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Preface

Kurt Hensel (1861-1941) discovered or invented the p-adic numbers' around the
end of the nineteenth century. In spite of their being already one hundred years
old, these numbers are still today enveloped in an aura of mystery within the
scientific community. Although they have penetrated several mathematical fields,
number theory, algebraic geometry, algebraic topology, analysis, ..., they have
yet to reveal their full potential in physics, for example. Several books on p-adic
analysis have recently appeared:

F. Q. Gouvea: p-adic Numbers (elementary approach);
A. Escassut: Analytic Elements in p-adic Analysis, (research level)

(see the references at the end of the book), and we hope that this course will
contribute to clearing away the remaining suspicion surrounding them. This book
is a self-contained presentation of basic p-adic analysis with some arithmetical
applications.

Our guide is the analogy with classical analysis. In spite of what one may think,
these analogies indeed abound. Even if striking differences immediately appear
between the real field and the p-adic fields, a better understanding reveals strong
common features. We try to stress these similarities and insist on calculus with the
p-adics, letting the mean value theorem play an important role. An obvious reason
for links between real/complex analysis and p-adic analysis is the existence of

'The letter p stands for a fixed pnme (chosen in the list 2, 3, 5, 7, 11, ...) except when explicitly
stated otherwise.
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an absolute value in both contexts. But if the absolute value is Archimedean in
real/complex analysis,

if x 0, for any y there is an integer n such that I nx I

it is non-Archimedean in the second context, namely, it satisfies

Inxl <Ixl.
n terms

> IyI,

In particular, InI < I for all integers n. This implies that for any r > 0 the subset
of elements satisfying Ixl < r is an additive subgroup, even a subring if r = 1.
For such an absolute value, there is (except in a trivial case) exactly one prime
p such that IpI < 1.3 Intuitively, this absolute value plays the role of an order
of magnitude. If x has magnitude greater than 1, one cannot reach it from 0 by
taking a finite number of unit steps (one cannot walk or drive to another galaxy!).
Furthermore, Ipl < 1 implies that I pn I -> 0, and the p-adic theory provides a link
between characteristic 0 and characteristic p.

The absolute value makes it possible to study the convergence of formal power
series, thus providing another unifying concept for analysis. This explains the
important role played by formal power series. They appear early and thereafter
repeatedly in this book, and knowing from experience the feelings that they inspire
in our students, I try to approach them cautiously, as if to tame them.

Here is a short summary of the contents

Chapter I: Construction of the basic p-adic sets Z,,, QP and SP,

Chapters II and III: Algebra, construction of CP and QP,

Chapters IV, V, and VI: Function theory,

Chapter VII: Arithmetic applications.

I have tried to keep these four parts relatively independent and indicate by an
asterisk in the table of contents the sections that may be skipped in a first reading.
I assume that the readers, (advanced) graduate students, theoretical physicists, and
mathematicians, are familiar with calculus, point set topology (especially metric
spaces, normed spaces), and algebra (linear algebra, ring and field theory). The
first five chapters of the book are based solely on these topics.

The first part can be used for an introductory course: Several definitions of the
basic sets of p-adic numbers are given. The reader can choose a favorite approach!
Generalities on topological algebra are also grouped there.

2Both Newton's method for the determination of real roots of f = 0 and Hensel's lemma in the
p-adic context are applications of the existence of fixed points for contracting maps in a complete
metric space.

3Since the prime p is uniquely determined, this absolute value is also denoted by I . I,,. However.
since we use it systematically, and hardly ever consider the Archimedean absolute value, we simply
write 1.1.
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Preface vii

The second -more algebraic -part starts with a basic discussion of ultrametric
spaces (Section 11.1) and ends (Section 111.4) with a discussion of fundamental
inequalities and roots of unity (not needed before the study of the logarithm in
Section V.4). In between, the main objective is the construction of a complete and
algebraically closed field Cp, which plays a role similar to the complex field C
of classical analysis. The reader who is willing to take for granted that the p-adic
absolute value has a unique extension I . IK to every finite algebraic extension K
of Qp can skip the rest of Chapter II: If K and K' are two such extensions, the
restrictions of I - 1K and I - IK' to K fl K' agree. This proves that there is a unique
extension of the p-adic absolute value of Qp to the algebraic closure Qp of Qp.
Moreover, if v E Aut (K/Q p), then x H I x° I K is an absolute value extending
the p-adic one, hence this absolute value coincides with I . IK. This shows that
a is isometric. If one is willing to believe that the completion Qp = C P is also
algebraically closed, most of Chapter III may be skipped as well.

In the third part, functions of a p-adic variable are examined. In Chapter IV,
continuous functions (and, in particular, locally constant ones) f : Zp -a Cp are
systematically studied, and the theory cuhninates in van Hamme's generalization
of Mahler's theory. Many results concerning functions of a p-adic variable are ex-
tended from similar results concerning polynomials. For this reason, the algebra of
polynomials plays a central role, and we treat the systems of polynomials - umbra]
calculus - in a systematic way. Then differentiability is approached (Chapter V):
Strict differentiability plays the main role. This chapter owes much to the presenta-
tion by W.H. Schikhof: Ultrametric Calculus, an Introduction to p-adic Analysis.
In Chapter VI, a previous acquaintance with complex analysis is desirable, since
the purpose is to give the p-adic analogues of the classical theorems linked to the
names of Weierstrass, Liouville, Picard, Hadamard, Mittag-Leffler, among others.
In the last part (Chapter VII), some familiarity with the classical gamma function
will enable the reader to perceive the similarities between the classical and the p-
adic contexts. Here, a means of unifying many arithmetic congruences in a general
theory is supplied. For example, the Wilson congruence is both generalized and
embedded in analytical properties of the p-adic gamma function and in integrality
properties of the Artin-Hasse power series. I explain several applications of p-adic
analysis to arithmetic congruences.

Let me now indicate one point that deserves morejustification. The study of metric
spaces has developed around the classical examples of subsets of R" (we make
pictures on a sheet of paper or on the blackboard, both models of R2 ), and a famous
treatise in differential geometry even starts with "The nicest example of a metric
space is Euclidean n-space Rn." This point of view is so widely shared that one
may be led to think that ultrametric spaces are not genuine metric spaces! Thus the
commonly used notation for metric spaces has grown on the paradigmatic model
of subsets of Euclidean spaces. For example, the "closed ball" of radius r and
center a - defined by d(x, a) < r - is often denoted by B(a. r) or Br (a). This
notation comforts the belief that it is the closure of the "open ball" having the same
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radius and center. If the specialists have no trouble with the usual terminology and
notation (and may defend it on historical grounds), our students lose no opportunity
to insist on its misleading meaning. In an ultrametric space all balls of positive
radius (whether defined by d(x, a) < r or by d(x, a) < r) are both open and
closed. They are clopen sets. Also note that in an ultrametric space, any point of
a ball is a center of this ball. The systematic appearance of totally disconnected
spaces in the context of fractals also calls for a renewed view of metric spaces. I
propose using a more suggestive notation,

B<r(a) = {x : d(x, a) < r}, B<r(a) = {x : d(x, a) < r}

which has at least the advantage of clarity. In this way I can keep the notation
A strictly for the closure of a subset A of a topological space X. The algebraic
closure of a field K is denoted by K°.

Finally, let me thank all the people who helped me during the preparation of this
book, read preliminary versions, or corrected mistakes. I would like to mention
especially the anonymous referee who noted many mistakes in my first draft,
suggested invaluable improvements and exercises; W.H. Schikhof, who helped
me to correct many inaccuracies; and A. Gertsch Hamadene, who proofread the
whole manuscript. I also received encouragement and help from many friends and
collaborators. Among them, it is a pleasure for me to thank

D. Barsky, G. Christol, B. Diarra, A. Escassut, S. Guillod-Griener,
A. Junod, V. Schiirch, C. Vonlanthen, M. Zuber.

My wife, Ann, also checked my English and removed many errors.
Cross-references are given by number: (11.3.4) refers to Section (3.4) of Chapter

II. Within Chapter II we omit the mention of the chapter, and we simply refer
to (3.4). Within a section, lemmas, propositions, and theorems are individually
numbered only if several of the same type appear. I have not attempted to track
historical priorities and attach names to some results only for convenience. General
assumptions are repeated at the head of chapters (or sections) where they are in
force.

Figures I.2.5a, I.2.5c, I.2.5d. and 1.2.6 are reproduced here (some with minor
modifications) with written permission from Marcel Dekker. They first appeared in
my contribution to the Proceedings of the 4th International Conference on p-adic
Functional Analysis (listed in the References).

Alain M. Robert
Neuchatel, Switzerland, July 1999
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p-adic Numbers

The letter p will denote a fixed prime.
The aim of this chapter is the construction of the compact topological ring ZP

of p-adic integers and of its quotient field Qp, the locally compact field of p-adic
numbers. This gives us an opportunity to develop a few concepts in topological
algebra, namely the structures mixing algebra and topology in a coherent way.
Two tools play an essential role from the start:

the p-adic absolute value I Ip = I I or its additive version. the p-adic valuation
ordp=VP,
reduction mod p.

1. The Ring Zp of p-adic Integers

We start by a down-to-earth definition of p-adic integers: Other equivalent pre-
sentations for them appear below, in (4.7) and (4.8).

1.1. Definition

A P-adic integer is a forntal series I i,o a; p` with integral coefficients a, satisfying

0<a; < p-1.

With this definition, a p-adic integer a = ri,o a; p` can be identified with the
sequence (a,),>() of its coefficients, and the set of p-adic integers coincides with
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2 1- p-adic Numbers

the Cartesian product

X=XP =fl{O,l,...,p-1}=10,1,...,p-I}N
i>0

In particular, if a = Y-1>0 ai p` , b = >i>0 bi p` (with ai, bi E 10, 1, - .. , p - 11)
we have

a = b ai = bi for all i > 0.

The usefulness of the series representation will be revealed when we introduce
algebraic operations on these p-adic integers. Let us already observe that the
expansions in base p of natural integers produce p-adic integers (ending with zero
coefficients: Finite series are special series), and we obtain a canonical embedding
of the set of natural integers N = 10, 1, 2, ...} into X.

From the definition, we immediately infer that the set of p-adic integers is not
countable. Indeed, if we take any sequence of p-adic integers, say

a=Eaipl, b=j:bipt, c=L.:c,p',
i>0 i>0 i>0

we can define a p-adic integer x = K>o xi pi by choosing

xo-ao,xi0bi,x2Ac2,

thus constructing a p-adic integer different from a, b, c, .... This shows that the
sequence a, b, c.... does not exhaust the set of p-adic integers. A mapping from
the set of natural integers N to the set of p-adic integers is never surjective.

1.2. Addition of p-adic Integers

Let us define the sum of two p-adic integers a and b by the following procedure.
The first component of the sum is ao + bo if this is less than or equal to p - 1, or
ao + bo - p otherwise. In the second case, we add a carry to the component of
p and proceed by addition of the next components. In this way we obtain a series
for the sum that has components in the desired range. More succinctly, we can say
that addition is defined componentwise, using the system of carries to keep them
in the range {0, 1, ... , p - 1).

An example will show how to proceed. Let

a= 1 =

b =(p - 1)+(p- 1)p+(p- 1)p2+....

The sum a + b has a first component 0, since 1 + (p - 1) = p. But we have to
remember that a carry has to be taken into account for the next component. Hence
this next component is also 0, and another carry has to be accounted for in the
next place, etc. Eventually, we find that all components vanish, and the result is
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1 + b = 0, namely b is an additive inverse of the integer a = 1 (in the set of p-adic
integers), and for this reason written b = -1. More generally, if

a = aipi,
i>o

we define

b=a(a)=E(p-1-ai)p'
i>o

so that a + b + 1 = 0. This is best summarized by a + a(a) + 1 = 0 or even
a(a) + 1 = -a. In particular, all natural integers have an additive inverse in the
set of p-adic integers. It is now obvious that the set X of p-adic integers with the
precedingly defined addition is an abelian group. The embedding of the monoid
N in X extends to an injective homomorphism Z -* X. Negative integers have
the form -m - 1 = a(m) with all but finitely many components equal to p - 1.
Considering that the rational integers are p-adic integers, from now on we shall
denote by Zv the group of p-adic integers. (Another natural reason for this notation
will appear in (3.6).) The mapping a : Zy Zn obviously satisfies a 2 = or o or =
id and is therefore an involution on the set of p-adic integers. When p is odd, this
involution has a fixed point, namely the element a = i>o

p21 p` E Z p.

1.3. The Ring of p-adic Integers

Let us define the product of two p-adic integers by multiplying their expansions
componentwise, using the system of carries to keep these components in the desired
range {0, 1, ... , p - 1}.

This multiplication is defined in such a way that it extends the usual multiplica-
tion of natural integers (written in base p). The usual algorithm is simply pursued
indefinitely. Again, a couple of examples will explain the procedure. We have
found that -1 = >(p - 1)p'. Now we write

-1 = (P - 1) - > p`, -(p - 1) > P` = 1,
i>o i>o

1Epi 1p.
Hence 1 - p is invertible in Zn with inverse given as a formal geometric series of
ratio p. Since

P - EaiP` = aop+atp2+... 1 +Op+Op2+...
i>o

the prime p is not invertible in Z. for multiplication. Using multiplication, we can
also write the additive inverse of a natural number in the form

-m = (-1) - m = DP - I)P` . Emipi,
i>o
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4 1. p-adic Numbers

but it is not so easy to deduce the coefficients of -m from this relation. Together
with addition and multiplication. Zp is a commutative ring. When p is odd, the
fixed element under the involution a isp- p-1 E i p-1 1 1

>0 2
p 2>0 2 1- p 2

but 2 is not an invertible element of Z2, - 2 V Z2, and the involution or = a2 has
no fixed point in Z2.

1.4. The Order of a p-adic Integer

Let a = Y_t,o ai p' be a p-adic integer. If a 0, there is a first index v = v(a) > 0
such that av ; 0. This index is the p-adic order v = v(a) = ordp(a), and we get
a map

v= ordp:Zp-(0) --.N.

This terminology comes from a formal analogy between the ring of p-adic integers
and the ring of holomorphic functions of a complex variable z E C. If f is a nonzero
holomorphic function in a neighborhood of a point a E C, we can write its Taylor
series near this point

f(z)=2an(z-a)n, (am #0, Iz - aI < E).
n>m

The index m of the first nonzero coefficient is by definition the order (of vanishing)
of f at a: this order is 0 if f (a) 0 and is positive if f vanishes at a.

Proposition. The ring Z p of p-adic integers is an integral domain.

PROOF The commutative ring Z P is not {0}, and we have to show that it has no
zero divisor. Let therefore a = F_j,o a; p' ; 0, b = F;,0 b; p' 0, and define
v = v(a), w = v(b). Then a is the first nonzero coefficient of a, 0 < av < p, and
similarly bw is the first nonzero coefficient of b. In particular, p divides neither a
nor bw and consequently does not divide their product avbw either. By definition
of multiplication, the first nonzero coefficient of the product ab is the coefficient

of pV+w, and this coefficient is defined by

0 < C,,+w < p, Cv+w = avbw (mod p).

Corollary of proof. The order v : Zp - (0) -* N satisfies

v(ab) = v(a) + v(b),

u(a + b) > min(u(a), v(b))

if a, b, and a + b are not zero.
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It is convenient to extend the definition of the order by v(0) = Oo so that
the preceding relations are satisfied without restriction on Zp, with the natural
conventions concerning the symbol oo. The p-adic order is then a mapping Zp
N U {oo} having the two above-listed properties.

1.5. Reduction mod p

Let Fp = Z/pZ be the finite field with p elements. The mapping

a=Jaip` Haomod p
i>o

defines a ring homomorphism E : ZP --> Fp called reduction mod p. This reduction
homomorphism is obviously surjective, with kernel

{a E ZP : ao = 0) _ {Ei>taip = PEioaj+l pi] = PZp

Since the quotient is a field, the kernel pZp of E is a maximal ideal of the ring
Zp. A comment about the notation used here has to be made in order to avoid a
paradoxical view of the situation: Far from being p times bigger than Z P' the set
pZp is a subgroup of index p in Zp (just as pZ is a subgroup of index p in Z).

Proposition. The group ZP of invertible elements in the ring ZP consists of the
p-adic integers of order zero, namely

ZP = {>ajpi : ao 0).
i>o

PROOF. If a p-adic integer a is invertible, so must be its reduction E(a) in F. This
proves the inclusion ZP C {F_i>oaip' : ao 0 01. Conversely, we have to show
that any p-adic integer a of order v(a) = 0 is invertible. In this case the reduction
E(a) E Fp is not zero, and hence is invertible in this field. Choose 0 < bo < p
with aobo = 1 mod p and write aobo = 1 + kp. Hence, if we write a = ao + pa,
then

abo= l+pK

for some p-adic integer K. It suffices to show that the p-adic integer I + K P is
invertible, since we can then write

a bo(l + Kp)_t = 1, a-t = boll + Kp)-t.

In other words, it is enough to treat the case ao = 1, a = 1 + Kp. Let us observe
that we can take

(1+Kp)-t =I -Kp+(KP)2-. = 1+ctp+c2p2+...
with integers ci E 10, 1, ... , p - 11. This possibility is assured if we apply the
rules for carries suitably. Such a procedure is cumbersome to detail any further, and
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another, equivalent, definition of the ring ZP will be given in (4.7) below, making
such verifications easier to handle.

Corollary 1. The ring Z p of p-adic integers has a unique maximal ideal, namely

pZp = ZP - ZP.

The statement of the preceding corollary corresponds to a partition ZP = ZP U
pZp (a disjoint union). In fact, one has a partition

Zp - {o} = HP kZP (disjoint union of pkZP = v-1(k)).
k>O

Corollary 2. Every nonzero p-adic integer a E ZP has a canonical represen-
tation a = pvu, where v = v(a) is the p-adic order of a and u E ZP is a p-adic
unit.

Corollary 3. The rational integers a E Z that are invertible in the ring ZP are
the integers prime to p. The quotients of integers m/n E Q (n ; 0) that are
p-adic integers are those that have a denominator n prime to p.

1.6. The Ring of p-adic Integers is a Principal Ideal Domain

The principal ideals of the ring Zr,,

(pk) = pkZp = {x E Zp : ordp(x) > k},

have an intersection equal to {0}:

ZpD pZpJ...D pkZpD...DnpkZp={0).
k>O

Indeed, any element a # 0 has an order u(a) = k, hence a g (pk+t) In fact, these
principal ideals are the only nonzero ideals of the ring of p-adic integers.

Proposition. The ring ZP is a principal ideal domain. More precisely, its ideals
are the principal ideals (0) and pkZP (k E N).

PRooF. Let I ; (0) be a nonzero ideal of Z and 0 0 a E I an element of minimal
order, say k = u(a) < oc. Write a = pfu with a p-adic unit u. Hence pk =
u-1a E I and (pk) = pkZP C I. Conversely, for any b E I let w = v(b) > k and
write

b = pwu' = pk . pw-ku' E pkZP.

This shows that I C pkZP.
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2. The Compact Space Zp

2.1. Product Topology on Zp

The Cartesian product spaces

Xp = H{0, 1,2,...,p- 1} = {0, 1.2,...,p- 1}N
i>O

will now be considered as topological spaces, with respect to the product topology
of the finite discrete sets 10, 1, 2, ... , p - I). These basic spaces will be studied
presently, and we shall give natural models for them (they are homeomorphic for
all p). By the Tychonoff theorem, XP is compact. It is also totally disconnected:
The connected components are points.

Let us recall that the discrete topology can be defined by a metric

S(a. b) =
1 ifa b,

0 ifa=b ,

or, using the Kronecker symbol, S(a, b) = 1 - Bab. Several metrics compatible
with the product topology on Xp can be deduced from these discrete ones. For
x = (ao, at, ...), y = (bo, b1, ...) E XP, we can define

S(ai, bi) I

d(x, y) = s
i>O
up pt = pu(X-y)'

)
d'(x, y) =

8(ap`+1 b`
, and so on.

i>o

Although all metrics on a compact metrizable space are uniformly equivalent, they
are not all equally interesting! For example, we favor metrics that give a faithful
image of the coset structure of ZP: For each integer k E N, all cosets of pkZP in
ZP should be isometric (and in particular have the same diameter).

The p-adic metric is the first mentioned above. Unless specified otherwise, we
use it and introduce the notation

d(x, 0) = p-D if x 54 0 (u = ordp(x)),
0 if x = 0

(absolute values will be studied systematically in Chapter II). We recover the
p-adic metric from this absolute value by d(x, y) = Ix - yj. With this metric,
multiplication by p in ZP is a contracting map

d(px, py) = d(x, y)
n

and hence is continuous.
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2.2. The Cantor Set

In point set topology the Cantor set plays an important role. Let us recall its
construction. From the unit interval Co = I = [0, 1] one deletes the open middle
third. There remains a compact set

C1 = [0,
3]

U [3, 1].

Deleting again the open middle third of each of the remaining intervals, we obtain
a smaller compact set

C2=[0,9JU[9,11U[3,21U[9,1J

Iterating the process, we get a decreasing sequence of nested compact subsets of
the unit interval. By definition, the Cantor set C is the intersection of all Cn.

remove

remove remove

0
119

=1/3 2/3 I

The Cantor set

It is a nonempty compact subset of the unit interval I = [0, 11. The Cantor
diagonal process (see 1.1) also shows that this compact set is not countable. If we
temporarily adopt a system of numeration in base 3 - hence with digits 0, 1, and
2 - the removal of the first middle third amounts to deleting numbers having first
digit equal to 1 (keeping first digits 0 and 2). Removing the second, smaller, middle
intervals amounts to removing numbers having second digit equal to 1, and so on.
Finally, we see that the Cantor set C consists precisely of the numbers 0 < a < 1
that admit an expansion in base 3:

at a20.ata2...=
3

with digits a; = 0 or 2. We obtain these expansions by doubling the elements of
arbitrary binary sequences. This leads to considering the bijection

E a, 2` -+ 1 3it , Z2 - C.
c>O i>o

The definition of the product topology shows that this mapping is continuous, and
hence is a homeomorphism, since the spaces in question are compact.
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Binary sequences can also be considered as representing expansions in base 2
of elements in the unit interval. This leads to a surjective mapping

a;2` H
a;

2'+t , Z2 a [0, 1].
>o i>O

This map is surjective and continuous but is not injective: The numbers K>, 2'
and 21 E Z2 have the same image in [0, 1], as is immediately seen (in the decimal
system, a decimal expansion having only 9's after place j can be replaced by a
decimal expansion with a single I in place j). In fact, Card W-'(t) < 2 for any
t E [0, 11.

We can summarize the situation by a commutative diagram of maps

*:Z2 - C C [0, 1]

II 1, ,l g

O : Z2 [0, 11

The function g identifies contiguous extremities of the Cantor set C and sends
them onto points of the interval having two binary expansions (rational numbers
of the form a/2J ). These constructions will now be generalized.

Gluing the extremities of the Cantor set

2.3. Linear Models of ZP
We choose a real number b > 1 and use it as numeration base in the unit interval
[0, 1]. In other words, we try to write real numbers in this interval in the form
ao/b + at /b2 + - - - with integral digits 0 < a, < b. More precisely, fix the prime
p and consider the maps 1/r = Vib (_ ,Jib. p) : Zp - [0, 1] defined by the infinite
series in R

1
'b (I:aip`f

a;
br+r'

i>o / i>O

with a normalizing constant 0 chosen so that the maximum of V is 1. Since
this maximum is attained when all digits a- are maximal, it is attained at
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-1 = Yi>o(p - 1) p' E Zp, and its image must be 1:

-igp0 p-1 =O(p-1) b-1

i>o bi+1 1- b-1 b- 1

namely

z0=
b-1
p - I

For p = 2 and b = 3 we find that 70 = 2, and we recover the special case studied
in the preceding section, where ili furnished a homeomorphism Z2 --* C C [0, 1 ].
In general, 1/i = 1fb will be injective if the p-adic integers

E(p - 1)p` and pi c Z p
i>j

have distinct images in [0, 1]. The first image is

0 -(p - 1) E 1/b'+1 = O(p - 1)b-i-2/(1 - b-1)

I>J

= 0b-i-1(p - 1)/(b - 1) = b-i-1.

The second image is 0 b-t -1. The injectivity condition is thus 0 > 1, orb > p.
Let us summarize.

Theorem. The maps 11b (_ *b. p) : Z p -+ [0, 11 defined for b > 1 by

*b ar

i>O

1-b-1 a;
/I p_Ib+1

i>0

are continuous. When b > p, 1/tb is injective and defines a homeomorphism of
Zp onto its image *b(Zp). When b = p, we get a surjective map llip which is
not injective.

The commutative diagram given in the last section generalizes immediately to
our present context.

Comment. When b > p, llib gives a linear model of Zp in the interval [0, 1]; the
image is afractal subset A of this interval. The self-similarity dimension d of such
a set is "defined" by means of a dilatation producing a union of copies of translates
of A. If we denote by E(A) an intuitive - not formally defined - notion of extent
of A and if .kA is a union of m translates of A, this self-similarity dimension d
satisfies

mE(A) = E(AA) = a.dE(A),
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and hence d - log), = log m and d = log m/log A. In our case, take X= b so
that m = p and the self-similarity dimension of A= *b(Zp) in [0, 11 C R is
log p/ log b < 1. In this way we obtain a continuous family of fractal models of
increasing dimension for b \ p degenerating in the limit to a connected interval.

It may be useful to look at symmetric models obtained by replacing the digits
a , E 10, 1 , 2, ... , p - 1 } by symmetric ones in {-p 2 1 , ... , . 1 }. Define

v(k)=k- p2 1 (0<k <p - 1).

We can choose the normalization constant 0 of the map

G :Eaip -' a-E v(a,)

b'+1i>o

in order to have

mini//'=-1. maxi//'=+1.

(When p = 2, v(k) = (-1)k+12 = +Z, and the corresponding expansion has
fractional digits.) The involution a induces a change of sign in the image. When
p 2 it has the origin as fixed point. Here is a picture of centered linear models
of Z3 when b \, 3.

-1 -1/2 -1/4 0 1/4 1/2 1

A centered linear model of Z3

2.4. Free Monoids and Balls of ZP
Let B<,(a) denote the ball defined by d(x, a) = Ix - al < r in Zr,. It is clear that
this ball does not change if we replace its radius r by the smallest power p-' that is
greater than or equal tor. If the p-adic expansion of a is ao+ai p+- - .+an pn+. - _
s, + pn+l«, the ball does not change either if we replace its center by s,. This ball
is fully determined by the sequence of digits (of variable length giving the radius)
ao, a1, . , an, and we associate to it the word

apai...a, E MP

in the free monoid generated by S = {0, 1, ..., p - 1).
Conversely, to each (finite) word in the elements of S - say anal ... a, - we

associate the ball of center a = ao + a1 p + - - - + anp' and radius r = p-n. We
get in this way a bijective map between M p and the set of balls of Zp: Observe
that a ball B<r(a) defined by d(x, a) < r is the same as a ball B<,-(a) for somer'>r.
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The monoid MP has several matrix representations

Nt p Gln(Zp).

For example, when n = 2, we can take

sHTs=(0
1)

(sES={0, 1,...,p-1}).

Indeed,

a
TaTb=(0 1)(0 i)=(0

a
lbp)'

and more generally,

lTaoTa1 ... Tart c
0 ao+alp+---+anpnl

1 J

Observe that in this representation the length of a word corresponds to the order of
the determinant of the matrix. In terms of balls, the radius appears as the absolute
value of the determinant, whereas a center of the ball is read in the upper right-hand
corner of the matrix. With the preceding notation

0B<r(a) = B<r(s) ( ) anal ... an (E Mp)
n+l s

1

Euclidean models of the ring of p-adic integers will be obtained in the next section
by means of injective representations

Mp Gln(R)-

Since MP is free, such representations are completely determined by the images
of the generators, namely by p matrices M 0 ,..., Mp_1.

2.5. Euclidean Models

Let V be a Euclidean space, namely a finite-dimensional inner product space over
the field R of real numbers. Select an injective map

v:S={0,1,2,...,p-1}-+ V, v(S)=ECV,

and define the vector mappings (using vector digits)

W_Wv.b:Zp->V, aipiH6 v(ai)
lji+1

i>O i>O

Since ZP = j1QOE5(ao + pZ p), we have

%P(Zp)= (6b + bqj(Zp)
VC 1
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For large enough values of b, the image F = Fv.b = `P,,,bZP will also be a disjoint
union of self-similar images. In this way we get a construction of spatial models
'P(Zp) by iteration (similar to the construction of the Cantor set as an intersection
of compact sets).

More explicitly, let us denote by E the convex hull of E in V. As is known,
this is the intersection of all half spaces containing E. It is also the intersection
of those half spaces containing E and having for boundary a hyperplane touching
the configuration. Let )), be an affine linear functional on V such that

A. < l on E, A(v) = 1 for some v E E.

Choose 1 = b - 1. Then

v(0 1

r>o i>o bi+l

so that the image F of %P is also contained in the convex hull of E: F C E = Ko.
Moreover, by choice of the constant $,

v
>gE,>ob+l)=1.

From the self-similarity representation of F we get a better approximation

F=U $U+ C I ( 6 v
VEX

b b)
V E X

b b f.

Iterating this inclusion in the self-similarity representation of F we get an even
better approximation:

F= I 0-+- C
I + 1 uEE(Ob+ c)

VE b b,
VEX
v b b)

Eventually, this leads to a representation of the fractal F as the intersection of
a decreasing sequence of compact sets K. Several pictures will illustrate this
construction.

(2.5.1) Take, for example, p = 3, V = R3 with canonical basis eo, et, e2, and
v(k) = ek. Then the corresponding vector maps %P : Z3 R3 are given by

eaa=Ea13`
i>o

Let us choose the constant 0 such that

e, =eo,

namely 0 ,>0 1 /b+' = zg/(b - 1) = 1. In this case, the image of'P is contained
in the plane x + y + z = 1. Since the components of the images 11(a) are positive,
the image of the map 'P is contained in the unit simplex of R3 (convex span of the
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basic vectors). More precisely, the mappings W are injective for b > 2, and hence
give homeomorphic images - models - of Z3 in this simplex. When b = 2, the
image is a Sierpinski gasket - hence connected - in this simplex. In general, the
image is a fractal having self-similarity dimension log 3/ log b.

/ C0

Models of Z3: Sierpinsky gasket

(2.5.2) Take now p = 5, V = R2, and the map v defined by v(0) _ (0, 0), v(1) =
(1, 0), v(2) = (0, 1), v(3) _ (-1, 0), v(4) = (0, -1). With a suitably chosen
normalization constant 09, the components of an image P(a) = (x, y) will satisfy
-1 < x + y < 1 and -1 < x - y < 1. The image of %Pis a union of the similar
subsets %P (k + 5Z5) (0 < k < 4). Observe that W(5Z5) = b-' W(Z5) and that these
subsets are disjoint when b > 3. In this case, the image is a fractal of self-similarity
dimension log 5/ log b. In the limit case b = 3 the image is connected.

. . .

. ..

4.

Model of Z5 as planar fractal
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(2.5.3) It is interesting to refine the preceding construction by addition of an
extra component. Take p = 5 as before but V = R3 with v' of the form

V(k) = (v(k), hk) E R3,

ho=0, ht =h3=-h2=-h4=h>0.
The corresponding vector maps %P have images in a tetrahedron bounded by an
upper edge parallel to the x-axis and a lower edge parallel to the y-axis (hence
two horizontal edges: Choosing h suitably, we get a regular tetrahedron). These
edges give linear models of Z2, and the vertical projection on the horizontal plane
(obtained by omitting the third component) is the previous construction. But now,
the vector maps 'P are already injective for b > 2, and in the limit case b - 2 the
image is a well-known connected fractal, parametrized by Z5. As in (2.2), these
vector mappings furnish commutative diagrams

tb : Z5 ± tPb(Z5) V

II 1 f ,lg
(D = W2 : Z5 VZO

Model of Z5 as space fractal

(2.5.4) Take p = 7, v : {0, 1, 2, ... , 6) --> R3 given by v(0) = 0 and

v(l) = (1, 0, -1) v(2) = (0, 1, -1) v(3) = (-1, 1, 0)
v(4)=(-l,0,l) v(5)=(0,-1,I) v(6)=(1,-1,0).

With a suitable normalization constant, all the image points will remain in the cube

-1<x<1, -1<y<1, -1<z<l.
The components of an image also satisfy x + y + z = 0, and hence are situ-
ated in this plane, intersecting the cube in a regular hexagon. For b > 3 we get
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interesting models of Zy in this hexagon. In the limit case b = 3, a connected
fractal parametrized by Z7 appears.

(2.5.5) We can give a 3-dimensional model refining the preceding one. Still
with p = 7, take the canonical basis et, e2, e3 of R3 and consider the vector map
corresponding to the choice v(O) = 0 and

v(l) = el v(2) = e2 v(3) = e3

v(4) = -et v(5) = -e2 v(6) = -e3-

The image of the corresponding vector map vP : Z7 R3 is a fractal model con-
tained in the octahedron

IXI + IYI + IzI < I

(provided that we choose a correct normalization constant 0). A suitable projection
of this model on a plane brings us back to the preceding planar example (contained
in a hexagon).

The preceding constructions are similar to the IFS (iterated function systems)
used for representing fractals: They stem from affine Euclidean representations of
the monoid of balls of Zr,. In fact, in this section only translations and dilatations
are used (rotations will also occur in 11.4.5 and 11.4.6).

Models of Z7

2.6. An Exotic Example

There is an interesting example connecting different primes. We can add formally
(i.e., componentwise) two 2-adic numbers and consider this sum in Z3. We thus
obtain a continuous map

E : Z2 X Z2 Z3, ( ai2`, b`2`) H > (ai +b,)3`
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We can make a commutative diagram

Z2xZ2 Z3

C x C +a C+C
n n

[0, 1]2 3 [0, 2].
Recall that the left vertical map is given by

( ai2i,Eb`2')
2ai 2bi

33+t+i ' 3i+1)

and hence the diagonal composite is

ai2;, 1: bi2`) H 2E ai +bi
3i+t

Consequently, this composite has an image equal to the whole interval [0, 21.
Hence addition C x C --> [0, 2] is also surjective. A good way of viewing the
situation is to make a picture of the subset C x C in the unit square of R2 and
consider addition (x, y) H (x + y, 0) as a projection on the x-axis. The image of
the totally disconnected set C x C is the whole interval [0, 2].

0

'. - .a .

0 1 2

A projection of C x C

0-

3. Topological Algebra

3.1. Topological Groups

Definition. A topological group is a group G equipped with a topology such
that the map (x, y) H xy-t : G x G -* G is continuous.
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If G is a topological group, the inverse map x H x-1 is continuous (fix x = e
in the continuous map (x, y) t-* xy-1) and hence a homeomorphism of order 2
of G. The translations x H ax (resp. x H xa) are also homeomorphisms (e.g.,
the inverse of x r- ax is x F+ a-tx). A subgroup of a topological group is a
topological group for the induced topology.

Examples. (1) With addition, ZP is a topological group. We have indeed

a'Ea+p"ZP, b'Eb+p"ZP==> a'-b'Ea-b+p"ZP

for all n > 0. In other words, using the p-adic metric (2.1). we have

Ix - a! S IP"I=p-", Iy - bI <IP"I=P-"=I(x-y)-(a-b)I <p-",

proving the continuity of the map (x, y) t--> x - y at any point (a, b).
(2) With respect to multiplication, ZP is a topological group. There is a funda-

mental system of neighborhoods of its neutral element I consisting of subgroups:

1+pZpD 1+p2Zpj...D l+p"ZP3...

consists of subgroups: If a, 6 E Zp, we see that (1 + p"f)-t = 1 + p",8' for some
,6' E Zp (as in (1.5)), and hence

a=1+p"a, b=1+p",6 == ab-1=(1+p"a)(1+p",6')=I+P"y

for some y E ZP. Consequently,

a' E a(l + p"Zp), b' E b(1 + p"Zp) = a'b'-t E ab-1(1 + p"Zp) (n > 1),

and (x, y) H xy-1 is continuous. As seen in (1.5), 1 + pZp is a subgroup of index
p - I in Zp Z. It is also open by definition (2.1). With respect to multiplication, all
subgroups 1 + p"Zp (n > 1) are topological groups.

(3) The real line R is an additive topological group.

If a topological group has one compact neighborhood of one point, then it is a
locally compact space. If a topological group is metrizable, then it is a Hausdorff
space and has a countable fundamental system of neighborhoods of the neu-
tral element. Conversely, one can show that these conditions are sufficient for
metrizability.'

Let G be a metnzable topological group. Then there exists a metric d on G that
defines the topology of G and is invariant under left translations:

d(gx, gy) = d(x, y).

'Specific references for the text are listed at the end of the book.
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A metrizable group G can always be completed, namely, there exists a comp-
lete group G and a homomorphism j : G --> G such that

the image j(G) is dense in G,
j is a homeomorphism G -> j (G),
any continuous homomorphism f : G -> G' into a complete group G' can be
uniquely factorized as f = g o j : G --p G - G' with a continuous homomor-
phism g : G -> G'.

3.2. Closed Subgroups of Topological Groups

As already observed, a subgroup of a topological group is automatically a topolo-
gical group for the induced topology.

Lemma. Let G be a topological group, H a subgroup of G.

(a) The closure H of H is a subgroup of G.
(b) G is Hausdorff precisely when its neutral element is closed.

PROOF. (a) Let 1o : G x G G denote the continuous map (x, y) N xy-1. Since
H is a subgroup, we have cp(H x H) C H and hence

rp(H x H)=cp(H x H)CSo(H x H)C H.

This proves that H is a subgroup.
(b) Let us recall that a topological space X is Hausdorff precisely when the

diagonal AX is closed in the product space X x X. In any Hausdorff space the
points are closed, and thus

G Hausdorff = (e} closed

AG = V-1(e) closed in G x G

G Hausdorff.

The lemma is completely proved.

Proposition. Let H be a subgroup of a topological group G. If H contains
a neighborhood of the neutral element in G, then H is both open and closed
in G.

PROOF Let V be a neighborhood of the neutral element of G contained in H. Then
for each h E H, h V is a neighborhood of h in G contained in H. This proves
that H is a neighborhood of all of its elements, and hence is open in G. Consider
now the cosets gH of H in G. Since translations are homeomorphisms of G,
these cosets are open in G. Any union of such cosets is also open. But H is the
complement of the union of all cosets gH ; H. Hence H is closed.
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20 1. p-adic Numbers

Examples. The subgroups p"Zp (n > 0) are open and closed subgroups of the
additive group Zp. The subgroups 1 + p"Zp (n > 1) are open and closed subgroups
of the multiplicative group 1 + pZp.

Let us recall that a subspace Y of a topological space X is called locally closed
(in X) when each point y E Y has an open neighborhood V in X such that Y fl v
is closed in V. When this is so, the union of all such open neighborhoods of points
of Y is an open set U in which Y is closed. This shows that the locally closed
subsets of X are the intersections u fl F of an open set U and a closed set F
of X. In fact, Y is locally closed in X precisely when Y is open in its closure Y.
Locally compact subsets of a Hausdorff space are locally closed (a compact subset
is closed in a Hausdorff space). With this concept, the preceding proposition admits
the following important generalization.

Theorem. Let G be a topological group and H a locally closed subgroup. Then
H is closed.

PROOF If H is locally closed in G, then H is open in its closure H. But this closure
is also a topological subgroup of G. Hence (by the preceding proposition) H is
closed in H (hence H = H) and also closed in G by transitivity of this notion.

Alternatively, we could replace G by H, thus reducing the general case to H
locally closed and dense in G. This case is particularly simple, since all cosets g H
must meet H: g E H for all g E G, namely H = G.

Corollary 1. Let H be a locally compact subgroup of a Hausdorff topological
group G. Then H is closed.

Corollary 2. Let r be a discrete subgroup of a Hausdorff topological group G.
Then r is closed.

The completion G of G is also a topological group. If G is locally compact, it
must be closed in its completion, and we have obtained the following corollary.

Corollary 3. A locally compact metrizable group is complete.

3.3. Quotients of Topological Groups

As the following statement shows, the use of closed subgroups is well suited for
constructing Hausdorff quotients. Let us recall that if H is a subgroup of a group
G, then G /H is the set of cosets g H (g c G). The group G acts by left translations
on this set. When H is a normal subgroup of G. this quotient is a group. Let now
G be a topological group and

7r:G--> G/H
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denote the canonical projection. By definition of the quotient topology, the open
sets U' C G/H are the subsets such that U = 7r-1 (U') is open in G. Now, if U is
any open set in G, then

7r-1(7rU) = UH = U Uh
hEH

is open, and this proves that irU is open in G/H. Hence the canonical projection
it : G -> G/H is a continuous and open map. By complementarity, we also see
that the closed sets of G/H are the images of the closed sets of the form F = FH
(i.e., F = 7ty1(F') for some complement F' of an open set U' C G/H). It is
convenient to say that a subset A C G is saturated (with respect to the quotient
map 7t) when A = A H, so that the closed sets of G/H are the images of the
saturated closed sets of G (but 7r is not a closed map in general).

Proposition. Let H be a subgroup of a topological group G. Then the quotient
G/H (equipped with the quotient topology) is Hausdorff precisely when H is
closed.

PROOF Let it : G -> Gill denote the canonical projection (continuous by defi-
nition of the quotient topology). If the quotient G/H is Hausdorff, then its points
are closed and H = 7t-1(e) is also closed. Assume conversely that H is closed in
G. The definition of the quotient topology shows that the canonical projection 7t
is an open mapping. We infer that

7t2=7t x7t:GxG-G/H xG/H

is also an open map. But Ker(7r2) = H x H C G x G. Hence 7r2 induces a
topological isomorphism

3f: (G x G)/(H x H) --> Gill x G/H.

To prove that G/H is Hausdorff, we have to prove that the diagonal

A={(x,x):xEG/H}

is closed in the Cartesian product Gill x G/H. Since the map n is a homeomor-
phism, it is the same as proving that the inverse image A of this diagonal is closed
in (G x G)/(H x H). This inverse image is

A={(g,k)modHxH:gH=kH}
={(g,k)modHxH:k`1gEH}.

But R = {(g, k) : k'1g E H} C G x G is closed by assumption: It is an inverse
image of the closed set H under a continuous map. This closed set R is obviously
saturated, i.e., satisfies
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This proves that its image R' = A in the same quotient is closed, and the conclusion
is attained.

Together with the theorem of the preceding section, this proposition establishes
the following diagram of logical equivalences and implications for a topological
group G and a subgroup H.

G/H finite Hausdorff H closed of finite index
u 4

Gill discrete e==> H open
4 4

G/H Hausdorff H closed

3.4. Closed Subgroups of the Additive Real Line

Let us review a few well-known results concerning the classical real line, viewed
as an additive topological group. At first sight, the differences with Zp are striking,
but a closer look will reveal formal similarities, for example when compact and
discrete are interchanged.

Proposition 1. The discrete subgroups of R are the subgroups

aZ (0 < a E R).

PROOF. Let H {0} be a nontrivial discrete subgroup, hence closed by (3.2).
Consider any nonzero h in H, so that 0 < IhI (= ±h) E H. The intersection H fl
[0, Ih I] is compact and discrete, hence finite, and there is a smallest positive element
a E H. Obviously, Z - a C H. In fact, this inclusion is an equality. Indeed, if we
take any b E H and assume (without loss of generality) b > 0, we can write

b=ma+r (m EN, 0<r<a)

(take form the integral part of b/a). Since r = b - ma E H and 0 < r < a,
we must have r = 0 by construction. This proves b = ma E Z - a, and hence the
reverse inclusion H C Z a.

Corollary. The quotient of R by a nontrivial discrete subgroup H # (0} is
compact.

Proposition 2. Any nondiscrete subgroup of R is dense.

PROOF. Let H C R be a nondiscrete subgroup. Then there exists a sequence of
distinct elements h E H with h -* h E H. Hence s = 1h, - hl E H and,-, -* 0.
Since H is an additive subgroup, we must also have Z - 8 C H (for all n > 0),
and the subgroup H is dense in R.
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Corollary. (a) The only proper closed subgroups of R are the discrete sub-
groups aZ (a E R).

(b) The only compact subgroup of R is the trivial subgroup (0}.

Using an isomorphism (of topological groups) between the additive real line
and the positive multiplicative line, for example an exponential in base p

t i-+ p`, R -+ R>0

(the inverse isomorphism is the logarithm to the base p) we deduce parallel results
for the closed (resp. discrete) subgroups of the topological group R>o.

Typically, we shall use the fact that the discrete nontrivial subgroups of this
group have the form paZ (a > 0) or, putting 0 = p ", are the subgroups

OZ =(B' :In EZ}

for some 0 < 0 < 1.

3.5. Closed Subgroups of the Additive Group of p-adic Integers

Proposition. The closed subgroups of the additive group Zp are ideals: They
are

(0}, pmZp (m E N).

PROOF. We first observe that multiplication in ZP is separately continuous, since

Ix'a - xal = l all x' - xJ - 0 (x' - x).

Since an abelian group is a Z-module, if H C ZP is a closed subgroup, then for
any h E H,

ZHCH ZpaCZaCH=H.
This proves that a closed subgroup is an ideal of Zp (or a Zp-module). Hence the
result follows from (1.6).

Corollary 1. The quotient of Zp bya closed subgroup H # (0} is discrete.

Corollary 2. The only discrete subgroup of the additive group Zp is the trivial
subgroup (0}.

PROOF. Indeed, discrete subgroups are closed: We have a complete list of these
(being closed in ZP compact, a discrete subgroup is finite hence trivial). Alterna-
tively, if a subgroup H contains a nonzero element h, it contains all multiples of h,
and hence H D N h. In particular, HE) p"h -f 0 (n -+ oo). Since the elements
p"h are distinct, H is not discrete.
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3.6. Topological Rings

Definition. A topological ring A is a ring equipped with a topology such that
the mappings

(x,y)Hx+y: AxA --> A,
(x, y)Hx - y:AxA -fA

are continuous.

The second axiom implies in particular that y H -y is continuous (fix x = -l
in the product). Combined with the first, it shows that

(x, y)Hx-y:AxA-*A
is continuous and the additive group of A is a topological group. A topological
ring A is a ring with a topology such that A is an additive topological group and
multiplication is continuous on A x A.

If A is a topological ring, the subgroup A" of units is not in general a to-
pological group, since x H x` is not necessarily continuous for the induced
topology (for an example of this, see the exercises). However, we can consider the
embedding

xH(x,x-1):A"--* AxA,

and give A" the initial topology: It is finer than the topology induced by A. For this
topology, A" is a topological group: The continuity of the inverse map, induced by
the symmetry (x, y) H (y, x) of A x A, is now obvious. Still with this topology,
the canonical embedding A" y A is continuous, but not a homeomorphism onto
its image in general.

Proposition. With the p-adic metric the ring ZP is a topological ring. It is a
compact, complete, metrizable space.

PROOF. Since we already know that ZP is a topological group (3.1), it is enough to
check the continuity of multiplication. Fix a and b in ZP and consider x = a + h,
y = b + k in Z ,. Then

Ixy - abl = I(a+h)(b+k)-abl = Iak+hh - hkl

<max(IaI, Ibl)(Ihl + Ikl)+ Ihllki -j 0 (Ihl, Ikl -+ 0).

This proves the continuity of multiplication at any point (a, b) E ZP X Z,.

Corollary 1. The topological group ZP is a completion of the additive group
Z equipped with the induced topology.
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To make the completion process explicit, let us observe that if x = Y-i>o ai p`
is a p-adic number, then

X. = ai p` E N
O<i<n

defines a Cauchy sequence converging to x.

Corollary 2. The addition and multiplication of p-adic integers are the only
continuous operations on ZP extending addition and multiplication of the nat-
ural numbers.

3.7. Topological Fields, Valued Fields

Definition. A topological field K is afield equipped with a topology such that
the mappings

(x,y)Hx+y: KxK->K,
(x,y)Hx.y: KxK -> K,

x i-> X-1 : K" -> K"

are continuous.

Unless explicitly stated otherwise, fields are supposed to be commutative. A
topological field is a topological ring for which K" = K - (0} with the induced
topology is a topological group. Equivalently, a topological field is a field K
equipped with a topology such that

(x, y) H x - y is continuous on K x K,

(x, y) H x/y is continuous on K" x K".

Except for the appendix to Chapter II, we shall be interested only in valued fields:
Pairs (K, I . I) where K is a field, and 1. I an absolute value, namely a group
homomorphism

I.I:K"--+R>o

extended by 101 = 0 and satisfying the triangle inequality

Ix + yl 5 Ix! + jyl (x, Y E K),

or the stronger ultrametric inequality

Ix+yl <max(IxI, IYI) (x, Y E K).

In this case d(x, y) = Ix - yI defines an invariant metric (or ultrametric) on K,

d(x, y) = d(x - a, y - a) = d(x - y, 0) (a, x, y E K).
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This situation will be systematically considered from (11.1.3) on, and in the ap-
pendix of Chapter II we shall show that any locally compact topological field can
be considered canonically as a valued field.

Proposition 1. Let K be a valued field. For the topology defined by the metric
d(x, y) = Ix - yI, K is a topological field.

PRooF. The map (x, y) H x - y is continuous. Let us check that the map (x, y) H
xy-1 is continuous on K" x K'. We have

x + h x _ by - kx
y+ k y y(y + k)

Hence if y 0 0 is fixed, Ikl < lyl/2, and c = max(IXI, Iyl),

x+h x

y+k y < 2c Ihlly Ilkl -* 0
(Ihl, Ikl ---> 0).

This proves that K is a topological field.

Proposition 2. Let K be a valued field. Then the completion k of K is again a
valued field

PROOF. The completion K is obviously a topological ring, and inversion is contin-
uous over the subset of invertible elements. We have to show that the completion
is afield. Let (xn) be a Cauchy sequence in K that defines a nonzero element of the
completion K. This means that the sequence Ixn I does not converge to zero. There
is a positive E > 0 together with an index N such that Ixn I > E for all n > N. The
sequence (1/x, ),,>N is also a Cauchy sequence

I 1

Xn Xm

Xn - xm

XnXm
< E-2I Xn - Xm I -* 0 (n, m -* no).

The sequence (1 /x,)n>N (completed with l's for n < N) defines an inverse of the
original sequence (xx) in the completion K.

4. Projective Limits

4.1. Introduction

Let x = )i>0 a1 pi be a p-adic integer. We have defined its reduction mod p as
e(x) = ao mod p E F. We can also consider the finer reduction ao +al p mod p2
or more generally

En(X) = >aipi mod pn E Z/p'Z.
i<n
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By definition of addition and multiplication of p-adic integers, we get homomor-
phisms

En : Zo ->. Z/pnZ.

Since xn = >J ai p` -* x (n -> oo), we would also like to be able to say that
the rings Z/pnZ converge to Zp. This convergence relies on the links given by the
canonical homomorphisms

co : Z/ pn+1 Z --3- Z/ pn Z

and the commutative diagram

Z/pn+1Z

En+1 cn

En

Zp - Z/pnZ

which we interpret by saying that Z p is closer to Z/pn+1Z than to Z/pnZ.
Before proceeding with precise definitions, let us still consider an example

emphasizing a similar situation for sets. Consider the finite products En = Hi <n X,
of a sequence (Xi)i>o of sets. We would like to say that these partial products
converge to the infinite product E =n,>0 Xi and thus consider this last product
as limit of the sequence (En). For this purpose, we have to formalize the notion of
approximation of E by the E. This relation is given by the projections

pn:E -+En

omitting components of index i > n. In a sense, these projections are composed
of infinitely many arrows - each cp j : E j+l -+ E j omitting a component - as
in the chain of maps

pn : E --* - - - En+2 -* En+1 - En-

One can consider that any set X, given with a family of maps f, : X -+ En which
have the same property as above, is an upper bound of the sequence (En). A limit of
the sequence would then be a least upper bound. Thus the limit would be an upper
bound (E, (p,,)) such that every upper bound (X, fn) is obtained by composition
with a map f: X -* E as follows:

fn = Pn of : X f E -+ ... -+ En+2 - En+1 - E..

This factorization plays the role of remainder after division of fn by all maps
`pj:E.i+l-+E3for j>n:

{ { f 'I` FJn=(Pnofn+l =conocpn+l ofn+2= Y'n0f.

These preliminary considerations should motivate the following definition.
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4.2. Definition

A sequence (En, con)n>o of sets and maps cpn : En+1 -* En (n > 0) is called a
projective system. A set E given together with maps 'n : E -* En such that

n = cpn o n+1 (n > 0) is called a projective limit of the sequence (En, con)n>o
if the following condition is satisfied: For each set X and maps fn : X -* En sat-
isfying fn = cpn o fn+] (n > 0) there is a unique factorization f of fn through the
set E:

fn=Vnof:X--* E--* En (n>0).

The maps cpn : En+] -* E. are usually called transition maps of the projective
system. The whole system, represented by

Eo F- El F- ... F- En <------

is also called an inverse system. "The" projective limit E = lim En is also placed

at the end of the inverse system:

F En F En+1 ... lim En
cpn

t f

x

The hypothesis f, = Vn o fn+l can be iterated, and it gives

f, = cpn o fn+l = cpn o cpn+] 0 fn+2

(cpn o cpn+l o ... o Vn+k) o fn+k+l = yin o f

for k > 0. Hence f behaves as a limit of the fj (j -> oo) and Vin as a limit
of composition of transition mappings cpn o cpn+1 o . . o cpn+k when k -* cc. The
factorization condition is a universal property in the sense that it must hold for
all similar data. Finally, it is obvious that if (E, (Y'n)n>o) is a projective limit of a
sequence (En, con)n>o, it will still be a projective limit of any sequence (En, con)n>k,
since we can always define inductively Vin-1 = cpn-1 o Vin for n < k. In other
words, projective limits do not depend on the first terms of the sequence.

4.3. Existence

Theorem. For every projective system (En, cpn)n>o of sets, there is a projective
limit E = lim E, C fl En with maps Yn given by (restriction of) projections.

n>O
Moreover, if (E', >;) is another projective limit of the same sequence, there is
a unique bijection f : E' -f E such that Y'n o f.
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p11ooF Let us prove existence first. For this purpose, define

E={(xn): con(xn+1)=xnfor all n>0}Cf Ea.
n>O

The elements of E are thus the coherent sequences (with respect to the transition
maps cpn) in the product. If X E E, we have by definition

cpn(pn+1(x)) = pn(x);

hence for the restrictions VIn of the projections p, to E,

Vn 0 lIn+l =1/n-

The set E with the maps *, can thus be viewed as an upper bound of the sequence
En with transition maps cpn. Let us show that this construction has the required
universal property. For this purpose consider any other set E' with maps *,,' : E' -+
En satisfying cpn o *n'+l = *n, and let us show that there is a unique factorization
of 1' 1by 1/rn. It is clear first that the IJrn define a (vector) map

(*n) : E' -* fl En, y H (*n(y)).

The relations an(y) = cpn(*n'+1(y)) show that the image of the vector map (Iffr )
is contained in the subset E of coherent sequences. There is thus a unique map
f : E' -> E C fl En having the required properties 1/r,' = lirn o f , and this one
is simply the vector map (*,,) considered as having target E. All that remains
is to prove the uniqueness. If both (E, (1lrn)) and (E', (1lln)) have the universal
factorization property, there is also a unique map f' : E -* E' with 1/in =n o f'.
Substituting this expression in 1/!n = 1/rn o f, we find that

Y'n = Y/no = Yinof'of,

and f o f is a factorization of the identity map E' -+ E'. Since we are assuming
that (E', I/rn) has the unique factorization property, we must have f' o f = idE'.
One proves similarly that f o f' = idE.

Corollary. When all transition maps in a projective system (En, con)n>o are
surjective, then the projective limit (E, (1/rn)) also has surjective projections 1/rn,
and in particular, the set E is not empty.

PxooF. By construction of E in the product F1 En, it is enough to show that if one
component xn E En is given arbitrarily, then there is a coherent sequence with
this component in E. It is enough to choose xn+1 E En+1 with cpn(xn+j) = xn
(this is possible by surjectivity of (p,,) and to continue choices accordingly. The
(countable!) axiom of choice ensures the possibility of finding a global coherent
sequence with prescribed nth component.



'y
am

05
0

,r
te

co
o

...

vii

cam

.-.
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4.4. Projective Limits of Topological Spaces

When the projective system (En, rpn)n>o is formed of topological spaces and con-
tinuous transition maps, the construction made in the previous section (4.3) im-
mediately shows that the projective limit (E, 4'n) is a topological space equipped
with continuous maps >U : E -> En having the universal property with respect to
continuous maps. Any topological space X equipped with a family of continuous
maps fn : X -> E such that f, = (pn o fn+1 (n > 0) has the factorization property
fn = 4'n o f with a continuous function f : X E. Indeed, this factorization
is simply given in components by the f,, and is continuous by definition of the
product topology (and the induced topology on the subset lim En C fl E,,). When

the topological spaces E,, are Hausdorff spaces, the subspace Jim En is closed: It

is the intersection of the closed sets defined respectively by the coincidence of the
functions pn and (p o pn+1 For future reference, let us prove a couple of results.

Proposition 1. A projective limit of nonempty compact spaces is nonempty and
compact.

PROOF Let (K,,, V,,) be a projective system consisting of compact spaces. The
product of the K,, is a compact space (Tychonoff's theorem), and the projective
limit is a closed subspace of this compact space. Hence lim Kn is compact. Define

Kn =V.(K,+1) D Kn =Vn((pn+1(Kn+2)) (=Vn(Kn+1)) D ... .

These subsets are compact and nonempty. Their intersection Ln is not empty in
the compact space Kn. Moreover, (pn(L,+1) = Ln, and the restriction of the maps
V,, to the subsets Ln leads to a projective system having surjective transition map-
pings. By the corollary in (4.3), this system has a nonempty limit (with surjective
projections). Since lim L,, C lim Kn, the proof is complete.

Corollary. A projective limit of nonemptyfinite sets is nonempty.

Proposition 2. In a projective limit E = lim E,, of topological spaces, a basis

of the topology is furnished by the sets tfrn 1(Un ), where n > 0 and U,, is an
arbitrary open set in En .

PROOF. We take a family x = (xi) in the projective limit and show that the men-
tioned open sets containing x form a basis of neighborhoods of this point. If we
take two open sets V,, C En and V,,_, C En_,, the conjunction of the conditions
x E V and xn_1 E Vn_1 means that

n(x) = xn E V,, n (pn 11(Vn-1)

Call U the open set Vn n (pn 11(Vn_1) of En. Then the preceding condition is still
equivalent to x E 4', (Un). By induction, one can show that a basic open set in
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the product -say Fn<N Vn x ]ln,N E,- has an intersection with the projective
limit of the form /N 1(UN) for some open set UN C EN.

Corollary. The projective limit of the sequence of initial partial products En =
fli<n Xi of a sequence of topological spaces is (homeomorphic to) the topolo-
gical product flip Xi of the family.

PROOF. The canonical projections flip Xi -> E, furnish a continuous bijective
factorization ni>0 Xi --* Jim E, which is an open map by definition of the open
sets in these two spaces.

Proposition 3. Let A be a subset of a projective limit E = Jim En of topological
spaces. Then the closure A of A is given by

x = n in 1(1n(A))-
n>0

PROOF. It is clear that A is contained in the above mentioned intersection, and that
this intersection is closed. Hence A is also contained in the intersection. Conversely,
if b lies in the intersection, let us show that b is in the closure of A. Let V be a
neighborhood of b. Without loss of generality, we can assume that V is of the form

, 1(Un) for some open set U, C E. Hence irn(b) C Un. Since by assumption
b E iJrn 1(1/rn(A)), we have i/rn(b) E 1/rn(A), and the open set U, containing b must
meet 1/rn(A): There is a point a E A with 1/rn(a) E U. This shows that

aEAflt/rnl(Un)

In particular, this intersection is nonempty, and the given neighborhood of b indeed
meets A.

Corollary 1. If K is a compact subset of a projective limit E = lim En, then

K = n *n 1(fn(K))
n>O

4 ---

Corollary 2. A subset A of a topological projective limit is dense exactly when
all its projections irn(A) are dense.

4.5. Projective Limits of Topological Groups

It is also clear that if a projective system (Gn, (pn) is formed of groups Gn and homo-
morphisms cpn : Gn+i -* G, , then the projective limit G = lim Gn is nonempty
since it contains the neutral sequence (e, e, ...). It is even group having this
sequence as neutral element, and the projections i/rn : G -* Gn are group homo-
morphisms. The universal factorization property holds in the category of groups.

An interesting case is the following. Let G be a group and (Hn) a decreasing
sequence of normal subgroups of G. We can then take Gn = G/Hn and (since
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32 1. p-adic Numbers

C cp : G/H the canonical projection homomorphism. The
projective limit of this sequence is a subgroup of the product

G= lim G/H C O G/H
E--

together with the restrictions of projections ifr : G --* G/H,,. Since the system of
quotient maps f, : G -p- G/H is always a compatible system, we get a factoriza-
tion f : G G such that f = lJr o f. It is easy to determine the kernel of this
factorization f :

ker f = f-1 (n f,,=nH,,.

In fact, we have the following general result.

Proposition. Let G = lim G be a projective limit ofgroups, and let ,,: G -> G
denote the canonical homomorphisms. Then fl ker n = {e} is reduced to
the neutral element and G is canonically isomorphic to the projective limit
lim (G/ ker
4---

PROOF. Let G' = n ker lfi and consider the embedding f : G' -+ G leading to
trivial composites f = lfi o f. Since the system (G', obviously
admits the trivial factorization g : G' -* G (constant homomorphism with image
e E G), we have f = g by uniqueness. This proves that the embedding f is trivial,
namely G' = {e}. Of course, one can also argue that since the projective limit G
consists of the coherent sequences in the product F1 G,,, with maps *n given by
restriction of projections, fl ker,, consists only of the trivial sequence.

4.6. Projective Limits of Topological Rings

It would be a tedious task to give a list of all structures for which projective
limits can be defined. One can do it for rings, vector spaces, ... , and one can mix
structures, for example by looking at topological groups, topological rings, and
so on. Just for caution: A projective limit of fields is a ring, not a field in general
(because a product of fields is not a field). Coming back to the case of a group
G (having no topology at first), in which a decreasing sequence of normal
subgroups has been chosen, we can consider the projective limit of the system of
discrete topological groups G = G/H,,. Let again G = lim G/H and identify
G with its image in G. Then G is dense in G, which can be viewed as a completion
of G. More precisely, the closure H; of H; in G is open and closed in G, and these
subgroups form a basis of neighborhoods of the identity in G. The subgroups H,
_make up a basis of neighborhoods of the neutral element in G for a topology, and
G is the completion of this topological group. At this point one should recall that
a topological group admitting a countable system of neighborhoods of its neutral
element is metrizable.
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Similarly, if A is a commutative ring given with a decreasing sequence (In) of
ideals and transition homomorphisms con : A/In+1 -* A/In, the projective limit
,9 = lim A/In is a topological ring equipped with continuous homomorphisms
(projections) i/in : A -* A/In. By the universal factorization property of this limit,
we get a canonical homomorphism A -* A that is injective when n In = {e}, and
in this case A can be identified with the completion of A for the topology of this
ring, having the In as a fundamental system of neighborhoods of 0.

4.7. Back to the p-adic Integers

We apply the preceding considerations to the ring Z of rational integers and its
decreasing sequence of ideals In = pnZ. The inclusions pn+1 Z C pnZ lead to
canonical transition homomorphisms

(P":
Z/pn+1Z -) Z/pnZ.

The next theorem gives a second equivalent definition for p-adic integers.

Theorem The mapping ZP -* lim Z/pnZ that associates to the p-adic num-
ber x = Y ai p` the sequence (xn)n>1 of its partial sums x,, = >i <n ai p` mod
p" is an isomorphism of topological rings.

PROOF Since the transition homomorphism co,, is given by

E a, p` mod pn+1 H ai pi mod pn,
in i<n

the coherent sequences in the product n Z/pnZ are simply the sequences (xn) of
partial sums of a formal series Yi>o ai p' (0 < ai < p -1), and these are precisely
the p-adic integers. The relations

xi = ao, x2 = ao + a1 p, x3 = ao + a1 p + a2p2,

and conversely

x2 -XI x3 - x2
ao = x1, a1 = , a2 = 2 ,

p p

show that the factorization Z,, ---> lim Z/pnZ is bijective, and hence an algebraic
isomorphism. Since this is a continuous map between two compact spaces, it is a
homeomorphism, whence the statement.

One can note that the homomorphisms Z -- Z/pn+1Z -+ Z/pnZ furnish a
limit homomorphism Z -+ lim Z/pnZ. which can be identified to the canonical
embedding Z -* ZP. Them p

E ai pi mod pn H ai p` mod pnZ,,
i<n i<n
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obviously defines an isomorphism Z/p"Z -* Zp/p"Zp, and in particular,

Zp/pZp = Z/pZ = Fp.

More generally, the same argument shows that

Zp/p"Zp = Z/p"Z.

On the other hand, the restriction of the reduction homomorphism ZP -* Z/p"Z
to the subring

Z(p)={a/b: aEZ, 0¢beNandbprime top}CQ

is already surjective and has kernel p"Z(p), hence defines an isomorphism:

Z(p)/P"Z(p) = Z/p"Z.

Starting with the subring Z(p) C Q, we see that Zp appears also as a projective
limit limZ(p)/p"Z(p) and hence as a completion of this ring Z(p).

Comment. The presentation of the ring Zp of p-adic integers as a projective
limit of the rings Z/p"Z shows that one can choose any system of representatives
for Z mod pZ and write a corresponding expansion for any x E Zp in the form
x = Y si pi with all digits Si E S. In particular, when the prime p is odd, it can
also be useful to choose the symmetrical system of representatives

S = p1
2 ' 2

In practice, we always choose a system of representatives S containing 0 in order to
allow finite expansions x = Y si pi. For example, if we choose the representative
p E S instead of 0 E S, the representations

i>2 i>2

are not permitted, since 0 V S.

4.8. Formal Power Series and p-adic Integers

Let us derive yet another presentation of p-adic integers. We denote by Z[[X]] the
ring of formal power series in an indeterminate X with rational integral coefficients.
A formal power series is just a sequence (a")"EN of integers a" E Z. Addition is
made coefficientwise,

(an) + (b") = (c") with c" = a" + b" (n > 0),

and multiplication according to

(a,,) . (b,,) _ (cn) with c" aib, (n > 0).
i+j=n
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These composition laws appear naturally if we use the notation f = f (X) =
In>0 an X" for the sequence In this way we identify polynomials to for-
mal power series having only finitely many nonzero coefficients: Z[X] C Z[[X]].
We shall use formal power series rings over more general rings of coefficients and
shall study their formal properties when needed (VI.1).

Theorem. The map

E aiXe H >aipi : Z[[X]] ZP

is a ring homomorphism. It defines a canonical isomorphism

Z[[X ]]/(X - p) ZP,

where (X - p) denotes the principal ideal generated by the polynomial X - p
in the formal power series ring.

PROOF Let us consider the sequence of homomorphisms

fn : Z[[X]] -* Z/pnZ, >2aiX` - >aip` mod p".
i<n

Since these maps fn are obviously compatible with the transition homomorphisms
cpn defining the projective limit, we infer that there is a unique homomorphism

f : Z[[X]] -.* limZ/p"Z = ZP

compatible with the fn. If x = Y_ ai pi is any p-adic integer, then x = f (Y- ai X'),
and this shows that f is surjective. We have to show that the kernel of f is the
principal ideal generated by the polynomial X - p. In other words, we have to
show that if the formal power series Y_ ai X' is such that Fi<n ai pi E p"Z for
every n > 0, then this formal power series E ai X' is divisible by X - p. For
n = I the condition implies ao - 0 mod p, hence ao = pao for some integer ao.
Then, for n = 2 we get

ao+a,p=0modp2=ao+a1 -0modp,

and we infer that there is an integer a1 such that ao + a1 = pal. Let us go on:

(ao + al p) + a2p2 = 0 mod p3 = a1 p2 + a2p2 = 0 mod p3,

which gives al + a, = pat for some integer a2. Generally, for n > 1,

p"an_1+anp" =ao+a1p+....+.anp" -0mod pn+1

furnishes an integer an with an-] + an = pan. All these relations can be summa-
rized by

ao = pao, an = pan - an-1 (n > 1),
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or still more concisely by

aoa1X +a2X2+... = (p-X)(ao+a1X +a2X2+...),

namely

EaiX` = (p - X)>a,X`.

This concludes the proof.

5. The Field Qp of p-adic Numbers

5.1. The Fraction Field of Zp

The ring of p-adic integers is an integral domain. Hence we can define the field of
p-adic numbers as the fraction field of ZP

Qp = Frac(Zp).

An equivalent definition of Qp appears in (5.4).
We have seen that any nonzero p-adic integer x E ZP can be written in the form

x = pmu with a unit u of ZP and m E N the order of x. The inverse of x in the
fraction field will thus be I/x = p-mu-1. This shows that this fraction field is
generated - multiplicatively, and a fortiori as a ring - by ZP and the negative
powers of p. We can write

QP = ZP[l/p1

The representation 1/x = p-mu-1 also shows that 1/x E p-mZp and

QP = UP
_MZ

P
m>0

is a union over the positive integers in. These considerations also show that a
nonzero p-adic number x E Qp can be uniquely written as x = pm u with m E Z
and a unit u E ZP ; hence

x mZxQP p P
mEZ

is a disjoint union over the rational integers m E Z. The definition of the order
given in (1.4) for p-adic integers can now be extended to p-adic numbers x E Qp.
If 0 x = pmu with a unit u E Zp, then we define

ord,(x) = vp(x) = up(pmu) = m E Z.

(When the reference to the prime p is not needed, we simply denote this order by
v(x) =ordx.) Hence

V-1(m) = pmZP - pm+1ZP = pmZp.
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We have

v(x) > 0 x E Zp,

and this equivalence is valid even when x = 0 with the usual convention v(0) =
+oo > 0. If x = alb (a E Z,, 0 0 b E Zp), then v(x) = v(a) - v(b) E Z, and
the basic relation

v(xy) = v(x) + v(y)

holds for all x, y E Zp (even when xy = 0 with the convention m + oc = oc +
co = oo). The p-adic order is a homomorphism

v:QP=UpmZP--> Z.
tEZ

Moreover, if x = p°u is a nonzero p-adic number, with u a p-adic unit, we can
write u = > a; p` E Zp with ao 0 (0 < a; < p - 1), and

x = >aip`+u = >x.ip'

is a sum starting at the integer v = ordx E Z, possibly negative.
As in (1.4), we may compare these expansions to the Laurent expansions of

meromorphic functions (in the complex plane, near a pole). The index of the first
nonvanishing coefficient is the order of the power series.

By convention, the order of the zero power series is +oo. Hence the relation

v(x + y) > min(v(x), v(y))

holds in all cases.

Comment. If Z(p) C Q denotes the subring consisting of rational numbers having
denominator prime to p, we have similar formulas

Q = U P-mZ(Ph QX = L1 pmZ ,)'
m>0 pEZ

since the group Zip) consists of the fractions having both numerator and denomi-
nator prime to p.

5.2. Ultrametric Structure on Qp

The map x H Ix I = 1 /p°, where v = ord x E Z, defines a homomorphism

Qp -+ (RX)+ = R>o

that we conventionally extend by the definition 101 = 0. This map extends the
previous absolute value on ZP and is called the p-adic absolute value on Qp
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(cf. (2.1), (3.7); absolute values will be systematically studied in Chapter II, cf.
(I1.1.3)). This absolute value has the characteristic properties

Ixl > 0 if x 0, Ixyl = Ixl . lyl, Ix + yl _< max(Ixl, IYI).

In particular, we can define a metric on QP by

d(x,y)=Ix-YI
This distance satisfies

d(x,y)>0ifx y and d(y, x) = d(x, y)

as well as the triangle inequality in the strong ultrametric form

d(x, y) < max(d(x, z), d(z, y)) <_ d(x, z) + d(z, y).

This metric is invariant on the additive group

d(x + z, y + z) = d(x, y)

and also satisfies

d(zx, zy) = Izi d(x, y)

for all x, y, z E Q p. In particular,

d(Px, PY) = d(x' Y)
p

From now on we shall always consider Q p as a metric field, endowed with this
ultrametric distance. By (3.7) QP is a valued field, and hence a topological field.

Theorem. The field of p-adic numbers QP induces on ZP the p-adic topology.
It is a locally compact field of characteristic 0. It can be identified with the
completion of Z[1/p] = {ap° : a E Z, V E Z}, or of Q, for the p-adic
metric.

PROOF. With the metric just introduced ZP is the unit ball centered at the origin in
QP: For x E QP we have equivalences

x E ZP = v(x) > 0 IxI < 1 d(x,0) < 1.

Similarly, if k > 0, the ideal pkZP is the ball defined by d(x, 0) < p-k. These
balls make up a fundamental system of neighborhoods of 0 in ZP and Q,,. Since
the group ZP contains a neighborhood of 0, it is open (and hence closed). In fact,



5. The Field Qp of p-adic Numbers 39

it is a compact neighborhood of 0 in Qp. This proves that the topological field Qp
is locally compact, and hence complete (Corollary 3 in (3.2)). Finally, if

x = >xi pt (v = ordx c Z)
i>v

is the p-adic expansion of a nonzero element x E Qp, the sequence

Xn = Xi
pt

v <i <n

of truncated sums is a Cauchy sequence of Z[ 1 /p] converging to x,

X -Xn = 1: Xip` E pnZp,
ii>n

d(x, xn) = Ix - xnI < p-n -+ 0 (n -* oo).

This proves that Z[I/p] is dense in Qp, and this metric space can be viewed as a
completion of the ring Z[ I /p] for the induced metric.

5.3. Characterization of Rational Numbers Among p-adic Ones

It is easy to recognize rationals among p-adic numbers if we know their expansions.
The result is similar to the characterization of rational numbers among real numbers
expressed in decimal expansions.

Proposition. Let x = >J ai pi E Q, (i > v(x), 0 < ai < p - 1). Then x is a
rational number, i.e., x E Q precisely when the sequence (ai) of digits of x is
eventually periodic.

PROOF. Multiplying if necessary a p-adic expansion by a power of p, we see that
it is enough to consider the case v(x) > 0, namely x E Zp. If the sequence (ai)
is eventually periodic, x is the sum of an integer and a linear combination (with
integral coefficients) of series of the form

i` pS+ir = pS 1 QL. E1-pt
i>o

and hence is a rational number. Conversely, suppose that x = F xi p' = alb is
the p-adic expansion of a rational number (as we mentioned, we can assume that
x E Zp; hence the summation is made for i > 0). Taking a reduced representation,
a and b will be relatively prime integers, with b prime to p. Adding a suitably
large integer to x, we may assume that x is positive (hence a and b are also posi-
tive). Considering the p-adic expansions of these integers, we are able to write an
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equality

biP' . >xip` akpk.
f< i>0 k<a

In the left-hand side we have to take into account some carries re according to the
following identities:

boxe +bixe-1 +... +bexo+re = at +re+1P-

For £ > max(a,,B), we have more simply

boxe + bixe-i + - + bexe-,e + re = re+1 p.

It suffices to compute xe mod p as a function of xe_1, ... , xe_'8 and re, and then
to take the representative of this class such that 0 < xe < p. This allows the deter-
mination of the carry re+1 by division by p. In other words, starting with the data

(Xe-1,... , xe-a, re) E
(Z/PZ)j+1

there is an algorithm (taking into account the fixed values of bo, ..., b'6) furnishing

(XI, xt-1, - - , xt-,6+1, re+1) E (Z/PZ)+1

(the values of xe_1, ..., xe_,e+1 are simply copied in a shifted position). Since the
set (Z/pZ)16+1 is finite, this algorithm will eventually produce a cyclic orbit (as
soon as a vector takes a value already attained, it will produce the next vector
already attained and start a cycle).

Corollary. The p-adic integers F p"' and F p"' are not rational.

5.4. Fractional and Integral Parts of p-adic Numbers

As we have already noticed, any nonzero p-adic number x E Q p can be written
as a series x = Ei>,,, xipi starting at the index in = v(x) E Z. Let us define

[X] = > xi p` E ZP : integral part of x,
i>o

(x) = > xi p` E Z[I/p] C Q : fractional part of x.
i<o

We thus obtain a decomposition

X = [x] + (x) : QP = ZP + Zfl/pl.

If (x) # 0. then (x) = ap° for integers a and v < 0. This decomposition depends
on the choice of representatives chosen for digits; here 0 < xi < p - 1. With this
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choice, more can be said of the fractional part as a real number, namely

0<(x)xip` x-' <(P-1)> 1 =1.
P' P

Hence the fractional part of any p-adic number satisfies

(x) E [0, 1) rl Z[1/p].

Let us consider these representatives mod 1, namely in Z[I/p]/Z C R/Z.
With the normalized exponential, we can embed the circle R/Z in the complex
numbers:

R -* R/Z -> C" : t H exp(2 rit).

This leads us to consider the map (systematically considered by J. Tate, whence
the notation)

r : Qp -* C" : x H exp(27ri (x)).

For example, if u(x) = -1, namely x = k/p + y with 0 < k < p -1 and y E ZP,
then

r(x) = exp(2nik/p) = k,

where = exp(2iri/p) is a primitive pth root of unity in C. The image of all
elements x E Qp with v(x) > -1 is the cyclic subgroup of order p in C':

P-tZP/ZP = r(P-tZP) = vp C C".

It is useful to introduce some notation. The cyclic subgroup of mth roots of unity
in C will be denoted by

µm= {ZEC:Z' =11.

The union of all these cyclic groups is the group of all roots of unity (in C)

u= Uum=(zEC:z'"=Iforsomeintegerm> 11.
M>1

With respect to the prime p, we have a direct product decomposition

It = u(P) - IA,px,

where t(p) is the group of roots of unity of order prime to p, and It p- the group
of roots of unity having order a power of p: pth power roots of unity. Hence upx
is the p-Sylow subgroup of the abelian torsion group u. It is the union of the
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increasing sequence of cyclic groups

I-pCILp, C ...CILpk C...

[t PM = U Z,L pk C C'.
k>O

Proposition. The map r : Qp --). CX, x r-* exp(27ri (x)) is a homomorphism.
It defines an isomorphism Qp/Zp - p px of the additive group Qp/Z p with the
group of pth power roots of unity in the complex field C.

PROOF. Let us compute the difference

(x+Y)-(x)-(Y)=x+y-[x+y]-(x-[x])-(Y-[y]).
It is equal to [x] + [y] - [x + y] E Zp, and hence (x + y) - (x) - (y) E
Z[1/p] fl Zp = Z. This proves that

exp(21ri[(x + y) - (x) - (y)]) = I

and r(x + y) = r(x) + r(y). The map r is a homomorphism. Its kernel is defined
by

kerr={XEQp:(x)EZ}.

But (x) E Z means x = [x] + (x) E Zp, so that kerr = Z. The image of r
consists of the complex numbers of the form

exp(2rrik/pm) = exp(2Jri/pm)k.

Since exp(27ri / pm) is a root of unity of order pm, these roots of unity generate -
when m varies among natural integers - the subgroup µ px.

In particular, we have

XEp-kZp = pkXEZp=r(X)pk=1 r(x)Eµpk.

Comment. It is possible to give the factorization of rational numbers into p-
integral and p-fractional components independent of the construction of p-adic
numbers. Indeed, any rational number has the form

x = p° (v E Z, a and b prime to p).

When v = -m < 0, namely when x V Ztpt, we can use the Bezout theorem to
express the fact that pm and b are relatively prime,

(pm, b) = 1 = apm + Pb;
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hence multiplying by x yields

a as Pa
x = p'"b = b

+
Pm

E Z(p) + Z[1/P].

This gives an elementary description of the decomposition

Q = Z(P) + Z[l/P]

induced by the decomposition Qp = Zp + Z[1/p].

5.5. Additive Structure of Qp and Zp

Let us start with the sum formula Qp = Zp + Z[1/p] proved in the last section.
Observe that this sum is not direct, since

Zp n Z[1/p] = Z.

The various embeddings that we have obtained are gathered in the following
commutative diagrams giving the additive (resp. multiplicative) structure of Qp
(resp. Qp ).

Q Qp

Z[1/p] Zp Z[l/p]

QX QX
P

Zx z x z
(p) P Z

P P
N T N T

(1) (1)

If we embed Z in the direct sum Zp ® Z[1/p] by means of m F-;, (m, -m) and
call r the image, then the addition homomorphisms

Z(p) ® Z[l/P] Z(p) + Z[l/P] = Q,

Zp ® Z[l/p] - Zp + Z[l/p] = Qp

have kernel IF and furnish isomorphisms

(Z(P) (D Z[1/P]) / r = Q,

(ZP ® Z[l/P]) / IF = Q.
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Thus we have the following diagrams with vertical short exact sequences.

Z

Z(P) -* Z()®Z[1/P] <-- Z[1/P],

Q

Z

ZP - ZpEDZ[I/pl F- Z[1/p] .

Qp

Here is another pair of diagrams describing the inclusion relations between the
various abelian groups of numbers that we have considered:

Z11/P] `.* Q Qp

U U U

Z Z(P) ZP ,
X X

Z(P) ZP .

Comment. The subgroup ZP of Qp admits no direct complement. Indeed, for any
subgroup F of Qp

r n Zp = {0} = F discrete in Qp = r = {0}.

In a sense, the subgroup Zfl/pl is the best near supplement that one can take, and
we have unique sum decompositions with two components:

x E Zp, y c [0, 1) fl Z[l/p].

But this system of representatives [0, 1) fl Z[1/p] is not a subgroup.

5.6. Euclidean Models of Qp

It is easy to give Euclidean models of the fields Qp extending the models of Zp
given in (2.5) if we only observe that the inclusions of additive topological groups

IZp D Zp and Zp D pZp

are similar. In other words, a dilatation of ratio p of the Euclidean model of Z P
gives a model of (1/p)Zp. Iteration gives a model of

Qp = U P-"'Zp
m>O

An illustration shows a piece of Q7, with central portion Z7.
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0

0

0

0

A piece of Q7 with Z7 as central portion

6. Hensel's Philosophy

6.1. First Principle

Let us explain the first principle in a particular case. Let P(X, Y) E Z[X, Y]
be a polynomial with integral coefficients. When speaking of solutions of the
implicit equation P = 0 in a ring A, we mean a pair (x, y) E A x A = A2 such
that P(x, y) = 0.

Proposition, The following properties are equivalent:

(1) P = 0 admits a solution in Zp.
(ii) For each n > 0, P = 0 admits a solution in Z/ p" Z.

(iii) For each n > 0, there are integers a", b" such that

P(an,b,,)=- 0modp".

PROOF. (iii) is a simple reformulation of (ii). Now for x = Et>o ai p' E Zp, define
x" _ >t<" a; p' mod p" E Z/p'Z. Then if (x, y) E Zp x Zp, then

P(xn, y,,) = P(x, y) mod p"ZP E ZP/p"ZP (= Z/p"Z),
and hence (i) (i i ). Conversely, to prove (i i) (i) let us consider the finite sets

X" ={(x,y)EZ/p"ZxZ/p"Z: P(x,y)=0}.
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Reduction mod p" furnishes a map c" : X, and the projective system
(X,,, cp")">1 has a projective limit X = limX" C Zv X Z. The pairs in X
furnish solutions of P = 0 in Zp, and the result follows from (4.4) (Corollary of
Proposition 1).

Generalizations. Instead of a single polynomial P in two variables, one can
consider an arbitrary family (P;)jEJ of polynomials having a finite number m > 2
of indeterminates and their common zeros. The above result shows similarly that
the algebraic variety defined by the equations P, = 0 (i E I) will have points with
coordinates in Z. precisely when it has points with coordinates in all rings Z/p"Z
(n > 1).

6.2. Algebraic Preliminaries

Proposition. Let A be a ring and P E A [X] be any polynomial. Then there are
polynomials P1 and P2 E A[X, Y] such that

P(X + h) = P(X)+h - P1(X, h) = P(X)+h - P'(X) + h2 P2(X, h).

PROOF Let us write the polynomial P explicitly as a finite sum P(X) _ a, X"
with some coefficients a E A. Then

P(X + h) a"(X + h)" _ E nX"-1 h + h2( .

_ a"X" +h 1: na"Xn-1 +h2 P2(X, h);

hence the result.

6.3. Second Principle

The idea for improving approximate solutions will now be given in its simplest
form. Take a polynomial P E Z[X] and an integer x such that P(x) - 0 mod p.
We can look for a better approximation z of P(X) = 0 in the form of an integer
such that P(z) - 0 mod p2. Without loss of generality, we may assume that x is
an integer ao between 0 and p - 1. We are looking for an integer z = ao + a 1 p
(again with 0 < a1 < p) such that P(.) - 0 mod p2. But we have just seen that
we can write

P(ao + a1 p) = P(ao) + P'(ao) - a1 P + (a1 P)2 - b

for some integer b. By assumption, P(ao) = pt, and the desired congruence holds
mod p2 if t + P'(ao) a1 - 0 mod p. We can suppose t = 0 (there is nothing to
prove otherwise). When P'(ao) = 0 mod p we can take a1 - -t/P'(ao) mod p
and

z=ao+a1p=ao-
pao) =x- P'(ao)
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exactly as in the classical Newton approximation method. With this choice, we have

P(1)= P(ao+a,p)=0mod p2.

We shall occasionally use the notation

P(x)
NP(x)-x-

1"(x)
for the Newton map. It is obvious that x = Np(x) can be far from x when P'(x)
is small.

Newton's method

6.4. The Newtonian Algorithm

In this section we show that even when the derivative vanishes mod p, we can
still construct a better approximation of a root of P = 0, but we have to be less
demanding concerning its location.

Proposition. Let P E Zp[X] and X E Z,, be such that P(x) - 0 mod p". If
k = v(P'(x)) < n/2, then z = Np(x) = x - P(x)/P'(x) satisfies

(1) P(z) = 0 mod p"+1 (a definite improvement).
(2) z = x mod p"-k (a controlled loss),
(3) v(P'(z)) = v(P'(x)) (= k) (an invitation to iteration).

PROOF. Put P(x) = p"y for some y E Zp, and P'(x) = pku for some unit u E Zn .
By definition of z,

P(x) _ -p"-kyu-1 E p"-kZo.- x =
'(x)P

On the other hand, still by choice of i, the first two terms of the Taylor expansion
of the polynomial P at the point x cancel each other:

P(x) = P(x) - P
(P

x) Po(x) + (. - x)2 t.
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48 1. p-adic Numbers

By (6.2) the t in the last term belongs to Z. Hence

P(z) = (z - X)2. t E pen-2k ZP = pn . pn-2k ZP C pn+1ZP

(recall that 2k < n). It only remains to compute the order of P'(z). For this, we
use a first-order Taylor expansion of P at the point x (6.2):

P'(z) = P'(x -1- (z - x)) = P'(x) + (i - x) - s

= pku + pn-kZ-S = pk(u + pn-2kZS) = pkv.

Since n - 2k > 0, and since u is a unit,

U=a P"-2k ZSEu+pZPCZp,

which proves v(P'(z )) = k as claimed.

Theorem (Hensel's Lemma). Assume that P E ZP [X] and x E ZP satisfies

P(x) =- 0 mod p'.

If k = v(P'(x)) < n/2, then there exists a unique root i; of P in ZP such that

= x mod pn-k and v(P'(i; )) = v(P'(x)) (= k).

Paoor Existence. Let xo = x and construct an improved root x1 E ZP,

x1 -= xo mod
pn-k and P(x1) = 0 mod pn+1, v(P'(x1)) = v(P'(xo)) (=k).

Similarly, we can find an improvement x2 of the approximate root x1 in the form
of a p-adic integer satisfying

x2 = x1 mod pn+1 k and P(x2) = 0 mod pn+z

Iterating the construction, we get a Cauchy sequence (x)>0 having a p-adic limit
i; satisfying 0 and i; - x mod pn-k -

Uniqueness. Let i; and 17 be two roots of P satisfying the required conditions:
In particular,

17 - t mod P,-k,

and since n > 2k, we have n - k > k + 1. and a fortiori

17
mod pk a l

Now,

P(11) = (17 - )2a

=0 =0
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for some p-adic integer a. Hence

(n - ) (n - )a) = 0.

But

P'()+(ri- )a 00,
order k order > k + I

so that the only possibility is ri - = 0, and uniqueness follows.

Note that the uniqueness part of the proof shows that is the unique root
satisfying the a priori weaker congruence 4 - x (mod pk+I )

6.5. First Application: Invertible Elements in Zp

Let us consider the first-degree polynomial P(X) = aX - 1, where a 0 is a
p-adic integer. In order to be able to find an approximate root mod p, we have to
assume that a ¢ pZ p (in the p-adic expansion of a, the constant term ao 0).
When this is the case, P'(X) = a and k = v(P'(x)) = 0, and any root mod p can
be improved to a root mod pr (n > 2). Eventually, we find a genuine root in ZP,
which means that a is invertible in this ring. Thus we have another "proof" of the
implication

aEZp-pZp===> aEZp.

However, this proof is deceptive, since Newton's method assumes a priori that we
know how to divide: In the first step we are led to replacing x by

P(x) =x-ax - l = Iz=x-
P'(x) a a

Numerically, it is better to apply Newton's method to the rational function f (X) _
1/X - a, for which f(X) = -1/X2. Hence

z=N (x) = x - f(x) =x+x2f(x)=2x-ax2.t f'(x)

With this function, Newton's method uses a polynomial, and no division is required
to evaluate the successive approximations of the inverse.

6.6. Second Application: Square Roots in Qp

Consider now the quadratic polynomials P(X) = X2 - a, where a is a p-adic
integer. It is obvious that such an equation can have a root x in ZP only if v(a) =
v(x2) = 2v(x) is even. Then if we divide a by a suitable even power per' of p, we
are brought back to the case v(a) = 0, namely a E ZP . Since P'(x) = 2x, we see
that the case p = 2 has to be treated separately.
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Case p odd. Hensel's lemma will apply as soon as we can find an approximate
root mod p. But we know that in the cyclic group FP squares make up a subgroup
of index two. The quadratic residue symbol of Legendre distinguishes them:

a _ +1 if a is a square mod p,
(p) -1 if a is not a square mod p.

Let us choose an integer 1 < a < p that is not a square mod p. Then the three
numbers a, p, ap have no square root in Qp. They make a full set of representatives
for the classes mod squares

Q p /(Qp )2 = (pZ/PZZ) x (Zn /(ZP )2) = Z/2Z x Z/2Z.

Since every quadratic extension of Qp is generated by a square root of an element
(every quadratic extension of a field of characteristic 0 is generated by a square
root), we see that we obtain all quadratic extensions of the field Qp for p ? 3 -
up to isomorphism - in the form of the three distinct fields

Qp(V u), Qp(N i'), Qp( ap)

Case p = 2. Observe that Z2 = I +2Z2, since the only possibility for the nonzero
constant digit is 1. Now we have

a E ZZ is a square a E I+ 8Z2.

PROOF. If a = b2 E ZZ for some b = 1 + b12 + b222 + - - - = I + 2c, then b2 =
1 + 4(c + c2), and since c - c2 mod 2Z2, we have b2 E I + 8Z2 as claimed.
Conversely, if a - 1 mod 8Z2, we can apply Hensel's lemma to the resolution
of the equation X2 - a = 0, starting with the approximate solution x = 1. By
assumption, this is an approximate solution mod 23 (n = 3 > 2k = 2 is suitable).
We get an improved solution x,

z2 =a mod 23 but z - x mod 22 only,

since n - k = 3 - 1 = 2. By iteration, we get an exact root 1 mod 4 satisfying
x2=ainZ2.

We have

Since

we also have

Q2 /(Q2 )2 = (2Z/22Z) x (Z2 /(Z2 )2) -

Z; = 1+2Z2 = {±1).(1+4Z2),

Z2 /(Z; )2 = 1±11 x (1 + 4Z2)/(1 + 8Z2),
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so that finally

Q2 /(Q2 )2 - Z/2Z x Z/2Z x Z/2Z.

There are - up to isomorphism - seven quadratic extensions of the field Q2. They
are obtained by adjoining roots of elements in the nontrivial classes of Q2 /(QZ )2_

If we choose the elements

-1, ±(1 +4) = +5, ±2, +2 .5,

we get the seven nonisoommorphic quadratic extensions

Q2(1 1), Q2( ±5), Q2(1/-+2), Q2( f10)-

Examples. (1) Since 32 = 1 mod 8, x = 3 is an approximate root of x2 - 1 = 0.
Newton's method leads to the improvement x = 7, which is an improved solution
mod 16, but we only have 7 - 3 mod 4 as the theory predicts (and there is no
exact root t = 3 mod 4, since the only roots are = ± 1).
(2) Since a = -7 = 1 - 8 - 1 mod 8, we obtain

V7EZZCQ2

(3) The preceding considerations prove that the equations

X2+1=OandX2-3=0

have no solution in Q2. The polynomials X2 + 1 and X2 - 3 are irreducible in
Q2[X].

We shall determine later the structure of the multiplicative group 1 + 4Z2-

6.7. Third Application: nth Roots of Unity in Zp

Let be any root of unity in Qp, say t" = 1. Then n v(t) = v(1) = 0 and v(s) = 0.
This proves that all roots of unity in Qp lie in Zv C Qv Q. In particular, each root of
unity has a well-defined reduction mod p, E Fp F. Let us show that the group
Z, contains roots of unity in each class mod pZp, i.e. above each element of Fp .

The polynomial P(X) = XP-I has derivative P'(X) = (p-1)Xp-2. For any
unit x E Zp , k = v(P'(x)) = 0, and the simplest case (6.3) of the approximation
method applies. Since the polynomial XP-1 - 1 has p - 1 distinct roots in the
field Fp, namely all elements of Fp, Hensel's lemma furnishes p -1 distinct roots
in Zp Z. This shows that the field Qp of p-adic numbers always contains a cyclic
subgroup of order p - 1,

µp_1 C Zp C Qp,

consisting of roots of unity.
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Proposition 1. When p is an odd prime, the group of roots of unity in the field
Qp is PP-

1-PROOF. We have to prove that the reduction homomorphism s : µ(Qp) -> FP is
bijective. It is surjective by Hensel's lemma. So assume that = 1 + pt E kers
(t E Zp) is a root of unity, say has order n > 1.

C"=(1+pt)"=1.
Hence npt+(2)p2t2+---+p"t" = 0, or

+...+p t tL I =0.t n+ (;)

This shows that t = 0 (when ptn) or p I n. In the second case, replace by p and
n by n/p: Starting the same computation, we see that t = 0 or p2 I n (original
n), and so on. Finally, we are reduced to the case n = p. In this case, the above
equation is simply

pn-itp-11 =0

and since p > 3,

/
p + 1 Z)Pt + - + pp-1 tp-1 = p + p2(- . ) 0-

This proves that t = 0 in all cases and = 1.

When p is odd, p - 1 is even and -1 belongs to µ p-1. The number -1 will
have a square root in Qp precisely when (p - 1)/2 is still even, namely when
p - 1 mod 4. We have

v-l EQp 41 p-1 -! p=lmod4.
A number i = can thus be found in Q5, Q13, .. .

Proposition 2. The group of roots of unity in the field Q2 is µ2 = {±1}.

PROOF We have

and

1±11 = A2 C Z2 = 1 + 2Z2.

On the other hand, FZ = { 1 }, and the only roots of unity in ZZ have order a power
of 2. But -1 is not a square of Zz (6.6), and there is no fourth root of 1 in Q2.
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To summarize, we give a TABLE.

Field Units Squares Roots of unity

Number of
quadratic
extensions

Q2

Qp
p odd prime

Z2 =1+2Z2

ZD 1 +PZ,
index p-I

I+8Z2
index 4
in ZZ

index 2
in Zp

112={f1}

AP-1

7

3

6.8. Fourth Application: Field Automorphisms of QP

It is possible to determine all automorphisms of the field QP (over the prime
field Q). For this purpose, we need a lemma.

Lemma. Let X E Q. Then the following properties are equivalent:

(i) x is a unit: x E Zp.
(ii) xp-' possesses nth roots for infinitely many values of n.

PROOF If x is a unit, then x = 0 mod pZP and xP-t = I mod pZp. Let us put
a = xP`' and consider the equation p(X) = X" - a = 0. It has an approximate
root 1 mod p, and when n is not a multiple of p, P'(1) = n does not vanish mod
p. By Hensel's lemma, there is an exact solution of this equation, namely there
exists an element t E ZP such that r" = a = xP-1. This proves (i) (ii).

Conversely, if x P-1 = yn, we have

(p - 1)v(x) = n v(y"),

and n divides (p - 1)v(x). This can happen for infinitely many values of n only if
v(x) = 0; hence x is a unit (we are assuming x 54 0 from the outset).

Theorem. The only field automorphism of Qp is the identity.

PROOF Let cp bean automorphism of the field Q,,. By the algebraic characterization
of units of QP , the automorphism (p must preserve units. Hence if x c QP is written
in the form x = p"u (where n = v(x) and u c Zp is a p-adic unit), we shall
have

V(x) = cp(P"u) = cp(P")cp(u) = P"cp(u)

and v(cp(x)) = n = v(x). This shows that the algebraic automorphisms of the field
Qp preserve the p-adic order: They are automatically continuous. Now, if y E Q p

is an arbitrary element, we can take a sequence of rational numbers r" E Q with
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r -* y. For example, we can take these rational numbers by truncating the p-adic
expansion of y. Now, since the automorphism (is trivial on rational numbers,

V(Y) = sv( lim yn) = lim co(y) = lim Y. = y.
n->oc

Note. The preceding theorem is similar to the following well-known result:

The only algebraic automorphism of the real field R is the identity.

Indeed, if cp is a field automorphism of R, we have cp(x2) = co(x)2 for all x, and
hence V(y) > 0 for all y > 0 (write y = x2), and then also

V(u) < V(v) for all u < v

(put y = v - u). This means that these algebraic automorphisms automatically
preserve the order relation <. Since they must be trivial on the prime field Q, they
must be trivial. In detail: If t E R and a, b E Q, then

a <t <b=a =co(a) <co(t) <co(b)=b.

Thus we see that

Ico(t) - tI < b - a

is arbitrarily small; hence V(t) - t = 0.

Comment. Let us stress that in both the p-adic and the real cases, we are con-
sidering purely algebraic automorphisms over the prime field Q: The proofs show
that they are automatically continuous, and hence trivial. But there are infinitely
many automorphisms of the complex field C: Only two of them are continuous,
namely the identity and the complex conjugation. For example, the nontrivial au-
tomorphism

a + bI -, a - b' (a, b E Q)

of the field Q(V) extends to any algebraically closed extension of this field;
in particular it extends to C. This extension is a discontinuous automorphism
of C.

Appendix to Chapter 1: The p-adic Solenoid

The fields R of real numbers and Qp of p-adic numbers can be linked in an
interesting topological group, the solenoid. We present a couple of constructions
and properties of this mathematical structure.
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A.]. Definition and First Properties

The canonical group homomorphisms

co,
: R/ p' 1 Z -> R/pnZ, x mod pn+1 Z H x mod pnZ (n > 0)

make up a projective system (R/p"Z, con of topological groups.

Definition. The p-adic solenoid S. is the projective limit SP = lim R/pnZ of
the projective system (R/pnZ, (pn).

By definition, the solenoid SP is a compact abelian group equipped with canon-
ical projections

Yin : SP -- R/p'Z (n > 0)

that are continuous surjective homomorphisms. In particular,

=o:SP -R/Z
is continuous and surjective, and the solenoid can be viewed as a covering of the
circle. The kernel of this covering is obviously ker VG = lim Z/pnZ = ZP, and we
have the following short exact sequence of continuous homomorphisms,

-+R/Z--0,
presenting the circle as a quotient of the solenoid, or the solenoid as a covering of
the circle with fiber ZP. Also observe that

pnZ, = ker(>1in) C Zp = ker(VG) C SP.

Alternatively, one could define the solenoid as the projective limit of the system
having transition homomorphisms

co : R/Z --> R/Z, x mod Z r-+ px mod Z (n > 1).

A.2. Torsion of the Solenoid

We recall the following well-known fact:

For each positive integer m > 1 there is a unique cyclic
subgroup of order m in the circle: It is m-1Z/Z C R/Z.

Proposition 1. For each positive integer m > 1 prime to p the solenoid Sp has
a unique cyclic subgroup C,n of order in.

PRooF. Let us denote temporarily by Cm the cyclic subgroup of order m of the
circle R/pnZ (it is the subgroup in -1 Z/ p"Z). Since the transition maps

cn : R/pn+1 Z --> R/pnZ
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have a kernel of order p prime to m (by assumption), they induce isomorphisms
C.11+1 - Cn,. The projective limit of this constant sequence is the cyclic subgroup

Cm C Sp. To prove uniqueness, let us consider any homomorphism or : Z/mZ -*
S. The composite

Vn o Cr : Z/mZ --* SP - R/pnZ

has an image in the unique cyclic subgroup Cm of the circle R/pnZ. Hence a has
an image in C,n, and this concludes the proof.

Observe that this unique cyclic subgroup C,,, of order m (prime to p) of Sp has
a projection /i(Cm) in the circle given by

*(C,n) = m-'Z/Z c R/Z.

Since 'I`-'(m-'Z/Z) = Cx Zp, the cyclic group Cm is the maximal finite sub-
group contained in -'(m-'Z/Z).

Proposition 2. The p-adic solenoid Sp has no p-torsion.

PROOF Let 6 : Z/pZ SP be any homomorphism of a cyclic group of order p
into the solenoid. I claim that all composites

cn o *n+l o 6: Z/pZ --> SP -* R/pn+'Z - R/pnZ

are trivial. Indeed, the composite

*n+i o Cr : Z/pZ -+ SP - R/pn+tZ

must have an image in the unique cyclic subgroup of order p of the circle R/pn+'Z,
and this subgroup is precisely the kernel of the connecting homomorphism V. and
fin o a = co (ffn+i o a). Consequently, there is no element of order p in Sp (and
a fortiori no element of order p' fork > 1 in Sr).

A.3. Embeddings of R and Qp in the Solenoid

Theorem. The p-adic solenoid contains a dense subgroup isomorphic to R. It
also contains a dense subgroup isomorphic to Q p.

PROOF The projection maps f, : R R/pnZ are compatible with the transition
maps of the projective system defining the solenoid

Jn = !Pn o fn+t : R - R/pn+'Z - R/pnZ.

Hence there is a unique factorization f : R -> Sp such that

f,=*,,of:R-SP --> R/pnZ.
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If x 0 E R, as soon as p" > x we have fn(x) 7< 0 E R/p"Z and consequently
f (x) : 0 E SP. This shows that the homomorphism f is injective (this also
follows from (I.4.5), since n",1 ker f,, = n,,>, P'Z =101). The density of the
image off follows from the density of the images of the fn (1.4.4, Proposition 3)
(in fact, all fn are surjective). Consider now the subgroups

Hk = f-1(p-kZ/Z) C SP (k > 0).

We have Ho = ZP by definition, and this is a subgroup of index pk of Hk:

Hk = llm P-kZ/PnZ =
P-kzp

(k > 1)-

Hence

QP = Y' -1(Z[l/P]/Z) = U *-I (PkZ/Z) = U Hk C Sp.

The density of this subgroup of SP follows from the density of all images

Yin(QP) = Z[1/Pl/p"Z C R/p"Z

(1.4.4, Proposition 3).

Corollary. The solenoid is a (compact and) connected space.

PROOF. Recall that for any subspace A of a topological space X we have

A connected, A C B C A= B connected.

In our context, take for A the connected subspace f (R) C SP, which is dense in
the solenoid. The conclusion follows.

Let us summarize the various homomorphisms connected to the solenoid in a
commutative diagram.

Z y ZP = ZP
1R y SP QP

R/Z = R/Z Qp/Zp

A.4. The Solenoid as a Quotient

The sequence of continuous homomorphisms

fn : R x QP -* R/p"Z, (t, x) i + t + E ai p` mod p"Z
icn

(if x = E,,i,. aip', v = ordp(x)) is compatible with the sequence of con-
necting homomorphisms defining the projective limit S. Hence there is a unique
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factorization consisting of a continuous homomorphism

f :RxQp - Sp, (t,x)r-3 t+x
having composites *n o f = f". Alternatively, the two injective continuous ho-
momorphisms ji : R Sp, j2: Qp Sp furnish a unique continuous homomor-
phism

j, +j2:R(D Qp ->Sp,

which coincides with the preceding one (we are identifying the product and the
direct sum). This homomorphism f will therefore be called the sum homomor-
phism.

Lemma. The kernel of the homomorphism f defined above is the subgroup

kerf =r=((a,-a):aEZ[1/p])CRxQp.
It is a discrete subgroup of the product R x Qp.

PROOF. If f(t, x) = 0, we have in particular f0(t, x) = ,,fo o f(t, x) = 0 E
R/Z, namely t + >i<0 ai p` E Z, t E - Li<o ai p' + Z C Z[1/p]. Similarly,
f"(t, x) = 0 gives

t+1: aip`Ep"Z (n>1).
i<n

This proves that the p-adic expansion of the element t E Z[1/p] is given by
t = - lim Li<n ai p' in Q P. Hence t = -x E Qp. Conversely, it is obvious
that r C ker f . Let us show that the (closed) subgroup r is discrete. For this it
is enough to show that a suitable neighborhood of 0 in R x Qp contains only the
neutral element of F. Consider the open set

(-1, 1) X Zp C R x Qp.

If a pair (a, -a) is in r n (-1, 1) x Zp, then the p-adic expansion of a E Z[1 /p]
must be of the form Ei,0 ai pi. But we have seen (1.5.4) that in the p-adic field Qp,
the intersection Z[ 1 /p] n ZP = Z contains only the rational integers. In particular,
a E z n (-1, 1) = {0). Hence

rn((-I,1)xZp)={0}CRxQp,

and the proof is concluded.

Theorem. The sum homomorphism f : R x Qp -> Sp furnishes an isomor-
phism f' : (R x Qp)/ Fp = Sp both algebraically and topologically.

PROOF. Since all maps fn are surjective, the map f has a dense image (1.5.4).
Moreover, using the integral and fractional parts introduced there,

f(t,x)= f(t+(x),x-(x))= f(s,y),
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where s E R and y = x - (x) = [x] E Zp. Going one step further, we have

Ps' Y) = Ps - [s], y + [s]) = .f (u, z),

where u = s - [s] E [0, 1) and z = y + [s] E Z. This proves

Im f = f (R x Qp) = f ([0, 1) x Zp).

A fortiori, the image of f is equal to f([0, 1] x Zp), and hence is compact and
closed. Consequently, f is surjective (and f' is bijective). In fact, the preceding
equalities also show that the Hausdorff quotient (recall that the subgroup FP is
discrete and closed) is also the image of the compact set S2 = [0, 1] x Zp and
hence is compact. The continuous bijection

f' : (R x Qp)/ Fp -> Sp

between two compact spaces is automatically a homeomorphism.

Corollary 1. The solenoid can also be viewed as a quotient of R x Z p by the
discrete subgroup Az = {(m, -M): m E Z}

f':(RxZp)/Az Sp.

PROOF. Since the restriction of the sum homomorphism f : R x Q. --> SF to the
subgroup R x Zp is already surjective, this restriction gives a (topological and
algebraic) isomorphism

f' : (R x Zp)/ ker f' = Zp.

But

ker f' = (ker f) fl (RxZp)=Az={(m,-m):mEZ}.

These presentations of the solenoid can be gathered in commutative diagrams
of homomorphisms:

Z[ 1/p]

R Qp R Z,

SP SP

Corollary 2. The solenoid can also be viewed as a quotient of the topo-
logical space [0, 1] x Zp by the equivalence relation identifying (1, x) to
(0, X + 1) (X E Z P).



60 1. p-adic Numbers

PROOF. This follows immediately from the previous corollary, since the restric-
tion of the sum homomorphism to [0, 11 x Zp is already surjective, whereas its
restriction to [0, 1) x Zp is bijective.

Comment. This last corollary gives a good topological model of the solenoid:
One has to glue the two extremities of the cylinder [0, 11 x Zp having basis Zp
by a twist representing the unit shift of Zr,. This gives a model for the solenoid
as a very twisted rope! On the other hand, it is clear that instead of the subgroup
r = Z[1/p] consisting of the elements (a, -a) (a E Z[1/p]) we could equally
well have taken the diagonal subgroup A, image of

RxQ,,

the isomorphism (R x Qp)/A = Sp now being given by subtraction.

A.S. Closed Subgroups of the Solenoid

Lemma. Let 6 : Cpm -+ Cpm-i be a surjective homomorphism between two
cyclic groups of orders pl and pin-1. Then the only subgroup H C Cpm not
contained in the kernel of a is H = Cpm.

PROOF Recall that any subgroup of a cyclic group is cyclic and that the number of
generators of C - Z/nZ is given by the Euler cp-function rp(n). In particular, if
n = p'" is a power of p, the number of generators is

Op"') = pm-1(p - 1) = p"` - pin-1

Consequently, all elements not in the kernel of a surjective homomorphism of a
cyclic group of order p"' onto a cyclic group of order pm-1 are generators of the
cyclic group of order p"' (the kernel has order p").

Proposition. For each integer k > 0, there is exactly one subgroup Hk C Sp
having a projection of order pk in the circle: II(Hk) = p-kZ/Z C R/Z. This
subgroup is Hk = -1(p kZ/Z) C Sp.

PROOF We can apply the lemma to each surjective homomorphism

p-kZ/p"+iZ _ p-kZ/pnZ

in the sequence of connecting homomorphisms defining the solenoid as a projective
limit. The projective limit of these cyclic groups is p-kZp.

As a preliminary observation to the following theorem, let us assume that the
solenoid contains a cyclic subgroup H of some finite order m > 1. Taking a gener-
ator x of H and n large enough so that >/i" (x) 0, we see that the restriction of this
homomorphism 1" to H must be injective. A fortiori, the restriction of *,,+ I (and all
iN for N > n) to H must be injective. The restriction of i : R/p"+1 Z R/p"Z
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to ilrn+i(H) must be injective. Hence H = Vrn+1(H) has no element of order p
and m is prime to p.

Theorem. The closed subgroups of the solenoid S,, are

(1) Cm, the cyclic subgroup of order m relatively prime to p (m > 1),
(2) C. x pkZp, where m is prime to p and k E Z,
(3) SP itself (connected).

PROOF Let H be a closed subgroup of the solenoid S. Since H is compact, its
image ip(H) is a closed subgroup of the circle R/Z. The only possibilities are

*(H) = n-'Z/Z cyclic of order n > 1,

or

*(H) = R/Z is the whole circle.

(1) The easiest case is the second one,

*(H) = R/Z is the whole circle,

in which case *,,(H) c R/p"Z must be a closed subgroup of finite index. Hence
it must be open in this circle. By connectivity, *n(H) C R/pnZ. Since this must
hold for all n > 1, we conclude that

H = H = n f,.-, ((.fn H)) = Sp
n>1

and H = SP in this case.
(2) If *(H) = {0}, then H C >Ir-'(0) = Zp C Sp, and we have shown in (3.5)

that the only possibilities are

H = {0}, pkZp for some integer k > 0.

These possibilities occur in the list for Cm = (0) (m = 1).
(3) We can now assume that * (H) = a-IZ/Z is cyclic and not trivial. Write

a = pk m with k > 0 and m prime to p. By the Chinese remainder theorem (or
the p-Sylow decomposition theorem) this cyclic group is a direct product of the
cyclic subgroups m-'Z/Z and p-kZ/Z. If k > 1, the above lemma shows that
Y'n+1(H) must contain an element of order pk+'. As in the proposition, we see
that H contains *-1(p-kZ/Z) = p-kZp C SP, and finally H = Cm x p-kZp. If
k = 0, two possibilities occur: Either *n(H) is cyclic of order m for all n, or there
is a first n such that this group *n(H) contains an element of order p. In the first
case H = Cm, while H = Cm x p'Zp in the second.

A.6. Topological Properties of the Solenoid

We have seen in (I.A.4) that the solenoid SP can be viewed as a quotient of the
cylinder [0, 1] x Zr,, and an image of [0, 1) x Zp. This leads to considering the
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second projection of this product as a (discontinuous) map (t, x) h> x. This map
has continuous restrictions to all subspaces [0,11] x Zp (0 < q < 1). It furnishes
continuous retractions of these subspaces onto the neutral ZP fiber of the solenoid.

Recall that we have a continuous surjective homomorphism 1r : Sp -* R/Z
leading to a presentation of the solenoid by the short exact sequence of continuous
homomorphisms

0->Zp--*Sp-+R/Z->0.

The subspaces (r-1([0, n]) (0 < rl < 1) have continuous retractions on the fiber
Zr,, simply since 1/r-1([0, r7]) is homeomorphic to [0,)71 x Zp. The following
statement is then an immediate consequence of these observations.

Proposition 1. Let U be any proper subset of the circle R/Z. Then the subspace
/r ' (U) C Sp of the solenoid is homeomorphic to U x Z p. The map

(t, x) = (t - [t], x -1- [t]) f-> (0,x-1- [t])

furnishes by restriction a continuous retraction of 1r-1([0, rl]) C SP onto the
neutral fiber Z P C Sp (0 < rl < 1).

The solenoid has still another important topological property that we explain
and prove now.

Definition. A compact and connected topological space K is called indecom-
posable when the only partition of K in two compact and connected subsets is
the trivial one.

Proposition 2. The solenoid SP is an indecomposable compact connected to-
pological space.

PROOF Let us take two compact connected subsets A and B covering Sp. We have
to show that if A 0 SP, then B = Sp. Thus we assume A Sp from now on:
B 0_ Since we have

K = n *U,_ 'n(K))
n>1

for every compact set K, the assumption A 0 SP leads to *,(A) # R/pnZ for
some integer n = no and hence also for all integers n > no (the transition maps
V,n are surjective). It will suffice to show *,,(B) = R/pnZ for all n > no. Take
such an n and an element b E B. Then

co 1(b) C R/pn+1 Z

has cardinality p > 2, and the restriction of V,, to the connected set

C = n 1 Y'n(B) = Y'n+I (B)
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is not injective. The proof will be complete as soon as the following statement (in
which the situation and notation are simplified) is established.

Let a > I be any integer cp : R/aZ -* R/Z the canonical projection, and C a
connected subset of R/aZ containing two distinct points s j4 t with v(s) = cp(t).
Then cp(C) = R/Z.

In terms of the restriction cpIc of the map cp to C, we have to prove

(plc not injective cpic surjective

under the stated assumptions. It is obviously enough to do so when C R/aZ.
In this case, take a point P ¢ C C R/aZ and consider a stereographic projection
from the point P of the circle R/aZ onto a line R. This is a homeomorphism

f:R/aZ-{P}-a R.
The image f (C) of the subset C is a connected subset of the real line containing
the images of two different congruent points mod Z. Since any connected set in the
real line is an interval, this proves that f (C) contains the whole interval J linking
these two different congruent points. Hence C contains a whole arc I of the circle
having image co(1) = R/Z.

EXERCISES FOR CHAPTER I

1. Compute the squares of the following numbers

6, 76, 376, 9376, ....

Show that one can continue the sequence in a unique way: For example, the number

743 740081787109376

appears in the 18th position. Define the limit

a := Y ai l0` = - . - a6a5a4a3a2atao = - 109376
i>O

as a l0-adic integer: a E Z10. Give the 10-adic expansion of -1.
Observe that by definition a2 = a, and find the four solutions 0, 1, a, 6 of x2 = x

in Z10. What are a +$,a,6?
Prove that Z10 = Z5 x Z2. (Hint. Consider the map x H (ax, ax).)

2. (a) Give the 5-adic expansion of the integers 15, -1, -3. The integers 2. 3, 4 are
invertible in Z5: Give the 5-adic expansions of the inverses. Give the expansion of
3 in Z7.

(b) What is the p-adic expansion of 1 if the prime p is odd?
(c) If f is a positive integer, give the expansion of 1/(1 - pf) in Zn.
(d) More generally, find the expansion of 1/m in ZP when the integer m is not divisible

by p. (Hint. Let f be the multiplicative order of p mod in so that pf - 1 = nm.
Then use I/m = -n/(1 - pf)-)
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3. (a) Show X E p"Zp -x E p"Zp and so ordp(-x) = ordp(x).
(b) Check as in (1.5) that if a E Zp, then (1 + p"a)-1 = I + p'a' for some a' E Zr,.
(c) Using the p-adic metric, reformulate (b) in the form

if0 <r < 1, then

Ix-1I<r, jy-II<r==> Ixy-1I<r.

(d) Let a denote the involution introduced in (1.2). Show that a (B<r (a)) = B<r (a (a)).

4. Show that there is a square root of 2 in Z7. (Compute the first coefficients in a =
ap + a t 7+a272+ iteratively using a2 = 2; do not be surprised if no regular pattern
appears: The same happens for the computation of the decimal expansion of in R;
cf. also (I.5.3).)

5. (a) Solve the equation x2 = 1 in all Z/2"Z (n > 1). Guess the result by making a small
table with the first values n < 4 or 5.
(Hint. Consider separately the cases n = 1, 2, > 3. When n > 3, observe that if
x2 = 1, then x is the class of an odd integer 2k + 1 (0 < k < 211-1), and 4k(k + 1)
has to be divisible by 2". In (VII.1.7) we show that the unit group in Z/21Z is a
product of two cyclic groups (n > 3), from which the result also follows.)

(b) Solve the equation x2 = I in Z2.

6. (a) Let N be a positive integer. Show that the subset IN, N + 1, N + 2, ...] is dense
in Zp.

(b) For which values of a and b E Zp is the subset a + bN dense in Zp?
(c) Show that the subset {-1, -2, -3, ...] is dense in Z.

7. Let jp : Q -> Qp denote the canonical injection.
(a) Determine the subring jP1(Zp) of the field Q (this subring is simply written Q n

Zp = Z(p)). What is jP 1(Zp) n Z[1/p]?
(b) Show that

n jP l (zp) = z
p pnme

(this equality is sometimes simply written fp(Q n Zr,) = Z).

8. Let X be a nonempty set and E = XN the set of sequences in X. For two different
sequence a = (a"), b = (b") let us put

d(a, b) =
= 1

min{n : a" # b") v

(a) Show that d defines an ultrametric distance on E.
(b) Show that E is complete for the preceding metric.

9. The distance between two subsets A, B of a metric space is defined by d(A, B) _
infaEA,bEB d(a, b). Show that if the metric d is ultrametric, then

d(a.b) ifr <d(a,b),
d(B<r(a), B<r(b)) =

to if r > d(a, b).

More generally, the distance of two disjoint balls B, B' is equal to the constant value
of d(x, x') for x E B, X' E B'.
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10. Let K be a (commutative) field and let K[[X]] be the ring of formal power series
f (X) = Fn>O a,,X'. Choose 0 < 0 < I and for g(X) = Fn,o bnXn f (X), define

d(f(X), g(X)) = B""n{n:a

Show that d defines an ultrametric distance on K[[X]] for which this space is complete.
Show that the space of polynomials K[X] is dense in K[[X]], and hence this is a
completion of the space of polynomials. The ball if (X) : d (f (X), 0) < on) is the ideal
(Xn) = X"K[[X]]. The fraction field K((X)) = K[[X]][X-1 ] consists of the Laurent

series r;, anXn (v E Z). It is a completion of the ring K[X, X-1].

11. Let 0 > I and for any nonzero polynomial f E R[X] define If I = Bdeg f . Extend this
definition by 101 = 0 and I f/gI = If I/IgI for a rational fraction f/g E R(X). Show
that this defines an ultrametric absolute value on the field R(X).

12. Let E be a compact metric space and f : Z2 - E be a continuous surjective map. For
each ball B C Z2 of positive radius, let AB = f (B) be the compact image of B in the
space E. Observe that

AB = AB' U AB" if B= BU B",

n AB = {f(X)}-

B3X

Conversely, recall that A2 denotes the free monoid generated by two letters, say 0 and
1, and P(E) denotes the set of parts (power set) of E. For any map c : M2 --> P(E)
having the properties
(a) cp(O) = E, co(-) = cp(wO) U co(wl) (w E M2),
(b) S(tp(wn)) -> 0 when the wn are the initial segments of an infinite word,
(c) n cp(wn) 94- 0 when the wn are the initial segments of an infinite word,

show that there exists a continuous surjective map

f : Z2 -> E such that f (Bu) = gp(w)_

13. Let E be a compact metric space. Show that there exists a continuous surjective map
f : Z2 -> E. In other words, the metric space is a topological quotient of the space
Z2. (Hint. Let (Kl)1<;<k be a covering of E by closed sets of diameter < 1. If k > I
call A0 = K0 U . U Ke and Al = Ke+1 U .. U Kk with, e.g., f = [k/2]. If e > 1,
start again and define similarly shorter unions A00, A01 such that A0 = A00 U A01.
This leads to finitely many words w; so that K; = Awe. Proceeding similarly for each
of them, show how to define a map 6 : M2 - E having the properties listed in the
previous exercise.)
Conclude that all spaces Z,, are homeomorphic to Z2.
Give an explicit continuous surjective map Z2 -* (I In : n > I)

14. Let E be a compact metric space. Show the equivalence
(i) there is a continuous surjective map f : [0. 1] -> E,

(ii) E is path-connected.
(Hint. Use the previous exercise to construct a continuous surjective map fo : C -
E. where C is the Cantor subset of the unit interval, and extend fo through the
missing intervals - this is possible if the space E is path-connected.)
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In particular, for every compact, convex subset K of a (real or complex) Hilbert
space, there is a continuous surjective f : [0, 1] -> E ("space-filling curve" or
Peano curve).

15. Let E be a compact metric space with the following properties:
(a) E is totally disconnected.

(b) F has no isolated point (hence is not a singleton set!).
Show that E is homeomorphic to Z2-

16. Show that the planar fractal image of Z5 is path-connected when it is connected (cf.
picture in text).

17. Construct a planar model of Q7 using v : 10, 1.... 6} -), C defined by

v(0) = 0, v(j) = (1 < j < 6).

Observe the appearance of the von Koch curve in the image of

X7= {an771:1 <an <6j CQ7-
n>O

18. (a) Give an example of a discrete subset of [0, 11 c R that is not closed.
(b) Prove that if A is a discrete subset of a Hausdorff topological space X. then A is

open in A (the same is true for any locally compact subset in a Hausdorff space).
(c) Let G be a topological group that is Hausdorff. and F a discrete subgroup. Prove

directly that r is closed in G (cf. I-3.2).
(d) Let G be a group having more than one element, let Gd denote the topological

group G with the discrete topology, and let Go denote the topological group G
with the topology having only 0 and G as open sets (not Hausdorff!). Prove that
r = Gd x (e) is a discrete subgroup of the topological group Gd x Go. What is
its closure?

19. (a) Let H be a normal subgroup of a topological group G. Prove that the subgroup H
is also normal.

(b) For any topological group G, the quotient G/{e) is a Hausdorff topological group.
(c) Let H be a closed subgroup of a locally compact (topological) group G. Prove that

the space G/H is locally compact
(d) Let G be a locally compact totally discontinuous group, so that the connected com-

ponent of the neutral element in G is (e). Prove that any neighborhood of the neutral
element contains a clopen subgroup. (Hint. Start with a compact neighborhood K
of e. There is a clopen neighborhood U of e contained in K. Since U is compact
and disjoint from the closed set F = G - U, there is a symmetric neighborhood
W of e such that UW n FW = 0 and hence

UW C (FW)c C F` = U.

By induction Wn C UW' C U. The subgroup generated by W is open and
contained in U.)

20. Here is an example of a topological ring A that does not induce on its units A" a topology
compatible with the group structure (cf. (1.3.5)). Let H be a complex Hilbert space with
orthonormal basis (e, ),>0. Hence the elements of H are the series x = >t>0 xi e; such
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that x; E C and F-i>o Ixi 12 < oc. Consider the sequence of continuous operators T, in
H defined by

n,Tn:e{F* ei if i
en/n if i = n.

Prove that for every x E H, II Tnx _X112 -* 0, and hence Tnx -+ x and Tn -* I for the
strong topology on the ring A of bounded operators on H. But T-1 74 1 for the strong
topology (consider the vector x = n>t en/n).

21. Let K be an ultrametric field.
(a) Show that if K is locally compact, then all balls of K are compact (and conversely).
(b) Two balls of K having the same radius r > 0 are homeomorphic.

(Hint- Consider separately the cases I K X I discrete or dense; remember that all
spheres are clopen, and if necessary, use a bijection (0, r] n I K" I - (0, r) n I K" I.)

22. Let G be a group and

G=GojGi jG2D---DGn D---

be a decreasing sequence of normal subgroups of G. Show that there is a unique group
topology o.i G for which (Gn)n>o is a fundamental system of neighborhoods of e. For
this topology, the Gn are clopen subgroups and

G Hausdorff n Gn = {e}.
n>O

When this is the case, show that G is metrizable. (Hint. Note that G/Gn is discrete and
metrizable. One can embed G in the countable metrizable product fl GIG..)

23. Let A = M2(Zp) be the noncommutative ring of 2 x 2 matrices having coefficients
in Zp. Show that A is a topological ring (for the product topology). The units in A
constitute a group Ax = G12(Zp):

g E GI2(Zp) g E M2(Zp) and detg E Z.

Show that GI2(Zp) is a topological group with the topology induced from A. Let Gn C G
denote the normal subgroup consisting of matrices g = (gi j) congruent to the identity
matrix mod pn,

gij = Sip mod pnZp

(Si j = I if i = j and = 0 if i ¢ j is the Kronecker symbol). Show that the Gn form a
fundamental system of neighborhoods of the identity in Gl2(Zp).

24. Let (An)n>o be a decreasing sequence of subsets of a set E. Consider the canonical
inclusions An+t c An as transition homomorphisms. Show that the intersection A =
n,,>() An together with the inclusions A An has the universal property characterizing

the projective limit lim An and hence may be identified with it: lim An = n An.

25. Let (Xn, (pn)n>o and (Yr, *n)n>o be two projective systems. One can consider canoni-
cally (Xn x Yn, tpn x *n)n>o as a projective system. Prove

lim (Xn X Yn) = lim Xn x lim Yn.
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68 1. p-adic Numbers

26. Let a E Z be a rational integer. Show that X2 + X + a = 0 has a root in Q2 if and only
if a is even.

27. (a) In which fields Qp does one find the golden ratio (root of x2 = x + 1)?
(b) How many solutions of X 4 + X 2 + 1 = 0 are in Q7? (Either make a list of solutions

mod 7, or consider Y = X2 and solve in two steps.)

28. (a) Show that if a E I + pZp and the integer n is prime to p, then there is an nth root
of a in Qp.

(b) Give an example of a E I + pZ p having no pth root in Qp.
(c) Show that if a E I + p3Zp, then a has a pth root in Qp.

29. Let n be a positive integer, v = ordpn; hence n = p°n' and (p, n') = 1. For integers
a, b E Z, prove

a= b (mod nZ(p)) a- b (mod p'Z).

(Hint. Observe that nZ(p) = p°Z(p) and nZ(p) fl Z = p°Z.)

30. Let p and q be distinct primes.
(a) Prove that the fields Qp and Qq are not isomorphic.
(b) Prove that the fields Qp and R are not isomorphic.
(c) Prove that the fields Qp(/cq_1) and Qq(11p_1) are not isomorphic.

(Hint. Look at roots of unity. Observe that for each prime p, the field Qp has an
algebraic extension of degree 4, which is not the case of the field R. For part (c),
use the lemma in (6.8).)

31. Let p and q be distinct primes. What is the projective limit

lim R2/ (P, Z x q"Z)?



2

Finite Extensions of the Field
of p-adic Numbers

The field QP is not algebraically closed: It admits algebraic extensions of arbitrarily
large degrees. These extensions are the p-adic fields to be studied here. Each one
is a finite-dimensional, hence locally compact, normed space over Qp. A main
result is the following: The p-adic absolute value on Qp has a unique extension to
any finite algebraic extension K of QP.

1. Ultrametric Spaces

1.1. Ultrametric Distances

Let (X, d) be a metric space. Thus X is equipped with a distance function d : X x
X --) R>0 satisfying the characteristic properties

d(x,y)>0x#y,
d(y, x) = d(x, y),

d(x, y) < d(x, z) + d(z, y)

for all x, y, and z E X. For r > 0 and a E X we define]

B<r(a)_(xEX:d(x,a)<r}
= dressed ball of radius r and center a,

1 Let me use this unconventional terminology in this section only. From (11.2) on, I shall rely on the
reader for a proper distinction between "open" and "closed" balls.
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B<r(a) = {x E X : d(x, a) < r}

= stripped ball of radius r and center a.

Hence B<r(a) is empty if r = 0, and the stripped balls form a basis of a topology
on X: In particular, all stripped balls are open.

Definition. An ultrametric distance on a space X is a distance (or metric)
satisfying the strong inequality

d(x, y) < max(d(x, z), d(z, y)) (< d(x, z) + d(z, y) )

for all x, y, and z E X. An ultrametric space (X, d) is a metric space in which
the distance satisfies this strong inequality.

The following results are valid in ultrametric spaces.

Lemma 1. (a) Any point of a ball is a center of the ball.
(b) If two balls have a common point, one is contained in the other.
(c) The diameter of a ball is less than or equal to its radius.

PROOF (a) If b E B<r(a), then d(a, b) < r and

x E B<r(a) d(x, a) < r d( r d(x, b) < r x E B<r(b)

proving B<r(a) = B<r(b). The case of a dressed ball is similar.
(b) Take, for example, a common point c of the balls B<r(a) and B<r'(b). By

the previous part, we have

B<r(a) = B<r(c) and B<r'(b) = B<r'(C).

Now, it is clear that B<r(C) C B<r'(c) if r < r', while B<r'(c) C B<r(C) if r' < r.
All other cases are treated similarly. Part (c) is obvious.

It is immediately seen by induction that ultrametric distances also satisfy the
strong inequality for finite sequences xl, x2, ... , x E X:

d(xt, x,,) < max (d(xi, x2), d(x2, x3), ... , xn))-

Consider a cycle containing n > 3 distinct points: xi (1 < i < n), xt. We
may assume d(xi, maxi <n d(x,, x,+i ): Renumber these points if necessary,
and observe that d(x,,, d(x,,, xi) = d(xi, Since

d(xi, xn) < max (d(xi, x2), - .. , xn))

by the ultrametric inequality, it follows that

d(xt, d(xi, xi+i)
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for at least one index 1 < i < n - 1. In other words, the cycle has at least two pairs
of consecutive points with equal maximal distance. In particular, in a set a, b, c
of cardinality 3, at least two pairs have the same (maximal) length. A picturesque
way of formulating this property is this:

In an ultrametric space, all triangles are isosceles (or equilateral), with at
most one short side.

Here is an image of the situation. Let x be the earth and y, z be two stars in a
galaxy not containing the earth, so that d(x, y) > d(y, z). Then we consider that
d(x, y) = d(x, z) (this is the distance of the galaxy containing y, z to the earth).
In other words, ultrametric distances behave as orders of magnitude.

Let us denote by S,(a) = {x E X : d(x, a) = r} the sphere of center a and
radius r > 0. Then if a ball B does not contain the point a, it lies on the sphere
Sr(a), where r = d(a, B)

if B = B<s(b), then r = d(a, b) > s and B C Sr(a),

and similarly,

if B = B<S(b), then r = d(a, b) > s and B C Sr(a).

Let us reformulate these properties in the form of another lemma.

Lemma 2. (a) If d(x, z) > d(z, y), then d(x, y) = d(x, z).
(b) If d(x, z) d(z, y), then d(x. y) = max (d(x, z), d(z, y))
(c) If x E Sr(a), then B<r(x) C Sr(a) and

Sr(a) = U B<r(x)
xES,(a)

Balls within a ball

The stripped balls are open in any metric space: By definition, they make up a
basis of the topology. Similarly, the dressed balls are closed in any metric space.
In an ultrametric space we have some other peculiarities.
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Lemma 3. (a) The spheres Sr(a) (r > 0) are both open and closed.
(b) The dressed balls of positive radius are open.
(c) The stripped balls are closed.
(d) Let B and B' be two disjoint balls.

Then d(B, B') = d(x, x') for any x E B. X' E B'.

PROOF (a) The spheres are closed in all metric spaces, since the distance function
x N d(x, a) is continuous. A sphere of positive radius is open in an ultrametric
space by part (c) of the previous lemma.

(b) If r > 0, then B<r(a) = B<r(a) U Sr(a) is open.
(c) If r > 0, the sphere Sr(a) is open; hence B<r(a) = B<r(a) - Sr(a) is closed.

If r = 0, B<r(a) = 0 is closed.
(d) Take four points: x, y E B and x', y' E B'. The 4-cycle of points x, x', y', y

has two pairs with maximal distance: They can only be d(x, x') = d(y, y'), since
we assume that the balls are disjoint. All pairs of points x E B, x' E B' are at the
same distance, and d(B, B') := d(x, x') is this common value.

Due to the frequent appearance of simultaneously open and closed sets in ultra-
metric spaces, it is useful to introduce a definition.

Definition. An open and closed set will be called a clopen set.

Lemma 4. (a) A sequence (xn)n,o with d(xn, xn+i) - 0 (n --> oo) is a Cauchy
sequence.

(b) If xn -* x a, then d(xn, a) = d(x, a) for all large indices n.

PROOF (a) Observe that if d(xn, xn+i) < E for all n > N, then also

d(xn, xn+m) < max d(xn+i, xn+i+1) < E
0<i <m

for all n > N and m > 0.
(b)In fact, d(xn,a)=d(x,a)as soon as d(xn,x)<d(x,a).

Proposition. Let Q C X be a compact subset.
(a) For every a E X - Q, the set of distances d(x, a) (x c S2) is finite.
(b) For every a E S2, the set of distances d(x, a) (x E Q - (a}) is discrete

in R>0.

PROOF (a) We have just seen that

d(x, y) < d(x, a) = d(y, a) = d(x, a);

hence the function f : x H d (x, a), S2 -- R,o is locally constant and continuous.
Its range is finite: The sets f -1(c) (for c E f (S2)) form an open partition of the
compact set Q.
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(b) The map f : x H d(x, a), Q - {a} -+ R>o is locally constant as before.
For s > 0, its restriction to the compact subset Q - B«(a) has finite range. This
proves that all sets

[E, co) fl {d(x, a) : x E S2, x a}

are finite. Hence f (S2 - {a}) is discrete in c R>0.

Let us summarize.

Properties of ultrametric distances.

(a) Any point of a ball is a possible center of the ball
b E B<r(a) = B<r(b) = B<r(a) (and similarly for stripped balls).

(b) If two balls have a common point,
then one is contained in the other.

(c) A sequence (x is a Cauchy sequence
precisely when d(x,,, 0 (n -> oo).

(d) In a compact ultrametric space X, for each a E X,
the set of nonzero distances {d(x. a) : a x E X) is discrete in R>0.

1.2. Ultrametric Principles in Abelian Groups

Let G be an additive (abelian) group equipped with an invariant metric d, namely
a metric satisfying

d(x + z, y + z) = d(x, y) (x, y and z E G).

For x E G, define

Then

and

IxI = d(x, 0).

I -xI = d(-x, 0) = d(0, x) = d(x, 0) = IxI

Ix+yl =d(x+y,0) <d(x+y, y)+d(y,0)
< d(x. 0) +d(y, 0) =IxI + lyl.

This shows that x r+ -x and (x, y) r-> x + y are continuous and G is a topological
group when equipped with the metric d. We shall say that G is a valued group
when such a metric d has been chosen.

Assuming that this metric satisfies the ultrametric inequality, we shall have
similarly

Ix + y I = d(x + y, 0) < max (d(x + y, y), d(y, 0))
< max (d(x, 0), d(y, 0)) = max (Ix 1. Iyl).
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74 2. Finite Extensions of the Field of p-adic Numbers

In particular, all nonempty balls centered at the neutral element 0 E G are sub-
groups of G. These subgroups are

B<r(0)=(xEG:IxI <r} (r > 0),
B<r(0) = {x E G : IxI < r} (r > 0).

Instead of applying (1.1) to see that the balls B<r(0) and B<r(0) are open and
closed when r > 0, one can observe that these subgroups are neighborhoods of
the origin and use (1.3.2) to reach the same conclusion.

Conversely, if we are given a function G --> R>o : x H IxI satisfying

IxI > 0 forx 0 0, I-xl = IxI,
Ix+yl < IxI+lyl (resp. <max(IxI,IYU)

then we can define an invariant metric (resp. ultrametric) on G by

d(x,y)=Ix-yl-
The characteristic properties of distances are immediately verified (see the specific
references at the end of the volume). A pair (G, I . I) consisting of an abelian group
G and a function G --> R>o : x H IxI satisfying the preceding properties, with
the ultrametric inequality

Ix +yl5max(IxI,lyf) (x,y EG),

will be called an abelian ultrametric group.
The study of convergence for series in a complete abelian group is simpler in

ultrametric analysis than in classical analysis. Let (ai )i>o be a sequence and define

Sn = E ai-
i<n

If this sequence of partial sums sn has a limit s, then

an = Sn+1 - Sn - s - s = 0.

This necessary condition for convergence of the series LLi>o ai is sufficient in any
complete ultrametric group. Indeed, if sn+t - s, = an -* 0, the sequence (s,,)
is a Cauchy sequence and hence converges. Moreover, reordering the terms of a
convergent series, and grouping terms, alters neither its convergence nor its sum.

Proposition. Let (a, )i EN be a sequence in a complete ultrametric abelian group.
Assume that ai -> 0, so that the series Li>o ai converges: Let s be its sum.
Then

(a) for any bijection a : N -+ N we have s = F_i>o a,lit,

(b) for any partition N = Lj 1j we have s = > j (F-iEt, ai).
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pRooF (a) For e > 0, define the finite set

I(£) _ (I : Jail > s}

and the corresponding sum

s(£) = Y ai.
iEI(8)

For any finite set J D I (E),

ai
J-I(s)

< max IaiI < E.
- itt I(s)

This proves that the family (ai) is summable. This notion is independent of the
order on N. Explicitly, for £ > 0, rl > 0 we have

Is(E) - s(il)l < max(£, ii),

since s(£) - s(q) is a finite sum of terms having absolute values between s and rl.
In particular, (s(1/n)),,>o is a Cauchy sequence, and we call s its limit. If £ > 0,
letting n - oo in

Is(s) - s(1/n)I < max(£, 1/n)

we get

Is(s) - sl < E.

Hence we can say that s(s) -+ s when s 0. Now, if a; = a,(i) is a rearrangement
of the terms of the series and s = Yi <, d, the inequality

IS - s,I < £

holds when (Q(i) : i < n} contains the finite set I(s), hence for all sufficiently
large n.

(b) Let sj = Fir=1' ai, so that we have to prove s sj. Take any s > 0 and
define the finite sets

Ij(£) = Ij (11(£).

Obviously, the nonempty Ij(s) make a partition of the finite set I(£), and

s(s) = a =E y- a
I(s) j iEI,(s)
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76 2. Finite Extensions of the Field of p-adic Numbers

Finally,

Is - jsjl < max (is - s(E)I,
j

ai -j ie/j(e)

< max I Is - s(E)I, maxj E a, -Sj
iE/j(E)

Sj

j

Since this is true for all E > 0, the conclusion follows.

Corollary. Let (a i j )i>o, j>o be a double sequence such that for any E > 0 the
set of pairs (i, j) with Iaij I > E is finite. Then this double family is summable
and

(>aii) = (Y-,(aii).
i?0 j>0 j>0 i>0

PROOF. The family (aij)i>o,j>o is summable over the countable set N x N by
hypothesis, and the sum of the corresponding series Yi j aij can be computed in
any order. It can also be computed using the two groupings mentioned.

Comments (1) Summable families over arbitrary index sets will be considered
later (cf. (IV.4.1)). The above proposition will be generalized correspondingly.

(2) In classical analysis, there is a distinction between conditionally convergent
and absolutely convergent -orcommutatively convergent, or summable-series
(of real or complex numbers): This distinction disappears in non-Archimedean
analysis, since the sum of a convergent series can be computed in any order, any
grouping. But in both contexts a grouping in a divergent series may produce a
convergent one: Think of ai = (-1)t, Iai I = 1 fi 0; here is a grouping that leads
to a convergent series

(1 - 1)+(1 - 1)+... =0+0+ =0,

and here is another grouping,

l + (-I + 1) + (-l + l)+ = 1 +0+0+ = l

leading to a different sum. Or think of the divergent series &>o at where all
an = 1. A suitable grouping of its terms leads to a convergent series:

+p+p2+...
p terms p2 terms

1

1-p
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Basic Principles of Ultrametric Analysis in an Abelian Group

(1) The strongest wins

IxI>lyl===> lx+yl=IxI.

(2) Equilibrium: All triangles are isosceles (or equilateral)

a + b + c = 0, I cl < IbI = lal = ibl.

(3) Competitivity

at+a2+...+an=0 =
there is i 4 j such that la1 I = I ai I = max lak 1.

(4) A dream realized

(an)n>o is a Cauchy sequence d(a, an+t) -* 0-

(5) Another dream come true (in a complete group)

1:n>o an converges an -- 0.

When L.n>O an converges, Y_n>o Ian I may diverge but

I >n>0 an I < sup Ian I and the infinite version of (3) is valid.

(6) Stationarity of the absolute value

an -+ a 0 0 = there is N with Ian I = Ia I for n > N.

1.3. Absolute Values on Fields

Definition 1. An absolute value on afield K is a homomorphism

f: K"-.R>o

extended by f (0) = 0 and such that f (x + y) <_ f (x) + f (y) (x, y E K).

The trivial homomorphism f (x) = I (x E K") defines the trivial absolute value
on K. We shall usually denote by f(x) = IxI an absolute value, and by definition,
such a function will always have the characteristic properties

lxI > 0,
IxI=0'4-- x=0,

Ixyl = IxI IA,
Ix+yI IxI+IyI

for all x, y E K. The pair (K, 1. I) is a valued field (I.3.7).
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78 2. Finite Extensions of the Field of p-adic Numbers

If x" =I E K, then Ix I" = Ix' I =I and Ix I =L In particular, 1-11 = II = t.
Also, 121 = I I + 11 < I + 1 = 2, and by induction

In1 <n (nEN)

(here n = n - 1K E K in the left-hand side of the inequality, whereas n E R,o in
the right-hand side). Also, quite generally,

x

y

By induction

jxj

1

(x E K, Y E Kx).

IXI +X2+---+X.1 <- IX]I + 1x21+ Ix"I

for every positive integer n.

Definition 2. An ultrametric field is a pair (K, 1.1) consisting of a field K and
an ultrametric absolute value on K, namely an absolute value satisfying the
strong triangle inequality

Ix + yl < max (Ixl, lyl) < Ixj + lyl (x, y E K).

As before, induction shows that

Ixt+x2+...+.x"I <max(IxiI,Ix21,.--,Ix"I)-

In this case, we have 121 = I1 + 1 I < I and by induction

In1 < 1 (nEN).

Hence ultrametric fields have the non-Archimedean property

Inxi < Ixl (n E N).

The following lemma is obvious (cf. (1.2)).

Lemma. All balls containing 0 in an ultrametricfield K are additive subgroups.
The dressed unit ball B<,(0) is a subring of K. The balls B<r(0) (r < 1) are
ideals of B<1(0). The balls B<r (0) (r < 1) are ideals of B<t (0).

Proposition. Let x H Ix I be an absolute value on afield K. Then:

(1) d(x, y) = Ix - yI defines a metric on K.
(2) For each exponent 0 < a < 1 , x H lx l" still defines

an absolute value on the field K.
(3) If x H 1xI is an ultrametric absolute value,

then for each positive exponent a > 0, x H Ix I" still defines
an ultrametric absolute value on the field K.
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peooF All statements are obvious except perhaps the triangle inequality, which is
nevertheless a simple exercise.

The trivial absolute value defines the discrete metric: d(x, y) = 1 if x y.

1.4. Ultrametric Fields: The Representation Theorem

Let K be an ultrametric field. We use the general notation

A = (x E K : lxi < 1): dressed unit ball,
M = {x E K : Ix I < 1): stripped unit ball.

Hence

A=AxuM
is a disjoint union, where A', the multiplicative group of invertible elements in A,
is the unit sphere Ix I = 1.

Proposition. The subset A is a maximal subring of K, and M is the unique
maximal ideal of the ring A.

PxooF. Indeed, if A' is any subring strictly containing A. it will contain an element
y such that I y I = r > I together with all its powers y". Hence B<r- = y"A C A',
and since r" = J y" l -+ oo, we see that K = U", y' A = A'. Moreover, any ideal
not contained in M contains a unit, and hence coincides with the whole ring A.
This shows that M is the unique maximal ideal of A.

Definition 1. A subring A of a field K such that

for every xeKx,xeAor lIx eA
is called a valuation ring of K. A commutative ring A having a single maximal
ideal is called a local ring.

The unit ball in an ultrametric field is a local ring and a valuation ring.

Definition 2. If K is an ultrametric field, its residue field is the quotient k =
AIM of its dressed unit ball, the maximal subring of K, by its unique maximal
ideal.

The residue field parametrizes the stripped balls of unit radius in the dressed
unit ball of K: If S C A is a set of representatives for the classes mod M, then

A = B<1(0) = U B<1(x)
xES

Theorem. Let K be a complete ultrametric field, A its maximal subring de-
fined by Ix I < 1. Choose an element with 1 I < 1 together with a set of
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representatives S C A containing O for the classes A/i A. Then each nonzero
element x E K" is a sum

x = Y ai l;' (m E Z, ai E S, am 0)
i>m

with m > 0 precisely when x E A. The map x H (s,,) where s,, aid'
defines an isomorphism A - lim A/i; 'A.

PROOF. The conditions Ii I < 1, i; E A is not a unit, and i; E M are all equivalent.
Starting with x E A. there is a unique ao E S with x - ao E i4 A,

x =ao+l;xt (x1 E A).

Repeating the procedure for x1, and so on, we get by induction

x = a0+at + - -+a1r ' +xnr

with ai E S and X,, E A. In the notation of the statement of the theorem, we can
write x = s,, +x,,i;". Since ICI' 0, the sequence is a
Cauchy sequence, and the series in>o aid i converges to the element x E A. Since
for any x E K there is an integer k such that I i; kx I < 1, namely such that i; kx E A,
the preceding expansion can be derived for this element, and we obtain a series
expansion for x starting at the index i = m = -k.

Observe that even when K is not complete, each x E K" has a series represen-
tation as indicated in the theorem, but an arbitrary series

1: ai i' (m c Z, ai E S, am # 0)
i>m

will - in general - converge only in the completion of K. In other words, even
when K is not complete, we get an injection

A -* A = lim A/r'A.

1.5. General Form of Hensel's Lemma

Theorem (Hensel's Lemma). Let K be a complete ultrametric field with max-
imal subring A and f E A[X]- Assume that x E A satisfies

If(x)1 < If'(x)12.

Then there is a root i; E A off such that I - xl = If (x)/f'(x)I < I f'(x)l
This is the only root off in the stripped ball of center x and radius I f'(x)I.

PROOF. In spite of the similarity with (1.6.4) (particular case K = QP), we give a
complete proof with absolute values (instead of congruences). The idea is again to
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use Newton's method iteratively. Since the polynomials f and f' have coefficients
in the ring A, we have If (x)I < I and 0 < If 1(x)I < 1.

First step: Estimates concerning the distance of x = x - f (x)/ f'(x) to x.
The assumption is c := I f (x)/f'(x)21 < 1. We have

f(x) f(x) f'(x),x-x=- _-
f'(x) f'(x)2

r-xl =clf'(x)I-
Similarly

z
AX)(X -x)2 = \f (x)/ f'(x)2

f(x),

Ix -x12 = clf(x)I-

The second-order expansion (1.6.2) off at the point x gives

f(z) = f(x)+(z -x)f'(x)+(z -x)2r (r E A : IrI < 1),

=0: Newton's choice

If(x)I < IX-xI2=clf(x)I < If(x)I,

and 'Z is an improved approximation to a root. The first-order expansion (1.6.2) of
f' at the point x gives

f'(x) = f'(x) + (x - x)s (s E A : Is 11),
If'(X) - f'(x)I < Ix -xl = cif'(x)I < If'(x)I-

It shows that

if(7)1 = I f'(x) + (f'(x) - f'(x)) I = I f'(x)I
strongest

The invitation to iteration is clear.

Second step: Further iterations.
Let now'=

C :_ < clf(x)I =c2.
I f'(x)12

This iteration furnishes

If(x)I <2If(7)I <cclf(x)I <c2+11f(x)I,

and since I f(x) I = cl f'(x)12 by definition, we obtain

If(X)I < c`If'(x)I2-
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82 2. Finite Extensions of the Field of p-adic Numbers

We can construct the sequence xo = x. x, = X, x2 = X, ... inductively with
xi+t =1j. Define also ct = c, c,+t = c,. The preceding estimates show that

If(xdI < ct-1...C1clf(xo)I < c'-'-t If(xo)I = c'' If'(xo)1'" -* 0 (i -> no),

IX? - x, I = Ix -Xl < c2l f'(xo)l < cl f'(xo)I = Ixt - xol,

and by induction,

Ixr+1 - xt I <
c'

If'(xo)I < cl f'(xo)I = Ixt - xol (i > 1).

In particular, lx, - xol = Ixt - xol = Ix - xl = clf'(xo)l is constant for i > I
(these x, are closer to each other than to xo).

Third step: The limit root i .

The sequence (x, ),>o is a Cauchy sequence, so it converges in the complete field
K. Since all iterates xi belong to the closed subring A, we have

= limx- EA,
n-*oo

I -x01 = Ixt - xol = Ix - xl = clf'(x)I < W(x)I,
f( lim x,) = lim f(x,) = 0.

n-*oo n-*oo

Fourth step: Uniqueness of the root l; .
Let be as before and q have the required properties, say rl = + h. Hence

h l = I q - I < l f'(x)l = I The second-order expansion (1.6.2) off at the
point gives

0 = f(,) = (t E A : Itl < 1),

=0

0 = h( ht =

h = 0, i.e., rl = .

Observe that when the absolute value is trivial, it takes only the values 0 and 1,
the assumption reduces to

0 = If(x)I < lf'(x)l2 = 1,

and the statement is trivially correct.

1.6. Characterization of Ultrametric Absolute Values

Theorem. Let x r* lxI be an absolute value on afield K. Then the following
properties are equivalent:

(i) In I < 1 for all natural integers n E N.
(ii) The absolute value is bounded on N N. I K.
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(iii) I I + x I < I for every x E K such that IxI < 1.
(iv) x H Ix I is an ultrametric absolute value.
(v) {x E K : IxI < 1) is a subring of K.

PROOF. We proceed according to the following scheme of implications:

(i) = (it) = (iii) = (iv) = (v) r (iii)

and

(iv) (i).

Among these implications, several are trivial, namely,

(i) (ii), (iv) = (v) = (iii) and (iv) (i).

It only remains to prove two implications. For (ii) = (iii) we can assume InI < M
for all integers n and use the binomial formula to compute

II +xIn = l(1 +x)"I = I

(ii)x`

t
I

< EMlxli.

When IxI < 1, we obtain

I1 +xln < (n + 1)M,

I1+xI <(n+l)11n.M11n

for all integers n > 1. Since (n + 1)11n --* I aswell as M11n --* I for n -p oo, we
infer I I + x I _< 1. To prove (iii) = (iv), we can - without loss of generality -
assume that IxI ? ly I in Ix + yI, IxI > 0 and estimate this quantity as follows:

I x = max(IxI, lyl).

Corollary. Any absolute value on afield of characteristic p 0 is ultrametric.

PROOF. Indeed, any absolute value is bounded on the image of N in a field of
characteristic p, since this image is a finite prime field. The second condition of
the theorem is automatically satisfied.

The absolute values that are not bounded on the prime field of K (necessarily
of characteristic zero) are sometimes called Archimedean absolute values: They
have the property that

if x 94- 0, then for each y there is an n E N such that l nx I > ly I

1.7. Equivalent Absolute Values

Distinct absolute values can define the same topology on a field K. It is not always
useful to distinguish them.
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Theorem. Let I. II and I .12 be two absolute values on a field K. Then the
following conditions are equivalent:

(i) There is an a > 0 with 1.12 = I I. I 'l
(ii) I . It and I .12 define the same topology on K.

(iii) The stripped unit balls for I. I I and I. 12 coincide.

We say that I. I1 and I. 12 are equivalent absolute values when these conditions
are satisfied.

PROOF (i) (ii) Since Ix - a12 < r Ix - alt < r'I', the stripped balls are
the same for the two topologies. Hence the topologies defined by I . I I and I.12 are
the same.

(it) = (iii) Let us observe that

Ix I t < 1 x' -> 0 (for the topology defined by I . I t )

and similarly for I . 12. By assumption we obtain

Ixlt <1t==Ix12<1.

(iii) = (i) Let us assume Ix I] < I Ix12 < 1. Since I1/xli = 1/IxIt and
similarly for I. 12, we see that

Ix11 >Ix12>1
and consequently

Ixlt=I Ix12=I.

If 1. 11 is trivial, Ix I t = 1 for all x E K", and the same is true for I.12, so that
we can take a = 1 in the statement of (i). Otherwise, we can find xo E K" with
Ixolt 0 1, and replacing xo by 1/xo if necessary, we can assume Ixoit < 1. Define

log Ixol2a=
loglxolt

so that Ix0I2 = Ixoli by definition. Take then any element x E K" with Ixlt < I
and consider the rational numbers r > 0 such that Ix I" < Ixo I I. These rational
numbers r = m/n are those for which

IXIi < Ixoli,
x"'

M11

< 1.
xo t

By assumption, these are the same as those for which

I x"' I

xa 12
< 1,
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namely Ixli < Ixol i or IxI? < Ixo12.On the other hand, these rational numbers
are precisely those for which

r loglxlt < loglxol1 (resp. r 1og1x12 < loglxo12)

or

r > logIxolt/loglxlt (resp. r > loglxol2/loglxl2)

(all logarithms in question are negative). This proves

logIxolt/loglxlt = loglxol2/loglxl2,

loglxl2/loglxlt = loglxol2/logIxolt = a.

Hence Ix 12 = Ix I i , as was to be shown.

2. Absolute Values on the Field Q

2.1. Ultrametric Absolute Values on Q

Let us recall that if p is a prime number, we can define an absolute value on
the field Q of rational numbers by the following procedure. If x = p'a/b with
a, b, m E Z, b 0, and p prime to a and b, we put

IXIp=P'.

In other words, we put I p I p = 1 / p < I and I n I p = I for any integer n prime to
p, and extend it multiplicatively for products. Since

QX = PZ X Zt,) = U PmZ(P),
,EZ

this defines the absolute value uniquely. This absolute value is an ultrametric
absolute value on Q.

Theorem (Ostrowski). Let x r- IxI be a nontrivial ultrametric absolute value
on the field Q. Then there exists a prime p and a real number a > 0 such that

IXI=IXIp (xEQ)

PROOF Since the integers generate Q (by multiplication and quotients), the absolute
value must be nontrivial on N. As we have seen, any ultrametric absolute value
satisfies In[ < I (n E N). Hence there must exist a positive integer n with In j < 1.
The smallest such integer is a prime p because in any factorization n = nl n2, we
have Intl - In21 = Inl < 1, and consequently one factor n; must satisfy Inel < 1.
Let us call this prime p so that by definition

InI=I for l <n<p
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86 2. Finite Extensions of the Field of p-adic Numbers

but 0 < I p I < 1. I claim that for every integer ME Z prime top, we have Im I= 1.
Indeed, if m is prime to p, the Bdzout theorem asserts that there are integers u and
v with up + vm = 1. Hence

1 = III = Iup+vmI <max(Iup1, Ivmp < 1.

Since by assumption I up I = I I I P I < Iu I < 1, the maximum must be I vmI = 1
and hence Imi = 1 (we know a priori that I v 1 < 1 and Im1 < 1). There is now a
unique positive real number a such that

IPI = (I/P)a

(indeed, take a = (logipl)/(log(I/p)) - a quotient of two negative numbers -
independent from the basis of logarithms chosen). Then if the rational number x
is written in the form x = p"a/b c Q" with p prime to a and b (i.e., alb E Zop)),
we shall have

IxI = IPIU = (1/0"a = IxI"

and the theorem is completely proved.

2.2. Generalized Absolute Values

Observe that if I . I is an absolute value and a > 0, then is not an absolute
value in general. For example if I I. I is the usual absolute value on Q and a = 2,
then f (x) = IX 12 does not satisfy the triangle inequality

4= f(2)= f(I+1)> f(1)+f(1)=2.
But it satisfies

f(x +Y) = Ix + Y12 < (IxI + IYI)2 < (2max{IxI, IYI})2 = 4max(f(x). f(Y)).

This is one reason for considering generalized absolute values.

Definition. A generalized absolute value on afield K is a homomorphism f :
K" -> R>0 extended by f (0) = O for which there exists a constant C > 0 such
that

f (x + y) < C max(f (x), f (y)) (x, y E K).

Observations. (1) For any generalized absolute value f and any a > 0 (not only
for 0 < a < 1), f is also a generalized absolute value: Replace C by C'.

(2) The ultrametric absolute values are those for which the above inequality
holds with C = 1. Moreover, if f is a (usual) absolute value, then

f (x + y) < f (x) + f (Y) < 2 max(f (x), f (Y)),

and (usual) absolute values are generalized absolute values: The above inequality
holds with C = 2. Let us prove a converse.
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Theorem. Let f be a generalized absolute value on afield K for which

f (x + y) < 2 max(f (x), f (y)) (x, y E K).

Then f is a usual absolute value: It satisfies the identity

f(x + y) f (x) + f(y) (x, y E K).

PRooF. Iterating the defining inequality for generalized absolute values, we find
that

Pal + a2 + a3 + a4) < C max(f (at + a2), f (a3 + a4))

< C2maxt<i<4 f(ai)

More generally, by induction if n = 2', then

f(at +. ..+an) < C'max f(ai)-

Since we are assuming that the constant C = 2 can be taken in the preceding
inequalities, we have

f(a, +---+a,,) <2'max f(ai)=nmax f(ai).

Now, if n is not a power of 2, say 2r-1 < n < 2', we can complete the sum by
taking coefficients ai = 0 for n < i < 2' and still write

2nmaxf(ai).

We shall have to use two particular cases of this general inequality:

(1) f (n) < 2n (take ai = I for I < i < n),
(2) f (E1 <i<n a,) < 2n max f (ai) < 2n Yt<i<n f (ai)

To estimate f (a + b), we shall estimate f ((a+b)') thanks to the binomial formula
(the nth power of a + b is a sum of n + I monomials)

f((a+b)n) = f
(1: (')a'b'1_')

< 2(n + 1) f (()) f (a)' f (b)n-`

<2(n+1)2(i
1f(a)`f(b)n-`

= 4(n +

1)(f(a)+/f(b))n.

Let us extract nth roots:

f(a+b)<41"n(n+l)t1n-(f(a)+f(b))-* f(a)+f(b) (n- oo).
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2.3. Ultrametric Among Generalized Absolute Values

We can give a generalization of (1.6).

Theorem. Let f be a generalized absolute value on afield K. If f is bounded
on the image of the natural numbers N in K, then it is an ultrametric absolute
value.

PROOF. Let n = 2' be a power of 2 and consider a sum of n terms ai. As in (2.2),
we see by induction that

.f (ai + ... + a,,) < C' max f (ai ).

Take now x E K and consider the element

+x)n-t = F (n_I)1
0<i <n

Since this sum has n elements, we have

l1

(.f(1 +x))n-t = f((1 +x)n-') < C' max [f
((n_I))

. f(x`)]

If f is bounded on the image of N in K, say f (k) < A for all k E N, we shall
have

(.f(1 +x))n-t < C'A max (1, .f(x)n-t)

and

f(1 +x) < Cr/(n-t)At/(n-u max (1, f(x)).

Letting again n -+ oc, we obtain

f(1 +x) < max(1, f(x)).

If now a 94- 0 and b E K, then f (a) 0 and

f(a+b)= f(a)f(1+b/a)
< f (a) max (1, f (b/a)) = max (f (a), f (b)).

2.4. Generalized Absolute Values on the Rational Field

The ultrametric absolute values on the rational field Q have been determined in
(2.1). Here, we treat the generalized absolute values.

Theorem. Any nontrivial generalized absolute value on the rational field Q is
either a power of the usual absolute value or a power of the p-adic absolute
value.
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Proof Take any nontrivial generalized absolute value f and assume that

f (x + y) C - max (f (x), f (y)).

If C < 1, then f is ultrametric, and we conclude by (2.1). Assume now C > 1.
By induction - regardless of the size and number of addends - we can prove

f(ao+...+ar) <Cr max f(ai).

Let us fix an integer n > 2 and put A = An = max (f (1), ..., f (n)) > 1. Now,
any integer m > 2 can be expanded in base n, say

m = E min` (0 < m, < n, m, :?4- 0).
0<i <r

Hence

f (m) < Cr . Max f (mi )f (n`)

< CrAn max f (n)` = CrAn max (1, f (n)r).

But mr 0 0, nr < m, and thus r < log m/ log n, so that we can write

f (m) < An C'Ogm/'ogn - max (1, f (n)'ogm/loge),

f(m)1/logm < An/logmCl/logn . max(1, f(n)'/logn)_

Let us replace m by mk (keeping n fixed), so that the left-hand side is unchanged,
and let k --> oo, whence A,1,/(klogm) 1. We obtain

f (m)'/'ogm < Cl/'ogn . max (1, f(n)1/logn).

In other words, we have obtained an inequality in which the constant An does not
appear. We can now replace n by nk, and since C11k -- 1, we have simply

f (m)1/'09m < max (1, f (n)'/'09 n).

First case: There is an integer n > 2 with f (n) < 1.
We can use such an integer n in the inequality just found and deduce

f (m) < 1 for every integer m > 2.

Hence f is an ultrametric absolute value by (2.3). Finally, Ostrowski's theorem
(2.1) applies: f is a power of the p-adic absolute value

f(x) = IxI p (x E Q)

for some real a (determined by the condition f(p) = Ipl° = (1/p)a).



90 2. Finite Extensions of the Field of p-adic Numbers

Second case: We have f (n) > I for every integer n > 2.
The general inequality

f(m)'/logm < max (1, f (n)l/logn)

is now simply

f(m)l/logm

< f(n)l/loge

Since we can permute the roles of n and m, we must even have

f(m)1/l09m = f(n)l/loge

Hence f (n)11 log' = ea is independent from n. This leads to

f(n) = ealogn = na

for all integers n > 1, and with the usual absolute value

f(n) = I n l a (n E Z).

By the multiplicativity property, we also have

f(x) = Ixlc' (x E Q)-

Since 0 < a < oo, the map f is a power of the usual absolute value, and the
theorem is completely proved. M

Comment. The preceding result shows that for a generalized absolute value f on
the field Q, the only possibilities are

f is trivial,
Ip I < I for some prime p and f is a power of the p-adic absolute value,
In I > I for all positive integers n and f is a power of the usual Archimedean
absolute value.

Observe that the two nontrivial cases can also be classified according to the
value of 121: If 121 < 1, f is a power of the 2-adic absolute value; if 121 = 1, f is a
power of the p-adic absolute value for some odd prime p; if 121 > 1, f is a power
of the usual Archimedean absolute value.

3. Finite-Dimensional Vector Spaces

3.1. Nortned Spaces over Q p

Let V be a vector space over the field Q p. A norm on V is a mapping

11 .11: V - {0} - R>o
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extended by 11011 = 0 and satisfying the following characteristic properties:

Ilaxll = lalllxll (a E Qp, X E V),

llx +yll <max(IIxII, IIY11) (x, y E V).

In particular, the norms that we are considering are ultrametric norms. A normed
space over Qp is simply a vector space over this field equipped with a norm. A
norm defines an invariant (ultra-)metric on the underlying additive group of V.
Hence a norm defines a topology on V, which becomes an additive topological
group in which scalar multiplications

xi-*ax :V-*V (aEQp)

are continuous homeomorphisms.

Examples. (1) Let V = Qp with norm II x II = c l x I where c > 0 is a fixed,
arbitrarily chosen positive real constant. This example shows that { 11 v 11 : v E V)
can be different from the set of absolute values of scalars, i.e. the absolute values
of the elements of the field Qp. (This is a difference from real and complex normed
spaces).

(2) Let V = Qp for some positive integer n. Then for x = (x,)t<,<n E V we
can put llxlloo = supt<,<n 1x,I = maxi<i< Ix; 1. This defines an ultrametric norm
on V.

Two norms x H Ilx II and x H llx ll' are called equivalent when they induce
(uniformly) equivalent metrics on V, namely when there exist two constants 0 <
c<C<oo with

cllxII < 11X11' :S Cllxll-

This happens precisely when the topologies defined by these two norms are the
same (exercise).

Theorem. Let V be afinite-dimensional vector space over Qp- Then all norms
on V are equivalent.

PROOF. Let n = dim V and choose a basis (e, )t <j, of V. Hence

x=(x,)H vx,e, =gp(x)

defines an algebraic isomorphism cp : Qp 4 V. On the space Qp we consider the
sup norm given in the above example. We have to show that the isomorphism V is
bicontinuous. But

IHEx,e`11 <maxllx1e;11 =maxlxjIlIe;11 <maxlletll maxlx,l =Cllxll.,
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where C = max Ile,ll- (Note that the strong triangle inequality is not really nec-
essary here since it would be enough to observe that 11 1: xi e, 11 < >2 11 xi e, 11 <

Ile,ll max ix, = C'IIxIh.)This proves that llV(x)I{ Cllxll, andrpiscontinu-
ous. Finally, we show that c is an open map. Let B = B<1 = {x E Qp : Ilx Iloo < 1}
be the unit ball in Q. We have to show that V(B) contains an open ball of positive
radius centered at 0 in V. Denote by St the unit sphere

Si={xEQn:IIxII,. =1}

in Q,. Then Si is a closed subset of the compact set B<t, and hence is compact.
This implies that tp(S1) is also compact. This image does not contain the origin of
V (remember that tP is bijective). Hence the distance from 0 to ga(S1) is positive,
and the minimum is attained for some point cp(xo):

X E St = IIcn(x){{ ? I{cn(x0)II = E > 0.

If v E V - {0} has norm II v ii < E, the norm of all multiples X v where IAI < 1 will
also satisfy 11),v 11 < e. Hence in particular, if IIvII < E, then

AE K, IA.I<I=AvVco(Si)

Since (e;) is a basis, we can write

v=1: v,e,=go((v,)).

Without loss of generality we may assume that the largest component is the last
one:

0 IUnI = max Ivi I = II(vi)II.-

With a, = 1/v,, we have tp((v;/vn)) = tp(w) E cp(Si). The remark made
before proves that this scalar A satisfies Al I> 1, so that

II(Ui)II. = IUnI = II < 1.

This shows that v = g&,)) with 1: v E cp(B), where B = B<,(0, Qp).
Consequently,

B<F(V) C gp(B)

Corollary 1. Let V and W be two finite-dimensional normed vector spaces
over Qp and a : V -+ W a linear map. Then a is continuous.

Corollary 2. Any algebraic isomorphism of a finite-dimensional normed vector
space over Q p is bicontinuous.
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Corollary 3. Let V be a finite-dimensional vector space over Qp. A subset
S C V that is bounded with respect to one norm on V is bounded with respect
to any other norm on V.

Remark. Observe that the proof could be simplified if we knew that all norms of
elements of V were absolute values of scalars, namely if II VII = IQp 1. But this
equality is in general not satisfied.

3.2. Locally Compact Vector Spaces over Q p

There are not many compact normed spaces over Qp. In fact, any nonzero element
x of a vector space generates a line, and the norm is an unbounded continuous
function on this line because

IIAxII = IAIIIxII (A E Qp).

This shows that the only compact normed space is the trivial normed space (0).
Let us turn to locally compact normed spaces over Qp.

Theorem. If V is a locally compact normed space over Qp, then its dimension
is finite.

PROOF Let us select a compact neighborhood 0 of 0 in V. Also choose a scalar
a E Qp with 0 < Ia I < 1 (for example a = p with Ia I = 1 /p will do). The
interiors of the translates x + aS2 (x c V) cover the whole space. A fortiori there
is a finite covering of the compact set 0 of the form

0 C U (a; + am (for some a, E V).
finite

Consider the finite-dimensional subspace L generated by the elements a1. By
(3.1), this finite-dimensional subspace is isomorphic to a normed space Qp, and
hence is complete. Consequently, this subspace L is closed, and in the Hausdorff
quotient V/L (1.3.3) the image A of the set 0 is a compact neighborhood of 0 and
satisfies

A C aA (or a-'A C A),

whence a-' A C A by induction. Since l a-1 I no, we see that

ACV/LCUa-nACA.
n21

In particular V/L is compact: V/L = 0, V = L is a finite-dimensional space.

Corollary. In a locally compact normed vector space over Q p, the compact
subsets are the closed bounded sets.
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PROOF. The compact subsets of any metric space are closed and bounded (by con-
tinuity of the distance function). Conversely, if V is a locally compact normed
vector space over Qp, it has finite dimension and its norm is equivalent to the
sup norm of this space (3.1). But in Q' any bounded set is contained in a (com-
pact) product of balls of Qp. Hence the closed bounded sets are compact subsets
of Qp.

3.3. Uniqueness of Extension of Absolute Values

Let K be a finite (hence algebraic) extension of the field Qp. We can consider K as
a finite-dimensional vector space over Qp. Each absolute value on K that extends
the p-adic absolute value of Qp is a norm on this vector space, and we can apply
the results of (3.1).

Proposition. There is at most one absolute value on K that extends the p-adic
absolute value of Qp.

PROOF. Let I . I and I . I' be two absolute values on K that extend the absolute value
of Qp. These two norms must be equivalent, and there exist constants 0 < c <
C < oo such that

clxl < IxI' < CIx1 (x E K).

Replace x by x" in the preceding inequalities:

CIx"I < Ix"I' < CIx"l.

Since I . I and I . I' are absolute values, they are multiplicative, and the preceding
inequality is simply

CIXI" < Ixl'" < Clxl",

or

C'1"Ixl < IxI' < Ct""IxI.

Letting n oo, we have ctI" -- I and C""n -_* 1. This proves IxI = Ixl'

Application. Let K be a Galois extension of Qp and assume that the p-adic
absolute value of Qp extends to K. Then for each automorphism or of K/Qp we
can consider the absolute value IxI' = lax I. By the preceding proposition, this
absolute value must coincide with the original one. Let G = Gal (K/Qp) and for
each x E K, consider the element

N(x) = fl ax E Q.
aEG
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We must have

I N(x)I = _ H laxl =IxI#tG'
aEG

fl 6x
QEG

Hence with d = #(G) = [K : Qp] = d]mQp(K),

IxI = IN(x)I"d.

Since N(x) E Qp, this formula gives an explicit expression for the extension of
the absolute value of Qp (provided that one exists!). This observation can be used
to prove the existence of an extension of the absolute value of Qp.

3.4. Existence of Extension of Absolute Values

Let again K be a finite extension of degree d of the field Qp. The relative norm
(as defined in field theory, not to be confused with a vector space norm!) is a
multiplicative homomorphism (3.3)

N=NK/Qp:K"--> Qp, xHN(x),

which coincides with the dth power on Qp Q. It can be defined either by embedding
K in a Galois extension L and taking a product over the d distinct embeddings
K -+ L or by using the determinant of the Qp-linear map y H xy of the Qp-vector
space K.

Theorem. Let K be a finite extension of degree d of the field Qp of p-adic
numbers. For each x E K, let ix denote the Q p -linear operator y H xy in K.
Then

f (x) = I N(x)I tad = I det tx l t/d

defines an absolute value on K that extends the p-adic one. This is the unique
absolute value on K having this property.

PROOF. If a E Qp, it is obvious that N(a) = ad whence IN(a)I11d = at, and
the proposed formula is an extension of the p-adic value. The multiplicativity
f(xy) = f (x) f (y) is a consequence of the multiplicativity of the determinant
(or of the norm). We still have to check the ultrametric inequality. For this crucial
point we use the local compactness of K. Let us choose any norm x H Ilx II on K
with I I K II = IQp I - For example, pick a basis et , ... , ed of K over Qp and use the
sup norm on components in this basis. Since the continuous function f does not
vanish on the compact set Ilx11 = 1, it is both bounded above and below on this
set, say

0 < e < f(x) < A < oo (IIxII=1).
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For X E K" choose A E Qp with Ilx II = IA I. Hence the vector x/A has norm 1,

e < f(x/A) < A (x -71- 0),

and since f (x/A) = f(x)/JAI,

EIA I < f(x) < AI), I (x j,1- 0),

EIIx1I < f(x) < AIIx1I (x 74- 0).

Thus with a = E-1 we have both IIxII < af(x) and f(x) < Alix1I. Suppose now
f (x) < 1 (hence Ilx II < a). We infer

f(1 +x) < All] +xil < Amax(Il1II, IIxII)
< A max (11111, a) = C = C max (f (1), f (x)).

If more generally f (y) > f (x), we can divide by y and apply the preceding
inequality to x/y, since f (x/y) = f (x)/f (y) < 1. Finally, multiplying both sides
by f (y), we obtain the general inequality

f (x + y) <_ C max MX), AM-

This proves that f is a generalized absolute value. Since f extends the p-adic
absolute value, it is bounded on N C Q, C K and is an ultrametric absolute value
by (2.3).

The uniqueness of the extension has already been proved in (3.3).

3.5. Locally Compact Ultrametric Fields

In locally compact ultrametric fields K, we shall use adapted notation

R=B<1 DP=B<1

instead of

A=B<1 jM=B<1,

which will still be used in the general - not necessarily locally compact - case.
We are going to prove the following general result.

Theorem. Let K be afield equipped with a nontrivial ultrametric absolute
value and consider the corresponding (ultra-)metric space. Then K is locally
compact precisely when the following three conditions are satisfied:

(1) K is a complete metric space.
(2) The residue field k =RIP is finite.
(3) I K" I is a discrete subgroup of R,0,

hence of the form 0Z for some 0 < 0 < 1.
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PROOF Assume first that the field K is locally compact. Hence there is a compact
neighborhood of 0 in K. This neighborhood contains a ball B<E(0), where 8 > 0.
This ball B<E is compact. Using dilatations, we see that all balls B<r(0) of K are
compact. Any Cauchy sequence in K is bounded, hence contained in a compact
ball: It must converge in K. This shows that K is complete (recall more generally
that every locally compact topological group is complete (1.3.2)). Now the residue
field parametrizes the open unit balls contained in the unit ball B<1(0). If this
last one is compact, the preceding partition in open sets must be finite, which
proves (2). Finally, since the open unit ball B<1(0) is closed in the compact ball
B<1(0), the continuous function x H ix J must attain a maximal value over the
compact set B<1(0). Call 0 < 1 this maximal absolute value. The only possible
nonzero absolute values are now the integral powers of 0. Indeed, a multiplicative
subgroup of R>o is either discrete or dense (1.3.4). (Alternatively, one could use
the last property of ultrametric distances mentioned in (1.1) for the compact sets

Conversely, assume that the three conditions are satisfied and choose an element
7r E K with largest possible absolute value less than 1: -r E P C R 7r R C P.
The reverse inclusion also holds:

XEPrIx I <unIrx=-r-x/7r (x/nE R)r xE -rR.

This proves that P = (rr) = nR is principal. By the representation theorem
(1.4), the complete ring R is topologically isomorphic to the projective limit
R = lim R/7r"R of the finite rings R/n" R:

R = B<1(0) is isomorphic to R compact.

The field K is locally compact, since it has a compact neighborhood of 0.

4. Structure of p-adic Fields

4.1. Degree and Residue Degree
Let K be a finite extension of the field Q p of p-adic numbers. Hence K is locally
compact and complete. Let us choose an element in of maximal absolute value
smaller than 1, say 0 < 1n I = 0 < 1, and come back to the usual notation for
the ring

R = {xCK:lxi < 1)

and its maximal ideal P = n R. The residue field k = RIP is finite, hence a finite
extension of Fn = Zp/pZp. If f = [k : Fp] = dimr (k), then

k 25 Fg, q = #(k) = (#(FP))f = pf,
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98 2. Finite Extensions of the Field of p-adic Numbers

since there is - up to isomorphism - only one finite field having q elements.
Since the integer p belongs to P, we have

I/P=1P1=ee, InI=IPIlIe

for some integer e > 1.

Definitions. The residue degree of the finite extension K of Q p is the integer

f = [k : F,,] = dimF, (k ).

The ramification index of K over Q p is the integer

e=[IK"I:IQpI]=[IKxl : PZI=#(IKxI/PZ).

Warning. I hope that the degree f will not occur next to a polynomial f (X) or a
function f , or if it does, let me rely on the reader to distinguish them (using P for
a polynomial could similarly lead to a confusion with the maximal ideal P = n R
in a finite extension K of Q, , and here 7r is not 3.14159...!) In the same vein, k
will usually denote a residue field and here, we try to avoid its use as a summation
index.

Let a, and a2 E Qp , x1 and x2 E K" be such that

Iaixt I = Ia2x21 (:74- 0).

Then Ixi I = Ia2/ai I - Ix21 E PZ 1x21, and the absolute values of xt and x2 belong
to the same coset mod pZ. Consequently, in a finite sum

E aixi (al E Qp, xi E K")

of nonvanishing terms, if the Ixi I belong to distinct cosets mod pZ, we cannot
have a competition of absolute values, and necessarily E aixi ; 0. This argument
shows that n = [K : Qp] = dim(K) > e. One can also see directly that n > f
(exercise!). Let us prove that n > of (we even prove n = of below).

Proposition. In the situation described in this section, we have e f < n.

PROOF. Let us choose a family (si ), <i <f in R such that the images si c k make up
a basis over the prime field Fn. I claim that the elements

(Siij)I<i<f.0<j<e

are independent over Qp. Consider indeed a nontrivial linear combination

> c s,7ri = 1: X17rJ (cij E K),
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where xj = >, c,js,. Then for each j there is an index f = £(j) such that

ICejI > Icijl for all i,

and xj/cej = E,(cij/cej)si = E; y,s, is a nontrivial linear combination with
coefficients in R (and ye = 1). Consider this relation mod P: Define y, = y, mod
P. Since (si), is a basis of the residue field k = R/P considered as a vector space
over its prime field, we have

0yisi E RIP

simply because ye = 1. Hence

I yis,VP,
;

and I xj I = I cej I E IQp I is a power of p. There can be no competition among the
absolute values of the distinct terms x j n jand this proves

1:CijSi7rJ = ,a)
xj7rJ 0.

This proves the expected linear independence, and hence the inequality stated in
the proposition.

Theorem. For each finite extension K of Qp, we have

ef =[K:Q,,]=n.

PROOF. By the above proposition it is enough to prove the existence of a set of
generators of K over Qp containing of elements. We shall show that the family

(Si71j)1<i<f,O<j<e

of the Proposition generates the Qp-vector space K. For this purpose we use the
representation theorem (1.4) for the complete field K and the element = p E
P C R. In this case R/pR is finite with representatives

S= E cijsi7ri:0<cij<p-1 .

1<i<f.O<j<e

Hence one can write any element x E R as a series

x = E cep' (ce E S).
e>0

If we write explicit expressions for the coefficients

Ce = E C,jeSi7rj E S,
1 <i < f.U<j <e
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we obtain

ex = c,jpsin' p ,

e>0 t<i<f,0<j<e

and if we sum in a different order (only f can take infinitely many values, and
pP -> 0: The family in question is summable by the Proposition in (1.2) ), then

x = (>ciJP1) -s7r1.
1 <i<f.O<j<e E

But c;j = Ee c,jt pf E Zp and x = Ltj c;js;7rj. This proves that the of elements
s;3rj (1 < i < f, 0 < j < p - I) constitute a spanning set of the field K
considered as a vector space over Qp. Together with the proposition, this concludes
the proof of the theorem.

A finite extension K of Qp is said to be

unramified when e = 1, i.e., when [K : Qp] = f,
totally ramified when f = 1, i.e., when [K : Qp] = e,
tamely ramified when p does not divide e,
wildly ramified when e is a power of p.

In other words, an extension K/Qp is

unramified when p is a generator of the maximal ideal P c R,
totally ramified when the residue field does not grow.

Comment. Let us come back to the analogy between p-adic numbers and func-
tions of a complex variable already mentioned in (I.1.4) and (I.5.1), since it is also
responsible for the preceding terminology. Let us explain this in its simplest form.

Let 0 be a meromorphic function defined in a neighborhood of 0 in C. It is
known that there is a representation

(z) = E anzn (am 74- 0)

n>m

valid in a punctured disc 0 < Iz I < e. The smallest index in E Z such that am * 0 is
the order of at the origin. This integer is positive when i vanishes and is negative
when has a pole at the origin. In this way, we see an analogy between the field
L of meromorphic functions defined in a (variable) neighborhood of the origin in
C and the p-adic field Qp consisting of the formal expansions x = L.n>m anpn
(m E Z). The functions that are holomorphic at the origin make a maximal subring
L0 of L comparable to Z, in Qp. The local construction of the field L is also a
justification for calling Qp a local field.

Now take an integer e > 1 and consider the change of variable
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This is a canonical example of a ramified covering of degree e at the origin, in a
topological sense: The inverse image of any z 0 consists of e distinct preimages,
while u = 0 is the only preimage of z = 0. If = En>m anzn (0 < Izl < s) is as
before a meromorphic function in a neighborhood of the origin, we can make the
change of variable z = ue and obtain a new expansion

17(u) = (ue) = amen.
n>m

In this way, the field L is embedded in the field L' consisting of convergent Laurent
series in the variable u. There is no function defined in a neighborhood of z = 0
in C, so that the field L' = L(zlle) is a proper extension of the field of convergent
Laurent series L in the variable z. This extension L' is totally ramified over L, with
degree e: It is obviously comparable to the extension Qp(7r) of Qp if -r = pile
Observe that with meromorphic functions it is traditional to work with the order-of-
vanishing function in, instead of a corresponding ultrametric absolute
value Il; to = Bm (for a choice 0 < 0 = Izlo < 1; there is no canonical choice for
0 here).

The rational field Q can similarly be compared to the field of rational functions
C(z), the completions Qp (letting now the prime p vary) corresponding to the
fields of meromorphic functions near a variable point a E C instead of the origin.

4.2. Totally Ramified Extensions

Let us recall the following well-known irreducibility result stated over Z P rather
than over Z.

Theorem 1 (Eisenstein). Let f (X) E Zp [ X) be a monic polynomial of degree
n > I with f (X) = X n mod p, f (O) # 0 mod p2. In other words,

.f (X) = Xn +a"_,Xn-1 +... +ao,

ord (a;) > 1 (0 < i < n - 1), ord (ao) = 1.

Then f is irreducible in the rings Zp[XI and Qp[X].

PROOF. Take a factorization f = g . h in Zp [X 1- or in Q p [X 1; this is the same
by an elementary lemma attributed to Gauss - say

g=btXt+---+bo, h=CmXm+...+co.

Hence

£+m=n, btcm = 1, boco = ao

Since an is not divisible by p2, p can divide only one of the two coefficients bo
and co. Without loss of generality we can assume that p divides co but p does not
divide bo. Consider now all these polynomials mod p. By assumption f = Xn is
a monomial, so that its factorization f = g h must be a product of monomials
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and h = co is a constant. Considering that brc, = 1, the only possibility now is
m = 0 and a trivial factorization.

The preceding argument mod p can be made directly on the coefficients. Let
r > 1 be the smallest power of X in h having a coefficient not divisible by p:

p does not divide Cr but p divides cr_t, cr_2, ... , c0.

The coefficient of Xr in the product of g and h is

.ar = bocr +b1cr_t +b2cr_2+-- = bocr + P(

Since bOCr is not divisible by p, the preceding equality shows that p does not
divide ar either. By assumption, this shows that r = n. Summing up,

n=m+-e>m>r=n
implies m = n and f = 0. The factorization g - h off is necessarily trivial.

The same proof shows the following more general result.
Let A be a factorial ring with fraction field K, and it a prime of A. Any poly-

nomial

f (ofdegreen> 1)

with an not divisible by n, ai divisible by 7r for 0 < i < n - 1, ao not divisible by
7r2, is irreducible in the rings K[X] and A[X].

Definition. A monic polynomial f (X) E Z p [X] of degree n > 1 satisfying the
conditions of the theorem, namely

f (X) = X" mod p, f (0) 0 mod p2,

is called an Eisenstein polynomial

Theorem 2. Let K be a finite, totally ramified extension of Qp. Then K is
generated by a root of an Eisenstein polynomial.

PROOF. The maximal ideal P of the subring R = B<t of K is principal and gen-
erated by an element 7r with I7r Ie = Ipl. Since n = [K : Qp] = e by assumption,
the linearly independent powers (7ri)0<i<e generate K and K = Qp[7r]. The irre-
ducible polynomial of this element can be factored (in a Galois extension of Qp
containing K) as

f(X)=fl(X-7ra)=Xe+ E aiX`±fl7r°.
0 O<i<e Cr

The constant term has absolute value I IIQ7r° I = In le = IpI (by (3.3) all automor-
phisms a are isometric), whereas the intermediate coefficients ai satisfy Jai I < 1
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(each is divisible by one 7r° at least, and a; E Zp). Hence these intermediate
coefficients are in pZp as required: f is an Eisenstein polynomial.

Examples. (1) In the field Q2, -I is not a square (I.6.6), and we can construct the
quadratic extension K = Q2(i) = Q2[Xj/(X2 + 1). Since

(i+l)2=i2+2i+I=2i,

the element i + 1 is a square root of 2i. With the (unique) extension of the 2-adic
absolute value we have

Ii+112=12i1=121=1, Ii+II=2 z,

so that i + I is a generator of the maximal ideal P of the maximal subring R of
the field K: P = (i + 1)R. The quadratic extension K is totally ramified of index
e = 2, hence wildly ramified. Let x = i + 1. Then x - 1 = i and (x - 1)2 = -1
shows that x is a root of the polynomial

X2-2X+2=(X- 1)2+1.

This is an Eisenstein polynomial (relative to the prime 2), and K = Q2(i) is also
obtained as a splitting field of this Eisenstein polynomial.

(2) For p # 2 let us add a primitive pth root of unity to Qp. In other words, we
are adding to Qp a root of p - 1 = 0 with i; # 1. Hence is a root of

cp(X)=(Xp-1)/(X - 1)=Xp-1+---+X+l.

This is the pth cyclotomic polynomial: It is irreducible, since the change of variable
X - I = Y produces

(Dp(X) = [(Y+ 1)p - l]/Y = Yp-1 +p(...)+ p,

an Eisenstein polynomial. Hence we obtain an extension of Qp of degree p - 1
prime to p. We shall prove that it is totally ramified. Since the powers ` are also
roots of the same equation when i is not a multiple of p, the powers ' (1 < i <
p - 1) form a complete set of conjugates of , and

cp(X) = fl (X -
1<<p-1

Obviously, Op(I) = 1 + - - + I = p, so that

p = (Dp(1) _ F1 (1 -
I<i<p_1

But all absolute values I 1 - ` 1 are equal by (3.3), since these elements are
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conjugate. The preceding inequality leads to

IpI=
1a<p-1

This proves that n = 1 - is a generator of P in R: The extension K =
is ramified with degree n = e = p - 1. hence totally and tamely ramified.

In the course of the preceding deduction we have used the uniqueness of exten-
sion of valuations again. However, in the present context, it is obvious that

1 - ' = (1 - 0(1 + ... + `-1)

implies I 1 - ' I < I 1 - I. But the roles of and ` may be reversed: ' is also
a generator of the cyclic group µp of order p when 1 < i < p - 1, so that is
a power )i of ` (take j such that i j - 1 mod p). This furnishes the equality
I 1 - ` I = I 1 - I. By the way, this proves that

I

I + + - - . + .'-1 are units of the maximal subring R C K =
These are the so-called cyclotomic units of K. Since 1 mod P, we have

1-imodP.

4.3. Roots of Unity and Unramified Extensions

Let K be a (commutative) field of characteristic 0 and let µ(K) be the multiplicative
group consisting of the roots of unity in K. Since every element of this group has
finite order (by definition), we can apply the Sylow decomposition theorem (or the
Chinese remainder theorem) and write a direct product l.c(K) = lip- (K) lc( p)(K),
where elements in It px(K) have a pth power order and elements in µ(p)(K) have
order prime to p. We shall prove that when K is a finite extension of Qp, the group
A(p)(K) is finite, and compute its order. (In the next section we show the finiteness
of the group lcpx (K).)

In any valued field, all roots of unity are on the unit sphere:

m=1
In the case of an ultrametric extension of Qp,

KiA=B<1jM=B<1,

we see that l.t = f4(K) C A" C K". By reduction mod M,

s:A-*AIM=k

we obtain s(µ) C V. To explain the effect of reduction mod M on roots of unity
let us give a lemma.
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Proposition 1. Let K be any ultrametric extension of Qp. Then

µp-(K) = µ(K) fl (1 + M).

PROOF First, if E µ(K) has order a power of p, denote by = E k its
reduction. Then

pf = l zepf = IE

since the field k has characteristic p. Conversely, if; E 1 + M has order n > 1,
write = 1 + with 0 Ii I < 1. Then

1

implies n + i'a = 0, and

Inl = 1

implies p I n. If n p, we can replace by gyp, which has order n/p > 1, and
iterate the procedure. Eventually, we see that n is a power of p.

Corollary I. The restriction of the reduction maps to µ(K) has kernel µ p-(K ).
It is injective on µ(p)(K): The distance between two distinct roots of unity of
order prime to p is 1.

Corollary 2. If the residue degree f = f(K/Qp) is finite, then the group
A(p)(K) of roots of unity having order prime to p in K is finite and

# (µ(p)(K)) < pf - 1. 0

When K/Qp is finite, the next proposition shows that the order of µ(p)(K) is
exactly pf - 1.

Proposition 2. Assume that the extension K of Qp is complete with residue
field k algebraic over Fp- Then we have a split exact sequence

(1) -+ ppx(K) -* µ(K) a k" -* (1).

If the residue fieldisfinite, say f = [k : Fp] < oc, then the cyclic group lt(p)(K)
has order pf - 1.

PROOF. Let E k" be the group homomorphism obtained by restriction
of the reduction (ring) homomorphism A -+ AIM. It will be enough to show
that E induces an isomorphism A(p)(K) = V. By the preceding proposition, the
reduction map induces an isomorphism of µ(p)(K) into V. We have to prove that
it is surjective. Let a E k" and replace k by the finite field Fp(a) - F9 so that
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a is a root of unity of order prime to p, dividing m = q - 1 = # (V). Choose
an element a E A in the coset a (mod M) and consider the solutions x of the
following problem:

X' - 1 = 0 with x - a (mod M) (i.e., s(x) = a).

Since m is prime to p, and K is complete, Hensel's lemma (1.4) can be applied,
and this furnishes an element x in KX with x1 = 1; hence x E µ(p)(K) and
s(x) = E(a) = a.

This proves that - when the residue field k is algebraic - the restriction of the
reduction mod M is an isomorphism p(p)(K) -:; V.

Application. Let K be a locally compact (i.e., finite) extension of Qp and adopt
the usual notation corresponding to this case:

K3R=B<t(K)3P=irR,
k = R/P, f = [k : Fp], q = pf = #(k).

Then we have canonical isomorphisms

µtpt(K) x (1 + P) R" (multiplication),

IL(p)(K) kX (reduction mod P).

With a choice of it, we also have an isomorphism

irZ x µ(p)(K) x (1 + P) 4 K" (multiplication).

We infer that if ps is the highest power of p such that K has a root of unity of
order ps, then

µp-(K) = µ(K) fl (1 + P) has order ps.

The p-adic logarithm will furnish a way of analyzing more precisely the structure
of the abelian group 1 + P (cf. V.4.5).

It is useful to relativize the definitions of ramification index and residue degree
as follows. Let K C L be two finite extensions of the p-adic field Qp and denote
by R the maximal subring of K, P its maximal ideal, k = RIP (residue field of
K) as before. Introduce the maximal subring RL of L, the maximal ideal PL of
RL, and kL = RL/PL (residue field of L). We can define

e = e(L/K)= [ILXI : IKXI],
f = f(L/K) _ [kL : k] = dimk kL,
n = [L : K] = dimK(L).
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Then n = of simply because this relation holds for both index and degree over

QP:

n' = e' f' (where n' = [L : QP], ...)

n" = e " f" (where n" = [K : QP], ...),

and we can divide these relations,

n' e' f
nit e" f

Theorem. Let K C L be two finite extensions of Q p. Then there is a unique
maximal intermediate extension K C K,,r C L that is unramified over K.

PROOF If the residue field kL of L has order qL, we have seen that L" contains
a cyclic subgroup p(p)(L) of order qL - 1 consisting of the roots of unity having
order prime to p in L. More precisely, if q = # (k) and f = f (L/ K) is the
residue degree of the extension, then qL = qf. The unramified extensions of
K contained in L correspond one-to-one to the extensions of k = F. in kL. This
correspondance is order-preserving, hence the uniqueness of amaximal unramified
extension. Explicitly,

Kur = K( ()(L)) = K(AgL-t) C L.

4.4. Ramification and Roots of Unity

Let us keep the notation introduced in the preceding section for the group of roots
of unity in the extension K of Qp.

Theorem. Let t' be a root of unity in the field K having order pr (t > 1).
Then I - II = Iplt/i0(J/) < 1, where cp(pr) = pr-1(p - 1) denotes the Euler
cp function.

PROOF (1) Case t = 1, the root has order p. In this case P = 1 but 1 and
C = 1 + l; (It I < 1) is a root of the polynomial (X P - 1)/(X - 1):

P -

0= (1+
t)

_ (IxI < 1).

Hence

Al + 'x) + t" = 0,

and since I'I < 1 and IxI < 1, we have I1 + pxI = 1,

IMP-'I = I - p(1 +px)I = IPI,

1=IPI'AP-'><1.
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Since this absolute value occurs frequently in p-adic analysis, let us introduce a
special notation for it:

p=lpI<IpIH-' :=rp<1,
so that

r2=z=121, r p > n (p odd prime).

(2) General case: The order of is precisely p'+t (t + I > 1). Then cp' has
order p, and by the special case already treated,

1kp'-11=rp<1.
Let us write = 1 + 17 with Ini < 1, so that

cp'-I=(I+r))p'-1=lip' +pny
with lyl < 1. Since

Ipnyl <IP1

we see that rp = 11 - pl = Ir7p!1 and finally 1nl = rp/p' as expected.

Location of the 2"th roots of unity on the unit sphere

The appearance of the Euler cp-function is even more natural if we proceed as in
(4.2). Let us give this deduction as a reminder of the properties of the cyclotomic
polynomials. Recall that

Xp-1
Op(X)= X-1

denotes the pth cyclotomic polynomial (of degree p - 1).
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Location of the p'th roots of unity on the unit sphere (p = 3 and 5)

Then, it is well known that the p`th cylotomic polynomial (of degree cp(p') _
p`-](p - 1)) is given by

P'-' xP' - 1
(DP,(X) cp(X

) XP-1 - I
= X(P-1)P'-, +... + XP' ' + 1.

If c is a root of unity of order p', then the other roots of unity having the same
order are the powers i of i; , where the integer j is prime to p, hence the preceding
cyclotomic polynomial has a factorization

4)p'(X) = X(P-1)p'-l +...+XP:_' + 1

H (X
15J--P'-1,PTJ

with a product restricted to the integers j prime to p: There are cp(pr) linear factors
in this product. On the other hand, substituting X = 1, we get

p= J (1

I --J :5P'-1.PTJ

But i; = 1 (mod P) and

1-i; °J (mod P).

When p is prime to j, we infer I 1 - J I = I 1 - I, and all factors in the above
product have the same absolute value,

IPI=II-0`°(P'), Ic-II=101'°(P')
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Corollary 1. If the ramification index e = e(K) isfinite, then the group lip-(K)
of roots of unity in K having order a power of p is finite. More precisely,

e

#(µp-(K)) < T- 1/P

PROOF. In general, if the field K has a root of order p', the preceding theorem
shows that the ramification index e is a multiple of cp(p') = p' - pt-1. Hence

p'(1 - 1/p) < e.

This gives a bound for the order p' < ep/(p - 1), and

#(µp-(K)) < epp-1

Observe that the result of this corollary is valid for any valued field K of char-
acteristic 0, provided that its absolute value extends the p-adic one on Q.

In particular, if e = 1, we have # (µ p- (K)) < p/(p - 1),

#(µp-(K))=Iif p>3,

whereas #(µ2-(K)) < 2 if p = 2. This proves again a result obtained in (1.6.7).

Corollary 2. The group of roots of unity in Q p is precisely

lJ,(Qp) = h(p)(Qp) = l-rp-t p odd prime,

IL(Q2) = h2(Q2) = (±1).

Example. Let K be the extension generated over Qp by a primitive pth root of
unity and K' the extension of K generated by a primitive root of unity of order p2.
Both extensions are totally ramified. The degrees of these cyclotomic extensions
are determined by the previous theory, and a diagram summarizes the situation.

degree p
K' =

I
wild

degree p - I
K =

Qp

The elementrr = p - 1 has absolute value InI = IPI'I(p-t) generating the group

of values I K" I : P = n R CRC K = Qp (gyp ). Similarly, the element n' = p
has absolute value In'I = I pi t/P(P-D generating the group of values IK" I:

P'=rr'R'C R' C
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4.5. Example 1: The Field of Gaussian 2-adic Numbers

The ring of Gaussian integers Z[i ] is a square lattice generated by I and i =
in the complex field:

Z[i]=Z®iZCC.

It is known that this ring is a principal ideal domain. We can also embed it in an
algebraic extension of the 2-adic field Q2. Since we have seen that -1 has no root
in Q2, the extension K = Q2(i) has degree 2 over Q2. Observe that (1 + i)2 = 2i;
hence I I + i I = 1211/2, and this extension is totally and wildly ramified.- e = 2.
The general notation gives in this case

K=Q2(i):) R=Z2[i]JP=(1+i)R.

We shall consider the generator

7r=i-1=i(1+i)
of the maximal ideal P,

7r2 = -2i, 1711 = 121'/2.

Since the residue field of K is

k = RIP = F2,

we can consider representations with "digits" in the representative system

S = {0, 11CQ2CQ2(i).

Expansions in base h = it of nonzero elements of K = Q2(i) have the form:

Ji>vaib' (ai E S, V E Z, av 0),

while elements of Z, [i ] have expansions

ji>oaib', (ai E S).

A parametrization of Z2 [i ] is given by the set of binary sequences, hence a bijective
map

or equivalently,

4) : SN Z2[1], (ai) H T aib',

(D : P(N) Z2[i], J H yb'.

Proposition. The elements of Z2[i] admitting a finite expansion

Eo<i<n aibi, (where ai E S, n E N) in base b are precisely the Gaussian
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integers, and we have

Z[i] _ bi : J a finite subset of N .

PROOF Since Z[i] is a ring containing 1 and b, it certainly contains all polynomials
in b. We have to prove the converse inclusion, namely:

Every Gaussian integer admits a finite representation in base b.

Let F = (D(S(N)) C Z[i] be the image of the finite binary sequences. It will
be enough to prove that this image is a subgroup of Z[i], since it contains the
generators 1 and b. In other words, we have to prove

F+FCFand -FCF.
Starting with

b=i-1,
b2 = -2i,

b+1=i,
b4 = -4,

we infer successively

b2(b + 1) = 2,

b2(b+1)+1=3,
b4 +b2(b+1)+1 =3-4=-1.

We have obtained the expansions

2 = b2 + b3,

-1 = 1 +b2+b3+b4 ,

and more generally,

2b' = b'+2 + b`+3,

-b` = b` + b`+2 + b`+3 +b'+4

These expansions give reduction algorithms to prove that for finite subsets J and
K of N,

Y' bi + > bk E F,
J K

- bj E F.

4.6. Example 2: The Hexagonal Field of 3-adic Numbers

Here, we consider the quadratic extension K = Q3(.) of the field Q3 of 3-
adic numbers. Since it is obtained by adjunction of the root of a generator of the
maximal ideal 3Z3 of Z3, it is totally and tamely ramified with index e = 2. This
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quadratic extension contains _ (1 +)/2, which is a root of unity of order
6: One can check in succession

Also observe that if we add a root il of unity of order 3 to Q3, we obtain a totally
ramified extension of degree 2, for which r) -1 is a generator of the maximal ideal.
In fact, we can take rl = 2 and check (with the 3-adic absolute value)

(17 3(1-

and since 17+l c,itfollows that 117+11= land

1712-112=1n112=1-3
21, In-11=1311/2= 11/3.

We shall now take the generator b = and consider expansions >; a; b` having
coefficients ai in a fixed set of representatives (containing 0) of the residue field

k=R/P=R/bR=Z3/3Z3= F3.

We could take {0, 1, - l } as a set of representatives. However, we shall take S =
{0, 1, }: Indeed by definition 4 = 1 + b, so that

+b-3 (mod b)

and we can replace the representative -1 by It is easy to check that

1+
These relations show how to compute sums. Finally, a picture shows(!) how the
image of the finite ternary sequences

F = t(S(N)) C

fills in the whole lattice Z[i; ].

Finite sums I O<i<3^ a,b'
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As in the preceding section, we have obtained unique representations for
the elements of the hexagonal lattice which is the ring of integers in
Q(,/--3)-

Proposition. Let b = , ( = (1 +)/2, and S = 10, 1, }. Then the
finite sums Ej aj bi (aj E S) fill up the hexagonal lattice in C (or in
K = Q3(f)).

4.7. Example 3: A Composite of Totally Ramified Extensions

Let us consider the following quadratic extensions of Q3:

K1 = Q3(, f--3), K2 = Q30/4

They are both totally (tamely) ramified, since l f---31 = ICI = 131 1/2. Hence

n = e = 2, f = 1 for both. Let K = Kt K2 denote the composite (in a common
extension). Obviously, = /,/3- c K, and the cyclic group of roots of
unity in K contains µ4. But the residue field of Q3 is F3 = Z3/3Z3; it contains
only the roots of unity ±1. Hence the residue field of K contains the quadratic
extension F9 and its cyclic group of units p8. On the other hand, as we have seen
in the preceding example,

Kj = Q3(. 3) D Q("/-3) D Z[0

where _ 6 = (1 +)/2 is a root of unity of order 6. Altogether, K contains
A8 µ3 = 1124 (Chinese remainder theorem). Both the residue degree and the
ramification index of K must be greater than 1. The only possibility is e(K) = 2,
f (K) = 2 (and n(K) = 4).

Q3(1 f3, 1/-3) = Q3(V,. 'V- 1)

K1 K2

Q3

It is interesting to observe that although both K, are totally ramified over Q3, their
composite K is not totally ramified over Q. In fact, take an odd prime p and
a positive integer a prime to p that is not a square mod p. Then the quadratic
extensions Qp(,Ip-) and Qp( ap) are nonisomorphic and totally ramified over
Qp. But they generate

Qp(,rp-, la-p) = Qp(,rp-, ,fa),

which contains the unramified quadratic extension Qp(,fa-) of Qp. The image of
in the residue field of Q(J) is a square root of a mod p. Hence f > 2, and

since of = n = 2, we have e = 1.
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Appendix to Chapter 2: Classification of Locally
Compact Fields

In this appendix we shall give an approach to the classification of locally compact
(commutative) fields of characteristic 0. This contains our main case of interest,
namely that of ultrametric fields. For this purpose we shall take for granted the
existence of a Haar measure on such a field: On any locally compact group G
there exists a positive Radon measure It on G - or equivalently a regular Borel
measure it on G - that is left invariant. Thus we view this measure either as a
(1) positive continuous linear functional

It : Cc (G; R) - R, f f--- µ(.f )

on the space of compactly supported continuous functions on G, invariant under
left translations

u(f) = f .f(x)dtr(x) = f .f(gx)d s(x) (g E G),
c G

or as a
(2) a-additive function on a suitable a-algebra of subsets containing the relatively
compact open sets U of G. We also write µ(U) for the measure of the subset U.

If U is a relatively compact open subset of K, we denote by vol (U) the measure
of U. By left invariance of this measure, we have vol (U) = vol (gU) for any
g E G. The Radon measure can be extended as a linear form on a vector space of
functions containing the characteristic functions of relatively compact open sets
U C G, and if we denote by cpu the characteristic function of U, the two points of
views are linked by the relation vol (U) = µ(cpu). By abuse of notation, we shall
also write vol (U) = µ(U).

The uniqueness of Haar measures will play an essential role and will be admitted
here without proof:

Let s and v be two Haar measures on a locally compact group G;
then there exists a positive constant a such that p = av.

For a general classification of locally compact fields, not necessarily commu-
tative and in any characteristic, the reader can consult the references given at the
end of this volume.

A.1. Haar Measures

Let K be a locally compact commutative field (the general definition of topological
fields was given in (1.3.7)) and let us choose and fix a Haar measure s on the additive
group K. By invariance, we have vol (U) = vol (U + a) for any a E K.

For any automorphism a of the field K, the invariant measure a(µ) defined
by a(A)(U) = A(aU) (for all U in the suitable a-algebra) is proportional to
It, say a(µ) = m(a) - p. Since two Haar measures are proportional, this scalar
m(a) is independent of the choice of Haar measure. Now take in particular for
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automorphism a an automorphism of the form a : x H ax where a 54 0 E K. In
this case we shall simply denote by m(a) the resulting scalar. By definition

vol (aU) = m(a) vol (U) (a E K").

The associativity of multiplication in K gives immediately

m(ab) = m(a)m(b) (a, b E K").

Hence m is a homomorphism K" , (R")>o, m(1) = I and m(a-1) = m(a)-1.
This homomorphism m is the modulus of K. It is conventionally extended by
m (0) = 0. We shall eventually show that it is a generalized absolute value on K.

A.2. Continuity of the Modulus

Take a compact neighborhood V of 0 in K and choose a E K. Since a V is compact
and the Haar measure is regular, for each e > 0 we can find an open set U J aV
with

vol(U)<vol(aV)+E.

By continuity of multiplication in K, there is a neighborhood W of a such that
U D WV. Thus forx E W

vol(xV) < vol(U) < vol(aV)+e,
m(x) < m(a) + e/vol (V ).

Since m(x) > 0 and m(0) = 0, this inequality proves that m is continuous at the
point 0. It also proves that m is upper semicontinuous at each point a E K. But for
a 0 we can write m(a) = 1/m (a-t), whence m is also lower semicontinuous at
such points. This proves the continuity of the modulus on K.

A.3. Closed Balls are Compact

For r > 0 we denote by Br = {x E K : m(x) < r} a closed ball in K. Fix again
a compact neighborhood V of 0 in K. We shall prove

B, is contained in a compact set of the form y V.

As a first step, we construct a sequence (7r")">o C V with tr -+ 0. Since

there is a neighborhood U of 0 in K for which we still have UV C V (take Vo
an open neighborhood of 0 in V and choose U such that U V is contained in Yo).
We can find an element rr E U fl V with 0 < m(7r) < 1. Hence rr2 E UV C V,
7r3 = n -

n2 E U V C V, and by induction, rr" E V (n > 1). But V is compact, so
that the sequence (n") must have a cluster value n' in V. By continuity of m, m(7r')
must be a cluster value of the sequence (m(Zr")). Since m(7r") = m(rr)" --> 0,
the only possibility is m(rr') = 0 and n' = 0. This proves that the sequence
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or") has only one cluster value in the compact set V: It must converge, and
7<" - 0. Finally, observe that since jr E U and UV C V, we have tr V C V and
V c tr -t V. We see by induction that the sequence of compact sets tr -" V increases

monotonically.

Second step: We show that B, C tr-NV for some large N > 1. Since we already
know that B, is closed and >r-NV is compact, this will indeed show that B, is
compact. Let a E B,. By the first part>r"a 0, and there is a first integer n such
that tr"a E V. If a V V, this first positive n is such that 7t"a E V but 7r"-ta ¢ V.
In other words, tr"a E V - 7r V. The set V - trV is relatively compact (in V
compact) and

00st:=V-7rV.

We can define r' = info m(x) > 0 and choose N > I such that m(rr)N - r < r'.
Hence

m(tr)N - r < r' < m(7r"a) = m(tr)"m(a) < m(tr)"r (a E Br).

This shows that m(tr)N < m(tr)" and hence n < N. Thus we have a E 7r-"V C
tr_NV for all a E Br: The ball Br is contained in the compact set tr-N V.

Corollary 1. The balls Br (r > 0) make up a fundamental system of neighbor-
hoods of O in K. In particular,

a"-+0inK4=m(a) < 1

PROOF. If V is any compact neighborhood of 0 in K, put r = maxv m(x) in
order to have V C Br. Since 0 is not in the closure of Br - V, the minimum r'
of m(x) on the closure 0 of Br - V is positive; for 0 < r" < r' it is clear that
Br,, CV.

Corollary 2. Any discrete subfield of K is finite.

PROOF. Let F be a discrete subfield of K. Choose any a E K with m(a) > 1. Then
we have m(a-") = m(a)-" -* 0, whence a-" -+ 0, and since F is discrete it
shows a F. This proves F C B1. But we know that F is closed (1.3.2). Thus F
is compact and discrete, hence finite.

Remark. If the field K has characteristic 0 but is not assumed to be commutative,
we see here that its center is a locally compact nondiscrete (commutative) field.
Indeed, this center is closed and contains the rational field Q by assumption, hence
is not finite. It is locally compact and not discrete by Corollary 2.
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A.4. The Modulus is a Strict Homomorphism

We claim that r' = m(K") is closed in R>o and m : K" IF is an open map.
For r > 0, the compact set m(Br) is simply m(Br) = {0} U (I' fl [0, r]). In
particular, if 0 < s < r < oc, r fl [s, r] is closed in R>o. Since the interiors of
the intervals [e, r] cover R>o, we can conclude that r is closed in this topological
space. If V is a neighborhood of 1 in K", we have now to prove that m(V) is
a neighborhood of 1 in F. It is enough to show that for every sequence (y,) in
IF such that y, -f 1, there is a subsequence y, in m(V) (a subset A is not a
neighborhood of 1 in r when there is a sequence y 1 in r' and yn ¢ A). Let
us write y = for some elements x E V. Since V is compact, the sequence

must have - at least - one cluster point x E V. By continuity of in, m(x)
must be a cluster point of m(x1,) = yn 1. This proves m(x) = 1, namely
x E N := ker(m) C K". But VN is a neighborhood of x E N. By definition of a
cluster point, for each no there must be an integer n > no with x, E V N and hence
y = E m(VN) = m(V). This proves the existence of the subsequence of
(y,) in m(V) as desired.

Corollary. If the field K is locally compact and nondiscrete, the subgroup
m(K") is either R>o or of the form {B" : n E Z} = bZ for some 0 < 0 < 1.
When C = max {m(1 + x) : x E B1 } = 1, the second case occurs.

PROOF. Since 1 +B1 is a neighborhood of I in K ',its image must be a neighborhood
of 1 in F. When C = 1. this neighborhood is contained in (0, 1] and its image
under t i-± t-t is a neighborhood of 1 in r contained in [1, oc). The intersection of
these two neighborhoods of I in r is reduced to the single point 11), thus proving
that r' is discrete in this case.

In an obvious sense, the modulus m defines the topology of K: Any neighbor-
hood of an element x E K has the form x + V for some neighborhood V of 0 in
K, and m(V) contains a neighborhood of 0 E I', namely,

there is an e > 0 such that m(x) < e x E V,

which implies that the given neighborhood x + V contains x + B.

A.S. Classification

Let us recall the result obtained above (Corollary 2 in A.3): In a nondiscrete locally
compact field, any discrete subfield is finite. Now the discussion of cases can be
made according to the value of the constant

C =max m(I + x) > 1.
XEB,

It is obvious that

m(a + b) < C - max (m(a), m(b)),
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since if 0 m(a) > m(b), we can divide by a so that x = b/a E Bt and
nt(1 +b/a) < C, m(a + b) < C m(a) = C max (m(a), nz(b)). Hence m defines
a generalized absolute value (II.2.2) on K. In every case, a suitable power of C
will be less than or equal to 2, and a power of m is a metric defining the topology
of K. This shows that any locally compact field is metrizable.

First case: C > 1. In this case, the field K is not ultrametric; hence it is automat-
ically of characteristic 0 and contains the field Q. If K is not discrete, Q is not
discrete either (because infinite, by the result just recalled), and the metric induced
by K on Q must be equivalent to the usual Archimedean metric. The completion
R of Q for this metric must also be contained in K. Hence K is a real vector space.
Being locally compact, it must be finite-dimensional. One can show that the only
possible cases are K = R. C (or H: Hamilton quaternions if it is not commutative).

Second case: C = 1. Then K is ultrametric. If we assume K to be of characteristic
0, it contains the field Q, and as before, the induced metric on Q is not trivial. By
the classification of ultrametric absolute values on Q we infer that K must induce a
p-adic metric on Q and contain a completion Qp. Since K is assumed to be locally
compact, its degree over Qp is finite (II.3.2). We leave out the positive characteristic
case (interested readers can find a complete discussion in the specific references
given at the end of this book)-

It is easy to see that contrary to the real case, there are extensions of Qp of
arbitrarily large degree (cf. (111. 1.3)).

A.6. Finite-Dimensional Topological Vector Spaces

In order to approach the structure of locally compact fields (having no a priori
norm), we have to give a few general definitions and results concerning topologi-
cal vector spaces. Instead of limiting ourselves to the field of scalars Qp, let us treat
the case of arbitrary valued fields: This general context has the advantage of em-
phasizing the individual properties needed to establish each result. Thus we shall
consider in this section that K is any ultrametric valued field (11. 1.3), nondiscrete:
I K" I : { 11. In particular, K is a metric space.

Definition. A topological vector space over K is a vector space V (over K)
equipped with a Hausdorff topology for which

the additive group V is a topological group,
the multiplication (a, v) r-* a v : K x V --> V is continuous.

Let U be a neighborhood of 0 in such a topological vector space. By continuity
of multiplication at (0, 0), there is 8 > 0 and a neighborhood Uo C U of 0 such
that

U,:={av:aEK, lal<E, VEUo}CU.
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This neighborhood Ul C U of 0 has the property

aEK, Iai<l =aUICUI.

Definition. A nonempty subset U in a topological vector space V is balanced
when

aEK, tat<1=aUCU.

The balanced neighborhoods of 0 in a topological vector space play the role of the
balls in normed spaces. We have just proved that in a topological vector space
there is a fundamental system of neighborhoods of 0 consisting of balanced
ones.

Theorem 1. A one-dimensional topological vector space V over K is isomor-
phic as a topological vector space to K. More precisely, for each 0 # v E V,
the map a H av : K --* V is a bijective linear homeomorphism.

PROOF. Fix 0 v E V. The one-to-one linear map a H av : K -> V is
continuous, since V is a topological vector space over K. We have to show the
continuity of the inverse, namely

V s > 0 3 U neighborhood of 0 in V such that av E U , Jai < s.

We proceed as follows. Ifs > 0 is chosen, we take b c K with 0 < lb1 < s and a
balanced neighborhood U of 0 in V such that U ' by # 0 (this is possible, since
we assume that V is Hausdorff). Now, if av E U, then

by=b - as U =
a U balanced

b

a
EU

>1 : ai<lbi<s.

Lemma. A linear form cp : V -* K on a topological vector space V is contin-
uous precisely when its kernel is closed in V.

PROOF. If the linear form cp is continuous, its kernel is closed. Conversely, assume
that the kernel of cp is closed. We may assume cc # 0 and take vo c V with
co(vo) 9 0. Replace vo by vo/cp(vo), so that cp(vo) = 1. The linear variety

{cp=1}=vo+kercp

is closed and does not contain the origin. Hence there is a balanced neighborhood
U of 0 that does not meet this closed subset:

(vo+ker(p)f1U=0.
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I claim that cp(U) C Bit, so that cp is bounded, continuous at the origin, and
continuous. Now, if v E U and V(v) # 0, consider the scalar a = 1 jcp(v). We have

cp(av)=i=av4U ; Ial> 1.
U balanced

This proves icp(v)I < 1, as expected.

Theorem 2. Assume that the field K is complete. Then a finite-dimensional
topological vector space V over K is isomorphic as a topological vector space
to a Cartesian product Kd. More precisely, for any basis (e;) of V, the linear
map

Ajej:Kd-+V

is an isomorphism of topological vector spaces.

PRooF. We proceed by induction on the dimension of the vector space V: The
dimension-I case is covered by the first theorem. Assume that the statement is true
up to dimension d -1. If dimK V = d, select a basis e1..... ed of V and consider
the linear span W of the first d - 1 e;. By the induction assumption, the space W
is isomorphic to Kd-l and hence complete and closed in V. The linear form

cP:>2XtejHAd,V-K

is continuous, since its kernel ker(cp) = W is closed. The one-to-one linear map

Kd=Kd_txK-.WxKed su') V

is continuous. Its inverse is

x H (x - co(x)ed , co(x)ed)

and hence is also continuous.

A.7. Locally Compact Vector Spaces Revisited

We have seen in (3.2) that locally compact normed spaces V over Qp are finite-
dimensional. Using the existence of Haar measures, we can now prove the same
statement without the assumption that the topology is derived from a norm.

Theorem. Any locally compact vector space over Qp is finite-dimensional

PROOF (WEIL). The proof is based on (A.6): A finite-dimensional subspace of a
locally compact vectorspace V over Qp is isomorphic as a topological vector space
to a finite product Qd, hence is complete, and hence is closed in V and locally
compact. Let now V be any locally compact vector space over Qp. In particular,
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it is a locally compact abelian group, and we can choose a Haar measure It on V.
We can define a modulus homomorphism

my=Qp -*R>o

as for locally compact fields (A.1). For 0 a E Qp, the map U i-+ vol (a U) is
also a Haar measure on V, and by uniqueness, there is a unique positive scalar
m v(a) > 0 such that vol (aU) = mv(a) vol (U) (for all relatively compact
open sets U C V). For example, If W = Qp has dimension d over Q. then
mw(a) = laid. Since p" 0 in Q,, we have

mv(P)n = mV(P') -* 0.

and this proves mv(p) < 1 for all locally compact Qp-vector spaces V. Select
now a d-dimensional vector subspace W of V. Integrating in succession over W
and F = V/W,

f H J dAF(Y)f .f (x + y)diiw(x),
F w

we get an invariant Radon measure on V, which we may take for µv (or we can
change the choice of Haar measure on F to obtain this equality). Hence

f f(x)dµv(x)= f dAF(Y) fW f (x + y)dl-t w (x)
V F

for all continuous functions f with compact support on G. We see that

mv(a) = mw(a) - mF(a) = laid mF(a),
mv(P) = lPld - mF(P) < lPjd,

log mv(p) < d log Ipl,

and by division by log l p I < 0,

d < logmv(P)/log lp1.

This shows that the dimension d of finite-dimensional subspaces of V is bounded,
and this implies that V itself is finite-dimensional.

A.8. Final Comments on Regularity of Haar Measures

Let us consider the Haar measure on the locally compact group G = R x Rd
where the first copy of R has the usual topology and the second copy the discrete
topology. The usual Lebesgue measure AL is a Haar measure on R, and we can
take for Haar measure of Rd the counting measure

Ad(A)=#(A) (A C Rd).
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The product of these two Haar measures is a Haar measure on the product R x Rd
The subset A = {0} x Rd has the discrete topology, and

u(A) =
U A A(U) = oo,

simply since each open set U j A contains an uncountable family of open intervals
ofpositive length. However, a compact set K C A is finite (because discrete), hence
µ(K) = 0, and SUPK compact CA [t(K) = 0 is different from µ(A) = oo. In general,
inner regularity holds only for subsets having [t(A) < oo (and in a suitable algebra
containing the Bore] subsets). This pathology disappears in locally compact spaces
that are countable at infinity. This last property holds for all locally compact fields:
we have seen this in characteristic zero in (A.5).

EXERCISES FOR CHAPTER 2

1. Let X be an ultrametric space. Show that the spheres of radius r > 0 in X are the
complements of one open ball of maximal radius r in a closed ball of radius r.

2. Let X be an ultrametric space.
(a) Fix a positive radius r > 0. Show that the condition d(x, y) < r is an equivalence

relation x y between elements of X. The equivalence classes are the closed
balls of radius r, and the quotient space is the uniformly discrete metric space of
closed balls of fixed radius r (the inequality d(x, y) < r also defines an equivalence
relation, for which the equivalence classes are the open balls of radius r).

(b) Fix a E X and assume that {d(x, a) : x E X} is dense in R>o. Show that the ordered
set of closed balls containing the point a (with respect to inclusion) is isomorphic
to the half line [0, oo) c R.

(c) Assume that for each x E X, {d(x, y) : y E X } is dense in R>o. Define Tx as the
ordered set of closed balls in X (with respect to inclusion). Prove that this is a tree.
Recall that we denote by S(A) the diameter of a bounded subset of a metric space,
so that 8B<r = r. We have two natural maps

X x R>o -+ Tx (a, r) r-> B = B<r(a)
1s 1s
R>o 8(B) = r

For r > 0, the fiber S-I (r) is the uniformly discrete metric space consisting of
closed balls of fixed radius r. If X is separable, this fiber is countable. For any subset
A C X define Tx(A) as the subset consisting of the (dressed) balls B meeting A.
Prove that this is a subtree of TX. Take for A successively sets containing only one,
two, or three elements: What are the possible configurations?

(d) The metric space Zp can be embedded in an ultrametric space X satisfying the
condition required in (c) (cf. Chapter III). Sketch Tx(Z p) and show that the picture
does not depend on the choice of ambient space X.

3. Let 1. I be an absolute value on a field K.
(a) Prove the triangle inequality

Ix + y I° 5 Ix Ia + ly I° (x, y E K, 0 < a < 1).
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(b) When the absolute value is ultrametric, prove the same result for all a > 0.
(c) If a = ao + ai and Jai I < la I for 1 < i < n, prove la I = maxo<i<n lai 1.

4. As corollary of the proof of Theorem 1 of (11. 1.4) we see that (with the notation of the
theorem): If A/i;A is finite, then A/f'A is also finite and #(A/(;nA) =
More generally, show that in any integral domain A,

#(A/(ab)) = #(A/(a)) #(A/(b))

if ab 0. (Hint. Observe that multiplication by bon (a) = aA leads to an isomorphism
of the A-modules A/(a) and Ab/(ab). Then use the isomorphism A/abA = A/aA X
a A/abA.)

5. (a) Let P(X) = X2 - 2X + I E Z[X]. This polynomial has the root x = I. Find
explicitly the sequence of iterates given by Newton's method starting at an element
x tA 1: Does this sequence converge in Qp?

(b) Let A be the maximal subring of an ultrametric field as in (1.4), and let P(X) E A[X]
be a polynomial having a simple root x -1=.

Show that for any x in the open ball of center and radius 0 Newton's
method furnishes a sequence of iterates that converges to 4.

6. Prove directly the following: If an -* 0 and bn -* 0 in an ultrametric field, then
cn aibn-i -> 0 and

Ea,, Ebn = Ecn.
n>>0 n>0 n>0

[Hint. The assumption implies that the two sequences are bounded, say

Jai 1 < C, Ibi I C for all i > 0,

and for each given s > 0 there exists N = NE such that

Jai l<_e, Ibil<s (i>N).

For i + j >_ 2N, we have I aibi 1 < cC, since one index at least is greater or equal to
N.]

7. Show that two norms on a vector space define the same topology when there exist two
constants c, C such that

cIIxll llxll' CIlxll

(The unit ball for one norm must contain a ball for the other norm; observe that this
condition is independent from the ultrametricity.)

8. Let K'/K be a finite extension of ultrametric fields. Show directly that the residue field
k' of K' has finite degree over the residue field of K and

.f=[k':k]<n=[K':Kl
(cf. 4.1 and 43).

9. Let K be a valued field that is an extension of Qp, and let E K. Suppose that there
exist integers ao(j), al(j). . a,,-1(j) E Z (j > 1) such that

+ao(j)l -* 0 (j -* 00).
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(a) Show that I 1 _< 1. (If you cannot, glimpse at the proof of Proposition 3 in (111.2. 1)).
(b) Prove that s is algebraic of degree less than or equal ton over Qp.

(Hint. Consider the nonempty sets X,,, C (Z/pmZ)'1 consisting of the families
(ao mod p', .. , 1 mod p"') such that It' + a,_1 i i -1 + - + ao I I p"t I =
1/p'. Then any element of lim X0 gives a polynomial dependence relation
for over Qp.)

10. Lets < t and c a root of unity of order pc, c' a root of unity of order p', both in QF,.
What is the distance IC - SCI?

11. Let K be an ultrametric extension of Qp. Prove that if the group µ(K) of roots of unity
in K is infinite, then this field K is not locally compact. (Hint. Can you find a convergent
subsequence?)

12. Show that the quadratic extensions Q5(') and Q5 (-%/3-) of Q5 in Q5 coincide, by two
methods:
(a) Use the fact that 6 has a square root in Q.
(b) X2 - 2 and X2 - 3 are irreducible over F5 (hence µ24 C Q5('), V24 C Q5(-)).

13. Consider the following quadratic extensions of Q7 in Q°

Q7( ), Q7('/), Q7(lf3), Q7('), Q7(-/6)-

By (1.6.6), they cannot be distinct: Give identities. What is the degree of Q7('/, n)
over Q7? (What is the degree of Q(f , /) over Q?)

EXERCISES FOR APPENDIX TO CHAPTER 2

1. Let U be a neighborhood of 0 in a topological vector space V over a valued field K.
Show that

(l
).U

AEK,IAI>I

is a balanced neighborhood of 0 contained in U.

2. Let K be a nondiscrete ultrametric field. Assume that K is not complete and consider
the topological vector space K over K. If a, b E K are linearly independent over K, the
two-dimensional subspace Ka + Kb is not isomorphic, as a topological vector space,
to K2. (Hint. The one-dimensional subspaces of K2 are not dense in this space!)

3. Let K be a finite extension of Qp (hence locally compact). A character of K is a
continuous homomorphism X : K -+ U(1) = {z E C" : IzI = 1}.
(a) Prove that such a character X is locally constant and takes its values in µ p-
( b) If i/i is a fixed nontrivial character, consider the characters ,lia(x) _ *(ax) (a E K).

Show that a -+ 1a is an injective homomorphism f : K -+ Kr where K= is the
(multiplicative) group of characters of K. (For a nontrivial character on K, one can
take the composite of the trace TKIQ, and the Tate homomorphism r (1.5.4).)

(c) Define a topology on K having for neighborhoods of a given character X the
subsets

VE,A(X) = {X' E K' : I x'(x) - X(x)I < s}

(e > 0, A a compact subset of K). Show that the above-defined homomorphism
f : a H ,pa is continuous.
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(d) Show that the inverse homomorphism *a +-* a is continuous on f(K). Conclude
that this image is locally compact, and hence closed in K=. (Hint. Use Corollary i
in (1.3.2).)

Comment. For any locally compact abelian group G. one can define its Pontryagin
dual

G:: = {X : G -* U(1) a continuous homomorphism}

and show that G- is again a locally compact abelian group with (Gcanonically
isomorphic to G. When G = K is the additive group of a locally compact field, one can
show (as above) that K and K- are isomorphic. This generalizes the known situation
for the field R.
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Construction of Universal
p-adic Fields

In order to be able to define K-valued functions by means of series (mainly power
series), we have to assume that K is complete. It turns out that the algebraic
closure QP is not complete, so we shall consider its completion Cp: This field turns
out to be algebraically closed and is a natural domain for the study of "analytic
functions." However, this field is not spherically complete (2.4), and spherical
completeness is an indispensable condition for the validity of the analogue of the
Hahn-Banach theorem (Ingleton's theorem (N4.7); spherical completeness also
appears in (VI.3.6)). This is a reason for enlarging Qp in a more radical way than
just completion, and we shall construct a spherically complete, algebraically closed
field S2p (containing QP and Cp) having still another convenient property, namely
IS2p R>0. This ensures that all spheres of positive radius in QP are nonempty:
B<,(a) 0 B<,(a) for all r > 0. In fact, we shall define the big ultrametric extension
QP first - using an ultraproduct - and prove all its properties (this method is
due to B. Diarra) and then define Cp as the topological closure of QP in CPI This
simplifies the proof that Cp is algebraically closed. By a universal p-adic field we
mean a complete, algebraically closed extension of Qp.

In this chapter Q p denotes a fixed algebraic closure of Qp.

1. The Algebraic Closure Qp of Qp

1.1. Extension of the Absolute Value

There is a canonical absolute value on Q ,. Indeed, the absolute value of Qp extends
uniquely to Q ,, as the following observation shows. If Kt and K2 are two finite
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extensions of Qp in Qy, the two extensions (11.3.4) of the absolute value of Qp to
these fields must agree on their intersection Kl fl K2 by uniqueness (11.3.3). Hence
all the extensions of the absolute value of Qp to finite subextensions of Q'P define
a unique extension of this absolute value to Qp. As a consequence, this algebraic
closure is an ultrametric field, and we set

Aa := the maximal subring of Q'P : lx I < 1,

Ma := the maximal ideal of A' : Ix I < 1,

k' := A'/Ma the residue field of Q.

We shall see below that QP is not complete, hence not locally compact. Moreover,
the residue field ka is infinite, and I(Qp)" I is a dense subgroup of R,o. Hence none
of the conditions of (11.3.5) for local compactness are satisfied!

1.2. Maximal Unramified Subextension

We have seen in (11.4.3) that every finite extension K of Qp contains a maximal
unramified subextension: Since K is complete, the group /Ltpl(K) of roots of
unity in K having order prime to p is isomorphic to the cyclic group k" of order
q - 1 = pf - 1, where f is the residue degree of K:

Kur = Qp(Aq-l) C K.

It is not difficult to generalize this result to the algebraically closed extension
Qa

p.

Proposition. The residue field ka of the algebraic closure QP of Qp is an
algebraic closure of the prime field F.

PROOF. Since any algebraic element x E Qp generates a finite-dimensional ex-
tension K of Qp, the residue field of K is also finite-dimensional over F. This
proves that the residue field of Q'P is algebraic over Fp. Conversely, if # 0 is
algebraic over Fp, it belongs to the cyclic group Fp(l; )" and hence is a root of unity
of order m prime to p. Now consider the cyclotomic extension Qp(ltm) obtained
by adjoining to Qp all roots of unity of order m. If rl are two such roots, then
I -17l = 1 and the reductions of and 17 are distinct (cf. 11.4.3). Hence the residue
field of Qp(A n) contains m distinct mth roots of unity and contains .

We shall denote by Fn = Fpx = U f,., Fpr an algebraic closure of Fp and by
(Qap)ur = Qp(µ(p)) C Q'P the extension generated by all roots of unity having
order prime to p. This is the maximal unramified extension of Qp in Q1P,

Corollary. The residue field of the maximal unramified extension of Qp in Qp
is an algebraic closure of the prime field F.
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1.3. Ramified Extensions

One can give another reason for the fact that the extension QP has infinite degree

over Qp- Choose algebraic numbers ne = p tie (e > 2). We have

I7rel = IPI = 11P, IneI = (1/P)l,e,

and consequently the ramification index of Qp(lre) is greater than or equal to e.
This proves that Qp has algebraic extensions of arbitrarily large degree. Indeed,
the polynomial X e - p is an Eisenstein polynomial, and hence is irreducible (11.4.2)
in Zp[X] or Qp[X]: This defines an extension of degree e of Qp. More generally,
if K is any finite extension of Qp (contained in Qp), it is locally compact, and we
can choose a generator 7r for the maximal ideal P of R. The polynomial Xe - 7r
is an Eisenstein polynomial, hence is irreducible in R[X] and K[X], whence K is
not algebraically closed. These simple observations show that

I(Qp)YIDPQ={p°:VEQ)=UP (lle)Z.

e>I

Proposition. The absolute values of algebraic numbers over Q p are fractional
powers of p: I(Qp)" I = PQ

PROOF. If X E QP - Qp is any algebraic number not in Qp, it satisfies a nontrivial
polynomial equation

Eaix'=0 (a'EQp)
O<i<n

of degree n > 2. By the principle of competition, there are two distinct indices,
say i > j, with

laix`I=laix'I:7 0-

Hence

lxli-.i = Jai/ail c PZ>

andlxlEpci/e)z (e=i-j> 1).

1.4. The Algebraic Closure QP is not Complete

A complete metric space X is a Baire space: A countable union of closed subsets
X in X having no interior point cannot have an interior point. In particular, such
a countable union cannot be equal to X. Recall that locally compact spaces and
complete metric spaces are Baire spaces.

Theorem. The algebraic closure Qp of Qp is not a Baire space.
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PROOF. Let us define the sequence of subsets

Xn=IX EQp:degx=[Qp(x):Qp]=n}CQp (n>1)
so that QP = X,,. It is also obvious that AX,, C X. (A E Qp), X. + X C
X,,,, and in particular,

X + X C
(a) These subsets are closed. If x 0 is in the closure of X,,, say x = limxi

with a sequence (x,) in X,,, then for each xi let fi (X) E Qp[X] be a polynomial
of least degree with xi as a root and coefficients scaled so they lie in ZP and at
least one of them is in Zp Z. Extracting if necessary a subsequence of (fi ), we can
assume that it converges (in norm, coefficientwise), say fi f, so f E Zp[X]
has degree less than or equal to n and at least one coefficient in Zp , so f (X) 0.
By the ultrametric property, the convergence fi -> f is uniform on all bounded
sets of Q. Since the convergent sequence (xi) is bounded. we have

f (x) - fi (xi) = .f (x) - .f (xi) + f (xi) - fi (xi) - 0.

This implies f(x) = lim fi(xi) = 0 and x E X,,.
(b) The subsets X. have no interior point. Since for any closed ball B of positive

radius in Qp we have Qp = Qp B. such a ball cannot be contained in a subset
X,,, and no translate can be contained in X.

Corollary. The space Qp is neither complete nor locally compact.

1.5. Krasner's Lenima

Theorem 1(Krasner's Lemma). Let K C Q 'P be a finite extension of Q p and
let a c Qp (so that a is algebraic over Qp). Denote by a° the conjugates of
a over K and put r = mina*#a la° - al. Then every element b E B<r(a; Q,)
generates (over K) an extension containing K(a).

PROOF. Take any algebraic element b such that a K(b). Since we are in charac-
teristic 0, Galois theory asserts that there is a conjugate a° 54 a of a over K(b)
(the automorphism a fixes K(b) elementwise) and we can estimate the distance
of a to b as follows:

lb - a°I = I(b-a)°I = Ib - al,

la - a°l < max(la-bl.lb-a°I)=lb-al.

This shows that

lb-al>la-a°l>r.
Hence if b E B<r(a), namely Ib - al < r, we have

a E K(b), K(a) C K(b).
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Examples. (a) Take K = Q2 and a = = i. Then i' = -i and

r=Ii -ial=12r1=121=2
Hence for b E Q2,

lb-it<1=iEQ2(b)
(b) Take K = Q3 and a =. Then as = -,f--3 and

r=la-a°I=121=11=1311/2=
Hence for b E Q3,

lb - 1 < V-J EQ3(b)
Recall that the norm of a polynomial f(X) a, X" is the sup norm on the
coefficients II f II = maxi< la,1

Theorem 2 (Continuity of Roots of Equations). Let K be a finite extension
of the p-adic field Qp and fix an algebraic element a c QP of degree n over
K corresponding to a monic irreducible polynomial f E K[X] (of degree n).
There is a positive E such that any monic polynomial g E K [XI of degree n with
Ilg - f II < E has a root b E K(a) also generating this field: K(b) = K(a).

PROOF Let us factorize the polynomial g in the algebraic closure QP of K, say
g(X) = rl(X - bi), and evaluate it at the root a of f :

fl(a - bi) = g(a) = g(a) - f (a).

With M = maxo<,<,, (lali) = max(1, Ial") we can estimate

11 Ia - biI = Ig(a)-f(a)I <- Ilg - f11 -M,

hence for one index i at least,

nIa - bi I Jig - f II1/11 . M11.

By the preceding theorem, if E > 0 is chosen small enough, then ilg - f 11 < E
will imply K(bi) j K(a) for some i. But the degree of b; is less than or equal to
n, since it is a root of the nth degree polynomial g c K [X ]. This proves K(bi) _
K(a).

Corollary 1. Let f E K[X] be a monic irreducible polynomial, a E QP a root
of f, and (gi),EN a sequence of monic polynomials with coefficients in K of the
same degree as f. If gi -+ f (coefficientwise), there is a sequence (xi) of roots
of these polynomials such that xi E K(a) for large i and xi --> a.
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PROOF. As soon as 11g, - f II < e is small enough, the above result is applicable
and shows that Ia - xi I is small for at least one root xi of gi. More precisely, the
inequality

Ia - xiI < llgi - f Illln . M1In

shows that j a - xi I -> 0, and the convergence xi -> a in K(a) follows.

Corollary 2. The algebraic closure Qp of Qp is a separable metric space.

PROOF Take a E Qp and let f be its minimal polynomial over Qp. Since Q is
dense in Qp, we can find monic polynomials g E Q[X] as close to f as we want.
If we choose a sequence gn -> f, the continuity principle for the roots shows
that a is a limit of roots xn of the polynomials gn. This shows that the algebraic
closure of Q is dense in Q ,. But this algebraic closure is a countable field since
the set of polynomials of fixed degree with coefficients in the countable field Q is
countable.

1.6. A Finiteness Result

In the last two sections of this chapter, let us prove a couple of theorems easily
obtained with the techniques developed above. (We shall not need them in the
sequel.)

Theorem. Let K be a finite extension of Q p and n > 1 an integer. Then there
are only finitely many extensions of K of degree n in Q p.

PROOF (1) Let F be an extension of degree n of K and let e be its relative ram-
ification index, f its residue degree: n = ef. The cyclic subgroup consisting of
roots of unity in F having order prime to p is isomorphic to the cyclic group
of nonzero elements in the residue field of F (11.4.3). These roots generate the
maximal unramified subextension Fur of K in F,

[Fur: K]=f

(11.4.4), and the extension F/Fur is totally ramified of degree e. If the residue
degree f is given, there is only one unramified extension of degree f of K in
Q. Hence the announced result will be established as soon as the same finiteness
property for totally ramified extensions is established.

(2) Let us show that there are only finitely many totally ramified extensions of
given degree n = e of K. Fix such an extension F and let K D R D P = 7r I?
(conventional notation). By (11.4.2, 11.4.4) it is generated by an element having
minimal polynomial

X n + an-1 Xn-1 + ... + uo7r
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1. The Algebraic Closure Qp of QP 133

which is an Eisenstein polynomial. Its coefficients ai belong to P, and uo c Rx is
a unit: uo E K and luol = 1. The Cartesian product

Pn-1 x Rx

is compact, and by continuity of the roots of equations (1.5), each element of
this product has an open neighborhood corresponding to polynomials having
their roots generating the same extension F in Q. This completes the finiteness
proof.

1.7. Structure of Totally and Tamely Ramified Extensions

It is possible to improve the result (11.4.2) concerning the generation of totally
ramified extensions.

Theorem. Let K C L C Q p be finite extensions of Q p. Assume that L/K is
totally and tamely ramified of degree e. Then there exists a generator it of the
maximal ideal P of R C K such that L is generated by an eth root of it in Q.

PROOF. By assumption e = [L : K] is prime to p. The proof will be accomplished
in three steps.

(1) Consider arbitrary generators it of P C R C K and 7rL of PL C RL C L.
Since L/K is totally ramified of degree e, IJrL Ie = 17r l and 7rL/7r = u is a unit in
RL. Since the residue degree of L/K is 1, the residue fields are the same, and there
is a unit of R (one can take a root of unity in K) such that u (mod P)L.
Let us write

Ire = 7r - u, u = +7rLV (V E RL).

Hence

7rL = in - ( +7rLV) = 7r +7r7rLV.

The element 7r is also a generator of the ideal P of R. We are going to show that
L is generated by a root of the equation Xe - c7r. Let us replace the generator it
by 7r' = 7r and simply denote it by it again. Thus we assume from now on that
the generators 7rL and it are linked by a relation

7rL = 7r +7r7rLU (V E RL).

(2) The polynomial f = Xe - it is an Eisenstein polynomial (11.4.2) of R[X].
Hence it is irreducible over K[X]. We have

f(7rL) =7rL -7r = 7r7rLV, If(7rL)l = 17r7rLVI

Let us factor f in Q° :
P

< 17r1.

f(X) = Xe -7r = fl (X -ai)
1 <i <e
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(where fi a, = ±7r). Since f is irreducible, the roots ai are conjugate and have
the same absolute value in Qp, say jai 1 = c independent of i. Hence

Ce=fJ ICI, I=17r 1,

IaiI = C = Inlt/e = f rLl,

and

I7rL - ai 1 < max(lai 1, I7rLI) = l7TLl-

If we come back to the polynomial f , then

Jfl (irL -ai) = If(lrL)I <
t<i <e

shows that at least one of the factors is smaller than IIrL I. Without loss of generality
we may assume

I7rL-aII <InLI-

(3) The roots of f (X) = X e - rr = 0 are the ai = i a, where die = 1. Since e
is prime to p, we have jai - 11 = I when l by Proposition 1 in (11.4.3). This
proves

Iai-aI=Ice l=c=l7TL1 (i#1),
IlrL - aI < IULI = Ia - ai I (i 56 1)-

By Krasner's lemma, we infer that

K(a) C K(JrL),

and since the element a has degree e, this inclusion is an equality.

Example. If we add a primitive pth root p of unity to Qp, we obtain a totally
ramified extension K of degree p - 1. Hence K/Qp is tamely ramified and can
be generated by a (p - 1)-th root of the generator -p of pZn.

For p = 3, we have seen in (11.4.6) that b = i works:

Q3(d J).

2. Definition of a Universal p-adic Field

2.1. More Results on Ultrametric Fields

Let us start with a couple of general results concerning (nondiscrete) ultrametric
fields.
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Proposition 1. Let K be an ultrametric field and K its completion. Then K is
still an ultrametric field and

(a) I K I = IKI,
(b) K and K have the same residue field.

PROOF. Let A be the ring of Cauchy sequences in K. The ideal I of A consisting
of Cauchy sequences a = (an) with a -+ 0 (also called null Cauchy sequences)
is a maximal ideal: If an 0, then an 0 except for finitely many indices n
and a is invertible in the quotient A/I. We can define K = A/I with a canonical
injection K y K given by constant sequences. If a = (an) E A - I is a Cauchy
sequence that is not null, the sequence (Ian I) is stationary (stationarity principle),
and we define an absolute value on K by

Ial= limlanIEJK"ICR>ufora0 and101=0.
n-00

Obviously, the canonical injection K y K is an isometric embedding, and we
view K as a subfield of K: The absolute value of K extends the absolute value
of K. The residue field k of K parametrizes the open unit balls Bs1(a) (a = 0
or jai = 1) contained in the closed unit ball: k" parametrizes the open unit balls
contained in the unit sphere S1 = {x E K : Ix I = 11. Any Cauchy sequence of the
closed unit ball has all its final terms in an open unit ball; hence it corresponds to
a fixed element in the residue field k.

An extension L of an ultrametric field K having same residue field kL = k and
the same absolute values I L I = I K I is called an immediate extension of K. Hence
the completion of K is an immediate extension of K.

Proposition 2. Let K be a nondiscrete ultrametric field and put

A = {x E K : IxI < 1 } : maximal subring of K

M = {x E K : Ix I < 1 } : maximal ideal of A.

Then, either M is principal, or M = M2 and the ring A is not Noetherian.

PROOF. By hypothesis r = I K" I { 11, and either r n (0, 1) has a maximal
element 0 or it has a sequence tending to 1. In the first case we can choose it E M
with lir I = 0, and M = it A is principal. In the second case, for each x E M, namely
IxI < 1, we can find an element y such that IxI < IyI < 1, so that

x = y- (x/y)E M2.

Since y and x/y belong to M, this shows that x E M2, and we have proved M = M2.
In this last case, the subgroup F = I K" I is dense in R>0, and all the ideals

Ir=B<r=B<r(0;K)={xEK:lxl <r}
for r E r fl (0, 1) are distinct: The ring A is not Noetherian.
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Proposition 3. With the same notation as before:

(a) If K is algebraically closed, so is the residue field k.
(b) If L is an algebraic extension of K, the residue field kL of L

is also an algebraic extension of the residue field k of K.

PROOF. In any ultrametric field, I I > 1, Jai I 1 (i < n) implies

I 'I > (i < n),

IIn > YaiS'I,
i<n

and hence

1,

i<n

+> ai ' 0.
i<n

This proves that any root of a monic polynomial having coefficients Jai I < 1 belongs
to the closed unit ball Ix I < 1.

(a) Let Xn +>i<n aiXi E k[X] be a monic polynomial of degree n > 1. Choose
liftings ai E A of the coefficients, i.e., ai =ai (mod M), and consider the monic
polynomial

Xn+>2aiX' E A[X].
i<n

Since the field K is algebraically closed, this polynomial has a root x E K. By the
preliminary observation, x E A and x mod M is a root of the reduced polynomial
Xn + Fi<n aiXi. This proves that k is algebraically closed.

(b) Let 0 E kL and choose a representative x E AL - ML of the coset
¢ 0: IxI = 1. By assumption, this element is algebraic over K, and hence x

satisfies a nontrivial polynomial equation

Eaixn = 0 (n > 1, ai E K).
i<n

By the principle of competitivity, at least two monomials have maximal competing
absolute values

Jai I = Jaix' I = Ja.tx' I = I aj I for some i < j.

Dividing by ai, we obtain a polynomial equation with coefficients Jak I < 1. a' E A
and at least two of them not in M. By reduction mod M we get a nontrivial
polynomial equation satisfied by . 0
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2.2. Construction of a Universal Field S2 p

Let R be the normed ring £ (Qp) consisting of bounded sequences a = (a; IEN of
Q°p with the sup norm

IIa II = l al l -

Let us also choose and fix an ultrafilter U on N containing the subsets [n, co)
(n E N). (Readers not familiar with ultrafilters can find all definitions and properties
used here in the Appendix to this Chapter.) Recall that for each subset A C N either
A E U or A` = N - A E U. On the other hand (here is the reason for choosing an
ultrafilter), each bounded sequence of real numbers has a limit along U, and we
put

(p(a)=lim1a11>0.

Proposition 1. The subset 3 = cp-1(0) is a maximal ideal of the ring R, and
the field QP = R/3 is an extension of the field Q "P.

PROOF Let us show that each element a V 3 is invertible mod J. But if a = (a,)
is not in the ideal 3, the limit r = cp(a) > 0 does not vanish, so we can find a
subset A E 1.1 such that r/2 < la! I < 2r (i c A). Define a sequence l4 = (p3,) by

,81 = i for i E A and P, = 0 for i V A.
a;

Since IA I < 2/r (i E A), the sequence 16 is bounded P < 2/r and iB E R. By
construction 1 - a,6 vanishes on the set A, hence 1 - a,6 E J. This shows that
a mod 3 is invertible in the quotient S2p. Consequently, the quotient is a field,
and 3 a maximal ideal of R. Finally, constant sequences provide an embedding

The map rp defines an absolute value on the field f2p: For a = (a mod 3) we
put

lal = lal2 = q(a) = hm lai1.

This absolute value extends the absolute value on QP (considered as a subfield of
up through constant sequence).

Proposition 2. The absolute value I . lK2 coincides with the quotient norm of
R/J, namely for a = (a mod 3),

lalp = Ila mod 3IIRiJ := inf Ila - Pll.
PEJ
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PROOF. We have limo l Yi I < sup J yi

II

(y c R), and hence

hn Jai I = l I ai - Yi I Gsup Jai - /3, I

(/3 E ,7)-

This proves

laJ < IIaIIRt,J-

Conversely, if a = a mod .7, then for any subset A E U we can define the sequence
,B = (Pi) as i6i = 0 (i E A) and /i = ai (i /E A) so that B E ,7 and Ila - Ell =
supiCA Jail and

I1 a1IR/9 << inf sup Jail = Jim suplai I = lm Jail = Jalsi-
ACU iEA

From now on we shall simply write lab = JaIQ for either the absolute value on the
field S2p or the quotient norm in R/.7.

Proposition 3. We have

IS2p l = R>o.

PROOF. This is a simple consequence of the fact that IQp I is dense in R>o. Indeed,
each positive real number r is limit of a sequence (rn) of elements rn E IQp I, say
rn = Ja,, I (a E Q ,), so that the sequence a is bounded and defines an element a
in the quotient S2p with lab = r.

Comment. This construction of f2p is reminiscent of nonstandard analysis. Let
X = Qp and in the Cartesian product XN introduce the equivalence relation

(xn) ' (yn) {nEN:x, =yn}ELI.

The quotient *X := XN/_ is an ultrapower of X (as systematically used in non-
standard analysis, in the construction of superstructures). The subset bX consisting
of classes of bounded sequences is the set of limited elements in this ultraproduct
*X, and the classes of sequences tending to zero (along U) are the infinitesimal el-
ements iX c bX. The quotient bX/iX = R/,7 = S2p has more simply been obtained
in one step.

2.3. The Field S2v is Algebraically Closed

Let f E S2p[X] be a monic polynomial of degree n > 1, say

f (X) = X n + an _ 1 Xn-t + - +00 (ak E Qp).
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We show that this polynomial f has a root in the field f2,. Select representative
families for the coefficients:

ak = (aki )i mod J.

We can consider the polynomials

f(X)=Xn+E akiX' EQp[XJ.
k<n

Since the field Qp is algebraically closed, each of these has all its roots in Q,.
More precisely, the product of the roots off is (up to sign) the constant term aoi
of this polynomial, so that we can choose at least one root t j with 4j l aoi I

I/,,The
sequence = (4,) is bounded III II < Ilaoll1/n 4 E R, and the class x of is a

root of f in QP.

2.4. Spherically Complete Ultrametric Spaces

Consider a decreasing sequence (B< n(an))n>o of closed balls in an ultrametric
space X:

d(ai, an) < rn for all pairs i > n.

When r,, \ 0, the sequence of centers is a Cauchy sequence; hence it converges if
we assume that the space X is complete. The limit of this sequence belongs to every

(these balls are closed). In particular, this shows that the intersection of
the sequence is not empty.

At first, it seems surprising that even in a complete space, a nested sequence
of closed balls may have an empty intersection when the decreasing sequence of
radii has a positive limit. Consider, however, the following situation. In the discrete
space N with the ultrametric distance d (n, m) = I - amn, the decreasing sequence
of closed sets Fn = [n, oo) has an empty intersection (they all have diameter equal
to 1). This space is complete (it is uniformly discrete), and a small modification of
the metric (cf. the exercises) transforms these sets Fn into closed balls of strictly
decreasing radii.

Definition. An ultrametric space X is called spherically complete when all
decreasing sequences of closed balls have a nonempty intersection.

A spherically complete space X is complete: If (xn) is any Cauchy sequence of
X, consider the decreasing sequence (rn) where rn = supI xm - xn I (which
converges to 0). Then (B<r. (xn)) is a decreasing sequence of closed balls having
for intersection a limit of the sequence.

Comlment. Any extension of an ultrametric field K which has the same residue
field and the same value group (in R") is called an immediate extension of K. It
can be proved that each ultrametric field admits an immediate extension that is
spherically complete. For example, there is a spherically complete extension of
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Qp that has residue field Fp00 and value group pQ. In fact, spherically complete
extensions are maximal elements among extensions having prescribed residue field
and value group.

2.5. The Field S2p is Spherically Complete

Let us consider any decreasing sequence (Bn)n>o of closed balls Bn = B,, (an)
in the field Q,,. The ultrametric inequality shows that such a sequence of balls
decreases if

Ian+1 - anI < rn and (rn) decreases.

Take liftings an E R of the centers an E R/J in the following way. Since

Ian+1 - anI < rn < rn_i

and since the absolute value is the quotient norm, we can proceed by induction and,
once an has been chosen, successively choose the next lifting an+1 still satisfying
Ilan+1 - an II < rn _ ] . Then Ilak - an 11 < rn_ i for all k > n. The ith componentwill
a fortiori satisfy l aki - a, I < rn_1 (k > n). Consider now the diagonal sequence

= (a,) in R defined by li = aii. Then

III - anII < sup Iii - aniI < rn-1
i>n

because the interval [n, oc) of N belongs to the ultrafilter U, whence for x=l;
mod 3,

Ix - anI III - a.11 _ rn-1,

Ix - an_11 -< max(Ix - anl,Ian - an-11) rn-1,

namely x E Bn_1. Since this happens for all integers n > 0, we infer x E n Bn,
and the intersection of the given decreasing sequence of balls is not empty.

The field S2p is spherically complete, hence complete.

3. The Completion Cp of the Field Qp

3.1. Definition of Cp

Let us define

Cp = Qp = closure of Qp in S2p.

Hence Cp is a completion of Qp:

Cp = Q .

Proposition. The field Cp is a separable metric space.
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PROOF. The algebraic closure Qp of Qp is a separable metric space (by Corollary
2 in (1.5)) and is dense in Cp. Any countable dense subset of Qp is automatically
dense in Cp: For example Q" is dense in Cp.

The universal field Cp is not locally compact: ICp I = pQ = j p' : v E Q} is
dense in R,o. We shall use the following notation

Ap = {X E Cp : IXI < 1}: maximal subring of Cp,

Mp = {x E Cp : IXI < 1}: maximal ideal of Ap.

Hence MP = Mp, and AP is not a Noetherian ring (2.1).

3.2. Finite-Dimensional Vector Spaces over a Complete
Ultrametric Field

Let us formulate and prove a generalization of (11.3.1) (cf. Theorem 2 in (II.A.6)
for the most general version).

Theorem 1. Let K be a complete (nondiscrete) ultrametric field and V a finite-
dimensional vector space over K. Then all norms on V are equivalent.

PROOF We use induction on the dimension n of V. Since the property is obvious for
n = 1, it is enough to establish it in dimension n assuming that it holds in dimension
n - 1. Choose a basis (e,), <,<n of V and consider the vector space isomorphism
go : Kn -* V sending the canonical basis of K" onto the chosen basis of V.
Considering that K" is equipped with the sup norm, we have to show that for any
given norm II . II on V, the mapping iP is bicontinuous. First, for x = (x,) E K",
we have

5 EIxiIlleill <maxix,l E11ei11,

IIco(x)ll 5 Cllxll (C = Elleill),

which proves the continuity of the map V. Conversely, let F be the subspace of
V generated by the last n - 1 basis vectors. Since the dimension of F is n - 1,
the induction hypothesis shows that on this subspace, the given norm is equivalent
to the sup norm of the components. In particular, F is complete and closed in V.
Since e = et ¢ F, we can define

d(e,F)=inflle-yll>0
yEF

and put y = d (e F)/ lie 11 < 1. By the induction hypothesis, there is also a constant
cF such that

IIYII > cF max IxiI (Y= E2<i<nxie, E F).
2<i<n
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For each v = ip(x) E E - F, say v = l; e + y ( 0, y E F), we can write

v = (e +

with

IIvII = ICI Ile+y/III = ICI - Ile - y'll

and hence

IIYII = Ilv - dell < max(llvll, max(IIvIl, y-' IIvIU = Ilvll/y

(since y < 1). This shows that IIvII > y IIYII- We have thus proved

IIvII >

y Ilyll),

and since Il Y ll > cF maxi>2 I xi l , we have

Ilsv(x)ll = llvll > ymax(l I Hell, CF max>2 ix I)

> cmaxi>i IxiI = c - Ilxll,

with x1 = and c = cv = y min(cF, Ilell). 2

Corollary. If K is a complete (nondiscrete) ultrametric field and L is a finite
extension of K, there is at most one extension of the absolute value of K to L.
Any K-automorphism of L is isometric.

PROOF. Same as in (11.3.3). 9

We can now give Krasner's lemma (1.5) in a more general form.

Theorem 2. Let 0 be any algebraically closed extension of Qp and K C §2
any complete subfield. Select an algebraic element a (E S2) over K and denote
by as its conjugates over K. Let r = min,. 0a l as - al. Then every algebraic
element b over K, b E B<r(a), generates with K an extension containing
K(a)-

PROOF. We can proceed as in (1.5), since we now have uniqueness of the extension
of absolute values for finite extensions of K. For any algebraic element b such

that a V K(b), a has a conjugate a° 0 a over K(b) (the automorphism Cr leaves
all elements of K(b) fixed), and

lb - a°I = I(b-a)°l = lb-al,
la - a°I < max(la-bl,lb-a°I)=lb- at.



c
,
,

5
;
'

..r

fir

I The Completion Cp of the Field Qp 143

Hence

lb-al>la-aaI>r.
Taking the contrapositive, l b - a I < r ==>a E K(b) and K(a) C K(b).

3.3. The Completion is Algebraically Closed

Theorem. The universal field Cp is algebraically closed.

PeooF Let L (C S2p) be a finite - hence algebraic - extension of Cp. We can
apply the general form of Krasner's lemma to the extension Cp C S2p, since we
already know that

the field Cp is complete,
the field QP is algebraically closed,
he field S2p has an absolute value extending the p-adic one.

Assume that L = Cp(a) is generated by an algebraic element a of degree n > I
and let f E Cp[Xj be the monic irreducible polynomial of a. By density of the
algebraic closure Qp of Qp in Cp, we can choose (1.5) a polynomial g E Q ,[X]
sufficiently close to f in order to ensure that a root of g generates L over CPI But
QP is algebraically closed, so that g has all its roots in Q ,, and this proves that f
has degree 1: L = Cp.

Comment. We have not used the possibility of extending the absolute value of
Cp to finite extensions of this field, since we work in the field S2p constructed
in (2.2). The general possibility of extending absolute values for finite (algebraic)
"tensions-where the base field is not locally compact - involves other algebraic
techniques.

3.4. The Field Cp is not Spherically Complete
Proposition. The universal field Cp is not spherically complete.

PROOF. Here is an argument showing the existence of strictly decreasing sequences
of closed balls of Cp having an empty intersection (without explicitly constructing
one such sequence!).

Let r -p r > 0 be a strictly decreasing sequence of r = pQ = Cp

In the ball B = B<,(0) we can choose two closed disjoint balls Bo and Bl with
the same radius rl < ro. In each of these we can select two closed disjoint balls of
radii rz < ri, say

Bio and Bit closed and disjoint in Bi.
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Continuing these choices, we define sequences of closed balls having decreasing
radii given by the sequence (rn) and satisfying in particular

Bi D Bid D ... D Bij ...k D Bij. -kt D ...

(with multi-indices equal to 0 or 1). By construction, two balls having distinct multi-
indices of the same length are disjoint. If (i) = (i1, i2, ...) is a binary sequence we
can define

B(1) = n Bi,..
n>1

Such an intersection is either empty or is a closed ball of radius r = lim rn having
for center any element in it, as always in the ultrametric case. In any case, all B(i)
are open subsets of Cp (this is where r = lim rn > 0 is used). If two sequences (i)
and (j) are distinct - say i,, jn - then by construction Bi,...i, and Bj,...j. are
disjoint, and a fortiori B(i) C Bi,...i,, B(j) C Bj,...j, are disjoint. Since the metric
space Cp is separable, the uncountable family of disjoint open sets (B(i)) can only
be a countable set of distinct open sets (any countable dense subset must meet all
nonempty open sets). This forces most of the B(i) to be empty!

A pictorial representation of the preceding proof is sketched in the exercises.

3.5. The Field Cp is Isomorphic to the Complex Field C

The result of this section will not be used in this book. It gives the answer to a
natural question, namely: What is the algebraic structure of the field Cp?

Let us start by the determination of the cardinality of the field Cp.

Lemma. The field Cp has the power of the continuum.

PROOF The unit ball of Qp is Zp - fn>0{0, 1, ... , p- 1),hence has the power of
the continuum c: numeration in base p gives a 1-1 correspondence with [0, 11 c R
except for contably many overlaps, so these sets have the same cardinality. (In
fact, each Zp is homeomorphic to the Cantor set: Exercise 13 of Chapter I.) The
field Qp itself has the same power, since it is the countable union of balls pmZp
(each having cardinality c). All finite extensions of Qp have the same power. The
algebraic closure Qp of Qp still has the same power (the ring of polynomials in
one variable over Qp has also the power of the continuum). Finally, a countable
product (Q,)N cannot have bigger cardinality. Such a product contains all CauchY
sequences of Q,, and

Card(Cp) < Card((Qp)N) = C.

Recall the terminology used for field extensions. A transcendence basis of a field
extension K/k is a family (X)1 j in K such that
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the subfield k(X,),EJ C K is a purely transcendental extension of k,
and K/k(X,),EI is an algebraic extension.

Here are some general results of Steimtz concerning field theory:

Two algebraic closures of a field k are k-isomorphic.
Everyfield extension K/k has a transcendence basis.
Two transcendence bases of K/k have the same cardinality.

For example, let Q° be the algebraic closure of Q in Cp and Qb the algebraic
closure of Q in C. Then there is an isomorphism

Qa Qb

These fields are countable. But the fields Cp and C have the power of the continuum,
hence the same transcendence degree (over the prime field Q or its algebraic
closure).

Theorem. The fields C and Cp are isomorphic.

PROOF. Any extension of the rational field Q having the power of the continuum
has a transcendence basis having this cardinality. By the above lemma the tran-
scendence degrees of C and Cp over Q (or its algebraic closure) are the same, and
we can select transcendence bases (X),EI in C and resp. (Y),EI in Cp (indexed by
the same set). Now, C is an algebraic closure of Q(X,),E, and C,, is an algebraic
closure of Q(Y,),E,. Hence these two algebraic closures are isomorphic.

As a consequence, we can view the field Cp as the complex field C endowed with
an exotic topology. But the preceding considerations do not lead to a canonical
isomorphism between these universal fields: The axiom of choice has to be used
to show the existence of such an isomorphism.

Field J B.,1 D Bpi Residue field Nonzero I . I

Qp D Zp D PZp FP pz
!ZKJRDP=7rR F9(q=Pf) 17riz = Pe

Q°pJAOJM° k°=FD=Fpx PQ

Cp 1) Ap D MP FP = Fpx PQ

S2 DA -p n Al.-.
kn

R>o
uncountable

Properties

locally compact

J of = dimQp K < oc
locally compact

J algebraically closed

t not locally compact

algebraically closed

complete

J algebraically closed
spherically complete
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4. Multiplicative Structure of Cp

4.1. Choice of Representatives for the Absolute Value

Definition. Let G be an abelian group written multiplicatively and n > 2 an
integer. We say that

1. G is n-divisible if for each g E G, there is x E G with x' = g,
2. G is uniquely n-divisible if for each g E G, there is a unique x E G

with x' = g,
3. G is divisible if it is n-divisible for all n > 2.

A simple application of Zorn's lemma will show the possibility of extending all
homomorphisms having a divisible group as target.

Theorem. Let G be a divisible abelian group. For each abelian group H and
homomorphism yi : Ho -+ G of a subgroup Ho C H, there is a homomorphism
i/i : H -> G extending V.

PROOF. Consider all homomorphisms Ho C H' G (H' is a subgroup of H
containing Ho) extending a given homomorphism gp : Ho -> G. There will be a
maximal one 1/i for the order relation given by continuation: Every totally ordered
set of extensions has an upper bound, defined in the obvious way on the union
of the increasing chain of subgroups. I claim that the domain of such a maximal
homomorphism is the whole group H. Indeed, if the domain of an extension So' is
a proper subgroup H' C H, let us show that it is not maximal. For this purpose,
select any element g E H, g ¢ IT and consider the subgroup H" generated by H'
and g, namely the image of the homomorphism

(.f,x')F->gex':Zx H' -- H.

When the only power of the element g that lies in H' is the trivial one, the subgroup
H" is isomorphic to Z x H', and an extension of go' is given by

go"(gex') := cp'(x').

If other powers of g lie in H', the inverse image of H' by the homomorphism
£ H ge : Z -+ H is a nontrivial subgroup mZ C Z (m > 0) (in other words, go is
the smallest positive power of g in H'). In this case, we choose an mth root z E G

of g'(g') E G such that z' We can define the extension go" : H" -; G
by

("(gex') := zego'(x').

This is well-defined because if ge'x = ge2x, (xl E H'), we have

ge,-e2 = E H';
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hence ft - £2 = km is a multiple of in and

(gei-ez) = q (gkm) _ `,m)k
= (Zm)k = Zmk,

eP (xt) _ (X2(x1) ) = (g l- z) = z z

and finally

ze`(P(xi)=zezcp(XZ). U

Remarks. (1) For an additively written abelian group G, divisibility requires that
all equations nx = a (x E G, n positive integer) have (at least) one solution x E G,
hence the terminology. For example, the additive groups Q and R are divisible,
but Z is not a divisible group.

(2) An abelian group G having the extension property mentioned in the statement
of the theorem is called injective group or injective Z-module.

Application. The universal field Cp is algebraically closed; hence the multi-
plicative group Cp is divisible. The homomorphism cp : Z Cp defined by
cp(n) = p" E Cp has an extension 1/1 : Q --> Cp C. This extension is one-to-one,
since its kernel is a subgroup of Q with ker 1/i fl Z = {0}. The image of i/r is a
discrete subgroup I' C Cp isomorphic to the subgroup pQ c R,o. Instead of if(r)
we shall often write pr E Cp and i/r(Q) = pQ. But - although the notation does
not emphasize it - this subgroup pQ c Cp depends on a sequence of choices of
roots of p in Cp and is not canonical. When we consider pQ as a subgroup of Cp ,

we have to remember that I p° I = I /p° > 0. This subgroup is a complement to
the kernel

U(1)=IX ECp:1XI=1}CCp

of the absolute value. In particular, we have a direct product decomposition

Cp=1.U(1)=poXU(1)

(analogous to polar coordinates in C") given by

x = r - (x/r) r-- (IxJ, x/r) (r E F, IxI _ Iri, x/r E U(1)).

Since both AP and MP are clopen subsets of the metric space Cp, the subgroup
U(l) = Ap -Mp is clopen and the preceding product is a topological isomorphism.

4.2 Roots of Unity
A first analysis of the structure of the group of units

U(1) = Ap - Mp C Cp
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is made by looking at the reduction mod M. The restriction of the (ring) homo-
morphism

e: AP-+ Ap/Mp=Fp-

(where Fpm is an algebraic closure of Zp/pZp = Fp) to units gives a surjective
(group) homomorphism (11.4.3)

U(l) -> FP'-

with kernel E'(1) = I + MP C U(1), whence a canonical isomorphism

U(1)/(1 +Mp) = F.

In the algebraically closed field Cp, we can find roots of unity of all orders, so
that it = tt(Cp) is isomorphic to the group of roots of unity in the complex field.
There is a canonical product decomposition of this group,

It = FA.(p) . lip- (direct product),

where 1L p) is the subgroup consisting of the roots of unity of order prime to p, and
/tpc the subgroup consisting of the pth power roots of unity (in Cp).

The restriction of the reduction homomorphism a gives an isomorphism of this
subgroup µ(p) with FP'., and hence a direct product decomposition

U(1) = µ(p) (1 +Mp) C C.

On the other hand,

lip-C (1+Mp)nQp.

Let us recall the more precise result established in (11.4.4).

Theorem. Let E lip- C Cp be a root of unity having order p` (t > 1). Then

I - ll = Iplt/wcd) < I (Op`) = p`-1(p - 1)) a

For a subextension K of Cp, the link with the notation used in (11.4.3) is

µ(p)(K) = µ(p) n K: roots of unity (in K) having order prime to p,

tt px (K) = it px fl K: pth power roots of unity (in K).

4.3. Fundamental Inequalities

In the preceding section (4.2) - based on 11.4.4 - we recalled the estimates for
absolute values of pth powers. Such estimates form a recurring theme of p-adic
analysis, and we give a few more precise forms of these estimates for convenient
reference. The first one is purely algebraic.
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Fundamental Inequalities: First form. Denote by I = (p, T) the ideal of the
ring Z[T] generated by the prime p and the indeterminate T. Then

(1+T)p' -1 ET In (n>0).

PROOF. For n = 0, the assertion is a tautology, and we proceed by induction on
n > 0. Assume that (1 + T)P' = 1 + T u for some u E In. Hence

(I + T)p+' = (1 + Tu)p = 1 + pTuv + Tpup

for some polynomial v E Z[T]. But

pTuET-pI"CT-In+t,

Tpup=T - Tp-rup E T In+r

(since p > 2), and the sum pTu + Tpup belongs to T - In+r as expected.

Let us replace the indeterminate T by an element t E AP C CPI Since each
element in 11 is a sum of terms containing factors p' T'-' for 0 < i < n, the
ultrametric inequality shows that all elements obtained have an absolute value
smaller than or equal to the maximum of I p'tn-` I , and we see that we have obtained
the following inequality.

Fundamental Inequalities: Second f o r m . Let t c C p, l t I < 1. Then

1(1 +t)" - 11 < Itl - (max(Iti, Ipl))n (n > 0)

(cf. (V.4.3)).

Other forms are often used (they are not completely equivalent to the preceding
ones, but also admit useful applications). We mention them briefly.

Third form. Let K be a finite extension of Qp, K D R D P. Then

(I + P)p' C 1 + Pn+r (n > 0).

If P = xrR and IrrI = 0 < 1 (generator of the discrete group IKC R>o),
then in K the announced inclusion is equivalent to

ItI <0 1(I+t)p° - 11 <Bn+r

This third form follows from the first one (replace T by -r) but is less precise than
the second form because

p E P, I pI = Be

and0=lplh/e> IPlife> 1.
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Fourth form. With the some assumptions as in the third form, we have

(1 + t)" m 1 + nt (mod pntR)

if t E 2pR (n E N, Z or even Zp).

If we look at the first term only in the expansion

(1 + t)" - 1 - nt = n(n - 1)t2/2+.--,

we find that for t/2 E pR,

n(n - 1)t2 t
2 =(n-1)

It only remains to check that the next terms are not competitive. Since we shall
not need this form before Chapter VII, we refrain from giving a proof now. It will
be obtained by a general method in (V.3.6).

4.4. Splitting by Roots of Unity of Order Prime to p

We have a direct product decomposition (4.2)

U(1) = u(p) X (1 +Mp)

of the multiplicative subgroup defined by IxI =1 in C. The corresponding pro-
jection U(l) -- p(p) is the Teichmuller character. It can be made explicit in
several forms. Let lx i =1 and K = Q(x) have residue degree f. The residue field
k = RIP of K has order q = pf, and the reduction homomorphism a sends the
given unit x to an element e(x) E Fg of order dividing q - 1 (11.4.3). Hence

s(x)g-' = 1, xg t - 1 (mod P).

The fundamental inequality (second form) shows that the pth powers of xg-t =
1 +r (t E PC K ort M,, C C) tend to 1:

X(q-1)p" -* 1 (n -* cc).

A fortiori, taking n = f m,

Xq'+1

Xqm
= X(q-I)qm -p 1 (m __> cc).

Say
xq'+'

= xq'(1 + sm) where Em -+ 0. Hence xq"' - xq' = xgmem - 0,
and the Cauchy sequence (xv" )m>o has a limit in the complete (locally compact)
field K C Cp. Obviously, q = C and

= lim Xq' =X+(x' (.X,72 -x')+----x (mod P).
m-->00
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The map

x H = CJ(X) = llm x9'

m-cc

defines a homomorphism U(1) fl K" µq_1 C K" that corresponds to the
projection on the first factor in the direct product decomposition (11.4.3)

U(1)f1K" =µq_1 x(1+P).

It is possible to give a formula working independently from the residue degree of
x E U(1). Indeed, if q is given, the subsequence (xp") has an end tail in (xqm).

We have obtained the following result.

Theorem. Let X E CP with Ix I = 1. Then the sequence (xp"') converges to the
unique root of unity that is congruent to x (mod MP) and the homomorphism

w:xr-> =a(x)= lim XP",
m-* o0

corresponds to the projection on the first factor in the direct product decompo-
sition

U(l) - µ(p) x (I +Mp).

4.5. Divisibility of the Group of Units Congruent to I

In this section we investigate the divisibility properties of the multiplicative group
I+Mp.

Proposition 1. The group 1 + MP is divisible. For each m > 2 prime to p, it is
uniquely m-divisible.

PROOF. It is enough to prove that the group 1 + MP is p-divisible and uniquely
m-divisible for each m prime to p.

(1) Let 1 + t E 1 + MP and select a root x E Cp of XP - (1 +t): this is possible,
since this field is algebraically closed. Since IX Ip = I xp I = I I + t I = 1, we have
Ixl = 1: x E U(1). Now

(x mod Mp)p = xp mod Mp = I E k

implies x mod MP = 1. since k has characteristic p. This proves x = I + s E
I + Mp.

(2) Let 1 + t E 1 + MP and select a positive integer m prime to p. We are
looking for a root of the polynomial f (X) = X1 - (1 + t). We already have an
approximate root y = 1 for which the derivative mXri-1 does not vanish mod MP
(P does not divide m):

f(y) = 1 - (1 + t) = -t, f'(y) = m, If'(y)I = 1.
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Thus we have I f (y )/ f'(y)2 1 = I -t I < 1, and Hensel's lemma (11. 1.5) is applicable:
There is a unique root of f in the open ball of center I and radius 1. 0

In fact, for each E Um c µ(p) C FP'-, there is one root x of f with x
(mod Mr). These m roots of f are all the roots of this polynomial, and for each
given E ltm there can be only one root of f congruent to this root of unity

For later reference, let us formulate explicitly the following characterization of
the topological torsion of Cp .

Proposition 2. For x E CP we have

xE1+MP = XP,-> 1 (n --- oo).

PROOF. If X = I + t E 1 + MP, the sequence

x''-I= (I+t)Pn-I
tends to 0 by the fundamental inequality (4.3) (second form). Conversely, assume
that xP° -> 1 (for some x E Cp) and take an integer n such that xP' belongs to the
open neighborhood 1 + MP of I in CP. Since we have proved in (4.1) that there is
a torsion-free subgroup F (= pQ) of Cp and a direct-product decomposition

P

we see that X E p(p) . (1 +Mp ). The first component C of x is trivial simply because
it has an order prime to p:

Observe that the convergent sequence is eventually constant precisely
when x is a pth power root of unity

XEltp- CI+MP.

Appendix to Chapter 3: Filters and Ultrafilters

A.1. Definition and First Properties

Let X be a set. A family.77of subsets of X is a filter when

0. X E.F,0VY,

2.AEF,A'DA=A'EY.
If there is a filter on a set X, then this set is not empty by the condition 0. The
condition 1 shows (by induction) that the intersection of a finite family of subsets
A, E F is an element of the filter.F and in particular is not empty. The intersection
of all elements of 3' may be empty, in which case we say that this filter is free.
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Example. Let X be a subset of a topological space Y, choose a point y E X - X,
and define a filter F on X as follows:

F = {V fl x : V is a neighborhood of y in Y}.

This example is typical, since if .F is any free filter on a set X, we can define a
topology on the disjoint union Y = X u {w} by specifying its open sets:

subsets of X and subsets A U {w} (A E .F).

The topology induced on X is the discrete one, but w is in the closure of X in Y,
and the filter on X attached to w is precisely F.

A family 8 C F is a basis of this filter if any A E .F contains a B E B.

Lemma. Let 13 be a family of nonempty subsets of a set X such that

A E 13, B E 13 = there exists C E 13 such that C C A fl B.

Then the family of subsets of X containing elements of 13 is a filter having 13 as
a basis.

The filter constructed in the previous lemma is called the filter generated by B.

Lemma. Let .F be a filter on a set X and let f : X -> Y be a map. Then the
family f (.F) = If (A) : A E .F} is a filter on f (X) and a basis of a filter on Y.

Example. Let .F be a free filter on N. Choose for each n E N an element A,, E F
such that n V An. Hence A= n ,,,,.,N A, E F and IN, no) D A, and hence
IN, oo) E Y. Any free filter on N contains all subsets [N, oo) (N E N).

More generally, let X be an infinite set. Then any free filter on X contains
all cofinite subsets (i.e. complements of finite subsets) as elements. The cofinite
subsets form the Frechet filter on X.

A.2. Ultrafilters
The inclusion relation for families F C P(X) is an order relation, and if .F' D F,
We say that .F' is finer than Y. For example, any free filter on X is finer than the
Frechet filter.

In an obvious sense, the subsets of a finer filter .F' are smaller than those of .F'. t

Definition. Maximal filters are called ultrafilters.

ICompare with coffee powder, where finer grinding also provides finer granules!
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Any totally ordered sequence of filters on a set X has a majorant (the union
in P(X)), and by Zorn's lemma, any filter is contained in a maximal one. For
example. the Frechet filter on X is contained in an ultrafilter (necessarily free).

Theorem. Let .P be a filter on a set X. Then .P is an ultrafilter precisely when
the following criterion is satisfied:

for each Y C X either Y E .P or Y` =X- Y E.77

PROOF If the condition is satisfied, .P is obviously maximal. Conversely, assume
that there is a subset Y C X with Y V .T' and Y` .P. Observe that all A E .T
meet Y:

Y

Define .P' D .P as follows:

.T"={ A'CX:A'DAflYforsome

Hence .T' is a filter, and Y E F. Since Y V F, .P' is strictly finer than .P, proving
that this last filter was not maximal.

Corollary 1. Let U be an ultrafilter on a set X. I f A1, ... , & is a finitefamily
of subsets of X such that Ut ; A; E U, then there exists at least one index i
for which A, Eli.

PROOF It is enough to prove the assertion for two subsets (by induction). If A 0 U
and B 0 U, we infer from the above criterion that A` E U, B` E U; hence
(AUB)c=A`f1B`EU,andAUBVU.

Corollary 2. Let f : X Y and let U be an ultrafilter on the set X. Then
f (U) is an ultrafilter on f (X) and a basis of an ultrafilter on Y.

PROOF. It is enough to prove the assertion when f is surjective. For any A C Y,
either f -1(A) or f -1(A)` = f -(Ac) belongs toll; hence

either A = f (f -1(A)) or A` = f (f -1(A`)) belongs to U.

By the criterion, f (U) is an ultrafilter on Y. 0

A.3. Convergence and Compactness

Definition. Let X be a topological space. A filter F on X is said to converge to
a point x E X if it is finer than the filter of neighborhoods of this point, namely,
when each neighborhood of x in X contains a subset A E .T
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For example, the filter of neighborhoods of a point converges to this point. In a
Hausdorff space, a convergent filter can converge to at most one point.

Let X be a compact space. Then for each filter Y on X, the family (A)AGY has
nonempty finite intersections; hence by compactness

S2:=fA5o.
AEF

If U is any open set containing S2, then

U`nQ=O===> U`nnAjo===> U nAj nAj(EY)
jEJ jEJ jEJ

for some finite family (A j) of subsets A j E .T. This proves that U contains an
element of Y and this filter is finer than the filter of neighborhoods of Q.

Theorem. In a compact space, every ultrafilter converges.

PROOF. Let U be an ultrafilter on the compact space X and choose x in the non-
empty intersection ,AEU A. The nonempty subsets

U n V (U E U, V neighborhood of x)

generate a filter finer than U, hence equal to U. Hence this ultrafilter converges to
x, and a posteriori

nA={x}.
AEU

Application. Let U be an ultrafilter on the set N of natural numbers and let (an )n>o
be a bounded sequence of real numbers. Then limu an exists and

infa, < lima, < sup an.
n U n

PROOF Since the sequence (an),>o is bounded, then

-oc <a:=info, <P:=supa, <cc,
n n

and this sequence defines a map

a,:N->[a,,8]CR

taking its values in a compact space. The image of the ultrafilter U is a basis of an
ultrafilter in the compact space hence it converges in this space.
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A.4. Circular Filters

Let K = S2p be the spherically complete extension of Qp constructed in (I11.2).
Recall that I S2p I = R>o and the residue field kQ is infinite.

To each closed ball B C K we associate a filter .FB on K defined as follows:
If the ball B is a single point {a }, we take for .FB the filter of neighborhoods of

this point, generated by the B, (a) (e > 0).
If B = B<r(a) has positive radius r, we take for FB the filter generated by the

subsets

A(e, a1, - - - , an) = B<r+e(a) - U B<r-E(ai) (0 < e < r, ai E B).
1<i<n

When a decreases and/or the number of points n increases, these subsets decrease,
and we see that these subsets make up a basis of a filter. The filter FB generated
by this basis is the circular filter associated to the closed ball B.

By definition, the subset A(e, a1, ..., an) contains

r<Ix - aI < r+e (xEK)
(observe that this set is independent of the choice of center a E B). Also, for any
b E B there is a 3> 0 such that

{xEK :r-S < Ix-bI <r} C A(e,a1,...,an).

Lemma. Let B be a closed ball of radius r > 0 and choose a E B. Then a
basis of the circularfilter.FB is given by the following subsets

At (s, a 1i ..., an) _ jr - e < Ix - al < r + E j - U B<r-E (ai ),
finite

where the ai are chosen on the sphere Sr(a) : Ix - aI = r and 0 < e < r.

Here, replacing a by a smaller one, we may even assume that the points ai satisfy

ai - aj I = r (i 0 J)-
The preceding definitions can be relativized to a subset X C K = S2,,. Assume

XfA00for all AEFB,

so that .7B induces a filter on X. Then this induced filter .77B (X) _ .FB n X is still

called a circular filter on X.
For example, let X = Cp. When the closed ball B C K does not meet Cp, we

have r := d(B, C p) > 0, and if b(B) = r, the trace of YB on Cp is a circularfilter
without a center in Cp.

EXERCISES FOR CHAPTER 3

1. Prove that Q , is not complete by considering the series I(p n)=1 P
n pl/n

(Hint. Let x be the sum in a completion of Qp and let K be the completion of Qp(x)-
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Show by induction that all p'/7 E K for (n, p) = 1, and hence K is not algebraic over

2. Let K be an algebraically closed valued field. Prove that its completion k is also
algebraically closed.
(Hint. Let f (X) = X' + an-j Xn-1 + - - - + a1 X + ao E K[X] and select monic
polynomials fj(X) = Xn + an_ljXn-1 + - - + ai 3 X + ao.j E K[X] converging
coefficientwise to f. Then Sj := II f i+l - f311 = maxi Iai, j+l - a1,3 I -f 0 (J - oc).
Choose inductively a root x j (in the algebraically closed field K) of fj so that (xj)j is
a Cauchy sequence (cf. III.1.5) and hence converges in the completion K to a root of
f. This type of proof also appears in (VI.2.2).)

3. Let X be the real Banach space consisting of sequences x = (xn)n>o of real numbers
converging to zero with the norm fix 11 = sup I xn I = max Ixn I- Consider the sequence
in X defined by

ao=(0), (n>1)

so that Ilan II = 2 (n > 1). Show that with the induced metric, the set A = {an : n > 0)
is an complete ultrametric space which is not spherically complete.
(Hint. The induced metric on A is given by

d(an, an+k) = Ilan - an+k II = 1 + n+l+l
(n > 0, k > 1).

What is the closed ball of center an and radius 1 + n
?)

4. (a) Let X be a complete metric space having the following property: Any decreasing
sequence of possible values of the distance function converges to 0. Show that X is
spherically complete.
(b) If a complete metric space is not spherically complete, show that we can replace
its metric by a uniformly equivalent one S for which it is spherically complete. (Hint:
For given x and y, define S(x, y) = 2n, where the integer n E Z is chosen so that
d(x, y) < 2n < 2d(x, y). Then use (a).)

5. Prove that the residue field of S2p is uncountable.
(Hint. Each sequence N - µ(p) C Qp leads to a nonzero element of the residue field
kc of 12p. If N -* kc is any map, use Cantor's diagonal procedure as in (I.1.1) to define
an element not contained in the image.)

6. There are many possible choices of copies of pQ in C. Let fo denote the homomor-
phism x r+ xn: Cn Cn (n > 1), then ker1 Vn = l un! gives a parametrization
Of choices. (Recall that a countable projective limit of surjective maps is surective (4.3).)

7- Let K be an extension of Qp with I K' I dense in R>o_ Recall (exercise of Chapter II)
that the tree TK is the ordered set of closed balls of K. This treecomes with a projection
S : TK -* R>o. For r > 0, the fiber S (r) = K/B<<, is the uniformly discrete quotient
group of closed balls of radius r.
(a) Show that the maximal totally ordered subsets of TK are isomorphic to either (0, no)

or to (0, o o): Let us call these subsets maximal branches, and in the first case, we
say that the corresponding branch bears a fruit. The projection by S of a maximal
branch is either an isomorphism with the interval [0, oc) or an isomorphism with
an interval (r, oc) (r > 0): The fruit of a branch can lie only above r = 0.
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(b) Show that K is complete exactly when all maximal branches having a projection
containing (0, oc) do bear a fruit, i.e., are isomorphic to [0, oc) by projection.

(c) Assume that the field K is separable, so that all fibers 8-1 (r) (r > 0) are countable.
Show that such a field cannot be spherically complete.
(Hint. The set of distinct branches having a nonempty intersection with any
S-1 [r', r"] for some fixed r' < r" is uncountable.)

r' r"

KB<1

r=1

Tree of K: Fruits, branches, and holes

(d) Define an action of the 2 x 2 upper triangular matrix group T2 +(K) C G12(K) on
TK (cf. (VI.3.1)). When K = Qp, show that this action is transitive on the subtree
defined by S > 0.

8. Let a E Qp - Cp and r := d(a, Cp) > 0. Show that the cases Sr(a) n Cp = 0 and
Sr(a) n Cp 54 0 both occur.
(Hint. Choose first a c S2p with Ia I = 1 and residue class a E kQ not algebraic over the
prime field: In this case r = 1 and the sphere S1 (a) meets Cp. On the other hand, select
a decreasing sequence of closed balls rn \ I having an empty intersection
in Cp and choose a in the intersection of the same balls of Q : The sphere Si (a) does
not meet CO

9. Let K be an ultrametric field. Assume that both k (the residue field) and I K are count-
able. Prove that for fixed r > 0, the set of dressed balls of radius r is also countable.
(Hint. Observe that the set of open balls of radius r is countable. Define a surjective
map from the set of open balls to the set of closed balls of the same radius.)

10. Let K be an ultrametric field with I K " I dense in R>0. For real t > 1 let Pt denote the
partition of the closed unit ball A = {x E K : Ix I < I) into its cosets mod the additive
subgroup B<t l t = {x E A : Ix I < I / t). The family (Pt) indexed by t E [0, oo) has the

property

for s > t > 1, Ps is strictly finer than Pt .

(The "continuous family" (A,)t>1 of associated a-algebras is a filtration of the space
A in the sense used in the theory of stochastic processes.)
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11. Let us denote by B<r (r > 0) the additive subgroup Ix I < r (in Cp or in any ultrametric
field having dense valuation).
(a) ForO < r < s, show that the subgroup B<r of B<s has no supplement: B<s is not a di-

rect product of B<r with another subgroup. In other words, the short exact sequence

0-> H=B<r+G=B<s --> G/H --> 0

does not split. (Hint. For all x E G = B<s, p'x -+ 0.)
(b) For 0 < r < s < I show that the multiplicative subgroup I + B<r of I + B<s has

no supplement. (Hint. If lxI < 1, then (I
+x)p'

--- 1.)
(c) For 0 < s2 < r < s < 1, prove that there is a canonical isomorphism

(I + B<s)/(1 +B<r) B<s/B<r-

(Hint. Consider the homomorphism x r-- i = x - I mod B<r.)
(d) We have ttp- fl (1 + B<rp) = {1}, but the direct product µp" (I + B<rp) is a

proper subgroup of 1 + MP_ Show that 1 + B<r has no supplement in I + MP
and more precisely, p px is maximal among the subgroups H C 1 + Mp such that
H fl (I + B<rp) = (1). (Hint. The sequence (I +t)p° -f 1 is eventually stationary
precisely when I + t E µp00.)

12. Prove the first form of the fundamental inequalities by induction, using a = (1 + T )pn
and the factorization

ap-1 =(a - 1)(1+a+--,+ap-1),

where each ak E I + I (k > 1) so that I + a + - + a" E P + I = I. (Observe that
the case n = I of the statement is crucial, and the induction step is based solely on it!)
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4
Continuous Functions on Zp

The goal of this chapter is the study of continuous functions on subsets of the
p-adic field Qp with values in an extension of Qp. Since Qp admits a partition into
clopen balls x + Z p (x E Qp/Zp = Z[1/p]/Z), it is enough to study continuous
functions on Zr,. Thus, we shall typically study continuous functions Zp -* C.
Since the natural numbers N form a dense subset of the ring Zr,, we shall start by
the study of functions on N or Z and with values in any abelian group.

In classical analysis, real- or complex-valued functions that are continuous on
an interval can be uniformly approximated by polynomial functions (theorem of
Weierstrass). But there is no canonical series representation for them. It is a specific
feature of p-adic analysis that continuous functions ZP -> Cp have a canonical
Mahler series representation. As has been noticed and proved by L. van Hamme,
many systems of polynomials can also be used instead of the binomial system.
This leads us into the umbral calculus, where suitable systems are found.

Due to the granular structure of Zp, the locally constant functions also constitute
a dense subspace ofC(Zp; Cp) (these functions correspond to the step functions on
an interval in the classical theory). A basis of this space consisting of characteristic
functions of suitable balls has been devised by M. van der Put.

1. Functions of an Integer Variable

1.1. Integer-Valued Functions on the Natural Integers

A polynomial f (x) E Q[x] can take integral values on all natural integers even if its
coefficients are not integers. For example n2 - n (mod 2) shows that 2x2 - Zx is
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such a polynomial. More generally, nP - n (mod p) shows that the polynomial
I xP - !x is also such a polynomial.
P The study of these polynomials is based on the following observation. Each
binomial polynomial

(x EQ[xl (n>0)
n n!

defines an integer-valued function N --3 N. This (and the theorem below) explains
their central role in this chapter.

The first binomial polynomials are

(0) I' (1) - x' (2)
2

2 2

One can read the sequence of values given by () in Pascal's triangle: The first
values are 0 (outside of the triangle)

\(0)
= 0,

(n1)
= 0, .. _ , \n n

1) = 0, (n) = 1, \nn 1) = n, etc.

In the figure below, we exhibit the values of the binomial polynomials in vertical
columns, with special attention to (4).

0
l l 0

1 2 1 0
1 3 3 1 0
1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Values of the binomial polynomials as vertical columns

On the other hand, introduce the finite-difference operator V defined by

(Vf)(x)= f(x+1)- f(x)-
(This is a discrete analogue of the gradient operator, whence the notation; we
keep A for a discrete analogue of the Laplace operator.) This forward-difference
operator acts on any function f on N taking values in an abelian group. An abelian
group can always be considered as a Z-module, and conversely, any Z-module is
an abelian group. Thus we shall now consider functions f : N M where M is
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a Z-module. The action of the finite-difference operator on the binomial functions
is easily determined: An elementary computation shows that

V(ol=0, V(l)=(i x 1) (i> 1).

The binomial polynomials behave with respect to the difference operator as the
polynomials x' l i ! do with respect to the derivation operator:

x' ix'-1 x'-1

D(xe)=0, D//(-)_

This analogy will be exploited and generalized.

Theorem. Let M be any abelian group and let f : N -* M be an arbitrary
map. Then there is a unique sequence (ml)j>0 of M such that

x xf(x)=Em; = Y- mi\ (xEN).
i>O

Z
0<i<x t

For X E N only finitely many terms of the sum are nonzero, and mi = (V` f)(0).

PROOF Since 0 for x = 0 and i > 1, we see that mo = f (0) is uniquely de-
fined. The finite-difference operator can be used repeatedly to bring any coefficient
into the constant term position:

_ x
V f(x) m` -0(X) _ Fm -̀

i i1

Vkf(x) = Emi
i>k

i

x

- k

Hence Mk = Vk f (0). These computations already prove the uniqueness of the
coefficients Mk and show how they have to be computed. Conversely, if the function
f is given, let us compute the iterated differences Vk f (O) E M and define g(x) _
F-0<i<x V' f (0)(;), c = f - g. The iterated differences of cp vanish at the origin
by construction: V(O) = 0, V(I) - (p(0) = 0, whence ip(1) = 0, ... , from which
it is apparent that iP vanishes at the points 0, 1, 2, ....More formally, one can
establish by induction the general formula

Vkco(0) = Y(-1)` ()co(k - i) = to(k) + - .

i<k

The induction hypothesis V(j) = 0 for all j < k and Vkcp(0) = 0 implies

co(k)=- E(-1}'(k)rp(k-i)=0 (k>0).
1<i<k i
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Hence cp - 0, as expected. This proves f = g and the existence of an expansion
of the desired form.

Comments. (1) The preceding proof shows that the expansion off is simply f =
Ei>o mi (). This series converges pointwise: Although infinitely many coefficients
m; will be nonzero in general, for each fixed x E N the sum Ei>0 mi fi(x) is a
finite sum. Let us introduce the Pochhammer symbol

(i>1),

so that

V(x)i = i(x)i-I and (A.
1 1!

The preceding series expansion of f takes the form

vi f(o)

i>O
i!

which is strikingly similar to the Taylor-MacLaurin power series of an analytic
function (of a real or complex variable).

(2) The formulas

vk.f (o) _ (-1)k-` (i) f (t )
i<k

correspond to the formal power series identity

xk xn
vkf (0) . = e-X f(n)-1

k>O n>O

between these two generating functions.

1.2. Integer-Valued Polynomial Functions

We shall denote by L = L(Z) C Q[x] the Z-module consisting of polynomial
functions taking integer values on the natural integers:

L={f EQ[x]: f(N)CZ}.
We have seen in (1.1) that Z[x] C L is a proper inclusion: All binomial functions
belong to L.

Theorem. The Z-module L consisting of polynomial functions f E Q[x]
integer-valued on N is free, with a basis given by the binomial polynomials 0.

PROOF. Let f be an integer-valued polynomial. Obviously, all the iterated differ-
ences off have the same property, and in particular the coefficients m, of the series
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expansion of f are rational integers. On the other hand, the iterated differences
V' f will vanish identically if the exponent i is greater than the degree of f . Hence
the series Y m, is a finite sum, and the uniqueness of the representation has
been proved in (1.1). a

Corollary 1. If a polynomial f E Q[xI takes integral values on N, it also takes
integral values on Z.

PROOF. It is enough to check this property for the basis of L consisting of the
binomial polynomials. If x = -m is a negative integer, then

+I I =-m(-m-1)...(-m-i+1)/i!=(-1)`(m -1\ Z.

Hence the U and all f E L define functions Z -* Z.

Corollary 2. If a polynomial of degree d > 0 (with rational coefficients) takes
integral values on d + 1 consecutive integers, then it takes integral values on
all integers.

PROOF. Let f take integral values on the integers a, a + I..... a + d and con-
sider its translate g(x) = f (x - a) which takes integral values on the first integers
0, 1, ... , d. Hence the first iterated differences of g at the origin are also integers,
and if f is a polynomial of degree d, so is g. The expansion g = Ji<d V'g(0)
shows that g E L.

Definition. Let M be a Z-module. The M-valued polynomial functions are those
that have a finite expansion in the basis consisting of binomial polynomials.

Since the polynomial functions with values in M are the finite sums Y- m; (3, the
mapping

Maps(N; M) -> MN : f r+ (V` f(0));>0

induces a bijection between the polynomial functions and M(N): The subspace of
the product consisting of families with only finitely many nonzero entries.

1.3. Periodic Functions Taking Values in a Field
of Characteristic p

We shall have to consider the case where the Z-module M is a vector space over
the finite field Fv. To start with, let us take M = Fn.

) mod p areProposition. For i < p', the functions Z F,,, x F-* (x
periodic of period T = p`. They make up a basis of this space of T-periodic
maps.
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PROOF. The binomial coefficients are best described by their generating function

x(1+uu`.
i>0

The identity (1 + u)X+T = (I + u)X - (I + u)T combined with the congruence

(l+u)''-I+ups (modp)

leads to

(1 + u)X+p' _ (1 + u)X (1 + ups) (mod p).

For i < p`, the coefficients of u` in (1 + u)X+p` and in (l + u)X are the same mod p;
hence

r

\x + p / - (i (mod p) (i < p`).

To prove the second part of the statement, consider the linear map

j : MapsT-perioaic(Z;Fp) Fp, f H (V'.f(0))o<i<r-

If V1 f(0) = 0 f o r 0 < i < T, then f vanishes a t the points 0, 1, ... , T - 1 (1. 1),
hence vanishes identically by T-periodicity. This proves that the linear map j is
injective. Since both spaces MapsT- ;oa;C(Z; Fp) and FT have the same dimension
overFp (even the same number of elements, since this field is finite), it is bijective.
It will be enough to check that the image of the set of binomial polynomials () is
the canonical basis of the target

is a polynomial of degree i ; 0 fork > i,

Vk (f/ _ (i-kl vanishes at 0 fork < i, Vk (k)(0) = 1.

Remark. It is not difficult to prove periodicity of the binomial coefficients relative
to nonprime moduli. For example,

z H z
mod m

is periodic of period mi.

Theorem. Let M be a vector space over Fn and f : Z -* M a function that is
periodic of period T = pt (for some t > 0). Then f can be uniquely written
intheform

f = ()mi (m, E M).
0<i <T
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In other words,

MapsT-periodic (Z; M) _ ®Mi
i

is the direct sum of the subspaces

Mi = (:)M C Maps (Z; M) (0 < i < T).

PROOF. A T-periodic map on Z is a map on the finite quotient Z/ TZ, and hence
takes only finitely many values. This reduces the proof to the finite-dimensional
case. The map

j : MapST-Periodic -> MT, f F-> (V' f (0))0<i <T

is linear and injective. Since both spaces MapsT_pC17Odic and MT have the same
dimension over F,, (even the same number of elements, since this field is finite),
it is bijective.

1.4. Convolution of Functions of an Integer Variable

Let A be a commutative ring and f, g : N A two functions. We define their
shifted convolution product by'

f*g(n)= f(i)g(j)= f(i)g(n-1-i) (n>1)
i+J=n-1 0<i<n-1

and f I g(O) = 0. This is a commutative, associative, and distributive product on
Maps(N, A).

Proposition. The iterated differences of a shifted convolution product are given
by

Vn(f *g) = F-i+j=n-1 V'f V g(0)+ f *Vng (n > 1).

PROOF. It will be practical to use the notation fl for a unit translate of a function

f:
fl (n) = f (n + l) (n ? 0)

(the value f (0) is lost). With this notation the difference operator is expressed
by

Vf = f, - f.

'The usual convolution product is defined by f' g(n) = Ei+j=n f (i)g(j) (n > 0).
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Let us evaluate the translate of a shifted convolution product:

(f *g)I(n) = f *g(n + 1) _ E f(i)g(j)
i+j=n

= f (n)g(0) + f (l)g(j + 1)
i+j=n-1

= f(n)g(0)+(f *gi)(n),

whence

V(f*g)=(f±g)I-f*g=f-g(0)+f±vg-
Iterating the preceding formula, we obtain

V2(f * g) = V(f . g(O) + f *Vg)
= Vf -g(0)+V(f *Vg)
= Vf - g(0) + f - Vg(0) + f * V2g.

By induction, we obtain

Vn(f *g) = V`f - vig(0)+ f *vng,
i+j=n-I

which expresses Vn(f *g) as a sum of f * Vng and a linear combination of the
finite differences V i f (i < n) of f .

1.5. Indefinite Sum of Functions of an Integer Variable

If the finite-difference operator V is to be compared to the derivation operator-
pursuing the analogy - we should construct an inverse of it, corresponding to
integration. It is clear that for any function f : N A, there is a unique primitive
F : N -* A satisfying

VF = f and F(O) = 0.

These conditions indeed imply

f(0) = VF(O) = F(1) - F(0) = F(l)

and then

f (n) = F(n + 1) - F(n), F(n + 1) = F(n) + f (n).

By induction, F(n + 1)

Definition. The indefinite sum operator S is defined by

Sf(O) = 0 and Sf(n) = E f(i) (n > 1).
O<i <n
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If we use the shifted convolution product introduced in the preceding section, we
see that S f = I * f, where I represents the constant function 1 on N. In fact,

V(I*f)(n)=Yf(i)-f(i)=f(n), o(l f)=f
i<n i<n

Examples. (1) Let f = I be the constant unit function. Then S 1(n) = n.
(2) Let f (= S1) be the identity function N - N. Then

Sf(n)=Ei =
i<n

(n) n(n-1)
2 2

(3) More generally, let f = (k) be the kth binomial polynomial N N. We

have seen in (1.1) that V(k) and (°) = 0 (k > 1). Hence

S(kI)=(k) (k>l).

This property can be read in Pascal's triangle. Consider, for example, the two
consecutive sequences

f2 :0,0,1, 3,6, 10,...,
f 3 : 0, 0, 0, 1, 4, 10, ... .

The differences of the second one indeed give the first one.
(4) Consider now f (n) = n2, the square function. In this case

Sf(n)=Ei2= 12+22+...+(n- l)2.
i<n

Since

2(2) =n2-n=n2- (),
we have

f(n)=n2=2(2) +(1 )

and

Sf(n)=2(3 J+(),2

6Sf (n) = 2n(n/- 1)(n- 2) + 3n(n - 1)
=n(n- 1)[2n-4+3]=n(n- 1)(2n- 1).

We have obtained the well-known formula

Sf(n)=Ei2= bn(n- 1)(2n- 1).
i<n
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This way of proceeding is similar to the general procedure that consists in writing
the binomial series expansion of /F \= Sf,

/ \
F = F(0)+ VF(0)I 1 I + V2F(0)I 2 I + V3F(0)(3),

using F(O) = 0 and V F = f ; hence \\\ /// \
VF(O) = f (0) = 0, V2 F(0) = V f (0) = 1, V3 F(0) = V2 f (O) = 2.

The preceding examples lead to the following result.

Proposition 1. If the function f of an integer variable is given by

f(n)=Y, Ci
(n),

i>o

then

F(n)=Sf(n)=Eci(i+1)-
i>O

The preceding examples also show that

1*1 =id, 1*1*1(n)= (2),..., 1x1*...*1(n)=Ck/-
k+1 factors

A few more formulas may be useful. By definition f = V(Sf) = V(1 * f). Let
us compute S(V f ):

S(Vf)(n) l*Vf(n)= Vf(k)
0<k<n

[f (k + 1) - f (k)] = f (n) - f (0).
0<k<n

If we denote by PO the projection on constant functions defined by

PO : Maps (N; A) -* A, f H f (0) . 1

we have obtained S c V = id - Po. Hence the following proposition.

Proposition 2. The indefinite-sum and finite-difference operators are linked by
the formulas

VoS=id, SoV=id-Po, VoS-SoV=Po.

The identity S(V f) = f - f (0) - I gives a first-order limited expansion of f if
we only rewrite it f = f (0) I + S(V f ). This point of view has been generalized
by van Hamme.
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Theorem. For every function f of an integer variable and every integer n > 0,
we have

f=f(O). 1+Vf(0)- (1) + V2f(O) _ (2)+ ... +Vnf(O).(with
the van Hamme form for the remainder Rn+l f = V'+1 f * ().

PROOF. The case n = 0 has already been obtained: R1 f = SVf = 1 * V f. For
n > 1 we can use the identity

Vn(f*g)= Y V!f.V g(0)+f*vng

i+j=n-1 -

proved in (1.4). Let us apply

Vn+l(g*f)= V'g' V f(0)+g*Vn+1 {
i+j=n J

to the function g(x) for which Vi g(x) Q. We find that

vn+1 ((n) * f)
0< n

(xJ ) .
0j f (O) + (xvn+1f.n) *

But the left-hand side is

((x))n

-
Dn+1 , = Vn(1 * 1 * ... * 1 * f) = Vn(Sn1 f) = f,

whence the result, since V o S = id.

2. Continuous Functions on Zp

2.1. Review of Some Classical Results

Let us recall the basic property of uniform convergence.

Theorem. Let X be a topological space, M a complete metric space, and
(fn)n>o a sequence of continuous maps X -± M. If

d(fn, fn) := supdM(frn(x), fn(x)) -->0 (m, n -*oc),
XEX

then the sequence (fn)n>o has a limit that is a continuous function f : X - M-

PRooF. Fix momentarily x c X. Then (fn(x))n>o is a Cauchy sequence in the
complete space M; hence it converges. Let f (x) = limn f, (x) denote its limit.
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This defines a function f : X M. We have to prove that this function is
continuous.

But for each positive £ > 0 there is a rank N = NE such that

dM(fm(Y), f,(Y)) < supdM(.ff(x), f(x)) = d(fm, fn) <_ £
x

(m, n > N, y E X). Letting m -> oo we infer

dM(f (Y), fn(Y)) < £ (n > N, y E X),

and hence

d(f,fn)=supdM(f(Y),f,(Y))<£ (n>N).
yEx

This proves that the sequence (fn)n>o converges uniformly to f and implies the
expected continuity: let us recall this point. For a, y E X, we write

dM(f(Y), f(a)) < dM(f(Y), fn(Y))+dM(fr(Y), fn(a))+dM(fn(a), f(a));

whence

dM(f (Y), f (a)) < £ + dM(fn(Y), fn(a)) + £ (n> N)-

Let us choose and fix an integer n > N. If a E X, the continuity of the function
fn assures us that there is a neighborhood V of a in X such that

y E V = dM(fn(Y), fn(a)) < E.

The preceding inequality shows that

dM(f(Y), f(a)) < 3£ (y E V),

and hence f is continuous at the point a (for any a E X).

Another classical result for continuous functions f : Z P -> R is the following.
If we fix a continuous injective function ip : Z P -> R (for example, a linear
model of Zp (1.2.3) corresponds to such a function), then f can be uniformly
approximated by polynomial expressions in V. Indeed, the algebra of polynomials
in Sp is a subalgebra of the algebra of continuous functions over the compact
space Zp, which separates points. The Stone-Weierstrass theorem implies that this
subalgebra is dense for uniform convergence.

Finally, let f : Zp --> CP be a continuous function. Then If I : Zp -> R is
continuous, and since Zp is a compact space, sup If I = max If I is attained at
some point x E Zp. More precisely, f (Zp) is a compact subset of Cp and the
Proposition in (II.1.1) shows that

{I f(x)I # 0 : x E Zp} is discrete in R>0.

In particular, for every £ > 0 there are only finitely many possible real values of
If (X)I satisfying I f (x) I > E.
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2.2. Examples of p-adic Continuous Functions on Zp

The definition of a topological ring A shows that any polynomial f E A[X] gives
rise to a continuous polynomial function A -> A. In particular, if f E Cp [XI is a
polynomial with coefficients in Cp, it gives rise to a continuous function Zp -> Cp
by restriction. Since X E Zp implies Ix I < 1, any power series Yi>o a,x' with
a, E Cp and IaiI -p 0 converges uniformly, and hence defines a continuous
function Zp -> Cp. For any continuous function f : Zp ---> CPI we define its sup
norm by

11 f ll =sup I f (x)I = max l f (x)I (<co).
xEZP

Finally, let us give examples of continuous functions Zp Cp of an apparently
different type. If x = >;>o a, p' E Z P, we define f (x) a, p2'. This defines
a continuous function ZP --* Zp with

If(x) - f(y)I = Ix - y12.

This estimate shows that f is even differentiable at every point with f' 0, but
f is not locally constant. We shall come back to this example later on. If we put
f (x) = Y a, p", we have similarly

If(x) - f(Y)I = Ix -Am,

and with f (x) _ a, p'!, then for any m > 1,

If (x) - f(Y)I Ix -Ylm

if Ix - y I is small enough.

2.3. Mahler Series

The binomial polynomials define continuous functions

\k/
: Zp -> Zp, X H (k).

Since N is dense in Zp, we have II G) II = supN I (k) I < 1. In fact, (k) = l pros
that

(k)
= 1 (k > 0).

As noted in the previous section, for any sequence (a,),>o in Cp with la, I -a 0, the
series Ek>o akC) defines a continuous function f : Zp Cp. It is quite remark-
able that conversely, every continuous function Zp -* Cp can be so represented,
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This result has been obtained by Mahler and will be established below. For exam-
ple, it is applicable to all locally constant functions.

Definition. A Mahler series is a series Y-k>o ak lk/ with coefficients Iak I -* 0
in C p (or S2 p).

Comment. If a series Y-k,o at (k) converges simply at each x E Zp, it converges
uniformly on Zp and is a Mahler series. In fact, assume that it converges at the
single point -1. This implies ak(kt/ - 0, and since ( k') _ (-1)k, we see that
Iak I = Iak (kt) I -> 0: the series converges uniformly.

Example. Let t E Mp - namely, t E C p, It I < 1 - and consider the sequence
at = tk, which tends to 0. The Mahler series Y -k10 tk (k) converges uniformly to
a continuous function f : Zp -k Cp. Since (1 + t)" = Fo<k<n C)tk for integers
n > 1, the preceding continuous function extends n r-+ (1 + t)n, and it is still
denoted by

(1 { Ox=Etk(x) (xEZp).
k>o k

2.4. The Mahler Theorem

Keeping the preceding notation concerning the binomial polynomials fk(x) _ (k)
and the sup norm II f II = supzn I f (x)I for continuous functions on Z,,, we intend
to prove the following general result.

Theorem 1. Let f : Z p -+ C p be a continuous function and put at = Vk f (0).
Then I ak I -a 0, and the series F-k>o ak k) converges uniformly to f . Moreover,
II f II = sUpk>o Iak 1.

PROOF. Since the function f is continuous, f (Z p) is a compact subset of Cp and
If(Zp)I has at most 0 as an accumulation point in R>0. Without loss of generality
we may assume f # 0 and replace f by f1 f (xo), where xo E Zp is chosen with
If(xo)I maximal. Hence we shall assume II f II = I from now on: The image of f
is contained in the unit ball Ap of Cp. Let us consider the quotient E = AP/pAp
(PAp = B<jpi(Cp)) as a vector space over the prime field Fp. Then the composite

_ (f mod p) : Zp -> Ap E is continuous (takes only finitely many values,
is locally constant) and is not identically zero. Since Zp is compact, it is uniformly
continuous and uniformly locally constant. This means that for t suitably large, cP
is constant on cosets mod p`Z p. Hence cp is T-periodic on Z, where T = p' with
values in the vector space E. By (1.3) we can write

P = E ak (-)kk<T (ak E E).
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Taking representatives ai E A p for the ak, the difference

f -1: a°fk
k<T

has values in pAp. By the competition principle, at least one Ia°I = 1, and

Ia°I < 1, max Iak I = 1.

By construction II f - Fk<T a°(i) II = r < 1P1' If f - Ek<T a°(k) is not 0, we
can iterate the procedure on this difference and find S > T and coefficients ak
(k < S) with

I ak I r, max lak I = r,

and

k<S ak \k/k<Tll(>(k))
We can even write

=r'<Ip21.

Of - (ak+ak) 011 =r' <
Ip21

k<S

if we agree to define a° = 0 for k > T. It is obvious that this procedure leads to
convergent series

ak =a°+ak+... ECp, Iakl < Ip"I -- 0,

laid -<I (k< T), laid :S r (T < k < S), etc.,

and also SUPk>O laid = suPk<T l ak 1 = 1 = II f II . The proof of the theorem is there-
forecomplete, since 11f - Ek>O ak(k) II < Iplm for all positive integers m.

Corollary. For any continuous function f : Z , - Ci,, there is a sequence of
polynomials fn E Cp[x] that converges uniformly to f. 0

Theorem 2. Let f : N --* Cp be any map and define ak = Vk f (O). Then the
following properties are equivalent:

(i) Iak I -* 0 when k -a co.
(ii) The Mahler series F-k>() ak (k) converges uniformly.

(iii) f admits a continuous extension to Z. -* C.
(iv) f is uniformly continuous (for the p-adic topology on N).
(v) 11 Vk f 11 -* 0 when k -> no.
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pRooF Here is a complete scheme of implications.
(i) = (ii) We have

ak
\k/ I <_ Iakl II \k/ 11 =

Iakl (x E Zp),

hence the uniform convergence if I ak I -p 0.
(ii) = (iii) This is the basic property of uniform convergence reviewed in (3.1).
(iii) q (iv) On a compact metric space, any continuous function is uniformly

continuous.
(iii) = (v) Apply the Mahler theorem to the continuous extension of f to ZP

(still denoted by f ):

f = 1:0, (k) (ak = Vkf(0))
k>O

Since VW = \k-l)' we have

and by induction

By the same theorem

Vf =Eak(k1)k>1

V1f =>ak(k )
k>

IIV3fI1=sup lakI -- 0.
k>j

In particular, jai I = I V f (0)I < II V f II - 0; hence (v) (i).

2.5. Convolution of Continuous Functions on Zp
As an application of the Mahler theorem, we show that the (shifted) convolution
Product defined in (1.4) for functions of an integer variable N CP extends to
ZP CP. In turn, this result allows us to give an explicit estimate for the remainder
In a finite Mahler expansion. By definition,

f * g(n) _ f (i)g(I ),
+J=n-t

I f I g(n)I < max I f(i)g(.i)I < 11f 1111811,i+j=n-1
and

I1f±g11 < 11flilig11 .
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Proposition. Let f and g be two continuous maps ZP -- CP' Then the shifted
convolution product f * g has a continuous extension ZP C.

PROOF. By (3.4) (Theorem 2, (i) = (iii)), the existence of a continuous extension
off * g (initially only defined on N) will follow from Vk(f * g)(0) 0. To prove

this convergence, let us come back to the formula (proved in 1.4)

V2n+1(f*g) = Y, V`f - VJg(0)+ f *Q2n+lg,
i+j=2n

V2n+1({
J

±g)(0) = Y, V' f (0) ' V g(0) + (f * V2n+1 g)(0).
i+j=2n

For any bounded function h, the ultrametric property gives 11 V h II < II h 11, and we
can estimate

V2n+1(f * g)(0) = T1 + T2 + T3,

where

Tl = V` f (0) '
V2n-`g(0),

n <i <2n

T2 = V2n
' f (0) ' V $(0),

n<j<2n

T3 = (f * V2n+1 g)(0),

as follows:

IT1I IIVnf11- IIgh ,

IT21 < IIf1I 11Vng11,

IT31 <_ IIf 11
IIV2n+1gII

< Ilf 11 ' IIVng1I.

Altogether, this shows that

IV2n+1(f*g)(0)1
_< max(IT1I, 1T21,1T31)

MaX(II Vnf 11
' IIg11 , II f 11 ' II Vng11) -- 0.

Similar estimates can be made for I V2n(f * g)(0)I, and we prove thereby the re-
quired convergence: Vk(f * g)(0) -- 0. 0

Corollary 1. Any continuous f : Z(1), --* CP has limited Mahler expansions

f =f(0)+Vf(0)' +V2f(0). `2)+...

+ Vn f (0) - (n) + Rn+1 f (n > 1)
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with the van Hamme form of the remainder

f = On+1 f Q11, R.+1 II < 11 Vn+1.f II --> 0 (n --> 00).

PROOF. The announced formulas hold on N by the preceding section- Taking g =
() in II f * g II < II f II IIg II, we see that they extend continuously to Z p by the
proposition.

Another application of the Mahler theorem (or of the possibility of extending
the convolution product to continuous functions over Zp) is given by the following
corollary.

Corollary 2. For any continuous function f : ZP -> CP1 the indefinite sum
Sf = f * 1 of f extends continuously to Zr,. More precisely, if f = Ik>O ak (-J
is the Mahler expansion of f, then

Sf=1*f=>ak(k+I), IISf11=1If11-
k>O

PRooF We have noticed that

S(k)
I x (k)

= (k + 1)'

whence the result. \

Corollary 3. The only linear form So : C(Z p; K) -> K that is invariant under
translation is the trivial one cp = 0.

PROOF In fact, we prove that ifcp(F) = cp(F1)forallF E C(Zp;K),where F,(x) =
F(x + 1), then cp = 0. Indeed, take any f E C(Zp; K). There exists an F E
C(Zp; K) with f = VF = F, - F (take F = Sf ), and thus

Corollary 4. Let c : ZP ZP' x F+ - I - x, be the canonical involution
(I.1.2). Then S(f o a)(x) _ -Sf (-x).

PROOF. For integers n, m > 1 we have

Sf (n + m) - Sf(n) = f(n+m- 1).
BY density of the integers n > I in Zp and continuity of both sides, we get more
generally

Sf(x+m)-Sf(x)= f(x)+...+f(x+m-1) (x EZP).
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Take now x _ -m in this equality:

Sf(0) - Sf(-m) = f(-m)+... + f(-I)

= f(a(m - 1))+...+f(a(0))
= S(f o a)(m ).

Since Sf (0) = 0, the result follows.

Example. Let a = 1+ t E l+ M C Cp and take

f(x)=ax =(I+t)x=Y,
k>O

Then we have

x

k

Sf(x) tk(k + (1 +ttx - 1 (t 54 0),

k>0

ax- I
Sf(x)= a-1 (a01).

3. Locally Constant Functions on Zp

3.1. Review of General Properties

When X is a topological space and E any set, a map f : X E is locally constant
if for each x E X

Vx = {y E X : f (y) = f (x)}

is a neighborhood of x. Equivalently, one can require f -1 (e) open in X for each
e c E, or even f -'(A) open in X for each subset A C E. In other words, locally
constant functions f : X -* E are continuous functions when E is endowed
with the discrete topology. On a connected space, a locally constant function is
constant (take x E X, put e = f (x) E E, A = E - {e}, and consider the partition
of the connected space X into two disjoint open sets f -t (e) and f -' (A): Since
f -'(e) 0 0, f -1(A) must be empty and f - e is constant). A locally constant
function f on a compact space X can take only a finite number of values (f (X )
must be compact and discrete).

Lemma. If X is a compact metric space, a locally constant function f on X is
uniforndv locally constant when there exists S > 0 such that

d(x, y) < S = f(x) = f(y).
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pxooF. Give E the discrete metric. Since X is compact, f : X -> E is uniformly
continuous. Hence there is a S > 0 such that

d(x, y) < S = d(f (x), f (y)) < 1 f (x) = f (y),

and the conclusion follows.

The set of functions X -* E is denoted by J'(X; E), and when E = K is a
field, .1(X; K) = J7(X) is a vector space over K (omitted from the notation if
this field is implicit from the context). When X is a compact ultrametric space, the
locally constant functions X -> K form a K-vector subspace .1'c(X) of .1(X).
The characteristic functions of clopen balls of X form a system of generators of
Pcm-

3.2. Characteristic Functions of Balls of Zp

We are interested in locally constant functions on X = Zp taking values in any
abelian group M (this abelian group will typically be an extension K of Qp). Let
us start by the study of the (uniformly) locally constant functions f E .Ik(Z p; M)
satisfying

I
Ix-YI <IP'I=Pj ' f(x)=f(y)17

for some fixed integer j > 0. These are the functions that are constant on all closed
balls of radius r j = 1/pd. Since the balls in question are the cosets of pj Z P in Zp,
these functions are the elements of the vector space

Fj = -7:7(Z/p3Z) = J"(Zp/P'Zp) C .1t°(Zp; K).

In fact, we have a partition

Zp=
1_L

(i+p3Zp)
O<i <p,

into balls of radius rj, and

i + p-'Zp = B<p-;(i) (0 < i < pi)

is an enumeration of these balls in Zp. For fixed j the characteristic functions

lpi+j = characteristic function of the ball B<1 p, (i) (0 < i < pj )

make up a basis of the finite-dimensional space Fj. When we let j increase, the
subspaces Fj also increase, and

Fk(Zp; K) = U Fj-
j>O

Unfortunately, the previously given basis of Fj has no element in common with the
basis constructed similarly in Fj_1. A clever way of constructing coherent bases
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of the spaces Fj - where the basis of Fj extends the basis of Fj_t - has been
devised by M. van der Put. Let

cPo.o = 1 characteristic function of ZP (i = 0)
1/ri = coil characteristic function of i + pZp (1 < i < p)

cp;,2 characteristic function of i + p2Zp (p < i < p2), etc.

Generally,

1lri = cpi, j characteristic function of i + pJZp if pj-1 < i < pJ.

Since absolute values of elements of Zp can only be powers of p, we have

Ixl< 1 Ixl< lj
i p (Pf-r < i < pi),

and i/ii = cpi, j is also the characteristic function of the ball

Bi={xEZp:Ix-iJ <1/i)

(with the convention B0 = ZP for i = 0).
On the other hand, the indices i in the range pJ-1 < i < pi are precisely those

that admit an expansion of length j in base p, namely an expansion of the form

i=io+i1p+...+ij-1Pt-1 (0 ie P-1,ij-1o0).

Definition. The length of an integer i > 1 is the integer v = v(i) > 1 such that
the expansion of i in base p has digits ie = O for £ > v, while iv-1 ¢ 0.

With this definition, the van der Put sequence is defined by

*j = Wi,v(i) : characteristic function of i + p'(i)Zp

Here are the first few functions:

1

V0,r ... cpp-1,1

VO,2 ... epp-1,2 Vp,2 ... 4'p2-1 2

c°o,3 ... Vp-1,3 ... ... ... (Pp2,3 ... Wp3-1,3

cp0,j

The sequence (* )i<p; appears at the top of this triangular table of characteristic
functions.

Proposition. The sequence (*j )o<i <p, is a basis of F1 (j > 0).
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PROOF For fixed j > 0, the components of any f E Fj in the known basis ii,j
(i < pj) of Fj are the (constant) values off on the balls i + piZp:

f = > f(i)cpi,j-
i<p,

In particular, for f = Ire, the characteristic function of Be = .£ + p°Zp, we have
a sum of the form

where the indices that occur are the same as those occurring in the partition

BE = U (i + p3Zp)

They are the indices i such that 0 < i < pi and i - .£ (mod p)" (in order to have
i E Be). These indices can be listed:

i =2, £+p", £+2p", ....
The first one is f itself, and they are all greater than or equal to £. The matrix
of the components of the 1,Ire in the basis Vi,j is lower triangular with l's on its
diagonal (all its entries are 0's and l's). This matrix U has determinant 1 and hence
is invertible: The *t (0 < £ < pi) form a basis of Fj. If we write U = I + N,
the matrix N is lower triangular with 0's on its diagonal and hence is nilpotent: A
power of N vanishes. This proves that

U-t = I - N + N2 _ ... + (-1)mNm if Nm+t = 0.

In particular, the inverse U-1 of U has integral entries: The components of the 'p,, j

in the basis (ilre) are also integers.

Here is an even more precise result.

Proposition. If f = E ai i,ri E Fj, the coefficients are given by

ao = f(0) and a» = f(n) - f(n-) (n > 1),

where n_ = n - pv-' denotes the integer of length strictly smaller than n
obtained by deleting its top digit in base p.

PROOF We have already observed that f (0) = ao. Fix a positive integer n and
consider the sum f(n) _ >i<p, a i/it (n) in which di(n) = 0 or 1. More precisely,

i/ri(n)=1nEBi
min - i mod p"(`)

the digits of n and i
are the same up to v(i)

t i is an initial partial sum of n.
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This shows that

f (n) = ao + (*) + an,

whereas

f(n-) = ao + (*)-

Hence f(n) - f(n_) = an as claimed in the proposition.

Corollary. When f = ai>Jri E Fj takes its values in an ultrametric field, we
have

Il f 11 =max Jail .

PROOF For each x E ZP we have *j (x) = 0 or 1: 1*i(x)I < 1 and

If (x) J = I E ai ii (x)I << max Jai 1.

This proves

Il f IJ = sup If (x) J < max Jai 1.

Conversely, ao = f (0) = Iaol 11f II, and for n > 1,

Ianl = I f(n) - f(n-)I < max(If(n)I, If(n-)U < IJf1I,

hence maxIan I < IIfJI -

Since (iJri)i>o is a basis of Y"(Zp, K) = Uj>o Fr, it is easy to generalize
the preceding results to all locally constant functions (taking their values in an
extension K of Qp).

Theorem. Let f : ZP -+ K be a locally constant function. Define

ao = f(0), a n = f(n) - f(n-) (n> 1).

Then f = aiifi is a finite sum and 11 f II = supi Iai I.

3.3. The van der Put Theorem

We are now able to give the main result, namely the representation of any contin-
uous f : ZP -* K where K is a complete extension of Qp.

Theorem. Let f : ZP -+ K be a continuous function. Define

40 = f (0), an = f (n) - f (n-) (n > I)-
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Then la, I 0, and > ai Ij converges uniformly to f. Moreover,

If II = sup Jai I = max Jai I.
i i

PROOF Since In - n_ 1 0 (n -* oo) and f is uniformly continuous, we have
Ian I = If(n) - f (n _ )I - 0 (n -* oo), and the series converges uniformly. The
sum of this series is a continuous function,

g=Eai'`i.

We still have to prove f = g. Since these functions are continuous, it is enough
to show that their restrictions to the dense subset N are the same. The obvious
equality f (0) = ao = g(0) can be used as the first step in an induction on n. Let
91 = Fi<p; aiY'i. Forn < pi we have

f(n) - f(n_) = a (by definition)

= coefficient of gj (since n < pi)

= gi(n) - gi(n-),

f(n) - gi(n) _ .f(n-) - gi(n-)-
This shows that if f and g, agree on (0, 1, 2, ... , n - 11, they will also agree at
the point n (provided that n < pi ). As a consequence, for all integers n E N,
f(n) = limb gi(n) = g(n) (with a stationary convergence). As mentioned, this
proves f = g. The equality Il f II = supi Jai I is obtained exactly as in the case f
locally constant.

4. Ultrametric Banach Spaces

In this section K will always denote a complete ultrametric extension of Qp.
We have already given in (11.3. 1) the formal properties of ultrametric norms on

Qp-vector spaces, and we have studied finite-dimensional such spaces over K.
Here we turn to infinite-dimensional ones.

We shall simply say normed space for ultrametric normed space over K, and
Banach space for complete normed space.

4-1. Direct Sums of Banach Spaces
The direct sum of a family (Ei )iEi of normed spaces is the algebraic direct sum of
this family,

Ei = ((xi) : only finitely many xi # 0} C fl Ei
iEt iEt

equipped with the sup norm on the components,

Ilx II = sup Ilxi II = max llxi II if x = (xi).
i

t
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When (Ei )i El is a family of Banach spaces, it is convenient to consider a completion
of the preceding direct sum. Here is the construction. The support of a family
x = (xi),El E {J, Ei, is Ix = {i E I : xi 0 01 C 1, and 11 xi 11 - 0 means

for all s > 0, the set IJ(s) := {i E I : 11xi 11 > r) is finite.

If 11x; II -a 0, then the support Ix of the family x is at most countable, since it is
the countable union of the finite sets I,(1/n) (n > 1).

Definition. The Banach direct sum of the family (E1)iEl of Banach spaces Ei
is the normed space

®iEI Ei C 1I Ei
iEl

consisting of the families x = (xi) such that 11xi II - 0, equipped with the sup
norm

IIx II = II(xi)II:= suplixi11 =maxllxill -

i I

This terminology is justified by the following result.

Theorem. The Banach direct sum of a family (E1)iEl of Banach spaces is a
completion of the normed direct sum of the family

PRoof. The set of families x such that II xi II - 0 is a vector subspace of the product

fl Ei, and the algebraic direct sum is dense in it. Let us show that the Banach
direct sum is complete,

®Ei C ®iElEi C fEi.
iEt iEl

Let n H x(") = (x("))1 , be a Cauchy sequence in the direct sum. For each i E I,
n H x(") is a Cauchy sequence in Ei. Let xi be its limit. For given s > 0, there is
an integer Ne such that

11X
(n) - x(m)l) < t (n, m > Ne).

A fortiori, for all i c I,

Ilxi") - xim)11 < e (n, m > Ne)

Letting m oo, we obtain

IIx(i")-xill<s (n>NE,iEI).

Since 11x(n) II < e outside a finite set J (depending on e and n). we also have

(*)

II xi 11 < max (IIx;"' 11, IIx;"t - xi 11) < e (i V J).
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This proves that the family x := (xi) is in
®i,,/

E. Coming back to the inequality
(*), we see that

llx(") - xli = sup ilxi")
- xi II < E (n > N£).

i

This proves x(") x in ®iel Ei

Example. When all Banach spaces Ei = E are equal, the algebraic direct sum is
also denoted by

®E=E(1)CEI =fE.
iEl iEl

Its completion is the space of sequences in E converging to 0: we denote this
space by co(I; E). (The notation co(K) is similar to the classical (co) introduced
by S. Banach when K = C.) When E = K is the base field, or when I = N, we
drop them from the notation if there is no risk of confusion:

co(I) = co(I; K), co(E) = co(N; E), co = co(N) = co(N; K).

We can now formulate a few consequences of the theorem.

Corollary 1. Let E be a Banach space. Then co(I; E) is a completion of Et1) C
El for the sup norm.

Corollary 2. Let E be a Banach space. Then the sum map Etl) -+ E has a
unique continuous extension E : co(I; E) E.

PROOF. The sum x = (xi) H EiEl xi : E(l) -+ E is a contracting linear map

Exi
iEl

sup Ilxi II = Ilx 11 (x E E(1 )).
i

It has a unique continuous extension E. This extension is also a contracting linear
map by density and continuity. Hence we have more generally

E xi
iE/

< Sup Ilxi 11 = IIx 11 (x E co(I: E) ).

This sum E can be computed using any ordering of the index set I and any
grouping I = 11, Ij: The equality for families with finite support extends by
continuity to the completion co(I; E) (cf. (11. 1.2)).

Corollary 3 (Universal Property of Direct Sums). Let Ej denote the canonical
infection of a factor into the direct sum EZ -+ ®iE/ Ei c E. Then
for each Banach space E and family (fl) consisting of linear contractions
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fj : Ej -+ E, there is a unique linear contraction f such that the following
diagram is commutative:

E,
EI -> ®IEI E, C ®iEIE,

fi N ®f / f
E

PROOF. Under the assumptions made,

(xi) H ( xi): ®iEIEt co(I;E)
is a linear contracting map, and composition with the sum E yields the unique
solution to the factorization problem

f = E o (.fi), .f x = f xi .

4.2. Normal Bases

When E and F are (ultrametric) normed spaces over K, we denote by L(E; F) the
normed vector space of continuous linear maps T : E F. Recall that a linear
map is continuous precisely when it is continuous at the origin, or, equivalently,
when it is bounded:

IITII := suIlTxllp < co.
xO0 IIxII

By definition, we have

IlTxll IITIIIIxII (x E E).

This shows that T is a contraction precisely when II T II < 1.

Comment. The inequality 11 Tx 11 < IITIIIIxII (x E E) shows that 11 Tx 11 < II T II
when 1lx 11 < 1, and hence supllxll<j 11 Tx 11 < II T II. But contrary to classical func-
tional analysis, this inequality can be a strict inequality: When 1' II Ell, the unit
sphere IIxII = I is empty, closed and open unit balls coincide, and supllxll:5t
supllxll <i . For the operator T = id (and 11E - (0)11 discrete in R>0) we have

sup IIxII= sup IIxII <l llidll=1.
IIxII51 llxll<I

Proposition 1. If F is complete, then L(E; F) is also complete.

PROOF Let be a Cauchy sequence in L(E; F). For each x E E, (,,(x)) is
a Cauchy sequence in the complete space F, and hence has a limit Tx which
obviously depends linearly on x E E. This defines a linear map T : E - F.
Let e > 0 be given. There exists an integer NE such that 11 T - T,n 11 < e for all
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in -> oowededuce IITx-Tmx11 <s11xilforalln,m>NE.
This proves that the operator T - Tm is continuous (bounded); hence T = Tm +
(T - T,,,) is continuous. Moreover, 11 T - Tm 11 < s when in > NE. This shows that

II T - T. II 0, T. T (m oo), and everything is proved.

Corollary. For any nonmed space E, the topological dual E' = L(E; K) is a
Banach space.

Example. Let I be any index set and E a Banach space. The vector space of
bounded sequences a = (ai),Ej in E with the norm Ilall = supi Ilai II is a normed
space, denoted by 1O0(I; E) (it is complete: cf. exercise).

The universal property of a direct sum consisting of factors Ei all equal to the
same Banach space E and for linear forms Vi : E K leads to the following
statement.

Proposition 2. The topological dual of the space co(I ; E) is canonically iso-
morphic as a nonmed space to 11(I; E').

PROOF If cp is a continuous linear form on co(1; E), we let (Pi = cp o si denote the
restriction of cp to the i th factor E in co(I ; E) (families having a zero component for
all indices except i). Since II(pi II < II cP II , we get a bounded family ((pi) E 1 0 (1; E').
Conversely, if (cpi) E 11(I; E'), we can define a linear form cp = Ecpi on co(I ; E)
by the formula (ai) H Ei cpi (ai) (a summable series, since the sequence cpi is
bounded and Il ai II -f 0). Both maps

c p H ( c p o - 0 j ) , (cpi) - E (Pi

are linear and decrease norms. Hence they are inverse isometries.

In other words, the bilinear map

((ai), (so,)) H Ycpi(ai), co(I; E) x 1°O(I; E') K

is a duality pairing that proves the proposition.

Corollary. The space 1O0(I) =1C0(I; K) is a Banach space.

In thespace co = co(1), the family of elements ei = (8ij)j>o (Kronecker symbol)
has the following basic property. Each sequence a = (an)n>o E co is the sum of a
unique convergent series

a = 1: anen,
n>0
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and Ilall = sup,,>0 Ia"I = max.,() Ia"I- We say that this family of elements e; _
(Sij) constitutes the canonical basis of this space (in spite of the fact that it is not
a vector space basis: In linear algebra, linear combinations are always assumed to
be finite linear combinations).

This leads to the following definition.

Definition. A normal basis in an ultrametric Banach space E is a family (e1)j,,
of elements of E such that

each x E E can be represented by a convergent series
x = Ft xi ei where the sequence of components I xi I 0,

in any representation x xiei we have
Ilxll = supiE! Ixi I-

A normal basis is sometimes called an orthonormal basis. In particular, for each
convergent series Et xie,, the set of nonzero components is at most countable, as
observed earlier. If (ei) j is a normal basis, we have 11 e;11 = 1 for each i E I. On
the other hand,

x = E xi ei = E yi ei = >(xi - yi )ei = 0,
i i i

and by the second postulated property of a normal basis,

sup lxi-yil=11011=0,=xi=yi (i EI),
iEl

whence the uniqueness of representations in normal bases. All properties of normal
bases are summarized in the following obvious result.

Proposition 3. Let E be an ultrametric Banach space having a normal basis
(ei )i Et. Then the mapping (xi) i--* >i j xi ei defines a linear bijective isometrY
co(I; K) -+ E. Conversely, any linear bijective isometry co(I ; K) - E defines
a normal basis in E, namely the image of the canonical basis of co(I; K). 9

Example 1. The Banach spaces co(I; K) supply examples of ultrametric spaces
with normal bases. In particular, when the index set I is finite, we get the (finite)
product spaces K" with the sup norm (cf. exercises).

Example 2. Let E = C(Zp; K) be the space of continuous functions Zp -p K
(where K is a complete extension of Qp) equipped with the sup norm. The Mahler
theorem (2.4) asserts that the binomial polynomials constitute a normal basis of
E: The map

co(K) - E : (ak) H Eak.fk = Y, ak(k)
k>0 k1-0
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is a bijective linear isometry. The van der Put theorem (3.3) asserts that the sequence
(fi)jaO constitutes another normal basis of E. These two normal bases are quite
different in nature.

4.3. Reduction of a Banach Space

Let K be a complete extension of Qp and E an ultrametric Banach space over K.
We keep the general notation for

A = B<t(K): maximal subring of K,
M = B<t(K): maximal ideal of A,
k = A/M: residue field of K.

Moreover, we consider the closed unit ball in E, Et = {v E E : IIvII _< 11, as an
A-module and ME, = {Ax : A E M, X E El} as an A-submodule (ME, is
obviously an additive subgroup of E1). As a consequence, E = E1/ME1 is a
k-vector space.

Remark. We have quite generally ME, C B<t(E). This inclusion is in general
a strict inclusion. For example consider any finite, ramified extension K of Qp as
a Banach space over Q,. Its open unit ball is strictly larger than pB.«(K): The
open unit ball contains an element of norm Ipltie, while all elements of pB<t(K)
have norms < Ipl < Ipltte.

Lemma. If either IIEII = IKI, or IK"I is dense in R,o, then ME1 = B<t(E).

PROOF. In the first case, if X = IIxII < 1, we can write x = X (x/,k) E ME,. In
the second case, if IIxII < 1 we can choose a scalar X E K with IIxII < IAI < 1
and still write x = A . (x/A) E ME1.

Proposition. If (e; ); E, is a normal basis of E, then (e; mod M Et ), E, is a basis
of the k-vector space E.

PROOF. Define s; = (e; mod ME,) E E. These elements generate E: If
(x mod ME1) E E, we can write x = x, e; with all I xt I _< 1 and only finitely
many Ixt I = 1, giving rise to a finite linear combination x = Et (x, mod M)s;. On
the other hand, take a linear combination >; a,e; = 0 E E = Ei /ME1 (a; E k,
only finitely many nonzero such coefficients). We can choose scalars a; E A C K
With a; _ (a1 mod M) and ai = 0 if a1 = 0. By assumption

Ea,e; E ME1 C B<t(E),
i

namely 11 F_; ai e1 II < 1. By definition of a normal basis,

sup Jail= ri-ai <1
i
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and Iai I < I for all i. This proves that all ai = (ai mod M) = 0 E k and the linear
combination is trivial. The family (si)t is free and is a basis of the reduced vector
space E. 0

4.4. A Representation Theorem

With the same notation as before, observe that the closed balls B<r(E) (r > 0)
and the open balls B<r(E) (r > 0) are A-modules and for any ideal I of A,

B<r(E)/I B<r(E) is an A/I-module.

In particular, if the ideal I is principal, say I = (l;) with I I < 1, then

&r(E)/l; B<r(E) is an A/(l )-module.

Let us generalize the expansion theorem (11. 1.4) to the vector case.

Theorem. Let E be an ultrametric Banach space, l; E K, Il; I < 1, and choose
a set of representatives S C B<r(E) for the classes mod l; B<r(E). Assume that
0 E S. Then every element x E B<r(E) can be represented uniquely as the sum
of a convergent series

x = Eai , (ai c- S).
i>0

PROOF Take for ao the (unique) representative in S with x - ao E B<r(E). Hence
x - ao = r1 = x1 for some x1 E B<r(E). One can proceed similarly for x1 and
find elements a1 E S, X2 E B<r(E) with x1 - at = x2, namely

x = ao + a1 + 2x2.

Iterating the construction, we obtain a series Ei>o a&, which converges to x. For
this part of the proof, the completeness of E is not needed, since the element X,
the limit of partial sums, is known a priori. But when E is complete, every series
>i>oa1 ' with coefficients ai E S i s c o n v e r g e n t , since laii;`I < rll I` __> 0. The

uniqueness statement is immediately verified. Indeed, if 0, we have

hence ao = 0, since this representative is in S. By induction, all ai = 0.

4.5. The Monna-Fleischer Theorem

In a Banach space co(I; K), we have

5

IIXII =sup Ix, = max Ixil E IKI.
I
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Hence if an ultrametric Banach space admits a normal basis, we have

IIEII = IKI, IIE - (0)II = IK"I.

Theorem. Let K be a complete ultrametric f eld with 1K X I discrete in R,0 and
E an ultrametric Banach space over K. Then E admits a normal basis precisely
when IIEII = IKI-

PROOF. The preliminary comment proves the necessity of the condition. Con-
versely, let us show why it is sufficient. Since K has a discrete valuation, its
maximal subring A = R is principal, with maximal ideal M = P = rr R. Then
PEI = irE1. Let us choose and fix a system of representatives S C R for the
classes mod P, with 0 E S. Also choose and fix a basis (ei ), of the k-vector space
E = EI/irE1 with liftings e; E EI, so e, = el mod irE1. I claim that (e,), is a
normal basis of E. Consider first the case of a vector x E E1: IIxII < 1. The vector
z = (x mod irEI) can be expanded in the k-basis (c,),, say z = aic, (only
finitely many a, ¢ 0). Consider the representatives

a;°) c S. a;°) - a1 (mod P);

hence a,(°) = 0 except for finitely many indices. If Ilx11 = 1, at least one Ia(°)I = 1
and all Iaj9 I < 1. We have

r1 = x - ai°)ei c B<1(E).

By the lemma in (4.3), we have B<1(E) = PEI = n E1, and the same construction
with t h e v e c to r 7r-1(x - > a °)e,) E E1 gives a family

al it E S, a;11 0 for finitely many indices only,

such that

x=>a,°)e,+7r>a;"e,+r2 (r2EIr2E1).

By iteration, we obtain a sequence rr E 7r'E1 and convergent series

a,=a°)+na")+---ERCK
giving a representation x = ,, ale, with a, 0 (for fixed j, only finitely many

ra-') ; 0). At each step of the iteration we have to choose a scalar),, such that

IIAn(n-nrn)Il = 1.

This is possible by the assumption II E 11 = I K 1.
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4.6. Spaces of Linear Maps

Let K be a complete ultrametric field and E, F two ultrametric Banach spaces
over K. Assume that E admits a normal basis and fix an isomorphism co(J) = E.
Then any linear map T : E -> F furnishes a family of fi = T e J E F, namely the
image of the normal basis of E - canonical basis of co(J). When the linear map
T is continuous, this family is bounded

11611 < IITIIIIeiII = IITII-

We thus obtain a linear map

L(E; F) -> l (J; F) : T -> (fi)g.

Proposition 1. Assume that E admits a normal basis and fix an isomorphism
co(J) = E. Then the map

L(E; F) --). 1'(J; F)

defined above is an isometric isomorphism.

Pxoon We have already seen that Il(fi)j II 11TII. Conversely,

x = E xi ei = T (x) _ > xifi (this sum converges!),
i I

IIT(x)II < supllxifill <suplxilsup 11611= IIx11sup11fill
I i i i

whence 11 T 11 _< supi 11f3 11 = 11(fi )j 11. Observe that for any choice of bounded
family fi E F, there is a T E L(E; F) with Tei = fi (j E J), so that the map
L(E; F) -> F°O(J; F) is surjective.

In particular, for F = K, we get the following result (cf. Proposition 1 in (4.2))-

Corollary. There is a canonical isometric isomorphism

(co(J))' = lc (J)-

Assume now symmetrically that F has a normal basis and fix an isomorphism
co(1) - F. The linear maps T E -* F = co(1), x i-* T (x) = (cpi (x)) give a
family (Vi), of linear forms Vi E - K. If T is continuous, so are the linear
forms Vi and IIT(x)II = supi ISoi(x)j,

11TII = sup 11T(x)11/11x11
x#0

= supsup Icoi(x)I/11x11
x#0 i

= sup sup Icpi(x)I/11x11 = sup Ilco hl-
i x¢0 i

This proves the following proposition.
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proposition 2. The linear map

L(E; co(I )) - 100(1; E') : T H (cPi)

is isometric, but not always surjective.

When both E and F have normal bases, we get the following statement.

Proposition 3. When E = co(J) and F = co(1), we can make canonical
identifications

L(E; F) = 1°D(J;co(1)) C 100(1; E') =100(1;1°O(J)) =1°°(I x J).

In other words, when normal bases are chosen, continuous linear maps E -* F
are represented by bounded matrices with columns in co(1) = F.

More particularly, if T is continuous and of rank less than or equal to 1. we can
write

T(x) = cp(x)a = ((p(x)ai)t

for some cp c E'. In this case, Vi(x) = cp(x)ai, Ilcvi II = Iai 11101 0. This proves
that the image of T belongs to the closed subspace co(1; E'). By linearity, the same
property will hold for any continuous linear map T of finite rank:

Lfr(E; co(I )) -+ co(I ; E') : T H (Vi).

Definition. A completely continuous linear map T : E -+ F is a linear map
that can be approximated (uniformly on the unit ball) by finite-rank continuous
linear maps.

If we denote by LCC(E, co(I )) the space of completely continuous maps E - F,
then T i-+ ((pi) defines an isometric map Lcc(E, co(I)) - co(I, E'). It is surjective:
It is enough to check that the image of the finite-rank operators is dense in the target
space. But if ((pi) is an arbitrary sequence of continuous linear forms on E with
IlVi II -f 0, and e > 0 is given, there is a finite subset J C I such that IIgo II < E
for i V J. Define i/ii = (pi for i E J and t/ri = 0 for i ' J. Then (i/ii) is the image
of a continuous finite-rank operator and II(soi) - (i)II < E.

Comment. One can show that when K is a locally compact field, the completely
continuous maps T : E -* F are precisely the linear maps that transform bounded
sets of E into relatively compact sets in F. These transformations are classically
called compact linear maps. In the general case, the distinction between compact
and completely continuous operators has been studied in detail and has led to the
definition of compactoids.
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4.7. The p-adic Hahn-Banach Theorem

Let E be a normed space, V C E a vector subspace, and g: V K a continuous
linear form

lkoll = sup l w(x)l < o0
o#xEV llxll

Is there a continuous linear form : E -+ K extending rp? If the answer is positive,
can we find a linear form ;P with the same norm ?

Theorem (Ingleton). Let V be a subspace of a normed space E. When the base
field K is spherically complete, the restriction map

*G -+v=*lv, E' --> V'

is surjective. Moreover, for each cp E V', it is possible to find an extension
with 11*11=llcpll.

PROOF. (a) Let us show first that a continuous linear form on a subspace V E
can be extended to V + Ka (for any a E E - V) without increasing its norm. The
definition of rjr = P has to satisfy

ll'(x +A.a)lI 11(p 11 " Ilx +AaIl (X E V, ), E K).

For a. = 0 this is satisfied, since rjr I v = cp. When ), ¢ 0, we may divide by -A
and see that it is sufficient to find a linear form i/r with

11 *(x - a)II < 11 w11 . 11x - all (x E V),

IlV(x)-i(a)II < IIVII .llx -all :=rx (x E V).

In other words, we have to choose a = rlr(a) in the intersection of the balls Bx =
B< s (g(x)) C K. For any pair of points x, y E V, cp(x) E Bx and cp(y) E By are
at distance

lw(x) - go(Y)I < IIg1I Ilx - y11 < Ilwll max(Ilx - all, 11y - all) = max(rx, ry).

This proves that the smallest among the balls Bx and B, is contained in the largest:
Bx fl B, # 0. Since we are assuming that the field K is spherically complete,
the intersection nxE, B, is not empty and any a in this intersection is a possible
choice force = *(a).

(b) Consider now the set of pairs (V', go') consisting of a vector subspace V' J V
and an extension rp' of cp to V' with the same norm as V. This set of pairs is ordered
by the relation

(V",
ro") >- (V', 0 V" D V' and V"I v' = g
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Any linearly ordered set of such pairs has an upper bound. By Zorn's lemma,
there is a maximal pair. By the first part, this maximal pair is defined on the whole

space E. R

5. Umbral Calculus

The Mahler theorem (3.4) has been generalized by L. van Hamme. To be able
to give this generalization, we have to briefly review umbral calculus: This term
has its origin in the nineteenth century, when formal computations were used with
little justification. Today, it refers to an algebraic treatment of polynomials, power
series, and identities between them.

5.1. Delta Operators

Let K be a field of characteristic 0 and K[X] the vector space of polynomials (in
one variable) with coefficients in K. The translations ra (a E K) are the linear
operators in K[X] defined by

(Taf)(X)= f(X+a).

We shall often identify the indeterminate X with a variable x (in K or in an exten-
sion of K: Since K is infinite, there is no danger in identifying formal polynomials
and polynomial functions on K). Since the degree of the zero polynomial is not
defined, let us adopt the ad hoc convention deg(0) = -1: This allows us to speak
of the subspace of polynomials having degree less than or equal ton for any n _> 0.
The unit translation will also be denoted by rt = E.

Definition. A delta operator is a linear endomorphism 8 of K[X] such that

(1) 8 commutes with all translations ra (a E K),
(2) 8(X) = c E K" is a nonzero constant.

Proposition. Let 8 be a delta operator in K [X ]. Then

(1) S(a) = O for all constants a E K.
(2) if f is a nonconstant polynomial, then deg(8 f) = deg f - 1.

PROOF. By hypothesis, 8(X) = c 54 0, and by translation,

c=rac=Ta8X =Br,X =8(X+a)=8X+8a=c+8a.

Hence 8a = 0 for all constants a E K. To prove the second point, it will suffice to
show that

deg(SX") = n - I (n > 1).
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Fix an integer n > 1 and put 6X" = f (X ). Then

.f (X +a) = ta.f(X) = ra8X" = 8ta(X") = 8(X +a)n

= 8 ()ak . Xn-k = y ()ak . 6(xn-k),
k k

and forX=0,

f(a) = (3a"8(X""xo),y
or

f(X) = > (;)x'1_k)(o). Xk.

We see that f is a polynomial of degree less than or equal to n with a coefficient
of X" given by 8(1)(0) = 8(1) = 0 (using the first part, already proved). The
coefficient of Xn-1 is n8X(0) = nc 0 0 (the field K has characteristic 0). Hence
f (X) = 8X" is a polynomial of degree n - 1.

Corollary. The image by a delta operator of the subspace of polynomials of
degrees less than or equal ton (n > 1) is the subspace of polynomials of degrees
less than or equal to n - 1.

PROOF. The dimension of the image of a linear operator is equal to the dimension
of the source minus the dimension of the kernel. The assertion follows from the
proposition.

Examples. (1) The differentiation operator D is itself a delta operator. More
generally, if a E K, the operator ra D = Dta is a delta operator.

(2) The finite difference operators (recall E = ri : Unit translation)

V = V+ = ri - id = E - id,
V_=id-r-t=r-1V,

and ra V± are delta operators. When a b, the operators is - rb are also delta
operators.

(3) Any formal power series in D of order 1, namely

8 =E c,D` =ciD+ - - E K[[D]] (c1 #0),
i>1

defines a delta operator. For example

e° 1 = D+Z,D2+3'-,D3+...,

D2/(e°- 1) = D- 1-D2+...

are delta operators.
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5.2. The Basic System of Polynomials of a Delta Operator

Let 8 be a delta operator. If f is a nonzero polynomial, there is a polynomial g
such that 8(g) = f (and necessarily deg g = deg f + 1 by the preceding section).
This polynomial g is determined up to an additive constant, since the kernel of 8
consists of the constants. Replacing g by g - g(0), we see that there exists a unique
polynomial g such that

8(g) = f, g(O) = 0 (normalization),

and the degree of this polynomial is one more than the degree of f .

Definition. The basic system (pn)n>o corresponding to a delta operator 8 is the
system of polynomials such that

1. deg p,r = n (n > 0),
2. 8pn = npn-t (n > 1),
3. po=1,pn(0)= 0 (n> 1).

Starting with po = 1 there is a unique polynomial pt (of degree 1) such that
8(pt) = 1 and pt (0) = 0. Proceeding inductively, there is a unique polynomial pn
(of degree n) such that 8(pn) = npn_t and p,,(0) = 0. Hence the definition char-
acterizes a unique system of polynomials for any delta operator. Explicit formulas
for computing these polynomials will be given in (5.5) and (6.2). Any basic system
constitutes a K-basis of the vector space K [X ].

For example, the basic system of the delta operator D (derivation) is the system
(xn)n>o of powers of x. For the operator 8 = V the basic system is

(x)n = x(x - 1) . . . (x - n + I) (Pochhammer symbol)

with the convention (x)o = 1. We indeed have (1.1)

V(x)n = n(x)n-, (n > 1),

and (x)n vanishes at x = 0 if n > 1. For 8 = V_ the basic sequence consists of
the polynomials p,, (x) = x(x + 1) ... (x + n - 1). For every basic sequence, we
have

(k :S n)

In Particular,

8npn=n!.po=n!

Generalized Taylor Expansion. Let 8 bea delta operator and (p,),,2:0 its basic
system in K[X]. Then we have general expansions

kAx +y) _ 8k(x) pk(Y) (f E K[X])-
k>O
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We can indeed write the tautology

bk(Pn)(0)
pn =

kl
Pk,

k<n

where all coefficients of the pk are 0 except for pn, which is 1. For any linear
combination f of the pn we obtain by linearity

.f = E Sk(.f)(0)
Pkk>o k!

Replacing f by one translate rx f in the preceding equality, we obtain

1:
Tx f =

Sk(rx.f)(0)
Pk =

r,, (6 kf)(0) . pkL I L: I

k>o k k>O
k

Sk.f(X)
pk,

k!
k>0

which is the announced generalized Taylor expansion.

In particular, if we take for f the polynomial p, , we obtain the following
equalities.

Binomial Identities. Any basic sequence of a delta operator satisfies the fol-
lowing identities:

Pn(X + Y) =
k

Pk(X)Pn-k(Y)
0<k<n

(n)

The binomial identity can be written in the mnemonic way

pn (X + Y) = " (P(X) + P(Y))n

where one must remember to replace powers by indices in the binomial expansion
of the right-hand side.

5.3. Composition Operators

Definition. A composition operator is an endomorphism T of K [X] that corn-
mutes with translations.

We shall determine all composition operators. More precisely, we shall establish
the following result.

Theorem. The following properties of an endomorphism T: K[X] - K[X]
are equivalent: They characterize composition operators.

(i) T commutes with the unit translation.
(ii) T commutes with all translations.
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(iii) For all delta operators S, T can be written as a formal
power series in S: T = cp(S) E K[[5]].

(iv) T = cp(D) E K[[D]] is a formal power series in the derivation D.
(v) T commutes with the derivation TD = D T.
(vi) T commutes with any delta operator.

PRoor. (i) = (ii) Write rt = E and use the Taylor series expansion around n:

k1:
E"f(x) = f(n +x) = f(k)(n)

kk>0

By the commutation hypothesis T E = E T we infer

E"Tf = TE" f = f(k)(n) -

T(xk)

k>0
k!

Put g = T f and consider the polynomial in two variables

J/,- 1 1 T (xk)

k>O
k

We have seen that F(x, n) = 0 for all positive integers n and all x. If x is fixed, the
corresponding polynomial in y has infinitely many roots and is consequently iden-
tically zero. This proves F - 0. Hence rr,.g - T r, f = 0, or r. T f - T zy. f = 0.
Since this is valid for all polynomials f , we see that the operator T commutes with
translations.

(ii) = (iii) Let T be a composition operator and S a delta operator. Write the
generalized Taylor formula using the basic sequence (pk) corresponding to S:

;f(x) = f (x + y) = E Sk.f (y) . p kX )

(first for fixed y and variable x). We have

r f =
kk

Sk.f(y)

Let us apply the composition operator T to this polynomial,

-ryTf=Tr,f Pk-.Sk.f(y)

and evaluate it at the origin (we now fix x = 0 and consider a variable y):

(Tf)(y) = (r,Tf)(0) = (Tr,. f)(0) (T kk (0) . akf(y).

Hence

T f =
(Tpk)(0) . 6kf,

k!
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and finally,

T = (T pk' (0) . Sk E K[[S]]

The coefficients of the expansion of a composition operator T as a power series
in the delta operator S - say T = J ak8k - are given by ak = (T pk)(0)/k!. In
particular, let us remember that for the case S = D these coefficients are

(T(xk))(0)ak=
k!

Since obviously (ii) = (i) and (iii) => (iv) = (v) = (vi) it only remains to prove
(vi) =:> (ii) to accomplish the full cycle of equivalences. Let S be a delta operator
and write the generalized Taylor formula for an arbitrary polynomial:

f(x +Y) = >Skf(x)' Pk(Y)lk!,

r..f(X) = Skf(X) Pk(Y)lk!,

T j =Pk(Y)lk!.Skf,

Pk(Y)l k! - Sk-

This shows that all translations can be expressed as formal power series in any
delta operator. As a consequence. if an operator commutes with a delta operator,
it commutes with all translations. 0

For convenience, let us use the following notation for the commutant of a subset
A of the endomorphism ring of K [X ]:

A'= IT E EndK[X]:TS=ST forallSEA}.

The commutant of A' is the bicommutant - or double commutant - of A: It is
denoted by A" = (A')'.

Corollary. In the endomorphism ring of K [XI, the commutant of a delta oper-
ator S can be identified with the ring K[[D]]. In particular, this commutant is

commutative, and the bicommutant of any delta operator can be identified with
the ring K[[D]].

PROOF. The equivalences (v) . (vi) . (iv) of the theorem show that the commu-
tant of the derivation, or of any delta operator, coincides with the ring of power
series in the derivation D. This ring is independent of the delta operator in question
and is commutative; hence by (ii) . (v) . (vi) we have

{D)'={r,,: Y E K}'={S}'C EndK[X].
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Since {D)' is commutative, {D}' C {D}". On the other hand, the operation that
consists in taking the commutant obviously reverses inclusions, and

DE{D)'={D)'j{D}".

Let T be a nonzero composition operator. We can write T = >V ajD3 with a
first nonzero coefficient a # 0 (v > 0). In this case, we say that the composition
operator T has order v and we write T = D ° S = SD V with a composition operator
S of order 0, namely, S is invertible. Since the kernel of the operator D' consists
of the polynomials of degree less than v, we infer

v = dim ker D" = dim ker T.

This equality shows that the order of a composition operator is independent of the
delta operator used to represent it as a power series. On the other hand, the delta
operators are the composition operators of order 1.

If T = E ai Di and T' = F bj Di are two composition operators, then T o T'
is also a composition operator, and its formal power series is obtained by multipli-
cation of the formal power series giving T and V.

5.4. The van Hamme Theorem

Let T be a continuous endomorphism of the Banach space C(Zp) of continuous
functions on Zp (and values in a fixed complete extension K of Qp). Let us recall
the definitions of the norms

Of 11 = sup 1f(x)1 = max If(x)I,

sup = max taken on the compact space Zp,

IITII = suphITfll/IIfhl = sup IITfil.
f#o VIII=1

When this continuous endomorphism commutes with the unit translation operator
E = ri, it also commutes with the (forward) difference operator V = rt - id and
its powers. Hence T leaves the subspaces ker V" C C(Z p) invariant.

Lemma. The subspace ker V" of C(Zp) consists of all polynomials of degree
strictly smaller than n.

PROOF. The statement is obvious for n = 0 and 1. In fact, if 0" f = 0, the finite
difference theory applied to the restriction of f on N shows that this restriction is
a Polynomial p of degree smaller than n. Hence we have f = p on N and also on
Zp by continuity and density of N in Zp.
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As a consequence, any continuous endomorphism T of C(Zp) commuting with
E (or equivalently, with V) leaves the polynomial subspace

I] = K[X] = UkerV" C C(Z,)
n>O

invariant and induces a composition operator in this space. Let us expand this
composition operator as a formal power series in the delta operator V

Tlrt = > anVn E K[[V]]-
n>v

If T 0, the order v of T is the index of the smallest nonzero coefficient. Since
II V II = 1, the ultrametric inequality shows that

11 T II < sup lan 1.

On the other hand, the basic polynomial sequence of the delta operator V is the
sequence (x)n = x (x - 1) - - (x - n + 1), and the coefficients an are given by the
formula

T ((x )n )an = 1 .
n.

In particular for n = 1, Tail = IIT(x)II < IITIIIIxII = IITII. If we assume IITII =
Iat I, we see that Ian I < Iat I for all n > 1. The main step of van Hamme's gener-
alization of the Mahler theorem can now be given.

Proposition. Let T be a continuous endomorphism of C(Zp) that commutes
with V. Assume T (l) = 0 and II T II = jai I = 1, so that T induces a delta oper-
ator on K [X] with basic polynomial sequence (pn )n>o:

po = 1, deg pn = n, T(pn) = npn-i and p,,(0) = 0 (n > 1).

Then IIpn/n!II = 1.

PROOF. Let us use the renormalized qn = pn/n!, so that by definition

qo = 1, deg qn = n, T(qn) = qn_,, and qn(0) = 0 (n > 1).

We have to prove II qn II = I (n > 1). Replacing T by T /al , we may assume at = 1,

I=IIgoII=IITg1II:5 IIg111=11Tg211sIIg211 < - --

Now by assumption, T = V + a2 V2 + - - - = V(I + a,V + - - -) = VU with

an invertible composition operator U = (I + a,V + - - ), II U 11 = 1. Define
V = U-1 = I - a2V + - - - also with 11 V II = 1. We claim that there is a suitable
continuous invertible composition operator S, with IISII = 1, such that

qn = SVn(.fn), (*)
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where fn = 1) denote momentarily the binomial polynomials: V f, = fn-1. First,
for any composition operator S of order 0, the preceding definition leads to poly-
nomials with deg qn = n. Moreover,

Tqn = T o SV'(fn) = VU o SV'(fn),

and since U = V-1 and all the operators in question commute,

Tqn =SVn-1 o V(fn) = SVn-1(fn-1) = q,-1
There only remains to construct a suitable invertible composition operator S with
IISII = 1 so that the formula (*) furnishes polynomials with q,(0) = 0 (n > 1).
Let us take

S=I-VV-=I-VV'U,

where V' is given by the formally derived power series in V giving V. Namely,

V = I +

ENqnVn

==> V' _ n , 6 , , V-1.
n>1 n>]

Now we have

SVn(fn) = (I - V v,/ o V?(fn)

_ (Vn -
VVn-iV')(fn)

Recall that all the operators are formal power series in V, and Vkfn = fn-k van-
ishes at the origin for k < n. The only interesting term is thus the monomial
containing V` fn. But if cp = cp(t) is a formal power series, the formal power series

lon - t,,n-IW' _ Vn - (t/n)((Pn)' = * - (t/n)i"'

has a coefficient of to equal to 0. Since this is the constant term in SVn(fn), this
proves that qn(0) = 0. All operators used in the definition of S have norm less than
or equal to 1; hence IISII S 1, IlgnII IISII IIV"IIllfnll = 1.

Theorem. Let T be a continuous endomorphism of C(Zp) that commutes with
V. Assume T(l) = 0 and IITII = IT(x)I = 1. Define the polynomial sequence

qo = 1, deg qn = n, T(qn) = q,,-1, q.(0) = 0 (n > 1).

Then each continuous function f c- C(Z,) can be expanded in a generalized
Mahler series

f(x) = ECngn
n>O

with c = (Tn f)(0) -> 0 and 11 f II = supra>0 ICn1.
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PROOF. Using the notation of the preceding proposition, we have T = VU with u
invertible and Il U Il = 1. Hence

IT"f(0)1 < IIT"f 11 = IlUnonfII <- IlonfII - 0

(by the Mahler theorem). It will be enough to establish all statements for the
polynomial functions f, since the general case will result from this by density
and continuity. The generalized Taylor expansion of a polynomial f takes the
form

f = y(T"f)(0) . n; = Y(T" f)(0) qn
n>O n>O

From II q, 11 = 1 follows quite generally

I1fl1 < supIcnl,

and from the asserted formula for the coefficients,

Icnl = I(T"f)(0)I < lIT"III < 11T"1111f11 < 11T11"11f11 < 11fll,

whence conversely sup I cn I < II f 11 and finally sup I c, I = II f II .

Comment. The generalized Mahler expansion is not valid for the delta operator
D (differentiation): This operator does not extend continuously to all of C(ZP)
On the other hand, its renormalized basic sequence is qn(x) = xn/n!, and even if a
series expansion f (x) = F_n>o c"x"/n ! converges uniformly, II f 11 = sup IPA =
max I f(x)I is not usually equal to sup Icnl. The delta operator D on K[X]) has a
power series expansion in V with coefficients

/ l
an = D LX).-) (0) = coefficient of x in I J

= constant coefficient of (x - 1) . , . (x\\\-
n + 1)/n! _ (-1)n-I In.

In particular, al = 1, but lan I > 1 when n is a multiple of p, so that the theorem
is not applicable.

S.S. The Translation Principle

To illustrate an important principle we begin with a particular case.

Example. We know that the basic sequence for the delta operator D is the sequence
of powers. The basic sequence corresponding to a translate rQ D of D is

pn(x) = x(x - na)"-' (n > 1).
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Indeed, we have

Dpn = (x - na)n-' + (n - 1)x(x - na)n-2

= (x - na)n-2[x - na + nx - x] = n(x - na)n-2[x - a],

whence

ra Dpn = n (x + a - na)n-2[x + a - a] = npn-1

To be able to prove the general translation principle we need a couple of easy
results.

Lemma. Let T = V(D) = >2n>o a, D" be a composition operator and let Mx
be the multiplication by x operator f r--> x f . Then

TMx - MXT = [p'(D).

PROOF. By definition,

(DMx-MXD)f=(xf)'-xf'=f

whence DM, - MxD = I (identity operator). Similarly,

(DnMx - MxDn)f = (xf)(n) - xf(n) = n f(n-1)

whence DnMx - MXDn = nD(n-'). This is the particular case T = Dn of the
expected formula. The general case results by additivity, since for any polynomial
f, (TMX - MXT)(f) is a finite sum

>an(DnMx - M.Dn)f = anD(n-1)f

(only terms with n < deg(f) + 1 really occur).

Comment. One can define the Pincherle derivative T' = TMX - MXT of any
composition operator. For T = cp(D) the lemma shows that T' = cp'(D). A sim-
ilar result has been used for a long time in quantum theory: If M f denotes the
multiplication operator by a polynomial f, then

DM f - M fD = M p: multiplication operator by the derivative f'.

Observe that in (5.4) we have used a different derivative, namely a derivative with
respect to a series expansion in the operator V. For this reason, it is always necessary
to specify with respect to which delta operator the derivative of a composition
operator is taken.
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Proposition. Let S be a delta operator and write S = Dcp(D) with an invertible
power series V. Then the basic sequence of polynomials of b is given by

pn = xcp(D)-n(xn-1) (n > 1).

PROOF. Since W(D) as well as cp(D)-" are invertible operators, V(D)-n(xn-1) is
a polynomial of degree n - 1 and the polynomial pn = xcp(D)-n(xn-1) has de-
gree n. Since x divides pn, we obviously have p,,(0) = 0. It only remains to
check that 6pn = npn_l. By definition, pn = Mxcp(D)-"(xn-1), so that 6pn
Dcp(D)Mxcp(D)-n(xn-1). Using the lemma, we can write

MxV(D)-n(xn-1) = V(D)-"Mx(xn-1) - [cV(D)-n],(xn-1)

= V(D)-n(xn) + n[V(D)-n-1](Xn-1).

Hence

8p, =
DcV(D)[V(D)-"(x") +n[V(D)-n-1 ](xn-1)l

= yy(D)-n+1(Dx") + ncp(D)-n(Dxn-1)
_ o(D)-n+1(nxn-1) + n(n - 1)co(D)-n(xn-2)

_ [np(D)-""M,, + n(n - 1)co(D)-"](xn-2).

Using again the lemma to bring the operator M,, into the first position, we obtain

8pn = [Mxny(D)-n+1 + (nV(D)-n+1)'+ n(n - 1)W(D)-n](Xn-2)

= nMxcV(D)-(n-1)(Xn-2) + [-n(n - 1)go(D)-n + n(n - 1)cV(D)-"](x"-2)

= nMxcV(D)-(n-1)(xn-2) = npn-1.

The Translation Principle. Let S be a delta operator and (pn)n>o its basic
sequence. Then the basic sequence of the translate delta operator Tab is given
by po = I and

pn = Pn(X - na) (n > I)-
X

x - na

PROOF. By the explicit formula of the proposition with S = Dcp(D), we have

pn = x[Ta(V(D)]-"(Xn-1)

= XT_na((D)-n(Xn-1)

= XT-na[(l/X)Pn],

from which the translation principle follows.

Observe that since the polynomial p, is divisible by x (n > 1), pn(x - na)

is divisible by x - na and the polynomial pn is divisible by x: It vanishes at the
origin as required. Several cases of this translation principle are interesting. For
example, the case a = -1 leads to the backward difference operator t_1 V
while a = -

z
leads to a centered difference operator.
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Umbral calculus

Delta Basic sequence Related
operator of polynomials sequences
(IV.5) (IV-5.2) (1V 6.1)

D = d/dx (xn)n>o Appell sequences

6

umbra]
operator

(P,)n>o

r-yb t x p, (x+ny)x+ny n>o
(IV.5.5) translation principle

Dpn = npn 1

Sheffer sequences
Ssn = nsn-i

Binomial identity: pn(x + y) ="(p(x) + p(y))',"

Appell sequences: pn(x + y) =" (p(x) + y)n;'

Sheffer sequences: sn(x + y) ="(s(x) + p(y))n

cf.(V.5.4), (V.5.5) for the example of the Bernoulli numbers and polynomials.

6- Generating Functions

6.1. Sheffer Sequences

In this section S will be a fixed delta operator, and (pk)k>o will denote its basic
Sequence. Recall the generalized Taylor series (5.2)

.f (x) =
E (skk' (0)

- Pk(x),
k>O

valid for any polynomial f E K[X].

Definition. A Sheffer sequence (relative to S) is any sequence of polynomials
(sn)n>o such that

1 deg sn = n for all n > 0,
2. Ssn = n sn-1 forall n > 1.

The constant so is nonzero. If (sn)n>o is a Sheffer sequence, we have

Sksn = n(n - 1) ... (n - k + 1) Sn-k = (n)k - Sn-k (k < n).
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The generalized Taylor expansion

.f (x +Y) _ Y. Skf(Y)/ki . pk(x)

gives for f = sn

sn(x +Y) _ ()Pk(x)Sn_k(Y). (S)

This formula generalizes the binomial identity for the basic sequence (pk).

Definition. An Appell sequence is a Sheffer sequence corresponding to the
derivation operator D.

The Appell sequences (pn) are characterized by the relations

1. degpn=n foralln>0,
2. pn=n-pn_lfor all n> 1.

The Appell sequences satisfy (S), which is in this case

n()XPn_k(Y).
Pn(x + Y) _ _ k0<k<n

This identity may be symbolically written

Pn(x + Y) = "(x + P(Y))n,

where we interpret exponents of the binomial expansion of the right-hand side as
indices.

Proposition. Let S be an invertible composition operator. Then the polynomial
sequence sn = S(pn) is a Sheffer sequence. Conversely, if (sn) is a Shefferse-
quence, the endomorphism S of K[X] that sends the basis (pn) onto the basis

(sn) is an invertible composition operator.

PRoor.. To check the first statement, we compute Ssn using the fact that S and S

commute:

Ssn = SSPn = SSPn = S(nPn-1) = nS(Pn -1) = nsn-1.

Conversely, for n > 0 we have

SSpn = SnPn-1 = nsn-1 = Ssn = SSPn-

Since the polynomials pn make up a basis of K[X], this proves that S and S

commute. Hence S is a composition operator (5.3).
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62. Generating Functions

Let us still consider a fixed delta operator S with basic system of polynomials
(p ),,,o. Let S be an invertible composition operator. The polynomial system
S-1 p,, = sn is a Sheffer sequence, and we are going to determine more explicitly
the exponential generating function

sn(x)n = Fs(x, z)
n>O

(where z is a new indeterminate, a variable in C or C,,, . . .). We know that

8 = V(D) E K[[D]], W) = 0 and V'(0) 34- 0,
S = t/i(D) E K[[D]], *(0) :h 0.

By (5.3) the formal power series corresponding to the composition operator rx S-'
is

sn P
rzS I = rxS-'(Pn)(0) S-1(Pn)(x)

n n.

Esn(x)- = Fs(x, S)-
n!

On the other hand, the formal power series (in D resp. 8) corresponding to 6 can
be computed as follows. Firstly, we have seen that

Sn Dn
Tx = Pn(X)n = EXnn = exp(xD),

and secondly,

t x = r, S-' o S = Fs(x, 6) o i/'(D).

Since S = V(D), or equivalently D = V-1(6) (a systematic characterization of
invertibility of formal power series is given in (VI. 1.3) Theorem 1), a comparison
of the two expressions for Tx furnishes

Fs(x, So(D)) *(D) = exp(xD).

With the formal power series 8 = V(D), we can express D = W-'(S) and come
back to the above expression:

Fs(x, z) - 1t'(co-'(z)) = exp(xrp-'(z)),

Fs (x, z) sn(x)Zn = I . exp(xV '(z)).Z"
*(V-'(z))
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We can deduce several useful identities from this one. For example, derivation
with respect to x leads to

Zn
d FS(x, z) = Sn(x)Zn

n>0
n!

Z(W-I,
*
exp(xp '(z)),-' ( )

zn W-'(z)
sn(0)- =

n>1 Y ( '(Z))

In particular, for the basic sequence Sn = pn which corresponds to the identity
composition operator S = id, hence to the formal power series * = 1,

Zn
Pn(X)

n>O n-

= exp(xco 1(z)),

ZnPn(0)n =W-'(z).
n>1

The first identity gives an algorithm for the computation of the basic sequence
(Pn)n>o- Here are a few examples.

Example 1. Let us consider the delta operator

0=V+=r-1=eD-1=W(D),
for which

z=W(u)=eu-1, en=z+1, u=log(]+z)=W-'(z).

We have

exp(xcp-'(z)) = exp(x log(1 + z)) (1 +z)x

n = (x)n Zn
ZGr(X)

n>0 n n>0 n

The basic polynomials for this delta operator V are simply the Pochhammer Poly-
nomials

Po = 1, Pn(x) = (x)n = x(x - 1) - - - (x - n + 1) (n > 1).

Example 2. As with the delta operator V_ = I -r- = 1-e-D, which corresponds
toz=c V(u) I -e-n,u=log1/(1-z)=W-'(z),we have

(-X)(xW-'(z)) (1 - z)-x =
_z)n.

exp(
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The basic polynomials are now

po= 1, 1)=(-1)n(-x)n (n > 1).

Anotherexample of the general formulas follows (cf the exercises for the Fibonacci
numbers and the Gould polynomials).

6.3. The Bell Polynomials

The Bell polynomials B,, (x) can be defined by their generating function

Bn(x)z = exp[x(ez - 1)].
n>0

n.

This generating function has the required form for a basic sequence of polynomials
of a delta operator. We can indeed take

u =
c-1(z)

= eZ - 1 = (r-1 o exp)(z)

and hence

z = W(u) = (log or1)(u) = log(1 + u).

This shows that the delta operator 6 that leads to this generating function is

6 =cp(D)=log(1+D)= D-.D2+3D3 .

The following formulas result from the general theory:

Bn(x + Y) = y (;)Bk(X)Bfl_k(Y)0<k<n

Zn

B,,(0) = W 1(z) = eZ - 1,
n>1 nl

whence B,',(0) = 1 (n > 1). The polynomials Bn are monic polynomials having
zero constant term if n > 1. The first ones are

Bo = 1, Bi(x) = x, B2(x) = x + x2, B3(x) = x + 3x2 + x3,

B4(x) = x + 7x2 + 6x3 + x4.

If we take the derivative of the generating function (with respect to z), we obtain
the relation

Bn+1(x) = x r ()Bic(x),
0<k<n

n

from which these polynomials are easily computed inductively.
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Comment. The special values B = of the Bell polynomials are the Bell
numbers. They represent the numbers of distinct partitions of the set 11, 2, ... , n}
into nonempty subsets. The first ones are

Bo = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15,

where, for example, the five partitions of {1, 2, 3} are

{ I), {2}, {3}
{1, 2}, {3}
(2,3},{1}
{1, 3}, {2}
{1, 2, 3}.

EXERCISES FOR CHAPTER 4

1. (a) Suppose that we define the notion of Banach space E over an ultrametric field K
simply as a complete normed K-vector space. Try to prove that if E is a Banach
space of positive dimension over K, then K is complete.

(b) If you cannot prove (a), think of the following examples: K is a noncomplete ultra-
metric field and E = K is its completion with the norm given by the extension of the
absolute value. This is a Banach space over K_ For example, take K = Q with the
p-adic absolute value and E = Qp as Banach space over Q, or K = QP (algebraic
closure of Qp) and E = Cp as Banach space over Q ,. What is happening?

2. Let (E1), j be a family of Banach spaces. Define the Banach product of this family as
the normed vector subspace

fj Ei C fJ Ei
iEI iCI

consisting of the bounded families x = (xi ), equipped with the sup norm

Ilxll = II(xi)II =supllxill.
i

In particular, ®IEI Ei is a normed vector subspace of 1 1iE/ Ei.
(a) Show that this Banach product is complete and hence is a Banach space. Observe

that 1°O(I; E) E and conclude that 1'(I; E) is complete for any Banach
space E.

(b) Show that the dual of ®iEIE, is canonically isomorphic to ]-[IEI E.
(c) Formulate the universal properties of the direct sum and Banach product as canonical

isometries

L(E; fl Ei) = fJ L(E; EI),

L((DE,; E) - 11 L(Ei; E)-

[The second isomorphism for E = K gives (b).]
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3. Let E = Kn (for some n > 1) with the sup norm. If (ej)t<j<n is a normal basis of
E. show that the matrix having the ej for columns is in Gin (A): It has entries in A and
determinant in A". Conversely, any normal basis is obtained in this form.

4. When I K" I = In IZ is discrete but the condition II E II = I K I is not satisfied, show that
the norm of E can be replaced by an equivalent one that satisfies it. Take either

Ilxll' = sup {IX I : A E K, IXI - Ilxll)

or

for which

IIXII" = inf{IAI : A E K, ICI > IIXII),

IjrhIIXII <- IIXII' IIXII < IIXII" -< Inl-'Ilxll-

Since sup = max and inf = min, these new norms take their values in I K I.

5. Let (ui )i Ej be a family of continuous operators in an unitrametric Banach space E such
that for each x c E, cp(x) := supiEt iIui(x)II < oc. Show that supiEt Ilui II < 00.
(Hint. Consider the subsets En C E defined by cp < n and use the Baire property for
the union un>1 En = E, or copy the proof of the Banach-Steinhaus theorem from any
book on functional analysis!)

6. (a) Assume f c Q[X], f (O) E Z, and that V f takes integral values on all natural
numbers. Prove that f also takes integral values on N.

(b) Let the polynomial f c Q[X] take integral values on all natural numbers: f (N) C
Z. Prove that f also takes integral values on all integers: f (Z) C Z.
(Hint. Show that f (Z) C Q n Zp for all primes p.)

7. The maximal number of electrons on atomic layers is given by the following sequence

K : 2, L : 8, M : 18, N : 32. ... .

What is the next one? Find a polynomial formula fl n) giving these values.
(Hint. Compute the finite differences to determine the simplest polynomial f taking
these prescribed values.)

8 The maximal number of regions in the plane R2 determined by n lines is given by (make
pictures!)

n 0 1 2 3 4 ...
f(n) 1 1 2 4 7 11 ...

Find a polynomial formula for f (n).

9. Let f(n) denote the maximal number of regions determined in the unit disk Izl < 1 (of
the complex plane C) by connecting n distinct points on its boundary IzI = 1 by lines.
Show that this sequence starts as follows:

n 1 2 3 4 5 6 ...
f(n) 1 2 4 8 16 31 ...

Find a polynomial formula for f (n).

10 Consider the Fibonacci sequence as a function of an integer variable n

.fo = O. fl = 1, .fn+1 = fn + fn-1 (n > I)-

Does this function extend continuously to any Zp (p prime)?

fn:
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11. What are the Mahler series expansions of the following polynomial functions:

.f(X) = 2x2 - 1, g(x) = 4x3 - 3x, f(g(x)).

12. Let xn = >k>o an,k (k) be the Mahler series of the continuous function x": Z p --). QP.
Hence an,k = 0 fork > n. Show that

an,o = Sn (= I for n = 0 and = 0 for n > 0),

an,k = (-I)k-j(k)jn,
0<j<k I/

an,k = k(an-l.k+an-1,k-1) (k > 1,n > I)

Show also that when p is an odd prime,

apk=0 (modp) (2<k<p-1).

The an,k jk! are the Stirling numbers of the second kind; cf. (VI.4.7).

13. Let f : Zp Qp be continuous, given by a Mahler series

.f(x)=1: anlnl-
n>0 \ ///

What is the Mahler series of the function xf?

14. Prove the following formula:

x' x 1 x 1 x (-1)n-1

(n) -(n1) 2(n2)+3(n-3)+ + n

forn > 1.

15. Show that the series

1n( 2n-
n>o p p

converges for all x E Zp, x # 1. The sum f (x) defines a continuous unbounded function
Zp - {-1} - . Qp.

16. Let a E 1 + Mp and m a positive integer prime to p. Show that there is a unique mth
root of a in I + Mp.
(Hint. Consider the series expansion (I + t)11m = Ek>o !1 km)tk

IT Let f : Zp -+ Cp be a continuous function and F = Sf its indefinite sum (IV. 1.5).
(a) Show that there are uniform estimates

IF(n + p°) - F(n)I < e (n c N),

where e - 0 (v -+ co). (Hint. In a sum F(n + p°) - F(n) = &<;<p, f(i)
group the indices i in question into cosets mod psZ. Let C be one such cosec and
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pick one c E C,

f(x) _ 1:(f (X) - f(c)) + P°-S.f(c)-
xEC XEC

Hence I Jxcc f(x)I <maxxEc(If(x)- f(c)I, IP Sf(c)I)-)
(b) Show that for every given e > 0, there is an integer v such that

I F(n + kp°) - F(n)I < e (n, k E N).

(c) Prove directly (i.e., without the Mahler theorem) that for any continuous function
f : ZP -* Cp, the indefinite sum F off extends continuously to Zp. (Corollary
2 in 3.5).

18. Show that the finite sums

l
>2c:rai 0, Ear 0)

are delta operators (notations of 5.1).

19. Let us define the Bell-Carlitz polynomials B, by their generating function

n
exp (xz + (eZ - 1)) _)7 Bn (x)?

n>0 n!

Hence Bn(0) = Bn (=Bn(1) cf. (IV.6.3)) are the usual Bell numbers.
(a) Prove that

(')B_3x1B(x) =, B n(1) = Bn+1.
O<j<n j

Hence these polynomials interpolate consecutive values in the sequence (Bn)n>>o.
(b) Prove that the sequence (BB)n>o is an Appell sequence (IV.6.1).

(Hint. Differentiate the expression found under (a).)

20. Consider the power series expansion (1-t-t2)-1 = rn>oantn.Showthatan = fn+1,
where (fn)no is the Fibonacci sequence

f0=0, f1=1, fn+I=fn+fn-1 (n>I)-

Define a sequence (pn) of polynomials by the identity

exp(xlog II -2 -z
so that an = pn(1)/n!. Show that this generating function corresponds to the choice

u = (P-I (z) = log 1/(1 - z - z2), e-u - I = -z - z2, b = (p(D).

Show that

6 =co(D)=1:2(2k) k. (-V-)k
k>I

(the operator -V_ is simply given by f H f(x - 1) - f(x)).
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21. Show that the basic sequence of polynomials corresponding to the translate delta oper-
ator r_E V is

(n> 1).
The renormalized polynomials qn(x) = pn(x)/n! are the Gould polynomials

_ x (x+nE)n _ x x+ns) _x x+nE-1
qn(x) x+nE n! x+nE( n n\ n-I

(Hint. Check by induction that

V Pn = n(x + E)(X + E + (n - 1)E - 1)n-2 = nrE(Pf-1)

and hence r-EV pn = npn_1, then use the translation principle (5.5).) Write explicitly
the binomial identity for the Gould polynomials.
Show that the delta operators r_E V satisfy the condition 11 T11 = Jut I = I of the van
Hamme theorem (5.4), and hence they give rise to uniformly convergent expansions of
all continuous functions ZP --> K (complete extension of Qp).
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Differentiation

Calculus in the p-adic domain is rather straightforward. Let us emphasize, however,
that:

A function with a continuous derivative is not necessarily strictly differentiable.
The mean value theorem is valid provided the increment is small enough:
IhI < rp.
The radius of convergence of the exponential series is rp < oo.

In this chapter the field K will denote a complete extension of Qp, e.g., K = Cp
or c2P.

1 Differentiability

1.1. Strict Differentiability
Let X C K be a subset with no isolated point.

Definition. A function f : X K is said to be differentiable at a point a E X if
the difference quotients (f (x) - f (a))/(x - a) have a limit f = f'(a) as x -* a
(x Y-c a) in X.

Equivalently, one can require the existence of a limited expansion of the first
order

f(x) = f(a) + (x - a) f'(a) + (x - a)4(x) where io(x) - 0 (x -> a).
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Example 1. Let (Bn)n>t be the sequence of open balls

B"=(XEZp:Ix-pfj <ip`nllC{XEZp:IxI=IP"I}

and f the function on Zp vanishing outside U B,, (a disjoint union) with values

f(x) = Pen (X E B").

Then f is constant on each open ball B" and hence is locally constant outside
the origin. Consequently f is differentiable at each x # 0 with f(x) = 0. At
the origin limx,o(f (x) - f (0))/x = limx,o f (x)/x exists and is zero, so that
f is also differentiable at this point with f'(0) = 0. In this example, f' = 0
(identically), f is continuous, a situation classically denoted by f E C', but the
difference quotients

f(Y) - f(x) _ f(x) - f(Y)

y-x x-y
take the value I on the pairs x = x,, = p", y = yn = p" - pen which are arbitrarily
close to the origin.

Example 2. Let f : Zp -> Zp be the continuous function defined by

x = Y a. pn F f (x) _ an p2n

n>O n>O

Then f is differentiable at all points x E Z, with f'(x) = 0. Again f = 0 E C',
but f is injective, and hence far from being locally constant.

The preceding examples show that the notion of differentiability at each point of
a set X is not very useful, even if we require these derivatives to vary continuously,
and we shall introduce a stronger condition.

Definition. We say that f is strictly differentiable at a point a E X - and
denote this property by f E S' (a) - if the difference quotients

Of (X, Y) =
f(x) f(Y)

x-y
have a limit f = f'(a) as (x, y) -> (a, a) (x and y remaining distinct).

Classically, i.e., for a function f : I -> R (where I C R is an open interval),
if f(a) exists at each a E I and f: a H f(a) is continuous, then f is strictly
differentiable at all points a E I. The examples preceding the definition show
that in ultrametric analysis, the situation is different and we have to assume strict
differentiability to get interesting results.

Proposition 1. Let f : X --> K be strictly differentiable at a point a E X with
f(a) 0 0. Then there is a neighborhood V of a in X such that the restriction
of f/f'(a) to V is isometric.
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PRooF. Since f E S' (a), for each s > 0 there is a neighborhood V. of a for which

14f (x, y) - f'(a)I < s if x E VE and y E V.

Let us take s = If '(a) I (0 0 by assumption) and V the corresponding neighbor-
hood. Then

14f (x, y) - f'(a)I < If'(a)I 0, if (x, y) E V x V

and there is a competition between the terms 'f (x, y) and f'(a)

14f(x, y)I = If'(a)I for (x, y) E V X V.

Hence lf(x)-f(y)I=If'(a)I Ix-yl for (x, y) V xV.

Corollary. If f E S'(a) and f(a) 0, then there is a neighborhood V of
a E X in which f is injective.

Theorem. Assume that the function f is defined in a neighborhood of a E K
and strictly differentiable at this point with f'(a) 0. Choose an open ball B
containing a such that

SUP
I f(x) - f(y)o = - f'(a)I < If'(a)I

x#yEB x - y

Then f maps each open ball contained in B onto an open ball, namely

B ; f(B<E(b)) = B<E'(f(b)) (E = If'(a)I£)

PROOF. Put s = f'(a) 0. As in the preceding proposition, we have

f(x) f(y) I
=1si (x y E B),x - y

and f/s is an isometry in the ball B. This already proves

f (B<E(b)) C B<ISIE(f (b))

To prove that this inclusion is an equality, we select any c E B<IsIE(f (b)), namely
If(b) - cI < Isle, and show that the equation f(x) = c has a solution x with
Ix - bl < E. Equivalently, we show that the map V(x) = x - (f(x) - c)/s has a
fixed point x with Ix - bl < E. Observe first that yp(B<E(b)) C B<E(b):

cp(x) - b = x -b-(f(x)-c)/s
=x-b-(f(x)- f(b))/s-(f(b)-c)/s,

IV(x) - bI < max(Ix - bl, If (x) - f(b)I/IsI, I f(b) - cl/IsI) < E.
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Now we prove that cp is a contracting map with contraction ratio a jlsl < 1:

V(x)-SP(Y)=x-y- f(x)-f(Y)
s

= x-Y f(x)-f(Y)1
s ,

s
\- x-y

Io(x)-co(Y)I <
IxIsIYl a =

II
.Ix - yI.

Since the ball B<E(b) is closed in the complete space K, the mapping V has a
unique fixed point in this ball and the theorem is completely proved.

Observe that this theorem is a generalization of Hensel's lemma (II.1.5) (here
f is not a polynomial): The function f - c has a zero x E B, or f (x) = c, as soon
as I f (b) - cl is small enough for some b E B.

Let us turn to strict differentiability on a subset X having no isolated point.
Since X is a metric space, it is Hausdorff and the diagonal of X is closed in X x X.
The open subset X x X - AX is dense in the product X x X.

Proposition 2. For f : X - K, the following properties are equivalent:

(i) f E St (a) for all a E X.
(it) The function Of, initially defined only on X x X - AX, admits a continuous

extension 4 to X x X.
(iii) f is differentiable at each point a E X and there is a continuous function

a on X x X vanishing on AX with
f(Y)=f(x)+(Y-x)f'(x)+(Y-x)a(x,Y) (x, y E X).

PROOF. The implication (i) = (ii) is given by the double limit theorem, which
we recall: Let Xo be a dense subset of a topological space X, Y a metric space,
and f a continuous map Xo -+ Y such that for each x E X

z E Xo and z - x implies f (z) has a limit g(x) E Y.

Then the extension g : X -i Y is continuous. (More generally, the conclusion is
valid when the target space Y is a regular space, i.e., a topological space in which
every point has a fundamental system of neighborhoods consisting of closed sets.)

The implication (ii) = (i) is obvious.
Finally, if Of has a continuous extension 4), it has a unique one by the density

of X x X - Ox in X x X. Since we can write

f(Y) = f(x) + (y - x),(Df(x, Y)

= f (x) + (y - x)f'(x) + (y - x)[cI Of (x, Y) - f(x)),

it is obvious that (ii) p (iii). 0
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Definition. We shall say that f is strictly differentiable on X - notation f E
S1 (X) or even f E S' - when the conditions of Proposition 2 are satisfied.

When f E S1, f'(x) = cb(x, x) is continuous and f E C', but strict differentia-
bility is a stronger condition, justifying a specific notation. Strict differentiability
furnishes coherent limited expansions, and if

M = sup Icf(x, Y) I = sup I4(x, Y) I < Cc,
x#y x,y

we have

If(x) - f(Y)I < Mix - yI.

1.2. Granulations

The theorem of the preceding section is particularly interesting when the field K
is locally compact, namely when it is a finite extension of Qp. Let us come back
to the usual notation for this case:

KDRDP=rrR, k=RjP=F9.
If r E IK X I, every ball B<,(a) is a disjoint union of q open balls B, = B<r(aj)
B<er(a;) (with 0 = In I < 1) and any set containing q distinct points X, E B, (a)
with

Ix,-xjl>r (iAj)
contains at most one point in each B;, hence exactly one point in each B-.

Proposition. Let K be a finite extension of Qp and f : S2 K be an isometry
where S2 is some compact open subset of K. Then f maps the balls contained
in n onto balls of K.

PROOF. If B<r(a) is a ball contained in n, it is clear that

f (B<r(a)) C B<r(b) (b = f (a))
There remains to prove the surjectivity f (B<r(a)) = B<r(b). But if we take a
Partition of B<r(a) consisting of smaller disjoint balls, say BB = B<E(a,) with
e = 17r I °r, the images xi = f (a;) of chosen points a, E Bi form a system of q°
Points in B<r(f (a)) with

Ix; - xxI = lai - ajI > s (i 0 j)-
Hence the image f (B<r(a)) contains a point in each smaller ball of the partition
of f(B<,(a)) into q° balls of radius s = In I°r < r (j > 0). This shows that
the image of B<r(a) by f meets all closed balls of positive radius. Hence this
image f(B<r(a)) is dense in B<r(f(a)). Since it is compact, it is closed, and the
Proposition is established.



III

a?
,

Q
''

`s
.

'-t
i

'_
h

'C
Sobi

c.,

III

0..Cr.9

222 5. Differentiation

Definition. A granulation of an open compact set S2 C K is a finite partition of
Q into balls B<,(ai) of the same radius r > 0.

Since two balls Bt, B2 having a common point satisfy either Bt C B2 or B2 C
Bt, two granulations are always comparable: One is finer than the other. Every
ball of the coarser one is a disjoint union of some power q° of balls of the finer
one. Now observe that q° = I (mod p - 1), so that the numbers of balls in
the two granulations differ only by a multiple of p - 1. This number of balls is
well-defined modulo p - 1.

Definition. For any open compact set n in a finite extension K of Q p, we define
the type r(S2) E Z/(p - 1)Z of S2 to be the class mod(p - 1) of the number of
balls in any granulation of 0.

For example, the type of Zp is p - 1 and the type of Zp is p - 1 =_ 0.
It is obvious that the type is additive for disjoint unions:

r(S2 II S2') = r(S2) + r(c') E Z/(p - 1)Z.

Consequently, to compute the type of any open compact set Q, it is enough to
know the cardinality of any partition of Q into balls (allowing unequal radii). The
following theorem summarizes the preceding comments.

Theorem. Let S2 be an open compact subset of a finite extension K of Q p and
f an injective strictly differentiable map S2 -+ K. If f' vanishes nowhere, then
S2 and f (S2) have the same type.

PROOF. From f E S'(a) and f'(a) 0 we infer that there is a neighborhood V
(for example an open ball) of a in S2 such that any ball in V is transformed by f
into a ball of f (V), 0

Corollary. Let p > 2, and f : Zp -+ Zp be an infective strictly differentiable
map with nowhere vanishing f. Then f is not surfective. 0

1.3. Second-Order Differentiability

With the same notation as in (1.1), we define

Of(x,z)- Of(Y,z)W2f(x,Y,z}. x-y

when x, y, and z are distinct. Since we can also write

(D2f (x, Y, z) =
f (x) + f (Y) + f (z)

(x - Y)(x - z) (y - x)(Y - z) (z - x)(z - y),

this function 02 f is symmetric in x, y, and z.
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Definition. We say that a function f is twice strictly differentiable at a point
a E X - and denote this property by f E S2(a) - if 4)2f (x, y, z) tends to a
limit as (x, y, z) -> (a, a, a), x, y, and z remaining distinct.

Proposition 1. If f E S2(a), then f E S'(a).

PROOF. Let us take two pairs (x, y) and (z, t) E X x X - Ax in the vicinity of
(a, a) and estimate the difference

(PA XI Y) - 41f (z, t) = alf (x, Y) - Of (Z, Y) +'1 Of (z, Y) - Of (z, t)

= (x - z)c2f (x, Z, Y) + (Y - t)4'2f (Y, t, z)-

If we assume f E S2(a), then 4)2f will remain bounded in a neighborhood of
(a, a, a), say 14'2f I < M, when the three variables of c2 f are close enough to
a. In particular if x, y, z, and t are near enough to a, we have

I cf(x, y) - 6f (z, t)f <_ M max(tx - z1, IY - t1),

a quantity that tends to zero when (x, y) and (z, t) tend to (a, a). Since the target of
fif is a complete space, the Cauchy criterion is valid and shows that this function
cf has a limit as (x, y) -> (a, a).

As in (l.l) (Proposition 2), the double limit theorem shows that the following
two properties are equivalent:

(i) f E S2(a) for all a E X.
(ii) The function 4'2 f, initially defined only on triples with distinct entries, admits

a continuous extension to X x X x X.

We shall say that the function f is twice strictly differentiable -notation f E S2(X)

or even f E S2 - when these conditions are satisfied.

Proposition 2. If f E S2, then f' E S'.

PROOF. We have to prove that the difference quotients

d (f l)(x I =
f'(x) - F(Y)

, Y x-y
have a continuous extension across the diagonal of X x X. By assumption, there
is a continuous function ;'2 that extends 02 f to X X X x X, and we have

Of
In this expression we let z -> x. We know that Of (x, z) tends to f'(x) and

fi(x) - Of (Y, x) = (x - Y) c2(x, Y, x).
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Since the order of the variables in Of, 02f, and $2 is irrelevant, we can write

f'(x) = 4)f (x, Y) + (x - Y) - 1)2(x, x, Y),

and interchanging x and y,

f'(Y) = (AY, x) + (y - x) . cp2(Y, Y, x).

Subtracting these expressions, we obtain

f'(x) - f'(Y) = (x - YO)2(x, X, Y) + )2(x, Y, Y)],

4).f '(x, Y) = )2(x, x, Y) + 12(x, Y, Y)-

This shows that Of' admits a continuous extension to X X X: f' E S1. Moreover,

f"(a) = (f')'(a) = 1.f'(a, a) = 24;2(a, a, a).

1.4. Limited Expansions of the Second Order

It is also possible to characterize the second-order differentiability by means of
limited expansions (this will not be used later and may be skipped).

Proposition. In order for a function f to be in the class S2. it is necessary and
sufficient that it admits a limited expansion

f (X) = f (y)
+ (x - Y). a(Y) + (x - Y)2f(x, Y),

where a and P are two continuous functions.

PROOF. (a) Suppose first that f c S2 C St. In the formula

02f (x, Y, z) =
1Vf(x' z) - 0f (Y, z) (x, y, z distinct),x-y

we can let z - y. In the limit, we get

(x, Y, Y) =
Of (x, Y) - (Y, Y) _ Of (x, Y) - f'(Y)

(x Y),x-y x-y
namely

(DA X, Y) = f'(Y) + (x - Y)$2f (x, Y, Y)

Coming back to the definition of Of, we have

f(x) - f(y) = (x - Y)f'(Y) + (x - Y)2$2f(x, Y, Y)

This gives an expansion of the desired form with

a = f and i3(x, y) = $2f(x, Y, Y)
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(b) Conversely, let us postulate the existence of a limited expansion as in the
statement of the proposition; hence

(D.f(x, Y) = a(Y) + (x - Y)f3(x, Y) (x 54 A.

If x, y, and z are distinct, we have

Of (x, z) = a(z) + (x - z)P(x, z),

Of (Y' z) = a(z) + (Y - z)P(Y, z),

whence by subtraction (and division by x - y),

4'2f (x, Y, z) =
x - Z

Nx, z) +
z

Y MY, z)x-y x-y
= AAx,z)+AMY, z)

(where A + A = 1). Let us choose a point a # x and subtract the same quantity
P(x, a) = (A + µ)14(x, a) from both members:

(D2f(x, Y, Z) - Mx, a) = A[ (x, z) - fi(x, a)] + /4 (y, z) - >g(x, a)].

It is clear that

y-+ aandz -±a=IL -+ 0 and 02f (X, Y, Z) --> 6(x, a)

(observe that IAI = I as soon as max(lz - al, ly - al) < Ix - al). When x, y, and
z -+ a (while remaining distinct), we even see that 02f (x, y, z) .- '6(a, a): In
the region U: max (Ix - zI, Iy - zU < Ix - yl, in which I tl and IA! are less than
or equal to 1 we have

14'2f (x, Y, Z) - P(a, a)1 <

max (Ifi(x, z) - fi(x, a)I, Ifi(y, z) - fi(x, a)I, ftg(x, a) -,6(a, a)I )

In this region c2 f (x, y, z) --> 0(a, a) (x, y, and z distinct -a a). Since 02 f is
sYnetric in its three variables, we can estimate the difference

102f (x, Y, Z) - P(a, a) I

by first permuting the variables in order to bring them into the region in which the
preceding estimates have been made.

Caution. A function f on Zc can have a derivative f E S' without being twice
strictly differentiable, namely with f 51 S2. One can think of a function f with
vanishing derivative at each point, hence with f = 0 E S2, but that is not strictly
differentiable at a point: We have given an example of such a function, locally
constant outside the origin, in (1.1).
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1.5. Differentiability of Mahler Series

Let f be a continuous function on ZP and choose y E ZP. We can write the Mahler
expansion of the continuous function x 1--* f (x + y) as

f (x + v) _ >2 Ck(Y)() With Ck(Y) =
(Vk f)(y) -> 0.

k>O

Theorem. Let f be a continuous function on ZP. Then f is differentiable at y
precisely when

I(okf)(Y)lkl - 0 (k -> oc).

In this case f'(y) = I:k>1(-1)k-1(vk f)(y)/k.

PROOF Replacing f by its translate x H f (x + y) we see that it is enough to
prove the theorem when y = 0. Now, since co = f (0), we have

f(X) - f(O) Ck X r Ck x - 1

x k>1 x k k k- 1

If I ck/kl -* 0 (when k -* oc), the Mahler series

E(cklk) (k y 1) = g(y)
k>1

represents a continuous function of y c ZP. In particular, f'(0) exists and

_f'(0)=g()(k111)
k

k
k>1 k>1

=Conversely, if f is differentiable at the origin, the function g defined by g(O)
f'(0) and g(x) = (f (x) - f (0))/x for x # 0 is continuous on ZP and possesses a
Mahler expansion

g(X) = Yk k) (where Yk = Vkg(0) -> 0).
k>0

x

We deduce

f (x) - f (0) = xg(x) = YkX (X)kk>0

But

-

X
(k) = (x -

k) \k/
+ k (k) = (k + l) (k }

1) + k (k X)
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Hence we can write

.f (x) = .f (0) + xg(x)

=co+j:Yk\(k+1)\k+1/+k )k>0

= CO + E k(Yk-1 + Yk)

k
.

G)k>1

By uniqueness of the Mahler coefficients of f, we deduce ck = k(yk + Yk-1)
(k > 1) and in particular ck/k = yk + yk-t -+ 0 (k -* oo).

Comment. For any integer k > 1 we have Ikl = p-'(k) > 1/k, or equivalently,
1/IkI <k.Hence lck/kI <klck1,andthecondition klckI - 0implies lck/kI - 0.
This stronger condition will imply strict differentiability of the Mahler series.

Let us first give a statement concerning Mahler series of Lipschitz functions.

Definition. A function f : X -+ K (as in (1.1)) is Lipschitz when there exists
a constant M with

If(x) - f(y)I < MIX - yl (x, y E X).

Since the smallest bound M is

II Of 11 = = sup IOf (x, A,

Lipschitz functions are also characterized by 14)f I bounded. We shall denote by
Lip(Zp) the subspace of C(Zp) consisting of Lipschitz functions. By definition,

S'(Zp) C Lip(Zp) C C(Zp).

Proposition. A function f = F-k>O Ck () E C(Zp) is Lipschitz precisely when
{klckl}k>o is bounded, namely

I4)f I bounded the sequence klckI is bounded in R>0.

The proof of this proposition is based on the following lemma.

Lemma. Fork > 1 and pi < k < pJ+1, we have

`k)-(k)I p'Ix-yl (x,yEZp)

Comment. More precisely, when k is in the quoted interval, its expansion in base
P has the form

kj k0)
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(j+1 digits), and we call k_ the integer ko + k l p + + ki _ 1 pi -1 < pi (at most
j digits). Then

k-k_=kip', Ik-k_1=p-3,

and the statement of the lemma can be written uniformly for all integers k:

(xk) - (kY)
I
< Ik - k_ 1-1 Ix - yl.

This lemma shows that Ix - yI < 1 pi I = p-i implies I G) - CDI < 1. For
example, if y = x + ph for some h > j,

/x+ phl h
(;) - I k II<1 (fork<p).

This is the ph-periodicity of the binomial functions (IV 1.3)

X F-> (k) mod p (k < ph)

already exploited in the proof of the Mahler theorem.

PROOF OF THE LEMMA. The formal identity (1 + T)x+y = (1 + T )x (1 + T)`' leads
to the well-known relation

Cx k y/ ,+j=k Ct / (Yj)

(first for positive integers x and y but also by density and continuity for p-adic
integers x and y). Write then

(x)k= Cx k + y/ i+ k

(x_Y(Y/

)
(Y)

1 i k Cx i y/ Ck y i

Thus

Ck/ - (k) 1<r<k

(x-Y)(
i y )=11:k x y Cx y 1 1/ Ck y 1/

and it only remains to estimate

1Cx-y-/I 1 = 1<max -
1<i<k [ i- 1 1)(k

y

- i 1<i<k Ii I minl<i<k Il I
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It is clear that for pi < k < pj+t, the minimum in question is attained for i = pj
with li I = IP' I = p-J. The lemma follows.

Remark. A slightly less precise inequality, namely

I (k kX) - (Y)

would be sufficient for our study of S' functions.

PROOF OF THE PROPOSITION. Let us write the difference quotients

f(x+h) f(x) 1

W
+h x\f(x+h, x)= h =hEck k I-CkI

k>1

*7c (()() - ())
_ Eck x h

k`ho<i<k ()(j)
for h # 0. We observe that

ck x h

hk

uniformly in i (and fixed h # 0). The double family

ck x h ck x h-1
h i) k-i k-i i k-i - 1

is thus summable in any order, and in particular, it is equal to a double series over
the indices i > 0 and j = k - i - 1 > 0. Replacing h by y + 1, we obtain

Of(x+y+1, x)= (X) ((y#-1).
i,j>o j + I j

Firstly, the ultrametric inequality gives

IOf(x+y+1,x)I < sup I ci+i+t

i. j>_O j + I

and hence

,

IIOfII = sup Icf(x+y+1,x)I < sup
x,y#-I i, j>o
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In fact, the preceding expansion is a false Mahler series in y because it is not
valid for all values of y E Z. Nevertheless, it holds for all (x, y) E N x N, and
this proves that the coefficients are given by the finite differences on the integers.
Hence secondly,

ci+j+1

j+l
and

Altogether, we have

sup
i, j>o

< sup Ic'fI = 11 Of II (< 00)
x,Y96-1

ci+j+1
< II f II -j + Isup

i,j>o

ci+j+1

j+1 =II'f11 (<cc).

In particular, considering only the subset of indices (i, j) for which i + j + 1=n,

sup(Icn1, Icn/2l, ..., Icn/nl) < 11Of11-

On the left we have

IcnI sup 1/11I = IcnI - ps
(ps < n < ps+l).

,<n

Call Kn the highest power of p that is less than or equal to n. The preceding
considerations prove that

II Of II = sup
i,j>o

ci+j+1

j+1 = Sup KnIcnl.
n>1

Since K,, < n < pKn, the proposition follows.

Corollary 1. Let f c Lip (Z p) and f = F c,, (n) its Mahler expansion. Then

II II does not define a norm on the vector space Lip (Zp) because
4>f vanishes for constant functions: It is only a seminorm. In order to have a norm,
we take

Of 111 = sup (if (0)1' 11 Of 11).

Since f (0) = co, we define in an ad hoc way the value Ko = 1 in order to have

II f II l =SUP Kn I cn l-
n>O
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Corollary 2. Let f E Lip (Zp) and Sf its indefinite sum. Then Sf E Lip (Zp)
and

IlfIII <_ IISf III <pllflll-

PROOF. We have

IIf111 =SUpK,, Ianl,
n>O

IISf1ISUpK.Ian-1I
n>1

by Corollary 2 in (IV 3.5). Now observe that

Kn-1 Kn PKn-1,

whence the assertion.

Corollary 3. The map

f c" l
n>0 n/ Kn

Cn)n>0

is an isomorphism between the normed spaces (Lip (Zp), II -III) and U o. The
functions

l and Kn \x 1 (n > 1)
n

correspond to the "canonical basis" of (°O.

Here, Kn (highest power of p that is less than or equal to n) is considered as an
element of Zp: Its absolute value is lKn I = 1 /Kn E R>o.

PROOF. Any f E C(Zp) is given by a Mahler series

f = ECn, n) (ICJ - 0).
n>o

When f is Lipschitz. we write this series

f Kn E Lip (Zp )
n>0 Kn n

with

or. l
SUP KnlcnI = SUP icn/Knl;Ilflll = SUP(If(o)l,

IItf11)C= M
n>O

hence the result.
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1.6. Strict Differentiability of Mahler Series

Theorem. For a continuous function f = Lk>o Ck() E C(Zp), we have

kIckI -,- 0 (k -> oo) f c S1(Zp).

PROOF We have

Of (x, Y) _ Ck ((k) - ())/(x_Y).
k>i

and thanks to the lemma (in its weak form),

sup
X. Y ck((k) - ())/(x - Y) < klckl-

If kICkI --* 0, Of is a continuous function as a sum of a uniformly convergent
series with continuous terms: The polynomial (k) - (iv) in x and y vanishes identi-
cally on the diagonal x = y and is divisible by x - y, whence ((k) - (k)) /(x -Y)
is also a polynomial function.

It is possible to prove conversely

f E S1(Zp) kICkl - 0 (k - 00-

Corollary. Let f c S1(Zp) and Sf its indefinite sum. Then Sf E S1(Zp).

With the preceding results, it is easy to construct examples of continuous func-
tions on Zp exhibiting various behaviors (as far as differentiability is concerned).

Example 1. Let the Mahler coefficients Ck of a continuous function f be

pJ ifk = pi,
Ck =

0 ifk is not a powerofp,

so that

Ick/kl takes alternatively values 0 and 1.

Hence Ick/kI does not tend to 0, thereby proving that f is not differentiable at the

origin. But Of is bounded, since kIckI (taking values 0 and 1 only) is bounded.

Example 2. As in the preceding example. but with

Cc =
if k = pJ,
itkisnotapower ofp.
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2. Restricted Formal Power Series 233

Then

Jck/kl takes alternatively values 0 and Jp3J --> 0,

so that f is differentiable at the origin. Here Ick/kl = kick) and f E St.

2. Restricted Formal Power Series

2.1. A Completion of the Polynomial Algebra

Recall that in this chapter K denotes a complete extension of Q,,. A formal power
series with coefficients in a subring R of the field K is a sequence (an)n>o of
elements of R. However, when we use the product

(an)n>o - (bn)n>o = (cn)n>o with cn = E aibj (n > 0)
i+j=n

we prefer the series representation f (X) = _Yn>o an Xn instead of (an)n>o. The set
of formal power series is a ring and an R-algebra denoted by R[[X]]. Recall that
the formal power series ring with integral coefficients has already been considered
in (I.4.8); we shall come back to a more systematic study of formal power series
rings in (VI. 1). The particular formal power series having coefficients an -+ 0 are
called restricted formal power series, or more simply restricted (power) series.
The restricted formal power series with coefficients in K form a vector subspace
of K[[X]] denoted by K{X} and isomorphic to the Banach space co(K) (IV.4.1).
This subspace is a completion of the polynomial space for the Gauss norm - sup
norm on the coefficients-

K[X] C K{X} C K[[X]].

We still call Gauss norm the extension

IIf(X)II sup IanI = max JanI (f(X) _ a,Xn E K{X}).
n>o n>o n>o

Lemma. For two restricted power series f and g, we have

IIfg1I < IIflIlISII-

PROOF. Let f (X) = Lnao a,X", g(X) = Y-n,o bnX" be two polynomials. Their
Product h = fg is the polynomial h(X) = I:n>o CnX n having coefficients cn =
Z+j_n aibj. Since IcnI < maxi+,=n Jai I Jbj I < 11f IIIIg1I,

IIfgII = max IcnI Ilfiiiigll (f g E K[X]).

Hence multiplication is (uniformly) continuous in K [XI and extends continuously
to the completion K {X} with the same inequality.
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234 5. Differentiation

Hence K{X } is a ring and a Banach algebra. This is the Tate algebra in one
variable over K.

As usual, we denote by A the maximal subring of K, M the maximal ideal of
A, and k = AIM the residue field of K. The unit ball A{X} C K{X} is a subring,
since

I1 fl1 <1, Ilgll<l=llfgll<-1.
From this it follows that the reduction (IV.4.3) of the Banach space K{X}, the
quotient of its closed unit ball by its open unit ball, is the polynomial ring over the
residue field

A{X}/M{X} =k[X).

Let lxI < 1 (x in K or K': complete extension of K) and f = n,0 a,Xn a re-
strictedformal power series. Then l anxn I - 0 (n oo), so that f (x) = Yn>0 a,Xn
converges and f defines a function on the unit ball of K (or K')

f:A--). K:xr>Eanxn.
n>O

The sup norm of this function satisfies

11f IICb(A,K) = SUP I f(x)I < SUP IanI = 11f IIK{X}-
A n>0

In particular, the series >n,0 anx'1 converges uniformly on the unit ball A, and f
defines a continuous function on this ball. The linear map

K{X} -' Cb(A; K) : >anXn H f
n>O

is a contracting map of Banach spaces.

Example. Let K = Qp and consider the polynomial (restricted formal power
series) X - X P of norm 1 in Q p { X }. Since x P - x (mod p) for all x E Z P, we

have I x P - x I < I P I = 1 / p when x E ZP and the norm of the continuous function
xi-mix' -x onZPisl/p < 1.

Theorem. If the residue field k of K is infinite, the canonical embedding
K{X} -* Cb(A; K) is isometric:

SUP If W1 = II f II K{x}
XEA

PROOF. If f = 0, then ]If II = 0 and there is nothing to prove. Otherwise, we can
replace f by f/an where Ian I = Il f II. Thus we may assume that Il f II = 1. In this
case the image of f E A{X} in the quotient is a nonzero polynomial

f E A{X}/M{X} = k[X},
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and since the residue field k is infinite, we can find a E k" with T(a) 0 0. Taking
any a c A" C K" with residue class a in k", we have

Ial=landif(a)I=1,

whence sup,z,<t If (x)I = maxil<t I f(x)I = maxlXI=t If (x)I =I= IIfII-

The preceding proof shows more: For f E K{X }, we have supA I f I = maXA I f I
in spite of the fact that the unit ball A is generally not compact. Moreover, the
maximum of I f (x) I (IxI < 1) is attained at a point x with IxI = 1.

Recall that we denote by AP the maximal subring of Cp (closed unit ball) and
by MP the maximal ideal of Ap (open unit ball).

Corollary. We have

sup Ian I = sup IE anxn I = max lE anxn l ,
n>0 XEAP XEAo

and this maximum is attained on AP = AP - NIP, which is the unit sphere
IxI = I in Cp. The canonical embedding

K{X} -4 Cb(AP;Cp)

is isometric.

2.2. Numerical Evaluation of Products

Let f(X) = >n>O anXn and g(X) = F-n,0 bnX1 be two restricted power series.
Their formal product is the power series

h(X) = EcnXn,
n>0

where

c, = aibn_i (n > 0).
0:5i-<n

As we have seen in the previous section, it is again a restricted power series.

Theorem. Let f (X), g(X) E K{X} be two restrictedpower series and let h(X)
be their formal product. Then h(X) E K{X }, and the evaluation of this formal
product can be made according to the usual product

h(x) = f(x)g(x) (IxI < 1).

?ROOF. Replacing anxn by an and similarly bnxn by bn, we see that it is suffi-
cient to prove the statement for x = 1. With cn = >o<i<n aibn_; we have to
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prove
if E,>0 an and In>a bn converge, then 1:n>0 cn converges and

I:cn=Ean-Ebn.

n>O n>0 n>O

Because multiplication is continuous,

E ai - b j - ai - b j -+ 0 (N -* oc).
i?0 j>0 i<N j<N

Let us show now that

Ea,-I:b1-Eck-j0.
i<N j<N k<N

Choose NE large enough to ensure

Jai I < E, Ibi I < E (i > NE).

Now the difference

Eai-1: bj-1:
ck

i<N j<N k<N

is the sum of the terms ai b j corresponding to pairs (i, j) in the square 0 < i, j < N
above the diagonal, namely with i + j > N. The contribution of these terms is
less than or equal to EC if C is an upper bound for the coefficients and N > 2NF
because at least one index i or j will be greater than or equal to N8. This proves
the theorem.

Observe that the classical result concerning absolutely convergent series cannot
be applied here, since we only assume Ian I --> 0 and Ibn I -* 0 (but F Jan I and/or
F Ibn I may diverge). On the other hand, due to the ultrametric inequality, it is now
easier to estimate tails of sums!

Corollary. The canonical map K{X} Cb(A; K) is a norm-decreasing ho-
momorphism of K-algebras.

This isomorphism is isometric when the residue field k of K is infinite (and also
when I K X I is dense in R>0, as we shall see later (VI. 1.4)). The identification of a
restricted formal power series f (X) with the function f that it defines on the unit
ball A will often be made.

2.3. Equicontinuity of Restricted Formal Power Series

Let us still identify K{X} with a normed subspace of Cb(Ap;C,,). With A =
B<t(K) as usual,

supIf(x)I -< IIfIIK{x} sup Ia,I = sup I f(x)I (f = a, X" E K{X}).
xEA n>O xEA8
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proposition 1. The unit ball in K{X} is uniformly equicontinuous. More pre-
cisely,K{X} C Lip (A) and fi f II < 11f111 < II f If for f E K{X}. In particular

If (x + h) - f(x)I < Ih111 f11 if lxl < I and IhI < 1.

PROOF. Write f = F anX", so that

f(x) - f(Y) =
an(xn

- Yn) _ (x - Y)E an(xn-1 + + yn-1).

n>0 n>1

If IxI < 1 and IYI < 1, the ultrametric inequality gives Ixn-1 + + yn-11
and the result follows.

In a similar vein, let us derive the following inequalities.

Proposition 2. If f E K { X), then

If(x+Y)-f(x)-f(Y)+f(o)I < 11f11 Ixyf (IxI < 1, IYI <- 1)-

If moreover f is odd, then

If(x+Y)-f(x)-f(Y)I <_IIfII-Ixy(x+Y)I (IxI<1 IYI-1).

PROOF. With the same notation as before,

f (x + Y) - f (X) - f (y) + f (o) _ an ((x + y)n - xn - yn )),
n>2

whence the result, since each term (x + y)n - xn - y' is divisible by xy. When f
is odd,

f (x + y) - f (x) - f (Y) _ an ((x + Y)n - xn - yn)).
nodd>0

Only the terms with n odd and greater than or equal to 3 remain in the sum, and
for these

(x + y)n - xn - Yn = xy(x + Y)pn(x)

for some integral polynomials pn E Z[X]. Hence lip, II < 1.

Remark. Although it is uniformly equicontinuous, the unit ball of C p {X } is not
precompact in Cb(Ap; Cp): The Ascoli theorem is not applicable, since Ap is not
locally compact. For example, the infinite sequence (Xn )n>0 satisfies

IIX'-X'11=1 (nom)
and hence contains no convergent subsequence. However, if we consider the re-
striction of these continuous functions to the (compact) unit ball R of a finite
extension K of Qp, the preceding sequence admits a convergent subsequence,
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namely (Xq'")m>o, where q is the cardinality of the residue field of K. In fact, the
subsequence (XP' ) converges uniformly on every unit ball B<1(0; K), provided
that K has finite residue degree over Qp (111.4.4).

2.4. Differentiability of Power Series

The formal derivation operator f i-* f is continuous and contracting on K{X}
simply since I nan I < Ian I - 0 and

IIf'II = sup Inanl < sup Ia.I = IIfII-

We are interested in strict differentiability; hence we look at the differential
quotients

Of(X,Y)=f(X)-f(Y) (x0Y)x-y
When f E K{X}, Proposition I of (2.3) shows that

cIf(X, Y) = Ean E Xn-1-iyi

n>1 0<i<n-1

is a formal power series in two variables and coefficients tending to zero. Thus
Of has a continuous extension to A x A that is a sum of a uniformly convergent
power series (in two variables). The value on the diagonal is

4f(X, X) = 1: nanXn-1.
n>1

This proves the following result.

Theorem 1. Let f E K { X }. Then f defines a strictly differentiable function on
the unit ball A of K: f E S'(A). The derivative off is given by the restricted
formal power series

f' = Of IA = 1: nanXn-1 E K{X}.
n>1

It is easy to give more precise estimates for the convergence:

Of (x, Y) - E nan n-1 = E an (xn - Yn)/(x - y) - E nan n-1

n>1 n>1 n>1

an(Xn-1 + - - - + vn-1 - 0
n>1

when (x, y) -- l;). In fact,

(xn-1 + ... + yn-r - (x' y.r - gn-1)

i+j=n-I
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and by (2.3),

IxiY.r
- n-11 = Ixly' -` '1

max(Ix'lly' - 1, Ix`

(x,y,4 E A).

We have obtained

I)f(x, y) - 11111- max(ly - se I, Ix - 1)

Theorem 2. A restricted formal power series f = Y a, X' defines a twice
strictly differentiable function on the unit ball A of K: f E S2(A).

PROOF As we have seen in the proof of the preceding theorem,

cf(x,y)=>an
n>1 i+j=n-1

and hence, for distinct x, y, z,

4)2f (X, y, z) =
Of (x, z) - d1f (y, z)

x-y

E
xi - Yi=ran ! zj

n?2 i+j=n-1 X - y

Ean E xkytz"n2? k+1-mm=n-2

Since Ian I -). 0, this series converges uniformly on A x A x A and represents a
continuous extension of (D2 f.

Generalization. Let us just indicate here that differentiability of restricted power
series is not limited to order two. In fact, one can define higher-order difference
quotients inductively by

4)k.f(x0, X1, Xk) :=
4'k-1f(XO,X2, ...,xk) - )k-If (X1,X2, ...,Xk)

- .. ,
XO - X1

(x0 ik x1). The expressions ck f are symmetric in their k + 1 variables, and an
easy computation shows that

1(x;)
(Dk.f(XO,x1....,Xk) _ ire

i iJ
Taking f (x) = xN we obtain

10 1 lkkl(xo,X1,...,Xk) X1 Xl ... xk
+ik=N-k
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a sum of all homogeneous monomials of total degree N - k. In this case (Dk f has
an obvious extension to the diagonal (all x, = x):

N-k monomials of degree N - kk f (x, x, ... , x) = x # ink + l variables

()xN_k
= (xN)(k)k k!

The equality (Dk f (x, x, ... , x) = f (k)(x)/k! remains true by linearity when f is
a polynomial or even a restricted series. These functions are of class Sk on A.

2.5. Vector- Valued Restricted Series

Let E be an ultrametric Banach space over K. A restricted vector series (with
coefficients in E) is a formal power series

J (X) = Y' a.Xn,
n>O

where an c E, Ilan II --+ 0. We can still define the Gauss norm of such a restricted
series f by

IIfII sup Ilanll-
n>O

Hence the normed space of restricted vector series (with coefficients in E) is a
Banach space isometric to c0(E). If the indeterminate X is replaced by a variable
x E A C K, the restricted series F_n>OanX't gives rise to a continuous vector-
valued function f : A - E, which we can write as f (x) _ >n>O Xnan (not that
it matters, but we may prefer to write scalar multiplications on the left), for which

sup II f (x) II sup Ilan II = II f II -
1X1<1 n>0

That is, the linear map co(E) -* Cb(A. E) is continuous and contracting.

Proposition. When the residue field k of K is infinite, the canonical map
co(E) -+ Cb(A, E) is an isometry.

PROOF Assume If II = c > 0 and look at the A-module B«(E): Its quotient
E = B<(E)/B« (E) is a vector space over k = AIM. The restricted series f
with coefficients in B«(E) has a polynomial image f = EanXn having at least
one nonzero coefficient, since II f II = c. We can choose a k-linear form t on

E such that (p(an) # 0 for such a coefficient. The scalar polynomial (p o f =
F an X' = 06;W n is not identically zero and there is an element a E k" such
that So o T(a) 0. A fortiori f (a) # 0 and II f (a) II = c for every a E A, a in the
coset a (mod M). N
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3. The Mean Value Theorem

3.1. The p-adic Valuation of a Factorial

Since the formula for the p-adic order of n ! will play an essential role, we review
it.

Lemma. Let n > 1 be an integer and let Sp(n) be the sum of the digits of n in
base p. Then the p-adic order of n! is given by

ordp(n!) = n -
Sp(n)

p - l

PROOF: We have to compute

ordp(n!) _ ordp(k).
1<k<n

Let us fix an integer k < n say with order ord p(k) = v and write its expansion in
base p:

k (v <f, k #0).
Then

k-1=(p-1)+...+(p-1)p 1+(kv-1)p°+...+kepe,
and hence

Sp(k - 1) = v(p - 1) + Sp(k) - 1.

Equivalently,

v = ordp(k) = 1 (1 + Sp(k - 1) - Sp(k)).p-1
Summing over all values of k < n we obtain a telescoping sum

ordp(n!) = 1 57 (1 + Sp(k - 1) - Sp(k)) = 1 (n - Sp(n)).

p11<k<n 1

ALTERNATIVE PROOF. A more traditional way of obtaining the same formula goes
as follows. The number of integers k with fixed v = ordp(k) that appear in the
Product n! is equal to the number of multiples of p° that are not multiples of p°+l
(and are less than or equal to n), namely

[pnv]

- Lpn I
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where [x] denotes the integral part of the real number x. Hence

ordp(n!)vn-[
nt]P P

Let us write n in base

Hence

= LPJ+[ ]+[n ]+... = E

p as n = no + nip + n2p2 + - - - (a finite sum). Then

n
= nt + n2p + n3p2 + ...

P

n
i = n2 + nap + n4p2 + ...
P

n=no+p I p],

LPJ =nt +p LP2

[pj] = nj + p [p],
+1

Summing all these, we obtain

n + ordp(n!) = Sp(n) + p ordp(n!),

n - Sp(n) = (p - 1) ordp(n!)

and the result follows. U

3.2. First Form of the Theorem

As already recalled in (2.1) the field K is assumed to be a complete extension of

Q,, (e.g., Cp or S2p). Even for polynomial functions f, the following form of the
mean value theorem,

If(h) - f(O)I IhI . Ilf'II

does not hold without restriction. Recall that for polynomials f (or more generally
for restricted power series), we use the sup norm on the coefficients (Gauss norm).
If the residue field of K is infinite, this norm coincides with the sup norm of If I
on the unit ball of K (2.1).
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For example, if f(t) = tP, we have f'(t)= ptP-1; hence 11f'll = IPI = I/p < 1.
And with h = 1,

1 = If(1) - f(0)I > IhI Ilf'II = I/p-

However, we show below that there is a universal bound (depending on the prime
p but not on the restricted series f) such that the mean value theorem holds for
IhI < rp. The preceding example can be used to discover the limitation in size of
the increment h. In order to have

If(h) - f(0)I < IhI - Ilf'II

in this particular case, we must have

IhIP < IhIIIf'11 = IhIIPI,

whence the restriction IhI < IpI'1(P-1).
Let us recall that we have introduced a special notation (11.4.4) for this absolute

value:

rp := IPI1/cP-I)

, IPI < rp < 1.

It will play an important part from now on. Observe that

r2 = Z , r p > a (p odd prime),

and also rp / I when the prime p increases (whereas I p I = I l p \ 0).

Theorem. Let f (X) E K {X } be a restricted power series and also denote by
f the corresponding function t H f (t) = Fn>o ant" on the unit ball A of K.
Then

If(t+h)- f(t)I < IhI IIf'II

for all t, h E K with ItI < 1 and IhI < rp = IPIIAp-1)

FIRST PROOF. (1) Let us establish first the result for a polynomial f. The Taylor
formula permits us to compute the difference f (t + h) - f (t) as

f(t +h) - f(t) = Ehk Dkf(t)
= h E h

kI
. Dk-1f'(t),

k>I k>1 k!

So that

ItI < 1 = If (t + h) - f(t)I < Ihlsup
k>1

Since

hk-1

k! IIIDk-1f'II.

IIDf11 = 11 f'11 = sup Ikak1 <sup lakI = IIf1I,
k>I k>O
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we see that II D II < 1, II Dk II < 1 (k > 1). In particular, II Dk-t
f' II < II f' II and

II

Dk-t f' II < sup I an I
k-oo 0 (= O for k > deg f).

n>k

The result will be proved if we can show that Ihk-1/k!I < 1 (for all k > 1). This
condition for k = p requires IhIP-1 < Ipl, i.e., IhI < rP. When it is satisfied, we
have

Ihlk-1 < IpI(k-1)1(P-) < Ik!I,

simply since

ordp(k!) =
k - SP(k) < k - 1

p-1 p-1

(2) Consider now the general case of a restricted series f (t) = >k>O aktk.

Without loss of generality we may assume I f (t + h) - f (t)I 0, hence f not
constant. Consider the polynomials fn(t) = >k<n aktk. We have

llf - fall=suplakl -> 0
k>n

as well as

II fn II = sup lad = II f II ,
k<n

IIf, I = sup Ilkakll = Ilf'II
k<n

for all large n. Take t and h as in the first part. The convergence

fn(t+h)- fn(t) -* f(t+h)- f(t)96 0

implies I fn(t + h) - fn(t)I = I f (t + h) - f (t)I for all large n. Hence, using such
a large value of the integer n, and using the result for polynomials, we have

If (t + h) - f(t)I = I fn(t + h) - fn(t)I <- IhI Ilf,,II = IhI - 11 f'11.

SECOND PROOF. Let us observe that

Dk(Xm) m)
X'n_ke

k t k

so that the operator Dk/k! transforms polynomials with integer coefficients into

polynomials with integer coefficients: IIDk/k!II < 1, IIDkII < Ik!I -> 0. Better
still: If g is any restricted series, it is obvious that II Dk(g)/k! II -* 0, since the first
k coefficients of g are destroyed by the operator Dk (while the other coefficients
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of g are multiplied by integers under the effect of the operator Dk/k!). Coming
back to the expression

f(t + h) - f(t) = h
hk-1 Dk-1

fl(t)E
k>1 k (k - 1)!

we see that the mean value theorem will be proved if we show I hk-' /kI < 1. For
k = p this condition requires Ihl < 1p111(P-1) = rp as before. When it is satisfied,
take an integer k, put v = ordp(k), and write k = p"m > p°. We have

hk-1

k

The exponent is

rk-1
n

<
rPP'-1

. IPI = IPI1`
1P°I

P°-1 -v=(I+p+---+p°-1)-v>O,p - I

and the proof is completed.

Remark. Let E be an ultrametric Banach space over K and

f(X) = E akXk
k>O

a restricted power series with coefficients in E. Then we can view f as the vector-
valued function

tH37, tkak,A -*E
k>O

on the unit ball A of K (2.5). Then the mean value theorem immediately furnishes

Ilf(t+h)- f(t)II Ihl' Ilf'II

for all t, h E K such that Itl < I and Ih l < rp = I P11/(P-1). In fact, simply replace
in the above proof lak I by Ilak II, if (t) l by II f (t) II, etc. whenever necessary.

3.3. Application to Classical Estimates
Let us apply the mean value theorem (3.2) to the polynomials f(t) = (1 + t)P'
(n ? 1). Since f'(t) = p" (I + t)P"-1, we have 11 f'II = IP"I and hence

I(1 + t)' - I I < Itl - Ip"I for Itl < rp.

Recall that the fundamental inequality (111.4.3) in its second form gives

I(1 +t)P' - II < Itl - (max(Itl, IPI))",
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hence the same inequality only when Iti < IpI. Since

1/P=IPI<rp<I
with strict inequalities for all p > 3, the mean value estimate is sharper for odd
primes (in the indicated region).

I(1+x)P-1I

An application of the mean value theorem

With the Newton polygon method (VI.1.6) we shall be able to compute more
explicitly these absolute values I(1 + t)P' - 11. Let us simply observe now that
this absolute value vanishes when (l + t)P° = 1, namely when 1 + t E lip- - The
smallest ItI for which this occurs is 1 + t E µp, and as we have seen in (H.4.4),
this implies It( = IpIll(P-1) = rP

Let us give another application to binomial coefficients. Define successively two
polynomials g and f (having integral coefficients) by

(1 + X)P = 1 + p g(X) + XP,

f (t) = (1 + tg(X) + XP)",

so that

f(O) =(l+X")",
f(P)=(1+X)P"-

Here we consider f : QP - E, where E C QP[X] denotes the finite-dimensional
subspace consisting of polynomials of degree less than or equal to np. The mean
value theorem (vector form) leads to an estimate of the norm of

J/
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Since II f' II < In I, we have II f (P) - f (0) II < I n p I and in particular, looking at the
coefficient of X pk

(pkpn) ,,

\k/
(mod npZp).

On the other hand, when j is not divisible by p, the coefficient of Xi satisfies

np

j /
= 0 (mod npZp).

This last congruence was obvious a priori, since

(np
\

Pl P \ - 11) E fPZP.

3.4. Second Form of the Theorem

Let us give a closely related form of the mean value theorem for series converging
in M C A C K. Assume that f (t) = >k>0 aktk converges whenever It I < 1.
More precisely, let us assume that the coefficients ak E K satisfy

I ak I rk -. 0 for all positive real numbers r < 1.

The variable t itself can be taken in the field K or any extension of this field, e.g.,
in Cp. When T E MP we can consider the restricted series ft E C p{X } defined by

f-1 (X) = 57, aktkXk.
k>O

If It I < 1 we have f (t) = ft (t /r) as soon as the element r E MP is chosen such
that It 1 < I r I < 1. Obviously;

f(t) = ft(t /r) and sup I f'(t )I =Ilfill
T Ill<_ITI Irl

The mean value theorem for the restricted series f, now gives

h

Equivalently,

If(t+h)-f(t)I <Ihl sup If'(t)l.
ItI<IT I

All this is valid whenever I h/t I < rp for some r E Mp. We can find such a r E Mp
exactly when IhI < rp. Let us summarize this result in the case K = Cp, using
the notation

Il0<1 := sup Ig(t)I (< oc).
ItI<l
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Theorem. Let f E Cp [[X]] be a formal power series that converges in the open
unit ball Mp- Assume that II f' II <1 < oo. Then we have

I f(t + h) - f(t)I < IhI - IIf'II<1

for all tENIP and lhI<rp. a

In this case, the mean value theorem holds in Mp for increments h E Cp satisfy-
ing I h I < rp (notice the strict inequality). Examples of this situation are given by
power series f E Zp[[X]] (or more generally in A[[X]]): II f'II<1 <- 1. Take for
instance f = F-k10 Xk = 1/(I - X). For all It I < I we have if (t + h) - f (t)1 =
IhI/I(1- t)(l - t - h)I = IhI (t, h E Mp), simply since I I - tI = 11 - t -hi =1
the strongest wins! Here I f'(t) l = 1/11 - t12 = 1 and Il f' II <1 = 1.

3.5. A Fixed-Point Theorem

Theorem. Let K be a finite extension of Qp, R = B<1(K) its closed unit ball,
and f E K IT) a restricted formal power series with II f II < I. Assume

Ilf'11 < I and inRf If(x)-xI < rp = IPII/(p-1).

Then f has a_fixed point in R.

PxooF. The function f defines a continuous map from the unit ball R of K into
itself. Since I K " 1 is discrete in R>o (we are assuming that the field K is a finite
extension of Qp), there is a point xo E R with I f (xo) -xo 1 < r p. Define inductively
xn+l = f (xn) for n > 0. By the mean value theorem,

lxn+1 - xn l = If (xn) - f (xn-1)l

<Ixn-xn-11'11/'11 <Ixn-xn-11,

and we see by induction that Ixn+1 - xnI < rp (n > 0). If xn = x,,_1 for one
positive n, we are done. Otherwise, Ixn - xn-I 196 0 for all positive integers, and
as before,

Ixn+1 - xnI = If(xn)- f(xn-1)I

lxn - xn-1I . Ilf'11 < Ixn - xn-1 I < rp.

The strictly decreasing sequence Ixn+1 - xnI in the discrete subgroup I K X 1 C R,o

has to tend to 0: (xn) is a Cauchy sequence. The limit of this sequence is a fixed

point of f in R. 0

Comment. To show that the hypotheses are necessary, let us consider the function
f (T) = T p -f- 1 E Qp[T] C Qp{T}. We have

f'(T) = pTp-1, IIf'II =
n

< rp < 1.
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This function f has no fixed point in the unit ball Z p of Qp. In fact,

f (x) - x = XP - x + 1 - 1 (mod p) (x E ZP)

so that infxEz, If (x) - xI = 1, and the second assumption of the theorem is not
satisfied. (However, x P - x + I = 0 certainly has a root in a suitable finite extension
of QP, and f has a fixed point in the unit ball of such an extension.)

3.6. Second-Order Estimates

Let us keep the notation of the general mean value theorem (3.2).

Theorem. We have

If(t + h) - f(t) - f'(t)hI < Ih2f2I - Ilf"II

whenever t, h E K satisfy ItI < 1 and

Ih1 < IVI if p = 2, I hI <
IP11'(P-2) if p is an odd prime.

PRooF. As in (3.2), it is enough to prove this theorem for polynomials. Let us write
the Taylor series of f at the point t:

f(t + h) - f(t) - f'(t)h = > h ' . Dkf(t)fk!
k>2

k= h2

E
h!2 Dk_2 frr(t)

k>2 k!

= h2
hk-2

Dk-2 frr

t
k>2
E k(k - 1) (k - 2)!( )

As in the proof of the mean value theorem (3.2) we have

k 2 ri

11 frill (k>2), and
2)!-

(1) For p # 2 it only remains to prove

hk-2

Dk-2 f"
(k-2)!

< I (k > 2).

-+ 0 (k -* oo).

For k = p this requires Ihp-21 < IpI, which is the condition given in the theorem.
When it is satisfied, if v = ordp(k) > 1, we have k > p" and 1k - I I = 1, whence

hk-2

k(k - 1)

IhIP -2
< IpleIpl
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with an exponent

p°-2 pv-1e= -v> -v>0p-2 p - I

(the linear fractional transformation x H p"-x increases when x < p - verti-p-x
cal asymptote - since for x = 0 it takes a value p°-1 > I above the horizontal
asymptote). In the case v = ordp(k - 1) > 1, we have k > p° + 1, and the
preceding estimates are satisfied. Finally, when ordp(k - 1) = ordp(k) = 0, we
have 1 k(k - 1) 1 = 1, and the proof is complete.

(2) In the case p = 2, we take a factor h2/2 in front of the above Taylor

expansion, and it only remains to prove

I

hk-2

k(k -
1)/2I <1 (k>2)

for IhI < Ili. For k = 4 this already requires Ih2/2I < 1, which furnishes
the restriction IhI < ICI. Conversely, assume that this condition is satisfied. For
v = ord2(k) > 1,

k > 2' and Ik(k - 1)/21 = 121v-1

whence

hk-2

k(k - 1)/2

2 2IhI < 1212"-'-1-(v-1) = 121e.
12Iv-1

Since we are assuming v > 1, the exponent e is equal to 2°-1 - v > 0. One can
treat the case v = ord2(k - 1) > 1 in a similar way.

Comment. The condition on the absolute value of the increment Ih I is less restric-
tive for p = 2, but the inequality is also weaker in this case, since the denominator
2 in Ih2/21 is important (it is irrelevant for odd primes p).

Corollary. Let K be a finite extension of Q p, R its ring of integers with maximal
ideal P. For n c N (or even n E Zp), we have

(1 + x)" - 1 + nx (mod pnxR)

as soon as x E 2pR.

PROOF. We take f (T) = (1 + T)", so that

f"(T) = n(n - 1)(1 + T)n-2 (n > 2),

IIf"II = In(n-1)1 (n>0).
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For IxI < IPI'/(p-z) (resp. < ICI if p = 2) we have

z

I(1 +x)" - 1 -nxl < 12 Ill"II < Inxl 12 l

Since Ix/2I < IpI when x E 2pR, the preceding inequality furnishes the expected
statement.

This corollary gives the fourth form of the fundamental inequality, mentioned
in (111.4.3).

4. The Exponential and Logarithm

4.1. Convergence of the Defining Series

Theorem. The series Ek> t (-1 )k-' xk / k converges precisely when IxI < 1.
The series F-k>_oxk/k! converges precisely when IxI < rp = IPI1/(p-t).

PROOF. Since IkI = 1 for all integers k prime to p, in order to have convergence
of the first series, the condition Ixk/kj 0 implies IxI < 1. Conversely, when
IxI < 1,

Xk- I < kIx Ik -* 0 (k - oo).
k

For the second series

xk

k!

I

= 1PIk-ordpx-ordp(k!)

We use (3.1) for the p-adic valuation of factorials. The exponent is

k(ord
1 1)+ Sp(k)

p(x)
- p -

)
p -

Since Sp(k) = 1 when k = pi (j > 0) is a power of p, we have

xk

k!
- 0 b k (orcip(x) - 1p-1

and this happens precisely when ordp(x) - pl tt > 0, namely when

ordp(x) > p 1 1, IxI < IPIt/(P-l)

as asserted.
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By analogy with the classical case, we shall write

Xk
log(1 +x) _ (-1)k-I

kk>I

Xk
eX = exp(x) = E

k!
k>O

for the sums of these series whenever they converge. Strictly speaking, we should
mention the dependence on the prime p and, for example, write logp(1 + x) and
expp(x).

Comments. (1) In the p-adic domain, the exponential function is not an entire
function: The convergence of the exponential series is limited by the radius rp:

r2 = z and p < rp < 1 (p odd prime),

which we have already encountered as a limitation for the increments in the mean
value theorem (3.2) and (3.4). A heuristic explanation for this apparent coinci-
dence is furnished by the Taylor series, when expressed in terms of the differential
operator D = d/dx. Quite formally, we have

hkDkf(X) - exp(hD)(f)(x).f(x +h) = E
k>0

On polynomial functions, or more generally on restricted power series, we have
seen that IIDII = 1, so that the series for exp(hD) converges for Ihl < rp (as
we have just seen). However, observe that the first form (3.2) of the mean value
theorem holds even up to I h I < r p. In the classical case, the exponential is an entire
function, and there is no limitation for the size of the increments in the mean value
theorem.

(2) Since Ix1 < rp < I is required for convergence of the exponential, there
is no number e = exp(1) defined in Qp. For p > 3, however, rp > 1/p = IPI,
and exp(p) is well-defined by the series: One could select a definition of a number
e = e p as a pth root of exp(p). Similarly, when p = 2 one could define e as fourth

root of exp(4). However, there is no canonical choice for these roots.
(3) The series defining the functions log and exp have rational coefficients.

Hence for each complete extension L of Qp,

xEB<I(L)=log( l+x)EL,
x E B<,P(L) = eX = exp(x) E L.

4.2. Properties of the Exponential and Logarithm

Proposition 1. For Ixl < rp we have

I log(l + x)I = IXI, l exp(x)I = 1, I1 - exp(x)I = Ixl.
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pgooF. Fork > I we have Sp(k) > I and hence ordp(k!) < (k - 1)/(p - 1). We

infer

Ikl >- Ik!I > Ipl ' = rp-1,

IXkIkI Ixk/k!I (Ixllrp)k-t . IxI < IxI < I

fork >- 2 and 0 < Ix I < rp. Hence the absolute values of the terms in the series

k

1 +x+T k! = exp(x),
k>2

Xk
X + E(-1 )k-1

k
= log(1 +x)

k>2

are strictly smaller than the first ones. By the ultrametric character of the absolute
value, the strongest (we underline it!) wins:

exp(x) = 1 + x + 1,

k>2

exp(x) - 1 = x + j ... = I exp(x) - I I = Ix 1,
k>2

log(' + X) = x + 57, = Ilog(1 + x)I = IXI
k>2

if IXI < rp.

Corollary. The only zero of log(] + x) in the ball IxI < rp is x = 0.

In fact, we shall prove a stronger result:

x H log(1 + x) is injective in the ball Burp.

Proposition 2. For two indeterminates X and Y, we have the following formal
identities:

exp(X + Y) =

exp(X)

exp log(l + X) = I + X.

PROOF. The first identity is easily obtained if we observe that the product of two
monomials X`/i! and Yj/j! is

X'YJ Ci + j1 X`Yj
i!j! i (i + j)!
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Grouping the terms with i + j = n leads to a sum (X + Y)"/n!. Let us turn to the
second identity. In the series log(1 + X) _ n> 1 an X' we would like to substitute

X = e y - 1 = b1Y + b2y2 + - - - (b1 = 1). We have to expand the following
expression and group the powers of Y:

nEa. (b1Y+.b2Y2+...) = Cnyn.

n>1 n>1

Here are the first coefficients:

c1 =a1b1, c2 =a1b2+a2b2, c3 =alb3+a2.2bjb2+a3bi.

More generally, we see that

cn =albn+a2(...)+...+an-1(...)+anbl.

For2 < j < n -1 the coefficient of aj is a polynomial in bl, ... , bn-1 with integral
coefficients (of total degree j). The problem is to evaluate the polynomials cn at
the rational values

W-1
bn - 1an= , (n>1)-

n n!

The result of this computation is known: Identical computations are classically
made for the substitution of the real-valued power series x = ey - 1 in the real-
valued log(I + x) (convergent for Ix I < 1). But it is established in any calculus
course that the result is log(es) = y. Hence all evaluations of the polynomials cn
vanish for n > 2, and the expected formula is proved. The third identity is treated
similarly. 0

Remark. The preceding proof is surprising: It relies on real analysis for a purely
formal result that is applied to p-adic series. It was our purpose to deal with the
exponential and logarithm function in an elementary way - before treating power
series systematically - and thus we had to give an ad hoc proof for this inversion.
But a more systematic treatment of formal power series will give us an opportunity
to present an independent proof of this property with no reference to real analysis
(VI. 1).

Proposition 3. For JxI < rp and IyI < rp we have

exp(x + y) = exp(x) - exp(y),

logexp(x) = x,

explog(1 +x) = 1 +x.

PROOF. Observe first that if an and bn 0, then the family (anbnl)n,m>o is stun-
mable. In particular, its sum is independent of the way terms are grouped before
summing. Hence the first identity holds as soon as the variables x and y are in the

domain of convergence of the p-adic exponential

exp(x)-exp(y) = exp(x + y).
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Let us check the second identity: We have to show that it is legitimate to substitute
a value x E CP, Ix I < rP in the formal identity

X = log ex = log(I + e(X)),

where
n

e(X)= - =eX -I.
n>I ni.

The substitution in the sum can be made by addition of two contributions:

X=
37(-1r-1 e(X)n + e(X)'

n mn<N X=x m>N X=x

In the first finite sum, the substitution can obviously be made in each term accord-
ing to

e(X)nlx-x=Ix+2 (IxI <rn).

Since le(x)I = IxI < rP < 1, we have

(- I )n-1
e(x)n -k log(I + e(x)) = log ex (N -k oo).

n<N n

The proof of the second identity will be completed if we show that the second
contribution is arbitrarily small (for large N). But when IxI < rP, each monomial
appearing in the computation of e(x) satisfies Ix' / i ! I < rP (because i > 1),
and each monomial appearing in the computation of e(x)m has an absolute value
less than rp . All individual monomials appearing in the evaluation of the second
contribution Em>N - have an absolute value smaller than

sup (-1)m-1 I r .
m

m>N m P

Since the power series for the logarithm converges, it is possible to choose N large
enough to ensure that all I I /m I rpm (m > N) are arbitrarily small and that the same
holds for their sum (independently of the groupings made to compute it). Again,
the verification of the third identity is similar.

Corollary. (a) The exponential map defines an isometric homomorphism

exp : B<rP + B<rp(1) = I + B<rp C C.

(b) The homomorphism log : 1 + MP -+ CP is surjective.

(a) The fact that the exponential map is injective in its domain of definition
results from the equality log ex = x. Better still, the exponential is an isometry:

Iex - efl = Ie`Ilex-'-1I
=lex_ti.-II

=Ix - yl.
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The inverse of the isometry

B<rp + I + B<rP

is the restriction of the logarithm to the ball B<rp(1) C 1 + Mp. In particular, we
have

log(1 + x)(1 + y) =1og(1 + x) + 1og(1 + y) (x, y E B<rp ).

But the power series

f(x, y) = log(1 +x)(1 + y) - log(1 +x) - log(1 + y) _ amnXmy"
n,m>O

converges for lxi < 1 and lyI < 1. Since

am+nf
ntIn!amn =

amxany
= 0,

(x,y)=(0.0)

we conclude that the logarithm is a homomorphism in its ball of convergence:

log(l + x)(1 + y) = 1og(l + x) + log(l + y) (x, y E B<1).

(b) If X E Cp, choose a sufficiently large integer n in order to ensure that
Ipnxj < rp. Hence

pnx = log exp pnx, x = log e

for a pnth root E I + MP of exp pnx E 1 + Mp (111.4.5).

1+B<r

The unit ball in C5
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Theorem. The logarithm defines a homomorphism log : 1 + MP --> C. Its
kernel is the subgroup pp-. Its restriction to 1 + B<rp is an isometry (hence

injective).

PROOF There only remains to establish the statement concerning the kernel of the
logarithm. Let x = 1 + t c I + Mp be in this kernel. We know that xp" -+ 1
(when n -* oo) (111.4.5: Proposition 2). Taken large enough so that Ixp" -1 I < r p.

Since xp" is still in the kernel, we now have xP' = I by the corollary of the first
proposition.

4.3. Derivative of the Exponential and Logarithm

The exponential and logarithm are strictly differentiable functions in their disk of
convergence (2.4), and

kxk-1 Xk-1
[exp x]' = E

=
= expx,

k>1
k'

. k>1 (k - 1)

kxk-1 I
[log(1 +X)]' = (-1)k-1 = (-1)k 1Xk-1 =

k>1 k k>1
I+ X

Proposition. Let t E MPI Then, the derivative of

X H (1 +t)x : Zp Cp

at the origin is log(1 + t).

PROOF. By definition, we have a Mahler expansion

(I+t)"=1:t1c
k) (xEZp),k>O (X)

since t E Mp C Cp. We deduce

(1+t)"-1= E x1
>l

x

k
) tk,

tk k) - k>l k k - 1

(I+t)X-I X tk

x k(k-1)k'
1+t 1 x- t"

( - log(1 + t) =
((k - 1) kX F-
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When ItI < I we know that tk/k -* 0, whereas

x-1
k - 1) - (-1)k

This proves that

< 1 (x - l1
(-I)k-1 when x -), 0 (k > 1).k-1)

(I + t)X
log(1 + t) (x --> 0 in ZP )

x

uniformly in t on any disk B<, C CP of radius r < 1.

Comment. We can write

(d/dx)x=o (1 + t)x = log(1 + t),

where the derivative is the limit of difference quotients taken with respect to
increments in Z,,. When log(1 + t) 0 and 1hI is small enough, we have

(1+t)' -1 =Ilog(1+t)l.
h

This provides an improvement of the second form of the fundamental inequalities
(111.4.3), in the region rp < Itt < 1. But I log(1 + t)J is arbitrarily large in this
region, since log : 1 + MP -+ CP is surjective (4.2).

4.4. Continuation of the Exponential

It is natural to try to construct a homomorphism

extending the exponential defined above by a series expansion. If such an extension
exists, when x E CP we can choose a high power p" of p so that p"x E B<ro (the
exponent n depends on x) and then

f (x)P' = f (p"x) = exp(p"x).

In other words, f (x) has to be a p"th root of exp p"x in the algebraically closed
field CP. This can be done in a coherent way, thus furnishing a continuation of the
exponential homomorphism.

Proposition. There is a continuous homomorphism Exp : CP -+ 1 + MP ex-
tending the exponential snapping, originally defined only on the ball B<rp C Cp.

PROOF. Recall that I + MP is a divisible group (111.4.5), and divisible groups
are injective Z-modules (III.4.1), and hence enjoy an extension property for
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homomorphisms defined over subgroups. We can use this for the homomorphism

exp : B<rp I + B<rp C 1 + Mp,

since its target is the divisible group I + M.

For this corollary, only the p-divisibility of I + Mp is used.
The usefulness of the extensions Exp is limited by the fact that none are canon-

ical. However, since the logarithm is defined on the image of any extension, the
composite log oExp : Cp -> Cp has a meaning. If x E Cp, let us choose an integer
n such that p"x E Bzrp, and consider the following equalities:

p" log oExp(x) = log(Exp x)p" = log(Exp(p"x))

= log(exp(p"x)) = p"x.

Consequently, log oExp(x) = x. We have obtained the following result.

Corollary. The log : I + MP CP is inverse to all extensions

Exp : CP -> I + Mp,

and any such extension is injective.

Let us summarize the construction in a diagram of homomorphisms (of abelian
groups):

CP -> l + Mp 1--) CP

U U U

exp
p

log
I + Burp B<rp.

Both composite arrows are identities.

4.5. Continuation of the Logarithm

Proposition. There is a unique function f : CP -> CP having the properties

(1) f is a homomorphism: f (xy) = f (x) + f (y),
,1(1) coincides with the logarithm(2) The restriction of f to 1 + MP = B_

defined by its series expansion,
(3) f (p) = 0 (normalization).

PROOF. Let us start with the uniqueness statement. By (111.4.2), the subgroups
PQp,(p) and I +Mp generate Cp . Hence it is enough to see that the given conditions
imply that f vanishes on ^t. This is obvious on the subgroup lc, since the field CP
(of characteristic 0) has no additive torsion. On the other hand, if x E pQ, there will
be an equation x° = pb (with some integers a and b). Hence of (x) = bf(p) = 0
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by the normalization condition, and f (x) = 0 as expected. For the existence
part, it is enough to define f trivially by 0 on pQ/.t observing that this definition
is coherent with the logarithm on the intersection pQlt fl (I + MP) = µp
But the subgroup It px is precisely the kernel of the logarithm series (Theorem
in (4.2)). 1

The preceding continuation of the log function is called the Iwasawa logarithm
and is denoted by Log.

Theorem. The Iwasawa logarithm has the following properties:

(1) It is locally analytic: In the neighborhood of any a # 0

k

Log x = Log a +
k- 1 (X

a

a) (Ix -aI < la,).
k>1

(2) For x E Zp,

1 (1 -
Log

Xp-1)k

X =
-P k>1 k

(3) For any complete subfield K of Cp, Log(K") C K.
(4) For every continuous automorphism a of C

P1

Log (x°) = (Log x)°.

PROOF. (1) When a 0 let us simply write x = a(l + (x - a)/a) and

Logx=Loga+logl 1+x-al,
\\\ a JJ

so that the asserted expansion follows.
(2) If x E Zp , we have xp-1 - l (mod p) and

Log x = 1 Log (xp-1) = I log (l + (xp-1 - 1)).p - l p -1
The series expansion is applicable to the last term and furnishes the announced
expression.

(3) If K D A D M and X E K", let us write

x= pr . H u (r E Q, C E /.t(p), u E I+ M),

so that Log x = log u. Hence we can find integers n and m with x" = p"' v, where
v E 1 + M, and hence n Log x = Log v. Since X' E K, we have v E K. Now,
the coefficients of the series defining the logarithm are rational and K is complete:
log v E K, and finally Log x = (log v)/n E K.
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(4) Under the stated conditions, we can consider the homomorphism

f : Cp -> CP, X H Q-1 Log(x°).

We know that Ix° I = IxI by uniqueness of extensions of absolute values first on
(11.3.3) and then also on C p by continuity. Since the coefficients of log(1 + x)

are rational numbers, the second condition of the proposition is verified by f.
Hence f satisfies the three characteristic properties of the Iwasawa logarithm: It
must coincide with it.

Comments. (1) The product of the subgroups ttpx and 1 + B<rP is a direct product,
since the intersection of these subgroups is trivial. But this product is not equal
to 1 + M. Indeed, the logarithm of an element in the product is in the ball
B<rP

log (µ po . (1 + B<rp )) = B<rp ,

whereas log(1 + Mp) = Cp. A different way of seeing this consists in observing
that

134- =I +i;E/. == ICI=Ip1'/w(Pf)>rp

(i of order pf) (II.4.4). Taking x = I + t E I + B<rp, hence It l < 1i1, we have

x =1+i +t+i t with Ittl ItI).

Now

v
has a very particular form. It is clear that we are not obtaining all elements of
I+ Mp in this form (in Mp the p-adic order is an arbitrary positive rational
number).

(2) The rationality property of the logarithm shows that for everyfinite extension
K of QP the logarithm furnishes an isometric isomorphism

log : 1 + BP (K) -> B<rP(K).

In particular,

log : I + pZP -> pZp (= Zp) (p odd prime),

log : I + 4Z2 -> 4Z2 (= Z2).

In general, with the conventional notation

KjRjP=7rR,
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the multiplicative subgroup 1 + P still contains its torsion subgroup (p-torsion)
as a direct factor. Let in be the largest integer such that K has a pmth root of
unity: This torsion subgroup is /.cpm; it is cyclic. One can show that there is an
isomorphism

R.

This results from the structure theorem for finitely generated Zp-modules: The
ranks of the multiplicative Zpmodules

1+ P, 1+ B<rP(K) C I+ P

are the same, since the quotient is finite, cyclic of order p"' (cf. A. Weil: Basic
Number Theory). These results do not extend to infinite extensions of Qp contained
in C.

(3) Let us still consider a finite extension K of Qp in Cp. When P = B<rp(K),
both cases

/LpC1+Pand/cp 1+P

can occur. For example, for p = 3, consider as in (11.4.7) the two quadratic
extensions K1 = Q3( ) and K2 = Q3(J). Since the field Q(om) contains
a 6th root of unity (the ring of integers of this field is a hexagonal lattice in
the complex field) and since %f- I E Q3(y3,.) = Kl - K2, we see that
/24 C Kt K2 and necessarily

/212 = P4 ' /23 C Kt K2.

On the other hand, the order of /2(3) n (K1K2) is #(k") = 3f - 1, hence of the
form 2, 8, 26, ..., and the presence of a fourth root of unity implies that this order
is greater than or equal to 8. In particular, K1 # K2. Since Q(/ ) = Q(13) we
see that t;3 E K1 but t;3 ¢ K2. Nevertheless, quite generally,

p,px(K)=ttpxnK (c(1+Mp)nK=1+P).

If P = n R, then /2(K) C I + B<,, (Cp), so that the order of /2p x (K) is a divisor
of the order of

VP- n (I + B<Inl(Cp)),

which is known, since the absolute values I - 11 for t; E µ p- are given by

(111.4.2).
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(4) Here is a diagram summing up the general situation:

log
(1) ,+ I+ B<r,, - B<rp

n n exp n
log

A p ,+ I+ B<rn - . B<rn
n n n

tpx `) t + Mp log
/ -) Cp
n n Exp n

pQ µ Cp
Log

Cp.

The lines consist of short exact sequences, split by the choice of a section Exp
of log. Observe that the subgroup pQ µ is well-defined, independently from the
choice of a copy of pQ C Cp .

Note. The possibility of extending the exponential to the whole of CP had already
been shown by M.-C. Sarmant(-Durix) in her doctoral thesis. We have followed
the method of the book by W. Schikhof.

5. The Volkenborn Integral

5.1. Definition via Riemann Sums

Let K be a complete extension of Qp. We are going to define f f dx for certain
functions f : ZP -* K. Unfortunately, Corollary 3 in (IV.3.5) shows that one
cannot define nontrivial translation-invariant linear forms on C(Zp). Let us recall
this result (notation fi(x) = f(x + 1)).

Lemma. Ifip : C(Zp) -. K is linear and translation-invariant, i.e.,

to(fi) = tp(f)for all f E C(Zp),

then (p = 0.

Observe that we can define translation-invariant linear forms on Fk(Zp), the
space of locally constant functions on Zp (IV.2. 1). Indeed, we can construct such a
linear form with ip(1) = 1. Translation invariance imposes the same value 1/p for
the characteristic functions of the cosets of pZp. More generally, this translation-
invariant linear form should take the same value 1/p" for the characteristic func-
tions of the cosets p"Zp. These functions have sup norm 1 but

rp(f )I = 1-1-1 I = p" is arbitrarily large.
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264 5. Differentiation

This shows that this linear form is not continuous. Equivalently, we can define the
p-adic "volume" of the balls B<I p" 1(j) in Zp to be

m(B<Ip"1(j)) = E Qp-

The next construction works for differentiable functions - at least (Sf)'(0) should
exist - and is not translation-invariant. It is convenient to deal with strictly dif-
ferentiable functions f c S'(Zp).

Let us start with the expressions

f(j) = Y"f(j)m(j + P°Zp).n
0<j<p"

representing Riemann sums for f. The integral off over Zp will be defined as the
limit (n -* oo) of these sums, when it exists. The indefinite sum F of a function
f has been defined in (IV 1.5) in order to have VF = f (F(0) = 0):

F = Sf = 1*f : F(k) = E f(j).
O<j<k

Hence we have

n .f (j) =
F(Pn)

n
F(0)

P o<J<p" P

(since F(0) = 0), and we see that the limit exists if F is differentiable at the origin.
When the function f has Mahler coefficients cn, we know that the coefficients

of Sf are simply shifted, and the differentiability of Sf at the origin is equivalent
to the requirement

Icn-rfnl-*0 (n -* oo)

(Theorem 1 in (1.5)). This is the case if f E S1(Zp).

Definition. The Volkenborn integral of a function f E S' (Zp) is by definition

J
f(x)dx = lim 1 f(j) = (Sf)'(0).

Z
pn

v 0,J< p"

If f = c is a constant, then fzp f (x) dx = c. Here is a main property of this
integral.

Proposition 1. (a) For f e S'(Zp) we have

fz f(x)dx1 <_ Offli-
p
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(b) If fn -f f in St, namely II f, - f III -* 0, then

J
fn(x)dx --*

J
f(x)dx.

Zo Zo

PROOF. By definition,

x)dx
fzp

f( = I(Sf)'(0)I <_ IISf1I1 = sup(II 1 SfII, Isf(0)I),

so that (a) follows from Corollary 2 in (1.5):

Ilsf III pllfIll.

(b) is a consequence of (a).

Recall that we use the notation V f for a discrete gradient of a function f :

Vf(x) = f(x+l)- f(x)-

Proposition 2. For f c S'(ZP) we have

f V f (x) dx = f'(0).
P

PROOF. By definition,

f Vf(x)dx = (SVf)'(0) = (f - f(0))'(0) = f'(0),

since SVf = f - f(0) (Proposition 2 of (IV 1.5)).

5.2. Computation via Mahler Series
The indefinite sum of a binomial function (,j is the next one S(n) _ (,). This
observation makes it easy to compute the Volkenborn integral of a function f c S'
of which the Mahler expansion is known.

Proposition. Let >k>o Ck (j) be the Mahler series of a strictly differentiable
function f E S'. Then

J f(x)dx = )()c/k+ 1.
v k>O
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PROOF. Since f, = >k<n ck() tends to f in 11. 111, we can simply integrate term
by term:

f ('

J
f (x) dx = ck J k dx.

Zv k>O Zv (X)

Now,

JZp \k/dx = (k")'(0)

and

(k+1) k+1(Xk 1)
implies

(
x 1

(_I)
1 1_(-1)k

k+1)=iim
(0) k+ lk k+1(k) k+l

(one can also apply directly Theorem 1 in (1.5) to the function Sf).

Example. Let us fix t E Mp C C,,, namely Iti < 1, and consider the function
f = ft defined by

f(X)=(1+t)x => tk(xl.
k>0 k)

Then

.fz7P

k k I
(1+t)xdx=z

(_k+1
= tlog(l+t) (=lfort=0).

k>O

5.3. Integrals and Shift

A few more formulas for the Volkenborn integral will be useful. Recall that the
translation operators rx have been defined in (IV.5.1) by

rif(t)= f(x+t).
In particular, for r = rt = E (unit translation), rf = fl. Let us also denote by D
the differentiation operator, V the finite difference operator, and S the indefinite
sum. Obviously, D commutes with translations and consequently also with V
r - id.

Proposition 1. Let PO : f r--* f (0) 1 be the projection of S' (Zr) onto constants.

Then the following relations hold:
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(a) Sr = r S - Po.
(b) DS commutes with all translations rr.
(c) SD = DS - PODS.

PROOF. By definition, for integers n > 1,

S(rf)(n) _ rf (j) _ E f (j + 1)
0<j<n 0<j <n

= j f(i) = Sf(n + 1) - f(0) = rSf(n) - f(0)
O<i<n

which proves Sr = r S - Po (by density of the integers n > 1 in Zp and continuity
of the functions in question). On the other hand, differentiation of the function
Srf = rSf - f(0) leads to DSrf = DrSf = rDSf. Moreover, recall that
VSf = f but SVf = f - f (0) (IV.1.5). In other words,

VS=id, SV=id - Po.

We infer

SD = SDVS = SODS = DS - PODS.

The proposition is proved.

Proposition 2. Let f E S'(Zp). Then

(a) j rxf(t)dt = (Sf)'(x)
P

(b) S(f')(x) = f f(x+t)dt - J f(t)dt.
ZP ZP

PROOF. Start with the definition fZ
P

f(t) dt = (Sf)'(0). Hence

fzp f(t + 1)dt = f rf(t)dt = (Srf)'(0) = DSrf(0)
P

= rDSf(0) = DSf(1) = (Sf)'(1).

The first formula (a) for a positive integer x = n follows by iteration, and for any
X E Zp by continuity and density (alternatively, one can do the same calculations
with rX in place of r). Recall now Proposition 2 of (5.1),

fzp

V f(t) dt = f'(0),

and use a translation

jVf(t+x)dt = f'(x).
P
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From this, it is obvious that S(f')(n) = f'(0) + + f'(n - 1) can be expressed
as a telescoping sum

S(f')(n)=j f(t+n)dt-f f(t)dt (1 <nEN),
p p

and by continuity and density of the positive integers n in ZP'

S(f')(x) = j f(t + x)dt - j f(t)dt (x E Zr).
p p

Writing f' = g, we can choose any primitive G /E S' (Zr) of g and write

S(g)(x) =
J

G(x + t)dt -
J

G(t)dt.
ZP ZP

Of course, two different primitives of a function g may differ by any function h
having h' - 0.

Proposition 3. Let f E S2(Zp) C S'(Zp) and define F(x) = fzp f (x + t)dt.
Then F E S1(Zp) and

F'(x) = j f'(x + t) dt.
p

PROOF. By Proposition 2 of (1.3),

f E S2(Zp) f E S1(Zp),

so that

G(x) = f f'(x + t) dt
P

defines a function G E S1(Zp). Moreover, by Proposition 2 (a),

j f'(x + t) dt = (Sf')'(x) = (DSDf)(x),

which proves G = DSDf. Now by the first proposition SD = DS - PODS and

G = D(DS - PODS) f = DDSf = (Sf)" = F',

because F = (Sf )'.

Proposition 4. Let c denote the involution r(I.1.2) x i-a -1 - x of Zp. Then

J
(fo6)dx=J fdx.

Zo Zp
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PROOF We have seen that

I f dx = (Sf)'(0) = lim Sf (h)

P
r,-,o h

Let us take h = - pn (n --* oo). Hence

(Sf)'(0) = lim
n-00

Sf (-Pn) = lim -Sf (-P")
- pn n- 00 pn

But by the Corollary 4 in (IV.3.5),

-S.f(-P') = S(f o U)(Pn),

whence the result (Sf)'(0) = (S(f o a))' (0).

Corollary If f is an odd function, then

ffdx=_!_92.
P

2

PROOF. Quite generally, using Proposition 2 in (5. 1) and Proposition 4, we have

f'(0) = j (f (x + 1) - f (x)) dx = f (f (-x) - f (x)) dx.
P P

Now, if f is odd, we obtain the announced result

-2f(x) dx.f'(0) =
JZP

5.4. Relation to Bernoulli Numbers
In (5.2), we have proved

°GP

(1+t)xdx=

t

log(1+t)

for It( < 1, t E C. Let us now choose I t I < rp and define s = log(1 + t), so that

t=es-1, IsI_Itl<rp.

The preceding formula now reads

(J esz dx =
ZP

e-1

s

- 1
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Classical Definition. The Bernoulli numbers are the rational numbers bk de-
fined by the following generating function:

t r ik
et-1 -`k> bkkl.

0

Here are the first few values:

bo=1, b1=-2, b2=6, b3=0, ba= -so, b5 = 0,

and,

bb = 42. b8 = -30, bio b12 = 69166

Since we can also write e:X = F-k>o tkxk/k! with a convergence in S'(Zp), we
can integrate term by term (Proposition I in (5.1))

kdx
tk tk

J
x

C

r
zp k! k!

and identify the coefficients

bk = f xkdx.
p

Observe that by definition bk E Q, and these integrals are independent of the prime
p used to compute them! Also, Ibk I < P 11X kII i = p (still by Proposition 1 in (5.1)),
namely I pbk I < 1, i.e., pbk E Z p rl Q. In (5.5) we shall give a more precise result.

Proposition. The Volkenborn integral of a restricted series f a,, xn

exists and can be computed term by term:

f(x)dx = L:anbn-
Zv n>0

a

Here, the b, are the Bernoulli numbers, and using ffp f (x) dx = - f'(0)/2 for

the odd functions f (x) = x2k+1 (Corollary at the end of (5.3)), we obtain

bt = -, b2k+t = 0 (k > 0-2

Classical Definition. The Bernoulli polynomials Bk are defined by the follow-
ing generating function:

1: tk text

Bk(x)k!
e' -

k>0
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I hope that no confusion will arise between the Bernoulli and the Bell polyno-
mials (also denoted by B in (IV 6.3)): The context should always explicitly specify
which ones are under consideration!

Obviously, bk = Bk(O). Conversely, the definition

tk tk
Bk(x) ' = ezr bk

k>o k. k>o k

Xjtj tk
bk -

j>ok>o j! k!

leads to an explicit expression of the Bernoulli polynomials (with Bernoulli num-
bers as coefficients):

B,r(x) = n! E bk x
I

j+k=n j V

(')I_JXi.
0j<n

Thus Bn is a monic polynomial of degree n (equal to its index). This expansion
is symbolically written "B,,(x) = (b + x)n:" the binomial formula leads to the
correct expression, provided that we interpret b' as the kth Bernoulli number bk.

Here are a few values:

Bo(x)=1, Bi(x)=x-z, BZ(x)=x2-x+6.

Returning to the Volkenborn integral, we have

k

Bk(x)t = er" f ery dy = f erty+"> dy.
k>0 k p p

Identification of the coefficients leads to the p-adic expression of the Bernoulli
Polynomials

Bk(x)= f(x + y)kdyP

The formula (5.3)

j Vf(x+y)dy = f'(x)

for f = xk leads to

f(x + y+I)kdy-
fzp

(x+y)kdy=kxk-',
p
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namely

Bk(x + 1) - Bk(x) =
kxk-l

In particular, Bk (1) = Bk(O) fork > 2, and these polynomials may be extended by
1-periodicity on R. We obtain the continuous periodic functions x i Bk(x - [x])
(k > 2) on the real line (as usual, [x] denotes the integral part of a real number x
so that 0 < x - [x] < 1).

On the other hand, we can expand (y + x + 1)" _ i (k)(y + x)k and hence
rewrite

(n + I)Xn (Xn+l), n } 1

= f f k )(X+Y)kdY
Zv k<n

/ \
= (n + 1)Bn(x)+ I n + 1)Bk(X)

k<n-1

This gives a recurrence relation for the computation of these monic polynomials:

Bn(X) = Xn -
1 + J1

k } Bk(X)n+ 1 kI:

n

In particular, for x = 0 and n > 1,

bn = B. (O) = -
I rn + 1) bk n b .

n+ I k<n-1 k k<n-1 k- I f k

Another relation for the Bernoulli polynomials is easily obtained from the fact that
the integrals of f and of f o 6 are the same (Proposition 4 in (5.3)):

+I-X)kdyBk(1-X)=
fzp

(y

I-y+1-X)kdy=
fzp

(-

+ X)k dy = (-1)kBk(X).= (-1)k
fzp

(y

5.5. Sums of Powers

The above formula VBk(x) = kxk-l, with SV = id - Po, leads to Bk(x) - bk =
kS(xk-1). Replacing k by k + 1, we obtain

S(xk) =
Bk+l(X) - bk+1 (k>0)_

K -}- I
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This gives an explicit formula for the sums of powers:

k+1
1 (k+ll xi

k ) _S(x
+

1\ /f bk+l-jxEk+11j<k j k+1

(.kl)bk±l_jJ+.= bkx +
2<E-<k - k+ l

Here are a few explicit expressions for these sums of powers:

Sk(n) = E ik = S(xk)Ix=n (k > 1),
1 <i <n

273

S1(n) = 2n(n - 1),

S2(n) = 6n(n - 1)(2n - 1),

S3(n) = in2(n - 1)2,

Sa(n) = Sn5 - 10 + 3n3 - 3o n,

SS(n) = inb -ins + in4 - i2n26 12

(Observe that fork = 0, S(x°) = B1(x) -bl = x gives a sum of powers i <n i ° _
n, which is correct if the summation is extended over the indices 0 < i < n and
x0 is the constant 1, including 00 = 1.) In the Archimedean theory, the main term
is xk+1 /(k + 1): It gives the primitive of xk, namely the area below the graph of
t F-5 tk between the values 0 and x. Here the main term will turn out to be bkx.

Proposition. When p is an odd prime, the sums of kth powers satisfy

Sk(p) ° pbk (mod pkZp) (k > 1),

while

Sk(2) = 1 - 2bk (mod kZ2) (k > 1).

PROOF. We have pbo = p, pbl = -p/2, which are both in Zp (even if p = 2).
We already know (5.4) that pbk E ZP (k > 0) (this also follows by induction, as
the next argument shows). Since

( k pj
+

pk+1

Sk(p) = pbk + \j - 1)bk+1-i k + l2<j<k

=pbk+pk
k - 1

pbk+1-,
pi-2

+ pk pk

2<;Gk j - 2) j(j - 1) k(k +
1),



'T
S

274 5. Differentiation

we have to show that

1
j-2

2<j<k

k

(I2)Pbk±1iJ(J_l)+k(k+l)EzP.j

But the pbk+1 _ j are in Z p for j > 2, and for p > 3

1ordpj(j-1)<ordpj!= j - SP (j) <
j - <j-1p-I p-1

implies E Zp. For p = 2,

ord2 j (j - 1) = max(ord2j, ord2(j - 1)) < j - 1

with equality for j = 2. This explains the loss of one power of 2.

Corollary. For any prime p, b2n E Q fl p-1Zp (n > 1).

Remarks. (1) For p = 2 and odd k > 3, the corresponding Bernoulli number is
zero: The congruence Sk(2) = 1 - 0 = 2bk holds mod kZ2, not mod 2kZ2. For
even k = 2n > 2, the same congruence forces b2n to have an even denominator.

(2) For p = 3 and even k = 2n > 2, the congruence S2n(3) - 3b2n (mod 3Z3)
leads to 3b2n - I + 22n = I + 4" (mod 3Z3), and 3 appears in the denominator
of b2n. By the preceding remark, the factor 6 appears in the denominator of all b2n
(n > 1).

(3) The property pb2n E Zp (all primes p) means that the denominator of b2n is
a product of distinct primes (each prime occurring at most once). We have a more
precise result.

Theorem (Clausen-von Staudt). The denominator of the Bernoulli number
b2n is the product of the primes f such that f - 1 divides 2n. More precisely,

b2n = - E + m2n (m2n E Z).
t prime: 1-1 12n

PROOF. Let us start with the congruence pb2n - S2n(p) (mod pZp). Now, it 1s
easy to compute a sum >p<j<p jk mod p: This is a sum over the field Fp. Put

sk = (Sk(p) mod p) E F.

For each 0 u E FP we have

Sk = E Xk = > (xU)k = Uk E xk = uksk,
xEFP rEFP xEFp

whence

(I - Uk)sk = 0.
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If k is not a multiple of p - 1, we can choose u E FP such that uk 1 (because
FP is cyclic), and in this case we see that sk = 0, namely Sk(p) = 0 (mod p).
On the other hand, if p - I I k, then

sk=1: xk= 1=p-1=-1EFp (k>1).
xEFp O:)xEFp

This information can be gathered together in the following form:

P (bk+ ) EQnpZp.
t prime: t-1(k=2n

Letting the prime p vary (an exception!), we obtain

bk+
1 EQn n zp=z.

P prime:P-1(k p prime

5.6. Bernoulli Polynomials as an Appell System

In (5.3) we have proved

f'(x) f Vf(Y+x)dy.
P

In the case of Bernoulli polynomials, this gives

BB(x) = f VBk(Y +x)dy = j k(y +x)k-1 dy = kBk-1(x)
P P

Hence (Bk)k>o is an Appell system of polynomials. In particular, it satisfies the
modified binomial identity for Sheffer systems (IV.6. 1). We can derive it immedi-
ately in our context:

Bn(x+y)= f (t+x+y)ndt
zp ` (n)(t k n-kL k + x) y dt

fZpO:k<n

(n)Bk(X)Y--k.
k

O<k<n

In umbra] notation, we can write symbolically

Bn(x + y) = "(B(x) + y)n,

Which generalizes (5.4) BB(y) = "(b + y)', " since B,(0) = bn. Let us give the
relation between this system and composition operators. Let U be the operator on
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K[XI defined by

U(P)(x) = J P(y + x) dy.
Zo

It is obvious that this operator U commutes with the unit translation E = Tt = r,
hence (IV.5.3) with all translations:

TU(P)(x) = U(p)(x + 1) = I, p(y +x + 1) dy = U(7p)(x).

By definition U(xk) = Bk, and the system of Bernoulli polynomials is a Sheffer
sequence (IV.6.1). Moreover, as we have seen in (IV.6.2), V = e° - 1. We deduce

V(UP)(x) = f (p(y + x + 1) - p(y + x)) dy
(s-3)

P,(x),
p

D(eD_1)Up=Dp, UP=eDIP.

This is the expression of the composition operator U as a formal power series in
the derivation D (1V.5.3).

EXERCISES FOR CHAPTER 5

A. Classical reminder. Let f, g, h : R - R denote the functions defined by

f(x) =
x2 sin(1/x) if x # 0,

0 t'fx = 0 ,

and g = f + x12, h = f - x2.
(a) Prove that f is differentiable at every point with f'(0) = 0, but f is not strictly

differentiable at the origin f SI(0) and f' is not continuous.
(b) Prove that g is differentiable at every point with g'(0) = , but there is no neigh-

borhood of the origin in which g is increasing.
(c) Prove that h is differentiable at every point with h'(0) = 0 and there are infinitely

many points in every neighborhhood of the origin at which h has a relative maxi-
mum.

B. Classical reminder (continued). Let f be a real-valued function defined in the neigh-
borhood of a point a e R. Assume that f e S1 (a) and f'(a) > 0. Show that there is a
neighborhood V of a such that the restriction of f to V is an increasing function and
in particular is injective.

1. Discuss the continuity and differentiability at the origin of the following functions on
ZP:

ln= YPr\(nx'I'

n>0
n

x

n>0
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2. Prove that the function Sp introduced in (V.3.1) - sum of digits in base p - satisfies

m
Sp(m +n) = Sp(m) + Sp(n) - (p - 1) ordp

+ n

M-
3.

n

Sp(m - n) = Sp(m) - Sp(n) + (p - 1) ordp

Let f : Zp -* Qp be defined by

f(x) _ Pnif lxl=lP'I=pn,

0 ifx=0.

Then f is locally constant outside the origin, and lim,r,p If (x)/x I= 1. By refining the
preceding definition, construct a function g that is locally constant outside the origin,
also differentiable at the origin with g'(0) = 1.

4. Check that I log(1 + x)l < rp when Ixl = rp. But show that I log(1 +x)I is variable on
the sphere Ix I = rp.

(a) Fd"r. which values of x E CP do the following series converge?

X3sinx =x--+
3!

X2cosx=1--+
2!

x2n+1
=D-1)n(2n+1)!'

n>O

2n

n>0 (2n)!

(b) In the disk of convergence, prove that

sin2 x + cos2 x = 1,

sin x cos y + cos x sin y = sin(x + y),

cos x cos y - sinx sin y = cos(x + y).

Compute the derivative of the functions sin and cos.
(c) Choose a square root i of -1 in Cp and prove that

cosx+isinx=e`x (i ECp, i2=-1).

(d) Check the estimates (give their domain of validity)

Isinxl=lxl, Icosxl=1, Icosx-11=?

6. Prove that when t E Mp, x (1 +t)x is differentiable at the origin of Cp: To compute
the limit of differential quotients for x -* 0 (in Cp not only in Zp), use the expression
(1 + t)' = exp(x log(l + t)) valid for small Ix 1.

7. The Chebyshev polynomials (of the first kind) can be defined by the classical formulas
Tn(cos9) = cosn& (n > 0). Observe that T,,,n(x) = T,n(Tn(x)). When p is an odd
prime, prove that

Tp(x) = xp (mod p)
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and with the mean value theorem, show that

Tnp(x) = TT(xp) (mod pnZp(x))

(what can you say about the case p = 2?).

8. Let us say that a polynomial f(x) E Zp[x] is an nth pseudo-power when f'(x) E
nZp[x].
(a) Show that the following polynomials are nth pseudo-powers: xn, f (x)n (f yan

polynomial), Tn (Chebyshev polynomial of the first kind; cf. previous exercise).
(b) Using the mean value theorem, prove that if f is an nth pseudo-power, then

a = b (mod pZp) = f (a) - f (b) (mod pnZp).

(c) Suppose (fn)n>o is a sequence of polynomials with deg fn = n and satisfying the
congruences

fpn(x) ° .fn(xp) (mod pnZp).

Show that f, is an nth pseudo-power. Deduce that form E N, a E Zr,, the sequence
f,np has a limit for v -* oo.

9. Define a sequence of polynomials inductively by the conditions

f1
po = I, p,, = primitive of pn_1 such that J pn(x)dx = 0 (n > I)-

0

The first one is pl (x) = x - z
(a) Prove that pn(x) = Bn(x)/n!, where B,,(x) denotes the nth Bernoulli polynomial.
(b) Prove that p,(1) = p,(0) (n # 1) and compute the Fourier series expansions of

the 1-periodic functions fn extending P.I[0,11,

e2nimx
1n (x) (2irim)n

(n > I).

For even n = 2k > 2 there is absolute convergence, and

2 1 2
..f2k(0) _ -

(2
i)2k >1 m2k (2 1)2k

C(2k)

10. For any prime p, prove the following congruence for the Bernoulli numbers:

2n(bpn - bn) - 0 (mod pnZp) (n > 1).

(Hint. Use the congruence jpn = jn (mod pnZp) (exercise 8), hence a similar con-
gruence for the sums of powers Spn(p) and Sp(p). and conclude by proposition in

(5.5).)

11. For each in > 1, show that the numerator of

22 23 2n
2

n

is divisible by 2' when n is large enough.
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(a) Check the preceding assertion experimentally for a few values of n > 2.
(b) Prove the general statement by consideration of the logarithm I + M2 C2 and

the expansion of log(1 - 2) = log(-1) = 0.

12. Show that all continuous homomorphisms f : ZP --> Qp have the following form:

f(in) _ Vux ( E tip-1, u E I + pZp)

forSome vEZ/(p-1)ZandxEZp.

13. Prove that an infinite product ]-[n>o(l + an), where all an 0 -1, converges for any
sequence (an)n>o converging to 0 in Cp.
(Hint. Use I log(] +an)I = Ia.I if Ia,I is small.)

14. Let I be an ordered set, (Ei)iEJ a family of sets (or groups, rings,...), and let coij
E3 -* Ei be maps (resp. homomorphisms,...) given for i < j E I, subject to the
transitivity conditions

vij = vif o vfj : Ej - Ef - Ei (i < f < j).

Assume that ! contains a countable cofinal sequence S : in < it < - - - and consider
the projective system (Ein, cPin+1,i )n>o with projective limit lim s Ei. Show that if T

is another countable cofinal sequence in I and lim T Ei is similarly defined, there is a

canonical isomorphism lim s Ei = lim T Ei (use the universal property of projective

limits). Provided that ! has a countable cofinal subset, we may define lim Ei by choosing
F--

such a sequence S and putting lim Ei := lim s Ei. For example, let A be the maximal

subring of a complete ultrametric field K and consider the ideals

Ir=B<r(K)CA (0<r<1).

Establish the following isomorphism:

A{X} -> lim (A/Ir)[XI

(limit when r \ 0).
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Analytic Functions and Elements

A powerful method for defining functions is provided by power series (we have
seen two examples in Chapter V: exp and log). This method is here developed
systematically, and we come back to a more thorough study of formal power
series. As is classically known, uniform limits of polynomials in a complex disk
lead to analytic functions.

Another class of special functions is supplied by rational functions, namely
quotients of polynomials: The simplest being the linear fractional transformations.
We also study them in this chapter, especially since their uniform limits in the
p-adic domain lead to the "analytic elements" in the sense of Krasner. Indeed, in
ultrametric analysis, the sole consideration of balls is not sufficient and in particular
not adapted to analytic continuation.

In this chapter the field K will still denote a complete extension of Qp in Cp (or in

2p) often with dense valuation. The results that also require K to be algebraically
closed will be simply formulated for the field Cp (they are also valid for c2 p).

1. Power Series

1.1. Formal Power Series

Formal power series have already appeared repeatedly (with integral coefficients
in (1.4.8), with coefficients in a field in (IV.5), (V.2)). We now study them more
systematically.

Let A 54 101 be a commutative ring with a unit element 1. The formal power
series ring A[[X]] consists of sequences of elements of A, with addition
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and multiplication respectively defined by

(an)n>o + (bn)n>0 = (an + bn)n>o,

(an)n>o - (bn)n>0 (ii aibn-i
0<i<n In>0

Instead of the sequence notation (an)n>o we shall prefer to use the notation f =
f(X) _ 1:,,.o a,, X" for a formal power series. The formal power series ring
A[[X]] contains the polynomial ring A[X], and since 1 E A, we have X" E
A[[X]] (n > 0).

Let us show that this formal power series ring constitutes a completion of the
polynomial ring.

Definition. Let f (X) = J:n>O anXn be a nonzero power series. Its order is the
integer

w=w(f)=min{n EN:an :)4- 0}.

This order is the index of the first nonzero coefficient of f(X). We shall also
adopt the convention w(0) = oo with the usual rules

oo > n, oo + n = n + oo = oo (n > O).

The following relation is then obvious:

w(.f + g) > min(w(f ), co(g)),

with an equal sign if the orders are different. Moreover,

w(X" f) = n + w(f)

shows that

If(X) : w(f) > n} = X"A[[X]]

is the principal ideal generated by X" in the formal power series ring. Since

A[[X]]/X"A[[X]] = A[X]/(Xn),

We also have

A[[X]] = lim A[[X]]/X"A[[X]] = lim A[X]/(Xn)

(with obvious identifications), and the ring A[[X]] appears as a completion of the
ring A[X] for the metrizable topology admitting the ideals (X") as a fundamental
system of neighborhoods of 0.

When the ring A has no zero divisor, we have, moreover,

w(.fg) = w(.f) + w(g)-
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Taking f = g we infer w(f 2) = 2w(f) and w(f") = n w(f) (n > 0) by induction.
In particular, we see that if A is an integral domain, so is the formal power series
ring A[[X]]. If we iterate the construction, A[[X]][[Y]] = A[[X, Y]] is also an
integral domain. We have obtained the following result.

Lemma. Let A be an integral domain and n a positive integer. Then the formal
power series ring A[[XI, ... , Xn]] is also an integral domain.

Definition. The formal derivation D of the ring A[[X]] is the additive map
defined by

D
(Y' anXn/

= rna,X'-t = na,X"-t

n>0 n?0 n?tt

It satisfies

D(fg) = D(f)g + f D(g) (f, g E A[[X ]])

Since ker D D A, we see in particular that

D(af) = aD(f) (a E A, f E A[[X]]),

namely, the derivation D is A-linear. Since

w(D(.f )) > w(f) - 1,

it is also continuous for the previously defined topology.
If we iterate this derivation D we obtain

Dk(X")=n(n-1)...(n-k+1)X"-k,

and since the product of k consecutive integers is divisible by k!, we can define

I Dk:XnH (klXn-k

even when the ring A does not contain inverses of the integral multiples of 1. Hence
we define an A-linear map

k1Dk : A[[X]] A[[X]]

correspondingly. In spite of the fact that a formal power series does not define a
function, we also use the notation f (0) for the constant coefficient ao of f . Then
if f(X) = Jn>o a,, X", we have

ak = I Dk(.f)(0) (k > 0).
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1.2. Convergent Power Series

Since we are assuming that the field K is complete, an ultrametric series con-
verges when its general term tends to 0. If r > 0 denotes a real number such that
I an I rn -* 0, then En>o anxn converges (at least) for lx I < r, and we get a function
B<r(0) K.

Definition. The radius of convergence of a power series f = L.n>o anXn
having coefficients in the field K is the extended real number 0 < r f _< co
defined by

r f = sup jr > 0 : I an I rn - 01.

Alternatively, we can consider the values of r > 0 for which (Ian jr') is bounded:

sup {r > 0: I an I rn --> 01 < sup {r > 0 : (Ian Jrn) bounded),

and conversely,

(I an I rn) bounded = Jan Jsn -± 0 (s < r)

proves the other inequality, so that

r f = sup (r > 0 : (I an l rn) bounded).

It is possible to compute this radius of convergence as in the classical complex
case by means of Hadamard's formula.

Proposition 1. The radius of convergence off = En>o anXn is

1 1

rf

Ilm.>o Ian I I In 1im supn,. Ian I l1"

PROOF. Define rf by the Hadamard formula. If IxI > r f (this can happen only if
rf < oc!), we have

lim sup Ix I lak 111k = IX I lim sup Iak 111k = IX I . 1 > 1.
n-->oo k>n n aoo k>n r f

Hence the decreasing sequence supk>n IX I Iak 11/k is greater than 1, and for infinitely
many values of k > 0 we have I ak I IX I k > 1, namely, the general term akxk of the
series does not tend to zero: The series akxk diverges. Conversely, if JxI < rf
(this can happen only if rf > 0!) we can choose Ix I < r < r f, and from

lim suprlak111k = r lim sup JakIIlk < 1
k>n k>n

we infer that for some large N

suprlak111k < 1.
k- N
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Hence I ak Irk < 1 for all k > N and

k xk
lakxkl = laklrk

x

\Irl) < Irk \ 0 (k --* oo).

This shows that the general term of the series F akxk tends to zero, and the series
converges.

The letter x will here be used for a variable element of B<r1, while the capital
X denotes the indeterminate. When rf = 0, the power series converges only for
x = 0. Hence we shall mainly be interested in power series f for which rf > 0.

Definition. A convergent power series is a formal power series f with rf > 0.

Comments. (1) Let f (X) E K [ [X ] ] be a convergent power series. If K' C S2P is
a complete extension of K, then f can be evaluated at any point x E B<rf(K').
The convergent power series f (X) defines in this way a continuous function (still
denoted by f)

f : B<rj(K') --± K'

because it is a uniform limit of continuous polynomial functions

fN : X H T, anxn.
0<n<N

Usually, we shall simply write the condition IxI < r f, assuming implicitly that the
element x is taken in K, CP, or even S2P.

(2) If r f > 1, f is a restricted series, and by Theorem 1 in (V.2.4), it is strictly
differentiable, with a derivative given by numerical evaluation of the formal deriva-
tive: f'(x) = (Df)(x) (Ix I < 1). A similar result holds for any convergent power
series: If Ixol < rf, then the restricted power series g(X) = f(xoX) has the
preceding property, and we conclude that

f'(x) = (Df)(x) (IxI < rf).

(3) Observe that a radius of convergence rf > 0 does not necessarily belong to
1K X I. If 0 < r f V 1K X I, then the sphere IxI = r f is empty: k1 = B<1. These
subtleties disappear when we take x in the universal field QP, since If2pI = R>0-
Either the series converges at all points of the sphere {x E OP : IxI = r1) or it
diverges at all points of this sphere.

Examples. (1) The radius of convergence of the series En>o Xn is rf = 1. This
series diverges at all points of the sphere lxI = 1, since its general term does not
tend to 0.
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(2) More generally, any series f = [ten>o anX' E Zp[[X]] has a radius of
convergence r f > I. Interesting examples are supplied by the expansions

MX) = 2
(a)

E Z[[X]]
n>0

for fixed a E Zp. We also denote by (1 + X)' the formal power series fa (X).
(3) When a series J:n>o a, X" converges on the sphere IxI = 1, it is a restricted

series (V.2) and rf > 1. Here is an example with rf = 1. Consider En>o p"Xp",
which obviously converges when IxI = 1. Since I pn I ll p" = I p l nl p" -> 1, we have
rf = 1 by Hadamard's formula.

(4) The radius of convergence of a series can be I even when the coefficients
are unbounded or when IanI --> oo. The series 1:n>0 XP"/p" illustrates this pos-
sibility. As in the previous example r f = 1, since

Il/pnlllp° = IPI-"ip" -* 1.

This series converges only if Ix I < 1: It obviously diverges if IxI = 1.

Proposition 2. Let f and g be two convergent power series. Their product
f g (computed formally) is a convergent power series, and more precisely, the
radius of convergence of fg is greater than or equal to min(r f, rg). Moreover
the numerical evaluation of the power series fg can be made according to the
usual rule

(fg)(x) = f (x)g(x) (IxI < min(r f, rg)).

PROOF. All statements are consequences of (V2.2).

Corollary 1. Let r > 0. The set of power series f = EanX" such that
I an I r" -> 0 is a ring, and for each x E B<r the evaluation map f H f (x) is a
homomorphism of this ring into the base field K.

Corollary 2. For any polynomial f, the radius of convergence of the composite
f o g is > rg and

(f o g)(x) = f(g(x)) (IxI < rg)

PROOF. If IxI < rg, taking f = g in the preceding proposition, we obtain g2(x) =
g(x)2 and by induction g"(x) = g(x)" (n > 0). Taking linear combinations of
these equalities, we deduce

(f a g)(x) = f(g(x)) (IxI < rg)

for any polynomial f .
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The possibility of evaluating a composition f o g according to the same rule
will be established for general power series in (1.5).

Proposition 3. The radius of convergence off = >n>o an X' and of its deriva-
tive Df = >n>1 na,,Xn-1 are the same: rf = ro f.

PROOF: Let us prove this proposition when the field is either an extension of Qp or
an extension of R with the normalized absolute value. We know that

<Ini<n (nEN)

and also

This proves

Imin,.InanI1 n-11 = Ilm-.,.InanIlIn = n>

which concludes the proof

n±11n -+ 1 (n - oo).

Although f and D f always have the same radius of convergence, their behaviors
on the sphere IxI = r f may differ. For example, the radius of convergence of the
series f = F-n>0 x" is rf = 1. This series diverges on the unit sphere, but the
derivative Df = >n>o pnxP"-l converges at all points of the unit sphere.

Example. The series

log(1 + X) _ (-I)n-1 Xn/n,

1

n>1

=
V'(-1)n-lXn-1 = V(-I)nXn

(1 +X) n>1 n>0

have the same radius of convergence, since the second one is the derivative of the
first. Obviously, the radius of convergence of the second one is r = 1; hence the
radius of convergence of the logarithmic series is also 1 (compare with (V.4.1)).
Direct inspection (V.4.1) shows that the series log(1 + X) diverges when IxI = 1>
while the series f (X) = exp X diverges on the sphere Ix I = rP.

1.3. Formal Substitutions

In this section we study the composition of power series f (X), g(X) E K [[X ll-
In order to be able to substitute X = g(Y) in the power series f (X), it is essential
to assume that the order of g(X) is positive. This assumption is represented by any
of the following equivalent notations:

cv(g) > 1, g(0) = 0, g(X) E XK[[X]].
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Then w(gn) >_ n, and iflf (X) _ Fn>o a,X n, then

f(g(Y)) _ Jan(g(Y))n = 1: C.Yn
n>0 n>0

is well-defined, since the family (a" (g(Y))n )n>o is summable: The determination of
any coefficient cn involves the computation of at most a finite numberof a,,, (g (Y))'
(m < n) and their coefficients of index at most n in each of them. We thus define
the composite power series by

(f o g)(Y) _ cnY" E K[[Y]]-
n>O

The substitution X = g(Y) furnishes a homomorphism

f (X) H (f o g)(Y) = f (g(Y)) : K[[X ]] - K[[Y]]

sending 1 to 1 and continuous for the metrizable topology having the ideals

XkK[[X]] as fundamental neighborhoods of 0, since

w(f)>k=co(fog)>k.
For a fixed power series g of positive order, the identity of formal power series

(flf2) o g = (fl o 9)(f2 o g)

is easily verified. Hence f 2 o g = (f o g)2, and by induction

f" o g = (f o g)n (n > 1).

Observe that the exponents are relative to multiplication and not to composition.
Iteration of composition is represented by

9
°(2) =gog, g°(")=gogo...og.

n factors

Also distinguish the multiplication identity f = 1 (constant formal power series)
and the composition identity g = X = id:

f o X= f, X o g = g (f E K[[X]], g E XK[[X]]).

For example X°(n) o f = f, but Xn o f = f" (n > 0).

Proposition. Let g and h be two formal power series with positive order. Then
for any formal power series f we have

(fog)oh= fo(goh).

PROOF Both sides are well-defined. They are equal when f (X) = Xn, since fog =
gn in this case (the observation made just before the proposition is relevant). Hence
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the statement of the proposition is true by linearity for any polynomial f . Finally,
in the general case let f (X) = En>o an X". Then

(.f o g) o h=
(Y'

(angn) o h= an(gn o h)
n>0 n>0

=>an(goh)n=fo(goh).
n>0

Theorem 1. Let f (X) _ n>o a,, X n be a formal power series. The following
properties are equivalent:

(i) 3 g E K[[X ]] with g(0) = 0 and (f o g)(X) = X.
(ii) ao = f (O) = 0 and al = f'(0) # 0.

When they are satisfied, there is a unique formal power series g as required by
(i), and this formal power series also satisfies (g o f)(X) = X.

PROOF. (i) = (ii) If g(X) = I m>1 bmXm, then the identity (f o g)(X) = X can
be written more explicitly as

1: ang(X )n = ao + a1 b1 X + X2(.. -) = X.
n>0

In particular, ao = 0 and a1 bl = 1; hence a1 # 0.
(ii) = (i) The equality (f o g)(X) = X requires that al b1 = 1 and that the

coefficient of Xn in al$(X) + + ang(X)n vanishes (for n > 2) (indeed, the
coefficient of Xn in amg(X )n', whenever m > n, vanishes). This coefficient of Xn
is determined by an expression

albn +Pn(a2, ...>an;bl> -, bn-1)

with known polynomials P. having integral coefficients (not that it matters, but
these polynomials are linear in the first variables a-; cf. (V.4.2)). The hypothesis
a 1 # 0 E K makes it possible to choose iteratively the coefficients bn accordingto

bn =
-a11Pn(a2>-..>an;b]>...>bn-1)

(n>2).

These choices furnish the required inverse formal power series g.
Finally, if f satisfies (ii) and g is chosen as in (i), then bo = 0 and b1 =

1 /a1 # 0, so that we may apply (i) to g and choose a formal power series h with
(g o h)(X) = X. The associativity of composition shows that

h(X) = (f o g) o h(X) = f o (g o h)(X) = f (X).

id id

This proves go f (X) = g o h(X) = X. 0
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We still need a formula for the formal derivative of a composition. The identity

D(f g) = (Df) g + f Dg (f g E K[[X ]])

is well-known and easy to check. In particular, if f = g, we see that D(g2)
2g Dg. By induction

D(gn) = ngn-'
Dg (g E K[[Xll) (n > 1)

and by linearity

D(f o g)(Y) = Df (X) Dg(Y) = Df (g(Y)) Dg(Y)

for all polynomials f E K[XI.

Theorem 2 (Chain Rule). Let f and g be two formal power series with
g(O) = 0. Then the formal derivative off o g is given by

D(f o g)(Y) = Df(X) Dg(Y) = Df(g(Y)) Dg(f).

PROOF. Fix the power series g and let f vary in K[[X]]. Then

as well as

r 1w(f)>kcu(Df)>k- 1 wI Df(g(Y))Dg(Y)J >k - 1.

The identity D(f o g)(Y) = Df(g(Y)) Dg(Y), valid on the dense subspace of
polynomials f E K[X], extends by continuity to f E K[[X]].

Application. Let us come back to the formal power series

eX = l -l- X -l- 2, X2 + ... = F_n>0 ni Xn

of order 0 and

log(l + X) = X - ZX2 ± ... = Ln>1 (lnn-, Xn

of order 1. Their formal derivatives are respectively

D(ex)=0+1+X+Z,XZ+...=eX

1D(log(1+X))=1-X+ X2..=E(-1)n_1Xn-'

= 1+X
n>1

For the composition, let us introduce here the formal power series of order 1

e(X) = ex - 1 = n>1 ntXn, De(X) = D(eX) = eX.
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The composite

log(ex) = log(l + e(X)) = X + T, CkXk
k>2

is well-defined, and its formal derivative is

D(log(eX )) = I + e(X)
1 + >k>2 kCk X k- 1 .

Comparison of these two expansions gives

0 = kck E Q, ck = 0 (k>2),

and this proves

log(eX) = log(1 + e(X)) = X.

The formal power series e(X) is the inverse for composition of log(1 + X): By the
last assertion of Theorem 1 we also have e(X) o log(1 + X) = X, namely

exp o log(1 + X) - 1 = X,

or equivalently

e'og(t+x) = 1 + X.

1.4. The Growth Modulus

Let f be a nonzero convergent power series with coefficients in the field K. For
Ix I < r f we have f (x) _ Y_n>o and hence

If (x)I _< maox

I = r is not compact, f is bounded on this sphere:

If(x)I < lamIrm (Ixl = r),

for some m > 0. Let us say that a monomial Iamxm I is dominant on a sphere
lxl=r(<rf)when

lanlr" < lamIrm for all n 0 m.

In this case, this monomial is responsible for the absolute value of f,

If(x)I = Iamxml =
lamIrm (Ixl = r),

which is constant on the sphere. When r is small enough, there is always a dominant
monomial: If m = w(f) is the order of f, we have I f (x)f = I amxm I for all
sufficiently small values of lx 1.
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Definitions. (1) The growth modulus of a convergent power series f is defined

by

Mrf = Mr (.f) = max j an l rn (0 < r < r f )
n>0

so that r i--* Mrf is a positive increasing real function on the interval
[0, r f) C R.

(2) We say that r E [0, r1) is a regular radius for f if the equality Mrf =
I an Irn holds for one index n = n(r) > 0 only. The monomial Ian jrn or anxn is
called the dominant monomial for that radius.

(3) When there are (at least) two distinct indices i # j such that M, f =
jaiIr` = Ia.Ir, we say that r isa critical radius andthe monornials a, r1 = Mrf
are called competing monomials.

By definition

If(x)I5M,.(f) ifIxI=r <rf,

and this inequality is an equality if (x)I = Mr(f) for all regular radii r. If ao 94 0,
then r = 0 is regular and I f(x)I = laol for small Ixl. The positive critical radii
satisfy ri-j = jai /ai I E I K x l: They are roots of absolute values of elements of
K. A critical radius of a power series with coefficients in K is the absolute value
of an algebraic element (over K).

When the coefficients an E K are given, it is easy to sketch the curves r F-> lan jr'
(n > 0) and their upper bound Mrf on the given interval. This upper bound is a
continuous convex curve. Let us show that it is continuously differentiable except
at a discrete set of points of the interval [0, r1).

Mrf(=if(X)i)

01 r' r" rf

The growth modulus: r H Mr f
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Classical Lemma. Let cn > 0 and 0 < R < oo be such that for every r < R.
cnrn --> 0 (as n --> oo). Then

r i--- M(r) = sup c,,r" = max cnrn
n>O n>O

is a continuous convex function on the interval I = [0, R) that is smooth except
on a discrete subset A = {r' < r" < r' < . - -} C I. Between two consecutive
values of A, M coincides with a single monomial cmrm.

PROOF. Let 0 < r < R. Since cnrn -> 0 (n a oc), there is an integer m > 0 with

cmrm = max cnrn = M(r).
n>0

If N > m and 0 < s < r, then

CNrN <
Cmrm CN . rN-m <

CN - SN-m < 1 = CNSN < CmSm.Cm
Cm

Hence only finitely many monomials, namely those for which N < m, can compete
with cmsm for s < r. The critical radii s < r are among the finite set of solutions
of

sf = c,- (0 < i < j < m).
ci

The set A is either finite- possibly empty-or consists of an increasing sequence
converging to R.

This proves that a nonzero convergent power series f has only finitely many
critical radii smaller than any given value r < rf and the set of regular radii of f
is dense in [0, r f).

In the following commutative diagram, we denote by E the union of the critical
spheres in the open convergence ball of f and by [0, rf)ieg the subset consisting
of regular values.

B<rf D B<rf - E fL KX

I.I l I H
[0. rf) [0, r f )reg M4 R>o

Examples. (1) The power series n>0x' = 1/(l - x) and Y0xn/n! = e
have no critical radius. This is obvious for the first one, and follows from the proof
of Proposition 1 (V.4.2) for the second one (this can also be seen as a consequence
of the fact that the exponential has no zero (2.2)). On the other hand, if the set
{Ian I r7 l is unbounded on the real line, then there exists a sequence of critical radii
r; / rf (exercise).
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(2) If f is a restricted power series, then MI (f) is the Gauss norm of f . This
suggests that the maps f i-± Mr(f) are norms on a suitable subspace of K[[X]]
depending on the value r > 0. This is indeed the case.

proposition 1. When I K " I is dense in R>o and f E K {X), the Gauss norm of
f and the sup norm of the function defined by f on the unit ball A of K coincide.

In other words (cf. (V.2.1)), the canonical homomorphism

K{X} -- C(A; K)

is an isometric embedding.

PROOF. The Gauss norm of f is M1 f, and the inequality

sup If(x)I < MY
IxI<1

holds in general. With our assumption, we can choose a sequence x" E K with
I / 1; hence we have

Mif=supMrf <suplf(x)I
r/1 xEA

Proposition 2. When r > 0 is fixed, f N Mr(f) is an ultrametric norm on
the subspace consisting of formal power series f (X) = such that
Ia I r" --*. 0(n - oo). This norm is multiplicative, i.e., Mr(f g) = Mr(f)Mr(g)
when f and g belong to this subspace.

PROOF. If f # 0, then one a at least is nonzero, and Mr(f) > la,, Irn > 0, since
r > 0. Hence Mr is a norm on the subspace considered. Moreover, the equality

Mr(fg) = Mr(f)Mr(g)

is true if r is a regular radius for f , g, and fg, since it is the common value (V.2.2)

I fg(x)I = If(x)Ilg(x)l (IxI = r, x E Op).

The general result follows by density of regular values and continuity of the maps

r H Mr(f), r i-+ Mr(g), r H Mr(fg)

In the classical case, a complex function with an infinite radius of convergence
is an entire function. The only entire functions that are bounded on C are the
constants. This is the theorem of Liouville. There is an analogous result in p-adic
analysis.
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Theorem. Let the power series f E K [ [ X fl have infinite radius of convergence.
If the function I f I is bounded on K and I K " I is dense, then f is a constant.
More generally, if I f(x)I < CIxIN for some C > 0, N E N, and allx E K with
I x I > c, then f is a polynomial of degree less than or equal to N.

PROOF It will suffice to prove the second, more general, statement. Write f (x)
Y- anxn as usual. We have

Ianlrn < Mrf If(x)Iixi=r < CrN,

provided that r > c is a regular radius of f. By the lemma and since I K" I is dense
in R>0, this happens at least for a sequence of values r j = Ix j I -+ oo, x j E K,

Ia.I < Cry -n.

Letting j -a oo, we get an = 0 for all n > N. This proves that f is a polynomial
of degree at most N, as claimed.

There are many entire functions that are bounded on Qr, just as there are many
entire functions bounded on R (e.g., polynomials in sin x and cos x).

1.5. Substitution of Convergent Power Series

Let f(X) = Yn>oa,,X', g(X) = Ym>t bmXm be two convergent power series
with g(0) = 0. The formal power series (f o g)(X) = F-k10 CkX k Will turn out to
be convergent, too, and we intend to prove the validity of the numerical evaluation

(f o g)(x) = f (g(x)),

Ckxk = Y' an
(Em>ibmxm)n

k>0 n>O

when IxI is suitably small.
In order to be able to substitute the value X = g(x) in the formal power series

f (X), it is necessary to assume that this is small: Ig(x) I < r f will do. But even
if g(x) = 0, namely, x on a critical sphere of g, IxI might be too big to allow
substitution in f o g. Recall that critical spheres occur when several monomials
are of competing size. The circumstance g(x) = 0 does not prevent a few individual
monomials to be large, and thus have an influence after rearrangement of these
terms. On the other hand, the power series f o g converges in a ball, and it would
be unreasonable to expect to be able to take advantage of the single fact that "g(X)
small," i.e., x close to a root of g, and hence x on a critical sphere of g, while
sup IgI on this critical sphere is M,-(g) (r = IxI). This explains the reason for the
hypotheses made in the following theorem.

Theorem. Let f and g be two convergent power series with g(0) = 0. If
Ix I < rg and Mlxl(g) < r f, then rf0g > IxI and the numerical evaluation of the



.:y A

I.
-

1. Power Series 295

composite f o g can be made according to

(f o g)(x) = f (g(x))-

PROOF Assume that x c K (or Qp) satisfies the assumptions and define r = Ix I.
Then recall that if f(X) = L.,,>0 anX" and g(Y) = n>t bnY', the formal power
series (f o g)(Y) _ Ek>OckYk is obtained by grouping equal powers in the
expansion of L.n>o ang(Y)n (this is a double series). Define the polynomials

fN (X) = L. an X".
0<n<N

The substitution

(fN o g)(x) = fN(g(x))

is valid if IxI < rr by Corollary 2 of Proposition in (1.2). Let y = g(x). Since
IYI = Ig(x)I Mr(g) < r f, we have fN(y) -+ f (y), and here is a diagram
summing up the situation:

fN(g(x)) -> f(g(x)) (N --> oo)

II E- polynomial case for fN (1.2)

(fN o g)(x) --a (f o g)(x) (N -> oc).

Introduce

(fN o g)(Y) = E ck(N)Yk,
k>O

((f - fN) o g)(Y) = ck(N)Yk,
k>N

so that the coefficients ck of f o g are

Ck = ck(N) + ck(N), Ck = ck(N) (k < N).

Recall that

(f o g)(Y) - (fN o g)(Y) = 1 a,,g(y)n = > c'(N)Yk

n>N k>N

is obtained by grouping the monomials having the same degree. Any monomial
of g(Y)n is a sum of products of n monomials of g(Y). When we evaluate it at a
point y with Mjyjg = p, the ultrametric inequality shows that its absolute value is
less than or equal to p'. This is where we use the assumption Mr(g) < r f in its
full force: Choose Y E Cp with

(a) IxI = r < I yI < rs, so that g(y) is well-defined.

(b) Ig(y)I < Mf g = p < r f, so that f (g(y)) is well-defined
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(this is possible by continuity of t i-± Mg and M,(g) < r f). Our previous
observation gives

Ic (N)yk I < sup la, I p" -+ 0 (N --> co)
n>N

because p < r f. This shows that the sequence (ck yk )k>o lies in the closure of the set
of sequences (ck(N)yk)k>o (N > 1). But for each N, the sequence ck(N)yk __> 0
(k -> oc) and the space co of sequences tending to 0 is complete (IV.4.1). This
proves

Ckyk --> 0, r fog > IyI > lxi,

and also

(f 0 g)(y) - (fN o g)(y) - 0.

Example. Take K = Qp and consider the formal power series

1

f(X)=>Xn= 1X' g(Y)=Y-YP.
n>0

Take a root E µp_1. Then 0, so that f f (O) = 1 is well-defined.
But rfog = 1, and the power series of f o g is not convergent on the unit sphere,
so that (f o g)(C) is not defined. Here for r = IC I = 1, Mr(g) = I is not less than
r f = 1, and the substitution is not allowed (cf. exercises for the case p = 2). This

example also shows that for fields K having a discrete valuation, the condition on
balls g(B<r(K)) C B<rf is not sufficient to allow substitution: If (I < r < p),
y E ZP = B<r(O;Qp), we have y -- yP (mod pZp) hence I y - yPI < IpI < I
and thus g(B<,(Qp)) = g(B<1(Qp)) C B<j. But although f converges in the
open unit ball, we cannot find a power series representing the composite f o g in

the ball B<j, since the rational function

1

1-y+yP
has poles at the roots of 1 - y +yp = 0. These poles are located on the unit sphere
of a finite extension of Qp, and no power series can represent this rational function
on the sphere r = I (cf. exercises).

Another quite interesting example where the composition (f o g)(x) is well-
defined but different from f (g(x)) will appear in (VII.2.4).

Application. As proved in (1.3), the formal power series f (X) = log(I + X) and
g(X) = e(X) = exp X - I are inverses of each other. By (1.5),

log(ex) = x (IxI < rp),
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since Mfxl(e(-)) = IxI and Ixi = r < rr < rioa = 1. Similarly,

explog(1 + x) = I + x (IxI < rp),

since Mix,(log(1 + )) = IxI for IxI = r < rp, and rp is the radius of convergence
of the exponential. This is a second, independent, proof of the fact that exp and
log are inverse isometries in the open ball B<,o(K) (Proposition 2 in (V.4.2)).

1.6. The Valuation Polygon and its Dual

The study of

Mr = Mr(f) = sup Ianlrn

n>0

is best made using logarithms. We shall use Greek letters for these logarithms:

p = logr <pf=logrf,
an =logIanI,
AP = log M, = Sup (np + an).

n>0

It is convenient to choose the log to the base p in order to have log p = 1 and

an = log Ia,l = -ordp(an) = -vn.

The function Itp is a convex function as the sup envelope of affine linear functions.
It is a piecewise linear function, since the critical radii (and their logarithms) occur
on a discrete subset. Its opposite

-µp riinf(v, - np)

is a concave function. When IxI = r = pp is a regular radius, we have

-µp = ordp f (x).

Definition. The function

p H hp := inff(vn - np) (-oo < p < p f
n>D

or its graph, is the valuation polygon of the power series f.

(a) Let ar X` be the dominant monomial between two consecutive critical radii,
Say 'r < r < r'. Then

hp=-Ecp=inf(vn-np)=v;-ip
n>O
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is affine linear in the corresponding interval

p = log'r < p < p' = log r'.

This gives a side of the valuation polygon. The valuation polygon, or the graph of
p F> hP := infra>o(vn - np), is the boundary of the convex intersection of lower
half-planes determined by the lines of equations

On : p F--o- vn - rap.

The slope of On is -n, and this line passes through the point (0, vn). The segment
of A* above the interval ['p, p'] is a portion of the boundary - a side - of this
convex region.

(b) If the dominant monomial just beyond the critical radius r' is a;X]
.

, then

i < j are the extreme indices for competition of the monomials

Iai
Ir = Ia3Ir'i,
(r')'-' = Iae-/a-I = p-v+v;

Vi -vip=logr= j-i
(c) From the definition h p = infn,o(vn - np) (-oo < p < p f) we infer succes-

sively

hp<vn - np (p,n>0),
hp+np vn (p, n>0),

sup(hp + np) vn (n > 0).
P

The function

n F> sup(h, + np)
P

is a piecewise linear convex function whose graph gives the boundary of the convex
intersection of upper half-planes containing all points P. = (n, vn). The line of
equation

OP : n H hp + np

has slope p and passes through the point (0, hp). This gives a method for computing
hp = -µp for a fixed value of p. The value v,, - np is geometrically the height
above the origin of a straight line of slope p going through the point Pn = (n, vn)
One can draw the graph of the function n Fa ordpan of an integer variable -
consisting of the points Pn - and look for the lowest line of slope p going through
these points. The height above the origin of this lowest line gives the value hp.
Letting now the slope p vary, this construction furnishes the desired convex hull
of the points P,, (or of the graph of n Fa v, = ordp an).
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critical slope

The Newton polygon: convex envelope of the Pn

i j

Definition. The function

n F4 sup(vn + nP) (-oo < p < p f),
P

or its graph, is the Newton polygon of the power series f.

n

The Newton polygon is the boundary of the sup convex envelope of the points
Pn=(n,vn)(n>0)

A few conventions are useful at this point. When a coefficient an vanishes, its
valuation va = oo, and the corresponding point Pn is at infinity above all other
ones. For example, the Newton polygon has a first vertical side at m = ord(f),
least integer m with am ; 0. If f is a polynomial, it also has a last vertical side at
n = deg (f) (since all Pa's are at oo when n > deg f).

The two polygons constructed are duals of each other. The sides of one cor-
respond to vertices of the other. For example, a side of the Newton polygon cor-
responds precisely to a slope of a lowest contact line going through two distinct
points Pa. This situation occurs when two monomials have competing maximal
absolute values, namely when this slope p is the logarithm of a critical radius: The
valuation polygon has a vertex, and the graph of r F-- Mr f exhibits an angle at
the corresponding value of the radius r. More formally, from

hp = inf (va - np) (p < p f)
n>O

We infer

hP<vn - np (p<pf, n>0)
with equality for at least one index n. Equivalently,

hp + np < vn (P < pf, n > 0),
sup (h p + np) < vn (n > 0).

P
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-snl

Duality of the Newton polygon and the valuation polygon

The affine lines

which are below all P,,, have a sup that is the Newton polygon. Dually, the affine
lines

On : p H -(np + an) = vn - np

have an inf that is the valuation polygon.
This notion of duality is developed in CONVEXITY THEORY. It has numerous appli-

cations:

differential geometry (contact transformations),
variational calculus, classical mechanics, ... .

Algorithm. Here is an efficient procedure to find the critical radii of a power
series f (X) = >n,o an Xn. Let vn := ordp an and plot the points Pn = (n, vn).
Determine the convex envelope of this set of points (and of P,,,, = (0, co))- The
vertices of this convex envelope correspond to dominant monomials, those respon-
sible for If I = M, between two critical radii, and endpoints of sides correspond
to competing monomials (responsible for a critical radius) with extremal indices'
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If Pi and P3 (i < j) are two endpoints of a side of the Newton polygon, the slope

p' of this side

P log r'
3-1

corresponds to the critical radius r' for which the two monomials a, X' and ajX J
are the extreme competing monomials I ai I (r')' = I a! I (r')3 ,

(r').i-' = Iat_/a J = pV`-", r' = pP'.

For p / p', the point Pi is the only contact point of the line Lp of slope p defining
the Newton polygon

hp=vi - ip (p/P)-
For p \ p', the point Pl plays a similar role:

hp=v1-jp (p\p')

Example 1. Consider an Eisenstein polynomial (I1.4.2)

f (X) = Xn + an-1 Xn_1 + - .. + ao c Z[X],

where p I ai (0 < i < n) and ao is not divisible by p2. These assumptions mean
that

ordP ao = 1, ordP ai > 1 (1 < i < n),

so that the Newton polygon off can be drawn (see the figure).

orb p(a.)

0 2

critical slope : p = - 1/n
critical radius : r=p°=IPI1/°

The Newton polygon of an Eisenstein polynomial
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Example 2. Let us treat the case of the power series

We have

and

ordp(1/n

f (X) = log(1 + X) = Ln>1
(-lnn i X".

ordp a =O if 1 <n < p, ord p a p = -1,

-1 <ordpa, <0if p <n < pz

2 3 4 5 6 7 8
II

slope : -1/(p3 - p2)

The Newton polygon of the logarithm

The vertices of the Newton polygon are the points

Pi = (1.0), Pp = (P, -1), Pp2 = (P2, -2), Pp3 = (P3, -3). ...

The successive slopes of the sides are

-1 -1 -1
>

P - Pz - P
> ps-pz >... 0).

1

They correspond to critical radii

p I < p p _p < p p p2 < ... ( 1 ),
and we recognize the sequence

' IFr p IPI < rI = rl/P < r = rt/P2 < ... (-> 1 ).
P P P P P

Between two consecutive critical radii, the absolute value of the logarithm coin-
cides with the absolute value of the dominant monomial. We already know that

Ilog(1 + x) I = Ix1 (0 < IxI < rp),
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- the isometry domain of log (inverted by exp) - and see further that

rP<Ilog(1+x)I=
XP

P
= PIxIP < prp (rP < IxI < r,),

where rp = rp/P is the next critical radius. Quite generally,

pj_1rp
< Ilog(' + x)I =

for

xP,

P1
=P'IkIPj <pirP

rp/P]-I < Ixi < rp/P".

Here we see how I log(' + x)I increases: We already knew by (V.4.4) that it can
be arbitrarily large, since log : I +MP -> CP is surjective. On the other hand, the
zeros of log(1 + x) can occur only when IxI is equal to a critical radius. This gives
an independent proof of (11.4.4) for the estimates of I - l I when E pp,

1.7. Laurent Series

Let us show how the preceding considerations extend to Laurent series. Let

cof anXn = 1: anXn
nEZ -c

be such a series with coefficients in the field K. Thus we consider this series as a
sum of two formal power series

f =f +f+=>anXn+EanXn

n<O n>0

with f+ E K[[X]] as before, and f- _ n<o anX' E K[[X-1]] has zero con-
stant term. Convergence requires IxI < r f = r f, = I/ limnyc Ian 11/n for the first

one and similarly Ix-1 I < I/ lim, la_n 11/n for the second one. Let us define

r f := lim,oo la-n li/n

and let us assume r7 < r f , so that we have a common open annulus of convergence

rf < IxI < rf and hence a continuous (strictly differentiable) function - still
denoted by f - in this annulus of K (or in any complete extension of K).

The absolute value of this function f is bounded on a sphere IxI = r (where
rf < r <rf),

If(x)I < sup IanIrn (IxI =r),
-oo<n <oo

and is even constant on this sphere, provided that a single monomial dominates
all the others. In this case we say that it is a regular radius. We again define the
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growth modulus of f ,

Mrf = Mr(f) := sup (an l rn (r f < r < rf ),
-co<n <eo

as a positive real function on the interval (rf , r f) C R. A critical radius r is a
value rf < r < rI such that for two monomials (at least)

Mrf = l a1 I r` = I a.i l r3 (-oc < i < j < cc).

The critical radii make up a discrete subset of the interval (rI , r+), and regular
radii are dense in this interval.

The growth modulus r r--> Mr f of a Laurent series is a convex function but
is not necessarily increasing. Taking the log to the base p, define p = logr,
p f = log Mrf . Then

p r-a h,, = pp f (log rf< p< log r f)

is a concave piecewise linear function (inf envelope of affine linear ones). It is the
valuation polygon of the Laurent series f . All these facts are established exactly
as in the case of power series.

Laurent series can also be multiplied in a common annulus of convergence. Let
us indeed start with the case of Laurent polynomials. If

p = E anX n, q = E b,,Xn E K[X, X-],
finite finite

then their product is the polynomial pq = E c,,X' having coefficients

cn = akbl, 1c.1 < sup Iakbi I (n E Z).
k+l=n k+l=n

With the Gauss norms of p and q (sup norms on the coefficients) we have

IcnI <<IIPll - Ilgll (nEZ)

and consequently

IIPgII < IIPII - llgll.

The product operation is (uniformly) continuous: It extends continuously to the
completion K{X, X-11 with the same inequality. This completion consists of

Laurent series E-oo<n<oo anXn, where Ian I -* 0 for both limits n --> 00 and
n --* -oc: These are called restricted Laurent series.

In particular, the powers of a restricted Laurent series are again restricted Laurent
series, and if f E K{X, X-1 }, then x' fn E K{X, X-1 } for all m E Z and n E r4-
More generally, if f is a convergent Laurent series and rI < Ia I < rf , then g(X)

f (a X) is in K { X, X and the same results are established for convergent Laurent
series instead of restricted ones.
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2. Zeros of Power Series

2.1. Finiteness of Zeros on Spheres

Let K be a complete extension of Qp (in C,, or Qp),

K DAD M, A/M = k : residue field.

Select a nonzero convergent power series f (X) = Y_n>o a, Xn E K [[X ]]: r f > 0.
If f (a) = 0 for some a c K", lal < rf, then r = lal is a critical radius: Indeed,

If (a)) = 0 < Mrf := sup lanlrn 0 0
n>0

(cf. (1.4): r = 0 is critical precisely when ao = f (0) = 0).
We have already obtained an illustration of this fact in the study (1.6) of

I log(1 +x)I for IxI < 1: the zeros of log occur on the critical spheres, centered at
1, containing pth-power roots of unity (V.4.2).

Proposition. Let f E A{X } be a restricted power series. Let a E A. Then there
is a formal power series g such that

f(X) = f(a)+(X -a)g(X).

Moreover, g E A{X } and r8 > r1.

PeooF. Replace f by f,(X) = f(aX), and hence f, c A{X} (if lal < I we even
have rf, = r1/ j a I > 1). Hence we only have to consider the typical case a = 1. We
write f = Ln>o anX I (an E A, lan l -> 0), and we have to find g = En,,o bn X"
with

f(X) = f(1)+(X - 1)g(X).

Comparing coefficients. we find the conditions

ao = .f(1) - bo, an = bn-, - bn (n > 1),

orbo = f(1) - ao = Ei>0ai, bn = bn_, - an. By induction we see that

bn=1: aiEA (n>0).
i>n

Hence Ibn I --> 0 and g c A{X}, as desired. If r f = 1, we are done. If r f > 1, take
any r > 1, r <r1, so that l ai Iri -+ 0. Hence there is a constant c > 0 such that

l ai I r' < c, Jai I < c/r` (i > 0).

Hence Ibnl < supi>n fail < Csupi>n 1/r' = c/rn+1,

Ibnlrn < C/r (n > 0).
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Since the sequence (Ib,, Ir").,>o is bounded, rg > r. Letting r increase to rf, we
see that rg > Supt <r r f r = r f (compare with Theorem 1 in (V.2.4)). 0

Theorem (Strassman). A nonzero restricted power series f c A {X } has only
finitely many zeros in A.

PROOF. (1) Zeros on the unit sphere. Assume f = 0 and define

it:= min{n : la,, I = sup Iai 11:!5 v := sup{n : Ian I= sup I ai I },

so that it < v. If µ = v, then f has no zero on the unit sphere. We are going to
show more precisely that f has at most v - µ zeros (counting multiplicities) on
the unit sphere. Suppose v > I and f (a) = 0 for some a c A", namely Ial = 1.
Write

f = (X - a)g, g E A{X}.

By the definition of the extreme indices it and v, when we reduce the coefficients
mod M,

f(X) = (X -a)g"(X) E k[X},

we find that

deg f = I + deg g, w(f) = w(8),

since a 0 0 (w denotes the order as in (1.1): first index of a nonzero coefficient),

v= 1+Vg, l-.=Pg.

This proves that

vg-µg =(v-l.G)- 1 <v-l.G.

But any zero b ¢ a off is also a zero of g:

0 = f (b) = (b - a)g(b) g(b) = 0.

For example, if v = µ + 1, we arrive at vg = jtg, so that g cannot vanish on A" -
In this case, f has only one zero in A", and v - /u, = 1. If v > p. + 1, we can
repeat the procedure for g. In this way, we see that after at most v - it steps, the

last function h e A{X) obtained will satisfy vh = ILh, hence will not vanish on
the unit sphere A". This process leads to a factorization

f = P- h, P polynomial, h E A{X },

and h does not vanish on A".
(2) Zeros in M. If f(a) = 0 for some a E M, namely IaI < 1, consider

,,(X)= f(aX),forwhich rfa =rf/Ial > rf> 1. By the first step, fahas afinite
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number of zeros on the unit sphere: f has a finite number of zeros on the critical
sphere of radius r = la I. Since f has only finitely many critical radii r < 1, the
conclusion follows.

The proof has shown more precisely that the number of zeros off in A (counting
multiplicities) is bounded by the telescoping sum of differences v - µ of exponents
of critical monomials (corresponding to the critical radii less than 1). Hence we
have obtained the following result.

Corollary. Let f = F_,,,oa,, X" E K[[X]] be a nonzero convergent power
series and assume that r < rf is a critical radius of f. Let also

p =min{n : IanIr" = Mrf} < v =max{n : lanIrn = Mrf}

be the extreme indices of the monomials of maximal absolute value. Then, count-
ing multiplicities,

f has at most v - it zeros in Sr(K),
f has at most v zeros in the closed ball B<r(K),
f has at most p zeros in the open ball B<r(K).

Remark. With the previous notation we have

_ l ap l sk for r - s < s < r,
Msf forr <s <r+e

for small enough e > 0. Taking logarithms (to the base p),

u f = µa - ordpa,, for a / p,
va - ordpa for or \ p,

and v - it appears as a difference of slopes of the valuation polygon at the corre-
sponding vertex.

2.2. Existence of Zeros

We keep the same notation as in the preceding section.

Theorem 1. Let K be a complete and algebraically closed extension of Qp and
f = a,, Xn E K [[X ]] a nonzero convergent power series. If f has a critical
radius r < r f, then f has a zero on the critical sphere of radius r in K. More
Precisely, if p < v are the extreme indices for which lanIrn =Mrf , then f has
exactly v - It zeros (counting multiplicities) on the critical sphere Ix I = r of
K: There is a polynomial P E K[X] of degree v - p and a convergent power
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series g c K[[X]] with

f = P g, rg > rf, g does not vanish on S,(K).

PROOF The result is trivial if r = 0, so we assume r > 0 from now on. Recall that
I a,. l rµ = I a., Ir °, r '-A = I a /a I E I K X I. Since K is algebraically closed, there
is an element a E K with lal = r. Replace f by fa(X) = f(aX) having r = 1
as critical radius. This converts f into a series having a radius of convergence
rf. = rf/laI > 1, and in particular, f, E K{X}. We can similarly replace f by
the multiple f la, and assume IaN, I = Ia, I = Mrf = 1 (and a = 1). To sum up,
it is sufficient to study the normalized situation

r= 1< rf is a critical radius off c A{X} C K{X},

Ia..1 =Ia,I =M.f=1. Ianl<l (n> 0),
Ian I < 1 for n < it and also for n > v.

We are going to show that (counting multiplicities)

f has precisely v - it zeros on the critical sphere Sr(K).

For Ix I 1 close to 1, the absolute value of f (x) is given by

If(x)I =
la,x'`I=IxI" if Ixl1 say 1 - E < IXI < 1,

= \ say Ix I E.IxIv if IxI 1 1 <
1

< 1

(*)

(The first estimate is valid when lxl is larger than the largest critical radius less
than 1, and similarly, the second one is valid when lx I is smaller than the smallest
critical radius greater than 1.)

First step: Truncation. For any index r > 0 define the polynomial Pi = n<r anxn
(of degree < r) and the remainder gr = n>r anxn. We have f = PL + gr, and
if r > v, then

Mt gr = max Ian I < I = Mt f = Ml Pr .
n>r

By continuity of the functions r H Mrgr and r H Mr f we infer

E anxn

n>r

< Mr rgr < Mr f (Ix I = r close to 1).

If r is regular for both gr and f (which is the case if r 1 is close to 1), we have

Igr(x)I = Mrgr < Mrf = If(x)I (IxI = r # 1, r close to 1).

Consequently, if r > v, then

If(x)I = IPr(X)+gr(x)I = IPr(X)I
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for the same values of lx1 = r. Choose r > v, so that at 0: deg Pt = r. Since
K is algebraically closed, we can factorize this polynomial:

PP(X) = ai fl(X - i ).

More precisely, consider the partition of these roots into three subsets,

A = AI : roots with

A' = A' : roots i with

A = At : roots with

Here is a table of the absolute values Ix - I, depending on %' and IxI close to 1:

A : I:1=1

Ixl IxI I ICI

IxI=1 I Ix - I ICI

IxI\1 IxI 1X I ICI

In the middle column, we see that when IxI crosses the value 1, then Ix - i I

(i c A) varies from I to Ix 1. The number of roots i; E A - taking multiplicities
into account - is responsible for the variation of growth of I PL I. We have

A A A'

(the factors of this product are repeated as many times as the respective multiplic-
ities require). Considering separately the cases lx I < I and IxI > 1, we have

IarIIxl#A . 1 - FIA' ICI
IPz(x)I =

IarIIxl#A IxI#A . fA' ICI

if IxI=r/1,
if IxI=r\1 (1)

(where multiplicities are taken into account in the exponents - the same notational
abuse is made below). Recall (*)

IarIIxl'`=IxI" forlxl=r1,
If(x)1 =M'f - Iavllxly=lxl° forlxl=r\ 1.

Comparing the first lines of (1) and (2), we infer

p=#A,

(2)

A'
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Observe that if r > v, then Iarl < 1, so that N is not empty! Comparing now the
second lines, we get

3:=#0=v-µ
independently from the index of truncation r (recall that this takes into account
the multiplicities of the roots I I = I occurring in Pr and is thus greater than or
equal to the cardinality of this set of roots). Since I ar I HA' ICI = 1, we can now
write

I Pr(x)I = fl Ix - I for Ixl = 1, (3)
A

namely, the absolute value of Pt (x) on the critical (unit) sphere is the product of
the distances of x to the roots E A.

Second step: Convergence. Let us compare two successive truncations: if Pt #
then there is z' > r with

Pr'(x)_ anx' =Pr(x)+ar,xt, a,, 0.
n <r'

By the first step, the roots of the polynomial Pr on the unit sphere constitute a set
A' having the same number of elements (counting multiplicities) S = v - u as A,
and

IPr'(x)I = fl Ix - 'I for IxI = 1.
A'

In particular, if we take a root E A of Pr, we have

H I - 'I = -,(4)I = Iar'I.

A'

Hence for one root t' E A' at least, we have

It' - I Iar'I"'

When f is not a polynomial, we can consider the infinite sequence of successive
truncations of f, which are polynomials of degrees equal to their index

Their sets of roots on the unit sphere

A0 = O, Al = A', A2, ... C {X E K : IXI = 11

have the same cardinality S. Let us choose and fix a root _ o c Do. We have

seen that we can choose a root 1 E Al such that

S Ia,,

I"'
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and then a root 2 E A2 such that

Iar,I"", etc.

Since la" I --> 0, this construction furnishes a Cauchy sequence (i;i )i>o on the unit
sphere of the complete field K. Let us call its limit. By construction,

aim,
i>rn

If(m)I =
l

i> m

<max l ai l - 0,
i>r,n

f (W = f( lim m) = lim f(m) = 0.
m-*oo m-*00

This proves the existence of a root a = 1;00 of f in the unit sphere of K. Writing
f = (X - a)g, if v - lc > 1, we can repeat the construction of a root of g.
Eventually, we arrive at the precise statement of the theorem.

For example, if a convergent power series f E Cp[[X]] has no zero in the open
ball B<rf of Cp, then it has no critical radius. This is the case for f (X) = ex, as
was mentioned in (1.4) (before the Liouville theorem).

Corollary. Let f E K[[X]] be a convergent power series having no zero in
some closed ball IxI < r (< rf) of K". Then 1/f is given by a convergent
power series with rt1 f > r. If f has no zero in an open ball IxI < r' (< r f) of
K°, then 1 If is given by a convergent power series with rt If > r'.

PROOF Let f = >2">o a" X". Since ao = f (0) 0 0, we may replace f by f / f (0)
and assume ao = 1. Define g = i">1 a"X", so that f = I + g, rg = rf. The
formal power series 1/f E 1 -- X K[[X]] is obtained by formal substitution (1.3)

1 _ 1

f 1 + Y ° g(X)

since co(g) > 1. For the estimate of the radius of convergence of this power series,
we may replace K by K", and hence assume that K is algebraically closed. By the
theorem, f has no critical radius less than or equal to r, and if f = ",o a,, X',
then laoI > la"Ir" for all n > 1. This shows thatMg = max">t Ia"Ir" < gaol = 1.
Numerical evaluation of the above composition (1.5) is valid when

IxI < rg = rf, M1r1g < rtl(i+Y) = 1,

which is the case for lx I < r, since

Mixig < Mrg < I.

The same reference (1.5) also proves that rilf > r. The second statement is
obtained by letting r / r'.
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When K is not algebraically closed, we can still give the following factorization
result (in the following statement, it and v have the same meaning as before).

Theorem 2. Let K be a complete extension of QP in S2p and f E K[[X]]
nonzero convergent power series.

(a) If f (a) = O for some a C Q p, J a I < r f, then a is algebraic over K.
(b) If r = 1 is a critical radius of f , then there is a factorization

f = cP - Q - g1, c C K", P, Q C A[X] monic polynomials,
P of degree v - µ, IP(0)1 = 1, Q of degree µ, Q - Xu (mod M),
gI E I + X M{X } (rg > r1) has no zero in the closed unit ball
of K°. These conditions characterize uniquely this factorization.

PROOF (a) If f has a zero a on the sphere lx I = r in Cp (or Qp), then r is a critical
radius, and the preceding theorem shows that f has v - p. roots in S2p (counting
multiplicities). If 6 is a K-automorphism of Qp, it is continuous and isometric
(111.3.2):

.f (a°) _ .f (a)' = 0, la" I = Ia l = r.

Hence a has a finite number of conjugates contained in the finite set of roots of
f on the sphere Ix I = r of QP. By Galois theory, this proves that a is algebraic
over K. The same argument shows that the product P= f4(X - ) C K°[X]
extended over all roots of f having absolute value r (all multiplicities counted)
has coefficients fixed by all K-automorphisms of K° and hence coefficients in K.
This is a monic polynomial P C K[X] of degree v - µ.

(b) Define P = ]-[t (X - 4) E K [X ], the product over all roots of f having
absolute value r = 1 (taking into account multiplicities). Hence P is a monic
polynomial of degree v - µ, and P(0) = ± f is a unit. Let similarly Q =
fl (X - E K°[X1 be the product corresponding to the roots of f in the open
unit ball lCI < 1, i.e., i; E M. Then Q is a monic polynomial of degree µ having
its coefficients in M except for the leading one. As before. Galois theory shows
that Q C K[X]. Now, f = PQg with a convergent power series g, rg > rf > 1,
having no zero in the closed unit ball of K°, hence no critical radius. If g =
F,o b; X`, we have Ibo l > l b,x` I for all i > 1, Ix 1 < 1, since there is no critical

radius in the unit ball. Hence Ibol > Ib;I, and taking c = bo 0 0, we see that
(b; -+ 0 since rg > 1)

f = cPQgl, g1 = 1 + E(b;/c)X` E I + XM(X}.
i>o

For uniqueness, observe that in a factorization f = cP - Q - 91 with gt E
I + X M{X } (rg > r f ), hence gi having no zero in the closed unit ball of K°,

the polynomial c P Q is a multiple of the product of the linear factors correspond-

ing to the roots off in the closed unit ball (counting multiplicities). If the degree
of PQ is v, this monic polynomial is the product fl (X - ) E K°[X] extended
over all roots Ii I < 1. If P = i4) is a product extended over a subset of
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roots, the condition I P(0)I = I (If I = I implies that the factors correspond to
roots li; I = 1. The degree of P being v - it by assumption, this product contains all
the linear factors of f corresponding to the roots on the unit sphere. Consequently,
Q is the product of the linear factors of f corresponding to the roots in the open
unit ball.

Remarks. (1) Under the assumptions of (b). if f has its coefficients in A, and
not all in M, then the constant c is a unit, and by reduction mod M, the equality
f = cPQg1 leads to f = iPQgj = cPX L, since g, = 1. Since P is a monic
polynomial of degree v - p with constant term P(O) E A", P(O) 0, we
recognize the significance of p and v as the extreme indices of monomials of
maximal absolute value for Ix I = 1. In the normalized form a = 1; hence c = 1.

(2) This theorem is a version of the Weierstrass preparation theorem, which was
initially proved for rings of germs of holomorphic functions in several complex
variables. It has now several formulations in purely algebraic terms.

2.3. Entire Functions

Definition. An entire function is a function f given by a formal power series
f e K[[X]] having infinite radius of convergence: r f = oc.

Before studying the entire functions more closely, let us prove the following
elementary result.

Lemma. For any sequence (an)n>o in a complete ultrametric field K with
an --> 1, the products pN :_ (In<N an converge to a limit denotedbv IIn>o an =
nco an. More generally, if (an )n>o is a sequence of K-valued functions defined
on some set S, and if an -* 1 uniformly on S, the partial products PN converge
uniformly to [In>O an.

PRooF. By assumption Ian I = 1 for large n. Hence the partial products remain
bounded, say I PN I < C (N > 0). By definition,

PN+i - PN = (aN - 1)PN,
I PN+i - PN I < C IaN - 1 I -- 0 (N --- oc)

This proves that the sequence of partial products PN is a Cauchy sequence. It
converges in the complete field K. The second statement follows immediately
from the first one.

The exponential is an example of a function with no zero:

ex.e_X=eo=1 = ex :0
(this is true for the complex exponential and for the p-adic exponential: Only the
homomorphism property is used!). Although it is an example of an entire function
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in complex analysis, the finite radius of convergence of the p-adic exponential
prevents this function from being entire in this context. In fact, any entire function
having no zero in complex analysis is of the form f (z) = O(z) for some entire
function g, but the only entire functions in p-adic analysis having no zero in an
algebraically closed field are the constants. This leads to an easy determination
of entire functions in p-adic analysis. The main results are contained in the next
statement.

Theorem. Let f c K[[X]] be a formal power series with r f = 00.

(a) If f does not vanish in K°, then f is a nonzero constant.
(b) If f has only finitely many zeros in K°, then it is a polynomial.
(c) If 0 f E Cp[[X]], the following conditions are equivalent:

(i) f has infinitely many zeros.
(ii) f has a sequence of critical radii - 00.

(iii) The growth of If I is not bounded by a polynomial in Ix I,
(iv) f is given by a convergent infinite product

f (x) = Cxm . ]l(1 - x/l;) the product taken over nonzero
roots of f, counting multiplicities, and m = ordo f.

PROOF. (a) If f does not vanish, then ao = f (O) # 0 and If(x)I = laoI whenever
IxI is smaller than the first critical radius. Since f does not vanish, there is no
critical radius; hence all an = 0 for n > 1. This proves that f = ao is constant.

(b) After division of f by the monic polynomial having the same roots as f,
we are brought back to the first case.

(c) The equivalence (i) (ii) is a consequence of the finiteness of zeros on
each critical sphere. The equivalence (ii) (iii) is Liouville's theorem (1.4).
Finally, (iv) = (i) is clear, and we now show (ii) = (iv). By assumption f # 0,
and if its order is m > 0, we can write

f (x) = anxn = Cxm(1 + anxn)
n?m n>1

with C = a(and d, = am+n /a ). Without loss of generality we may now assume
that f is given by an expansion f (x) = 1 + F_n>1 anxn. In this case If (x)I = 1
for small x, namely for Ix I < ro (ro denoting the first critical radius of f). Just
beyond this critical radius, we shall have If (x)l = IxIN if there are precisely N
zeros (counting multiplicities) of f on the critical sphere Ix I = ro. Let us write

f(x) = Po(x) fi(x), po(x) = fl (l_).
The same procedure can obviously be iterated on each successive critical sphere
and furnishes a factorization

f(x) = Pn(x) . fn+1(x), Pn(x) = F1 (l - `)
1tI5rn. f(t)=0 4
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This construction makes it obvious that for fixed x, the terms (1 - of the
product tend to 1 and this convergence is uniform in x in a ball B<R (provided
that R < oc). This is the infinite product representation of f. It also shows that
for each given sequence (c,) with I -* oo there is an entire function having the
;'s as zeros (with correct multiplicities, and no other root): The corresponding
infinite product converges uniformly on all bounded sets (its general term tends
to I uniformly on bounded sets). Observe finally that if an infinite product of the
form H(1 - has the same zeros (¢ 0) as a power series f , the quotient

.f (x) /fl(1 - x/ o. = g(x)

has no further zero x # 0. This function has no positive critical radius and can
only be a monomial cmxt, m being the multiplicity of the zero at the origin. This
concludes the proof of the theorem.

2.4. Rolle's Theorem

Rolle's theorem for differentiable functions of a real variable is valid for scalar
functions only. Here it is:

If f : [a, b] -* R (a < b) is continuous and differentiable on
the open interval (a, b), then there exists a < c < b with

f'(c) = f (b) f (a)
b - a

The mean value theorem with an intermediate point follows from it. The preceding
equality can be written f (b) - f (a) = (b - a) f'(c) or with a = t, b = t + h,
c = t + 6h, as a limited expansion of the first order:

f(t+h)= f(t)+h f'(t+Bh) (0<B < 1).
We give here the p-adic versions. Let us start with an easy observation.

Proposition. Let f E K[[X]] be a convergent power series. For E K with
ICI < rf, there is a unique convergent ff E K[[X]] with f(x) = ff(x - )
for small Ix 1. Moreover, ff has the same radius of convergence as f , and the
preceding equality holds for Ix I <r1.

If f = Ln>0 an X1, this means that we can expand around 4,

E anxn = Ea. (4)(x - )n,
n>0 n>O

with no gain (no loss either) in convergence: Ix I < rf Ix - 4 j < r f.

PROOF. For a polynomial f E A[X], this is the Taylor formula for the expansion
around the point E A:

EanXn =>an(X -4+4)n = an(4)(X-4)n =ff(X
n<d n<d n<d
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with a polynomial ft E A[X]. This proves that sup, lan(l )I < I when sup, la,,I
1, so that f r-+ ff diminishes the Gauss norms. The same is true for the converse
isomorphism. We conclude that

f i-- ft : K[X] -* K[X] is isometric.

This isometry has a unique isometric extension to the completion K(X}: We still
denote it by f 1-+ ft. Now, if f E K [[X ]] has r f > 0, we may apply the preceding
result to any g = f (aX) where a E K", jell < rf, since g E K°{X} in this case.
This shows that the radius of convergence of ft is greater than or equal to r f,
but as before, the inverse isometry proves the converse inequality and nothing is
gained. t

Theorem. Let f E Cp[[X]] have convergence radius rf > 1. Then

(a) if f has two distinct zeros a # b in B<1 satisfying I a - bl < rp,
then f' has a zero in B<1;

(b) if f has two distinct zeros a b in B<1 satisfying I a - bl < rp,
then f' has a zero in B<1.

PROOF. By the preceding proposition, we can replace f by its expansion centered
at the point b. Thus, we may assume a # b = 0, jai < rp (resp. lal < rp):
f(X) = En>1 an X" and a1 # 0 (otherwise, f'(0) = 0, and we are done). We can
also assume that IaI = r, is the smallest positive critical radius. Hence there is an
integer n > 1 such that

I all rr, = Ia.Irn,

whence

a1

an
= rn-1 < rn-1 (resp. < rn-1).

C

If v = ordvn, say n = p"m, m prime to p, we have

n-1 p"m-1 p"-1
> =pV-1+...+p+1 > v

p-1 p-1 p-1

(with equality only for m = 1 and v = 1: n = p). Hence

a1

an
< rP-` = I pI o--' . IpI° = Inl,

so that Ia11 InanI and Iat I = Ina.Ir'"-' for some r' < 1. Recalling that rf,
r f > 1. we see that the power series f' admits a critical radius r' < 1. By (2.2)f
has a zero in the closed unit ball. In the case (b), Ia, I < I nan I proves r' < 1, and
the zero is in the open unit ball. 0
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Example. Let f = xp - px and choose a root p11(p-1) E Cp. The zeros of f are
0 and µp_1- p'I(P-1) Hence two distinct roots are at a distance rp. The zeros of
f' are also the zeros of f'/p = xp-1 - 1, i.e., the elements of µp_1 on the unit
sphere.

Corollary. Let f c Cp[[X]] with rf > 1. For each pair of points a, b c Ap
such that la - bI < rp, there is a point E Ap such that

f (b) - f (a) = (b -

Ifa, b E Mp and la - bI < rp, there is a point E Mp such that

f (b) - f (a) = (b -

PROOF As in the classical case, consider the function

f(a) f(x) f(b)
a x b
1 1 1

which vanishes at x = a and x = b. Its derivative

f(a) f'(x) f(b)

O'(x) = a 1 b
1 0 1

vanishes in Ap (resp. Mp).

2.5. The Maximum Principle

The preceding theory concerning critical radii - and particularly the existence of
zeros on critical spheres - has important consequences for the study of power
series.

Proposition. Let r < rf be a critical radius off E Cp [[X]]. Then If I takes
all values between 0 and Mr f in ICpl. More precisely, for each y c Cp with
l y l < Mr f, there is a solution x E C p of the equation f (x) = y with Ix I = r.
If IyI = Mr f, the same equation also has a root of absolute value r, provided
that ly - f(0)l = Mrf-

Noon Consider the formal power series

f(X) - y = (ao - y) + Y,an X'1 (ao = f (0)).
n>1

If lyl < Mr f, then f - y has the same dominant monomials as f, and r is
still a critical radius off - y: This function vanishes on the corresponding sphere.
If I y I = Mr f , the assumption made ensures that the formal power series
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f - y = (ao - y) + En>. a, X' also admits the critical radius r and hence van-
ishes on the corresponding critical sphere of Cp. This proves that

Mrf = sup If W1 = sup If W1 =maxlf(x)I
Ixl<r Ixl<r Ixl=r

when r is critical.

Corollary. Let r <r1. Then

Mrf = sup If W1 = sup If W1.
Ixl<r IxI <r

Moreover if r E ICv I is a rational power of p, then

Mrf = max If (x)I = max If (x)I.
Ixl<r IxI=r

PROOF For every r < r f,

If(x)l < Mlxlf < Mrf (IxI < r)

implies that

sup If(x)I <_ sup If(x)I < Mrf-
IxI<r IxI<r

Conversely, we can find a sequence (xn) in Cv such that:

Hence

implies that

Ixn I = r,, is regular for all n and rn / r.

if (x)I = Mr,, f / Mr f

sup If W1 ? sup If(xn)I = Mrf-
IxI <r n

Finally, if r is regular, I f (x) I = Mrf is constant on the sphere IxI = r, while if r
is critical, Mr f = maxlxl=r If (x)l follows from the proposition. a

2.6. Extension to Laurent Series

Instead of Taylor series, we can work with convergent Laurent series

00
f = r anXn E K[[X, X-']]

_cc

as in (1.7). Existence of zeros on critical spheres rf < x = r < rf is ensured,
provided that the field K is algebraically closed (typically, if K = C d.
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For example, let r be a critical radius of f . As in (2.5), an equation f (x) = y c
CP will have a solution x e CP with IxI = r, provided that

either Ti y< Mrf or Iyl=Mrf andly - aol=Mrf -

This shows that

Ixl<r IxI=r

In the case of a Laurent series f, the function r r-* Mrf is not necessarily increas-
ing, but it is always a convex function on the interval (r f , rI ). A consequence of
this observation is the maximum principle for annuli:

Ifrf <r, <r, <rf (r; E IKthen
supr,<IxI<rz I f(x)I = maXr, <1x1<rz If(x)I = max (Mr, f , Mrzf).

We have also seen that

p = log r r-+ Fcn f = log Mr f

is a convex function on the interval (log r f , log r f) (cf. (1.7)). Let us show that it
is - as in complex analysis - a formal consequence of the maximum principle
for all functions x' f" (m E Z, n c N) (given by convergent Laurent series by
(1.7)) in annuli rf < r, < r2 < r; .

Hadamard's Three-Circle Theorem. Assume that f E K[[X, X-']] is a
convergent Laurent series, so that f is also a function defined on an annu-
lus r- < Ix I < r+ of K. Then

p = log rHµpf = log Mr f = log max I f(x) I
IxI=r

is a convex function.

PROOF Let (r- < rl < r < r2 < r+), M, = Mr; f , so that

Mrf < max (MI, M2)

by the maximum principle. Apply this inequality to xm f" (m E Z, n > 0),

r' Mr < max (ri M', r2 M2),

and taking nth roots

rm/"Mr < max(r; /"Ml, rm/' M2)

If K = CP, we can choose the rational number a = m/n such that r' Ml = r; M,
(if K = Q P or C, we can take a sequence of rational numbers mk/nk converging
to the real root a of rl Ml = r, M2). With this choice for a (using continuity if

sup If(x)I=max If(x)I =Mrf (r- <r <r+).



P'
. tin

G
".

,V
1

`.9

`ti

4"i
fir
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K = S2p or C), we can write

r`xMr ri M1 = r2 M2 = (ri Mt)S (r2" M2)`

if s + t = 1. Since p = log r is a convex combination of the p, = log r,, we can
chooses > 0, t > 0 with s + t = I and r = ri - r2. With this choice r" = rl s rz ,

and the obtained inequality simplifies into

Mr <MI-M2.

With µp = log Mr and µ, = log M, (i = 1, 2), we now get the announced
convexity property

/ sµt + tµ2 (P = SPt + tP2)- N

Definition. Let f be a Laurent series with rf = 0. We say that the origin is an
isolated singularity. Three cases can occur:

(1) f is a Taylor series (an = O for all n < 0):
The origin is a removable singularity.

(2) f has finitely many coefficients an # O for n < 0:
The origin is a pole.

(3) f has infinitely many coefficients an # O for n < 0:
The origin is an essential singularity.

If the origin is a pole of f, its order is the smallest integer m > 0 such that
xm f is a Taylor series (has a removable singularity at the origin). In the case of an
essential singularity, the analogue of a classical result of Picard is valid.

Proposition. Let f have an essential singularity (at the origin). Then there are
infinitely many critical radii r, \ 0, and for each E > 0, y E C p, the equation
f (x) = y has infinitely many solutions 0 < Ix I < E.

Proposition. Let f be a Laurent series with r f = 0 and rf = oo. Then

(a) if f has no zero in CP, f is a single monomial;
(b) if f has only finitely many zeros in Cp,

then f is a polynomial in X and X -t ;
(c) f is given by a Weierstrass product

.f (X) = CXm - {J _>i(1 - X/ )"t . Hifi<t(1 - /X)`'
extended over the roots l; of f = 0,
vt denoting the multiplicity of the root l; .

Example: Theta Functions. Choose an element q E Cp with 0 < Iq I <
Consider the product

ei(X)=fl(1-gnX)fl
n>O
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which converges in the annulus 0 < Ix I = r < oo. Obviously,

01(q-'X)=-X 01(X).
q

If we define more generally Oa (X) = O 1 (a-'X) (a E Cn ), then we have

0a(q-'X) X E)" (X).
aq

Products of such theta functions satisfy functional equations of the form

0(q-'X) = C(-X)d . O(X).

These functions are used for the construction of the Tate elliptic curves.

3. Rational Functions

Functions defined by convergent power series expansions are defined in a ball.
Unfortunately, as we have seen in (2.4), it is impossible to obtain an analytic
extension of such a function by looking at the expansions at different points of
the ball of convergence: The radius of convergence does not change, so the ball of
convergence is the same. Any point of a ball is a center of the ball, and there is no
way of defining "points near the edge."

On the other hand, we like to consider rational functions (quotients of poly-
nomial functions) as analytic functions outside their set of poles (zeros of their
denominators). These functions can be expanded in power series in each ball con-
taining none of their poles. More generally, uniform limits of rational functions
will play a role similar to the analytic functions in complex analysis: They are the
"analytic elements" introduced by Krasner.

3.1. Linear Fractional Transformations

A linear fractional transformation is a rational function

ax +bxH f(x)=cx+d

where ad - be 0 0. The coefficients are taken from a field K, and a linear fractional
transformation defines a map

f:KUloo) -->KU{oo}.

The space K U {oo} = P'(K) is the projective line over K: Its elements are the
homogeneous lines in K2, represented by quotients

x
- = [x : y] = class of pairs proportional to (x, y).
y
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When c = 0 (a and d 0), we get an affine linear map

When c¢ 0,

ax H ax +
b
d = ax + b' (a 0).

d

ax + b l / ad 1

f(x) cx+d c a+(b c) x+d/c]
Typical examples of linear fractional transformations are

(a) translations x H x + b,
(b) dilatations (or homotheties) x H ax,
(c) inversion x -* l /x.

The preceding formula shows that these particular linear fractional transformations
generate the group of all linear fractional transformations.

A good description of linear fractional transformations is supplied by 2 x 2
matrices: To each such invertible matrix we associate the linear fractional trans-
formation having for coefficients the entries of the matrix

g=\a bc d) cx+d

Composition of linear fractional transformations corresponds to matrix multipli-
cation: The above correspondence is a homomorphism from the group G12(K) of
invertible 2 x 2 matrices with entries in K to the group of automorphisms of the
projective line P' (K) = K U fool. The kernel of this homomorphism consists of

the nonzero multiples of the identity matrix 12 (scalar matrices) (0 Q I = a .12

(a # 0), namely the center of G12(K). Hence there is an isomorphism

PG12(K) = G12(K)/(K" 12) -* Aut (Pr(K))-

Here are representative matrices for the three types of linear fractional transfor-
mations listed above:

(a) The matrix p

(b) The matrix (0

(c) The matrix I

b1`
produces the translation x H x + b.

0
produces the dilatation (or homothety) x H ax.

) produces the inversion x i-+ 1/x.

H f (x) = ax + bg

Proposition. Let K be an ultrametricfield. Then the image of a ball of K under
a linear fractional transformation is either a ball or the complement of a ball.
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PROOF Affine linear transformations send an open (resp. dressed) ball to an open
(resp. dressed) ball. The formula

ax+b 1 1

f(x) cx+d c
a+(b-ad/c)x+d/c]

(when c A 0) shows that a linear fractional transformation that is not an affine
linear map is nevertheless composed of such transformations and of an inversion.
It is thus sufficient to prove the statement for the inversion. Consider, for example,
the ball B<r(a) and its image B' by inversion. If the origin belongs to B<r(a),
then this ball coincides with B<r = B<r(0) and its inverse is the set defined by
lxl > 11r, i.e., the complement of the ball B<ijr(a). Otherwise, lal > r, and for
X E B<r(a),

lx - al < r, lxl = la + (x - a)l = lal,

so that

a-x
xa

la - xl r
lal2

< lal2

This proves that the image of the ball B<r(a) under inversion is contained in the
ball B<r,1a12(1/a). Since the same argument shows that the image under inversion
of the second ball must be contained in the first one, we conclude that the inversion
is a bijection between these balls. A completely similar proof holds for closed balls
instead of open ones (alternatively, one can use the relation B<r(a) = n,>r B<S (a)
between closed and open balls.) Hence we have

f(B<r(a)) = B<r,1a12(1/a) if at > r,
f(B<r(a)) = B<r1Ia12(1/a) if lal > r,

f((x:lx-at=r})=(y:ly-l/al=r/lal2} iflal>r.

The image of a ball is called a generalized ball: A complement of a ball of K is
identified to a ball of P1(K) containing the point at infinity; note, however, that in
general two such generalized balls satisfy no inclusion relation. The analogy with
the classical complex case is striking. Indeed, recall that in C a linear fractional
transformation preserves the family of generalized circles (circles and straight
lines) and the family of generalized disks (disks, half planes, and complements of
disks).

3.2. Rational Functions

Let us review a few elementary algebraic facts concerning rational functions having
coefficients in an algebraically closed field K. Let f E K(x) be a rational function
and write f = g/h with two relatively prime polynomials g and h, h being
monic. We say that f is regular at the point a E K if h(a) 0 0. In this case,
f (a) = g(a)/h(a) is well-defined, and the numerator of the function f - f (a)
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vanishes, and hence is divisible by x - a. This shows that if f is regular at a,we
can write

f = f (a) + (x - a) f(i)(x), f(1) rational, regular at a.

Iterating this construction for f i), we obtain a second-order limited expansion of
f . By induction, we see that for any integer m > 1,

f =ao+at(x -a)+...+a,n_t(x +(x -a)mftm>,

where f(,,,) is rational, regular at the point a.
We say that f 0 0 has a pole of order m > 0 if the denominator h has a zero

of order m at the point a (hence g(a) 0 0, since g is prime to h). In this case, we
write h(x) = (x - a)mh1(x), h1(a) 0 0; hence

g __ I gf __
(x - a)mhi (x - a)m fi, fi = hi regular at a.

If we write the above expansion for fl, we obtain

f =
1

(x-a)m
(ao+at(x-a)+...+am_1(x-a)m-'+(x-a)mf)

_ ao a, am_i +f_

(x -a)m + (x -a)m-1
+...+ x-a PQ \x -a +f

with a polynomial Pa of degree m and zero constant term. The rational function

P. ( I
) = ao + + am-t

x-a (x - a)m x -a
is the principal part of fat the pole a. It is uniquely characterized by the properties

Pa is a polynomial with zero constant term,

f - P. is regular at a .x-a
The order of f # 0 at the point a E K is by definition

ordaf = ordag - ordah E Z.

This integer is positive if f (is regular and) vanishes at a. negative = -m if f has
a pole of order m at a.

Consider the finite set (ai} = (a E K : h(a) = 0} of poles off = g/h and
; is a rationalthe respective principal parts Pi ( a_) of f. Then f - i Pi (x ax

function that is regular everywhere: It is a polynomial, and we have obtained the
decomposition

+ P, (Pc. E K[x}).
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One way to obtain this decomposition is to start with the Euclidean division algo-
rithm for polynomials,

g = PPh +gi, deg g1 < degg.

Then

f
h

ht+P. (P.EK[x]).

If degg > deg h, then deg Poo = deg g - deg h; otherwise, Pa, = 0. The well-
known partial fractions expansion for the first term leads to

gt 1

h YP'(X C1)

The particular rational functions

1 x' (aEK,m>O,n>O)

generate the K-vector space K(x). Since they are also independent, they make a
vector space basis of K(x).

If K is a valued field, we have

P. 0 (Ixl --* oo),

P.
( 1 )I --+ cc (IxI a).x-a

With the previous notation

f(x) = E Pa ( 1 ) + Poo(x),
h(a)=O x - a

- *0 IxI-a00

we see that

If (x)I -# 0 when IxI -a oo Po(x) = 0,
If (x)I is bounded when IxI - - cc Po(x) is constant,

If(x)I-* oowhenIxI -+oo degPo(x)>0.

Let us now specialize to K = Cp, algebraically closed and complete. We can use
the binomial series expansion: For a 0 0, m > 1,

m

(x -a)m (-a)m \1 a/
n

= E (_l)m+n
am+n (IxI < lal)

n>0
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(a Taylor series),

l _ 1 Q -m1--
(X - ay; X-m \

X

_ E (_I)n (
n ) Xm+n

(Ixl > lal)
n>0

(a Laurent series). In particular, in any region r1 < lx I < r2 containing no pole of
f, we can choose the first type of expansion for the principal parts corresponding
to poles Jai I > r2 and the second type for the principal parts corresponding to
poles JaiI < r1. We obtain Laurent series expansions (1.7) (and (2.6)).

Proposition. Let f E Cp(x) be a nonzero rational function and Jai } its set of
poles. Then f admits three types of Laurent series expansions:

(a) -m<n<co anxn (0 < IXI < minfaiI : ai 0}),

(b) F_-oo<n<manxn (max{IaiI : IaiI < r} < lxI < min{lail : Jail > r}),
(c) J-oo<n<Nanxn (IXI > max{IaiI})

PROOF In the first case (a), if f has a pole at the origin, then m is its order. Let us
consider only the case (b). If r > 0 is fixed, group the principal parts corresponding
to poles in the closed ball lx I < r. For each individual monomial in these principal
parts, a multiple of some I /(x -ai)m, choose the Laurent expansion that converges
for Ix I > Jai I. Any linear combination of these expansions converges at least for
IxI > max{IaiI : IaiI < r}. Group similarly the principal parts corresponding to
the poles Jai I > r, and choose the Taylor series for the corresponding monomials
I /(x - ai )m: Their linear combination converges at least for Ix I < min{ Iai
Jai I > r}. Adding these two contributions, we get a Laurent series as announced
Observe that since a Laurent series defines a continuous sum in its open annulus
of convergence, this region cannot contain a pole of the sum, whence the precise
estimate for the radii limiting its region of convergence. 0

3.3. The Growth Modulus for Rational Functions

Let us say that a radius r > 0 is regular for a rational function f = g/ h E Cp(x)
(g and h relatively prime polynomials) when it is regular for both g and h, hence
when g and h do not vanish on the sphere lxI = r of CPI Hence, when lxI = r is
regular for f = g/ h,

Ig(x)I = Mrg, lh(x)l = Mrh, and If(x)I = M'h.

Lemma. Let f = g/ h c Cp(x) and define Mr f := Mrg/Mrh for real r > 0
This expression is well-defined independently from the particular representation
off as a fraction g/ h, and r H Mr f is continuous on R>o. For each regular
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r > 0, 1f(x)1 = Mr f on the sphere I x I = r. In each region where f has a
Laurent series expansion, Mr f coincides with the growth modulus as defined
in (2.6).

PROOF. If f = g/h = gt/hl. then ghl = glh Ig(x)hl(x)I = Igl(x)h(x)l implies

Mrg - Mrhl = Mrg1 - Mrh

first for the regular values r (of g, h, gj, and h 1, i.e., of the product ghgt h 1),
and hence also for all values r > 0 by continuity. This proves that Mrg/Mrh =
Mrgt /Mrh 1. The other assertions of the lemma are obvious.

Considering the previous results, we shall simply denote by Mr f = Mrg/Mrh
the growth modulus of a rational function f = g/ h.

Mr ((x-1)/(x-P))

1/r

1/p 1 r
pole zero

Growth modulus for a linear fractional transformation

Observe that for a nonzero rational function f, Mr f > 0 for r > 0. When a radius
r > 0 is not regular for the rational function f = g/h, we say that it is a critical
radius: f has some poles and/or zeros on the sphere Ix I = r. Denote as before by
Jai} the poles of f and introduce its set (iBj } of zeros.

Theorem. Let f = g/ h E C p(x) be a rational function. Then we have:

(a) If f is regular at the origin, then r F+ Mr f is
convex increasing on the interval0 < r < min[ Jai 11.

(b) If f has no pole in the region r1 < Ix I < r,, then
r H Mr-f is convex in the interval r, < r < r2.

(c) If deg g < deg h, then r i Mr f is decreasing for r > max{ Jai 1).

(d) I f(x)I = Mrf = crdegg-degh for lxl = r > max(lai 1, JP,l}-
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PRooF. (a) and (b) follow from the lemma and (1.4). For (c) and (d), observe
that for any polynomial P of degree d, Mr P = lad l rd when r is bigger than the
absolute value of all roots of P. Apply this to P = h to obtain (c), and to both g
and h to obtain (d). a

Example. Consider the rational function

x
f (X) = I - x2 E CP(x),

which has a simple zero at the origin and two poles on the unit sphere. For Ixl <
we have 1 1 - x2l = 1, while I1 - x21 = Ix 12 for IxI > 1. Hence

IxI if Ixl < 1, Ir if r < 1,
If(x)1 =

1/IxI if Ixl > 1,
Mrf r-t if r > 1.

1

Proposition 1. Let f = g/h E Cp(x) be a rational function and let Sr be the
sphere {x : IxI = r} of radius r > 0. Then:

(a) If f has no pole on Sr, then 1 f(x)I < Mr f (x E Sr).
(b) If f has no zero on Sr, then If (x) I > Mr f (X E Sr).

PROOF. (a) If a critical sphere Sr (r > 0) contains no pole of f , its denominator does

not vanish on this sphere and r is a regular value for the denominator: I h(x)l = Mrh
is constant on Sr,

if W1 = lg(x)I < M g = Mrf (IxI = r).Mrh - Mrh

(b) Replace f by 1/f.

If f has a zero p E Sr, then by continuity, If I takes arbitrarily small values in
a neighborhood B<,(P) of P. Such a neighborhood is contained in the sphere Sr
as soon as s < IPI- Hence I f I takes arbitrarily small values on the sphere Sr. The
same holds for 1 If if f has a pole a E Sr. If f has both zeros and poles in Sr, this
shows that If I takes arbitrarily small and large values on this sphere. This will be
made more precise in the next propositions.

Proposition 2. Let f = g/h c CP(x), Sr as before and consider an open ball
D = B<r(a) of maximal radius in the sphere Sr (hence IaI = r). If f has no
pole in D, then

Mrf =SUP If W1 := If IID-
xED

PROOF. For s > r = lal, the spheres Ss and S,(a) = {x : Ix - al = s} coincide.
Hence M, f = Ms.,,f (growth modulus with respect to the center a): This is
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obvious for regular values of s and by continuity also for all values s > r. This
proves

Mrf = Mr,af

Since f is regular in the ball D, its growth modulus Mt.a f (with respect to the
center a) is an increasing function oft < r. By the maximum principle (2.5) for
balls,

Mt,af = sup If(x)I (t < r),
lx-a1<t

and by continuity of the function t H M,,,, f,

Mr,a f = sup Mt.a f = sup sup I f (x)I
t<r t<r Ix-aj<t

SUP If(x)I = IIfIID-
ix-al<r

Observe that since we work with the field CP, having an infinite residue field,
a sphere Sr of positive radius is a disjoint union of infinitely many open balls of
maximal radius r, so that it is always possible to choose a ball D = B<r (a) without
pole of f as in Proposition 2.

Proposition 3. Let f = g/h E Cp(x) be a rational function, Sr as before.
Then:

(a) If f has no pole on Sr, then Mrf = sup,.,,,-, If (x)I.
(b) If f has no zero on Sr, then Mrf = infx1=r If (x)I.
(c) If f has both zeros and poles on Sr, then

If (x) l assumes all values of IC,,! on x E Sr.

PRooF. Observe that if f has no pole and no zero in Sr, then r is regular and
If(x)I = Mrf is constant on Sr. Now (a) follows from Propositions 1 and 2. For
(b), replace f by 1/f and apply the previous result.

(c) Choose a pole a c Sr and a zero 8 E S, with

la - 61 = min la; -,8j I := S

(minimum taken over the zeros 6j and poles a; in Sr). Then

M5.af = M,s.6f (s > S),

since the spheres of radius s > S and centers a (resp. ,B) coincide. By continuity,

MB.af = Ms.flf := M.

Now, for each y E Cp, IyI < M, f - y has a critical radius r < S and f(x) = y
has a solution x E B<s(,B) C Sr. Similarly, for each y E Cp, IyI > M, f (x) = y
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has a solution x E B<b(a) C S, (consider 1/f ). Finally, as in (2.6), f also assumes
some values y = f (x) where Iyi = M.

3.4. Rational Mittag-Leffler Decompositions

Recall that we denote the complement of a set B C Cp by B` = C p - B.

Proposition 1. Let 0 0 f = g/ h E Cp (x). Assume deg g < deg h and that
f has all its poles in a ball B = B<a for some a > 0. Then for any subset D
disjoint from B, II f II D < II f II B' = Maf . If D = B<a (a) is a maximal open
ball in the sphere IxI = a, then

IIfIID = IIftiB1 = Maf

PROOF. Since f has all its poles a; in B, we have a p = maxi I ai I < or and

If(x)I < Mlxlf (IxI > ap).

On the other hand, since deg g < deg h, the growth modulus Mr f decreases for
r>ap,

If(x)I < Maf (Ixi > a),

and for D C B` we have

IIfIID<llfiinr<Maf

Taking a sequence x E B` with regular r = Ix,, I \, a, so that I f (x/1)l = M n f
Maf , we see that II f II B- > sup,, I f (x,, )I = Maf . Finally, if D = B<a (a) is a
maximal open ball in the sphere IxI = a, then Proposition 2 of (3.3) shows that
II f II D = Maf , since f has no pole on Ix I = a. 0

Observation. The last step of the preceding proof, it f II D = Ma f , requires only
that we find a sequence (x,,) in D with regular r,, = Ix,, - aI / a, so that

If(xn)I = Mr,,.af _* Ma.af = Maf,

IIfIID >- suplf(xn)I limIf(xn)I = Maf

This will be essential for generalizations (cf. Proposition 2 in (4.2)).

If f = g1 h E Cp(x) is arational function and a > 0, we can group the principal
parts corresponding to the poles a; of fin the open ball B = B<a:

fB(x) = Y, Pr

10,1<U



tip

3. Rational Functions 331

We can apply Proposition I to In, since this function has all its poles in B. The
growth modulus Mr fB is decreasing for r > a:

II fB II D =SUP I fB(x)I < Ma fB (D C Bc).
XED

Proposition 2. Let f E C p(x) be a rational function and let fB be the sum
of the principal parts off corresponding to its poles in B = B<a. If D is a
maximal open ball B<a(a) in the sphere IxI = a and D contains no pole of f,
then

IIfBIID = MafB < Maf = IIfIID-

PROOF We may assume fB # 0 and let us introduce fo := f - fB E Cp(x),
which is regular in B (but may have poles in the sphere Ixl = a). Hence

r H Mr fo is increasing (may be constant) for r < a.

On the other hand, Mr fB decreases (strictly) beyond

ap :=maxi laI :aisapole of f in B) <a.

There is at most one crossing point of Mr fo and Mr fB in the interval (O-p, G r). Hence

Mrfo Mr fB with at most one exception r E (o-p, a). For all regular values (all
except finitely many), these Mr represent absolute values of the corresponding
functions where in a sum, the strongest wins:

MrfB < max(MrfB, Mrfo) Mr(fB + fo) = Mrf (ap(fn) < r / a).

Taking an increasing sequence of regular values r / a, we conclude that

Ma fB < Ma f

Finally, by Proposition 2 of (3.3) we have Ma fB = II fB II D, Ma f = II f II D- 9

Let us go one step further and group the poles of f in a finite number of balls.

Theorem. Let B; = B<a,(a,) (1 < i < £) be a finite set of disjoint open balls
in the closed ball B<r and define D = B<r - 111<i<j B,. Let f E Cp(x) be
a rational function regular in D, f, = fB, the sum of the principal parts of f
corresponding to its poles in B, (1 < i < .f). In the canonical decomposition

f=fo+Ef=Yf,
1<r<e o<,<t

where fo is regular in B<r, we have

IIiIID =o ax IIfilID.
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PxooF. As in (3.3) (Proposition 2) we can select open balls Di of maximal radius
ai on the spheres Ix - ai I = Qi (1 < i < f) and containing no pole of f .

Mittag-Leffler decomposition of a rational function

By Proposition 1, the inclusions Di C D C Bi lead to the same sup norms

IlfillDi = IIfillD = ILfiIIB,

By Proposition 2, we have II fi II Di 5 II f 11 D, (i > 1), hence

IIfillD = IlfillDi < IIfIID <- IIfIID (1 <.e)-

Now the competitivity principle (11. 1.2) in f - fo - Yt <_i <e fi = 0 shows that we
have

Iif IlD = Max Ilfi IID-o<, <e

Note that for the regular part fo of f in B<r we have

IIfoIID = sup Ifo(x)I = max Ifo(x)I = sup I fo(x)I
IxI<r lxl-r Ix-bl <r

for any IbI = r. On the other hand, if deg g < deg h, f = g/h -* 0 (IxI -- 00),
we find that fo = 0, so that we also have

IIfIID= SUP IIfillD
1<i<e

for the unbounded domain D = C p - 111<i<t B.
Let us introduce the following notation for any subset D of Cp:

R(D): ring of rational functions having no pole in D,
R0(D) C R(D): subring defined by If (x) I -+ 0 when lx1 -a oo.
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For any open ball B and any D disjoint from B, we can look at

R(D U B) ') R(D) -> R0(B).

The first map is the restriction f r-> f ID (injective as soon as D is infinite), while
the second is f H fB (principal part of f in B). This second map is surjective
and admits a section fB H fB I D also given by restriction. If a rational function is
regular on D U B and on B`, i.e., regular everywhere, then it is a polynomial. If
moreover it tends to 0 (when Ix I -+ co), then it is 0:

R(D U B) fl Ro(B`) = {0}.

Hence the preceding sequence is a short exact sequence: It splits

f = fo + fB H (fo, fB) : R(D) - R(D U B) ® R0(B`).

More generally, with the notation and assumptions of the theorem,

0 - R(B<r) r- R(D) -* ® Ro(Bi) 0
1 <i <t

is a split short exact sequence (the case £ = 1 is as in the previous example). The
section of f H (fi)t<i<P furnishing the splitting is (fi),<(<P H Y-1<« LID,
Indeed, the difference f - Y_ 1<i <1 fi I D extends to the regular fo E R(1<,). All
these maps are linear and contracting; hence

R(D) = R(B<r) ®® Ro(B)
1<i<

is an isomorphism of the normed space R(D) with a direct sum of normed spaces
over Cp (IV.4.1).

3.5. Rational Motzkin Factorizations

It is easy to give a product decomposition for rational functions quite similar to
the sum decomposition given in the preceding section. Let B C Cp be an open
ball and f = g/ h E Cp (x) a rational function having all its zeros and poles in B:

S = {a E Cp : g(a)h(a) = 01 C B.

Hence f = c ]-[QES(x - a)' (µa E Z, C E Cp ). Choose b in B and write

Observe that

Ix-al_1 (xVB)
Ix -bl
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More precisely,

x -a =1+b-a Ix-a
x-b x - b' x-b

<I (a E S),
Bc

fi
aES

<1 (xVB),

x - a
- I <1.

x-b
BC

This gives a factorization

f (x) = c(x - b)mh(x),

where

m = (number of zeros - number of poles) of f in B,

and

Ilh - 11IB< < 1, h(x) -> 1 (Ixl -> oo).

If we take another center b in B, we shall have

f (x) = c(x - b)mh(x)

with

h-(x-b)mh.
1\x - b

In particular, we see that c and m are independent of the choice of center of B (but
h depends on this choice). The integer m is called index off relative to the ball
B. Asymptotically,

f (x) - c(x - b)'a (IxI -> oo).

We can formulate a more general result when the zeros are located in a finite union
of balls. Let r > 0 and let

Bi = B<a,(bi) C B<r (1 < i < f)

be a finite set of disjoint open balls contained in B<r (0 < O-i < r, IbiI <_ r).

Consider the domain

D=B<r - Ll Bi.
1<i<t

The next three propositions concern rational functions f that are units in the ring
R(D): Neither f nor 1/f has poles in D, i.e., f has neither zero nor pole in D.

Proposition 1. Any f E R(D)" can be uniquely factorized as

f = fo fl f (Motzkin factorization),
1<i<e
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where fo E R(B<r)" and for 1 < i < f

fi = (x - bi)m'hi c R(B, )X, !1hi - I JIB; < 1, hi (x) -* 1(Jx! -* oc).

PRoor. The only possibility consists in collecting the zeros and poles of f in Bi
and defining fi as the product of the corresponding factors (x - a)r`- (a E Bi,
ha E Z positive for zeros and negative for poles of f). With fo = f/ H1<i<e fi
all requirements are satisfied.

As before, the difference in, between the number of zeros and poles of f in Bi
(taking multiplicities into account) is the index of f with respect to Bi. With any
choice of center bi of Bi, the Motzkin factor fi of f relative to Bi satisfies

JJhi - IIID=
fi

(x - bi )m;
-1 < -1

11

fi

D (x - bi )m; 11 B`

< 1.

Proposition 2. Assume 11 f - 111D < 1. Then f has as many zeros as poles in
each ball B, C D`.

PROOF The assumption implies If (x) - I I < 1 for all x c D, hence If (x)t = I
is constant in D. Consider a ball Bi and consider the growth modulus centered
at bi E Bi. Without loss of generality, we may assume i = 1. bi = 0, since b,
is also a center of the ball B<T- Since D contains a maximal open ball Di of the
sphere Ix I = Q, := a having no pole off - 1 (in fact infinitely many such balls),
Proposition 2 of (3.3) shows that

Ma(f-1)=IIf-111D, <IIf-111D<I.

Motzkin factorization of a rational function
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By continuity of the growth modulus, we have M, (f - 1) < I for all t close to a.
For regular values of t < o- close to a we have

I f(x) - 11 = Mt(f - I) < 1 = I f(x)I = 1 (Ixl = t).

Hence M, f = 1 for t / a. But our study of Laurent series has shown (3.3) that
fort < or close to or, M, f = tm, where in is the difference between the number
of zeros and poles of f in B1. Hence in = 0, as asserted.

Under the assumptions of the preceding proposition, if f has some zeros in Bi,
it also has some poles in this ball, and we can look at the principal part Pi f of f
in Bi (3.4).

Proposition 3. If 11 f - 111 D < 1, then the principal part Pi f off relative to
the ball Bi and the Motzkin factor fi = hi defined in Proposition 1 are related
by

IlPifllD = llfi -1IID (1:i:).

PROOF. Let S denote the set of zeros and poles of f, and let f = fo - {Ji<i<e f be
the Motzkin factorization of f. By Proposition 2, we have

(:I:.i'= 11
aEsnB;

Hence wi = fi - 1 is a rational function that is regular outside Bi and tends to 0
when lxI oe: wi is a sum of principal parts of poles in Bi. Moreover,

IIWliD<IIwillB, <L

Similarly, fo = c(1 + wo), and replacing f by f/c (hence fo by fo/c) we may
assume c = 1. Let us compare the additive and multiplicative decompositions

f =Pof+ Y' Pif = fl (l+wj)=(1+wi) Fl(1+wj)
1<i<f o<j<f jai

1 +>G, regular in B,

with II Y'i 11D < 1. Hence

f = (1 + *i) + wi(1 + >//i),

and the principal part Pi f of f relative to the ball Bi is also the principal part of
wi(1 + Vi):

Pif = Pi(wi +wi11i) = wi + Pi(w1Y/i)- (*)

By the rational Mittag-Leffler theorem (3.4),

IIPi(wiki)IID <- IIwiY'iIID < IlwillD,
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and in (*) the first term is dominant:

3.6. Multiplicative Norms on K(X)

When r > O is fixed, the growth modulus Mr(f) (1.4) defines an absolute value, in
other words a multiplicative norm, on the field K(X) of rational functions having
coefficients in an extension K of Qp. Other norms of the same type are obtained
if we consider a E K and consider the growth modulus centered at the point a:
For a rational function f regular at a, having a power series expansion

f(x) = Ean(a)(x -a)n (jx -aI <rf),
n>0

Mr,a(f) sup larv(a)l rn (r < rf).
n>0

When I K I is dense in R>0, the maximum principle (2.5) shows that

Mr,a f = Sup If(x)I = SUP If(x)I (f E K[X]);
Ix-al<r Ix-al<r

hence Mr,a f = II f lI B is the sup norm on the ball B = B<r (a) when f is a
polynomial. Since a multiplicative norm on K (X) is completely determined by its
values on K[X], we deduce that the following properties are equivalent:

(i) Mr,a = Mr,b; (ii) B<r(a) = B<r(b); (iii) Ia - bI < r.

When the field K is algebraically closed, a multiplicative norm is completely
determined by its values on linear functions. As we have seen, for a linear function

we have

Mra(X - ) = suP(I - al, r) (r > 0).

When varies in K we have Mr.a(X - t) > r and hence

inf Mr,a(X - t) > r.
fcK

In fact, this inequality is an equality: Take E K with I - al < r.

Proposition. Let K be an algebraically closed, spherically complete extension
of Qp. Then any absolute value 1lr on the field of rational functions K(X) that
extends the absolute value of K is of the form Mr,a for some a c K and r > 0.

Koor. By (11. 1.6), the absolute value 11! is ultrametric. We are looking for a ball
B = B<r(a) leading to

//(X-)=Mr,a(X-0=11X-01B
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Let us consider

r = inf *(X - %).

(1) If this is a minimum, take a E K such that ;ti(X - a) = r. Then

r < z r(X sup(z r(X - a), lfi(a - ))
=r =1g-al

If Ii - a I r, this is an equality

-aI)=Mra(X-)
If a r, the preceding inequality gives

r < zfi(X - ) < sup(r, r) = r;

hence *(X - ) = r = sup(r, I& - aI) = Mr,a(X - ). This proves
(2) In general, take a sequence

i/i(X - an)=rn \ r (n > 0).

As we have seen,

- = Mr,a

r < '{!i(X - ) < sup(*(X - an), fr(an - )) = Mr,,,aJX - )

Hence

r < l1r(X lnm E K),

< lim inf Mr,,,a, .
n- 00

If 1r(X - i;) > r, then l1'(X - ) > rn for all large n, and by (1),

r<11i(X- (n > N)

proves that

V1 (X - ) = lnminfMr.,,an(X -

If there is a i E K with Vr(X - ) = r, we are brought back to the first case already
treated.

(3) Let us study lim infn,00 M,,,,, (X - t). Consider the inequality

rn+1 = t*i(X - an+1) < sup(rn, Ian+l - an I) = an+l)-

If rn 0 Ian+1 - an 1, then rn+1 = sup(rn, Ian+1 - an 1) > rn. Since we suppose
on the contrary rn+i < rn, there is a competition rn = Ian+t - ant. Define the

sequence of balls Bn = B<r,,(an) (n > 0). We have just proved that

Bn+1 C B. (n > 0).
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Since the field K is spherically complete by assumption,

B=nBn o,
n>O

and any element a in this intersection is a possible center of the ball B = B<r(a):

-i;) = lira IIX - IIB = IIX - IIB = MT,a(X -0-
n-* oo n-> co

This concludes the proof.

4. Analytic Elements

Since analytic continuation cannot be achieved by means of Taylor expansions in
p-adic analysis (cf. (1.2)), another procedure has to be devised. It was Krasner's
idea to mimic the Runge theorem of complex analysis: A holomorphic function
f defined in a domain D of the complex plane C can be uniformly approximated
by means of rational functions. More precisely, for each compact subset C C D,
choose A = {a; }, E f with one point in each connected component of the comple-
ment of C in the Riemann sphere. Then f can be uniformly approximated on C
by rational functions having all their poles in the set A.

We shall adopt this point of view here, and we start by a discussion of the
domains of CP in which the idea of Krasner can be carried out. For simplicity, we
shall limit ourselves to bounded analytic elements.

4.1. Enveloping Balls and Infraconnected Sets

Let D be any nonempty subset of the field CP. Its diameter is defined by

S=S(D)= sup Ix - yl=supIx - al <oc (aED).
x,yED xED

The closed ball

BD := B<s(a) (a E D)

is called the enveloping ball of D (if D is unbounded - i.e., S = oe - we take
BD = Cp). It is the intersection of all closed balls containing D and hence the
smallest closed ball containing D. When D is closed and bounded,

a ECP-Dar=d(a,D)= inf Ia-xl>0,
XED

and the open ball B<r(a) is a maximal open ball in the complement of D. Each
maximal open ball of BD - D is called a hole of D. The preceding observations
show that any closed bounded subset D has a representation

D=Bo-JJB,, where BD=DUJJB;

with (possibly infinitely many) holes B; = B<r,(ai).
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Examples. (1) Let D = B<1 be the open unit ball. Then BD = B<t, and the holes
of D are all the open balls B<1(a) contained in the unit sphere (lal = 1).

(2) If 0 < r V ICpI, we have B<r(a) = B<r(a), and this set coincides with its
enveloping ball (it has no hole).

We shall be interested in a special class of closed bounded subsets.

Definition. A subset D C CP iscalledinfraconnected if itsdiameter8 is positive
and for each a E D

11x - al : x E D} is dense in [0, 81 C R>o.

In other words, D is infraconnected when for all pairs of distinct points a zA
b E D, all annuli

{xECP:r1 <Ix - al < r2} (0<r1 <r2<lb-al)

meet D. In particular, if D is infraconnected, it has infinitely many elements.

Infraconnected sets

Lemma. Let D be an infraconnected set. Then for each c E CP,

I,: =[Ix-c( :x ED)

is dense in an interval of R.

PROOF. (1) If c = a E D, by definition {jx - al : x E D} is dense in the interval
[0, 3], where S is the diameter of D.
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(2) If c V D is at a distance r < 8 of D, we have to prove

Ic = {Ix - cl : x E D} is dense in the interval [r, 8].

There is nothing to prove if r = 8. Otherwise, choose a E D with I c - a l < B.
Since 8 = supbED Ia - bl, we can choose b c- D with Ic - al < la - bl < 8.
Hence

r<Ic-al < la -bI = Ic-bl <8

(make a picture !). The annuli of inner radius r1 > J a - cI having center a or
c coincide. If we select any outer radius r2 > rl, r2 < I c - b l = I c - al, the
corresponding annulus meets D, since this subset is infraconnected.

(3) Finally, if D is bounded and c E Cp is not in the enveloping ball of D, D is
contained in the sphere Ix - cl = d(c, D) > 8 centered at c and Ic is an interval
reduced to a point.

Examples. (1) Let 0 < r1 < r2 < oc. Then the annulus r1 < Ix - a I < r2 is
infraconnected. But the complement of this annulus is not infraconnected. The
complement of a sphere in a ball is infraconnected. For example, the subset lx 10
I/p of the unit ball B<1 is infraconnected.

(2) The compact subset Zp C Cp is not infraconnected.
(3) Let (Bi)1<i<e be a finite family of disjoint open balls contained in B<1. Then

D=B<1- u Bi
1 <i <e

is infraconnected, and the holes of D are the open balls Bi (a more general class
of examples will be given below).

Proposition. Let (Bi)i>o be a sequence of disjoint open balls contained in the
closed unit ball B<1. If the sequence of radii ri tends to 0, then

D=B<1-UBi
i>O

is an infraconnected set. Its enveloping ball is BD = B<1.

PROOF. Let us recall the following fact (systematically used in the proof):

Any nonempty sphere of radius 0 < p < I is a union of infinitely
many open balls of equal radii < p.

Let us order the radii of the balls Bi in strictly decreasing order

r'>r">r">...\0.
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By assumption, there are only finitely many balls Bi of any given radius in this
sequence. There exists an open ball B' C B<t of radius r' and disjoint from
the finite number of balls B" having radius greater than or equal to r'. In this
ball B' we can find an open ball B" of radius r" disjoint from the finite number
of balls B" having radius greater than or equal to r" (and < r'), etc. We can
construct a sequence of clopen balls B' D B" 1 B' - - - having radii (diameter)
approaching 0. Since the field Cp is complete, the intersection B' fl B" fl B"' - . . is
a common point and is not in the union of the sequence (Bi)i>o. This construction
shows that B<1 - U Bi is nonempty and has infinitely many points. The proof
that it is infraconnected follows from the observation that at each step of the
above construction, we can choose the ball B(') in any given nonempty sphere of
prescribed radius > 0).

4.2. Analytic Elements

As in (3.4), let R(D) denote the ring of rational functions having no pole in D:

R(D) = If = g/h : g, h E Cp[X], h having no zero in D}.

Definition. Let D be a closed subset of C
P1

A function f : D -* C p is an
analytic element if it is a uniform limit of a sequence of rational functions
f" E R(D).

The analytic elements on D make up a vector space H(D), which is a uniform
completion of R(D). However, note that in general an f E R(D) can be an
unbounded function on D, so that R(D) is not a metric space. Let us start with the
important case where it is a metric space (in (4.3) we shall show how to treat the
other case).

Proposition 1. When D C C p is a closed and bounded subset, each f E R(D)
is bounded on D, and H(D) is the closure of R(D) in the Banach algebra Cb(D)
for the sup norm.

PROOF. Recall (3.2): The functions

(x-a)'" (n>0, a0 D, m>1)

constitute a basis of the vector space R(D). When D is bounded, the functions x"
(n > 0) are bounded on D. Moreover, when D is closed and a 0 D, the distance
infXED Ix - a is positive, so that the functions 1 /(x - a)' (m > 1) are also
bounded on D. This proves that all rational functions having no pole on D define
bounded continuous functions D -* Cp, and the same is true for the analytic
elements (IV.2.I). Since the closure of a subalgebra of Cb(D) is also a subalgebra,
the statement follows. 0
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Corollary. The product of two analytic elements on a closed and bounded set
D is an analytic element.

We can now generalize Proposition 1 in (3.4) for infraconnected sets.

Proposition 2. Let D C Cp be a closed, bounded, and infraconnected set.
Assume 0 E BD and let 0 < d(0, D) < r < 8(D). Then

Mrf < IIfAID (f c R(D)).

If the sphere IxI = r meets D, we have, more precisely,

Mrf < IlfllsrnD IIf lAD (f E R(D)).

PROOF. Let or = d(0, D), 8 = 8(D), so that {IxI : x E D} is dense in the interval
[a, 8]. If f E R(D), let us show that there exists a sequence x,, E D with

I f(xn)I = MIx,,I f + Mrf (n -* 00),

so that

IIfIID >- SUP If(xn)I > Jim If(xn)I = M.-f-

First case: D does not meet the sphere Sr = {IxI = r}. Since D is infraconnected
and r E {Ix I : x E D}, we can find points xn E D with Ixnl -* r monotonically.
All except finitely many (that we may discard) are regular, and we have finished
in this case.

Second case: There is a point a E D n Sr (observe that in this case D C Sr may
well happen for r = 8 !). We have Ms,a f = Ms f for s > r, since the spheres
of radius s and respective centers a or 0 coincide. By continuity we also have
Mr,a f = Mr f . By density of the values IX - al (x E D infraconnected) in the
interval [0, 8] we can find a sequence xn E D such that Ixn - aI = rn is regular
f o r f (with respect to the center a), rn / r: Ix, ,I = j a i = r. Hence xn E Sr fl D,

I f (xn) I -+ Mr.a f = M-- ,

IIf1Is,nD SUP If(xn)I > Mrff
n

The proof is complete.

Corollary. Let c E BD where D is a closed bounded infraconnected set, and r
in the interval Jc := closure off Ix - cl : x c- D}. Then the growth modulus Mr,c
(centered at the point c) has a continuous extension to H(D). More precisely,
f F-> Mr,c f is a contracting map

I Mr.cf - Mr.cgI M,,c(f - g) -< 11 f - 9 1ID (f, g E R(D)).
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PROOF. Take a sequence (xn) as in the proof of the above proposition (working for
both f and g) and let n - co in the inequality

If(xn)I - Ig(xn)I I s If(xn)-g(xn)I Ilf -gIID-

Definition. Let D be closed, bounded, and infraconnected:

c E BD, a = d(c, D) < r < S(D).

The growth modulus Mr.c is defined on H(D) by continuous extension of

f F4 Mr,c f : R(D) -> R>0.

For fixed r and c, the growth modulus is a seminorm on H(D). Beware of the fact
that for complicated infraconnected sets D there can be nonzero analytic elements
f on D with Mr.c f = 0: This can happen only when r is an extremity of the
interval [o, 8J. For this more specialized topic involving a discussion of T-filters,
we refer to the recent book by A. Escassut.

4.3. Back to the Tate Algebra

A power series f (x) = En>o a ,,x' with 0 < r f < oo does not necessarily define
an analytic element on B<rf. If it does, this sum is bounded on the closed and
bounded ball B<rj (Proposition I in (4.2)). In the typical case r f = 1, if the l an I
are unbounded, there are infinitely many critical radii less than 1, and the sum
is unbounded: It is not an analytic element on B<t = M. When the lan l are
bounded, both cases can happen. The series En>0 xn = 1/(1 - x) has bounded
l an I (= 1) and is an analytic element on Mp (indeed a rational function with a
single pole at I V Mp). It is more difficult to give an example of a power series
with bounded coefficients that is not an analytic element on MP (a criterion will
be given in (4.6)). When lan I 0, the sum f is a uniform limit of polynomials
(partial sums) on Ap, and we get an analytic element on the closed unit ball. This
simple observation shows that a convergent power series defines analytic elements
on all balls B<r (r < r f).

Theorem. The space H(Ap) of analytic elements on the closed unit ball coin-
cides with the Tate algebra Cp{x} with its norm: for f = L,,>0 anXn,

II f II = sup I f (x) I = sup I an 1.
I.c1<I n>O

PROOF. When Ia I > 1 the series expansion (3.2)

1 1 X -m mtn m xn
(1 - -/ = L (-I)

(x - a)'1
__

(-a)m a n>O n am+n
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converges for Ixl < Ial and a fortiori for IxI < 1: Its coefficients tend to 0:

(_I)m+n Ian+m n
< -* 0 (n -* ao).1

laIn+m

This shows that the space of rational functions without a pole on AP is a subspace of
the Banach algebra Cp{x}. This subspace contains the dense subspace consisting
of the polynomials

Cp[x] C R(Ap) C Cp{x},

and the closure is H(Ap) = Cp{x}.

To be able to speak of analytic elements on the complement of a ball (which is
unbounded) we now approach the case of unbounded domains D, and hence R(D)
is not a metric space. Let us introduce the vector subspaces

Rb(D) := If E R(D) : f bounded on D},

consisting of the rational functions f = g/ h, deg g < deg h, having no pole in D,

Ro(D) := If E R(D) : f - 0 (IxI - oo)} C Rb(D)

consisting of the rational functions f = g/ h, deg g < deg h, having no pole in D.
The Euclidean division algorithm shows more precisely that

R(D) = Ro(D) ® CP[x]

= Ro(D) ® Cp ED xCp[x].

=Rb(D)

A fundamental system of neighborhoods of an fo in R(D) is given by

V5(fo) = {f E R(D) : sup I f(x) - fo(x) I < 8} (e > 0).
XED

In particular, if fo is bounded, then V5(fo) C Rb(D), namely:

v£(fo) nxcp[x] = {o}.

This proves that the topology induced by uniform convergence on xCp[x] is the
discrete one:

R(D) = Rb(D) ® xCp[x]

normed space uniformly discrete

By completion we get

H(D) = Hb(D) ® xCP[x]

Banach space uniformly discrete
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We can also write

H(D) = HO(D) ® Cp ® xCp[x]

and group the last two factors

H(D) = Ho(D) ® C,[x],

but the uniform structure on the last factor is not the discrete one.
When D is unbounded, we shall only use bounded analytic elements and thus

work in the Banach algebra Hb(D) = HO(D) ® Cp. We note that HO(D) is a
(maximal) ideal in this algebra with quotient Hb(D)/HO(D) = Cp (a field).

Let us now treat explicitly the case of the complement of open balls.

Proposition. The bounded analytic elements on Cp - Nip = {ix I > 1) are the
formal restricted power series in 1 /x:

Hb({Ixl > 1}) = Cp{1/x} D HO({IxI > 1}) = x-IC p{1/x}.

PROOF The inversion x i-+ y = I /x transforms bounded rational functions having
no pole in IxI > I into rational functions having no pole in I y I < 1,

Rb({lxl > 1}) = R({IyI < 1}),

and the completion is

Hb({IxI > I)) = H({IyI < 1}) = Cp{y}

by the preceding theorem.

The comments made prior to the proposition prove that the analytic elements
on { IxI ? 1) are given by Laurent series having only finitely many nonzero terms
anx' with n > 0:

H({lxL > 1)) = Hb({lxl > 1}) ®xCp[x] = Cp{1/x} ®XCp[x].

More generally, if B = B<,(a) is an open ball, then

H(Bc) = Hb(B`) ® (x - a)Cp[x - a],

and

Hb(B`) C Cp[[(x -a)-']]

is the subspace consisting of the formal power series

f (x) = an/(x - a)n such that Ian I/rn -> 0 (n -+ oo).
n>O
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Similarly,

Ho(B`) C (x - a)-'Cp[[(x - a)-']]

is the subspace consisting of the formal power series

f(x) = Ea/(x - a)n such that Ianl/rn -± 0 (n -> oo).
n>1

4.4. The Amice-Fresnel Theorem

Let B = 1 + Mp C Cp be the open ball of radius 1 and center 1. We are going to
give a useful description of the space Ho(Bc) of generalized principal parts relative
to the hole B: These are the analytic elements in the complement of B that tend
to zero at infinity. By (4.3) we know that these analytic elements f E Ho(B`) are
given by restricted power series in 1/(x - 1) with zero constant term:

1f(X)- 1)m+1 (IX-1-0)
m>0

and

IIfIIB' =M1,1f =suP IAm I-
m>0

Let us expand each term (x - 1)-m-1 according to the binomial formula

(X - 1)-m-1 = (_l)m+l 1: ( 11_Xn.

Recall the elementary identity (-1)n(1) = m 1) e.g., if m > n, then

(-1)n m-1 =(-1)n(-m-1)...(-m-n) m(m - 1) ... (n + 1)
n n! (n+ 1)---(m - 1)m

m(m+1)...(m+n)
M

=(-l)m\
11

(similar computations are valid when n > m). Grouping terms, we see that the
coefficient of xn in f (x) is

an (-1)m+1(-1)mAm (-n - ll - - Am (-n - 1)

I\ M Jm[>>00 m J rn>O

Define cp : ZP -. Cp by the uniformly convergent series

m

(-x - 1)
M>0



¶11

s0.

348 6. Analytic Functions and Elements

(this is a Mahler series in y = -x-1 (IV.2.3)). The inequality IIc IIz, < max IA,,, I is
obvious, and conversely, since X,, is a linear combination with integral coefficients
of v(- 1), ... , v(-m - 1), we also have

max IA I < IIcoIIz,

(recall Theorem I in (IV.2.4) for Mahler series). This proves that

IIc°IIzo = SUP V.1 = IIfIIBc.
,n>O

By definition, iP is a continuous extension of n H an to Z. Reversing the opera-
tions, we have proved the following result of Y. Amice and J. Fresnel.

Theorem. Let f = F_,,>0 anxn E Cp[[x]] be a convergent power series with
r f > I and denote by B the open ball I + Mp. Then the following properties
are equivalent:

(i) The sequence n H an has a continuous extension c : Zp --> C
P1

(ii) f is the restriction of an analytic element of HO(B`).

4.5. The p-adic Mittag-Leffler Theorem

For a simple region D = B<r - U1<i<e Bi where the Bi = B<, (a,) are disjoint
open balls in B<r, namely holes of D (notations and assumptions of (3.4)), the
rational Mittag-Leffler theorem leads by completion to a simple decomposition of
analytic elements in D:

H(D) -+ H(B<r) ® ® HO(Bi ).
1:5i<1

Explicitly, this means that each f E H(D) can be uniquely written as

f = fo + > fi (fo E H(B<r); f c= HO(Bi ), 1 < i < P),

namely with generalized principal parts f,, off , regular outside Bi, or equivalently,
having all their singularities in the hole Bi of D. If we choose a center ai in the hole
B,, such a generalized principal part fi E HO(B;) is given by a Laurent expansion
(Corollary in (4.3))

fi (x) = E an
n>1 (X ai)n

la,,

Qn -*0.

Let us turn to a closed, bounded, and infraconnected domain D C Cp.

Proposition. Let D be closed, bounded, and infraconnected, f E R(D). Let
also B = B<Q be a hole of D. If fB denotes the sum of the principal parts
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attached to the poles off in B, and fo = f - fB, then

IIfBIID <_ MQfB < Mef --'S IMID,

IIf1ID = max(IIfBIID, IIfoIID)-

PROOF. If f E R(D) is a rational function without a pole in D, B = B<Q is a hole
of D, and fB is the sum of the principal parts off corresponding to its poles in B,
then we have f = fB + fo with a regular fo E R(D U B), fB(x) -* 0 (x -3 oo),
and

II fB 11D <_ M6 fB by (3.4) Proposition 1,

MQ fB < MQ f by (3.4) Proposition 2,

MQ f < II f 11D by (4.2) Proposition 2.

This proves II f. lID < 11f 11 D, and the competitivity principle (11. 1 -2) in

f-fs-fo=0
leads to

IIf IID = max(IIfBIID, IlfollD)-

This means that we have an isomorphism

R(D) --- R(D U B) ED Ro(B`)

of normed spaces.
Let now (B,),EJ be the family of holes of D, so that BD = D U Ljt B; is the

enveloping ball of D. We also have a split short exact sequence

0 , R(BD) -... 0 R(D) -3 ®Ro(B1) -+ 0
i

with linear contracting maps of normed spaces. The surjective map is f H (f ), Et ,

where f, denotes the sum of the principal parts of f at its poles in B; : When
f E R(D) is given, finitely many f are nonzero. The map

(fi)1EJ ' E fiI D : ®Ro(B;) -* R(D)

is a splitting: f - >, f, ID is the restriction of a rational fo E R(BD) and f(x) =
fo(x) + E, f, (x) (x E D). The central term is the normed direct sum of the
extreme ones, and

R(D) - R(BD) ®® Ro(B; )

is an isometry of normed spaces. By completion, we obtain the following general
result.
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Theorem. Let D be a closed, bounded, infraconnected set, (Bi )iEj its family of
holes. Then there is a Banach direct sum decomposition

H(D) - H(BD)(@.EJHo(B, ).

Each f E H(D) can be uniquely expressed as a sum

f=fo+>fi, IIfIID=max(Ilfoll,sup llfill),
1E1 i

where

fo is an analytic element on the enveloping ball of D,
f are analytic elements on B, with f (x) 0 (x - oo),
IIfII=IIfiIIB; =11filID-0(i-> 00- 5

In particular, in the summable family (fi)iEj of generalized principal parts of
an analytic element f E H(D), at most countably many f, are nonzero (IV4.1).

4.6. The Christol-Robba Theorem

A formal power series f = En>o anxn E Cp[[x]] having bounded coefficients
converges at least for IxI < 1: r f > I but it does not always define an analytic
element on the open ball Mp. Let us determine the space H(Mp) of analytic
elements on this ball.

Since H(Mp) C H(B<r) for all r < 1, it follows that any f E H(Mp) is given
by a power series Y_,,>0 anxn such that Ian Irn -* 0 (n - oc) for all r < 1, hence
by a power series having a radius of convergence r f > 1. On the other hand, Mp
is closed and bounded; hence H(Mp) C Cb(Mp) (Proposition I in (4.2)).

Lemma. The subspace of C p[[x]] consisting of the convergent power series f
having a radius of convergence r f > I and a bounded sum in M p coincides
with the space e°° of formal power series having bounded coefficients: The
map

(an)n>o H anxn : P°° -> Cp[[x]] n Cb(Mp)
n>O

is an isometric isomorphism.

PROOF. If (an )n>o is a bounded sequence,

1f(x)1 = L,anxn
< sup lanl (IxI < 1),

.,>n n>o
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hence II f II supra>o I an I with the sup norm off on Mp. Conversely, assume that
the power series Jn>oaxn converges for IxI < 1 and has a bounded sum in this
ball. For aregular lxl =r < 1 we have

IanrnI < Mrf
=

If(x)I < IIfII (n > 0).

Taking a sequence of regular r / 1, we infer I an I< Il f II (n > 0), and consequently

supra>o I an l 5 Il f II -

The preceding proof works for any field K having a dense valuation: Compare
with (V.2.1), where the residue field k was assumed to be infinite.

The lemma shows that we have an isometric embedding

f F-> (a,,)n>o : H(Mp) -3 '£O° = Q°°(Cp).

The following theorem characterizes the image: It gives a criterion for a formal
power series with bounded coefficients to define an analytic element f c- H(Mp).

Theorem (Christol-Robba). Let f = En>o anxn E Cp[[x]] be a formal
power series with bounded coefficients. Define p = p°(p" - 1) (v > 1). Then
f defines an analytic element on M p precisely when the following condition
(CR) holds:

For each e > 0 there exist v and N > 0
such that Ian+p, - an I s (n > N).

PROOF. The proof is based on the Mittag-Leffler theorem (4.5) for the bounded and
closed infraconnected set

D = Mp = B<t - u B<t = Ap.
EL(p)

The condition is necessary. Let us write the Mittag-Leffler decomposition of the
space of analytic elements H(M p) on the open unit ball as

H(Mp) = H(Ap) ®®t Ho(( + Mp)`')

with a sum parametrized by E µ(p). The space H(Ap) is the Tate algebra with
normal basis (x`),>o, and Ho(( +Mp)`) has normal basis 1/(x - )'+' (m > 0).
This proves that the family of functions

n 1

x ' (x Y,(+t (n > 0, E u(p)s m > 0)

constitutes a normal basis of H(Mp). Let us show that each basis element satisfies
the condition given in the theorem. This is obvious for the powers xn (n > 0). On
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the other hand, the rational function

1

f(x) =
( )"'+t E µ(p), m > 0)x-

(having a pole at the point Mp) can be expanded according to the binomial
formula

f(x) _
mi- (-1)n

nxn

I \-1 -n"
(_ )m+1 - 'Ti J

nx)?

by the elementary identity on binomial coefficients recalled in (4.4). We have
obtained

(_l -n
f(x) -nXn.

n>O m

Let us estimate the difference between two coefficients as in the condition (CR):

1 -n-p, -
C )

.-n-pv - (-l

[(_I -Mn - pv),_p, _(-I
( m

-n)]

Now, since since pv is a multiple of p'' - I and 2; p` = 1, we have c-p- = 1
for v large enough (depending on C). On the other hand, x H (m) is uniformly
continuous on Z. so that, uniformly in n,

-n-pv\ /-(_l
1 - 1 is small if pv is small in Zp,

m m

which is the case for large v, since pv is a multiple of pv:

_n -ln - (_I
m n)]

_n[(_l-nn-pv)-(-l_ n)] <s (v > VC).

Finally, the conclusion will be reached as soon as we observe that (CR) character-
izes a closed subspace of e°°. Let (an) be a sequence in the closure of the space
satisfying (CR). Ifs > 0 is given, we can first find a sequence (an) satisfying (CR)
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and with Ian - an I < e (n > 0). Then

Ian+p - an I < max (Ian+p - an+p, 1, Ian+p, - an 1, Ian - an 1)

< max (£, Ian+p - an I)

This is less than or equal to E when n and v are large enough, by assumption on
the sequence (an). Hence (an) still satisfies (CR).

The condition is sufficient. Fix a positive integer N and consider the rational
function

SN(x ) _ anxn + I:N<n<N+pv anxn

n<N 1 - XPv

having all its poles in the set of roots of unity (on the unit sphere). We have

f (x) - EN<n<N+p,
anxn

(x) - SN(x) = anX .
n>N I - XPv

The numerator is

(1 - XP°)(f(x) - SN(x))

anxn - xp" Y' anxn - anxn
n>N n>N N<n<N+p,.

E anxn - xp, Y anxn = E(an+p - an)xn+p,,.

n>N+p n>N n>N

We have obtained

Y-n>N(an+P, - an)rn+P,.
I -XP-

and since I 1 - x' I = 1 for Ix I < 1, we have

I.f(x) - SN(x)I = n+p,.

n>N
< sup Ian+p -a.I (IxI < 1).

n>N

With the postulated condition, II f - SN II < e. This proves that f is a uniform
limit on Ix I < 1 of rational functions gN having no pole in this ball.

Examples. Here are three power series with bounded coefficients (hence a
bounded sum in Ixi < 1) that do not define an analytic element on MP:

En>o xP" (follows from the Christol-Robba condition),
expirx (IirI = rp) (exercise),
(1 + x)1/1 (m > I not multiple of p) (book by A. Escassut).
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Analytic elements

Formal Sequences
power series CP[[x]J (an)n?0 LI CP

n>0

power series lim sup ja,,111" < 1
converging in

lxI<I
(rf > l)

power series (a")n>o
bounded in bounded too

1XI < I

analytic H(MP)

sequence

Christol-Robba
elements in condition

1XI < 1 (4.6)

analytic H(AP) = CP{x} an -* 0 CO

elements in
1xI<I

(n -+ oo)

polynomials CP[xJ a" ¢ 0 for CM

finitely many n's

4.7. Analyticity of Mahler Series

Theorem. Let f : Zn - Cn be a continuous function with Mahler series

f(X) = Ck, k)

k>O \

Then f is the restriction of an analytic element f E Cp{x} iff Ick/k!I - 0.

PROOF. Consider the triangular change of basis of the space of polynomials given
by

(X)k = E(-l)k-n [k]n (k > 0)
n<k

where the coefficients are positive integers: Stirling numbers of the first kind.
Conversely,

n nX =
I ik

(X)k,
k<n

where the coefficients are positive integers: Stirling numbers of the second kind.
Hence if f = >n anx' = >k bk (X)k is a polynomial, we have supra Ian I =
supk I bk 1, and this isometry (a,,) H (bk) extends to an isometric embedding of the
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completion

C p{X} -) C(Zp; C,,),

11 anXn F-). 1: bk Wk = Ck k
n>O k>0 k>0 (X)

where bk = ck/k!. The assertion follows.

355

Corollary. Ifthe Mahler coefficients ck ofa continuousfunction f satisfy Ick I <
crk (k > ko) for some c > 0 and r < rp, then f is the restriction of an analytic
element f on the closed unit ball AP of C.

PxooF Under the assumption, Ick/k!I < crk/Ik!I. Since the general term of the
exponential series ex tends to 0 when Ixl = r < rp, we have rk/Ik!I -> 0. The
conclusion follows by the Theorem in (4.3).

Example. Choose and fix an element t E Cp with Itl < rp. According to the
preceding corollary, the Mahler series

f(x) tk (k)
k>O

is the restriction of an analytic element f E H(Ap) = C p{x I. I claim that the
analytic element in question is

.f(x) = ex log(l+t)

PROOF. The assumption ItI < rp indeed implies (Proposition 1 in (V.4.2))

I log(1 +t)I = Itl < rp,

so that the series expansion

fl (x)
_ (x 09(1 + t))n

n>O
nl

converges for Ixi < 1. Now, for integers m > 0,

fi(m)
(m log(1 + t))'

n>O

emlog(1+t) = telog(1+t))m = (1 + t)m = f(m)

(we have used the identities ex+`'' = lexe5; hence emx = (ex)m and elog(l+t) = 1 +t).
By continuity and density,

fi(x) = f(x) = f(x) (x E Zr).
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Since f - fl is given by a power series expansion, it vanishes identically in its
convergence disk (a nonzero power series expansion has a discrete sequence of
critical radii with finitely many zeros on each critical sphere).

Since

AX) = E tk` k) _ (l +t)x (X E Zp),
k>0 \

it is also clear that for larger values oft E Mp C Cp we can still define (1 + t)x
for smaller values of x E C. Recall that

pj-lrp < I log(] +t)I =
t P'

P1
= Pi ItIP < Pirp

for

rp/' ' < Itl < rp/'

(cf. (1.6)). Hence

Itl < rp/P' I log(1 + t)I < Pi rp,

and it is enough to assume IxI < 1/pj to have a convergent series expansion for

(1 + t)x = ex 1og(1+1).

Still, for Itl < r11P' and Ix - nI < 1/pj, we can define

(I + t)x = (I + t)n - (I + t)x-n = (1 + on . (x-n)log(l+t)

For these values of the parameter t E CP, the function x H (I + t)' is a locally
analytic function defined in the neighborhood

Vj = U B<1/P' (a) = Zp + B11P'
aEZp

of ZP in C.

Remark. The identity

ex 1og(l+0 = (1 + t)x

leads to

E [x log(1 + t)ln = r tk
x

,
1 [.

n>0 n' k>0 \k/
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hence to

[x log(1 + t)1n tk tk k-n [k] n

n k(x)k = > k >2(-1) n
x .

n>O k>O k>O n<k

Identifying the coefficients of x' we get the well-known classical identity

[log(1 +t)]n k n [k] t;=E(_1)-
n. k>n n k.

where the coefficients are again the Stirling numbers of the first kind.

4.8. The Motzkin Theorem

Let D be a closed, bounded, and infraconnected set, f c- H(D)" an invertible
analytic element on D. Assume that B = B, (a) is a hole of D (maximal open
ball in the complement of D). A Motzkin factorization off relative to the hole B
is a product decomposition f = g f(B), where

(1) g E H(D U B)",
(2) f(B) = (x - a)mh (m E Z, h E H(B`)" ),

h(x) --> 1 (x -+ oo), and 11h - 1118 < 1.

Remarks. (1) We have seen in (4.3) that an analytic element on B` admits a
convergent Laurent series expansion. If it is not zero, we can write it as

E aj(x - a)t = an(x - a)m - h(x).
j<_m

Here h(x) = 1 + bt /(x - a) + - - - (ambt = am_t, ...) is invertible if it does
not vanish on B`, i.e., if it has no critical radius greater than or equal to a. Since
h(x) - 1 -* 0 (x -* oo), Mrh (r > a) decreases, Mrh 0 (r -* oo), and

11h- IbjI/r-1 < 1.
j>I

(2) When IIf - 111D < 1, then f is invertible. In fact, since D is closed and
bounded, H(D) is a closed subalgebra (Banach subalgebra) of Cb(D) (4.2). Hence
the geometric series expansion

1 1

f -1-(1f)=>2(1-f)n

n,0

converges (in norm) in H(D). More generally, if f E H(D) and 11 f - f(a)II <
If (a)1 for some a c- D, then f/f (a) (hence also f) is invertible.

(3) The existence of a Motzkin factorization (with respect to a hole B = B<a)
requires Ma f > 0: The growth modulus function is multiplicative:

Maf=Ma (f(B))>0.

This condition is also sufficient, as we are going to prove.
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Theorem. Let D be a closed, bounded, and infraconnected set, B = B<a a
hole of D. Then each f c H(D) satisfying 11f - IIID < I admits a unique
Motzkin factorization (with index m = 0)

f=g.h, I1h-1flB<<1, h(x) _* I (x -* oo).

PROOF Let (fn)n>o be a sequence of R(D) converging uniformly to f. Since

IIfn - IIID < max(Ilfn-fIID, IIf - IIID)<l

for large n, we can disregard the first few values of n and assume II fn - III D < 1
for all n. By the rational Motzkin factorization result (3.5) we can write

fn = gn - hn (hn = (fn)(B) - I)
Now set P(f) = fB, the principal part of a rational function f with respect
to the hole B (as in the Mittag-Leffler decomposition) and Q(f) = f(B) the
Motzkin factor of f relative to the same hole. Obviously, P(f) = P(f - 1) and
Q(fn/fm) = Qfn/Qfm (the Motzkin factorization of rational functions is simply
obtained by gathering the linear terms corresponding to the zeros and poles in B).
The norm estimate in (3.5) for the function fn/f,,, leads to

IIQ(fn/fm)-I IID = Ilhn/hm - IIID = IIP(fn/fm)IID-

By the proposition in (4.5),

Ilhn/hm - IIID = IIP(fn/fm)IID = IIP(fn/fm - I)IID

Ma \fnfmfm < Il fnfmfmll D

Hence we have

Ilhn/hm-IIID=IIhn/hm-IIIB_=Ma
(hn_hm)

h,n

< Ma r fn - fn'
1\ fm

and by multiplicativity of the growth modulus

Ma(hn - hm) < Ma(fn - fm)
Ma hm Ma fm

But since I fm - 1 I < 1, we have I fm 1 = I (on D) and Ma fm = 1. The same is

true for hm and f. We have obtained

M , M . - - fm) < Ilfn - fm IID, ('k)

which proves the uniform convergence of the singular (Motzkin) factors hn to
h E H(B`). Since 11 h - 111B< < 1, we even have h E H(B`)". Moreover, we have
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a uniform convergence

hn

a
h

E H(B`) (n -> oo),

which implies a convergence

fn f

in H(D). The maximum principle on the ball B and Proposition 2 in (4.2) give

II gn - 9. II B < Ma (gn - gm) < 11 9. - gm II D,

hence

I19n-9.IIDUB<I19n-gnlID-)' 0

when m, n co, so that gn -> g E H(D U B). Since

I hn h I

gn fn f g

uniformly (first on D, but also on D U B by the maximum principle), the function
g is a unit of H(D U B) and does not vanish in D U B.

Let us prove uniqueness. If f = gthI = $2h2 are two decompositions, then

gi ht - 1
92 h2

is a Motzkin factorization of f = 1, and it is sufficient to prove the uniqueness in
this simple case. Assume that gh = I is a Motzkin factorization and choose

gn - g (gn E R(D U B)"), hn -> h (hn E R(B`)").

Then the inequality (*) for the rational functions hn and I gives

I1 hn-IIIB<<Ilgnhn-1IID->0 (n-->oo).

This proves hn -* 1 (n --> oc), h =limn hn = 1, and g = 1.

EXERCISES FOR CHAPTER 6

1. (a) Show that K[X][[Y]] A K[[Y]][X] (consider>i<J X'Yf).
(b) Give a description of the fraction field K((X)) of K[[X]] using Laurent series of

order > -oo.

2. Using the definition of the product of formal power series prove the identity

D(fg) = g Df + f Dg (f, g E K[[X]])

for the formal derivative of a product.
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3- (a) Let f, g E K[[X]] be two convergent power series with g(O) = 0- Assume that
the value group IK"I is dense in R>0. Prove that the numerical evaluation result
(f o g)(x) = f (g(x)) is valid in the ball IxI < r of K, provided that r < rg and
g(B<r) C B<,f.

(b) Show that the radius of convergence of a composite f o g satisfies

r fog > min (rg, sup{r : Mg < rf})

and Mr(f o g) = MM,g(f)

4. Let f(X) E K[[X]] be a convergent power series and fix a E K, lad < rf. Let
X = a + Y and f (X) = f (a + Y) = ff(Y) (this substitution g(Y) = a + Y is not a
substitution of formal power series of the type considered in the theory, since w(g) = 0).
Show that the following double series is summable when X is replaced by an element
XEK,lxi<rf:

1` an
(n amyn-m.

0<,n<n

Reorder its terms to obtain another proof of the proposition in (VI.2.4):

f (a) + Df(a)Y + I D2f (a)Y2 + . .

Deduce that the radius of convergence of g is at least equal to r f. Interchanging the roles
of f and g, conclude that r f = rg. [By contrast to the classical case, it is impossible to
obtain an analytic continuation of f using a Taylor series centered at a different point.]

5. Let p be an odd prime. There is a sequence (an)n>o in Cp with

2^+ < Ian I < (n > 0).

What is the radius of convergence of the power series f = En>o an Xn? Show that the
sphere JxJ = r f in Cp is empty (the corresponding closed and open balls coincide).
What can one say of the convergence off on the sphere IxI = rf in S2p?

6. Take K = Qp and consider the formal power series

.f(X) = E Xn =
1

n>O

Find the power series representing the composite f o g, which is the rational function

1

1 -X+XP

when p = 2. In this case, the two roots t; , n of 1 - X + X2 = 0 are easily determined.
Give the power series expansion of (1- X + X 2)-l explicitly using the partial fraction
decomposition

I _ a b

I-X+X2 X- +X-r/'
The coefficients of the corresponding power series are periodic mod 6.
(Hint. Note that and i are 6th roots of unity.)
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7. Show that

sin xtan x = - (Ixl < rp),
cos x

X3 x5arctanx=x-3+5+--- (lxI < 1),

are inverse functions for Ix I < r p. L. van Hamme has suggested the following extension.
Choose i E Cp with i2 = - I and use the Iwasawa logarithm to define

arctanx =
I

2i Log

l

1

+
-

ix
ix (x fi).

Using

2i (arctanx - arctana) = Log
1 + ix - Log 1 - ix
l+ia I-is

prove that if a point a E Cp is selected. then arctan x is given by a series expansion
valid in the ball

Ix - al < min(Ia - il, la + fl).

Prove that

arctan I = 0, lim arctan x = 0.
IxI-7oQ

8. (a) Let f(X) _ n>o an X" be a convergent power series and assume that the set
{IanIrf} is unbounded. Prove that there exists an infinite sequence of critical radii
r; / r.

(b) Let (an)n>o be a sequence in Cp with

Iaol < laiI < ... < Ianl < - < 1.

Prove that the formal power series f (X) = n>o anXn defines a bounded function
in lx I < r f with infinitely many critical radii converging to r1.

9. Prove that for any ultrametric field K, I + XK[[X]] is a multiplicative group, and for
r>0,

Gr = 1 anXn : Ianl 1/rn (n > 0)}
n>O

is a multiplicative subgroup of I + XK[[X]].
(Hint. For r = 1, the subgroup Gi is simply 1 + XA[[X]]; use dilatations to get the
general statement.)

10. Prove the Liouville theorem in the case K has a discrete valuation but an infinite residue
field.

11. (a) Show that r > 0 is a regular radius for fi , f2, . - . , fn iff it is regular for ft f2 . fn
(b) Let f, g E K[[X]] be two convergent power series. Assume f (xn) = g(xn) for a

convergent sequence xn -* xm (xn xc for all n > 0), where lxoo I < mi n(r f, rg).
Show that f = g.

(c) Formulate and prove a statement analogous to (b) for Laurent series-
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12. Let K = Q p (/.c px ). This is a totally ramified extension of Qp, and I K' I is dense (the
residue field of K is Fp). Give an example of a polynomial f for which IlfllGauss =
sups<t I f(x)l is not a maximum.

13. Let f denote the Taylor series at the origin of

X4+(p2_I)X2-p2
I-pX

What is the canonical factorization f = cPQgt (Theorem 2 in VI.2.2) of this formal
power series? Draw the Newton polygon of f.

14. Show that the formal power series >"> I p"' X" defines an entire function. What is the
location of its zeros? Give the form of an infinite product that represents this function.

15. Give the Laurent expansions of the rational function

x
(x - 1)(x - p)

valid in the region Ix I > 1. Same question for the region 1 / p < Ix I < 1.

16. Let f (X) = E",o a, X" be a formal power series with coefficients la" I < 1. Consider
the map g : Mp - (0) --> C p - Ap defined by y = g(x) = f (x) + 1 /x. Prove thatg

is bijective.
(Hint. To show that g is surjective, proceed as follows. For given y with lyl > I
we are looking for a solution x of x = y-1 (I + xf(x)). Show that the sequence
defined inductively by xo = 0, x"+l = y-1 (I + x f(xn)) is a Cauchy sequence with
Ix. 1 = I/Iyl < 1, and hence it converges in the open unit ball Mp_)

17. What are the critical radii of the polynomial

x+1 (n> I)?

How many roots are there on each critical sphere?

18. Let f : R>o -* R>o be a C2-function and define log f(r) = co(p), where p = logr.
Show that (p may be convex even when f is not convex (consider f (r) = . f ).
(a) Consider the functions fa(r) = r' (a E R) and discuss the convexity of fa and

the corresponding 4'a.
(b) Prove r2 f"(r)/f (r) = cp"(p) + cp'(p)(cp'(p) - 1) and deduce that if (p is convex and

cp' does not take values in (0, 1), then f is convex.

19. What is the Newton polygon of the polynomial

px3 - (4p2 + 1)x2 + (4p3 + 4p)x - 4p2 ?

(a) Compute the absolute value of the zeros of this polynomial.
(b) Factorize the polynomial and compare with the result obtained in (a).

20. (a) Show that the logarithm log : 1 + B<rp -.* B<,o is surjective. More precisely,
show that for each I y I = rp there are exactly p preimages x, with lxi I = rp and
log(I + xi) = y (but if IyI < rp, there are only p - I preimages).

(b) Draw the valuation polygon of the formal power series of log(1 + X).
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21.

22.

23.

(DO) =

f(a) f(t) f(b)
g(a) g(t) g(b)
h(a) h(t) h(b)

which vanishes for the two values t = a and t = b.

24. (a) Draw the graph of the growth modulus Mn f of the following rational functions:

1-X 1-X " 1-X"
1+X' (1+X) ' 1+X"'

Can one guess the location of the zeros and poles of a rational function by the sole
observation of the graph of Mr f? Sketch the graph of the growth modulus Mr, t f,
centered at the point 1, for the same functions.

(b) Draw the graph of the growth modulus Mr f of

X 1-pX
1-XI-p2X,

25. Give the principal parts Pf of the rational functions

f=
x2+x+I 2x2-x-I

x2 ' 2x2

at the origin. Take v > I and consider a region D := {v < Ix 1 < r). Compare II Pf II D

andll.f - IIID

26. With the notation of (3.5), let f = c1 [a6S(x - a)µ-. Prove that the principal part
P,(f'/f) with respect to some ball B; is f f
relative to B; . If II .f - IIID < 1, use (3.4) and prove II f'11 D = maxp<; <e II fill D

27. Fix r > 0 and choose c E S2p - Cp. Then

f it Mr.c(.f)

is a multiplicative norm on Cp(X). If 3 = disc (c, Cp), show that

inf Mr,c(X - a) = B.
ac-Cp

What are the Newton polygons of the Chebyshev polynomials T3, T6, T9 (any prime p)
(cf. exercises f o r Chapter V). Same question f o r TI, Tp, Tpz, ... , Tpn.

Let f = g/h E Cp(x) be a rational function. Assume that f has a zero and a pole on
a sphere IxI = r. Show that If I assumes all values (in pQ = ICn I) on this sphere.

Generalize the mean value theorem (as given in (2.4)) to the case of a parametrized
curve t F-+ (f(t), g(t), h(t)) by considering the determinant

In particular, the general inequality inf0Ecp Mr,c(X - a) > r can be a strict inequality.

28. Show that the union of two infraconnected subsets having a nonempty intersection is
infraconnected.
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364 6. Analytic Functions and Elements

29. The subsets of Cp

B<1 1r (0) n { l x - a 1 > s : for all a E Qp }

are infraconnected. What are their enveloping balls? What are their holes? Conclude
that Cp - Qp is a union of an increasing sequence of bounded infraconnected sets, each
of them having finitely many holes.

30. (a) Let B be a dressed ball and D a closed and bounded subset of Cp so that

Ill IIB = Ilf IID for all polynomials f.

Prove that D C B and B = BD is the enveloping ball of D.
(b) Let D be closed and bounded. Prove 11 f 11 BD = 11 f 11 D for f E H(BD)-

(Hint. Choose g E R(BD) such that 11f - 911 Bo < 11f 11D.)

31. Let D = B<r - LI1 <, <e B; and B C D any nonempty open ball. Show that the
restriction map H(D) -* H(B) is injective.
(Hint. Use the Mittag-Leffler decomposition to show that each f E H(D) is described
by a power series expansion in B and hence has isolated zeros if nonzero.)

32. The simple domains of the form D = B<r - lll<,<e B, can be patched together. For
example, if the hole B1 of D has radius r1, show that any D1 = B<r, - B, j
has a nonempty intersection with D and the union D U D1 is again a simple domain of
the same form.

33. Choose a sequence rn / I (rn < 1) and let S, = { Ix I = rn ). Show that

D=B<1-LIS,, CCp
n

is infraconnected. Moreover, if B C D is any nonempty open open ball, show that the
restriction map H(D) - H(B) is injective.
(Motzkin calls analytic a set D having this property- If D' = D U B<1(1), it can be
shown that the restriction H(D') -)- H(B<1(1) is not injective; hence D' is not an
analytic set; this is again the phenomenon of T-filters.)

34. Find domains of uniform convergence for the following sequences of rational functions:

xn xn x2n

I -xn' I -x2n' I
-xn.

35. Let 0 < r < I and D = {x E Cp : IxI V [I - s, I + s]}. Consider the sequence of
functions

I
fn(x) = i - xn E R(D).

This sequence converges in H(D): The limit f 54 0 is a zero divisor (a nontrivial
idempotent). Conclude that for any D E Cp having at least two points, and which is
not infraconnected, H(D) is not an integral domain.
(Hint. Choose a 0 b E D and an annulus (0 < ri < Ix - a I < r 2 < lb - al) that

does not meet D and use a sequence similar to the one above. It can be shown that
infraconnectedness is also a sufficient condition for H(D) to be an integral domain-)
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36. Show that the series _rn>o pn/(x - n) converges for x E Cp - Zp and that it defines
an analytic element on the subsets Dn = {X E Cp : Ix -a I > I In V a E Z}.

37. Show that the series

O(X 1Pn X)

converges for x ¢ {0} U pN and defines an analytic element in the complement DE of
any (finite) union of balls of the form Un>o B<E(pn) (t > 0).

38. Show that the exponential is not an analytic element on its convergence ball.
(Hint. Let 7r be a root of XP-1 + p = 0, so that the convergence ball of f(X) = e"x
is 1. Then use the Christol-Robba criterion (VI.4.6).)

39. Let pv = pv(pv - 1) and Sov(x) = I - xpv. Check the following assertions:
(a) (p, (x) -> 0 (v -* oc) for any IxI = 1.
(b) 1, if IxI < 1, Mi(cpv) = 1.

(c) sup1X1=1 IcAX)I = 1.

40. (a) Let D C Cp be closed, bounded, and infraconnected. Assume f E H(D) and
II.f - I IID < 1. Prove that log f E H(D).

(b) If f E R(D)x, Of - I IID < 1, and f = fl f is the Motzkin factorization of
f (with respect to a finite family of open balls B; as in (3.5)). show that log f =
E j log fi is the Mittag-Leffler decomposition of log f .

41. Let 0 < r < I and (an)n>1 a sequence on the unit sphere with Ian - am I = I whenever
n in. Define

Bo = B<r(O), On = B<r(an), D = Cp - Un>oBn

Choose a sequence k - 0 and consider the rational functions

gn(x) = l +
Xn

-
x - a,

Show that Ilgn - IIIBB IAnI/r -+ 0- Conclude that fn>1 gn converges uniformly
on D, x2 l In>1 gn E H(D)", but the sequence fN = X2 r[t<n<N gn is not uniformly
convergent on D.
(Hint. Observe that fN+1- fN is not bounded on D due to the presence of the unbounded
factor x2.)
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Special Functions, Congruences

The applications given in this chapter concern congruences.
They rely on the first two sections of the preceding chapter (convergence

of power series, growth modulus, critical radii). The more technical notion of
analytic element developed in the last two sections of Chapter VI is not used
here.

1. The Gamma Function I'p

The special functions of classical analysis are defined by a variety of methods: se-
ries expansions, differential equations, parametric integrals, functional equations,
etc. We have seen in (V.4) that the power series method is well adapted to the
definition of the exponential and logarithm in a suitable ball of Cp.

Here is another method adapted to p-adic analysis. Let f be a classical function
defined on some interval [a, oo) C R with rational values f (n) E Q on the integers
n > a, we may look for a continuous function Zn -> Cn extending n H f (n)
By the density of Z fl [a, oo) in Zn, there is at most one such interpolation. Of
course, this possibility requires arithmetic properties of the sequence of values
f (n) and the method works only in particular cases. A suitable modification of
the function n H n! will lead to an analogue of the classical gamma function.
Another successful example of this method (not treated here) is the Riemann zeta
function, using its values at the negative integers.

To simplify our considerations, we assume first that the prime p is odd: p
The case p = 2 is treated later in (1.7).
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1.1. Definition

The function n H n! cannot be extended by continuity on ZP. Indeed, let us look
for a continuous function

f :ZP --> QP

satisfying f (n) = n f (n - 1) for all integers n > 1. By continuity and density the
same relation will hold for all n E Z p- Iterating it, we get

f(n) = n(n - 1)(n - 2). -. pmf(pm - 1)

for all integers n > pm, where pm is a fixed power of p. Since f is continuous
on the compact space ZP, it is bounded and there is a constant C > 0 such that
If (x)I < C (x E Zr). The preceding factorization also shows that

If(n)I IpIm - C

for all integers n > pm. But these integers make up a dense subset of ZP; hence

Of 11M IpIm - C.

Since the integer m > 1 is arbitrary, the only possibility is II f II0 = 0. (The single
consideration of the case in = 1 is sufficient: Taking C = II f II. we get II f 1k0 <
IP111 f II o, (1-1/p)IIf I1. 0.) The only continuous function f on ZP satisfying
the functional equation f (n) = of (n - 1) for all integers n > I is f = 0.

The trouble obviously comes from the multiples of p in the factorial n!: Let us
omit them and consider a restricted factorial n!*

n!* := LI j
I<j<n.Ptj

The key to the construction of the p-adic gamma function lies in a generalization
of the classical Wilson congruence

(p-1)!--l mod p.

Proposition. Let a and v > 1 be two integers. Then

11 j = -I (mod p°).
a < j <a+P°. Ptj

PROOF. The integers a < j < a + p" make up a complete set of representatives
of the quotient Z/p°Z. Those that are not multiples of p represent the invertible
elements, namely the elements of the unit group G = (Z/p" Z)". Grouping each
element g c G with its inverse g-I we obtain compensations in the product except
when g = g-1. But
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In the ring Z/p"Z we can write

g2=1g2-1=04(g-1)(g+l)=0.
The elements in question are g = f 1, or both g - 1 and g + 1 are zero divisors.
The second case corresponds to

p divides both g - I and g + 1.

Obviously, this second case can happen only when p divides 2 = (g + 1) - (g - 1),
i.e., p = 2. Since we are considering only the case p odd, this does not occur, and
the proposition is proved.

The proposition implies that the products

.f (n) _ (-1)n [1 j (n > 2)
1 j <n, pti

satisfy f (a) - f (a + p") (mod p"). More generally, they also satisfy

f (a) - f (a + mp") (mod p") (m E N).

The function a H f (a) N - 10, 11 Z is uniformly continuous for the p-adic
topology, hence has a unique continuous extension Zp -* Zp.

Definition. The Morita p-adic gamma function is the continuous function

rp:Zp -> zp

that extends

.f(n):=(-1)n fl j (n > 2).
1<j<n.ptj

Observe that by construction, this p-adic gamma function takes its values in the
clopen subset Zp of Zp.

Since its definition depends on the prime p, this function is denoted by rp. (But
as with the functions log and exp, we might simply denote it by r when the prime
p is fixed and there is no risk of confusion.)

1.2. Basic Properties

We have

rp(2) = 1, r'p(3) = -2,

n! ifnodd, n < p-1,
rp(n + 1) = -n! if n even, n < p - 1.
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1. The Gamma Function rp 369

From the definition it also follows that rp(n) E Zn is given by

rp(n + 1) _ r(-1)"+tn! - (-1)n+ln!

1 11<kp<n kp [n/pl ! p[n/PI

when the integer n is greater than or equal to 2. Still, by its definition, we have

nrp(n) if n is not multiple of p,
rp(n + 1) -rp(n) if n is multiple of p,

and by continuity, more generally,

rp(x + 1) =
-xrp(x) ifx E Zp,
-rp(x) if x E pZp.

It is convenient to introduce a function hp:

-x if x E Zp (IxI = 1),
hp(x) _ -1 ifx E pZp (IxI < 1),

in order to be able to write the functional equation

rp(x + 1) = hp(x) - rp(x) (x E Zp).

This functional equation can be used backwards to compute the values Fp(1) and
rp(0) from rp(2) = 1. In particular, we check that rp(0) = 1. This normalization
also follows by continuity: By the proposition in (1.1) (with a = 0),

rp(pn) = - fl j = +1 (mod p");
1SI<p",Ptl

hence rp(p") ---> 1 as n -> oo.

Theorem. For an odd prime p, the p-adic gamma function r p : ZP -+ Q P is
continuous. Its image is contained in Z. Moreover:

(1) rp(o) = 1, rp(1) _ -1, rp(2) = 1,
rp(n + 1) = (-1)n+ln! (1 < n < p).

(2) Irp(x)I = 1.
(3) Irp(x) - rp(y)I < Ix - y6 I rp(x) - lI < IxI.
(4) rp(x + 1) = hp(x)rp(x).
(5) rp(x) - rp(1 - x) = (-1)R(X)

where R(x) E {1, 2, ... , p}, R(x) - x (mod p).

As we shall see in (1.7), the property (3) has to be suitably modified for p = 2.
The exponent in (5) is also different in this case.
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PROOF. (3) follows from F(a + mp') _ ['(a) (mod p") (a E Z, m E N) by conti-
nuity.

There only remains to prove (5). Put f (x) = FP(x) F p(1 - x). We have

f(x + 1) = h p(x)['P(x) - ['p(-x),

and since FP(-x) = FP(1 - x)/hp(-x),

f(x + 1) = e(x) f(x), e(x) = hp(x)/hp(-x).

Now,

1 iflxI=1,
s(x) _ +1 if lxI < 1.

Take for x an integer n and iterate,

.f (n + 1) = £(n) ..f (n) _ ... _ (-1)#f (1),

with an exponent # equal to the number of integers j < n prime to p. Since the
number of integers j < n divisible by p is [n/p], this exponent # is n - [n/p].
Hence

.f (n + 1) _ FP(n + 1) . FP(-n) = (-1)n-In/P] . F (1)rP(0) = (-1)n+]-[n/P].

To find the formula given in (5), let us take x = in = n + 1 (integer), whence
1-m= -n and

['P(m) . ['P(1 - m) = FP(n + 1) . ['P(-n) = (-1)n+] -In/Pl.

With the expansion of the integer n in base p,

in

we infer

n nn- p =no+(P-1)[P]

Since we assume p odd - hence p - 1 even - this proves that n - [n/ p] has the
same parity as no:

(-1)n+]-[n/Pl = (-1)no+1

Sincem = n+1 = no+1 (mod p)andno+l is in the correct range 11, 2, P),
we have R(m) = no + 1, and the formula is proved for integral values x = m of

the variable. By density and continuity, it remains true for all x c ZP. 0
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Comment. The classical r-function satisfies the Legendre relation

Jr
r(z)r(1 - z) =

sin 7rz

which implies for z = 1

r(2)2=7r, r(Z)_,J .

Hence we can say that in Qp, an analogue of the number 7r could be taken as
rp(Z )2 = (- I)(p+1)/2. In particular, if p =- 1 (mod 4), rp (2) = is a canon-
ical square root of -I in Qp. This canonical imaginary unit can be identified easily.
In the case p - 1 (mod 4), the Wilson congruence

P 1

(p-1)!= 2
I2=-1 (modp)

shows that t p21) ! mod p is a square root of -1. Since (p + 1)/2 1 (mod p),
the point (3) of the above theorem gives

rp(2)rp r p
2

+ I 1
= (-1)(p+l)/2

2

p -
)
1 i

2 J
- - ( p 1 (mod p).

(\

1.3. The Gauss Multiplication Formula

The classical gamma function satisfies the identity

T-f r rz + L) = (2n)(m-1)/2m(1-2mz)/2 . r(mz) (m > 2),
0<Ij<<m \ m

which is the Gauss multiplication formula. It is remarkable that rp satisfies a
similar relation.

Proposition. Let m > 1 bean integer prime to p. Then

where

1 rp (x + /
= £,n mI-R(mx) . (mp-1)s(mx) . rp(mx),

O<j<m
m

£m = rp (F ,

0<j<m

R(y) E { 1, ... , p}, R(y) - y mod p,

s(Y) =
R(Y)- Y E Zp.

p
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PROOF Let

J(X)= Jm(X)= H rp CX

O<j<m \ m

G(x) = Gm(X) = .f(x)l1'P(mX).

We have to compute the Gaussian factor G(x). Start with

1G(x+1/m)- fl IP(x+Jm)iP(mx+1) I<j:m

_ 1 I'P(X + 1)

h mx I' mx H i P(x + j/m)
p( ) p( ) rP(z) O<j<m

= hP(x) G(x).
hP(mx)

Consider the locally constant function

hP(x) - I -X /(-MX) = 1/m if IxI = 1,
.k(x) hP(mx) -1/(-1) = 1 if IxI < 1

(since (m, p) = 1). This multiplier is useful to compute the successive values

G(1/m) = 1L(0) G(O),

G(2/m) = 1`(0)1`(1/m) G(0), ...

G(j/m) = fl X(i/m) G(O).
O<i<j

Since (m, p) = 1, we have

fl X(i lm) = (1 /m)#
O<i<j

with an exponent

# = #{i prime to p, 0 < i < j j

=j-1- lip
1

Let us find a convenient form for this exponent. Start with the p-adic expansion
of the integer j - 1:

j-1=(j-1)o+plip 11

j --I1

+p p

=:R(j)
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where R(j) - j (mod p) is in the correct range { 1, ...r, p}. This proves

j-1-['pII=R(j)-I+(p-1)[ipll,
and hence

jJ A(i/m) = ml R(j)(ynP 1)S(j)

o<i<j

with

1 j - R(j)
P

=-
p

an expression that admits a continuous extension to ZP

s(x) = R(x) - x (x E ZP).
p

We have proved

G(j/m) = fJ A(i/m) . G(O)
O<i<j

= ml -R(j)(m'-1)s(j) . G(O),

and

G(x) = ml-R(mx)(mP-1)s(mx) . G(O)

373

for integral x = j/m (j = mx > 0 multiple of m). By continuity, the last formula
will also hold for all x E ZP. This proves the expected formula

J] I'P(x + jl m) = em _

ynl-R(mx)(mP-] t(mx)rp(mx)

0<j<m j
with em = G (O).

Finally, let us observe that em = G(0) is always a fourth root of unity.

Lemma. We have em = 1. In fact, em = 1 except when p - 1 (mod 4) and
m is even, in which case em = -1.

PRooF. When m is odd,

em = Fp(m)...Fp(mml )

since Fp(0) = 1. Now we can group pairs

rp m/ rp (mm j) = fl
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(by the analogue of the Legendre relation). In this case sm = ± I. Assume nowm
even. The same grouping leaves the middle term rp(2) solitary:

£m =+rp(2). £m = rp(2)2.

As we have seen in (1.2), rp(2)2 = -1 when p =- 1 (mod 4), so that s,, is a
square root of -1 and

£m = G(O) = F1 rp(m)
0<j<m

is a root of unity of order 4.

1.4. The Mahler Expansion

If f is a continuous function on Zp, it can be represented by a Mahler series

f(x) = Eak1 k
x

ak = (Vkf)(O)
k>O \

We have shown (Comment 2 in (IV.1.1)) that these coefficients are linked to the
values of f by the identity of formal power series

Xk _ r Xn
E ak

k !
=

e_x
L.. f (n)

n !k>0 n>O

Proposition. Let rp (x + 1) = Ek>o ak (k) be the Mahler series of r p. Then its
coefficients satisfy the following identity:1-\\E(-1)k+'akXk

k. 1 - X
XP

exp (x +
Xp-1.

k>O P

Noon Let us compute e-x(p(x), where V(x) = En>o rp(n + 1)xn/n!. For
this purpose, we make a partial summation over the cosets mod p:

mp+j
tp(x)= E >2rp(mp+j+1) X

0<J<p m>O (MP + D!

Here, we can use

_1 n+i
rp(n + 1) _ [nip] ! p[ /pl

forn=mp+j,[n/p]=mandget

Fp(mP+j + 1) _ (-1)mp+j+t . (mP+j)!
m!pm
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We obtain

mp+j(-I)mp+j+l x
M! pm

0<j<p m>0

1 r_ E(-1)mp+i xp

(-;-)

m

L (-1)lxl
m?0 m 1 .0<j<p

_ -exp((Xp)p >2 (-I)jxj
osj<p

_ -exp ( (-x )P 1 1 - (-x )p

p J 1 - (-x)
Finally,

e-x( (x) _ -exp `-x + (-x)p 1 1 - (-x)p ak xk

p ) 1 - (-x) k>o k!

whence the desired formula.

1.5. The Power Series Expansion of log F

We shall use the following formula (V.5.3) for the Volkenborn integral:

S(f')(x) = f[f(x + y) - f (y)) dy
P

with the function

f(X) =

(x E Zp)

xLogx - x iflxj=1,
0 if1x < 1

f'(x) =
Log x if 1X I = 1

0 iflxI<1

= Log hp(x)-

Here, Log denotes the Iwasawa logarithm (V.4.5): It vanishes on roots of unity, so
that Log (-x) = Log x. This implies that the function f is odd, so that f z, f (t) dt =0
(Corollary of Proposition 4 in (V.5.3)), a fact that we are going to use presently. On
the other hand hp still denotes the function occurring in the functional equation

Fp(x + 1) = hp(x)Fp(x);

hence

VLog F p(x) = Log I' p(x + 1) - Log r p(x) = Log h p(x).
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Since SVf = f - f (0) and Log Fp(0) = Log 1 = 0, we infer

Log I'p (x) = S Log h p (x ).

The above formula for the Volkenborn integral with f = Log hp is now

Log rp(x) = S(Log h p)(x) = S(f')(x) = f f (x + y) dy

f
o

= J [(x+y)Log(x+Y)-(x+Y))dy.
Zp

For the computations, we come back to

Log(x+y)=Logy+Log(1+x/y),

and Log(1 + x/y) = log(1 + x/y) is given by the series expansion if Ix/yl < 1
(e.g., x c pZp and Iyl = 1). Since (1.2) IFp(x) - l I < IxI, we also have

ILog I'p(px)I = IFp(px) - 11 < IpxI,

since IpxI < rp.

Theorem. For X E pZp, we have

rmLog I'p(x) = 1ox -
2m(2m + 1) x

2m+1

where

A0=j xLogtdt. Am= f xt-2mdt (m> 1).
o p -

The radius of convergence of the power series is 1, and this provides a contin-
uation of Log I'p in the open unit ball Mp C Cp.

PROOF The preliminary considerations already prove that

Log I' x x y)Log x-y+(x+ n_1 x.n dy,

Ip n>1 nyn

which is equal to

x f
x
Logydy+ f x(YLogy - y) dy + f

p p Z

(-x+(x+y)E...) dy.

=J o =0. previous comment
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Here is the elementary computation for the series appearing under the integral
sign:

Xn xn+1 Xn
(x + n = E(-on 1

n + (-If-1
n 1

n>1 ny n>1 nY n>1 nY

1 I xn+ln I

n n+1 ynn>1

n>1

1 Xn+I

n(n + 1) yn

Now, for odd n > 1, the function equal to 0 on pZ p and to I /yn on Zn is odd
with a vanishing derivative at the origin. This shows that fZo y-n dy = 0 for odd
n > I (Corollary at the end of (V.5.3)). There remain only the even terms

XmLog Fp(x) _ Ao x - 2m(2m + 1)
x2m+1

with Xo = fZo Log t dt, and ,lm = fZ. t-2' dt (m > 1) as asserted. We can de-
duce an estimate of these coefficients. If fn denotes the function equal to 0 on pZp

and to x -2n on Zp , we have II fn II 1 = 1 (cf. (V.1.5)), as follows from

Xn+1 1 n IXn+I

n n
n>1

ny
n>1 (n + 1)Y

= X + E(-1)n-i

X-2n - Y-2n y2n - X2n
,Dfn(x, Y) _ = 2 2 (ixI = IYl = 1),

n

I (Dfn(x, Y)I =

x - Y x ny (x - y)
Y 2n - x2n

2n-1 2n-1
x-y =IY +...+X I<1 (IxI=IYI=1).

This proves IAnl < p (Proposition 1 in (V.5.1)) and pAn E Zp (n > 1). The iso-
metric property of the logarithm on 1 + pZ p makes it easy to prove that the norm
1 1 .1 11 (V.1.5) of the function equal to 0 on pZ p and to Log on units is 1: This proves
IAol < p also. But we can prove a more precise result directly (cf. below). We have
seen (Proposition 3 in (VI.1.2)) that the radius of convergence of a power series
f is the same as the one for its derivative f' and hence also for f". Let us apply
it to

)'n 2n+1

f(x) = ),ox - ` 2n(2n + 1)x
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and

f"(x)=->21nx2n-1
n>1

Since the coefficients An are bounded, we infer rf > 1. Finally, rf < 1 comes
from the fact that I1, 174 0: We show this in the next lemma.

Recall that the Bernoulli numbers (V.5.4) are given by the Volkenborn integral

bk =
J

xk dx (k > 0).
Zp

Lemma. For n > 1 we have In - b2n (mod Zp). Moreover, Iiol < 1 and
11n I = p for all integers n > 1, such that 2n is a multiple of p - 1.

PROOF. (1) We have

Xo = (log rP)'(x)Ix=o - rp(0) = rp(0),

and since we have seen in (1.2) that I'p(pn) - 1 (mod pn) we infer

rP(Pn) - 1 - rP(pn) - ['(O) E Z,
pn pn

whence

r'(0) = lim

rP(Pn)

- P(0)
E Z

n 00 pn P

andllol<1.
(2) The units of the ring Z/p'Z are represented by the integers 0 < j < p"`

that are prime to p. The involution u H u-1 on these units shows

E j -2n = j 2n (mod P-).
1<j<ppl, Ptl 1<j<pm, Ptl

Dividing by p'n and letting m -* oc, we obtain by definition (V.5.1) (adapted to a
function vanishing outside ZP')

Xn = t-2n dt ten dt (mod Zr).
o o

(3) Start with

t2r dt.f ;
y t2n dt =

JZv
t2i dt -

JPZv
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Let us compute explicitly the second integral:

fpz,
ten dt = lim I j2n

n_oo pn

1
1

m2n p2n
p n-o pn

i <m <p"-I

379

p2n f t2n di = p2"-ib2n

P

(Observe that this computation proves that in the Volkenborn integral over pZp
we could have replaced formally t by ps with d(ps) = IpIds = (1/p)ds!) We
have obtained

Stn ds
fz;

t2n dt = f
z,

t2n dt - p2n-1 f
zp

_ (1 - p2n-1)b2n
= b2n (mod Zp) (n > 1).

The last assertion of the lemma follows now from the Clausen-von Staudt theorem
(V.5.5).

The lemma and hence also the theorem are completely proved. Let us summarize
two formulas that follow immediately from the theorem (and its proof).

Corollary. We have

F'(x)_f
fFAX)

= x Log (x + t) dt, (Log l'p)" (x) _ x x + t dt.
O P

PROOF. Everything follows from the previous proof and Proposition 3 of (V.5.3)
(justification of derivation under the integral sign). Observe that the expansion

] _ 1 1 1 \(-1)n Xn

X+t t -7t-) t n>o to

can be integrated termwise:
r

J
1 dt = E(-1)nxn

J
t-n-1 dt.

Zo X + t n>O Zp

Since the integrals of odd functions (with zero derivative at the origin vanish by
the corollary of Proposition 4 in (V.5.3)), there remain only the even powers of t
(corresponding to odd powers of x):

] dt mx2m-1
fp X + t m>1

Am = f t-2m dt.
o

This confirms our previous expression for the coefficients of Log Fp.
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I.6. The Kazandzidis Congruences

We have already given in (V.3.3) some congruences for the binomial coefficients

Cpn (k) (mod pnZP).

It turns out that these congruences hold modulo higher powers of p.

Theorem (Kazandzidis). For all primes p > 5 we have

(mod p3nk(n - k)(k)ZP).

For p = 3 the same congruence holds only mod 32nk(n - k)(k)Z3 (namely one
power of 3 fewer).

The form of these congr/uences suggests that we should prove (when p > 5)

(pkpn)

/ (k) 1 (mod p3nk(n - k)Zp).

It is clear that the left-hand side is a p-adic unit, and L. van Hamme had already
observed that it can be expressed in terms of Fp (or in terms of a p-adic beta
function) as follows:

(pn) l (n) rp(pn) (k + 1 = n).
pk k F p(pk)I' p(pl)

The Kazandzidis congruence states that this unit belongs to a multiplicative sub-
group 1 + p'Zp c ZP with aprecisely determined integerr > 0. The preceding unit
can be studied by means of the logarithm: We have indeed proved I log t I = I -1
if 14 - 11 < rp. On the other hand, we also have II'p(x) - 11 < Ix I, proving, for
example,

rp(px) E 1 + pZp (x E Zr).

Since we are assuming p > 3 we have Ip1 < rp, and the isometric property of
the logarithm is valid for = Fp(px), resp. = rp(py) and 4 = Fp(px + PY)
(x, y E Zr). Hence

rp(px + py) - 1 llo T (px + py)
(x, y E Zr).

rp(px)rp(py) g rp(px)rp(py)

Let us introduce the restricted power series (all its coefficients are in pZp as we
shall see)

f(x) = log rp(px) _;.opx pen+tx2n+1

n>t 2n(2n + 1)
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This is an odd function (this is also a consequence of the Legendre relation, which
implies rp(px) - r (-px) = 1). We now have

log
r

+ Py)
= If (x + y) - f (x) - f (y)I.g

rP(Px)rP(PY)

As we have seen in (V.2.2), the linear term of f (x + y) - f (x) - f (y) disappears,
and If (x + y) - f (x) - f (y)I < C - Ixy(x + y)I, where the constant C is the
sup of the absolute value of the coefficients (of index n > 3) of f. Here, we need
to examine carefully these coefficients. The Kazandzidis congruences will follow
from the next theorem.

Theorem. Let f(x) = log I'P(px) (x E Zr). Then

(a) f is given by a restricted series having all its coefficients in pZP,
(b) If(x+y)- f(x)- f(y)I < IP3xy(x+y)I.

PROOF. Let us start with

f(x) = AOPx - 2n(2n +
1)P2n+tx2n+1

(a) The radius of convergence of f is p > 1(this function is obtained by a dilatation
x H px from the function considered in (1.5)) and hence the series for f (x) is a
restricted power series. We can write

2n-1

f (x) = AOPx - P E PAn . 2n(2n +
1)x2n+1

n>1

We have seen that A0 E ZP and pA, E ZP (n > 1). It is enough to observe that

p2n-1

2n(2n + 1)
E Z p (n > 1).

This is obvious for n = 1 and n = 2 and follows from the lemma below for n > 3.
(b) Let us repeat the expression for f (x + y) - f (x) - f (y) in the following

form:

-23P3((x+y)3-x3-y3)- 5p5((x+y)5-x5-y5)--

The leading term in this expression of f (x + y) - f (x) - f (y) is

13 P3 .3(x2y + xy2) = 22 P3xy(x + y) = 22I 3 P3xy(x + y) mod ZP.

When the prime p is greater than 3, this term is in p3xy(x + y)ZP, whereas it is
only in 32xy(x + y)Z3 when p = 3. The next term is treated similarly:

1b4 s

4

25 p5xy(x
+ y)(*) 4.52 .6P5xy(x + y)

b4 P
xy(x + y)4.5
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When p = 3 there is a factor 34 making this term smaller than the first one. When
p = 5 there is still a factor 53 of the same size as in the first term. When p > 5 the
factor p5 makes this term strictly smaller than the first one. The subsequent terms
are treated in the next lemma. a

Lemma. For n > 3 we have
p2n-3

2n(2n + 1)
<1.

PROOF. Let us estimate the p-adic order of the fraction:

2n -3-ordP 2n(2n+1) > 2n -3-ordP (2n+1)!

2n - 3 -
2n + 1 - SP(2n + 1)

= p-1
2n + I - I> 2n-3-
p-I

>2n-3-2n=n-3>0.
2 -

1.7. About F2

Let us show here how the Morita gamma function is defined for the prime p = 2.

Preliminary comment. Let G be a finite abelian group written additively and let

s=s(G)=>g.
gEG

In this sum the pairs {g, -g} consisting of two distinct elements contribute 0 to
the sum, and we see that

s = E 9-
9=-9

But g = -g is equivalent to 2g = 0, and

H = {gEG:2g=0}CG

is a subgroup of G, isomorphic to a product of cyclic groups of order 2: H is of
type (2, 2, ... , 2). Moreover, we have seen that s(G) = s(H). Now, the sum s(H)
is obviously invariant under any automorphism of the group H: The only case
where s(H) can be nonzero is thus

H cyclic with two elements,

in which case s(H) = I is the nontrivial element of this group. Equivalently, s 0
precisely when the 2-Sylow subgroup of G is cyclic and not trivial
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Proposition. For v > 3 the kernel of the homomorphism

x H x mod 4 : (Z/2vZ)" -- (Z/4Z)" = {f1}

is a cyclic group C(2v-2) of order 2"-2 generated by the class of 5, and (Z/2vZ)"
is isomorphic to the direct product of C(2'-2) and 1±1).

PROOF Since the order of (Z/2vZ)" is 2"-', the kernel of the homomorphism
onto (Z/4Z)" - {±1} has order 2v-2. We shall prove that this kernel contains an
element x of order 2v-2. Take x = I + 4t (obviously in the kernel) and use the
fourth form of the fundamental inequality (III.4.3) (Corollary at the end of (V.3.6))

(1 +t)n - 1 +nt (mod pntR)

for n = 2k and p = 2. Replacing t by 4t (t E R) we obtain

(1 + 4t)2
,

= 1 + 2k4t (mod 2 - 2k - 4R),

(1 + 4t)2k - 1 + 2k+2t (mod 2k+3R).

The element 1 +4t has order 2v-2 precisely (and is a generator of the kernel) when
(1 + 4t)2u-3 0 1 (mod 2"):

(1 +4t)2'_3 - 1 +2"-1t o-1 (mod 2"R).

As appears now, this will be the case exactly when t is odd, ItI = 1. This proves
that the class of an integer x = 1 + 4t is a generator of C(2"-2) precisely when
x # 1 (mod 8) and x = 5 = I + 4 is an eligible candidate!

Corollary The product of all units of Z/2"Z is

l (v = 1), -1 (v = 2), 1(v>3).

PROOF. This follows from the preliminary observation, since

(Z/2Z)" = {1}, (Z/4Z)" - {fl},

whereas if v > 3, then

(Z/2vZ)" - 1±11 x C(2v-2)

is a product of two nontrivial cyclic groups.

Now let us consider the following sequence:

f(l)=I, f(n) = fl j (n > 2).

1<j<n, jodd

Hence f (2) = I and

f (2n + 1) = f (2n) (n > 1).
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Since f (n) is odd for all n > 1, we infer (for the 2-adic absolute value!)

If(n)I=1, If(m)-f(n)I <121=Z (n,m> 1).

For n = 2" we have

f(l)=I, f(2)=I, f(4)=3=--l (mod 4)

and then

f (2v) = fl j - +1 (mod 2v) (v > 3).
1<j <2v, j odd

As in (1.1) we infer

If(n+2v)-f(n)1= f(n) ij j-1 <12v1 (v>3)
n<j<n+2v, j odd

and more generally

I f(m) - f(n)I < Im - nl (m, n > 1, Im - nI < g).

This proves that the function f is uniformly continuous, and hence has a unique
extension to Z2 -* Zz = 1 + 2Z2, which we still denote by f :

If (x) - f(y)I < Ix - YI (Ix - yI < $).

Since f (2v) - 1 mod 2v (v > 3) we deduce f (0) = 1.

Lemma. We have I f (x + 4) - f (x)I = 1 (x E Z2).

PROOF. Since the image off is contained in 1 + 2Z2 of diameter we have quite

generally If (x) - f (y) I < Z. The relation

f (2n + 2) = (2n + 1)f (2n) = 2n f (2n) + f (2n)

shows that

I f (2n + 2) - f (2n)I = I2nf (2n)I = I2n I (:S121=1).
2

Similarly,

f (2n + 4) - f (2n) - f (2n) . 1 - 3 - f (2n) - -2f(2n) (mod 4),

If(2n+4)-f(2n)I = 12f(2n)I = 121 (=!).
Since we also have

f ((2n + 1) + 4) - f (2n + 1) = f (2n + 4) - f (2n),

we may conclude that I f (x + 4) - f (x)I = 121 = 1 (x E Z2).
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In order to have

rp(o) = 1, rp(1) = -1, rp(2) = I

for all primes (including p = 2), we decide to change the sign of f (n) when n is
odd. Thus we define

r2(n) _ (-I)nf(n) _ (-1)" fl j (n ? 2).
1 < j <n, j odd

The formula (Definition (1.1))

rp(n) = (-I)n fl j (n > 2)
1 <j <n. pfj

holds now for all primes p. By definition, we have

f (x) if x E 2Z2,

f(X ) if X E I +'LG2.

Consequently, when x and y are in the same coset mod 2,

r2(x) - r2(Y) = +(f (x) - f(Y)),

and this shows that

Ir2(x) - r2(Y)I = I f (x) - f (Y)I (x = y (mod 2)),

so that the inequalities obtained for f are still valid for r2.
Observe that we have

r2(x + 1) = h2(x)r2(x),

where

x ifxE1+2Z2 (OxI=1),
h2(x) _ -1 ifx E 2Z2 (IxI < 1),

in complete similarity with the odd-prime case (1.2).

2. The Artin-Hasse Exponential

The exponential series has a radius of convergence rp < 1 because its coefficients
an = 1/n! have increasing powers of p in the denominator. It turns out that the
Artin-Hasse power series

expX+ vxp+ _Yanxn
n>0
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has p-integral coefficients: an E Q f1 Zr,. As a consequence, this power series has
a radius of convergence equal to 1. Dwork has used this power series for the
construction of pth roots of unity in Cp (similar to the construction of nth roots of
unity in Q. The Dieudonne-Dwork criterion explains the integrality property of
the Artin-Hasse power series, and Hazewinkel has found a deep generalization of
this phenomenon. We shall present only the initial aspects of these theories.

2.1. Definition and Basic Properties

Let us start by reviewing a couple of elementary formulas concerning the Mobius
function. Recall that for an integer n > 1 this function is defined by p(1) = 1 and

µ(n) = 0 if n is divisible by a square k2 > 1,
1-(p1 P2 - - - p,,,) = (-1 )n` if the pi are distinct primes.

Lemma. We have

12(d) = 0, Iit(d)I = 2k (n > 1),
dIn dIn

where k is the number of distinct prime divisors of n.

PROOF. In fact, if n = pi' - - - pk' and d I n is a divisor with µ(d) 0, then d is a
product of a subset of primes pi, and quite explicitly,

E µ(d)= 1+ r(pi)+E µ(pipj)+...

dIn f i,j

I - k + k)
+

(2

(-1)`Ikl = (1-1)k = 0.
O<i<k /lll

Similarly,

Itt(d)I = I + I, (pi)I + lµ(pipj)I +... _ (1 + 1)k = 2k.
dIn

Proposition. We have identities of formal power series

_µ(n)log(1 - Xn) = X,
n>1 n

and for each prime p

y, _µ(u) log(, - xn) = X + 1 XP +I
xp2 +

n p p2n? 1. ptn
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PROOF. Recall that

Hence

1 _ t'n
- Iog(1 - t) = log 1t mm>1

µ(n) log(1 - xn) = > µ(n)
n>1

1:
M>1

Xnm

nm

N

=>->µ(n)=x
N>1 N

IN

by the first identity of the lemma. Similarly,

N

_ N
N>1 IN, ptn

n>1, ptn n>1, ptn M ?!l
n nm

-Fr(n) log(1 - xn) _ 1,(n) Y
Xnm

387

The conditions n I N and n prime to p amount to n I Np-", where v = ordpN
(also denoted by p° II N). The corresponding sum vanishes (still by the first
identity of the lemma) except if Np = 1, namely N = p° (v > 0):

N

- µn n) log(1 - xn) =
N

= x + lxp + 1
Xpl + ...

n?1, ptn N=p p p2

Corollary. We have formal power series identities:

exp(x) = {J (1 - xn)-y(n)/n,

n>1

exp (x + Pxp + PZXp2 +...l = fl (1 - xn)-p(n)ln
// n>1, ptn

Definition. The Artin-Hasse exponential is the formal power series defined by

Ep(x)=exp x+Pxp+pxpz +

Since log and exp are inverse power series for composition (VI. 1), we have

Xp2+log Ep(x)=x+ Ixp+ 1
zp p

and by the corollary.

Ep(x) = fj (I - Xn)-lt(n)ln

n>1, ptn

is an identity of formal power series.
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2.2. Integrality of the Artin-Hasse exponential

The power series ex°f P = I + xP/p + - - converges at least for IxI < rp, since
IxP/pI < IxI for IxI < rp. Consider the product of the two power series

P P

and explP=1+X
P! p

Its first coefficients are

XP XP-1 l 1

p (P -1)!
+xP +-p+--..

P!

The coefficient of xP is

1+(p- 1)!
p!

A miracle happens: The numerator is divisible by p - Wilson's theorem - so
that the whole fraction is in ZP. More is true: All the coefficients in the product

XP Xp2
XP XP1-

exp x - exp
p

. exp
--

- - _ fl exp
.

= exp i>>o P>o P
are p-integral, hence in ZP. As a consequence, this power series converges for
IxI<1.

The radius of convergence of the power series

h(x)=x+ 1
I xP+

1 xp2 +...2Xp p

is the same as for its derivative (Proposition 3 in (VI. 1.2)):

h'(x) = I+xp-1+xP2_1+...,

namely rh = rh, = 1. The critical radii and the growth modulus of h are the same
as for the logarithm log(1 + x): Both series have the same dominant monomials.
In particular, E p(x) = exp h(x) is well-defined, it converges at least for IxI < rp,
and

I log EP(x)l = Ih(x)l = IxI (Ixl < rn)

(But IhI is unbounded in the open unit ball Mp C CP.) This proves that Ep(x)
exp h(x) is well-defined in the ball IxI < rp.

Theorem. The coefficients of the Artin-Hasse power series EP are p-integral
rational numbers, so that Ep(x) E I +xZp[[x]]. Moreover, the radius of con-
vergence of this power series is rEo = I, and

I Ep(x)I = 1, l Ep(x) - 11= IxI (IxI < 1).
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PROOF When p does not divide n, -µ(n)/n is equal to O or to ±11n: The binomial
series expansion of (1 - Xn)-µ(n)/n has its coefficients in ZP, and hence converges
for Ix I < I (at least). The infinite product has coefficients in Z p too. It also converges
in the ball IxI < 1 by the lemma in (VI.2.3). This proves Ep(x) E 1 +xZ p[[x]], and
in particular r = rEP > 1. Let us show that this radius of convergence is precisely
1. For this purpose, let us prove the identity of formal power series

EP(xP) =

where is a primitive pth root of unity: 1 = cP. The exponent in the product
is indeed

xP+P2XPZ+...),
=0 \

whence the identity. Now, each power series EP(C'x) has the same radius of
convergence r = rEP, while the radius of convergence of Ep(xP) is rl /P. By
Proposition 2 in (VI. 1.2). we obtain

rl/P > min(r,r,.. ,r)=r,

namely r > rP. This proves r < 1.1 Now let

EP(X) - I = X + E anxn (an E ZP).
n>2

Hence we have

Ianxnl < Ixln G IXl2 < IxI (IxI < 1, n > 2),

and I Ep(x) - I I = IxI (IxI < 1) since the strongest wins.

As we have already observed, the coefficient of xP in the expansion of

ex+XPIP = ex . exP/p

is p-integral. Let us show that this product furnishes a transition between exp and
Ep, with an intermediate radius of convergence (a quantitative way of saying that it
has fewer powers of p in the denominators of its coefficients than the exponential).

Proposition. The radius of convergence of the power series f (x) = e+"IP is

rf = rp2P-l)h'Z

hence rp < rf < 1. We have

Iexp (X + PxP)I 1 (IxI < rf)

I or r - oo, but look at exercise 9.



`D
'

co
o

O
"'

..1

"l
a

_I
=

X
4
4

390 7. Special Functions, Congruences

PROOF. (1) As formal power series, we have

xP'

Ep(x) = x+x°/p - exp
J>2 p'

and conversely,

xPi
x+x°/P = Ep(x) - exp - Y Pj>2

To prove that this product converges beyond Ix I = r p and get an estimate of its
radius of convergence, it is sufficient to show that the radius of convergence of its
second factor is greater than rp (Proposition 2 in (VI. 1.2)). To get an estimate of
the radius of convergence of

exp -
Pj

C

X

j>2 p

we use (VI. 1.5). First, let us recall that

M,
I

pz

rp2

for O < r - rp = r,

(the dominant monomial of the log series in the interval rp < r < rP is xP2/p2:
Since the preceding monomials are absent in Y-j-,.2 xP' /pJ, the first one is domi-
nant up to rP). The numerical substitution of g(x) = Y-j>2 xp' / p' in AX) = exp x
is allowed when

Ixi < r5 = 1 andMlxlg <rf =rp.

The second condition is

IxI°2/Ip2I < IpI IxI°Z < IpI2+ = IpI ° ' = rP' 1,

namely

Since

IXI < r(2P-t)/p'
P

P<P(2-P)=2 <np<

we see that

r < T (2p-l)/p2 < 1,P p

and the numerical evaluation is valid in the region considered above. The radius of
convergence of the composite is at least

rp2P-t)/ p2
> r ,. In its ball of convergence,
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all factors in

ex+x'/P = E x ex p

j>2

(XPj

P( ) p jp

have absolute value equal to 1, hence fez+X'/PI = I (Ix! <
rP2' )1P2)

(2) To simplify the notation, let

P=

P2 =

radius of convergence of
1

E, ,

P

(XPZ
radius of convergence of exp 2

p

XP,
p3 = radius of convergence of exp

Pjj>3

391

Since IEP(x) - 1 I = fixj for lxi < 1, we have p > 1. More precisely, 1/EP(x) _
Ep(-x) if p is odd, proves that p = I in this case. Now, let us write

exp
Xp2- I

. ) . exp= f(x
xP'-E

P2
EP(x) pj

ja3

This shows that

.

P2 ? min(p, rf, P3)

(Proposition 2 in (VI. 1.2)), and since P2 < p3 < I < p, we infer that p2 > rf.

2.3. The Dieudonne-Dwork Criterion

Another proof of the p-integrality of the coefficients of the Artin-Hasse power
series will now be given.

Let k be a field of characteristic p. The identity xP = x in k characterizes its
prime field Fp. In the polynomial ring k[x], the identity f (x)P = f (xP) charac-
terizes polynomials f having coefficients in the prime field. For a polynomial f
with integral coefficients, the congruence f (x)P = f (xP) (mod p) means that

f (x)P - f (XP) E pZ[x],

and it should therefore be written more precisely as f (x )P - f(xP) (mod pZ [X]).
For polynomials f with rational coefficients, it turns out that the same congruence
characterizes the integrality of its coefficients. This principle also holds for power
series. The extent to which the operations

first raising x to the power p and then applying f ,

first computing f (x) and then raising to the pth power

lead to similar results, is a measure of the integrality of the coefficients of f. A
precise formulation of this principle can now be given.
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Theorem (Dieudonne-Dwork). Let f (x) E 1 + xQ p[[x]] be a formal power
series. Then the following conditions are equivalent:

(i) The coefficients of f are in Zr,.
(ii) f (x)P/f (XP) E I + pxZp[[X]].

PROOF. (i) (ii) If f (x) E I + xZp[[x]], then f (x)P = f (xP) (mod p). Both
series belong to 1 + xZ p[[x]], and f (XP) E 1 + xZ p[[x]] is invertible, so that (ii)
follows.

(ii) = (i) Let us write f (x) _ Yi,o aix' (ao = 1, ai E Qp) and assume

f(X)p = .f (XP) C1 + p E
bjx'/

(bj E Zp). (*)

We have ao = I and at = b1 E ZP. Let us assume by induction that a, E Zp for
i < n and let us compare the coefficients of xn in both members of (*). The
coefficient of xn in the left-hand side is the same as in

aixi) a°x`p P(" ..).p
r<n i<n

The nonwritten monomials are products ai,a,2 - - - ai pxiI+i2+---+ip having at least

two distinct indices i j. It is enough to determine them mod Zp, and for this reason,
all monomials not containing an will play no explicit role, since - by the induction
assumption - they have coefficients in Zp. The only monomials containing an
that are of interest for us have a single factor anxn and all other factors ao = 1 (all
other monomials containing an lead to powers x', m > n). Hence we find that the
coefficient of xn in the left-hand side of (*) is

ap + pan + terms in pZp.

if ip=n

With the convention an/ p = 0 when n is not divisible by p (i.e., n/p not an integer),
we may write this coefficient as

ap/p + pan + terms in pZp.

The right-hand side of (*) is

E aixPM 1+pEbjx' ,

i n/P j:Sn

and the coefficient of xn in this expression is

an/p + terms in pZp.

Since n1 p < n, the induction hypothesis shows that an/p E Zp, and hence ap,, p =
an/p (mod pZp). By comparison we infer pan E pZp and an E Zp.
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Application. Consider, for example, the Artin-Hasse power series E. As formal
power series we have the following identities:

XP, XP2

EP(X)P=exp
p /

Hence

EP(x)P
= ePX E I + pxZP[[x]],

EP(xP)

as we are just going to show. In other words, the p-integrality of the coefficients
of the Artin-Hasse power series follows from the Dieudonne-Dwork criterion and
the following observation.

Proposition. We have

ePX E I + pxZP[[x}]

and even

ePX E 1 + pxZP{x} (p an odd prime).

PROOF. For n > 1 we have

p" n - SP(n)
ordP

n!
=n- 1P-
>n-1 -p-2

+ I > 1,p-I p-I p-1
hence the first result. For p = 2 there remains only ord2 (2"/n!) > 1 with equality
precisely when S2(n) = 1, namely when n = 2° is a power of 2. For p > 3 we
see that

ordP pn >
P-2.

n --* oo (n oo),
n! p-I

and the second result follows.

2.4. The Dwork Exponential

The roots of the equation x +xP/ p = O are 0, as well as the roots of xP-1 + p = 0.
All the roots it of xP-1 + p = 0 have the same absolute value 17r i = rP. Since the
radius of convergence of exp(x + xP/ p) is greater than rP, we may evaluate this
power series on any such root in. But crude substitution of in in x + xP/ p gives 0,
and ec = 1 is not the correct result for e'" IX_n ! In fact, the condition given in
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(VI. 1.5) for numerical substitution is not satisfied, since

XP
Mlnl X + P) = rp = rexp.

In the classical, complex case, all roots of unity are special values of the expo-
nential. It turns out that pth roots of unity can also be constructed analytically by
means of a generalized exponential. Recall that if 1 C E p p, then I - 1 = rp
(11.4.4).

Proposition (Dwork). Choose a root n of the equation xP-1 + p = 0 and let
Cn denote the result of the substitution ex+xo/p lx-n- Then Cn E µp is the pth
root of unity such that

Cn°I+2r (mod ir2).

PROOF. (1) We have

ex+xo/p = 1 + x + x2( - -) = 1 +x (mod x2) (x indeterminate).

Let us show that we also have

ex+x°/p
x=n 1 + n (mod jr2).

The sup norm of the function e+x°/p on its ball of convergence is 1. hence the
coefficients an of its power series expansion ex+xo/p = >n>o anxn satisfy

v` nIa.Irp < I (n > 0)

(Lemma in (VI.4.6)). Hence

The exponent of rp is

n-n
Ian nnI < rp P

np2 - p+ n_ n(p p
1

)2
2

We want to show that Ian7rn I < In I (n > 2). This is certainly the case when
(Pn 1)2n > 1. When p > 5, we have (Pn l )2n > zs n > 1 for all n > 2 and
we are done. When p = 3, we have (Pp 11)2n =

9
in > 1 for all n > 3. We have

to estimate a3. But the coefficients an of exp(x + 3x3) are the same as those of
the Artin-Hasse power series for n < 8, hence are 3-integers, and the conclusion
follows. When p = 2, we have (P-1 )2n = 4n > 1 for all n > 5. We have to
estimate the coefficients an for n < 4. But (exercise)

...ex+xz/2 = I +.7r +.7r2+ 4'r3+ 17x4+
2 12x=n --2
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and since 4rr2 = 1 (is a 2-integer!), L7r4 =- 0 (mod jr2 ) as we desired to show.12
(2) As formal power series, we have

(ex+XP/'') " = ep(X+X°lp) = epX+XV = epX . eXv

In detail, let rp denote the polynomial cp(x) = xP. Then (p o exp(x) = exp px as
formal power series, and hence with h(x) = x + xP/p

(exp(x + xP/p))P = cp o exp(x + xP/p) = rp o (exp oh)(x)

= (rp o exp) o h(x) = exp(ph(x))
= epX+" = epX ep

(since cp is a polynomial, no condition on the order of exp oh is required in Corollary
2 of Proposition 2 (VI.1.2)). Since brP I = I prr I = I PI rp < rp, the numerical
evaluation of both exponentials is obtained by substitution (VI.!.5):

jn =( ex"IPfX-,`p=ePn.e"'_e' .e-P-' = 1.

Let us renormalize the situation. Choose a root 7r of xp-1 + p = 0; hence
17r I = rp. Substitute x = it y, so that e'Y converges whenever Iy I < 1. The same
substitution in exp(x + xP/p) leads to a power series

exp rry+ irP yP
p =exp(ny-jTyP) =expJr(Y-yP)

converging at least for

IiryI < rp2p-1)1p2 IYI < rpp-1)lp2-1.

The exponent of rp is

2p-1 2p-1-p2 (p-1)2
p2 - 1 - p2 p2

The power series exp 7r (y - yP) converges at least for

IYI < Ipl (p-1)1(p2) = p(p-ll/(p2);

hence its radius of convergence is greater than or equal to p(P-1)1(P2) > 1.

Definition. When 7r is a root of xP-1 + p = 0 in Qv, the Dwork series is the
formal power series

E,(x) = exp(rr(x - XP)) E Qp(ir)[[x]].

The radius of convergence of the Dwork series is p(P-1)I(p2) > 1.
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Hence En = fog, where f (x) = ex and g(x) = ir(x -xP) has order I (sufficient
to enable substitution). We shall be interested in the special values taken by this
power series when its exponent vanishes:

xP-x =0orx E µP_1.

As we have seen,

En(1) - 1 + it (mod n2)

is a generator of µP.

Theorem (Dwork). Let it be a root of xP-1 + p = 0. Then K = QP(n) is a
Galois extension of Q,. It is totally and tamely ramified of degree p - 1, and
K = QP(pp). More precisely:

(a) The field K contains a unique pth root of unity i;,r E µP such that

n = 1 + n (mod 7r2).

(b) The series E, (x) has a radius of convergence p(P-1)iP2 > 1.
(c) For every a E QP with aP = a we have

E,-(a) E µP, E,r(a) - I +atr (modir2),

so that

PROOF. Nearly everything has already been proved. Observe that XP-1 + p is an
Eisenstein polynomial relative to the prime p and hence is irreducible over Qp
(11.4.2). If it and n' are two roots of this polynomial, then (7r'17r)P-1 = 1, hence
7r'/7r E pp-1 C Q,,. Thus the splitting field of XP-t + p over QP is obtained
by adding a single root it of this polynomial to Q,,. This proves that K is totally
ramified of degree p - I over Q, and hence tamely ramified. The uniqueness of a
pth root of unity ,r - 1 +7r (mod 7r 2) follows from the simple observation that the
distance between pth roots of unity is rP (Example 2 in (11.4.2), and also (11.4.4)):
Two distinct pth roots of unity are not congruent mod n 2. The other statements of
the theorem follow easily from previous observations.

Comments (1) If 1 54 E CP is a root of unity of order p, we have seen in (II.4.4)
that = - 1 is a root of

xP-t + px(...) + p = 0,

and hence ICI = rp = PI'I(P-1). We are now considering roots it of the simpler
equation

xP-1+p=0.
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Since rr and have the same absolute value, i= = r u for some u with I u I = 1:

- I = rru, =1+TruE ppCCp.

If aP-1 = 1, say a - k (mod p) with 1 < k < p (namely k = ao is the first digit
in the p-adic expansion of a), then both and E, (1)k are pth roots of unity
congruent to 1 + krr (mod rr2), and the theorem implies

En(a) = ET (1)k.

(2) The Dwork power series is a kind of exponential map: E,t (0) = 1 and

E
µP_1 C {a : aP = a} µp

Fp C Fp

(3) Let f > I and En (x) = expn(x - xPf ), so that E, (x) = E,1 (x). Then

En (x) = exp it (x -xP)

= exp it (x - XP) - exp it (xP - x"2) . - . exp rr(xPf -' - xPf )

= E,,(x)En(xP)... Er(xPf-1

)

converges at least when each factor converges. The most restrictive condition is
given by the last one: Convergence of E. (x

Pf-1
) occurs if

IXPf-1I < p(p-1)1P2, IXI < p(P-1)l(P2Pf-I)

With q = pf, we see that the radius of convergence of En is p(P-1)l(Pq) > 1.

EP (Artin-Hasse) En (Dwork)

f ex es+ v exp j.o
Xo

e" (s-xv) (9 = pf)
P

1-1rf rP=LIo_, r/ I p v9

Radii of convergence of some exponential series
(listed in increasing order)

2.5. Gauss Sums

Sums of roots of unity play an important role in number theory. Let us show how
they can be used to prove that any quadratic extension of the rational field Q is
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contained in a cyclotomic one, i.e., in an extension generated by roots of unity. It
is enough to show that the quadratic extensions Q(Vrp-) (p prime) are contained
in a cyclotomic extension of Q.

Let us choose a root of unity of prime order p > 3 in an algebraically closed
field K of characteristic 0. For example, take K = C and = eznelp. Then the
sum of roots of unity

Sp_ E C)y.v

O<v<p

is the simplest example of a Gauss sum: Here - as in (1.6.6) - (P) = f 1 denotes

the quadratic residue symbol of Legendre.

Proposition 1. For an odd prime p, we have SP = ±p.

PRoor The square of the sum Sp is

_
GO

v+µ _ VIA' v+µ
PSZ

0<v,lc<p µ 0<v,µ<, \ /

For fixed µ # 0, vµ goes through all nonzero classes mod p, and we can replace
v by vtt in the double sum:

2

SZ

= v.µ

(V/'t

p
&+1* = r

\p
.(v+l)/

P
V, IL

We consider separately the terms with v = p - 1:

E\:1 O_(p-1)\pl!
P P )

#p-1

P-1
()(v+l)

L..E
v µ560

Recall that

Cµ(v+1) _ e(v+0
µ56O 0<µ<p

=0 because v+IA0



O
°7

C
."

.N
.

"v.
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Hence

P
Sz=(p-1)(p1) E

G )v#-1

=p(-1/p)-Cp) vet(p)

p(-1/p)-
v

0<v<P p

=0

399

The announced formula is proved.

Corollary 1. For a prime p > 3, the complex absolute value of SP is

ISPIc = '/T

Corollary 2. For a prime p > 3, the quadratic extension Q(,Ip-) is contained
in the cyclotomic field Q(C,).

Observe that if p = 2, we have (1 + )2 = 2 , so that E Q(' 1)

and the quadratic extension Q(h) is also contained in a cyclotomic one.

Comment. A theorem of Kronecker asserts that any Galois extension of the ra-
tional field Q with abelian Galois group is contained in a cyclotomic one. This is
a deeper theorem, which has been widely generalized, and belongs now to class
field theory.

The general form of Gauss sums in a field K containing a pth root of unity 1 is
obtained as follows. The map v r-+ C°, FP K" is a group homomorphism:

Cv+µ=CV .Cµ

The map v H (P), Fp -> K" is a group homomorphism:

Cp)-Cp)\p)
extended by (P) = 0. Replace Z/pZ = FP by a finite field F. (where q = pf is
a power of p) and let more generally 1/r and X be two group homomorphisms

1Jr : Fq -> K" and X : Fq K" extended by X(0) = 0.

According to tradition, we shall say that 1/r is an additive character of Fq and x a
multiplicative character of Fq. By definition, the Gauss sum attached to this pair
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of characters is the sum

G(,, X) _ i(v)X(v) _ i(v)X(v).
VEFq VEFq

In the next section we give the p-adic absolute value of Gauss sums. Now, let us
show how to determine all additive characters of a finite field.

Proposition 2. Let G be a group and K afield. Any set of distinct homomor-
phisms G --> K" is linearly independent in the K-vector space of functions
G -> K.

PROOF. Since linear independence of any family is a property of its finite subsets,
it is enough to prove that all finite sets of distinct homomorphisms are linearly
independent. We argue by induction on the number of homomorphisms *j. Since
homomorphisms are nonzero maps, the independence assertion is true for one ho-
momorphism. Assume that n - I distinct homomorphisms are always independent
and consider n distinct homomorphisms *j (I < i < n). Starting from a linear
dependence relation

(xEG,a;EK),

we multiply it by the value *,(a) (for some a E G):

al*l(a)*I(x)+...+ct,,*I(a)*.(x)=0 (xcG).

On the other hand, we may replace x by ax in the first equality, and since 11r, (ax) =
Ili;(a)IUl(x), we obtain

at *, (a)*t (x) + + a,,,fr (a)Ilr (x) = 0 (x E G).

If we subtract the two relations obtained, the first term disappears, and we get a
shorter relation:

a2(*1(a) - f2(a))*2 + ... + a (l, (a) - fn(a))* . = 0-

By the induction assumption, all the coefficients of this new relation vanish. If we
choose a E G such that * (a) - *,,(a) # 0 (this is possible since * 0 Vn),
we see that a = 0. Using the induction assumption again, we get a; = 0
(1 <i <n).

Proposition 3. Let F be a finite field and r : F -> K" a nontrivial additive
character. Then any other additive character has the form i/r(x) = T(ax)for
some a c F.

PROOF. The identity

r(a(x + y)) = r(ax + ay) = r(ax)r(ay)
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shows that for any a E F, ra(x) := r(ax) defines an additive character. Now,
a H ra is a homomorphism

ra+b(x) = r((a + b)x) = r(ax + bx) = r(ax)r(bx) = ra(x)rb(x).

It is injective, since r is a nontrivial character:

ra(x) = I (x E F) = a = 0.

The additive characters (ra )aaF constitute a basis of the F-vector space of functions
F --> K". Any additive character must be in this family by Proposition 1.

As a consequence, we observe that the Gauss sums G(VG, X) can be computed
easily from G(r, X):

G(1, X) = G(ra, X) = E r(ax)X (x)
xEF"

If we assume a $ 0 and replace x by a-ix in the sum, then we obtain

G(1, X) _ r(aa-'x)X(a-'x) _ r(x)X(a-')X(x) = X(a-')G(r, X).
XEF" xEF"

2.6. The Gross-Koblitz Formula

Let us choose a primitive pth root of unity p in Cp and let K = Then
I 1 a generator of the maximal ideal P of R C K. As we

have seen in (2.4), there is a generator it of P uniquely characterized by

np-' = -p, it p - 1 (mod (gyp - 1)2).

Conversely, if we choose a root it E Cp of irp-' = -p, the field K = Qp(ir) is
a Galois extension (2.3) of Qp, it contains all roots of unity of order p, and the
Dwork series furnishes E, (1) = gyp, the unique root of unity of order p satisfying

p =- 1 -1- rr (mod rr).

Since an additive character of the field Fp is uniquely determined by its value
Vi(1) E jr,,, we choose the nontrivial additive character

(vEFp).

We can now consider Gauss sums of the form

G(X, *) = X (xxX (X (0) = 0),
XEFp

where X is a multiplicative character of Fp with values in K. More precisely, the
values of X are roots of unity having order dividing p - 1 (and 0):

G(X, 1) E Q(µp, lLp-1) = Q(Ap(p-l)).
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We shall consider Gauss sums of the form

1: w(x)-°i(x) = Y, (w(0) = 0),
O#XEFp XEFp

where co(x) E µp_1 denotes the unique root of unity in K having reduction x in
the residue field RIP of K ((11.4.3) and (111.4.4)). Here, the integer a only counts
mod p - 1: It is better to take a E pl t Z/Z and set

G. (w(0) = 0)-
XEFp

A reason for the choice of sign is that we now have Go = 1:

n=o n=-1.
0<v<p O<v<p

It is remarkable that these Gauss sums are linked to the Morita p-adic gamma
function: When a = a/(p - 1) (0 < a < p - 1) we have explicitly

Ga _ 7rarP
a

p-1
This is a particular case of the Gross-Koblitz formula. Since the values of i'p are
units of ZP' the preceding formula gives the exact order of Ga, and

IGaI=I7r =rn=Ip 1.

Conversely, this case of the Gross-Koblitz formula shows that

rP (
a

1
) E Q()T, 12p(P-1)),

and this is an algebraic value, since 7rP-1 = -p.
There is a more general formula. Let a E Z(p) =Q fl ZP be a rational number

with denominator N prime to p and choose a sufficiently high power q = pf of
p so that the extension Fq of degree f of its prime field contains a root of unity of
order N. We shall work in the tamely ramified extension

K = Qp(r, µq-1) C Cp

having ramification index e = p - 1, residue degree f, and hence degree n = of
over Qp. Considering a c N Z/Z C g 1 Z/Z, we choose a representation

0<(a)= a <q-1
of a and write the p-adic expansion of the numerator:

a =a0+a,p+...+af-I pf-1 <q - 1 <q = pf.
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Let Sp(a) = Jo<j< f aj denote the sum of digits of a as in (V.3.1) and introduce
the integers a(`) having the p-adic expansions obtained by cyclic permutations
from the expansion of a = a(o):

a(i) = a f-i +aop + + a f-2pf-t

a(2) = a f-2 + of-t P -!- - - + a f-3 pf-

a(f-t) = ar +a2p+a3p2 -1-... +aopf-i

On the other hand, if the nontrivial additive character 1 of the prime field Fp is
chosen as before, the composite of * with the trace

Tr:Fq-->Fp, I

is a nontrivial additive character of Fq (the trace is nontrivial, since the extension
Fq/Fp is separable: All extensions of finite fields are separable). Then we have
the following general formula.

a
Theorem (Gross-Koblitz). Let 0 < a = < 1. The value of the Gauss sumq-1
Ga is explicitly given by

G. = - W(x)-a Y' (Tr (x)) =
.sy(a) fj

rp
a(j)

'/` }\ /OOXEFq o<J<f
(
q - 1

3. The Hazewinkel Theorem and Honda Congruences

3.1. Additive Version of the Dieudonne-Dwork Quotient

The power series

f (X) _ P-
X pi = X + 1XP + p2 xp2

j>0

does not have coefficients in Zp (powers of p appear in the denominators). How-
ever, its exponential - the Artin-Hasse power series - has p-integral coefficients.
This phenomenon will now be studied more closely. Observe that

f(xP)=XP+ lXP2+
_ZXp3+...

so that

f(x) -
fXP

) x=p

has integral coefficients! Let us introduce the operator

Hpf(x)= f(x)- f(xP)
P
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on formal power series. We have an identity of formal power series:

exp pHpf(x) = exp(pf(x) - f(xP))
(exp f (x))P

exp f (xP)

The expression Hp f is an additive version of the Dieudonne-Dwork quotient
cp(x)P/cp(xP) (2.3), and we shall formulate criteria for p-integrality of some formal
power series in terms of Hp.

Proposition. Let f denote the formal power series f (x) = log(1 + x). Then

H2f(x) = E (xn - x2n)/n E Z(2)[[xJl,
n odd

Hp f(x) = E (-1)n-'xn/n E Z(p)[[x]] (pan odd prime).
n>1, Pfn

Hence for all primes p, Hp(log(1 + x)) has p-integral coefficients.

PROOF We have

l0 1+x
Xn

n>1 n

pn
1 x

- log(1 + XP) = (-1)n-I -

P P n>1 n

If the prime p is odd, we have (-1r = (-1)Pn, and the announced result follows
in this case. When p = 2, let us write explicitly

r Xn
-

/
xn

n odd n n even n

and

xn x2m

H2009(1 +x)) =
n

- (1
+(-1)'n-,)2m

n odd n=2m even

xn x2m

=n
odd

n - inm odd

3.2. The Hazewinkel Maps

Let us consider the following setting: Either

A = Z(p)[t] c B = Q[t]
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or

A = Zp[t] C B = Qp[t],

and o is the Q-Iinear map (resp. Qp-linear map)

o : B -> B, a(t) = > a; t' F-> a(tp) _ E aitp'

extended to

o* : B[[x]] - B[[xll, E a,(t)x` H E ai(tp)x`,
i>O i>O

letting o act on the coefficients only. Note that (o* f)(x") = o*(f (x")), so that we
may unambiguously write this term ok f (x").

Definition. Any map Hp : B[[x]] -+ B[[x]] of the form

f -+ Hpf = f(x) - E6*f(xp),
P

where I C N* = 11, 2, ...} is a subset of indices, will be called a Hazewinkel
map.

In the next three propositions, Hp denotes a Hazewinkel map.

Proposition 1. Let f = Em> I fmxm E B[[x]], so that f (0) = 0. Then

Hp f E A[[x]] mfm E A (m > 1).

PROOF The coefficients of Hp f = E hmx' C A[[x]] are given by

hm = fm - 1 6' fm/p' E A
P I

with the convention fm/pi = 0 if i > ordp(m), namely if m/p' is not an integer.
This series of identities starts with hm = fm E A when (m, p) = 1. We proceed
by induction on the order v of m, the case v = 0 having just been treated. When
p I m, we have

m
mfm - - 6ifm/pi = mhm E mA,

P I

so that

mfm =
n2

6'fm/p' _
Pi-1 6

fm/p'
P I

eA by induction

(mod mA)

and hence mfm E A as expected.
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Remark. When f = Y_ ,,X' E B[[x]] and Hp f E A[[x]], we can write fm =
am l m with coefficients am E A, and the formal power series f is a logarithmic
series

1: Xm
f(x) = fmXm = am-.

m?1 m>1 m

Proposition 2. Let g = Em>1 gmxm and h = m>1 hmxm be two formal
power series with zero constant term. Then

Hp(g o h) = Hp(g)(h) +
l

(a'gm) (h(x)p'm - (a*h(xp'))'n) .
p t M>1

PROOF. By definition,

Hp(goh)=goh--1: a,(goh)(x
P t

while

Hp(g)(h) = g(h) - pI Y, a,g(hp ).

The first terms are the same and cancel by subtraction. Using the obvious relation

a*(goh)=ax(g)oa,(h)

and the expansion g = >m>1 gmxm we get the announced result.

In the special case 1 = { 1) (a single term in the index set I),

Hpf = f(x) - pa*f(xp),

and we recover the additive version (3.1) of the Dieudonne-Dwork quotient in
the case of constant coefficients (cf. generalization in (3.3) below). The following
conditions are equivalent:

(1) fm - (I/p)afmlp E A.
(ii) am - aam/p E mA.
(iii) am - aam/p (mod mA).
(iv) am(t) - am/p(tp) (mod p°A[t]) (v = ordp m).

Definition. A sequence (am)m>i in A = Z(p)[t] is a p-Honda sequence when it
satisfies the following Honda congruences:

am(t) - am/p(tp) (mod mZ(p)[t]) when p 1m.
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In particular, a sequence (am)m>1 in Z(p) is a p-Honda sequence when

am - am/p (mod mZ(p)) when p I m.

The paragraph preceding the definition proves the following result.

Proposition 3. For a formal power series f (x) _ F_m>1 amxm/m E B[[x]]
we have the equivalences

(i) Hp f = f (x) - p o* f (xv) has its coefficients in A C B,

(ii) (am)m>1 is a p-Honda sequence in A.

Proposition 4. Let A be a ring, I an ideal of A containing a prime p, and x
and y two elements of A satisfying x - y (mod I') for some integer r > 1.
Then

p' I m = xm = ym (mod I'+v) (v E N).

PROOF. (1) Let us write x = y + z with z E I'. Hence

xp = (y + Z)p = yp + zp(...) + zp

with

Zp(. . .) E ZI C Ir 1 = Ir+1

and

Zp E I pr c 12r c Ir+1

This establishes the case m = p (v = 1) of the lemma.
(2) The case m = p' is treated by induction on v, the basic step v H v + I

being analogous to the first case already treated. Hence

xp = yPV (mod I)'+v (t > 0).

(3) Finally, if we raise a congruence to the power f = m/pv, it is preserved: If
x' y' (mod U, say x' = y' + z' with z' E I5, then

(x')t = (y')r +z'(...) E (y')E + I.

This proposition shows that the sequence ((1 +x)m)m>1 is a p-Honda sequence
for any prime p. Let us state it explicitly.

Corollary. Let m > I be an integer divisible by p. If v > I denotes its p-adic
order then

(I +x)m = (1
+xp)m/p (mod p"Z[x]).
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PROOF. Observe that (1 +x)P - I +xP (mod p) and apply the proposition.

3.3. The Hazewinkel Theorem

The particular form of the Hazewinkel theorem that we are going to state and prove
has been specifically studied by various authors:

Barsky, Cartier, van Hamme, Honda, ... , Zuber

(neither exhaustive nor chronological... but in alphabetical order!). It has many
applications. Let us first give the Dieudonne-Dwork theorem (2.3) in a more general
form.

Theorem (Dieudonne-Dwork). Let f (X) E 1 +xQ p[t][[x]] be aformal power
series. Then the following conditions are equivalent:

(i) The coefficients of f are in Zp[t].
(ii) f (X)P/a f (xP) E I + pxZp[t][[x]].

PRooF. As in (2.3): Only observe at the end of the implication (ii) = (i) that the
coefficient of x" in the left-hand side is now

an,p(t)P + pa,,(t) + terms in pZp[t]

and in the right-hand side

a.a,lp(t) = an/p(tP) = a, ,,(t)P (mod pZp[t])

The conclusion follows.

If we know a priori that the coefficients of f are rational, namely

f (X) E I + xQ[t][[x]],

we get equivalent statements:

(i) The coefficients of f are in Z(p)[t],
(ii) f (X)P/a f (xP) E I + pxZ(p)[t][[X]]

simply since ZP n Q = Z(p). Let us come back to the notation of (3.2):

either A = Z(p)[t] C B = Q[t] or A = Zp[t] C B = Qp[t]

and

a : B -a B, a(t) a;t` H a(tP) _ a,tP`
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is extended to

a. : B[[x]] --> B[[x]], ai(t)x` H ai(tP)x`
i-O i>O

by letting a act on the coefficients only.

Theorem. For a formal power series f (x) _ m>1 amx' /m E B[[x]] we
have equivalent statements:

I
(i) Hp f = f (x) -

p
a.f (xP) has its coefficients in A C B.

(ii) cp = of has coefficients in A.

PROOF (i)=(ii) Assume that f(x) = ym>1 fmxm = F_m>1 amxm/m satisfies
(i). By Proposition 3 in (3.2), (am) is a p-Honda sequence. Then HP (f) has coeffi-
cients in A and by the proposition in (2.3), exp pHP(f) has p-integral coefficients

exppHP(f) _ (exp f)P/expa*f(xP) = (exp f)P/a. exp f(xP)

= Op(x)P/a*co(xI) E 1 + pxZ(P)[t][[x]]-

By the general form of the Dieudonnd-Dwork criterion,

So(x) = exp(f) E 1 + xA[[x]]

has p-integral coefficients.
The proof of the converse (ii) = (i) is based on Proposition 4 in (3.2). Assume

that cp = exp(f) has p-integral coefficients. Write

f (x) = log exp(f(x)) = log(1 + (ef (x) - 1)) = g(h (x)),

namely f = g o h with g(x) = log(1 + x) and h(x) = ef(x) - 1. Proposition 2 in
(3.2) can be applied to this composition:

Hp(f) = HP(g oh) = HP(g)(h)+ 1 EE a'gm (h(x)Pim -(a,kh(x1")Y) .
p I m>1 J

By (3.1) HP(g) has p-integral coefficients and by assumption, h has p-integral
coefficients. There only remains to consider the second term, where g has constant
coefficients (independent of t)

a'gm = gm = ±1/m.

Now, for all formal power series h c A[[x]] having p-integral coefficients, we
have

h(x)P' = a*h(xP+) (mod p).
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As Proposition 4 of (3.2) shows, this congruence is improved when raised to a
power in:

h(x)P'"' - o h(xP')"' (mod p)°+' (v = ordpin).

This proves

h(x)P"' - o'*h(xP')m E pniA[[x}].

and the p-integrality of the remaining sum follows.

3.4. Applications to Classical Sequences

Proposition (Beukers). Let M be a d x d matrix with integer coefficients.
Define an = Tr(M"). Then for any prime p. is a p-Honda sequence

am - a,,,/P (mod mZ(P)) if p I m.

PROOF. We have to prove that of has coefficients in .4 = Z(P) where f (x) _
Y-,">i amxn,/m. This logarithmic generating function s,; easily evaluated:

AX) _ (TrMm)
xm

= Tr C Mmxm\
m ? 1

In fl2 I m

= Tr (- log(1 - Mx)) -

Hence

exp f(x) = expTrlog(1 - Mx)-' = detexplog ((1 - Mx)-,)
= det(l - Mx)- = 1/ det(I - Mx)

has its coefficients in A.

Corollary 1. The Lucas sequence

to = 2, t = 1. En+t = fn + fn-1 (n > 1).

is a p-Honda sequence for any prime p.

PROOF. Let M = (I I ) E M--,(Z). The characteristic polynomial of M is

V2 - x - 1, hence M2 - M - I = 0 (Hamilton-Cayley). We deduce

Mn+2 = Mn+1 + Mn (n > 0).

Since Tr 1, = 2, Tr M = 1, this proves that f n = Tr Mn is the Lucas sequence.

Corollary 2. The Perrin sequence

ao = 3, a 1 = 0 . a, == 2, an+'_ = an + an_I (n > I).

is a p-Honda sequence for any prime p.
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10 1 t

PROOF. Let M = I 0 0 E M3(Z). The characteristic polynomial of M is
0 1 0

-x3 + x + 1, hence M3 - M - I = 0 (Hamilton-Cayley). We deduce

Mn+3=Mn+l+M" (n>0).

Since Tr 13 = 3, Tr M = 0, and Tr M2 = 2, this proves that an = Tr Mn is the
Perrin sequence.

3.5. Applications to Legendre Polynomials

Let (P,,)n>o denote the sequence of Legendre polynomials. This sequence can be
defined by its generating function

R T _
P,,(t)xn,

n>0

where R2 = I - 2xt + x2. Recall that these polynomials PP(t) E Q[t] satisfy

deg PP = n, P,,(1) = I (n > 0).

They can be computed according to the Rodrigues formula

/ dPP(t)=2I 1-I (t2
11n! dt

This formula shows that the coefficients of Pn are rational numbers with denomi-
nators powers of 2. More precisely, the coefficients of Pn belong to (1 /2n)Z. They
are p-integral for all odd primes p.

The following generating functions are well known (they can be checked by
differentiation with respect to x):

xm x-t-}-R
Pm-1(t)- = log t - t

m> 1

X"' 2
Pm(t)m =log 1 - tx -}- R

m> ]

Hence

0x"`x-t-f-R
exp Pm_1(t)

1 - t>t1
m

ex p PM(t)x,p C>'
m /

_ 2

1-tx+R'
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and for each odd prime p, we get two p-Honda sequences. Explicitly,

p m Pm-1(t) = P(m/p)-1(tp) (mod mZ(p)[t]),

p I m = Pm(t) = Pm/p(tp) (mod mZ(p)[t])

For example, to check that

I -t
write

E Z(p)[tl[[x]l,

x-t+R=1-f-x-1+1-x
I-f-2x

I-t 1/2

1-t 1-t 1-t (1-x)2)

(-I=1 } 1t -}-
= I + -x

1 -t n>1

l/2) (I - t)n
t1\ n (1 -x)21

nxn
,

so that the denominator I - t disappears: All coefficients are in Z[z, t] C Z(p)[t].
The integrality verification for the other generating function is similar and therefore
left as an exercise.

The change of variable t = I + 2r clears the powers of 2 in the denominators,
and congruences mod 2 (or mod 4) can also be established.

3.6. Applications to Appell Systems of Polynomials

Let (An(t)),>o be an Appell family (IV.6.1) in Zp[t]: An = n&-1 (n > 1). The
following result generalizes the corollary of Proposition 4 in (3.2).

Theorem (Zuber). For an Appell family (A,(t)),>o in Zp[t], the following
conditions are equivalent:

(i) There exists a E Zp such that
An(a) = A,/p(a) (mod nZp) (n > 1, p I n).

(ii) There exists a E Zp such that (A,(a))n>1 is a Honda sequence
An(a) = Anlp(ap) (mod nZp) (n > 1, p I n).

(iii) (An)n>1 is a Honda sequence of polynomials
An(t) - An/p(tp) (mod nZp[t]) (n > 1, p I n).

PROOF. (i) . (ii) by the p-adic mean value theorem (V.3.2),

An/p n A(n/p)-1 IIAn/p11 <
In1

P IPI

Iap - aI : Ipl <rp (aEZp).
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Hence

Inj
IA.lp(aP) - An/p(a)I < I pI

IpI < InI,

and the equivalence follows.
(iii) = (ii) is obvious.
(i) = (iii) This uses (3.3): It is enough to show that

expI:
A,,(t)xn

= gk(t)Xk (qo = 1)
n>1 n k>O

has p-integral coefficients, namely qk(t) E ZP[t].
(1) Let us compute the partial derivative 8/8t of the defining equation (*):

,qn
Xn- . exp ... = > gkxk

n>1 n k>O

or equivalently (using A;, = nAn_1),

i
.1: An-1X

n qmXm = qkxk

n>1 m>O k>O

This gives

qk = An-1qm = Aogk-1 + Alqk-2 + ... + Ak-1-
n+m=k,n> ]

(2) Let us compute the partial derivative 8/ax of the defining equation (*):

[: Anxn-] . eXp kgkXk-1

nn>..1I k>1

or equivalently,

1: Anxn-1 , 1: qx- _ kgkXk-1m

n>1 m>0 k>]

This gives

kqk = Angm (k > 1),
ntm=k,n> 1

and

(*)

(1)

(k - 1)qk-1 = E Angm = Algk-2 + ... + Ak_] (k > 1). (11)
n+m=k- ] , n> 1

(3) Comparing (1) with (11),

qk = Aogk-1 -f (k - 1)qk-1 = (k + Ao - 1)qk-] (k > 1).
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Iteration leads to

qk = (k + Ao - 1)(k + Ao - 2)qk-2, .. ,

qke) _ (k + Ao - 1)(k + Ao - 2) ... (k + Ao - -E)qk-e (1 -< e -< k).

Now, the Taylor formula is

l
0<j<k

( k- 1 +Ao
.l

qk(t) =
1\

Jqk-j(a)(t - a)j.

Since A0 E Zp, all binomial coefficients are in Zp. Moreover, by assumption, all
qn(a) E ZP' since (An(a))n>1 is a p-Honda sequence. We conclude that the poly-
nomials qk(t) have p-integral coefficients.

EXERCISES FOR CHAPTER 7

1. For f, g E Q[x], prove that

f - g (mod nZp[x]) f - g (mod p" Z(p)[x])

(cf. Exercise 29 in Chapter I).

2. Let p be an odd prime. Show that the closure of the set of pairs (n, n!*) in Zp x Zp is
the union of two graphs.
(Hint. Consider the graphs of fr p.)

3. Find the limit lim,2. r p(pn). More precisely, can you evaluate

lim (rp(pn) - 1)/pn?n->x

4. Prove the congruence

(1 +4t)2k = 1 + 2k+21 (mod 2k+3) (t E Z)

by induction on the integer k > 0.

5_ More on the gamma function r2.
(a) Check the formula

r2(n) = (-1)P(2[n/2])!
(21n/21[n/2]9

(b) Prove 172(7 + 1)r2(-n) = (-1)1+[(n+1)/21 (n > I).
(c) Let m > I be an odd integer. Prove F 6k,,, r2(k/m) = f 1.

6. For any prime p and 0 < a < p, show that

n r (-1)pn(a pt)1P" ni.
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has a continuous extension to Zp given by

x H f p(a + px + 1) E Z C Q.

Prove the following generalization. Let q = pf (f ? 1 be a fixed power of p, and
0 < a < q. Show that

m (-1)(v-1Im
(a +q n )'

(-p)P-I in!

admits a continuous extension ZP -* Qp given by

x H (-1)f+a(-p)ordpaI H rp([a/p'1 + pf ix + 1).
0<i < f

(Hint. Write a telescopic product with no = a + gm, t if = m

(a +qm)! n0! III! of-l!

(a0 + pllt)! (a) + p112)! (af-1 + pin)!
111! 112! m!

= ±p"'Fp(a0+pnt+1) - + 1 )- - --- p'"FP(nf-I +1).

Observe that when the prime p is odd, q - 1 is even and (-1)(1 " _ +1: Hence this
sign is relevant only if p = 2. in which case it is (In) _ (-l)'.)

7. With7rP-t = -p. prove
e' E I +7rxZp[Tr11[x11.

7r" n 11 - Sp(a) Sp(n) 1

(Hint. For n > I. ord p >
11. p-1 p-1 p-1 p-1

8. Compute the first coefficients of the Artin-Hasse exponential EP for p = 2. 3 (and 5).
In particular. show that

E2(X)= I+X+X22+ X;+ 2X4+X5(...

E3(X)= 1+X+X2+;X3+
24

Compute the first coefficients of the Dwork exponential for p = 2. 3 (and 5).

9. Here is another proof of the fact that the radius of convergence r of the Artin-Hasse
exponential EP is smaller than or equal to 1.
(a) Show that if this radius r were greater than 1, then the unit sphere would he a critical

sphere of Ep. and Ep would have a zero a 0 1 on this sphere.
(b) Use the identity

Ep(x)Ep(Sx)-- Ep(xP)

(where is a primitive pth root of unity: Z 1 = P) to show that Ep would have
infinitely many zeros on the unit sphere, thus contradicting (VI 2.1).
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(c) When p 2, give another proof of rEv < I based on the identity

E'' (x)/Ep(x) = Ex pi_1.

(Hint. Use Propositions 2 and 3 in (VI.1.2), as well as 1/Ep(x) = Ep(-x) to show
that r1/Eo = rEo-)

10. When Trp-1 = -p and ry = x, then we have e" (y-y°) = ex+x°ip. Find the corre-
sponding general expression for e" (y-y9) (q = pf, f > 1) in terms of x = ny.

I I - Prove the following relations for the coefficients of Dwork's exponential e'r(x-x9) _
Yn>o Anxn

nAn = 7rAn-1 (I < n < q), nAn = 7r(An-1 - qAn-q) (n - q)-

(Hint. Differentiate the above generating function.)

12. For 0 < a = a/(p - 1) < 1 let G. denote the Gauss sum - Y -° Use the
Gross-Koblitz formula to prove GaG1-a = fp.

13. Let X be a nontrivial multiplicative character FP Cx, and consider the Gauss sum

G(X) = X(w '
vEFP

(where I is a pth root of unity in C). Show that the complex absolute value of this
Gauss sum is

IG(x)Ic = rp--

(Hint. Prove G(X)G(X) = p exactly as in the proof of Proposition 1 in (VII.2.5). There,
the Legendre symbol was a multiplicative character X such that X I = X2. But here,
X2 may be nontrivial.)

14. Let X : FP -+ C" be a nontrivial, complex-valued, multiplicative character of Fp. As
in the previous exercise, we consider the Gauss sums G(X): IG(X)Ic = rp-. Show that

the only case when G(X) = e.,rp- for some root of unity e, happens when X = \n)-

(Hint. Let co : FP -+C C' denote an injective homomorphism, considered as a
complex-valued, multiplicative character of Fp (analogous to the Teichmuller char-
acter (111.4.4)). Show that any nontrivial multiplicative character X : C" can be

written uniquely X = to-' (1 < a < p - 2). If G(w-a)2/ p is a root of unity, use the
Gross-Koblitz formula to show that a =

15. Check the following formulas by differentiation with respect to x

E Pm-1(t)xm = log x - t + R

m>1 m 1 - t

x"' 2
Pm(t) log

1 - tx + Rm>1

m
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16. Let (Bn)n>o denote the sequence of the Bernoulli polynomials- If p is an odd prime,
prove the following congruences:

Bpn(t) - Bn(tp) (mod nZp) (n > 1).

For p = 2, prove that a single power of 2 is lost, i.e_,

2BZn(t) = 2Bn(t2) (mod nZ2) (n > 1).

(Hint. Use (Chapter V, Exercise 10) and (VIL3.6) for the Appell sequence
2pBn(t) E Zp[t}.)

An(t) =
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Tables

Number of
quadratic

Field Units Squares Roots of unity extensions

Q2 ZZ = I +2Z2 l +8Z2 µ2 = 1±11 7
index 4
in ZZ

OP Zp D 1+pZp index 2 µp_1 3

p odd prime index p-1 in Zp

Field D B<1 3 B<1 Residue field Nonzero I. I Properties

3 Z 3 pZO F pZ locally compactp pp P 'KJRJP=nR F (q=pf)
ZInlz =

p of =dimQp K < oo
{

Q locally compact

Qp3AO JMa k°=Fp=F x
Q

p
( algebraically closed

p
t not locally compact

Q ( algebraically closed
C 3A 3M Fo=F x pp p p p t complete

k algebraically closed
M2 A

n
R

I
nnp uncountable >o spherically complete
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Umbral calculus

Delta Basic sequence Related
operator of polynomials sequences
(IV5) (IV.5.2) (IV.6.1)

D = d/dx (x'),>0 Appell sequences

Dpn = npn-1

T b
umbral

operator
S (pn), o Sheffer sequences

p,(,x4-ny))
x+ny nyo

(IV.5.5) translation principle

Ssn =nsn_I

Binomial identity: pn(x + y)="(p(r) + p(y))n,"
Appell sequences: pn(x + y) ="(p(x) + y)',"
Sheffer sequences: sn(x + y) = " (s(x) + p(y))'."

Analytic elements

Formal
power series Cp[[.xJ]

Sequences

(a n ), o 11 CP
n>0

power series lim sup In, I IIn < I
converging in (rf > 1)

1xI<1
power series (Un)n>o
bounded in bounded t

IxI < I sequence

analytic H(MP) Christol-Robba
elements in condition

1xI < 1 (4.6)

analytic H(AP) = CP(x] an -+ 0 CO

elements in (n -* z)
1xI<I

polynomials C [x] 0 fora CA)P n
P

finitely many n's
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Radius of convergence of some exponential series
(listed in increasing order)

EP (Actin-Hasse) E$ (Dwork)
v

f ex ez+ v expr_1>o p, -(x- "I (q = Pf )

I

Irf rP=IPII





Basic Principles of Ultrametric
Analysis in an Abelian Group

(1) The strongest wins

IxI > lyl = Ix + yl = IxI.

(2) Equilibrium: All triangles are isosceles (or equilateral)

a+b+c=O, Icl < IbI ial = IbI.

(3) Competitivity
al + a2 + ... + an = O

there is i ; j such that Jai I = I ai I = max l ak I

(4) A dream realized

(an)n>o is a Cauchy sequence d(an, an+i) - 0-

(5) Another dream come true (in a complete group)

En>0
an converges an -+ 0.

When Eo an converges, F_,,>0 Ian I may diverge, but

I r an I < sup Ian I = max Ian l
n>O

and the infinite version of (3) is valid.
(6) Stationarity of the absolute value

an -). a 0 0 = there is N with I an I = J a I for n> N.
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Conventions, Notation, Terminology

We use the abbreviations
iff if and only it," := "equal by definition," nontrivial equality.

is the "end of proof" (or "absence of proof') sign.
In a statement: (i), (ii), ... always denote equivalent properties.
In the table of contents, an asterisk * before a section indicates that it will not be used later

and may be omitted in a first reading.

Set Theory

P(E) power set of E: Set of subsets of E; 0: Empty set.
ACBmeans `xeA=xeB"hence:

(certain authors denote this inclusion by f).
When A C B C E. B - A = B \ A denotes the complement of A in B.

E - A = A` is the complement of a subset A C E.
A subset of E having only one element is a singleton set: x E E ; (x} E P(E).
LI : Disjoint union symbol. partition of a set.
El: Set of families (or functions) I -* E.
Ettt: Set of families I -* E having components equal to the base point

of E (the neutral element in a group G. the 0 in a ring A ... )
except . for finitely many indices.

Let f : E -* F, x r- f (x) he a map. Then
f is injective when x 0 y ==* f (x) f (3), namely f is one-to-one,
or equivalently when f (x) = f (y) x = y,
f is surjective when f (E) = F (namely j is onto).
f is bijective when it is one-to-one and onto.
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432 Conventions, Notation, Terminology

The characteristic function of a subset A C E is the function

P(x) = WA (X) _- 1 if xEA,
0 if x VAA.

Fundamental Sets of Numbers

N={0,1,2,..., n,...}CZCQCRCC, N*={l,2,...,n,...}=N>o.
When p E (2, 3, 5, 7, 11, ...} is a prime, Fp = Z/ pZ.
p n means p divides n, ptn means p does not divide n,

p° 11 n means that p' is the highest power of p dividing n,
R>o = {x E R: x> 0}, R>o = {x E R: x> 0}, [a, b): interval a< x< b
Z(p) _ {alb: a E Z, b > 1, b prime to p} C Q.
Z[1/p]=(ap":aEZ, vEZ) CQ.
When a> O and S C R, as = {as : s E S} C R>o, e.g.. pZ C pQ C R>o.
[x] E Z integral part of x E R: [x] < x < [x] + 1.
(x) fractional part of x E R: x = [x] + (x).
gcd: Greatest common divisor; Icm: Least common multiple.
S1J: Kronecker symbol (= 1 if i = j, = 0 otherwise).

Groups, Rings and Modules

AX: Multiplicative group of units (i.e., invertible elements) in a ring A.
A[X]: Polynomial ring in one indeterminate X and coefficients in the ring A,

a monic polynomial f is a polynomial having leading coefficient 1:
X° +ap_IXn-1 ifdeg f =n.

A[[X]]: Formal power series ring.
A{X}: Restricted power series over a valued ring A

(Chapter V: Power series with coefficients - 0) A[X] C A{X} C A[[X]].
An integral domain is a commutative ring A {0} having no zero divisor.
K = Frac A: Fraction field of an integral domain A. In particular,

K(X) = Frac A[X]: Rational fractions,
K((X)) = Frac A[[X]] (D K(X)): Formal Laurent series ring.

A[1/q]: Partial fraction ring corresponding to denominators in {1. q, q2, ...},
where q is not a zero divisor in the ring A.

If G is an abelian group, then [g E G : g" = e for some integer n > 1)
is the torsion subgroup of G: In particular,
µ(A) denotes the group of roots of unity in a commutative ring A,
µ = µ(C") = µpx x p(p), where
µp-: pth-power roots of unity (p-Sylow subgroup of µ),
µ(p): Roots of unity having order prime to p,
µn(A) = {x E A : x" = 1): nth roots of unity in the ring A.

A pair of homomorphisms A B 9-+ C is exact when f (A) = kerg.
A short exact sequence (SES) is an exact pair with

f injective and g surjective; hence C is a quotient of B by f (A) = A,

written 0 -> A - B -5> C --+ 0 for additive groups
(replace 0 by 1 for multiplicative groups).



Conventions, Notation, Terminology 433

Fields, Extensions

Characteristic of a field K: Either 0 or the prime p such that p I K = 0 E K.
in which case the prime field Fp is contained in K.

For each prime p, the group F" is cyclic; when the prime p is odd, the squares in F" make
up a subgroup of index two. kernel of the Legendre symbol (p) = f I.

In a field (or a ring) of characteristic p we have (x + y)P = xp + yp.
Ka: Algebraic closure of a field K; when K = K' is algebraically closed of characteristic

0, It, (K) is cyclic and isomorphic to Z/nZ.
P1(K) = K U {oo} denotes the projective line over the field K.

Topology, Metric Spaces

The closure of a subset A C X (X being a topological space) is denoted by A.
A Hausdorff space is a topological space X in which for every pair of distinct points, it is

possible to find disjoint neighborhoods of these points: Equivalently, the diagonal Ax is
closed in the product X x X.

The diameter of a subset A C X with respect to a metric d is

diam(A) = 8(X) = supX.yEA d(x, y) < oc-

We say that A is bounded when diam(A) < oo.
The distance of a point x E X to a subset A C X is d(x, A) =

in a metric space (X. d) are denoted by

B<r(a) = B<r(a. X) = {x E X : d(x, a) < r}: closed (dressed) ball,

B<r(a) = B<r(a; X) = {x E X : d(x, a) < r}: open (stripped) ball.

For a hall with center a equal to the base point (the neutral element in a group. the 0 element
in a ring), the notation will be just B<r, B<r.

The sphere of radius r > 0 and center a in the metric space (X, d) is

Sr(a) = {x E X : d(x, a) = r} = B<r(a) - B<r(a).

A metric space is separable if it has a countable dense subset.
C(X; K): Space of continuous functions X -+ K, or simply C(X) when K is understood;

Ch,(X; K): Subspace consisting of the bounded continuous functions (when K is a valued
field). The sup norm of a hounded function is

If II = If IIx = sup If(x)I (f E Cb(X; K)).
XEX
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Index

A

absolute value 11.1.3
- over Q 11.2.1

algebraic variety 1.6.1
Amice-Fresnel theorem V1.4.4
analytic element VI.4.2
Appell sequence IV6.1
Artin-Hasse exponential VIJ.2.1

B

Baire space 111. 1.4
balanced subset II.A.6
balls (stripped and dressed) 11.1.1
Banach space (ultrametric -) IV.4.1
basic system of polynomials IV5.2
Bell (numbers and polynomials) IV.6.3
Bell-Carlitz polynomials (IV, exercise 19)
Bernoulli (numbers and polynomials) V.5.4
Beukers proposition VII.3.4
binomial identities IV5.2

- polynomial IV. 1.1

C

Cantor set 1.2.2
carry (operations in basis p) 1.1.2
Chebyshev polynomials (V, exercise 7)
Christol-Robba theorem VI.4.6
Clausen-von Staudt theorem V.5.5
clopen set 11.1.1
commutant (bicommutant) IV.5.3

composition operator IV.5.3
continuity of roots of equations I1I.1.5
continuous retraction I.A.6
convexity (and duality) VI.1.4
covering of circle I.A.1
critical radius VI.l.4
cyclotomic polynomial (- units) 11.4.2

D

delta operator IV.5.1
diagonal (in a Cartesian product) 1.3.3
Dieudonnd-Dwork criterion VII.2.2, V1I.3.3
differential quotient (higher order-) V.2.4
divisible group 111.4.1
dominant (monomial) VI.1.4
dressed ball 11. 1. 1
duality (convexity theory) VI. 1.6
Dwork series VII.2.3

E

Eisenstein (irreducibility criterion)
11.4.2

- polynomial 11.4.2
entire function VI.2.3
enveloping ball Bp VI.4.1
equivalent absolute values 11. 1.7

- norms 11.3.1,111.3.2
Euclidean model 1.2.5
extension of absolute values

- existence 11.3.4
- uniqueness 11.3.3
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436 Index

F

Fibonacci numbers (IV, exercise 20)
filters III.A.1
finiteness (extensions of Qp of given degree)

Ill.1.6
formal power series 1.4.8, IV.5, V1.1
fractal subset L2.3
fractional part (x) 1.5.4
fundamental inequalities 111.4.3

G

gamma function r p (Morita) VII.1.1
Gaussian 2-adic numbers 11.4.5
Gauss multiplication formula for f

VII-1-3
- norm V.2.1

generalized absolute value 11.2.2

-ball V1.3.1
- over Q 11.2.4

- Taylor expansion IV.5.2
Gould polynomials (IV, exercise 21)
granulation, type of - V.1.2
growth modulus VI.1.4, VI3.3

H

Haar measure II.A.I
Hahn-Banach theorem (p-adic) IV.4.7
Hadamard formula (radius of convergence)

VI.12
- three-circle theorem VI.2.6

Hazewinkel maps VII.3.2
- theorem VII.3.3

Hensel's lemma 1.6.4,11.1.5
hexagonal field (3-adic numbers) 11.4.6
Honda sequence (and congruences)

VII.32
homothety (= dilatation) 1.5.6, VI.3.1

I

IFS (iterated function system) 1.2.5
indecomposable compact space I.A.6
indefinite sum IV.] -5
Ingleton theorem I.447
index with respect to a hole V1.3.5
infinite product VI.2.3
infraconnected set VI.4.1
injective Z-module 111.4.1
p-integer 1.5.4
integral part (p-adic) [x] 1.5.4
inverse system (= projective system) 1.4.2
involution a 1.1.2
irreducibility criterion (Eisenstein) 11.4.2
isolated singularity VI.2.6
Iwasawa logarithm Log V.4.5

K

Kazandzidis congruences V11.1.6
Krasner's lemma 111.1.5,111.3.2

L

Legendre polynomials V11.3.5
-relation for rp V11. 1.2
- quadratic residue symbol 1.6.6

length of an expansion in basis p IV.3.2
- of a word 1.2.4

linear fractional transformation VI.3.1
Liouville theorem VI.1.4
Lipschitz function V.1.5
locally analytic function VI.4.7
locally constant function IV.3.1
local ring 11.1.4
Lucas sequence VII.3.4

M

Mahler series IV 2.3
- theorem IV.2.4

maximum principle VI.2.5, VI.2.6
mean value theorem V.3.2, V.3.4
metric, p-adic - 1.2.1
Mittab Leffler theorem VI.3.4, VI.4.5
Mbbius function µ(n) VII2.1
module of an automorphism II.A.1
Monna-Fleischertheorem IV.4.5
Motzkin factorization VI.3.5, VI.4.8
multiplicative norm VI.1.4, VI.3.6

N

Newton algorithm 1.6.4
- approximation method 1.6.3
- polygon VI. 1.6

normal basis (ultrametric Banach space)
IV.4.2

0

order vp = ordp 1.1.4, 1.5.1
order of composition operator IV.5.3
order of formal power series IV.5.3, VI.1.1

P

p-adic integer 1.1.1. - number 1.5.1
- metric 1.2.1

Perrin sequence VII.3.4
Picard theorem (essential singularity) VI.2.6
Pochhammer symbol (x) IV. 1.1
principal ideal domain 1.1.6

- pan at a pole VI.3.2
projective limit (inverse system) 1.4.2
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Index 437

Q

quadratic residue symbol (Legendre) 1.6.6

R

radius of convergence VI. 1.2
- (exp and log) V.4.1

ramification index 1L4.1
reduction mod p 1.1.5

- of ultrametric Banach space IV.4.3
regular radius V1.1.4
representation theorem IV4.4
residue degree II.4.1

- field 11. 1.4
restricted factorial VII.1.1

- formal power series V-2.1
Rodrigues formula Vl1.35
Rolle's theorem VI.2.4
roots of unity in C 1.5.4

-inCP 111.4.2
Runge theorem VI.4.2

S

Teichmuller character 111.4.4
topological field 1.3.7

- group 1.3.1
- ring 1.3.6

totally disconnected 1.2.1
- ramified (extension) 11.4.1

transition map (inverse system) 1.4.2
translation principle IV.5.5
type of a granulation V.1.2

U

ultrafilter III.A.2
ultrametric absolute value I1-1.3

- Banach space IV A
- distance, - space 11. 1. 1
- field 11.1.3
- group 11. 1.2

ultraproduct 111.2.2
uniformly equivalent metrics 1.2.1
unit (p-) I.5.4
universal field Op 111.2.2
universal property of inverse limits 1.4.2
unramified extension H.4.1

maximal - 11.4.4,111.1.2
saturated set 1.3.3
Schnirelman's theorem VI.2.3
self-similarity dimension 1.2.3
Sheffer polynomials, - sequences IV.6.1
Sierpifisky gasket 1.2.5
solenoid SP I.A.1
spherically complete metric space 111.2.4
stereographic projection I.A.6
Stirling numbers (1st and 2nd kind)

VI.4.7
Strassman theorem VI2.1
strict differentiability V.1.1
stripped ball 1I.1.1
support (of a family) IV.4.1

- differentiability V.1.1

T

tame ramification 11.4.1
Tate homomorphism rP 1.5.4

V

valuation of n! V.3.1
- polygon VI.1.6
- subring II. 1.4

valued field 1.3.7
van der Put sequence IV.3.2

- theorem IV.3.3
van Hamme theorem IV.5.4
Volkenborn integral V5.1

W

wild ramification 11.4.1
Wilson congruence VII. 1.1

Z

Zuber theorem VII.3.6
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