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Preface

This book grew out of a one-semester course given by the second author in
2001 and a subsequent two-semester course in 2004-2005, both at the Univer-
sity of Missouri-Columbia. The text is intended for a graduate student who
has already had a basic introduction to functional analysis; the aim is to give
a reasonably brief and self-contained introduction to classical Banach space
theory.

Banach space theory has advanced dramatically in the last 50 years and
we believe that the techniques that have been developed are very powerful and
should be widely disseminated amongst analysts in general and not restricted
to a small group of specialists. Therefore we hope that this book will also
prove of interest to an audience who may not wish to pursue research in this
area but still would like to understand what is known about the structure of
the classical spaces.

Classical Banach space theory developed as an attempt to answer very
natural questions on the structure of Banach spaces; many of these questions
date back to the work of Banach and his school in Lvov. It enjoyed, perhaps,
its golden period between 1950 and 1980, culminating in the definitive books
by Lindenstrauss and Tzafriri [138] and [139], in 1977 and 1979 respectively.
The subject is still very much alive but the reader will see that much of the
basic groundwork was done in this period.

We will be interested specifically in questions of the following type: given
two Banach spaces X and Y , when can we say that they are linearly isomor-
phic, or that X is linearly isomorphic to a subspace of Y ? Such questions
date back to Banach’s book in 1932 [8] where they are treated as problems
of linear dimension. We want to study these questions particularly for the
classical Banach spaces, that is, the spaces c0, �p (1 ≤ p ≤ ∞), spaces C(K)
of continuous functions, and the Lebesgue spaces Lp, for 1 ≤ p ≤ ∞.

At the same time, our aim is to introduce the student to the fundamental
techniques available to a Banach space theorist. As an example, we spend
much of the early chapters discussing the use of Schauder bases and basic
sequences in the theory. The simple idea of extracting basic sequences in order
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to understand subspace structure has become second-nature in the subject,
and so the importance of this notion is too easily overlooked.

It should be pointed out that this book is intended as a text for graduate
students, not as a reference work, and we have selected material with an
eye to what we feel can be appreciated relatively easily in a quite leisurely
two-semester course. Two of the most spectacular discoveries in this area
during the last 50 years are Enflo’s solution of the basis problem [54] and
the Gowers-Maurey solution of the unconditional basic sequence problem
[71]. The reader will find discussion of these results but no presentation. Our
feeling, based on experience, is that detouring from the development of the
theory to present lengthy and complicated counterexamples tends to break up
the flow of the course. We prefer therefore to present only relatively simple and
easily appreciated counterexamples such as the James space and Tsirelson’s
space. We also decided, to avoid disruption, that some counterexamples of
intermediate difficulty should be presented only in the last optional chapter
and not in the main body of the text.

Let us describe the contents of the book in more detail. Chapters 1-3 are
intended to introduce the reader to the methods of bases and basic sequences
and to study the structure of the sequence spaces �p for 1 ≤ p < ∞ and c0.
We then turn to the structure of the classical function spaces. Chapters 4
and 5 concentrate on C(K)-spaces and L1(µ)-spaces; much of the material
in these chapters is very classical indeed. However, we do include Miljutin’s
theorem that all C(K)-spaces for K uncountable compact metric are linearly
isomorphic in Chapter 4; this section (Section 4.4) and the following one (Sec-
tion 4.5) on C(K)-spaces for K countable can be skipped if the reader is more
interested in the Lp-spaces, as they are not used again. Chapters 6 and 7
deal with the basic theory of Lp-spaces. In Chapter 6 we introduce the no-
tions of type and cotype. In Chapter 7 we present the fundamental ideas of
Maurey-Nikishin factorization theory. This leads into the Grothendieck the-
ory of absolutely summing operators in Chapter 8. Chapter 9 is devoted to
problems associated with the existence of certain types of bases. In Chapter 10
we introduce Ramsey theory and prove Rosenthal’s �1-theorem; we also cover
Tsirelson space, which shows that not every Banach space contains a copy of
�p for some p, 1 ≤ p < ∞, or c0. Chapters 11 and 12 introduce the reader
to local theory from two different directions. In Chapter 11 we use Ram-
sey theory and infinite-dimensional methods to prove Krivine’s theorem and
Dvoretzky’s theorem, while in Chapter 12 we use computational methods and
the concentration of measure phenomenon to prove again Dvoretzky’s theo-
rem. Finally Chapter 13 covers, as already noted, some important examples
which we removed from the main body of the text.

The reader will find all the prerequisites we assume (without proofs) in
the Appendices. In order to make the text flow rather more easily we decided
to make a default assumption that all Banach spaces are real. That is, unless
otherwise stated, we treat only real scalars. In practice, almost all the results
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in the book are equally valid for real or complex scalars, but we leave to the
reader the extension to the complex case when needed.

There are several books which cover some of the same material from some-
what different viewpoints. Perhaps the closest relatives are the books by Di-
estel [39] and Wojtaszczyk [221], both of which share some common themes.
Two very recent books, namely, Carothers [23] and Li and Queffélec [126],
also cover some similar topics. We feel that the student will find it instructive
to compare the treatments in these books. Some other texts which are highly
relevant are [10], [78], [149], and [56]. If, as we hope, the reader is inspired to
learn more about some of the topics, a good place to start is the Handbook of
the Geometry of Banach Spaces, edited by Johnson and Lindenstrauss [90,92]
which is a collection of articles on the development of the theory; this has the
advantage of being (almost) up to date at the turn of the century. Included is
an article by the editors [91] which gives a condensed summary of the basic
theory.

The first author gratefully acknowledges Gobierno de Navarra for funding,
and wants to express his deep gratitude to Sheila Johnson for all her patience
and unconditional support for the duration of this project. The second author
acknowledges support from the National Science Foundation and wishes to
thank his wife Jennifer for her tolerance while he was working on this project.

Columbia, Missouri, Fernando Albiac
November 2005 Nigel Kalton



Contents

1 Bases and Basic Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Schauder bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Examples: Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Equivalence of bases and basic sequences . . . . . . . . . . . . . . . . . . . 10
1.4 Bases and basic sequences: discussion . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Constructing basic sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 The Eberlein-S̆mulian Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 The Classical Sequence Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 The isomorphic structure of the �p-spaces and c0 . . . . . . . . . . . . 29
2.2 Complemented subspaces of �p (1 ≤ p <∞) and c0 . . . . . . . . . . 33
2.3 The space �1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Convergence of series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 Complementability of c0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Special Types of Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Unconditional bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Boundedly-complete and shrinking bases . . . . . . . . . . . . . . . . . . . 53
3.3 Nonreflexive spaces with unconditional bases . . . . . . . . . . . . . . . . 59
3.4 The James space J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 A litmus test for unconditional bases . . . . . . . . . . . . . . . . . . . . . . . 66
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Banach Spaces of Continuous Functions . . . . . . . . . . . . . . . . . . . 73
4.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 A characterization of real C(K)-spaces . . . . . . . . . . . . . . . . . . . . . 75
4.3 Isometrically injective spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Spaces of continuous functions on uncountable compact

metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



X Contents

4.5 Spaces of continuous functions on countable compact metric
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 L1(µ)-Spaces and C(K)-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 General remarks about L1(µ)-spaces . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Weakly compact subsets of L1(µ) . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Weak compactness in M(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 The Dunford-Pettis property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Weakly compact operators on C(K)-spaces . . . . . . . . . . . . . . . . . . 118
5.6 Subspaces of L1(µ)-spaces and C(K)-spaces . . . . . . . . . . . . . . . . . 120
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 The Lp-Spaces for 1 ≤ p < ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1 Conditional expectations and the Haar basis . . . . . . . . . . . . . . . . 125
6.2 Averaging in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Properties of L1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4 Subspaces of Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Factorization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.1 Maurey-Nikishin factorization theorems . . . . . . . . . . . . . . . . . . . . 165
7.2 Subspaces of Lp for 1 ≤ p < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.3 Factoring through Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 180
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1

Bases and Basic Sequences

In this chapter we are going to introduce the fundamental notion of a Schauder
basis of a Banach space and the corresponding notion of a basic sequence. One
of the key ideas in the isomorphic theory of Banach spaces is to use the prop-
erties of bases and basic sequences as a tool to understanding the differences
and similarities between spaces. The systematic use of basic sequence argu-
ments also turns out to simplify some classical theorems and we illustrate this
with the Eberlein-S̆mulian theorem on weakly compact subsets of a Banach
space.

Before proceeding let us remind the reader that our convention will be that
all Banach spaces are real, unless otherwise stated. In fact there is very little
change in the theory in switching to complex scalars, but to avoid keeping
track of minor notational changes it is convenient to restrict ourselves to the
real case. Occasionally, we will give proofs in the complex case when it appears
to be useful to do so. In other cases the reader is invited to convince himself
that he can obtain the same result in the complex case.

1.1 Schauder bases

The basic idea of functional analysis is to combine the techniques of linear
algebra with topological considerations of convergence. It is therefore very
natural to look for a concept to extend the notion of a basis of a finite dimen-
sional vector space.

In the context of Hilbert spaces orthonormal bases have proved a very use-
ful tool in many areas of analysis. We recall that if (en)∞n=1 is an orthonormal
basis of a Hilbert space H, then for every x ∈ H there is a unique sequence
of scalars (an)∞n=1 given by an = 〈x, en〉 such that

x =
∞∑

n=1

anen.
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The usefulness of orthonormal bases stems partly from the fact that they
are relatively easy to find; indeed, every separable Hilbert space has an or-
thonormal basis. Procedures such as the Gram-Schmidt process allow very
easy constructions of new orthonormal bases.

There are several possible extensions of the basis concept to Banach spaces,
but the following definition is the most useful.

Definition 1.1.1. A sequence of elements (en)∞n=1 in an infinite-dimensional
Banach space X is said to be a basis of X if for each x ∈ X there is a unique
sequence of scalars (an)∞n=1 such that

x =
∞∑

n=1

anen.

This means that we require that the sequence (
∑N

n=1 anen)∞N=1 converges to
x in the norm topology of X.

It is clear from the definition that a basis consists of linearly indepen-
dent, and in particular nonzero, vectors. If X has a basis (en)∞n=1 then its
closed linear span, [en], coincides with X and therefore X is separable (the
rational finite linear combinations of (en) will be dense in X). Let us stress
that the order of the basis is important; if we permute the elements of the
basis then the new sequence can very easily fail to be a basis. We will discuss
this phenomenon in much greater detail later, in Chapter 3.

The reader should not confuse the notion of basis in an infinite-dimensional
Banach space with the purely algebraic concept of Hamel basis or vector space
basis. A Hamel basis (ei)i∈I for X is a collection of linearly independent
vectors in X such that each x in X is uniquely representable as a finite linear
combination of ei. From the Baire Category theorem it is easy to deduce that
if (ei)i∈I is a Hamel basis for an infinite-dimensional Banach space X then
(ei)i∈I must be uncountable. Henceforth, whenever we refer to a basis for an
infinite-dimensional Banach space X it will be in the sense of Definition 1.1.1.

We also note that if (en)∞n=1 is a basis of a Banach space X, the maps x �→
an are linear functionals on X. Let us write, for the time being, e#

n (x) = an.
However, it is by no means immediate that the linear functionals (e#

n )∞n=1 are
actually continuous. Let us make the following definition:

Definition 1.1.2. Let (en)∞n=1 be a sequence in a Banach space X. Suppose
there is a sequence (e∗n)∞n=1 in X∗ such that

(i) e∗k(ej) = 1 if j = k, and e∗k(ej) = 0 otherwise, for any k and j in N,
(ii) x =

∑∞
n=1 e∗n(x)en for each x ∈ X.

Then (en)∞n=1 is called a Schauder basis for X and the functionals (e∗n)∞n=1 are
called the biorthogonal functionals associated with (en)∞n=1.
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If (en)∞n=1 is a Schauder basis for X and x =
∑∞

n=1 e∗n(x)en ∈ X, the
support of x is the subset of integers n such that e∗n(x) �= 0. We denote it by
supp (x). If |supp (x)| <∞ we say that x is finitely supported.

The name Schauder in the previous definition is in honor of J. Schauder,
who first introduced the concept of a basis in 1927 [203]. In practice, never-
theless, every basis of a Banach space is a Schauder basis, and the concepts
are not distinct (the distinction is important, however, in more general locally
convex spaces).

The proof of the equivalence between the concepts of basis and Schauder
basis is an early application of the Closed Graph theorem ([8], p. 111). Al-
though this result is a very nice use of some of the basic principles of functional
analysis, it has to be conceded that it is essentially useless in the sense that
in all practical situations we are only able to prove that (en)∞n=1 is a basis by
showing the formally stronger conclusion that it is already a Schauder basis.
Thus the reader can safely skip the next theorem.

Theorem 1.1.3. Let X be a (separable) Banach space. A sequence (en)∞n=1

in X is a Schauder basis for X if and only if (en)∞n=1 is a basis for X.

Proof. Let us assume that (en)∞n=1 is a basis for X and introduce the partial
sum projections (Sn)∞n=0 associated to (en)∞n=1defined by S0 = 0 and for n ≥ 1,

Sn(x) =
n∑

k=1

e#
k (x)ek.

Of course, we do not yet know that these operators are bounded! Let us
consider a new norm on X defined by the formula

|||x||| = sup
n≥1

‖Snx‖.

Since limn→∞ ‖x− Snx‖ = 0 for each x ∈ X, it follows that ||| · ||| ≥ ‖ · ‖. We
will show that (X, ||| · |||) is complete.

Suppose that (xn)∞n=1 is a Cauchy sequence in (X, |||·|||). (xn)∞n=1 is indeed
convergent to some x ∈ X for the original norm. Our goal is to prove that
limn→∞ |||xn − x||| = 0.

Notice that for each fixed k the sequence (Skxn)∞n=1 is convergent in the
original norm to some yk ∈ X, and note also that (Skxn)∞n=1 is contained in
the finite-dimensional subspace [e1, . . . , ek]. Certainly, the functionals e#

j are
continuous on any finite-dimensional subspace; hence if 1 ≤ j ≤ k we have

lim
n→∞ e#

j (xn) = e#
j (yk) := aj .

Next we argue that
∑∞

j=1 ajej = x for the original norm.
Given ε > 0, pick an integer n so that if m ≥ n then |||xm − xn||| ≤ 1

3ε,
and take k0 so that k ≥ k0 implies ‖xn − Skxn‖ ≤ 1

3ε. Then for k ≥ k0 we
have
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‖yk − x‖ ≤ lim
m→∞ ‖Skxm − Skxn‖+ ‖Skxn − xn‖+ lim

m→∞ ‖xm − xn‖ ≤ ε.

Thus limk→∞ ‖yk −x‖ = 0 and, by the uniqueness of the expansion of x with
respect to the basis, Skx = yk.

Now,

|||xn − x||| = sup
k≥1
‖Skxn − Skx‖ ≤ lim sup

m→∞
sup
k≥1
‖Skxn − Skxm‖,

so limn→∞ |||xn − x||| = 0 and (X, ||| · |||) is complete.
By the Closed Graph theorem (or the Open Mapping theorem), the iden-

tity map ι : (X, ‖ · ‖) → (X, ||| · |||) is bounded, i.e., there exists K so that
|||x||| ≤ K‖x‖ for x ∈ X. This implies that

‖Snx‖ ≤ K‖x‖, x ∈ X, n ∈ N.

In particular,
|e#

n (x)|‖en‖ = ‖Snx− Sn−1x‖ ≤ 2K‖x‖,
hence e#

n ∈ X∗ and ‖e#
n ‖ ≤ 2K‖en‖−1.

��
Let (en)∞n=1 be a basis for a Banach space X. The preceding theorem tells

us that (en)∞n=1 is actually a Schauder basis, hence we use (e∗n)∞n=1 for the
biorthogonal functionals.

As above, we consider the partial sum operators Sn : X → X, given by
S0 = 0 and, for n ≥ 1,

Sn

( ∞∑
k=1

e∗k(x)ek

)
=

n∑
k=1

e∗k(x)ek.

Sn is a continuous linear operator since each e∗k is continuous. That the op-
erators (Sn)∞n=1 are uniformly bounded was already proved in Theorem 1.1.3,
but we note it for further reference:

Proposition 1.1.4. Let (en)∞n=1 be a Schauder basis for a Banach space X
and (Sn)∞n=1 the natural projections associated with it. Then

sup
n
‖Sn‖ <∞.

Proof. For a Schauder basis the operators (Sn)∞n=1 are bounded a priori. Since
Sn(x)→ x for every x ∈ X we have supn ‖Sn(x)‖ <∞ for each x ∈ X . Then
the Uniform Boundedness principle yields that supn ‖Sn‖ <∞.

��

Definition 1.1.5. If (en)∞n=1 is a basis for a Banach space X then the number
K = supn ‖Sn‖ is called the basis constant. In the optimal case that K = 1
the basis (en)∞n=1 is said to be monotone.
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Remark 1.1.6. We can always renorm a Banach space X with a basis in such
a way that the given basis is monotone. Just put

|||x||| = sup
n≥1

‖Snx‖.

Then ‖x‖ ≤ |||x||| ≤ K‖x‖, so the new norm is equivalent to the old one and
it is quickly verified that |||Sn||| = 1 for n ∈ N.

The next result establishes a method for constructing a basis for a Banach
space X, provided we have a family of projections enjoying the properties of
the partial sum operators.

Proposition 1.1.7. Suppose Sn : X → X, n ∈ N, is a sequence of bounded
linear projections on a Banach space X such that

(i) dim Sn(X) = n for each n;
(ii) SnSm = SmSn = Smin{m,n}, for any integers m and n; and
(iii) Sn(x)→ x for every x ∈ X.

Then any nonzero sequence of vectors (ek)∞k=1 in X chosen inductively so that
e1 ∈ S1(X), and ek ∈ Sk(X) ∩ S−1

k−1(0) if k ≥ 2 is a basis for X with partial
sum projections (Sn)∞n=1.

Proof. Let 0 �= e1 ∈ S1(X) and define e∗1 : X → R by e∗1(x)e1 = S1(x). Next
we pick 0 �= e2 ∈ S2(X) ∩ S−1

1 (0) and define the functional e∗2 : X → R by
e∗2(x)e2 = S2(x)− S1(x). This gives us by induction the procedure to extract
the basis and its biorthogonal functionals: for each integer n, we pick 0 �= en ∈
Sn(X)∩S−1

n−1(0) and define e∗n : X → R by e∗n(x)en = Sn(x)−Sn−1(x). Then

|e∗n(x)| = ‖Sn(x)− Sn−1(x)‖ ‖en‖−1 ≤ 2 sup
n
‖Sn‖ ‖en‖−1 ‖x‖,

hence e∗n ∈ X∗. It is immediate to check that e∗k(ej) = δkj for any two integers
k, j.

On the other hand, if we let S0(x) = 0 for all x, we can write

Sn(x) =
n∑

k=1

(Sk(x)− Sk−1(x)) =
n∑

k=1

e∗k(x)ek,

which, by (iii) in the hypothesis, converges to x for every x ∈ X. Therefore,
the sequence (en)∞n=1 is a basis and (Sn)∞n=1 its natural projections.

��
In the next definition we relax the assumption that a basis must span the

entire space.

Definition 1.1.8. A sequence (ek)∞k=1 in a Banach space X is called a basic
sequence if it is a basis for [ek], the closed linear span of (ek)∞k=1.
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As the reader will quickly realize, basic sequences are of fundamental im-
portance in the theory of Banach spaces and will be exploited throughout
this volume. To recognize a sequence of elements in a Banach space as a basic
sequence we use the following test, also known as Grunblum’s criterion [77]:

Proposition 1.1.9. A sequence (ek)∞k=1 of nonzero elements of a Banach
space X is basic if and only if there is a positive constant K such that

∥∥∥ m∑
k=1

akek

∥∥∥ ≤ K
∥∥∥ n∑

k=1

akek

∥∥∥ (1.1)

for any sequence of scalars (ak) and any integers m, n such that m ≤ n.

Proof. Assume (ek)∞k=1 is basic, and let SN : [ek]→ [ek], N = 1, 2, . . . , be its
partial sum projections. Then, if m ≤ n we have

∥∥∥ m∑
k=1

akek

∥∥∥ =
∥∥∥Sm

( n∑
k=1

akek

)∥∥∥ ≤ sup
m
‖Sm‖

∥∥∥ n∑
k=1

akek

∥∥∥,
so (1.1) holds with K = supm ‖Sm‖.

For the converse, let E be the linear span of (ek)∞k=1 and sm : E → [ek]mk=1

be the finite-rank operator defined by

sm

( n∑
k=1

ajej

)
=

min(m,n)∑
k=1

akek, m, n ∈ N.

By density each sm extends to Sm : [ek]→ [ek]mk=1 with ‖Sm‖ = ‖sm‖ ≤ K.
Notice that for each x ∈ E we have

SnSm(x) = SmSn(x) = Smin(m,n)(x), m, m ∈ N, (1.2)

so, by density, (1.2) holds for all x ∈ [en].
Snx→ x for all x ∈ [en] since the set {x ∈ [en] : Sm(x)→ x} is closed (see

D.14 in the Appendix) and contains E, which is dense in [en]. Proposition 1.1.7
yields that (ek) is a basis for [ek] with partial sum projections (Sm).

��

1.2 Examples: Fourier series

Some of the classical Banach spaces come with a naturally given basis. For
example, in the spaces �p for 1 ≤ p < ∞ and c0 there is a canonical basis
given by the sequence en = (0, . . . , 0, 1, 0, . . . ), where the only nonzero entry
is in the nth coordinate. We leave the verification of these simple facts to the
reader. In this section we will discuss an example from Fourier analysis and
also Schauder’s original construction of a basis in C[0, 1].



1.2 Examples: Fourier series 7

Let T be the unit circle {z ∈ C : |z| = 1}. We denote a typical element of T

by eiθ and then we can identify the space CC(T) of continuous complex-valued
functions on T with the space of continuous 2π-periodic functions on R. Let
us note that in the context of Fourier series it is more natural to consider
complex function spaces than real spaces.

For every n ∈ Z let en ∈ CC(T) be the function such that en(θ) = einθ. The
question we wish to tackle is whether the sequence (e0, e1, e−1, e2, e−2, . . . ) (in
this particular order) is a basis of CC(T). In fact, we shall see that it is not.
This is a classical result in Fourier analysis (a good reference is Katznelson
[108]) which is equivalent to the statement that there is a continuous function
f whose Fourier series does not converge uniformly. The stronger statement
that there is a continuous function whose Fourier series does not converge at
some point is due to Du Bois-Reymond and a nice treatment can be found in
Körner [117]; we shall prove this below.

That [en]n∈Z = CC(T) follows directly from the Stone-Weierstrass theorem,
but we shall also prove this directly.

The Fourier coefficients of f ∈ CC(T) are defined by the formula

f̂(n) =
∫ π

−π

f(t)e−int dt

2π
, n ∈ Z.

The linear functionals

e∗n : CC(T)→ C, f �→ e∗n(f) = f̂(n)

are biorthogonal to the sequence (en)n∈Z.
The Fourier series of f is the formal series

∞∑
−∞

f̂(n)einθ.

For each integer n let Tn : CC(T)→ CC(T) be the operator

Tn(f) =
n∑

k=−n

f̂(k)ek,

which gives us the nth partial sum of the Fourier series of f . Then

Tn(f)(θ) =
n∑

k=−n

∫ θ+π

θ−π

f(t)eik(θ−t) dt

2π

=
∫ π

−π

f(θ − t)
n∑

k=−n

eikt dt

2π

=
∫ π

−π

f(θ − t)
sin(n + 1

2 )t
sin t

2

dt

2π
.
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The function

Dn(t) =
sin(n + 1

2 )t
sin t

2

is known as the Dirichlet kernel.
Let us also consider the operators

An =
1
n

(T0 + · · ·+ Tn−1), n = 2, 3, . . . .

Then

Anf(θ) =
1
n

∫ π

−π

f(θ − t)
n−1∑
k=0

sin(k + 1
2 )t

sin t
2

dt

2π

=
1
n

∫ π

−π

f(θ − t)
(

sin(nt
2 )

sin t
2

)2
dt

2π
.

The function

Fn(t) =
1
n

(
sin(nt

2 )
sin t

2

)2

is called the Fejer kernel. Note that∫ π

−π

Dn(t)
dt

2π
=
∫ π

−π

Fn(t)
dt

2π
= 1.

Nevertheless, a crucial difference is that Fn is a positive function whereas Dn

is not.
Let us now show that if f ∈ CC(T) then ‖Anf − f‖ → 0. Since f is

uniformly continuous, given ε > 0 we can find 0 < δ < π so that |θ − θ′| < δ
implies |f(θ)− f(θ′)| ≤ ε. Then for any θ we have

Anf(θ)− f(θ) =
∫ π

−π

Fn(t)(f(θ − t)− f(θ))
dt

2π
.

Hence

‖Anf − f‖ ≤ ‖f‖
∫

δ<|t|≤π

Fn(t)
dt

2π
+ ε

∫ δ

−δ

Fn(t)
dt

2π
.

Now ∫
δ<|t|≤π

Fn(t)
dt

2π
≤ 1

n
sin−2(δ/2)

and so
lim sup ‖Anf − f‖ ≤ ε.

This shows that [en]n∈Z = CC(T).
Since the biorthogonal functionals are given by the Fourier coefficients, it

follows that if (e0, e1, e−1, . . . ) is a basis then the partial sum operators (Sn)
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satisfy S2n+1 = Tn for all n. To show that it is not a basis it therefore suffices
to show that the sequence of operators (Tn)∞n=1 is not uniformly bounded.

Let ϕ ∈ CC(T)∗ be given by

ϕ(f) = f(0).

Then
ϕ(Tnf) =

∫ π

−π

Dn(t)f(−t)
dt

2π
,

hence
‖T ∗

nϕ‖ =
∫ π

−π

|Dn(t)| dt

2π
.

Thus, since | sin x| ≤ |x| for all real x,

‖Tn‖ ≥
∫ π

−π

|Dn(t)| dt

2π

=
1
π

∫ π

0

∣∣∣∣∣ sin
(
n + 1

2

)
t

sin t
2

∣∣∣∣∣ dt

≥ 2
π

∫ (n+1/2)π

0

∣∣∣∣∣ sin t

sin t
2n+1

∣∣∣∣∣ dt

2n + 1

≥ 2
π

∫ (n+1/2)π

0

| sin t|
t

dt.

By Fatou’s lemma

lim inf
n→∞ ‖Tn‖ ≥

2
π

∫ ∞

0

| sin x|
x

dx =∞.

Let us remark that we have actually proved that supn ‖T ∗
nϕ‖ =∞; there-

fore by the Uniform Boundedness principle there must exist f ∈ CC(T) such
that (Tnf(0))∞n=1 is unbounded. Notice also that this is not an explicit exam-
ple; see [117] for such an example.

If we prefer to deal with the space of continuous real-valued functions
C(T), exactly the same calculations show that the trigonometric system
{1, cos θ, sin θ, cos 2θ, sin 2θ, . . . } fails to be a basis. Indeed, the operators (Tn)
are unbounded on the space C(T) and correspond to the partial sum operators
(S2n+1) as before.

However, C(T) and CC(T) do have a basis. This can easily be shown in
a very similar way to Schauder’s original construction of a basis in C[0, 1],
which we now describe. Let (qn)∞n=1 be a sequence which is dense in [0, 1]
and such that q1 = 0 and q2 = 1. We construct inductively a sequence of
operators (Sn)∞n=1, defined on C[0, 1], by S1f(t) = f(q1) for 0 ≤ t ≤ 1 and
subsequently Snf is the piecewise linear function defined by Snf(qk) = f(qk)
for 1 ≤ k ≤ n and linear on all the intervals of [0, 1]\{q1, . . . , qn}. It is then easy
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to see that ‖Sn‖ = 1 for all n and that the assumptions of Proposition 1.1.7
are verified. In this way we obtain a monotone basis for C[0, 1]. The basis
elements are given by e1(t) = 1 for all t and then en is defined recursively by
en(qn) = 1, en(qk) = 0 for 1 ≤ k ≤ n− 1 and en is linear on each interval in
[0, 1] \ {q1, . . . , qn}.

To modify this for the case of the circle we identify C(T) [respectively,
CC(T)] with the functions in C[0, 2π] [respectively, CC[0, 2π]] such that f(0) =
f(2π). Let q1 = 0 and suppose (qn)∞n=1 is dense in [0, 2π). Then Snf for n > 1
is defined by Snf(qk) = f(qk) for 1 ≤ k ≤ n and Snf(2π) = f(q1) and to be
affine on each interval in [0, 2π) \ {q1, . . . , qn}.

In both cases this procedure constructs a monotone basis. To summarize
we have:

Theorem 1.2.1. The spaces C[0, 1], CC(T) both have a monotone basis. The
exponential system (1, eiθ, e−iθ, . . . ) fails to be a basis of CC(T).

1.3 Equivalence of bases and basic sequences

If we select a basis in a finite-dimensional vector space then we are, in effect,
selecting a system of coordinates. Bases in infinite-dimensional Banach spaces
play the same role. Thus, if we have a basis (en)∞n=1 of X then we can specify
x ∈ X by its coordinates (e∗n(x))∞n=1. Of course, it is not true that every
scalar sequence (an)∞n=1 defines an element of X. Thus X is coordinatized
by a certain sequence space, i.e., a linear subspace of the vector space of all
sequences. This leads us naturally to the following definition.

Definition 1.3.1. Two bases (or basic sequences) (xn)∞n=1 and (yn)∞n=1 in the
respective Banach spaces X and Y are equivalent, and we write (xn)∞n=1 ∼
(yn)∞n=1, if whenever we take a sequence of scalars (an)∞n=1, then

∑∞
n=1 anxn

converges if and only if
∑∞

n=1 anyn converges.

Hence if the bases (xn)∞n=1 and (yn)∞n=1 are equivalent then the correspond-
ing sequence spaces associated to X by (xn)∞n=1 and to Y by (yn)∞n=1 coincide.
It is an easy consequence of the Closed Graph theorem that if (xn)∞n=1 and
(yn)∞n=1 are equivalent then the spaces X and Y must be isomorphic. More
precisely, we have:

Theorem 1.3.2. Two bases (or basic sequences) (xn)∞n=1 and (yn)∞n=1 are
equivalent if and only if there is an isomorphism T : [xn] → [yn] such that
Txn = yn for each n .

Proof. Let X = [xn] and Y = [yn]. It is obvious that (xn)∞n=1 and (yn)∞n=1 are
equivalent if there is an isomorphism T from X onto Y such that Txn = yn

for each n.
Suppose conversely that (xn)∞n=1 and (yn)∞n=1 are equivalent. Let us de-

fine T : X → Y by T (
∑∞

n=1 anxn) =
∑∞

n=1 anyn. T is one-to-one and onto.
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To prove that T is continuous we use the Closed Graph theorem. Suppose
(uj)∞j=1 is a sequence such that uj → u in X and Tuj → v in Y . Let us write
uj =

∑∞
n=1 x∗

n(uj)xn and u =
∑∞

n=1 x∗
n(u)xn. It follows from the continu-

ity of the biorthogonal functionals associated respectively with (xn)∞n=1 and
(yn)∞n=1 that x∗

n(uj) → x∗
n(u) and y∗

n(Tuj) = x∗
n(uj) → y∗

n(v) for all n. By
the uniqueness of limit, x∗

n(u) = y∗
n(v) for all n. Therefore Tu = v and so T

is continuous.
��

Corollary 1.3.3. Let (xn)∞n=1 and (yn)∞n=1 be two bases for the Banach spaces
X and Y respectively. Then (xn)∞n=1 ∼ (yn)∞n=1 if and only if there exists a
constant C > 0 such that for all finitely nonzero sequences of scalars (ai)∞i=1

we have

C−1
∥∥∥ ∞∑

i=1

aiyi

∥∥∥ ≤ ∥∥∥ ∞∑
i=1

aixi

∥∥∥ ≤ C
∥∥∥ ∞∑

i=1

aiyi

∥∥∥. (1.3)

If C = 1 in (1.3) then the basic sequences (xn)∞n=1 and (yn)∞n=1 are said
to be isometrically equivalent.

Equivalence of basic sequences (and in particular of bases) will become a
powerful technique for studying the isomorphic structure of Banach spaces.

Let us now introduce a special type of basic sequence:

Definition 1.3.4. Let (en)∞n=1 be a basis for a Banach space X. Suppose
that (pn)∞n=1 is a strictly increasing sequence of integers with p0 = 0 and that
(an)∞n=1 are scalars. Then a sequence of nonzero vectors (un)∞n=1 in X of the
form

un =
pn∑

j=pn−1+1

ajej

is called a block basic sequence of (en)∞n=1.

Lemma 1.3.5. Suppose (en)∞n=1 is a basis for the Banach space X with basis
constant K. Let (uk)∞k=1 be a block basic sequence of (en)∞n=1. Then (uk)∞k=1

is a basic sequence with basis constant less than or equal to K.

Proof. Suppose that uk =
∑pk

j=pk−1+1 ajej , k ∈ N, is a block basic sequence
of (en)∞n=1. Then, for any scalars (bk) and integers m,n with m ≤ n we have

∥∥∥ m∑
k=1

bkuk

∥∥∥ =
∥∥∥ m∑

k=1

bk

pk∑
j=pk−1+1

ajej

∥∥∥
=
∥∥∥ m∑

k=1

pk∑
j=pk−1+1

bkajej

∥∥∥
=
∥∥∥ pm∑

j=1

cjej

∥∥∥, where cj = ajbk if pk−1 + 1 ≤ j ≤ pk
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≤ K
∥∥∥ pn∑

j=1

cjej

∥∥∥
= K

∥∥∥ n∑
k=1

bkuk

∥∥∥.
That is, (uk) satisfies Grunblum’s condition (Proposition 1.1.9), therefore (uk)
is a basic sequence with basis constant at most K.

��

Definition 1.3.6. A basic sequence (xn)∞n=1 in X is complemented if [xn] is
a complemented subspace of X.

Remark 1.3.7. Suppose (xn)∞n=1 is a complemented basic sequence in a Ba-
nach space X. Let Y = [xn] and P : X → Y be a projection. If (x∗

n)∞n=1 ⊂ Y ∗

are the biorthogonal functionals associated to (xn)∞n=1, using the Hahn-
Banach theorem we can obtain a biorthogonal sequence (x̂∗

n)∞n=1 ⊂ X∗ such
that each x̂∗

n is an extension of x∗
n to X with preservation of norm. But since

we have a projection, P , we can also extend each x∗
n to the whole of X by

putting u∗
n = x∗

n ◦ P . Then for x ∈ X, we will have

∞∑
n=1

u∗
n(x)xn = P (x).

Conversely, if we can make a sequence (u∗
n)∞n=1 ⊂ X∗ such that u∗

n(xm) = δnm

and the series
∑∞

n=1 u∗
n(x)xn converges for all x ∈ X, then the subspace [xn]

is complemented by the projection X → [xn], x �→
∑∞

n=1 u∗
n(x)xn.

Definition 1.3.8. Let X and Y be Banach spaces. We say that two sequences
(xn)∞n=1 ⊂ X and (yn)∞n=1 ⊂ Y are congruent with respect to (X,Y) if there is
an invertible operator T : X → Y such that T (xn) = yn for all n ∈ N. When
(xn) and (yn) satisfy this condition in the particular case that X = Y we will
simply say that they are congruent.

Let us suppose that the sequences (xn)∞n=1 in X and (yn)∞n=1 in Y are
congruent with respect to (X, Y ). The operator T of X onto Y that exists
by the previous definition preserves any isomorphic property of (xn)∞n=1. For
example if (xn)∞n=1 is a basis of X then (yn)∞n=1 is a basis of Y ; if K is the basis
constant of (xn)∞n=1 then the basis constant of (yn)∞n=1 is at most K‖T‖‖T−1‖.

The following stability result dates back to 1940 [118]. It says, roughly
speaking, that if (xn)∞n=1 is a basic sequence in a Banach space X and (yn)∞n=1

is another sequence in X so that ‖xn−yn‖ → 0 fast enough then (yn)∞n=1 and
(xn)∞n=1 are congruent.
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Theorem 1.3.9 (Principle of small perturbations). Let (xn)∞n=1 be a
basic sequence in a Banach space X with basis constant K. If (yn)∞n=1 is a
sequence in X such that

2K
∞∑

n=1

‖xn − yn‖
‖xn‖

= θ < 1,

then (xn)∞n=1 and (yn)∞n=1 are congruent. In particular:

(i) If (xn)∞n=1 is a basis, so is (yn)∞n=1 (in which case the basis constant of
(yn)∞n=1 is at most K(1 + θ)(1− θ)−1),

(ii) (yn)∞n=1 is a basic sequence (with basis constant at most K(1+θ)(1−θ)−1),
(iii) If [xn] is complemented then [yn] is complemented.

Proof. For every n ≥ 2 and any x ∈ [xn] we have

x∗
n(x)xn =

n∑
k=1

x∗
k(x)xk −

n−1∑
k=1

x∗
k(x)xk,

where (x∗
n) ⊂ [xn]∗ are the biorthogonal functionals of (xn). Then ‖x∗

n(x)xn‖ ≤
2K‖x‖ and so ‖x∗

n‖‖xn‖ ≤ 2K. For n = 1 it is clear that ‖x∗
1‖‖x1‖ ≤ K. These

inequalities still hold if we replace x∗
n by its Hahn-Banach extension to X, x̂∗

n.
For each x ∈ X put

A(x) = x +
∞∑

n=1

x̂∗
n(x)(yn − xn).

A is a bounded operator from X to X with A(xn) = yn and with norm

‖A‖ ≤ 1 +
∞∑

n=1

‖x̂∗
n‖‖yn − xn‖

≤ 1 + 2K
∞∑

n=1

‖yn − xn‖
‖xn‖

= 1 + θ.

Moreover,

‖A− I‖ ≤
∞∑

n=1

‖x̂∗
n‖‖yn − xn‖ = θ < 1,

which implies that A is invertible and ‖A−1‖ ≤ (1− θ)−1.
��

As an application we obtain the following result known as the Bessaga-
Pe�lczyński Selection Principle. It was first formulated in [12]. The technique
used in its proof has come to be called the “gliding hump” (or “sliding hump”)
argument; the reader will see this type of argument in other contexts.
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Proposition 1.3.10 (The Bessaga-Pe�lczyński Selection Principle). Let
(en)∞n=1 be a basis for a Banach space X with basis constant K and dual func-
tionals (e∗n)∞n=1. Suppose (xn)∞n=1 is a sequence in X such that

(i) infn ‖xn‖ > 0, but
(ii) limn→∞ e∗k(xn) = 0 for all k ∈ N.

Then (xn)∞n=1 contains a subsequence (xnk
)∞k=1 which is congruent to some

block basic sequence (yk)∞k=1 of (en)∞n=1. Furthermore, for every ε > 0 it is
possible to choose (nk)∞k=1 so that (xnk

)∞k=1 has basis constant at most K + ε.
In particular the same result holds if (xn)∞n=1 converges to 0 weakly but not
in the norm topology.

Proof. Let α = infn ‖xn‖ > 0 and let K be the basis constant of (en)∞n=1.
Suppose 0 < ν < 1

4 .
Pick n1 = 1, r0 = 0. There exists r1 ∈ N such that

‖xn1 − Sr1xn1‖ <
να

2K
.

Here, as usual, Sm denotes the mth-partial sum operator with respect to the
basis (en)∞n=1. We know that limn→∞ ‖Sr1xn‖ = 0, therefore there is n2 > n1

such that

‖Sr1xn2‖ <
ν2α

2K
.

Pick r2 > r1 such that

‖xn2 − Sr2xn2‖ <
ν2α

2K
.

Again, since limn→∞ ‖Sr2xn‖ = 0, there exists n3 > n2 so that

‖Sr2xn3‖ <
ν3α

2K
.

In this way, we get a sequence (xnk
)∞k=1 ⊂ X and a sequence of integers

(rk)∞k=0 with r0 = 0, such that

∥∥Srk−1xnk

∥∥ <
νkα

2K
, ‖xnk

− Srk
xnk
‖ <

νkα

2K
.

For each k ∈ N, let yk = Srk
xnk

− Srk−1xnk
. (yk) is a block basic sequence

of the basis (en). Hence, by Lemma 1.3.5, (yk) is a basic sequence with basis
constant less than K.

Notice that for each k

‖yk − xnk
‖ <

νkα

K
,

hence,
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‖yk‖ > α− να

K
≥ (1− ν)α.

Then

2K
∞∑

k=1

‖yk − xnk
‖

‖yk‖
< 2(1− ν)−1

∞∑
k=1

νk = 2ν(1− ν)−2 <
8
9
.

By Theorem 1.3.9, (xnk
) is a basic sequence equivalent to (yk). Since ν can

be made arbitrarily small, we can arrange the basis constant for (xnk
) to be

as close to K as we wish. Moreover, if (yk) is complemented in X so is (xnk
).
��

1.4 Bases and basic sequences: discussion

The abstract concept of a Banach space grew very naturally from work in the
early part of the twentieth century by Fredholm, Hilbert, F. Riesz, and others
on concrete function spaces such as C[0, 1] and Lp for 1 ≤ p <∞. The original
motivation of these authors was to study linear differential and integral equa-
tions by using the methods of linear algebra with analysis. By the end of the
First World War the definition of a Banach space was almost demanding to be
made and it is therefore not surprising that it was independently discovered
by Norbert Wiener and Stefan Banach around the same time. The axioms
for a Banach space were introduced in Banach’s thesis (1920), published in
Fundamenta Mathematicae in 1922 in French.

The initial results of functional analysis are the underlying principles (Uni-
form Boundedness, Closed Graph and Open Mapping theorems and the Hahn-
Banach theorem) which crystallized the common theme in so many arguments
in analysis of the early twentieth century. However, after this, it was Banach
and the school (Steinhaus, Mazur, Orlicz, Schauder, Ulam, etc.) in Lvov (then
in Poland but now in the Ukraine) that developed the program of studying
the isomorphic theory of Banach spaces. This school flourished until the time
of the Second World War. In 1939, under the terms of the Nazi-Soviet pact,
shortly after Germany invaded Poland, the Soviet Union occupied eastern
Poland, including Lvov. After the Soviet invasion Banach was able to continue
working, but the German invasion of 1941 effectively and tragically ended the
work of his group. Banach himself suffered great hardship during the German
occupation and died shortly after the end of the war, in 1945.

Given two classical Banach spaces X and Y one can ask questions such as
whether X is isomorphic to Y , or whether X is isomorphic to a [complemented]
subspace of Y . For these sort of questions, bases and basic sequences are an
invaluable tool.

In 1932 Banach formulated in his book ([8], p. 111) the following:

The basis problem: Does every separable Banach space have a basis?
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This problem motivated a great deal of research over the next forty years.
Undoubtedly, the Lvov school knew much more about this problem than was
ever published but, unfortunately, their research came to an untimely end with
the German invasion of the Soviet Union in 1941. In particular, Mazur in the
Scottish Book (an informal collection of problems kept in Lvov) formulated
a very closely related problem which has come to be known as the Approxi-
mation Problem. Both problems were eventually solved by Per Enflo in 1973
[54], when he gave an example of a separable Banach space failing to have
the Approximation Property and hence also failing to have a basis. This solu-
tion is beyond the scope of this book (see [138]), but we can at least present
two facts that were known to Banach: Theorem 1.4.3 and Theorem 1.4.4. To
that end, let us first record the following lemma, which will be required many
times.

Lemma 1.4.1. Let X be a Banach space.

(i) If X is separable then the closed unit ball of X∗, BX∗ , is (compact and)
metrizable for the weak∗ topology.

(ii) Suppose X∗ contains a separating (or total) sequence (x∗
n)∞n=1 for X; that

is, x∗
n(x) = 0 for all n ∈ N implies that x = 0. Then any weakly compact

subset of X is metrizable for the weak topology.

The conditions of (ii) hold when X is separable.

Proof. The proofs of both (i) and (ii) rely on the following simple observation.
If K is a compact set for some topology τ , and τ ′ is any Hausdorff topology
on K which is weaker than τ , then τ and τ ′ coincide. Indeed, suppose A is
a τ -closed subset of K. Then A is τ -compact and so its continuous image in
(K, τ ′) under the mapping idK : (K, τ) → (K, τ ′) is also compact, i.e., A is
τ ′-compact. Since τ ′ is Hausdorff, A is τ ′-closed.

For (i), let us take (xn)∞n=1 dense in the unit ball BX of X. We define the
topology ρ induced on X∗ by convergence on each xn. Precisely, a base of
neighborhoods for ρ at a point x∗

0 ∈ X∗ is given by sets of the form

Vε(x∗
0; x1, . . . , xN ) =

{
x∗ ∈ X∗ : |x∗(xn)− x∗

0(xn)| < ε, n = 1, . . . , N
}
,

where ε > 0 and N ∈ N. This topology is metrizable, and a metric inducing ρ
may be defined by

d(x∗, y∗) =
∞∑

n=1

2−n min(1, |x∗(xn)− y∗(xn)|), x∗, y∗ ∈ X∗.

ρ is Hausdorff and weaker than the weak∗ topology, so it coincides with the
weak∗ topology on the weak∗ compact set BX∗ .

To prove (ii) we choose for ρ the topology on X induced by convergence
in each x∗

n. The details are very similar; the point separation property is
equivalent to ρ being Hausdorff.



1.4 Bases and basic sequences: discussion 17

Finally, if X is separable let (xn)∞n=1 be a sequence of nonzero vectors which
is dense in X. For each n, using the Hahn-Banach theorem pick x∗

n ∈ X∗ so
that x∗

n(xn) = ‖xn‖ and ‖x∗
n‖ = 1. Suppose x∗

n(x) = 0 for all n. Then if ε > 0
there exists m ∈ N so that ‖x − xm‖ < ε. Thus ‖xm‖ = x∗

m(xm) < ε and so
‖x‖ < 2ε. Since ε > 0 is arbitrary we have x = 0.

��

Remark 1.4.2. (a) Note that if X = �∞ then the conditions of (ii) in the
lemma hold (use the coordinate functionals) but X is not separable. Thus,
every weakly compact subset of �∞ is metrizable.
(b) Let us observe as well that if X is separable then not only is the sequence
(x∗

n)∞n=1 in (ii) separating for X but it is also norming in X. That is, the norm
of any x ∈ X is completely determined by this numerable set of functionals:

‖x‖ = sup
n
|x∗

n(x)|, x ∈ X.

The next theorem is in [8], p. 185. The proof uses the Cantor set and some
of its topological properties.

By the Cantor set1, ∆, we mean the topological space {0, 1}N, the count-
able product of the two-point space {0, 1}, endowed with the product topol-
ogy2.

Among the features of the Cantor set we single out the following:

• ∆ embeds homeomorphically as a closed subspace of [0, 1].
The map

∆→ [0, 1], (tn) �→
∞∑

n=1

2tn
3n

does the job.

• [0, 1] is the continuous image of ∆.
Indeed, the function ϕ : ∆ → [0, 1] defined by ϕ((tn)∞n=1) =

∑∞
n=1 tn/2n is

continuous and surjective (but not one-to-one).

• ∆ is homeomorphic to the countable product of Cantor sets, ∆N.
This follows from the fact that if (Ai, τi)i∈N is a countable family of topological
spaces each of which is homeomorphic to the countable product of two-point
spaces, {0, 1}N, then the topological product space

∏
i∈N Ai is homeomorphic

to {0, 1}N.

1 On the other hand, the Cantor middle third set, C, consists of all those real
numbers x in [0, 1] so that when we write x in ternary form x =

P∞
i=1 ai/3i, then

none of the numbers a1, a2, . . . equals 1 (i.e., either ai = 0 or ai = 2). Actually,
the ternary correspondence from C onto ∆,

P∞
i=1 ai/3i �→ (a1/2, a2/2, . . . ) is a

homeomorphism.
2 Sometimes, for convenience, we will equivalently realize the Cantor set as ∆ =
{−1, 1}N.
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• [0, 1]N is the continuous image of ∆.
Since ∆ is homeomorphic to ∆N, a point in ∆ can be assumed to be of the
form (x1, x2, . . . ), where xi ∈ ∆ for each i. If ϕ : ∆ → [0, 1] is a continuous
surjection, then ψ : ∆→ [0, 1]N defined by ψ(x1, x2, . . . ) = (ϕ(x1), ϕ(x2), . . . )
is continuous and surjective as well.

Theorem 1.4.3 (The Banach-Mazur Theorem). If X is a separable Ba-
nach space then X embeds isometrically into C[0, 1] (and hence embeds iso-
metrically in a space with a monotone basis).

Proof. The proof will be a direct consequence of the following two Facts:

Fact 1. If X is a separable Banach space, then there exists a compact, Haus-
dorff, metrizable space K such that X embeds isometrically into C(K).

Indeed, take K = BX∗ with the relative weak∗ topology. If X is separable
then BX∗ is compact and metrizable as we saw in Lemma 1.4.1. The isometric
embedding of X into C(BX∗) is easily checked to be achieved by the mapping
x→ fx where fx(x∗) = x∗(x) for all x∗ ∈ BX∗ .

Fact 2. If K is a compact metrizable space then C(K) embeds isometrically
into C[0, 1].

We split the proof of this statement into some steps:

• If K is a compact metrizable space, then K embeds homeomorphically into
[0, 1]N. Being compact and metrizable, K contains a countable dense set,
(sn)∞n=1. Let ρ be a metric on K inducing its topology. Without loss of gen-
erality we can assume that 0 ≤ ρ ≤ 1. Now we define θ : K → [0, 1]N by
θ(x) = (ρ(x, sn))∞n=1.

θ is continuous since the mapping x �→ ρ(x, sn) is continuous for each n. θ
is injective because if x and y are two different points in K then there exists
some sn such that ρ(x, sn) < ρ(y, sn) (or the other way round) and, therefore,
θ(x) and θ(y) will differ in the nth-coordinate.

Since K is compact and [0, 1]N is Hausdorff, it follows that θ maps K
homeomorphically into its image.

• If E is a closed subset of [0, 1], then C(E) embeds isometrically into C[0, 1].
To show this, we need only define a norm-one extension operator A : C(E)→
C[0, 1], i.e., a norm-one linear map so that Af |E = f for all f ∈ C(E). Notice
that [0, 1] \ E is a countable disjoint union of relatively open intervals; thus,
we may extend f to be affine on each such interval interior to [0, 1] and to be
constant on any such interval containing an endpoint of [0, 1]. This procedure
clearly gives a linear extension operator.

We are ready now to complete the proof of Fact 2 and, therefore, of the
theorem. Let ψ : ∆ → [0, 1]N be a continuous surjection and let us consider
K as a closed subset of [0, 1]N. It follows that if E = ψ−1(K), then E is
homeomorphic to a (closed) subset of [0, 1]. Then C(E) embeds isometrically
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into C[0, 1]. Finally, f → f ◦ ψ embeds C(K) isometrically into C(E) and,
therefore, C(K) embeds isometrically into C[0, 1].

��
Theorem 1.4.4 was also known to Banach’s school in their approach to

tackle the basis problem and it is mentioned without proof by Banach in [8],
p. 238. Several proofs have been given ever since; for example a proof due to
Mazur is presented on p.4 of [138] and we shall revisit this theorem in the
next section (Corollary 1.5.3). The proof we include here is due to Bessaga
and Pe�lczyński [12].

Theorem 1.4.4. Every separable, infinite-dimensional Banach space con-
tains a basic sequence (i.e., a closed infinite-dimensional subspace with a ba-
sis). Furthermore if ε > 0 we may find a basic sequence with basis constant at
most 1 + ε.

Proof. By the Banach-Mazur theorem (Theorem 1.4.3) we can consider the
case when the separable Banach space X is a closed subspace of C[0, 1]. Let
(en)∞n=1 be a monotone basis for C[0, 1] with biorthogonal functionals (e∗n)∞n=1.
Since X is infinite-dimensional we may pick a sequence (fn)∞n=1 in X with
‖fn‖ = 1 and e∗k(fn) = 0 for 1 ≤ k ≤ n. By Proposition 1.3.10 we can find a
subsequence (fnk

)∞k=1 which is basic with constant at most 1 + ε.
��

1.5 Constructing basic sequences

The study of the isomorphic theory of Banach spaces went into retreat after
the Second World War and was revived with the emergence of a new Polish
school in Warsaw around 1958. There were some profound advances in Banach
space theory between 1941 and 1958 (for example, the work of James and
Grothendieck) but it seems that only after 1958 was there a concerted attack
on problems of isomorphic structure. The prime mover in this direction was
Pe�lczyński. Pe�lczyński, together with his collaborators, developed the theory
of bases and basic sequences into a subtle and effective tool in Banach space
theory. One nice aspect of the new theory was that basic sequences could
be used to establish some classical results. In this section we are going to
look deeper into the problem of constructing basic sequences and then show
in the next section how this theory gives a nice and quite brief proof of the
Eberlein-S̆mulian theorem on weakly compact sets.

We will now present a refinement of the Mazur method for constructing
basic sequences. We work in the dual X∗ of a Banach space for purely technical
reasons; ultimately we will apply Lemma 1.5.1 and Theorem 1.5.2 to X∗∗.

Lemma 1.5.1. Suppose that S is a subset of X∗ such that 0 ∈ S
weak∗

but
0 �∈ S

‖·‖
. Let E be a finite-dimensional subspace of X∗. Then given ε > 0

there exists x∗ ∈ S such that
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‖e∗ + λx∗‖ ≥ (1− ε) ‖e∗‖

for all e∗ ∈ E and λ ∈ R.

Proof. Let us notice that such a set S exists because the weak∗ topology and
the norm topology of an infinite-dimensional Banach space do not coincide.
0 �∈ S

‖·‖
implies α ≤ ‖x∗‖ for all x∗ ∈ S, for some 0 < α <∞.

Given ε > 0 put
ε =

αε

2(1 + α)
.

Let UE = {e∗ ∈ E : ‖e∗‖ = 1}. Since E is finite-dimensional UE is
norm-compact. Take y∗

1 , y∗
2 , . . . , y∗

N ∈ UE such that whenever e∗ ∈ UE then
‖e∗ − y∗

k‖ < ε for some k = 1, . . . , N ; for each k = 1, . . . , N pick xk ∈ BX so
that y∗

k(xk) > 1− ε.

Since 0 ∈ S
weak∗

each neighborhood of 0 in the weak∗ topology of X∗

contains at least one point of S distinct from 0. In particular there is x∗ ∈ S
such that |x∗(xk)| < ε for each k = 1, . . . , N .

If e∗ ∈ UE and |λ| ≥ 2
α we have

‖e∗ + λx∗‖ ≥ |λ|α− 1 ≥ 1.

If |λ| < 2
α we pick y∗

k such that ‖e∗ − y∗
k‖ < ε. Then

‖y∗
k + λx∗‖ ≥ y∗

k(xk) + λx∗(xk)
> (1− ε) + λx∗(xk)
≥ (1− ε)− |λ|ε

≥
(
1−

(
1 +

2
α

)
ε
)

and, therefore,

‖e∗ + λx∗‖ ≥
∣∣∣ ‖e∗ − y∗

k‖ − ‖y∗
k + λx∗‖

∣∣∣
≥ 1−

(
1 +

2
α

)
ε− ε

= 1− ε.
��

Theorem 1.5.2. Suppose that S is a subset of X∗ such that 0 ∈ S
weak∗

but
0 �∈ S

‖·‖
. Then for any ε > 0, S contains a basic sequence with basis constant

less than 1 + ε.

Proof. Fix a decreasing sequence of positive numbers (εn)∞n=1 such that∑∞
n=1 εn <∞ and so that

∏∞
n=1(1− εn) > (1 + ε)−1.
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Pick x∗
1 ∈ S and consider the 1-dimensional space E1 = [x∗

1]. By
Lemma 1.5.1 there is x∗

2 ∈ S such that

‖e∗ + λx∗
2‖ ≥ (1− ε1) ‖e∗‖

for all e∗ ∈ E1 and λ ∈ R.
Now let E2 be the 2-dimensional space generated by x∗

1, x
∗
2, E2 = [x∗

1, x
∗
2].

Lemma 1.5.1 yields x∗
3 ∈ S such that

‖e∗ + λx∗
3‖ ≥ (1− ε2) ‖e∗‖

for all e∗ ∈ E2 and λ ∈ R.
Repeating this process we produce a sequence (x∗

n)∞n=1 in S such that for
each n ∈ N and any scalars (ak),

∥∥∥ n+1∑
k=1

akx∗
k

∥∥∥ ≥ (1− εn)
∥∥∥ n∑

k=1

akx∗
k

∥∥∥.
Therefore given any integers m,n with m ≤ n we have

∥∥∥ m∑
k=1

akx∗
k

∥∥∥ ≤ 1
n−1∏
j=1

(1− εj)

∥∥∥ n∑
k=1

akx∗
k

∥∥∥.

Applying the Grunblum condition (Proposition 1.1.9) we conclude that (x∗
n)∞n=1

is a basic sequence with basis constant at most 1 + ε.
��

Corollary 1.5.3. Every infinite-dimensional Banach space contains, for ε >
0, a basic sequence with basis constant less than 1 + ε.

Proof. Let X be an infinite-dimensional Banach space. Consider S = ∂BX =
{x ∈ X : ‖x‖ = 1}. We claim that 0 belongs to the weak closure of S, therefore
it belongs to the weak∗ closure of S as a subspace of X∗∗.

If our claim fails then there exist some ε > 0 and linear functionals
x∗

1, . . . , x
∗
n in X∗ such that the weak neighborhood of 0

V =
{
x ∈ X : |x∗

k(x)| < ε, for k = 1, . . . , n
}

satisfies V ∩ S = ∅. This is impossible because the intersection of the null
subspaces of the x∗

k’s is a nontrivial subspace of X contained in V with points
in S.

Now Theorem 1.5.2 yields the existence of a basic sequence (xn) in S with
basis constant as close to 1 as we wish.

��
The following proposition is often stated as a special case of Theorem 1.5.2.

It may also be deduced equally easily using Theorem 1.4.4.
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Proposition 1.5.4. If (xn)∞n=1 is a weakly null sequence in an infinite-
dimensional Banach space X such that infn ‖xn‖ > 0 then, for ε > 0,
(xn)∞n=1contains a basic subsequence with basis constant less than 1 + ε.

Proof. Consider S = {xn : n ∈ N}. Since (xn)∞n=1 is weakly convergent, the
set S is norm bounded. Furthermore 0 ∈ S

weak
hence, by Theorem 1.5.2, S

contains a basic sequence with basis constant at most 1+ε. To finish the proof
we just have to prune this basic sequence by extracting terms in increasing
order and we obtain a basic subsequence of (xn)∞n=1.

��
The next technical lemma will be required for our main result on basic

sequences.

Lemma 1.5.5. Let (xn)∞n=1 be a basic sequence in X. Suppose that there ex-
ists a linear functional x∗ ∈ X∗ such that x∗(xn) = 1 for all n ∈ N. If u �∈ [xn]
then the sequence (xn + u)∞n=1 is basic.

Proof. Since u /∈ [xn], without loss of generality we can assume x∗(u) = 0.
Let T : X → X be the operator given by T (x) = x∗(x)u. Then IX + T is
invertible with inverse IX − T . Since (IX + T )(xn) = xn + u, the sequences
(xn)∞n=1 and (xn + u)∞n=1 are congruent, hence (xn + u)∞n=1 is basic.

��
We are now ready to give a criterion for a subset of a Banach space to

contain a basic sequence. This criterion is due to Kadets and Pe�lczyński (1965)
[99].

Theorem 1.5.6. Let S be a bounded subset of a Banach space X such that
0 �∈ S

‖·‖
. Then the following are equivalent:

(i) S fails to contain a basic sequence,
(ii) S

weak
is weakly compact and fails to contain 0.

Proof. (ii) ⇒ (i). Suppose (xn)∞n=1 ⊂ S is a basic sequence. Since S
weak

is
weakly compact, (xn)∞n=1 has a weak cluster point, x, in S

weak
. By Mazur’s

theorem, x belongs to [xn], so we can write x =
∑∞

n=1 x∗
n(x)xn.

By the continuity of the coefficient functionals (x∗
n)∞n=1, it follows that for

each n, x∗
n(x) is a cluster point of the scalar sequence (x∗

n(xm))∞m=1, which
converges to 0. Therefore, x∗

n(x) = 0 for all n and, as a consequence, x = 0.
This contradicts the hypothesis, so S contains no basic sequences.

For the forward implication, (i) ⇒ (ii), assume S contains no basic se-
quences. We can apply Theorem 1.5.2 to S considered as a subset of X∗∗ with
the weak∗ topology and we conclude that 0 cannot be a weak closure point
of S. It remains to show that S is relatively weakly compact. To achieve this
we simply need to show that any weak∗ cluster point of S in X∗∗ is already
contained in X. Let us suppose x∗∗ is a weak∗ cluster point of S and that
x∗∗ ∈ X∗∗ \ X. Consider the set S − x∗∗ = {s − x∗∗ : s ∈ S} in X∗∗. By
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Theorem 1.5.2 there exists (xn)∞n=1 in S such that the sequence (xn−x∗∗)∞n=1

is basic. We can suppose that x∗∗ /∈ [xn − x∗∗ : n ≥ 1] because it is certainly
true that x∗∗ /∈ [xn−x∗∗ : n ≥ N ] for some choice of N. By the Hahn-Banach
theorem there exists x∗∗∗ ∈ X∗∗∗ so that x∗∗∗ ∈ X⊥ and x∗∗∗(x∗∗) = −1.
This implies that x∗∗∗(xn − x∗∗) = 1 for all n ∈ N. Now Lemma 1.5.5 applies
and we deduce that (xn)∞n=1 is also basic, contrary to our assumption on S.

��

1.6 The Eberlein-S̆mulian Theorem

Let M be a topological space and A be a subset of M . Let us recall that A is
said to be sequentially compact [respectively, relatively sequentially compact] if
every sequence in A has a subsequence convergent to a point in A [respectively,
to a point in M ] and that A is countably compact [respectively, relatively
countably compact] if every sequence in A has a cluster point in A [respectively,
in M ].

Countable compactness is implied by both compactness and sequential
compactness. If M is a metrizable topological space these three concepts cer-
tainly coincide but if M is instead a general topological space these equiva-
lences are no longer valid. The easiest counterexample is obtained by consid-
ering B�∗∞ , the unit ball in �∗∞ with the weak∗ topology. B�∗∞ is, of course,
weak∗ compact but fails to be weak∗ sequentially compact: the sequence of
functionals (e∗n) given by e∗n(ξ) = ξ(n) has no weak∗ convergent subsequence.

In this section we will prove the Eberlein-S̆mulian theorem, which asserts
that in a Banach space the weak topology behaves like a metrizable topology in
this respect although it need not be metrizable even on compact sets (except in
the case of separable Banach space, see Lemma 1.4.1). That weak compactness
implies weak sequentially compactness was discovered by S̆mulian in 1940
[207]; the more difficult converse direction is due to Eberlein (1947) [51]. This
result is rather hard and the original proof did not use the concept of a basic
sequence, as the result predates the development of basic sequence techniques.
The proof via basic sequences is due to Pe�lczyński [172]. Basic sequences seem
to provide a conceptual simplification of the idea of the proof.

The lemmas we will need are the following:

Lemma 1.6.1. If (xn)∞n=1 is a basic sequence in a Banach space and x is a
weak cluster point of (xn)∞n=1 then x = 0.

Proof. Since x is in the weak closure of the convex set 〈xn : n ∈ N〉 (the linear
span of the sequence (xn)), Mazur’s theorem yields that x belongs to the
norm-closed linear span, [xn], of (xn). Hence x =

∑∞
n=1 x∗

n(x)xn, where (x∗
n)

are the biorthogonal functionals of (xn). Now, for each n, x∗
n(x) is a cluster

point of (x∗
n(xm))∞m=1 and is, therefore, forced to be zero. Thus x = 0.

��
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Lemma 1.6.2. Let A be a relatively weakly countably compact subset of a
Banach space X. Suppose that x ∈ X is the only weak cluster point of the
sequence (xn)∞n=1 ⊂ A. Then (xn)∞n=1 converges weakly to x.

Proof. Assume that (xn) does not converge weakly to x. Then for some x∗ ∈
X∗ the sequence (x∗(xn))∞n=1 fails to converge to x∗(x), hence we may pick
a subsequence (xnk

)∞k=1 of (xn) such that infk |x∗(x) − x∗(xnk
)| > 0. But

this prevents x from being a weak cluster point of (xnk
), contradicting the

hypothesis.
��

Theorem 1.6.3 (The Eberlein-S̆mulian Theorem). Let A be a subset of
a Banach space X. The following are equivalent:

(i) A is [relatively] weakly compact,
(ii) A is [relatively] weakly sequentially compact,
(iii) A is [relatively] weakly countably compact.

Proof. Since (i) and (ii) both imply (iii) we need only show that (iii) implies
both (ii) and (i). We will prove the relativized versions; minor modifications
can be made to prove the nonrelativized versions. Note that each of the state-
ments of the theorem implies that A is bounded.

Let us first do the case (iii) implies (ii). Suppose (xn)∞n=1 is any sequence
in A. Then, by hypothesis, there is a weak cluster point x of (xn)∞n=1. If x is
a point in the norm-closure of the set {xn}∞n=1, then there is a subsequence
which converges in norm and we are done. If not, using Theorem 1.5.6, we can
extract a subsequence (yn)∞n=1 of (xn) so that (yn−x)∞n=1 is a basic sequence.
But (yn)∞n=1 has a weak cluster point, y, hence y − x is a weak cluster point
of the basic sequence (yn − x)∞n=1. By Lemma 1.6.1 we have y = x. Thus x is
the only weak cluster point of (yn)∞n=1. Then (yn)∞n=1 converges weakly to x
by Lemma 1.6.2.

Let us turn to the case (iii) implies (i). Suppose A fails to be relatively
weakly compact. Since the weak∗ closure W of A in X∗∗ is necessarily weak∗

compact by Banach-Alaoglu’s theorem, we conclude that this set cannot be
contained in X. Thus there exists x∗∗ ∈W \X. Pick x∗ ∈ X∗ so that x∗∗(x∗) >
1. Then consider the set A0 = {x ∈ A : x∗(x) > 1}. The set A0 is not relatively
weakly compact since x∗∗ is in its weak∗ closure. Theorem 1.5.6 gives us a
basic sequence (xn)∞n=1 contained in A0. Appealing to countable compactness,
(xn)∞n=1 has a weak cluster point, x, which by Lemma 1.6.1 must be x = 0.
This is a contradiction since, by construction, x∗(x) ≥ 1.

��
Combining Theorem 1.6.3 with Proposition G.2 we obtain:

Corollary 1.6.4. A Banach space X is reflexive if and only if every bounded
sequence has a weakly convergent subsequence.
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The Eberlein-S̆mulian theorem was probably the deepest result of earlier
(pre-1950) Banach space theory. Not surprisingly it inspired more examination
and it is far from the end of the story. In [74] the Eberlein-S̆mulian theorem is
extended to bounded subsets of C(K) (K a compact Hausdorff space) with the
weak topology replaced by the topology of pointwise convergence. This does
not follow from basic sequence techniques because it is no longer true that a
cluster point of a basic sequence for pointwise convergence is necessarily zero.
Later, Bourgain, Fremlin, and Talagrand [16] proved similar results for subsets
of the Baire class one functions on a compact metric space. A function is of
Baire class one if it is a pointwise limit of a sequence of continuous functions.

Problems

1.1. Mazur’s Weak Basis Theorem.
A sequence (en)∞n=1 is called a weak basis of a Banach space X if for each x ∈ X
there is a unique sequence of scalars (an)∞n=1 such that x =

∑∞
n=1 anxn in the

weak topology. Show that every weak basis is a basis. [Hint : Try to imitate
Theorem 1.1.3.]

1.2. Krein-Milman-Rutman Theorem.
Let X be a Banach space with a basis and D be a dense subset of X. Show
that D contains a basis for X.

1.3. Let (en) be a normalized basis for a Banach space X and suppose there
exists x∗ ∈ X∗ with x∗(en) = 1 for all n. Show that the sequence (en −
en−1)∞n=1 is also a basis for X (we let e0 = 0 in this definition).

1.4. The Bounded Approximation Property.
A separable Banach space X has the bounded approximation property (BAP)
if there is a sequence (Tn) of finite-rank operators so that

lim
n→∞ ‖x− Tnx‖ = 0, x ∈ X. (1.4)

(a) Show (1.4) implies supn ‖Tn‖ <∞ and, hence, (BAP) implies the approx-
imation property.
(b) Show that every complemented subspace of a space with a basis has
(BAP).

1.5. Let X be a Banach space and A : X → X a finite-rank operator. Show
that for ε > 0 there is a finite sequence of rank-one operators (Bn)N

n=1 so that
A = B1 + · · ·+ BN and

sup
1≤n≤N

∥∥∥ n∑
k=1

Bk

∥∥∥ < ‖A‖+ ε.
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1.6. Show that if X has (BAP) then there is a sequence of rank-one operators
(Bn)∞n=1 so that x =

∑∞
n=1 Bnx for each x ∈ X. [Hint : Apply Problem 1.5 to

A = T1 and A = Tn − Tn−1 for n = 2, 3, . . . .]

1.7. If X has (BAP) let (Bn)∞n=1 be the sequence of rank-one operators given
in Problem 1.6. Let Bnx = x∗

n(x)xn where x∗
n ∈ X∗ and xn ∈ X. Define Y to

be the space of all sequences ξ = (ξ(n))∞n=1 so that
∑∞

n=1 ξ(n)xn converges
under the norm

‖ξ‖Y = sup
n

∥∥∥ n∑
k=1

ξ(k)xk

∥∥∥.
(a) Show that (Y, ‖·‖Y ) is a Banach space and that the canonical basis vectors
(en)∞n=1 form a basis of Y .
(b) Show further that X is isomorphic to a complemented subspace of Y.

Thus X has (BAP) if and only if it is isomorphic to a complemented sub-
space of a space with a basis. This is due independently to Johnson, Rosenthal,
and Zippin [94] and Pe�lczyński [175]. In 1987 Szarek [212] gave an example
to show that not every space with (BAP) has a basis; this is very difficult!
We refer to [24] for a full discussion of the problems associated with the
bounded approximation property. See also Chapter 13 for the construction of
Pe�lczyński’s universal basis space U .

1.8. Suppose X is a separable Banach space with the property that there is
a sequence of finite-rank operators (Tn) such that limn→∞〈Tnx, x∗〉 = 〈x, x∗〉
for all x ∈ X, x∗ ∈ X∗. Show that X has the (BAP).

1.9. Suppose that X is a Banach space and that (Tn)∞n=1 is a sequence of
finite-rank operators such that limn→∞〈T ∗

nx∗, x∗∗〉 = 〈x∗, x∗∗〉 for every x∗ ∈
X∗, x∗ ∈ X∗.
(a) Show that (Tn)∞n=1 is a weakly Cauchy sequence in the space K(X) of
compact operators on X and that (Tn)∞n=1 converges weak∗ to an element χ ∈
K(X)∗∗ where ‖χ‖ = 1. [Hint: Consider BX∗ and BX∗∗ with their respective
weak∗ topologies. Embed K(X) into C(BX∗ ×BX∗∗) via the embedding T →
fT where fT (x∗, x∗∗) = 〈T ∗x∗, x∗∗〉.]
(b) Using Goldstine’s theorem deduce the existence of a sequence of finite-
rank operators (Sn)∞n=1 so that limn→∞ ‖Sn‖ = 1 and limn→∞ ‖Snx−x‖ = 0
for x ∈ X. [Hint: Choose each Sn as a convex combination of {Tn, Tn+1, . . . }.]

Thus if X is reflexive and has (BAP) we can choose the operators Tn to
have ‖Tn‖ ≤ 1; thus X has the metric approximation property (MAP).

1.10. Consider T with the normalized measure dθ
2π .

(a ) Show that the exponentials (e0, e1, e−1, . . . ) (see Section 1.2) do not form a
basis of the complex space L1(T). [Hint : Prove that the partial sum operators
Snf =

∑n
k=−n f̂(k)ek are not uniformly bounded.]
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(b) Show that if 1 < p <∞, (e0, e1, e−1, . . . ) form a basis of Lp(T). (You may
assume that the Riesz projection is bounded on Lp(T), i.e., there is a bounded
linear operator R : Lp → Lp such that Rek = 0 when k ≤ 0 and Rek = ek for
k ≥ 0. This is equivalent to the boundedness of the Hilbert transform; see for
example Theorem 1.8, p. 68, of [108].)



2

The Classical Sequence Spaces

We now turn to the classical sequence spaces �p for 1 ≤ p < ∞ and c0.
The techniques developed in the previous chapter will prove very useful in
this context. These Banach spaces are, in a sense, the simplest of all Banach
spaces and their structure has been well understood for many years. However,
if p �= 2, there can still be surprises and there remain intriguing open questions.

To avoid some complicated notation we will write a typical element of �p or
c0 as ξ = (ξ(n))∞n=1. Let us note at once that the spaces �p and c0 are equipped
with a canonical monotone Schauder basis (en)∞n=1 given by en(k) = 1 if k = n
and 0 otherwise. It is useful, and now fairly standard, to use c00 to denote the
subspace of all sequences of scalars ξ = (ξ(n))∞n=1 such that ξ(n) = 0 except
for finitely many n.

One feature of the canonical basis of the �p-spaces and c0 that is useful
to know is that (en)∞n=1is equivalent to the basis (anen)∞n=1 whenever 0 <
infn |an| ≤ supn |an| <∞. This property is equivalent to the unconditionality
of the basis, but we will not formally introduce this concept until the next
chapter.

2.1 The isomorphic structure of the �p-spaces and c0

We first ask ourselves a very simple question: are the �p-spaces distinct (i.e.,
mutually nonisomorphic) Banach spaces? This question may seem absurd be-
cause they look different, but recall that L2[0, 1] and �2 are actually the same
space in two different disguises. We can observe, for instance, that c0 and �1
are nonreflexive while the spaces �p for 1 < p < ∞ are reflexive; further the
dual of c0 (i.e., �1) is separable but the dual of �1 (i.e., �∞) is nonseparable.

To help answer our question we need the following lemma:

Lemma 2.1.1. Let (un)∞n=1 be a normalized block basic sequence in c0 or in
�p for some 1 ≤ p < ∞ . Then (un)∞n=1 is isometrically equivalent to the
canonical basis of the space and [un] is the range of a contractive projection.
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Proof. Let us treat the case when (un) is a block basic sequence in �p for
1 ≤ p < ∞ and leave the modifications for the c0 case to the reader. Let us
suppose that

uk =
rk∑

j=rk−1+1

ajej , k ∈ N,

where 0 = r0 < r1 < r2 < . . . are positive integers and (aj)∞j=1 are scalars
such that

‖uk‖p =
rk∑

j=rk−1+1

|aj |p = 1, k ∈ N.

Then, given any m ∈ N and any scalars b1, . . . , bm we have∥∥∥ m∑
k=1

bkuk

∥∥∥ =
∥∥∥ m∑

k=1

rk∑
j=rk−1+1

bkajej

∥∥∥
=
( m∑

k=1

|bk|p
rk∑

j=rk−1+1

|aj |p
)1/p

=
( m∑

k=1

|bk|p
)1/p

.

This establishes isometric equivalence.
We shall construct a contractive projection onto [un]∞n=1. Here we suppose

1 < p <∞ and leave both cases c0 and �1 to the reader. For each k we select
scalars (bj)rk

j=rk−1+1 so that

rk∑
j=rk−1+1

|bj |q = 1

and
rk∑

j=rk−1+1

bjaj = 1.

Put

u∗
k =

rk∑
j=rk−1+1

bje
∗
j .

Clearly, (u∗
n)∞n=1 is biorthogonal to (un)∞n=1 and ‖u∗

n‖ = ‖un‖ = 1. Our aim
is to see that the operator

P (ξ) =
∞∑

k=1

u∗
k(ξ)uk, ξ ∈ �p,

defines a norm-one projection from �p onto [uk]. We will show that ‖Pξ‖ ≤ ‖ξ‖
when ξ ∈ c00 and then observe that P extends by density to a contractive
projection.
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For each ξ ∈ c00,

|u∗
k(ξ)| =

∣∣∣∣ rk∑
j=rk−1+1

bjξ(j)
∣∣∣∣

≤
( rk∑

j=rk−1+1

|bj |q
) 1

q
( rk∑

j=rk−1+1

|ξ(j)|p
) 1

p

=
( rk∑

j=rk−1+1

|ξ(j)|p
) 1

p

.

Then, using the isometric equivalence of (un)∞n=1 and (en)∞n=1, we have

‖P (ξ)‖ =
( ∞∑

k=1

|u∗
k(ξ)|p

) 1
p

≤
( ∞∑

k=1

rk∑
j=rk−1+1

|ξ(j)|p
) 1

p

= ‖ξ‖.
��

Remark 2.1.2. Notice that if (un) is not normalized but satisfies instead an
inequality

0 < a ≤ ‖un‖ ≤ b <∞, n ∈ N,

for some constants a, b (in which case (un) is said to be seminormalized), then
we can apply the previous lemma to (un/‖un‖) and we obtain that (un)∞n=1

is equivalent to (en)∞n=1 (but not isometrically) and [un] is complemented by
a contractive projection.

Although the preceding lemma was quite simple it already leads to a pow-
erful conclusion:

Proposition 2.1.3. Let (xn)∞n=1 be a normalized sequence in �p for 1 ≤ p <
∞ [respectively, c0] such that for each j ∈ N we have limn→∞ xn(j) = 0 (for
example suppose (xn)∞n=1 is weakly null). Then there is a subsequence (xnk

)∞k=1

which is a basic sequence equivalent to the canonical basis of �p and such that
[xnk

]∞k=1 is complemented in �p [respectively, c0].

Proof. Proposition 1.3.10 (using the “gliding hump” technique) yields a sub-
sequence (xnk

)∞k=1 and a block basic sequence (uk)∞k=1 of (en)∞n=1 such that
(xnk

)∞k=1 is basic, equivalent to (uk)∞k=1 and such that [xnk
]∞k=1 is comple-

mented whenever [uk]∞k=1 is. By Lemma 2.1.1 we are done.
��

Now let us prove a classical result from the 1930s (Pitt [189]).
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Theorem 2.1.4 (Pitt’s Theorem). Suppose 1 ≤ p < r < ∞. If X is
a closed subspace of �r and T : X → �p is a bounded operator then T is
compact.

Proof. �r is reflexive, hence X is reflexive and so BX is weakly compact.
Therefore in order to prove that T is compact it suffices to show that T |BX

is
weak-to-norm continuous. Since the weak topology of X restricted to BX is
metrizable (Lemma 1.4.1 (ii)) it suffices to see that whenever (xn)∞n=1 ⊂ BX

is weakly convergent to some x in BX then (T (xn))∞n=1 converges in norm to
Tx.

We need only show that if (xn)∞n=1 is a weakly null sequence in X then
limn→∞ ‖Txn‖ = 0. If this fails, we may suppose the existence of a weakly null
sequence (xn)∞n=1 with ‖xn‖ = 1 such that ‖Txn‖ ≥ δ > 0 for all n. By passing
to a subsequence we may suppose that (xn)∞n=1 is a basic sequence equiva-
lent to the canonical �r-basis (Proposition 2.1.3). But then, since (Txn)∞n=1

is also weakly null, by passing to a further subsequence we may suppose that
(Txn/‖Txn‖)∞n=1, and hence (Txn)∞n=1, is basic and equivalent to the canon-
ical �p-basis. Since T is bounded we have effectively shown that the identity
map ι : �r → �p is bounded, which is absurd. Or, alternatively, there exist
constants C1 and C2 such that the following inequalities hold simultaneously
for all n: ∥∥∥ n∑

k=1

xk

∥∥∥
r
≤ C1n

1
r and

∥∥∥ n∑
k=1

Txk

∥∥∥
p
≥ C2n

1
p ,

which contradicts the boundedness of T. Thus the theorem is proved.
��

Remark 2.1.5. (a) Essentially the same proof works with c0 replacing �r;
although c0 is nonreflexive, Lemma 1.4.1 can still be used to show that BX

is at least weakly metrizable, and the weak-to-norm continuity of T |BX
is

enough to show that the image is relatively norm-compact.

(b) We would like to single out the following crucial ingredient in the
proof of Pitt’s theorem. Suppose T : �r → �p is a bounded operator with
1 ≤ p < r < ∞. Then whenever (xn) is a weakly null sequence in �r we have
‖Txn‖p → 0. In particular ‖Ten‖p → 0. The same is true for any operator
T : c0 → �p.

Corollary 2.1.6. The spaces of the set {c0} ∪ {�p : 1 ≤ p <∞} are mutually
nonisomorphic. In fact, if X is an infinite-dimensional subspace of one of the
spaces {c0}∪{�p : 1 ≤ p <∞}, then it is not isomorphic to a subspace of any
other.

This suggests the following definition:

Definition 2.1.7. Two infinite-dimensional Banach spaces X, Y are said to
be totally incomparable if they have no infinite-dimensional subspaces in com-
mon (up to isomorphism).
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What can be said for bounded operators T : �p −→ �r for p < r? First,
notice that in this case Pitt’s theorem is not true. Take, for example, the
natural inclusion ι : �p ↪→ �r. ι is a norm-one operator which is not compact
since the image of the canonical basis of �p is a sequence contained in ι(B�p

)
with no convergent subsequences.

Definition 2.1.8. A bounded operator T from a Banach space X into a Ba-
nach space Y is strictly singular if there is no infinite-dimensional subspace
E ⊂ X such that T |E is an isomorphism onto its range.

Theorem 2.1.9. If p < r, every T : �p −→ �r is strictly singular.

Proof. This is immediate from Corollary 2.1.6.
��

2.2 Complemented subspaces of �p (1 ≤ p < ∞) and c0

The results of this section are due to Pe�lczyński (1960) [169]; they demonstrate
the power of basic sequence techniques.

Proposition 2.2.1. Every infinite-dimensional closed subspace Y of �p (1 ≤
p <∞) [respectively, c0] contains a closed subspace Z such that Z is isomor-
phic to �p [respectively, c0] and complemented in �p [respectively, c0].

Proof. Since Y is infinite-dimensional, for every n there is yn ∈ Y , ‖yn‖ = 1,
such that e∗k(yn) = 0 for 1 ≤ k ≤ n. If not, for some N ∈ N the projec-
tion SN (

∑∞
n=1 anen) =

∑N
n=1 anen restricted to Y would be injective (since

0 �= y ∈ Y would imply SN (y) �= 0) and so SN |Y would be an isomor-
phism onto its image, which is impossible because Y is infinite-dimensional.
By Proposition 2.1.3 the sequence (yn)∞n=1 has a subsequence (ynk

)∞k=1 which
is basic, equivalent to the canonical basis of the space and such that the
subspace Z = [ynk

] is complemented.
��

Since c0 and �1 are nonreflexive and every closed subspace of a reflexive
space is reflexive, using Proposition 2.2.1 we obtain:

Proposition 2.2.2. Let Y be an infinite-dimensional closed subspace of either
c0 or �1. Then Y is not reflexive.

Suppose now that Y is itself complemented in �p (1 ≤ p <∞) [respectively,
c0]. Proposition 2.2.1 certainly tells us that Y contains a complemented copy
of �p [respectively, c0]. Can we say more? Remarkably, Pe�lczyński discovered
a trick which enables us, by rather “soft” arguments, to do quite a bit better.
This trick is nowadays known as the Pe�lczyński decomposition technique and
has proved very useful in different contexts.
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The situation is: we have two Banach spaces X and Y so that Y is isomor-
phic to a complemented subspace of X and X is isomorphic to a complemented
subspace of Y. We would like to deduce that X and Y are isomorphic. This
is known (by analogy with a similar result for cardinals) as the Schroeder-
Bernstein problem for Banach spaces. The next theorem gives two criteria
where the Schroeder-Bernstein problem has a positive solution. To this end
we need to introduce the spaces �p(X) for 1 ≤ p <∞ and c0(X), where X is
a given Banach space.

For 1 ≤ p < ∞, the space �p(X) = (X ⊕ X ⊕ . . . )p called the infinite
direct sum of X in the sense of �p, consists of all sequences x = (x(n))∞n=1

with values in X so that (‖x(n)‖)∞n=1 ∈ �p, with the norm

‖x‖ = ‖(‖x(n)‖)∞n=1‖p.

Similarly, the infinite direct sum of X in the sense of c0, c0(X) =
(X ⊕ X ⊕ . . . )c0 is the space of X-valued sequences x = (x(n))∞n=1 so that
limn→∞ ‖x(n)‖ = 0 under the norm

‖x‖ = max
1≤n<∞

‖x(n)‖.

Notice that �p(�p) can be identified with �p(N×N) and hence is isometric
to �p. Analogously, c0(c0) is isometric to c0.

Theorem 2.2.3 (The Pe�lczyński decomposition technique [169]). Let
X and Y be Banach spaces so that X is isomorphic to a complemented sub-
space of Y and Y is isomorphic to a complemented subspace of X. Suppose
further that either:
(a) X ≈ X2 = X ⊕X and Y ≈ Y 2, or
(b) X ≈ c0(X) or X ≈ �p(X) for some 1 ≤ p <∞.
Then X is isomorphic to Y.

Proof. Let us put X ≈ Y ⊕ E and X ≈ Y ⊕ F . If (a) holds then we have

X ≈ Y ⊕ Y ⊕ E ≈ Y ⊕X,

and by a symmetrical argument Y ≈ X ⊕ Y . Hence Y ≈ X.
If X satisfies (b) in particular we have X ≈ X2 so as in part (a) we obtain

Y ≈ X ⊕ Y. On the other hand,

�p(X) ≈ �p(Y ⊕ E) ≈ �p(Y )⊕ �p(E).

Hence if X ≈ �p(X),

X ≈ Y ⊕ �p(Y )⊕ �p(E) ≈ Y ⊕ �p(X) ≈ Y ⊕X.

The proof is analogous if X ≈ c0(X).
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��
We are ready to prove a beautiful theorem due to Pe�lczyński (1960) [169]

which had a profound influence on the development of Banach space theory.

Theorem 2.2.4. Suppose Y is a complemented infinite-dimensional subspace
of �p where 1 ≤ p <∞ [respectively, c0]. Then Y is isomorphic to �p [respec-
tively, c0].

Proof. Proposition 2.2.1 gives an infinite-dimensional subspace Z of Y such
that Z is isomorphic to �p [respectively, c0] and Z is complemented in �p [re-
spectively, c0]. Obviously Z is also complemented in Y , therefore �p [respec-
tively, c0] is (isomorphic to) a complemented subspace in Y . Since �p(�p) = �p

[respectively, c0(c0) = c0], (b) of Theorem 2.2.3 applies and we are done.
��

At this point let us discuss where this theorem leads. First, the alert reader
may ask whether it is true that every subspace of �p is actually complemented.
Certainly this is true when p = 2! This is a special case of:

The complemented subspace problem. If X is a Banach space such
that every closed subspace is complemented, is X isomorphic to a Hilbert
space?

This problem was settled positively by Lindenstrauss and Tzafriri in 1971
[135]. We will later discuss its general solution but, at the moment, let us point
out that it is not so easy to demonstrate the answer even for the �p-spaces
when p �= 2. In this chapter we will show that �1 has an uncomplemented
subspace.

Another way to approach the complemented subspace problem is to
demonstrate that �p has a subspace which is not isomorphic to the whole
space. Here we meet another question dating back to Banach:

The homogeneous space problem. Let X be a Banach space which
is isomorphic to every one of its infinite-dimensional closed subspaces. Is X
isomorphic to a Hilbert space?

This problem was finally solved, again positively, by Komorowski and
Tomczak-Jaegermann [115] in 1996 (using an important ingredient by Gowers
[70]).

Oddly enough, the �p-spaces for p �= 2 are not as regular as one would
expect. In fact, for every p �= 2, �p contains a subspace without a basis. For
p > 2 this was proved by Davie in 1973 [34]; for general p it was obtained
by Szankowski [211] a few years later. However, the construction of such sub-
spaces is far from easy and will not be covered in this book. Notice that this
provides an example of a separable Banach space without a basis.

One natural idea that comes out of Theorem 2.2.4 is the notion that the
�p-spaces and c0 are the building blocks from which Banach spaces are con-
structed; by analogy they might play the role of primes in number theory.
This thinking is behind the following definition:
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Definition 2.2.5. A Banach space X is called prime if every complemented
infinite-dimensional subspace of X is isomorphic to X.

Thus the �p-spaces and c0 are prime. Are there other primes? One may
immediately ask about �∞ and, indeed, this is a (nonseparable) prime space
as was shown by Lindenstrauss in 1967 [129]; we will show this later. The
quest for other prime spaces has proved difficult, some candidates have been
found but in general it is very hard to prove that a particular space is prime.
Eventually another prime space was found by Gowers and Maurey [72] but the
construction is very involved and the space is far from being “natural.” In fact
the Gowers-Maurey prime space has the property that the only complemented
subspaces of infinite dimension are of finite codimension. One can say that this
space is prime only because it has very few complemented subspaces at all!

2.3 The space �1

The space �1 has a special role in Banach space theory. In this section we
develop some of its elementary properties. We start by proving a universal
property of �1 with respect to separable spaces due to Banach and Mazur [9]
from 1933.

Theorem 2.3.1. If X is a separable Banach space then there exists a contin-
uous operator Q : �1 → X from �1 onto X.

Proof. It suffices to show that X admits of a continuous operator Q : �1 → X
such that Q{ξ ∈ �1 : ‖ξ‖1 < 1} = {x ∈ X : ‖x‖ < 1}.

Let (xn)∞n=1 be a dense sequence in BX and define Q : �1 → X by Q(ξ) =∑∞
n=1 ξ(n)xn. Notice that Q is well defined: for every ξ = (ξ(n)) ∈ �1 the

series
∑∞

n=1 ξ(n)xn is absolutely convergent in X. Q is clearly linear and has
norm one since

‖Q(ξ)‖ =
∥∥∥ ∞∑

n=1

ξ(n)xn

∥∥∥ ≤ ∞∑
n=1

|ξ(n)| = ‖(ξ(n))‖1 .

Q(B�1) is a dense subset of BX , hence given x ∈ BX and 0 < ε < 1 there
exists ξ1 ∈ B�1 such that ‖x − Tξ1‖ < ε. Next we find ξ′2 ∈ B�1 such that
‖ 1

ε (x−Qξ1)−Qξ′2‖ < ε. If we let ξ2 = εξ′2 we obtain

‖x−Q(ξ1 + ξ2)‖ < ε2.

Iterating we find a sequence (ξn) in B�1 satisfying ‖ξn‖1 < εn−1 and ‖x −
Q(ξ1 + · · ·+ ξn)‖ < εn. Let ξ =

∑∞
n=1 ξn. Then ‖ξ‖1 ≤ (1− ε)−1 and Qξ = x.

Since 0 < ε < 1 is arbitrary, by scaling we deduce that Q{ξ ∈ �1 : ‖ξ‖1 <
1} = {x ∈ X : ‖x‖ < 1}.

��
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Corollary 2.3.2. If X is a separable Banach space then X is isometrically
isomorphic to a quotient of �1.

Proof. Let Q : �1 → X be the quotient map in the proof of Theorem 2.3.1.
Then it follows that �1/ker Q is isometrically isomorphic to X.

��

Corollary 2.3.3. �1 has an uncomplemented closed subspace.

Proof. Take X a separable Banach space which is not isomorphic to �1.
Theorem 2.3.1 yields an operator Q from �1 onto X whose kernel is a
closed subspace of �1. If kerQ were complemented in �1 then we would have
�1 = ker Q⊕M for some closed subspace M of �1 and therefore

X = �1/ker Q ≈M.

But this can only occur if X is isomorphic to �1 by Theorem 2.2.4.
��

Definition 2.3.4. A Banach space X has the Schur property (or X is a Schur
space) if weak and norm sequential convergence coincide in X, i.e., a sequence
(xn)∞n=1 in X converges to 0 weakly if and only if (xn)∞n=1 converges to 0 in
norm.

Example 2.3.5. Neither of the spaces �p for 1 < p < ∞ nor c0 have the
Schur property since the canonical basis is weakly null but cannot converge
to 0 in norm.

The next result was discovered in an equivalent form by Schur in 1920
[205].

Theorem 2.3.6. �1 has the Schur property.

Proof. Suppose (xn) is a weakly null sequence in �1 that does not converge
to 0 in norm. Using Proposition 2.1.3, (xn) contains a subsequence which is
basic and equivalent to the canonical basis; this gives a contradiction because
the canonical basis of �1 is clearly not weakly null.

��

Theorem 2.3.7. Let X be a Banach space with the Schur property. Then a
subset W of X is weakly compact if and only if W is norm compact.

Proof. Suppose W is weakly compact and consider a sequence (xn)∞n=1 in
W . By the Eberlein-S̆mulian theorem W is weakly sequentially compact, so
(xn)∞n=1 has a subsequence (xnk

)∞k=1 that converges weakly to some x ∈ W .
Since X has the Schur property, (xnk

)∞k=1 converges to x in norm as well.
Therefore W is compact for the norm topology.

��
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Corollary 2.3.8. If X is a reflexive Banach space with the Schur property
then X is finite-dimensional.

Proof. If a reflexive Banach space X has the Schur property then its unit ball
is norm-compact by Theorem 2.3.7 and so X is finite-dimensional.

��

Definition 2.3.9. A sequence (xn)∞n=1 in a Banach space X is weakly Cauchy
if limn→∞ x∗(xn) exists for every x∗ in X∗.

Any weakly Cauchy sequence (xn)∞n=1 in a Banach space X is norm-
bounded by the Uniform Boundedness principle. If X is reflexive, by Corol-
lary 1.6.4, (xn)∞n=1 will have a weak cluster point, x, and so (xn)∞n=1 will
converge weakly to x. If X is nonreflexive, however, there may be sequences
which are weakly Cauchy but not weakly convergent.

Definition 2.3.10. A Banach space X is said to be weakly sequentially com-
plete (wsc) if every weakly Cauchy sequence in X converges weakly.

Example 2.3.11. In the space c0 consider the sequence xn = e1 + · · · + en,
where (en) is the unit vector basis. (xn)∞n=1 is obviously weakly Cauchy but
it does not converge weakly in c0. (xn)∞n=1 converges weak∗ in the bidual, �∞,
to the element (1, 1, . . . , 1, . . .). Thus c0 is not weakly sequentially complete.

Proposition 2.3.12. Any Banach space with the Schur property (in particu-
lar �1) is weakly sequentially complete.

Proof. Suppose (xn)∞n=1is weakly Cauchy. Then for any two strictly increasing
sequences of integers (nk)∞k=1, (mk)∞k=1 the sequence (xmk

−xnk
)∞k=1 is weakly

null and so limk→∞ ‖xmk
− xnk

‖ = 0. Thus, being norm-Cauchy, (xn)∞n=1is
norm-convergent and hence weak-convergent.

��

2.4 Convergence of series

Definition 2.4.1. Let (xn)∞n=1 be a sequence in a Banach space X. A (formal)
series

∑∞
n=1 xn in X is said to be unconditionally convergent if

∑∞
n=1 xπ(n)

converges for every permutation π of N.

We will see in Chapter 8 that except in finite-dimensional spaces, uncon-
ditional convergence is weaker than absolute convergence, i.e., convergence of∑∞

n=1 ‖xn‖.

Lemma 2.4.2. Given a series
∑∞

n=1 xn in a Banach space X, the following
are equivalent:

(a)
∑∞

n=1 xn is unconditionally convergent;
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(b) The series
∑∞

k=1 xnk
converges for every increasing sequence of integers

(nk)∞k=1;
(c) The series

∑∞
n=1 εnxn converges for every choice of signs (εn);

(d) For every ε > 0 there exists an n so that if F is any finite subset of
{n + 1, n + 2, . . .} then ∥∥∥∑

j∈F

xj

∥∥∥ < ε.

Proof. We will establish only (a)⇒ (d) and leave the other easier implications
to the reader. Suppose that (d) fails. Then there exists ε > 0 so that for every
n we can find a finite subset Fn of {n + 1, . . .} with∥∥∥ ∑

j∈Fn

xj

∥∥∥ ≥ ε.

We will build a permutation π of N so that
∑∞

n=1 xπ(n) diverges.
Take n1 = 1 and let A1 = Fn1 . Next pick n2 = max A1 and let B1 =

{n1 + 1, . . . , n2} \A1. Now repeat the process taking A2 = Fn2 , n3 = max A2

and B2 = {n2 +1, . . . , n3}\A2. Iterating we generate a sequence (nk)∞k=1 and
a partition {nk + 1, . . . , nk+1} = Ak ∪ Bk. Define π so that π permutes the
elements of {nk + 1, . . . , nk+1} in such a way that Ak precedes Bk. Then the
series

∑∞
n=1 xπ(n) is divergent because the Cauchy condition fails.

��

Definition 2.4.3. A (formal) series
∑∞

n=1 xn in a Banach space X is weakly
unconditionally Cauchy (WUC) or weakly unconditionally convergent if for
every x∗ ∈ X∗ ∑∞

n=1 |x∗(xn)| <∞.

Proposition 2.4.4. Suppose the series
∑∞

n=1 xn converges unconditionally to
some x in a Banach space X. Then

(i)
∑∞

n=1 xπ(n) = x for every permutation π.
(ii)

∑
n∈A xn converges unconditionally for every infinite subset A of N.

(iii)
∑∞

n=1 xn is WUC.

Proof. Parts (i) and (ii) are immediate. For (iii), given x∗ ∈ X∗ the scalar
series

∑∞
n=1 x∗(xπ(n)) converges for every permutation π. It is a classical the-

orem of Riemann that for scalar sequences the series
∑∞

n=1 an converges un-
conditionally if and only if it converges absolutely, i.e.,

∑∞
n=1 |an| <∞. Thus

we have
∑∞

n=1 |x∗(xn)| <∞.
��

Let us notice that the name “weakly unconditionally convergent” series
can be misleading because such series need not be weakly convergent; we will
therefore use the term weakly unconditionally Cauchy or more usually its
abbreviation (WUC).



40 2 The Classical Sequence Spaces

Example 2.4.5. The series
∑∞

n=1 en in c0, where (en)∞n=1 is the canonical
basis of the space, is WUC but fails to converge weakly (and so it cannot
converge unconditionally). In fact, this is in a certain sense the only coun-
terexample as we shall see.

In Proposition 2.4.7 we shall prove that WUC series are in a very natural
correspondence with bounded operators on c0. Let us first see a lemma.

Lemma 2.4.6. Let
∑∞

n=1 xn be a formal series in a Banach space X. Then
the following are equivalent:

(i)
∑∞

n=1 xn is WUC.
(ii) There exists C > 0 such that for all (ξ(n)) ∈ c00 we have

∥∥∥ ∞∑
n=1

ξ(n)xn

∥∥∥ ≤ C max
n
|ξ(n)|.

(iii) There exists C ′ > 0 such that∥∥∥∑
n∈F

εnxn

∥∥∥ ≤ C ′

for any finite subset F of N and all εn = ±1.

Proof. (i)⇒ (ii). Put

S =
{ ∞∑

n=1

ξ(n)xn ∈ X : ξ = (ξ(n)) ∈ c00, ‖ξ‖∞ ≤ 1
}

.

The WUC property implies that S is weakly bounded, therefore it is norm-
bounded by the Uniform Boundedness principle.

Obviously, (ii) implies (iii). For (iii) ⇒ (i), given x∗ ∈ X∗ let εn =
sgn x∗(xn). Then for each integer N we have

N∑
n=1

|x∗(xn)| =
∣∣∣x∗
( N∑

n=1

εnxn

)∣∣∣ ≤ C‖x∗‖

and therefore the series
∑∞

n=1 |x∗(xn)| converges.
��

Proposition 2.4.7. Let
∑∞

n=1 xn be a series in a Banach space X. Then∑∞
n=1 xn is WUC if and only if there is a bounded operator T : c0 → X with

Ten = xn.

Proof. If
∑∞

n=1 xn is WUC then the operator T : c00 → X defined by
Tξ =

∑∞
n=1 ξ(n)xn is bounded for the c0-norm by Lemma 2.4.6. By density

T extends to a bounded operator T : c0 → X.
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For the converse, let T : c0 → X be a bounded operator with Ten = xn

for all n. For each x∗ ∈ X∗ we have
∞∑

n=1

|x∗(xn)| =
∞∑

n=1

|x∗(Ten)| =
∞∑

n=1

|T ∗(x∗)(en)|,

which is finite since
∑∞

n=1 en is WUC.
��

Proposition 2.4.8. Let
∑∞

n=1 xn be a WUC series in a Banach space X.
Then

∑∞
n=1 xn converges unconditionally in X if and only if the operator

T : c0 → X such that Ten = xn is compact.

Proof. Suppose
∑∞

n=1 xn is unconditionally convergent. We will show that
limn→∞ ‖T − TSn‖ = 0, where (Sn)∞n=1 are the partial sum projections as-
sociated to the canonical basis (en) of c0. Thus, being a uniform limit of
finite-rank operators, T will be compact.

Given ε > 0 we use Lemma 2.4.2 to find n = n(ε) so that if F is a finite
subset of {n + 1, n + 2, . . .} then ‖

∑
j∈F xj‖ ≤ ε/2. For every x∗ ∈ X∗ with

‖x∗‖ ≤ 1 we have ∑
{j∈F : x∗(xj)≥0}

x∗(xj) ≤
ε

2
,

therefore ∑
j∈F

|x∗(xj)| ≤ ε.

Hence if ξ ∈ c00 with ‖ξ‖∞ ≤ 1 it follows that |x∗(T − TSm)ξ| ≤ ε for m ≥ n
and all x∗ ∈ X∗. By density we conclude that ‖T − TSm‖ ≤ ε.

Assume, conversely, that T is compact. Let us consider

T ∗∗ : c∗∗0 = �∞ −→ X ⊂ X∗∗.

The restriction of T ∗∗ to B�∞ is weak∗-to-norm continuous because on a
norm compact set the weak∗ topology agrees with the norm topology. Since∑∞

n=1 eπ(n) converges weak∗ in �∞ for every permutation π,
∑∞

n=1 xn also
converges unconditionally in X.

��
Note that the above argument also implies the following stability prop-

erty of unconditionally convergent series with respect to the multiplication by
bounded sequences. The proof is left as an exercise.

Proposition 2.4.9. A series
∑∞

n=1 xn in a Banach space X is uncondition-
ally convergent if and only if

∑∞
n=1 tnxn converges (unconditionally) for all

(tn) ∈ �∞.

The next theorem and its consequences are essentially due to Bessaga
and Pe�lczyński in their 1958 paper [12] and represent some of the earliest
applications of the basic sequence methods.
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Theorem 2.4.10. Suppose T : c0 → X is a bounded operator. Then the
following conditions on T are equivalent:

(i) T is compact,
(ii) T is weakly compact,
(iii) T is strictly singular.

Proof. (i)⇒ (ii) is obvious. For (ii)⇒ (iii), let us suppose that T fails to be
strictly singular. Then there exists an infinite-dimensional subspace Y of c0

such that T |Y is an isomorphism onto its range. If T is weakly compact this
forces Y to be reflexive, contradicting Proposition 2.2.2.

We now consider (iii)⇒ (i). Assume that T fails to be compact. Then, by
Proposition 2.4.8,

∑∞
n=1 Ten does not converge unconditionally so, by Lemma

2.4.2, there exists ε > 0 and a sequence of disjoint finite subsets of inte-
gers (Fn)∞n=1 so that ‖

∑
k∈Fn

Tek‖ ≥ ε for every n. Let xn =
∑

k∈Fn
Tek.

(xn)∞n=1 is weakly null in X since
∑

k∈Fn
ek is weakly null in c0. Using Propo-

sition 1.3.10 we can, by passing to a subsequence of (xn)∞n=1, assume it is basic
in X with basis constant K, say. Then for ξ = (ξ(n))∞n=1 ∈ c00,

∥∥∥ ∞∑
n=1

ξ(n)xn

∥∥∥ =
∥∥∥T( ∞∑

n=1

ξ(n)
∑

k∈Fn

ek

)∥∥∥ ≤ ‖T‖max
n∈N

|ξ(n)|.

On the other hand,

max
n∈N

|ξ(n)| ≤ 2K
∥∥∥ ∞∑

n=1

ξ(n)xn

∥∥∥.
Thus (xn)∞n=1 is equivalent to the canonical basis of c0 and therefore to
(
∑

k∈Fn
ek)∞n=1. We conclude that T cannot be strictly singular.

��
From now on, whenever we say that a Banach space X contains a copy

of a Banach space Y we mean that X contains a closed subspace E which is
isomorphic to Y . Using Theorem 2.4.10 we obtain a very nice characterization
of spaces that contain a copy of c0.

Theorem 2.4.11. In order that every WUC series in a Banach space X be
unconditionally convergent it is necessary and sufficient that X contains no
copy of c0.

Proof. Suppose that X contains no copy of c0 and that
∑∞

n=1 xn is a WUC
series in X. By Proposition 2.4.7 there exists a bounded operator T : c0 → X
such that Ten = xn for all n. T must be strictly singular since every infinite-
dimensional subspace of c0 contains a copy of c0 (Proposition 2.2.1) so T is
compact by Theorem 2.4.10. Hence the series

∑∞
n=1 xn converges uncondition-

ally by Proposition 2.4.8. The converse follows trivially from Example 2.4.5.
��
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Remark 2.4.12. This theorem of Bessaga and Pe�lczyński is a prototype for
exclusion theorems which say that if we can exclude a certain subspace from
a Banach space then it will have a particular property. It had considerable
influence in suggesting that such theorems might be true. In Chapter 10 we will
see a similar and much more difficult result for Banach spaces not containing
�1 (due to Rosenthal [197]) which when combined with the Bessaga-Pe�lczyński
theorem gives a very elegant pair of bookends in Banach space theory. It is
also worth noting that the hypothesis that a Banach space fails to contain c0

becomes ubiquitous in the theory precisely because of Theorem 2.4.11.

We have seen that a series
∑∞

n=1 xn in a Banach space X converges uncon-
ditionally in norm if and only if each subseries

∑∞
k=1 xnk

does. In particular
every subseries of an unconditionally convergent series is weakly convergent.
The Orlicz-Pettis theorem establishes that the converse is true as well. First
we see an auxiliary result.

Lemma 2.4.13. Let m0 be the set of all sequences of scalars assuming only
finitely many different values. Then m0 is dense in �∞.

Proof. Let a = (an)∞n=1 be a sequence of scalars with ‖a‖∞ ≤ 1. For any ε > 0
pick N ∈ N such that 1

N < ε. Then the sequence b = (bn)∞n=1 ∈ m0 given by

bn = (sgn an)
j

N
if

j

N
≤ |an| ≤

j + 1
N

, j = 1, . . . , N

satisfies ‖a− b‖∞ ≤ 1
N < ε.

��

Theorem 2.4.14 (The Orlicz-Pettis Theorem). Suppose
∑∞

n=1 xn is a
series in a Banach space X for which every subseries

∑∞
k=1 xnk

converges
weakly. Then

∑∞
n=1 xn converges unconditionally in norm.

Proof. The hypothesis easily yields that
∑∞

n=1 xn is a WUC series so, by
Proposition 2.4.7, there exists a bounded operator T : c0 → X with Ten = xn

for all n. We will show that T is actually compact.
Let us look at T ∗∗ : �∞ → X∗∗. For every A ⊂ N let us denote by χA =

(χA(k))∞k=1 the element of �∞ such that χA(k) = 1 if k ∈ A and 0 otherwise.
By hypothesis

∑
n∈A xn converges weakly in X and it follows that T ∗∗(χA) ∈

X. The linear span of all such χA consists of the space of scalar sequences
taking only finitely many different values, m0, which by Lemma 2.4.13 is
dense in �∞. Hence T ∗∗ maps �∞ into X. This means that T is a weakly
compact operator. Now Theorem 2.4.10 implies that T is a compact operator
and Proposition 2.4.8 completes the proof.

��
Now, as a corollary, we can give a reciprocal of Proposition 2.4.4 (iii).

Corollary 2.4.15. If a Banach space X is weakly sequentially complete then
every WUC series in X is unconditionally convergent.
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Proof. If
∑∞

n=1 xn is WUC then
∑∞

n=1 x∗(xn) is absolutely convergent for
every x∗ ∈ X∗, which is equivalent to saying that

∑∞
k=1 x∗(xnk

) converges for
each subseries

∑∞
k=1 xnk

and each x∗ ∈ X∗. Hence
∑∞

k=1 xnk
is weakly Cauchy

and therefore weakly convergent by hypothesis. We deduce that
∑∞

n=1 xn

converges unconditionally in norm by the Orlicz-Pettis theorem.
��

The Orlicz-Pettis theorem predates basic sequence techniques. It was first
proved by Orlicz in 1929 [162] and referenced in Banach’s book [8]. He at-
tributes the result to Orlicz in the special case when X is weakly sequentially
complete so that every WUC series has the property of the theorem. However,
it seems that Orlicz did know the more general statement. Independently, Pet-
tis published a proof in 1938 [178]. Pettis was interested in such a result as
a by-product of the study of vector measures. If Σ is a σ-algebra of sets and
µ : Σ → X is a map such that for every x∗ ∈ X∗ the set function x∗ ◦ µ is
a (countably additive) measure then the Orlicz-Pettis theorem implies that µ
is countably additive in the norm topology. Thus weakly countably additive
set functions are norm countably additive.

This is an attractive theorem and as a result it has been proved, reproved,
and generalized many times since then. It is not clear that there is much left
to say on this subject! We will suggest some generalizations in the Problems.

2.5 Complementability of c0

Let us discuss the following extension problem. Suppose that X and Y are
Banach spaces and that E is a subspace of X. Let T : E → Y be a bounded
operator. Can we extend T to a bounded operator T̃ : X → Y ? If we consider
the special case when Y = E and T is the identity map on E, we are asking
simply if E is the range of a projection on X, i.e., if E is complemented in X.

The Hahn-Banach theorem asserts that if Y has dimension one then such
an extension is possible with preservation of norm. However, in general such
an extension is not possible and we have discussed the fact that there are
noncomplemented subspaces in almost all Banach spaces. For instance we have
seen that �1 must have an uncomplemented subspace, but the construction of
this subspace as the kernel of a certain quotient map means that it is rather
difficult to see exactly what it is. In this section we will study a very natural
example. Let us formalize the notion of an injective Banach space.

Definition 2.5.1. A Banach space Y is called injective if whenever X is a
Banach space, E is a closed subspace of X, and T : E → Y is a bounded
operator then there is a bounded linear operator T̃ : X → Y which is an
extension of T . Y is called isometrically injective if T̃ can be additionally
chosen to have ‖T̃‖ = ‖T‖.

We will defer our discussion of injective spaces to later and restrict our-
selves to one almost trivial observation:
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Proposition 2.5.2. The space �∞ is an isometrically injective space. Hence,
if a Banach space X has a subspace E isomorphic to �∞, then E is necessarily
complemented in X.

Proof. Suppose E is a subspace of X and T : E → �∞ is bounded. Then Te =
(e∗n(e))∞n=1 for some sequence (e∗n)∞n=1 in E∗; clearly ‖T‖ = supn ‖e∗n‖. By the
Hahn-Banach theorem we choose extensions x∗

n ∈ X∗ with ‖x∗
n‖ = ‖e∗n‖ for

each n. By letting T̃ x = (x∗
n(x))∞n=1 we are done.

��
c0 is a subspace of �∞ (its bidual) and it is easy to see that c0 will be

injective if and only if it is complemented in �∞. Must a Banach space be
complemented in its bidual? Certainly this is true for any space which is
the dual of another space since for any Banach space X the space X∗ is
always complemented in its bidual, X∗∗∗. To see this consider the natural
embedding j : X → X∗∗. Then j∗ : X∗∗∗ → X∗ is a norm-one operator.
Denote by J the canonical injection of X∗ into X∗∗∗. We claim that j∗J is
the identity IX∗ on X∗. Indeed, suppose x∗ ∈ X∗ and that x ∈ X. Then
〈x, j∗J(x∗)〉 = 〈jx, Jx∗〉 = 〈x, x∗〉. Thus j∗ is a norm-one projection of X∗∗∗

onto X∗. If X is isomorphic (but not necessarily isometric) to a dual space
we leave for the reader the details to check that X will still be complemented
in its bidual. So we may also ask if c0 is isomorphic to a dual space.

As we will see next, c0 is not complemented in �∞. This was proved essen-
tially by Phillips [180] in 1940 although first formally observed by Sobczyk
[208] the following year. Phillips in fact proved the result for the subspace c of
convergent sequences. The proof we give is due to Whitley [220] and requires
a simple lemma:

Lemma 2.5.3. Every countably infinite set S has an uncountable family of
infinite subsets {Ai}i∈I such that any two members of the family have finite
intersection.

Proof. The proof is very simple but rather difficult to spot! Without loss of
generality we can identify S with the set of the rational numbers Q. For each
irrational number θ, take a sequence of rational numbers (qn)∞n=1 converging
to θ. Then the sets of the form Aθ = {(qn)∞n=1 : qn → θ} verify the lemma.

��
If A is any subset of N we denote by �∞(A) the subspace of �∞ given by

�∞(A) =
{
ξ = (ξ(k))∞k=1 ∈ �∞ : ξ(k) = 0 if k �∈ A

}
.

Theorem 2.5.4. Let T : �∞ → �∞ be a bounded operator such that Tξ = 0
for all ξ ∈ c0. Then there is an infinite subset A of N so that Tξ = 0 for every
ξ ∈ �∞(A).

Proof. We use the family (Ai)i∈I of infinite subsets of N given by Lemma 2.5.3.
Suppose that for every such set we can find ξi ∈ �∞(Ai) with Tξi �= 0. We can
assume by normalization that ‖ξi‖∞ = 1 for every i ∈ I. There must exist
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n ∈ N so that the set In = {i ∈ I : ξi(n) �= 0} is uncountable. Similarly, there
exists k ∈ N so that the set In,k = {i : |ξi(n)| ≥ k−1} is also uncountable.
For each i ∈ In,k choose αi with |αi| = 1 and αiξi(n) = |ξi(n)|.

Let F be a finite subset of In,k. Consider y =
∑

i∈F αiξi. Since the inter-
section of the supports of any two distinct ξi is finite we can write y = u + v
where ‖u‖∞ ≤ 1 and v has finite support. Thus

‖Ty‖∞ = ‖Tu‖∞ ≤ ‖T‖,

and so
e∗n(Ty) =

∑
i∈F

|ξi(n)| ≤ ‖T‖.

It follows that if |F| = m we have mk−1 ≤ ‖T‖, i.e., m ≤ k‖T‖. Since this
holds for every finite subset of In,k we have shown that In,k is in fact finite,
which is a contradiction.

��

Theorem 2.5.5 (Phillips-Sobczyk, 1940-1). There is no bounded projec-
tion from �∞ onto c0.

Proof. If P is such a projection we can apply Theorem 2.5.4 to T = I − P ,
with I the identity operator on �∞, and then it is clear that Pξ = ξ for all
ξ ∈ �∞(A) for some infinite set A, which gives a contradiction.

��

Corollary 2.5.6. c0 is not isomorphic to a dual space.

Proof. If c0 were isomorphic to a dual space then, by the comments that follow
the proof of Proposition 2.5.2, c0 should be complemented in c∗∗0 , which would
lead to contradiction with Theorem 2.5.5.

��
Several comments are in order here. Theorem 2.5.4 proves more than is

needed for Phillips-Sobczyk’s theorem. It shows that there is no bounded,
one-to-one operator from the quotient space �∞/c0 into �∞; in other words
the points of �∞/c0 cannot be separated by countably many bounded linear
functionals. (Of course, if E is a complemented subspace of a Banach space
X, then X/E must be isomorphic to a subspace of X which is complementary
to E.)

Now we are also in position to note that c0 is not an injective space.
Actually there are no separable injective spaces, but we will see this later,
when we discuss the structure of �∞ in more detail. For the moment let us
notice the dual statement of Theorem 2.3.1.

Theorem 2.5.7. If X is a separable Banach space then X embeds isometri-
cally into �∞.
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Proof. Let (xn)∞n=1 be a dense sequence in X. For each integer n pick x∗
n ∈

X∗ so that ‖x∗
n‖ = 1 and x∗

n(xn) = ‖xn‖. The sequence (x∗
n)∞n=1 ⊂ X∗ is

norming in X. Therefore the operator T : X → �∞ defined for each x in X
by T (x) = (x∗

n(x))∞n=1 provides the desired embedding.
��

Thus X separable can only be injective if it is isomorphic to a comple-
mented subspace of �∞. Therefore classifying the complemented subspaces of
�∞ becomes important; we will see in Chapter 5 the (already mentioned) the-
orem of Lindenstrauss [129] that �∞ is a prime space and this will answer our
question.

In the meantime we turn to Sobczyk’s main result in his 1941 paper, which
gives some partial answers to these questions. The proof we present here is
due to Veech [219].

Theorem 2.5.8 (Sobczyk, 1941). Let X be a separable Banach space. If
E is a closed subspace of X and T : E −→ c0 is a bounded operator then there
exists an operator T̃ : X −→ c0 such that T̃ |E = T and ‖T̃‖ ≤ 2 ‖T‖.

Proof. Without loss of generality we can assume that ‖T‖ = 1. It is immediate
to realize that the operator T must be of the form

Tx = (f∗
n(x))∞n=1, x ∈ E

for some (f∗
n) ⊂ E∗. Moreover ‖f∗

n‖ ≤ 1 for all n and (f∗
n) converges to 0

in the weak∗ topology of E∗. By the Hahn-Banach theorem, for each n ∈ N

there exists ϕ∗
n ∈ X∗, ‖ϕ∗

n‖ ≤ 1, such that ϕ∗
n|E = f∗

n.
X separable implies that (BX∗ , w∗) is metrizable (Lemma 1.4.1). Let ρ be

the metric on BX∗ that induces the weak∗ topology on BX∗ . We claim that
limn→∞ ρ(ϕ∗

n, BX∗ ∩ E⊥) = 0. If this is not the case, there would be some
ε > 0 and a subsequence (ϕ∗

nk
) of (ϕ∗

n) such that ρ(ϕ∗
nk

, BX∗ ∩ E⊥) ≥ ε for

every k. Let (ϕ∗
nkj

) be a subsequence of (ϕ∗
nk

) such that ϕ∗
nkj

w∗
−→ ϕ∗. Then

ϕ∗ ∈ E⊥ ∩BX∗ since for each e ∈ E we have

ϕ∗(e) = lim
j

ϕ∗
nkj

(e) = lim
j

f∗
nkj

(e) = 0.

Hence
ρ(ϕ∗

nkj
, ϕ∗) ≥ ε for all j. (2.1)

On the other hand

lim
j→∞

ρ(ϕ∗
nkj

, BX∗ ∩ E⊥) = ρ(ϕ∗, BX∗ ∩ E⊥) = 0 (2.2)

since the function ρ( · , BX∗ ∩ E⊥) is weak∗ continuous on BX∗ . Clearly we
cannot have (2.1) and (2.2) at the same time, so our claim holds.

Recall that E⊥ is weak∗ closed, hence BX∗ ∩E⊥ is weak∗ compact. There-
fore for each n we can pick v∗n ∈ BX∗ ∩ E⊥ such that
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ρ(ϕ∗
n, v∗n) = ρ(ϕ∗

n, BX∗ ∩ E⊥).

Let x∗
n = ϕ∗

n − v∗n and define the operator T̃ on X by T̃ (x) = (x∗
n(x)). Notice

that T̃ (x) ∈ c0 because x∗
n

w∗
−→ 0. Moreover, for each x ∈ X we have

‖T̃ (x)‖ = sup
n
|x∗

n(x)| = sup
n

(|ϕ∗
n(x)−v∗n(x)|) ≤ sup

n
(‖ϕ∗

n‖+‖v∗n‖) ‖x‖ ≤ 2 ‖x‖ ,

so ‖T̃‖ ≤ 2.
��

Corollary 2.5.9. If E is a closed subspace of a separable Banach space X
and E is isomorphic to c0, then there is a projection P from X onto E.

Proof. Suppose that T : E → c0 is an isomorphism and let T̃ : X → c0 be
the extension of T given by the preceding theorem. Then P = T−1T̃ is a
projection from X onto E. (Note that since ‖T̃‖ ≤ 2‖T‖, if E is isometric to
c0 then ‖P‖ ≤ 2.)

��

Remark 2.5.10. It follows that if a separable Banach space X contains a
copy of c0 then X is not injective.

We finish this chapter by observing that in light of Theorem 2.5.8 it is
natural to define a Banach space Y to be separably injective if whenever X
is a separable Banach space, E is a closed subspace of X and T : E → Y is
a bounded operator then T can be extended to an operator T̃ : X → Y. It
was for a long time conjectured that c0 is the only separable and separably
injective space. This was solved by Zippin in 1977 [225], who showed that,
indeed, c0 is, up to isomorphism, the only separable space which is separably
injective.

We also note that the constant 2 in Theorem 2.5.8 is the best possible (see
Problem 2.7).

Problems

2.1. Let T : X → Y be an operator between the Banach spaces X, Y .
(a) Show that if T is strictly singular then in every infinite-dimensional sub-
space E of X there is a normalized basic sequence (xn) with ‖Txn‖ < 2−n‖xn‖
for all n.
(b) Deduce that T is strictly singular if and only if every infinite-dimensional
closed subspace E contains a further infinite-dimensional closed subspace F
so that the restriction of T to F is compact.

2.2. Show that the sum of two strictly singular operators is strictly singular.
Show also that if Tn : X → Y are strictly singular and ‖Tn − T‖ → 0 then T
is strictly singular.
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2.3. Show that the set of all strictly singular operators on a Banach space
X forms a closed two-sided ideal in the algebra L(X) of all bounded linear
operators from X to X.

2.4. Show that if 1 < p < ∞ and T : �p → �p is not compact then there is
a complemented subspace E of �p so that T is an isomorphism of E onto a
complemented subspace T (E). Deduce that the Banach algebra L(�p) contains
exactly one proper closed two-sided ideal (the ideal of compact operators).
Note that every strictly singular operator is compact in these spaces.

2.5. Show that L(�p ⊕ �r) for p �= r contains at least two nontrivial closed
two-sided ideals.

2.6. Suppose X is a Banach space whose dual is separable. Suppose that
∑

x∗
n

is a series in X∗ which has the property that every subseries
∑

x∗
nk

converges
weak∗. Show that

∑
xn converges in norm. [Hint : Every x∗∗ ∈ X∗∗ is the

limit of a weak∗ converging sequence from X.]

2.7. Let c be the subspace of �∞ of converging sequences. Show that for any
bounded projection P of c onto c0 we have ‖P‖ ≥ 2. This proves that 2 is the
best possible constant in Sobczyk’s theorem (Theorem 2.5.8).

2.8. In this exercise we will focus on the special properties of �1 as a target
space for operators and show its projectivity.
(a) Suppose T : X → �1 is an operator from a Banach space X onto �1. Show
that then X contains a complemented subspace isomorphic to �1.

(b) Prove that if Y is a separable infinite-dimensional Banach space with the
property that whenever T : X → Y is a bounded surjective operator then Y
is isomorphic to a complemented subspace of X, then Y is isomorphic to �1.

2.9. Let X be a Banach space.
(a) Show that for any x∗∗ ∈ X∗∗ and any finite-dimensional subspace E of
X∗ there exists x ∈ X such that

‖x‖ < (1 + ε)‖x∗∗‖,

and
x∗(x) = x∗∗(x∗), x∗ ∈ E.

(b) Use part (a) to deduce the following result of Bessaga and Pe�lczyński ([12]):
If X∗ contains a subspace isomorphic to c0 then X contains a complemented
subspace isomorphic to �1, and hence X∗ contains a subspace isomorphic to
�∞. In particular, no separable dual space can contain an isomorphic copy of
c0. [This may also be used in Problem 2.6.]
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2.10. For an arbitrary set Γ we define c0(Γ) as the space of functions ξ : Γ→ R

such that for each ε > 0 the set {γ : |ξ(γ)| > ε} is finite. When normed by
‖ξ‖ = maxγ∈Γ |ξ(γ)|, the space c0(Γ) becomes a Banach space.
(a) Show that c0(Γ)∗ can be identified with �1(Γ) the space of functions η :
Γ→ R such that η ∈ c0(Γ) and ‖η‖ =

∑
γ∈Γ |η(γ)| <∞.

(b) Show that �1(Γ)∗ = �∞(Γ).
(c) Show, using the methods of Lemma 2.5.3 and Theorem 2.5.4, that c0(R)
is isomorphic to a subspace of �∞/c0.

2.11. Let Γ be an infinite set and let PΓ denote its power set PΓ = {A : A ⊂
Γ}.
(a) Show that �1(PΓ) is isometric to a subspace of �∞(Γ). [Hint: For each
γ ∈ Γ define ϕγ ∈ �∞(PΓ) by ϕγ = 1 when γ ∈ A and −1 when γ /∈ A.]
(b) Show that if �1(Γ) is a quotient of a subspace of X then �1(Γ) embeds into
X (compare with Problem 2.8).
(c) Deduce that if �1(Γ) embeds into X then �1(PΓ) embeds into X∗.
(d) Deduce that �∗∗1 contains an isometric copy of �1(PR).
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Special Types of Bases

We are next going to look a bit more carefully at special classes of bases. In
particular we will consider the notion of an unconditional basis already hinted
at in the previous chapter. Much of this chapter is based on classical work of
James in the early 1950s.

3.1 Unconditional bases

Definition 3.1.1. A basis (en)∞n=1 of a Banach space X is called uncondi-
tional if for each x ∈ X the series

∑∞
n=1 e∗n(x)en converges unconditionally.

Obviously, (en)∞n=1 is an unconditional basis of X if and only if (eπ(n))∞n=1

is a basis of X for all permutations π : N→ N.

Example 3.1.2. The standard unit vector basis is an unconditional basis of
c0 and �p for 1 ≤ p <∞. An example of a basis which is conditional (i.e., not
unconditional) is the summing basis of c0, (fn)∞n=1, defined as

fn = e1 + · · ·+ en, n ∈ N.

To see that (fn) is a basis for c0 we prove that for each ξ = (ξ(n))∞n=1 ∈ c0

we have ξ =
∑∞

n=1 f∗
n(ξ)fn, where f∗

n = e∗n − e∗n+1 are the biorthogonal
functionals of (fn). Given N ∈ N,

N∑
n=1

f∗
n(ξ)fn =

N∑
n=1

(
e∗n(ξ)− e∗n+1(ξ)

)
fn

=
N∑

n=1

(ξ(n)− ξ(n + 1))fn

=
N∑

n=1

ξ(n)fn −
N+1∑
n=2

ξ(n)fn−1
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=
N∑

n=1

ξ(n)(fn − fn−1)− ξ(N + 1)fN

=
( N∑

n=1

ξ(n)en

)
− ξ(N + 1)fN .

Therefore,

∥∥∥ξ − N∑
n=1

f∗
n(ξ)fn

∥∥∥
∞

=
∥∥∥ ∞∑

N+1

ξ(n)en + ξ(N + 1)fN

∥∥∥
∞

≤
∥∥∥ ∞∑

N+1

ξnen

∥∥∥
∞

+ |ξ(N + 1)| ‖fN‖∞
N→∞→ 0,

and (fn)∞n=1 is a basis.
Now we will identify the set, S, of coefficients (αn)∞n=1 such that the series∑∞

n=1 αnfn converges. In fact we have that (αn) ∈ S if and only if there exists
ξ = (ξ(n)) ∈ c0 so that αn = ξ(n) − ξ(n + 1) for all n. Then, clearly, unless
the series

∑∞
n=1 αn converges absolutely, the convergence of

∑∞
n=1 αnfn in c0

is not equivalent to the convergence of
∑∞

n=1 εnαnfn for any choice of signs
(εn)∞n=1. Hence (fn) cannot be unconditional.

Proposition 3.1.3. A basis (en)∞n=1 of a Banach space X is unconditional
if and only if there is a constant K ≥ 1 such that for all N ∈ N, whenever
a1, . . . , aN , b1, . . . , bN are scalars satisfying |an| ≤ |bn| for n = 1, . . . , N , then
the following inequality holds:

∥∥∥ N∑
n=1

anen

∥∥∥ ≤ K
∥∥∥ N∑

n=1

bnen

∥∥∥. (3.1)

Proof. Assume (en)∞n=1 is unconditional. If
∑∞

n=1 anen is convergent then∑∞
n=1 tnanen converges for all (tn) ∈ �∞ by Proposition 2.4.9. By the Banach-

Steinhaus theorem, the linear map

T(tn) : X → X,
∞∑

n=1

anen →
∞∑

n=1

tnanen

is continuous. Now the Uniform Boundedness principle yields K so that equa-
tion (3.1) holds.

Conversely, let us take a convergent series
∑∞

n=1 anen in X. We are going to
prove that the subseries

∑∞
k=1 ank

enk
is convergent for any increasing sequence

of integers (nk)∞k=1. By Lemma 2.4.2, given ε > 0 there is N = N(ε) ∈ N such
that if m2 > m1 ≥ N then ∥∥∥ m2∑

n=m1+1

anen

∥∥∥ <
ε

K
.
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By hypothesis, if N ≤ nk < · · · < nk+l we have

∥∥∥ k+l∑
j=k+1

anj enj

∥∥∥ ≤ K
∥∥∥ nk+l∑

j=nk+1

ajej

∥∥∥ < ε,

and so
∑∞

k=1 ank
enk

is Cauchy.
��

Definition 3.1.4. Let (en) be an unconditional basis of a Banach space X.
The unconditional basis constant, Ku, of (en) is the least constant K so that
equation (3.1) holds. We then say that (en) is K-unconditional whenever
K ≥ Ku.

Remark 3.1.5. Suppose (en)∞n=1 is an unconditional basis for a Banach space
X. For each sequence of scalars (αn) with |αn| = 1, let T(αn) : X → X be the
isomorphism defined by T(αn)(

∑∞
n=1 anen) =

∑∞
n=1 αnanen. Then

Ku = sup
{
‖T(αn)‖ : (αn) scalars, |αn| = 1 for all n

}
.

If (en)∞n=1 is an unconditional basis of X and A is any subset of the integers
then there is a linear projection PA from X onto [ek : k ∈ A] defined for each
x =

∑∞
k=1 e∗k(x)ek by

PA(x) =
∑
k∈A

e∗k(x)ek.

PA is bounded by the same argument used in the proof of Proposition 3.1.3.
{PA : A ⊂ N} are the natural projections associated to the unconditional
basis (en) and the number

Ks = sup
A
‖PA‖

(which is finite by the Uniform Boundedness principle) is called the suppres-
sion constant of the basis. Let us observe that in general we have

1 ≤ Ks ≤ Ku ≤ 2Ks.

In the older literature the term absolute basis is often used in place of
unconditional basis, but this usage has largely disappeared. Unconditional
bases seem to have first appeared in work of Karlin in 1948 [107]. In particular
Karlin proved that C[0, 1] fails to have an unconditional basis. We will prove
this later in this chapter.

3.2 Boundedly-complete and shrinking bases

Suppose (en)∞n=1 is a basis for a Banach space X with biorthogonal functionals
(e∗n)∞n=1 ⊂ X∗. One of our goals in this section is to establish necessary and
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sufficient conditions for (e∗n)∞n=1 to be a basis for X∗. This is not always the
case. For example, the coordinate functionals of the standard basis of �1 cannot
be a basis for �∗1 since �∗1 is not separable. We will first prove that, at least,
(e∗n)∞n=1 is a basic sequence in X∗.

Proposition 3.2.1. Suppose that (e∗n)∞n=1 is the sequence of biorthogonal
functionals associated to a basis (en)∞n=1 of a Banach space X. Then (e∗n)∞n=1

is a basic sequence in X∗ with basis constant no bigger than that of (en)∞n=1.

Proof. Given (e∗n)∞n=1, consider the subspace H of X∗ given by

H =
{

x∗ ∈ X∗ : ‖S∗
N (x∗)− x∗‖ → 0

}
, (3.2)

where (S∗
N )∞N=1 is the sequence of adjoint operators of the partial sum pro-

jections associated to (en)∞n=1:

S∗
N : X∗ → X∗, S∗

N (x∗) =
N∑

k=1

x∗(ek)e∗k.

Clearly (e∗n)∞n=1 is a basis for H, hence (e∗n)∞n=1 is basic. Notice that

sup
N
‖S∗

N |H‖H→H ≤ sup
N
‖S∗

N‖X∗→X∗ = sup
N
‖SN‖ ,

which gives the latter statement in the proposition.
��

Definition 3.2.2. Suppose that X is a normed space and that Y is a subspace
of X∗. Let us consider a new norm on X defined by

‖x‖Y = sup
{
|y∗(x)| : y∗ ∈ Y, ‖y∗‖ = 1

}
.

If there is a constant c ≤ 1 such that for all x ∈ X we have

c ‖x‖ ≤ ‖x‖Y ≤ ‖x‖ ,

then Y is said to be a c-norming subspace for X in X∗.

The next result shows that if (en)∞n=1 is a basis for a Banach space X with
basis constant K then the subspace [e∗n] = H of X∗ is reasonably big, in the
sense that it is 1/K-norming for X.

Lemma 3.2.3. Let (en)∞n=1 be a basis for a Banach space X with basis con-
stant K and biorthogonal functionals (e∗n)∞n=1. Then H = [e∗n] is a K−1-
norming subspace for X in X∗. Thus the norm on X defined by

‖x‖H = sup
{
|h(x)| : h ∈ H, ‖h‖ ≤ 1

}
,

satisfies
‖x‖
K
≤ ‖x‖H ≤ ‖x‖ (3.3)

for all x ∈ X.
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Proof. Let x ∈ X. Since H ⊂ X∗, it follows immediately that ‖x‖H ≤
sup{|x∗(x)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1} = ‖x‖. For the other inequality, pick
x∗ ∈ SX∗ so that x∗(x) = ‖x‖. Then for each N ,

|(S∗
Nx∗)x|
K

≤ |(S
∗
Nx∗)x|
‖S∗

Nx∗‖ ≤ sup
{
|h(x)| : h ∈ H, ‖h‖ ≤ 1

}
= ‖x‖H .

Now we let N tend to infinity and use that if ‖SNx− x‖ → 0 then |S∗
Nx∗(x)| =

|x∗(SNx)| → ‖x‖.
��

Remark 3.2.4. The previous result can be interpreted as saying that X em-
beds isomorphically in H∗ via the map x �→ j(x)|H , where j is the natural
embedding of X in its second dual X∗∗. In the case that the basis (en)∞n=1 is
monotone, equation (3.3) implies that X embeds isometrically in H∗.

Definition 3.2.5. A basis (en)∞n=1 of a Banach space X is shrinking if the
sequence of its biorthogonal functionals (e∗n)∞n=1 is a basis for X∗, i.e., if [e∗n] =
X∗.

Proposition 3.2.6. A basis (en)∞n=1 of a Banach space X is shrinking if and
only if whenever x∗ ∈ X∗,

lim
N→∞

∥∥x∗|[en]n>N

∥∥ = 0, (3.4)

where ∥∥x∗|[en]n>N

∥∥ = sup
{
|x∗(y)| : y ∈ [en]n>N

}
.

Proof. Suppose that (e∗n)∞n=1 is a basis for X∗. Every x∗ ∈ X∗ can be decom-
posed as (x∗ − S∗

Nx∗) + S∗
Nx∗ for each N . Then the claim follows because

‖x∗|[en]n>N
‖ ≤

∥∥(x∗ − S∗
Nx∗)|[en]n>N

∥∥+
∥∥S∗

Nx∗|[en]n>N

∥∥︸ ︷︷ ︸
this term is 0

≤ ‖x∗ − S∗
Nx∗‖

and we know that limN→∞ ‖x∗ − S∗
Nx∗‖ = 0.

For the converse, assume that (3.4) holds. Let K be the basis constant of
(en)∞n=1 and x∗ be an element in X∗. Since for any x ∈ X, (IX −SN )(x) is in
the subspace [en]n>N , we have

|(x∗ − S∗
Nx∗)(x)| = |x∗(IX − SN )(x)|

≤
∥∥x∗|[en]n≥N+1

∥∥ ‖IX − SN‖ ‖x‖
≤ (K + 1)

∥∥x∗|[en]n≥N+1

∥∥ ‖x‖ .

Hence ‖x∗−S∗
Nx∗‖ ≤ (K+1) ‖x∗|[en]n≥N+1‖ and so limN→∞ ‖x∗−S∗

Nx∗‖ = 0.
Thus X∗ = [e∗n] and we are done.

��
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Proposition 3.2.7. A basis (en)∞n=1 of a Banach space X is shrinking if and
only if every bounded block basic sequence of (en)∞n=1 is weakly null.

Proof. Assume (en)∞n=1 is not shrinking. Then H �= X∗, hence there is x∗ in
X∗ \ [e∗n], ‖x∗‖ = 1, such that the series

∑∞
n=1 x∗(en)e∗n converges to x∗ in the

weak∗ topology of X∗ but it does not converge in the norm topology of X∗.
Using the Cauchy condition we can find two sequences of positive integers
(pn), (qn) and δ > 0 such that p1 ≤ q1 < p2 ≤ q2 < p3 ≤ q3 < . . . and
‖
∑qk

n=pk
x∗(en)e∗n‖ > δ for all k ∈ N. Thus for each k there exists xk ∈ X,

‖xk‖ = 1, for which
∑qk

n=pk
x∗(en)e∗n(xk) > δ. Put

yk =
qk∑

n=pk

e∗n(xk)en, k = 1, 2, . . .

(yk)∞k=1 is a block basis of (en)∞n=1 which is not weakly null since x∗(yk) > δ
for all k.

The converse implication follows readily from Proposition 3.2.6.
��

Definition 3.2.8. Let X be a Banach space. A basis (en)∞n=1 for X is
boundedly-complete if whenever (an)∞n=1 is a sequence of scalars such that

sup
N

∥∥∥ N∑
n=1

anen

∥∥∥ <∞,

then the series
∑∞

n=1 anen converges.

Example 3.2.9. (a) The canonical basis of �p for 1 < p <∞ is both shrinking
and boundedly-complete. In �1 the canonical basis is obviously boundedly-
complete, but �1 cannot have a shrinking basis because its dual, �∞, is not
separable.

(b) As for c0, its natural basis is shrinking but not boundedly complete:
the series

∑∞
n=1 en is not convergent in c0 despite the fact that

sup
N

∥∥∥ N∑
n=1

en

∥∥∥
∞

= sup
N

∥∥∥ (1, 1, . . . , 1︸ ︷︷ ︸
N

, 0, 0, . . . )
∥∥∥
∞

= 1.

On the other hand, the summing basis of c0, (fn)∞n=1, is not shrinking because
the linear functional e∗1 satisfies e∗1(fn) = 1 for all n, so equation (3.4) cannot
hold. (fn)∞n=1 is not boundedly-complete either:

sup
N

∥∥∥ N∑
n=1

(−1)nfn

∥∥∥
∞

= 1,

but the series
∑∞

n=1(−1)nfn is not convergent.
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Theorem 3.2.10. Let (en)∞n=1 be a basis for a Banach space X with biorthog-
onal functionals (e∗n)∞n=1. The following are equivalent:

(i) (en)∞n=1 is a boundedly-complete basis for X,
(ii) (e∗n)∞n=1 is a shrinking basis for H,
(iii) The canonical map j : X → H∗ defined by j(x)(h) = h(x), for all x ∈ X

and h ∈ H, is an isomorphism.

Proof. (i) ⇒ (iii) Using Remark 3.2.4 we need only show that j is onto. For
each h∗ ∈ H∗ there exists x∗∗ ∈ X∗∗ so that x∗∗|H = h∗. Let us consider the
formal series

∑∞
n=1 x∗∗(e∗n)en in X. For each N ∈ N,

N∑
n=1

x∗∗(e∗n)en = S∗∗
N x∗∗,

where S∗∗
N is the double adjoint of SN . Hence

∥∥∥ N∑
n=1

x∗∗(e∗n)en

∥∥∥ = ‖S∗∗
N x∗∗‖ ≤ sup

N
‖S∗∗

N ‖ ‖x∗∗‖ = K ‖x∗∗‖ .

(en)∞n=1 boundedly-complete implies that
∑∞

n=1 x∗∗(e∗n)en converges to some
x ∈ X. Now j(x) = h∗ since for each k ∈ N we have

j(x)(e∗k) = e∗k(x) = x∗∗(e∗k) = h∗(e∗k).

(iii) ⇒ (ii) Assume that j : X → H∗ is an isomorphism onto. Then
(j(en))∞n=1 is a basis for H∗ and it is also the sequence of coordinate functionals
for (e∗n)∞n=1. That means (e∗n)∞n=1 is a shrinking basis for H.

(ii)⇒ (i) Let (an) be a sequence of scalars for which

sup
N

∥∥∥ N∑
n=1

anen

∥∥∥ <∞. (3.5)

For each N the norm of j(
∑N

n=1 anen) as a linear functional on H is equivalent
to the norm of

∑N
n=1 anen in X. Therefore, by (3.5), (

∑N
n=1 anj(en))∞N=1 is a

bounded sequence in X∗∗. The Banach-Alaoglu theorem yields the existence
of a weak∗ cluster point, h∗ ∈ X∗∗, of that sequence. In particular we have
h∗(e∗n) = an for each n. Using the hypothesis we can write

h∗ =
∞∑

n=1

h∗(e∗n)j(en) =
∞∑

n=1

anj(en),

where the series converges in the norm topology of H∗. Since j is an isomor-
phism, the series

∑∞
n=1 anen converges in the norm topology of X.

��



58 3 Special Types of Bases

Corollary 3.2.11. c0 has no boundedly-complete basis.

Proof. It follows from Theorem 3.2.10, taking into account that c0 is not
isomorphic to a dual space (Corollary 2.5.6).

��

Theorem 3.2.12. Let (en)∞n=1 be a basis for a Banach space X with biorthog-
onal functionals (e∗n)∞n=1. The following are equivalent:

(i) (en)∞n=1 is a shrinking basis for X,
(ii) (e∗n)∞n=1 is a boundedly-complete basis for H,
(iii) H = X∗.

Proof. (i)⇒ (ii) Suppose that (an)∞n=1 is a sequence of scalars such that the
sequence (

∑N
n=1 ane∗n)∞N=1 is bounded in X∗ and let x∗ ∈ X∗ be a weak∗

cluster point of this sequence. Since limN→∞(
∑N

n=1 ane∗n)(ek) = ak, it follows
that x∗(ek) = ak for each k. Thus the series

∑∞
n=1 ane∗n converges to x∗.

(ii)⇒ (i) Suppose now that (e∗n)∞n=1 is boundedly-complete. For any x∗ in
X∗ we know that the series

∑∞
n=1 x∗(en)e∗n converges in the weak∗ topology of

X∗ to x∗. In particular, the sequence (
∑N

n=1 x∗(en)e∗n)∞N=1 is norm-bounded in
X∗. Hence, by the bounded-completeness of (e∗n)∞n=1, the series

∑∞
n=1 x∗(en)e∗n

must converge to x∗ in norm, so (e∗n)∞n=1 is a basis for X∗.
(i)⇔ (iii) is obvious.

��
Now we come to the main result of the section, which is due to James [80].

Theorem 3.2.13 (James, 1951). Let X be a Banach space. If X has a basis
(en)∞n=1 then X is reflexive if and only if (en)∞n=1 is both boundedly-complete
and shrinking.

Proof. Assume that X is reflexive and that (en)∞n=1 is a basis for X. Then
X∗ = H. If not, using the Hahn-Banach theorem, one could find 0 �= x∗∗ ∈
X∗∗ such that x∗∗(h) = 0 for all h ∈ H. By reflexivity there is 0 �= x =∑∞

n=1 e∗n(x)en ∈ X such that x = x∗∗. In particular we would have 0 =
x∗∗(e∗n) = e∗n(x) for all n, which would imply x = 0. Thus (en)∞n=1 is shrinking.
Notice that (en)∞n=1 is a basis for X∗∗ and is also the sequence of biorthogonal
functionals associated to (e∗n)∞n=1. That implies that (e∗n)∞n=1 is a shrinking
basis of X∗ = H, hence by Theorem 3.2.10, (en)∞n=1 is boundedly-complete.

Conversely, (en)∞n=1 shrinking implies H = X∗, and since (en)∞n=1 is
boundedly-complete as well, the canonical map j : X → H∗ in Theorem 3.2.10
(iii) is now the canonical embedding of X onto X∗∗.

��
This theorem gives a criterion for reflexivity which is enormously useful,

particularly in the construction of examples. Notice that the facts that the
canonical basis of �1 fails to be shrinking and that the canonical basis of c0

fails to be boundedly-complete are explained now in the nonreflexivity of these
spaces.
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During the 1960s it was very fashionable to study the structure of Banach
spaces by understanding the properties of their bases. Of course, this view-
point was somewhat undermined when Enflo showed that not every separable
Banach space has a basis [54]. One of the high points of this theory was the
theorem of Zippin [224] that a Banach space with a basis is reflexive if and
only if every basis is boundedly complete or if and only if every basis is shrink-
ing. Thus, any nonreflexive Banach space which has a basis must have at least
one non-boundedly-complete basis and at least one nonshrinking basis.

3.3 Nonreflexive spaces with unconditional bases

Now let us consider the boundedly-complete and shrinking unconditional
bases. Again we follow the classic paper of James [80].

Theorem 3.3.1. Let X be a Banach space with unconditional basis (un)∞n=1.
The following are equivalent:

(i) (un)∞n=1 fails to be shrinking,
(ii) X contains a complemented subspace isomorphic to �1,
(iii) There exists a complemented block basic sequence (yn)∞n=1 with respect to

(un)∞n=1 which is equivalent to the canonical basis of �1,
(iv) X contains a subspace isomorphic to �1.

Proof. The implications (iii)⇒ (ii)⇒ (iv) are obvious.
(iv) ⇒ (i) is also immediate because if X contains �1 then X∗ cannot be

separable and so (un)∞n=1 is not shrinking.
(i)⇒ (iii) If (un)∞n=1 is not shrinking, by Proposition 3.2.7 we can find a

bounded block basic sequence (yk)∞k=1 of (un)∞n=1, δ > 0, and x∗ ∈ X∗ with
‖x∗‖ = 1, such that x∗(yk) > δ for all k. Then for any scalars (ak) ∈ c00 we
have ∥∥∥ ∞∑

k=1

akyk

∥∥∥ ≥ ∣∣∣ ∞∑
k=1

x∗(yk)ak

∣∣∣.
By picking εk = sgn ak for each k we obtain∥∥∥ ∞∑

k=1

εkakyk

∥∥∥ ≥ ∞∑
k=1

|x∗(yk)ak| ≥ δ
∞∑

k=1

|ak|.

Being a block basis of (un)∞n=1, (yk)∞k=1 is an unconditional basic sequence
with unconditional basis constant ≤ K. Therefore,∥∥∥ ∞∑

k=1

akyk

∥∥∥ ≥ δK−1
∞∑

k=1

|ak|.

On the other hand, since (yk) is bounded, the triangle law yields an upper
�1-estimate for ‖

∑∞
k=1 akyk‖ and hence (yk) is equivalent to the standard

�1-basis. It remains to define a linear projection from X onto [yk].



60 3 Special Types of Bases

For each k put

y∗
k =

1
x∗(yk)

qk∑
n=pk

x∗(un)u∗
n.

Clearly, the sequence (y∗
k) is orthogonal to (yk) and ‖y∗

k‖ ≤ δ−1K. For every
N ∈ N let us consider the projection from X onto [yk]1≤k≤N defined as

PN (x) =
N∑

k=1

y∗
k(x)yk.

(PN ) is a bounded sequence: given any x ∈ X if we pick εk = sgn y∗
k(x) we

have

‖PN (x)‖ ≤ K
N∑

k=1

|y∗
k(x)|

= K
N∑

k=1

εky∗
k(x)

= K

N∑
k=1

qk∑
n=pk

εk

x∗(yk)
x∗(un)u∗

n(x)

= Kx∗
( N∑

k=1

qk∑
n=pk

εk

x∗(yk)
u∗

n(x)un

)

≤ K2 max
k

∣∣∣ 1
x∗(yk)

∣∣∣ ‖x‖
≤ K2δ−1 ‖x‖ .

Since limN→∞ PN (x) exists for each x, by the Banach-Steinhaus theorem, the
operator

P : X → [yk], x �→ P (x) =
∞∑

k=1

y∗
k(x)yk

is bounded by K2δ−1 and is obviously the desired projection.
��

Theorem 3.3.2. Let X be a Banach space with unconditional basis (un)∞n=1.
The following are equivalent:

(i) (un)∞n=1 fails to be boundedly-complete,
(ii) X contains a complemented subspace isomorphic to c0,
(iii) There exists a complemented block basic sequence (yn)∞n=1 with respect to

(un)∞n=1 equivalent to the canonical basis of c0,
(iv) X contains a subspace isomorphic to c0.
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Proof. Note that (ii) and (iv) are equivalent since c0 is separably injective
(Sobczyk’s theorem, Theorem 2.5.8).

(i) ⇒ (iii) If (un)∞n=1 is not boundedly-complete there exists a sequence
of scalars (an) such that supN ‖

∑N
n=1 anun‖ < ∞ but the series

∑∞
n=1 anun

does not converge in X.
Given any x∗ ∈ X∗, pick εn = sgn x∗(un). By the unconditionality of the

basis there exists K so that

N∑
n=1

|an||x∗(un)| =
N∑

n=1

εnanx∗(un) ≤ K ‖x‖
∥∥∥ N∑

n=1

anun

∥∥∥.
So the series of scalars

∑∞
n=1 |x∗(anun)| converges for all x∗ ∈ X∗. That

is,
∑∞

n=1 anun is a WUC series in X that is not unconditionally conver-
gent. Proposition 2.4.7 yields a bounded operator T : c0 → X such that
T (en) = anun for all n, where (en) denotes the standard unit vector ba-
sis of c0. Furthermore, by Proposition 2.4.8, T cannot be compact. Using
Theorem 2.4.10 we can extract a block basic sequence (xk) with respect to
the canonical basis of c0 such that T |[xk] is an isomorphism onto its range.
Then yk = Txk defines a block basic sequence in X with respect to the basis
(un)∞n=1 such that [yk] is isomorphic to c0. Corollary 2.5.9 implies that [yk] is
complemented in X.

(iii)⇒ (ii) is obvious.
(ii)⇒ (i) Suppose that (ii) holds and that (un)∞n=1 is boundedly-complete.

Then, by Theorem 3.2.10, X is a dual space and so there is a bounded projec-
tion of X∗∗ onto X (see the discussion after Proposition 2.5.2). Hence there is
a projection of X∗∗ onto a subspace E of X isomorphic to c0. However, if E
is a subspace of X then E∗∗ embeds as a subspace of X∗∗ (it can be identified
with E⊥⊥ which is also the weak∗ closure of E). Hence there is a projection
of E∗∗ onto E. This contradicts Theorem 2.5.5.

��
The following theorem is again due to James [80] except that the last

statement was proved earlier, using different techniques, by Karlin [107].

Theorem 3.3.3. Suppose that X is a Banach space with an unconditional
basis. If X is not reflexive then either c0 is complemented in X, or �1 is
complemented in X (or both). In either case X∗∗ is nonseparable.

Proof. The first statement of the theorem follows immediately from Theo-
rem 3.2.13, Theorem 3.3.1, and Theorem 3.3.2. Now, for the latter statement,
if c0 were complemented in X then X∗∗ would contain a (complemented) copy
�∞. If �1 were complemented in X then X∗ would be nonseparable since it
would contain a (complemented) copy of �∞. In either case, X∗∗ is nonsepa-
rable.

��
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3.4 The James space J
Continuing with the classic paper of James [80] we come to his construction
of one of the most important examples in Banach space theory. This space,
nowadays known as the James space, is, in fact, quite a natural space con-
sisting of sequences of bounded 2-variation. The James space will provide an
example of a Banach space with a basis but with no unconditional basis; it
also answered several other open questions at the time. For example, it was
not known if a Banach space X was necessarily reflexive if its bidual was
separable. The James space J is separable and has codimension one in J ∗∗,
and so gives a counterexample. Later, James [81] went further and modified
the definition of the norm to make J isometric to J ∗∗, thus showing that
a Banach space can be isometrically isomorphic to its bidual yet fail to be
reflexive!

Let us define J̃ to be the space of all sequences ξ = (ξ(n))∞n=1 of real
numbers with finite square variation; that is, ξ ∈ J̃ if and only if there is a
constant M so that for every choice of integers (pj)n

j=0 with 1 ≤ p0 < p1 <
· · · < pn we have

n∑
j=1

(ξ(pj)− ξ(pj−1))2 ≤M2.

It is easy to verify that if ξ ∈ J̃ then limn→∞ ξ(n) exists. We then define
J as the subspace of J̃ of all ξ so that limn→∞ ξ(n) = 0.

Definition 3.4.1. The James space J is the (real) Banach space of all se-
quences ξ = (ξ(n))∞n=1 ∈ J̃ such that limn→∞ ξ(n) = 0, endowed with the
norm

‖ξ‖J =
1√
2

sup

{(
(ξ(pn)− ξ(p0))2 +

n∑
k=1

(ξ(pk)− ξ(pk−1))2
)1/2

}
,

where the supremum is taken over all n ∈ N, and all choices of integers (pj)n
j=0

with 1 ≤ p0 < p1 < · · · < pn.

The definition of the norm in the James space is not quite natural; clearly,
the norm is equivalent to the alternative norm given by the formula

‖ξ‖0 = sup

{( n∑
k=1

(ξ(pk)− ξ(pk−1))2
)1/2

}
,

where, again, the supremum is taken over all sequences of integers (pj)n
j=0

with 1 ≤ p0 < p1 < · · · < pn. In fact,

1√
2
‖ξ‖0 ≤ ‖ξ‖J ≤

√
2‖ξ‖0, ξ ∈ J .

Notice that ‖en‖J = 1 for all n, but ‖en‖0 =
√

2 for n ≥ 2.
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We also note that ‖ · ‖J can be canonically extended to J̃ by

‖ξ‖J =
1√
2

sup

{(
(ξ(pn)− ξ(p0))2 +

n∑
k=1

(ξ(pk)− ξ(pk−1))2
)1/2

}
,

but this defines only a seminorm on J̃ vanishing on all constant sequences.

Proposition 3.4.2. The sequence (en)∞n=1 of standard unit vectors is a mono-
tone basis for J in both norms ‖ · ‖J and ‖ · ‖0.

Proof. We will leave for the reader the verification that (en)∞n=1 is a monotone
basic sequence in both norms. To prove it is a basis we need only consider the
norm ‖ · ‖0.

Suppose ξ ∈ J . For each N let

ξN = ξ −
N∑

j=1

ξ(j)ej .

Given ε > 0, pick 1 ≤ p0 < p1 < · · · < pn for which

n∑
j=1

(ξ(pj)− ξ(pj−1))2 > ‖ξ‖20 − ε2.

In order to estimate the norm of ξN when N > pn it is enough to consider
positive integers q0 ≤ q1 < q2 < · · · < qm, where N ≤ q0. Then for the
partition 1 ≤ p0 < p1 < · · · < pn < q0 < q2 < · · · < qm we have

‖ξ‖20 ≥
n∑

j=1

(ξ(pj)− ξ(pj−1))2 + (ξ(q0)− ξ(pn))2 +
m∑

j=1

(ξ(qj)− ξ(qj−1))2

≥
n∑

j=1

(ξ(pj)− ξ(pj−1))2 +
m∑

j=1

(ξ(qj)− ξ(qj−1))2.

Hence
m∑

j=1

(ξ(qj)− ξ(qj−1))2 ≤ ε2.

Thus, ‖ξN‖0 < ε for N > pn.

Proposition 3.4.3. Let (ηk)∞k=1 be a normalized block basic sequence with
respect to (en)∞n=1 in (J , ‖ · ‖0). Then, for any sequence of scalars (λk)n

k=1 the
following estimate holds:

∥∥∥ n∑
k=1

λkηk

∥∥∥
0
≤
√

5
( n∑

k=1

λ2
k

)1/2

.



64 3 Special Types of Bases

Proof. For each k let

ηk =
qk∑

j=qk−1+1

ηk(j)ej

where 0 = q0 < q1 < . . . , and put

ξ =
n∑

k=1

λkηk.

Suppose 1 ≤ p0 < p1 < · · · < pm. Fix i ≤ n. Let Ai be the set of k so that
qi−1 < pk−1 < pk ≤ qi. If k ∈ Ai,

ξ(pk)− ξ(pk−1) = λi(ηi(pk)− ηi(pk−1)).

Hence ∑
k∈Ai

(ξ(pk)− ξ(pk−1))2 ≤ λ2
i .

If A = ∪iAi we thus have

∑
k∈A

(ξ(pk)− ξ(pk−1))2 ≤
n∑

i=1

λ2
i .

Let B be the set of 1 ≤ k ≤ m with k /∈ A. For each such k there exist
i = i(k), j = j(k) so that qi−1 < pk−1 ≤ qi and qj−1 < pk ≤ qj . Then,

(ξ(pk)− ξ(pk−1))2 = (λjηj(pk)− λiηi(pk−1))2

≤ 2(λ2
jηj(pk)2 + λ2

i ηj(pk−1)2)

≤ 2(λ2
j + λ2

i ).

Thus,

m∑
k=1

(ξ(pk)− ξ(pk−1))2 ≤
n∑

i=1

λ2
i + 2

∑
k∈B

λ2
i(k) + 2

∑
k∈B

λ2
j(k).

Since the i(k)’s and similarly the j(k)’s are distinct for k ∈ B, it follows that

m∑
k=1

(ξ(pk)− ξ(pk−1))2 ≤ 5
n∑

i=1

λ2
i ,

and this completes the proof.
��

Proposition 3.4.4. The sequence (en)∞n=1 is a shrinking basis for J (for both
norms ‖ · ‖J and ‖ · ‖0).



3.4 The James space J 65

Proof. We will prove that every bounded block basic sequence of (en) is weakly
null and then we will appeal to Proposition 3.2.7. Let (ηk)∞k=1 be a normalized
block basic sequence in (J , ‖ · ‖0). Using Proposition 3.4.3, the operator S :
�2 → [ηk] ⊂ J defined for each λ = (λk) ∈ �2 by

S(λ) =
∞∑

k=1

λkηk

is bounded. The norm-continuity of S implies that S is weak-to-weak con-
tinuous. Since the sequence of the unit vector basis of �2 is weakly null, it
follows that their images, the block basic sequence (ηk)∞k=1, must converge to
0 weakly as well.

��

Remark 3.4.5. Notice that the standard unit vector basis of J is not
boundedly-complete since

∥∥∥ N∑
n=1

en

∥∥∥
J

= ‖(1, 1, . . . , 1, 0, . . . )‖0 = 1

for all N , but the series
∑∞

n=1 en does not converge in J .

Since (en)∞n=1 is shrinking we can identify each x∗∗ ∈ J ∗∗ with the se-
quence ξ(n) = x∗∗(e∗n). Under this identification J ∗∗ becomes the space of
sequences ξ such that

‖ξ‖J ∗∗ = sup
n
‖(ξ(1), . . . , ξ(n), 0, . . .)‖J <∞.

Note that we now specialize to the use of the norm ‖ · ‖J on J . That ‖ · ‖J ∗∗

is the bidual norm on J ∗∗ follows easily from the fact that the basis (en)∞n=1

is monotone. It is clear from the definition that J ∗∗ coincides with J̃ , i.e.,
the space of sequences of bounded square variation.

We have already noticed that the canonical extension of ‖ ·‖J to J̃ = J ∗∗

is only a seminorm. In fact the relationship between ‖ · ‖J ∗∗ and ‖ · ‖J is

‖ξ‖J ∗∗ = max(‖ξ‖J , ‖ξ‖1),

where

‖ξ‖1 =
1√
2

sup

{(
ξ(pn)2 + ξ(p0)2 +

n∑
k=1

(ξ(pk)− ξ(pk−1))2
)1/2

}
,

and, as usual, the supremum is taken over all n ∈ N, and all choices of integers
(pj)n

j=0 with 1 ≤ p0 < p1 < · · · < pn.

Theorem 3.4.6. J is a subspace of codimension 1 in J ∗∗ and J ∗∗ is iso-
metric to J .
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Proof. Clearly, J = {ξ ∈ J ∗∗ : limn→∞ ξ(n) = 0} has codimension one in its
bidual. To prove the fact that it is isometric to its bidual we observe that

‖ξ‖J ∗∗ = ‖(0, ξ(1), ξ(2), . . .)‖J , ξ ∈ J ∗∗.

Let
L(ξ) = lim

n→∞ ξ(n), ξ ∈ J ∗∗.

We define
S(ξ) = (−L(ξ), ξ(1)− L(ξ), ξ(2)− L(ξ), . . .).

S maps J ∗∗ onto J and is one-to-one. Since ‖ · ‖J is a seminorm on J ∗∗

vanishing on constants,

‖S(ξ)‖J = ‖(0, ξ(1), . . .)‖J = ‖ξ‖J ∗∗ .

Thus S is an isometry.
��

Corollary 3.4.7. J does not have an unconditional basis.

Proof. It follows immediately from the separability of J ∗∗, Theorem 3.3.3,
and Theorem 3.4.6.

��
After the appearance of James’s example the term quasi-reflexive was often

used for Banach spaces X so that X∗∗/X is finite-dimensional.
The ideas of the James construction have been repeatedly revisited to pro-

duce more sophisticated examples of similar type. For example, Lindenstrauss
[130] showed that for any separable Banach space X there is a Banach space Z
with a shrinking basis such that Z∗∗/Z is isomorphic to X (see Section 13.1).

3.5 A litmus test for unconditional bases

We now want to go a little further and show that J cannot even be isomorphic
to a subspace of a Banach space with an unconditional basis. We therefore
need to identify a property of subspaces of spaces with unconditional bases
which we can test. For this we use Pe�lczyński’s property (u) introduced in
1958 [168].

Definition 3.5.1. A Banach space X has property (u) if whenever (xn)∞n=1 is
a weakly Cauchy sequence in X, there is a WUC series

∑∞
k=1 uk in X so that

xn −
n∑

k=1

uk → 0 weakly.

Proposition 3.5.2. If a Banach space X has property (u) then every closed
subspace Y of X has property (u).
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Proof. Let (ys) be a weakly Cauchy sequence in a closed subspace Y of X.
Since X has property (u), there is a WUC series

∑∞
i=1 ui in X so that the

sequence (ys−
∑s

i=1 ui) converges to 0 weakly. By Mazur’s theorem there is a
sequence of convex combinations of members of (ys−

∑s
i=1 ui) that converges

to 0 in norm. Using the Cauchy condition we find integers (pk), 0 = p0 <

p1 < p2 < . . . , and convex combinations (
∑pk

j=pk−1+1 λj(yj −
∑j

i=1 ui))∞k=1

such that ∥∥∥ pk∑
j=pk−1+1

λj(yj −
j∑

i=1

ui)
∥∥∥ ≤ 2−k for all k.

Put z0 = 0, and for each integer k ≥ 1 let

zk =
pk∑

j=pk−1+1

λjyj ∈ Y.

Then for any x∗ ∈ X∗, ‖x∗‖ = 1, we have

|x∗(zk − zk−1)| ≤ 2−k + 21−k

+
∣∣∣x∗( pk∑

j=pk−1+1

λj

j∑
i=pk−2+1

ui −
pk−1∑

j=pk−2+1

λj

j∑
i=pk−2+1

ui

)∣∣∣.
Thus,

|x∗(zk − zk−1)| ≤ 3 · 2−k + 2
pk∑

j=pk−2+1

|x∗(uj)|,

which implies

∞∑
k=1

|x∗(zk − zk−1)| ≤
3
2

+ 4
∞∑

j=1

|x∗(uj)| <∞.

Therefore,
∑∞

k=1(zk−zk−1) is a WUC series in Y . Now one easily checks that
the sequence (

yn −
n∑

k=1

(zk − zk−1)
)∞
n=1

= (yn − zn)∞n=1

converges weakly to 0.
��

Proposition 3.5.3 (Pe�lczyński [168]). If a Banach space X has an un-
conditional basis then X has property (u).

Proof. Let (un)∞n=1 be a K-unconditional basis of X with biorthogonal func-
tionals (u∗

n)∞n=1. If (xn) is a weakly Cauchy sequence in X then for each k
the scalar sequence (u∗

k(xn))∞n=1 converges, say, to αk. Hence the sequence
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(
∑N

k=1 tku∗
k(xn)uk)∞n=1 converges weakly to

∑N
k=1 tkαkuk for each N and any

scalars (tk). Therefore,

∥∥∥ N∑
k=1

εkαkuk

∥∥∥ ≤ K sup
n
‖xn‖

for all N and any sequence of signs (εk). Being weakly Cauchy, (xn) is norm-
bounded thus

∑∞
k=1 αkuk is a WUC series. Put

yn = xn −
n∑

k=1

αkuk.

(yn) is weakly Cauchy. Also, limn→∞ u∗
s(yn) = 0 for all s ∈ N. We claim that

(yn) converges weakly to 0. If not, there is x∗ ∈ X∗ so that limn→∞ x∗(yn) = 1.
Using the Bessaga-Pe�lczyński selection principle (Proposition 1.3.10) we can
extract a subsequence (ynj ) of (yn) and find a block basic sequence (zj) of
(un) such that (zj) is equivalent to (ynj ) and ‖ynj − zj‖ → 0. We deduce that
x∗(zj)→ 1 since

|x∗(zj)−1| ≤ |x∗(zj−ynj )|+ |x∗(ynj )−1| ≤ ‖x∗‖ ‖zj − ynj‖︸ ︷︷ ︸
this tends to 0

+ |x∗(ynj )− 1|︸ ︷︷ ︸
this tends to 0

.

Without loss of generality we can assume that |x∗(zj)| > 1/2 for all j. Given
(aj) ∈ c00, by letting εj = sgn ajx

∗(zj) we have

∞∑
j=1

|aj ||x∗(zj)| =
∣∣∣ ∞∑

j=1

εjajx
∗(zj)

∣∣∣
=
∣∣∣x∗( ∞∑

j=1

εjajzj

)∣∣∣
≤ ‖x∗‖K

∥∥∥ ∞∑
j=1

ajzj

∥∥∥.
Hence ∥∥∥ ∞∑

j=1

ajzj

∥∥∥ ≥ 1
2K ‖x∗‖

∞∑
j=1

|aj |.

On the other hand we obtain an upper �1-estimate for ‖
∑∞

j=1 ajzj‖ using the
boundedness of the sequence (zj) and the triangle law. We conclude that (zj)
is equivalent to the standard �1-basis. This is a contradiction because (zj) is
weakly Cauchy whereas the canonical basis of �1 is not. Therefore our claim
holds and this finishes the proof.

��
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Proposition 3.5.4. (i) J does not have property (u) and so cannot be em-
bedded in any Banach space with an unconditional basis.
(ii) (Karlin [107]) C[0, 1] does not have an unconditional basis, and cannot
be embedded in a space with unconditional basis.

Proof. (i) Assume that J has property (u). Since the sequence defined for
each n by sn =

∑n
k=1 ek is weakly Cauchy in J , there exists a WUC series in

J ,
∑∞

k=1 uk, so that the sequence (
∑n

k=1 ek−
∑n

k=1 uk)∞n=1 converges weakly
to 0. One easily notices that the series

∑∞
k=1 uk cannot be unconditionally

convergent in J because that would force the sequence (sn) to converge weakly
to the same limit, when (sn) is not weakly convergent in J (it does converge
weakly, though, to (1, 1, 1, . . . , 1, . . . ) ∈ J̃ ). Therefore using Theorem 2.4.11,
c0 embeds in J , which implies that �∞ embeds in J ∗∗, contradicting the
separability of J ∗∗.

That J does not embed into any space with unconditional basis follows
immediately from Proposition 3.5.2 and Proposition 3.5.3.

(ii) This follows from (i) because J embeds isometrically into C[0, 1] by
the Banach-Mazur theorem (Theorem 1.4.3).

��
Thus we have seen that having an unconditional basis is very special and

one cannot rely on the existence of such bases in most spaces. It is, however,
true that most of the spaces which are useful in harmonic analysis or partial
differential equations such as the spaces Lp for 1 < p < ∞ do have uncondi-
tional bases (which we will see in Chapter 6). We will see also that L1 fails to
have an unconditional basis. It is perhaps reasonable to argue that the reason
the spaces Lp for 1 < p <∞ seem to be more useful for applications in these
areas is precisely because they admit unconditional bases!

From the point of view of abstract Banach space theory, in this context it
was natural to ask:

The unconditional basic sequence problem. Does every Banach space
contain at least an unconditional basic sequence?

This problem was regarded as perhaps the single most important prob-
lem in the area after the solution of the approximation problem by Enflo in
1973. Eventually a counterexample was found by Gowers and Maurey in 1993
[71]. The construction is extremely involved but has led to a variety of other
applications, some of which we have already met (see e.g. [115], [70], and [72]).

Problems

3.1. Let (un) be a Ku-unconditional basis in a Banach space X.
(a) Show that if (yn) is a block basic sequence of (un) then (yn) is an uncon-
ditional basic sequence in X with unconditional constant ≤ Ku.
(b) Show that the sequence of biorthogonal functionals (u∗

n) of (un) is an
unconditional basic sequence in X∗ with unconditional constant ≤ Ku.
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3.2. Let (un) be an unconditional basis for a Banach space X with suppression
constant Ks. Prove that for all N , whenever a1, . . . , aN , b1, . . . , bN are scalars
so that |an| ≤ |bn| for all 1 ≤ n ≤ N and anbn > 0 we have

∥∥∥ N∑
n=1

anun

∥∥∥ ≤ Ks

∥∥∥ N∑
n=1

bnun

∥∥∥.
That is, the suppression constant can replace the unconditional constant in
equation (3.1) when the sign of the coefficients in the linear combinations of
the basis coincide.

3.3. Show that the sequence (en)∞n=1 of standard unit vectors is a monotone
basic sequence for J in both norms ‖ · ‖J and ‖ · ‖0 (see Proposition 3.4.2).

3.4. Orlicz sequence spaces.
An Orlicz function is a continuous convex function F : [0,∞) → [0,∞) with
F (0) = 0 and F (x) > 0 for x > 0. Let us assume that for suitable 1 <
q <∞ we have that F (x)/xq is a decreasing function (caution: this is a mild
additional assumption; see [138] for the full picture). The corresponding Orlicz
sequence space �F is the space of (real) sequences (ξ(n))∞n=1 such that

∞∑
n=1

F (|ξ(n)|) <∞.

(a) Prove that �F is a linear space which becomes a Banach space under the
norm

‖ξ‖�F
= inf{λ > 0 :

∞∑
n=1

F (λ−1|ξ(n)|) ≤ 1}.

(b) Show that the canonical basis (en)∞n=1 is an unconditional basis for �F .
(c) Show the canonical bases of �F and �G are equivalent if and only if there
is a constant C so that

F (x)/C ≤ G(x) ≤ CF (x), 0 ≤ x ≤ 1.

3.5. (Continuation of the previous problem)
(a) By considering the behavior of block basic sequences, show that �F con-
tains no subspace isomorphic to c0.

(b) Now assume additionally that there exists 1 < p <∞ so that F (x)/xp is
an increasing function. Show that �F is reflexive.

3.6. Let X be a subspace of a space with unconditional basis. Show that if X
contains no copy of c0 or �1 then X is reflexive.

3.7. Let X be a Banach space with property (u) and separable dual. Suppose
Y is a Banach space containing no copy of c0. Show that every bounded
operator T : X → Y is weakly compact.
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3.8. Let X be a Banach space.
(a) Show that if X contains a non-boundedly-complete basic sequence then X
contains a basic sequence (xn)∞n=1 with infn ‖xn‖ > 0 and supn ‖

∑n
i=1 xi‖ <

∞.

(b) (Continuation of (a)) Show that yn =
∑n

i=1 xi is also a basic sequence.
(c) Show that if X contains a nonshrinking basic sequence then X contains a
basic sequence (xn)∞n=1 such that supn ‖xn‖ < ∞ but for some x∗ ∈ X∗ we
have x∗(xn) = 1 for all n.
(d) (Continuation of (c)) Show that if y1 = x1 and yn = xn − xn−1 for n ≥ 2
then (yn)∞n=1 is also a basic sequence. [We remind the reader of Problem 1.3.]

3.9. Let X be a Banach space. Show that the following conditions are equiv-
alent:

(i) Every basic sequence in X is shrinking;
(ii) Every basic sequence in X is boundedly complete;
(iii) X is reflexive.

This result is due to Singer [206]; later Zippin [224] improved the result
to replace basic sequence by basis when X is known to have a basis (see
Problem 9.7).

3.10. Let (en)∞n=1 be the canonical basis of the James space J . Show that the
sequence defined by fn = e1 + · · ·+en is a boundedly-complete basis and that
the regular norm on J is equivalent to the norm given by

∣∣∣∣∣∣∣∣∣ ∞∑
j=1

ajfj

∣∣∣∣∣∣∣∣∣ = sup

⎧⎨
⎩
( n∑

j=1

( pj∑
i=pj−1+1

ai

)2)1/2

⎫⎬
⎭ ,

where the supremum is taken over all n and all integers (pj)n
j=0 with 0 = p0 <

p1 < · · · < pn.
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Banach Spaces of Continuous Functions

We are now going to shift our attention from sequence spaces to spaces of
functions, and we start in this chapter by considering spaces of type C(K).
If K is a compact Hausdorff space, C(K) will denote the space of all real-
valued, continuous functions on K. C(K) is a Banach space with the norm
‖f‖∞ = maxs∈K |f(s)|.

It can be argued that the space C[0, 1] was the first Banach space studied
in Fredholm’s 1903 paper [61]. Indeed, prior to the development of Lebesgue
measure, the spaces of continuous functions were the only readily available
Banach spaces!

We will begin by establishing some well-known classical facts. We include
an optional section on characterization of real C(K)-spaces. Then we turn to
the classification of isometrically injective spaces. Continuing in the spirit of
considering the isomorphic theory of Banach spaces, we will also be inter-
ested in classifying C(K)-spaces at least for K metrizable. This will give us
the opportunity to use some of the techniques we have already developed in
Chapters 2 and 3.

The highlight of the chapter is a celebrated result of Miljutin from 1966
which states that if K and L are uncountable compact metric spaces then
C(K) and C(L) are isomorphic as Banach spaces. This is a very elegant appli-
cation of some of the ideas developed in the previous chapters. However, we
will not use this result later, so the more impatient reader can safely skip it.

4.1 Basic properties

Most of the material in this section is classical. For convenience we will always
consider spaces of real-valued functions, although the extension of the main
results to complex-valued functions is not difficult.

Let us start by recalling some of the basic facts about spaces of continuous
functions. The first is the classical Riesz Representation theorem.
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Theorem 4.1.1 (Riesz Representation Theorem). If K is a compact
Hausdorff topological space, then C(K)∗ is isometrically isomorphic to the
space M(K) of all finite regular signed Borel measures on K with the norm
‖µ‖ = |µ|(K). The duality is given by

〈f, µ〉 =
∫

K

f dµ.

If, in addition, K is metrizable then every Borel measure is regular and so
M(K) coincides with the space of all finite Borel measures.

Theorem 4.1.2 (The Stone-Weierstrass Theorem). Suppose that K is
a compact Hausdorff topological space.
(a) (Real case) Let A be a subalgebra of C(K) (i.e., A is a linear subspace of
C(K) and sums, products, and scalar multiples of functions from A are in A)
containing constants. If A separates the points of K (i.e., for every s1, s2 ∈ K
with s1 �= s2 there is some f ∈ A such that f(s1) �= f(s2)), then A = C(K).
(b) (Complex case) Let A be a subalgebra of CC(K) containing constants. If
A is self-adjoint (i.e., f ∈ A implies f ∈ A) then A = CC(K).

Theorem 4.1.3. If K is compact Hausdorff then the space C(K) is separable
if and only if K is metrizable.

Proof. There is a natural embedding s → δs (the point mass at s) of K into
M(K). This is a homeomorphism for the the weak∗ topology of M(K). By
Lemma 1.4.1 (i) this shows that K is metrizable if C(K) is separable. For
the converse, let us begin by observing that if K is a metrizable compact
Hausdorff space then, in particular, it is separable. Let d be a metric inducing
the topology and let (sn)∞n=1 be a dense countable subset of K. For n =
1, 2, . . . , let dn : K → R be the (continuous) function defined for each s ∈ K
by dn(s) = d(s, sn). The algebra A generated in C(K) by the countable set
D = {1, d1, d2, . . . } (here 1 denotes the constantly one function) is dense in
C(K) by the Stone-Weierstrass theorem. The set of all polynomials of several
variables in the functions from D with rational coefficients is a countable dense
set in A, hence it is dense in C(K), so C(K) is separable.

��
Let us recall that a separation of a topological space X is a pair U , V of

disjoint open subsets of X whose union is X. Then, the space X is said to
be connected if there does not exist a separation of X, i.e., if and only if the
only subsets of X that are both open and closed in X (or clopen) are the
empty set and X itself. On the other hand, a space is totally disconnected if
its only connected subsets are one-point sets. This is equivalent to saying that
each point in X has a base of neighborhoods consisting of sets which are both
open and closed in X. The Cantor set ∆ = {0, 1}N is an example of a totally
disconnected compact metric space. We will need the following elementary
fact:
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Proposition 4.1.4. If K is a totally disconnected compact Hausdorff space,
then the collection of simple continuous functions (i.e., function f of the form
f =

∑n
j=1 ajχUj

where U1, . . . , Un are disjoint clopen sets) is dense in C(K).

Proof. This is an easy deduction from the Stone-Weierstrass theorem as the
simple functions form a subalgebra of C(K).

��
We conclude this section with another basic theorem from the classical

theory, the Banach-Stone theorem, whose proof is proposed as an exercise
(see Problem 4.2).

Theorem 4.1.5 (Banach-Stone). Suppose K and L are two compact Haus-
dorff spaces such that C(K) and C(L) are isometrically isomorphic Banach
spaces. Then K and L are homeomorphic.

The Banach-Stone theorem appears for K, L metrizable in Banach’s 1932
book [8]. In full generality it was proved by M. H. Stone in 1937. In fact, general
topology was in its infancy in that period, and Banach was constrained by the
imperfect state of development of nonmetrizable topology; thus, for example,
Alaoglu’s theorem on the weak∗ compactness of the dual unit ball was not
obtained till 1941 because it required Tychonoff’s theorem.

One needs to know that certain spaces such as �∞ and L∞(0, 1) are C(K)-
spaces in disguise. The standard derivation of such facts requires considering
the complex versions of these spaces as commutative C∗-algebras (or B∗-
algebras) and invoking the standard representation of such algebras as C(K)-
spaces via the Gelfand transform ([32], pp. 242ff). Readers familiar with this
approach can skip the next section, which is presented to remain within the
category of real spaces.

4.2 A characterization of real C(K)-spaces

The approach in this section allows us to avoid some relatively sophisticated
ideas in Banach algebra theory and gives a direct proof that �∞ and L∞[0, 1]
are indeed C(K)-spaces.

Definition 4.2.1. Suppose A is a commutative real Banach algebra with
identity e such that ‖e‖ = 1. The state space of A is the set

S = {ϕ ∈ A∗ : ‖ϕ‖ = ϕ(e) = 1}.

An element of S is called a state.

Remark 4.2.2. The set of states S of a commutative real Banach algebra A
with identity is nonempty by the Hahn-Banach theorem, and S is obviously
weak∗ compact.
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A+ will denote the closure of the set of squares in A, that is,

A+ = {a2 : a ∈ A}.

The following lemma states two properties of A+ which are trivially veri-
fied, and therefore we omit its proof.

Lemma 4.2.3.

(i) If x, y ∈ A+ then xy ∈ A+.
(ii) If x ∈ A+ and λ ≥ 0 then λx ∈ A+.

Proposition 4.2.4.

(i) If x ∈ A is such that ‖x‖ ≤ 1 then e + x ∈ A+.
(ii) A = A+ −A+.

Proof. (i) Let x ∈ A such that ‖x‖ < 1. By writing (1 + t)1/2 in its binomial
series

∑∞
n=1 cntn (where, in fact, cn =

(
1/2
n

)
), valid for scalars t with |t| < 1, we

see that the series
∑∞

n=1 cntn is absolutely convergent, therefore convergent
to some y ∈ A. By expanding out (1+ t)1/2(1+ t)1/2 for a real variable t when
|t| < 1 it is clear that

∑
m+n=k

cmcn =

{
1 if k = 0, 1
0 if k ≥ 2.

We deduce that y2 = e + x. Since A+ is closed we obtain that e + x ∈ A+ if
‖x‖ ≤ 1.

(ii) follows immediately (using Lemma 4.2.3) since if ‖x‖ ≤ 1 we can write

x = 1
2 (e + x)− 1

2 (e− x).
��

We aim to show that a real Banach algebra A with identity is a C(K)-space
if it satisfies one additional condition, that is:

Theorem 4.2.5 ([1]). Let A be a commutative real Banach algebra with an
identity e such that ‖e‖ = 1. Then A is isometrically isomorphic to the algebra
C(K) for some compact Hausdorff space K if and only if

‖a2 − b2‖ ≤ ‖a2 + b2‖, a, b ∈ A. (4.1)

In our way to the proof of Theorem 4.2.5 we will need two preparatory
Lemmas which rely on the following simple deductions from the hypothesis.
Equation (4.1) gives

‖x− y‖ ≤ ‖x + y‖, x, y ∈ A+. (4.2)

So, if x, y ∈ A+ we also have

‖x‖ ≤ 1
2

(
‖x− y‖+ ‖x + y‖

)
≤ ‖x + y‖. (4.3)
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Lemma 4.2.6. Suppose A satisfies the condition (4.1). Then ϕ(x) ≥ 0 when-
ever ϕ ∈ S and x ∈ A+.

Proof. Take x ∈ A+ with ‖x‖ = 1. By Proposition 4.2.4, e− x ∈ A+ and, by
(4.3),

‖e− x‖ ≤ ‖(e− x) + x‖ = 1.

Hence for ϕ ∈ S we have

1 = ‖ϕ‖ ≥ ϕ(e− x) = 1− ϕ(x),

and thus ϕ(x) ≥ 0.
��

Lemma 4.2.7. Suppose A satisfies (4.1). Let K be the set of all multiplicative
states of A, i.e.,

K = {ϕ ∈ S : ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A}.

Then K is a compact Hausdorff space in the weak∗ topology of A∗ which
contains the set ∂eS of extreme points of S (and in particular is nonempty).

Proof. It is trivial to show that K is a closed subset of the closed unit ball
of A∗ and so is compact for the weak∗ topology. Suppose ϕ ∈ ∂eS. Since
A = A+ − A+ it suffices to show that ϕ(xy) = ϕ(x)ϕ(y) whenever x ∈ A+

and y ∈ A.
Let x ∈ A+ such that ‖x‖ ≤ 1 and y ∈ A with ‖y‖ ≤ 1. By Proposi-

tion 4.2.4, e± y ∈ A+. Therefore, by Lemma 4.2.6

ϕ(x(e± y)) ≥ 0,

which implies
|ϕ(xy)| ≤ ϕ(x).

Similarly, e− x ∈ A+ by Proposition 4.2.4 and so

|ϕ((e− x)y)| ≤ 1− ϕ(x).

If ϕ(x) = 0 or ϕ(x) = 1, using the previous inequalities it is immediate
that ϕ(xy) = ϕ(x)ϕ(y).

If 0 < ϕ(x) < 1, we can define states on A by ψ1(y) = ϕ(x)−1ϕ(xy) and
ψ2(y) = (1− ϕ(x))−1ϕ((e− x)y) and then write

ϕ = ϕ(x)ψ1 + (1− ϕ(x))ψ2.

By the fact that ϕ is an extreme point of S we must have ψ1 = ϕ and,
therefore,

ϕ(xy) = ϕ(x)ϕ(y), x ∈ A+, y ∈ A.
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��

Proof of Theorem 4.2.5. Suppose A satisfies the condition (4.1). Let J : A →
C(K) be the natural map, given by

Jx(ϕ) = ϕ(x).

Clearly, J is an algebra homomorphism, J(e) = 1 and ‖J‖ = 1. In order to
prove that J is an isometry we need the following:

Claim. Suppose x ∈ A is such that ‖Jx‖C(K) ≤ 1. Then for any ε > 0
there exists tε > 0 so that

‖e− tε(1 + ε)e− tεx‖ < 1.

If the Claim fails, there is x ∈ A with ‖Jx‖C(K) ≤ 1 so that for some ε > 0
we have

‖e− t(1 + ε)e− tx‖ ≥ 1, t ≥ 0.

By the Hahn-Banach theorem (separating the set {e− t(1 + ε)e− tx : t ≥ 0}
from the open unit ball) we can find a linear functional ϕ with ‖ϕ‖ = 1 and

ϕ(e− t(1 + ε)e− tx) ≥ 1, t ≥ 0.

In particular ϕ ∈ S and ϕ((1+ ε)e+x) ≤ 0. Hence |ϕ(x)| ≥ 1+ ε. But now by
the Krein-Milman theorem and Lemma 4.2.7, we deduce that ‖Jx‖C(K) > 1,
a contradiction.

Thus, combining the Claim with Proposition 4.2.4 (i), we have that
‖Jx‖C(K) ≤ 1 implies (1 + ε)e + x ∈ A+ for all ε > 0, so e + x ∈ A+.

Applying the same reasoning to −x we have e− x ∈ A+. Hence, by (4.2),
we obtain

‖x‖ = 1
2‖(e + x)− (e− x)‖ ≤ 1

2‖(e + x) + (e− x)‖ = 1.

Thus J is an isometry.
Finally J is onto C(K) by the Stone-Weierstrass theorem.

��
Remark 4.2.8. We only needed the full hypothesis (4.1) at the very last step.
Prior to that we only use the weaker hypothesis

‖a2‖ ≤ ‖a2 + b2‖, a, b ∈ A. (4.4)

The condition (4.4) implies (4.3), which was used in Lemmas 4.2.6 and 4.2.7.
However, this hypothesis only allows one to deduce that ‖Jx‖C(K) ≥ 1

2‖x‖
and so A is only 2-isomorphic to C(K). That this is best possible is clear from
the norm on C(K) given by

|||f ||| = ‖f+‖C(K) + ‖f−‖C(K)

where f+ = max(f, 0) and f− = max(−f, 0). Under this norm C(K) is a
commutative real Banach algebra satisfying equation (4.4) but not equation
(4.1).



4.3 Isometrically injective spaces 79

Let us observe that if we consider A = �∞ (with the multiplication of
two sequences defined coordinate-wise), Theorem 4.2.5 yields that A = C(K)
(isometrically) for some compact Hausdorff space K. This set K is usually
denoted by βN. We also note that if (Ω, Σ, µ) is any σ-finite measure space
then L∞(Ω, µ) is again a C(K)-space. In each case the isomorphism preserves
order (i.e., nonnegative functions are mapped to nonnegative functions) since
squares are mapped to squares.

4.3 Isometrically injective spaces

We now turn to the problem of classifying isometrically injective spaces, orig-
inally introduced in Chapter 2 (Section 2.5). There we saw that �∞, which
we identify with C(βN), is isometrically injective but that c0 is not an (iso-
morphically) injective space (although it is separably injective). Let us recall
that βN is the Stone-C̆ech compactification of N endowed with the discrete
topology, i.e., βN is the unique compact Hausdorff space containing N as a
dense subspace so that every bounded continuous function on N extends to a
continuous function on βN.

The complete classification of isometrically injective spaces was achieved
in the early 1950s by the combined efforts of Nachbin [155], Goodner [68], and
Kelley [109]. The basic approach developed by Nachbin and Goodner was to
abstract the essential ingredient of the Hahn-Banach theorem, which is the
order-completeness (i.e., the least upper bound axiom) of the real numbers.

Definition 4.3.1. We say that the space C(K) is order-complete if whenever
A,B are nonempty subsets of C(K) with f ≤ g for all f ∈ A and g ∈ B, then
there exists h ∈ C(K) such that f ≤ h ≤ g whenever f ∈ A and g ∈ B.

Remark 4.3.2. (a) If C(K) is order-complete then any subset A of C(K)
which has an upper bound has also a least upper bound, which we denote
supA. Indeed, let B be the set of all upper bounds of A and apply the preced-
ing definition. The (uniquely determined) function h must be the least upper
bound. It is important to stress that h is a continuous function and may not
coincide with the pointwise supremum h̃(s) = supf∈A f(s), which need not be
a continuous function. Similar statements may be made about greatest lower
bounds (i.e., infima).

(b) The previous definition can easily be extended to any space with a suit-
able order structure such as �∞ or L∞. It is clear that �∞ is order-complete for
its natural order and therefore C(βN) is also order-complete. To compute the
supremum of A in �∞ one does indeed take the pointwise supremum, but the
corresponding supremum in C(βN) is not necessarily a pointwise supremum.

We will say that a map V : F → C(K), where F is a linear subspace of a
Banach space X, is sublinear if

(i) V (αx) = αV (x) for all α ≥ 0 and x ∈ F , and
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(ii) V (x + y) ≤ V (x) + V (y) for all x, y ∈ F.

A sublinear map V : X → C(K) is minimal provided there is no sublinear
map U : X → C(K) such that U(x) ≤ V (x) for all x ∈ X and U �= V .

Lemma 4.3.3. Let X be a Banach space and F a linear subspace of X. Sup-
pose V : X → C(K) and W : F → C(K) are sublinear maps such that
W (y) + V (−y) ≥ 0 for all y ∈ F . If C(K) is order-complete then the map
V ∧W : X → C(K) given by

V ∧W (x) = inf{V (x− y) + W (y) : y ∈ F},

is well defined and sublinear.

Proof. For each fixed x ∈ X we have

V (x− y) + W (y) ≥ V (−y)− V (−x) + W (y) ≥ −V (−x)

for all y ∈ F . That is, −V (−x) is a lower bound of the set {V (x − y) +
W (y) : y ∈ F}. Thus, by the order-completeness of C(K), we can define a
map V ∧W : F → C(K) by

V ∧W (x) = inf{V (x− y) + W (y) : y ∈ F}.

It is a straightforward verification to check that V ∧W is sublinear.
��

Lemma 4.3.4. Let V : X → C(K) be a sublinear map. If C(K) is order-
complete then there is a minimal sublinear map W : X → C(K) with W (x) ≤
V (x) for all x ∈ X.

Proof. Put

S =
{
U : X → C(K) : U is sublinear andU(x) ≤ V (x) for allx ∈ X

}
.

S is nonempty (V ∈ S) and partially ordered. Let Ψ = (Ui)i∈I be a chain
(i.e., a totally ordered subset) in S. Note that for each i ∈ I we have 0 =
Ui(x + (−x)) ≤ Ui(x) + Ui(−x) for all x ∈ X, hence

Ui(x) ≥ −Ui(−x) ≥ −V (−x).

Thus, for each x ∈ X, the set {Ui(x) : i ∈ I} ⊂ C(K) has a lower bound. By
the order-completeness of C(K), the map

UΨ (x) = inf
i∈I

Ui(x)

is well defined on X and sublinear. To see this, since Ψ is a totally ordered
set, given i �= j ∈ I, without loss of generality we can assume that Ui ≤ Uj .
Then, for any x, y ∈ X we have
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UΨ (x + y) ≤ Ui(x + y) ≤ Uj(x) + Ui(y),

therefore UΨ (x+y)−Uj(x) ≤ UΨ (y), which yields UΨ (x+y)−UΨ (y) ≤ UΨ (x).
Moreover, UΨ (x) ≤ V (x) for all x ∈ X. That is, UΨ ∈ S is a lower bound for
the chain (Ui)i∈I . Using Zorn’s lemma we deduce the existence of a minimal
element W in S.

��

Lemma 4.3.5. Suppose that C(K) is order-complete and let V : X → C(K)
be a sublinear map. If V is minimal then V is linear.

Proof. Given an element x ∈ X, let us call F its linear span, F = 〈x〉.
Then, W (λx) = −λV (−x) defines a linear map from F to C(K). Clearly,
W (λx) ≥ −V (−λx) for every real λ. Using Lemma 4.3.3 we can define on X
the sublinear map

V ∧W (x) = inf
λ∈R

{
V (x− λx) + W (λx)

}
.

By the minimality of V , V ∧W = V on X. Therefore V ≤ W on F , which
implies that V (x) ≤ −V (−x). On the other hand, V (x) ≥ −V (−x) by the
sublinearity of V , so V (−x) = −V (x). Since this holds for all x ∈ X, it is
clear that V is linear.

��

Theorem 4.3.6 (Goodner, Nachbin, 1949-1950). Let K be a compact
Hausdorff space. Then C(K) is isometrically injective if and only if C(K) is
order-complete.

Proof. Assume, first, that C(K) is order-complete. Let E be a subspace of a
Banach space X and let S : E → C(K) be a linear operator with ‖S‖ = 1.
That is, for each x ∈ E we have

−‖x‖ ≤ (Sx)(k) ≤ ‖x‖ for all k ∈ K,

which, if we let 1 denote the constant function 1 on K, is equivalent to writing

−‖x‖ · 1 ≤ S(x) ≤ ‖x‖ · 1. (4.5)

Thus, if we consider the sublinear map from X to C(K) given by V0(x) =
‖x‖ · 1, equation (4.5) tells us that S(x) ≥ −V0(−x) for all x ∈ E and so we
can define on X the sublinear map V = V0 ∧ S as in Lemma 4.3.3:

V (x) = inf
{
V0(x− y) + S(y) : y ∈ E

}
.

By Lemma 4.3.4 there exists T : X → C(K), a minimal sublinear map satis-
fying T ≤ V . Lemma 4.3.5 yields that T is linear.

On E, we have T (x) ≤ S(x) and T (−x) ≤ S(−x). Therefore, T |E = S.
Finally, T (x) ≤ ‖x‖ · 1 and T (−x) ≤ ‖x‖ · 1 for all x ∈ X, which implies that
‖T‖ ≤ 1. Thus, we have successfully extended S from E to X.
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Suppose, conversely, that C(K) is isometrically injective. Then there is a
norm-one projection P from �∞(K) onto C(K), where �∞(K) denotes the
space of all bounded functions on K. Suppose that A,B are two nonempty
subsets of C(K) such that f ∈ A and g ∈ B implies f ≤ g. For each s ∈ K,
put a(s) = supf∈A f(s). Obviously, a ∈ �∞(K). Let h = P (a). We will prove
that f ≤ h ≤ g for all f ∈ A and all g ∈ B.

Since P (1) = 1 and P has norm one, it follows that for each b ∈ �∞(K)
with b > 0 we have

‖P (1− λb)‖ ≤ 1 for 0 ≤ λ ≤ 2/‖b‖.

We deduce that P is a positive map, that is, Pb ≥ 0 whenever b ∈ �∞(K) and
b ≥ 0. Thus, if f ∈ A then f ≤ a and, therefore, f ≤ h. Analogously, if g ∈ B
we have g ≥ a and so g ≥ h. Hence, C(K) is order-complete.

��
The spaces K so that C(K) is order-complete are characterized by the

property that the closure of any open set remains open; such spaces are called
extremally disconnected. We refer the reader to the Problems for more infor-
mation.

The natural question arises as to whether only C(K)-spaces can be iso-
metrically injective. Both Nachbin and Goodner showed that an isometrically
injective Banach space X is (isometrically isomorphic to) a C(K)-space pro-
vided the unit ball of X has at least one extreme point. The key here is that
the constant function 1 is always an extreme point on the unit ball in C(K)
and they needed to find an element in the space X to play this role. How-
ever, two years later, in 1952, Kelley completed the argument and proved the
definitive result:

Theorem 4.3.7 (Kelley, 1952). A Banach space X is isometrically injec-
tive if and only if it is isometrically isomorphic to an order-complete C(K)-
space.

Proof. We need only show the forward implication. For that, we are going to
identify X (via an isometric isomorphism) with a suitable C(K)-space which,
by the isometric injectivity of X, will be order-continuous appealing to The-
orem 4.3.6.

The trick is to “find” K as a subset of the dual unit ball BX∗ . Consider
the set ∂eBX∗ of extreme points of BX∗ with the weak∗ topology. There is a
maximal open subset, U , of ∂eBX∗ subject to the property that U∩(−U) = ∅.
This is an easy consequence of Zorn’s lemma again, as any chain of such open
sets has an upper bound, namely, their union. Let K be the weak∗ closure of
U in BX∗ . K is, of course, compact and Hausdorff for the weak∗ topology.

Let us observe that K ∩ ∂eBX∗ cannot meet −U since ∂eBX∗ \ (−U) is
relatively weak∗ closed in ∂eBX∗ . Then, K ∩ (−U) = ∅.

We claim that ∂eBX∗ ⊂ (K ∪ (−K)). Indeed, suppose that there exists
x∗ ∈ ∂eBX∗ \ (K ∪ (−K)). Then there is an absolutely convex weak∗ open
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neighborhood, V , of 0 such that x∗ /∈ V and (x∗ + V )∩ (K ∪ (−K)) = ∅. Let
U1 = U ∪

(
(x∗ + V ) ∩ ∂eBX∗

)
. Then U1 strictly contains U since x∗ ∈ U1.

Suppose y∗ ∈ U1 ∩ (−U1). Then either y∗ /∈ U or −y∗ /∈ U ; thus replacing y∗

by −y∗ if necessary we can assume y∗ /∈ U. Then y∗ ∈ x∗ + V ; this implies
that y∗ /∈ K∪(−K) and so y∗ /∈ −U. Hence y∗ ∈ −x∗−V and so 0 ∈ 2x∗+2V
or x∗ ∈ V yielding a contradiction. Thus U1 ∩ (−U1) = ∅, which contradicts
the maximality of U.

By the Krein-Milman theorem, BX∗ must be the weak∗ closed convex hull
of K ∪ (−K) and, in particular, if x ∈ X we have

‖x‖ = sup
x∗∈BX∗

|x∗(x)| = max
x∗∈K

|x∗(x)|.

Thus, the map J that assigns to each x ∈ X the function x̂ ∈ C(K) given by
x̂(x∗) = x∗(x), x∗ ∈ K, is an isometry. We can therefore use the isometric
injectivity of X (extending the map J−1 : J(X) → X) to define an operator
T : C(K)→ X such that T (x̂) = x for all x ∈ X with ‖T‖ = 1.

Let us consider the adjoint map T ∗ : X∗ → M(K). If u∗ ∈ U , then
T ∗u∗ = µ ∈ M(K) with ‖µ‖ ≤ 1. Let V be any weak∗ open neighborhood of
u∗ relative to K and put K0 = K \ V . We can define v∗ ∈ X∗ by

v∗(x) =
∫

V

x∗(x) dµ(x∗), x ∈ X,

and w∗ ∈ X∗ by

w∗(x) =
∫

K0

x∗(x) dµ(x∗), x ∈ X.

Then ‖v∗‖ ≤ |µ|(V ) and ‖w∗‖ ≤ |µ|(K0). But,∫
K

x∗(x) dµ = 〈x̂, T ∗(u∗)〉 = 〈x, u∗〉,

hence v∗+w∗ = u∗. Since ‖u∗‖ = 1 ≥ ‖µ‖, we must have |µ|(V )+|µ|(K0) = 1.
Thus, ‖v∗‖ + ‖w∗‖ = 1 and so the fact that u∗ is an extreme point implies
that v∗ = ‖v∗‖u∗ and w∗ = ‖w∗‖u∗.

Suppose |µ|(K0) = ‖w∗‖ = α > 0. Then,

u∗(x) = α−1

∫
K0

x∗(x) dµ(x∗), x ∈ X,

and, in particular,

|u∗(x)| ≤ max
x∗∈K0

|x∗(x)|, x ∈ X.

This implies that u∗ is in the weak∗ closed convex hull, C, of K0∪(−K0). But
u∗ must be an extreme point in C also, so by Milman’s theorem it must belong
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to the weak∗ closed set K0 ∪ (−K0). Since u∗ /∈ K0 we have that u∗ ∈ (−K0),
i.e., −u∗ ∈ K0. Thus, K0 meets −U , so K meets −U , which is a contradiction
to our previous remarks.

Hence |µ|(K0) = ‖w∗‖ = 0 and so |µ(V )| = 1 for every weak∗ open
neighborhood V of u∗. By the regularity of µ we must have that µ = ±δu∗

(δu∗ is the point mass at u∗). Thus µ = δu∗ for u∗ ∈ U. Since T ∗ is weak∗

continuous we infer that T ∗(x∗) = δx∗ for all x∗ ∈ K. We are done because if
f ∈ C(K), then

〈Tf, x∗〉 = f(x∗),

so J is onto C(K). This shows that X is a C(K)-space.
��

At this point we have only one example where C(K) is order-complete,
namely, �∞ (although, of course, �∞(I) for any index set I will also work).
There are, however, less trivial examples as the next proposition shows.

Proposition 4.3.8.

(i) If C(K) is (isometrically isomorphic to) a dual space, then C(K) is iso-
metrically injective.

(ii) If (Ω, Σ, µ) is any σ-finite measure space, then L∞(Ω, Σ, µ) is isometrically
injective.

(iii) For any compact Hausdorff space K the space C(K)∗∗ is isometrically
injective.

Proof. For (i) we will first show that P = {f ∈ C(K) : f ≥ 0}, the positive
cone of C(K), is closed for the weak∗ topology of C(K) (regarded now as a dual
Banach space by hypothesis). By the Banach-Dieudonné theorem it suffices
to show that P ∩ λBC(K) is weak∗ closed for each λ > 0. But P ∩ λBC(K) =
{f : ‖f − 1

2λ · 1‖ ≤ 1
2λ} is simply a closed ball, which must be weak∗ closed.

Let us see that C(K) is order-complete and then we will invoke Theo-
rem 4.3.6 to deduce that C(K) is isometrically injective. Suppose A,B are
nonempty subsets of C(K) such that f ∈ A, g ∈ B imply f ≤ g. For each
f ∈ A and g ∈ B, put

Cf,g = {h ∈ C(K) : f ≤ h ≤ g}.

Every Cf,g is a (nonempty) bounded and weak∗ closed set. If f1, . . . , fn ∈ A
and g1, . . . , gn ∈ B then ∩n

k=1Cfk,gk
is nonempty because it contains for

example max(f1, . . . , fn). Hence, by weak∗ compactness, the intersection
∩{f∈A,g∈B}Cf,g is nonempty. If we pick h in the intersection we are done.

(ii) follows directly from (i) since L∞(µ) = L1(µ)∗.
(iii) Here we observe thatM(K) is actually a vast �1-sum of L1(µ)-spaces.

Precisely, using Zorn’s lemma one can produce a maximal collection (µi)i∈I
of probability measures on K with the property that any two members of the
collection are mutually singular.
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If ν ∈ M(K), for each i ∈ I we define fi ∈ L1(K, µi) to be the Radon-
Nikodym derivative dν/dµi. Thus, dν = fidµi + γ, where γ is singular with
respect to µi. Then it is easy to show (we leave the details to the reader) that
for any finite set A ⊂ I we have∑

i∈A

‖fi‖L1(µi) ≤ ‖ν‖.

Hence, ∑
i∈I
‖fi‖L1(µi) ≤ ‖ν‖.

Notice that the last statement implies that only countably many terms in the
sum are nonzero. Put

ν0 =
∑
i∈I

fidµi,

where the series converges in M(K). It is clear that the measure ν − ν0 is
singular with respect to every µi and, as a consequence, it must vanish on K.
It follows that the map ν �→ (fi)i∈I defines an isometric isomorphism between
M(K) and the �1-sum of the spaces L1(µi) for i ∈ I.

This yields that C(K)∗∗ can be identified with the �∞-sum of the spaces
L∞(µi). Using (ii) we deduce that C(K)∗∗ is isometrically injective.

��

Remark 4.3.9. We should note here that there are order-complete C(K)-
spaces which are not isometric to dual spaces. The first example was given in
1951 (in a slightly different context) by Dixmier [43] and we refer to Prob-
lem 4.8 and Problem 4.9 for details.

There is an easy but surprising application of the preceding proposition
to the isomorphic theory [167]:

Theorem 4.3.10. L∞[0, 1] is isomorphic to �∞.

Proof. First, observe that �∞ embeds isometrically into L∞[0, 1] via the map

(ξ(n))∞n=1 �→
∞∑

n=1

ξ(n)χAn(t),

where (An)∞n=1 is a partition of [0, 1] into sets of positive measure. Since �∞
is an injective space, it follows that �∞ is complemented in L∞[0, 1].

On the other hand, L∞[0, 1] also embeds isometrically into �∞. To see this,
pick (ϕn)∞n=1, a dense sequence in the unit ball of L1, and map f ∈ L∞[0, 1] to
(
∫ 1

0
ϕnf dt)∞n=1. Therefore, being an injective space, L∞[0, 1] is complemented

in �∞.
Furthermore, �∞ ≈ �∞ ⊕ �∞ and
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L∞[0, 1] ≈ L∞[0, 1/2]⊕ L∞[1/2, 1] ≈ L∞[0, 1]⊕ L∞[0, 1].

Using Theorem 2.2.3 (a) (the Pe�lczyński decomposition technique) we deduce
that L∞[0, 1] is isomorphic to �∞.

��
We conclude this section by showing that a separable isometrically injec-

tive space is necessarily finite-dimensional.

Proposition 4.3.11. For any infinite compact Hausdorff space K, C(K) con-
tains a subspace isometric to c0. If K is metrizable this subspace is comple-
mented.

Proof. Let (Un) be a sequence of nonempty, disjoint, open subsets of K. Such
a sequence can be found by induction: simply pick U1 so that K1 = K \ U1

is infinite and then take U2 ⊂ K1 such that K2 = K1 \ U2 is infinite and
so on. Next, pick a sequence (ϕn)∞n=1 of continuous functions on K so that
0 ≤ ϕn ≤ 1, maxs∈K ϕn(s) = 1 and {s ∈ K : ϕn(s) > 0} ⊂ Un, for all n ∈ N.
Then for any (an) ∈ c00 we have∥∥∥ ∞∑

n=1

anϕn

∥∥∥ = max
n
|an|.

Thus (ϕn)∞n=1 is a basic sequence isometrically equivalent to the unit vector
basis of c0.

If K is metrizable, Theorem 4.1.3 implies that C(K) is separable and we can
apply Sobczyk’s theorem (Theorem 2.5.8) to deduce that the space [ϕn]∞n=1

is complemented by a projection of norm at most two.
��

Proposition 4.3.12. If C(K) is order-complete and K is metrizable then K
is finite.

Proof. If K is infinite, C(K) contains a complemented copy of c0 by Proposi-
tion 4.3.11. But if, moreover, C(K) is isometrically injective this would make
c0 injective, which is false because c0 is uncomplemented in �∞ as we saw in
Theorem 2.5.5.

��
Corollary 4.3.13. The only isometrically injective separable Banach spaces
are finite-dimensional and isometric to �n

∞ for some n ∈ N.

Proof. If X is an isometrically injective Banach space, by Theorem 4.3.7,
X can be identified with an order-complete C(K)-space for some compact
Hausdorff K. Since X is separable, Theorem 4.1.3 yields that K is metrizable
and, by Proposition 4.3.12, K must be finite. Therefore C(K) is (isometrically
isomorphic to) �

|K|
∞ .

��
In fact, there are no infinite-dimensional injective separable Banach spaces

(even dropping isometrically) but this is substantially harder and we will see
it in the next chapter.
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4.4 Spaces of continuous functions on uncountable
compact metric spaces

We now turn to the problem of isomorphic classification of C(K)-spaces. The
Banach-Stone theorem (Theorem 4.1.5) asserts that if K and L are non-
homeomorphic compact Hausdorff spaces then the corresponding spaces of
continuous functions C(K) and C(L) cannot be linearly isometric.

However, it is quite a different question to ask if they can be linearly iso-
morphic. In the 1950s and 1960s a complete classification of the isomorphism
classes of C(K) for K metrizable (i.e., for C(K) separable) was found through
the work of Bessaga, Pe�lczyński, and Miljutin. We will describe some of this
work in this section and the next.

Let us note before we start that it is quite possible for C(K) and C(L) to
be linearly isomorphic when K and L are not homeomorphic. We shall need
the following:

Proposition 4.4.1. If K is an infinite compact metric space then C(K) ≈
C(K)⊕ R. Hence C(K) is isomorphic to its hyperplanes.

Proof. By Proposition 4.3.11, C(K) ≈ E⊕ c0 ≈ E⊕ c0⊕R for some subspace
E. Hence C(K) ≈ C(K)⊕ R.

The latter statement of the proposition follows from the fact that any
two hyperplanes in a Banach space are isomorphic to each other and that,
obviously, C(K) is a hyperplane of C(K)⊕ R.

��

Remark 4.4.2. This proposition really does need metrizability of C(K)! In-
deed, a remarkable and very recent result of Plebanek [190] is that there
exists a compact Hausdorff space K so that C(K) fails to be isomorphic to its
hyperplanes.

Given Proposition 4.4.1, note that if K = [0, 1] ∪ {2} then C(K) ≈
C[0, 1]⊕ R ≈ C[0, 1] but K and [0, 1] are not homeomorphic. Similarly C[0, 1]
is isomorphic to its (hyperplane) subspace {f : f(0) = f(1)}, which is triv-
ially isometric to C(T). But it is more difficult to make general statements. In
Banach’s 1932 book [8] he raised the question whether C[0, 1] and C[0, 1]2 are
linearly isomorphic. We will see that they are, but at this stage it is far from
obvious.

To study C(K)-spaces with K infinite and compact metric, we must con-
sider two cases, namely, when K is countable and when K is uncountable.
K must be separable, of course, but it could actually be already countable.
Indeed, the simplest infinite K is the one-point compactification of N, γN,
which consists of the terms of a convergent sequence and its limit; e.g., we
can take K = {1, 1

2 , 1
3 , . . . }∪{0}. Then C(K) can be identified with the space

c of convergent sequences. This is linearly isomorphic to c0 since c ≈ c0 ⊕ R.
If K is countable then M(K) consists only of purely atomic measures and is
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immediately seen to be isometric to �1. Thus C(K)∗ is separable. However,
C[0, 1]∗ is nonseparable (as C[0, 1] contains a copy of �1 by the Banach-Mazur
theorem (Theorem 1.4.3)).

In this section we will restrict to the case of uncountable K. The main
result is the remarkable theorem of Miljutin [150], which asserts that for any
uncountable compact metric space K, the space C(K) is isomorphic to C[0, 1].
This result was obtained by Miljutin in his thesis in 1952, but was not pub-
lished until 1966. Miljutin’s mathematical interests changed after his thesis
and he apparently did not regard the result as important enough to merit pub-
lication. In fact, the result was discovered in Miljutin’s thesis by Pe�lczyński
on a visit to Moscow in the 1960s and it was only at his urging that a paper
finally appeared in 1966.

The key players in the proof will be the Cantor set ∆ = {0, 1}N, the unit
interval [0, 1], and the Hilbert cube [0, 1]N. We will need the following basic
topological facts:

Proposition 4.4.3.

(i) If K is a compact metric space then K is homeomorphic to a closed subset
of the Hilbert cube [0, 1]N.

(ii) If K is an uncountable compact metric space then ∆ is homeomorphic to
a closed subset of K.

Proof. We have already showed (i) in the proof of Theorem 1.4.3. Just take
(fn)∞n=1 a dense sequence in {f ∈ C(K) : 0 ≤ f ≤ 1} and define the map
σ : K → [0, 1]N by σ(s) = (fn(s))∞n=1. Then σ is continuous and one-to-
one, hence a homeomorphism onto σ(K). (We repeatedly use the standard
fact that a one-to-one continuous map from a compact space to a Hausdorff
topological space is a homeomorphism onto its range since closed sets must
be mapped to compact, therefore closed, sets.)

To show part (ii) we first note that since K is uncountable, given any ε > 0
we can find two disjoint uncountable closed subsets K0,K1 each with diameter
at most ε. In fact the set E of all s ∈ K with a countable neighborhood is
necessarily countable by an application of Lindelöf’s theorem (every open
covering of a separable metric space has a countable subcover). If we take two
distinct points s0, s1 outside E we can then choose K0 and K1 as suitable
neighborhoods of s0, s1.

Now we proceed by induction: for n ∈ N and t = (t1, . . . , tn) ∈ {0, 1}n

define Kt1,t2,...,tn
to be an uncountable compact subset of K of diameter at

most 2−n such that for each n ∈ N the sets Kt1,...,tn,0 and Kt1,...,tn,1 are
disjoint subsets of Kt1,...,tn . For each t = (tk)∞k=1 ∈ ∆ define σ(t) to be the
unique point in ∩∞

n=1Kt1,...,tn
. It is simple to see that σ is one-to-one and

continuous and thus is an embedding.
��

Let us use this proposition. Suppose that K is a compact, metric Hausdorff
space and let E be a closed subset of K. We can naturally identify C(E) as a
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quotient of C(K) by considering the restriction operator

R : C(K)→ C(E), Rf = f |E .

This is a genuine quotient map by the Tietze Extension theorem1. Let us
suppose that we can find a bounded linear operator T : C(E) → C(K) which
selects an element of each coset. Then T is a linear extension operator which
defines an extension of each f ∈ C(E) to a member of C(K); note that RT is
nothing other than the identity map I on C(E). T is an isomorphism of C(E)
onto a subspace of C(K) and the subspace is complemented by the projection
TR. Thus we could conclude that C(E) is isomorphic to a complemented
subspace of C(K). Note that the kernel of the projection is {f ∈ C(K) : f |E =
0} and this must also be a complemented subspace via I − TR.

We have met this problem in two special cases already. In the proof of the
Banach-Mazur theorem we considered the case K = [0, 1] and E a closed sub-
set, and defined an extension operator by linear interpolation on the intervals
of K\E. Now, if we regard �∞ as C(βN), then the subspace c0 is identified with
{f : fβN\N = 0} (here N is an open subset of βN since each point is isolated).
This is uncomplemented (Theorem 2.5.5) so no linear extension operator can
exist from βN \ N.

On the other hand, recall Sobczyk’s theorem (Theorem 2.5.8). If we con-
sider a separable closed subalgebra of �∞ containing c0 (which corresponds to
a metrizable compactification) then we have no problem with the extension.
This suggests that metrizability of K is important here and leads us to the
following classical theorem which actually implies Sobczyk’s theorem. It was
proved in 1933 by Borsuk [14].

Theorem 4.4.4 (Borsuk). Let K be a compact metric space and suppose
that E is a closed subset of K. Then there is a linear operator T : C(E) →
C(K) such that (Tf)|E = f, ‖T‖ = 1 and T1 = 1. In particular C(E) is
isometric to a norm-one complemented subspace of C(K).

Let us remark that the projection onto the kernel of T has then norm at
most 2, and this explains the constant in Sobczyk’s theorem.

Proof. The key point in the argument is that U = K \ E is metrizable and
hence paracompact, i.e., every open covering of U has a locally finite refine-
ment. Let us consider the covering of U by the sets Vu = {s ∈ U : d(s, u) <
1
2d(u, E)}. There is a locally finite refinement of (Vu)u∈U , which implies that
we can find a partition of the unity subordinate to (Vu)u∈U , that is, a family
of continuous functions (φj)j∈J on U such that

1. 0 ≤ φj ≤ 1,
1 The Tietze Extension theorem states that given a normal topological space X

(i.e. , a topological space satisfying the T4 separation axiom), a closed subspace
E of X and a continuous real-valued function on E, there exists a continuous
real-valued function f̃ on X such that f̃(x) = f(x) for all x ∈ E.
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2. {φj > 0} is a locally finite covering of U ,
3.
∑

j∈J φj(s) = 1 for all s ∈ U ,
4. For each j ∈ J there exists uj ∈ U so that {φj > 0} ⊂ Vuj

.

For each j ∈ J pick vj ∈ E with d(uj , E) = d(uj , vj) (possible by compact-
ness).

If f ∈ C(E) we define

Tf(s) =

{
f(s) if s ∈ E∑

j∈J φj(s)f(vj) if s ∈ U.

The theorem will be proved once we have shown that Tf is a continuous
function on K, because T clearly is linear, T1 = 1 and ‖T‖ = 1. It is also
clear that Tf is continuous on U .

Now suppose t ∈ E. If ε > 0 fix δ > 0 so that d(s, t) < 4δ implies that
|f(s) − f(t)| < ε. Assume d(s, t) < δ. If s ∈ E then |Tf(s) − Tf(t)| < ε. If
s ∈ U then

|Tf(s)− Tf(t)| =
∑

φj(s)>0

φj(s)|f(vj)− f(t)| ≤ max
φj(s)>0

|f(vj)− f(t)|.

If φj(s) > 0 then

d(s, uj) <
1
2
d(uj , E) ≤ 1

2
(d(s, uj) + d(s, t)),

so d(s, uj) < d(s, t) < δ and d(uj , E) = d(uj , vj) < 2δ. Thus,

d(t, vj) ≤ d(s, t) + d(s, uj) + d(uj , vj) < 4δ.

Therefore, |Tf(s)− Tf(t)| < ε, and the proof is completed.
��

If we combine Borsuk’s theorem with Proposition 4.4.3 we see that an ar-
bitrary C(K) with K an uncountable compact metric space (a) is isomorphic
to a complemented subspace of C([0, 1]N) and (b) contains a complemented
subspace isomorphic to C(∆) where ∆ = {0, 1}N. To complete the proof of
Miljutin’s theorem we need to set up the conditions for the Pe�lczyński decom-
position technique (Theorem 2.2.3). The first step is easy:

Proposition 4.4.5. C(∆) ≈ c0(C(∆)).

Proof. Since C(∆) is isomorphic to its hyperplanes (Proposition 4.4.1), it is
isomorphic to the subspace Z = {f ∈ C(∆) : f(0, 0, . . . ) = 0}.

For each n ∈ N let ∆n = {(sk)∞k=1 ∈ ∆ : sk = 0 if k < n and sn = 1}.
Each ∆n is homeomorphic to ∆ and is a clopen subset of ∆.

If we define the map S : Z → �∞(C(∆n)) by Sf = (f |∆n)∞n=1 then it is
clear from continuity at (0, 0, . . . ) that S maps into c0(C(∆n)) and, in fact,
defines an isometric isomorphism between Z and this space.
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��
At this point we need only one more ingredient, but it is the crux of the

argument. We must show that C([0, 1]N) can be embedded complementably
into C(∆). In order to understand the difficulty we will first look at the problem
of embedding C[0, 1] complementably into C(∆).

It is easy to embed C[0, 1] into C(∆). Indeed, we saw in the proof of the
Banach-Mazur theorem that there is a continuous surjection ϕ : ∆ → [0, 1]
defined by

ϕ((sn)∞n=1) =
∞∑

n=1

sn

2n
.

This induces an isometric embedding,

C[0, 1]→ C(∆), f → f ◦ ϕ.

Unfortunately the image of this embedding is not complemented in C(∆). We
will detour from the proof of Miljutin’s theorem to explain this.

Let B[0, 1] be the space of bounded Borel functions on [0, 1] with the usual
supremum norm,

‖f‖ = sup
0≤t≤1

|f(t)|.

Let D be the set of dyadic rationals in (0, 1), i.e., q ∈ D if and only if q = k/2n

where 1 ≤ k ≤ 2n−1. We will consider the subspace E of B[0, 1] of all functions
f which are right-continuous everywhere, continuous at all points t /∈ D, and
have left-hand limits at each t ∈ D. E consists of exactly those functions
f ∈ B[0, 1] such that

- f(t) = lims→t+ f(s) for all 0 ≤ t < 1,
- f(t−) = lims→t− f(s) exists for all 0 < t ≤ 1, and
- f(t−) = f(t) if t /∈ D.

Then E can be identified with C(∆). We utilize the fact that ϕ is quite close to
a homeomorphism. In fact ϕ−1(t) consists of at most two points and is unique
for t /∈ D. Let ρ : [0, 1] → ∆ be the map defined by taking ρ(t) = ϕ−1(t) for
t /∈ D then extending it to be right-continuous. Thus ϕ ◦ρ is the identity map
on [0, 1] and ρ is right-continuous. We can define an isometry of C(∆) onto E
by Tf(t) = f(ρ(t)).

For s1, s2, . . . , sn ∈ {0, 1} let

∆s1,...,sn = {t = (tk)∞k=1 ∈ ∆ : tk = sk for 1 ≤ k ≤ n}.

∆s1,...,sn is a clopen subset of ∆. Let

q(s1, . . . , sn) = ϕ(s1, . . . , sn, 0, . . . ) =
n∑

k=1

sk

2k
.
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Then for n ∈ N and q of the form k/2n with 0 ≤ k ≤ 2n − 1 let In,q be the
half open interval [q, q + 2−n) when q + 2−n < 1 and the closed interval [q, 1]
when q + 2−n = 1. In this language we have

Tχ∆s1,...,sn
= χIn,q(s1,...,sn) .

Now, the embedding of C[0, 1] into C(∆) using ϕ is isometrically equivalent
to the embedding of C[0, 1] into E in the sense that there is an isometry of
C(∆) onto E which sends C[0, 1] to C[0, 1].

Proposition 4.4.6. There is no bounded projection from E onto C[0, 1].

Proof. We start by identifying the quotient space E/C[0, 1]. Define the map
S : E → �∞(D) by

Sf(q) =
1
2
(f(q)− f(q−)).

If we consider a function in E of the form

f =
2n−1∑
k=0

akχIn,k
, n ∈ N, a0, . . . , a2n−1 ∈ R,

it is clear that ‖Sf‖ = d(f, C[0, 1]) and that S maps this space onto the
subspace of all finitely nonzero functions on D. Thus it follows that S maps
onto c0(D) and the quotient may be identified isometrically with c0(D).

If C[0, 1] is complemented in E then there is a lifting of S, i.e., a bounded
linear map R : c0(D) → E so that SR = Ic0(D). Let ed denote a canonical
basis element in c0(D) and let fd = Red. We will inductively select (dn)∞n=1

in D, open intervals (Jn)∞n=1 in (0, 1), and signs (εn)∞n=1 so that

n∑
k=1

εkfdk
(t) ≥ n

2
, n ∈ N, t ∈ Jn.

To start the induction pick d1 = 1
2 and then either |fd1(d1)| or |fd1(d1−)|

is at least one. Hence we may pick a sign ε1 and an open interval J1 (with d1

as an endpoint) so that ε1fd1(t) > 1
2 for t ∈ J1.

If d1, . . . , dn−1, ε1, . . . , εn−1 and J1, . . . , Jn−1 have been chosen we pick
dn ∈ Jn−1, and then εn so that either

n∑
k=1

εkfdk
(dn) ≥ n− 1

2
+ 1

or
n∑

k=1

εkfdk
(dn−) ≥ n− 1

2
+ 1.

Thus we can find an open interval Jn with dn as an endpoint so that
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n∑
k=1

εkfdk
(t) ≥ n

2
t ∈ Jn.

This completes the induction.
It follows that

n

2
≤ ‖R(ε1ed1 + · · ·+ εnedn

)‖ ≤ ‖R‖, n ∈ N,

which is clearly absurd.
��

The next result, known as Miljutin’s lemma, is the key step in the ar-
gument. Miljutin was able to show that C[0, 1] can be embedded as a com-
plemented subspace of C(∆). Indeed, we can construct an alternative contin-
uous surjection ψ : ∆ → [0, 1] so that there is a norm-one linear operator
R : C(∆)→ C[0, 1] with R(f ◦ ψ) = f.

Lemma 4.4.7 (Miljutin’s Lemma). There exist a continuous surjection
φ : ∆×∆→ [0, 1] and a norm-one operator S : C(∆×∆)→ C[0, 1] such that
S(f ◦ φ) = f for all f ∈ C[0, 1].

Proof. We start using a very similar approach as in the previous case. This
time we consider an isometric embedding T of C(∆×∆) into B[0, 1]2 induced
by the formula

Tf(s, t) = f(ρ(s), ρ(t)), 0 ≤ s, t ≤ 1,

where ρ is the right-continuous left-inverse of the function ϕ that we considered
above. Thus,

T (χ∆(r1,...,rm)×∆(s1,...,sn)) = χIm,q(r1,...,rm)×In,q(s1,...,sn) ,

where r1, . . . , rm, s1, . . . sn ∈ {0, 1}. T maps C(∆ × ∆) isometrically onto a
subspace F of B[0, 1]2.

Let us define a homeomorphism θ of [0, 1]2 onto itself by the formula

θ(t, u) = (t, u2t + (1− t)u), (t, u) ∈ [0, 1]2.

Notice that for each fixed choice of t the map u→ u2t+u(1−t) is a monotone
increasing homeomorphism of [0, 1] onto itself and that (t, u)→ (t, u2t+u(1−
t)) is a homeomorphism of the square onto itself. Let the (continuous) inverse
map be given by (t, v)→ (t, σ(t, v)), where for each fixed t the map v → σ(t, v)
is an increasing homeomorphism of [0, 1] onto itself.

Let φ : ∆×∆→ [0, 1] be given by φ(r, s) = σ(ϕ(r), ϕ(s)).
Next define a norm-one operator V : B[0, 1]2 → B[0, 1] via the formula

V f(u) =
∫ 1

0

f ◦ θ(t, u)dt.
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Notice that V T (f ◦ φ) = f if f ∈ C[0, 1]. Indeed, if g ∈ C(∆×∆) and (t, u) ∈
[0, 1]2 then Tg(t, u) = g(ρ(t), ρ(u)) and hence Tf ◦φ(t, u) = f ◦φ(ρ(t), ρ(u)) =
f ◦ σ(t, u) and thus T (f ◦ φ)(θ(t, u)) = f ◦ σ ◦ θ(t, u) = f(u) for all 0 ≤ t ≤ 1.

All that remains is to show that V T actually maps C(∆×∆) into C[0, 1].
To this end we need to show that V maps F into C[0, 1] and it is therefore
more than enough to show that g = V (χ[0,a)×[0,b)) = V (χ[0,a]×[0,b]) ∈ C[0, 1]
for any 0 < a ≤ 1 and 0 < b ≤ 1.

Notice that g(u) can be computed as the measure of the set of t so that
0 ≤ t ≤ a and u2t + u(1 − t) ≤ b. The later inequality reduces to t ≥
(u− b)(u− u2)−1. The single nonnegative solution of the quadratic equation
u − b = (u − u2)a will be denoted by h(a, b). Note that h(a, b) > b unless
a = 0. We thus have

g(u) =

⎧⎪⎨
⎪⎩

a if u ≤ b

a− u−b
u−u2 if b < u ≤ h(a, b)

0 if h(a, b) < u < 1.

Since g is continuous this completes our proof.
��

We are now in position to complete Miljutin’s theorem:

Theorem 4.4.8 (Miljutin’s Theorem). Suppose K is an uncountable com-
pact metric space. Then C(K) is isomorphic to C[0, 1].

Proof. The first step is to show that C([0, 1]N) is isomorphic to a complemented
subspace of C(∆). By Lemma 4.4.7 there is a continuous surjection ψ : ∆ →
[0, 1] so that we can find a norm one operator R : C(∆)→ C[0, 1] with Rf ◦ψ =
f for f ∈ C[0, 1]. Then R(χ∆) = χ[0,1]. For fixed t ∈ [0, 1] the linear functional
f → Rf(t) is given by a probability measure µt so that

Rf(t) =
∫

∆

f dµt.

The map ψ̃ : ∆N → [0, 1]N given by

ψ̃(s1, . . . , sn, . . . ) = (ψ(s1), . . . , ψ(sn), . . . )

is a continuous surjection. We will define R̃ : C(∆N) → C([0, 1]N) in such a
way that R̃f ◦ ψ̃ = f for f ∈ C([0, 1]N). Indeed, the subalgebra A of C(∆N)
of all f which depend only on a finite number of coordinates is dense by the
Stone-Weierstrass theorem. If f ∈ A depends only on s1, . . . , sn we define

R̃f(t1, . . . , tn) =
∫

∆

. . .

∫
∆

f(s1, . . . , sn) dµt1(s1) . . . dµtn
(sn).

This map is clearly linear into �∞[0, 1] and has norm one. It therefore extends
to a norm-one operator R̃ : C(∆N) → �∞[0, 1]. If f ∈ C(∆N) is of the form
f1(s1) . . . fn(sn) then
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R̃f(t) = Rf1(t) . . . Rfn(t),

so R̃f ∈ C[0, 1]. The linear span of such functions is again dense by the Stone-
Weierstrass theorem so R̃ maps into C[0, 1].

If f ∈ C([0, 1]N) is of the form f1(t1) . . . fn(tn) then it is clear that R̃f ◦ψ̃ =
f. It follows that this equation holds for all f ∈ C([0, 1]N).

Thus C([0, 1]N) is isomorphic to a norm-one complemented subspace of
C(∆N) or C(∆) as ∆ is homeomorphic to ∆N.

Now, suppose K is an uncountable compact metric space. Then C(K) is
isomorphic to a complemented subspace of C([0, 1]N) by combining Proposi-
tion 4.4.3 and Theorem 4.4.4. Hence, by the preceding argument, C(K) is iso-
morphic to a complemented subspace of C(∆). On the other hand C(∆) is iso-
morphic to a complemented subspace of C(K) again by Proposition 4.4.3 and
Theorem 4.4.4. We also have Proposition 4.4.5 which gives c0(C(∆)) ≈ C(∆).
We can apply Theorem 2.2.3 to deduce that C(K) ≈ C(∆). Of course, the
same reasoning gives C[0, 1] ≈ C(∆).

��

4.5 Spaces of continuous functions on countable compact
metric spaces

We will now briefly discuss the case when K is countable. The simplest such
example as we saw in the previous section is when K = γN, the one-point
compactification of the natural numbers N, in which case C(γN) = c ≈ c0.

In 1960, Bessaga and Pe�lczyński [13] gave a complete classification of all
C(K)-spaces when K is countable and compact. To fully describe this classifi-
cation requires some knowledge of ordinals and ordinal spaces, and we prefer
to simply discuss the case when K has the simplest structure.

If K is any countable compact metric space, the Baire Category theorem
implies that the union of all its isolated points, U , is dense and open in K.
The Cantor-Bendixson derivative of K is the set K ′ = K \U of accumulation
points of K. Analogously, we can define K ′′ = (K ′)′ and, in general, for any
natural number n, K(n) = (K(n−1))′.

K is said to have finite Cantor-Bendixson index if K(n) is finite for some
n and, hence, K(n+1) is empty. When this happens, σ(K) will denote the first
n for which K(n) is finite.

Example 4.5.1. It is easy to make examples of spaces K without finite
Cantor-Bendixson index. Let us note, first, that if E is any closed subset
of K then E′ ⊂ K ′, therefore σ(E) ≤ σ(K). If K is a countable compact met-
ric space, then K1 = K × γN has the property that (K1)′ contains a subset
homeomorphic to K, so σ(K1) > σ(K). In this way we can build a sequence
(Kr)∞r=1 with σ(Kr)→∞. If we let K∞ be the one-point compactification of
the disjoint union

⊔∞
r=1 Kr, then K∞ does not have finite Cantor-Bendixson

index.



96 4 Banach Spaces of Continuous Functions

If K does not have finite index then its index can be defined as a countable
ordinal. This was used by Bessaga and Pe�lczyński to give a complete classi-
fication, up to linear isomorphism, of all C(K) for K countable. But we will
not pursue this; instead we will give one result in the direction of classifying
such C(K)-spaces.

Theorem 4.5.2. Let K be a compact metric space. The following conditions
are equivalent:

(i) K is countable and has finite Cantor-Bendixson index;
(ii) C(K) ≈ c0;
(iii) C(K) embeds in a space with unconditional basis;
(iv) C(K) has property (u).

Let us point out that this theorem greatly extends Karlin’s theorem (see
Proposition 3.5.4 (ii)) that C[0, 1] has no unconditional basis.

Proof. (i) ⇒ (ii). Let us suppose, first, that σ(K) = 1. Then K ′ is a finite
set, say K ′ = {s1, . . . , sn}. Let V1, . . . , Vn be disjoint open neighborhoods of
s1, . . . , sn, respectively. V1, V2, . . . , Vn must also be closed sets since, for each
j, no sequence in Vj can converge to a point which does not belong to Vj . If
we denote Vn+1 = K \ (V1 ∪ · · · ∪ Vn), Vn+1 must be a finite set of isolated
points and is also clopen; we therefore can absorb it into, say, V1 without
changing the conditions. Now, K splits into n-clopen sets V1, . . . , Vn and each
Vj is homeomorphic to γN. Hence C(K) is isometric to the �∞-product of n
copies of c, thus it is isomorphic to c0.

The proof of this implication is completed by induction. Assume we have
shown that C(K) ≈ c0 if σ(K) < n, n ≥ 2, and suppose that σ(K) = n. Then
C(K ′) ≈ c0. Consider the restriction map f → f |K′ . By Theorem 4.4.4, C(K)
is isomorphic to C(K ′) ⊕ E, where E denotes the kernel of the restriction
f → f |K′ . If U = K \ K ′ is the set of isolated points of K then E can be
identified with c0(U), which is isometric to c0. Hence C(K) is isomorphic to
c0.

(ii)⇒ (iii) is trivial, and (iii)⇒ (iv) is a consequence of Proposition 3.5.3.
(iv)⇒ (i) First observe that if C(K) has property (u), then it immediately

follows that K is countable by combining Theorem 4.4.8 with the fact that
the space C[0, 1] fails to have property (u). This means that M(K) contains
only purely atomic measures and that C(K)∗ = �1(K) is separable. Thus
C(K)∗∗ = �∞(K).

Suppose h is an arbitrary element in �∞(K) with ‖h‖ ≤ 1. Then, since
BC(K) is weak∗ dense in B�∞(K) by Goldstine’s theorem, and B�∞(K) is weak∗

metrizable by Lemma 1.4.1, it follows that we can find a sequence (gn)∞n=1 in
C(K) with ‖gn‖ ≤ 1 which converges weak∗ to h. (gn)∞n=1 is a weakly-Cauchy
sequence in C(K), so by property (u) we can find a WUC series

∑∞
n=1 fn such

that
(
gn −

∑n
k=1 fk

)
n

converges weakly to zero in C(K). This means that∑∞
k=1 fk = h for the weak∗ topology. In particular we have that
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∞∑
k=1

fk(s) = h(s), s ∈ K.

Since
∑

fn is a WUC series, there is a constant M such that

sup
N

sup
εj=±1

∣∣∣ N∑
k=1

εkfk(s)
∣∣∣ = ∞∑

k=1

|fk(s)| ≤M

for every s ∈ K.
Put φ(s) =

∑∞
k=1 |fk(s)| and ψ(s) =

∑∞
k=1

(
|fk(s)|−fk(s)

)
= φ(s)−h(s).

Both φ and ψ are lower semicontinuous functions on K, that is, for every a ∈ R

the sets φ−1(a,∞) and ψ−1(a,∞) are open. We also have ‖φ‖, ‖ψ‖ ≤M and
h = φ− ψ.

Suppose that K fails to have finite Cantor-Bendixson index. Then each of
the sets En = K(n−1) −K(n) is nonempty for n = 1, 2, . . . (here, K(0) = K).
We pick a particular h ∈ �∞(K) with ‖h‖ ≤ 1 so that

h(s) = (−1)n, s ∈ En.

Since K fails to have finite index, the set K \ ∪∞
n=1En is nonempty and we

can define h to be zero on this set. Thus, we can write h = φ−ψ as above. If
we put

an = sup
s∈E2n

φ(s), n = 1, 2, . . .

then |an| ≤M for all n.
Suppose ε > 0 and that n ≥ 1. Then, there exists s0 ∈ E2n so that

φ(s0) > an− ε. Thus by the lower semicontinuity of φ there is an open set U0

containing s0 so that φ(s) > an−ε for every s ∈ U0. In particular U0∩K(2n−2)

is relatively open in K(2n−2) and U0 ∩ E2n−1 �= ∅. Hence there exists s1 ∈
U0 ∩E2n−1 so that φ(s1) > an − ε. Thus ψ(s1) > an + 1− ε. Next we find an
open set U1 containing s1 so that ψ(s) > an + 1− ε for s ∈ U1. Reasoning as
above we can find s2 ∈ U1 ∩ E2n−2 with ψ(s2) > an + 1− ε. But this implies
φ(s2) > an + 2− ε and so an−1 ≥ an + 2− ε. Since ε > 0 is arbitrary we have:

an ≤ an−1 − 2, n = 1, 2, . . . .

Clearly this contradicts the lower bound of −M on the sequence (an)∞n=1. The
contradiction shows that K has finite Cantor-Bendixson index.

��
If K and L are countable compact metric spaces with different but fi-

nite Cantor-Bendixson indices then K and L are not homeomorphic but the
spaces C(K) and C(L) are both isomorphic to c0. Later we will see that, up
to equivalence, there is only one unconditional basis of c0, in the sense that
any normalized unconditional basis is equivalent to the canonical basis.

Remark 4.5.3. Notice that since C(K)∗ is isometric to �1 for every countable
compact metric space K, the Banach space �1 is isometric to the dual of many
nonisomorphic Banach spaces.
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Problems

4.1. Let K be any compact Hausdorff space. Show that any extreme point of
BC(K)∗ is of the form ±δs where δs is the probability measure defined on the
Borel sets of K by δs(B) = 1 if s ∈ B and 0 otherwise.

4.2. The Banach-Stone Theorem. Suppose K and L are compact Haus-
dorff spaces such that C(K) and C(L) are isometric. Show that K and L are
homeomorphic. [Hint : Argue that if U : C(K)→ C(L) is any (onto) isometry,
then U∗ maps extreme points of the dual ball to extreme points.]

4.3. Ransford’s proof of the Stone-Weierstrass Theorem [193].
(a) If E is a closed subset of K, let ‖f‖E = sup{|f(t)| : t ∈ E}. Assume
A �= C(K); pick f ∈ C(K) with d(f, A) = inf{‖f − a‖ : a ∈ K} = 1. Show
by a Zorn’s lemma argument that there is a minimal compact subset E of K
with dE(f, A) = inf{‖f − a‖E : a ∈ A} = 1.

(b) Show that E cannot consist of one point and that there exists h ∈ A with
mins∈E h(s) = 0 and maxs∈E h(s) = 1.

(c) Let E0 = {s ∈ E : h(s) ≤ 2/3} and E1 = {s ∈ E : h(s) ≥ 1/3}. Show that
there exist a0, a1 ∈ E so that ‖f − a0‖E0 < 1 and ‖f − a1‖E1 < 1.

(d) Let gn = (1 − (1 − h)n)2
n ∈ A. Show that for large enough n we have

‖(1− gn)a0 + gna1 − f‖E < 1. This contradiction proves the theorem.

4.4. De Branges’s proof of the Stone-Weierstrass Theorem [37].

(a) Let µ be a regular probability measure on K and let E be the intersection
of all compact sets F ⊂ K with µ(F ) = 1. Show that µ(E) = 1. (E is called
the support of µ.)

(b) Suppose A �= C(K). Let V = BM(K)∩A⊥ ⊂ C(K)∗. Show that A is weak∗

compact and convex and deduce that it has an extreme point ν with ‖ν‖ = 1.

(c) If a ∈ A with 0 ≤ a ≤ 1, show that νa ∈ A⊥, where∫
h dνa =

∫
ha dν.

Show that ‖νa‖ =
∫

a d|ν|. Deduce from the fact that ν is an extreme point
that a is constant ν-a.e. on the support of |ν|.

(d) Deduce that the support of |ν| is a single point and hence obtain a con-
tradiction.

4.5. A compact Hausdorff space K is called extremally disconnected if the
closure of every open set is again open (and hence clopen!). Prove that if
C(K) is order-complete then K is extremally disconnected. [Hint : If U is
open, apply order-completeness to the set of f ∈ C(K) with f ≥ χU .]



4.5 Spaces of continuous functions on countable compact metric spaces 99

4.6. (a) If K is extremally disconnected, show that for every bounded lower
semicontinuous function f , the upper semicontinuous regularization

f̃(s) = inf {g(s) : g ∈ C(K), g ≥ f}

is continuous.

(b) Deduce that if K is extremally disconnected then C(K) is order-complete.

4.7. Let K be any topological space.
(a) Show that for every Borel set there is an open set U so that the symmetric
difference B∆U has first category. (Of course, this is vacuous unless K is of
second category in itself!)
(b) Deduce that for every real Borel function f on K there is a lower semi-
continuous function g such that {f �= g} has first category.
(c) Show that if K is compact and extremally disconnected then for every
bounded Borel function there is a continuous function g so that {f �= g} has
first Baire category.

4.8. Let K be a compact Hausdorff space and consider the space B(K) of
all bounded Borel functions on K. Consider B(K) modulo the equivalence
relation f ∼ g if and only if {s ∈ K : f(s) �= g(s)} has first category. Define a
norm on the space B∼(K) = B(K)/ ∼ by

‖f‖ = inf{λ : {|f | > λ} is of first category}.

Show that B∼(K) is a Banach space which can be identified with a space C(L)
where L is compact Hausdorff. Show further that C(L) is order-complete and
hence L is extremally disconnected.

Note that if K is extremally disconnected then B∼(K) = C(K) (in the
sense that there is a unique continuous function in each equivalence class).

4.9. (Continuation of 4.8.) (a) Now suppose B∼(K) is isometrically a dual
space. Show that if ϕ belongs to the predual then there is a regular Borel
measure µ on K so that µ(B) = ϕ(χB) for every Borel set. Show that µ must
vanish on every set of first category. [Hint: Use the fact that the positive cone
must be closed for the weak∗ topology.]
(b) Deduce that if K is compact and metrizable and has no isolated points
(e.g., K = [0, 1]) then B∼(K) cannot be a dual space.

4.10. Let K be metrizable and let E denote the smallest subspace of C(K)∗∗

containing C(K) which is weak∗ sequentially closed (i.e., is closed under the
weak∗ convergence of sequences). Show that E = B(K) where B(K) is con-
sidered as a subspace of C(K)∗∗ via the action

〈f, µ〉 =
∫

f dµ, µ ∈M(K).
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4.11. The Amir-Cambern Theorem [4], [22].

Let K and L be compact spaces and suppose T : C(K)→ C(L) is an isomor-
phism such that ‖T‖ = 1 and ‖T−1‖ < c < 2. For the proof of the theorem
that we outline here we shall impose the additional assumption that K and
L are metrizable.
(a) Show that T ∗∗ maps B(K) onto B(L).
(b) For t ∈ K define et ∈ B(K) by et(t) = 1 and et(s) = 0 for s �= t. Show
that, for fixed t ∈ K,

|T ∗∗et(x)| > 1
c

for exactly one choice of x ∈ L. [Hint: If this holds for x �= y consider T ∗(aδx+
bδy) where a, b are chosen suitably.]

Show also that, for fixed x ∈ L, |T ∗∗et(x)| > 1
2 for at most one of t ∈ K.

(c) Use (b) to define an injective map φ : K → L such that

|〈T ∗δφ(t), et〉| >
1
c
, t ∈ K.

Show that φ is continuous and that

‖Tf − f ◦ φ‖ ≤ 2(1− c−1)‖f‖, f ∈ C(K).

(d) Deduce that φ is onto and K and L are homeomorphic.

The Amir-Cambern theorem is an extension of the Banach-Stone theorem.
Of course, Miljutin’s theorem means that we must have some restriction on
‖T−1‖; in fact 2 is sharp in the sense that one can find nonhomeomorphic K
and L and T with ‖T‖ = 1, ‖T−1‖ = 2; this is due to Cohen [31].
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L1(µ)-Spaces and C(K)-Spaces

In this chapter we will prove some very classical results concerning weak com-
pactness and weakly compact operators on C(K)-spaces and L1(µ)-spaces,
and exploit them to give further information about complemented subspaces
of such spaces. We have proved forerunners of these results in Chapter 2 for
the corresponding sequence spaces. If T : c0 → X or T : X → �1 is weakly
compact then T is in fact compact (Theorem 2.4.10 and Theorem 2.3.7). These
results are essentially consequences of the fact that �1 is a Schur space.

We can regard c0 as being a space of continuous functions (it is isomorphic
to c which is isometrically a space of continuous functions) and �1 is a very
special example of a space L1(µ) where µ is counting measure on the natu-
ral numbers. It is therefore natural to consider to what extent we can find
substitutes for more general C(K)-spaces and L1(µ)-spaces.

Much of the material in this chapter dates back in some form or other to
some remarkable and very early work of Dunford and Pettis [45] in 1940, later
developed by Grothendieck [75]. However, we will take a modern approach
based on the techniques we have built up in the preceding chapters; this
approach to the study of function spaces may be said to date to the paper of
Kadets and Pe�lczyński [98].

5.1 General remarks about L1(µ)-spaces

Let (Ω, Σ, µ) be a probability measure space, that is, µ is a measure on the
σ-algebra Σ of sets of Ω of total mass µ(Ω) = 1. Although it might appear
restrictive to consider probability spaces, this covers much more general sit-
uations. Indeed, if ν is merely assumed to be a σ-finite measure on Σ then
we can always find a ν-integrable function ϕ so that ϕ > 0 everywhere and∫

ϕ dν = 1. If we define dµ = ϕ · dν then µ is a probability measure and
L1(Ω, µ) is isometric to L1(Ω, ν) via the isometry U : L1(ν) → L1(µ) given
by Uf(ω) = f(ω)(ϕ(ω))−1.
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In most practical examples Ω is a complete separable metric space K (also
called a Polish space), Σ coincides with the Borel sets B and µ is nonatomic. In
this case it is important to note that there is only one such space L1(K,B, µ).
More precisely, if µ is a nonatomic probability measure on K then there is a
bijection σ : [0, 1]→ K so that both σ and σ−1 are Borel maps and

µ(B) = λ(σ−1B), B ∈ B(K),

where λ denotes Lebesgue measure on [0, 1]. Thus f → f◦σ defines an isometry
between L1(K, µ) and L1 = L1([0, 1], λ). See e.g. [166] or [200].

Let us first note that, unlike �1, L1 is not a Schur space. To see this, take
for example the sequence of functions fn(x) =

√
2 sinnπx, n ∈ N. (fn)∞n=1 is

orthonormal in L2[0, 1] and by Bessel’s inequality we have

lim
n→∞

∫ 1

0

fn(x)g(x) dx = 0

for all g ∈ L2[0, 1]. In particular (fn)∞n=1 converges to 0 weakly in L1 but not
in norm.

On the other hand, since it is separable and its dual is nonseparable, L1 is
not reflexive. Therefore the relatively weakly compact sets of L1[0, 1] are not
simply the bounded sets.

We start by trying to imitate the techniques which we developed to handle
sequence spaces. First we give an analogue for Lemma 2.1.1:

Lemma 5.1.1. Let (fn)∞n=1 be a sequence of norm-one, disjointly supported
functions in L1(µ). Then (fn)∞n=1 is a norm-one complemented basic sequence,
isometrically equivalent to the canonical basis of �1.

Proof. For any scalars (αi)n
i=1 and any n ∈ N,

∥∥∥ n∑
i=1

αifi

∥∥∥
1

=
∫

Ω

∣∣∣ n∑
i=1

αifi

∣∣∣ dµ

=
∫

Ω

( n∑
i=1

|αifi|
)

dµ

=
n∑

i=1

|αi|
∫

Ω

|fi| dµ =
n∑

i=1

|αi|.

Let us consider the operator P : L1(µ)→ L1(µ) given by

P (f) =
∞∑

n=1

(∫
Ω

fhn dµ
)

fn,

where, for each n,
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hn(ω) =

{
fn(ω)
|fn(ω)| if |fn(ω)| > 0

0 if fn(ω) = 0.

(This covers both the case of real and complex scalars.) P is a projection onto
[fn]. Furthermore,

‖Pf‖1 =
∞∑

n=1

∣∣∣ ∫
Ω

fhn dµ
∣∣∣

=
∞∑

n=1

∫
{|fn|>0}

|f | dµ

=
∫
∪∞

n=1{|fn|>0}
|f | dµ

≤
∫

Ω

|f | dµ.

��

5.2 Weakly compact subsets of L1(µ)

In this section we will consider the problem of identifying the weakly compact
subsets of L1(µ) when (Ω, Σ, µ) is a probability measure space. Our approach
is through certain subsequence principles. In Chapters 1 and 2 we made heavy
use of so-called gliding hump techniques. For example a sequence in �1 which
converges coordinatewise to zero but not in norm has a subsequence which
is basic and equivalent to the canonical basis of �1. The appropriate general-
ization to L1(µ)-spaces replaces coordinatewise convergence by almost every-
where convergence or convergence in measure.

Lemma 5.2.1. Let (hn)∞n=1 be a bounded sequence in L1(µ) that converges to
0 in measure. Then there is a subsequence (hnk

)∞k=1 of (hn)∞n=1 and a sequence
of disjoint measurable sets (Ak)∞k=1 such that

‖hnk
− hnk

χAk
‖1 → 0.

Proof. We are going to extract such a subsequence by an inductive procedure
based on a similar technique to the “gliding hump” argument for sequences.

Let us first note that (hn)∞n=1 has a subsequence which converges to 0
a.e. and so we may assume without loss of generality that limn→∞ hn(ω) = 0
µ-a.e.

Let hn1 = h1 and take F1 = {ω ∈ Ω : |hn1(ω)| > 1
2}. The function

hn1 is integrable, therefore there exists δ1 > 0 such that µ(E) < δ1 implies∫
E
|hn1 | dµ < 1

2 . Next, pick n2 > n1 such that µ(|hn2 | > 1
22 ) < δ1 and consider

F2 = {ω ∈ Ω : |hn2(ω)| > 1
22 }.
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Similarly there exists δ2 > 0 such that µ(E) < δ2 implies
∫

E
|hni

| dµ < 1
22

for i = 1, 2. Pick n3 > n2 such that µ(|hn3 | > 1
23 ) < δ2 and consider F3 =

{ω ∈ Ω : |hn3(ω)| > 1
23 }.

Continuing by induction, we produce a subsequence (hnk
) of (hn) and a

sequence of sets (Fk)∞k=1 such that ‖hnk
− hnk

χFk
‖1 ≤ 1

2k for all k.
Now we take the sequence of disjoint subsets of Ω, (Aj), given by

A1 = F1 \
⋃
k>1

Fk, A2 = F2 \
⋃
k>2

Fk, . . . Aj = Fj \
⋃
k>j

Fk, . . . .

Clearly, for each k we have∫
Fk

|hnk
| dµ−

∫
Ak

|hnk
| dµ ≤

∑
j>k

∫
Fj

|hnk
| dµ ≤

∑
j>k

1
2j−1

=
1

2k−1
,

i.e.,

‖hnk
χFk

− hnk
χAk

‖1 ≤
1

2k−1
.

Hence

‖hnk
− hnk

χAk
‖1 ≤ ‖hnk

− hnk
χFk
‖1 + ‖hnk

χFk
− hnk

χAk
‖1 ≤

1
2k

+
1

2k−1
,

and so ‖hnk
− hnk

χAk
‖1 → 0.

��

Definition 5.2.2. A bounded subset F ⊂ L1(µ) is called equi-integrable (or
uniformly integrable) if given ε > 0 there is δ = δ(ε) > 0 so that for every set
E ⊂ Ω with µ(E) < δ we have supf∈F

∫
E
|f |dµ < ε, i.e.,

lim
µ(E)→0

sup
f∈F

∫
E

|f |dµ = 0.

Remark 5.2.3. In the previous definition we can omit the word “bounded”
if µ is nonatomic, since then given any δ > 0 it is possible to partition Ω into
a finite number of sets of measure less than δ.

Example 5.2.4. (i) Given a nonnegative h ∈ L1(µ), the set

F = {f ∈ L1(µ) ; |f | ≤ h}

is equi-integrable.
(ii) The closed unit ball of L2(µ) is an equi-integrable subset of L1(µ). In-
deed, for any f ∈ BL2(µ) and any measurable set E, by the Cauchy-Schwarz
inequality, ∫

E

|f |dµ ≤
(∫

E

1dµ

)1/2(∫
E

|f |2dµ

)1/2

≤
(
µ(E)

)1/2
.
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Then,

lim
µ(E)→0

sup
f∈F

∫
E

|f |dµ = 0.

(iii) The closed unit ball of L1(µ) is not equi-integrable as one can easily
check by taking the subset F = {δ−1χ[0,δ] ; 0 < δ < 1}.

Lemma 5.2.5. Let F and G be bounded sets of equi-integrable functions in
L1(µ). Then the sets F ∪ G and F + G = {f + g ; f ∈ F , g ∈ G} ⊂ L1(µ) are
(bounded and) equi-integrable.

This is a very elementary deduction from the definition, and we leave the proof
to the reader. Next we give an alternative formulation of equi-integrability.

Lemma 5.2.6. Suppose F is a bounded subset of L1(µ). Then the following
are equivalent:

(i) F is equi-integrable;

(ii) lim
M→∞

sup
f∈F

∫
{|f |>M}

|f | dµ = 0.

Proof. (i) ⇒ (ii) Since F is bounded, there is a constant A > 0 such that
supf∈F ‖f‖1 ≤ A. Given f ∈ F , by Chebyshev’s inequality

µ({|f | > M}) ≤ ‖f‖1
M

≤ A

M
.

Therefore, limM→∞ µ({|f | > M}) = 0. Using the equi-integrability of F , we
conclude that

lim
M→∞

sup
f∈F

∫
{|f |>M}

|f | dµ = 0.

(ii)⇒ (i) Given f ∈ F and E ∈ Σ, for any finite M > 0 we have,∫
E

|f | dµ =
∫

E∩{|f |≤M}
|f | dµ +

∫
E∩{|f |>M}

|f | dµ

≤ Mµ(E) +
∫

E∩{|f |>M}
|f | dµ

≤ Mµ(E) +
∫
{|f |>M}

|f | dµ

≤ Mµ(E) + sup
f∈F

∫
{|f |>M}

|f | dµ.

Hence,

sup
f∈F

∫
E

|f | dµ ≤Mµ(E) + sup
f∈F

∫
{|f |>M}

|f | dµ.
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Given ε > 0, let us pick M = M(ε) such that supf∈F
∫
{|f |>M} |f | dµ < ε

2 .
Then if µ(E) < ε

2M we obtain

sup
f∈F

∫
E

|f | dµ ≤M
ε

2M
+

ε

2
= ε.

��
Note that whenever (fn)∞n=1 is a sequence bounded above by an integrable

function then, in particular, (fn)∞n=1 is equi-integrable. The next lemma es-
tablishes that, conversely, equi-integrability is a condition that can replace the
existence of a dominating function in the Lebesgue Dominated Convergence
theorem:

Lemma 5.2.7. Suppose (fn)∞n=1 is an equi-integrable sequence in L1(µ) that
converges a.e. to some g ∈ L1(µ). Then

lim
n→∞

∫
Ω

fn dµ =
∫

Ω

g dµ.

Proof. For each M > 0 let us consider the truncations

f (M)
n =

⎧⎪⎨
⎪⎩

M if fn > M

fn if |fn| ≤M

−M if fn < −M

, g(M) =

⎧⎪⎨
⎪⎩

M if g > M

g if |g| ≤M

−M if g < −M

and let us write∣∣∣ ∫
Ω

fn dµ−
∫

Ω

g dµ
∣∣∣

≤
∣∣∣ ∫

Ω

(fn − f (M)
n ) dµ

∣∣∣+ ∣∣∣ ∫
Ω

f (M)
n dµ−

∫
Ω

g(M) dµ
∣∣∣+ ∣∣∣ ∫

Ω

(g − g(M)) dµ
∣∣∣.

Now,∣∣∣ ∫
Ω

(fn − f (M)
n ) dµ

∣∣∣ ≤ ∫
{|fn|>M}

(
|fn| −M

)
dµ ≤

∫
{|fn|>M}

|fn| dµ→ 0

uniformly in n as M →∞ by Lemma 5.2.6. Analogously, since g ∈ L1(µ)∣∣∣ ∫
Ω

(g − g(M)) dµ
∣∣∣ ≤ ∫

{|g|>M}

(
|g| −M

)
dµ ≤

∫
{|g|>M}

|g| dµ
M→∞−→ 0.

And, finally, for each M we have

lim
n→∞

∫
Ω

f (M)
n dµ =

∫
Ω

g(M) dµ

by the Bounded Convergence theorem. The combination of these three facts
finishes the proof.
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��
We now come to an important technical lemma which is often referred to as

the Subsequence Splitting Lemma. This lemma enables us to take an arbitrary
bounded sequence in L1(µ) and extract a subsequence that can be split into
two sequences, the first disjointly supported and the second equi-integrable.
It is due to Kadets and Pe�lczyński and provides a very useful bridge between
sequence space methods (gliding hump techniques) and function spaces.

Lemma 5.2.8 (Subsequence Splitting Lemma [98]). Let (fn)∞n=1 be a
bounded sequence in L1(µ). Then there exists a subsequence (gn)∞n=1 of (fn)∞n=1

and a sequence of disjoint measurable sets (An)∞n=1 such that if Bn = Ω \An

then (gnχBn
)∞n=1 is equi-integrable.

Proof. Without loss of generality we can assume ‖fn‖1 ≤ 1 for all n.
We will first find a subsequence (fns

)∞s=1 and a sequence of measurable
sets (Fs)∞s=1 such that if Es = Ω \ Fs then (fns

χEs
)∞s=1 is equi-integrable and

lims→∞ fns
χFs

= 0 µ-a.e.
For every choice of k ∈ N, Chebyshev’s inequality gives

0 ≤ µ(|fn| > k) ≤ 1
k

for all n.

Then, since
(
µ(|fn| > k)

)∞
n=1

is a bounded sequence, by passing to a subse-
quence we can assume that

(
µ(|fn| > k)

)∞
n=1

converges for each k. Let us call
αk its limit. Our first goal is to see that the series

∑∞
k=1 αk is convergent with

sum no bigger than 1.
For each n,

1 ≥
∫

Ω

|fn| dµ =
∫ ∞

0

µ(|fn| > t) dt

=
∞∑

k=1

∫ k

k−1

µ(|fn| > t) dt

≥
∞∑

k=1

µ(|fn| > k).

Therefore the partial sums of
∑∞

k=1 αk are uniformly bounded:

N∑
k=1

αk =
N∑

k=1

lim
n→∞µ(|fn| > k) = lim

n→∞

N∑
k=1

µ(|fn| > k) ≤ 1.

Now, for each k we want to speed up the convergence of the sequence
(
µ(|fn| >

k)
)∞
n=1

to αk. Let us extract a subsequence (fns)
∞
s=1 of (fn)∞n=1 in such a way

that for all s ∈ N
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µ(|fns
| > k) < αk + 2−2s if 1 ≤ k ≤ 2s. (5.1)

For each s let us define

Es = {ω ∈ Ω : |fns
(ω)| ≤ 2s}

and
Fs = {ω ∈ Ω : |fns

(ω)| > 2s}.
Notice that ∞∑

s=1

µ(Fs) ≤
∞∑

s=1

‖fns
‖1

2s
≤

∞∑
s=1

1
2s

= 1.

This implies that for almost every ω ∈ Ω, there is just a finite number of sets
such that ω ∈ Fs. Thus (fns

χFs
)∞s=1 converges to 0 µ-a.e.

Next we will prove that (fns
χEs

)∞s=1 is equi-integrable. For the sake of
simplicity in the notation we will denote hs = fns

χEs
, s ∈ N. It suffices to

show that
sup

s

∫
{|hs|>2r}

|hs| dµ
r→∞−→ 0.

Clearly
µ(|hs| > k) = 0 if k > 2s,

which implies that for every fixed r ∈ N, if s < r then∫
{|hs|>2r}

|hs| dµ = 0.

For values of s ≥ r,∫
{|hs|>2r}

|hs| dµ ≤
∫
{|hs|>2r}

(
|hs| − 2r

)
dµ + 2rµ(|hs| > 2r).

By (5.1),
2rµ(|hs| > 2r) ≤ 2rα2r + 2r−2s.

On the other hand,∫
{|hs|>2r}

(
|hs| − 2r

)
dµ =

∫ ∞

0

µ
(
|hs| − 2r > t

)
dt

=
∞∑

k=1

∫ k

k−1

µ
(
|hs| − 2r > t

)
dt

≤
∞∑

k=1

µ
(
|hs| − 2r > k − 1

)

=
∞∑

k=0

µ
(
|hs| > 2r + k

)



5.2 Weakly compact subsets of L1(µ) 109

=
2s∑

k=2r

µ
(
|hs| > k

)

≤
2s∑

k=2r

(αk + 2−2s)

≤ 2−r +
∞∑

k=2r

αk.

Summing up, if s ≥ r we get∫
{|hs|>2r}

|hs| dµ ≤ 2 · 2−r + 2rα2r +
∞∑

k=2r

αk
r→∞−→ 0.

This establishes the equi-integrability of (hs)s∈N.
Note that lims→∞(fns − hs) = 0 µ-a.e. Thus we can apply Lemma 5.2.1

to the sequence h′
s = fns − hs to deduce the existence of a further sub-

sequence (h′
sr

)∞r=1 and a sequence of disjoint sets (Ar)∞r=1 in Σ such that
limr→∞ ‖h′

sr
χBr

‖ = 0, where Br = Ω \Ar. Clearly we may assume that Ar ⊂
Fsr

. Then the set {h′
sr

χBr
}∞r=1 is equi-integrable and so {hsr

+h′
sr

χBr
}∞r=1 is

also equi-integrable. If we write gr = fnsr
then the subsequence (gr)∞r=1 gives

us the conclusion since grχBr = hsr + h′
sr

χBr .
��

Now we come to our main result on weak compactness. The main equiva-
lence, (i)⇔ (ii), is due to Dunford and Pettis [45].

Theorem 5.2.9. Let F be a bounded set in L1(µ). Then the following condi-
tions on F are equivalent:

(i) F is relatively weakly compact;
(ii) F is equi-integrable;
(iii) F does not contain a basic sequence equivalent to the canonical basis of

�1;
(iv) F does not contain a complemented basic sequence equivalent to the canon-

ical basis of �1;
(v) for every sequence (An)∞n=1 of disjoint measurable sets,

lim
n→∞ sup

f∈F

∫
An

|f | dµ = 0.

Proof. It is clear that (i) ⇒ (iii) since the unit vector basis of �1 contains
no weakly convergent subsequences. Trivially, (iii) ⇒ (iv); (ii) ⇒ (v) is also
immediate since if (An) are disjoint measurable sets then µ(An) → 0 and
so limn→0 supf∈F

∫
An
|f | dµ = 0 by equi-integrability. We shall complete the

circle by showing that (iv)⇒ (ii), (v)⇒ (ii), and (ii)⇒ (i).
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If (ii) fails, by Lemma 5.2.6 there exists a sequence (fn)∞n=1 in F and some
δ > 0 such that for each n ∈ N,∫

{|fn|>n}
|fn| dµ ≥ δ. (5.2)

We may suppose, using Lemma 5.2.8 and passing to a subsequence, that every
fn can be written as

fn = fnχAn
+ fnχBn

,

where (An)∞n=1 is a sequence of disjoint sets in Σ, Bn = Ω\An, and (fnχBn
)∞n=1

is equi-integrable. Then observe that, since µ(|fn| > n)→ 0, we must have

lim
n→∞

∫
Bn∩{|fn|>n}

|fn|dµ = 0.

By deleting finitely many terms in the sequence (fn), we can assume that

an =
∫

An

|fn|dµ ≥ 1
2
δ, (5.3)

for all n.
By Lemma 5.1.1 the sequence (a−1

n fnχAn
)∞n=1 is a norm-one complemented

basic sequence in L1(µ) isometrically equivalent to the canonical �1-basis. Let
(hn) in L∞(µ) be the norm-one biorthogonal functionals chosen in the proof
of Lemma 5.1.1; each hn is supported on An. Since µAn → 0 and the set
{fχBk

}∞k=1 is equi-integrable we can pass to yet a further subsequence and
assume that ∫

An∩Bm

|fm| dµ <
1
4
2−nδ, m, n ∈ N.

Define T : L1(µ)→ �1 by

Tf =
(∫

Ω

fhndµ

)∞

n=1

and R : �1 → L1(µ) by

R(ξ) =
∞∑

n=1

ξna−1
n fn.

Then

TRek − ek =
(

a−1
k

∫
An∩Bk

fkhndµ

)∞

n=1

and we obtain the estimate∣∣∣∣a−1
k

∫
An∩Bk

fkhndµ

∣∣∣∣ ≤ 2−n−1.

Hence
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‖TRek − ek‖ ≤ a−1
k

∞∑
n=1

1
4
δ2−n ≤ 1

2
,

which yields ‖TR−I‖ ≤ 1
2 , where I is the identity operator on �1. This implies

TR is invertible so there is U : �1 → �1 such that UTR = I. RUT is a projec-
tion onto range of R, hence R maps �1 isomorphically onto a complemented
subspace of L1(µ); this shows that (fn)∞n=1 is a complemented basic sequence
equivalent to the �1-basis. Thus (iv) is contradicted and so (iv) implies (ii).

Let us point out that equation (5.3), which we obtained with the only
assumption that F failed to be equi-integrable, contradicts (v), hence in our
way we also obtained the implication (v)⇒ (ii).

Finally, let us prove (ii)⇒ (i). We must show that Fw∗
, the weak∗ closure

of F in the bidual of L1(µ), is contained in L1(µ).
For each M ∈ (0,∞), let us consider the sets

FM =
{
f · χ{|f |≤M} : f ∈ F

}
and

FM =
{
f · χ{|f |>M} : f ∈ F

}
.

It is obvious that F ⊂ FM + FM , therefore Fw∗
⊂ FM

w∗
+ FM

w∗
.

Let us notice that if f ∈ FM , we have ‖f‖2 ≤ ‖f‖∞ ≤M. Then,

FM ⊂MBL2(µ).

Since L2(µ) is reflexive, its closed unit ball is weakly compact. Therefore
MBL2(µ) is weakly compact for each M > 0 and so FM is a relatively weakly
compact set in L2(µ) for each M > 0. Being norm-to-norm continuous, the
inclusion ι : L2(µ) → L1(µ) is weak-to-weak continuous, so ι(FM ) = FM is
a relatively weakly compact set in L1(µ) for each M > 0. This is equivalent
to saying that for each positive M , the weak∗ closure of FM in the bidual of
L1(µ) is a subset of L1(µ), i.e.,

FM
w∗
⊂ L1(µ) for all M > 0.

On the other hand, if f ∈ FM , then ‖f‖1 ≤ ε(M), where ε(M) =
sup
f∈F

∫
{|f |>M} |f | dµ. Hence, FM ⊂ ε(M)BL1(µ). Using Goldstine’s theorem

we deduce that
FM

w∗
⊂ ε(M)BL1(µ)∗∗ .

Hence if f ∈ Fw∗
then we can write f = ψ + φ, with ψ ∈ L1(µ) and φ ∈

ε(M)BL1(µ)∗∗ . Therefore, for an arbitrary M > 0, d(f, L1(µ)) ≤ ε(M). Since
limM→∞ ε(M) = 0 by Lemma 5.2.6, d(f, L1(µ)) = 0 and f ∈ L1(µ).

��
We conclude this section with a simple deduction from this theorem.
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Theorem 5.2.10. L1(µ) is weakly sequentially complete.

Proof. Let (fn)∞n=1 ⊂ L1(µ) be a weakly Cauchy sequence. Then, no subse-
quence of (fn)∞n=1 can be equivalent to the canonical �1-basis, which is not
weakly Cauchy. Hence the set {fn}∞n=1 is relatively weakly compact by Theo-
rem 5.2.9 and this implies the sequence must actually be weakly convergent.

��

Corollary 5.2.11. The space c0 is not isomorphic to a subspace of L1(µ).

Proof. Since L1(µ) is weakly sequentially complete, by Corollary 2.4.15 every
WUC series in L1(µ) is unconditionally convergent so, by Theorem 2.4.11,
L1(µ) does not contain a copy of c0.

��

5.3 Weak compactness in M(K)

Suppose now that K is a compact Hausdorff space (not necessarily metriz-
able). The space M(K) = C(K)∗ as a Banach space is a “very large” �1-sum
of spaces L1(µ) where µ is a probability measure on K. This fact has already
been observed in the proof of Proposition 4.3.8 (iii). Using this it is possible to
extend Theorem 5.2.9 to the spacesM(K); however, we need some additional
characterizations of weak compactness in spaces of measures.

Definition 5.3.1. A subset A of M(K) is said to be uniformly regular if
given any open set U ⊂ K and ε > 0, there is a compact set H ⊂ U such that
|µ|(U \H) < ε for all µ ∈ A.

The next equivalences are due to Grothendieck [75].

Theorem 5.3.2. Let A be a bounded subset of M(K). The following are
equivalent:

(i) A is relatively weakly compact;
(ii) A is uniformly regular;
(iii) for any sequence of disjoint Borel sets (Bn)∞n=1 in K and any sequence of

measures (µn)∞n=1 in A, limn→∞ |µn|(Bn) = 0;
(iv) for any sequence of disjoint open sets (Un)∞n=1 in K and any sequence of

measures (µn)∞n=1 in A, limn→∞ µn(Un) = 0;
(iv)′ for any sequence of disjoint open sets (Un)∞n=1 in K and any sequence of

measures (µn)∞n=1 in A, limn→∞ |µn|(Un) = 0.

Remark 5.3.3. This theorem is true for either real or complex scalars. We
give the proof in the real case. It is easy to extend this to the complex case by
the simple procedure of splitting a complex measure into real and imaginary
parts.
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Proof. (iii)⇒ (iv) This is immediate because an open set is, in particular, a
Borel set and

0 ≤ |µn(Un)| ≤ |µn|(Un) n→∞−→ 0.

(iv) ⇒ (iv)′ Assume (iv)′ fails. Then there exist a sequence of open sets
(Un)∞n=1 in K and a sequence of regular signed measures on K, (µn)∞n=1 such
that (|µn|(Un))∞n=1 does not converge to 0.

For each n we can write µn as the difference of its positive and negative
parts: µn = µ+

n − µ−
n . Then the total variation of µn is the sum: |µn| = µ+

n +
µ−

n . Therefore, without loss of generality we will suppose that the sequence
(µ+

n (Un))∞n=1 does not converge to 0. By passing to a subsequence we can
assume that there exists δ > 0 such that µ+

n (Un) ≥ δ > 0 for all n.
Let us fix n ∈ N. Using the Hahn decomposition theorem, there is a Borel

set Bn ⊂ Un such that µn(Bn) = µ+
n (Un) ≥ δ. Now, by the regularity of µn,

there is an open set On such that Bn ⊂ On ⊂ Un and µn(On) ≥ δ
2 .

This way, we have a sequence of disjoint open sets (On)∞n=1 ⊂ K such that
(µn(On))∞n=1 does not converge to 0, contradicting (iv).

(iv)′ ⇒ (ii) Let us assume that A fails to be uniformly regular. Then there
is an open set U ⊂ K such that for some δ > 0 we have

sup
µ∈A

|µ|(U \H) > δ,

for all compact sets H ⊂ K.
Given H0 = ∅, pick µ1 ∈ A so that |µ1|(U \H0) > δ. By regularity of the

measure µ1 there exists a compact set F1 ⊂ U \ H0 such that |µ1|(F1) > δ.
Using the T4 separation property, we find an open set V1 satisfying

F1 ⊂ V1 ⊂ V1 ⊂ U \H0.

Now, given the compact set H1 = V1 there is µ2 ∈ A such that |µ2|(U \H1) >
δ. By regularity of µ2 there exists a compact set F2 ⊂ U \ H1 such that
|µ2|(F2) > δ and the T4 separation property yields an open set V2 such that

F2 ⊂ V2 ⊂ V2 ⊂ U \H1.

For the next step in this recurrence argument we would pick H2 = V1∪V2 and
repeat the previous procedure. This way, by induction we obtain a sequence
of disjoint open sets (Vn)∞n=1 ⊂ K and a sequence (µn)∞n=1 ⊂ A such that
|µn|(Vn) > δ for all n, contradicting (ii).

(ii)⇒ (i) In order to prove that A is relatively weakly compact in M(K),
by the Eberlein-S̆mulian theorem it suffices to show that any sequence (µn) ⊂
A is relatively weakly compact.

Let us consider the (positive) finite measure on the Borel sets of K given
by

µ =
∞∑

n=1

1
2n
|µn|.
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Every µn is absolutely continuous with respect to µ. By the Radon-Nikodym
theorem, for each n there exists a unique fn ∈ L1(K, µ) such that dµn = fn dµ
and ‖µn‖ =

∫
K
|fn| dµ. This provides an isometric isomorphism from L1(µ)

onto the closed subspace of M(K) consisting of the regular signed measures
on K which are absolutely continuous with respect to µ. The isometry, in
particular, takes each fn in L1(K, µ) to µn. Therefore we need only show that
(fn) is equi-integrable in L1(K, µ).

If (fn) is not equi-integrable, using (ii) we find a sequence (Un) of open
sets and some ε > 0 such that µ(Un) < 2−n and supk

∫
Un
|fk| dµ > ε. For each

n put Vn =
⋃

k>n Uk. (Vn) is a decreasing sequence of open sets such that
µ(Vn) < 2−n and

sup
k

∫
Vn

|fk| dµ > ε. (5.4)

Now, for each n there exists En compact, En ⊂ Vn, for which

sup
k

∫
Vn\En

|fk| dµ <
ε

2n+2
.

Obviously, µ(
⋂∞

n=1 En) = 0. The uniform regularity yields an open set W such
that

⋂∞
n=1 En ⊂ W and supk

∫
W
|fk| dµ < ε

2 . By compactness there exists N

such that
⋂N

n=1 En ⊂W and so∫
TN

n=1 En

|fk| dµ <
ε

2
for each k.

Thus, for each k we have

∫
VN+1

|fk| dµ ≤
∫

TN
n=1 En

|fk| dµ +
N∑

n=1

∫
Vn\En

|fk| dµ <
ε

2
+

N∑
k=1

ε

2k+2
< ε,

which contradicts (5.4).
(i) ⇒ (iii) Let (Bn)∞n=1 be an arbitrary sequence of disjoint Borel sets in

K and (µn)∞n=1 be an arbitrary sequence of measures in A. Put

µ =
∞∑

n=1

1
2n
|µn|.

Reasoning as we did in the previous implication, for each n there exists a
unique gn ∈ L1(K, µ) such that dµn = gn dµ. If A is relatively weakly compact
inM(K) the sequence (gn)∞n=1 is relatively weakly compact in L1(K, µ), hence
equi-integrable. Thus, since µ(Bn)→ 0, we have

|µn|(Bn) =
∫

Bn

|gn| dµ→ 0.

��
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5.4 The Dunford-Pettis property

Definition 5.4.1. Let X and Y be Banach spaces. A bounded linear operator
T : X → Y is completely continuous or a Dunford-Pettis operator if whenever
W is a weakly compact subset of X then T (W ) is a norm-compact subset of
Y .

Clearly, if an operator is compact then it is Dunford-Pettis. If X is reflexive
then an operator T : X → Y is compact if and only if T is Dunford-Pettis.

Proposition 5.4.2. Suppose that X and Y are Banach spaces. A linear oper-
ator T : X → Y is Dunford-Pettis if and only if T is weak-to-norm sequentially
continuous, i.e., whenever (xn)∞n=1 ⊂ X converges to x weakly then (Txn)∞n=1

converges to Tx in norm.

Proof. Let T : X → Y be Dunford-Pettis and suppose that there is a weakly
null sequence (xn)∞n=1 ⊂ X such that ‖Txn‖ ≥ δ > 0 for some positive δ.
Since the subset W = {xn : n ∈ N} ∪ {0} is weakly compact, its image
under T is norm-compact, therefore it contains a subsequence (T (xnk

))∞k=1

that converges in norm to some y ∈ Y . From the fact that T , in particular, is
weak-to-weak continuous, it follows that the sequence (T (xn))∞n=1 is weakly
null, so y must be 0, which contradicts our assumption.

For the converse implication, suppose T is weak-to-norm sequentially con-
tinuous. Let W be a weakly compact subset of X and let (yn)∞n=1 be a sequence
in T (W ). Pick (xn) in X so that yn = Txn for all n. By the Eberlein-S̆mulian
theorem (xn) contains a subsequence (xnk

) that converges weakly to some x
in W . Hence (ynk

)∞k=1 converges in norm to Tx. We conclude that T (W ) is
norm-compact.

��
The following definition was introduced by Grothendieck [75] as an ab-

straction of ideas originally developed by Dunford and Pettis [45].

Definition 5.4.3. A Banach space X is said to have the Dunford-Pettis prop-
erty (or, in short, X has (DPP)) if every weakly compact operator T from X
into a Banach space Y is Dunford-Pettis.

For example c0 has (DPP) because if Y is a Banach space and T : c0 → Y
is a weakly compact operator then T is compact, hence Dunford-Pettis. �1 has
also (DPP) because �1 has the Schur property, which implies, as we saw, that
weakly compact subsets in �1 are actually compact.

On the other hand, no infinite-dimensional reflexive Banach space X has
(DPP) since the identity operator I : X → X is weakly compact but cannot
be a Dunford-Pettis operator because the closed unit ball of X is not compact.

Theorem 5.4.4. Suppose that X is a Banach space. Then X has (DPP) if
and only if for every sequence (xn)∞n=1 in X converging weakly to 0 and ev-
ery sequence (x∗

n)∞n=1 in X∗ converging weakly to 0, the sequence of scalars
(x∗

n(xn))∞n=1 converges to 0.
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Proof. Let Y be a Banach space and T : X → Y a weakly compact operator.
Let us suppose that T is not Dunford-Pettis. Then there is (xn)∞n=1 in X such
that xn

w→ 0 but ‖Txn‖ ≥ δ > 0 for all n.
Pick (y∗

n)∞n=1 ⊂ Y ∗ such that y∗
n(Txn) = ‖Txn‖ and ‖y∗

n‖ = 1 for all
n. By Gantmacher’s theorem T ∗ is weakly compact hence T ∗(BY ∗) is a
relatively weakly compact subset of X∗. By the Eberlein-S̆mulian theorem
the sequence (T ∗y∗

n)∞n=1 ⊂ T ∗(BY ∗) can be assumed weakly convergent to
some x∗ in X∗. Then (T ∗y∗

n − x∗)∞n=1 is weakly convergent to 0, which im-
plies (T ∗y∗

n − x∗)(xn) → 0. But, since x∗(xn) → 0, it would follow that
(T ∗y∗

n(xn))∞n=1 = (‖Txn‖)∞n=1 must converge to 0, which is absurd.
For the converse, let (xn) in X be such that xn

w→ 0 and (x∗
n) in X∗ be

such that x∗
n

w→ 0. Consider the operator

T : X −→ c0, Tx = (x∗
n(x)).

The adjoint operator T ∗ of T satisfies T ∗ek = x∗
k for all k ∈ N, where (ek)

denotes the canonical basis of �1. This implies that T ∗(B�1) is contained in the
convex hull of the weakly null sequence (x∗

n). Therefore T ∗ is weakly compact,
hence by Gantmacher’s theorem so is T .

As T is weakly compact, T is also Dunford-Pettis by the hypothesis. Then,
by Proposition 5.4.2, ‖Txn‖∞ → 0. Thus (x∗

n(xn))∞n=1 converges to 0 since,
for all n,

|x∗
n(xn)| ≤ max

k
|x∗

k(xn)| = ‖Txn‖∞ .

��
We now reach the main result of the chapter. The fact that L1(µ)-spaces

have (DPP) is due to Dunford and Pettis [45] (at least for the case when L1(µ)
is separable) and to Phillips [180]. The case of C(K)-spaces was covered by
Grothendieck in [75].

Theorem 5.4.5 (The Dunford-Pettis Theorem).

(i) If µ is a σ-finite measure then L1(µ) has (DPP).
(ii) If K is a compact Hausdorff space then C(K) has (DPP).

Proof. Let us first prove part (ii). Take any weakly null sequence (fn)∞n=1

in C(K) and any weakly null sequence (µn)∞n=1 in M(K). Without loss of
generality both sequences can be assumed to lie inside the unit balls of the
respective spaces. Define the (positive) measure

ν =
∞∑

n=1

1
2n
|µn|.

Clearly each µn is absolutely continuous with respect to ν. By the Radon-
Nikodym theorem, for each n there exists a nonnegative, Borel-measurable
function gn such that dµn = gn dν and ‖µn‖ =

∫
K

gn dν. This provides an
isometry from L1(ν) onto the closed subspace of M(K) consisting of the
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regular signed measures on K which are absolutely continuous with respect
to ν. This isometry in particular takes each gn in L1(ν) to µn. Therefore the
sequence (gn)∞n=1 is weakly null. Thus the set {gn ; n ∈ N} is relatively weakly
compact in L1(ν), hence equi-integrable.

Now for any M > 0, by the Bounded Convergence theorem, we have that

lim
n→∞

∫
|gn|≤M

fngn dν = 0.

Hence
lim sup

n→∞

∫
fngn dν ≤ sup

n

∫
|gn|>M

|gn| dν.

Note that the right-hand side term tends to zero as M →∞ by Lemma 5.2.6.
Then

lim
n→∞

∫
fn dµn = 0

as required.
(i) follows from (ii) since the dual space of L1(µ), L∞(µ), can be re-

garded as a C(K)-space for a suitable compact Hausdorff space K. Hence if
(fn)∞n=1 is weakly null in L1(µ) and (gn)∞n=1 is weakly null in L∞(µ) then
limn→∞

∫
fngn dµ = 0 by the preceding argument.

��

Corollary 5.4.6. If K is a compact Hausdorff space then M(K) has (DPP).

The Dunford-Pettis theorem was a remarkable achievement in the early
history of Banach spaces. The motivation of Dunford and Pettis came from the
study of integral equations and their hope was to develop an understanding
of linear operators T : Lp(µ) → Lp(µ) for p ≥ 1. In fact the Dunford-Pettis
theorem immediately gives the following application.

Theorem 5.4.7. Let T : L1(µ) → L1(µ) or T : C(K) → C(K) be a weakly
compact operator. Then T 2 is compact.

Proof. This is immediate. For example, in the first case, T (BL1(µ)) is relatively
weakly compact hence T 2(BL1(µ)) is relatively norm compact.

��
It is well known that compact operators have very nice spectral properties.

For instance, any nonzero λ in the spectrum is an eigenvalue, and the only
possible accumulation point of the spectrum is 0. These properties extend in
a very simple way to an operator whose square is compact, so the previous
result means that weakly compact operators on L1(µ)-spaces or C(K)-spaces
have similar properties. The Dunford-Pettis theorem was thus an important
step in the development of the theory of linear operators in the first half of
the twentieth century; this theory reached its apex in the publication of a
three-volume treatise by Dunford and Schwartz between 1958 and 1971 ([46],
[47], and [48]). The first of these volumes alone runs to more than 1000 pages!
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The original proof of Dunford and Pettis relied heavily on the theory of
representations for operators on L1. In order to study an operator T : L1(µ)→
X one can associate it to a vector measure ν : Σ→ X given by ν(E) = TχE .
Thus ‖ν(E)‖ ≤ ‖T‖µ(E). Dunford and Pettis [45] and Phillips [180] showed
that if T is weakly compact one can prove a vector-valued Radon-Nikodym
theorem and thus produce a Bochner integrable function g : Ω→ X so that

µ(E) =
∫

E

g(ω) dµ(ω).

This permits a representation for the operator T in the form

Tf =
∫

g(ω)f(ω)dµ(ω),

and they established the Dunford-Pettis theorem from this representation.
In particular if X is reflexive, every operator T : L1(µ) → X is weakly

compact, and one has a Radon-Nikodym theorem for vector measures taking
values in X. It was also shown by Dunford and Pettis [45] that this property
is also enjoyed by any separable Banach space which is also a dual space
(separable dual spaces). This was the springboard for the definition of the
Radon-Nikodym Property (RNP) for Banach spaces, which led to a remarkable
theory developed largely between 1965 and 1980. We will not follow up on this
direction in this book. A very nice account of this theory is contained in the
book of Diestel and Uhl from 1977 [42].

One of the surprising aspects of this theory is the connection between the
Radon-Nikodym Property and the Krein-Milman Property (KMP). A Banach
space X has (KMP) if every closed bounded (not necessarily compact!) con-
vex set is the closed convex hull of its extreme points. Obviously reflexive
spaces have (KMP) but, remarkably, any space with (RNP) has (KMP) (Lin-
denstrauss [128]). The converse remains the major open problem in this area;
the best results in this direction are due to Phelps [179] and Schachermayer
[201]. It is probably fair to say that the subject has received relatively little
attention since the 1980s and some really new ideas seem to be necessary to
make further progress.

5.5 Weakly compact operators on C(K)-spaces

Let us refer back again to Theorem 2.4.10. In that theorem it was shown that
for operators T : c0 → X the properties of being weakly compact, compact,
or strictly singular are equivalent. For general C(K)-spaces we have seen that
weak compactness implies Dunford-Pettis. Next we turn to strict singularity.

Theorem 5.5.1. Let K be a compact Hausdorff space. If T : C(K) → X is
weakly compact then T is strictly singular.
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Proof. Let Y be a subspace of C(K) such that T |Y is an isomorphism onto
its image. Since T is weakly compact, T (BY ) is relatively weakly compact,
which implies that BY is weakly compact. But T (BY ) is actually compact
by the Dunford-Pettis theorem, Theorem 5.4.5. It follows that Y is finite-
dimensional.

��
Remark 5.5.2. Clearly, Theorem 5.5.1 also holds replacing C(K) by L1(µ).

The following result by Pe�lczyński [171] is a much more precise statement
than Theorem 5.5.1.

Theorem 5.5.3 (Pe�lczyński). Suppose K is a compact Hausdorff space
and X is a Banach space. Suppose that T : C(K) → X is a bounded linear
operator. If T fails to be weakly compact then there is a closed subspace E of
C(K) isomorphic to c0 such that T |E is an isomorphism.

Proof. Suppose that T : C(K) → X fails to be weakly compact. Then, by
Gantmacher’s theorem, its adjoint operator T ∗ : X∗ → M(K) also fails to
be weakly compact, and so the subset T ∗(BX∗) of M(K) is not relatively
weakly compact. By Theorem 5.3.2, there exists δ > 0, a disjoint sequence of
open sets (Un)∞n=1 in K, and a sequence (x∗

n)∞n=1 in BX∗ such that if we call
νn = T ∗x∗

n then νn(Un) > δ for all n.
For each n there exists a compact subset Fn of Un, such that |ν|(Un\Fn) <

δ
2 . By Urysohn’s lemma there exists fn ∈ C(K), 0 ≤ fn ≤ 1, such that fn = 0
on K \ Un and fn = 1 on Fn. Then (fn)∞n=1 is isometrically equivalent to the
canonical basis of c0, which implies that [fn], the closed linear span of the
basic sequence (fn), is isometrically isomorphic to c0. Let S : c0 → C(K) be
the isometric embedding defined by Sen = fn where (en)∞n=1 is the canonical
basis of c0.

Consider the operator TS : c0 → X. We claim that TS cannot be com-
pact. Indeed since (en)∞n=1 is weakly null, if TS were compact we would have
limn→∞ ‖TSen‖ = 0. However,

x∗
n(TSen) = x∗

n(Tfn)
= (T ∗x∗

n)(fn)

=
∫

K

fn dνn

=
∫

Un

dνn +
∫

Un

(fn − 1) dνn

≥ δ − |νn|(Un \ En)

≥ δ

2
.

Thus TS is not compact and, by Theorem 2.4.10, it is also not strictly sin-
gular. In fact TS must be an isomorphism on a subspace isomorphic to c0

(Proposition 2.2.1).
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��

Corollary 5.5.4. Let X be a Banach space such that no closed subspace of
X is isomorphic to c0. Then any operator T : C(K)→ X is weakly compact.

Using the above theorem we can now say a little bit more about injective
Banach spaces.

Theorem 5.5.5. Suppose X is an injective Banach space and T : X → Y
is a bounded linear operator. If T fails to be weakly compact then there is
a closed subspace F of �∞ such that F is isomorphic to �∞ and T |F is an
isomorphism.

Proof. We start by embedding X isometrically into an �∞(Γ)-space; this can
be done by taking Γ = BX∗ and using the embedding x �→ x̂, where x̂(x∗) =
x∗(x).

Since X is injective there is a projection P : �∞(Γ)→ X. Now the operator
TP : �∞(Γ) → Y is not weakly compact; since �∞(Γ) can be represented as
a C(K)-space we can find a subspace E of �∞(Γ) which is isomorphic to c0

and such that TP |E is an isomorphism. Let J : c0 → E be any isomorphism.
Since X is injective we can find a bounded linear extension S : �∞ → X
of the operator PJ : c0 → X. Note also that TPJ maps c0 isomorphically
onto a subspace G of Y and thus using the fact that �∞ is injective we can
find a bounded linear operator R : Y → �∞ which extends the operator
(TPJ)−1 : G→ c0. Thus we have the following commutative diagram:

�∞
S �� X

T �� Y
R �� �∞

c0
��

��

PJ �� X
T �� G

R ����

��

c0
��

��

The operator in the second row, namely, RTPJ , is the identity operator I
on c0 and RTS : �∞ → �∞ is an extension. Thus the operator RTS − I on
�∞ vanishes on c0. We can now refer back to Theorem 2.5.4 to deduce the
existence of a subset A of N so that RTS− I vanishes on �∞(A). In particular
RTS is an isomorphism from �∞(A) to its range. This requires that F = S(�∞)
is isomorphic to �∞, and T |F is an isomorphism.

��

5.6 Subspaces of L1(µ)-spaces and C(K)-spaces

Our first result in this section is a direct application of Theorem 5.4.7.

Proposition 5.6.1. L1(µ) and C(K) have no infinite-dimensional comple-
mented reflexive subspaces.
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Proposition 5.6.2. If X is a nonreflexive subspace of L1(µ) then X contains
a subspace isomorphic to �1 and complemented in L1(µ).

Proof. If X is nonreflexive, its closed unit ball BX is not weakly compact,
therefore BX is not an equi-integrable set in L1(µ). The proposition then
follows from Theorem 5.2.9.

��
Combining Proposition 5.6.1 and Proposition 5.6.2 gives us:

Proposition 5.6.3. If X is an infinite-dimensional complemented subspace
of L1(µ) then X contains a complemented subspace isomorphic to �1.

The analogous result for C(K)-spaces is just as easy:

Proposition 5.6.4. Let K be a compact metric space. If X is an infinite-
dimensional complemented subspace of C(K) then X contains a complemented
subspace isomorphic to c0.

Proof. Again by Proposition 5.6.1, X is nonreflexive and hence any projection
P onto it fails to be weakly compact. By Theorem 5.5.3, X must contain a
subspace isomorphic to c0, and this subspace must be complemented because
(since K is metrizable) X is separable (by Sobczyk’s theorem, Theorem 2.5.8).

��
Note here that if K is not metrizable we can obtain a subspace isomorphic

to c0, but it need not be complemented. In the case of �∞ we can use these
techniques to add this space to our list of prime spaces. This result is due
to Lindenstrauss [129] and it completes our list of classical prime spaces.
We remind the reader of Pe�lczyński’s result that the sequence spaces �p for
1 ≤ p <∞ and c0 are prime (Theorem 2.2.4).

Theorem 5.6.5. �∞ is prime.

Proof. Let X be an infinite-dimensional complemented subspace of �∞. We
have already seen that X cannot be reflexive (Proposition 5.6.1) and hence
a projection P onto X cannot be weakly compact. In this case we can use
Theorem 5.5.5 to deduce that X contains a copy of �∞. Since �∞ is injective,
X actually contains a complemented copy of �∞ (Proposition 2.5.2). We are
now ready to use Proposition 2.2.3 (b) in the case p =∞ and we deduce that
X ≈ �∞.

��

Corollary 5.6.6. There are no infinite-dimensional separable injective Ba-
nach spaces.

Proof. Suppose that X is a separable injective space. X embeds isometrically
into �∞ by Theorem 2.5.7. Since X is injective, it embeds complementably
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into �∞, which is a prime space. That forces X to be isomorphic to �∞, a
contradiction because �∞ is nonseparable.

�
It is quite clear that the spaces L1 and C[0, 1] cannot be prime; the former

contains a complemented subspace isomorphic to �1 and the latter contains
a complemented subspace isomorphic to c0. However, the classification of the
complemented subspaces of these classical function spaces remains a very
intriguing and important open question.

In the case of L1 the following conjecture remains open:

Conjecture 5.6.7. Every infinite-dimensional complemented subspace of L1

is isomorphic to L1 or �1.

The best result known in this direction is the Lewis-Stegall theorem from 1973
that any complemented subspace of L1 which is a dual space is isomorphic
to �1 [125]. (More generally, we can replace the dual space assumption by the
Radon-Nikodym property.) Later we will develop techniques which show that
any complemented subspace with an unconditional basis is isomorphic to �1
(an earlier result which is due to Lindenstrauss and Pe�lczyński [131]).

The corresponding conjecture for C[0, 1] is:

Conjecture 5.6.8. Every infinite-dimensional complemented subspace of
C[0, 1] is isomorphic to a C(K)-space for some compact metric space K.

Here the best positive result known is due to Rosenthal [195] who proved
that if X is a complemented subspace of C[0, 1] with nonseparable dual then
X ≈ C[0, 1]. We refer to the survey article of Rosenthal [199] for a fuller
discussion of this problem,

Since both these spaces fail to be prime, it is natural to weaken the notion:

Definition 5.6.9. A Banach space X is primary if whenever X ≈ Y ⊕Z then
either X ≈ Y or X ≈ Z.

The spaces L1 and C[0, 1] are both primary. In the case of L1 this result is
due to Enflo and Starbird [55] (for an alternative approach see [103]). In the
case of C[0, 1] this was proved by Lindenstrauss and Pe�lczyński in 1971 [132],
but of course it follows from Rosenthal’s result cited above [195], which was
proved slightly later, since one factor must have nonseparable dual.

Problems

5.1. Show that there is a sequence (an)n∈Z ∈ c0(Z) which is not the Fourier
transform of any f ∈ L1(T).

5.2. Let X be a Banach space that does not contain a copy of �1. Show that
every Dunford-Pettis operator T : X → Y , with Y any Banach space, is
compact.
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5.3. Show that the identity operator I�1 : �1 → �1 is Dunford-Pettis.

5.4. Let X be a Banach space that does not contain a copy of �1; show that
every operator T : X → L1 is weakly compact.

5.5. Let µ be a probability measure. Show that an operator T : L1(µ) → X
is Dunford-Pettis if and only if T restricted to L2(µ) is compact.

5.6. In this exercise we work in the complex space Lp(T) (1 ≤ p <∞), where
T is the unit circle with the normalized Haar measure dθ/2π. We identify
functions f on T with 2π-periodic functions on R. The Fourier coefficients of
f in L1(T) are given by

f̂(n) =
∫ π

−π

f(θ)e−inθ dθ

2π
, n ∈ Z.

For measures µ ∈M(T) we write

µ̂(n) =
∫ π

−π

e−inθ dµ(θ).

(a) Let µ be a Borel measure on the unit circle T so that µ ∈ M(T). Show
that for 1 ≤ p <∞ the map Tµ : Lp(T, dθ/2π)→ Lp(T, dθ/2π) defined by

Tµf(s) = µ ∗ f(s) =
∫

f(s− t)dµ(t) a.e.

is a well-defined bounded operator with ‖Tµ‖ ≤ ‖µ‖. [Note that Tµ maps
continuous functions and can be extended to Lp(µ) by continuity.]
(b) Show that Tµen = µ̂(n)en, where en(t) = eint. Deduce that Tµ is Dunford-
Pettis if and only if limn→∞ µ̂(n) = 0.

(c) Show that Tµ : L1(T) → L1(T) is weakly compact if and only if µ is
absolutely continuous with respect to Lebesgue measure. [Hint: To show that µ
is absolutely continuous, consider Tµfn where fn is a sequence of nonnegative
continuous functions with

∫
fn(t)dt/2π = 1 and whose supports shrink to 0.]

5.7. Let T : �∞ → X be a weakly compact operator which vanishes on c0.
Show that there exists an infinite subset A of N so that T |�∞(A) = 0. [Hint:
Mimic the argument in Theorem 2.5.4.]

5.8. If T : �∞ → X is a weakly compact operator show that, for any ε > 0,
there exists an infinite subset A of N so that T : �∞(A)→ X is compact and
‖T |�∞(A)‖ < ε.

5.9. Show that if X is a Banach space containing �∞ and E is a closed sub-
space of X then either E contains �∞ or X/E contains �∞.

5.10. Show that every injective Banach space X contains a copy of �∞.
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5.11. Suppose X is a Banach space with a closed subspace E so that X/E
is isomorphic to L1. Show that E⊥⊥ is complemented in X∗∗. [Hint: Use the
injectivity of L∞.]

5.12 (Lindenstrauss [127]). Show that �1 has a subspace E which is not
complemented in its bidual. [Hint: Use the kernel of a quotient map onto L1.]
Show that this subspace also has no unconditional basis.



6

The Lp-Spaces for 1 ≤ p < ∞

In this chapter we will initiate the study of the Banach space structure of
the spaces Lp(µ) where 1 ≤ p < ∞. We will be interested in some natural
questions which ask which Banach spaces can be isomorphic to a subspace of
a space Lp(µ). Questions of this type were called problems of linear dimension
by Banach in his book [8].

If 1 < p < ∞ the Banach space Lp(µ) is reflexive while L1(µ) is nonre-
flexive; we will see that this is just an example of a discontinuity in behavior
when p = 1. We will also show certain critical differences between the cases
1 < p < 2 and 2 < p <∞.

Before proceeding we note that, just as with L1(µ)-spaces, any space Lp(ν)
with ν a σ-finite measure is isometric to a space Lp(µ) where µ is a proba-
bility measure. We also note that if K is a Polish space and µ is nonatomic
probability measure defined on the Borel sets of K then Lp(K, µ) is isometric
to Lp[0, 1] and the isometry is implemented by a map of the form f �→ f ◦ σ,
where σ : K → [0, 1] is a Borel isomorphism that preserves measure. We refer
the reader to the discussion in Section 5.1. For this reason it is natural to
restrict our study to the spaces Lp[0, 1] in many cases. From now on we will
use the abbreviation Lp for the space Lp[0, 1].

6.1 Conditional expectations and the Haar basis

Let (Ω, Σ, µ) be a probability measure space, and Σ′ a sub-σ-algebra of Σ.
Given f ∈ L1(Ω,Σ, µ) we define a (signed) measure, ν, on Σ′:

ν(E) =
∫

E

f dµ, E ∈ Σ′.

ν is absolutely continuous with respect to µ|Σ′ , hence by the Radon-Nikodym
theorem, there is a (unique, up to sets of measure zero) function ψ ∈
L1(Ω, Σ′, µ) such that
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ν(E) =
∫

E

ψ dµ, E ∈ Σ′.

Then ψ is the (unique) function that satisfies∫
E

f dµ =
∫

E

ψ dµ, E ∈ Σ′.

ψ is called the conditional expectation of f on the σ-algebra Σ′ and will be
denoted by E(f |Σ′).

Let us notice that if Σ′ consists of countably many disjoint atoms (An)∞n=1,
the definition of E(f |Σ′) is specially simple:

E(f |Σ′)(t) =
∞∑

j=1

1
µ(Aj)

( ∫
Aj

f dµ
)
χAj

(t).

We also observe that if f ∈ Lp(µ) where 1 ≤ p < ∞ and g ∈ Lq(Ω,Σ′, µ)
where 1

p + 1
q then ∫

E

g dν =
∫

fg dµ, E ∈ Σ′,

and
E(fg |Σ′) = gE(f |Σ′).

Lemma 6.1.1. Let (Ω, Σ, µ) be a probability measure space and suppose Σ′

is a sub-σ-algebra of Σ. Then for every 1 ≤ p ≤ ∞, E( · |Σ′) is a norm-one
linear projection from Lp(Ω, Σ, µ) onto Lp(Ω,Σ′, µ).

Proof. We denote E = E(· |Σ′). It is immediate to check that E2 = E for all
1 ≤ p ≤ ∞.

Fix 1 ≤ p <∞ (we leave the case p =∞ to the reader). If f ∈ Lp(µ),

‖E(f)‖p = sup
{∫

Ω

E(f)g dµ : g ∈ Lq(Ω,Σ′, µ), ‖g‖q ≤ 1
}

= sup
{∫

Ω

E(fg) dµ : g ∈ Lq(Ω, Σ′, µ), ‖g‖q ≤ 1
}

= sup
{∫

Ω

fg dµ : g ∈ Lq(Ω, Σ′, µ), ‖g‖q ≤ 1
}

≤ ‖f‖p .
��

Definition 6.1.2. The sequence of functions on [0, 1], (hn)∞n=1, defined by
h1 = 1 and for n = 2k + s (where k = 0, 1, 2, . . . , and s = 1, 2, . . . , 2k),

hn(t) =

⎧⎪⎨
⎪⎩

1 if t ∈ [ 2s−2
2k+1 , 2s−1

2k+1 )
−1 if t ∈ [ 2s−1

2k+1 , 2s
2k+1 )

0 otherwise
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= χ[ 2s−2
2k+1 , 2s−1

2k+1 )(t)− χ[ 2s−1
2k+1 , 2s

2k+1 )(t)

is called the Haar system.

Given k = 0, 1, 2, . . . and 1 ≤ s ≤ 2k, each interval of the form [ s−1
2k , s

2k )
is called dyadic. It is often useful to label the elements of the Haar system by
their supports; thus we write hI to denote hn when I is the dyadic interval
support of hn.

Proposition 6.1.3. The Haar system is a monotone basis in Lp for 1 ≤ p <
∞.

Proof. Let us consider an increasing sequence of σ-algebras, (Bn)∞n=1, con-
tained in the Borel σ-algebra of [0, 1] defined as follows: we let B1 be the
trivial σ-algebra, {∅, [0, 1]}, and for n = 2k + s (k = 0, 1, 2, . . . ,1 ≤ s ≤ 2k) we
let Bn be the finite subalgebra of the Borel sets of [0, 1] whose atoms are the
dyadic intervals of the family

Fn =

{
[ j−1
2k+1 , j

2k+1 ) for j = 1, . . . , 2s

[ j−1
2k , j

2k ) for j = s + 1, . . . , 2k.

Fix 1 ≤ p < ∞. For each n, En will denote the conditional expectation
operator on the σ-algebra Bn. By Lemma 6.1.1, En is a norm-one projection
from Lp onto Lp([0, 1],Bn, λ), the space of functions which are constant on
intervals of the family Fn. We will denote this space by Lp(Bn). Clearly, rank
En = n. Furthermore, EnEm = EmEn = Emin{m,n} for any two positive integers
m,n.

On the other hand, the set{
f ∈ Lp : ‖En(f)− f‖p → 0

}
is closed (using the partial converse of the Banach-Steinhaus theorem, see the
Appendix) and contains the set ∪∞

k=1Lp(Bk), which is dense in Lp. Therefore
‖En(f)− f‖p → 0 for all f ∈ Lp. By Proposition 1.1.7, Lp has a basis whose
natural projections are (En)∞n=1. This basis is actually the Haar system because
for each n ∈ N, Em(hn) = hn for m ≥ n and Emhn = 0 for m < n. The basis
constant is supn ‖En‖ = 1.

��
The Haar system as we have defined it is not normalized in Lp for 1 ≤ p <

∞ (it is normalized in L∞). To normalize in Lp one should take hn/‖hn‖p =
|In|−1/phn, where In denotes the support of the Haar function hn.

Let us observe that if f ∈ Lp (1 ≤ p <∞), then

Enf − En−1f =
( 1
|In|

∫
f(t)hn(t) dt

)
hn.

We deduce that the dual functionals associated to the Haar system are given
by
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h∗
n =

1
|In|

hn, n ∈ N,

and the series expansion of f ∈ Lp in terms of the Haar basis is

f =
∞∑

n=1

( 1
|In|

∫
f(t)hn(t) dt

)
hn.

Notice that if p = 2 then (hn/‖hn‖2)∞n=1 is an orthonormal basis for the
Hilbert space L2 and is thus unconditional.

It is an important fact that, actually, the Haar basis is an unconditional
basis in Lp for 1 < p <∞. This was first proved by Paley [165] in 1932. Much
more recently, Burkholder [20] established the best constant.

We are going to present another proof of Burkholder from 1988 [21]. We
will only treat the real case here, although, remarkably, the same proof works
for complex scalars with the same constant; however, the calculations needed
for the complex case are a little harder to follow. For our purposes the constant
is not so important, and we simply note that if the Haar basis is unconditional
for real scalars, one readily checks it is also unconditional for complex scalars.
There is one drawback to Burkholder’s argument: it is simply too clever in
the sense that the proof looks very like magic.

We start with some elementary calculus.

Lemma 6.1.4. Suppose p > 2 and 1
p + 1

q = 1. Then for 0 ≤ t ≤ 1 we have

tp − ppq−p(1− t)p ≤ p2q1−p(t− 1
q
). (6.1)

Proof. For 0 ≤ t ≤ 1 put

f(t) = tp − ppq−p(1− t)p − p2q1−p(t− 1
q
).

Then
f ′(t) = ptp−1 + pp+1q−p(1− t)p−1 − p2q1−p

and
f

′′
(t) = p(p− 1)tp−2 − pp+1(p− 1)q−p(1− t)p−2.

Observe that f(0) = −ppq−p + p2q−p < 0 and f(1) = 1 − pq1−p. Since
p > 2 we have (1− 1

p )p−1 > 1
p , i.e., pq1−p > 1; thus f(1) < 0.

Next note that f( 1
q ) = 0 and

f ′(
1
q
) = pq1−p + p2q−p − p2q1−p = 0.

We also have
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f
′′
(
1
q
) = (p− 1)(pq2−p − p3q−p) = (p− 1)pq−p(q2 − p2) < 0.

Assume that there exists some 0 < s < 1 with f(s) > 0. Then there
must exist at least three solutions of f ′(t) = 0 in the open interval (0, 1),
including 1/q. By Rolle’s theorem this means there are at least two solutions
of f

′′
(t) = 0, which is clearly false.

��
In the next lemma we introduce a mysterious function which will enable

us to prove Burkholder’s theorem. This function appears to be plucked out
of the air although there are sound reasons behind its selection. The use of
such functions to prove sharp inequalities has been developed extensively by
Nazarov, Treil, and Volberg who term them Bellman functions. We refer to
[156] for a discussion of this technique.

Lemma 6.1.5. Suppose p > 2 and define ϕ : R2 → R by

ϕ(x, y) = (|x|+ |y|)p−1
(
(p− 1)|x| − |y|

)
.

(i) If 1/p + 1/q = 1, the following inequality holds for all (x, y) ∈ R2

(p− 1)p|x|p − |y|p ≥ pq1−pϕ(x, y). (6.2)

(ii) ϕ is twice continuous differentiable and satisfies the condition

∂2ϕ

∂y2
+

∂2ϕ

∂x2
= 2

∣∣∣∣ ∂2ϕ

∂x∂y

∣∣∣∣ ≥ 0. (6.3)

Proof. (i) If we substitute t = |y|(|x|+ |y|)−1 (for (x, y) �= (0, 0)) in equation
(6.1) we have

|y|p − ppq−p|x|p ≤ pq1−p(|y| − (p− 1)|x|)(|x|+ |y|)p−1.

Thus
ppq−p|x|p − |y|p ≥ pq1−pϕ(x, y).

Note that ppq−p = (p− 1)p.
(ii) The fact that ϕ is twice continuously differentiable is immediate since

p > 2.
Clearly, it suffices to prove (6.3) in the first quadrant, where x > 0, y > 0.

Let u = x + y and v = (p− 1)x− y. Then ϕ(x, y) = up−1v. Hence

∂2ϕ

∂y2
= (p− 1)(p− 2)up−3v − 2(p− 1)up−2

while
∂2ϕ

∂x2
= (p− 1)(p− 2)up−3v + 2(p− 1)2up−2.
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Hence
∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 2(p− 1)(p− 2)up−3(u + v) ≥ 0.

On the other hand, since ϕ is linear on any line of slope one (or by routine
calculation) we must also have

∂2ϕ

∂x∂y
= (p− 1)(p− 2)up−3(u + v).

��

Theorem 6.1.6. Suppose 1 < p < ∞ and 1
p + 1

q = 1. Let p∗ = max(p, q).
The Haar basis (hk)∞k=1 in Lp is unconditional with unconditional constant at
most p∗ − 1. That is,

∥∥∥ n∑
j=1

εjajhj

∥∥∥
p
≤ (p∗ − 1)

∥∥∥ n∑
j=1

ajhj

∥∥∥
p
,

whenever n ∈ N, for any real scalars a1, . . . , an and any signs ε1, . . . , εn.

Proof. Suppose p > 2, in which case p∗ = p. For each fixed n ∈ N, let
f0 = g0 = 0 and for 1 ≤ k ≤ n put

fk =
k∑

j=1

ajhj and gk =
k∑

j=1

εjajhj .

We will prove by induction on k that∫ 1

0

ϕ(fk(s), gk(s)) ds ≥ 0, 1 ≤ k ≤ n, (6.4)

where ϕ is the function defined in Lemma 6.1.5. This is trivial when k = 0. In
order to establish the inductive step, for a given k let us consider the function
F : [0, 1]→ R defined by

F (t) =
∫ 1

0

ϕ
(
(1− t)fk−1(s) + tfk(s), (1− t)gk−1(s) + tgk(s)

)
ds,

and show that F (1) ≥ 0 assuming that F (0) ≥ 0.
Let ut = (1− t)fk−1 + tfk and vt = (1− t)gk−1 + tgk. Then

F ′(t) = ak

∫ 1

0

∂ϕ

∂x
(ut, vt)hk ds + εkak

∫ 1

0

∂ϕ

∂y
(ut, vt)hk ds.

Observe that F ′(0) = 0 since ∂ϕ
∂x (u0, v0) and ∂ϕ

∂y (u0, v0) are constant on the
support interval of hk.

Differentiating again gives
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F
′′
(t) = a2

k

∫
Ik

(
∂2ϕ

∂2x
(ut, vt) +

∂2ϕ

∂2y
(ut, vt) + 2εk

∂2ϕ

∂x∂y
(ut, vt)

)
ds.

By Lemma 6.1.5 (ii), F
′′
(t) ≥ 0. Hence F (1) ≥ F (0) ≥ 0 and thus(6.4) holds.

To complete the proof when p > 2 we plug x = fn and y = gn in (6.2).
Integrating both sides of this inequality and using (6.4) we obtain∫ 1

0

(p− 1)p|fn(s)|p − |gn(s)|pds ≥ 0.

The case when 1 < p < 2 now follows by duality: with fn, gn as before
choose g′n ∈ Lq(Bn) so that ‖g′n‖q = 1 and∫ 1

0

g′n(s)gn(s) ds = ‖gn‖p.

Then g′n =
∑n

j=1 bjhj for some (bj)n
j=1 and

‖gn‖p =
n∑

j=1

|Ij |εjajbj ≤ ‖fn‖p

∥∥∥ n∑
j=1

εjbjhj

∥∥∥
q
≤ (q − 1)‖fn‖p.

��
The constant p∗ − 1 in Burkholder’s theorem is sharp, although we will

not prove this here.

6.2 Averaging in Banach spaces

In discussing unconditional bases and unconditional convergence of series in a
Banach space X we have frequently met the problem of estimating expressions
of the type

max

{∥∥∥ n∑
i=1

εixi

∥∥∥ : (εi) ∈ {−1, 1}n

}
,

where {xi}n
i=1 are vectors in X. In many situations it is much easier to replace

the maximum by the average over all choices of signs εi = ±1.
It turns out to be helpful to consider such averages using the Rademacher

functions (ri)∞i=1 since the sequence (ri(t))n
i=1 gives us all possible choices of

signs (εi)n
i=1 when t ranges over [0, 1]. Thus,

Average
εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥ = 2−n
∑

εi=±1

∥∥∥ n∑
i=1

εixi

∥∥∥ =
∫ 1

0

∥∥∥ n∑
i=1

ri(t)xi

∥∥∥ dt.

For reference let us recall the definition of the Rademacher functions and their
basic properties.
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Definition 6.2.1. The Rademacher functions (rk)∞k=1 are defined on [0, 1] by

rk(t) = sgn (sin 2kπt).

Alternatively, the sequence (rk)∞k=1 can be described as

r1(t) =

{
1 if t ∈ [0, 1

2 )
−1 if t ∈ [ 12 , 1)

r2(t) =

{
1 if t ∈ [0, 1

4 ) ∪ [ 12 , 3
4 )

−1 if t ∈ [ 14 , 1
2 ) ∪ [ 34 , 1)

...

rk+1(t) =

{
1 if t ∈

⋃2k

s=1[
2s−2
2k+1 , 2s−1

2k+1 )

−1 if t ∈
⋃2k

s=1[
2s−1
2k+1 , 2s

2k+1 ).

That is,

rk+1 =
2k∑

s=1

h2k+s, k = 0, 1, 2, . . .

Thus (rk)∞k=1 is a block-basic sequence with respect to the Haar basis in every
Lp for 1 ≤ p <∞. The key properties we need are the following:

• rk(t) = ±1 a.e. for all k,
•
∫

rk1rk2(t) . . . rkm
(t)dt = 0, whenever k1 < k2 < · · · < km.

The Rademacher functions were first introduced by Rademacher in 1922
[191] with the idea of studying the problem of finding conditions under which
a series of real numbers

∑
±an, where the signs were assigned randomly,

would converge almost surely. Rademacher showed that if
∑
|an|2 <∞ then

indeed
∑
±an converges almost surely. The converse was proved in 1925 by

Khintchine and Kolmogoroff [111].
For our purposes it will be convenient to replace the concrete Rademacher

functions by an abstract model. To that end we will use the language and
methods of probability theory.

Let us recall that a random variable is a real-valued measurable function
on some probability space (Ω, Σ, P). The expectation (or mean) of a random
variable f is defined by

Ef =
∫

Ω

f(ω) dP(ω).

A finite set of random variables {fj}n
j=1 on the same probability space is

independent if

P

n⋂
j=1

(
fj ∈ Bj

)
=

n∏
j=1

P(fj ∈ Bj)
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for all Borel sets Bj . Therefore if (fj)n
j=1 are independent,

E
(
f1f2 · · · fn

)
= E(f1)E(f2) · · ·E(fn).

An arbitrary set of random variables is said to be independent if any finite
subcollection of the set is independent.

Definition 6.2.2. A Rademacher sequence is a sequence of mutually inde-
pendent random variables (εn)∞n=1 defined on some probability space (Ω, P)
such that P(εn = 1) = P(εn = −1) = 1

2 for every n.

The terminology is justified by the fact that the Rademacher functions (rn)∞n=1

are a Rademacher sequence on [0, 1]. Thus,∫ 1

0

∥∥∥ n∑
i=1

ri(t)xi

∥∥∥ dt = E

∥∥∥ n∑
i=1

εixi

∥∥∥ =
∫

Ω

∥∥∥ n∑
i=1

εi(ω)xi

∥∥∥ dP.

Historically, the subject of finding estimates for averages over all choices
of signs was initiated in 1923 by the classical Khintchine inequality [110], but
the usefulness of a probabilistic viewpoint in studying the Lp-spaces seems to
have been fully appreciated quite late (around 1970).

Theorem 6.2.3 (Khintchine’s Inequality). There exist constants Ap, Bp

(1 ≤ p < ∞) such that for any finite sequence of scalars (ai)n
i=1 and any

n ∈ N we have

Ap

( n∑
i=1

|ai|2
)1/2 ≤

∥∥∥ n∑
i=1

airi

∥∥∥
p
≤
( n∑

i=1

|ai|2
)1/2 if 1 ≤ p < 2,

and ( n∑
i=1

|ai|2
)1/2 ≤

∥∥∥ n∑
i=1

airi

∥∥∥
p
≤ Bp

( n∑
i=1

|ai|2
)1/2 if p > 2.

We will not prove this here but it will be derived as a consequence of a
more general result below. Theorem 6.2.3 was first given in the stated form by
Littlewood in 1930 [141] but Khintchine’s earlier work (of which Littlewood
was unaware) implied these inequalities as a consequence.

Remark 6.2.4. (a) Khintchine’s inequality says that (ri)∞i=1 is a basic se-
quence equivalent to the �2-basis in every Lp for 1 ≤ p <∞. In L∞, though,
one readily checks that (ri)∞i=1 is isometrically equivalent to the canonical
�1-basis.
(b) (ri)∞i=1 is an orthonormal sequence in L2, which yields the identity

∥∥∥ n∑
i=1

airi

∥∥∥
2

=
( n∑

i=1

|ai|2
)1/2

,
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for any choice of scalars (ai). But (ri)∞i=1 is not a complete system in L2, that
is, [ri] �= L2 (for instance, notice that the function r1r2 is orthogonal to the
subspace [ri]). However, one can obtain a complete orthonormal system for
L2 using the Rademacher functions by adding to (rn) the constant function
r0 = 1 and the functions of the form rk1rk2 . . . rkn for any k1 < k2 < · · · < kn.
This collection of functions are the Walsh functions.

Thus we can also interpret Khintchine’s inequality as stating that all the
norms {‖·‖p : 1 ≤ p <∞} are equivalent on the linear span of the Rademacher
functions in Lp. It turns out that in this form the statement can be general-
ized to an arbitrary Banach space. This generalization was first obtained by
Kahane in 1964 [101].

Theorem 6.2.5 (Kahane-Khintchine Inequality). For each 1 ≤ p < ∞
there exists a constant Cp such that, for every Banach space X and for any
finite sequence (xi)n

i=1 in X, the following inequality holds:

E

∥∥∥ n∑
i=1

εixi

∥∥∥ ≤ (E

∥∥∥ n∑
i=1

εixi

∥∥∥p)1/p

≤ Cp E

∥∥∥ n∑
i=1

εixi

∥∥∥.
We will prove the Kahane-Khintchine inequality (and this will imply the

Khintchine inequality by taking X = R or X = C) but first we shall establish
three lemmas on our way to the proof. To avoid repetitions, in all three lemmas
(Ω,Σ, P) will be a probability space and X will be a Banach space. Let us
recall that an X-valued random variable on Ω is a function f : Ω → X such
that f−1(B) ∈ Σ for every Borel set B ⊂ X. f is symmetric if P(f ∈ B) =
P(−f ∈ B) for all Borel subsets B of X.

Lemma 6.2.6. Let f : Ω→ X be a symmetric random variable. Then for all
x ∈ X we have

P
(
‖f + x‖ ≥ ‖x‖

)
≥ 1/2.

Proof. Let us take any x ∈ X. For every ω ∈ Ω, using the convexity
of the norm of X, clearly ‖f(ω) + x‖ + ‖x− f(ω)‖ ≥ 2 ‖x‖. Then, either
‖f(ω) + x‖ ≥ ‖x‖ or ‖x− f(ω)‖ ≥ ‖x‖. Hence

1 ≤ P
(
‖f + x‖ ≥ ‖x‖

)
+ P
(
‖x− f‖ ≥ ‖x‖

)
.

Since f is symmetric, x + f and x− f have the same distribution and so the
lemma follows.

��
Let (εi)∞i=1 be a Rademacher sequence on Ω. Given n ∈ N and vectors

x1, . . . , xn in X, we shall consider Λm : Ω −→ X (1 ≤ m ≤ n) defined by

Λm(ω) =
m∑

i=1

εi(ω)xi.
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Lemma 6.2.7. For all λ > 0,

P
(
max
m≤n

‖Λm‖ > λ
)
≤ 2P

(
‖Λn‖ > λ

)
.

Proof. Given λ > 0, for m = 1, . . . , n put

Ω(λ)
m =

{
ω ∈ Ω : ‖Λm(ω)‖ > λ and ‖Λj(ω)‖ ≤ λ for all j = 1, . . . , m− 1

}
.

Since {ω ∈ Ω : maxm≤n ‖Λm(ω)‖ > λ} = ∪n
m=1Ω

(λ)
m , by the disjointedness of

the sets Ω(λ)
m it follows that

P
(
max
m≤n

‖Λm‖ > λ
)

=
n∑

m=1

P(Ω(λ)
m ). (6.5)

Therefore,

P
(
‖Λn‖ > λ

)
=

n∑
m=1

P
(
Ω(λ)

m ∩ (‖Λn‖ > λ)
)
. (6.6)

Notice that every Ω(λ)
m can be written as the union of sets of the type

{ω ∈ Ω : εj(ω) = δj for 1 ≤ j ≤ m}

for some choices of signs δj = ±1. For each of these choices of signs δ1, . . . , δm

we observe that by Lemma 6.2.6,

P

(∥∥∥ m∑
j=1

δjxj +
n∑

j=m+1

εjxj

∥∥∥ >
∥∥∥ m∑

j=1

δjxj

∥∥∥) ≥ 1
2
.

Summing over the appropriate signs (δ1, . . . , δm) it follows that

P
(
Ω(λ)

m ∩ (‖Λn‖ ≥ ‖Λm‖)
)
≥ 1

2
P(Ω(λ)

m ).

Thus,

P
(
Ω(λ)

m ∩ (‖Λn‖ > λ)
)
≥ 1

2
P(Ω(λ)

m ).

Summing in m and combining (6.5) and (6.6) we finish the proof.
��

Lemma 6.2.8. For all λ > 0,

P
(
‖Λn‖ > 2λ

)
≤ 4
(
P
(
‖Λn‖ > λ

))2
.

Proof. We will keep the notation that we introduced in the previous lemma.
Notice that for each 1 ≤ m ≤ n, the random variable ‖

∑n
i=m εixi‖ is in-

dependent of each of ε1, . . . , εm and hence for all λ > 0 the events {ω :
‖
∑n

i=m εi(ω)xi‖ > λ} and Ω(λ)
m are independent. Observe as well that if some
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ω ∈ Ω(λ)
m further satisfies ‖Λn(w)‖ > 2λ, then ‖Λn(ω)− Λm−1(ω)‖ > λ (for

m = 1, take Λ0 = 0). Therefore, since P(‖
∑n

i=m εixi‖ > λ) ≤ 2P(‖Λn‖ > λ)
for each m = 1, . . . , n by Lemma 6.2.7, we have

P
(
Ω(λ)

m ∩ (‖Λn‖ > 2λ)
)
≤ P(Ω(λ)

m )P
(∥∥ n∑

i=m

εixi

∥∥ > λ
)

≤ 2P(Ω(λ)
m )P

(
‖Λn‖ > λ

)
.

Summing in m and using again Lemma 6.2.7 we obtain

P
(
‖Λn‖ > 2λ

)
≤ P

(
max
m≤n

‖Λm‖ > λ
)
P
(
‖Λn‖ > λ

)
≤ 4
(
P
(
‖Λn‖ > λ

))2
.

��
Proof of Theorem 6.2.5. Fix 1 ≤ p < ∞ and let {xi}n

i=1 be any finite set of
vectors in X. Without loss of generality we will suppose that E‖

∑n
i=1 εixi‖ =

1. Then, by Chebyshev’s inequality,

P
(
‖Λn‖ > 8

)
≤ 1

8
. (6.7)

Using Lemma 6.2.8 repeatedly we obtain

P
(
‖Λn‖ > 2 · 8

)
≤ 4(1/8)2,

P
(
‖Λn‖ > 22 · 8

)
≤ 43(1/8)4,

P
(
‖Λn‖ > 23 · 8

)
≤ 47(1/8)8,

and so on. Hence, by induction, we deduce that

P
(
‖Λn‖ > 2n · 8

)
≤ 42n−1(1/8)2

n ≤ 42n

(1/8)2
n

= (1/2)2
n

.

Therefore,

E

∥∥∥ n∑
i=1

εixi

∥∥∥p

=
∫ ∞

0

P
(
‖Λn‖p

> t
)
dt

=
∫ ∞

0

p tp−1P
(
‖Λn‖ > t

)
dt

=
∫ 8

0

p tp−1P
(
‖Λn‖ > t

)
dt +

∞∑
n=1

∫ 2n·8

2n−1·8
p tp−1P

(
‖Λn‖ > t

)
dt

≤
∫ 8

0

p tp−1 dt +
∞∑

n=1

(1/2)2
n−1

∫ 2n·8

2n−1·8
p tp−1 dt

≤ 8p
(
1 +

∞∑
n=1

(1/2)2
n−1 2np

)
= Cp

p .
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��

Suppose that H is a Hilbert space. The well-known Parallelogram Law
states that for any two vectors x, y in H we have

‖x + y‖2 + ‖x− y‖2

2
= ‖x‖2 + ‖y‖2 .

This identity is a simple example of the power of averaging over signs and has
an elementary generalization:

Proposition 6.2.9 (Generalized Parallelogram Law). Suppose that H
is a Hilbert space. Then for every finite sequence (xi)n

i in H,

E

∥∥∥ n∑
i=1

εixi

∥∥∥2

=
n∑

i=1

‖xi‖2 .

Proof. For any vectors (xi)n
i=1 in H we have

E

∥∥∥ n∑
i=1

εixi

∥∥∥2

= E
〈 n∑

i=1

εixi,
n∑

i=1

εixi

〉

=
n∑

i,j=1

〈xi, xj〉E(εiεj)

=
n∑

i=1

‖xi‖2 .

��
Next we are going to study how the averages (E‖

∑n
i=1 εixi‖p)1/p are situ-

ated with respect to the sums (
∑n

i=1 ‖xi‖p)1/p using the concepts of type and
cotype of a Banach space. These were introduced into Banach space theory
by Hoffmann-Jørgensen [79] and their basic theory was developed in the early
1970s by Maurey and Pisier [147]; see [146] for historical comments. However,
it should be said that the origin of these ideas was in two very early papers of
Orlicz in 1933, [163] and [164]. Orlicz essentially introduced the notion of co-
type for the spaces Lp although he did not use the more modern terminology.

Definition 6.2.10. A Banach space X is said to have Rademacher type p (in
short, type p) for some 1 ≤ p ≤ 2 if there is a constant C such that for every
finite set of vectors {xi}n

i=1 in X,

(
E

∥∥∥ n∑
i=1

εixi

∥∥∥p)1/p

≤ C
( n∑

i=1

‖xi‖p
)1/p

. (6.8)

The smallest constant for which (6.8) holds is called the type-p constant of X
and is denoted Tp(X).
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Similarly, a Banach space X is said to have Rademacher cotype q (in short,
cotype q) for some 2 ≤ q ≤ ∞ if there is a constant C such that for every
finite sequence x1, x2, . . . , xn in X,

( n∑
i=1

‖xi‖q
)1/q

≤ C
(
E

∥∥∥ n∑
i=1

εixi

∥∥∥q)1/q

, (6.9)

with the usual modification of max1≤i≤n ‖xi‖ replacing
(∑n

i=1 ‖xi‖q )1/q

when q =∞. The smallest constant for which (6.9) holds is called the cotype-q
constant of X and is denoted Cq(X).

Remark 6.2.11. (a) The restrictions on p and q in the definitions of type
and cotype respectively are natural since it is impossible to have type p > 2
or cotype q < 2 even in a one-dimensional space. To see this, for each n take
vectors {xi}n

i=1 all equal to some x ∈ X with ‖x‖ = 1. The combination
of Khintchine’s inequality with (6.8) and (6.9) gives us the range of eligible
values for p and q.

(b) Every Banach space X has type 1 with T1(X) = 1 and cotype ∞ with
C∞(X) = 1 by the triangle law. Thus X is said to have nontrivial type if it
has type p for some 1 < p ≤ 2; similarly X is said to have nontrivial cotype if
it has cotype q for some 2 ≤ q <∞.

(c) The generalized Parallelogram Law (Proposition 6.2.9) says that a
Hilbert space H has type 2 and cotype 2 with T2(H) = C2(H) = 1. In partic-
ular a one-dimensional space has type 2 and cotype 2. But the Parallelogram
Law is also a characterization of Banach spaces which are linearly isometric
to Hilbert spaces, hence we deduce that a Banach space X is isometric to a
Hilbert space if and only if T2(X) = C2(X) = 1 (see Problem 7.6).

(d) By Theorem 6.2.5, the Lp-average (E‖
∑n

i=1 εixi‖p)1/p in the definition
of type can be replaced by any other Lr-average (E‖

∑n
i=1 εixi‖r)1/r (1 ≤ r <

∞) and this has the effect only of changing the constant. The same comment
applies to the Lq-average in the definition of cotype.

(e) If X has type p then X has type r for r < p and if X has cotype q
then X has cotype s for s > q.

(f) The type and cotype of a Banach space are isomorphic invariants and
are inherited by subspaces.

(g) Consider the unit vector basis (en)∞n=1 in �p (1 ≤ p < ∞) or c0. Then
for any signs (εk) we have

‖ε1e1 + · · ·+ εnen‖p = n
1
p

and
‖ε1e1 + · · ·+ εnen‖∞ = 1.

Thus �p cannot have type greater than p if 1 ≤ p ≤ 2 or cotype less than p if
2 ≤ p ≤ ∞.
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Proposition 6.2.12. If a Banach space X has type p then X∗ has cotype q,
where 1

p + 1
q = 1 and Cq(X∗) ≤ Tp(X).

Proof. Let us pick an arbitrary finite set {x∗
i }n

i=1 in X∗. Given ε > 0 we can
find x1, . . . , xn in X such that ‖xi‖ = 1 and |x∗

i (xi)| ≥ (1 − ε) ‖x∗
i ‖ for all

i = 1, . . . , n. Thus

( n∑
i=1

|x∗
i (xi)|q

)1/q ≥ (1− ε)
( n∑

i=1

‖x∗
i ‖

q )1/q
.

On the other hand,

( n∑
i=1

|x∗
i (xi)|q

) 1
q

= sup
{∣∣∣ n∑

i=1

aix
∗
i (xi)

∣∣∣ :
n∑

i=1

|ai|p ≤ 1
}

.

For any scalars (ai)n
i=1 with

∑n
i=1 |ai|p ≤ 1 we have

n∑
i=1

aix
∗
i (xi) =

∫
Ω

( n∑
i=1

εix
∗
i

)( n∑
i=1

εiaixi

)
dP

≤
∫

Ω

∥∥∥ n∑
i=1

εix
∗
i

∥∥∥∥∥∥ n∑
i=1

εiaixi

∥∥∥ dP

≤
(∫

Ω

∥∥∥ n∑
i=1

εix
∗
i

∥∥∥q

dP

) 1
q
(∫

Ω

∥∥∥ n∑
i=1

εiaixi

∥∥∥p

dP

) 1
p

≤
(∫

Ω

∥∥∥ n∑
i=1

εix
∗
i

∥∥∥q

dP

) 1
q

Tp(X)
( n∑

i=1

|ai|p
) 1

p

.

Therefore,

( n∑
i=1

‖x∗
i ‖

q
) 1

q ≤ (1− ε)−1Tp(X)
(
E

∥∥∥ n∑
i=1

εix
∗
i

∥∥∥q) 1
q

.

Since ε was arbitrary, this shows Cq(X∗) ≤ Tp(X).
��

Curiously, Proposition 6.2.12 does not have a converse statement. At the
end of the section we shall give an example showing that if X has cotype q
for q <∞ then X∗ may not have type p where 1

p + 1
q .

Next we want to investigate the type and cotype of Lp for 1 ≤ p < ∞.
To do so we will estimate ‖(

∑n
i=1 |fi|2)1/2‖p in relation with the Rademacher

averages (E‖
∑n

j=1 εjfj‖p
p)

1/p on a generic Lp(µ)-space.

Theorem 6.2.13. For every finite set of functions {fi}n
i=1 in Lp(µ) (1 ≤ p <

∞),
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Ap

∥∥∥( n∑
i=1

|fi|2
) 1

2

∥∥∥
p
≤
(
E

∥∥∥ n∑
i=1

εifi

∥∥∥p

p

)1/p

≤ Bp

∥∥∥( n∑
i=1

|fi|2
) 1

2
∥∥∥

p
,

where Ap, Bp are the constants in Khintchine’s inequality (in particular Ap =
1 for 2 ≤ p <∞ and Bp = 1 for 1 ≤ p ≤ 2).

Proof. For each ω ∈ Ω, from Khintchine’s inequality

Ap

( n∑
i=1

|fi(ω)|2
)1/2

≤
(
E

∣∣∣ n∑
i=1

εifi(ω)
∣∣∣p)1/p

,

where Ap = 1 for 2 ≤ p <∞. Now, using Fubini’s theorem

Ap
p

∥∥∥( n∑
i=1

|fi|2
)1/2∥∥∥p

p
≤
∫

Ω

E

∣∣∣ n∑
i=1

εifi(ω)
∣∣∣p dµ

= E

(∫
Ω

∣∣∣ n∑
i=1

εifi(ω)
∣∣∣p dµ

)

= E

∥∥∥ n∑
i=1

εifi

∥∥∥p

p
.

The converse estimate is obtained similarly.
��

The next theorem is due to Orlicz for cotype [163,164] and Nordlander for
type [159]. Obviously, the language of type and cotype did not exist before the
1970s and their results were stated differently. Note the difference in behavior
of the Lp-spaces when p > 2 or p < 2. This is the first example where we meet
some fundamental change around the index p = 2 and, as the reader will see,
it is really because when p/2 < 1 the triangle law for positive functions in
Lp/2 reverses.

Theorem 6.2.14.

(a) If 1 ≤ p ≤ 2, Lp(µ) has type p and cotype 2.
(b) If 2 < p <∞, Lp(µ) has type 2 and cotype p.

Moreover, (a) and (b) are optimal.

Proof. (a) Let us prove first that if 1 ≤ p ≤ 2, then Lp(µ) has type p. We
recall this elementary inequality:

Lemma 6.2.15. Let 0 < r ≤ 1. Then for any nonnegative scalars (αi)n
i=1 we

have
(α1 + · · ·+ αn)r ≤ αr

1 + · · ·+ αr
n. (6.10)
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This way, combining Theorem 6.2.13 with (6.10) we obtain

(
E

∥∥∥ n∑
i=1

εifi

∥∥∥p

p

) 1
p ≤

∥∥∥( n∑
i=1

|fi|2
)1/2

∥∥∥
p

=
∥∥∥ n∑

i=1

|fi|2
∥∥∥1/2

p/2

≤
∥∥∥( n∑

i=1

|fi|p
)2/p

∥∥∥1/2

p/2

=
(∫

Ω

n∑
i=1

|fi|p dµ
)1/p

=
( n∑

i=1

‖f‖p
p

)1/p
.

To show that Lp(µ) has cotype 2 when 1 ≤ p ≤ 2 we need the reverse of
Minkowski’s inequality:

Lemma 6.2.16. Let 0 < r < 1. Then

‖f + g‖r ≥ ‖f‖r + ‖g‖r ,

whenever f and g are nonnegative functions in Lr(µ).

Proof. Without loss of generality we can assume that ‖f + g‖r = 1 and so
dν = (f + g)r dµ is a probability measure. This implies

‖f‖r =
(∫

Ω

fr dµ
)1/r

=
(∫

{f+g>0}

fr

(f + g)r
(f + g)rdµ

)1/r

≤
∫
{f+g>0}

f

f + g
(f + g)rdµ.

Analogously,

‖g‖r ≤
∫
{f+g>0}

g

f + g
(f + g)rdµ.

Therefore ‖f‖r + ‖g‖r ≤ 1 = ‖f + g‖r .
��

Now, combining Theorem 6.2.13 with Lemma 6.2.16,

A−1
p

(
E

∥∥∥ n∑
i=1

εifi

∥∥∥p

p

)1/p

≥
∥∥∥( n∑

i=1

|fi|2
) 1

2

∥∥∥
p

=
∥∥∥ n∑

i=1

|fi|2
∥∥∥ 1

2

p/2
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≥
( n∑

i=1

∥∥f2
i

∥∥
p/2

)1/2

=
( n∑

i=1

‖fi‖2p
)1/2

.

To obtain the cotype-2 estimate we just have to replace the Lp-average
(E‖

∑n
j=1 εjfj‖p

p)
1/p by (E‖

∑n
j=1 εjfj‖2p)1/2 using Kahane’s inequality (at the

small cost of a constant) .

(b) For each 2 < p < ∞, from Theorem 6.2.13 in combination with Ka-
hane’s inequality there exists a constant C = C(p) so that

(
E

∥∥∥ n∑
i=1

εifi

∥∥∥2

p

)1/2

≤ C
∥∥∥( n∑

i=1

|fi|2
) 1

2
∥∥∥

p
.

Since p/2 > 1, the triangle law now holds in Lp/2(µ) and hence

∥∥∥( n∑
i=1

|fi|2
) 1

2
∥∥∥

p
=
∥∥∥ n∑

i=1

|fi|2
∥∥∥1/2

p/2
≤
( n∑

i=1

‖f2
i ‖p/2

)1/2

=
( n∑

i=1

‖fi‖2p
)1/2

.

This shows that Lp(µ) has type 2. Therefore, from part (a) and Proposi-
tion 6.2.12 it follows that Lp(µ) has cotype p.

The last statement of the theorem follows from Remark 6.2.11 and the
fact that Lp(µ) contains �p as a subspace.

��

Example 6.2.17. To finish the section let us give an example showing that
the concepts of type and cotype are not in duality, in the sense that the
converse of Proposition 6.2.12 need not hold. The space C[0, 1] fails to have
nontrivial type because it contains a copy of L1, whereas its dual, M(K), has
cotype 2 (we leave the verification of this fact to the reader).

6.3 Properties of L1

In Section 6.1 we saw that the Haar basis is unconditional in Lp when 1 < p <
∞. It is, however, not unconditional in L1 and this highlights an important
difference between the cases p = 1 and p > 1.

Proposition 6.3.1. The Haar basis is not unconditional in L1.

Proof. Let us use the device of labeling the elements of the Haar system by
their supports and let fN denote the characteristic function of the interval
[0, 21−2N ). Then expanding with respect to the Haar basis gives
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fN = 21−2Nχ[0,1] +
2N∑
j=0

2j+1−2Nh[0,2−j).

Put

gN =
N∑

j=0

22j+1−2Nh[0,2−2j).

It is clear that

gN (t) = −22j+1−2N for 2−2j−1 ≤ t < 2−2j and 0 ≤ j ≤ N.

Thus

‖gN‖1 ≥
N∑

j=0

22j+1−2N2−2j−1 = (N + 1)2−2N = (N + 1)‖fN‖1.

This shows immediately that the Haar system cannot be unconditional.
��

In fact we will show that L1 cannot be embedded in a space with an uncon-
ditional basis; this result is due to Pe�lczyński (1961) [170]. In Theorem 4.5.2
we showed, by the technique of testing property (u), that C(K) embeds in a
space with unconditional basis if and only if C(K) ≈ c0. For L1 this approach
does not work because L1 is weakly sequentially complete and therefore has
property (u). A more sophisticated argument is therefore required. The ar-
gument we use was originally discovered by Milman [151]; first we need a
lemma:

Lemma 6.3.2. For every f ∈ L1 we have

lim
n→∞

∫
f(t)rn(t)dt = 0.

Thus (frn)∞n=1 is weakly null for every f ∈ L1.

Proof. (rn)∞n=1 is an orthonormal sequence in L2, which implies (by Bessel’s
inequality) that

lim
n→∞

∫
f(t)rn(t)dt = 0 for all f ∈ L2.

Since (rn)∞n=1 is uniformly bounded in L∞, and L2 is dense in L1 we deduce

lim
n→∞

∫
f(t)rn(t)dt = 0 for all f ∈ L1.

Thus if f ∈ L1 and g ∈ L∞, since fg ∈ L1 we obtain

lim
n→∞

∫
g(t)f(t)rn(t)dt = 0,

which gives the latter statement in the lemma.
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��

Theorem 6.3.3. L1 cannot be embedded in a Banach space with uncondi-
tional basis.

Proof. Let X be a Banach space with K-unconditional basis (en)∞n=1 and
suppose that T : L1 → X is an embedding. We can assume that for some
constant M ≥ 1,

‖f‖1 ≤ ‖Tf‖ ≤M‖f‖1, f ∈ L1.

By exploiting the unconditionality of (en)∞n=1 we are going to build an
unconditional basic sequence in L1 using a gliding-hump type argument.

Take (δk)∞k=1 a sequence of positive real numbers with
∑∞

k=1 δk < 1. Let
f0 = 1 = χ[0,1], n1 = 1, s0 = 0 and pick s1 ∈ N such that

∥∥∥ ∞∑
j=s1+1

e∗j (T (f0rn1))ej

∥∥∥ <
1
2
δ1.

Put

x1 =
s1∑

j=s0+1

e∗j (T (f0rn1))ej .

Next take f1 = (1 + rn1)f0. Since the sequence (f1rk)∞k=1 is weakly null by
Lemma 6.3.2, (T (f1rk))∞k=1 is also weakly null, hence we can find n2 ∈ N,
n2 > n1, so that ∥∥∥ s1∑

j=1

e∗j (T (f1rn2))ej

∥∥∥ <
1
2
δ2.

Now, pick s2 ∈ N, s2 > s1, for which∥∥∥ ∞∑
j=s2+1

e∗j (T (f1rn2))ej

∥∥∥ <
1
2
δ2.

Continuing in this way we will inductively select two strictly increasing se-
quences of natural numbers (nk)∞k=1 and (sk)∞k=0, a sequence of functions
(fk)∞k=0 in L1 given by

fk = (1 + rnk
)fk−1 for k ≥ 1,

and a block basic sequence (xk)∞k=1 of (en)∞n=1 defined by

xk =
sk∑

j=sk−1+1

e∗j (T (fk−1rnk
))ej , k = 1, 2, . . . .

This is how the inductive step goes: suppose n1, n2, . . . , nl−1, s0, s1, . . . , sl−1,
and therefore f1, . . . , fl−1 have been determined. Since (T (fl−1rk))∞k=1 is
weakly null we can find nl > nl−1 so that
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∥∥∥ sl−1∑
j=1

e∗j (T (fl−1rnl
))ej

∥∥∥ <
1
2
δl,

and then we choose sl > sl−1 so that∥∥∥ ∞∑
j=sl+1

e∗j (T (fl−1rnl
))ej

∥∥∥ <
1
2
δl.

Note that for k ≥ 1 we have

fk =
k∏

j=1

(1 + rnj
), (6.11)

which yields fk ≥ 0 for all k. Expanding out (6.11), it is also clear that for
each k,

‖fk‖1 =
∫ 1

0

fk(t) dt = 1.

On the other hand, for k ≥ 1 we have∥∥∥Tfk − Tfk−1 − xk

∥∥∥ < δk,

and hence the estimate∥∥∥ n∑
j=1

xj

∥∥∥ < M +
n∑

j=1

δj < M + 1

holds for all n.
Since it is a block basic sequence with respect to (en)∞n=1, (xk)∞n=1 is an

unconditional basic sequence in X with unconditional constant ≤ K (see
Problem 3.1). Therefore for all choices of signs εj = ±1 and all n = 1, 2, . . .
we have a bound: ∥∥∥ n∑

j=1

εjxj

∥∥∥ ≤ K(M + 1),

which implies ∥∥∥ n∑
j=1

εj(Tfj − Tfj−1)
∥∥∥ ≤ K(M + 1) + 1,

and thus ∥∥∥ n∑
j=1

εj(fj − fj−1)
∥∥∥

1
≤ K(M + 1) + 1.

This shows that
∑∞

j=1(fj−fj−1) in L1 is a WUC series in L1 (see Lemma 2.4.6).
Since L1 is weakly sequentially complete (Theorem 5.2.10), by Corollary 2.4.15
the series

∑∞
j=1(fj − fj−1) must converge (unconditionally) in norm in L1

and, in particular, limj→∞ ‖fj − fj−1‖1 = 0. But for j ≥ 1 we have
‖fj − fj−1‖1 = ‖rnj

fj−1‖1 = 1, a contradiction.
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��
In Corollary 2.5.6 we saw that c0 is not a dual space. We will show that L1

is also not a dual space and, even more generally, that it cannot be embedded
in a separable dual space. We know that c0 is not isomorphic to a dual space
because c0 is uncomplemented in its bidual. This is not the case for L1 as we
shall see below. Thus to show L1 is not a dual space requires another type of
argument and we will use some rather more delicate geometrical properties of
separable dual spaces.

Lemma 6.3.4. Let X be a Banach space such that X∗ is separable. Assume
that K is a weak∗ compact set in X∗. Then K has a point of weak∗-to-norm
continuity. That is, there is x∗ ∈ K such that whenever a sequence (x∗

n)∞n=1 ⊂
K converges to x∗ with respect to the weak∗ topology of X∗, then (x∗

n)∞n=1

converges to x∗ in the norm topology of X∗.

Proof. Let (εn)∞n=1 be a sequence of scalars converging to zero. Using that X∗

is separable for the norm topology, for each εn there is a sequence of points
(x(n)

k )∞k=1 ⊂ X∗ such that

K ⊂
∞⋃

k=1

(
B(x(n)

k , εn) ∩K
)
.

Observe that for all integers n and k, B(x(n)
k , εn) (the closed ball centered

in x
(n)
k of radius εn) is weak∗ compact by Banach-Alaoglu’s theorem, so the

sets B(x(n)
k , εn) ∩K are weak∗ closed. Let us call B

(n)
k the weak∗ interior of

B(x(n)
k , εn) ∩K. Hence

Vn =
∞⋃

k=1

B
(n)
k

is dense and open.
Since X∗ is separable, the weak∗ topology of X∗ relative to K is metriz-

able. Then K is compact metric, therefore complete. By the Baire Category
theorem, the set V =

⋂∞
n=1 Vn is a dense Gδ-set. We are going to see that

all of the elements in V are points of weak∗-to-norm continuity. Indeed, take
v∗ ∈ V . Then for each εn there exists a weak∗ neighborhood of v∗ relative
to K of diameter at most 2εn. Since (εn)∞n=1 converges to zero, the identity
operator

I : (K, w∗) −→ (K, ‖·‖)

is continuous at v∗.
��

Lemma 6.3.5. Suppose X is a Banach space which embeds in a separable dual
space. Then every closed bounded subset F of X has a point of weak-to-norm
continuity.



6.3 Properties of L1 147

Proof. Let F be a closed bounded subset of X. Suppose T : X → Y ∗ is
an embedding in Y ∗, where Y is a Banach space with separable dual. We
can assume that ‖x‖ ≤ ‖Tx‖ ≤ M‖x‖ for x ∈ X where M is a constant
independent of x. Let W be the weak∗ closure of T (F ). Then by Lemma 6.3.4
there is y∗ ∈ W which is a point of weak∗-to-norm continuity. In particular
there is a sequence (y∗

n) in T (F ) with ‖y∗
n − y∗‖ → 0. If we let y∗

n = Txn

with xn ∈ F for each n, then (xn)∞n=1 is Cauchy in X and so converges
to some x ∈ F , hence Tx = y∗. Now for any ε > 0 we can find a weak∗

neighborhood Uε of y∗ so that w∗ ∈ Uε ∩ W implies ‖w∗ − y∗‖ < ε. In
particular if v ∈ T−1(Uε) ∩ C then ‖v − x‖ < ε. Clearly T−1(Uε) is weakly
open since the map T : X → Y ∗ is weak-to-weak∗ continuous. This shows x
is a point of weak-to-norm continuity.

��

Lemma 6.3.6. Suppose X is a Banach space which embeds in a separable dual
space and let x ∈ BX be a point of weak-to-norm continuity. If (xn) is a weakly
null sequence in X such that lim sup ‖x + xn‖ ≤ 1 then limn→∞ ‖xn‖ = 0.

Proof. Put

un =

{
x + xn if ‖x + xn‖ ≤ 1

x+xn

‖x+xn‖ if ‖x + xn‖ > 1

and observe that
un − x = xn + (1− αn)(x + xn),

where αn = (‖x + xn‖ − 1)+ → 0. Thus limn→∞ un = x weakly and so
limn→∞ ‖un − x‖ = 0. This implies that limn→∞ ‖xn‖ = 0.

��

Theorem 6.3.7. Neither of the Banach spaces L1 and c0 can be embedded in
a separable dual space.

Proof. If L1 embeds in a separable dual space, Lemma 6.3.5 yields a function
f ∈ BL1 that is a point of weak-to-norm continuity. By Lemma 6.3.2 the
sequence (rnf)∞n=1 is weakly null in L1 and satisfies

‖f + frn‖1 =
∫

(1 + rn(t))|f(t)| dt −→ 1.

Therefore by Lemma 6.3.6 it must be limn→∞ ‖rnf‖1 = 0, which implies
f = 0. This is absurd since (rn)∞n=1 is a weakly null sequence and ‖rn‖1 = 1.

For c0 the argument is similar. Let ξ be a point of weak-to-norm continuity
in Bc0 . Then if (en)∞n=1 is the canonical basis we have limn→∞ ‖ξ + en‖ = 1
and so limn→∞ ‖en‖ = 0, which is again absurd.

��

Remark 6.3.8. The fact that c0 cannot be embedded in a separable dual
space can be proved in many ways, and we have already seen this in Prob-
lems 2.6 and 2.9.
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Corollary 6.3.9. L1 does not have a boundedly-complete basis.

Proof. We need only recall that, by Theorem 3.2.10, a space with a boundedly-
complete basis is (isomorphic to) a separable dual space.

��
Theorem 6.3.7 is rather classical: it is due to Gelfand [66]. In fact the

argument we have given is somewhat ad hoc; to be more precise, one should
use the concept of the Radon-Nikodym Property which we discussed earlier
in Section 5.4. The main point here is that neither L1 nor c0 have the Radon-
Nikodym Property while separable dual spaces do. Gelfand approaches this
through differentiability of Lipschitz maps: a Banach space X has (RNP) if
and only if every Lipschitz map F : [0, 1]→ X is differentiable a.e. In L1 the
Lipschitz map

F (t) = χ(0,t), 0 ≤ t ≤ 1

is nowhere differentiable. In c0 we can consider the map

F (t) =
(

1
n

sin nt

)∞

n=1

, 0 ≤ t ≤ 1

which is again nowhere differentiable (note that formally differentiating takes
us into the bidual!). These examples are due to Clarkson [30].

Let us conclude this section with the promised result that L1 is comple-
mented in its bidual.

Proposition 6.3.10. There is a norm-one linear projection P : L∗∗
1 → L1.

Proof. Let us first define R : L∗∗
1 → M[0, 1] to be the restriction map ϕ �→

ϕ|M[0,1]. Clearly ‖Rϕ‖ ≤ ‖ϕ‖. Next we define a map S : M[0, 1] → L1 by
Sµ = f where

dµ = dν + f dt

is the Lebesgue decomposition of µ (i.e., ν is singular with respect to the
Lebesgue measure). Then ‖S‖ = 1. We conclude that P = SR is a norm-one
projection of L∗∗

1 onto L1.
��

6.4 Subspaces of Lp

In Chapter 2 we studied the subspace structure and the complemented sub-
space structure of the spaces �p for 1 ≤ p <∞ (see particularly Corollary 2.1.6
and Theorem 2.2.4). Now we would like to analyze the function space ana-
logues, the Lp-spaces for 1 ≤ p <∞, in the same way. This is a more delicate
problem and the subspace structure is much richer, with the exception of the
case p = 2 which is trivial since L2 is isometric to �2. We will also see some
fundamental differences between the cases 1 < p < 2 and 2 < p <∞.
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Proposition 6.4.1. Let (fn)∞n=1 be a sequence of norm-one, disjointly sup-
ported functions in Lp. Then (fn)∞n=1 is a complemented basic sequence iso-
metrically equivalent to the canonical basis of �p.

Proof. The case p = 1 was seen in Lemma 5.1.1. Let us fix 1 < p < ∞. For
any sequence of scalars (ai)∞i=1 ∈ c00, by the disjointness of the fi’s we have

∥∥∥ ∞∑
i=1

aifi

∥∥∥p

p
=
∫ ∣∣∣ ∞∑

i=1

aifi(t)
∣∣∣p dt

=
∫ ∞∑

i=1

|aifi(t)|p dt

=
∞∑

i=1

|ai|p
∫
|fi(t)|p dt

=
∞∑

i=1

|ai|p.

By the Hahn-Banach theorem, for each i ∈ N there exists gi ∈ Lq (q the
conjugate exponent of p) with ‖gi‖q = 1 so that 1 = ‖fi‖p =

∫
fi(t)gi(t) dt.

Furthermore, without loss of generality, we can assume gi to have the same
support as fi for all i. Let us define the linear operator from Lp onto [fi] given
by

P (f) =
∞∑

i=1

(∫
f(t)gi(t) dt

)
fi, f ∈ Lp.

Then,

‖P (f)‖p =
( ∞∑

i=1

∣∣∣ ∫ f(t)gi(t) dt
∣∣∣p)1/p

=
( ∞∑

i=1

∣∣∣ ∫
{|fi|>0

f(t)gi(t) dt
∣∣∣p)1/p

≤
( ∞∑

i=1

∫
{|fi|>0

|f(t)|p dt
)1/p

≤
(∫

|f(t)|p dt
)1/p

.

��
The following proposition allows us to deduce that Lp is not isomorphic

to �p for p �= 2, and already hints at the fact that the the Lp-spaces have a
more complicated structure than the spaces �p.

Proposition 6.4.2. �2 embeds in Lp for all 1 ≤ p < ∞. Furthermore, �2
embeds complementably in Lp if and only if 1 < p <∞.
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Proof. For each 1 ≤ p < ∞ let Rp be the closed subspace spanned in Lp

by the Rademacher functions (rn)∞n=1. By Khintchine’s inequality, (rn)∞n=1 is
equivalent to the canonical basis of �2, then Rp is isomorphic to �2.

By Proposition 5.6.1, L1 has no infinite-dimensional complemented re-
flexive subspaces, so R1 is not complemented in L1. Let us prove that if
1 < p <∞, Rp is complemented in Lp.

Assume first that 2 ≤ p < ∞. Consider the map from Lp onto Rp given
by

P (f) =
∞∑

n=1

(∫
f(t)rn(t) dt

)
rn, f ∈ Lp.

P is linear and well defined. Indeed, the series is convergent in Lp because f ∈
Lp ⊂ L2 implies

∑∞
n=1(

∫
f(t)rn(t) dt)2 < ∞. Now, Khintchine’s inequality

and Bessel’s inequality yield

‖P (f)‖2p =
∥∥∥ ∞∑

n=1

(∫
f(t)rn(t) dt

)
rn

∥∥∥2

p

≤ B2
p

∞∑
n=1

∣∣∣ ∫ f(t)rn(t) dt
∣∣∣2

≤ B2
p ‖f‖

2
2

≤ B2
p ‖f‖

2
p .

If 1 ≤ p < 2 we define P as before for each f ∈ Lp ∩ L2 (which is a dense
subspace in Lp). Then, using Khintchine’s inequality, we obtain

‖P (f)‖p ≤
( ∞∑

n=1

∣∣∣ ∫ f(t)rn(t) dt
∣∣∣2)1/2

= sup

{ ∞∑
n=1

(
αn

∫
f(t)rn(t) dt

)
:

∞∑
n=1

α2
n = 1

}

= sup

{∫
f(t)

( ∞∑
n=1

αnrn(t)
)

dt :
∞∑

n=1

α2
n = 1

}

≤ sup

{
‖f‖p

∥∥∥ ∞∑
n=1

αnrn(t)
∥∥∥

q
:

∞∑
n=1

α2
n = 1

}

≤ sup

{
‖f‖p Bq

∥∥∥ ∞∑
n=1

αnrn(t)
∥∥∥

2
:

∞∑
n=1

α2
n = 1

}

= Bq ‖f‖p .

By density, P extends continuously to Lp with preservation of norm.
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��

Proposition 6.4.3. If �q embeds in Lp then either p ≤ q ≤ 2 or 2 ≤ q ≤ p.

Proof. Let us start by noticing that if (ei)∞i=1 is the canonical basis of �q, for
each n we have

E

∥∥∥ n∑
i=1

εiei

∥∥∥
q

= n1/q.

If �q embeds in Lp for some p < 2, by Theorem 6.2.14 there exist constants
c1 and c2 (given by the embedding and the type and cotype constants) such
that

c1 n
1
2 ≤ n

1
q ≤ c2 n

1
p .

For these inequalities to hold for all n ∈ N it is necessary that q ∈ [p, 2]. If
�q embeds in Lp for some 2 < p < ∞, with the same kind of argument we
deduce that q must belong to the interval [2, p].

��

Definition 6.4.4. Suppose (Ω, Σ, µ) is a probability measure space and let
X be a closed subspace of Lp(µ) for some 1 ≤ p < ∞. X is said to be
strongly embedded in Lp(µ) if, in X, convergence in measure is equivalent to
convergence in the Lp(µ)-norm; that is, a sequence of functions (fn)∞n=1 in X
converges to 0 in measure if and only if ‖fn‖p → 0.

Proposition 6.4.5. Suppose (Ω, Σ, µ) is a probability measure space and let
1 ≤ p < ∞. Suppose X is an infinite-dimensional closed subspace of Lp(µ).
Then the following are equivalent:

(i) X is strongly embedded in Lp(µ);
(ii) For each 0 < q < p there exists a constant Cq such that

‖f‖q ≤ ‖f‖p ≤ Cq ‖f‖q for all f ∈ X;

(iii) For some 0 < q < p there exists a constant Cq such that

‖f‖q ≤ ‖f‖p ≤ Cq ‖f‖q for all f ∈ X.

Proof. Let us suppose that X is strongly embedded in Lp(µ) but (ii) fails.
Then there would exist a sequence (fn)∞n=1 in X such that ‖fn‖p = 1 and
‖fn‖q → 0 for some 0 < q < p. Obviously, this implies that (fn)∞n=1 con-
verges to 0 in measure, which would force (‖fn‖p)

∞
n=1 to converge to 0. This

contradiction shows that (i)⇒ (ii).
Suppose now that (iii) holds and there is a sequence of functions (fn)∞n=1

in X such that (fn)∞n=1 converges to 0 in measure but (‖fn‖p)
∞
n=1 does not

tend to 0. By passing to a subsequence we can assume that (fn)∞n=1 converges
to 0 almost everywhere and ‖fn‖p = 1 for all n.

For each M > 0, since q < p we have
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Ω

|fn|q dµ =
∫
{|fn|≥M}

|fn|q dµ +
∫
{|fn|<M}

|fn|q dµ

≤
∫
{|fn|≥M}

Mq−p|fn|p dµ +
∫
{|fn|<M}

|fn|q dµ

≤ 1
Mp−q

+
∫
{|fn|<M}

|fn|q dµ.

Let ε > 0. By the Lebesgue Bounded Convergence theorem, there is N0 ∈
N such that

∫
{|fn|<M} |fn|q dµ < ε/2 for all n > N0. So, if we pick M >

(2ε−1)
1

p−q we get ∫
Ω

|fn|q dµ < ε,

contradicting (iii). Hence (iii) ⇒ (i), and so the proof is over because, triv-
ially, (ii)⇒ (iii).

��

Example 6.4.6. For each 1 ≤ p < ∞ the closed subspace spanned in Lp

by the Rademacher functions, Rp, is strongly embedded in Lp since, using
Khintchine’s inequality, the Lq-norm and the Lp-norm are equivalent in Rp

for all 1 ≤ q <∞.

Theorem 6.4.7. Suppose that X is an infinite-dimensional closed subspace
of Lp for some 1 ≤ p < ∞. If X is not strongly embedded in Lp then X
contains a subspace isomorphic to �p and complemented in Lp.

Proof. If X is not strongly embedded in Lp, by Proposition 6.4.5 there is
a sequence (fn)∞n=1 in X, ‖fn‖p = 1 for all n, such that fn → 0 a.e. By
Lemma 5.2.1 there is a subsequence (fnk

)∞k=1 of (fn)∞n=1 and a sequence
of disjoint subsets (Ak)∞k=1 of [0, 1] such that if Bk = [0, 1] \ Ak, then
(|fnk

|pχBk
)∞k=1 is equi-integrable. Lemma 5.2.7 implies

∫
|fnk

|pχBk
dµ→0.

That is, ‖fnk
− fnk

χAk
‖p → 0. Now, by standard perturbation arguments

we obtain a subsequence (fnkj
)∞j=1 of (fnk

)∞k=1 such that (fnkj
)∞j=1 is equiva-

lent to the canonical basis of �p and [fnkj
] is complemented in Lp.

��
The following theorem was proved in 1962 by Kadets and Pe�lczyński [98]

in a paper which really initiated the study of Lp-spaces by basic sequence
techniques. We will see that the case p > 2 is quite different from the case
p < 2 and this theorem emphasizes this point.

Theorem 6.4.8 (Kadets-Pe�lczyński). Suppose that X is an infinite-
dimensional closed subspace of Lp for some 2 < p < ∞. Then the following
are equivalent:

(i) �p does not embed in X;
(ii) �p does not embed complementably in X;
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(iii) X is strongly embedded in Lp;
(iv) X is isomorphic to a Hilbert space and is complemented in Lp;
(v) X is isomorphic to a Hilbert space.

Proof. (i) ⇒ (ii) and (iv) ⇒ (v) are obvious, and (ii) ⇒ (iii) was proved in
Theorem 6.4.7. Let us complete the circle by showing that (iii) ⇒ (iv) and
that (v)⇒ (i).

(iii) ⇒ (iv) If X is strongly embedded in Lp, Proposition 6.4.5 yields a
constant C2 such that ‖f‖2 ≤ ‖f‖p ≤ C2 ‖f‖2 for all f ∈ X. This shows that
X embeds in L2 and hence it is isomorphic to a Hilbert space. Let us see that
X is complemented in L2.

Since p > 2, Lp is contained in L2 and the inclusion ι : Lp → L2 is norm
decreasing. The restriction of ι to X is an isomorphism onto the subspace
ι(X) of L2, and ι(X) is complemented in L2 by an orthogonal projection P :

Lp
ι �� L2

P

��
X
��

��

ι|X �� ι(X)

Then ι−1Pι is a projection of Lp onto X (this projection is simply the restric-
tion of P to Lp).

(v) ⇒ (i) If X ≈ �2 then X cannot contain an isomorphic copy of �p

for any p �= 2 because the classical sequence spaces are totally incomparable
(Corollary 2.1.6).

��
The Kadets-Pe�lczyński theorem establishes a dichotomy for subspaces of

Lp when 2 < p <∞:

Corollary 6.4.9. Suppose X is a closed subspace of Lp for some 2 < p <∞.
Then either

(i) X is isomorphic to �2, in which case X is complemented in Lp, or
(ii) X contains a subspace that is isomorphic to �p and complemented in Lp.

Notice that, in particular, this settles the question of which Lq-spaces for
1 ≤ q <∞ embed in Lp for p > 2:

Corollary 6.4.10. For 2 < p <∞ and 1 ≤ q <∞ with q �= p, 2, Lp does not
have any subspace isomorphic to Lq or �q.

We are now ready to find a more efficient embedding of �2 into the Lp-
spaces, replacing the Rademacher sequences by sequences of independent
Gaussians. We consider only the real case, although modifications can be
made to handle complex functions. In order to introduce these ideas, we will
require some more basic notions from probability theory.
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If f is a real random variable, its distribution is the probability measure
µf on R given by

µf (B) = P(f−1B)

for any Borel set B. f is called symmetric if f and −f have the same distri-
bution.

Conversely, for each probability measure µ on R there exist real random
variables f with µf = µ, and the formula∫

Ω

F (f(ω)) dP(ω) =
∫ ∞

−∞
F (x) dµf (x) (6.12)

holds for any positive Borel function F : R→ R.
The characteristic function φf of a random variable f is the function φf :

R→ C defined by
φf (t) = E(eitf ).

This is related to µf via the Fourier transform:

µ̂f (−t) =
∫

R

eitxdµf (x) = φf (t).

In particular φf determines µf , i.e., if f and g are two random variables
(possibly on different probability spaces) with φf = φg then µf = µg. Other
basic useful properties of characteristic functions are:

• φf (−t) = φf (t);
• φcf+d(−t) = eidtφf (ct), for c, d constants;
• φf+g = φfφg if f and g are independent.

Remark 6.4.11. If f1, . . . , fn are independent random variables (not nec-
essarily equally distributed) on some probability space, then we can exploit
independence to compute the characteristic function of any linear combination∑n

j=1 ajfj :

E
(
eit

Pn
j=1 ajfj

)
=

n∏
j=1

E
(
eitajfj

)
=

n∏
j=1

φfj (ajt). (6.13)

Suppose we are given a probability measure µ on R. The random variable
f(x) = x has distribution µ with respect to the probability space (R, µ).
Next consider the countable product space RN with the product measure
P = µ× µ× · · · . (RN, P) is also a probability space and the coordinate maps
fj : RN → R,

fj(x1, . . . , xn, . . .) = xj ,

are identically distributed random variables on RN with distribution µ. More-
over, the random variables (fj)∞j=1 are independent.
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Although we created the sequence of functions (fj)∞j=1 on (RN, P) we might
just as well have worked on ([0, 1],B, λ). As we discussed in Section 5.1 there
is a Borel isomorphism σ : RN → [0, 1] which preserves measure, that is,

λ(B) = P(σ−1B), B ∈ B

and the functions (fj ◦ σ−1)∞j=1 have exactly the same properties on [0, 1].
This remark, in particular, allows us to pick an infinite sequence of inde-

pendent identically distributed random variables on [0, 1] with a given distri-
bution.

The standard normal distribution is given by the measure on R

dµG =
1√
2π

e−x2/2 dx.

We will call any random variable with this distribution a (normalized) Gaus-
sian. In this case we have

µ̂G (−t) =
1√
2π

∫ ∞

−∞
eitx−x2/2 dx = e−t2/2,

so the characteristic function of a Gaussian is e−t2/2.

Proposition 6.4.12. If g is a Gaussian on some probability measure space
(Ω,Σ, µ) then g ∈ Lp(µ) for every 1 ≤ p <∞.

Proof. This is because∫
Ω

|g(ω)|p dω =
1√
2π

∫ ∞

−∞
|x|pe− 1

2 x2
dx,

and the last integral is finite and indeed computable in terms of the Γ function
as

2p/2

√
π

Γ(
p + 1

2
).

��

Proposition 6.4.13. �2 embeds isometrically in Lp for all 1 ≤ p <∞.

Proof. Take (gj)∞j=1, a sequence of independent Gaussians on [0, 1]. By Propo-
sition 6.4.12, (gj)∞j=1 ⊂ Lp. We will show that [gj ] is isometrically isomorphic
to �2.

For every n ∈ N and scalars (aj)n
j=1 such that

∑n
j=1 a2

j = 1, put

hn =
n∑

j=1

ajgj .
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By (6.13) we have

φhn(t) = e−(a2
1+···+a2

n)t2/2 = e−t2/2.

This means that µhn = µg1 and so by (6.12)

‖hn‖p = ‖g1‖p.

It follows that for any a1, . . . , an in R,

∥∥∥ n∑
j=1

ajgj

∥∥∥
p

= ‖g1‖p

( n∑
j=1

|aj |2
)1/2

.

Thus the mapping en �→ ‖g1‖−1
p gn linearly extends to an isometry from �2

onto the subspace [gn] of Lp.
��

The connection between the Gaussians and �2 is encoded in the character-
istic function. We are now going to dig a little deeper to try to make copies
of �q for other values of q in the Lp-spaces. A moment’s thought shows that
we need a random variable f with characteristic function

φf (t) = e−c|t|q

for some constant c = c(q). It turns out that if (and only if) 0 < q < 2 we can
construct such a random variable. This has long been known to Probabilists;
here we give a treatment based on some unpublished notes of Ben Garling.

We will need the following classical lemma due to Paul Lévy (see, for
instance, [57]).

Lemma 6.4.14. Suppose (µn)∞n=1 is a sequence of probability measures on R

such that
lim

n→∞ µ̂n(−t) = F (t)

exists for all t ∈ R. If F is continuous then there is a probability measure µ
on R such that µ̂(−t) = F (t).

Proof. It is convenient to compactify the real line by adding one point at ∞
to make the one-point compactification K = R∪∞. We can then regard each
µn as a Borel measure on K which assigns zero mass to {∞}. Let µ be any
weak∗ cluster point of this sequence (viewed as elements of C(K)∗; such a
measure then exists by Banach-Alaoglu’s theorem). The functions x �→ eitx

cannot be extended continuously to K. However, for t �= 0 the functions

ht(x) =

⎧⎪⎨
⎪⎩

t if x = 0
eitx−1

ix if x ∈ R \ {0}
0 if x =∞
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are continuous on K.
If t > 0, ∫

K

ht(x)dµn(x) =
∫

R

(∫ t

0

eisxds

)
dµn(x)

=
∫ t

0

(∫
R

eisx dµn(x)
)

ds

=
∫ t

0

µ̂n(−s) ds.

Thus ∫
K

ht(x)dµ(x) =
∫ t

0

F (s) ds.

If t < 0 the same calculation works to give∫
K

ht(x)dµ(x) = −
∫ 0

t

F (s) ds.

Note that for t > 0, |ht(x)| ≤ t for all x and vanishes at ∞. Thus∣∣∣ ∫
K

ht(x) dµ(x)
∣∣∣ ≤ tµ(R).

Hence, for t > 0
1
t

∫ t

0

F (s) ds ≤ µ(R).

F is continuous and, obviously, F (1) = 1. Thus the left-hand side converges
to 1. We conclude that µ(R) = 1, i.e., µ is actually a Borel measure on R.
Now µ̂(−t) is a continuous function of t and if t > 0,∫ t

0

µ̂(−s)ds =
∫

R

ht(x)dµ(x) =
∫ t

0

F (s) ds.

By the Fundamental Theorem of Calculus, since both µ̂(−t) and F (t) are
continuous, µ̂(−t) = F (t) for t > 0. A similar calculation works if t < 0.

��

Theorem 6.4.15. For every 0 < p ≤ 2 there is a probability measure µp on
(R, dx) such that ∫ ∞

−∞
eitx dµp(x) = e−|t|p , t ∈ R.

Proof. It obviously suffices to show the existence of µp with∫ ∞

−∞
eitx dµp(x) = e−cp|t|p , t ∈ R,
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where cp is some positive constant. For the case p = 2 this is achieved by
using a Gaussian.

Now suppose 0 < p < 2. Let f be a random variable on some probability
space with probability distribution

dµf =
p

2|x|p+1

[
χ(−∞,−1)(x) + χ(1,+∞)(x)

]
dx.

The characteristic function of f is the following:

E
(
eitf
)

=
∫ ∞

−∞
eitx dµf (x)

=
p

2

∫ −1

−∞

eitx

(−x)p+1
dx +

p

2

∫ ∞

1

eitx

xp+1
dx

= p

∫ ∞

1

eitx + e−itx

2
dx

xp+1

= p

∫ ∞

1

cos(tx)
xp+1

dx.

Then, if t > 0 the substitution u = tx in the last integral yields

1− E
(
eitf
)

= p

∫ ∞

1

dx

xp+1
− p

∫ ∞

1

cos(tx)
xp+1

dx

= p

∫ ∞

1

1− cos(tx)
xp+1

dx

= ptp
∫ ∞

t

1− cos u

up+1
du.

Let
ωp(t) = p

∫ ∞

t

1− cos u

up+1
du

and
cp = lim

t→0+
ωp(t) = p

∫ ∞

0

1− cos u

up+1
du.

Note that
∫∞
0

1−cos u
up+1 du is finite and positive for every 0 < p < 2.

Since f is symmetric, its characteristic function is even and therefore the
equality

E
(
eitf
)

= 1− |t|pωp(t)

holds for all t ∈ R.
Let (fj)∞j=1 be a sequence of independent random variables with the same

distribution as f . Then, for every n the characteristic function of the random
variable f1+···+fn

n1/p is
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E

(
e

it
f1+···+fn

n1/p

)
=

n∏
i=1

E
(
e

it
fi

n1/p
)

=
(
E
(
e

it f

n1/p
))n

=
(
1− |t|

p

n
ωp

( |t|
n1/p

))n

.

Since

lim
n→∞

(
1− |t|

p

n
ωp

( |t|
n1/p

))n

= e−cp|t|p ,

we can apply the preceding lemma to obtain the required measure µp.
��

Definition 6.4.16. A random variable f on a probability space is called p-
stable (0 < p < 2) if

µ̂f (−t) = e−c|t|p , t ∈ R

for some positive constant c = c(p). f is called normalized p-stable if c = 1.

Note that the normalization for Gaussians is somewhat different, i.e., the
characteristic function of a normalized Gaussian would correspond to the case
c = 1/2 in the previous definition.

Theorem 6.4.17. Let f be a p-stable random variable on a probability mea-
sure space (Ω,Σ, µ) for some 0 < p < 2. Then

(i) f ∈ Lq(µ) for all 0 < q < p;
(ii) f �∈ Lp(µ).

Proof. Suppose that f is normalized p-stable for some 0 < p < 2 with distri-
bution of probability µp. Then∫

Ω

|f(ω)|q dω =
∫ ∞

−∞
|x|q dµp(x).

For every x ∈ R the substitution u = |x|t in the integral
∫∞
0

1−cos tx
t1+q dt yields∫ ∞

0

1− cos tx

t1+q
dt = |x|qαq,

where αq =
∫∞
0

1−cos u
u1+q du is a positive constant for 0 < q < 2. Hence,∫ ∞

−∞
|x|q dµp(x) = α−1

q

∫ ∞

−∞

(∫ ∞

0

1− cos tx

t1+q
dt
)

dµp(x)

= α−1
q

∫ ∞

0

1
tq+1

(∫ ∞

−∞
(1− cos tx) dµp(x)

)
dt

= α−1
q

∫ ∞

0

1
tq+1

(∫ ∞

−∞
(1−�eixt) dµp(x)

)
dt

= α−1
q

∫ ∞

0

1
tq+1

(1− e−tp

) dt.

The last integral is finite for 0 < q < p and fails to converge when q = p.
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��

Theorem 6.4.18. If 1 ≤ p < 2 and p ≤ q ≤ 2, then �q embeds isometrically
in Lp.

Proof. We have already seen the cases when q = p and q = 2. For 1 ≤ p <
q < 2, let (fj)∞j=1 be a sequence of independent normalized q-stable random
variables on [0, 1]. Then we can repeat the argument we used in Proposi-
tion 6.4.13 to prove that [fj ] is isometric to �q in Lp. The only constraint is
that the sequence (fj) must belong to Lp, which requires that p < q.

��
We can summarize our discussion by stating:

Theorem 6.4.19 (�q-subspaces of Lp).

(i) For 1 ≤ p ≤ 2, �q embeds in Lp if and only if p ≤ q ≤ 2;
(ii) For 2 < p <∞, �q embeds in Lp if and only if q = 2 or q = p.
Moreover, if �q embeds in Lp then it embeds isometrically.

Remark 6.4.20. The alert reader will wonder for which values of q, the func-
tion space Lq can be embedded in Lp. In fact, the answer is exactly the same
as for the sequence space �q, but we will postpone the proof of this until Chap-
ter 11. A direct proof of this facts can be based on a discussion of stochastic
integrals (see [106]).

Theorem 6.4.21. Let 1 < p, q < ∞. Then �q embeds complementably in Lp

if and only q = p or q = 2.

Proof. We know (Proposition 6.4.2 and Proposition 6.4.1) that both q = p
and q = 2 allow complemented embeddings. Suppose �q embeds in Lp comple-
mentably and q /∈ {2, p}. By Theorem 6.4.19 we must have p < q < 2. Taking
duals it follows that �q′ embeds complementably in Lp′ , where q′, p′ are the
conjugate indices of q and p. This is impossible.

��
The Lp-spaces (1 ≤ p < ∞) are primary. Alspach, Enflo, and Odell [3]

proved the result for 1 < p < ∞ in 1977. The case p = 1 was established in
1979 by Enflo and Starbird [55] as we already mentioned in Chapter 5.

The problem of classifying the complemented subspaces of Lp when 1 <
p < ∞ received a great deal of attention during the 1970s. At this stage
we know of three isomorphism classes that we can find as complemented
subspaces inside any Lp: �2, �p, and Lp, and it is easily seen that we can add
�p⊕�2 and �p(�2) to that list. In fact, it turns out that Lp has a very rich class
of complemented subspaces and the classification of them seems beyond reach.
In 1981, Bourgain, Rosenthal, and Schechtman [17] showed the existence of
uncountably many mutually nonisomorphic complemented subspaces of Lp;
curiously it seems unknown (unless we assume the Continuum Hypothesis)
whether there is a continuum of such spaces!
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Problems

6.1. This exercise can be considered as a continuation of Problem 5.6.
(a) A closed subspace X of Lp(T) is called translation-invariant if f ∈ X
implies τφ(f) ∈ X, where τφ(f) = f(θ − φ). Show that if X is translation-
invariant and E = {n ∈ Z : einθ ∈ X}, then X is the closed linear span of
{einθ : n ∈ E}. In this case we put X = Lp,E(T).
(b) E is called a Λ(p)-set if Lp,E(T) is strongly embedded in Lp(T). Show that
if E is a Λ(p)-set then it is a Λ(q)-set for q < p.
(c) Show that if p > 2, E is a Λ(p)-set if and only if {einθ : n ∈ E} is an
unconditional basis of Lp,E(T).
(d) Prove that E = {4n : n ∈ N} is a Λ(4)-set. [Hint: Expand |

∑
n∈E aneinθ|4.]

(e) E is called a Sidon set if for any (an)n∈E ∈ �∞(E) there exists µ ∈M(T)
with µ̂(n) = an. Show that the following are equivalent:

(i) E is a Sidon set;
(ii) (einθ)n∈E is an unconditional basic sequence in C(T);
(iii) (einθ)n∈E is a basic sequence equivalent to the canonical �1-basis in C(T).

(f) Show that a Sidon set is a Λ(p)-set for every 1 ≤ p <∞.
(g) Show that E = {4n : n ∈ N} is a Sidon set. [Hint : For −1 ≤ an ≤ 1,
consider the functions fn(θ) =

∏n
k=1(1 + ak cos 4kθ), and let µ be a weak∗

cluster point of the measures fn
dθ
2π .]

6.2. In this problem we aim to obtain Khintchine’s inequality directly, not
as a consequence of Kahane’s inequality.
(a) Prove that cosh t ≤ et2/2 for all t ∈ R.
(b) Show that if p ≥ 1 then tp ≤ ppe−pet.

(c) Let (εn)∞n=1 be a sequence of Rademachers and suppose f =
∑n

k=1 akεk

where
∑n

k=1 a2
k = 1. Show that

E(ef ) ≤ e

and deduce that
E(e|f |) ≤ 2e.

Hence show that
(E(|f |p))1/p ≤ 21/pe1/p p

e
.

Finally obtain Khintchine’s inequality for p > 2.

(d) Show by using Hölder’s inequality that (c) implies Khintchine’s inequality
for p < 2.
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6.3. The classical proof of Khintchine’s inequality.

(a) Let (Ω, P) be a probability space and (εk) be a Rademacher sequence on it.
Suppose

∑n
k=1 a2

k = 1. If p = 2m is an even integer expand E(
∑n

k=1 akεk)2m

using the multinomial theorem and compare with (
∑n

k=1 a2
k)m.

(b) Deduce that

E

( n∑
k=1

akεk

)2m

≤ (2m)!
2mm!

.

(c) Obtain Khintchine’s inequality.

6.4. Let (Ω, P) be a probability space and (εk) be a Rademacher sequence on
it. Consider a finite series f =

∑N
k=1 akεk and let

M(t) = max
1≤n≤N

∣∣∣ n∑
k=1

akεk(t)
∣∣∣.

(a) Show that P(M > λ) ≤ 2P(|f | > λ).

(b) Deduce that E(M2) ≤ 2
∑N

k=1 a2
k.

6.5. Suppose
∑∞

k=1 a2
k <∞. Let

Mm(t) = sup
n>m

∣∣∣ n∑
j=m+1

akεk(t)
∣∣∣.

Show that Mm(t) < ∞ almost everywhere and limm→∞ E(M2
m) = 0. Deduce

that
∑∞

k=1 akεk converges a.e.

6.6. Suppose the series
∑∞

k=1 akεk converges on a set of positive measure.
(a) Argue that there is a measurable set E with P(E) > 0 and a constant C
so that ∣∣∣ n∑

j=m+1

ajεk(ω)
∣∣∣ ≤ C, ω ∈ E, 1 ≤ m < n <∞.

(b) Let bjk = E(χEεjεk) for j < k. Show that∑
j<k

b2
jk ≤ P(E).

(c) Deduce the existence of m so that

∑
m≤j<k

b2
jk ≤

1
100

(P(E))2.

(d) Deduce that
∑∞

k=1 a2
k <∞. [Hint: Estimate E|χE

∑n
j=m+1 ajεj |2.]
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6.7. A Banach space X has the Orlicz property if whenever a series
∑∞

n=1 xn

is unconditionally convergent in X implies
∑∞

n=1 ‖xn‖2 <∞.

(a) Orlicz’s Theorem. Prove that the spaces Lp for 1 ≤ p ≤ 2 have the
Orlicz property.

(b) Show that for 2 ≤ p <∞, if
∑∞

n=1 fn is unconditionally convergent in Lp

then
∑∞

n=1 ‖fn‖p <∞.

(c) Prove that if a series
∑∞

n=1 fn is unconditionally convergent in Lp for
1 ≤ p <∞, then fn → 0 almost everywhere.

6.8. Prove that for 1 < p <∞, �2 embeds isometrically and complementably
in Lp.

6.9. Show that a quotient of a space with type p also has type p. Is the same
statement valid for cotype?

6.10. Show that every operator from C(K) into �p, 1 ≤ p < 2, is compact.
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Factorization Theory

This chapter is devoted to some important results on factorization of opera-
tors. Suppose X, Y are Banach spaces and that T : X → Y is a continuous
operator. T factorizes through a Banach space E if there are continuous op-
erators R : X → E and S : E → Y so that T = SR. Pictorially we have:

X
T ��

R ���
��

��
��

Y

E

S

���������

To illustrate the importance of such theorems, consider the case when
we can factor the identity operator IX : X → X through E. Then X is
isomorphic to a complemented subspace of E. Another classical example: if
an operator T : X → Y between Banach spaces factors through a reflexive
Banach space then T is weakly compact (actually, this property characterizes
weakly compact operators as Davis, Figiel, Johnson, and Pe�lczyński proved
in [35]).

Most of the results of this chapter were obtained during the period 1970-74
by Maurey, Rosenthal, and Nikishin. Factorization builds on the theory of type
and cotype as we will see. In fact, some of the work which preceded the results
of this chapter and provided much of the impetus for factorization theory
will only be developed in the following chapter. This particularly includes
the fundamental work of Grothendieck [75] and Lindenstrauss and Pe�lczyński
[131].

7.1 Maurey-Nikishin factorization theorems

In this section we shall discuss factorization theory of operators with values in
the Lp-spaces. Here factorization is related to the notion of change of density.
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The first factorization result of this type, essentially discovered by Nikishin
[157], establishes a criterion for an operator with values in an Lp(µ)-space
to factor through Lq(ν) (q > p), where ν is obtained from µ after a suit-
able change of density. Nikishin’s motivation came from harmonic analysis
rather than Banach space theory, where versions of this result for translation-
invariant operators had been known for some time (e.g., in the work of Stein
[210]). However, it was the work of Maurey [144] that combined the ideas of
Nikishin with the newly evolving theory of Rademacher type to create a very
powerful tool.

The proof given below is based on one presented in [221] but is similar to
the proof given by Maurey.

Definition 7.1.1. If (Ω, Σ, µ) is a σ-finite measure space then a density func-
tion h on Ω is a measurable function such that h ≥ 0 a.e. and

∫
h dµ = 1.

Theorem 7.1.2. Let µ be a σ-finite measure on some measurable space
(Ω,Σ). Suppose that T is an operator from a Banach space X into Lp(µ)
and that 1 ≤ p < q <∞. Suppose 0 < C <∞. Then the following conditions
are equivalent:

(a) There exists a density function h on Ω such that

(∫
{h>0}

|Tx|qh1−q/p dµ
)1/q

≤ C ‖x‖ , x ∈ X, (7.1)

and
µ{ω : |Tx(ω)| > 0, h(ω) = 0} = 0, x ∈ X. (7.2)

(b) For every finite sequence (xk)n
k=1 in X,

∥∥∥( n∑
k=1

|Txk|q
)1/q

∥∥∥
p
≤ C

( n∑
k=1

‖xk‖q
)1/q

. (7.3)

Interpretation. Condition (a) is to be interpreted in the sense that each
function Tx is essentially supported on A = {ω ∈ Ω : h(ω) > 0}. Thus the
operator Sx := h−1/pTx maps into Lp(Ω, h dµ). However, (a) asserts that
S actually maps boundedly into the smaller space Lq(Ω, h dµ). This is the
diagram depicting the situation:

X
T ��

��

Lp(µ)

Lq(hdµ) � � �� Lp(hdµ)

j

��

Here j is an isometric embedding of Lp(h dµ) onto the subspace Lp(A,µ) of
Lp(µ), defined by j(f) = fh1/p.
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Of course, at a very small cost we could insist that h is a strictly positive
density (i.e., h > 0 a.e.) and drop equation (7.2): simply replace h by (1 +
εv)−1(h + εv) where ε > 0 and v is any strictly positive density. Then j
becomes a genuine isometric isomorphism. In this case, however, the norm of
S = h−1/pT is a little greater than C. Since the precise value of ‖S‖ is rarely
of interest we will often use the theorem is this form. In fact, in a formal sense
we could replace (7.1) and (7.2) by(∫

Ω

|Tx|qh1−q/p dµ
)1/q

≤ C ‖x‖ , x ∈ X,

with the implicit understanding that Tx = 0 a.e. on the set {ω ∈ Ω : h(ω) = 0}
(i.e., where h−q/p = 0). We will use this convention later.

Before continuing let us notice that, although we have stated this for gen-
eral σ-finite measures, it is enough to prove the theorem under our usual
convention that µ is a probability measure. If µ is not a probability measure
we choose some strictly positive density v and set dµ′ = v dµ; then we define
T ′ : X → Lp(µ′) by T ′x = v−1Tx. A quick inspection will show the reader
that the statement of the theorem for T ′ implies exactly the same statements
for T. Thus we can and do resume our convention that µ is a probability
measure.

Proof. (a)⇒ (b) Since (Ω, h dµ) is a probability measure space and p < q, the
Lp(hdµ)-norm is smaller than the Lq(hdµ)-norm and thus we have

(∫
Ω

( n∑
k=1

|Txk|q
)p/q

dµ
)1/p

=
(∫

{h>0}

( n∑
k=1

|Txk|q h−q/p
)p/q

h dµ
)1/p

≤
(∫

{h>0}

n∑
k=1

|Txk|qh− q
p h dµ

)1/q

=
( n∑

k=1

∫
{h>0}

|Txk|qh− q
p hdµ

)1/q

≤ C
( n∑

k=1

‖xk‖q
)1/q

.

(b) ⇒ (a) Let us assume that C is the best constant so that (7.3) holds.
Then

sup

{∥∥∥( n∑
k=1

|Txk|q
)1/q

∥∥∥
p

: (xk)n
k=1 ⊂ X,

n∑
k=1

‖xk‖q ≤ C−q, n ∈ N

}
= 1.

Let W0 be the set of all nonnegative functions in L1 that are bounded above
by functions of the form (

∑n
k=1 |Txk|q)p/q, where n ∈ N and (xk)n

k=1 ⊂ X
with

∑n
k=1 ‖xk‖q ≤ C−q, i.e.,
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0 ≤ f ≤
( n∑

k=1

|Txk|q
)p/q

;

let W be the norm closure of W0.
W0 and W have the following property:

(*) Let r = q/p > 1. Given f1, . . . , fn ∈ W0 [respectively, W ] and
c1, . . . , cn ≥ 0 with c1 + · · ·+ cn ≤ 1 then (c1f

r
1 + · · ·+ cnfr

n)1/r ∈W0

[respectively, W ].

To prove (*) it suffices to consider the case of W0. Suppose

0 ≤ fk ≤

⎛
⎝mk∑

j=1

|Txjk|q
⎞
⎠p/q

, 1 ≤ k ≤ n,

where
∑mk

j=1 ‖xjk‖q ≤ C−q for 1 ≤ k ≤ n. Then we also have

0 ≤
(

n∑
k=1

ckfr
k

)1/r

≤

⎛
⎝ n∑

k=1

mk∑
j=1

|T (c
1
q

k xjk)|q
⎞
⎠p/q

,

with
n∑

k=1

ck

mk∑
j=1

‖xjk‖q ≤ C−q,

and this establishes (*).
Property (*) immediately yields that W0 (and hence its norm-closure W )

is convex. Indeed, if f1, . . . , fn ∈W0 and c1, . . . , cn ≥ 0 with c1 + · · ·+ cn = 1
then by (*) we obtain

n∑
j=1

cjfj ≤

⎛
⎝ n∑

j=1

cjf
r
j

⎞
⎠1/r

∈W0.

Using Mazur’s theorem, W is therefore weakly closed. Note that from the
choice of C, we have

sup
f∈W0

∫
f dµ = sup

f∈W

∫
f dµ = 1,

so in particular W is bounded. We next show that W is weakly compact. This
requires to show that it is equi-integrable.

Suppose W is not equi-integrable. Then there is some δ > 0, a sequence
(fn)∞n=1 in W , and a sequence of disjoint measurable sets (En)∞n=1 such that∫

En

fn dµ > δ > 0, n ∈ N.
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Thus for any N we have

δN1− 1
r ≤ N− 1

r

∫
max(f1, f2, . . . , fN )dµ

≤
∫ ⎛⎝ 1

N

N∑
j=1

fr
j

⎞
⎠1/r

dµ

≤ 1,

by using (*). This is a contradiction for large enough N .
Hence W is weakly compact and, since integration is a weakly continuous

functional on L1(µ), it follows that there exists h ∈W with∫
h dµ = 1. (7.4)

Now suppose f ∈W. On the one hand, for any τ > 0 we have

(1 + τ)−
1
r (hr + τfr)

1
r ∈W,

therefore, by property (*),∫
(hr + τfr)

1
r dµ ≤ (1 + τ)

1
r . (7.5)

On the other hand, ∫
(hr + τfr)

1
r dµ ≥ 1 + τ

1
r

∫
h=0

f dµ. (7.6)

Since 1/r < 1, combining (7.5) and (7.6) yields∫
{h=0}

f dµ = 0. (7.7)

From (7.6) and (7.4) we have∫
{h>0}

h
(1 + τfrh−r)

1
r − 1

τ
dµ ≤ (1 + τ)

1
r − 1

τ
, τ > 0.

Letting τ → 0 and using Fatou’s lemma we obtain∫
{h>0}

frh1−rdµ ≤ 1, f ∈W. (7.8)

In particular (7.7) and (7.8) hold for f = C−p‖x‖−p|Tx|p when 0 �= x ∈ X.
This immediately gives (7.2) and (7.1).

��
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Theorem 7.1.3. Let 1 ≤ p < ∞. Suppose that T is an operator from a
Banach space X into Lp(µ). If X has type 2 then there exists a constant
C = C(p) such that for every finite sequence (xk)n

k=1 in X we have

∥∥∥( n∑
k=1

|Txk|2
)1/2

∥∥∥
p
≤ C

( n∑
k=1

‖xk‖2
)1/2

.

Proof. By Theorem 6.2.13, for every 1 ≤ p < ∞ there is a constant c = c(p)
such that for any finite set of vectors (xk)n

k=1 in X,

∥∥∥( n∑
k=1

|Txk|2
) 1

2

∥∥∥
p
≤ c E

∥∥∥ n∑
k=1

εkTxk

∥∥∥
p
≤ c ‖T‖E

∥∥∥ n∑
k=1

εkxk

∥∥∥.
Using Kahane’s inequality and the type 2 of X,

E

∥∥∥ n∑
k=1

εkxk

∥∥∥ ≤ (E

∥∥∥ n∑
k=1

εkxk

∥∥∥2)1/2

≤ T2(X)
( n∑

k=1

‖xk‖2
) 1

2 .

��
Since Lr(µ) for r ≥ 2 are type-2 spaces, we immediately obtain:

Corollary 7.1.4.

(a) Every operator from a subspace of Lr(µ) (2 ≤ r < ∞) into Lp(µ) (1 ≤
p < 2) factors through a Hilbert space.

(b) If a Banach space X is isomorphic to a closed subspace of both Lp(µ) for
some 1 ≤ p < 2 and Lr(µ) for some 2 < r <∞, then X is isomorphic to
a Hilbert space.

Corollary 7.1.4 follows immediately from Theorems 7.1.2 and 7.1.3. Curi-
ously, the isometric version of (b) does not hold. That is, if X is isometric to
a subspace of Lp (1 ≤ p < 2) and isometric to a subspace of Lr (2 < r <∞),
it is not true that X must be isometric to a Hilbert space. Finite-dimensional
counterexamples were given by Koldobsky [112]; however, the following prob-
lem is still open (see [114]):

Problem 7.1.5. If an infinite-dimensional Banach space X is isometric to a
closed subspace of both Lp for some 1 ≤ p < 2 and Lr for some 2 < r < ∞,
must X be isometric to a Hilbert space?

To push our results further we need a replacement for Theorem 6.2.13 for
exponents other than 2. If 1 ≤ q < 2 then it turns out that the q-stable random
variables constructed in the previous chapter do very nicely. Indeed, we could
have used Gaussians in place of Rademachers in the preceding argument.

Lemma 7.1.6. Let 1 ≤ p < q < 2. Suppose that γ = (γj)∞j=1 is a sequence
of independent normalized q-stable random variables. Then for any finite se-
quence of functions (fj)n

j=1 in Lp(µ),
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∥∥∥( n∑
j=1

|fj |q
)1/q

∥∥∥
p

= c
(
E

∥∥∥ n∑
j=1

γjfj

∥∥∥p

p

)1/p

,

where c = c(p, q) > 0.

Proof. We recall from Theorem 6.4.18 that there is a constant c = c(p, q) so
that ⎛

⎝E

∣∣∣ n∑
j=1

ajγj

∣∣∣p
⎞
⎠1/p

= c−1

⎛
⎝ n∑

j=1

|aj |q
⎞
⎠1/q

, (aj)n
j=1 ⊂ R.

Using Fubini’s theorem,∫ ( n∑
j=1

|fj |q
) p

q

dµ = cp E

∫ ∣∣∣ n∑
j=1

γjfj

∣∣∣pdµ,

and the lemma follows.
��

Theorem 7.1.7. Let 1 ≤ p < 2. Suppose that T is an operator from a Banach
space X into Lp(µ). If X has type r for some p < r < 2, then for each q ∈ (p, r)
there exists a constant C such that∥∥∥( n∑

j=1

|Txj |q
)1/q

∥∥∥
p
≤ C

( n∑
j=1

‖xj‖q
)1/q

,

for every finite sequence (xj)n
j=1 in X.

Proof. In this proof we will require three mutually independent sequences
of independent identically distributed random variables: a sequence (εj)∞j=1

of Rademachers, a sequence (γj)∞j=1 of normalized q-stable random variables
and a sequence (ηj)∞j=1 of normalized r-stable random variables.

Let (xj)n
j=1 be a finite sequence in X. By the previous lemma, for a certain

constant c = c(p, q) we have

∥∥∥( n∑
j=1

|Txj |q
)1/q

∥∥∥
p

= c
(
Eγ

∥∥∥ n∑
j=1

γjTxj

∥∥∥p

p

)1/p

≤ c ‖T‖
(
Eγ

∥∥∥ n∑
j=1

γjxj

∥∥∥p)1/p

.

Since the normalized q-stables are symmetric and X has type r,

(
Eγ

∥∥∥ n∑
j=1

γjxj

∥∥∥p)1/p

=
(
EγEε

∥∥∥ n∑
j=1

εjγjxj

∥∥∥p)1/p

≤
(
Eγ

⎛
⎝Eε

∥∥∥ n∑
j=1

εjγjxj

∥∥∥r

⎞
⎠p/r )1/p
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≤ Tr(X)
(
Eγ

( n∑
j=1

|γj |r ‖xj‖r )p/r
)1/p

.

Now notice that

E

∣∣∣ n∑
j=1

ajηj

∣∣∣p = c1

( n∑
j=1

|aj |r
)p/r

,

for a certain constant 0 < c1 = E|η1|p which is finite since p < r. Thus letting
c2, c3 be positive constants depending only on p, q, and r,

Eγ

( n∑
j=1

|γj |r ‖xj‖r
)p/r

= c−1
1 EγEη

∣∣∣ n∑
j=1

ηjγj‖xj‖
∣∣∣p

= c−1
1 EηEγ

∣∣∣ n∑
j=1

ηjγj‖xj‖
∣∣∣p

= c2Eη

( n∑
j=1

|ηj |q‖xj‖q
)p/q

≤ c2

(
Eη

n∑
j=1

|ηj |q‖xj‖q
)p/q

= c3

( n∑
j=1

‖xj‖q
)p/q

.

��
The next result now follows immediately from Theorem 7.1.2:

Theorem 7.1.8. Let X be a Banach space of type r > 1. Suppose that 1 ≤
p < r and that T : X → Lp(µ) is an operator. Then T factors through Lq(µ)
for any p < q < r. More precisely, for each p < q < r there is a strictly
positive density function h on Ω so that Sx = h−1/pTx defines a bounded
operator from Lp(µ) into Lq(Ω, h dµ).

Note here that there is a fundamental difference between the case of type
r < 2 and type 2. In the former we only obtain a factorization through Lq(µ)
when q < r. Can we do better and take q = r? The answer is no and to see
why we must consider subspaces of Lp for 1 ≤ p < 2. This will be the topic of
the next section, but let us mention that an improvement is possible: A later
theorem of Nikishin [158] implies that T actually factors through the space
“weak Lr.” See [186] and the Problems.

Remark 7.1.9. An examination of the proofs of the theorems of this section
shows that the main theorem (Theorem 7.1.8) will also hold if 0 < p < 1,
when Lp is no longer a Banach space; in this case we can take r = 1 and
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every Banach space has type one! Thus we conclude that if a Banach space
isomorphically embeds in some Lp where 0 < p < 1 then it embeds in every
Lq for p ≤ q < 1.

The following problem, originally raised by Kwapień in 1969, is open:

Problem 7.1.10. If X is a Banach space which embeds in Lp for some 0 <
p < 1, does X embed in L1?

In the isometric setting the answer is negative: a Banach space which
embeds isometrically in Lp for some 0 < p < 1 need not embed isometrically
in L1 as Koldobsky proved in 1996 [113]; see also [105]. In the isomorphic case
the only known result is that X embeds in L1 if and only if �1(X) embeds in
some Lp when 0 < p < 1 [104].

7.2 Subspaces of Lp for 1 ≤ p < 2

We start our discussion by showing, as promised, that Theorem 7.1.7 cannot
be improved to allow factorization through Lr. We will need the following
simple lemma:

Lemma 7.2.1. Suppose f, g ∈ Lp (1 ≤ p < ∞). Then if 0 < θ < 1 we have
|f |1−θ|g|θ ∈ Lp and

‖|f |1−θ|g|θ‖p ≤ ‖f‖1−θ
p ‖g‖θ

p.

Proof. Just note that for s, t ≥ 0 we have s1−θtθ ≤ (1 − θ)s + θt. Then,
assuming ‖f‖p, ‖g‖p > 0, by convexity we have∥∥∥∥∥

(
|f |
‖f‖p

)θ ( |g|
‖g‖p

)1−θ
∥∥∥∥∥

p

≤ 1,

and the lemma follows.
��

Theorem 7.2.2. If 1 ≤ p < 2, �p cannot be strongly embedded in Lp.

Proof. Let us suppose (fn)∞n=1 is a normalized basic sequence in Lp equivalent
to the �p-basis and such that X = [fn] is strongly embedded.

Let us fix q < p (in the case p = 1 this implies q < 1). Then, using
Theorem 6.2.13 and Proposition 6.4.5, we can find a constant C > 0 such
that

C−1n1/p ≤
∥∥∥(∑

j∈A

|fj |2)
1
2

∥∥∥
q
≤
∥∥∥(∑

j∈A

|fj |2)
1
2

∥∥∥
p
≤ Cn1/p,

for and any n and each A ⊂ N with |A| = n.
Let N ∈ N and a > 0. Note that, since ‖fj‖p = 1, estimating

∫
|fj |p dt

gives
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∞∑
k=1

λ
(
|fj | > (ak)

1
p

)
≤ a−1, 1 ≤ j ≤ N,

where λ denotes the Lebesgue measure on [0, 1]. Thus

∞∑
k=1

N∑
j=1

λ
(
|fj | > (ak)

1
p

)
≤ Na−1.

It follows that there exists at least one m ≤ N so that

N∑
j=1

λ
(
|fj | > (am)

1
p

)
≤ a−1m−1N

( N∑
k=1

1
k

)−1

≤ N

am log N
.

By an averaging argument over all subsets of size m we can find a subset A

of {1, 2, . . . , N} with |A| = m such that

∑
j∈A

λ(|fj | > (am)
1
p ) ≤ 1

a log N
.

Let g = maxj∈A |fj | and E = {t : g(t) > (am)
1
p }. Then

‖gχE‖q ≤ λ(E)
1
q − 1

p ‖g‖p

by Hölder’s inequality, and

‖g‖p ≤
∥∥∥(∑

j∈A

|fj |2)
1
2

∥∥∥
p
≤ Cm

1
p .

Thus
‖gχE‖q ≤ Cm

1
p (a log N)

1
p− 1

q .

Hence
‖max

j∈A
|fj |‖q ≤ (am)

1
p + Cm

1
p (a log N)

1
p− 1

q .

It follows that given any δ > 0 we can pick a and N to ensure the existence
of a subset A of N of cardinality m so that

‖max
j∈A

|fj |‖q ≤ δm
1
p .

On the other hand∥∥∥(∑
j∈A

|fj |p
)1/p∥∥∥

q
≤
∥∥∥(∑

j∈A

|fj |p
)1/p∥∥∥

p
≤ m

1
p .

Hence
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C−1m
1
p ≤

∥∥∥(∑
j∈A

|fj |2
)1/2∥∥∥

q

≤
∥∥∥(∑

j∈A

|fj |p
)1/p∥∥∥p/2

q

∥∥∥max
j∈A

|fj |
∥∥∥1−p/2

q

≤ δ1− p
2 m

1
p .

By choosing δ > 0 appropriately we reach a contradiction.
��

Remark 7.2.3. Let us observe that now it is clear that we cannot take q = r
in Theorem 7.1.8. Indeed, if r < 2 then �r is of type r and does embed into
Lp for 1 ≤ p ≤ r by Theorem 6.4.18. However, if such a factorization of
the embedding J : �r → Lp were possible, we would deduce that �r strongly
embeds into Lr([0, 1], h dt) for some strictly positive density function h, which
contradicts Theorem 7.2.2.

We are now going to delve a little further into the structure of subspaces
of Lp for 1 ≤ p < 2. We need some initial observations about type in general
Banach spaces; we shall establish similar results for cotype for later use.

Let X be an infinite-dimensional Banach space, and (εi)∞i=1 a sequence of
Rademachers. For each n ∈ N define αn(X) to be the least constant α so that

(
E

∥∥∥ n∑
i=1

εixi

∥∥∥2)1/2

≤ α
( n∑

i=1

‖xi‖2
)1/2

, {xi}n
i=1 ⊂ X;

and define βn(X) to be the least constant β such that

( n∑
i=1

‖xi‖2
)1/2

≤ β
(
E

∥∥∥ n∑
i=1

εixi

∥∥∥2)1/2

, {xi}n
i=1 ⊂ X.

Note that 1 ≤ αn(X), βn(X) ≤ n
1
2 for n = 1, 2, . . . .

Lemma 7.2.4. Both the parameters αn(X) and βn(X) are submultiplicative,
i.e.,

αmn(X) ≤ αm(X)αn(X), m, n ∈ N, (7.9)

and
βmn(X) ≤ βm(X)βn(X), m, n ∈ N. (7.10)

Proof. Let us take m× n vectors in the unit ball of X and consider them as
a matrix (xij)

m,n
i,j=1. Let (εij)

m,n
i,j=1 be a Rademacher sequence, and (ε′i)

n
i=1 be

another Rademacher sequence, independent of (εij). The independence of the
Rademacher sequence (ε′iεij) yields

E

∥∥∥ m∑
i=1

n∑
j=1

εijxij

∥∥∥2

= E

∥∥∥ m∑
i=1

ε′i
n∑

j=1

εijxij

∥∥∥2

.
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Then,

(
E

∥∥∥ m∑
i=1

ε′i
n∑

j=1

εijxij

∥∥∥2)1/2

≤ αm(X)
(
E

m∑
i=1

∥∥∥ n∑
j=1

εijxij

∥∥∥2)1/2

≤ αm(X)αn(X)
( m∑

i=1

n∑
j=1

‖xij‖2
)1/2

.

Similarly,

( m∑
i=1

m∑
j=1

‖xij‖2
)1/2

≤ βn(X)
( m∑

i=1

E

∥∥∥ n∑
j=1

εijxij

∥∥∥2)1/2

≤ βm(X)βn(X)
(
E

∥∥∥ m∑
i=1

n∑
j=1

εijxij

∥∥∥2)1/2

.

��

Proposition 7.2.5. Suppose p < 2 < q.

(a) In order that X have type r for some p < r it is necessary and sufficient
that for some N , αN (X) < N

1
p− 1

2 .
(b) In order that X have cotype s for some s < q it is necessary and sufficient

that for some N , βN (X) < N
1
2− 1

q .

Proof. One easily checks that if X has type r > p [respectively, cotype s < q]
then αN (X) < N

1
p− 1

2 [respectively, βN (X) < N
1
2− 1

q ] for some N by taking
arbitrary sequences of vectors {xi}n

i=1 in X all equal to some x with ‖x‖ = 1.
Let us now complete the proof of (a). Assume N is such that αN (X) <

N
1
p− 1

2 . Then we can write αN (X) = Nθ− 1
2 for some 1

2 < θ < 1
p , and by (7.9),

αNk(X) ≤ Nk(θ− 1
2 ), k ∈ N.

Given any n, if we take k ∈ N such that Nk−1 ≤ n ≤ Nk,

αn(X) ≤ αNk(X) ≤ Nk(θ− 1
2 ) = (Nk−1)θ− 1

2 Nθ− 1
2 ,

and so we have an estimate of the form

αn(X) ≤ Cn(θ− 1
2 ), (7.11)

for C = Nθ− 1
2 .

Pick r such that p < r < 1
θ . Given any sequence (xi)n

i=1 of vectors in X,
without loss of generality we will suppose that ‖x1‖ ≥ ‖x2‖ ≥ · · · ≥ ‖xn‖.
For notational convenience let xi = 0 for i > n. Then for k ∈ N, using (7.11),
we obtain
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(
E

∥∥∥ 2k−1∑
i=2k−1

εixi

∥∥∥2)1/2

≤ C2k(θ− 1
2 )
( 2k−1∑

i=2k−1

‖xi‖2
)1/2

≤ C2kθ‖x2k−1‖

≤ C2kθ2−(k−1)/r
( ∞∑

i=1

‖xi‖r
)1/r

.

Summing over k,

(
E

∥∥∥ ∞∑
i=1

εixi

∥∥∥2)1/2

≤ C2
1
r

∞∑
k=1

2k(θ− 1
r )
( ∞∑

i=1

‖xi‖r
)1/r

.

This implies, using the Kahane-Khintchine inequality (Theorem 6.2.5), that
X has type r.

The proof of (b) is similar: Assume βN (X) < N
1
2− 1

q for some N . Then in
place of (7.11) we find θ > 1

q so that, for some constant C, we have

βn(X) ≤ Cn
1
2−θ, n ∈ N. (7.12)

Pick s so that 1
θ < s < q. For (xi) as in (a), for k ∈ N we have

( 2k−1∑
i=2k−1

‖xi‖2
)1/2

≤ C2k( 1
2−θ)

(
E

∥∥∥ 2k−1∑
i=2k−1

εixi

∥∥∥2)1/2

≤ C2k( 1
2−θ)

(
E

∥∥∥ ∞∑
i=1

εixi

∥∥∥2)1/2

.

Now
2k−1∑

i=2k−1

‖xi‖s ≤ ‖x2k−1‖s−2
2k−1∑

i=2k−1

‖xi‖2.

Thus
∞∑

i=1

‖xi‖s ≤ Cs
( ∞∑

k=1

2k(1−2θ)‖x2k−1‖s−2
)
E

∥∥∥ ∞∑
i=1

εixi

∥∥∥2

≤ Cs
( ∞∑

k=1

2k(1−2θ)2(1−k)(1− 2
s )
)( ∞∑

i=1

‖xi‖s
)1− 2

s

E

∥∥∥ ∞∑
i=1

εixi

∥∥∥2

.

Rearranging the last expression gives us an estimate

( ∞∑
i=1

‖xi‖s
)1/s

≤ C ′
(
E

∥∥∥ ∞∑
i=1

εixi

∥∥∥2)1/2

,

for some constant C ′, and by Kahane’s inequality we deduce that X has cotype
s.
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��
The following theorem was proved by Rosenthal in 1973 [196] using some-

what different techniques; it strongly influenced the development of factoriza-
tion theory by Maurey.

Theorem 7.2.6. Suppose X is a closed linear subspace of Lp (1 ≤ p < 2).
Then the following conditions are equivalent:

(i) X does not contain any subspace isomorphic to �p;
(ii) X does not contain any complemented subspace isomorphic to �p;
(iii) X has type r for some r > p;
(iv) The set {|f |p : f ∈ BX} ⊂ L1 is equi-integrable;
(v) X is strongly embedded in Lp.

Moreover, if p = 1 these conditions are equivalent to:

(vi) X is reflexive.

Proof. Notice that in the case p = 1 we already have the equivalence of (i),
(iv), and (vi) (see Theorem 5.2.9 and Proposition 5.6.2).

(i)⇒ (iv) We need only consider the case when 1 < p < 2.
If {|f |p : f ∈ BX} is not equi-integrable, we can find a sequence (gn)∞n=1

in BX and a sequence of disjoint Borel sets (An)∞n=1 so that ‖gnχAn‖p > 3δ
for some δ > 0. Since Lp is reflexive, by passing to a subsequence we can
assume that (gn)∞n=1 is weakly convergent to some g ∈ Lp (Corollary 1.6.4).
Then, by the disjointedness of the sets (An),

∞∑
n=1

‖gχAn‖p
p <∞.

Hence, by deleting finitely many terms, without loss of generality, we will
assume that ‖gχAn

‖p < δ for all n.
Let us consider the sequence of functions (fn)∞n=1 ⊂ BX given by

fn =
1
2
(gn − g), n ∈ N.

Then ‖fnχAn‖p > δ for all n and (fn)∞n=1 is weakly null. We can argue that a
further subsequence (which we still label (fn)∞n=1) is a basic sequence equiva-
lent to a block basis of the Haar basis in Lp, and thus is unconditional. This
uses the Bessaga-Pe�lczyński selection principle (Proposition 1.3.10) and the
unconditionality of the Haar basis in Lp (Theorem 6.1.6). We will show that
(fn)∞n=1 is equivalent to the canonical �p-basis.

For any sequence of scalars (an)∞n=1 ∈ c00, by unconditionality there is a
constant K such that

K−1E

∥∥∥ ∞∑
j=1

εjajfj

∥∥∥
p
≤
∥∥∥ n∑

j=1

ajfj

∥∥∥
p
≤ KE

∥∥∥ ∞∑
j=1

εjajfj

∥∥∥
p
, (7.13)
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for any choice of signs (εj). Then, by the fact that Lp has type p, we obtain
an upper estimate

∥∥∥ ∞∑
j=1

ajfj

∥∥∥
p
≤ Cp

( ∞∑
j=1

|aj |p
)1/p

for a suitable constant Cp.
To get a lower estimate, first we use equation (7.13) in combination with

Theorem 6.2.13 and Kahane’s inequality to obtain

∥∥∥ n∑
j=1

ajfj

∥∥∥
p
≥ Kp

∥∥∥( ∞∑
j=1

|aj |2|fj |2)
1
2

∥∥∥
p
,

for some constant Kp; and now we argue that

∥∥∥( ∞∑
j=1

|aj |2|fj |2)
1
2

∥∥∥
p
≥ ‖max

j
|ajfj |‖p

≥ ‖max
j
|ajfj |χAj

‖p

=
∥∥∥ ∞∑

j=1

|ajfj |χAj

∥∥∥
p

=
( ∞∑

j=1

|aj |p‖fjχAj
‖p

p

)1/p

≥ δ
( ∞∑

j=1

|aj |p
)1/p

.

(iv) ⇒ (iii) Since {|f |p : f ∈ BX} is equi-integrable, using Lemma 5.2.6
there is a function θ(M) with limM→∞ θ(M) = 0 such that

‖fχ(|f |>M)‖p ≤ θ(M), f ∈ BX .

For each N ∈ N let f1, . . . , fN be any sequence of norm-one functions in X.
Combining Theorem 6.2.13 and Kahane’s inequality there is a constant C
(depending only on p) so that

(
E

∥∥∥ N∑
j=1

εjajfj

∥∥∥2

p

)1/2

≤ C
∥∥∥( N∑

j=1

|aj |2|fj |2
)1/2∥∥∥

p
,

for any sequence of scalars (aj). Let us estimate the latter expression by
splitting each fj in the form fj = gj +hj , where |gj | ≤M and ‖hj‖p ≤ θ(M):

∥∥∥( N∑
j=1

|aj |2|fj |2
) 1

2
∥∥∥

p
≤
∥∥∥( N∑

j=1

|aj |2|gj |2
) 1

2
∥∥∥

p
+
∥∥∥( N∑

j=1

|aj |2|hj |2
) 1

2
∥∥∥

p



180 7 Factorization Theory

≤M
( N∑

j=1

|aj |2
)1/2

+
∥∥∥( N∑

j=1

|aj |p|hj |p
) 1

p
∥∥∥

p

≤M
( N∑

j=1

|aj |2
)1/2

+ θ(M)
( N∑

j=1

|aj |p
)1/p

≤
(
M + θ(M)N

1
p− 1

2

)( N∑
j=1

|aj |2
)1/2

.

If we chose M so that θ(M) < (2C)−1 we see that for large enough N we have

(
E

∥∥∥ N∑
j=1

εjajfj

∥∥∥2

p

)1/2

≤ 1
2
N

1
p− 1

2

( N∑
j=1

|aj |2
)1/2

.

Hence, for that N , whenever (fj)N
j=1 ⊂ X we have

(
E

∥∥∥ N∑
j=1

εjfj

∥∥∥2

p

)1/2

≤ 1
2
N

1
p− 1

2

( N∑
j=1

‖fj‖2
)1/2

,

and so X has type r for some r > p (Proposition 7.2.5).
To prove (iii) ⇒ (v) we use factorization theory. Consider the inclusion

map J : X → Lp. By Theorem 7.1.8, for p < q < r we can find a strictly
positive density function h so that h− 1

p J maps X into Lq([0, 1], h dt). Since
h− 1

p J is also an isometry of X into Lp([0, 1], h dt) this implies that h− 1
p J

strongly embeds X into Lp([0, 1], h dt) by Proposition 6.4.5. But this means
that convergence in measure is equivalent to norm convergence in X for the
original Lebesgue measure as well.

The implication (v) ⇒ (i) is simply Theorem 7.2.2; this completes the
equivalence of (i), (iii), (iv), and (v).

Finally we note that (i) ⇒ (ii) is trivial and that Theorem 6.4.7 shows
that (ii)⇒ (v).

��

7.3 Factoring through Hilbert spaces

In the first section of this chapter we saw that if X has type 2 and 1 ≤ p < 2
then any operator T : X → Lp factors through a Hilbert space. In this section
we are giving a characterization for an operator between Banach spaces to
factor through a Hilbert space.

Definition 7.3.1. Suppose that X and Y are Banach spaces. We say that an
operator T from X to Y factors through a Hilbert space if there exist a Hilbert
space H and operators S : X −→ H and R : H −→ Y verifying T = RS.
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We will begin by making some remarks that will lead us to the necessary
condition we are seeking. We will only consider real scalars, although at the
appropriate moment we will discuss the alterations necessary to handle com-
plex scalars. Throughout this section H will denote a generic Hilbert space
with a scalar product 〈 · 〉.

Suppose we have n arbitrary vectors x1, . . . , xn in H. Given a real orthog-
onal matrix A = (aij)1≤i,j≤n, let us consider the new vectors in H defined
from A,

zi =
n∑

j=1

aijxj , 1 ≤ i ≤ n. (7.14)

Then,

n∑
i=1

‖zi‖2 =
n∑

i=1

∥∥∥ n∑
j=1

aijxj

∥∥∥2

=
n∑

i=1

〈
n∑

j=1

aijxj ,

n∑
k=1

aikxk〉

=
n∑

i=1

n∑
j=1

n∑
k=1

aijaik〈xj , xk〉

=
n∑

j=1

〈xj , xj〉

=
n∑

j=1

‖xj‖2 .

Any real n × n matrix A = (aij) defines a linear operator (that will be
denoted in the same way) A : �n

2 −→ �n
2 via

A

⎛
⎜⎜⎜⎝

s1

s2

...
sn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

s1

s2

...
sn

⎞
⎟⎟⎟⎠ .

The matrix (aij)1≤i,j≤n is orthogonal if and only if the operator A is an
isometry. If (aij)n

i,j=1 is not orthogonal but ‖A‖ ≤ 1, it is an exercise of
linear algebra to prove that (aij) can be written as a convex combination of
orthogonal matrices. In fact, it is always possible to find orthonormal basis
(ej)n

j=1 and (fj)n
j=1 in �n

2 so that Aej = λjfj with λj ≥ 0: Just find an
orthonormal basis of eigenvectors (ej)n

j=1 for A′A where A′ is the transpose.
Then A = DU where Dfj = λjfj and Uej = fj . U is orthogonal and since
0 ≤ λj ≤ 1 we can write D as a convex combination of the orthogonal matrices
Vεfj = εjfj where εj = ±1.
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Thus, if x1, . . . , xn, z1, . . . , zn are arbitrary vectors in H satisfying equation
(7.14), where ‖(ajk)n

j,k=1‖�n
2 →�n

2
≤ 1, we will have

n∑
i=1

‖zi‖2 ≤
n∑

j=1

‖xj‖2 .

This can easily be extended to the case of differing numbers of xj ’s and zi’s
by adding zeros to one of the two collections of vectors.

Theorem 7.3.2. Let T be an operator from a Banach space X into a Banach
space Y . Suppose that there exist operators S : X −→ H and R : H −→ Y
verifying T = RS. If (xj)m

j=1 and (zi)n
i=1 are vectors in X related by the

equation

zi =
m∑

j=1

aijxj , 1 ≤ i ≤ n, (7.15)

where (aij) is a real n×m matrix such that ‖A‖�m
2 →�n

2
≤ 1, then

( n∑
i=1

‖Tzi‖2
)1/2 ≤ ‖S‖ ‖R‖

( m∑
j=1

‖xj‖2
)1/2

.

Proof. The proof easily follows from the comments we made. Indeed, given
x1, . . . , xm and z1, . . . , zn in X satisfying (7.15), since the collections of vectors
(Sxj)m

j=1 and (Szi)n
i=1 lie inside H we have

n∑
i=1

‖Tzi‖2 =
n∑

i=1

‖RSzi‖2

≤ ‖R‖2
n∑

i=1

‖Szi‖2

≤ ‖R‖2
m∑

j=1

‖Sxj‖2

≤ ‖R‖2 ‖S‖2
m∑

j=1

‖xj‖2 .

��
In light of the previous theorem we want to give an alternative formulation

of the property that (xj)m
j=1 and (zi)n

i=1 are vectors in X related by the
equation

zi =
m∑

j=1

aijxj , 1 ≤ i ≤ n,

where A = (aij) is a real n×m matrix such that ‖A‖�m
2 →�n

2
≤ 1.
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Proposition 7.3.3. Given n, m ∈ N and any two sets of vectors (xj)m
j=1 and

(zi)n
i=1 in a Banach space X, the following are equivalent:

(a) There is a real n×m matrix A = (aij) so that ‖A‖�m
2 →�n

2
≤ 1 and

zi =
m∑

j=1

aijxj , 1 ≤ i ≤ n;

(b)
m∑

j=1

|x∗(zj)|2 ≤
n∑

i=1

|x∗(xi)|2, for all x∗ ∈ X∗.

Proof. Assume that (a) holds. Then, since ‖A‖�m
2 →�n

2
≤ 1, it follows that

n∑
i=1

|x∗(zi)|2 =
n∑

i=1

∣∣∣x∗( m∑
j=1

aijxj

)∣∣∣2 =
n∑

i=1

∣∣∣ m∑
j=1

aijx
∗(xj)

∣∣∣2 ≤ m∑
j=1

|x∗(xj)|2.

For the reverse implication, (b)⇒ (a), consider the linear operators

α : X∗ −→ �m
2 , x∗ �→ (x∗(xj))m

j=1

and
β : X∗ −→ �n

2 , x∗ �→ (x∗(zi))n
i=1.

The hypothesis says that ‖βx∗‖
�m
2
≤ ‖αx∗‖

�n
2

for all x∗ ∈ X∗. Thus we can
define an operator A0 : α(X∗)→ β(X∗) with ‖A0‖ ≤ 1 and β = A0 ◦α. Then
A0 can be extended to an operator A : �m

2 → �n
2 with ‖A‖ ≤ 1. Let (aij) be

the matrix associated with A.

x∗(zi) =
m∑

j=1

aijx
∗(xj) for all x∗ ∈ X∗,

which implies

zi =
m∑

j=1

aijxj , i = 1, . . . , n.

��
The main result of this section is the following criterion:

Theorem 7.3.4. Let X and Y be Banach spaces. Suppose E is a closed linear
subspace of X and T : E → Y is an operator. In order that there exist a Hilbert
space H and operators R : X → H, S : H → Y with ‖R‖‖S‖ ≤ C such that
T = RS|E it is necessary and sufficient that for all sets of vectors (xj)m

j=1 ⊂ X
and (zi)n

i=1 ⊂ E such that

n∑
i=1

|x∗(zi)|2 ≤
m∑

j=1

|x∗(xj)|2, x∗ ∈ X∗,
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we have ( n∑
i=1

‖Tzi‖2
)1/2

≤ C
( m∑

j=1

‖xj‖2
)1/2

.

In the proof of this result and other ones in the next chapter we will make
use of the following lemma. If A is a subset of real vector space we define

cone (A) =
{ n∑

j=1

αjaj : a1, . . . , an ∈ A, α1, . . . , αn ≥ 0, n = 1, 2, . . .
}

.

Lemma 7.3.5. Let V be a real vector space. Given A, B two subsets of V such
that V = cone (B) − cone (A), and two functions φ : A → R, ψ : B → R, the
following are equivalent:

(i) There is a linear functional L on V verifying

φ(a) ≤ L(a), a ∈ A

and
ψ(b) ≥ L(b), b ∈ B.

(ii) If (αi)m
i=1, (βj)n

j=1 are two finite sequences of nonnegative scalars such
that

m∑
i=1

αiai =
n∑

j=1

βjbj

for some (ai)m
i=1 ⊂ A, (bj)n

j=1 ⊂ B, then

m∑
i=1

αiφ(ai) ≤
n∑

j=1

βjψ(bj).

Proof. The implication (i)⇒ (ii) is immediate.
(ii)⇒ (i) Let us define the map p : V → [−∞,∞) as follows:

p(v) = inf
{ n∑

j=1

βjψ(bj)−
m∑

i=1

αiφ(ai)
}

,

the infimum being taken over all possible representations in the form v =∑n
j=1 βjbj −

∑m
i=1 αiai, where α1, . . . , αm, β1, . . . , βn ≥ 0, a1, . . . , am ∈ A,

and b1, . . . , bm ∈ B.
p is well-defined since V = cone (B)− cone (A). Besides, one easily checks

that p is positive-homogeneous and satisfies p(v1 + v2) ≤ p(v1) + p(v2) for
any v1, v2 in V. In order to prove that p is a sublinear functional we need to
show that p(v) > −∞ for every v ∈ V. This will follow if p(0) = 0. Indeed,
p(v) + p(−v) ≥ p(0), so neither p(v) nor p(−v) could be −∞ if p(0) = 0.
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For each representation of 0 in the form 0 =
∑n

j=1 βjbj −
∑m

i=1 αiai, by
the hypothesis it follows that

∑n
j=1 βjψ(bj) ≥

∑m
i=1 αiφ(ai). Therefore, by

the definition, p(0) ≥ 0 hence p(0) = 0.
As an consequence of the Hahn-Banach theorem, there is a linear func-

tional L on V such that L(v) ≤ p(v) for every v ∈ V and so φ(a) ≤ L(a) for
all a ∈ A and L(b) ≤ ψ(b) for all b ∈ B.

��

Proof of Theorem 7.3.4. We need only show that the condition is sufficient.
Let F(X∗) denote the set of all functions from X∗ to R, and consider the
natural map X → F(X∗), x �→ x̂, where

x̂(x∗) = x∗(x), x∗ ∈ X∗.

Let V be the linear subspace of F(X∗) of all finite linear combinations of
functions of the form x̂ẑ, with x, z in X. That is,

V =
{ N∑

k=1

λkx̂kẑk : (λk)N
k=1 in R, (xk)N

k=1 and (zk)N
k=1 in X, andN ∈ N

}
.

Clearly, the set {x̂2 : x ∈ X} spans V since each product x̂ẑ with x and z in
X can be written in the form

x̂ẑ =
1
4
(
(x̂ + ẑ)2 − (x̂− ẑ)2

)
.

We want to construct a linear functional L on V with the following prop-
erties:

0 ≤ L(x̂2) ≤ C2‖x‖2, x ∈ X (7.16)

and
‖Tx‖2 ≤ L(x̂2), x ∈ E. (7.17)

To this end, let us apply Lemma 7.3.5 in the case A = B = {x̂2 : x ∈ X} by
putting

φ(x̂2) =

{
0 if x ∈ X \ E

‖Tx‖2 if x ∈ E

and
ψ(x̂2)2 = C2‖x‖2.

Suppose that
n∑

i=1

β2
i ẑ2

i =
m∑

j=1

α2
j x̂

2
j

for some (x̂j)m
j=1, (ẑi)n

i=1 vectors in X, and some nonnegative scalars (α2
j )

m
j=1,

(β2
j )n

j=1. Let us suppose z1, . . . , zl ∈ E and zl+1, . . . , zn ∈ X \ E. Then
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l∑
i=1

β2
i ẑ2

i ≤
m∑

j=1

α2
j x̂

2
j ,

hence
l∑

i=1

‖T (βjzi)‖2 ≤ C2
m∑

j=1

‖αjxj‖2.

Thus
n∑

i=1

β2
i φ(ẑ2

i ) ≤
m∑

j=1

α2
jψ(x̂2

j ).

Lemma 7.3.5 yields a linear functional L on V with

φ(x̂2) ≤ L(x̂2) ≤ ψ(x̂2), x ∈ X.

L, in turn, induces a symmetric bilinear form 〈 · 〉 on X given by

〈x, z〉 = L(x̂ẑ),

so the map X −→ [0,∞), x �→
√
〈x, x〉 =

√
L(x̂2) defines a seminorm on X.

Thus, X (modulo the subspace {x ; 〈x, x〉 = 0}) endowed with the (now)
inner product 〈 , 〉 is an inner product space, and ‖x‖0 =

√
〈x, x〉 a norm on

X. Let H be the completion of X0 under this norm. H is a Hilbert space.
Take S to be the induced operator S : X → H mapping x to its equivalence

class in X0. Then we have

‖Sx‖ ≤ C‖x‖, x ∈ X.

S has norm one and dense range. By construction, if x ∈ E we have

‖Tx‖ ≤ ‖Sx‖,

therefore we can find an operator R0 : S(E) → Y with ‖R0‖ ≤ 1 and T =
R0S|E . Compose R0 with the orthogonal projection of H onto S(E) to create
R.

The proof for complex scalars. In the case when X and Y are complex Banach
spaces we proceed as first by “forgetting” their complex structure and treating
them as real spaces. The argument creates a real symmetric bilinear form 〈 · 〉
on X which is continuous for the original norm. We can then define a complex
inner product by “recalling” the complex structure of X and setting

(x, z) =
1
2π

∫ 2π

0

〈eiθx, eiθz〉 − i〈ieiθx, eiθz〉 dθ.

We leave it to the reader to check that this induces a complex inner product
and that using this to define H gives the same conclusion.

��
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7.4 The Kwapień-Maurey theorems for type-2 spaces

We saw in Proposition 6.2.9 that if H is a Hilbert space then H has type 2 and
cotype 2. More generally, since the type and cotype are isomorphic invariants,
any Banach space isomorphic to a Hilbert space has type 2 and cotype 2. In
1972 Kwapień [122] showed that the converse is also true:

Theorem 7.4.1. A Banach space X has type 2 and cotype 2 if and only if X
is isomorphic to a Hilbert space.

As Maurey noticed soon after Kwapień obtained Theorem 7.4.1, this is
also a factorization theorem which follows from Theorem 7.4.2 by taking T
the identity on X:

Theorem 7.4.2 (Kwapień-Maurey). Let X and Y be Banach spaces and
T an operator from X to Y . If X has type 2 and Y has cotype 2 then T factors
through a Hilbert space.

Shortly afterwards, Maurey [143] discovered a beautiful Hahn-Banach re-
sult for operators from type-2 spaces into a Hilbert space, which we now
combine with Theorem 7.4.2 to give the following composite statement (that
of course implies both Theorem 7.4.1 and Theorem 7.4.2 by taking E = X).
In its proof this lemma will be needed:

Lemma 7.4.3. Let X be a Banach space. Assume that the sets of vectors
{zi}n

i=1 and {xj}m
j=1 of X satisfy the condition

n∑
i=1

|x∗(zi)|2 ≤
m∑

j=1

|x∗(xj)|2, x∗ ∈ X∗.

Then, if (γi)∞i=1 is a sequence of independent Gaussians we have

(
E

∥∥∥ n∑
i=1

γizi

∥∥∥2)1/2

≤
(
E

∥∥∥ m∑
j=1

γjxj

∥∥∥2)1/2

.

Proof. Let F be the linear span of {x1, . . . , xm, z1, . . . , zn} in X. By hypoth-
esis, the quadratic form Q defined on F ∗ by

Q(f∗) =
m∑

j=1

|f∗(xj)|2 −
n∑

i=1

|f∗(zi)|2

is positive-definite. Hence we can find zn+1, . . . , zn+l ∈ F so that

Q(f∗) =
l∑

i=1

|f∗(zn+i)|2, f∗ ∈ F ∗.
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This implies that

n+l∑
i=1

|x∗(zi)|2 =
m∑

j=1

|x∗(xj)|2, x∗ ∈ X∗.

Then the vector-valued random variables
∑n+l

i=1 γizi and
∑m

j=1 γjxj have the
same distributions on X. As a consequence,

E

∥∥∥ n+l∑
i=1

γizi

∥∥∥2

= E

∥∥∥ m∑
j=1

γjxj

∥∥∥2

. (7.18)

Now,

(
E

∥∥∥ n∑
i=1

γizi

∥∥∥2)1/2

≤ 1
2

(
E

∥∥∥ n∑
i=1

γizi +
n+l∑

i=n+1

γizi

∥∥∥2)1/2

+
1
2

(
E

∥∥∥ n∑
i=1

γizi −
n+l∑

i=n+1

γizi

∥∥∥2)1/2

=
(
E

∥∥∥ n+l∑
i=1

γizi

∥∥∥2)1/2

=
(
E

∥∥∥ m∑
j=1

γjxj

∥∥∥2)1/2

,

which completes the proof.
��

Theorem 7.4.4. Let X and Y be Banach spaces and E a closed subspace of
X. Suppose T : E → Y is an operator. If X has type 2 and Y has cotype 2
then there is a Hilbert space H and operators S : X → H, R : H → Y so that
‖R‖‖S‖ ≤ T2(X)C2(Y )‖T‖ and RS|E = T.

Proof. We shall prove that for all sequences (zi)n
i=1 in E and (xj)m

j=1 in X
such that

n∑
i=1

|x∗(zi)|2 ≤
m∑

j=1

|x∗(xj)|2, x∗ ∈ X∗ (7.19)

we have ( n∑
i=1

‖Tzi‖2
)1/2

≤ T2(X)C2(Y )‖T‖
( m∑

j=1

‖xj‖2
)1/2

,

and then we will appeal to the factorization criterion given by Theorem 7.3.4.
The key to the argument is to replace the Rademacher functions in the defi-
nition of type and cotype by Gaussian random variables.
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On the one hand, for any (zi)n
i=1 ⊂ E, using the cotype-2 property of Y

we have
n∑

i=1

‖Tzi‖2 ≤ C2(Y )2 E

∥∥∥ n∑
i=1

εiTzi

∥∥∥2

.

Then, if for each N ∈ N we consider (εki)1≤i,k≤N , a sequence of N × N
Rademachers,

n∑
i=1

‖Tzi‖2 ≤
C2(Y )2

N
E

∥∥∥ N∑
k=1

n∑
i=1

εkiTzi

∥∥∥2

= C2(Y )2 E

∥∥∥ n∑
i=1

N∑
k=1

εki√
N

Tzi

∥∥∥2

.

Notice that for each 1 ≤ i ≤ n, the random variables εi1, εi2, . . . , εiN are
independent and identically distributed, so by the Central Limit theorem, for
each i the sequence

(PN
k=1 εik√

N

)∞
N=1

converges in distribution to a Gaussian,
γi. Thus,

lim
N→∞

E

∥∥∥ n∑
i=1

N∑
k=1

εki√
N

Tzi

∥∥∥2

= E

∥∥∥ n∑
i=1

γiTzi

∥∥∥2

,

and, therefore,
n∑

i=1

‖Tzi‖2 ≤ C2(Y )2 E

∥∥∥ n∑
i=1

γiTzi

∥∥∥2

. (7.20)

On the other hand, if we let (εi)∞i=1 be a sequence of Rademachers indepen-
dent of (γi)∞i=1, for any sequence (xj)m

j ⊂ X, the symmetry of the Gaussians
yields

E

∥∥∥ m∑
j=1

γixj

∥∥∥2

= EEε

∥∥∥ m∑
j=1

εjγjxj

∥∥∥2

≤ T2(X)2E

m∑
j=1

|γj |2‖xj‖2

= T2(X)2
m∑

j=1

‖xj‖2E|γj |2

= T2(X)2
m∑

j=1

‖xj‖2. (7.21)

Suppose that the vectors (zi)n
i=1 in E and (xj)m

j=1 in X satisfy equa-
tion (7.19). Using Lemma 7.4.3 in combination with (7.18), (7.20), and (7.21)
we obtain the inequality we need to apply Theorem 7.3.4:
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n∑
i=1

‖Tzi‖2 ≤ C2(Y )2E

∥∥∥ n∑
i=1

γizi

∥∥∥2

≤ C2(Y )2 ‖T‖2 E

∥∥∥ n∑
i=1

γizi

∥∥∥2

≤ C2(Y )2 ‖T‖2 E

∥∥∥ m∑
j=1

γjxj

∥∥∥2

≤ C2(Y )2T2(X)2 ‖T‖2
m∑

j=1

‖xj‖2 .

��
There is a quantitative estimate here that we would like to emphasize:

Definition 7.4.5. If X and Y are two isomorphic Banach spaces, the Banach-
Mazur distance between X and Y , denoted d(X, Y ), is defined by the formula

d(X, Y ) = inf
{
‖T‖‖T−1‖ : T : X → Y is an isomorphism

}
.

The Banach-Mazur distance is not a distance in the real sense of the term
since the triangle law does not hold, but d satisfies a submultiplicative triangle
inequality; that is,

d(X, Z) ≤ d(X, Y )d(Y, Z)

when X, Y, Z are all isomorphic. If X and Y are isometric then d(X, Y ) =
1. The converse holds for finite-dimensional spaces but fails for infinite-
dimensional spaces! (see the Problems).

In this language, Kwapień’s theorem (Theorem 7.4.1) really states:

Theorem 7.4.6. If X is a Banach space of type 2 and cotype 2 then

d(X, H) ≤ T2(X)C2(X)

for some Hilbert space H.

We have seen (Theorem 6.4.8) that if p > 2 every subspace of Lp which
is isomorphic to a Hilbert space is necessarily complemented. Theorem 7.4.4
shows that this phenomenon is simply a consequence of the type-2 property:

Theorem 7.4.7 (Maurey). Let X be a Banach space of type 2. Let E be
a closed subspace of X which is isomorphic to a Hilbert space. Then E is
complemented in X.

Proof. Since E has cotype 2 the identity map on E can be extended to a
projection of X onto E.

��
As we mentioned above, if we specialize the range space in Theorem 7.4.4

to be a Hilbert space then the assertion is a form of the Hahn-Banach theorem
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for Hilbert-space valued operators defined on a type-2 space. An interesting
question is whether the extension property in Theorem 7.4.4 actually charac-
terizes type-2 spaces:

Problem 7.4.8. Suppose X is a Banach space with the property that for every
closed subspace E of X and every operator T0 : E → H (H a Hilbert space)
there is a bounded extension T : X → H. Must X be a space of type 2?

For a partial positive solution of this problem we refer to [28].

Up to now the only spaces that we have considered in the context of type
and cotype are the Lp-spaces (and their subspaces and quotients). It is worth
pointing out that there are many other Banach spaces to which this theory
can be applied. Perhaps the simplest examples are the “noncommutative” �p-
spaces or Schatten ideals. These are ideals of operators on a separable Hilbert
space which were originally introduced in 1946 by Schatten and studied in
several papers by Schatten and von Neumann; an account is given in [202].

If H is a separable (complex) Hilbert space we define Sp to be the set of
compact operators A : H → H so that the positive operator (A∗A)p/2 has
finite trace and we impose the norm

‖A‖Sp
= tr (A∗A)p/2.

It is not entirely obvious, but is true, that this is a norm and that the class
of such operators forms a Banach space.

In many ways the structure of Sp resembles that of �p. Thus if 1 ≤ p ≤ 2,
Sp has type p and cotype 2, while if 2 ≤ p < ∞, Sp has cotype p and type 2
(see [215], [65]). See [5] for the structure of subspaces of Sp.

Recently there has been considerable interest in noncommutative Lp-
spaces but even to formulate the definition would take us too far afield.

Problems

7.1. For 1 ≤ r, p < ∞, prove that the space �r(�p) embeds in Lp if and only
if r = p.

7.2. Let pn = 1 + 1
n . Consider the Banach space X = �2(�2pn

). Show that �21
does not embed isometrically into X but that d(X, X ⊕2 �21) = 1.

7.3. Show that any reflexive quotient of a C(K) space has type two.

7.4. The weak Lp-spaces, Lp,∞.
Let (Ω, µ) be a probability measure space and 0 < p < ∞. A measurable
function f is said to belong to weak Lp, denoted Lp,∞, if

‖f‖p,∞ = sup
t>0

tµ(|f | > t)1/p <∞.
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(a) Show that Lp,∞ is a linear space and that ‖·‖p,∞ is a quasi-norm on Lp,∞,
i.e., ‖ · ‖p,∞ satisfies the properties of a norm except the triangle law which is
replaced by

‖f + g‖p,∞ ≤ C(‖f‖p,∞ + ‖g‖p,∞), f, g ∈ Lp,∞,

where C ≥ 1 is a constant independent of f , g.
(b) Show that Lp,∞ is complete for this quasi-norm and hence becomes a
quasi-Banach space.
(c) Show that if p > 1, ‖ · ‖p,∞ is equivalent to the norm

‖f‖p,∞,c = sup
t>0

sup
µ(A)=t

t1/p−1

∫
A

|f |dµ.

Thus Lp,∞ can be regarded as a Banach space.
(d) Show that Lp,∞ ⊂ Lr whenever 0 < r < p.

7.5 (Nikishin [158]). (Continuation.) Suppose X is a Banach space of type
p for some 1 ≤ p < 2. Suppose 1 ≤ r < p and T : X → Lr(µ) is a bounded
linear operator.
(a) Show that for some suitable constant C we have the following estimate:

µ
( m⋃

j=1

{|Txj | ≥ 1}
)1/r

≤ C
( m∑

j=1

‖xj‖p
)1/p

, x1, . . . , xm ∈ X.

(b) For any constant K > C consider a maximal family of disjoint sets of
positive measure (Ei)i∈I such that we can find xi ∈ X with ‖xi‖ ≤ 1 and
|Txi| ≥ K(µ(Ei)−1/p) on Ei. Show that this collection is countable and that

∑
i∈I

µ(Ei) ≤
(C

K

) rp
p−r

.

(c) Show that given ε > 0 there is a set E with µ(E) > 1− ε so that the map
TEf = χETf is a bounded operator from X into Lp,∞(µ).

This gives a “factorization” through weak Lp; it is possible to obtain a
more elegant “change of density” formulation (see [186]). Note that if X is an
arbitrary Banach space and r < 1 we get boundedness of TE into weak L1.

7.6 (Jordan-von Neumann [96]). Show, without appealing to Kwapien’s
theorem, that if a Banach space X has type 2 with T2(X) = 1 then X is
isometrically a Hilbert space. [Hint: For real scalars, define an inner product
by (x, y) = 1

4 (‖x + y‖2 − ‖x− y‖2).]

7.7. Let µ, ν be σ-finite measures. A linear operator T : Lp(µ) → Lr(ν),
0 < r, p <∞, is said to be a positive operator if f ≥ 0 implies Tf ≥ 0.
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(a) Show that if 1 ≤ s ≤ ∞ then for any sequence (fj)n
j=1 ∈ Lp(µ) we have

∥∥∥( n∑
j=1

|Tfj |s)1/s
∥∥∥

r
≤ ‖T‖

∥∥∥( n∑
j=1

|fj |s)1/s
∥∥∥

p
.

(b) Deduce that if r < p and p ≥ 1 then T factorizes through Lp(hν) for some
density function h.

7.8. Let T : �p → Lr, r < p < 2, be the linear operator defined by

T (ξ) =
∞∑

j=1

ξ(j)ηj ,

where (ηj)∞j=1 is a sequence of independent normalized p-stable random vari-
ables.
(a) Using the boundedness of T show that the operator S : �p/2 → Lr/2

defined by

S(ξ) =
∞∑

j=1

ξ(j)|ηj |2

is a bounded positive linear operator.
(b) Show that, however,

∥∥∥(n−1
n∑

j=1

|Sej |p/2)2/p
∥∥∥

r/2
→∞

and deduce that S cannot be factored via a change of density through Lp/2.
Thus the conclusion of Problem 7.7 fails when p < 1. [Hint: You need to show
that

lim
n→∞

∥∥∥n−1
n∑

j=1

|ηj |p
∥∥∥

r/p
=∞.

Consider min(|ηj |p,M) for any fixed M .]
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Absolutely Summing Operators

The theory of absolutely summing operators was one of the most profound
developments in Banach space theory between 1950 and 1970. It originates
in a fundamental paper of Grothendieck [76] (which actually appeared in
1956). However, some time passed before Grothendieck’s remarkable work
really became well-known among specialists. There are several reasons for
this. One major point is that Grothendieck stopped working in the field at
just about this time and moved into algebraic geometry (his work in algebraic
geometry earned the Fields Medal in 1966). Thus he played no role in the
dissemination of his own ideas. He also chose to publish in a relatively obscure
journal that was not widely circulated; before the advent of the Internet it was
much more difficult to track down copies of articles. Thus it was not until the
1968 paper of Lindenstrauss and Pe�lczyński [131] that Grothendieck’s ideas
became widely known. Since 1968, the theory of absolutely summing operators
has become a cornerstone of modern Banach space theory.

In fact, most (but not all) of this chapter was known to Grothendieck al-
though his presentation would be different. We will utilize the more modern
concepts of type and cotype and use the factorization theory from Chapter 7
in our exposition. Although Grothendieck’s work predates the material in
Chapter 7 it can be considered as a development. In Chapter 7 we consid-
ered conditions on an operator T : X → Y that would ensure factorization
through a Hilbert space; this culminated in the Kwapień-Maurey theorem
(Theorem 7.4.2) which says that the conditions that X has type 2 and Y
has cotype 2 are sufficient. Grothendieck inequality yields the fact that every
operator T : C(K) → L1 also factors through a Hilbert space even though
C(K) is very far from type 2. This seemed quite mysterious until the work of
Pisier showed that the condition X has type 2 can in certain cases be relaxed
to X∗ has cotype 2.

Two good references for further developments of Grothendieck theory are
Pisier’s CBMS conference lectures [185] and the monograph of Diestel, Jar-
chow, and Tonge [41].
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8.1 Grothendieck’s Inequality

Theorem 8.1.1 (Grothendieck Inequality). There exists a universal con-
stant KG so that whenever (ajk)m,n

j,k=1 is a real matrix such that

∣∣∣ m∑
j=1

n∑
k=1

ajksjtk

∣∣∣ ≤ max
j
|sj |max

k
|tk|,

for any two sequences of scalars (sj)m
j=1 and (tk)n

k=1 then

∣∣∣ m∑
j=1

n∑
k=1

ajk〈uj , vk〉
∣∣∣ ≤ KG max

j
‖uj‖max

k
‖vk‖ ,

for all sequences of vectors (uj)m
j=1 and (vk)n

k=1 in an arbitrary real Hilbert
space H.

Proof. Since all Hilbert spaces are linearly isometric we can choose any Hilbert
space to prove the theorem, but it is most convenient to consider the closed
subspace H of L2 spanned by a sequence of independent Gaussians (gk)∞k=1,
equipped with the L2-norm. Notice that if f =

∑∞
k=1 akgk ∈ H with ‖f‖2 =∑∞

k=1 |ak|2 = 1 then f is also a Gaussian, and so

‖f‖44 =
1√
2π

∫ ∞

−∞
x4e−

1
2 x2

dx = 3.

Thus for f ∈ H we have

‖f‖2 ≤ ‖f‖4 = 3
1
4 ‖f‖2. (8.1)

This shows that the subspace (H, ‖ · ‖2) is strongly embedded in L4.
Obviously, for each matrix A = (ajk)m,n

j,k=1 using Schwarz’s inequality there
is a best constant Γ = Γ(A) such that for any two finite sequences of functions
(uj)m

j=1 and (vk)n
k=1 in H,

∣∣∣ m∑
j=1

n∑
k=1

ajk〈uj , vk〉
∣∣∣ ≤ Γ max

j
‖uj‖2 max

k
‖vk‖2 . (8.2)

Let us assume that ‖uj‖2 ≤ 1 for 1 ≤ j ≤ m and ‖vk‖2 ≤ 1 for 1 ≤ k ≤ n.
For fixed M , we consider the truncations of the functions (uj)m

j=1 and (vk)n
k=1

at M :

uM
j =

{
uj if |uj | ≤M

Msgn uj if |uj | > M
, vM

k =

{
vk if |vk| ≤M

Msgn vk if |vk| > M
.

Taking into account that 4(x − 1) ≤ x2 for x > 1 we deduce that if x > M
then 16M2(x−M)2 ≤ x4. Combining this inequality with (8.1) we obtain
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16M2

∫ 1

0

|uj(t)− uM
j (t)|2 dt ≤

∫ 1

0

|uj(t)|4 dt ≤ 3,

hence ∥∥uj − uM
j

∥∥2

2
≤ 3

16M2
, j = 1, . . . , n. (8.3)

Analogously, ∥∥vk − vM
k

∥∥2

2
≤ 3

16M2
, k = 1, . . . , n. (8.4)

Now,

∣∣∣ m∑
j=1

n∑
k=1

ajk〈uj , vk〉
∣∣∣ = ∣∣∣ m∑

j=1

n∑
k=1

ajk

∫ 1

0

ujvk dt
∣∣∣

≤
∫ 1

0

∣∣∣ m∑
j=1

n∑
k=1

ajkuM
j vM

k

∣∣∣ dt +
∣∣∣ m∑

j=1

n∑
k=1

ajk

∫ 1

0

(uj − uM
j )vM

k dt
∣∣∣

+
∣∣∣ m∑

j=1

n∑
k=1

ajk

∫ 1

0

uj(vk − vM
k ) dt

∣∣∣.
By the hypothesis on the matrix (ajk), for each t ∈ [0, 1] we have

∣∣∣ m∑
j=1

n∑
k=1

ajkuM
j (t)vM

k (t)
∣∣∣ dt ≤M2.

On the other hand the equations (8.2), (8.3), and (8.4) yield

∣∣∣ m∑
j=1

n∑
k=1

ajk

∫ 1

0

(uj − uM
j )vM

k dt
∣∣∣ = ∣∣∣ m∑

j=1

n∑
k=1

ajk〈uj − uM
j , vM

k 〉
∣∣∣ ≤ Γ

√
3

4M

and∣∣∣ m∑
j=1

n∑
k=1

ajk

∫ 1

0

uj(vk − vM
k ) dt

∣∣∣ = ∣∣∣ m∑
j=1

n∑
k=1

ajk〈uj , vk − vM
k 〉
∣∣∣ ≤ Γ

√
3

4M
.

Combining, ∣∣∣ m∑
j=1

n∑
k=1

ajk〈uj , vk〉
∣∣∣ ≤M2 + Γ

√
3

2M
.

By our assumption on Γ the following inequality must hold:

Γ ≤M2 + Γ
√

3
2M

.

To minimize the right-hand side we take M =
(√

3
4 Γ
)1/3 and thus
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Γ ≤ 3
(√3Γ

4

)2/3

,

which gives Γ ≤ 81
16 . Thus Grothendieck’s inequality is proved with constant

KG ≤ 81
16 .

��
While the proof given above is, we feel, the most transparent, it is far from

being effective in determining the Grothendieck constant KG. Grothendieck’s
original argument gave KG ≤ sinh(π/2) (see the Problems). The best estimate
known is that of Krivine [120] that KG ≤ 2(sinh−1 1)−1 < 2. The correspond-
ing constant for complex scalars is known to be smaller than KG. See [41] for
a full discussion on Grothendieck’s inequality.

Remark 8.1.2. Suppose (ajk) is a real m × n matrix such that the bilinear
form B : �m

∞ × �n
∞ → R given by

B((sj)m
j=1, (tk)n

k=1) =
m∑

j=1

n∑
k=1

ajksjtk

has norm

‖B‖ = sup

⎧⎨
⎩
∣∣∣ m∑

j=1

n∑
k=1

ajksjtk

∣∣∣ : max
j
|sj | ≤ 1, max

k
|tk| ≤ 1

⎫⎬
⎭ ≤ 1.

Suppose (fl)N
l=1 and (gl)N

l=1 are finite sequences in �m
∞ and �n

∞, respectively.
For each 1 ≤ l ≤ N let fl = (fl(j))m

j=1 and gl = (gl(k))n
k=1. Let us also

consider the following two sets of vectors in the Hilbert space �N
2 :

uj = (fl(j))N
l=1, 1 ≤ j ≤ m

and
vk = (gl(k))N

k=1, 1 ≤ k ≤ n.

Then Grothendieck’s inequality yields∣∣∣∣∣
N∑

l=1

B(fl, gl)

∣∣∣∣∣ =
∣∣∣∣∣∣

N∑
l=1

m∑
j=1

n∑
k=1

ajkfl(j)gl(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑

j=1

n∑
k=1

ajk

N∑
l=1

fl(j)gl(k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑

j=1

n∑
k=1

ajk〈uj , vk〉

∣∣∣∣∣∣
≤ KG max

1≤j≤m
‖uj‖ max

1≤k≤n
‖vk‖
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= KG max
1≤j≤m

( N∑
l=1

|fl(j)|2
)1/2

max
1≤k≤n

( N∑
l=1

|gl(k)|2
)1/2

.

If we put

max
1≤j≤m

( N∑
l=1

|fl(j)|2
)1/2

=
∥∥∥( N∑

l=1

|fl|2
) 1

2
∥∥∥
∞

and

max
1≤k≤n

( N∑
l=1

|gl(k)|2
)1/2

=
∥∥∥( N∑

l=1

|gl|2
) 1

2
∥∥∥
∞

,

we obtain an equivalent way of stating Grothendieck’s inequality: Suppose
that the bilinear form B : �m

∞ × �n
∞ → R has norm at most one. Then for any

(fl)N
l=1 in �m

∞ and (gl)N
l=1 in �n

∞,

∣∣∣ N∑
l=1

B(fl, gl)
∣∣∣ ≤ KG

∥∥∥( N∑
l=1

|fl|2
) 1

2
∥∥∥
∞

∥∥∥( N∑
l=1

|gl|2
) 1

2
∥∥∥
∞

.

The space �m
∞ × �n

∞ can be regarded as the space of continuous functions
C(K(m)) × C(L(n)), where K(m) and L(n) are finite sets of cardinality m and
n, respectively, equipped with the discrete topology. Our next result extends
the previous remark about Grothendieck’s inequality to general C(K)-spaces.

Theorem 8.1.3. Let K and L be two compact Hausdorff spaces and let B :
C(K)× C(L)→ R be a bounded bilinear form. Then for any (fk)n

k=1 in C(K)
and (gk)n

k=1 in C(L) we have

∣∣∣ n∑
k=1

B(fk, gk)
∣∣∣ ≤ KG‖B‖

∥∥∥( n∑
k=1

|fk|2
) 1

2
∥∥∥
∞

∥∥∥( n∑
k=1

|gk|2
) 1

2
∥∥∥
∞

,

where
‖B‖ = sup

{
|B(f, g)| : f ∈ BC(K), g ∈ BC(L)

}
.

Proof. The proof relies on a partition of unity argument. Let (fk)n
k=1 be a

sequence in C(K) and (gk)n
k=1 be a sequence in C(L). Given δ > 0 one can

find a finite open covering (Ui)N
i=1 of K so that for each 1 ≤ k ≤ n we have

|fk(x) − fk(x′)| < δ whenever x, x′ both belong to some Ui in the covering.
Pick a partition of unity (ϕj)l

j=1 subordinate to the covering (Ui)N
i=1. Thus

each ϕj satisfies 0 ≤ ϕj ≤ 1. Furthermore, supp ϕj = {ϕj > 0} lies inside a
set Ui(j) in the partition, and for all x ∈ K

l∑
j=1

ϕj(x) = 1.
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For each 1 ≤ j ≤ l pick xj ∈ Ui(j) and put

f ′
k =

l∑
j=1

fk(xj)ϕj , 1 ≤ k ≤ n.

Then, for any x ∈ K with ϕj(x) �= 0 we have |fk(xj)− fk(x)| < δ. Hence,

|f ′
k(x)− fk(x)| < δ, x ∈ K, 1 ≤ k ≤ n.

That is, ‖f ′
k − fk‖∞ < δ for 1 ≤ k ≤ n. Note also that ‖f ′

k‖∞ ≤ ‖fk‖∞ by
construction.

Similarly, for any δ > 0 we may find a partition of unity (ψj)m
j=1 on L with

associated points (yj)m
j=1 so that if

g′k =
m∑

j=1

gk(yj)ψj , 1 ≤ k ≤ n

then ‖g′k‖∞ ≤ ‖gk‖∞ and

‖g′k − gk‖∞ < δ, 1 ≤ k ≤ n.

Let (ajk)l,m
j,k=1 be the l ×m matrix defined by

ajk = B(ϕj , ψk).

For any (sj)l
j=1 and (tk)m

k=1 we have∣∣∣∣∣∣
l∑

j=1

m∑
k=1

ajksjtk

∣∣∣∣∣∣ ≤ ‖B‖max
j
|sj |max

k
|tk|.

We select (uj)l
j=1 and (vk)m

k=1 in �n
2 by

uj = (fi(xj))n
i=1, vk = (gi(yk))n

i=1.

Then

n∑
i=1

B(f ′
i , g

′
i) =

n∑
i=1

l∑
j=1

m∑
k=1

ajkfi(xj)gi(yk) =
l∑

j=1

m∑
k=1

ajk〈uj , vk〉,

so by Grothendieck’s inequality,

∣∣∣ n∑
i=1

B(f ′
i , g

′
i)
∣∣∣ ≤ KG‖B‖ sup

j

( n∑
i=1

|fi(xj)|2
)1/2

sup
k

( n∑
i=1

|gi(yk)|2
)1/2

.

Now for 1 ≤ i ≤ n,
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B(fi, gi)−B(f ′
i , g

′
i) = B(fi − f ′

i , gi) + B(f ′
i , gi − g′i),

and so
|B(fi, gi)−B(f ′

i , g
′
i)| ≤ δ‖B‖

(
‖fi‖∞ + ‖gi‖∞

)
.

Putting everything together we obtain

∣∣∣ n∑
i=1

B(fi, gi)
∣∣∣ ≤ ∣∣∣ n∑

i=1

B(f ′
i , g

′
i)
∣∣∣+ δ‖B‖

n∑
i=1

(
‖fi‖∞ + ‖gi‖∞

)

≤ ‖B‖
(

KG

∥∥∥( n∑
i=1

|fi|2
) 1

2
∥∥∥
∞

∥∥∥( n∑
i=1

|gi|2
) 1

2
∥∥∥
∞

+ δ
n∑

i=1

(
‖fi‖∞ + ‖gi‖∞

))
.

Letting δ → 0 gives the theorem.
��

Theorem 8.1.3 also holds for complex scalars replacing KG by the complex
Grothendieck constant.

Remark 8.1.4 (Square-function estimates in C(K)-spaces). In Chap-
ter 6 we saw that in the Lp-spaces (1 ≤ p <∞) the following square-function
estimates hold: ∥∥∥( n∑

i=1

|fi|2
) 1

2

∥∥∥
p
∼
(
E

∥∥∥ n∑
i=1

εifi

∥∥∥2

p

)1/2

,

for every sequence (fi)n
i=1 in Lp. Now, in C(K)-spaces, we clearly have

∥∥∥( n∑
i=1

|fi|2
)1/2∥∥∥

∞
≤
(
E

∥∥∥ n∑
i=1

εifi

∥∥∥2

∞

)1/2

whenever (fi)n
i=1 ⊂ C(K), but the converse estimate does not hold in general.

Take for instance C(∆), the space of continuous functions on the Cantor set
∆, which we identify here with the topological product space {−1, 1}N. For
each i, let fi be the i-th projection from {−1, 1}N onto {−1, 1}. Then for each
n and any choice of signs (εi)n

i=1 we have

∥∥∥ n∑
i=1

εifi

∥∥∥
C(∆)

= sup
x∈∆

∣∣∣ n∑
i=1

εifi(x)
∣∣∣ = n,

hence (
E

∥∥∥ n∑
i=1

εifi

∥∥∥2

C(K)

)1/2

= n,

whereas, on the other hand,

∥∥∥( n∑
i=1

|fi|2
)1/2∥∥∥

C(∆)
=
√

n.
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Theorem 8.1.5. Suppose K is a compact Hausdorff space, that (Ω, µ) is a
σ–finite measure space and that T : C(K) → L1(µ) is a continuous operator.
Then for any finite sequence (fk)n

k=1 in C(K) we have∥∥∥( n∑
k=1

|Tfk|2
) 1

2
∥∥∥

1
≤ KG ‖T‖

∥∥∥( n∑
k=1

|fk|2
) 1

2
∥∥∥
∞

.

Proof. Let us define a bilinear form B : C(K)× L∞(µ)→ R by

B(f, g) =
∫

Ω

g · T (f) dµ.

Given a sequence (fk)n
k=1 in C(K), put G = (

∑n
k=1 |Tfk|2)1/2, and then define

gk(ω) =

{
G(ω)−1(Tfk)(ω) if G(ω) �= 0
0 if G(ω) = 0

, 1 ≤ k ≤ n.

In Chapter 4 we saw that L∞(µ) is isometrically isomorphic to a space
of continuous functions C(L) for some compact Hausdorff space L. With that
identification we can apply Theorem 8.1.3 and obtain∥∥∥∥∥

( n∑
k=1

|Tfk|2
) 1

2

∥∥∥∥∥
1

=
n∑

k=1

∫
Ω

gk · T (fk) dµ

=
n∑

k=1

B(fk, gk)

≤ KG‖T‖
∥∥∥∥∥
( n∑

k=1

|fk|2
) 1

2

∥∥∥∥∥
∞

,

since
∑n

k=1 |gk|2 ≤ 1 everywhere and ‖B‖ = ‖T‖.
��

We are now in position to apply Theorem 7.1.2.

Theorem 8.1.6. Suppose K is a compact Hausdorff space, that (Ω, µ) is a
probability measure space and that T : C(K)→ L1(µ) is a continuous operator.
Then there exists a density function h on Ω such that for all f ∈ C(K),(∫

|h−1Tf |2h dµ

)1/2

≤ KG‖T‖‖f‖.

In particular T factors through a Hilbert space.

Proof. It is enough to note that Theorem 8.1.5 implies that

∥∥∥( n∑
i=1

|Tfi|2
) 1

2

∥∥∥
1
≤ KG ‖T‖

(
n∑

i=1

‖fi‖2∞

)1/2

.

Now Theorem 7.1.2 applies.



8.1 Grothendieck’s Inequality 203

��
Let us recall that Kwapień’s theorem (Theorem 7.4.1), or more precisely

the Kwapień-Maurey theorem (Theorem 7.4.2), allows us to factorize an arbi-
trary operator T : X → Y , where X has type 2 and Y has cotype 2, through
a Hilbert space. However, in the above theorem we achieved the same result
when X = C(K) (which fails to have any nontrivial type) and Y = L1(µ).
This is rather strange and needs explanation. If C(K) fails to have type 2,
what is the substitute? Might the answer be that C(K)∗ =M(K) has cotype
2? Although type and cotype are not in duality, one is led to wonder if the
optimal hypothesis in the Kwapień-Maurey theorem is that X∗ has cotype 2.
Let us prove a result in this direction:

Theorem 8.1.7. Let X be a Banach space whose dual X∗ has cotype 2. Let
T : X → L1 be a bounded operator. Then T factors through a Hilbert space.

Proof. The key here is to obtain an estimate of the form∥∥∥∥∥∥
( n∑

j=1

|Txj |2
) 1

2

∥∥∥∥∥∥
1

≤ C
( n∑

j=1

‖xj‖2
)1/2

, (8.5)

for some constant C and for all finite sequences (xj)n
j=1 in X, so that we can

appeal to Theorem 7.1.2.
Assume first that T is a finite-rank operator. In this case we are guaranteed

the existence of a constant so that (8.5) holds. Let the least such constant be
denoted by Θ = Θ(T ). Theorem 7.1.2 yields a density function h on [0, 1] so
that for all x ∈ X, (∫

|Tx(t)|2h−1(t) dt

)1/2

≤ Θ‖x‖.

By Hölder’s inequality,∫
|Tx| 43 h− 1

3 dt =
∫
|Tx| 23 (|Tx|2h−1)

1
3 dt

≤
(∫

|Tx| dt

)2/3(∫
|Tx|2h−1 dt

)1/3

≤ ‖T‖2/3Θ2/3‖x‖4/3.

Thus if we define S : X → L4/3([0, 1], h dt) by Sx = h−1Tx, and R :
L4/3([0, 1], h dt)→ L1 by Rf = hf , we have ‖R‖ = 1, and

‖Sx‖ ≤ ‖T‖ 1
2 Θ

1
2 ‖x‖, x ∈ X;

that is, ‖S‖ ≤ ‖T‖ 1
2 Θ

1
2 .

Let us consider the adjoint S∗ : L4([0, 1], h dt) → X∗. Since L4 has type
2 and X∗ has cotype 2, we can apply Theorem 7.4.4 to deduce the existence



204 8 Absolutely Summing Operators

of a Hilbert space H, and operators U : L4 → H and V : H → X∗ so that
S∗ = V U and

‖V ‖‖U‖ ≤ T2(L4)C2(X∗)‖S∗‖ ≤ T2(L4)C2(X∗)‖T‖ 1
2 Θ

1
2 .

It follows that we can factor S∗∗ = U∗V ∗ : X∗∗ → L4/3([0, 1], h dt) through
the Hilbert space H∗. The restriction to X is a factorization of S.

For any sequence (xk)n
k=1 in X we have

∥∥∥( n∑
k=1

|Txk|2
)1/2∥∥∥

1
≤
(

E

∥∥∥ n∑
k=1

εkTxk

∥∥∥2

1

)1/2

≤
(

E

∥∥∥ n∑
k=1

εkSxk

∥∥∥2
)1/2

≤ ‖U‖
(

E

∥∥∥ n∑
k=1

εkV ∗xk

∥∥∥2
)1/2

= ‖U‖
(

n∑
k=1

‖V ∗xk‖2
)1/2

≤ ‖V ‖‖U‖
(

n∑
k=1

‖xk‖2
)1/2

,

and so, from the definition of Θ,

Θ ≤ ‖U‖‖V ‖ ≤ T2(L4)C2(X∗)‖T‖ 1
2 Θ

1
2 ,

which implies
Θ(T ) ≤

(
T2(L4)C2(X∗)

)2‖T‖.
Now suppose that T is not necessarily finite-rank. Let (Sk)∞k=1 be the

partial-sum projections for the Haar basis in L1. Then each SkT is finite-
rank, and ‖SkT‖ ≤ ‖T‖ since the Haar basis is monotone. Thus

Θ(SkT ) ≤
(
T2(L4)C2(X∗)

)2‖T‖.
By passing to the limit in (8.5) we obtain that T satisfies such an estimate
with constant Θ(T ) ≤

(
T2(L4)C2(X∗)

)2‖T‖, and the result follows.
��

Notice how we needed to use finite-rank operators and a bootstrap
method to obtain this result. This argument is the basis for Pisier’s Abstract
Grothendieck Theorem [183]:

Theorem 8.1.8 (Pisier’s Abstract Grothendieck Theorem). Let X
and Y be Banach spaces so that X∗ has cotype 2, Y has cotype 2, and either
X or Y has the approximation property. Then any operator T : X → Y factors
through a Hilbert space.
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The appearance of the approximation property here is at first unexpected,
but remember we must use finite-rank approximations to our operator. Is the
approximation property necessary? In a remarkable paper in 1983, Pisier [184]
constructed a Banach space X so that both X and X∗ have cotype 2 but X
is not a Hilbert space. Applying Theorem 8.1.8 to the identity operator on
this space shows that X must fail the approximation property.

8.2 Absolutely summing operators

We now introduce an important definition that goes back to the work of
Grothendieck.

Definition 8.2.1. Let X, Y be Banach spaces. An operator T : X → Y is
said to be absolutely summing if there is a constant C so that for all choices
of (xk)n

k=1 in X,

n∑
k=1

‖Txk‖ ≤ C sup

{
n∑

k=1

|x∗(xk)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}
.

The least such constant C is denoted π1(T ) and is called the absolutely sum-
ming norm of T .

If T : X → Y is absolutely summing in particular T is bounded and
‖T‖ ≤ π1(T ) since, by definition, for each x ∈ X

‖Tx‖ ≤ π1(T ) sup {|x∗(x)| : x∗ ∈ BX∗} = π1(T )‖x‖.

Notice also that for any sequence (xk)n
k=1 in X we have

sup

{
n∑

k=1

|x∗(xk)| : x∗ ∈ BX∗

}
= sup

{∥∥∥ n∑
k=1

εkxk

∥∥∥ : (εk) ∈ {−1, 1}n

}
,

and so we can equivalently rewrite the definition of absolutely summing op-
erator in terms of the right-hand side expression.

The next result identifies absolutely summing operators as exactly those
operators which transform unconditionally convergent series into absolutely
convergent series. We omit the routine proof (see the Problems).

Proposition 8.2.2. An operator T : X −→ Y is absolutely summing if and
only if

∑∞
n=1 ‖Txn‖ < ∞ whenever

∑∞
n=1 xn is unconditionally convergent

(or simply a (WUC) series).

Recall that a classical theorem of Riemann asserts that if
∑

xn is a series
of real numbers then

∑
|xn| <∞ if and only if

∑
xn converges uncondition-

ally. This easily extends to any finite-dimensional Banach space. During the
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late 1940s there was a flurry of interest in the problem of whether the same
phenomenon could occur in any infinite-dimensional Banach space. In our
language this asks whether the identity operator IX can ever be absolutely
summing if X is infinite-dimensional. Note for example that if X is a Hilbert
space and (en)∞n=1 is an orthonormal sequence then

∑
1
nen converges uncon-

ditionally but
∑

1
n = ∞. Before addressing this problem let us introduce a

more general definition:

Definition 8.2.3. Let X, Y be Banach spaces. An operator T : X → Y is
called p-absolutely summing (1 ≤ p < ∞) if there exists a constant C such
that for all choices of (xk)n

k=1 in X we have

( n∑
k=1

‖Txk‖p
)1/p

≤ C sup

{( n∑
k=1

|x∗(xk)|p
)1/p

: x∗ ∈ BX∗

}
. (8.6)

The least such constant C is denoted πp(T ) and is called the p-absolutely
summing norm of T .

Let us point out that, in practice, we will only use the most important
cases, when p = 1 or p = 2. In fact, 2-absolutely summing operators play a
very important role in further developments.

Theorem 8.2.4. Let T be an operator between the Banach spaces X and Y .
If 1 ≤ r < p < ∞ and T is r-absolutely summing then T is p-absolutely
summing with πp(T ) ≤ πr(T ).

Proof. Given p > r let us pick q such that 1/p + 1/q = 1/r. Suppose (xi)n
i=1

in X satisfy (
∑n

i=1 |x∗(xi)|p)1/p ≤ 1 for all x∗ ∈ BX∗ . Then for any (ci)n
i=1

scalars so that (
∑n

i=1 |ci|q)1/q ≤ 1, using Hölder’s inequality with the conju-
gate indices q/r and p/r we have( n∑

i=1

|ci|r|x∗(xi)|r
)1/r

≤
( n∑

i=1

|x∗(xi)|p
)1/p

≤ 1, x∗ ∈ BX∗ .

Hence ( n∑
i=1

|ci|r‖Txi‖r
)1/r

≤ πr(T ),

and by Hölder’s inequality,( n∑
i=1

‖Txi‖p
)1/p

≤ πr(T ).

Finally, a standard homogeneity argument immediately yields that( n∑
i=1

‖Txi‖p
)1/p

≤ πr(T ) sup
‖x∗‖≤1

( n∑
i=1

|x∗(xi)|p
)1/p

,

for any choice of vectors (xi)n
i=1 in X. That is, T is p-absolutely summing and

πp(T ) ≤ πr(T ).
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��
Before proceeding, let us note the obvious ideal properties of the absolutely

summing norms whose proof we leave for the Problems.

Proposition 8.2.5. Suppose 1 ≤ p <∞.

(i) If S, T : X → Y are p-absolutely summing operators then S + T is also
p-absolutely summing and πp(S + T ) ≤ πp(S) + πp(T ).

(ii) Suppose T : X → Y, S : Y → Z, and R : Z → W are operators. If S is
p-absolutely summing then so is RST and πp(RST ) ≤ ‖R‖πp(S)‖T‖.

There is an extensive theory of operator ideals primarily developed by
Pietsch and his school; we refer the reader to the recent survey [40].

Next we will recast the results of the previous section in the language
of absolutely summing operators, but first let us make the following useful
remark:

Remark 8.2.6. Suppose X is a subspace of C(K), where K is a compact
Hausdorff topological space. Using Jensen’s inequality, and the fact that ν ∈
C(K)∗ = M(K) is an extreme point of the unit ball of C(K)∗ if and only if
ν = ±δs, where δs(f) = f(s) for f ∈ C(K), given any (fj)n

j=1 in X we have

sup
x∗∈BX∗

n∑
j=1

|x∗(fj)|p = sup

⎧⎨
⎩

n∑
j=1

∣∣∣ ∫
K

fj dν
∣∣∣p : ν ∈ BC(K)∗

⎫⎬
⎭

≤ sup

⎧⎨
⎩

n∑
j=1

∫
K

|fj |p d|ν| : ν ∈ BM(K)

⎫⎬
⎭

= max
s∈K

n∑
j=1

|fj(s)|p.

Theorem 8.2.7. Let K be a compact Hausdorff space and let µ be a σ-finite
measure. Then every bounded operator T : C(K) → L1(µ) is 2-absolutely
summing with π2(T ) ≤ KG‖T‖.

Proof. Using Lemma 6.2.16 in combination with Theorem 8.1.5, given any
(fi)n

i=1 in C(K) we obtain

( n∑
i=1

‖Tfi‖21
)1/2

=
( n∑

i=1

∥∥|Tfi|2
∥∥

1/2

)1/2

≤
∥∥∥ n∑

i=1

|Tfi|2
∥∥∥1/2

1/2

=
∥∥∥( n∑

i=1

|Tfi|2
) 1

2
∥∥∥

1
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≤ KG‖T‖
∥∥∥( n∑

i=1

|fi|2
) 1

2
∥∥∥
∞

.

To complete the proof we need only observe that

∥∥∥( n∑
i=1

|fi|2
) 1

2
∥∥∥
∞

= max
s∈K

( n∑
i=1

|fi(s)|2
)1/2

= max
s∈K

( n∑
i=1

|δs(fi)|2
)1/2

= sup
{( n∑

i=1

|x∗(fi)|2
)1/2

: x∗ ∈ BC(K)∗

}
.

��
The next theorem is a fundamental link with factorization theory. It is due

to Pietsch (1966) [181].

Theorem 8.2.8. Suppose X is a closed subspace of C(K) (K compact Haus-
dorff). An operator T from X into a Banach space Y is p-absolutely summing
for some 1 ≤ p < ∞ with πp(T ) ≤ C if and only if there is a regular Borel
probability measure ν on K so that for all f ∈ X,

‖Tf‖ ≤ C
(∫

K

|f |p dν
)1/p

. (8.7)

Proof. Assume first that 0 �= T is a p-absolutely summing operator. We will
use Lemma 7.3.5 to find a linear functional L on C(K) satisfying:

L(f) ≤ max
s∈K

f(s), f ∈ C(K) (8.8)

and
πp(T )−p‖Tf‖p ≤ L(|f |p), f ∈ X. (8.9)

To this end, suppose we have functions f1, . . . , fn ∈ C(K), g1, . . . , gm ∈ X,
and nonnegative scalars α1, . . . , αn, β1, . . . , βm such that

n∑
i=1

αifi =
m∑

j=1

βj |gj |p.

Then

πp(T )−p
m∑

j=1

βj‖Tgj‖p ≤ max
s∈K

m∑
j=1

βj |gj(s)|p

= max
s∈K

n∑
i=1

αifi(s)
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≤
n∑

i=1

αi max
s∈K

fi(s).

This guarantees the existence of a linear functional L on C(K) verifying both
(8.8) and (8.9). In particular, L is a positive functional since L(f) ≤ 0 when-
ever f < 0, and L(−1) ≤ −1. By the Riesz representation theorem there
is a regular Borel probability measure ν on K so that Lf =

∫
K

f dν for all
f ∈ C(K). It is then clear that ν solves our problem.

Suppose conversely that there is a regular Borel probability measure ν on
K so that for all f ∈ X,

‖Tf‖p ≤ Cp

∫
K

|f |p dν.

Then for any f1, . . . , fn ∈ X we have

n∑
j=1

‖Tfj‖p ≤ Cp
n∑

j=1

∫
K

|fj |p dν

≤ Cp max
s∈K

n∑
j=1

|fj(s)|p

= Cp sup
{ n∑

j=1

∣∣∣ ∫
K

fj dν
∣∣∣p : ν ∈M(K), ‖ν‖ = 1

}
.

��

Remark 8.2.9. Notice that we just showed that, if ν is a probability measure
on some compact Hausdorff space K, then the inclusion maps jp : C(K) →
Lp(K, ν) and ιp : L∞(K, ν)→ Lp(K, ν) are canonical examples of p-absolutely
summing operators (1 ≤ p <∞).

Since every Banach space X can be considered as a closed subspace of
C(BX∗) (where BX∗ has the weak∗ topology), one usually states Theorem 8.2.8
in the following form:

Theorem 8.2.10 (Pietsch Factorization Theorem). An operator T :
X → Y is p-absolutely summing if and only if there is a regular Borel proba-
bility measure ν on BX∗ (in its weak∗ topology) so that for each x ∈ X

‖Tx‖ ≤ πp(T )
(∫

BX∗
|x∗(x)|p dν(x∗)

)1/p

. (8.10)

Interpretation. Let us denote by jp : C(BX∗) → Lp(BX∗ , ν) the canonical
inclusion map and by Xp the closure in Lp(BX∗ , ν) of the natural copy of X
in C(BX∗). Then we can induce an operator S : Xp → Y with ‖S‖ = πp(T )
and so that T = S ◦ jp. We thus have the following picture:
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X jp ��
� �

��

T

��
Xp S ��

��

Y

C(BX∗)
jp �� Lp(BX∗ , ν)

Remark 8.2.11. The case p = 2 is special. Suppose T : X → Y is 2-
absolutely summing. Then, since there is an orthogonal projection from
L2(BX∗ , ν) onto the subspace X2, we can factor T in the following manner:

X
T ��

� �

��

Y

C(BX∗)
j2 �� L2(BX∗ , ν)

S̃

��

An immediate consequence is

Theorem 8.2.12. If an operator T : X → Y is 2-absolutely summing then it
factors through a Hilbert space.

Theorem 8.2.13. Suppose that X, Y are Banach spaces and that E is a
closed subspace of X. Suppose the operator T : E → Y is 2-absolutely sum-
ming. Then there exists a 2-absolutely summing operator T̃ : X → Y such
that T̃ |E = T and π2(T̃ ) = π2(T ).

Proof. We can factor the operator T : E → Y using Remark 8.2.11:

E
� � ιE ��

T

��C(BE∗)
j2 �� L2(BE∗ , ν) S̃ �� Y

On the other hand, the natural inclusion j2 : C(BE∗)→ L2(BE∗ , ν) admits a
factorization through L∞(BE∗ , ν):

C(BE∗)
j2 ��

ι∞ ������������
L2(BE∗ , ν)

L∞(BE∗ , ν)

ι2

		�����������

If we combine these two diagrams we see that the operator ι∞ ◦ ιE maps
continuously E into L∞(BE∗ , ν), which is an isometrically injective space.
Thus ι∞ ◦ ιE can be extended with preservation of norm to an operator R
defined on X:
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X
R �� L∞(BE∗ , ν)

ι2

��
E

� � ιE ����

��

C(BE∗)
j2 ��

ι∞


����������

L2(BE∗ , ν) S̃ �� Y

Clearly, the operator T̃ = S̃ι2R is an extension of T to X. From Propo-
sition 8.2.5 (ii) and Remark 8.2.9 we deduce that T̃ is 2-absolutely sum-
ming and, since π2(ι2) = 1, ‖R‖ = 1, and ‖S̃‖ = π2(T ), it follows that
π2(T̃ ) = π2(T ).

��
We can now answer the question we raised on the converse of the Riemann

theorem. This result was proved by Dvoretzky and Rogers [50] in 1950, which
predates the entire theory of absolutely summing operators. In fact the proof
of Dvoretzky and Rogers that we will touch on later (see Proposition 12.3.4
and Problem 12.8) is quite different and relies on geometrical ideas. With the
passage of time the theorem looks a lot easier today than it did in 1950!

Theorem 8.2.14 (Dvoretzky-Rogers Theorem). Let X be a Banach
space such that every unconditionally convergent series in X is absolutely
convergent. Then X is finite-dimensional.

Proof. By Proposition 8.2.2, our hypothesis is equivalent to saying that the
identity operator IX : X → X is absolutely summing; hence it is also 2-
absolutely summing by Theorem 8.2.4. Now by Theorem 8.2.12 we deduce
that X is isomorphic to a Hilbert space. But we have already seen that any
infinite-dimensional Hilbert space contains an unconditionally convergent se-
ries which is not absolutely convergent, namely,

∑∞
n=1

1
nen, where (en)∞n=1 is

an orthonormal sequence.
��

If we combine Theorem 8.2.7 and Theorem 8.2.8 we obtain an alternative
way to see that every operator T : C(K) → L1(µ) factors through a Hilbert
space. This approach is dual to the methods of the previous section, like for
example in Theorem 8.1.6 . We are in effect introducing a “density” on K
rather than on Ω.

Corollary 8.2.15. If X and Y are Banach spaces and T : X → Y is a p-
absolutely summing operator for some 1 ≤ p < ∞ then T is Dunford-Pettis
and weakly compact. In particular, if T : X → Y is p-absolutely summing and
X is reflexive then T is compact.

Proof. Without loss of generality we can assume p > 1. The Pietsch factor-
ization theorem tells us that T factors through a subspace Xp of Lp(BX∗ , ν)
for some probability measure ν, hence T must be weakly compact by the
reflexivity of Xp.

Assume now that (xn) is a weakly null sequence in X. By equation (8.10),
for each xn we have
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‖Txn‖ ≤ πp(T )
(∫

BX∗
|x∗(xn)|p dν(x∗)

)1/p

.

The Lebesgue Dominated Convergence theorem easily yields that lim
n→∞ ‖Txn‖ =

0, so T is Dunford-Pettis.
��

We conclude this section by identifying the 2-absolutely summing opera-
tors on a Hilbert space with the well-known class of Hilbert-Schmidt operators.
In a certain sense we can regard the class of 2-absolutely summing operators
as the natural generalization to arbitrary Banach spaces of this class.

Definition 8.2.16. Suppose H1, H2 are separable Hilbert spaces. We assume
H1, H2 infinite-dimensional for notational convenience. An operator T : H1 →
H2 is said to be Hilbert-Schmidt if

∑∞
n=1 ‖Ten‖2 < ∞ for some orthonormal

basis (en)∞n=1 of H1.

Let (en)∞n=1 be an orthonormal basis of H1 and (fn)∞n=1 be an orthonormal
basis of H2. Then, by Parseval’s identity,

∞∑
n=1

‖Ten‖2 =
∞∑

n=1

∞∑
k=1

|〈Ten, fk〉|2 =
∞∑

k=1

∞∑
n=1

|〈en, T ∗fk〉|2 =
∞∑

k=1

‖T ∗fk‖2.

(8.11)
This implies that the expression

∑∞
n=1 ‖Ten‖2 is independent of the choice of

orthonormal basis in H1. The quantity

‖T‖HS =

( ∞∑
n=1

‖Ten‖2
)1/2

is called the Hilbert-Schmidt norm of T . Notice that equation (8.11) also
shows that ‖T‖HS = ‖T ∗‖HS , so T : H1 → H2 is Hilbert-Schmidt if and only
if T ∗ : H2 → H1 is.

Remark 8.2.17. (a) If T : H → H is Hilbert-Schmidt then ‖T‖ ≤ ‖T‖HS .
(b) If T : H → H is Hilbert-Schmidt then T is compact. Indeed, take

(Pm)∞m=1 the partial sum projections associated to an orthonormal basis (en)
of H and let IH be the identity operator on H. Then,

‖T − TPm‖HS = ‖T (IH − Pm)‖HS = ‖T |[ej ;j>m+1]‖HS → 0.

Therefore ‖T − TPm‖ → 0. Since (TPm)∞m=1 are finite-rank operators, it
follows that T is compact.

Theorem 8.2.18. An operator T : H1 → H2 is Hilbert-Schmidt if and only
if T is 2-absolutely summing. Furthermore, ‖T‖HS = π2(T ).
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Proof. Suppose first that T is 2-absolutely summing. If (ej)∞j=1 is an orthonor-
mal basis of H1 then for each n ∈ N we have

sup

⎧⎨
⎩
( n∑

j=1

|〈ej , x〉|2
)1/2

: x ∈ H1, ‖x‖ ≤ 1

⎫⎬
⎭ = 1,

and so ( n∑
j=1

‖Tej‖2
)1/2

≤ π2(T ).

Hence T is Hilbert-Schmidt and ‖T‖HS ≤ π2(T ).
Suppose conversely that T is Hilbert-Schmidt. Let (xj)n

j=1 in H1 have the
property that

sup

⎧⎨
⎩
( n∑

j=1

|〈xj , x〉|2
)1/2

: x ∈ H1, ‖x‖ ≤ 1

⎫⎬
⎭ ≤ 1.

Then the operator S : H1 → H1 defined by Sej = xj for 1 ≤ j ≤ n and
Sej = 0 for j > n satisfies ‖S‖ ≤ 1. Hence

‖TS‖HS = ‖S∗T ∗‖HS ≤ ‖T ∗‖HS = ‖T‖HS .

Thus
n∑

j=1

‖Txj‖2 =
n∑

j=1

‖TSej‖2 ≤ ‖T‖2HS ,

which implies that T is 2-absolutely summing with π2(T ) ≤ ‖T‖HS .
��

8.3 Absolutely summing operators on L1(µ)-spaces and
an application to uniqueness of unconditional bases

We now revisit Grothendieck’s inequality to obtain another rather startling
application from Grothendieck’s Résumé [76].

Theorem 8.3.1. Suppose T : L1(µ) → �2 is a bounded operator. Then T is
absolutely summing and π1(T ) ≤ KG‖T‖.

Proof. Suppose (fi)n
i=1 in L1(µ) are such that

sup

{
n∑

i=1

∣∣∣ ∫
Ω

fig dµ
∣∣∣ : g ∈ L∞(µ), ‖g‖∞ ≤ 1

}
≤ 1.
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We must show that
∑n

i=1 ‖Tfi‖ ≤ KG‖T‖. Notice that it is enough to prove
the latter inequality when (fi)n

i=1 are simple functions so that there is de-
composition of Ω into finitely many measurable sets A1, . . . , Am of positive
measure so that each fi is a linear combination of {χAj}m

j=1. Thus it suffices
to prove the result for an operator T : �m

1 → �m
2 .

Let T : �m
1 → �m

2 with ‖T‖ ≤ 1. Suppose (xi)n
i=1 in �m

1 satisfy

sup

{
n∑

i=1

|〈xi, η〉| : η ∈ �n
∞, ‖η‖∞ ≤ 1

}
≤ 1.

If for each 1 ≤ i ≤ n we let xi = (xik)m
k=1, it is easy to see that∣∣∣∣∣

n∑
i=1

n∑
k=1

xiksitk

∣∣∣∣∣ ≤ 1

whenever max |si|,max |tk| ≤ 1.
Let (ek)m

k=1 denote the canonical basis of �m
1 and put uk = Tek ∈ �m

2 . By
our assumption on T , ‖uj‖2 ≤ 1. For 1 ≤ j ≤ n pick vj so that 〈Tξj , vj〉 =
‖Tξj‖2 and ‖vj‖2 = 1. Then

n∑
j=1

‖Tξj‖2 =
n∑

j=1

〈Tξj , vj〉

=
n∑

j=1

m∑
k=1

ξjk〈uk, vj〉

≤ KG

by Grothendieck’s inequality 8.1.1. This establishes the result.
��

Remark 8.3.2. (a) Since �1 is an L1(µ)-space for a suitable µ, Theorem 8.3.1
holds for operators T : �1 → �2 . In particular it also holds for a quotient map
of �1 onto �2. This is in sharp contrast to the fact that every absolutely p-
summing operator (for any p) on a reflexive space is compact.

(b) Theorem 8.3.1 is actually equivalent to Grothendieck’s inequality in
the sense that Grothendieck’s inequality could equally be derived from this
theorem. It is also equivalent to either Theorem 8.1.5 or Theorem 8.2.7.

Lindenstrauss and Pe�lczyński [131] discovered a very neat application of
Theorem 8.3.1 to the isomorphic theory of Banach spaces by showing that the
spaces c0 and �1 have essentially (i.e., up to equivalence) only one uncondi-
tional basis, namely, the unit vector basis. It is almost unfortunate that, later,
Johnson (cf. [91]) found an “elementary” proof which completely circumvents
the use of Grothendieck’s inequality!
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Theorem 8.3.3. Every normalized unconditional basis in �1 [respectively, c0]
is equivalent to the canonical basis of �1 [respectively, c0].

Proof. Assume that (un)∞n=1 is a normalized K-unconditional basis in �1. For
any sequence of scalars (ai) we have( n∑

i=1

|ai|2
)1/2

≤ C2(�1)
(
E

∥∥∥ n∑
i=1

εiaiui

∥∥∥2)1/2

≤ C2(�1)K
∥∥∥ n∑

i=1

aiui

∥∥∥,
where C2(�1) is the cotype-2 constant of �1. From here it follows that the
operator T : �1 → �2 defined by

T
( ∞∑

i=1

aiui) = (u∗
i (x))∞i=1 = (a1, a2, . . . , ai, . . . )

is bounded with ‖T‖ ≤ C2(�1)K. Therefore, by Theorem 8.3.1, T is absolutely
summing and π1(T ) ≤ KGC2(�1)K. Thus

n∑
i=1

|ai| =
n∑

i=1

‖T (aiui)‖

≤ KGC2(�1)K sup
εi=±1

∥∥∥ n∑
i=1

εiaiui

∥∥∥
≤ KGC2(�1)K2

∥∥∥ n∑
i=1

aiui

∥∥∥,
which shows that (un)∞n=1 is equivalent to the canonical basis of �1.

Suppose now that (un)∞n=1 is a normalized K-unconditional basis of c0.
We know that every unconditional basis of c0 is shrinking by James’s theorem
(Theorem 3.3.1), hence the biorthogonal functionals (u∗

n)∞n=1 form an uncon-
ditional basis of �1. By the first part of the proof, (u∗

n/‖u∗
n‖)∞n=1 is equivalent

to the canonical basis of �1 and, since 1 ≤ ‖u∗
n‖ ≤ K, (u∗

n)∞n=1 is equivalent to
the canonical �1-basis. Hence there exists a constant M (depending only on
the basis (un)) so that for each x∗ ∈ �1 = c∗0 we have

n∑
k=1

|x∗(uk)| ≤M‖x∗‖.

Then for any scalars (ai) and each x∗ ∈ B�1 ,∣∣∣x∗
( n∑

i=1

aiui

)∣∣∣ ≤M max
1≤i≤n

|ai|,

that is, ∥∥∥ n∑
i=1

aiui

∥∥∥ ≤M max
1≤i≤n

|ai|.

The other estimate follows immediately from the unconditionality of (un).
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��

Remark 8.3.4. Notice that the argument of Theorem 8.3.3 could be applied
to an unconditional basis of L1; the conclusions would be that every normal-
ized unconditional basis of L1 is equivalent to the canonical basis of �1. Since
L1 is not isomorphic to �1 this provides yet another proof that L1 has no
unconditional basis. Similarly any C(K)-space with unconditional basis must
be isomorphic to c0 (we have already seen this for quite different reasons in
Chapter 4, Theorem 4.5.2).

Let us observe that unconditional bases of Hilbert spaces also share this
uniqueness property:

Theorem 8.3.5. If (un)∞n=1 is a normalized unconditional basis of a Hilbert
space then (un)∞n=1 is equivalent to the canonical basis of �2.

Proof. Let K be the unconditional basis constant of (un)∞n=1. The uncondi-
tionality of the basis and the generalized parallelogram law yield

∥∥∥ n∑
i=1

aiui

∥∥∥ ≤ K
(
E

∥∥∥ n∑
i=1

εiaiui

∥∥∥2)1/2

= K
( n∑

i=1

|ai|2
)1/2

,

for any scalars (ai). The other estimate we need to show the equivalence of
bases follows in the same way.

��

Definition 8.3.6. If X is a Banach space with a normalized unconditional ba-
sis (en)∞n=1 we say that X has unique unconditional basis if whenever (un)∞n=1

is another normalized unconditional basis of X, then (un)∞n=1 is equivalent to
(en)∞n=1. That is, there is a constant D so that

D−1
∥∥∥ ∞∑

n=1

anun

∥∥∥ ≤ ∥∥∥ ∞∑
n=1

aiei

∥∥∥ ≤ D
∥∥∥ ∞∑

n=1

anun

∥∥∥,
for any (an)∞n=1 ∈ c00.

The fact that the three spaces �1, �2, and c0 have the property of uniqueness
of unconditional basis leads us to consider what other spaces might have the
same property. We will resolve this problem later, but let us first show how to
construct essentially different unconditional bases in �p when 1 < p <∞ and
p �= 2. This is due to Pe�lczyński [169] and it beautifully illustrates the usage
of “Lp-methods” to deduce properties about their relatives, the spaces �p.

Proposition 8.3.7. If 1 < p < ∞, p �= 2, then �p has at least two non-
equivalent unconditional bases.
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Proof. Let 1 < p < ∞, p �= 2. We saw in Proposition 6.4.2 that the operator
P defined in Lp by

P (f) =
∞∑

k=1

(∫ 1

0

f(t)rk(t) dt
)
rk

is a projection onto Rp, the closed subspace spanned in Lp by the Rademacher
functions. For each n let F

(n)
p denote the subspace of Lp spanned by the

characteristic functions on the dyadic intervals of the family [ k
2n , k+1

2n ], k =
0, 1, . . . , 2n−1, and let R

(n)
p = [rk]nk=1. Clearly the space F

(n)
p is isometric to

�2
n

p and R
(n)
p is isometric to �n

2 . Moreover, P |
F

(n)
p

is a projection from F
(n)
p onto

its subspace R
(n)
p (with projection constant independent of n). It is easy to see

that this defines (coordinatewise) a projection from �p(F
(n)
p ) onto �p(R

(n)
p ).

Obviously �p(F
(n)
p ) is isometric to �p(�2

n

p ) = �p and �p(R
(n)
p ) is isometric to

�p(�n
2 ). Since �p is prime and �p(�n

2 ) is complemented in �p, it follows that
�p(�n

2 ) is isomorphic to �p.
Then, if �p had a unique unconditional basis, in particular the canonical

basis of �p and the canonical basis of �p(�n
2 ) would be equivalent, which is not

true.
��

Problems

8.1. Grothendieck’s original proof of the Grothendieck inequality.
(a) Let g1, g2 be (normalized) Gaussians. Show that

E(sgn g1)(sgn (g1 cos θ + g2 sin θ)) = 1− 2
π

θ, 0 ≤ θ ≤ π.

Now let X be the space of m× n real matrices with the norm

‖A‖X = sup
|si|≤1

sup
|tj |≤1

∣∣∣∣∣∣
m∑

i=1

n∑
j=1

aijsitj

∣∣∣∣∣∣
and define the multiplier norm of an m× n matrix B by

‖B‖M = sup
‖A‖X≤1

‖B ·A‖X ,

where B ·A is the matrix (bijaij)
m,n
i,j=1.

(b) Let ui, vj ∈ �N
2 for i = 1, 2 . . . , m and j = 1, 2, . . . , n. Suppose ‖ui‖2 =

‖vj‖2 = 1 for all i, j. By considering
∑N

k=1 ui(k)gk and
∑N

k=1 vj(k)gk where
g1, . . . , gN are normalized Gaussians show that
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π

θij

)m,n

i,j=1

∥∥∥
M
≤ 1,

where θij is the unique solution of 0 ≤ θij ≤ π and cos θij = 〈ui, vj〉.
(c) Using the fact that cos θij = sin(π/2− θij) show that

‖(cos θij)
m,n
i,j=1‖m ≤ sinh

π

2
.

(d) Deduce Grothendieck’s inequality with KG ≤ sinh π
2 .

8.2. (a) Show that Grothendieck’s inequality is equivalent to the statement
that every bounded operator T : �1 → �2 is absolutely summing (Theo-
rem 8.3.1).
(b) Deduce that Grothendieck’s inequality is equivalent to the statement there
is a quotient map Q : X → �2 which is absolutely summing for some separable
Banach space X.

Using (a) and (b), Pe�lczyński and Wojtaszczyk proved that Grothendieck’s
inequality follows from a classical inequality of Paley (if rather indirectly)
[176].

8.3. Prove Proposition 8.2.2.

8.4. Prove Proposition 8.2.5.

8.5. Prove that the identity operator IX on an infinite-dimensional Banach
space X is never p-absolutely summing for any p <∞.

8.6. Prove the dual form of Theorem 8.1.7: Suppose X is a Banach space that
has cotype 2. Then every operator T : C(K) → X factors through a Hilbert
space and hence T is 2-absolutely summing.
Deduce that if T : c0 → X, then there exist an ≥ 0 with

∑∞
n=1 an = 1 and

‖T (ξ)‖ ≤ C
( ∞∑

j=1

|ξ(j)|2aj

)1/2

.

8.7. (a) Show if T : c0 → �2 is a bounded operator and S : �2 → �2 is
Hilbert-Schmidt then (if (en)∞n=1 is the canonical basis),

∞∑
n=1

‖STen‖ <∞.

(b) Deduce (using Problem 8.6) that if X has cotype 2 then any 2-absolutely
summing operator R : X → �2 is absolutely summing.
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8.8. (a) Let T : �2 → �2 be a p-absolutely summing operator where p > 2.
Show that T is Hilbert-Schmidt.
(b) Conversely if T is Hilbert-Schmidt show that T is absolutely summing.

These results are due to Pietsch [181] and Pe�lczyński [173]. The best constants
involved were found by Garling [64].

8.9. (a) Let X be a Banach space. Show that an operator T : X → �2 is
2-absolutely summing if and only if for every operator S : �2 → X the com-
position TS is Hilbert-Schmidt.
(b) Show that if every operator T : X∗ → �2 is 2-absolutely summing then
every operator T : X → �2 is also 2-absolutely summing.
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Perfectly Homogeneous Bases and Their
Applications

In this chapter we first prove a characterization of the canonical bases of
the spaces �p (1 ≤ p < ∞) and c0 due to Zippin [223]. In the remainder of
the chapter we show how this is used in several different contexts to prove
general theorems by reduction to the �p case. For example, we show that
the Lindenstrauss-Pe�lczyński theorem on the uniqueness of the unconditional
basis in c0, �1, and �2 (Theorem 8.3.3) has a converse due to Lindenstrauss and
Zippin; these are the only three such spaces. We also deduce a characterization
of c0 and �p in terms of complementation of block basic sequences due to
Lindenstrauss and Tzafriri [135] and apply it to prove a result of Pe�lczyński
and Singer [177] on the existence of conditional bases in any Banach space
with a basis.

9.1 Perfectly homogeneous bases

The canonical bases of �p and c0 have a very special property in that every nor-
malized block basic sequence is equivalent to the original basis (Lemma 2.1.1).
This property was given the name perfect homogeneity.

In the 1960s several papers appeared which proved results for a Banach
space with a perfectly homogeneous basis mimicking known result for the
�p-spaces. However, it turns out that this property actually characterizes the
canonical bases of the �p-spaces! This is a very useful result proved in 1966
by Zippin [223]. Thus the concept is quite redundant.

We shall define perfectly homogeneous bases in a slightly different way,
which is, with hindsight, equivalent.

Definition 9.1.1. A block basis sequence (un)∞n=1 of a basis (en)∞n=1,

un =
pn∑

pn−1+1

aiei,
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is a constant coefficient block basic sequence if for each n there is a constant
cn so that ai = cn or ai = 0 for pn−1 + 1 ≤ i ≤ pn; that is,

un = cn

∑
i∈An

ei,

where An is a subset of integers contained in (pn−1, pn].

Definition 9.1.2. A basis (en)∞n=1 of a Banach space X is perfectly homoge-
neous if every normalized constant coefficient block basic sequence of (en)∞n=1

is equivalent to (en)∞n=1.

This definition is enough to force any perfectly homogeneous basis to be
unconditional since (en)∞n=1 must be equivalent to (εnen)∞n=1 for every choice
of signs εn = ±1.

Lemma 9.1.3. Let (en)∞n=1 be a normalized perfectly homogeneous basis of a
Banach space X. Then (en)∞n=1 is uniformly equivalent to all its normalized
constant coefficient block basic sequences. That is, there is a constant M ≥ 1
such that for any normalized constant coefficient block basic sequences (un)∞n=1

and (vn)∞n=1 of (en)∞n=1 we have

M−1
∥∥∥ n∑

k=1

akuk

∥∥∥ ≤ ∥∥∥ n∑
k=1

akvk

∥∥∥ ≤M
∥∥∥ n∑

k=1

akuk

∥∥∥,
for any choice of scalars (ai)n

i=1 and every n ∈ N.

Proof. It suffices to prove such an inequality for the basic sequence (en)∞n=n0+1

for some n0. If the lemma fails, we can inductively build constant coefficient
block basic sequences (un)∞n=1 and (vn)∞n=1 of (en)∞n=1 so that for some in-
creasing sequence of integers (pn)∞n=0 with p0 = 0 and some scalars (ai)∞i=1 we
have ∥∥∥ pn∑

i=pn−1+1

aiui

∥∥∥ < 2−n,

but ∥∥∥ pn∑
i=pn−1+1

aivi

∥∥∥ > 2−n,

which contradicts the assumption of perfect homogeneity.
��

Let us suppose that (en)∞n=1 is a normalized basis for a Banach space X.
For each n ∈ N put

λ(n) =
∥∥∥ n∑

k=1

ek

∥∥∥.
Obviously,



9.1 Perfectly homogeneous bases 223

K−1 ≤ λ(n) ≤ n, n ∈ N, (9.1)

where K ≥ 1 is the basis constant. Notice that if (en)∞n=1 is 1-unconditional
then the sequence (λ(n))∞n=1 is nondecreasing.

Lemma 9.1.4. Suppose that (en)∞n=1 is a normalized, unconditional basis of a
Banach space X. If supn λ(n) <∞ then (en)∞n=1 is equivalent to the canonical
basis of c0.

Proof. For any n and any choice of signs (εi)n
i=1 we have

∥∥∥ n∑
j=1

εjej

∥∥∥ ≤ C,

where C depends on supn λ(n) and the unconditional basis constant of
(en)∞n=1. Hence, by Lemma 2.4.6,

∑
ej is a WUC series and so

∑
ajej con-

verges for all (an)∞n=1 ∈ c0. This shows that (en)∞n=1 is equivalent to the
canonical c0-basis.

��

Lemma 9.1.5. Let (ei)∞i=1 be a normalized perfectly homogeneous basis of a
Banach space X. Then, if M is the constant given by Lemma 9.1.3, we have

1
M3

λ(n)λ(m) ≤ λ(nm) ≤M3λ(n)λ(m) (9.2)

for all m, n in N.

Proof. Note that M can also serve as an unconditional constant (of course,
not necessarily the optimal) for (en)∞n=1.

Let us consider a family

fj =
jn∑

i=(j−1)n+1

ei, j = 1, . . . , m,

of m disjoint blocks of length n of the basis (ei)∞i=1. Let cj = ‖fj‖ for j =
1, . . . , m. By hypothesis,

M−1λ(n) ≤ cj ≤Mλ(n), j = 1, 2, . . . , m,

and so
1

M2λ(n)

∥∥∥ m∑
j=1

fj

∥∥∥ ≤ ∥∥∥ m∑
j=1

c−1
j fj

∥∥∥ ≤ M2

λ(n)

∥∥∥ m∑
j=1

fj

∥∥∥.
Now, again by Lemma 9.1.3,

M−1λ(m) ≤
∥∥∥ m∑

j=1

c−1
j fj

∥∥∥ ≤Mλ(m).
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Hence,
λ(mn)
M3λ(n)

≤ λ(m) ≤ M3λ(mn)
λ(n)

.

��
Before continuing we need the following lemma, which is very useful in

many different contexts:

Lemma 9.1.6.

(i) Suppose that (sn)∞n=1 is a sequence of real numbers such that

sm+n ≤ sm + sn, m, n ∈ N.

Then limn→∞ sn

n exists (possibly equal to −∞) and

lim
n→∞

sn

n
= inf

n

sn

n
.

(ii) Suppose that (sn)∞n=1 is a sequence of real numbers such that

|sm+n − sm − sn| ≤ 1

for all m,n ∈ N. Then there is a constant c so that

|sn − cn| ≤ 1, n = 1, 2, . . . .

Proof. (i) Fix n ∈ N. Then, each m ∈ N can be written as m = ln + r for
some 0 ≤ l and 0 ≤ r < n. The hypothesis implies that

sln ≤ lsn, sln+r ≤ lsn + sr.

Thus
sm

m
=

sln+r

ln + r
≤ l

ln + r
sn +

sr

ln + r
≤ sn

n
+

max
0≤r<n

sr

m

and so
lim sup
m→∞

sm

m
≤ sn

n
, n ∈ N. (9.3)

Hence,
lim sup
m→∞

sm

m
≤ inf

n

sn

n
.

(ii) Let tn = sn + 1 and un = sn − 1. Then (tn)∞n=1 and (−un)∞n=1 both
obey the conditions of (i). Hence limn→∞ tn/n = limn→∞ un/n both exist
and are finite; let c be their common value. By (i) we have

un

n
≤ c ≤ tn

n
, n = 1, 2, . . .

and the conclusion follows.
��
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Lemma 9.1.7. Let (en)∞n=1 be a normalized, perfectly homogeneous basis of
a Banach space X. Then, either (en)∞n=1 is equivalent to the canonical basis
of c0 or there exist a constant C and 1 ≤ p <∞ such that

C−1|A| 1p ≤
∥∥∥∑

k∈A

ek

∥∥∥ ≤ C|A| 1p ,

for any finite subset A of N.

Proof. If we use equation (9.2) with m = 2k and n = 2j we obtain

1
M3

λ(2k)λ(2j) ≤ λ(2j+k) ≤M3λ(2k)λ(2j). (9.4)

For k = 0, 1, 2, . . . let h(k) = log2 λ(2k). From (9.4) we get

|h(j) + h(k)− h(j + k)| ≤ 3 log2 M.

By (ii) of Lemma 9.1.6 there is a constant c so that

|h(j)− cj| ≤ 3 log2 M, j = 1, 2, . . . .

By equation (9.1), K−1 ≤ λ(2k) ≤ 2k for each k = 0, 1, 2, . . . , which implies
log2 K−1 ≤ h(k) ≤ k, and so 0 ≤ c ≤ 1.

If c = 0 we would have λ(2j) ≤ M3 for all j ∈ N hence (λ(n))∞n=1 would
be bounded and so (en)∞n=1 would be equivalent to the canonical basis of c0

by Lemma 9.1.4.
Otherwise, if 0 < c ≤ 1, there is p ∈ [1,∞) such that c = 1

p . Thus we can
rewrite equation (9.4) in the form

1
M3

2
j
p ≤ λ(2j) ≤M32

j
p , j ∈ N. (9.5)

Since for any n with 2j−1 ≤ n ≤ 2j we have

M−1λ(2j−1) ≤ λ(n) ≤Mλ(2j)

we conclude that
M−4n

1
p ≤ λ(n) ≤M4n

1
p .

Finally, if A is any finite subset of N we have

M−1λ(|A|) ≤
∥∥∥∑

j∈A

ej

∥∥∥ ≤Mλ(|A|)

and so the lemma follows with C = M5.
��

We now come to Zippin’s theorem [223].



226 9 Perfectly Homogeneous Bases and Their Applications

Theorem 9.1.8 (Zippin). Let X be a Banach space with normalized ba-
sis (en)∞n=1. Suppose that (en)∞n=1 is perfectly homogeneous. Then (en)∞n=1 is
equivalent either to the canonical basis of c0 or the canonical basis of �p for
some 1 ≤ p <∞.

Proof. If the sequence (λ(n))∞n=1 is bounded above then (en)∞n=1 is equivalent
to the standard unit vector basis of c0. If (λ(n))∞n=1 is unbounded we can use
the preceding lemma to deduce the existence of 1 ≤ p <∞ so that

C−1|A| 1p ≤
∥∥∥∑

k∈A

ek

∥∥∥ ≤ C|A| 1p ,

for any finite subset A of N.
Suppose (ai)n

i=1 is any finite sequence of scalars such that
∑n

i=1 ap
i = 1.

We will suppose that (ai)n
i=1 are such that |ai|p ∈ Q for all i = 1, . . . , n.

Hence each ap
i can be written in the form ap

i = mi/m, where mi ∈ N, m is
the common denominator of the ai’s, and

∑n
i=1 mi = m.

Let E1 be the interval of natural numbers [1,m1] and for i = 2, . . . , n, let
Ei = [m1 + · · ·+ mi−1 + 1,m1 + · · ·+ mi]. E1, . . . , En are disjoint intervals of
N such that |Ei| = mi for each i = 1, . . . , n. Consider the normalized constant
coefficient block basic sequence defined for every i = 1, . . . , n as

ui = c−1
i

∑
k∈Ei

ek,

where ci = ‖
∑

k∈Ei
ek‖. Since (en)∞n=1 is perfectly homogeneous, Lemma 9.1.3

yields
M−1λ(mi) ≤ ci ≤Mλ(mi)

for all 1 ≤ i ≤ n, and so by Lemma 9.1.7,

C−1M−1m
1
p

i ≤ ci ≤ CMm
1
p

i .

Therefore,

1

CM2m
1
p

∥∥∥ n∑
i=1

∑
j∈Ei

ej

∥∥∥ ≤ ∥∥∥ n∑
i=1

aiui

∥∥∥ ≤ CM2

m
1
p

∥∥∥ n∑
i=1

∑
j∈Ei

ej

∥∥∥.
This reduces to

λ(m)

CM2m
1
p

≤
∥∥∥ n∑

i=1

aiui

∥∥∥ ≤ CM2λ(m)

m
1
p

,

hence
1

C2M2
≤
∥∥∥ n∑

i=1

aiui

∥∥∥ ≤ C2M2.

Using perfect homogeneity again, we have
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1
C2M3

≤
∥∥∥ n∑

i=1

aiei

∥∥∥ ≤ C2M3. (9.6)

To finish the proof we note that a simple density argument shows that
equation (9.6) holds whenever

∑n
i=1 |ai|p = 1 (i.e., without the assumption

that |ai|p is rational).
��

9.2 Symmetric bases

We next study a special class of bases which include the canonical bases of
the spaces �p and c0.

Definition 9.2.1. An unconditional basis (en)∞n=1 of a Banach space X is
symmetric if (en)∞n=1 is equivalent to (eπ(n))∞n=1 for any permutation π of N.

A symmetric basis of a Banach space has the property of being equiva-
lent to all its (infinite) subsequences, as the next lemma states. The converse
need not be true. In fact, the summing basis of c0 is equivalent to all its
subsequences and is not even unconditional.

Lemma 9.2.2. Suppose (en)∞n=1 is a symmetric basis of a Banach space X.
Then there exists a constant D such that

D−1
∥∥∥ N∑

i=1

aieji

∥∥∥ ≤ ∥∥∥ N∑
i=1

aieki

∥∥∥ ≤ D
∥∥∥ N∑

i=1

aieji

∥∥∥
for any choice of scalars (ai)N

i=1, any N ∈ N, and any two families of distinct
natural numbers {j1, . . . , jN} and {k1, . . . , kN}.

Proof. It is enough to prove the lemma for the basic sequence (en)n≥n0 for
some n0. If it is false, then for every n0 we can build a strictly increasing se-
quence of natural numbers (pn)∞n=0 with p0 = 0, natural numbers mn ≤ pn −
pn−1, scalars (an,i)

∞,mn

n=1,i=1, and families {jn,1, . . . , jn,mn
}, {kn,1, . . . , kn,mn

}
such that for all n = 1, 2, . . . we have

pn−1 + 1 ≤ jn,i, kn,i ≤ pn, 1 ≤ i ≤ mn,∥∥∥ mn∑
i=1

an,iejn,i

∥∥∥ < 2−n,

and ∥∥∥ mn∑
i=1

an,iekn,i

∥∥∥ > 2n.

Now one can make a permutation π of N so that π[pn−1+1, pn] = [pn−1+1, pn]
and π(jn,i) = kn,i and this will contradict the equivalence of (en)∞n=1 with
(eπ(n))∞n=1.
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��

Definition 9.2.3. If (en)∞n=1 is a symmetric basis of a Banach space X then
the best constant K such that for all x =

∑∞
n=1 anen ∈ X the inequality

∥∥∥ ∞∑
n=1

εnaneπ(n)

∥∥∥ ≤ K
∥∥∥ ∞∑

n=1

anen

∥∥∥
holds for all choices of signs (εn) and all permutations π, is called the symmet-
ric constant of (en)∞n=1. In this case we also say that (en)∞n=1 is K-symmetric.

For every x =
∑∞

n=1 anen ∈ X, put

|||x||| = sup
∥∥∥ ∞∑

n=1

tnaneπ(n)

∥∥∥, (9.7)

the supremum being taken over all choices of scalars (εn) of signs and all
permutations of the natural numbers. Equation (9.7) defines a new norm on
X equivalent to ‖ · ‖ since ‖x‖ ≤ |||x||| ≤ K ‖x‖ for all x ∈ X. With respect
to this norm, (en)∞n=1 is a 1-symmetric basis of X.

Definition 9.2.4. A basis (en) of a Banach space X is subsymmetric provided
it is unconditional and for every increasing sequence of integers {ni}∞i=1, the
subbasis (eni)

∞
i=1 is equivalent to (en). The subsymmetric constant of (en) is

the smallest constant C ≥ 1 such that given any scalars (ai) ∈ c00, we have

∥∥ ∞∑
i=1

εiaieni

∥∥ ≤ C
∥∥ ∞∑

i=1

aiei

∥∥
for all sequences of signs (εi) and all increasing sequences of integers {ni}∞i=1.
In this case we say that (en) is C-subsymmetric.

Remark 9.2.5. The concepts of symmetric and subsymmetric basis do not
coincide, as shown by the following example due to Garling [63]. Let X be the
space of all sequences of scalars ξ = (ξn)∞n=1 for which

‖ξ‖ = sup
∞∑

k=1

|ξnk
|√

k
<∞,

the supremum being taken over all increasing sequences of integers (nk)∞k=1.
We leave for the reader the task to check that X, endowed with the norm
defined above, is a Banach space whose unit vectors (en)∞n=1 form a subsym-
metric basis which is not symmetric.

Theorem 9.2.6. Let X be a Banach space with normalized, 1-symmetric ba-
sis (en)∞n=1. Suppose that (un)∞n=1 is a normalized constant coefficient block
basic sequence. Then the subspace [un] is complemented in X by a norm-one
projection.



9.3 Uniqueness of unconditional basis 229

Proof. For each k = 1, 2, . . . , let uk = ck

∑
j∈Ak

ek, where (Ak)∞k=1 is a se-
quence of mutually disjoint subsets of N (notice that, since (en)∞n=1 is 1-
symmetric, the blocks of the basis need not be in increasing order). For every
fixed n ∈ N, let Πn denote the set of all permutations π of N such that for
each 1 ≤ k ≤ n, π restricted to Ak acts as a cyclic permutation of the elements
of Ak (in particular π(Ak) = Ak)), and π(j) = j for all j �∈ ∪n

k=1Ak. Every
π ∈ Πn has associated an operator on X defined for x =

∑∞
j=1 ajej as

Tn,π(
∞∑

j=1

ajej) =
∞∑

j=1

ajeπ(j).

Notice that, due to the 1-symmetry of (en)∞n=1, we have ‖Tn,π(x)‖ = ‖x‖.
Let us define an operator on X by averaging over all possible choices of

permutations π ∈ Πn: given x =
∑∞

j=1 ajej ,

Tn(x) =
1
|Πn|

∑
π∈Πn

Tn,π(x) =
n∑

k=1

( 1
|Ak|

∑
j∈Ak

aj

) ∑
j∈Ak

ej +
∑

j �∈∪n
k=1Ak

ajej .

Then,

‖Tn(x)‖ =
∥∥∥ 1
|Πn|

∑
π∈Πn

Tn,π(x)
∥∥∥ ≤ 1

|Πn|
∑

π∈Πn

‖Tn,π(x)‖ = ‖x‖ .

Therefore, for each n ∈ N the operator

Pn(x) =
n∑

k=1

( 1
|Ak|

∑
j∈Ak

aj

) ∑
j∈Ak

ej , x ∈ X

is a norm-one projection onto [uk]nk=1. Now it readily follows that

P (x) =
∞∑

k=1

( 1
|Ak|

∑
j∈Ak

aj

) ∑
j∈Ak

ej

︸ ︷︷ ︸
c−1

k uk

is a well defined projection from X onto [uk] with ‖P‖ = 1.
��

9.3 Uniqueness of unconditional basis

Zippin’s theorem (Theorem 9.1.8) has a number of very elegant applications.
We give a couple in this section. The first relates to the theorem of Linden-
strauss and Pe�lczyński proved in Section 8.3. There we saw that the normal-
ized unconditional bases of the three spaces c0, �1, and �2 are unique (up to
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equivalence); we also saw that, in contrast, the spaces �p for p �= 1, 2 have at
least two nonequivalent normalized unconditional bases.

In 1969, Lindenstrauss and Zippin [140] completed the story by showing
that the list ends with these three spaces!

Theorem 9.3.1 (Lindenstrauss, Zippin). A Banach space X has a unique
unconditional basis (up to equivalence) if and only if X is isomorphic to one
of the following three spaces: c0, �1, or �2.

Proof. Suppose that X has a unique normalized unconditional basis, (en)∞n=1.
Then, in particular, the basis (eπ(n))∞n=1 is equivalent to (en)∞n=1 for each
permutation π of N. That is, (en)∞n=1 is a symmetric basis of X. Without loss
of generality we can assume that its symmetric constant is 1.

Let (un)∞n=1 be a normalized constant coefficient block basic sequence with
respect to (en)∞n=1 such that there are infinitely many blocks of size k for all
k ∈ N. That is, ∣∣{un : |supp un| = k

}∣∣ =∞
for each k ∈ N. Let us call Y the closed linear span of the sequence (un)∞n=1.

The subspace Y is complemented in X by Theorem 9.2.6.
On the other hand, the subsequence of (un)∞n=1 consisting of the blocks

whose supports have size 1 spans a subspace isometrically isomorphic to X,
which is complemented in Y because of the unconditionality of (un)∞n=1.

By the symmetry of the basis (en)∞n=1, X is isomorphic to X2.
Analogously, if we split the natural numbers in two subsets S1, S2 such

that ∣∣{n ∈ S1 ; |suppun| = k
}∣∣ = ∣∣{n ∈ S2 ; |suppun| = k

}∣∣ =∞
for all k ∈ N, we see that

[un]∞n=1 ≈ [un]n∈S1 ⊕ [un]n∈S2 ≈ [un]∞n=1 ⊕ [un]∞n=1.

Hence Y ≈ Y 2.
Using Pe�lczyński’s decomposition technique (Theorem 2.2.3) we deduce

that X ≈ Y .
Since (un)∞n=1 is an unconditional basis of Y , by the hypothesis it must

be equivalent to (en)∞n=1. In particular (un)∞n=1 is symmetric and, therefore,
equivalent to all of its subsequences. Hence (en)∞n=1 is perfectly homogeneous.
Theorem 9.1.8 implies that (en)∞n=1 is equivalent either to the canonical ba-
sis of c0 or �p for some 1 ≤ p < ∞. But we saw in the previous chapter
(Proposition 8.3.7) that if p ∈ (1,∞) \ {2} then �p has an unconditional basis
which is not equivalent to the standard unit vector basis. The only remaining
possibilities for the space X are c0, �1, or �2.

��
The Lindenstrauss-Zippin theorem thus completes the classification of

those Banach spaces with a unique unconditional basis. The elegance of this
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result encouraged further work in this direction. One obvious modification is
to require uniqueness of unconditional basis up to a permutation, (UTAP).
In many ways this is a more natural concept for unconditional bases, whose
order is irrelevant.

Definition 9.3.2. Two unconditional bases (en)∞n=1 and (fn)∞n=1 of a Banach
space X are said to be permutatively equivalent if there is a permutation
π of N so that (eπ(n))∞n=1 and (fn)∞n=1 are equivalent. Then we say that a
Banach space X has a (UTAP) unconditional basis (en)∞n=1 if every normalized
unconditional basis in X is permutatively equivalent to (en)∞n=1.

Classifying spaces with (UTAP) bases is more difficult because the initial
step (reduction to symmetric bases) is no longer available.

The first step toward this classification was taken in 1976 by Edelstein
and Wojtaszczyk [52], who showed that the finite direct sums of the spaces
c0, �1, and �2 have (UTAP) bases (thus adding four new spaces to the already
known ones). After their work, Bourgain, Casazza, Lindenstrauss, and Tzafriri
embarked on a comprehensive study completed in 1985 [15]. They added the
spaces c0(�1), �1(c0) and �1(�2) to the list, but showed, remarkably, that �2(�1)
fails to have a (UTAP) basis! However, all hopes of a really satisfactory clas-
sification of Banach spaces having a (UTAP) basis were dashed when they
also found a nonclassical Banach space which also has (UTAP). This space
was a modification of Tsirelson space, to be constructed in the next chapter,
which contains no copy of any space isomorphic to an �p (1 ≤ p < ∞) or
c0. The subject was revisited in [26] and [27], and several other “pathologi-
cal” spaces with (UTAP) bases have been discovered, including the original
Tsirelson space. For an account of this topic see [218].

For the classification of symmetric basic sequences in Lp spaces we refer
to [18], [93], and [194].

9.4 Complementation of block basic sequences

We now turn our attention to the study of complementation of subspaces of a
Banach space. Starting with the example of c0 in �∞ we saw that a subspace
of a Banach space need not be complemented. Using Zippin’s theorem we will
now study the complementation in a Banach space of the span of block basic
sequences of unconditional bases.

Lemma 9.4.1. Let (en)∞n=1 be an unconditional basis of a Banach space X.
Suppose that (uk)∞k=1 is a normalized block basic sequence of (en)∞n=1 such that
the subspace [uk] is complemented in X. Then there is a projection Q from X
onto [uk] of the form

Q(x) =
∞∑

k=1

u∗
k(x)uk,

where supp u∗
k ⊆ supp uk for all k ∈ N.
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Proof. Suppose
uk =

∑
j∈Ak

ajej ,

where Ak = supp uk, and that P is a bounded projection onto [uk]. For each
k let Qk be the projection onto [ej ]j∈Ak

given by

Qkx =
∑

j∈Ak

e∗j (x)ej .

We will show that the formula

Qx =
∞∑

k=1

QkPQkx, x ∈ X

defines a bounded projection onto [uk] (and it is clearly of the prescribed
form).

Suppose x =
∑m

j=1 e∗j (x)ej for some m. Then for a suitable N so that
supp x ⊂ A1 ∪ · · · ∪AN we have

Qx =
N∑

k=1

QkPQkx

= Average
εk=±1

N∑
j=1

N∑
k=1

εjεkQjPQkx

= Average
εk=±1

⎛
⎝ N∑

j=1

εjQj

⎞
⎠P

(
N∑

k=1

εkQk

)
x.

By the unconditionality of the original basis,

‖Qx‖ ≤ K2‖P‖‖x‖,

where K is the unconditional basis constant. It is now easy to check that Q
extends to a bounded operator and has the required properties.

��
The following characterization of the canonical bases of the �p-spaces and

c0 is due to Lindenstrauss and Tzafriri [135].

Theorem 9.4.2. Let (en)∞n=1 be an unconditional basis of a Banach space
X. Suppose that for every block basic sequence (un)∞n=1 of a permutation of
(en)∞n=1, the subspace [un] is complemented in X. Then (en)∞n=1 is equivalent
to the canonical basis of c0 or �p for some 1 ≤ p <∞.

Proof. Without loss of generality we may assume that the constant of uncon-
ditionality of the basis (en)∞n=1 is 1. Our first goal is to show that whenever
we have
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un =
∑

k∈An

αkek, vn =
∑

k∈Bn

βkek, n ∈ N

any two normalized block basic sequences of (en)∞n=1 such that An ∩Bm = ∅
for all n, m, then (un)∞n=1 ∼ (vn)∞n=1.

First we will prove that if (an)∞n=1 is a sequence of scalars for which∑∞
n=1 anun converges, then the series

∑∞
n=1 snanvn converges for every se-

quence of scalars (sn)∞n=1 tending to 0. For each n ∈ N consider

wn = un + snvn, n ∈ N.

(wn)∞n=1 is a seminormalized block basic sequence with respect to a permuta-
tion of (en)∞n=1. To be precise, supp wn = An∪Bn for each n and 1 ≤ ‖wn‖ ≤ 2
(for n big enough so that |sn| ≤ 1). By the hypothesis, the subspace [wn] is
complemented in X. Lemma 9.4.1 yields a projection Q : X → X of the form

Q(x) =
∞∑

n=1

w∗
n(x)wn,

where the elements of the sequence (w∗
n)∞n=1 ⊂ X∗ satisfy supp w∗

n ⊆ An∪Bn.
Moreover, it is easy to see that ‖w∗

n‖ ≤ ‖Q‖ for all n.
The series

∞∑
n=1

anQ(un) =
∞∑

n=1

anw∗
n(un)wn =

∞∑
n=1

anw∗
n(un)(un + snvn)

converges because
∑∞

n=1 anun does. Therefore, by unconditionality, it follows
that

∑∞
n=1 anw∗

n(un)snvn converges as well. From here we deduce the conver-
gence of the series

∑∞
n=1 ansnvn by noticing that w∗

n(un)→ 1 since

w∗
n(un) = 1− snw∗

n(vn)

and
0 ≤ |snw∗

n(vn)| ≤ |sn| ‖w∗
n‖ ≤ ‖Q‖ |sn| → 0.

Now, if (an)∞n=1 is a sequence of scalars for which
∑∞

n=1 anun converges, we
can find a sequence of scalars (tn)∞n=1 tending to ∞ such that

∑∞
n=1 tnanun

converges. Since (1/tn)∞n=1 tends to 0, the previous argument applies so∑∞
n=1 anvn converges.
Reversing the roles of (un) and (vn) we get the equivalence of these two

block basic sequences.
This argument applies not only to block basic sequences of (en)∞n=1 but to

block basic sequences of a permutation of (en)∞n=1. Thus (un)∞n=1 is equivalent
to every permutation of (vn)∞n=1. This implies that (e2n)∞n=1 and (e2n−1)∞n=1

are both perfectly homogeneous and equivalent to each other. We conclude
the proof by applying Zippin’s theorem (Theorem 9.1.8).

��



234 9 Perfectly Homogeneous Bases and Their Applications

Remark 9.4.3. In the above theorem, it is necessary to allow complemen-
tation of the span of block basic sequences with respect to a permutation of
(en)∞n=1. One may show that the canonical basis of �p(�n

r ) where r �= p has
the property that every block basic sequence spans a complemented subspace,
but obviously it is not equivalent to the canonical basis of �p or c0 (see the
Problems).

In [135], Lindenstrauss and Tzafriri solved the Complemented Subspace
Problem discussed in Chapter 2. We cannot quite prove this yet in full gener-
ality as it requires more machinery, but in this section we will see the proof
in the case of spaces with unconditional basis.

Theorem 9.4.4. Let X be a Banach space with unconditional basis. If every
closed subspace of X is complemented in X then X is isomorphic to �2.

Proof. Let (xn)∞n=1 be an unconditional basis of such an X. By Theorem 9.4.2,
(xn) is equivalent either to the canonical basis of c0 or to the canonical basis
of �p for some 1 ≤ p <∞.

Suppose that (xn) is equivalent to the canonical basis of �p for some 1 <
p < ∞, p �= 2. We know that, in this case, �p is isomorphic to �p(�n

2 ) and
that the canonical basis of �p(�n

2 ) is not equivalent to the standard basis of �p.
Therefore X contains an unconditional basis (un) equivalent to the canonical
basis of �p(�n

2 ). Repeating the argument at the beginning of the proof with
(un) would lead to a contradiction.

Thus the possibilities for X are reduced to three spaces: X is either c0,
�1, or �2. To complete the proof we need only show that c0 and �1 have
uncomplemented subspaces. In fact, in the case of �1 we have already seen
examples (Corollary 2.3.3).

Let us consider first the case of c0. For each n, �n
1 embeds isometrically in

�2
n

∞ . This follows from the fact that the norm of each element (ai)n
i=1 in �n

1

can be written, using duality, as

‖(ai)n
i=1‖ = max

∣∣∣ n∑
k=1

εkak

∣∣∣,
the maximum being taken over the 2n possible choices for the sequence of
signs (εk)n

k=1. Thus the embedding of �n
1 into �2

n

∞ is given by the map

(ai)n
i=1 �→

( n∑
i=1

εiai

)
(εi)n

i=1∈{−1,1}n
∈ �2

n

∞ .

Hence, c0(�n
1 ) embeds in c0(�2

n

∞ ), which is isometrically isomorphic to c0. As
before, the subspace c0(�n

1 ) cannot be complemented in c0 because the canon-
ical basis of c0(�1) is not equivalent to the standard c0-basis.

��



9.5 The existence of conditional bases 235

Remark 9.4.5. In this proof we could have also shown that �1 has an uncom-
plemented subspace using an argument similar to that for c0: For each n, the
space L1([0, 1],Σn) is isometric to �2

n

1 and, by Khintchine’s inequality, it con-
tains an isomorphic copy of �n

2 (namely, the space spanned by {r1, r2, . . . , rn})
with isomorphism constants uniform on n. Then �1(�n

2 ) embeds in �1(�2
n

1 ),
which is isometrically isomorphic to �1. If the subspace �1(�n

2 ) were comple-
mented in �1 then it would be isomorphic to �1 and so, as a consequence, �1
would have an unconditional basis equivalent to the canonical basis of �1(�n

2 ),
which is not true.

9.5 The existence of conditional bases

In this section we prove an earlier result of Pe�lczyński and Singer from 1964
[177] to the effect that every Banach space with a basis has a basis which is
not unconditional. The original argument was more involved and does not use
Zippin’s theorem (Theorem 9.1.8) which it predates.

Definition 9.5.1. A normalized basis (xn)∞n=1 of a Banach space X is called
conditional if it is not unconditional.

In Chapter 3 we saw that c0 has, at least, one conditional basis, the sum-
ming basis. On the other hand, the vectors e1, e1 − e2, e2 − e3, e3 − e4, . . . ,
form a conditional basis of �1, where, as usual, (en)∞n=1 denotes the standard
�1-basis basis of �1. As for �2 the existence of conditional basis requires a bit
of elaboration. This was originally proved by Babenko [7] as a consequence
of harmonic analysis methods. Our proof is based on a later argument by
McCarthy and Schwartz [148]. However, the McCarthy-Schwartz argument is
in a certain sense a very close relative of the Babenko approach.

Theorem 9.5.2. �2 has a conditional basis.

Proof. Let (en)∞n=1 be the canonical orthonormal basis of �2. We pick a se-
quence of nonnegative real numbers (an)∞n=1 such that

∞∑
n=1

an =∞,

∞∑
n=1

na2
n <∞.

One may suppose that an ∼ 1/(n log n) for n large to get such a sequence.
We now define a sequence (fn)∞n=1 by

f2n−1 = e2n−1

and

f2n = e2n +
n∑

j=1

aje2n+1−2j .
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We will investigate conditions under which (fn)∞n=1 is (a) a basis and (b)
an unconditional basis.

Let us define an infinite matrix B = (bij) by

bij =

{
ak j − i = 2k − 1
0 otherwise.

Thus

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 a1 0 a2 0 a3 0 . . .
0 0 0 0 0 0 0 . . .
0 0 0 a1 0 a2 0 . . .
0 0 0 0 0 0 0 . . .
· · · · · · · . . .
· · · · · · · . . .

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Now B as a matrix acts on c00 (when we regard each entry as an infinite
column vector). Furthermore fj = (I + B)ej .

Notice that B2 can be computed (since every column has most finitely
many entries) and in fact B2 = 0. Consider the partial sum operators with
respect to the basis Pn say. In matrix terms we have

Pn =
(

In 0
0 0

)

as a partitioned matrix. We also have BPnB = 0.
The matrix I + B is invertible (as a linear endomorphism of c00) with

inverse I −B. It follows that (fj)∞j=1 is always a Hamel basis of the countable
dimensional space c00. The partial sum operators with respect to this Hamel
basis are given by (I + B)Pn(I − B) = I + BPn − PnB. For (fn)∞n=1 to
be a basis of �2 simply requires that the operators BPn − PnB extend to a
uniformly bounded sequence of operators on �2. Now BPn − PnB is just the
restriction of the matrix B to the set of (i, j) so that i ≤ n < j (i.e., to the
top right-hand corner). We claim that this operator is actually the restriction
of a Hilbert-Schmidt operator since

n∑
i=1

∞∑
j=n+1

|bij |2 ≤
∞∑

k=1

ka2
k.

It follows that we have a uniform bound

‖BPn − PnB‖ ≤ (
∞∑

k=1

ka2
k)1/2.

The uniform bound establishes that (fn)∞n=1 is a basis of �2.
Assume that (fn)∞n=1 is unconditional. Then, since 1 ≤ ‖fn‖ ≤M for some

M , (fn)∞n=1 must be equivalent to the canonical �2-basis, and the operator
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I + B must define a bounded operator on �2; thus so does B. On the other
hand, summing over the top left-hand corner square, we obtain

〈
B(

2n∑
j=1

ej),
2n∑

j=1

ej

〉
=

2n∑
i=1

2n∑
j=1

bij =
n∑

k=1

(n− k + 1)ak.

Thus, if B defines a bounded operator,

n∑
k=1

(n− k + 1)ak ≤ 2n‖B‖,

i.e.,
n∑

k=1

(1− k − 1
n

)ak ≤ 2‖B‖.

Letting n→∞ we would conclude that
∑∞

k=1 ak <∞, which would contradict
our initial choice.

��
Babenko’s argument is based on considering weighted L2-spaces. We

consider complex Hilbert spaces. Let w be a density function on T and
consider the space L2(w(θ)dθ). Then it may be shown that the sequence
{1, eiθ, e−iθ, e2iθ, . . . } is a basis of L2(w dθ) if and only if the Riesz projection
f →

∑
n≥0 f̂(n)einθ (or the Hilbert transform) acts boundedly on L2(w dθ).

This happens if and only if w is an A2-weight (e.g., see [73]). On the other
hand unconditionality implies

‖f‖L2(w dθ) ≈
(∑

n∈Z

|f̂(n)|2
)1/2

≈ ‖f‖L2(dθ)

so that w,w−1 ∈ L∞. So, to give an example one needs an A2-weight w with w
or w−1 unbounded. Babenko used the weight |θ|α where 0 < α < 1. However,
the argument given in Theorem 9.5.2 can also be rephrased as a proof of the
existence of unbounded A2-weights.

We are headed to show the result of Pe�lczyński and Singer [177] that every
Banach space with a basis has a conditional basis. To this end, first we need
a few lemmas. Our next lemma gives us a criterion for the construction of a
new basis of a Banach space with a given basis.

Lemma 9.5.3. Suppose that (en)∞n=1 is a basis of a Banach space X and that
(rn)∞n=0 is an increasing sequence of integers with r0 = 0. For each n let En be
the closed subspace spanned by the basis elements {ern−1+1, . . . , ern}. Further
assume that (fn)∞n=1 is a sequence in X such that:

(i) (frn−1+1, . . . , frn) is a basis of En for all n;
(ii) supn Kn = M <∞, where Kn is basis constant of (frn−1+1, . . . , frn

)
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Then (fn)∞n=1 is a basis of X.

Proof. Let K be the basis constant of (en)∞n=1 and let (SN ) be the sequence
of natural projections associated with this basis. Since [fn] = [en] = X, it
suffices to show that there is a constant C > 0 such that given m and p in N

with m ≤ p, the inequality

∥∥∥ m∑
k=1

αkfk

∥∥∥ ≤ C
∥∥∥ p∑

k=1

αkfk

∥∥∥
holds for any scalars (αk)p

k=1.
Given any two integers m, p with m ≤ p, there are integers n, q such that

rn−1 < m ≤ rn and rq−1 < p ≤ rq. We have two possibilities: either n < q or
n = q. Assume first that n < q. Then,

∥∥∥ m∑
k=1

αkfk

∥∥∥ ≤ ∥∥∥ rn−1∑
k=1

αkfk

∥∥∥+
∥∥∥ m∑

k=rn−1+1

αkfk

∥∥∥
≤
∥∥∥Srn−1

( p∑
k=1

αkfk

)∥∥∥+ M
∥∥∥ rn∑

k=rn−1+1

αkfk

∥∥∥
≤ K

∥∥∥ p∑
k=1

αkfk

∥∥∥+ M
∥∥∥Srn

( p∑
k=1

αkfk

)
− Srn−1

( p∑
k=1

αkfk

)∥∥∥
≤ (K + 2KM)

∥∥∥ p∑
k=1

αkfk

∥∥∥.
If n = q, analogously we have

∥∥∥ m∑
k=1

αkfk

∥∥∥ ≤ ∥∥∥ rn−1∑
k=1

αkfk

∥∥∥+
∥∥∥ m∑

k=rn−1+1

αkfk

∥∥∥
≤
∥∥∥Srn−1

( p∑
k=1

αkfk

)∥∥∥+ M
∥∥∥ p∑

k=rn−1+1

αkfk

∥∥∥
≤ K

∥∥∥ p∑
k=1

αkfk

∥∥∥+ M
∥∥∥Srn

( p∑
k=1

αkfk

)
− Srn−1

( p∑
k=1

αkfk

)∥∥∥
≤ (K + 2KM)

∥∥∥ p∑
k=1

αkfk

∥∥∥.
��

The following two lemmas are due to Zippin [224].

Lemma 9.5.4. Let E, F be two closed subspaces of codimension 1 of a Banach
space X. Then there exists an isomorphism T : E → F so that ‖T‖‖T−1‖ ≤
25.
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Proof. Unless E = F , E ∩ F is a subspace of X of codimension 2. Let us
pick x0 ∈ E \ (E ∩ F ) such that 1 = ‖x0‖d(x0, E ∩ F ) ≤ 2. Analogously, pick
x1 ∈ F such that 1 = ‖x1‖d(x1, E ∩ F ) ≤ 2.

Each element of E can be written in a unique way in the form λx0 + y for
some scalar λ and some y ∈ E ∩ F . Analogously, the elements of F admit a
unique representation in the fashion λx1 + y, where λ ∈ R and y ∈ E ∩ F .
Define T : E → F as T (λx0 + y) = λx1 + y. On the one hand we have

‖λx1 + y‖ ≤ |λ| ‖x1‖+ ‖y‖ ≤ 2|λ|+ ‖y‖ ≤ 2 max
{
|λ|, ‖y‖

}
. (9.8)

On the other,

‖λx0 + y‖ = |λ|
∥∥∥x0 +

y

|λ|

∥∥∥ = |λ|
∥∥∥x0 −

(
− y

|λ|
)∥∥∥ ≥ |λ|d(x0, E ∩ F ) = |λ|

and
‖y + λx0‖ ≥ ‖y‖ − 2|λ|.

Hence,

‖y + λx0‖ ≥ max
{
|λ|, ‖y‖ − 2|λ|

}
≥ max

{
|λ|, 1

3
‖y‖

}
. (9.9)

Combining (9.8) and (9.9) we obtain

‖T (λx0 + y‖ ≤ 5 ‖λx0 + y‖ ,

so ‖T‖ ≤ 5. We would follow exactly the same steps to find a bound for
‖T−1‖, which would yield ‖T‖‖T−1‖ ≤ 25.

��

Lemma 9.5.5. Suppose that (en)∞n=1 is a basis of a Banach space X and that
(un)∞n=1 is a block basic sequence of (en)∞n=1. Then there exists a basis (fn)∞n=1

of X such that (un)∞n=1 is a subbasis of (fn)∞n=1.

Proof. For each n ∈ N suppose that un is normalized and supported on the
basis elements {ern−1+1, . . . , ern

}, where (rn)∞n=1 is an increasing sequence
of positive integers with r1 = 1. Let En = [ern−1+1, . . . , ern

]. By the Hahn-
Banach theorem there exists u∗

n in the dual space of the finite-dimensional
normed space En such that u∗

n(un) = ‖un‖ = 1. Let Fn = ker u∗
n. Fn is a

subspace of codimension 1 of En. By Lemma 9.5.4 there is an isomorphism

Tn : [ern−1+1, . . . , ern−1] −→ Fn

with ‖Tn‖‖Tn‖−1 ≤ 25. Pick fi = Tn(ei) for i = rn−1 + 1, . . . , rn − 1. Then
{frn−1+1, . . . , frn−1} is a basis of Fn with basis constant bounded by 25K, K
being the basis constant of (en)∞n=1. Thus, if we take frn = un for each n, by
Lemma 9.5.3 the sequence (fn)∞n=1 is a basis of X that satisfies the lemma.

��
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Theorem 9.5.6 (Pe�lczyński-Singer). Let X be any Banach space with a
basis. Then X has a conditional basis.

Proof. Assume that every basis of X is unconditional and let (en)∞n=1 be one
of them. Suppose (uk)∞k=1 is a block basic sequence of (en)∞n=1. Then, us-
ing Lemma 9.5.5, X has a basis (fn)∞n=1 of which (uk)∞k=1 is subsequence.
Moreover, (fn)∞n=1 is unconditional by our assumption, hence [uk] is a com-
plemented subspace in X. This argument will also apply to every permuta-
tion of (en)∞n=1. Hence every block basic sequence of every permutation of
(en)∞n=1 spans a complemented subspace. By Theorem 9.4.2, (en)∞n=1 must be
equivalent to the canonical basis of c0 or �p for some 1 ≤ p < ∞. This is a
contradiction because, on the one hand, �p has an unconditional basis which
is not equivalent to the canonical basis of the space if 1 < p < ∞, p �= 2,
as we saw in Proposition 8.3.7, and, on the other hand, c0, �1, and �2 have
conditional bases.

��

9.6 Greedy bases

This section deals with nonlinear approximation in (separable) Banach spaces
with respect to a given basis of the space. This is a recent development which
was spurred by problems in approximation theory related to data compression.
As will be seen the idea is closely related to the theory of symmetric bases.

Let (en)∞n=1be a seminormalized basis of a Banach space X (i.e., 1/c ≤
‖en‖ ≤ c for some c) with biorthogonal functionals (e∗n)∞n=1. For each m =
0, 1, 2, . . . we let Σm denote the collection of all elements of X which can be
expressed as a linear combination of m elements of (en)∞n=1:

Σm =
{

y =
∑
j∈B

αjej : B ⊂ N, |B| = m, αj ∈ R

}
.

Let us notice that, in some cases, it may be possible to write an element from
Σm in more than one way, and that the space Σm is not linear: the sum of
two elements from Σm is generally not in Σm, it is in Σ2m.

For x ∈ X, we define its best m-term approximation error (with respect to
the given basis) as

σm(x) = inf
y∈Σm

‖x− y‖.

The fundamental question here is to study how to construct an algorithm
which for each x ∈ X and each m = 0, 1, 2, . . . provides an element ym ∈ Σm

so that the error of the approximation of x by ym is (uniformly) comparable
with σm(x), i.e.,

‖x− ym‖ ≤ Cσm(x),

where C is an absolute constant.
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The answer to this question in some particular cases is simple. For instance,
if X = H is a Hilbert space and (en)∞n=1is an orthonormal basis, any element
x ∈ H has an expansion in the form

x =
∞∑

n=1

〈x, en〉en

and

‖x‖2 =
∞∑

n=1

|〈x, en〉|2.

One easily realizes that a best approximation sm to x from Σm is obtained
as follows. We order the Fourier coefficients (〈x, ej〉)∞j=1 of x according to the
absolute value of their size and we choose Λm as the set of indices j for which
|〈x, ej〉| is largest. Then

sm =
∑

j∈Λm

〈x, ej〉ej

is a best approximation to x from Σm and

σm(x)2 = ‖x− sm‖2 =
∑

j �∈Λm

|〈x, ej〉|2.

This is an example of a Greedy Algorithm. The most obvious and natural form
to generalize such an algorithm is to consider (Gm)∞m=1, a sequence of maps
from X to X where, for each x, Gm(x) is obtained by taking the largest m
coefficients of x. To be precise, for x ∈ X put

Gm(x) =
∑
j∈B

e∗j (x)ej ,

where the set B ⊂ N is chosen in such a way that |B| = m and |e∗j (x)| ≥ |e∗k(x)|
whenever j ∈ B and k �∈ B.

A few comments about the maps (Gm)∞m=1 are in order. First, it may
happen that for some x and m the set B, hence the element Gm(x), is not
uniquely determined by the previous conditions. In such a case, we pick either
of them. Besides, the maps (Gm)∞m=1 are neither linear (even when the sets B
are uniquely determined) nor continuous.

Definition 9.6.1. A basis (en) is greedy if there is a constant C ≥ 1 such
that for any x ∈ X and m ∈ N we have

‖x− Gm(x)‖ ≤ Cσm(x).

The smallest such constant C will be called the greedy constant of (en).

This means that the Greedy Algorithm (Gm)∞m=1 realizes near best m-term
approximation. Now we will provide a characterization of greedy bases. To
state it we need the following concept.
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Definition 9.6.2. A basis (en) is called democratic if there is a constant D ≥
1 such that for any two finite subsets A, B of N with |A| = |B| we have∥∥∥∑

k∈A

ek

∥∥∥ ≤ D
∥∥∥∑

k∈B

ek

∥∥∥.
Note that a democratic basis is automatically seminormalized.

The following characterization of greedy bases was proved by Konyagin
and Temlyakov in 1999 [116].

Theorem 9.6.3. A basis (en) is greedy if and only if it is unconditional and
democratic.

Proof. Let us assume, first, that (en) is greedy with greedy constant C. For
any finite set S ⊂ N we denote PS the projection

PS(x) =
∑
n∈S

e∗n(x)en.

We will prove the unconditionality of (en) by showing that for each x ∈ X
and any finite set S ⊂ N we have

‖PS(x)‖ ≤ (C + 1)‖x‖. (9.10)

Let us fix a finite set S ⊂ N of cardinality m, x ∈ X and a number α >
supn�∈S |e∗n(x)|. Consider the vector

y = x− PS(x) + α
∑
n∈S

en.

Clearly σm(y) ≤ ‖x‖ and Gm(y) = α
∑

n∈S en. Thus, by our assumption that
(en) is greedy, we get

‖x− PS(x)‖ = ‖y − Gm(y)‖ ≤ Cσm(y) ≤ C‖x‖.

This implies (9.10).
To show that (en) is democratic, let us pick two finite sets P , Q of the same

cardinality m. Take a third subset S such that |S| = m and P ∩S = ∅ = Q∩S.
Fix any ε > 0 and consider

x = (1 + ε)
∑
n∈P

en +
∑
n∈S

en.

We have
σm(x) ≤ (1 + ε)

∥∥∥∑
n∈P

en

∥∥∥
and
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n∈S

en

∥∥∥ = ‖x− Gm(x)‖ ≤ Cσm(x) ≤ C(1 + ε)
∥∥∥∑

n∈P

en

∥∥∥. (9.11)

Analogously we get ∥∥∥∑
n∈Q

en

∥∥∥ ≤ C(1 + ε)
∥∥∥∑

n∈S

en

∥∥∥. (9.12)

Combining (9.11) and (9.12) and taking into account that ε is arbitrarily
small, we obtain ∥∥∥∑

n∈Q

en

∥∥∥ ≤ C2
∥∥∥∑

n∈P

en

∥∥∥.
Now we will prove the converse part of the theorem. Assume that (en) is

K-unconditional and D-democratic. Fix x ∈ X and m = 1, 2, . . . . Given any
ε > 0 we pick

pm =
∑
n∈B

αnen ∈ Σm

such that
‖x− pm‖ ≤ σm(x) + ε.

Clearly, we can write

Gm(x) =
∑
n∈S

e∗n(x)en = PS(x),

for some S ⊂ N with |S| = m. Then,

‖x−Gm(x)‖ = ‖x−PSx+PBx−PBx‖ = ‖x−PBx+PB\Sx−PS\Bx‖. (9.13)

The assumption that (en) is K-unconditional implies that

‖x− PBx− PS\Bx‖ = ‖x− PB∪Sx‖
= ‖PN\(B∪S)(x− pm)‖
≤ K‖x− pm‖
≤ K(σm(x) + ε),

(9.14)

and that
‖PS\Bx‖ ≤ K‖x− pm‖ ≤ K(σm(x) + ε).

From the definition of Gm it is immediate to see that

γ := min
j∈S\B

|e∗j (x)| ≥ max
j∈B\S

|e∗j (x)| := β,

so, from the unconditionality of (en), we obtain

γ
∥∥∥ ∑

j∈S\B

ej

∥∥∥ ≤ K‖PS\Bx‖ (9.15)
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and
‖PB\Sx‖ ≤ Kβ

∥∥∥ ∑
j∈B\S

ej

∥∥∥. (9.16)

Since |B \ S| = |S \ B|, using the D-democracy of the basis and (9.15) and
(9.16) we get

‖PB\Sx‖ ≤ K2D‖PS\Bx‖. (9.17)

Combining (9.13), (9.14), and (9.17), and taking into account that ε was
arbitrarily small, the inequality

‖x− Gm(x)‖ ≤ (K + K3D)σm(x)

holds.
��

There has been quite a bit of recent research on greedy bases in concrete
spaces. It is clear and quite trivial that symmetric bases are greedy, but there
are nonsymmetric greedy bases. An important result due to Temlyakov [213]
is that the normalized Haar system in Lp is a greedy basis when 1 < p <∞.
Note this basis cannot be symmetric, since it is easy to find a subsequence of
the basis equivalent to the canonical �p-basis. A good reference for a survey
of applications is to be found in [214].

Problems

9.1. Suppose (xn)∞n=1 is a basis for a Banach space X. Suppose there is a
constant C ≥ 1 such that whenever p0 = 0 < p1 < . . . and (un)∞n=1 and
(vn)∞n=1 are two normalized block basic sequences of (xn)∞n=1 of the form

un =
pn∑

i=pn−1+1

aixi,

vn =
pn∑

i=pn−1+1

bixi,

then (un)∞n=1 and (vn)∞n=1 are C-equivalent. Show that the closed linear span
of a block basic sequence of (xn)∞n=1 is always complemented.

9.2. Show that every block basic sequence of �p(�n
r ) where 1 ≤ r �= p < ∞

spans a complemented subspace.

9.3. Show that �p for 1 ≤ p <∞ has a unique (up to equivalence) symmetric
basis.
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9.4. Lorentz sequence spaces.
For every 1 ≤ p < ∞ and every nonincreasing sequence of positive numbers
w = (wn)∞n=1 we consider the Lorentz sequence space d(w, p) of all sequences
of scalars x = (an)∞n=1 for which

‖x‖ = sup

( ∞∑
n=1

|aπ(n)|pwn

)1/p

<∞, (9.18)

where π ranges over all permutations of N. One easily checks that d(w, p)
equipped with the norm defined by (9.18) is a Banach space.
(a) Show that if infn wn > 0 then d(w, p) ≈ �p.
(b) Show that if

∑∞
n=1 wn <∞ then d(w, p) ≈ �∞.

Therefore to avoid trivial cases we shall assume that w1 = 1, limn→∞ wn =
0, and

∑∞
n=1 wn =∞.

(c) Show that no nontrivial Lorentz sequence space is isomorphic to an �p-
space.
(d) Show that the unit vectors (en)∞n=1 form a normalized symmetric basis for
d(w, p).

The reader interested in knowing more about Lorentz sequence spaces will
find these properties and other, deeper ones in [138].

9.5 (Lindenstrauss-Tzafriri [136]). Let F be an Orlicz function satisfy-
ing the additional condition that for some q < ∞ the function F (x)/xq is
decreasing.
(a) Let EF be the subset of C[0, 1] defined as the closure of the set of all
functions of the form Ft(x) = F (tx)/F (t) for 0 < t ≤ 1. Show that EF is
compact.
(b) Let CF be the closed convex hull of EF . Show that every normalized block
basic sequence has a subsequence equivalent to the canonical basis of �G for
some G ∈ CF . Conversely show that for every G ∈ CF there is a normalized
block basic sequence equivalent to the canonical �G-basis.
(c) Show that every symmetric basic sequence in �F is equivalent to the canon-
ical basis of some �G where G ∈ CF .

(d) Show that if G ∈ EF then �G is isomorphic to a complemented subspace
of �F .

9.6 (Lindenstrauss-Tzafriri [136]). (Continuation of 9.5) For 0 < s < 1
define Ts(F ) ∈ C[0, 1] by TsF (x) = F (sx)/F (s).
(a) Show that Ts : CF → CF is continuous.
(b) Show that there is a common fixed point for {Ts : 0 < s < 1} and
hence that xp ∈ CF for some 1 ≤ p < ∞. (This uses the Schauder Fixed
Point theorem, Theorem E.4). Deduce that every �F has a closed subspace
isomorphic to some �p.

For a more precise result see [137].



246 9 Perfectly Homogeneous Bases and Their Applications

9.7 (Zippin [224]). (Compare with Problem 3.8)
(a) Let X be a Banach space with a basis which is not boundedly complete.
Show that X has a normalized basis (xn)∞n=1 so that for some subsequence
(xpn

)∞n=1 we have supn ‖
∑n

j=1 xpj
‖ <∞. Deduce that X has a basis which is

not shrinking.
(b) Show that X is reflexive whenever (i) every basis is shrinking, or (ii) every
basis is boundedly complete

9.8 ([102]). Let X be a Banach space with a basis and suppose X has the
following property: whenever (xn)∞n=1 is a basis of X and (

∑n
j=1 ajxj)∞n=1 is

a weakly Cauchy sequence then
∑∞

j=1 ajxj converges.
(a) Show that every weakly Cauchy block basic sequence of a basis (xn)∞n=1

is weakly null. [Hint: Use Zippin’s lemma (Lemma 9.5.5).]
(b) Show that if (yn)∞n=1 is a weakly Cauchy sequence then there is a subse-
quence (ynk

)∞k=1 and a sequence (zk)∞k=1 of the form

zk =
pk∑

j=1

ajxj +
pk+1−1∑
j=pk+1

bjxj

so that limk→∞ ‖ynk
− zk‖ = 0.

(c) Show that X is weakly sequentially complete.

9.9. Show that every unconditional basis of Lp (1 < p <∞) has a subsequence
equivalent to the canonical basis of �p. Deduce that:
(a) If p �= 2, Lp has no symmetric basis.
(b) If (fn)∞n=1 is a greedy basis of Lp then there exist 0 < c < C <∞ so that

cn1/p ≤
∥∥∥ n∑

k=1

fn

∥∥∥
p
≤ Cn1/p.

9.10 (Wojtaszczyk [222]). A basis (en)∞n=1 of a Banach space X is called
quasi-greedy if Gm(x)→ x for every x ∈ X. Show that (en)∞n=1 is quasi-greedy
if and only if there is a constant K such that

‖Gm(x)‖ ≤ K‖x‖, x ∈ X.

(Caution: The maps (Gm) are highly nonlinear and hence you cannot use the
Uniform Boundedness principle!)

9.11 (Edelstein-Wojtaszczyk [52]). Let (xn)∞n=1 be a normalized uncon-
ditional basis of �1⊕�2. Show that one can partition N into two infinite sets A

and B so that (xn)n∈A is equivalent to the canonical basis of �1 and (xn)n∈B

is equivalent to the canonical basis of �2. [Hint: Suppose xn = (yn, zn) with
yn ∈ �1 and zn ∈ �2. Let x∗

n = (y∗
n, z∗n) ∈ �∞ ⊕ �2. Let A = {n : y∗

n(yn) ≥ 1
2}.]
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�p-Subspaces of Banach Spaces

In the previous chapters the spaces �p (1 ≤ p < ∞) and c0 have played a
pivotal role in the development of the theory. This suggests that we should
ask when we can embed one of these spaces in an arbitrary Banach space. For
c0 we have a complete answer: c0 embeds into X if and only if X contains a
WUC series which is not unconditionally convergent (Theorem 2.4.11).

In this chapter we present a remarkable theorem of Rosenthal from 1974
[197] which gives a precise necessary and sufficient condition for �1 to be iso-
morphic to a subspace of a Banach space X; this is analogous to, but much
more difficult than, the characterization of Banach spaces containing c0. It
requires us to develop so-called Ramsey theory, which has proved a very pro-
ductive contributor to infinite-dimensional Banach space theory. Rosenthal’s
theorem asserts that either a Banach space contains �1 or every bounded
sequence has a weakly Cauchy subsequence.

The rest of the chapter is devoted to the construction of an important
example, Tsirelson space. During the 1960s a potential picture of the structure
of Banach spaces emerged in which the �p-spaces and c0 were considered as
potential building blocks. A question then arose as to whether every Banach
space must contain a copy of one of these spaces. This was solved by Tsirelson
[217], who constructed an elegant counterexample. Tsirelson’s space has had
a very profound influence on the further development of the subject.

10.1 Ramsey theory

Let PN denote the power set 2N of the natural numbers, i.e., the collection of
all subsets of N. PN can be identified with the Cantor set ∆ = {0, 1}N via the
mapping A → χA where χA(n) = 1 if n ∈ A and 0 otherwise. Let P∞N be
the subset of PN of all infinite subsets of N. The complementary set of P∞N

in PN of all finite subsets of N is denoted FN.
Given any M ∈ PN, Fr(M) will be the collection of all finite subsets of

M of cardinality r.



248 10 �p-Subspaces of Banach Spaces

If M ∈ P∞M and f : Fr(N)→ R is any function, we will write

lim
A∈Fr(M)

f(A) = α

to mean that given ε > 0 there exists N ∈ N so that if A ∈ Fr(N) and
A ⊂ [N,∞) then |f(A)− α| < ε.

We shall start by proving a generalization of the original Ramsey the-
orem [192]. This is far too simple for our purposes and we will need to go
much further. The original Ramsey theorem corresponds to the case r = 2
of (ii) of the following theorem. We will use Theorem 10.1.1 (i) in the next
chapter.

Theorem 10.1.1.

(i) Suppose r ∈ N and f : Fr(N) → R is a bounded function. Then there
exists M ∈ P∞(N) so that limA∈Fr(M) f(A) exists.

(ii) If A ⊂ Fr(N) then there exists M ∈ P∞(N) so that either Fr(M) ⊂ A or
Fr(M) ∩ A = ∅.

Proof. (ii) follows directly from (i) if we define f(A) = χA(A).
The proof of (i) is done by induction on r. For r = 1 it is trivially true.

Assume that r ≥ 2 and that (i) holds for r − 1; we must deduce that (i) is
also true for r.

For distinct integers m1, . . . , mr, put

f(m1,m2, . . . , mr) = f({m1, . . . , mr}).

We first use a diagonal procedure to obtain a subsequence (or subset) M1 of
N so that for every distinct m1, . . . , mr−1,

lim
mr∈M1

f(m1,m2, . . . , mr−1,mr) = g(m1,m2, . . . , mr−1)

exists. g is independent of the order of m1, . . . , mr−1 so we may write it as a
bounded map g : Fr−1(N)→ R. It follows from the inductive hypothesis that
M1 has an infinite subset M2 so that

lim
A∈Fr−1(M2)

g(A) = α

for some real α.
If A ∈ Fr−1(M2) and ε > 0, we can find an integer N = N(A, ε) so that if

n ≥ N(A, ε) and n ∈M2 then n /∈ A, and

|f(A ∪ {n} − g(A))| < ε.

We next choose an infinite subset of M2. Pick r − 1 initial points. Then if
m1 < m2 < · · · < mn have been chosen with n ≥ r − 1, pick mn+1 > mn so
that
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mn+1 > max
A∈Fr−1{m1,...,mn}

N(A, 2−n).

Finally let M = {mj}∞j=1.
Given ε > 0 we may take n ∈ N so that, on the one hand, if A ⊂ [mn,∞)

with A ∈ Fr−1(M) then |g(A) − α| < 1
2ε, and, on the other hand, n is large

enough so that 2−n < 1
2ε. Suppose A ∈ Fr(M) with A ⊂ [mn,∞). Let mk be

its largest member and let B = A \ {mk}. Then

|f(A)− g(B)| < 2−(k−1) ≤ 2−n ≤ ε/2

and
|g(B)− α| < ε/2,

which shows that
|f(A)− α| < ε.

Hence
lim

A∈Fr(M)
f(A) = α.

��
We will need an infinite version of Theorem 10.1.1 (ii) when A becomes a

subset of P∞N. This requires some topological restrictions.
P∞N inherits a metric topology from the Cantor set which we call the

Cantor topology. Since P∞N is a Gδ-set in PN, and the Cantor set is compact,
this topology can be given by a complete metric.

We shall also be interested in a second stronger topology which is known
as the Ellentuck topology. If A ∈ FN and E ∈ P∞N, we define P∞(A,E) to
be the collection of all infinite subsets of A∪E which contain A. In the special
case A = ∅ we write P∞(∅, E) = P∞(E).

Let us say that a set U ⊂ P∞N is open for the Ellentuck topology or
Ellentuck-open if whenever E ∈ U there exists a finite set A ⊂ E so that
P∞(A,E) ⊂ U . This is easily seen to define a topology (the Ellentuck topology)
on P∞N.

Our aim is to study a dichotomy result. We want to put conditions on a
subset V of P∞N so that either there is an M ∈ P∞N with P∞(M) ⊂ V or
there is an M ∈ P∞N with P∞(M) ∩ V = ∅. If such a dichotomy holds we
say that V has the Ramsey property (or that V is a Ramsey set). However, it
turns out to be easier to study a stronger property.

We say that V is completely Ramsey if for finite A and infinite E either
there exists an M ∈ P∞(E) with P∞(A,M) ⊂ V or there exists M ∈ P∞(E)
with P∞(A,M) ∩ V = ∅.

The main result in this section is a theorem of Galvin and Prikry [62]
which says that a set which is Borel for the Ellentuck topology is completely
Ramsey. In particular this implies that a set which is Borel for the Cantor
topology is completely Ramsey. Loosely speaking, this means that if we have
a subset of P∞N which may be defined by countably many conditions then we
expect it to be completely Ramsey. This is very useful as we shall see because
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most sets which arise in analysis are of this type. In fact we will only use the
special case of open sets for the Cantor topology, and this follows from the
next result.

Theorem 10.1.2. Suppose U is an Ellentuck-open set in P∞N. Then U is
completely Ramsey.

Proof. Let us introduce some notation. If A is finite and E is infinite we shall
say that (A,E) is a pair. The pair (A,E) is good (for U) if there is an infinite
subset M of E with P∞(A,M) ⊂ U . Otherwise we shall say that (A,E) is bad.
Of course, if (A,E) is bad and F ∈ P∞(E) then (A,F ) is also bad. Notice
also that if the symmetric difference E∆F is finite then (A,E) and (A,F ) are
either both good or both bad. We will show that if (A,E) is bad then there
exists M ∈ P∞(E) with the property that P∞(A,M)∩U = ∅. To achieve this
we do not use the fact that U is Ellentuck open until the very last step.

Step 1. Suppose (Aj)m
j=1 are finite sets and E is an infinite set such that

the pair (Aj , E) is bad for 1 ≤ j ≤ m. Then we claim that we can find
n ∈ E \∪m

j=1Aj and F ∈ P∞(E) so that the pair (Aj ∪{n}, F ) is also bad for
1 ≤ j ≤ m.

Suppose this is false. Then we may inductively pick an increasing sequence
(nk)∞k=1, a decreasing sequence of infinite sets (Ek)∞k=0 with E0 = E, and a
sequence (p(k))∞k=1 of integers with 1 ≤ p(k) ≤ m so that nk ∈ Ek−1 \∪m

j=1Aj

and P∞(Ap(k) ∪ {nk}, Ek) ⊂ U .
Now, there exists 1 ≤ p ≤ n so that the set {k ∈ N : p(k) = p} is

infinite. Let M = {nk : p(k) = p}. Suppose G ∈ P∞(Ap,M). Let k be the
least integer such that nk ∈ G. Then G ∈ P∞(Ap(k) ∪ {nk}, Ek) ⊂ U . Hence
P∞(Ap,M) ⊂ U , contradicting our hypothesis.

Step 2. We show that if a pair (A,E) is bad we can find M ∈ P∞(E) so
that the pair (B, M) is bad for every finite set B with A ⊂ B ⊂ A ∪M.

This is achieved again by an inductive construction. To start the induction
we use Step 1. Set E0 = E; there exists n1 ∈ E0 and an infinite set E1 ∈
P∞(E0) for which the pair (B, E1) is bad if A ⊂ B ⊂ A ∪ {n1}. Suppose we
have chosen sets E0, E1, . . . , Ek with Ej ⊂ Ej−1 for 1 ≤ j ≤ n, and integers
n1, n2, . . . , nk with nj ∈ Ej−1 for 1 ≤ j ≤ n, such that (B, Ej) is bad if
A ⊂ B ⊂ A ∪ {n1, . . . , nj} for 1 ≤ j ≤ n. Then, according to Step 1, we can
find nk+1 ∈ Ek with nk+1 > nk and Ek+1 ⊂ Ek so that (B ∪ {nk+1}, Ek+1)
is bad for every A ⊂ B ⊂ A ∪ {n1, . . . , nk}.

It remains to show that M = {n1, n2, . . . } has the desired property. If
B is a finite subset of A ∪M , let k be the largest natural number so that
nk ∈ B. Then B ⊂ A ∪ {n1, . . . , nk} so that (B, Ek) is bad. However, M ⊂
Ek ∪ {n1, . . . , nk} so (B, M) is also bad.

Step 3. Let us complete the proof, recalling finally that U is supposed
Ellentuck open. If a pair (A,E) is bad, we determine M ⊂ E according to
Step 2 so that (B, M) is bad whenever B is finite and A ⊂ B ⊂ A ∪ M.
Suppose P∞(A,M) meets U , so there exists G ∈ P∞(A,M) ∩ U . Since U is
open there exists a finite set B, which can be assumed to contain A so that
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P∞(B, G) ⊂ U . This implies that (B, M) is good, and we have reached a
contradiction. Hence the only possible conclusion is that P∞(A,M) ∩ U = ∅.

��
Now we come to the theorem of Galvin and Prikry [62] mentioned before.

Theorem 10.1.3. Let V be a subset of P∞N which is Borel for the Ellentuck
topology. Then V is completely Ramsey.

Proof. We first remark that if U is dense and open for the Ellentuck topology,
then Theorem 10.1.2 yields that for every pair (A,E) there exists M ∈ P∞(E)
with P∞(A,M) ⊂ U . This is because there is no pair (A,M) with P∞(A,M)∩
U = ∅.

Step 1. We claim that for any pair (A,E), if B ⊂ E is finite then there
exists M ∈ P∞(B, E) so that P∞(A,M) ⊂ U .

Indeed, we list all subsets (Bj)N
j=1 of B. Find H1 ∈ P∞(E) so that P∞(A∪

B1, H1) ⊂ U and then inductively Hj ∈ P∞(Hj−1) so that P∞(A∪Bj , Hj) ⊂
U . Finally let M = HN . If G ∈ P∞(A,M) let G ∩ B = Bj . Then G ∈
P∞(A ∪Bj ,M) ⊂ P∞(A ∪Bj , Hj) ⊂ U .

Step 2. Suppose G is an intersection of a countable family of open dense
sets for the Ellentuck topology. Then we can find a descending sequence of
dense open sets (Un)∞n=1 with G = ∩∞

n=1Un. We will show that if (A,E) is any
pair we can find M ∈ P∞(E) so that P∞(A,M) ⊂ G.

As usual we inductively pick an increasing sequence of integers (nk)∞k=1 and
a descending sequence of infinite sets (Ek)∞k=0 with E0 = E, such that nk ∈ Ej

for all j and P∞(A,Ek) ⊂ Uk. We pick n1 ∈ E0 arbitrarily and let E1 ⊂ E0

be so that n1 ∈ E1 and P∞(A,E1) ⊂ U1. If n1, . . . , nk−1, E1, . . . , Ek−1 have
been picked we choose nk ∈ Ek−1 with nk > nk−1 and then use Step 1 to pick
Ek ⊂ Ek−1 so that {n1, . . . , nk} ⊂ Ek and P∞(A,Ek) ⊂ Uk.

Finally let M = {n1, n2, . . . }. If G ∈ P∞(A,M) then for every k, G ∈
P∞(A,Ek) which implies G ∈ Uk. Hence G ∈ G.

Step 3. Let us complete the proof supposing that V is a Borel set for the
Ellentuck topology. Then there is a set G which is the intersection of a sequence
of dense open sets (Un)∞n=1, so that G ∩V = G ∩U for some Ellentuck open set
U (see the Problems). If (A,E) is any pair, we may first find G ∈ P∞(E) so
that P∞(A,G) ⊂ G by Step 2. Now, there exists M ∈ P∞(G) so that either
P∞(A,M) ⊂ U or P∞(A,M) ∩ U = ∅. But then either P∞(A,M) ⊂ V or
P∞(A,M) ∩ V = ∅.

��

10.2 Rosenthal’s �1 theorem

The motivation for the main result in this section comes from the problem of
finding a criterion to be able to extract a weakly Cauchy subsequence from
any bounded sequence in a Banach space X. If X is reflexive, this follows
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from the Eberlein-S̆mulian theorem. What if X is not reflexive? It was known
to Banach that if X∗ is separable, then every bounded sequence in X has a
weakly Cauchy subsequence. But in other spaces this is not possible.

For instance, the canonical basis (en)∞n=1 of �1 has no weakly Cauchy
subsequences. Rosenthal’s �1 theorem says that, in some sense, this is the
only possible example. Rosenthal proved this for real Banach spaces, and the
necessary modifications for complex Banach spaces were given shortly after
by Dor [44]. Our proof will work for both real and complex scalars.

Theorem 10.2.1 (Rosenthal’s �1 Theorem [197]). Let (xn)∞n=1 be a
bounded sequence in an infinite-dimensional Banach space X. Then either:

(a) (xn)∞n=1 has a subsequence which is weakly Cauchy, or
(b) (xn)∞n=1 has a subsequence which is basic and equivalent to the canonical

basis of �1.

Proof. Let (xn)∞n=1 be a bounded sequence in a Banach space X which has
no weakly Cauchy subsequence. We will suppose that ‖xn‖ ≤ 1 for all n.
We begin by passing to a subsequence which is basic. This is achieved by
Theorem 1.5.6 since, obviously, the set {xn}∞n=1 does not have any weakly
convergent subsequences. Thus we can assume that the sequence (xn)∞n=1 is
already basic.

If M is any infinite subset of N, in order to measure how far the sequence
of elements in M is from being weakly Cauchy we define

osc (M) = sup
‖x∗‖≤1

lim
k→∞

sup
m,n>k
m,n∈M

|x∗(xm)− x∗(xn)|.

We claim that there exists M ∈ P∞N so that if M ′ ∈ P∞(M) then osc (M ′) =
osc (M) > 0.

Indeed, let us inductively define infinite sets N = M0 ⊃M1 ⊃M2 ⊃M3 . . .
so that

osc (Mk) < inf
M ′∈P∞(Mk−1)

osc (M ′) + k−1, k = 1, 2, . . . .

Let M be chosen by a diagonal procedure so that M ⊂ Mk ∪ Fk where
each Fk is finite. M has the desired property that osc (M ′) = osc (M) if
M ′ ∈ P∞(M). Then, osc (M) > 0 follows from the fact there is no weakly
Cauchy subsequence.

We may make one further reduction by finding u∗ ∈ BX∗ and M ′ ⊂M so
that limn∈M ′ u∗(xn) = θ where |θ| ≥ 1

2osc (M).
Again for convenience of notation we may suppose that the original se-

quence has these properties, i.e., osc (M) = 4δ > 0 is constant for every
infinite set M and limn→∞ u∗(xn) = θ for some u∗ ∈ BX∗ and |θ| > δ.

Since (xn)∞n=1 is basic and bounded away from zero, there exist bi-
orthogonal functionals (x∗

n)∞n=1 in X∗ and we have a bound ‖x∗
n‖ ≤ B for

some constant B.
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Let C = 1 + δ−1 + δ−2. Let us consider the subset V of P∞N of all
M = {mj}∞j=1 where (mj)∞j=1 is strictly increasing such that there exists
x∗ ∈ X∗ with ‖x∗‖ ≤ C and x∗(xmj ) = (−1)j for all j.

It follows immediately from the weak∗ compactness of {x∗ : ‖x∗‖ ≤ C}
that the set V is closed for the Cantor topology, and hence closed for the
Ellentuck topology. Thus, V has the Ramsey property (note here we only use
Theorem 10.1.2).

Suppose M is any infinite subset of N. Since osc (M) = δ we can
find a subsequence (mj)∞j=1 of M so that for some y∗ ∈ BX∗ we have
limj→∞ y∗(xm2j

) = α and limj→∞ y∗(xm2j−1) = β where |α − β| ≥ 2δ. Next
let

v∗ =
2

(α− β)
y∗ − α + β

θ(α− β)
u∗.

Then
‖v∗‖ ≤ (1 + θ−1)δ−1 ≤ δ−1 + δ−2

and
lim

j→∞
v∗(xm2j ) = 1, lim

j→∞
v∗(xm2j−1) = −1.

By passing to a further subsequence we can suppose that if cj = v∗(xmj
)−

(−1)j then |cj | ≤ 2−jB−1. Then consider

x∗ = v∗ +
∞∑

j=1

cjx
∗
mj

.

We have
‖x∗‖ ≤ 1 + δ−1 + δ−2 = C.

Further x∗(xmj ) = (−1)j .
It follows that M ′ ∈ V and thus there is no M so that P∞(M) ∩ V = ∅.

Hence there is an infinite subset M so that every M ′ ∈ P∞(M) is in V.
Let M = {mj}∞j=1 where (mj) is increasing. Then the sequence (m2j)∞j=1

has the property that for every sequence of signs (εj) we can find x∗ with
‖x∗‖ ≤ C and x∗(xm2j

) = εj .
If X is real, it is clear that for any sequence of scalars (aj)n

j=1, we can
pick εj = ±1 with εjaj = |aj | and then find x∗ ∈ X∗ with ‖x∗‖ ≤ C so that
x∗(xm2j

) = εj . Thus,

∥∥∥ n∑
j=1

ajxm2j

∥∥∥ ≥ 1
C

n∑
j=1

|aj |,

and so (xm2j ) is equivalent to the canonical �1-basis.
If X is complex, the same reasoning shows that

∥∥∥ n∑
j=1

ajxm2j

∥∥∥ ≥ 1
C

n∑
j=1

|�aj |,
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and, similarly, ∥∥∥ n∑
j=1

ajxm2j

∥∥∥ ≥ 1
C

n∑
j=1

|�aj |.

Thus, ∥∥∥ n∑
j=1

ajxm2j

∥∥∥ ≥ 1
2C

n∑
j=1

|aj |.

��

Corollary 10.2.2. A Banach space X contains no copy of �1 if and only if
every bounded sequence in X has a weakly Cauchy subsequence.

Remark 10.2.3. If X∗ is separable, then X cannot contain a copy of �1.
However, it is not easy to construct a separable Banach space for which X∗

is non-separable but X fails to contain a copy of �1. This was done by James
[87] who produced an example called the James tree space, J T . We postpone
the construction of this example to Chapter 13.

If X is separable there is a very fine distinction between the conditions
that (a) X∗ is separable and (b) X does not contain �1. Let us illustrate this.
If X∗ is separable then the weak∗ topology on BX∗∗ is a metrizable topology
and thus Goldstine’s theorem guarantees that for every x∗∗ ∈ BX∗∗ there is a
sequence (xn)∞n=1 in BX converging to x∗∗ weak∗ (this sequence is, of course,
a weakly Cauchy sequence in X).

If X does not contain �1 but X∗ is not separable then the weak∗ topology
is no longer metrizable, yet remarkably the same conclusion holds (this is due
to Odell and Rosenthal [160]):

Theorem 10.2.4. Let X be a separable Banach space. Then �1 does not embed
into X if and only if every x∗∗ ∈ X∗∗ is the weak∗ limit of a sequence (xn)∞n=1

in X.

10.3 Tsirelson space

The question we want to address in this section is whether every Banach space
contains a copy of one of the spaces �p for 1 ≤ p <∞, or c0. The motivation
behind this question is that these spaces (which are prime!) appear to be
in a certain sense the fundamental blocks from which all Banach spaces are
constructed. Indeed every space we have met so far contains one of these
blocks. For example, every subspace of �p contains a copy of �p. We also have
seen that every subspace of Lp for p > 2 contains a copy of one of the spaces
�p or �2 (Theorem 6.4.8). The case of subspaces of Lp for 1 ≤ p < 2 is much
more difficult and was not resolved until 1981 by Aldous. He showed [2] that
every subspace of Lp for 1 ≤ p < 2 also contains a copy of some �q; Krivine
and Maurey [121] subsequently gave an alternative argument based on the
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notion of stability. Nevertheless the result is still not so easy and is beyond
the scope of this book.

It was quite a surprise when in 1974 Tsirelson gave the first example of a
Banach space not containing some �p (1 ≤ p < ∞) or c0. Nowadays the dual
of the space constructed by Tsirelson has become known as Tsirelson space.
Despite its apparently strange definition it has turned out to be a remarkable
springboard for further research.

Before getting to Tsirelson space we will need a result of James from 1964
[83]. He showed that if �1 embeds in a Banach space, then it must embed very
well (close to isometrically). This result, although quite simple, is also very
significant as we will discuss later.

Theorem 10.3.1 (James’s �1 distortion theorem). Let (xn)∞n=1 be a nor-
malized basic sequence in a Banach space X which is equivalent to the canon-
ical �1-basis. Then given ε > 0 there is a normalized block basic sequence
(yn)∞n=1 of (xn)∞n=1 such that

∥∥∥ N∑
k=1

akyk

∥∥∥ ≥ (1− ε)
N∑

k=1

|ak|

for any sequence of scalars (ak)N
k=1.

Proof. For each n let Mn be the least constant so that if (ak)∞k=1 ∈ c00 with
ak = 0 for k ≤ n then

∞∑
k=1

|ak| ≤Mn

∥∥∥ ∞∑
k=1

akxk

∥∥∥.
Then (Mn)∞n=1 is a decreasing sequence with limn→∞ Mn = M ≥ 1. Thus, for
n large enough Mn < (1− ε)−

1
2 M.

Now we can pick a normalized block basic sequence (yn)∞n=1 of the form

yn =
pn∑

j=pn−1+1

bjxj

such that
pn∑

j=pn−1+1

|bj | ≥ (1− ε)
1
2 M, n = 1, 2, . . .

and so that Mp0 < (1− ε)−
1
2 M. Then,

N∑
j=1

|aj | ≤ (1− ε)−
1
2 M−1

N∑
j=1

|aj |
pj∑

i=pj−1+1

|bi|

≤ (1− ε)−
1
2 M−1Mp0

∥∥∥ N∑
j=1

ajyj

∥∥∥
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≤ (1− ε)−1
∥∥∥ N∑

j=1

ajyj

∥∥∥,
and the result is proved.

��
Next we construct Tsirelson’s space. This is, as mentioned above, not the

original space constructed by Tsirelson in 1974 [217] but its dual as con-
structed by Figiel and Johnson [59].

Theorem 10.3.2. There is a reflexive Banach space T which contains no
copy of �p for 1 ≤ p <∞, or c0.

Proof. Suppose (I1, . . . , Im) is a set of disjoint intervals of natural numbers.
We say (I1, . . . , Im) is admissible if m < Ik for k = 1, 2 . . . , m, i.e., each Ik is
contained in [m + 1,∞).

We will adopt the convention that if E is a subset of N (in particular, if
E is an interval of integers) and ξ ∈ c00 we will write Eξ for the sequence
(χE(n)ξ(n))∞n=1, i.e., the sequence whose coordinates are Eξ(n) = ξ(n) if
n ∈ E and Eξ(n) = 0 otherwise.

We define a norm, ‖ · ‖T , on c00 by the formula

‖ξ‖T = max

⎧⎨
⎩‖ξ‖c0 , sup

1
2

m∑
j=1

‖Ijξ‖T

⎫⎬
⎭ , (10.1)

the supremum being taken over all admissible families of intervals. This def-
inition is implicit and we need to show that there is such a norm. But that
follows by a relatively easy inductive argument. Let ‖ξ‖0 = ‖ξ‖c0 and then
define inductively for n = 1, 2, . . .

‖ξ‖n = max

⎧⎨
⎩‖ξ‖c0 , sup

m∑
j=1

‖Ijξ‖n−1

⎫⎬
⎭ ,

where, again, the supremum is taken over all admissible families of intervals.
The sequence (‖ξ‖n)∞n=1 is increasing and bounded above by ‖ξ‖�1 . Hence it
converges to some ‖ξ‖T , and it follows readily that ‖ · ‖T has all the required
properties of norm.

It is necessary also to show that the definition uniquely determines ‖ · ‖T .
Indeed, suppose ‖ · ‖T ′ is another norm on c00 satisfying (10.1). It is clear
from the induction argument that ‖ξ‖T ′ ≥ ‖ξ‖T for all ξ ∈ c00. For α > 1
let S = {ξ ∈ c00 : ‖ξ‖T ′ > α‖ξ‖T }. If S is nonempty it has a member with
minimal support. But an appeal to (10.1) gives a contradiction. Hence there
is a unique norm on c00 that is the solution of (10.1).

Let T be the completion of (c00, ‖·‖T ). The canonical unit vectors (en)∞n=1

form a 1-unconditional basis of T .
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Suppose �p for some 1 < p <∞, or c0 embeds in T. Then, by the Bessaga-
Pe�lczyński selection principle (Proposition 1.3.10), there is a normalized block
basic sequence (ξn)∞n=1 with respect to the canonical basis of T equivalent to
the canonical basis. Suppose we fix m and choose n so that ξn is supported
in [m + 1,∞). Then

‖ξn + · · ·+ ξn+m−1‖T ≥
1
2
m

by the definition of ‖ · ‖T . This contradicts the equivalence with the �p-basis
(or the c0-basis).

Let us show that �1 cannot be embedded in T. Assume it embeds. Then we
can find a normalized block basic sequence equivalent to the �1-basis. If ε < 1

4 ,
by James’s �1 distortion theorem (Theorem 10.3.1) we pass to a sequence of
blocks and assume we have a normalized block basic sequence (ξn)∞n=0 so that

∥∥∥ n∑
j=0

ajξj

∥∥∥
T
≥ (1− ε)

n∑
j=0

|aj |

for any scalars (aj)n
j=0.

Suppose ξ0 is supported on [1, r]. For every n we have

∥∥∥ξ0 +
1
n

n∑
j=1

ξj

∥∥∥
T
≥ 2(1− ε).

It is clear that ∥∥∥ξ0 +
1
n

n∑
j=1

ξj

∥∥∥
T

>
∥∥∥ξ0 +

1
n

n∑
j=1

ξj

∥∥∥
c0

,

so we must be able to find an admissible collection of intervals (I1, . . . , Ik)
such that ∥∥∥ξ0 +

1
n

n∑
i=1

ξi

∥∥∥
T

=
1
2

k∑
j=1

∥∥∥Ij

(
ξ0 +

1
n

n∑
i=1

ξi

)∥∥∥
T
.

If Ijξ0 = 0 for every j then

1
2

k∑
j=1

∥∥∥Ij

(
ξ0 +

1
n

n∑
i=1

ξi

)∥∥∥
T

=
1
2

k∑
i=1

∥∥∥Ii

( 1
n

n∑
j=1

ξi

)∥∥∥
T
≤ 1,

so we can assume that Ijξ0 �= 0 for some j. But this means, by admissibility,
that k ≤ r. Note that

1
2

k∑
j=1

∥∥∥Ij

(
ξ0 +

1
n

n∑
i=1

ξi

)∥∥∥
T
≤ 1

2

k∑
j=1

‖Ijξ0‖+
1
2n

k∑
j=1

∥∥∥Ij

( n∑
i=1

ξi

)∥∥∥
T
.

The first term is estimated by ‖ξ0‖T = 1. For the second term we have
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1
2n

k∑
j=1

∥∥∥Ij

( n∑
i=1

ξi

)∥∥∥
T
≤ 1

2n

n∑
i=1

k∑
j=1

‖Ijξi‖T .

There are at most k ≤ r values of i such that the support of ξi meets at least
two Ij . For such values of i we have

1
2n

k∑
j=1

‖Ijξi‖T ≤
1
n
‖ξi‖T =

1
n

.

For all values of i we have

1
2n

k∑
j=1

‖Ijξi‖T ≤
1
2n

.

Hence, ∥∥∥ξ0 +
1
n

n∑
i=1

ξi

∥∥∥
T
≤ 1 +

k

n
+

n− k

2n
= 1 +

n + r

2n
.

The right-hand side converges to 3/2 as n → ∞ and, as 3/2 < 2(1 − ε), we
have a contradiction.

By James’s theorem (Theorem 3.3.3), since T contains no copy of c0 or �1,
it must be reflexive.

��
The construction of Tsirelson space was thus a disappointment to those

who expected a nice structure theory for Banach spaces. It was, however,
far from the end of the story. Tsirelson space (and its modifications) as an
example has continued to play an important role in the area since 1974. See
the book by Casazza and Shura from 1989 [29].

The major problem left open was the unconditional basic sequence prob-
lem, which was discussed at the end of Chapter 3. Tsirelson space played a
significant role in the solution of this problem.

There is a curious and deep relationship between the unconditional ba-
sic sequence problem and James’s �1 distortion theorem (Theorem 10.3.1).
James’s result implies that if we put an equivalent norm ||| · ||| on �1 then
we will always be able to find an infinite-dimensional subspace on which this
norm is a close multiple of the original norm. Thus, given ε > 0 we can find
an infinite-dimensional subspace Y of �1 and a constant c > 0 so that

c(1− ε)‖ξ‖1 ≤ |||ξ||| ≤ c(1 + ε)‖ξ‖1, ξ ∈ Y.

Here ‖·‖1 denotes the usual norm on �1. James also showed the same property
for c0, and a problem arose as to whether a similar result might hold for
arbitrary Banach spaces. The construction of Tsirelson space showed this to
be false, using an earlier result of Milman [151]. However, it was left unresolved
at this time whether one could specify a constant M with the property that
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for every Banach space X and every equivalent norm ||| · ||| there is an infinite-
dimensional subspace Y and a constant c > 0 so that

cM−1‖x‖ ≤ |||x||| ≤ cM‖x‖, x ∈ Y.

This was solved negatively by Schlumprecht in 1991. He constructed an exam-
ple (known nowadays as Schlumprecht space) which is a variant of Tsirelson’s
construction. Using this space, Odell and Schlumprecht [161] in 1994 showed
that this property even fails in Hilbert spaces (and most other spaces). The
Schlumprecht space was also a key ingredient in the Gowers-Maurey solution
of the unconditional basic sequence problem [71].

Problems

10.1. Show that if X is a topological space and V is a Borel subset of X, then
there is a dense Gδ-set G, and an open set U such that V ∩ G = U ∩ G (see
Problem 4.7).

10.2 (Johnson). Let (xn)∞n=1 be a sequence in a Banach space X with
the property that every subsequence (xnk

)∞k=1 contains a further subsequence
(xnkj

)∞j=1 such that

sup
n≥1

∥∥∥ n∑
j=1

(−1)jxnkj

∥∥∥ <∞.

Show that (xn)∞n=1 has a subsequence (yn)∞n=1 such that
(∑n

j=1 yj

)∞
n=1

is a
WUC series. In particular, if (xn)∞n=1 is normalized deduce that (xn)∞n=1 has
a subsequence equivalent to the canonical basis of c0.

10.3. James distortion theorem for c0.
Let (xn)∞n=1 be a normalized basic sequence in a Banach space X equivalent
to the canonical c0-basis. Show that given ε > 0 there is a normalized block
basic sequence (yn)∞n=1 of (xn)∞n=1 such that

∥∥∥ N∑
k=1

akyk

∥∥∥ ≥ (1− ε) max
k
|ak|

for any sequence of scalars (ak)N
k=1.

10.4. (a) Let X be a nonreflexive Banach space and suppose x∗∗ ∈ X∗∗ \X.
Show that if ε > 0, V is a weak∗ neighborhood of x∗∗, and x1, . . . , xn ∈ X
there exists x ∈ V ∩X∗∗ so that∣∣∣‖xj + x∗∗‖ − ‖xj + x‖

∣∣∣ < ε, j = 1, 2, . . . , n.

(b) Show that if X is a nonreflexive Banach space such that for some x∗∗ ∈ X∗∗

we have ‖x∗∗ + x‖ = ‖x∗∗− x‖ for every x ∈ X then X contains a copy of �1.
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[Hint: Use (a) and an inductive construction to find a basic sequence equivalent
to the canonical �1-basis.]

Part (b) is due to Maurey [145], who also proved the more difficult con-
verse: if X is separable and contains a copy of �1 then there exists x∗∗ ∈ X∗∗

with ‖x∗∗ + x‖ = ‖x∗∗ − x‖ for all x ∈ X.

10.5. Show that Tsirelson space contains no symmetric basic sequence.

10.6. Let ||| · ||| be the norm on c00 obtained by the implicit formula

|||ξ||| = max

⎛
⎝‖ξ‖∞, sup

2n∑
j=1

|||Ijξ|||

⎞
⎠ ,

where the supremum is over all n and all collections of intervals (Ij)2n
j=1 with

n < I1 < I2 < · · · < I2n (i.e., using 2n instead of n in the definition of T ).
At the same time define two associated norms by

‖ξ‖T,1 = sup
{ 3∑

j=1

‖Ijξ‖T

}
,

where (Ij)3j=1 ranges over all triples of intervals I1 < I2 < I3, and

‖ξ‖T,2 = sup
{ 8k∑

j=1

‖Ijξ‖T

}
,

the supremum being taken over all k and all collections of intervals (Ij)8k
j=1

such that k < I1 < I2 < · · · < I8k.
(a) Show that ‖ξ‖T,2 ≤ ‖ξ‖T,1 ≤ 3‖ξ‖T .
(b) Show by induction on the size of the support that

|||ξ||| ≤ ‖ξ‖T,1

and deduce that
‖ξ‖T ≤ |||ξ||| ≤ 3‖ξ‖T .

(c) Show that T is isomorphic to T 2.

10.7 (Casazza, Johnson, and Tzafriri [25]). Let J1, . . . , Jm be disjoint
intervals and suppose ξ, η ∈ c00 are supported on ∪m

j=1Jk and satisfy ‖Jjξ‖T =
‖Jjη‖T for 1 ≤ j ≤ m. The goal of this exercise is to show the following
inequality:

1
6
‖ξ‖T ≤ ‖η‖T ≤ 6‖ξ‖T . (10.2)

To this end, first we will show by induction on m that ‖ξ‖T ≤ 2|||η|||, where
||| · ||| is the norm we introduced in 10.6. Suppose then this is proved for all
collections of m− 1 intervals, and ξ and η are given as above.
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(a) Consider an admissible collection of intervals n < I1 < · · · < In. Let A be
the set of all j such that Jj meets more than one Ik, together with the first l
such that Jl meets at least one Ik.

Show that |A| ≤ n, and that for each j ∈ A,

n∑
k=1

‖(Ik ∩ Jj)ξ‖T ≤ 2‖Jjη‖T .

(b) Let I ′k = Ik \ ∪j∈AJj and

I ′′k = I ′k ∪
⋃
{Jj : Jj ∩ I ′k �= ∅}.

Show that (I ′′k )n
k=1 is admissible and using the inductive hypothesis show that

‖I ′′k ξ‖T ≤ 2|||I ′′k η|||, k = 1, 2, . . . , n.

(c) Complete the inductive proof that ‖ξ‖T ≤ 2|||η|||.
(d) Prove the inequality (10.2).

10.8 (Casazza, Johnson, and Tzafriri [25]). Show that every block basic
sequence in T is complemented. [Hint: Use the previous problem.]
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Finite Representability of �p-Spaces

We are now going to switch gear and study local properties of infinite-
dimensional Banach spaces. In Banach space theory the word local is used to
denote finite-dimensional. We can distinguish between properties of a Banach
space that are determined by its finite-dimensional subspaces and properties
which require understanding of the whole space. For example, one cannot
decide that a space is reflexive just by looking at its finite-dimensional sub-
spaces, but properties like type and cotype which depend on inequalities with
only finitely many vectors are local in character.

The key idea of the chapter is that, while a Banach space need not contain
any subspace isomorphic to a space �p (1 ≤ p < ∞) or c0 (as was shown by
the existence of Tsirelson space), it will always contain such a space locally.
The precise meaning of this statement will be made clear shortly.

There are two remarkable results of this nature due to Dvoretzky (1961)
[49] and Krivine (1976) [119] which are the highlights of the chapter. The
methods we use in this chapter are curiously infinite-dimensional in nature,
although the results are local. In the following chapter we will consider a local
and more quantitative approach to Dvoretzky’s theorem.

11.1 Finite representability

In this section we present the notions of finite representability and ultraprod-
ucts. Finite representability emerged as a concept in the Banach space scene
in the late 1960s; it was originally introduced by James [85].

Definition 11.1.1. Let X and Y be infinite-dimensional Banach spaces.
We say that X is finitely representable in Y if given any finite-dimensional
subspace E of X and ε > 0 there is a finite-dimensional subspace F of
Y with dimF = dimE, and a linear isomorphism T : E → F , satisfy-
ing ‖T‖‖T−1‖ < 1 + ε; that is, in terms of the Banach-Mazur distance,
d(E,F ) < 1 + ε.
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Example 11.1.2. Every Banach space X (not necessarily separable) is finitely
representable in c0. Indeed, given any finite-dimensional subspace E of X and
ε > 0, pick ν so that 1

1−ν < 1 + ε and {e∗1, . . . , e∗N} a ν-net in BE∗ . Con-
sider the mapping T : E → �N

∞ defined by T (e) = (e∗j (e))
N
j=1. Then, if we let

F = T (E), it is straightforward to check that d(E,F ) < 1 + ε.

Remark 11.1.3. (a) In Definition 11.1.1 we can assume that ‖T‖ = 1 and
‖T−1‖ < 1 + ε by replacing T by a suitable multiple.
(b) If X is finitely representable in Y , X need not be isomorphic to a subspace
of Y . For instance, �∞ is finitely representable in c0 from Example 11.1.2 but
it does not embed in c0. Another example is provided by Lp (1 ≤ p < ∞),
which, despite the fact that does not embed in �p, is finitely representable in
�p as we will see in Proposition 11.1.7.

Proposition 11.1.4. If X is finitely representable in Y and Y is finitely rep-
resentable in Z then X is finitely representable in Z.

Proof. Suppose E is a finitely dimensional subspace of X and ε > 0. Then
there exists a finite-dimensional subspace F of Y and an isomorphism T :
E → F with ‖T‖ = 1 and ‖T−1‖ < (1 + ε)1/2. Similarly we can find a finite-
dimensional subspace G of Z and an isomorphism S : F → G with ‖S‖ = 1
and ‖S−1‖ < (1 + ε)

1
2 . Then ‖ST‖‖(ST )−1‖ < 1 + ε.

��

Definition 11.1.5. An infinite-dimensional Banach space X is said to be
crudely finitely representable (with constant λ) in an infinite-dimensional
Banach space Y if there is a constant λ > 1 such that given any finite-
dimensional subspace E of X there is a finite-dimensional subspace F of
Y with dimF = dimE and a linear isomorphism T : E → F satisfying
‖T‖‖T−1‖ < λ.

Thus X is finitely representable in Y if and only if X is crudely finitely
representable in Y with constant λ for every λ > 1.

Lemma 11.1.6. Suppose X is a separable Banach space and that (En)∞n=1 is
an increasing sequence of subspaces of X such that ∪∞

n=1En is dense in X.

(i) X is finitely representable in a Banach space Y if and only if given n ∈ N

and ε > 0 there is a finite-dimensional subspace F of Y with dimF =
dimEn and a linear isomorphism Tn : En → F satisfying ‖Tn‖‖T−1

n ‖ <
1 + ε.

(ii) Let λ > 1 and suppose that X has the property that given n ∈ N there is
a finite-dimensional subspace F of Y with dimF = dimEn and a linear
isomorphism Tn : En → F satisfying ‖Tn‖‖T−1

n ‖ ≤ λ. Then, given any
ε > 0, X is crudely finitely representable in Y with constant λ + ε.
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Proof. It is enough to prove (ii). Suppose X satisfies the property in the
hypothesis, that E is any finite-dimensional subspace of X and that (ej)N

j=1

is a basis of E. Since E is finite-dimensional there is a constant C = C(E) so
that for any scalars (aj)N

j=1,

1
C

max
1≤j≤N

|aj | ≤
∥∥∥ N∑

j=1

ajej

∥∥∥ ≤ C max
1≤j≤N

|aj |.

Let us pick ν > 0 small enough to ensure that λ(1+CNν)2 < λ+ ε. Then
we can find an n so that there exist xj ∈ En for 1 ≤ j ≤ N with ‖xj−ej‖ < ν.
Define S : E → Y to be the linear map given by Sej = Tnxj . Then

∥∥∥ N∑
j=1

ajej −
N∑

j=1

ajxj

∥∥∥ ≤ Nν max
1≤j≤N

|aj | ≤ CNν
∥∥∥ N∑

j=1

ajej

∥∥∥.
Hence

(1 + CNν)−1‖e‖ ≤ ‖Se‖ ≤ λ(1 + CNν)‖e‖, e ∈ E.

If we let F = S(E), it is clear that ‖S‖‖S−1‖ < λ + ε.
��

One of the reasons for the idea of finite representability to develop is that
we can express the obvious connection between the function spaces Lp and
the sequence spaces �p in this language:

Proposition 11.1.7. Lp is finitely representable in �p for 1 ≤ p <∞.

Proof. For each p, just take En to be the subspace generated in Lp by the
characteristic functions χ((k−1)/2n,k/2n) for 1 ≤ k ≤ 2n. En is then isometric
to a subspace of �p.

��
In fact a converse statement is also true:

Theorem 11.1.8. Let X be a separable Banach space. If X is finitely repre-
sentable in �p (1 ≤ p <∞) then X is isometric to a subspace of Lp.

Proof. Let (xn)∞n=1 be a dense sequence in BX ; by making a small perturba-
tion where necessary we can assume this sequence to be linearly independent
in X. Let q be the conjugate index of p.

By hypothesis, for each n ∈ N there is a linear operator Tn : En → �p,
where En = [x1, . . . , xn], satisfying

‖x‖ ≤ ‖Tnx‖ ≤ (1 +
1
n

)‖x‖, x ∈ En.

Let S : �q → X [respectively, S : c0 → X if q = ∞] be the operator defined
by



266 11 Finite Representability of �p-Spaces

Sξ =
∞∑

k=1

2−k/pξ(k)xk,

and for each n let Vn : �q → �p [respectively, Vn : c0 → �p when p = 1] be
given by

Vnξ =
n∑

k=1

2−k/pξ(k)Tn(xk).

We would like to estimate the quantity

l∑
i=1

‖Vnξi‖p −
m∑

i=1

‖Vnηi‖p

for any ξ1, . . . , ξl, η1, . . . , ηm ∈ c00.
Let K = B�∗q [respectively, K = Bc∗0 when q =∞] with the weak∗ topology,

and F the continuous function on K defined by

F (ξ∗) =
l∑

i=1

|ξ∗(ξi)|p −
m∑

i=1

|ξ∗(ηi)|p. (11.1)

Note that F (0) = 0, so maxs∈K F (s) ≥ 0. Then, if we let (e∗n) denote the
biorthogonal functionals associated to the canonical basis (en) of �p, we have

l∑
i=1

‖Vnξi‖p −
m∑

i=1

‖Vnηi‖p =
∞∑

j=1

(
l∑

i=1

|e∗j (Vnξi)|p −
m∑

i=1

|e∗j (Vnηi)|p
)

=
∞∑

j=1

(
l∑

i=1

|V ∗
n e∗j (ξi)|p −

m∑
i=1

|V ∗
n e∗j (ηi)|p

)

≤

⎛
⎝ ∞∑

j=1

‖V ∗
n e∗j‖p

⎞
⎠max

s∈K
F (s).

Now
∞∑

j=1

‖V ∗
n e∗j‖p =

∞∑
j=1

∞∑
k=1

|V ∗
n e∗j (ek)|p

=
∞∑

j=1

∞∑
k=1

|e∗j (Vnek)|p

=
n∑

k=1

‖Vnek‖p

=
n∑

k=1

2−k‖Tnek‖p
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≤
(
1 +

1
n

)p ∞∑
k=1

2−k =
(
1 +

1
n

)p

.

Hence
l∑

i=1

‖Vnξi‖p −
m∑

i=1

‖Vnηi‖p ≤
(
1 +

1
n

)p

max
s∈K

F (s).

If we let n→∞, the left-hand side converges to
∑l

i=1 ‖Sξi‖p−
∑m

i=1 ‖Sηi‖p,
and so

l∑
i=1

‖Sξi‖p −
m∑

i=1

‖Sηi‖p ≤ max
s∈K

F (s). (11.2)

The set of all F of the form (11.1) forms a linear subspace V of C(K). It
follows from (11.2) that we can unambiguously define a linear functional ϕ on
V by

ϕ(F ) =
l∑

i=1

‖Sξi‖p −
m∑

i=1

‖Sηi‖p,

and that ϕ(F ) ≤ maxs∈K F (s). By the Hahn-Banach theorem there is a prob-
ability measure µ on K such that

ϕ(F ) =
∫

K

F dµ, F ∈ V.

Now suppose x ∈ E = ∪∞
n=1En. Then S−1x ∈ c00 is well-defined since the

sequence (xn)∞n=1 was chosen linearly independent. Define Ux ∈ C(K) by

Ux(ξ∗) = ξ∗(S−1x).

U is a linear map from E into C(K) but we also have

‖Ux‖Lp(K,µ) = ‖x‖,

so U is an isometry of E into Lp(K, µ) which extends by density to an isometry
of X into Lp(K, µ).

��

Proposition 11.1.9 (Lq-subspaces of Lp).
(i) For 1 ≤ p ≤ 2, Lq embeds in Lp if and only if p ≤ q ≤ 2.
(ii) For 2 < p <∞, Lq embeds in Lp if and only if q = 2 or q = p.
Moreover, if Lq embeds in Lp then it embeds isometrically.

Proof. Let 1 ≤ p, q < ∞ and suppose that Lq embeds in Lp. Then, since �q

embeds in Lq, it follows that �q embeds in Lp. This implies, by Theorem 6.4.19,
that either q = p, or q = 2, or 1 ≤ p < q < 2.

It remains to be shown that Lq embeds in Lp for 1 ≤ p < q < 2. We know
that Lq is finitely representable in �q for each q (Proposition 11.1.7) and that
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�q embeds in Lp for 1 ≤ p < q < 2 (Theorem 6.4.19). Hence Lq is finitely
representable in Lp if 1 ≤ p < q < 2. Since, in turn, Lp is finitely representable
in �p, it follows that Lq is finitely representable in �p for 1 ≤ p < q < 2. By
Theorem 11.1.8, Lq is isomorphic to a subspace of Lp.

��
Next we are going to introduce ultraproducts of Banach spaces. This idea

was crystallized by Dacunha-Castelle and Krivine [33] and serves as an appro-
priate vehicle to study finite representability by infinite-dimensional methods.
Let us recall, first, a few definitions.

If I is any infinite set, a filter on I is a subset F of PI satisfying the
properties:

• ∅ /∈ F .
• If A ⊂ B and A ∈ F then B ∈ F .
• If A,B ∈ F then A ∩B ∈ F .

A function f : I → R is said to converge to ξ through F , and we write
limF f(x) = ξ, if f−1(U) ∈ F for every open set U containing ξ.

We will be primarily interested in the case I = N so that a function of N

is simply a sequence.

Example 11.1.10. Let us single out two examples of filters on N:
(a) For each n ∈ N we can define the filter Fn = {A : n ∈ A}. Then a

sequence (ξk)∞k=1 converges to ξ through Fn if and only if ξn = ξ.
(b) Let us consider the filter F∞ = {A : ∃n ∈ N : [n,∞) ⊂ A}. Then

limF∞ ξn = ξ if and only if limn→∞ ξn = ξ.

An ultrafilter U is a maximal filter with respect to inclusion, i.e., a filter
which is not properly contained in any larger filter. By Zorn’s lemma, ev-
ery filter is contained in an ultrafilter. Ultrafilters are characterized by one
additional property:

• If A ∈ PI then either A ∈ U or Ã = I \A ∈ U .

If U is an ultrafilter then any bounded function on I converges through
U . Indeed, suppose |f(x)| ≤ M for all x and f does not converge through
U . Then for every ξ ∈ [−M,M ] we can find an open set Uξ containing ξ so
that f−1(Uξ) /∈ U . Using compactness we can find a finite set ξ1, . . . , ξn ∈
[−M,M ] so that [−M,M ] ⊂ ∪n

j=1Uξj . Now f−1(Ũξj ) ∈ U for each j since it
is an ultrafilter. But then the properties of filters imply that the intersection
∩n

j=1f
−1(Ũξj

) ∈ U ; however, this set is empty and we have a contradiction.
Let us restrict again to N. The filters Fn are in fact ultrafilters; these are

called the principal ultrafilters. Any other ultrafilter must contain F∞; these
are the nonprincipal ultrafilters.

Suppose X is a Banach space and U is a nonprincipal ultrafilter on N. We
consider the �∞-product �∞(X) and define on it a seminorm by
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‖(xn)∞n=1‖U = lim
U
‖xn‖.

Then ‖(xn)∞n=1‖U = 0 if and only if (xn)∞n=1 belongs to the subspace c0,U (X)
of �∞(X) of all (xn)∞n=1 such that limU ‖xn‖ = 0. It is readily verified that
‖ · ‖U induces the quotient norm on the quotient space XU = �∞(X)/c0,U (X).
This space is called an ultraproduct of X.

It is, of course, possible to define ultraproducts using ultrafilters on sets
I other than N and this is useful for nonseparable Banach spaces. For our
purposes the natural numbers will suffice.

We will frequently make use of the following lemma:

Lemma 11.1.11. Let E be a finite-dimensional normed space and suppose
(xj)N

j=1 is an ε-net in the surface of the unit ball {e : ‖e‖ = 1}, where 0 < ε <
1. Suppose T : E → X is a linear map such that 1 − ε ≤ ‖Txj‖ ≤ 1 + ε for
1 ≤ j ≤ N. Then for every e ∈ E we have(

1− 3ε

1− ε

)
‖e‖ ≤ ‖Te‖ ≤

(
1 + ε

1− ε

)
‖e‖.

Proof. First suppose ‖e‖ = 1. Pick j so that ‖e− xj‖ ≤ ε. Then

‖Te‖ ≤ ‖Te− Txj‖+ (1 + ε),

and so
‖T‖ ≤ ‖T‖ε + (1 + ε);

i.e.,

‖T‖ ≤ 1 + ε

1− ε
.

On the other hand we also have

‖Te‖ ≥ 1− ε− ‖T‖ε ≥ 1− 3ε

1− ε
.

��

Proposition 11.1.12. Let X, Y be infinite-dimensional Banach spaces.

(i) The ultraproduct XU is finitely representable in X.
(ii) If Y is separable then Y is finitely representable in X if and only if Y is

isometric to a subspace of XU .
(iii) If Y is separable then Y is crudely finitely representable in X if and only

if Y is isomorphic to a subspace of XU .

Proof. (i) Let E be a finite-dimensional subspace of XU and suppose ε > 0.
We can (by selecting representatives for a basis in E) suppose E ⊂ �∞(X)
and that ‖·‖U is a norm on E. Choose ν > 0 so small that (1+ν)(1−3ν)−1 <
1 + ε. Then pick a finite ν-net N = {ξ1, . . . , ξN} in the unit ball of E. Thus
BE ⊂ N + νBE .
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There exists A ∈ U such that

1− ν < ‖ξj(k)‖ < 1 + ν, k ∈ A, 1 ≤ j ≤ N.

Pick any fixed k ∈ A and define T : E → X by Tξ = ξ(k). Let T (E) = F .
Then by Lemma 11.1.11, ‖T‖‖T−1‖ < 1 + ε.

(ii) Let us suppose (En)∞n=1 is an ascending sequence of finite-dimensional
subspaces of Y with E = ∪∞

n=1En dense in Y , and let Tn : En → X be
operators satisfying

(1− 1
n

)‖e‖ ≤ ‖Tne‖ ≤ ‖e‖, e ∈ En,

for all n ∈ N.
We define a map L : E → �∞(X) by setting L(y) = ξ, where

ξ(k) =

{
0 y /∈ Ek

Tk(y) y ∈ Ek.

L is nonlinear, but is linear as a map into XU since

L(x + y)− L(x)− L(y) ∈ c00(X) ⊂ c0,U (X).

If y ∈ ∪∞
n=1En then limn→∞ ‖ξ(n)‖ = ‖y‖, whence it is clear that L induces

an isometry of Y into XU .
(iii) This is similar to (ii).

��
An immediate deduction is the following:

Proposition 11.1.13. Y is crudely finitely representable in X if and only if
there is an equivalent norm on Y so that Y is finitely representable in X.

The next theorem is an application of the basic idea of an ultraproduct.
Note that we prove it only for real scalars; the proof for complex scalars would
require some extra work.

Theorem 11.1.14. Let X be a Banach space. Then

(i) X fails to have type p > 1 if and only if �1 is finitely representable in X.
(ii) X fails to have cotype q <∞ if and only if �∞ is finitely representable in

X.

Proof. We will use Lemma 7.2.5. For (i) it suffices to note that αN (X) =
√

N
for every N . Thus for fixed N and all n we can find (xnk)N

k=1 so that

(
N∑

k=1

‖xnk‖2
)1/2

=
√

N,
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but

N − 1
n

<

(
E

∥∥∥ N∑
k=1

εkxnk

∥∥∥2
)1/2

≤
N∑

k=1

‖xnk‖ ≤ N.

Consider the elements
ξk(n) = (xnk)∞n=1

in the ultraproduct XU . Then

(
N∑

k=1

‖ξk‖2U

) 1
2

=
√

N,

(
E

∥∥∥ N∑
k=1

εkξk

∥∥∥2

U

) 1
2

≥ N, and

N∑
k=1

‖ξk‖U ≥ N.

Using the Cauchy-Schwarz inequality we see that the last inequalities are
equalities and we must have ‖ξk‖U = 1 for all k. Furthermore, it follows that

∥∥∥ N∑
k=1

εkξk

∥∥∥
U

= N,

whenever εk = ±1.
Now suppose −1 ≤ ak ≤ 1 and let εk = −1 if ak < 0 and εk = 1 if ak ≥ 0.

Then

∥∥∥ N∑
k=1

akξk

∥∥∥
U
≥
∥∥∥ N∑

k=1

εkξk

∥∥∥
U
−
∥∥∥ N∑

k=1

(εk − ak)ξk

∥∥∥
U

≥ N −
N∑

k=1

(1− |ak|)

=
N∑

k=1

|ak|.

Thus (ξk)N
k=1 is isometrically equivalent to the canonical basis of �N

1 , and it
follows that �1 is finitely representable in X.

(ii) is similar using again Lemma 7.2.5, and we leave the details to the
Problems.

��
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11.2 The Principle of Local Reflexivity

The main result in this section is the very important result of Lindenstrauss
and Rosenthal from 1969 [133] called the Principle of Local Reflexivity; it
asserts that in a local sense every Banach space is reflexive. More precisely,
for any infinite-dimensional Banach space X, its second dual X∗∗ is finitely
representable in X. Our proof is based on one given by Stegall [209]; see also
[36] for an interpretation of the Principle in terms of spaces of operators.

Let T : X → Y be a bounded operator. If the range T (X) is closed,
T is sometimes called semi-Fredholm. This is equivalent to the requirement
that T factors to an isomorphic embedding on X/ ker(T ) (i.e., the canonical
induced map T0 : X/ker(T )→ Y is an isomorphic embedding), which in turn
is equivalent to the statement that for some constant C we have

d(x, ker(T )) ≤ C‖Tx‖, x ∈ X.

Proposition 11.2.1. Let T : X → Y be an operator with closed range. Sup-
pose y ∈ Y is such that the equation T ∗∗x∗∗ = y has a solution x∗∗ ∈ X∗∗

with ‖x∗∗‖ < 1. Then the equation Tx = y has a solution x ∈ X with ‖x‖ < 1.

Proof. This is almost immediate. We must show that y ∈ T (UX), where UX

is the open unit ball of X.
First suppose y /∈ T (X). In this case there exists y∗ ∈ Y ∗ with T ∗y∗ = 0

but y∗(y) = 1. This is impossible since T ∗∗x∗∗(y∗) = y∗(y) = 1.
Next suppose y ∈ T (X)\T (UX). By the Open Mapping theorem T (UX) is

open relative to T (X) and so, using the Hahn-Banach separation theorem, we
can find y∗ ∈ Y ∗ with y∗(y) ≥ 1 but y∗(Tx) < 1 for x ∈ UX . Thus ‖T ∗y∗‖ ≤ 1
and so |x∗∗(T ∗y∗)| < 1, i.e., |y∗(y)| < 1, which is a contradiction.

��

Proposition 11.2.2. Let T : X → Y be an operator with closed range and
suppose K : X → Y is a finite-rank operator. Then T + K also has closed
range.

Proof. Suppose T + K does not have closed range. Then there is a bounded
sequence (xn)∞n=1 with limn→∞(T + K)(xn) = 0 but d(xn, ker(T + K)) ≥ 1
for all n. We can pass to a subsequence and assume that (Kxn)∞n=1 converges
to some y ∈ Y and hence limn→∞ Txn = −y. This implies that there exists
x ∈ X with Tx = −y and thus limn→∞ ‖Txn−Tx‖ = 0. Hence limn→∞ d(xn−
x, ker(T )) = 0. It follows that y −Kx ∈ K(ker T ).

Let y −Kx = Ku, where u ∈ ker(T ). Then

lim
n→∞ d(xn − x− u, ker(T )) = 0,

and
lim

n→∞ ‖Kxn −Kx− u‖ = 0.
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Since K|ker(T ) has closed range this means that

lim
n→∞ d(xn − x− u, ker(T ) ∩ ker(K)) = 0.

But T (x + u) = −y = −K(x + u), so x + u ∈ ker(T + K) and therefore

lim
n→∞ d(xn, ker(T + K)) = 0,

contrary to our assumption.
��

Theorem 11.2.3. Let X be a Banach space, A = (ajk)m,n
j,k=1 be an m × n

real matrix, and B = (bjk)p,n
j,k=1 be a p × n real matrix. Let y1, . . . , ym ∈ X,

y∗
1 , . . . , y∗

p ∈ X∗, and ξ1, . . . , ξp ∈ R. Suppose there exist vectors x∗∗
1 , . . . , x∗∗

n

in X∗∗ with max1≤k≤n ‖x∗∗
k ‖ < 1 satisfying the following equations:

n∑
k=1

ajkx∗∗
k = yj , 1 ≤ j ≤ m

and

y∗
j

(
n∑

k=1

bjkx∗∗
k

)
= ξj , 1 ≤ j ≤ p.

Then there exist vectors x1, . . . , xn in X with max1≤k≤n ‖xk‖ < 1 satisfying
the (same) equations:

n∑
k=1

ajkxk = yj , 1 ≤ j ≤ m

and

y∗
j

(
n∑

k=1

bjkxk

)
= ξj , 1 ≤ j ≤ p.

Proof. Consider the operator T0 : �n
∞(X)→ �m

∞(X) defined by

T0(x1, . . . , xn) =
( n∑

k=1

ajkxk

)m

j=1
.

We claim that T0 has closed range. This is an immediate consequence of the
fact the matrix A can be written in the form A = PDQ, where P and Q are
nonsingular, and D is in the form

D =
(

Ir 0
0 0

)
,

where r is the rank of A. This allows a factorization of T0 in the form T0 =
USV where U, V are invertible and S is given by the matrix D, and therefore
trivially it has closed range.
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Now define T : �n
∞(X)→ �m

∞(X)⊕∞ �p
∞ by

T (x1, . . . , xn) =
(
T0(x1, . . . , xn),

(
x∗

j (
n∑

k=1

bjkxk)
)p
j=1

)
.

By Proposition 11.2.2 it is clear that T also has closed range. The theorem
then follows directly from Proposition 11.2.1.

��

Theorem 11.2.4 (The Principle of Local Reflexivity). Let X be a Ba-
nach space. Suppose that F is a finite-dimensional subspace of X∗∗ and G
is a finite-dimensional subspace of X∗. Then given ε > 0 there is a subspace
E of X containing F ∩ X with dimE = dimF , and a linear isomorphism
T : F → E with ‖T‖‖T−1‖ < 1 + ε such that

Tx = x, x ∈ F ∩X

and
x∗(Tx∗∗) = x∗∗(x∗), x∗ ∈ G, x∗∗ ∈ F.

In particular X∗∗ is finitely representable in X.

Proof. Given ε > 0 let us take ν > 0 so that (1+ν)(1−3ν)−1 < 1+ε and pick
a ν-net (x∗∗

j )N
j=1 in {x∗∗ ∈ F : ‖x∗∗‖ = 1}. Let S : RN → F be the operator

defined by

S(ξ1, . . . , ξN ) =
N∑

j=1

ξjx
∗∗
j .

Let H = S−1(F ∩ X) and suppose (a(j))m
j=1 is a basis for H. Let S(a(j)) =

yj ∈ F ∩X and define the matrix A = (ajk)m,N
j=1,k=1 by a(j) = (aj1, . . . , ajN ).

Next pick x∗
1, . . . , x

∗
N ∈ X∗ so that ‖x∗

j‖ = 1 and x∗∗
j (x∗

j ) > 1 − ν, and
finally pick a basis {g∗1 , . . . , g∗l } of G.

We consider the system of equations in (x1, . . . , xN ):

N∑
k=1

ajkxk = yj , j = 1, 2, . . . , m

x∗
j (xj) = x∗∗

j (x∗
j ), j = 1, 2, . . . , N

and
g∗j (xj) = x∗∗

j (g∗j ), j = 1, 2, . . . , l.

This system has a solution in X∗∗, namely, (x∗∗
1 , . . . , xN∗∗), and maxj ‖x∗∗

j ‖ =
1. It follows from Theorem 11.2.3 that it has a solution (x1, . . . , xN ) in X with
max ‖xj‖ < 1 + ν.

If we define S1 : RN → X by



11.3 Krivine’s theorem 275

S1(ξ1, . . . , ξN ) =
N∑

j=1

ξjxj ,

then it is clear from the construction that S(ξ) = 0 implies that S1(ξ) = 0,
and so S1 = TS for some operator T : F → X. Let E = T (F ). Note that for
1 ≤ j ≤ N we have

1− ν < ‖xj‖ < 1 + ν

since ‖xj‖ ≥ x∗
j (xj) > 1 − ν. Hence, by Lemma 11.1.11, ‖T‖‖T−1‖ < 1 + ε.

The other properties are clear from the construction.
��

11.3 Krivine’s theorem

In this section we will use the term sequence space to denote the completion
X of c00 under some norm ‖ · ‖X such that the basis vectors (en)∞n=1 have
norm one.

Definition 11.3.1. A sequence (xn)∞n=1 in a Banach space X is spreading if
it has the property that for any integers 0 < p1 < p2 < · · · < pn and any
sequence of scalars (ai)n

i=1 we have

∥∥∥ n∑
j=1

ajxpj

∥∥∥ =
∥∥∥ n∑

j=1

ajxj

∥∥∥.
Notice that if (xn)∞n=1 is an unconditional basic sequence in a Banach

space X the previous definition means that (xn)∞n=1 is subsymmetric (Defini-
tion 9.2.4).

Definition 11.3.2. A sequence space X is spreading if the canonical basis
(en)∞n=1 of X is spreading.

Definition 11.3.3. Let (xn)∞n=1 be a bounded sequence in a Banach space
X, and (yn)∞n=1 be a bounded sequence in a Banach space Y . We will say that
(yn)∞n=1 is block finitely representable in (xn)∞n=1 if given ε > 0 and N ∈ N

there exist a sequence of blocks of (xn)∞n=1,

uj =
pj∑

pj−1+1

ajxj , j = 1, 2, . . . , N,

where (pj) are integers with 0 = p0 < p1 < · · · < pN , and (an) are scalars,
and an operator T : [yj ]Nj=1 → [uj ]Nj=1 with Tyj = uj for 1 ≤ j ≤ N such that
‖T‖‖T−1‖ < 1 + ε.

Note here that we do not assume that (xn)∞n=1 or (yn)∞n=1 is a basic sequence,
although usually they are.
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Definition 11.3.4. Let (xn)∞n=1 be a bounded sequence in a Banach space
X. A sequence space X is said to be block finitely representable in (xn)∞n=1

if the canonical basis vectors (en)∞n=1 in X are block finitely representable in
(xn)∞n=1.

Obviously if X is block finitely representable in (xn)∞n=1 it is also true that X
is finitely representable in X. We are thus asking for a strong form of finite
representability.

Definition 11.3.5. A sequence space X is said to be block finitely repre-
sentable in another sequence space Y if it is block finitely representable in the
canonical basis of Y.

Proposition 11.3.6. Suppose (xn)∞n=1 is a nonconstant spreading sequence
in a Banach space X.

(i) If (xn)∞n=1 fails to be weakly Cauchy then (xn)∞n=1 is a basic sequence
equivalent to the canonical �1-basis.

(ii) If (xn)∞n=1 is weakly null then it is an unconditional basic sequence with
suppression constant Ks = 1.

(iii) If (xn)∞n=1 is weakly Cauchy then (x2n−1 − x2n)∞n=1 is weakly null and
spreading.

Proof. (i) If (xn)∞n=1 is not weakly Cauchy then no subsequence can be weakly
Cauchy (by the spreading property) and so, by Rosenthal’s theorem (Theo-
rem 10.2.1), some subsequence is equivalent to the canonical �1-basis; but then
again this means the entire sequence is equivalent to the �1-basis.

(ii) It is enough to show that if a1, . . . , an ∈ R and 1 ≤ m ≤ n then

∥∥∥∑
j<m

ajxj +
∑

m<j≤n

ajxj‖ ≤ ‖
n∑

j=1

ajej

∥∥∥.
Suppose ε > 0. By Mazur’s theorem we can find cj ≥ 0 for 1 ≤ j ≤ l, say,

so that
∑l

j=1 cj = 1 and ∥∥∥ l∑
j=1

cjxj

∥∥∥ < ε.

Now consider

x =
m−1∑
j=1

ajxj + am

m+l−1∑
j=m

cj−m+1xj +
m+l−1∑
j=m+l

aj−l+1xj .

Then

x =
l∑

i=1

ci

⎛
⎝∑

j<m

ajxj + amxi+m +
n∑

j=m+1

ajxl+j−1

⎞
⎠ ,
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and so

‖x‖ ≤
∥∥∥ n∑

j=1

ajxj

∥∥∥.
But ∥∥∥∑

j<m

ajxj +
∑

m<j≤n

ajxj

∥∥∥ ≤ ‖x‖+ |am|ε,

and so ∥∥∥∑
j<m

ajxj +
∑

m<j≤n

ajxj

∥∥∥ ≤ ∥∥∥ n∑
j=1

ajxj

∥∥∥+ |am|ε.

Since ε > 0 is arbitrary, we are done.
(iii) This is immediate since (x2n−1−x2n)∞n=1 is weakly null and spreading

(obviously, it cannot be constant).
��

Theorem 11.3.7. Suppose (xn)∞n=1 is a normalized sequence in a Banach
space X such that {xn}∞n=1 is not relatively compact. Then there is a spreading
sequence space which is block finitely representable in (xn)∞n=1. More precisely,
there is a subsequence (xnk

)∞k=1 of (xn)∞n=1 and a spreading sequence space X
so that if we let M = {nk}∞k=1 then

lim
(p1,...,pr)∈Fr(M)

p1<···<pr

∥∥∥ r∑
j=1

ajxpj

∥∥∥ =
∥∥∥ r∑

j=1

ajej

∥∥∥
X

.

Proof. This is a neat application of Ramsey’s theorem due to Brunel and
Sucheston [19]. We first observe that by taking a subsequence we can assume
that (xn)∞n=1 has no convergent subsequence.

Let us fix some finite sequence of real numbers (aj)r
j=1. According to The-

orem 10.1.1, given any infinite subset M of N we can find a further infinite
subset M1 so that

lim
(p1,...,pr)∈Fr(M1)

p1<···<pr

∥∥∥ r∑
j=1

ajxpj

∥∥∥ exists.

Let (a(k)
1 , . . . , a

(k)
rk )∞k=1 be an enumeration of all finitely nonzero sequences

of rationals, and let us construct a decreasing sequence (Mk)∞k=1 of infinite
subsets of N so that

lim
(p1,...,pr)∈Fr(Mk)

p1<···<pr

∥∥∥ r∑
j=1

a
(k)
j xpj

∥∥∥ exists.

A diagonal procedure allows us to pick an infinite subset M∞ which is con-
tained in each Mk up to a finite set. It is not difficult to check that
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lim
(p1,...,pr)∈Fr(M∞)

p1<···<pr

∥∥∥ r∑
j=1

ajxpj

∥∥∥ exists

for every finite sequence of reals (aj)r
j=1.

Given ξ = (ξ(j))∞j=1 ∈ c00 put

‖ξ‖X = lim
(p1,...,pr)∈Fr(M∞)

p1<···<pr

∥∥∥ r∑
j=1

ξ(j)xpj

∥∥∥.
‖ · ‖X satisfies the spreading property, but we need to check that it is a norm
on c00 (it obviously is a seminorm). If ‖ξ‖X = 0 and ξ =

∑r
j=1 ajej with

ar �= 0 then we also have ‖
∑r−1

j=1 ajej + arer+1‖X = 0. Hence

‖e1 − e2‖X = ‖er − er+1‖X = 0.

Returning to the definition we see that this implies

lim
(p1,p2)∈F2(M∞)

‖xp1 − xp2‖ = 0,

which can only mean that the subsequence (xj)j∈M∞ is convergent, contrary
to our construction.

��

Definition 11.3.8. The spreading sequence space X introduced in Theo-
rem 11.3.7 is called a spreading model for the sequence (xn)∞n=1.

We now turn to Krivine’s theorem. This result was obtained by Krivine
in 1976, and, although the main ideas of the proof we include here are the
same as Krivine’s original proof, we have used ideas from two subsequent
expositions of Krivine’s theorem by Rosenthal [198] and Lemberg [123].

Krivine’s theorem should be contrasted with Tsirelson space, which we
constructed in Section 10.3. The existence of Tsirelson space implies that
there is a Banach space with a basis so that no (infinite) block basic sequence
can be equivalent to one of the spaces �p or c0. However, if we are content
with finite block basic sequences then we can always find a good copy of one
of these spaces! This difference of behavior between infinite and arbitrarily
large but finite is a recurrent theme in modern Banach space theory.

Theorem 11.3.9 (Krivine’s Theorem). Let (xn)∞n=1 be a normalized se-
quence in a Banach space X such that {xn}∞n=1 is not relatively compact.
Then, either c0 is block finitely representable in (xn)∞n=1, or there exists
1 ≤ p <∞ so that �p is block finitely representable in (xn)∞n=1.

In order to simplify the proof of Theorem 11.3.9 let us start by making
some observations.
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We first claim it suffices to prove the theorem when (xn)∞n=1 is replaced
by the canonical basis (en)∞n=1 of a spreading model X ; this is a direct con-
sequence of Theorem 11.3.7. We next claim that we can suppose that the
canonical basis (en)∞n=1 of the spreading model X is unconditional with sup-
pression constant Ks = 1 (and hence 2-unconditional). Indeed, if the canonical
basis of the spreading model fails to be weakly Cauchy then it is equivalent
to the canonical �1-basis, and the fact that �1 is block finitely representable
in X is simply the content of James’s distortion theorem (Theorem 10.3.1). If
(en)∞n=1 is weakly Cauchy but not weakly null, we use Proposition 11.3.6 and
replace it by the spreading sequence

fk =
e2k − e2k+1

‖e2k − e2k+1‖
, k = 1, 2, . . . .

In this way we reduce the proof to showing the result for the canonical basis
(en)∞n=1 of some spreading sequence space X .

We also observe at this point that the James distortion theorem for c0 (see
Problem 10.3) implies that if the spreading model is isomorphic to c0 then c0

is finite-representable in it. This reduction will be used later.
Now we will introduce some notation. Suppose X is a spreading sequence

space whose canonical basis is unconditional with suppression constant Ks =
1. The norm of each ξ ∈ X depends only on its nonzero entries and their order
of appearance. We shall say that the sequences ξ and η in c00 are equivalent if
their nonzero entries and their order of appearance are identical. We will say
that ξ and η are ε-equivalent if there exist u, v ∈ c00 so that u + ξ and v + η
are equivalent and ‖u‖X + ‖v‖X < ε.

If ξ, η ∈ c00 we define ξ ⊕ η to be any vector where the nonzero entries
of ξ (in correct order) precede the nonzero entries of η (in correct order). For
example, ξ⊕ η could be obtained by writing first the entries of ξ in order and
then the nonzero entries of η in order. Thus, if n is the largest integer so that
ξ(n) �= 0 we could take

ξ ⊕ η =
n∑

j=1

ξ(j)ej +
∞∑

j=n+1

η(j − n)ej .

We will say that ξ is replaceable by η if

‖u⊕ ξ ⊕ v‖X = ‖u⊕ η ⊕ v‖X , u, v ∈ c00,

and that ξ is ε-replaceable by η if∣∣∣‖u⊕ ξ ⊕ v‖X − ‖u⊕ η ⊕ v‖X
∣∣∣ < ε, u, v ∈ c00.

Let us notice that if ξ and η are equivalent then ξ is replaceable by η.
Similarly, if ξ and η are ε-equivalent then ξ is ε-replaceable by η.

To complete the proof of Krivine’s theorem we will need the following two
lemmas.
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Lemma 11.3.10. Suppose X is a spreading sequence space. Then there is a
spreading sequence space Y which is block finitely representable in X so that
the canonical basis of Y is unconditional with unconditional basis constant
Ku = 1.

Proof. By the previous remarks we can assume that the canonical basis
(en)∞n=1 of X is 2-unconditional, and that X is not isomorphic to c0. Thus, if
we let yn =

∑n
j=1(−1)jej we have ‖yn‖ → ∞. For each k let uk = yk/‖yk‖.

uk is εk-equivalent to −uk for εk = 2/‖yk‖.
If we take a block basic sequence (zn)∞n=1 with respect to (en)∞n=1, where

each zn is equivalent to uk, we obtain a spreading sequence where −zn is
εk-replaceable by zn. Define Yk by

‖ξ‖Yk
=
∥∥∥ ∞∑

j=1

ξ(j)zj

∥∥∥
X

.

We can pass to a subsequence (km)∞m=1 in such a way that limm→∞ ‖ξ‖Ykm

exists for all ξ ∈ c00. This is done by a standard diagonal argument for those
ξ with rational coefficients, and then extended to all ξ by a routine approxi-
mation argument. This formula defines a spreading sequence space, still block
finitely representable in X but such that e1 is replaceable by −e1. This shows
that the canonical basis of Y is 1-unconditional.

��

Lemma 11.3.11. Suppose X is a spreading sequence space whose canonical
basis (en)∞n=1 is 1-unconditional.

(i) If 21/pe1 is replaceable by e1 + e2 for some 1 ≤ p < ∞ then the norm on
X is equivalent to the canonical �p-norm.

(ii) If for some 1 ≤ p < ∞, 21/pe1 is replaceable by e1 + e2, and 31/pe1 is
replaceable by e1 + e2 + e3 then the norm on X coincides with the �p-
norm.

Proof. (i) Suppose (kj)∞j=1 is a sequence of non-negative integers. If for each
n we let N =

∑n
j=1 2kj we have

∥∥∥ n∑
j=1

2kj/pej

∥∥∥
X

=
∥∥∥ N∑

j=1

ej

∥∥∥
X

.

Notice also that ∥∥∥ 2r∑
j=1

ej

∥∥∥
X

= 2r/p,

and so

2−1/pN1/p ≤
∥∥∥ N∑

j=1

ej

∥∥∥
X
≤ 21/pN1/p.
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Suppose now that (aj) are scalars with
∑n

j=1 |aj |p = 1, and let α be the
least nonzero value of |aj |. For each j pick a nonnegative integer kj with
2kj/p ≤ |aj |α−1 ≤ 2(kj+1)/p. Then, if N =

∑n
j=1 2kj we have

∥∥∥ N∑
j=1

ej

∥∥∥
X
≤ α−1

∥∥∥ n∑
j=1

ajej

∥∥∥
X
≤
∥∥∥ 2N∑

j=1

ej

∥∥∥
X

,

and so Nαp ≤ 1 ≤ 2Nαp. Thus

2−1/pN1/pα ≤
∥∥∥ n∑

j=1

ajej

∥∥∥
X
≤ 22/pN1/pα,

which implies

2−2/p ≤
∥∥∥ n∑

j=1

ajej

∥∥∥
X
≤ 22/p.

The proof of (ii) is similar to (i). Here we use that the set of real numbers
of the form 2l3m with l, m ∈ Z is dense in (0, +∞), which is a consequence of
the fact that log 3/ log 2 is irrational.

If l, m ≥ 0 and N = 2l3m we have

∥∥∥ N∑
j=1

ej

∥∥∥
X

= N1/p.

For any N pick r, s ∈ Z so that N − ε ≤ 2r3s ≤ N. Then

∥∥∥ 2|r|3|s|N∑
j=1

ej

∥∥∥
X

= 2|r|/p3|s|/p
∥∥∥ N∑

j=1

ej

∥∥∥
X

≥
∥∥∥ 2r+|r|3s+|s|∑

j=1

ej

∥∥∥
X

= 2(r+|r|)/p3(s+|s|)/p,

so ∥∥∥ N∑
j=1

ej

∥∥∥
X
≥ 2r/p3s/p ≥ (N − ε)1/p.

Hence ∥∥∥ N∑
j=1

ej

∥∥∥
X
≥ N1/p.

Conversely, we can find r, s in Z so that N < 2r3s < N + ε, and a similar
argument yields
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∥∥∥ N∑
j=1

ej

∥∥∥
X
≤ N1/p.

Thus we obtain

∥∥∥ N∑
j=1

ej

∥∥∥
X

= N1/p, N = 1, 2, . . . .

Suppose a1, a2, . . . , an are scalars of the form |aj | = 2lj/p3mj/p for some
lj ,mj ∈ Z. Pick L, M ∈ N so that L + lj ≥ 0,M + mj ≥ 0 for all 1 ≤ j ≤ n.
Then,

2L/p3M/p
∥∥∥ n∑

j=1

ajej

∥∥∥
X

= ‖
N∑

j=1

ej

∥∥∥
X

,

where

N = 2L3M
n∑

j=1

|aj |p.

This implies ∥∥∥ n∑
j=1

ajej

∥∥∥
X

=

⎛
⎝ n∑

j=1

|aj |p
⎞
⎠1/p

.

A density argument implies the conclusion of the lemma for all sequences of
scalars (ai)n

i=1.
��

We are almost ready to complete the proof of Theorem 11.3.9. Suppose X
is a 1-unconditional spreading sequence space; we will define a variant of X
modeled on Q0 = Q ∩ [0, 1) rather than N.

Consider the space c00(Q) of all finitely nonzero sequences on Q. For ξ ∈
c00(Q0) of the form ξ =

∑n
j=1 ajeqj

, where q1 < q2 < · · · < qn, we define

∥∥∥ n∑
j=1

ajeqj

∥∥∥
X(Q0)

=
∥∥∥ n∑

j=1

ajej

∥∥∥
X

.

On X (Q0) we consider two bounded operators given by

T2eq = eq/2 + e(q+1)/2, q ∈ Q0

and
T3eq = eq/3 + e(q+1)/3 + e(q+2)/3, q ∈ Q0.

It is clear that 1 ≤ ‖T2‖ ≤ 2 and 1 ≤ ‖T3‖ ≤ 3. We consider the spectral
radius of T2 and define 0 ≤ θ ≤ 1 by

2θ = lim
n→∞ ‖T

n
2 ‖

1
n .
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Lemma 11.3.12. Suppose X is a 1-unconditional spreading sequence space.
Then

(i) There exists a sequence (ξn)∞n=1 in X (Q0) with ‖ξn‖X(Q0) = 1 and such
that limn→∞ ‖T2ξn − 2θξn‖X(Q0) = 0.

(ii) If the norm on X is equivalent to the �p-norm for some 1 ≤ p < ∞ then
θ = 1/p, and there is a sequence (ξn)∞n=1 in X (Q0) so that ‖ξn‖X(Q0) = 1,

limn→∞ ‖T2ξn − 21/pξn‖X(Q0) = 0, and limn→∞ ‖T3ξn − 31/pξn‖X(Q0) = 0.

Proof. (i) Let us start by observing that

lim
n→∞ ‖T

n
2 ‖

1
n = inf

n
‖Tn

2 ‖
1
n , (11.3)

and so
‖Tn

2 ‖ ≥ 2nθ, n = 1, 2, . . . .

Thus
lim

n→∞ ‖(n + 1)2−nθTn
2 ‖ =∞,

and, by the Uniform Boundedness principle, we can find η ∈ X with ‖η‖ = 1 so
that the sequence ((n+1)2−nθTn

2 η)∞n=1 is unbounded. Let us note that we can
assume that η has only nonnegative entries. If we define |η| by |η|(q) = |η(q)|
then Tn

2 |η|(q) ≥ |Tn
2 η(q)| for every q. Therefore we assume η ≥ 0, i.e., η(q) ≥ 0

for all q.
If r < 2−θ then (1 − rT2) is invertible and we can expand (I − rT2)−2 in

its binomial series (which converges). Thus

(1− rT2)−2(η) =
∞∑

n=0

(n + 1)rnTn
2 (η).

Since η ≥ 0, it is immediate that

lim
r→2−θ

‖(1− rT2)−2η‖X(Q0) =∞.

Hence we can find a sequence (rn) with rn → 2−θ so that either

lim
n→∞

‖(I − rnT2)−2η‖X(Q0)

‖(I − rnT2)−1η‖X(Q0)

=∞

or
lim

n→∞ ‖(I − rnT2)−1η‖X(Q0) =∞.

In either case we can determine ξn with ‖ξn‖X(Q0) = 1 and limn→∞ ‖(I −
rnT2)ξn‖X(Q0) = 0, which implies (i).

(ii) This is easier. We work in the equivalent �p-norm on X (Q0). Then
‖Tn

2 ‖�p(Q0)→�p(Q0) = 2n/p and ‖Tn
3 ‖�p(Q0)→�p(Q0) = 3n/p. Let
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ξn = n−2/p
n∑

j=1

n∑
k=1

2−j/p3−k/pT j
2 T k

3 e0, n = 1, 2, . . . .

Then ‖ξn‖p = 1 and (since T2 and T3 commute!),

‖2−1/pT2ξn − ξn‖p = 2
1
p n− 1

p ,

‖3−1/pT2ξn − ξn‖p = 3
1
p n− 1

p .

Renormalizing in the X -norm gives the result.
��

Conclusion of the proof of Theorem 11.3.9. We have reduced the proof to the
case when X is a spreading sequence space X with 1-unconditional canonical
basis. Using (i) of Lemma 11.3.12 we can find a sequence (un) in c00 so that
‖un‖X = 1 and 2θun is εn-equivalent to un⊕un where εn → 0. Indeed, we may
assume the ξn given by the lemma have finite support and then we simply take
un to have the same nonzero entries in the same order as ξn. Then un ⊕ un

is, similarly, equivalent to T2ξn.
For each n we can define a new spreading sequence space Yn by

∥∥∥ N∑
j=1

ajej

∥∥∥
Yn

= ‖a1un ⊕ a2un ⊕ · · · ⊕ aNun‖X ,

and then passing to a subsequence we can form a limit Y (as in Lemma 11.3.10).
Y is then block finitely representable in X and 2θe1 is replaceable by e1 + e2.

If θ = 0 then ‖e1 + · · ·+ en‖Y = 1 so Y is isometric to c0 and we are done.
If θ > 0, let 1/p = θ and observe that Lemma 11.3.11 implies that Y has

a norm equivalent to the �p-norm. Now use Lemma 11.3.12 (ii) and repeat
the procedure to produce spreading sequence space Z with 1-unconditional
canonical basis, still block finitely representable in X but this time with both
the properties that 21/pe1 is replaceable by e1 + e2 and 31/pe1 is replaceable
by e1 + e2 + e3. Lemma 11.3.11 ensures that Z is isometric to �p. ��

Theorem 11.3.13 (Dvoretzky’s Theorem). �2 is finitely representable in
every infinite-dimensional Banach space.

Proof. An immediate conclusion from Krivine’s theorem is that some �p (1 ≤
p <∞) or c0 is finitely representable in any infinite-dimensional Banach space
X. In the case of c0 this implies that �∞ is finitely representable in X, and
hence so is every separable Banach space. If �p is finitely representable then
so is Lp (Proposition 11.1.7) and, since �2 is isometric to a subspace of Lp

(Theorem 6.4.13), we obtain the theorem.
��

Dvoretzky’s theorem is one of the most celebrated results in Banach space
theory, but the above proof is not the first or the usual proof. Dvoretzky
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proved the theorem in 1961 [49] well before the techniques of Krivine’s theorem
were known. The form we have proved implies a quantitative version. More
precisely, given ε > 0 and n ∈ N there exists N = N(n, ε) so that if X is
a Banach space of dimension N then it has a subspace E of dimension n
with d(E, �n

2 ) < 1 + ε (see the Problems). However, the infinite-dimensional
method of proof prevents us from using this approach to gain any information
about the function N(n, ε). In the last chapter we will look at quantitative
finite-dimensional arguments which give more precise information.

There is much more to say about Krivine’s theorem. It is of interest, for
instance, to determine which �p is obtained in the theorem. For example, if
we can find spreading model X with 1-unconditional canonical basis (en)∞n=1

satisfying a lower estimate

‖e1 + · · ·+ en‖X ≥ cn
1
p , n = 1, 2, . . . ,

one can show that that �p is finitely representable in X (see the Problems). By
more delicate considerations we can obtain the following theorem essentially
due to Maurey and Pisier [147]:

Theorem 11.3.14. Let X be an infinite-dimensional Banach space and sup-
pose pX = inf{p : X has type p} and qX = sup{q : X has cotype q}. Then
both �pX

and �qX
are finitely representable in X.

The reader who wishes to know more should consult either the books of
Milman and Schechtman [154] or Benyamini and Lindenstrauss [11].

Problems

11.1. Prove Theorem 11.1.14 (ii).

11.2. Suppose X is a Banach space of type p [respectively, cotype q]. Show
that X∗∗ has type p [respectively, cotype q] with the same constants.

11.3. We recall that a Banach space X is said to be strictly convex if for any
x, y ∈ X with ‖x‖ = ‖y‖ = 1 such that ‖x + y‖ = 2 we have x = y, and that
X is said to be uniformly convex if given ε > 0 there exists δ(ε) > 0 so that
if ‖x‖ = ‖y‖ = 1 and ‖x + y‖ > 2− δ then ‖x− y‖ < ε.
Show that a Banach space X is uniformly convex if and only if every Banach
space finitely representable in X is strictly convex.

11.4. (a) Show that the Lp-spaces for 1 < p <∞ are strictly convex.
(b) Show that for any f ∈ Lp with ‖f‖p = 1 and |f(s)| > 0 a.e. there is
an isometric isomorphism Tf : Lp → Lp with Tff = 1 (the constantly one
function).
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(c) Show that if (fn)∞n=1, (gn)∞n=1 are two sequences in Lp for 1 < p <∞ with
fn + gn = cn1 where limn→∞ cn = 2 then limn→∞ ‖fn − gn‖p = 0. [Hint: Use
reflexivity.]
(d) Combine (a), (b), and (c) to show that the Lp-spaces for 1 < p < ∞ are
uniformly convex. Also note that we can deduce this from Problem 11.3.

11.5. James criterion for reflexivity ([84]).
(a) If X is a nonreflexive Banach space and 0 < θ < 1 show that we can find
a sequence (xn)∞n=1 in the unit ball of X so that

‖x‖ ≥ θ, x ∈ co{xj}∞j=1 (11.4)

and

‖y − z‖ ≥ θ, y ∈ co{xj}n
j=1, z ∈ co{xj}∞j=n+1, n = 1, 2, . . . . (11.5)

(b) Show, conversely, that the existence of a sequence in the unit ball satisfying
(11.5) implies that X is nonreflexive.
(c) Deduce that a uniformly convex space is reflexive.

11.6. Superreflexivity ([85], [86]).
A Banach space X is said to be superreflexive if every Banach space Y which
is finitely representable in X is reflexive.
(a) Give an example of a reflexive space which is not superreflexive.
(b) Show that X is superreflexive if and only if given ε > 0 there exists
N = N(ε) so that if xj ∈ BX for 1 ≤ j ≤ N then there exists 1 ≤ n ≤ N and
y ∈ co{x1, . . . , xn}, z ∈ co{xn+1, . . . , xN} with ‖y − z‖ < ε.

(c) Show that a uniformly convex space is superreflexive.
It is a result of Enflo [53] and Pisier [182] that superreflexive spaces always

have an equivalent uniformly convex norm. The subject of renorming is a topic
in itself and we refer the reader to [38].

11.7. Show that a Banach space X has nontrivial type if and only if given
ε > 0 there exists N so that if xj ∈ BX for 1 ≤ j ≤ N with ‖xj‖ = 1 there
exists a subset A of {1, 2, . . . , N} and y ∈ co{xj}j∈A, z ∈ co{xj}j /∈A with
‖y − z‖ < ε.

Compare with Problem 11.6; this criterion is simply an unordered version of
the criterion for superreflexivity. However, James showed the existence of a
nonreflexive Banach space with type 2 [88]!

11.8. Let X be a separable Banach space such that X∗ is separable and
has (BAP). Show that X has (BAP) and indeed (MAP) (see Problems 1.8
and 1.9). [Hint: The problem here is that there exist finite-rank operators
Tn : X∗ → X∗ so that Tnx∗ → x∗ for x∗ ∈ X∗ but the Tn need not be
adjoints of operators on X. Use the Principle of Local Reflexivity.]
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11.9. Let U be a nonprincipal ultrafilter on N. Show that if X is superreflexive
then the dual of XU can be naturally identified with (X∗)U .

11.10. Prove the equality (11.3) in Lemma 11.3.12.

11.11. Dvoretzky’s theorem (quantitative version).
Prove that given ε > 0 and n ∈ N there exists N = N(n, ε) so that if X is a
Banach space of dimension N then it has a subspace E of dimension n with
d(E, �n

2 ) < 1 + ε. [Hint: Use an ultraproduct.]

11.12. Suppose X is a Banach space with an unconditional basis (xn)∞n=1

such that for some 1 ≤ p ≤ 2 we have

c|A|1/p ≤
∥∥∥ n∑

j∈A

xj

∥∥∥
for every finite subset of N. Show that �p is finitely representable in X.
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An Introduction to Local Theory

The aim of this chapter is to provide an introduction to the ideas of the
local theory and a quantitative proof of Dvoretzky’s theorem. Dvoretzky’s
theorem asserts that every n-dimensional normed space contains a subspace
F of dimension k = k(n, ε) with dF = d(F, �k

2) < 1 + ε, where k(n, ε) → ∞
as n → ∞. Dvoretzky’s original paper [49] gave this without the optimal
estimates for k(n, ε). We present a proof due to Milman [152] which gives the
estimate

k(n, ε) ≥ cε2| log ε|−1 log n.

This is optimal in dependence on n but not on ε; in 1985, Gordon [69] showed
that the | log ε| term can be removed so that k(n, ε) ≥ cε2 log n.

The study of finite-dimensional normed spaces is a very rich area and
Dvoretzky’s theorem is only the beginning of this subject, which flowered
remarkably during the 1980s and early 1990s. Since then there has been an
evolution of the area with more emphasis on the geometry of convex sets;
nowadays it continues to be an important area.

As a prelude we introduce the John ellipsoid and prove the Kadets-
Snobar theorem that every n-dimensional subspace of a Banach space is

√
n-

complemented.
Finally we return to the complemented subspace problem and present a

complete proof that a Banach space in which every subspace is complemented
is a Hilbert space (Lindenstrauss-Tzafriri [135]).

We emphasize that throughout this chapter we treat only real scalars,
although much of the theory does permit an easy extension to complex scalars.

12.1 The John ellipsoid

Definition 12.1.1. Suppose X is an n-dimensional normed space. An ellip-
soid E in X is the unit ball of some Euclidean norm on X (i.e., a norm on
X induced by an inner product). The John ellipsoid of X is defined to be the
ellipsoid of maximal volume contained in BX .
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The John ellipsoid was introduced by John in 1948 [89]. Its existence fol-
lows by compactness of the unit ball of a finite-dimensional space. Let us
indicate one way to reach this. Introduce some inner product structure on X
(i.e., identify X with Rn with its canonical inner product, where n = dimX).
Each ellipsoid E contained in BX corresponds to a linear map S : Rn → X
(where n = dimX) so that S(B�n

2
) = E . The volume of E is measured by the

determinant of S : Rn → Rn. To be precise,

vol E
vol B�n

2

= |det S|,

where B�n
2

= {ξ = (ξ(i))n
i=1 ∈ Rn :

∑n
i=1 |ξ(i)|2 ≤ 1}. We are thus maximizing

det S over the set of S with ‖S‖�n
2 →X ≤ 1. It is also true but irrelevant to

the remainder of the chapter that the John ellipsoid is unique; in fact we only
need its existence.

Once we have agreed on the existence of the John ellipsoid in X, it is
natural to insist that our inner product structure on X coincides with that
induced by E . We then denote by ‖ · ‖E the Euclidean norm induced on X by
its John ellipsoid. Put

E = (X, ‖ · ‖E).

Now, X has an associated inner product 〈 , 〉 and corresponding norm ‖ · ‖E

so that ‖I‖E→X ≤ 1, and

|det T | ≤ 1 if ‖T‖E→X ≤ 1.

Next we are going to show that the John ellipsoid has some remarkable and
important properties.

Lemma 12.1.2. If T : E → X then

|tr T | ≤ n‖T‖E→X ,

where tr T is the trace of T .

Proof. First we note that if T ∈ L(X),

|det T | ≤ ‖T‖n
E→X .

Thus
det (I + tT ) ≤ ‖(1 + tT )‖n

E→X , t ∈ R.

Now

lim
t→0+

det (I + tT )− 1
t

= tr T,

and so
tr T ≤ n‖T‖E→X .

��
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Theorem 12.1.3. We have

‖I‖X→E ≤ π2(IX→E) ≤
√

n.

Proof. Let us identify the dual of X∗ using the inner product. Thus for x ∈ X
we define

‖x‖X∗ = sup{|〈x, y〉| : y ∈ X, ‖y‖X ≤ 1}.
It is then clear that

‖x‖X ≤ ‖x‖E ≤ ‖x‖X∗ .

Suppose x1, . . . , xk ∈ X. Let T be the operator T =
∑k

i=1 xi ⊗ xi, that is,

Tu =
k∑

i=1

〈xi, u〉xi.

We note that

tr T =
k∑

i=1

〈xi, xi〉 =
k∑

i=1

‖xi‖2E .

We also have that if ‖u‖X∗ , ‖v‖X∗ ≤ 1 then

|〈Tu, v〉| =
∣∣∣∣∣

k∑
i=1

〈xi, u〉〈xi, v〉
∣∣∣∣∣

≤
(

k∑
i=1

|〈xi, u〉|2
)1/2( k∑

i=1

|〈xi, v〉|2
)1/2

.

Hence

‖T‖E→X ≤ ‖T‖X∗→X ≤ max
‖u‖X∗≤1

k∑
i=1

|〈xi, u〉|2.

By Lemma 12.1.2 we conclude that

k∑
i=1

‖xi‖2E ≤ n max
‖u‖X∗≤1

k∑
i=1

|〈xi, u〉|2.

This is exactly the statement that

π2(IX→E) ≤
√

n.
��

This theorem has immediate applications. We denote by dX the Euclidean
distance of X, i.e., dX = d(X, �n

2 ) where n = dimX. If X is an infinite-
dimensional Banach space, dX = d(X, H) where H is a Hilbert space of the
same density character of X.

Theorem 12.1.4 (John). If X is n-dimensional then dX ≤
√

n.



292 12 An Introduction to Local Theory

Proof. We have ‖I‖E→X = 1 and ‖I‖X→E ≤
√

n.
��

The estimate given by this theorem is the best possible:

Proposition 12.1.5. If X = �n
∞ (or X = �n

1 ) then dX =
√

n.

Proof. Let S : �n
∞ → �n

2 be an operator which realizes the optimal isomor-
phism, that is,

‖x‖∞ ≤ ‖Sx‖2 ≤ d‖x‖∞,

where d = d�n∞ .
For each choice of signs (εi)n

i=1, the operator Uε1,...,εn(x) = (ε1x1, . . . , εnxn)
is an isometry on �n

∞, so SUε1,...,εn is another optimal embedding. Considering
choices of signs as outcomes of a Rademacher sequence ε1, . . . , εn on some
probability space (Ω, P), we may define T : �n

∞ → L2(Ω, P; �n
2 ) by

Tx(ω) = Uε1(ω),...,εn(ω)x.

Then
‖x‖∞ ≤ ‖Tx‖L2(P) ≤ d‖x‖∞.

But

‖Tx‖2 = E

∥∥∥ n∑
i=1

εixiSei

∥∥∥2

=
n∑

i=1

|xi|2‖Sei‖2,

and this makes it clear that our optimal choice must satisfy ‖Sei‖ = 1 for
1 ≤ i ≤ n, and so

‖Tx‖ = ‖x‖2.

Hence ‖T‖ =
√

n = d.
��

The following result is due to Kadets and Snobar [100].

Theorem 12.1.6 (The Kadets-Snobar Theorem). Let F be a Banach
space of dimension n. Then for any Banach space X containing F as a sub-
space there is a projection P of X onto F with ‖P‖ ≤

√
n.

Proof. According to Theorem 12.1.3, there is an operator S : F → �n
2 where

n = dimF so that ‖S−1‖ = 1 and π2(S) ≤
√

n. Using Theorem 8.2.13, S
extends to a bounded operator T : X → �n

2 with π2(T ) = π2(S). Hence
‖T‖ ≤

√
n and if P = S−1T we have our desired projection.

��
This result is not optimal (but very nearly is). We refer to the Handbook

article [114] for more details. We also mention that the example of Pisier [184]
cited in Chapter 8 gives a Banach space X with the property that there is
a constant c > 0 so that whenever F is a finite-dimensional subspace and
P : X → F is a projection then ‖P‖ ≥ c

√
n.
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12.2 The concentration of measure phenomenon

We are now en route to Dvoretzky’s theorem, which will be deduced from
a principle which has become known as the concentration of measure phe-
nomenon. Roughly speaking this says that a Lipschitz function on the Eu-
clidean sphere in dimension n behaves more and more like a constant as the
dimension grows. More precisely, the set where it deviates from its average by
some fixed ε has measure converging to zero at a very rapid rate.

This type of result is usually derived from Lévy’s isoperimetric inequality
[124]. We follow an alternative approach due to Maurey and Pisier [187], and
[154] Appendix V which has the advantage of using Gaussians.

We shall consider Rn with its canonical Euclidean norm, ‖·‖. We denote by
σn the normalized invariant measure on the surface of the sphere Sn−1 = {ξ =
(ξ(j))n

j=1 :
∑n

j=1 |ξj |2 = 1}. Thus σn is simply a normalized surface measure
and it is invariant under orthogonal transformations. It can be obtained by
the formula∫

Sn−1
f(ξ)dσn(ξ) =

∫
On

f(Uξ0)dµ(U), f ∈ C(Sn−1),

where µ is normalized Haar measure on the orthogonal group On and ξ0 is
some fixed vector in Sn−1.

Let (g1, . . . , gn) be a sequence of mutually independent Gaussians on some
probability space, and let G be the vector-valued Gaussian G =

∑n
j=1 gjej ,

where (ej)n
j=1 is the canonical basis of Rn. The distribution of G on Rn is

given by the density function

1
(2π)n/2

e−(|ξ1|2+···+|ξn|2)/2 =
1

(2π)n/2
e−‖x‖2/2.

It is clear that the distribution of G/‖G‖ is given by the unique orthogonally
invariant probability measure on Sn−1, that is, σn.

Theorem 12.2.1. Let f be a Lipschitz function on Rn with Lipschitz constant
1. Then for each t > 0,

P(|f(G)− Ef(G)| > t) ≤ 2e−2t2/π2
.

Proof. We can suppose, by approximation, that f is continuously differen-
tiable and, by adjusting the constant, that Ef(G) = 0.

Let us introduce an independent copy G′ of G. For every θ put

Gθ = G sin θ + G′ cos θ

and
G′

θ = G cos θ −G′ sin θ.

Using the orthogonal invariance of (G, G′) in R2n it is then clear that (Gθ, G
′
θ)

has the same distribution as (G, G′) for every choice of θ.
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Suppose λ > 0. We note that, since Ef(G′) = 0, by Jensen’s inequality

E(eλf(G)) ≤ E(eλf(G)−λf(G′)).

Now

f(G)− f(G′) =
∫ π/2

0

d

dθ
f(Gθ)dθ

=
∫ π/2

0

〈∇f(Gθ), G′
θ〉 dθ,

where ∇f(Gθ) is the gradient of f at Gθ. Using Jensen’s inequality again,

Eeλ
(
f(G)−f(G′)

)
= E exp

(
λ

∫ π/2

0

〈π

2
f(Gθ), G′

θ

〉 2
π

dθ
)

≤ 2
π

∫ π/2

0

E exp
(
λ
〈π

2
∇f(Gθ), G′

θ

〉)
dθ

=
2
π

∫ π/2

0

E exp
(
λ
〈π

2
∇f(G), G′

〉)
dθ

= E exp
(
λ
〈π

2
∇f(G), G′

〉)
.

Now,

EG′ exp
(
λ
〈π

2
∇f(G), G′

〉)
= exp

(
λ2π2‖∇f(G)‖2

8
g

)
,

where g is a standard scalar Gaussian. But Eeαg = eα2/2, and so

EG′ exp
(
λ
〈π

2
∇f(G), G′

〉)
= exp

(
λ2π2‖∇f(G)‖2

8

)
≤ exp

(
λ2π2

8

)
.

Thus

E
(
exp(λf(G))

)
≤ exp

(
λ2π2

8

)
.

By symmetry,

E (exp(λ|f(G)|)) ≤ 2 exp
(

λ2π2

8

)
,

and hence (by Chebyshev’s inequality),

P(|f(G)| > t) ≤ 2 exp
(

λ2π2 − 8λt

8

)
.

Choosing λ = 4t/π2 we obtain

P
(
|f(G)| > t

)
≤ 2 exp

(
−2t2

π2

)
.
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��
The following theorem is due to Milman [152] and is generally referred

to as the Concentration of Measure Phenomenon. The precise constants are
irrelevant: the key point is that as n → ∞ the estimate for σn(|f − f | > t)
tends to zero very rapidly. In high dimensions, Lipschitz functions on Sn−1

are almost constant!

Theorem 12.2.2 (The Concentration of Measure Phenomenon). Let
f be a Lipschitz function on Sn−1 with Lipschitz constant 1. Then for t > 0,

σn(|f − f | > t) ≤ 4e−nt2/72π2
,

where
f =

∫
Sn−1

f dσn.

Proof. We shall assume that f = 0, and so |f(x)| ≤ 1 for all x ∈ Sn−1. Let
us first extend f to Rn by putting

f(x) = ‖x‖f(x/‖x‖), x ∈ Rn.

Then if x, y ∈ Rn, ∥∥∥ x

‖x‖ −
y

‖y‖

∥∥∥ ≤ 2
‖x− y‖
‖x‖ .

If ‖x‖ ≥ ‖y‖ we therefore have

|f(x)− f(y)| ≤ ‖y‖
∣∣∣∣f( x

‖x‖

)
− f
( y

‖y‖

)∣∣∣∣+ (‖x‖ − ‖y‖)
∣∣∣∣f( x

‖x‖

)∣∣∣∣
≤ 3‖x− y‖.

Thus f extended to Rn has Lipschitz constant at most 3; note that Ef(G) = 0.
We wish to estimate P(|f(G/‖G‖)| > t). First note that

E‖G‖ ≥ 1√
n

E

n∑
j=1

|gj | =
√

2n

π
>

1
2
√

n.

By Theorem 12.2.1,

P

(
‖G‖ <

1
4
√

n
)
≤ P

(∣∣∣‖G‖ − E‖G‖
∣∣∣ > 1

4
√

n
)

≤ 2e−n/8π2
.

On the other hand,

P

(
|f(G)| > t

√
n/4
)
≤ 2e−nt2/72π2

.

For t ≤ 1 this is larger than 2e−n/8π2
. Thus

P

(
|f(G/‖G‖)| > t

)
≤ 4e−nt2/72π2

.

��
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12.3 Dvoretzky’s theorem

Consider Rn with its canonical Euclidean norm, ‖ ·‖, and suppose that we are
given a second norm ‖ · ‖X on Rn such that

‖x‖X ≤ ‖x‖, x ∈ Rn.

Obviously, we can hope to use the results of the previous section for the
function f(x) = ‖x‖X which is 1-Lipschitz.

We will need the following lemma:

Lemma 12.3.1. Let F be an m-dimensional normed space. Suppose ε > 0.
Then there is an ε-net {xj}N

j=1 for {x : ‖x‖F = 1} with N ≤ (1 + 2
ε )m.

Proof. Pick a maximal subset {xj}N
j=1 of {x : ‖x‖ = 1} with the property

that ‖xi − xj‖ ≥ ε whenever i �= j. It is clear that this is an ε-net. The open
balls {x : ‖x− xj‖ < 1

2ε} are disjoint and contained in (1 + 1
2ε)BF . Thus, by

comparing volumes,
N
( ε

2

)m

≤
(
1 +

ε

2

)m

.

This gives the estimate on N.
��

Theorem 12.3.2. Suppose ‖ · ‖X is a norm on Rn with ‖x‖X ≤ ‖x‖. Let

θ = θX =
∫
Sn−1

‖ξ‖Xdσn(ξ).

Suppose 0 < ε < 1
3 . Then there is a k-dimensional subspace F of Rn with

(1− ε)θ‖x‖ ≤ ‖x‖X ≤ (1 + ε)θ‖x‖, x ∈ F (12.1)

provided

k ≤ cθ2n
ε2

| log ε| ,

where c > 0 is a suitable absolute constant. Hence, we can find a subspace F
of Rn with dimF ≥ k such that dF ≤ 1 + ε, provided

k ≤ c1θ
2n2 ε2

| log ε| ,

where c1 is an absolute constant.

Proof. Let us fix some k-dimensional subspace of Rn, say G = [e1, . . . , ek],
and pick an ε/3-net {xj}N

j=1 for {x ∈ G : ‖x‖ = 1} with N ≤ (1+6/ε)k (using
Lemma 12.3.1).

Let On denote, as usual, the orthogonal group and µ its normalized Haar
measure. We wish to estimate µ(A) where A is the set of U ∈ On so that
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(1− ε/3)θ ≤ ‖Uxj‖X ≤ (1 + ε/3)θ, j = 1, 2 . . . , N.

Let Ã be the complementary set. Then

µ(Ã) ≤
N∑

j=1

µ
(
U :

∣∣∣ ‖Uxj‖X − θ
∣∣∣ > 1

3εθ
)
.

But,

µ
(
U :

∣∣∣ ‖Uxj‖X − θ
∣∣∣ > 1

3εθ
)

= σn

(
x :

∣∣∣ ‖Uxj‖X − θ
∣∣∣ > 1

3εθ
)
,

hence
µ(Ã) ≤ 4Ne−nε2θ2/648π2

.

Now,
4N ≤ (7/ε)(k+1) ≤ e(k+1)(2−log ε),

and so µ(Ã) < 1 provided

k + 1 <
nε2θ2

648π2(2− log ε)
.

We are now in position to use Lemma 11.1.11, which yields that if U ∈ A,

(1− ε)θ‖x‖ ≤ ‖Ux‖X ≤ (1 + ε)θ‖x‖ x ∈ G.

Taking F = U(G) we obtain (12.1). This implies the theorem for a suitable
c > 0.

The last statement of the theorem follows with a slightly different constant.
��

Notice that, in this theorem, 0 < θX ≤ 1. In order to apply it in a non-
trivial way one needs θX large compared with n−1/2. We first use this to con-
sider finite-dimensional �p-spaces. This result is due to Figiel, Lindenstrauss,
and Milman [60].

Theorem 12.3.3. Suppose 1 ≤ p < ∞ and n ∈ N. Then for ε > 0, �n
p

contains a subspace F with dimF = k and d(F, �n
2 ) ≤ 1 + ε, provided:

(i) k ≤ cn2/pε2| log ε|−1 if p ≥ 2;
(ii) k ≤ cnε2| log ε|−1 if 1 ≤ p ≤ 2,

where c > 0 is an absolute constant.

Proof. We consider Rn equipped with the norms ‖ · ‖p, 1 ≤ p <∞.
If p > 2, by Hölder’s inequality we have

‖x‖p ≤ ‖x‖2 ≤ n
1
2− 1

p ‖x‖p.

Let ‖ · ‖X = ‖ · ‖p. Then
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Sn−1

‖ξ‖pdσn(ξ) ≥ n
1
p− 1

2 ,

and so
θX ≥ n

1
p− 1

2 .

Now Theorem 12.3.2 gives the conclusion.
We do the cases 1 ≤ p ≤ 2 simultaneously. Note that

1√
n
‖x‖1 ≤

1
n1/p−1/2

‖x‖p ≤ ‖x‖2. (12.2)

We will use the norm ‖ · ‖X = n−1/2‖ · ‖1. If g1, . . . , gn are independent
(normalized) Gaussians and G =

∑n
j=1 gjej as before, note that G/‖G‖2 and

‖G‖2 are independent. Thus

θX =
1√
n

E
‖G‖1
‖G‖2

=
1√
n

E‖G‖1
E‖G‖2

.

Now

E‖G‖1 = n

√
2
π

,

and
E‖G‖2 ≤

(
E‖G‖22

) 1
2 = n

1
2 .

We thus deduce that

θX ≥
√

2
π

, (12.3)

independent of n. Using Theorem 12.3.2, we get the conclusion for p = 1. But
for 1 < p < 2, (12.2) allows us to show equally that (12.3) holds for the norms
‖ · ‖X = n1/2−1/p‖ · ‖p.

��
In order to prove Dvoretzky’s theorem we need to take an arbitrary n-

dimensional normed space and introduce coordinates or an inner product
structure so that Theorem 12.3.2 can be applied. The problem is to find
the right inner product structure. The John ellipsoid is a natural place to
start. However, the best estimate for θX that we can obtain follows from
Theorem 12.1.4, which says that

n−1/2‖x‖E ≤ ‖x‖X ≤ ‖x‖E ,

and hence that θX ≥ n− 1
2 . As already remarked, this is insufficient to get any

real information from Theorem 12.3.2.
The trick is to use the John ellipsoid and then pass to a smaller subspace.

In fact, this technique was originally devised by Dvoretzky and Rogers in
their proof of the Dvoretzky-Rogers theorem in 1950 [50]. We remark that the
following proposition is a slightly weaker form of the original lemma which is
sufficient for our purposes (we found this version in [154] where it is attributed
to Bill Johnson).
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Proposition 12.3.4 (The Dvoretzky-Rogers Lemma). Let X be an n-
dimensional normed space and suppose that ‖ · ‖E is the norm induced on X
by the John ellipsoid. Then there is an orthonormal basis (ej)n

j=1 of (X, ‖·‖E)
with the property that

‖ej‖X ≥ 2−
n

n−j+1 , j = 1, 2, . . . , n.

In particular,
‖ej‖X ≥ 1/4, j ≤ n

2
+ 1.

Proof. We must recall the definition of the John ellipsoid of X as the ellipsoid
of maximal volume contained in BX . We pick (ej)n

j=1 inductively so that
‖e1‖X = 1 and, subsequently, ej such that ‖ej‖X is maximal subject to the
requirement that 〈ej , ei〉 = 0 for i < j and ‖ej‖E = 1.

Thus ‖x‖ ≤ ‖ej‖X = tj , say, if x ∈ [ej , . . . , en].
Fix 1 ≤ j ≤ n. For a, b > 0 let us consider the ellipsoid Ea,b of all x such

that

a−2

j−1∑
i=1

|〈x, ei〉|2 + b−2
n∑

i=j

|〈x, ei〉|2 ≤ 1.

Ea,b is contained in BX provided

a + btj ≤ 1,

and it has volume aj−1bn−j+1 relative to the volume of E . It follows that if
0 ≤ b ≤ t−1

j ,
(1− btj)j−1bn−j+1 ≤ 1.

Choosing b = (2tj)−1, we obtain

2nt
−(n−j+1)
j ≤ 1.

This gives the conclusion.
��

We will need a lemma on the behavior of the maximum of m Gaussians.

Lemma 12.3.5. There is an absolute constant c > 0 such that if g1, . . . , gm

are (normalized) Gaussians then

E max
1≤j≤m

|gj | ≥ c(log m)1/2.

Proof. If t > 0,

P(|gj | > t) =

√
2
π

∫ ∞

t

e−
1
2 s2

ds ≥
√

2
π

te−2t2 .

Thus if m ≥ 2,
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P

(
max

1≤j≤m
|gj | ≤ t(log m)1/2

)
≤
(
1−

√
2
π

t(log m)
1
2 m−2t2

)m

.

In particular, if t < 1/
√

2,

lim
m→∞ P

(
max

1≤j≤m
|gj | ≤ t(log m)1/2

)
= 0.

Since
E max

1≤j≤m
|gj | ≥ t(log m)1/2P

(
max

1≤j≤m
|gj | > t(log m)1/2

)
,

we have the lemma for some choice of c.
��

We are finally ready to complete the proof of Dvoretzky’s theorem, giving
quantitative estimates as promised:

Theorem 12.3.6 (Dvoretzky’s Theorem). There is an absolute constant
c > 0 with the following property: If X is an n-dimensional normed space
and 0 < ε < 1/3, then X has a subspace F with dimF = k and dF < 1 + ε
whenever

k ≤ c log n
ε2

| log ε| .

Proof. Let ‖ · ‖E be the norm induced on X by the John ellipsoid. By the
Dvoretzky-Rogers lemma, we can pass to a subspace X0 of X with m =
dimX0 ≥ n/2, and with the property that (X0, ‖ · ‖E) has an orthonormal
basis (e1, . . . , em) such that ‖ej‖X ≥ 1/4 for j = 1, . . . , m.

Let (gj)m
j=1 be a sequence of independent Gaussians and G =

∑m
j=1 gjej .

For m ≥ 2 we have

E‖G‖X = E

∥∥∥ m∑
j=1

gjej

∥∥∥
X

= E

∥∥∥ m∑
j=1

εjgjej

∥∥∥
X

≥ E max
1≤j≤m

‖gjej‖X

≥ 1
4

E max
1≤j≤m

|gj |

≥ c

4
(log m)

1
2 .

In this argument we used a sequence of Rademachers (εj)m
j=1 independent of

the (gj)m
j=1, and that

E

∥∥∥ m∑
j=1

εjxj

∥∥∥ ≥ max
1≤j≤m

‖xj‖.
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This, combined with the obvious fact that E‖G‖2E = E
∑m

j=1 g2
j = m, yields

θX0 =
∫
Sm−1

‖ξ‖Xdσm(ξ)

=

√
2
π

E‖G‖X

E‖G‖E

≥
√

2
π

E‖G‖X

(E‖G‖2E)1/2

≥ c1
(log m)1/2

m1/2
,

for some absolute constant c1 > 0. If we apply Theorem 12.3.2, we obtain
Dvoretzky’s theorem.

��
Dvoretzky’s theorem is, of course, just the beginning for a very rich theory

which is still evolving. One of the interesting questions is to decide the precise
dimension of the almost Hilbertian subspace of an n-dimensional space. The
estimate of log n is, in fact, optimal for arbitrary spaces (see the Problems),
but we have seen in Theorem 12.3.3 that for special spaces one can expect
to do better and perhaps even obtain subspaces of proportional dimension
cn as in the case �n

p where 1 ≤ p < 2. It turns out that this is related to
the concept of cotype. Remarkably, the first part of Theorem 12.3.3 holds
for any space of cotype two; this is due to Figiel, Lindenstrauss, and Milman
[60]. Another remarkable result is Milman’s theorem, which, roughly speaking,
says that if one can take quotients as well as subspaces then one can find an
almost Hilbertian space of proportional dimension [153]. Let us give the precise
statement:

Theorem 12.3.7 (Milman’s Quotient-Subspace Theorem ). There is
an absolute constant c such that if 0 < θ < 1 and X is a finite-dimensional
normed space then there is a quotient Y of a subspace of X with dimY >
θ dimX and dY ≤ c(1− θ)−2 log(1− θ).

The reader interested in this subject should consult the books of Milman
and Schechtman [154], Pisier [188], and Tomczak-Jaegermann [216] as a start-
ing point to learn about a rapidly evolving field.

12.4 The complemented subspace problem

Armed with Dvoretzky’s theorem (which we have proved twice!) we can re-
turn to complete the complemented subspace problem, which we solved only
partially in Chapter 9. Our proof follows a treatment given by Kadets and
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Mitjagin [97] (using an observation of Figiel) and not the original proof of
Lindenstrauss and Tzafriri [135].

To get the most precise result we will prove a strengthening of Dvoretzky’s
theorem which is of interest in its own right. Figiel’s observation was based on
a somewhat easier argument of Milman [151]. However, the proof we present
is in the spirit of this chapter, and demonstrates a use of the concentration of
measure phenomenon.

Theorem 12.4.1. Let X be an infinite-dimensional Banach space. Suppose
E is a finite-dimensional subspace of X. Then for any m ∈ N there is a norm
‖ · ‖Y on Y = E ⊕ �m

2 so that Y is isometric to a subspace of an ultraproduct
of X and:

‖(x, 0)‖Y = ‖x‖, x ∈ E

‖(0, ξ)‖Y = ‖ξ‖, ξ ∈ �m
2

‖(x, ξ)‖Y = ‖(x,−ξ)‖Y , x ∈ E, ξ ∈ �m
2 .

Proof. Let us suppose ν > 0 and (xj)N
j=1 be a ν-net for BE . We also choose a

ν-net (ξj)M
j=1 for Sm−1.

Let n ∈ N, n > m; we regard �m
2 as a subspace of �n

2 . By Dvoretzky’s
theorem, there is a linear map S : �n

2 → X satisfying

(1− ν)‖ξ‖ ≤ ‖Sξ‖ ≤ ‖ξ‖, ξ ∈ �n
2 .

For 1 ≤ j ≤ N and 1 ≤ k ≤ [ν−1], we consider the functions fj,k : Sn−1 →
R defined by

fj,k(ξ) = ‖kνSξ + xj‖.
Note that each fj,k has Lipschitz constant at most one. Let

aj,k = f j,k =
∫
Sn−1

fj,k dσn.

Using Theorem 12.2.2, we have

σn

(
|fj,k − aj,k| > ν

)
≤ 4e−nν2/72π2

.

Thus

σn

(
max

1≤j≤N
max

1≤k≤[ν−1]
|fj,k − aj,k| > ν

)
≤ 4Nν−1e−nν2/72π2

.

Put

A = {U ∈ On : max
1≤i≤M

max
1≤j≤N

max
1≤k≤[ν−1]

|fj,k(Uξi)− aj,k| > ν},

where On is the orthogonal group and µ its Haar measure. Arguing as in
Theorem 12.3.2 we obtain the following estimate for µ(A):
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µ(A) ≤ 4MNν−1e−nν2/72π2
.

Hence, if n is chosen large enough, µ(A) < 1 and there exists U /∈ A. Let
T = SU : �m

2 → X. Then,∣∣∣‖xj + kνTξi‖ − aj,k

∣∣∣ ≤ ν, 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ [ν−1].

It follows that∣∣∣‖xj + kνTξ‖ − aj,k

∣∣∣ ≤ 2ν, 1 ≤ j ≤ N, 1 ≤ k ≤ [ν−1], ξ ∈ Sm−1,

and so∣∣∣‖xj + kνTξ‖− ‖xj − kνTξ‖
∣∣∣ ≤ 4ν, 1 ≤ j ≤ N, 1 ≤ k ≤ [ν−1], ξ ∈ Sm−1.

Hence, approximating ξ/‖ξ‖ by some kν, we have∣∣∣‖xj − Tξ‖ − ‖xj + Tξ‖
∣∣∣ ≤ 6ν, 1 ≤ j ≤ N, ‖ξ‖ ≤ 1.

This, in turn, implies that∣∣∣‖x− Tξ‖ − ‖x + Tξ‖
∣∣∣ ≤ 8ν, ‖x‖ ≤ 1, ‖ξ‖ ≤ 1.

From the properties of T we deduce that if F = T (�m
2 ) we have∣∣∣‖x− f‖ − ‖x + f‖

∣∣∣ ≤ 10ν max(‖x‖, ‖f‖), x ∈ E, f ∈ F.

Since by the triangle law,

‖x− f‖+ ‖x− f‖ ≥ 2 max(‖x‖, ‖f‖),

this yields

‖x− f‖ ≤ 1 + 5ν

1− 5ν
‖x + f‖, x ∈ E, f ∈ F.

Since dF < 1 + ν, and ν > 0 is arbitrary, we are done.
��

Theorem 12.4.2. Let X be an infinite-dimensional Banach space with the
property that there exists λ ≥ 1 so that for every finite-dimensional subspace
E of X there is a projection P : X → E with ‖P‖ ≤ λ. Then X is isomorphic
to a Hilbert space, and dX ≤ 4λ2.

Proof. Let E be a finite-dimensional subspace of X. Suppose n = dimE and
d = dE . Using Theorem 12.4.1 we may find a space Y = E ⊕ �n

2 isometric to
a subspace of a space finitely representable in X, so that the norm on E ⊕ �n

2

satisfies
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‖(x, ξ)‖Y = ‖(x,−ξ)‖Y , x ∈ X, ξ ∈ �n
2 .

In particular this will imply that

max(‖x‖, ‖ξ‖) ≤ ‖(x, ξ)‖Y , x ∈ X, ξ ∈ �n
2 .

The space Y must also have the property that every subspace of it is λ-
complemented.

Let θ2 = dE , and choose an invertible operator S : E → �n
2 so that

θ−1‖x‖ ≤ ‖Sx‖ ≤ θ‖x‖, x ∈ E.

We define a subspace of Y by taking Z = {(x, Sx) : x ∈ E}. Let R : Y → Z
be a projection with ‖R‖ ≤ λ.

We now define a second operator T : E → �n
2 by

R(x, 0) = (S−1Tx, Tx), x ∈ X.

It is clear that ‖T‖ ≤ λ.
Then we introduce an operator V : E → �2n

2 = �n
2 ⊕ �n

2 given by V x =
(λSx, θTx). Let us estimate ‖V ‖. Clearly,

‖V x‖2 ≤ λ2‖Sx‖2 + θ2‖Tx‖2 ≤ 2λ2θ2‖x‖2,

that is,
‖V ‖ ≤

√
2λθ.

If x ∈ E we have

R(0, Sx) = (x− S−1Tx, Sx− Tx),

and so
‖x− S−1Tx‖ ≤ λ‖Sx‖, x ∈ E.

Hence

‖x‖ ≤ ‖x− S−1Tx‖+ ‖S−1Tx‖
≤ λ‖Sx‖+ θ‖Tx‖
≤
√

2(λ2‖Sx‖2 + θ2‖Tx‖2)1/2

=
√

2‖V x‖.

This yields that V is an isomorphism onto its range, and that ‖V −1‖ ≤
√

2.
Thus ‖V ‖‖V −1‖ ≤ 2λθ. But, by hypothesis, this means that θ2 ≤ 2λθ, i.e.,
θ ≤ 2λ, or, equivalently, dE ≤ 4λ2.

Thus X is 4λ2-crudely finitely representable in a Hilbert space, which
implies that dX ≤ 4λ2 (this is proved in Proposition 11.1.12).

��
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Lemma 12.4.3. Let X be an infinite-dimensional Banach space with the
property that every closed subspace is complemented. Then there exists λ ≥ 1
so that every finite-dimensional subspace E of X is λ-complemented in X.

Proof. For E a finite-dimensional subspace of X denote by λ(E) the norm
of the optimal projection (one may show that such a projection exists by
compactness). Suppose sup{λ(E) : dimE < ∞} = ∞. We first argue that,
then, for every subspace X0 of finite codimension we have

sup{λ(E) : dimE <∞, E ⊂ X0} =∞. (12.4)

Indeed, suppose

sup{λ(E) : dimE <∞, E ⊂ X0} = M <∞.

Let k be the codimension of X0. Then suppose E is any finite-dimensional
subspace of X. Let E0 = E ∩ X0 and let P0 be a projection of X onto
E0 with ‖P0‖ ≤ M. Let F = {x ∈ E : P0x = 0}. Then dimF ≤ k, so
there is a projection P1 of X onto F with ‖P1‖ ≤

√
k (Theorem 12.1.6). Let

P = P0+P1−P1P0; then P is a projection onto E with ‖P‖ ≤ (M+1)(
√

k+1).
This establishes (12.4).

Next we note that if E is a finite-dimensional subspace of X and ε > 0
then there is a finite codimensional subspace X0 such that

‖e + x‖ ≥ (1− ε)‖e‖, e ∈ E, x ∈ X0.

This is essentially the content of Lemma 1.5.1 in Chapter 1.
We now proceed by induction to construct a sequence of finite-dimensional

subspaces (En)∞n=1 and finite codimensional subspaces (Xn)∞n=1 so that

• λ(En) > n, n ∈ N.
• ‖e + x‖ ≥ 1

2‖e‖, e ∈ En, x ∈ Xn.
• En+1 ⊂ Xn, n ∈ N.
• Xn+1 ⊂ Xn, n ∈ N.

Let Y = [∪∞
n=1En], the closed linear span of ∪∞

n=1En. If ej ∈ Ej for
j = 1, 2, . . . , N , and 1 ≤ m ≤ N , we have

‖e1 + · · ·+ em‖ ≤ 2‖e1 + · · ·+ eN‖.

Hence,
‖em‖ ≤ 4‖e1 + · · ·+ eN‖,

from which it follows that each Em is 4-complemented in Y . Since, by as-
sumption, Y is complemented, this implies supn λ(En) <∞, and we reached
a contradiction.

��
Combining these results we have proved:

Theorem 12.4.4 (Lindenstrauss-Tzafriri, 1971). Let X be an infinite-
dimensional Banach space in which every closed subspace is complemented.
Then X is isomorphic to a Hilbert space.
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Problems

12.1. Auerbach’s Lemma.
Let X be an n-dimensional normed space. Show that X has a basis (ej)n

j=1

with biorthogonal functions (e∗j )
n
j=1 such that ‖ej‖ = ‖e∗j‖ = 1 for 1 ≤ j ≤

n. [Hint : Maximize the volume of the parallelepiped generated by n vectors
x1, . . . , xn in the unit ball.]

This basis is called an Auerbach basis and the result is due to Auerbach
[6].

12.2. Let E be a subspace of �n
1 of dimension k and suppose E is comple-

mented by a projection of norm λ. Show that k ≤ KGλ2d2
E where KG is

Grothendieck’s constant.

12.3. Suppose 1 ≤ p < 2. Let E be a subspace of �n
p of dimension k and

suppose E is complemented by a projection of norm λ. By considering E as
a subspace of �n

1 , show that

k ≤ KGλ2n2−2/pd2
E ,

where KG is Grothendieck’s constant.

12.4. Suppose d > 1 and 2 < p < ∞. Show that there is a constant C =
C(d, p) so that if E is a subspace of �n

2 with dE ≤ d then k ≤ Cn2/p. [Hint :
Use the fact that �n

p has type 2, and duality.] This shows that Theorem 12.3.3
is (in a certain sense) best possible.

12.5. Let X be an n-dimensional normed space. Suppose (xj)N
j=1 is a set of

points in X such that ∂BX ⊂ ∪N
j=1(xj + νBX). Show that BX is covered by

the sets Ajk = kνxj + 2νBX for 1 ≤ j ≤ N and 1 ≤ k ≤ [ν−1]. Deduce that

N ≥ 2−nν1−n.

12.6. Let H be a Hilbert space and suppose x ∈ H with ‖x‖ = 1 is written
as a convex combination

x =
n∑

j=1

cjyj ,

where c1, . . . , cn ≥ 0, c1 + · · · + cn = 1, and ‖yj‖ ≤ α for 1 ≤ j ≤ n. Show
that there exists j so that

‖x− yj‖2 ≤ α2 − 1.

12.7. Let H be a k-dimensional Hilbert space and suppose T : H → �N
∞ is a

linear operator satisfying

‖x‖ ≤ ‖Tx‖ ≤ (1 + ε)‖x‖, x ∈ H.
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(a) By considering the adjoint, show that

2N ≥ 2−k((1 + ε)2 − 1)−(k−1)/2.

(b) Deduce that if �N
∞ contains a k-dimensional subspace E with dE < 11/10

then k ≤ C log N where C is some absolute constant.

12.8. Prove the Dvoretzky-Rogers theorem directly from Proposition 12.3.4.

12.9. Lozanovskii factorization.
Let ‖ · ‖X be a norm on Rn for which the canonical basis (ej)n

j=1 is 1-
unconditional. Show that for any u = (u(j))n

j=1 with u(j) ≥ 0 and
∑n

j=1 u(j) =
1 we can find ξ, η ∈ Rn so that ξ(j), η(j) ≥ 0 for 1 ≤ j ≤ n, ‖ξ‖X = ‖η‖X∗ = 1
and

ξ(j)η(j) = u(j), 1 ≤ j ≤ n.

[Hint: Maximize
∑n

j=1 u(j) log |ξ(j)| for ‖ξ‖X ≤ 1.]
This result and infinite-dimensional generalizations are due to Lozanovskii

[142]; see also [67].

12.10 (Figiel, Lindenstrauss, and Milman [60]). Let X be an infinite-
dimensional Banach space of cotype q < ∞. Show that if ε > 0 then every
n-dimensional subspace F of X contains a subspace E with dimE ≥ cn2/q

and dE < 1 + ε, where c = c(ε,X).
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Important Examples of Banach Spaces

In the last, optional chapter, we construct some examples of Banach spaces
that played an important role in the development of Banach space theory.
These constructions are not elementary so we have preferred to remove them
from the main text.

We first discuss a generalization of James space constructed by James
[82] and improved by Lindenstrauss [130]. They show that for every separa-
ble Banach space X one can construct a separable Banach space Z so that
Z∗∗/Z ≈ X. Furthermore Z∗ has a shrinking basis.

We then turn to tree-like constructions and use a tree method to construct
Pe�lczyński’s universal basis space [174] which was a fundamental example in
basis theory. It shows that there is a Banach space U with a basis (en)∞n=1 such
that every basic sequence in U is equivalent to a complemented subsequence
of (en)∞n=1.

Finally we turn to the James tree space J T which was constructed in
connection with Rosenthal’s theorem (Chapter 10, Theorem 10.2.1). It is clear
that if X is a Banach space with separable dual, X cannot contain �1. The
James tree space, J T , gives an example to show that the converse statement
is not true. The key is that J T ∗∗/J T is shown to be a nonseparable Hilbert
space and this is sufficient to show that �1 cannot embed into J T .

13.1 A generalization of the James space

In this section we will give an exposition of the construction of a generalization
of the James space whose idea originated in James’s 1960 paper [82] but was
given in final form by Lindenstrauss in 1971 [130].

We recall our convention that if E is a subset of N (in particular, any
interval of integers) and ξ = (ξ(n))∞n=1 ∈ c00 we write Eξ for the sequence
(χE(n)ξ(n))∞n=1, i.e., the sequence whose coordinates are Eξ(n) = ξ(n) if
n ∈ E and Eξ(n) = 0 otherwise. We also remind the reader that if E,F are
subsets of N we write E < F to mean m < n whenever m ∈ E and n ∈ F.
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Let X be any separable Banach space and suppose (xn)∞n=1 is any sequence
so that {±xn}∞n=1 is dense in the surface of the unit ball of X, {x ∈ X : ‖x‖ =
1}. We define a norm on c00 by

‖ξ‖X = sup

⎛
⎝ n∑

j=1

∥∥∥∑
i∈Ij

ξ(i)xi

∥∥∥2

⎞
⎠1/2

,

where the supremum is taken over all n ∈ N and all intervals I1 < I2 < · · · <
In.

In the case when X = R we may take xn = 1 for all n and then we recover
the original James space J but with a different basis from the original one,
as in Problem 3.10.

Let X be the completion of (c00, ‖ · ‖X ). The following proposition is quite
trivial to see and we leave its proof as an exercise to the reader.

Proposition 13.1.1.

(i) The canonical unit vectors (en)∞n=1 form a monotone basis for that X .
Hence X can be identified as the space of all sequences ξ such that

‖ξ‖X = sup

⎛
⎝ n∑

j=1

∥∥∥∑
i∈Ij

ξ(i)xi

∥∥∥2

⎞
⎠1/2

<∞.

(ii) (en)∞n=1 is boundedly complete. Hence (e∗n)∞n=1 is a monotone basis for a
subspace Y of X ∗ and so X can be identified (isometrically in this case)
with Y∗.

Proposition 13.1.2. There is a norm-one operator T : X → X defined by
Ten = xn for n ∈ N. T is a quotient map.

Proof. It is easy to see that ξ ∈ X implies that
∑∞

j=1 ξ(j)xj must converge
and that ∥∥∥ ∞∑

j=1

ξ(j)xj

∥∥∥ ≤ ‖ξ‖X .

Thus T is well-defined and has norm one. Since T (BX ) contains (xn)∞n=1 it
follows that T (BX ) contains BX and hence T is a quotient map.

��
Therefore the adjoint of T , T ∗ : X∗ → X ∗ given by

〈ξ, T ∗x∗〉 =
∞∑

i=1

ξ(i)x∗(xi),

is a isometric embedding.

Lemma 13.1.3. T ∗(X∗) ∩ Y = {0}, and T ∗X∗ + Y is norm closed.
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Proof. It is enough to note that if x∗ ∈ X∗ and ξ∗ ∈ Y,

‖T ∗x∗‖X = ‖x∗‖ ≤ ‖T ∗x∗ + ξ∗‖X∗ .

Once we have this, it follows that T ∗X∗ + Y splits as a direct sum. In fact,

‖x∗‖ = lim sup
n→∞

|x∗(xn)|.

But
lim

n→∞ ξ∗(en) = 0,

and so
lim sup

n→∞
|(T ∗x∗ + ξ∗)en| = ‖x∗‖.

��

Lemma 13.1.4. Suppose m < n and that ξ∗ ∈ BX∗ . Then we can decompose
ξ∗ = η∗ + ζ∗ + ψ∗ where:

η∗(ej) = 0, 1 ≤ j ≤ m, (13.1)

ζ∗(ej) = 0, n ≤ j <∞, (13.2)

(‖η∗‖2X∗ + ‖ζ∗‖2X∗)
1
2 + ‖ψ∗‖X∗ ≤ 1, (13.3)

and for some x∗ ∈ BX∗ we have

T ∗x∗(ej) = ψ∗(ej), m ≤ j ≤ n. (13.4)

Proof. The set of ξ∗ ∈ BX∗ which satisfy (13.1)-(13.4) is clearly convex. It is
also weak∗ closed. To see this, suppose that ξ∗k → ξ∗ weak∗, where each ξ∗k
has a decomposition as prescribed ξ∗k = η∗

k + ζ∗k + ψ∗
k and ψ∗

k(ej) = x∗
k(ej) for

m ≤ j ≤ n with x∗
k ∈ BX∗ . Then we can always pass to a subsequence so that

(η∗
k)∞k=1, (ζ

∗
k)∞k=1, (ψ

∗
k)∞k=1 and (x∗

k)∞k=1 are weak∗ convergent.
Now consider the set S of all ξ∗ of the form

ξ∗ =
N∑

k=1

I∗k(T ∗x∗
k),

where
n∑

k=1

‖x∗
k‖2 ≤ 1

and given intervals I1 < I2 < · · · < In, I∗k is the adjoint of Ik regarded as an
operator. Then S ⊂ BX∗ . But if ξ ∈ X with ‖ξ‖X = 1, and if ε > 0, we can
find I1 < I2 < · · · < IN so that(

N∑
k=1

∥∥∥∑
i∈Ik

ξ(i)xi

∥∥∥2
)1/2

> 1− ε.
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Hence we can find x∗
1, x

∗
2, . . . , x

∗
n with

∑n
j=1 ‖x∗

j‖2 ≤ 1 and

N∑
k=1

x∗
(∑

i∈Ik

ξ(i)x∗
k(xi)

)
> 1− ε

or, equivalently, 〈
ξ,

N∑
k=1

I∗kT ∗x∗
k

〉
> 1− ε.

Thus the set S norms X and hence its weak∗ closed convex hull cow∗
(S)

coincides with BX∗ by a simple Hahn-Banach argument.
It remains only to show that if ξ∗ ∈ S then (13.1)-(13.4) hold. Suppose

ξ∗ =
N∑

k=1

I∗kx∗
k

with
∑N

k=1 ‖x∗
k‖2 ≤ 1. If one of the intervals Ik includes [m,n] we just put

η∗ = ζ∗ = 0 and ψ∗ = ξ∗. If not, we let

η∗ =
∑

m<Ik

I∗kx∗
k

and ζ∗ = ξ∗ − η∗, ψ∗ = 0, and we are done.
��

Lemma 13.1.5. T ∗(X∗)⊕ Y = X ∗.

Proof. Let us suppose that ‖ξ∗‖X∗ = 1 and let d = d(ξ∗,Y∗ + T ∗(X∗)). For
every pair m ≤ n we can write ξ∗ = η∗

m,n + ζ∗m,n + ψ∗
m,n so that (13.1)-(13.4)

hold for η∗ = η∗
m,n, ζ∗ = ζm,n, and ψ∗ = ψ∗

m,n.
We observe that ζ∗m,n ∈ Y, and so

‖η∗
m,n‖X + ‖ψ∗

m,n‖X∗ ≥ d.

Now
(‖η∗

m,n‖2X + ‖ζ∗m,n‖2X )
1
2 − ‖η∗

m,n‖2X ≤ 1− d

which yields
1− (1− ‖ζ∗m,n‖2X∗)1/2 ≤ 1− d

or, equivalently,
‖ζ∗m,n‖X∗ ≤ (1− d2)1/2.

By compactness we can pick a subsequence M = (nk)∞k=1 so that, keeping m
fixed,

lim
k→∞

η∗
m,nk

= η∗
m, lim

k→∞
ζ∗m,nk

= ζ∗m, lim
k→∞

ψ∗
m,nk

= ψ∗
m
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all exist in the weak∗ topology.
It follows that ‖ζ∗m‖X∗ ≤ (1 − d2)1/2. It is also elementary to see by

Alaoglu’s theorem that there exists x∗ ∈ BX∗ so that ψ∗(ej) = T ∗x∗(ej)
for m ≤ j <∞. Hence ψ∗ − T ∗x∗ ∈ Y, i.e., ψ∗ ∈ T ∗X∗ + Y. Therefore,

d ≤ ‖η∗
m‖X∗ + ‖ζ∗m‖X∗ ≤ ‖η∗

m‖X∗ + (1− d2)1/2,

and so
‖η∗

m‖X∗ ≥ d− (1− d2)
1
2 .

This yields
‖ψ∗

m‖X∗ ≤ 1− d + (1− d2)1/2.

The next step is to let m→∞; by passing again to a subsequence we can
ensure that

lim
k→∞

η∗
mk

= η∗, lim
k→∞

ζ∗mk
= ζ∗, lim

k→∞
ψ∗

mk
= ψ∗

all exist in the weak∗ topology. But it is clear from the construction that
η∗ = 0, so ξ∗ = ζ∗ + ψ∗ and therefore

1 = ‖ξ∗‖X∗ ≤ (1− d) + 2(1− d2)
1
2 .

Hence 5d2 ≤ 4 or, equivalently, d ≤ 2/
√

5 < 1.
This is enough to show T ∗(X∗) + Y = X ∗ since, if not, there exists ξ∗ ∈

BX∗ with d(ξ∗, T ∗(X∗) + Y) > 2/
√

5.
��

Theorem 13.1.6. For every separable Banach space X there is a separable
Banach space Z such that Z∗∗/Z is isomorphic to X. Furthermore Z∗ has a
shrinking basis.

Remark 13.1.7. The fact that Z∗ has a basis implies that Z has a basis:
this is deep result of Johnson, Rosenthal, and Zippin [94] which is beyond the
scope of this book.

Proof. We take Z = ker T in the above construction. We show that X can
then be identified canonically with Z∗∗. More precisely, we show that under
the pairing between X and Y we can identify Y with Z∗. The identification
is not isometric, however.

Clearly, if η∗ ∈ Y then η∗|Z ∈ Z∗. Conversely, suppose ζ∗ ∈ Z∗. By
the Hahn-Banach theorem there exists ξ∗ ∈ X ∗ such that ξ∗|Z = ζ∗. By
Lemma 13.1.5 there is a unique x∗ ∈ X∗ such that η∗ = ξ∗−T ∗x∗ ∈ Y. Then
η∗|Z = ζ∗. Note that

‖ζ∗‖Z∗ ≤ ‖η∗‖Y ≤ ‖ξ∗‖X∗ + ‖x∗‖ ≤ 2‖ζ∗‖Z∗ .

This completes the proof as Z∗∗/Z is isomorphic to X/ ker T , i.e., to X.
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Corollary 13.1.8.

(a) If X is a separable dual space then there is a Banach space Z with a
shrinking basis such that Z∗∗ ≈ Z ⊕X.

(b) If X is a separable reflexive space then there is a Banach space Z with a
boundedly-complete basis such that Z∗∗ ≈ Z ⊕X.

Proof. (a) If X = Y ∗ construct Z as above so that Z∗∗/Z ≈ Y and then
Z∗∗∗/Z∗ ≈ X. Let Z = Z∗.

(b) In this case take Z = Z∗∗.
��

13.2 Constructing Banach spaces via trees

Let FN denote the family of all finite subsets of N. We introduce an ordering
on FN: given A = {m1,m2, . . . , mj} and E = {n1, n2, . . . , nk} in FN, we
write A ! E if and only if we have j ≤ k and mi = ni for 1 ≤ i ≤ j. This
means that A is the initial part of E. We will write A ≺ E if A ! E and
A �= E.

The partially ordered set (FN,!) is an example of a tree. This means that
for each A ∈ FN the set {E : E ! A} is both finite and totally ordered, and
is empty for exactly one choice of A, namely, A = ∅; the empty set is then the
root of the tree.

We will actually find it more convenient to consider the partially ordered
set F∗N of all nonempty sets in FN. This is not a tree as it has infinitely
many roots (i.e., the singletons); it is perhaps a forest.

A segment in F∗N is a subset of F∗N of the form S = S(A0, A1) = {E :
A0 ⊂ E ⊂ A1}. A subset A of F∗N is called convex (for the partial order !)
if given A0, A1 ∈ A we also have S(A0, A1) ⊂ A.

A branch B is a maximal totally ordered subset: this is easily seen to be a
sequence (An)∞n=1 of the form

An = {m1, . . . , mn}, n = 1, 2, . . . ,

where (mn)∞n=1 is a subsequence of N.
It will be convenient to introduce a coding, or labeling, of F∗N by the

natural numbers as follows. For A = {m1, . . . , mn} we define

ψ(A) = 2m1−1 + 2m2−1 + · · ·+ 2mn−1.

ψ : F∗N→ N is thus a bijection such that A ! E =⇒ ψ(A) ≤ ψ(E).
We can thus transport ! to N and define

m ! n⇔ ψ(m) ! ψ(n).
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We then consider (N,!) and we can similarly define segments, convex sets,
and branches in this partially ordered set. Note that intervals I = [m,n] for
the usual order on N are convex for the ordering ! .

The key idea of our construction is that we want to make a norm on
c00 = c00(N) which agrees with certain prescribed norms on c00(B) for every
branch B. For this we require certain compatibility assumptions.

Let us suppose that for every branch B in (N,!) we are given a norm ‖·‖B

on c00(B) and the family of norms ‖ · ‖B satisfy the following conditions:

‖Sξ‖B ≤ ‖ξ‖B , S ⊂ B, S an initial segment, (13.5)

and
‖ξ‖B = ‖ξ‖B′ , x ∈ c00(B) ∩ c00(B′). (13.6)

Condition (13.5) simply asserts that (en)n∈B is a monotone basis of the
completion XB of c00(B). The second condition asserts that the family of
norms is consistent on the intersections. We are next going to construct norms
on c00, such that (en)∞n=1 is a monotone basis, and whose restrictions to each
complete branch B reduce isometrically to the norms ‖ · ‖B .

Our first, simplest definition will not solve our problem but leads in itself
to an interesting example. We define

‖ξ‖X = sup
B∈B

‖Bξ‖, ξ ∈ c00, (13.7)

where B is the collection of all branches. Let X denote the completion of c00

under this norm.
The following proposition is quite trivial and we omit the proof.

Proposition 13.2.1. In the space X we have:

(i) (en)∞n=1 is a monotone basis.
(ii) ‖Bξ‖ ≤ ‖ξ‖ for each B ∈ B, and so XB is complemented in X .

Now let us try to use this. Let us suppose that X is a Banach space with
a normalized monotone basis (xn)∞n=1. Consider the branch generated by the
increasing sequence (mj)∞j=1, i.e., consisting of the sets Aj = {m1, . . . , mj}
for j = 1, 2, . . . . We define

∥∥∥ N∑
j=1

ξ(j)eψ(Aj)

∥∥∥
B

=
∥∥∥ N∑

j=1

ξ(j)xmj

∥∥∥
X

.

Obviously the restriction that (xn)∞n=1 is monotone can be circumvented by
simply renorming X. It is clear that we have:

Proposition 13.2.2. If X is a Banach space with a basis (xn)∞n=1 there is
a Banach space X with a basis (en)∞n=1 so that for every increasing sequence
(mj)∞j=1 the subsequence (xmj )

∞
j=1 of (xn)∞n=1 is equivalent to a complemented

subsequence (enj
)∞j=1 of (en)∞n=1.
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13.3 Pe�lczyński’s universal basis space

We are in position to prove the following surprising result due to Pe�lczyński
[174] (1969); our proof uses ideas of Schechtman [204]. We have seen by the
Banach-Mazur theorem (Theorem 1.4.3) that every separable Banach space
embeds in C[0, 1]; however, very few spaces embed as a complemented subspace
(for example, C[0, 1] has no complemented reflexive subspaces as we saw in
Proposition 5.6.4). It is therefore rather interesting that we can construct a
separable Banach space U with a basis so that every separable Banach space
with a basis is isomorphic to a complemented subspace of U ; moreover there
is exactly one such space. At the time of Pe�lczyński’s paper, the basis problem
was unsolved and so it was not clear whether it might be that every separable
Banach space was isomorphic to a complemented subspace of U ; indeed there
was hope that this space might lead to some resolution of the basis problem.
Later, Johnson and Szankowski [95] showed, using the negative solution of
the approximation property, that there is no separable Banach space which
contains a complemented copy of all separable Banach spaces.

Theorem 13.3.1 (Pe�lczyński’s universal basis space). There is a unique
separable Banach space U with a basis and with the property that every Banach
space with a basis is isomorphic to a complemented subspace of U.

Proof. To prove the existence of U it suffices to construct a Banach space X
with a basis (xn)∞n=1 so that every normalized basic sequence (in any Banach
space) is equivalent to a complemented subsequence of (xn)∞n=1. Then the
existence of U follows from Proposition 13.2.2.

To construct X we first find a sequence (fn)∞n=1 which is dense in the
surface of the unit ball of C[0, 1]. We define a norm on c00 by

‖ξ‖X = sup
k

∥∥∥ k∑
j=1

ξ(k)fk

∥∥∥
C[0,1]

, ξ ∈ c00.

X is the completion of (c00, ‖ · ‖X).
One readily checks that the canonical basis (en)∞n=1 is a monotone basis

of X.
C[0, 1] is universal for separable spaces, and if (gj)∞j=1 is a basic sequence

in C[0, 1] and ε > 0, we can find an increasing sequence (mj)∞j=1 so that

∞∑
j=1

‖gj − fmj
‖ < ε.

Taking ε small enough we can ensure that (fmj )
∞
j=1 is a basic sequence equiv-

alent to (gj)∞j=1. But then (emj
)∞j=1 is equivalent to (fmj

)∞j=1. This yields the
existence of U.
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Uniqueness is an exercise in the Pe�lczyński decomposition technique. It is
clear that �2(U) also has a basis, and so �2(U) is isomorphic to a complemented
subspace of U. Hence for some Y we have

U ≈ Y ⊕ �2(U) ≈ Y ⊕ �2(U)⊕ �2(U) ≈ U ⊕ �2(U) ≈ �2(U).

If V is any other space with the same properties then V is isomorphic to a
complemented subspace of U and U is isomorphic to a complemented subspace
of V . Hence, by Theorem 2.2.3, U ≈ V.

��
Notice that the basis of U which we implicitly constructed above has the

property that every normalized basic sequence in any Banach space is equiv-
alent to a complemented subsequence.

There is an unconditional basis form of the universal basis space, also
constructed by Pe�lczyński.

Theorem 13.3.2. There is a unique Banach space U1 with an unconditional
basis (un)∞n=1 and with the property that every Banach space with an uncon-
ditional basis is isomorphic to a complemented subspace of U1.

Proof. Suppose X is the space constructed in the preceding proof. Then we
can define a norm on c00 by

‖ξ‖U1 = sup
εj=±1

∥∥∥ ∞∑
j=1

εjξ(j)ej

∥∥∥
X

.

We leave to the reader the remaining details. See [174] and [204].
��

13.4 The James tree space

It is clear that if X is a separable Banach space with separable dual, then X
cannot contain a copy of �1. The aim of this section is to give the example
promised in Chapter 10 (Remark 10.2.3) of a separable Banach space which
does not contain a copy of �1, but has nonseparable dual.

Let us start by introducing a definition that will be useful in the remainder
of the section.

Definition 13.4.1. A basis (xn)∞n=1, with biorthogonal functionals (x∗
n)∞n=1,

in a Banach space X is said to satisfy a lower 2-estimate on blocks if there is
a constant C so that whenever I1, . . . , In are disjoint intervals of integers,

n∑
j=1

∥∥∥∑
k∈Ij

x∗
k(x)xk

∥∥∥2

≤ C‖x‖2.

We say that (xn)∞n=1 satisfies an exact lower 2-estimate on blocks if we may
take C = 1.
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Proposition 13.4.2. Suppose a basis (xn)∞n=1 of a Banach space X satisfies
a lower 2-estimate on blocks. Then,

(i) The formula

|||x||| = max

⎧⎨
⎩‖x‖, sup

( n∑
j=1

‖
∑
k∈Ij

x∗
k(x)xk‖2

)1/2

⎫⎬
⎭ , x ∈ X

defines an equivalent norm on X so that we have an exact lower 2-estimate
on blocks.

(ii) (xn)∞n=1 is boundedly complete.

Thus, X = [xn]∞n=1 is isomorphic to the dual of the space Y = [x∗
n]∞n=1.

Proof. We leave the verification of (i) to the reader. To show (ii), suppose

sup
n

∥∥∥ n∑
k=1

akxk

∥∥∥ <∞

but the series
∑∞

k=1 akxk does not converge. Then we may find disjoint inter-
vals I1 < I2 < . . . so that∥∥∥∑

k∈Ij

akxk

∥∥∥ ≥ δ > 0, j = 1, 2, . . . .

But then, if I1, . . . , In ⊂ {1, 2, . . . , N},

n
1
2 δ ≤ C

∥∥∥ N∑
k=1

akxk

∥∥∥,
and we get a contradiction.

��

Remark 13.4.3. In the particular case that (xn)∞n=1 satisfies an exact lower
2-estimate on blocks in Proposition 13.4.2, then the basis (xn)∞n=1 is monotone,
and hence X is isometrically identified with Y ∗.

In order to provide the aforementioned example we need to modify our
construction of X . Returning to our conditions on the branch norms ‖ · ‖B in
Section 13.2, we shall impose one further condition in addition to (13.5) and
(13.6). We shall assume that for any disjoint segments S1, . . . , Sn,

n∑
j=1

‖Sjξ‖2B ≤ ‖ξ‖2B , ξ ∈ c00(B). (13.8)

Thus we are assuming that for every branch B, the basis (en)n∈B of XB

satisfies an exact lower 2-estimate on blocks (for the obvious ordering). This, in
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turn, means by Proposition 13.4.2 that each such basis is boundedly-complete
and that XB can be identified isometrically with the dual of the space YB =
[e∗n]n∈B .

Notice that for any segment S, by (13.6) all the branch norms ‖ · ‖B for
which S ⊂ B agree on if c00(S). Thus if ξ ∈ c00, the value of ‖Sξ‖ is well-
defined for any segment S. We put

‖ξ‖X = sup

⎧⎨
⎩
( n∑

j=1

‖Sjξ‖2
)1/2

: S1, . . . , Sn disjoint segments

⎫⎬
⎭ ,

and let X be the completion of c00 with this norm.
We shall say that two subsets E,F ⊂ N are mutually incomparable (for

the order !) if m ∈ E and n ∈ F imply that neither m ! n nor n ! m can
hold. It is easy to see that the union of a family of mutually incomparable
convex sets is again convex.

Proposition 13.4.4. The norm ‖ · ‖X has the following properties:

(i) For any B ∈ B,
‖ξ‖B = ‖ξ‖X , ξ ∈ c00(B).

(ii) If E1, . . . , En are disjoint and convex,

n∑
j=1

‖Ejξ‖2X ≤ ‖ξ‖2X , ξ ∈ c00.

(iii) The basis (en)∞n=1 of X satisfies an exact lower 2-estimate on blocks.
(iv) If E1, . . . , En are convex and mutually incomparable then

n∑
j=1

‖Ejξ‖2X =
∥∥∥ n∑

j=1

Ejξ
∥∥∥2

X
≤ ‖ξ‖2X , ξ ∈ c00.

Proof. (i) follows directly from (13.8).
(ii) Given ε > 0, pick disjoint segments (Sjk)mn

k=1 for j = 1, 2, . . . , n so that

n∑
j=1

mn∑
k=1

‖SjkEjξ‖2 ≥
n∑

j=1

‖Ejξ‖2X − ε.

Let S′
jk = Ej ∩ Sjk. Then the family of segments (S′

jk)n,mn

j=1,k=1 is disjoint, so

n∑
j=1

mn∑
k=1

‖S′
jkξ‖2 ≤ ‖ξ‖2X .

Hence
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n∑
j=1

‖Ejξ‖2X − ε ≤ ‖ξ‖2X .

As ε > 0 is arbitrary, we are done.
(iii) Intervals are convex.
(iv) In this case, for ε > 0 pick disjoint segments S1, . . . , Sm so that

m∑
k=1

∥∥∥Sk

n∑
j=1

Ejξ
∥∥∥2

≥
∥∥∥ n∑

j=1

Ejξ
∥∥∥2

X
− ε.

Let S′
jk = Ej ∩ Sk. The assumption that the Ej ’s are mutually incomparable

implies that, for each k, S′
jk is nonempty for at most one j. Thus,

m∑
k=1

∥∥∥Sk

n∑
j=1

Ejξ
∥∥∥2

=
m∑

k=1

n∑
j=1

‖S′
jkξ‖2 ≤

n∑
j=1

‖Ejξ‖2X .

Hence, ∥∥∥ n∑
j=1

Ejξ
∥∥∥2

X
− ε ≤

n∑
j=1

‖Ejξ‖2X .

Since ε > 0, this establishes an inequality

∥∥∥ n∑
j=1

Ejξ
∥∥∥2

X
≤

n∑
j=1

‖Ejξ‖2X .

The reverse inequality follows from (ii).
Finally, since E1, . . . , En are incomparable, the union ∪m

j=1Ej is also con-
vex and, by (ii), ∥∥∥ n∑

j=1

Ejξ
∥∥∥
X
≤ ‖ξ‖X .

��

Remark 13.4.5. By (iii) of Proposition 13.4.4, we see that the basis (en)∞n=1

of X is boundedly-complete and that X can be isometrically identified with
the dual of Y = [e∗n]∞n=1 ⊂ X ∗.

For n ∈ N let Tn = {m : n ! m} and T+
n = {m : n ≺ m}.

Lemma 13.4.6. Suppose ξ ∈ c00 is supported on [1, N ] and η ∈ c00 is sup-
ported on [N + 1,∞). Then

‖ξ + η‖X ≤ (‖ξ‖2X + ‖η‖2X )
1
2 + N

1
2 sup

m≥N+1
‖Tmη‖X .
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Proof. Let δ = supm≥N+1 ‖Tmη‖X . Suppose ε > 0 and pick disjoint segments
(Sj)m

j=1 so that

‖ξ + η‖2X <
m∑

j=1

‖Sj(ξ + η)‖2 + ε.

We may assume the segments (Sj)m
j=1 are such that Sj ⊂ [1, N ] for 1 ≤ j < k,

Sj ⊂ [N + 1,∞) for l < j ≤ m, and that Sj meets both [1, N ] and [N + 1,∞)
for k ≤ j ≤ l where 0 ≤ k ≤ l + 1 ≤ m + 1 (taking account of the possibilities
that each collection might be empty!).

Then ∑
l<j≤m

‖Sj(ξ + η)‖2 ≤ ‖η‖2X .

But, if k ≤ j ≤ l,

‖Sj(ξ + η)‖ ≤ ‖Sjξ‖+ ‖Sjη‖ ≤ ‖Sjξ‖+ δ.

Thus,⎛
⎝ ∑

1≤j≤l

‖Sj(ξ + η)‖2
⎞
⎠1/2

≤

⎛
⎝ ∑

1≤j≤l

‖Sj(ξ)‖2
⎞
⎠1/2

+ (l − k + 1)
1
2 δ

≤ ‖ξ‖X + N
1
2 δ,

since l − k + 1 ≤ N as the sets Sj are disjoint. Hence,⎛
⎝ m∑

j=1

‖Sj(ξ + η)‖2
⎞
⎠1/2

≤ (‖ξ‖X + ‖η‖2X )
1
2 + N

1
2 δ,

and this completes the proof.
��

We now come to the main point of the construction. Let us recall that
whenever (Xi)i∈I is an uncountable family of Banach spaces, �∞(Xi)i∈I is
the Banach space of all (xi)i∈I ∈

∏
i∈I Xi such that (‖xi‖)i∈I is bounded,

with the norm
‖(xi)i∈I‖∞ = sup

i∈I
‖xi‖Xi

.

Similarly �2(Xi)i∈I is the Banach space of all (xi)i∈I ∈
∏

i∈I Xi such that
(‖xi‖Xi)i∈I ∈ �2(I) with the norm

‖(xi)i∈I‖2 =
(∑

i∈I
‖xi‖2Xi

)1/2

.

Proposition 13.4.7. Then Y∗∗/Y is isometrically isomorphic to the space
�2(Y ∗∗

B /YB)B∈B.
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Proof. Let us write Jn = [n,∞). Then if ξ∗ ∈ Y∗∗ = X ∗ we have ξ∗ ∈ Y if
and only if limn→∞ ‖J∗

nξ∗‖ = 0. Here we interpret Jn as an operator on X .
We will repeatedly use the following fact: If (An)∞n=1 is a sequence of

mutually incomparable convex sets then A = ∪∞
n=1 is also convex and AX =

�2(AnX ); this follows directly from Proposition 13.4.4 (iii). Hence if ξ∗ ∈ X ∗

we have

‖A∗ξ∗‖ =
( ∞∑

n=1

‖Anξ∗‖2
)1/2

.

Define a linear operator V : X ∗ → �∞(X∗
B)B∈B naturally by setting V ξ∗ =

(ξ∗|XB
)B∈B. V is clearly a norm-one operator and V (Y) ⊂ �∞(YB)B∈B.

The first step is to show that V −1
(
�∞(YB)B∈B

)
= Y. Suppose ξ∗ ∈ X ∗

and ξ∗|XB
∈ YB for every B ∈ B. This means that

lim
n→∞ ‖(Jn ∩B)∗ξ∗‖ = 0

for every branch B.
Fix a branch B. For each n ∈ B let T ′

n = T+
n \ Tn′ where n′ is the

successor of n in the branch. Then the sequence (T ′
n)n∈B consists of mutually

incomparable tree-convex sets. Hence

‖(∪n�mT ′
m)∗ξ∗‖ = (

∑
n�m

‖(T ′
m)∗ξ∗‖2) 1

2 , n ∈ B,

and so
lim

n→∞
n∈B

‖(∪n�mT ′
m)∗ξ∗‖ = 0.

Since ∪n�mT ′
m ∪ (Jn ∩B) = Tn, by the triangle law we have

lim
n→∞
n∈B

‖T ∗
nξ∗‖ = 0

for every branch B.
We next want to conclude that

lim
n→∞ ‖T

∗
nξ∗‖ = 0. (13.9)

Indeed, if there exists ε > 0 and infinitely many n so that ‖T ∗
nξ∗‖ ≥ ε, then

by the preceding reasoning we cannot find infinitely many belonging to one
branch. Hence we can pass to an infinite subset A so that if m,n ∈ A with
m < n then it is not true that m ! n. Then the sets {Tn}n∈A are mutually
incomparable. Hence ∑

n∈A

‖T ∗
nξ∗‖2 <∞

and this gives a contradiction. Thus (13.9) holds.
Assuming (13.9), let δn = supm≥n ‖T ∗

mξ∗‖. Let us fix m and ε > 0. Then
we may find ξ ∈ c00 with ‖ξ‖X = 1 and 〈ξ, J∗

mξ∗〉 > (1− ε)‖J∗
mξ∗‖. Choose r
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such that ξ(j) = 0 for j ≥ r. If n ≥ r, let A be the set of k ≥ n such that the
predecessor of k is less than or equal to n. There are at most n of such k. Then
the sets (Tk)k∈A are mutually incomparable and convex and ∪k∈ATk = Jn.
For 0 < ε < 1

2 identifying JnX with the �2-sum of the space TkX for k ∈ A
we can find η ∈ JnX ∩ c00 with ‖η‖X = 1 and

〈η, J∗
nξ∗〉 > (1− ε)‖J∗

nξ∗‖

in such a way that

‖Tkη‖ ≤ 2‖T ∗
nξ∗‖‖J∗

nξ∗‖−1, k ∈ A.

Hence,
sup
k∈A

‖Tkη‖ ≤ 2δn‖J∗
nξ∗‖−1.

Therefore,

(1− ε)
(
‖J∗

mξ∗‖+ ‖J∗
nξ∗‖

)
≤ 〈ξ + η, J∗

mξ∗〉
≤ ‖J∗

mξ∗‖‖ξ + η‖X
≤ ‖J∗

mξ∗‖(2 1
2 + r

1
2 sup

l≥r
‖Tlη‖)

≤ ‖J∗
mξ∗‖(2 1

2 + r
1
2 sup

l≥n
‖Tlη‖)

≤ ‖J∗
mξ∗‖(2 1

2 + 2r
1
2 δn‖J∗

nξ∗‖−1).

Assume limn→∞ ‖J∗
nξ∗‖ > 0. Then, letting n→∞, and then ε→ 0,

‖J∗
mξ∗‖+ lim

n→∞ ‖J
∗
nξ∗‖ ≤

√
2‖J∗

mξ∗‖,

and so
lim

n→∞ ‖J
∗
nξ∗‖ ≤ (

√
2− 1)‖J∗

mξ∗‖, m ∈ N.

Letting m → ∞ shows that limn→∞ ‖J∗
nξ∗‖ = 0 giving a contradiction. This

concludes the proof of the first step, i.e., V −1(�∞(YB)B∈B) = Y.
This yields a naturally induced one-to-one map,

Ṽ : Y∗∗/Y → �∞(Y ∗∗
B /Y )B∈B.

Let us show Ṽ maps into �2(Y ∗∗
B /Y )B∈B. Let Q be the quotient map of Y∗∗

onto Y∗∗/Y and QB be the corresponding quotient map of Y ∗∗
B onto Y ∗∗

B /Y.
If B1, . . . , Bn are distinct complete branches and ξ∗ ∈ X ∗ then we may pick
m large enough so that the branches Bj ∩ Jm are disjoint. Since they are
tree-convex we have∥∥∥ n∑

j=1

(Bj ∩ Jm)∗ξ∗
∥∥∥2

=
m∑

j=1

‖(Bj ∩ Jm)∗ξ∗‖2 ≤ ‖ξ∗‖2,
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which yields
n∑

j=1

‖QBj ξ
∗|XBj

‖2 ≤ ‖ξ∗‖2.

It follows that ‖Ṽ ‖ ≤ 1 as an operator from Y∗∗/Y into �2(Y ∗∗
B /Y )B∈B.

Finally we check that Ṽ is an onto isometry. Suppose we have a finitely
supported element u = (uB)B∈B in �2(Y ∗∗

B /Y )B∈B. For ε > 0 pick ξ∗B ∈ Y ∗
B =

B∗(X ∗) with ‖ξ∗B‖ ≤ (1 + ε)‖ξ∗B‖ and QBξ∗B = uB . Pick m large enough so
that the branches {B∩Jm : uB �= 0} are disjoint. Then let ξ∗ =

∑
uB �=0 J∗

mξ∗B ;
we have

‖ξ∗‖ = (
∑

uB �=0

‖J∗
mξ∗B‖2)

1
2 ≤ (1 + ε)(

∑
uB �=0

‖uB‖2)
1
2 = (1 + ε)‖u‖.

Since Ṽ Qξ∗ = u, Ṽ is an onto isometry.
��

In the following theorem we re-create an example due to James [87]. The
space X = Y∗ is usually called the James tree space and it is denoted J T .
James showed that �1 does not embed into J T but that J T ∗ is not separable.
Other examples were independently constructed by Lindenstrauss and Stegall
[134]. The next theorem is, in fact, due to Lindenstrauss and Stegall [134]. A
full account of James-type constructions can be found in [58].

Theorem 13.4.8. There is a Banach space Y such that Y∗ is separable and
Y∗∗/Y is isometric to �2(I) where I has the cardinality of the continuum.

Proof. We use the space J but with the basis of Problem 3.10 which is a
special case of the construction of Theorem 13.1.6. It is trivial to see that the
basis (en)∞n=1 of the space X constructed in Section 13.1 has an exact lower
2-estimate on blocks. To avoid confusion let us denote this norm now by ||| · |||.

Again we identify (N,!) with FN. Let B be the branch generated by the
increasing sequence (mj)∞j=1, i.e., consisting of the sets Aj = {m1, . . . , mj}.
We define the branch norms on c00 by

∥∥∥ n∑
j=1

ajeψ(Aj)

∥∥∥
B

=
∣∣∣∣∣∣∣∣∣ n∑

j=1

aje
∗
j

∣∣∣∣∣∣∣∣∣.
Letting our construction run its course we see that each Y ∗∗

B /Y is isometric
to R. The result is then immediate.

��

Theorem 13.4.9. The space Y∗ = J T has nonseparable dual but �1 does not
embed into J T .

Proof. Obviously, J T ∗ is nonseparable. Since J T is a dual space, it is com-
plemented in its bidual, and so J T ∗∗ = J T ⊕W where W can be identified
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as the dual of the space J T ∗/J T∗, and J T∗ is the predual Y given by the
construction. Hence, using Theorem 13.4.8, we conclude that W = �2(I) for
an uncountable set (I).

If �1 embeds in J T , then �∗∗1 = �∗∞ embeds in J T ∗∗. But �∞ = C(K)
for some uncountable compact Hausdorff space K, and hence using point
masses, the space �1(Γ) embeds into J T ∗∗ for some uncountable set Γ. Let
T : �1(Γ)→ JT ⊕W be an embedding and assume it has the form T = T1⊕T2

where T1 : �1(Γ)→ JT and T2 : �1(Γ)→W. Using the separability of J T we
may find a sequence of basis vectors (eγn

)∞n=1 so that (T1eγn
)∞n=1 converges.

Hence limn→∞ ‖T1(eγ2n − eγ2n+1)‖ = 0, so replacing the original sequence by
a subsequence we can assume that (T2(eγ2n − eγ2n+1))

∞
n=1 is a basic sequence

equivalent to the canonical basis of �1; this is absurd since W is a Hilbert
space.

��
In his 1974 paper [87], James showed that every infinite-dimensional sub-

space of J T contains a subspace isomorphic to a Hilbert space and thus
deduced Theorem 13.4.9.

Going back to Theorem 13.4.8 and using Theorem 13.1.6 it is clear we can
also prove:

Theorem 13.4.10. Let X be any separable dual space. Then there is a Ba-
nach space Z such that Z∗∗/Z is isomorphic to �2(X)i∈I where I has the
cardinality of the continuum.

Proof. Let X = Y ∗ and construct Z as in Section 13.1 so that Z∗∗/Z ≈ Y.
Using the canonical basis of Z as in Theorem 13.4.8 will give us a space Z so
that Z∗∗/Z is isomorphic to �2(Y ∗)i∈I .

��



A

Fundamental Notions

A normed space (X, ‖ · ‖) is a linear space X endowed with a nonnegative
function ‖ · ‖ : X → R called norm satisfying

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖αx‖ = |α|‖x‖ (α ∈ R, x ∈ X);
(iii) ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ (x1, x2 ∈ X).

A Banach space is a normed linear space (X, ‖·‖) that is complete in the metric
defined by ρ(x, y) = ‖x − y‖. BX will denote the closed unit ball of X, that
is, {x ∈ X : ‖x‖ ≤ 1}. Similarly, the open unit ball of X is {x ∈ X : ‖x‖ < 1}
and SX = {x ∈ X : ‖x‖ = 1} is the unit sphere of X.

A.1. Completeness Criterion. A normed space (X, ‖ · ‖) is complete if
and only if the (formal) series

∑∞
n=1 xn in X converges in norm whenever∑∞

n=1 ‖xn‖ converges.

A linear subspace Y of a Banach space (X, ‖ · ‖) is closed in X if and only
if (Y, ‖ · ‖Y ) is a Banach space, where ‖ · ‖Y denotes the restriction of ‖ · ‖ to
Y . If Y is a subspace of X, so is its closure Y .

Two norms ‖ · ‖ and ‖x‖0 on a linear space X are equivalent if there exist
positive numbers c, C such that for all x ∈ X we have

c‖x‖0 ≤ ‖x‖ ≤ C‖x‖0. (A.1)

An operator between two Banach spaces X, Y is a norm-to-norm continu-
ous linear map. The following conditions are equivalent ways to characterize
the continuity of a mapping T : X → Y with respect to the norm topologies
of X and Y :
(i) T is bounded, meaning T (B) is a bounded subset of Y whenever B is a
bounded subset of X.
(ii) T is continuous at 0.
(iii) There is a constant C > 0 such that ‖Tx‖ ≤ C‖x‖ for every x ∈ X.
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(iv) T is uniformly continuous on X.
(v) The quantity ‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1} is finite.

The linear space of all continuous operators from a normed space X into
a Banach space Y with the usual operator norm:

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}

is a Banach space that will be denoted by L(X, Y ). When X = Y we will put
L(X) = L(X, X).

The set of all functionals on a normed space X (that is, the continuous
linear maps from X into the scalars) is a Banach space, denoted by X∗ and
called the dual space of X. The norm of a functional x∗ ∈ X∗ is given by

‖x∗‖ = sup{|x∗(x)| : x ∈ BX}.

Let T : X → Y be an operator. T is called invertible if there exists an
operator S : Y → X so that TS is the identity operator on Y and ST is the
identity operator on X. When this happens S is said to be the inverse of T
and is denoted by T−1.

A.2. Existence of inverse operator. Let X be a Banach space. Suppose
that T ∈ L(X) is such that ‖IX − T‖ < 1 (IX denotes the identity operator
on X). Then T is invertible and its inverse is given by the Neumann series

T−1(x) = lim
n→∞

(
IX + (IX − T ) + (IX − T )2 + · · ·+ (IX − T )n

)
(x), x ∈ X.

An operator T between two normed spaces X, Y is an isomorphism if
T is a continuous bijection whose inverse T−1 is also continuous. That is, an
isomorphism between normed spaces is a linear homeomorphism. Equivalently,
T : X → Y is an isomorphism if and only if T is onto and there exist positive
constants c, C so that

c‖x‖X ≤ ‖Tx‖Y ≤ C‖x‖X

for all x ∈ X. In such a case the spaces X and Y are said to be isomorphic
and we write X ≈ Y . T is an isometric isomorphism when ‖Tx‖Y = ‖x‖X

for all x ∈ X.
An operator T is an embedding of X into Y if T is an isomorphism onto

its image T (X). In this case we say that X embeds in Y or that Y contains an
isomorphic copy of X. If T : X → Y is an embedding such that ‖Tx‖Y = ‖x‖X

for all x ∈ X, T is said to be an isometric embedding .

A.3. Extension of operators by density. Suppose that M is a dense linear
subspace of a normed linear space X, that Y is a Banach space, and that
T : M → Y is a bounded operator. Then there exists a unique continuous
operator T̃ : X → Y such that T̃ |M = T and ‖T̃‖ = ‖T‖. Moreover, if T is
an isomorphism or isometric isomorphism then so is T̃ .
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Given T : X → Y , the operator T ∗ : Y ∗ → X∗ defined as T ∗(y∗)(x) =
y∗(T (x)) for every y∗ ∈ Y ∗ and x ∈ X is called the adjoint of T and has the
property that ‖T ∗‖ = ‖T‖.

An operator T : X → Y between the Banach spaces X and Y is said to
be compact if T (BX) is relatively compact, that is, T (BX) is a compact set
in Y . If T : X → Y is compact then it is continuous.

An operator T : X → Y has finite rank if the dimension of its range T (X)
is finite.

A.4. Schauder’s Theorem. A bounded operator T from a Banach space X
into a Banach space Y is compact if and only if T ∗ : Y ∗ → X∗ is compact.

A bounded linear operator P : X → X is a projection if P 2 = P , i.e.,
P (P (x)) = P (x) for all x ∈ X; hence P (y) = y for all y ∈ P (X). A subspace
Y of X is complemented if there is a projection P on X with P (X) = Y . Thus
complemented subspaces of Banach spaces are always closed.

A.5. Property. Suppose Y is a closed subspace of a Banach space X. If Y
is complemented in X then Y ∗ is isomorphic to a complemented subspace of
X∗.

Let us finish this section by recalling that the codimension of a closed
subspace Y of a Banach space X is the dimension of the quotient space X/Y .

A.6. Subspaces of codimension one. Any two closed subspaces of codi-
mension 1 in a Banach space X are isomorphic.
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Elementary Hilbert Space Theory

An inner product space is a linear space X over the scalar field K = R or C

of X equipped with a function 〈·, ·〉 : X ×X → K called an inner product or
scalar product satisfying the following conditions:

(i) 〈x, x〉 ≥ 0 for all x ∈ X,
(ii) 〈x, x〉 = 0 if and only if x = 0,
(iii) 〈α1x1 + α2x2, y〉 = α1〈x1, y〉+ α2〈x2, y〉 if α1, α2 ∈ R and x1, x2, y ∈ X,
(iv) 〈x, y〉 = 〈y, x〉 for all x, y ∈ X. (The bar denotes complex conjugation.)

An inner product on X gives rise to a norm on X defined by ‖x‖ =
√
〈x, x〉.

The axioms of a scalar product yield the Schwarz Inequality:

|〈x, y〉| ≤ ‖x‖‖y‖ for allx and y ∈ X,

as well as the Parallelogram Law:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X. (B.1)

A Hilbert space is an infinite-dimensional inner product space which is com-
plete in the metric induced by the scalar product. Hilbert spaces enjoy very
nice properties to the extent of being the infinite-dimensional analogue of Eu-
clidean spaces. It turns out that given a Banach space (X, ‖ · ‖), there is an
inner product 〈·, ·〉 so that (X, 〈·, ·〉) is a Hilbert space with norm ‖ · ‖ if and
only if ‖ · ‖ satisfies (B.1).

Two vectors x, y in a Hilbert space X are said to be orthogonal, and we
write x ⊥ y, provided 〈x, y〉 = 0. If M is a subspace of X, we say that x is
orthogonal to M if and only if 〈x, y〉 = 0 for all y ∈ M . The closed subspace
M⊥ = {x ∈ X : 〈x, y〉 = 0 for all y ∈M} is called the orthogonal complement
of M .

A set S in X is said to be an orthogonal system when any two different
elements x, y of S are orthogonal. The vectors in an orthogonal system are
linearly independent. S is called orthonormal if it is orthogonal and ‖x‖ = 1
for each x ∈ S.
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Assume that X is separable and let C = {u1, u2, . . . } be a dense subset of
X. Using the Gram-Schmidt procedure, from C we can construct an orthonor-
mal sequence (vn)∞n=1 ⊂ X which has the added feature of being complete (or
total): whenever 〈x, vk〉 = 0 for all k implies x = 0. A basis of a Hilbert space
is a complete orthogonal sequence.

Let (vk)∞k=1 be an orthonormal (not necessarily complete) sequence in a
Hilbert space X. The inner products (〈x, vk〉)∞k=1 are the Fourier coefficients
of x with respect to (vk).

Suppose that x ∈ X can be expanded as a series x =
∑∞

k=1 akvk for some
scalars (ak). Then ak = 〈x, vk〉 for each k ∈ N. In fact, for every x ∈ X,
without any assumptions or knowledge about the convergence of the Fourier
series

∑∞
k=1〈x, vk〉vk, Bessel’s Inequality always holds:

∞∑
k=1

|〈x, vk〉|2 ≤ ‖x‖2.

B.1. Parseval’s Identity. Let (vk)∞k=1 be an orthonormal sequence in an
inner product space X. Then (vk) is complete if and only if

∞∑
k=1

|〈x, vk〉|2 = ‖x‖2 for every x ∈ X. (B.2)

In turn, equation (B.2) is equivalent to saying that

x =
∞∑

k=1

〈x, vk〉vk

for each x ∈ X.
Bessel’s inequality establishes that a necessary condition for a sequence of

numbers (ak)∞k=1 to be the Fourier coefficients of an element x ∈ X (relative to
a fixed orthonormal system (vk)) is that

∑∞
k=1 |ak|2 < ∞. The Riesz-Fischer

theorem tells us that, if (vk) is complete, this condition is also sufficient.

B.2. The Riesz-Fischer Theorem. Let X be a Hilbert space with complete
orthonormal sequence (vk)∞k=1. Assume that (ak)∞k=1 is a sequence of real num-
bers such that

∑∞
k=1 |ak|2 < ∞. Then there exists an element x ∈ X whose

Fourier coefficients relative to (vk) are (ak).

Thus from the isomorphic classification point of view, �2 with the regular
inner product of any two vectors a = (an)∞n=1 and b = (bn)∞n=1:

〈a, b〉 =
∞∑

n=1

anbn

is essentially the only separable Hilbert space. Indeed, combining B.1 with
B.2, we obtain that the map from X onto �2 given by
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x �→ (〈x, vk〉)∞k=1

is a Hilbert space isomorphism (hence an isometry).

B.3. Representation of functionals on Hilbert spaces. To every func-
tional x∗ on a Hilbert space X there corresponds a unique x ∈ X such that
x∗(y) = 〈y, x〉 for all y ∈ X. Moreover, ‖x∗‖ = ‖x‖.

Hilbert spaces are exceptional Banach spaces for many reasons. For in-
stance, the Gram-Schmidt procedure and the fact that subsets of separa-
ble metric spaces are also separable yield that every subspace of a separable
Hilbert space has an orthonormal basis. Another important property is that
closed subspaces are always complemented, which relies upon the existence of
unique minimizing vectors:

B.4. The Projection Theorem. Let F be a nonempty, closed, convex subset
of a Hilbert space X. For every x ∈ X there exists a unique y ∈ F such that

d(x, F ) = inf
y∈F

‖x− y‖ = ‖x− y‖.

In particular, every nonempty, closed, convex set in a Hilbert space contains
a unique element of smallest norm.

If F is a nonempty, closed, convex subset of a Hilbert space X, for every x ∈ X
the point y given by B.4, called the projection of x onto F , is characterized
by

y ∈ F and �〈x− y, y − y〉 ≤ 0 for all y ∈ F.

The map PF : X → F defined by PF (x) = y is a contraction; that is:

‖PF (x1)− PF (x2)‖ ≤ ‖x1 − x2‖ for all x1, x2 ∈ X,

therefore it is continuous.
If M is a closed subspace of X, then PM is a linear operator from X onto

M and PM (x) is the unique y ∈ X such that y ∈ M and x − y ∈ M⊥. PF

is called the orthogonal projection from X onto M . Thus, if M is a closed
subspace of a Hilbert space X then X = M ⊕M⊥.
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Main Features of Finite-Dimensional Spaces

Suppose that S = {x1, . . . , xn} is a set of independent vectors in a normed
space X of any dimension. Using a straightforward compactness argument it
can be shown that there exists a constant C > 0 (depending only on S) such
that for every choice of scalars α1, . . . , αn we have

C‖α1x1 + · · ·+ αnxn‖ ≥ |α1|+ · · ·+ |αn|.

This is the basic ingredient to obtain both C.1 and C.2.

C.1. Operators on finite-dimensional normed spaces. Suppose that T :
X → Y is a linear operator between the normed spaces X and Y . If X has
finite dimension then T is bounded. In particular any linear operator between
normed spaces of the same finite dimension is an isomorphism.

C.2. Isomorphic classification. Any two finite-dimensional normed spaces
(over the same scalar field) of the same dimension are isomorphic.

From C.2 one easily deduces the following facts:

• Equivalence of norms. If ‖ · ‖ and ‖ · ‖0 are two norms on a finite-
dimensional vector space X then they are equivalent. Consequently, if τ
and τ0 are the respective topologies induced on X by ‖ · ‖ and ‖ · ‖0 then
τ = τ0.

• Completeness. Any finite-dimensional normed space is complete.
• Closedness of subspaces. The finite-dimensional linear subspaces of a

normed space are closed.

The Heine-Borel Theorem asserts that a subset of Rn is compact if and
only if it is closed and bounded; combining this with C.2 we further deduce:

• Compactness. Let X be a finite-dimensional normed space and A be a
subset of X. Then A is compact if and only if A is closed and bounded.
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We know that the compact subsets of a Hausdorff topological space X are
closed and bounded. A general topological space X is said to have the Heine-
Borel property when the converse holds. The following lemma is not restricted
to finite-dimensional spaces and it is a source of interesting results in func-
tional analysis, as for instance the characterization of the normed spaces that
enjoy the Heine-Borel property which we write as a corollary.

C.3. Riesz’s Lemma. Let X be a normed space and Y be a closed proper
subspace of X. Then for each real number θ ∈ (0, 1) there exists an xθ ∈ SX

such that ‖y − xθ‖ ≥ θ for all y ∈ Y .

C.4. Corollary. Let X be a normed space. X is finite-dimensional if and only
if each closed bounded subset of X is compact.

Taking into account that in metric spaces compactness and sequential com-
pactness are equivalent we obtain:

C.5. Corollary. Let X be a normed space. X is finite-dimensional if and only
if every bounded sequence in X has a convergent subsequence.
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Cornerstone Theorems of Functional Analysis

D.1 The Hahn-Banach Theorem

D.1. The Hahn-Banach Theorem (Real Case). Let X be a real linear
space, Y ⊂ X a linear subspace, and p : X → R a sublinear functional, i.e.,

(i) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X (p is subadditive), and
(ii) p(λx) ≤ λp(x) for all x ∈ X and λ ≥ 0 (p is nonnegatively sub-

homogeneous).

Assume that we have a linear map f : Y → R such that f(y) ≤ p(y) for all
y ∈ Y . Then there exists a linear map F : X → R such that F |Y = f and
F (x) ≤ p(x) for all x ∈ X.

D.2. Normed-space version of the Hahn-Banach Theorem. Let y∗ be
a bounded linear functional on a subspace Y of a normed space X. Then there
is x∗ ∈ X∗ such that ‖x∗‖ = ‖y∗‖ and x∗|Y = y∗.

Let us note that this theorem says nothing about the uniqueness of the
extension unless Y is a dense subspace of X. Note also that Y need not be
closed.

D.3. Separation of points from closed subspaces. Let Y be a closed
subspace of a normed space X. Suppose that x ∈ X \ Y . Then there exists
x∗ ∈ X∗ such that ‖x∗‖ = 1, x∗(x) = d(x, Y ) = inf{‖x − y‖ : y ∈ Y }, and
x∗(y) = 0 for all y ∈ Y .

D.4. Corollary. Let X be a normed linear space and x ∈ X, x �= 0. Then
there exists x∗ ∈ X∗ such that ‖x∗‖ = 1 and x∗(x) = ‖x‖.

D.5. Separation of points. Let X be a normed linear space and x, y ∈ X,
x �= y. Then there exists x∗ ∈ X∗ such that x∗(x) �= x∗(y).
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D.6. Corollary. Let X be a normed linear space. For every x ∈ X we have

‖x‖ = sup
{
|x∗(x)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}
.

D.7. Corollary. Let X be a normed linear space. If X∗ is separable then so
is X.

D.2 Baire’s Theorem and its consequences

A subset E of a metric space X is nowhere dense in X (or rare) if its closure
E has empty interior. Equivalently, X is nowhere dense in X if and only if
X \E is (everywhere) dense in X. The sets of the first category in X (or, also,
meager in X) are those that are the union of countably many sets each of
which is nowhere dense in X. Any subset of X that is not of the first category
is said to be of the second category in X (or nonmeager in X). This density-
based approach to give a topological meaning to the size of a set is due to
Baire. Nowhere dense sets would be the “very small” sets in the sense of Baire
whereas the sets of the second category would play the role of the “large” sets
in the sense of Baire in a metric (or more generally in any topological) space.

D.8. Baire’s Category Theorem. Let X be a complete metric space. Then
the intersection of every countable collection of dense open subsets of X is
dense in X.

Let {Ei} be a countable collection of nowhere dense subsets of a complete
metric space X. For each i the set Ui = X \ Ei is dense in X, hence by
Baire’s theorem it follows that ∩Ui �= ∅. Taking complements we deduce
that X �= ∪Ei. That is, a complete metric space X cannot be written as a
countable union of nowhere dense sets in X. Therefore nonempty, complete
metric spaces are of the second category in themselves.

A function f from a topological space X into a topological space Y is open
if f(V ) is an open set in Y whenever V is open in X.

D.9. Open Mapping Theorem. Let X and Y be Banach spaces and let
T : X → Y be a bounded linear operator.

(i) If δBY = {y ∈ Y : ‖y‖ < δ} ⊆ T (BX) for some δ > 0 then T is an open
map.

(ii) If T is onto then the hypothesis of (i) holds. That is, every bounded oper-
ator from a Banach space onto a Banach space is open.

D.10. Corollary. If X and Y are Banach spaces and T is a continuous linear
operator from X onto Y which is also one-to-one then T−1 : Y → X is a
continuous linear operator.
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D.11. Closed Graph Theorem. Let X and Y be Banach spaces. Suppose
that T : X → Y is a linear mapping of X into Y with the following property:
whenever (xn) ⊂ X is such that both x = limxn and y = limTxn exist, it
follows that y = Tx. Then T is continuous.

D.12. Uniform Boundedness Principle. Suppose (Tγ)γ∈Γ is a family of
bounded linear operators from a Banach space X into a normed linear space
Y . If sup{‖Tγx‖ : γ ∈ Γ} is finite for each x in X then sup{‖Tγ‖ : γ ∈ Γ} is
finite.

D.13. Banach-Steinhaus Theorem. Let (Tn) be a sequence of continuous
linear operators from a Banach space X into a normed linear space Y such
that

Tx = lim
n

Tnx

exists for each x in X. Then T is continuous.

D.14. Partial Converse of the Banach-Steinhaus Theorem. Let (Sn)
be a sequence of operators from a Banach space X into a normed linear space
Y such that supn ‖Sn‖ < ∞. Then, if T : X → Y is another operator, the
subspace

{x ∈ X : ‖Snx− Tx‖ → 0}

is norm-closed in X.
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Convex Sets and Extreme Points

Let S be a subset of a vector space X. S is convex if λx + (1 − λ)y ∈ S
whenever x, y ∈ S and 0 ≤ λ ≤ 1. Notice that every subspace of X is convex
and if a subset S is convex so is each of its translates x+S = {x+ y : y ∈ S}.
If X is a normed space and S is convex then so is its norm-closure S.

Given a real linear space X, let F and K be two subsets of X. A linear
functional f on X is said to separate F and K if there exists a number α such
that f(x) > α for all x ∈ F and f(x) < α for all x ∈ K. As an application of
the Hahn-Banach theorem we have:

E.1. Separation of convex sets. Let X be a locally convex space and K, F
be disjoint closed convex subsets of X. Assume that K is compact. Then there
exists a continuous linear functional f on X that separates F and K.

The convex hull of a subset S of a linear space X, denoted co(S), is the
smallest convex set that contains S. Obviously, such a set always exists since
X is convex and the arbitrary intersection of convex sets is convex, and can
be described analytically by

co(S) =
{ n∑

i=1

λixi : (xi)n
i=1 ⊂ S, λi ≥ 0 and

n∑
i=1

λi = 1;n ∈ N

}
.

If X is equipped with a topology τ , coτ (S) will denote the closed convex hull
of S, i.e., the smallest τ -closed, convex set which contains S (that is, the
intersection of all τ -closed convex sets that include S). The closed convex hull
of S with respect to the norm topology will be simply denoted by co(S). Let
us observe that, in general, coτ (S) �= co(S)

τ
but that the equality holds if τ

is a vector topology on X.
If S is convex, a point x ∈ S is an extreme point of S if whenever x =

λx1 + (1 − λ)x2 with 0 < λ < 1, then x = x1 = x2. Equivalently, x is an
extreme point of S if and only if S \ {x} is still convex. ∂e(S) will denote the
set of extreme points of S.
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E.2. The Krein-Milman Theorem. Suppose X is a locally convex topo-
logical vector space. If K is a compact convex set in X then K is the closed
convex hull of its extreme points. In particular, each convex compact subset of
a locally convex topological vector space has an extreme point.

E.3. Milman’s Theorem. Suppose X is a locally convex TVS. Let K be
closed and compact1. If u is an extreme point of co(K) then u ∈ K.

E.4. Schauder’s Fixed Point Theorem. Let K be a closed convex subset
of a Banach space X. Suppose T : X → X is a continuous linear operator
such that T (K) ⊂ K and T (K) is compact. Then there exists at least one
point x in K such that Tx = x.

1 Notice that we are not assuming that X has any topological separation properties.
If X is Hausdorff then every compact subset of X is automatically closed.
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The Weak Topologies

Let X be a normed vector space. The weak topology of X, usually denoted w-
topology or σ(X, X∗)-topology, is the weakest topology on X such that each
x∗ ∈ X∗ is continuous. This topology is linear (addition of vectors and mul-
tiplication of vectors by scalars are continuous) and a base of neighborhoods
of 0 ∈ X is given by the sets of the form

Vε(0;x∗
1, . . . , x

∗
n) =

{
x ∈ X : |x∗

i (x)| < ε, i = 1, . . . , n
}
,

where ε > 0 and {x∗
1, . . . , x

∗
n} is any finite subset of X∗. Obviously this defines

a non-locally bounded, locally convex topology on X. One can also give an
alternative description of the weak topology via the notion of convergence of
nets: take a net (xα) in X; we will say that (xα) converges weakly to x0 ∈ X,
and we write xα

w→ x0, if for each x∗ ∈ X∗

x∗(xα)→ x∗(x0).

Next we summarize some elementary properties of the weak topology of a
normed vector space X, noting that it is in the setting of infinite-dimensional
spaces that the different natures of the weak and norm topologies become
apparent.

• If X is infinite-dimensional, every nonempty weak open set of X is un-
bounded.

• A subset S of X is norm-bounded if and only if S is weakly bounded (that
is, {x∗(a) : a ∈ S} is a bounded set in the scalar field of X for every
x∗ ∈ X∗).

• If the weak topology of X is metrizable then X is finite-dimensional.
• If X is infinite-dimensional then the weak topology of X is not complete.
• A linear functional on X is norm-continuous if and only if it is continuous

with respect to the weak topology.
• Let T : X → Y be a linear map. T is weak-to-weak continuous if and only

if x∗ ◦ T ∈ X∗ for every x∗ ∈ X∗.
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• A linear map T : X → Y is norm-to-norm continuous if and only if T is
weak-to-weak continuous.

F.1. Mazur’s Theorem. If S is a convex set in a normed space X then the
closure of S in the norm topology, S, coincides with S

w
, the closure of S in

the weak topology.

F.2. Corollary. If Y is a linear subspace of a normed space X then Y = Y
w
.

F.3. Corollary. If S is any subset of a normed space X then co(S) = cow(S).

F.4. Corollary. Let (xn) be a sequence in a normed space X that converges
weakly to x ∈ X. Then there is a sequence of convex combinations of the xn,
yk =

∑N(k)
i=k λixi, k = 1, 2, . . . , such that ‖yk − x‖ → 0.

Let us turn now to the weak∗ topology on a dual space X∗. Let j : X →
X∗∗ be the natural embedding of a Banach space in its second dual, given
by j(x)(x∗) = x∗(x). As usual we identify X with j(X) ⊂ X∗∗. The weak∗

topology on X∗, denoted w∗-topology or σ(X∗, X)-topology, is the topology
induced on X∗ by X, i.e., it is the weakest topology on X∗ that makes all
linear functionals in X ⊂ X∗∗ continuous.

Like the weak topology, the weak∗ topology is a locally convex, Hausdorff
linear topology and a base of neighborhoods at 0 ∈ X∗ is given by the sets of
the form

Wε(0;x1, . . . , xn) =
{
x∗ ∈ X∗ : |x∗(xi)| < ε for i = 1, . . . , n

}
,

for any finite subset {x1, . . . , xn} ∈ X and any ε > 0. Thus by translation we
obtain the neighborhoods of other points in X∗.

As before, we can equivalently describe the weak∗ topology of a dual space
in terms of convergence of nets: we say that a net (x∗

α) ⊂ X∗ converges weak∗

to x∗
0 ∈ X∗, and we write x∗

α
w∗
→ x∗

0, if for each x ∈ X

x∗
α(x)→ x∗

0(x).

Of course, the weak∗ topology of X∗ is no bigger than its weak topology
and, in fact, σ(X∗, X) = σ(X∗, X∗∗) if and only if j(X) = X∗∗ (that is, if
and only if X is reflexive). Notice also that when we identify X with j(X)
and consider X as a subspace of X∗∗ this is not simply an identification of
sets; actually

(X, σ(X, X∗))
j−→ (X, σ(X∗∗, X∗))

is a linear homeomorphism. Analogously to the weak topology, dual spaces
are never w∗-metrizable or w∗-complete unless the underlying space is finite-
dimensional. The most important feature of the weak∗ topology is the fol-
lowing compactness property, basic to modern functional analysis, which was
discovered by Banach in 1932 for separable spaces and was extended to the
general case by Alaoglu in 1940.
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F.5. The Banach-Alaoglu Theorem. If X is a normed linear space then
the set BX∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} is weak∗-compact.

F.6. Corollary. The closed unit ball BX∗ of the dual of a normed space X is
the weak∗ closure of the convex hull of the set of its extreme points:

BX∗ = cow∗(
∂e(BX∗)

)
If X is a non reflexive Banach space then X cannot be dense nor weak

dense in X∗∗. However, it turns out that X must be weak∗ dense in X∗∗, as
deduced from the next useful result, which is a consequence of the fact that
the weak∗ dual of X∗ is X.

F.7. Goldstine’s Theorem. Let X be a normed space. Then BX is weak∗

dense in BX∗∗ .

F.8. The Banach-Dieudonné Theorem. Let C be a convex subset of a dual
space X∗. Then C is weak∗-closed if and only if C ∩λBX∗ is weak∗-closed for
every λ > 0.

F.9. Proposition. Let X and Y be normed spaces and suppose that T : X →
Y is a linear mapping.

(i) If T is norm-to-norm continuous then its adjoint T ∗ : Y ∗ → X∗ is weak∗-
to-weak∗ continuous.

(ii) If R : Y ∗ → X∗ is a weak∗-to-weak∗ continuous operator then there is
T : X → Y norm-to-norm continuous such that T ∗ = R.

F.10. Corollary. Suppose X, Y are normed spaces. Then every weak∗-to-
weak∗ continuous linear operator from X∗ to Y ∗ is norm-to-norm continuous.

Let us point out here that the converse of Corollary F.10 is not true in
general.



G

Weak Compactness of Sets and Operators

A subset A of a normed space X is said to be [relatively] weakly compact if
[the weak closure of] A is compact in the weak topology of X.

G.1. Proposition. If K is a weakly compact set of normed space X then K
is norm-closed and norm-bounded.

G.2. Proposition. Let X be a Banach space. Then BX is weakly compact if
and only if X is reflexive.

This proposition yields the first elementary examples of weakly compact
sets, which we include in the next corollary.

G.3. Corollary. Let X be a reflexive space.

(i) If A is a bounded subset of X then A is relatively weakly compact.
(ii) If A is a convex, bounded, norm-closed subset of X then A is weakly

compact.
(iii) If T : X → Y is a continuous linear operator then T (BX) is weakly

compact in Y .

When X is not reflexive, in order to check if a given set is relatively weakly
compact we can employ the characterization provided by the following result.

G.4. Proposition. A subset A of a Banach space X is relatively weakly com-
pact if and only if it is norm-bounded and the σ(X∗∗, X∗)-closure of A in X∗∗

is contained in A.

The most important result on weakly compact sets is the Eberlein-S̆mulian
theorem, which we included in Chapter 1 (Theorem 1.6.3). This is indeed a
very surprising result; when we consider X endowed with the norm topology,
in order that every bounded sequence in X have a convergent subsequence
it is necessary and sufficient that X be finite-dimensional. If X is infinite-
dimensional the weak topology is not metrizable, thus sequential extraction
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arguments would not seem to apply in order to decide whether a subset of
X is weakly compact. The Eberlein-S̆mulian theorem, oddly enough, tells us
that a bounded subset A is weakly compact if and only if every sequence in
A has a subsequence weakly convergent to some point of A.

A bounded linear operator T : X → Y is said to be weakly compact if the
set T (BX) is relatively weakly compact, that is, if T (BX) is weakly compact.
Since every bounded subset of X is contained in some multiple of the unit
ball of X, we have that T is weakly compact if and only if it maps bounded
sets into relatively weakly compact sets. Using the Eberlein-S̆mulian theorem
one can further state that T : X → Y is weakly compact if and only if for
every bounded sequence (xn)∞n=1 ⊂ X the sequence (Txn)∞n=1 has a weakly
convergent subsequence.

G.5. Gantmacher’s Theorem. Suppose X and Y are Banach spaces and
let T : X → Y be a bounded linear operator. Then:

(i) T is weakly compact if and only if the range of its double adjoint T ∗∗ :
X∗∗ → Y ∗∗ is in Y , i.e., T ∗∗(X∗∗) ⊂ Y .

(ii) T is weakly compact if and only if its adjoint T ∗ : Y ∗ → X∗ is weak∗-to-
weak continuous.

(iii) T is weakly compact if and only if its adjoint T ∗ is.

The next remarks follow easily from what has been said in this section:

• Let T : X → Y be an operator. If X or Y are reflexive then T is weakly
compact;

• The identity map on a nonreflexive Banach space is never weakly compact;
• A Banach space X is reflexive if and only if X∗ is.
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Blackboard bold symbols

N The natural numbers.
Q The rational numbers.
R The real numbers.
C The complex numbers.
T The unit circle in the complex plane, {z ∈ C : |z| = 1}.
P A probability measure on some probability space (Ω, Σ, P)

(Section 6.2).
Ef The expectation of a random variable f (Section 6.2).

Classical Banach spaces

L∞(µ) The (equivalence class) of µ-measurable essentially bounded
real-valued functions f with the norm ‖f‖∞ := inf{α > 0 :
µ(|f | > α) = 0}.

Lp(µ) The (equivalence class) of µ-measurable real-valued functions
f so that ‖f‖p := (

∫
|f |p dµ)1/p <∞.

Lp(T) Lp(µ) when µ is the normalized Lebesgue measure on T.
Lp Lp(µ) when µ is the Lebesgue measure on [0, 1].
C(K) The continuous real-valued functions on the compact space

K.
CC(K) The continuous complex-valued functions on the compact

space K.
J The James space (Section 3.4).
J T The James tree space (Section 13.4).
M(K) The finite regular Borel signed measures on the compact space

K.
�∞ The collection of bounded sequences of scalars x = (xn)∞n=1,

with the norm ‖x‖∞ = supn |xn|.
�n
∞ Rn equipped with the ‖ · ‖∞ norm.
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�p Lp(µ) when µ is the counting measure on P(N), that is, the
measure defined by µ(A) = |A| for any A ⊂ N. Equivalently,
the collection of all sequences of scalars x = (xn)∞n=1 so that
‖x‖p := (

∑∞
n=1 |xn|p)1/p <∞.

�n
p Rn equipped with the ‖ · ‖p norm.

c The convergent sequences of scalars under the ‖ · ‖∞ norm.
c0 The sequences of scalars that converge to 0 endowed with the

‖ · ‖∞ norm.
c00 The (dense) subspace of c0 of finitely nonzero sequences.

Important constants

Cq(X) The cotype-q constant of the Banach space X (Section 6.2).
KG The best constant in Grothendieck inequality (Section 8.1).
Ks The suppression constant of an unconditional basis (Sec-

tion 3.1).
Ku The unconditional basis constant (Section 3.1).
Tp(X) The type-p constant of the Banach space X (Section 6.2).

Operator-related symbols

T ∗ The adjoint operator of T .
T 2 The composition operator of T with itself, T ◦ T .
IX The identity operator on X.
j The canonical embedding of X into its second dual X∗∗.
〈x, x∗〉 The action of a functional x∗ in X∗ on a vector x ∈ X, also

represented by x∗(x).
kerT The null space of T ; that is, T−1(0).
T (X) The range (or image) of an operator T defined on X.
T |E The restriction of the operator T to the subspace E of the

domain space.
πp(T ) The p-absolutely summing norm of T (Section 8.2).

Distinguished sequences of functions

(hn)∞n=1 The Haar system (Section 6.1).
(rn)∞n=1 The Rademacher functions (Section 6.3).
(εn)∞n=1 A Rademacher sequence (Section 6.2).

Sets and subspaces

BX The closed unit ball of a normed space X.
〈A〉 The linear span of a set A.
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[A] The closed linear span of a set A; i.e., the norm-closure of
〈A〉.

[xn] The norm-closure of 〈xn : n ∈ N〉.
S or S

‖·‖
The closure of a set S of a Banach space in its norm topology.

S
w

or S
weak

The closure of a set S of a Banach space in its weak topology.
S

w∗
or S

weak∗
The closure of a set S of a dual space in its weak∗ topology.

M⊥ The annihilator of M in X∗, i.e., the collection of all contin-
uous linear functionals on the Banach space X which vanish
on the subset M of X.

∂e(S) The set of extreme points of a convex set S.
Ã or X \A The complement of A in X.
PA The collection of all subsets of a (usually infinite) set A.
P∞A The collection of all infinite subsets of an A.
FA The collection of all finite subsets of an A.
FrA The collection of all finite subsets of an A of cardinality r.

Abbreviations for properties

(BAP) Bounded approximation property (Problems section of Chap-
ter 1).

(DPP) Dunford-Pettis property (Section 5.4).
(KMP) Krein-Milman property (Section 5.4).
(MAP) Metric approximation property (Problems section of Chap-

ter 1).
(RNP) Radon-Nikodym property (Section 5.4).
(u) Pe�lczyński’s property (u) (Section 3.5).
(UTAP) Uniqueness of unconditional basis up to a permutation (Sec-

tion 9.3).
wsc Weakly sequentially complete space (Section 2.3).
(WUC) Weakly unconditionally Cauchy series (Section 2.4).

Miscellaneous

sgn t =

{
t/|t| if t �= 0
0 if t = 0.

χA The characteristic function of a set A, χA(x) =

{
1 ifx ∈ A

0 ifx /∈ A.

X ≈ Y X isomorphic to Y .
| · | The absolute value of a real number, the modulus of a com-

plex number, the cardinality of a finite set, or the Lebesgue
measure of a set, depending on the context.

δs The Dirac measure at the point s, whose value at f ∈ C(K)
is δs(f) = f(s).



352 List of Symbols

δjk The Kronecker delta: δjk = 1 if j = k, and δjk = 0 if j �= k.
X ⊕ Y Direct sum of X and Y .
X2 = X ⊕X.
�p(Xn) = (X1⊕X2⊕ · · · )p, the infinite direct sum of the sequence of

spaces (Xn)∞n=1 in the sense of �p (Section 2.2).
c0(Xn) = (X1⊕X2⊕ · · · )0, the infinite direct sum of the sequence of

spaces (Xn)∞n=1 in the sense of c0 (Section 2.2).
�n
∞(X) = (X ⊕ · · · ⊕ X)∞, i.e., the space of all sequences x =

(x1, . . . , xn) so that xk ∈ X for 1 ≤ k ≤ n, with the norm
‖x‖ = sup1≤k≤n ‖xk‖X .

�∞(Xi)i∈I The Banach space of all (xi)i∈I ∈
∏

i∈I Xi such that (‖xi‖)i∈I
is bounded, with the norm ‖(xi)i∈I‖∞ = supi∈I ‖xi‖Xi

.
d(x, A) The distance from a point x to the set A in a normed space:

infa∈A ‖x− a‖.
d(X, Y ) The Banach-Mazur distance between two isomorphic Banach

spaces X, Y (Section 7.4).
dX The Euclidean distance of X (Section 12.1).
E The conditional expectation operator (Section 6.1), and also

an ellipsoid (Section 12.1).
∆ The Cantor set (Section 1.4).
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[8] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
[9] S. Banach and S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4

(1933), 100–112.
[10] B. Beauzamy, Introduction to Banach spaces and their geometry, North-Holland

Mathematics Studies, vol. 68, North-Holland, Amsterdam, 1982, Notas de
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des espaces et des algèbres de Banach, Studia Math. 41 (1972), 315–334.
(French)

[34] A. M. Davie, The approximation problem for Banach spaces, Bull. London
Math. Soc. 5 (1973), 261–266.

[35] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pe�lczyński, Factoring weakly
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finie représentation de lp dans un espace de Banach, Israel J. Math. 39 (1981),
341–348. (French, with English summary)

[124] P. Lévy, Problèmes concrets d’analyse fonctionnelle. Avec un complément sur
les fonctionnelles analytiques par F. Pellegrino, Gauthier-Villars, Paris, 1951,
2d ed. (French)

[125] D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to
l1(Γ ), J. Funct. Anal. 12 (1973), 177–187.
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Spécialisés [Specialized Courses], vol. 12, Société Mathématique de France,
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(1933), 33–37.
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Kwapień-Maurey theorem, 187, 195,

203

Lebesgue dominated convergence
theorem, 106

Lemberg, H., 278
Levy lemma, 156
Levy’s isoperimetric inequality, 293
Lewis-Stegall theorem, 122
Li, D., VII
Lindenstrauss, J., V, VII, 35, 36, 47, 66,

118, 121, 122, 165, 195, 214, 221,
229–232, 234, 245, 272, 285, 289,
297, 301, 302, 305, 307, 309, 324

Lipschitz map, 148
Littlewood, J. E., 133
Lorentz sequence spaces, 245
Lozanovskii factorization, 307
Lozanovskii, G. Ja., 307
Lvov school, 15, 16

Maurey, B., VI, 36, 69, 137, 165, 166,
178, 187, 190, 195, 254, 260, 285,
293

Maurey-Nikishin factorization theorems,
165

Mazur theorem, 344
Mazur weak basis theorem, 25
Mazur, S., 15, 16, 19, 36
McCarthy, C. A., 235
metric approximation property, 26, 286
Miljutin lemma, 93
Miljutin theorem, 94
Miljutin, A. A., 73, 87, 88, 93
Milman theorem, 301, 342
Milman’s quotient-subspace theorem,

301
Milman, V. D., 143, 258, 285, 289, 295,

297, 301, 302, 307
Minkowski’s inequality

reverse of, 141

Mitjagin, B. S., 302

Nachbin, L., 79, 81
Nazarov, F. L., 129
Neumann series, 328
Nikishin, E. M., 165, 166, 172, 192
Nordlander, G., 140
norm, 327

equivalent, 327
of an operator, 328

Odell, E., 160, 254, 259
open mapping theorem, 338
operator, 327

2-absolutely summing, 210, 212, 219
extension, 210

p-absolutely summing, 206, 211, 219
absolutely summing, 205
absolutely summing norm, 205
adjoint, 329, 345, 348
compact, 42, 329

on c0, 41
completely continuous, 115
double adjoint, 348
Dunford-Pettis, 115, 123, 211
existence of inverse, 328
extension by density, 328
factorization of, 165
finite rank, 25, 329
Hilbert-Schmidt, 212, 218, 219
Hilbert-Schmidt norm, 212
on c0, 40, 42
on finite-dimensional spaces, 335
positive, 192
semi-Fredholm, 272
strictly singular, 33, 42, 48, 118
weakly compact, 42, 348

on C(K), 117, 118
on L1(µ), 117, 119

Orlicz function, 70, 245
Orlicz property, 163
Orlicz sequence spaces, 70
Orlicz, W., 15, 44, 137, 140
Orlicz-Pettis theorem, 43
orthogonal complement, 331
orthogonal projection, 333

Paley, R. E. A. C., 128, 218
parallelogram law, 331

generalized, 137



Index 371

Parseval identity, 332
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