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Preface

This book presents fundamental material that should be part of the
education of every practicing mathematician. This material will also
be of interest to computer scientists, physicists, and engineers.

Complex analysis is also known as function theory. In this text
we address the theory of complex-valued functions of a single complex
variable. This is a prerequisite for the study of many current and
rapidly developing areas of mathematics, including the theory of several
and infinitely many complex variables, the theory of groups, hyperbolic
geometry and three-manifolds, and number theory. Complex analysis
has connections and applications to many other many other subjects
in mathematics, and also to other sciences as an area where the classic
and the modern techniques meet and benefit from each other. We will
try to illustrate this in the applications we give.

Because function theory has been used by generations of practicing
mathematicians working in a number of different fields, the basic re-
sults have been developed and redeveloped from a number of different
perspectives. We are not wedded to any one viewpoint. Rather we
will try to exploit the richness of the subject and explain and interpret
standard definitions and results using the most convenient tools from
analysis, geometry, and algebra.

The key first step in the theory is to extend the concept of dif-
ferentiability from real-valued functions of a real variable to complex-
valued functions of a complex variable. Although the definition of com-
plex differentiability resembles the definition of real differentiability, its
consequences are profoundly different. A complex-valued function of a
complex variable that is differentiable is called holomorphic or analytic,
and the first part of this book is a study of the many equivalent ways of
understanding the concept of analyticity. Many of the equivalent ways
of formulating the concept of an analytic function are summarized in
what we term the Fundamental Theorem for functions of a complex
variable. Chapter 1 begins with two motivating examples, followed by
the statement of the Fundamental Theorem, an outline of the plan for

vii



viii PREFACE

proving it, and a description of the text contents: the plan for the rest
of the book.

In devoting the first part of this book to the precise goal of stating
and proving the Fundamental Theorem, we follow a path charted for us
by Lipman Bers, from whom we learned the subject. In his teaching,
expository, and research writing he often started by introducing a main,
often technical, result and then proceeded to derive its important and
seemingly surprising consequences. Some of the grace and elegance
of this subject will not emerge until a more technical framework has
been established. In the second part of the text, we proceed to the
leisurely exploration of interesting ramifications and applications of
the Fundamental Theorem.

We are grateful to Lipman Bers for introducing us to the beauty
of the subject. The book is an outgrowth of notes from Bers’s original
lectures. Versions of these notes have been used by us at our respective
home institutions, some for more than 20 years, as well as by others at
various universities. We are grateful to many colleagues and students
who read and commented on these notes. Our interaction with them
helped shape this book. We tried to follow all useful advice and correct,
of course, any mistakes or shortcomings they identified. Those that
remain are entirely our responsibility.

Jane Gilman
Irwin Kra

Rub́ı E. Rodŕıguez

June 2007



Standard Notation and Commonly Used Symbols

A LIST OF SYMBOLS

TERM MEANING

Z integers
Q rationals
R reals
C complex numbers
̂C C ∪ {∞}
ı a square root of −1

ıR the imaginary axis in C

�z real part of z
�z imaginary part of z

z = x + ıy x = �z and y = �z
z̄ conjugate of z

r = |z| absolute value of z
θ = arg z an argument of z
z = reıθ r = |z| and θ = arg z
ux, uy real partial derivatives
uz, uz̄ complex partial derivatives

∂f
∂x

partial derivative
∂R boundary of set R
|R| cardinality of set R
cl R closure of set R
int R interior of set R

Xcondition the set of x ∈ X that satisfy condition
νζ(f) order of the function f at the point ζ
i(γ) interior of the Jordan curve γ
e(γ) exterior of the Jordan curve γ
f |B restriction of the function f to the subset B

of its domain
U(z, r) = Uz(r) {ζ ∈ C; |ζ − z| < r}

D U(0, 1)
H

2 {z ∈ C; �z > 0}
ix



x STANDARD NOTATION AND COMMONLY USED SYMBOLS

STANDARD TERMINOLOGY

TERM MEANING

LHS left-hand side
RHS right-hand side

deleted neighborhood of z neighborhood with z removed
CR Cauchy Riemann equations
⊂ proper subset
⊆ subset, may not be proper
d Euclidean distance on C

ρD hyperbolic distance on D
MMP Maximum Modulus Property
MVP Mean Value Property
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CHAPTER 1

The Fundamental Theorem in Complex Function
Theory

This introductory chapter is meant to convey the need for and the
intrinsic beauty found in passing from a real variable x to a complex
variable z. In the first section we “solve” two natural problems using
complex analysis. In the second, we state the most important result in
the theory of functions of one complex variable that we call the Fun-
damental Theorem of complex variables; its proof will occupy most of
this volume. The next-to-last section of this chapter is an outline of
our plan for the proof; in subsequent chapters, we will define all the
concepts encountered in the statement of the theorem. Therefore, the
reader may not be able at this point to understand all (or any) of the
statements in the theorem, to fully appreciate the two motivating ex-
amples, or to appreciate the depth of the various claims of the theorem
and might choose initially to skim this material. All readers should
periodically, throughout the journey through this book, return to this
chapter. Finally we end this chapter with a section that gives a more
conventional outline of the text.

1.1. Some motivation

1.1.1. Where do series converge? In the calculus of a real vari-
able one encounters two series that converge for |x| < 1 but in no larger
open interval:

1

1 + x
= 1 − x + x2 − . . . + (−1)nxn + . . .

and
1

1 + x2
= 1 − x2 + x4 − . . . + (−1)nx2n + . . . .

It is natural to ask why these two series that are centered at the origin
have radius of convergence 1. The answer for the first one is natural:
the function 1

1+x
has a singularity at x = −1, and so the series certainly

cannot represent the function at this point, which is at distance 1 from
0. For the second series, the answer does not appear readily within
real analysis. However, if we view 1

1+x2 as a function of the complex

1



2 1. FUNDAMENTAL THEOREM

variable1 x, then we again conclude that the series representing this
function should have radius of convergence 1, since that is the distance
from 0 to the singularities of the function; they are at ±ı.

1.1.2. A problem on partitions. A natural question in elemen-
tary additive number theory is the following: Is it possible to partition
the positive integers Z>0 into finitely many (more than 1) infinite arith-
metic progressions with distinct differences? The answer is “NO”. The
assumption on distinct differences is clearly necessary. So assume to
the contrary that

Z>0 = S1 ∪ S2 ∪ . . . ∪ Sn,

where n ∈ Z>1, and for 1 ≤ i ≤ n, Si is an arithmetic progression with
initial term ai and difference di, for 1 ≤ i < j ≤ n, Si ∩ Sj = ∅, and
1 < d1 < d2 < . . . < dn. Then

∞
∑

i=1

zi =
∑

i∈S1

zi +
∑

i∈S2

zi + . . . +
∑

i∈Sn

zi,

and each series converges for |z| < 1. Summing the above geometric
series, we see that

z

1 − z
=

za1

1 − zd1
+

za2

1 − zd2
+ . . .+

zan

1 − zdn
for all z with |z| < 1. (1.1)

Choose a sequence of complex numbers2 {zk} of absolute value less

than 1 with lim
k→∞

zk = e
2πı
dn . Then

lim
k→∞

zk

1 − zk
=

e
2πı
dn

1 − e
2πı
dn

and

lim
k→∞

zai
k

1 − zdi
k

=
e

2πıai
dn

1 − e
2πıdi

dn

for i = 1, 2, . . . , n − 1;

(all these quantities are finite), whereas lim
k→∞

zan
k

1 − zdn
k

does not exist.

This is an obvious contradiction to (1.1).

1In the sequel we usually use z, w, and ζ, among others, but not x to denote a
complex variable.

2Notation for the polar form of a complex number is established in Chapter 2.



1.2. THE FUNDAMENTAL THEOREM 3

1.2. The Fundamental Theorem

Theorem 1.1. Let D ⊆ C denote a domain (an open connected
set), and let f = u + ıv : D → C be a complex-valued function defined
on D.

The following conditions are equivalent:

(1) The complex derivative

f ′(z) exists for all z ∈ D; (Riemann)

that is, the function f is holomorphic on D.

(2) The functions u and v are continuously differentiable and sat-
isfy

∂u

∂x
=

∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (Cauchy–Riemann: CR)

Alternatively, the function f is continuously differentiable
and satisfies

∂f

∂z
= 0. (CR–complex form)

(3) For each simply connected subdomain ˜D of D there exists a

holomorphic function F : ˜D → C such that F ′(z) = f(z) for

all z ∈ ˜D.

(4) The function f is continuous on D, and if γ is a (piecewise
smooth) closed curve in a simply connected subdomain of D,
then

∫

γ

f(z)dz = 0.

((1) ⇒ (4): Cauchy’s theorem; (4) ⇒ (1): Morera’s theorem)
An equivalent formulation of this condition is as follows:

The function f is continuous, and the differential form f(z)dz
is closed on D.

(5) If {z ∈ C : |z − z0| ≤ r} ⊆ D, then

f(z) =
1

2πı

∫

|τ−z0|=r

f(τ)

τ − z
dτ (Cauchy’s Integral Formula)

for each z such that |z − z0| < r.

(6) The n-th complex derivative

f (n)(z) exists for all z ∈ D and for all integers n ≥ 0.
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(7) If {z : |z − z0| ≤ r} ⊆ D with r > 0, then there exists a unique
sequence of complex numbers {an}∞n=0 such that

f(z) =
∞
∑

n=0

an (z − z0)
n (Weierstrass)

for each z such that |z − z0| < r.
Furthermore, the series converges uniformly and absolutely

on every compact subset of {z : |z − z0| < r}. The an may be
computed as

an =
1

2πı

∫

|τ−z0|=r

f(τ)

(τ − z0)n+1
dτ (Cauchy)

and

an =
f (n)(z0)

n!
. (Taylor)

(8) Choose a point zi ∈ Ki, where
⋃

i∈I Ki is the connected compo-
nent decomposition of the complement of D in C ∪ {∞}. Let
S = {zi; i ∈ I}. Then the function f is the limit (uniform on
compact subsets of D) of a sequence of rational functions with
singularities only in S.

(Runge’s theorem)

1.3. The plan for the proof

We prove the Fundamental Theorem by showing the following im-
plications.

(1) ⇔ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1);

(5) ⇒ (7) ⇒ (1) ⇔ (8).

It is of course possible to follow other paths through the various
claims to obtain our main result. For the convenience of the reader, we
describe where the various implications are to be found. At times the
reader will need to slightly enhance an argument to obtain the required
implication.

(1) ⇐ (2): Corollary 2.36.
(1) ⇒ (2): Theorem 2.32 and Corollary 5.7.
(1) ⇒ (3): Theorem 4.52 and Corollary 4.44.
(3) ⇒ (4): This is a trivial implication. See Lemma 4.12 and the defi-

nitions preceding it.
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(4) ⇒ (5): Theorems 5.11 and 5.2.
(5) ⇒ (6): The proof of Theorem 5.5.
(6) ⇒ (1): This is a trivial implication.
(5) ⇒ (7): The proof of Theorem 5.5.
(7) ⇒ (1): Theorem 3.17.
(1) ⇒ (8): Theorem 7.35.
(8) ⇒ (1): Theorem 7.2.

In standard texts, typically each of these implications is stated as a
single theorem. The tag words in parentheses are the names or terms
that identify the theorems. The forward implication (1) ⇒ (n) would
be the theorem: “If f is a holomorphic function, then condition (n)
holds,” where n ∈ {2, 3, 4, 5, 6, 7, 8}. For example, (1) ⇒ (2) would be
stated as, “If f is holomorphic, then the Cauchy–Riemann equations
hold.” The organization of these conditions (potentially 56 theorems—
some trivial) into a single unifying theorem is the hallmark of Bers’s
mathematical style: clarity and elegance. Here it provides a concep-
tual framework for results that are highly technical and often computa-
tional. The framework comes from insight that, once articulated, will
drive the subsequent mathematics and lead to new results.

1.4. Outline of text

Chapter 2 contains the basic definitions. It is followed by a study
of power series in Chapter 3. Chapter 4 contains the central material,
the Cauchy theory, of the subject. We prove that the class of analytic
functions is precisely the same as the class of functions having power
series expansions, and we establish other parts of the Fundamental
Theorem. Many consequences of the Cauchy theory are established in
the next two chapters.

In the second part of the text we proceed to the leisurely explo-
ration of interesting ramifications and applications of the Fundamental
Theorem. It starts with an exploration of sequences and series of holo-
morphic functions in Chapter 7. The Riemann Mapping Theorem and
the connection between function theory and hyperbolic geometry are
the highlights of Chapter 8. The last two chapters deal with harmonic
functions and zeros of holomorphic functions. The latter is the begin-
ning of the deep connections to classic and modern number theory.



CHAPTER 2

Foundations

The first section of this chapter introduces the complex plane, fixes
notation, and discusses some useful concepts from real analysis. Some
readers may initially choose to skim this section. The second section
contains the definition and elementary properties of the class of holo-
morphic functions - the basic object of our study.

2.1. Introduction and preliminaries

This section is a summary of basic notation, a description of some
of the basic properties of the complex number system, and a disjoint
collection of needed facts from real analysis (advanced calculus). We
remind the reader of some of the formalities behind the standard no-
tation, which we usually approach informally.

We start with some Notation: Z>0 ⊂ Z ⊂ Q ⊂ R ⊂ C ⊂ ̂C. Here
Z represents the integers, Z>0 the positive integers,1 Q the rationals
(the integer n is included in the rationals as the equivalence class of n

1
),

and R the reals. Whether one views the reals as the completion of the
rationals or identifies them with Dedekind cuts, the most important
property from the perspective of complex variables is the least upper
bound property: Every nonempty set of real numbers that has an upper
bound has a least upper bound.

The inclusion of R into the complex numbers C needs a bit more
explanation. It is specified as follows: For z ∈ C, we write z = x + ı y
with x and y in R where the symbol ı represents a square root of
−1 so that ı2 = −1. With these conventions we can define addition
and multiplication of complex numbers2 using the usual rules for these
operation on the reals: For all x, y, ξ, η ∈ R,

(x + ıy) + (ξ + ıη) = (x + ξ) + ı(y + η)

and
(x + ıy)(ξ + ıη) = (xξ − yη) + ı(xη + yξ).

1In general Xcondition and {x ∈ X : condition} will describe the set x ∈ X

that satisfy the condition indicated.
2With these operations (C, +, ·) is a field.

7



8 2. FOUNDATIONS

.

.

.

.

R

ι R

θ x

ιy

r

z = x − ι y

z = x + ι y

Figure 2.1. The complex plane

The reals R are identified with the subset of C consisting of those
numbers with y = 0; the imaginary numbers ıR are those with x = 0.
For z = x + ı y in C with x and y in R, we write x = �z, the real
part of z, and y = �z, the imaginary part of z. Geometrically, R and
ıR represent the real and imaginary axes of C, viewed as the complex
plane and identified with the cartesian product R

2 or, equivalently,
R × R.

The complex plane can be viewed as a subset of the complex sphere
̂C, which is C compactified by adjoining a point, known as the point at

infinity, so that ̂C = C ∪ {∞}. ̂C is also called the extended complex
plane or the Riemann sphere. See Exercise 3.18 for a justification of
the name.

The complex number z = x − ı y is the complex conjugate of the

complex number z = x + ıy. Note that �z =
z + z

2
and �z =

z − z

2ı
.

It is easy to verify the following properties:

Properties of conjugation. For z and w ∈ C,

(a) z + w = z + w,
(b) zw = z w, and
(c) z = z.



2.1. INTRODUCTION AND PRELIMINARIES 9

There is a simple and useful geometric interpretation of conju-
gation: It is represented by mirror reflection in real axis. Since z = z,
the map z �→ z defines an involution of C

¯ : C → C .

Another important map, z �→ |z| or

| | : C → R≥0

is defined by r = |z| = (zz)
1
2 = (x2 + y2)

1
2 . Here z = x + ıy and we use

the usual convention that unless otherwise specified the square root of
a nonnegative number is chosen to be nonnegative. The nonnegative
real number r is called the absolute value or norm or modulus of the
complex number z.

Properties of absolute value. For z and w ∈ C,

(a) |z| ≥ 0, and |z| = 0 if and only if z = 0.
(b) |zw| = |z| |w|.
(c) |z + w| ≤ |z| + |w|. Equality holds whenever either z or w is

equal to 0. If z �= 0 and w �= 0, then equality holds if and only
if w = az with a ∈ R>0.

(d) |z| = |z|.
Linear representation of C. As a vector space over R, we can

identify C with R
2. Vector addition agrees with complex addition.

Scalar multiplication R × C → C is the restriction of complex multi-
plication C × C → C.

Polar coordinates. A nonzero vector can be described by polar
coordinates (r, θ) as well as by the rectangular coordinates (x, y) we
have been using. If z ∈ C and z �= 0, then we can write

z = x + ı y = r (cos θ + ı sin θ) ,

where r = |z| and θ = arg z (an argument of z) = arcsin
y

r
= arccos

x

r
.

Note that the last two identities are needed to define the argument
and that3 arg z is defined up to the addition of an integral multiple of
2π.

If w = ρ[cos ϕ + ı sin ϕ] �= 0, then using the addition formulas for
the sine and cosine functions, one has

zw = (rρ)[cos(θ + ϕ) + ı sin(θ + ϕ)] .

3The number π will be defined rigorously in Definition 3.29. Trigonometric
functions will be introduced in the next chapter. Hence, for the moment, polar
coordinates should not be used in proofs.
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This polar form of the multiplication formula shows that complex mul-
tiplication involves real multiplication of the moduli and addition of
the arguments, giving a geometric interpretation of how the operation
of multiplication acts on vectors given in polar coordinates.

In particular, it follows that if n ∈ Z and z = r (cos θ + ı sin θ) is a
nonzero complex number, then

zn = rn[cos nθ + ı sin nθ] .

Therefore, for n in Z>0, each nonzero complex number z has (precisely)
n n-th roots given by

r
1
n

[

cos

(

θ + 2πk

n

)

+ ı sin

(

θ + 2πk

n

)]

,

with k = 0, 1, . . . , n − 1.

The formula d(z, w) = |z − w|, for z and w ∈ C, defines a metric
for C that agrees with the Euclidean metric on R

2 (under the linear
representation of the complex plane).

Definition 2.1. We say that a sequence (indexed by n ∈ Z>0)
{zn} of complex numbers converges to α ∈ C if given ε > 0, there
exists an N ∈ Z>0 such that |zn − α| < ε for all n > N ; in this case we
write

lim
n→∞

zn = α .

A sequence {zn} of complex numbers is called Cauchy if given ε > 0,
there exists an N ∈ Z>0 such that |zn − zm| < ε for all n, m > N .

Theorem 2.2. If {zn} and {wn} are Cauchy sequences of complex
numbers, then

(a) {zn + α wn} is Cauchy for all α ∈ C.
(b) {zn} is Cauchy.
(c) {|zn|} ⊂ R≥0 is Cauchy.

Proof. (a) It suffices to assume that α �= 0. Given ε > 0, choose
N1 such that |zn − zm| < ε

2
for all n, m > N1 and choose N2 such that

|wn − wm| < ε
2|α| for all n, m > N2. Choose N = max{N1, N2}. Then

for n and m > N , we have

|(zn + α wn) − (zm + α wm)| ≤ |zn − zm| + |α| |wn − wm| < ε.

(b) |zn − zm| = |zn − zm|.
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(c) Note that for all z and ζ in C, we have

|z| = |z − ζ + ζ | ≤ |z − ζ | + |ζ | ,
and hence, we conclude that

||z| − |ζ || ≤ |z − ζ | .
Thus we have

||zn| − |zm|| ≤ |zn − zm| .
�

Remark 2.3. The above arguments mimic arguments in real anal-
ysis needed to establish the corresponding results for real sequences.
We will, in the sequel, leave such routine arguments as exercises for
the reader.

Corollary 2.4. {zn} is a Cauchy sequence of complex numbers if
and only if {�zn} and {�zn} are Cauchy sequences of real numbers.

Corollary 2.5. (C, d) is a complete metric space; that is, every
Cauchy sequence of complex numbers converges to a complex number.

Proof. The metric on C restricts to the Euclidean metric on R,
which is complete. �

Definition 2.6. Let A ⊆ C. Define

‖A‖ = {|z| ; z ∈ A} ⊂ R≥0 .

We say that A is bounded if and only if ‖A‖ is; that is, if there
exists a positive real number M such that |z| < M for all z in A.

Definition 2.7. Let ζ ∈ C and ε > 0. The ε-ball about ζ is the set

Uζ(ε) = U(ζ, ε) = {z ∈ C; |z − ζ | < ε}.
Proposition 2.8. A subset A of C is bounded if and only if there

exists a ζ ∈ C and an R > 0 such that A ⊂ U(ζ, R).

Remark 2.9. A proof is omitted for one of three reasons (in ad-
dition to the reason described in Remark 2.3): Either it is trivial, it
follows directly from results in real analysis, or it appears as an exer-
cise at the end of the corresponding chapter.4 The third possibility is
always labeled; when standard results in real analysis are needed, there
is some indication of what they are and where to find them. It should

4Exercises can be found at the end of each chapter and are numbered by chapter,
so that Exercise 2.7 is to be found at the end of Chapter 2.
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be clear from the context when the first possibility occurs. It is recom-
mended that the reader check that he/she can supply an appropriate
proof when none is given.

Theorem 2.10 (Bolzano–Weierstrass Theorem). Every infi-
nite bounded set S in C has at least one limit point; that is, there exists
at least one a ∈ C such that for all ε > 0, U(a, ε) contains a point
z �= a, z ∈ S. Such an a is called a limit point of S.

Theorem 2.11. A set K ⊂ C is compact if and only if it is closed
and bounded.

Definition 2.12. Let f be a function defined on a set S in C.
We always (unless otherwise stated) assume that f is complex valued.
Thus, f may be viewed as a map from S into R

2 or C and as two
real-valued functions defined on the set S. Let ζ be a limit point of S
and α ∈ C. Then

lim
z→ζ

f(z) = α

if and only if for all ε > 0, there exists a δ > 0 such that

|f(z) − α| < ε whenever z ∈ S and 0 < |z − ζ | < δ .

Remark 2.13. In addition to the usual algebraic operations on
pairs of functions f : S → C and g : S → C familiar from real analysis,
such as f +cg with c ∈ C, fg, and f

g
(provided g does not vanish on S),

we will consider other new functions constructed from a single function
f . Among these

(�f)(z) = �f(z), (�f)(z) = �f(z), f(z) = f(z), |f | (z) = |f(z)| .
Theorem 2.14. Let S be a set in C, and let f and g be functions

on S. Let ζ be a limit point of S. Then

(a) lim
z→ζ

(f + c g)(z) = lim
z→ζ

f(z) + c lim
z→ζ

g(z) for all c ∈ C,

(b) lim
z→ζ

(fg)(z) = lim
z→ζ

f(z) lim
z→ζ

g(z),

(c) lim
z→ζ

|f | (z) =

∣

∣

∣

∣

lim
z→ζ

f(z)

∣

∣

∣

∣

, and

(d) lim
z→ζ

f(z) = lim
z→ζ

f(z).

Remark 2.15. The usual interpretation of the above formulas is
used here and in the rest of the book: The LHS5 exists whenever the
RHS exists, and then we have the stated equality.

5LHS (RHS) are standard abbreviations for left-(right)-hand side and will be
used throughout this book.
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Corollary 2.16. Let u = �f , v = �f (so that f(z) = u(z) +
ı v(z)) and α ∈ C. Then

lim
z→ζ

f(z) = α

if and only if

lim
z→ζ

u(z) = �α and lim
z→ζ

v(z) = �α .

Definition 2.17. Let S be a subset of C, f : S → C and ζ a limit
point of S, which is also in S. We say that f is continuous at ζ if
lim
z→ζ

f(z) = f(ζ), that f is continuous on S if it is continuous at each

ζ in S, and that f is uniformly continuous on S if and only if for all
ε > 0, there is a δ > 0 such that

|f(z) − f(w)| < ε for all z and w in S with |z − w| < δ .

Remark 2.18. Uniform continuity implies continuity.

Theorem 2.19. Let f and g be functions defined in appropriate
sets; that is, sets where composition of these functions makes sense.

(a) If f is continuous at ζ and f(ζ) �= 0, then 1
f

is defined in a
neighborhood of ζ and is continuous at ζ.

(b) If f is continuous at ζ and g is continuous at f(ζ), then g ◦ f
is continuous at ζ.

Theorem 2.20. Let K ⊂ C be compact and f : K → C be contin-
uous. Then f is uniformly continuous on K.

Proof. A continuous mapping from a compact Hausdorff space to
a metric space is uniformly continuous. �

Definition 2.21. Given a sequence of functions {fn} all defined
on the same set S in C, we say that {fn} converges uniformly to a
function f on S if for all ε > 0, there exists an N ∈ Z>0 such that

|f(z) − fn(z)| < ε for all z ∈ S and all n > N .

Remark 2.22. {fn} converges uniformly on S if and only if for all
ε > 0, there exists an N ∈ Z>0 such that

|fn(z) − fm(z)| < ε for all z ∈ S and all n and m > N .

Theorem 2.23. Let {fn} be a sequence of functions on S. If
(1) {fn} converges uniformly on S, and
(2) each fn is continuous on S,

then the function f defined by

f(z) = lim
n→∞

fn(z), z ∈ S ,
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is continuous on S and {fn} converges uniformly to f on S.

Proof. We start with two points z and ζ in S. Then for each n,

|f(z) − f(ζ)| ≤ |f(z) − fn(z)| + |fn(z) − fn(ζ)| + |fn(ζ) − f(ζ)| .

Fix z and ε > 0. By (1), the first and third term on the right-hand
side are less than ε

3
for n large. Fix n. By (2), the second term is less

than ε
3

as soon as ζ is close enough to z. �
Definition 2.24. A domain or region in C is a subset of C that is

open and connected.

Remark 2.25. Note that a domain in C could also be defined as
an open arcwise-connected subset of C.

2.2. Differentiability and holomorphic mappings

The definition of the derivative of a complex-valued function of a
complex variable mimics that for the derivative of a real-valued function
of a real variable. We shall see that the properties of the two classes of
functions are quite different.

Definition 2.26. Let f be a function defined in some ball about
ζ ∈ C. Assume h ∈ C. We say that f is (complex) differentiable at ζ
if and only if

lim
h→0

f(ζ + h) − f(ζ)

h

exists. In this case the limit is denoted by

f ′(ζ),
df

dz
(ζ),

df

dz

∣

∣

∣

∣

z=ζ

, (Df)(ζ) ,

and is called the derivative of f at ζ .

Remark 2.27. (1) It is important that h is an arbitrary complex
number (of small nonzero modulus) in the above definition.

(2) If f is differentiable at ζ , then f is continuous at ζ.

Notation 2.28. If the function f is differentiable on a domain D
(that is, at each point of D), then it defines a function f ′ : D → C.

Thus for every n ∈ Z≥0, we can define inductively f (n), the n-th
derivative of f , as follows:
f (0) = f , and if f (n) is defined for n ≥ 0, then we set f (n+1) =

(

f (n)
)′

whenever the appropriate limits exist.
It is customary to abbreviate f (2) and f (3) by f ′′ and f ′′′, respec-

tively.
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Definition 2.29. Let f be a function defined in a neighborhood of
ζ ∈ C. Then f is holomorphic or analytic at ζ if it is differentiable in a
neighborhood (perhaps smaller) of ζ . A function defined on an (open)
set U is holomorphic or analytic on U if it is holomorphic at each point
of U .

A function f is anti-holomorphic if f is holomorphic.

The usual rules of differentiation hold. Let f and g be functions
defined in a neighborhood of ζ ∈ C, let k be a function defined in a
neighborhood of f(ζ), and let c ∈ C. Then (recall Remark 2.15)

(a) (f + cg)′(ζ) = f ′(ζ) + cg′(ζ),
(b) (fg)′(ζ) = f(ζ)g′(ζ) + f ′(ζ)g(ζ),
(c) (k ◦ f)′(ζ) = k′(f(ζ))f ′(ζ),

(d)

(

1

f

)′
(ζ) = − f ′(ζ)

f(ζ)2
provided f(ζ) �= 0, and

(e) for f(z) = zn (n ∈ Z), f ′(z) = n zn−1 (for n < 0, z �= 0).

Definition 2.30. A function is called entire if it is holomorphic
on C.

Example 2.31. (1) Every polynomial (in one complex variable) is
entire.

(2) A rational function R = P
Q

, where P and Q are polynomials with Q

not the zero polynomial, is holomorphic on C − {zeros of Q}. The
polynomial Q has only finitely many zeros (the number of zeros,
properly counted, equals the degree of Q; see Exercise 3.17).

(3) A special case of Example 2.31.2 is R(z) = az+b
cz+d

with a, b, c, and d
fixed complex numbers satisfying ad− bc = 1. These rational func-
tions are called fractional linear transformations or Möbius trans-
formations, and they will be studied in detail in Section 8.1.

Convention. Whenever we write z = x + ı y for variables and
f = u + ı v for functions, then we automatically mean that x = �z,
y = �z, u = �f , and v = �f . We write u = u(x, y) and v = v(x, y) as
well as u = u(z) and v = v(z).

Theorem 2.32. If f = u + ı v is differentiable at c = a + ı b, then
u and v have partial derivatives with respect to x and y at c, and these
satisfy the Cauchy–Riemann equations (to be abbreviated CR):

ux(a, b) = vy(a, b), uy(a, b) = −vx(a, b). (CR)
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Proof. First take h = α and then h = ıβ (with α and β real) in
the definition of differentiability (2.26) and compute

f ′(c) = ux(a, b) + ı vx(a, b) = −ı uy(a, b) + vy(a, b) .

�

We will also use the obvious notation fx = ux+ıvx and fy = uy+ıvy.

Remark 2.33. The CR equations are not sufficient for differentia-
bility. To see this, define

f(z) =

{

z5 |z|−4 for z �= 0,

0 for z = 0.

The function f is continuous on C and its real and imaginary parts
satisfy the Cauchy–Riemann equations at z = 0, but it is not differen-

tiable at z = 0. For α real and nonzero we have f(α)
α

= 1, and for β real

and nonzero we have f(ıβ)
ıβ

= 1. Hence the CR equations are satisfied.

Thus if the CR equations implied differentiability, we would conclude
that f ′(0) = 1. Now take h = (1 + ı)γ with γ real and nonzero and

observe that f(h)
h

= −1 so that f ′(0) would be −1.

In Exercise 2.8, we introduce the complex partial derivatives fz and
fz of C1-complex-valued functions6 f defined on a region in the complex
plane. These partials not only simplify the notation: For example, the
two equations given in (CR) are written as the single equation

fz = 0 , (CR complex)

but they allow us to produce more concise arguments (and as we shall
see later prettier formulas), as illustrated in the proof of the lemma
below. We also use the notation ∂f

∂z
interchangeably with fz.

Lemma 2.34. If f is a C1-complex-valued function defined in a
neighborhood of c ∈ C, then for z ∈ C with |z − c| small,

f(z) − f(c) = (z − c)fz(c) + (z − c)fz(c) + |z − c| ε(z, c), (2.1)

where ε(z, c) is a complex-valued function of z and c with

lim
z→c

ε(z, c) = 0 .

6C1-complex-valued functions may be defined as functions whose real and imag-
inary parts have continuous first partial derivatives.
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Proof. As usual we write z = x + ıy, c = a + ıb, and f = u + ıv
and abbreviate �u = u(z) − u(c), �x = x − a, �y = y − b, and
�z = z − c = �x + ı�y.

By hypothesis, the real-valued function u has continuous first par-
tial derivatives defined in a neighborhood of c, and we can define ε1

by

ε1(z, c) =
�u − ux(c)�x − uy(c)�y

|�z| .

We show that

lim
z→c

ε1(z, c) = 0 . (2.2)

If we rewrite �u as

�u = [u(x, y) − u(x, b)] + [u(x, b) − u(a, b)] ,

it follows from the (real) mean value theorem that

RHS = uy(x, y0)�y + ux(x0, b)�x ,

where y0 is between y and b and x0 is between x and a. Thus

ε1(z, c) =
[uy(x, y0) − uy(a, b)]�y + [ux(x0, b) − ux(a, b)]�x

|�z| .

Hence we see that

|ε1(z, c)| ≤ |uy(x, y0) − uy(a, b)| + |ux(x0, b) − ux(a, b)| .

Thus we have shown that

u(z) − u(c) = (x − a)ux(a, b) + (y − b)uy(a, b) + |z − c| ε1(z, c) ,

with (2.2).
Similarly,

v(z) − v(c) = (x − a)vx(a, b) + (y − b)vy(a, b) + |z − c| ε2(z, c) ,

with

lim
z→c

ε2(z, c) = 0. (2.3)

With obvious notational conventions,

�f = �u + ı�v =

(ux(a, b) + ıvx(a, b))�x + (uy(a, b) + ıvy(a, b))�y + |�z| ε(z, c)

=
�z + �z

2
fx(c) + ı

�z −�z

2
fy(c) + |�z| ε(z, c)

= �zfz(c) + �zfz̄(c) + |�z| ε(z, c).
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Since ε(z, c) = ε1(z, c) + ı ε2(z, c), equalities (2.2) and (2.3) imply
that

lim
z→c

ε(z, c) = 0.

�
Theorem 2.35. If the function f has continuous first partial deriva-

tives in a neighborhood of c that satisfy the CR equations at c, then f
is (complex) differentiable at c.

Proof. The theorem is an immediate consequence of (2.1) since
in this case fz̄(c) = 0 and hence f ′(c) = fz(c). �

Corollary 2.36. If the function f has continuous first partial
derivatives in an open neighborhood U of c ∈ C and the CR equations
hold at each point of U , then f is holomorphic at c (in fact on U).

Remark 2.37. The converse is also true. It will take us some time
to prove it.

Theorem 2.38. If f is holomorphic and real valued on a domain
D, then f is constant.

Proof. As usual we write f = u + ı v; in this case v = 0. The CR
equations say ux = vy = 0 and uy = −vx = 0. Thus u is constant. �

Theorem 2.39. If f is holomorphic and f ′ = 0 on a domain D,
then f is constant.

Proof. As above f = u + ı v and f ′ = ux + ıvx = 0. The last
equation together with the CR equations say 0 = ux = vy and 0 =
vx = −uy. Thus both u and v are constant. �

Exercises

2.1. (a) Let {zn} be a sequence of complex numbers and assume

|zn − zm| <
1

1 + |n − m| , for all n and m .

Show that the sequence converges.
Do you have enough information to evaluate limn→∞ zn?
What more can you say about this sequence?

(b) Let {zn} be a sequence with limn→∞ zn = 0, and let {wn} be a
bounded sequence. Show that

lim
n→∞

wnzn = 0 .
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2.2. Verify the Cauchy–Riemann equations for the function f(z) =
z3 by splitting f into its real and imaginary parts.

2.3. Let x = r cos θ, y = r sin θ. Show that the Cauchy–Riemann
equations in polar coordinates for F = U + ıV , (U = U(r, θ), V =
V (r, θ)) are

r
∂U

∂r
=

∂V

∂θ
and r

∂V

∂r
= −∂U

∂θ
.

Alternatively, one can write

rUr = Vθ, and rVr = −Uθ.

2.4. Suppose z = x + ı y. Define

f(z) =
xy2 (x + ı y)

x2 + y4
,

for z �= 0, and f(0) = 0.
Show that

lim
f(z) − f(0)

z
= 0

as z → 0 along any straight line. Show that as z → 0 along the curve
x = y2, the limit of the difference quotient is 1

2
, thus showing that f ′(0)

does not exist.

2.5. Does there exist a holomorphic function f on C whose real part
is

(a) u (x, y) = ex?
(b) or u (x, y) = ex(x cos y − y sin y)?

Justify your answer. That is, if yes, exhibit the holomorphic func-
tion(s); if not, prove it.

2.6. Prove the Fundamental Theorem of Algebra: If a0 , . . . , an−1

are complex numbers (n ≥ 1) and p(z) = zn +an−1z
n−1 + . . .+a0, then

there exists a number z0 ∈ C such that p(z0) = 0.
Hints:

(a) Show there is an M > 0 and an R > 0 so that |p(z)| ≥ M for
|z| ≥ R.

(b) Show next that there is a z0 ∈ C such that

|p(z0)| = min{|p(z)| ; z ∈ C} .

(c) By the change of variable p(z + z0) = g(z), it suffices to show
that g(0) = 0.
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(d) Write g(z) = α + zm(β + c1z + . . . + cn−mzn−m) with β �= 0.
Choose γ such that

γm = −α

β
.

If α �= 0, obtain the contradiction |g(γz)| < |α| for some z.

Note. We will later have a simpler proof of this theorem using results
from complex analysis. See Theorem 5.15. See also the April 2006
issue of The American Mathematical Monthly for still other proofs of
this fundamental result.

2.7. Using the Fundamental Theorem of Algebra stated in Exercise
2.6, prove Frobenius Theorem: If F is a field containing the reals and
such that the dimension of F as a real vector space is finite, then either
F is the reals or F is (isomorphic to) C.
Hints:

(a) Assume dimR F = n > 1. Show that for θ in F − R there
exists a nonzero real polynomial p with leading coefficient 1
and such that p(θ) = 0.

b) Show that there exist real numbers β and γ such that

θ2 − 2βθ + γ = 0.

c) Show that there exists a positive real number δ such that (θ−
β)2 = −δ2, and therefore,

σ =
θ − β

δ

is an element of F satisfying σ2 = 1.
d) The field

G = R(σ) = {x + yσ : x, y ∈ R} ⊆ F

is isomorphic to C, so without loss of generality, assume σ = ı
and G = C. Conclude by showing that any element of F is the
root of a complex polynomial with leading coefficient 1 and is
therefore a complex number.

2.8. Let f be a complex-valued function defined on a region in the
complex plane, and assume that both fx and fy exist in this region.
Define:

fz =
1

2
(fx − ıfy)

and

fz =
1

2
(fx + ıfy) .
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Show that for C1-functions f ,

f is holomorphic if and only if fz = 0 ,

and that in this case fz = f ′.

2.9. Let R and Φ be two real-valued C1-functions of a complex
variable z. Show that f = ReıΦ is holomorphic if and only if

Rz

R
= −ıΦz .

2.10. Show that if f and g are C1-functions, then the (complex)
chain rule is expressed as follows (here w = f(z) and g is viewed as a
function of w):

(g ◦ f)z = gw fz + gw f z

and
(g ◦ f)z = gw fz + gw f z .

2.11. Let p be a complex-valued polynomial of two real variables:

p(z) =
∑

aijx
iyj .

Write
p(z) =

∑

j≥0

Pj(z)zj,

where each Pj is of the form Pj(z) =
∑

bijz
i. Prove that p is an entire

function if and only if

0 ≡ P1 ≡ P2 ≡ . . . .

2.12. (a) Given two points z1, z2 such that |z1| < 1 and |z2| < 1,
show that for every point z �= 1 in the closed triangle with vertices
z1, z2 and 1,

|1 − z|
1 − |z| ≤ K,

where K is a constant that depends only on z1 and z2.
(b) Determine the smallest value of K for z1 = 1+ı

2
and z2 = 1−ı

2
.

2.13. Deduce the analogs of the CR equations for anti-holomorphic
functions, in rectangular, polar, and complex coordinates.

2.14. Let D be an arbitrary (nonempty) open set in C. Describe
the class of complex-valued functions on D that are both holomorphic
and anti-holomorphic.

2.15. (a) Every automorphism of the real field is the identity.
(b) Every continuous automorphism of the complex field is either the

identity or the conjugation.



CHAPTER 3

Power Series

This chapter is devoted to an important method for constructing
holomorphic functions. The tool is convergent power series. It is the
basis for the introduction of new non-algebraic holomorphic functions,
called elementary transcendental functions. It will turn out that all
holomorphic functions are described (at least locally) by this tool. This
will be proven in the next chapter.

The first section of this chapter is devoted to a discussion of ele-
mentary properties of the complex power series. Some material from
real analysis, material not usually treated in books or courses on that
subject, is studied. The concept of a convergent power series is ex-
tended from series with real coefficients to complex power series, and
tests for convergence are established. In the second section, we show
that convergent power series define holomorphic functions. The next
section, Section 3.3, introduces important complex-valued functions of
a complex variable, including the exponential function, the trigonomet-
ric functions, and the logarithm. This is followed by Sections 3.4 and
3.5, which describe an identity principle and introduce the new class of
meromorphic functions: These functions are holomorphic on a domain
except that they “assume the value ∞” (in a controlled way) at cer-
tain isolated points, known as the poles of the function. Meromorphic
functions are defined locally as ratios of functions having power series
expansions. It will hence follow subsequently that these are locally ra-
tios of holomorphic functions. After some more work we will be able
to replace “locally”by “globally.” We develop the fundamental identity
principle and its corollary, known as the principle of analytic continu-
ation, for functions given by a power series, and we discuss the zeros
and poles of a meromorphic function. The principle of analytic contin-
uation is one of the most powerful results in complex function theory.
Once we show that every holomorphic function is locally defined by
a power series, we will see that the principle of analytic continuation
says that a holomorphic function defined on an open connected set is
remarkably rigid: Its behavior at a single point in the set determines

23
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its behavior at all other points of the set. Holomorphicity at a point is
an extremely strong concept.

3.1. Complex power series

Let A be a subset of C, and let {fn} = {fn}∞n=0 be a sequence
of functions defined on A (in the previous chapter, sequences were
indexed by Z>0; for convenience, in this chapter, they will be indexed
by Z≥0). We form the new sequence (known as a series) {SN}, where

SN(z) =
N
∑

n=0

fn(z), and the formal infinite series
∞
∑

n=0

fn(z) .

The sequence of complex numbers {SN (z)}∞n=0 is also known as the

sequence of partial sums associated with the infinite series
∞
∑

n=0

fn(z) at

the point z ∈ A. When the indices of summation are clear from the

context, we often omit them. For example,
∑

fn(ζ) usually means the

infinite sum

∞
∑

n=0

fn(ζ). Other similar abbreviations are used.

Definition 3.1. i) We say that the infinite series

∞
∑

n=0

fn(z) con-

verges at a point ζ ∈ A if {SN(ζ)} converges. In this case, we write
∞
∑

n=0

fn(ζ) = lim
n→∞

SN (ζ).

ii) We say that the infinite series

∞
∑

n=0

fn(z) converges pointwise in A if

{SN(ζ)} converges for every ζ ∈ A.

iii) We say that the infinite series

∞
∑

n=0

fn(z) converges absolutely at a

point ζ ∈ A if the infinite series
∞
∑

n=0

|fn(ζ)| converges.

iv) We say that the infinite series
∞
∑

n=0

fn(z) converges uniformly in A

if the sequence of partial sums {SN(z)} converges uniformly in A.
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v) We say that the infinite series
∞
∑

n=0

fn(z) converges normally on a set

B ⊂ A if there exists a sequence of positive constants {Mn} such
that

(1) |fn(z)| ≤ Mn for all z ∈ B and all n, and

(2)
∑

Mn < ∞.

vi) We say that the infinite series

∞
∑

n=0

fn(z) diverges at a point of A if

it does not converge at that point.

We speak of the pointwise, uniform, absolute, or normal conver-
gence of a series as well as of the divergence of a series.

Remark 3.2. The fact that the sequence {SN(ζ)} converges if and
only if {SN(ζ)} is Cauchy allows us to rephrase conditions (i–iv) as if
and only if statements when useful: (i)

∑

fn(z) converges at a point
ζ ∈ A if and only if {SN(ζ)} is Cauchy; (ii)

∑

fn(z) converges pointwise
in A if and only if {SN(ζ)} is Cauchy for every ζ ∈ A; (iii)

∑

fn(z)
converges absolutely at a point ζ ∈ A if and only if the infinite series
∑ |fn(ζ)| converges; and (iv)

∑

fn(z) converges uniformly in A if and
only if the sequence of partial sums {SN(z)} converges uniformly in A.

Remark 3.3. Many questions on convergence of complex sequences
are reduced to the real case by the trivial but important observation
that absolute convergence at a point implies convergence at that point.

Remark 3.4. Two other such observations, both trivial but impor-

tant, are that if an infinite series

∞
∑

n=0

fn(z) converges at a point ζ , then

lim
n→∞

fn(ζ) = 0 and lim
n→∞

∞
∑

k=n

fk(ζ) = 0.

Some relationships between some different types of convergence of
a series are given in the following result.

Weierstrass M-test. Normal convergence implies uniform and
absolute convergence.
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Proof. With notation as in the last definition, if N1 < N are
positive integers, then

|SN(z) − SN1(z)| ≤
N
∑

n=N1+1

Mn for all z ∈ A

(needed for the uniform convergence argument), and

| |SN (z)| − |SN1(z)| | ≤
N
∑

n=N1+1

Mn for all z ∈ A

(needed for the absolute convergence argument).
Given any ε > 0, we can find a positive integer N0 such that N >

N1 > N0 implies

N
∑

n=N1+1

Mn < ε. �

We shall be mostly interested in series of the form
∑∞

n=0 anzn with
an ∈ C (these are known as power series) and the associated real-valued
series

∑∞
n=0 |an|rn where r = |z|. We define, for each N ∈ Z≥0,

S∗
N (r) =

N
∑

n=0

|an|rn for r ∈ R≥0,

and we observe that

S∗
N+1(r) ≥ S∗

N(r) for all N ∈ Z≥0 and for all r ∈ R≥0 .

We refer to S∗
N(r) as the real partial sum at r.

An elementary but most important example is provided by the geo-
metric series with r ∈ R≥0:

1 + r + r2 + . . . .

Note that SN (1) = N + 1, and SN(r) =
1 − rN+1

1 − r
for 0 ≤ r < 1, as

well as for r > 1.

Thus
∞
∑

n=0

rn =
1

1 − r
if 0 ≤ r < 1 and

∑

rn diverges if r ≥ 1.

We now introduce two special cases of divergence of a sequence of
real numbers. It will be useful to regard these sequences as convergent
sequences with infinite limits.
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Definition 3.5. A sequence of real numbers {bn} converges to +∞
if and only if for all M > 0 there exists an N ∈ Z>0 such that bn > M
for all n > N . In this case we shall write limn→∞ bn = +∞. A similar
definition applies to real sequences converging to −∞.

With this notation either:

(a) lim
N→∞

S∗
N(r) exists and is finite: That is,

∑∞
n=0 |an|rn converges.

In this case we write
∑∞

n=0 |an|rn < +∞;

or

(b) lim
N→∞

S∗
N(r) = +∞: That is,

∑∞
n=0 |an| rn diverges (in the pre-

vious sense). In this case we write
∑∞

n=0 |an| rn = +∞.

For real sequences, we have the comparison test. Let 0 ≤ an ≤ bn.

(a) If
∑

an = +∞, then
∑

bn = +∞.
(b) If

∑

bn < +∞, then
∑

an < +∞.

Abel’s lemma. Let 0 < r < r0. Assume there exists an M ∈ R>0

such that
|anrn

0 | ≤ M for all n ∈ Z>0 .

Then the series
∑

anzn converges normally for all z with |z| ≤ r. In
particular, it converges absolutely and uniformly for all z with |z| ≤ r.

Proof. For |z| ≤ r we have

|anzn| = |an| |z|n ≤ |an| |r|n = |an|
(

r

r0

)n

rn
0 ≤ M

(

r

r0

)n

.

Comparison with the geometric series [or an application of the
Weierstrass M-test with Mn = M( r

r0
)n] shows the normal conver-

gence. �
If S is any nonempty set of real numbers, then the least upper bound

or supremum of S is denoted by sup S and the greatest lower bound
or infimum is denoted by inf S. The possibilities that sup S = +∞ or
inf S = −∞ are allowed.

Definition 3.6. The radius of convergence ρ of the power series
∑

anzn is given by

ρ = sup{r ≥ 0;
∑

|an| rn < +∞} .

Note that 0 ≤ ρ ≤ +∞. As a result of the next theorem it makes
sense to define {z ∈ C; |z| < ρ} as the disk of convergence of the power
series

∑

anzn.
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Theorem 3.7. Let
∑

anzn be a power series with radius of conver-
gence ρ.

(a) If 0 < r < ρ, then
∑

anzn converges normally, absolutely, and
uniformly for |z| ≤ r.

(b) The series
∑

anzn diverges for |z| > ρ.

Proof. (a) Choose r0 with r < r0 < ρ such that
∑ |an| rn

0 < +∞.
Thus there exists an M > 0 with |an| rn

0 ≤ M for all n in Z>0. Now
apply Abel’s lemma.

(b) We claim that for |z| > ρ, the sequence {|an| |z|n} is not even
bounded. Otherwise Abel’s lemma (with r0 = |z|) would guarantee
the existence of an r with ρ < r < |z| and

∑ |an| rn < +∞. This
contradicts the definition of ρ. �

Corollary 3.8. Let
∑

anzn be a power series with radius of con-
vergence ρ. Then the function defined by S(z) =

∑

anzn is continuous
for |z| < ρ.

Proof. It follows immediately from Theorems 2.23 and 3.7. �

We now turn to the obvious and important question: How do we
compute ρ?

To answer this question, we introduce the concepts of lim sup and
lim inf.

Definition 3.9. Let {un} be a real sequence. We use ≡ to indi-
cate equivalent names [we also use this same notation with a different
meaning in other places, such as f ≡ 0 or f ≡ g, to emphasize that
these functions are (identically) equal] and define

lim
n

un ≡ lim sup
n

un ≡ upper limit of {un}
≡ limit superior of {un} = lim

p→∞
sup
n≥p

{un} = inf
p

sup
n≥p

{un} ,

and

lim
n

un ≡ lim inf
n

un ≡ lower limit of {un}
≡ limit inferior of {un} = lim

p→∞
inf
n≥p

{un} = sup
p

inf
n≥p

{un}.

Note that every real sequence has a limit superior as well as a limit
inferior, which are either real numbers or +∞ or −∞.

Properties of limits superior and inferior. Let {un} and {vn}
be real sequences. Then:
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(a) lim inf
n

un ≤ lim sup
n

un.

(b) lim inf
n

(−un) = − lim sup
n

un.

(c) If r > 0, then

lim inf
n

(run) = r lim inf
n

un , and lim sup
n

(run) = r lim sup
n

un.

(d) If un ≤ vn for all n, then

lim inf
n

un ≤ lim inf
n

vn , and lim sup
n

un ≤ lim sup
n

vn.

(e) lim
n

un = L if and only if lim inf
n

un = L = lim sup
n

un

(L is allowed to be ±∞ in this context).

(f) lim inf
n

(un + vn) ≥ lim inf
n

un + lim inf
n

vn, and

lim sup
n

(un + vn) ≤ lim sup
n

un + lim sup
n

vn.

Remark and exercise. If f is a real-valued function of a complex
variable, defined on a set S in C and if ζ is a limit point of S, then it
is possible to define lim

z→ζ
f(z) and lim

z→ζ

f(z).

Example 3.10. Let un = sin
(

nπ
2

)

, n = 0, 1, 2, . . . . This is the
sequence {0, 1, 0,−1, . . .}. Hence for all p ∈ Z≥0,

ap = sup
n≥p

un = 1 and thus lim sup
n

un = lim
p→∞

ap = 1, and

bp = inf
n≥p

un = −1 and thus lim inf
n

un = lim
p→∞

bp = −1.

The ratio test will be well known to most readers (see Exercise
3.4). Suppose that vn > 0 for all non-negative integers n.

(a) If lim
n→∞

vn+1

vn
= L < 1, then

∑

vn converges.

(b) If lim
n→∞

vn+1

vn
= L > 1, then

∑

vn diverges.

Perhaps less familiar is the root test. Suppose that vn ≥ 0 all n.

(a) If lim
n

(vn)
1
n = L < 1, then

∑

vn converges.

(b) If lim
n

(vn)
1
n = L > 1, then

∑

vn diverges.
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Proof. (a) Choose ε > 0 such that 0 < L + ε < 1. There exists a
P ∈ Z>0 such that

sup
n≥p

{

v
1
n

n

}

< L + ε for all p ≥ P .

Thus

vn < (L + ε)n for all n ≥ P,

and comparison with the geometric series yields convergence.

(b) Suppose that
∑

vn < +∞. Then lim
n

vn = 0. Thus there exists

a P in Z>0 such that n ≥ P implies that vn < 1 for all n ≥ P . Hence

(vn)
1
n < 1 for all n ≥ P and therefore lim

n
(vn)

1
n ≤ 1. �

Remark 3.11. The root test applies (with the same value of L)
whenever the ratio test applies. However, the converse is not true.
To see this take a sequence where the ratios are alternately 1

2
and 1

8
.

Then the root test will apply with L = 1
4
, but the sequence of ratios,

obviously, will not converge.

Example 3.12. Consider the sequence n−s with s a positive real
number. Both the ratio and the root test end up with L = 1. The
series diverges (converges to +∞) for 0 < s ≤ 1 and converges for
s > 1.

We now return to the study of the complex power series
∑∞

n=0 anzn

and to the problem of computing the radius of convergence.

Theorem 3.13. Let
∑

anzn be a power series. Suppose that an �= 0

for all n and that the limit lim
n

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= L exists, with 0 ≤ L ≤ +∞.

Then the radius of convergence ρ of the power series
∑∞

n=0 anzn is
1
L
; in other words,

1

ρ
= lim

n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

,

where
1

+∞ is to be understood as being = 0.

The hypotheses required for this result to hold are strong. As
pointed out in Remark 3.11, the ratio test is stronger than the root
test. The next result provides a way of computing the radius of con-
vergence for any power series.
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Theorem 3.14 (Hadamard). The radius of convergence ρ of the
power series

∑∞
n=0 anzn is given by

1

ρ
= lim

n
|an|

1
n .

Proof. Let L = lim
n

|an|
1
n . Thus lim

n
|anrn| 1

n = rL for all r ≥ 0

and we conclude by the root test that the associated series
∑ |an| rn

converges for 0 ≤ r < 1
L

and diverges for r > 1
L
. Thus ρ = 1

L
. �

Lemma 3.15. Let
∑

un and
∑

vn be two absolutely convergent se-
ries. Define

wn =

n
∑

p=0

upvn−p .

Then
∑

wn is absolutely convergent and
∑

wn = (
∑

un) (
∑

vn).

Proof. Let αp =
∑

n≥p

|un| and βp =
∑

n≥p

|vn|. Then

lim
p

αp = 0 = lim
p

βp .

Also
N
∑

n=0

|wn| ≤
∞
∑

n=0

|un|
∞
∑

n=0

|vn| = α0β0 < +∞,

and therefore,

∞
∑

n=0

|wn| < +∞. Thus we have proven the absolute

convergence of the new series.
To show the required equality, choose m and n with m ≥ 2n and

consider
∣

∣

∣

∣

∣

m
∑

k=0

wk −
(

n
∑

k=0

uk

)(

n
∑

k=0

vk

)∣

∣

∣

∣

∣

= L.

We have to show that L → 0 as n → ∞ (we already know each of
the above series converges). We rewrite

L =

∣

∣

∣

∣

∣

m
∑

k=0

k
∑

i=0

uivk−i −
n
∑

j=0

n
∑

i=0

uivj

∣

∣

∣

∣

∣

.
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(a) The first sum
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(b) The second sum

Figure 3.1. The (i, k) plane

By looking at the diagrams in the (i, k) plane shown in Figure 3.1,
we see that

m
∑

k=0

k
∑

i=0

uivk−i =

m
∑

i=0

m
∑

k=i

uivk−i

=
m
∑

i=0

ui

m
∑

k=i

vk−i =
m
∑

i=0

ui

m−i
∑

j=0

vj =
m
∑

i=0

m−i
∑

j=0

uivj .

Thus we can estimate

L =

∣

∣

∣

∣

∣

n
∑

i=0

[

m−i
∑

j=0

uivj −
n
∑

j=0

uivj

]

+
m
∑

i=n+1

m−i
∑

j=0

uivj

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∑

i=0

m−i
∑

j=n+1

uivj

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

m
∑

i=n+1

m−i
∑

j=0

uivj

∣

∣

∣

∣

∣

≤
∞
∑

i=0

∞
∑

j=n+1

|ui| |vj | +
∞
∑

i=n+1

∞
∑

j=0

|ui| |vj | = (α0βn+1 + β0αn+1),

and the last expression approaches 0 as n goes to ∞. �

3.2. More on power series

It is straightforward to prove the following (see Exercise 3.5).

Theorem 3.16. Suppose the power series
∑

anzn and
∑

bnzn have
radii of convergence ≥ ρ. Then

(a)
∑

(an + bn)zn and
∑

cnzn, where cn =
∑n

i=0 aibn−i, have radii
of convergence ≥ ρ, and
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(b) for |z| < ρ, we have
∑

(an + bn)zn =
∑

anzn +
∑

bnzn

and
∑

cnzn =
(
∑

anzn
)(
∑

bnzn
)

.

Theorem 3.17. Suppose the power series
∑∞

n=0 anzn has radius of
convergence ρ > 0. For |z| < ρ, let

S(z) =

∞
∑

n=0

anzn

(note that this defines a continuous function by Corollary 3.8). Then
the power series

∑∞
n=0 nanzn−1 has radius of convergence ρ and

S
′
(z) =

∞
∑

n=0

nanzn−1 , for all |z| < ρ .

Thus a power series defines a function which is holomorphic (and C∞)
in its disk of convergence, and all its derivatives are holomorphic there.

Proof. Let ρ ′ be the radius of convergence of
∑∞

n=0 nanzn−1. Then

1

ρ′ = lim
n

(n |an|) 1
n = lim

n
n

1
n lim

n
|an|

1
n = lim

n
|an|

1
n =

1

ρ
,

where the first and last equality follow from Hadamard’s theorem and
the second one from Exercise 3.3.

Thus we can define a continuous function T on |z| < ρ by

T (z) =

∞
∑

n=1

nanzn−1.

Note that if A and B ∈ C and n ∈ Z>1, then

An − Bn = (A − B)(An−1 + An−2B + · · ·+ Bn−1).

Let us set, for h �= 0 and |h| sufficiently small,

f(h) =

∣

∣

∣

∣

S(z + h) − S(z)

h
− T (z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=2

an

[

(z + h)n − zn

h
− nzn−1

]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=2

an

[

(z + h)n−1 + z(z + h)n−2 + . . . + zn−1 − nzn−1
]

∣

∣

∣

∣

∣

.
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For fixed z with |z| < ρ, we choose r so that |z| < r < ρ and then
we choose h with |z + h| < r. Under these restrictions

∣

∣(z + h)n−1 + z(z + h)n−2 + . . . + zn−1 − nzn−1
∣

∣

≤ ∣∣(z + h)n−1 + z(z + h)n−2 + . . . + zn−1
∣

∣+
∣

∣nzn−1
∣

∣ ≤ 2nrn−1,

and thus

0 ≤ f(h) ≤
∞
∑

n=2

2 |an|nrn−1 < +∞.

Therefore given any ε > 0, there exists a positive integer N with

∞
∑

n=N

2 |an|nrn−1 <
ε

2
.

Thus

0 ≤ f(h) ≤
N−1
∑

n=2

|an|
∣

∣

∣

∣

(z + h)n − zn

h
− n zn−1

∣

∣

∣

∣

+
∞
∑

n=N

2 |an|n rn−1.

The first sum, being a finite sum, goes to 0 as h → 0. Thus there exists
a δ > 0 such that 0 < |h| < δ implies that the first term is at most ε

2
.

Thus 0 ≤ f(h) < ε for 0 < |h| < δ. Hence T (z) = S ′(z). �

Remark 3.18. The theorem tells us that under certain circum-
stances we can interchange the order of computing limits: If the power
series

∑

anzn has a positive radius of convergence and if we let

N
∑

n=0

anzn = SN (z),

then the theorem states that

lim
h→0

lim
N→∞

SN(z + h) − SN(z)

h
= lim

N→∞
lim
h→0

SN(z + h) − SN(z)

h
.

Corollary 3.19. If S(z) =
∑∞

n=0 anzn for |z| < ρ, then for all
n ∈ Z≥0 and all |z| < ρ,

S(n)(z) =
dn

dzn
S(z)

and

an =
S(n)(0)

n!
.
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Proof. Induction on n shows that

S(n)(z) = n! an +
(n + 1)!

1!
an+1 z + . . . .

�

The results obtained so far have provided information about the
behavior of a power series inside its disk of convergence. Our next
result deals with a point on the boundary of this disk.

Theorem 3.20 (Abel’s limit theorem). Assume that the power
series

∑

anzn has finite radius of convergence ρ > 0. If
∑

anzn
0 con-

verges for some z0 with |z0| = ρ, then f(z) =
∑

anzn is defined for
{|z| < ρ} ∪ {z0} and we have

lim
z→z0

f(z) = f(z0),

as long as z approaches z0 from inside the circle of convergence and

|z − z0|
ρ − |z|

remains bounded.

Proof. By the change of variable w =
z

z0
we may assume that

ρ = 1 = z0 (replace an by anzn
0 ). Thus

∑

an converges to f(1). By
changing a0 to a0 − f(1), we may assume that f(1) =

∑

an = 0.
Therefore we are assuming that |z| < 1 (with 1 − |z| small) and

that
|1 − z|
1 − |z| ≤ M for some fixed M > 0. (Recall Exercise 2.12.) Let

sn = a0 + a1 + . . . + an .

Then limn sn = 0 and

Sn(z) = a0 + a1z + . . . + anzn

= s0 + (s1 − s0)z + . . . + (sn − sn−1)z
n

= s0(1 − z) + s1(z − z2) + . . . + sn−1(z
n−1 − zn) + snzn

= (1 − z)(s0 + s1z + . . . + sn−1z
n−1) + snzn.

Now

f(z) = lim
n→∞

Sn(z) = (1 − z)

∞
∑

n=0

snzn .
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Given ε > 0, choose N ∈ Z>0 such that |sn| < ε for n > N . Then

|f(z)| ≤ |1 − z|
(∣

∣

∣

∣

∣

N
∑

n=0

snzn

∣

∣

∣

∣

∣

+
∞
∑

n=N+1

|sn| |z|n
)

≤ |1 − z|
(∣

∣

∣

∣

∣

N
∑

n=0

snzn

∣

∣

∣

∣

∣

+ ε
|z|N+1

1 − |z|

)

≤ |1 − z|
∣

∣

∣

∣

∣

N
∑

n=0

snz
n

∣

∣

∣

∣

∣

+ εM.

Thus we conclude that limz→1 f(z) = 0. �
Remark 3.21. Observe that we have not needed or used polar

coordinates in our formal development thus far.

3.3. The exponential function, the logarithm function,
and some complex trigonometric functions

In this section we use power series to develop several functions.
We discover the exponential function by looking for functions that are
solutions of the ordinary differential equation

f ′(z) = f(z)

subject to the initial condition

f(0) = 1 .

3.3.1. The exponential function. We try to find such a solution
defined by a power series

f(z) = a0 + a1z + · · ·+ anzn + . . .

that converges near z = 0. Then (by Theorem 3.17)

f ′(z) = a1 + 2a2z + . . . + nanzn−1 + . . . ,

and thus we must have

a0 = 1, a1 = a0 = 1, a2 =
1

2
· a1 =

1

2!
, . . . ,

. . . , an+1 =
1

n + 1
· an =

1

(n + 1)!
(by induction) .

Hence

f(z) = 1 + z +
z2

2!
+ . . . +

zn

n!
+ . . . . (3.1)

Note that
1

ρ
= lim

n

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n

n!

(n + 1)!
= 0.

Thus ρ = +∞ and the power series (3.1) defines an entire transcen-
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dental function. We write ez and exp z for f(z), and we call f the
exponential function.

A transcendental function is one that is not a rational function;
that is, it is not the quotient of two polynomials. Exercise 3.9 shows
that the exponential function is a transcendental function.

Proposition 3.22. Let c ∈ C. Then the function f(z) = c ez is
the unique power series and the unique entire function satisfying

f ′(z) = f(z) and f(0) = c. (3.2)

Proof. It is trivial that z �→ cez satisfies (3.2) and is the unique
power series to do so. We know that this is an entire function. We
postpone the proof that this is the unique entire function that satisfies
(3.2) until after we establish the next two propositions. �

Proposition 3.23. ez+ζ = ezeζ for all z and ζ in C.

Proof. Define f(z) = ez+ζ with ζ fixed in C. Then the function f
has a power series expansion that converges for all z ∈ C, f ′(z) = f(z)
and f(0) = eζ . Thus f(z) = cez for some constant c, which must be
f(0) = eζ . �

Proposition 3.24. For all z ∈ C,

eze−z = e0 = 1 .

Thus
ez �= 0 for all z ∈ C .

Conclusion of proof of Proposition 3.22. If g(z) is any entire

function satisfying (3.2), form the function h(z) = g(z)
ez .

The rules for differentiation tell us that

h′(z) =
g′(z)ez − g(z)ez

e2z
= 0 for all z ∈ C.

Thus, by Theorem 2.39 of the previous chapter, h is constant. �
Proposition 3.25. ez = ez for all z ∈ C.

Proposition 3.26. Write z = x + ı y. Then

|eıy|2 = eıye−ıy = 1,

and thus
|ez| = ex .

The exponential function leads us immediately to the complex
trigonometric functions.
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3.3.2. The complex trigonometric functions. We define two
entire functions by

cos z =
eız + e−ız

2
= 1 − z2

2!
+

z4

4!
− . . . (3.3)

and

sin z =
eız − e−ız

2ı
= z − z3

3!
+

z5

5!
− . . . . (3.4)

It is then easy to verify the following familiar properties:

cos z + ı sin z = eız, cos2 z + sin2 z = 1 , (3.5)

cos(−z) = cos z, sin(−z) = − sin z,

cos′ z = − sin z , sin′ z = cos z. (3.6)

.
In the next subsection we will formally define π and then, after

some calculations, we will be able to obtain from (3.5) the beauti-
ful identity (connecting perhaps the four most interesting numbers in
mathematics):

eπ ı + 1 = 0 .

Remark 3.27. It should be observed that the functions sin and cos
defined above agree for real values of the independent variable z with
the familiar real-valued functions with the same names. The easiest
way to conclude this is from the power series expansions of these func-
tions at z = 0. Also note that sin z and cos z form a basis for the power
series solutions to the ordinary differential equation

f ′′(z) + f(z) = 0.

Similarly, using either this last characterization of the sine and co-
sine functions or the additivity of the exponential function, one estab-
lishes that for all z and ζ ∈ C,

cos(z + ζ) = cos z cos ζ − sin z sin ζ

and

sin(z + ζ) = sin z cos ζ + cos z sin ζ .
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3.3.3. The definition of π and the logarithm function. Our
first task is to establish the periodicity of ez. For x ∈ R, sin x and
cos x [as defined by (3.4) and (3.3) respectively] are real numbers. From
sin2 x + cos2 x = 1, we conclude that

−1 ≤ cos x ≤ 1 .

Integrating for x ≥ 0 we have
∫ x

0
cos t dt ≤ ∫ x

0
dt, or sin x ≤ x.

Also, for x > 0, we must have sin x < x.1 Equivalently, − sin x > −x.
Thus

∫ x

0
(− sin t) dt >

∫ x

0
(−t) dt. We conclude that cosx − 1 > −x2

2
or

cos x > 1 − x2

2
. Repeating, we get two inequalities for x �= 0:

sin x > x − x3

6
and cosx < 1 − x2

2
+

x4

24
. (3.7)

Definition 3.28. Let f be a complex-valued function defined on
C, and let c ∈ C, c �= 0. We say that f has period c (and call f
periodic) if and only if f(z + c) = f(z) for all z ∈ C.

The exponential function is periodic (that is, it has a period). Note
that ez+c = ez if and only if ec = 1. Thus c = ı ω, with ω ∈ R. Tradi-
tionally ω (and not ı ω) is called a period of the exponential function.
We want to determine the smallest such positive ω.

First note that cos 0 = 1 (obvious). It follows from the inequalities
(3.7) that

cos
√

3 < 1 − 3

2
+

9

24
= −1

8
< 0,

and then continuity implies that there exists a y0 ∈ (0,
√

3) such that
cos y0 = 0.

But cos2 y0 + sin2 y0 = 1 implies that sin y0 = ±1, and thus eıy0 =
cos y0 + ı sin y0 = ±ı and e4ıy0 = 1. We conclude that 4y0 is a period
of ez. We claim that this is the smallest positive period and that any
other period is an integral multiple of this one.

Proof. If 0 < y < y0 <
√

3, then y2 < 3 and 1 − y2

6
> 1

2
; thus,

sin y > y (1 − y2

6
) > y

2
> 0 and we conclude that cos y is strictly

decreasing on [0, y0].
Since cos2 x + sin2 x = 1 and sin x > 0 on (0, y0), we conclude that

sin y is strictly increasing here. Thus, sin y < sin y0 = 1.

1The function x �→ x − sin x is certainly nondecreasing on [0, +∞) since its
derivative is the function x �→ 1 − cosx ≥ 0. The inequality sinx < x certainly
holds for x > 1. If for some x0 in (0, 1] we would have sin x0 = x0, then we would
conclude from the Mean Value Theorem that for some x̃ ∈ (0, x0), cos x̃ = 1, which
leads to the contradiction sin x̃ = 0.
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Now 0 < y < y0 implies that 0 < sin y < 1, which in turn implies
that eıy �= ±1,±ı and therefore e4ıy �= 1. Thus ω0 = 4y0 is the smallest
positive period.

If ω is an arbitrary period, then so is |ω| and there is an n ∈ Z>0

such that nω0 ≤ |ω| < (n+1)ω0. If nω0 �= |ω|, then 0 < (n+1)ω0−|ω|
is a positive period less than ω0. Since this is impossible by definition,
|ω| = n ω0. �

Definition 3.29. (Definition of π.) We define the real number
π by 4y0 = 2π. Thus ez = 1 if and only if z = 2πın with n ∈ Z.
Hence, according to tradition, 2π is the smallest positive period of the
exponential function.

As in real analysis, the inverse to the exponential function should
be a logarithm. We now turn to its definition. Since ex > 0 for all
x ∈ R, ex is strictly increasing on R. Hence there exists an inverse
function denoted by log (sometimes by ln):

ex : R → (0, +∞) , (3.8)

log : (0, +∞) → R ,

and we have the well-known properties

log ex = x for all x ∈ R, and elog x = x for all x ∈ R>0 .

We know that ez �= 0 for all z ∈ C; we thus can expect to define a
complex logarithm. The problem is that the exponential function

ez : C → C �=0

is not one-to-one. Let us write z �= 0 in polar coordinates2 z = reıθ

(this agrees with our previous way of writing polar coordinates). Here
r = |z| and θ = arg z. The argument of z is defined up to addition of
2πn with n ∈ Z. We also define

log z = log |z| + ı arg z ;

it is a multivalued function3 on C �=0.

The principal branch of arg z, Arg z, is restricted to lie in (−π, π].
It has a jump discontinuity on the negative real axis (it is not defined
at 0). We define the principal branch of the logarithm by the formula

Log z = log |z| + ı Arg z .

2Having defined π, polar coordinates now rest on a solid foundation and can
be used in proofs.

3Thus it is not a function.
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It is a continuous function on C − (−∞, 0]; it is C1 on this set.

Properties of the complex logarithm

1. elog z = elog|z|+ı arg z = |z| eı arg z = z for all z ∈ C �=0.

2. Log z is holomorphic on C−(−∞, 0], with
d

dz
Log z =

1

z
there.

Proof. Write z = reıθ with −π < θ < π. Thus Log z =
log r + ıθ = u + ı v. Calculate ur = 1

r
, vθ = 1, uθ = 0, and

vr = 0. Thus rur = vθ and rvr = −uθ. Hence Log z is C1 and
satisfies CR (see Exercise 2.3); thus it is holomorphic. We can
now compute formally using the chain rule:

eLog z = z.

Thus

eLog z d

dz
Log z = 1,

and we conclude that

d

dz
Log z = e−Log z =

1

z
.

�
3. Log z1 + Log z2 = Log z1z2 if −π < Arg z1 + Arg z2 ≤ π, and

Log z1 + Log z2 �= Log z1z2 otherwise.

Definition 3.30. A continuous function f on a domain D not
containing the origin is called a branch of the logarithm on D if for all
z ∈ D, we have ef(z) = z.

Later we will establish that under appropriate conditions on D a
branch of the logarithm always exists.

Theorem 3.31. Let D be a domain in C with 0 /∈ D. Suppose f is
a branch of the logarithm on D.

Then g is a branch of the logarithm in D if and only if there is an
n ∈ Z such that g(z) = f(z) + 2π ı n for all z in D.

Proof. If g = f + 2π ı n with n ∈ Z, then for all z in D, eg(z) =
ef(z)e2π ı n = z.

For a proof of the converse, define

h(z) =
f(z) − g(z)

2π ı
, z ∈ D .
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Then e2π ı h(z) = ef(z)e−g(z) = z
1

z
= 1. Thus for each z ∈ D, there is

an n ∈ Z such that h(z) = n. Hence h(D) ⊂ Z. Since D is connected,
h(D) = {n} for some fixed n ∈ Z. �

Corollary 3.32. Every branch of the logarithm on a domain D
is a holomorphic function on D.

Theorem 3.33. For z ∈ C with |z| < 1,

Log(1 + z) =

∞
∑

n=1

(−1)n−1 zn

n
= z − z2

2
+

z3

3
+ . . . .

Proof. We first compute the radius of convergence of the given

series using the ratio test:
1

ρ
= lim

n

∣

∣

∣

∣

n

n + 1

∣

∣

∣

∣

= 1. Thus

f(z) =
∞
∑

n=1

(−1)n−1 zn

n

is holomorphic in |z| < 1. We calculate

f ′(z) = 1 − z + z2 + . . . =
1

1 + z
for |z| < 1.

Let g(z) = ef(z); then g′(z) = ef(z)f ′(z) =
ef(z)

1 + z
and

g′′(z) =
(1 + z)ef(z)f ′(z) − ef(z)

(1 + z)2
= 0.

Thus g′(z) = α, a constant, and

ef(z) = α(1 + z).

Now f(0) = 0 tells us α = 1. Thus f(z) defines a branch of log(1 + z).
For x ∈ (−1, 1), f(x) ∈ R. Thus f is the principal branch of log; that
is, f(z) = Log(1 + z). �

Complex exponentials are defined by zc = ec log z for c ∈ C and
z ∈ C �=0 and the principal branch of zc by ec Log z.

3.4. An identity principle

Holomorphic functions are remarkably rigid: If f is a holomorphic
function that is defined on an open connected set D, then the knowledge
of its behavior at a single point a ∈ D is sufficient to describe precisely
its properties [in particular, its value f(b)] at an arbitrary point b ∈
D. We now start on the exciting journey to establish this and other
beautiful results.
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Definition 3.34. A function f defined in a neighborhood of ζ ∈ C

has a power series expansion at ζ if there exists an r > 0 such that

f(z) =

∞
∑

n=0

an(z − ζ)n for |z − ζ | < r ≤ ρ,

where ρ is the radius of convergence of the power series (in the variable
w = z − ζ).

Theorem 3.35. Let f be a function defined in a neighborhood of
ζ ∈ C that has a power series expansion at ζ with radius of convergence
ρ. Then

(a) f is holomorphic and C∞ in a neighborhood of ζ.

(b) If g also has a power series expansion at ζ and if the product
f · g is identically zero in a neighborhood of ζ, then either f
or g is identically zero in some neighborhood of ζ.

(c) There exists a function h defined in a neighborhood of ζ that
has a power series expansion at ζ, with the same radius of
convergence ρ, such that h′ = f . The function h is unique up
to an additive constant.

Proof. Without loss of generality we assume ζ = 0.

(a) Already verified, in Theorem 3.17.

(b) For some r > 0, we have

f(z) =
∑∞

n=0 anzn and g(z) =
∑∞

n=0 bnzn for |z| < r.

Suppose that neither f nor g vanish identically in any
neighborhood of ζ = 0, and choose the smallest nonnegative
integers N and M such that aN �= 0 and bM �= 0. We know
that

(f · g)(z) =

∞
∑

n=0

cnzn for |z| < r ,

where

cn =
∑

p+q=n

ap bq.

Thus cN+M = aN bM �= 0 (note that cn = 0 for n =
0, 1, . . . , N + M − 1). But

cN+M =
1

(N + M)!

(

dN+M(f · g)

dzN+M

)

(0) .
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(c) Define h(z) =
∞
∑

n=0

an

n + 1
zn+1. Then the radius of convergence

ρ′ of h satisfies

1

ρ′ = lim sup
n

∣

∣

∣

∣

an

n + 1

∣

∣

∣

∣

1
n

= lim sup
n

|an|
1
n =

1

ρ
.

�
The following lemma is a useful tool with significant applications

beyond the immediate one.

Lemma 3.36. If S(z) =
∑∞

n=0 anzn has radius of convergence ρ > 0,
then for any ζ ∈ C with |ζ | < ρ, the power series

∞
∑

n=0

S(n)(ζ)

n!
wn

has radius of convergence ≥ ρ − |ζ | and

S(z) =
∞
∑

n=0

S(n)(ζ)

n!
(z − ζ)n for |z − ζ | < ρ − |ζ | .

Proof. Let us define R = |ζ | < ρ (see Figure 3.2). The argument
consists of two steps:

(I) We show first that
∞
∑

p=0

S(p)(ζ)

p!
wp is absolutely convergent for

|w| < ρ − R.

We know that

S(p)(ζ) =
∞
∑

n=p

ann(n − 1)(n − 2) . . . (n − p + 1)ζn−p

=
∞
∑

n=p

an
n!

(n − p)!
ζn−p .

If n − p = q, we set bp+q = |an| and then

∣

∣S(p)(ζ)
∣

∣ ≤
∞
∑

q=0

bp+q
(p + q)!

q!
Rq .

Take r ∈ R with R < r < ρ. Then
∞
∑

p=0

∣

∣

∣

∣

S(p)(ζ)

p!

∣

∣

∣

∣

(r − R)p ≤
∑

p,q

bp+q
(p + q)!

p! q!
Rq(r − R)p (3.9)
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ζ

R

ρ

z

ρ − R

Figure 3.2. Radii of convergence

Making the change of variables n = p + q in the RHS of (3.9)
we continue to estimate the LHS.

LHS ≤
∞
∑

n=0

bn

n
∑

p=0

n!

p!(n − p)!
Rn−p (r − R)p

=
∞
∑

n=0

bn(r − R + R)n < +∞.

(II) We show next that

S(z) =

∞
∑

p=0

S(p)(ζ)

p!
(z − ζ)p

=

∞
∑

p=0

∞
∑

n=p

ann!

p!(n − p)!
ζn−p(z − ζ)p

for |z − ζ | < ρ − R. We now know that this series converges
absolutely. Hence we may rearrange the order of the terms
and sums (see Exercise 3.13). The argument proceeds exactly
as in part (I).

�

Example 3.37. S(z) =
1

1 − z
satisfies S(z) = 1 + z + z2 + . . . for

|z| < 1. Here ρ = 1. The function S is defined on C �=1; however, the
power series representation is valid only for |z| < 1.



46 3. POWER SERIES

Let us take ζ = −1
2
. Then S(p)(z) = p! (1 − z)−1−p, and thus,

S(p)
(−1

2

)

= p!
(

2
3

)1+p
. Hence

∞
∑

p=0

(

2

3

)1+p

wp has radius of conver-

gence ρ′ = 3
2
. It follows that for all z satisfying

∣

∣z + 1
2

∣

∣ < 3
2

we have

S(z) =

∞
∑

p=0

(

2

3

)1+p(

z +
1

2

)p

.

Note that ρ − |ζ | = 1
2

< 3
2
. What we see in this example is not an

accident as will soon become clear.

Corollary 3.38. If f(z) =
∑

anzn for |z| < ρ, then f has a power
series expansion at each point ζ with |ζ | < ρ.

The next result is called an (perhaps, “the”) identity principle; it
provides necessary and sufficient conditions for a function that has a
power series expansion at each point of a connected domain of definition
to vanish identically. The principle is usually applied in the form given
by Corollary 3.40.

Theorem 3.39. Let f be a function defined on a domain D. As-
sume that f has a power series expansion at each point of D, and let
ζ ∈ D.

Then the following conditions are equivalent.

(a) f (n)(ζ) = 0 for n = 0, 1, 2, . . ..

(b) f ≡ 0 in a neighborhood of ζ.

(c) There exists a sequence {zn} consisting of distinct points of D
with limn zn = ζ and f(zn) = 0 for each n.

(d) f ≡ 0 on D.

Proof. It is obvious that (d) ⇒ (b) ⇒ (c) and that (a) ⇔ (b).

(c) ⇒ (a): We know that f(z) =
∑∞

n=0 an(z − ζ)n for |z − ζ | < ρ
for some ρ > 0. Furthermore, a0 = f(ζ) = limn f(zn) = 0.

Assume by induction that

0 = f(ζ) = . . . = f (n)(ζ)

for some integer n ≥ 0. Then

f(z) =

∞
∑

p=n+1

ap(z−ζ)p = (z−ζ)n+1

∞
∑

p=0

an+1+p(z−ζ)p = (z−ζ)n+1g(z).

Now, without loss of generality, we assume zn �= ζ for all n. The
function g has a power series expansion at ζ . Obviously g(zn) = 0 if
and only if f(zn) = 0. Thus g(ζ) = 0 = an+1.
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(a) ⇒ (d): Let us define

D′ = {z ∈ D; f ≡ 0 in a neighborhood of z}.
The set D′ is open in D because, as we already remarked, (a) is trivially
equivalent to (b). Now

D′ =
∞
⋂

n=0

{z ∈ D; f (n)(z) = 0}

is the intersection of a countable family of closed subsets of D and hence
is closed in D. Since D′ is not empty and D is connected, D′ = D. �

3.5. Zeros and poles

The most important and first practical consequence of the work of
the last section is the next corollary. The results of Section 3.4 will
also allow us to introduce an important class of functions; these are
meromorphic functions taking values in the extended complex plane
C ∪ {∞} rather than just C.

Corollary 3.40 (Principle of Analytic Continuation). Let
D be a domain, and let f and g be functions on D having power series
expansions at each point of D.

If f and g agree on a sequence of distinct points in D with a limit
point in D, or if they have identical power series expansions at a single
point in D, then f ≡ g (on D).

Example 3.41. The exponential function ez is the unique extension
of ex in the class of functions under study; that is, it is the unique
function on C that has a power series expansions at each point and
agrees with ex at each point x ∈ R.

Corollary 3.42. If K is a compact subset of a domain D and
f is a nonconstant function that has a power series expansion at each
point of D, then f has finitely many zeros in K.

Definition 3.43. Let ζ ∈ C. Assume that

f(z) =

∞
∑

n=0

an(z − ζ)n for |z − ζ | < ρ for some ρ > 0.

If f is not identically zero, then there exists an N ∈ Z≥0 such that

aN �= 0 and an = 0 for all n such that 0 ≤ n < N.

Thus

f(z) = (z − ζ)N
∞
∑

p=0

aN+p(z − ζ)p = (z − ζ)N g(z) ,
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with g having a power series expansion at ζ and g(ζ) �= 0. We define

N = νζ(f) = order (of the zero) of f at ζ .

Note that N ≥ 0, and N = 0 if and only if f(ζ) �= 0. If N = 1, then
we say that f has a simple zero at ζ .

Notation. Let ̂C = C ∪ {∞} be the one point compactification of
C, usually called the Riemann sphere. It is diffeomorphic to the unit
sphere in R

3. See Exercise 3.18.

Definition 3.44. (a) Let f be defined in a deleted neighborhood
of ζ ∈ C (see the Standard Notation summary). We say that

lim
z→ζ

f(z) = ∞

if for all M > 0, there exists a δ > 0 such that

0 < |z − ζ | < δ ⇒ |f(z)| > M .

(b) Let α ∈ ̂C, and let f be defined in |z| > M for some M > 0 (we

say that f is defined in a deleted neighborhood of ∞ in ̂C). We say

lim
z→∞

f(z) = α

provided

lim
z→0

f

(

1

z

)

= α.

(c) The above defines the concept of continuous maps between sets

in ̂C.

(d) A function f is holomorphic (has a power series expansion)
at ∞ if and only if g(z) = f

(

1
z

)

is holomorphic (has a power series
expansion) at z = 0.

Definition 3.45. Let U ⊂ C be a neighborhood of a point ζ . A
function f that is holomorphic in U ′ = U−{ζ}, a deleted neighborhood
of a point ζ , has a removable singularity at ζ if there is a holomorphic
function in U that agrees with f on U ′.

Let us consider two functions f and g having power series expan-

sions at each point of a domain D in ̂C. Assume that neither function

vanishes identically on D, and let ζ ∈ D ∩ C. Let F (z) = f(z)

(z−ζ)
νζ (f)
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and G(z) = g(z)

(z−ζ)
νζ(g) for z ∈ D. Then the functions F and G have re-

movable singularities at ζ , do not vanish there, and have power series
expansions at each point of D. Furthermore

h(z) =
f

g
(z) =

(z − ζ)νζ(f) F (z)

(z − ζ)νζ(g) G(z)
for all ζ ∈ D.

Exactly three distinct possibilities exist for the behavior of h(z) at ζ ,
which lead to the following definitions:

Definition 3.46. (I) νζ(g) > νζ(f). Then h(ζ) = ∞ [this defines
h(ζ), and the resulting function h is continuous at ζ ]. In this
case we say that h has a pole of order νζ(g) − νζ(f) at ζ . If
νζ(g) − νζ(f) = 1, we say that the pole is simple.

(II) νζ(g) = νζ(f). The singularity of h at ζ is removable, and by

definition, h(ζ) = F (ζ)
G(ζ)

.

(III) νζ(g) < νζ(f). The singularity is again removable and h(ζ) =
0.

In all cases we set νζ(h) = νζ(f) − νζ(g) and call it the order of h
at ζ .

In cases (II) and (III) of the definition, h has a power series expan-
sion at ζ as a consequence of the following

Theorem 3.47. If f has a power series expansion at ζ and f(ζ) �=
0, then 1

f
also has a power series expansion at ζ.

Proof. Without loss of generality we assume ζ = 0 and f(0) = 1.
Thus

f(z) =
∞
∑

n=0

anzn, a0 = 1, ρ > 0 .

We want to find the reciprocal power series; that is, a power series
g(z) =

∑∞
n=0 bnzn with a positive radius of convergence and such that

(
∑

anzn
)(
∑

bnzn
)

= 1 .

The LHS and the RHS are both power series, where the RHS
is a power series expansion whose coefficients for n > 1 are all zero.
Equating the first two coefficients, we obtain

a0b0 = 1, b0 = 1, a1b0 + a0b1 = 0,

and using the n-th coefficient of the power series when expanded for
the LHS, for n ≥ 1, we obtain

anb0 + an−1b1 + . . . + a0bn = 0 .
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Thus by induction we define

bn = −
n−1
∑

j=0

bjan−j.

Since ρ > 0, we have 1
ρ

< +∞. Since lim supn |an|
1
n = 1

ρ
, there

exists a k > 0 such that |an| ≤ kn.

We will show by induction that |bn| ≤ 2n−1 kn for all n ≥ 1. For
n = 1, we have b1 = −a1 and hence |b1| = |a1| ≤ k. Suppose the
inequality holds for j ≤ n for some n ≥ 1. Then

|bn+1| ≤
n
∑

j=0

|bj | |an+1−j | = |an+1| +
n
∑

j=1

|bj | |an+1−j|

≤ kn+1 +

n
∑

j=1

2j−1kjkn+1−j = kn+1(1 + 2n − 1).

Thus there is a reciprocal series, with radius of convergence σ, satisfying

1

σ
= lim sup

n
|bn|

1
n ≤ lim

n
(21− 1

n )k = 2 k.

�
Corollary 3.48. Let D be a domain in ̂C and f a function on D.

If f has a power series expansion at each point of D and f(z) �= 0 for
all z ∈ D, then 1

f
has a power series expansion at each point of D.

Definition 3.49. For each domain D ⊆ C ∪ {∞} = ̂C, we define
H(D) as

{f : D → C; f has a power series expansion at each point of D}.
The set H(D) is referred to as the set of holomorphic functions on

D. We will see in Chapter 5 that this terminology is consistent with
our earlier definition of a holomorphic function on D.

Corollary 3.50. Assume that D is a domain in ̂C. The set H(D)
is an integral domain and an algebra over C. Its units are the functions
that never vanish.

Definition 3.51. Let D be a domain in ̂C. A function f : D → ̂C

is meromorphic if it is locally4 the ratio of two functions having power
series expansions (with the denominator not identically zero). The set
of meromorphic functions on D is denoted by M(D).

4A property P is satisfied locally on an open set D if for each point a ∈ D,
there exists a neighborhood U ⊂ D of a such that P is satisfied in U .
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Corollary 3.52. Let D be a domain in ̂C, f ∈ M(D) and ζ ∈
D ∩ C. Then there exist a connected neighborhood U of ζ in D, an
integer n, and a unit g ∈ H(U) such that

f(z) = (z − ζ)n g(z) for all z ∈ U .

Note that n = νζ(f).

Corollary 3.53. If D is a domain in ̂C, then the set M(D) is a
field and an algebra over C.

We recall that, by our convention, M(D) �=0 is the set of meromor-
phic functions with the constant function 0 omitted, where 0(z) = 0
for all z in D.

Corollary 3.54. If D be a domain and ζ ∈ D, then

νζ : M(D) �=0 → Z

is a homomorphism.
Defining νζ(0) = +∞, we obtain

νζ(f + g) ≥ min{νζ(f), νζ(g)} for all f and g in M(D);

that is, νζ is a (discrete) valuation5 (of rank one) on M(D).

Remark 3.55. The converse statement also holds; it is non trivial
and not established in this book.

The next corollary defines the term Laurent series.

Corollary 3.56. If f ∈ M(D) �=0 and ζ ∈ D ∩ C, then f has a
Laurent series expansion at ζ; that is, there exist a μ ∈ Z (μ = νζ(f)),
a sequence of complex numbers {an}∞n=μ with aμ �= 0, and a deleted
neighborhood U ′ of ζ such that

f(z) =

∞
∑

n=μ

an(z − ζ)n

for all z ∈ U ′. The power series

∞
∑

n=max(0,μ)

an(z − ζ)n

converges uniformly and absolutely on compact subsets of U = U ′∪{ζ}.
5Standard, but not universal, terminology.
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Remark 3.57. If ∞ ∈ D, then for all sufficiently large real numbers
R the series representing f in {|z| > R} ∪ {∞} has the form

f(z) =

∞
∑

n=μ

an

(

1

z

)n

.

Corollary 3.58. If f ∈ M(D), then f ′ ∈ M(D). If in addition
νζ(f) �= 0 for ζ ∈ D, then

νζ(f
′) = νζ(f) − 1 .

Remark 3.59. Some care must be exercised in discussing singular-
ities and singular values. ∞ is, of course, a singular value for holomor-
phic functions but not for meromorphic ones.

Exercises

3.1. Determine the radius of convergence of each of the following
series:

∞
∑

n=0

zn

n!
,

∞
∑

n=1

zn

n
,

∞
∑

n=0

n!zn .

3.2. Prove that if |an| ≤ M for n ≥ 0, then the power series
∑∞

n=0 anzn has radius of convergence ρ ≥ 1.

3.3. Under the hypothesis that {an} and {bn} are positive sequences,
prove that:

(a)

lim
n

anbn ≤ lim
n

an lim
n

bn,

provided the right side is not the indeterminate form 0 ×∞.
Show by example that strict inequality may hold.

(b) If limn an exists, then the equality holds in (a) provided the
right side is not indeterminate; that is, show that in this case,

lim
n

anbn = lim
n

an lim
n

bn.

3.4. Give a proof of the ratio test.

3.5. Give a proof of Theorem 3.16.

3.6. Find all the roots of cos z = 2.

3.7. (a) Find �(sin z) ,�(sin z) ,�(cos z) ,�(cos z) .
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(b) Write z = x + ıy and prove that

|sin z|2 = sin2 x + sinh2 y

and

|cos z|2 = cos2 x + sinh2 y ,

where cosh z =
ez + e−z

2
and sinh z =

ez − e−z

2
are the hyper-

bolic trigonometric functions.

(c) Derive the addition formulas for cosh(a + b) and sinh(a + b).

(d) Evaluate D sinh z, D cosh z, and cosh2 z − sinh2 z.

3.8. Prove, using power series, that e−z = 1
ez .

3.9. Show that the exponential function is a transcendental func-
tion.

3.10. Is it always true that Log(ez) = z? Support your answer with
either a proof or a counterexample.

3.11. (a) What are all the possible values of ıı ?

(b) Let a and b ∈ C with a �= 0. Find necessary and sufficient
conditions for ab to consist of infinitely many distinct values.

(c) Let n be a positive integer. Find necessary and sufficient con-
ditions for ab to consist of n distinct values.

3.12. (a) Show that both the sine and the cosine functions are pe-
riodic with period 2π.

(b) Show that sin z = 0 if and only if z = πn for some n ∈ Z.

(c) Show that cos z = 0 if and only if z = π
2
(2n + 1) for some

n ∈ Z.

3.13. Let {kn} be a sequence in which every positive integer appears
once and only once.

Let
∑

an be a series. Putting a′
n = akn , we say that

∑

a′
n is a

rearrangement of
∑

an.

(a) Let {an} be a sequence of real numbers such that
∑

an con-
verges but

∑ |an| does not. Let a be any real number. Show
that there is a rearrangement

∑

a′
n of

∑

an such that a =
∑

a′
n.

(b) Show that
∑

an converges absolutely if and only if every re-
arrangement converges to the same sum.
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3.14. Let {an} be a real sequence. Show that

lim
n

{an} = sup
{

α; α = lim
n

bn

}

,

with {bn} a convergent subsequence of {an} and that

lim
n

an = inf
{

α; α = lim
n

bn

}

with {bn} as above.

In this exercise a sequence {bn} with lim bn = +∞ (similarly −∞)
is to be considered a convergent sequence.

3.15. (Only for those who know some algebra.) Show that C is the
only nontrivial finite-dimensional commutative division algebra over R.

3.16. Let p(z) = anzn + an−1z
n−1 + ... + a1z + a0, an �= 0, be a

polynomial of degree n ≥ 1. Consider p as a self-map of ̂C.

(a) Let α ∈ ̂C. Show that there exists a z ∈ ̂C such that p(z) = α.6

(b) Let z ∈ ̂C and p(z) = α ∈ ̂C. Define appropriately mp(z),
the multiplicity of α for p at z, so that you can prove: For all

α ∈ ̂C,
∑

z∈̂C; p(z)=α

mp(z) = n. (3.10)

Note: The integer
∑

z∈̂C; p(z)=α

mp(z) is the topological degree of the map

p : ̂C → ̂C.

3.17. Let p = P
Q

be a nonconstant rational map. It involves no

loss of generality to assume, as we do, that P and Q do not have any
common zeros. View, as in the case of polynomials, p as a self-map of
̂C.

(a) Show that p is surjective.

(b) Define the concepts of multiplicity at a point and topological
degree for the rational map p so that (3.10) holds.

3.18. The unit sphere (with center at 0) S2 ⊆ R
3 is defined by

S2 = {(ξ, η, ζ) ∈ R
3; ξ2 + η2 + ζ2 = 1}.

6You may use, although other arguments are available, the Fundamental The-
orem of Algebra which will be established in Chapter 5.
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Show that stereographic projection

(ξ, η, ζ) �→ ξ + ı η

1 − ζ

is a diffeomorphism from S2 −{(0, 0, 1)} onto C and that it extends to

a diffeomorphism from S2 onto ̂C (that sends (0, 0, 1) to ∞).

3.19. Justify the statement that stereographic projection takes cir-
cles to circles.

That is, a “circle”on S2 is the intersection of a plane in R
3 with S2.

Such a circle is a “maximal circle” if it is the intersection of S2 with a
plane through the point (0, 0, 1) of R

3.
Show that stereographic projection sets up a bijective correspon-

dence between the set of “maximal circles” on S2 and the set of “circles”
through ∞ on ̂C, that is, straight lines in C. Also show that stereo-
graphic projection sets up a bijective correspondence between the set

of all circles on S2 and what are called the circles in ̂C: the union of
the set of all circles in C and the set of all straight lines in C.

The circles in ̂C will play an important role in Chapter 8.

3.20. Show that stereographic projection preserves angles.

3.21. Suppose the power series
∞
∑

−∞
αjz

j and
∞
∑

−∞
βjz

j converge for

1 < |z| < 3 and 2 < |z| < 4, respectively, and that they have the same
sum for 2 < |z| < 3. Does this imply that αj = βj for all j?

3.22. Find all zeroes of f(z) = 1 − exp(exp z).

3.23. Find the radius of convergence of the power series
∞
∑

n=0

an zn,

where a0 = 0, a1 = 1, and an = an−1 + an−2 for all n > 1.

(Hint: Multiply the series by z2 + z − 1.)

3.24. The formula

tan z =
sin z

cos z
defines a meromorphic function on C. Show that it has simple poles at

z = (2k + 1)
π

2
for every integer k

and is holomorphic elsewhere. Show that tan maps C onto C ∪ {∞}.



56 3. POWER SERIES

(a) Show that tan z = tan ζ if and only if there exists an integer
k such that ζ − z = πk.

(b) Show that z �→ tan z is a holomorphic one-to-one map of
{

z ∈ C;−π

2
< �z <

π

2

}

onto C − {(−∞,−1) ∪ (1, +∞)}
and of

{

z ∈ C;−π

2
< �z ≤ π

2

}

onto C ∪ {∞}.7

(c) Show that
d

dz
tan z =

1

cos2 z
.

3.25. One purpose of this exercise is to establish the beautiful for-
mula (3.11).
Verify each of the following assertions and/or answer the questions:

(a) The series

1

1 + z2
=

∞
∑

k=0

(−1)kz2k

defines a holomorphic function on |z| < 1.
(b) Hence there is a holomorphic function

f(z) =

∞
∑

k=0

(−1)kz2k+1

2k + 1

on |z| < 1 such that

f(0) = 0 and f ′(z) =
1

1 + z2
.

(c) Since tan is locally injective, there exists a multivalued inverse
function arctan defined on C ∪ {∞} such that

tan(arctan z) = z for all z ∈ C,

hence also tan(arctan(z)+kπ) = z for all k ∈ Z and all z ∈ C.
We can then define the principal branch of arctan, to be called
Arctan, by requiring that

−π

2
< �(Arctan z) ≤ π

2
.

(d) Show that

arctan z =
1

2ı
log

1 + ız

1 − ız
.

7For this and the previous onto proof, you will need either some of the results of
the next exercise or something like Rouché’s theorem, which is proven in Chapter 6.
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(e) Let g(z) = f(tan z). Show that g′(z) = 1 for all z in a domain
D. Describe D.

(f) Conclude that f(z) = Arctan z for |z| < 1.
(g) Why does the Taylor series for Arctan at the origin not con-

verge in a bigger disk?

(h) Show that Arctan 1 is given by
∑∞

k=0
(−1)k

2k+1
, thus justifying

π = 4

∞
∑

k=0

(−1)k

2k + 1
. (3.11)

3.26. (l’Hopital’s rule) Let f and g be two functions defined by
convergent power series in a neighborhood of 0. Assume that f(0) =
0 = g(0) and g′(0) �= 0. Show that

lim
z→0

f(z)

g(z)
=

f ′(0)

g′(0)
.



CHAPTER 4

The Cauchy Theory–A Fundamental Theorem

As with the theory of differentiation for complex-valued functions of
a complex variable, the integration theory of such functions begins by
mimicking and extending results from the theory for real-valued func-
tions of a real variable, but again the resulting theory is substantially
different, more robust and elegant. Specifically, a curve or path γ in
C is a continuous function from a closed interval in R to C. Thus the
restriction of a complex-valued function f on C to the range of a curve
has real and imaginary parts that can be viewed as real-valued func-
tions of a real variable and thus integrated on the interval.1 Adding
the integral of the real part to ı times the integral of the imaginary
part defines a complex-valued integral of a complex function (that is,
∫

f =
∫ �f + ı

∫ �f). In fact there are several useful ways to employ
the ability to integrate a function of a real variable to define complex-
valued integrals of a complex variable over certain paths. Among these
integrals are those known as line integrals, complex line integrals, and
integrals with respect to arc length. One can then use the integration
theory of real variables to obtain an integration theory for complex
functions along curves in C. This extends to a more general theory,
the Cauchy Theory, which constitutes a main portion of what we have
called the Fundamental Theorem (Theorem 1.1). The integration the-
ory depends not just on the integrated function being holomorphic but
also on the topology of the curve over which the integration is being
carried out and the topology of the domain in which the curve lies.
In the simplest situation, Cauchy’s theorem says that the integral of
a holomorphic function over a simple closed curve lying in a simply
connected domain is zero.2

In this chapter we lay the foundations for proving several of the
equivalences in the Fundamental Theorem. Beginning in Section 4.1,
we present a more or less self-contained treatment; our approach is

1When suitable conditions on �f and �f hold.
2A simple closed curve is one whose initial and end points coincide and has

no other self-intersections. Being simply connected is a topological property of a
domain (see Section 4.4).

59
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through integration of closed forms over closed curves. Line integrals
and differential forms are introduced in this section. In the next one we
emphasize the difference between exact and closed (locally exact) one-
forms. Integration of closed forms along continuous, not necessarily
rectifiable, paths is discussed next. This is followed by a section on
the winding number of a curve about a point. In the last section we
treat Cauchy’s theorem in its simplest format: that the integral of a
holomorphic function over the boundary of a rectangle is zero. This is
known as Cauchy’s theorem for a rectangle.

Although the proofs of the main results become quite technical in
places, the final results are simple to state. This simplicity gives them
a certain elegance and compactness.

The two chapters that follow this one present the core of what
we have termed the Fundamental Theorem, Theorem 1.1. In Chap-
ter 5 we present key consequences of the initial Cauchy Theory (that
is, Cauchy’s theorem for a rectangle). This is followed by Chapter
6 where consequences related to holomorphic functions with isolated
singularities are presented.

4.1. Line integrals and differential forms

We recall the definitions of the one-sided derivative for functions of
a real variable.

Definition 4.1. Let [a, b] be a closed (finite) interval on R and let
g : [a, b] → R be a function. As in calculus, for a ≤ c < b, we define

(D+g)(c) = lim
h→0
h>0

g(c + h) − g(c)

h
,

the right-sided derivative of g at c (whenever this limit exists).
Similarly, for a < c ≤ b, we define

(D−g)(c) = lim
h→0
h<0

g(c + h) − g(c)

h
,

the left-sided derivative of g at c (whenever this limit exists), and for
a < c < b, we define

g′(c) = (Dg)(c) = (D+g)(c) = (D−g)(c),

the derivative of g at c, whenever the last two limits exist and are
equal.

We say that g is differentiable on [a, b] if g′ exists on (a, b) and
(D+g)(a) and (D−g)(b) exist (these define g′(a) and g′(b), respectively);
g is called continuously differentiable on [a, b] if g′ is continuous on
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[a, b]; in which case, we will write g ∈ C1
R
([a, b]) or, equivalently, g′ ∈

C0
R
([a, b]) = CR([a, b]).

Remark 4.2. The concepts we have been discussing are from real
analysis; if f : [a, b] → C is a complex-valued function, they apply to
the two real-valued functions of a real variable given by u = �f and
v = �f , and we can set f ′ = u′ + ı v′. We abbreviate C1

C
([a, b]) and

C0
C
([a, b])) by C1([a, b]) and C0([a, b])), respectively.

In what follows D is a domain in C.

Definition 4.3. A function γ ∈ C1([a, b]) with γ([a, b]) ⊂ D ⊆
C ∼= R

2 will be called a differentiable path or curve in D, and we say
that γ is parameterized by [a, b].

We will write

γ(t) = (x(t), y(t)) = z(t) = x(t) + ıy(t) for a ≤ t ≤ b.

We denote the image or range of γ by range γ.
The curve is called closed if γ(a) = γ(b). The closed curve γ is

simple if γ is one-to-one except at the end points of the interval [a, b];
to be precise, if γ(t1) = γ(t2) for a ≤ t1 < t2 ≤ b, then a = t1 and
t2 = b.

Definition 4.4. Let D be a domain in C. A differential (one-)form
ω on D is an expression

ω = P dx + Q dy,

where P = P (x, y) and Q = Q(x, y) are continuous (complex-valued)
functions on D, and dx and dy are symbols associated with the coor-
dinate z = x + ıy and called the differentials of x and y, respectively.

If γ is a differentiable path in D and ω is a differential form on D,
then we define the line or path or contour integral of ω along γ, by the
formula

∫

γ

ω =

∫ b

a

[P (x(t), y(t)) x′(t) + Q(x(t), y(t)) y′(t)]dt

=

∫ b

a

(p1(x(t), y(t)) x′(t) + q1(x(t), y(t)) y′(t)) dt

+ ı

∫ b

a

(p2(x(t), y(t)) x′(t) + q2(x(t), y(t)) y′(t)) dt,

where P = p1 + ı p2 and Q = q1 + ı q2.
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Remark 4.5. The above definition involves again only concepts
from real analysis, even though the paths and functions involve the
complex numbers.

Reparametrization: If t : [α, β] → [a, b] is one-to-one, onto, and
differentiable, and γ : [a, b] → C is a differentiable path, then γ̃ = γ ◦ t
is again a differentiable path, called a reparametrization of γ.

Since for any closed interval [a, b] there exists a one-to-one, onto,
and differentiable map t : [0, 1] → [a, b], we can always assume that a
given path γ is parameterized by [0, 1].

For all differential forms ω defined in a neighborhood of the range
of the path γ and all reparametrizations γ̃ of γ, the following equalities
hold:

∫

γ̃

ω =

∫

γ

ω , if t′(u) ≥ 0 for all u ∈ [α, β]

and

∫

γ̃

ω = −
∫

γ

ω , if t′(u) ≤ 0 for all u ∈ [α, β] .

Note that there are no other possibilities for the sign of the deriva-
tive of t.

Subdivision of interval: Let γ : [a, b] → C be a differentiable
path and consider the partition of [a, b] defined by

a = t0 < t1 < . . . < tn+1 = b . (4.1)

If
γj = γ|[tj ,tj+1] , for j = 0, . . . , n, (4.2)

then γj is a differentiable path and

∫

γ

ω =
n
∑

j=0

∫

γj

ω. (4.3)

For a set T contained in the domain of γ, γ|T , of course, denotes
the restriction of γ to T .

Definition 4.6. Let γ : [a, b] → C be a continuous path. We say
that γ is a piecewise differentiable path (henceforth abbreviated pdp)
if there exists a partition of [a, b] of the form given in (4.1) such that
each path defined by (4.2) is differentiable. Then we use (4.3) to define
the path integral

∫

γ
ω.
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a b

c

d

x

y

(a) Picture of the
curve

a

b

t

x

(b) The graph of x

c

d

t

y

(c) The graph of y

Figure 4.1. Three figures

Remark 4.7. The path integral is well defined (independent of the
partition) and agrees with earlier definition for differentiable paths.
The verification is left as an exercise.

Remark 4.8. Three pictures in R
2 are naturally associated with

each path γ = x + ı y: the picture of the curve and the graphs of the
functions x and y. Figure 4.1 illustrates this with a curve whose image
is the rectangle with vertices (c, e), (d, e), (d, f), and (c, f).

Lemma 4.9. If D is a domain in C, then any two points in D can
be joined by a piecewise differentiable path in D.

Proof. Fix ζ ∈ D, and let

E = {z ∈ D; z can be joined to ζ by a pdp in D}.
Then E is open in D, D − E is also open in D, and ζ ∈ E. �
Definition 4.10. Let D be a domain in C.

(1) A function f on D is of class Cp, with p ∈ Z≥0, if f has partial
derivatives (with respect to x and y) up to and including order
p and these are continuous on D. It is of class C∞ if it is of
class Cp for all p ∈ Z≥0. The vector space of functions of class
Cp on D is denoted by Cp(D).

(2) A differential form ω = Pdx + Qdy is of class Cp if and only
if P and Q are of that class.
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(3) For a given function f , we have the (real) partial derivatives
fx and fy as well as the formal (complex) partial derivatives fz

and fz introduced in Exercise 2.8, where it was also shown that
for a C1-function f = u + ı v, the Cauchy–Riemann equations
hold for the pair u and v if and only if fz = 0.

The four partial derivatives just described may be regarded
as directional derivatives.

Remark 4.11. At this point we recommend that all con-
cepts and definitions that are formulated in terms of x and y
be reformulated by the reader in terms of z and z (and vice
versa).

(4) If f is a C1-function on D, then we define df , the total differ-
ential of f , by either of the two equivalent formulas

df = fx dx + fy dy = fz dz + fz dz,

where

dz = dx + ı dy and dz = dx − ı dy.

Thus in addition to the differential operator d, we have two
other important differential operators ∂ and ∂ defined by

∂f = fz dz and ∂f = fz dz

as well as the formula

d = ∂ + ∂.

We have defined the three differential operators on spaces
of C1-functions. They can be also defined on spaces of C1-
differential forms, and it follows from these definitions that,
for example, on C2-functions the equality d2 = 0 holds. We
shall not need these extended definitions.

(5) A differential form ω on an open set D is called exact if there
exists a C1-function F on D (called a primitive for ω) such
that

ω = dF.

If D is connected, then a primitive (if it exists) is unique
up to addition of a constant.

By abuse of language we also say that a function F is a
primitive for a function f if F is a primitive for the differential
ω = fdz.
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(6) A differential form ω on D is called closed if it is locally exact;
that is, if for each a ∈ D, there exists a neighborhood U of a
such that ω|U is exact.

4.2. The precise difference between closed and exact forms

Although the definitions of exact and closed are straightforward,
as is the fact that every exact differential is closed, an intuitive sense
of the difference between the two properties may not be immediately
present itself. The reason is because these differences arise from the
topology of the domain and the behavior of the differential form along
certain paths. An example of a closed but not exact differential will be
given in Example 4.24. We will see that on a disk the two properties are
equivalent, but situations where they are not equivalent are especially
significant.

To understand this difference, we study the pairing that associates
the complex number

〈γ, ω〉 =

∫

γ

ω

to a piecewise differentiable path γ in a domain D and a differential
form ω on D (when the integral exists).

Lemma 4.12. Let ω be a differential form on a domain D. Then
ω is exact on D if and only if

∫

γ
ω = 0 for all closed and piecewise

differentiable paths γ in D.

Proof. Assume that ω is exact. Then there exists a C1-function
F on D with

ω = Fx dx + Fy dy .

Let γ be a pdp parameterized by [a, b] joining P1 to P2 in D. Then
∫

γ

ω =

∫ b

a

(

Fx
dx

dt
+ Fy

dy

dt

)

dt =

∫ b

a

dF

dt
dt = F (P2) − F (P1),

which equals 0 if P1 = P2.
To prove the converse, let Z0 = (x0, y0) be a fixed point in D and

let Z = (x, y) be an arbitrary point in D. Let γ be a pdp in D joining
Z0 to Z. Define

F (x, y) =

∫

γ

ω.

Our hypothesis tells us that the function F is well defined on D.
Assume that ω = P dx + Q dy. We must show that F is C1 and

dF = ω. Choose ε > 0 so that U = U(x,y)(ε) ⊂ D; also choose x1 �= x
such that (x1, y) ∈ U and that the straight line L from (x1, y) to (x, y)
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Z0

(x,y)(x1,y) L

δ

Figure 4.2. The integration path for F

is contained in D. Let δ be any pdp in D from (x0, y0) to (x1, y) (see
Figure 4.2).

Then

F (x, y) =

∫

δ

ω +

∫ x

x1

P (ξ, y) dξ.

It is now clear that Fx = P . Similarly, Fy = Q. �
Theorem 4.13. Let ω be a differential form on a disk D. Then ω

is exact on D if and only if
∫

γ
ω = 0 for all γ that are boundaries of

rectangles with sides parallel to the coordinate axes.

Proof. Repeat the above argument with (x0, y0) the center of D.
�

Corollary 4.14. If D is a disk, then ω is a closed form if and
only if it is exact.

Definition 4.15. A region R ⊆ R
2 is called (xy)-simple if it is

bounded by a pdp and has the property that any horizontal or vertical
line that has nonempty intersection with R intersects it in an interval.
Furthermore, the set of values a ∈ R for which the line x = a has
nonempty intersection with R is an interval, and the set of values c ∈ R

for which the line y = c has nonempty intersection with R is also an
interval. Here an interval may consist of a single point.

In particular, there exist real numbers c < d and functions h1 and
h2 defined on the interval [c, d] such that the region R may be described
as follows:

R = {(x, y); c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}.
A similar description may be given interchanging the roles of x

and y.
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We recall Green’s theorem, which will help us to distinguish closed
differentials from exact differentials.

Theorem 4.16 (Green’s theorem). Let R be an (xy)-simple re-
gion, and let γ denote its boundary oriented counterclockwise. Let
ω = P dx + Q dy be a C1-form on a region D ⊃ R ∪ γ. Then

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dx dy =

∫

γ

P dx + Q dy.

Proof. We have, using the notation introduced in the definition
of (xy)-simple regions,

∫∫

R

∂Q

∂x
dx dy =

∫ d

c

∫ h2(y)

h1(y)

∂Q

∂x
dx dy

=

∫ d

c

[Q(h2(y), y)− Q(h1(y), y)] dy

=

∫ d

c

Q(h2(y), y) dy +

∫ c

d

Q(h1(y), y) dy =

∫

γ

Q dy .

Similarly,
∫∫

R

−∂P

∂y
dx dy = −

∫∫

R

∂P

∂y
dy dx =

∫

γ

P dx .

�
Remark 4.17. (1) The theorem can be extended to finite unions of

(xy)-simple regions (by cancelation of integrals over common
boundaries oppositely oriented).

(2) In terms of complex derivatives, the theorem can be restated
as

∫∫

R

(

∂Q

∂z
− ∂P

∂z

)

dz dz =

∫

γ

P dz + Q dz ,

where dz dz = −2ıdx dy.

Theorem 4.18. Suppose that ω = P dx + Q dy is a C1-differential

form on a domain D. If ω is exact, then
∂P

∂y
=

∂Q

∂x
. Conversely, if

D is an open disk, P and Q are C1-functions on D, and
∂P

∂y
=

∂Q

∂x
,

then ω = P dx + Q dy is exact.

Proof. Since ω is exact, ω = dF = Fx dx + Fy dy. But ω is C1,
and thus F is C2; therefore, Fxy = Fyx.
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For the converse, we need only show that
∫

γ
ω = 0 for all closed

paths γ in D that are boundaries of rectangles R with sides parallel to
the coordinate axes. But

∫

γ

ω =

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dx dy = 0.

�
Remark 4.19. Recall that

f(z) dz = (u + ı v)(dx + ı dy)

= (u dx− v dy) + ı (u dy + v dx)

= ω1 + ı ω2.

Thus ∫

γ

f(z) dz =

∫

γ

ω1 + ı

∫

γ

ω2.

Furthermore, f(z) dz is closed (exact) if and only if both ω1 and ω2

are, and Fj is a primitive for ωj (j = 1, 2) if and only if F1 + ı F2 is a
primitive for f(z) dz.

Lemma 4.20. Let f(z) dz be of class C1. Then f(z) dz is closed if
and only if f is holomorphic.

Proof. By the above remarks, f(z) dz is closed if and only if uy =
−vx and vy = ux if and only if u and v satisfy CR if and only if f is
holomorphic. �

Lemma 4.21. A C1-function F is a primitive for f(z) dz if and
only if F ′ = f .

Proof. The function F is a primitive for f(z) dz if and only if
dF = Fz dz+Fz dz = f(z) dz if and only if Fz = 0 and Fz = F ′ = f . �

We have now proven the following result.

Theorem 4.22. The differential form f(z) dz on a domain D is
closed if and only if

∫

γ
f(z) dz = 0, for all boundaries γ of rectangles3

R contained in D with sides parallel to the coordinate axes.
If f is C1, then f(z) dz is closed if and only if f is holomorphic.

Remark 4.23. We shall see that the C1 assumption is not needed.

Example 4.24. Not every closed form is exact. Let D = C �=0 and
ω = dz

z
.

3It should be emphasized that the rectangle R, not just its perimeter ∂R, is
contained in D.



4.2. CLOSED AND EXACT FORMS 69

(a) If γ(t) = e2π ı t for t ∈ [0, 1], then
∫

γ
ω = 2π ı. Thus ω is not

exact.
(b) Since 1

z
is holomorphic and C1 on D, ω is closed.

Locally ω = dF , where F is a branch of the logarithm. We have
produced two real forms, the real and imaginary parts of ω:

dz

z
=

x dx + y dy

x2 + y2
+ ı

−y dx + x dy

x2 + y2
= d log |z| + ı d arg z = d log z.

The first of the two real forms is exact, and the second is closed but
not exact on D. Note that d arg z = d arctan y

x
(for x �= 0). Note also

that arg z and arctan y
x

are multi-valued functions whose differentials
agree and are single-valued.

Definition 4.25. Let D be a domain in C, γ : [a, b] → D a contin-
uous path in D and ω = P dx + Q dy a closed form in D. A primitive
for ω along γ is a continuous function f : [a, b] → C such that for all
t0 ∈ [a, b] there exist a neighborhood N of γ(t0) in D and a primitive
F for ω in N such that F (γ(t)) = f(t) for all t in a neighborhood of t0
in [a, b].

Caution. It is possible to have t1 �= t2 with γ(t1) = γ(t2) but
f(t1) �= f(t2); that is, f need not be well defined on γ.

Theorem 4.26. If γ is a continuous path in a domain D and ω is
a closed form on D, then there exists a primitive f of ω along γ; f is
unique up to the addition of a constant.

Proof. Suppose γ is parameterized by [a, b] and ω = P dx+Q dy.
Uniqueness: Suppose f and g are two primitives of ω along γ and

let t0 ∈ [a, b]. Then there exist primitives F and G of ω in a connected
neighborhood U of γ(t0) in D such that F (γ(t)) = f(t) and G(γ(t)) =
g(t) for t near t0.

Hence Fx = Gx = P and Fy = Gy = Q in U , thus F − G restricts
to a constant in U and therefore f − g is constant near t0.

We conclude that f−g is a continuous and locally constant function
on the connected set [a, b]. Thus f − g is a constant function.

Existence: Given t ∈ [a, b], there exist an interval I(t) ⊂ [a, b] (open
in [a, b] and containing t), and an open set U(γ(t)) ⊂ D such that ω
has a primitive in U(γ(t)) and γ(I(t)) ⊂ U(γ(t)). Then

⋃

t∈[a,b]

I(t)

is an open cover of [a, b], and thus, there exists a finite subcover

I0 ∪ I1 ∪ . . . ∪ In = [a, b],
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with corresponding Uj .
Without loss of generality we may assume I0 = [a0, b0), Ij = (aj , bj)

for j = 1, . . . , n − 1, and In = (an, bn], where a0 = a, aj < bj for
j = 0, . . . , n, bj > aj+1 for j = 0, . . . , n − 1, and bn = b. Furthermore,
γ(Ij) ⊂ Uj and ω has a primitive Fj on Uj for j = 0, 1, . . . , n.

Set f(t) = F0(γ(t)) for t ∈ I0. Having defined f on I0 ∪ I1 ∪ . . .∪ Ik

for 0 ≤ k < n, we define f on Ik+1 as follows. Let Fk+1 be any primitive
in Uk+1, and let Fk be the primitive in Uk such that f(t) = Fk(γ(t))
for t ∈ Ik. Then Fk+1 and Fk are primitives for ω in Uk+1 ∩ Uk. Thus
Fk+1 − Fk is constant on each connected component of Uk+1 ∩ Uk; in
particular, Fk+1−Fk = c on the component containing γ(Ik+1∩Ik). Set
f(t) = Fk+1(γ(t))−c for t ∈ Ik+1; then f is well defined on Ik+1∩Ik. �

4.3. Integration of closed forms and the winding number

Consideration of the next example leads to the extension of the
integral to more general paths which leads in turn to the surprising
result, given in Corollary 4.31, that certain integrals take on only in-
teger values. This fact allows a precise definition corresponding to the
intuitive idea of counting the number of times a curve winds around a
point, the winding number of the curve with respect to a point.

Example 4.27. We compute
∫

γ
ω, where ω is closed in D and γ is

a pdp in D. As before γ : [a, b] → D. Subdivide I = I0 ∪ I1 ∪ . . . ∪ In,
where Ij = [aj , aj+1], a0 = a and an+1 = b, such that γj = γ

∣

∣

Ij
is a

differentiable path and ω has a primitive Fj in a neighborhood of γ(Ij)
for j = 0, . . . , n. Let f be a primitive of ω along γ. Then

∫

γ

ω =
n
∑

j=0

∫

γj

dFj = f(b) − f(a).

Using the last equation, we extend the concept of a line integral.

Definition 4.28. Let ω be a closed differential form in D and
γ : [a, b] → D be a continuous path in D. We define

∫

γ

ω = f(b) − f(a),

where f is a primitive of ω along γ.

Remark 4.29. The integral is well defined and agrees with the
earlier definition for pdps. Note that we have avoided any discussion
of rectifiability of the curve γ. We have however paid a price: We have
not introduced the class of curves γ whose length is well defined.
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Theorem 4.30. If γ is any continuous closed path in C �=0, then

1

2πı

∫

γ

dz

z
∈ Z .

Proof. Let f be a primitive of
dz

z
along γ. Then

∫

γ

dz

z
= f(b) − f(a),

where [a, b] parameterizes γ. Since γ(a) = γ(b), this difference is just
the difference between two branches of log z, hence of the form 2πı n
with n ∈ Z. �

From Example 4.24, we obtain

Corollary 4.31. For γ as in Theorem 4.30,
1

2π

∫

γ

xdy − ydx

x2 + y2
is

an integer.

Definition 4.32. Let ζ ∈ C, and let γ be a continuous closed path
in C − {ζ}. We define the index or winding number of γ with respect
to ζ by

I(γ, ζ) =
1

2πı

∫

γ

dz

z − ζ
∈ Z.

Example 4.33. (In polar coordinates). Let r = f(θ) > 0, with
f ∈ C1(R). Let n ∈ Z>0, and define γ(θ) = f(θ)eıθ, where θ ∈ [0, 2πn].
Assume that f(0) = f(2πn).

Then

I(γ, 0) =
1

2πı

∫

γ

dz

z
=

1

2πı

∫ 2πn

0

d(f(θ)eıθ)

f(θ)eıθ

=
1

2πı

∫ 2πn

0

f ′(θ)eıθ + ıf(θ)eıθ

f(θ)eıθ
dθ =

1

2πı

∫ 2πn

0

[

f ′(θ)
f(θ)

+ ı

]

dθ = n .

In general, let γ : [a, b] → C − {ζ} be a continuous closed path
and let f be a primitive of dz

z−ζ
on γ. Then f(t) agrees with a branch

of log(γ(t) − ζ); that is,

ef(t) = γ(t) − ζ for all t ∈ [a, b] .

Hence

I(γ, ζ) =
f(b) − f(a)

2πı
.
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γ1(t)

γ0(t)
γ0(0)

γ0(1)

Figure 4.3. Homotopy with fixed end points

4.4. Homotopy and simple connectivity

To give the integration results the clearest formulation (see Corol-
lary 4.44), we introduce the concepts of homotopic curves and simply
connected domains.

Definition 4.34. Let γ0 and γ1 be two continuous paths, in a do-
main D, parameterized by I = [0, 1] with the same end points; that
is, γ0(0) = γ1(0) and γ0(1) = γ1(1). We say that γ0 and γ1 are ho-
motopic (with fixed end points) if there exists a continuous function
δ : I × I → D such that

(1) δ(t, 0) = γ0(t) for all t ∈ I,
(2) δ(t, 1) = γ1(t) for all t ∈ I,
(3) δ(0, u) = γ0(0) = γ1(0) for all u ∈ I, and
(4) δ(1, u) = γ0(1) = γ1(1) for all u ∈ I.

We call δ a homotopy with fixed end points between γ0 and γ1; see
Figure 4.3.

Let γ0 and γ1 be two continuous closed paths in a domain D pa-
rameterized by I = [0, 1]; that is, γ0(0) = γ0(1) and γ1(0) = γ1(1). We
say that γ0 and γ1 are homotopic as closed paths (see Figure 4.4) if
there exists a continuous function δ : I × I → D such that

(1) δ(t, 0) = γ0(t) for all t ∈ I,
(2) δ(t, 1) = γ1(t) for all t ∈ I, and
(3) δ(0, u) = δ(1, u) for all u ∈ I.

The map δ is called a homotopy of closed curves or paths.
A continuous closed path is homotopic to a point if it is homotopic

to a constant path (as a closed path).

Definition 4.35. Let I = [0, 1], let δ : I × I → D ⊂ C be a
continuous map, and let ω be a closed form on D.
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γ1(t)

γ0(t)

Figure 4.4. Homotopy of closed paths

A function f : I × I → C is said to be a primitive for ω along
δ provided for every (t0, u0) ∈ I × I, there exists a neighborhood V
of δ(t0, u0) in D and a primitive F for ω on V such that f(t, u) =
F (δ(t, u)) for all (t, u) in some neighborhood of (t0, u0) in I × I.

Remark 4.36. (1) Such a function f is automatically continuous
on I × I.

(2) For fixed u ∈ I, f(·, u) is a primitive for ω along t �→ δ(t, u).

Theorem 4.37. If ω is a closed form on D and δ : [0, 1]× [0, 1] →
D ⊂ C is a continuous map, then a primitive f for ω along δ exists
and is unique up to an additive constant.

Proof. We leave the proof as an exercise for the reader. �
We now observe that all integrals of a closed form along homotopic

paths are equal.

Theorem 4.38. Let γ0 and γ1 be continuous paths in a domain D,
and let ω be a closed form on D.

If γ0 is homotopic to γ1 with fixed end points, then
∫

γ0

ω =

∫

γ1

ω.

Proof. We assume that both paths are parameterized by I =
[0, 1]. Let δ : I × I → D be a homotopy between our two paths, and
let f be a primitive of ω along δ. Thus u �→ f(0, u) is a primitive
of ω along u �→ δ(0, u) = γ0(0), and hence, f(0, u) is a constant α
independent of u. Similarly f(1, u) = β ∈ C.
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Now,
∫

γ0

ω = f(1, 0) − f(0, 0) = β − α

and ∫

γ1

ω = f(1, 1) − f(0, 1) = β − α.

�
Remark 4.39. A similar result holds for two curves that are ho-

motopic as closed paths (see Exercise 4.8).

Corollary 4.40. If γ is homotopic to a point in D and ω is a
closed form in D, then

∫

γ

ω = 0.

This corollary motivates the following definition.

Definition 4.41. A region D ⊆ C is called simply connected if
every closed path in D is homotopic to a point in D.

Example 4.42. (1) The complex plane C is simply connected.
More generally,

(2) disks are simply connected: Let ζ ∈ C, R ∈ (0, +∞) and
D = {z ∈ C; |z − ζ | < R}. Without loss of generality, ζ = 0
and R = 1. Let γ be a closed path in D parameterized by
I = [0, 1], and define δ(t, u) = uγ(t).

Corollary 4.43. If D is a simply connected domain and γ is a
continuous closed path in D, then

∫

γ
ω = 0 for all closed forms ω on

D.

We obtain the simplest formulation of the main result:

Corollary 4.44. In a simply connected domain, a differential
form is closed if and only if it is exact.

An immediate corollary gives the existence of branches of the log-
arithm:

Corollary 4.45. In every simply connected domain not contain-
ing the point 0, there exists a branch of log z.

Proof. The differential form ω =
dz

z
is closed and thus exact in

the given domain. Hence there exists a holomorphic function F (on
the same domain) such that dF = ω. This function F is a branch of
the logarithm. �
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Remark 4.46. Annuli and punctured disks are not simply con-
nected. To see this let R1, R, and R2 be real numbers with 0 < R1 <
R < R2. For any complex number z0, let A be the annulus {z; R1 <
|z − z0| < R2} and let D be the punctured disk {z; 0 < |z − z0| < R2}.
Then the (range of the) closed path γ(t) = R exp(2π ı t), for 0 ≤ t ≤ 1,

is contained in A and in D, and
∫

γ

dz

z − z0
= 2πı �= 0.

To clarify further the concept of simple connectivity, we need

Definition 4.47. A region D is convex if every pair of points in
D can be joined by a segment in D.

Note that convex implies simply connected, but the converse is not
true.

4.5. Winding number

In Section 4.3 we defined the winding number I(γ, ζ) of a curve γ
with respect to a point ζ . In this section we will see that it allows us
to draw strong conclusions about the behavior of a function defined in
a disk (Theorem 4.48).

We begin with some properties of I(γ, ζ) for γ a closed path and
ζ /∈ range γ.

(1) If γ0 and γ1 are homotopic as closed paths in D = C − {ζ},
then I(γ0, ζ) = I(γ1, ζ).

Proof. The differential ω =
dz

z − ζ
is closed on D. Thus,

∫

γ0

ω =

∫

γ1

ω. �

(2) If γ : [a, b] → C is a closed path, then z �→ I(γ, z) is a locally
constant function on D = C− range γ; hence, it is constant on
each connected component of D.

Proof. Let ζ ∈ D; we need to show that for all h ∈ C

with |h| sufficiently small, I(γ, ζ + h) = I(γ, ζ).
Since range γ ⊂ C − {ζ}, for each t ∈ [a, b], we choose

δ > 0 such that U(γ(t), δ) ⊂ C − {ζ} and then choose a finite
subcover of range γ.

Let δ0 be the Lebesgue number of this cover; that is,

U(γ(t), δ0) ⊂ C − {ζ}
for all t ∈ [a, b].
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If we fix any h ∈ C with |h| < δ0, then
∫

γ

dz

z − (ζ + h)
=

∫

γ

dz

(z − h) − ζ
=

∫

γ′

dz′

z′ − ζ
,

where z′ = z − h and γ′ = γ − h; that is, γ′(t) = γ(t) − h for
all t ∈ [a, b].

Now γ′ is a closed path in C − {ζ} and γ′ is homotopic to
γ (as closed paths), via the homotopy defined on [a, b] × [0, 1]
by

δ(t, u) = γ(t) − uh , t ∈ [a, b], u ∈ [0, 1].

Thus, I(γ, ζ + h) = I(γ′, ζ) = I(γ, ζ). �
(3) If range γ ⊂ D ⊂ C − {ζ} with D simply connected, then

I(γ, ζ) = 0.

Proof. The differential
dz

z − ζ
is closed in D, therefore

exact. �
(4) Let γ : θ �→ Reıθ, with R > 0 and θ ∈ [0, 2π]. Then I(γ, 0) =

1 [by Example 4.33], I(γ, z) = 1 for |z| < R [by (2)], and
I(γ, z) = 0 for |z| > R [by (3)].

We now show that if the image of the boundary of a disk under
a continuous function f winds non trivially around a point ζ , then f
assumes the value ζ someplace inside the disk. More precisely,

Theorem 4.48. Let f : {z ∈ C : |z| ≤ R} → C be a continuous
map (with R > 0), and let γ(θ) = f(Re2πıθ) for θ ∈ [0, 1].

If ζ /∈ range γ and I(γ, ζ) �= 0, then there exists a z such that
|z| < R and f(z) = ζ.

Proof. Assume f(z) �= ζ for all |z| < R. Then f(z) �= ζ for all
|z| ≤ R.

Define δ(ρ, θ) = f(ρRe2πıθ) on [0, 1] × [0, 1]. Then δ is continuous,
δ(1, θ) = γ(θ), δ(0, θ) = f(0), δ(ρ, 0) = δ(ρ, 1) and δ(ρ, θ) ∈ C − {ζ}.
Thus γ is homotopic to a point in C−{ζ}, and hence, I(γ, ζ) = 0. We
have arrived at the needed contradiction. �

Definition 4.49. Let γ1 and γ2 be continuous paths parameterized
by [0, 1]. We define two new paths, also parameterized by [0, 1]:

γ1γ2 : t �→ γ1(t)γ2(t),

γ1 + γ2 : t �→ γ1(t) + γ2(t).
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Note that the above definition of a product of two paths differs from
the one used in topology, where the paths are traversed in succession
but at twice the speed.4

Theorem 4.50. If γ1 and γ2 are continuous closed paths not passing
through 0, then

I(γ1γ2, 0) = I(γ1, 0) + I(γ2, 0).

Proof. Let ω =
dz

z
and γj : [0, 1] → C − {0}.

Choose continuous functions fj : [0, 1] → C so that efj(t) = γj(t) for
all t ∈ I. Then ef1(t)+f2(t) = γ1γ2(t). Thus, f = f1 + f2 is a primitive
of ω along γ1γ2, and

I(γ1γ2, 0) =
f(1) − f(0)

2πı
=

f1(1) − f1(0)

2πı
+

f2(1) − f2(0)

2πı
.

�

Theorem 4.51. Let γ1 and γ be continuous closed paths in C. As-
sume that

0 < |γ1(t)| < |γ(t)| for all t ∈ [0, 1].

Then

I(γ1 + γ, 0) = I(γ, 0).

Proof. Note that

γ(t) + γ1(t) = γ(t)

(

1 +
γ1(t)

γ(t)

)

= γ(t)β(t) for all t ∈ [0, 1]

with β(t) = 1 +
γ1(t)

γ(t)
.

Now

|β(t) − 1| < 1,

and thus β is a closed path in the simply connected domain U(1, 1).
Therefore, I(β, 0) = 0. �

4In topology, if γ1 and γ2 are continuous paths parameterized by [0, 1] and
γ1(1) = γ2(0), then

γ1γ2(t) =
{

γ1(2t), for 0 ≤ t ≤ 1
2 ;

γ2(2t − 1), otherwise.
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4.6. Cauchy Theory: initial version

The most important technical result of this chapter is the following

Theorem 4.52 (Goursat’s theorem). If f is holomorphic on a
domain D, then f(z) dz is a closed differential form on D.

This theorem has many significant consequences. To prove it we
need some preliminaries. Recall that the only issue that needs to be ad-
dressed involves the smoothness of the function f ; we are not assuming
that the function has continuous partial derivatives. For C1-functions,
we already have the result (see Theorem 4.22).

We follow a beautiful classic line of reasoning.

Definition 4.53. Let γ be a pdp parameterized by the unit interval
[0, 1] in a domain D and let f be a continuous function on D.

For such restricted paths,5 we define

(1) the integral of f on γ with respect to arc-length
∫

γ

f(z) |dz| =

∫ 1

0

f(γ(t)) |γ′(t)| dt,

(2) the path γ traversed backward

γ (t) = γ(1 − t), for all t ∈ [0, 1],

and
(3) the length of the curve γ

L(γ) = length of γ =

∫

γ

|dz| .

The following results follow straightforwardly from these defini-
tions.

Proposition 4.54. Let γ be a pdp parameterized by the unit inter-
val [0, 1] in a domain D and let f be a continuous function on D.

Then
∫

γ

f(z) |dz| =

∫

γ

f(z) |dz|

and
∣

∣

∣

∣

∫

γ

f(z) dz

∣

∣

∣

∣

≤
∫

γ

|f(z)| |dz| ≤ (sup{|f(z)| : z ∈ range γ}) · L(γ) .

5The middle definition is valid for all paths.
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R2

R3 R4

γ1
γ2

γ3 γ4

R1

Figure 4.5. The integrals along the common side of R1

and R2 are in opposite directions

Proof of Theorem 4.52. (Due to E. Goursat). To show that
ω = f(z)dz is a closed form in D, we show that if γ denotes the
boundary of R oriented counterclockwise, where R is any rectangle in
D with sides parallel to the coordinate axes, then

∫

γ
ω = 0.

Even though the proof of this last statement is due to Goursat, the
result is known as Cauchy’s theorem for a rectangle.

Assume to the contrary that
∫

γ
ω = α �= 0 and divide R into four

congruent rectangles R1, . . . , R4, with boundaries γ1, . . . , γ4. Then

α =

∫

γ

ω =
4
∑

i=1

∫

γi

ω =
4
∑

i=1

αi.

The second equality follows from the fact that certain paths on
the boundaries of the subrectangles have opposite directions, giving
cancelations in the integrals (see Figure 4.5).

It is clear that for at least one index i, we must have |αi| ≥ |α|
4

. Call
this rectangle R1, its boundary γ1, and the corresponding integral α1.
By repeating this procedure, we obtain a sequence of closed rectangles

R ⊃ R1 ⊃ . . . ⊃ Rk ⊃ . . .

with boundaries γk = ∂Rk so that for αk =
∫

γk
ω, we have

|αk| ≥ |α|
4k

.

Each rectangle Rk is a closed subset of D and also of C; furthermore,

lim
k→∞

Area (Rk) = lim
k→∞

Area (R)

4k
= 0.

The Bolzano–Weierstrass Theorem states that there exists a unique
ζ ∈ ∩kRk. Since f is holomorphic at ζ ,

f(z) = f(ζ) + f ′(ζ)(z − ζ) + ε(z) |z − ζ | ,
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where
lim
z→ζ

ε(z) = 0 .

Let λk = length of a diagonal of Rk =
λ

2k
, where λ is the length of

a diagonal of R. Now

αk =

∫

γk

f(z) dz = f(ζ)

∫

γk

dz+f ′(ζ)

∫

γk

(z−ζ) dz+

∫

γk

|z − ζ | ε(z) dz.

The first two integrals following the second equal sign are zero since

the integrands are exact forms (dz and
1

2
d(z−ζ)2, respectively). Thus,

we have

αk =

∫

γk

|z − ζ | ε(z) dz .

Now on Rk we have

|z − ζ | ≤ λk = 2−k λ .

Given ε > 0, there exists a K ∈ Z>0 such that |ε(z)| < ε for z ∈ RK .
Thus also for z ∈ Rk with k ≥ K. Hence for k ≥ K, we have

|αk| ≤
∫

γk

|z − ζ | |ε(z)| |dz| ≤ 2−k λ ε L(γk) = ε 4−k λ L(γ) .

We conclude that

|α| ≤ 4k |αk| ≤ ε λ L(γ).

Since ε is arbitrary, we must have that α = 0. �
Corollary 4.55 (Cauchy’s theorem). If f is holomorphic on

an open set D and γ is a continuous closed path in D that is homotopic
to a point in D, then

∫

γ
f(z) dz = 0.

Corollary 4.56. If f is holomorphic in a domain D, then locally
f(z) dz has a primitive in D.

Remark 4.57. We have previously shown that (1) implies (4) in
the Fundamental Theorem. We have just established another path for
obtaining the same conclusion.

Exercises

4.1. Evaluate the line or contour integral
∫

C
|z| dz directly from the

definition if

(1) C is a straight line segment from −ı to ı.
(2) C is the left half of the unit circle traversed from −ı to ı.
(3) C is the right half of the unit circle traversed from −ı to ı.



EXERCISES 81

4.2. Evaluate the line or contour integral
∫

C
xdz directly from the

definition when C is the line segment from 0 to i + 1.

4.3. Evaluate the line or contour integral
∫

C
(z − z0)

mdz directly
from the definition, where C is the circle centered at z0 with radius
r > 0 and

(1) m is an integer, m ≥ 0.
(2) m is an integer, m < 0.

4.4. Evaluate the line or contour integral
∫

γ
z3dz directly from the

definition over the path γ(t), 0 ≤ t ≤ 1, where

(1) γ(t) = 1 + it.
(2) γ(t) = e−πıt.
(3) γ(t) = eπıt.
(4) γ(t) = 1 + ıt + t2.

Evaluate the integrals
∫

γ
z̄dz and

∫

γ
1
z
dz over the same paths.

4.5. Let D1 and D2 be simply connected plane domains whose in-
tersection is nonempty and connected. Prove that their intersection
and their union are both simply connected.

4.6. Show that for any closed interval [a, b] there exists a one-to-one,
onto, and differentiable map t : [0, 1] → [a, b].

4.7. Establish Remark 4.7.

4.8. Let D be a domain in C. We have studied the pairing
∫

γ
ω,

where γ is a closed path in D and ω is a closed differential form in D.
Show that

(1)
∫

γ
ω depends only on the homotopy class of the closed path γ;

that is, if we replace γ by a closed path γ′ homotopic to γ (as
closed paths), then the integral is unchanged,

(2) (only for those who know some algebraic topology)
∫

γ
ω de-

pends only on the homology class of the closed path γ; that
is, if we replace γ by a closed path γ′ homologous to γ, then
the integral is unchanged, and

(3)
∫

γ
ω depends only on the cohomology class of the closed form

ω; that is, if we replace ω by ω + df with f ∈ C2(D), then the
integral is unchanged.

4.9. (1) Let γ : [a, b] → C denote a pdp, and let ϕ : range γ →
C be a continuous function.

Define g : D = C − range γ → C by

g(z) =

∫

γ

ϕ(u)

u − z
du .
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Show that g has derivatives of all orders and that

g(n)(z) = n!

∫

γ

ϕ(u)

(u − z)n+1
du

for all n in Z≥0. Thus, in particular, g is holomorphic on D.
(2) Use the above to prove again that if γ(t) = z0 + R exp(2πıt)

for 0 ≤ t ≤ 1, then

1

2πı

∫

γ

dz

z − z0
=

{

1, if |z − z0| < R;
0, if |z − z0| > R.



CHAPTER 5

The Cauchy Theory–Key Consequences

This chapter is devoted to some immediate consequences of the
Fundamental Theorem for Cauchy Theory, Theorem 4.52, of the last
chapter. Although the chapter is very short, it includes proofs of many
of the implications of the Fundamental Theorem 1.1. We point out
that these relatively compact proofs of a host of major theorems result
from the work put in Chapter 4 and earlier chapters.

The appendix to this chapter contains a version of Cauchy’s integral
formula for smooth (not necessarily holomorphic) functions.

5.1. Consequences of the Cauchy Theory

We begin with a technical strengthening of Theorem 4.52 of the
previous chapter allowing functions that are holomorphic on a domain
except on a line segment. It will lead to Cauchy’s integral formula,
once described as the most beautiful theorem in complex variables.

Theorem 5.1 (Goursat’s theorem, strengthened version).
If f is continuous in a domain D and holomorphic except on a line
segment in D, then f(z) dz is closed in D.

Proof. Without loss of generality, D is the unit disk and the line
segment is all or part of the real axis in D.

We must show that the integral
∫

γ
f(z) dz vanishes whenever γ is

the boundary of an open rectangle R whose closure is contained in D
and whose sides are parallel to the coordinate axes.

There are three possibilities for such rectangles:

(1) The closure of R does not intersect the real axis.
(2) The closure of R has one side on R.
(3) (The interior of) R intersects R.

In case (1) there is nothing to do. In case (3), we reduce to the case
of two rectangles as in case (2). Thus it suffices to consider a rectangle
of type (2). Assume that the rectangle R lies in the upper semi-disk
with one side on R from a to b. (The possibility of R in the lower half
disk is handled similarly.)

83
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a

δ

b

R

Rδ

Figure 5.1. The rectangles R and Rδ

Let Rδ be the rectangle R with the portion below height δ chopped
off, δ > 0, and small (see Figure 5.1). Then the difference of the
integrals over the boundary of R and the boundary of Rδ is an integral
over a rectangle:

∫

∂R

f(z) dz −
∫

∂Rδ

f(z) dz =

∫ b

a

f(x, 0) dx + ı

∫ δ

0

f(b, y) dy

+

∫ a

b

f(x, δ) dx + ı

∫ 0

δ

f(a, y) dy

=

∫ b

a

(f(x, 0) − f(x, δ)) dx + ı

∫ δ

0

(f(b, y) − f(a, y)) dy .

Now given ε > 0, there exists a δ with 0 < δ < ε such that |z − ζ | <
δ implies that |f(z) − f(ζ)| < ε for all z and ζ in R (by the uniform
continuity of f on R). Also an M > 0 exists such that |f(z)| ≤ M for
all z ∈ R. Thus

∣

∣

∣

∣

∫

∂R

f(z) dz −
∫

∂Rδ

f(z) dz

∣

∣

∣

∣

≤ ε(b − a) + 2Mε.

Since ε is arbitrary, this tells us that
∫

∂R

f(z) dz −
∫

∂Rδ

f(z) dz = 0.

�

We apply this strengthened theorem to obtain
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Theorem 5.2 (Cauchy’s integral formula). If f is holomorphic
on a domain D and γ is a continuous closed path homotopic to a point
in D, then for all ζ ∈ D − range γ, we have

1

2πı

∫

γ

f(z)

z − ζ
dz = I(γ, ζ) · f(ζ) . (5.1)

Proof. Define, for z ∈ D,

g(z) =

⎧

⎨

⎩

f(z) − f(ζ)

z − ζ
, if z �= ζ ;

f ′(ζ), if z = ζ .
.

Then g is continuous on D and holomorphic except (possibly) at ζ ,
and thus, by Theorem 5.1, g(z) dz is closed in D. It follows that

0 =

∫

γ

g(z) dz =

∫

γ

f(z) − f(ζ)

z − ζ
dz .

Thus
∫

γ

f(z)

z − ζ
dz = f(ζ)

∫

γ

dz

z − ζ
.

�

Example 5.3. Let D be a domain in C, and let f be holomorphic
on D. Let ζ ∈ D. Choose R > 0 such that cl U(ζ, R) ⊂ D, and let
γ(θ) = ζ + Re2πıθ, 0 ≤ θ ≤ 1. Then I(γ, w) = 1 for |w − ζ | < R and
I(γ, w) = 0 for |w − ζ | > R. Thus

(1)

1

2πı

∫

γ

f(z)

z − w
dz = f(w) for |w − ζ | < R

and
(2)

1

2πı

∫

γ

f(z)

z − w
dz = 0 for |w − ζ | > R .

Remark 5.4. Equation (5.1) gives the amazing result that the
value of a holomorphic function at a point interior to a circle (or even-
tually any simple closed curve) is determined completely by the values
of the function on the boundary circle. The function must, of course, be
holomorphic in a neighborhood of the the closed disk bounded by the
circle. Note that it then follows from Exercise 4.9 that a holomorphic
function has derivatives of all orders. We now prove a more general
result.



86 5. THE CAUCHY THEORY–KEY CONSEQUENCES

Theorem 5.5 (Power series expansions for holomorphic func-
tions). If f is holomorphic in the open disk {|z| < R}, with R in
(0, +∞], then f has a power series expansion at each point in this

disk. In particular, there exists a power series
∞
∑

k=0

akz
k with radius of

convergence ρ ≥ R such that

f(z) =

∞
∑

k=0

akz
k for |z| < R.

Proof. It suffices to establish just the particular claim. Choose
0 < r0 < R, and define γ(θ) = r0e

2πıθ for 0 ≤ θ ≤ 1. Then |z| = r < r0

implies I(γ, z) = 1. We start with

f(z) =
1

2πı

∫

γ

f(t)

t − z
dt .

Now

1

t − z
− 1

t

(z

t

)n+1

1 − z

t

=
1

t

1 −
(z

t

)n+1

1 − z

t

=
1

t

n
∑

k=0

(z

t

)k

.

Hence

1

t − z
=

1

t

n
∑

k=0

(z

t

)k

+
1

t

(z

t

)n+1

1 − z

t
and

f(z) =
1

2πı

⎡

⎢

⎣

n
∑

k=0

zk

∫

γ

f(t)

tk+1
dt +

∫

γ

f(t)

t

(z

t

)n+1

1 − z

t

dt

⎤

⎥

⎦

=
n
∑

k=0

akz
k + Rn ,

where

ak =
1

2πı

∫

γ

f(t)

tk+1
dt , and Rn =

1

2πı

∫

γ

f(t)

t

(z

t

)n+1

1 − z

t

dt .

On γ we have t = r0e
2πıθ, |t| = r0 and |dt| = 2πr0dθ. Let

M(r0) = sup{∣∣f(r0e
2πıθ)

∣

∣ : 0 ≤ θ ≤ 1},
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and observe that
∣

∣

∣1 − z

t

∣

∣

∣ ≥ 1 − r

r0
. Hence

|Rn| ≤ 1

2π

∫ 1

0

M(r0)

r0

( r
r0

)n+1

1 − r
r0

r02π dθ

= M(r0)

(

r
r0

)n+1

1 − r
r0

−→ 0 as n → ∞.

We conclude that f(z) =
∞
∑

k=0

akz
k for |z| < R; furthermore,

ak =
1

2πı

∫

γ

f(t)

tk+1
dt

is independent of r0. We have also obtained the estimates

|ak| ≤ M(r0)

rk
0

(5.2)

and therefore,

|ak|
1
k ≤ M(r0)

1
k

r0
.

Thus the radius of convergence ρ of
∑

akz
k satisfies ρ ≥ r0 for all

r0 < R; in particular, ρ ≥ R. �

We will make more use of (5.2) shortly.

Corollary 5.6. A function f is holomorphic in an open set D if
and only if f has a power series expansion at each point of D. For a
holomorphic function f on D, the power series expansion of f at ζ ∈ D
has radius of convergence

ρ ≥ sup{r > 0; U(ζ, r) ⊂ D}.
Corollary 5.7. If f is holomorphic on a domain D, then f is

C∞ in D, and f (n) is holomorphic on D for n = 0, 1, 2, . . . .

Corollary 5.8 (Cauchy’s generalized integral formula). Let
f be holomorphic on an open set D containing cl U(ζ, R) for some
ζ ∈ D and R > 0. If γ(θ) = ζ + R eıθ for 0 ≤ θ ≤ 2π, then

f (n)(ζ) =
n!

2πı

∫

γ

f(t)

(t − ζ)n+1
dt

for n = 0, 1, 2, . . . .
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Proof. Recall that

an =
1

2πı

∫

γ

f(t)

(t − ζ)n+1
dt =

f (n)(ζ)

n!
.

�
Theorem 5.9 (Morera’s theorem). If f ∈ C0(D) and f(z) dz is

closed on D, then f is holomorphic on D.

Proof. The differential form ω = f(z) dz is locally exact. Thus for
each point ζ ∈ D, there is a neighborhood U of ζ in D and a primitive
F of ω in U . That is, there is a C1-function F on U with Fz = f and
Fz = 0; thus, F is holomorphic on U and so is its derivative f . �

Corollary 5.10. If f is continuous in D and holomorphic except
on a line segment in D, then f is holomorphic in D.

We have by now established the following important

Theorem 5.11. Let f be a complex-valued function defined on an
open set D in C. Then the following conditions are equivalent:

(a) f is holomorphic on D.
(b) f is C1 in D and satisfies CR on D.
(c) f is C0 in D and f(z) dz is closed on D.
(d) f is C0 in D and f is holomorphic except possibly on a line

segment in D.
(e) f has a power series expansion at each point in D.

Remark 5.12. As a consequence of the theorem, the space H(D)
defined in Chapter 3 (see Definition 3.49) consists precisely of the holo-
morphic functions on D, and a meromorphic function (an element of
M(D), see Definition 3.51) is locally the ratio of two holomorphic func-
tions.

Recall that we have established the estimates (5.2) from the Cauchy
Integral Formula. An immediate corollary is

Corollary 5.13 (Cauchy’s inequalities). Let

f(z) =
∞
∑

n=0

an(z − ζ)n

have radius of convergence ρ > 0. Then

an =
f (n)(ζ)

n!
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and

|an| =

∣

∣

∣

∣

f (n)(ζ)

n!

∣

∣

∣

∣

≤ M(r)

rn
, (5.3)

for all 0 < r < ρ, where

M(r) = sup{|f(z)| ; |z − ζ | = r} .

Theorem 5.14 (Liouville’s theorem). A bounded entire function
is constant.

Proof. Use the Taylor series expansion of the function at the ori-
gin and the estimate (5.3). �

Theorem 5.15 (Fundamental Theorem of Algebra). If P is a
polynomial of degree n ≥ 1, then there exist a1, . . . , an ∈ C and b ∈ C �=0

such that

P (z) = b
n
∏

j=1

(z − aj) for all z ∈ C.

Proof. It suffices to show that P has a root. If not,
1

P
is an entire

function. It is also bounded since lim
z→∞

1

P (z)
= 0, and thus, it must be

constant. �

5.2. Cycles and homology

In some subsequent chapters we will need a more general form of
Cauchy’s theorem that deals with integrals over cycles that are homol-
ogous to zero.

Definition 5.16. A cycle γ is a finite sequence of continuous ori-
ented closed paths in the complex plane.

We write γ = (γ1, γ2, . . . , γn) if γ is a cycle and γ1, γ2, . . . , γn are the
closed paths that make up γ. The paths in a cycle are not necessarily
distinct. We will consider the range of γ to be the union of the ranges
of the components γi.

We extend the notion of the integral of a function over a single
closed path to the integral over a cycle as follows:

Definition 5.17. If γ is a cycle and γ1, . . . , γn are its components,
then for any holomorphic function f defined on a domain U such that
range γ ⊆ U , we set

∫

γ

f(z) dz =

∫

γ1

f(z) dz + . . . +

∫

γn

f(z) dz (5.4)
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We can extend the notion of the index of a point with respect to a
path to the index of a point with respect to a cycle by

Definition 5.18. The index of a point ζ with respect to the cycle
γ is denoted by I(γ, ζ) and defined by

I(γ, ζ) = I(γ1, ζ) + . . . + I(γn, ζ). (5.5)

Definition 5.19. A cycle γ with range contained in a domain
U ⊆ C is said to be homologous to zero with respect to U if I(γ, ζ) = 0
for every ζ ∈ C − U .

With these definitions, it is easy to see that Cauchy’s theorem can
be stated in its most general form as

Theorem 5.20 (Cauchy’s theorem: general form). If f is an-
alytic in a domain U ⊆ C, then

∫

γ
f(z)dz = 0 for every cycle γ that is

homologous to zero in U .

Remark 5.21. A topologist would develop the concept of homol-
ogy in much more detail using chains and cycles. However, for our
purposes, the above definitions suffice. In particular, our cycles are al-
lowed repetitions of the component curves, and the component curves
may be taken in any order since we are only concerned with the sum
of the integrals.

An additional notion we will use is that of two cycles γ = (γ1, . . . , γn)
and δ = (δ1, . . . , δm) being homologous in the domain U . Namely, γ
and δ (with range contained in U) are homologous in U if the cycle
with components (γ1, . . . , γn, δ1−, . . . , δm−) is homologous to zero in U ,
where δi− is the curve δi traversed backward (see Definition 4.53).

We also speak of two nonclosed paths γ1 and γ2 (with range con-
tained in U) as being homologous in U if they have the same initial
point and the same end point and the closed cycle (γ1, γ2−) is homolo-
gous to zero with respect to U .

We point out that there is a difference between the cycle γ =
(γ1, γ2, . . . , γn) and the sum γ1 + γ2 + · · · γn of the paths in γ, as in
Definition 4.49.

5.3. Jordan curves

We introduce some more terminology.

Definition 5.22. Let γ : [0, 1] → C be a continuous closed path.
The curve γ is called a simple closed path or a Jordan curve whenever
γ(t1) = γ(t2) with 0 ≤ t1 < t2 ≤ 1 implies t1 = 0 and t2 = 1.
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In this case, the range of γ is a homeomorphic image of the unit
circle S1. To see this, we define

h(e2πıt) = γ(t),

and we note that h maps S1 onto the range of γ. Observe that h is
well defined, continuous, and injective. Since the circle is compact, h
is a homeomorphism.

We state, without proof,

Theorem 5.23 (Jordan Curve Theorem1). If γ is a simple
closed path in C, then

(a) C − range γ has exactly two connected components, one of
which is bounded;

(b) range γ is the boundary of each of these components; and
(c) I(γ, ζ) = 0 for all ζ in the unbounded component of the com-

plement of the range of γ, and I(γ, ζ) = ±1 for all ζ in the
bounded component of the complement of the range of γ. The
choice of sign depends only on the choice of direction for tra-
versal on γ.

Definition 5.24. For a simple closed path γ in C we define the
interior of γ, i(γ), to be the bounded component of C − range γ, and
the exterior of γ, e(γ), to be the unbounded component of C−range γ.

If I(γ, ζ) = +1 (respectively, −1) for ζ in i(γ), then we say that γ
is a Jordan curve with positive (respectively negative) orientation.

We shall not prove the above theorem. It is a deep result. In all of our
applications, it will be obvious that our Jordan curves have the above
properties.

Remark 5.25. If we view a Jordan curve γ as lying on the Riemann

sphere ̂C, then each component of the complement of its range is simply
connected.

This observation allows us to prove

Theorem 5.26. [Cauchy’s theorem (extended version)] Let
γ0, . . . , γn be n + 1 positively oriented Jordan curves. Assume that for
all 1 ≤ j �= k ≤ n,

range γj ⊂ e(γk) ∩ i(γ0)

(see Figure 5.2).

1For a proof see the appendix to Ch. IX of J. Dieudonné, Foundations of Mod-
ern Analysis, Pure and Applied Mathematics, vol. X, Academic Press, 1960, or
Chapter 8 of J. R. Munkres, Topology, a first course, Prentice-Hall Inc., 1975.
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D

γ0

γ1

γ2

δ1

δ2

Figure 5.2. The Jordan curves and the domain

If f is a holomorphic function on a neighborhood N of the closure
of

D = i(γ0) ∩ e(γ1) ∩ . . . ∩ e(γn),

then
∫

γ0

f(z) dz =
n
∑

k=1

∫

γk

f(z) dz.

Proof. Adjoin curves δj from γ0 to γj for j = 1, . . . , n. Then the
cycle

δ = (γ0, δ1, γ1−, δ1−, . . . , δn−)

is homologous to zero with respect to N . Thus
(

∫

γ0

+
n
∑

j=1

(

∫

δj

+

∫

γj−
+

∫

δj−

))

f(z) dz = 0 .

�
An immediate consequence is the following result.

Theorem 5.27. [Cauchy’s integral formula (extended ver-
sion)] With the hypotheses as in the extended version of Cauchy’s
theorem 5.26, we have for ζ ∈ D

2πıf(ζ) =

∫

γ0

f(z)

z − ζ
dz −

n
∑

k=1

∫

γk

f(z)

z − ζ
dz .

Proof. We can apply Theorem 5.2 to the function f using the
neighborhood N of Theorem 5.26 and the cycle δ constructed in its
proof, since δ is homologous to zero in N and I(δ, ζ) = +1. As before
an integral over a δi is canceled by the corresponding integral over
δi−. �
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5.4. The Mean Value Property

The next concept applies in a broader context than that of holo-
morphic functions, as we will see in Chapter 9.

Definition 5.28. Let f be a function defined on a domain D in C.
We say that f has the Mean Value Property (MVP) if for each ζ ∈ D
there exists r0 > 0 with U(ζ, r0) ⊂ D and

f(ζ) =
1

2π

∫ 2π

0

f(ζ + r eıθ) dθ for all 0 ≤ r < r0. (5.6)

Remark 5.29. A holomorphic function f on a domain D has the
Mean Value Property (with r0 = the distance of ζ ∈ D to ∂D). Hence
so do its real and imaginary parts.

Theorem 5.30 (Maximum Modulus Principle (MMP)). Sup-
pose f is a continuous complex-valued function defined on a domain D
in C that satisfies the Mean Value Property.

If |f | has a relative maximum at a point ζ ∈ D, then f is constant
in a neighborhood of ζ.

Proof. The result is clear if f(ζ) = 0. If not, replacing f by e−ıθf
for some θ ∈ R, we may assume that f(ζ) > 0.

Write f = u + ı v, and choose r0 > 0 such that

(1) cl U(ζ, r0) ⊂ D,
(2) (5.6) holds, and
(3) |f(z)| ≤ f(ζ) for z ∈ cl U(ζ, r0) .

If we define

M(r) = sup{|f(z)| ; |z − ζ | = r} for 0 ≤ r ≤ r0 ,

then
M(r) ≤ f(ζ) for 0 ≤ r ≤ r0 .

The MVP implies that

f(ζ) =
1

2π

∫ 2π

0

f(ζ + r eiθ) dθ for 0 ≤ r < r0,

and thus f(ζ) ≤ M(r). We conclude that f(ζ) = M(r) for 0 ≤ r ≤ r0.
Now

1

2π

∫ 2π

0

M(r) dθ = M(r) = f(ζ) =
1

2π

∫ 2π

0

u(ζ + r eıθ) dθ , (5.7)

where the last equality holds because f(ζ) is real. Also, it follows from
the definition of M(r) that

M(r) − u(ζ + r eıθ) ≥ 0 . (5.8)
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But it also follows from (5.7) that
∫ 2π

0

[

M(r) − u(ζ + reıθ)
]

dθ = 0
and hence from (5.8) that we must have equality there. Finally,

M(r) ≥ (u2(ζ + r eıθ) + v2(ζ + r eıθ))
1
2 = (M(r)2 + v2(ζ + r eıθ))

1
2 ,

which implies that v2(ζ + r eıθ) = 0 = v(ζ + r eıθ) for 0 ≤ r ≤ r0 and
0 ≤ θ ≤ 2π. �

From the above it is easy to deduce that a nonconstant holomor-
phic function on a bounded domain (since it satisfies the MVP) that is
continuous on the closure of the domain assumes its maximum on the
boundary of that domain.

Corollary 5.31. Suppose D is a bounded domain and f ∈ C0(cl D)
satisfies the MVP in D.

If

M = sup{|f(z)| ; z ∈ ∂D},
then

(a) |f(z)| ≤ M all z ∈ D, and
(b) if |f(ζ)| = M for some ζ ∈ D, then f is constant in D.

Proof. Let

M ′ = sup{|f(z)| ; z ∈ cl D} .

Then

M ≤ M ′ < +∞ .

We know that there exists a ζ in cl D such that |f(ζ)| = M ′. If
ζ ∈ D, then f is constant in a neighborhood of ζ .

Let

D′ = {z ∈ D; |f(z)| = M ′} .

The set D′ is closed and open in D. If nonempty, it is all of D. If
D′ = ∅, then M = M ′. If D′ �= ∅, then f is constant on D and thus
also on cl D. �

In particular, since a function that is holomorphic in a domain
satisfies the MVP, we have

Corollary 5.32 (The Maximum Principle for analytic func-
tions). If f is a nonconstant holomorphic function on a domain D,
then |f(z)| has no maximum in D.

Furthermore, if D is bounded and f is continuous on the boundary
of D, then |f(z)| assumes its maximum on the boundary of D.
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Remark 5.33. By studying the proof of Theorem 5.30, one can
prove the Maximum Principle, which is an interesting result that may
be stated as follows.

Suppose f is a continuous, real-valued function defined on a domain
D in C that satisfies the Mean Value Property. If f has a relative
maximum at a point ζ ∈ D, then f is constant in a neighborhood of ζ .

Similarly, the Minimum Principle asserts that a continuous real-
valued function defined on a domain D in C that satisfies the Mean
Value Property on D and has a relative minimum at a point ζ ∈ D
must be constant in a neighborhood of ζ (apply the Maximum Principle
to the negative of the function).

An important consequence of Corollary 5.31 is

Theorem 5.34 (Schwarz’s lemma). If f is holomorphic on D =
U(0, 1) and satisfies |f(z)| < 1 for |z| < 1 and f(0) = 0, then |f(z)| ≤
|z| for |z| < 1 and |f ′(0)| ≤ 1.

Furthermore, if |f(ζ)| = |ζ | for some ζ with 0 < |ζ | < 1 or if
|f ′(0)| = 1, then there exists a λ ∈ C with |λ| = 1 such that f(z) = λz
for all |z| < 1.

Proof. Using the Taylor series expansion, we write f(z) =

∞
∑

n=1

anzn;

this power series has radius of convergence ρ ≥ 1. Then

g(z) =

{

f(z)

z
, for z �= 0;

a1 = f ′(0), for z = 0,

satisfies

g(z) =

∞
∑

n=1

anzn−1

and is holomorphic on U(0, 1).
Now for any r with 0 < r < 1,

|g(z)| =

∣

∣

∣

∣

f(z)

z

∣

∣

∣

∣

≤ 1

r
for |z| = r

and thus also for |z| ≤ r by MMP. Hence |g(z)| ≤ 1 or, equivalently,
|f(z)| ≤ |z| and |f ′(0)| ≤ 1.

If |g(ζ)| = 1 for some ζ with |ζ | < 1, then g is constant, again by
MMP. �

Remark 5.35. In Schwarz’s lemma, the hypothesis |f(z)| < 1 can
be replaced by |f(z)| ≤ 1. Under this weaker hypothesis, the stronger
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one still holds, for otherwise there exists an a ∈ D with |f(a)| = 1 and
by MMP, the function f must be constant — obviously impossible.

5.5. On elegance and conciseness

The Jordan Curve Theorem is a major result in two-dimensional
topology. All the other theorems and corollaries of this chapter are
milestones in function theory. They all were established in an elegant,
short, and concise way as a consequence of Goursat’s theorem (4.52).

5.6. Appendix: Cauchy’s integral formula for smooth
functions

In most real analysis courses and books (see, for example, Th. 5.12
of G. B. Folland Advanced Calculus, Prentice Hall, 2002), one estab-
lishes (we are using complex notation) the following form of

Theorem 5.36 (Green’s theorem). Let D be a compact set in
C that is the closure of its interior, with piecewise smooth positively
oriented boundary ∂D (this means that D lies to the left of the oriented
curves on its boundary).

If f and g are C1-functions on a neighborhood of D, then
∫∫

D

(gz − fz)dzdz =

∫

∂D

f(z)dz + g(z)dz .

As a consequence of this result, we prove

Theorem 5.37 (Cauchy’s integral formula for smooth func-
tions). Let D be a compact set in C that is the closure of its interior,
with piecewise smooth positively oriented boundary ∂D.

If f is a C1-function on a neighborhood of D and ζ is in the interior
of D, then

f(ζ) =
1

2πı

[∫

∂D

f(z)

z − ζ
dz +

∫∫

D

fz(z)

z − ζ
dzdz

]

. (5.9)

Proof. Choose ε > 0 such that the closure of the ball U(ζ, ε) is
contained in the interior of D, and let Dε = D − U(ζ, ε).

We apply Green’s theorem to the smooth differential form
f(z)

z − ζ
dz

on Dε and obtain
∫

∂Dε

f(z)

z − ζ
dz = −

∫∫

Dε

fz(z)

z − ζ
dzdz . (5.10)
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Now, ∂Dε consists of two components: ∂D and the clockwise ori-
ented circle with center at ζ and radius ε. Hence

∫

∂Dε

f(z)

z − ζ
dz =

∫

∂D

f(z)

z − ζ
dz − ı

∫ 2π

0

f(ζ + εeıθ) dθ .

Letting ε → 0 in (5.10) yields (5.9). �
Remark 5.38.

• For holomorphic functions, (5.9) reduces to (5.1).
• The last result shows that the Cauchy Theory is a consequence

of Green’s theorem for C1-functions that satisfy CR.
• The area element is given by dz dz = −2 ı dx dy. This equation

can be taken as the definition of the LHS (it really follows from
the rules of the exterior differential calculus).

Exercises

5.1. Let D be a domain in C. Prove that the following conditions
are equivalent.

(1) D is simply connected.
(2) C − D is connected.
(3) For each holomorphic function f on D such that f(z) �= 0 for

all z ∈ D, there exists a g ∈ H(D) such that f = eg (g is a
logarithm of f).

(4) For each holomorphic function f on D such that f(z) �= 0
for all z ∈ D and for each positive integer n, there exists an
h ∈ H(D) such that f = hn.

How unique are the functions g and h?

5.2. Let f be analytic in a simply connected domain D, and let γ
be a closed piecewise smooth path in D. Set β = f ◦ γ. Show that
I(β, ζ) = 0 for all ζ ∈ C, ζ /∈ f(D).

5.3. Show that if a continuous closed curve γ is homotopic to a
point in a domain U , then the cycle (γ) is homologous to zero in U .

Is the converse true?

5.4. Let f be a holomorphic function on |z| < 1 with |f(z)| < 1 for
all |z| < 1.

(1) Prove the invariant form of Schwarz’s lemma (also known as
the Schwarz–Pick Lemma):

|f ′(z)|
1 − |f(z)|2 ≤ 1

1 − |z|2 for all |z| < 1.
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(2) Find necessary and sufficient conditions for equality in the last
equation.

(3) If f
(

1
2

)

= 1
3
, find a sharp upper bound for

∣

∣f ′ (1
2

)∣

∣.

5.5. Let f be a holomorphic function on U(0, R), R > 0. Assume
there exist an M ∈ R>0 such that |f(z)| ≤ M for all z ∈ U(0, R) and
an n ∈ Z≥0 such that

0 = f(0) = f ′(0) = . . . = f (n)(0).

(1) Prove that

|f(z)| ≤ M

( |z|
R

)n+1

for all z ∈ U(0, R) ;

with equality if and only if there exists an α ∈ C, |α| = 1,

such that f(z) = αM
( z

R

)n+1

for all z ∈ U(0, R).

(2) Assume that either f(ζ) = M

( |ζ |
R

)n+1

for some ζ with 0 <

|ζ | < R or
∣

∣f (n+1)(0)
∣

∣ = (n + 1)!M .
Prove that there exists an α ∈ C, |α| = 1, such that f(z) =

αM
( z

R

)n+1

for all z ∈ U(0, R).

5.6. Let f be a holomorphic function on the punctured plane 0 <
|z| < ∞. Assume that there exist a positive constant C and a real
constant M such that

|f(z)| ≤ C |z|M for 0 < |z| <
1

2
.

Show that z = 0 is either a pole or a removable singularity for f ,
and find sharp bounds for ν0(f), the order of f at 0.

5.7. Prove by use of Schwarz’s lemma that every one-to-one con-
formal mapping of a disk onto another disk is given by a fractional
linear transformation. Here the term “disk”is also meant to include
half-planes (with ∞ adjoined), and a fractional linear transformation
is a map of the form T (z) = az+b

cz+d
where a, b, c, and d are complex

numbers with ad − bc �= 0.

5.8. Assume that an entire function that takes on every complex
value once and only once must be a polynomial of degree one. Prove
that the inverse of an entire function cannot be entire except if it is a
polynomial of degree one.
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5.9. Let f be an entire function with |f(z)| ≤ a|z|b + c for all z,
where a, b, and c are positive constants. Prove that f is a polynomial
of degree at most b.

5.10. Let f be an entire function such that f(0) = 0, and that
�(f(z)) → 0 as |z| → ∞. Show that f is identically 0.

5.11. Let D be a bounded domain in C. Let f : cl D → C be a
nonconstant continuous function, which is analytic in D and satisfies
|f(z)| = 1 for all z ∈ ∂D. Show that f(z0) = 0 for some z0 ∈ D.

5.12. Prove the Maximum and the Minimum Principles stated in
Remark 5.33.

Furthermore, if D is bounded and f is continuous on the closure of
D and satisfies the MVP in D, with m ≤ f ≤ M on ∂D for some real
constants m and M , show that then m ≤ f ≤ M on D.



CHAPTER 6

Cauchy Theory: Local Behavior and Singularities
of Holomorphic Functions

In this chapter we use the Cauchy Theory to study functions that
are holomorphic on an annulus and analytic functions with isolated sin-
gularities. We describe a classification for isolated singularities. Func-
tions that are holomorphic on an annulus have Laurent series expan-
sions, an analog of power series expansions for holomorphic functions
on disks. Holomorphic functions with a finite number of isolated singu-
larities in a domain can be integrated using the Residue Theorem, an
analog of the Cauchy Integral Formula. We discuss the local properties
of these functions. The study of zeros of meromorphic functions leads
to a theorem of Rouché that connects the number of zeros and poles
to an integral. The theorem is not only aesthetically pleasing in its
own right but also allows us to give alternative proofs of many impor-
tant results. In the last section of this chapter we illustrate the use of
complex function theory in the evaluation of real definite integrals.

6.1. Functions holomorphic on an annulus

Theorem 6.1 (Laurent series expansion). Let ζ ∈ C, and let f
be holomorphic in the annulus

A = {z ∈ C; 0 ≤ R1 < |z − ζ | < R2 ≤ +∞}.1
Then

f(z) =
∞
∑

n=−∞
an(z − ζ)n

for all z ∈ A, where the series converges uniformly and absolutely on
compact subsets of A, and

an =
1

2πı

∫

γr

f(t)

(t − ζ)n+1
dt , for R1 < r < R2

with
γr = ζ + reiθ, 0 ≤ θ ≤ 2π .

1We are including here the cases of degenerate annuli: those with R1 = 0
and/or R2 = +∞.

101
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This series is called a Laurent series for f . It is uniquely determined
by f and A.

Proof. Without loss of generality we assume ζ = 0. Consider two
concentric circles γrj

= {z; |z| = rj} (j = 1, 2), bounding a smaller
annulus

R1 < r1 < |z| < r2 < R2 .

If for j ∈ {1, 2} we let

fj(z) =
1

2πı

∫

γrj

f(t)

t − z
dt,

then it follows from the extended version of Cauchy’s Integral Formula
that

f(z) =
1

2πı

∫

γr2

f(t)

t − z
dt − 1

2πı

∫

γr1

f(t)

t − z
dt = f2(z) − f1(z) .

Since f2 can be extended to be holomorphic in the disk {z; |z| < r2},
by Exercise 4.9, we obtain

f2(z) =

∞
∑

n=0

anzn , with an =
1

2πı

∫

γr2

f(t)

tn+1
dt ;

furthermore, this series converges for |z| < R2 and an is independent
of r2 (since any two circles about 0 in A are homotopic in A).

As for f1, note that

− 1

t − z
=

1

z − t
=

1

z

1

1 − t
z

=
1

z

∞
∑

k=0

(

t

z

)k

for |t| = r1 and |z| > r1 .

Thus f1(z) =
1

2πı

1

z

∞
∑

k=0

∫

γr1

f(t)

zk
tk dt =

∞
∑

k=0

z−k−1 1

2πı

∫

γr1

f(t)tk dt.

Letting −k − 1 = n, we obtain

f1(z) =
∑

n≤−1

anzn, where an =
1

2πı

∫

γr1

f(t)

tn+1
dt is independent of r1 .

Observe that f1 can be extended to be holomorphic in |z| > R1,
including ∞, and f1(∞) = 0. �

Corollary 6.2. If f is holomorphic in A, then f = f1 + f2 where
f2 is holomorphic in |z − ζ | < R2 and f1 is holomorphic in R1 < |z − ζ |
(including the point at ∞). The functions fj are unique if we insist
that f1(∞) = 0.
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Proof. Once again, without loss of generality ζ = 0.
Existence: Already done.
Uniqueness: Suppose f = f2 + f1 = g2 + g1 with appropriate fi and gj.
Then 0 = (f2−g2)+(f1−g1) in A, the function (f2−g2) is holomorphic
in |z| < R2, and the function (f1 − g1) is holomorphic in |z| > R1 and
vanishes at ∞.

Define

h(z) =

{

(g1 − f1)(z), if |z| > R1;
(f2 − g2)(z), if |z| < R2.

The function h is well defined and holomorphic on C ∪ {∞} and
vanishes at ∞. Hence it is identically zero. �

6.2. Isolated singularities

Definition 6.3. We now consider the special case of functions
holomorphic on a degenerate annulus with R1 = 0 and R2 ∈ (0, +∞];
that is, we fix a point ζ ∈ C and a holomorphic function f on the
punctured disk {z ∈ C; 0 < |z − ζ | < R2}. In this case, ζ is called an
isolated singularity of f .

We know that in this case f has the Laurent series expansion

f(z) =

∞
∑

n=−∞
an(z − ζ)n for 0 < |z − ζ | < R2 .

There are three possibilities for the coefficients {an}n∈Z<0 ; we now
analyze each possibility.

(1) If an = 0 for all n in Z<0, then f has a removable singularity
at z = ζ , and f can be extended to be a holomorphic function
in the disk |z − ζ | < R2 by defining f(ζ) = a0.

Shortly (in Theorem 6.5), we will establish a useful crite-
rion for proving that an isolated singularity is removable.

(2) Finitely many nonzero coefficients with negative indices ap-
pear in the Laurent series; that is, there exists N in Z>0 such
that a−n = 0 for all n > N and a−N �= 0. We can hence write

f(z) =

−1
∑

n=−N

an(z − ζ)n +

∞
∑

n=0

an(z − a)n

for 0 < |z − ζ | < R2.

In this case,
−1
∑

n=−N

an(z − ζ)n is called the principal part of

f at ζ , f is meromorphic in the disk |z − ζ | < R2, and f has
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a pole of order N at z = ζ . Furthermore,

lim
z→ζ

(z − ζ)N f(z) = a−N �= 0

and N is characterized by this property (that the limit exists
and is different from zero).

(3) Infinitely many nonzero coefficients with negative indices ap-
pear in the Laurent series. Then ζ is called an essential sin-
gularity of f .

Example 6.4. We have

exp

(

1

z

)

=

∞
∑

n=0

z−n

n!

for |z| > 0. Here R1 = 0 and R2 = +∞; 0 is an essential
singularity of the function, and ∞ is a removable singularity
(f(∞) = 1).

Theorem 6.5. Assume that

f(z) =

∞
∑

n=−∞
anzn for all 0 < |z| < R2

is the Laurent series of a holomorphic function on a punctured disk. If
there exist an M > 0 and 0 < r0 < R2 such that

|f(z)| ≤ M for 0 < |z| < r0,

then f has a removable singularity at z = 0.

Proof. We know that an =
1

2πı

∫

γr

f(t)

tn+1
dt, where γr(θ) = r eıθ,

for θ ∈ [0, 2π] and 0 < r < r0.
We estimate |an| ≤ M

rn . For n < 0, we let r → 0 and conclude that
an = 0. �

Theorem 6.6 (Casorati–Weierstrass). If f is holomorphic on
{0 < |z| < R2} and has an essential singularity at z = 0, then for all
c ∈ C the function

g(z) =
1

f(z) − c

is unbounded in any punctured neighborhood of z = 0.
Therefore the range of f restricted to any such neighborhood is dense

in C.
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Proof. Assume that, for some c ∈ C, the function g is unbounded
in some punctured neighborhood N of z = 0.

Then there is ε > 0 such that N = U(0, ε) − {0}, and, for any
M > 0, there exists a z ∈ N such that |g(z)| > M ; that is, such that
|f(z) − c| < 1

M
. Thus c is a limit point of f(N), and the last statement

in the theorem is proved.
Now it suffices to prove that for all c ∈ C and all ε > 0, the

function g is unbounded in U(0, ε) − {0}. If g were bounded in such a
neighborhood, it would have a removable singularity at z = 0 and thus
would extend to a holomorphic function on U(0, ε); therefore f would
be meromorphic there. �

A much stronger result (the next theorem) can be established. This
is usually done in more advanced text books.

Theorem 6.7 (Picard). If f is holomorphic in 0 < |z| < R2 and
has an essential singularity at z = 0, then there exists a c0 ∈ C such
that for all c ∈ C − {c0}, f(z) = c has infinitely many solutions in
0 < |z| < R2.

Example 6.8. The function exp

(

1

z

)

shows the above theorem is

sharp (c0 = 0).

Definition 6.9. A function f has an essential singularity at ∞ if
g(z) = f

(

1
z

)

has an essential singularity at z = 0.

Example 6.10. For an entire function f(z) =

∞
∑

n=0

anzn (its radius

of convergence ρ equals +∞), there are two possibilities:

(a) Either there exists an N such that an = 0 for all n > N ; in
which case, f is a polynomial of degree ≤ N . If deg f = N ≥ 1,
then f has a pole of order N at ∞. If deg f = 0, f is constant,
of course.

(b) Or f has an essential singularity at ∞.

Definition 6.11. If f has an isolated singularity at ζ , with Laurent

series f(z) =

+∞
∑

n=−∞
an(z−ζ)n in 0 < |z − ζ | < R2, we define the residue

of f at ζ by the formula

Res(f, ζ) = a−1 .
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Theorem 6.12. Let A denote the annulus R1 < |z − ζ | < R2. If γ
is a closed path in A and if f is holomorphic in A with Laurent series

f(z) =

+∞
∑

n=−∞
an(z − ζ)n, then

1

2πı

∫

γ

f(z) dz = I(γ, ζ) a−1 .

In the special case that R1 = 0 and I(γ, ζ) = 1, we have

1

2πı

∫

γ

f(z) dz = Res(f, ζ).

Proof. We write

f(z) =
a−1

z − ζ
+ g(z)

where
g(z) =

∑

n �=−1

an(z − ζ)n .

The function g has a primitive in the annulus; namely,
∑

n �=−1

1

n + 1
an (z − ζ)n .

Thus

∫

γ

g(z) dz = 0. �

Theorem 6.13 (Residue Theorem). Let f be holomorphic in a
domain D except for isolated singularities at z1, . . . , zn ∈ D. Let γ be
a positively oriented Jordan curve homotopic to a point in D such that
zj ∈ i(γ) for j = 1, . . . , n. Then

∫

γ

f(z) dz = 2πı

n
∑

j=1

Res(f, zj).

Proof. Put a small positively oriented circle around each zj and
use the extended version of Cauchy’s theorem. �

6.3. Zeros and poles of meromorphic functions

Let D be a domain in C and f : D → ̂C be a meromorphic function.
This means that f is holomorphic except for isolated singularities in
D, which are removable or poles (see Section 3.5). We have denoted
the set (field) of meromorphic functions on D by M(D).

We now know that at each point of D, f has a Laurent series expan-
sion with only finitely many nonzero coefficients for negative indices.
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Theorem 6.14 (The argument principle). Let D be a domain
in C, and let f ∈ M(D). Suppose γ is a positively oriented Jordan
curve in D that is homotopic to a point in D. Let c ∈ C, and assume
that f(z) �= c and f(z) �= ∞ for z ∈ range γ. Then

1

2πı

∫

γ

f ′(z)

f(z) − c
dz =

∑

z∈i(γ)

νz(f − c) = Z − P ,

where Z is the number of zeros of the function f − c inside γ (counting
multiplicities) and P is the number of poles of the function f inside γ
(counting multiplicities).

Proof. If F (z) =
f ′(z)

f(z) − c
for z ∈ D, then we claim that

Res(F, ζ) = νζ(f − c) for all ζ ∈ D, (6.1)

provided f is not identically c. The theorem then follows immediately
from (6.1) and the Residue Theorem.

To verify our claim, it suffices to assume that c = 0 and that ζ = 0.
If ν0(f) = n, then f(z) = zng(z) with g holomorphic near 0 and
g(0) �= 0. It follows that

f ′(z) = nzn−1g(z) + zng′(z)

and hence
f ′(z)

f(z)
=

n

z
+

g′(z)

g(z)
. Thus

f ′

f
has residue n at 0. �

Remark 6.15. To explain the name of the theorem, we observe
that the argument principle may be stated in the following way: Let
D be a domain in C, and let f ∈ M(D). Suppose γ is a positively
oriented Jordan curve in D that is homotopic to a point in D. Let
c ∈ C, and suppose that f(z) �= c and f(z) �= ∞ for all z ∈ range γ.

If Z denotes the number of zeros of the function f − c inside γ
(counting multiplicities) and P denotes the number of poles of f inside
γ (counting multiplicities), then the argument of f − c increases by
2π(Z − P ) upon traversing γ.

Indeed, note that
f ′

f − c
= (log(f − c))′ and recall that

log(f − c) = log |f − c| + ı arg(f − c).

Therefore,
∫

γ

f ′(z)

f(z) − c
dz =

∫

γ

d log |f(z) − c| + ı

∫

γ

d arg(f(z) − c)
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The first integral on the rightmost side of the equation equals zero
because log |f − c| is single-valued. The second integral on the right-
most side equals the change in the argument as one traverses γ.

Corollary 6.16. Let f be a nonconstant holomorphic function on
a neighborhood of ζ ∈ C, α = f(ζ) and m = νζ(f − α). Then there
exist r > 0 and ε > 0 such that for all β ∈ C with 0 < |β − α| < ε,
f − β has exactly m simple zeros in 0 < |z − ζ | < r.

Proof. Observe that m ≥ 1. Choose a positively oriented circle γ
around ζ such that f −α vanishes only at ζ in cl i(γ) and f ′(z) �= 0 for
all z ∈ cl i(γ) − {ζ}.

If we consider the curve γ1 = f ◦ γ, it follows from Theorem 6.14
that

I(γ1, α) =
1

2πı

∫

γ

f ′(z)

f(z) − α
dz = m .

Let w = f(z), and conclude that for every β not in the range of γ1

we have

1

2πı

∫

γ

f ′(z)

f(z) − β
dz =

1

2π ı

∫

γ1

1

w − β
dw = I(γ1, β).

Now there exists a δ > 0 such that |f(z) − α| ≥ δ for all z ∈ range γ.
Hence |β − α| < δ implies that, for z ∈ γ,

|f(z) − β| = |(f(z) − α) − (α − β)| ≥ |f(z) − α| − |α − β| > 0.

Thus f − β does not vanish on γ for such β. Since I(γ1, β) is
constant on each connected component of the complement of the range
of γ1 in C, there is an ε > 0 such that

|β − α| < ε < δ ⇒ I(γ1, β) = m.

If β �= α, then all the zeros of f − β are simple (since f ′ is not zero
close to ζ). Therefore f − β has m simple zeros in i(γ). �

Corollary 6.17. A nonconstant holomorphic function is an open
mapping.

Proof. If f : D → C is holomorphic on a domain D and is not a
constant, we obtain from Corollary 6.16 that for any α in f(D), there
exists ε > 0 such that U(α, ε) ⊆ f(D), and the result follows. �

Corollary 6.18. An injective holomorphic function is a homeo-
morphism from its domain onto its image.

Corollary 6.16 gives a characterization (m = 1 if and only if f
is injective in a neighborhood of ζ) for a holomorphic function to be
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locally injective (or, equivalently, to be a local homeomorphism). See
also the discussion in the next section.

Theorem 6.19 (Rouché’s theorem). Let f and g be holomorphic
functions on a domain D. Let γ be a positively oriented Jordan curve
with cl i(γ) contained in D. Assume that |f | > |g| on range γ.

Then Zf+g = Zf , where Zf denotes the number of zeros of f in
i(γ).

Proof. Recall from Theorem 6.14 that Zf = I(f ◦ γ, 0), and then
use Theorem 4.51. �

Theorem 6.20 (Integral formula for the inverse function).
Let R > 0. Suppose f is holomorphic on |z| < R, f(0) = 0, f ′(z) �= 0
for |z| < R, and f(z) �= 0 for 0 < |z| < R.

For any 0 < r < R, let γr be the positively oriented circle of radius
r about 0, and let m = min |f | on γr.

Then

g(w) =
1

2πı

∫

γr

tf ′(t)
f(t) − w

dt

defines a holomorphic function in |w| < m with

f(g(w)) = w on |w| < m

and

g(f(z)) = z for z ∈ i(γr) ∩ f−1(|w| < m).

Proof. Observe that m > 0, and fix w0 with |w0| < m. Then on
the circle γr, we have

|f(z)| ≥ m > |w0| .
Thus f and (f−w0) have the same number of zeros in i(γr), by Rouché’s
theorem, and hence f(z) − w0 = 0 has a unique solution z0 in i(γr).

Therefore it suffices to show the following.

(1) g(w0) = z0 if f(z0) = w0, and

(2) g is a holomorphic function on the disk |w| < m.

To verify (1), note that it follows from the Residue Theorem that

g(w0) = Res(F, z0), where F (s) =
s f ′(s)

f(s) − w0
for |s| < R.
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Thus

g(w0) = lim
s→z0

(s − z0)
s f ′(s)

f(s) − f(z0)

= lim
s→z0

(2s − z0)f
′(s) + (s2 − sz0)f

′′(s)
f ′(s)

= z0,

where the second equality follows from l’Hopitals’s rule (see Exercise
3.26).

Alternatively, to avoid the use of l’Hopitals’s rule, we change the
previous series of equalities to

g(w0) = lim
s→z0

(s − z0)
s f ′(s)

f(s) − f(z0)

= lim
s→z0

(s − z0)
sf ′(s)

(s − z0)(f ′(z0) + f ′′(z0)
2

(s − z0) + . . .)
= z0.

To show (2) we note that |f(t)| > |w| on γr and hence

1

f(t) − w
=

1

f(t)

[

1 − w

f(t)

] =
1

f(t)

∞
∑

n=0

(

w

f(t)

)n

.

Thus

g(w) =
1

2πı

∞
∑

n=0

wn

∫

γr

t f ′(t)
f(t)n+1

dt.

Since

∣

∣

∣

∣

∫

γr

t f ′(t)
f(t)n+1

dt

∣

∣

∣

∣

≤ M

mn+1
for some constant M that is independent

of n, the last power series has radius of convergence ≥ m. �

6.4. Local properties of holomorphic maps

Let D be a domain, f ∈ H(D), and z0 ∈ D. In this section we de-
scribe the behavior of f near z0 using results from the previous section.

We will use the following notation:

z = x + ıy, w = s + ıt = f(z) = u(x, y) + ıv(x, y) for z ∈ D,

and w0 = f(z0).

Proposition 6.21. Let D be a domain in C, z0 a point in D and
f a function holomorphic on D.

Then the following properties hold:

(1) If f ′(z0) �= 0, then f defines a homeomorphism of some neigh-
borhood of z0 onto some neighborhood of w0.
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Proof. The condition implies that νz0(f(z) − w0) = 1,
and it follows from Corollary 6.16 that there exist r > 0 and
ε > 0 such that for all w ∈ C with 0 < |w − w0| < ε, f−w0 has
exactly one simple zero in 0 < |z − z0| < r. In other words, f
is injective near z0. Now use Corollary 6.18 to conclude.

�
(2) If there exists n ∈ Z≥1 such that

0 = f ′(z0) = . . . = f (n)(z0) and f (n+1)(z0) �= 0,

then f is n + 1 to 1 near z0.

Proof. Let g(z) = f(z) − w0. It is enough to prove that
g is n + 1 to 1 near z0. But

g(z0) = 0 = g′(z0) = . . . = g(n)(z0) , and g(n+1)(z0) �= 0,

and therefore, for |z − z0| small, we may write

g(z) =
∑

m≥n+1

am(z − z0)
m (where an+1 �= 0)

= (z − z0)
n+1

∞
∑

k=0

ak+n+1(z − z0)
k

= (z − z0)
n+1(h(z))n+1 = (g1(z))n+1,

where h and g1 are holomorphic functions near z0 such that

h(z0) = (an+1)
1

n+1 �= 0, g1(z0) = 0, and (g1)
′(z0) = h(z0) �= 0.

The existence of h is a consequence of Exercise 5.1.
By (1), g1 is a homeomorphism from a neighborhood of z0

to a neighborhood of 0. Since p(z) = zn+1 is clearly n + 1 to
1 from a neighborhood of 0 to a neighborhood of 0, and since
g = p ◦ g1, it follows that g is n + 1 to 1 from a neighborhood
of z0 to a neighborhood of g(z0) = 0, as claimed. �

Remark 6.22. The above property (2) of holomorphic
mappings is also a consequence of Corollary 6.16. Much of
the above discussion, as well as the next corollary, are slight
amplifications of the material in the previous section.

An immediate consequence of (1) and (2) is the following

Corollary 6.23. A holomorphic function f is injective
near a point z0 in its domain if and only if f ′(z0) �= 0 if and
only if f is a homeomorphism near z0.
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(3) If f ′(z0) �= 0, then angles between tangent vectors to curves at
z0 are preserved, and infinitesimal lengths at z0 are multiplied
by |f ′(z0)|.

If 0 = f ′(z0) = . . . = fn(z0) and f (n+1)(z0) �= 0 for some
n in Z≥1, then angles between tangent vectors to curves at z0

are multiplied by n + 1.

Proof. Let us write

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
= lim

z→z0

Δw

Δz
.

Assume first that f ′(z0) �= 0. Then

f ′(z0) = ρ eı θ, ρ > 0.

If z : [0, 1] → D is a C1-curve with z(0) = z0 and z′(0) �= 0,
then w = f ◦ z is a C1-curve with w(0) = w0, w′(0) �= 0.

Furthermore, if we denote Δz = z − z0 (for z close to but
different from z0) and Δw = f(z) − w0, then

Δw = Δz
Δw

Δz

implies that

arg Δw = arg Δz + arg
Δw

Δz
,

which together with

lim
z→z0

arg
Δw

Δz
= θ

imply that

arg w′(0) = arg z′(0) + arg f ′(z0).

All uses of the multivalued arg function need to be inter-
preted appropriately; we leave it to the reader to do so.

The assertion about lengths means that the ratio of the
length of Δw to the length of Δz tends to |f ′(z0)| as z tends
to z0. This follows immediately from

lim
z→z0

∣

∣

∣

∣

Δw

Δz

∣

∣

∣

∣

= ρ.

The argument for the case with vanishing derivatives is
almost identical to the one used to establish (2) and is hence
left to the reader. �

(4) Conversely, if g ∈ C1(D) preserves angles, then g ∈ H(D).
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Proof. Let z : [0, 1] → D be a C1-curve with z′(t) �= 0
for all t. Then

w = g ◦ z : [0, 1] → g(D)

is also a C1-curve and

w′(t) = gz z′(t) + gz z′(t) .

Since g preserves angles, arg
w′(t)
z′(t)

must be independent of

arg z′(t). But

w′(t)
z′(t)

= gz + gz
z′(t)
z′(t)

and therefore gz ≡ 0. �
(5) The change in infinitesimal areas is given by multiplication by

|f ′(z0)|2.
Proof. We compute the Jacobian of the map f :

J(f) =

∣

∣

∣

∣

ux vy

vx vy

∣

∣

∣

∣

= uxvy − uyvx = u2
x + v2

x = |f ′(z0)|2 .

�

6.5. Evaluation of definite integrals

The Residue Theorem is a powerful tool for the evaluation of many
definite integrals. We illustrate this with a few examples.

(1) The first integral to be evaluated is
∫ ∞

−∞

1

x4 + 1
dx .

We will obviously want to integrate F (z) dz =
1

z4 + 1
dz. To

apply the Residue Theorem, we must choose the path of inte-
gration carefully.

Let R > 1 and we choose γR to be the portion on R from
−R to +R followed by the upper half of the circle |z| = R, as
in Figure 6.1.

Since

z4 + 1 = (z − e
πı
4 )(z − e

3πı
4 )(z + e

πı
4 )(z + e

3πı
4 ),
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R−R

γR

Figure 6.1. The path of integration for Example (1)

the function F has (possibly) nonzero residues only at these
four roots of unity and we conclude that
∫

γR

1

z4 + 1
dz = 2πı

(

Res
(

F, e
πı
4

)

+ Res
(

F, e
3πı
4

))

.

The residues are easy to compute:

Res(F, e
πı
4 ) =

1

(z2 + ı)(z + e
πı
4 )

∣

∣

∣

∣

z=e
πı
4

=
−1

2(
√

2 − ı
√

2)

and

Res(F, e
3πı
4 ) =

1

(z2 − ı)(z + e
3πı
4 )

∣

∣

∣

∣

∣

z=e
3πı
4

=
1

2(
√

2 + ı
√

2)
.

Next we estimate the absolute value of the integral over
the semicircle {z; �z ≥ 0, |z| = R}:

∣

∣

∣

∣

∫ π

0

R ı eı θ

R4 e4 ı θ + 1
dθ

∣

∣

∣

∣

≤ πR

R4 − 1
→ 0 as R → +∞.

We conclude that

∫ ∞

−∞

1

x4 + 1
dx =

√
2π

2
.

Remark 6.24. This method will work for the evaluation

of integrals of the form

∫ +∞

−∞
Q(x) dx, where Q is a rational

function with no singularities on R and with ν∞(Q) ≥ 2.

(2) A second class of integrals that can be evaluated by the Residue
Theorem consists of those of the form

I =

∫ 2π

0

Q(cos θ, sin θ) dθ ,

where Q is a rational function of two variables with no singu-
larities on the unit circle S1 = {z; |z| = 1}.
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To apply the Residue Theorem, we express I as an integral
of a holomorphic function over the unit circle. We use the
change of variables

z = eiθ, hence dz = eı θı dθ = ı z dθ

and

cos θ =
eı θ + e−ı θ

2
=

z + z−1

2
, sin θ =

eı θ − e−ı θ

2 ı
=

z − z−1

2 ı
.

Example 6.25. Let 0 < b < a, and evaluate

I =

∫ 2π

0

1

a + b cos θ
dθ =

∫

|z|=1

1

(ı z)
(

a + b
z+ 1

z

2

) dz

=

∫

|z|=1

−2 ı

bz2 + 2az + b
dz

= 2π ı
∑

|z|<1

Res

( −2 ı

bz2 + 2az + b
, z

)

.

The denominator of the integrand in the last integral is a qua-
dratic polynomial in z with precisely one root inside the unit
circle (the product of the roots is +1). We conclude that

I = 2π(a2 − b2)−
1
2 .

(3) The last of the types of integrals to be discussed here is

I =

∫ ∞

−∞
Q(x)eıxdx ,

where Q is a rational function with (at least) a simple zero at
infinity and, in general, with no singularities on R.

We illustrate with a more complicated example, where Q
has a simple pole at the origin. Here the ordinary integral is
replaced by its principal value (pr. v.) defined below.

pr. v.

∫ ∞

−∞

eı x

x
dx = lim

δ→0+

R1→+∞
R2→+∞

(

∫ R2

δ

+

∫ −δ

−R1

)

eı x

x
dx .

We must choose a nice contour for integration; start with
large X1, X2, and Y and small δ, all positive. Our closed path
γ has several segments (see Figure 6.2):

γ1 : from −X1 to −δ on R,
γ2 : the semicircle in the lower half-plane of radius δ and

center 0,
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−X1
X2

X2+ıY−X1+ıY

γ2

γ1 γ3

γ4

γ5

γ6

Figure 6.2. The path of integration for Example (3)

γ3 : from δ to X2 on R,
γ4 : at x = X2 go up to height Y ,

γ5 : at height Y travel from X2 back to −X1, and (finally)
γ6 : at x = −X1 go down from height Y to the real axis.

We start with
∫

γ

eı z

z
dz = 2πı Res(f, 0) ,

where f(z) = eı z

z
= 1

z
+ g(z), with g entire. Thus

∫

γ

eı z

z
dz = 2π ı .

We now estimate the integral over γ4:
∣

∣

∣

∣

∫ Y

0

eı (X2+ı y)

X2 + ı y
ı dy

∣

∣

∣

∣

≤
∫ Y

0

e−y 1

|X2 + ı y| dy

≤ 1

X2

∫ Y

0

e−y dy <
1

X2
.

Next we estimate the integral over γ5:
∣

∣

∣

∣

∫ −X1

X2

eı (x+ı Y )

x + ı Y
dx

∣

∣

∣

∣

≤
∫ X2

−X1

e−Y

|x + ı Y | dx

≤ e−Y

∫ X2

−X1

1

Y
dx =

e−Y

Y
[X2 + X1].

Also the integral over γ6:
∣

∣

∣

∣

∫ 0

Y

eı (X1+ı y)

X1 + ı y
ı dy

∣

∣

∣

∣

<
1

X1

.
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We conclude that
∫

γ

eı z

z
dz = lim

δ→0+

X1→+∞
X2→∞

∫

γ1∪γ2∪γ3

eı z

z
dz.

Finally,

lim
δ→0+

(∫ X2

δ

+

∫ −δ

−X1

)

eı x

x
dx

= lim
δ→0+

(∫

γ1∪γ2∪γ3

eı z

z
dz +

∫

γ2
−

eı z

z
dz

)

.

But

lim
δ→0+

∫

γ−
2

(z−1 + g(z)) dz = lim
δ→0+

∫

γ−
2

z−1dz

because g is bounded on a neighborhood of 0 and the length
of the path of integration goes to zero. Now

lim
δ→0+

∫

γ−
2

z−1 dz = lim
δ→0+

∫ −π

0

1

δeı θ
δeı θ ı dθ = −πı.

We conclude that

pr. v.

∫ ∞

−∞

eı x

x
dx = πı.

Using the fact that eı x = cos x + ı sin x, we see that we
have evaluated two real integrals:

pr. v.

∫ ∞

−∞

cos x

x
dx = 0 and

∫ ∞

0

sin x

x
dx =

π

2
.

Exercises

6.1. Use Rouché’s theorem to prove the Fundamental Theorem of
Algebra.

6.2. Let g be a holomorphic function on |z| < R, R > 1, with
|g(z)| ≤ 1 for all |z| ≤ R.

(1) Show that for all t ∈ C with |t| < 1, the equation

z = tg(z)

has a unique solution z = s(t) in the disk |z| < 1.
(2) Show that t �→ s(t) is a holomorphic function on the disk

|t| < 1.

6.3. Verify (6.1) using Laurent series expansions for f and F .
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6.4. Evaluate

∫ ∞

−∞

x

4 + x4
dx.

6.5. If f is a holomorphic function on 0 < |z| < 1 and f does not
assume any value w with |w − 1| < 2, what can you conclude?

6.6. Compute

∫ ∞

−∞

dx

1 + x6
.

6.7. Evaluate the following integrals.

(a)

∫ ∞

−∞

(x + 1)

x4 + 1
dx,

(b)

∫ π

0

dθ√
5 + cos θ

,

(c)

∫

|z|=1

z6dz

7z7 − 1
,

(d)

∫

|z−100π|= 199
2

π

z cot z dz.

6.8. Let f be an entire function such that |f(z)| = 1 for |z| = 1.
Which are the possible values for f(0) and for f(17)?

6.9. Find

∫ ∞

0

dx

1 + x3
using residues.

6.10. Find all functions f which are meromorphic in a neighborhood
of {|z| ≤ 1} and such that |f(z)| = 1 for |z| = 1, f has a double pole at
z = 1

2
, a triple zero at z = −1

3
, and no other zeros or poles in {|z| < 1}.

6.11. Suppose f is an entire function satisfying f(n) = n5 and
f
(−n

2

)

= n7 for all n ∈ Z>0. How many zeros does the function
g(z) = [f(z) − e][f(z) − π] have?

6.12. Evaluate
∫

|z|=3

f ′(z)

f(z) − 1
dz,

where f(z) = 2 − 2z + z2 +
z3

81
.

6.13. Suppose f is holomorphic for |z| < 1 and f
(

1
n

)

= 7
n3 for

n = 2, 3, . . . . What can be said about f ′′′(0)?

6.14. Let f be an entire function such that |f(z)| ≤ |z| 233 for all
|z| > 10. Compute f (8)(10.001).

6.15. Evaluate

∫

|z−π
2 |=3.15

z tan z dz.
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6.16. Evaluate the following real integrals using residues:
∫ ∞

−∞

cos x

1 + x2
dx ,

∫ ∞

−∞

sin x

1 + x2
dx .

6.17. Find all Laurent series of the form
∑∞

−∞ anzn for the function

f(z) =
z2

(1 − z)2(1 + z)
.

6.18. If f is an entire function such that �f(z) > −2 for all z ∈ C

and f(ı) = ı + 2, what is f(−ı)?

6.19. If f is holomorphic on 0 < |z| < 2 and satisfies f( 1
n
) = n2

and f(− 1
n
) = n3 for all n ∈ Z>0, what kind of singularity does f have

at 0?

6.20. Let D be an open, bounded, and connected subset of C with
smooth boundary.

If f is a nonconstant holomorphic function in a neighborhood of the
closure of D such that |f | = c is constant on ∂D, show that f takes on
each value a such that |a| < c at least once in D.

6.21. Suppose f is holomorphic in a neighborhood of the closure of
the unit disk.

Show that for |z| ≤ 1

f(z)(1 − |z|2) =
1

2πı

∫

|τ |=1

1 − z̄τ

τ − z
f(τ) dτ

and conclude that the following inequality holds:

|f(z)| (1 − |z|2) ≤ 1

2π

∫ 2π

0

∣

∣f(expı θ)
∣

∣ dθ .

6.22. Let f be an entire function. Suppose that |f(z)| ≤ A+B|z|10
for all z ∈ C. Show that f is a polynomial.

6.23. Suppose f is meromorphic in a neighborhood of the closed
unit disk, that it does not have zeroes nor poles in the unit disk, and
that |f(z)| = 1 for |z| = 1. Find the most general such function.

6.24. Let C denote the positively oriented unit circle. Consider the
function

f(z) =
2 z26

81
+ exp

(

z21
)

(

z − 1

2

)2(

z − 1

3

)3

.

Evaluate the following integrals:
∫

C

f(z) dz ;

∫

C

f ′(z) dz ;

∫

C

f ′(z)

f(z)
dz.
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6.25. If f is entire and satisfies |f ′′(z) − 3| ≥ 0.001 for all z ∈ C,
f(0) = 0, f(1) = 2, f(−1) = 4, what is f(ı)?.

6.26. If f is holomorphic for 0 < |z| < 1 and f
(

1
n

)

= n2, f
(− 1

n

)

=
2n2 for n = 2, 3, 4, . . ., what can you say about f?

6.27. Find all series of the form
∞
∑

−∞
anzn that converge in some

domain to

f(z) =
2 − z2

z(1 − z)(2 − z)
.

6.28. Suppose f is entire and f(z) �= t2 for all z ∈ C and for all
t ∈ R. Show that f is constant.

6.29. Find all Laurent series of the form

∞
∑

−∞
anzn representing the

function

f(z) =
1

(z − 1)(z − 2)(z − 3)
.

6.30. If f is holomorphic for 0 < |z| < 1, f
(

1
n

)

= n−2 and f
(−1

2

)

=
2n−2, n = 2, 3, 4, . . ., find lim

z→0
|f(z) − 2|.

6.31. Find

∫ ∞

0

sin2 2x

x2
dx using residues.

6.32. Prove the following extension of the Maximum Modulus Prin-
ciple. Let f be holomorphic and bounded on |z| < 1, and continuous
on |z| ≤ 1 except maybe at z = 1. If

∣

∣f(eı θ)
∣

∣ ≤ A for 0 < θ < 2π, then
|f(z)| ≤ A for all |z| < 1.

6.33. Let D denote the unit disk {z ∈ C; |z| < 1}, and let {fn}
be a sequence of holomorphic functions in D such that lim

n→∞
fn = f

uniformly on compact subsets of D.
Suppose that each fn takes on the value 0 at most seven times on

D (counted with multiplicity). Prove that either f ≡ 0 or f takes on
the value 0 at most seven times on D (counted with multiplicity).

6.34. Show that the function f(z) = z + 2z2 + 3z3 + 4z4 + · · · is
injective in the unit disk D = {z ∈ C; |z| < 1}. Find f(D).

6.35. Suppose f is a nonconstant function holomorphic on {z ∈
C; |z| < 1} and continuous on {z ∈ C; |z| ≤ 1} such that for all θ ∈ R,
the value f(eıθ) is on the boundary of the triangle with vertices 0, 1,
and ı.
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Is there a z0 with |z0| < 1 such that f(z0) = 1
10

(1 + ı)? Is there a

z0 with |z0| < 1 such that f(z0) = 1
2
(1 + ı)?

6.36. Is there a function f holomorphic for |z| < 1 and continuous
for |z| ≤ 1 that satisfies

f(eı θ) = cos θ + 2ı sin θ, for all θ ∈ R?



CHAPTER 7

Sequences and Series of Holomorphic Functions

We now turn from the study of a single holomorphic function to
the investigation of collections of holomorphic functions. In the first
section we will see that under the appropriate notion of convergence
of a sequence of holomorphic functions, the limit function inherits sev-
eral properties that the approximating functions have, such as being
holomorphic, and in the second section, we show that the space of holo-
morphic functions on a domain can be given the structure of a complete
metric space. We then apply these ideas to obtain a series expansion
for the cotangent function. In the fourth section, we characterize the
compact subsets of the space of holomorphic functions on a domain.
This powerful characterization is used in Section 7.5 to study results on
approximations of holomorphic functions and, in particular, to prove
Runge’s theorem. This characterization will also be used in Chapter 8
to prove the Riemann Mapping Theorem.

7.1. Consequences of uniform convergence on compact sets

We begin by recalling some notation and introducing some new
symbols. Let D be a domain in C. We denote by C(D) the vector space
of continuous complex-valued functions on D and recall that H(D) is
the vector space of holomorphic functions on D (see Definition 3.49).
Note that H(D) ⊂ C(D).

Proposition 7.1. A necessary and sufficient condition for a se-
quence of functions {fn} ⊂ C(D) to converge uniformly on all compact
subsets of D is for the sequence to converge uniformly on all compact
disks with rational centers and rational radii contained in D.

Proof. Every compact set contained in D can be covered by finitely
many such disks. �

It is clear that if a sequence of functions {fn} ⊂ C(D) converges
uniformly to a function f on all compact subsets of D, then for all z in
D, we have limn→∞ fn(z) = f(z). The converse is not true: Uniform
convergence on all compact subsets of D is stronger than pointwise con-
vergence. To see this observe that we know from Theorem 2.23 that if

123
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a sequence of functions {fn} ⊂ C(D) converges uniformly to a function
f on all compact subsets of D, then f ∈ C(D). Consider any sequence
of continuous functions converging at every point of the domain to
a discontinuous function. Such an example is easily constructed (see
Exercise 7.1).

We now study some consequences of this notion of uniform conver-
gence on compact subsets of D, also called locally uniform convergence,
for H(D). The first one says that H(D) is closed under this type of
convergence.

Theorem 7.2. If {fn} ⊂ H(D) and {fn} converges uniformly on
all compact subsets of D, then the limit function f is holomorphic on
D.

Proof. We already know that f ∈ C(D).
Let γ be any closed curve homotopic to a point in D. Then, by

Cauchy’s theorem,
∫

γ

fn(z) dz = 0.

By uniform convergence it follows that
∫

γ

f(z) dz = lim
N→∞

∫

γ

fn(z) dz = 0,

and then, by Morera’s theorem, f is holomorphic on D. �

Corollary 7.3. If {fn} ⊂ H(D) and
∞
∑

n=1

fn converges uniformly

on all compact subsets of D, then the limit function (also denoted by
∞
∑

n=1

fn) is holomorphic on D.

Theorem 7.2 has no analog in real variables: It is easy to see (at
least pictorially) that the absolute value function on R, which has no
derivative at 0, can be approximated uniformly by differentiable func-
tions. A more extreme example was constructed by Weierstrass, that of
a continuous function defined on [0, 1] which is nowhere differentiable
and uniformly approximated by polynomials.

The next consequence of uniform convergence on compact sets is
that uniform convergence of a sequence of holomorphic functions on
compact subsets implies uniform convergence of the derivatives on
compact subsets. This is another feature of holomorphic functions
not shared by real differentiable functions: It is easy to construct a
sequence of differentiable functions converging uniformly on a closed
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interval and such that the sequence of derivatives does not converge
uniformly. We leave this construction to the reader as Exercise 7.2.

Theorem 7.4. If {fn} ⊂ H(D) and fn → f uniformly on all
compact subsets of D, then f ′

n → f ′ uniformly on all compact subsets
of D.

Proof. Since f ∈ H(D), it is enough to check uniform convergence
of the derivatives on small compact subdisks R ⊂ D with ∂R = γ
positively oriented. For z ∈ i(γ), we have

f ′(z) =
1

2πı

∫

γ

f(ζ)

(ζ − z)2
dζ = lim

n→∞
1

2πı

∫

γ

fn(ζ)

(ζ − z)2
dζ = lim

n→∞
f ′

n(z);

this convergence is uniform in any smaller compact subdisk, such as

˜R = {z ∈ i(γ); inf{|z − w| ; w ∈ ∂R} ≥ δ > 0},
with δ sufficiently small. �

Theorem 7.5. Let {fn} be a sequence of holomorphic functions on
D such that fn → f uniformly on all compact subsets of D.

If fn(z) �= 0 for all z ∈ D and all n ∈ Z>0, then either

(a) f is identically zero, or
(b) f(z) �= 0 for all z ∈ D.

Proof. Assume that there is a ζ ∈ D with f(ζ) = 0 and that f
is not identically zero. Then there exists a circle γ with center ζ such
that cl i(γ) ⊂ D and f(z) �= 0 for all z ∈ cl i(γ) − {ζ}.

Therefore the number N of zeros of f in i(γ) satisfies

N =
1

2πı

∫

γ

f ′(z)

f(z)
dz ≥ 1.

But

∫

γ

f ′(z)

f(z)
dz = lim

n→∞

∫

γ

f ′
n(z)

fn(z)
dz = 0.

�
Definition 7.6. Let f ∈ H(D). We call f simple, univalent, or

schlicht if it is one-to-one (injective) on D.

Remark 7.7. A schlicht function is a homeomorphism with nowhere-
vanishing derivative.
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Theorem 7.8 (Hurwitz). Assume D is a domain in C. If {fn} is
a sequence in H(D) with fn → f uniformly on all compact subsets of
D and fn is schlicht for each n, then either f is constant or schlicht.

Proof. Assume that f is neither constant nor schlicht; thus, in
particular, there exist z1 and z2 in D with z1 �= z2 and f(z1) = f(z2).

Look at gn(z) = fn(z)−fn(z2) on the domain D′ = D−{z2}. Then
gn ∈ H(D′), gn never vanishes and gn → g = f − f(z2) uniformly on
all compact subsets of D′. But g is not identically zero, and it vanishes
at z1. �

7.2. A metric on C(D)

We now introduce, for use in the proof of the Compactness Theorem
of this chapter and in the proof of the Riemann Mapping Theorem in
Chapter 8, a metric on C(D) for any domain D in C. The metric ρ
on C(D) will have the property that convergence in the ρ-metric is
equivalent to uniform convergence on all compact subsets of D.

For K compact in D and f ∈ C(D), set

||f ||K = max{|f(z)| ; z ∈ K}.
Consider the set of compact (closed) disks contained in D with

rational radii and rational centers (that is, if the center of the disk is
at z = x+ ıy, then both x and y ∈ Q). There are countably many such
disks and they cover D. Call this collection of disks {Di}i∈Z>0 .

For n ∈ Z>0, let

(1)

Kn =
⋃

i≤n

Di,

then {Kn} is an exhaustion of D; that is,
(2)

each Kn is compact,

(3)

Kn ⊂ Kn+1 for all n ∈ Z>0, and

(4)
⋃

n∈Z>0

int Kn = D,

where int K denotes the interior of the set K.

From now on, we shall use only properties (2), (3) and (4) of our
exhaustion and not how these sets were constructed.
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Remark 7.9. A crucial consequence of these properties that we
will use often is that each compact subset K of D is contained in Kn

for some n.

For f ∈ C(D) and i ∈ Z>0, we set

Mi(f) = ||f ||Ki
,

and we note that

Mi+1 ≥ Mi.

We define

d(f) =
∞
∑

i=1

2−i min(1, Mi(f)) ≤
∞
∑

i=1

2−i = 1. (7.1)

Properties of d. For all f and g ∈ C(D),

(1) d(f) ≥ 0, and d(f) = 0 if and only if f ≡ 0.

(2) d(f + g) ≤ d(f) + d(g).

(3) For each i, 2−i min(1, Mi(f)) ≤ d(f).

(4) For each i, d(f) ≤ Mi(f) + 2−i.

Proof of property (2).

d(f + g) =
∞
∑

i=1

2−i min(1, Mi(f + g)) ≤
∞
∑

i=1

2−i min(1, Mi(f)+Mi(g))

≤
∞
∑

i=1

2−i[min(1, Mi(f)) + min(1, Mi(g))].

�
Proof of property (4).

d(f) =
∑

j≤i

2−j min(1, Mj(f)) +
∑

j>i

2−j min(1, Mj(f))

≤
∑

j≤i

2−jMj(f) +
∑

j>i

2−j ≤
(

∑

j≤i

2−j

)

Mi(f) + 2−i.

�
Finally, we define the metric on C(D) we have been seeking:

ρ(f, g) = d(f − g). (7.2)
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Properties of ρ. For all f , g, and h in C(D), the following hold:

(1) ρ(f, g) ≥ 0, and ρ(f, g) = 0 if and only if f = g.

(2) ρ(f, g) = ρ(g, f).

(3) ρ(f, g) ≤ ρ(f, h) + ρ(h, g).

(4) ρ(f + h, g + h) = ρ(f, g); that is, ρ is translation invariant.

Proof of property (3):

ρ(f, g) = d(f − g) = d(f − h + h − g) ≤ d(f − h) + d(h − g).

�
Note that properties (1) to (3) say that ρ is a metric on C(D).

Theorem 7.10. Convergence in the ρ-metric in C(D) is equivalent
to uniform convergence on all compact subsets of D.

Proof. Let {fn} ⊂ C(D), and assume that {fn} is ρ-convergent.
Since for every compact set K ⊂ D there is an i such that K ⊂ Ki, it
suffices to show uniform convergence on Ki for each i.

Given 0 < ε < 1, choose N large so that

ρ(fm, fn) = d(fm − fn) < 2−iε for all m, n ≥ N.

Now
2−i min(1, Mi(fm − fn)) ≤ d(fm − fn) < 2−iε,

and thus
Mi(fm − fn) < ε < 1 ;

that is,
||fm − fn||Ki

< ε .

The above inequality implies that the sequence {fn} converges uni-
formly on Ki. If ε ≥ 1, then use ε0 = 3

4
and proceed as above.

We have actually shown more than claimed : If {fn} is a ρ-Cauchy
sequence in C(D), then there exists an f ∈ C(D) such that fn → f
uniformly on all compact subsets of D.

Conversely, assume that fn → f uniformly on Ki for all i. Thus

lim
n→∞

Mi(f − fn) = 0 for all i.

Given ε > 0, first choose i such that 2−i < ε
2

and next choose N
such that Mi(f − fn) < ε

2
for all n ≥ N . Then

d(f − fn) ≤ Mi(f − fn) + 2−i <
ε

2
+

ε

2
= ε.

�
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Corollary 7.11. The topology of the metric space (C(D), ρ) is
independent of the choice of exhaustion {Kn}n∈Z>0 of D.

Corollary 7.12. ρ is a complete metric on C(D).

Because of Theorem 7.10, we can reformulate the results of the
previous section in terms of the metric ρ. In particular, Theorems 7.2
and 7.4 can now be phrased as in the following Corollary. We already
remarked that H(D) ⊂ C(D). We let ρ|H(D) denote the restriction of
the metric ρ to H(D).

Corollary 7.13. H(D) is a closed subspace of (C(D), ρ). As
such, (H(D), ρ|H(D)) is a complete metric space. Furthermore, f �→ f ′

is a continuous function from H(D) to itself.

It is useful to have an alternative description of the topology of
(C(D), ρ). Toward this end, we make the following definition.

Definition 7.14. Given f ∈ C(D), K compact ⊂ D and ε > 0,
we define

Nf (ε) = {g ∈ C(D); ρ(g, f) < ε}
and

Vf (K, ε) = {g ∈ C(D); ||g − f ||K < ε}.
Theorem 7.15. For any f ∈ C(D), a basis for the neighborhood

system at f is given by the sets Vf (K, ε).

Proof. We must show that

(1) given Vf(K, ε), there exists an Nf (δ) ⊂ Vf(K, ε),

and

(2) given Nf(δ), there exists a Vf(K, ε) ⊂ Nf (δ).

To show (1), we assume without loss of generality that 0 < ε < 1.
Choose i such that K ⊂ Ki, and set δ = 2−iε. If g ∈ Nf (δ), then
d(g − f) < 2−iε. Thus

2−i min(1, Mi(g − f)) < 2−iε

and then

Mi(g − f) = ||g − f ||Ki
< ε .

But

||g − f ||K ≤ ||g − f ||Ki
;

that is, g ∈ Vf(K, ε).
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To show (2), choose i such that 2−i < δ
2
. For g ∈ Vf

(

Ki,
δ
2

)

, we
have

Mi(g − f) <
δ

2
.

Hence

ρ(g, f) = d(g − f) < Mi(g − f) + 2−i < δ ;

that is, g ∈ Nf (δ). �
Remark 7.16. fn → f in the ρ-metric if and only if for all compact

K ⊂ D and all ε > 0, there exists N = N(K, ε) in Z>0 such that
||f − fn||K < ε for all n > N .

We can apply these concepts to convergence of meromorphic func-
tions.

Definition 7.17. Let {fn} be a sequence in M(D), the meromor-
phic functions on D. We say that

∑

fn converges uniformly (abso-
lutely) on a subset A of D if there exists an integer N such that fn

is holomorphic on A for all n > N and
∞
∑

N+1

fn converges uniformly

(absolutely) on A.

Theorem 7.18. Let {fn} ⊂ M(D). If
∑

fn converges uniformly
on compact subsets of D, then the series f =

∑

fn is a meromorphic
function on D and

∑

f ′
n converges uniformly on all compact subsets to

f ′.

Proof. The proof is trivial. �

7.3. The cotangent function

As an application of the ideas developed in the last two sections,
we establish a series expansion formula for the cotangent function.

Theorem 7.19. For all z in C − Z, the following equalities hold:

π cotπz =
π cos πz

sin πz
=

1

z
+

∑

n∈Z, n �=0

[

1

z − n
+

1

n

]

(7.3)

=
1

z
+ 2z

∞
∑

n=1

[

1

z2 − n2

]

.

We first observe that the function F (z) =
cos πz

sin πz
has its poles at

the integers, each of these poles is simple and has residue 1. It would
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z

(

N + 1
2

)

(−1 − ı)

(

N + 1
2

)

(1 + ı)

Figure 7.1. The square CN

seem more natural to sum the series

∞
∑

n=−∞

1

z − n
, but this one does not

converge (Exercise 7.3).

We claim that
∑

n∈Z, n �=0

[

1

z − n
+

1

n

]

=
∑

n �=0

z

n(z − n)
converges ab-

solutely and uniformly on compact subsets of C.

To verify this claim, assume that |z| ≤ R with R > 0. Then

∑

|n|≥2R

|z|
|n| |n − z| ≤

∑

|n|≥2R

R

|n| (|n| − R)

≤
∑

|n|≥2R

R

|n| ∣∣n
2

∣

∣

≤ 2R
∑

n �=0

1

|n|2 < +∞ .

We can now verify the expansion (7.3) for π cotπz.

Proof of theorem 7.19. For N ∈ Z>0, let CN be the positively
oriented boundary of the square with vertices

(

N + 1
2

)

(±1 ± ı) (see
Figure 7.1).

Then

1

2πı

∫

CN

cotπt

t − z
dt =

∑

t∈ i(CN )

Res

(

cot πt

t − z
, t

)

.

Here z ∈ C is fixed: We take z /∈ Z, z ∈ i(CN). The poles of the

function H(t) =
cot πt

t − z
occur at t = z and at t = n ∈ Z, and they are

all simple.



132 7. SEQUENCES AND SERIES OF HOLOMORPHIC FUNCTIONS

Furthermore, we see that

Res

(

cotπt

t − z
, z

)

= cotπz

and

Res

(

cotπt

t − z
, n

)

= lim
t→n

(t − n)
cos πt

sin πt

1

t − z
=

1

π(n − z)
.

Thus we have

1

2πı

∫

CN

cot πt

t − z
dt = cotπz +

1

π

N
∑

n=−N

1

n − z

= cot πz +
1

π

N
∑

n=−N
n �=0

[

1

n − z
− 1

n

]

− 1

πz
,

where the last equality holds because

N
∑

n=−N
n �=0

1

n
= 0.

Hence it suffices to prove

Lemma 7.20. We have

lim
N→∞

∫

CN

cot πt

t − z
dt = 0.

Remark 7.21. We will also have obtained

π cot πz =
1

z
−

∞
∑

n=1

[

1

n − z
− 1

n + z

]

=
1

z
−

∞
∑

n=1

2z

n2 − z2
,

where the last series converges uniformly and absolutely on compact
subsets of C − Z.

Proof of lemma. We proceed in stages:

(1)
1

2πı

∫

CN

cot πt

t
dt = 0.

As usual, for G(t) =
cot πt

t
we have

1

2πı

∫

CN

cot πt

t
dt =

∑

t∈i(CN )

Res(G, t) = Res(G, 0) +
N
∑

n=−N
n �=0

1

πn
.
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The last sum is clearly zero, and the residue of G at 0 is 0
because G is an even function.

(2)
∫

CN

cot πt

t − z
dt =

∫

CN

cot πt

[

1
t − z

− 1
t

]

dt =
∫

CN

cot πt

[

z

t(t − z)

]

dt,

where the first equality holds by (1).

(3) There exists an M > 0 (independent of N) such that

|cot πt| ≤ M on CN .

For t = u + ıv,

|cos πt|2 = cos2 πu + sinh2 πv ,

|sin πt|2 = sin2 πu + sinh2 πv ,

and thus

|cot πt|2 =
cos2 πu + sinh2 πv

sin2 πu + sinh2 πv
.

On the vertical sides of CN , we have u = ±N ± 1
2 , and hence

cos2 πu = cos2
(

π

(

±N ± 1
2

))

= 0,

sin2 πu = sin2

(

π

(

±N ± 1
2

))

= 1, and

|cot πt|2 =
sinh2 πv

1 + sinh2 πv
≤ 1.

On the horizontal sides of CN , v = ±N ± 1
2 , and hence

|cot πt|2 ≤ 1 + sinh2 π
(±N ± 1

2

)

sinh2 π
(±N ± 1

2

) → 1 as N → ∞.

Thus, there exists an M > 0 such that |cot πt| ≤ M for t on the
horizontal sides and the claim is proved.

(4) If we denote by L(CN ) the length of CN , then
∣

∣

∣

∣

∫

CN

cot πt

t − z
dt

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

CN

cot πt

[

z

t(t − z)

]

dt

∣

∣

∣

∣

≤
∫

CN

M |z|
|t| |t − z| |dt| ≤ M |z|

∣

∣N + 1
2

∣

∣

(∣

∣N + 1
2

∣

∣− |z|) L(CN )

=
M |z|

∣

∣N + 1
2

∣

∣

(∣

∣N + 1
2

∣

∣− |z|) 4 (2N + 1) → 0 as N → ∞.

�



134 7. SEQUENCES AND SERIES OF HOLOMORPHIC FUNCTIONS

Thus the theorem is proved. �

Differentiating the series (7.3) term by term, we obtain the following
expansion.

Corollary 7.22. For all z ∈ C − Z,

π2

sin2 πz
=

∞
∑

n=−∞

1

(z − n)2
.

In particular,

π2

4
=

∞
∑

n=−∞

1

(2n − 1)2
.

7.4. Compact sets in H(D)

We now return to the study of C(D) with the ρ-metric.

Recall that a metric space X is compact if and only if every sequence
in X has a subsequence that converges to a point in X, and a subset
X of R

n is compact if and only if it is closed and bounded. This last
statement is the result we are trying to generalize to H(D).

Definition 7.23. Let A ⊂ C(D). We say that A is bounded in
the strong sense or strongly bounded if for all compact K ⊂ D and all
ε > 0 there exists a λ > 0 such that

A ⊂ λV0(K, ε) = {g ∈ C(D); g = λf with ||f ||K < ε}.
Remark 7.24. In a metric space (X, ρ), one defines for any subset

A of X

diam A = sup{ρ(f, g); f ∈ A and g ∈ A}.
Usually one says that A is bounded if diam A < +∞. For a bounded
metric (as in our case), this concept is not very useful.

Lemma 7.25. A set A ⊂ C(D) is strongly bounded if and only
if for each compact K ⊂ D, there exists an M(K) > 0 such that
||f ||K ≤ M(K) for all f ∈ A; that is, A is strongly bounded if and only
if the functions in A are uniformly bounded on each compact subset of
D.

Proof. We leave the proof as Exercise 7.4. �
Theorem 7.26. A compact subset A ⊂ C(D) is closed and strongly

bounded.
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Proof. A compact subset of any metric space is closed. If K ⊂ D
is compact, then

f �→ ||f ||K
is continuous on the compact set A and hence strongly bounded. �

Lemma 7.27. Let ζ ∈ C and D = U(ζ, R) for some R > 0. Let
A ⊂ H(D) be strongly bounded, and let {fk}∞k=1 ⊂ A.

Then the sequence {fk} converges uniformly on all compact subsets

of D if and only if lim
k→∞

f
(n)
k (ζ) exists (in C) for all integers n ≥ 0.

Proof. If fk → f uniformly on all compact subsets of D, then for

every nonnegative integer n, f
(n)
k → f (n) uniformly on compact subsets

of D; in particular f
(n)
k (ζ) → f (n)(ζ), as a set consisting of one point is

certainly compact.
Conversely, it suffices to show that {fk} converges uniformly on

cl U(ζ, r) with 0 < r < R. Choose r0 such that r < r0 < R. Since A is
strongly bounded, there exists an M = M(r0) such that

|fk(z)| ≤ M for |z − ζ | ≤ r0.

Write

fk(z) =
∑

n≥0

an,k(z − ζ)n for |z − ζ | < R;

then Cauchy’s inequalities (5.3) tell us that

|an,k| ≤ M

rn
0

for all n and k.

Assume |z − ζ | ≤ r. Then

|fk(z) − fm(z)| ≤
∣

∣

∣

∣

∣

∞
∑

n=0

an,k(z − ζ)n −
∞
∑

n=0

an,m(z − ζ)n

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

N
∑

n=0

(an,k − an,m)(z − ζ)n

∣

∣

∣

∣

∣

+ 2M

∞
∑

n=N+1

(

r

r0

)n

.

Let ε > 0, and choose N0 ∈ Z>0 such that

2M
∞
∑

n=N+1

(

r

r0

)n

<
ε

2
for N > N0 .

Choose N1 such that k, m ≥ N1 implies
∣

∣

∣

∣

∣

N0
∑

n=0

(an,k − an,m)(z − ζ)n

∣

∣

∣

∣

∣

<
ε

2
.
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This may be achieved by requiring, for example, that

|an,k − an,m| <
ε

2N0rn
0

;

this last finite set of inequalities can be satisfied because

lim
k,m→∞

|an,k − an,m| = 0 for each n .

�
Theorem 7.28 (Compactness Theorem). Let D be a domain in

C. Then every closed subset A of H(D) that is bounded in the strong
sense is compact.

Proof. Cover D by countably many open disks {U(zi, ri)}i∈Z>0

whose closures are contained in D.
For each i ∈ Z>0 and each n ∈ Z≥0, consider the mapping

λn
i : H(D) → C, λn

i (f) = f (n)(zi).

The maps λn
i are C-linear and continuous.

Given a sequence {fk}∞k=1 ⊂ A, we consider the set of numbers

λn
i (fk) = f

(n)
k (zi).

We show that there exists B ⊂ Z>0, |B| = ∞, such that

lim
k∈B

k→+∞
f

(n)
k (zi) exists for all n and i. (7.4)

Assertion (7.4) suffices to prove the theorem; for then by Lemma
7.27, the sequence {fk}k∈B converges uniformly on the closed disk
cl U(zi, ri) for each i, which implies that the same sequence converges
uniformly on all compact subsets of D. Since A is closed, lim

k∈B
k→+∞

fk ∈ A.

Thus every sequence in A has a subsequence converging to a point of
A and A is hence compact.

To establish (7.4), we use the “Cantor diagonalization” method.1

Since A is strongly bounded, for each i there is an M(i) such that
|f(z)| ≤ M(i) for all z in cl U(zi, ri) and all f in A. Thus

∣

∣

∣f
(n)
k (zi)

∣

∣

∣ ≤ M(i)

rn
i

n!.

Now
f �→ λn

i (f)

1This method is often used in analysis.
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form a countable set of mappings. Renumber these mappings as

{μ1, μ2, . . . , μm, . . .}.
For m = 1,

{μ1(fk)}k∈Z>0

is a bounded sequence of complex numbers, and therefore there exists
a subsequence B1 of Z>0 such that

lim
k∈B1

k→+∞
μ1(fk) exists.

For m = 2,
{μ2(fk)}k∈B1 ⊆ {μ2(fk)}k∈Z>0

is a bounded sequence of complex numbers. Therefore, there exists a
subsequence B2 of B1 such that

lim
k∈B2

k→+∞
μ2(fk) exists.

Continue to obtain a nested sequence of sets

B1 ⊇ B2 ⊇ · · · ⊇ Bm ⊇ · · ·
with the property that

lim
k∈Bm
k→+∞

μm(fk) exists.

At last, diagonalize (justifying the name of the procedure); that is,
let

B = {n1, n2, · · · , nm, · · · },
where nm is the m-th term of Bm. Then

lim
k∈B

k→+∞
μm(fk) exists for all m ∈ Z>0

because
{nm, nm+1, . . .} ⊆ Bm.

�
Corollary 7.29. A set A ⊂ H(D) is compact if and only if it is

closed and bounded in the strong sense.

Definition 7.30. A set A ⊂ H(D) is relatively compact if cl A is
compact. This definition clearly makes sense in much more general
settings.

Corollary 7.31. Every strongly bounded subset of H(D) is rela-
tively compact.
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Definition 7.32. Let A be a bounded set in H(D), and let {fk}∞k=1

be a subset of A. We say that f ∈ H(D) is adherent to {fk}∞k=1 if it is
a limit point of this sequence.

Remark 7.33. If {xk}∞k=1 is a sequence in a compact topological
space X and if every subsequence of {xk}∞k=1 that converges has the
same limit, then the entire sequence {xk}∞k=1 converges.

Theorem 7.34 (Vitali’s theorem). Let D be a domain in C. Let
{fk}∞k=1 ⊂ H(D), and assume that the elements in this sequence are
uniformly bounded on compact subsets of D. Let S ⊂ D, and assume
that S has a limit point in D. Assume that lim

k→∞
fk(z) exists (pointwise)

for all z ∈ S.
Then the sequence {fk} converges uniformly on compact subsets of

D.

Proof. Every subsequence of the sequence {fk} has a converging
sub-subsequence. Thus, there exists an f adherent to this sequence.
Say that f and g are both adherent to {fk}. Then

f(z) = lim
k→∞

fk(z) = g(z) for z ∈ S

and thus, f = g. �

7.5. Approximation theorems and Runge’s theorem

In this part of the chapter we consider the problem of approximating
holomorphic functions by rational functions. We regard a nonconstant
polynomial as a rational function whose only pole is at infinity and
viceversa. The ability to uniformly approximate a holomorphic func-
tion depends on the region where the function is being approximated,
as well as on the function. The strongest statement about uniform ap-
proximation of holomorphic functions that we will prove is known as
Runge’s theorem.

We observe first that we have already proved a form of Runge’s
theorem for an open disk Ω. A holomorphic function on Ω has a power
series expansion at the center of the disk. For every positive integer
n, we obtain a polynomial of degree n by discarding all the higher
order terms in the series. These polynomials converge to the function
uniformly on any compact subset of the disk.

On the other hand, we also know that uniform polynomial approx-
imation does not hold in general. For instance, consider the punctured
disk Ω = {z ∈ C; 0 < |z − z0| < R}, with R > 0 and z0 arbitrary, and

the analytic function on Ω defined by f(z) =
1

z − z0
(we take advantage
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of the fact that it is a rational function whose only pole is at z0 — not in
Ω, of course); if f were uniformly approximated by a sequence of poly-
nomials {pn} in the closed annulus K = {0 < r ≤ |z − z0| ≤ ρ < R},
then by taking γ(t) =

r + ρ

2
exp(2πıt) for 0 ≤ t ≤ 2π, we would obtain

the contradiction that

0 = lim
n→∞

∫

γ

pn(z) dz =

∫

γ

f(z) dz = 2πı .

However, truncation of the Laurent series expansion for f on Ω
shows that f is indeed uniformly approximated on K by rational func-
tions whose poles lie outside Ω. This fact is generalized to arbitrary
open sets Ω by Runge’s theorem.

Specifically, in this section we prove that every holomorphic func-
tion defined on an open set can be uniformly approximated by rational

functions whose poles lie in any given prescribed subset of ̂C, as long as
the prescribed subset has nontrivial intersection with every component
of the complement of the open set.

Theorem 7.35 (Runge). Let K be a compact subset of C and let

S be a subset of ̂C − K that intersects nontrivially each connected

component of ̂C − K. If f is a holomorphic function on an open set
Ω ⊃ K, then for every ε > 0, there exists a rational function R with
poles only in S such that

|f(z) − R(z)| < ε for all z ∈ K.

The proof (based on S. A. Grabiner, A short proof of Runge’s the-
orem, Amer. Math. Monthly, 83 (1976), 807-808) is given in Section
7.5.2.

Note that this is the implication 1) =⇒ 8) of the Fundamental
Theorem. The converse follows from Theorem 7.2.

We begin with some preliminaries from real analysis needed in the
proof of Runge’s theorem. The proof depends on three major lemmas
that are stated and proved in the subsequent sections; the first two are
given in Section 7.5.3 and the third in 7.5.4. Runge’s theorem follows
from these lemmas.

Note that for ̂C − K connected and S = {∞}, Runge’s theorem
asserts that each function analytic in an open neighborhood of K can
be approximated uniformly in K by a sequence of polynomials.

7.5.1. Preliminaries for the proof of Runge’s theorem. We
recall some terminology and notation. If F and K are subsets of C
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with F closed and K compact, then the distance between these two
sets is the nonnegative real number

d(F, K) = inf{|z − w| ; z ∈ F and w ∈ K}
that satisfies

d(F, K) = 0 if and only if F ∩ K �= ∅ .

In particular, if F = {z0} is a set consisting of only one complex num-
ber, we set

d(z0, K) = d(F, K) = inf{|z0 − w| ; w ∈ K}.
It is obvious that

d(z0, K) = 0 if and only if z0 ∈ K .

If A and B are connected subsets of C that are not disjoint, then
A ∪ B is connected. If C is a connected component of the set A, then
C is an open subset of A.

We recall that if γ : [a, b] → C is a curve, then its image is denoted
range γ (see Section 4.1).

Next, we let K and S be as in the hypothesis of Runge’s theorem,
7.35, and define B(S) to be the set of continuous functions on K that
are uniform limits of sequences of rational functions with poles only in
S. The sums and products of elements of B(S) are elements of B(S),
as well as the products of constants by elements of B(S). The same
holds for uniform limits of sequences in B(S). We summarize these
facts in a lemma. The proof is left as an exercise.

Lemma 7.36. B(S) is an algebra that contains all rational functions
with poles in S, and is closed under uniform limits in K.

We will also need the following topological result.

Lemma 7.37. Let U and V be open subsets of C with V ⊆ U and
∂V ∩U = ∅. If H is a connected component of U and H ∩V �= ∅, then
H ⊆ V .

Proof. Let a ∈ H ∩ V , and let G be the connected component
of V containing a. It is enough to show that G = H . But H ∪ G is
connected, contained in U , and contains a. Since H is the component
of U containing a, G ⊆ H . Furthermore, ∂G ⊆ ∂V and so ∂G∩H = ∅.
This implies that H −G = H − cl G and, therefore, that H −G is open
in H . Since G is also open in H , the conclusion follows. �
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7.5.2. Proof of Runge’s theorem. In this section we outline the
proof of Runge’s theorem. The details needed to fill in the outline will
be completed in the next two sections.

(Outline). The proof consists of four steps:

(1) There exists a finite collection of oriented line segments γ1, γ2,
. . . , γn in Ω − K such that

f(z) =
1

2πı

n
∑

j=1

∫

γj

f(ζ)

ζ − z
dζ for all z ∈ K.

This is the content of Lemma 7.38 of the next section.
(2) It suffices to prove that each integral

∫

γj

f(ζ)
ζ−z

dζ can be approx-

imated uniformly on K by finite sums of rational functions
z �→ P

(

1
z−c

)

, where P is a polynomial and c ∈ S. We hence
drop the subscript j from the notation. We note that it will
be convenient to regard P

(

1
z−∞
)

as a polynomial in z.

(3) We next note that the line integral
∫

γ
f(ζ)
ζ−z

dζ can be approxi-

mated uniformly on K by Riemann sums of the form
∑

k

ak

bk − z
, with ak ∈ C and bk ∈ range γ.

This is the content of Lemma 7.39.
(4) Finally, it suffices to show that each summand ak

bk−z
can be ap-

proximated uniformly on K by appropriate finite sums. This
is Lemma 7.40 of Section 7.5.4.

�

7.5.3. Two major lemmas. We prove two lemmas: The first
gives an extension of the Cauchy Integral Formula, and the second
provides an approximation by rational functions whose singularities lie
on the curves over which we are integrating, for a function defined by
the Cauchy Integral Formula.

Lemma 7.38. Let K be a compact subset of C. If f is a holomorphic
function on an open set Ω ⊃ K, then there exists a finite collection of
oriented line segments γ1, γ2, . . . , γn in Ω − K such that

f(z) =
1

2πı

n
∑

i=1

∫

γi

f(ζ)

ζ − z
dζ for all z ∈ K. (7.5)

Proof. After enlarging K if necessary, we may assume that K =
cl(int(K)). For example, we enlarge K if it consists of a single point.
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Next, to simplify statements we adopt the standard convention that

a curve γ : [a, b] → ̂C, that is, the continuous function from a closed
interval [a, b] to the complex sphere, and its image range γ = {γ(t) | t ∈
[a, b] } are both called γ. Thus by abuse of language, we say that a

curve γ lies in a subset T ⊆ ̂C, when its image lies in T .
For any positive real number δ, we place a rectangular grid of hori-

zontal and vertical lines in the plane C so that consecutive lines are at
distance δ apart. We let R1, R2, . . . , Rm be the rectangles in the grid
that have nonempty intersection with K. Since K is compact, there
are only a finite number of such rectangles. We can (and from now on
do) choose δ such that Rj ⊂ Ω for all j; if Ω = C any δ > 0 suffices,
and otherwise, it is enough to consider any 0 < δ < 1

2
d(K, C−Ω), since

z ∈ Rj implies that d(z, K) <
√

2δ.
We denote the boundary of Rj by ∂Rj and orient it to be traversed

in the counterclockwise direction. We observe that integration of a
continuous form along the common boundaries of any pair of contiguous
Ri and Rj cancel out (as in the proof of Goursat’s theorem 4.52).

This last observation implies that we can choose a set of curves S
whose images are a subset of the sides in ∪m

j=1∂Rj , and such that the
set S = {γi; 1 ≤ i ≤ n} satisfies

(1) if γi is in S, it lies on a side of only one Rj,
(2) if γi is in S, then it is disjoint from K, and
(3) for any continuous function g on ∪m

j=1∂Rj , we have

m
∑

j=1

∫

∂Rj

g =
n
∑

i=1

∫

γi

g. (7.6)

Note that we have identified the curves with their images. Since
the boundary of each rectangle is oriented, each γi is an oriented line
segment in Ω − K. We now prove that these γi also satisfy equation
(7.5), the equation involving the function f given in the statement of
the lemma.

If z ∈ K and z is not on the boundary of any of the rectangles,
then the function

w �→ g(w) =
1

2πı
· f(w)

z − w
, w ∈ ∪m

j=1∂Rj

is continuous. Thus we have by (7.6)

1

2πı

m
∑

j=1

∫

∂Rj

f(w)

w − z
dw =

1

2πı

n
∑

i=1

∫

γi

f(w)

w − z
dw.
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Now if z belongs to the interior of exactly one of the Rj , call it Rt.
If j �= t, then z /∈ Rj and

1

2πı

∫

∂Rj

f(w)

w − z
dw = 0;

also, since z ∈ Rt, the Cauchy Integral formula says

1

2πı

∫

∂Rt

f(w)

w − z
dw = f(z) .

Thus

f(z) =
1

2πı

n
∑

i=1

∫

γi

f(w)

w − z
dw . (7.7)

Since range γi does not intersect K, both sides of equation (7.7) are
continuous functions on K and they agree on the set of z in K that
are not on the boundary of any rectangle, a dense subset of K. Thus
they agree for all z ∈ K. �

Lemma 7.39. Let γ be any pdp, and let K be a compact set not
meeting the image of γ . If f is continuous on γ and ε is any positive
real number, then there is a rational function R having all of its poles
on range γ such that

∣

∣

∣

∣

∫

γ

f(w)

z − w
dw − R(z)

∣

∣

∣

∣

< ε for all z ∈ K.

Proof. Since K and the image of γ are disjoint, d(K, rangeγ) > 0,
and we can choose a number r with 0 < r < d(K, rangeγ).

Assuming that γ is parametrized by [0, 1], then for all 0 ≤ s, t ≤ 1
and all z ∈ K, we have

∣

∣

∣

∣

f(γ(t))

γ(t) − z
− f(γ(s))

γ(s) − z

∣

∣

∣

∣

≤ 1

r2
|f(γ(t))γ(s) − f(γ(s))γ(t) − z (f(γ(t)) − f(γ(s)))|

≤ 1

r2
|f(γ(t))| · |γ(s) − γ(t)| + 1

r2
|γ(t)| · |f(γ(s)) − f(γ(t))|+

|z|
r2

|f(γ(s)) − f(γ(t))| .

Since γ and f are continuous functions and K is a compact set, there
is a constant C > 0 such that |z| < C

2
for all z ∈ K, |γ(t)| ≤ C

2
and
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|f(γ(t))| ≤ C for all t ∈ [0, 1]. Thus for all s and t in [0, 1] and all
z ∈ K,
∣

∣

∣

∣

f(γ(t))

γ(t) − z
− f(γ(s))

γ(s) − z

∣

∣

∣

∣

≤ C

r2
[ |γ(s) − γ(t)| + |f(γ(s)) − f(γ(t))| ].

Since both γ and f ◦ γ are uniformly continuous on [0, 1], there is a
partition of [0, 1] with 0 = t0 < t1 < · · · tn = 1 such that

∣

∣

∣

∣

f(γ(t))

γ(t) − z
− f(γ(tj))

γ(tj) − z

∣

∣

∣

∣

<
ε

L(γ)
(7.8)

for tj−1 ≤ t ≤ tj, 1 ≤ j ≤ n, and all z ∈ K, where L(γ) denotes the
length of γ (recall Definition 4.53).

Define the function R as follows. For z �= γ(tj),

R(z) =

n
∑

j=1

f(γ(tj)) · γ(tj) − γ(tj−1)

γ(tj) − z
.

Then R is a rational function whose poles are contained in the set

{γ(t1), γ(t2), . . . , γ(1)};
in particular, they are contained in range γ. Now equation (7.8) gives

∣

∣

∣

∣

∫

γ

f(w)

w − z
dw − R(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

j=1

∫ tj

tj−1

(

f(γ(t))

γ(t) − z
− f(γ(tj))

γ(tj) − z

)

γ′(t)

∣

∣

∣

∣

∣

dt

≤ ε

L(γ)

n
∑

j=1

∫ tj

tj−1

|γ′(t)| dt = ε for all z ∈ K.

�

7.5.4. Approximating
1

z − a
. Of central importance in the proof

of Runge’s theorem is

Lemma 7.40. If a ∈ C − K, then the function defined by z �→
(z − a)−1 ∈ B(S).

Proof. If ∞ ∈ S, then for any z0 in the unbounded component of
C−K such that |z0| is sufficiently large, the Taylor series for the rational

function g : z �→ 1

z − z0
converges uniformly on K and therefore g is

in B(S).
We claim that B((S−{∞})∪{z0}) ⊆ B(S). Indeed, if f ∈ B((S−

{∞})∪{z0}) and R is a rational function with poles in (S−{∞})∪{z0}
uniformly approximating f on K, we can write R = R1 +R2, where R1

has all its poles (if any) in S − {∞} and R2 has a unique pole (if any)
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at z0. But then R2 can be approximated uniformly by polynomials P2

on K, and therefore, R1 + P2 have poles only in S and approximate
uniformly f on K. That is, f ∈ B(S).

Thus it is sufficient to prove the lemma for S ⊂ C. We will use
Lemma 7.37.

Let U = C − K, and let V = {w ∈ C; z �→ (z − w)−1 ∈ B(S)}.
Then S ⊆ V ⊆ U . We want to show U = V . We will show first that

if a ∈ V and |b − a| < d(a, K), then b ∈ V. (7.9)

Assume a ∈ V and |b − a| < d(a, K). Then there is a real number
r, 0 < r < 1, such that |b − a| < r |z − a| for all z ∈ K. Note that

(z − b)−1 = (z − a)−1

(

1 − b − a

z − a

)−1

; (7.10)

since
|b − a|
|z − a| < r < 1 for all z ∈ K, we can use the Weierstrass M-test

to conclude that the series (in the variable z)

(

1 − b − a

z − a

)−1

=
∞
∑

n=0

(

b − a

z − a

)n

(7.11)

converges uniformly on K. Now Lemma 7.36 and equation (7.10) imply
that (7.9) holds.

Note that (7.9) says that V is an open subset of C.

Next we show that ∂V ∩ U = ∅.
If b ∈ ∂V , let {an} be a sequence of elements of V converging to b.

Since b /∈ V , it follows that |b − an| ≥ d(an, K), and letting n → ∞,
we obtain 0 = d(b, K); that is, b ∈ K and therefore b /∈ U .

We now apply Lemma 7.37. If H is any connected component of
U = C − K, then by the definition of S, there exists s ∈ H ∩ S. But
then s ∈ H ∩ V �= ∅ and the lemma implies H ⊆ V . Therefore every
connected component of U lies in V and consequently U ⊆ V , and thus
U = V . �

Proof of Runge’s theorem. Lemmas 7.38, 7.39, and 7.40, re-
spectively, complete steps 1, 3, and 4 of the proof. �

Corollary 7.41. If D is any simply connected domain in the plane
and f is a holomorphic function in D, then f can be approximated
uniformly on all compact subsets of D by polynomials.
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Exercises

7.1. Show that Theorem 7.2 has no analogue for real variables in
that the absolute value function on R, which has no derivative at 0,
can be approximated uniformly by differentiable functions.

7.2. Construct an example of a sequence of real differentiable func-
tions converging uniformly to a real differentiable function on a closed
interval such that the sequence given by the derivatives does not con-
verge uniformly there.

(Hint: The sequence fn(x) = xn does not converge uniformly on
[0, 1].)

7.3. Show that the series
∞
∑

n=−∞

1

z − n
does not converge.

7.4. Prove Lemma 7.25.

7.5. Prove Lemma 7.36: that B(S) is an algebra closed under uni-
form limits on K.



CHAPTER 8

Conformal Equivalence

In this chapter we study conformal maps between domains in the
extended complex plane. These maps are one-to-one meromorphic
functions. Our goal is characterize all simply connected domains in the
complex plane. The first two sections of this chapter study the action
of a quotient of the group of two-by-two nonsingular complex matri-

ces on the extended complex plane ̂C, namely the group PSL(2, C), the
projective special linear group. This group is also known as the Möbius
group. In the third section we characterize simply connected proper
domains in the complex plane by establishing the Riemann Mapping
Theorem. This extraordinary theorem tells us that there are confor-
mal maps between any two such domains. The study of the Möbius
group is connected intimately with hyperbolic geometry. In the next-
to-last section of this chapter, we define the non-Euclidean metric, also
known as the hyperbolic metric and the Poincaré metric. Hyperbolic
geometry has increasingly become an essential part of complex variable
theory. We end the chapter by using the Schwarz lemma to establish
the deep connection between complex variables and geometry, Theo-
rem 8.43, which says that a holomorphic mapping is either an isometry
or a contraction in the hyperbolic metric. The last section is devoted to
a study of certain bounded analytic functions on the unit disk known
as finite Blaschke products.

We begin with

Definition 8.1. A one-to-one meromorphic function is called a
conformal map.

This is the correct notion of isomorphism in the category of mero-
morphic mappings, since the inverse of a conformal map is also con-
formal.1 Thus the concept introduces a natural equivalence relation on
the family of domains on the sphere, called conformal equivalence.

1In geometry, C1-maps are called conformal if they preserve angles. We have
seen in Proposition 6.21 of Chapter 5 that in the orientation preserving case, these
are precisely the holomorphic functions with nowhere vanishing derivatives. Thus
the two definitions agree locally for sense preserving transformations. In our defi-
nition, we also require injectivity.

147
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Definition 8.2. Let D be a domain in ̂C. Aut D is defined as the
group (under composition) of conformal automorphisms of D; that is,
it consists of the conformal maps from D onto itself.

There are two naturally related problems:

Problem I. Describe Aut D for a given D.
Problem II. Given two domains D and D′, determine when they are
conformally equivalent.

We solve Problem I for D = ̂C, D = C, and D = D (the unit disk

{z ∈ C; |z| < 1} in ̂C), and Problem II for D and D′ any pair of simply

connected domains in ̂C.

8.1. Fractional linear (Möbius) transformations

In this section we describe the (orientation preserving) Möbius

group, and show that for the domains D = ̂C, C, a disk or a half-
plane, the group Aut D is a subgroup of this group.

Definition 8.3. A fractional linear transformation (or Möbius

transformation) is a map A : ̂C → ̂C of the form

z �→ A(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

az + b

cz + d
if c �= 0 and z �= ∞ and z �= −d

c
,

a
c

if c �= 0 and z = ∞,

∞ if c �= 0 and z = −d
c
,

a
d
z + b

d
if c = 0 and z �= ∞,

∞ if c = 0 and z = ∞,

(8.1)

where a, b, c, and d are complex numbers such that ad − bc �= 0.
Without loss of generality we assume from now on that ad − bc =

1 (the reader should prove that there is really no loss of generality
in this assumption; that is, establish Exercise 8.1). Also, whenever
convenient we will multiply each of the four constants a, b, c, and d
by −1, since this does not alter the Möbius transformation nor the
condition ad − bc = 1. We abbreviate

A(z) =
az + b

cz + d
,

since all special values in (8.1) are obtained as limits of expressions of
this form with both z and az+b

cz+d
finite.
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Remark 8.4. A Möbius transformation is an element of Aut(̂C),
and the set of all Möbius transformations form a group under compo-
sition, the Möbius group.

Remark 8.5. Other related groups are the matrix group

SL(2, C) =

{[

a b
c d

]

; a, b, c, d ∈ C, ad − bc = 1

}

,

the corresponding quotient group

PSL(2, C) = SL(2, C)/{±I} ,

where I =

[

1 0
0 1

]

is the identity matrix, and the extended Möbius

group of orientation preserving and reversing transformations, consist-
ing of the motions

z �→ az + b

cz + d
and z �→ az + b

cz + d
, with ad − bc = 1.

Here orientation reversing means that angles are preserved in mag-
nitude but reversed in sense (as the map z → z̄ does).

It is clear that

1 → {±I} → SL(2, C) → Aut(̂C) (8.2)

is an exact sequence, where the first two arrows denote inclusion and

by the last arrow a matrix

[

a b
c d

]

in SL(2, C) is sent to the element

of Aut(̂C) given by (8.1). That is, for any pair of consecutive maps in
the sequence, the kernel of the second map coincides with the image of
the first one.

It is also clear that the image of the last arrow in the sequence (8.2)
is precisely the Möbius group and, therefore, that it is isomorphic to
PSL(2, C), the quotient of SL(2, C) by ±I as defined above.

It is natural to ask whether the last arrow is surjective; that is,

whether the Möbius group coincides with Aut(̂C). We will see that
this is the case in Theorem 8.17.

Let A be an element of PSL(2, C). Take the trace of a preimage of
A in SL(2, C), and square it. This quantity will be the same for either
of the two preimages of A. Thus even though the trace of an element
in the Möbius group is not well defined, the trace squared of an element
in PSL(2, C) is well defined.
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Definition 8.6. For A in the Möbius group, described by (8.1)
with ad− bc = 1, we define tr2 A = (a+ d)2 where A is the equivalence

class of the matrices ±
[

a b
c d

]

in SL(2, C).

8.1.1. Fixed points of Möbius transformations. Let A be any
element of the Möbius group different from the identity map. We are

interested in the fixed points of A; that is, those z ∈ ̂C with A(z) = z.

Thus if A(z) =
az + b

cz + d
with (the standard normalization) ad − bc = 1,

then for a fixed point z of A we have either z = ∞, or z ∈ C and
cz2 + (d − a)z + b = 0. We consider two cases:
Case 1: c = 0. In this case ∞ is a fixed point of A and ad = 1. If
a = d, then A(z) = z + b with b �= 0 (because A is not the identity
map), and A has no other fixed point. If a �= d, then A has one more

fixed point, given by ζ =
b

d − a
.

We note that in this case A has precisely one fixed point if and only
if A(z) = z + b with b ∈ C and b �= 0.

Case 2: c �= 0. In this case, ∞ is not fixed by A, and its fixed points
are given by

a − d ±√(a − d)2 + 4bc

2c
=

(a − d) ±√
tr2 A − 4

2c
.

We have thus proved the following result.

Proposition 8.7. If A(z) =
az + b

cz + d
with ad − bc = 1 is a Möbius

transformation different from the identity map, then A has either one

or two fixed points in ̂C. It has exactly one if and only if tr2 A = 4.

8.1.2. cross-ratios.

Proposition 8.8. Given three distinct points z2, z3, z4 in ̂C, there
exists a unique Möbius transformation S with S(z2) = 1, S(z3) = 0,
and S(z4) = ∞.

Proof. The proof has two parts.

Uniqueness: If S1 and S2 are Möbius transformations that solve
our problem, then S1 ◦ S−1

2 is a Möbius transformation that fixes 1, 0,
and ∞, and hence, by Proposition 8.7, it is the identity map.

Existence: If the zi are complex numbers, then

S(z) =
z − z3

z − z4
· z2 − z4

z2 − z3



8.1. FRACTIONAL LINEAR (MÖBIUS) TRANSFORMATIONS 151

is the required map.
If one of the zi = ∞, use a limiting procedure to obtain the follow-

ing.

If z2 = ∞, then S(z) =
z − z3

z − z4
,

If z3 = ∞, then S(z) =
z2 − z4

z − z4
,

If z4 = ∞, then S(z) =
z − z3

z2 − z3
.

�

Corollary 8.9. If zi and wi (i = 2, 3, 4) are two triples of distinct

points in ̂C, then there exists a unique Möbius transformation S such
that S(zi) = wi; thus the Möbius group is uniquely triply transitive on
̂C.

Definition 8.10. The cross-ratio (z1, z2, z3, z4) of four distinct

points in ̂C is the image of z1 under the Möbius transformation taking
z2 to 1, z3 to 0, and z4 to ∞; that is,

(z1, z2, z3, z4) =
z1 − z3

z1 − z4
· z2 − z4

z2 − z3

if the four points are finite, with the corresponding limiting values if
one of the zi equals ∞.

Proposition 8.11. If z1, z2, z3, and z4 are four distinct points in
̂C and T is any Möbius transformation, then

(T (z1), T (z2), T (z3), T (z4)) = (z1, z2, z3, z4).

Proof. If we define S(z) = (z, z2, z3, z4) for z ∈ ̂C, then S ◦ T−1

is a Möbius transformation taking T (z2) to 1, T (z3) to 0, and T (z4) to
∞. Therefore

(T (z1), T (z2), T (z3), T (z4)) = S ◦ T−1(T (z1)) = S(z1).

�

Definition 8.12. A circle in ̂C is either an Euclidean (ordinary)
circle in C or a straight line in C together with ∞ (this is a circle
passing through ∞). See Exercise 3.19.

Proposition 8.13. The cross-ratio (z1, z2, z3, z4) is a real number

if and only if the four points lie on a circle in ̂C.
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z4

z1

z3

z2

(a) On a circle

z4

z2

z1

z3

(b) Not on a circle

Figure 8.1. The cross-ratio arguments

Proof. This is an elementary geometric argument that goes as
follows. It is clear that

arg(z1, z2, z3, z4) = arg
z1 − z3

z1 − z4
− arg

z2 − z3

z2 − z4
.

It is also clear from the geometry of the situation (see Figure 8.1
and Exercise 8.3) that the two quantities on the right hand differ by

πn, with n ∈ Z, if and only if the four points lie on a circle in ̂C. �

Theorem 8.14. A Möbius transformation maps circles to circles.

Proof. This follows immediately from Propositions 8.11 and 8.13.
�

We use the following standard notation in the rest of this chapter:
D denotes the unit disk {z ∈ C; |z| < 1}, and H

2 the upper half-plane
{z ∈ C; �z > 0}. Note that both D and H

2 should be regarded as

disks in ̂C, since they are bounded by circles in ̂C: the unit circle S1

and the extended real line ̂R = R ∪ {∞}, respectively.

Corollary 8.15. If w(z) =
z − ı

z + ı
for z ∈ H

2, then w is a confor-

mal map of H
2 onto D.

Proof. w maps ̂R = R ∪ {∞} onto S1 (the unit circle), w(ı) = 0,
and Möbius transformations are conformal. �

8.2. Aut(D) for D = ̂C, C, D, and H
2

Theorem 8.16. An entire function f belongs to Aut(C) if and only

if there exist a and b in C, a �= 0, with f(z) = az + b for all z ∈ ̂C.

Proof. The if part is trivial.
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For the only if part, since f is entire, we can write

f(z) =

∞
∑

n=0

anzn for all z ∈ C .

If ∞ were an essential singularity of f , then f(|z| > 1) would be
dense in C. But

f(|z| > 1) ∩ f(|z| < 1) is empty.

Thus there is a nonnegative integer N such that an = 0 for all
n > N and such that aN �= 0; that is, f is a polynomial of degree
N . If N were bigger than one or equal to zero, then f would not be
injective. �

Theorem 8.17. Aut(̂C) ∼= PSL(2, C). Thus the last arrow in the
exact sequence (8.2) corresponds to a surjective map.

Proof. We need only show that Aut(̂C) ⊂ PSL(2, C). Let f be an

element of Aut(̂C). If f(∞) = ∞, then f is a Möbius transformation,

by Theorem 8.16. If f(∞) = ζ �= ∞, then consider A(z) =
1

z − ζ
and

conclude that A ◦ f fixes ∞. �

Theorem 8.18. A ∈ Aut(D) if and only if there exist a and b in C

such that |a|2 − |b|2 = 1 and A(z) =
az + b

bz + a
for all z ∈ D.

Proof. if part: Assume that A is of the above form, and observe
that a �= 0. We must show that A ∈ Aut(D). This will follow from the
following easy-to-prove facts:

(1) Mappings A of the given form constitute a group under com-
position.

(2) |z| = 1 if and only if |A(z)| = 1.

(3) |A(0)| =

∣

∣

∣

∣

b

a

∣

∣

∣

∣

< 1.

(4) A(D) is connected. Thus either A(D) is contained in D or
A(D) ∩ D is empty. From (3) we see that A(D) ⊆ D.

(5) Obviously A ◦ A−1(D) = D, which implies that A(D) = D.

only if part: Let f ∈ Aut(D) and w = f(z). Then z =
f−1(w) and f−1 ∈ Aut(D).
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(6) If f(0) = 0, then

|f(z)| ≤ |z| and |z| =
∣

∣f−1(w)
∣

∣ ≤ |w| = |f(z)| .
Thus, by Schwarz’s lemma, there exists a θ ∈ R such that

f(z) = eıθz for all z ∈ D. So we can take a = eı θ
2 and b = 0 to

conclude that f has the required form.

(7) If f(0) = ζ �= 0, then 0 < |ζ | < 1 and we set A(z) =
z − ζ

1 − ζz
.

The Möbius transformation A belongs to Aut(D), and A ◦ f
fixes the origin.

�

Just as in Section 8.1 we defined PSL(2, C) and then proved that it

is isomorphic to the group Aut(̂C), we can define the group PSL(2, R) =
SL(2, R)/{±I} of appropriate matrices with real coefficients modulo
plus or minus the identity matrix and obtain the following description.

Theorem 8.19. Aut(H2) ∼= PSL(2, R).

Proof. This is an easy consequence of Corollary 8.15 and the pre-
ceding theorem. �

8.3. The Riemann Mapping Theorem

We now combine the results about Möbius transformations of the
previous two sections with results from Chapter 7 about compact and
bounded families of holomorphic functions to show that every simply
connected plane domain, other than C itself, is conformally equivalent
to the unit disk; any conformal map from a domain D onto the unit
disk D will be called a Riemann Map.

Recall that a set A is a proper subset of a set B if A ⊂ B and
A �= B.

Theorem 8.20 (Riemann Mapping Theorem). Let D be a
proper simply connected open subset of C and let ζ ∈ D. Then there
exists a unique conformal map f : D → D with f(ζ) = 0, f ′(ζ) > 0,
and f(D) = D.

Proof. The argument has two parts.

Existence. We first reduce the problem to a special case.
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FIRST REDUCTION: It suffices to assume that D is bounded.

Proof. Since D �= C, we can choose b ∈ C−D. Since D is simply
connected there is a branch g(z) of log(z − b) on D. Thus

eg(z) = z − b for all z ∈ D.

The function g is injective: For if g(w) = g(z), then w − b = z − b.
Furthermore, if c ∈ D, then g(z)− g(c) �= 2πı for all z ∈ D. Otherwise

z − b = eg(z) = eg(c)+2πı = eg(c) = c − b.

Choose c ∈ D and δ > 0 such that

|w − g(c)| < δ ⇒ w ∈ g(D).

Thus
|w − g(c) − 2πı| < δ ⇒ w /∈ g(D).

Now

F (z) =
1

g(z) − g(c) − 2πı

is an isomorphism of D onto F (D), and the domain F (D) is contained

in cl U

(

0,
1

δ

)

. �

We are now reduced to solving the mapping problem for (F (D), F (ζ)).

SECOND REDUCTION: We may also assume that ζ = 0. Toward
this end, set α = F (ζ).

Proof. Look at G(z) = e−ıθ(z − α), where θ = arg F ′(ζ). If
f : G(F (D)) → D is a conformal surjective map with f(0) = 0 and
f ′(0) > 0, then

h = f ◦ G ◦ F is a conformal map of D onto D, with

h(ζ) = 0 and h′(ζ) = f ′(0)G′(α)F ′(ζ) > 0.

�
Thus we now assume that D is bounded, simply connected, and

ζ = 0 ∈ D.

PROOF OF THE THEOREM UNDER THESE ASSUMP-
TIONS.

We define

F ={f ∈ H(D); f is either conformal or identically zero,

f(0) = 0, f ′(0) ∈ R, f ′(0) ≥ 0 and |f(z)| < 1 all z ∈ D}.
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Our first observation is that F is nonempty. Of course, f ≡ 0 is
in F . This is not good enough for much. Since D is bounded, there
exists an M > 0 such that |z| ≤ M for all z ∈ D. Hence if c ∈ R and

c > M , then f(z) =
z

c
for z ∈ D defines a function in F (which is not

identically zero).

Next we show that F is compact. The elements of F are bounded
by 1; hence, this family is certainly strongly bounded.

To show that it is closed, let {fn} ⊂ F be such that fn → f
uniformly on all compact subsets of D. Then f ∈ H(D), and since
each fn vanishes at 0, so does f .

It is now convenient to consider two cases:

I. fn ≡ 0 for infinitely many distinct n.
In this case, f ≡ 0 and hence certainly f ∈ F .

II. fn ≡ 0 for finitely many n.
In this case we may assume that each fn is a conformal map so that

f ′
n(0) > 0, and thus, f ′(0) ≥ 0. Hurwitz’s theorem 7.8 says that f is

either constant (hence identically zero) or univalent. Since |fn(z)| < 1
for all z ∈ D, we conclude that |f(z)| ≤ 1 for all z ∈ D. If |f(z0)| = 1
for some z0 ∈ D, then |f | ≡ 1 by the Maximum Modulus Principle;
this is a contradiction to f(0) = 0. Thus |f(z)| < 1 for all z ∈ D, and
we conclude that f ∈ F . Thus F is closed and therefore compact.

If S = {f ′(0); f ∈ F}, then S ⊂ R≥0. We claim that S is bounded
from above. Indeed, choose ε > 0 so that cl U(0, ε) ⊂ D. If γ(θ) = ε eı θ

for 0 ≤ θ ≤ 2π is the circle centered at 0 with radius ε, then for any
f ∈ F , we have

f ′(0) =
1

2πı

∫

γ

f(ζ)

ζ2
dζ

and thus

|f ′(0)| ≤ 1

2π

2πε

ε2
=

1

ε
.

If μ = sup S, then μ ≥ 1

M
> 0 because

1

c
∈ S for all c > M , as we

saw above. Also, there exists a sequence {fn} ⊂ F such that

lim
n→∞

f ′
n(0) = μ .

Since F is compact, there exists a convergent subsequence {fnk
}

with lim
k→∞

fnk
= f ∈ F . Since f ′(0) = μ, f is a conformal map. Also

f(D) ⊆ D.
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We need to show that f(D) = D. We show that if we assume
f(D) �= D, we can construct an h ∈ F with h′(0) > μ and thus
contradict the fact that μ = sup S. Namely, if f(D) �= D, then there
exists w0 = reı θ with 0 < r < 1 such that w0 ∈ ∂f(D). We now
construct h as follows:

(1) Let g1(z) = e−ıθf(z). The map g1 is the map f followed by a
rotation through the angle −θ and it sends w0 to r.

(2) Let p(z) =
r − g1(z)

1 − rg1(z)
. The map p is g1 followed by an auto-

morphism of D that sends r to 0 (see Exercise 8.4).
Note that p(z) �= 0 for all z ∈ D (p(z) = 0 if and only if

g1(z) = r if and only if f(z) = w0).

(3) Let q(z) = p(z)
1
2 , where we choose the branch of the square

root2 with q(0) = r
1
2 > 0.

The map q is injective because q(z1) = q(z2) if and only if
p(z1) = p(z2). Furthermore, |q(z)| < 1 for all z ∈ D.

(4) Let g2(z) =
r

1
2 − q(z)

1 − r
1
2 q(z)

. The map g2 is q followed by an auto-

morphism of D that sends r
1
2 to 0.

(5) Let h(z) = eı θg2(z). The map h is g2 followed by a rotation
through the angle θ.

Conclusion: h is a univalent mapping of D into D.

We calculate h(0) and h′(0). In order to use the chain rule we need
to see what happens to zero under all the maps used to construct h. It
is easily checked that

g1(0) = 0, p(0) = r, q(0) = r
1
2 , g2(0) = 0 and h(0) = 0 .

Aside: If A(z) =
αz + β

γz + δ
, then A′(z) =

αδ − βγ

(γz + δ)2
.

2By Exercise 5.1 of Chapter 5 there certainly exists a function q whose square
is p. Hence −q is also such a function. These are the two branches of the square
root of p.
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Now the calculation of the derivative of h at zero proceeds as follows.

h′(0) = eı θg′
2(0) = eı θ r − 1

(1 − r
1
2 q(0))2

q′(0) = eı θ r − 1

(1 − r)2
q′(0)

=
eı θ

r − 1

(

1

2

)

p(0)−
1
2 p′(0) =

eı θ

r − 1

(

1

2

)

r−
1
2

−1 + r2

(1 − rg1(0))2
g′
1(0)

=
1

2
eı θ 1

r − 1

1

r
1
2

r2 − 1

1
e−ı θ μ =

r + 1

2r
1
2

μ .

Finally,
r + 1

2r
1
2

> 1 if and only if 0 < r < 1 ,

arriving at a contradiction that finishes the existence proof.

Uniqueness: The proof of uniqueness is a straightforward argument
using the Schwarz’s lemma. �

Corollary 8.21. If D is a simply connected domain in ̂C, then
D is conformally equivalent to one and only one of the following: (i)
̂C, (ii) C, or (iii) D.

The case (i), (ii), or (iii) occurs when the boundary of D consists
of none, one, or more than one point, respectively. In the last case
the boundary of D contains a continuum (a homeomorphic image of a
closed interval containing more than one point).

8.4. Hyperbolic geometry

Let D be a simply connected domain in the extended complex plane
with two or more boundary points. In this section we establish that
such a domain carries a conformally invariant metric, known as the
Poincaré or hyperbolic metric.

We consider only those simply connected domains D which, by the
Riemann mapping theorem, are conformally equivalent to the upper
half-plane H

2, or, equivalently, to the unit disk D, although the metric

may be defined on all domains in ̂C with two or more boundary points.
We show that conformal equivalences between these domains pre-

serve the hyperbolic metric; that is, they are isometries (distance pre-
serving maps) with respect to the hyperbolic metrics on the respective
domains. Endowed with these equivalent metrics, the upper half-plane
and the unit disk become models for non-Euclidean (also known as hy-
perbolic or Lobachevsky) geometry. As we have shown, the groups of
conformal self-maps of these domains, Aut(H2) and Aut(D), consist of
Möbius transformations, a class of maps much easier to study than the
group of conformal self-maps of an arbitrary D. It is a remarkable fact
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that these Möbius functions constitute the full group of isometries of
H

2 and D with their respective hyperbolic metrics. We conclude this
section using Schwarz’s lemma and the hyperbolic metric to establish
a deep connection between complex analysis and geometry. Namely,
holomorphic maps between hyperbolic domains are either isometries or
contractions with respect to their hyperbolic metrics.

We first define the Poincaré metric in a general setting, that is, on
an arbitrary simply connected domain D with two or more boundary
points (Section 8.4.1). We subsequently study it in more detail on H

2

and D, where specific computations are most easily carried out (Sec-
tions 8.4.2 and 8.4.3). The results that follow from these computations
transfer to the general setting because of the conformal equivalence.
Finally in Section 8.4.4, we establish the result about contractions.

8.4.1. The Poincaré metric.

Definition 8.22. Let D be a simply connected domain in the ex-
tended complex plane with two or more boundary points. We define
the (infinitesimal form of the) Poincaré metric

λD(z) |dz|
as follows. First, set for the unit disk

λD(z) =
2

1 − |z|2 , z ∈ D.

For arbitrary D, choose a Riemann map π : D → D and define λD by

λπ(D)(π(z)) |π′(z)| = λD(z), z ∈ D.

Our first task is to show that λD(z) is well defined for all simply
connected domains3 D and all z ∈ D. Toward this end, let A be a
conformal self-map of D. Recall that there exist complex numbers a
and b with |a|2 − |b|2 = 1 such that

A(z) =
az + b

bz + a
, z ∈ D.

An easy calculation now shows that

λD(A(z)) |A′(z)| = λD(z), z ∈ D.

Let z0 ∈ D be arbitrary and suppose that π and ρ are two Riemann
maps of D onto D with

π(z) = z0 = ρ(ζ)

3With two or more boundary points.
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for two points z and ζ ∈ D. We need to show that4

λπ(D)(π(z)) = λρ(D)(ρ(ζ)).

Now, A = π−1 ◦ ρ is in Aut(D) and A(ζ) = z. It follows that

λρ(D)(ρ(ζ)) = λD(ζ) |ρ′(ζ)|−1
= λD(A(ζ)) |A′(ζ)| |π′(A(ζ))|−1 |A′(ζ)|−1

= λD(z) |π′(z)|−1
= λπ(D)(π(z)).

Remark 8.23. (1) If z ∈ D is arbitrary and we choose the Riemann
map π to satisfy π(0) = z, then

λD(z) = 2 |π′(0)|−1
.

(2) It is easy to see that

λH2(z) =
1

�z
for all z ∈ H

2.

The important invariance property of our metric is described by

Proposition 8.24. For every conformal map f defined on D,

λf(D)(f(z)) |f ′(z)| = λD(z) for all z ∈ D.

Proof. If π is a Riemann map, so is f ◦ π. �

Any infinitesimal metric on D allows us to define lengths of paths in
D and, hence, a distance function on the domain. We work, of course,
with length element

ds = λD(z) |dz| .
Definition 8.25. We define the hyperbolic length of a piecewise

differentiable curve γ in D by

lD(γ) =

∫

γ

λD(z) |dz| ;

if z1 and z2 are any two points in D, the hyperbolic (or Poincaré)
distance between them by

ρD(z1, z2) = inf{lD(γ); γ is a pdp in D from z1 to z2}. (8.3)

4The two symbols λD and λπ(D) denote, of course, the same function. The
latter one is meant to emphasize the use of the Riemann map π in its computation.
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We leave to the reader (Exercise 8.23) the verification that ρD de-
fines a metric on D.

We remind the reader that an isometry from one metric space to
another is a distance preserving map between them. It follows from
the last proposition that for every conformal map f defined on D and
every pdp γ in D,

lf(D)(f ◦ γ) = lD(γ)

and

ρf(D)(f(z1), f(z2)) = ρD(z1, z2) for all z1 and z2 ∈ D;

that is, ρ is conformally invariant and an isometry with respect to the
appropriate hyperbolic metrics.

8.4.2. Upper half-plane model. In this case ds = |dz|
�(z)

. The

hyperbolic length of an arbitrary curve γ in H
2 may be hard to calculate

directly from Formula (8.3). We will show that given any two points
in H

2, there exists a unique semicircle (a hyperbolic line) in H
2 passing

through the two points such that the hyperbolic length of its segment
joining the two points realizes the hyperbolic distance between the two
points. Such a hyperbolic line is called a geodesic, and the unique
portion of the geodesic between the two points is called a geodesic path
or geodesic segment. The following three lemmas establish the existence
of a geodesic path between two points; the proof of its uniqueness
follows.

Lemma 8.26. Let P and Q ∈ H
2 lie on an Euclidean circle C

centered on the real axis, and let γ be the arc of C in H
2 between P

and Q. Assume also that the radii from the center to P and Q make,
respectively, angles α and β with the positive real axis.

Then

lH2(γ) =

∣

∣

∣

∣

log
csc(β) − cot(β)

csc(α) − cot(α)

∣

∣

∣

∣

.

Proof. Assume the circle C has radius r and is centered at (c, 0)
(see Figure 8.2).

Let z = (x, y) be an arbitrary point on C, and let t be the angle
that the radius from z to the center of C makes with the positive real
axis; then x = c + r cos t and y = r sin t. Therefore, dx = −r sin t and

dy = r cos t. We have lH2(γ) =
∣

∣

∣

∫ β

α
csc t dt

∣

∣

∣, and the result follows. �

Similarly one can calculate that
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Figure 8.2. In the upper half-plane

Lemma 8.27. If P = xP + ıyP and Q = xP + ıyQ, so that P and
Q lie on a vertical line perpendicular to the R-axis, and yP ≥ yQ > 0,
then the hyperbolic length of the segment of the vertical line connecting
the points is given by log yP

yQ
.

We recall that according to our conventions a straight line in C is
a circle in C∪ {∞} passing through infinity. By abuse of language, we
will consider such circles to be centered on the real axis. Recall also
that a Euclidean circle with center on the real axis is perpendicular to
the real axis.

Definition 8.28. For any circle C centered on the real axis, the
part of C lying in the upper half-plane will be called a semicircle or a
hyperbolic line or a geodesic.

Lemma 8.29. Let z and w be two different points in H
2. Then there

is a unique circle C centered on the real axis and passing through z and
w.

Proof. If �(z) = �(w), take C to be the Euclidean line through z
and w. Otherwise, let L be the perpendicular bisector of the Euclidean
line segment connecting z and w. If c is the point where L intersects
the real line, then C is the circle with center c passing through z and
w. See Figure 8.3. �

Corollary 8.30. Let z and w be two different points in H
2. Then

there is a unique geodesic passing through z and w.

Remark 8.31. If z and w are two different points in H
2, we have

observed in Lemma 8.29 that they determine a circle C centered on
the real axis passing through z and w. We let z∗ and w∗ denote the
points on C ∩ (R ∪ {∞}). We choose z∗ so that it is closer to z than
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Figure 8.3. Unique circle through two points in the
upper half-plane

to w. When �(z) = �(w), z∗ and w∗ are �(z) and ∞, respectively, if
�z < �w; otherwise, z∗ = ∞ and w∗ = �(w).

Lemma 8.32. Let z and w be two different points in H
2. Then there

exists a unique T in Aut(H2) such that T (z∗) = 0, T (z) = ı, T (w) = ı y
with y > 1, and T (w∗) = ∞.

Proof. Consider the unique circle C centered on the real axis and
passing through z and w. Since the Möbius group is triply transitive,
there exists a Möbius transformation T that maps z∗, z, w∗ to 0, ı,∞,
respectively. Since Möbius transformations map circles to circles (in-
cluding straight lines), T maps C onto the imaginary axis and, since
they preserve orthogonality, T maps R∪ {∞} onto itself. Thus T is in
Aut(H2). �

Definition 8.33. Let z and w be two different points in H
2. The

arc of the unique geodesic determined by z and w between z and w is
called the geodesic segment or geodesic path joining z and w.

Lemma 8.34. Let z and w be two different points in H
2. Then the

hyperbolic length of the geodesic segment joining z and w is shorter
than the hyperbolic length of any other pdp γ joining z and w in H

2.

Proof. Write z = xz + ıyz and w = xw + ızw.
First consider the case xz = xw. Assume the curve γ is given by

γ : [a, b] → H
2, γ(t) = x(t) + ı y(t). Then

lH2(γ) =

∣

∣

∣

∣

∣

∫ b

a

√

x′(t)2 + y′(t)2

y(t)
dt

∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∫ b

a

√

y′(t)2

y(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

log
yw

yz

∣

∣

∣

∣

,

and equality is attained if and only if x(t) is constant and y′(t) ≥ 0.
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For the case xz �= xw, by Lemma 8.32, we can find T in Aut(H2)
such that T (z∗) = 0 and T (w∗) = ∞. Since T is conformal, the image
under T of the geodesic segment between z and w is the segment on
the imaginary axis between T (z) and T (w), and both segments have
the same hyperbolic length. Similarly, T ◦γ is a pdp in H

2 joining T (z)
and T (w), with the same hyperbolic length as γ, and we are reduced
to the previous case. �

The next result follows from Lemmas 8.29 and 8.34.

Theorem 8.35. For any two points z and w in H
2, the geodesic

segment joining z to w is the unique curve that achieves the infimum
for the hyperbolic metric defined by (8.3).

Recall that (a, b, c, d) denotes the cross-ratio for any four points
a, b, c, d in C ∪ {∞}. A computation now establishes

Lemma 8.36. For any two points z and w in H
2, the hyperbolic

length of the geodesic segment γ joining z and w is given by

ρH2(γ) = log |(z∗, w∗, w, z)| = log |(0,∞, ı y, ı)| = log y,

where y is the real number (> 1) given in Lemma 8.32.

Proof. A fractional linear transformation preserves the cross-ratio
of any four points. We have already seen that fractional linear trans-
formations mapping H

2 to itself are isometries. �
In particular, for any z and w in H

2, we have

Corollary 8.37. ρH2(z, w) = log |(z∗, w∗, w, z)|.
A calculation (see Exercise 8.19) shows that we also have

Corollary 8.38.

ρH2(z, w) = log
|z − w| + |z − w|
|z − w| − |z − w| . (8.4)

We have already concluded (because conformal maps preserve the
infinitesimal form of the hyperbolic metric) that PSL(2, R) acts as a
group of isometries of H

2. The current development for the hyperbolic
metric together with the two facts that fractional linear transformations
preserve the cross-ratio and map circles to circles, give an alternative
proof that Aut(H2) = PSL(2, R) consists of hyperbolic isometries of
H

2. Moreover, using this development we can prove the converse; that
is, that every orientation preserving isometry of the upper half-plane
with its hyperbolic metric is a Möbius transformation. We need a
preliminary
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Proposition 8.39. If f is an isometry of H
2 that fixes the imagi-

nary axis pointwise, then f is the identity map.

Proof. Let z = x + ı y and f = u + ı v. For all positive real
numbers t we have ρH2(z, ı t) = ρH2(f(z), f(ı t)) = ρH2(u + ı v, ı t). We
calculate using (8.4) that

[x2 + (y − t)2] v = [u2 + (v − t)2] y

for all positive t. Thus, y = v and x2 = u2. Thus, f(z) = z or
f(z) = −z. Since f is orientation preserving, we are done. �

Theorem 8.40. The set of orientation preserving isometries of H
2

with its hyperbolic metric is precisely the set of fractional linear trans-
formations mapping H

2 to itself; that is, PSL(2, R).

Proof. Suppose g is such an isometry. Then g maps hyperbolic
lines to hyperbolic lines. Thus there is a fractional linear transforma-
tion f that preserves H

2 and such that f ◦ g fixes the imaginary axis.
Using (if needed) the isometries z �→ kz, k in R>0, and z �→ −1

z
, we

may assume that f ◦ g fixes ı and the intervals (ı,∞) and (0, ı) on the
imaginary axis.

Using the fact that ρH2(ı z, ı w) =
∣

∣log
(

z
w

)∣

∣ for z, w ∈ R and w �= 0,
we see that f ◦ g = id on the imaginary axis, hence on H

2, by the
previous proposition. We conclude that g is a Möbius transformation.

�

8.4.3. Unit disk model. Statements about the hyperbolic metric
on the upper half-plane can be translated to the unit disk model using

the differential ds =
2 |dz|

1 − |z|2 . Most of these statements are left as

exercises and do not need restatement. We emphasize the following
two results.

In particular, Theorem 8.40 translates to

Theorem 8.41. The set of orientation preserving isometries of D

with its hyperbolic metric is precisely the set of fractional linear trans-
formations mapping D to itself, that is, Aut(D).

And Corollary 8.38 becomes

Theorem 8.42. We have

ρD(w, z) = log
|1 − wz| + |w − z|
|1 − wz| − |w − z| for all z, w ∈ D. (8.5)
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In particular,

ρD(0, z) = log
1 + |z|
1 − |z| , z ∈ D. (8.6)

Proof. See Exercise 8.22. �
8.4.4. Contractions and the Schwarz’s lemma. We use the

Schwarz’s lemma to establish a deep connection between function the-
ory and geometry. First we recall that not every holomorphic self-map
of D is a Möbius transformation, only conformal self-maps are, and as
we have seen, these are isometries in the hyperbolic metric. However,

Theorem 8.43. Holomorphic self-maps of the unit disk do not in-
crease distance in the hyperbolic metric.

Proof. Let F : D → D be a nonconstant holomorphic function
from the unit disk to itself. Assume first that F (0) = 0. Then by
Schwarz’s lemma (Theorem 5.34), we have |F (z)| ≤ |z| for |z| < 1 and
|F ′(0)| ≤ 1.

Equation (8.6) also tells us that

ρD(0, F (z)) = log
1 + |F (z)|
1 − |F (z)| .

Now we use Schwarz’s lemma to conclude that

1 + |F (z)|
1 − |F (z)| ≤

1 + |z|
1 − |z| ,

and then we conclude, by Equation (8.6), that

ρD(0, F (z)) ≤ ρD(0, z).

Let a and b ∈ D. Assume that a �= b. Choose conformal self-maps
A and B of the unit disk such that B(0) = a and A(F (a)) = 0. Then
A◦F ◦B is a holomorphic self-map of the unit disk that fixes 0. Hence,
by what was already established,

ρD(A(F (B(0))), A(F (B(z)))) ≤ ρD(0, z).

Since B and A are isometries,

ρD(0, z) = ρD(B(0), B(z))

and

ρD(A(F (B(0))), A(F (B(z)))) = ρD(F (B(0)), F (B(z))).

We conclude that

ρD(F (B(0)), F (B(z))) ≤ ρD(B(0), B(z)).
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Taking z = B−1(b), we obtain the required inequality

ρD(F (a), F (b)) ≤ ρD(a, b). (8.7)

If we multiply each side of the last equation by
∣

∣

∣

∣

1

a − b

∣

∣

∣

∣

=

∣

∣

∣

∣

1

F (a) − F (b)
· F (a) − F (b)

a − b

∣

∣

∣

∣

and take the limit as a approaches b, we get the infinitesimal form of
our required formula

λD(F (b)) |F ′(b)| ≤ λD(b). (8.8)

We leave it to the reader to verify that equality in either (8.7) or
(8.8) implies that F is conformal (also an isometry). �

Definition 8.44. Let M be a metric space with distance d. A map
f from M to itself is a contraction if d(f(x), f(y)) < d(x, y) for all x
and y in M .

Theorem 8.43 can be restated as

Theorem 8.45. A holomorphic self-map of the unit disk is either
an isometry or a contraction with respect to the hyperbolic metric.

8.5. Finite Blaschke products

Let A = {a0, a1, . . .} be a finite or countable sequence of complex
numbers lying in the unit disk D. Define

BA(z) = B(z) =
∏

i

|ai|
ai

· z − ai

1 − aiz
, for z ∈ D,

where if ai = 0, we set |ai|
ai

= 1.

Definition 8.46. The function BA is called a (finite or infinite)
Blaschke product associated with A. In the infinite case, there are, of
course, convergence issues (see Section 10.5).

For the rest of this section we will study finite Blaschke products.
It follows immediately from the definition that we have

Proposition 8.47. Let A = {a0, a1, . . . , an} be a finite sequence of
points in D. Then

(a) B = BA is a meromorphic function on C ∪ {∞}, with zeros

precisely5 at the n + 1 points {ai} and poles at the n + 1 points
{

1
ai

}

,

and

5If ai appears ν times in our list A, then

νai(B) = ν and ν 1
ai

(B) = −ν.
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(b) B is a self-map of the closed unit disk that maps the open unit
disk holomorphically onto itself and the unit circle onto itself, with
B(0) = (−1)n+1

∏

i |ai|.
Blaschke products transform beautifully under automorphisms of

D, as shown next.

Proposition 8.48. Let A = {a0, a1, · · · , an} be a finite sequence
of points in D, and let T be any element of Aut(D). Then

BA ◦ T = λ BT−1(A) ,

where λ is a constant of absolute value 1 and

T−1(A) = {T−1(a0), T−1(a1), · · · }.
Proof. Since T belongs to Aut(D), there exist complex numbers

a and b, with |a|2 − |b|2 = 1, and such that T (z) =
a z + b

b̄ z + ā
for all z in

D.
It suffices to compute the action of T on the function z �→ z−α

1−ᾱz
,

where α ∈ D. A calculation shows that

T (z) − α

1 − ᾱT (z)
=

z − āα − b

−b̄α + a
ā − bᾱ

a − b̄α

(

1 − aᾱ − b̄

−bᾱ + ā
z

) .

The proof is completed by observing that

∣

∣

∣

∣

ā − bᾱ

a − b̄α

∣

∣

∣

∣

= 1 and by

recalling that T−1(w) =
āw − b

−b̄w + a
. �

Theorem 8.49. Let f be a holomorphic self-map of D. Let A =
{a0, a1, · · · , an} be a finite sequence of points in D and B = BA. As-
sume that f(ai) = 0 for each ai in A. Then

(a) |f(z)| ≤ |B(z)| for all z ∈ D, and

(b) if |f(a)| = |B(a)| for some a ∈ D with a �= ai for all i, then
there is λ ∈ C with |λ| = 1 such that

f(z) = λ B(z) for all z ∈ D. (8.9)

(c) If ai appears ν times in the sequence A and if

0 = f(ai) = f ′(ai) = ... = f (ν−1)(ai)

.
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and
∣

∣f (ν)(ai)
∣

∣ =
∣

∣B(ν)(ai)
∣

∣ ,

then there is λ ∈ C with |λ| = 1 such that (8.9) holds.

Proof. Let T be an automorphism of D that sends 0 to a0. Then,
as a result of the last proposition, and replacing f and B by f ◦ T and
B ◦ T , respectively, we may assume that a0 = 0.

We let B0 be the Blaschke product associated with {a1, a2, · · · , an}.
The function F =

f

B0
is certainly holomorphic on D and F (0) = 0. We

claim that |F (z)| ≤ 1 for all z ∈ D. Fix such a point z. The restrictions
of |B0| to circles of radius r, with 0 ≤ r ≤ 1, yields a family of func-
tions that uniformly approach the constant function 1 as r approaches
1. Hence for all ε > 0 we can choose an r such that |B0(w)| ≥ 1 − ε
for all w of absolute value r. Without loss of generality, we can choose
r ≥ |z|. Hence, by the maximum principle for |w| ≤ r, it follows that

|F (w)| =
|f(w)|
|B0(w)| ≤

1

1 − ε
. In particular, |F (z)| ≤ 1

1−ε
. Since ε is arbi-

trary, the claim is proved. By Schwarz’s lemma, we obtain |F (z)| ≤ |z|
or, equivalently,

|f(z)| ≤ |z| |B0(z)| = |B(z)|
for all z ∈ D, proving (a).

The function
f

BA

is analytic on D, and its modulus is at most 1 on

D. Assuming |f(a)| = |B(a)| for some a ∈ D with a �= ai for all i, then

there is a point a in D where the modulus of
f

BA

is 1; therefore, it is

constant, and (b) follows.
To prove (c), we may assume that ai = 0. By L’Hopital’s rule,

∣

∣

∣

∣

f

BA

(0)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

f (ν)(0)

B
(ν)
A

(0)

∣

∣

∣

∣

∣

= 1,

and (8.9) follows. �

Exercises

8.1. A matrix A =

[

a b
c d

]

with a, b, c, d ∈ C, ad− bc �= 0, acts on

̂C by z �→ az+b
cz+d

.
Show that for each t ∈ C �=0, A and tA induce the same action.

8.2. Suppose the four distinct points z1, z2, z3, z4 are permuted.
What effect will this have on the cross-ratio (z1, z2, z3, z4)?
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8.3. Prove in detail that the angles at z1 and z2 in Figure 8.1 are

equal precisely when the four points lie on a circle in ̂C.

8.4. Show that f ∈ Aut(D) if and only if there exist θ in R and
ζ ∈ D such that

f(z) = eıθ z − ζ

1 − ζ z
for all z ∈ D.

8.5. Formulate and prove (as a consequence of the Riemann Map-
ping Theorem 8.20) the Riemann Mapping Theorem for simply con-

nected domains D ⊆ ̂C. Include the possibility that ζ = ∞.

8.6. (1) Let D be the domain in the extended complex plane ̂C
exterior to the circles |z − 1| = 1 and |z + 1| = 1. Find a Riemann
Map (one-to-one holomorphic map) of D onto the strip S = {z ∈
C; 0 < �z < 2}.

(2) Find a conformal map from the domain in ̂C given by

{z ∈ C; |z − 1| > 1, |z + 1| > 1} ∪ {∞}
onto the upper half-plane.

8.7. Find a conformal map from {z ∈ C; |z| < 1,� z > 0} (a
semi-disk) onto the unit disk.

8.8. If f(z) = w is a Riemann Map from the domain |Arg z| < π
100

onto the domain |w| < 1 and if f(1) = 0 and f ′(1) > 0, find f(2).

8.9. Find a conformal map from the disk {z ∈ C; |z| < 1} onto
{z ∈ C; |z| < 1,�z > 0}.

8.10. If w = g(z) maps the quadrant {z = x+ ıy ∈ C; x > 0, y > 0}
conformally onto |w| < 1 with g(1) = 1, g(ı) = −1, and g(0) = −ı,
find |g′(1 + ı)|.

8.11. If f is holomorphic for |z| < 1 and satisfies |f(z)| < 1 for
|z| < 1 and f(0) = f

(

1
2

)

= 0, show that

|f(z)| ≤
∣

∣

∣

∣

z · 2z − 1

2 − z

∣

∣

∣

∣

for all |z| < 1.

8.12. For each n = 1, 2, 3, . . . , find a conformal map from the infinite
angular sector 0 < Arg z < π

n
onto the unit disk.

8.13. Find the Riemann Map f from the strip 0 < �z < 1 onto the
unit disk satisfying f

(

ı
2

)

= 0 and f ′ ( ı
2

)

> 0.
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8.14. Find a conformal map from the domain

{z ∈ C; |z| < 1 and z �= t for 0 ≤ t < 1}
onto |w| < 1.

8.15. Find a conformal map from the upper half-plane onto the unit
disk minus the nonnegative real numbers.

8.16. Suppose {fn} is a sequence of holomorphic functions in |z| < 1
that satisfy

�fn(z) > 0 and |fn(0) − ı| <
1

2
for all n ∈ Z>0 and all |z| < 1 .

Show that {fn} contains a subsequence that converges uniformly
on compact subsets of the unit disk.

8.17. Supply all of the details of the proof that ρH2 defines a metric
that is invariant under the Möbius group PSL(2, R).

8.18. Let z and w be points in H
2 with z∗ and w∗ the points on

the real axis that are the ends of the diameter of the circle perpen-
dicular to the real lines passing through z and w. Define D(z, w) =
| log(z∗, w∗, w, z)|. Show that D defines a metric in the upper half-
plane.

8.19. Let z and w be points in the upper half-plane. Prove that

ρH2(z, w) = log
|z − w| + |z − w|
|z − w| − |z − w| .

8.20. Show that the hyperbolic circle {z ∈ H
2; ρH2(ı, z) = r} is

given by

{z ∈ H
2; x2 + (y − cosh r)2 = sinh2(r)} ,

and conclude that the topology induced by the hyperbolic metric in H
2

coincides with the Euclidean topology.

8.21. Assume f is a bounded holomorphic function on the unit disk
and f

(

ı
2

)

= f
(− ı

2

)

= 0. Show that

f(z) =
z − ı

2

1 + ı
2
z

z + ı
2

1 − ı
2
z
G(z), z ∈ D,

where G is a bounded holomorphic function on D.

8.22. Prove that

ρD(0, z) = log
1 + |z|
1 − |z| , for all z ∈ D.
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8.23. Let D be a simply connected domain in the extended complex
plane with two or more boundary points. Show that (8.3) defines a
metric on D.



CHAPTER 9

Harmonic Functions

This chapter is devoted to the study of harmonic functions. These
functions are closely connected to holomorphic maps since the real and
imaginary parts of a holomorphic function are harmonic functions. The
study of harmonic functions is important in physics and engineering,
and there are many results in the theory of harmonic functions that
are not connected directly with complex analysis. However, in this
chapter we consider that part of the theory of harmonic functions that
grows out of the Cauchy Theory. Mathematically this is quite pleasing.
One of the most important aspects of harmonic functions is that they
arise as functions that solve a boundary value problem for holomorphic
functions, known as the Dirichlet problem. An example is the problem
of finding a function continuous in a closed disk that assumes certain
known values on the boundary of the disk and is harmonic in the in-
terior of the disk. An important tool in the solution is the Poisson
formula.

In the first section we define harmonic functions and the Laplacian
of a function. In the second we obtain integral representations for har-
monic functions that are analogous to the Cauchy Integral Formula,
including the Poisson formula; in the third we use these integral rep-
resentations to solve the Dirichlet problem. The third section includes
three interpretations of the Poisson formula: a geometric interpreta-
tion, a Fourier series interpretation, and a classic one. In the fourth
section we characterize harmonic functions by their Mean Value Prop-
erty. The last section deals with the reflection principle for holomor-
phic and real-valued harmonic functions, which is a simple but useful
extension tool.

9.1. Harmonic functions and the Laplacian

We begin with

Definition 9.1. Let D be a domain in C and g ∈ C2(D). We
define �g, the Laplacian of g, by

�g =
∂2g

∂x2
+

∂2g

∂y2
. (9.1)

173
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The operator � is called the Laplacian or the Laplace operator.

Definition 9.2. Let D be a domain in C and g ∈ C2(D). We say
that g is harmonic if

�g =
∂2g

∂x2
+

∂2g

∂y2
= 0 in D . (Laplace)

These definitions have several immediate consequences that we list:

(1) It is obvious from the definition of the Laplacian as a linear
operator on C2 complex-valued functions that it preserves real-
valued functions. It is useful to have equivalent formulas for
it (Exercise 9.1):

� =
∂2

∂x2
+

∂2

∂y2
= 4

∂2

∂z∂z
= 4

∂2

∂z∂z
(9.2)

and in polar coordinates (r, θ)

� =
1

r2

(

r
∂

∂r

(

r
∂

∂r

)

+
∂2

∂θ2

)

. (9.3)

(2) Recall that for f ∈ C1(D), f is holomorphic on D if and only

if
∂f

∂z
= 0 in D. Thus, for f ∈ C2(D), f is harmonic if and

only if
∂f

∂z
is holomorphic.

In particular, holomorphic functions are harmonic, and (2)
gives an easy way to construct analytic functions from har-
monic ones.

(3) f is harmonic if and only if f is.

(4) f is harmonic if and only if �f and �f are [this follows from
the linearity of � and (3)].

(5) If f is holomorphic on D, then f , �f , �f and f are harmonic
on D.

(6) If f is holomorphic or anti-holomorphic on D and g is harmonic
on f(D), then g ◦ f is harmonic on D.

Proof. Assume that f is holomorphic, let w = f(z), and
use the chain rule (see Exercise 2.10):

(g ◦ f)z = gwfz + gwf z = gwfz
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and

(g ◦ f)zz = gwwfzfz + gwwf zfz + gwfzz = 0.

The argument in the anti-holomorphic case is similar. �
(7) If f ∈ C2(D) and f is locally the real part of an analytic

function on D, then f is harmonic on D.

Example 9.3. log |z| is harmonic on C �=0, since it is locally the real
part of log z, a multivalued, but holomorphic, function.

Proposition 9.4. If g is real valued and harmonic, then it is locally
the real part of an analytic function. The analytic function is unique up
to an additive constant.

Proof. Let D be a simply connected region where g is harmonic.
Since 2gz dz is closed on D, it is exact. Choose a holomorphic function
f on D with df = 2gz dz. Then

df = 2gz dz

and hence,
1

2
d(f + f) = dg ;

that is,
�f = g + constant.

�
Corollary 9.5. A real-valued harmonic function on a simply con-

nected domain is the real part of a holomorphic function.

Corollary 9.6. A harmonic function is C∞.

Corollary 9.7. Harmonic functions have the Mean Value Prop-
erty, and hence they satisfy the Maximum Modulus Principle. Real-
valued harmonic functions also satisfy the Maximum and Minimum
Principles.

Proof. See Definition 5.28 and the properties that follow thereof.
�

Remark 9.8. The Maximum (Minimum) Principle asserts that if
f is real valued and harmonic on a domain D and if f has a relative
maximum (minimum) at a point ζ ∈ D, then f is constant in a neigh-
borhood of ζ . Furthermore, if D is bounded and f is continuous on
the closure of D, with m ≤ f ≤ M on ∂D for some real constants m
and M , then m ≤ f ≤ M on D.
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9.2. Integral representation of harmonic functions

We begin to apply the Cauchy Theory toward our present main
goal, which is to solve a boundary value problem. A major tool in the
solution is the Poisson formula. Given a harmonic function g defined
in a disk, we derive an integral formula for g, known as the Poisson
formula.

Proposition 9.9 (The Poisson formula). Let g be a harmonic
function on the domain |z| < ρ for some ρ > 0. Then, for each 0 <
r < ρ,

g(z) =
1

2π

∫ 2π

0

g(reı θ) · r2 − |z|2
|reı θ − z|2 dθ for |z| < r. (9.4)

Proof. It suffices to assume that g is real valued. To establish this
formula, we can thus apply Proposition 9.4 and choose the holomorphic
function f on this domain with �f = g and g(0) = f(0), noting that
there is a unique such f .

The function f has a power series expansion: Let 0 < r < ρ and
z = reıθ. Then

f(r eı θ) = f(z) =
∞
∑

n=0

anzn, with a0 ∈ R.

Now

g(z) =
1

2

(

f(z) + f(z)
)

=
1

2

∞
∑

n=0

(anzn + anzn)

= a0 +
1

2

∞
∑

n=1

rn
(

aneı nθ + an e−ı nθ
)

.

Integration of g along the curve γ(θ) = r eı θ, for 0 ≤ θ ≤ 2π, yields

a0 =
1

2π

∫ 2π

0

g(r eı θ) dθ.

Multiplying g by e−ı n θ for n ∈ Z>0 and integrating along the same
curve, we obtain

1

2
rnan =

1

2π

∫ 2π

0

g(reı θ) · e−ı n θ dθ;

or, equivalently,

an =
1

π

∫ 2π

0

g(reı θ)

(reı θ)n
dθ , for n ≥ 1.
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Thus for |w| < r, we have

f(w) =
1

2π

∫ 2π

0

g(reı θ) ·
[

1 + 2
∑

n≥1

( w

reı θ

)n
]

dθ .

Now

1 + 2
∑

n≥1

( w

reı θ

)n

=
reı θ + w

reı θ − w

and thus

f(w) =
1

2π

∫ 2π

0

g(reı θ) · reı θ + w

reı θ − w
dθ for |w| < r .

The above formula gives a representation of a holomorphic function
in terms of its real part, when the function is real at 0. Taking the real
part of both sides and renaming the variable w to z, we obtain equation
(9.4), the Poisson formula. �

The function

r2 − |z|2
|reı θ − z|2 = �

(

reı θ + z

reı θ − z

)

(Poisson kernel)

is known as the Poisson kernel. Note that setting z = 0 in Formula
(9.4), we reobtain the Mean Value Property for harmonic functions.

The derivation of the above formula assumed that g was harmonic
in the closed disk {|z| ≤ r}. However, the result remains true for
|z| < 1 under the weaker assumption that g is harmonic in the open
disk {|ζ | < r} and continuous on its closure. In this case, fix t with
0 < t < 1 and look at the function of z given by g(tz). It is harmonic
on the closed disk {|ζ | ≤ r}, and hence, by the result already proven
(9.4),

g(tz) =
1

2π

∫ 2π

0

r2 − |z|2
|reıθ − z|2 · g(treıθ) dθ .

Since the function g is uniformly continuous on the closed disk, we
know that g(tz) approaches g(z) uniformly on the circle {|ζ | = r} as
t approaches 1. Hence both sides of the last equation converge to the
expected quantities.

As a special case we apply the Poisson formula to the function that
is identical to 1 and obtain

∫ 2π

0

r2 − |z|2
|reı θ − z|2 dθ = 2π for all z ∈ C with |z| < r .
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Definition 9.10. A harmonic conjugate of a real-valued harmonic
function u is any real-valued function v such that u+ı v is holomorphic.

Harmonic conjugates always exist locally, and they exist globally
on simply connected domains. They are unique up to additive real
constants. In fact, it is easy to see that they are given locally as
follows.

Proposition 9.11. If g is harmonic and real valued in |z| < ρ for
some ρ > 0, then the harmonic conjugate of g vanishing at the origin
is given by

1

2πı

∫ 2π

0

g(reı θ) · re−ı θz − reı θz

|reı θ − z|2 dθ , for |z| < r < ρ.

The following result is interesting and useful.

Theorem 9.12 (Harnack’s inequalities). If g is a positive har-
monic function on |z| < r that is continuous on |z| ≤ r, then

r − |z|
r + |z| · g(0) ≤ g(z) ≤ r + |z|

r − |z| · g(0) , for all |z| < r .

Proof. Our starting point is (9.4). We use elementary estimates
for the Poisson kernel:

r − |z|
r + |z| =

r2 − |z|2
(r + |z|)2

≤ r2 − |z|2
|reı θ − z|2 ≤ r2 − |z|2

(r − |z|)2
=

r + |z|
r − |z| .

Multiplying these inequalities by the positive number g(w) = g(r eı θ)
and then averaging the resulting function over the circle |w| = r, we
obtain

r − |z|
r + |z| ·

1

2π

∫ 2π

0

g(reıθ) dθ ≤ 1

2π

∫ 2π

0

g(reıθ) · r2 − |z|2
|reı θ − z|2 dθ

≤ r + |z|
r − |z| ·

1

2π

∫ 2π

0

g(reıθ) dθ.

The middle term in the above inequalities is g(z) as a consequence
of (9.4), whereas the extreme averages are g(0) by the Mean Value
Property. �

Remark 9.13. Exercise 9.6 gives a remarkable consequence of Har-
nak’s inequalities.
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9.3. The Dirichlet problem

Let D be a bounded region in C, and let f ∈ C(∂D). The Dirichlet
problem is to find a continuous function u on the closure of D whose
restriction to D is harmonic and which agrees with f on the boundary
of D.

We will consider only the special case where D is a disk; without
loss of generality, the disk has radius 1 and center 0.

For a piecewise continuous function u on S1 and z ∈ C with |z| < 1,
we define [compare with (9.4)]

P [u(z)] =
1

2π

∫ 2π

0

�
(

eı θ + z

eı θ − z

)

· u(eı θ) dθ . (9.5)

We have

P [u(z)] =
1

2π

∫ 2π

0

u(eı θ) · 1 − |z|2
|eı θ − z|2 dθ . (9.6)

The following are properties of P :

(1) P [u] is a well-defined function on the open unit disk. Hence
we may view P as an operator that assigns a function, which
we also denote by Pu, on the open unit disk to each piecewise
continuous function u on the unit circle.

(2) P [u + v] = Pu + Pv and P [cu] = c · Pu for all piecewise
continuous functions u and v on S1 and every constant c (P
is a linear operator).

(3) P [1] = 1 because the constant function is analytic.

(4) P [u] is harmonic in the open unit disk. To establish this claim
we may assume (by linearity of the operator P ) that u is real
valued. In this case, P [u] is obviously the real part of an
analytic function on the disk.

(5) For all constants c,

P [c] = c.

This last fact (5) implies that any bound on u yields the
same bound on Pu. For example, for real-valued u with m ≤
u ≤ M for real constants m and M , we have m ≤ Pu ≤ M .

We now establish the solvability of the Dirichlet problem for disks.
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0

C2

C1

u

(a) The function u1

u

C2

C1

0

(b) The function u2

Figure 9.1. u1 and u2

Theorem 9.14 (H. A. Schwarz). Assume that u is a piecewise
continuous function on the unit circle S1.

Then the function Pu is harmonic on {|z| < 1} and, for θ0 ∈ R, its
limit as z approaches eı θ0 is u(eı θ0) provided u is continuous at eı θ0.
In particular, the Dirichlet problem is solvable for disks.

Proof. We only have to study the boundary values for Pu.
Let C1 and C2 be complementary arcs on the unit circle. Let u1

be the function which coincides with u on C1 and vanishes on C2;
let u2 be the corresponding function for C2 (see Figure 9.1). Clearly
Pu = Pu1 + Pu2.

The function Pu1 can be regarded as an integral over the arc C1;
hence it is harmonic on C − C1. The expression

�
(

eı θ + z

eı θ − z

)

=
1 − |z|2
|eı θ − z|2

vanishes on |z| = 1 for z �= eı θ. It follows that Pu1 is zero on the one-
dimensional interior of the arc C2. By continuity Pu1(z) approaches
zero as z approaches a point in the interior of C2.

In proving that Pu has limit u(eı θ0) at eı θ0, we may assume that
u(eı θ0) = 0 (if not replace u by u − u(eı θ0)). Under this assumption,
given an ε > 0 we can find C1 and C2 such that eı θ0 is an interior point
of C2 and

∣

∣u(eı θ)
∣

∣ < ε
2

for eı θ ∈ C2. This last condition implies that
∣

∣u2(e
ı θ)
∣

∣ < ε
2

for all eı θ, and hence |Pu2(z)| < ε
2

for all |z| < 1.

But we also have that u1 is continuous and vanishes at eı θ0 . Since
Pu1 is continuous at eı θ0 and agrees with u1 there, there exists a δ > 0
such that |Pu1(z)| < ε

2
for
∣

∣z − eı θ0
∣

∣ < δ.
It follows that |Pu(z)| ≤ |Pu1(z)| + |Pu2(z)| < ε as long as |z| < 1

and
∣

∣z − eı θ0
∣

∣ < δ. This is the required continuity statement. �
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eı θ

1 + |z|

eı θ∗

z

1 − |z|

Figure 9.2. The similar triangles

9.3.1. Geometric interpretation of the Poisson formula. This
interpretation is due to Schwarz; the presentation follows Ahlfors.1

Recipe: To find P [u(z)] we replace u(eı θ)—the value of the function
u at the point eı θ—by its value u(eı θ∗) at the point eı θ∗ on the unit
circle opposite to the point to eı θ with respect to z, and we average
these values over the unit circle (see Figure 9.2).

This comes from reinterpreting the second formula for P [u(z)],
equation (9.6), as follows: Fix a point z inside the unit circle and
a point eı θ on the unit circle. Let eı θ∗ be the unique point on the unit
circle that also lies on the straight line through z and eı θ. High-school
geometry (similar triangles, see Figure 9.2) or a calculation (using the
law of cosines, for example) yields

1 − |z|2 =
∣

∣eı θ − z
∣

∣ · ∣∣eı θ∗ − z
∣

∣ .

The ratio
eı θ − z

eı θ∗ − z
is negative; it follows from this observation that

1 − |z|2 = −(eı θ − z) · (e−ı θ∗ − z). (9.7)

To verify this equality, note that

eı θ − z

eı θ∗ − z
· (eı θ∗ − z) · (e−ı θ∗ − z)

is negative and has the same absolute value as (eı θ − z) · (eı θ∗ − z).
We now regard θ∗ as a function of θ, with z fixed, and differentiate

equality (9.7) logarithmically to obtain

eı θ

eı θ − z
dθ =

e−ı θ∗

e−ı θ∗ − z
dθ∗.

1Complex Analysis (third edition), McGraw-Hill, 1979.
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Hence we see that (because θ∗ is an increasing function of θ) that

dθ∗

dθ
=

∣

∣

∣

∣

eı θ∗ − z

eı θ − z

∣

∣

∣

∣

=
1 − |z|2
|eı θ − z|2 .

We have thus shown that

P [u(z)] =
1

2π

∫ 2π

0

u(eı θ) dθ∗ =
1

2π

∫ 2π

0

u(eı θ∗) dθ.

The recipe follows.

9.3.2. Fourier series interpretation of the Poisson formula.
We again consider the case of the unit disk and proceed to compute
the power series expansion of Pu(z) at the origin.

We note that

P [u(z)] =
1

2π

∫ 2π

0

1 − zz

(eı θ − z) · (e−ı θ − z)
· u(eı θ) dθ for |z| < 1.

Start with an expansion of the Poisson kernel

1 − zz

(eı θ − z) · (e−ı θ − z)
=

1 − zz

(1 − e−ı θz) · (1 − eı θz)

= (1 − zz)
∑

n,m≥0

e−ı n θ · zn · eı m θzm

= (1 − zz)
∑

n,m≥0

eı (m−n) θznzm

= 1 +
∞
∑

n=1

e−ı n θzn +
∞
∑

m=1

eı m θzm ,

and note that the last two series converge uniformly and absolutely on
all compact subsets of the unit disk. Therefore we see that

P [u(z)] = a0 +
∞
∑

n=1

anzn +
∞
∑

m=1

bmzm,

where, for n ∈ Z≥0 and m ∈ Z>0,

an =
1

2π

∫ 2π

0

e−ı n θ · u(eı θ) dθ , bm =
1

2π

∫ 2π

0

eı m θ · u(eı θ) dθ. (9.8)

Thus we have the following procedure for extending a given con-
tinuous function u on the unit circle to a continuous function on the
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closed unit disk that is harmonic on its interior. First compute the
Fourier series of u:

u(eıθ) =

∞
∑

n=0

aneınθ +

∞
∑

m=1

bme−ımθ,

where the Fourier coefficients an and bm are given by (9.8). In this
series, replace eınθ by zn, for each n ∈ Z≥0, and e−ımθ by zm, for each
m ∈ Z>0.

9.3.3. Classic reformulation of the Poisson formula. To give
the classic reformulation, we need to define the conjugate differential
of a given differential.

Definition 9.15. If ω = P dx + Q dy is a differential form, we
define ∗ω, the conjugate differential of ω, by

∗ω = −Q dx + P dy.

If D is a simply connected domain in C and u ∈ C2(D) is real
valued, we know that u is harmonic on D if and only if u is the real
part of an analytic function f on D. In this case,

df = f ′(z) dz = (ux − ıuy) · (dx + ı dy)

= (ux dx + uy dy) + ı (−uy dx + ux dy) = du + ı ∗du

is an exact differential on D and ∗du = dv, where v is a harmonic
conjugate of u on D. Thus du and ∗du are exact differential forms on
D whenever u is a real-valued harmonic function on a simply connected
domain D.

In what follows we work with cycles rather than with curves. We
remind the reader of the definitions of cycles and cycles homologous
to zero in Section 5.2. In the general case, for a harmonic (including
complex-valued) function u on an arbitrary (not necessarily simply
connected) domain D, the form du = uxdx + uydy is always exact on
D and its conjugate differential ∗du = −uydx + uxdy is closed since
(−u)yy = uxx. We conclude that

∫

γ

∗du = 0 (9.9)

for all harmonic functions u on D and all cycles γ in D that are ho-
mologous to zero on that domain.

We can now turn to the reformulation.
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Assume that γ is a regular curve with equation z = z(t) (regular
means that z′(t) �= 0 for all t). The direction of the tangent line to the
curve at z(t) is determined by the angle α = Arg z′(t) and

dx = |dz| cos α , dy = |dz| sin α.

The normal that points to the right of the tangent line has direction
β = α − π

2
. The normal derivative of u is the directional derivative of

u in the direction β:

∂u

∂n
= ux cos β + uy sin β = ux sin α − uy cos α .

Thus we see that ∗du = ∂u
∂n

|dz| and (9.9) can be rewritten as
∫

γ

∂u

∂n
|dz| = 0.

It is important to realize that if γ is the circle |z| = r, then
∂u

∂n
=

∂u

∂r
.

We now prove an important generalization of (9.9).

Theorem 9.16. If u1 and u2 are harmonic functions on D, then

u1
∗du2 − u2

∗du1

is a closed form on D.

To establish this assertion, it involves no loss of generality to assume
that the functions are real valued (see Exercise 9.4), and hence, we
may also assume (because the issue is local) that each function uj has
a single-valued harmonic conjugate vj ; thus

u1
∗du2 − u2

∗du1 = u1 dv2 − u2 dv1 = u1 dv2 + v1 du2 − d(u2 v1).

The last expression d(u2v1) is, of course, exact and

u1 dv2 + v1 du2 = � ((u1 + ı v1)(du2 + ı dv2)) .

Now u1 + ı v1 is an analytic function and du2 + ı dv2 is the total dif-
ferential of an analytic function. By Cauchy’s theorem, the product is
closed, and hence, we have shown that

∫

γ

u1
∗du2 − u2

∗du1 = 0

for all cycles γ that are homologous to zero in D.
In classic language, the above formula reads as follows

∫

γ

(

u1
∂u2

∂n
− u2

∂u1

∂n

)

|dz| = 0.
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Let us take for D the annulus {z ∈ C; R1 < |z| < R2} and apply the
above formula to the function z �→ u1(z) = log r (in polar coordinates)
and an arbitrary harmonic function u2 = u on D. We take for γ the
cycle C1−C2 where Cj is the circle |z| = rj oriented counter clockwise;
here R1 < r1 < r2 < R2. On any circle |z| = r, with R1 < r < R2, we
have ∗du = r · ∂u

∂r
dθ. Hence we have

log r1

∫

C1

r1 · ∂u

∂r
dθ −

∫

C1

u dθ = log r2

∫

C2

r2 · ∂u

∂r
dθ −

∫

C2

u dθ

or

log r

∫

|z|=r

r · ∂u

∂r
dθ −

∫

|z|=r

u dθ = −B

is independent of r (it is constant).
Applying the same argument to the functions u1 = 1 (constant

function) and u2 = u, we obtain that
∫

|z|=r

r · ∂u

∂r
dθ = A

is constant over the annulus D and hence is zero (let r = 0) if u is
harmonic in the disk {z ∈ C; |z| < R2}.

Thus for a function u harmonic in an annulus, the arithmetic mean
over concentric circles |z| = r is a linear function of log r

1

2π

∫

|z|=r

u dθ = A log r + B ;

and if u is harmonic in a disk, then A = 0 and the arithmetic mean is
constant. In the latter case B = u(0) by continuity (the reader should
know other proofs of this fact.)

Changing the origin to z0 we see that if u is harmonic in the disk
{z ∈ C; |z − z0| < R }, then for 0 < r < R

u(z0) =
1

2π

∫ 2π

0

u(z0 + r eı θ) dθ ;

this is the Mean Value Property (MVP) for harmonic functions that
was already established in Corollary 9.7 as a consequence of the fact
that real-valued harmonic functions are locally real parts of analytic
functions. From it one also obtains the area Mean Value Property

u(z0) =
1

2πır2

∫∫

|z−z0|≤r

u(z) dz dz. (9.10)

Remark 9.17. If u : S1 → S1 is a homeomorphism, then Pu is also
a homeomorphism, from {z; |z| < 1} to itself. This useful observation is
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Ω+

Ω−

σ

Figure 9.3. A symmetric region

not obvious at all. A generalization will be established in a companion
volume on more advanced topics.

9.4. The Mean Value Property: a characterization

Harmonic functions satisfy the MVP, as we have seen in Corollary
9.7. As a matter of fact this property characterizes harmonic functions.
The proof below is based on the solution to the Dirichlet problem.

Theorem 9.18. A continuous complex-valued function that satis-
fies the MVP is harmonic.

Proof. Let f be a continuous function on a domain D, let ζ ∈ D,
and let r0 > 0 be sufficiently small so that cl U(ζ, r0) ⊂ D and f
satisfies (5.6) for all r ≤ r0. It suffices to assume that f is real valued.
Let v be the continuous function on {|z− ζ | ≤ r0} that is harmonic on
{|z− ζ | < r0} and agrees with f on {|z− ζ | = r0}. Then f − v has the
MVP in {|z− ζ | < r0}, and thus it attains its maximum and minimum
on {|z − ζ | = r0}. Since f = v on {|z − ζ | = r0}, we conclude that
f = v on {|z − ζ | ≤ r0} and thus that f is harmonic there. �

9.5. The reflection principle

We start with the simplest form of the reflection principle. Let Ω
be a nonempty region in the complex plane that is symmetric about
the real axis; that is, z̄ ∈ Ω if and only if z ∈ Ω (see Figure 9.3). Such
a region must intersect the real axis nontrivially, and it is a disjoint
union of three sets:

Ω = Ω+ ∪ σ ∪ Ω−,

where

Ω+ = {z ∈ Ω; �z > 0}, σ = Ω ∩ R, and Ω− = {z ∈ Ω; �z < 0}.
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Remark 9.19. A function z �→ f(z) on Ω is harmonic (analytic) if

and only if the function z �→ f(z̄) is (see Exercise 9.2).

We concentrate on the holomorphic case. Assume that f ∈ H(Ω)

and f is real on at least one segment of σ; then f(z) = f(z̄) for all
z ∈ Ω.

Proof. The function z �→ g(z) = f(z)− f(z̄) is analytic on Ω and
vanishes on a subset of Ω with a limit point in Ω; it is thus identically
zero on Ω. �

The same conclusion holds if we merely assume that f ∈ C(Ω+∪σ),
is analytic on Ω+ and real on σ, since in this case the extension of f to
Ω defined by f(z) = f(z̄) for z ∈ Ω− satisfies the previous hypothesis.
We can strengthen this statement considerably.

Theorem 9.20. Let Ω be a nonempty region in the complex plane
that is symmetric about the real axis.

If v is a real-valued, continuous function on Ω+ ∪ σ, and it is har-
monic on Ω+ and zero on σ, then v has a harmonic extension to Ω that
satisfies the symmetry condition v(z) = −v(z̄).

Moreover, if v is the imaginary part of an analytic function f in
H(Ω+), then f has an analytic extension to Ω that satisfies the sym-

metry condition f(z) = f(z̄).

Proof. We use the symmetry to extend v to all of Ω. The resulting
extension (also called v) is continuous on Ω, harmonic on Ω+ ∪ Ω−,
and vanishes on σ.

The issue of harmonicity of v in Ω is local; therefore we only need
to show that v is harmonic in a neighborhood of each point x ∈ σ. For
this purpose, consider an open disk D with center at x whose closure
is contained in Ω. Let V be the unique function that is continuous on
cl D, harmonic on its interior, and agrees with v on the boundary of D.
Since v restricted to ∂D satisfies the symmetry condition v(z) = −v(z̄),
so does the function V (on cl D). Hence V vanishes on cl D+ ∩R. The
function V −v is continuous on cl D+, harmonic on D+, and vanishes on
its boundary; hence it is identically zero on cl D+. Similarly, V −v = 0
on cl D−. We conclude that V = v on D, and we have thus shown that
v is harmonic on Ω.

The function f has a symmetric extension to Ω+∪ Ω− [that satisfies

f(z) = f(z̄)]. We only know that its imaginary part can be extended to
all of Ω (and the extension vanishes on σ). We must use information on
the imaginary part of f to draw conclusions about its real part. Again,
the problem is local and we work with the disk D defined above. The



188 9. HARMONIC FUNCTIONS

real-valued harmonic function v on D has a harmonic conjugate −u
on this disk. The fact that harmonic conjugates are unique up to the
addition of real constants allows us to normalize so that u = �f in D+.
We study the function

U(z) = u(z) − u(z̄), z ∈ D.

This function vanishes on D ∩ σ; hence,

∂U

∂x
= 0 for (x, 0) ∈ D ∩ σ .

Also, from the definition of U and the CR equations for the analytic
function u + ı v on D,

∂U

∂y
= 2

∂u

∂y
= −2

∂v

∂x
= 0 for (x, 0) ∈ D.

Thus the analytic function 2 Uz = Ux − ı Uy vanishes on D ∩ σ and
is hence identically zero on D. Hence U is constant on D. Since it
vanishes on D ∩ σ, the constant must be zero. We have shown that on
D+ ∪ D−, the functions f and u + ı v agree. Since u + ı v is analytic
on all of D, so is f . �

Exercises

9.1. Prove that the equivalent forms for the Laplacian given in equa-
tions (9.2) and (9.3) are correct.

9.2. Show that a function z �→ f(z) on Ω is harmonic (analytic) if

and only if the function z �→ f(z̄) is.

9.3. Show that if ω = f dz + g dz is a continuous differential form
on a domain D, then

∗ω = −ı (f dz − g dz).

9.4. We have shown that if u1 and u2 are real-valued harmonic
functions on D, then

u1
∗du2 − u2

∗du1

is a closed form on D, and we have asserted that it also holds for
complex-valued harmonic functions. Prove this assertion.

9.5. Prove the Maximum and Minimum Principles for real-valued
harmonic functions

(1) as a general result for real-valued functions that satisfy the
MVP, and then once again

(2) as a consequence of Harnack’s inequalities for positive har-
monic functions.
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9.6. Let K be a compact subset of a domain D ⊆ C, and let u be
a positive harmonic function on D.

Show that there exists a constant c ≥ 1 that depends only on K
and D, but not on u, such that

1

c
≤ u(z1)

u(z2)
≤ c,

for all z1 and z2 ∈ K.

9.7. Let f be a continuous real-valued function on a domain D. Sup-

pose that the partial derivatives ∂2f
∂x2 and ∂2f

∂y2 exist, and satisfy Laplace’s

equation �f = 0. Show that f is harmonic on D.
Hint: Use the notation in the proof of Theorem 9.18. Let ζ =
ξ + ıη ∈ D. Show first that for all ε > 0, the function F (z) =
u(z)−v(z)+ε(x−ξ)2 satisfies the maximum principle in {|z−ζ | ≤ r0}.

9.8. Does the area Mean Value Property imply harmonicity for con-
tinuous functions?

9.9. If u is real valued and harmonic on |z| < 1, continuous on
|z| ≤ 1, and u(eı θ) = cos 2θ + sin 2θ, find u

(

ı
2

)

.

9.10. Suppose that u(0) = 1, where u is harmonic and positive in
a neighborhood of {z ∈ C; |z| ≤ 1}. Prove that 1

7
≤ u

(

3
4

) ≤ 7.

9.11. Let α be a real number. For ζ = eı θ with θ ∈ R, let

ϕ(ζ) = cos θ + ı α sin θ .

Which of the following assertions are true for all α in R? Which
are true for some values of α?

a) The function f(z) =
1

2πı

∫

|ζ|=1

ϕ(ζ)

ζ − z
dζ is holomorphic for

|z| < 1.
b) There exists a function f holomorphic for |z| < 1, continuous

for |z| ≤ 1, and satisfying f(ζ) = ϕ(ζ) for |ζ | = 1.
c) There exists a function f holomorphic for |z| < 1 such that

�f is continuous for |z| ≤ 1 and satisfies �f(ζ) = �ϕ(ζ) for
|ζ | = 1.

9.12. Let g be a continuous complex-valued function defined on S1.
Prove that there exists a continuous function f on {z ∈ C; |z| ≤ 1},
such that f is holomorphic on {z ∈ C; |z| < 1}, and satisfies f|S1

= g,

if and only if
∫

|ζ|=1

g(ζ) ζn dζ = 0 for n = 0, 1, 2, . . . .



190 9. HARMONIC FUNCTIONS

9.13. Does there exist a function f holomorphic on |z| < 1 such
that

lim
z→ζ

f(z) = ζ + ζ−1 for all ζ with |ζ | = 1?

9.14. Let f ∈ C2(D). Show that f is holomorphic or anti-holomorphic
on D if and only if f and f 2 (the square of f) are harmonic on D.



CHAPTER 10

Zeros of Holomorphic Functions

There are certain (classical families of) functions of a complex vari-
able that mathematicians have studied frequently enough for them to
acquire their own names. These functions are, of course, ones that de-
velop naturally and repeatedly in various mathematical settings. Ex-
amples of such named functions include Euler’s Γ-function, the Rie-
mann ζ-function, and the Euler Φ-function. We will study only the
first of these functions. There is a long history of synergy between
the understanding of such functions and the development of complex
analysis. Indeed, motivation for much of the theory and techniques of
complex analysis was the desire to understand specific functions. In
turn, the understanding of these functions has fed and continues to
feed the development of the theory of complex variables.

Holomorphic functions in general and these classically studied func-
tions in particular are often understood by their zeros. In this chapter
we develop techniques to study the zeros of holomorphic functions. We
show that one can always construct a meromorphic function with pre-
scribed zeros and poles. To do so, we develop a theory for infinite
products.

10.1. Infinite products

We begin with some language needed to discuss infinite products.
We then develop lemmas that lead to Theorem 10.5, which relates the
uniform convergence of certain infinite sums to the uniform convergence
(to a holomorphic function) of corresponding infinite products.

Definition 10.1. Let un ∈ C for each n ∈ Z>0, and set

pn = (1 + u1)(1 + u2) · · · (1 + un).

If lim
n→∞

pn exists and equals p, we write

p =

∞
∏

n=1

(1 + un) .

We call pn the partial product of the infinite product p. We say that
the infinite product p converges if {pn} does.

191
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Lemma 10.2. Let {un}∞n=1 ⊂ C and set

pN =
N
∏

n=1

(1 + un) and p∗N =
N
∏

n=1

(1 + |un|).

Then

p∗N ≤ e|u1|+···+|uN | and |pN − 1| ≤ p∗N − 1.

Proof. We know that x > 0 implies that ex ≥ 1 + x. Therefore,
1 + |un| ≤ e|un|, so that p∗N ≤ e|u1|+···+|uN |.

The second statement is proved by induction on N . For N = 1,
|p1 − 1| = |u1| = p∗1 − 1.

For N ≥ 1,

|pN+1 − 1| = |pN(1 + uN+1) − 1|
= |(pN − 1)(1 + uN+1) + uN+1|
≤ |pN − 1| · |1 + uN+1| + |uN+1| ,

and by induction, this expression is

≤ (p∗N − 1) · (1 + |uN+1|) + |uN+1|
= p∗N+1 − 1 .

�

Theorem 10.3. Suppose {un} is a sequence of bounded functions
on a set S such that

∑ |un| converges uniformly on S.

Then the following hold:

(1) f(z) =

∞
∏

n=1

(1 + un(z)) converges uniformly on S.

(2) If J : Z>0 → Z>0 is any bijection, then

f(z) =
∞
∏

k=1

(1 + uJ(k)(z)).

(3) f(z0) = 0 if and only if un(z0) = −1 for some n ∈ Z>0.

Proof. By uniform convergence of
∑ |un| on S, there exists c ∈

R>0 such that

sup
z∈S

∑

|un(z)| ≤ c.
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Let

pN (z) =

N
∏

n=1

(1 + un(z)) and qM(z) =

M
∏

k=1

(1 + uJ(k)(z)).

We know that

|pN | ≤ |pN − 1| + 1 ≤ p∗N ≤ e|u1|+···+|uN | ≤ ec.

Choose ε with 0 < ε < 1
4
. Then there exists an N0 ∈ Z>0 such that

∞
∑

n=N0

|un(z)| < ε for all z ∈ S;

in particular, |un(z)| < ε < 1
4

for all z ∈ S and all n > N0. Choose M0

such that
{1, 2, . . . , N0} ⊂ {J(1), J(2), . . . , J(M0)}.

If M, N > max{M0, N0}, then we can write

qM(z) − pN(z) = pN(z)

(∏

1(1 + un(z))
∏

2(1 + un(z))
− 1

)

.

Here the symbols
∏

1 and
∏

2 denote products taken over appropriate
disjoint indices. For our purposes the important facts about

∏

1 and
∏

2 are that only indices n > N0 appear, and that the indices that
appear in the two products are disjoint.

Let us define ũn(z) by

1 + ũn(z) =

⎧

⎨

⎩

1 + un(z) if n appears in
∏

1
1

1 + un(z)
if n appears in

∏

2
,

and let I be the union of the indexing sets in
∏

1 and
∏

2. Note that
I ⊂ Z>0.

Now if a and b ∈ C, δ ∈ R>0, |a| < δ < 1
2
, and

1

1 + a
= 1 + b, then

|b| < 2δ. Therefore

|qM(z) − pN(z)| = |pN(z)|
∣

∣

∣

∣

∣

∏

n∈I

(1 + ũn(z)) − 1

∣

∣

∣

∣

∣

≤ |pN(z)|
(

∏

n∈I

(1 + |ũn(z)|) − 1

)

≤ |pN(z)|
(

exp

(

∑

n∈I

|ũn(z)|
)

− 1

)

≤ |pN(z)|
(

exp

( ∞
∑

n=N0

|ũn(z)|
)

− 1

)

≤ |pN | (e2ε − 1).
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We now claim that ex − 1 ≤ 2x for 0 ≤ x ≤ 1
2
. This claim may be

verified as follows. Define F (x) = ex − 1− 2x for x ∈ R. Observe that
F (0) = 0 and F ′(x) = ex − 2. Since the (real) exponential function is

increasing, F ′ ≤ e
1
2 − 2 on [0, 1

2
]. But

e
1
2 = 1 +

1

2
+

(1
2
)2

2!
+

(1
2
)3

3!
+ · · ·

< 1 +
1

2
+

(

1

2

)2

+ · · · =
1

1 − 1
2

= 2,

and thus F is nonpositive on [0, 1
2
]. Therefore

|qM(z) − pN(z)| ≤ ec4ε for all z ∈ S ,

and we can conclude as follows:

(1) If we let J be the identity map, then pN(z) → f(z) uniformly
for z ∈ S.

(2) For arbitrary J , we conclude that qM(z) → f(z) uniformly in
z.

(3) Since pN0 = pM − (pM − pN0), we have, for sufficiently large
M ,

|pN0 | ≤ |pM | + |pM − pN0 | ≤ |pM | + (e2ε − 1) |pN0 |
≤ |pM | + 4ε |pN0 | ;

or, equivalently, that

|pM(z)| ≥ (1 − 4ε) |pN0(z)| .
Therefore f(z) = 0 if and only if pN0(z) = 0.

�

Theorem 10.4. Assume 0 ≤ un < 1.

(1) If
∞
∑

n=1

un < ∞, then 0 <
∞
∏

n=1

(1 − un) < ∞.

(2) If
∞
∑

n=1

un = +∞, then
∞
∏

n=1

(1 − un) = 0.

Proof. The first claim is a consequence of the previous theorem.
To prove the second claim, we start with the observation that

1 − x ≤ e−x for 0 ≤ x ≤ 1.
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Let pN = (1−u1)(1−u2) · · · (1−uN). Since p1 ≥ p2 ≥ . . . ≥ pN ≥ 0,
lim

N→∞
pN = exists. We call it p. Now

0 ≤ p ≤ pN =

N
∏

n=1

(1 − un) ≤ e−(u1+···+uN ).

Since lim
N→∞

e−(u1+···+uN ) = 0, the theorem follows. �

Finally, we can establish when an infinite product is holomorphic.

Theorem 10.5. Let D be a domain in C, and suppose that {fn} is

a sequence in H(D) with fn not identically 0, and such that

∞
∑

n=1

|1 − fn|
converges uniformly on compact subsets of D.

Then

∞
∏

n=1

fn converges uniformly on compact subsets of D to a func-

tion f ∈ H(D), and

νz(f) =

∞
∑

n=1

νz(fn) for all z ∈ D.

Proof. We only have to verify the last formula. We note that the
sum in that formula is finite (that is, all but finitely many summands
are zero). Let z0 ∈ D, and let K ⊂ D denote a compact set containing
a neighborhood of z0. There is an N in Z>0 such that |1 − fn(z)| < 1

2
for all z ∈ K and all n ≥ N. Therefore, fn(z) �= 0 for all z ∈ K and for
all n ≥ N . Thus

νz0(f) = νz0

(

N−1
∏

n=1

fn

)

+ νz0

( ∞
∏

n=N

fn)

)

=

N−1
∑

n=1

νz0(fn) + 0.

�

10.2. Holomorphic functions with prescribed zeros

Our goal is to construct a holomorphic function with arbitrarily
prescribed zeros (at a discrete set). To this end, we begin by defining
the elementary functions first introduced by Weierstrass. We investi-
gate some of their properties and then use them along with Theorem
10.5 to construct the required holomorphic function.

Definition 10.6. Let z ∈ C, and set

E0(z) = 1 − z,
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and, for p ∈ Z>0,

Ep(z) = (1 − z) exp

(

z +
z2

2
+ · · · + zp

p

)

.

Note that, for all nonnegative integers p, Ep(0) = 1, and Ep(z) = 0
if and only if z = 1. Furthermore, the unique zero of Ep is simple.

Lemma 10.7. If |z| ≤ 1, then |1 − Ep(z)| ≤ |z|p+1 for all nonnega-
tive integers p.

Proof. The statement is clearly true if p = 0.
If p ≥ 1, we have

E ′
p(z) = (1 − z)ez+ z2

2
+···+ zp

p [1 + z + · · ·+ zp−1] − ez+ z2

2
+···+ zp

p

= −zpez+ z2

2
+···+ zp

p .

We therefore conclude that ν0(−E ′
p) = p. Further,

−E ′
p(z) = zpez+ z2

2
+···+ zp

p

= zp

∞
∑

n=0

1

n!

(

z +
z2

2
+ · · ·+ zp

p

)n

=
∑

n≥p

bnzn,

with bp = 1 and bn > 0 for all n ≥ p. Therefore

1 − Ep(z) =
∑

n≥p

bn

n + 1
zn+1.

Set

φ(z) =
1 − Ep(z)

zp+1
.

We observe that φ ∈ H(C) and φ(z) =
∑

n≥0

anzn, with an > 0 for

all n ∈ Z≥0. For |z| ≤ 1, we have

|φ(z)| =

∣

∣

∣

∣

∣

∑

n≥0

anzn

∣

∣

∣

∣

∣

≤
∑

n≥0

an |zn| ≤
∑

n≥0

an = φ(1) = 1;

thus |1 − Ep(z)| ≤ |z|p+1 for |z| ≤ 1. �
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Theorem 10.8. Assume that {zn}∞n=1 is a sequence of nonzero com-
plex numbers with lim

n→∞
|zn| = ∞.

Let {pn} ⊆ Z≥0 be a sequence of nonnegative integers with the prop-
erty that for all positive real numbers r, we have

∞
∑

n=1

(

r

|zn|
)1+pn

< ∞. (10.1)

Then the infinite product

P (z) =

∞
∏

n=1

Epn

(

z

zn

)

defines an entire function whose zero set is {z1, z2, . . .}. More precisely,
if z = a appears ν ≥ 0 times in the above set of zeros, then νa(P ) = ν.

Condition (10.1) is always satisfied for pn = n − 1. Thus any
discrete set in C is the zero set of an entire function.

Proof. We first show that (10.1) holds for pn = n−1. In this case

we have to show convergence of the series
∑

an, with an =

(

r

|zn|
)n

.

But |an|
1
n → 0 as n → ∞, and the root test allows us to conclude that

∞
∑

n=1

(

r

|zn|
)n

< ∞.

Now let {pn} be any sequence of nonnegative integers satisfying
condition (10.1); fix r > 0, and assume that |z| ≤ r. From Lemma
10.7, we conclude that

∣

∣

∣

∣

1 − Epn

(

z

zn

)∣

∣

∣

∣

≤
∣

∣

∣

∣

z

zn

∣

∣

∣

∣

pn+1

≤
(

r

|zn|
)pn+1

.

Therefore we can apply Theorem 10.5 to conclude that
∏

Epn

(

z
zn

)

converges uniformly on all compact subsets of C to an entire function
that has the required zero set. �

We next prove

Theorem 10.9. Let f ∈ H(C) have ν0(f) = k. Let {z1, z2, . . .} be
the other zeros of f , listed according to their multiplicities in nonde-
creasing order.
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Then there exist a function g ∈ H(C) and a sequence of nonnegative
integers {p1, p2, . . .} such that

f(z) = zkeg(z)
∞
∏

n=1

Epn

(

z

zn

)

.

Proof. Choose any sequence of nonnegative integers {pn} such
that (10.1) holds for all r > 0. Let

P (z) =
∞
∏

n=1

Epn

(

z

zn

)

and G(z) =
f(z)

zkP (z)
.

Then G ∈ H(C) and G(z) �= 0 for all z ∈ C. Since G is a nonva-
nishing entire function, there is a g ∈ H(C) with eg(z) = G(z) for all
z ∈ C. �

Theorem 10.10. Let D be a proper subdomain of ̂C. Let A be
a subset of D that has no limit point in D, and let ν be a function
mapping A to Z>0.

Then there exists a function f ∈ H(D) with νz(f) = ν(z) for all
z ∈ A, whose restriction to D − A has no zeros.

Proof. To begin, we make the following observations:

(1) A is either finite or countable. We let |A| denote the cardinality
of A.

(2) Without loss of generality, we may assume that ∞ ∈ D − A
and that A is nonempty.

(3) If |A| < ∞, let A = {z1, . . . , zn} and let νj = ν(zj), for all

1 ≤ j ≤ n. Choose z0 ∈ ̂C−D so that z0 �= ∞. We set in this
case

f(z) =
(z − z1)

ν1 · · · (z − zn)νn

(z − z0)ν1+···+νn
,

and we note that f does not vanish on ̂C − {z1, . . . , zn} since
f(∞) = 1. We have thus established the theorem for finite
sets A.

To prove the theorem for infinite sets A, let K = ̂C−D. Note that
K is a compact subset of C.

Let {αn}∞n=1 be a sequence whose terms consist of all a ∈ A, where
each a is repeated ν(a) times.

We first claim that, for each positive integer n, we can choose a
βn ∈ K such that |βn − αn| ≤ |β − αn| for all β ∈ K. To see that this
claim is valid, note that the function z �→ l(z) = |z − αn| for z ∈ K is
continuous on K and, therefore, achieves a minimum at some βn ∈ K.
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The function f we are seeking is

f(z) =
∞
∏

n=1

En

(

αn − βn

z − βn

)

.

We show next that limn→∞ |βn − αn| = 0. For if |βn − αn| ≥ δ for
some δ > 0 and infinitely many n, then for some subsequence {αnj

} of
{αn},

∣

∣z − αnj

∣

∣ ≥ δ for all z ∈ K. (10.2)

But a subsequence of this subsequence converges to some point α ∈
̂C. From (10.2), we conclude that α /∈ K. Thus we arrive at the
contradiction that α ∈ D and is a limit point of A.

Next, we put rn = 2 |αn − βn| and observe that the rn converge to
zero as n goes to infinity. We let K0 be a compact subset of D, and we
note that rn → 0 implies there is an N ∈ Z>0 such that |z − βn| > rn

for all z ∈ K0 and all n > N . Since K and K0 are disjoint compact

subsets of ̂C, the distance δ0 between them must be positive.
Thus

∣

∣

∣

∣

αn − βn

z − βn

∣

∣

∣

∣

≤ rn

2rn
=

1

2
for all n > N and all z ∈ K0,

and hence
∣

∣

∣

∣

1 − En

(

αn − βn

z − βn

)∣

∣

∣

∣

≤
∣

∣

∣

∣

αn − βn

z − βn

∣

∣

∣

∣

n+1

≤
(

1

2

)n+1

for all n > N and all z ∈ K0.
Therefore the infinite product defining f converges. Now f(z) = 0

if and only if En

(

αn − βn

z − βn

)

= 0 for some n ∈ Z>0 if and only if z = αn

for some n ∈ Z>0. �

As an immediate corollary we obtain the following

Theorem 10.11. If D is a proper subdomain of ̂C, then M(D) is
the field of fractions of the integral domain H(D).

10.3. Euler’s Γ-function

In this section we introduce an important function among whose
remarkable properties is the fact that it extends the factorial function
on the integers to an entire function. Our development is more brisk
than in previous sections.
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10.3.1. Basic properties. Define, for z ∈ C,

G(z) =

∞
∏

n=1

(

1 +
z

n

)

e−
z
n .

The infinite product converges to an entire function with simple
zeros at each negative integer.

We claim that

h(z) = z G(z) G(−z) =
sin πz

π
, for all z ∈ C. (10.3)

Simple calculations show that

h(z) = z

∞
∏

n=1

(

1 − z2

n2

)

and hence, using (7.3) of Chapter 7,

h′(z)

h(z)
=

d

dz
log h(z) =

1

z
−

∞
∑

n=1

2z

n2 − z2
= π cot πz.

It follows that h(z) = c sin πz for some nonzero constant c. To
evaluate c, we note that

lim
z→0

sin πz

z
= π , and lim

z→0

h(z)

z
= 1,

and thus, we conclude that c =
1

π
.

The function G(z − 1) is entire and has simple zeros at each non-
positive integer and no other zeros. It follows that

G(z − 1) = zeγ(z)G(z) (10.4)

for some entire function γ. We proceed to determine this function. Dif-
ferentiating logarithmically both sides of the last equation, we obtain

∞
∑

n=1

(

1

z − 1 + n
− 1

n

)

=
1

z
+ γ′(z) +

∞
∑

n=1

(

1

z + n
− 1

n

)

.

Since ∞
∑

n=1

(

1

z − 1 + n
− 1

n

)

=

∞
∑

n=0

(

1

z + n
− 1

n + 1

)

,

we conclude that

γ′(z) =
∞
∑

n=1

(

1

n
− 1

n + 1

)

− 1 = 0.

Hence the function γ is constant. It is known as Euler’s constant.
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Returning to our function G, we observe that if we set z = 1 in
(10.4), we obtain that 1 = G(0) = eγG(1). We determine γ as follows:
From (10.4),

e−γ =

∞
∏

n=1

(

1 +
1

n

)

e−
1
n .

Thus

e−γ = lim
n→∞

(n + 1)e−(1+ 1
2
+···+ 1

n
),

and hence,

−γ = lim
n→∞

[

log(n + 1) −
(

1 +
1

2
+ · · ·+ 1

n

)]

.

Since limn→∞(log(n + 1) − log n) = limn→∞ log(1 + 1
n
) = 0, we obtain

γ = lim
n→∞

[(

1 +
1

2
+ · · · + 1

n

)

− log n

]

. (10.5)

Next set H(z) = eγzG(z) and compute that

H(z − 1) = eγze−γG(z − 1) = eγzzG(z) = zH(z).

We can now introduce

Definition 10.12. Euler’s Γ-function is defined by

Γ(z) =
1

zH(z)
, for z ∈ C.

Note that Γ is a meromorphic function on C with simple poles at
z = 0,−1,−2, . . ., and that it has no zeros.

The Γ-function satisfies a number of useful functional equations.
We now derive some of these, which will lead up to (10.11), known as
Legendre’s duplication formula.

We start with

Γ(z) =
e−γz

z

∞
∏

n=1

(

1 +
z

n

)−1

· e z
n . (10.6)

The Γ-function satisfies the functional equation

Γ(z + 1) =
1

(z + 1)H(z + 1)
=

1

H(z)
= zΓ(z). (10.7)

Furthermore, it follows from (10.3) that

Γ(z)Γ(1 − z) =
π

sin πz
. (10.8)
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A simple calculation shows that

Γ(1) = e−γ
∞
∏

n=1

(

1 +
1

n

)−1

e
1
n = 1.

Together with (10.7), this implies that

Γ(n) = (n − 1)! , for all n ∈ Z>0.

Also, (Γ
(

1
2

)

)2 =
π

sin π
2

= π implies that

Γ

(

1

2

)

=
√

π .

We derive some other properties of Euler’s Γ-function that we will
need. We start with a calculation, from (10.6):

d

dz

Γ′(z)

Γ(z)
=

d

dz

d

dz
(log(Γ(z))

=
d

dz

(

−γ − 1

z
−

∞
∑

n=1

(

1

z + n
− 1

n

)

)

=

∞
∑

n=0

(

1

z + n

)2

. (10.9)

Both functions

z �→ Γ(2z) and z �→ Γ(z)Γ

(

z +
1

2

)

have simple poles precisely at the points 0,−1,−2, . . . and −1
2
,−3

2
, . . ..

The ratio of the two functions is hence entire without zeros. The next
calculation will show more:

d

dz

(

Γ′(z)

Γ(z)

)

+
d

dz

(

Γ′(z + 1
2
)

Γ(z + 1
2
)

)

=
∞
∑

n=0

1

(z + n)2
+

∞
∑

n=0

1

(z + n + 1
2
)2

= 4

( ∞
∑

n=0

1

(2z + 2n)2
+

∞
∑

n=0

1

(2z + 2n + 1)2

)

= 4

( ∞
∑

m=0

1

(2z + m)2

)

= 2
d

dz

(

Γ′(2z)

Γ(2z)

)

.

Therefore, for some constant a, we have

2
Γ′(2z)

Γ(2z)
=

Γ′(z)

Γ(z)
+

Γ′(z + 1
2
)

Γ(z + 1
2
)
− a

or, equivalently,

d

dz
log Γ(2z) =

d

dz
log Γ(z)Γ

(

z +
1

2

)

− a.
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Thus, for some constant b, we have

Log Γ(2z) = Log Γ(z)Γ

(

z +
1

2

)

− az − b

or, equivalently,

Γ(2z)eaz+b = Γ(z)Γ

(

z +
1

2

)

. (10.10)

Next work backward to determine a and b. Setting z = 1
2

in (10.10),

we obtain 1 · e 1
2
a+b =

√
π; that is, 1

2
a + b = 1

2
log π. Setting z = 1 in

(10.10), we obtain ea+b = 1
2

√
π; that is, a + b = 1

2
log π − log 2.

Thus a = −2 log 2 and b = 1
2
(log π)+ log 2, and we have established

Legendre’s duplication formula

√
πΓ(2z) = 22z−1Γ(z)Γ

(

z +
1

2

)

. (10.11)

10.3.2. Estimates for Γ(z). The estimate of Γ(z) for large values
of |z| that is found in this section is known as Stirling’s formula.

To derive this formula, we first express the partial sums
∑n

k=0

(

1
z+k

)2

of d
dz

Γ′(z)
Γ(z)

[see (10.9)] as a convenient line integral.

View z = x+ ıy as a (fixed) parameter and ζ = ξ + ı η as a variable,
and define

Φ(ζ) =
π cot πζ

(z + ζ)2
, for ζ ∈ C.

The function Φ has singularities at ζ = −z and at ζ ∈ Z; if z �∈ Z, a
double pole at −z and simple poles at the integers. Let Y be a positive
real number, n be a nonnegative integer, and K be the rectangle in the
ζ-plane described by −Y ≤ η ≤ Y and 0 ≤ ξ ≤ n+ 1

2
(see Figure 10.1).

ıY

−ıY

n +
1

2

Figure 10.1. The rectangle K
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Then the Residue Theorem yields

Lemma 10.13. For z /∈ Z≥0,

pr. v.
1

2πı

∫

∂K

Φ(ζ) dζ = − 1

2z2
+

n
∑

ν=0

1

(z + ν)2
.

We plan to let Y → ∞ and n → ∞. We thus have to study several
line integrals, as follows.

10.3.2.1. The integral over the horizontal sides: η = ±Y . On the
horizontal sides η = ±Y , cot πζ converges uniformly to ±ı as Y goes

to ∞. Thus
cot πζ

(z + ζ)2
converges to 0 on each of the line segments

ξ ≥ 0, η = ±Y as Y → ∞. We need to show that

lim
n→∞

lim
Y →∞

∫ n+ 1
2

0

cot π(ξ ± ıY )

(z + ξ + ıY )2
dξ = 0.

Since we can control the speed with which Y and n approach infinity,
this presents a small challenge; for example, we can set Y = n2 and
then let n → ∞.

10.3.2.2. The integral over the vertical side ξ = n + 1
2
. On the

vertical line ξ = n+ 1
2
, cot πζ is bounded since cot is a periodic function.

Thus we conclude that for some constant c,
∣

∣

∣

∣

∣

∫

ξ=n+ 1
2

Φ(ζ)dζ

∣

∣

∣

∣

∣

≤ c

∫

ξ=n+ 1
2

dη

|ζ + z|2 .

On ξ = n + 1
2
, we have ζ = n + 1

2
− ı η = 2n + 1 − ζ . We then use

residue calculus (as in Case (1) of Section 6.5) to conclude that

1

ı

∫

ξ=n+ 1
2

dζ

|ζ + z|2 =
1

ı

∫

ξ=n+ 1
2

dζ

(ζ + z)(2n + 1 − ζ + z)
=

2π

2n + 1 + 2x
.

Therefore,

lim
n→∞

∫

ξ=n+ 1
2

dη

|ζ + z|2 = 0.

10.3.2.3. The integral over the imaginary axis. We now turn to the
computation of the principal value of the integral over the imaginary
axis, which may be written as follows.

1

2

∫ ∞

0

cot πıη

[

1

(ıη + z)2
− 1

(ıη − z)2

]

dη

= −
∫ ∞

0

cothπη
2ηz

(η2 + z2)2
d η .
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We now let Y and n tend to ∞ in Lemma 10.13 to conclude that

d

dz

Γ′(z)

Γ(z)
=

∞
∑

n=0

1

(z + n)2

=
1

2z2
+

∫ −∞

+∞
Φ(ζ) dζ =

1

2z2
+

∫ ∞

0

cothπη
2ηz

(η2 + z2)2
dη .

Replacing cothπη = 1+
2

e2πη − 1
in the above expression and noting

that
∫ ∞

0

2ηz

(η2 + z2)2
dη =

1

z
,

we obtain

d

dz

Γ′(z)

Γ(z)
=

1

2z2
+

∫ ∞

0

(

1 +
2

e2πη − 1

)

2ηz

(η2 + z2)2
d η

=
1

z
+

1

2z2
+

∫ ∞

0

4ηz

(η2 + z2)2

dη

e2πη − 1
·

We restrict z to �z > 0 and note that we can integrate under the
integral sign with respect to z to conclude

Γ′(z)

Γ(z)
= ˜C + Log z − 1

2z
−
∫ ∞

0

2η

η2 + z2

dη

e2πη − 1
·

Using integration by parts, we see that

−
∫ ∞

0

2η

η2 + z2

dη

e2πη − 1
=

1

π

∫ ∞

0

z2 − η2

(η2 + z2)2
log(1 − e−2πη) dη ;

therefore,

Γ′(z)

Γ(z)
= ˜C + Log z − 1

2z
+

1

π

∫ ∞

0

z2 − η2

(η2 + z2)2
log(1 − e−2πη) dη ,

and we conclude that

Log Γ(z) = C ′ + Cz +

(

z − 1

2

)

· Log z + J(z), (10.12)

where

J(z) =
1

π

∫ ∞

0

z

(η2 + z2)2
log

1

1 − e−2πη
dη.

If z → ∞ and z stays away from ıR, then J(z) → 0. We have
almost established

Theorem 10.14 (Stirling’s formula). For �z > 0,

Γ(z) =
√

2πzz− 1
2 e−zeJ(z). (10.13)
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Proof. We know from (10.12) that

Γ(z) = eC′+Czzz− 1
2 eJ(z), (10.14)

and we only need to determine the constants C ′ and C, which we now
do using (10.14) and the two functional equations (10.7) and (10.8)
already derived for Γ.

Replacing Γ(z) by the RHS of (10.14) (and also Γ(z + 1) by the
corresponding value) in Γ(z + 1) = zΓ(z), we obtain

C = −(z +
1

2
) Log

(

1 +
1

z

)

+ J(z) − J(z + 1),

and letting z tend to ∞, we conclude that C = −1.
To obtain C ′ one can proceed in a similar manner, replacing Γ(z)

and Γ(1 − z) by the corresponding RHS of (10.14) in the equality

Γ(z)Γ(1 − z) =
π

sin πz
, with z = 1

2
+ ıy. We leave the details to the

reader. �

Corollary 10.15.

lim
n→∞

n!√
2πn

(

n
e

)n = 1.

Proof. Note that

(n + 1)n+ 1
2 = nn+ 1

2

(

1 +
1

n

)n(

1 +
1

n

) 1
2

,

and therefore,

lim
n→∞

(n + 1)n+ 1
2

e nn+ 1
2

= 1 . (10.15)

Applying Stirling’s formula (10.13) with z = n + 1, we obtain

Γ(n + 1) =
√

2π(n + 1)n+ 1
2 e−(n+1)eJ(n+1) .

Since we already know that lim
n→i∞

J(n+1) = 0, the claim is proved.

�

With some additional work we can prove the following integral ex-
pression for the Γ-function:

Γ(z) =

∫ ∞

0

e−t · tz−1 dt , for �z > 0. (10.16)
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Proof. Denote for the moment the RHS of (10.16) by F (z). It cer-
tainly defines a holomorphic function whenever the integral converges;
that is, in the right half-plane given by �z > 0. Since

F (z + 1) =

∫ ∞

0

e−t · tzdt = z

∫ ∞

0

e−t · tz−1dt = zF (z) for �z > 0,

we see that F and Γ satisfy the same functional equation. Thus

F (z + 1)

Γ(z + 1)
=

F (z)

Γ(z)
for �z > 0,

and the function F can be extended to be defined on all of C. For z
with 1 ≤ �z ≤ 2,

|F (z)| ≤
∫ ∞

0

e−t · t�z−1dt = F (�z),

and since F is a continuous function on the closed interval [1, 2], it
is bounded there. The last estimate shows that F is bounded on the
strip 1 ≤ �z ≤ 2. We need a lower bound for |Γ| on the same strip;
it suffices to determine how negative log |Γ| = � log Γ can become. We
do so as follows. From (10.12), we see that

log |Γ(z)| =
1

2
log 2π −�z +

(

�z − 1

2

)

log |z| − �z Arg z + �J(z).

Only the term −�z Arg z approaches ±∞ as �z approaches +∞.

This term is comparable with −π

2
|�z|. Thus as �z goes to ±∞,

∣

∣

∣

∣

F

Γ

∣

∣

∣

∣

grows at most like a constant multiple of exp
(

−π

2
|�z|

)

.

Since
F

Γ
is periodic, it is a function of W = e2πız (on the punc-

tured plane C − {0}); it has an isolated singularity at W = 0. As W

approaches 0,
F

Γ
grows at most as |W |− 1

2 , and as W approaches ∞,

F

Γ
grows at most as |W | 12 . Hence the singularities at both ends are

removable and
F

Γ
is constant. Since F (1) = 1 = Γ(1), this constant is

1. �

10.4. The field of meromorphic functions

It is convenient to introduce the following
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Definition 10.16. Let D be a plane domain. A divisor on D is
either the empty set ∅ or a formal expression

∏

i

zνi
i ,

where the {zi} form a discrete set in D and νi ∈ Z. We will also write
a divisor D as

D =
∏

z∈D

zνz(D),

with the understanding that νz(D) ∈ Z for all z ∈ D and νz(D) = 0
for all z not in a discrete set (that depends on the divisor, of course)
Note that νz(∅) = 0 for all z ∈ D.

There is a commutative law of multiplication for divisors, where
the empty set is the unit element, and if D1 =

∏

z∈D zνz(D1) and D2 =
∏

z∈D zνz(D2) are two divisors, then

D1 · D2 =
∏

z∈D

zνz(D1)+νz(D2) .

The set of all divisors on D with this operation becomes a commu-
tative group, denoted by Div(D).

In particular, to a nonidentically zero meromorphic function f on
D, we can associate its divisor (f) defined by

(f) =
∏

z∈D

zνz(f) ,

where νz(f) denotes the order of the function f at the point z in D (see
Section 3.5). In particular, to any constant (nonzero) function in D we
associate the divisor given by the empty set. A divisor of a nonzero
meromorphic function in D is called a principal divisor.

Note that the set of all principal divisors is a subgroup of Div(D),
and that the function (·) that associates with each nonzero meromor-
phic function f on D its divisor (f) is a homomorphism from the mul-
tiplicative group M(D)−{0} to Div(D), whose image is the subgroup
of principal divisors. Much more is true as shown next.

Theorem 10.17. Let D be a domain in C. The map

(·) : M(D) − {0} → Div(D)

is a surjective homomorphism, whose kernel is the set of nowhere van-
ishing holomorphic functions on D.
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Proof. Write D = D1

D2
, where D1 and D2 are relatively prime inte-

gral divisors (see Exercise 10.5) and use Theorem 10.10. �

10.5. Infinite Blaschke products

Let
D =

∏

i

aνi
i

be an integral divisor (see Exercise 10.5) on the unit disk D. It is
clear that the definitions of Section 8.5 associate a Blaschke product
BD with the divisor D. We end this book with the statement of two
theorems. The proof of the first is left as a formal exercise, Exercise
10.10. The proof of the second theorem is left as food for thought. It
requires material that we have not developed.

Theorem 10.18. Let D =
∏

i a
νi
i be an integral divisor on the unit

disk D. The Blaschke product BD converges to a bounded analytic func-
tion on D if and only if

∑

i

νi (1 − |ai|) < ∞.

If
∑

i νi (1 − |ai|) = ∞, then the Blaschke product converges to the
constant zero function on the disk.

Theorem 10.19. Let D =
∏

i a
νi
i be an integral divisor on the unit

disk D. Then there exists a bounded analytic function on D with divisor
D if and only if

∑

i νi (1 − |ai|) < ∞.

Exercises

10.1. Show that Π∞
n=2(1 − 1

2n ) = 1
2
.

10.2. Let {an} be a sequence in Z�=−1. The infinite product Π∞
n=1(1+

an) is said to be absolutely convergent if the corresponding series
Σ∞

n=1 Log(1 + an) converges absolutely.

(1) Show that Π∞
n=1(1 + an) converges absolutely if and only if

∑∞
n=0 |an| converges.

(2) Show that the value of an absolutely convergent product does
not change if the factors are reordered.

(3) Find examples that show that the convergence of
∑∞

n=0 an is
neither necessary nor sufficient for the convergence of Π∞

n=1(1+
an).

10.3. Show that Γ(1
6
) = 2−ı( 3

π
)

1
2 · (Γ(1

3
))2.
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10.4. Find the residues of Γ at the poles z = −n, n ≥ 1.

10.5. A divisor D on a domain D is integral if νz(D) ≥ 0 for all
z ∈ D. Define appropriately the greatest common divisor gcd(D1,D2)
and the least common multiple lcm(D1,D2) of two integral divisors D1

and D2. Show that both the gcd and the lcm exist, and obtain formulas
for them. We say that the integral divisors D1 and D2 are relatively
prime if their gcd is the empty set.

10.6. Show that two nonzero meromorphic functions f and g in D
give rise to the same divisor if and only if there exists a function h in
H(D) that does not vanish in D and such that f = gh.

10.7. Show that a principal divisor on D is integral if and only if it
is the divisor of an analytic function on D.

10.8. Show that if f and g are analytic functions in D (where at least
one is not the zero function), then there exists a function h ∈ H(D)
such that h is a greatest common divisor for f and g. That is, h divides
f and g (in H(D)) and it is divisible by every holomorphic function
dividing both f and g.

If f and g are not identically 0, show that

(h) = gcd((f), (g)) .

Hint: Apply Theorem 10.10.

10.9. Replace Γ(z) and Γ(1−z) by the corresponding RHS of (10.14)

in Γ(z)Γ(1 − z) =
π

sin πz
, with z = 1

2
+ ıy in the proof of Stirling’s

formula (Theorem 10.14) to obtain C ′ in a similar manner to that used
to obtain C. Give full details.

10.10. Prove Theorem 10.18.

The following exercises lead to a proof of the fact that every finitely
generated ideal in H(D) is a principal ideal.

10.11. Show that every nonempty collection of holomorphic func-
tions in D, except for the set consisting of the single function zero, has
a greatest common divisor.

10.12. Show that if h is a greatest common divisor for f1, . . . , fn in
H(D), then there exist g1, . . . , gn in H(D) such that

f1 g1 + . . . + fn gn = h .

Hint: First consider the case when n = 2 and h = 1.
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10.13. Let f1, . . . , fn be holomorphic functions in D, and consider
the ideal I generated by them in H(D):

I = {f1 g1 + . . . + fn gn ; gj ∈ H(D)} .

Prove that I is a principal ideal; that is, there exists a function f
in H(D) such that

I = {f g ; g ∈ H(D)} .

10.14. Characterize the principal maximal ideals in the ring of holo-
morphic functions on a plane domain. Do the concepts of “principal
maximal” and “maximal principal” ideals coincide?



BIBLIOGRAPHICAL NOTES

The references required for proofs and definitions were included in
the body of the book. The purpose of these notes is to list a number of
basic books on complex analysis that the authors of this volume have
found useful and interesting. This is an incomplete list reflecting the
tastes and limited knowledge of the authors. We list three categories
of books.

1. Undergraduate Texts: The texts by Churchill and Brown [5],
Derrick [7], and Silverman [25] are each very appropriate for
an undergraduate course that is centered around applications;
Palka [22] is a very thorough and careful undergraduate text
that is also used frequently in graduate courses; Marsden [19]
is more theoretical, whereas Bak–Newman [2] is the only un-
dergraduate text on the subject that ends up with a treatment
of the Prime Number Theorem.

2. Graduate Texts: Ahlfors [1] is among the outstanding mathe-
matics books in any field. Another classic treatment is the
book by Nevanlinna-Paatero [21]; whereas Narasimhan [20]
is an outstanding modern treatment. Cartan [4] starts with
a treatment of formal power series. The first of the two Hille
volumes [10] is a standard introduction to the subject; the sec-
ond [11] deals with many interesting special topics. The book
by Heins [9] covers many prerequisites currently dealt with on
other courses and some advanced topics. Conway’s book [6]
is very concise yet complete. It includes the big Picard theo-
rem. Berenstein–Gay [3] is in tune with more recent, modern
developments in complex variables. The Greene–Krantz text
[8] is a treatment of complex variables as an outgrowth of real
multivariate calculus.

Another standard reference is Lang [18]. Lang and Bers
probably influenced each other’s views of complex variables
as a result of long discussions in the Columbia mathematics
department fifth floor lounge while Lang was writing his book

213
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and Bers was teaching Complex Variables I and II during the
1966–67 academic year.

The first chapter of Hörmander [12] serves as a wonderful
review for those who have learned one variable complex analy-
sis and are interested in seeing how it leads naturally to a study
of several variables. Rudin [23] is an integrated treatment of
real and complex analysis.

3. Problem Books: Some paperback books contain problems sets
and their solutions. Classic is a five-volume set by Konrad
Knopp. Whenever Bers taught the year-long graduate Com-
plex Analysis course at Columbia, he taught without a text
and simply told his students to read and work through all
of the problems in Knopp’s books on the theory of functions
[13]–[17] (Bers translated one of these five volumes from the
German [15]). Knopp’s problem books are still eminently
relevant and useful. A paperback by Rami Shakarchi [24]
includes solutions to all of the undergraduate-level problems
from Lang’s graduate text (problems from the first eight chap-
ters) and solutions to selected problems from the more ad-
vanced chapters.
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I(γ, ζ), 71
S1, 91
U(ζ, ε), 11
Arg z, 40
AutD, 148
Γ-function, 199, 201
Log z, 40
PSL(2, C), 149
PSL(2, R), 154
SL(2, C), 149
arg z, 40
log z, 40
D, 95
H

2, 152
C(D), 123

metric, 126
H(D), 50, 88
M(D), 50, 88, 106, 199
∂f , 64
∂f , 64
̂R, 152
dz, 64
df , 64
dz, 64
f (n), 14
f ′, 14
Cp(D), 63

Abel’s lemma, 27
Abel’s limit theorem, 35
absolutely convergent product, 209
Ahlfors, 181
analytic

continuation, 47
function, 15

Arctan, 56
arctan, 56

Arg, 40
arg, 40
automorphism, 148

Blaschke product, 167, 209
finite, 167
infinite, 209

Bolzano–Weierstrass Theorem, 12
bounded subset

of C or R, 11
of C(D), 134

Cantor, 136
Casorati–Weierstrass, 104
Cauchy

inequalities, 88
integral formula, 92
sequence, 10

Cauchy’s integral formula, 85
for smooth functions, 96
generalized, 87

Cauchy’s theorem, 80
for a rectangle, 79
general form, 90

Cauchy–Riemann equations
complex form, 16
real form, 15

circle, 151
in ̂C, 55

closed curve, 61
Compactness Theorem, 136
complex number

argument, 9
conjugate, 8
modulus, 9

conformal
automorphism, 148

217



218 INDEX

equivalence, 147
map, 147

conjugate
complex, 8
harmonic, 178

contour integral, 61
convergence

in ρ-metric, 128
locally uniform, 124
of meromorphic functions, 130
of number sequence, 10
uniform on all compact subsets,

128
uniform on compact subsets, 124

coordinates
polar, 9
rectangular, 8

CR, see also Cauchy–Riemann
equations

cross-ratio, 150
curve, 61

regular, 184
cycle, 89

homologous cycles, 90
homologous to zero, 90
index with respect to a point, 90

definition of π, 40
derivative, 14
diagonalization, 136
differential

closed, 64
conjugate, 183
exact, 64
form, 61
of class Cp, 63

Dirichlet Problem, 180
Dirichlet problem, 179
disk of convergence, 27
divisor, 207, 208

integral, 207, 210
principal, 207, 208

domain, 14

elementary functions
Weierstrass, 195

entire function, 15
Euler

Γ-function, 191

Φ-function, 191
Euler’s Γ-function, 199, 201
Euler’s constant, 200
extended complex plane, 8

fractional linear transformation, 15,
148

Frobenius Theorem, 20
function

Γ-function, 201
complex trigonometric, 37
adherent, 138
analytic, 15
anti-holomorphic, 15
complex differentiable, 14
entire, 15
estimates for Γ(z), 203
exponential, 37
Gamma, 199
harmonic, 174
holomorphic, 15

at ∞, 48
at a point, 15
bounded, 209
on a set, 15
schlicht, 125
simple, 125
univalent, 125

meromorphic, 50, 207
of class Cp, 63
order at a point, 49
order of a zero, 47
periodic, 39
pole, 49

order, 49
simple, 49

rational, 15
total differential of, 64
transcendental, 37
zero, 47

simple, 47
functions

hyperbolic trigonometric, 53
Fundamental Theorem of Algebra,

19, 89, 117

geodesic path, 163
geodesic segment, 163
Goursat, 79
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Goursat’s theorem, 78
strengthened version, 83

Green’s theorem, 67, 96

Hadamard, 31
harmonic conjugate, 178
Harnack’s inequalities, 178
holomorphic

function, 15
holomorphic function, 15
holomorphic functions

prescribed zeros, 195
homology, 90
homotopy, 72
Hurwitz, 126
hyperbolic

isometry, 161
hyperbolic distance, 160
hyperbolic length, 160
hyperbolic line, 162
hyperbolic trigonometric functions,

53

identity principle, 42, 46
index

of a closed curve with respect to a
point, 71

inf, 27
infimum, 27
infinite products, 191
integral

contour, 61
line, 61
path, 61

isometry, 161
hyperbolic, 161

Jacobian, 113
Jordan curve, 90

orientation, 91

Laplace’s equation
complex coordinates, 174
rectangular coordinates, 174

Laplacian, 174
Laurent series, 101
Legendre’s duplication formula, 203
lim inf, 28
lim sup, 28
limit point, 12

line integral, 61
Liouville’s theorem, 89
Log, 40
log, 40
logarithm, 41

branch, 41

Möbius group, 149
Möbius transformation, 15, 148
map

conformal, 147
Maximum Modulus Principle

(MMP), 93
Maximum Principle, 95

for analytic functions, 94
for harmonic functions, 175

Mean Value Property (MVP), 93
area form, 185
for harmonic functions, 175, 185

metric
Poincaré, 160

Minimum Principle, 95, 175

order of a function at a point, 49
order of a pole, 49
order of a zero, 47

pairing, 65
partition of an interval, 62
path, 61

closed, 61
simple, 90

differentiable, 61
homotopic

to a point, 72
homotopic as closed paths, 72
homotopic with fixed end points,

72
index of, 71
integral, 61
parametrized, 61
piecewise differentiable, 62
range, 61
reparametrization, 62
simple, 61
winding number, 71

paths
homologous, 90

pdp: piecewise differentiable path, 62
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period of a function, 39
Picard’s theorem, 105
Poincaré metric, 159
Poisson

formula, 176
kernel, 177

Poisson formula
classical reformulation, 183
Fourier series interpretation, 182
geometric interpretation, 181

primitive, 69
principal value, 115
Principle of Analytic Continuation,

47
product

absolutely convergent, 209

radius of convergence, 27
range of a path, 61
rational function, 15
region, 14

(xy)-simple, 66
convex, 75
simply connected, 74

residue, 105
Residue Theorem, 106
Riemann ζ- function, 191
Riemann Map, 154
Riemann Mapping Theorem, 154
Riemann sphere, 8, 48
Rouché’s theorem, 109, 117
Runge’s theorem

rational approximation, 139

schlicht mapping, 125
Schwarz, 95, 180, 181
Schwarz’s lemma, 95

invariant form, 97
Schwarz–Pick Lemma, 97

semicircle, 162
sequence

Cauchy, 10
convergent, 10

series
absolutely convergent, 24
convergent at a point, 24
divergent, 25
infinite, 24
Laurent, 102
normally convergent, 24
pointwise convergent, 24
power, 26
uniformly convergent, 24

simple closed curve, 61
simple closed path, 90
singularity

essential, 104
at ∞, 105

isolated, 103
pole, 49, 104
principal part, 104
removable, 49, 103

stereographic projection, 55
Stirling’s formula, 203, 205
sup, 27
supremum, 27

total differential of a function, 64

Vitali’s theorem, 138

Weierstrass M-test, 25
winding number, 75

of a closed curve with respect to a
point, 71

zeros
of holomorphic functions, 198
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