S f H(FLI, ... , lam-c, -1)10

f o r all (JAI, km-1) E (1, -1 }m-) . By the induction hypothesis, the lemma
holds for the m - I hyperplanes H,, ... , Hm-1, and so

m-I
cony (S(+')) n n H;) 10.

This means that there exist vectors s) , ... , sk E S(+') and scalars a1,... ak E R
with a; > 0 for i - I..... k and a, + ... + ak - I such that

k m-1 -1
s(+I) - E a; s; E conv(S('))) n n H; c_ con(s) n

m

H;

Moreover, s(+) E H.(+') since Si E for i - I..... k and is convex.
Similarly, there existss

a2 < 0.

m-) n,-I
s(-1) E cony (s(-1)) n n H; con(s) n (n H; I ,
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ands(-') E
Let T - {s(''), s(-0). Then

m-I 1
T c con(s) n n Hit ,

and so
m-i

conv(T) c con(s) n n Hi .

i-i

Since T n f 0 for µm E { 1, -1 }, it follows that there exists

s c- conv(T) n H. c con(s) n (Hi).

This completes the proof.

Lemma 5.4 Let V be an n-dimensional Euclidean space and let H1, ..., H be
hyperplanes in V such that 0 E H, for all i - 1, ... , n. Let S be a subset of V
such that

//
SnH(µi,...,µn)-SnlnH,ci) 0

i-
for all µn) E 11, -1)". Then

0 E conv(S).

Proof. It follows from Lemma 5.1 that the hyperplanes H1, ..., H,, are linearly
independent and so, by Lemmas 5.2 and 5.3,

n

conv(S) n {0} - conv(S) n (n Hil 0.
f ) /

Lemma 5.5 Let V be an n-dimensional vector space, and let H1..... H be lin-
early independent hyperplanes in V with normal vectors h 1 , ... , h,,, respectively,
and with 0 E Hi for all i - 1, ... , n. Let

n

Lj -nHi
;ri

forj-l....,n.Then
V - Hj®Lj

for j - 1, ... , n. Moreover, there exists a dual basis {h,, ... , h,, } for V such that

I ifi-j
(hi, hi) - ai.j 0

if i 7Q

and Hj is the (n - 1)-dimensional subspace spanned by h,,...,hj_t, h!+,, ... ,

hn and L j is the one-dimensional subspace spanned by h*.



140 S. Sums of vectors in Euclidean space

Proof. It follows from Lemma 5.2 that dim(Lj) = 1. Let fj* be a basis vector

for L. Then fi* E Lj implies that ff E H, for all i ¢ j, and so (hi, f'.) = 0 for
i j. Moreover,

(hj,fj)=0
if and only if

fj* EHjnLj=nH,=(0},
i_1

which is impossible since fJ 0. Therefore, (hj, 0 and

h' fi ELj\Hj.
(h,, f;*)

Then (hi, h*) = Si,j for i, j = 1, ..., n, and Lj is spanned by h*. The vectors
/t" are linearly independent, since _, xjh* = 0 implies that

It

0=(h,,0)=(hi,xjhf)xj(hi,h*)=xi
j-1 l-1

for i = 1, ..., n. Moreover, (hi, h*) = 0 for all i j implies that h, E Hj for
i f j. Since Hj is a vector subspace of dimension n - 1, it follows that the set
{hi,...,h*_i,h,...... h) is a basis for H,, and V H L. This completes
the proof.

Lemma 5.6 Let V be an n -dimensional vector space, and let H1, ... , H be lin-
early independent hyperplanes in V with 0 E H i f o r i = 1, ... , n. Let Qi = Hi n H,,
f o r i = 1 , ... , n - 1 . Then dim Qi = n - 2, and Q1 ,
pendent hyperplanes in H,,. Let

Q are linearly inde-

-i
L,, =nH1,

i_1

and let 7r : V -* H be the projection corresponding to the direct sum decompo-
sition

V = H,, ® L,.

Let (tt 1, ... , E (1, - I and let V E V. If

,1 1

uEnHi')

then

,r(u) E n Qlu,)
i_i
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Let S be a subset of V, and let rr(S) - (7r (s) S E S} c H,,. If

Sn H,") 0

for all (µ,. .... E (1, -l, then

0 E Conv(ir(S)).

There exists a basis vector h,* for L,, such that if S C then

ah, E Conv(S)

for some a > 0.

Proof. It follows from Lemma 5.2 that dim(Q;) - n - 2, and so Qi is a hyper-
plane in H for i - 1, ... , n - 1.

Let h, , ... , h be normal vectors f o r H, , ... , H,,, respectively, and let

(h,, , h; )
qi - h, (h,

Since 1:1, ... , h,, are linearly independent vectors, it follows that the vectors
q,, ... , are linearly independent. Moreover, (h,,, qi) - 0, and so qi E H,,
fori-1,...,n-1.

Letw E H,,.Then (gi,w)-(hi,w),and so w E Qi if and only if(gi,w)-0.
Thus, qi is a normal vector for Qi in the vector subspace H,,, and the hyperplanes
Q,, ... , are independent in H,,.

By Lemma 5.5, there is a basis vector h, for L,, such that (hi, h,) - 8i,,,. If
v E V, then

v - 7r (v) +rp(v)hn*,

where n(v) E H and ip(v) E R. Moreover,

(qi, 7r (v)) - (hi,'r(v)) - (h, h,,) (ha, r(v))
_ (hi, 7r(v))

(hi, v) - rp(v)(h;, h,*)

(hi, v)

for i - 1, ... , n - 1. It follows that

,1-I

VEnN(`')
i-i

if and only if

7r (V) E Q0.,).
ii
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If -i
Sn

n
nHw,>

710
i-1

for all (µ i , E ( 1, -1)"-', then

n -1

7r (s) n ( QcUO) f ggJ

for a11(µ E (1, Lemma 5.4 implies that

0 E convOr(S)).

This means that there exist vectors sl, ... , sk E S with the property that

f o r some nonnegative scalars a,, ... , ak such that a, +... + ak - 1. Let

si -7r(si)+(p(si)hn

and

Then

a - E amsi )-
i-

k k k

aisi - a;7r(s;)+a;p(s;)h, -ahn E conv(S).

If S c then

(h s;) - (h,, , 7r (s;)) + rp(s;)(h h,) - rp(s,) > 0

for all i - 1, ..., k, and so a > 0 and ahn E conv(S). This completes the proof.

5.3 Blocks

Let V be an n-dimensional Euclidean space. Let eo E V, and let (e1..... e,,) be a
basis for V. The block with center eo and basis (e1, ..., e } is the set

B(eo;ei,....en)- {eo+t xiei -1 <xi < 1 f o r - 1,...,n}.

IA subset B of V is a block if B - B(eo; e1, ... , for some vector eo E V and
some basis {ei .... e } of V.
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Let B - B(eo; e1, ... , The vertices of Bare the 2" vectors in the set

r
vert(B)-{eo+µ;e; I (1-t

ll

int(B)- eo+Ex;ei -1 <x, < 1 fori - 1,...,n
ll i-1

Corresponding to each block B - B(eo; el, ... , are the 2n facial hyperplanes

eo+µjej+ xie; xiERfor i1j

where j - 1,...,n andµj E {1, -1}.
Let {0, 1. -1)" denote the set of n -tuples (,L i , ..., X.), where X; E 10, 1, -1)

f o r i - 1 , ... , n. T o each (1l1 E 10, 1, -1 }" there is associated the set
D(11;, ... , consisting of all vectors eo + E;= x;e; E V such that

x;>I ifx;-+1
-1 <x; < l if X; -0

x; < -I if A; --1.

Let F* - U,_, Uf,,_±1 Fj,N,. Then V\F' is the disjoint union of the 3" open
convex sets D(,11, ... , In particular,

D(0, 0, ... , 0) - int(B).

For example, in the vector space V - R2, let el - (4, 1), e2 - (2, -2), and
B - B(0; ei, e2). Then

vert(B) - {±(2, 3), ±(6, - I)).

The block B, its four facial hyperplanes, and the nine convex sets D(A,,,L2) are
indicated in the following diagram:

Fi.-i

D(-1, 1) D(0, 1)
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Let f and a be vectors in V. Then

a=f+(a-f).
The reflection of a through f is the vector

2f - a = f - (a - f).

For example, if f = (3, 2) and a = (4, 1), then the reflection of a through f is the
vector 2f - a = (2, 3), as shown in the following diagram:

(2, 3) = 2f - a

(3,2)= f

(4, 1)=a

If S C V, the reflection of S through f is the set

{2f}-S={2f-sISES}.

Let fo, f,, ... , be n vectors in V. For any vector f, E V, we shall consider
the sequence of finite sets S,,, S,, _1, ... , So obtained by successive reflections as
follows: S,, = If,) and

Sk_, =SA U({2fk-,) -Sk)

for k = 1, ..., n. Thus,

S = {f},
S _

,+f,},

and so on. For example, in the vector space V - R2, let fo = (0, 0), f, = (4, 1),
and f2 = (6, -1). Then

S2 = {i6, -1)),
S1 _ ((2,3),(6, -1)},
So = {f(2, 3), f(6, -1)},

and conv(S0) is the block B constructed earlier.
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Lemma 5.7 Let V be an n-dimensional Euclidean space, and let
{ fo, fl,..., f.) C V. where fo - 0. Let

Sn9Sn_1C...CSo

be the sequence of sets constructed inductively by setting Sn - {f,, } and

Sk_1 - Sk U ({2fk_I} - Sk)

for k - 1, 2, ... , n. Let ei - fi - f _ 1 for i - I , ... , n. Then

So - E {1,i.1

Let B - conv(So). I f the vectors fl, ... , fn are linearly independent, then

(i) the vectors el .... en are linearly independent,

(ii) B - conv(S0) - B(0; el, ... , en),

(iii) vert(B) - So. and

(iv) ISk I - 2n-k for k - 0, 1, ... , n.

Proof. It will be

(

shown inductively that

ll

S k - {fk}+{ E /Lief µi E - 1 ) -k+1,k+2,...,n}
i-k+1

JJJ

It- {fk_l}+{ek}+ t1Liei tciE{1,-1}fori-k+1,k+2,...,n
i-k+I

f o r k - 0, 1, ... , n. This clearly holds for k - n since S. Assume that the
relationship holds for k. Then

(2fk_i) - Sk

- {2fk-I-fk}- iieilµiE{1,-1}fori-k+1,...,n
irk+I
n

- {fk_1-ek}- Eµieil s1e{1,-1}fori-k+1,...,n
i-k+1

{fk_I}+{-ek}+{ 1Liei / L . i E 1 1 , -k+1....,n}.
1111

k+I

It follows that

Sk-1 - Sk U ({2fk_1} - Sk)

- {fk_1}+ ElLiei I E 1 1 ,
f o r -k,...,n

i-k
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This completes the induction. For k - 0, we obtain

So- Etiei I(ul,...,uE
i-1

JJJ

If {f,..., f,,} is a basis for V, then {e1..... e } is also a basis for V, and

Ski - 2,.-k

for k - 0, 1, ... , n. In particular, ISoI - 2". Clearly,

conv(S0)- B(0;el,...,e")- B

and

vert(B) - So.

This completes the proof.

Lemma 5.8 Let V be an n-dimensional Euclidean space, let Hl,..., H" be hy-
perplanes in V, and let { fo, f, , ... , f,,) c V, with fo - 0. If

fi E H1 for 0< i< j< n
f forl<j<i<n,

then the vectors fl, ... in are linearly independent. Let S,, c S"_ 1 C ... c So be
the sequence o f finite subsets o f V constructed inductively fr o m { fo, fl, ... , f }
by setting S" - (f") and

Sk-1 - Sk U ((2fk-1) - Sk)

for k - 1, ... , n. Suppose that

fork- I,...,n. Then

k

Sk c n H(+')
j-1

SoflH(ti1,...,µ")f0
for all (µ 1, ... , µ") E (1, -1)", and the hyperplanes H1, ... , If,, are linearly
independent. Lets E So fl H(µ1, ... , and S E Sk\Sk+1 if and
only if µ, - I fori - 1,...,kand µk+l -- I.

Proof. If the vectors f), ... , f, are dependent, then

k-1

fk->2X,f

for some k > I and x1, ... , xk_, E R. Since {f), ... fk_, } c Hk and the
hyperplane Hk is a subspace (since 0 - fo E Hk), it follows that fk E Hk, which



5.3 Blocks 147

is impossible because fk E H1+" and Hk n Hk+') - 0. Therefore, the vectors
are independent. By Lemma 5.7,

ISkI -
2"-k

fork-0,1,...,n.
We shall show by induction on k that

SknH(1,...,1,µk+l,...,µ,,) 7/0 (5.2)

for all (µk+), ..., E {1, -1}"-k. Let k - n. Since fn E H!+'> for all j -
1, ... , n, and s,, - { f"), it follows that

S,, nH(l....,1)10.

Suppose that (5.2) holds f o r some k E (I , ... , n). For every (µk+1..... µ") E
{ 1, _1)"-k, there exists

it

sESknH(+') n n W``'>).
k I

j-k+I

Since 2 fk_, -S E Sk_, and fk_I E Hj for j - k, k + it follows that

2fk_sEHx->and 2fk-,-sEH(-O forj-k+1,..., n. Thus,

11

((2fk-I)-Sk)nH,-'>nnl

-k+I

forall(µk+l.....µ,,)E {1,-1)"-k. SinceSk-I -SkU((2fk-1)-Sk)andSk_, c

nk-' it follows that

Sk _, n H(1, .

1..k,

1, µk , uk+1, , !fin )

Sk-I n \fl H,+1))
n

(j1
f 0

for all (ilk, ... , E (1, -1),,-k+I . This completes the induction.
In particular, it follows that

sonH(µ1..... n)-/ 0

for all (µ, , ... , A,,) E ( 1, -1)" , and so, by Lemma 5.1, the hyperplanes H, , ... , H,,
are linearly independent in V.

Since Ski - 2"-k and Sk n H(1..... 1,µk+,, ... , 1 0 for every k -
0, 1 , ... , n and every (µk+I, ... , U,,) E (1, -1)", it follows that

ISk n H(1,..., 1, Kk+1...., Fkn)I - I
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for every k - 0, t, ... , n and (µk+1, . E { 1, Since each of the 2"
sets H(µ1, ... , contains exactly one element of So, it follows that if

s E So n H(121, ..., µn)

and µi -I for i - I..... k, then s r= Sk. If µk+1 --I, then s It Sk+I. Thus

So n H(1, ..., 1, -1,µk+2..... A.) C Sk\Sk+I

Since

son 11(1..... 1, Sk\Sk+l 2"-k-1

it follows that

Son H(1.....

This completes the proof.

Lemma 5.9 Let the n-dimensional vector space V, the hyperplanes H1, ... , Hn
and the set F - (fo, fl, ... , !n_1) satisfy the conditions of Lemma 5.8. For a E
11(1,..., 1), let (Sk (a) ) k,-0 be the sequence of subsets of V constructed inductively

from the set FU jai by themethodofLemma5.7.lfa,a' E H(1...., 1) anda fa',
then

So(a) n So(a') - 0.

Proof. Let a f a'. Then Sn(a) - {a), Sn(a') - (a'), and so S"(a) n Sn(a) - 0.
Suppose that so(a) n So(a') f 0. Let k be the greatest integer such that Sk(a) n
Sk(a') f 0. Then 0 < k < n - 1. Choose

S E S*(a) n Sk(a').

Then

If s if Sk+I(a), then

s ' Sk+I (a) n Sk+1(a').

S E Sk(a)\Sk+I(a) - (2fk} - Skl(a)

It follows from Lemma 5.8 that

S E H(l,...,

and so, again by Lemma 5.8,

S E Sk(a')\S*+l(a') - (2fk) - Sk+1(a').

Therefore, there exist vectors V E Sk+1(a) and V' E Sk+1(a) such that

s-2fk-v-2fk-v',
and so

V - U E Sk+1(a) n S4+1 (a'),

which contradicts the maximality of k. This completes the proof.
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Lemma 5.10 Let (e1, ... e } be a basis for the n-dimensional vector space V.
Consider the block B - B(0; ei, ... , Let u, V E V. If

0 E B(u;el,...,en) - B + Jul,

then

for all t E [0, 11. If

then

0 E B+{tu}

(B+{u})n(B+(v)) f0,

(vert(B) + Jul) n (B + {v}) f 0.

Proof. If 0 E B + {u },then 0 - b + u for some b E B. Let t E [0, 1 ].Then
tb E B since B is convex, and so

0-b+u - tb+tu E B+{tu}.

Letu - uie; andv - _1 vie;. If (B+{u})n(B+{v}) f 0, then there exist

scalars x;, y; E [-1, 1] fori - 1, ...,n suchthat Enj-, x;e; E B,F_"_j y;e; E B,
and

n n

F(u; +x;)e; - E(v, +y;)ej,

and so

for i - I, ..., n. Then

If u; < v;, then

u;+x; -v;+y;

v;-1 <v;+y,-u;+x; <u;+1.

v; - I < u;+I <v;+l,
and we let p. - 1. If v; < u;, then

v; - 1 <u; - 1 <u;+x; -v;+y; <Vi+l

and we let µ; - -1. In both cases,

v;-1 <u,+µ; <v;+I

fori-I....,n, and so
it to

E(u1+µ;)e; -u+Eµ;e; E (vert(B)+{u}) n (B+{v}),'0.
i-1 i-1

This completes the proof.
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Theorem 5.3 Let V be an n-dimensional vector space, let Hl,..., Hn be hyper-
planes in V, and let { fo, fl, ... , f,,-,) g V. Suppose that fo - 0 and

f EHj for0<i<j<n
f EH(+1) forl<j<i<n-1.

Let A be a finite subset of H(1, ... , 1). To each a E A,,, let So(a) be the set
constructed inductively from { fo, f1, ... , fn-1, a} by letting Sn(a) - (a) and

Sk-I(a) - Sk(a) U ({2fk_1} - Sk(a))

fork - 1, ... , n. Let B(a) denote the block

B(a) - conv(So(a)).

Suppose that
k

Sk(a) c n H;+,)

j-1

for k - I, ..., n and all a E A. Then there exists a vector a' E An such that

So(a) fl B(a') 7ts

for all a E A,,, and

\
U So(a)) fl B(a')

aEA
? IA,,I-

Proof. Lete1-f;-

en(a) - a - f,-1

By Lemma 5.8, the vectors fl, ... , fn _ 1, a are linearly independent, and so the
vectors e1..... e.-I, en(a) are also linearly independent. Since

(el,...,en_1) c H,,,

it follows that the set {e1, ... , en_I } is a basis for Hn. Moreover,

B - B(0;e1,...,en_1)

and

B(a) - B(0; e1, .... en(a)) - U (B + te,(a))
/E1-1.1)

are blocks in H,, and V. respectively. By Lemma 5.7,

Itvert(B(a)) - +A .e,,(a)I (p ....,µ")E11,-1}"}-So(a)
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and

B(a) - conv(vert(B(a))) - conv(So(a)).

For IA. E 11, -1), let

Then

and so

(n-1c
So ")(a) E,uiei +Nnen(a) I (hl, ..., E {1,

i-

Sa+')(a) - vert(B) + (en(a)},

cony (So'1(a)) - B + (en(a)} S B(a).

Similarly,

cony (S, ')(a)) - B - (en(a)} S B(a).

Let h. , ... , h be normal vectors to the hyperplanes H1, ... , Hn, respectively.
Let L - n,,--,, Hi, and let h, be the dual basis vector for Ln such that (hi, h,*,) - 0
if i f n and (h,,, h') - 1. Let 7r : V -> H be the projection corresponding to the
direct sum decomposition

V - Hn®Ln.

Let a E An S H,(,+'). Since fn_1 E Hn, it follows that en(a) - a - f,,_1 E
and so en(a) can be written uniquely in the form

en(a) - 7r(en(a)) +W(a)h,,

where
(hn, en(a)) - (hn, 7r(en(a))) + V(a) (hn, h,) - v(a) > 0.

By Lemma 5.8,

1,+1)-So+')(a)n y10
-III

for all (AI, .... µn_1) E {1, -1}n- . By Lemma 5.6,

0 E conv(7r(So+')(a))) - 7r(conv(SS+')(a)))

- 7r(B+en(a))

- B +7r(en(a))

for all a E An. Since the set An is finite, we can choose a* E An such that

rp(a') - max{rp(a) I a E An I.
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Let a E An, and let t - sp(a)/rp(a'). Then 0 < t < 1 and

ten(a`) - 7r(te,,(a')) + t p(a`)h,`, - n(te,,(a")) +V(a)h

Since 0 E B + n it follows from Lemma 5.10 that

0 E B + 7r (ten(a*)).

Then
0 E (B+7r(en(a))) n (B+ttr(en(a'))) f 0

and so, by Lemma 5.10,

(vert(B) + 7r (en (a))) n ,'0.

It follows that there exists (AI , ... , An-I ) E (1, -1 such that

n-i
IL;e; E B +7r(ten(a')).

Then

and

n-I n-1

µ; e; + n (en (a)) + w(a)h; - Flt e; + en (a) E So (a)

n-1

µ;e; +en(a) E c B(a').

This proves that for all a E An

S7')(a) n B(a`) f 0

and so
So(a) n B(a') 1 0.

By Lemma 5.9, if a, a' E An and a f a', then So(a) n So(a') - 0. This implies that

\
U So(a)) n B(a*)

aEA

This completes the proof of Theorem 5.3.

>_ IAnI

5.4 Proof of the theorem

Let A 1, A2, and A be subsets of V. The set of midpoints of A I and A2 is the set

mid(A1,A2)-
a, +a2

1
2 Iai EA1,a2EA21.



5.4 Proof of the theorem 153

If K is convex and A 1, A2 c K, then mid(A1, A2) C K. Let

mid(A)-ta2a Ia,a'EA}

denote the set of midpoints of A. Then A c mid(A)

and

I2A I - Imid(A)I.

Lemma 5.11 Let V be an n-dimensional Euclidean space. Let B be a block in V,
and let W c int(B). Then

mid(W, vert(B)) c int(B)

and

I mid(W, vert(B)) I - 2" I W I.

Proof. Let B = B(eo; el, ..., e,,). For j - 1, 2, let

n

wJ -eo+Exijei E W c int(B)

and

bi - eo + giiei E vert(B).
i-1

Then -1 < xij < 1 and Aid E { 1, -1 } for i - 1, ... , n and j - 1, 2. If

wl+bl w2+b2
2

=
2 '

then

and so

for i = 1, ..., n. Since

and

it follows that

II n

E(xiI + lt1 )ei - (xi2 + Ai2)ei,

i-I i-I

xil -X2=12i2-Ail

-2<xil-xi2<2

hit - hi l E (0, 2, -2),

xil-xi2=hi2-Ail=0
for i = 1, ... , n, and so wl = w2 and bl - b2. Therefore,

I mid(W, vert(B)) I = I W I Ivert(B)I = 2" I W I.

Also, (x,;+Aij)/2 E (-1, 1) for i = 1, . . . , n, and so (wj +b1)/2 E int(W); hence
mid W, vert(B)) C int(B).



154 5. Sums of vectors in Euclidean space

Lemma 5.12 Let n > 2 and 1 < c < 2". Define so - eo(n, c) > 0 and k' -
k'(n, c) by

60-

and

2" - c
4n(3"c+2nc+ 1)(4c)2"-'

k' - k*(n, c) - (4c)2-1.

If V is an n-dimensional vector space, and if A c V satisfies

JAI>k',

and

12A1 <-cIAJ,

IA n HI < soIAI

for every hyperplane H in V, then there exists W c A such that

IWI > soIAI

and

Proof. We defined

12W1 <(c-so)IWI.

for any set W C V. and so Imid(W) l - 12W1. Let rw (u) denote the number of sets
(WI - W2) C W such that (w, + w2)/2 - v. Then

1212 1W1(I21+1) - rw(v)

vEmid(w)

< Imid(W)I max{rw(v) I v E mid(W)}.

Let A C V satisfy the three conditions of the lemma. We shall prove by induction
that there exist hyperplanes H, , ... , H" in V, vectors fo, fl,..., E V with
fo -0, and sets A,__ A, such that

(i) f; EHjforO<i < j <n,

W * ' )

(iii) A. C A"_, C ... C A, C AO - A.

(iv) kj - IA,I > ki,_i for j - 1,...,n,(4)
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(v) Aj c (l;_, H,(+') for j - 1, ... , n, and

(vi) Aj+, U (12fj} - Aj+i) C Aj f o r j -0, 1,...,n - 1.

The proof is by induction. Let AO - A and ko - IA0I Choose fo E AO such that

rA0(fo) - max{rA0(v) I V E mid(Ao)}.

Then

k
02

2

and so

< r,4o(v)

vemid(Ao)

< rAo(fo)jmid(Ao)I

- rAo(fo)I2AoI

< rAo(fo)Cko,

rAo(f0) > ko

Replacing A by A - { fo}, we can assume without loss of generality that fo - 0.
Let Hi be any hyperplane in V such that 0 - fo E HI. If (w, + w2)/2 - fo, then

either { w, , W2) C H, or

I(w,, w2) n
H,+')I - w,, w2) n

H(_,)I - 1.

Let
A,-{wEAoIwEH(+i) and 2fo-wEAo}.

Then
A, c Ao n H(+') C H(+')

and
Al U (12fo) - A,) S A.

Since IAo n H, I < eoko and

1 1

EO <
4c,

it follows that

k, -IAAI rA0(fo)-IAonH,I

> 2 - coko
ko

4c

Thus, H,, fo, and A, satisfy conditions (i)-(vi).
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Suppose that I < m < n - 1, and that we have constructed hyperplanes
Hl,..., H,,,, vectors fo, fl, ..., fm _ 1, and sets A 1, .... A,,, that satisfy conditions
(.)_(vi). Since A,,,

f

'c nm H(+I) and (l"' H(+I) is convex, it follows thatt ;_i i i-1 i

m

mid(Am) C n H`+I)

i-

Choose E mid(Am) such that

I V E mid(Am)j.

Then

and so

2
((4C)2"_1)2

< 2

< rA_(fm)Imid(Am)I

5 rA.(fm)I

rA., (fm )CkO,

2ko
rA..(fm) > )2

Let Hm+1 be any hyperplane in V such that

{fo.fl,...,fm}C Hm+1.

Let

Then

and

Since

and

Am+l - 1W E Am I W E Hm+1 and 2 fm - W E Am }.

m+1

Am+1 C A. n Hm+1, C nH'(+1)

i-

Am+1 U (12f.) - Am+I) C Am.

IAmnHm+II 5 IAOn H.+11 5 E0ko

1

EO < (4c)2'+'- 1 ,

it follows that

km+1 - IAm+1 l

2k0
(4c)2 "_1 EOkO> -

ko
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Thus, the hyperplanes HI,..., H..,,, the vectors fo, fl,..., fm, and the sets
A,_., Am+1 satisfy conditions (i) -(vi) . This completes the induction.

Let a E An. Construct sets

S.(a)CSn-1(a)C...CSo(a)CA
by setting S. (a) - (a) and

Sj-1(a) - Sj (a) a ({2fj-1 } - Sj (a))

for j - 0, 1, ... , n - 1. We shall prove by induction that
m

Sm(a) C A. C n Hi(+
i-1

for m - 0, 1, ... , n. Clearly,

Suppose that

n

S.(a)-{a}C AnCnH(+1)

i-I

Sm+1(a) C Am+l C
m+I +n

Hi

where 0 < m < n - 1. Then

and so

m

{2fm} - Sm+1(a) C {2fm} - Am+1 C Am S n H(+1),
i-I

Sm(a) - Sm+1(a) U (12f.) - Sm+1(a)) C A. C n H(+

i-
This completes the induction.

W e have shown that the hyperplanes HI, ... , Hn, the vectors
.fo, fl,..., f.-I, the set A. C H(1, ... , 1), and the sets

(Sk(a)IaEA. and k-0,1....,n}
satisfy the hypotheses of Theorem 5.3. Therefore, there exists a vector a* E An
such that the block

B(a*) - conv(So(a`))

has the property that

IAnB(a')j > I U So(a) nB(a')
aEA.

IA,I

k
ko

> (4c)2'_I.
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The block B(a') determines the 2n facial hyperplanes F1,,,,. where j - 1, ... , n
and tLj E It, -1j. Let

"

F' - U U
!-1

Let WO - A n int(B(a')). Because IA n HI < eoko for every hyperplane H and

1

so < 4n(4C)21-1'

it follows that

and so

IAnF'I <2neoko,

I Wol - IA n int(B(a'))I
> IAnB(a')I-IAnF'I

ko
- 2nsoko

(4c)2"-1
ko

2(4c)2"-1 .

Since

vert(B(a')) - So(a') a A,

it follows from Lemma 5.11 that

mid(Wo, So(a')) -{ w2 s I W E Wo, S E So(a*))

c int(B(a')) n mid(A)

and

Imid(Wo, So(a' )) I - 2" I Wo I .

The 2n facial hyperplanes Fj.,,, partition V \ F' into 3" pairwise disjoint open
convex sets where (A1.... , A,,) E (0, 1, -1)" and

Then

and

D(0..... 0) - int(B(a')).

Wo-Anint(B(a'))-AnD(0,...,0)

mid(Wo. So(a*)) c int(B(a')) n mid(A) - D(0, ..., 0) n mid(A).

Let W1, ... , W3. -1 be the pairwise disjoint sets

A n D(A1,...,An),
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where (11, ... , )") E 10, 1, -1)" and (A 1, ... , A,,) 71 (0, ... , 0). Since the sets
D(,11...... L") are convex, it follows that

mid(Wi) n mid(WW) - 0

forl <i < j<3"- 1, and

M(Wo. So(a*)) n mid(W;) - 0

fori-1, ,3"-1.
We shall prove that there exists i E 11, 2, ..., 3" - 1) such that the set W1

satisfies the conditions
IWiI?EOIAI - sko

and

12Wil - Imid(Wi)I < (c-so))Wjl

Suppose not. Then Imid(Wi)I > (c - Eo)IW11 for every set W1 satisfying 1 Wi I
eoko. Let E' denote the sum over all i E [ 1, 3" - 1 ] such that I Wi I > Eoko. Then

cko >_ 12A1

This implies that

and so

Imid(A)I

Y-I
> Imid(Wo, S(a`))I + EImid(Wj)I

i-I

> 2"IWoI+E Imid(Wi)I

2"IWoI+(c-so)E IWiI
> 2"IWoI +cE IWiI -soko

Y-I
> 2"IWoI+cEIW;I-3"csoko-EOko

i-I
3"-1

- (2" - c)IWol+cE I Wil -3"cEoko-Eoko
i-O

- (2" - c)I Wo 1 + c(ko - I A n F* I) - 3"csoko - e0ko

? (2" - c) I Wo I + cko - (3" c + 2nc + I )soko.

(3"c+2nc+ 1)EOko > (2" - c)IWoI >
(2" - c)ko

2(4c)2^-1

2" - c
80

> 2(3"c+2nc+ 1)(4c)2^-1

- 2nEo > Eo,
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which is absurd. Therefore, there exists a set W = W; e_ A such that I WI ? eoIAI
and 12 W I < (c - e )l W 1. This completes the proof.

Proof of Theorem 5.1. For I < c < 2", let

eo - eo(n,c)
2" - c

4n(3"c+2nc+ 1)(4c)2"-l

be the positive real number defined in Lemma 5.12. Let t = t(n, c) be the unique
positive integer such that

c-It-1 < <t.

Let

eo

r

e0r = E0,

k' - k*(n, c) =

ko = ko(n,c) = eo'k'.

eo(n, c) < eo(n, c')

k*(n, c) > k*(n, c').

Let A be a subset of V such that

Al I> ko > ko

and

12A1 < cIAl.

Suppose that
IA n HI <- eolAl 5 eolAl

for every hyperplane H in V. By Lemma 5.12, there exists a set W C- A such that

IWI?eoIAl?eoku=eo" i)k.>k*

and

12W1 <(c-Eo)IWI.

Moreover, for every hyperplane H in V,

IWnHI 5 IAnHI< eolAI 5 E 'IWI 5soIWI.

Define Ai=WandAomA.Leti < j <t-1.Letc'=c-jeo.Then j <t - I
implies that
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Suppose that we have constructed sets

Ai-C: A'j-1A, 9Ao-A
such that

and

I A '' I > solAI > e ko - co k >k

12A'il 5 (c-jso)IAiI -c'IAjJ.

Moreover, for every hyperplane H in V,

IAj n HI 5 IA n Hl

-< a Al
r-jIA'I< co

5 EoIA,I

- eo(n, c)IA' I
< eo(n,c')IAj1.

Since

and

IA' 1 > k' - k'(n, c) > k'(n, c')

12A'I 5 (c-jco)IA'I-cIA'I,
it follows from Lemma 5.12 that there exists a set A'+i a A` such that

IAj+11 ? Eo(n,c')IAiI
> eo(n,c)IA'I

> so*'IAI

so ko

0

> k'

and

12A'.11 -< (c' - so(n, c'))IA' .1 I

5 (c' - so(n, c))IA'+i I

- (c - (j + I)eo)IA'+il

In particular, when j - t, we obtain a set A; such that

1A;1>k'> 1

and

12A;1 < (c - tso)IA;I <- A.
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This is impossible, because IA;I > I implies that

12A;1 > IA;I

Therefore, there must exist a hyperplane H in V such that I A n H I > so* I A I. This
completes the proof of Theorem 5.1.

Theorem 5.4 Let n > 2, and let

I <c<2".

There exist constants ko - k0* (n, c) and Z - £(n, c) such that if A is a finite subset
of an n-dimensional Euclidean space V and if A satisfies

IAI?ko

and

12A1 < clAI,

then there exist e parallel hyperplanes H1, ... , Ht in V such that

f

A C U Hi.

Proof. By Theorem 5.1, there exists a hyperplane H in V and a number eo -
r,(n, c) > 0 such that IA n HI > e0* 1A1. Then H - {v E V I (h, v) = y}, where
h is a nonzero vector in V and Y E R. If a' E A, then a' lies in the hyperplane
H' = {v E V (h, v) - y'}, where (h, a') = y', and this hyperplane is parallel
to H. Let H H1, H2, ... , He be a set of pairwise disjoint hyperplanes, each
parallel to H, such that A n Hi ¢ 0 for i - 1, ... , f and

t
AcUH;.

Let
H ; - (v E V I (h, v) = y; ).

Choose a; E A n H; for i = 1, ... , f. Then

U(ai + (A n H)) C 2A

and

Ia;+(AnH)I=IAnHI > eoIAl.

IfbEai+(AnH),then (h,b)-y;+y,andso

(a; +(AnH))n(af+(A11H))=0
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for i ¢ j. It follows that

f

PeoIAI < Jai +(A n H)l < 12A1 < clA1,

and so

This completes the proof.

5.5 Notes

Ce<-
eo

It is not known if there exists a S > 0 such that Theorem 5.1 remains true if the
condition 2J A I < c I A J is replaced by the condition 21A1 < cj A I'*a. Nor is it known
how to generalize Theorem 5.1 to h-fold sumsets.

Theorem 5.1, in the case where A is a finite set of integer lattice points, appears
as Lemma 2.12 in Freiman's monograph [54], but the proof in the book is difficult
to follow. Fishbum [45] has published an independent proof for the special case
n - 2, but this proof does not generalize to higher dimensions. In this chapter, the
proof for all dimensions n > 2 and for arbitrary finite subsets of V comes from
Nathanson [94] and includes complete proofs of various geometrical results on
which Freiman's argument depends.

5.6 Exercises

1. Let H be a hyperplane, and let v E H. Prove that H - v is a subspace of
dimension n - 1.

2. Let h, and h2 be normal vectors to a hyperplane H. Prove that h, = Oh2 for
some 8 ¢ 0.

3. The set E is parallel to H in the vector space V if E + u e H for some
vector V E V. Let H, and H2 be hyperplanes with normal vectors h, and
h2, respectively. Prove that H, is parallel to H2 if and only if h, = Oh2 for
some 0ER,0f0.

4. Let H - {v E V I (h, v) - y} be a hyperplane with normal vector h. Prove
that h is perpendicular to every vector lying in H.

5. Let f : V -+ W be a linear map of vector spaces. If K C V is convex, prove
that f (K) is convex. If L e W is convex, prove that f -' (L) is convex.

6. Let h E V, h ¢ 0. Define f : V -+ R by f (u) _ (h, v). Use the map f to
show that the hyperplane H = (v E V I (h. v) = 0) and the open half-spaces
H(`') and Ht-O are convex.
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7. Let V be an n-dimensional Euclidean space with inner product ( , ), and
let {v,, v2, ... , v) C V. Prove that the vectors vI, V2, ... , v. are linearly
independent if and only if there exist vectors v,*, v2, ... , v,*, in V such that
(vi, v*) - 8;,; for 1 < i, j < m.

8. Prove that a block is the convex hull of its vertices.

9. In the vector space V - R2, let h - (3, 1) and h2 - (1, 2). Let HI - {v E
V I (h,, v) - 5) and H2 - {v E V (h2, v) = 4}. Graph the hyperplanes Ht
and H2, and label the four convex sets H(±1, ±1).

10. In the vector space V - R2, let fo - (0, 0), f, - (1, 2), and f2 - (3, 1). Let

S2 (.f2),

S1 - S2 U ((2 f1) - S2),

So - S1U({2fo}-SI).

Graph the block B - conv(S0), indicate the points in vert(B), draw the four
facial hyperplanes F1 f, and F2.t,, and label the nine regions D(;L,, )L2) for
(11, A2) E {0, ±1}2.

1 1 . In the vector space V - R3, let e, - (4, 0, 0), e2 - (0, 3, 0), and e3 -
(1, 1, 1). Sketch the block B(0; el, e2, e3). Find (XI, A2. A3) E (0, ±1)3 such
that (3, 4, -2) E D(41, A2, 43)-

12. In the vector space V - R3, let h, - (1, 0, 0), h2 - (-1, 1, 0), and h3 -
(1, 2, 0). Consider the three hyperplanes

Ht - {v E V I (hl, v) - 1},
H2 - {v E V (h2, v) - 2),

H3 - {v E V I (h3, v) - -2).

Prove that H,, H2, and H3 are not linearly independent, and find all triples
(A I, µ2, µ3) E 1±1)3 such that H(µ l, {b2, k3) - 0-

13. Let H1, ... , H be n linearly independent hyperplanes in the n-dimensional
vector space V. Prove that there exists a vector vo E V such that n 1 H; -
(Vol.

14. Let H1, ... , H, be r linearly independent hyperplanes in the n-dimensional
vector space V. Prove that there exists a vector vo E V and a subspace W
of dimension n - r such that f;_1 H; - (vo) + W.

15. Prove that Theorem 5.4 implies Theorem 5.1.

16. Let A be a finite subset of the vector space V. Prove that if Al I> 1, then
12AI > JAI.
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17. Let A be a finite subset of the vector space V. Prove that 12AI > 21A1 - 1.

18. Let V be a vector space. For X E R and A C V. let

k*A-{kaIaEA}.

Prove that h(k*A)-k*(hA)and

conv(hA) - h * conv(A) - hconv(A).

19. Let A be a finite subset of a real vector space, and let IAI - k. Prove that

hconv(A) - kconv(A) + (h - k)A

for all h > k.

20. Let V be a vector space, and let {a I , ... , a, } be a set of r linearly independent
vectors in V. Let A - 10, aI , ... , a, }. Prove that

JhAj - i + 0(h'-).
r.

21. Let V be the set of integer lattice points in R", and let A be a finite subset
of Z" with 0 E A. Prove that there exists a constant c - c(A) such that

IhAI<ch"+O(h"-I)

22. Let A be a finite subset of Z" such that 0 E A and A contains n linearly
independent vectors. Prove that there exist constants cl - cl (A) > 0 and
c2 = c2(A) > 0 such that

c,h" + O(h"-I) < IhAI < c2h" + 0(h')-').

23. Let A - (ao, a,_., ak _ I } be a finite subset of a vector space. The afne
dimension of A is the maximum number of linearly independent vectors in
the set (a I -ao, ... , ak _ I -ao }. Prove that if A c Z" and the affine dimension
of A is r, then there exist constants cl - cl (A) > 0 and c2 - c2(A) > 0 such
that

clh' + O(hr-I) < JhAj < c2hr + O(hr-I ).





6

Geometry of numbers

But of [Minkowskil it might be said as of Saul that he went out to
look after his father's asses and found a kingdom.

H. Weyl [1271

6.1 Lattices and determinants

Minkowski's geometry of numbers is a beautiful and powerful tool that can be
applied to many problems in number theory. In Section 6.3, for example, we shall
give a geometric proof of the theorem of Lagrange that every nonnegative integer
is the sum of four squares. The purpose of this chapter is to develop enough of the
geometry of numbers to prove Theorem 6.12, which will be needed in the proof
of Freiman's theorem in Chapter 8.

Let (a1, ... , a basis for the Euclidean space R". The abelian group gen-
erated by these n linearly independent vectors is the set of all sums of the form

where u 1.... , u E Z. A lattice in R" is an abelian group A generated by a set of
n linearly independent vectors. A set of n generators for A is called a basis for the
lattice. For example, the standard basis f o r R" is the set of vectors lei, ... , e
where

ei = (1,0,0,0,...,0)
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e2 - (0, 1,0,0,...,0)

e" - (0,0,0.0,1).
The integer lattice Z" is the lattice with basis {e1..... e" I. The elements of Z" are
the vectors of the form u - (uI_., where u, E Z for i - 1, ..., n.

The closure of the set X in R" will be denoted X. For X E R", let B(x, e) denote
the open ball with center x and radius s > 0. A group G in R" is discrete if there
exists e > 0 such that B(u, s) n G - {u} for every u E G.

Theorem 6.1 Let A C R". Then A is a lattice if and only if A is a discrete
subgroup that contains n linearly independent vectors.

Theorem 6.2 Let A be a l a t t i c e in R", and letb 1 . . . . . b,, be n linearly independent
vectors contained in A. Then there exists a basis (a1, ... , an }for A such that each
of the vectors bi is of the form

i
bi - vi.iai,

wherevi,i E Z f o r j - 1,...,n andi - 1,..., j.

Proof We shall prove both theorems at the same time.
Let A be a lattice in R". Then A contains n linearly independent vectors. The

integer lattice Z" is discrete, since B (g, 1)rZ" - {g} for all g E Z". Let (al, ..., a,,)
be a basis for the lattice A, and let T : R" -> R" be the linear transformation
defined by T (ai) - e; fori - 1, ... , n. Then T is an isomorphism, and T (A) - V.
Let U - T-'(B(0, 1)). Since T is continuous, U is an open set in R", and so there
exists s > 0 such that

0EB(O,s)cU.
If u B(O, e) n A, then

T(u) E B(0, 1) n Z",

which implies that T (u) - 0; hence u - 0. Therefore, B(0, e) n A - (0).
Let u,u'EA.Then u-u'EA.If u'EB(u,e),then In-u'l <a, and so

u-u'EB(O,e)nA-(0)

and so u - u' - 0. Thus,
B(u, e) n A - (u)

for all u E A. This proves that the group A is discrete.
Conversely, let A (0) be a discrete subgroup of R" and let (bi, ... , b,} be a

maximal set of linearly independent vectors contained in A. Then I < r < n. Fix
k E (l, r}, and let Ak be the set of all vectors u E A of the form

u-xibi+-+xkbk,
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where xk > 0 and 0 < x, < I for i - I , ... , k - 1. Note that bk E Ak, and so
At f 0. Let Ck be the set of all of the kth coordinates xk of vectors in Ak, and let
Ck,k - inf Ck. Then there exists a sequence of vectors

u, - x1.5b1 +... +xk-Isbk-I +xk.,bk E Ak

such that lim,.,,. xk., - ck.k. Since 0 < xi., < I for i - 1, ... , k - I and
s - 1, 2, ..., there exists a subsequence {u,) g At that converges to a vector

ak - CI.kb1 +... +Ck-l.kbk-I+ q.jbk E R".

Since A is a discrete subset of R", the sequence {u,, } is eventually constant, and
so at E Ak and Ck.k > 0. Since the vectors b1, ..., b, are linearly independent, it
follows that the vectors a1, ... , a, are also linearly independent.

We shall show that every element of A is an integral linear combination of
a1..... a,. Let U E A. The vectors a1, ..., a, span the vector subspace generated
by A, and so there exist real numbers u 1, ... , u, such that

Suppose that uj 1 Z for some j E [1, r]. Let k be the greatest integer such that
Uk ' Z. and let Uk - gk +Xk, where gk E Z and 0 < xk < 1. The vector

gkak + Uk+Iak+l + " + Urar

belongs to the group A since it is an integral linear combination of a t . . . . . a,.
Then

U - U - (gkak + Uk+lak+l + - - + Urar)

-
also belongs to A. Since aj - E; _I c;. b; for j = 1, ..., k, it follows that u' can
be written as a linear combination of the vectors b1, ... , bk in the form

u' -ujbl+...+u'k_Ibk_I+XkcL.kbk

For i - I..... k - 1, let u; - g' + xi, where g' E Z and 0 < xi < 1. Then
g',b1 E A, and so

u" - u' - (gibe +... +gR-1bk-1)
- x1b1 +... +xk-lbk-1 +XkCk kbk

E A.

Since 0 < xi < I and xkck.k > 0, it follows that u" E At, which is impossible,
because the inequality

0 < XkCk.k < Ck.k
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contradicts the minimality of ck.k. Thus, every vector u E A must be an integral
linear combination of the linearly independent vectors a1, ..., a,. If A contains n
linearly independent vectors, then r - n and A is a lattice. This proves Theorem 6.1.

To prove Theorem 6.2, let bl, ... , bn be n linearly independent vectors in the
lattice A. Since A is discrete, the preceding argument shows that there exists a
basis (a,, ... , an) for A such that each vector aj is of the form

i
aj - Lci.jbi,

i-1

where c1,1 E R for j - 1..... n , i - 1..... j, and cj.j > 0. Solving these
equations for b1..... b, we obtain real numbers vi.j such that

bj - vi,ja;
(-1

f o r j - 1 , ... , n. Since (al,.. , an } is a basis for A, it follows that vi,j E Z for
j - 1,...,n and i - 1,..., j. Also, vj_j - 1/cj,j > I for j - I,...,n. This
completes the proof.

The basis of a lattice is not uniquely determined by the lattice. For example, let
A be the lattice in Z2 generated by the vectors a, - (7, 5) and a2 - (4, 3). Since
a1, a2 E Z2, it follows that A c Z2. Conversely, since

e,-3a,-5a2EA

and

e2 - -4a1 + 7a2 E A

it follows that Z2 c A. Thus, Z2 - A, and the sets ((1, 0), (0, 1)} and ((7, 5), (4, 3)}
are distinct bases for Z2. Observe that a, - 7e, + 5e2 , a2 - 4e, + 3e2, and the
determinant

7 4

5 3This example can be generalized. Let U - (uij) be an n x n unimodular matrix,
that is, a matrix with integer entries and determinant det(U) - ± 1. Then the inverse
matrix U-1 - V - (vij) also has integer entries and det(V) - det(U) - ±1. Since
UV - V U - I, where I is then x n identity matrix,

n n
I ifi-j

E uik Vkj - E vikukj - dij - { 0 if i f j.
k-1 k-1

Let a, .... , an be a basis for the lattice A in R". We shall use the matrix U to
construct another basis for A. For j - 1, ... , n, let

a' - uijai E A.
i-I
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Let A' be the group in R" generated by then vectors (a,, ..., a;, }. Since a'. E A
for j - 1, ... , n, it follows that A' C A. Since V is the inverse of the matrix U,

n n n

uk;ak - E vki ujkaj
k-I k-I j-I

n

(E)u jk Vki aj
j-1 k-I

n

E Sjiaj
j-I
ai E A',

and so A C A'. Thus, A - A', and the vectors a,_., an and a' 1, ... , a',, are both
bases for the lattice A.

Conversely, let (a,, ... , an } and (a, , ... , a,,) be two bases for the lattice A. For
i, j - 1, ..., n, there exist integers u; j and v; j such that

/I

aj - Eu;jai
i-I

and

aj

n

n

E
k-I
n n

n vectors a1.... , an are linearly independent, it follows that

E uikukj -aij
k-I

f o r i, j - 1, ... , n. Similarly,

n

E vikukj - sij
k-1

for i, j - 1, ... , n. Let U and V be the matrices U - (u,1) and V - (v1). Then V -
U-I and, since the matrix elements u,1 and v;1 are integers, det(U) - det(V) - f 1.
Thus, any two bases for a lattice A in R" are related by a unimodular matrix.
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Leta,,...,a,, E R", and let

it

a, = E a j e;

for j = 1, ... , n, where aid are the coordinates of at with respect to the standard
basis vectors e,, ..., e,,. The n x n matrix A = (aid) is called the matrix of the
vectors a,, ..., a,,. The vectors a,, ..., a,, are linearly independent if and only if
det(A) O.

The determinant of the lattice A, denoted det(A), plays a fundamental role in
the geometry of numbers. This determinant is defined by

det(A) _ I det(A)I,

where A is the matrix of a basis Jai, ..., a,,) for A. Then det(A) ,' 0, since a basis
for a lattice is a set of n linearly independent vectors in R". We shall prove that
det(A) is independent of the choice of basis for the lattice A.

Let (a,, ..., a } and {a'1 , ... , a',) be two bases for the lattice A, and let U - (u,1)
be the unimodular matrix such that

a' = ui

i-i

Let

and

aj _ wife;

rr

aj = aid e; ,
;-t

where a,f and a' f are the coordinates of a; and a1 with respect to the standard basis

(e,, Then det(U) - f 1. Let A = (a,3) and A' _ (a'J) be the matrices of

the bases Jai ., a } and {a'1 , ... , a;,), respectively. We shall show that A' = A U.
Observe that

aifei = of

rr

uk f ak
k-1

,r rr

ukj a;ke;
k-1 ;-1

n

(Ea'u)k f e,,
i-I k-I
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and so
n

E aikukj
k-1

f o r i, j - 1, ... , n. This is equivalent to the matrix equation

A' - AU.

It follows that

I det(A') I - I det(AU)I - I det(A) I I det(U) I - I det(A)I. (6.1)

This proves that det(A) is well defined.
, ... ,The fundamental parallelepiped of the lattice A with respect to the basis (a

an) is the set

F(A) - F(A; al, ... , an)
I.xia1:0<x1

<lfori-1,...,n. cR".
li-1 1

If aj - -1 a; jet, then the volume of the fundamental parallelepiped is

vol(F(A;al,...,an)) - dV
F(A:a,, ... , an)

I 1-
J

.. f I det(a1j)Idx, ... dxn
0 0

- I det(a1j)I

- det(A).

Thus, while the fundamental parallelepiped of a lattice is a set in R" that depends
on the choice of basis for the lattice, the volume of a fundamental parallelepiped
is independent of the choice of basis.

Theorem 63 Let A be a lattice in R", and let F(A) be the fundamental paral-
lelepiped of A with respect to the basis (a,, ..., an ). Then every vector in R" has
a unique representation as the sum of an element in the lattice and an element in
the fundamental parallelepiped.

Proof. Let v be any vector in R". Since (a,, ... , a") is a basis for R", there exist
real numbers v, , ... , vn such that

n

v-v1a1.
!-1

Let v1 - u; +x,, where u, E Z and x; E [0, 1). Then
n

u1a1 E A,
1-1

n

xja1 E F(A),
i-1
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and so
,1 n

v - viai -ru1a1+1: x1ai E A + F(A).i-1
i-1

Thus, R" - A + F(A). If

n n n n

V - ui ai + xi ai - u' ai + X' ai
i-1 i-1 i-1 i-1

with ui, u; E Z and xi, x; E (0, 1), then the linear independence of the vectors
a1, ..., a, implies that ui +xi - u; + x,, and so ui - u; - x; - x1 E (-1, 1) for
i - I, ... , n. Since ui - u; E Z, it follows that ui - u; and xi - x'. This completes
the proof.

6.2 Convex bodies and Minkowski's First Theorem

If a and b are vectors in R", the line segment from a to b is the set of all vectors
of the form (1 - t )a + t b, where t E (0, 1 ]. The set K in R" is convex if, for every
pair of points a, b E K, the line segment from a to b also belongs to K. A body
in R" is a bounded open set. We shall consider only nonempty convex bodies K
with finite Jordan volume, denoted vol(K). For A E R, A > 0, we define

A*K-(Aa :aEK).

Then vol(A * K) - A" vol(K).
Let r, r1, .... r,, be positive real numbers. The following are simple examples

of convex bodies in R":

(i) The ball B(0, r) consisting of all vectors (x1, ... , x,,) such that

<r2.

(ii) The ellipsoid consisting of all vectors (x1 , ... , xn) such that

2 2x2+...+X,
<

r1 r"

(iii) The cube consisting of all vectors (x1, ... , xn) such that

max(Ix11...., r.

(iv) The box consisting of all vectors (x1..... xn) such that

IxiI < ri

fori - 1... n.
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(v) The interior of the block B, denoted int(B), where a,, ... , a,, are linearly
independent vectors and

a" : -1 <xi < I for i - 1,...,n}.

(vi) The octahedron consisting of all vectors (x,,.. , x") such that

IxII+...+IxnI <r.

(vii) The simplex consisting of all vectors (x,, ..., x,,) such that 0 < x; < r for
i-I....,nand

x, + .. + x" < r.

The set K is symmetric if a E K implies that -a E K. If K is a symmetric convex
body and a E K, then -a E K, and so 0 - (1 /2)a + (1 /2)(-a) E K. The simplex
is not symmetric. Examples (i)-(vi) are symmetric convex bodies.

Lemma 6.1(Blichfeldt) Let A be a lattice in R" and K be a body in R" with
volume greater than det(A). Then there exist vectors a and b in K such that
a-bEA\(0).

Proof. Fix a basis for the lattice A, and let F - F(A) be the fundamental
parallelepiped of the lattice A with respect to this basis. Then vol(F) - det(A).
Since K is bounded and A is discrete, there exist only finitely many lattice points
u E A such that K n (u + F) f 0. Since

R" - U(u+ F),

it follows that

uEA

K - U(K n (u + F))
uEA

and

vol(K) - E vol(K n (u+ F))
"EA

E vol((K - u) n F)
uEA

> vol(F).

Since (K - u) n F C- F for all lattice points u, it follows that the sets (K - u) n F
cannot be pairwise disjoint, and so there exist distinct lattice points u,, u2 E A
such that (K - u,) n (K - u2) ,i 0. This means that there exist distinct vectors
a, b E K such that a - u, - b - 112, and so a - b - u, - U2 is a nonzero element
of A.

Theorem 6.4 (Minkowski's first theorem) Let A be a lattice in R", and let K
be a symmetric convex body in R" with volume greater than 2" det(A). Then K
contains a nonzero element of the lattice A.
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Proof. Let K' - (1/2)K. Then K' is a symmetric convex body with

vol(K') -
v2>

det(A).

It follows from Lemma 6.1 that there exist vectors a', b' E K' such that a' - b' is
a nonzero element of A, and a' - a/2 and b' = b/2, where a, b E K. Since K is
symmetric, -b E K, and since K is convex,

(1 /2)a + (1 /2)(-b) - a' - b' E K.

Thus, K contains the nonzero lattice point a' - W.

Corollary 6.1 Let K be a symmetric convex body in R" with volume greater than
2". Then K contains a nonzero element of the lattice Z".

Proof.This follows immediately from the theorem since det(Z") - 1.

Corollary 6.2 Let A be a lattice in R", and let K be a symmetric convex body in
R". Let

AI - inf{A > 0 : (A * K) n (A \ {0)) ,' 0}. (6.2)

Then

Ai vol(K) < 2" det(A). (6.3)

Proof. Since the lattice A is discrete, there exists e > 0 such that the ball B(0, e)
contains no nonzero lattice point. Since the convex body K is bounded, there exists
µ > 0 such that ,a * K C B(0, s). Then

({.c* K) n A C B(0,e)n A-{0},

and so A, > Et > 0. Suppose that there exists a nonzero lattice point u such that
u E Al * K. Then u - A, * x for some u E K. Since K is open, there exists
d E (0, 1) such that B(x, 6) C K. Let S' - d/(2Ixp. Then

x -x+6'x-(1+S')xE K.

This implies that

u - A,x - (:L;')1SYeE 11 1+'a, 1*Kln(A\{0}),

which is impossible, because

0 < +'6' <A,.1+31

Therefore,
(A) * K) n (A \ {0}) - 0,
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and Minkowski's theorem implies that

k' vol(K) = vol(,AI * K) < 2" det(A).

This completes the proof.
It is easy to see that inequality (6.3) implies Minkowski's first theorem. Suppose

that vol(K) > 2" det(A). Then (6.3) implies that Al < 1. Choose A E R such that
k, <), < 1. Then X * K contains a nonzero element of A, and A * K C K.

6.3 Application: Sums of four squares

We shall use Minkowski's First Theorem to give a simple proof of the famous
theorem of Lagrange that every nonnegative integer can be represented as the sum
of four squares. We need three simple lemmas.

Lemma 6.2 Let m be an odd, positive integer. There exist integers a and b such
that

a2 + b2 + 1 = 0 (mod m).

Proof. The proof is in three steps.
Step 1. Let m - p be an odd prime, and let

A-(a2 :a-0, 1,...,(p- 1)/2)

and

B-{-b2- 1 : b-0, 1,...,(p- 1)/2).
Since I A - I B - (p + 1)/2 and the elements of the set A (resp. B) are pairwise
incongruent modulo p, it follows from the pigeonhole principle that there exist
integers a, b E [0, (p - 1)/2] such that

a2 = -b2 - 1 (mod p).

Step 2. Let m - p' , where p is an odd prime and k > 1. We shall prove by
induction on k that the congruence

a2+b2+1 -0 (mod p't)

is solvable. The case k - I has just been proven. Suppose that the congruence
holds for some k > 1. Then at least one of the integers a, b is not divisible by p,
say, a # 0 (mod p). There is an integers such that

a2--b2-l+spi.
Since (2a, p) - 1, there exists an integer t such that

s + tat - 0 (mod p).
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Let aI - a + tpk. Then

a2 - (a+tpk)2
- a2 + 2atpk + t2p2k

-b2 - 1 +spk +2atpk
-b2 - 1 + (s + 2at)pk
-b2 - I (mod pk+i ).

(mod pk+t )

(mod pk+1)

This completes the induction.
Step 3. Let m be a positive, odd integer. The result is trivial for m - 1, so we

can assume that m > 3. Then

m-f kiP;
i-i

where pi, ..., p, are distinct odd primes and ki > 1 for i - 1, ..., r. For each of
the r prime powers pk', there are integers ai, b, such that

a? + bi + 1 - 0 (mod p,k' )

By the Chinese remainder theorem, there exist integers a, b such that

a = ai (mod p;t' )

and

for all i - 1, ..., r. Then

b = bi (mod p )

a2 + b2 + 1 - 0 (mod m).

This completes the proof of the lemma.

Lemma 6.3 If every odd, positive integer is the sum of four squares, then every
positive integer is the sum of four squares.

Proof. If n is the sum of four squares, say,

n-a2+b2+c2+ d2,

then

2n -(a +b)2+ (a -b)2 + (c + d)2 + (c - d)2,

and so 2n is also the sum of four squares. Iterating this argument, we obtain that 2kn
is a sum of four squares for every k > 0. The lemma follows from the observation
that every positive integer is the form 2kn for some odd number n.

Lemma 6.4 Let B(0, r) be the ball of radius r in R4. Then vol(B(O, r)) - tr2r4/2.
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Proof. The volume of B(0, r) is the value of the iterated integral

r r2 -.fi r2-.ci-.rZ 2-r1-r2-x2
dx4dx3dx2dxl.

J rJ r2-.C2 - r2-x1-.[2 - r22-xl
The computation is left to the reader (Exercise 15).

Theorem 6.5 (Lagrange) Every positive integer is the sum of four squares.

Proof. By Lemma 6.3, it suffices to prove the theorem for odd integers. Let m
be an odd positive integer. By Lemma 6.2, there exist integers a and b such that
a2 + b2 + I = 0 (mod m). Let A be the lattice in R4 with basis vectors

al

a2

(m, 0, 0, 0),

(0, m, 0, 0),

a3 - (a, b, 1, 0),

a4 - (b, -a, 0, 1).

Then A C Z4, det(A) - m2, and the lattice consists of all vectors of the form

U - UIal +u2a2+u3a3+u4a4
- (u m + u3a + u4b, u2m + u3b - u4a, u3, u4),

where u 1, u2, U3, U4 E Z. The congruence condition on a and b implies that

IU12 - (uI m+u3a+u4b)2+(u2m+U3b-u4a)2+u3+u2
(u3 + u4)(a2 + b2 + I) (mod m)

0 (mod m)

for all lattice points u E A. Let K - B(0, be the ball of radius, in R4.
Then K is a symmetric convex body and, by Lemma 6.4,

vol(K) - 27r2m2 > 16m2 - 24det(A).

It follows from Minkowski's first theorem (Theorem 6.4) that the ball K contains
a nonzero lattice point

U - Ulal +u2a2+u3a3+u4a4
vie, + v2ee + v3e3 + v4e4,

where UI, u2, U3, U4, V1, V2, V3, V4 E Z. Since

Iu12
- v1 + u2 + v3 + v4 = 0 (mod m)

and

it follows that

0<IU12-v2+v2+v3+u4<( 2m)2-2m,

v +v2+v3+v4-m.
This completes the proof.
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6.4 Successive minima and Minkowski's
second theorem

For vectors x, y E R", we let d(x, y) = Ix - yJ denote the usual Euclidean distance
from x toy. For any nonempty compact set L in R" and vector x E R", the distance
from x to L is defined by

d(x, L) = inf{d(x, y) : y E L}.

Let Li and L2 be nonempty compact subsets of R", and let

d(LI, L2) = sup{d(x1, L2) : xi E Li } + sup(d(x2, L!) : x2 E L2). (6.4)

Let X be a fixed compact set in R", and let S2(X) be the set of all nonempty
compact subsets of X. For L1, L2 E 2(X), we define the distance between LI and
L2 by (6.4). Then S2(X) is a metric space (Exercise 22). A sequence (Li)°_1 of
compact sets in 2(X) converges to L E 2(X) if and only if lim, ., d(L;, L) = 0.

The metric topology of 2(X) is used to construct some continuous functions that
will be used in the proof of Minkowski's second theorem. Let R" = V ® W, where
V and W are vector spaces, dim V - r, and dim W = n - r. Let 7r : R" -+ W be
the canonical projection onto W. Let X be any nonempty compact set in R", and
let X' = 7r(X) e W. The map from X' to 2(X) defined by

x'-+7r-'(x)nx
is continuous, and so the map

a:X-+Q(X)

defined by
a(x)= (7r-I (7r(x)))nx-(v+{x))nX

is a continuous map from X into S2(X). Moreover, a(x) lies in the r-dimensional
affine subspace V + (7rx)} = V + {x).

Let X = K, where K is a convex body in R". Then K is a compact convex
set with nonempty interior. If X E K, then a(x) is a compact convex subset of
V + {7r(x)}. Let volr(x) and c(x) denote the r-dimensional volume and center of
mass, respectively, of a(x). Then vol, K -> R and c : K -+ K are continuous
functions. (see Exercises 25 and 27).

Let K be a convex body in R". For A E R, k > 0, let

A*K={Au:ueK}.

Then A*K=A*K.If0E KandA<A,then A*KC_µ*K.
Let A be a lattice in R", and let (at, .... a,,) be a basis for A. Since K is open

and 0 E K, there exists e > 0 such that

OEB(0,e)CK
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and so
B(O,As)eA*K

for all A > 0. In particular, {a, , ... , a } C X* K for A sufficiently large. Since K is
bounded and A is discrete, there exists A > 0 sufficiently small that (A * K) fl A =

(0).
The successive minima of the convex body K with respect to the lattice A are

the real numbers X1, A2, ... , A defined as follows:

Ak - inf(A > 0 : A * K contains k linearly independent elements of A).

It is easy to see that 0 < A, < A2 < ... < A,,, and that the definition of A, is
equivalent to (6.2).

Because K is an open set, it follows that Ak * K contains at most k - I linearly
independent vectors in A and that Ak * K contains at least k linearly independent
vectors.

There is an equivalent way to define the successive minima and at the same time
identify a linearly independent set {b, , ... , b } of vectors in the lattice A such that
every vector u E (Ak * K) fl A is a linear combination of b,, ... , bk_,. Let

A, - inf{A > 0 : A * K contains a nonzero vector b, E A}

and, for 2 < k < n,

Ak = inf{A > 0 : A * K contains a vector bk E A linearly

independent of b,, b2, ... , bk_I }.

For example, let A - Z" and let K be the box

K = {(x,, E R" : 1x11 < r; fori = 1,...,n},

where 0 < r,, < r"_, _< ... < r2 < r, _< 1. Then ((1/r,) * K) fl v - {0} and
±e, E (A * K) fl Z" for all A > l/r,; hence A, - I/r,. Similarly, Ai = 11ri for
i=2,...,n.Since anddet(A)=1,weseethat

A, . . . A" vol(K) = 2" det(A).

This simple example shows that the following theorem is best possible.

Theorem 6.6 (Minkowski's second theorem) Let K be a symmetric, convex body
in R", and let A be a lattice in R". Let A, , ... , A,, be the successive minima of K
with respect to the lattice A. Then

A, ... A vol(K) < 2"det(A).

Proof. Corresponding to the successive minima A, , ..., A,, are n linearly inde-
pendent vectors b, , ... , b,, in the lattice A such that, fork = 1, ... , n, every vector
in (Ak * K) fl A is a linear combination of b,, ... , bk_, and

{b1....,bk}cAk*K.
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We shall use the basis {b, , b2, ... , b } to construct a continuous map

rp : K K

such that
v(K) C X,, * K.

For j = 1, ..., n, let Vj be the subspace of R" spanned by {b, , b2, ... , b_ , } and
let Wj be the subspace of R" spanned by (bj , bj+, , ..., b,,}. Then

R"=Vj®Wj.

Let
irj:R"--W1

be the projection onto Wj. For every vector y e Wj,

it (Y)=Vj+{y}

is an affine subspace (or plane) of dimension j - 1. Let K' - 7rj (K). Then K' is

a convex body in Wj, and K1 = trj(K) is a compact convex set in Wj.

Let cj : K -> K be the continuous function that maps x E K to the center of
mass of of (x) = r 1 (trj (x)) fl K. We define the coordinate functions cij (x) by

it

cj(x) _ c;j(x)b;.

Ifx=Ell x;b;,then

cij(x)=x; for i = j, j+I....,n
and c;j(x) is a continuous function of x 1 . . . . . . x,, for i = 1, ... , j - 1.

Let X, be the successive minima of K, and let ,lo = 0. For x e K, we
define

W(x) _ EUj -,Lj-,)cjW.
j-1

Let tj - (,lj - )/A for j = 1, ... , n. Then tj > 0 for all j and t, + + t,, - 1.
Since cj(x) E K for all x E K, it follows that

11

co(x) _ A E tjcj(x) a A,, * K,
j-1

and so o : K --+ A,, * K is a continuous function that satisfies W(K) c ,l * K.
Moreover,

11

Ox) = E(kj -
j-1
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Let

It

_ E(Aj -Xj-I)ECi.j(x)bi
j-I i-1

= E E(,kj - )Lj_I )ci.j (x)bi
i-1 (j-1

It

(Ei
n 1

E -,lj_i)xi + E(Xj -)j_1)ci,j(x)) bi
i-1 j-I j-i+l

I, n

_ (x1+ (Aj - Aj-I)Ci.j(W)) bi.
i-I j-i+l

It

fi(x) = E (Aj - )Lj-1)ci. j(x)
j-i+l

Then Vi (x) _ Bpi (xi+1, . , . , x,2) is a continuous, real-valued function of the n - i
coefficients xi+1, ... , x of the vector x E K, and

-I

(P(x) (Aixi + (Pi (xi+l, ... , bi + A,,xnbr,. (6.5)
i-1

This has two important consequences.
First, the function rp is one-to-one. Let x, x' E K, where x = x1 b1 + ... + x b

and x' = xi bl + + x;,b,,. If V(x) = Q(x'), then

n-1

(Ai xi + ipi (xi+I , ... , X11)) bi + ;nxn
'-I

n-1

(xix; bi +)L,,X11 At.
i-1

Equating the coefficients of b,,, we see that A,,x;, and so x,, = x;,. Equating
the coefficients of we see that

A,,_1xn-1 +qn-1(xn) _ An-1X,-1 +(pn_1(xn) = A,,_1xn_1

and so x _I = x; _1. Applying this argument inductively, we obtain xi = x; for
i = 1,...,n,andsox=x'.

The second consequence is

vol(ip(K)) - Al A,1 vol(K).

In the special case when the functions B p i (x;, ... , x,,) are identically equal to zero
for i - 1, ... , n, the function q is given by the simple formula

!p(x1....,xn)=A1x1b1 +...+Anxnb,,,
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and

vol(rp(K)) - Al ... A,, vol(K). (6.6)

Since the functions B p i (x;+1, ... , x,,) are continuous f o r i - 1, ... , no this formula
for the volume of V(K) holds in general.

The set V(K) is not necessarily convex, but it is a bounded open subset of R"
to which we can apply Lemma 6.1 of Blichfeldt. Let K' - rp(K). If

vol(K') - I, ... X. vol(K) > 2" det(A),

then
vol((1/2) * K') > det(A),

and Lemma 6.1 implies that there exist vectors x,, x2 E K' such that

ie1-)e2
EA\(0).

2

Since K' - V (K), there exist vectors x1, X2 E K such that rp(xl) - x, and V(x2) -
x. Let

x1 - Ex;.1bi

and

x2 - xi.2bi
1_1

Since x, f x2, there exists k > 1 such that Xk.1 f xk.2 and xi. I - X;,2 for i - k +
1, ... , n. Recall that if x- E"_, x; b; , then the center of mass cj (xj , ... , x") E K
f o r j - 1, ... , n. Since K is a symmetric convex body,

Cj(Xj+1.I,...,X,.l)-Cj(Xj+1.2,...,Xn.2) E K,
2

and so
Zk (C j (X j+1.1, ... , x,1 1) - Cj (X j+1.2, ... , X,,.2)) EAk*K2

for j - 1, ..., n. Let tj - (A1 - Aj_1 /Ak for j - 1, ..., k. Then

X'1 -I e2 (P(xl)-(P(x2)
2 - 2

Cj(xl) - Cj(x2)

j-1

k /C1(XI) - Cj(x2)
E(Aj - A1_1) 2

j-1

1: tj Xk 2
_ k

(CJ(X')_Cj(X2)\j-1

E (ilk * K) n (A \ (0)).
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Representing the map tp in the form (6.5), we see that

xI - x) (P(x1) - (P(x2)
2

and

Since

2

2 x.2) + (Vi(xl) 2'Pi(x2)11 b.

(xi.l -
2

xi.2)
+

(P;(xl) -
2

(Pi(x2a, )

(xi.1 -
2

xf.2)
+ (rPf(xl)

2

(Pi(x2))
b;

+1k
(xk.1

2

xk.2) bk,

Ak
(xk.1

2
Xk.2)

"''- E(kk*K)nA,
2

it follows from the definition of the successive minima),,,..., X. that (x, - x'2)/2
can be represented as a linear combination of the vectors b1,..., bk_1. On the
other hand, we have just shown that (x1 - x'2)/2 is also a linear combination with
real coefficients of the vectors b1, ... , b_1, bk and that the coefficient of bk in
this representation is xk(xk,1 - xk.2)/2 f 0. This implies that bk is a linear combi-
nation of the vectors b1..... bk_1, which contradicts the linear independence of
the vectors b1, ... , b,,. This completes the proof of Minkowski's second theorem.

6.5 Bases for sublattices

Let A and M be lattices in R" with bases (a,_., a,,) and {b1 , ... , b"J, respec-
tively. If M C A, then M is called a sublattice of A, and bj E A for j - 1, ... , n.
Therefore, there exist integers vij such that

it

Let

and

bj - vijai.

aj - aijei
(-1

bj - bijei.

)) bi
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Then

bj k

n if

1: Vk.j 1: ai.kei
k-1 i-I

n n

( a1.iviJ) ei

bij ei ,

and so

i-I

n

bij = 1: aikukj.
k-1

This implies that

det(M) - I det(bi j)l - I det(aik)II det(vkj)I - I det(vik)I det(A).

Let
det(M)

d = I det(uik)I =
det(A)

Then d is an integer, since Vik E Z for all i, k = 1, ..., n. Also, d is nonzero, since
both det(M) and det(A) are nonzero. Moreover, d is independent of the choice of
bases for the lattices A and M. The number d, called the geometrical index of the
lattice M in A, is the ratio of the volumes of the fundamental parallelepipeds of
the lattices M and A.

Since det(vi.j) - ±d, it follows that the matrix V - (vi.j) E has an
inverse V ° 1 of the form

V-1 (vijl)=(wi.j/d),
where wi.i E Z for i, j = 1, ... , n. This means that

wi.k Vk. j - vi.k Wk. j - d S1. j
k-1 k-1

for i, j - 1, ..., n. Then
n n n

Wk.jbk = Wk.j Vi.kai
k-1 k-I i-1

L.r L Vi.k wk. j ai
i-1 k-1

d8,,ai
i-1

da1EM
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forj-1,...,n, and so
d*AcMCA. (6.7)

Theorem 6.7 Let M be a sublattice of the lattice A in R", and let (b1.....
be a basis for M. There exists a basis {al, ... , of A such that

bl = v1.1a1

b2 v1.2a1 + V2.2a2

b3 = V1.3a1 + V2.3a2 + v3.3a3

bn = Vl.na1 + v2.na2 + ... + vn.nan,

where v, 1 E Zfor j = I....,nand i = 1,..., j, andvj.i > 1 for j - 1,...,n.

Proof. This is simply a restatement of Theorem 6.2.

Theorem 6.8 Let A be a lattice in R" with basis {al , ... , a
a M such that

bl = v1.1a1

b2 = v1.2a1 + V2.2a2

b3 - V1.3a1 + V2.3a2 + V3.3a3

b,, - VI.na1 + V2.na2 + ... + vn.nan,

where v, EZforj-I....,nandi-1,...,j,andvj.1> I forj-1,..., n.
Proof. Let d be the geometric index of M in A. By (6.7),

d*AcM.

Thus, d * A is a sublattice of M, and {dal , ..., da,,} is a basis ford * A. It follows
from Theorem 6.7 that there exists a basis (bl, ..., b,,) for M such that

da; - ui,lbi

for j - 1, ... , n, where the coefficients u,.j are integers. Solving these equations
for the vectors b 1 . . . . . b,,, we obtain expressions of the form

i
b;

r-1

where the coefficients vi.; are integers because (b1.... , b,, } e A and the vectors
a1,...,a, form a basis for A.
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Corollary 6.3 Let M be a sublattice of the lattice A, and let (a .... , a" } and
(b1.... , b,,) be bases for A and M. respectively, such that bi - E;_ vi.jai. Let
d be the geometric index of M in A. Then

d - V2.2 ... V,,.,,

Proof. This follows immediately from the fact that d - det(vi,i ), and the matrix
(vi,i) is upper triangular.

Corollary 6.4 Let A be a sublattice of the integer lattice Z". Then there exists a
basis( a , ,. . . , a" )for A such that

a -
a2 - +a2.2e2

an - +a2.,,e2 ... +a,,.,,e",

whereai.j EZforj-1,...,nandi-1,...,j,anda11> lforj-1,...,n.
Moreover,

Proof. The standard basis e1, .... e,, for R" is a basis for the integer lattice Z",
and A is a sublattice of Z". The result follows immediately from Theorem 6.8.

Let M be a sublattice of the lattice A. Then M is a subgroup of the abelian group
A. The quotient group A/M is the set of all cosecs

a+M-(a+b(bEM),

where a E A, and the addition of two cosets is defined by (a + M) + (a2 + M) -
(a +a2)+M for all a +M - a2+M if and only if a - a2 E M.
The algebraic index of M in A is the order of the quotient group AIM and is
denoted [A : M].

Theorem 6.9 Let M be a sublattice of the lattice A in R. Then

det(M)
[A MJ ° det(A) '

that is, the algebraic index of M in A is equal to the geometric index of M in A.

Proof. Let ( a , , .... a,, } be a basis f o r A, and let (b , ... , b,,) be a basis for the
sublattice M of the form

i
bj - > ' Vi.

i.

where vj.j is a positive integer for j - 1, ... , n. Then

det(M)
v".,, ° det(A)
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Let b E M and b ¢ 0. Then b has a unique representation in the form

k

b = giai =giai,

where k is the largest integer such that gk 0. We shall prove that

IgkI VA-

.k-Since b E M, there exist unique integers h 1, ... , h such that

b = Ehjbj
j-I

n i
_ Ehj 5 Vi.jai

j-1 i-1

it

nn

(1:
vi.jhj a,,

i-1 j-i

and so

189

giEvi.jhj
j-i

for i = 1 , ... ,- / 0 n,
it follows that hi = 0 for i = k + 1, ... , n and gk - vk.khk ¢ 0. Therefore, hk ¢ 0
and

I$kl = Ivk.khkl - Vk.klhkl VA-.k-

We shall prove that the set

S= E gi EZ,0<g, <v,.i

is a complete set of coset representatives for AIM.
Lets=E;.:lgiai E Sands'=E"-1 g'ai E S. Ifs+M=s'+M, then

S - s' _ r,(gi - gj)ai E M.
i-1

Ifs ¢ s', there exists a largest integer k > 1 such that gk ' gk. Then

k

s - s' - T (gi - g; )ai E M,
i-1

and so Igk - 9k'1 >- vk.k. But 0 < 8k, 941. < vk.k implies that Igk - gA I < vk.k, which
is a contradiction. Therefore, s + M ¢ s' + M, and so the elements of S represent
distinct cosets in AIM.
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Let u - Ek i_I giai E A, where gk f 0 and k - 0, 1, ... , n. We shall prove
by induction on k that there exists s E S such that u E S + M. If k - 0, then
U - 0 E S, and U E 0 + M. Let k > 1, and assume that the statement holds for
k' - O, 1,...,k- 1. Let

k

U-giai E A,

where gk 0. Let

gk - Qkvk.k + rk,

where qk, rk E Z and 0 < rk < Vk,k. Then

U -
k-1

giai + gkak

k-1

giai +Qkvk.kak +rkak

k-1 k-1

gEgiai+qk bk -rL rVi.kai +rkak
i-1 i-l
k-1

1:(9i - Qkvi.k)ai +gkbk +rkak.
i-l

It follows from the induction hypothesis that

where b E M and

k-1

- Qk Vi,k)si - S + b,F,(gi
i-l

k-1
S' - g' ai E S.

Then s - s+ rkak E S and b + gkbk E M, and so

u-s +b+gkbk+rkak E S+M.

Thus, S is a complete set of representatives for the quotient lattice A/ M, and

[A: MI-ISI-v1.1
det(M)

det(A)

6.6 Torsion-free abelian groups

The abelian group G is torsion free if every nonzero element of G has infinite
order, that is, if g E G, g 0 implies that mg 0 for all m r= Z, m ¢ 0. The set
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(gi )i E t c G is a set of generators for G if every element g of G can be represented
in the form

g - Emigi,
iEt

where mi E Z and mi - 0 for all but finitely many i E 1. The abelian group G
is finitely generated if it contains a finite set of generators. The abelian group G
is free if it contains a subset {gi }iE, such that every element g E G has a unique
representation in the form

g - E migi,
iE/

where mi E Z and mi - 0 for all but finitely many i E 1. In this case, the set
{gi }iE1 is called a basis for G. Every free abelian group is torsion-free. The group
G - (0) is the free abelian group whose basis is the empty set.

Let G be an abelian group, and let

m*G-{mg :gEG}.

Since G is abelian, rn * G is a subgroup of G for every m >_ 2. Let [G : m * G]
denote the index of m * G in G.

Lemma 6.5 Let G be a free abelian group. If [G : 2 * G] is infinite, then every
basis for G is infinite. If [G : 2 * G] is finite, then every basis for G has cardinality

log[G : 2 * G]
log 2

Proof. Let {gi lie, be a basis for G. The map V : G -+ ®iE/ Z/2Z given by

tP (I: migi) -(mi +2Z)iE/
/

is a well-defined surjective homomorphism with kernel 2 * G. Therefore,

G/(2 * G) ® Z/2Z.
iE/

If the quotient group G/(2 * G) is infinite, then I must be infinite, and so every
basis for G is infinite. If the quotient group G/(2 * G) is finite, then I is finite and

[G : 2 * G] _ IG/(2 * G)I = ®Z/2Z = 21n;
iE/

hence every basis for G is has cardinality log[G : 2 * G]/ log 2. This completes
the proof.

Let G ¢ {0} be a free abelian group with a finite basis. The rank of G is the
cardinality of a basis for G. By the preceding lemma, the rank of a free abelian
group is well-defined. If G - {0}, we say that G has rank 0. If G, is a free abelian
group of rank n, and G2 is a free abelian group of rank n2, then G, ® G2 is a free
abelian group of rank n, + n2.
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Lemma 6.6 Let G f (0) be a free abelian group of finite rank. Then G = Zn for
some n > 1.

Proof. Let (g1, ... , gn) be a basis for G. The map (p : G -+ V given by

n

rD migi (M], M")
i-i

is well-defined and an isomorphism. .

Lemma 6.7 Let G be an abelian group, and let A be a free abelian group. Let
rp : G -> A be a surjective homomorphism. Then G - K ® H, where K is the
kernel of rp and H is a subgroup G such that rp : H -+ A is an isomorphism.

Proof. Let Jai }iE, be a basis for the free abelian group A. Since the map rp is
onto, there exist elements hi E G such that rp(hi) - ai. Let H be the subgroup of
G generated by (hi )iEI. The homomorphism rp restricted to H maps H onto A. It
follows that for every g E G there exists h E H such that V(g) - rp(h), and so
g-h E K.Therefore,G-K+H.

Let h - L;E! mihi E H. Then

v(h) - Lmico(hi) - >miai - 0
iEI iEl

if and only if mi - 0 for all i E I or, equivalently, rp(h) - 0 if and only if h - 0.
Thus, rp : H -+ A is an isomorphism. Let g E K n H. Then g E K implies
that V(g) - 0 and g E H implies that g - 0. Therefore, K fl H - {0}, and so
G - K ® H. This completes the proof.

Lemma 6.8 A subgroup of a free abelian group of rank n is a free abelian group
of rank at most n.

Proof. Let G be a free abelian group of rank n, and let {gi, ... , gn } be a basis
for G. Let G' be a subgroup of G. If G' - {0}, then G' has rank 0. Therefore, we
can assume that G' f {0}.

The proof will be by induction on n. If n - 1, then G - Zg1 for some gi E G.
Let

H - (rEZ : rgi EG'}.

Then H is a subgroup of Z, H f {0}, and so H - dZ for some d r: Z. d > 1. It
follows that G' - Zdgi is a free abelian group of rank 1.

Let n > 2, and suppose that the Lemma holds for any free abelian group of rank
at most n - 1. Let G be a free abelian group with basis (g1, ... , gn }, and let K
be the subgroup of G with basis (gi, ... , gn_1 }. Then K is a free abelian group of
rank n - 1. If G' C K, the induction hypothesis implies that G' is a free abelian
group of rank at most n - 1.
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Suppose that G' ¢ K. The homomorphism 40 : G -+ Zg,, defined by

(Emi&)

has kernel K. Let : G' -+ Zg,, be the restriction of the homomorphism W to G'.
The condition G' K implies that *(G') - Zdg" for some d E Z, d > 1. Let K'
be the kernel of > -. Since

K'-Kf1G'CK
and K is free of rank n - 1, it follows from the induction hypothesis that K' is a
free abelian group of rank at most n - 1. The map's maps G' onto the free abelian
group Zdg,,. By Lemma 6.7,

G' Z H' E) K',

where H' is a subgroup of G' such that 'G restricted to H' is an isomorphism. This
means that H' is a free abelian group of rank 1, and so G' is a free abelian group
of rank at most (n - 1) + I - n.

Theorem 6.10 Let G ¢ (0) be a finitely generated torsion free abelian group.
Then G is a free abelian group of finite rank, and so G is isomorphic to the integer
lattice Z" for some n > 1.

Proof. Let r _ (gl, ... , gk) be a finite set of generators for G, and let r" _
(g',, ... , g;) be a maximal subset of r such that mig± = 0 with mi E Z if and
only if mi - 0 for all i - 1, ..., r. Let G' be the subgroup of G generated by I".
Then G' is a free abelian group of rank r. Let gi E F. By the maximality of I",
there exist integers ui, mi.,. ... , mi., not all zero such that

uigi +mi.rb'r = 0.

If ui = 0, then mij = 0 for j = I__ , r, which is impossible. Thus, ui ,1 0, and so
uigi E G'. Let m be the least common multiple of the integers Jul 1, luzl , Wk I
Then mgi E G' for all gi E P. Since I generates G, it follows that

m*G=(mg:gEG) CG'.

Since G' is a free abelian group of finite rank, it follows from Lemma 6.8 that the
subgroup m * G is also a free abelian group of finite rank. Since G is torsion-free,
the map rp : G -+ m * G defined by p(g) - mg is an isomorphism, and so G is a
free abelian group of finite rank. The theorem follows from Lemma 6.6.

Theorem 6.11 Let M be a lattice in R", and let A be a subgroup of R" such that
M C A and [A : M] < oo. Then A is a lattice.

Proof. The group A is torsion-free and abelian because R" is torsion-free and
abelian. Also, A ¢ (0) because M C A. Let (b, , ... , b,, } be a basis for M. Let
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[A : M] = r and let u,, ... , Ur E A be a complete set of coset representatives for
the finite quotient group AIM. Since every element of A belongs to some coset
u; + M, it follows that {ul, ... , Ur, b, , ... , b I is a finite set of generators for the
torsion-free group A. By Theorem 6.10, A is a free abelian group of finite rank
m. Since M is a subgroup of A and M is a free abelian group of rank n, it follows
from Lemma 6.8 that n < m. Since A is free, the map u H ru is an isomorphism
of A onto r * A, and so r * A is a free abelian group of rank m. Since the quotient
group A/M has order r, it follows that r(u + M) - M, and so ru E M for every
u E A. Therefore,

r*ACM.
Lemma 6.8 implies that m < n. Thus, m = n and A is a free abelian group of rank
n.

Let a,a , ,. . a be a set of generators for A. Since M is a lattice, it contains a set
of n linearly independent vectors. Since A contains M, the generators a,, ..., a
are linearly independent. Therefore, A is a lattice.

6.7 An important example

The results in this section will be applied in Chapter 8 to prove Theorem 8.7, which
is part of the proof of Freiman's theorem.

,v,,)EZ". We write

u - v (modm)

if u; __ v; (mod m) for i = I .... , n.

Theorem 6.12 Let m > 2 and let r, , ..., r be integers such that

(r,,.. ,r,,,m)=1.

Let

and let

r=(r1. ,r,,)EZ",

(6.8)

A - (UEZ" : u - qr (mod m)forsome gEZ}.

Then A is a lattice, anddet(A) = m". Moreover, there exist positive real numbers
)L,, ..., A such that

... 4!'m"- i

and there exist linearly independent vectors b,, ... , b,, E A such that

bf =(b,j,....b,,.j)

and

Ibr.;I<
4

fori, j = I,...,n.
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Proof. Let

M-(m*Z)"-{uEZ" :u-0 (modm)}

be the lattice in R" with basis (me,,..., men ). Then M is a subgroup of the group
A, and the determinant of M is det(M) - m". For every integer q, we have

{uEZ" :u=_qr (mod m)}-qr+ME AIM.

Ifq -q' (mod m), thengr+M -q'r+M.Ifgr+M - q'r+M, then (q -q')r E
M, andso(q-q')r; -0 (mod m)fori - 1....,n.Let((q-q'),m)-d. Then

(q')r; -0
d

(modm/d),

and so

r, - 0 (mod m/d)

for i - 1, .... n. It follows from (6.8) that d - m and q =_ q' (mod m). This
implies that

,n-I
A - U(qr+M),

q`0

and so [A : M] - m < oo. Theorem 6.11 implies that A is a lattice. By Theo-
rem 6.9,

det(A) -
det(M) - m _
[A : M]

Let

K - ((x,,...,x,,) E R" : Ix;I < 1/4fori - 1,...,n}.

The set K is a symmetric, convex body of volume vol(K) - 2-". Applying
Minkowski's second theorem to the set K and the lattice A, we see that the suc-
cessive minima A, , ... , A,, satisfy

AI ...,1 < - 4"mn-1
vol(K)

and so there exist linearly independent vectors b, .... , b,, E A such that

b1-(bl.,,b2.;,...,b,, )E,l;*K-A;*K

for j - 1.... , n. Therefore,

2" det(A)

Ib,.;I < 4

for i, j - 1, ..., n. This completes the proof.
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6.8 Notes

The material in this chapter is classical. Standard references for the geometry
of numbers are Cassels [14], Gruber and Lekkerkerker [60], and Siegel [119].
An excellent book on convexity is Eggleston [32]. The proof of Minkowski's
second theorem follows Siegel [ 119]. Alternate proofs have been given by Bambah,
Woods, and Zassenhaus [7], Danicic [21], Davenport [23], and Weyl [127]. The
proof of Lagrange's theorem by means of the geometry of numbers is due to
Davenport [24]. The proof of Theorem 6.10 follows Lang [78].

6.9 Exercises

1. Let A be the lattice in R2 with basis a, = (1, 2) and a2 = (2, 1). Draw the
lattice in the plane, and identify its fundamental parallelepiped F(A). Show
that A consists of all vectors of the form (u + 2v, 2u + v), where u, v E Z.
Express the vector (8, 7) as the sum of a vector in A and a vector in F(A).
What is the volume of the fundamental parallelepiped of A?

2. Let A be the lattice in R3 with basis a, = (1, 2, 3), a2 = (3, 1, 2), a3 =
(2, 3, 1). Compute det(A).

3. Let A be the subgroup of R2 generated by the vectors (1, 0), (0, 1), and
(1/2, 1/2). Prove that A is a lattice, and find a basis for A.

4. Let A be a lattice in R", and let a,, ..., a, be a basis for A, where aj
E;'_I a;je;. Let A = (a,.j) be the matrix of the basis a,, ... , a,,. Prove that
A consists of all vectors of the form Au, where u is a column vector in V.

5. Let A be a lattice in R" such that A C V. Prove that A - Z" if and only if
det(A) = 1.

6. Construct a lattice A C R" such that det(A) = 1 but A ¢ V.

7. Let K be a convex set, and let ti .., tr be nonnegative real numbers such
that t , + +t, = 1. Prove that if u, , ... , U. E K, then t, u, + + t, ur E K.

8. Let A : R" -+ R" be an isomorphism. Prove that if K is a convex body,
then A(K) is a convex body.

9. Let K be a convex set in R", and let K be the closure of K. Prove that K is
convex.

10. Let K be a convex body in R"with 0 E K. Prove that if X < u, then ,l * K c_
t * K. Construct a convex body K with 0 ¢ K such that K fl (2 * K) = 0.
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11. Let K be a convex body in R"with 0 E K. If A, > A2 > A3 > . . . > 0 and
lim,. A, - A. prove that

00

n).; *K-A*K.
i-1

12. Let f be a continuous real-valued function on R" such that

(a) f(u)> 0forallu E R",u'0,
(b) f (tu) - if (u) for all t E R, t> 0, and u E R",

(c) f(ui +u2) < f(u1)+ f(u2) for all u1, u2 E R".

Let K - (u E R" : f (u) < 1). Prove that K is a convex body.

13. Let K be a convex body in R"with 0 E K.. For U E R", u f 0, let

to - inf{tER : tuEK}.

Show that to > 0, to E K fort < to, and tou E 3K, where 3 K - K \ K is
the boundary of K.

14. Let A be a lattice in R", and let K be a symmetric convex body in R" such
that vol(K) - 2" det(A). Prove that k contains a nonzero element of A.

15. Prove that the volume of the 4-dimensional ball of radius r is r2rs/2.

16. Let K be a convex body containing 0. For A E R, A > 0, let

A*K - {Au : uEK}.

Prove that

(a) A*K-A*K
(b) 3(A*K)-A*3(K),where 3(K)-K\K.

17. Let K be a convex body in R" with 0 E K. The gauge function f of the
convex body K is defined by

f(x)-inf{AER :A>O,xEAK}

for all x E R". Prove that

(a) f(0)-0and f (x) > 0 for all x f0.
(b) f (tx) - if (x) for all x E R" and I E R, t > 0.

(c) f (X1 +x2) < f(xi)+ f(x2) for all x1, x2 E R".

(d) K - (x E R" : f (x) < 1).

(e) A*K-Ix eR" : f(x)<A}.
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(f) a(k * K) = {x E R" : f (x) = ,l}.

(g) K is symmetric if and only if f (x) - f (-x) for all x E R".

18. Compute the gauge function for the unit ball B(0, 1) in R".

19. Compute the gauge function for the unit cube in R.

20. Let K - {(x, y) E R2 : x2/3 + y2/12 < 1}. Prove that K is convex.
Compute the gauge function for K.

21. Prove that the gauge function of the convex body K in R" is convex in the
sense that

f((1 - t)x, +tx2) < (1 - t)f(x,)+tf(x2)

for all x, , x2 E R" and 0 < t < 1.

22. Let L,, L2 be compact sets in R", and define d(LI, L2) by (6.4). Prove that
d(L1, L2) is a metric on the set of all compact subsets of R", that is, prove
that for any compact sets L,, L2, and L3,

(a) d(LI, L2) > 0,

(b) d(L1, L2) - 0 if and only if L, - L2,

(c) d(LI, L2) - d(L2, Li),
(d) d(L1, L2) < d(L). L3)+d(L3, L2)-

23. For any set X e R" and e > 0, let

X(s)-(vE R" : Iv-xI <sforsome xE X).

Let L, and L2 be compact subsets of R". Let

S, - inf(s > 0: L, C L2(s))

and let

Define

32 - inf(E > 0: L2 C L,(e)}.

d(L1,L2)-S,+52.

Prove that this definition of the distance function d(LI, L2) is equivalent
to (6.4).

24. Let X be a compact subset of R" and let (L; } be a sequence of com-
pact convex subsets of X that converges to the compact set L, that is,
lim;- , d(L;, L) = 0. Prove that L is convex.

25. Let fl(X) be the metric space of all compact subsets of a compact set X
in R", and let L E Q(X). Let vol(L) denote the volume of L. Prove that
vol(L) is a continuous function on S2(X).
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26. Prove that the center of mass of a convex body lies in the convex body.
Construct a nonconvex set X such that the center of mass of X does not lie
inside X.

27. Let S2(X) be the metric space of all compact subsets of a compact set X in
R", and let L E S2(X). Let c(L) denote the center of mass of L. Prove that
c(L) is a continuous function on Q(X).





7
Plunnecke's inequality

7.1 Plunnecke graphs

A directed graph G - (V (G), E(G)) consists of a finite set V (G) of vertices and a
set E(G) of edges, where each edge e E E(G) is an ordered pair (v, v') of distinct
elements of V(G). Let h > 1. A directed graph G - (V(G), E(G)) is a graph of
level h if the vertex set V(G) is the union of h + I pairwise disjoint nonempty sets
Vo, Vi, ... , Vh and if every edge of G is of the form (v, u'), where v E V,_, and
v' E V; for some i - 1, ..., h; thus,

h

E(G) S U(V;_, X V;).
i-I

A directed graph G - (V(G), E(G)) of level h is a Pliinnecke graph of level h if
it satisfies the following two conditions:

(i) Letl <i <h-landk>2.LetuE V;_1,vE V/,and wl,...,w& E V;+1
be k + 2 distinct vertices of G such that (u, v) E E(G) and (v, wf) E E(G)
f o r j - I , ... , k. Then there exist distinct vertices VI, ... , vj- E V; such
that (u, vj) E E(G) and (vi, w;) E E(G) for j - I, ... , k. This can be
represented by the following diagram:
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wI W2

U

W3 W4 wi W2 W3 W4

V4

(ii) Let 1 < i < h - l and k > 2. Let u l , ... , uk E Vi-1, v E Vi, and w E V;+1
be k + 2 distinct vertices of G such t h a t (u1, v) E E(G) f o r j - 1, ... , k,
and (v, w) E E(G). Then there exist distinct vertices V 1 ,.. . , vk E V; such
that (u1, vi) E E(G) and (vj, w) E E(G) f o r j - 1, ... , k. This can be
represented by the following diagram:

V4

U4

Let G - (V(G), E(G)) be a directed graph. A path in G from vertex a to
vertex b is a finite sequence of vertices a - vo, vI, ... , vk_,, vk - b such that
(v;_i,v,) E E(G)fori - 1,...,kand vi fa,bfori - 1,2,...,k- L'Me path
can also be identified with the sequence of edges (vo, v1), (v1, v2), ... , (vk_,, vk).
The vertices v1, ... , vk_1 are called the intermediate vertices of the path.

Let X and Y be nonempty subsets of V(G). The image of X in Y, denoted
imG(X, Y) or simply im(X, Y), is the set of all y E Y such that there exists a path
from x to y for some x E X. The magnification ratio of X in Y is

D(X, Y) - min { 1km

lZi
Y)I :0 i z 9 X I .

Let G bea graph of level h with vertex set V(G) - U

-01111

V1. For i - 1, ... , h,
the ith magnification ratio of G is

Di-D1(G)-D(Vo,V,)
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Plunnecke proved that if G is a Plunnecke graph of level h, then the sequence Di l`
is decreasing, that is,

DI > DZ/Z > D3/3 > - > D.
These simple inequalities have powerful consequences in additive number theory.

7.2 Examples of Plunnecke graphs

Addition graphs. Let A and B be nonempty, finite subsets of an abelian group.
We want to construct a Plunnecke graph of level h whose ith vertex set is the
sumset A + i B and whose edges are the ordered pairs of group elements of the
form (v, v + b), where b E B and V E A + (i - 1)B for some i - 1, ... , h.Since
the sumsets { A + i B are not necessarily pairwise disjoint, we have to be careful
about the construction of this graph.

Let h > 1, and let A and B be finite, nonempty subsets of an abelian group.
The addition graph G of level h constructed from the pair A, B is the graph whose
vertex set V (G) and edge set E(G) are defined as follows:

h

V(G) = U V,.
i-O

where

and

V, -(A+iB) x (1)

h

E(G)U{((v,i - 1),(v+b,i)): v E A+(i - 1)B,bE B).

It is clear that the sets VO, V1, ..., Vh are pairwise disjoint and that the pair
((v, i), (v', i')) E E(G) if and only if i' = i + I and u' - v E B. Thus, the
addition graph is a directed graph of level h.

We shall prove that the addition graph is a Plunnecke graph. Let I < i < h - 1,
andlet(u,i - 1) E V;_1,(v,i) E V;,and(wl,i+1),...,(wk,i+1) E V41 be
k + 2 distinct vertices in V (G) such that

((u, i - 1), (v, i)) E E(G)

and

((v, i), (wi, i + 1)) E E(G)

f o r j = 1,...,k.Then v-u=bE Bandwj -v=bj E Bfor j -1,...,k.Let
of = b1 + u. Since the k elements wj are distinct, the k elements bj are distinct, and
so the k elements vj are distinct. Since U E A+(i -1)B, it follows that vj E A+i B
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and so ((u, i - 1), (v1, i)) E E(G) for j - 1, ..., k. Since A and B are subsets of
an abelian group, it follows that

wj -bj +v -bj +(b+u)-b+(b1+u)-b+vi,

and so ((vi, i), (wj, i + 1)) E E(G) f o r j - 1, ... , k. This shows that the addition
graph satisfies property (i) of Plunnecke graphs. It can be shown in the same way
that property (ii) is satisfied.

Addition graphs are an important class of Plunnecke graphs. To simplify nota-
tion, we shall henceforth denote the i th vertex set in the addition graph by A + i B.

Truncated addition graphs. Let n > 1, and let A and B be nonempty sets of
nonnegative integers such that A fl [l, nJ 710 and 0 E B. Let

Vi -(A+iB)fl[1,n]

for i - 0, 1, 2, .... The truncated addition graph G of level h constructed from
the pair of sets A and B is the graph with vertex set V (G) - Uh V; and edge set

E(G)-1(v,v')E Vi_, x V1 v' - V E B}.

This is a Pliinnecke graph of level h.
Independent addition graphs. Let B - {b1 , ..., b.) be a set of n elements of an

abelian group such that the (11+h- 1) h-fold sums of the form bt, + + bi, with
I < j, < ... < jh < n are distinct. Let 1,.h denote the addition graph of level h
constructed from the sets A - (0) and B. Then Vo - {0), V; - i B, and

n + i - 1 n(n+1)...(n+i - 1)
V - -;II

i i!

for i - 1, ... , h. Moreover,

ince

n'
-<IV1I<<n'

i!

n(n + 1)...(n +i - l)

i!

l
n/ \l

+n)...(I+ (ln \n l
\I+

l(
/

i!n'

P
'n.

The graph 1, 1, is called the independent addition graph of level h on n elements.
It is easy to construct examples of independent addition graphs. Let A - (0)

and B - (b1,..., b,,) be a set of n positive integers such that bi > hb;_1 for
r - 2, ... , n. Then the h-fold sums of elements of B U {0) are distinct, and the
h + I sets { V, )are pairwise disjoint.,-0
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Contracted graphs. Let G - (V(G), E(G)) be a Pliinnecke graph of level h,
where V (G) - Uj o V1. Let a, b E V(G). A path in G from vertex a to vertex b is a
finite sequence of vertices a - Vo, v1, ... , vk_ 1 , vk - b such that (vi -1, vi) E E(G)
fori - 1,...,kandvi 'a,bfori - 1,...,k- 1.Let0 < j <k < h, andletX
and Y be nonempty subsets of Vj and Vk, respectively, such that for some a E X
and b E Y there is a path in G from a to b. Let V(X, Y) be the set of all vertices
v E V (G) that lie on some path from X to Y. Let

Vi(X, Y) - V(X, Y) fl Vi+j

for i -0, 1, ..., k - j. Then
k-j

V(X,Y)-UVi(X,Y).
i-0

Since there exists a path from the vertex a E X to the vertex b E Y, it follows
that Vi(X, Y) f 0 for i - 0, 1, ... , k - j. Let G(X, Y) be the graph with vertex
set V (X, Y) and edge set E(X, Y) consisting of all edges (v, v') E E(G) with
v, v' E V (X, Y). Then the contracted graph G(X, Y) is a Plunnecke graph of level
k- j.

Product graphs. Let h > 1, r > 2, and let GI, ... , Gr be Pliinnecke graphs
of level h. We construct the product graph G - GI x x G. as follows: Let
V(Gj)-U,-0Vi,jfor j-1,...,rand define

Vi - Vii x ...x Vir

for i - 0, 1, ... , h. Let E(G) consist of all ordered pairs of r-tuples

( ( v 1 _ 1 . 1 . . . . . Vi-),r), (vi.1, ... , vi.r)) E Vi-1 X Vi

such that (vi _ I, j, vi, j) E E(G j) for j - 1, ... , r. It is easy to check that the product
graph G is a Plunnecke graph of level h.

Inverse graphs. Let G be a Plinnecke graph of level h with vertex set V(G) -
u, o Vi and edge set E(G). Let V ' - Vh_i for i - 0, 1, ... , h. The inverse
graph G-' is the graph whose vertex set is V(G-1) - Uh O

Vi-' and whose edge
set E(G-1) is determined by the condition that (v, v') E E(G-1) if and only if
(v', v) E E(G). Then G-' is a Plunnecke graph of level h.

7.3 Multiplicativity of magnification ratios

In this section, we shall prove that the magnification ratios of graphs of level h are
multiplicative.

Theorem 7.1 Let G' and G" be directed graphs of level h. Then

Di (G' x G") - Di
(G') Di (G")

fori - I,...,h.
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Proof. Let V (G') - U, o V; and V (G") - U,-0 V;'. Let Z' and Z" be nonempty
subsets of Vo and Vo , respectively, such that

Dj(G) - lim(Z', V; )l

'

and

Then

and

IIZ

Z'xZ"CVoxVo -Vo(G'xG")

im(Z' x Z", VO' X VO") - im(Z', VO') x im(Z", Vo")

Since IZ' x Z"I - IZ'IIZ"I ,'Oand

it follows that

Iim(Z' X Z", V; X V;")I - lim(Z', V;)Ilim(Z V,")l,

D; (G' x G") <
lim(Z' x Z", Vi, X V;")I

IZ'xZ"I
lim(Z', V; )I lim(Z" V,")I

IZ'I
IZ"I

D;(G')D;(G").

To complete the proof of the theorem, we must prove the reverse inequality

D;(G' x G") > Dr(G')Dr(G" ).

We do this first in the case where G' and G" are graphs of level 1, G" is a graph
of a very special type, namely, V(G") - Vo U V,', where the two vertex sets Vo
and Vi" are both copies of a nonempty set T, and E(G") consists of the ITI edges
(t, t) fort E T. If Z" S T - Vo , then im(Z", V,') - Z", and so

Di(G") - 1.

(Note: Since the vertex sets VV' and V,' of a graph of level I must be disjoint,
we should, just as in the construction of the addition graph, formally define the
vertex sets Vo - ((t, 0) : t E T) and V,' - ((t, 1) : t E T) and the edge set
E(G") - {((t, 0), (t, 1)) : t E T).)

Let G - G' x G", and let Z be a nonempty subset of V0(G) - Vox Vo - Vox T.
Let

Z,'-{v'E VV:(v',t)EZ}.

Then
Z - U(Z; x {t})

ZET
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and

Therefore,

im(Z, V1 X Vi') = U (im(Zf', Vi') x (t}) .
fET

lim(Z, V1, X V1")I = lim(Zf', VI)I
fET

DI(G')EIZ;I
fET

= D1(G')IZI,

and so

D1
Iim(Z, V" X V1')I(G') <

IZI

Since D1(G") = 1, it follows that

Therefore,

DI(G')D1(G") - DI(G') < D1(G' x G").

D1(G')D1(G") - D1(G' x G")

for graphs of this special type.
We now consider the general case. Let G' and G" be graphs of level h, and let

1 < i < h. We construct a graph H - (V(H), E(H)) of level 2 with vertices
V(H) = WO U WI U W2, where

W2 - V,' x V," = V; (G' x G")

WI = V X Vo

Wo = V, x Vo = Vo(G' x G").

The edges from WO to W1 will consist of all pairs ((a, c), (b, c)) such that

aEV,,bEV,CEVo,

and there exists a path in G' from a E Vo to b E V; . The edges from W1 to W2
will consist of all pairs ((a, c), (a, d)) such that

a E V;,c E Vo,d E V;',

and there exists a path in G" from c E Vo to d E Vi'. It follows that there is a path
in H from (vo, vo) E Wo to (v;, v;') E W2 if and only if there is a path in G' x G"
from (vo, vo) E V0(G' x G") to (v,, u;') E V,(G' x G"). Therefore,

D2(H) = D(Wo, W2) = D,(G' x G").

We shall prove that
D1(H) - D(Wo, W1) ? Di(G').
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Let Z be a nonempty subset of W° - Vp x Vo . Fort E Vo , let

Z;- {v'EVV:(v',t)EZ).

Then

and

Therefore,

Z - U (Zr' x {t})
rE V,

im(Z, W;) - U (im(Zr', vi,) x {t})
E Vp

lim(Z, Wi)I - E lim(Z;, V; )I
rEV;

> Di(G') E IZrI
(EVO

Di(G')I ZI

Therefore,

D(Wo, WI) - min {
lim( Z c Wo} > D;(G').

A similar argument proves that

D(W1, W2) ?
D;(G").

If I im(Z, WI) l - 0 for some nonemptyset Z c W°, then D; (G) - D; (G' x G") - 0
and we are done. Therefore, we can assume that lim(Z, Wi)I f 0 for all 0 f Z c
W°. It follows that

D;(G' x G") - D2(H)

- D(Wo, W2)

- min
Iim(Z, W2)I

: 0 ,i z S; W°
IZI

- min
Iim(Z, W01 Iim(Z, WZ)I

:0 7(Z C_ W
IZI Iim(Z, W)I °

- min
Iim(Z, W0)I lim(im(Z, W1), W2)I : 0 f Z c W 1

IZI lim(Z, Wi)I - °1

> min
lim(Z, Wl)I : 0,Z c WO

IZI

x min
Irm(im(Z, WO, W2)I :0

Z
C W°

{ lim(Z, Wi)I
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>
Itm(Z, W)I

min : 0 7(Z C Wo
IZI

x min
Itm(Z', W2)I

: 0 f Z' C W1
I Z11

D(Wo, W1)D(W1, W2)

Di (G') Di (G" ).

209

This completes the proof.

Corollary 7.1 Let h > 1 and r > 2, and let G1, ..., Gr be graphs of level h. Let
G be the product graph G1 x x Gr. Then

Di (G) - Di (G 1) ... Di (Gr )

fori-1,...,h.

7.4 Menger's theorem

Let G - (V(G), E(G)) be a directed graph. Let a - vo, v1, ..., vk - b and
a - wo, w1 , ... , wi - b be two paths in G from vertex a to vertex b. These paths
are disjoint if vi wj for i - 1, ... , k -1 and j - 1, ... , I -1. A set S of vertices
separates vertex a from vertex b if every path from a to b contains at least one
element of S. Let S be a set that separates vertex a from vertex b, but contains
neither a nor b. Let m be the maximum number of pairwise disjoint paths from a
to b. Since S contains at least one vertex from each of these paths, it follows that
ISI > m. Menger's theorem states that there exists a separating set S such that
ISI - M.

Notation. Let G - (V(G), E(G)) be a directed graph. The directed graph G' -
(V(G'), E(G')) is a subgraph of G if V(G') c V(G) and E(G') c (V(G') x
V(G')) fl E(G). Let V' C V(G). The complete subgraph of G generated by V' is
the graph with vertex set V' and edge set

E' - {(v, v') E E(G) : v, v' E V'} - (V' x V) fl E(G).

Let W C V and F C E(G). Let G \ IW, F) denote the graph with vertex set
V(G) \ W and edge set consisting of all edges (v, v') E E(G) \ F such that
U, U'EV(G)\W.

Theorem 7.2 (Menger) Let a and b be vertices of a directed graph G - (V(G),
E(G)), and suppose that (a, b) ' E(G). Let m be the maximum number ofpairwise
disjoint paths from the vertex a to the vertex b. Let t be the cardinaliry of the smallest
set S of vertices that separates the vertex a from the vertex b and that contains
neither a nor b. Then e - m.

Proof. The proof will be by induction on 8. If t - 0, then S is empty, so there are
no paths from a to b and m - 0. If C - 1, then S - Iv}, and there exists at least one
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path from a to b. Moreover, every path from a to b must contain the intermediate
vertex v. It follows that there cannot exist two pairwise disjoint paths from a to b,
and so m = 1.

Let e > 2. Suppose that the theorem is true for any two vertices a, b of a directed
graph G such that (a, b) V E(G) and there exists a separating set of cardinality at
most C - I that does not contain a or b. If the theorem is false for e, then there
is a graph G with vertices a, b such that (a, b) ' E(G), there are at most e - I
pairwise disjoint paths from a to b, but f is the cardinality of the smallest set that
separates a and b and contains neither a nor b.

Consider such graphs in which the number of vertices is minimal, and from this
set of graphs choose one for which the number of edges is minimal. Call this graph
G = (V(G), E(G)). Let e be any edge in E(V), and let

G' = G \ (e) = (V (G), E(G) \ (e)).

Since G' is a subgraph of G, there are at most f- I pairwise disjoint paths from a to
b in G'. Let S(e) be a set of vertices of minimum cardinality that separates a from
b in G' and contains neither a nor b. By the minimality of G, the set S(e) contains
at most e - I elements. If e - (v,, 112) and v, ( a, then S(e) U {v,) separates a
from b in G, since every path from a to b either contains some vertex in S(e), or
includes the edge e. Similarly, if v2 ¢ b, then S(e) U {v2) separates a from bin G.
This implies that

IS(e)I=e-1. (7.1)

Let V E V (G). If a, v, b is a path in G, then v E S for every separating set S
such that S n (a, b} = 0. Therefore, S' - S \ {v} separates a from b in the graph
G' = G \ (v). Similarly, if S' separates a from b in the graph G', then S' U {v}
separates a from b in the graph G. Therefore, IS'I > e - I and IS'I = C - I for
some separating set in G'. By the induction hypothesis, the graph G' contains e - 1
pairwise disjoint paths from a to b, and these paths, together with the path a, v, b,
give a pairwise disjoint paths from a to b in G, which is false. Therefore, if v is
any vertex in V(G), then either (a, v) ' E(G) or (v, b) ¢ E(G).

Let S separate a from b in G, and suppose that ISI = C and a ¢ S and b g S. We
shall prove that either (a, s) E E(G) for all s E S or (s, b) E E(G) for all s E S.

Let P(a, S) denote the set of all paths in G that start at the vertex a and end at
some vertex s E S, with no intermediate vertex in S. Let P(S, b) denote the set of
all paths in G that start at some vertex s E S and end at b and have no intermediate
vertex in S. Since S is a separating set, every path in G from a to b contains at
least one point that lies in S, and so the path has an initial segment that belongs
to P(a, S) and a terminal segment that belongs to P(S, b). Moreover, since the
separating set S is minimal, for every s E S there is a path from a to s and from s
to b.

Let 1(a, S) be the set of intermediate vertices of paths in P(a, S), and let I (S, b)
be the set of intermediate vertices of paths in P(S, b). If there exists c E 1(a, s) n
I (S, b), then there is a path in G from a to c that contains no vertex of S, and there
is a path in G from c to b that contains no vertex of S. Concatenating these two
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paths produces a path in G from a to b that contains no element of S, which is
impossible. Therefore,

I(a,S)nI(S,b)-0.
We shall prove that either 1(a, S) - 0 or 1(S, b) - 0. Suppose that both sets 1(a, S)
and I(S, b) are nonempty. Let H - (V(hf), E(H)) be the graph with vertex set

V(H) - {a) U S U 1(S, b) U {b}

- (a) U {v E V(G) : v lies on a path in P(S, b)}

and edge set

E(H) - ((a, s) : s E S)

U {(v, v') E E(G) : (v, v') lies on a path in P(S, b)} .

Since 1(a, S) n I(S, b) - 0 and 1(a, S) 710, it follows that 1(a, S) n V(H) - 0,
and so IV(H)I < IV(G)I

Let T be a set that separates a from b in the graph H, and suppose that a, b ' T.
Let r be a path from a to b in G, and let n' be the terminal segment of this path
that belongs to P(S, b). Then n' is a path from some s E S to b. Since (a, s) is an
edge in H, it follows that a, s concatenated with the path jr' is a path in H from a
to b. Since T separates a from b in H, it follows that T contains an intermediate
vertex of this path, and so either s E T or some intermediate vertex of tr' belongs
to T. Thus, T also separates a from b in G. Therefore, ITI > £. Since the graph
H contains strictly fewer vertices than the graph G, it follows from the induction
hypothesis that there are £ pairwise disjoint paths in H from a to b. In particular,
for each s E S there exists a path 7r2(s) E P(S, b) from s to b such that the £ paths
n2(s) are pairwise disjoint.

Similarly, for each s E S there exists a path ,r,(s) E P(a, S) from a to s such
that the £ paths n, (s) are pairwise disjoint. Concatenating the path n, (s) from a to
s with the path n2(s) from s to b produces a path 7r (s) from a to b, and these I SI - £
paths are pairwise disjoint. This is impossible in the graph G. Therefore, either
1(a, S) - 0 and (a, s) E E(G) for all s E S, or 1(S, b) - 0 and (s, b) E E(G) for
all s E S. Moreover, since G contains no path of the form a, s, b, it follows that
these two possibilities are mutually exclusive.

Let a, v, v' be the initial segment of a shortest path in G from a to b. Then v' 7( b
and e - (v, v') E E(G). Let S(e) be a minimal separating set for the graph G \ {e}.
By (7.1), we have IS(e)I - £ - I > 1, and so S(e) U ( v) is a separating set for G
of minimum cardinality £. Since (a, v) E E(G), it follows that (a, s) E E(G) for
all s E S(e). Similarly, S(e) U {v'} is a separating set for G. If (a, v') E E(G),
then there is a shorter path from a to b than the one that starts a, v, v', which
is impossible. Therefore, (a, v') ' E(G). It follows that (v', b) E E(H), and
so (s, b) E E(G) for all s E S(e). Thus, if s E S(e), then (a, s) E E(G) and
(s, b) E E(G), and so a, s, b is a path in G, which is impossible. This completes
the proof of Menger's theorem.

Let G - (V (G), E(G)) be a directed graph, and let X and Y be nonempty, disjoint
sets of vertices of G. A path in G from the set X to the set Y is a finite sequence



212 7. Plunnecke's inequality

of vertices Vo, vi , ... , uk_ I , Vk such that vo E X, Vk E Y, and (vi-1, vi) E E(G)
for i - 1 , ... , k. Let vo, vi , ... , Vk and wo, wl, ... , w1 be two paths in the graph
G from X to Y. These paths are totally disjoint if v; , wj for i = 0, 1, ... , k and
j = 0, 1, ... ,1. A set S of vertices separates the set X from the set Y if every path
from X to Y contains at least one element of S.

Theorem 7.3 Let X and Y be nonempty, disjoint sets of vertices of a directed
graph G. Let m be the maximum number of pairwise totally disjoint paths from X
to Y. Let £ be the cardinality of the smallest set S of vertices that separates the set
X from the set Y.Thenf - m.

Proof. Let G - (V (G), E(G)) be a directed graph. Let X and Y be nonempty,
disjoint subsets of V(G), and let m be the maximum number of pairwise totally
disjoint paths from X to Y. Let a and b be elements not belonging to V(G). We
construct a new graph G" - (V (G`), E(G*)) by adjoining two new vertices a and
b to V(G) as follows: Let

V(G*) - V(G) U (a, b)

and

E(G') - E(G) U ((a, x) : x E X} U {(y, b) : y E Y).

Then a - vo, vl, ... , vk _ I , vk - b is a path in G' from vertex a to vertex b if
and only if v1,..., vk_I is a path in G from the set X to the set Y. Two paths
a = vo, vi, ... , vk_I, vk = b and a = wo, w l, ... , we_i, wi - b are disjoint
paths from a to bin G` if and only if v1, ..., vk_ I and wi, ..., w1-1 are totally
disjoint paths from X to Y in G. It follows that m is also the maximum number of
pairwise disjoint paths from a to b in the graph G. By Theorem 7.2, there exists
a set S C V(G*) such that S separates a from b, a, b ' S, and ISO - m. Then
S C V(G), and S separates X from Y in G. This completes the proof.

7.5 Pli nnecke's inequality

LetG - (V(G), E(G)) be adirected graph, andlety E V(G).Letd*(v) - d*(v, G)
denote the number of vertices v' E V(G) such that (v, v') E E(G). Let d-(v) -
d-(v, G) denote the number of vertices v' E V (G) such that (v', v) E E(G).

Lemma 7.1 Let G be a Pliinnecke graph, and let (u, v) E E(G). Then

d*(u)
? d*(v)

and

d-(u) < d-(v).

Proof. These inequalities follow immediately from properties (i) and (ii) of the
definition of a Plunnecke graph.
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Lemma 7.2 Let G be a Pliinnecke graph of level h, and let V(G) - U,..0 Vi. If
Dh > 1, then there are I Vo I totally disjoint paths from Vo to Vh.

Proof. Let m be the maximum number of pairwise totally disjoint paths from
Vo to Vh. By Theorem 7.3, there exists a set S of cardinality m that separates Vo
from Vh. We shall prove that ISI - I Vol.

For V E V(G), let i(v) denote the unique integer i such that v E Vi. Choose a
separating set S such that ISI - m and

i(s)
SES

is minimal. We shall prove that

SC VoUVh.

Suppose not. Then s n V j 0 for some j E [ 1, h - I]. Let

SnVjis,,.-sq},
where q - IS n V, I > 1. Let irl, .... n, be m pairwise totally disjoint paths
from Vo to Vh, and suppose that si is a vertex on path ,ri for i - 1, ..., q. Since
0 < j < h, it follows that, for each i E [1, q], the vertex si has a predecessor
r; E V j _ I on the path ni and a successor t; E V11 on the path ni. It follows from
the minimality of E,Es i(s) that the set

S * ,...,rq,sq+l,...,sm

does not separate Vo from Vh, and so there exists a path n' from Vo to Vh that does
not intersect S'. However, since n' cannot avoid the separating set S, it follows
that si lies on n' for some i E [1, q], say, i - 1. Let r' be the predecessor of s1 on
the path n'. Then r` if Irl, ... , rq }.

We shall consider the following sets of vertices:

Sq - {ri,...,rq} C Vj_i,
Sq' - (T' , r, , ... , rq } C vi-1,
Sq - (Si,...,Sq} C Vj,
SQ - (tl,...,tq} C Vj+l.

The contracted graph (defined in Section 7.2)

G' - G(Sq, Sq )

is a Pliinnecke graph of level 2. Let

V(G')-Vo UV1'UV2.
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Since ri, s;, t; are successive vertices on the path n; for i - 1, ... , q and r*, s,, tj
are successive vertices on the path Ire, it follows that

V2 - Sq

V1* Sq

Vo - Sq.

We shall prove that V, - Sq. If there exists a vertex s' E Vj* \ Sq, then (r', s') E
E(G) and (s', t') E E(G) for some r' E Sy - jr*) U S9 and t' E Sq. Therefore,
t' - t, for some 1 E [1, q]. The path tp has a terminal segment that starts at y, ends
in Vh, and does not intersect S. If r' - r, E S,-, then the path tq- has an initial
segment that starts in V0, ends at r', and does not intersect S. Combining this initial
segment with the path r', s', t', and then with the terminal segment of n, from r,
into Vh, we obtain a path from Vo into Vh that does not intersect the separating set
S, which is impossible.

If r' - r', then the path tr' passes through r' and does not intersect is..], s,,,

which are the elements of the separating set S that do not belong to Vj. The initial
segment of the path tr' from Vo to r', followed by the segment r', s', t' and then
the terminal segment of the path 7r,, is again a path from Vo into Vh that does not
intersect the separating set S, which is impossible. Therefore,

V1 - Sq.

Since (r;, r) and (s,, t;) are edges in the contracted graph G', it follows from
Lemma 7.1 that

d+(r;, G*) > d+(s;, G')

and

d-(t;, G*) > d-(s;, G').

Since the number of edges leaving Vo is exactly equal to the number of edges
going into V,*, and the number of edges leaving V,* is exactly equal to the number
of edges going into V2*, it follows that

q q

Ed+(ri,G') ? Fd+(si,G')
i-1 i-i

q

d-(1j, G')

> d-(s;, G')

q

d+(r', G')+ d+(r;, G*)

+d+(rG*),



7.5 Plunnecke's inequality 215

which is absurd. Therefore, S C Vo U Vh.
Since ISI is the maximum number of pairwise totally disjoint paths from Vo to

Vh, it follows that

ISI < Vol.IIf
Vo c S, then I Vol 5 ISI, and so I Vol - ISI. If Vo ¢ S, then Vo \ S is nonempty.

Since S is a separating set and S c Vo U Vh, every path in G from Vo \ S must end
in Vh n S. It follows that

I<D lim(Vo\S,Vh)l<IVhnSI
h _

IVo\Sl - IVo\Sl'
and so

Therefore,

IVo\sl<Ivhnsl.

Isl - Ivonsl+Ivhnsl
Ivonsl+IVo\SI

- INI

and I Vol - ISI. This completes the proof.

Lemma 7.3 Let G be a Pliinnecke graph of level h > 2. If Dh > I, then Di > I
fori - 1,...,h.

Proof. Since Dh > 1, it follows from the previous lemma that there are I Vol
totally pairwise disjoint paths from Vo to Vh, and each of these paths contains a
vertex from the set V. The vertices in V; belonging to different totally disjoint
paths are distinct. Let Z be a nonempty subset of Vo. Since there are I Z I pairwise
totally disjoint paths emanating from Z, it follows that

IZI < lim(Z, V1)I,

and so

D,-D(Vo,V;)-min
lim(Z, Vr)I

A
>

I

This completes the proof.

Theorem 7.4 (Plannecke) Let G be a Plilnnecke graph of level h > 2, and let
D1, ... , Dh be the magnification ratios of G. Then

D1>D2 >...>Dnlh.

Proof. It suffices to prove that Di > Dh/h for i - 1, ... , h. If Dh - 1, then
Lemma 7.3 implies that Di > I - Dh/h. If Dh - 0, the result is obvious.
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Let A - {0}, and let B be a set of n integers such that the addition graph of level
h constructed from A and B is the independent addition graph In.h, as defined in
Section 7.2. Then

n
< li BI - D(101, iB) - Di(In.h) < n'

fori-1,...,h.
Suppose that 0 < Dh < 1. Let r be any positive integer, and let

n - [I +(h!Dh(G)-r)hIh].

Then
Di,(G)rnh > W.

Let GI be the product of r copies of the graph G, and consider the product graph
Gr x In.h. This is a Plunnecke graph of level h and, because of the multiplicativity
of magnification ratios,

Dh(Gr
x In.h) - Dh(G)rDh(II.h) >

Dh(GGynh
> 1.

It follows from Lemma 7.3 that for i - 1, ..., h,

I < A(Gr x In.h) - DA(G)rDA(In.h) < A(G)rni,

and so

D,(G) > n-'I'

Since Dh - Dh(G) < 1, we have

(h!Dh(G)-r)'/h < n < I +(h!Dh(G)-r)i/h < 2(h!Dh(G)-r)hth.

Therefore,

D,(G) > n-i'r
(2(h!Dh(G)_r)h/h) -ilr

(2(h !)1/h)-'1r Dh(G)i"h.

Since this inequality holds for all r > 1, and

lim (2(h!)Uh) lr - 1,
r cc

we conclude that Di(G) > Dh(G)'1h f o r i - 1, ... , h.
Finally, we consider the case Dh > 1. Let r be a positive integer such that

n - {Di,(G)"h] > 1.
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Then

and

2 <n < D,,(G)'th <n+1 <2n

Dh(G)'n-h > 1.

Let be the inverse of the independent addition graph. Its magnification ratios
satisfy the conditions

i
_h

Dh(l,,.h) -
IhBI_ ` > n

h-1

and
J(h - i)BI nh-' i

Di(l,,.h) - IhBI - nh/h! h!n

Consider the (r + 1)-fold product graph G' x l,,.h. It follows from the multi-
plicativity of magnification ratios that

Dh(Gr x 'I - Dh(G)'Dh(lnh) - Dh(GYn-h > 1,

and so, by Lemma 7.3,

I <
D,(Gr

x l,,.h) Di(G)'h!n-'

This implies that

D;(G) > (h!)-"'n'l'

> h!YI1( Dh(G)r/h

/r2\
(2` h!)-11 r Dh(G)'1'.

Since this inequality holds for all r > 1, it follows that D,(G) > Dh(G)'dh for
i = 1, ... , h. This completes the proof of Plunnecke's inequality.

7.6 Application: Estimates for sumsets in groups

Theorem 7.5 Let B be a finite subset of an abelian group. Then

IhBI < IiBIh"

fori - 1,...,h.

Proof. Let G be the addition graph of level h constructed from the sets A = {0}
and B. Since D; - li BI for i - 1, ... , h, it follows from Pliinnecke's inequality
that

IhBI -Dh 5 D;'1'-liBIhl'
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Theorem 7.6 Let A and B be finite subsets of an abelian group, and let 1 < i < h.
If I AI - n and IA + i B I < cn, then there is a nonempty subset A' C A such that

IA'+hBI <chl'IA'I.

Proof. Let G be the addition graph of level h constructed from the sets A and
B. There exists a nonempty set A' C A such that

Dh -
IA'+hBI

IA'I

Then Dh < D,'1' implies that

IA'+hBI - IA'IDh
h1iIA'IDi

IA'I
IA+iB1 h/i

< ( )IAI
< ch/'IA'I.

Theorem 7.7 Let B be a finite subset of an abelian group. If I B I - k and 12 B 1 <
ck, then

IhBI < chk

for all h > 2.

Proof. We apply Theorem 7.6 with A - B and i - 1. Then there is a nonempty
set B' c B such that

IhBI < IB'+hBI <chIB'I <chIBI - chk.

Lemma 7.4 Let U, V, and W be nonempty, finite subsets of an abelian group.
Then

IUIIV - WI :5 IU+VIIU+WI.

Proof. For each d e V - W, we choose elements v(d) e V and w(d) E W such
that d - v(d) - w(d). Define the function

0:Ux(V-W)--'(U+V)x(U+W)

by

O(u, d) - (u + v(d), u + w(d)).

We shall prove that the map 0 is one-to-one. If

4,(u 1, di) - O(u2, d2),

then

(u i + v(di ), u i + w(di )) - (u2 + v(d2), u2 + w(d2)),
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and so

and

Therefore,

u, + v(d,) - u2 + v(d2)

u,+w(d,)-u2+w(d2).

d, - v(d,) - w(d,) - v(d2) - w(d2) - d2.

Since each d E V - W uniquely determines v(d) E V, it follows that v(d,) - v(d2)
and so u, - u2. Therefore, ¢ is a one-to-one mapping of finite sets, and

IUIIV - WI - Ux(V - W)I
< (U+V)x(U+W)I
- U+VIIU+WI.

This completes the proof.

Theorem 7.8 Let A and B be finite subsets of an abelian group such that I A I - n
and I A + BI < cn. Let k > 1 and 1 > 1. Then

IkB - IBI < ck+'n.

Proof. Since IkB -!BI - I1B - kBI, we can assume without loss of generality
that k < 1. Applying Theorem 7.6 with i - 1, we obtain a nonempty set A' C A
such that

IA'+kBI <c'kIA'I-cn', (7.2)

where c' - c- and n' - IA'I. Applying Theorem 7.6 with A, i, h, n, and c replaced
by A', k, 1, n', and c', respectively, we obtain from inequality (7.2) a nonempty
subset A" C A' such that

IA"+IBI <(c')i/"IA"I-c'IA"I.
(7.3)

It follows from Lemma 7.4 with U - A", V - kB, and W - 1B and from
inequalities (7.2) and (7.3) that

IA"IIkB-IBI IA"+kBIIA"+IBI
IA'+kBIIA"+IBI

< cklA'lciIA"I
< ck+rnlA"I.

We complete the proof by dividing this inequality by IA"I.

Theorem 7.9 Let G be an abelian group such that every element of G has order
at most r. Let B be a finite subset of G, and let H(B) be the subgroup generated
by B. If there exists a subset A of G such that I A I - IBI - n and

IA + BI < cn,
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then

I H(B) 1 << f (r, c)n,

where
f (r, c) -

rc4c2

Proof. It follows from Theorem 7.8 that

IkB - IBI < ck+rn

for all nonnegative integers k and 1. In particular,

IB - BI < czn

and

12B - 2B1 < can.

If W E 2B - B, then w - B C 2B - 2B. Let W - {w1, ... , wk} be a maximal
subset of 2B - B such that the sets w; - B are pairwise disjoint. Then

k

U(w1-B)C2B-2B

and
k

kn-E1w1-BI- U(wi-B) <12B-2B1 <can.

Therefore,
1WI-k<c4.

We shall prove that

1B-BC(I-1)W+B-B (7.4)

for all 1 > 1. The proof will be by induction on 1. This is clear for I - 1, since
0 W - {0}. Let W E 2B - B. Since the set W is maximal, there exists w, E W
such that

(w-B)n(w; - B) f0.
Therefore, there exist group elements b, b' E B such that

and so

Thus,

w - b - w; - b',

w-w,+b-b'EW+B-B.

2B-BCW+B-B.
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This proves (7.4) in the case ! - 2. Suppose that (7.4) holds for some I > 2. Then

(I+1)B-B (2B - B)+(! - l)B
(W + B - B) + (l - 1)B
W+IB - B
W +(l-1)W+B-B
lW+B - B.

This completes the induction.
Let H(W) be the subgroup of G generated by W. Since I W I - k < c4 and every

element of the abelian group G has order at most r, it follows that

I H(W )I S rk < r`4.

Then
IB-Bc(!-1)W+B-Bc H(W)+B-B

for all ! > 1. Since B is finite and every element of B has order at most r, it follows
that every element in H(B) is contained in 1 B - B for some 1 > 1. Therefore,

H(B) - U (lB - B) c H(W) + B - B,
1-1

and so

IH(B)I IH(W)IIB - BI < r`'4c2n.

This completes the proof.

7.7 Application: Essential components

For any set A of integers, let A(m, n) denote the number of elements a E A such
that m < a _< n, and let A(n) - A(0, n). The function A(n) counts the number of
positive elements of A not exceeding n. The Shnirel'man density of the set A is
defined by

I
a(A) - inf An) : n - 1, 2, 3, ... .

n
111111

Then 0 < a(A) < 1 for every set A. and I E A if a(A) > 0.
The set B is called an essential component if o(A + B) > a(A) for every set

A with 0 < a(A) < 1. Let A and B be sets of integers with I E A and 0 E B.
Shnirel'man [118] proved the fundamental inequality

a(A + B) > a(A) + (I - a(A))o(B).

If 0 < a(A) < 1 and a(B) > 0, then o(A + B) > o(A). Thus, any set B with
0 E B and positive Shnirel'man density is an essential component.
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There exist sets of density zero that are also essential components. Khinchin [75]
proved that the set of squares forms an essential component. By Lagrange's the-
orem, the squares are a basis of order 4. Erd5s [34] generalized Khinchin's result
by proving that if B is any basis of order h and if A is any set of integers such that
0 < o(A) < 1, then

a(A+ B) > a(A)+
o(A)(12h a(A)) > a(A).

Pliinnecke applied his graph-theoretic method to obtain a considerable improve-
ment of Erdo"s's theorem. Pliinnecke's proof relies heavily on properties of the
impact function, or Wirkungsfunktion, defined for 0 <_ 1; < 1 and for any set B of
nonnegative integers by

B) - inf {o(A+ B) : A C No, o(A) > !; } .

Lemma 7.5 Let 0 < < 1, and let B be a set of nonnegative integers. Then

($ B) - inf {
(A + B)(n)

: A c No, a(A)

A(n) A(m)and -< form -1,...,n
n m

Proof. If o(A) > 4 and n > 1, then

¢(t, B) < a(A + B) <
(A + B)(n)

n

It suffices to show that for any e > 0 there exist a set A and an integer n satisfying
the conditions of the lemma such that

B) <
(A + B)(n)

< ($, B) + e.
n

It follows from the definition of the impact function that there exists a set A of
nonnegative integers such that or (A) > and

E
0(4, B) < a(A + B) < 0(t; , B) + 2

It follows from the definition of Shnirel'man density that there exists an integer
n > I such that

a(A + B) <
(A + B)(n)

< a(A + B) +
n

and so

0(t,
B) < (A + B)(n)

< 0(, B) + C. (7.5)
n
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Let n be the smallest positive integer such that inequality (7.5) is satisfied for some
set A with a(A) > l; . For these choices of n and A. we have

(A + B)(n)
< B) +e <

(A + B)(1)

n 1

forl - 1,...,n- 1, and so

(A + B)(1, n) - (A + B)(n) - (A + B)(1)

< (n-1)(O(1;,B)+e).

We shall show that
A(n) < A(m)

n m
for m - 1, ... , n. If not, there exists an integer I such that 1 < I < n - I and

--mintAmm):m-1,...,n-11
< Ann).

I

A(1,I +i) - A(1 +i) - A(1)
> (1 +i)A(1) - A(1)

I
iA(I)

Let
A-{a-I: aEA,I <a<n}U{mENo:m>n-I}.

Fori-1,...,n-1,

A'(i) - I{aEA:O<a-I<i}I
- I(aEA:I<a<I+i}I

A(l,I+i)
> i.

Since A* contains all integers m > n -1, it follows for i > n -1 that

A*(i) - A*(n -1)+(i -n+l)
(n-I)i;+i-n+1

- ig+(1-)(i-n+1)
> it;.
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It follows that

Moreover,

a(A*) > .

(A`+B)(n -1) - I {a*+b: a` E A',b E B,O <a*+b <n -1} 1
{a'+b:a*EA*,bE B,l <a`+1+b<n}I

< I(a+b:aEA,bEB,I <a+b<n) I

- (A + B)(1, n)

< (n -1)(4(i;, B)+e).

Therefore,

B) <
(A*+B)(n -1)

B)
n - l

Comparing this with (7.5), we see that this contradicts the minimality of n (since
1 < n - l < n), and so A(n)/n < A(m)/m for all m - 1, ..., n. This completes
the proof.

Lemma 7.6 Let 0 < i; < 1, and let h > 1. If B is a set of nonnegative integers
with 0 E B, then

0(l;,iB)> l;1-`lha(hB+1)'1h

fori-1,...,h.
Proof. Let A be a set of nonnegative integers such that

a(A) > > 0.

Then I E A. Let n be a positive integer such that

A(n) A(m)-< form n.

Let y - A(n)/n. Then

n m

< a(A) < y.

Let G be the truncated addition graph constructed from A, B. and n as in Sec-
tion 7.2. Its ith vertex set is

V, -(A+iB)fl[1,n].

Since 1 E A and 0 E B. it follows that I E V; for i - 0, 1, ..., h. Let Z be a
nonempty subset of V o - A n [ 1 , n]. For m - 0, 1, ... , n, we have

A(m,n)

A(n) - A(m)

yn - A(m)
y(n - m),
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and

Iim(Z, Vh) I - (Z + hB)(n)

in the graph G. Let z be the smallest positive element of Z. Then

(Z +hB)(n) ({z} +hB)(n)

{b'EhB:z<_z+b'<n}I
(b'EhB: I <l+b'<n-z+l

(hB+ 1)(n -z+l)
(n-z+1)a(hB+l)
Y-1 Z(z - 1, n)a(hB + 1)
y-'IZIa(hB+1).

}

Thus,
lim(Z, Vh)I (Z + hB)(n) > y-la(hB+1)

IZI IZI

for all nonempty subsets Z of Vo, and so

Dh(G)? y-'a(hB+1).

Pliinnecke's inequality implies that f o r i - 1, ... , h,

y-la(hB + 1) < Dh(G) < Di(G)hl'

(A + i B)(n)

( A(n)

)h1i,

and so

(A+iB)(n) > A(n)(y-1a(hB+1))'1h
ny(y-'a(hB + 1))'1h
nyI-'/ha(hB+ 1)'1h

>

n

It follows from Lemma 7.5 that

4,(t;, iB) > !;'-'"'a(hB+ 1)'Ih.

Theorem 7.10 (Plannecke) Let A be a set of nonnegative integers with 0 <
a(A) < 1, and let B be a basis of order h > 2. Then

a(A + B) ? a(A)'-'I h.
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Proof. Since B is a basis of order It > 2, we must have l E h B, SO 0 E B c h B.
Therefore, hB is the set of all nonnegative integers and hB + I is the set of all
positive integers. Thus, a (h B + 1) = 1. Applying the previous Lemma with i - 1
gives

O($, B) > 1-11h

for all l; E (0, 1). Let = a(A). Then

a(A + B) B) > ? 1

a(A)1-lIh

This completes the proof.

Corollary 7.2 (Erd6s) Let A be a set of nonnegative integers with 0 < a(A) < 1,
and let B be a basis of order h > 2. Then

a(A + B) > a(A) +
a(A)(1 - a(A))

h

(Erd6s obtained a slightly weaker result in which the constant I / h was replaced
by 1/2h.)

Proof. It suffices to prove that

x(1 - x)x+ h

for 0 < x < 1, or, equivalently,

f(x)-x11hfl+Ihxl<I

for 0 < x < 1. Since f (0) = 0 and f (1) = 1, it is enough to show that f (x) is
increasing on the unit interval, and this follows immediately by differentiation:

x(11h)-1 ( I -x\ x11h
f'(x) - +h (I

h ) h

(1/h)-1x
h

I+h)(I -x)
> 0

for 0 < x < 1. This completes the proof.

7.8 Notes

Pliinnecke's work appeared in the monograph [104] and the papers [102, 103,
105]. These papers were ignored for many years, until Ruzsa rediscovered them
and simplified Plunnecke's original proofs. In particular, the proof of Plunnecke's
inequality (Theorem 7.4) comes from Ruzsa [ 1121.
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There are many proofs of Menger's theorem. The one is this chapter is due to
Dirac [31]. McCuaig [86] has a very short proof.

The Wirkungsfunktion appears in St6hr and Wirsing [122] and was studied by
Plunnecke in great detail in [104]. The applications of Pliinnecke's inequality
in Section 7.6 are all due to Ruzsa [112, 114, 1161. The proof of Plunnecke's
theorem on essential components (Theorem 7.10) is a simplified version, due to
Malouf [83], of Pliinnecke's original proof.

7.9 Exercises

1. Draw the addition graphs of level 3 determined by the following sets of
integers:

(a) A - {0} , B - {0, 1, 2},

(b) A - (0) , B - {0, 1, 3}.

(c) A - (0, 1), B - (0, 1, 4).

2. Let G be the directed graph with vertex set

V(G) - {a, b, x, y, z}

and edge set

E(G) - ((a, x), (x, y), (x, z), (y, b), (z, b)}.

Show that S, - (x) and S2 - {y, z} are minimal sets of vertices that separate
a and b. Why does this not contradict Menger's theorem?

3. Let A and B be finite, nonempty subsets of an abelian group, and let G be
the addition graph of level h determined by A and B. Prove that d+(v) - I B
for all v E V(G) \ Vh.

4. Let G be an addition graph of level h. Prove directly that D, > I for
i I, ,h.

5. Prove that the inverse of a Plunnecke graph is a Plunnecke graph.

6. Prove that the product of Plunnecke graphs is a Plunnecke graph.

7. Let B be a finite subset of an abelian group, and let 2 < i < h. If CBI - n
and Ii B I < cn, prove that

IhBI < chiu-On.

8. Let B be a finite subset of an abelian group, and let 2 < i < h. If I B I - n
and I i B I< cn 1 *a, prove that

IhRI < C,t(i-i)nI+ahl(!-I)
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9. Let B be a finite subset of an abelian group. Let I < i < h. Suppose
that i divides h. Prove directly (without using Plunnecke's inequality) that
ChB I < Ii BJ"I` What inequality can you obtain (without using Plunnecke's
inequality) if i does not divide h?

10. In the following sequence of exercises, we construct a basis B of order h
and a set A of positive Shnirel'man density that show that the exponent
1 - 1 / h in Pliinnecke's theorem on essential components (Theorem 7.10)
is best possible.

(a) Let m > 2. Prove that every nonnegative integer can be written uniquely
in the form

CO

Euim',
;-o

where u; E 10, 1, ... , m - 11 and u, ¢ 0 for only finitely many i.

(b) Let h > 2. For j - 0, 1, ... , h - 1, let Bj be the set of all nonnegative
integers of the form

C*

u;m',

w Imalhl

where u, E 10, 1, ..., m - 1) and u, ¢ 0 for only finitely many i.
Prove that

10, ml , 2mJ, 3mJ..... (m - 1)
C Bj g 10,mi,2m3,3m1,..., (m - I)m'}+m" *No.

(c) Let
B=BoUB1

Prove that B is a basis of order h.

(d) Let
A= {nENo:n==-I (mod m")).

Prove that o(A) - m-".

(e) Prove that

A+Bj={l+umi:u-0,1....,m-1}+m"*No

and

A+B
_ { 1 +umJ : u =0, 1,...,m - l and j =0, 1,...,h - I}

+m" * No.
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(f) Prove that

hm-h+1
a(A + B) <

h
< ha(A)'

m

(g) Prove that the exponent I - I/ h in Theorem 7.10 cannot be replaced
byl-1/h-s foranye>0.
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Freiman's theorem

8.1 Multidimensional arithmetic progressions

A simple inverse theorem (Theorem 1.16) in additive number theory states that
if A is a finite set of integers whose two-fold sumset is small in the sense that
12A1 < 31A1 - 4, then A is a large subset of an ordinary arithmetic progression.
Freiman discovered a deep generalization of this result. His theorem asserts that
if A is a finite set of integers such that the sumset 2A is small, then A is a large
subset of a multidimensional arithmetic progression. Freiman's inverse theorem
can be stated as follows.

Theorem 8.1 (Freiman) Let A be a finite set of integers such that 12A1 < cIAI.
There e x i s t integers a, q 1 , ... , l1, ... ,1,, such that

<l;fori=1,...,n},
where I QI < c'IAI and n and c' depend only on c.

The object of this chapter is to present a beautiful proof due to I. Z. Ruzsa of a
generalization of Freiman's theorem.

We begin with the following definition. Let a, q1, ..., q, be elements of an
abelian group G, and let 11, ... ,1,, be positive integers. The set

<l;fori-1,...,n}
is called an n-dimensional arithmetic progression in the group G. The length of
Q is 1(Q) =11 Clearly, IQI < 11 . .1,,, and Q is called proper if IQI =1(Q).
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The representation of a set as a multidimensional arithmetic progression is not
unique. A set can have more than one such representation, and these representations
can have different dimensions and lengths.

Theorem 8.2 Let G be an abelian group, and let Q and Q' be multidimensional
arithmetic progressions in G of dimensions n and n' and lengths I and 1', respec-
tively. Then

(i) Q + Q' is a multidimensional arithmetic progression of dimension n + n'
and length 11'.

(ii) Q - Q is an arithmetic progression of dimension n and length 1(Q - Q) <
2"l.

(iii) If Q is proper, then l(hQ) < h"IQI.

(iv) Every finite subset F of a group is a subset of an arithmetic progression of
dimension IF I and length 21 Fl.

Proof. Let Q be the progression Q(a; qt, ... , q,;11,..., 1.), and let Q' be the
progression Then

Q+Q' -
0<xi <lifori-1,...,nand0<xj <I'forj-1,...,n'}

is an arithmetic progression of dimension n + n' and length

1(Q + Q') -11 ... l"l' ...1", - I(Q)l(Q').

Similarly,

Q-Q - i-1,...,n)

where

and

b - - >(l; - 1)qi
i-t

mi-211-1,

and so Q - Q is an arithmetic progression of dimension n and length

1(Q - Q)-mi ...mn < 2"11...1 -2"l.

Since h Q can be represented in the form

hQ - Q(ha;qi, 1) + 1,...,h(l - 1) + 1).
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it follows that if Q is proper, then

1(h Q) < fl(h(li - 1) + 1)
i-1

fl hli
i-1

h"IQI

If F is a finite set of cardinality I F I = n, say, F = { f ,I f , ,. f,), then

F c <2fori=1,...,n)
- Q(0;f.,.. ,f,;2,.. ,2)=Q,

and Q is an n-dimensional arithmetic progression of length 2".

8.2 Freiman isomorphisms

Freiman introduced the important idea of a "local" isomorphism in additive number
theory. Let G and H be abelian groups, and let A C_ G and B c H. Let h > 2.
The map 0 : A --> B is called a Freiman homomorphism of order h if

O(a1) +... +b(ah) =1(a'j)+... +4'(ai,)

for alla,,...,ah,a,,...,a' E A such that

In this case, the induced map O(h) : hA -* hB defined by

Oih>(a 1 + ... + ah) _ Ca i ) + ... + O(ah )

is well defined.
If 0 : A -+ B is a one-to-one correspondence such that

if and only if
Cal) +...+O(ah) _0(a,)+...+O(a'),

then 0 is a Freiman isomorphism of order h, and the induced map 001) : h A -* h B
is also a one-to-one correspondence. A Freiman isomorphism of order 2 will be
called simply a Freiman isomorphism.

Here are two examples. Let A - [0, k - 1 ] = 10, 1, ... , k - 1), and let B =
{a + xq, 10 < x < k}. Then the map ¢(x) = a + xq, is a Freiman isomorphism
of order h for alI h > 2.
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Let A = {(0, 0), (1, 0), (0, 1)) c Z2, and let B-10, 1, 3) c Z. Define 0: A-+
B by 0(0, 0) - 0, O(l, 0) - 1, and 0(0, 1) = 3. Then ¢ is a Freiman isomorphism
of order 2 but not of order 3.

If 0 : A -+ B is a Freiman homomorphism (resp. isomorphism) of order h and
if 1G : B -+ C is a Freiman homomorphism (resp. isomorphism) of order h, then
*0 : A C is a Freiman homomorphism (resp. isomorphism) of order h.

Let 0 : A -+ B be a Freiman isomorphism of order h. Then 0 is also a Freiman
isomorphism of order h' for every h' < h. If A' C_ A and B' - ¢(A'), then the map
0: A' -+ B' is also a Freiman isomorphism of order h.

If f : G -+ H is a group homomorphism, then f is a Freiman homomorphism
of order h and f (h) = f for all h > 2. If f is a group isomorphism, then f is a
Freiman isomorphism of order h for all h > 2.

If 0 : G -+ H is an affine map, that is, a map of the form 0(x) = a + f (x), where
a E H and f: G -+ H is a group homomorphism (resp. isomorphism), then 0
is a Freiman homomorphism (resp. isomorphism) of order h and O(h)(x) - ha(x)
for allh 2.

For example, let q, f 0, and let Q - (a + xq, 10 < x < 1) be a 1-dimensional
arithmetic progression (that is, an ordinary arithmetic progression) in the group
G. Define 0 : [0,1 - I) -# Q by O(x) - a +xQ1. Then 46 is the restriction of an
affine map from Z into G and a Freiman isomorphism of order h for all h > 2.

Let e1, ... , e,, be the standard basis vectors in the Euclidean space R", let
l1, ... , l" be positive integers, and let P be the fundamental parallelepiped of the
lattice generated by the vectors 11e1, ... ,1,,e,,. The integer parallelepiped 1(P) is
defined by

I(P)-PnZ" a E Z" : 0 <x1 <li fori - 1,...,n}.

Then I1(P)I = I1 . 1,,. For h > 2 we have

hl(P)-{(x1,...,x")EZ":0<xi <h(li-1)+l fori-1....,n}

and

Ih!(P)I _ [j(h(li - 1) + 1) < h"II(P)I.
i-1

Let a, q 1, ... , q,, E Z, and let Q = Q(a; q , , ... , q,,;I,_., 1,,) bean n-dimensional
integer arithmetic progression. Define the map 0 : I(P) -+ Q by

+...+x,,q (8.1)

Since 0 is the restriction of an affine map from Z" into Z, it follows that 0 is a
Freiman homomorphism of order h for all h > 2.

Theorem 8.3 Let h > 2. and let 1(P) be the integer parallelepiped of dimension n
determined by the integers 1, , ... ,1,,. Then there exists an n-dimensional arithmetic
progression Q such that 1(P) and Q are Freiman isomorphic of order h.
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Proof. Let a be any integer, and choose positive integers q1, ... , q,, so that

k-1
E h (! j - l )qj < qk
j-1

fork =2,...,n. Let

Q-Q(a;g1, -, q,,;

(8.2)

Let ¢ : /(P) --). Q be the affine map defined by (8.1). We shall prove that 0 is a
Freiman isomorphism of order h.

Let xi = (x11 , ... , xi,,) E I (P) and yi = (Yi 1, , E I (P) for i = i, ... , h,
and suppose that

O(xl)+...+O(xh)=O(y1)+...+O(Yh)

This implies that

Let

Then

and

h h

wi - Xij - Yij.

Iwj1 <h(Ij-1)

E wjgj = 0.
j-

Suppose that wj ¢ 0 for some j, and let k be the greatest integer for which wk. f 0.
Then

k-1

-wkgk = E wjgj
j-1

and so

qk : IWk gkl =
k-I

F, wjq
j=I

k-1

Y' h(Ij-l)gj<gk,
j-1

which is absurd. Therefore, w` - 0 for all j. It follows that

h h

ha+EExijgj =ha+X: >Yijgj.
j-1 i-I j-1 i-1

XI +...+xh =YI +...+Yh

Thus, every n-dimensional integer parallelepiped is Freiman isomorphic of order
h to an n-dimensional arithmetic orogression.
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Corollary 8.1 Let h > 2, and let A be a finite set of lattice points. Then A is
Freiman isomorphic of order h to a set of integers.

Proof. The set A is a subset of some n-dimensional integer parallelepiped 1(P),
and 1(P) is Freiman isomorphic of order h to an n-dimensional arithmetic pro-
gression Q. Then A is Freiman isomorphic to its image under this isomorphism.

Corollary 8.2 Let h > 2, and let A be a finite subset of a torsion free abelian
group. Then A is Freiman isomorphic of order h to a set of integers.

Proof. Let G be the group generated by A. Since G is finitely generated, it
follows from Theorem 6.10 that G is isomorphic to Z" for some n, so there is a
Freiman isomorphism of order h between A and some finite set of integer lattice
points. By Corollary 8.1, this set is Freiman isomorphic of order h to a set of
integers.

Theorem 8.4 Let G and H be abelian groups, and let Q be an n-dimensional
arithmetic progression contained in G. Let h > 2. If 0 : Q -+ H be a Freiman
homomorphism of order h > 2, then 0(Q) is an n-dimensional arithmetic pro-
gression in H. If 0 : Q -+ 0(Q) is a Freiman isomorphism, then Q is a proper
n-dimensional arithmetic progression in G if and only if ¢(Q) is also a proper
n-dimensional arithmetic progression in H.

Proof. Let Q= We define a',q,..... q,, E H by

a' _ O(a),

q1' = O(a +qr) - O(a)

for i - ]__n. The set Q' _ {a'; qi,... , q,,; ll, ... is an n-dimensional
arithmetic progression in H. We shall show that Q' - ¢(Q) and

O(a+x191 +...+x,,q,,) =a'+xlgi

for all E Q.
The proof is by induction on m x,. It follows from the definition of

a', q...... q,, that the statement is true form = 0 and m = 1. Assume that the result
holds for some m > 1.Letr=a+xlgl E Qwith x1 =m+1.
Choose j such that xj > 1, and let r' = r - qj. By the induction hypothesis for
m, we have

O(r')=a'+X191 +...+x1_1gI-I +(xj - 1)q +xj+lqj+I +...+x,, q

Since r, a, r', a + q, E Q. and

r + a =r'+(a+qj),

and since a Freiman homomorphism of order h is also a Freiman homomorphism
of order 2, it follows that

O(r)+0(a)=O(r')+0(a+qj).
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Therefore,

O(r) - O(r')+m(a +9i) - O(a)
- O(r')+4i
- a'+XIQI +...+x qn

Thus, the statement holds for all m > 0, and ¢(Q) - Q'. If 0 is a Freiman
isomorphism of order h, then IQI - IO(Q)I, and so O(Q) is proper if and only if
Q is proper.

Theorem 85 Let h' - h(k +1), where h, k, and ! are positive integers. Let G and
H be abelian groups, and let A C G and B c H be nonempty, finite sets that are
Freiman isomorphic of order h'. Then the difference sets kA - IA and kB -1B
are Freiman isomorphic of order h.

Proof. Let 0 : A - B be a Freiman isomorphism of order h', and let q(k) :
kA -+ k B, 0(') : IA -> I B, and 0(k+1) : (k + 1)A i (k + 1)B be the maps induced
by 0. These maps are one-to-one correspondences, and

0(k+l)(al + ... + ak + ak+l + ... + ak+r)

- 0(k) (al +...+ak)+m(')(ak+l +.+ak+r)

for all a,, ..., ak+l E A. Let d E kA - IA. If

d-u-v-u'-v',
where u, u' E kA and v, v' E IA, then

u+v'-u'+v c- (k+l)A.

Since 0 is a Freiman isomorphism of order h' > k + 1, it follows that

O(k)(u) + 0(l)(v) - 0(k+1)(u + v')
0(k+1)(u' + v)

O(k)(u') + O)(v),

and so
O(k)(u) - O)(v) - o(k)(u') - 0(')(v').

This means that the map l/r : kA - IA -, kB -1B defined by

*(d) - *(u - v) - O(k)(u) - 0(')(v)

is well defined. The map ' is surjective since ¢ is surjective. Let d - u - v E
kA-IAandd'-u'-v'EkA-IA.If*(d)-*(d'),then

O(k)(u) - 0(')(v) - O(k)(u') - 0(')(v ),



238 8. Freiman's theorem

and so
o(k+1)(u + v') - O(k+l)(u' + v).

This implies that u + v' - u' + v, and sod - d'. Thus, I/r is a one-to-one correspon-
dence.

W e shall prove that >i is a Freiman isomorphism of order h. For i - 1, ... , h,
let dl, d; E kA - IA and let dl - ul - vi and d,' - u'1 - v;, where u1, u' E kA and
V. V' E 1A. Then

if and only if

if and only if

Eh(k+1)A

0(h(k+4))(u + ... + uh + VI + ... + Vh )

if and only if

0(k)(u 1) + ... + O(k)(uh) + O(1)(v'1) + ... + (1)(vh)

if and only if
*(d))+...+*(dh) - 00,)+...+*(dh')-

This proves that s is a Freiman isomorphism of order h.

8.3 Bogolyubov's method

Let m > 2. If x1 == y1 (mod m) for i - 1, ... , n, then

(x1 ,.. ,x".m)-(Y1, ,Y",m).

and so the "greatest common divisor" of congruence classes modulo in is well
defined. For X E R. let Ilx II denote the distance from x to the nearest integer. Then
Ilxll < 1 /4 if and only if cos 27rx > 0 if and only if 9l(e2"") > 0. If x, y E Z
and x = y (mod m), then llx/muI - IIY/mll It follows that this "distance to
the nearest integer" function is well defined on congruence classes modulo m.
Similarly, the exponential function e2"'I is well defined on congruence classes
modulo m. If g E Z/mZ and x is an integer in the congruence class g, we define
Ilg/mll - Ilx/mll and e2"'g/'n - e2j'O"'. For r1, ... , rk E Z/mZ and e > 0, we
define the Bohr neighborhood

efori-1,...,n .
M

Note that B(0; e) - Z/mZ for every e > 0.
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Theorem 8.6 (Bogolyubov) Let m > 2, and let A be a nonempty subset ofZ/mZ.
Define X E (0, 11 by Al I- Am. For some positive integer n < 1-2, there exist
pairwise distinct congruence classes ri, r2, ... , r,, E Z/mZ such that r1 - 0 and

Proof. Let G - Z/mZ. For r E G, we consider the additive character Xr : G
C defined by

X,(8) - e2rr,rg/m,

This function is well defined on congruence classes r and g modulo m, and Xo(8) -
I for all g E G. Let

SA(r) - J Xr(a) e2nira/m
aEA aEA

Then

for all r E G, and

ISA(r)I <- SA(O) - IAI

E ISA(r)12 - E E e2nir(a-a')lm - IGIIAI - A-1IA12
rEG rEG a.a'EA

Let g E G. Then

E IS., (r)14Xr(g)
e22rir(g-a,-a2+a)+a')/m,

rEG rELG a,.n2.a).a,EA

and this sum is nonzero if and only if g has at least one representation in the form
g - a1 + a2 - a3 - a4, that is, if and only if g is in the difference set 2A - 2A. Let

R1-(rEG:ISA(r)I _ -/)L IAI}

and

R 2 G <JIAI}.
Since So - I A I ? f I Al, it follows that 0 E R1 and R2 f G. Therefore,

ISA(r)I4Xr(g)
rER2

: E ISA(r) 14
rER2

< AIA12 E ISA(r)12
rER2

< XIA12 E ISA(r)I2
rEG

AIAI2.l-11A12

- IAl4.
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Let Rt - {rt, r2, ... , where r, - 0, and let g E B(rt,... , r,,;1/4). Then
Il ri g/m 11 < 1 /4 for i - l , ... , n, and so

(xr(g)) - (e2nir;8/m) - cos(2nrig/m) > 0.

It follows that

Therefore,

E ISA(r)14Xr(g)
rER2

E ISA(r)14Xr(g) 7(0
rEG

for all g E B(rt,... , r,,; 1/4), and so

B(r1, ... , r,,;1/4) c 2A - 2A.

Finally, we must estimate n - 1R11. Since I SA(r)I > JAI for all r E R1, it
follows that

nAtAl2 < E ISA(r)12 < F, ISA(r)I2 _'k-1 IA12.
rER, PEG

and so n < X-2. This completes the proof.

Theorem 8.7 Let m > 2, and let R - r } be a set of congruence classes
modulo m. If (r1 , ... , r,,, m) - 1, then there exists a proper n-dimensional arith-
metic progression Q in Z/mZ such that Q is contained in the Bohr neighborhood
B(rt, ... , r,,;1/4) and

In
IQI > (4n),".

Proof. We shall apply results from the geometry of numbers that were obtained
in Theorem 6.12. Let u - (u t , ... , and v =(v1..... be vectors in the lattice
V. We write u - v (mod m) if u, - v; (mod m) for i - 1, ... , n. Let M be

A(r)14Xr(g)
/E IS

`.R (reG

R OR, ISA(r)14xr(g)) +91 ORZ
E 1SA(r)14Xr(g)rER,

IA14+ E ISA(r)14R(X'(g))+IR (rrzR2E ISA(r)I4Xr(g)rER1\{O)

IA14+1R
\rER2

ISA(r)14Xr(g))

> 1A14 -

> 0.



8.3 Bogolyubov's method 241

the lattice of all vectors v - (vi, ... , E Z" such that via 0 (mod m) for
i - 1, ... , n, that is, M consists of all vectors v E Z" such that v = 0 (mod m).
Then M - (mZ)" and det(M) - m".

For i - 1, ... , n, let r, also denote a fixed integer in the congruence class
ri E Z/mZ.Let E Z" fori - I__ n. Then

(ri,...,r,,,m)- 1. (8.3)

Let A be the set of all vectors u E Z" such that u = qr (mod m) for some
q-0,1,...,m-l. Then

",-i
A - U(qr+M).

9-0

The set A is a lattice, and M is a sublattice of A. Condition (8.3) implies that
the m vectors 0, r, 2r, .... (m - 1)r are pairwise incongruent modulo m, and so
the cosets (qr + M) are pairwise disjoint. It follows that the index of M in A is
[A : M] - m and, by Theorem 6.9,

det(A) - det(M) - m"-1
[A: M)

Let K c R" be the cube consisting of all vectors (xi, ... , x,,) such that Ixi I < 1 /4
f o r i - 1, ... , n. Then K is a convex body symmetric with respect to the origin,
and vol(K) - 1/2". Let A,...... ,, be the successive minima of K with respect
to the lattice A, and let b1, ... , b be a corresponding set of linearly independent
vectors in A. Then

bi -(bi,,...,b;,,) E A,K n A

for i - 1, ..., n. It follows from Minkowski's second theorem (Theorem 6.6) that

-X, ...,X,+ <
vol(K)

Since

biE)liK(xi,...,x,,)ER":Ixi1 <4fori-1,...,n}.

it follows that

for all i, j - 1, ... , n. Since

it follows that

2" det(A)
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for some integer q, E [0, m - 1 ]. Then

b,j _- Q1rj (mod m)

fori, j = 1,...,n.Let

and

<x1 <1 fori=1,..., n)9Z/mZ.

We shall show that Q c B = B(r1, ... , r,,; 1/4). Let

E Q.

Then

and so

xrj _ xjqjrj x/b,1 (mod m),

m

l'I bijIm

4n

1

4

This means that x E B, and so Q C B.
Next we show that Q is a proper n-dimensional arithmetic progression. Suppose

that

giyi+.. (mod m),

where -1; < x; , y, < 1,' fori = 1, ... , n. Let z1 = x, - y1. Then Iz; I < 21; and

if

q;z1 =0 (mod m).
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It follows that
n n

gjrjzi - rbitzi = 0 (mod m)

for j - 1, ... , n. Since

E b;; z;
i-I

n

<_ E IbijIIz,I
i-,

(-4 ) (21i')

n m

- 2n
< m,

it follows that E", bid z; - 0 for j - 1. ... , n, and so

Ezibi -0.
i-,

Since the vectors b, are linearly independent, we conclude that z; - 0 for all i, and
so

Let !; - 21'+ 1 and a - - E°-, 1; q; . Then Q is the proper n-dimensional arithmetic
progression

Q(a;gl, ,gn;11,. ,ln).

Moreover,

IQI - !, ..ln

r
In

n

l n I (fl

l n

/li-,

(
n (4W-')-'

m
(4n)n

This completes the proof.



244 8. Freiman's theorem

Theorem 8.8 Let p be a prime, and let R be a nonempry set of congruence classes
modulo p with I RI = Xp. For some positive integer n < ,L-2 there exists a proper
n-dimensional arithmetic progression Q such that

Qc2R-2R

and

where

l(Q) -IQI > sp

4

Proof. If Z/pZ - 2R - 2R, let n = I and Q be the 1-dimensional arithmetic
progression Q - Q(0; I; p) = Z/pZ. Then Q c 2R - 2R and IQI = p > Sp,
where

1

2 /X:

4-(4)
f o r every x E (0, 1 ].

Suppose that 2R - 2R It Z/pZ. By Theorem 8.6, for some positive integer
n < x'2 there exist pairwise distinct congruence classes r, , r2, ... , r modulo p
such that r, = 0 and

B=B(r,,...,r,,;1/4)c 2R-2R.

Since B(0; 1/4) = Z/pZ, we must have n > 2, and so

(ri,..-,r,,,p)=1.

By Theorem 8.7, there exists a proper n-dimensional arithmetic progression
such that Q c B and IQI > Sp, where

(X2)1/;12

=(4n) -
4

Q

8.4 Ruzsa's proof, concluded

Theorem 8.9 (Ruzsa) Let W be a finite nonempry set of integers. Let h > 2 and

D - Dh.r,(W) - hW - hW.

For every
m > 4hI Dr,.i,(W )I - 4hIDI,
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there exists a set W' c W such that

IW'I > IWI.

and W' is Freiman isomorphic of order h to a set of congruence classes modulo
m.

Proof. Let m > 4h I DI, and let p be a prime number such that

p > max(m, 2h max Iwl}.
WEW

Let 1 < q < p - 1. We shall construct a map Wq : Z -. Z/mZ, and then prove
that for some q there is a subset W' of W such that I W ' I ? I W I / h and oq restricted
to W' is a Freiman isomorphism of order h. The map cbq will be the composition
of four maps:

where a, fiq, y, and 8 are defined below.
Let a : Z -> Z/pZ be the natural map that sends w to w + pZ. Since a is a

group homomorphism, it is also a Freiman homomorphism of order h. Although
a is not a group isomorphism, we can show that a restricted to W is a Freiman
isomorphism of order h. Let w,, ... , wh, wi, ... , wti E W, and suppose that

Then

and so

Since

(mod p).

<2hmaxIwI <p,
V,E W

it follows that

Therefore, a : W -+ a(W) c Z/pZ is a Freiman isomorphism of order h.
For 1 _< q < p - 1, let lq : Z/ pZ - Z/ pZ be the map that sends w + pZ to

wq+pZ. Since the mapfq is agroup isomorphism, it is also a Freiman isomorphism
of order h on every subset of Z/pZ.

Let y : Z/ pZ -+ Z be the map that sends the congruence class w+pZ to its least
nonnegative representative. The image of y is the interval of integers [0, p - 1 ].
The map y is neither a group homomorphism nor a Freiman homomorphism of
order h (see Exercise 9). We can, however, write Z/pZ as the union of h subsets
such that y restricted to each of these subsets is a Freiman isomorphism of order
h.Fori-1,...,h,let

U'-Y-ir(i-1)(p-1) i(Ph 1)cZ/pZ.
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Since

it follows that

-1)l
[O,p- 1],Ur(i1)(P-1) i(p

L h JIh

h

Z/pZ-UUi.
i-1

Fix the set U;, and let uj +pZEUiand u1+pZEU;for j-1,...,h.If

in Z/pZ, then

(mod p)

in Z. Since

Y (u i + PZ) + ... + Y (uh + PZ) E [(i - 1)(P - 1), i (P - 1)]

and

it follows that

p-1,
and so

y(u]

Thus, y is a Freiman homomorphism of order h. Conversely, if

y(u I + pZ) + + y(uh + pZ) - y(u + pZ) + + y (uh + pZ)

in Z, then

in Z/ pZ, and so y restricted to each set U; is a Freiman isomorphism of order h.
Let

Wi,q - W fla-'(fi4 '(Ui))

fori - h. Then

and so

W - Uh Wi.q,

IW;.gI>IWI

for some j. Let WQ - Wj.q. Define Bq : W -+ Z by Bq - yfya. Then

1q(w)-wq-[
P

IP E [0, P - 11
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for all a E W. Let

and

Vq - Bq(W)

VQ - Bq (Wy ).

Then 0q : W9 - VQ is a Freiman isomorphism of order h.
Let S Z -> Z/mZ be the natural map that sends w to w + mZ. Then 8 is a

Freiman homomorphism of order h. We shall prove that there exists at least one
q E [ 1, p - 1 ] such that b restricted to V. is a Freiman isomorphism of order h.

Let q E [1, p - 11, and suppose that 8 : Vq -s Z/mZ is not a Freiman
isomorphism of order h. Then there exist integers VI , .... Vh, vi , ... , u6' E Vq
[0, p - 1 ] such that

f V'

but

S(vi + + uh) - WO + + S(vh)

-
S(vj + ... + Uh),

Define

Since m > 4hID1, we have

Iv'I<h(p-1)<hp <mp (8.4)

and
v' _- 0 (mod m), (8.5)

but

v' 0. (8.6)

Choose wi, w; E W such that Bq(wi) - vi and 0,(w') - v; for i - 1, ... , h.
Define

w'-(w)
Then W* E D - hW -hW.Fori - 1,...,h,

and

hence

and so

vi = wiq (mod p)

v; w;q (mod p);

v' = w'q (mod p),

v' - y(w'q + pZ)+xp (8.7)
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for some integer x. If w* - 0 (mod p), then

v* - 0 (mod p). (8.8)

Since p is prime and 1 < m < p, we have (m, p) - 1. Then congruences (8.5)
and (8.8) imply that

v* - 0 (mod mp).

Since Iv* I < mp by (8.4), it follows that v* = 0, which contradicts (8.6). Therefore,

w* $ 0 (mod p).

Recall that y(w*q + pZ) is the least nonnegative integer in the congruence class
w*q + pZ. By (8.5) and (8.7),

v* - y(w*q + pZ) + xp =- 0 (mod m),

and inequality (8.4) implies that

-h<x<h-1.
Thus, if q E [ 1, p - I] and S : V, --> Z/mZ is not a Freiman isomorphism of
order h, then there exist integers w* E D and X E [-h, h - 1] such that w* # 0
(mod p) and

y(w*q + pZ) +xp 0 (mod m). (8.9)

Let us count the number of triples

(q, w*, x)

that satisfy these conditions. Choose an integer x E [-h, h - I). There are 2h
such choices. Since p > m, the congruence

y+xp =- 0 (mod m)

has at most (;_i.) +l 2(p1)
m

solutions y E [ 1, p - I]. Choose an integer w* E D such that w* 0 0 (mod p).
Since 0 E D, there are at most IDI - I such choices. Since w* $ 0 (mod p),
for each integer y E [ 1, p - I ] there is a unique integer q E [ 1, p - I ] such that
y = y(w*q + pZ). Thus, for each of the permissible choices of x and w* there are
at most 2(p - 1)/m choices of q E [ 1, p - I] such that the triple (q, w*, x) yields
a solution of the congruence (8.9). Since m > 4hIDI, the number of triples is at
most

2h
(2(p - 1)1 (IDI - 1) < 4hIDl(p - 1) p -

M m -
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Therefore, at least one integer q E [ 1, p - 1 ] occurs in none of the triples, and for
this q the map

8:Vq=8,,(W)-.Z/mZ

is a Freiman isomorphism of order h. Let W' = W,. Since

Bq:W'-*Vq, CV,,CZ

is also a Freiman isomorphism of order h, it follows that there is a Freiman isomor-
phism of order h from W' into Z/mZ. Moreover, I W'I > I W11 h. This completes
the proof.

Theorem 8.10 Let c, cl, and c2 be positive real numbers. Let k > 1, and let A
and B be finite subsets of a torsion free abelian group such that

clk < JAI, IBI < c2k

and

IA+BI <ck.

Then A is a subset of an n-dimensional arithmetic progression of length at most
lk, where n and 1 depend only on c, c1, and c2.

Proof. Let G be the group generated by A. Since G is a finitely generated
torsion-free abelian group, it follows from Corollary 8.2 with h - 32 that there is
a Freiman isomorphism of order 32 between A and some set W of integers. Since
32 - 2(8 + 8), Theorem 8.5 implies that the difference sets D8.8(A) = 8A - 8A
and D8.8(W) - 8W - 8W are Freiman isomorphic of order 2, and so I Ds.8(W)I -
IDg.g(A)I. Let c3 = c/ci. Since

IA+BI 5 ck 5 (c/ci)IAI -c31AI,

it follows from Theorem 7.8 that

ID8.8(W)I - ID8.8(A)I 5 c36 JAI cj6IWI.

Bertrand's postulate in elementary number theory states that for every positive
integer n there exists a prime number between n and 2n. Let n - 32ID8.g(W)I.
Then there is a prime number p such that

I W I < 321 W I < 321 D8.8 (W) I < p < 641 Dg.s(W) I < 64c361 W 1.

By Theorem 8.9 with h - 8, there exists a set W' c W such that I W'I ? I W I/8
and W' is Freiman isomorphic of order 8 to a set R of congruence classes modulo
p. Define A E (0, 1 ] by Ap - I R 1. Then

)Lp=IR1=IW'I? I8I > 8 64c36'
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and so
x > 2-9c3 16.

By Theorem 8.8, the difference set 2R - 2R contains a proper n,-dimensional
arithmetic progression Q' of length

1(Q')- IQ'I > ap > SIWl -81A1,

where

and

n, < A-2 < 2'BC32

E - (4n 1)-n, >

Since 8 - 2(2 + 2), it follows from Theorem 8.5 that the difference sets 2R - 2R
and 2W' - 2W' are Freiman isomorphic of order 2.

The sets W and A are Freiman isomorphic of order 32 and thus also of order 8.
Let A' be the image of W' under this isomorphism. By Theorem 8.5, the difference
sets 2W'- 2W' and 2A' - 2A' are Freiman isomorphic of order 2, and so 2R - 2R
and 2A' - 2A' are Freiman isomorphic. Let Q, be the image of Q' under this
isomorphism. By Theorem 8.4, the set Q, is a proper n,-dimensional arithmetic
progression such that

Q, C2A'-2A'C2A-2ACG

and

SIAI < IQ'I - I Q I I -1(Qi) -< 12A - 2A1 < C4 JAI.

Let A* - {a, .... , a,,,) be a maximal set of elements in A such that the sets a; + Q,
are pairwise disjoint. Since

02

U(a;+Q,)-A`+Q, CA+Q, 93A-2A,

it follows from Theorem 7.8 that

112

Then

n21Q1l - Ja;+Q,I

M2

U(a; + Q0)

IA*+Qll

< 13A-2AI
:5 C;IAI.

c31Al
n2 <

IQJI
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C3IAI

SIAI

= c3(4n1)"'.

The set A' is a subset of the n2-dimensional arithmetic progression

<2fori=1,...,n2}

of length 1(Q2) = 2"2. Since the set A* is maximal, for every a E A there is an
a, E A* such that

(a+Q1)n(a;+Ql) 1o,
and so there exist integers q, q' E Q 1 such that a + q - a, + q'. Then

a - ai+q' - q E A*+QI -Q1 C Q2+Q1 - QI

LetQ=Q2+Q1-QI.Then
Ac Q.

By Theorem 8.2, Q I - Q I is an n 1-dimensional arithmetic progression of length

1(QI - QI) < 2"1(Q1) < 2"'c3IAI < 2"' (_)4c2k.
c1

and so Q = Q2 + (Q I - Q 1) is an arithmetic progression of dimension

n=n1+n2

whose length satisfies

11(Q) 1(Q2)1(QI-QI)<222, ()4c2k =2(-_)4C2k.
cl

where n and 1 depend only on c, c1, and c2. This completes the proof.
Freiman's Theorem 8.1 is the special case of the preceding result, when A is a

finite set of integers and B = A.

8.5 Notes

There are important unsolved problems related to Freiman's theorem. Let A be a
finite set of integers. If I2A 1 < cIAI, then Theorem 8.1 states that A is a subset
of an n-dimensional arithmetic progression Q such that IQI < c'IAI, where the
numbers n and c' depend only on c. It is not known how small these constants can
be made simultaneously. Another important question, the "Proper Conjecture,"
will be discussed in Section 9.6.

If the cardinality of the sumset 2A is somewhat greater than cIAI, is there a
structure theorem? For example, what do we know about the set A if 12A I <
cIAI(log IAI)^ for some 8 > 0?



252 8. Freiman's theorem

Let h > 3. It is not known how to extend Freiman's theorem to the h-fold sum
hA. We would like to find a condition of the form JhAJ < cIAJ" that implies
something about the structure of A. If u = 1, then IhAJ < clAJ and 12AI < IhAl
imply that 12A I < cl A J, so Freiman's theorem applies directly. On the other hand,
the condition JhAt _< clAl"-1 is not sufficient to restrict the structure of the set
A (see Exercise 12). We can formulate many open problems of this kind. For
example, does there exist S > I such that if 13AI < clAI''s then the structure of
A is in some sense determined?

Freiman's theorem first appeared in a short paper [53] in 1964 and in a 1966
monograph [54]. Freiman published a revised proof in the proceedings of the New
York Number Theory Seminar [56]. Bilu [9] has a different version of Freiman's
original proof. Ruzsa's proof appears in [113] and (115]. Bogolyubov's theorem is
part of his "arithmetic" proof (I I ] that every almost periodic function can be uni-
formly approximated by trigonometric polynomials. Expositions of Bogolyubov's
method appear in Jessen [72] and Maak [82].

8.6 Exercises

1. Let 0 : A --> B be a Freiman isomorphism of order h, and let A' C A and
B' _ 0(A'). Prove that 0 : A' -> B' is also a Freiman isomorphism of order
h.

2. Let h' < h, and let 0 : A -+ B be a Freiman isomorphism of order h. Prove
that 0 is also a Freiman isomorphism of order h'.

3. Prove that the composition of Freiman isomorphisms of order h is a Freiman
isomorphism of order h.

4. (Freiman (54]) Let A = (0, 1, It + 1) and B = (0, 1, h + 2). Prove that A and
B are Freiman isomorphic of order h but not of order h + 1.

5. Let P - [0, 35]. Represent P as an n-dimensional arithmetic progression
for n - 1, 2, 3, 4, 6, 9.

6. Let P and P' be multidimensional arithmetic progressions of dimensions
n and n', respectively. Show that P - P' is an arithmetic progression of
dimension n + n'.

7. Let S2 be some condition such that if the finite subset A of an abelian group
satisfies 2, then A c Q, where Q is an n-dimensional arithmetic progression
such that IQI < c'IAI, where n and c' depend only on 2. Prove that 12AI <
2"c'IAI.

8. Let A be a finite subset of an abelian group, and let k - JAI. Suppose that

c,klogk < 12AI <c2klogk.
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Show that A is not a large subset of a multidimensional arithmetic pro-
gression, that is, show that there do not exist numbers n = n(ci, c2) and
I = 1(ci , C2) such that A C Q, where Q is an n-dimensional arithmetic
progression and I Q I< I I A I.

9. Let 0 : Z/mZ --> Z be the map that sends each congruence class to its least
nonnegative residue. Show that 0 is not a Freiman homomorphism of order
2.

10. Let A be a finite set of lattice points in the plane whose elements do not all
lie on a line. Prove that there does not exist a set B of integers such that A
and B are Freiman isomorphic of order h for all h > 2.

11. Let A be a set of integers. Let h > 2, and let D = hA - hA. Prove that there
exists a set A" C A such that IA"I > IAI/h2 and A" is Freiman isomorphic
of order h to a subset of [1, 21DI].
(Hint: Use Theorem 8.9.)

12. Let the set B of nonnegative integers be a basis of order 2, and let A -
B fl [0, n]. Prove that

13A1 cj1A12,

where the constant cl depends on B but not on n. Suppose that B is a thin
basis, that is, I B fl [0, n] I < cn 1 /2 for all In > 1. Prove that

13A1 >- c21A12,

where the constants ci, c2 depend only on B.





9

Applications of Freiman's theorem

9.1 Combinatorial number theory

Many theorems and conjectures in combinatorial number theory are about sets of
integers that contain finite arithmetic progressions. In this chapter we use Freiman's
theorem to solve two such problems. The first is to prove that if A is a sufficiently
large set of integers such that 12AI < cIAI, then A contains a long arithmetic
progression. This is done in the next section. The second problem is to prove that a
set of integers that contains many three-term arithmetic progressions must contain
a long arithmetic progression. The proof uses a beautiful theorem of Balog and
Szemeredi that is a kind of "density" version of Freiman's theorem.

9.2 Small sumsets and long progressions

The most famous result about arithmetic progressions is the following theorem
of Szemeredi. Let S > 0 and t > 3. There exists an integer l0(8, t) such that if
1 > l0(8, t) and A is a subset of [0,1 - 1J with Al I> 81, then A contains an
arithmetic progression of length t The following lemma is a simple consequence
of this result.

Lemma 9.1 Let 6 > 0 and t > 3. There exists an integer l0(8, t) such that if
Q is an arithmetic progression of length I in a torsion free abelian group and B
is a subset of Q with I BI > 81 and l > lo(8, t), then B contains an arithmetic
progression of length t.
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Proof. Let l0(8, t) be the integer determined by Szemeredi's theorem. Since Q
is a 1-dimensional arithmetic progression, there exist group elements a and q 0
such that

Q-(a+xq:0<x <l).
Let

A - {x E [0,1 - 1]:a+xq E B).

Then A is a set of integers, and JAI - IBI > 81. By Szemer6di's theorem, A
contains an arithmetic progression of length t and so there exist integers a' and
q' f 0 such that a' + yq' E A for 0 < y < t. Let a" - a + a'q and q" - q'q. Then
q" 710 since the group is torsion-free, and

a+(a'+Yq')q -a"+Yq" E B

for 0 < y < t. Thus, B contains an arithmetic progression of length t.

Theorem 9.1 Let c > 2 and t > 3. There exists an integer ko(c, t) such that if A
is a subset of a torsion free abelian group, I A I > ko(c, 1), and I2A 1 < cI A 1. then
A contains an arithmetic progression of length at least t.

Proof Let IAI - k. By Freiman's theorem (Theorem 8.10), there exist integers
n - n(c) and I - 1(c) such that A is a subset of an n-dimensional arithmetic
progression Q of length

1(Q) < lk.

Let

<lifori-1,...,n}.
Then

l(Q) -1112 ...l».

We can assume without loss of generality that

11 <12 <... <1»,

It follows that
k - IAI < IQI <1(Q)-1112...1 <1,;,

and so
1 > kIIn .

Let Y be the set of all lattice points

y-(YI,.... Y»-1) E Z"-1

such that

0<y' <li
fori-1,....n-1. Then

IYI -1112...1»-I
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For each y E Y, the set

L(y) ° (a +yigi +... :0 < x,, <

is an arithmetic progression of length 1,, in the group. Since

ACQ=UL(y),
yEY

it follows that

and so

A- U(L(y)nA)
yEY

k- JAI <EIL(y)nAl.
yEY

We compute a lower bound for the average cardinality of the intersections of the
arithmetic progressions L(y) with the set A as follows:

ryEY IL(y) n AI k 1 kll"
IYl - li ... ,,-I - l - 1

It follows that there exists some y E Y such that

ki
IL(y)nAl> 1 .

Let

ko(c, t) s 10(l/1, t)",

where l0(l/1, t) is the integer constructed in Lemma 9.1. If IAI - k > ko(c, t),
then L(y) is an arithmetic progression of length

1 > k"" > ko(c, t)'I" =lo(l/1, t),

and so L(y) n A contains an arithmetic progression of length at least t. This
completes the proof.

9.3 The regularity lemma

Let A and B be nonempty subsets of a torsion-free abelian group, and let IAI
! B I= k. For W C A x B, let

S(W) _ (a + b : (a, b) E W).

In particular,
S(A x B) - A + B.
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Freiman's theorem states that if IS(A x B)I < ck, then A is contained in an
n-dimensional arithmetic progression Q whose length 1(Q) satisfies 1(Q) < lk,
where n and 1 are parameters that depend only on c.

Balog and Szemeredi [6] proved a Freiman-type result for large subsets of
A x B. They showed that if W C A x B, I W I > c1k2, and IS(W)I < c2k, then
there exists a set A' C A such that IA'I > c,k and I2A'I < c2k, where c, and c2
are positive constants that depend only on cl and c2. It follows that

12A'I < cZIkI - (E) ci lkl < cIA'I,

where c - c2/c'. Applying Freiman's theorem, we conclude that A' is a "large"
subset of a multidimensional arithmetic progression. The proof of the Balog-
Szemeredi theorem uses an important result in graph theory, also discovered by
Szemeredi, known as the regularity lemma.

The regularity lemma asserts the existence of a remarkable class of partitions
of the vertex set of a graph. Let G - (V, E) be a graph, or, more precisely,
an undirected graph with loops but with no multiple edges. Then V is a finite
set of vertices and E is the set of edges, where each edge is a set {v, v'} of not
necessarily distinct elements of V. The vertices v, v' are called the endpoints of
the edge e - {v, v'), and an edge e is adjacent to a vertex v if v E e. The degree of
a vertex v is the number of edges adjacent to v. There is at most one edge between
any two vertices of the graph.

Let A and B be subsets of V. We denote by e(A, B) the number of edges with
one endpoint in A and the other endpoint in B. If A and B are disjoint nonempty
sets, we define the density of edges between A and B by

d(A, B) =
e(A, B)

IAIIBI '

where AlIdenotes the cardinality of the set A. Since 0 < e(A, B) < 1AIIBI, it
follows that 0 _< d(A. B) < 1.

We require the following lemmas.

Lemma 9.2 Let G - (V, E) be a graph, and let A and B be disjoint nonempty
subsets of V. If A' C A and B' C B satisfy

IA'I > (1 - 8)IAI,
IB'I > (1 - s)IBI,

where 0 < 8 < 1, then

Id(A B) - d(A' B')I <
28

d(A BY - d(A' B')21
43

I , , <
(1 8)
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In particular, if 6 < 1/2, then

Id(A, B) - d(A', B')I < 86

and

Id(A, B)2 - d(A', B')21 < 165.

Proof. LetA"=A\A'andB"=B\B'.Then IA"1=JAI-IA'I <81AIand
IB"I 8IBI, and

e(A, B) = e(A', B') + e(A', B") + e(A", B') + e(A", B")

= e(A', B') + e(A', B") + e(A", B)

< e(A', B') + e(A, B") + e(A", B)

e(A',B')+IAIIB"1+IA"IIBI
< e(A', B')+28IAIIB1.

It follows that

e(A, B)_
d(A, B)

<
IAIIBI

e(A', B')
+ 2S

<
IAIIBI

e(A', B')
+2S

IA'IIB'I
d(A', B')+26

23
< d(A' B') +,

(1 -8)2'

and so

d(A B) - d(A' B') <
26

- (I - 8)2'
Similarly,

d(A', B')

and so

e(A', B')

IA'IIB'I
e(A, B)

IA'IIB'I
e(A, B)

(1 - 8)21AIIBI
d(A, B)
(I - 8)2

d(A', B') - d(A, B) < d(A, B) ( 1 - 1
(1 - 8)2
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(1-8)2-1

28

(1- 8)2

Therefore,

B')I <
28

d(A B) - d A' (1
8)2

I , ( ,

and

Id(A, B)2 - d(A', B')21 - Id(A, B) +d(A', B')Ild(A, B) - d(A', B')I

21d(A, B) - d(A', B')I
48

(1 - 8)2

If 0 < 8 < 1/2, then 1/(1 - 8)2 < 4. This completes the proof.

Lemma 93 (Schwarz's Inequality) Let x1, ... , x be real numbers. Then

n 1 n

X3 > x

2

(9.1)

;-
n

;-t

Form-1,...,n-1, let

Then

m n

m x; n Fx;

mnA2:ti 2
(i_i

, 2

>
;-1

n n - m

Proof. Let Si (n) - x; and S2(n) - Z,"-, x?. Since

0 (x,
-

S,(n))2

n

1(X2 - 2x;Si(n)
+

SI(n)2 J
;-I n n2

S2(n) - nS2

n n2

S1(n)2
S2(n) -

n

(9.2)

it follows that

S2(n) ? S, (n)2
n
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which is inequality (9.1). This implies that

n

S2(n) - S2(m)
_ xz

2
1 ">

n - m
x;

i-,"+i

(Si (n) - Si (m))2

and so

n-m

S2(n) = S2(m) + (S2(n) - S2(m))
S, (M)2 (Si(n) - S, (M))2

M n-m
S, (n)2 2S, (n)S, (m) nS, (m)2

n-m n-m m(n - m)
S, (n)2 mS, (n)2 2S, (n)S, (m)

n n(n - m) n - m
nS, (m)2

n n-m

m(n - m)
S,(!)2 + mn (S,(n) S, (m)

n n-m n m

$,(n)2 mn&2

This proves inequality (9.2).

Lemma 9.4 Let G - (V, E) be a graph, and let

q

A - UA; S V
i-I

where

fori = 1,...,q,

forj-1,...,r,and

B-UBj CV,
i.,

IA1I-a> I

IB;I - b> I

A, fl B - - 0

)
2
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for all i and j. Then

1: d(A;, Bj)2 > d(A, B)2. (9.3)
qr ;-, j-,

Let 0 < 0 < 1, and let q' and r' be integers such that 0 < Oq < q' < q and

1 Ed(A;. Bj)2 > d(A, B)2 +02(d(A, B) - d(A', B'))2. (9.4)qr i-, j-1

Proof. Since I A I - qa and I B I - rb, it follows that

E E d(A;, Bj)qr ;-, j-t

Similarly,

Then

1 r,c,e(A;,Bj)
9r ;_, j_, IA,11B;1

1 t te(A,,Bj)
garb -, j-1
e(A, B)

IAIIBI
d(A, B).

q,
r'

qr, Bj)-d(A', B').
-1 j-1

I q r I 9' r'
A - -EEd(A,.Bj)-q-r,EEd(A,,Bj)

-, j-, ;-i j-1

- d(A, B) - d(A', B').

It follows from (9.1) of Lemma 9.3 that

! >d(A;. Bj)2
qr j_,

/ 2 q r 2

1 1 )
d(A;.B1)\11/

r i-1 j-1

d(A, B)2.

This proves the first inequality.
The conditions q' > Oq and r' > Or imply that

q'r' > gr02 > ez
qr - q'r' - qr - q'r' -
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To obtain the second inequality, we apply (9.2) of Lemma 9.3 with n - qr and
m - q'r'. This gives

1
q r

I l

2 q r 2

'V' 'V' ,,. A n %2 d A B
qr i-I j-1

q'r'i2
qr - q'r'

> d(A, B)2+92A2

d(A, B)2 +92(d(A, B) - d(A', B'))2.

This completes the proof.
Let G - (V, E) be a graph, and let P be a partition of the vertex set V into

m + I sets Co, C1..... Cm. The partition P will be called equitable if ICs I - IC, I
for I < s < t < m. The set Co is called the exceptional set of the partition. The
partition density of the equitable partition P is defined by

d(P) - 12 d(C,, C,)2.
I <s <I Cm

Since there arem(m-1)/2summandsandeachsummandsatisfies0 <
1, it follows that

0<d(P)<2.

Let A and B be disjoint nonempty subsets of the vertex set V, and let e > 0.
The pair (A, B) will be called E-regular if the conditions

and

imply that

X C A, IXI > elAl

YcB,IYI>EIBI

Id(A, B) - d(X, Y)I < E.

An equitable partition of V into m + I pairwise disjoint sets CO, CI, ..., C. will
be called E-regular if

IC01 <EIVI

and if the pair (C.,, C,) is E-regular for all but at most Em2 pairs (C C,) with
1<<s<t<m.

The following result is the heart of the proof of the regularity lemma.

Lemma 9.5 Let 0 < e < 1, and let the integer m satisfy

4m > 210E-5.
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Let G - (V, E) be a graph with k vertices, and let P be an equitable partition of
V into m + 1 classes Co, C1, ... , Cm such that

ICsl>4y"

for s - 1, ... , m. If the number of e-irregular pairs (C,, C,) with 1 < s < t < m
is greater than em2, then there is an equitable partition P' of V into m4"' + I
classes such that the exceptional class has cardinality less than

k
ICol+4"',

and the partition density of P satisfies

Proof Let q - 41", and let

for s - 1, ... , m. Then

d(P') > d(P) + 32

q2-42n' <IC,I-eq+r<(e+1)q,

where

It follows that

0<r <q <e.

q - [I eSI].

Let 1 < s < t < m. If the pair (C C,) is e-irregular, then we choose sets
X,(t) c C. and X,(s) C C, such that

IX,(t)I elC,l, (9.5)

IX,(s)I eIC,I. (9.6)

and
Id(C C,) - d(X,(t), X,(s)) I ? e. (9.7)

If the pair (C C,) is s-regular, let X,(t) - X,(s) - 0. Thus, for each s - 1, ... , in,
we have constructed m - I sets

X,(1),...,X,(s- 1),X,(s+1),...,X,(m)

contained in C,. These sets determine a partition of C, into 2"-' pairwise disjoint
sets (some of which may be empty) in the following way. Let A - 10, 1"'-' bethe
set of all (m- I)-tuplesof 0s and Is. Then J A I - 2"'-' . For A - (11 .... , A,_, , )L,+, ,
... , k") E A, let Y,().) consist of all v E C, such that u E X,(j) if Aj - I and
u¢X,(j)ifkj -0.
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We shall use the 2ni-1 sets Y, ()) to construct an equitable partition P' that will
consist of m4"' sets of cardinality e and an exceptional set of cardinality less than
IC01 +k/4"'

In each set Y,(X), we choose

qa-IIY.(A)Il
LL aHI

pairwise disjoint sets, each of cardinality exactly e. Let YT(A) be the union of these
qa sets. Then

IY5(A)\Y,(A)I <e.

Since the set

C., \ UREA Yt(A)

has cardinality exactly

IC5 I - EIY(X)I - (eq+r)-eEgx=e q - Egal + r,
;LEA kEA kEA /

we can choose an additional

q - E qa
AEA

pairwise disjoint sets of cardinality e in C. This construction produces q = 4!"
pairwise disjoint sets, which we shall denote by C.'(i) for i - I__ , q. Let

Cs = c C'.

Then

Co - V\U"- ICS V \U":IC0
and

q

hence

fit

ICOI - ICOI+EICs\CsI
s_l

I

I"

< ICoI+-EIC.5I
q s_I

< IC01+
IV\Col

q
k

_< ICoI + q,ll .
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Let P' be the partition of V that consists of the mq + 1 = m4" + I sets C(i)
for I < s < m and 1 _< i < q, together with the exceptional set C,'. It remains to
prove the partition density inequality

d(P') > d(P) + 32.

Since

IC.,\Csl-r<e<ICI
q

f o r s - 1, ... , m, it follows that

IC51> `I-q)IcSI,

where 0 < I /q < 1/2. By Lemma 9.2,

and

ES E8
4 <_ 27 < 4

s16 e
Id(C C,)2 - d(Cs, C;)2I <_ q <

64

for 1 < s < t < m. Applying inequality (9.3) of Lemma 9.4 with q - r, Ai - C ' (i ),
and Bj - C,'(j ), we obtain

q2 F J:d(C(i), C;(j))2 ? d(C, C;)2
i.1 j-1

ES
2> d (C- C, ) - 64

for all pairs (C C,) with 1 < s < t < m.
Now let (C C,) be an E-irregular pair, and let X, = X,(t) c_ C, and X,

X,(s) C C, be the sets that were chosen to satisfy conditions (9.5)-(9.7). In
particular, I Xs I ? E I C, I. Recall that the set C, was partitioned into 2`- ' sets YS (A),
where A _ A,,,) E A. The set X, - X,(t) is the union of
the 21-2 sets Y,(x) with A, - 1. Each of these sets Y,(,l) contains [IY,(x)I/el
pairwise disjoint sets belonging to the partition P'. Let C(1), ... , C,(q') denote
the sets in the partition P that are contained in YS (A) for some Y, (A) c X., , and let

q

X, - U C (i ).

Let E denote the sum over all X E A with A, - 1. Then

L e
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Since

IXI\X,I IY,(A)I - IX:I

e
e(- [IY.c(A)I])

< Ee
2",-2e

2m-21Cs I

q

it follows that

and

2-'n-2IC I
s

< 2-m-2e-' IX It

q -' X22-2e -' I Xs I
< (e52-10)1/22-2e-'IX.sI

< 2-7EIX.cI,

IX.'I > (I - 2-7e)IX.,I

Ix I
q -

e

> (1 - 2-7e) IX.I I

e

(1 -2 -7E)e ICI I

e

> (1 -2 -7)eq
eq

2

Similarly, let X; be the union of the r' sets C;(1), ..., C,(r') of the partition P'
that are contained in X,. Then

IX,'I > (I - 2-7e)IX,I

and

> eqr -.2

Therefore,

Id(X.,, X,) - d(X,, X,')I < 8e2-7 -
16 < 4'
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Since the pair (C C,) is not s-regular, we obtain

s < Id(C3, C,) - d(x,, x,)I

+Id(X', X,) - d(Xs, X,)I

< 4+Id(C,,C,)-d(X,,X,)I+4

and so

Id(C', C) - d(X,, X,')I > 2

Applying inequality (9.4) of Lemma 9.4 with r - q and 9 - e/2, we see that if
(Cs, C,) is an s-irregular pair, then

q
q-2 d(C,(i), C,,(j))2

> d(CS, C,)2 + (s/2)2(d(C:, C,) - d(X', X,'))2

> d(C,', C,)2 +64/16

> d(C,, C,)2 - 61/64+s°/16.

For I < s < t < m, let X(s, t) - I if the pair (C,, CI) is e-irregular, and let
X(s, t) - 0 if the pair (C,. C,) is s-regular. Then

E X(s, t) > 6m2
1<s<,<m

and

q

q-2 d(C,(i), d(C,(j))2 > d(C, C,)2 - 61/64+ X(s, t)6°/l6.
i. j-I

We can now estimate the partition density d(P'):

m
(mq)-2 d(C;(i).C,(j))2+ d(C,(i),Cs(j))2

I<s<,<n,,.j-1 s-1 1<i<j<q
q

m-2 E q d(C'(i), C,(j))2
I<,<t<m i.j-I

m-2 (d(C,, C,)2 - 61/64+ X(s, t)e4/16)

(')65/64+(5m2)(54/l6))> m2
\ I<s<<m

m-2 E (d(C.,,C,)2-m-2(2)61/64)+m-2m2e1/16
1<,<,<n,

> d(P)+61/32.

This completes the proof of the Lemma.
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Theorem 9.2 (the regularity lemma) Let 0 < s < 1 and m' > 1. There exist
numbers K - K(e, m') and M - M(e, m') such that, if G - (V, E) is a graph
with I VI > K vertices, then there exists an e-regular partition of V into m + I sets,
where m' < m < M.

Proof. Let t' - [16e-5]. We construct a sequence mo, ml, M2,... of integers as
follows. Let mo be an integer such that

mo>m'

and

41'tl > max(210e-5 2,'+2e-I},

and let
m,+1 - m,4m'

for t - 0, 1, 2, 3,.... We define numbers M and K by

M - WE, m) - m,'

and

K - K(e, m') - max{2mo/e, m,, l6e,'I(1 - e)}.

Let G - (V, E) be a graph with IVI - k > K. Let T be the set of nonnegative
integers t with the property that there exists an equitable partition P of V into
m, + I sets such that

d(P) > te5/32 (9.8)

and the exceptional set Co of the partition has cardinality

ICoI < ek(1 - 2-`-I). (9.9)

Consider any partition Po of V that consists of mo pairwise disjoint sets of size
[k/mo), together with an exceptional set Co of cardinality less than mo. Then

ICoI <mo-eK/2 <ek/2-ek(I - 1/2).

Since d(P0) >- 0, it follows that t - 0 satisfies conditions (9.8) and (9.9). Thus,
OE T.

Since d(P) < 1/2, if t satisfies condition (9.8), then

t < t' - [16e-5].

It follows that condition (9.8) is satisfied for only finitely many positive integers.
Thus, the set T is finite and there exists a greatest integer t < t' such that condi-
tions (9.8) and (9.9) are satisfied for some partition P of V into m, + I sets. Let
P - {Co, C1, ... , C.,,] ]. Then

ICI - IVI - ICoI
M,
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fors=l,...,m,and
411" >4"'">2'0E-5.

Since the exceptional set of the partition P satisfies ICoI < ek, it follows that, if
the partition P is not E-regular, then the number of c-irregular pairs (C.,, C,) is
greater that Em2. Lemma 9.5 implies that there exists an equitable partition P' of
V into m, 4"', + 1 - m,+i + 1 sets such that

d(P') > d(P)+E5/32 > (t + 1)ES/32

and the exceptional set Co of P' satisfies

ICoI < ICoI+k/4`1
< Ek(1 - 2-`-1) + k/4
< Ek(1 - 2-`-' +E-'4-`11)
< Ek(1 - 2-x-1 +E-14-,,,x)

< Ek(l - 2-'-' + 2-"-')
< sk(1 - 2-'-' + 2-r-2)
- Ek(l - 2-r-2).

This implies that t + I satisfies conditions (9.8) and (9.9), which contradicts the
maximality oft. Therefore, P is E-regular. This completes the proof.

9.4 The Balog-Szemeredi theorem

Theorem 9.3 Let 6, a, A, and y be positive real numbers. There exist positive num-
bers ci , c2 and K that depend only on S, a, k, and s with the following property.
Let k > K, and let A and B be finite subsets of an abelian group such that

Ak<IAI<µk

and

Ak<IBI</.tk.

Let W be a subset of A x B such that

! W I > Sk2
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S=S(W)={a+b:(a,b)EW}

271

ISI < ak. (9.10)

Then there exists a set A' c A such that

and

In particular,

where c = c2/c',.

JA'I > c,k

12A'I < c'2k.

12A'I < cIA'I,

Proof. Let

and

0<e<min11,
µ3a}

(9.11)

- (11 1

m' IL- +1>
s e

Let M(e, m') and K(e, m') be the numbers constructed in the regularity lemma.
Let M - M(e, m') and K - K(e, m')/,L. Then M and K depend only on S, a,),
and µ.

For S E S, let r(s) denote the number of representations of s in the form a + b,
where (a, b) E W, that is,

r(s)-I{(a,b)E W :a+b=s}1.
For each a E A there is at most one b E B such that a + b - s, and so

for alI s E S. Let

1 <r(s)<IAI<Ak

SC3->0
2a

and

Then

S'={sES:r(s)>c3k}.

Sk2 < W I

E r(s)
'ES

S2 62

41614a(12µ2+2tca)' 6

r(s) + r(s)
sES\S' AES'

< c3kIS \ S'I +µkIS'I

< c3kISJ+µkIS'J

< ac3k2+µkJS'J,
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and so

Let

Then

where

(S - ac3)k Sk

µ 2µ

W'=((a,b)EW :a+bES').

I W'I = J r(s) > c3kIS'I >
S23k2

= cake,
,ES'

SC3 S2
c'a =

2µ 4µa
Let G = (V, E) be the graph with vertex set

V=AUB
and edge set

E={(a,b):(a,b)EW'}.
The sets A and B are not necessarily disjoint, and

Ak < IAI < IVI < IAI+IBI <2µk.

If e - (a, b) E E, then the set W' contains at least one and possibly both of the
ordered pairs (a, b) and (b, a), and so

cake I W'I< < IEI < J W'1.2 2
Since IVI > Ak > AK = K(E, m'), the regularity lemma implies that there exists
a partition of V into m + I pairwise disjoint sets Co, C1, ... , C,,,, where

m'<m<M,

ICoI <EIVI <E2µk,
and

(1 -E)Ak < (1 -e)IVI
M nt

< IC, I

IVI - ICol

IVI

m
2µk

m

m

for i = 1, ..., m. Moreover, there are at most Em2 pairs (C;, C1) with I < i <
j < m that fail to be E-regular.

We shall construct a subset E' of the edge set E by deleting the following four
classes of edges from E:

9. Applications of Freiman's theorem
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1. Delete all edges with at least one endpoint in Co. Since the degree of a vertex
is at most I V 1, it follows that the number of edges removed from E is at most

ICoilV1 s elVI2

2. For i - 1, ... , m, delete all edges with both endpoints in the same set C; .
The number of edges removed from E is at most

1C;1z <m(m)I vl = Iv12 < Iv12 <e1V12.
m m'

3. Let I < i < j < m. If (C;, Cj) is not an s-regular pair, delete all edges
between C; and C. Since e(C1, Cj) < IC, I ICj I s I V I2/m2 and there are at
most em2 irregular pairs, the number of edges removed from E in this way
does not exceed

CM21V12

-sIV12.

m2

4. We use the set S' to "color" the edges of E by assigning to the edge (a, b) E E
the color s - a + b E S'. For each i - 1, ... , m and for each colors E S',
we consider the number of edges of color s with at least one endpoint in the
set C. If this number is less than eIC;1, then we delete all these edges. The
total number of edges of all colors deleted from the sets C1, ..., Cm is at
most

IS'I elCrl < mI SIeI V I -eISIIVI
i-I

Let E' be the set of edges remaining after the four deletions just described. Then

IE \ E'l < 3e1V12+eISIIVI < (l2µ2+2µa)ek2,

and so

IE'I - IEI - IE \ E'I
CA' -(l2 2+2 ) k2> 2 µ µa e

_ (C4 -02A2 +2µa)e) k2
2

- (±_ - (12µ2 + 2µa)e) k2
8µa

82k2

=

I6µa

c5k2,

since

e<
S2

161ta (l 2µ2 + 2µa)
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by (9.11), and
82

C5 -
16µa

>0.

All of the edges in E' are edges between e-regular pairs (C5, C,), where 1 <
s < t < m. Let e'(C,, C,) (resp. e(CS, C,)) denote the number of edges in E' (resp.
in E) with one endpoint in CS and the other endpoint in C,. Since there are at most
(Z) c-regular pairs, there must exist some e-regular pair, say, (C,, C2), such that
the number of edges in E' between C, and C2 is

IE'I c5k2 csk2

m

Therefore, by (9.11),

d(C1, C2)
e(C,, C2)

ICI I IC21

e'(C1, C2)

IC1IIC211

(c,k
m22)

(2M4k)-2

Cs

442

V
64µ3a

> C.

Let S" be the set of colors of edges in E' between C, and C2:

S" - (a + b : (a, b} E e'(C,, C2)}.

Since r(s) < µk for every colors E S, it follows that

e'(Cj, C2) > csk > csk - c6k.
µk µm2 - µM2

We shall prove that the sumset 2S" - S" + S" is small. Lets' E 2S". We fix some
representation s' - s, +s2 E 2S", where s, E S" and S2 E S". Since s, is the color
of an edge that has "survived" step 4 of the deletion process just described, there
are at least eIC, I edges in E' of color s, with exactly one endpoint in the set C1.
Let X, be the set of these endpoints. Then

X,cC,

and

IXI I >_ eIC) I.
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Similarly, there are at least a IC21 edges in E' of color S2 with exactly one endpoint
in the set C2. Let X2 be the set of these endpoints. Then

X25 C2

and

IX21 >- EIC21

Since the pair (Cl, C2) is e-regular, it follows that

// 2

d(Xi,X2) > d(Ci,C2)-e> 14
3a / -E-c7

Therefore,

e(XI, X2) - d(Xi, X2)IX1IIX21

c7c2ICI l IC21

c7s2(1 - s)2A2k2

m2
c7e2(1 - e)2k2k2

M2

cgk2.

Let 9 denote the set of all ordered triples of the form

(s, vi, v2),

>0.

where s E S and V1, v2 E V. Then

Inl - ISIIV12 < 4o t2k3.

Let (v,, v2) E E be an edge between the sets X, and X2, where v, E X, and
V2 E X2. Then there exist vertices v, E V and vZ E V such that (vI, V,) E E' with
v, + v, - s, E S' and (v2, v2) E E' with v2 + v2 - s2 E S'. Lets - v, +V2 E S. To
the edge (v, , v2) we associate the ordered triple

(S, v,, vZ) E $Z.

Observe that

S+U, +u2 - (v, +v,)+(v2+t4) -S, +S2 -S' E 2S".

Conversely, if (s, v,, V2) E Q is a triple constructed in this way from an edge
(V1, V2) between X, and X2, then ;?I - s, - v, and v2 - s2 - v2. Therefore, the
number of distinct triples (s, v,, u2) E 9 such that s + v, + v2 - Si +S2 - s' is at
least e(X, , X2) > cgk2. Applying this construction to each element s' E 2S", we
obtain cgk212S"I distinct triples in 0. Since

c8k2I2S"I IQI < 4o 2k3,
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it follows that
4azkl2S"I<µ-cZk.

C8

For b E B, let R(b) denote the number of s E S" such that s - a + b for some
a E A. Choose b' E B such that R(b') - max(R(b) : b E B}. Since S E S" c S',
we have r(s) > c3k and

C3C6k2
<

c3klS"I

< z r(s)
SES"

- {(a,b)E W:a+bES"}l
< l{(a,b)EAxB:a+bES"}l

E R(b)
be B

BIR(b)

fzkR(b').

Therefore,

Let

Then

and

R(b) >
c3c6k

- c', k.
A

A'-{aEA: a +b'ES"}.

A'+{b'}cS",
IA'I - R(b) > c,k,

I2A'l - 12(A'+ {b})I < 12S"l < cZk.

This completes the proof of the theorem.

Theorem 9.4 Let S, a, A, and s be positive real numbers. There exist positive
numbers c", c2, n, and K that depend only on S, a, A, and µ with the following
property. Let k > K, and let A and B be finite subsets of a torsion free abelian
group such that

Ak < JAI < pk

and

Ak < I B I < tek.

Let W be a subset of A x B such that

I W I > Sk2

and

S(W) - {a + b :(a, b) E W)
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satisfies
IS(W)I < ok.

Then there exists an n -dimensional arithmetic progression Q such that

IAnQI>_c;IAI

and

IA n QI > c2IQI

Proof. This follows immediately from the preceding result and Freiman's the-
orem.

9.5 A conjecture of Erd6s

Erd6s conjectured that a set of integers that contains "many" three-term arithmetic
progressions must contain a "long" arithmetic progression. In this section, we shall
apply Theorems 9.1 and 9.3 to prove a quantitative version of this statement.

An arithmetic progression of length three is a set (a, b, c) such that b - a -
c - b ¢ 0. Two such arithmetic progressions (a, b, c) and (a', b', c') are distinct
if (a. b, c) ( (a', b', c'). A set of k integers contains at most k2 pairwise distinct
arithmetic progressions of length three.

Theorem 9.5 Let 8 > 0 and t > 3. There exists an integer k, (8, t) such that if
A is a set of k > k1 (5, t) integers that contains at least 8k2 distinct arithmetic
progressions of length three, then A contains an arithmetic progression of length
t.

Proof. Let A be a set of k integers, and let

(jai, b1,c,}:iE1)

be a family of
III > 8k2

three term arithmetic progressions in A such that

bi-a,-ci-bi>0.

a, + ci - 2bi

W-((ai,ci):iE1)CAxA.

IWI=I>8k2
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and
S(W)={2b;:iE1}c{

It follows that
IS(W)I<12*AI=k.

We apply Theorem 9.3 with A - B and,l - - a = 1. If k > K = K (8), then there
exists a set A' C A such that IA'I > c,k and 12A'I < cIA'I, where c depends only
on S. By Theorem 9.1, if c, k > ko(c, t), then A' contains an arithmetic progression
of length t. This completes the proof.

9.6 The proper conjecture

The n-dimensional arithmetic progression

Q

_ <l;fori=l,...,n}
is called proper if I QI =1i ... 1 =1(Q). This means that every element of Q has
a unique representation. If Q is proper, then

It 10 <xi <h(l; - 1)fori = 1,...,n}

and so I hQI < h"!1 .1, = h" I QI. Let {et, ... , e,,} be the standard basis for R",
let 11 .., 1 be positive integers, and consider the parallelepiped

<l;fori=1,...,n}.

For every h > 2 there is a Freiman isomorphism of order h between the set of
lattice points Z" fl P and a proper n-dimensional arithmetic progression.

Every 1-dimensional arithmetic progression is proper, but it is easy, for every
n > 2, to construct examples of n-dimensional arithmetic progressions that fail to
be proper.

By Freiman's theorem, every finite set A of integers with a small sumset 2A is
a large subset of a multidimensional arithmetic progression, but it is not known
if A must be a large subset of a proper multidimensional arithmetic progression.
This can be called the "proper conjecture."

Conjecture 9.1 Let c, c1, and c2 be positive real numbers. Let k > 1, and let A
and B he finite subsets of a torsion free abelian group such that

cik < Al,IIBI < CA
and

2b:bEA}=2*A.

IA+BI <ck.
Then A is a subset of a proper n-dimensional arithmetic progression of length at
most l k, where n and I depend only on c, ci , and c2, and n and I are both "small."



9.7 Notes 279

9.7 Notes

Let c > 2 and e > 0. Is it true that if A is a finite set of integers with Al I- k
sufficiently large and I2AI > ck, then A contains an arithmetic progression of
length kF? This would significantly strengthen Theorem 9.1.

Freiman [54, 55] and Ruzsa [113] studied sets with small sumsets that contain
three-term arithmetic progressions.

It is not known whether Theorem 9.3 remains true if inequality (9.10) is replaced
with the weaker condition

ISI <
ak2-d

for some 3 > 0. Nor is it known whether the theorem can be generalized to the
sum of h > 3 finite subsets of the integers or of h > 3 finite subsets of an arbitrary
abelian group.

The regularity lemma for e-regular partitions of the vertices of a graph is due
to Szemerddi [124]. He used a variant of this result in his proof [123] that every
infinite set of integers of positive upper density contains arbitrarily long finite
arithmetic progressions. Chung [20] and Frankl and R6dl [48] have generalized
the regularity lemma to hypergraphs. The version of Freiman's theorem for large
subsets of A x B was proved by Balog and Szemerddi [6] in the case that A - B
is a finite set of integers. The somewhat more general result given in this chapter
requires only minor modifications of their proof.

Laczkovich and Ruzsa [77] have applied Freiman's theorem to combinatorial
geometry. Let a, b, c, and d be four distinct points in the plane. Their cross ratio
is

-a

(a, b, c, d) - `-bd-a
d-b

Let P be a finite set of complex numbers. Let A be a set of n complex numbers,
and let S(P, A) denote the number of subsets X C A such that I X I - I P I and X
is homothetic, or affinely equivalent, to P in the sense that

X -aP+B

for some a, b E C. Let

S(P, n) - max(S(P, A) : IAI - n).

Laczkovich and Ruzsa proved that

S(P, n) > cn2

for some constant c > 0 and all n > IPI if and only if the cross ratio of every
four-element subset of P is algebraic. This generalizes a result of Elekes and
Erd6s [33].
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9.8 Exercises

1. Let S > 0 and let n and t be integers such that n > I and t > 3. Let
Q be an n-dimensional arithmetic progression in an abelian group. Prove
that there exists an integer m, (S, n, t) such that if the length of Q satisfies
I(Q) > m,(3, n, t) and if B is a subset of Q such that CBI > 31(Q), then B
contains an arithmetic progression of length t.

2. Let A and B be finite subsets of an abelian group such that I A I - B I - k.
Let S - A + B. Let r(s) denote the number of ordered pairs (a. b) E A x B
such that a + b - s. Suppose that

1: r(s)2 > 50.
SES

(a) Prove that there exist constants d, > 0 and d2 > 0 such that, if
S' - IS E 5 : r(s) > d,kr/z), then IS'I > d2k.

(b) Suppose that ISI < ak. Prove that there exist constants d3 > 0 and
d4 > 0 such that, if S' - IS E S : r(s) > d3k), then I S'I > d4k.

3. Let h > 2, and let A,, ..., Ah be finite subsets of an abelian group such that
1 A; I - k for i - 1, 2, ... , h. Let S - A, + +A". Let r(s) denote the number
of ordered pairs (a,, ... , a") E A, x x Ah such that a, + + ah - s.
Prove the following:

(a) k < I51 < k".

(b) r(s) < k"-1 for all s E S.

(c) F.,E5 r(s) - k".

4. Let h > 2, and let A,A , ,.. Ah be finite subsets of an abelian group such that
A; I - k for i - 1, 2, ..., h. Let S - A, + +A". Let r(s) denote the number

of ordered pairs (al_., ah) E A, x x A" such that a, + + at, - s.
Suppose that

and

Let

E r(s)' > akhw

SES

ISI < ak"-s.

5'-{sE 5:r(s)> ( lk(a+s)/ml
2ar

Prove that I S' I > (S/2) k', where ,6 -

h`\+

a - (h - 1) m.

5. Let x 1 . . . . . . ; , be real numbers, and let p, , ..., p be positive real numbers
such that p, + + p - 1. Prove that

2

p'x
2

> p'x'
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6. Let xi, ..., x,, be real numbers, and let p, , ..., p be positive real numbers
such that =1.Form =1,...,n-1, let P(m) - pi and

I

R,

P(m)
p;x;

Prove that

P(m)i
p; x? P; x; + I - P(m)

7. Let S > 0. Let A be a set of k integers that contains at least Skz arithmetic
progressions of length 3. Prove that A contains a subset A' such that IA'I
c', k and 12A I < c' k, where c, and cz depend only on S.
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Many classical problems in additive number theory are direct prob-
lems, in which one starts with a set A of natural numbers and an
integer h>_2 and tries to describe the structure of the sumset hA
consisting of all sums of h elements of A. In contrast, in an inverse
problem, one starts with a sumset hA and attempts to describe
the structure of the underlying set A. In recent years, there has
been remarkable progress in the study of inverse problems for
finite sets of integers. In particular, there are important and beau-
tiful inverse theorems due to Freiman, Kneser, Plunnecke, Vosper,
and others. This volume includes their results and culminates with
an elegant proof by Rusza of the deep theorem of Freiman that a
finite set of integers with a small sumset must be a large subset
of an n-dimensional arithmetic progression.

Inverse problems are a central topic in additive number theory.
This graduate text gives a comprehensive and self-contained
account of this subject. In particular, it contains complete proofs
of results from exterior algebra, combinatorics, graph theory, and
the geometry of numbers that are used in the proofs of the prin-
cipal inverse theorems. The only prerequisites for the book are
undergraduate courses in algebra, number theory, and analysis.
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