Editorial Board S. Axler
K.A. Ribet

Graduate Texts in Mathematics

1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd ed.
2 Охтову. Measure and Category. 2nd ed.
3 Schaefer. Topological Vector Spaces. 2nd ed.
4 Hilton/Stammbach. A Course in Homological Algebra. 2nd ed.
5 Mac Lane. Categories for the Working Mathematician. 2nd ed.
6 Hughes/Piper. Projective Planes.
7 J.-P. Serre. A Course in Arithmetic.
8 Takeuti/Zaring. Axiomatic Set Theory.
9 Humphreys. Introduction to Lie Algebras and Representation Theory.
10 Cohen. A Course in Simple Homotopy Theory.
11 Conway. Functions of One Complex Variable I. 2nd ed.
12 Beals. Advanced Mathematical Analysis.
13 Anderson/Fuller. Rings and Categories of Modules. 2nd ed.
14 Golubitsky/Guillemin. Stable Mappings and Their Singularities.
15 Berberian. Lectures in Functional Analysis and Operator Theory.
16 WINTER. The Structure of Fields.
17 Rosenblatt. Random Processes. 2nd ed.
18 Halmos. Measure Theory.
19 Halmos. A Hilbert Space Problem Book. 2nd ed.
20 Husemoller. Fibre Bundles. 3rd ed.
21 Humphreys. Linear Algebraic Groups.
22 Barnes/Mack. An Algebraic Introduction to Mathematical Logic.
23 Greub. Linear Algebra. 4th ed.
24 Holmes. Geometric Functional Analysis and Its Applications.
25 Hewitt/Stromberg. Real and Abstract Analysis.
26 Manes. Algebraic Theories.
27 Kelley. General Topology.
28 Zariski/Samuel. Commutative Algebra. Vol.I.
29 ZARISKI/SAMUEL. Commutative Algebra. Vol. II.
30 Jacobson. Lectures in Abstract Algebra I. Basic Concepts.
31 Jacobson. Lectures in Abstract Algebra II. Linear Algebra.
32 Jacobson. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory.
33 Hirsch. Differential Topology.
34 Spitzer. Principles of Random Walk. 2nd ed.
35 Alexander/Wermer. Several Complex Variables and Banach Algebras. 3rd ed.
36 Kelley/Namioka et al. Linear Topological Spaces.
37 Monk. Mathematical Logic.

38 Grauert/Fritzsche. Several Complex Variables.
39 Arveson. An Invitation to C-Algebras.
40 Kemeny/Snell/Knapp. Denumerable Markov Chains. 2nd ed.
41 Apostol. Modular Functions and Dirichlet Series in Number Theory. 2nd ed.
42 J.-P. Serre. Linear Representations of Finite Groups.
43 Gillman/Jerison. Rings of Continuous Functions.
44 Kendig. Elementary Algebraic Geometry.
45 Loève. Probability Theory I. 4th ed.
46 LoÈve. Probability Theory II. 4th ed.
47 Moise. Geometric Topology in Dimensions 2 and 3.
48 Sachs/Wu. General Relativity for Mathematicians.
49 Gruenberg/Weir. Linear Geometry. 2nd ed.
50 Edwards. Fermat's Last Theorem.
51 Klingenberg. A Course in Differential Geometry.
52 Hartshorne. Algebraic Geometry.
53 Manin. A Course in Mathematical Logic.
54 Graver/Watkins. Combinatorics with Emphasis on the Theory of Graphs.
55 BROWN/PEARCY. Introduction to Operator Theory I: Elements of Functional Analysis.
56 MASSEY. Algebraic Topology: An Introduction.
57 Crowell/Fox. Introduction to Knot Theory.
58 Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions. 2nd ed.
59 Lang. Cyclotomic Fields.
60 Arnold. Mathematical Methods in Classical Mechanics. 2nd ed.
61 Whitehead. Elements of Homotopy Theory.
62 Kargapolov/MErizjakov. Fundamentals of the Theory of Groups.
63 Bollobas. Graph Theory.
64 Edwards. Fourier Series. Vol. I. 2nd ed.
65 Wells. Differential Analysis on Complex Manifolds. 2nd ed.
66 WATERHOUSE. Introduction to Affine Group Schemes.
67 Serre. Local Fields.
68 Weidmann. Linear Operators in Hilbert Spaces.
69 Lang. Cyclotomic Fields II.
70 Massey. Singular Homology Theory.
71 FARKAS/Kra. Riemann Surfaces. 2nd ed.
72 Stillwell. Classical Topology and Combinatorial Group Theory. 2nd ed.
73 Hungerford. Algebra.
74 Davenport. Multiplicative Number Theory. 3rd ed.
(continued after index)

Christian Kassel
 Vladimir Turaev

Braid Groups

With the graphical assistance of Olivier Dodane

Christian Kassel
Institut de Recherche Mathématique Avancée
CNRS et Université Louis Pasteur
7 rue René Descartes
67084 Strasbourg
France
kassel@math.u-strasbg.fr

Vladimir Turaev
Department of Mathematics
Indiana University
Bloomington, IN 47405
USA
vtouraev@indiana.edu

Editorial Board

S. Axler
Mathematics Department
San Francisco State University
San Francisco, CA 94132
USA
axler@fsu.edu

K.A. Ribet
Mathematics Department
University of California at Berkeley
Berkeley, CA 94720-3840
USA
ribet@math.berkeley.edu

ISBN: 978-0-387-33841-5 e-ISBN: 978-0-387-68548-9
DOI: 10.1007/978-0-387-68548-9

Library of Congress Control Number: 2008922934
Mathematics Subject Classification (2000): 20F36, 57M25, 37E30, 20C08, 06F15, 20F60, 55R80

© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

987654321

springer.com

Preface

The theory of braid groups is one of the most fascinating chapters of lowdimensional topology. Its beauty stems from the attractive geometric nature of braids and from their close relations to other remarkable geometric objects such as knots, links, homeomorphisms of surfaces, and configuration spaces. On a deeper level, the interest of mathematicians in this subject is due to the important role played by braids in diverse areas of mathematics and theoretical physics. In particular, the study of braids naturally leads to various interesting algebras and their linear representations.

Braid groups first appeared, albeit in a disguised form, in an article by Adolf Hurwitz published in 1891 and devoted to ramified coverings of surfaces. The notion of a braid was explicitly introduced by Emil Artin in the 1920s to formalize topological objects that model the intertwining of several strings in Euclidean 3-space. Artin pointed out that braids with a fixed number n of strings form a group, called the nth braid group and denoted by B_{n}. Since then, the braids and the braid groups have been extensively studied by topologists and algebraists. This has led to a rich theory with numerous ramifications.

In 1983, Vaughan Jones, while working on operator algebras, discovered new representations of the braid groups, from which he derived his celebrated polynomial of knots and links. Jones's discovery resulted in a strong increase of interest in the braid groups. Among more recent important results in this field are the orderability of the braid group B_{n}, proved by Patrick Dehornoy in 1991, and the linearity of B_{n}, established by Daan Krammer and Stephen Bigelow in 2001-2002.

The principal objective of this book is to give a comprehensive introduction to the theory of braid groups and to exhibit the diversity of their facets. The book is intended for graduate and postdoctoral students, as well as for all mathematicians and physicists interested in braids. Assuming only a basic knowledge of topology and algebra, we provide a detailed exposition of the more advanced topics. This includes background material in topology and algebra that often goes beyond traditional presentations of the theory of braids.

In particular, we present the basic properties of the symmetric groups, the theory of semisimple algebras, and the language of partitions and Young tableaux.

We now detail the contents of the book. Chapter 1 is concerned with the foundations of the theory of braids and braid groups. In particular, we describe the connections with configuration spaces, with automorphisms of free groups, and with mapping class groups of punctured disks.

In Chapter 2 we study the relation between braids and links in Euclidean 3 -space. The central result of this chapter is the Alexander-Markov description of oriented links in terms of Markov equivalence classes of braids.

Chapter 3 is devoted to two remarkable representations of the braid group B_{n} : the Burau representation, introduced by Werner Burau in 1936, and the Lawrence-Krammer-Bigelow representation, introduced by Ruth Lawrence in 1990. We use the technique of Dehn twists to show that the Burau representation is nonfaithful for large n, as was first established by John Moody in 1991. We employ the theory of noodles on punctured disks introduced by Stephen Bigelow to prove the Bigelow-Krammer theorem on the faithfulness of the Lawrence-Krammer-Bigelow representation. In this chapter we also construct the one-variable Alexander-Conway polynomial of links.

Chapter 4 is concerned with the symmetric groups and the Iwahori-Hecke algebras, both closely related to the braid groups. As an application, we construct the two-variable Jones-Conway polynomial of links, also known as the HOMFLY or HOMFLY-PT polynomial, which extends two fundamental one-variable link polynomials, namely the aforementioned Alexander-Conway polynomial and the Jones polynomial.

Chapter 5 is devoted to a classification of the finite-dimensional representations of the generic Iwahori-Hecke algebras in terms of Young diagrams. As an application, we show that the (reduced) Burau representation of B_{n} is irreducible. We also discuss the Temperley-Lieb algebras and classify their finite-dimensional representations.

Chapter 6 presents the Garside solution of the conjugacy problem in the braid groups. Following Patrick Dehornoy and Luis Paris, we introduce the concept of a Garside monoid, which is a monoid with appropriate divisibility properties. We show that the braid group B_{n} is the group of fractions of a Garside monoid of positive braids on n strings. We also describe similar results for the generalized braid groups associated with Coxeter matrices.

Chapter 7 is devoted to the orderability of the braid groups. Following Dehornoy, we prove that the braid group B_{n} is orderable for every n.

The book ends with four short appendices: Appendix A on the modular group $\mathrm{PSL}_{2}(\mathbf{Z})$, Appendix B on fibrations, Appendix C on the Birman-Murakami-Wenzl algebras, and Appendix D on self-distributive sets.

The chapters of the book are to a great degree independent. The reader may start with the first section of Chapter 1 and then freely explore the rest of the book.

The theory of braids is certainly too vast to be covered in a single volume. One important area entirely skipped in this book concerns the connections with mathematical physics, quantum groups, Hopf algebras, and braided monoidal categories. On these subjects we refer the reader to the monographs [Lus93], [CP94], [Tur94], [Kas95], [Maj95], [KRT97], [ES98].

Other areas not presented here include the homology and cohomology of the braid groups [Arn70], [Vai78], [Sal94], [CS96], automatic structures on the braid groups [ECHLPT92], [Mos95], and applications to cryptography [SCY93], [AAG99], [KLCHKP00].

For further aspects of the theory of braids, we refer the reader to the following monographs and survey articles: [Bir74], [BZ85], [Han89], [Kaw96], [Mur96], [MK99], [Ver99], [Iva02], [BB05].

This book grew out of the lectures [Kas02], [Tur02] given by the authors at the Bourbaki Seminar in 1999 and 2000 and from graduate courses given by the first-named author at Université Louis Pasteur, Strasbourg, in 2002-2003 and by the second-named author at Indiana University, Bloomington, in 2006.

Acknowledgments. It is a pleasure to thank Patrick Dehornoy, Nikolai Ivanov, and Hans Wenzl for valuable discussions and useful comments. We owe special thanks to Olivier Dodane, who drew the figures and guided us through the labyrinth of $\mathrm{A} \mathrm{TEX}_{\mathrm{E}}$ formats and commands.

Contents

Preface v
1 Braids and Braid Groups 1
1.1 The Artin braid groups 1
1.2 Braids and braid diagrams 4
1.3 Pure braid groups 18
1.4 Configuration spaces 25
1.5 Braid automorphisms of free groups 31
1.6 Braids and homeomorphisms 35
1.7 Groups of homeomorphisms vs. configuration spaces 40
Notes 45
2 Braids, Knots, and Links 47
2.1 Knots and links in three-dimensional manifolds 47
2.2 Closed braids in the solid torus 51
2.3 Alexander's theorem 58
2.4 Links as closures of braids: an algorithm 61
2.5 Markov's theorem 67
2.6 Deduction of Markov's theorem from Lemma 2.11 71
2.7 Proof of Lemma 2.11 83
Notes 91
3 Homological Representations of the Braid Groups 93
3.1 The Burau representation 93
3.2 Nonfaithfulness of the Burau representation 98
3.3 The reduced Burau representation 107
3.4 The Alexander-Conway polynomial of links 111
3.5 The Lawrence-Krammer-Bigelow representation 118
3.6 Noodles vs. spanning arcs 125
3.7 Proof of Theorem 3.15 137
Notes 149
4 Symmetric Groups and Iwahori-Hecke Algebras 151
4.1 The symmetric groups 151
4.2 The Iwahori-Hecke algebras 163
4.3 The Ocneanu traces 170
4.4 The Jones-Conway polynomial 173
4.5 Semisimple algebras and modules 175
4.6 Semisimplicity of the Iwahori-Hecke algebras 191
Notes 193
5 Representations of the Iwahori-Hecke Algebras 195
5.1 The combinatorics of partitions and tableaux 195
5.2 The Young lattice 200
5.3 Seminormal representations 207
5.4 Proof of Theorem 5.11 210
5.5 Simplicity of the seminormal representations 215
5.6 Simplicity of the reduced Burau representation 219
5.7 The Temperley-Lieb algebras 222
Notes 236
6 Garside Monoids and Braid Monoids 239
6.1 Monoids 239
6.2 Normal forms and the conjugacy problem 243
6.3 Groups of fractions and pre-Garside monoids 251
6.4 Garside monoids 255
6.5 The braid monoid 259
6.6 Generalized braid groups 266
Notes 272
7 An Order on the Braid Groups 273
7.1 Orderable groups 273
7.2 Pure braid groups are biorderable 278
7.3 The Dehornoy order 282
7.4 Nontriviality of σ-positive braids 287
7.5 Handle reduction 291
7.6 The Nielsen-Thurston approach 307
Notes 309
A Presentations of $\mathrm{SL}_{2}(\mathrm{Z})$ and $\mathrm{PSL}_{2}(\mathrm{Z})$ 311
Notes 314
B Fibrations and Homotopy Sequences 315
C The Birman-Murakami-Wenzl Algebras 317
D Left Self-Distributive Sets 321
D. 1 LD sets, racks, and quandles 321
D. 2 An action of the braid monoid 322
D. 3 Orderable LD sets 323
Notes 325
References 327
Index 337

1

Braids and Braid Groups

In this chapter we discuss the basics of the theory of braids and braid groups.

1.1 The Artin braid groups

We introduce the braid groups and discuss some of their simple properties.

1.1.1 Basic definition

We give an algebraic definition of the braid group B_{n} for any positive integer n. The definition is formulated in terms of a group presentation by generators and relations.

Definition 1.1. The Artin braid group B_{n} is the group generated by $n-1$ generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and the "braid relations"

$$
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}
$$

for all $i, j=1,2, \ldots, n-1$ with $|i-j| \geq 2$, and

$$
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}
$$

for $i=1,2, \ldots, n-2$.
By definition, $B_{1}=\{1\}$ is a trivial group. The group B_{2} is generated by a single generator σ_{1} and an empty set of relations. This is an infinite cyclic group. As we shall see shortly, the groups B_{n} with $n \geq 3$ are nonabelian.

Given a group homomorphism f from B_{n} to a group G, the elements $\left\{s_{i}=f\left(\sigma_{i}\right)\right\}_{i=1, \ldots, n-1}$ of G satisfy the braid relations

$$
s_{i} s_{j}=s_{j} s_{i}
$$

for all $i, j=1,2, \ldots, n-1$ with $|i-j| \geq 2$, and

$$
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}
$$

for $i=1,2, \ldots, n-2$. There is a converse, which we record in the following lemma.

Lemma 1.2. If s_{1}, \ldots, s_{n-1} are elements of a group G satisfying the braid relations, then there is a unique group homomorphism $f: B_{n} \rightarrow G$ such that $s_{i}=f\left(\sigma_{i}\right)$ for all $i=1,2, \ldots, n-1$.

Proof. Let F_{n} be the free group generated by the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$. There is a unique group homomorphism $\bar{f}: F_{n} \rightarrow G$ such that $\bar{f}\left(\sigma_{i}\right)=s_{i}$ for all $i=1,2, \ldots, n-1$. This homomorphism induces a group homomorphism $f: B_{n} \rightarrow G$ provided $\bar{f}\left(r^{-1} r^{\prime}\right)=1$ or, equivalently, provided $\bar{f}(r)=\bar{f}\left(r^{\prime}\right)$ for all braid relations $r=r^{\prime}$. For the first braid relation, we have

$$
\bar{f}\left(\sigma_{i} \sigma_{j}\right)=\bar{f}\left(\sigma_{i}\right) \bar{f}\left(\sigma_{j}\right)=s_{i} s_{j}=s_{j} s_{i}=\bar{f}\left(\sigma_{j}\right) \bar{f}\left(\sigma_{i}\right)=\bar{f}\left(\sigma_{j} \sigma_{i}\right) .
$$

For the second braid relation, we similarly have

$$
\bar{f}\left(\sigma_{i} \sigma_{i+1} \sigma_{i}\right)=s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}=\bar{f}\left(\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right) .
$$

1.1.2 Projection to the symmetric group

We apply the previous lemma to the symmetric group $G=\mathfrak{S}_{n}$. An element of \mathfrak{S}_{n} is a permutation of the set $\{1,2, \ldots, n\}$. Consider the simple transpositions $s_{1}, \ldots, s_{n-1} \in \mathfrak{S}_{n}$, where s_{i} permutes i and $i+1$ and leaves all the other elements of $\{1,2, \ldots, n\}$ fixed. It is an easy exercise to verify that the simple transpositions satisfy the braid relations. By Lemma 1.2, there is a unique group homomorphism $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ such that $s_{i}=\pi\left(\sigma_{i}\right)$ for all $i=1,2, \ldots, n-1$. This homomorphism is surjective because, as is well known, the simple transpositions generate \mathfrak{S}_{n}. (For more on the structure of \mathfrak{S}_{n}, see Section 4.1.)

Lemma 1.3. The group B_{n} with $n \geq 3$ is nonabelian.
Proof. The group \mathfrak{S}_{n} with $n \geq 3$ is nonabelian because $s_{1} s_{2} \neq s_{2} s_{1}$. Since the projection $B_{n} \rightarrow \mathfrak{S}_{n}$ is surjective, B_{n} is nonabelian for $n \geq 3$.

1.1.3 Natural inclusions

From the defining relations of Definition 1.1 it is clear that the formula $\iota\left(\sigma_{i}\right)=\sigma_{i}$ with $i=1,2, \ldots, n-1$ defines a group homomorphism

$$
\iota: B_{n} \rightarrow B_{n+1}
$$

As will be proven in Corollary 1.14, the homomorphism ι is injective. It is called the natural inclusion.

It is sometimes convenient to view B_{n} as a subgroup of B_{n+1} via ι. In this way we obtain an increasing chain of groups $B_{1} \subset B_{2} \subset B_{3} \subset \cdots$.

Composing ι with the projection $\pi: B_{n+1} \rightarrow \mathfrak{S}_{n+1}$, we obtain the composition of $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ with the canonical inclusion $\mathfrak{S}_{n} \hookrightarrow \mathfrak{S}_{n+1}$. (The latter inclusion extends each permutation of $\{1,2, \ldots, n\}$ to a permutation of $\{1,2, \ldots, n+1\}$ fixing $n+1$.) This gives a commutative diagram

1.1.4 The group B_{3}

Already the simplest noncommutative braid group B_{3} presents considerable interest. This group is generated by two generators σ_{1}, σ_{2}, and the unique relation $\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$. Setting $x=\sigma_{1} \sigma_{2} \sigma_{1}$ and $y=\sigma_{1} \sigma_{2}$, we obtain generators x, y of B_{3} subject to the unique relation $x^{2}=y^{3}$ (verify). This relation implies in particular that $x^{2}=\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{2}$ lies in the center of B_{3}. (We shall compute the center of B_{n} for all n in Section 1.3.3.)

The group B_{3} admits a homomorphism to $\operatorname{SL}(2, \mathbf{Z})$ sending σ_{1}, σ_{2} to the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

respectively. This homomorphism is surjective and its kernel is the infinite cyclic group generated by $\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4}$. For a proof, see [Mil71, Th. 10.5] or Appendix A.

The group B_{3} appears in knot theory as the fundamental group of the complement of the trefoil knot $K \subset S^{3}$. The trefoil K can be defined as the subset of $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$ consisting of $\left(z_{1}, z_{2}\right)$ such that $z_{1}^{2}+z_{2}^{3}=0$; see Figure 2.1 for a picture of K. The isomorphism

$$
\pi_{1}\left(S^{3}-K\right) \cong\left\langle x, y \mid x^{3}=y^{2}\right\rangle=B_{3}
$$

is well known in knot theory. From the algebraic viewpoint, the key phenomenon underlying this isomorphism is the homeomorphism

$$
S^{3}-K \approx \mathrm{SL}(2, \mathbf{R}) / \mathrm{SL}(2, \mathbf{Z})
$$

see [Mil71, Sect. 10].
Exercise 1.1.1. Show that there is a group homomorphism $f: B_{n} \rightarrow \mathbf{Z}$ such that $f\left(\sigma_{i}\right)=1$ for all $i=1, \ldots, n-1$. Prove that f induces an isomorphism $B_{n} /\left[B_{n}, B_{n}\right] \cong \mathbf{Z}$, where $\left[B_{n}, B_{n}\right]$ is the commutator subgroup of B_{n}.

Exercise 1.1.2. Verify that the formula $\sigma_{i} \mapsto \sigma_{i}^{-1}$ for $i=1,2, \ldots, n-1$ defines an involutive automorphism of B_{n}. Prove that this automorphism is not a conjugation by an element of B_{n}.

Exercise 1.1.3. Verify the following relations in B_{3} :

$$
\begin{gathered}
\sigma_{1} \sigma_{2} \sigma_{1}^{-1}=\sigma_{2}^{-1} \sigma_{1} \sigma_{2}, \quad \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}=\sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1}, \quad \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1}=\sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1} \\
\sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1}=\sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}, \quad \sigma_{1}^{-1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}^{-1}
\end{gathered}
$$

Exercise 1.1.4. Prove that for any $n \geq 1$, the group B_{n} is generated by two elements σ_{1} and $\alpha=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$. (Hint: $\sigma_{i}=\alpha^{i-1} \sigma_{1} \alpha^{1-i}$ for all i.)

Exercise 1.1.5. Let f be a homomorphism from B_{n} to a certain group. If $f\left(\sigma_{i}\right)$ commutes with $f\left(\sigma_{i+1}\right)$ for some i, then $f\left(B_{n}\right)$ is a cyclic group. If $f\left(\sigma_{i}\right)=f\left(\sigma_{j}\right)$ for some $i<j$ such that either $j \neq i+2$ or $n \neq 4$, then $f\left(B_{n}\right)$ is a cyclic group.

Exercise 1.1.6. Prove that each element $\sigma_{i} \sigma_{j}^{-1}$ with $1 \leq i<j \leq n-1$ belongs to $\left[B_{n}, B_{n}\right]$ and generates $\left[B_{n}, B_{n}\right]$ as a normal subgroup of B_{n} provided either $j \neq i+2$ or $n \neq 4$. (Hint: Consider first the case $j=i+1$.)

Exercise 1.1.7. Verify the identity

$$
\sigma_{i+2} \sigma_{i}^{-1}=\left(\sigma_{i} \sigma_{i+1}\right)^{-1}\left[\sigma_{i+2} \sigma_{i}^{-1}, \sigma_{i} \sigma_{i+1}^{-1}\right] \sigma_{i} \sigma_{i+1},
$$

where $1 \leq i \leq n-3$ and $[a, b]=a^{-1} b^{-1} a b$.
Exercise 1.1.8. Prove that for $n \neq 3,4$ the commutator subgroup of $\left[B_{n}, B_{n}\right]$ coincides with $\left[B_{n}, B_{n}\right]$.

Exercise 1.1.9. Prove that $\left[B_{3}, B_{3}\right]$ is a free group of rank two. (A topological proof: use that the trefoil is a fibered knot of genus one.)

Exercise 1.1.10. (a) Define automorphisms $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \sigma_{3}^{\prime}$ of the free group F_{2} on two generators a and b by
$\sigma_{1}^{\prime}(a)=a, \quad \sigma_{1}^{\prime}(b)=a b, \quad \sigma_{2}^{\prime}(a)=b^{-1} a, \quad \sigma_{2}^{\prime}(b)=b, \quad \sigma_{3}^{\prime}(a)=a, \quad \sigma_{3}^{\prime}(b)=b a$.
Prove that there is a group homomorphism $\psi: B_{4} \rightarrow \operatorname{Aut}\left(F_{2}\right)$ such that $\psi\left(\sigma_{i}\right)=\sigma_{i}^{\prime}$ for $i=1,2,3$. Check that $\psi\left(\sigma_{1} \sigma_{3}^{-1}\right)$ is the conjugation by a and $\psi\left(\sigma_{2} \sigma_{1} \sigma_{3}^{-1} \sigma_{2}^{-1}\right)$ is the conjugation by $b^{-1} a$ in F_{2}.
(b) Consider the group homomorphism $B_{4} \rightarrow B_{3}$ sending σ_{1}, σ_{3} to σ_{1} and σ_{2} to σ_{2}. Prove that its kernel is generated by $\sigma_{1} \sigma_{3}^{-1}$ and $\sigma_{2} \sigma_{1} \sigma_{3}^{-1} \sigma_{2}^{-1}$. Deduce that this kernel is a free group of rank 2 .

1.2 Braids and braid diagrams

In this section we interpret the braid groups in geometric terms. From now on, we denote by I the closed interval $[0,1]$ in the set of real numbers \mathbf{R}. By a topological interval, we mean a topological space homeomorphic to $I=[0,1]$.

1.2.1 Geometric braids

Definition 1.4. A geometric braid on $n \geq 1$ strings is a set $b \subset \mathbf{R}^{2} \times I$ formed by n disjoint topological intervals called the strings of b such that the projection $\mathbf{R}^{2} \times I \rightarrow I$ maps each string homeomorphically onto I and

$$
\begin{aligned}
& b \cap\left(\mathbf{R}^{2} \times\{0\}\right)=\{(1,0,0),(2,0,0), \ldots,(n, 0,0)\}, \\
& b \cap\left(\mathbf{R}^{2} \times\{1\}\right)=\{(1,0,1),(2,0,1), \ldots,(n, 0,1)\}
\end{aligned}
$$

It is clear that every string of b meets each plane $\mathbf{R}^{2} \times\{t\}$ with $t \in I$ in exactly one point and connects a point $(i, 0,0)$ to a point $(s(i), 0,1)$, where $i, s(i) \in\{1,2, \ldots, n\}$. The sequence $(s(1), s(2), \ldots, s(n))$ is a permutation of the set $\{1,2, \ldots, n\}$ called the underlying permutation of b.

An example of a geometric braid is given in Figure 1.1. Here x, y are the coordinates in \mathbf{R}^{2}, the x-axis is directed to the right, the y-axis is directed away from the reader, and the t-axis is directed downward. The underlying permutation of this braid is $(1,3,2,4)$.

Fig. 1.1. A geometric braid on four strings

Two geometric braids b and b^{\prime} on n strings are isotopic if b can be continuously deformed into b^{\prime} in the class of braids. More formally, b and b^{\prime} are isotopic if there is a continuous map $F: b \times I \rightarrow \mathbf{R}^{2} \times I$ such that for each $s \in I$, the map $F_{s}: b \rightarrow \mathbf{R}^{2} \times I$ sending $x \in b$ to $F(x, s)$ is an embedding whose image is a geometric braid on n strings, $F_{0}=\mathrm{id}_{b}: b \rightarrow b$, and $F_{1}(b)=b^{\prime}$. Each F_{s} automatically maps every endpoint of b to itself. Both the map F and the family of geometric braids $\left\{F_{s}(b)\right\}_{s \in I}$ are called an isotopy of $b=F_{0}(b)$ into $b^{\prime}=F_{1}(b)$.

It is obvious that the relation of isotopy is an equivalence relation on the class of geometric braids on n strings. The corresponding equivalence classes are called braids on n strings.

Given two n-string geometric braids $b_{1}, b_{2} \subset \mathbf{R}^{2} \times I$, we define their product $b_{1} b_{2}$ to be the set of points $(x, y, t) \in \mathbf{R}^{2} \times I$ such that $(x, y, 2 t) \in b_{1}$ if $0 \leq t \leq 1 / 2$ and $(x, y, 2 t-1) \in b_{2}$ if $1 / 2 \leq t \leq 1$. It is obvious that $b_{1} b_{2}$ is a geometric braid on n strings. It is clear that if b_{1}, b_{2} are isotopic to geometric braids $b_{1}^{\prime}, b_{2}^{\prime}$, respectively, then $b_{1} b_{2}$ is isotopic to $b_{1}^{\prime} b_{2}^{\prime}$. Therefore the formula $\left(b_{1}, b_{2}\right) \mapsto b_{1} b_{2}$ defines a multiplication on the set of braids on n strings. This multiplication is associative and has a neutral element, which is the trivial braid 1_{n} represented by the geometric braid

$$
\{1,2, \ldots, n\} \times\{0\} \times I \subset \mathbf{R}^{2} \times I
$$

We shall see below that the set of braids on n strings with this multiplication is a group canonically isomorphic to the braid group B_{n}.

Any geometric braid is isotopic to a geometric braid $b \subset \mathbf{R}^{2} \times I$ such that b is a smooth one-dimensional submanifold of $\mathbf{R}^{2} \times I$ orthogonal to $\mathbf{R}^{2} \times 0$ and $\mathbf{R}^{2} \times 1$ near the endpoints. In working with braids, it is often convenient to restrict oneself to such smooth representatives.

Remark 1.5. The definition of isotopy for geometric braids can be weakened by replacing the condition that $F_{s}(b)$ is a geometric braid with the condition that F_{s} keeps ∂b pointwise. The definition of isotopy also can be strengthened by requiring that the maps $\left\{F_{s}\right\}_{s}$ extend to an isotopic deformation of $\mathbf{R}^{2} \times I$ constant on the boundary. Artin [Art47a] proved that both resulting equivalence relations on the class of geometric braids coincide with the isotopy relation defined above; cf. Theorem 1.40 below.

1.2.2 Braid diagrams

To specify a geometric braid, one can draw its projection to $\mathbf{R} \times\{0\} \times I$ along the second coordinate and indicate which string goes "under" the other one at each crossing point. To avoid local complications, we shall apply this procedure exclusively to those geometric braids whose projections to $\mathbf{R} \times\{0\} \times I$ have only double transversal crossings. These considerations lead to a notion of a braid diagram.

A braid diagram on n strands is a set $\mathcal{D} \subset \mathbf{R} \times I$ split as a union of n topological intervals called the strands of \mathcal{D} such that the following three conditions are met:
(i) The projection $\mathbf{R} \times I \rightarrow I$ maps each strand homeomorphically onto I.
(ii) Every point of $\{1,2, \ldots, n\} \times\{0,1\}$ is the endpoint of a unique strand.
(iii) Every point of $\mathbf{R} \times I$ belongs to at most two strands. At each intersection point of two strands, these strands meet transversely, and one of them is distinguished and said to be undergoing, the other strand being overgoing.

Note that three strands of a braid diagram \mathcal{D} never meet in one point. An intersection point of two strands of \mathcal{D} is called a double point or a crossing of \mathcal{D}. The transversality condition in (iii) means that in a neighborhood of a crossing, \mathcal{D} looks, up to homeomorphism, like the set $\{(x, y) \mid x y=0\}$ in \mathbf{R}^{2}. Condition (iii) and the compactness of the strands easily imply that the number of crossings of \mathcal{D} is finite.

In the figures, the strand going under a crossing is graphically represented by a line broken near the crossing; the strand going over a crossing is represented by a continued line. An example of a braid diagram is given in Figure 1.2. Here the top horizontal line represents $\mathbf{R} \times\{0\}$, and the bottom horizontal line represents $\mathbf{R} \times\{1\}$. In the sequel we shall sometimes draw and sometimes omit these lines in the figures.

Fig. 1.2. A braid diagram on four strands

We now describe the relationship between braids and braid diagrams. Each braid diagram \mathcal{D} presents an isotopy class of geometric braids as follows. Using the obvious identification $\mathbf{R} \times I=\mathbf{R} \times\{0\} \times I$, we can assume that \mathcal{D} lies on $\mathbf{R} \times\{0\} \times I \subset \mathbf{R}^{2} \times I$. In a small neighborhood of every crossing of \mathcal{D} we slightly push the undergoing strand into $\mathbf{R} \times(0,+\infty) \times I$ by increasing the second coordinate while keeping the first and third coordinates. This transforms \mathcal{D} into a geometric braid on n strings. Its isotopy class is a well-defined braid presented by \mathcal{D}. This braid is denoted by $\beta(\mathcal{D})$. For instance, the braid diagram in Figure 1.2 presents the braid drawn in Figure 1.1.

It is easy to see that any braid β can be presented by a braid diagram. To obtain a diagram of β, pick a geometric braid b that represents β and is generic with respect to the projection along the second coordinate. This means that the projection of b to $\mathbf{R} \times\{0\} \times I$ may have only double transversal crossings. At each crossing point of this projection choose the undergoing strand to be the one that comes from a subarc of b with larger second coordinate. The projection of b to $\mathbf{R} \times\{0\} \times I=\mathbf{R} \times I$ thus yields a braid diagram, \mathcal{D}, and it is clear that $\beta(\mathcal{D})=\beta$.

Two braid diagrams \mathcal{D} and \mathcal{D}^{\prime} on n strands are said to be isotopic if there is a continuous map $F: \mathcal{D} \times I \rightarrow \mathbf{R} \times I$ such that for each $s \in I$ the set $\mathcal{D}_{s}=F(\mathcal{D} \times s) \subset \mathbf{R} \times I$ is a braid diagram on n strands, $\mathcal{D}_{0}=\mathcal{D}$, and $\mathcal{D}_{1}=\mathcal{D}^{\prime}$. It is understood that F maps the crossings of \mathcal{D} to the crossings of \mathcal{D}_{s} for all $s \in I$ preserving the under/overgoing data. The family of braid diagrams $\left\{\mathcal{D}_{s}\right\}_{s \in I}$ is called an isotopy of $\mathcal{D}_{0}=\mathcal{D}$ into $\mathcal{D}_{1}=\mathcal{D}^{\prime}$. An example of an isotopy is given in Figure 1.3. It is obvious that if \mathcal{D} is isotopic to \mathcal{D}^{\prime}, then $\beta(\mathcal{D})=\beta\left(\mathcal{D}^{\prime}\right)$.

Fig. 1.3. An isotopy of braid diagrams

Given two braid diagrams $\mathcal{D}_{1}, \mathcal{D}_{2}$ on n strands, their product $\mathcal{D}_{1} \mathcal{D}_{2}$ is obtained by placing \mathcal{D}_{1} on the top of \mathcal{D}_{2} and squeezing the resulting diagram into $\mathbf{R} \times I$; see Figure 1.4. It is clear that if \mathcal{D}_{1} presents a braid β_{1} and \mathcal{D}_{2} presents a braid β_{2}, then $\mathcal{D}_{1} \mathcal{D}_{2}$ presents the product $\beta_{1} \beta_{2}$.

Fig. 1.4. Product of braid diagrams

1.2.3 Reidemeister moves on braid diagrams

The transformations of braid diagrams Ω_{2}, Ω_{3} shown in Figures 1.5a and 1.5b, as well as the inverse transformations $\Omega_{2}^{-1}, \Omega_{3}^{-1}$ (obtained by reversing the arrows in Figures 1.5a and 1.5b), are called Reidemeister moves. These moves come from the theory of knots and knot diagrams, where they were introduced by Kurt Reidemeister; see [Rei83] and Section 2.1. The moves affect only the position of a diagram in a disk inside $\mathbf{R} \times I$ and leave the remaining part of the diagram unchanged. The move Ω_{2} involves two strands and creates two additional crossings (there are two types of Ω_{2}-moves, as shown in Figure 1.5a). The move Ω_{3} involves three strands and preserves the number of crossings.

All these transformations of braid diagrams preserve the corresponding braids up to isotopy.

Fig. 1.5a. The Reidemeister move Ω_{2}

Fig. 1.5b. The Reidemeister move Ω_{3}

We say that two braid diagrams $\mathcal{D}, \mathcal{D}^{\prime}$ are R-equivalent if \mathcal{D} can be transformed into \mathcal{D}^{\prime} by a finite sequence of isotopies and Reidemeister moves $\Omega_{2}^{ \pm 1}, \Omega_{3}^{ \pm 1}$. It is obvious that if $\mathcal{D}, \mathcal{D}^{\prime}$ are R-equivalent, then $\beta(\mathcal{D})=\beta\left(\mathcal{D}^{\prime}\right)$. The following theorem asserts the converse.

Theorem 1.6. Two braid diagrams present isotopic geometric braids if and only if these diagrams are R-equivalent.

Proof. This theorem is an analogue for braids of the classical result of Reidemeister on knot diagrams; see [BZ85], [Mur96], and Chapter 2. The key point of Theorem 1.6 is that the diagrams of isotopic geometric braids are R-equivalent. The proof of the theorem goes in four steps.

Step 1. We introduce some notation used in the next steps. Consider a geometric braid $b \subset \mathbf{R}^{2} \times I$ on n strings. For $i=1, \ldots, n$, denote the i th string of b, that is, the string adjacent to the point $(i, 0,0)$, by b_{i}. Each plane $\mathbf{R}^{2} \times\{t\}$ with $t \in I$ meets b_{i} in one point, denoted by $b_{i}(t)$. In particular, we have $b_{i}(0)=(i, 0,0)$.

Let ρ be the Euclidean metric on \mathbf{R}^{3}. Given a real number $\varepsilon>0$, the cylinder ε-neighborhood of b_{i} consists of all points $(x, t) \in \mathbf{R}^{2} \times I$ such that $\rho\left((x, t), b_{i}(t)\right)<\varepsilon$. This neighborhood meets each plane $\mathbf{R}^{2} \times\{t\} \subset \mathbf{R}^{2} \times I$ along the open disk of radius ε centered at $b_{i}(t)$.

For distinct $i, j \in\{1, \ldots, n\}$, the function $t \mapsto \rho\left(b_{i}(t), b_{j}(t)\right)$ is a continuous function on I with positive values. Since I is compact, this function has a minimum value. Set

$$
|b|=\frac{1}{2} \min _{1 \leq i<j \leq n} \min _{t \in I} \rho\left(b_{i}(t), b_{j}(t)\right)>0 .
$$

It is clear that the cylinder $|b|$-neighborhoods of the strings of b are pairwise disjoint. (In fact, $|b|$ is the maximal real number with this property.)

For any pair of geometric braids b, b^{\prime} on n strings and any $i=1, \ldots, n$, the function $t \mapsto \rho\left(b_{i}(t), b_{i}^{\prime}(t)\right)$ is a continuous function on I with nonnegative values. Since I is compact, this function has a maximum value. Set

$$
\widetilde{\rho}\left(b, b^{\prime}\right)=\max _{1 \leq i \leq n} \max _{t \in I} \rho\left(b_{i}(t), b_{i}^{\prime}(t)\right) \geq 0 .
$$

The function $\widetilde{\rho}$ satisfies the axioms of a metric: $\widetilde{\rho}\left(b, b^{\prime}\right)=\widetilde{\rho}\left(b^{\prime}, b\right) ; \widetilde{\rho}\left(b, b^{\prime}\right)=0$ if and only if $b=b^{\prime}$; for any geometric braids $b, b^{\prime}, b^{\prime \prime}$ on n strings, we have $\widetilde{\rho}\left(b, b^{\prime \prime}\right) \leq \widetilde{\rho}\left(b, b^{\prime}\right)+\widetilde{\rho}\left(b^{\prime}, b^{\prime \prime}\right)$. The latter follows from the fact that for some $i=1, \ldots, n$ and $t \in I$,

$$
\begin{aligned}
\widetilde{\rho}\left(b, b^{\prime \prime}\right) & =\rho\left(b_{i}(t), b_{i}^{\prime \prime}(t)\right) \\
& \leq \rho\left(b_{i}(t), b_{i}^{\prime}(t)\right)+\rho\left(b_{i}^{\prime}(t), b_{i}^{\prime \prime}(t)\right) \\
& \leq \widetilde{\rho}\left(b, b^{\prime}\right)+\widetilde{\rho}\left(b^{\prime}, b^{\prime \prime}\right) .
\end{aligned}
$$

Note also that

$$
\begin{equation*}
|b| \leq\left|b^{\prime}\right|+\widetilde{\rho}\left(b, b^{\prime}\right) . \tag{1.2}
\end{equation*}
$$

Indeed, for some $t \in I$ and certain distinct $i, j=1, \ldots, n$,

$$
\begin{aligned}
|b| & =\frac{1}{2} \rho\left(b_{i}(t), b_{j}(t)\right) \\
& \leq \frac{1}{2}\left(\rho\left(b_{i}(t), b_{i}^{\prime}(t)\right)+\rho\left(b_{i}^{\prime}(t), b_{j}^{\prime}(t)\right)+\rho\left(b_{j}^{\prime}(t), b_{j}(t)\right)\right) \\
& \leq \frac{1}{2}\left(\widetilde{\rho}\left(b, b^{\prime}\right)+2\left|b^{\prime}\right|+\widetilde{\rho}\left(b^{\prime}, b\right)\right) \\
& =\left|b^{\prime}\right|+\widetilde{\rho}\left(b, b^{\prime}\right) .
\end{aligned}
$$

Step 2. A geometric braid is polygonal if all its strings are formed by consecutive (linear) segments; see Figure 1.6. Any geometric braid b on n strings can be approximated by polygonal braids as follows. Pick an integer $N \geq 2$ and an index $i=1, \ldots, n$. For $k=1, \ldots, N$, consider the segment in $\mathbf{R}^{2} \times I$ with endpoints $b_{i}\left(\frac{k-1}{N}\right)$ and $b_{i}\left(\frac{k}{N}\right)$. The union of these N segments is a broken line, b_{i}^{N}, with endpoints $b_{i}^{N}(0)=b_{i}(0)=(i, 0,0)$ and $b_{i}^{N}(1)=b_{i}(1)$. For sufficiently large N, this broken line lies in the cylinder $|b|$-neighborhood of b_{i}. Therefore for sufficiently large N, the broken lines $b_{1}^{N}, \ldots, b_{n}^{N}$ are disjoint and form a polygonal braid, b^{N}, approximating b. Moreover, for any real number $\varepsilon>0$ and all sufficiently large N, we have $\widetilde{\rho}\left(b, b^{N}\right)<\varepsilon$. For instance, Figure 1.6 shows a polygonal approximation of the braid in Figure 1.1.

Fig. 1.6. A polygonal braid on four strands

We now reformulate the notion of isotopy of braids in the polygonal setting. To this end, we introduce so-called Δ-moves on polygonal braids. Let A, B, C be three points in $\mathbf{R}^{2} \times I$ such that the third coordinate of A is strictly smaller than the third coordinate of B and the latter is strictly smaller than the third coordinate of C. The move $\Delta(A B C)$ applies to a polygonal braid $b \subset \mathbf{R}^{2} \times I$ whenever this braid meets the triangle $A B C$ precisely along the segment $A C$. (By the triangle $A B C$, we mean the linear 2 -simplex with vertices A, B, C.) Under this assumption, the move $\Delta(A B C)$ on b replaces $A C \subset b$ by $A B \cup B C$, keeping the rest of b intact; see Figure 1.7, where the triangle $A B C$ is shaded. The inverse move $(\Delta(A B C))^{-1}$ applies to a polygonal braid meeting the triangle $A B C$ precisely along $A B \cup B C$. This move replaces $A B \cup B C$ by $A C$. The moves $\Delta(A B C)$ and $(\Delta(A B C))^{-1}$ are called Δ-moves.

Fig. 1.7. A Δ-move

It is obvious that polygonal braids related by a Δ-move are isotopic. We establish a converse assertion.

Claim 1.7. If polygonal braids b, b^{\prime} are isotopic, then b can be transformed into b^{\prime} by a finite sequence of Δ-moves.
Proof. We first verify this claim under the assumption $\widetilde{\rho}\left(b, b^{\prime}\right)<|b| / 10$. Assume that the i th string b_{i} is formed by $K \geq 1$ consecutive segments with vertices $A_{0}=(i, 0,0), A_{1}, \ldots, A_{K} \in \mathbf{R}^{2} \times I$. We write $b_{i}=A_{0} A_{1} \cdots A_{K}$. Similarly, assume that $b_{i}^{\prime}=B_{0} B_{1} \cdots B_{L}$ with $L \geq 1$ and $B_{0}, B_{1}, \ldots, B_{L} \in \mathbf{R}^{2} \times I$. Note that $A_{0}=B_{0}$ and $A_{K}=B_{L} \in \mathbf{R}^{2} \times\{1\}$. Subdividing b_{i}, b_{i}^{\prime} into smaller segments, we can ensure that $K=L$, the points A_{j}, B_{j} have the same third coordinate for all $j=0,1, \ldots, K$, and the Euclidean length of the segments $A_{j} A_{j+1}, B_{j} B_{j+1}$ is smaller than $|b| / 10$ for $j=0,1, \ldots, K-1$. The assumption $\widetilde{\rho}\left(b, b^{\prime}\right)<|b| / 10$ implies that each horizontal segment $A_{j} B_{j}$ has length $<|b| / 10$. The move $\left(\Delta\left(A_{0} A_{1} A_{2}\right)\right)^{-1}$ transforms $b_{i}=A_{0} A_{1} \cdots A_{K}$ into the string $A_{0} A_{2} \cdots A_{K}=B_{0} A_{2} \cdots A_{K}$. The move $\Delta\left(B_{0} B_{1} A_{2}\right)$ transforms the latter in the string $B_{0} B_{1} A_{2} \cdots A_{K}$. Continuing by induction and applying the moves $\left(\Delta\left(B_{j} A_{j+1} A_{j+2}\right)\right)^{-1}, \Delta\left(B_{j} B_{j+1} A_{j+2}\right)$ for $j=0, \ldots, K-2$, we transform b_{i} into b_{i}^{\prime}. The conditions on the lengths imply that all the intermediate strings as well as the triangles $B_{j} A_{j+1} A_{j+2}, B_{j} B_{j+1} A_{j+2}$ determining these moves lie in the cylinder $|b|$-neighborhood of b_{i}; they are therefore disjoint from the cylinder $|b|$-neighborhoods of the other strings of b. We apply these transformations for $i=1, \ldots, n$ and obtain thus a sequence of Δ-moves transforming b into b^{\prime}.

Consider now an arbitrary pair of isotopic polygonal braids b, b^{\prime}. Let $F: b \times I \rightarrow \mathbf{R}^{2} \times I$ be an isotopy transforming $b=F_{0}(b)$ into $b^{\prime}=F_{1}(b)$ (the braids $F_{s}(b)$ with $0<s<1$ may be nonpolygonal). The continuity of F implies that the function $I \times I \rightarrow \mathbf{R},\left(s, s^{\prime}\right) \mapsto \widetilde{\rho}\left(F_{s}(b), F_{s^{\prime}}(b)\right)$ is continuous. This function is equal to 0 on the diagonal $s=s^{\prime}$ of $I \times I$. These facts and the inequality (1.2) imply that the function $I \rightarrow \mathbf{R}, s \mapsto\left|F_{s}(b)\right|$ is continuous. Since $\left|F_{s}(b)\right|>0$ for all s, there is a real number $\varepsilon>0$ such that $\left|F_{s}(b)\right|>\varepsilon$ for all $s \in I$. The continuity of the function $\left(s, s^{\prime}\right) \mapsto \widetilde{\rho}\left(F_{s}(b), F_{s^{\prime}}(b)\right)$ now implies that for a sufficiently large integer N and all $k=1,2, \ldots, N$,

$$
\widetilde{\rho}\left(F_{(k-1) / N}(b), F_{k / N}(b)\right)<\varepsilon / 10
$$

Let us approximate each braid $F_{k / N}(b)$ by a polygonal braid p_{k} such that $\widetilde{\rho}\left(F_{k / N}(b), p_{k}\right)<\varepsilon / 10$. For p_{0}, p_{N}, we take b, b^{\prime}, respectively. By (1.2),

$$
\left|p_{k}\right| \geq\left|F_{k / N}(b)\right|-\widetilde{\rho}\left(F_{k / N}(b), p_{k}\right)>9 \varepsilon / 10
$$

At the same time,

$$
\begin{aligned}
\widetilde{\rho}\left(p_{k-1}, p_{k}\right) \leq \widetilde{\rho}\left(p_{k-1}\right. & \left., F_{(k-1) / N}(b)\right) \\
& +\widetilde{\rho}\left(F_{(k-1) / N}(b), F_{k / N}(b)\right)+\widetilde{\rho}\left(F_{k / N}(b), p_{k}\right)<3 \varepsilon / 10 .
\end{aligned}
$$

Therefore $\widetilde{\rho}\left(p_{k-1}, p_{k}\right)<\left|p_{k}\right| / 2$ for $k=1, \ldots, N$. By the previous paragraph, p_{k-1} can be transformed into p_{k} by a sequence of Δ-moves. Composing these transformations $b=p_{0} \mapsto p_{1} \mapsto \cdots \mapsto p_{N}=b^{\prime}$, we obtain a required transformation $b \mapsto b^{\prime}$. This completes the proof of Claim 1.7.

Step 3. A polygonal braid is generic if its projection to $\mathbf{R} \times I=\mathbf{R} \times\{0\} \times I$ along the second coordinate has only double transversal crossings. Slightly deforming the vertices of a polygonal braid b (keeping ∂b), we can approximate this braid by a generic polygonal braid. Moreover, if b, b^{\prime} are generic polygonal braids related by a sequence of Δ-moves, then slightly deforming the vertices of the intermediate polygonal braids, we can ensure that these polygonal braids are also generic. Note the following corollary of this argument and Claim 1.7.

Claim 1.8. If generic polygonal braids b, b^{\prime} are isotopic, then b can be transformed into b^{\prime} by a finite sequence of Δ-moves such that all the intermediate polygonal braids are generic.

To present generic polygonal braids, we can apply the technique of braid diagrams. The diagrams of generic polygonal braids are the braid diagrams, whose strands are formed by consecutive straight segments. Without loss of generality, we can always assume that the vertices of these segments do not coincide with the crossing points of the diagrams.

Claim 1.9. The diagrams of two generic polygonal braids related by a Δ-move are R-equivalent.

Proof. Consider a Δ-move $\Delta(A B C)$ on a generic polygonal braid b producing a generic polygonal braid b^{\prime}. Pick points A^{\prime}, C^{\prime} inside the segments $A B$, $B C$, respectively. Pick a point D inside the segment $A C$ such that the third coordinate of D lies strictly between the third coordinates of A^{\prime} and C^{\prime}. Applying to b the moves $\Delta\left(A A^{\prime} D\right), \Delta\left(D C^{\prime} C\right)$, we transform the segment $A C$ into the broken line $A A^{\prime} D C^{\prime} C$. Further applying the moves $\left(\Delta\left(A^{\prime} D C^{\prime}\right)\right)^{-1}$ and $\Delta\left(A^{\prime} B C^{\prime}\right)$, we obtain b^{\prime}. This shows that the move $\Delta(A B C)$ can be replaced by a sequence of four Δ-moves along smaller triangles (one should choose the points $A^{\prime}, C^{\prime}, D$ so that the intermediate polygonal braids are generic). This expansion of the move $\Delta(A B C)$ can be iterated. In this way, subdividing the triangle $A B C$ into smaller triangles and expanding Δ-moves as compositions of Δ-moves along the smaller triangles, we can reduce ourselves to the case in which the projection of $A B C$ to $\mathbf{R} \times I$ meets the rest of the diagram of b either along a segment or along two segments with one crossing point.

Consider the first case. If both endpoints of the segment in question lie on $A B \cup B C$, then the diagram of b is transformed under $\Delta(A B C)$ by Ω_{2}. If one endpoint of the segment lies on $A C$ and the other one lies on $A B \cup B C$, then the diagram is transformed by an isotopy.

If the projection of $A B C$ to $\mathbf{R} \times I$ meets the rest of the diagram along two segments having one crossing, then we can similarly distinguish several subcases. Subdividing if necessary the triangle $A B C$ into smaller triangles and expanding our Δ-move as a composition of Δ-moves along the smaller triangles, we can reduce ourselves to the case in which the move preserves the part of the diagram lying outside a small disk in $\mathbf{R} \times I$ and changes the diagram inside this disk via one of the following six formulas:

$$
\begin{array}{lll}
d_{1}^{+} d_{2}^{+} d_{1}^{+} \leftrightarrow d_{2}^{+} d_{1}^{+} d_{2}^{+}, & d_{1}^{+} d_{2}^{+} d_{1}^{-} \leftrightarrow d_{2}^{-} d_{1}^{+} d_{2}^{+}, & d_{1}^{-} d_{2}^{-} d_{1}^{+} \leftrightarrow d_{2}^{+} d_{1}^{-} d_{2}^{-}, \\
d_{1}^{-} d_{2}^{-} d_{1}^{-} \leftrightarrow d_{2}^{-} d_{1}^{-} d_{2}^{-}, & d_{1}^{+} d_{2}^{-} d_{1}^{-} \leftrightarrow d_{2}^{-} d_{1}^{-} d_{2}^{+}, & d_{1}^{-} d_{2}^{+} d_{1}^{+} \leftrightarrow d_{2}^{+} d_{1}^{+} d_{2}^{-} .
\end{array}
$$

Here $d_{1}^{ \pm}$and $d_{2}^{ \pm}$are the braid diagrams on three strands shown in Figure 1.8; for the definition of the product of braid diagrams, see Figure 1.4. The reader is encouraged to draw the pictures of these transformations. It remains to prove that for each of them, the diagrams on the left-hand and right-hand sides are R-equivalent. The transformation $d_{1}^{+} d_{2}^{+} d_{1}^{+} \mapsto d_{2}^{+} d_{1}^{+} d_{2}^{+}$is just Ω_{3}. For the other five transformations, the R-equivalence is established by the following sequences of moves:

$$
\begin{aligned}
\omega= & \left(d_{1}^{+} d_{2}^{+} d_{1}^{-} \xrightarrow{\Omega_{2}} d_{2}^{-} d_{2}^{+} d_{1}^{+} d_{2}^{+} d_{1}^{-} \xrightarrow{\Omega_{3}^{-1}} d_{2}^{-} d_{1}^{+} d_{2}^{+} d_{1}^{+} d_{1}^{-} \xrightarrow{\Omega_{2}^{-1}} d_{2}^{-} d_{1}^{+} d_{2}^{+}\right), \\
\gamma= & \left(d_{1}^{-} d_{2}^{-} d_{1}^{+} \xrightarrow{\Omega_{2}} d_{1}^{-} d_{2}^{-} d_{1}^{+} d_{2}^{+} d_{2}^{-} \xrightarrow{\omega^{-1}} d_{1}^{-} d_{1}^{+} d_{2}^{+} d_{1}^{-} d_{2}^{-} \xrightarrow{\Omega_{2}^{-1}} d_{2}^{+} d_{1}^{-} d_{2}^{-}\right), \\
\mu= & \left(d_{1}^{-} d_{2}^{-} d_{1}^{-} \xrightarrow{\Omega_{2}} d_{2}^{-} d_{2}^{+} d_{1}^{-} d_{2}^{-} d_{1}^{-} \xrightarrow{\gamma^{-1}} d_{2}^{-} d_{1}^{-} d_{2}^{-} d_{1}^{+} d_{1}^{-} \xrightarrow{\Omega_{2}^{-1}} d_{2}^{-} d_{1}^{-} d_{2}^{-}\right), \\
& d_{1}^{+} d_{2}^{-} d_{1}^{-} \xrightarrow{\Omega_{2}} d_{1}^{+} d_{2}^{-} d_{1}^{-} d_{2}^{-} d_{2}^{+} \xrightarrow{\mu^{-1}} d_{1}^{+} d_{1}^{-} d_{2}^{-} d_{1}^{-} d_{2}^{+} \xrightarrow{\Omega_{2}^{-1}} d_{2}^{-} d_{1}^{-} d_{2}^{+} \\
& d_{1}^{-} d_{2}^{+} d_{1}^{+} \xrightarrow{\Omega_{2}} d_{1}^{-} d_{2}^{+} d_{1}^{+} d_{2}^{+} d_{2}^{-} \xrightarrow{\Omega_{3}^{-1}} d_{1}^{-} d_{1}^{+} d_{2}^{+} d_{1}^{+} d_{2}^{-} \xrightarrow{\Omega_{2}^{-1}} d_{2}^{+} d_{1}^{+} d_{2}^{-} .
\end{aligned}
$$

This completes the proof of Claim 1.9.

Fig. 1.8. The diagrams $d_{1}^{+}, d_{1}^{-}, d_{2}^{+}, d_{2}^{-}$

Step 4. We can now complete the proof of Theorem 1.6. It is obvious that R-equivalent braid diagrams present isotopic braids. To prove the converse, consider two braid diagrams $\mathcal{D}_{1}, \mathcal{D}_{2}$ presenting isotopic braids. For $i=1,2$, straightening \mathcal{D}_{i} near its crossing points and approximating the rest of \mathcal{D}_{i} by broken lines as at Step 2, we obtain a diagram, \mathcal{D}_{i}^{\prime}, of a generic polygonal braid, b^{i}. If the approximation is close enough, then \mathcal{D}_{i}^{\prime} is isotopic to \mathcal{D}_{i} (cf. Exercise 1.2.1 below). Then the braids b^{1}, b^{2} are isotopic. Claim 1.8 implies that b^{1} can be transformed into b^{2} by a finite sequence of Δ-moves in the class of generic polygonal braids. Claim 1.9 implies that the diagrams $\mathcal{D}_{1}^{\prime}, \mathcal{D}_{2}^{\prime}$ are R-equivalent. Therefore the diagrams $\mathcal{D}_{1}, \mathcal{D}_{2}$ are R-equivalent.

In the next exercise we use the notation introduced at Step 1 of the proof.

Exercise 1.2.1. Any geometric braids b, b^{\prime} with the same number of strings and such that $\widetilde{\rho}\left(b, b^{\prime}\right)<|b|$ are isotopic to each other.

Solution. The required isotopy $F: b \times I \rightarrow \mathbf{R}^{2} \times I$ can be obtained by pushing each point $b_{i}(t)$ into $b_{i}^{\prime}(t)$ along the line connecting these points. Thus,

$$
F\left(b_{i}(t), s\right)=s b_{i}(t)+(1-s) b_{i}^{\prime}(t),
$$

for $t, s \in I$ and $i=1, \ldots, n$, where n is the number of strings of b. To see that F is an isotopy of b into b^{\prime}, it is enough to check that for all $s \in I$, the $\operatorname{map} F_{s}: b \rightarrow \mathbf{R}^{2} \times I$ sending $b_{i}(t)$ to $s b_{i}(t)+(1-s) b_{i}^{\prime}(t)$ is an embedding. Since the points $b_{i}(t), b_{i}^{\prime}(t)$ have the third coordinate t, so does the point $s b_{i}(t)+(1-s) b_{i}^{\prime}(t)$. Therefore the restriction of F_{s} to any string b_{i} of b is an embedding. Moreover,

$$
\rho\left(b_{i}(t), F_{s}\left(b_{i}(t)\right)\right) \leq \rho\left(b_{i}(t), b_{i}^{\prime}(t)\right) \leq \widetilde{\rho}\left(b, b^{\prime}\right)<|b| .
$$

Therefore the image of b_{i} under F_{s} lies in the cylinder $|b|$-neighborhood of b_{i}. This implies that the images of distinct strings of b under F_{s} are disjoint.

1.2.4 The group of braids

Denote by \mathcal{B}_{n} the set of braids on n strings with multiplication defined above. The next lemma implies that \mathcal{B}_{n} is a group.

Lemma 1.10. Each $\beta \in \mathcal{B}_{n}$ has a two-sided inverse β^{-1} in \mathcal{B}_{n}.
Proof. For $i=1,2, \ldots, n-1$, we define two elementary braids σ_{i}^{+}and σ_{i}^{-} represented by diagrams with only one crossing shown in Figure 1.9. We claim that the braids $\sigma_{1}^{+}, \ldots, \sigma_{n-1}^{+}, \sigma_{1}^{-}, \ldots, \sigma_{n-1}^{-} \in \mathcal{B}_{n}$ generate \mathcal{B}_{n} as a monoid. To see this, consider a braid β on n strings represented by a braid diagram \mathcal{D}. By a slight deformation of $\mathcal{D} \subset \mathbf{R} \times I$ in a neighborhood of its crossing points, we may arrange that distinct crossings of \mathcal{D} have distinct second coordinates. Then there are real numbers

$$
0=t_{0}<t_{1}<\cdots<t_{k-1}<t_{k}=1
$$

such that the intersection of \mathcal{D} with each strip $\mathbf{R} \times\left[t_{j}, t_{j+1}\right]$ has exactly one crossing lying inside this strip. This intersection is then a diagram of σ_{i}^{+}or σ_{i}^{-} for some $i=1,2, \ldots, n-1$. The resulting splitting of \mathcal{D} as a product of k braid diagrams shows that

$$
\begin{equation*}
\beta=\beta(\mathcal{D})=\sigma_{i_{1}}^{\varepsilon_{1}} \sigma_{i_{2}}^{\varepsilon_{2}} \cdots \sigma_{i_{k}}^{\varepsilon_{k}}, \tag{1.3}
\end{equation*}
$$

where each ε_{j} is either + or - and $i_{1}, \ldots, i_{k} \in\{1,2, \ldots, n-1\}$.
Clearly, $\sigma_{i}^{+} \sigma_{i}^{-}=\sigma_{i}^{-} \sigma_{i}^{+}=1$ for all i. (The corresponding braid diagrams are related by Ω_{2}.) Therefore $\beta^{-1}=\sigma_{i_{k}}^{-\varepsilon_{k}} \cdots \sigma_{i_{2}}^{-\varepsilon_{2}} \sigma_{i_{1}}^{-\varepsilon_{1}}$ is a two-sided inverse of β in \mathcal{B}_{n} (here we use the convention $-+=-$ and $--=+$).

Fig. 1.9. The elementary braids σ_{i}^{+}and σ_{i}^{-}

Lemma 1.11. The elements $\sigma_{1}^{+}, \ldots, \sigma_{n-1}^{+} \in \mathcal{B}_{n}$ satisfy the braid relations, that is, $\sigma_{i}^{+} \sigma_{j}^{+}=\sigma_{j}^{+} \sigma_{i}^{+}$for all $i, j=1,2, \ldots, n-1$ with $|i-j| \geq 2$, and $\sigma_{i}^{+} \sigma_{i+1}^{+} \sigma_{i}^{+}=\sigma_{i+1}^{+} \sigma_{i}^{+} \sigma_{i+1}^{+}$for $i=1,2, \ldots, n-2$.

Proof. The first relation follows from the fact that its sides are represented by isotopic diagrams. The diagrams representing the sides of the second relation differ by the Reidemeister move Ω_{3}.

Theorem 1.12. For $\varepsilon= \pm$, there is a unique homomorphism $\varphi_{\varepsilon}: B_{n} \rightarrow \mathcal{B}_{n}$ such that $\varphi_{\varepsilon}\left(\sigma_{i}\right)=\sigma_{i}^{\varepsilon}$ for all $i=1,2, \ldots, n-1$. The homomorphism φ_{ε} is an isomorphism.

Proof. For concreteness, we take $\varepsilon=+$ (the case $\varepsilon=-$ can be treated similarly or reduced to the case $\varepsilon=+$ using Exercise 1.1.2). The existence and uniqueness of φ_{+}follow directly from Lemmas 1.2 and 1.11. The proof of Lemma 1.10 shows that $\sigma_{1}^{+}, \ldots, \sigma_{n-1}^{+}$generate \mathcal{B}_{n} as a group. These generators belong to the image of φ_{+}. Therefore, φ_{+}is surjective.

We now construct a set-theoretic map $\psi: \mathcal{B}_{n} \rightarrow B_{n}$ such that $\psi \circ \varphi_{+}=\mathrm{id}$. This will imply that φ_{+}is injective. As in the proof of Lemma 1.10, we represent any $\beta \in \mathcal{B}_{n}$ by a braid diagram \mathcal{D} whose crossings have distinct second coordinates. This leads to an expansion of the form (1.3). Set

$$
\psi(\mathcal{D})=\left(\sigma_{i_{1}}\right)^{\varepsilon_{1}}\left(\sigma_{i_{2}}\right)^{\varepsilon_{2}} \cdots\left(\sigma_{i_{k}}\right)^{\varepsilon_{k}} \in B_{n}
$$

where

$$
\left(\sigma_{i}\right)^{+}=\sigma_{i} \quad \text { and } \quad\left(\sigma_{i}\right)^{-}=\sigma_{i}^{-1}
$$

We claim that $\psi(\mathcal{D})$ depends only on β. By Theorem 1.6 we need only verify that $\psi(\mathcal{D})$ does not change under isotopies of \mathcal{D} and the Reidemeister moves on \mathcal{D}. Isotopies of \mathcal{D} keeping the order of the double points of \mathcal{D} with respect to the second coordinate keep the expansion (1.3) and therefore preserve $\psi(\mathcal{D})$. An isotopy exchanging the order of two double points of \mathcal{D} (as in Figure 1.3) replaces the term $\sigma_{i}^{\varepsilon_{i}} \sigma_{j}^{\varepsilon_{j}}$ in (1.3) by $\sigma_{j}^{\varepsilon_{j}} \sigma_{i}^{\varepsilon_{i}}$ for some $i, j \in\{1,2, \ldots, n-1\}$ with $|i-j| \geq 2$. Under ψ, these expressions are sent to the same element of B_{n} because of the first braid relation of Definition 1.1.

The move Ω_{2} (resp. Ω_{2}^{-1}) on \mathcal{D} inserts (resp. removes) in the expansion (1.3) a term $\sigma_{i}^{+} \sigma_{i}^{-}$or $\sigma_{i}^{-} \sigma_{i}^{+}$. Clearly, this preserves $\psi(\mathcal{D})$.

The move Ω_{3} on \mathcal{D} replaces a sequence $\sigma_{i}^{+} \sigma_{i+1}^{+} \sigma_{i}^{+}$in (1.3) by $\sigma_{i+1}^{+} \sigma_{i}^{+} \sigma_{i+1}^{+}$. Under ψ, these expressions are sent to the same element of B_{n} because of the second braid relation of Definition 1.1. The move Ω_{3}^{-1} is considered similarly.

This shows that ψ is a well-defined map from \mathcal{B}_{n} to B_{n}. By construction, $\psi \circ \varphi_{+}=$id. Hence φ_{+}is both surjective and injective.

Conventions 1.13. From now on, we shall identify the groups B_{n} and \mathcal{B}_{n} via φ_{+}. The elements of B_{n} henceforth will be called braids on n strings. We shall write σ_{i} for the braid σ_{i}^{+}. In this notation, $\sigma_{i}^{-}=\left(\sigma_{i}^{+}\right)^{-1}=\sigma_{i}^{-1}$.

The projection to the symmetric group $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ can be easily described in geometric terms. For a geometric braid b on n strings, the permutation $\pi(b) \in \mathfrak{S}_{n}$ sends each $i \in\{1,2, \ldots, n\}$ to the only $j \in\{1,2, \ldots, n\}$ such that the string of b attached to $(i, 0,0)$ has the second endpoint at $(j, 0,1)$.

Corollary 1.14. The natural inclusion $\iota: B_{n} \rightarrow B_{n+1}$ is injective for all n.
Proof. In geometric language, $\iota: B_{n} \rightarrow B_{n+1}$ adds to a geometric braid b on n strings a vertical string on its right completely unlinked from b. Denote the resulting braid on $n+1$ strings by $\iota(b)$. If b_{1}, b_{2} are two geometric braids on n strings such that $\iota\left(b_{1}\right)$ is isotopic to $\iota\left(b_{2}\right)$, then restricting the isotopy to the leftmost n strings, we obtain an isotopy of b_{1} into b_{2}. Therefore ι is injective.

Remarks 1.15. (a) Some authors, including Artin [Art25], use φ_{-}to identify B_{n} and \mathcal{B}_{n}. We follow [Art47a], where these groups are identified via φ_{+}.
(b) In the definition of geometric braids on n strings we chose the set of endpoints to be $\{1,2, \ldots, n\} \times\{0\} \times\{0,1\}$. Instead of $\{1,2, \ldots, n\}$ we can use an arbitrary set of n distinct real numbers. This gives the same group of braids, since such a set can be continuously deformed into $\{1,2, \ldots, n\}$ in \mathbf{R}.

Exercise 1.2.2. Prove that for an arbitrary geometric braid $b \subset \mathbf{R}^{2} \times I$, there is a Euclidean disk $U \subset \mathbf{R}^{2}$ such that $b \subset U \times I$. (Hint: The projection of b to the plane \mathbf{R}^{2} is a compact set.)

Exercise 1.2.3. Prove that for an arbitrary isotopy of braids $\left\{b_{s}\right\}_{s \in I}$, there is a Euclidean disk $U \subset \mathbf{R}^{2}$ such that $b_{s} \subset U \times I$ for all $s \in I$.

Exercise 1.2.4. Let U be an open Euclidean disk in \mathbf{R}^{2} containing the points $(1,0), \ldots,(n, 0)$. Prove that any geometric braid on n strings $b \subset \mathbf{R}^{2} \times I$ is isotopic to a geometric braid lying in $U \times I$.

Solution. By Exercise 1.2.2, there is a disk $U_{1} \subset \mathbf{R}^{2}$ such that $b \subset U_{1} \times I$. Enlarging U_{1}, we may assume that $U_{1} \supset U$. There is a small $\varepsilon>0$ such that

$$
b \cap\left(\mathbf{R}^{2} \times[0, \varepsilon]\right) \subset U \times[0, \varepsilon] \quad \text { and } \quad b \cap\left(\mathbf{R}^{2} \times[1-\varepsilon, 1]\right) \subset U \times[1-\varepsilon, 1]
$$

Keeping fixed the part of b lying in

$$
\left(\mathbf{R}^{2} \times[0, \varepsilon / 2]\right) \cup\left(\mathbf{R}^{2} \times[1-\varepsilon / 2,1]\right)
$$

and squeezing $U_{1} \times[\varepsilon, 1-\varepsilon]$ into $U \times[\varepsilon, 1-\varepsilon]$, we obtain a geometric braid in $U \times[0,1]$ isotopic to b.

Exercise 1.2.5. For U as in Exercise 1.2.4, prove that any two geometric braids lying in $U \times I$ and isotopic in $\mathbf{R}^{2} \times I$ are isotopic already in $U \times I$.

Exercise 1.2.6. For a geometric braid $b \subset \mathbf{R}^{2} \times I$ on n strings, denote by \bar{b} the image of b under the involution of $\mathbf{R}^{2} \times I$ mapping (x, y, t) to $(x, y, 1-t)$, where $x, y \in \mathbf{R}, t \in I$. Verify that \bar{b} is a geometric braid. Show that if b represents $\beta \in \mathcal{B}_{n}$, then \bar{b} represents β^{-1}. Deduce that if β is represented by a braid diagram \mathcal{D}, then β^{-1} is represented by the image of \mathcal{D} under the reflection in the line $\mathbf{R} \times\{1 / 2\}$.

1.3 Pure braid groups

In this section we introduce so-called pure braids and use them to establish important algebraic properties of the braid groups.

1.3.1 Pure braids

The kernel of the natural projection $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$ is called the pure braid group and is denoted by P_{n} :

$$
P_{n}=\operatorname{Ker}\left(\pi: B_{n} \rightarrow \mathfrak{S}_{n}\right)
$$

The elements of P_{n} are called pure braids on n strings. A geometric braid on n strings represents an element of P_{n} if and only if for all $i=1, \ldots, n$, the string of this braid attached to $(i, 0,0)$ has the second endpoint at $(i, 0,1)$. Such geometric braids are said to be pure.

An important role in the sequel will be played by the pure n-string braid $A_{i, j}$ shown in Figure 1.10, where $1 \leq i<j \leq n$. This braid can be expressed via the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ by

$$
A_{i, j}=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1} \sigma_{i}^{2} \sigma_{i+1}^{-1} \cdots \sigma_{j-2}^{-1} \sigma_{j-1}^{-1}
$$

The braids $\left\{A_{i, j}\right\}_{i, j}$ are conjugate to each other in B_{n}. Indeed, set

$$
\alpha_{i, j}=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i}
$$

for any $1 \leq i<j \leq n$. It is a simple pictorial exercise to check that for any $1 \leq i<j<k \leq n$,

$$
\begin{equation*}
\alpha_{j, k} A_{i, j} \alpha_{j, k}^{-1}=A_{i, k} \quad \text { and } \quad \alpha_{i, k} A_{i, j} \alpha_{i, k}^{-1}=A_{j, k} . \tag{1.4}
\end{equation*}
$$

We shall see shortly that the braids $\left\{A_{i, j}\right\}_{i, j}$ are not mutually conjugate in P_{n}.

Fig. 1.10. The n-string braid $A_{i, j}$ with $1 \leq i<j \leq n$

The commutativity of the diagram (1.1) implies that the inclusion homomorphism $\iota: B_{n} \rightarrow B_{n+1}$ maps P_{n} to P_{n+1}. The homomorphism $P_{n} \rightarrow P_{n+1}$ induced by ι will be denoted by the same symbol ι. In geometric language, $\iota: P_{n} \rightarrow P_{n+1}$ adds to a pure geometric braid b on n strings a vertical string on its right completely unlinked from b. By Corollary $1.14, \iota: P_{n} \rightarrow P_{n+1}$ is injective. It is sometimes convenient to view P_{n} as a subgroup of P_{n+1} via ι. In this way we obtain an increasing chain of groups $P_{1} \subset P_{2} \subset P_{3} \subset \cdots$. It is clear that $P_{1}=\{1\}$ and P_{2} is an infinite cyclic group generated by $A_{1,2}=\sigma_{1}^{2}$.

1.3.2 Forgetting homomorphisms

We define a forgetting homomorphism $f_{n}: P_{n} \rightarrow P_{n-1}$ as follows. Represent an element of P_{n} by a geometric braid b. The i th string of b connects $(i, 0,0)$ to $(i, 0,1)$ for $i=1,2, \ldots, n$. Removing the nth string from b, we obtain a braid $f_{n}(b)$ on $n-1$ strings. It is obvious that if b is isotopic to b^{\prime}, then $f_{n}(b)$ is isotopic to $f_{n}\left(b^{\prime}\right)$. Passing to isotopy classes, we obtain a well-defined map $f_{n}: P_{n} \rightarrow P_{n-1}$. From the definition of multiplication for geometric braids, it is clear that f_{n} is a group homomorphism. From the geometric description of the natural inclusion $\iota: P_{n-1} \rightarrow P_{n}$, it is clear that $f_{n} \circ \iota=\mathrm{id}_{P_{n-1}}$. This yields another proof of the injectivity of ι and of Corollary 1.14, and also implies that the homomorphism f_{n} is surjective.

For $n \geq 2$, set

$$
U_{n}=\operatorname{Ker}\left(f_{n}: P_{n} \rightarrow P_{n-1}\right)
$$

Note that since f_{n} has a section, P_{n} is isomorphic to the semidirect product of P_{n-1} by U_{n}. Any pure braid $\beta \in P_{n}$ can be expanded uniquely in the form

$$
\begin{equation*}
\beta=\iota\left(\beta^{\prime}\right) \beta_{n} \tag{1.5}
\end{equation*}
$$

with $\beta^{\prime} \in P_{n-1}$ and $\beta_{n} \in U_{n}$. Here $\beta^{\prime}=f_{n}(\beta)$ and $\beta_{n}=\iota\left(\beta^{\prime}\right)^{-1} \beta$. Applying this expansion inductively, we conclude that β can be written uniquely as

$$
\begin{equation*}
\beta=\beta_{2} \beta_{3} \cdots \beta_{n} \tag{1.6}
\end{equation*}
$$

where $\beta_{j} \in U_{j} \subset P_{j} \subset P_{n}$ for $j=2,3, \ldots, n$. The expansion (1.6) is called the combed (or normal) form of β. The authors cannot resist the temptation to quote the last paragraph of Artin's paper [Art47a]: "Although it has been proved that every braid can be deformed into a similar normal form the writer is convinced that any attempt to carry this out on a living person would only lead to violent protests and discrimination against mathematics. He would therefore discourage such an experiment."

It is clear from Figure 1.10 that $A_{i, n} \in U_{n}$ for $i=1,2, \ldots, n-1$. We state now a fundamental theorem computing U_{n}.

Theorem 1.16. For all $n \geq 2$, the group U_{n} is free on the $n-1$ generators $\left\{A_{i, n}\right\}_{i=1,2, \ldots, n-1}$.

A proof of Theorem 1.16 will be given in Section 1.4. The rest of this section will be devoted to corollaries of Theorem 1.16.

Corollary 1.17. The group P_{n} admits a normal filtration

$$
1=U_{n}^{(0)} \subset U_{n}^{(1)} \subset \cdots \subset U_{n}^{(n-1)}=P_{n}
$$

such that $U_{n}^{(i)} / U_{n}^{(i-1)}$ is a free group of rank $n-i$ for all i.
Proof. Set $U_{n}^{(0)}=\{1\}$ and for $i=1,2, \ldots, n-1$ set

$$
U_{n}^{(i)}=\operatorname{Ker}\left(f_{n-i+1} \cdots f_{n-1} f_{n}: P_{n} \rightarrow P_{n-i}\right) .
$$

Then

$$
U_{n}^{(i)} / U_{n}^{(i-1)} \cong \operatorname{Ker}\left(f_{n-i+1}: P_{n-i+1} \rightarrow P_{n-i}\right)=U_{n-i+1}
$$

Corollary 1.18. The group P_{n} is torsion free, i.e., it has no nontrivial elements of finite order.

This follows directly from Corollary 1.17, since free groups are torsion free. The braid group B_{n} is also torsion free; this will be proven in Section 1.4.3 using a different method.

Corollary 1.19. P_{n} is generated by the $n(n-1) / 2$ elements $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$.
This directly follows from formula (1.6) and Theorem 1.16.
Here is a list of defining relations for the generators $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$ of P_{n} :

$$
\begin{align*}
& A_{r, s}^{-1} A_{i, j} A_{r, s}= \tag{1.7}\\
& \qquad \begin{cases}A_{i, j} & \text { if } s<i \text { or } i<r<s<j, \\
A_{r, j} A_{i, j} A_{r, j}^{-1} & \text { if } s=i, \\
A_{r, j} A_{s, j} A_{i, j} A_{s, j}^{-1} A_{r, j}^{-1} & \text { if } i=r<s<j, \\
A_{r, j} A_{s, j} A_{r, j}^{-1} A_{s, j}^{-1} A_{i, j} A_{s, j} A_{r, j} A_{s, j}^{-1} A_{r, j}^{-1} & \text { if } r<i<s<j .\end{cases}
\end{align*}
$$

That these relations hold in P_{n} can be verified directly by drawing the corresponding pictures. That all relations between $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$ follow from the relations in this list can be verified using the Reidemeister-Schreier rewriting process; see Appendix 1 to [Han89], written by Lars Gæde. In this book we use relations (1.7) only once, in Section 7.2.3.

Corollary 1.20. We have $P_{n} /\left[P_{n}, P_{n}\right] \cong \mathbf{Z}^{n(n-1) / 2}$.
Proof. By Corollary 1.19, the abelian group $P_{n} /\left[P_{n}, P_{n}\right]$ is generated by the elements represented by $A_{i, j}$, where $1 \leq i<j \leq n$. To prove that these elements are linearly independent, it suffices to construct for each pair $1 \leq i<j \leq n$ a group homomorphism $l_{i, j}: P_{n} \rightarrow \mathbf{Z}$ such that $l_{i, j}\left(A_{i, j}\right)=1$ and $l_{i, j}\left(A_{r, s}\right)=0$ for all pairs (r, s) distinct from (i, j).

Pick $\beta \in P_{n}$ and represent it by a braid diagram \mathcal{D}. Orient all strands of \mathcal{D} from the top (the level $t=0$) to the bottom (the level $t=1$). Let $l_{i, j}^{+}(\mathcal{D})$ be the number of crossings of \mathcal{D}, where the i th strand goes over the j th strand from left to right. Let $l_{i, j}^{-}(\mathcal{D})$ be the number of crossings of \mathcal{D}, where the i th strand goes over the j th strand from right to left. Set

$$
l_{i, j}(\beta)=l_{i, j}^{+}(\mathcal{D})-l_{i, j}^{-}(\mathcal{D}) .
$$

It is straightforward to check that $l_{i, j}(\beta)$ is invariant under isotopies and Reidemeister moves on \mathcal{D}. By Theorem 1.6, $l_{i, j}(\beta)$ is a well-defined invariant of β. (This invariant can be also defined as the linking number of the i th and j th components of the link in \mathbf{R}^{3} obtained by closing β; cf. Chapter 2.) The map $l_{i, j}: P_{n} \rightarrow \mathbf{Z}$ is a group homomorphism taking the value +1 on $A_{i, j}$ and the value 0 on all $A_{r, s}$ with $(r, s) \neq(i, j)$.

Corollary 1.21. The group B_{n} and all its subgroups are residually finite.
Proof. Recall that a group G is residually finite if for each $\beta \in G-\{1\}$, there is a homomorphism f from G to a finite group such that $f(\beta) \neq 1$. It is known that free groups are residually finite (see [LS77, Chap. IV, Sect. 4], [MKS66, Sect. 6.5]) and a semidirect product of two finitely generated residually finite groups is residually finite (the latter fact is due to Maltsev [Mal40]). Therefore Theorem 1.16 implies by induction on n that P_{n} is residually finite.

Note that any extension (not necessarily semidirect) of a residually finite group P by a finite group is residually finite. This can be easily deduced from the fact that the intersection of a finite family of subgroups of P of finite index is a subgroup of P of finite index. Since B_{n} is an extension of P_{n} by \mathfrak{S}_{n} and P_{n} is residually finite, so is B_{n}. It remains to observe that all subgroups of a residually finite group are residually finite.

A group is Hopfian if all its surjective endomorphisms are injective.
Corollary 1.22. The group B_{n} and all its finitely generated subgroups are Hopfian.

Proof. A finitely generated residually finite group is Hopfian (see [LS77, Chap. IV, Th. 4.10], [Neu67]).

Corollary 1.23. For $i=1,2, \ldots, n$, forgetting the i th string defines a group homomorphism $f_{n}^{i}: P_{n} \rightarrow P_{n-1}$. The kernel of f_{n}^{i} is a free group of rank $n-1$ with free generators $A_{1, i}, \ldots, A_{i-1, i}, A_{i, i+1}, \ldots, A_{i, n}$.

Proof. Set $\alpha_{i, n}=\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{i}$ and observe that for any $\beta \in P_{n}$, forgetting the nth string of $\alpha_{i, n} \beta \alpha_{i, n}^{-1}$ yields the braid

$$
1_{n-1} f_{n}^{i}(\beta) 1_{n-1}=f_{n}^{i}(\beta) .
$$

Hence, $f_{n}^{i}(\beta)=f_{n}\left(\alpha_{i, n} \beta \alpha_{i, n}^{-1}\right)$, where $f_{n}=f_{n}^{n}$. Therefore,

$$
\operatorname{Ker} f_{n}^{i}=\alpha_{i, n}^{-1}\left(\operatorname{Ker} f_{n}\right) \alpha_{i, n}=\alpha_{i, n}^{-1} U_{n} \alpha_{i, n} .
$$

It remains to use Theorem 1.16 and to observe that conjugation by $\alpha_{i, n}^{-1}$ transforms the set $\left\{A_{j, n}\right\}_{j=1,2, \ldots, n-1}$ into the set

$$
\left\{A_{1, i}, \ldots, A_{i-1, i}, A_{i, i+1}, \ldots, A_{i, n}\right\}
$$

as is clear from (1.4).

1.3.3 The center of B_{n}

The center of a group G is the subgroup of G consisting of all $g \in G$ such that $g x=x g$ for every $x \in G$. The center of a group G is denoted by $Z(G)$.

Theorem 1.24. If $n \geq 3$, then $Z\left(B_{n}\right)=Z\left(P_{n}\right)$ is an infinite cyclic group generated by $\theta_{n}=\Delta_{n}^{2}$, where

$$
\Delta_{n}=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2}\right) \cdots\left(\sigma_{1} \sigma_{2}\right) \sigma_{1} \in B_{n}
$$

Fig. 1.11. The braid Δ_{5}

Proof. The braid Δ_{n} can be obtained from the trivial braid 1_{n} by a half-twist achieved by keeping the top of the braid fixed and turning over the row of the lower ends by an angle of π. See Figure 1.11 for a diagram of Δ_{5}. The braid $\theta_{n}=\Delta_{n}^{2}$ can be obtained from the trivial braid 1_{n} by a full twist achieved by keeping the top of the braid fixed and turning over the row of the lower ends by an angle of 2π. We have

$$
\pi\left(\Delta_{n}\right)=(n, n-1, \ldots, 1) \in \mathfrak{S}_{n}
$$

Hence $\theta_{n} \in P_{n}$. It is a simple exercise to compute θ_{n} inductively from $\iota\left(\theta_{n-1}\right)$, where $\iota: P_{n-1} \rightarrow P_{n}$ is the natural inclusion. Namely, $\theta_{n}=\iota\left(\theta_{n-1}\right) \gamma$, where

$$
\gamma=\gamma_{n}=A_{1, n} A_{2, n} \cdots A_{n-1, n} \in P_{n}
$$

see Figure 1.12 for a diagram of γ_{5}.

Fig. 1.12. The braid γ_{5}

Sliding a crossing along the strands of the diagram of Δ_{n} from top to bottom, one easily obtains for all $i=1,2, \ldots, n-1$,

$$
\begin{equation*}
\sigma_{i} \Delta_{n}=\Delta_{n} \sigma_{n-i} \tag{1.8}
\end{equation*}
$$

This implies that θ_{n} commutes with all the generators of B_{n} :

$$
\sigma_{i} \theta_{n}=\sigma_{i} \Delta_{n} \Delta_{n}=\Delta_{n} \sigma_{n-i} \Delta_{n}=\Delta_{n} \Delta_{n} \sigma_{i}=\theta_{n} \sigma_{i}
$$

Hence, $\theta_{n} \in Z\left(B_{n}\right)$.
We now prove by induction on $n \geq 2$ that all elements of $Z\left(P_{n}\right)$ are powers of θ_{n}. For $n=2$, this is obvious since P_{2} is generated by $A_{1,2}=\theta_{2}=\sigma_{1}^{2}$. Here is the inductive step. Pick $\beta \in Z\left(P_{n}\right)$, where $n \geq 3$. By formula (1.5), $\beta=\iota\left(\beta^{\prime}\right) \beta_{n}$, where $\beta^{\prime}=f_{n}(\beta) \in P_{n-1}$ and $\beta_{n} \in U_{n}$. An easy geometric argument shows that the braid $\gamma=\gamma_{n}$ introduced above commutes with any element of $\iota\left(P_{n-1}\right) \subset P_{n}$ and in particular with $\iota\left(\beta^{\prime}\right)$. Since β lies in the center of P_{n}, it commutes with γ. Hence, γ commutes with $\beta_{n}=\iota\left(\beta^{\prime}\right)^{-1} \beta$. The group $G \subset U_{n}$ generated by β_{n} and γ is therefore abelian. By Theorem 1.16, the group U_{n} is free and therefore all its subgroups are free. This implies that G is an infinite cyclic group. Recall now the homomorphism $l_{i, j}: P_{n} \rightarrow \mathbf{Z}$ defined in the proof of Corollary 1.20 for all $1 \leq i<j \leq n$. Clearly $l_{1, n}(\gamma)=1$, so that γ has to be a generator of G. Thus, $\beta_{n}=\gamma^{k}$ for some integer k. Since the forgetting homomorphism $f_{n}: P_{n} \rightarrow P_{n-1}$ is onto, $\beta^{\prime}=f_{n}(\beta) \in Z\left(P_{n-1}\right)$. By the induction assumption, $\beta^{\prime}=\left(\theta_{n-1}\right)^{m}$ for some integer m. We prove below that $m=k$. Since γ commutes with $\iota\left(\theta_{n-1}\right)$, this will give

$$
\beta=\iota\left(\beta^{\prime}\right) \beta_{n}=\iota\left(\left(\theta_{n-1}\right)^{m}\right) \gamma^{k}=\iota\left(\left(\theta_{n-1}\right)^{k}\right) \gamma^{k}=\left(\iota\left(\theta_{n-1}\right) \gamma\right)^{k}=\left(\theta_{n}\right)^{k} .
$$

It follows from the definitions and the expansion $\beta=\iota\left(\left(\theta_{n-1}\right)^{m}\right) \gamma^{k}$ that $l_{i, n}(\beta)=k$ for all $i=1,2, \ldots, n-1$. In particular, $l_{i, n}(\beta)$ does not depend on i. Since β lies in $Z\left(P_{n}\right)$, so does $\sigma_{n-1} \beta \sigma_{n-1}^{-1}$. By the result above, the integer $l_{i, n}\left(\sigma_{n-1} \beta \sigma_{n-1}^{-1}\right)$ does not depend on $i=1,2, \ldots, n-1$. Computing from the definitions and using the expansion $\beta=\iota\left(\left(\theta_{n-1}\right)^{m}\right) \gamma^{k}$, we obtain

$$
l_{1, n}\left(\sigma_{n-1} \beta \sigma_{n-1}^{-1}\right)=l_{1, n-1}(\beta)=m
$$

and

$$
l_{n-1, n}\left(\sigma_{n-1} \beta \sigma_{n-1}^{-1}\right)=l_{n-1, n}(\beta)=k
$$

Thus, $m=k$.
The center of B_{n} with $n \geq 3$ projects to the trivial subgroup of \mathfrak{S}_{n} since $Z\left(\mathfrak{S}_{n}\right)=\{1\}$. Hence, $Z\left(B_{n}\right) \subset Z\left(P_{n}\right) \subset\left(\theta_{n}\right) \subset Z\left(B_{n}\right)$, where $\left(\theta_{n}\right)$ is the cyclic subgroup of B_{n} generated by θ_{n}. Therefore,

$$
Z\left(B_{n}\right)=Z\left(P_{n}\right)=\left(\theta_{n}\right)
$$

By Corollary $1.18,\left(\theta_{n}\right)$ is an infinite cyclic group.
Corollary 1.25. For $m \neq n$, the groups B_{m} and B_{n} are not isomorphic.
Proof. Theorem 1.24 implies that the image of $Z\left(B_{n}\right)$ in $B_{n} /\left[B_{n}, B_{n}\right] \cong \mathbf{Z}$ is a subgroup of \mathbf{Z} of index $n(n-1)$. If B_{m} is isomorphic to B_{n}, then we must have $m(m-1)=n(n-1)$, and hence $m=n$.

Exercise 1.3.1. Deduce Corollary 1.20 from the presentation of P_{n} given by the generators $\left\{A_{i, j}\right\}_{1 \leq i<j \leq n}$ and the relations (1.7).

Exercise 1.3.2. Verify that $\Delta_{n}^{2}=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{n}$.
Exercise 1.3.3. Verify that P_{n} is the minimal normal subgroup of B_{n} containing $\sigma_{1}^{2}=A_{1,2}$.

Exercise 1.3.4. Verify (1.4) using only the expression of $A_{i, j}$ via $\sigma_{1}, \ldots, \sigma_{n-1}$ and the braid relations between these generators.

Exercise 1.3.5. Show that any nontrivial subgroup of P_{n} has a nontrivial homomorphism onto Z. (Hint: Any free group has a normal filtration with free abelian consecutive quotients.)

1.4 Configuration spaces

We discuss here an approach to braids based on configuration spaces. As an application, we prove Theorem 1.16.

1.4.1 Configuration spaces of ordered sets of points

Let M be a topological space and let

$$
M^{n}=M \times M \times \cdots \times M
$$

be the product of $n \geq 1$ copies of M with the product topology. Set

$$
\mathcal{F}_{n}(M)=\left\{\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in M^{n} \mid u_{i} \neq u_{j} \text { for all } i \neq j\right\} .
$$

This subspace of M^{n} is called the configuration space of ordered n-tuples of (distinct) points in M.

If M is a topological manifold (possibly with boundary ∂M), then the configuration space $\mathcal{F}_{n}(M)$ is a topological manifold of dimension $n \operatorname{dim}(M)$. Clearly, any ordered n-tuple of points in M can be deformed into an ordered n-tuple of points in the interior $M^{\circ}=M-\partial M$ of M. If $\operatorname{dim}(M) \geq 2$ and M is connected, then any ordered n-tuple of points in M° can be deformed into any other such tuple. Therefore for such M, the manifold $\mathcal{F}_{n}(M)$ is connected. Its fundamental group is called the pure braid group of M on n strings.

For $M=\mathbf{R}^{2}$, we recover the same pure braid group P_{n} as above. To see this, assign to a pure geometric braid $b \subset \mathbf{R}^{2} \times I$ the path $I \rightarrow \mathcal{F}_{n}\left(\mathbf{R}^{2}\right)$ sending $t \in I$ into the tuple $\left(u_{1}(t), u_{2}(t), \ldots, u_{n}(t)\right)$ defined by the condition that the i th string of b meets $\mathbf{R}^{2} \times\{t\}$ at the point $\left(u_{i}(t), t\right)$ for all $i=1,2, \ldots, n$. This path begins and ends at the n-tuple

$$
q_{n}=((1,0),(2,0), \ldots,(n, 0)) \in \mathcal{F}_{n}\left(\mathbf{R}^{2}\right)
$$

Conversely, any path $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right): I \rightarrow \mathcal{F}_{n}\left(\mathbf{R}^{2}\right)$ beginning and ending at q_{n} gives rise to the pure geometric braid

$$
\bigcup_{i=1}^{n} \bigcup_{t \in I}\left(\alpha_{i}(t), t\right)
$$

These constructions are mutually inverse and yield a bijective correspondence between pure geometric braids and loops in $\left(\mathcal{F}_{n}\left(\mathbf{R}^{2}\right), q_{n}\right)$. Under this correspondence the isotopy of braids corresponds to the homotopy of loops. Thus, $P_{n}=\pi_{1}\left(\mathcal{F}_{n}\left(\mathbf{R}^{2}\right), q_{n}\right)$. The braid group B_{n} admits a similar interpretation, which will be discussed in Section 1.4.3.

Coming back to an arbitrary connected topological manifold M of dimension ≥ 2, it is useful to generalize the definition of $\mathcal{F}_{n}(M)$ by prohibiting several points in $M^{\circ}=M-\partial M$. More precisely, fix a finite set $Q_{m} \subset M^{\circ}$ of $m \geq 0$ points and set

$$
\mathcal{F}_{m, n}(M)=\mathcal{F}_{n}\left(M-Q_{m}\right) .
$$

The topological type of this space depends on M, m, and n, but not on the choice of Q_{m}. Clearly, $\mathcal{F}_{0, n}(M)=\mathcal{F}_{n}(M)$ and $\mathcal{F}_{m, 1}(M)=M-Q_{m}$.

To describe the relationship between various configuration spaces, we need the notion of a locally trivial fibration. For the convenience of the reader, we recall this notion in Appendix B.

Lemma 1.26. Let M be a connected topological manifold of dimension ≥ 2 with $\partial M=\emptyset$. For $n>r \geq 1$, the forgetting map $p: \mathcal{F}_{n}(M) \rightarrow \mathcal{F}_{r}(M)$ defined by $p\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{r}\right)$ is a locally trivial fibration with fiber $\mathcal{F}_{r, n-r}(M)$.

Proof. Pick a point $u^{0}=\left(u_{1}^{0}, \ldots, u_{r}^{0}\right) \in \mathcal{F}_{r}(M)$. The fiber $p^{-1}\left(u^{0}\right)$ consists of the tuples $\left(u_{1}^{0}, \ldots, u_{r}^{0}, v_{1}, \ldots, v_{n-r}\right) \in M^{r}$, where all $u_{1}^{0}, \ldots, u_{r}^{0}, v_{1}, \ldots, v_{n-r}$ are distinct. Setting $Q_{r}=\left\{u_{1}^{0}, \ldots, u_{r}^{0}\right\}$, we obtain

$$
\mathcal{F}_{r, n-r}(M)=\left\{\left(v_{1}, \ldots, v_{n-r}\right) \in\left(M-Q_{r}\right)^{n-r} \mid v_{i} \neq v_{j} \text { for } i \neq j\right\} .
$$

It is obvious that the formula $\left(u_{1}^{0}, \ldots, u_{r}^{0}, v_{1}, \ldots, v_{n-r}\right) \mapsto\left(v_{1}, \ldots, v_{n-r}\right)$ defines a homeomorphism $p^{-1}\left(u^{0}\right) \approx \mathcal{F}_{r, n-r}(M)$.

We shall prove the local triviality of p in a neighborhood of u^{0}. For each $i=1,2, \ldots, r$, pick an open neighborhood $U_{i} \subset M$ of u_{i}^{0} such that its closure \bar{U}_{i} is a closed ball with interior U_{i}. Since the points $u_{1}^{0}, \ldots, u_{r}^{0}$ are distinct, we may assume that U_{1}, \ldots, U_{r} are mutually disjoint. Then

$$
U=U_{1} \times U_{2} \times \cdots \times U_{r}
$$

is a neighborhood of u^{0} in $\mathcal{F}_{r}(M)$. We shall see that the restriction of p to U is a trivial bundle, i.e., that there is a homeomorphism $p^{-1}(U) \rightarrow U \times \mathcal{F}_{r, n-r}(M)$ commuting with the projections to U.

We construct below for each $i=1,2, \ldots, r$ a continuous map

$$
\theta_{i}: U_{i} \times \bar{U}_{i} \rightarrow \bar{U}_{i}
$$

such that for every $u \in U_{i}$, the map $\theta_{i}^{u}: \bar{U}_{i} \rightarrow \bar{U}_{i}$ sending $v \in \bar{U}_{i}$ to $\theta_{i}(u, v)$ is a homeomorphism sending u_{i}^{0} to u and fixing the boundary sphere $\partial \bar{U}_{i}$ pointwise. For $u=\left(u_{1}, \ldots, u_{r}\right) \in U$, define a map $\theta^{u}: M \rightarrow M$ by

$$
\theta^{u}(v)= \begin{cases}\theta_{i}\left(u_{i}, v\right) & \text { if } v \in U_{i} \text { for some } i=1,2, \ldots, r \\ v & \text { if } v \in M-\bigcup_{i} U_{i}\end{cases}
$$

It is clear that $\theta^{u}: M \rightarrow M$ is a homeomorphism continuously depending on u and sending the points $u_{1}^{0}, \ldots, u_{r}^{0}$ to u_{1}, \ldots, u_{r}, respectively. The formula

$$
\left(u, v_{1}, \ldots, v_{n-r}\right) \mapsto\left(u, \theta^{u}\left(v_{1}\right), \ldots, \theta^{u}\left(v_{n-r}\right)\right)
$$

defines a homeomorphism $U \times \mathcal{F}_{r, n-r}(M) \rightarrow p^{-1}(U)$ commuting with the projections to U. The inverse homeomorphism is defined by

$$
\left(u, v_{1}, \ldots, v_{n-r}\right) \mapsto\left(u,\left(\theta^{u}\right)^{-1}\left(v_{1}\right), \ldots,\left(\theta^{u}\right)^{-1}\left(v_{n-r}\right)\right) .
$$

Thus, $\left.p\right|_{U}: p^{-1}(U) \rightarrow U$ is a trivial fibration.
To construct θ_{i}, we may assume that $U_{i}=U$ is the open unit ball in Euclidean space $\mathbf{R}^{\operatorname{dim} M}$ with center at the origin $u_{i}=0$. Fix a smooth function of two variables $\lambda:[0,1[\times[0,1] \rightarrow \mathbf{R}$ such that $\lambda(x, y)=1$ if $x \geq y$ and $\lambda(x, y)=0$ if $(x+1) / 2 \leq y$, where $x \in[\underline{0,1} 1$ and $y \in[0,1]$. For $u \in U$, define a vector field f^{u} on the closed unit ball $\bar{U}=\left\{v \in \mathbf{R}^{\operatorname{dim} M} \mid\|v\| \leq 1\right\}$ by

$$
f^{u}(v)=\lambda(\|u\|,\|v\|) u
$$

The choice of λ ensures that $f^{u}=u$ on the ball of radius $\|u\|$ with center at the origin and $f^{u}=0$ outside the ball of radius $(\|u\|+1) / 2$ with center at the origin. Let $\left\{\theta^{u, t}: \bar{U} \rightarrow \bar{U}\right\}_{t \in \mathbf{R}}$ be the flow determined by f^{u}, that is, the (unique) family of self-diffeomorphisms of \bar{U} such that $\theta^{u, 0}=\mathrm{id}$ and $d \theta^{u, t}(v) / d t=f^{u}(v)$ for all $v \in \bar{U}, t \in \mathbf{R}$. The diffeomorphism $\theta^{u, t}$ smoothly depends on u, t, fixes the sphere $\partial \bar{U}$ pointwise, and sends the origin to $t u$. Therefore the map $\theta_{i}: U \times \bar{U} \rightarrow \bar{U}$ defined by $\theta_{i}(u, v)=\theta^{u, 1}(v)$ for $u \in U$, $v \in \bar{U}$ satisfies all the required conditions.

Lemma 1.27. Let M be a connected topological manifold of dimension ≥ 2 with $\partial M=\emptyset$. For any $m \geq 0, n>r \geq 1$, the forgetting map

$$
p: \mathcal{F}_{m, n}(M) \rightarrow \mathcal{F}_{m, r}(M)
$$

defined by $p\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{r}\right)$ is a locally trivial fibration with fiber $\mathcal{F}_{m+r, n-r}(M)$.

Proof. This lemma is obtained by applying Lemma 1.26 to $M-Q_{m}$.

Recall that a connected manifold M is aspherical if its universal covering is contractible or, equivalently, if its homotopy groups $\pi_{i}(M)$ vanish for all $i \geq 2$.
Lemma 1.28. For any $m \geq 0, n \geq 1$, the manifold $\mathcal{F}_{m, n}\left(\mathbf{R}^{2}\right)$ is aspherical.
Proof. Consider the fibration $\mathcal{F}_{m, n}\left(\mathbf{R}^{2}\right) \rightarrow \mathcal{F}_{m, 1}\left(\mathbf{R}^{2}\right)=\mathbf{R}^{2}-Q_{m}$ with fiber $\mathcal{F}_{m+1, n-1}\left(\mathbf{R}^{2}\right)$ defined above. The homotopy sequence of this fibration gives an exact sequence

$$
\begin{aligned}
\cdots \longrightarrow \pi_{i+1}\left(\mathbf{R}^{2}-Q_{m}\right) \longrightarrow & \pi_{i}\left(\mathcal{F}_{m+1, n-1}\left(\mathbf{R}^{2}\right)\right) \\
& \longrightarrow \pi_{i}\left(\mathcal{F}_{m, n}\left(\mathbf{R}^{2}\right)\right) \longrightarrow \pi_{i}\left(\mathbf{R}^{2}-Q_{m}\right) \longrightarrow \cdots
\end{aligned}
$$

Observe that $\mathbf{R}^{2}-Q_{m}$ contains a wedge of m circles as a deformation retract. A wedge of circles is aspherical since its universal covering is a tree and hence is contractible. Therefore $\mathbf{R}^{2}-Q_{m}$ is aspherical, so that $\pi_{i}\left(\mathbf{R}^{2}-Q_{m}\right)=0$ for $i \geq 2$. We conclude that for all $i \geq 2$,

$$
\pi_{i}\left(\mathcal{F}_{m, n}\left(\mathbf{R}^{2}\right)\right) \cong \pi_{i}\left(\mathcal{F}_{m+1, n-1}\left(\mathbf{R}^{2}\right)\right)
$$

An inductive argument shows for all $i \geq 2$,

$$
\pi_{i}\left(\mathcal{F}_{m, n}\left(\mathbf{R}^{2}\right)\right) \cong \pi_{i}\left(\mathcal{F}_{m+n-1,1}\left(\mathbf{R}^{2}\right)\right) \cong \pi_{i}\left(\mathbf{R}^{2}-Q_{m+n-1}\right)=0
$$

1.4.2 Proof of Theorem 1.16

Applying Lemma 1.26 to $M=\mathbf{R}^{2}$, we obtain a locally trivial fibration $p: \mathcal{F}_{n}\left(\mathbf{R}^{2}\right) \rightarrow \mathcal{F}_{n-1}\left(\mathbf{R}^{2}\right)$ with fiber $\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)$. This gives a short exact sequence

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)\right) \longrightarrow \pi_{1}\left(\mathcal{F}_{n}\left(\mathbf{R}^{2}\right)\right) \xrightarrow{p_{\#}} \pi_{1}\left(\mathcal{F}_{n-1}\left(\mathbf{R}^{2}\right)\right) \longrightarrow 1 \tag{1.9}
\end{equation*}
$$

where we use the triviality of $\pi_{2}\left(\mathcal{F}_{n-1}\left(\mathbf{R}^{2}\right)\right)$ (by Lemma 1.28) and the triviality of $\pi_{0}\left(\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)\right.$) (since $\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)$ is connected).

Under the isomorphisms $\pi_{1}\left(\mathcal{F}_{n}\left(\mathbf{R}^{2}\right)\right) \cong P_{n}$ and $\pi_{1}\left(\mathcal{F}_{n-1}\left(\mathbf{R}^{2}\right)\right) \cong P_{n-1}$, the homomorphism $p_{\#}$ in (1.9) is identified with the forgetting homomorphism $f_{n}: P_{n} \rightarrow P_{n-1}$ of Section 1.3.2. We can rewrite (1.9) as

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)\right) \longrightarrow P_{n} \xrightarrow{f_{n}} P_{n-1} \longrightarrow 1 \tag{1.10}
\end{equation*}
$$

To compute $\pi_{1}\left(\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)\right)=\pi_{1}\left(\mathbf{R}^{2}-Q_{n-1}\right)$, we take as $Q_{n-1} \subset \mathbf{R}^{2}$ the set $\{(1,0),(2,0), \ldots,(n-1,0)\}$ and take $a_{0}=(n, 0)$ as the base point of $\mathbf{R}^{2}-Q_{n-1}$. Clearly, the group $\pi_{1}\left(\mathbf{R}^{2}-Q_{n-1}, a_{0}\right)$ is a free group of rank $n-1$ with the free generators x_{1}, \ldots, x_{n-1}, shown in Figure 1.13.

The homomorphism $\pi_{1}\left(\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right)\right) \rightarrow P_{n}=\pi_{1}\left(\mathcal{F}_{n}\left(\mathbf{R}^{2}\right)\right)$ in (1.10) is induced by the inclusion $\mathbf{R}^{2}-Q_{n-1}=\mathcal{F}_{n-1,1}\left(\mathbf{R}^{2}\right) \hookrightarrow \mathcal{F}_{n}\left(\mathbf{R}^{2}\right)$ assigning to a point $a \in \mathbf{R}^{2}-Q_{n-1}$ the tuple of n points $((1,0),(2,0), \ldots,(n-1,0), a)$. Comparing Figures 1.10 and 1.13, we observe that this homomorphism sends x_{i} to $A_{i, n}$ for all i. Now the exact sequence (1.10) directly implies the claim of Theorem 1.16.

Fig. 1.13. The generators x_{1}, \ldots, x_{n-1} of $\pi_{1}\left(\mathbf{R}^{2}-Q_{n-1}, a_{0}\right)$

1.4.3 Configuration spaces of nonordered sets of points

Consider again the configuration space $\mathcal{F}_{m, n}(M)$ associated with integers $m \geq 0, n \geq 1$ and a connected topological manifold M of dimension ≥ 2. The symmetric group \mathfrak{S}_{n} acts on $\mathcal{F}_{m, n}(M)=\mathcal{F}_{n}\left(M-Q_{m}\right)$ by permutation of the coordinates. Consider the quotient space

$$
\mathcal{C}_{m, n}(M)=\mathcal{F}_{m, n}(M) / \mathfrak{S}_{n}
$$

Since the action of \mathfrak{S}_{n} on $\mathcal{F}_{m, n}(M)$ is fixed-point free, the natural projection $\mathcal{F}_{m, n}(M) \rightarrow \mathcal{C}_{m, n}(M)$ is a covering. Hence $\pi_{i}\left(\mathcal{F}_{m, n}(M)\right) \cong \pi_{i}\left(\mathcal{C}_{m, n}(M)\right)$ for all $i \geq 2$, and $\mathcal{C}_{m, n}(M)$ is a connected topological manifold of dimension $n \operatorname{dim}(M)$. The points of $\mathcal{C}_{m, n}$ are nonordered sets of n distinct points in $M-Q_{m}$. The group $\pi_{1}\left(\mathcal{C}_{m, n}(M)\right)$ is called the braid group of $M-Q_{m}$ on n strings. We shall write $\mathcal{C}_{n}(M)$ for $\mathcal{C}_{0, n}(M)$.

For $M=\mathbf{R}^{2}$, we recover in this way the Artin braid group B_{n}. Indeed, B_{n} is canonically isomorphic to $\pi_{1}\left(\mathcal{C}_{n}\left(\mathbf{R}^{2}\right), q\right)$, where q is the point of $\mathcal{C}_{n}\left(\mathbf{R}^{2}\right)=\mathcal{C}_{0, n}\left(\mathbf{R}^{2}\right)$ represented by the unordered set

$$
\{(1,0),(2,0), \ldots,(n, 0)\} \subset \mathbf{R}^{2}
$$

The isomorphism is obtained by assigning to a geometric braid $b \subset \mathbf{R}^{2} \times I$ the loop $I \rightarrow \mathcal{C}_{n}\left(\mathbf{R}^{2}\right)$ sending $t \in I$ into the unique n-point set $b_{t} \subset \mathbf{R}^{2}$ such that $b \cap\left(\mathbf{R}^{2} \times\{t\}\right)=b_{t} \times\{t\}$.

Corollary 1.29. For any $n \geq 1$, the braid group B_{n} is torsion free.
Proof. Lemma 1.28 with $m=0$ implies that $\mathcal{F}_{n}\left(\mathbf{R}^{2}\right)$ is aspherical. Therefore $\pi_{i}\left(\mathcal{C}_{n}\left(\mathbf{R}^{2}\right)\right)=\pi_{i}\left(\mathcal{F}_{n}\left(\mathbf{R}^{2}\right)\right)=0$ for all $i \geq 2$. The following classical argument uses the integral homology of spaces and groups to deduce that $B_{n} \cong \pi_{1}\left(\mathcal{C}_{n}\left(\mathbf{R}^{2}\right), q\right)$ is torsion free. If B_{n} contains a nontrivial finite cyclic subgroup A, then there is a covering $\widetilde{\mathcal{C}} \rightarrow \mathcal{C}_{n}\left(\mathbf{R}^{2}\right)$ with $\pi_{1}(\widetilde{\mathcal{C}})=A$. We have $\pi_{i}(\widetilde{\mathcal{C}})=\pi_{i}\left(\mathcal{C}_{n}\left(\mathbf{R}^{2}\right)\right)=0$ for all $i \geq 2$, so that $\widetilde{\mathcal{C}}$ is an Eilenberg-MacLane space $K(A, 1)$. The integral homology groups of $\widetilde{\mathcal{C}}$ satisfy $H_{i}(\widetilde{\mathcal{C}})=H_{i}(A)=A$ for all odd $i \geq 1$. This contradicts the fact that $\widetilde{\mathcal{C}}$ is a manifold of dimension $2 n$.

Remark 1.30. Corollary 1.29 can be reformulated by saying that if $\alpha \in B_{n}$ is an m th root of the trivial braid (i.e., $\alpha^{m}=1$) with $m \geq 1$, then $\alpha=1$. In general, the roots of nontrivial braids are not unique. For example, we have $\left(\sigma_{1} \sigma_{2}\right)^{3}=\left(\sigma_{2} \sigma_{1}\right)^{3}$ although $\sigma_{1} \sigma_{2} \neq \sigma_{2} \sigma_{1}$. It is known that the m th root of a braid is unique up to conjugacy; see [Gon03].

1.4.4 The space $\mathcal{C}_{n}\left(\mathrm{R}^{2}\right)$ as a space of polynomials

There is a beautiful description of the configuration space $\mathcal{C}_{n}\left(\mathbf{R}^{2}\right)$ in terms of polynomials. Identifying $\mathbf{R}^{2}=\mathbf{C}$, we obtain

$$
\mathcal{F}_{n}\left(\mathbf{R}^{2}\right)=\mathcal{F}_{n}(\mathbf{C})=\left\{\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathbf{C}^{n} \mid u_{i} \neq u_{j} \text { for } i \neq j\right\} .
$$

Recall the elementary symmetric polynomial of n complex variables

$$
p_{k}(u)=(-1)^{k} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}},
$$

where $k=1,2, \ldots, n$. We consider $p_{1}, p_{2}, \ldots, p_{n}$ as functions on $\mathcal{F}_{n}(\mathbf{C})$. These functions are invariant under the action of \mathfrak{S}_{n} on $\mathcal{F}_{n}(\mathbf{C})$ by permutation of coordinates and thus induce a map $\mathcal{C}_{n}\left(\mathbf{R}^{2}\right)=\mathcal{C}_{n}(\mathbf{C}) \rightarrow \mathbf{C}^{n}$. This map is a homeomorphism onto the set of all $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbf{C}^{n}$ such that the polynomial $t^{n}+z_{1} t^{n-1}+z_{2} t^{n-2}+\cdots+z_{n}$ has no multiple roots. The inverse map assigns to each such tuple $\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ the nonordered set of roots of the polynomial $t^{n}+z_{1} t^{n-1}+z_{2} t^{n-2}+\cdots+z_{n}$.

Exercise 1.4.1. Prove the following generalization of Lemma 1.28. Let M be a connected surface with $\partial M=\emptyset$ and $m \geq 0$ an integer (if M is homeomorphic to S^{2} or to the real projective plane $R P^{2}$, then we assume that $m>0)$. Then $\mathcal{F}_{m, n}(M)$ and $\mathcal{C}_{m, n}(M)$ are aspherical for all $n \geq 1$. (Hint: The universal covering of any connected surface $\neq S^{2}, R P^{2}$ is homeomorphic to \mathbf{R}^{2} and therefore is contractible.) Deduce that the groups $\pi_{1}\left(\mathcal{F}_{m, n}(M)\right)$ and $\pi_{1}\left(\mathcal{C}_{m, n}(M)\right)$ are torsion free.

Exercise 1.4.2. Verify that $\pi_{1}\left(\mathcal{F}_{2}\left(S^{2}\right)\right)=\{1\}$. (Hint: Use the forgetting fibration $\left.\mathcal{F}_{2}\left(S^{2}\right) \rightarrow \mathcal{F}_{1}\left(S^{2}\right)=S^{2}.\right)$ Deduce that $\pi_{1}\left(\mathcal{C}_{2}\left(S^{2}\right)\right) \cong \mathbf{Z} / 2 \mathbf{Z}$.

Exercise 1.4.3. Verify that the map $\mathrm{SO}(3) \rightarrow \mathcal{F}_{3}\left(S^{2}\right)$ sending an element g of the special orthogonal group $\mathrm{SO}(3)$ to the triple of vectors

$$
(g(1,0,0), g(0,1,0), g(0,0,1)) \in S^{2}
$$

is a homotopy equivalence. Deduce that

$$
\pi_{1}\left(\mathcal{F}_{3}\left(S^{2}\right)\right) \cong \mathbf{Z} / 2 \mathbf{Z} \quad \text { and } \quad \operatorname{card} \pi_{1}\left(\mathcal{C}_{3}\left(S^{2}\right)\right)=12
$$

(for a computation of $\pi_{1}\left(\mathcal{C}_{n}\left(S^{2}\right)\right)$ for all n, see [FV62]).

Exercise 1.4.4. Let $U \subset \mathbf{R}^{2}$ be an open disk. Prove that the inclusion homomorphism $\pi_{1}\left(\mathcal{C}_{n}(U), q\right) \rightarrow \pi_{1}\left(\mathcal{C}_{n}\left(\mathbf{R}^{2}\right), q\right)$ is an isomorphism for any $q \in \mathcal{C}_{n}(U)$.

Exercise 1.4.5. Let b be a pure geometric braid in $\mathbf{R}^{2} \times I$ and let b^{\prime} be a "subbraid" formed by several strings of b. Prove that any isotopy of b^{\prime} in the class of geometric braids extends to an isotopy of b in the class of geometric braids. (Hint: Use Lemma 1.27.)

1.5 Braid automorphisms of free groups

In this section we realize the braid group B_{n} as a group of automorphisms of the free group F_{n} on n generators $x_{1}, x_{2}, \ldots, x_{n}$.

1.5.1 Braid automorphisms of $\boldsymbol{F}_{\boldsymbol{n}}$

We say that an automorphism φ of F_{n} is a braid automorphism if it satisfies the following two conditions:
(i) there is a permutation μ of the set $\{1,2, \ldots, n\}$ such that $\varphi\left(x_{k}\right)$ is conjugate in F_{n} to $x_{\mu(k)}$ for all $k \in\{1,2, \ldots, n\}$;
(ii) $\varphi\left(x_{1} x_{2} \cdots x_{n}\right)=x_{1} x_{2} \cdots x_{n}$.

To give examples of braid automorphisms of F_{n}, observe that an endomorphism of F_{n} is entirely determined by its action on the generators x_{1}, \ldots, x_{n}. It is straightforward to check that the following formulas define two mutually inverse braid automorphisms $\widetilde{\sigma}_{i}$ and $\widetilde{\sigma}_{i}^{-1}$ of F_{n} for $i=1,2, \ldots, n-1$:

$$
\begin{gathered}
\tilde{\sigma}_{i}\left(x_{k}\right)= \begin{cases}x_{k+1} & \text { if } k=i, \\
x_{k}^{-1} x_{k-1} x_{k} & \text { if } k=i+1, \\
x_{k} & \text { otherwise }\end{cases} \\
\tilde{\sigma}_{i}^{-1}\left(x_{k}\right)= \begin{cases}x_{k} x_{k+1} x_{k}^{-1} & \text { if } k=i, \\
x_{k-1} & \text { if } k=i+1, \\
x_{k} & \text { otherwise }\end{cases}
\end{gathered}
$$

Denote the set of braid automorphisms of F_{n} by \widetilde{B}_{n}. It follows from the definitions that the inverse of a braid automorphism and the composition of two braid automorphisms are again braid automorphisms. Therefore \widetilde{B}_{n} is a group with respect to composition $\varphi \psi=\varphi \circ \psi$ for any $\varphi, \psi \in \widetilde{B}_{n}$.

We now state the main theorem relating braids to braid automorphisms.
Theorem 1.31. The formula $\sigma_{i} \mapsto \widetilde{\sigma}_{i}$ with $i=1,2, \ldots, n-1$ defines a group isomorphism $B_{n} \rightarrow \widetilde{B}_{n}$.

The image of $\beta \in B_{n}$ under the isomorphism $B_{n} \rightarrow \widetilde{B}_{n}$ will be denoted by $\widetilde{\beta}$. In the proof of Theorem 1.31 we shall give a direct definition of $\widetilde{\beta}$. Yet another interpretation of $\widetilde{\beta}$ will be given in Section 1.6.

Theorem 1.31 gives a solution to the word problem in B_{n}. For a group defined by generators and relations, the word problem consists in finding an algorithm that allows one to decide whether a given word in the generators represents the neutral element of the group. By Theorem 1.31, a braid $\beta \in B_{n}$ is equal to 1 if and only if $\widetilde{\beta}=$ id. The latter condition can be easily verified; it suffices to check that $\widetilde{\beta}\left(x_{k}\right)=x_{k}$ for all $k=1,2, \ldots, n$.

Abelianizing the action of $B_{n} \cong \widetilde{B}_{n}$ on F_{n}, we obtain an action of B_{n} on the lattice $F_{n} /\left[F_{n}, F_{n}\right]=\mathbf{Z}^{n}$ with basis $\dot{x}_{1}, \ldots, \dot{x}_{n}$ determined by x_{1}, \ldots, x_{n}. The latter action is determined by the canonical projection $\pi: B_{n} \rightarrow \mathfrak{S}_{n}$. Indeed, the automorphism of \mathbf{Z}^{n} induced by $\widetilde{\sigma}_{i}$ is the transposition of the vectors $\dot{x}_{i}, \dot{x}_{i+1}$. Therefore for any $\beta \in B_{n}$, the automorphism of \mathbf{Z}^{n} induced by $\widetilde{\beta}$ acts as the permutation $\pi(\beta)$ on the vectors $\dot{x}_{1}, \ldots, \dot{x}_{n}$.

1.5.2 Proof of Theorem 1.31

The braid relations for $\widetilde{\sigma}_{1}, \ldots, \widetilde{\sigma}_{n-1} \in \widetilde{B}_{n}$ can be verified by a direct computation (they follow also from further arguments in this paragraph). Therefore the formula $\sigma_{i} \mapsto \widetilde{\sigma}_{i}$ defines a group homomorphism $B_{n} \rightarrow \widetilde{B}_{n}$. We give now another definition of this homomorphism. Recall the natural inclusion $\iota: B_{n} \rightarrow B_{n+1}$, the group of pure braids $P_{n+1} \subset B_{n+1}$, and the forgetting homomorphism $f_{n+1}: P_{n+1} \rightarrow P_{n}$. If $\beta \in B_{n}$ and $u \in U_{n+1}=\operatorname{Ker} f_{n+1}$, then $\iota(\beta) u \iota(\beta)^{-1} \in P_{n+1}$ since P_{n+1} is a normal subgroup of B_{n+1}. Moreover, it follows from the definition of f_{n+1} that

$$
\iota(\beta) u \iota(\beta)^{-1} \in U_{n+1} .
$$

Therefore the formula $u \mapsto \iota(\beta) u \iota(\beta)^{-1}$ defines an automorphism of U_{n+1}. We obtain thus a group homomorphism, ξ, from B_{n} to the group Aut U_{n+1} of automorphisms of U_{n+1}. By Theorem 1.16, we can identify U_{n+1} with F_{n} by setting $x_{k}=A_{k, n+1} \in U_{n+1}$ for $k=1,2, \ldots, n$. Under this identification, $\xi(\beta)=\widetilde{\beta}$ for all $\beta \in B_{n}$. Indeed, it suffices to verify this equality for the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ of B_{n}. This amounts to checking the equalities

$$
\iota\left(\sigma_{i}\right) A_{k, n+1} \iota\left(\sigma_{i}\right)^{-1}= \begin{cases}A_{k+1, n+1} & \text { if } k=i \\ A_{k, n+1}^{-1} A_{k-1, n+1} A_{k, n+1} & \text { if } k=i+1 \\ A_{k, n+1} & \text { otherwise }\end{cases}
$$

These equalities are verified by drawing the corresponding braid diagrams and checking that the diagrams on both sides present isotopic braids.

Let us prove the injectivity of the homomorphism $\beta \mapsto \widetilde{\beta}: B_{n} \rightarrow \widetilde{B}_{n}$. Consider a braid $\beta \in B_{n}$ such that $\widetilde{\beta}=1$. Abelianizing $\widetilde{\beta}$, we obtain the identity automorphism of $U_{n+1} /\left[U_{n+1}, U_{n+1}\right]$. Hence, $\pi(\beta)=1$, so that
$\beta \in P_{n} \subset B_{n}$. By formula (1.6), $\beta=\beta_{2} \beta_{3} \cdots \beta_{n}$, where $\beta_{j} \in U_{j} \subset P_{j} \subset P_{n}$ for $j=2,3, \ldots, n$. If $\beta \neq 1$, then take the largest $i \leq n$ such that $\beta_{i} \neq 1$. Then $\beta=\beta_{2} \beta_{3} \cdots \beta_{i}$. Since $\widetilde{\beta}=1$, we must have $\xi(\beta)=1$, so that $\iota(\beta) \in P_{n+1}$ commutes with all elements of U_{n+1} and in particular with $A_{i, n+1}$. Note that $\beta_{2}, \beta_{3}, \ldots, \beta_{i-1}$ are braids on the leftmost $i-1$ strings. Therefore they commute with $A_{i, n+1}$. Hence β_{i} commutes with $A_{i, n+1}$. By Corollary 1.23, the braids $A_{1, i}, \ldots, A_{i-1, i}, A_{i, i+1}, \ldots, A_{i, n+1}$ are free generators of a free subgroup of P_{n+1}. We know that β_{i} commutes with $A_{i, n+1}$ and lies in the group $U_{i} \subset P_{i} \subset P_{n+1}$ generated by $A_{1, i}, \ldots A_{i-1, i}$. This is possible only if $\beta_{i}=1$, which contradicts the choice of i. Hence, $\beta=1$.

Let us prove the surjectivity of the homomorphism $\beta \mapsto \widetilde{\beta}: B_{n} \rightarrow \widetilde{B}_{n}$. Let φ be a nontrivial braid automorphism of F_{n}. Suppose that

$$
\varphi\left(x_{k}\right)=A_{k} x_{\mu(k)} A_{k}^{-1}
$$

where $k=1,2, \ldots, n$ and A_{k} is a word in the alphabet $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$. We can always choose A_{k} so that the product $A_{k} x_{\mu(k)} A_{k}^{-1}$ is reduced, that is, does not contain consecutive entries $x_{r} x_{r}^{-1}$ or $x_{r}^{-1} x_{r}$. By the definition of a braid automorphism,

$$
\begin{equation*}
A_{1} x_{\mu(1)} A_{1}^{-1} A_{2} x_{\mu(2)} A_{2}^{-1} \cdots A_{n} x_{\mu(n)} A_{n}^{-1}=x_{1} x_{2} \cdots x_{n} . \tag{1.11}
\end{equation*}
$$

We claim that there exist $j \in\{1,2, \ldots, n-1\}$ and a word A (possibly empty) in $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$ satisfying one of the following two conditions:
(a) we have an equality of words $A_{j}=A_{j+1} x_{\mu(j+1)} A$,
(b) we have an equality of words $A_{j+1}=A_{j} x_{\mu(j)}^{-1} A$.

This claim will imply that φ lies in the image of the homomorphism $\beta \mapsto \widetilde{\beta}$. To see this, define the length of φ to be the sum of the letter lengths of the words $A_{k} x_{\mu(k)} A_{k}^{-1}$ over $k=1,2, \ldots, n$. If (a) holds, then the homomorphism

$$
\varphi \widetilde{\sigma}_{j}=\varphi \circ \widetilde{\sigma}_{j}: F_{n} \rightarrow F_{n}
$$

can be computed as follows. Both φ and $\varphi \widetilde{\sigma}_{j}$ have the same effect on x_{k} for $k \neq j, j+1$ and

$$
\begin{aligned}
\varphi \widetilde{\sigma}_{j}\left(x_{j}\right)= & \varphi\left(x_{j+1}\right)=A_{j+1} x_{\mu(j+1)} A_{j+1}^{-1}, \\
\varphi \widetilde{\sigma}_{j}\left(x_{j+1}\right)= & \varphi\left(x_{j+1}^{-1} x_{j} x_{j+1}\right) \\
= & A_{j+1} x_{\mu(j+1)}^{-1} A_{j+1}^{-1} A_{j} x_{\mu(j)} A_{j}^{-1} A_{j+1} x_{\mu(j+1)} A_{j+1}^{-1} \\
= & A_{j+1} x_{\mu(j+1)}^{-1} A_{j+1}^{-1} \\
& \times A_{j+1} x_{\mu(j+1)} A x_{\mu(j)} A^{-1} x_{\mu(j+1)}^{-1} A_{j+1}^{-1} A_{j+1} x_{\mu(j+1)} A_{j+1}^{-1} \\
= & A_{j+1} A x_{\mu(j)} A^{-1} A_{j+1}^{-1} .
\end{aligned}
$$

The word $A_{j+1} A$ is shorter than $A_{j}=A_{j+1} x_{\mu(j+1)} A$. Therefore $\varphi \widetilde{\sigma}_{j}$ has shorter length than φ. Similarly, if (b) holds, then $\varphi \widetilde{\sigma}_{j}^{-1}$ has shorter length
than φ. This implies that φ can be reduced to the identity by repeated composition with appropriate $\widetilde{\sigma}_{j}$ or $\widetilde{\sigma}_{j}^{-1}$. Thus, φ is a power product of the $\widetilde{\sigma}_{j}$. Hence φ lies in the image of the homomorphism $\beta \mapsto \widetilde{\beta}$.

It remains to prove the claim stated above. Let us call the term $x_{\mu(k)}$ appearing in the middle of $A_{k} x_{\mu(k)} A_{k}^{-1}$ special. Each letter x_{1}, \ldots, x_{n} appears as a special term on the left-hand side of (1.11) exactly once. Equality (1.11) implies that the left-hand side of (1.11) reduces to the right-hand side after all possible free reductions (i.e., cancellations $x_{r} x_{r}^{-1}=x_{r}^{-1} x_{r}=1$). Suppose that a special term $x_{\mu(k)}$ is canceled with a letter $x_{\mu(k)}^{-1}$ during these reductions. This $x_{\mu(k)}^{-1}$ cannot come from the word $A_{k} x_{\mu(k)} A_{k}^{-1}$, which was assumed to be reduced. If this $x_{\mu(k)}^{-1}$ comes from A_{k-1}^{-1}, then we must have an equality of words $A_{k-1}^{-1}=B x_{\mu(k)}^{-1} A_{k}^{-1}$ for some word B. Then (a) holds for $j=k-1$ and $A=B^{-1}$. If the letter $x_{\mu(k)}^{-1}$ canceling the special term $x_{\mu(k)}$ comes from the right of the special term $x_{\mu(k+1)}$, then we must have (a) for $j=k$. Similarly, if $x_{\mu(k)}^{-1}$ comes from A_{k+1} or from the left of the special term $x_{\mu(k-1)}$, then (b) holds. If the special terms on the left-hand side of (1.11) do not cancel with other letters, then we must have $\mu(k)=k$ for all k, A_{1} and A_{n} are empty words, and each pair $A_{k}^{-1} A_{k+1}$ cancels out, so that $A_{k}=A_{k+1}$ for all k. Then $\varphi=\mathrm{id}$, which contradicts our choice of φ.

Remark 1.32. Theorem 1.31 yields another proof of the residual finiteness of B_{n} (Corollary 1.21). Indeed, by the Baumslag-Smirnov theorem [Bau63], [Smi63], the group of automorphisms of an arbitrary residually finite group is residually finite. Since F_{n} is residually finite, its group of automorphisms and all subgroups of this group are residually finite.

Exercise 1.5.1. For any integer r, let $\widetilde{\sigma}_{i}^{(r)}$ be the automorphism of F_{n} defined by the same formulas as $\widetilde{\sigma}_{i}$ with the only difference that

$$
\widetilde{\sigma}_{i}^{(r)}\left(x_{i+1}\right)=x_{i+1}^{-r} x_{i} x_{i+1}^{r} .
$$

Verify that $\widetilde{\sigma}_{1}^{(r)}, \widetilde{\sigma}_{2}^{(r)}, \ldots, \widetilde{\sigma}_{n-1}^{(r)}$ satisfy the braid relations. (The resulting representation $B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$ is faithful for all $r \neq 0$; see [Shp01].)

Exercise 1.5.2. Let $F_{2 n}$ be the free group on $2 n$ generators a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}. For $j=1, \ldots, 2 n+1$, define an automorphism σ_{j}^{\prime} of $F_{2 n}$ as follows. For even $j=2 i$, set $\sigma_{j}^{\prime}\left(a_{i}\right)=b_{i}^{-1} a_{i}, \sigma_{j}^{\prime}\left(a_{k}\right)=a_{k}$ for $k \neq i$, and $\sigma_{j}^{\prime}\left(b_{k}\right)=b_{k}$ for all k. If j is odd, then $\sigma_{j}^{\prime}\left(a_{k}\right)=a_{k}$ for all k. Also, $\sigma_{1}^{\prime}\left(b_{1}\right)=a_{1} b_{1}$ and $\sigma_{1}^{\prime}\left(b_{k}\right)=b_{k}$ for $k>1 ; \sigma_{2 n+1}^{\prime}\left(b_{n}\right)=b_{n} a_{n}$ and $\sigma_{2 n+1}^{\prime}\left(b_{k}\right)=b_{k}$ for $k<n$. For other odd $j=2 i+1$, set $\sigma_{j}^{\prime}\left(b_{i}\right)=b_{i} a_{i} a_{i+1}^{-1}, \sigma_{j}^{\prime}\left(b_{i+1}\right)=a_{i+1} a_{i}^{-1} b_{i+1}$, and $\sigma_{j}^{\prime}\left(b_{k}\right)=b_{k}$ for $k \neq i, i+1$. Verify that $\sigma_{1}^{\prime}, \ldots, \sigma_{2 n+1}^{\prime}$ satisfy the braid relations. Check that the corresponding group homomorphism $B_{2 n+2} \rightarrow \operatorname{Aut}\left(F_{2 n}\right)$ sends the center of $B_{2 n+2}$ to the identity. (For $n=1$, we recover the formulas of Exercise 1.1.10.)

1.6 Braids and homeomorphisms

We discuss an approach to braids based on their interpretation as isotopy classes of homeomorphisms of a 2 -dimensional disk.

1.6.1 Mapping class groups

Let M be an oriented topological manifold (possibly with boundary ∂M). Let Q be a finite (possibly empty) subset of the interior $M^{\circ}=M-\partial M$ of M. By a self-homeomorphism of the pair (M, Q) we mean a homeomorphism $f: M \rightarrow M$ that fixes ∂M pointwise, fixes Q setwise, and preserves the orientation of M. The first two conditions mean that $f(x)=x$ for all $x \in \partial M$ and $f(Q)=Q$. Any self-homeomorphism of (M, Q) induces a permutation on Q, which may be trivial or not. Note that if M is connected and has a nonempty boundary, then any homeomorphism $M \rightarrow M$ fixing ∂M pointwise automatically preserves the orientation of M.

Two self-homeomorphisms of (M, Q) are isotopic if they can be included in a continuous one-parameter family of self-homeomorphisms of (M, Q). More precisely, two self-homeomorphisms f_{0}, f_{1} of (M, Q) are isotopic if they can be included in a family $\left\{f_{t}\right\}_{t \in I}$ of self-homeomorphisms of (M, Q) such that the map $M \times I \rightarrow M$ sending (x, t) with $x \in M, t \in I$ into $f_{t}(x)$ is continuous. Such a family is called an isotopy of f_{0} into f_{1}. It is clear that the isotopy of self-homeomorphisms of (M, Q) is an equivalence relation and that isotopic self-homeomorphisms induce the same permutation on Q.

The mapping class group $\mathfrak{M}(M, Q)$ of (M, Q) is the group of isotopy classes of self-homeomorphisms of (M, Q) with multiplication determined by composition: $f g=f \circ g$ for $f, g \in \mathfrak{M}(M, Q)$. Set $\mathfrak{M}(M)=\mathfrak{M}(M, \emptyset)$.

An important example, in which the group $\mathfrak{M}(M)$ can be easily computed, is that of a ball. For a closed ball $D=D^{n}$ of dimension $n \geq 0$, we have $\mathfrak{M}(D)=\{1\}$. This follows from the classical Alexander-Tietze theorem: any self-homeomorphism of D is isotopic to the identity in the class of selfhomeomorphisms of D. Here is a proof of this theorem. We can assume D to be the unit ball in \mathbf{R}^{n} centered at the origin 0 . Denote the Euclidean norm of a vector $z \in \mathbf{R}^{n}$ by $|z|$. For any self-homeomorphism h of D, the formula

$$
h_{t}(z)= \begin{cases}z & \text { if } t \leq|z| \leq 1 \\ t h(z / t) & \text { if }|z|<t\end{cases}
$$

defines an isotopy $\left\{h_{t}: D \rightarrow D\right\}_{t \in I}$ of $h_{0}=$ id to $h_{1}=h$. Note that if $h(0)=0$, then $h_{t}(0)=0$ for all $t \in I$. Therefore we also have $\mathfrak{M}(D,\{0\})=\{1\}$.

The study of the mapping class groups leads to a vast and ramified theory; see [Iva02] for a recent survey of the mapping class groups of surfaces. We shall focus on one series of mapping class groups arising when M is a 2-disk and Q is an n-point subset of M°, where $n=1,2, \ldots$. It turns out that the resulting group $\mathfrak{M}(M, Q)$ is nothing but the braid group B_{n}. The rest of this section is devoted to an exact formulation of this claim.

1.6.2 Half-twists

Let M be an oriented surface (possibly with boundary) and let Q be a finite subset of M°. By a spanning arc on (M, Q), we mean a subset of M homeomorphic to $I=[0,1]$ and disjoint from $Q \cup \partial M$ except at its two endpoints, which should lie in Q. Let us stress that all arcs considered here are simple, i.e., have no self-intersections.

Let $\alpha \subset M$ be a spanning arc on (M, Q). The half-twist

$$
\tau_{\alpha}:(M, Q) \rightarrow(M, Q)
$$

is obtained as the result of the isotopy of the identity map id : $M \rightarrow M$ rotating α in M about its midpoint by the angle π in the direction provided by the orientation of M. The half-twist τ_{α} is the identity outside a small neighborhood of α in M. Clearly, $\tau_{\alpha}(\alpha)=\alpha, \tau_{\alpha}(Q)=Q$, and τ_{α} induces a transposition on Q permuting the endpoints of α. Note that rotating α as above but in the opposite direction, we obtain τ_{α}^{-1}.

For completeness, we give a more formal definition of τ_{α}. Let us identify a small neighborhood U of α with the open unit disk $\{z \in \mathbf{C}||z|<1\}$ so that $\alpha=[-1 / 2,1 / 2]$ and the orientation in M corresponds to the counterclockwise orientation in \mathbf{C}. The homeomorphism $\tau_{\alpha}: M \rightarrow M$ is the identity outside U, sends any $z \in \mathbf{C}$ with $|z| \leq 1 / 2$ to $-z$, and sends any $z \in \mathbf{C}$ with $1 / 2 \leq|z|<1$ to $\exp (-2 \pi i|z|) z$. Clearly, $\tau_{\alpha} \in \mathfrak{M}(M, Q)$ does not depend on the choice of U. The action of τ_{α} on a curve on M transversely meeting α in one point is shown in Figure 1.14.

Fig. 1.14. The action of τ_{α} on a transversal curve

We state a few properties of half-twists.
(i) If $f:(M, Q) \rightarrow\left(M^{\prime}, Q^{\prime}\right)$ is an orientation-preserving homeomorphism of two pairs as above and α is a spanning arc on (M, Q), then $f(\alpha)$ is a spanning arc on $\left(M^{\prime}, Q^{\prime}\right)$ and $\tau_{f(\alpha)}=f \tau_{\alpha} f^{-1} \in \mathfrak{M}\left(M^{\prime}, Q^{\prime}\right)$.
This property is obvious. Informally speaking, it says that applying the construction of a half-twist on two copies of the same surface, we obtain two copies of the same homeomorphism.
(ii) If two spanning $\operatorname{arcs} \alpha, \alpha^{\prime}$ on (M, Q) are isotopic in the class of spanning arcs on (M, Q) (in particular they must have the same endpoints), then $\tau_{\alpha}=\tau_{\alpha^{\prime}}$ in $\mathfrak{M}(M, Q)$.

Indeed, if α, α^{\prime} are isotopic, then there is a self-homeomorphism f of (M, Q) that is the identity on Q, is isotopic to the identity, and sends α onto α^{\prime}. By (i),

$$
\tau_{\alpha^{\prime}}=\tau_{f(\alpha)}=f \tau_{\alpha} f^{-1}
$$

Since f is isotopic to the identity, $f \tau_{\alpha} f^{-1}=\tau_{\alpha}$.
(iii) A self-homeomorphism of (M, Q) induces a self-homeomorphism of M by forgetting Q. The resulting group homomorphism $\mathfrak{M}(M, Q) \rightarrow \mathfrak{M}(M)$ sends τ_{α} to 1 . This is clear from the definitions.
(iv) If α, β are disjoint spanning arcs on (M, Q), then

$$
\begin{equation*}
\tau_{\alpha} \tau_{\beta}=\tau_{\beta} \tau_{\alpha} \in \mathfrak{M}(M, Q) \tag{1.12}
\end{equation*}
$$

This is obtained by using disjoint neighborhoods of α, β in the construction of $\tau_{\alpha}, \tau_{\beta}$.
(v) For any two spanning $\operatorname{arcs} \alpha, \beta$ on (M, Q) that share one common endpoint and are disjoint otherwise,

$$
\begin{equation*}
\tau_{\alpha} \tau_{\beta} \tau_{\alpha}=\tau_{\beta} \tau_{\alpha} \tau_{\beta} \in \mathfrak{M}(M, Q) \tag{1.13}
\end{equation*}
$$

To prove this fundamental formula, we begin with the equality

$$
\tau_{\alpha}(\beta)=\tau_{\beta}^{-1}(\alpha)
$$

which can be verified by drawing the $\operatorname{arcs} \tau_{\alpha}(\beta)$ and $\tau_{\beta}^{-1}(\alpha)$. The equality here is understood as isotopy in the class of spanning arcs on (M, Q). By (ii),

$$
\tau_{\tau_{\alpha}(\beta)}=\tau_{\tau_{\beta}^{-1}(\alpha)}
$$

By (i), this implies $\tau_{\alpha} \tau_{\beta} \tau_{\alpha}^{-1}=\tau_{\beta}^{-1} \tau_{\alpha} \tau_{\beta}$. This is equivalent to (1.13).

1.6.3 The isomorphism $B_{n} \cong \mathfrak{M}\left(D, Q_{n}\right)$

For $n \geq 1$, let $Q_{n} \subset \mathbf{R}^{2}$ be the n-point set $\{(1,0),(2,0), \ldots,(n, 0)\}$. Let D be a closed Euclidean disk in \mathbf{R}^{2} containing the set Q_{n} in its interior. We orient D counterclockwise. For every $i=1,2, \ldots, n-1$, consider the arc

$$
\alpha_{i}=[i, i+1] \times\{0\} \subset D
$$

This arc meets Q_{n} only at its endpoints and hence gives rise to a half-twist

$$
\tau_{\alpha_{i}} \in \mathfrak{M}\left(D, Q_{n}\right)
$$

Formulas (1.12) and (1.13) imply that $\tau_{\alpha_{1}}, \ldots, \tau_{\alpha_{n-1}}$ satisfy the braid relations of Section 1.1. By Lemma 1.2, there is a group homomorphism

$$
\eta: B_{n} \rightarrow \mathfrak{M}\left(D, Q_{n}\right)
$$

such that $\eta\left(\sigma_{i}\right)=\tau_{\alpha_{i}}$ for all $i=1, \ldots, n-1$.

Recall the group of braid automorphisms \widetilde{B}_{n} defined in Section 1.5.1. We now define a certain group homomorphism $\rho: \mathfrak{M}\left(D, Q_{n}\right) \rightarrow \widetilde{B}_{n}$. Pick a base point $d \in \partial D$ as in Figure 1.15. It is clear that the fundamental group $\pi_{1}\left(D-Q_{n}, d\right)$ is a free group F_{n} of rank n with generators $x_{1}, x_{2}, \ldots, x_{n}$ represented by the loops $X_{1}, X_{2}, \ldots, X_{n}$ shown in Figure 1.15. Every selfhomeomorphism f of $\left(D, Q_{n}\right)$ can be restricted to $D-Q_{n}$ and yields in this way a self-homeomorphism of $D-Q_{n}$. The latter sends $d \in \partial D$ to itself and induces a group automorphism $\rho(f)$ of $F_{n}=\pi_{1}\left(D-Q_{n}, d\right)$. This automorphism depends only on the isotopy class of f : if two self-homeomorphisms of (D, Q_{n}) are isotopic, then their restrictions to $D-Q_{n}$ are isotopic relative to ∂D, and therefore they induce the same automorphism of F_{n}.

Fig. 1.15. The loops X_{1}, \ldots, X_{n} on $D-Q_{n}$

Let us verify that $\rho(f)$ is a braid automorphism of F_{n}. The loop X_{k} in Figure 1.15 can be deformed in $D-Q_{n}$ into a small loop encircling clockwise the point $(k, 0)$. The homeomorphism f maps the latter loop onto a small loop encircling clockwise the point $(\mu(k), 0)$ for some $\mu(k) \in\{1,2, \ldots, n\}$. This small loop can be deformed into the loop $X_{\mu(k)}$ in $D-Q_{n}$. Hence, the loop $f\left(X_{k}\right)$ can be deformed into $X_{\mu(k)}$ in $D-Q_{n}$. (Under the deformation, the base point $f(d)=d$ may move in $D-Q_{n}$.) This implies that the homotopy classes of these two loops $\rho(f)\left(x_{k}\right)$ and $x_{\mu(k)}$ are conjugate in $\pi_{1}\left(D-Q_{n}, d\right)$. This verifies Condition (i) in the definition of a braid automorphism. Condition (ii) follows from the fact that the product $x_{1} x_{2} \cdots x_{n}$ is represented by the loop ∂D based at d. This loop is preserved by f pointwise, and therefore its homotopy class in $\pi_{1}\left(D-Q_{n}, d\right)$ is invariant under $\rho(f)$.

We conclude that the formula $f \mapsto \rho(f)$ defines a map ρ from $\mathfrak{M}\left(D, Q_{n}\right)$ to \widetilde{B}_{n}. This map is a group homomorphism, since

$$
\rho(f g)=\rho(f \circ g)=\rho(f) \circ \rho(g)=\rho(f) \rho(g),
$$

for any $f, g \in \mathfrak{M}\left(D, Q_{n}\right)$.

We can now state the main theorem relating braids to homeomorphisms.
Theorem 1.33. For any $n \geq 1$, the homomorphisms η and ρ are isomorphisms. The following diagram is commutative:

where $\beta \mapsto \widetilde{\beta}: B_{n} \rightarrow \widetilde{B}_{n}$ is the isomorphism defined in Section 1.5.
This fundamental theorem allows us to identify B_{n} with the mapping class group $\mathfrak{M}\left(D, Q_{n}\right)$. We have by now three different geometric interpretations of B_{n} : via geometric braids on n strings, via the configuration space of n points in the plane, and via the group of homeomorphisms of a 2 -disk with n distinguished points. It is this variety of geometric facets of B_{n} that makes this group so appealing.

The commutativity of the diagram (1.14) means that $\widetilde{\beta}=\rho(\eta(\beta))$ for any $\beta \in B_{n}$. This can be verified at once. Since ρ, η, and $\beta \mapsto \widetilde{\beta}$ are group homomorphisms, it suffices to verify this equality for the generators $\sigma_{1}, \ldots, \sigma_{n-1}$. We need to check that $\rho\left(\tau_{\alpha_{i}}\right)=\widetilde{\sigma}_{i}$ for $i=1,2, \ldots, n-1$. The formulas $\rho\left(\tau_{\alpha_{i}}\right)\left(x_{k}\right)=x_{k}$ for $k \neq i, i+1$ and $\rho\left(\tau_{\alpha_{i}}\right)\left(x_{i}\right)=x_{i+1}$ follow directly from the definition of $\tau_{\alpha_{i}}$. The equality $\rho\left(\tau_{\alpha_{i}}\right)\left(x_{i+1}\right)=x_{i+1}^{-1} x_{i} x_{i+1}$ can be verified directly or deduced from the formula $\rho\left(\tau_{\alpha_{i}}\right)\left(x_{1} \cdots x_{n}\right)=x_{1} \cdots x_{n}$. Hence, we have $\rho\left(\tau_{\alpha_{i}}\right)=\tilde{\sigma}_{i}$. In view of the commutativity of the diagram (1.14) and Theorem 1.31, to prove Theorem 1.33 we need only show that η is an isomorphism. This will be done in Section 1.7.

It is clear that for all $i=1, \ldots, n-1$, the half-twist $\tau_{\alpha_{i}}: D \rightarrow D$ is a diffeomorphism with respect to the standard smooth structure on D induced by that on \mathbf{R}^{2}. Integral powers of diffeomorphisms and their products are also diffeomorphisms. Therefore the surjectivity of η implies the following assertion.

Corollary 1.34. An arbitrary self-homeomorphism of the pair $\left(D, Q_{n}\right)$ is isotopic in the class of self-homeomorphisms of this pair to a diffeomorphism $\left(D, Q_{n}\right) \rightarrow\left(D, Q_{n}\right)$.

Exercise 1.6.1. Let M, Q be as in Section 1.6.2.
(a) Consider an embedded r-gon $P \subset M$ (with $r \geq 3$) meeting Q precisely in its vertices. Moving along ∂P in the direction provided by the orientation of M, we meet consecutively r edges, say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$, of P. Each α_{i} is a spanning arc on (M, Q). Prove that

$$
\tau_{\alpha_{1}} \tau_{\alpha_{2}} \cdots \tau_{\alpha_{r-1}}=\tau_{\alpha_{2}} \tau_{\alpha_{3}} \cdots \tau_{\alpha_{r}}
$$

(Hint: For $r=3$ rewrite as $\tau_{\alpha_{2}}^{-1} \tau_{\alpha_{1}} \tau_{\alpha_{2}}=\tau_{\alpha_{3}}$; for $r \geq 4$ use induction.)
(b) Consider $r \geq 2$ spanning arcs on (M, Q) with one common endpoint $a \in Q$ and disjoint otherwise. Moving around a in the direction given by the orientation of M, denote these arcs by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$. Prove that

$$
\tau_{\alpha_{1}}^{-1} \tau_{\alpha_{2}} \tau_{\alpha_{1}}=\tau_{\alpha_{2}} \tau_{\alpha_{1}} \tau_{\alpha_{2}}^{-1}
$$

commutes with $\tau_{\alpha_{i}}$ for $3 \leq i \leq r$. Deduce that

$$
\tau_{\alpha_{1}} \beta \tau_{\alpha_{2}} \tau_{\alpha_{1}}=\tau_{\alpha_{2}} \tau_{\alpha_{1}} \beta \tau_{\alpha_{2}}
$$

for any element β of the group generated by $\tau_{\alpha_{3}}, \tau_{\alpha_{4}}, \ldots, \tau_{\alpha_{r}}$.
Exercise 1.6.2. Prove that $\mathfrak{M}\left(S^{1}\right)=\{1\}$. (Hint: Composing an arbitrary self-homeomorphism f of S^{1} with a rotation of S^{1} into itself, we can assume that f has a fixed point. Cutting out S^{1} at a fixed point of f, we obtain a self-homeomorphism of a closed interval, which, as we know, is isotopic to the identity.)

1.7 Groups of homeomorphisms vs. configuration spaces

We discuss groups of homeomorphisms of manifolds, their relations to configuration spaces, and applications to braids.

1.7.1 Groups of homeomorphisms

Let M be a compact connected oriented topological manifold (possibly with boundary) and let Q be a finite subset of $M^{\circ}=M-\partial M$. Denote by $\operatorname{Top}(M, Q)$ the group of all self-homeomorphisms of (M, Q), i.e., the group of all orientation-preserving self-homeomorphisms of M that fix ∂M pointwise and fix Q setwise. The multiplication in $\operatorname{Top}(M, Q)$ is given by composition: $f g=f \circ g$ for $f, g \in \operatorname{Top}(M, Q)$. We provide $\operatorname{Top}(M, Q)$ with the compactopen topology. For completeness, we recall the definition and basic properties of this topology, referring for proofs to [FR84, Sect. 2.7 of Chap. 1 and Sect. 2 of Chap. 4] or [Kel55]. For a compact set $K \subset M$ and an open set $U \subset M$, put

$$
N(K, U)=\{f \in \operatorname{Top}(M, Q) \mid f(K) \subset U\} .
$$

Such sets $N(K, U)$ as well as the intersections of a finite number of such sets and arbitrary unions of such intersections are declared open subsets of $\operatorname{Top}(M, Q)$. This defines the compact-open topology on $\operatorname{Top}(M, Q)$ and makes $\operatorname{Top}(M, Q)$ into a topological group. Here, the inversion $f \mapsto f^{-1}$ in $\operatorname{Top}(M, Q)$ is continuous because of the obvious equality

$$
\left\{f^{-1} \mid f \in N(K, U)\right\}=N(M-U, M-K) .
$$

It is here that we need the compactness of M.

It is known that a map f from a topological space X to $\operatorname{Top}(M, Q)$ is continuous if and only if the map $X \times M \rightarrow M$ sending $(x, y) \in X \times M$ to $f(x)(y)$ is continuous. Applying this to $X=I$, we conclude that two selfhomeomorphisms of (M, Q) are isotopic if and only if they can be connected by a path in $\operatorname{Top}(M, Q)$, i.e., if and only if they lie in the same connected component of $\operatorname{Top}(M, Q)$. Therefore,

$$
\begin{equation*}
\mathfrak{M}(M, Q)=\pi_{0}(\operatorname{Top}(M, Q)) \tag{1.15}
\end{equation*}
$$

Set $\operatorname{Top}(M)=\operatorname{Top}(M, \emptyset)$. The obvious embedding $\operatorname{Top}(M, Q) \hookrightarrow \operatorname{Top}(M)$ makes $\operatorname{Top}(M, Q)$ into a closed subgroup of the topological group $\operatorname{Top}(M)$.

The group $\operatorname{Top}(M)$ is intimately related to the configuration spaces of nonordered points of M° introduced in Section 1.4.3. For $n \geq 1$, set

$$
\mathcal{C}_{n}=\mathcal{C}_{n}\left(M^{\circ}\right)=\mathcal{F}_{n}\left(M^{\circ}\right) / \mathfrak{S}_{n}
$$

To describe the relation between $\operatorname{Top}(M)$ and \mathcal{C}_{n}, pick a set $Q \subset M^{\circ}$ consisting of n points. We define an evaluation map $e=e_{Q}: \operatorname{Top}(M) \rightarrow \mathcal{C}_{n}$ by $e(f)=f(Q)$, where $f \in \operatorname{Top}(M)$. It is easy to deduce from the definitions that e is a surjective continuous map.

Lemma 1.35. The map $e: \operatorname{Top}(M) \rightarrow \mathcal{C}_{n}$ is a locally trivial fibration with fiber $\operatorname{Top}(M, Q)$.

Proof. Let $\mathcal{F}_{n}=\mathcal{F}_{n}\left(M^{\circ}\right)$ be the configuration space of n ordered points in M°. We can factor e as the composition of a map $c: \operatorname{Top}(M) \rightarrow \mathcal{F}_{n}$ with the covering $\mathcal{F}_{n} \rightarrow \mathcal{C}_{n}$. To construct c, fix an order in the set Q and define c by $c(f)=f(Q)$, where $f \in \operatorname{Top}(M)$ and the order in $f(Q)$ is induced by the one in Q. To prove the lemma, it suffices to prove that c is a locally trivial fibration. The proof of the latter is very similar to the proof of Lemma 1.26. Let us prove the local triviality of c in a neighborhood of a point $u^{0}=\left(u_{1}^{0}, \ldots, u_{n}^{0}\right) \in \mathcal{F}_{n}$. For each $i=1,2, \ldots, n$, pick an open neighborhood $U_{i} \subset M^{\circ}$ of u_{i}^{0} such that its closure \bar{U}_{i} is a closed ball with interior U_{i}. Since the points $u_{1}^{0}, \ldots, u_{n}^{0}$ are distinct, we can assume that U_{1}, \ldots, U_{n} are mutually disjoint. Then $U=U_{1} \times U_{2} \times \cdots \times U_{n}$ is a neighborhood of u^{0} in \mathcal{F}_{n}. We shall prove that the restriction of c to U is a trivial bundle. For every $i=1,2, \ldots, n$, there is a continuous map $\theta_{i}: U_{i} \times \bar{U}_{i} \rightarrow \bar{U}_{i}$ such that setting $\theta_{i}^{u}(v)=\theta_{i}(u, v)$, we obtain a homeomorphism $\theta_{i}^{u}: \bar{U}_{i} \rightarrow \bar{U}_{i}$ that sends u_{i}^{0} to u and fixes the sphere $\partial \bar{U}_{i}$ pointwise (see the proof of Lemma 1.26). For $u=\left(u_{1}, \ldots, u_{n}\right) \in U$, we define a homeomorphism $\theta^{u}: M \rightarrow M$ by $\theta^{u}(v)=\theta_{i}^{u_{i}}(v)$ if $v \in U_{i}$ with $i=1,2, \ldots, n$ and $\theta^{u}(v)=v$ if $v \in M-\bigcup_{i} U_{i}$. It is clear that $\theta^{u}: M \rightarrow M$ sends $u_{1}^{0}, \ldots, u_{n}^{0}$ to u_{1}, \ldots, u_{n}, respectively. Observe that $c^{-1}\left(u^{0}\right)$ is the closed subgroup of $\operatorname{Top}(M)$ consisting of all $f \in \operatorname{Top}(M)$ such that $f\left(u_{i}^{0}\right)=u_{i}^{0}$ for $i=1,2, \ldots, n$. The formula $(u, f) \mapsto \theta^{u} f$ defines a homeomorphism $U \times c^{-1}\left(u^{0}\right) \rightarrow c^{-1}(U)$ commuting with the projections to U. The inverse homeomorphism sends any $g \in c^{-1}(U)$ to the pair $\left(c(g),\left(\theta^{c(g)}\right)^{-1} g\right) \in U \times c^{-1}\left(u^{0}\right)$.

Remark 1.36. Two elements of $\operatorname{Top}(M)$ have the same image under the evaluation map e if and only if they lie in the same left coset of $\operatorname{Top}(M, Q)$ in $\operatorname{Top}(M)$. Although we shall not need it, note that e induces a homeomorphism from the quotient homogeneous space $\operatorname{Top}(M) / \operatorname{Top}(M, Q)$ onto \mathcal{C}_{n}.

1.7.2 Parametrizing isotopies

We show here that geometric braids naturally give rise to one-parameter families of homeomorphisms of the 2-disk. This construction will be instrumental in the sequel.

Let $n \geq 1$ and $D \subset \mathbf{R}^{2}$ be a closed Euclidean disk containing the set

$$
\begin{equation*}
Q=Q_{n}=\{(1,0),(2,0), \ldots,(n, 0)\} \tag{1.16}
\end{equation*}
$$

in its interior. An isotopy $\left\{f_{t}: D \rightarrow D\right\}_{t \in I}$ in the class of self-homeomorphisms of D is normal if $f_{0}(Q)=Q$ and $f_{1}=\operatorname{id}_{D}$. In other words, a normal isotopy is a path in $\operatorname{Top}(D)$ leading from a point of $\operatorname{Top}(D, Q)$ to the identity homeomorphism $\operatorname{id}_{D} \in \operatorname{Top}(D)$. For any normal isotopy $\left\{f_{t}: D \rightarrow D\right\}_{t \in I}$, the set

$$
\bigcup_{t \in I}\left(f_{t}(Q), t\right) \subset \mathbf{R}^{2} \times I
$$

is a geometric braid on n strings. We say that the isotopy $\left\{f_{t}\right\}_{t \in I}$ parametrizes this geometric braid.

Lemma 1.37. For any geometric braid $b \subset D^{\circ} \times I$ on n strings, there is a normal isotopy parametrizing b.

Proof. Consider the evaluation map $e=e_{Q}: \operatorname{Top}(D) \rightarrow \mathcal{C}_{n}=\mathcal{C}_{n}\left(D^{\circ}\right)$ sending $f \in \operatorname{Top}(D)$ to $f(Q)$. As already observed in Section 1.4.3, the braid b gives rise to a loop $f^{b}: I \rightarrow \mathcal{C}_{n}$ sending any $t \in I$ into the unique n-point subset b_{t} of \mathbf{R}^{2} such that $b \cap\left(\mathbf{R}^{2} \times\{t\}\right)=b_{t} \times\{t\}$. This loop begins and ends at the point $q=e\left(\operatorname{id}_{D}\right) \in \mathcal{C}_{n}$ represented by Q. By Lemma 1.35 and the homotopy lifting property of locally trivial fibrations (see Appendix B), the loop f^{b} lifts to a path $\widehat{f}^{b}: I \rightarrow \operatorname{Top}(D)$ beginning at a point of $e^{-1}(q)=\operatorname{Top}(D, Q)$ and ending at id_{D}. The path \hat{f}^{b} is a normal isotopy and the equality $e \widehat{f}^{b}=f^{b}$ means that this isotopy parametrizes b.

1.7.3 Proof of Theorem 1.33

Let $D, Q=Q_{n}, \mathcal{C}_{n}=\mathcal{C}_{n}\left(D^{\circ}\right), e=e_{Q}: \operatorname{Top}(D) \rightarrow \mathcal{C}_{n}$, and $q=e\left(\operatorname{id}_{D}\right) \in \mathcal{C}_{n}$ be the same objects as in Section 1.7.2. By Lemma 1.35, e is a locally trivial fibration with $e^{-1}(q)=\operatorname{Top}(D, Q)$. This fibration induces a mapping

$$
\partial: \pi_{1}\left(\mathcal{C}_{n}, q\right) \rightarrow \pi_{0}(\operatorname{Top}(D, Q))=\mathfrak{M}(D, Q)
$$

Recall the definition of ∂ following Appendix B. Let $\beta \in \pi_{1}\left(\mathcal{C}_{n}, q\right)$ be represented by a loop $f: I \rightarrow \mathcal{C}_{n}$ beginning and ending at q. By the homotopy lifting property of e, this loop lifts to a path $\widehat{f}: I \rightarrow \operatorname{Top}(D)$ beginning at a point of $e^{-1}(q)=\operatorname{Top}(D, Q)$ and ending at id_{D}. Then $\partial(\beta)=[\widehat{f}(0)] \in \pi_{0}(\operatorname{Top}(D, Q))$ is the homotopy class of $\widehat{f}(0)$. That $\partial(\beta)$ depends only on β can be seen directly: if f^{\prime} is another loop representing β, then a homotopy between f, f^{\prime} lifts to a homotopy between arbitrary lifts $\widehat{f}, \widehat{f}^{\prime}$ in $\operatorname{Top}(D)$. This homotopy yields a path in $\operatorname{Top}(D, Q)$ connecting $\widehat{f}(0)$ to $\widehat{f}^{\prime}(0)$. Hence $[\widehat{f}(0)]=\left[\hat{f}^{\prime}(0)\right]$.

The mapping $\partial: \pi_{1}\left(\mathcal{C}_{n}, q\right) \rightarrow \mathfrak{M}(D, Q)$ is a group homomorphism. Indeed, consider two loops f, g in \mathcal{C}_{n} beginning and ending at q and representing $\beta, \gamma \in \pi_{1}\left(\mathcal{C}_{n}, q\right)$, respectively. Let $\widehat{f}, \widehat{g}: I \rightarrow \operatorname{Top}(D)$ be lifts of f, g ending at id_{D}. Observe that for any $t \in I$,

$$
e(\widehat{f}(t) \widehat{g}(0))=\widehat{f}(t) \widehat{g}(0)(Q)=\widehat{f}(t)(Q)=f(t)
$$

Therefore the path $t \mapsto \widehat{f}(t) \widehat{g}(0): I \rightarrow \operatorname{Top}(D)$ is a lift of f ending at $\widehat{f}(1) \widehat{g}(0)=\widehat{g}(0)$. The product of this path with \widehat{g} is a lift of $f g: I \rightarrow \mathcal{C}_{n}$ ending at id_{D} and beginning at $\widehat{f}(0) \widehat{g}(0)$. Thus,

$$
\partial(\beta \gamma)=[\widehat{f}(0) \widehat{g}(0)]=[\widehat{f}(0)][\widehat{g}(0)]=\partial(\beta) \partial(\gamma)
$$

Recall that $B_{n}=\pi_{1}\left(\mathcal{C}_{n}, q\right)$; see Exercise 1.4.4. The homomorphism $\partial: B_{n}=\pi_{1}\left(\mathcal{C}_{n}, q\right) \rightarrow \mathfrak{M}(D, Q)$ can be described in terms of parametrizing isotopies as follows. If b is a geometric braid representing $\beta \in B_{n}$, then for any normal isotopy $\left\{f_{t}: D \rightarrow D\right\}_{t \in I}$ parametrizing b as in Section 1.7.2, $\partial(\beta) \in \mathfrak{M}(D, Q)$ is the isotopy class of $f_{0}:(D, Q) \rightarrow(D, Q)$.

We claim that $\partial=\eta$, where $\eta: B_{n} \rightarrow \mathfrak{M}(D, Q)$ is the homomorphism introduced in Section 1.6.3. It suffices to verify that ∂ and η coincide on the generators σ_{i}, where $i=1,2, \ldots, n-1$. Since $\eta\left(\sigma_{i}\right)=\tau_{\alpha_{i}}$, we need only check that $\partial\left(\sigma_{i}\right)=\tau_{\alpha_{i}}$. Let $\left\{g_{t}: D \rightarrow D\right\}_{t \in I}$ be the isotopy of the identity map $g_{0}=\mathrm{id}: D \rightarrow D$ into $g_{1}=\tau_{\alpha_{i}}$ obtained by rotating α_{i} in D about its midpoint counterclockwise. Then

$$
\left\{f_{t}=g_{1-t}: D \rightarrow D\right\}_{t \in I}
$$

is an isotopy of $f_{0}=\tau_{\alpha}$ into $f_{1}=\mathrm{id}$. It is easy to see that the geometric braid

$$
\bigcup_{t \in I}\left(f_{t}(Q), t\right) \subset \mathbf{R}^{2} \times I
$$

represents $\sigma_{i} \in B_{n}$. Thus, $\partial\left(\sigma_{i}\right)=\left[f_{0}\right]=\tau_{\alpha_{i}}$.
By the Alexander-Tietze theorem (Section 1.6.1), any point of the set $\operatorname{Top}(D, Q) \subset \operatorname{Top}(D)$ can be connected to $\operatorname{id}_{D} \in \operatorname{Top}(D)$ by a path in $\operatorname{Top}(D)$. This implies that the homomorphism

$$
\eta=\partial: \pi_{1}\left(\mathcal{C}_{n}, q\right) \rightarrow \pi_{0}(\operatorname{Top}(D, Q))=\mathfrak{M}(D, Q)
$$

is surjective. The commutativity of the diagram (1.14) and Theorem 1.31 imply that η is injective. Therefore η is an isomorphism.

Remark 1.38. The proof of the Alexander-Tietze theorem in Section 1.6.1 actually shows that the point $\left\{\operatorname{id}_{D}\right\}$ is a deformation retract of $\operatorname{Top}(D)$. Therefore, $\pi_{i}(\operatorname{Top}(D))=0$ for all $i \geq 0$ and the homotopy sequence of the fibration $e: \operatorname{Top}(D) \rightarrow \mathcal{C}_{n}\left(D^{\circ}\right)$ directly implies that the homomorphism $\partial: \pi_{1}\left(\mathcal{C}_{n}, q\right) \rightarrow \pi_{0}(\operatorname{Top}(D, Q))$ is an isomorphism.

1.7.4 Applications

We state two further applications of the techniques introduced above.
Theorem 1.39. For any geometric braid b on n strings, the topological type of the pair $\left(\mathbf{R}^{2} \times I, b\right)$ depends only on n.

Proof. Pick a disk $D \subset \mathbf{R}^{2}$ such that $b \subset D^{\circ} \times I$. Then the set $Q=Q_{n}$ defined by (1.16) lies in D°. By Lemma 1.37, there is a normal isotopy $\left\{f_{t}: D \rightarrow D\right\}_{t \in I}$ parametrizing b. The formula $(x, t) \mapsto\left(f_{t}(x), t\right)$ defines a homeomorphism $F: D \times I \rightarrow D \times I$ mapping $Q \times I$ onto b and keeping $\partial D \times I$ pointwise. Extending F by the identity on $\left(\mathbf{R}^{2}-D\right) \times I$, we obtain a homeomorphism $\mathbf{R}^{2} \times I \rightarrow \mathbf{R}^{2} \times I$ mapping $Q \times I$ onto b. Note that this homeomorphism is level-preserving in the sense that it commutes with the projection to I.

Theorem 1.40. Every isotopy of a geometric braid in $\mathbf{R}^{2} \times I$ extends to an isotopy of $\mathbf{R}^{2} \times I$ in itself constant on the boundary.

Proof. Set $T=\mathbf{R}^{2} \times I$. Let $b \subset T$ be a geometric braid on n strings and let $F: b \times I \rightarrow T$ be an isotopy of b. Thus, for each $s \in I$, the map $F_{s}: b \rightarrow T$ sending $x \in b$ to $F(x, s)$ is an embedding whose image is a geometric braid and $F_{0}=\mathrm{id}_{b}$. We shall construct a (continuous) map $G: T \times I \rightarrow T$ such that for each $s \in I$, the map $G_{s}: T \rightarrow T$ sending $x \in T$ to $G(x, s)$ is a homeomorphism fixing ∂T pointwise and extending F_{s}, and $G_{0}=\mathrm{id}_{T}$.

Let $Q \subset \mathbf{R}^{2}$ be the set $\{(1,0),(2,0), \ldots,(n, 0)\}$ and let D be a closed Euclidean disk in \mathbf{R}^{2} such that $Q \subset D^{\circ}$ and $F(b \times I) \subset D^{\circ} \times I$. For any $s, t \in I$, denote by $f(s, t)$ the unique n-point subset of D° such that

$$
F_{s}(b) \cap(D \times\{t\})=f(s, t) \times\{t\} .
$$

The formula $(s, t) \mapsto f(s, t)$ defines a continuous map $f: I^{2} \rightarrow \mathcal{C}_{n}\left(D^{\circ}\right)$. Clearly, $f(s, 0)=f(s, 1)=Q$ for all $s \in I$ and $b=\bigcup_{t \in I} f(0, t) \times\{t\}$.

Consider the evaluation fibration $e=e_{Q}: \operatorname{Top}(D) \rightarrow \mathcal{C}_{n}\left(D^{\circ}\right)$. By the homotopy lifting property of e, the loop $t \mapsto f(0, t)$ lifts to a path $t \mapsto \widehat{f}(0, t)$ in $\operatorname{Top}(D)$ ending at id_{D} and beginning at a point of $\operatorname{Top}(D, Q)$. By the homotopy lifting property of e with respect to the pair $(I, \partial I)$, the latter path extends to a lift $\widehat{f}: I^{2} \rightarrow \operatorname{Top}(D)$ of f such that $\widehat{f}(s, 1)=\operatorname{id}_{D}$ and $\widehat{f}(s, 0)=\widehat{f}(0,0)$ for all $s \in I$.

We define a homeomorphism $g(s, t): \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ to be the identity on $\mathbf{R}^{2}-D$ and to be $\widehat{f}(s, t) \circ(\widehat{f}(0, t))^{-1}$ on D. It is clear that $g(s, t)$ is a continuous function of $s, t \in I$ and

$$
g(0, t)=g(s, 0)=g(s, 1)=\mathrm{id}
$$

for all $s, t \in I$. We have

$$
g(s, t)(f(0, t))=g(s, t)(\widehat{f}(0, t)(Q))=\widehat{f}(s, t)(Q)=f(s, t)
$$

It is now straightforward to check that the map $G: T \times I \rightarrow T$ sending (a, t, s) to $(g(s, t)(a), t)$ for $a \in \mathbf{R}^{2}, s, t \in I$ has all the required properties.

Exercise 1.7.1. Let f be a self-homeomorphism of the 2 -sphere S^{2} fixing a point $a \in S^{2}$ and isotopic to the identity id : $S^{2} \rightarrow S^{2}$. Prove that f is isotopic to the identity in the class of self-homeomorphisms of S^{2} fixing a.

Solution. Applying Lemma 1.35 to $M=S^{2}, Q=\{a\}, n=1$, we obtain a locally trivial fibration $\operatorname{Top}\left(S^{2}\right) \rightarrow S^{2}$ with fiber $\operatorname{Top}\left(S^{2},\{a\}\right)$. Since $\pi_{0}\left(\operatorname{Top}\left(S^{2},\{a\}\right)\right)=\mathfrak{M}\left(S^{2},\{a\}\right)$ and $\pi_{0}\left(\operatorname{Top}\left(S^{2}\right)\right)=\mathfrak{M}\left(S^{2}\right)$, this fibration yields an exact sequence

$$
\pi_{1}\left(S^{2}\right) \rightarrow \mathfrak{M}\left(S^{2},\{a\}\right) \rightarrow \mathfrak{M}\left(S^{2}\right)
$$

Since $\pi_{1}\left(S^{2}\right)=0$, the kernel of the homomorphism $\mathfrak{M}\left(S^{2},\{a\}\right) \rightarrow \mathfrak{M}\left(S^{2}\right)$ is trivial. This implies the required property of self-homeomorphisms of S^{2}.

Notes

The definition of braids and braid groups as well as a considerable part of the results of this chapter are due to Emil Artin [Art25], [Art47a], [Art47b]. This includes, among other things, the standard presentation of braid groups by generators and relations and the theory of braid automorphisms of Section 1.5. It should be noted that the braid automorphisms of free groups were studied by Hurwitz [Hur91] in 1891; see also [Mag72], [Bri88].

The generators $A_{i, j}$ of P_{n} and the defining relations for them were introduced by Burau [Bur32]; see also [Mar45], [Art47a], [Cho48]. Theorem 1.16 is due to Fröhlich [Frö36], Markov [Mar45], Artin [Art47a]. The combed form of braids was discovered by Markov [Mar45] and Artin [Art47a]. Theorem 1.24 was obtained by Artin [Art47a] and Chow [Cho48]. Corollary 1.25 is due to Artin [Art47a].

The theory of braids from the viewpoint of configuration spaces was first studied by Fox and Neuwirth [FoN62] and Fadell and Neuwirth [FaN62]. Definitions and results of Section 1.4 are taken from [FaN62]. The interpretation of $\mathcal{C}_{n}\left(\mathbf{R}^{2}\right)$ in terms of polynomials was pointed out by Arnold [Arn70].

The Alexander-Tietze theorem used in Section 1.7.3 was established by Tietze [Tie14] and Alexander [Ale23b]. Lemma 1.35 is due to Birman [Bir69a]. Theorem 1.40 is due to Artin [Art47a].

Exercises 1.1.4 and 1.1.5 are due to Artin [Art25], [Art47b]. Exercises 1.1.6 and 1.1.8 are due to Gorin and Lin [GL69]; see also [Lin96]. Exercise 1.1.7 is due to Gorin. Exercise 1.1.10 is due to Kassel and Reutenauer [KR07] (see also [Gas62] and [GL69] for a proof of the freeness of the kernel of $B_{4} \rightarrow B_{3}$). Exercise 1.4.3 is due to Fadell and Van Buskirk [FV62]. Exercise 1.5.1 is due to Wada [Wad92]. Exercise 1.6.1 is due to Sergiescu [Ser93].

2

Braids, Knots, and Links

In this chapter we study the relationship between braids, knots, and links. Throughout the chapter, we denote by I the closed interval $[0,1]$ in \mathbf{R}.

2.1 Knots and links in three-dimensional manifolds

We briefly discuss the notions from knot theory needed for the sequel. For detailed expositions of knot theory, the reader is referred to the monographs [BZ85], [Kaw96], [Mur96], [Rol76].

2.1.1 Basic definitions

Let M be a 3-dimensional topological manifold, possibly with boundary ∂M. A geometric link in M is a locally flat closed 1-dimensional submanifold of M. Recall that a manifold is closed if it is compact and has an empty boundary. A closed 1-dimensional submanifold $L \subset M$ is locally flat if every point of L has a neighborhood $U \subset M$ such that the pair $(U, U \cap L)$ is homeomorphic to the pair $\left(\mathbf{R}^{3}, \mathbf{R} \times\{0\} \times\{0\}\right)$. This condition implies that $L \subset M^{\circ}=M-\partial M$ and excludes all kinds of locally wild behavior of L inside M°.

Being a closed 1-dimensional manifold, a geometric link in M must consist of a finite number of components homeomorphic to the standard unit circle

$$
S^{1}=\{z \in \mathbf{C}| | z \mid=1\}
$$

A space homeomorphic to S^{1} is called a (topological) circle. A geometric link consisting of $n \geq 1$ circles is called an n-component link. For example, the boundary of n disjoint embedded 2 -disks in M° is a trivial n-component link in M.

One-component geometric links are called geometric knots. Examples of nontrivial knots and links in \mathbf{R}^{3} are shown in Figure 2.1, which presents the trefoil knot, the figure-eight knot, and the Hopf link.

Fig. 2.1. Knots and links in \mathbf{R}^{3}

Two geometric links L and L^{\prime} in M are isotopic if L can be deformed into L^{\prime} by an isotopy of M into itself. Here by an isotopy of M (into itself), we mean a continuous family of homeomorphisms $\left\{F_{s}: M \rightarrow M\right\}_{s \in I}$ such that $F_{0}=\operatorname{id}_{M}: M \rightarrow M$. The continuity of this family means that the mapping $I \rightarrow \operatorname{Top}(M), s \mapsto F_{s}$ is continuous or, equivalently, the mapping

$$
M \times I \rightarrow M, \quad(x, s) \mapsto F_{s}(x),
$$

where $x \in M, s \in I$, is continuous; see Section 1.7.1. An isotopy $\left\{F_{s}\right\}_{s \in I}$ of M is said to be an isotopy of L into L^{\prime} if $F_{1}(L)=L^{\prime}$. The links L and L^{\prime} are isotopic if there is an isotopy of L into L^{\prime}. Isotopic geometric links have the same number of components. In other words, the number of components is an isotopy invariant of geometric links.

The relation of isotopy is obviously an equivalence relation in the class of geometric links in M. The corresponding equivalence classes are called links in M. The links having only one component are called knots. The ultimate goal of knot theory is a classification of knots and links.

If M has a smooth structure, then any geometric link in M is isotopic to a geometric link whose underlying 1-dimensional manifold is a smooth submanifold of M. Therefore working with links in smooth 3-dimensional manifolds, we can always restrict ourselves to smooth representatives.

2.1.2 Link diagrams

The technique of braid diagrams discussed in Chapter 1 can be extended to links. We shall restrict ourselves to the case in which the ambient 3 -manifold is the product of a surface Σ (possibly with boundary $\partial \Sigma$) with I. For $n \geq 1$, a link diagram on Σ with n components is a set $\mathcal{D} \subset \Sigma-\partial \Sigma$ obtained as a union of n circles with a finite number of intersections and self-intersections such that each (self-)intersection is a meeting point of exactly two branches of \mathcal{D}, one of these branches being distinguished and called undergoing, the other one being overgoing. In a neighborhood of a point, \mathcal{D} looks like a straight line in \mathbf{R}^{2} or like the set $\{(x, y) \mid x y=0\} \subset \mathbf{R}^{2}$, where one of the branches $x=0, y=0$ is distinguished. The circles forming \mathcal{D} are called the components of \mathcal{D}. The (self-)intersections of these circles are called crossings or double points of \mathcal{D}. Note that three components of \mathcal{D} never meet in a point.

The branch of a link diagram going under a crossing is graphically represented by a broken line. The pictures in Figure 2.1 can be considered as link diagrams in the plane.

Each link diagram \mathcal{D} on a surface Σ presents a link

$$
L(\mathcal{D}) \subset \Sigma \times I
$$

It is obtained from $\mathcal{D} \subset \Sigma=\Sigma \times\{1 / 2\}$ by pushing the undergoing branches into $\Sigma \times[1 / 2,1)$. The link $L(\mathcal{D})$ is well defined up to isotopy.

Observe that any link in $\Sigma \times I$ can be presented by a link diagram on Σ. To see this, represent the given link by a geometric link $L \subset \Sigma \times I$ whose projection to Σ has only double transversal crossings. At each of the crossings choose the undergoing branch to be the one that comes from the subarc of L with bigger I-coordinate. This gives a link diagram on Σ representing the isotopy class of L.

Two link diagrams \mathcal{D} and \mathcal{D}^{\prime} on Σ are isotopic if there is an isotopy of Σ into itself transforming \mathcal{D} into \mathcal{D}^{\prime}. More precisely, \mathcal{D} and \mathcal{D}^{\prime} are isotopic if there is a continuous family of homeomorphisms $\left\{F_{s}: \Sigma \rightarrow \Sigma\right\}_{s \in I}$ such that $F_{0}=\operatorname{id}_{\Sigma}$ and $F_{1}(\mathcal{D})=\mathcal{D}^{\prime}$. It is understood that F_{1} maps the crossings of \mathcal{D} to the crossings of \mathcal{D}^{\prime}, preserving the under/overgoing data. Clearly, if \mathcal{D} and \mathcal{D}^{\prime} are isotopic, then $L(\mathcal{D})$ and $L\left(\mathcal{D}^{\prime}\right)$ are isotopic in $\Sigma \times I$.

The transformations of link diagrams $\Omega_{1}, \Omega_{2}, \Omega_{3}$ shown in Figures 1.5a, 1.5 b , and 2.2 below (as well as the inverse transformations) are called Reidemeister moves. These moves affect only a part of the diagram lying in a disk in Σ and preserve the rest of the diagram. Note that to apply these moves, we identify the disk in Σ with a disk in the plane of the pictures. If Σ is oriented, then we use only identifications transforming the orientation of Σ into the counterclockwise orientation in the plane of the pictures. For nonoriented Σ, we use arbitrary identifications.

In comparison to the theory of braid diagrams, we need here two additional moves Ω_{1} shown in Figure 2.2. These moves add a "curl" or "kink" to the diagram. The inverse moves Ω_{1}^{-1} remove such kinks from link diagrams. On the other hand, in the setting of link diagrams, one Ω_{2}-move is sufficient: the two Ω_{2}-moves in Figure 1.5a can be obtained from each other by an isotopy in Σ rotating a small 2-disk in Σ affected by the move to an angle of 180°.

The classical Reidemeister theorem for link diagrams on \mathbf{R}^{2} generalizes to diagrams on Σ : two link diagrams on Σ represent isotopic links in $\Sigma \times I$ if and only if these diagrams are related by a finite sequence of isotopies and Reidemeister moves $\Omega_{1}^{ \pm 1}, \Omega_{2}^{ \pm 1}, \Omega_{3}^{ \pm 1}$. Indeed, any isotopy of a geometric link in $\Sigma \times I$ may be split as a composition of a finite number of "local" isotopies changing the link only inside a cylinder of type $U \times I$, where U is a small open disk in Σ. Since the pair $(U \times I, U \times\{1 / 2\})$ is homeomorphic to the pair $\left(\mathbf{R}^{2} \times I, \mathbf{R}^{2} \times\{1 / 2\}\right)$, we can apply the standard Reidemeister theory to the part of the link diagram lying in U. This implies that under such a local isotopy the diagram is changed via a sequence of moves $\Omega_{1}^{ \pm 1}, \Omega_{2}^{ \pm 1}, \Omega_{3}^{ \pm 1}$.

Fig. 2.2. The moves Ω_{1}

2.1.3 Ordered and oriented links

Links admit a number of natural additional structures. Here we describe two such structures: order and orientation. An n-component geometric link is ordered if its components are numbered by $1,2, \ldots, n$. By isotopies of ordered links, we mean order-preserving isotopies. The order is easily exhibited on link diagrams: it suffices to attach the numbers $1,2, \ldots, n$ to the components of the diagram and to keep these numbers unchanged under isotopy.

An orientation of a geometric link L in a 3 -dimensional manifold M is an orientation of the underlying 1-dimensional manifold L. In the figures, the orientation is indicated by arrows on the link components. By isotopies of oriented links, one means orientation-preserving isotopies. Each oriented link $L \subset M$ is a 1-cycle and represents a homology class

$$
[L] \in H_{1}(M)=H_{1}(M ; \mathbf{Z}) .
$$

This class is an isotopy invariant of L. Indeed, the components of two isotopic oriented links are pairwise homotopic and consequently pairwise homologous.

To exhibit the orientation of the link presented by a link diagram on a surface it suffices to orient all components of the diagram. Each Reidemeister move gives rise to several oriented Reidemeister moves on oriented link diagrams keeping the orientations of the strands. Specifically, orienting all the strands in Figure 2.2 in the same direction (up or down), we obtain four oriented Ω_{1}-moves. Similarly, the two moves Ω_{2} in Figure 1.5 a give rise to eight oriented Ω_{2}-moves. In two of them, both strands are directed down (before and after the move). These two oriented Ω_{2}-moves are said to be braidlike and are denoted by Ω_{2}^{br}. The two oriented Ω_{2}-moves in which the strands are directed up can be expressed as compositions of Ω_{2}^{br} and isotopies rotating a 2 -disk by the angle 180°. The remaining oriented Ω_{2}-moves, in which the strands are directed in opposite directions, are said to be nonbraidlike. In a similar way, the move Ω_{3} in Figure 1.5b gives rise to eight oriented Ω_{3}-moves. Any seven of them can be expressed as compositions of the eighth move and oriented Ω_{2}-moves (see [Tur88] or [Tra98]). Therefore it is enough to consider only the oriented Ω_{3}-move in which all three strands are directed down. This move is said to be braidlike and is denoted by Ω_{3}^{br}.

The Reidemeister theorem mentioned at the end of Section 2.1.2 implies that two oriented link diagrams on a surface Σ present isotopic oriented links in $\Sigma \times I$ if and only if these diagrams are related by a finite sequence of orientation-preserving isotopies and oriented Reidemeister moves.

2.1.4 The linking number

As an application of link diagrams, we define the integral linking number of knots in $\Sigma \times I$, where Σ is an arbitrary oriented surface (for nonoriented Σ, the linking number is defined only mod 2). Let L_{1}, L_{2} be disjoint oriented knots in $\Sigma \times I$. Let us present the ordered oriented 2-component link $L_{1} \cup L_{2}$ by a diagram on Σ. Let l^{+}(resp. l^{-}) be the number of crossings of this diagram where a strand representing L_{1} goes over a strand representing L_{2} from left to right (resp. from right to left). Here the left and right sides of an oriented strand s are defined by the condition that the pair (a positively oriented vector tangent to s, a vector directed from the right of s to the left of s) determines the orientation of Σ. It is straightforward to check that the linking number

$$
\operatorname{lk}\left(L_{1}, L_{2}\right)=l^{+}-l^{-} \in \mathbf{Z}
$$

is invariant under isotopies and oriented Reidemeister moves in the diagram. Hence $\operatorname{lk}\left(L_{1}, L_{2}\right)$ is a well-defined isotopy invariant of the link $L_{1} \cup L_{2}$.

Exercise 2.1.1. Prove that an arbitrary geometric knot L in an orientable 3-dimensional manifold has an open neighborhood $U \supset L$ such that the pair (U, L) is homeomorphic to $\left(\mathbf{R}^{2} \times S^{1},\{x\} \times S^{1}\right)$, where $x \in \mathbf{R}^{2}$.

Exercise 2.1.2. Prove that two oriented link diagrams on \mathbf{R}^{2} isotopic in the 2-sphere $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$ represent isotopic oriented links in \mathbf{R}^{3}. (Hint: It suffices to verify this for an isotopy pushing a branch of the diagram across the point $\infty \in S^{2}$.)
Exercise 2.1.3. For any oriented surface Σ and any two disjoint oriented knots $L_{1}, L_{2} \subset \Sigma \times I$,

$$
\operatorname{lk}\left(L_{1}, L_{2}\right)-\operatorname{lk}\left(L_{2}, L_{1}\right)=\left[L_{1}\right] \cdot\left[L_{2}\right],
$$

where $\left[L_{1}\right] \cdot\left[L_{2}\right] \in \mathbf{Z}$ is the intersection number of $\left[L_{1}\right],\left[L_{2}\right] \in H_{1}(\Sigma)$. (Hint: This equality is obvious if

$$
L_{1} \subset \Sigma \times[0,1 / 2], \quad L_{2} \subset \Sigma \times[1 / 2,1]
$$

and is preserved when a branch of L_{1} is pushed across a branch of L_{2}.) Deduce that if Σ embeds in S^{2}, then $\operatorname{lk}\left(L_{1}, L_{2}\right)=\operatorname{lk}\left(L_{2}, L_{1}\right)$.

2.2 Closed braids in the solid torus

We introduce certain links in the solid torus, called closed braids, and classify them in terms of braids.

2.2.1 Solid tori

By a solid torus, we mean the product $V=D \times S^{1}$, where D is a closed 2-disk and $S^{1}=\{z \in \mathbf{C}| | z \mid=1\}$. The solid torus V is a compact connected orientable 3 -dimensional manifold with boundary

$$
\partial V=\partial D \times S^{1} \approx S^{1} \times S^{1}
$$

Clearly,

$$
V^{\circ}=V-\partial V=D^{\circ} \times S^{1}
$$

where $D^{\circ}=D-\partial D$. The solid torus naturally arises in knot theory as a closed regular neighborhood of any knot in an orientable 3-dimensional manifold. Using a homeomorphism $D \approx I \times I$, we obtain

$$
V \approx I \times I \times S^{1} \approx S^{1} \times I \times I
$$

The technique of link diagrams of Section 2.1 allows us to present links in V by diagrams on the annulus $S^{1} \times I$.

2.2.2 Closed braids

A geometric link L in the solid torus $V=D \times S^{1}$ is called a closed n-braid with $n \geq 1$ if L meets each 2 -disk $D \times\{z\}$ with $z \in S^{1}$ transversely in n points. It is clear that the projection on the second factor $V \rightarrow S^{1}$ restricted to L yields an (unramified) n-fold covering $L \rightarrow S^{1}$. We shall always provide L with the canonical orientation obtained as the lift of the counterclockwise orientation on S^{1}. Thus, a point moving along a component of L in the positive direction projects to a point moving along S^{1} counterclockwise without ever stopping or going backward. The homology class $[L] \in H_{1}(V)=\mathbf{Z}$ of the oriented link $L \subset V$ is computed by $[L]=n\left[\{x\} \times S^{1}\right]$ for any $x \in D$.

For example, if Q is a finite subset of D°, then the link $Q \times S^{1} \subset V$ is a closed n-braid, where $n=\operatorname{card}(Q)$. A closed 3-braid is drawn in Figure 2.3. Our interest in closed braids is due to their connection with braids. This connection will be discussed in the next subsections.

Two closed braids in V are isotopic if they are isotopic as oriented links. Note that the intermediate links appearing during an isotopy are not required to be closed braids. By abuse of language, isotopy classes of closed braids in V will be also called closed braids in V.

In general, a link in V is not isotopic to a closed braid in V. For instance, a link lying inside a small 3-ball in V is never isotopic to a closed braid. More generally, an oriented link in V homological to $m\left[\{x\} \times S^{1}\right]$ with $m \leq 0, x \in D$ is not isotopic to a closed braid in V. Another obstruction will be discussed in Exercise 2.2.4.

Fig. 2.3. A closed 3-braid in V

2.2.3 Closure of braids

Every braid β on n strings gives rise to a closed n-braid in the solid torus as follows. Fix a closed Euclidean disk $D \subset \mathbf{R}^{2}$ containing the set $Q=\{(1,0),(2,0), \ldots,(n, 0)\}$ in its interior. Observe that the solid torus $V=D \times S^{1}$ can be obtained from the cylinder $D \times I$ by the identification $(x, 0)=(x, 1)$ for all $x \in D$. (Here we identify $I / \partial I$ with S^{1} via the standard homeomorphism $t \mapsto \exp (2 \pi i t): I / \partial I \rightarrow S^{1}$.) Pick a geometric braid $b \subset D^{\circ} \times I$ representing β (for the existence of such b, see Exercise 1.2.4). Let $\widehat{b} \subset V$ be the image of b under the projection $D \times I \rightarrow V$. It is obvious that \widehat{b} is a closed n-braid in V. The canonical orientation of \widehat{b} is determined by the direction on b leading from $Q \times\{0\}$ to $Q \times\{1\}$. If $b^{\prime} \subset D \times I$ is another geometric braid representing β, then b is isotopic to b^{\prime} in $D \times I$ (cf. Exercise 1.2.5). By (the proof of) Theorem 1.40, there is an isotopy of $D \times I$ constant on the boundary and transforming b into b^{\prime}. This isotopy induces an isotopy between \widehat{b} and \widehat{b}^{\prime} in V. Therefore the isotopy class of \widehat{b} depends only on β. This class is called the closure of β and denoted by $\widehat{\beta}$.

Note that any closed n-braid $L \subset V$ is isotopic to $\widehat{\beta}$ for a certain $\beta \in B_{n}$. Indeed, we can deform L in the class of closed braids so that

$$
L \cap(D \times\{1\})=Q \times\{1\} .
$$

Cutting V open along $D \times\{1\}$, we obtain a braid in $D \times I$ with closure L.
The description of $\widehat{\beta}$ given above is somewhat awkward from the point of view of drawing pictures. The following equivalent description is often more convenient. Observe that gluing two copies of $D \times I$ along $D \times \partial I=D \times\{0,1\}$, we again obtain V. Gluing a geometric braid representing β in the first $D \times I$ with the trivial braid $Q \times I$ in the second $D \times I$, we obtain $\widehat{\beta}$; see Figure 2.4. A link diagram in $S^{1} \times I$ presenting $\widehat{\beta}$ is obtained by closing a diagram of β as in Figure 2.5.

Fig. 2.4. Closing a braid β

Fig. 2.5. A diagram of $\widehat{\beta}$

Theorem 2.1. For any $n \geq 1$ and any β, $\beta^{\prime} \in B_{n}$, the closed braids $\widehat{\beta}$, $\widehat{\beta}^{\prime}$ are isotopic in the solid torus if and only if β and β^{\prime} are conjugate in B_{n}.

Theorem 2.1 gives an isotopy classification of closed n-braids in the solid torus: the isotopy classes of closed n-braids correspond bijectively to the conjugacy classes in B_{n}. In particular, any conjugacy invariant of elements of B_{n} determines an isotopy invariant of closed n-braids. For instance, the characteristic polynomial of a finite-dimensional linear representation of B_{n} yields an invariant of closed n-braids. Theorem 2.1 raises the problem of finding an algorithm to decide whether two given elements of B_{n} are conjugate. We shall address this problem in Chapter 6.

2.2.4 Proof of Theorem 2.1

Observe first that conjugate elements of B_{n} give rise to isotopic closed braids. In other words, $\widehat{\alpha \beta \alpha^{-1}}=\widehat{\beta}$ for any $\alpha, \beta \in B_{n}$. This is obtained by forming a diagram of $\alpha \beta \alpha^{-1}$ from three diagrams representing the three factors, pushing the upper diagram representing α along the n parallel strings on the right
so that eventually it comes to the diagram of α^{-1} from below. This gives $\widehat{\alpha \beta \alpha^{-1}}=\widehat{\beta \alpha \alpha^{-1}}=\widehat{\beta}$.

We prove the converse: any braids with isotopic closures in $V=D \times S^{1}$ are conjugate. To this end, we need to study closed braids in V in more detail. Set $\bar{V}=D \times \mathbf{R}$. Multiplying D by the universal covering

$$
t \mapsto \exp (2 \pi i t): \mathbf{R} \rightarrow S^{1}
$$

we obtain a universal covering $\bar{V} \rightarrow V$. Denote by T the covering transformation $\bar{V} \rightarrow \bar{V}$ sending (x, t) to $(x, t+1)$ for all $x \in D, t \in \mathbf{R}$.

If L is a closed n-braid in V, then its preimage $\bar{L} \subset \bar{V}$ is a 1-dimensional manifold meeting each disk $D \times\{t\}$ with $t \in \mathbf{R}$ transversely in n points. This implies that \bar{L} consists of n components homeomorphic to \mathbf{R}. More information about \bar{L} can be obtained by presenting L as the closure of a geometric braid $b \subset D \times I$, where we identify $I / \partial I=S^{1}$. Then

$$
\bar{L}=\bigcup_{m \in \mathbf{Z}} T^{m}(b)
$$

By Section 1.7.2, $b=\bigcup_{t \in I}\left(f_{t}(Q), t\right)$ for a continuous family of homeomorphisms $\left\{f_{t}: D \rightarrow D\right\}_{t \in I}$ such that $f_{0}(Q)=Q, f_{1}=\operatorname{id}_{D}$, and all f_{t} fix ∂D pointwise. We define a level-preserving self-homeomorphism of $\bar{V}=D \times \mathbf{R}$ by

$$
(x, t) \mapsto\left(f_{t-[t]} f_{0}^{-[t]}(x), t\right)
$$

where $x \in D, t \in \mathbf{R}$, and $[t]$ is the greatest integer less than or equal to t. This homeomorphism fixes $\partial \bar{V}=\partial D \times \mathbf{R}$ pointwise and sends $Q \times \mathbf{R}$ onto \bar{L}; see Figure 2.6. The induced homeomorphism $(D-Q) \times \mathbf{R} \approx \bar{V}-\bar{L}$ shows that $D-Q=(D-Q) \times\{0\} \subset \bar{V}-\bar{L}$ is a deformation retract of $\bar{V}-\bar{L}$.

Fig. 2.6. A homeomorphism $(D \times \mathbf{R}, Q \times \mathbf{R}) \approx(D \times \mathbf{R}, \bar{L})$

Pick a point $d \in \partial D$ as in Figure 1.15 and set $\bar{d}=(d, 0) \in \bar{V}$. It is clear that the inclusion homomorphism $i: \pi_{1}(D-Q, d) \rightarrow \pi_{1}(\bar{V}-\bar{L}, \bar{d})$ is an isomorphism. By definition, $T(\bar{d})=(d, 1)$. The covering transformation T restricted to $\bar{V}-\bar{L}$ induces an isomorphism $\pi_{1}(\bar{V}-\bar{L}, \bar{d}) \rightarrow \pi_{1}(\bar{V}-\bar{L}, T(\bar{d}))$. Consider the isomorphism $\pi_{1}(\bar{V}-\bar{L}, T(\bar{d})) \rightarrow \pi_{1}(\bar{V}-\bar{L}, \bar{d})$ obtained by conjugating the loops by the path $d \times[0,1] \subset \partial D \times \mathbf{R} \subset \bar{V}-\bar{L}$. The composition $T_{\#}$ of these two isomorphisms is an automorphism of $\pi_{1}(\bar{V}-\bar{L}, \bar{d})$. It follows from the description of \bar{L} given above that the following diagram is commutative:

where $\rho\left(f_{0}\right)$ is the automorphism of $\pi_{1}(D-Q, d)$ induced by the restriction of f_{0} to $D-Q$; cf. Section 1.6.3. Therefore $i^{-1} T_{\#} i=\rho\left(f_{0}\right)$. Indeed, the proof of Theorem 1.33 shows that the group homomorphism $\eta: B_{n} \rightarrow \mathfrak{M}(D, Q)$ introduced in Section 1.6 .3 sends the braid $\beta \in B_{n}$ represented by b to the isotopy class of $f_{0}:(D, Q) \rightarrow(D, Q)$. Identifying $\pi_{1}(D-Q, d)$ with the free group F_{n} on n generators $x_{1}, x_{2}, \ldots, x_{n}$ as in Section 1.6.3 and applying Theorem 1.33, we conclude that $\rho\left(f_{0}\right)=\rho \eta(\beta)=\widetilde{\beta}$ is the braid automorphism of F_{n} corresponding to β. Thus, $i^{-1} T_{\#} i=\widetilde{\beta}$.

Suppose now that $\beta, \beta^{\prime} \in B_{n}$ are two braids with isotopic closures in V. Present them by geometric braids $b, b^{\prime} \subset D \times I$ and let $L, L^{\prime} \subset V$ be their respective closures. By assumption, there is a homeomorphism $g: V \rightarrow V$ such that g maps L onto L^{\prime} preserving their canonical orientations and g is isotopic to the identity $\operatorname{id}_{V}: V \rightarrow V$. The latter condition implies that the restriction of g to ∂V is isotopic to the identity id : $\partial V \rightarrow \partial V$. Therefore $\left.g\right|_{\partial V}$ extends to a homeomorphism $g^{\prime}: V \rightarrow V$ equal to the identity outside a narrow tubular neighborhood of ∂V in V. We can assume that this neighborhood is disjoint from L^{\prime}, so that g^{\prime} is the identity on L^{\prime}. Now, the homeomorphism $h=\left(g^{\prime}\right)^{-1} g: V \rightarrow V$ fixes ∂V pointwise and maps L onto L^{\prime} preserving their canonical orientations. The former condition and the surjectivity of the inclusion homomorphism $\pi_{1}(\partial V) \rightarrow \pi_{1}(V) \cong \mathbf{Z}$ imply that h induces an identity automorphism of $\pi_{1}(V)$. Therefore h lifts to a homeomorphism $\bar{h}: \bar{V} \rightarrow \bar{V}$ such that \bar{h} fixes $\partial \bar{V}$ pointwise, $\bar{h} T=T \bar{h}$, and $\bar{h}(\bar{L})=\bar{L}^{\prime}$. Hence \bar{h} induces an isomorphism $\bar{h}_{\#}: \pi_{1}(\bar{V}-\bar{L}, \bar{d}) \rightarrow \pi_{1}\left(\bar{V}-\bar{L}^{\prime}, \bar{d}\right)$ commuting with $T_{\#}$.

Consider the automorphism $\varphi=\left(i^{\prime}\right)^{-1} \bar{h}_{\#} i$ of $F_{n}=\pi_{1}(D-Q, d)$, where $i: \pi_{1}(D-Q, d) \rightarrow \pi_{1}(\bar{V}-\bar{L}, \bar{d})$ and $i^{\prime}: \pi_{1}(D-Q, d) \rightarrow \pi_{1}\left(\bar{V}-\bar{L}^{\prime}, \bar{d}\right)$ are the inclusion isomorphisms as above. We have $\widetilde{\beta^{\prime}}=\left(i^{\prime}\right)^{-1} T_{\#} i^{\prime}$ and

$$
\varphi \widetilde{\beta} \varphi^{-1}=\left(i^{\prime}\right)^{-1} \bar{h}_{\#} i i^{-1} T_{\#} i i^{-1}\left(\bar{h}_{\#}\right)^{-1} i^{\prime}=\left(i^{\prime}\right)^{-1} T_{\#} i^{\prime}=\widetilde{\beta}^{\prime} .
$$

We claim that φ is a braid automorphism of F_{n}. This will imply that $\widetilde{\beta}$ and $\widetilde{\beta^{\prime}}$ are conjugate in the group of braid automorphisms of F_{n}. By Theorem 1.31, this will imply that β and β^{\prime} are conjugate in B_{n}.

By definition, the conjugacy classes of the generators

$$
x_{1}, x_{2}, \ldots, x_{n} \in F_{n}=\pi_{1}(D-Q, d)
$$

are represented by small loops encircling the points of Q in D. The inclusion $D-Q=(D-Q) \times\{0\} \subset \bar{V}-\bar{L}$ maps these loops to small loops in $\bar{V}-\bar{L}$ encircling the components of \bar{L}. The homeomorphism $\bar{h}: \bar{V} \rightarrow \bar{V}$ transforms these loops into small loops in $\bar{V}-\bar{L}^{\prime}$ encircling the components of \bar{L}^{\prime}. The latter represent the conjugacy classes of the images of $x_{1}, x_{2}, \ldots, x_{n}$ under the inclusion $D-Q=(D-Q) \times\{0\} \subset \bar{V}-\bar{L}^{\prime}$. Hence φ transforms the conjugacy classes of x_{1}, \ldots, x_{n} into themselves, up to permutation. This verifies the first condition in the definition of a braid automorphism. The second condition says that $\varphi(x)=x$, where

$$
x=x_{1} x_{2} \cdots x_{n} \in F_{n}=\pi_{1}(D-Q, d) .
$$

Observe that x is represented by the loop ∂D based at d. The inclusion of $D-Q=(D-Q) \times\{0\}$ into $\bar{V}-\bar{L}$ maps this loop to $\partial D \times\{0\}$. Since \bar{h} fixes $\partial \bar{V}$ pointwise, $\bar{h}_{\#} i(x)=i^{\prime}(x)$ and therefore $\varphi(x)=x$.

2.2.5 Closed braid diagrams

A closed braid diagram in the annulus $S^{1} \times I$ is an oriented link diagram \mathcal{D} in $S^{1} \times I$ such that whenever a point moves along \mathcal{D} in the positive direction, its projection to S^{1} moves along S^{1} counterclockwise without ever stopping or going backward. In other words, the projection $S^{1} \times I \rightarrow S^{1}$ restricted to \mathcal{D} is an orientation-preserving covering of S^{1} (ramified at the crossings of \mathcal{D}). The number of points of \mathcal{D} projecting to a given point on S^{1} does not depend on the choice of that point, provided the crossings of \mathcal{D} are counted with multiplicity 2 . This number is called the number of strands of \mathcal{D}. Examples of closed braid diagrams on n strands in $S^{1} \times I$ can be obtained by closing usual braid diagrams on n strands as in Figure 2.5.

Every closed braid diagram in $S^{1} \times I$ presents a closed braid in the solid torus $S^{1} \times I \times I$ in the obvious way; cf. Section 2.1.2. Clearly, every closed braid in $S^{1} \times I \times I$ can be presented by a closed braid diagram in $S^{1} \times I$.

We can apply to a closed braid diagram the moves $\Omega_{2}^{\mathrm{br}}, \Omega_{3}^{\mathrm{br}}$ and their inverses. These moves act as in Figures 1.5a and 1.5b, where the projections on the horizontal and vertical axes in the plane of the picture correspond to the projections to I and S^{1}, respectively. These moves keep the diagram in the class of closed braid diagrams and preserve the isotopy class of the closed braid represented by the diagram.

Lemma 2.2. Two closed braid diagrams $\mathcal{D}, \mathcal{D}^{\prime}$ in $S^{1} \times I$ represent isotopic closed braids in the solid torus $S^{1} \times I \times I$ if and only if \mathcal{D} can be transformed into \mathcal{D}^{\prime} by a finite sequence of isotopies (in the class of closed braid diagrams) and moves $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}$.

Proof. We need only prove that if $\mathcal{D}, \mathcal{D}^{\prime}$ represent isotopic closed braids in the solid torus, then \mathcal{D} can be transformed into \mathcal{D}^{\prime} by a finite sequence of isotopies and moves $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}$. Pick a point $z \in S^{1}$ such that the interval $\{z\} \times I$ does not meet the crossings of \mathcal{D} or \mathcal{D}^{\prime}. Cutting open $\mathcal{D}, \mathcal{D}^{\prime}$ along this interval, we obtain two braid diagrams b, b^{\prime}, respectively. By Theorem 2.1, they represent conjugate braids. Applying a Ω_{2}^{br}-move to \mathcal{D} in a neighborhood of $\{z\} \times I$, we can transform b into $\sigma_{i} b \sigma_{i}^{-1}$ and $\sigma_{i}^{-1} b \sigma_{i}$ for any $i=1,2, \ldots, n-1$. Applying such moves recursively, we can transform b into an arbitrary conjugate diagram. Thus we can assume that b and b^{\prime} represent isotopic braids. Then, by Theorem 1.6, these diagrams can be related by a finite sequence of isotopies and braidlike moves. This induces a sequence of isotopies and braidlike moves transforming \mathcal{D} into \mathcal{D}^{\prime}.

Exercise 2.2.1. Verify that for any $\beta \in B_{n}$, the number of components of the closed braid $\widehat{\beta}$ is equal to the number of cycles in the decomposition of the permutation $\pi(\beta) \in \mathfrak{S}_{n}$ as a product of commuting cycles.

Exercise 2.2.2. The closure of a pure braid $\beta \in P_{n}$ is an ordered n component link: its i th component is the closure of the i th string of β for $i=1,2, \ldots, n$. Prove that for any $\beta, \beta^{\prime} \in P_{n}$, the links $\widehat{\beta}, \widehat{\beta}^{\prime}$ are isotopic in the solid torus in the class of ordered oriented links if and only if β and β^{\prime} are conjugate in P_{n}.

Exercise 2.2.3. Prove that if two closed braids $L, L^{\prime} \subset V=D \times S^{1}$ are isotopic, then they are isotopic in the class of closed braids in V, that is, there is an isotopy $\left\{F_{s}: V \rightarrow V\right\}_{s \in I}$ of L into L^{\prime} such that $F_{s}(L)$ is a closed braid for all $s \in I$. (Hint: Use Theorem 2.1.)

Exercise 2.2.4. Let $L \subset V$ be a closed braid. Prove that the kernel of the inclusion homomorphism $\pi_{1}(V-L) \rightarrow \pi_{1}(V)=\mathbf{Z}$ is a free group. (Hint: In the notation of Section 2.2.4, this kernel is isomorphic to $\pi_{1}(\bar{V}-\bar{L}, \bar{d})$.)

2.3 Alexander's theorem

We establish here a fundamental theorem, due to J. W. Alexander, asserting that all links in \mathbf{R}^{3} are isotopic to closed braids.

2.3.1 Closed braids in R^{3}

Pick a Euclidean circle in the plane $\mathbf{R}^{2} \times\{0\} \subset \mathbf{R}^{3}$ with center at the origin $O=(0,0,0)$. We identify a closed cylindrical neighborhood of this circle in \mathbf{R}^{3} with the solid torus $V=D \times S^{1}$. By a closed n-braid in \mathbf{R}^{3}, we shall mean an oriented geometric link in \mathbf{R}^{3} lying in $V \subset \mathbf{R}^{3}$ as a closed n-braid with its canonical counterclockwise orientation (cf. Figure 2.3, where the plane $\mathbf{R}^{2} \times\{0\}$ is the plane of the picture).

In particular, for any $\beta \in B_{n}$, the closed braid $\widehat{\beta} \subset V$ yields a closed braid in \mathbf{R}^{3} via the inclusion $V \subset \mathbf{R}^{3}$; cf. Figure 2.4. The latter closed braid is also denoted by $\widehat{\beta}$ and is called the closure of β. A diagram of $\widehat{\beta}$ is obtained from a diagram of β by connecting the bottom endpoints with the top endpoints by n standard arcs; cf. Figure 2.5, where the dotted circles should be disregarded. We stress that closed braids in \mathbf{R}^{3} are oriented geometric links.

For example, the closure of the trivial braid on n strings is a trivial n component link. The closure of $\sigma_{1}^{ \pm 1} \in B_{2}$ is a trivial knot. The closure of $\sigma_{1}^{ \pm 2} \in B_{2}$ is an oriented Hopf link. More generally, the closure of $\sigma_{1}^{m} \in B_{2}$ with $m \in \mathbf{Z}$ is a so-called torus $(2, m)$-link. It has two components for even m and one component for odd m.

We can give an equivalent but more direct definition of closed braids in \mathbf{R}^{3}. Consider the coordinate axis $\ell=\{(0,0)\} \times \mathbf{R} \subset \mathbf{R}^{3}$ meeting the plane $\mathbf{R}^{2} \times\{0\}$ at the origin $O=(0,0,0)$. The counterclockwise rotation about O in the plane $\mathbf{R}^{2} \times\{0\}$ determines a positive direction of rotation about ℓ. An oriented geometric link $L \subset \mathbf{R}^{3}-\ell$ is a closed n-braid if the vector from O to any point $X \in L$ rotates in the positive direction about ℓ when X moves along L in the direction determined by the orientation of L. The equivalence of this definition with the previous one can be seen as follows. Pick a Euclidean disk D lying in an open half-plane bounded by ℓ in \mathbf{R}^{3} and having its center in $\mathbf{R}^{2} \times\{0\}$. Rotating D around ℓ, we sweep a solid torus $V=D \times S^{1}$ as above. Taking D big enough, we can assume that a given link $L \subset \mathbf{R}^{3}-\ell$ lies in V. It is clear that L is a closed braid in the sense of the first definition if and only if L is a closed braid in the sense of the second definition.

Theorem 2.3 (J. W. Alexander). Any oriented link in \mathbf{R}^{3} is isotopic to a closed braid.

Proof. By a polygonal link, we shall mean a geometric link in \mathbf{R}^{3} whose components are closed broken lines. By vertices and edges of a polygonal link, we mean the vertices and the edges of its components. It is well known that any geometric link in \mathbf{R}^{3} is isotopic to a polygonal link (cf. the proof of Theorem 1.6). We need only to prove that any oriented polygonal link $L \subset \mathbf{R}^{3}$ is isotopic to a closed braid. Moving slightly the vertices of L in \mathbf{R}^{3}, we obtain a polygonal link isotopic to L. We use such small deformations to ensure that $L \subset \mathbf{R}^{3}-\ell$ and that the edges of L do not lie in planes containing the axis $\ell=\{(0,0)\} \times \mathbf{R}$. Let

$$
A C \subset L \subset \mathbf{R}^{3}-\ell
$$

be an edge of L, where L is oriented from A to C. The edge $A C$ is said to be positive (resp. negative) if the vector from the origin $O \in \ell$ to a point $X \in A C$ rotates in the positive (resp. negative) direction about ℓ when X moves from A to C. The assumption that $A C$ does not lie in a plane containing ℓ implies that $A C$ is necessarily positive or negative. The edge $A C$ of L is said to be accessible if there is a point $B \in \ell$ such that the triangle $A B C$ meets L only along $A C$.

If all edges of L are positive, then L is a closed braid and there is nothing to prove. Consider a negative edge $A C$ of L. We replace $A C$ with a sequence of positive edges as follows. If $A C$ is accessible, then we pick $B \in \ell$ such that the triangle $A B C$ meets L only along $A C$. In the plane $A B C$ we take a slightly bigger triangle $A B^{\prime} C$ containing B in its interior, meeting ℓ only at B, and meeting L only along $A C$; see Figure 2.7. We apply to L the Δ-move $\Delta\left(A B^{\prime} C\right)$ replacing $A C$ with two positive edges $A B^{\prime}$ and $B^{\prime} C$ (see Section 1.2.3 for similar moves on geometric braids; in contrast to the setting of braids, we impose here no conditions on the third coordinates of the vertices). The resulting polygonal link is isotopic to L and has one negative edge fewer than L.

Fig. 2.7. The triangle $A B^{\prime} C$

Suppose that the edge $A C$ is not accessible. Note that every point P of $A C$ is contained in an accessible subsegment of $A C$. (To see this, pick $B \in \ell$ such that the segment $P B$ meets L only at P and then slightly "thicken" this segment inside the triangle $A B C$ to obtain a triangle $P^{-} B P^{+}$meeting L along its side $P^{-} P^{+} \subset A C$ containing P. Then $P^{-} P^{+}$is an accessible subsegment of $A C$.) Since $A C$ is compact, we can split it into a finite number of consecutive accessible subsegments. We apply to each of them the Δ-move as above choosing the corresponding points $B \in \ell$ distinct and choosing B^{\prime} close enough to B to stay away from other edges of L. Since $A C$ does not lie in a plane containing ℓ, the triangles determining these Δ-moves meet only at the common vertices of the consecutive subsegments of $A C$ (to see this, consider the projections of these segments and triangles to the plane $\{0\} \times \mathbf{R}^{2}$ orthogonal to ℓ). Therefore these Δ-moves do not hinder each other and may be performed in an arbitrary order. They replace $A C \subset L$ with a finite sequence of positive edges, beginning at A and ending at C. The resulting polygonal link is isotopic to L in \mathbf{R}^{3}. Applying this procedure inductively to all negative edges of L, we obtain a closed braid isotopic to L.

Exercise 2.3.1. Verify that the oriented 2-component links obtained by closing $\sigma_{1}^{2} \in B_{2}$ and $\sigma_{1}^{-2} \in B_{2}$ are not isotopic, while the underlying unoriented links are isotopic. (Hint: Consider the linking number of the components.)

Exercise 2.3.2. Observe that the closure of σ_{1}^{3} is the trefoil knot shown on the left of Figure 2.1 and endowed with an orientation. Observe that the closure of $\sigma_{1}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}$ is the figure-eight knot shown in Figure 2.1 and endowed with an orientation.

Exercise 2.3.3. Verify that the oriented link in \mathbf{R}^{3} obtained by inverting the orientation of all components of the closure of a braid $\sigma_{i_{1}}^{r_{1}} \sigma_{i_{2}}^{r_{2}} \cdots \sigma_{i_{m}}^{r_{m}}$, where $r_{1}, r_{2}, \ldots, r_{m} \in \mathbf{Z}$, is isotopic to the closure of $\sigma_{i_{m}}^{r_{m}} \cdots \sigma_{i_{2}}^{r_{2}} \sigma_{i_{1}}^{r_{1}}$.

2.4 Links as closures of braids: an algorithm

By Alexander's theorem, every oriented link $L \subset \mathbf{R}^{3}$ is isotopic to a closed braid. It is useful to be able to find such a braid starting from a diagram of L. The proof of Alexander's theorem given above is not of much help: in the course of the proof, the diagram is modified by global transformations over which we have little control. In this section we give a simple algorithm deriving from any diagram of L a braid whose closure is isotopic to L. Incidentally, this will give another proof of Alexander's theorem.

2.4.1 Preliminaries

We observe first that any two disjoint oriented (topological) circles on the sphere S^{2} bound an annulus in S^{2}. These circles are said to be incompatible if their orientation is induced by an orientation of this annulus. Otherwise, these circles are compatible. For instance, two oriented concentric cirles in $\mathbf{R}^{2} \subset S^{2}$ are compatible if they both are oriented clockwise or both counterclockwise.

Consider an oriented link diagram \mathcal{D} in \mathbf{R}^{2}. Near each crossing point x of \mathcal{D} the diagram looks either like the 2 -braid σ_{1} or like the 2 -braid σ_{1}^{-1}. A smoothing of \mathcal{D} at x replaces this 2-braid with a trivial 2-braid and keeps the rest of \mathcal{D} untouched; see Figure 2.8. Smoothing \mathcal{D} at all crossings, we obtain a closed oriented 1-dimensional submanifold of \mathbf{R}^{2}. It consists of a finite number of disjoint oriented (topological) circles called the Seifert circles of \mathcal{D}. The number of Seifert circles of \mathcal{D} is denoted by $n(\mathcal{D})$. Two Seifert circles of \mathcal{D} are compatible (resp. incompatible) if they are compatible (resp. incompatible) in $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$. The number of pairs of incompatible Seifert circles of \mathcal{D} is denoted by $h(\mathcal{D})$ and is called the height of \mathcal{D}. Clearly, $0 \leq h(\mathcal{D}) \leq n(n-1) / 2$, where $n=n(\mathcal{D})$. Both numbers $n(\mathcal{D})$ and $h(\mathcal{D})$ are isotopy invariants of \mathcal{D}.

An oriented link diagram \mathcal{D} in \mathbf{R}^{2} is a closed braid diagram on n strands if it lies in an annulus $S^{1} \times I \in \mathbf{R}^{2}$ and is a closed braid diagram in this annulus in the sense of Section 2.2.5. It is understood that all strands of \mathcal{D} are oriented counterclockwise.

Fig. 2.8. Smoothing of a crossing

Examples of such \mathcal{D} are obtained from braid diagrams on n strands by connecting the bottom and top endpoints by n disjoint arcs in \mathbf{R}^{2} as in Figure 2.5 , with orientation of the strands induced by the orientation on the braid from the top to the bottom. Smoothing a closed braid diagram \mathcal{D} on n strands at all crossings, we obtain a closed braid diagram on n strands without crossings. Such a diagram consists of n disjoint concentric circles in \mathbf{R}^{2} with counterclockwise orientation. Thus, $n(\mathcal{D})=n$ and $h(\mathcal{D})=0$.

2.4.2 Bending and tightening of link diagrams

Consider an oriented link diagram \mathcal{D} in \mathbf{R}^{2}. Let

$$
|\mathcal{D}| \subset \mathbf{R}^{2}
$$

be the union of the components of \mathcal{D} with the over/undercrossing data forgotten. This is a 4 -valent graph in \mathbf{R}^{2} whose vertices are the crossings of \mathcal{D}. By an edge of \mathcal{D}, we mean a connected component of the complement of the set of crossings in $|\mathcal{D}|$. Edges of \mathcal{D} are embedded arcs or circles in \mathbf{R}^{2} (the circles arise from the components of \mathcal{D} having no crossings). By a face of \mathcal{D}, we mean a connected component of $\mathbf{R}^{2}-|\mathcal{D}|$. We say that a face f of \mathcal{D} is adjacent to an edge a of \mathcal{D} if a is contained in the closure of f. We say that f is adjacent to a Seifert circle S of \mathcal{D} if f is adjacent to at least one edge of \mathcal{D} contained in S. A face f of \mathcal{D} is a defect face if f is adjacent to distinct edges a_{1}, a_{2} of \mathcal{D} such that the Seifert circles S_{1}, S_{2} of \mathcal{D} going along a_{1}, a_{2} are distinct and incompatible. An oriented embedded arc $c \subset \mathbf{R}^{2}$ leading from a point of a_{1} to a point of a_{2} and lying (except the endpoints) in f is called a reduction arc of \mathcal{D} in f. The incompatibility of S_{1}, S_{2} may be reformulated by saying that one of the edges a_{1}, a_{2} crosses c from right to left and the other one crosses c from left to right. Given such a_{1}, a_{2}, c, we can apply to \mathcal{D} the second Reidemeister move pushing a subarc of a_{1} along c and then sliding it over a_{2}; see Figure 2.9. We call this move a bending of \mathcal{D} along c involving the (incompatible) Seifert circles S_{1}, S_{2}. This move produces a diagram of an isotopic link. The inverse move is called a tightening.

For example, consider the diagram \mathcal{D} of a trivial knot in \mathbf{R}^{3} shown on the left of Figure 2.10. The underlying graph $|\mathcal{D}|$ has two vertices and four edges. Smoothing \mathcal{D} at both crossings, we obtain three Seifert circles. All three are oriented counterclockwise and one of them encloses the other two.

Fig. 2.9. Bending along an arc c

The two smaller circles are incompatible with each other and compatible with the bigger circle. Thus, $n(\mathcal{D})=3$ and $h(\mathcal{D})=1$. The diagram \mathcal{D} has one defect face. A reduction arc in this face is represented by the dotted arrow on the left-hand side of Figure 2.10. Bending \mathcal{D} along this arc, we obtain the diagram on the right-hand side of Figure 2.10. This diagram is a closed braid diagram in the annulus bounded by the dotted circles. (This diagram is isotopic to the closure of $\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1}$.) As we shall see below, this example is typical in the sense that any oriented link diagram can be transformed by a sequence of bendings and isotopies into a closed braid diagram.

Fig. 2.10. Example of a bending

The following three lemmas give a key to the transformation of link diagrams into closed braid diagrams.

Lemma 2.4. If \mathcal{D}^{\prime} is obtained from an oriented link diagram \mathcal{D} in \mathbf{R}^{2} by a bending, then $n\left(\mathcal{D}^{\prime}\right)=n(\mathcal{D})$ and $h\left(\mathcal{D}^{\prime}\right)=h(\mathcal{D})-1$.

Proof. Let S_{1}, S_{2} be the incompatible (distinct) Seifert circles of \mathcal{D} involved in the bending; see Figure 2.11. The small biangle created by the bending gives rise to a Seifert circle of \mathcal{D}^{\prime}, denoted by S_{0}. The remaining parts of S_{1}, S_{2} give rise to a Seifert circle of \mathcal{D}^{\prime}, denoted by S_{∞}. All other Seifert circles of \mathcal{D} survive in \mathcal{D}^{\prime} without changes. Therefore $n\left(\mathcal{D}^{\prime}\right)=n(\mathcal{D})$. Note that the Seifert circles of \mathcal{D} and \mathcal{D}^{\prime} do not pass through the shaded areas in Figure 2.11.

We now compare the heights $h(\mathcal{D})$ and $h\left(\mathcal{D}^{\prime}\right)$. Observe first that the Seifert circles S_{1}, S_{2} bound respective disjoint disks D_{1}, D_{2} in $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$.

Fig. 2.11. Seifert circles before and after bending

For $i=1,2$, let d_{i} denote the number of Seifert circles of \mathcal{D} lying in the open disk $D_{i}^{\circ}=D_{i}-\partial D_{i}$. Let d be the number of Seifert circles of \mathcal{D} lying in the annulus $S^{2}-\left(D_{1} \cup D_{2}\right)$ and incompatible with S_{1}. Finally, let h be the number of pairs of incompatible Seifert circles of \mathcal{D} both distinct from S_{1}, S_{2}. We claim that

$$
h(\mathcal{D})=h+d_{1}+d_{2}+2 d+1
$$

It suffices to verify that the number of pairs of incompatible Seifert circles of \mathcal{D} including S_{1} or S_{2} or both is equal to $d_{1}+d_{2}+2 d+1$. For $i=1,2$, an oriented circle in D_{i}° is incompatible with S_{1} or S_{2}, but not with both. This gives the contribution $d_{1}+d_{2}$. An oriented circle in $S^{2}-\left(D_{1} \cup D_{2}\right)$ is incompatible with S_{1} if and only if it is incompatible with S_{2}. This contributes $2 d$. Finally, S_{1} and S_{2} are incompatible, which contributes 1.

We claim that

$$
h\left(\mathcal{D}^{\prime}\right)=h+d_{1}+d_{2}+2 d=h(\mathcal{D})-1 .
$$

It suffices to verify that the number of pairs of incompatible Seifert circles of \mathcal{D}^{\prime} including S_{0} or S_{∞} or both is equal to $d_{1}+d_{2}+2 d$. For $i=1,2$, an oriented circle in D_{i}° is always incompatible with S_{0} or S_{∞}, but not with both. This contributes $d_{1}+d_{2}$. An oriented circle in $S^{2}-\left(D_{1} \cup D_{2}\right)$ is incompatible with S_{0} if and only if it is incompatible with S_{∞} and if and only if it is incompatible with S_{1}. This contributes $2 d$. Finally, S_{0} and S_{∞} are compatible. Hence $h\left(\mathcal{D}^{\prime}\right)=h(\mathcal{D})-1$.

Lemma 2.5. An oriented link diagram \mathcal{D} in \mathbf{R}^{2} has a defect face if and only if $h(\mathcal{D}) \neq 0$.

Proof. Cutting S^{2} open along the Seifert circles of \mathcal{D}, we obtain a compact surface Σ with boundary. For a crossing x of \mathcal{D}, denote by γ_{x} a line segment near x joining the Seifert circles as in Figure 2.12. These segments are all disjoint and each of them lies in a component of Σ.

If \mathcal{D} has a defect face, then clearly $h(\mathcal{D})>0$. We prove the converse: if $h(\mathcal{D})>0$, then \mathcal{D} has a defect face. We first prove that there are a component F of Σ and two Seifert circles in ∂F whose orientation is induced by an orientation on F. Pick two incompatible Seifert circles S_{1}, S_{2} of \mathcal{D} and consider an oriented embedded arc $c \subset \mathbf{R}^{2}$ leading from a point of S_{1} to a point of S_{2}. We can assume that c meets each Seifert circle of \mathcal{D} transversely in at

Fig. 2.12. The segment γ_{x}
most one point. The crossings of c with these circles form a finite subset of c including the endpoints. At each of the crossings, the corresponding Seifert circle is directed to the left or to the right of c. The incompatibility of S_{1}, S_{2} means that their directions at the endpoints of c are opposite: one of these circles is directed to the left of c and the other one is directed to the right of c. Therefore, among the crossings of c with the Seifert circles of \mathcal{D}, there are two that lie consecutively on c and at which the directions of the corresponding Seifert circles are opposite. The component F of Σ containing the subarc of c between two such crossings satisfies the requirements above. Warning: this subarc may meet certain segments γ_{x}; then it does not lie in a face of \mathcal{D}.

Consider in more detail a component F of Σ such that there are at least two Seifert circles in ∂F whose orientation is induced by an orientation on F. Fix such an orientation on F. Let us call a Seifert circle in ∂F positive if its orientation is induced by the one on F and negative otherwise. By assumption, there are at least two positive Seifert circles in ∂F. If F contains no segments γ_{x}, then $F^{\circ}=F-\partial F$ is a face of \mathcal{D} adjacent to ≥ 2 positive Seifert circles in ∂F. Hence this face is a defect face. Suppose that F contains certain segments γ_{x}. Removing them all from F, we obtain a subsurface $F^{\prime} \subset F$. It is clear that any component f of F^{\prime} is adjacent to at least one segment γ_{x} and the interior of f is a face of \mathcal{D}. Each $\gamma_{x} \subset F$ connects a positive Seifert circle in ∂F with a negative one. Therefore f is adjacent to at least one positive and at least one negative Seifert circle. If f is adjacent to at least two positive or to at least two negative Seifert circles, then f is a defect face. Suppose that each component f of F^{\prime} is adjacent to exactly one positive and exactly one negative Seifert circle. Note that moving from f to a neighboring component of F^{\prime} across some $\gamma_{x} \subset F$, we meet the same Seifert circles. Since F is connected, we can move in this way from any component of F^{\prime} to any other component. Therefore ∂F contains exactly one positive and one negative Seifert circle. This contradicts our assumptions. Hence \mathcal{D} has a defect face.

Lemma 2.6. An oriented link diagram \mathcal{D} in \mathbf{R}^{2} with $h(\mathcal{D})=0$ is isotopic in the sphere $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$ to a closed braid diagram in \mathbf{R}^{2}.

Proof. Let Σ and $\left\{\gamma_{x}\right\}_{x}$ be the same objects as in the proof of the previous lemma. Suppose that $h(\mathcal{D})=0$. We must prove that \mathcal{D} is isotopic in S^{2} to a closed braid diagram in the plane $\mathbf{R}^{2}=S^{2}-\{\infty\}$. If a certain component of the surface Σ has three or more boundary components, then two of them must be incompatible in S^{2}, which contradicts our assumption $h(\mathcal{D})=0$.

A compact connected subsurface of the 2-sphere whose boundary has one or two components is a disk or an annulus. Thus, Σ consists only of disks and annuli. An induction on the number of annuli components of Σ shows that the Seifert circles of \mathcal{D} can be transformed by an isotopy of S^{2} into a union of disjoint concentric circles in \mathbf{R}^{2}. Applying this isotopy of S^{2} to \mathcal{D}, we can assume from the very beginning that the Seifert circles of \mathcal{D} are concentric circles in \mathbf{R}^{2}. The equality $h(\mathcal{D})=0$ implies that all these circles are oriented in the same direction, either clockwise or counterclockwise. In the first case we apply to \mathcal{D} an additional isotopy pushing all its Seifert circles across $\infty \in S^{2}$ so that in the final position the Seifert circles of \mathcal{D} become concentric circles in \mathbf{R}^{2} with counterclockwise orientation. With a further isotopy of \mathcal{D}, we can additionally ensure that these circles are concentric Euclidean circles and the segments γ_{x} are radial, i.e., are contained in some radii. The resulting link diagram is transversal to all radii and therefore is a closed braid diagram.

2.4.3 The algorithm

Now we can describe an algorithm transforming any diagram \mathcal{D} of an oriented link L in \mathbf{R}^{3} into a closed braid diagram of L. It suffices to perform a bending on the diagram each time there is a defect face. By Lemmas 2.4 and 2.5 , this process stops after $h(\mathcal{D})$ steps and yields a diagram \mathcal{D}^{\prime} of L with $n\left(\mathcal{D}^{\prime}\right)=n(\mathcal{D})$ and $h\left(\mathcal{D}^{\prime}\right)=0$. By Lemma 2.6, \mathcal{D}^{\prime} is isotopic in S^{2} to a closed braid diagram, \mathcal{D}_{0}, in \mathbf{R}^{2}. The latter diagram also represents L; cf. Exercise 2.1.2. Since the number of Seifert circles is an isotopy invariant, $n\left(\mathcal{D}_{0}\right)=n\left(\mathcal{D}^{\prime}\right)=n(\mathcal{D})$. Thus \mathcal{D}_{0} is a closed braid diagram on $n=n(\mathcal{D})$ strands. If \mathcal{D} has k crossings, then \mathcal{D}_{0} has $k+2 h(\mathcal{D})$ crossings. The corresponding braid is represented by a word of length $k+2 h(\mathcal{D}) \leq k+n(n-1)$ in the generators $\sigma_{1}^{ \pm 1}, \ldots, \sigma_{n-1}^{ \pm 1} \in B_{n}$.

Note the following corollary of this algorithm.
Corollary 2.7. If an oriented link in \mathbf{R}^{3} is presented by a diagram with n Seifert circles, then it is isotopic to a closed n-braid.

The converse to this corollary is also true, since as we know, a closed braid diagram on n strands has n Seifert circles.

Exercise 2.4.1. Show that smoothing of a crossing (or of any number of crossings) on an oriented link diagram does not increase the number of defect faces.

Solution. Let \mathcal{D} be an oriented link diagram and let \mathcal{D}_{x} be the oriented link diagram obtained from \mathcal{D} by smoothing at a crossing x. Observe that \mathcal{D} and \mathcal{D}_{x} have the same Seifert circles. Denote by γ_{x} the line segment near x joining Seifert circles as in Figure 2.12. Let f be the face of \mathcal{D}_{x} containing γ_{x}. If $f-\gamma_{x}$ is connected, then \mathcal{D} and \mathcal{D}_{x} have the same faces. Then they have an equal number of defect faces. Suppose that γ_{x} splits f into two connected pieces f_{1}, f_{2}, which are then faces of \mathcal{D}. It suffices to prove that if f_{1}, f_{2} are
not defect faces of \mathcal{D}, then f is not a defect face of \mathcal{D}_{x}. Since f_{1} (resp. f_{2}) is not a defect face, it is adjacent to at most two Seifert circles. Since $\gamma_{x} \subset f$ joins Seifert circles of different signs (with respect to any orientation of f), these circles are distinct and compatible. Therefore f_{1} and f_{2} are adjacent to the same pair of distinct compatible Seifert circles. The face f is adjacent to the same circles. Therefore f is not a defect face.

2.5 Markov's theorem

We state a fundamental theorem that allows us to describe all braids with isotopic closures in \mathbf{R}^{3}. This theorem, due to A. Markov, is based on so-called Markov moves on braids.

2.5.1 Markov moves

The presentation of an oriented link in \mathbf{R}^{3} as a closed braid is far from being unique. As we know, if two braids $\beta, \beta^{\prime} \in B_{n}$ are conjugate (we record it as $\beta \sim_{c} \beta^{\prime}$), then their closures $\widehat{\beta}, \widehat{\beta}^{\prime}$ are isotopic in the solid torus and a fortiori in \mathbf{R}^{3}. In general, the converse is not true. For instance, the closures of the 2 -string braids $\sigma_{1}, \sigma_{1}^{-1}$ are trivial knots although these braids are not conjugate in $B_{2} \cong \mathbf{Z}$. There is another simple construction of braids with isotopic closures. For $\beta \in B_{n}$, consider the braids $\sigma_{n} \iota(\beta)$ and $\sigma_{n}^{-1} \iota(\beta)$, where ι is the natural embedding $B_{n} \hookrightarrow B_{n+1}$. Drawing pictures, one easily observes that the closures of $\sigma_{n} \iota(\beta)$ and $\sigma_{n}^{-1} \iota(\beta)$ are isotopic to $\widehat{\beta}$ in \mathbf{R}^{3}.

For $\beta, \gamma \in B_{n}$, the transformation $\beta \mapsto \gamma \beta \gamma^{-1}$ is called the first Markov move and is denoted by M_{1}. The transformation $\beta \mapsto \sigma_{n}^{\varepsilon} \iota(\beta)$ with $\varepsilon= \pm 1$ is called the second Markov move and is denoted by M_{2}. Note that the inverse to an M_{1}-move is again an M_{1}-move. We shall say that two braids β, β^{\prime} (possibly with different numbers of strings) are M -equivalent if they can be related by a finite sequence of moves $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{2}^{-1}$, where M_{2}^{-1} is the inverse of an M_{2}-move. We record it as $\beta \sim \beta^{\prime}$. It is clear that the M-equivalence \sim is an equivalence relation on the disjoint union $\amalg_{n \geq 1} B_{n}$ of all braid groups. For example, the braids $\sigma_{1}, \sigma_{1}^{-1} \in B_{2}$ are M -equivalent. Indeed, using the equalities $\sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1}=\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1}$ and $\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}=\sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1}$, we obtain

$$
\begin{aligned}
\sigma_{1} & \sim \sigma_{2}^{-1} \sigma_{1} \sim_{c}\left(\sigma_{1} \sigma_{2}\right)^{-1}\left(\sigma_{2}^{-1} \sigma_{1}\right)\left(\sigma_{1} \sigma_{2}\right) \\
& =\sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2}=\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{1}^{2} \sigma_{2} \\
& =\sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{2} \\
& =\sigma_{2} \sigma_{1}^{-1} \sim \sigma_{1}^{-1}
\end{aligned}
$$

As we saw, the closures of M-equivalent braids are isotopic as oriented links in \mathbf{R}^{3}. The following deep theorem asserts that conversely, any two braids with isotopic closures are M-equivalent.

Theorem 2.8 (A. Markov). Two braids (possibly with different numbers of strings) have isotopic closures in Euclidean space \mathbf{R}^{3} if and only if these braids are M-equivalent.

The following fundamental corollary yields a description of the set of isotopy classes of oriented links in \mathbf{R}^{3} in terms of braids.

Corollary 2.9. Let \mathcal{L} be the set of all isotopy classes of nonempty oriented links in \mathbf{R}^{3}. The mapping $\amalg_{n \geq 1} B_{n} \rightarrow \mathcal{L}$ assigning to a braid the isotopy class of its closure induces a bijection from the quotient set $\left(\amalg_{n \geq 1} B_{n}\right) / \sim$ onto \mathcal{L}.

Here the surjectivity follows from Alexander's theorem, while the injectivity follows from Markov's theorem.

The proof of Theorem 2.8 starts in Section 2.5.3 and occupies the rest of the chapter.

2.5.2 Markov functions

Corollary 2.9 allows one to identify isotopy invariants of oriented links in \mathbf{R}^{3} with functions on $\amalg_{n \geq 1} B_{n}$ constant on the M-equivalence classes. This leads us to the following definition.

Definition 2.10. A Markov function with values in a set E is a sequence of set-theoretic maps $\left\{f_{n}: B_{n} \rightarrow E\right\}_{n \geq 1}$, satisfying the following conditions:
(i) for all $n \geq 1$ and all $\alpha, \beta \in B_{n}$,

$$
\begin{equation*}
f_{n}(\alpha \beta)=f_{n}(\beta \alpha) \tag{2.1}
\end{equation*}
$$

(ii) for all $n \geq 1$ and all $\beta \in B_{n}$,

$$
\begin{equation*}
f_{n}(\beta)=f_{n+1}\left(\sigma_{n} \beta\right) \quad \text { and } \quad f_{n}(\beta)=f_{n+1}\left(\sigma_{n}^{-1} \beta\right) . \tag{2.2}
\end{equation*}
$$

For example, for any $e \in E$, the constant maps $B_{n} \rightarrow E$ sending B_{n} to e for all n form a Markov function. More interesting examples of Markov functions will be given in Chapters 3 and 4 .

Any Markov function $\left\{f_{n}: B_{n} \rightarrow E\right\}_{n \geq 1}$ determines an E-valued isotopy invariant \widehat{f} of oriented links in \mathbf{R}^{3} as follows. Let L be an oriented link in \mathbf{R}^{3}. Pick a braid $\beta \in B_{n}$ whose closure is isotopic to L and set $\widehat{f}(L)=f_{n}(\beta) \in E$. Note that $\widehat{f}(L)$ does not depend on the choice of β. Indeed, if $\beta^{\prime} \in B_{n^{\prime}}$ is another braid whose closure is isotopic to L, then β and β^{\prime} are M-equivalent (Theorem 2.8). It follows directly from the definition of M-equivalence and the definition of a Markov function that $f_{n}(\beta)=f_{n^{\prime}}\left(\beta^{\prime}\right)$. The function \widehat{f} is an isotopy invariant of oriented links: if L, L^{\prime} are isotopic oriented links in \mathbf{R}^{3} and $\beta \in B_{n}$ is a braid whose closure is isotopic to L, then the closure of β is also isotopic to L^{\prime} and $\widehat{f}(L)=f_{n}(\beta)=\widehat{f}\left(L^{\prime}\right)$.

2.5.3 A pivotal lemma

We formulate an important lemma needed in the proof of Theorem 2.8. We begin with some notation. Given two braids $\alpha \in B_{m}$ and $\beta \in B_{n}$, we form their tensor product $\alpha \otimes \beta \in B_{m+n}$ by placing β to the right of α without any mutual intersection or linking; see Figure 2.13. Here the vertical lines represent bunches of parallel strands with the number of strands indicated near the line.

A diagram of $\alpha \otimes \beta$ is obtained by placing a diagram of β to the right of a diagram of α without mutual crossings. For example, $1_{m} \otimes 1_{n}=1_{m+n}$, where 1_{m} is the trivial braid on m strands. Clearly,

$$
\alpha \otimes \beta=\left(\alpha \otimes 1_{n}\right)\left(1_{m} \otimes \beta\right)=\left(1_{m} \otimes \beta\right)\left(\alpha \otimes 1_{n}\right)
$$

Note also that

$$
(\alpha \otimes \beta) \otimes \gamma=\alpha \otimes(\beta \otimes \gamma)
$$

for any braids α, β, γ. This allows us to suppress the parentheses and to write simply $\alpha \otimes \beta \otimes \gamma$.

Fig. 2.13. The tensor product of braids

For a $\operatorname{sign} \varepsilon= \pm$ and any integers $m, n \geq 0$ with $m+n \geq 1$, we define a braid $\sigma_{m, n}^{\varepsilon} \in B_{m+n}$ as follows. Consider the standard diagram of $\sigma_{1} \in B_{2}$ consisting of two strands with one crossing. Replacing the overcrossing strand with m parallel strands running very closely to each other and similarly replacing the undercrossing strand with n parallel strands, we obtain a braid diagram with $m+n$ strands and $m n$ crossings. This diagram represents $\sigma_{m, n}^{+} \in B_{m+n}$. Transforming all overcrossings in the latter diagram into undercrossings, we obtain a diagram of $\sigma_{m, n}^{-} \in B_{m+n}$. The braids $\sigma_{m, n}^{+}$ and $\sigma_{m, n}^{-}$are schematically shown in Figure 2.14. In particular,

$$
\sigma_{m, 0}^{+}=\sigma_{m, 0}^{-}=\sigma_{0, m}^{+}=\sigma_{0, m}^{-}=1_{m}
$$

for all $m \geq 1$. It is clear that $\left(\sigma_{m, n}^{\varepsilon}\right)^{-1}=\sigma_{n, m}^{-\varepsilon}$ for all m, n, and ε.
It is convenient to introduce the symbols $\sigma_{0,0}^{+}, \sigma_{0,0}^{-}$, and 1_{0}; they all represent an "empty braid on zero strings" \emptyset, which satisfies the identities $\emptyset \otimes \alpha=\alpha \otimes \emptyset=\alpha$ for any genuine braid α.

Fig. 2.14. The braids $\sigma_{m, n}^{+}, \sigma_{m, n}^{-} \in B_{m+n}$

Lemma 2.11. For any integers $m, n \geq 0, r, t \geq 1$, signs $\varepsilon, \nu= \pm$, and braids $\alpha \in B_{n+r}, \beta \in B_{n+t}, \gamma \in B_{m+t}, \delta \in B_{m+r}$, consider the braid

$$
\begin{aligned}
& \langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \nu\rangle=\left(1_{m} \otimes \alpha \otimes 1_{t}\right)\left(1_{m+n} \otimes \sigma_{t, r}^{\nu}\right)\left(1_{m} \otimes \beta \otimes 1_{r}\right)\left(\sigma_{n, m}^{-\varepsilon} \otimes 1_{t+r}\right) \\
& \quad \times\left(1_{n} \otimes \gamma \otimes 1_{r}\right)\left(1_{n+m} \otimes \sigma_{r, t}^{-\nu}\right)\left(1_{n} \otimes \delta \otimes 1_{t}\right)\left(\sigma_{m, n}^{\varepsilon} \otimes 1_{r+t}\right) \in B_{m+n+r+t} .
\end{aligned}
$$

Then the M-equivalence class of $\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \nu\rangle$ does not depend on ε, ν, and

$$
\begin{equation*}
\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \nu\rangle \sim\langle\delta, \gamma, \beta, \alpha \mid \varepsilon, \nu\rangle . \tag{2.3}
\end{equation*}
$$

The reader is encouraged to draw the braid $\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \nu\rangle$ for $\varepsilon=\nu=+$. We shall draw the closure of this braid using the following conventions. Let us think of braid diagrams as lying in a square $I \times I \subset \mathbf{R} \times I$ with inputs on the top side $I \times\{0\}$ and outputs on the bottom side $I \times\{1\}$. The standard orientation on the strands of a braid diagram runs from the inputs to the outputs. We can rotate the square $I \times I$ around its center by the angle $\pi / 2$. Rotating $I \times I$ by the angle $\pi / 2$ counterclockwise (resp. clockwise), we transform any picture a in $I \times I$ into a picture in $I \times I$ denoted by a_{+}(resp. a_{-}). If a is a braid diagram, then the inputs and outputs of a_{+}, a_{-}lie on the vertical sides of the square. Note also that $a_{++}=a_{--}$, where $a_{++}=\left(a_{+}\right)_{+}$and $a_{--}=\left(a_{-}\right)_{-}$.

Pick certain diagrams of the braids $\alpha, \beta, \gamma, \delta$, which we denote by the same letters $\alpha, \beta, \gamma, \delta$, respectively. A little contemplation should persuade the reader that Figure 2.15 represents the closure of the braid $\langle\alpha, \beta, \gamma, \delta \mid+,+\rangle$.

Fig. 2.15. The closure of $\langle\alpha, \beta, \gamma, \delta \mid+,+\rangle$

The rest of the proof of Theorem 2.8 goes as follows. In Section 2.6 we deduce this theorem from Lemma 2.11. In Section 2.7 we prove Lemma 2.11. These two sections use different techniques and can be read in any order.

Exercise 2.5.1. Verify that the braids $\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \nu\rangle$ and $\langle\alpha, \beta, \gamma, \delta \mid-\varepsilon,-\nu\rangle$ have isotopic closures. Verify that

$$
\begin{equation*}
\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \nu\rangle \sim_{c}\langle\gamma, \delta, \alpha, \beta \mid-\varepsilon,-\nu\rangle . \tag{2.4}
\end{equation*}
$$

(Hint: Rotate the closed braid in Figure 2.15 through 180°.)
Exercise 2.5.2. Verify (2.3) for $m=n=0$.

2.6 Deduction of Markov's theorem from Lemma 2.11

We begin by introducing an additional Markov move.

2.6.1 The move M_{3}

By definition, the second Markov move M_{2} transforms a braid $\beta \in B_{n}$ into $\sigma_{n}^{\varepsilon}\left(\beta \otimes 1_{1}\right)$ with $\varepsilon= \pm 1$. We define another move M_{3} on braids transforming $\beta \in B_{n}$ into $\sigma_{1}^{\varepsilon}\left(1_{1} \otimes \beta\right) \in B_{n+1}$. One can check directly that M_{3} preserves the isotopy class of the closure.

Lemma 2.12. The move M_{3} expands as a composition of the moves $\mathrm{M}_{1}, \mathrm{M}_{2}$.
Proof. Recall the braid $\Delta_{n} \in B_{n}$ defined in Section 1.3.3. By formula (1.8),

$$
\begin{equation*}
\Delta_{n} \sigma_{i} \Delta_{n}^{-1}=\sigma_{n-i} \in B_{n} \tag{2.5}
\end{equation*}
$$

for all $n \geq 1$ and all $i=1, \ldots, n-1$. In particular, $\Delta_{n+1} \sigma_{1} \Delta_{n+1}^{-1}=\sigma_{n} \in B_{n+1}$. Taking the inverses in B_{n+1}, we obtain

$$
\begin{equation*}
\Delta_{n+1} \sigma_{1}^{\varepsilon} \Delta_{n+1}^{-1}=\sigma_{n}^{\varepsilon} \tag{2.6}
\end{equation*}
$$

for $\varepsilon= \pm 1$. We check now that for any $\beta \in B_{n}$,

$$
\begin{equation*}
\Delta_{n+1}\left(1_{1} \otimes \beta\right) \Delta_{n+1}^{-1}=\Delta_{n} \beta \Delta_{n}^{-1} \otimes 1_{1} \tag{2.7}
\end{equation*}
$$

Both sides of (2.7) are multiplicative with respect to β, so that it suffices to verify (2.7) for $\beta=\sigma_{i} \in B_{n}$, where $i=1, \ldots, n-1$. We have

$$
1_{1} \otimes \sigma_{i}=\sigma_{i+1} \in B_{n+1}
$$

and

$$
\Delta_{n+1}\left(1_{1} \otimes \sigma_{i}\right) \Delta_{n+1}^{-1}=\Delta_{n+1} \sigma_{i+1} \Delta_{n+1}^{-1}=\sigma_{(n+1)-(i+1)}=\sigma_{n-i} \in B_{n+1}
$$

At the same time, $\Delta_{n} \sigma_{i} \Delta_{n}^{-1}=\sigma_{n-i} \in B_{n}$ and

$$
\Delta_{n} \sigma_{i} \Delta_{n}^{-1} \otimes 1_{1}=\sigma_{n-i} \in B_{n+1}
$$

This proves (2.7). Multiplying (2.6) and (2.7), we obtain

$$
\Delta_{n+1} \sigma_{1}^{\varepsilon}\left(1_{1} \otimes \beta\right) \Delta_{n+1}^{-1}=\sigma_{n}^{\varepsilon}\left(\Delta_{n} \beta \Delta_{n}^{-1} \otimes 1_{1}\right)
$$

or, equivalently,

$$
\sigma_{1}^{\varepsilon}\left(1_{1} \otimes \beta\right)=\Delta_{n+1}^{-1} \sigma_{n}^{\varepsilon}\left(\Delta_{n} \beta \Delta_{n}^{-1} \otimes 1_{1}\right) \Delta_{n+1}
$$

Hence M_{3} is a composition of the conjugation by Δ_{n} with M_{2} and with the conjugation by Δ_{n+1}^{-1}.

This lemma implies that the moves $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$ generate the same equivalence relation \sim on the set $\amalg_{n \geq 1} B_{n}$ as $\mathrm{M}_{1}, \mathrm{M}_{2}$.

2.6.2 Reduction of Theorem 2.8 to Claim 2.15

We now reformulate Theorem 2.8 in terms of closed braids in the solid torus $V \subset \mathbf{R}^{3}$. Let $\widehat{\mathrm{M}}_{2}$ be the transformation of closed braids in V replacing the closure of a braid β on n strings with the closure of $\sigma_{n}^{\varepsilon}\left(\beta \otimes 1_{1}\right)$, where $\varepsilon= \pm 1$. Let $\widehat{\mathrm{M}}_{3}$ be the transformation of closed braids in V replacing the closure of a braid β on n strings with the closure of $\sigma_{1}^{\varepsilon}\left(1_{1} \otimes \beta\right)$, where $\varepsilon= \pm 1$. The moves inverse to $\widehat{\mathrm{M}}_{2}, \widehat{\mathrm{M}}_{3}$ are denoted by $\widehat{\mathrm{M}}_{2}^{-1}, \widehat{\mathrm{M}}_{3}^{-1}$, respectively. By Theorem 2.1, to prove Theorem 2.8 it suffices to prove the following assertion.

Claim 2.13. Two closed braids in V representing isotopic oriented links in \mathbf{R}^{3} can be related by a sequence of moves $\widehat{\mathrm{M}}_{2}^{ \pm 1}, \widehat{\mathrm{M}}_{3}^{ \pm 1}$ and isotopies in V.

Here and below all sequences of moves are finite. In Claim 2.13, by isotopy in V we mean a move replacing a closed braid in V with a closed braid in V isotopic to the first one in the class of oriented links in V.

We can reformulate Claim 2.13 in terms of closed braid diagrams in the annulus, as defined in Section 2.2.5. Let $\widetilde{\mathrm{M}}_{2}$ (resp. $\widetilde{\mathrm{M}}_{3}$) be the transformation of closed braid diagrams replacing the closure of a braid diagram β on n strands with the closure of $\sigma_{n}^{\varepsilon}\left(\beta \otimes 1_{1}\right)$ (resp. of $\sigma_{1}^{\varepsilon}\left(1_{1} \otimes \beta\right)$), where $\varepsilon= \pm 1$. The moves $\widetilde{\mathrm{M}}_{2}, \widetilde{\mathrm{M}}_{3}$ are just the moves $\widehat{\mathrm{M}}_{2}, \widehat{\mathrm{M}}_{3}$ restated in terms of diagrams. The moves on closed braid diagrams inverse to $\widetilde{\mathrm{M}}_{2}, \widetilde{\mathrm{M}}_{3}$ are denoted by $\widetilde{\mathrm{M}}_{2}^{-1}, \widetilde{\mathrm{M}}_{3}^{-1}$, respectively. Recall the braidlike Reidemeister moves Ω_{2}^{br}, Ω_{3}^{br}; see Sections 2.1.3 and 2.2 .5 . To prove Claim 2.13 it suffices to prove the following.

Claim 2.14. Two closed braid diagrams in an annulus $A \subset \mathbf{R}^{2}$ representing isotopic oriented links in \mathbf{R}^{3} can be related by a sequence of moves $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1}$, $\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}, \widetilde{\mathrm{M}}_{2}^{ \pm 1}, \widetilde{\mathrm{M}}_{3}^{ \pm 1}$ and isotopies in the class of oriented link diagrams in A.

The isotopies here should begin and end with closed braid diagrams in A (with their canonical orientation), but the intermediate oriented link diagrams in A are not required to be closed braid diagrams.

We shall now reduce Claim 2.14 to another claim formulated in terms of so-called 0-diagrams. We use the notation and the terminology introduced in Section 2.4. A 0-diagram is an oriented link diagram \mathcal{D} in \mathbf{R}^{2} such that $h(\mathcal{D})=0$ and all the Seifert circles of \mathcal{D} are oriented counterclockwise. These conditions imply that the Seifert circles of \mathcal{D} form a system of concentric circles in \mathbf{R}^{2}. These circles can be numbered by $1,2, \ldots, n(\mathcal{D})$ counting from the smallest (innermost) circle toward the biggest (outermost) one. Note that the braidlike moves $\Omega_{2}^{\mathrm{br}}, \Omega_{3}^{\mathrm{br}}$ transform 0-diagrams into 0-diagrams. The move Ω_{1} adding a kink on the left or on the right of a 0 -diagram, generally speaking, does not yield a 0-diagram. (Here the left side and the right side of a diagram are determined by its orientation and the counterclockwise orientation in \mathbf{R}^{2}.) However, for any 0 -diagram \mathcal{D}, the Ω_{1}-move adding a left kink at a point of \mathcal{D} lying on the innermost Seifert circle yields a 0 -diagram \mathcal{D}^{\prime}. The kink becomes the innermost Seifert circle of \mathcal{D}^{\prime}. Such a transformation $\mathcal{D} \mapsto \mathcal{D}^{\prime}$ is denoted by $\Omega_{1}^{\text {int }}$. Similarly, adding a right kink at a point of \mathcal{D} lying on its outermost Seifert circle and then pushing the kink across the point $\infty \in S^{2}$ so that it encircles this point, we obtain again a 0-diagram $\mathcal{D}^{\prime \prime}$ in \mathbf{R}^{2}. The kink becomes the outermost Seifert circle of this diagram. Such a transformation $\mathcal{D} \mapsto \mathcal{D}^{\prime \prime}$ is denoted by $\Omega_{1}^{\text {ext }}$. In the sequel, by Ω-moves on 0 -diagrams we mean the transformations $\Omega_{2}^{\mathrm{br}}, \Omega_{3}^{\mathrm{br}}, \Omega_{1}^{\mathrm{int}}, \Omega_{1}^{\mathrm{ext}}$, the inverse transformations, and isotopies in \mathbf{R}^{2}.

Claim 2.15. Two 0-diagrams in \mathbf{R}^{2} representing isotopic oriented links in \mathbf{R}^{3} can be related by a sequence of Ω-moves.

This claim implies Claim 2.14. To see this, note first that closed braid diagrams in an annulus $A \subset \mathbf{R}^{2}$ are 0-diagrams and for them, $\Omega_{1}^{\text {int }}=\widetilde{\mathrm{M}}_{2}$ and $\Omega_{1}^{\text {ext }}=\widetilde{\mathrm{M}}_{3}$. Consider now two closed braid diagrams \mathcal{C}, \mathcal{D} in A representing isotopic oriented links in \mathbf{R}^{3}. By Claim 2.15, there is a sequence of 0-diagrams $\mathcal{C}=\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}=\mathcal{D}$ in \mathbf{R}^{2} such that each \mathcal{C}_{i+1} is obtained from \mathcal{C}_{i} by an Ω-move. The construction in the proof of Lemma 2.6 shows that each \mathcal{C}_{i} is isotopic to a closed braid diagram \mathcal{B}_{i} in A. It is clear that if \mathcal{C}_{i+1} is obtained from \mathcal{C}_{i} by $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{1}^{\mathrm{int}}\right)^{ \pm 1},\left(\Omega_{1}^{\mathrm{ext}}\right)^{ \pm 1}$, then \mathcal{B}_{i+1} is obtained from \mathcal{B}_{i} by $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}, \widetilde{\mathrm{M}}_{3}^{ \pm 1}, \widetilde{\mathrm{M}}_{2}^{ \pm 1}$, respectively. A little thinking shows that if \mathcal{C}_{i+1} is obtained from \mathcal{C}_{i} by an isotopy in \mathbf{R}^{2}, then \mathcal{B}_{i+1} is obtained from \mathcal{B}_{i} by an isotopy in A. This yields Claim 2.14.

2.6.3 Reduction to Lemma 2.17

Recall the isotopies, bendings, and tightenings of link diagrams as defined in Sections 2.1.2 and 2.4.2. The proof of Claim 2.15 begins with the following lemma.

Lemma 2.16. Let \mathcal{E}, \mathcal{E}^{\prime} be 0 -diagrams in \mathbf{R}^{2} representing isotopic oriented links in \mathbf{R}^{3}. Then there is a sequence of 0 -diagrams $\mathcal{E}=\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{m}=\mathcal{E}^{\prime}$ such that for all $i=1,2, \ldots, m-1$, the diagram \mathcal{E}_{i+1} is obtained from \mathcal{E}_{i} by an Ω-move or by a sequence of bendings, tightenings, and isotopies in the sphere $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$.

Proof. Since $\mathcal{E}, \mathcal{E}^{\prime}$ represent isotopic links, they can be related by a sequence of the following oriented Reidemeister moves: (a) $\Omega_{1}^{ \pm 1}$, (b) $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}$, isotopies in \mathbf{R}^{2}, (c) nonbraidlike moves $\Omega_{2}^{ \pm 1}$. Note that the intermediate diagrams created by these moves may have positive height. We will transform this sequence of moves into another one consisting only of bendings, tightenings, isotopies in S^{2}, and Ω-moves on 0-diagrams.

Recall from Section 2.4.2 that a nonbraidlike move Ω_{2} involving two distinct Seifert circles is a bending. A nonbraidlike move Ω_{2} involving only one Seifert circle can be obtained as a composition of two Ω_{1}, a bending, and a tightening; see Figure 2.16. Therefore we can assume that in our sequence of moves, all moves of type (c) are bendings and tightenings.

Fig. 2.16. An expansion of Ω_{2}

Let g be a transformation of type (b) in our sequence applied to a link diagram \mathcal{D} with $h(\mathcal{D})>0$. Note that g preserves the set of Seifert circles of the diagram and therefore preserves its height. Since $h(\mathcal{D})>0$, the diagram \mathcal{D} has a defect face. We can choose a reduction arc in this face disjoint from the disk where g changes \mathcal{D}. Let r be the corresponding bending of \mathcal{D}. Clearly, the transformations r and g on \mathcal{D} commute. We replace the transformation $\mathcal{D} \mapsto g(\mathcal{D})$ in our sequence with the sequence

$$
\mathcal{D} \xrightarrow{r} r(\mathcal{D}) \xrightarrow{g} g r(\mathcal{D}) \xrightarrow{r^{-1}} r^{-1} g r(\mathcal{D})=g(\mathcal{D}) .
$$

The operation g is now performed at a lower height. Gradually we can go all the way down to height zero. Thus we can replace g with a sequence of
bendings, tightenings, and a single move of type (b), say g^{\prime}, on a diagram, \mathcal{D}^{\prime}, of height 0 . If the Seifert circles of \mathcal{D}^{\prime} are oriented counterclockwise, then \mathcal{D}^{\prime} is a 0 -diagram and g^{\prime} is an Ω-move. If the Seifert circles of \mathcal{D}^{\prime} are oriented clockwise, then we expand g^{\prime} as a composition of an isotopy of S^{2} transforming \mathcal{D}^{\prime} into a 0 -diagram (cf. the proof of Lemma 2.6), an Ω-move on the latter diagram, and the inverse isotopy.

Let $g=\Omega_{1}$ be an operation of type (a) in our sequence applied to a link diagram \mathcal{D} in \mathbf{R}^{2}. Inserting bendings and tightenings as above, we can assume that $h(\mathcal{D})=0$. Conjugating if necessary g by an isotopy of S^{2}, we can assume that the Seifert circles of \mathcal{D} are oriented counterclockwise, i.e., that \mathcal{D} is a 0 -diagram in \mathbf{R}^{2}. Suppose that the kink added by g to a branch a of \mathcal{D} lies to its left. If a lies on the first (innermost) Seifert circle of \mathcal{D}, then $g=\Omega_{1}^{\text {int }}$. If a lies on the m th Seifert circle of \mathcal{D} with $m \geq 2$, then we apply $m-1$ moves Ω_{2}^{br} to push a under $m-1$ smaller Seifert circles of \mathcal{D} inside the disk bounded by the innermost Seifert circle. Then we apply $\Omega_{1}^{\text {int }}$ on a and push the resulting kink back under the first $m-1$ Seifert circles to the place where the original move $g=\Omega_{1}$ must have been applied. This pushing should be performed carefully: one first pushes all the $m-1$ Seifert circles in question over the crossing created by $\Omega_{1}^{\text {int. }}$. This amounts to $m-1$ moves

$$
d_{1}^{+} d_{2}^{ \pm} d_{1}^{-} \mapsto d_{2}^{-} d_{1}^{ \pm} d_{2}^{+}
$$

analyzed in the proof of Theorem 1.6. (This analysis shows that these moves are compositions of $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}$.) After that, one pushes these $m-1$ Seifert circles over the remaining part of the kink, which amounts to $m-1$ tightenings. The resulting chain of moves, schematically shown in Figure 2.17, transforms \mathcal{D} into the same diagram $g(\mathcal{D})$ as g itself. Thus, we can replace the move $\mathcal{D} \mapsto g(\mathcal{D})$ with a finite sequence of moves $\left(\Omega_{2}^{\mathrm{br}}\right)^{ \pm 1},\left(\Omega_{3}^{\mathrm{br}}\right)^{ \pm 1}, \Omega_{1}^{\mathrm{int}}$ on 0 -diagrams followed by $m-1$ tightenings. If the kink added by g lies to the right of a, then we proceed as above but push a toward the external (infinite) face of \mathcal{D} in \mathbf{R}^{2} and then apply $\Omega_{1}^{\text {ext }}$.

Lemma 2.17. Two 0-diagrams in \mathbf{R}^{2} related by a sequence of bendings, tightenings, and isotopies in S^{2} can be related by a sequence of Ω-moves.

This lemma together with the previous one implies Claim 2.15 and Theorem 2.8. The rest of the section is devoted to the proof of Lemma 2.17.

2.6.4 Proof of Lemma 2.17, part I

We consider here the simplest case of Lemma 2.17, namely the one in which the sequence relating two 0-diagrams consists solely of isotopies.

Lemma 2.18. If two 0-diagrams are isotopic in $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$, then they are isotopic in \mathbf{R}^{2}.

Fig. 2.17. An expansion of Ω_{1}

Proof. Let $\mathcal{D}, \mathcal{D}^{\prime}$ be 0-diagrams in \mathbf{R}^{2} isotopic in S^{2}. They have then the same number of Seifert circles $N \geq 1$. If $N=1$, then $\mathcal{D}, \mathcal{D}^{\prime}$ are embedded circles in \mathbf{R}^{2} oriented counterclockwise. By the Jordan curve theorem, any embedded circle in \mathbf{R}^{2} bounds a disk. This implies that such a circle is isotopic to a small metric circle in \mathbf{R}^{2}. Since any two metric circles in \mathbf{R}^{2}, endowed with counterclockwise orientation, are isotopic in \mathbf{R}^{2}, the same holds for $\mathcal{D}, \mathcal{D}^{\prime}$.

Suppose that $N \geq 2$. Since $\mathcal{D}, \mathcal{D}^{\prime}$ are isotopic in S^{2}, there is a continuous family of homeomorphisms $\left\{F_{t}: S^{2} \rightarrow S^{2}\right\}_{t \in I}$ such that $F_{0}=$ id and F_{1} transforms \mathcal{D} into \mathcal{D}^{\prime}. By continuity, all the homeomorphisms F_{t} are orientation preserving. The Seifert circles of \mathcal{D} split S^{2} into $N-1$ annuli and two disks $D_{i}=D_{i}(\mathcal{D})$ and $D_{o}=D_{o}(\mathcal{D})$ bounded by the innermost and the outermost Seifert circles of \mathcal{D}, respectively. Recall that $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$ is oriented counterclockwise and so are all Seifert circles of \mathcal{D}. It is clear that the orientation of the innermost Seifert circle ∂D_{i} is compatible with the orientation of D_{i} induced from the one on S^{2}. On the other hand, the orientation of the outermost Seifert circle ∂D_{o} is incompatible with the orientation of D_{o} induced from the one on S^{2}. This implies that $F_{1}: S^{2} \rightarrow S^{2}$ necessarily transforms $D_{i}(\mathcal{D})$ into $D_{i}\left(\mathcal{D}^{\prime}\right)$ and $D_{o}(\mathcal{D})$ into $D_{o}\left(\mathcal{D}^{\prime}\right)$ (and not the other way round).

We have $\infty \in D_{o}(\mathcal{D})$ and therefore $F_{1}(\infty) \in D_{o}\left(\mathcal{D}^{\prime}\right)$. Hence, there is a closed 2-disk B in the complement of \mathcal{D}^{\prime} in S^{2} containing the points ∞ and $F_{1}(\infty)$. Pushing $F_{1}(\infty)$ toward ∞ inside B, we obtain a continuous family of homeomorphisms $\left\{g_{t}: S^{2} \rightarrow S^{2}\right\}_{t \in I}$ such that $g_{0}=\mathrm{id}, g_{1}\left(F_{1}(\infty)\right)=\infty$, and all g_{t} are equal to the identity outside B (cf. the proof of Lemma 1.26).

Then $g_{1} F_{1}(\mathcal{D})=g_{1}\left(\mathcal{D}^{\prime}\right)=\mathcal{D}^{\prime}$ and the one-parameter family of homeomorphisms $\left\{g_{t} F_{t}: S^{2} \rightarrow S^{2}\right\}_{t \in I}$ relates $g_{0} F_{0}=$ id with $g_{1} F_{1}$. Thus, $g_{1} F_{1}$ is isotopic to the identity in the class of self-homeomorphisms of S^{2}. By Exercise $1.7 .1, g_{1} F_{1}$ is isotopic to the identity in the class of self-homeomorphisms of S^{2} keeping fixed the point ∞. Restricting all homeomorphisms in such an isotopy to $\mathbf{R}^{2}=S^{2}-\{\infty\}$, we obtain an isotopy of \mathcal{D} into \mathcal{D}^{\prime} in \mathbf{R}^{2}.

2.6.5 Proof of Lemma 2.17, part II

Consider a sequence of moves as in Lemma 2.17. By a general position argument, we can assume that the intermediate diagrams created by these moves lie in $\mathbf{R}^{2}=S^{2}-\{\infty\}$. We will denote bendings and tightenings by arrows pointing in the direction of a lower height. Thus, the notation $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$ means that the link digram \mathcal{C} is transformed into \mathcal{D} by a tightening, inverse to a bending s of \mathcal{D}, and \mathcal{D} is transformed into \mathcal{C}^{\prime} by a bending s^{\prime}. Note that $h(\mathcal{C})=h\left(\mathcal{C}^{\prime}\right)=h(\mathcal{D})-1$, so that the height function h has a local maximum at \mathcal{D}. We call such a sequence $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$ a local maximum. Our strategy will be to replace local maxima by (longer) sequences at a lower height.

For a local maximum $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$, consider the reduction arcs of s and s^{\prime}. By a general position argument, we can assume that for all local maxima in our sequence of moves, these two arcs have distinct endpoints and meet transversely in a finite number of points. This number is denoted by $s \cdot s^{\prime}$.

Lemma 2.19. For any local maximum $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$ with $s \cdot s^{\prime} \neq 0$, there is a sequence of bendings and tightenings

$$
\mathcal{C}=\mathcal{C}_{1} \stackrel{s_{1}}{\longleftrightarrow} \mathcal{D}_{1} \xrightarrow{s_{1}^{\prime}} \mathcal{C}_{2} \stackrel{s_{2}}{\longleftrightarrow} \cdots \xrightarrow{s_{m-1}^{\prime}} \mathcal{C}_{m} \stackrel{s_{m}}{\leftrightarrows} \mathcal{D}_{m} \xrightarrow{s_{m}^{\prime}} \mathcal{C}_{m+1}=\mathcal{C}^{\prime}
$$

such that $s_{i} \cdot s_{i}^{\prime}=0$ for all i.
Proof. Since the reduction arcs of link diagrams are oriented, we can speak of their left and right sides (with respect to the counterclockwise orientation in \mathbf{R}^{2}). Each reduction $\operatorname{arc} c$ of \mathcal{D} can be pushed slightly to the left or to the right, keeping the endpoints on \mathcal{D}. This gives disjoint reduction arcs giving rise to the same bending (at least up to isotopy). These arcs are denoted by c_{l}, c_{r}, respectively.

Let c, c^{\prime} be the reduction arcs of s, s^{\prime}, respectively. Let us suppose first that $s \cdot s^{\prime} \geq 2$. We prove below that there is a reduction arc $c^{\prime \prime}$ of \mathcal{D} disjoint from c^{\prime} and meeting c at fewer than $s \cdot s^{\prime}$ points. Consider the sequence

$$
\mathcal{C} \stackrel{s}{\longleftrightarrow} \mathcal{D} \xrightarrow{s^{\prime \prime}} \mathcal{C}^{\prime \prime} \stackrel{s^{\prime \prime}}{\leftrightarrows} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime},
$$

where $s^{\prime \prime}$ is the bending along $c^{\prime \prime}$. We have

$$
s \cdot s^{\prime \prime}=\left|c \cap c^{\prime \prime}\right|<s \cdot s^{\prime} \quad \text { and } \quad s^{\prime} \cdot s^{\prime \prime}=\left|c^{\prime} \cap c^{\prime \prime}\right|=0
$$

Continuing in this way we can reduce the lemma to the case $s \cdot s^{\prime}=1$. We now construct $c^{\prime \prime}$. Let A, B be distinct points of $c \cap c^{\prime}$ such that the subarc $A B \subset c$ does not meet c^{\prime}. Inverting if necessary the orientations of c, c^{\prime}, we can assume that both c and c^{\prime} are directed from A to B. Assume first that c^{\prime} crosses c at A from left to right. If c^{\prime} crosses c at B from right to left, then $c^{\prime \prime}$ is obtained by going along c_{l}^{\prime} to its intersection point with c_{l} close to A, then along c_{l} to its intersection point with c_{l}^{\prime} close to B, and then along c_{l}^{\prime}. If c^{\prime} crosses c at B from left to right, then $c^{\prime \prime}$ is obtained by going along c_{l}^{\prime} to its intersection point with c_{r} close to A, then along c_{r} to its intersection point with c_{r}^{\prime} close to B, and then along c_{r}^{\prime}. It is easy to check that in both cases the $\operatorname{arc} c^{\prime \prime}$ has the required properties; see Figure 2.18. The case in which c^{\prime} crosses c at A from right to left is similar.

Fig. 2.18. The arc $c^{\prime \prime}$

It remains to consider the case $s \cdot s^{\prime}=1$. We claim that there is a reduction $\operatorname{arc} c^{\prime \prime}$ of \mathcal{D} disjoint from $c \cup c^{\prime}$. Inserting $\mathcal{D} \xrightarrow{s^{\prime \prime}} \mathcal{C}^{\prime \prime} \stackrel{s^{\prime \prime}}{\leftarrow} \mathcal{D}$ as above, we will obtain the claim of the lemma. Let O be the unique point of $c \cap c^{\prime}$ and let f be the face of \mathcal{D} containing c and c^{\prime} (except their endpoints). Denote the endpoints of c on \mathcal{D} by A_{1}, A_{2}. Denote the endpoints of c^{\prime} on \mathcal{D} by A_{3}, A_{4}. Denote by S_{i} the Seifert circle of \mathcal{D} passing through A_{i}. By the definition of a reduction arc, $S_{1} \neq S_{2}$ and $S_{3} \neq S_{4}$. Note that the arc $A_{1} O \cup O A_{3}$ can be slightly deformed into an arc $c_{1,3}$ in $f-\left(c \cup c^{\prime}\right)$ leading from a point on S_{1} to a point on S_{3}. The same arc with opposite orientation is denoted by $c_{3,1}$. We similarly define $\operatorname{arcs} c_{1,4}$ and $c_{4,1}$; see Figure 2.19.

If two of the circles $S_{1}, S_{2}, S_{3}, S_{4}$ coincide, say $S_{1}=S_{4}$, then the circles $S_{1}=S_{4}$ and $S_{3} \neq S_{4}$ are distinct. Since c^{\prime} is a reduction arc, they are incompatible. Hence $c^{\prime \prime}=c_{1,3}$ is a reduction arc satisfying our requirements.

Thus, we can assume that the circles $S_{1}, S_{2}, S_{3}, S_{4}$ are all distinct. Their topological position in $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$ is uniquely determined: they are boundaries of four disjoint disks in S^{2} meeting the crosslike graph $c \cup c^{\prime}$ at its four endpoints. If S_{1} and S_{3} are incompatible, then $c_{1,3}$ is a reduction arc in $f-\left(c \cup c^{\prime}\right)$ and we are done. Assume that S_{1} is compatible with S_{3}. Since S_{4} is incompatible with S_{3}, the circle S_{1} is compatible with S_{4} as well. Note that the arcs $c_{1,3}$ and $c_{1,4}$ are not reduction arcs.

Fig. 2.19. The $\operatorname{arcs} c, c^{\prime}$ and the circles $S_{1}, S_{2}, S_{3}, S_{4}$

Recall the disjoint segments γ_{x} connecting the Seifert circles of \mathcal{D}, where x runs over the crossings of \mathcal{D} (see Figure 2.12). The orientation arguments show that the endpoints of each such γ_{x} necessarily lie on different but compatible Seifert circles. We now distinguish three cases.

Case (i): there are no segments γ_{x} attached to S_{1}. A reduction arc of \mathcal{D} connecting S_{3} to S_{4} is obtained by first following $c_{3,1}$ to a point close to S_{1}, then encircling S_{1} and finally moving along $c_{1,4}$. Since there are no γ_{x} attached to S_{1}, this arc lies in $f-\left(c \cup c^{\prime}\right)$.

Case (ii): the segments γ_{x} attached to S_{1} connect it to one and the same Seifert circle S. Suppose first that $S \neq S_{3}$. A reduction arc $c^{\prime \prime}$ connecting S_{3} to S in $f-\left(c \cup c^{\prime}\right)$ is obtained by first following $c_{3,1}$ to a point close to S_{1}, then encircling S_{1} until hitting for the first time a segment γ_{x} attached to S_{1}, and then going close to this γ_{x} until meeting S. If $S=S_{3}$, then $S \neq S_{4}$ and we can apply the same construction with S_{3} replaced by S_{4}.

Case (iii): the segments γ_{x} attached to S_{1} connect it to at least two different Seifert circles. We can find two of these segments γ_{1}, γ_{2} with endpoints e_{1}, e_{2} on S_{1} such that their second endpoints lie on different Seifert circles and the arc $d \subset S_{1}-\left\{A_{1}\right\}$ connecting e_{1} to e_{2} is disjoint from all the other γ_{x} attached to S_{1}. Then a small deformation of the arc $\gamma_{1} \cup d \cup \gamma_{2}$ gives a reduction arc $c^{\prime \prime}$ of \mathcal{D} disjoint from $c \cup c^{\prime}$.

Lemma 2.20. For a local maximum $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$ with $s \cdot s^{\prime}=0$, there are sequences of isotopies in S^{2} and bendings $\mathcal{C} \rightarrow \cdots \rightarrow \mathcal{C}_{*}, \mathcal{C}^{\prime} \rightarrow \cdots \rightarrow \mathcal{C}_{*}^{\prime}$ such that $\mathcal{C}_{*}=\mathcal{C}_{*}^{\prime}$ or $\mathcal{C}_{*}, \mathcal{C}_{*}^{\prime}$ are 0 -diagrams in \mathbf{R}^{2} related by Ω-moves.

Proof. Let c, c^{\prime} be the reduction arcs of the bendings s, s^{\prime} on \mathcal{D}. The assumption $s \cdot s^{\prime}=0$ implies that c and c^{\prime} are disjoint. Hence the bendings s and s^{\prime} are performed in disjoint areas of the plane and commute with each other. Suppose that they involve different pairs of Seifert circles of \mathcal{D} (these pairs may have one common circle). Then c^{\prime} is a reduction arc for $\mathcal{C}=s(\mathcal{D})$ and c is a reduction arc for $\mathcal{C}^{\prime}=s^{\prime}(\mathcal{D})$. Let \mathcal{D}^{\prime} be the link diagram obtained by bend$\operatorname{ing} \mathcal{C}$ along c^{\prime} or, equivalently, by bending \mathcal{C}^{\prime} along c. The sequences $\mathcal{C} \rightarrow \mathcal{D}^{\prime}$ and $\mathcal{C}^{\prime} \rightarrow \mathcal{D}^{\prime}$ satisfy the conditions of the lemma.

Suppose from now on that s and s^{\prime} involve the same (distinct and incompatible) Seifert circles S_{1}, S_{2} of \mathcal{D}. Assume that \mathcal{D} has a reduction arc c_{1} disjoint from $c \cup c^{\prime}$ and involving another pair of Seifert circles. Then the bendings s, s^{\prime}, s_{1} along c, c^{\prime}, c_{1}, respectively, commute with each other. The sequences $\mathcal{C} \xrightarrow{s_{1}} \mathcal{C}_{1} \xrightarrow{s^{\prime}} \mathcal{D}^{\prime}, \mathcal{C}^{\prime} \xrightarrow{s_{1}} \mathcal{C}_{1}^{\prime} \xrightarrow{s} \mathcal{D}^{\prime}$ satisfy the conditions of the lemma.

Suppose from now on that all reduction arcs of \mathcal{D} disjoint from $c \cup c^{\prime}$ involve the Seifert circles S_{1}, S_{2}. We choose notation so that c is directed from S_{1} to S_{2}. Assume first that c^{\prime} is directed from S_{1} to S_{2}. The circles S_{1}, S_{2} bound in S^{2} disjoint 2-disks D_{1}, D_{2}, respectively. The arcs c, c^{\prime} lie in the annulus $S^{2}-\left(D_{1}^{\circ} \cup D_{2}^{\circ}\right)$ bounded by $S_{1} \cup S_{2}$. These arcs split this annulus into two topological 2-disks D_{3}, D_{4} where $D_{3} \cap D_{4}=c \cup c^{\prime}$.

Observe that the Seifert circles of \mathcal{D} distinct from S_{1}, S_{2} are disjoint from $S_{1} \cup S_{2} \cup c \cup c^{\prime}$. Therefore the Seifert circles of \mathcal{D} can be partitioned into four disjoint families: the circles lying in D_{1}, those in D_{2}, those in the interior of D_{3}, and those in the interior of D_{4}. The first two families include $S_{1}=\partial D_{1}$ and $S_{2}=\partial D_{2}$, while the other two families may be empty. To analyze the position of Seifert circles in D_{1}, note that a reduction arc of \mathcal{D} lying in D_{1} is disjoint from $c \cup c^{\prime}$ or can be made disjoint from $c \cup c^{\prime}$ by a small deformation near its endpoints. Since such an arc cannot meet S_{2}, our assumptions imply that \mathcal{D} has no reduction arcs in D_{1}. The same argument as in the proof of Lemma 2.6 shows that the Seifert circles of \mathcal{D} lying in D_{1} form a system of $t \geq 1$ concentric compatible circles with the external circle being S_{1}. This system of t concentric circles with the same orientation is schematically represented in Figure 2.20 by the left oval. Similar arguments show that the Seifert circles of \mathcal{D} lying in D_{2} (resp. in D_{3}, D_{4}) form a system of $r \geq 1$ (resp. $n \geq 0, m \geq 0$) concentric circles with the same orientation, represented in Figure 2.20 by the right (resp. upper, lower) oval. The diagram \mathcal{D} is recovered from these four systems of concentric circles by inserting certain braids $\alpha \in B_{n+r}, \beta \in B_{n+t}, \gamma \in B_{m+t}, \delta \in B_{m+r}$ as in Figure 2.20, where we use the notation $\alpha_{-}, \beta_{-}, \gamma_{+}, \delta_{+}$introduced after the statement of Lemma 2.11.

Since S_{1}, S_{2} are incompatible they must have the same orientation (clockwise or counterclockwise). For concreteness, we assume that they are oriented counterclockwise. (The case of the clockwise orientation can be reduced to this one by reversing the orientations on $\mathcal{C}, \mathcal{D}, \mathcal{C}^{\prime}$. .) The circles of the other two families are then oriented clockwise: otherwise we can easily find a reduction arc connecting S_{1} to one of these circles and disjoint from $c \cup c^{\prime}$.

Recall that the diagram \mathcal{C} is obtained from \mathcal{D} by a bending s that pushes (a subarc of) S_{1} toward S_{2} along c and then above S_{2}. Consider a "superbending" along c pushing the whole band of t circles on the left along c and then over the r right circles. This superbending is a composition of $r t$ bendings, the first of them being s. Moreover, to the resulting link diagram we can apply one more superbending along the arc in S^{2} going from the bottom point of the diagram \mathcal{D} down to ∞ and then from ∞ down to the top point of \mathcal{D}. (It is of

Fig. 2.20. The diagram \mathcal{D}
course important that we consider diagrams in S^{2} so that reduction arcs and isotopies in S^{2} are allowed.)

Performing these two superbendings on \mathcal{D}, we obtain the link diagram \mathcal{C}_{*} drawn in Figure 2.15. (Actually, it is easier to observe the converse, i.e., that \mathcal{C}_{*} produces \mathcal{D} via two supertightenings inverse to the superbendings described above.) A remarkable although obvious fact is that \mathcal{C}_{*} is a closed braid diagram and in particular a 0 -diagram. In the notation of Lemma 2.11, \mathcal{C}_{*} represents the closure of the braid $\langle\alpha, \beta, \gamma, \delta \mid+,+\rangle$. As we saw, there is a sequence of $r t+m n$ bendings $\mathcal{D} \xrightarrow{s} \mathcal{C} \rightarrow \cdots \rightarrow \mathcal{C}_{*}$ in S^{2}.

Similarly, we can apply a superbending to \mathcal{D} along the arc c^{\prime}, oriented from S_{1} to S_{2}, and then another superbending along the short vertical segment $c^{\prime \prime}$ leading from the bottom point of the upper oval toward the top point of the lower oval in Figure 2.20. This gives a link diagram isotopic to the link diagram $\mathcal{C}_{* *}^{\prime}$ drawn on the left of Figure 2.21. (Again, it is easier to check that the inverse moves transform $\mathcal{C}_{* *}^{\prime}$ into \mathcal{D}.) As above, there is a sequence of $r t+m n$ bendings $\mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime} \rightarrow \cdots \rightarrow \mathcal{C}_{* *}^{\prime}$ in S^{2}.

The diagram $\mathcal{C}_{* *}^{\prime}$ looks like a closed braid diagram, but not quite because its Seifert circles are oriented clockwise. Pushing the lower part of $\mathcal{C}_{* *}^{\prime}$ across $\infty \in S^{2}$, we obtain that $\mathcal{C}_{* *}^{\prime}$ is isotopic in S^{2} to a closed braid diagram \mathcal{C}_{*}^{\prime} drawn on the right of Figure 2.21. This diagram represents the closure of $\langle\delta, \gamma, \beta, \alpha \mid+,+\rangle$. By (2.3), the braids $\langle\alpha, \beta, \gamma, \delta \mid+,+\rangle$ and $\langle\delta, \gamma, \beta, \alpha \mid+,+\rangle$ are M-equivalent. Therefore the diagrams \mathcal{C}_{*} and \mathcal{C}_{*}^{\prime}, representing the closures of these braids, are related by Ω-moves. This gives the sequences of bendings and isotopies $\mathcal{C} \rightarrow \cdots \rightarrow \mathcal{C}_{*}$ and $\mathcal{C}^{\prime} \rightarrow \cdots \rightarrow \mathcal{C}_{* *}^{\prime} \rightarrow \mathcal{C}_{*}^{\prime}$ satisfying the requirements of the lemma.

Fig. 2.21. The diagrams $\mathcal{C}_{* *}^{\prime}$ and \mathcal{C}_{*}^{\prime}

If c^{\prime} is directed from S_{2} to S_{1}, then the argument is similar, though $\langle\delta, \gamma, \beta, \alpha \mid+,+\rangle$ should be replaced with $\langle\delta, \gamma, \beta, \alpha \mid+,-\rangle$. By the first claim of Lemma 2.11, this does not change the M-equivalence class of the braid. This completes the proof of Lemma 2.20.

2.6.6 Proof of Lemma 2.17, part III

By the height of a sequence of bendings, tightenings, and isotopies on link diagrams in S^{2}, we mean the maximal height of the diagrams appearing in this sequence. We prove the lemma by induction on the height m of the sequence relating two 0-diagrams in \mathbf{R}^{2}.

If $m=0$, then the sequence consists solely of isotopies in S^{2}. In this case Lemma 2.17 follows directly from Lemma 2.18.

Assume that $m>0$. It is clear that a transformation of a link diagram in S^{2} obtained as an isotopy followed by a bending (resp. a tightening) can be also obtained as a bending (resp. a tightening) followed by an isotopy. Therefore all isotopies in our sequence of bendings, tightenings, and isotopies in S^{2} can be accumulated at the end of the sequence. In particular, all diagrams of height m in this sequence appear as local maxima, i.e., are obtained by tightening from the previous diagram and yield the next diagram by bending. Lemma 2.19 shows that we can replace our sequence with another one that connects the same initial and terminal 0-diagrams, has the same height m, and additionally satisfies the condition that $s \cdot s^{\prime}=0$ in all its local maxima $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$. By Lemma 2.20, for each such local maximum, there is a sequence of isotopies, bendings, and tightenings

$$
\mathcal{C} \rightarrow \cdots \rightarrow \mathcal{C}_{*} \sim \mathcal{C}_{*}^{\prime} \leftarrow \cdots \leftarrow \mathcal{C}^{\prime}
$$

where \sim stands for the coincidence $\mathcal{C}_{*}=\mathcal{C}_{*}^{\prime}$ or for Ω-moves transforming \mathcal{C}_{*} into \mathcal{C}_{*}^{\prime} (which are then 0-diagrams). The height of all link diagrams in this sequence is less than or equal to $h(\mathcal{C})=h\left(\mathcal{C}^{\prime}\right)<h(\mathcal{D}) \leq m$. Replacing every local maximum $\mathcal{C} \stackrel{s}{\leftarrow} \mathcal{D} \xrightarrow{s^{\prime}} \mathcal{C}^{\prime}$ by such a sequence, we obtain a concatenation of sequences of height $\leq m-1$ with sequences of Ω-moves on 0 -diagrams. By the induction assumption, this implies the claim of the lemma.

2.7 Proof of Lemma 2.11

We begin by introducing a useful involution $\beta \mapsto \bar{\beta}$ on the set of braids.

2.7.1 The involution $\boldsymbol{\beta} \mapsto \overline{\boldsymbol{\beta}}$

For a braid $\beta \in B_{n}$, set $\bar{\beta}=\Delta_{n} \beta \Delta_{n}^{-1} \in B_{n}$, where $\Delta_{n} \in B_{n}$ is the braid defined in Section 1.3.3. Since Δ_{n}^{2} lies in the center of B_{n}, the automorphism $\beta \mapsto \bar{\beta}$ of B_{n} is an involution. Formula (2.5) implies that if

$$
\beta=\sigma_{i_{1}}^{r_{1}} \sigma_{i_{2}}^{r_{2}} \cdots \sigma_{i_{m}}^{r_{m}}
$$

with $1 \leq i_{1}, i_{2}, \ldots, i_{m} \leq n-1$ and $r_{1}, r_{2}, \ldots, r_{m} \in \mathbf{Z}$, then

$$
\bar{\beta}=\sigma_{n-i_{1}}^{r_{1}} \sigma_{n-i_{2}}^{r_{2}} \cdots \sigma_{n-i_{m}}^{r_{m}} .
$$

This formula implies that a diagram of $\bar{\beta}$ can be obtained from a diagram of β in $\mathbf{R} \times I=\mathbf{R} \times I \times\{0\}$ by rotating about the line $\{(n+1) / 2\} \times \mathbf{R} \times\{0\}$ in \mathbf{R}^{3} by the angle π. This geometric description of the involution $\beta \mapsto \bar{\beta}$ shows that $\overline{\alpha \otimes \beta}=\bar{\beta} \otimes \bar{\alpha}$ for any braids $\alpha \in B_{m}$ and $\beta \in B_{n}$. Note for the record that $\overline{\alpha \beta}=\bar{\alpha} \bar{\beta}$ for any $\alpha, \beta \in B_{n}$ and $\overline{1_{n}}=1_{n}$. It is easy to deduce from the definitions that $\overline{\sigma_{m, n}^{\varepsilon}}=\sigma_{n, m}^{\varepsilon}$ for any $m, n \geq 0$ and $\varepsilon= \pm$.
Lemma 2.21. If two braids β, β^{\prime} are M-equivalent, then the braids $\bar{\beta}, \overline{\beta^{\prime}}$ are M-equivalent.
Proof. We have $\bar{\beta} \sim_{c} \beta \sim \beta^{\prime} \sim_{c} \overline{\beta^{\prime}}$.

2.7.2 Ghost braids

We introduce a class of ghost braids. Let $\mu \in B_{n+k}$ with $n \geq 1, k \geq 0$. We say that μ is n-right-ghost and write $\mu \equiv 1_{n}$ if for any $m \geq 0$ and any $\beta \in B_{m+n}$, we have $\left(\beta \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right) \sim \beta$; see Figure 2.22. Examples of rightghost braids will be given below. Taking $m=0, \beta=1_{n}$, we conclude that $\mu \equiv 1_{n} \Rightarrow \mu \sim 1_{n}$. (The converse is in general not true.)

Given an n-right-ghost braid $\mu \in B_{n+k}$, we define a move (a transformation) on braids, denoted by $M(\mu)$. For any $m \geq 0, \alpha, \beta \in B_{m+n}, \rho \in B_{m}$, the move $M(\mu)$ transforms $\beta\left(\rho \otimes 1_{n}\right) \alpha$ into $\left(\beta \otimes 1_{k}\right)(\rho \otimes \mu)\left(\alpha \otimes 1_{k}\right)$; see Figure 2.23. The inverse transformation replaces the factor $\rho \otimes \mu$ with $\rho \otimes 1_{n}$ and deletes 1_{k} on the right of the other factors. The move $M(\mu)$ and its inverse preserve the M-equivalence class of the braid. Indeed,

$$
\begin{aligned}
\beta\left(\rho \otimes 1_{n}\right) \alpha & \sim_{c} \alpha \beta\left(\rho \otimes 1_{n}\right) \\
& \sim\left(\alpha \beta\left(\rho \otimes 1_{n}\right) \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right) \\
& =\left(\alpha \otimes 1_{k}\right)\left(\beta \otimes 1_{k}\right)\left(\rho \otimes 1_{n+k}\right)\left(1_{m} \otimes \mu\right) \\
& =\left(\alpha \otimes 1_{k}\right)\left(\beta \otimes 1_{k}\right)(\rho \otimes \mu) \\
& \sim_{c}\left(\beta \otimes 1_{k}\right)(\rho \otimes \mu)\left(\alpha \otimes 1_{k}\right) .
\end{aligned}
$$

Fig. 2.22. The formula $\left(\beta \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right) \sim \beta$

Fig. 2.23. The transformation $M(\mu)$

Given a braid $\mu \in B_{n+k}$ with $n \geq 1, k \geq 0$, we say that μ is n-left-ghost and write $\mu \equiv^{\prime} 1_{n}$ if $\left(1_{k} \otimes \beta\right)\left(\mu \otimes 1_{m}\right) \sim \beta$ for any $m \geq 0, \beta \in B_{n+m}$. For any such μ and any $\alpha, \beta \in B_{n+m}, \rho \in B_{m}$, we denote by $M^{\prime}(\mu)$ the move transforming $\beta\left(1_{n} \otimes \rho\right) \alpha$ into $\left(1_{k} \otimes \beta\right)(\mu \otimes \rho)\left(1_{k} \otimes \alpha\right)$. An argument similar to the one above shows that this move and its inverse preserve the M-equivalence class of the braid.

Lemma 2.22. Let $\mu \in B_{n+k}$ with $n \geq 1, k \geq 0$. If $\mu \equiv 1_{n}$, then $\bar{\mu} \equiv^{\prime} 1_{n}$.
Proof. Pick $\beta \in B_{n+m}$ with $m \geq 0$ and set $\gamma=\left(1_{k} \otimes \beta\right)\left(\bar{\mu} \otimes 1_{m}\right)$. We must verify that $\gamma \sim \beta$. Obviously, $\gamma \sim_{c} \bar{\gamma}=\left(\bar{\beta} \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right)$. Since $\mu \equiv 1_{n}$, we have $\left(\bar{\beta} \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right) \sim \bar{\beta} \sim_{c} \beta$. Therefore $\gamma \sim \beta$.

For $n \geq 1$, set $\theta_{n}^{+}=\Delta_{n}^{2} \in B_{n}$ and $\theta_{n}^{-}=\Delta_{n}^{-2} \in B_{n}$. Clearly, for any $\varepsilon= \pm$,

$$
\overline{\theta_{n}^{\varepsilon}}=\Delta_{n} \theta_{n}^{\varepsilon} \Delta_{n}^{-1}=\theta_{n}^{\varepsilon}
$$

As an exercise, the reader may check that

$$
\begin{equation*}
\theta_{n}^{\varepsilon}=\left(\theta_{n-1}^{\varepsilon} \otimes 1_{1}\right) \sigma_{1, n-1}^{\varepsilon} \sigma_{n-1,1}^{\varepsilon}=\sigma_{1, n-1}^{\varepsilon}\left(1_{1} \otimes \theta_{n-1}^{\varepsilon}\right) \sigma_{n-1,1}^{\varepsilon} \tag{2.8}
\end{equation*}
$$

The following lemma provides key examples of ghost braids. The proof of this lemma is given in an algebraic form. Here and below, the reader is strongly encouraged to draw the pictures corresponding to our formulas.

Lemma 2.23. For any $n \geq 1$ and $\varepsilon= \pm$, set

$$
\mu_{n, \varepsilon}=\left(1_{n} \otimes \theta_{n}^{-\varepsilon}\right) \sigma_{n, n}^{\varepsilon}=\sigma_{n, n}^{\varepsilon}\left(\theta_{n}^{-\varepsilon} \otimes 1_{n}\right) \in B_{2 n}
$$

Then

$$
\bar{\mu}_{n, \varepsilon}=\left(\theta_{n}^{-\varepsilon} \otimes 1_{n}\right) \sigma_{n, n}^{\varepsilon}=\sigma_{n, n}^{\varepsilon}\left(1_{n} \otimes \theta_{n}^{-\varepsilon}\right) \in B_{2 n}
$$

and $\mu_{n, \varepsilon} \equiv 1_{n}, \bar{\mu}_{n, \varepsilon} \equiv 1_{n}, \mu_{n, \varepsilon} \equiv^{\prime} 1_{n}, \bar{\mu}_{n, \varepsilon} \equiv^{\prime} 1_{n}$.
Proof. We shall represent θ_{n}^{ε} graphically by a box with ε inside. Two pictorial representations of $\mu_{n,-}$ are given in Figure 2.24. Pictures of $\mu_{n,+}$ are obtained by exchanging the over/undercrossings and replacing + by - in the box.

Fig. 2.24. The braid $\mu_{n,-}$

The expansions for $\bar{\mu}_{n, \varepsilon}$ in the statement of the lemma are obtained from the expansions for $\mu_{n, \varepsilon}$ and the geometric interpretation of the involution $\mu \mapsto \bar{\mu}$. By Lemma 2.22, the formulas $\mu_{n, \varepsilon} \equiv 1_{n}, \bar{\mu}_{n, \varepsilon} \equiv 1_{n}$ will imply that $\mu_{n, \varepsilon} \equiv^{\prime} 1_{n}, \bar{\mu}_{n, \varepsilon} \equiv^{\prime} 1_{n}$. To prove that $\mu_{n, \varepsilon}$ is n-right-ghost, we must verify that

$$
\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \mu_{n, \varepsilon}\right) \sim \beta
$$

for any $\beta \in B_{m+n}$ with $m \geq 0$. Clearly,

$$
\begin{aligned}
\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \mu_{n, \varepsilon}\right) & =\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes 1_{n} \otimes \theta_{n}^{-\varepsilon}\right)\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right) \\
& =\left(\beta \otimes \theta_{n}^{-\varepsilon}\right)\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right) \\
& \sim_{c}\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right)\left(\beta \otimes \theta_{n}^{-\varepsilon}\right) .
\end{aligned}
$$

It remains to prove that

$$
\begin{equation*}
\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right)\left(\beta \otimes \theta_{n}^{-\varepsilon}\right) \sim \beta \tag{2.9}
\end{equation*}
$$

The formula $\bar{\mu}_{n, \varepsilon} \equiv 1_{n}$ also follows from (2.9), since

$$
\begin{aligned}
\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \bar{\mu}_{n, \varepsilon}\right) & \sim_{c}\left(1_{m} \otimes \bar{\mu}_{n, \varepsilon}\right)\left(\beta \otimes 1_{n}\right) \\
& =\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right)\left(1_{m+n} \otimes \theta_{n}^{-\varepsilon}\right)\left(\beta \otimes 1_{n}\right) \\
& =\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right)\left(\beta \otimes \theta_{n}^{-\varepsilon}\right) .
\end{aligned}
$$

The proof of the equality (2.9) goes by induction on n. For $n=1$, we have $\theta_{n}^{-\varepsilon}=1_{1}$ and $1_{m} \otimes \sigma_{n, n}^{\varepsilon}=\sigma_{m+1}^{\varepsilon}$, where $\sigma_{m+1}^{+}=\sigma_{m+1}$ and $\sigma_{m+1}^{-}=\sigma_{m+1}^{-1}$.

The transformation $\sigma_{m+1}^{\varepsilon}\left(\beta \otimes 1_{1}\right) \mapsto \beta$ is an inverse Markov move. Therefore, formula (2.9) holds for $n=1$. In the inductive step we shall use the identity

$$
\sigma_{n, n}^{\varepsilon}=\left(\sigma_{n-1, n}^{\varepsilon} \otimes 1_{1}\right)\left(1_{n-1} \otimes \sigma_{1, n}^{\varepsilon}\right)
$$

For $n>1$,

$$
\begin{aligned}
&\left(1_{m} \otimes\right.\left.\sigma_{n, n}^{\varepsilon}\right)\left(\beta \otimes \theta_{n}^{-\varepsilon}\right) \\
&=\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right)\left(1_{m} \otimes 1_{n} \otimes \theta_{n}^{-\varepsilon}\right)\left(\beta \otimes 1_{n}\right) \\
&=\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n, n}^{\varepsilon}\right)\left(\beta \otimes 1_{n}\right) \\
&=\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon} \otimes 1_{1}\right)\left(1_{m+n-1} \otimes \sigma_{1, n}^{\varepsilon}\right)\left(\beta \otimes 1_{n}\right) \\
& \sim_{c}\left(1_{m+n-1} \otimes \sigma_{1, n}^{\varepsilon}\right)\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon} \otimes 1_{1}\right) \\
&=\left(1_{m+2 n-2} \otimes \sigma_{1,1}^{\varepsilon}\right)\left(1_{m+n-1} \otimes \sigma_{1, n-1}^{\varepsilon} \otimes 1_{1}\right) \\
& \quad \times\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon} \otimes 1_{1}\right) \\
& \sim\left(1_{m+n-1} \otimes \sigma_{1, n-1}^{\varepsilon}\right)\left(\beta \otimes 1_{n-1}\right)\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)
\end{aligned}
$$

where the last transformation is M_{2}^{-1}. The resulting braid is a conjugate of

$$
\begin{aligned}
& \left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)\left(1_{m+n-1} \otimes \sigma_{1, n-1}^{\varepsilon}\right)\left(\beta \otimes 1_{n-1}\right) \\
& \quad=\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{1, n-1}^{\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)\left(\beta \otimes 1_{n-1}\right) \\
& \quad=\left(1_{m} \otimes \theta_{n}^{-\varepsilon} \sigma_{1, n-1}^{\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)\left(\beta \otimes 1_{n-1}\right)
\end{aligned}
$$

Substituting in the latter braid the expansion

$$
\theta_{n}^{-\varepsilon} \sigma_{1, n-1}^{\varepsilon}=\theta_{n}^{-\varepsilon}\left(\sigma_{n-1,1}^{-\varepsilon}\right)^{-1}=\sigma_{1, n-1}^{-\varepsilon}\left(1_{1} \otimes \theta_{n-1}^{-\varepsilon}\right),
$$

which follows from (2.8), we obtain

$$
\begin{aligned}
&\left(1_{m} \otimes \sigma_{1, n-1}^{-\varepsilon} \otimes 1_{n-1}\right)\left(1_{m+1} \otimes \theta_{n-1}^{-\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)\left(\beta \otimes 1_{n-1}\right) \\
&=\left(1_{m} \otimes \sigma_{1, n-1}^{-\varepsilon} \otimes 1_{n-1}\right)\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)\left(\beta \otimes \theta_{n-1}^{-\varepsilon}\right) \\
& \sim_{c}\left(1_{m} \otimes \sigma_{n-1, n}^{\varepsilon}\right)\left(\beta \otimes \theta_{n-1}^{-\varepsilon}\right)\left(1_{m} \otimes \sigma_{1, n-1}^{-\varepsilon} \otimes 1_{n-1}\right) \\
&=\left(1_{m+1} \otimes \sigma_{n-1, n-1}^{\varepsilon}\right)\left(1_{m} \otimes \sigma_{n-1,1}^{\varepsilon} \otimes 1_{n-1}\right) \\
& \times\left(\beta \otimes \theta_{n-1}^{-\varepsilon}\right)\left(1_{m} \otimes \sigma_{1, n-1}^{-\varepsilon} \otimes 1_{n-1}\right) \\
&=\left(1_{m+1} \otimes \sigma_{n-1, n-1}^{\varepsilon}\right)\left(\beta^{\prime} \otimes \theta_{n-1}^{-\varepsilon}\right),
\end{aligned}
$$

where

$$
\beta^{\prime}=\left(1_{m} \otimes \sigma_{n-1,1}^{\varepsilon}\right) \beta\left(1_{m} \otimes \sigma_{1, n-1}^{-\varepsilon}\right) .
$$

By the induction assumption,

$$
\begin{aligned}
\left(1_{m+1} \otimes \sigma_{n-1, n-1}^{\varepsilon}\right)\left(\beta^{\prime} \otimes \theta_{n-1}^{-\varepsilon}\right) & \sim \beta^{\prime} \\
& =\left(1_{m} \otimes \sigma_{n-1,1}^{\varepsilon}\right) \beta\left(1_{m} \otimes \sigma_{n-1,1}^{\varepsilon}\right)^{-1} \sim_{c} \beta
\end{aligned}
$$

This completes the proof of (2.9) and of the lemma.

Lemma 2.24. For any integers $m, n \geq 0, r \geq 1$ and braids $\beta \in B_{m+r}$, $\gamma \in B_{m+n}$, the M-equivalence class of the braid

$$
\alpha_{\varepsilon}=\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n, r}^{\varepsilon}\right)\left(\gamma \otimes 1_{r}\right)\left(1_{m} \otimes \sigma_{r, n}^{-\varepsilon}\right)
$$

does not depend on $\varepsilon= \pm$. (Here, if $m=n=0$, then $\gamma=1_{0}$.)
Proof. If $n=0$, then $\sigma_{n, r}^{+}=\sigma_{n, r}^{-}$and hence $\alpha_{+}=\alpha_{-}$. If $m=0$, then $\alpha_{+}=\beta \otimes \gamma=\alpha_{-}$. Suppose that $m \geq 1$ and $n \geq 1$. We shall prove that $\alpha_{+} \sim \alpha_{-}$; see Figure 2.25.

Fig. 2.25. $\alpha_{+} \sim \alpha_{-}$

We first rewrite the factor $1_{m} \otimes \sigma_{n, r}^{+}$of α_{+}using the obvious expansion

$$
\begin{equation*}
1_{m} \otimes \sigma_{n, r}^{+}=\left(1_{m} \otimes \sigma_{n, r}^{+} \sigma_{r, n}^{+}\right)\left(1_{m+r} \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n, r}^{-}\right) \tag{2.10}
\end{equation*}
$$

By Lemma 2.23, the M-equivalence class of α_{+}is preserved under the transformation replacing the term 1_{n} in the factor $1_{m+r} \otimes 1_{n}$ by the braid

$$
\bar{\mu}_{n,-}=\left(\theta_{n}^{+} \otimes 1_{n}\right) \sigma_{n, n}^{-}=\sigma_{n, n}^{-}\left(1_{n} \otimes \theta_{n}^{+}\right)
$$

and tensoring on the right all the other factors in the expression for α_{+}by 1_{n}. This transforms the right-hand side of (2.10) into the braid

$$
\psi=\left(1_{m} \otimes \sigma_{n, r}^{+} \sigma_{r, n}^{+} \otimes 1_{n}\right)\left(1_{m+r} \otimes \theta_{n}^{+} \otimes 1_{n}\right)\left(1_{m+r} \otimes \sigma_{n, n}^{-}\right)\left(1_{m} \otimes \sigma_{n, r}^{-} \otimes 1_{n}\right)
$$

Figure 2.26 shows that $\psi=\psi_{1} \psi_{2} \psi_{3}$, where

$$
\psi_{1}=1_{m+r} \otimes \bar{\mu}_{n,-}, \quad \psi_{2}=1_{m} \otimes \sigma_{n, r}^{-} \otimes 1_{n}, \quad \psi_{3}=1_{m+n} \otimes \sigma_{n, r}^{+} \sigma_{r, n}^{+}
$$

Therefore,

$$
\begin{aligned}
\alpha_{+} & \sim\left(\beta \otimes 1_{2 n}\right) \psi_{1} \psi_{2} \psi_{3}\left(\gamma \otimes 1_{r+n}\right)\left(1_{m} \otimes \sigma_{r, n}^{-} \otimes 1_{n}\right) \\
& =\psi_{1}\left(\beta \otimes 1_{2 n}\right) \psi_{2}\left(\gamma \otimes 1_{r+n}\right) \psi_{3}\left(1_{m} \otimes \sigma_{r, n}^{-} \otimes 1_{n}\right) \\
& \sim_{c}\left(\beta \otimes 1_{2 n}\right) \psi_{2}\left(\gamma \otimes 1_{r+n}\right) \psi_{3}\left(1_{m} \otimes \sigma_{r, n}^{-} \otimes 1_{n}\right) \psi_{1} .
\end{aligned}
$$

Fig. 2.26. $\psi=\psi_{1} \psi_{2} \psi_{3}$

Drawing pictures, one observes that

$$
\begin{aligned}
& \psi_{3}\left(1_{m} \otimes \sigma_{r, n}^{-} \otimes 1_{n}\right) \psi_{1} \\
& \quad=\left(1_{m} \otimes \sigma_{r, n}^{-} \otimes 1_{n}\right)\left(1_{m+r} \otimes \bar{\mu}_{n,-}\right)\left(1_{m} \otimes \sigma_{n, r}^{+} \sigma_{r, n}^{+} \otimes 1_{n}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\alpha_{+} \sim\left(\beta \otimes 1_{2 n}\right)\left(1_{m}\right. & \left.\otimes \sigma_{n, r}^{-} \otimes 1_{n}\right)\left(\gamma \otimes 1_{r+n}\right) \\
& \times\left(1_{m} \otimes \sigma_{r, n}^{-} \otimes 1_{n}\right)\left(1_{m+r} \otimes \bar{\mu}_{n,-}\right)\left(1_{m} \otimes \sigma_{n, r}^{+} \sigma_{r, n}^{+} \otimes 1_{n}\right)
\end{aligned}
$$

By Lemma 2.23, we can replace $\bar{\mu}_{n,-}$ with 1_{n} and simultaneously remove 1_{n} on the right of the other factors. This and the identity $\sigma_{r, n}^{-} \sigma_{n, r}^{+}=1_{r+n}$ give

$$
\alpha_{+} \sim\left(\beta \otimes 1_{n}\right)\left(1_{m} \otimes \sigma_{n, r}^{-}\right)\left(\gamma \otimes 1_{r}\right)\left(1_{m} \otimes \sigma_{r, n}^{+}\right)=\alpha_{-}
$$

Lemma 2.25. Under the assumptions of Lemma 2.24, the M-equivalence class of the braid

$$
\left(1_{n} \otimes \beta\right)\left(\sigma_{r, n}^{\varepsilon} \otimes 1_{m}\right)\left(1_{r} \otimes \gamma\right)\left(\sigma_{n, r}^{-\varepsilon} \otimes 1_{m}\right)
$$

does not depend on $\varepsilon= \pm$.
Proof. This follows from Lemma 2.24 by applying the involution $\mu \mapsto \bar{\mu}$ and using Lemma 2.21.

2.7.3 Proof of Lemma 2.11

The independence of the $\operatorname{sign} \varepsilon$ follows from Lemma 2.25, where the symbols $r, n, m, \varepsilon, \beta$, and γ should be replaced respectively with

$$
n, m, t+r,-\varepsilon,\left(\alpha \otimes 1_{t}\right)\left(1_{n} \otimes \sigma_{t, r}^{\nu}\right)\left(\beta \otimes 1_{r}\right),\left(\gamma \otimes 1_{r}\right)\left(1_{m} \otimes \sigma_{r, t}^{-\nu}\right)\left(\delta \otimes 1_{t}\right) .
$$

The independence of the $\operatorname{sign} \nu$ follows from the fact that conjugate braids are M-equivalent and Lemma 2.24, where the symbols $n, m, \varepsilon, \beta, \gamma$ should be replaced respectively with

$$
t, m+n, \nu,\left(1_{n} \otimes \delta\right)\left(\sigma_{m, n}^{\varepsilon} \otimes 1_{r}\right)\left(1_{m} \otimes \alpha\right),\left(1_{m} \otimes \beta\right)\left(\sigma_{n, m}^{-\varepsilon} \otimes 1_{t}\right)\left(1_{n} \otimes \gamma\right)
$$

We now prove (2.3). By the first claim of the lemma, it suffices to consider the case $\varepsilon=\nu$. Consider the braid

$$
\begin{aligned}
& \langle\langle\alpha, \beta, \gamma, \delta \mid \varepsilon\rangle\rangle=(\alpha \otimes \gamma)\left(1_{n} \otimes \sigma_{m, r}^{\varepsilon} \otimes 1_{t}\right)\left(1_{n} \otimes \theta_{m}^{\varepsilon} \otimes \sigma_{t, r}^{\varepsilon}\right)\left(1_{n} \otimes \sigma_{t, m}^{\varepsilon} \otimes 1_{r}\right) \\
& \times(\beta \otimes \delta)\left(1_{n} \otimes \sigma_{m, t}^{-\varepsilon} \otimes 1_{r}\right)\left(1_{n} \otimes \theta_{m}^{-\varepsilon} \otimes \sigma_{r, t}^{-\varepsilon}\right)\left(1_{n} \otimes \sigma_{r, m}^{-\varepsilon} \otimes 1_{t}\right) \in B_{m+n+r+t} .
\end{aligned}
$$

Note the obvious conjugacy

$$
\begin{equation*}
\langle\langle\alpha, \beta, \gamma, \delta \mid \varepsilon\rangle\rangle \sim_{c}\langle\langle\beta, \alpha, \delta, \gamma \mid-\varepsilon\rangle\rangle . \tag{2.11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \varepsilon\rangle \sim\langle\langle\alpha, \beta, \gamma, \delta \mid \varepsilon\rangle\rangle . \tag{2.12}
\end{equation*}
$$

This will imply (2.3) for $\nu=\varepsilon$: applying (2.12), (2.11), and (2.4), we obtain

$$
\langle\alpha, \beta, \gamma, \delta \mid \varepsilon, \varepsilon\rangle \sim\langle\beta, \alpha, \delta, \gamma \mid-\varepsilon,-\varepsilon\rangle \sim\langle\delta, \gamma, \beta, \alpha \mid \varepsilon, \varepsilon\rangle .
$$

The case $\nu=-\varepsilon$ of (2.3) follows then from the first claim of the lemma.
A sequence of moves establishing (2.12) for $\varepsilon=+$ is given pictorially in Figure 2.27. (These moves can be described algebraically, which however is less instructive.) Here, instead of drawing braids we draw their closures. This is more economical in terms of space and does not hinder the argument since conjugate braids are M-equivalent.

The first and the last diagrams in Figure 2.27 represent the closures of the braids $\langle\alpha, \beta, \gamma, \delta \mid+,+\rangle$ and $\langle\langle\alpha, \beta, \gamma, \delta \mid+\rangle\rangle$, respectively. The first transformation in Figure 2.27 is a single move $M\left(\mu_{m,-}\right)$. (It would be more logical to write $+_{+}$in the box but we write simply + .) The next two moves are isotopies in the class of closed braid diagrams (this amounts to conjugation of braids). Note that the box with + followed by a box with - is just the trivial braid; this splitting of the trivial braid is needed for the next move. The fourth move is the inverse to $M^{\prime}\left(\bar{\mu}_{m,-}\right)$. The last move is an isotopy of closed braid diagrams. Since all these moves preserve the M-equivalence class of a braid, we obtain (2.12) for $\varepsilon=+$. The case $\varepsilon=-$ is treated similarly using the mirror image of Figure 2.27.

Exercise 2.7.1. Verify that the moves $\mathrm{M}_{2}, \mathrm{M}_{3}$ correspond to each other under the involution $\beta \mapsto \bar{\beta}$ on the set of braids.

Exercise 2.7.2. Let $\mu \in B_{n+k}$ with $n \geq 1, k \geq 0$ be an n-right-ghost braid. Verify that $1_{r} \otimes \mu \equiv 1_{r+n}$ for any $r \geq 0$ and $\left(\delta \otimes 1_{k}\right) \mu\left(\delta^{-1} \otimes 1_{k}\right) \equiv 1_{n}$ for any $\delta \in B_{n}$.

Solution. For any $\beta \in B_{m+r+n}$ with $m \geq 0$,

$$
\left(\beta \otimes 1_{k}\right)\left(1_{m} \otimes 1_{r} \otimes \mu\right)=\left(\beta \otimes 1_{k}\right)\left(1_{m+r} \otimes \mu\right) \sim \beta
$$

For any $\beta \in B_{m+n}$ with $m \geq 0$,

$$
\begin{aligned}
\left(\beta \otimes 1_{k}\right)\left(1_{m} \otimes\left(\delta \otimes 1_{k}\right)\right. & \left.\mu\left(\delta^{-1} \otimes 1_{k}\right)\right) \\
& =\left(\beta \otimes 1_{k}\right)\left(1_{m} \otimes \delta \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right)\left(1_{m} \otimes \delta^{-1} \otimes 1_{k}\right) \\
& \sim_{c}\left(1_{m} \otimes \delta^{-1} \otimes 1_{k}\right)\left(\beta \otimes 1_{k}\right)\left(1_{m} \otimes \delta \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right) \\
& =\left(\left(1_{m} \otimes \delta^{-1}\right) \beta\left(1_{m} \otimes \delta\right) \otimes 1_{k}\right)\left(1_{m} \otimes \mu\right) \\
& \sim\left(1_{m} \otimes \delta^{-1}\right) \beta\left(1_{m} \otimes \delta\right) \sim_{c} \beta
\end{aligned}
$$

Fig. 2.27. Proof of formula (2.12)

Notes

The content of Section 2.1 is standard. Theorem 2.1 was first pointed out by Artin [Art25] without proof; see also [Mor78, Th. 1], and [BZ85, Prop. 10.16].

Theorem 2.3 is due to Alexander [Ale23a]. The algorithm of Section 2.4.3 transforming a link diagram into a closed braid diagram is due to Vogel [Vog90], who improved a previous construction by Yamada [Yam87]. Bendings were introduced by Vogel (under a different name). The height of a link diagram was introduced by Traczyk [Tra98], who also stated Lemmas 2.4-2.6. Our proof of Lemmas 2.5 and 2.6 is based on arguments from [Vog90, Sect. 5]. Corollary 2.7 is due to Yamada [Yam87]. Exercise 2.4.1 is due to Traczyk [Tra98].

Theorem 2.8 was announced by Markov [Mar36] in 1936. The first published proof appeared in the monograph [Bir74]. According to [Bir74, p. 49], this proof "is based on notes taken at a seminar at Princeton University in 1954. The speaker is unknown to us...." Different proofs were given by Bennequin [Ben83], Morton [Mor86], and Traczyk [Tra98]. The proof of Markov's theorem given above follows Traczyk [Tra98].

Homological Representations of the Braid Groups

Braid groups, viewed as the groups of isotopy classes of self-homeomorphisms of punctured disks, naturally act on the homology of topological spaces obtained from the punctured disks by functorial constructions. We discuss here two such constructions and study the resulting linear representations of the braid groups: the Burau representation (Sections 3.1-3.3) and the Lawrence-Krammer-Bigelow representation (Sections 3.5-3.7). As an application of the Burau representation, we construct in Section 3.4 the one-variable AlexanderConway polynomial of links in \mathbf{R}^{3}. As an application of the Lawrence-Krammer-Bigelow representation, we establish the linearity of B_{n} for all n (Section 3.5.4).

3.1 The Burau representation

For all $n \geq 1$, W. Burau introduced a linear representation of the braid group B_{n} by $n \times n$ matrices over the ring of Laurent polynomials

$$
\Lambda=\mathbf{Z}\left[t, t^{-1}\right]
$$

This representation has been extensively studied from various viewpoints. In this section we define the Burau representation and discuss its main properties.

3.1.1 Definition

Fix $n \geq 2$. For $i=1, \ldots, n-1$, consider the following $n \times n$ matrix over the $\operatorname{ring} \Lambda=\mathbf{Z}\left[t, t^{-1}\right]$:

$$
U_{i}=\left(\begin{array}{cccc}
I_{i-1} & 0 & 0 & 0 \\
0 & 1-t & t & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & I_{n-i-1}
\end{array}\right)
$$

where I_{k} denotes the unit $k \times k$ matrix. When $i=1$, there is no unit matrix in the upper left corner of U_{i}. When $i=n-1$, there is no unit matrix in the lower right corner of U_{i}. Substituting $t=1$ in the definition of U_{1}, \ldots, U_{n-1}, we obtain permutation $n \times n$ matrices. One can therefore view U_{1}, \ldots, U_{n-1} as one-parameter deformations of permutation matrices.

Each matrix U_{i} has a block-diagonal form with blocks being the unit matrices and the 2×2 matrix

$$
U=\left(\begin{array}{cc}
1-t & t \tag{3.1}\\
1 & 0
\end{array}\right)
$$

By the Cayley-Hamilton theorem, any 2×2 matrix M over the ring Λ satisfies $M^{2}-\operatorname{tr}(M) M+\operatorname{det}(M) I_{2}=0$, where $\operatorname{tr}(M)$ is the trace of M and $\operatorname{det}(M)$ is the determinant of M. For $M=U$, this gives $U^{2}-(1-t) U-t I_{2}=0$. Since the unit matrices also satisfy this equation,

$$
U_{i}^{2}-(1-t) U_{i}-t I_{n}=0
$$

for all i. This can be rewritten as $U_{i}\left(U_{i}-(1-t) I_{n}\right)=t I_{n}$. Hence, U_{i} is invertible over Λ and its inverse is computed by

$$
U_{i}^{-1}=t^{-1}\left(U_{i}-(1-t) I_{n}\right)=\left(\begin{array}{cccc}
I_{i-1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & t^{-1} & 1-t^{-1} & 0 \\
0 & 0 & 0 & I_{n-i-1}
\end{array}\right)
$$

The block form of the matrices U_{1}, \ldots, U_{n-1} implies that $U_{i} U_{j}=U_{j} U_{i}$ for all i, j with $|i-j| \geq 2$. We also have

$$
U_{i} U_{i+1} U_{i}=U_{i+1} U_{i} U_{i+1}
$$

for $i=1, \ldots, n-2$. To check this, it is enough to verify the equality

$$
\begin{gathered}
\left(\begin{array}{ccc}
1-t & t & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-t & t \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1-t & t & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-t & t \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1-t & t & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-t & t \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

This equality is an exercise in matrix multiplication.
By Lemma 1.2, the formula $\psi_{n}\left(\sigma_{i}\right)=U_{i}$ with $i=1, \ldots, n-1$ defines a group homomorphism ψ_{n} from the braid group B_{n} with $n \geq 2$ to the group $\mathrm{GL}_{n}(\Lambda)$ of invertible $n \times n$ matrices over Λ. This is the Burau representation of B_{n}. In particular, for $n=2$, this representation is the homomorphism $B_{2} \rightarrow \mathrm{GL}_{2}(\Lambda)$, sending the generator σ_{1} of $B_{2} \cong \mathbf{Z}$ to the matrix (3.1).

By convention, the Burau representation ψ_{1} of the (trivial) group B_{1} is the trivial homomorphism $B_{1} \rightarrow \mathrm{GL}_{1}(\Lambda)$.

Observe that det $U_{i}=-t$ for all i. This implies that for any $\beta \in B_{n}$,

$$
\operatorname{det} \psi_{n}(\beta)=(-t)^{\langle\beta\rangle}
$$

where $\langle\beta\rangle \in \mathbf{Z}$ is the image of β under the homomorphism $B_{n} \rightarrow \mathbf{Z}$ sending the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ to 1 .

The Burau representations $\left\{\psi_{n}\right\}_{n \geq 1}$ are compatible with the natural inclusions $\iota: B_{n} \hookrightarrow B_{n+1}$: for any $n \geq 1$ and $\beta \in B_{n}$,

$$
\psi_{n+1}(\iota(\beta))=\left(\begin{array}{cc}
\psi_{n}(\beta) & 0 \tag{3.2}\\
0 & 1
\end{array}\right) .
$$

3.1.2 Unitarity

The study of the Burau representation $\psi_{n}: B_{n} \rightarrow \operatorname{GL}_{n}(\Lambda)$ has to a great extent been focused on its kernel and image. We establish here a simple property of the image showing that it is contained in a rather narrow subgroup of $\mathrm{GL}_{n}(\Lambda)$. This property will not be used in the sequel.

Consider the involutive automorphism of the $\operatorname{ring} \Lambda, \lambda \mapsto \bar{\lambda}$ for $\lambda \in \Lambda$, sending t to t^{-1}. For a matrix $A=\left(\lambda_{i, j}\right)$ over Λ, set $\bar{A}=\left(\overline{\lambda_{i, j}}\right)$ and let $A^{T}=\left(\lambda_{j, i}\right)$ be the transpose of A. Let Ω_{n} be the lower triangular $n \times n$ matrix over Λ with all diagonal terms equal to 1 and all subdiagonal terms equal to $1-t$:

$$
\Omega_{n}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1-t & 1 & 0 & \cdots & 0 \\
1-t & 1-t & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1-t & 1-t & 1-t & \cdots & 1
\end{array}\right)
$$

Theorem 3.1. For any $n \geq 1$ and $A \in \psi_{n}\left(B_{n}\right) \subset \operatorname{GL}_{n}(\Lambda)$,

$$
\begin{equation*}
\bar{A} \Omega_{n} A^{T}=\Omega_{n} \tag{3.3}
\end{equation*}
$$

Proof. If (3.3) holds for a matrix A, then it holds for its inverse: multiplying (3.3) on the left by \bar{A}^{-1} and on the right by $\left(A^{T}\right)^{-1}$, we obtain the same formula with A replaced by A^{-1}. If (3.3) holds for two matrices A_{1}, A_{2}, then it holds for their product:

$$
\overline{A_{1} A_{2}} \Omega_{n}\left(A_{1} A_{2}\right)^{T}=\overline{A_{1}} \overline{A_{2}} \Omega_{n} A_{2}^{T} A_{1}^{T}=\overline{A_{1}} \Omega_{n} A_{1}^{T}=\Omega_{n}
$$

Now, since the matrices U_{1}, \ldots, U_{n-1} generate the group $\psi_{n}\left(B_{n}\right)$, it is enough to prove (3.3) for $A=U_{i}$ with $i=1, \ldots, n-1$. Present $A=U_{i}$ and Ω_{n} in the block form

$$
A=\left(\begin{array}{ccc}
I_{i-1} & 0 & 0 \\
0 & U & 0 \\
0 & 0 & I_{n-i-1}
\end{array}\right), \quad \Omega_{n}=\left(\begin{array}{ccc}
\Omega_{i-1} & 0 & 0 \\
K_{2, i-1} & \Omega_{2} & 0 \\
K_{n-i-1, i-1} & K_{n-i-1,2} & \Omega_{n-i-1}
\end{array}\right)
$$

where

$$
U=\left(\begin{array}{cc}
1-t & t \\
1 & 0
\end{array}\right), \quad \Omega_{2}=\left(\begin{array}{cc}
1 & 0 \\
1-t & 1
\end{array}\right)
$$

and $K_{p, q}$ is the $p \times q$ matrix with all entries equal to $1-t$. A direct computation gives

$$
\bar{A} \Omega_{n} A^{T}=\left(\begin{array}{ccc}
\Omega_{i-1} & 0 & 0 \\
\bar{U} K_{2, i-1} & \bar{U} \Omega_{2} U^{T} & 0 \\
K_{n-i-1, i-1} & K_{n-i-1,2} U^{T} & \Omega_{n-i-1}
\end{array}\right) .
$$

Note that $\bar{U} K_{2, i-1}=K_{2, i-1}$, since

$$
\bar{U}\binom{1-t}{1-t}=\left(\begin{array}{cc}
1-t^{-1} & t^{-1} \\
1 & 0
\end{array}\right)\binom{1-t}{1-t}=\binom{1-t}{1-t}
$$

Similarly, $K_{n-i-1,2} U^{T}=K_{n-i-1,2}$, since

$$
(1-t, 1-t) U^{T}=(1-t, 1-t)\left(\begin{array}{cc}
1-t & 1 \\
t & 0
\end{array}\right)=(1-t, 1-t)
$$

A direct computation gives $\bar{U} \Omega_{2} U^{T}=\Omega_{2}$. Substituting these formulas in the expression for $\bar{A} \Omega_{n} A^{T}$, we conclude that $\bar{A} \Omega_{n} A^{T}=\Omega_{n}$.

Applying the involution $A \mapsto \bar{A}$ and the transposition to (3.3), we obtain $\bar{A} \bar{\Omega}_{n}^{T} A^{T}=\bar{\Omega}_{n}^{T}$. Therefore for any $A \in \psi_{n}\left(B_{n}\right)$ and $\lambda, \mu \in \Lambda$,

$$
\bar{A}\left(\lambda \Omega_{n}+\mu \bar{\Omega}_{n}^{T}\right) A^{T}=\lambda \Omega_{n}+\mu \bar{\Omega}_{n}^{T}
$$

In particular, setting $\lambda=\mu=1$, we obtain

$$
\begin{equation*}
\bar{A} \Theta_{n} A^{T}=\Theta_{n}, \tag{3.4}
\end{equation*}
$$

where $\Theta_{n}=\Omega_{n}+\bar{\Omega}_{n}^{T}$ is the following $n \times n$ matrix:

$$
\Theta_{n}=\left(\begin{array}{ccccc}
2 & 1-t^{-1} & 1-t^{-1} & \cdots & 1-t^{-1} \\
1-t & 2 & 1-t^{-1} & \cdots & 1-t^{-1} \\
1-t & 1-t & 2 & \cdots & 1-t^{-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1-t & 1-t & 1-t & \cdots & 2
\end{array}\right)
$$

The matrix Θ_{n} is "Hermitian" in the sense that $\bar{\Theta}_{n}^{T}=\Theta_{n}$.

Remark 3.2. Sending $t \in \Lambda$ to a complex number ζ of absolute value 1 , we obtain a ring homomorphism $p_{\zeta}: \Lambda \rightarrow \mathbf{C}$. The involution $\lambda \mapsto \bar{\lambda}$ on the ring Λ corresponds under p_{ζ} to complex conjugation. Applying p_{ζ} to the entries of $n \times n$ matrices over Λ, we obtain a group homomorphism $\mathrm{GL}_{n}(\Lambda) \rightarrow \mathrm{GL}_{n}(\mathbf{C})$, also denoted by p_{ζ}. This gives a representation

$$
P_{\zeta}=p_{\zeta} \psi_{n}: B_{n} \rightarrow \mathrm{GL}_{n}(\mathbf{C})
$$

Formula (3.4) implies that

$$
\overline{P_{\zeta}(\beta)} p_{\zeta}\left(\Theta_{n}\right) P_{\zeta}(\beta)^{T}=p_{\zeta}\left(\Theta_{n}\right)
$$

for all $\beta \in B_{n}$. For $\zeta=1$, we have $p_{\zeta}\left(\Theta_{n}\right)=2 I_{n}$. Therefore the Hermitian matrix $p_{\zeta}\left(\Theta_{n}\right)$ is positive definite for all ζ sufficiently close to 1 . For such ζ, the matrices in $P_{\zeta}\left(B_{n}\right) \subset \mathrm{GL}_{n}(\mathbf{C})$ are obtained by transposition and conjugation from unitary matrices.

3.1.3 The kernel of ψ_{n}

A homomorphism from a group to a group of matrices is said to be faithful if its kernel is trivial. The homomorphism ψ_{1} is faithful, since $B_{1}=\{1\}$. The homomorphism ψ_{2} is also faithful. Indeed, the matrix $U=U_{1} \in \operatorname{GL}_{2}(\Lambda)$, which is the image of the generator σ_{1} of $B_{2} \cong \mathbf{Z}$, satisfies

$$
(1,-1) U=(-t, t)=-t(1,-1)
$$

Hence, $(1,-1) U^{k}=(-t)^{k}(1,-1)$ for all $k \in \mathbf{Z}$ and we can conclude that U is of infinite order in $\mathrm{GL}_{2}(\Lambda)$. In Section 3.3.2 we shall show that $\operatorname{Ker} \psi_{3}=\{1\}$. For $n \geq 4$, the question whether ψ_{n} is faithful, i.e., whether $\operatorname{Ker} \psi_{n}=\{1\}$, remained open for a long time. Note that $\operatorname{Ker} \psi_{n} \subset \operatorname{Ker} \psi_{n+1}$ under the inclusion $B_{n} \subset B_{n+1}$. Therefore, if $\operatorname{Ker} \psi_{n} \neq\{1\}$, then we have also $\operatorname{Ker} \psi_{m} \neq\{1\}$ for all $m \geq n$.

Theorem 3.3. $\operatorname{Ker} \psi_{n} \neq\{1\}$ for $n \geq 5$.
At the moment of writing (2007), it is unknown whether $\operatorname{Ker} \psi_{4}=\{1\}$.
We point out explicit braids on five and six strings annihilated by the Burau representation. Set

$$
\gamma=\sigma_{4} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2}^{-1} \sigma_{1}^{-2} \sigma_{2}^{-2} \sigma_{1}^{-1} \sigma_{4}^{-5} \sigma_{2} \sigma_{3} \sigma_{4}^{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2} \sigma_{3}^{-1} \in B_{5}
$$

Then the commutator

$$
\rho=\left[\gamma \sigma_{4} \gamma^{-1}, \sigma_{4} \sigma_{3} \sigma_{2} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \sigma_{4}\right]
$$

is a nontrivial element of $\operatorname{Ker} \psi_{5} \subset B_{5}$. Here for elements a, b of a group,

$$
[a, b]=a^{-1} b^{-1} a b .
$$

The braid ρ is represented by a word of length 120 in the generators $\sigma_{1}^{ \pm 1}, \sigma_{2}^{ \pm 1}, \sigma_{3}^{ \pm 1}, \sigma_{4}^{ \pm 1}$ (observe that γ has length 26, while $\sigma_{4}^{-1} \gamma$ and $\gamma^{-1} \sigma_{4}$ have length 25). For $n=6$ we can produce a shorter word representing an element of the kernel. Set

$$
\gamma=\sigma_{4} \sigma_{5}^{-2} \sigma_{2}^{-1} \sigma_{1}^{3} \sigma_{2}^{-1} \sigma_{5}^{-1} \sigma_{4} \in B_{6}
$$

The commutator

$$
\rho^{\prime}=\left[\gamma \sigma_{3} \gamma^{-1}, \sigma_{3}\right]
$$

is a nontrivial element of $\operatorname{Ker} \psi_{6} \subset B_{6}$. The braid ρ^{\prime} is represented by a word of length 44 in the generators. That ρ, ρ^{\prime} lie in the kernel of the Burau representation can in principle be verified by a direct computation. That they are nontrivial braids can be obtained using the solution of the word problem in B_{n} given in Section 1.5.1, or the normal form of braids discussed in Section 6.5.4, or the prime handle reduction of Section 7.5. These computations, however, shed no light on the geometric reasons forcing ρ, ρ^{\prime} to lie in the kernel. These reasons will be discussed in Section 3.2.

Exercise 3.1.1. Show that $\operatorname{Ker} \psi_{n} \subset B_{n}$ is invariant under the involutive anti-automorphism $h: B_{n} \rightarrow B_{n}$ sending σ_{i} to itself for $i=1, \ldots, n-1$. (Hint: Verify that $U_{i}^{T}=D U_{i} D^{-1}$, where $i=1, \ldots, n-1$ and $D=D_{n}$ is the diagonal $n \times n$ matrix with diagonal terms $1, t, t^{2}, \ldots, t^{n-1}$. Deduce that

$$
\psi_{n}(h(\beta))=D^{-1} \psi_{n}(\beta)^{T} D
$$

for all $\beta \in B_{n}$.)

3.2 Nonfaithfulness of the Burau representation

The aim of this section is to prove Theorem 3.3 for $n \geq 6$. The case $n=5$ is somewhat subtler; for this case, we refer the reader to [Big99].

We begin with a study of homological representations of mapping class groups of surfaces.

3.2.1 Homological representations

Let Σ be a connected oriented surface (possibly with boundary $\partial \Sigma$). Recall that by self-homeomorphisms of Σ we mean orientation-preserving homeomorphisms $\Sigma \rightarrow \Sigma$ fixing the boundary pointwise. The isotopy classes of selfhomeomorphisms of Σ form the mapping class group $\mathfrak{M}(\Sigma)$; see Section 1.6.1, where we take $M=\Sigma, Q=\emptyset$. A self-homeomorphism of Σ induces an automorphism of the homology group $H=H_{1}(\Sigma ; \mathbf{Z})$. It is clear that isotopic self-homeomorphisms of Σ are homotopic and therefore induce the same automorphism of H. This defines a group homomorphism $\mathfrak{M}(\Sigma) \rightarrow \operatorname{Aut}(H)$, called the homological representation of $\mathfrak{M}(\Sigma)$.

Recall the intersection form $H \times H \rightarrow \mathbf{Z}$. This is a skew-symmetric bilinear form whose value $[\alpha] \cdot[\beta] \in \mathbf{Z}$ on the homology classes $[\alpha],[\beta] \in H$ represented by oriented loops α, β on Σ is the algebraic intersection number of these loops computed as follows. Deforming slightly α and β, we can assume that they meet transversely in a finite set of points that are not self-crossings of α or of β. Then

$$
[\alpha] \cdot[\beta]=\sum_{p \in \alpha \cap \beta} \varepsilon_{p},
$$

where $\varepsilon_{p}=+1$ if the tangent vectors of α, β at p form a positively oriented basis and $\varepsilon_{p}=-1$ otherwise. This sum does not depend on the choice of the loops α, β in their homology classes and defines a bilinear form $H \times H \rightarrow \mathbf{Z}$. The identity $[\alpha] \cdot[\beta]=-[\beta] \cdot[\alpha]$ shows that this intersection form is skewsymmetric. The action of $\mathfrak{M}(\Sigma)$ on H preserves the intersection form.

The homological representation has a more general "twisted" version, which comes up in the following setting. Suppose for concreteness that $\partial \Sigma \neq \emptyset$ and fix a base point $d \in \partial \Sigma$. Consider a surjective homomorphism φ from $\pi_{1}(\Sigma, d)$ onto a group G. Let $\widetilde{\Sigma} \rightarrow \Sigma$ be the covering corresponding to the kernel of φ. The group of covering transformations of $\widetilde{\Sigma}$ is identified with G. Pick an arbitrary point $\widetilde{\sim} \in \partial \widetilde{\Sigma}$ lying over d and consider the relative homology group $\widetilde{H}=H_{1}(\widetilde{\Sigma}, G \widetilde{d} ; \mathbf{Z})$, where $G \widetilde{d}$ is the G-orbit of \widetilde{d}, i.e., the set of all points of $\widetilde{\Sigma}$ lying over d. The action of G on $\widetilde{\Sigma}$ induces a left action of G on \widetilde{H} and turns \widetilde{H} into a left module over the group ring $\mathbf{Z}[G]$. This module is free of rank $n=\operatorname{rk} H_{1}(\Sigma ; \mathbf{Z})$. This follows from the fact that Σ deformation retracts onto a union of n simple closed loops on Σ meeting only at their common origin d (here we crucially use the assumption $\partial \Sigma \neq \emptyset$; cf. Figure 1.15, where Σ is the complement of n points in a disk). Let $\operatorname{Aut}(\widetilde{H})$ be the group of $\mathbf{Z}[G]$-linear automorphisms of \widetilde{H}. Clearly, $\operatorname{Aut}(\widetilde{H}) \cong \mathrm{GL}_{n}(\mathbf{Z}[G])$.

Any self-homeomorphism f of Σ fixes the boundary $\partial \Sigma$ pointwise and, in particular, fixes d. It induces therefore an automorphism $f_{\#}$ of the fundamental group $\pi_{1}(\Sigma, d)$. Let $\mathfrak{M}_{\varphi}(\Sigma, d)$ be the group of isotopy classes of self-homeomorphisms f of Σ such that $\varphi \circ f_{\#}=\varphi$. We construct a homomorphism $\mathfrak{M}_{\varphi}(\Sigma, d) \rightarrow \operatorname{Aut}(\widetilde{H})$ called the twisted homological representation of $\mathfrak{M}_{\varphi}(\Sigma, d)$. Every self-homeomorphism f of Σ representing an element of $\mathfrak{M}_{\varphi}(\Sigma, d)$ lifts uniquely to a homeomorphism $\widetilde{f}: \widetilde{\Sigma} \rightarrow \widetilde{\Sigma}$ fixing \widetilde{d}. The equality $\varphi \circ f_{\#}=\varphi$ ensures that \widetilde{f} commutes with the action of G on $\widetilde{\Sigma}$. Therefore \widetilde{f} fixes the set $G \widetilde{d}$ pointwise: $\widetilde{f}(g \widetilde{d})=g \widetilde{f}(\widetilde{d})=g \widetilde{d}$ for all $g \in G$. Let \widetilde{f}_{*} be the automorphism of $\widetilde{H}=H_{1}(\widetilde{\Sigma}, G \widetilde{d} ; \mathbf{Z})$ induced by \widetilde{f}. Since \widetilde{f} commutes with the action of G, this automorphism is $\mathbf{Z}[G]$-linear. The map $f \mapsto \widetilde{f}_{*}$ defines a group homomorphism $\mathfrak{M}_{\varphi}(\Sigma, d) \rightarrow \operatorname{Aut}(\widetilde{H})$, which is the homological representation in question. The group \widetilde{H} carries a natural intersection form preserved by $\mathfrak{M}_{\varphi}(\Sigma, d)$ but we shall not need it.

3.2.2 The homomorphism Ψ_{n}

We apply the general scheme of twisted homological representations to punctured disks. Fix $n \geq 1$. Let Q be the set $\{(1,0),(2,0), \ldots,(n, 0)\} \subset \mathbf{R}^{2}$ and let D be a closed Euclidean disk in \mathbf{R}^{2} containing Q in its interior. We provide D with the counterclockwise orientation as in Figure 1.15. Observe that for any point p in the interior of D, the group

$$
H_{1}(D-\{p\} ; \mathbf{Z}) \cong \mathbf{Z}
$$

is generated by the homology class of a small loop encircling p counterclockwise. Each loop γ in $D-\{p\}$ represents k times this generator, where k is the winding number of γ around p. Set

$$
\Sigma=D-Q
$$

and fix a base point $d \in \partial \Sigma=\partial D$. Consider the group homomorphism φ from $\pi_{1}(\Sigma, d)$ to the infinite cyclic group $\left\{t^{k}\right\}_{k \in \mathbf{Z}}$ sending the homotopy class of a loop γ to $t^{-w(\gamma)}$, where $w(\gamma)$ is the total winding number of γ defined as the sum of its winding numbers around the points $(1,0),(2,0), \ldots,(n, 0)$. The kernel of φ determines an infinite cyclic covering $\widetilde{\Sigma} \rightarrow \Sigma$. We identify its group of covering transformations with the infinite cyclic group $\left\{t^{k}\right\}_{k \in \mathbf{Z}}$. Pick a point $\tilde{d} \in \partial \widetilde{\Sigma}$ over d and set

$$
\widetilde{H}=H_{1}\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)
$$

Observe that any self-homeomorphism of D permuting the points of Q preserves the total winding number of loops in Σ. This is obvious for the small loops encircling the points of Q and holds for arbitrary loops, since their total winding numbers depend only on their homology classes in the group $H_{1}(\Sigma ; \mathbf{Z}) \cong \mathbf{Z}^{n}$, which is generated by the homology classes of the small loops. Therefore the restriction to Σ defines a group homomorphism

$$
\mathfrak{M}(D, Q) \rightarrow \mathfrak{M}_{\varphi}(\Sigma, d)
$$

(It is actually an isomorphism but we do not need this.) Composing this homomorphism with the twisted homological representation $\mathfrak{M}_{\varphi}(\Sigma, d) \rightarrow \operatorname{Aut}(\widetilde{H})$ defined in Section 3.2.1, we obtain a group homomorphism

$$
\Psi_{n}: \mathfrak{M}(D, Q) \rightarrow \operatorname{Aut}(\widetilde{H})
$$

The image of $f \in \mathfrak{M}(D, Q)$ under Ψ_{n} is the automorphism \widetilde{f}_{*} of \widetilde{H} induced by the lift $\widetilde{f}: \widetilde{\Sigma} \rightarrow \widetilde{\Sigma}$ of $\left.f\right|_{\Sigma}: \Sigma \rightarrow \Sigma$ fixing \widetilde{d}.

In the next two subsections we show that $\operatorname{Ker} \Psi_{n} \neq\{1\}$ for $n \geq 6$. After that we show that Ψ_{n} is equivalent to the Burau representation ψ_{n} for all n. This will imply the nonfaithfulness of the latter for $n \geq 6$.

3.2.3 The kernel of Ψ_{n}

We give a construction of elements in $\operatorname{Ker} \Psi_{n}$ using half-twists about spanning arcs as introduced in Section 1.6.2.

We say that two spanning arcs α, β on (D, Q) are transversal if they have no common endpoints and meet transversely at a finite number of points. For any transversal spanning arcs α, β on (D, Q), we define their algebraic intersection $\langle\alpha, \beta\rangle \in \Lambda=\mathbf{Z}\left[t, t^{-1}\right]$. Consider the open $\operatorname{arcs} \alpha \cap \Sigma=\alpha-\partial \alpha$ and $\beta \cap \Sigma=\beta-\partial \beta$ on $\Sigma=\mathcal{D}_{\sim}-Q$. Orient these arcs in an arbitrary way and pick arbitrary lifts $\widetilde{\alpha}, \widetilde{\beta} \subset \widetilde{\Sigma}$ of α, β with induced orientations. Now we can set

$$
\begin{equation*}
\langle\alpha, \beta\rangle=\sum_{k \in \mathbf{Z}}\left(t^{k} \widetilde{\alpha} \cdot \widetilde{\beta}\right) t^{k} \in \Lambda \tag{3.5}
\end{equation*}
$$

where $t^{k} \widetilde{\alpha} \cdot \widetilde{\beta} \in \mathbf{Z}$ is the algebraic intersection number of the oriented $\operatorname{arcs} t^{k} \widetilde{\alpha}$ and $\widetilde{\beta}$ on $\widetilde{\Sigma}$. Note that although the $\operatorname{arcs} t^{k} \widetilde{\alpha}$ and $\widetilde{\beta}$ are not compact, they have only a finite number of intersections, and moreover, the sum on the righthand side of (3.5) is finite. This is so because the covering projection $\widetilde{\Sigma} \rightarrow \Sigma$ maps $\widetilde{\beta}$ bijectively onto β and maps the set $\left(\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{\alpha}\right) \cap \widetilde{\beta}$ bijectively onto the finite set $\alpha \cap \beta$. This shows also that every point $p \in \alpha \cap \beta \subset \Sigma$ lifts to an intersection point of $t^{k} \widetilde{\alpha}$ with $\widetilde{\beta}$ for exactly one $k=k_{p} \in \mathbf{Z}$. Therefore,

$$
\begin{equation*}
\langle\alpha, \beta\rangle=\sum_{p \in \alpha \cap \beta} \varepsilon_{p} t^{k_{p}} \tag{3.6}
\end{equation*}
$$

where $\varepsilon_{p}= \pm 1$ is the intersection sign of α and β at p. As an exercise, the reader may verify that for any $p, q \in \alpha \cap \beta$, the difference $k_{p}-k_{q}$ is the total winding number of the loop in Σ going from p to q along α and then from q to p along β. The expression $\langle\alpha, \beta\rangle$ is defined only up to multiplication by ± 1 and a power of t depending on the choice of orientations on α, β and the choice of their lifts $\widetilde{\alpha}, \widetilde{\beta}$. This will not be important for us, since we are interested only in whether $\langle\alpha, \beta\rangle=0$. Note that

$$
\begin{aligned}
\langle\beta, \alpha\rangle & =\sum_{k \in \mathbf{Z}}\left(t^{k} \widetilde{\beta} \cdot \widetilde{\alpha}\right) t^{k}=\sum_{k \in \mathbf{Z}}\left(\widetilde{\beta} \cdot t^{-k} \widetilde{\alpha}\right) t^{k} \\
& =-\sum_{k \in \mathbf{Z}}\left(t^{-k} \widetilde{\alpha} \cdot \widetilde{\beta}\right) t^{k}=-\sum_{k \in \mathbf{Z}}\left(t^{k} \widetilde{\alpha} \cdot \widetilde{\beta}\right) t^{-k} \\
& =-\overline{\langle\alpha, \beta\rangle}
\end{aligned}
$$

where the overbar denotes the ring involution on Λ sending t to t^{-1}. Hence, $\langle\alpha, \beta\rangle=0 \Rightarrow\langle\beta, \alpha\rangle=0$.

As we know, every spanning arc α on (D, Q) gives rise to a half-twist $\tau_{\alpha}:(D, Q) \rightarrow(D, Q)$ acting as the identity outside a disk neighborhood of α and mapping α onto itself via an orientation-reversing involution. Restricting τ_{α} to $\Sigma=D-Q$, we obtain a self-homeomorphism of Σ, denoted again by τ_{α}.

Lemma 3.4. Let α, β be transversal spanning arcs on (D, Q). If $\langle\alpha, \beta\rangle=0$, then $\Psi_{n}\left(\tau_{\alpha} \tau_{\beta}\right)=\Psi_{n}\left(\tau_{\beta} \tau_{\alpha}\right)$.

Proof. To prove the lemma we compute the homological action of the halftwists. As a warmup, we compute the action of τ_{α} on $H=H_{1}(\Sigma ; \mathbf{Z})$. Consider the loop α^{\prime} on D drawn in Figure 3.1. This loop has a "figure-eight" shape and its only self-crossing lies on α. We orient α and α^{\prime} so that $[\alpha] \cdot\left[\alpha^{\prime}\right]=-2$, where $[\alpha] \in H_{1}(D, Q ; \mathbf{Z})$ is the relative homology class of α and $\left[\alpha^{\prime}\right] \in H$ is the homology class of α^{\prime}. The dot • denotes the bilinear intersection form $H_{1}(D, Q ; \mathbf{Z}) \times H \rightarrow \mathbf{Z}$ determined by the counterclockwise orientation of D.

The effect of the half-twist τ_{α} on an oriented curve transversal to α is to insert $\left(\alpha^{\prime}\right)^{ \pm 1}$ at each crossing of α with this curve; see Figure 1.14. It is easy to check that for any $h \in H$,

$$
\left(\tau_{\alpha}\right)_{*}(h)=h+([\alpha] \cdot h)\left[\alpha^{\prime}\right] .
$$

Fig. 3.1. The loop α^{\prime} associated with a spanning arc α

The automorphism $\Psi_{n}\left(\tau_{\alpha}\right)$ of $\widetilde{H}=H_{1}\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)$ is defined by $\Psi_{n}\left(\tau_{\alpha}\right)=\left(\widetilde{\tau}_{\alpha}\right)_{*}$, where $\widetilde{\tau}_{\alpha}: \widetilde{\Sigma} \rightarrow \widetilde{\Sigma}$ is the lift of $\tau_{\alpha}: \Sigma \rightarrow \Sigma$ fixing \widetilde{d}. Observe that the loop α^{\prime} on Σ associated to α has zero total winding number and therefore lifts to a loop $\widetilde{\alpha}^{\prime}$ on $\widetilde{\Sigma}$. Consider an arbitrary oriented path γ in $\widetilde{\Sigma}$ with endpoints in $\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d}$. The effect of $\widetilde{\tau}_{\alpha}$ on γ is to insert a lift of $\left(\alpha^{\prime}\right)^{ \pm 1}$ at each crossing of γ with the preimage of α in $\widetilde{\Sigma}$. Thus $\left(\widetilde{\tau}_{\alpha}\right)_{*}$ acts on the relative homology class $[\gamma] \in \widetilde{H}$ by

$$
\left(\widetilde{\tau}_{\alpha}\right)_{*}([\gamma])=[\gamma]+\lambda_{\gamma}\left[\widetilde{\alpha}^{\prime}\right],
$$

where $\lambda_{\gamma} \in \Lambda$ is a Laurent polynomial whose coefficients are the algebraic intersection numbers of γ with lifts of α to $\widetilde{\Sigma}$. Since $\langle\alpha, \beta\rangle=0$, any lift of α has algebraic intersection number zero with any lift of β to $\widetilde{\Sigma}$ and hence with any lift $\widetilde{\beta}^{\prime}$ of β^{\prime} to $\widetilde{\Sigma}$. Therefore, $\lambda_{\widetilde{\beta}^{\prime}}=0$ and $\left(\widetilde{\tau}_{\alpha}\right)_{*}\left(\left[\widetilde{\beta}^{\prime}\right]\right)=\left[\widetilde{\beta^{\prime}}\right]$. Similarly, $\left(\widetilde{\tau}_{\beta}\right)_{*}([\gamma])=[\gamma]+\mu_{\gamma}\left[\widetilde{\beta}^{\prime}\right]$ for all γ as above and some $\mu_{\gamma} \in \Lambda$. The equality $\langle\beta, \alpha\rangle=0$ implies that $\left(\widetilde{\tau}_{\beta}\right)_{*}\left(\left[\widetilde{\alpha}^{\prime}\right]\right)=\left[\widetilde{\alpha}^{\prime}\right]$. We conclude that for all γ,

$$
\left(\widetilde{\tau}_{\alpha} \widetilde{\tau}_{\beta}\right)_{*}([\gamma])=[\gamma]+\lambda_{\gamma}\left[\widetilde{\alpha}^{\prime}\right]+\mu_{\gamma}\left[\widetilde{\beta}^{\prime}\right]=\left(\widetilde{\tau}_{\beta} \widetilde{\tau}_{\alpha}\right)_{*}([\gamma]) .
$$

Therefore $\left(\widetilde{\tau}_{\alpha} \widetilde{\tau}_{\beta}\right)_{*}=\left(\widetilde{\tau}_{\beta} \widetilde{\tau}_{\alpha}\right)_{*}$.

To prove that $\operatorname{Ker} \Psi_{n} \neq\{1\}$, it remains to construct two spanning $\operatorname{arcs} \alpha, \beta$ satisfying the conditions of Lemma 3.4 and such that $\tau_{\alpha} \tau_{\beta} \neq \tau_{\beta} \tau_{\alpha}$ in $\mathfrak{M}(D, Q)$. For $n=6$, such spanning arcs α, β are drawn in Figure 3.2. To check the equality $\langle\alpha, \beta\rangle=0$, one applies (3.6) and the computations after it (this is left as an exercise for the reader). To prove that τ_{α} and τ_{β} do not commute in $\mathfrak{M}(D, Q)$, one can use a brute-force computation using, for instance, the action of the mapping class group on $\pi_{1}(\Sigma, d)$. We give a geometric argument in the next subsection.

Fig. 3.2. Spanning arcs α, β for $n=6$

3.2.4 Dehn twists

To show that two half-twists do not commute, we shall appeal to the theory of Dehn twists. We begin with the relevant definitions. Let Σ be an arbitrary oriented surface. By a simple closed curve on Σ, we mean the image of an embedding $S^{1} \hookrightarrow \Sigma^{\circ}=\Sigma-\partial \Sigma$. (Note that simple closed curves are not assumed to be oriented.) A simple closed curve c on Σ gives rise to a selfhomeomorphism t_{c} of Σ, called the Dehn twist about c. It is defined as follows. Set $I=[0,1]$ and identify a cylinder neighborhood of c in Σ with $S^{1} \times I$ so that $c=S^{1} \times\{1 / 2\}$ and the product of the counterclockwise orientation on $S^{1}=\{z \in \mathbf{C}| | z \mid=1\}$ and the right-handed orientation on I corresponds to the given orientation on Σ. The Dehn twist $t_{c}: \Sigma \rightarrow \Sigma$ is the identity outside $S^{1} \times I$ and sends any $(x, s) \in S^{1} \times I$ to

$$
\left(e^{2 \pi i s} x, s\right) \in S^{1} \times I
$$

It is clear that t_{c} is an orientation-preserving homeomorphism. Its isotopy class depends neither on the choice of the cylinder neighborhood of c nor on the choice of its identification with $S^{1} \times I$. Note that if f is a self-homeomorphism of Σ, then $f(c)$ is a simple closed curve of Σ and $t_{f(c)}=f t_{c} f^{-1}$, where equality means isotopy in the class of self-homeomorphisms of Σ.

Two simple closed curves c, d on Σ are said to be isotopic if there is a self-homeomorphism of Σ that is isotopic to the identity and sends c onto d. It is clear that if c, d are isotopic, then $t_{c}=t_{d}$.

The question whether two Dehn twists commute (up to isotopy) has a simple geometric solution contained in the following lemma.

Lemma 3.5. Let c, d be simple closed curves on an oriented surface Σ. The Dehn twists t_{c}, t_{d} commute if and only if c, d are isotopic to disjoint simple closed curves.

Proof. If c, d are disjoint, then they have disjoint cylinder neighborhoods, so that the Dehn twists t_{c}, t_{d} obviously commute. If c, d are isotopic to disjoint simple closed curves c^{\prime}, d^{\prime}, then $t_{c}=t_{c^{\prime}}$ commutes with $t_{d}=t_{d^{\prime}}$. The proof of the converse is based on the techniques and results of [Tra79], which we now recall. For simple closed curves c, d on Σ, denote by $i(c, d)$ the minimum number of intersections of simple closed curves on Σ isotopic to c, d, respectively, and meeting each other transversely. Thus,

$$
i(c, d)=\min _{c^{\prime}, d^{\prime}} \operatorname{card}\left(c^{\prime} \cap d^{\prime}\right) \geq 0
$$

where c^{\prime}, d^{\prime} run over all pairs of simple closed curves on Σ isotopic to c, d, respectively, and such that c^{\prime} meets d^{\prime} transversely. In particular, $i(c, c)=0$, since c is isotopic to a simple closed curve disjoint from c.

Proposition 1 on p. 68 of [Tra79] includes as a special case the following claim: if c, d, e are three simple closed curves on Σ, then

$$
\left|i\left(t_{c}(d), e\right)-i(c, d) i(c, e)\right| \leq i(d, e)
$$

Setting $e=d$, we obtain

$$
\begin{equation*}
i\left(t_{c}(d), d\right)=i(c, d)^{2} \tag{3.7}
\end{equation*}
$$

This implies that if c, c^{\prime} are simple closed curves on Σ such that $t_{c}=t_{c^{\prime}}$, then $i(c, d)=i\left(c^{\prime}, d\right)$ for any d.

Suppose now that two Dehn twists t_{c}, t_{d} commute. Then

$$
t_{d}=t_{c} t_{d} t_{c}^{-1}=t_{t_{c}(d)}
$$

By the previous paragraph, $i\left(t_{c}(d), d\right)=i(d, d)=0$. By $(3.7), i(c, d)=0$. Hence, c, d are isotopic to disjoint simple closed curves.

The next lemma yields a necessary geometric condition for two simple closed curves on an oriented surface to be isotopic to curves with fewer intersections.

Lemma 3.6. Let c, d be simple closed curves on Σ intersecting transversely at finitely many points. If c, d are isotopic to simple closed curves c^{\prime}, d^{\prime} on Σ that are transversal and satisfy $\operatorname{card}\left(c^{\prime} \cap d^{\prime}\right)<\operatorname{card}(c \cap d)$, then the curves c, d have a "digon," i.e., an embedded disk in Σ whose boundary consists of a subarc of c and a subarc of d and whose interior does not meet $c \cup d$; see Figure 3.3.

For a proof, see [Tra79, pp. 46-48] or [PR00, Prop. 3.2].

The half-twists about arcs are related to the Dehn twists as follows. Suppose that $\Sigma=M-Q$, where M is an oriented surface and Q a finite subset of $M^{\circ}=M-\partial M$. Let α be a spanning arc on (M, Q). Consider a closed disk in M containing α in its interior and meeting Q only along the endpoints of α. Let $c=c(\alpha) \subset \Sigma$ be the boundary of this disk. This simple closed curve is determined by α up to isotopy in Σ. The Dehn twist $t_{c}: \Sigma \rightarrow \Sigma$ can be computed from the half-twist $\tau_{\alpha}: \Sigma \rightarrow \Sigma$ by

$$
t_{c}=\tau_{\alpha}^{2}
$$

Indeed, both sides act as the identity outside a disk neighborhood of α as well as inside a smaller concentric disk neighborhood of α. In the annulus between these disks, both t_{c} and τ_{α}^{2} act as the Dehn twist about the core circle of the annulus.

Fig. 3.3. A digon

We can now prove that the half-twists $\tau_{\alpha}, \tau_{\beta} \in \mathfrak{M}(D, Q)$ associated with the $\operatorname{arcs} \alpha, \beta$ in Figure 3.2 do not commute. If they do, then their restrictions to the six-punctured disk $\Sigma=D-Q$ also commute. Then the Dehn twists

$$
t_{c(\alpha)}=\tau_{\alpha}^{2}: \Sigma \rightarrow \Sigma \quad \text { and } \quad t_{c(\beta)}=\tau_{\beta}^{2}: \Sigma \rightarrow \Sigma
$$

commute. By Lemmas 3.5 and 3.6, the curves $c(\alpha)$ and $c(\beta)$ must have a digon in Σ. Drawing these curves, one observes that they have 16 crossings and no digons in Σ. Hence $\tau_{\alpha}, \tau_{\beta}$ do not commute.

3.2.5 Equivalence of representations

The following theorem shows that the representation Ψ_{n} of B_{n} constructed in Section 3.2.2 is equivalent to the Burau representation ψ_{n} for all $n \geq 1$. Recall the isomorphism $\eta: B_{n} \rightarrow \mathfrak{M}(D, Q)$ defined in Section 1.6.3.

Theorem 3.7. There is a group isomorphism $\mu: \operatorname{GL}_{n}(\Lambda) \rightarrow \operatorname{Aut}(\widetilde{H})$, where $\widetilde{H}=H_{1}\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)$, such that the following diagram is commutative:

Proof. We first compute the Λ-module $\widetilde{H}=H_{1}\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)$. Observe that Σ deformation retracts on the graph $\Gamma \subset \Sigma$ formed by one vertex d and n oriented loops X_{1}, \ldots, X_{n} on Σ shown in Figure 1.15. The total winding numbers of these loops are equal to -1 . The homomorphism φ sends the generators of $\pi_{1}(\Sigma, d)$ represented by these loops to t. The infinite cyclic covering $\underset{\sim}{\Sigma}$ of Σ deformation retracts on an infinite graph $\widetilde{\Gamma} \subset \widetilde{\Sigma}$ with vertices $\left\{t^{k} \widetilde{d}\right\}_{k \in \mathbf{Z}}$ and oriented edges $\left\{t^{k} \widetilde{X}_{i}\right\}_{k \in \mathbf{Z}, i=1, \ldots, n}$, where each edge $t^{k} \widetilde{X}_{i}$ connects $t^{k} \widetilde{d}$ to $t\left(t^{k} \widetilde{d}\right)=t^{k+1} \widetilde{d}$ and is oriented from the former to the latter. The generator t acts on $\widetilde{\Gamma}$ by sending $t^{k} \widetilde{X}_{i}$ onto $t^{k+1} \widetilde{X}_{i}$. The cellular chain complex of the pair $\left(\widetilde{\Gamma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d}\right)$ is 0 except in dimension 1 , where it is equal to $\bigoplus_{i=1}^{n} \Lambda \widetilde{X}_{i}$. Therefore

$$
\widetilde{H}=H_{1}\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)=H_{1}\left(\widetilde{\Gamma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)=\bigoplus_{i=1}^{n} \Lambda\left[\widetilde{X}_{i}\right]
$$

is a free Λ-module with basis $\left[\widetilde{X}_{1}\right], \ldots,\left[\widetilde{X}_{n}\right]$. We use this basis to identify $\operatorname{Aut}(\widetilde{H})$ with $\mathrm{GL}_{n}(\Lambda)$ in the standard way. The action of a matrix $\left(\lambda_{i, j}\right) \in \mathrm{GL}_{n}(\Lambda)$ on \widetilde{H} sends each $\left[\widetilde{X}_{j}\right]$ to $\sum_{i} \lambda_{i, j}\left[\widetilde{X}_{i}\right]$.

We define a group isomorphism

$$
\mu: \operatorname{GL}_{n}(\Lambda) \rightarrow \operatorname{GL}_{n}(\Lambda)=\operatorname{Aut}(\tilde{H})
$$

as the composition of the matrix transposition and inversion: $\mu(U)=\left(U^{T}\right)^{-1}$ for $U \in \mathrm{GL}_{n}(\Lambda)$. To check that the diagram (3.8) is commutative, we need to verify that for all $\beta \in B_{n}$,

$$
\Psi_{n} \eta(\beta)=\mu \psi_{n}(\beta)
$$

Since both sides are multiplicative with respect to β, it suffices to check this equality for a set of generators of B_{n}. We do it for the generators $\sigma_{1}^{-1}, \ldots, \sigma_{n-1}^{-1}$. Pick $i=1, \ldots, n-1$. The homeomorphism $\eta\left(\sigma_{i}^{-1}\right): D \rightarrow D$ exchanges the points $(i, 0),(i+1,0) \in Q$ via a clockwise rotation of the arc $[i, i+1] \times\{0\}$ by an angle of π. This homeomorphism keeps X_{k} fixed for $k \neq i, i+1$, transforms X_{i} into a loop homotopic to the product $X_{i} X_{i+1} X_{i}^{-1}$, and transforms X_{i+1} into X_{i}. The lift of this homeomorphism to $\widetilde{\Sigma}$ keeps \widetilde{X}_{k} fixed for $k \neq i, i+1$, transforms \widetilde{X}_{i+1} into \widetilde{X}_{i}, and stretches \widetilde{X}_{i} into the path

$$
\widetilde{X}_{i}\left(t \widetilde{X}_{i+1}\right)\left(t \widetilde{X}_{i}\right)^{-1}
$$

The induced automorphism $\Psi_{n} \eta\left(\sigma_{i}^{-1}\right)$ of \widetilde{H} acts by

$$
\left[\widetilde{X}_{i}\right] \mapsto(1-t)\left[\tilde{X}_{i}\right]+t\left[\widetilde{X}_{i+1}\right], \quad\left[\tilde{X}_{i+1}\right] \mapsto\left[\tilde{X}_{i}\right]
$$

and $\left[\widetilde{X}_{k}\right] \mapsto\left[\widetilde{X}_{k}\right]$ for $k \neq i, i+1$. The matrix of this automorphism in the basis $\left[\widetilde{X}_{1}\right], \ldots,\left[\widetilde{X}_{n}\right]$ is precisely $U_{i}^{T}=\mu \psi_{n}\left(\sigma_{i}^{-1}\right)$.

Remarks 3.8. (a) Similar methods, extended to arcs from the points of Q to the base point $d \in \partial D$, show that $\operatorname{Ker} \psi_{5} \neq\{1\}$; see [Big99].
(b) Applying the construction of Section 3.2.1 to the natural projection $\pi_{1}(\Sigma, d) \rightarrow H_{1}(\Sigma)$, we obtain a matrix representation of the Torelli subgroup of $\mathfrak{M}(\Sigma)$ consisting of the self-homeomorphisms of Σ acting as the identity on $H_{1}(\Sigma)$. When Σ is the complement of n points in a 2 -disk, this group is the pure braid group P_{n} and this representation is a version of the Gassner representation of P_{n} by $n \times n$ matrices over

$$
\mathbf{Z}\left[H_{1}(\Sigma)\right]=\mathbf{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right] .
$$

For more on the Gassner representation, see [Bir74], [Per06].
Exercise 3.2.1. Show that the arcs α, β in Figure 3.2 (where $n=6$) can be computed by $\alpha=\eta\left(\gamma_{1}\right)\left(\alpha_{3}\right)$ and $\beta=\eta\left(\gamma_{2}\right)\left(\alpha_{3}\right)$, where α_{3} is the spanning arc $[3,4] \times\{0\}$ on (D, Q),

$$
\gamma_{1}=\sigma_{1} \sigma_{2}^{-1} \sigma_{5}^{-1} \sigma_{4} \quad \text { and } \quad \gamma_{2}=\sigma_{1}^{-2} \sigma_{2} \sigma_{5}^{2} \sigma_{4}^{-1}
$$

Deduce that the commutator $\left[\gamma_{1} \sigma_{3} \gamma_{1}^{-1}, \gamma_{2} \sigma_{3} \gamma_{2}^{-1}\right.$] is a nontrivial element of $\operatorname{Ker} \psi_{6}$. This implies that the braid $\rho^{\prime}=\left[\gamma_{2}^{-1} \gamma_{1} \sigma_{3} \gamma_{1}^{-1} \gamma_{2}, \sigma_{3}\right]$ introduced in Section 3.1.3 is a nontrivial element of $\operatorname{Ker} \psi_{6}$.

Exercise 3.2.2. Show that the isomorphism $B_{n} \cong \mathfrak{M}(D, Q)$ defined in Section 1.6.3 sends the center of B_{n} onto the infinite cyclic subgroup of $\mathfrak{M}(D, Q)$ generated by the Dehn twist about a simple closed curve in $D-Q$ obtained by pushing the circle ∂D inside $D-Q$.

Exercise 3.2.3. Show that if a simple closed curve c on a surface Σ bounds a disk in Σ, then the Dehn twist t_{c} is isotopic to the identity.

3.3 The reduced Burau representation

We show here that the Burau representation is reducible. As an application, we prove the faithfulness of ψ_{3}. Throughout this section, $\Lambda=\mathbf{Z}\left[t, t^{-1}\right]$.

3.3.1 Reduction of ψ_{n}

Recall the matrices

$$
U_{1}, \ldots, U_{n-1} \in \mathrm{GL}_{n}(\Lambda)
$$

from Section 3.1.1. As above, the symbol I_{k} denotes the unit $k \times k$ matrix. The following theorem shows that the Burau representation is reducible.

Theorem 3.9. Let $n \geq 3$ and $V_{1}, V_{2}, \ldots, V_{n-1}$ be the $(n-1) \times(n-1)$ matrices over Λ given by

$$
V_{1}=\left(\begin{array}{ccc}
-t & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & I_{n-3}
\end{array}\right), \quad V_{n-1}=\left(\begin{array}{ccc}
I_{n-3} & 0 & 0 \\
0 & 1 & t \\
0 & 0 & -t
\end{array}\right)
$$

and for $1<i<n-1$,

$$
V_{i}=\left(\begin{array}{ccccc}
I_{i-2} & 0 & 0 & 0 & 0 \\
0 & 1 & t & 0 & 0 \\
0 & 0 & -t & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & I_{n-i-2}
\end{array}\right)
$$

Then for all $i=1, \ldots, n-1$,

$$
C^{-1} U_{i} C=\left(\begin{array}{ll}
V_{i} & 0 \tag{3.9}\\
*_{i} & 1
\end{array}\right)
$$

where C is the $n \times n$ matrix

$$
C=C_{n}=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

and $*_{i}$ is the row of length $n-1$ equal to 0 if $i<n-1$ and to $(0, \ldots, 0,1)$ if $i=n-1$.

Proof. For $i=1, \ldots, n-1$, set

$$
V_{i}^{\prime}=\left(\begin{array}{ll}
V_{i} & 0 \\
*_{i} & 1
\end{array}\right) .
$$

It suffices to prove that $U_{i} C=C V_{i}^{\prime}$ for all i. Fix i and observe that for any $k=1, \ldots, n$, the k th column of $U_{i} C$ is the sum of the first k columns of U_{i}. A direct computation shows that $U_{i} C$ is obtained from C by replacing the (i, i) th entry by $1-t$ and replacing the $(i+1, i)$ th entry by 1 . Similarly, for any $\ell=1, \ldots, n$, the ℓ th row of $C V_{i}^{\prime}$ is the sum of the last ℓ rows of V_{i}^{\prime}. A direct computation shows that $C V_{i}^{\prime}$ is obtained from C by the same modification as above. Hence $U_{i} C=C V_{i}^{\prime}$.

Since the matrices $U_{1}, \ldots, U_{n-1} \in \mathrm{GL}_{n}(\Lambda)$ satisfy the braid relations, so do the conjugate matrices $C^{-1} U_{1} C, \ldots, C^{-1} U_{n-1} C$. Formula (3.9) implies that the matrices V_{1}, \ldots, V_{n-1} also satisfy the braid relations. It is obvious that these matrices are invertible over Λ and therefore belong to $\operatorname{GL}_{n-1}(\Lambda)$.

By Lemma 1.2, the formula $\psi_{n}^{\mathrm{r}}\left(\sigma_{i}\right)=V_{i}$ defines a group homomorphism $\psi_{n}^{\mathrm{r}}: B_{n} \rightarrow \mathrm{GL}_{n-1}(\Lambda)$ for all $n \geq 3$. It is called the reduced Burau representation. For $n=2$, we define the reduced Burau representation to be the homomorphism $\psi_{2}^{\mathrm{r}}: B_{2} \rightarrow \mathrm{GL}_{1}(\Lambda)$ sending σ_{1} to the 1×1 matrix $(-t)$. This value is chosen so that formula (3.9) holds also for $n=2$. This formula implies that for any $n \geq 2$ and any braid $\beta \in B_{n}$,

$$
C^{-1} \psi_{n}(\beta) C=\left(\begin{array}{cc}
\psi_{n}^{\mathrm{r}}(\beta) & 0 \tag{3.10}\\
*_{\beta} & 1
\end{array}\right)
$$

where $*_{\beta}$ is a row of length $n-1$ over Λ depending on β. The following lemma shows how to compute this row from the matrix $\psi_{n}^{\mathrm{r}}(\beta)$.

Lemma 3.10. For $i=1, \ldots, n-1$, let a_{i} be the ith row of the matrix $\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}$. Then

$$
-\left(1+t+\cdots+t^{n-1}\right) *_{\beta}=\sum_{i=1}^{n-1}\left(1+t+\cdots+t^{i}\right) a_{i}
$$

Proof. Consider the Λ-module Λ^{n} whose elements are identified with rows of length n over Λ. The group $\mathrm{GL}_{n}(\Lambda)$ acts on Λ^{n} on the right via the multiplication of rows by matrices. A direct verification shows that the vector

$$
E=\left(1, t, t^{2}, \ldots, t^{n-1}\right) \in \Lambda^{n}
$$

satisfies $E U_{i}=E$ for all i. Hence, $E \psi_{n}(\beta)=E$. Then the vector

$$
F=E C=\left(1,1+t, 1+t+t^{2}, \ldots, 1+t+\cdots+t^{n-1}\right) \in \Lambda^{n}
$$

satisfies

$$
F\left(\begin{array}{cc}
\psi_{n}^{\mathrm{r}}(\beta) & 0 \\
*_{\beta} & 1
\end{array}\right)=E C C^{-1} \psi_{n}(\beta) C=E C=F
$$

Subtracting $F I_{n}=F$, we obtain

$$
F\binom{\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}}{*_{\beta}}=0
$$

This equality means that the linear combination of the rows a_{i} of the matrix $\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}$ with coefficients $1,1+t, 1+t+t^{2}, \ldots, 1+t+\cdots+t^{n-2}$ is equal to $-\left(1+t+\cdots+t^{n-1}\right) *_{\beta}$.

This lemma shows that no information is lost under the passage from the Burau representation to its reduced form. In particular, if $\psi_{n}^{\mathrm{r}}(\beta)=I_{n-1}$, then $*_{\beta}=0$ and $\psi_{n}(\beta)=I_{n}$. Therefore $\operatorname{Ker} \psi_{n}^{\mathrm{r}} \subset \operatorname{Ker} \psi_{n}$. The opposite inclusion directly follows from (3.10). We conclude that $\operatorname{Ker} \psi_{n}^{\mathrm{r}}=\operatorname{Ker} \psi_{n}$.

Remark 3.11. A homological interpretation of ψ_{n}^{r} is obtained by replacing in Section 3.2 the Λ-module $\widetilde{H}=H_{1}\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)$ by the Λ-module $\widetilde{H}^{\mathrm{r}}=H_{1}(\widetilde{\Sigma} ; \mathbf{Z})$. In the homological sequence of the pair $\left(\widetilde{\Sigma}, \bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d}\right)$,

$$
H_{1}\left(\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right) \rightarrow \widetilde{H}^{\mathrm{r}} \rightarrow \widetilde{H} \rightarrow H_{0}\left(\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right) \rightarrow H_{0}(\widetilde{\Sigma} ; \mathbf{Z})
$$

the leftmost term is zero because $\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d}$ is a discrete space. Therefore the homomorphism $\widetilde{H}^{\mathrm{r}} \rightarrow \widetilde{H}$ is an embedding, so that we can view $\widetilde{H}^{\mathrm{r}}$ as a submodule of \widetilde{H}. Clearly,

$$
H_{0}\left(\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right)=\Lambda, \quad H_{0}(\widetilde{\Sigma} ; \mathbf{Z})=\mathbf{Z}
$$

and the homomorphism $H_{0}\left(\bigcup_{k \in \mathbf{Z}} t^{k} \widetilde{d} ; \mathbf{Z}\right) \rightarrow H_{0}(\widetilde{\Sigma} ; \mathbf{Z})$ is the homomorphism $\Lambda \rightarrow \mathbf{Z}$ sending t to 1 . The kernel $(t-1) \Lambda$ of this homomorphism is a free Λ-module of rank 1 . Therefore the quotient $\widetilde{H} / \widetilde{H}^{\mathrm{r}}$ is a free Λ-module of rank one, so that $\widetilde{H} \cong \widetilde{H}^{\mathrm{r}} \oplus \Lambda$. The action of $\mathfrak{M}(D, Q)$ on \widetilde{H} preserves $\widetilde{H}^{\mathrm{r}}$ and gives a homological interpretation of ψ_{n}^{r}. However, this action does not preserve the complementary module Λ. This is the geometric reason for the fact that the Burau representation can be reduced but is not a direct sum of its reduced form with a one-dimensional representation. As an exercise, the reader may verify that $\widetilde{H}^{\mathrm{r}} \cong \Lambda^{n-1}$.

3.3.2 The faithfulness of ψ_{3}

We prove that the Burau representation ψ_{3} is faithful. Consider the group homomorphism $\varphi: \mathrm{GL}_{2}(\Lambda) \rightarrow \mathrm{SL}_{2}(\mathbf{Z})$ obtained by the substitution $t \mapsto-1$. It transforms the reduced Burau matrices

$$
V_{1}=\left(\begin{array}{cc}
-t & 0 \\
1 & 1
\end{array}\right), \quad V_{2}=\left(\begin{array}{cc}
1 & t \\
0 & -t
\end{array}\right)
$$

into the integral matrices

$$
a_{1}=\varphi\left(V_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad a_{2}=\varphi\left(V_{2}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

By Appendix A , the group $\mathrm{SL}_{2}(\mathbf{Z})$ is generated by the transpose matrices $A=a_{1}^{T}, B=a_{2}^{T}$ with defining relations $A B A=B A B$ and $(A B A)^{4}=1$. Hence, $\mathrm{SL}_{2}(\mathbf{Z})$ is generated by a_{1}, a_{2} with defining relations $a_{1} a_{2} a_{1}=a_{2} a_{1} a_{2}$ and $\left(a_{1} a_{2} a_{1}\right)^{4}=1$.

The homomorphism $\varphi \circ \psi_{3}^{\mathrm{r}}: B_{3} \rightarrow \mathrm{SL}_{2}(\mathbf{Z})$ sends the standard braid generators σ_{1}, σ_{2} to a_{1}, a_{2}, respectively. It is clear that this homomorphism is surjective and its kernel is the normal subgroup generated by the braid $\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4}$.

Since this braid is central in B_{3}, the kernel in question is the cyclic group $\left(\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4}\right) \subset B_{3}$. Consequently,

$$
\operatorname{Ker} \psi_{3} \subset \operatorname{Ker}\left(\varphi \circ \psi_{3}^{\mathrm{r}}\right)=\left(\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4}\right)
$$

Observe that

$$
V_{1} V_{2} V_{1}=\left(\begin{array}{cc}
0 & -t^{2} \\
-t & 0
\end{array}\right) \quad \text { and } \quad\left(V_{1} V_{2} V_{1}\right)^{2}=\left(\begin{array}{cc}
t^{3} & 0 \\
0 & t^{3}
\end{array}\right)
$$

Therefore, for any nonzero $k \in \mathbf{Z}$,

$$
\psi_{3}^{\mathrm{r}}\left(\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4 k}\right)=\left(V_{1} V_{2} V_{1}\right)^{4 k}=\left(\begin{array}{cc}
t^{6 k} & 0 \\
0 & t^{6 k}
\end{array}\right) \neq I_{2}
$$

Hence $\operatorname{Ker} \psi_{3}=\operatorname{Ker} \psi_{3}^{r}=\{1\}$.
Exercise 3.3.1. Show that $\psi_{n}^{\mathrm{r}}\left(\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}\right)=t^{n} I_{n-1}$ for all $n \geq 2$. (Hint: Use the homological interpretation of ψ_{n}^{r}; observe that the element of $\mathfrak{M}(D, Q)$ corresponding to $\left(\sigma_{1} \cdots \sigma_{n-1}\right)^{n}$ is the Dehn twist about a circle in D concentric to ∂D.) Note that a similar equality does not hold for ψ_{n}, for instance, $\psi_{2}\left(\sigma_{1}^{2}\right) \neq t^{2} I_{2}$.

3.4 The Alexander-Conway polynomial of links

We use here the reduced Burau representations $\psi_{1}^{\mathrm{r}}, \psi_{2}^{\mathrm{r}}, \ldots$ and the theory of Markov functions from Section 2.5.2 to construct the one-variable AlexanderConway polynomial of links.

3.4.1 An example of a Markov function

We construct a Markov function with values in the Laurent polynomial ring $\mathbf{Z}\left[s, s^{-1}\right]$. The associated link invariant will be studied in the next subsection. Let

$$
g: \Lambda=\mathbf{Z}\left[t, t^{-1}\right] \rightarrow \mathbf{Z}\left[s, s^{-1}\right]
$$

be the ring homomorphism sending t to s^{2}. For a braid β on $n \geq 2$ strings, consider the following rational function in s with integral coefficients:

$$
f_{n}(\beta)=(-1)^{n+1} \frac{s^{-\langle\beta\rangle}\left(s-s^{-1}\right)}{s^{n}-s^{-n}} g\left(\operatorname{det}\left(\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}\right)\right)
$$

where $\langle\beta\rangle \in \mathbf{Z}$ is the image of β under the homomorphism $B_{n} \rightarrow \mathbf{Z}$ sending the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ to 1 . For example, for $n=2$ and $k \in \mathbf{Z}$,

$$
f_{2}\left(\sigma_{1}^{k}\right)=-s^{-k}\left(s+s^{-1}\right)^{-1}\left(\left(-s^{2}\right)^{k}-1\right) .
$$

In particular, $f_{2}\left(\sigma_{1}\right)=f_{2}\left(\sigma_{1}^{-1}\right)=1$. By definition, $f_{1}\left(B_{1}\right)=1$.

Lemma 3.12. The mappings $\left\{f_{n}: B_{n} \rightarrow \mathbf{Z}\left[s, s^{-1}\right]\right\}_{n \geq 1}$ form a Markov function.

Proof. Pick a braid $\beta \in B_{n}$ with $n \geq 1$. A conjugation of β in B_{n} preserves both $\langle\beta\rangle$ and $\operatorname{det}\left(\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}\right)$ and therefore preserves $f_{n}(\beta)$. This implies the first condition in the definition of a Markov function.

Set $\beta_{+}=\iota(\beta) \sigma_{n} \in B_{n+1}$, where ι is the natural inclusion $B_{n} \hookrightarrow B_{n+1}$. We verify now that $f_{n+1}\left(\beta_{+}\right)=f_{n}(\beta)$. For $n=1$, we have $\beta=1, \beta_{+}=\sigma_{1}$, and $f_{2}\left(\beta_{+}\right)=f_{2}\left(\sigma_{1}\right)=1=f_{1}(\beta)$. Suppose that $n \geq 2$. We first observe the equalities

$$
\frac{s^{-\langle\beta\rangle}\left(s-s^{-1}\right)}{s^{n}-s^{-n}}=\frac{s^{n-1-\langle\beta\rangle}}{1+s^{2}+s^{4}+\cdots+s^{2(n-1)}}
$$

and

$$
n-1-\langle\beta\rangle=(n+1)-1-\left\langle\beta_{+}\right\rangle .
$$

Therefore the desired formula $f_{n+1}\left(\beta_{+}\right)=f_{n}(\beta)$ is equivalent to the following formula:

$$
\begin{align*}
\left(1+t+\cdots+t^{n-1}\right) \operatorname{det} & \left(\psi_{n+1}^{\mathrm{r}}\left(\beta_{+}\right)-I_{n}\right) \\
& =-\left(1+t+\cdots+t^{n}\right) \operatorname{det}\left(\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}\right) \tag{3.11}
\end{align*}
$$

By (3.2) and (3.10),

$$
\psi_{n+1}(\iota(\beta))=\left(\begin{array}{cc}
\psi_{n}(\beta) & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
C_{n} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\psi_{n}^{\mathrm{r}}(\beta) & 0 & 0 \\
*_{\beta} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
C_{n}^{-1} & 0 \\
0 & 1
\end{array}\right) .
$$

Therefore,

$$
\begin{align*}
\left(\begin{array}{cc}
\psi_{n+1}^{\mathrm{r}}\left(\beta_{+}\right) & 0 \\
*_{\beta_{+}} & 1
\end{array}\right) & =C_{n+1}^{-1} \psi_{n+1}\left(\beta_{+}\right) C_{n+1} \\
& =C_{n+1}^{-1} \psi_{n+1}(\iota(\beta)) \psi_{n+1}\left(\sigma_{n}\right) C_{n+1} \\
=C_{n+1}^{-1}\left(\begin{array}{rr}
C_{n} & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ccc}
\psi_{n}^{\mathrm{r}}(\beta) & 0 & 0 \\
*_{\beta} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
C_{n}^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
I_{n-1} & 0 & 0 \\
0 & 1-t & t \\
0 & 1 & 0
\end{array}\right) C_{n+1} . \tag{3.12}
\end{align*}
$$

Observe that

$$
C_{n}^{-1}=\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \\
0 & 0 & 0 & \cdots & 1 & -1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

A direct computation shows that the product of the first three (resp. the last three) matrices on the right-hand side of (3.12) is equal to

$$
\left(\begin{array}{ccc}
\psi_{n}^{\mathrm{r}}(\beta) & 0 & 0 \\
*_{\beta} & 1 & -1 \\
0 & 0 & 1
\end{array}\right), \quad \text { resp. }\left(\begin{array}{cccc}
I_{n-2} & 0 & 0 & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1-t & 1 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

To multiply these two matrices we expand

$$
\left(\begin{array}{ccc}
\psi_{n}^{\mathrm{r}}(\beta) & 0 & 0 \\
*_{\beta} & 1 & -1 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
X & Y & 0 & 0 \\
Z & T & 0 & 0 \\
P & Q & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where X is a square matrix over Λ of size $n-2, Y$ is a column over Λ of height $n-2, Z$ and P are rows over Λ of length $n-2$, and $T, Q \in \Lambda$. The formulas above give

$$
\left(\begin{array}{cc}
\psi_{n+1}^{\mathrm{r}}\left(\beta_{+}\right) & 0 \\
{ }_{* \beta_{+}} & 1
\end{array}\right)=\left(\begin{array}{cccc}
X & Y & t Y & 0 \\
Z & T & t T & 0 \\
P & Q & t Q-t & 0 \\
0 & 0 & 1 & 1
\end{array}\right) .
$$

Hence,

$$
\psi_{n+1}^{\mathrm{r}}\left(\beta_{+}\right)-I_{n}=\left(\begin{array}{ccc}
X-I_{n-2} & Y & t Y \\
Z & T-1 & t T \\
P & Q & t Q-t-1
\end{array}\right)
$$

To compute the determinant of this $n \times n$ matrix, we multiply the $(n-1)$ st column by $-t$ and add the result to the nth column. This gives

$$
\operatorname{det}\left(\psi_{n+1}^{\mathrm{r}}\left(\beta_{+}\right)-I_{n}\right)=\operatorname{det} J
$$

where

$$
J=\left(\begin{array}{ccc}
X-I_{n-2} & Y & 0 \\
Z & T-1 & t \\
P & Q & -t-1
\end{array}\right)
$$

Observe that

$$
\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}=\left(\begin{array}{cc}
X-I_{n-2} & Y \\
Z & T-1
\end{array}\right) \quad \text { and } \quad *_{\beta}=\left(\begin{array}{ll}
P & Q
\end{array}\right) .
$$

These formulas and Lemma 3.10 imply that adding the rows of J with coefficients

$$
1,1+t, 1+t+t^{2}, \ldots, 1+t+\cdots+t^{n-1}
$$

we obtain a new bottom row whose first $n-1$ entries are equal to 0 . The last, nth entry is equal to

$$
\left(1+t+\cdots+t^{n-2}\right) t+\left(1+t+\cdots+t^{n-1}\right)(-t-1)=-\left(1+t+\cdots+t^{n}\right)
$$

Therefore,

$$
\begin{aligned}
\left(1+t+\cdots+t^{n-1}\right) \operatorname{det} & \left(\psi_{n+1}^{\mathrm{r}}\left(\beta_{+}\right)-I_{n}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
X-I_{n-2} & Y & 0 \\
Z & T-1 & t \\
0 & 0 & -\left(1+t+\cdots+t^{n}\right)
\end{array}\right) .
\end{aligned}
$$

This implies (3.11). Hence

$$
f_{n+1}\left(\sigma_{n} \iota(\beta)\right)=f_{n+1}\left(\iota(\beta) \sigma_{n}\right)=f_{n+1}\left(\beta_{+}\right)=f_{n}(\beta) .
$$

A similar argument shows that $f_{n+1}\left(\sigma_{n}^{-1} \iota(\beta)\right)=f_{n}(\beta)$. This verifies the second condition in the definition of a Markov function.

For an oriented link $L \subset \mathbf{R}^{3}$, set $\widehat{f}(L)=f_{n}(\beta)$, where β is an arbitrary braid on n strings whose closure is isotopic to L. By Section 2.5.2 and the previous lemma, $\widehat{f}(L)$ is an isotopy invariant of L independent of the choice of β. We study this invariant in the next subsection.

3.4.2 The Alexander-Conway polynomial

The (one-variable) Alexander-Conway polynomial is a fundamental and historically the first polynomial invariant of oriented links in \mathbf{R}^{3}. This polynomial extends to a two-variable polynomial invariant of oriented links in \mathbf{R}^{3}, known as the Jones-Conway or HOMFLY-PT polynomial. The latter will be constructed in the context of Iwahori-Hecke algebras in Section 4.4.

We begin with an axiomatic definition of the Alexander-Conway polynomial. We shall say that three oriented links $L_{+}, L_{-}, L_{0} \subset \mathbf{R}^{3}$ form a Conway triple if they coincide outside a 3 -ball in \mathbf{R}^{3} and look as in Figure 3.4 inside this ball. The Alexander-Conway polynomial of links is a mapping ∇ assigning to every oriented link $L \subset \mathbf{R}^{3}$ a Laurent polynomial $\nabla(L) \in \mathbf{Z}\left[s, s^{-1}\right]$ satisfying the following three axioms:
(i) $\nabla(L)$ is invariant under isotopy of L;
(ii) if L is a trivial knot, then $\nabla(L)=1$;
(iii) for any Conway triple $L_{+}, L_{-}, L_{0} \subset \mathbf{R}^{3}$,

$$
\nabla\left(L_{+}\right)-\nabla\left(L_{-}\right)=\left(s^{-1}-s\right) \nabla\left(L_{0}\right)
$$

The latter equality is known as the Alexander-Conway skein relation.
As an example of a computation using the skein relation, consider the Conway triple L_{+}, L_{-}, L_{0} in Figure 3.5. Here L_{+}(resp. L_{-}) is obtained from an oriented link $L \subset \mathbf{R}^{3}$ by adding a small positive (resp. negative) curl. Both links L_{+}and L_{-}are isotopic to L, while L_{0} is the disjoint union of L with a trivial knot. Axioms (i) and (iii) imply that $\nabla\left(L_{0}\right)=0$. We conclude that ∇ annihilates all links obtained as a disjoint union of a nonempty link with a trivial knot. In particular, ∇ annihilates all trivial links with two or more components.

Fig. 3.4. A Conway triple

Fig. 3.5. Example of a Conway triple

Theorem 3.13. The Alexander-Conway polynomial of links exists and is unique. The invariant \widehat{f} of links in \mathbf{R}^{3} constructed in Section 3.4.1 coincides with the Alexander-Conway polynomial.

Proof. We first prove the uniqueness: there is at most one mapping from the set of oriented links in \mathbf{R}^{3} to $\mathbf{Z}\left[s, s^{-1}\right]$ satisfying axioms (i)-(iii). The proof requires the notion of an ascending link diagram, which we now introduce. An oriented link diagram \mathcal{D} on \mathbf{R}^{2} is ascending if it satisfies the following two conditions:
(a) the components of \mathcal{D} can be indexed by $1, \ldots, m$ (where m is the number of the components) so that at every crossing of distinct components, the component with smaller index lies below the component with larger index;
(b) each component of \mathcal{D} can be provided with a base point (not a crossing) such that starting from this point and moving along the component in the positive direction, we always reach the self-crossings of this component for the first time along the undergoing branch and for the second time along the overgoing branch.

An example of an ascending link diagram is given in Figure 3.6. It is a simple geometric exercise to see that the link presented by an ascending diagram is necessarily trivial.

Suppose now that there are two mappings from the set of oriented links in \mathbf{R}^{3} to $\mathbf{Z}\left[s, s^{-1}\right]$ satisfying axioms (i)-(iii) of the Alexander-Conway polynomial. Let ∇ be their difference. We have to prove that $\nabla=0$.

Fig. 3.6. An ascending link diagram

It is clear from the axioms and the computation before the statement of the theorem that ∇ is an isotopy invariant of links annihilating trivial knots and links and satisfying the Alexander-Conway skein relation. We prove by induction on N that ∇ annihilates all oriented links presented by link diagrams with N crossings. For $N=0$, this is obvious, since a link presented by a diagram without crossings is trivial. Suppose that our claim holds for a certain N. Let L be an oriented link presented by a link diagram with $N+1$ crossings. Exchanging over/undergoing branches at a single crossing, we obtain a diagram of another link, L^{\prime}. The links L, L^{\prime} together with the link L_{0} obtained by smoothing the crossing in question form a Conway triple as in Figure 3.4. The link L_{0} is presented by a link diagram with N crossings. By the induction assumption, $\nabla\left(L_{0}\right)=0$. The skein relation gives $\nabla(L)=\nabla\left(L^{\prime}\right)$. Thus, the value of ∇ on L is not changed when overcrossings are traded for undercrossings. However, these operations can transform our diagram into an ascending one. Since ∇ annihilates the links presented by ascending diagrams, $\nabla(L)=0$. This completes the induction step. Hence $\nabla=0$.

To prove the remaining claims of the theorem, it is enough to show that the link invariant \widehat{f} constructed in the previous subsection satisfies the axioms of the Alexander-Conway polynomial. By Corollary 2.9 and the results above, \widehat{f} is a well-defined isotopy invariant of links. If L is a trivial knot, then L is the closure of a trivial braid on one string and therefore $\widehat{f}(L)=1$. We verify now that \widehat{f} satisfies the Alexander-Conway skein relation.

Given $n \geq 2, i \in\{1, \ldots, n-1\}$, and two braids $\alpha, \beta \in B_{n}$, we see directly from the definitions that the closures of the braids $\alpha \sigma_{i} \beta, \alpha \sigma_{i}^{-1} \beta$, and $\alpha \beta$ form a Conway triple of links in \mathbf{R}^{3}. The proof of Alexander's theorem (Theorem 2.3) shows that conversely, an arbitrary Conway triple of links in \mathbf{R}^{3} arises in this way from certain n, i, α, β. Thus, we need to prove the identity

$$
f_{n}\left(\alpha \sigma_{i} \beta\right)-f_{n}\left(\alpha \sigma_{i}^{-1} \beta\right)=\left(s^{-1}-s\right) f_{n}(\alpha \beta)
$$

Since f_{n} is invariant under conjugation in B_{n} and σ_{i} is a conjugate of σ_{1} in B_{n} (see Exercise 1.1.4), we can assume without loss of generality that $i=1$. Further conjugating by α, we can assume that $\alpha=1$. Thus we need to prove that for any $\beta \in B_{n}$,

$$
f_{n}\left(\sigma_{1} \beta\right)-f_{n}\left(\sigma_{1}^{-1} \beta\right)=\left(s^{-1}-s\right) f_{n}(\beta)
$$

This reduces to the equality

$$
\begin{equation*}
s^{-1} g\left(D_{+}\right)-s g\left(D_{-}\right)=\left(s^{-1}-s\right) g\left(D_{0}\right), \tag{3.13}
\end{equation*}
$$

where

$$
D_{ \pm}=\operatorname{det}\left(\psi_{n}^{\mathrm{r}}\left(\sigma_{1}^{ \pm 1} \beta\right)-I_{n-1}\right) \quad \text { and } \quad D_{0}=\operatorname{det}\left(\psi_{n}^{\mathrm{r}}(\beta)-I_{n-1}\right)
$$

Multiplying both sides of (3.13) by s, we reduce (3.13) to the equality

$$
D_{+}-t D_{-}=(1-t) D_{0} .
$$

To verify the latter, we expand

$$
\psi_{n}^{\mathrm{r}}(\beta)=\left(\begin{array}{ccc}
a & b & x \\
c & d & y \\
p & q & M
\end{array}\right),
$$

where $a, b, c, d \in \Lambda, x, y$ are rows over Λ of length $n-3, p, q$ are columns over Λ of height $n-3$, and M is an $(n-3) \times(n-3)$ matrix over Λ. By definition, $D_{0}=\operatorname{det} A_{0}$, where

$$
A_{0}=\left(\begin{array}{ccc}
a-1 & b & x \\
c & d-1 & y \\
p & q & M-I_{n-3}
\end{array}\right)
$$

Also

$$
\psi_{n}^{\mathrm{r}}\left(\sigma_{1} \beta\right)=\left(\begin{array}{ccc}
-t & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & I_{n-3}
\end{array}\right)\left(\begin{array}{ccc}
a & b & x \\
c & d & y \\
p & q & M
\end{array}\right)=\left(\begin{array}{ccc}
-t a & -t b & -t x \\
a+c & b+d & x+y \\
p & q & M
\end{array}\right)
$$

Subtracting I_{n-1}, then multiplying the first row by $-t^{-1}$, and finally subtracting the first row from the second one, we obtain $D_{+}=-t \operatorname{det} A_{+}$, where

$$
A_{+}=\left(\begin{array}{ccc}
a+t^{-1} & b & x \\
c-t^{-1} & d-1 & y \\
p & q & M-I_{n-3}
\end{array}\right)
$$

Similarly,

$$
\begin{aligned}
\psi_{n}^{\mathrm{r}}\left(\sigma_{1}^{-1} \beta\right) & =\left(\begin{array}{ccc}
-t^{-1} & 0 & 0 \\
t^{-1} & 1 & 0 \\
0 & 0 & I_{n-3}
\end{array}\right)\left(\begin{array}{ccc}
a & b & x \\
c & d & y \\
p & q & M
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-t^{-1} a & -t^{-1} b & -t^{-1} x \\
t^{-1} a+c & t^{-1} b+d & t^{-1} x+y \\
p & q & M-I_{n-3}
\end{array}\right) .
\end{aligned}
$$

Subtracting I_{n-1}, then adding the first row to the second one, and finally multiplying the first row by $-t$, we obtain $D_{-}=-t^{-1} \operatorname{det} A_{-}$, where

$$
A_{-}=\left(\begin{array}{ccc}
a+t & b & x \\
c-1 & d-1 & y \\
p & q & M-I_{n-3}
\end{array}\right) .
$$

The matrices A_{0}, A_{+}, A_{-}differ only in the first columns, which we denote by $A_{0}^{1}, A_{+}^{1}, A_{-}^{1}$, respectively. Clearly,

$$
-t A_{+}^{1}+A_{-}^{1}=(1-t) A_{0}^{1} .
$$

We conclude that $D_{+}-t D_{-}=(1-t) D_{0}$.
The function $L \mapsto \widehat{f}(L)$ satisfies all conditions of the Alexander-Conway polynomial except that a priori it takes values in the field of rational functions in s rather than in its subring of Laurent polynomials $\mathbf{Z}\left[s, s^{-1}\right]$. However, applying the skein relation and an induction on the number of crossings of a link diagram as at the beginning of the proof, one observes that all the values of \widehat{f} are integral polynomials in $s-s^{-1}$. In particular, all the values of \widehat{f} are Laurent polynomials in s.

3.5 The Lawrence-Krammer-Bigelow representation

We discuss a linear representation of B_{n} introduced by R . Lawrence and studied by D. Krammer and S. Bigelow. The definition of this representation is based on a study of a certain infinite covering of the configuration space of pairs of points on the punctured disk.

In this section we fix $n \geq 1$ and use the symbols $D, Q=\{(1,0), \ldots,(n, 0)\}$, $\Sigma=D-Q$ introduced in Section 3.2.2.

3.5.1 The configuration spaces \mathcal{F} and \mathcal{C}

Let \mathcal{F} be the space of ordered pairs of distinct points in Σ. In other words, the space \mathcal{F} is the complement of the diagonal $\{(x, x)\}_{x \in \Sigma}$ in $\Sigma \times \Sigma$. It is clear that \mathcal{F} is a noncompact connected 4 -dimensional manifold with boundary. It has a natural orientation obtained by squaring the counterclockwise orientation of Σ. In the notation of Section 1.4.1, we have

$$
\mathcal{F}=\mathcal{F}_{2}(\Sigma)=\mathcal{F}_{n, 2}(D) .
$$

The formula $(x, y) \mapsto(y, x)$ for distinct $x, y \in \Sigma$ defines an involution on \mathcal{F}. The quotient space \mathcal{C} of this involution is the space of nonordered pairs of distinct points in Σ. Since the involution $(x, y) \mapsto(y, x)$ on \mathcal{F} is orientationpreserving and fixed-point free, the space \mathcal{C} is an oriented noncompact connected 4 -dimensional manifold with boundary. Note for the record that the
projection $\mathcal{F} \rightarrow \mathcal{C}$ is a 2 -fold covering. In the notation of Section 1.4.3, we have $\mathcal{C}=\mathcal{C}_{2}(\Sigma)=\mathcal{C}_{n, 2}(D)$.

In the sequel, a nonordered pair of distinct points $x, y \in \Sigma$ is denoted by $\{x, y\}$. Note that $\{x, y\}=\{y, x\} \in \mathcal{C}$. A (continuous) path $\xi: I \rightarrow \mathcal{C}$, where $I=[0,1]$, can be written in the form $\xi=\left\{\xi_{1}, \xi_{2}\right\}$ for two (continuous) paths $\xi_{1}, \xi_{2}: I \rightarrow \Sigma$. The equality $\xi=\left\{\xi_{1}, \xi_{2}\right\}$ means that $\xi(s)=\left\{\xi_{1}(s), \xi_{2}(s)\right\}$ for all $s \in I$. The path ξ is a loop if $\left\{\xi_{1}(0), \xi_{2}(0)\right\}=\left\{\xi_{1}(1), \xi_{2}(1)\right\}$, so that either

$$
\xi_{1}(0)=\xi_{1}(1) \neq \xi_{2}(0)=\xi_{2}(1)
$$

or

$$
\xi_{1}(0)=\xi_{2}(1) \neq \xi_{1}(1)=\xi_{2}(0) .
$$

In the first case, the paths ξ_{1}, ξ_{2} are loops on Σ. In the second case, the paths ξ_{1}, ξ_{2} are not loops but their product $\xi_{1} \xi_{2}$ is well defined and is a loop on Σ.

We introduce two numerical invariants w and u of loops in \mathcal{C}. Consider a loop $\xi=\left\{\xi_{1}, \xi_{2}\right\}$ in \mathcal{C} as above. If ξ_{1}, ξ_{2} are loops, then $w(\xi)=w\left(\xi_{1}\right)+w\left(\xi_{2}\right)$, where $w\left(\xi_{i}\right)$ is the total winding number of ξ_{i} around $\{(1,0), \ldots,(n, 0)\}$; see Section 3.2.2. If $\xi_{1}(1)=\xi_{2}(0)$, then the product path $\xi_{1} \xi_{2}$ is a loop on Σ and we set $w(\xi)=w\left(\xi_{1} \xi_{2}\right)$.

To define the second invariant $u(\xi)$, consider the map

$$
\begin{equation*}
s \mapsto \frac{\xi_{1}(s)-\xi_{2}(s)}{\left|\xi_{1}(s)-\xi_{2}(s)\right|}: I \rightarrow S^{1} \subset \mathbf{C} . \tag{3.14}
\end{equation*}
$$

This map sends $s=0,1$ either to the same numbers or to opposite numbers. Therefore, the map

$$
\begin{equation*}
s \mapsto\left(\frac{\xi_{1}(s)-\xi_{2}(s)}{\left|\xi_{1}(s)-\xi_{2}(s)\right|}\right)^{2}: I \rightarrow S^{1} \tag{3.15}
\end{equation*}
$$

is a loop on S^{1}. The counterclockwise orientation of S^{1} determines a generator of $H_{1}\left(S^{1} ; \mathbf{Z}\right) \cong \mathbf{Z}$. The loop (3.15) on S^{1} is homologous to k times the generator with $k \in \mathbf{Z}$, and we set $u(\xi)=k$. Note that $u(\xi)$ is even if ξ_{1}, ξ_{2} are loops and odd otherwise. The invariants $w(\xi)$ and $u(\xi)$ are preserved under homotopy of ξ and are additive with respect to the multiplication of loops.

For example, consider the loop $\xi=\left\{\xi_{1}, \xi_{2}\right\}$, where ξ_{1} is the constant loop in a point $z \in \Sigma$ and ξ_{2} is an arbitrary loop in $\Sigma-\{z\}$. Then $w(\xi)=w\left(\xi_{2}\right)$ and $u(\xi)=2 v$, where v is the winding number of ξ_{2} around z. In particular, if ξ_{2} is a small loop encircling counterclockwise a point of Q and $z \in \partial \Sigma=\partial D$, then $w(\xi)=1$ and $u(\xi)=0$. To give another example, pick a small closed disk $B \subset \Sigma$ and two distinct points $a, b \in \partial B$. Let ξ_{1} (resp. ξ_{2}) parametrize the arc on ∂B leading from a to b (resp. from b to a) counterclockwise. For the loop $\xi=\left\{\xi_{1}, \xi_{2}\right\}$, we have $w(\xi)=w\left(\xi_{1} \xi_{2}\right)=0$ and $u(\xi)=1$.

3.5.2 The covering space $\widetilde{\mathcal{C}}$ and the module \mathcal{H}

We fix once for all two distinct points $d_{1}, d_{2} \in \partial \Sigma=\partial D$ and take $c=\left\{d_{1}, d_{2}\right\}$ as the base point of \mathcal{C}. The formula

$$
\xi \mapsto q^{w(\xi)} t^{u(\xi)}
$$

defines a group homomorphism φ from the fundamental group $\pi_{1}(\mathcal{C}, c)$ to the multiplicative free abelian group with generators q, t. The examples in the previous subsection show that this homomorphism is surjective.

Let $\widetilde{\mathcal{C}} \rightarrow \mathcal{C}$ be the covering corresponding to the subgroup $\operatorname{Ker} \varphi$ of $\pi_{1}(\mathcal{C}, c)$. The generators q and t act on $\widetilde{\mathcal{C}}$ as commuting covering transformations, and $\mathcal{C}=\widetilde{\mathcal{C}} /(q, t)$. A loop ξ in \mathcal{C} lifts to a loop in $\widetilde{\mathcal{C}}$ if and only if $w(\xi)=u(\xi)=0$.

The 2-fold covering $\mathcal{F} \rightarrow \mathcal{C}$ is a quotient of the covering $\widetilde{\mathcal{C}} \rightarrow \mathcal{C}$, as we now explain. Observe that a loop $\xi=\left\{\xi_{1}, \xi_{2}\right\}$ on \mathcal{C} lifts to a loop on \mathcal{F} if and only if ξ_{1}, ξ_{2} are loops on Σ. The latter holds if and only if $u(\xi)$ is even. Hence, the covering $\mathcal{F} \rightarrow \mathcal{C}$ is determined by the subgroup of $\pi_{1}(\mathcal{C}, c)$ formed by the homotopy classes of loops ξ with $u(\xi) \in 2 \mathbf{Z}$. Therefore $\mathcal{F}=\widetilde{\mathcal{C}} /\left(q, t^{2}\right)$ is the quotient of $\widetilde{\mathcal{C}}$ by the group of homeomorphisms generated by q and t^{2}.

The action of q, t on \mathcal{C} induces an action of q, t on the abelian group

$$
\mathcal{H}=H_{2}(\widetilde{\mathcal{C}} ; \mathbf{Z})
$$

This turns \mathcal{H} into a module over the commutative ring

$$
R=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]
$$

The module \mathcal{H} can be explicitly computed using a deformation retraction of \mathcal{C} onto a 2-dimensional CW-space; see [Big03], [PP02]. The computation shows that \mathcal{H} is a free R-module of rank $n(n-1) / 2$, that is,

$$
\begin{equation*}
\mathcal{H} \cong R^{n(n-1) / 2} \tag{3.16}
\end{equation*}
$$

For more on the structure of \mathcal{H}, see Section 3.5.6.

3.5.3 An action of B_{n} on \mathcal{H}

As we know from Section 1.6, the braid group B_{n} is canonically isomorphic to the mapping class group $\mathfrak{M}(D, Q)$. In the remaining part of this chapter, we make no distinction between these two groups. We now construct an action of B_{n} on \mathcal{H}. Any self-homeomorphism f of the pair (D, Q) induces a homeomorphism $\widehat{f}: \mathcal{C} \rightarrow \mathcal{C}$ by

$$
\widehat{f}(\{x, y\})=\{f(x), f(y)\},
$$

where x, y are distinct points of $\Sigma=D-Q$. Clearly, $\widehat{f}(c)=c$, so that we can consider the automorphism $\widehat{f}_{\#}$ of $\pi_{1}(\mathcal{C}, c)$ induced by \widehat{f}.

Lemma 3.14. We have $\varphi \circ \widehat{f}_{\#}=\varphi$.
Proof. We need to prove that $w \circ \widehat{f}_{\#}=w$ and $u \circ \widehat{f}_{\#}=u$. The first equality is proven by the same argument as in Section 3.2.2. To prove the second equality, consider the inclusion of configuration spaces $\mathcal{C}=\mathcal{C}_{2}(\Sigma) \hookrightarrow \mathcal{C}_{2}(D)$ induced by the inclusion $\Sigma \hookrightarrow D$. The definition of the numerical invariant u for loops in \mathcal{C} extends to loops in $\mathcal{C}_{2}(D)$ word for word and gives a homotopy invariant of loops in $\mathcal{C}_{2}(D)$. The Alexander-Tietze theorem stated in Section 1.6.1 implies that the self-homeomorphism of $\mathcal{C}_{2}(D)$ induced by f is homotopic to the identity. Hence, $u \circ \widehat{f}_{\#}=u$ and therefore $\varphi \circ \widehat{f}_{\#}=\varphi$.

The equality $\varphi \circ \widehat{f}_{\#}=\varphi$ implies that \widehat{f} lifts uniquely to a map $\widetilde{f}: \widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{C}}$ keeping fixed all points of $\widetilde{\mathcal{C}}$ lying over c. The same equality ensures that \widetilde{f} commutes with the covering transformations of $\widetilde{\mathcal{C}}$. The map \widetilde{f} is a homeomorphism with inverse $\widetilde{f^{-1}}$. Therefore the induced endomorphism \widetilde{f}_{*} of $\mathcal{H}=H_{2}(\widetilde{\mathcal{C}} ; \mathbf{Z})$ is an R-linear automorphism. Consider the mapping

$$
B_{n}=\mathfrak{M}(D, Q) \rightarrow \operatorname{Aut}_{R}(\mathcal{H})
$$

sending the isotopy class of f to $\widetilde{f}_{*}: \mathcal{H} \rightarrow \mathcal{H}$. This mapping is a group homomorphism. It is called the Lawrence-Krammer-Bigelow representation of B_{n}. A fundamental property of this representation is contained in the following theorem.

Theorem 3.15. The Lawrence-Krammer-Bigelow representation of the braid group B_{n} is faithful for all $n \geq 1$.

This theorem is proven in Sections 3.6 and 3.7. One can give explicit matrices describing the action of the generators $\sigma_{1}, \ldots, \sigma_{n-1} \in B_{n}$ on \mathcal{H}; see [Kra02], [Big01], [Bud05]. The proof of Theorem 3.15 given below uses neither these matrices nor the isomorphism (3.16).

3.5.4 The linearity of $\boldsymbol{B}_{\boldsymbol{n}}$

We say that a group G is linear if there is an injective group homomorphism $G \rightarrow \mathrm{GL}_{N}(\mathbf{R})$ for some integer $N \geq 1$. We state an important corollary of Theorem 3.15.

Theorem 3.16. For all $n \geq 1$, the braid group B_{n} is linear.
This theorem follows from Theorem 3.15 and the isomorphism (3.16). Indeed, choosing a basis of the R-module \mathcal{H}, we can identify $\operatorname{Aut}_{R}(\mathcal{H})$ with the matrix group $\mathrm{GL}_{n(n-1) / 2}(R)$. The ring $R=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$ can be embedded in the field of real numbers by assigning to q, t algebraically independent real values. This induces an embedding

$$
\mathrm{GL}_{n(n-1) / 2}(R) \hookrightarrow \mathrm{GL}_{n(n-1) / 2}(\mathbf{R}) .
$$

Composing it with the Lawrence-Krammer-Bigelow representation, we obtain a faithful homomorphism $B_{n} \rightarrow \mathrm{GL}_{n(n-1) / 2}(\mathbf{R})$.

We give another proof of Theorem 3.16 entirely avoiding the use of the isomorphism (3.16). This proof gives an embedding of B_{n} into $\mathrm{GL}_{N}(\mathbf{R})$ for $N=n(n+1)$. We begin with a simple algebraic lemma.
Lemma 3.17. Let $L=\mathbf{Z}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}\right]$ be the ring of Laurent polynomials in the variables x_{1}, x_{2}. Let C be a free L-module of finite rank $N \geq 1$. For an arbitrary L-submodule H of C, the group $\operatorname{Aut}_{L}(H)$ of L-automorphisms of H embeds into $\mathrm{GL}_{N}(\mathbf{R})$.

Proof. Let $Q=\mathbf{Q}\left(x_{1}, x_{2}\right)$ be the field of rational functions in the variables x_{1}, x_{2} with rational coefficients. Clearly, Q is the field of fractions of L. Consider the Q-vector space $\bar{H}=Q \otimes_{L} H$. Since H is a submodule of a free L-module, it has no L-torsion, and hence the natural homomorphism $H \rightarrow \bar{H}$ sending $h \in H$ to $1 \otimes h$ is injective. Any L-automorphism of H extends uniquely to a Q-automorphism of \bar{H}. In this way, the group $\operatorname{Aut}_{L}(H)$ embeds into $\mathrm{GL}_{m}(Q)$, where $m=\operatorname{dim}_{Q} \bar{H}$. The field Q can be embedded in \mathbf{R} by assigning to x_{1}, x_{2} algebraically independent real values. This gives embeddings $\operatorname{Aut}_{L}(H) \subset \mathrm{GL}_{m}(Q) \subset \mathrm{GL}_{m}(\mathbf{R})$. Note that the inclusion $i: H \hookrightarrow C$ induces a homomorphism of Q-vector spaces $\bar{H} \rightarrow \bar{C}$, where $\bar{C}=Q \otimes_{L} C$. This homomorphism is injective: any element of its kernel can be multiplied by an element of L to give an element of $\operatorname{Ker}(i)=0$. Therefore $m \leq \operatorname{dim}_{Q} \bar{C}=N$, so that $\operatorname{Aut}_{L}(H) \subset \mathrm{GL}_{m}(\mathbf{R}) \subset \mathrm{GL}_{N}(\mathbf{R})$.

Note that for any topological manifold M with boundary ∂M, the inclusion $M^{\circ}=M-\partial M \hookrightarrow M$ is a homotopy equivalence. The homotopy inverse $M \rightarrow M^{\circ}$ can be obtained by pushing M into M° using a cylinder neighborhood of ∂M in M.

We can now prove Theorem 3.16. It is clear that $\mathcal{F}^{\circ}=\mathcal{F}-\partial \mathcal{F}$ is the complement of the diagonal $\{(x, x)\}_{x \in \Sigma^{\circ}}$ in $\Sigma^{\circ} \times \Sigma^{\circ}$. By Lemma 1.26, assigning to any ordered pair of points the first point, we obtain a locally trivial fiber bundle $\mathcal{F}^{\circ} \rightarrow \Sigma^{\circ}$ whose fiber is the complement of a point in Σ°. The base Σ° of this bundle deformation retracts onto a wedge of n circles, while the fiber deformation retracts onto a wedge of $n+1$ circles. This implies that \mathcal{F}° deformation retracts onto a 2-dimensional CW -complex, $X \subset \mathcal{F}^{\circ}$, with one zero-cell, $2 n+1$ one-cells, and $n(n+1)$ two-cells. Since the inclusion $\mathcal{F}^{\circ} \hookrightarrow \mathcal{F}$ is a homotopy equivalence, the inclusion $X \hookrightarrow \mathcal{F}$ also is a homotopy equivalence.

Recall from Section 3.5.2 that $\widetilde{\mathcal{C}}$ can be viewed as the covering of \mathcal{F} with the group of covering transformations $\mathbf{Z} \times \mathbf{Z}$ generated by q and t^{2}. The covering $\widetilde{\mathcal{C}} \rightarrow \mathcal{F}$ restricts to a covering $\widetilde{X} \rightarrow X$ with the same group of covering transformations. Here \widetilde{X} is the preimage of $X \subset \mathcal{F}$ in $\widetilde{\mathcal{C}}$, and the inclusion $\widetilde{X} \subset \widetilde{\mathcal{C}}$ is a homotopy equivalence. The cellular chain complex of \widetilde{X} has the form $C_{2} \rightarrow C_{1} \rightarrow C_{0}$, where each C_{i} is a free module over the ring

$$
R_{0}=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 2}\right] \subset R
$$

The rank of the R_{0}-module C_{i} is equal to the number of i-cells in X. Therefore

$$
\mathcal{H}=H_{2}(\widetilde{\mathcal{C}} ; \mathbf{Z})=H_{2}(\widetilde{X} ; \mathbf{Z})=\operatorname{Ker}\left(\partial: C_{2} \rightarrow C_{1}\right)
$$

is an R_{0}-submodule of C_{2}. We now apply Lemma 3.17 , where we substitute

$$
x_{1}=q, x_{2}=t^{2}, C=C_{2}, H=\mathcal{H}, \text { and } N=n(n+1) .
$$

By this lemma, Aut $_{R_{0}}(\mathcal{H})$ embeds into $\mathrm{GL}_{N}(\mathbf{R})$. Composing with the embeddings

$$
B_{n} \hookrightarrow \operatorname{Aut}_{R}(\mathcal{H}) \subset \operatorname{Aut}_{R_{0}}(\mathcal{H}),
$$

we obtain the claim of the theorem.

3.5.5 A sesquilinear form on \mathcal{H}

The module \mathcal{H} carries a natural R-valued sesquilinear form defined as follows. The orientation of \mathcal{C} lifts to $\widetilde{\mathcal{C}}$ and turns the latter into an oriented (fourdimensional) manifold. Consider the associated intersection form $\mathcal{H} \times \mathcal{H} \rightarrow \mathbf{Z}$. Its value $g_{1} \cdot g_{2}$ on homology classes $g_{1}, g_{2} \in \mathcal{H}$ is obtained by representing these classes by transversal 2 -cycles G_{1}, G_{2} in $\widetilde{\mathcal{C}}$ and counting the intersections of G_{1}, G_{2} with signs \pm determined by the orientation of $\widetilde{\mathcal{C}}$. The intersection form $\mathcal{H} \times \mathcal{H} \rightarrow \mathbf{Z}$ is symmetric and invariant under the action of orientationpreserving homeomorphisms $\widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{C}}$. In particular, this form is invariant under the action of the covering transformations q, t.

Define a pairing

$$
\langle,\rangle: \mathcal{H} \times \mathcal{H} \rightarrow R
$$

by

$$
\begin{equation*}
\left\langle g_{1}, g_{2}\right\rangle=\sum_{k, \ell \in \mathbf{Z}}\left(q^{k} t^{\ell} g_{1} \cdot g_{2}\right) q^{k} t^{\ell} \tag{3.17}
\end{equation*}
$$

The sum on the right-hand side is finite, since the 2 -cycles G_{1}, G_{2} as above lie in compact subsets of $\widetilde{\mathcal{C}}$ and therefore the cycles $q^{k} t^{\ell} G_{1}$ and G_{2} are disjoint except for a finite set of pairs (k, ℓ).

The pairing (3.17) is invariant under the action of orientation-preserving homeomorphisms $\widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{C}}$ commuting with the covering transformations q, t. In particular, it is preserved under the action of the braid group B_{n} on \mathcal{H}.

Lemma 3.18. For any $g_{1}, g_{2} \in \mathcal{H}$ and $r \in R$,

$$
\begin{equation*}
\left\langle g_{2}, g_{1}\right\rangle=\overline{\left\langle g_{1}, g_{2}\right\rangle}, \quad\left\langle g_{1}, r g_{2}\right\rangle=r\left\langle g_{1}, g_{2}\right\rangle, \quad\left\langle r g_{1}, g_{2}\right\rangle=\bar{r}\left\langle g_{1}, g_{2}\right\rangle, \tag{3.18}
\end{equation*}
$$

where $r \mapsto \bar{r}$ is the involutive automorphism of the ring R sending q to q^{-1} and t to t^{-1}.

Proof. We have

$$
\begin{aligned}
\left\langle g_{2}, g_{1}\right\rangle & =\sum_{k, \ell \in \mathbf{Z}}\left(q^{k} t^{\ell} g_{2} \cdot g_{1}\right) q^{k} t^{\ell} \\
& =\sum_{k, \ell \in \mathbf{Z}}\left(g_{1} \cdot q^{k} t^{\ell} g_{2}\right) q^{k} t^{\ell} \\
& =\sum_{k, \ell \in \mathbf{Z}}\left(q^{-k} t^{-\ell} g_{1} \cdot g_{2}\right) q^{k} t^{\ell} \\
& =\sum_{k, \ell \in \mathbf{Z}}\left(q^{k} t^{\ell} g_{1} \cdot g_{2}\right) q^{-k} t^{-\ell} \\
& =\overline{\left\langle g_{1}, g_{2}\right\rangle} .
\end{aligned}
$$

To verify the equalities $\left\langle g_{1}, r g_{2}\right\rangle=r\left\langle g_{1}, g_{2}\right\rangle$ and $\left\langle r g_{1}, g_{2}\right\rangle=\bar{r}\left\langle g_{1}, g_{2}\right\rangle$, it suffices to consider the case $r=q^{i} t^{j}$ with $i, j \in \mathbf{Z}$. We have

$$
\begin{aligned}
\left\langle g_{1}, q^{i} t^{j} g_{2}\right\rangle & =\sum_{k, \ell \in \mathbf{Z}}\left(q^{k} t^{\ell} g_{1} \cdot q^{i} t^{j} g_{2}\right) q^{k} t^{\ell} \\
& =q^{i} t^{j} \sum_{k, \ell \in \mathbf{Z}}\left(q^{k-i} t^{\ell-j} g_{1} \cdot g_{2}\right) q^{k-i} t^{\ell-j} \\
& =q^{i} t^{j}\left\langle g_{1}, g_{2}\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\left\langle q^{i} t^{j} g_{1}, g_{2}\right\rangle & =\sum_{k, \ell \in \mathbf{Z}}\left(q^{k+i} t^{\ell+j} g_{1} \cdot g_{2}\right) q^{k} t^{\ell} \\
& =q^{-i} t^{-j} \sum_{k, \ell \in \mathbf{Z}}\left(q^{k+i} t^{\ell+j} g_{1} \cdot g_{2}\right) q^{k+i} t^{\ell+j} \\
& =q^{-i} t^{-j}\left\langle g_{1}, g_{2}\right\rangle
\end{aligned}
$$

According to Budney [Bud05], the form $\langle\rangle:, \mathcal{H} \times \mathcal{H} \rightarrow R$ is nonsingular in the sense that the determinant of its matrix with respect to a basis of \mathcal{H} is nonzero. Moreover, replacing q, t with appropriate complex numbers, one obtains a negative definite Hermitian form; see [Bud05]. This gives an injective group homomorphism from B_{n} into the unitary group $U_{n(n-1) / 2}$.

3.5.6 Remarks

We make a few remarks aimed at familiarizing the reader with the module \mathcal{H}. These remarks will not be used in the sequel.

It is quite easy to see that the module \mathcal{H} is nontrivial and in fact rather big. Let X, \widetilde{X} be the same spaces as in the proof of Theorem 3.16. Note that the ring $R_{0}=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 2}\right]$ embeds into the field $Q=\mathbf{Q}\left(q, t^{2}\right)$ of rational
functions in the variables q, t^{2}. For an R_{0}-module H, denote the dimension of the Q-vector space $Q \otimes_{R_{0}} H$ by rk H. We verify that $\operatorname{rk} \mathcal{H} \geq n(n-1)$. Indeed,

$$
\operatorname{rk} H_{0}(\widetilde{X} ; \mathbf{Z})-\operatorname{rk} H_{1}(\widetilde{X} ; \mathbf{Z})+\operatorname{rk} \mathcal{H}=\chi(X)=n(n-1),
$$

where $\chi(X)$ is the Euler characteristic of X. For every 0 -cell x of \widetilde{X} there is a path in \widetilde{X} leading from x to $q x$, so that $(1-q) x$ is the boundary of a 1-chain. Hence $Q \otimes_{R} H_{0}(\widetilde{X} ; \mathbf{Z})=0$ and rk $H_{0}(\widetilde{X} ; \mathbf{Z})=0$. Therefore, rk $\mathcal{H} \geq n(n-1)$. The isomorphism (3.16) implies that $\mathcal{H} \cong R_{0}^{n(n-1)}$.

Specific elements of \mathcal{H} may be derived from arbitrary disjoint spanning $\operatorname{arcs} \alpha, \beta$ on (D, Q). Consider the associated loops $\alpha^{\prime}, \beta^{\prime}: S^{1} \rightarrow \Sigma$ as in Figure 3.1. Choosing these loops closely enough to α, β, we may assume that they do not meet. The formula

$$
\left(s_{1}, s_{2}\right) \mapsto\left\{\alpha^{\prime}\left(s_{1}\right), \beta^{\prime}\left(s_{2}\right)\right\} \in \mathcal{C}
$$

for $s_{1}, s_{2} \in S^{1}$ defines an embedding of the torus $S^{1} \times S^{1}$ into \mathcal{C}. The induced homomorphism of the fundamental groups sends $\pi_{1}\left(S^{1} \times S^{1}\right)$ to the kernel of φ. Therefore this embedding lifts to an embedding of the torus into $\widetilde{\mathcal{C}}$. It can be shown that the fundamental class of the torus represents a nontrivial homology class in \mathcal{H}. Such classes, corresponding to various α, β, are permuted by the action of B_{n} on \mathcal{H}. A similar but subtler construction applies to pairs of spanning arcs on (D, Q) meeting at one common endpoint; it gives a mapping of an orientable closed surface of genus 2 to $\widetilde{\mathcal{C}}$; see [Big03]. Moreover, each spanning arc on (D, Q) gives rise to a mapping of an orientable closed surface of genus 3 to $\widetilde{\mathcal{C}}$; see [Big03] and Section 3.7.1. Applying these constructions to the arcs

$$
[1,2] \times\{0\},[2,3] \times\{0\}, \ldots,[n-1, n] \times\{0\}
$$

on (D, Q) and to pairs of such arcs, one obtains $n(n-1) / 2$ homology classes in \mathcal{H} forming an R-basis of \mathcal{H}.

3.6 Noodles vs. spanning arcs

In this section we introduce and study so-called noodles on the n-punctured disk $\Sigma=D-Q$, where $n \geq 1$ and $Q=\{(1,0), \ldots,(n, 0)\} \subset D$. Noodles will be used in a crucial way in the proof of Theorem 3.15 in Section 3.7.

3.6.1 Noodles

A noodle in Σ is an oriented embedded $\operatorname{arc} N \subset \Sigma$ such that

$$
\partial N=N \cap \partial \Sigma .
$$

The boundary ∂N of a noodle N consists of the two endpoints of N lying on $\partial \Sigma=\partial D$. An example of a noodle is shown in Figure 3.7.

Fig. 3.7. The noodle N_{i}

We focus now on the intersections of a noodle N with spanning arcs on (D, Q). Let α be a spanning arc on (D, Q) intersecting N transversely at finitely many points. The intersection of N and α can be simplified using digons as in Section 3.2.4. A digon for N, α is an embedded disk in $\Sigma^{\circ}=\Sigma-\partial \Sigma$ whose boundary is formed by a subarc of N and a subarc of α and whose interior does not meet $N \cup \alpha$; cf. Figure 3.3, where c, d should be replaced by N, α. Each digon determines an obvious isotopy of α (rel $\partial \alpha$) decreasing the number of points in $N \cap \alpha$ by two. The following lemma shows that conversely, if there is such an isotopy, then the pair N, α has digons.

Lemma 3.19. If there is an isotopy of α (rel $\partial \alpha$) decreasing the number of points in $N \cap \alpha$, then the pair N, α has at least one digon.

Proof. We deduce this lemma from Lemma 3.6 by extending the $\operatorname{arcs} N$ and α to simple closed curves on a bigger surface. Pick closed disk neighborhoods $U_{1}, U_{2} \subset D$ of the endpoints of α such that $U_{1} \cap U_{2}=U_{i} \cap N=\emptyset$ for $i=1,2$ and each circle ∂U_{i} meets α at exactly one point. Consider the punctured disk $D_{-}=D-\left(U_{1}^{\circ} \cup U_{2}^{\circ}\right)$. Clearly, $\partial D_{-}=\partial U_{1} \cup \partial U_{2} \cup \partial D$. We now form a new surface S by gluing the following three pieces: the punctured disk D_{-}, an annulus $A=S^{1} \times[0,1]$, and a punctured torus T obtained as the complement of a small open disk on $S^{1} \times S^{1}$. (Instead of the torus, we can use any orientable surface of positive genus.) The surfaces D_{-}, A, and T are glued along homeomorphisms $\partial A \approx \partial U_{1} \cup \partial U_{2}$ and $\partial T \approx \partial D$ chosen so that the resulting surface, S, is orientable. Connecting the points $\alpha \cap \partial U_{1}, \alpha \cap \partial U_{2}$ in A, we can extend the arc $\alpha \cap D_{-}$to a simple closed curve $\widehat{\alpha}$ on S; see Figure 3.8. Similarly, the $\operatorname{arc} N \subset D_{-}$extends to a simple closed curve \widehat{N} on S going once along a longitude of T.

Fig. 3.8. The surface S

If there is an isotopy of $\alpha(\operatorname{rel} \partial \alpha)$ decreasing the number of points in $N \cap \alpha$, then there is an isotopy of $\widehat{\alpha}$ in S decreasing the number of points in $\widehat{N} \cap \widehat{\alpha}$. By Lemma 3.6, the pair $\widehat{N}, \widehat{\alpha}$ has a digon on S. Such a digon cannot approach a branch of \widehat{N} or $\widehat{\alpha}$ from different sides and therefore meets neither T nor A. Therefore such a digon lies on D_{-}and is a digon for N, α.

3.6.2 Algebraic intersection of noodles and arcs

The intersection of a noodle N and a spanning arc α can be measured in terms of a so-called algebraic intersection $\langle N, \alpha\rangle$. This is an element of the ring $\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$ defined up to multiplication by monomials $q^{w} t^{u}$ with $w \in \mathbf{Z}$ and $u \in 2 \mathbf{Z} \subset \mathbf{Z}$. The algebraic intersection $\langle N, \alpha\rangle$ depends on a choice of orientation on α, which we fix from now on. As above, we endow Σ with counterclockwise orientation. The orientations of α and Σ allow us to speak of the "right" and "left" sides of α in Σ. Pushing α slightly to the left (keeping the endpoints), we obtain a "parallel" oriented spanning arc α^{-}on (D, Q) with the same starting and terminal endpoints as α and disjoint from α otherwise. Slightly deforming N, we can assume that N intersects α transversely in $m \geq 0$ points z_{1}, \ldots, z_{m} (the numeration is arbitrary). We choose the parallel arc α^{-} very closely to α so that α^{-}meets N transversely in m points $z_{1}^{-}, \ldots, z_{m}^{-}$, where each pair z_{i}^{-}, z_{i} is joined by a short subarc of N lying in the narrow strip on Σ bounded by $\alpha^{-} \cup \alpha$; cf. Figure 3.9 below (the strip in question is shaded). For $i \in\{1, \ldots, m\}$, let $\varepsilon_{i}= \pm 1$ be the intersection sign of N and α at z_{i} (recall that both N and α are oriented). Thus, $\varepsilon_{i}=+1$ if N crosses α at z_{i} from left to right and $\varepsilon_{i}=-1$ otherwise. Denote the starting endpoint and the terminal endpoint of N by d^{-}and d, respectively. Fix arbitrary points

$$
z^{-} \in \alpha^{-}-\partial \alpha^{-}, \quad z \in \alpha-\partial \alpha
$$

and fix paths θ^{-}, θ in Σ leading respectively from d^{-}to z^{-}and from d to z and having disjoint images (these paths are allowed to meet N, α^{-}, and α elsewhere).

Recall the space \mathcal{C} of nonordered pairs of distinct points of Σ. For every pair $i, j \in\{1, \ldots, m\}$, we define a loop $\xi_{i, j}$ in \mathcal{C} as follows. Let β_{i}^{-}be an oriented embedded arc on α^{-}leading from z^{-}to z_{i}^{-}(the orientation of β_{i}^{-} may be opposite to that of α^{-}). Let β_{j} be an oriented embedded arc on α leading from z to z_{j}. Let $\gamma_{i, j}^{-}$and $\gamma_{i, j}$ be disjoint oriented arcs in N leading from the points $z_{i}^{-}, z_{j} \in N$ to the endpoints of N. These oriented arcs are determined only by the position of the points z_{i}^{-}, z_{j} on N and do not depend on the orientation of N. Recall the notation for paths in \mathcal{C} introduced in Section 3.5.1. Consider the paths $\left\{\theta^{-}, \theta\right\},\left\{\beta_{i}^{-}, \beta_{j}\right\}$, and $\left\{\gamma_{i, j}^{-}, \gamma_{i, j}\right\}$ in \mathcal{C}. They lead from $\left\{d^{-}, d\right\} \in \mathcal{C}$ to $\left\{z^{-}, z\right\} \in \mathcal{C}$, from $\left\{z^{-}, z\right\}$ to $\left\{z_{i}^{-}, z_{j}\right\} \in \mathcal{C}$, and from $\left\{z_{i}^{-}, z_{j}\right\}$ to $\left\{d^{-}, d\right\}$, respectively. The product of these three paths

$$
\begin{equation*}
\xi_{i, j}=\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{j}\right\}\left\{\gamma_{i, j}^{-}, \gamma_{i, j}\right\} \tag{3.19}
\end{equation*}
$$

is a loop in \mathcal{C} beginning and ending in $\left\{d^{-}, d\right\}$. Set

$$
\langle N, \alpha\rangle=\sum_{i=1}^{m} \sum_{j=1}^{m} \varepsilon_{i} \varepsilon_{j} q^{w\left(\xi_{i, j}\right)} t^{u\left(\xi_{i, j}\right)} \in \mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]
$$

where w and u are the integral invariants of loops in \mathcal{C} introduced in Section 3.5.1. The expression on the right-hand side does not depend on the numeration of points in $N \cap \alpha$. Under a different choice of $z^{-}, z, \theta^{-}, \theta$, all loops $\xi_{i, j}$ are multiplied on the left by one and the same loop in \mathcal{C} of the form $\left\{\xi_{1}, \xi_{2}\right\}$, where ξ_{1}, ξ_{2} are loops in Σ. Then $\langle N, \alpha\rangle$ is multiplied by a monomial in $q^{ \pm 1}, t^{ \pm 2}$.

For example, if N is disjoint from α, then $\langle N, \alpha\rangle=0$. If N crosses α in only one point, then $m=1$ and $\langle N, \alpha\rangle=q^{k} t^{\ell}$ for some $k, \ell \in \mathbf{Z}$.

We state two fundamental properties of the algebraic intersections of noodles and arcs.

Lemma 3.20. The algebraic intersection $\langle N, \alpha\rangle$ is invariant under isotopies of N and α in Σ constant on the endpoints.

Proof. It suffices to fix N and to prove that $\langle N, \alpha\rangle$ is invariant under isotopies of the spanning arc α. A generic isotopy of α in Σ can be split into a finite sequence of local moves of three types:
(i) an isotopy of α in Σ keeping α transversal to N,
(ii) a move pushing a small subarc of α across a subarc of N,
(iii) an inverse to (ii).

It is clear from the definitions that the moves of type (i) do not change $\langle N, \alpha\rangle$. Any move of type (ii) adds two new intersection points z_{m+1}, z_{m+2} to the set $N \cap \alpha=\left\{z_{1}, \ldots, z_{m}\right\}$. Assume for concreteness that the subarc of N connect$\operatorname{ing} z_{m+1}$ with z_{m+2} lies on the right of the arc α; see Figure 3.9. Clearly, the $\operatorname{sign} \varepsilon_{i}= \pm 1$ is preserved under this move for $i=1, \ldots, m$. For all
$i, j=1, \ldots, m$, the loops $\xi_{i, j}$ computed before and after the move are homotopic to each other. Therefore such pairs (i, j) contribute the same expression to $\langle N, \alpha\rangle$ before and after the move. For $i=1, \ldots, m+2$, the loops $\xi_{i, m+1}$ and $\xi_{i, m+2}$ are homotopic and the obvious equality $\varepsilon_{m+1}=-\varepsilon_{m+2}$ implies that the contributions of the pairs $(i, m+1),(i, m+2)$ cancel each other. Similarly, for any $i=1, \ldots, m$, the loops $\xi_{m+1, i}$ and $\xi_{m+2, i}$ are homotopic and the contributions of the pairs $(m+1, i),(m+2, i)$ cancel each other. Therefore $\langle N, \alpha\rangle$ is preserved under the move.

Fig. 3.9. Additional crossings

We say that a spanning arc α on (D, Q) can be isotopped off a noodle N if there is a continuous family of spanning $\operatorname{arcs}\left\{\alpha_{s}\right\}_{s \in[0,1]}$ on (D, Q) such that $\alpha_{0}=\alpha$ and α_{1} is disjoint from N. Such a family $\left\{\alpha_{s}\right\}_{s}$ is called an isotopy of α. Note that the spanning $\operatorname{arcs} \alpha_{s}$ necessarily have the same endpoints.

Lemma 3.21. A spanning arc α can be isotopped off a noodle N if and only if $\langle N, \alpha\rangle=0$.

Proof. If there is an isotopy $\left\{\alpha_{s}\right\}_{s}$ of $\alpha=\alpha_{0}$ in Σ such that α_{1} is disjoint from N, then $\langle N, \alpha\rangle=\left\langle N, \alpha_{1}\right\rangle=0$. The hard part of the lemma is the opposite implication. Applying a preliminary isotopy to α, we can assume that α intersects N transversely at a minimal number of points z_{1}, \ldots, z_{m} with $m \geq 0$. We assume that $m \geq 1$ and show that $\langle N, \alpha\rangle \neq 0$.

We keep the notation introduced above in the definition of $\langle N, \alpha\rangle$. For any $i, j \in\{1, \ldots, m\}$, set $w_{i, j}=w\left(\xi_{i, j}\right) \in \mathbf{Z}$ and $u_{i, j}=u\left(\xi_{i, j}\right) \in \mathbf{Z}$. Then

$$
\begin{equation*}
\langle N, \alpha\rangle=\sum_{i=1}^{m} \sum_{j=1}^{m} \varepsilon_{i} \varepsilon_{j} q^{w_{i, j}} t^{u_{i, j}} \tag{3.20}
\end{equation*}
$$

Observe that

$$
\varepsilon_{i}=(-1)^{u_{i, i}}
$$

for all i. Indeed, if $\varepsilon_{i}=+1$, then N crosses the arc α at z_{i} from left to right and therefore the paths $\gamma_{i, i}^{-}, \gamma_{i, i}$ end respectively in d^{-}, d. Then $\xi_{i, i}$ has the form $\left\{\xi_{1}, \xi_{2}\right\}$, where ξ_{1}, ξ_{2} are loops in Σ. In this case

$$
u_{i, i}=u\left(\xi_{i, i}\right)=0 \quad(\bmod 2) .
$$

Similarly, if $\varepsilon_{i}=-1$, then $u_{i, i}=1(\bmod 2)$. In both cases $\varepsilon_{i}=(-1)^{u_{i, i}}$.

We shall use the lexicographic order on monomials $q^{w} t^{u}$ with $w, u \in \mathbf{Z}$. More precisely, we write $q^{w} t^{u} \geq q^{w^{\prime}} t^{u^{\prime}}$ with $w, u, w^{\prime}, u^{\prime} \in \mathbf{Z}$ if either $w>w^{\prime}$ or $w=w^{\prime}$ and $u \geq u^{\prime}$. We say that an ordered pair (i, j) with $i, j \in\{1, \ldots, m\}$ is maximal (for given N, α) if $q^{w_{i, j}} t^{u_{i, j}} \geq q^{w_{k, l}} t^{u_{k, l}}$ for all $k, l \in\{1, \ldots, m\}$. A maximal pair necessarily exists because the lexicographic order on the monomials is total. A maximal pair may be nonunique. We claim that

$$
\begin{equation*}
\text { if }(i, j) \text { is maximal, then } u_{i, i}=u_{j, j} \tag{3.21}
\end{equation*}
$$

This claim implies that every maximal pair (i, j) contributes the monomial

$$
\varepsilon_{i} \varepsilon_{j} q^{w_{i, j}} t^{u_{i, j}}=(-1)^{u_{i, i}}(-1)^{u_{j, j}} q^{w_{i, j}} t^{u_{i, j}}=q^{w_{i, j}} t^{u_{i, j}}
$$

to $\langle N, \alpha\rangle$. All maximal pairs necessarily contribute the same monomial, which then occurs in $\langle N, \alpha\rangle$ with a positive coefficient. Therefore $\langle N, \alpha\rangle \neq 0$.

To prove (3.21), we first compute $w_{i, j}$ for any $i, j \in\{1, \ldots, m\}$ (not necessarily maximal). Let η_{i}^{-}be the loop in Σ obtained as the product of the path $\theta^{-} \beta_{i}^{-}$with the path going from z_{i}^{-}to d^{-}along N. Let η_{j} be the loop in Σ obtained as the product of $\theta \beta_{j}$ with the path going from z_{j} to d along N. We claim that

$$
\begin{equation*}
w_{i, j}=w\left(\eta_{i}^{-}\right)+w\left(\eta_{j}\right) \tag{3.22}
\end{equation*}
$$

Indeed, if the path $\gamma_{i, j}^{-}$appearing in (3.19) ends at d^{-}, then the path $\gamma_{i, j}$ ends at d, the paths $\theta^{-} \beta_{i}^{-} \gamma_{i, j}^{-}$and $\theta \beta_{j} \gamma_{i, j}$ are loops, and $w_{i, j}$ is the sum of their total winding numbers. Formula (3.22) follows in this case from the equalities $\eta_{i}^{-}=\theta^{-} \beta_{i}^{-} \gamma_{i, j}^{-}$and $\eta_{j}=\theta \beta_{j} \gamma_{i, j}$. Assume that $\gamma_{i, j}^{-}$ends at d. Then $\gamma_{i, j}$ ends at d^{-},

$$
\eta_{i}^{-}=\theta^{-} \beta_{i}^{-} \gamma_{i, j}^{-} N^{-1}, \quad \eta_{j}=\theta \beta_{j} \gamma_{i, j} N
$$

where N is viewed as a path from d^{-}to d. By definition, $w_{i, j}$ is the total winding number of the loop $\theta^{-} \beta_{i}^{-} \gamma_{i, j}^{-} \theta \beta_{j} \gamma_{i, j}$. This loop is homotopic in Σ to the loop

$$
\theta^{-} \beta_{i}^{-} \gamma_{i, j}^{-} N^{-1} N \theta \beta_{j} \gamma_{i, j} N N^{-1}=\eta_{i}^{-} N \eta_{j} N^{-1}
$$

The loop $\eta_{i}^{-} N \eta_{j} N^{-1}$ is homologous to $\eta_{i}^{-} \eta_{j}$ in Σ. Hence (3.22).
Inspecting the loops η_{i}^{-}and η_{i}, we observe that the difference between their homology classes $\left[\eta_{i}^{-}\right],\left[\eta_{i}\right] \in H_{1}(\Sigma ; \mathbf{Z})$ is represented by the loop going from d to d^{-}along N^{-1}, then from d^{-}to z^{-}along θ^{-}, then from z^{-}to z along a path lying in the strip between α^{-}and α, and finally from z to d along θ^{-1}. Therefore the difference $\left[\eta_{i}^{-}\right]-\left[\eta_{i}\right] \in H_{1}(\Sigma ; \mathbf{Z})$ does not depend on i. This implies that the number

$$
W=w\left(\eta_{i}^{-}\right)-w\left(\eta_{i}\right) \in \mathbf{Z}
$$

does not depend on i. Formula (3.22) implies that for all $i, j=1, \ldots, m$,

$$
\begin{equation*}
w_{i, j}=w\left(\eta_{i}\right)+w\left(\eta_{j}\right)+W \tag{3.23}
\end{equation*}
$$

Suppose that the pair (i, j) is maximal. Then $w_{i, j}$ is maximal among all the integers $w_{k, l}$. By (3.23), both numbers $w\left(\eta_{i}\right)$ and $w\left(\eta_{j}\right)$ must be maximal among all the integers $w\left(\eta_{k}\right)$. Then

$$
w\left(\eta_{i}\right)=w\left(\eta_{j}\right) \quad \text { and } \quad w_{i, i}=w_{i, j} .
$$

The maximality of (i, j) implies that $u_{i, i} \leq u_{i, j}$. We claim that $u_{i, i}=u_{i, j}$. For $i=j$, this is obvious and we assume that $i \neq j$.

Suppose, seeking a contradiction, that $u_{i, i}<u_{i, j}$. Let μ be the (embedded) subarc of α connecting z_{i} and z_{j}. Let ν be the (embedded) subarc of N connecting z_{i} and z_{j}. We orient μ from z_{i} to z_{j} and ν from z_{j} to z_{i}. The product $\mu \nu$ is a loop on Σ based at z_{i}. We distinguish two cases.

Case 1: The arc ν approaches α at z_{i} from the right (in other words, ν does not pass through z_{i}^{-}). Then the loop $\mu \nu$ does not pass through z_{i}^{-}and we can consider its winding number, $v \in \mathbf{Z}$, around z_{i}^{-}. We claim that $v>0$. To see this, we compute v as follows. As was already observed, $2 v=u\left(\left\{z_{i}^{-}, \mu \nu\right\}\right)$, where u is the invariant of loops in \mathcal{C} defined in Section 3.5.1 and z_{i}^{-}stands for the constant path in the point z_{i}^{-}. Observe that $\beta_{j} \sim \beta_{i} \mu$, where \sim denotes the homotopy of paths in $\Sigma-\left\{z_{i}^{-}\right\}$relative to the endpoints. The assumption that ν does not pass through z_{i}^{-}implies that

$$
\gamma_{i, i}^{-}=\gamma_{i, j}^{-} \quad \text { and } \quad \gamma_{i, i}=\nu^{-1} \gamma_{i, j}
$$

see Figure 3.10. Then

$$
\xi_{i, j}=\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{j}\right\}\left\{\gamma_{i, j}^{-}, \gamma_{i, j}\right\} \sim\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{i}\right\}\left\{z_{i}^{-}, \mu \nu\right\}\left\{\gamma_{i, i}^{-}, \gamma_{i, i}\right\}
$$

The latter loop is homologous in \mathcal{C} to the loop

$$
\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{i}\right\}\left\{\gamma_{i, i}^{-}, \gamma_{i, i}\right\}\left\{z_{i}^{-}, \mu \nu\right\}=\xi_{i, i}\left\{z_{i}^{-}, \mu \nu\right\}
$$

Therefore,

$$
2 v=u\left(\left\{z_{i}^{-}, \mu \nu\right\}\right)=u\left(\xi_{i, j}\right)-u\left(\xi_{i, i}\right)=u_{i, j}-u_{i, i} .
$$

The assumption $u_{i, i}<u_{i, j}$ implies that $v>0$.

Fig. 3.10. Case 1: the paths $\gamma_{i, j}^{-}$and $\gamma_{i, j}$

We can now bring one more loop into the picture. Consider the short subarc of N connecting z_{i} to z_{i}^{-}in the strip between α and α^{-}. Pick a loop ρ in a small neighborhood of this subarc such that
(i) ρ begins and ends in z_{i};
(ii) ρ does not meet z_{i}^{-}and winds clockwise v times around z_{i}^{-};
(iii) ρ has $v-1$ transversal self-crossings;
(iv) ρ meets $\mu \nu$ only at z_{i} (see Figure 3.11).

Fig. 3.11. The loop ρ for $v=3$

Note that the winding number of the loop $\mu \nu \rho$ around z_{i}^{-}is equal to 0 . Hence, this loop lifts to an appropriate covering of the complement of $\left\{z_{i}^{-}\right\}$. We now describe this lift in more detail.

Let $D_{\bullet}=D-\left\{z_{i}^{-}\right\}$and $p: \widehat{D}_{\bullet} \rightarrow D_{\bullet}$ be the universal (infinite cyclic) covering. Let $\widehat{\mu}:[0,1] \rightarrow \widehat{D} \bullet$ be an arbitrary lift of μ (so that $p \widehat{\mu}=\mu$). There is a unique lift $\widehat{\nu}:[0,1] \rightarrow \widehat{D}$ • of ν such that $\widehat{\nu}(0)=\widehat{\mu}(1)$. Consider also the unique lift $\widehat{\rho}:[0,1] \rightarrow \widehat{D}$. of ρ such that $\widehat{\rho}(0)=\widehat{\nu}(1)$. By abuse of notation, we shall denote the paths $\mu, \nu, \rho, \widehat{\mu}, \widehat{\nu}, \widehat{\rho}$ and their images by the same letters. Since the winding number of $\mu \nu \rho$ around z_{i}^{-}is zero, the path $\widehat{\mu} \widehat{\nu} \widehat{\rho}$ is a loop. Our choice of ρ ensures that $\widehat{\rho}$ is an embedded arc in \widehat{D} • meeting $\widehat{\mu} \widehat{\nu}$ only at the endpoints. However, the embedded arcs $\widehat{\mu}$ and $\widehat{\nu}$ in \widehat{D}_{\bullet} may meet in several points besides their common endpoint $\widehat{\mu}(1)=\widehat{\nu}(0)$. Let a be the first point of $\widehat{\mu}$ that lies also on $\widehat{\nu}$ (possibly $a=\widehat{\mu}(1))$. Let $\widehat{\mu}_{a}$ be the initial segment of $\widehat{\mu}$ going from $\widehat{\mu}(0)$ to a. Let $\widehat{\nu}_{a}$ be the final segment of $\widehat{\nu}$ going from a to $\widehat{\nu}(1)$. Set

$$
\delta=\widehat{\mu}_{a} \widehat{\nu}_{a} \widehat{\rho}
$$

The construction of the loop δ ensures that it has no self-crossings. This loop parametrizes an embedded circle in \widehat{D}. denoted by the same symbol δ. We identify \widehat{D}_{\bullet} with the half-open strip $\mathbf{R} \times[0,1) \subset \mathbf{R}^{2}$ so that the orientation in \widehat{D}_{\bullet} induced by the counterclockwise orientation in D_{\bullet} is identified with the counterclockwise orientation in \mathbf{R}^{2}. The Jordan curve theorem implies that δ bounds an embedded disk $B \subset \widehat{D}_{\text {. }}$.

We verify now that the loop δ encircles B counterclockwise. Let C be the component of $D_{\bullet}-\rho$ surrounding z_{i}^{-}. We check first that $C \cap p(B)=\emptyset$. Indeed, suppose that there is a point $b \in B$ such that $p(b) \in C$. We can connect the point $p(b)$ to any other point b^{\prime} of C by an arc in C. This arc lifts to an arc in \widehat{D} • beginning in b. The latter arc never meets δ, since its projection to D_{\bullet} never meets μ, ν, or ρ. Hence this lifted arc lies in the interior $B^{\circ}=B-\partial B$ of B, and its terminal endpoint projects to b^{\prime}. Thus, $C \subset p(B)$. Since B is compact, so is $p(B)$. On the other hand, it is clear that C is not contained in a compact subset of D_{\bullet}. This contradiction shows that $C \cap p(B)=\emptyset$. Observe now that C lies on the right of ρ. If B lies on the right of $\widehat{\rho} \subset \delta$, then necessarily $C \cap p(B) \neq \emptyset$, a contradiction. Thus, B lies on the left of $\widehat{\rho}$ and of δ. Hence, δ goes counterclockwise around B.

We claim that $B \cap p^{-1}(Q)=\emptyset$. Indeed, being a compact subset of \widehat{D}_{\bullet}, the disk B may contain only a finite number of points of the (discrete) set $p^{-1}(Q) \subset \widehat{D}_{\bullet}$. Observe that the paths μ, ν, ρ lie in $\Sigma=D-Q$ and do not meet Q. Therefore $\partial B \cap p^{-1}(Q)=\emptyset$, so that $B \cap p^{-1}(Q) \subset B^{\circ}$. The loop $\delta=\partial B$ is homologous in $B-p^{-1}(Q)$ to the sum of small loops encircling the points of $B \cap p^{-1}(Q)$ counterclockwise. The latter loops are projected by p homeomorphically onto small loops encircling certain points of Q counterclockwise. Therefore,

$$
\operatorname{card}\left(B \cap p^{-1}(Q)\right)=w(p \circ \delta),
$$

where $w(p \circ \delta)$ is the total winding number of the loop $p \circ \delta$ in Σ around the points of Q. We have

$$
p \circ \delta=\mu_{a} \nu_{a} \rho
$$

where $\mu_{a}=p\left(\widehat{\mu}_{a}\right)$ is the initial segment of μ going from z_{i} to $p(a)$ along α, and $\nu_{a}=p\left(\widehat{\nu}_{a}\right)$ is the final segment of ν going from $p(a)$ to z_{i} along N. Then $p(a) \in N \cap \alpha$, so that $p(a)=z_{k}$ for some $k=1, \ldots, n$. Since ρ is contractible in Σ, the loop $\mu_{a} \nu_{a} \rho$ is homotopic to $\mu_{a} \nu_{a}$ in Σ and

$$
w\left(\mu_{a} \nu_{a} \rho\right)=w\left(\mu_{a} \nu_{a}\right)
$$

Recall the loops η_{k}, η_{i} in Σ based at the terminal endpoint d of N. The difference between their homology classes $\left[\eta_{k}\right],\left[\eta_{i}\right] \in H_{1}(\Sigma ; \mathbf{Z})$ depends neither on the choice of the path θ nor on the choice of its terminal endpoint $z \in \alpha$. Taking $z=z_{i}$, one immediately deduces from the definition of η_{k}, η_{i} that $\left[\eta_{k}\right]-\left[\eta_{i}\right]=\left[\mu_{a} \nu_{a}\right]$. Therefore,

$$
w\left(\mu_{a} \nu_{a}\right)=w\left(\eta_{k}\right)-w\left(\eta_{i}\right) .
$$

To sum up, we have

$$
\operatorname{card}\left(B \cap p^{-1}(Q)\right)=w(p \circ \delta)=w\left(\mu_{a} \nu_{a} \rho\right)=w\left(\mu_{a} \nu_{a}\right)=w\left(\eta_{k}\right)-w\left(\eta_{i}\right)
$$

Since $w\left(\eta_{i}\right)$ is maximal, $\operatorname{card}\left(B \cap p^{-1}(Q)\right) \leq 0$. Hence $B \cap p^{-1}(Q)=\emptyset$.

We shall need a few simple facts concerning the covering $p: \widehat{D}_{\bullet} \rightarrow D_{\bullet}$. The group of covering transformations of p is an infinite cyclic group generated by the covering transformation $g: \widehat{D}_{\bullet} \rightarrow \widehat{D}_{\bullet}$ corresponding to the loop encircling z_{i} counterclockwise. The set $p^{-1}(N)$ consists of an infinite number of disjoint closed intervals in \widehat{D} • with boundary on $\partial \widehat{D}_{\bullet}$. These intervals can be numerated by integers so that the action of g shifts the index by 1 . This implies that any nontrivial covering transformation $\widehat{D} \rightarrow \widehat{D}_{\bullet}$ maps each component of $p^{-1}(N)$ to a different component of $p^{-1}(N)$. The same facts hold for the set $p^{-1}(\alpha) \subset \widehat{D}$ • with the only difference that its components are closed intervals lying in the interior of \widehat{D}^{\bullet}.

We claim that under our assumptions the pair N, α has a digon. This would imply that the intersection $N \cap \alpha$ is not minimal. The latter contradicts our choice of α in its isotopy class. Therefore, the assumption $u_{i, i}<u_{i, j}$ must have been false, so that $u_{i, i}=u_{i, j}$.

We now construct a digon for N, α. Suppose first that

$$
B^{\circ} \cap p^{-1}(N) \neq \emptyset \quad \text { or } \quad B^{\circ} \cap p^{-1}(\alpha) \neq \emptyset
$$

(or both). Observe that the circle $\delta=\partial B$ is formed by three embedded arcs: the arc $\widehat{\mu}_{a}$ lying on $p^{-1}(\alpha)$, the arc $\widehat{\nu}_{a}$ lying on $p^{-1}(N)$, and the arc $\widehat{\rho}$ meeting the set $p^{-1}(N) \cup p^{-1}(\alpha)$ only in its two endpoints. Note that the boundary of the one-manifold $p^{-1}(N)$ is contained in $\partial \widehat{D}$ • and lies therefore outside of B. If $B^{\circ} \cap p^{-1}(N) \neq \emptyset$, then $B^{\circ} \cap p^{-1}(N)$ is a finite set of disjoint embedded arcs with endpoints on $\widehat{\mu}_{a}$. At least one of these arcs bounds together with a subarc of $\widehat{\mu}_{a}$ a disk $D_{1} \subset B$ whose interior does not meet $p^{-1}(N)$. If $B^{\circ} \cap p^{-1}(N)=\emptyset$, then we set $D_{1}=B$. Similarly, the boundary of $p^{-1}(\alpha) \subset \widehat{D}_{\bullet}$ is contained in $p^{-1}(Q)$ and lies outside of B. If the interior D_{1}° of D_{1} meets $p^{-1}(\alpha)$, then they meet along a finite number of disjoint embedded arcs with endpoints on $p^{-1}(N) \cap \partial D_{1}$. At least one of these arcs bounds together with a subarc of $p^{-1}(N) \cap \partial D_{1}$ an embedded disk $D_{2} \subset D_{1}$ whose interior does not meet $p^{-1}(\alpha)$. If $D_{1}^{\circ} \cap p^{-1}(\alpha)=\emptyset$, then we set $D_{2}=D_{1}$. In any case, the boundary of D_{2} is formed by an arc on $p^{-1}(N)$ and an arc on $p^{-1}(\alpha)$, while the interior D_{2}° of D_{2} does not meet $p^{-1}(N \cup \alpha)$. Then

$$
D_{2}^{\circ} \cap g\left(\partial D_{2}\right)=\emptyset,
$$

for any nontrivial covering transformation $g: \widehat{D}_{\bullet} \rightarrow \widehat{D}_{\bullet}$ of the covering p : $\widehat{D}_{\bullet} \rightarrow D_{\bullet}$. The properties of the sets $p^{-1}(N)$ and $p^{-1}(\alpha)$ mentioned above imply that $\partial D_{2} \cap g\left(\partial D_{2}\right)=\emptyset$. This implies that either $D_{2} \cap g\left(D_{2}\right)=\emptyset$ or D_{2} is contained in the interior of the disk $g\left(D_{2}\right)$. In the latter case, $g^{-1}\left(D_{2}\right) \subset D_{2}^{\circ}$, which contradicts the fact that D_{2}° does not meet $p^{-1}(N \cup \alpha)$. We conclude that $D_{2} \cap g\left(D_{2}\right)=\emptyset$. Thus, the disk D_{2} does not meet its images under nontrivial covering transformations of the covering $p: \widehat{D}_{\boldsymbol{\bullet}} \rightarrow D_{\mathbf{\bullet}}$. Hence, the restriction of p to D_{2} is injective. This implies that $p\left(D_{2}\right)$ is a digon for N, α in Σ.

It remains to construct a digon for the pair N, α when $B^{\circ} \cap p^{-1}(N \cup \alpha)=\emptyset$. The set $p^{-1}(\rho)$ consists of v copies of the line \mathbf{R} embedded in \widehat{D}_{\bullet}; these lines meet each other at an infinite number of points (see Figure 3.12, where $v=3$). The arcs μ_{a}, ν_{a} lie in the component of $D_{\bullet}-\rho$ adjacent to $\partial D_{\bullet} \approx S^{1}$ except for the points $\mu_{a}(0)=\nu_{a}(1)=z_{i}$. Therefore the arcs $\widehat{\mu}_{a}, \widehat{\nu}_{a}$ lie in the component of $\widehat{D}_{\bullet}-p^{-1}(\rho)$ adjacent to $\partial \widehat{D}_{\bullet} \approx \mathbf{R}$ except for the points $\widehat{\mu}_{a}(0)=\widehat{\mu}(0)$ and $\widehat{\nu}_{a}(1)=\widehat{\nu}(1)$ lying on $p^{-1}\left(z_{i}\right) \subset p^{-1}(\rho)$. Clearly, $\widehat{\nu}_{a}(1)=g^{v}\left(\widehat{\mu}_{a}(0)\right)$, where $g: \widehat{D}_{\bullet} \rightarrow \widehat{D}_{\bullet}$ is the generator of the group of covering transformations chosen above and $v>0$ is the winding number of the loop $\mu \nu$ around z_{i}^{-}. The disk B bounded by $\delta=\widehat{\mu}_{a} \widehat{\nu}_{a} \widehat{\rho}$ has to include the area between the $\operatorname{arc} \widehat{\mu}_{a} \widehat{\nu}_{a}$ and $p^{-1}(\rho)$ (this area is shaded in Figure 3.12). Observing Figure 3.12, one immediately concludes that for $v \geq 2$, this area must meet $g\left(\widehat{\mu}_{a} \widehat{\nu}_{a}\right)$. This contradicts the assumption $B^{\circ} \cap p^{-1}(N \cup \alpha)=\emptyset$. It follows that $v=1$, so that $p^{-1}(\rho)$ is just a line and B is the area between this line and the $\operatorname{arc} \widehat{\mu}_{a} \widehat{\nu}_{a}$. Then B projects injectively to D_{\bullet}, the loop ρ bounds a small disk containing z_{i}^{-}, and the union of this disk with $p(B)$ is a digon for N, α. This completes the proof of the equality $u_{i, i}=u_{i, j}$ in Case 1 .

Fig. 3.12. The case $v=3$

Case 2: The arc ν approaches α at z_{i} from the left (in other words, ν passes through $\left.z_{i}^{-}\right)$. Let us slightly push the $\operatorname{arc} \nu$ near z_{i}^{-}to $\Sigma-\left\{z_{i}^{-}\right\}$so that z_{i}^{-}lies on the left side of the resulting arc. Denote by ν^{\prime} this new arc, also leading from z_{j} to z_{i}. The loop $\mu \nu^{\prime}$ does not pass through z_{i}^{-}and we can consider its winding number, v, around z_{i}^{-}. We claim that $v>0$. Observe first that the point z_{i}^{-}splits ν into two subarcs ν_{1} and ν_{2}, where ν_{1} leads from z_{j} to z_{i}^{-}and ν_{2} leads from z_{i}^{-}to z_{i}. We have $\gamma_{i, j}^{-}=\nu_{2} \gamma_{i, i}$ and $\gamma_{i, i}^{-}=\nu_{1}^{-1} \gamma_{i, j}$; see Figure 3.13. As in Case 1, we have $\beta_{j} \sim \beta_{i} \mu$. Therefore,

$$
\xi_{i, j}=\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{j}\right\}\left\{\gamma_{i, j}^{-}, \gamma_{i, j}\right\} \sim\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{i}\right\}\left\{\nu_{2}, \mu \nu_{1}\right\}\left\{\gamma_{i, i}^{-}, \gamma_{i, i}\right\} .
$$

The latter loop is homologous in \mathcal{C} to the loop

$$
\left\{\theta^{-}, \theta\right\}\left\{\beta_{i}^{-}, \beta_{i}\right\}\left\{\gamma_{i, i}^{-}, \gamma_{i, i}\right\}\left\{\nu_{2}, \mu \nu_{1}\right\}=\xi_{i, i}\left\{\nu_{2}, \mu \nu_{1}\right\} .
$$

It is easy to deduce from the definitions and the construction of ν^{\prime} that $u\left(\left\{\nu_{2}, \mu \nu_{1}\right\}\right)=u\left(\left\{z_{i}^{-}, \mu \nu^{\prime}\right\}\right)-1=2 v-1$. Therefore,

$$
2 v-1=u\left(\left\{\nu_{2}, \mu \nu_{1}\right\}\right)=u\left(\xi_{i, j}\right)-u\left(\xi_{i, i}\right)=u_{i, j}-u_{i, i}
$$

The assumption $u_{i, i}<u_{i, j}$ implies that $v>0$. The rest of the proof of the equality $u_{i, i}=u_{i, j}$ goes as in Case 1 with the difference that instead of ν one should everywhere use ν^{\prime}.

Fig. 3.13. Case 2: the paths $\gamma_{i, i}$ and $\gamma_{i, j}$

Analogous arguments prove that $u_{j, j}=u_{i, j}$ for any maximal pair (i, j). This can also be deduced from the results above using the following symmetry for the loops $\xi_{i, j}$ defined by (3.19), where i, j is an arbitrary (not necessarily maximal) pair of elements of the set $\{1, \ldots, m\}$. Let us write

$$
\xi_{i, j}=\xi_{i, j}\left(N, \alpha, z, z^{+}, \theta^{-}, \theta\right)
$$

stressing the dependence on the data in the parentheses. We will use similar notation for $w_{i, j}=w\left(\xi_{i, j}\right)$ and $u_{i, j}=u\left(\xi_{i, j}\right)$. Consider the noodle $-N$ obtained from N by reversing the orientation. Similarly, consider the spanning arcs $-\alpha,-\alpha^{-}$on (D, Q) obtained from α, α^{-}, respectively, by reversing the orientation. It is clear that $-\alpha$ lies on the left of $-\alpha^{-}$, so that we can set $\left(-\alpha^{-}\right)^{-}=-\alpha$. The noodle $-N$ crosses $-\alpha^{-}$and $\left(-\alpha^{-}\right)^{-}=-\alpha$ in the same points as before and we numerate them in the same way, except that z_{i} becomes z_{i}^{-}and vice versa (for all i). It follows from the definitions that

$$
\xi_{i, j}\left(N, \alpha, z^{-}, z, \theta^{-}, \theta\right)=\xi_{j, i}\left(-N,-\alpha^{-}, z, z^{-}, \theta, \theta^{-}\right)
$$

for all i, j. This implies similar formulas for $w_{i, j}$ and $u_{i, j}$. Now, if the pair (i, j) is maximal for (N, α), then the pair (j, i) is maximal for $\left(-N,-\alpha^{-}\right)$and by the results above,

$$
\begin{aligned}
u_{i, j}\left(N, \alpha, z^{-}, z, \theta^{-}, \theta\right) & =u_{j, i}\left(-N,-\alpha^{+}, z, z^{-}, \theta, \theta^{-}\right) \\
& =u_{j, j}\left(-N,-\alpha^{+}, z, z^{-}, \theta, \theta^{-}\right) \\
& =u_{j, j}\left(N, \alpha, z^{-}, z, \theta^{-}, \theta\right)
\end{aligned}
$$

We conclude that $u_{i, i}=u_{i, j}=u_{j, j}$ for any maximal pair (i, j). This proves (3.21) and the lemma.

3.7 Proof of Theorem 3.15

The proof begins with two constructions. From each spanning arc α we derive a vector in \mathcal{H} and from each noodle N we derive an oriented surface in $\widetilde{\mathcal{C}}$. Then we compute the algebraic intersection $\langle N, \alpha\rangle$ in terms of these vectors and surfaces. This computation is used in the final subsection to finish the proof.

3.7.1 Homology classes associated with spanning arcs

Fix an oriented spanning $\operatorname{arc} \alpha$ on (D, Q), where $Q=\{(1,0),(2,0), \ldots,(n, 0)\}$. Pick disjoint closed disk neighborhoods

$$
U_{1}, U_{2}, \ldots, U_{n} \subset D^{\circ}=D-\partial D
$$

of the points $(1,0),(2,0), \ldots,(n, 0)$, respectively. We shall always assume that α meets the disk neighborhoods U_{i} of its endpoints along certain radii and does not meet the other U_{i}. Let U be the set of all nonordered pairs $\{x, y\} \in \mathcal{C}$ such that at least one of the points $x, y \in \Sigma=D-Q$ lies in $\bigcup_{i=1}^{n} U_{n}$. Let $\widetilde{U} \subset \widetilde{\mathcal{C}}$ be the preimage of U under the covering $\operatorname{map} \widetilde{\mathcal{C}} \rightarrow \mathcal{C}$. It is clear that \widetilde{U} is invariant under the action of the covering transformations q, t on $\widetilde{\mathcal{C}}$. This action turns the integral homology of \widetilde{U} and the relative integral homology of the pair $(\widetilde{\mathcal{C}}, \widetilde{U})$ into modules over the ring $\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$. We now associate with α a subset of $H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z})$ consisting of so-called α-classes.

Consider a parallel oriented spanning arc α^{-}as in Section 3.6.2. Recall that $\alpha \cup \alpha^{-}$bounds a narrow strip in Σ and $\alpha \cap \alpha^{-}=\partial \alpha=\partial \alpha^{-}$. Consider the set $S_{\alpha} \subset \mathcal{C}$ consisting of all pairs $\{x, y\}$, where $x \in \alpha^{-}-\partial \alpha^{-}$and $y \in \alpha-\partial \alpha$. Thus, $S_{\alpha}=\left(\alpha^{-}-\partial \alpha^{-}\right) \times(\alpha-\partial \alpha)$. Since S_{α} is simply connected, the embedding $S_{\alpha} \leftrightharpoons \mathcal{C}$ lifts to an embedding $S_{\alpha} \hookrightarrow \widetilde{\mathcal{C}}$. Fix such a lift and denote its image by \widetilde{S}_{α}. We regard S_{α} and \widetilde{S}_{α} as open squares via

$$
\widetilde{S}_{\alpha} \approx S_{\alpha}=\left(\alpha^{-}-\partial \alpha^{-}\right) \times(\alpha-\partial \alpha)
$$

The surfaces S_{α} and \widetilde{S}_{α} have a natural orientation obtained by multiplying the orientations in α^{-}and α. Pick subarcs $s \subset \alpha-\partial \alpha$ and $s^{-} \subset \alpha^{-}-\partial \alpha^{-}$ whose endpoints and complements in α, α^{-}lie in $\bigcup_{i=1}^{n} U_{n}$. Then $S=s^{-} \times s$ is a concentric closed subsquare of \widetilde{S}_{α} whose boundary and complement in \widetilde{S}_{α} lie in \widetilde{U}. The oriented surface S represents an element of $H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z})$ independent of the choice of s, s^{-}. This element is denoted by $[S]$. Under a different choice of \widetilde{S}_{α}, it is multiplied by a monomial in q, t.

The image of $[S]$ under the boundary homomorphism

$$
H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z}) \rightarrow H_{1}(\widetilde{U} ; \mathbf{Z})
$$

is represented by the oriented circle $\partial S \subset \widetilde{U}$. The following lemma shows that the homology class $[\partial S] \in H_{1}(\widetilde{U} ; \mathbf{Z})$ is annihilated by $(q-1)^{2}(q t+1)$.

Lemma 3.22. We have $(q-1)^{2}(q t+1)[\partial S]=0$ in $H_{1}(\widetilde{U} ; \mathbf{Z})$.
Proof. Let $\left(p_{1}, 0\right),\left(p_{2}, 0\right)$ be the endpoints of α, where $p_{1}, p_{2} \in\{1,2, \ldots, n\}$. For brevity, we shall denote the point $\left(p_{i}, 0\right)$ simply by p_{i}, where $i=1,2$. For $i=1,2$, pick a point $u_{i} \in U_{p_{i}}$ lying in the strip between α^{-}and α. Consider the points $A, A^{\prime}, B, B^{\prime} \in \Sigma$ and the eight paths

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}, \gamma_{1}, \gamma_{2}
$$

in Σ drawn in Figure 3.14. The paths $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ are embedded arcs, while γ_{i} is a loop in $U_{p_{i}}$ encircling p_{i} and based at u_{i} for $i=1,2$. It is understood that α goes along a radius of $U_{p_{1}}$ from p_{1} to A, then along α_{2} from A to A^{\prime}, and then along a radius of $U_{p_{2}}$ from A^{\prime} to p_{2} (the radii in question are not drawn in Figure 3.14). The arc α^{-}goes along a radius of $U_{p_{1}}$ from p_{1} to B^{\prime}, then along the path β_{2}^{-1} inverse to β_{2}, and then along a radius of $U_{p_{2}}$ from B to p_{2}. One should think of α_{2} (resp. of β_{2}) as being long and almost entirely exhausting α (resp. α^{-}), while the radii of $U_{p_{1}}, U_{p_{2}}$ and the $\operatorname{arcs} \alpha_{1}, \beta_{3} \subset U_{p_{1}}, \alpha_{3}, \beta_{1} \subset U_{p_{2}}$ are short.

Fig. 3.14. The $\operatorname{arcs} \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3}, \gamma_{1}, \gamma_{2}$

Consider the following loops in U based at $e=\left\{u_{1}, u_{2}\right\}=\left\{u_{2}, u_{1}\right\} \in U$:

$$
\begin{aligned}
a_{1}=\left\{\gamma_{1}, u_{2}\right\}, & a_{2}=\left\{u_{1}, \gamma_{2}\right\}, \\
b_{1}=\left\{\alpha_{1}, \beta_{1} \beta_{2} \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3}, u_{1}\right\}, & b_{2}=\left\{\alpha_{1} \alpha_{2} \alpha_{3}, \beta_{1}\right\}\left\{u_{2}, \beta_{2} \beta_{3}\right\},
\end{aligned}
$$

where u_{1}, u_{2} stand for the constant paths in the points u_{1}, u_{2}. Note that both loops b_{1}, b_{2} are homotopic in \mathcal{C} to the loop

$$
\left\{\alpha_{1} \alpha_{2} \alpha_{3}, \beta_{1} \beta_{2} \beta_{3}\right\}
$$

(This certainly does not imply that b_{1}, b_{2} are homotopic in U.) The homotopy classes of the loops $a_{1}, a_{2}, b_{1}, b_{2}$ in the fundamental group $\pi=\pi_{1}(U, e)$ will be denoted by the same symbols $a_{1}, a_{2}, b_{1}, b_{2}$. The symbol \sim will denote homotopy in U for loops in U based at e. For any $x, y \in \pi$, set

$$
x^{y}=y^{-1} x y \in \pi \quad \text { and } \quad[x, y]=x^{-1} x^{y}=x^{-1} y^{-1} x y \in \pi .
$$

Observe the following relations in π :

$$
\begin{equation*}
\left[a_{1}, a_{2}\right]=1, \quad\left[a_{1}, b_{1} a_{1} b_{1}\right]=1, \quad\left[a_{2}, b_{2} a_{2} b_{2}\right]=1 \tag{3.24}
\end{equation*}
$$

The first relation is obvious, since

$$
a_{1} a_{2} \sim\left\{\gamma_{1}, \gamma_{2}\right\} \sim a_{2} a_{1}
$$

The relations $\left[a_{1}, b_{1} a_{1} b_{1}\right]=1$ and $\left[a_{2}, b_{2} a_{2} b_{2}\right]=1$ are proven similarly, and we shall prove only the first one. Consider the oriented $\operatorname{arcs} \theta_{1}, \theta_{2}$ on $\partial U_{p_{1}}$ as shown in Figure 3.14. These arcs lead from B^{\prime} to A and from A to B^{\prime} respectively, and their product $\theta_{1} \theta_{2}$ is a loop parametrizing $\partial U_{p_{1}}$. We claim that

$$
\begin{equation*}
b_{1} a_{1} b_{1} \sim\left\{u_{1}, \beta_{1} \beta_{2} \theta_{1} \alpha_{2} \alpha_{3}\right\} . \tag{3.25}
\end{equation*}
$$

This will imply that

$$
\begin{aligned}
a_{1} b_{1} a_{1} b_{1} & \sim\left\{\gamma_{1}, u_{2}\right\}\left\{u_{1}, \beta_{1} \beta_{2} \theta_{1} \alpha_{2} \alpha_{3}\right\} \\
& \sim\left\{\gamma_{1}, \beta_{1} \beta_{2} \theta_{1} \alpha_{2} \alpha_{3}\right\} \\
& \sim\left\{u_{1}, \beta_{1} \beta_{2} \theta_{1} \alpha_{2} \alpha_{3}\right\}\left\{\gamma_{1}, u_{2}\right\} \\
& \sim b_{1} a_{1} b_{1} a_{1}
\end{aligned}
$$

Hence $\left[a_{1}, b_{1} a_{1} b_{1}\right]=1$. We now prove (3.25). Observe first that

$$
b_{1} a_{1} \sim\left\{\alpha_{1}, \beta_{1} \beta_{2} \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3}, \gamma_{1}\right\}
$$

and

$$
b_{1} \sim\left\{u_{1}, \beta_{1} \beta_{2}\right\}\left\{\alpha_{1} \alpha_{2} \alpha_{3}, \beta_{3}\right\}=\left\{\beta_{1} \beta_{2}, u_{1}\right\}\left\{\beta_{3}, \alpha_{1} \alpha_{2} \alpha_{3}\right\}
$$

Therefore,

$$
b_{1} a_{1} b_{1} \sim\left\{\alpha_{1}, \beta_{1} \beta_{2} \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3} \beta_{1} \beta_{2}, \gamma_{1}\right\}\left\{\beta_{3}, \alpha_{1} \alpha_{2} \alpha_{3}\right\}
$$

The path $\alpha_{2} \alpha_{3} \beta_{1} \beta_{2}$ is homotopic in $\Sigma-\gamma_{1}$ to θ_{2}. (By a homotopy of paths we always mean a homotopy keeping the endpoints of the paths fixed.) Hence,

$$
\begin{aligned}
b_{1} a_{1} b_{1} & \sim\left\{\alpha_{1}, \beta_{1} \beta_{2} \beta_{3}\right\}\left\{\theta_{2}, \gamma_{1}\right\}\left\{\beta_{3}, \alpha_{1} \alpha_{2} \alpha_{3}\right\} \\
& \sim\left\{\alpha_{1}, \beta_{1} \beta_{2}\right\}\left\{A, \beta_{3}\right\}\left\{\theta_{2}, \gamma_{1}\right\}\left\{B^{\prime}, \alpha_{1}\right\}\left\{\beta_{3}, \alpha_{2} \alpha_{3}\right\} \\
& \sim\left\{\alpha_{1}, \beta_{1} \beta_{2}\right\}\left\{\theta_{2}, \beta_{3} \gamma_{1} \alpha_{1}\right\}\left\{\beta_{3}, \alpha_{2} \alpha_{3}\right\} .
\end{aligned}
$$

Observe that the path $\beta_{3} \gamma_{1} \alpha_{1}$ is homotopic in $U_{p_{1}}$ to θ_{1}. Therefore

$$
b_{1} a_{1} b_{1} \sim\left\{\alpha_{1}, \beta_{1} \beta_{2}\right\}\left\{\theta_{2}, \theta_{1}\right\}\left\{\beta_{3}, \alpha_{2} \alpha_{3}\right\} .
$$

Since the product $\alpha_{1} \theta_{2} \beta_{3}$ is homotopic to the constant path u_{1}, we obtain

$$
b_{1} a_{1} b_{1} \sim\left\{u_{1}, \beta_{1} \beta_{2} \theta_{1} \alpha_{2} \alpha_{3}\right\},
$$

which proves (3.25).

We define the following four elements of π :

$$
a=a_{2}^{-1} a_{1}, \quad b=b_{2}^{-1} b_{1}, \quad c_{1}=\left[a_{1}, b_{1}\right], \quad c_{2}=\left[a_{2}, b_{2}\right] .
$$

Then

$$
\begin{equation*}
a^{a_{1}}=a, \quad c_{1}^{b_{1} a_{1}} c_{1}=1=c_{2}^{b_{2} a_{2}} c_{2}, \quad c_{2} b a^{b_{1}}=a b^{a_{1}} c_{1} \tag{3.26}
\end{equation*}
$$

To see this, rewrite all four relations via $a_{1}, a_{2}, b_{1}, b_{2}$. The first three relations are consequences of (3.24); in the last one, both sides are equal to $a_{2}^{-1} b_{2}^{-1} a_{1} b_{1}$.

Pick a lift $\widetilde{e} \in \widetilde{\mathcal{C}}$ of $e=\left\{u_{1}, u_{2}\right\}$. The group $\widetilde{\pi}=\pi_{1}(\widetilde{U}, \widetilde{e})$ is the subgroup of $\pi=\pi_{1}(U, e)$ formed by the homotopy classes of loops ξ in U such that $w(\xi)=u(\xi)=0$. We claim that $a, b, c_{1}, c_{2} \in \widetilde{\pi}$. Indeed, for $i=1,2$, we have $w\left(a_{i}\right)=w\left(\gamma_{i}\right)=1$ and

$$
w\left(b_{i}\right)=w\left(\alpha_{1} \alpha_{2} \alpha_{3} \beta_{1} \beta_{2} \beta_{3}\right)=0 .
$$

It follows from the definitions that $u\left(a_{1}\right)=u\left(a_{2}\right)=0$ and $u\left(b_{1}\right)=u\left(b_{2}\right)=1$. Hence $w(a)=u(a)=0$ and $w(b)=u(b)=0$, so that $a, b \in \widetilde{\pi}$. The commutator of any two elements of π belongs to $\widetilde{\pi}$, so that $c_{1}, c_{2} \in \widetilde{\pi}$.

The image of any $x \in \widetilde{\pi}$ under the natural projection $\widetilde{\pi} \rightarrow H_{1}(\widetilde{U} ; \mathbf{Z})$ will be denoted by $[x]$. It is clear that if $x \in \widetilde{\pi}$ and $y \in \pi$, then $x^{y} \in \widetilde{\pi}$. We claim that for all $x \in \widetilde{\pi}$ and $y \in \pi$,

$$
\begin{equation*}
\left[x^{y}\right]=q^{-w(y)} t^{-u(y)}[x], \tag{3.27}
\end{equation*}
$$

where we use the R-module structure on $H_{1}(\widetilde{U} ; \mathbf{Z})$. To see this, present x, y by loops ξ, η in U, based at e. Then $x^{y} \in \pi$ is represented by the loop $\eta^{-1} \xi \eta$ in U. This loop lifts to a path $\mu_{1} \mu_{2} \mu_{3}$ in \widetilde{U}, where the path μ_{1} is the lift of η^{-1} beginning at \widetilde{e} and ending at the point

$$
e^{\prime}=q^{w\left(y^{-1}\right)} t^{u\left(y^{-1}\right)} \widetilde{e}=q^{-w(y)} t^{-u(y)} \widetilde{e}
$$

the path μ_{2} is the lift of ξ beginning at e^{\prime}, and μ_{3} is the lift of η beginning at the terminal endpoint of μ_{2}. Since ξ represents $x \in \widetilde{\pi}$, the path μ_{2} is a loop beginning and ending at e^{\prime}. The path μ_{3}, being the lift of η beginning at e^{\prime}, must be the inverse of μ_{1}. Therefore the path $\mu_{1} \mu_{2} \mu_{3}$ is a loop and its homology class in $H_{1}(\widetilde{U} ; \mathbf{Z})$ is equal to the homology class of μ_{2}. The latter is equal to $q^{-w(y)} t^{-u(y)}[x]$.

Applying (3.27), we obtain $\left[a^{a_{1}}\right]=q^{-1}[a]$ and

$$
\begin{array}{ll}
{\left[c_{1}^{b_{1} a_{1}} c_{1}\right]=q^{-1} t^{-1}\left[c_{1}\right]+\left[c_{1}\right],} & {\left[c_{2}^{b_{2} a_{2}} c_{2}\right]=q^{-1} t^{-1}\left[c_{2}\right]+\left[c_{2}\right]} \\
{\left[c_{2} b a^{b_{1}}\right]=\left[c_{2}\right]+[b]+t^{-1}[a],} & {\left[a b^{a_{1}} c_{1}\right]=[a]+q^{-1}[b]+\left[c_{1}\right]}
\end{array}
$$

Together with (3.26), this gives the following relations in $H_{1}(\widetilde{U} ; \mathbf{Z})$:

$$
\begin{gathered}
(q-1)[a]=0, \quad(q t+1)\left[c_{1}\right]=0=(q t+1)\left[c_{2}\right] \\
\left(q^{-1}-1\right)[b]=\left(t^{-1}-1\right)[a]+\left[c_{2}\right]-\left[c_{1}\right] .
\end{gathered}
$$

Combining these relations, we obtain

$$
\begin{equation*}
(q-1)^{2}(q t+1)[b]=0 . \tag{3.28}
\end{equation*}
$$

To compute the homology class $[S] \in H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z})$, we need to choose the $\operatorname{arcs} s \subset \alpha$ and $s^{-} \subset \alpha^{-}$used in the definition of S. We take $s=\alpha_{2}$ and $s^{-}=\beta_{2}$. The endpoints of these arcs and their complements in α^{-}, α lie in $U_{p_{1}} \cup U_{p_{2}} \subset \bigcup_{i=1}^{n} U_{i}$, as required. The circle $\partial S \subset \widetilde{U}$ is parametrized by a loop in \widetilde{U} that is a lift of the following loop $b^{\prime} \subset U$ based at $\{A, B\}$:

$$
b^{\prime}=\left\{A, \beta_{2}\right\}\left\{\alpha_{2}, B^{\prime}\right\}\left\{A^{\prime}, \beta_{2}\right\}^{-1}\left\{\alpha_{2}, B\right\}^{-1} .
$$

We claim that b^{\prime} is homotopic to the following loop $b^{\prime \prime}$ in U also based at $\{A, B\}$:

$$
\begin{equation*}
b^{\prime \prime}=\left\{A, \beta_{2} \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3}, u_{1}\right\}\left\{u_{2}, \beta_{2} \beta_{3}\right\}^{-1}\left\{\alpha_{2} \alpha_{3}, B\right\}^{-1} \tag{3.29}
\end{equation*}
$$

To see this, observe the obvious equalities of paths (up to homotopy in U)

$$
\left\{A, \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3}, u_{1}\right\}=\left\{\alpha_{2} \alpha_{3}, \beta_{3}\right\}=\left\{\alpha_{2}, B^{\prime}\right\}\left\{\alpha_{3}, \beta_{3}\right\} .
$$

Therefore

$$
\left\{\alpha_{2} \alpha_{3}, u_{1}\right\}=\left\{A, \beta_{3}\right\}^{-1}\left\{\alpha_{2}, B^{\prime}\right\}\left\{\alpha_{3}, \beta_{3}\right\} .
$$

A similar argument shows that

$$
\left\{u_{2}, \beta_{2} \beta_{3}\right\}^{-1}=\left\{\alpha_{3}, \beta_{3}\right\}^{-1}\left\{A^{\prime}, \beta_{2}\right\}^{-1}\left\{\alpha_{3}, B\right\}
$$

Substituting these expressions in (3.29) and observing that

$$
\left\{A, \beta_{2} \beta_{3}\right\}=\left\{A, \beta_{2}\right\}\left\{A, \beta_{3}\right\} \quad \text { and } \quad\left\{\alpha_{2} \alpha_{3}, B\right\}^{-1}=\left\{\alpha_{3}, B\right\}^{-1}\left\{\alpha_{2}, B\right\}^{-1}
$$

we conclude that b^{\prime} is homotopic to $b^{\prime \prime}$. Observe now that

$$
\begin{aligned}
& b_{1}=\left\{\alpha_{1}, \beta_{1} \beta_{2} \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3}, u_{1}\right\} \sim\left\{\alpha_{1}, \beta_{1}\right\}\left\{A, \beta_{2} \beta_{3}\right\}\left\{\alpha_{2} \alpha_{3}, u_{1}\right\}, \\
& b_{2}=\left\{\alpha_{1} \alpha_{2} \alpha_{3}, \beta_{1}\right\}\left\{u_{2}, \beta_{2} \beta_{3}\right\} \sim\left\{\alpha_{1}, \beta_{1}\right\}\left\{\alpha_{2} \alpha_{3}, B\right\}\left\{u_{2}, \beta_{2} \beta_{3}\right\} .
\end{aligned}
$$

Therefore the loop $b^{\prime \prime}$ is homotopic to the loop

$$
\left\{\alpha_{1}, \beta_{1}\right\}^{-1} b_{1} b_{2}^{-1}\left\{\alpha_{1}, \beta_{1}\right\}
$$

in U. The latter loop is freely homotopic in U to $b_{1} b_{2}^{-1}$. Since $b_{1} b_{2}^{-1}$ is conjugate to $b=b_{2}^{-1} b_{1}$ in π, the loops $b^{\prime \prime}$ and b are freely homotopic in U. We conclude that b^{\prime} is freely homotopic to b in U. Since b^{\prime} lifts to a loop ∂S in \widetilde{U}, any homotopy of b^{\prime} lifts to a homotopy of ∂S in \widetilde{U}. Hence, ∂S is freely homotopic to a lift of b to \widetilde{U}. Now the claim of the lemma directly follows from (3.28).

Lemma 3.22 and the exact homology sequence of the pair $(\widetilde{\mathcal{C}}, \widetilde{U})$,

$$
\cdots \rightarrow H_{2}(\widetilde{U} ; \mathbf{Z}) \rightarrow \mathcal{H} \rightarrow H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z}) \rightarrow H_{1}(\widetilde{U} ; \mathbf{Z}) \rightarrow \cdots,
$$

imply that the homology class $(q-1)^{2}(q t+1)[S] \in H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z})$ is the image of a certain $v \in \mathcal{H}$ under the inclusion homomorphism $\mathcal{H} \rightarrow H_{2}(\widetilde{\mathcal{C}}, \widetilde{U} ; \mathbf{Z})$. Any such $v \in \mathcal{H}$ is called an α-class with respect to the disks U_{1}, \ldots, U_{n} or, shorter, an α-class. An α-class can be represented by a 2 -cycle in $\widetilde{\mathcal{C}}$ obtained by gluing the 2-chain $(q-1)^{2}(q t+1) S$ with a 2 -chain in \widetilde{U} bounded by $(q-1)^{2}(q t+1) \partial S$.

It is clear that the α-class is determined by α only up to addition of elements of the image of the homomorphism $H_{2}(\widetilde{U} ; \mathbf{Z}) \rightarrow \mathcal{H}$ induced by the inclusion $\widetilde{U} \hookrightarrow \widetilde{\mathcal{C}}$ and up to multiplication by monomials in q, t (the latter is due to the indeterminacy in the choice of \widetilde{S}_{α}). This describes completely the indeterminacy in the construction of an α-class. Indeed, it is easy to check that the set of α-classes does not depend on the choice of the $\operatorname{arcs} s \subset \alpha-\partial \alpha$ and $s^{-} \subset \alpha^{-}-\partial \alpha^{-}$used in the definition of the surface S. (To see this, observe that the surfaces S determined by s, s^{-}and by a pair of bigger arcs differ by an annulus in \widetilde{U}.) We show now that the set of α-classes is independent of the choice of the disks U_{1}, \ldots, U_{n}.

Lemma 3.23. The set of α-classes in \mathcal{H} does not depend on the choice of the disks U_{1}, \ldots, U_{n}.

Proof. Let $\left\{U_{i}\right\}_{i=1}^{n}$ and $\left\{U_{i}^{\prime}\right\}_{i=1}^{n}$ be two systems of closed disk neighborhoods of the points of $Q=\{(1,0),(2,0), \ldots,(n, 0)\}$ in D° as at the beginning of this subsection. Let \widetilde{U} and \widetilde{U}^{\prime} be the subsets of $\widetilde{\mathcal{C}}$ associated with these systems of disks as above. Suppose first that $U_{i}^{\prime} \subset U_{i}$ for all i. We can view U_{i} and U_{i}^{\prime} as concentric disks with center $(i, 0)$. By the assumptions, the arc α either does not meet the disk U_{i} or meets it along a radius whose intersection with U_{i}^{\prime} is the radius of the latter. Contracting each U_{i} into U_{i}^{\prime} along the radii, we obtain an isotopy $\left\{F_{s}: D \rightarrow D\right\}_{s \in I}$ of D into itself such that $F_{0}=\mathrm{id}, F_{s}$ fixes $\partial D \cup Q$ pointwise and fixes α setwise for all $s \in I$, and $F_{1}\left(U_{i}\right)=U_{i}^{\prime}$ for all i. The induced homeomorphisms $\left\{\widetilde{F}_{s}: \widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{C}}\right\}_{s \in I}$ form an isotopy of $\widetilde{\mathcal{C}}$ into itself such that $\widetilde{F}_{1}(\widetilde{U})=\widetilde{U}^{\prime}$.

Observe now that any self-homeomorphism f of (D, Q) transforms α into a spanning arc $f(\alpha)$ on (D, Q), and the orientation of α induces an orientation of $f(\alpha)$ via f. It is clear from the definitions that the induced homomorphism $\widetilde{f}_{*}: \mathcal{H} \rightarrow \mathcal{H}$ sends the set of α-classes with respect to the disks $\left\{U_{i}\right\}_{i}$ onto the set of $f(\alpha)$-classes with respect to the disks $\left\{f\left(U_{i}\right)\right\}_{i}$. Applying this to $f=F_{1}$ and observing that $f(\alpha)=\alpha, f\left(U_{i}\right)=U_{i}^{\prime}$ for all i, and $\widetilde{f}_{*}=$ id (because $\widetilde{f}=\widetilde{F}_{1}$ is isotopic-and hence homotopic-to $\widetilde{F}_{0}=\mathrm{id}$), we conclude that the set of α-classes with respect to the disks $\left\{U_{i}\right\}_{i=1}^{n}$ coincides with the set of α-classes with respect to the disks $\left\{U_{i}^{\prime}\right\}_{i=1}^{n}$. The general case is obtained by transitivity using a third system of disks $\left\{U_{i}^{\prime \prime}\right\}_{i=1}^{n}$ such that $U_{i}^{\prime \prime} \subset U_{i} \cap U_{i}^{\prime}$ for all $i=1, \ldots, n$.

3.7.2 Surfaces associated with noodles

For a noodle N on D, the set

$$
F=F_{N}=\left\{\{x, y\} \in \mathcal{C} \mid x, y \in N^{\circ}=N-\partial N\right\}
$$

is a surface in $\mathcal{C}^{\circ}=\mathcal{C}-\partial \mathcal{C}$ homeomorphic to the open triangle

$$
\left\{\left(x_{1}, x_{2}\right) \in(0,1)^{2} \mid x_{1}<x_{2}\right\}
$$

The surface F is therefore homeomorphic to the plane \mathbf{R}^{2}. Since F is contractible, it lifts to a surface

$$
\widetilde{F}=\widetilde{F}_{N} \subset \widetilde{\mathcal{C}}^{\circ}=\widetilde{\mathcal{C}}-\partial \widetilde{\mathcal{C}}
$$

also homeomorphic to \mathbf{R}^{2}. It is clear that $\widetilde{\mathcal{C}^{\circ}}$ is an open oriented smooth four-dimensional manifold and \widetilde{F} is a smooth two-dimensional submanifold.

Lemma 3.24. The surface \widetilde{F} is a closed subset of $\widetilde{\mathcal{C}}^{\circ}$.
Proof. Pick an arbitrary point $a \in \widetilde{\mathcal{C}}^{\circ}-\widetilde{F}$. Let $\{x, y\} \in \mathcal{C}$ be the projection of a to \mathcal{C}, where x, y are distinct points of Σ. The inclusion $a \in \widetilde{\mathcal{C}^{\circ}}$ implies that $x, y \in \Sigma^{\circ}$. If $x \notin N$ or $y \notin N$, then x and y have disjoint open neighborhoods $U_{x}, U_{y} \subset \Sigma^{\circ}$, respectively, such that at least one of them does not meet N. (Here we use the obvious fact that N is a closed subset of Σ.) Then $U_{x} \times U_{y}$ is a neighborhood of the point $\{x, y\}$ in $\mathcal{C}^{\circ}-F$ and the preimage of $U_{x} \times U_{y}$ in $\widetilde{\mathcal{C}}^{\circ}$ is an open neighborhood of a contained in $\widetilde{\mathcal{C}}^{\circ}-\widetilde{F}$. If $x, y \in N$, then x and y have disjoint open disk neighborhoods $U_{x}, U_{y} \subset \Sigma^{\circ}$, respectively, such that both U_{x} and U_{y} meet N along an open interval. Then $U_{x} \times U_{y}$ is an open neighborhood of the point $\{x, y\} \in F$ homeomorphic to an open 4 -ball and meeting F along an open 2-disk. The preimage of this neighborhood in $\widetilde{\mathcal{C}}^{\circ}$ consists of disjoint open 4-balls. One of them meets \widetilde{F} along an open 2-disk and the others do not meet \widetilde{F}. The point $a \in \widetilde{\mathcal{C}}^{\circ}-\widetilde{F}$ lying over $\{x, y\} \in F$ has to lie in one of those open 4 -balls that do not meet \widetilde{F}. We conclude that in all cases, the point a has an open neighborhood in $\widetilde{\mathcal{C}}^{\circ}$ disjoint from \widetilde{F}. Thus, the set $\widetilde{\mathcal{C}}^{\circ}-\widetilde{F}$ is open in $\widetilde{\mathcal{C}}^{\circ}$ and the set \widetilde{F} is closed in $\widetilde{\mathcal{C}}^{\circ}$.

Note one important consequence of this lemma: the intersection of \widetilde{F} with any compact subset of $\widetilde{\mathcal{C}}^{\circ}$ is compact. We use this property to define an integral intersection number of \widetilde{F} with an arbitrary element of \mathcal{H} as follows. We first orient F : at a point $\{x, y\}=\{y, x\} \in F$ such that $x \in N^{\circ}$ is closer to the starting endpoint on N than $y \in N^{\circ}$, the orientation of F is the product of the orientations of N at x and y in this order. This orientation of F lifts to \widetilde{F} in the obvious way so that \widetilde{F} becomes oriented. Since, as was observed in Section 3.5.4, the inclusion $\widetilde{\mathcal{C}}^{\circ} \hookrightarrow \widetilde{\mathcal{C}}$ is a homotopy equivalence,

$$
\mathcal{H}=H_{2}(\widetilde{\mathcal{C}} ; \mathbf{Z})=H_{2}\left(\widetilde{\mathcal{C}}^{\circ} ; \mathbf{Z}\right) .
$$

The rest of the definition is quite standard. To define the intersection number $\widetilde{F} \cdot v \in \mathbf{Z}$ for $v \in \underset{\sim}{\mathcal{H}}$, we pick a 2 -cycle V in $\widetilde{\mathcal{C}}^{\circ}$ representing v. By the remarks above, V meets $\widetilde{F} \approx \mathbf{R}^{2}$ along a compact subset, which necessarily lies inside a closed 2-disk in \widetilde{F}. We can slightly deform V in $\widetilde{\mathcal{C}}^{\circ}$ to make it transversal to this disk, keeping V disjoint from the rest of \widetilde{F}. The set $\widetilde{F} \cap V$ is then discrete and compact. It is therefore finite, so that one can count its points with signs \pm determined by the orientation of $\widetilde{\mathcal{C}}, \widetilde{F}$, and V. A standard argument from the theory of homological intersections shows that the resulting integer $\widetilde{F} \cdot v=\widetilde{F} \cdot V$ depends only on v. Specifically, any two 2-cycles V_{1}, V_{2} in $\widetilde{\mathcal{C}}^{\circ}$ representing v differ by the boundary of a 3 -chain in $\widetilde{\mathcal{C}}^{\circ}$; such a chain can be made transversal to \widetilde{F} and then its intersection with \widetilde{F} is a compact oriented 1-manifold. The fact that this 1-manifold has the same numbers of inputs and outputs implies that $\widetilde{F} \cdot V_{1}=\widetilde{F} \cdot V_{2}$.

In analogy with formula (3.17), we set for any $v \in \mathcal{H}$,

$$
\begin{equation*}
\langle\widetilde{F}, v\rangle=\sum_{k, \ell \in \mathbf{Z}}\left(q^{k} t^{\ell} \widetilde{F} \cdot v\right) q^{k} t^{\ell} \tag{3.30}
\end{equation*}
$$

Here $q^{k} t^{\ell} \widetilde{F}$ is the image of \widetilde{F} under the covering transformations $q^{k} t^{\ell}$ of the covering $\widetilde{\mathcal{C}} \rightarrow \mathcal{C}$. Note that when k, ℓ run over \mathbf{Z}, the surface $q^{k} t^{\ell} \widetilde{F}$ runs over all possible lifts of F to $\widetilde{\mathcal{C}}$. A priori, the sum on the right-hand side of (3.30) may be infinite; Lemma 3.25 below shows that it is finite.

The same computations as in the proof of Lemma 3.18 show that under a different choice of the lift \widetilde{F} of F, the expression $\langle\widetilde{F}, v\rangle$ is multiplied by a monomial in $q^{ \pm 1}, t^{ \pm 1}$.

Lemma 3.25. Let $r \mapsto r^{*}$ be the involution of the ring $R=\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$ sending q to q and t to $-t$. Let N be a noodle on D and let α be an oriented spanning arc on (D, Q). Then for any α-class $v \in \mathcal{H}$,

$$
\begin{equation*}
\left\langle\widetilde{F}_{N}, v\right\rangle=-(q-1)^{2}(q t+1)\langle N, \alpha\rangle^{*}, \tag{3.31}
\end{equation*}
$$

where $\langle N, \alpha\rangle \in R$ is the algebraic intersection defined in Section 3.6.2.
Proof. Note that the left-hand side of (3.31) is defined up to multiplication by monomials in $q^{ \pm 1}, t^{ \pm 1}$, while the right-hand side is defined up to multiplication by monomials in $q^{ \pm 1}, t^{ \pm 2}$. The equality is understood in the sense that the sides have a common representative. Then all representatives of the right-hand side represent also the left-hand side.

Pushing the endpoints of N along ∂D, we can deform N into a noodle N^{\prime} with starting point d_{1} and terminal point d_{2}, where $d_{1}, d_{2} \in \partial D$ are the points used in the construction of $\widetilde{\mathcal{C}}$. The surfaces F_{N} and $F_{N^{\prime}}$ differ only in a subset of a cylinder neighborhood of $\partial \mathcal{C}$ in \mathcal{C}. We can choose the lifts \widetilde{F}_{N} and $\widetilde{F}_{N^{\prime}}$ so that they differ only in a subset of a cylinder neighborhood of $\partial \widetilde{\mathcal{C}}$ in $\widetilde{\mathcal{C}}$. Since v can be represented by a 2 -cycle in the complement of such a neighborhood, $\left\langle\widetilde{F}_{N}, v\right\rangle=\left\langle\widetilde{F}_{N^{\prime}}, v\right\rangle$. It follows from the definitions that $\langle N, \alpha\rangle=\left\langle N^{\prime}, \alpha\right\rangle$. Thus,
without loss of generality we can assume that the starting point of N is d_{1} and the terminal point of N is d_{2}.

It is enough to prove (3.31) for a specific choice of $\widetilde{F}=\widetilde{F}_{N} \subset \widetilde{\mathcal{C}}$. Fix a lift $\widetilde{c} \in \widetilde{\mathcal{C}}$ of $c=\left\{d_{1}, d_{2}\right\} \in \mathcal{C}$. For \widetilde{F}, we take the lift of $F=F_{N}$ containing \widetilde{c}.

We need to specify a lift $\widetilde{S}_{\alpha} \subset \widetilde{\mathcal{C}}$ of the surface S_{α} defined in Section 3.7.1. To this end, fix points $z^{-} \in \alpha^{-}, z \in \alpha$ and fix paths θ^{-}, θ in $\Sigma=D-Q$ having disjoint images and leading from d_{1} to z^{-}and from d_{2} to z, respectively. Consider the path $\left\{\theta^{-}, \theta\right\}$ in \mathcal{C} leading from $c=\left\{d_{1}, d_{2}\right\}$ to $\left\{z^{-}, z\right\}$. Let Θ be the lift of this path to $\widetilde{\mathcal{C}}$ starting at \widetilde{c}. The path Θ terminates at a point $\Theta(1)$ lying over $\left\{z^{-}, z\right\} \in S_{\alpha}$. We choose for $\widetilde{S}_{\alpha} \subset \widetilde{\mathcal{C}}$ the lift of S_{α} containing $\Theta(1)$. The surfaces S_{α} and \widetilde{S}_{α} are oriented as in Section 3.7.1.

Assume that N intersects α (resp. α^{-}) transversely in m points z_{1}, \ldots, z_{m} (resp. $z_{1}^{-}, \ldots, z_{m}^{-}$) as in Section 3.6.2. Then F intersects S_{α} transversely in the points $\left\{z_{i}^{-}, z_{j}\right\}$, where $i, j=1, \ldots, m$. Therefore for any $k, \ell \in \mathbf{Z}$, the image of \widetilde{F} under the covering transformation $q^{k} t^{\ell}$ meets \widetilde{S}_{α} transversely in at most m^{2} points. Adding the corresponding intersection signs, we obtain an integer, denoted by $q^{k} t^{\ell}(\widetilde{F}) \cdot \widetilde{S}_{\alpha} \in \mathbf{Z}$. Set

$$
\sigma=\sum_{k, \ell \in \mathbf{Z}}\left(q^{k} t^{\ell} \widetilde{F} \cdot \widetilde{S}_{\alpha}\right) q^{k} t^{\ell} \in R
$$

The sum on the right-hand side is finite (it has at most m^{2} terms).
We compute σ as follows. Observe that for every pair $i, j \in\{1, \ldots, m\}$, there are unique integers $k_{i, j}, \ell_{i, j} \in \mathbf{Z}$ such that $q^{k_{i, j}} t^{\ell_{i, j}} \widetilde{F}$ intersects \widetilde{S}_{α} at a point lying over $\left\{z_{i}^{-}, z_{j}\right\} \in \mathcal{C}$. Let $\varepsilon_{i, j}= \pm 1$ be the corresponding intersection sign. Then

$$
\sigma=\sum_{i=1}^{m} \sum_{j=1}^{m} \varepsilon_{i, j} q^{k_{i, j}} t^{\ell_{i, j}} .
$$

We now express the right-hand side in terms of the loops $\xi_{i, j}$ and other data introduced in Section 3.6.2 (where $d^{-}=d_{1}$ and $d=d_{2}$). We claim that

$$
q^{k_{i, j}} t^{\ell_{i, j}}=\varphi\left(\xi_{i, j}\right),
$$

or in other words, that $k_{i, j}=w\left(\xi_{i, j}\right)$ and $\ell_{i, j}=u\left(\xi_{i, j}\right)$ for all i, j. Indeed, we can lift $\xi_{i, j}$ to a path $\Theta \beta \gamma$ in $\widetilde{\mathcal{C}}$ beginning at \widetilde{c}, where Θ, β, γ are lifts of $\left\{\theta^{-}, \theta\right\},\left\{\beta_{i}^{-}, \beta_{j}\right\},\left\{\gamma_{i, j}^{-}, \gamma_{i, j}\right\}$, respectively. By the choice of \widetilde{S}_{α}, the point $\Theta(1)=\beta(0)$ lies on \widetilde{S}_{α}. Then the path β lies entirely on \widetilde{S}_{α}. The path $\Theta \beta \gamma$, being a lift of the loop $\xi_{i, j}$, ends at

$$
\gamma(1)=\varphi\left(\xi_{i, j}\right)(\widetilde{c}) \in \varphi\left(\xi_{i, j}\right) \widetilde{F}_{N}
$$

Hence, the lift γ of $\left\{\gamma_{i, j}^{-}, \gamma_{i, j}\right\}$ lies on $\varphi\left(\xi_{i, j}\right) \widetilde{F}$ and the point $\gamma(0)=\beta(1)$ lies over $\left\{z_{i}^{-}, z_{j}\right\}$ and belongs to $\varphi\left(\xi_{i, j}\right) \widetilde{F} \cap \widetilde{S}_{\alpha}$. This proves our claim.

We now claim that for all i, j,

$$
\varepsilon_{i, j}=-(-1)^{u\left(\xi_{i, j}\right)} \varepsilon_{i} \varepsilon_{j}
$$

where ε_{i} (resp. ε_{j}) is the intersection sign of N and α at z_{i} (resp. at z_{j}). Observe first that $\varepsilon_{i, j}$ is the intersection sign of the surfaces F_{N} and S_{α} at the point $\left\{z_{i}^{-}, z_{j}\right\} \in \mathcal{C}$. Let x^{-}(resp. x) be a positive tangent vector of N at z_{i}^{-} (resp. at z_{j}). Let y^{-}(resp. y) be a positive tangent vector of α^{-}at z_{i}^{-}(resp. of α at z_{j}). Assume for concreteness that the point z_{i}^{-}lies closer to d_{1} along N than z_{j}. Then the orientation of F_{N} at the point $\left\{z_{i}^{-}, z_{j}\right\}$ is determined by the pair of vectors $\left(x^{-}, x\right)$. The orientation of S_{α} at $\left\{z_{i}^{-}, z_{j}\right\}$ is determined by the pair of vectors $\left(y^{-}, y\right)$. The distinguished orientation of \mathcal{C} at $\left\{z_{i}^{-}, z_{j}\right\}$ is equal to $\varepsilon_{i} \varepsilon_{j}$ times the orientation of \mathcal{C} determined by the following tuple of four tangent vectors:

$$
\left(x^{-}, y^{-}, x, y\right)
$$

Then

$$
\varepsilon_{i, j}=-\varepsilon_{i} \varepsilon_{j}=-(-1)^{u\left(\xi_{i, j}\right)} \varepsilon_{i} \varepsilon_{j}
$$

since in the case at hand the paths $\gamma_{i, j}^{-}$and $\gamma_{i, j}$ end at d_{1} and d_{2}, respectively, and the integer $u\left(\xi_{i, j}\right)$ is even. The case in which z_{j} lies closer to d_{1} along N than z_{i}^{-}is treated similarly.

To sum up,

$$
\sigma=\sum_{i=1}^{m} \sum_{j=1}^{m}-(-1)^{u\left(\xi_{i, j}\right)} \varepsilon_{i} \varepsilon_{j} q^{w\left(\xi_{i, j}\right)} t^{u\left(\xi_{i, j}\right)}=-\langle N, \alpha\rangle^{*}
$$

We can now prove (3.31). Let U_{1}, \ldots, U_{n} and \widetilde{U} be as in Section 3.7.1. Choosing the disks U_{1}, \ldots, U_{n} small enough, we can assume that they do not meet N. Then

$$
\begin{equation*}
q^{k} t^{\ell} \widetilde{F} \cap \widetilde{U}=\emptyset \tag{3.32}
\end{equation*}
$$

for all $k, \ell \in \mathbf{Z}$. Recall that the α-class v is represented by a sum of a 2 -chain in \widetilde{U} and a 2 -chain $(q-1)^{2}(q t+1) S$. By (3.32), the 2 -chain in \widetilde{U} does not contribute to $\langle\widetilde{F}, v\rangle$, so that we can safely replace v by $(q-1)^{2}(q t+1) S$. By definition, $S \subset \widetilde{S}_{\alpha}$ is a subsurface of \widetilde{S}_{α} such that $\widetilde{S}_{\alpha}-S \subset \widetilde{U}$. Therefore, a similar argument shows that in the computation of $\langle\widetilde{F}, v\rangle$, we can replace S by \widetilde{S}_{α}. Using the same computations as in the proof of Lemma 3.18, we obtain the equalities

$$
\begin{aligned}
\langle\widetilde{F}, v\rangle & =(q-1)^{2}(q t+1) \sum_{k, l \in \mathbf{Z}}\left(q^{k} t^{l} \widetilde{F} \cdot \widetilde{S}_{\alpha}\right) q^{k} t^{l} \\
& =(q-1)^{2}(q t+1) \sigma \\
& =-(q-1)^{2}(q t+1)\langle N, \alpha\rangle^{*}
\end{aligned}
$$

Lemma 3.26. If a self-homeomorphism f of (D, Q) represents an element of the kernel $\operatorname{Ker}\left(B_{n} \rightarrow \operatorname{Aut}_{R}(\mathcal{H})\right)$, then $\langle N, f(\alpha)\rangle=\langle N, \alpha\rangle$ for any noodle N and any oriented spanning arc α on (D, Q).

Proof. As was already observed above, the homomorphism $\widetilde{f}_{*}: \mathcal{H} \rightarrow \mathcal{H}$ transforms any α-class $v \in \mathcal{H}$ into an $f(\alpha)$-class. Formula (3.31) and the assumption $\widetilde{f}_{*}=$ id imply that

$$
\begin{aligned}
-(q-1)^{2}(q t+1)\langle N, f(\alpha)\rangle^{*} & =\left\langle\widetilde{F}, \widetilde{f}_{*}(v)\right\rangle \\
& =\langle\widetilde{F}, v\rangle \\
& =-(q-1)^{2}(q t+1)\langle N, \alpha\rangle^{*}
\end{aligned}
$$

Therefore, $\langle N, f(\alpha)\rangle=\langle N, \alpha\rangle$.

3.7.3 End of the proof

Pick an arbitrary element of the kernel $\operatorname{Ker}\left(B_{n} \rightarrow \operatorname{Aut}_{R}(\mathcal{H})\right)$. By Corollary 1.34 , it can be represented by a smooth self-homeomorphism f of the disk D permuting the points of the set $Q=\{(1,0), \ldots,(n, 0)\}$. We shall prove that f is isotopic to the identity map (rel $Q \cup \partial D$). This will imply that

$$
\operatorname{Ker}\left(B_{n} \rightarrow \operatorname{Aut}_{R}(\mathcal{H})\right)=\{1\}
$$

We begin with the following assertion.
Claim 3.27. A spanning arc α on (D, Q) can be isotopped off a noodle N if and only if $f(\alpha)$ can be isotopped off N.

To see this, orient α in an arbitrary way and endow $f(\alpha)$ with the orientation induced via f. Lemma 3.26 implies that $\langle N, f(\alpha)\rangle=0$ if and only if $\langle N, \alpha\rangle=0$. Now, Lemma 3.21 implies that α can be isotopped off N if and only if $f(\alpha)$ can be isotopped off N.

We shall apply Claim 3.27 to the following arcs and noodles. Denote by α_{i} the $\operatorname{arc}[i, i+1] \times 0 \subset D$ and denote by N_{i} the noodle shown in Figure 3.7, where $i=1, \ldots, n-1$. We shall assume that the noodles N_{1}, \ldots, N_{n-1} are pairwise disjoint (then their endpoints lie consecutively on ∂D). It is clear that the arc α_{i} is disjoint from the noodle N_{j} for all $j \neq i, i+1$. Claim 3.27 implies that the spanning arc $f\left(\alpha_{i}\right)$ can be isotopped off N_{j} for $j \neq i, i+1$. Therefore, the arc $f\left(\alpha_{i}\right)$ may end only at the points $(i, 0)$ and $(i+1,0)$. In other words, $f\left(\alpha_{i}\right)$ has the same endpoints as α_{i} for all i. For $n \geq 3$, this implies that f induces the identity permutation on Q. We assume that $n \geq 3$, postponing the cases $n=1$ and $n=2$ to the end of the proof.

As was just explained, we can isotop the spanning arc $f\left(\alpha_{1}\right)$ off N_{3}. This isotopy extends to an isotopy of the homeomorphism f (rel $Q \cup \partial D$), so that we can assume from the very beginning that the arc $f\left(\alpha_{1}\right)$ does not meet N_{3}.

Similarly, $f\left(\alpha_{1}\right)$ can be isotopped off N_{4}. By Section 3.6.1, this can be done by a sequence of isotopies eliminating digons for the pair $\left(N_{4}, f\left(\alpha_{1}\right)\right)$. Since N_{4} and $f\left(\alpha_{1}\right)$ do not meet N_{3}, neither do the digons in question. Hence the isotopies along these digons do not create intersections of $f\left(\alpha_{1}\right)$ with N_{3}. Repeating this argument, we can ensure that $f\left(\alpha_{1}\right)$ is disjoint from all the noodles N_{i} with $i=3,4, \ldots, n-1$. Drawing these (disjoint) noodles, one easily observes that all spanning arcs in their complement are isotopic to α_{1}. Then, applying one more isotopy, we can arrange that $f\left(\alpha_{1}\right)=\alpha_{1}$. Note that all self-homeomorphisms of a closed interval keeping the endpoints fixed are isotopic to the identity. Therefore we can further isotop f so that it becomes the identity on α_{1}. Applying a similar procedure to α_{2}, we can ensure that $\left.f\right|_{\alpha_{2}}=\mathrm{id}$ while keeping $\left.f\right|_{\alpha_{1}}=\mathrm{id}$. Continuing in this way, we can isotop f so that it preserves the interval $[1, n] \times\{0\}$ pointwise. Applying a further isotopy, we can ensure that $f=\mathrm{id}$ in an open neighborhood of this interval in D. In other words, $f=\mathrm{id}$ outside an annular neighborhood A of ∂D in $\Sigma=D-Q$.

We identify A with $\partial D \times[0,1]$, so that $\partial D \subset \partial A$ is identified with $\partial D \times\{0\}$. The (smooth) homeomorphism $\left.f\right|_{A}: A \rightarrow A$ must be isotopic (rel ∂A) to the k th power of the Dehn twist about the circle $\partial D \times\{1 / 2\} \subset A$ for some $k \in \mathbf{Z}$; see, for instance, [Iva02, Lemma 4.1.A]. Thus, f is isotopic to g^{k}, where g is the self-homeomorphism of D acting as the Dehn twist on A and as the identity on $D-A$.

We claim that the homeomorphism g acts on \mathcal{H} via multiplication by the monomial $q^{2 n} t^{b}$ for some $b \in \mathbf{Z}$. (In fact, $b=2$ but we shall not need it.) Then $\widetilde{f}_{*}: \mathcal{H} \rightarrow \mathcal{H}$ is multiplication by $q^{2 n k} t^{b k}$. For $k \neq 0$, this cannot be the identity map: if it is, then

$$
\left(q^{2 n k} t^{b k}-1\right) \mathcal{H}=0
$$

and the linearity of the function

$$
\mathcal{H} \rightarrow \mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right], v \mapsto\left\langle\widetilde{F}_{N}, v\right\rangle
$$

implies that this function is identically zero for any noodle N. By Lemma 3.25 we must have $\langle N, \alpha\rangle=0$ for all N, α. The latter is not true, as was observed before the statement of Lemma 3.20. This contradiction shows that $k=0$, so that f is isotopic to the identity.

To compute the action of g on \mathcal{H}, consider the homeomorphism $\widehat{g}: \mathcal{C} \rightarrow \mathcal{C}$ defined by $\widehat{g}(\{x, y\})=\{g(x), g(y)\}$ for distinct $x, y \in \Sigma$; cf. Section 3.5.3. Consider the lift $\widetilde{g}: \widetilde{\mathcal{C}} \rightarrow \widetilde{\mathcal{C}}$ of \widehat{g} keeping fixed all points lying over the base point $c=\left\{d_{1}, d_{2}\right\} \in \mathcal{C}$. Since $g=\operatorname{id}$ outside A, we have $\widehat{g}=\mathrm{id}$ outside the set $\{(x, y) \in \mathcal{C} \mid x \in A$ or $y \in A\}$. Let $\widetilde{A} \subset \widetilde{\mathcal{C}}$ be the preimage of this set under the covering projection $\widetilde{\mathcal{C}} \rightarrow \mathcal{C}$. The homeomorphism \widetilde{g} has to act on $\widetilde{\mathcal{C}}-\widetilde{A}$ as a covering transformation $q^{a} t^{b}$ for some $a, b \in \mathbf{Z}$. The set \widetilde{A} is a tubular neighborhood of $\partial \widetilde{\mathcal{C}}$ in $\widetilde{\mathcal{C}}$ and therefore any 2 -cycle in $\widetilde{\mathcal{C}}$ can be deformed into $\widetilde{\mathcal{C}}-\widetilde{A}$. Hence, \widetilde{g} acts on \mathcal{H} as multiplication by $q^{a} t^{b}$.

We now verify that $a=2 n$. For $i=1,2$, define a path $\delta_{i}: I \rightarrow A$ by $\delta_{i}(s)=d_{i} \times s$, where $s \in I=[0,1]$ and $d_{1}, d_{2} \in \partial D$ are the points used in the construction of $\widetilde{\mathcal{C}}$. Set $\delta=\left\{\delta_{1}, \delta_{2}\right\}: I \rightarrow \mathcal{C}$ and let $\widetilde{\delta}: I \rightarrow \widetilde{\mathcal{C}}$ be an arbitrary lift of δ. The point $\widetilde{\delta}(0)$ lies over c and therefore $\widetilde{g}(\widetilde{\delta}(0))=\widetilde{\delta}(0)$. The point $\widetilde{\delta}(1)$ lies in the closure of $\widetilde{\mathcal{C}}-\widetilde{A}$ and therefore $\widetilde{g}(\widetilde{\delta}(1))=q^{a} t^{b} \widetilde{\delta}(1)$. Therefore the path $\widetilde{g} \circ \widetilde{\delta}: I \rightarrow \widetilde{\mathcal{C}}$ leads from $\widetilde{\delta}(0)$ to $q^{a} t^{b} \widetilde{\delta}(1)$. Multiplying by $\widetilde{\delta}^{-1}$, we obtain the path $\widetilde{\delta}^{-1}(\widetilde{g} \circ \widetilde{\delta})$ leading from $\widetilde{\delta}(1)$ to $q^{a} t^{b} \widetilde{\delta}(1)$ in $\widetilde{\mathcal{C}}$. By the definition of the covering $\widetilde{\mathcal{C}} \rightarrow \mathcal{C}$, the integer a must be the value of the invariant w on the loop obtained by projecting the latter path to \mathcal{C}. This loop is nothing but

$$
\delta^{-1}(\widehat{g} \circ \delta)=\left\{\delta_{1}^{-1}\left(g \circ \delta_{1}\right), \delta_{2}^{-1}\left(g \circ \delta_{2}\right)\right\}
$$

Hence,

$$
a=w\left(\delta^{-1}(\widehat{g} \circ \delta)\right)=w\left(\delta_{1}^{-1}\left(g \circ \delta_{1}\right)\right)+w\left(\delta_{2}^{-1}\left(g \circ \delta_{2}\right)\right)
$$

It remains to observe that $w\left(\delta_{i}^{-1}\left(g \circ \delta_{i}\right)\right)=n$ for $i=1,2$. This completes the proof in the case $n \geq 3$.

The remaining cases $n=1,2$ are easy. For $n=1$, there is nothing to prove, since $B_{1}=\{1\}$. The group B_{2} is infinite cyclic, and the square of a generator is the Dehn twist as in the previous paragraphs, which, as we have just explained, represents an element of infinite order in $\operatorname{Aut}_{R}(\mathcal{H})$.

Notes

The Burau representation ψ_{n} was introduced by Burau [Bur36]. A version of Theorem 3.1 was first obtained by Squier [Squ84], who used a different, more complicated, matrix in the role of Θ_{n}. The matrix Θ_{n} in Theorem 3.1 was pointed out by Perron [Per06].

The representations ψ_{2}, ψ_{3} were long known to be faithful; see [Bir74]. Moody [Moo91] first proved that ψ_{n} is nonfaithful for $n \geq 9$. Long and Paton [LP93] extended Moody's argument to $n \geq 6$. Bigelow [Big99] proved that ψ_{5} is nonfaithful. Our exposition in Section 3.2 follows the ideas and techniques of these papers. The examples in Section 3.1.3 are taken from [Big99]. The proof of Lemma 3.5 was suggested to the authors by Nikolai Ivanov; see also [PR00, Prop. 3.7]. Theorem 3.7 is folklore. The reducibility of ψ_{n} is well known; see [Bir74].

The Alexander-Conway polynomial is a refinement, due to J. H. Conway, of the Alexander polynomial of links; see [Lic97] for an exposition. Burau computed the Alexander polynomial of the closure of a braid from its Burau matrix; see [Bir74]. The refinement of this result to the Alexander-Conway polynomial (Section 3.3 and the second claim of Theorem 3.13) is due to V. Turaev (unpublished).

The Lawrence-Krammer-Bigelow representation is one of a family of representations introduced by Lawrence [Law90]. Her work was inspired by a
study of the Jones polynomial of links and was concerned with representations of Hecke algebras arising from the actions of braids on the homology of configuration spaces. Theorem 3.15 was proven independently and from different viewpoints by Krammer [Kra02] and Bigelow [Big01] after Krammer proved it for $n=4$ in [Kra00]. The theory of noodles (Section 3.6) and the proof of Theorem 3.15 given in Section 3.7 are due to Bigelow [Big01]. (In loc. cit. Bigelow also uses the concept of a "fork" introduced by Krammer in [Kra00]. Here we have avoided the use of forks.) For more on this and related topics, see the surveys [Big02], [Tur02], [BB05].

Symmetric Groups and Iwahori-Hecke Algebras

The study of the braid group B_{n} naturally leads to the so-called IwahoriHecke algebra H_{n}. This algebra is a finite-dimensional quotient of the group algebra of B_{n} depending on two parameters q and z. Our interest in the Iwahori-Hecke algebras is due to their connections to braids and links and to their beautiful representation theory discussed in the next chapter.

As an application of the theory of Iwahori-Hecke algebras, we introduce the two-variable Jones-Conway polynomial of oriented links in Euclidean 3-space. This polynomial, known also as HOMFLY or HOMFLY-PT, extends both the Alexander-Conway link polynomial introduced in the previous chapter and the famous Jones link polynomial.

For $q=1$ and $z=0$, the Iwahori-Hecke algebra H_{n} is the group algebra of the symmetric group \mathfrak{S}_{n}. For arbitrary values of the parameters, H_{n} shares a number of properties of the group algebra of \mathfrak{S}_{n}. We begin therefore by recalling basic properties of \mathfrak{S}_{n}.

4.1 The symmetric groups

The symmetric group \mathfrak{S}_{n} with $n \geq 1$ is the group of all permutations of the set $\{1,2, \ldots, n\}$. The group law of \mathfrak{S}_{n} is the composition of permutations, and the neutral element is the identity permutation that fixes all elements of $\{1,2, \ldots, n\}$.

4.1.1 A presentation of \mathfrak{S}_{n} by generators and relations

Fix an integer $n \geq 1$. For integers i, j such that $1 \leq i<j \leq n$, we denote by $\tau_{i, j}$ the permutation exchanging i and j and leaving the other elements of $\{1,2, \ldots, n\}$ fixed. Such a permutation is called a transposition. There are $n(n-1) / 2$ transpositions in \mathfrak{S}_{n}.

When $j=i+1$, we write s_{i} for $\tau_{i, j}$. The transpositions s_{1}, \ldots, s_{n-1} are called simple transpositions. It is an easy exercise to check that the simple transpositions satisfy the following relations for all $i, j=1, \ldots, n-1$:

$$
\begin{array}{ll}
s_{i} s_{j}=s_{j} s_{i} & \text { if }|i-j| \geq 2 \\
s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} & \text { if }|i-j|=1 \tag{4.1}\\
s_{i}^{2}=1
\end{array}
$$

Let G_{n} denote the group with generators $\dot{s}_{1}, \ldots, \dot{s}_{n-1}$ and relations obtained from (4.1) by replacing each s_{i} with \dot{s}_{i}. The group G_{1} is trivial. The group G_{2} has a single generator \dot{s}_{1} subject to the unique relation $\dot{s}_{1}^{2}=1$; it follows that G_{2} is a cyclic group of order 2 . For each n, there is a canonical group homomorphism $G_{n} \rightarrow G_{n+1}$ sending $\dot{s}_{i} \in G_{n}$ to $\dot{s}_{i} \in G_{n+1}$ for $i=1, \ldots, n-1$.

Theorem 4.1. For all $n \geq 1$, there is a group homomorphism

$$
\varphi: G_{n} \rightarrow \mathfrak{S}_{n}
$$

such that $\varphi\left(\dot{s}_{i}\right)=s_{i}$ for all $i=1, \ldots, n-1$. The homomorphism φ is an isomorphism.

The definition of G_{n} and relations (4.1) directly imply the existence (and the uniqueness) of φ. The bijectivity of φ will be proved in Section 4.1.2 using Lemmas 4.2 and 4.3 below.

Theorem 4.1 provides the standard presentation of the group \mathfrak{S}_{n} by generators and relations. As an application, we can define the sign of a permutation. By definition of G_{n}, there is a unique group homomorphism $\chi: G_{n} \rightarrow\{ \pm 1\}$ such that $\chi\left(\dot{s}_{i}\right)=-1$ for all $i=1, \ldots, n-1$. The $\operatorname{sign} \varepsilon(w) \in\{ \pm 1\}$ of a permutation $w \in \mathfrak{S}_{n}$ is defined by

$$
\varepsilon(w)=\chi\left(\varphi^{-1}(w)\right) .
$$

Clearly, $\varepsilon\left(s_{i}\right)=\chi\left(\dot{s}_{i}\right)=-1$ for all $i=1, \ldots, n-1$.
Lemma 4.2. For any $n \geq 1$, every element of G_{n} can be written as a word in the letters $\dot{s}_{1}, \ldots, \dot{s}_{n-1}$ with \dot{s}_{n-1} appearing at most once.

Proof. We proceed by induction on n. The statement holds for $n=1$ and $n=2$ in view of the computation of G_{1} and G_{2} above. We suppose that the lemma holds for $n-1 \geq 2$ and prove it for n. Since $\dot{s}_{i}^{2}=1$ or, equivalently, $\dot{s}_{i}^{-1}=\dot{s}_{i}$ for all $i=1, \ldots, n-1$, any element of G_{n} can be written as a word in the letters $\dot{s}_{1}, \ldots, \dot{s}_{n-1}$.

Let $w=w_{1} \dot{s}_{n-1} w_{2} \dot{s}_{n-1} w_{3}$ be an element of G_{n} in which \dot{s}_{n-1} appears at least twice. We may assume that \dot{s}_{n-1} does not appear in w_{2}. Hence w_{2} belongs to the image of G_{n-1} in G_{n} under the canonical homomorphism $G_{n-1} \rightarrow G_{n}$.

By the induction hypothesis, we can write w_{2} as a word in $\dot{s}_{1}, \ldots, \dot{s}_{n-2}$ in which \dot{s}_{n-2} appears at most once.

If \dot{s}_{n-2} does not appear in w_{2}, then w_{2} is a word in $\dot{s}_{1}, \ldots, \dot{s}_{n-3}$. Now, $\dot{s}_{n-1} \dot{s}_{i}=\dot{s}_{i} \dot{s}_{n-1}$ for all $i \leq n-3$. Therefore, w_{2} commutes with \dot{s}_{n-1} and

$$
w=w_{1} \dot{s}_{n-1} w_{2} \dot{s}_{n-1} w_{3}=w_{1} w_{2} \dot{s}_{n-1}^{2} w_{3}=w_{1} w_{2} w_{3} .
$$

We thus have reduced the number of occurrences of \dot{s}_{n-1} in w by two.
If \dot{s}_{n-2} appears exactly once in w_{2}, then $w_{2}=w^{\prime} \dot{s}_{n-2} w^{\prime \prime}$, where both w^{\prime} and $w^{\prime \prime}$ are words in $\dot{s}_{1}, \ldots, \dot{s}_{n-3}$. Clearly, w^{\prime} and $w^{\prime \prime}$ commute with \dot{s}_{n-1} and

$$
\begin{aligned}
w & =w_{1} \dot{s}_{n-1} w_{2} \dot{s}_{n-1} w_{3} \\
& =w_{1} \dot{s}_{n-1} w^{\prime} \dot{s}_{n-2} w^{\prime \prime} \dot{s}_{n-1} w_{3} \\
& =w_{1} w^{\prime} \dot{s}_{n-1} \dot{s}_{n-2} \dot{s}_{n-1} w^{\prime \prime} w_{3} .
\end{aligned}
$$

Using the relation $\dot{s}_{n-1} \dot{s}_{n-2} \dot{s}_{n-1}=\dot{s}_{n-2} \dot{s}_{n-1} \dot{s}_{n-2}$, we obtain

$$
w=w_{1} w^{\prime} \dot{s}_{n-2} \dot{s}_{n-1} \dot{s}_{n-2} w^{\prime \prime} w_{3} .
$$

We have thus reduced the number of occurrences of \dot{s}_{n-1} in w by one. Iterating this procedure, we arrive at the desired conclusion.

We define the following subsets of G_{n} :

$$
\begin{aligned}
\dot{\Sigma}_{1} & =\left\{1, \dot{s}_{1}\right\} \\
\dot{\Sigma}_{2} & =\left\{1, \dot{s}_{2}, \dot{s}_{2} \dot{s}_{1}\right\} \\
\dot{\Sigma}_{3} & =\left\{1, \dot{s}_{3}, \dot{s}_{3} \dot{s}_{2}, \dot{s}_{3} \dot{s}_{2} \dot{s}_{1}\right\} \\
& \vdots \\
\dot{\Sigma}_{n-1} & =\left\{1, \dot{s}_{n-1}, \dot{s}_{n-1} \dot{s}_{n-2}, \ldots, \dot{s}_{n-1} \dot{s}_{n-2} \cdots \dot{s}_{2} \dot{s}_{1}\right\} .
\end{aligned}
$$

Observe that card $\dot{\Sigma}_{i}=i+1$ for all $i=1, \ldots, n-1$.
Lemma 4.3. Any element of G_{n} can be written as a product $w_{1} w_{2} \cdots w_{n-1}$, where $w_{i} \in \dot{\Sigma}_{i}$ for $i=1, \ldots, n-1$.

Proof. We prove the lemma by induction on n. For $n=1$ and $n=2$, the assertion is obvious. We suppose that it holds for $n-1 \geq 2$ and prove it for n. By Lemma 4.2 it suffices to treat an element $w \in G_{n}$ represented by a word in $\dot{s}_{1}, \ldots, \dot{s}_{n-1}$ in which \dot{s}_{n-1} appears exactly once: $w=w_{1} \dot{s}_{n-1} w_{2}$, where w_{1} and w_{2} are words in $\dot{s}_{1}, \ldots, \dot{s}_{n-2}$. By the induction hypothesis, $w_{2}=u_{1} u_{2} \cdots u_{n-2}$, where $u_{i} \in \dot{\Sigma}_{i}$ for $i=1, \ldots, n-2$. Since $\dot{s}_{n-1} \dot{s}_{i}=\dot{s}_{i} \dot{s}_{n-1}$ for $i \leq n-3$, the elements of $\dot{\Sigma}_{i}$ with $i \leq n-3$ commute with \dot{s}_{n-1}. Hence,

$$
w=w_{1} \dot{s}_{n-1} w_{2}=w_{1} \dot{s}_{n-1} u_{1} u_{2} \cdots u_{n-2}=w_{1} u_{1} u_{2} \cdots u_{n-3} \dot{s}_{n-1} u_{n-2} .
$$

The element $w_{1} u_{1} u_{2} \cdots u_{n-3}$ comes from G_{n-1} and can be expanded as $v_{1} v_{2} \cdots v_{n-2}$ with $v_{i} \in \dot{\Sigma}_{i}$ for $i=1, \ldots, n-2$, whereas $\dot{s}_{n-1} u_{n-2} \in \dot{\Sigma}_{n-1}$.

4.1.2 Proof of Theorem 4.1

It is well known (and easy to prove) that the simple transpositions s_{1}, \ldots, s_{n-1} generate \mathfrak{S}_{n}. Therefore, the homomorphism $\varphi: G_{n} \rightarrow \mathfrak{S}_{n}$ is surjective. Hence, $\operatorname{card} G_{n} \geq \operatorname{card} \mathfrak{S}_{n}=n!$. On the other hand, consider the map φ^{\prime} sending $\left(w_{1}, w_{2}, \ldots, w_{n-1}\right) \in \dot{\Sigma}_{1} \times \dot{\Sigma}_{2} \times \cdots \times \dot{\Sigma}_{n-1}$ to $w_{1} w_{2} \cdots w_{n-1} \in G_{n}$. Lemma 4.3 implies that φ^{\prime} is surjective. Hence,

$$
\operatorname{card} G_{n} \leq \prod_{i=1}^{n-1} \operatorname{card} \dot{\Sigma}_{i}=n!
$$

Therefore, $\operatorname{card} G_{n}=\operatorname{card} \mathfrak{S}_{n}$. Hence $\varphi: G_{n} \rightarrow \mathfrak{S}_{n}$ is a bijection.
As observed in this proof, the mapping $\varphi^{\prime}: \dot{\Sigma}_{1} \times \dot{\Sigma}_{2} \times \cdots \times \dot{\Sigma}_{n-1} \rightarrow G_{n}$ is surjective. Since $\operatorname{card}\left(G_{n}\right)=n!=\operatorname{card}\left(\dot{\Sigma}_{1} \times \dot{\Sigma}_{2} \times \cdots \times \dot{\Sigma}_{n-1}\right)$, this mapping is a bijection. We thus obtain the following corollary of Theorem 4.1.

Corollary 4.4. Consider the following subsets of \mathfrak{S}_{n} :

$$
\begin{aligned}
\Sigma_{1} & =\left\{1, s_{1}\right\} \\
\Sigma_{2} & =\left\{1, s_{2}, s_{2} s_{1}\right\} \\
\Sigma_{3} & =\left\{1, s_{3}, s_{3} s_{2}, s_{3} s_{2} s_{1}\right\} \\
& \vdots \\
\Sigma_{n-1} & =\left\{1, s_{n-1}, s_{n-1} s_{n-2}, \ldots, s_{n-1} s_{n-2} \cdots s_{2} s_{1}\right\} .
\end{aligned}
$$

For any $w \in \mathfrak{S}_{n}$, there is a unique element

$$
\left(w_{1}, w_{2}, \ldots, w_{n-1}\right) \in \Sigma_{1} \times \Sigma_{2} \times \cdots \times \Sigma_{n-1}
$$

such that $w=w_{1} w_{2} \cdots w_{n-1}$.

4.1.3 Reduced expressions and length of a permutation

Since $s_{i}^{-1}=s_{i}$ for $i=1, \ldots, n-1$ and s_{1}, \ldots, s_{n-1} generate \mathfrak{S}_{n}, any permutation $w \in \mathfrak{S}_{n}$ can be expanded as a product $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$, where $i_{1}, i_{2}, \ldots, i_{r} \in\{1,2, \ldots, n-1\}$. If r is minimal among all such expansions of w, then we say that $s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ is a reduced expression for w and that $s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ is a reduced word. A permutation may have many different reduced expressions.

We define the length $\lambda(w)$ of a permutation w as the length r of a reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ for w. Observe the following:
(a) If $s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ is a reduced expression for w, then

$$
s_{i_{r}}^{-1} \cdots s_{i_{2}}^{-1} s_{i_{1}}^{-1}=s_{i_{r}} \cdots s_{i_{2}} s_{i_{1}}
$$

is a reduced expression for w^{-1}. It follows that $\lambda\left(w^{-1}\right)=\lambda(w)$ for any w.
(b) If $s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$ is a reduced word, then for all indices $1 \leq p<q \leq r$ the truncated word $s_{i_{p}} s_{i_{p+1}} \cdots s_{i_{q}}$ is reduced.
(c) The neutral element $1 \in \mathfrak{S}_{n}$ is the only element of length zero, whereas the simple transpositions are the only elements of length one.
(d) The sign of a permutation w can be computed from its length by

$$
\begin{equation*}
\varepsilon(w)=(-1)^{\lambda(w)} \text {. } \tag{4.2}
\end{equation*}
$$

Lemma 4.5. For any $w \in \mathfrak{S}_{n}$ and any $s_{i} \in S$,

$$
\lambda\left(s_{i} w\right)=\lambda(w) \pm 1 \quad \text { and } \quad \lambda\left(w s_{i}\right)=\lambda(w) \pm 1
$$

Proof. By definition of the length, $\lambda\left(s_{i} w\right) \leq \lambda(w)+1$. Replacing in this formula w by $s_{i} w$, we obtain

$$
\lambda(w)=\lambda\left(s_{i}^{2} w\right) \leq \lambda\left(s_{i} w\right)+1 .
$$

Therefore, $\lambda(w)-1 \leq \lambda\left(s_{i} w\right) \leq \lambda(w)+1$. By (4.2), since

$$
\varepsilon\left(s_{i} w\right)=\varepsilon\left(s_{i}\right) \varepsilon(w)=-\varepsilon(w),
$$

we cannot have $\lambda\left(s_{i} w\right)=\lambda(w)$. Therefore, $\lambda\left(s_{i} w\right)=\lambda(w) \pm 1$.
We derive $\lambda\left(w s_{i}\right)=\lambda(w) \pm 1$ from the previous equality by replacing w and $w s_{i}$ with their inverses.

4.1.4 Inversions and the exchange theorem

Given a permutation $w \in \mathfrak{S}_{n}$, we define an inversion of w to be a pair of integers (i, j) such that $1 \leq i<j \leq n$ and $w(i)>w(j)$. We write $I(w)$ for the set of transpositions $\tau_{i, j}$ of \mathfrak{S}_{n} such that (i, j) is an inversion of w. By definition, the cardinality of $I(w)$ is equal to the number of inversions of w.

It is clear that $I(1)=\emptyset$ and $I\left(s_{i}\right)=\left\{s_{i}\right\}$ for $i=1, \ldots, n-1$. Note also that $\tau_{i, j} \in I\left(\tau_{i, j}\right)$ for any transposition $\tau_{i, j} \in \mathfrak{S}_{n}$.

In order to formulate the next lemma, recall the symmetric difference $A \Delta B$ of two subsets A and B of a given set G; it is defined by

$$
A \Delta B=(A \cup B)-(A \cap B) .
$$

The symmetric difference is an associative, commutative composition law on the set of subsets of G, with the empty set as the neutral element. When G is a group,

$$
\begin{equation*}
g^{-1}(A \Delta B) g=\left(g^{-1} A g\right) \Delta\left(g^{-1} B g\right), \tag{4.3}
\end{equation*}
$$

for all $g \in G$, where for $A \subset G$ and $g \in G$, we set

$$
g^{-1} A g=\left\{g^{-1} a g \mid a \in A\right\} .
$$

In the proof of the next lemma, we use the following elementary fact:

$$
A \Delta\{a\}= \begin{cases}A \cup\{a\} & \text { if } a \notin A \tag{4.4}\\ A-\{a\} & \text { if } a \in A\end{cases}
$$

Lemma 4.6. We have $I(v w)=w^{-1} I(v) w \Delta I(w)$ for all $v, w \in \mathfrak{S}_{n}$.
Proof. We prove the lemma by induction on $\lambda(w)$.
(a) If $\lambda(w)=0$, then $w=1$ and

$$
w^{-1} I(v) w \Delta I(w)=I(v) \Delta \emptyset=I(v)=I(v w)
$$

(b) If $\lambda(w)=1$, then $w=s_{k}$ for some $k=1, \ldots, n-1$. We have to prove that for all $v \in \mathfrak{S}_{n}$,

$$
\begin{equation*}
I\left(v s_{k}\right)=s_{k}^{-1} I(v) s_{k} \Delta\left\{s_{k}\right\} . \tag{4.5}
\end{equation*}
$$

Let us first check that

$$
\begin{equation*}
I\left(v s_{k}\right)-\left\{s_{k}\right\}=s_{k}^{-1} I(v) s_{k}-\left\{s_{k}\right\} \tag{4.6}
\end{equation*}
$$

Indeed, a transposition $\tau_{i, j}$ belongs to $I\left(v s_{k}\right)-\left\{s_{k}\right\}$ if and only if $\tau_{i, j} \neq s_{k}$ and $\left(v s_{k}\right)(i)>\left(v s_{k}\right)(j)$. Since $s_{k}(i)<s_{k}(j)$, these conditions hold if and only if $\tau_{i, j} \neq s_{k}$ and $\left(s_{k}(i), s_{k}(j)\right)$ is an inversion of v. In turn, this is equivalent to $\tau_{i, j} \neq s_{k}$ and $s_{k} \tau_{i, j} s_{k}^{-1}=\tau_{s_{k}(i), s_{k}(j)} \in I(v)$. The latter conditions are equivalent to $\tau_{i, j} \in s_{k}^{-1} I(v) s_{k}-\left\{s_{k}\right\}$. This proves (4.6).

Next, observe that the inclusion $s_{k} \in I(v)$ holds if and only if $s_{k} \notin I\left(v s_{k}\right)$. Indeed, $v(k)>v(k+1)$ is equivalent to

$$
\left(v s_{k}\right)(k)=v(k+1)<v(k)=\left(v s_{k}\right)(k+1) .
$$

We can now prove (4.5). If $s_{k} \in I(v)$, then by the observation above, $s_{k} \notin I\left(v s_{k}\right)$. Therefore, by (4.6) and (4.4),

$$
\begin{aligned}
I\left(v s_{k}\right) & =I\left(v s_{k}\right)-\left\{s_{k}\right\} \\
& =s_{k}^{-1} I(v) s_{k}-\left\{s_{k}\right\} \\
& =s_{k}^{-1} I(v) s_{k} \Delta\left\{s_{k}\right\} .
\end{aligned}
$$

If $s_{k} \notin I(v)$, then $s_{k} \in I\left(v s_{k}\right)$ and, by (4.6) and (4.4),

$$
\begin{aligned}
I\left(v s_{k}\right) & =\left(I\left(v s_{k}\right)-\left\{s_{k}\right\}\right) \cup\left\{s_{k}\right\} \\
& =\left(s_{k}^{-1} I(v) s_{k}-\left\{s_{k}\right\}\right) \cup\left\{s_{k}\right\} \\
& =s_{k}^{-1} I(v) s_{k} \cup\left\{s_{k}\right\} \\
& =s_{k}^{-1} I(v) s_{k} \Delta\left\{s_{k}\right\} .
\end{aligned}
$$

(c) If $\lambda(w)>1$, then $w=u s_{k}$, where $u \in \mathfrak{S}_{n}$ and $\lambda(u)=\lambda(w)-1$. We have

$$
\begin{aligned}
I(v w) & =I\left(v u s_{k}\right) \\
& =s_{k}^{-1} I(v u) s_{k} \Delta\left\{s_{k}\right\} \\
& =s_{k}^{-1}\left(u^{-1} I(v) u \Delta I(u)\right) s_{k} \Delta\left\{s_{k}\right\} \\
& =\left(s_{k}^{-1} u^{-1} I(v) u s_{k} \Delta s_{k}^{-1} I(u) s_{k}\right) \Delta\left\{s_{k}\right\} \\
& =s_{k}^{-1} u^{-1} I(v) u s_{k} \Delta\left(s_{k}^{-1} I(u) s_{k} \Delta\left\{s_{k}\right\}\right) \\
& =w^{-1} I(v) w \Delta I(w) .
\end{aligned}
$$

The second and sixth equalities follow from the case $\lambda(w)=1$, the third one from the induction hypothesis, the fourth one from (4.3), and the fifth one from the associativity of Δ.

Lemma 4.7. Let $T=\left\{\tau_{i, j} \mid 1 \leq i<j \leq n\right\} \subset \mathfrak{S}_{n}$. For any $w \in \mathfrak{S}_{n}$,
(a) $\lambda(w)=\operatorname{card} I(w)$;
(b) $\lambda(w) \leq n(n-1) / 2$ and $\lambda(w)=n(n-1) / 2$ if and only if $I(w)=T$;
(c) $I(w)=\{\tau \in T \mid \lambda(w \tau)<\lambda(w)\}$;
(d) $\lambda\left(w s_{i}\right)=\lambda(w)+1$ if and only if $w(i)<w(i+1)$.

Proof. (a) Let $r=\lambda(w)$ and $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ be a reduced expression for w. A repeated application of Lemma 4.6 shows that

$$
I(w)=I\left(s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}\right)=\left\{t_{1}\right\} \Delta \cdots \Delta\left\{t_{r}\right\}
$$

where $t_{1}, \ldots, t_{r} \in \mathfrak{S}_{n}$ are the transpositions defined by

$$
\begin{equation*}
t_{k}=\left(s_{i_{k+1}} \cdots s_{i_{r}}\right)^{-1} s_{i_{k}}\left(s_{i_{k+1}} \cdots s_{i_{r}}\right) \tag{4.7}
\end{equation*}
$$

for $1 \leq k \leq r-1$. In particular, $t_{r}=s_{i_{r}}$. Observe that

$$
\begin{align*}
w t_{k} & =s_{i_{1}} s_{i_{2}} \cdots s_{i_{k-1}} s_{i_{k}} s_{i_{k+1}} \cdots s_{i_{r}}\left(s_{i_{k+1}} \cdots s_{i_{r}}\right)^{-1} s_{i_{k}}\left(s_{i_{k+1}} \cdots s_{i_{r}}\right) \tag{4.8}\\
& =s_{i_{1}} \cdots s_{i_{k-1}} \widehat{s_{i_{k}}} s_{i_{k+1}} \cdots s_{i_{r}}
\end{align*}
$$

where the hat over $s_{i_{k}}$ indicates that it has been removed. We claim that the transpositions t_{1}, \ldots, t_{r} are all distinct. Indeed, suppose that $t_{p}=t_{q}$ for some $p<q$. A computation similar to the one above shows that

$$
w=w t_{p}^{2}=w t_{p} t_{q}=s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots \widehat{s_{i_{q}}} \cdots s_{i_{r}}
$$

Then $\lambda(w)<r$, a contradiction. Consequently, $I(w)$ is the disjoint union of the singletons $\left\{t_{1}\right\}, \ldots,\left\{t_{r}\right\}$, and $I(w)$ has $r=\lambda(w)$ elements.
(b) We have $\lambda(w)=\operatorname{card} I(w) \leq \operatorname{card} T=n(n-1) / 2$.
(c) We saw in the proof of (a) that $I(w)=\left\{t_{1}, \ldots, t_{r}\right\}$ and

$$
w t_{k}=s_{i_{1}} \cdots \widehat{s_{i_{k}}} \cdots s_{i_{r}}
$$

for all $k=1, \ldots, r$. Therefore, $\lambda\left(w t_{k}\right)<\lambda(w)$. This shows that $\lambda(w \tau)<\lambda(w)$ for any $\tau \in I(w)$.

If $\tau \in T$ does not belong to $I(w)$, then $\tau=\tau^{-1} \tau \tau \notin \tau^{-1} I(w) \tau$, whereas $\tau \in I(\tau)$. Therefore,

$$
\tau \in \tau^{-1} I(w) \tau \Delta I(\tau)=I(w \tau)
$$

By the previous argument,

$$
\lambda(w)=\lambda\left(w \tau^{2}\right)<\lambda(w \tau) .
$$

(d) By Lemma 4.5 and (c), the equality $\lambda\left(w s_{i}\right)=\lambda(w)+1$ holds if and only if $s_{i} \notin I(w)$, which is equivalent to $w(i)<w(i+1)$.

We now state the so-called exchange theorem.
Theorem 4.8. Let $s_{i_{1}} \cdots s_{i_{r}}$ be a reduced expression for $w \in \mathfrak{S}_{n}$, where $r=\lambda(w)$. If $\lambda\left(w s_{j}\right)<\lambda(w)$ for some $j \in\{1, \ldots, n-1\}$, then there is $k \in\{1, \ldots, r\}$ such that $w s_{j}=s_{i_{1}} \cdots \widehat{s_{i_{k}}} \cdots s_{i_{r}}$. If $\lambda\left(s_{j} w\right)<\lambda(w)$ for some $j \in\{1, \ldots, n-1\}$, then there is $k \in\{1, \ldots, r\}$ such that $s_{j} w=s_{i_{1}} \cdots \widehat{s_{i_{k}}} \cdots s_{i_{r}}$.

Proof. We saw in the proof of Lemma 4.7 (a) that if t_{1}, \ldots, t_{r} are the transpositions defined by (4.7), then $I(w)=\left\{t_{1}, \ldots, t_{r}\right\}$. If $\lambda\left(w s_{j}\right)<\lambda(w)$, then $s_{j} \in I(w)$ by Lemma $4.7(\mathrm{c})$. Therefore, $s_{j}=t_{k}$ for some $k \in\{1, \ldots, r\}$. By (4.8),

$$
w s_{j}=w t_{k}=s_{i_{1}} \cdots \widehat{s_{i_{k}}} \cdots s_{i_{r}}
$$

The second claim is deduced from the first one by replacing w with w^{-1}.
Corollary 4.9. Let $w \in \mathfrak{S}_{n}$. If $\lambda\left(w s_{j}\right)<\lambda(w)$ for some $j \in\{1, \ldots, n-1\}$, then there is a reduced expression for w ending with s_{j}. If $\lambda\left(s_{j} w\right)<\lambda(w)$ for some $j \in\{1, \ldots, n-1\}$, then there is a reduced expression for w beginning with s_{j}.

This is a direct corollary of the previous theorem: if $\lambda\left(w s_{j}\right)<\lambda(w)$, then $w s_{j}=s_{i_{1}} \cdots \widehat{s_{i_{k}}} \cdots s_{i_{r}}$ and $w=s_{i_{1}} \cdots \widehat{s_{k}} \cdots s_{i_{r}} s_{j}$ is a reduced expression for w, since its length is equal to $r=\lambda(w)$. The second claim is proven similarly.

We conclude with a lemma needed in the proof of Lemma 4.18 below.
Lemma 4.10. If $\lambda\left(s_{i} w s_{j}\right)=\lambda(w)$ and $\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)$ for $w \in \mathfrak{S}_{n}$ and some $i, j \in\{1, \ldots, n-1\}$, then $s_{i} w=w s_{j}$ and $s_{i} w s_{j}=w$.

Proof. (a) Suppose first that $\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)>\lambda\left(s_{i} w s_{j}\right)=\lambda(w)$. By Lemma 4.6,

$$
I\left(s_{i} w\right)=w^{-1} I\left(s_{i}\right) w \Delta I(w)=\left\{w^{-1} s_{i} w\right\} \Delta I(w)
$$

Since $\lambda\left(s_{i} w s_{j}\right)<\lambda\left(s_{i} w\right)$ and $\lambda\left(w s_{j}\right)>\lambda(w)$, Lemma 4.7(c) implies that s_{j} belongs to $I\left(s_{i} w\right)$, but not to $I(w)$. Therefore $s_{j}=w^{-1} s_{i} w$; hence $s_{i} w=w s_{j}$ and $s_{i} w s_{j}=w s_{j}^{2}=w$.
(b) If $\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)<\lambda\left(s_{i} w s_{j}\right)=\lambda(w)$, then we apply a similar argument, using that $I(w)=I\left(s_{i}\left(s_{i} w\right)\right)=\left\{w^{-1} s_{i} w\right\} \Delta I\left(s_{i} w\right)$.

4.1.5 Equivalence of reduced expressions

For $n \geq 1$, let M_{n} be the set of all finite sequences of integers from the set $\{1, \ldots, n-1\}$, including the empty sequence. We equip M_{n} with the associative product given by concatenation. In this way, M_{n} becomes a monoid with the empty sequence as the neutral element.

On M_{n} we consider the equivalence relation \sim generated by the following two families of relations:

$$
\begin{equation*}
S_{1}(i, j) S_{2} \sim S_{1}(j, i) S_{2} \tag{4.9}
\end{equation*}
$$

for all $S_{1}, S_{2} \in M_{n}$ and all $i, j \in\{1, \ldots, n-1\}$ such that $|i-j| \geq 2$, and

$$
\begin{equation*}
S_{1}(i, j, i) S_{2} \sim S_{1}(j, i, j) S_{2} \tag{4.10}
\end{equation*}
$$

for all $S_{1}, S_{2} \in M_{n}$ and all $i, j \in\{1, \ldots, n-1\}$ such that $|i-j|=1$. Observe that equivalent sequences have the same length. The equivalence relation \sim has been devised so that

$$
\left(i_{1}, \ldots, i_{k}\right) \sim\left(j_{1}, \ldots, j_{k}\right) \in M_{n} \Longrightarrow s_{i_{1}} \cdots s_{i_{k}}=s_{j_{1}} \cdots s_{j_{k}} \in \mathfrak{S}_{n}
$$

Lemma 4.11. If $s_{i_{1}} \cdots s_{i_{k}}$ and $s_{j_{1}} \cdots s_{j_{k}}$ are reduced expressions for the same permutation $w \in \mathfrak{S}_{n}$, then $\left(i_{1}, \ldots, i_{k}\right) \sim\left(j_{1}, \ldots, j_{k}\right)$ in M_{n}.

This lemma shows that for any $w \in \mathfrak{S}_{n}$, we can pass from one reduced expression for w to any other reduced expression for w using only the relations

$$
\begin{array}{ll}
s_{i} s_{j}=s_{j} s_{i} & \text { if }|i-j| \geq 2 \\
s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j} & \text { if }|i-j|=1
\end{array}
$$

Proof. We prove the lemma by induction on k. If $k=0$, then $w=1$ has only one reduced expression. If $k=1$, then $w=s_{i}$ for some i and w has only one reduced expression.

Assume that $k \geq 2$. From the equality $s_{i_{1}} \cdots s_{i_{k}}=s_{j_{1}} \cdots s_{j_{k}}$ we deduce that $s_{i_{2}} \cdots s_{i_{k}}=s_{i_{1}} s_{j_{1}} \cdots s_{j_{k}}$. Since $s_{i_{2}} \cdots s_{i_{k}}$ is reduced,

$$
\lambda\left(s_{i_{1}} s_{j_{1}} \cdots s_{j_{k}}\right)=\lambda\left(s_{i_{2}} \cdots s_{i_{k}}\right)=k-1<k=\lambda\left(s_{j_{1}} \cdots s_{j_{k}}\right) .
$$

Therefore, by Theorem 4.8, there is an integer p with $1 \leq p \leq k$ such that

$$
\begin{equation*}
s_{i_{2}} \cdots s_{i_{k}}=s_{i_{1}} s_{j_{1}} \cdots s_{j_{k}}=s_{j_{1}} \cdots \widehat{s_{j_{p}}} \cdots s_{j_{k}} \tag{4.11}
\end{equation*}
$$

Since $s_{i_{2}} \cdots s_{i_{k}}$ and $s_{j_{1}} \cdots \widehat{s_{j_{p}}} \cdots s_{j_{k}}$ represent the same permutation and have the same length $k-1$ and since $s_{i_{2}} \cdots s_{i_{k}}$ is reduced, $s_{j_{1}} \cdots \widehat{s_{p}} \cdots s_{j_{k}}$ is also reduced. By the induction hypothesis, $\left(i_{2}, \ldots, i_{k}\right) \sim\left(j_{1}, \ldots, \widehat{j_{p}}, \ldots, j_{k}\right)$. Hence,

$$
\begin{equation*}
\left(i_{1}, i_{2}, \ldots, i_{k}\right) \sim\left(i_{1}, j_{1}, \ldots, \widehat{j_{p}}, \ldots, j_{k}\right) \tag{4.12}
\end{equation*}
$$

The word $s_{j_{1}} \cdots s_{j_{p}}$, being a part of the reduced word $s_{j_{1}} \cdots s_{j_{k}}$, is reduced. The second equality in (4.11) implies that $s_{i_{1}} s_{j_{1}} \cdots s_{j_{p-1}}$ and $s_{j_{1}} \cdots s_{j_{p}}$ are equal in \mathfrak{S}_{n}. Since these words have the same length p and one of them is reduced, so is the other one. If $p<k$, then we apply the induction hypothesis to these words, obtaining $\left(i_{1}, j_{1}, \ldots, j_{p-1}\right) \sim\left(j_{1}, \ldots, j_{p}\right)$. From this and (4.12), we obtain

$$
\begin{aligned}
\left(i_{1}, i_{2}, \ldots, i_{k}\right) & \sim\left(i_{1}, j_{1}, \ldots, \widehat{j_{p}}, \ldots, j_{k}\right) \\
& =\left(i_{1}, j_{1}, \ldots, j_{p-1}\right)\left(j_{p+1}, \ldots, j_{k}\right) \\
& \sim\left(j_{1}, \ldots, j_{p}\right)\left(j_{p+1}, \ldots, j_{k}\right) \\
& =\left(j_{1}, \ldots, j_{p}, j_{p+1}, \ldots, j_{k}\right)
\end{aligned}
$$

which was to be proven.

If $p=k$, then (4.12) becomes $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \sim\left(i_{1}, j_{1}, \ldots, j_{k-1}\right)$. This equivalence implies that

$$
s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-1}}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}}
$$

Summarizing our argument, we see that to prove the implication

$$
s_{i_{1}} \cdots s_{i_{k}}=s_{j_{1}} \cdots s_{j_{k}} \Longrightarrow\left(i_{1}, \ldots, i_{k}\right) \sim\left(j_{1}, \ldots, j_{k}\right),
$$

it is enough to prove the implication

$$
\begin{equation*}
s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-1}}=s_{j_{1}} \cdots s_{j_{k}} \Longrightarrow\left(i_{1}, j_{1}, \ldots, j_{k-1}\right) \sim\left(j_{1}, \ldots, j_{k}\right) \tag{4.13}
\end{equation*}
$$

We now start the argument all over again with the reduced expressions $s_{j_{1}} \cdots s_{j_{k}}=s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-1}}$. Proceeding as above, we show that in order to prove (4.13), it is enough to prove the implication

$$
\begin{align*}
s_{j_{1}} s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-2}}= & s_{i_{1}} s_{j_{1}} s_{j_{2}} \cdots s_{j_{k-1}} \\
& \Longrightarrow\left(j_{1}, i_{1}, j_{1}, \ldots, j_{k-2}\right) \sim\left(i_{1}, j_{1}, j_{2}, \ldots, j_{k-1}\right) . \tag{4.14}
\end{align*}
$$

We first prove (4.14) when $\left|i_{1}-j_{1}\right| \geq 2$. Then $s_{i_{1}} s_{j_{1}}=s_{j_{1}} s_{i_{1}}$ and

$$
s_{i_{1}} s_{j_{1}} s_{j_{1}} \cdots s_{j_{k-2}}=s_{j_{1}} s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-2}}=s_{i_{1}} s_{j_{1}} s_{j_{2}} \cdots s_{j_{k-1}}
$$

Multiplying on the left by $s_{j_{1}} s_{i_{1}}$ in \mathfrak{S}_{n}, we obtain

$$
s_{j_{1}} \cdots s_{j_{k-2}}=s_{j_{2}} \cdots s_{j_{k-1}}
$$

Both sides are reduced expressions of length $k-2$. By the induction assumption, $\left(j_{1}, \ldots, j_{k-2}\right) \sim\left(j_{2}, \ldots, j_{k-1}\right)$. From this and (4.9), we obtain

$$
\begin{aligned}
\left(j_{1}, i_{1}, j_{1}, \ldots, j_{k-2}\right) & =\left(j_{1}, i_{1}\right)\left(j_{1}, \ldots, j_{k-2}\right) \\
& \sim\left(i_{1}, j_{1}\right)\left(j_{2}, \ldots, j_{k-1}\right) \\
& =\left(i_{1}, j_{1}, j_{2}, \ldots, j_{k-1}\right),
\end{aligned}
$$

which was to be proven.
If $\left|i_{1}-j_{1}\right|=1$, then we proceed again as above and reduce the proof of (4.14) to showing that the equality

$$
s_{i_{1}} s_{j_{1}} s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-3}}=s_{j_{1}} s_{i_{1}} s_{j_{1}} s_{j_{2}} \cdots s_{j_{k-2}}
$$

implies that $\left(i_{1}, j_{1}, i_{1}, j_{1}, \ldots, j_{k-3}\right) \sim\left(j_{1}, i_{1}, j_{1}, j_{2}, \ldots, j_{k-2}\right)$. This and the equality $s_{j_{1}} s_{i_{1}} s_{j_{1}}=s_{i_{1}} s_{j_{1}} s_{i_{1}}$ imply that

$$
s_{j_{1}} s_{i_{1}} s_{j_{1}} s_{j_{1}} \cdots s_{j_{k-3}}=s_{i_{1}} s_{j_{1}} s_{i_{1}} s_{j_{1}} \cdots s_{j_{k-3}}=s_{j_{1}} s_{i_{1}} s_{j_{1}} s_{j_{2}} \cdots s_{j_{k-2}}
$$

which, after left multiplication by $s_{j_{1}} s_{i_{1}} s_{j_{1}}$, gives

$$
s_{j_{1}} \cdots s_{j_{k-3}}=s_{j_{2}} \cdots s_{j_{k-2}} .
$$

Since both sides of this equality are reduced expressions of length $k-3$, we can apply the induction hypothesis and obtain $\left(j_{1}, \ldots, j_{k-3}\right) \sim\left(j_{2}, \ldots, j_{k-2}\right)$. From this and (4.10),

$$
\begin{aligned}
\left(i_{1}, j_{1}, i_{1}, j_{1}, \ldots, j_{k-3}\right) & =\left(i_{1}, j_{1}, i_{1}\right)\left(j_{1}, \ldots, j_{k-3}\right) \\
& \sim\left(j_{1}, i_{1}, j_{1}\right)\left(j_{2}, \ldots, j_{k-2}\right) \\
& =\left(j_{1}, i_{1}, j_{1}, j_{2}, \ldots, j_{k-2}\right)
\end{aligned}
$$

which was to be proven.
The following theorem is useful for defining maps from the symmetric groups to monoids.

Theorem 4.12. For any monoid M and any $x_{1}, \ldots, x_{n-1} \in M$ satisfying the relations

$$
\begin{aligned}
x_{i} x_{j} & =x_{j} x_{i} & & \text { if }|i-j| \geq 2, \\
x_{i} x_{j} x_{i} & =x_{j} x_{i} x_{j} & & \text { if }|i-j|=1,
\end{aligned}
$$

there is a set-theoretic map $\rho: \mathfrak{S}_{n} \rightarrow M$ defined by

$$
\rho(w)=x_{i_{1}} \cdots x_{i_{k}}
$$

for any $w \in \mathfrak{S}_{n}$ and any reduced expression $w=s_{i_{1}} \cdots s_{i_{k}}$.
Proof. Define a monoid homomorphism $\rho^{\prime}: M_{n} \rightarrow M$ by

$$
\rho^{\prime}\left(i_{1}, \ldots, i_{k}\right)=x_{i_{1}} \cdots x_{i_{k}}
$$

for all $\left(i_{1}, \ldots, i_{k}\right) \in M_{n}$. We claim that $\rho^{\prime}(S)=\rho^{\prime}\left(S^{\prime}\right)$ for all $S, S^{\prime} \in M_{n}$ such that $S \sim S^{\prime}$. Indeed, by definition of the equivalence \sim, it suffices to prove the claim when $S=S_{1}(i, j) S_{2}$ (resp. $\left.S=S_{1}(i, j, i) S_{2}\right)$ and $S^{\prime}=S_{1}(j, i) S_{2}$ (resp. $S^{\prime}=S_{1}(j, i, j) S_{2}$) for $S_{1}, S_{2} \in M_{n}$ and $i, j \in\{1, \ldots, n-1\}$ such that $|i-j| \geq 2$ (resp. $|i-j|=1$). By the assumptions of the theorem,

$$
\begin{aligned}
\rho^{\prime}\left(S_{1}(i, j) S_{2}\right) & =\rho^{\prime}\left(S_{1}\right) x_{i} x_{j} \rho^{\prime}\left(S_{2}\right) \\
& =\rho^{\prime}\left(S_{1}\right) x_{j} x_{i} \rho^{\prime}\left(S_{2}\right) \\
& =\rho^{\prime}\left(S_{1}(j, i) S_{2}\right)
\end{aligned}
$$

if $|i-j| \geq 2$, and

$$
\begin{aligned}
\rho^{\prime}\left(S_{1}(i, j, i) S_{2}\right) & =\rho^{\prime}\left(S_{1}\right) x_{i} x_{j} x_{i} \rho^{\prime}\left(S_{2}\right) \\
& =\rho^{\prime}\left(S_{1}\right) x_{j} x_{i} x_{j} \rho^{\prime}\left(S_{2}\right) \\
& =\rho^{\prime}\left(S_{1}(j, i, j) S_{2}\right)
\end{aligned}
$$

if $|i-j|=1$.

To prove the theorem, we need only check that ρ is well defined, i.e., if $s_{i_{1}} \cdots s_{i_{k}}$ and $s_{j_{1}} \cdots s_{j_{k}}$ are reduced expressions for $w \in \mathfrak{S}_{n}$, then

$$
x_{i_{1}} \cdots x_{i_{k}}=x_{j_{1}} \cdots x_{j_{k}}
$$

By Lemma $4.11,\left(i_{1}, \ldots, i_{k}\right) \sim\left(j_{1}, \ldots, j_{k}\right)$ in M_{n}. By the claim above,

$$
x_{i_{1}} \cdots x_{i_{k}}=\rho^{\prime}\left(i_{1}, \ldots, i_{k}\right)=\rho^{\prime}\left(j_{1}, \ldots, j_{k}\right)=x_{j_{1}} \cdots x_{j_{k}}
$$

4.1.6 The longest element of \mathfrak{S}_{n}

Let $w_{0} \in \mathfrak{S}_{n}$ be the permutation $i \mapsto n+1-i$ for all $i \in\{1, \ldots, n-1\}$:

$$
w_{0}=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \tag{4.15}\\
n & n-1 & \ldots & 2 & 1
\end{array}\right) .
$$

It is clear that w_{0} is the only permutation $w \in \mathfrak{S}_{n}$ such that $w(i)>w(j)$ for all $i, j \in\{1, \ldots, n-1\}$ with $i<j$. In other words, $w=w_{0}$ if and only if the set $I(w)$ consists of all transpositions. By Lemma $4.7(\mathrm{a}), \lambda\left(w_{0}\right)=n(n-1) / 2$ and $\lambda(w)<n(n-1) / 2$ for $w \neq w_{0}$. Because of this, w_{0} is called the longest element of \mathfrak{S}_{n}. We record two other properties of w_{0} (the second one will be used in Section 6.5.2).

Lemma 4.13. If $w \in \mathfrak{S}_{n}$ satisfies $\lambda\left(w s_{i}\right)<\lambda(w)$ for all $i \in\{1, \ldots, n-1\}$, then $w=w_{0}$.

Proof. By Lemma $4.7(\mathrm{c}), s_{i} \in I(w)$ for all i. Then $w(i)>w(i+1)$ for all i. The only permutation satisfying these inequalities is w_{0}.

Lemma 4.14. For any $u, v \in \mathfrak{S}_{n}$ such that $u v=w_{0}$,

$$
\lambda(u)+\lambda(v)=\lambda\left(w_{0}\right)
$$

Proof. The lemma trivially holds for $u=w_{0}$ and $v=1$.
We claim that for any $u \in \mathfrak{S}_{n}, u \neq w_{0}$, there is a sequence $s_{i_{1}}, \ldots, s_{i_{r}}$ of simple transpositions such that $u s_{i_{1}} \cdots s_{i_{r}}=w_{0}$ and $\lambda\left(u s_{i_{1}} \cdots s_{i_{r}}\right)=\lambda(u)+r$. Before we prove the claim, let us show that it implies the lemma for u and $v=u^{-1} w_{0}=s_{i_{1}} \cdots s_{i_{r}}$. Clearly, $\lambda(v) \leq r$ and

$$
\lambda\left(w_{0}\right)=\lambda(u v) \leq \lambda(u)+\lambda(v) \leq \lambda(u)+r=\lambda\left(u s_{i_{1}} \cdots s_{i_{r}}\right)=\lambda\left(w_{0}\right)
$$

Therefore, $\lambda(u)+\lambda(v)=\lambda\left(w_{0}\right)$.
Let us now establish the claim. Since $u \neq w_{0}$, by Lemma 4.13, there is $s_{i_{1}}$ such that $\lambda\left(u s_{i_{1}}\right) \geq \lambda(u)$. By Lemma 4.5, we have $\lambda\left(u s_{i_{1}}\right)=\lambda(u)+1$. If $\lambda\left(u s_{i_{1}}\right)=\lambda\left(w_{0}\right)$, then $u s_{i_{1}}=w_{0}$, since w_{0} is the unique element of \mathfrak{S}_{n} of maximal length, and we are done. If $\lambda\left(u s_{i_{1}}\right)<\lambda\left(w_{0}\right)$, then again by Lemma 4.13, we can find $s_{i_{2}}$ such that $\lambda\left(u s_{i_{1}} s_{i_{2}}\right) \geq \lambda\left(u s_{i_{1}}\right)$. Then

$$
\lambda\left(u s_{i_{1}} s_{i_{2}}\right)=\lambda\left(u s_{i_{1}}\right)+1=\lambda(u)+2 .
$$

If $\lambda\left(u s_{i_{1}} s_{i_{2}}\right)=\lambda\left(w_{0}\right)$, then $u s_{i_{1}} s_{i_{2}}=w_{0}$ and we are done. If not, we continue as above until we find the required sequence $s_{i_{1}}, \ldots, s_{i_{r}}$.

Exercise 4.1.1. Using Theorem 4.8, prove that if $\lambda\left(s_{i_{1}} \cdots s_{i_{r}}\right)<r$, then there are $p, q \in\{1, \ldots, r\}$ such that $p<q$ and

$$
s_{i_{1}} \cdots s_{i_{r}}=s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots \widehat{s_{i_{q}}} \cdots s_{i_{r}}
$$

where $\widehat{s_{i_{p}}}$ and $\widehat{s_{i_{q}}}$ are removed on the right-hand side.
Exercise 4.1.2. Deduce Theorem 4.1 from Theorem 4.12, using the latter to construct a left inverse $\mathfrak{S}_{n} \rightarrow G_{n}$ of $\varphi: G_{n} \rightarrow \mathfrak{S}_{n}$.

Exercise 4.1.3. (a) Show that $w_{k, \ell}=s_{k} s_{k-1} \cdots s_{\ell}$ is a reduced word for each pair (k, ℓ) such that $1 \leq \ell \leq k \leq n-1$.
(b) Prove that the word $w_{k_{1}, \ell_{1}} w_{k_{2}, \ell_{2}} \cdots w_{k_{r}, \ell_{r}}$ obtained by concatenating words as in (a) is reduced for $k_{1}<k_{2}<\cdots<k_{r}$.
Exercise 4.1.4. For any integer $k \geq 1$, set $[k]_{q}=1+q+\cdots+q^{k-1} \in \mathbf{Z}[q]$. Show that

$$
\sum_{w \in \mathfrak{S}_{n}} q^{\lambda(w)}=[1]_{q}[2]_{q}[3]_{q} \cdots[n]_{q} .
$$

(Hint: Use Exercise 4.1.3 and Corollary 4.4.)
Exercise 4.1.5. Prove that for any $w \in \mathfrak{S}_{n}$ and any $i=1, \ldots, n-1$, the equality $\lambda\left(s_{i} w\right)=\lambda(w)+1$ holds if and only if $w^{-1}(i)<w^{-1}(i+1)$.

4.2 The Iwahori-Hecke algebras

4.2.1 Presentation by generators and relations

We fix an integer $n \geq 1$ and a commutative ring R together with two elements $q, z \in R$. We assume that q is invertible in R.

Definition 4.15. The Iwahori-Hecke algebra $H_{n}=H_{n}^{R}(q, z)$ is the unital associative R-algebra generated by T_{1}, \ldots, T_{n-1} subject to the relations

$$
\begin{equation*}
T_{i} T_{j}=T_{j} T_{i} \tag{4.16}
\end{equation*}
$$

for $i, j=1,2, \ldots, n-1$ such that $|i-j| \geq 2$,

$$
\begin{equation*}
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} \tag{4.17}
\end{equation*}
$$

for $i=1,2, \ldots, n-2$, and

$$
\begin{equation*}
T_{i}^{2}=z T_{i}+q 1 \tag{4.18}
\end{equation*}
$$

for $i=1, \ldots, n-1$. By definition, $H_{1}=H_{1}^{R}(q, z)=R$.
Any element of H_{n} is a linear combination of monomials $T_{i_{1}} T_{i_{2}} \cdots T_{i_{r}}$, including the empty monomial, which we identify with the unit 1 of H_{n}. By (4.18), each generator T_{i} is invertible in H_{n} with inverse

$$
\begin{equation*}
T_{i}^{-1}=q^{-1}\left(T_{i}-z 1\right) \tag{4.19}
\end{equation*}
$$

Therefore, each monomial $T_{i_{1}} T_{i_{2}} \cdots T_{i_{r}}$ is invertible in H_{n}.
By Theorem 4.1, for $q=1, z=0$, we have $H_{n}^{R}(q, z) \cong R\left[\mathfrak{S}_{n}\right]$.

4.2.2 The one-parameter Iwahori-Hecke algebras

Many authors consider the one-parameter Iwahori-Hecke algebra $H_{n}^{R}(q)$, which by definition is $H_{n}^{R}(q, z)$ with $z=q-1$. The algebra $H_{n}^{R}(q)$ is the unital associative R-algebra generated by T_{1}, \ldots, T_{n-1} subject to relations (4.16), (4.17), and

$$
\begin{equation*}
T_{i}^{2}=(q-1) T_{i}+q 1 \tag{4.20}
\end{equation*}
$$

There is essentially no loss of generality in considering the one-parameter Iwahori-Hecke algebras rather than the two-parameter ones. Indeed, the twoparameter algebra $H_{n}^{R}(q, z)$ is isomorphic to an algebra of the form $H_{n}^{R}\left(q^{\prime}\right)$ possibly after extending the ring of scalars. To see this, consider the presentation of $H_{n}^{R}(q, z)$ by generators and relations exhibited in Section 4.2.1. For $i=1, \ldots, n-1$, set $T_{i}^{\prime}=u^{-1} T_{i}$ for some invertible element u. Clearly, $T_{1}^{\prime}, \ldots, T_{n-1}^{\prime}$ satisfy (4.16) and (4.17). From (4.18) we obtain

$$
\left(T_{i}^{\prime}\right)^{2}=u^{-1} z T_{i}^{\prime}+u^{-2} q
$$

for $i=1, \ldots, n-1$. Let R^{\prime} be the smallest ring containing R and a root u of the quadratic polynomial $X^{2}+z X-q$: if R contains a root of this polynomial, then $R^{\prime}=R$; otherwise, R^{\prime} is a quadratic extension of R. Then the map $T_{i} \mapsto u T_{i}^{\prime}$ $(i=1, \ldots, n-1)$ induces an algebra isomorphism $H_{n}^{R^{\prime}}(q, z) \cong H_{n}^{R^{\prime}}\left(u^{-2} q\right)$.

4.2.3 Basis of H_{n}

We return to the two-parameter Iwahori-Hecke algebra $H_{n}=H_{n}^{R}(q, z)$. We now show that H_{n} is a free R-module on a basis indexed by the elements of the symmetric group \mathfrak{S}_{n}. Recall the notation from Section 4.1: the symbol s_{i} denotes the simple transposition exchanging i and $i+1$ for $i=1, \ldots, n-1$, and $\lambda(w)$ denotes the length of $w \in \mathfrak{S}_{n}$.

Lemma 4.16. (a) For each $w \in \mathfrak{S}_{n}$, there is a unique $T_{w} \in H_{n}$ such that $T_{w}=T_{i_{1}} \cdots T_{i_{r}}$ whenever $w=s_{i_{1}} \cdots s_{i_{r}}$ is a reduced expression for w.
(b) For $w \in \mathfrak{S}_{n}$ and any simple transposition s_{i},

$$
T_{i} T_{w}= \begin{cases}T_{s_{i} w} & \text { if } \lambda\left(s_{i} w\right)>\lambda(w) \\ q T_{s_{i} w}+z T_{w} & \text { if } \lambda\left(s_{i} w\right)<\lambda(w)\end{cases}
$$

Observe that if $w=1 \in \mathfrak{S}_{n}$, then $T_{w}=1 \in H_{n}$.
Proof. (a) This follows from (4.16), (4.17), and Theorem 4.12.
(b) Let $s_{i_{1}} \cdots s_{i_{r}}$ be a reduced expression for w. If $\lambda\left(s_{i} w\right)>\lambda(w)$, then $s_{i} s_{i_{1}} \cdots s_{i_{r}}$ is a reduced expression for $s_{i} w$. Therefore, $T_{s_{i} w}=T_{i} T_{w}$.

If $\lambda\left(s_{i} w\right)<\lambda(w)$, then we may assume by Corollary 4.9 that $s_{i_{1}}=s_{i}$. Then $s_{i} w$ has $s_{i_{2}} \cdots s_{i_{r}}$ as a reduced expression. Hence, by (4.18),

$$
\begin{aligned}
T_{i} T_{w} & =T_{i} T_{i_{1}} \cdots T_{i_{r}}=T_{i}^{2} T_{i_{2}} \cdots T_{i_{r}} \\
& =z T_{i} T_{i_{2}} \cdots T_{i_{r}}+q T_{i_{2}} \cdots T_{i_{r}} \\
& =z T_{w}+q T_{s_{i} w}
\end{aligned}
$$

Theorem 4.17. The R-module H_{n} is free of rank n ! with basis $\left\{T_{w} \mid w \in \mathfrak{S}_{n}\right\}$.
Proof. Let H be the R-submodule of H_{n} spanned by the vectors $T_{w}\left(w \in \mathfrak{S}_{n}\right)$. By Lemma $4.16(\mathrm{~b}), H$ is a left ideal of H_{n}. Since $1=T_{1} \in H$, we have $H=H_{n}$. To prove the theorem, it remains to show that the vectors T_{w} $\left(w \in \mathfrak{S}_{n}\right)$ are linearly independent over R. To this end, we construct an action of H_{n} on a free R-module of rank n !.

Let V be the free R-module with a basis $\left\{e_{w}\right\}_{w \in \mathfrak{S}_{n}}$ indexed by the elements $w \in \mathfrak{S}_{n}$. We define $2 n-2$ homomorphisms $\left\{\mathrm{L}_{i}, \mathrm{R}_{i}: V \rightarrow V\right\}_{i=1}^{n-1}$ as follows. For $i=1, \ldots, n-1$, set

$$
\mathrm{L}_{i}\left(e_{w}\right)= \begin{cases}e_{s_{i} w} & \text { if } \lambda\left(s_{i} w\right)>\lambda(w) \tag{4.21}\\ q e_{s_{i} w}+z e_{w} & \text { if } \lambda\left(s_{i} w\right)<\lambda(w)\end{cases}
$$

and

$$
\mathrm{R}_{i}\left(e_{w}\right)= \begin{cases}e_{w s_{i}} & \text { if } \lambda\left(w s_{i}\right)>\lambda(w) \tag{4.22}\\ q e_{w s_{i}}+z e_{w} & \text { if } \lambda\left(w s_{i}\right)<\lambda(w)\end{cases}
$$

To complete the proof of Theorem 4.17, we need the following two lemmas.
Lemma 4.18. We have $\mathrm{L}_{i} \mathrm{R}_{j}=\mathrm{R}_{j} \mathrm{~L}_{i}$ for all $i, j=1, \ldots, n-1$.
Proof. It suffices to check that $\mathrm{L}_{i} \mathrm{R}_{j}\left(e_{w}\right)=\mathrm{R}_{j} \mathrm{~L}_{i}\left(e_{w}\right)$ for all $w \in \mathfrak{S}_{n}$. We distinguish six cases depending on the lengths of $w, s_{i} w, w s_{j}$, and $s_{i} w s_{j}$. In the following proof we use (4.21) and (4.22) repeatedly.
(i) If $\lambda(w)<\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)<\lambda\left(s_{i} w s_{j}\right)$, then

$$
\mathrm{L}_{i} \mathrm{R}_{j}\left(e_{w}\right)=\mathrm{L}_{i}\left(e_{w s_{j}}\right)=e_{s_{i} w s_{j}}=\mathrm{R}_{j}\left(e_{s_{i} w}\right)=\mathrm{R}_{j} \mathrm{~L}_{i}\left(e_{w}\right)
$$

(ii) If $\lambda(w)>\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)>\lambda\left(s_{i} w s_{j}\right)$, then

$$
\begin{aligned}
\mathrm{L}_{i} \mathrm{R}_{j}\left(e_{w}\right) & =q \mathrm{~L}_{i}\left(e_{w s_{j}}\right)+z \mathrm{~L}_{i}\left(e_{w}\right) \\
& =q\left(q e_{s_{i} w s_{j}}+z e_{w s_{j}}\right)+z\left(q e_{s_{i} w}+z e_{w}\right) \\
& =q\left(q e_{s_{i} w s_{j}}+z e_{s_{i} w}\right)+z\left(q e_{w s_{j}}+z e_{w}\right) \\
& =q \mathrm{R}_{j}\left(e_{s_{i} w}\right)+z \mathrm{R}_{j}\left(e_{w}\right) \\
& =\mathrm{R}_{j} \mathrm{~L}_{i}\left(e_{w}\right) .
\end{aligned}
$$

(iii) If $\lambda(w)<\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)>\lambda\left(s_{i} w s_{j}\right)$, then we necessarily have $\lambda\left(s_{i} w s_{j}\right)=\lambda(w)$. Applying Lemma 4.10, we obtain $s_{i} w=w s_{j}$. Then

$$
\begin{aligned}
\mathrm{L}_{i} \mathrm{R}_{j}\left(e_{w}\right) & =\mathrm{L}_{i}\left(e_{w s_{j}}\right)=q e_{s_{i} w s_{j}}+z e_{w s_{j}} \\
& =q e_{s_{i} w s_{j}}+z e_{s_{i} w} \\
& =\mathrm{R}_{j}\left(e_{s_{i} w}\right)=\mathrm{R}_{j} \mathrm{~L}_{i}\left(e_{w}\right) .
\end{aligned}
$$

(iv) The case $\lambda(w)>\lambda\left(s_{i} w\right)=\lambda\left(w s_{j}\right)<\lambda\left(s_{i} w s_{j}\right)$ is treated like (iii).
(v) If $\lambda\left(w s_{j}\right)<\lambda(w)<\lambda\left(s_{i} w\right)>\lambda\left(s_{i} w s_{j}\right)=\lambda(w)$, then

$$
\begin{aligned}
\mathrm{L}_{i} \mathrm{R}_{j}\left(e_{w}\right) & =q \mathrm{~L}_{i}\left(e_{w s_{j}}\right)+z \mathrm{~L}_{i}\left(e_{w}\right) \\
& =q e_{s_{i} w s_{j}}+z e_{s_{i} w} \\
& =\mathrm{R}_{j}\left(e_{s_{i} w}\right)=\mathrm{R}_{j} \mathrm{~L}_{i}\left(e_{w}\right) .
\end{aligned}
$$

(vi) The case $\lambda\left(s_{i} w\right)<\lambda(w)<\lambda\left(w s_{j}\right)>\lambda\left(s_{i} w s_{j}\right)=\lambda(w)$ is treated like (v).

Lemma 4.19. For any reduced expression $s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$ representing $w \in \mathfrak{S}_{n}$, set $\mathrm{R}=\mathrm{R}_{i_{r}} \ldots \mathrm{R}_{i_{2}} \mathrm{R}_{i_{1}} \in \operatorname{End}_{R}(V)$ and $\mathrm{L}=\mathrm{L}_{i_{1}} \mathrm{~L}_{i_{2}} \ldots \mathrm{~L}_{i_{r}} \in \operatorname{End}_{R}(V)$. Then

$$
e_{w}=\mathrm{R}\left(e_{1}\right)=\mathrm{L}\left(e_{1}\right)
$$

Proof. The equality $e_{w}=\mathrm{R}\left(e_{1}\right)$ is proved by induction on $r=\lambda(w)$. For $r=1$, this equality follows from the definition of $\mathrm{R}=\mathrm{R}_{i_{1}}$. For $r \geq 2$, set $w^{\prime}=s_{i_{1}} s_{i_{2}} \ldots s_{i_{r-1}}$ and $\mathrm{R}^{\prime}=\mathrm{R}_{i_{r-1}} \ldots \mathrm{R}_{i_{2}} \mathrm{R}_{i_{1}}$ and suppose that $\mathrm{R}^{\prime}\left(e_{1}\right)=e_{w^{\prime}}$. Since $\lambda(w)=\lambda\left(w^{\prime} s_{i_{r}}\right)>\lambda\left(w^{\prime}\right)$, by (4.22),

$$
\mathrm{R}\left(e_{1}\right)=\mathrm{R}_{i_{r}}\left(\mathrm{R}^{\prime}\left(e_{1}\right)\right)=\mathrm{R}_{i_{r}}\left(e_{w^{\prime}}\right)=e_{w^{\prime} s_{i_{r}}}=e_{w}
$$

The identity $e_{w}=\mathrm{L}\left(e_{1}\right)$ is proved similarly.
Lemma 4.20. The endomorphisms $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n-1}$ of the R-module V satisfy relations (4.16), (4.17), and (4.18) in which T_{i} is replaced by L_{i}.

Proof. (a) If $\lambda\left(s_{i} w\right)>\lambda(w)$, then

$$
\mathrm{L}_{i}^{2}\left(e_{w}\right)=\mathrm{L}_{i}\left(e_{s_{i} w}\right)=q e_{w}+z e_{s_{i} w}=z \mathrm{~L}_{i}\left(e_{w}\right)+q e_{w} .
$$

If $\lambda\left(s_{i} w\right)<\lambda(w)$, then

$$
\mathrm{L}_{i}^{2}\left(e_{w}\right)=\mathrm{L}_{i}\left(q e_{s_{i} w}+z e_{w}\right)=z \mathrm{~L}_{i}\left(e_{w}\right)+q e_{w} .
$$

(b) Let $s_{i_{1}} s_{i_{2}} \ldots s_{i_{r}}$ be a reduced word for $w \in \mathfrak{S}_{n}$ and $\mathrm{R}=\mathrm{R}_{i_{r}} \ldots \mathrm{R}_{i_{2}} \mathrm{R}_{i_{1}}$. For i and j such that $|i-j|=1$,

$$
\begin{aligned}
\mathrm{L}_{i} \mathrm{~L}_{j} \mathrm{~L}_{i}\left(e_{w}\right) & =\mathrm{L}_{i} \mathrm{~L}_{j} \mathrm{~L}_{i} \mathrm{R}\left(e_{1}\right)=\mathrm{RL}_{i} \mathrm{~L}_{j} \mathrm{~L}_{i}\left(e_{1}\right) \\
& =\mathrm{R}\left(e_{s_{i} s_{j} s_{i}}\right)=\mathrm{R}\left(e_{s_{j} s_{i} s_{j}}\right) \\
& =\mathrm{RL}_{j} \mathrm{~L}_{i} \mathrm{~L}_{j}\left(e_{1}\right)=\mathrm{L}_{j} \mathrm{~L}_{i} \mathrm{~L}_{j} \mathrm{R}\left(e_{1}\right) \\
& =\mathrm{L}_{j} \mathrm{~L}_{i} \mathrm{~L}_{j}\left(e_{w}\right) .
\end{aligned}
$$

We have used Lemma 4.18 for the second and sixth equalities and Lemma 4.19 for the first, third, fifth, and seventh equalities, whereas the fourth equality follows from the relation $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ in \mathfrak{S}_{n}.
(c) The equalities $\mathrm{L}_{i} \mathrm{~L}_{j}=\mathrm{L}_{j} \mathrm{~L}_{i}$ for $|i-j| \geq 2$ are proved similarly using the relations $s_{i} s_{j}=s_{j} s_{i}$.

By Lemma 4.20, there is an algebra homomorphism $H_{n} \rightarrow \operatorname{End}_{R}(V)$ send$\operatorname{ing} T_{i}$ to L_{i} for $i=1, \ldots, n-1$. In other words, H_{n} acts on V by

$$
T_{i} v=\mathrm{L}_{i}(v)
$$

for all $v \in V$ and $i=1, \ldots, n-1$. Lemma 4.19 implies that $T_{w} e_{1}=e_{w}$ for all $w \in \mathfrak{S}_{n}$.

We can now prove the linear independence of the elements $T_{w}\left(w \in \mathfrak{S}_{n}\right)$ of H_{n}. Suppose that there is an additive relation

$$
\sum_{w \in \mathfrak{S}_{n}} a_{w} T_{w}=0
$$

where $a_{w} \in R$ for all $w \in \mathfrak{S}_{n}$. Applying both sides to $e_{1} \in V$, we obtain

$$
0=\sum_{w \in \mathfrak{S}_{n}} a_{w} T_{w} e_{1}=\sum_{w \in \mathfrak{S}_{n}} a_{w} e_{w} \in V
$$

Since the set $\left\{e_{w}\right\}_{w \in \mathfrak{S}_{n}}$ is a basis of V, we have $a_{w}=0$ for all w. This establishes the linear independence of the elements $T_{w} \in H_{n}$, and completes the proof of Theorem 4.17.

4.2.4 Consequences of Theorem 4.17

We record two useful consequences of Theorem 4.17. Observe first that there is an algebra homomorphism $\iota: H_{n} \rightarrow H_{n+1}$ sending each generator T_{i} of H_{n} $(i=1, \ldots, n-1)$ to the generator T_{i} of H_{n+1}. The homomorphism ι turns H_{n+1} into a left and right H_{n}-module by $h a=\iota(h) a$ and $a h=a \iota(h)$ for $h \in H_{n}, a \in H_{n+1}$.

Proposition 4.21. The homomorphism $\iota: H_{n} \rightarrow H_{n+1}$ is injective. As a left H_{n}-module, H_{n+1} is free of rank $n+1$ with basis

$$
\left\{1, T_{n}, T_{n} T_{n-1}, \ldots, T_{n} T_{n-1} \cdots T_{2} T_{1}\right\}
$$

Proof. By definition of T_{w}, we have $\iota\left(T_{w}\right)=T_{w}$ for all $w \in \mathfrak{S}_{n}$, where on the right-hand side w is considered as an element of \mathfrak{S}_{n+1}. By Theorem 4.17, ι sends a basis of H_{n} to a subset of a basis of H_{n+1}. Therefore ι is injective.

As a consequence of Corollary 4.4, any $w \in \mathfrak{S}_{n+1}-\mathfrak{S}_{n}$ can be written uniquely as $w=w^{\prime} s_{n} s_{n-1} \cdots s_{k}$ for some $w^{\prime} \in \mathfrak{S}_{n}$ and an integer k such that $1 \leq k \leq n$. We claim that

$$
\begin{equation*}
T_{w}=T_{w^{\prime}} T_{n} T_{n-1} \cdots T_{k} \tag{4.23}
\end{equation*}
$$

Indeed, since w^{\prime}, considered as an element of \mathfrak{S}_{n+1}, fixes $n+1$, we have

$$
w^{\prime}(n)<w^{\prime}(n+1)=n+1 .
$$

Therefore, by Lemma 4.7(d), $\lambda\left(w^{\prime}\right)<\lambda\left(w^{\prime} s_{n}\right)$. More generally, for each ℓ such that $1 \leq \ell \leq n$,

$$
\begin{aligned}
\left(w^{\prime} s_{n} s_{n-1} \cdots s_{\ell+1}\right)(\ell) & =\left(w^{\prime} s_{n} s_{n-1} \cdots s_{\ell+2}\right)(\ell)=\cdots \\
& =\left(w^{\prime} s_{n} s_{n-1}\right)(\ell)=\left(w^{\prime} s_{n}\right)(\ell)=w^{\prime}(\ell) \\
& <n+1=w^{\prime}(n+1) \\
& =\left(w^{\prime} s_{n}\right)(n)=\left(w^{\prime} s_{n} s_{n-1}\right)(n-1) \\
& =\cdots=\left(w^{\prime} s_{n} s_{n-1} \cdots s_{\ell+1}\right)(\ell+1) .
\end{aligned}
$$

Therefore, by Lemma 4.7 (d),

$$
\lambda\left(w^{\prime} s_{n} s_{n-1} \cdots s_{\ell+1}\right)<\lambda\left(w^{\prime} s_{n} s_{n-1} \cdots s_{\ell+1} s_{\ell}\right) .
$$

It follows then by induction that if $s_{i_{1}} \cdots s_{i_{r}}$ is an arbitrary reduced expression for $w^{\prime} \in \mathfrak{S}_{n}$, then $s_{i_{1}} \cdots s_{i_{r}} s_{n} s_{n-1} \cdots s_{k}$ is a reduced expression for w. Therefore, by definition of T_{w} and $T_{w^{\prime}}$,

$$
T_{w}=T_{i_{1}} \cdots T_{i_{r}} T_{n} T_{n-1} \cdots T_{k}=T_{w^{\prime}} T_{n} T_{n-1} \cdots T_{k}
$$

which proves (4.23).
Since the elements T_{w} with $w \in \mathfrak{S}_{n+1}$ span H_{n+1} as an R-module, (4.23) implies that the elements $\left\{1, T_{n}, T_{n-1} T_{n-1}, \ldots, T_{n} T_{n-1} \cdots T_{2} T_{1}\right\}$ generate H_{n+1} as a left H_{n}-module. Their linear independence over H_{n} follows from the linear independence of the elements $T_{w}\left(w \in \mathfrak{S}_{n+1}\right)$ over R.

Proposition 4.22. For any $n \geq 2$, there is an isomorphism of R-modules

$$
\varphi: H_{n} \oplus\left(H_{n} \otimes_{H_{n-1}} H_{n}\right) \rightarrow H_{n+1}
$$

given for any $a \in H_{n}$ and any finite family $\left\{b_{i}, c_{i}\right\}_{i} \subset H_{n}$ by

$$
\varphi\left(a+\sum_{i} b_{i} \otimes c_{i}\right)=\iota(a)+\sum_{i} b_{i} T_{n} c_{i}
$$

Proof. Since H_{n-1} is generated by T_{1}, \ldots, T_{n-2} and $T_{i} T_{n}=T_{n} T_{i}$ for $i \leq n-2$,

$$
\varphi(b h \otimes c)=b h T_{n} c=b T_{n} h c=\varphi(b \otimes h c)
$$

for all $h \in H_{n-1}, b, c \in H_{n}$. This shows that φ is well defined. Clearly, φ is a morphism of left H_{n}-modules.

By Proposition 4.21, H_{n} is a free left H_{n-1}-module with basis

$$
\left\{1, T_{n-1}, T_{n-1} T_{n-2}, \ldots, T_{n-1} T_{n-2} \cdots T_{2} T_{1}\right\}
$$

Therefore, $H_{n} \oplus\left(H_{n} \otimes_{H_{n-1}} H_{n}\right)$ is a free left H_{n}-module with basis

$$
\{1\} \amalg\left\{1 \otimes 1,1 \otimes T_{n-1}, 1 \otimes T_{n-1} T_{n-2}, \ldots, 1 \otimes T_{n-1} T_{n-2} \cdots T_{2} T_{1}\right\} .
$$

The map φ sends this basis to the set

$$
\{1\} \amalg\left\{T_{n}, T_{n} T_{n-1}, T_{n} T_{n-1} T_{n-2}, \ldots, T_{n} T_{n-1} T_{n-2} \cdots T_{2} T_{1}\right\},
$$

which by Proposition 4.21 is a basis of the left H_{n}-module H_{n+1}. This implies that φ is an isomorphism.

Exercise 4.2.1. Show that the assignment $T_{i} \mapsto-q T_{i}^{-1}(i=1, \ldots, n-1)$ defines an algebra automorphism of H_{n}.

Exercise 4.2.2. Prove that any algebra homomorphism $H_{n} \rightarrow R$ sends all T_{i} $(i=1, \ldots, n-1)$ to one and the same root of the polynomial $X^{2}-z X-q$.

Exercise 4.2.3 (The Hecke algebra associated to $\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$). Let \mathbf{F}_{q} be a finite field of cardinality q and $G=\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$. We denote by $\mathbf{C}(G)$ the complex vector space of functions from G to \mathbf{C}. For any $g \in G$, define

$$
\delta_{g} \in \mathbf{C}(G)
$$

to be the function vanishing everywhere except on g, where its value is 1 . Given $f, f^{\prime} \in \mathbf{C}(G)$, let $f * f^{\prime}$ be the element of $\mathbf{C}(G)$ given by

$$
\left(f * f^{\prime}\right)(g)=\sum_{h \in G} f(h) f^{\prime}\left(h^{-1} g\right)
$$

for all $g \in G$. For $f \in \mathbf{C}(G)$, set

$$
\varepsilon(f)=\sum_{g \in G} f(g) \in \mathbf{C}
$$

(a) Show that $\left\{\delta_{g}\right\}_{g \in G}$ is a basis of $\mathbf{C}(G)$, the operation $*$ is associative, and $\varepsilon\left(f * f^{\prime}\right)=\varepsilon(f) \varepsilon\left(f^{\prime}\right)$ for all $f, f^{\prime} \in \mathbf{C}(G)$.
(b) Let $B \subset G$ be the subgroup of upper triangular matrices. Define $\mathbf{C}(B \backslash G / B)$ to be the subspace of $\mathbf{C}(G)$ consisting of the functions f such that $f(b g)=f(g b)=f(g)$ for all $g \in G, b \in B$. Show that $\mathbf{C}(B \backslash G / B)$ is closed under $*$ and the following function is a unit (with respect to $*$):

$$
\delta_{0}=\frac{1}{\operatorname{card}(B)} \sum_{g \in B} \delta_{g} \in \mathbf{C}(B \backslash G / B)
$$

(c) For any permutation $w \in \mathfrak{S}_{n}$, consider the set $B w B$ of all elements of G of the form $b w b^{\prime}$, where $b, b^{\prime} \in B$ and w is identified with the corresponding permutation matrix. Define δ_{w} to be the function on G whose value is $1 / \operatorname{card}(B)$ on $B w B$ and 0 elsewhere. Show that $\left\{\delta_{w}\right\}_{w \in \mathfrak{S}_{n}}$ is a basis of $\mathbf{C}(B \backslash G / B)$. Hint: Use the Bruhat decomposition

$$
G=\coprod_{w \in \mathfrak{S}_{n}} B w B
$$

(d) Prove that for all $w, w^{\prime} \in \mathfrak{S}_{n}$ and $g \in G$,

$$
\left(\delta_{w} * \delta_{w^{\prime}}\right)(g)=\frac{1}{\operatorname{card}(B)^{2}} \operatorname{card}\left(B w B \cap g B\left(w^{\prime}\right)^{-1} B\right)
$$

(e) Compute $\operatorname{card}\left(B s_{i} B\right)$ for each simple transposition $s_{i} \in \mathfrak{S}_{n}$. Show that the function $\delta_{s_{i}} * \delta_{s_{i}}$ is zero outside $B \cup B s_{i} B$, and for any $g \in B$,

$$
\left(\delta_{s_{i}} * \delta_{s_{i}}\right)(g)=q \delta_{0}
$$

Using $\varepsilon: \mathbf{C}(B \backslash G / B) \rightarrow \mathbf{C}$, deduce that

$$
\delta_{s_{i}} * \delta_{s_{i}}=(q-1) \delta_{s_{i}}+q \delta_{0}
$$

(f) Prove that for all s_{i} and $w \in \mathfrak{S}_{n}$ such that $\lambda\left(s_{i} w\right)>\lambda(w)$,

$$
\delta_{s_{i}} * \delta_{w}=\delta_{s_{i} w} .
$$

(g) Conclude that the algebra $\mathbf{C}(B \backslash G / B)$ is isomorphic to the IwahoriHecke algebra $H_{n}^{\mathbf{C}}(q)$.

4.3 The Ocneanu traces

As in the previous section, we fix a commutative ring R together with two elements $q, z \in R$. We now assume that both q and z are invertible in R. The aim of this section is to construct for all $n \geq 1$ a trace $\tau_{n}: H_{n} \rightarrow R$ on $H_{n}=H_{n}^{R}(q, z)$. This trace will be instrumental in the construction of a two-variable polynomial invariant of links in the next section.

We proceed by induction on n. For $n=1$, we define $\tau_{1}: H_{1}=R \rightarrow R$ to be the identity map. For $n=2$, we define $\tau_{2}: H_{2} \rightarrow R$ on the basis $\left\{1, T_{1}\right\}$ by

$$
\begin{equation*}
\tau_{2}(1)=\frac{1-q}{z} \quad \text { and } \quad \tau_{2}\left(T_{1}\right)=1 \tag{4.24}
\end{equation*}
$$

Suppose that $\tau_{n}: H_{n} \rightarrow R$ is defined for some $n \geq 2$. We define the trace $\tau_{n+1}: H_{n+1} \rightarrow R$ using the isomorphism $\varphi: H_{n} \oplus\left(H_{n} \otimes_{H_{n-1}} H_{n}\right) \rightarrow H_{n+1}$ of Proposition 4.22 as follows. Set

$$
\tau_{n+1}(\varphi(a))=\frac{1-q}{z} \tau_{n}(a)
$$

and

$$
\tau_{n+1}(\varphi(b \otimes c))=\tau_{n}(b c)
$$

for all $a, b, c \in H_{n}$. Induction on n shows that $\tau_{n}: H_{n} \rightarrow R$ is R-linear, that is, $\tau_{n}(r a)=r \tau_{n}(a)$ for all $r \in R, a \in H_{n}$. The linear form τ_{n} is called the Ocneanu trace on H_{n}.

Proposition 4.23. For all $n \geq 1$ and all $a, b \in H_{n}$,
(i) $\tau_{n}(a b)=\tau_{n}(b a)$,
(ii) $\tau_{n+1}\left(T_{n} a\right)=\tau_{n+1}\left(T_{n}^{-1} a\right)=\tau_{n}(a)$.

Proof. (i) We prove the relation $\tau_{n}(a b)=\tau_{n}(b a)$ by induction on n. It holds for $n=1$ and $n=2$ because H_{1} and H_{2} are commutative. We now suppose that this relation holds for τ_{n} and prove it for τ_{n+1}. Since H_{n+1} is generated by T_{1}, \ldots, T_{n} and φ is onto, it is enough to show that

$$
\tau_{n+1}\left(\omega T_{i}\right)=\tau_{n+1}\left(T_{i} \omega\right)
$$

for all ω in the image of φ and all $i=1, \ldots, n$.
(a) If $\omega=\varphi(a)$ for some $a \in H_{n}$, then by definition of τ_{n+1},

$$
\tau_{n+1}\left(\omega T_{i}\right)= \begin{cases}\frac{1-q}{z} \tau_{n}\left(a T_{i}\right) & \text { if } i<n \\ \tau_{n}(a) & \text { if } i=n\end{cases}
$$

and

$$
\tau_{n+1}\left(T_{i} \omega\right)= \begin{cases}\frac{1-q}{z} \tau_{n}\left(T_{i} a\right) & \text { if } i<n \\ \tau_{n}(a) & \text { if } i=n\end{cases}
$$

The relation $\tau_{n+1}\left(\omega T_{i}\right)=\tau_{n+1}\left(T_{i} \omega\right)$ follows from the induction hypothesis.
(b) Suppose that $\omega=\varphi(a \otimes b)=a T_{n} b$ for some $a, b \in H_{n}$. If $i<n$, then

$$
\begin{aligned}
\tau_{n+1}\left(\omega T_{i}\right) & =\tau_{n+1}\left(a T_{n} b T_{i}\right)=\tau_{n}\left(a b T_{i}\right) \\
& =\tau_{n}\left(T_{i} a b\right)=\tau_{n+1}\left(T_{i} a T_{n} b\right) \\
& =\tau_{n+1}\left(T_{i} \omega\right)
\end{aligned}
$$

where the third equality follows from the induction hypothesis.
When $i=n$, we have to check the equality

$$
\tau_{n+1}\left(a T_{n} b T_{n}\right)=\tau_{n+1}\left(T_{n} a T_{n} b\right)
$$

There are four cases to consider.
(b_{1}) If a and b belong to H_{n-1}, then they commute with T_{n} and the relation is obvious.
$\left(\mathrm{b}_{2}\right)$ Let $a \in H_{n-1}$ and $b=b^{\prime} T_{n-1} b^{\prime \prime}$, where $b^{\prime}, b^{\prime \prime} \in H_{n-1}$. Observe that a, b^{\prime}, and $b^{\prime \prime}$ commute with T_{n}. We have

$$
\begin{aligned}
\tau_{n+1}\left(a T_{n} b T_{n}\right) & =\tau_{n+1}\left(a T_{n} b^{\prime} T_{n-1} b^{\prime \prime} T_{n}\right) \\
& =\tau_{n+1}\left(a b^{\prime} T_{n} T_{n-1} T_{n} b^{\prime \prime}\right) \\
& =\tau_{n+1}\left(a b^{\prime} T_{n-1} T_{n} T_{n-1} b^{\prime \prime}\right) \\
& =\tau_{n}\left(a b^{\prime} T_{n-1}^{2} b^{\prime \prime}\right) \\
& =z \tau_{n}\left(a b^{\prime} T_{n-1} b^{\prime \prime}\right)+q \tau_{n}\left(a b^{\prime} b^{\prime \prime}\right) \\
& =z \tau_{n}(a b)+q \frac{1-q}{z} \tau_{n-1}\left(a b^{\prime} b^{\prime \prime}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\tau_{n+1}\left(T_{n} a T_{n} b\right) & =\tau_{n+1}\left(T_{n}^{2} a b\right) \\
& =z \tau_{n+1}\left(T_{n} a b\right)+q \tau_{n+1}(a b) \\
& =z \tau_{n}(a b)+q \frac{1-q}{z} \tau_{n}\left(a b^{\prime} T_{n-1} b^{\prime \prime}\right) \\
& =z \tau_{n}(a b)+q \frac{1-q}{z} \tau_{n-1}\left(a b^{\prime} b^{\prime \prime}\right)
\end{aligned}
$$

which is the same expression.
$\left(\mathrm{b}_{3}\right)$ The case $b \in H_{n-1}$ and $a=a^{\prime} T_{n-1} a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in H_{n-1}$ is treated similarly.
(b_{4}) Suppose that $a=a^{\prime} T_{n-1} a^{\prime \prime}$ and $b=b^{\prime} T_{n-1} b^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime}, b^{\prime}$, $b^{\prime \prime} \in H_{n-1}$. Then

$$
\begin{aligned}
\tau_{n+1}\left(a T_{n} b T_{n}\right) & =\tau_{n+1}\left(a T_{n} b^{\prime} T_{n-1} b^{\prime \prime} T_{n}\right) \\
& =\tau_{n+1}\left(a b^{\prime} T_{n} T_{n-1} T_{n} b^{\prime \prime}\right) \\
& =\tau_{n+1}\left(a b^{\prime} T_{n-1} T_{n} T_{n-1} b^{\prime \prime}\right) \\
& =\tau_{n}\left(a b^{\prime} T_{n-1}^{2} b^{\prime \prime}\right) \\
& =z \tau_{n}\left(a b^{\prime} T_{n-1} b^{\prime \prime}\right)+q \tau_{n}\left(a b^{\prime} b^{\prime \prime}\right) \\
& =z \tau_{n}(a b)+q \tau_{n}\left(a^{\prime} T_{n-1} a^{\prime \prime} b^{\prime} b^{\prime \prime}\right) \\
& =z \tau_{n}(a b)+q \tau_{n-1}\left(a^{\prime} a^{\prime \prime} b^{\prime} b^{\prime \prime}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\tau_{n+1}\left(T_{n} a T_{n} b\right) & =\tau_{n+1}\left(T_{n} a^{\prime} T_{n-1} a^{\prime \prime} T_{n} b\right) \\
& =\tau_{n+1}\left(a^{\prime} T_{n} T_{n-1} T_{n} a^{\prime \prime} b\right) \\
& =\tau_{n+1}\left(a^{\prime} T_{n-1} T_{n} T_{n-1} a^{\prime \prime} b\right) \\
& =\tau_{n}\left(a^{\prime} T_{n-1}^{2} a^{\prime \prime} b\right) \\
& =z \tau_{n}\left(a^{\prime} T_{n-1} a^{\prime \prime} b\right)+q \tau_{n}\left(a^{\prime} a^{\prime \prime} b\right) \\
& =z \tau_{n}(a b)+q \tau_{n}\left(a^{\prime} a^{\prime \prime} b^{\prime} T_{n-1} b^{\prime \prime}\right) \\
& =z \tau_{n}(a b)+q \tau_{n-1}\left(a^{\prime} a^{\prime \prime} b^{\prime} b^{\prime \prime}\right),
\end{aligned}
$$

which proves the desired relation.
(ii) By definition of τ_{n+1},

$$
\tau_{n+1}\left(T_{n} a\right)=\tau_{n+1}(\varphi(1 \otimes a))=\tau_{n}(a)
$$

for all $a \in H_{n}$. Since $T_{n}^{-1}=q^{-1} T_{n}-q^{-1} z 1$, we obtain

$$
\begin{aligned}
\tau_{n+1}\left(T_{n}^{-1} a\right) & =q^{-1} \tau_{n+1}\left(T_{n} a\right)-q^{-1} z \tau_{n+1}(a) \\
& =q^{-1} \tau_{n}(a)-\frac{1-q}{z} q^{-1} z \tau_{n}(a) \\
& =\tau_{n}(a) .
\end{aligned}
$$

Exercise 4.3.1. Show that on the basis

$$
\left\{1, T_{1}, T_{2}, T_{1} T_{2}, T_{2} T_{1}, T_{1} T_{2} T_{1}\right\}
$$

of H_{3} the trace $\tau_{3}: H_{3} \rightarrow R$ is computed by

$$
\begin{gathered}
\tau_{3}(1)=\frac{(1-q)^{2}}{z^{2}}, \quad \tau_{3}\left(T_{1}\right)=\tau_{3}\left(T_{2}\right)=\frac{1-q}{z}, \\
\tau_{3}\left(T_{1} T_{2}\right)=\tau_{3}\left(T_{2} T_{1}\right)=1, \quad \tau_{3}\left(T_{1} T_{2} T_{1}\right)=z+\frac{q(1-q)}{z} .
\end{gathered}
$$

4.4 The Jones-Conway polynomial

We now use the theory of Iwahori-Hecke algebras presented above to construct a two-parameter polynomial invariant of oriented links in \mathbf{R}^{3}. Recall from Section 2.5.2 the notion of a Markov function on the braid groups. We build an explicit Markov function as follows. Let R be a commutative ring with distinguished invertible elements q, z. Let $H_{n}=H_{n}^{R}(q, z)$ be the corresponding Iwahori-Hecke algebra with $n \geq 1$ and let H_{n}^{\times}be the group of invertible elements of H_{n}. Consider the group homomorphism $\omega_{n}: B_{n} \rightarrow H_{n}^{\times}$sending σ_{i} to T_{i} for $i=1, \ldots, n-1$. Composing ω_{n} with the Ocneanu trace $\tau_{n}: H_{n} \rightarrow R$ constructed in Section 4.3, we obtain a mapping $\tau_{n} \circ \omega_{n}: B_{n} \rightarrow R$. The following is an immediate consequence of Proposition 4.23.

Proposition 4.24. The family $\left\{\tau_{n} \circ \omega_{n}: B_{n} \rightarrow R\right\}_{n \geq 1}$ is a Markov function.
We now state the main theorem of this section. In the statement we use the notion of a Conway triple of links; see Section 3.3.

Theorem 4.25. For any oriented link $L \subset \mathbf{R}^{3}$ and any braid $\beta \in B_{n}$ whose closure is isotopic to L, the element

$$
I_{L}(q, z)=\tau_{n}\left(\omega_{n}(\beta)\right) \in R
$$

depends only on the isotopy class of L. For the trivial knot O,

$$
I_{O}(q, z)=1
$$

For any Conway triple $\left(L_{+}, L_{-}, L_{0}\right)$ of oriented links in \mathbf{R}^{3},

$$
I_{L_{+}}(q, z)-q I_{L_{-}}(q, z)=z I_{L_{0}}(q, z) .
$$

Proof. The first assertion follows from the theory of Markov functions in Section 2.5.2 and Proposition 4.24. The trivial knot can be realized as the closure of the trivial braid $1 \in B_{1}=\{1\}$. Therefore,

$$
I_{O}(q, z)=\tau_{1}\left(\omega_{1}(1)\right)=\tau_{1}(1)=1
$$

Let us check that $A=I_{L_{+}}(q, z)-q I_{L_{-}}(q, z)-z I_{L_{0}}(q, z)$ is zero for any Conway triple of oriented links $\left(L_{+}, L_{-}, L_{0}\right)$. As observed in Section 3.4.2, such a triple can be isotopped to a Conway triple $\left(L_{+}^{\prime}, L_{-}^{\prime}, L_{0}^{\prime}\right)$, where

$$
L_{+}^{\prime}=\widehat{\alpha \sigma_{i} \beta}, \quad L_{-}^{\prime}=\widehat{\alpha \sigma_{i}^{-1} \beta}, \quad L_{0}^{\prime}=\widehat{\alpha \beta}
$$

for some $\alpha, \beta \in B_{n}$ and $1 \leq i \leq n-1$. Using (4.18), we obtain

$$
\begin{aligned}
A & =\tau_{n}\left(\omega_{n}\left(\alpha \sigma_{i} \beta\right)\right)-q \tau_{n}\left(\omega_{n}\left(\alpha \sigma_{i}^{-1} \beta\right)\right)-z \tau_{n}\left(\omega_{n}(\alpha \beta)\right) \\
& =\tau_{n}\left(\omega_{n}(\alpha) T_{i} \omega_{n}(\beta)\right)-q \tau_{n}\left(\omega_{n}(\alpha) T_{i}^{-1} \omega_{n}(\beta)\right)-z \tau_{n}\left(\omega_{n}(\alpha) \omega_{n}(\beta)\right) \\
& =\tau_{n}\left(\omega_{n}(\alpha)\left(T_{i}-q T_{i}^{-1}-z 1\right) \omega_{n}(\beta)\right)=0
\end{aligned}
$$

Corollary 4.26. There is an isotopy invariant $L \mapsto P_{L}(x, y)$ of oriented links in \mathbf{R}^{3} with values in $\mathbf{Z}\left[x, x^{-1}, y, y^{-1}\right]$ such that its value on the trivial knot O is 1 and for any Conway triple of oriented links $\left(L_{+}, L_{-}, L_{0}\right)$,

$$
x P_{L_{+}}(x, y)-x^{-1} P_{L_{-}}(x, y)=y P_{L_{0}}(x, y)
$$

(the skein relation). Such a link invariant $L \mapsto P_{L}(x, y)$ is unique.
Proof. Let $R=\mathbf{Z}\left[x, x^{-1}, y, y^{-1}\right]$ be the ring of Laurent polynomials in two variables x, y with integer coefficients. Set $P_{L}(x, y)=I_{L}(q, z) \in R$, where $I_{L}(q, z)$ is the link invariant provided by Theorem 4.25 for $q=x^{-2}$ and $z=x^{-1} y$. Clearly, $P_{O}(x, y)=I_{O}(q, z)=1$. If $\left(L_{+}, L_{-}, L_{0}\right)$ is a Conway triple, then by Theorem 4.25,

$$
\begin{aligned}
x P_{L_{+}}(x, y)-x^{-1} P_{L_{-}} & (x, y)-y P_{L_{0}}(x, y) \\
& =x\left(P_{L_{+}}(x, y)-x^{-2} P_{L_{-}}(x, y)-x^{-1} y P_{L_{0}}(x, y)\right) \\
& =x\left(I_{L_{+}}(q, z)-q I_{L_{-}}(q, z)-z I_{L_{0}}(q, z)\right)=0 .
\end{aligned}
$$

The uniqueness of $P_{L}(x, y)$ is proved in the same way as the uniqueness of the Alexander-Conway polynomial in Theorem 3.13.

We call $P_{L}(x, y)$ the Jones-Conway polynomial of L. In the literature it is also called the HOMFLY polynomial, the HOMFLY-PT polynomial, or the two-variable Jones polynomial.

Observe that $P_{L}(x, y)$ extends the Alexander-Conway polynomial $\nabla(L)$ introduced in Section 3.4.2. Namely, $\nabla(L)=P_{L}\left(1, s^{-1}-s\right)$. This follows directly from the uniqueness in Theorem 3.13.

Setting $x=t^{-1}$ and $y=t^{1 / 2}-t^{-1 / 2}$ in $P_{L}(x, y)$, one obtains the onevariable Jones polynomial

$$
V_{L}(t)=P_{L}\left(t^{-1}, t^{1 / 2}-t^{-1 / 2}\right) \in \mathbf{Z}\left[t^{1 / 2}, t^{-1 / 2}\right]
$$

satisfying the skein relation

$$
t^{-1} V_{L_{+}}(t)-t V_{L_{-}}(t)=\left(t^{1 / 2}-t^{-1 / 2}\right) V_{L_{0}}(t)
$$

Exercise 4.4.1. Define the mirror image \widetilde{L} of an oriented link L in \mathbf{R}^{3} as the image of L under the reflection in a plane in \mathbf{R}^{3}. Prove that

$$
P_{\widetilde{L}}(x, y)=P_{L}\left(x^{-1},-y\right) .
$$

Exercise 4.4.2. Compute the polynomial P_{L} for the knots and links shown in Figure 2.1 and endowed with all possible orientations.

4.5 Semisimple algebras and modules

This section is a brief exposition of the theory of finite-dimensional semisimple algebras over a field. Fix a field K. By an algebra we mean an associative K-algebra with unit $1 \neq 0$. An algebra is finite-dimensional if it is finitedimensional as a vector space over K.

4.5.1 Semisimple modules

Let A be an algebra. By an A-module, we mean a left A-module, that is, a K-vector space M together with a K-bilinear map $A \times M \rightarrow M,(a, m) \mapsto a m$ such that $a(b m)=(a b) m$ and $1 m=m$ for all $a, b \in A$, and $m \in M$. The map $a \mapsto(m \mapsto a m)(a \in A, m \in M)$ defines an algebra homomorphism $A \rightarrow \operatorname{End}_{K}(M)$ with values in the algebra of K-linear endomorphisms of M. Conversely, any algebra homomorphism $\chi: A \rightarrow \operatorname{End}_{K}(M)$ gives rise to an A-module structure on M by $a m=\chi(a)(m)$ for $a \in A$ and $m \in M$.

By a finite-dimensional A-module we mean an A-module that is finitedimensional as a vector space over K.

A homomorphism of A-modules $f: M \rightarrow M^{\prime}$ is a K-linear map such that $f(a m)=a f(m)$ for all $a \in A$ and $m \in M$. We write $\operatorname{Hom}_{A}\left(M, M^{\prime}\right)$ for the vector space of all homomorphisms of A-modules $M \rightarrow M^{\prime}$. We also set $\operatorname{End}_{A}(M)=\operatorname{Hom}_{A}(M, M)$.

If M^{\prime} is a linear subspace of an A-module M such that $a m^{\prime} \in M^{\prime}$ for all $a \in A$ and $m^{\prime} \in M^{\prime}$, then we say that M^{\prime} is a A-submodule or, for short, a submodule of M. In this case, the embedding $M^{\prime} \hookrightarrow M$ is a homomorphism of A-modules.

Definition 4.27. (a) An A-module M is simple if M has no A-submodules except 0 and M.
(b) An A-module is semisimple if it is isomorphic to a direct sum of a finite number of simple A-modules.
(c) An A-module M is completely reducible if for any A-submodule M^{\prime} of M there is an A-submodule $M^{\prime \prime}$ such that $M=M^{\prime} \oplus M^{\prime \prime}$.

Note that a simple A-module is semisimple, and if an A-module M is completely reducible, then any short exact sequence of A-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

splits, i.e., $M \cong M \oplus M^{\prime \prime}$.

Proposition 4.28. Let M be a finite-dimensional A-module. The following assertions are equivalent.
(i) M is semisimple.
(ii) M is completely reducible.
(iii) $M=\sum_{i \in I} M_{i}$ is a sum of simple submodules M_{i}.

Proof. We first prove the implication (ii) \Rightarrow (iii). Assume that M is nonzero and completely reducible. Since M is finite-dimensional over K, it must have nonzero submodules of minimal dimension as vector spaces over K; such submodules are necessarily simple. Consider the sum $M^{\prime} \subset M$ of all simple submodules of M. This is a nonzero submodule of M. We are done if $M^{\prime}=M$. If not, since M is completely reducible, there is a nonzero submodule $M^{\prime \prime} \subset M$ such that $M=M^{\prime} \oplus M^{\prime \prime}$. A nonzero submodule of $M^{\prime \prime}$ of minimal dimension is a simple submodule of M that is not in M^{\prime}. This contradicts the definition of M^{\prime}. Therefore, $M^{\prime}=M$.

We next prove the implication (iii) \Rightarrow (i). Suppose that $M=\sum_{i \in I} M_{i}$ is a sum of simple submodules M_{i}. Let $I^{\prime} \subset I$ be a maximal subset such that $M_{i} \neq 0$ for $i \in I^{\prime}$ and the sum $\sum_{i \in I^{\prime}} M_{i}$ is direct. Such a subset I^{\prime} exists and is finite because M is finite-dimensional. Let $M^{\prime}=\sum_{i \in I^{\prime}} M_{i}$. We claim that $M^{\prime}=M$, which implies that M is a direct sum of a finite number of simple submodules. To prove the claim, it suffices to check that $M_{k} \subset M^{\prime}$ for any $k \in I-I^{\prime}$. Clearly, $M_{k} \cap M^{\prime}$ is a submodule of M_{k}. Since M_{k} is simple, either $M_{k} \cap M^{\prime}=0$ or $M_{k} \cap M^{\prime}=M_{k}$. If $M_{k} \cap M^{\prime}=0$, then the sum $\sum_{i \in I^{\prime} \cup\{k\}} M_{i}$ is direct. This contradicts the maximality of I^{\prime}. Therefore, $M_{k} \cap M^{\prime}=M_{k}$, which implies that $M_{k} \subset M^{\prime}$.

We finally prove the implication (i) \Rightarrow (ii). Suppose that $M=\bigoplus_{i \in I} M_{i}$ is a direct sum of simple submodules, where I is a finite indexing set. Let M^{\prime} be a submodule of M. Consider a maximal subset $I^{\prime} \subset I$ such that the sum $M^{\prime}+\sum_{i \in I^{\prime}} M_{i}$ is direct. Reasoning analogous to that in the previous paragraph shows that $M^{\prime}+\sum_{i \in I^{\prime}} M_{i}=M$. Set $M^{\prime \prime}=\sum_{i \in I^{\prime}} M_{i}$. Then $M^{\prime} \oplus M^{\prime \prime}=M$, which proves that M is completely reducible.

Proposition 4.29. Let M be a finite-dimensional semisimple A-module. Any A-submodule and any quotient A-module of M is semisimple.

Proof. Let M_{0} be a submodule of M. Let M_{0}^{\prime} be the sum of all simple submodules of M_{0}. Since by Proposition 4.28, M is completely reducible, $M=M_{0}^{\prime} \oplus M^{\prime \prime}$ for some submodule $M^{\prime \prime}$ of M. Together with $M_{0}^{\prime} \subset M_{0}$, this implies that $M_{0}=M_{0}^{\prime} \oplus\left(M_{0} \cap M^{\prime \prime}\right)$. If $M_{0} \cap M^{\prime \prime} \neq 0$, then this module contains a nonzero simple submodule, which is then contained in M_{0}^{\prime}. This is impossible. Therefore, $M_{0} \cap M^{\prime \prime}=0$ and $M_{0}=M_{0}^{\prime}$ is a sum of simple submodules. Using Proposition 4.28, we conclude that M_{0} is semisimple.

Consider the quotient of M by a submodule M^{\prime}. By Proposition 4.29, there is a submodule $M^{\prime \prime} \subset M$ such that $M=M^{\prime} \oplus M^{\prime \prime}$. By the previous paragraph, $M^{\prime \prime}$ is semisimple; hence so is $M / M^{\prime} \cong M^{\prime \prime}$.

Recall that a division ring is a ring in which each nonzero element is invertible. A left module over a division ring D is called a left D-vector space. Any left D-vector space V has a basis, and two bases of V have the same cardinality, so that the concept of the dimension $\operatorname{dim}_{D} V$ of V makes sense (these results can be proved in the same way as the corresponding ones for vector spaces over a field).

The following proposition is called Schur's lemma.
Proposition 4.30. (a) Let M and M^{\prime} be simple A-modules. If M and M^{\prime} are not isomorphic as A-modules, then $\operatorname{Hom}_{A}\left(M, M^{\prime}\right)=0$.
(b) The ring $\operatorname{End}_{A}(M)$ of A-module endomorphisms of a nonzero simple A-module M is a division ring.
(c) If the ground field K is algebraically closed and M is a nonzero finitedimensional simple A-module, then $\operatorname{dim}_{K} \operatorname{End}_{A}(M)=1$.

Proof. (a) Let $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$. The kernel $\operatorname{Ker}(f)$ of f is a submodule of M. Since M is simple, $\operatorname{Ker}(f)=M$ or $\operatorname{Ker}(f)=0$. In the first case, $f=0$. In the second case, f is injective. Its image $f(M)$ is a submodule of M^{\prime}. By the simplicity of the latter, $f(M)=M^{\prime}$ or $f(M)=0$. If $f(M)=M^{\prime}$, then f is an isomorphism $M \rightarrow M^{\prime}$. Thus, $f=0$ or f is an isomorphism. The latter contradicts the assumptions. Hence, $f=0$.
(b) By the proof of (a), any nonzero $f \in \operatorname{End}_{A}(M)$ is bijective. It is easy to check that the inverse f^{-1} of f is a homomorphism of A-modules. Hence, f is invertible in $\operatorname{End}_{A}(M)$.
(c) For any scalar $\lambda \in K$, the endomorphism $m \mapsto \lambda m$ lies in $\operatorname{End}_{A}(M)$. Conversely, let $f \in \operatorname{End}_{A}(M)$. Since K is algebraically closed and M is a finite-dimensional K-vector space, f has a nonzero eigenspace for some eigenvalue $\lambda \in K$. The eigenspace $\operatorname{Ker}\left(f-\lambda \operatorname{id}_{M}\right)$, being a nonzero submodule of the simple module M, must be equal to M. Hence, $f=\lambda \mathrm{id}_{M}$. In conclusion, $\operatorname{End}_{A}(M) \cong K$.

Corollary 4.31. If K is algebraically closed and M, M^{\prime} are isomorphic nonzero finite-dimensional simple A-modules, then $\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(M, M^{\prime}\right)=1$.

Let Λ be the set of isomorphism classes of nonzero finite-dimensional simple A-modules. For each $\lambda \in \Lambda$, fix a simple A-module V_{λ} in the isomorphism class λ. For any integer $d \geq 1$, we denote by V_{λ}^{d} the direct sum of d copies of V_{λ}. We agree that $V_{\lambda}^{d}=0$ if $d=0$. The following proposition, known as the Krull-Schmidt theorem, asserts that the decomposition of a semisimple module into a direct sum of simple modules is unique.

Proposition 4.32. If for some families $\{d(\lambda)\}_{\lambda \in \Lambda},\{e(\lambda)\}_{\lambda \in \Lambda}$ of nonnegative integers, there is an A-module isomorphism

$$
\bigoplus_{\lambda \in \Lambda} V_{\lambda}^{d(\lambda)} \cong \bigoplus_{\lambda \in \Lambda} V_{\lambda}^{e(\lambda)}
$$

then $d(\lambda)=e(\lambda)$ for all $\lambda \in \Lambda$.

Proof. Pick $\lambda_{0} \in \Lambda$ and set $D=\operatorname{End}_{A}\left(V_{\lambda_{0}}\right)$. By Proposition 4.30 (a),

$$
\begin{aligned}
\operatorname{Hom}\left(\bigoplus_{\lambda \in \Lambda} V_{\lambda}^{d(\lambda)}, V_{\lambda_{0}}\right) & \cong \prod_{\lambda \in \Lambda} \operatorname{Hom}_{A}\left(V_{\lambda}^{d(\lambda)}, V_{\lambda_{0}}\right) \\
& \cong \prod_{\lambda \in \Lambda} \operatorname{Hom}_{A}\left(V_{\lambda}, V_{\lambda_{0}}\right)^{d(\lambda)} \\
& \cong \operatorname{Hom}_{A}\left(V_{\lambda_{0}}, V_{\lambda_{0}}\right)^{d\left(\lambda_{0}\right)} \\
& \cong D^{d\left(\lambda_{0}\right)}
\end{aligned}
$$

Similarly,

$$
\operatorname{Hom}\left(\bigoplus_{\lambda \in \Lambda} V_{\lambda}^{e(\lambda)}, V_{\lambda_{0}}\right) \cong D^{e\left(\lambda_{0}\right)}
$$

The assumptions imply that $D^{d\left(\lambda_{0}\right)} \cong D^{e\left(\lambda_{0}\right)}$. By Proposition $4.30(\mathrm{~b}), D$ is a division ring. Therefore, taking the dimensions over D, we obtain

$$
d\left(\lambda_{0}\right)=\operatorname{dim}_{D} D^{d\left(\lambda_{0}\right)}=\operatorname{dim}_{D} D^{e\left(\lambda_{0}\right)}=e\left(\lambda_{0}\right)
$$

4.5.2 Simple algebras

Definition 4.33. An algebra A is simple if A is finite-dimensional and the only two-sided ideals of A are 0 and A.

We give a typical example of a simple algebra.
Proposition 4.34. Let V be a finite-dimensional left vector space over a division ring D. Then the algebra $\operatorname{End}_{D}(V)$ is simple.

Proof. Pick a basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of V. We have $V=D v_{1} \oplus \cdots \oplus D v_{d}$. For $i, j \in\{1, \ldots, d\}$, define $f_{i, j} \in A=\operatorname{End}_{D}(V)$ by $f_{i, j}\left(v_{k}\right)=\delta_{j, k} v_{i}$ for all $k=1, \ldots, d$ (here $\delta_{j, k}$ is the Kronecker symbol whose value is 1 if $j=k$, and 0 otherwise). One checks easily that $\left\{f_{i, j}\right\}_{i, j \in\{1, \ldots, d\}}$ is a basis of A considered as a vector space over D, and that $f_{i, j} \circ f_{k, \ell}=\delta_{j, k} f_{i, \ell}$ for all i, j, k, ℓ.

Let I be a nonzero two-sided ideal of A and let $f \in I$ be a nonzero element. Write $f=\sum_{i, j} a_{i, j} f_{i, j}$, where $a_{i, j} \in D$ for all $i, j \in\{1, \ldots, d\}$. Suppose that $a_{k, \ell} \neq 0$ for some $k, \ell \in\{1, \ldots, d\}$. Then

$$
f_{k, k} \circ f \circ f_{\ell, \ell}=\sum_{i, j=1}^{d} a_{i, j} f_{k, k} \circ f_{i, j} \circ f_{\ell, \ell}=a_{k, \ell} f_{k, \ell}
$$

belongs to I. It follows that $f_{k, \ell} \in I$. The relation $f_{i, j}=f_{i, k} \circ f_{k, \ell} \circ f_{\ell, j}$ implies that $f_{i, j} \in I$ for all $i, j=1, \ldots, d$. Consequently, $I=A$.

The following is a converse to the previous proposition. It is a version of Wedderburn's theorem.

Proposition 4.35. For any simple algebra A, there is a division ring D and a finite-dimensional D-vector space V such that $A \cong \operatorname{End}_{D}(V)$.

Proof. Pick a left ideal $V \subset A$ of A of minimal positive dimension over K (possibly, $V=A$). The ideal V is an A-module, and by the minimality condition, it is a simple module. By Proposition $4.30(\mathrm{~b}), D=\operatorname{End}_{A}(V)$ is a division ring. We conclude using the next lemma with $I=V$.

Lemma 4.36. Let A be an algebra having no two-sided ideals besides 0 and A. For any nonzero left ideal $I \subset A$, there is an algebra isomorphism $A \cong \operatorname{End}_{D}(I)$, where $D=\operatorname{End}_{A}(I)$ and I is viewed as a (left) D-module via the action of D on I defined by $(f, x) \mapsto f(x)$ for all $f \in D$ and $x \in I$.

In this lemma we impose no conditions on the dimension of A, which may be finite or infinite.

Proof. For $a \in A$, define L_{a} (resp. R_{a}) to be the left (resp. the right) multiplication by a in A. By definition,

$$
\begin{equation*}
\mathrm{L}_{a}(b)=a b \quad \text { and } \quad \mathrm{R}_{a}(b)=b a \tag{4.25}
\end{equation*}
$$

for all $b \in A$. We have

$$
\begin{equation*}
\mathrm{L}_{a} \circ \mathrm{~L}_{b}=\mathrm{L}_{a b} \quad \text { and } \quad \mathrm{R}_{a} \circ \mathrm{R}_{b}=\mathrm{R}_{b a} \tag{4.26}
\end{equation*}
$$

for all $a, b \in A$. Since I is a left ideal of A, we have $\mathrm{L}_{a}(I) \subset I$ for all $a \in A$, which implies that $\mathrm{L}_{a} \in \operatorname{End}_{K}(I)$. Since

$$
\mathrm{L}_{a}(f(x))=a f(x)=f(a x)=f\left(\mathrm{~L}_{a}(x)\right)
$$

for all $f \in D$ and $x \in I$, the endomorphism L_{a} belongs to $\operatorname{End}_{D}(I)$.
Let $\mathrm{L}: A \rightarrow \operatorname{End}_{D}(I)$ be the map sending $a \in A$ to $\mathrm{L}_{a} \in \operatorname{End}_{D}(I)$. Since $\mathrm{L}_{a} \circ \mathrm{~L}_{b}=\mathrm{L}_{a b}$ for all $a, b \in A$ and $\mathrm{L}_{1}=\mathrm{id}_{I}$, the map L is an algebra homomorphism. Let us show that L is an isomorphism. The kernel of L is a two-sided ideal of A. Since $\mathrm{L} \neq 0$, the assumptions of the lemma imply that the kernel of L must be zero. This proves the injectivity of L.

The proof of the surjectivity of L is a little bit more complicated; it goes as follows. If $x \in I$, then $\mathrm{R}_{x}(I) \subset I$. We claim that $\mathrm{R}_{x} \in D=\operatorname{End}_{A}(I)$. Indeed, for all $a \in A, x, y \in I$,

$$
a \mathrm{R}_{x}(y)=a(y x)=(a y) x=\mathrm{R}_{x}(a y)
$$

If $u \in \operatorname{End}_{D}(I)$, then for all $x, y \in I$,

$$
u(y x)=u\left(\mathrm{R}_{x}(y)\right)=\mathrm{R}_{x} u(y)=u(y) x
$$

In particular, for any $a \in A, x, y \in I$,

$$
u(y a x)=u(y(a x))=u(y) a x
$$

In other words, for all $a \in A$ and $y \in I$,

$$
\begin{equation*}
u \circ \mathrm{~L}_{y a}=\mathrm{L}_{u(y) a} . \tag{4.27}
\end{equation*}
$$

Now, $I A$ is a nonzero two-sided ideal of A. By the assumptions of the lemma, $I A=A$. Equation (4.27) then implies that $u \circ \mathrm{~L}_{b} \in \mathrm{~L}(A) \subset \operatorname{End}_{D}(I)$ for all $u \in \operatorname{End}_{D}(I)$ and $b \in A$. This shows that the image of L is a left ideal of $\operatorname{End}_{D}(I)$. Since $\operatorname{id}_{I}=\mathrm{L}_{1}$ is in the image, the latter is equal to the whole algebra $\operatorname{End}_{D}(I)$, and the map L is surjective.

4.5.3 Modules over a simple algebra

We now prove that any simple algebra has a unique (up to isomorphism) nonzero simple module.

Proposition 4.37. Let A be a simple algebra. Any nonzero left ideal I of A of minimal dimension is a simple A-module, and any nonzero simple A-module is isomorphic to I.

Proof. Let I be a nonzero left ideal of A of minimal dimension. Any A-submodule I^{\prime} of I is a left ideal of A. By the minimality hypothesis on I, we must have $I^{\prime}=0$ or $I^{\prime}=I$. Therefore, I is a simple A-module; it is finitedimensional, since A is finite-dimensional.

Let M be a nonzero simple A-module. Set

$$
I_{0}=\{a \in A \mid a m=0 \text { for all } m \in M\} .
$$

It is easy to check that I_{0} is a two-sided ideal of A and $I_{0} \neq A$, since $1 \in A$ does not annihilate M. Since A is simple, $I_{0}=0$. We have $I M \neq 0$; otherwise, we would have $I \subset I_{0}=0$. Therefore, there is $m \in M$ such that $I m \neq 0$. Consider the homomorphism of A-modules $I \rightarrow M, x \mapsto x m$. This homomorphism is nonzero and connects two simple A-modules. By Proposition 4.30 (a), the homomorphism $I \rightarrow M$ is an isomorphism.

Corollary 4.38. Every simple algebra has a nonzero simple module. It is finite-dimensional and unique up to isomorphism.

Proof. Every finite-dimensional algebra has a nonzero left ideal of minimal dimension. Therefore both claims follow directly from Proposition 4.37.

Proposition 4.39. Any finite-dimensional module over a simple algebra is semisimple.

Proof. Let A be a simple algebra. Consider A as a (left) module over itself. Let us first prove that this A-module is semisimple.

By Proposition 4.35, we may assume that $A=\operatorname{End}_{D}(V)$ for some division ring D and some finite-dimensional D-vector space V. Pick a basis $\left\{v_{1}, \ldots, v_{d}\right\}$ of V over D. The map $A=\operatorname{End}_{D}(V) \rightarrow V^{d}$ defined by

$$
f \in A \mapsto\left(f\left(v_{1}\right), \ldots, f\left(v_{d}\right)\right) \in V^{d}
$$

is a homomorphism of A-modules. This homomorphism is clearly injective. Since $\operatorname{dim}_{D} A=d^{2}=\operatorname{dim}_{D} V^{d}$, it is an isomorphism. To establish that the A-module $A \cong V^{d}$ is a finite direct sum of simple A-modules, it suffices to check that V is a simple A-module. Let $V^{\prime} \subset V$ be a nonzero A-submodule. Take a nonzero vector $v^{\prime} \in V^{\prime}$. For each $i=1, \ldots, d$, we can construct $f_{i} \in A$ such that $f_{i}\left(v^{\prime}\right)=v_{i}$. It follows that $A v^{\prime}=V$, hence $V^{\prime}=V$.

If M is an arbitrary finite-dimensional A-module, then M necessarily has a finite number of generators over A; therefore, M is a quotient of the free A-module A^{r} of finite rank r (this is the direct sum of r copies of A). We have proved above that the A-module A is semisimple. Therefore, so is A^{r}. The semisimplicity of M follows from Proposition 4.29.

We now state an important consequence of these propositions. Let M be a simple module over a simple algebra A. By Corollary $4.38, M$ is finitedimensional. We know from Proposition $4.30(\mathrm{~b})$ that $D=\operatorname{End}_{A}(M)$ is a division ring. Since M is finite-dimensional, so is D. The dimensions of A, M, and D over the ground field K are related as follows.

Corollary 4.40. With the notation above, $A \cong \operatorname{End}_{D}(M)$ and

$$
\operatorname{dim}_{K} A=\frac{\left(\operatorname{dim}_{K} M\right)^{2}}{\operatorname{dim}_{K} D}
$$

Proof. The division ring $D=\operatorname{End}_{A}(M)$ acts on M, turning M into a left D-vector space of finite dimension over $K \subset D$. Such a vector space has a finite basis over D of cardinality, say d. Lemma 4.36 and Proposition 4.37 imply that $A \cong \operatorname{End}_{D}(M)$ is isomorphic to the matrix algebra $M_{d}(D)$. Hence,

$$
\operatorname{dim}_{K} A=\operatorname{dim}_{K} M_{d}(D)=\operatorname{dim}_{D} M_{d}(D) \operatorname{dim}_{K} D=d^{2} \operatorname{dim}_{K} D .
$$

We conclude by observing that $\operatorname{dim}_{K} M=\operatorname{dim}_{D} M \operatorname{dim}_{K} D=d \operatorname{dim}_{K} D$.

4.5.4 The radical of a finite-dimensional algebra

Let A be a finite-dimensional algebra over K. Choosing a basis of A, we can identify $\operatorname{End}_{K}(A)$ with the matrix algebra $M_{n}(K)$, where $n=\operatorname{dim}_{K} A$. The trace of matrices induces a linear form $\operatorname{Tr}: \operatorname{End}_{K}(A) \rightarrow K$. It is easy to check that Tr is independent of the chosen basis.

Using the endomorphisms $\mathrm{R}_{a} \in \operatorname{End}_{K}(A)(a \in A)$ of (4.25), we define a bilinear form $\langle\rangle:, A \times A \rightarrow K$ by

$$
\begin{equation*}
\langle a, b\rangle=\operatorname{Tr}\left(\mathrm{R}_{b} \circ \mathrm{R}_{a}\right)=\operatorname{Tr}\left(\mathrm{R}_{a b}\right) \tag{4.28}
\end{equation*}
$$

for all $a, b \in A$. The bilinear form \langle,$\rangle is called the trace form of A$.

Lemma 4.41. For all $a, b, c \in A$,

$$
\langle a, b\rangle=\langle b, a\rangle \quad \text { and } \quad\langle a b, c\rangle=\langle a b, c\rangle=\langle b, c a\rangle .
$$

Proof. The equality $\langle a b, c\rangle=\langle a, b c\rangle$ follows from the formula $\mathrm{R}_{(a b) c}=\mathrm{R}_{a(b c)}$. The proof of the equality $\langle a, b\rangle=\langle b, a\rangle$ relies on a well-known property of the trace, namely $\operatorname{Tr}(f \circ g)=\operatorname{Tr}(g \circ f)$ for all $f, g \in \operatorname{End}_{K}(A)$. We have

$$
\langle a, b\rangle=\operatorname{Tr}\left(\mathrm{R}_{b} \circ \mathrm{R}_{a}\right)=\operatorname{Tr}\left(\mathrm{R}_{a} \circ \mathrm{R}_{b}\right)=\langle b, a\rangle
$$

Finally, using the previous equalities,

$$
\langle a, b c\rangle=\langle b c, a\rangle=\langle b, c a\rangle .
$$

The kernel $J(A)$ of the trace form, i.e., the vector space

$$
J(A)=\{a \in A \mid\langle a, b\rangle=0 \text { for all } b \in A\},
$$

is called the radical of A.
Lemma 4.42. The radical $J(A)$ is a two-sided ideal of A.
Proof. Let $a \in A$ and $b \in J(A)$. We have to check that $a b, b a \in J(A)$. Using Lemma 4.41, for all $c \in A$,

$$
\langle a b, c\rangle=\langle b, c a\rangle=0 \quad \text { and } \quad\langle b a, c\rangle=\langle b, a c\rangle=0 .
$$

Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of algebras over K with units $1_{\lambda} \in A_{\lambda}$. The product algebra $A=\prod_{\lambda \in \Lambda} A_{\lambda}$ is the vector space $\prod_{\lambda \in \Lambda} A_{\lambda}$ with coordinatewise addition and multiplication

$$
\left(a_{\lambda}\right)_{\lambda}+\left(b_{\lambda}\right)_{\lambda}=\left(a_{\lambda}+b_{\lambda}\right)_{\lambda} \quad \text { and } \quad\left(a_{\lambda}\right)_{\lambda} \cdot\left(b_{\lambda}\right)_{\lambda}=\left(a_{\lambda} b_{\lambda}\right)_{\lambda}
$$

for all $a_{\lambda}, b_{\lambda} \in A_{\lambda}$ with $\lambda \in \Lambda$. The vector $\left(1_{\lambda}\right)_{\lambda}$ is the unit of A. For each $\lambda \in \Lambda$, there is a natural inclusion $A_{\lambda} \hookrightarrow A$ sending $a \in A_{\lambda}$ to the family $\left(a_{\mu}\right)_{\mu \in \Lambda} \in A$, where $a_{\mu}=a$ for $\mu=\lambda$ and $a_{\mu}=0$ for $\mu \neq \lambda$. We shall identify A_{λ} with its image in A. Under this identification, A_{λ} is a two-sided ideal of A and $A_{\lambda} A_{\mu}=0$ for $\lambda \neq \mu$.

If the algebras $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ are finite-dimensional and the indexing set Λ is finite, then the algebra $\prod_{\lambda \in \Lambda} A_{\lambda}$ is finite-dimensional and we can compute its radical as follows.

Proposition 4.43. If A is the product of a finite family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ of finitedimensional algebras, then

$$
J(A)=\prod_{\lambda \in \Lambda} J\left(A_{\lambda}\right)
$$

Proof. Under the assumptions, A can be identified with the direct sum $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$. It follows from the definition of the product in A that each right multiplication $R_{a} \in \operatorname{End}_{K}(A)$, where $a=\left(a_{\lambda}\right)_{\lambda} \in A$, is the direct sum over $\lambda \in \Lambda$ of the right multiplications $R_{a_{\lambda}}$. Therefore, the trace form \langle,$\rangle of A$ is the sum of the trace forms $\langle,\rangle_{\lambda}$ of the algebras $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$, that is,

$$
\left\langle\left(a_{\lambda}\right)_{\lambda},\left(b_{\lambda}\right)_{\lambda}\right\rangle=\sum_{\lambda \in \Lambda}\left\langle a_{\lambda}, b_{\lambda}\right\rangle_{\lambda}
$$

for all $\left(a_{\lambda}\right)_{\lambda},\left(b_{\lambda}\right)_{\lambda} \in A$. It follows that $\prod_{\lambda \in \Lambda} J\left(A_{\lambda}\right) \subset J(A)$. We now prove the converse inclusion. Let $\left(a_{\lambda}\right)_{\lambda} \in J(A)$ and $b_{\mu} \in A_{\mu}$ for some $\mu \in \Lambda$. Considering b_{μ} as an element of A via the natural inclusion $A_{\mu} \hookrightarrow A$, we obtain

$$
\left\langle a_{\mu}, b_{\mu}\right\rangle_{\mu}=\left\langle\left(a_{\lambda}\right)_{\lambda}, b_{\mu}\right\rangle=0 .
$$

Since this holds for all $b_{\mu} \in A_{\mu}$, we have $a_{\mu} \in J\left(A_{\mu}\right)$. Therefore, $\left(a_{\lambda}\right)_{\lambda}$ belongs to $\prod_{\lambda \in \Lambda} J\left(A_{\lambda}\right)$.

Recall that an ideal I of A is nilpotent if there is $N \geq 1$ such that $I^{N}=0$, i.e., if $a_{1} \cdots a_{N}=0$ for all $a_{1}, \ldots, a_{N} \in I$.

Proposition 4.44. Any nilpotent left ideal of a finite-dimensional algebra A is contained in $J(A)$.

Proof. Let I be a nilpotent left ideal of A. To prove that $I \subset J(A)$, we have to check that $\langle a, b\rangle=0$ for all $a \in I$ and $b \in A$. Set $c=b a \in I$. The ideal I being nilpotent, $c^{N}=0$ for some $N \geq 1$. Hence, $\left(\mathrm{R}_{c}\right)^{N}=\mathrm{R}_{c^{N}}=0$. In other words, R_{c} is a nilpotent endomorphism of A. Consequently, its trace vanishes. Therefore, by Lemma 4.41 and formula (4.28),

$$
\langle a, b\rangle=\langle b, a\rangle=\operatorname{Tr}\left(\mathrm{R}_{c}\right)=0
$$

4.5.5 Semisimple algebras

Definition 4.45. An algebra A is semisimple if it is finite-dimensional and $J(A)=0$.

Equivalently, an algebra is semisimple if it is finite-dimensional and its trace form is nondegenerate.

Proposition 4.46. A finite-dimensional algebra A is semisimple if and only if for some basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of A,

$$
\operatorname{det}\left(\left\langle a_{i}, a_{j}\right\rangle_{i, j=1, \ldots, n}\right) \neq 0
$$

Proof. The nondegeneracy of a symmetric bilinear form \langle,$\rangle on a finite-$ dimensional vector space with basis $\left\{a_{1}, \ldots, a_{n}\right\}$ is equivalent to the nonvanishing of the determinant $\operatorname{det}\left(\left\langle a_{i}, a_{j}\right\rangle_{i, j=1, \ldots, n}\right)$.

Examples 4.47. (i) If G is a finite group and if the characteristic of K does not divide card G, then the group algebra $K[G]$ is semisimple (this assertion is known as Maschke's theorem). Indeed, the set G is a basis of $K[G]$, and one checks easily that for all $g, h \in G$,

$$
\langle g, h\rangle= \begin{cases}\operatorname{card} G & \text { if } g h=1 \\ 0 & \text { if } g h \neq 1\end{cases}
$$

From this one deduces that the trace form of $K[G]$ is nondegenerate.
(ii) Let $A=\prod_{\lambda \in \Lambda} A_{\lambda}$ be the product of a finite family of algebras. It is clear that A is finite-dimensional if and only if all A_{λ} are finite-dimensional. It follows from this fact and Proposition 4.43 that A is semisimple if and only if all A_{λ} are semisimple.
(iii) All simple algebras over a field of characteristic zero are semisimple. This follows from Proposition 4.35 and Exercise 4.5 .5 below.

Warning. A simple algebra over a field K of characteristic $p>0$ is not necessarily semisimple. For instance, the algebra $M_{p}(K)$ of $p \times p$ matrices over K is simple by Proposition 4.34, but its trace form is zero; hence $J\left(M_{p}(K)\right)=M_{p}(K)($ see Exercise 4.5.5).

4.5.6 A structure theorem for semisimple algebras

By a subalgebra of an algebra A over K, we mean a nonzero K-vector space $A^{\prime} \subset A$ such that $a b \in A^{\prime}$ for all $a, b \in A^{\prime}$ and there is an element $1^{\prime} \in A^{\prime}$ such that $1^{\prime} a=a 1^{\prime}=a$ for all $a \in A^{\prime}$. Then $1^{\prime} \neq 0$ and the multiplication in A restricted to A^{\prime} turns the latter into an algebra with unit 1^{\prime}. Clearly, 1^{\prime} coincides with the unit 1 of A if and only if $1 \in A^{\prime}$.

Lemma 4.48. Let A be an algebra and $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ a finite family of subalgebras of A such that $A=\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ and $A_{\lambda} A_{\mu}=0$ for any distinct $\lambda, \mu \in \Lambda$. Then the following hold:
(a) A_{λ} is a two-sided ideal of A for any $\lambda \in \Lambda$.
(b) For each $\lambda \in \Lambda$, let $1_{\lambda} \in A_{\lambda}$ be defined from the expansion

$$
1=\sum_{\lambda \in \Lambda} 1_{\lambda}
$$

Then 1_{λ} belongs to the center of A and is the unit of A_{λ}.
(c) The map $f: \prod_{\lambda \in \Lambda} A_{\lambda} \rightarrow A$ defined by

$$
f\left(\left(a_{\lambda}\right)_{\lambda}\right)=\sum_{\lambda \in \Lambda} a_{\lambda} \in A
$$

is an algebra isomorphism.

Proof. (a) We have

$$
A A_{\mu}=\bigoplus_{\lambda \in \Lambda} A_{\lambda} A_{\mu}=A_{\mu} A_{\mu} \subset A_{\mu}
$$

The inclusion $A_{\mu} A \subset A_{\mu}$ is proved in a similar way.
(b) If $a \in A$, then

$$
\sum_{\lambda \in \Lambda} a 1_{\lambda}=a 1=a=1 a=\sum_{\lambda \in \Lambda} 1_{\lambda} a .
$$

Since A_{λ} is a two-sided ideal of A, we have $a 1_{\lambda}, 1_{\lambda} a \in A_{\lambda}$. By the uniqueness of expansions in a direct sum, $a 1_{\lambda}=1_{\lambda} a$. Thus, 1_{λ} is a central element of A.

Since $A_{\lambda} A_{\mu}=0$ for $\lambda \neq \mu$, for each $a_{\mu} \in A_{\mu}$,

$$
a_{\mu}=1 a_{\mu}=\sum_{\lambda \in \Lambda} 1_{\lambda} a_{\mu}=1_{\mu} a_{\mu}
$$

Similarly, $a_{\mu}=a_{\mu} 1_{\mu}$. Thus, 1_{μ} is the unit of A_{μ}.
(c) It is clear that f is bijective. If $a=\left(a_{\lambda}\right)_{\lambda}, b=\left(b_{\lambda}\right)_{\lambda} \in \prod_{\lambda \in \Lambda} A_{\lambda}$, then

$$
f(a) f(b)=\left(\sum_{\lambda \in \Lambda} a_{\lambda}\right)\left(\sum_{\lambda \in \Lambda} b_{\lambda}\right)=\sum_{\lambda \in \Lambda} a_{\lambda} b_{\lambda}=f(a b) .
$$

The second equality follows from the hypothesis $A_{\lambda} A_{\mu}=0$ for $\lambda \neq \mu$. This shows that f is an algebra isomorphism.

We now state the main structure theorem for semisimple algebras.
Theorem 4.49. For any semisimple algebra A, there is a finite family of simple subalgebras $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ of A such that $A=\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ and $A_{\lambda} A_{\mu}=0$ for any distinct $\lambda, \mu \in \Lambda$. Such a family of subalgebras is unique.

Proof. We proceed by induction on the dimension of A over K. If $\operatorname{dim}_{K} A=1$, then A is necessarily simple.

Assume that $\operatorname{dim}_{K} A>1$ and that the theorem holds for all semisimple algebras of dimension $<\operatorname{dim}_{K} A$. Let $I \subset A$ be an arbitrary nonzero two-sided ideal of minimal dimension. Clearly, I contains no other nonzero two-sided ideals of A. Therefore, if $I=A$, then A is simple and the theorem is proved. If $I \neq A$, then set

$$
I^{\perp}=\{a \in A \mid\langle a, b\rangle=0 \text { for all } b \in I\},
$$

where we use the trace form (4.28). It follows from Lemma 4.41 that I^{\perp} is a two-sided ideal of A. Since the trace form is nondegenerate and $0 \neq I \neq A$, we have $0 \neq I^{\perp} \neq A$ and

$$
\operatorname{dim}_{K} I+\operatorname{dim}_{K} I^{\perp}=\operatorname{dim}_{K} A
$$

The intersection $I \cap I^{\perp}$ is a two-sided ideal of A contained in I. By the minimality of I, we have either $I \cap I^{\perp}=I$ or $I \cap I^{\perp}=0$. The equality $I \cap I^{\perp}=I$ is equivalent to the inclusion $I \subset I^{\perp}$ and is equivalent to the vanishing of the trace form on I. We claim that the latter is impossible. Indeed, I being minimal, the two-sided ideal $I^{2} \subset I$ is either 0 or I. The equality $I^{2}=0$ would imply that A contains a nonzero nilpotent left ideal, which is impossible by Proposition 4.44. Therefore, $I^{2}=I$, so that any $z \in I$ expands as $z=\sum_{i} x_{i} y_{i}$, where $x_{i}, y_{i} \in I$. If the trace form vanishes on I, then

$$
\langle 1, z\rangle=\sum_{i}\left\langle 1, x_{i} y_{i}\right\rangle=\sum_{i}\left\langle x_{i}, y_{i}\right\rangle=0
$$

Therefore, $1 \in I^{\perp}$ and the two-sided ideal I^{\perp} is equal to A, a contradiction.
We have thus proved that $I \cap I^{\perp}=0$. Since $\operatorname{dim}_{K} I+\operatorname{dim}_{K} I^{\perp}=\operatorname{dim}_{K} A$, we obtain $A=I \oplus I^{\perp}$. The product ideals $I I^{\perp}$ and $I^{\perp} I$, being contained in $I \cap I^{\perp}=0$, must be equal to 0 . As in Lemma 4.48 (b), the projections of the unit of A to I and I^{\perp} are the units of I and I^{\perp}, respectively. Thus, I and I^{\perp} are subalgebras of A and $A=I \times I^{\perp}$.

Any two-sided ideal $J \subset I$ of the algebra I is automatically a two-sided ideal of A. Since I is minimal, $J=0$ or $J=I$. Hence, the algebra I is simple. The equality $A=I \times I^{\perp}$ and Proposition 4.43 imply that $J\left(I^{\perp}\right) \subset J(A)$. Since $J(A)$ vanishes, so does $J\left(I^{\perp}\right)$, which proves that the algebra I^{\perp} is semisimple.

Since $\operatorname{dim}_{K} I^{\perp}<\operatorname{dim}_{K} A$, we may apply the induction hypothesis to I^{\perp}. We obtain a finite family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda^{\prime}}$ of simple subalgebras of I^{\perp} such that

$$
I^{\perp}=\bigoplus_{\lambda \in \Lambda^{\prime}} A_{\lambda}
$$

and $A_{\lambda} A_{\mu}=0$ for any distinct $\lambda, \mu \in \Lambda^{\prime}$. We obtain the desired family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ of simple subalgebras of A by setting $\Lambda=\Lambda^{\prime} \amalg\left\{\lambda_{0}\right\}$ with $A_{\lambda_{0}}=I$.

In order to prove the uniqueness of the family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$, consider an arbitrary nonzero two-sided ideal J of A. We have

$$
J=J A=\bigoplus_{\lambda \in \Lambda} J A_{\lambda}
$$

Each product ideal $J A_{\lambda}$ is a two-sided ideal of A_{λ}. Since A_{λ} is a simple algebra, $J A_{\lambda}$ is equal to 0 or to A_{λ}. Consequently, there is a nonempty set $\Lambda_{0} \subset \Lambda$ such that $J=\bigoplus_{\lambda \in \Lambda_{0}} A_{\lambda}$. This shows that J is a subalgebra of A. Moreover, J is simple as an algebra if and only if Λ_{0} consists of a single element λ_{0}, and then $J=A_{\lambda_{0}}$. We conclude that the family $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ consists of all nonzero two-sided ideals of A that are simple as algebras. This proves the uniqueness claim of the theorem.

Lemma 4.48 and Theorem 4.49 have the following consequences.
Corollary 4.50. Any semisimple algebra is a product of simple algebras.

Corollary 4.51. Let J be a two-sided ideal of a semisimple algebra A. Then J and the quotient algebra A / J are semisimple algebras.

Proof. Consider the splitting $A=\bigoplus_{\lambda \in \Lambda} A_{\lambda}$ of A as in Theorem 4.49. By Example 4.47 (ii), each A_{λ} is semisimple. We have seen in the proof of Theorem 4.49 that there is a set $\Lambda_{0} \subset \Lambda$ such that $J=\bigoplus_{\lambda \in \Lambda_{0}} A_{\lambda}$. By Lemma 4.48,

$$
J=\prod_{\lambda \in \Lambda_{0}} A_{\lambda} \quad \text { and } \quad A / J \cong \prod_{\lambda \in \Lambda-\Lambda_{0}} A_{\lambda} .
$$

We conclude by using Example 4.47 (ii), which tells us that finite products of semisimple algebras are semisimple.

4.5.7 Modules over a semisimple algebra

Let us first determine the simple modules over a semisimple algebra.
Proposition 4.52. Let A be a semisimple algebra and $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ the family of simple subalgebras of A provided by Theorem 4.49. For any nonzero simple A-module M, there is a unique $\lambda \in \Lambda$ such that $M=A_{\lambda} M$. Moreover, M is a simple A_{λ}-module and $A_{\mu} M=0$ for all $\mu \neq \lambda$.

Proof. Let M be a nonzero simple A-module. Each $A_{\lambda} M$ is an A-submodule of M. We can write M as a sum of these submodules:

$$
\begin{equation*}
M=A M=\sum_{\lambda \in \Lambda} A_{\lambda} M \tag{4.29}
\end{equation*}
$$

Since $M \neq 0$, there is $\lambda \in \Lambda$ such that $A_{\lambda} M \neq 0$. By the simplicity of M, we have $A_{\lambda} M=M$. We claim that $A_{\mu} M=0$ for $\mu \neq \lambda$. Indeed, $m \in M$ can be expanded as $m=\sum_{i} a_{i} m_{i}$ with $a_{i} \in A_{\lambda}$ and $m_{i} \in M$. If $a \in A_{\mu}$ with $\mu \neq \lambda$, then $a m=\sum_{i} a a_{i} m_{i}=0$, since $A_{\mu} A_{\lambda}=0$. We next claim that the A_{λ}-module M is simple. Indeed, let N be a nonzero A_{λ}-submodule of M. Letting A_{μ} with $\mu \neq \lambda$ act on N as 0 , we turn N into an A-submodule of M. Since M is simple as an A-module, $N=M$.

Theorem 4.53. Any finite-dimensional module over a semisimple algebra is semisimple.

Proof. Consider a finite-dimensional module M over a semisimple algebra A. Expand A as a product of simple subalgebras $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ as in Theorem 4.49. Each vector space $A_{\lambda} M \subset M$ is a finite-dimensional module over A_{λ}. It follows from Proposition 4.39 that $A_{\lambda} M$ is a semisimple A_{λ}-module. Since a simple A_{λ}-module is simple as an A-module (where all A_{μ} with $\mu \neq \lambda$ act as 0), each $A_{\lambda} M$ is a semisimple A-module. Formula (4.29) implies that M is a sum of simple submodules. By Proposition 4.28, the A-module M is semisimple.

We now summarize the representation theory of a (finite-dimensional) semisimple algebra A. Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be the set of all nonzero two-sided ideals of A that are simple as algebras. This set is finite. For each $\lambda \in \Lambda$, there is a unique up to isomorphism simple A_{λ}-module V_{λ}. We view V_{λ} as an A-module by $A_{\mu} V_{\lambda}=0$ for $\mu \neq \lambda$. Then the A-modules $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ are simple, and every simple A-module is isomorphic to exactly one of them. Moreover, for any finite-dimensional A-module M, there are a unique function $d_{M}: \Lambda \rightarrow \mathbf{N}$ and an isomorphism of A-modules

$$
\begin{equation*}
M \cong \bigoplus_{\lambda \in \Lambda} V_{\lambda}^{d_{M}(\lambda)} . \tag{4.30}
\end{equation*}
$$

The function d_{M} is called the dimension vector of M.
Let D_{λ} be the division ring $\operatorname{End}_{A}\left(V_{\lambda}\right)$. The following theorem is a consequence of Corollary 4.40, Lemma 4.48, and Theorem 4.49.

Theorem 4.54. With the notation above,

$$
A \cong \prod_{\lambda \in \Lambda} \operatorname{End}_{D_{\lambda}}\left(V_{\lambda}\right)
$$

and

$$
\operatorname{dim}_{K} A=\sum_{\lambda \in \Lambda} \frac{\left(\operatorname{dim}_{K} V_{\lambda}\right)^{2}}{\operatorname{dim}_{K} D_{\lambda}}
$$

Corollary 4.55. If the ground field K is algebraically closed, then the algebra homomorphism

$$
A \rightarrow \prod_{\lambda \in \Lambda} \operatorname{End}_{K}\left(V_{\lambda}\right)
$$

obtained as the product over Λ of the algebra homomorphisms $A \rightarrow \operatorname{End}_{K}\left(V_{\lambda}\right)$ induced by the action of A on V_{λ} is an isomorphism. Moreover,

$$
\operatorname{dim}_{K} A=\sum_{\lambda \in \Lambda}\left(\operatorname{dim}_{K} V_{\lambda}\right)^{2} .
$$

Proof. Applying Proposition 4.30 (c) to the simple A-module V_{λ}, we obtain $\operatorname{dim}_{K} D_{\lambda}=1$. Thus, $D_{\lambda}=K$. The corollary is then a reformulation of Theorem 4.54.

Exercise 4.5.1. Let A be a finite-dimensional algebra with radical $J=J(A)$.
(a) Show that the quotient algebra A / J is semisimple.
(b) Prove that $1+x$ is invertible in A for any $x \in J$.

Exercise 4.5.2. Let V be a finite-dimensional vector space over a field K. Show that every K-linear automorphism of the algebra $A=\operatorname{End}_{K}(V)$ is the conjugation by an element of A. (Hint: An automorphism of A defines a new A-module structure on V; now use the fact that A has only one isomorphism class of simple modules.)

Exercise 4.5.3. Let A be a semisimple algebra and M a finite-dimensional A-module. Show that there is an algebra isomorphism

$$
\operatorname{End}_{A}(M) \cong \prod_{\lambda \in \Lambda(A)} M_{d_{M}(\lambda)}\left(\operatorname{End}_{A}\left(V_{\lambda}\right)\right)
$$

Exercise 4.5.4. Let K be an algebraically closed field and A a semisimple K-algebra. Prove that there is an isomorphism of A-modules

$$
A \cong \bigoplus_{\lambda \in \Lambda(A)} V_{\lambda}^{d_{\lambda}}
$$

where $d_{\lambda}=\operatorname{dim}_{K} V_{\lambda}$.
Exercise 4.5.5. Let D be a division ring. For $1 \leq i, j \leq n$, let $E_{i, j} \in M_{n}(D)$ be the matrix whose entries are all zero except the (i, j) entry, which is 1 .
(a) Verify that the trace of the right multiplication by $E_{i, j}$ in the matrix algebra $M_{n}(D)$ is n if $i=j$ and is 0 otherwise.
(b) Prove that the trace form of $M_{n}(D)$ is given for all $a, b \in M_{n}(D)$ by

$$
\langle a, b\rangle=n \operatorname{Tr}(a b) .
$$

(c) Deduce that $M_{n}(D)$ is semisimple if and only if n is invertible in D.

Exercise 4.5.6. Let K be a field of characteristic $p>0$ and G the cyclic group of order p. Show that $(g-1)^{p}=0 \in K[G]$ for all $g \in G$. Deduce that the group algebra $K[G]$ contains a nonzero nilpotent ideal and is not semisimple.

Exercise 4.5.7. Let A be a finite-dimensional algebra over a field K of characteristic zero. Prove that all elements of the radical of A are nilpotent. (An element a of A is nilpotent if $a^{N}=0$ for some integer $N \geq 1$.)

Solution. Set $d=\operatorname{dim}_{K} A$. For each $a \in J(A)$ and $n \geq 1$,

$$
\operatorname{Tr}\left(\left(\mathrm{R}_{a}\right)^{n}\right)=\operatorname{Tr}\left(\mathrm{R}_{a^{n}}\right)=\left\langle a, a^{n-1}\right\rangle=0 .
$$

If $\lambda_{1}, \ldots, \lambda_{d}$ are the eigenvalues of R_{a} in an algebraic closure of K, the previous equalities imply that

$$
\lambda_{1}^{n}+\cdots+\lambda_{d}^{n}=0
$$

for all $n \geq 1$. By Newton's formulas (which require the ground field to be of characteristic zero), all elementary symmetric polynomials in $\lambda_{1}, \ldots, \lambda_{d}$ vanish. This implies that the characteristic polynomial of R_{a} is a monomial of degree d and hence $\left(\mathrm{R}_{a}\right)^{d}=0$. Therefore, $a^{d}=\left(\mathrm{R}_{a}\right)^{d}(1)=0$.

Exercise 4.5.8. Let K be a field of characteristic zero. Prove that a finitedimensional K-algebra A that does not contain nonzero nilpotent left ideals is semisimple.

Solution. It suffices to prove that $J=J(A)=0$. Assume that $J \neq 0$ and pick a nonzero left ideal $I \subset J$ of minimal dimension over K. By assumption, the ideal I is not nilpotent, and in particular, $I^{2} \neq 0$. Hence, there is $x \in I$ such that $I x \neq 0$. By the minimality of I and the inclusion $I x \subset I$, we have $I x=I$. Hence, there is $e \in I$ such that $e x=x$. It follows that

$$
x=e x=e(e x)=e^{2} x .
$$

We thus obtain $\left(e-e^{2}\right) x=0$. The left ideal

$$
I^{\prime}=\{y \in I \mid y x=0\}
$$

is a proper subideal of I, since $I x \neq 0$. By the minimality of I, we must have $I^{\prime}=0$. Since $e-e^{2} \in I^{\prime}$, we have $e=e^{2}$. Hence,

$$
e=e^{2}=e^{3}=\cdots
$$

Now, by Exercise 4.5.7, the element $e \in I \subset J$ is nilpotent (this is where we use the characteristic-zero assumption). From these two facts we deduce that $e=0$. Hence, $x=e x=0$ and $I x=0$, which contradicts the choice of x. Therefore, $J=0$.

Exercise 4.5.9. An element e of an algebra A is an idempotent if $e=e^{2}$.
(a) Show that if $e \in A$ is an idempotent, then so is $f=1-e$.
(b) Suppose that an idempotent $e \in A$ is central, that is, e commutes with all elements of A. Set $f=1-e$. Prove that $A e$ and $A f$ are two-sided ideals of A, that viewed as algebras $A e$ and $A f$ have e and f as respective units, and that the map $A e \times A f \rightarrow A,(a, b) \mapsto a+b$ is an algebra isomorphism.
(c) Show that the unique nonzero central idempotent of a simple algebra is its unit.

Exercise 4.5.10. A nonzero central idempotent e of an algebra A is primitive if it not expressible as a sum of two nonzero central idempotents whose product is zero.
(a) Prove that if e is a primitive central idempotent of A, then there are no algebras A_{1}, A_{2} such that $A e \cong A_{1} \times A_{2}$.
(b) Let A be a product of $r<\infty$ simple algebras. Show that there is a unique set $\left\{e_{1}, \ldots, e_{r}\right\}$ of primitive central idempotents of A such that $e_{k} e_{\ell}=0$ for all distinct $k, \ell \in\{1, \ldots, r\}$ and $e_{1}+\cdots+e_{r}=1$.

Exercise 4.5.11. Let A be a finite-dimensional algebra. Prove the following:
(a) The sum of two nilpotent left ideals of A is a nilpotent left ideal.
(b) Any nonnilpotent left ideal of A contains a nonzero idempotent.
(c) The sum J of all nilpotent left ideals of A is a two-sided ideal.
(d) If the ground field has characteristic zero, then J is the radical of A.

4.6 Semisimplicity of the Iwahori-Hecke algebras

We return to the Iwahori-Hecke algebras $H_{n}^{R}(q)$ of Section 4.2.2, where n is a positive integer, R is a commutative ring, and q is an invertible element of R.

Let us first analyze the behavior of $H_{n}^{R}(q)$ under a change of scalars. Let $f: R \rightarrow S$ be a homomorphism of commutative rings. Given an integer $n \geq 1$ and an invertible element $q \in R$, we have the R-algebra $H_{n}^{R}(q)$ and the S-algebra $H_{n}^{S}(\widetilde{q})$, where $\widetilde{q}=f(q) \in S$.

By Theorem 4.17, $H_{n}^{R}(q)$ is a free R-module of rank n !. We may therefore identify $\operatorname{End}_{R}\left(H_{n}^{R}(q)\right)$ with the matrix algebra $M_{n!}(R)$. This allows us to define the R-bilinear trace form of $H_{n}^{R}(q)$,

$$
\langle,\rangle_{R}: H_{n}^{R}(q) \times H_{n}^{R}(q) \rightarrow R
$$

by formula (4.28), where $\mathrm{R}_{c} \in \operatorname{End}_{R}\left(H_{n}^{R}(q)\right)$ is the right multiplication by c for any $c \in H_{n}^{R}(q)$. Similarly, we define the S-bilinear trace form of $H_{n}^{S}(\widetilde{q})$,

$$
\langle,\rangle_{S}: H_{n}^{S}(\widetilde{q}) \times H_{n}^{S}(\widetilde{q}) \rightarrow S
$$

Proposition 4.56. There is an isomorphism of S-algebras

$$
\varphi: S \otimes_{R} H_{n}^{R}(q) \xrightarrow{\cong} H_{n}^{S}(\widetilde{q})
$$

such that

$$
\begin{equation*}
\left\langle\varphi(s \otimes x), \varphi\left(s^{\prime} \otimes x^{\prime}\right)\right\rangle_{S}=s s^{\prime} f\left(\left\langle x, x^{\prime}\right\rangle_{R}\right) \tag{4.31}
\end{equation*}
$$

for all $s, s^{\prime} \in S, x, x^{\prime} \in H_{n}^{R}(q)$.
Proof. Set $\varphi\left(s \otimes T_{i}\right)=s T_{i} \in H_{n}^{S}(\widetilde{q})$ for $s \in S$ and $i=1, \ldots, n-1$. It is easy to check that this defines a homomorphism of S-algebras

$$
\varphi: S \otimes_{R} H_{n}^{R}(q) \rightarrow H_{n}^{S}(\widetilde{q}) .
$$

By Theorem 4.17, $H_{n}^{R}(q)$ is a free R-module with basis $\left\{T_{w} \mid w \in \mathfrak{S}_{n}\right\}$. Similarly, $H_{n}^{S}(\widetilde{q})$ is a free S-module with the same basis. It is clear that φ sends the basis $\left\{1 \otimes T_{w} \mid w \in \mathfrak{S}_{n}\right\}$ of $S \otimes_{R} H_{n}^{R}(q)$ to the basis $\left\{T_{w} \mid w \in \mathfrak{S}_{n}\right\}$ of $H_{n}^{S}(\widetilde{q})$. Therefore, φ is an isomorphism.

By S-bilinearity, to prove (4.31), it is enough to check it for $s=s^{\prime}=1$, $x=T_{w}$, and $x^{\prime}=T_{w^{\prime}}$, where $w, w^{\prime} \in \mathfrak{S}_{n}$. We have

$$
\begin{aligned}
\left\langle\varphi\left(1 \otimes T_{w}\right), \varphi\left(1 \otimes T_{w^{\prime}}\right)\right\rangle_{S} & =\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{S} \\
& =\operatorname{Tr}\left(\mathrm{R}_{T_{w} T_{w^{\prime}}}: H_{n}^{S}(\widetilde{q}) \rightarrow H_{n}^{S}(\widetilde{q})\right) \\
& =f\left(\operatorname{Tr}\left(\mathrm{R}_{T_{w} T_{w^{\prime}}}: H_{n}^{R}(q) \rightarrow H_{n}^{R}(q)\right)\right) \\
& =f\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{R}\right) .
\end{aligned}
$$

Here we used the fact that the structure constants for the multiplication of the basis elements $T_{w} \in H_{n}^{S}(\widetilde{q})$ are the images under f of the corresponding structure constants of the basis elements $T_{w} \in H_{n}^{R}(q)$.

Recall that an element of a ring is algebraic if it is the root of a nonzero polynomial with coefficients in \mathbf{Z}. We now state the main result of this section.

Theorem 4.57. Let K be a field whose characteristic does not divide n!. The algebra $H_{n}^{K}(q)$ is semisimple for all $q \in K-\{0\}$ except a finite number of algebraic elements of $K-\{0,1\}$.

Note without proof a more precise result by Wenzl [Wen88]: $H_{n}^{K}(q)$ is semisimple provided q is not a root of unity of order d with $2 \leq d \leq n$.
Proof. If $q=1$, then $H_{n}^{K}(q) \cong K\left[\mathfrak{S}_{n}\right]$ is semisimple by Example 4.47 (i).
Now suppose that $q \neq 1$. By definition, $H_{n}^{K}(q)$ is semisimple if and only if its trace form \langle,\rangle_{K} is nondegenerate. Consider the basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$ of $H_{n}^{K}(q)$. By Proposition 4.46, $H_{n}^{K}(q)$ is semisimple if and only if

$$
\operatorname{det}\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{K}\right)_{w, w^{\prime} \in \mathfrak{S}_{n}} \neq 0
$$

Let $R=\mathbf{Z}\left[q_{0}, q_{0}^{-1}\right]$ be the ring of Laurent polynomials in one variable q_{0}, and let $i: R \rightarrow K$ be the ring homomorphism such that $i\left(q_{0}\right)=q$. The R-algebra $H_{n}^{R}\left(q_{0}\right)$ carries a trace form \langle,\rangle_{R}, which by Proposition 4.56 is related to the trace form of $H_{n}^{K}(q)$ by

$$
\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{K}=i\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{R}\right)
$$

for all $w, w^{\prime} \in \mathfrak{S}_{n}$. Therefore,

$$
\operatorname{det}\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{K}\right)_{w, w^{\prime} \in \mathfrak{G}_{n}}=i\left(D\left(q_{0}\right)\right)
$$

where

$$
D\left(q_{0}\right)=\operatorname{det}\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{R}\right)_{w, w^{\prime} \in \mathfrak{S}_{n}} \in R .
$$

In other words, $\operatorname{det}\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{K}\right)_{w, w^{\prime} \in \mathfrak{S}_{n}} \in K$ is the value of the Laurent polynomial $D\left(q_{0}\right)$ at $q_{0}=q$.

We claim that $D\left(q_{0}\right) \neq 0$. To prove this claim, consider the ring homomorphism $\pi: R \rightarrow \mathbf{Q}$ sending q_{0} to 1 . By Proposition 4.56, there is an isomorphism of \mathbf{Q}-algebras $\mathbf{Q} \otimes_{R} H_{n}^{R}\left(q_{0}\right) \cong H_{n}^{\mathbf{Q}}(1)$. This isomorphism sends the basis $\left\{1 \otimes T_{w}\right\}_{w \in \mathfrak{S}_{n}}$ of $\mathbf{Q} \otimes_{R} H_{n}^{R}\left(q_{0}\right)$ to the basis $\left\{T_{w}\right\}_{w \in \mathfrak{S}_{n}}$ of $H_{n}^{\mathbf{Q}}(1)$. The trace form \langle,\rangle_{R} of $H_{n}^{R}\left(q_{0}\right)$ is related to the trace form $\langle,\rangle_{\mathbf{Q}}$ of $H_{n}^{\mathbf{Q}}(1)$ by

$$
\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{\mathbf{Q}}=\pi\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{R}\right)
$$

for all $w, w^{\prime} \in \mathfrak{S}_{n}$. Hence,

$$
\operatorname{det}\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{\mathbf{Q}}\right)_{w, w^{\prime} \in \mathfrak{S}_{n}}=\pi\left(D\left(q_{0}\right)\right)
$$

Since $H_{n}^{\mathbf{Q}}(1) \cong \mathbf{Q}\left[\mathfrak{S}_{n}\right]$ is semisimple, it follows from Proposition 4.46 that $\operatorname{det}\left(\left\langle T_{w}, T_{w^{\prime}}\right\rangle_{\mathbf{Q}}\right)_{w, w^{\prime} \in \mathfrak{S}_{n}} \neq 0$. This shows that $D\left(q_{0}\right) \neq 0$.

In conclusion, the K-algebra $H_{n}^{K}(q)$ is semisimple if and only if the value of the Laurent polynomial $D\left(q_{0}\right)$ at $q_{0}=q$ is nonzero, i.e., if and only if q is not a root of $D\left(q_{0}\right)$ in K. We finally observe that a nonzero Laurent polynomial has finitely many roots and that its roots are algebraic.

Exercise 4.6.1. Let $R=\mathbf{Z}\left[q_{0}, q_{0}^{-1}\right]$. Compute the trace form on $H_{n}^{R}\left(q_{0}\right)$ for $n=2$ and show that the corresponding Laurent polynomial $D\left(q_{0}\right)$ (defined in the previous proof) is equal to $\left(q_{0}+1\right)^{2}$.

Notes

The presentation (4.1) of the symmetric group is due to E. H. Moore [Moo97]. In Section 4.1 we followed [Mat99, Sect. 1.1]. The results of this section will be extended to Coxeter groups in Section 6.6.

Following an idea of André Weil, Shimura [Shi59] defined an "algebra of transformations" in connection with the Hecke operators of number theory. This algebra is defined as the convolution algebra of B-bi-invariant functions on a group G, where B is a subgroup of G such that $\left[B: B \cap x B x^{-1}\right]<\infty$ for all $x \in G$. In [Iwa64] Iwahori called Shimura's algebra of transformations a "Hecke ring" and gave it a presentation by generators and relations in the case that G is a Chevalley group over a finite field \mathbf{F}_{q} and B is a Borel subgroup of G.

The Iwahori-Hecke algebra of Definition 4.15 is Shimura's algebra associated to the Chevalley group $G=\mathrm{GL}_{n}\left(\mathbf{F}_{q}\right)$ (for details, see Exercise 4.2.3 above, [Bou68, Chap. 4, Sect. 2, Exercises 22-24], [GHJ89, Sect. 2.10], [GP00, Sect. 8.4]).

In Sections 4.2-4.4 we have essentially followed [HKW86, Sects. 4-6]. The trace constructed in Section 4.3 is due to Ocneanu (see [FYHLMO85] and [Jon87, Sect. 5]). The existence of the two-variable Jones-Conway polynomial constructed in Section 4.4 was proved by Freyd, Yetter, Hoste, Lickorish, Millett, Ocneanu, Przytycki, and Traczyk soon after Vaughan Jones discovered the Jones polynomial in summer 1984; see [Jon85], [Jon87], [FYHLMO85], [PT87]. The discovery of the Jones polynomial and its generalizations laid the foundations for quantum topology; see [Tur94], [Kas95], [KRT97].

The content of Section 4.5 is standard and can be found in textbooks such as Bourbaki [Bou58], Curtis and Reiner [CR62], Pierce [Pie88], Drozd and Kirichenko [DK94], Benson [Ben98], Lang [Lan02]. Note that in positive characteristic our definition of a semisimple algebra is more restrictive than the definition given in these references. Lemma 4.36 is due to M. Rieffel.

Representations of the Iwahori-Hecke Algebras

In this chapter we study the linear representations of the one-parameter Iwahori-Hecke algebras of Section 4.2.2. Our aim is to classify their finitedimensional representations over an algebraically closed field of characteristic zero in terms of partitions and Young diagrams. As an application, we prove that the reduced Burau representation introduced in Section 3.3 is irreducible. We end the chapter by a discussion of the Temperley-Lieb algebras.

5.1 The combinatorics of partitions and tableaux

We introduce the language of partitions, which is commonly used to describe the irreducible representations of the symmetric groups. We shall use this language in Section 5.3 to construct simple modules over the Iwahori-Hecke algebras.

5.1.1 Partitions

A partition of a nonnegative integer n is a finite sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ of positive integers satisfying

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \quad \text { and } \quad|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}=n
$$

We write $\lambda \dashv n$ to indicate that λ is a partition of n. The integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are called the parts of λ, and p is called the number of parts. By definition, $n=0$ has a unique partition, namely the empty sequence \emptyset.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ be a partition with p parts. Setting $\lambda_{k}=0$ for all $k>p$, we can identify λ with an infinite sequence $\left(\lambda_{k}\right)_{k \geq 1}$ of integers indexed by $k=1,2, \ldots$. This sequence is eventually zero, in the sense that $\lambda_{k}=0$ for all sufficiently large k, and nonincreasing: $\lambda_{k} \geq \lambda_{k+1}$ for all k. Any eventually zero nonincreasing sequence $\left(\lambda_{k}\right)_{k \geq 1}$ of integers arises in this way from the partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ of $n=\sum_{k \geq 1} \lambda_{k}$. Here $p=\max \left\{k \mid \lambda_{k} \neq 0\right\}$. In particular, the empty partition \emptyset corresponds to the constant zero sequence.

5.1.2 Diagrams

It is convenient to represent a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ of $n \geq 0$ by its diagram $D(\lambda)$ (also called Ferrers diagram or Young diagram), which is defined as the set

$$
D(\lambda)=\left\{(r, s) \mid 1 \leq r \leq p \text { and } 1 \leq s \leq \lambda_{r}\right\} .
$$

In particular, the diagram of the empty partition is the empty set. It follows from the definitions that $D(\lambda)=D\left(\lambda^{\prime}\right)$ if and only if $\lambda=\lambda^{\prime}$.

We can represent $D(\lambda)$ graphically as a left-justified collection of boxes in the plane \mathbf{R}^{2}, each of them centered at the corresponding point $(r, s) \in \mathbf{R}^{2}$, with λ_{1} boxes in the first row, λ_{2} boxes in the second row, and so on until the last, p th, row, which contains λ_{p} boxes. The total number of boxes is equal to $|\lambda|=n$. In the figures we use the convention that the r-axis points downward and the s-axis points to the right. For instance, Figure 5.1 represents $D(\lambda)$ for $\lambda=(3,2,2,1)$.

Fig. 5.1. The diagram of the partition $(3,2,2,1)$

5.1.3 Operations on partitions

We define several operations on partitions needed for the sequel. Given two partitions $\lambda=\left(\lambda_{k}\right)_{k \geq 1}$ and $\lambda^{\prime}=\left(\lambda_{k}^{\prime}\right)_{k \geq 1}$ (possibly of different integers), we define sequences of integers $\lambda \wedge \lambda^{\prime}$ and $\bar{\lambda} \vee \lambda^{\prime}$ by

$$
\left(\lambda \wedge \lambda^{\prime}\right)_{k}=\min \left(\lambda_{k}, \lambda_{k}^{\prime}\right) \quad \text { and } \quad\left(\lambda \vee \lambda^{\prime}\right)_{k}=\max \left(\lambda_{k}, \lambda_{k}^{\prime}\right)
$$

for all $k \geq 1$. These two sequences are nonincreasing and eventually zero, and thus define partitions. It is clear that

$$
D\left(\lambda \wedge \lambda^{\prime}\right)=D(\lambda) \cap D\left(\lambda^{\prime}\right) \quad \text { and } \quad D\left(\lambda \vee \lambda^{\prime}\right)=D(\lambda) \cup D\left(\lambda^{\prime}\right)
$$

The conjugate of a partition $\lambda \dashv n$ is the partition $\lambda^{T} \dashv n$ whose diagram is the set $\{(r, s) \mid(s, r) \in D(\lambda)\}$. In other words, the diagram of λ^{T} is obtained from the diagram of λ by exchanging its rows and columns. For instance, if $\lambda=(3,2,2,1)$, then $\lambda^{T}=(4,3,1)$ (see Figure 5.2).

Fig. 5.2. The diagram of the conjugate partition of $(3,2,2,1)$

5.1.4 Tableaux

A tableau T consists of a partition $\lambda \dashv n$ together with a bijection

$$
D(\lambda) \rightarrow\{1,2, \ldots, n\}
$$

called the labeling and usually denoted by the same letter T. The values of the labeling are called the labels of the corresponding boxes. The partition λ is called the shape of T. Figure 5.3 shows two tableaux of shape $(3,2,2,1)$.

1	5	7				
2	6					
3	4					
8						
8			\quad	1	5	7
:---	:---	:---				
2	6					
3	8					
4						

Fig. 5.3. Two tableaux of shape $(3,2,2,1)$

Composing the labeling of a tableau T having n labels with a permutation σ of $\{1,2, \ldots, n\}$, we obtain the labeling of another tableau σT of the same shape. In particular, $s_{i} T$ is the tableau T in which the labels i and $i+1$ are switched. It is clear that $\sigma=\sigma^{\prime} \Longleftrightarrow \sigma T=\sigma^{\prime} T$, and that two tableaux of the same shape can be obtained from each other by a unique permutation of the labels. Consequently, the number of tableaux of shape $\lambda \dashv n$ is equal to n !.

5.1.5 Standard tableaux

A tableau T of shape $\lambda \dashv n$ is said to be standard if its labeling increases from left to right in each row and from top to bottom in each column, i.e., if the labeling $T: D(\lambda) \rightarrow\{1,2, \ldots, n\}$ satisfies

$$
T(r, s) \leq T\left(r^{\prime}, s^{\prime}\right)
$$

for all $(r, s),\left(r^{\prime}, s\right) \in D(\lambda)$ such that $r \leq r^{\prime}$ and $s \leq s^{\prime}$. For instance, the right tableau in Figure 5.3 is standard, whereas the left tableau is not (since the label 4 sits below the label 6).

Let \mathcal{T}_{λ} be the set of standard tableaux of shape λ and $f^{\lambda}=\operatorname{card} \mathcal{T}_{\lambda}$. Exchanging rows and columns yields a bijection between \mathcal{T}_{λ} and $\mathcal{T}_{\lambda^{T}}$, where λ^{T} is the conjugate partition of λ. Therefore, $f^{\lambda^{T}}=f^{\lambda}$.

Exercises 5.2.2 and 5.2.3 below provide explicit formulas for f^{λ} for certain partitions λ. A general formula for f^{λ}, called the hook length formula, is given in Exercise 5.2.6.

The following property of the numbers $\left\{f^{\lambda}\right\}_{\lambda}$ will play a key role in the classification of the simple modules over the Iwahori-Hecke algebras.

Theorem 5.1. For all $n \geq 1$,

$$
\sum_{\lambda \dashv n}\left(f^{\lambda}\right)^{2}=n!.
$$

A proof of this theorem will be given in Section 5.2.4.

5.1.6 The axial distance

Let T be a tableau with n boxes. Suppose that the label $i \in\{1, \ldots, n-1\}$ sits in the box (r, s) of T and the label $i+1$ sits in the box $\left(r^{\prime}, s^{\prime}\right)$ of T. Set

$$
\begin{equation*}
d_{T}(i)=\left(s^{\prime}-r^{\prime}\right)-(s-r) \in \mathbf{Z} . \tag{5.1}
\end{equation*}
$$

The integer $s-r$ is called the axial distance of i in T (it is the algebraic distance of the box (r, s) to the diagonal $\{(x, x) \mid x \in \mathbf{R}\}$ in $\left.\mathbf{R}^{2}\right)$. The integer $d_{T}(i)$ is then the difference between the axial distances of $i+1$ and i. We record some important properties of $d_{T}(i)$ in the following lemma.

Lemma 5.2. Let T be a tableau with n boxes and $i, j \in\{1, \ldots, n-1\}$.
(a) Then

$$
d_{s_{j} T}(i)= \begin{cases}-d_{T}(i) & \text { if } j=i \\ d_{T}(i) & \text { if }|i-j| \geq 2\end{cases}
$$

(b) Assume that $i \neq n-1$ and set $d=d_{T}(i), e=d_{T}(i+1)$. Then

$$
\begin{aligned}
d_{s_{i} T}(i) & =-d_{s_{i} s_{i+1} T}(i+1)=d_{s_{i} s_{i+1} s_{i} T}(i+1)=-d, \\
d_{s_{i+1} T}(i+1) & =-d_{s_{i+1} s_{i} T}(i)=d_{s_{i} s_{i+1} s_{i} T}(i)=-e \\
d_{s_{i} T}(i+1) & =d_{s_{i+1} T}(i)=-d_{s_{i} s_{i+1} T}(i)=-d_{s_{i+1} s_{i} T}(i+1)=d+e .
\end{aligned}
$$

Proof. (a) Let (r, s) be the box of T with label i and $\left(r^{\prime}, s^{\prime}\right)$ the box of T with label $i+1$. Then (r, s) is the box of $s_{i} T$ with label $i+1$ and $\left(r^{\prime}, s^{\prime}\right)$ is the box of $s_{i} T$ with label i. It follows that

$$
d_{s_{i} T}(i)=(s-r)-\left(s^{\prime}-r^{\prime}\right)=-d_{T}(i) .
$$

If $j=i$, then $d_{s_{j} T}(i)=d_{s_{i} T}(i)=-d_{T}(i)$. If $|i-j| \geq 2$, then T and $s_{j} T$ have the same boxes with labels i and $i+1$. Therefore,

$$
d_{s_{j} T}(i)=d_{T}(i)
$$

(b) Suppose that the labels $i, i+1, i+2$ sit in the boxes $(r, s),\left(r^{\prime}, s^{\prime}\right)$, $\left(r^{\prime \prime}, s^{\prime \prime}\right)$ of T, respectively. Then $d=\left(s^{\prime}-r^{\prime}\right)-(s-r)$ and $e=\left(s^{\prime \prime}-r^{\prime \prime}\right)-\left(s^{\prime}-r^{\prime}\right)$. The equalities $d_{s_{i} T}(i)=-d$ and $d_{s_{i+1} T}(i+1)=-e$ are consequences of (a). Since the labels $i+1$ and $i+2$ sit in the boxes (r, s) and $\left(r^{\prime \prime}, s^{\prime \prime}\right)$ of $s_{i} T$,

$$
\begin{aligned}
d_{s_{i} T}(i+1) & =\left(s^{\prime \prime}-r^{\prime \prime}\right)-(s-r) \\
& =\left(\left(s^{\prime \prime}-r^{\prime \prime}\right)-\left(s^{\prime}-r^{\prime}\right)\right)+\left(\left(s^{\prime}-r^{\prime}\right)-(s-r)\right) \\
& =d+e .
\end{aligned}
$$

The labels $i, i+1$ sit in the boxes $(r, s),\left(r^{\prime \prime}, s^{\prime \prime}\right)$ of $s_{i+1} T$, respectively. Therefore,

$$
d_{s_{i+1} T}(i)=\left(s^{\prime \prime}-r^{\prime \prime}\right)-(s-r)=d+e .
$$

The computations of $d_{s_{i} s_{i+1} T}(j), d_{s_{i+1} s_{i} T}(j)$, and $d_{s_{i} s_{i+1} s_{i} T}(j)$ with $j=i, i+1$ are similar.

When T is standard, we have the following additional information.
Lemma 5.3. Let T be a standard tableau with n boxes.
(a) If the labels i and $i+1$ of T sit in the same row, then $d_{T}(i)=1$.
(b) If i and $i+1$ sit in the same column, then $d_{T}(i)=-1$.
(c) If i and $i+1$ sit neither in the same column nor in the same row, then $\left|d_{T}(i)\right| \geq 2$.
(d) In all cases, $\left|d_{T}(i)\right| \leq n-1$.

Proof. Let (r, s) and $\left(r^{\prime}, s^{\prime}\right)$ be the boxes of T with labels i and $i+1$, respectively.
(a) If i and $i+1$ sit in the same row, then they necessarily occupy adjacent boxes, so that $r^{\prime}=r$ and $s^{\prime}=s+1$; therefore, $d_{T}(i)=1$.
(b) If i and $i+1$ sit in the same column, then $r^{\prime}=r+1$ and $s^{\prime}=s$; therefore, $d_{T}(i)=-1$.
(c) Suppose that i and $i+1$ sit neither in the same column nor in the same row. If $r^{\prime}>r$, then necessarily $s^{\prime}<s$. Otherwise, consider the label k sitting in the box $\left(r^{\prime}, s\right)$ of T. Since T is standard, $i<k<i+1$, which is impossible. Therefore,

$$
d_{T}(i)=\left(s^{\prime}-s\right)-\left(r^{\prime}-r\right) \leq-1-1=-2 .
$$

If $r^{\prime}<r$, then for the same reason as above, we must have $s^{\prime}>s$. In this case,

$$
d_{T}(i)=\left(s^{\prime}-s\right)-\left(r^{\prime}-r\right) \geq 1+1=2 .
$$

In both cases, $\left|d_{T}(i)\right| \geq 2$.
(d) The biggest value that $\left|d_{T}(i)\right|$ can reach occurs when one of the labels i or $i+1$ sits in the lowest box of the first column and the other one sits in the rightmost box of the first row. If the shape of T is the partition $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ of n, then

$$
\left|d_{T}(i)\right| \leq\left(\lambda_{1}-1\right)+(p-1) \leq \lambda_{1}-1+\lambda_{2}+\cdots+\lambda_{p}=n-1
$$

Exercise 5.1.1. (a) Define a binary relation \leq on the set of all partitions by $\lambda \leq \lambda^{\prime}$ if $D(\lambda) \subset D\left(\lambda^{\prime}\right)$. Show that \leq is a partial order.
(b) Prove that for any partitions $\lambda, \lambda^{\prime}$, we have
(i) $\lambda \wedge \lambda^{\prime} \leq \lambda \leq \lambda \vee \lambda^{\prime}$ and $\lambda \wedge \lambda^{\prime} \leq \lambda^{\prime} \leq \lambda \vee \lambda^{\prime}$,
(ii) if a partition μ satisfies $\mu \leq \lambda$ and $\mu \leq \lambda^{\prime}$, then $\mu \leq \lambda \wedge \lambda^{\prime}$,
(iii) if a partition ν satisfies $\lambda \leq \nu$ and $\lambda^{\prime} \leq \nu$, then $\lambda \vee \lambda^{\prime} \leq \nu$.

5.2 The Young lattice

We provide the necessary background and then prove Theorem 5.1.

5.2.1 Corners

A corner of the diagram $D(\lambda)$ of a partition λ (or simply, a corner of λ) is a box centered on $(r, s) \in D(\lambda)$ such that neither $(r, s+1)$ nor $(r+1, s)$ belongs to $D(\lambda)$. In Figure 5.4 the three corners of $(3,2,2,1)$ are marked.

It is clear that every nonempty partition has at least one corner, and distinct corners sit in distinct rows and in distinct columns. Moreover, every partition λ is determined by the set of its corners: the diagram of λ consists of the corners and the boxes lying to the left of a corner or above a corner.

Fig. 5.4. The corners of the partition (3, 2, 2, 1)

If (r, s) is a corner of $D(\lambda)$, then $\lambda_{r}>\lambda_{r+1}$. If we set

$$
\mu_{k}= \begin{cases}\lambda_{k} & \text { if } k \neq r, \\ \lambda_{k}-1 & \text { if } k=r,\end{cases}
$$

then the sequence $\left(\mu_{k}\right)_{k}$ is nonincreasing and thus defines a partition μ of $n-1$, where $n=|\lambda|$. Clearly, $D(\mu)=D(\lambda)-\{(r, s)\}$. We say that μ is obtained from λ by removing a corner, which we symbolize by $\mu \hookrightarrow \lambda$. Figure 5.5 shows the three diagrams obtained by removing a corner from $D(3,2,2,1)$.

Observe also that if $\lambda \dashv n$ and $\mu \dashv(n-1)$ satisfy $D(\mu) \subset D(\lambda)$, then $\mu \hookrightarrow \lambda$, that is, μ is obtained from λ by removing a corner.

Lemma 5.4. Let $\lambda, \lambda^{\prime}$ be distinct partitions of the same positive integer. Then there is at most one partition μ such that $\mu \hookrightarrow \lambda$ and $\mu \hookrightarrow \lambda^{\prime}$, and there is at most one partition ν such that $\lambda \hookrightarrow \nu$ and $\lambda^{\prime} \hookrightarrow \nu$. Moreover, there is μ such that $\mu \hookrightarrow \lambda$ and $\mu \hookrightarrow \lambda^{\prime}$ if and only if there is ν such that $\lambda \hookrightarrow \nu$ and $\lambda^{\prime} \hookrightarrow \nu$.

Fig. 5.5. The diagrams obtained by removing a corner of $D(3,2,2,1)$

Proof. Let μ be such that $\mu \hookrightarrow \lambda$ and $\mu \hookrightarrow \lambda^{\prime}$. Then $D(\mu) \subset D(\lambda) \cap D\left(\lambda^{\prime}\right)$ and card $D(\mu)=n-1$, where $n=|\lambda|=\left|\lambda^{\prime}\right| \geq 1$. Since $\lambda \neq \lambda^{\prime}$, we have card $D(\lambda) \cap D\left(\lambda^{\prime}\right)<n$. It follows that

$$
D(\mu)=D(\lambda) \cap D\left(\lambda^{\prime}\right)=D\left(\lambda \wedge \lambda^{\prime}\right),
$$

where $\lambda \wedge \lambda^{\prime}$ is the partition defined in Section 5.1.3. Hence, $\mu=\lambda \wedge \lambda^{\prime}$ and μ is necessarily unique. Note also that

$$
\begin{aligned}
\operatorname{card} D\left(\lambda \vee \lambda^{\prime}\right) & =\operatorname{card}\left(D(\lambda) \cup D\left(\lambda^{\prime}\right)\right) \\
& =\operatorname{card} D(\lambda)+\operatorname{card} D\left(\lambda^{\prime}\right)-\operatorname{card}\left(D(\lambda) \cap D\left(\lambda^{\prime}\right)\right) \\
& =2 n-(n-1)=n+1
\end{aligned}
$$

Hence, $\nu=\lambda \vee \lambda^{\prime}$ is a partition of $n+1$ such that $\lambda \hookrightarrow \nu$ and $\lambda^{\prime} \hookrightarrow \nu$.
A similar argument shows that if ν is such that $\lambda \hookrightarrow \nu$ and $\lambda^{\prime} \hookrightarrow \nu$, then necessarily $\nu=\lambda \vee \lambda^{\prime}$ and the partition $\mu=\lambda \wedge \lambda^{\prime}$ satisfies $\mu \hookrightarrow \lambda$ and $\mu \hookrightarrow \lambda^{\prime}$. The conclusion of the lemma follows immediately.
Lemma 5.5. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ be an arbitrary partition. Suppose that there are ℓ partitions μ such that $\mu \hookrightarrow \lambda$. Then there are $\ell+1$ partitions ν such that $\lambda \hookrightarrow \nu$.

Proof. It is clear that (r, s) is a corner of λ if and only if $\lambda_{r}>\lambda_{r+1}$ (here we identify λ with an infinite nonincreasing eventually zero sequence of integers). Thus, the number ℓ of partitions μ such that $\mu \hookrightarrow \lambda$, which is the number of corners of λ, is equal to the number of all $r \geq 1$ such that $\lambda_{r}>\lambda_{r+1}$.

If a partition ν satisfies $\lambda \hookrightarrow \nu$, then

$$
\nu_{k}= \begin{cases}\lambda_{k} & \text { if } k \neq r \tag{5.2}\\ \lambda_{k}+1 & \text { if } k=r\end{cases}
$$

for some integer $r \geq 1$. If $r \geq 2$, then the assumption that ν is a partition implies that

$$
\nu_{r-1}=\lambda_{r-1} \geq \nu_{r}=\lambda_{r}+1
$$

from which it follows that $\lambda_{r-1}>\lambda_{r}$. Conversely, if $\lambda_{r-1}>\lambda_{r}$ for some $r \geq 2$, then (5.2) defines a partition ν such that $\lambda \hookrightarrow \nu$. The number of such partitions is equal to the number of all $r \geq 2$ such that $\lambda_{r-1}>\lambda_{r}$, hence to the number ℓ of all $r \geq 1$ such that $\lambda_{r}>\lambda_{r+1}$. But there is an additional ν such that $\lambda \hookrightarrow \nu$, namely the one given by $\nu_{1}=\lambda_{1}+1$ and $\nu_{k}=\lambda_{k}$ for $k \geq 2$. In conclusion, the number of partitions ν such that $\lambda \hookrightarrow \nu$ is equal to $\ell+1$.

5.2.2 The Young lattice and the Bratteli diagrams

Consider the oriented graph \mathcal{Y} whose vertices are all partitions of nonnegative integers (including the empty partition \emptyset). There is a unique oriented edge $\mu \rightarrow \lambda$ in \mathcal{Y} for each μ obtained from λ by removing a corner. This edge is also recorded by $\mu \hookrightarrow \lambda$. The graph \mathcal{Y} is called the Young lattice.

For each $n \geq 0$, let \mathcal{Y}_{n} be the finite oriented subgraph of \mathcal{Y} whose vertices are the partitions λ with $|\lambda| \leq n$; any edge of \mathcal{Y} between two vertices of \mathcal{Y}_{n} is by definition an edge of \mathcal{Y}_{n}. The graphs $\mathcal{Y}_{0}, \mathcal{Y}_{1}, \mathcal{Y}_{2}, \ldots$ are called Bratteli diagrams. The Young lattice \mathcal{Y} is the union of these graphs. Figure 5.6 represents \mathcal{Y}_{5}; this graph has 18 vertices and 25 edges.

Fig. 5.6. The Bratteli diagram \mathcal{Y}_{5}

Lemma 5.6. For any partition λ, the number $f^{\lambda}=\operatorname{card} \mathcal{T}_{\lambda}$ is equal to the number of oriented paths from \emptyset to λ in \mathcal{Y}.

Proof. The box with the largest label n in a standard tableau T of shape $\lambda \dashv n$ is necessarily a corner. Removing this box, we obtain a partition $\lambda^{(n-1)}$ of $n-1$ and a standard tableau of shape $\lambda^{(n-1)}$. Removing the corner labeled $n-1$ from the latter, we obtain a partition $\lambda^{(n-2)}$ of $n-2$ and a standard tableau of shape $\lambda^{(n-2)}$. Iterating this process until no boxes are left, we obtain an oriented path in \mathcal{Y} :

$$
\begin{equation*}
\emptyset=\lambda^{(0)} \hookrightarrow \lambda^{(1)} \hookrightarrow \cdots \hookrightarrow \lambda^{(n-1)} \hookrightarrow \lambda^{(n)}=\lambda . \tag{5.3}
\end{equation*}
$$

This path is uniquely determined by T.

Conversely, starting from an arbitrary oriented path (5.3) in \mathcal{Y} from \emptyset to $\lambda \dashv n$, we obtain a standard tableau of shape λ whose label i, where $i \in\{1, \ldots, n\}$, sits in the box added to $\lambda^{(i-1)}$ to obtain $\lambda^{(i)}$.

In this way, we obtain mutually inverse bijections between the set \mathcal{T}_{λ} of standard tableaux of shape λ and the set of oriented paths from \emptyset to λ in \mathcal{Y}. In particular, $f^{\lambda}=\operatorname{card} \mathcal{T}_{\lambda}$ is the number of oriented paths from \emptyset to λ in \mathcal{Y}.

The argument given in the proof of Lemma 5.6 shows that each graph \mathcal{Y}_{n} and the Young lattice $\mathcal{Y}=\bigcup_{n} \mathcal{Y}_{n}$ are connected.

5.2.3 The operators D and U

Let $\mathbf{Z}[\mathcal{Y}]$ be the free abelian group with basis $\{\lambda\}$ indexed by all vertices of \mathcal{Y}. Define linear maps $D, U: \mathbf{Z}[\mathcal{Y}] \rightarrow \mathbf{Z}[\mathcal{Y}]$ by the following formulas: for $\lambda \dashv n \geq 1$, set

$$
D(\lambda)=\sum_{\mu \hookrightarrow \lambda} \mu \quad \text { and } \quad U(\lambda)=\sum_{\lambda \hookrightarrow \nu} \nu .
$$

Recall that for any partition λ of n, if $\mu \hookrightarrow \lambda$, then μ is a partition of $n-1$, and similarly if $\lambda \hookrightarrow \nu$, then ν is a partition of $n+1$. By definition, $D(\emptyset)=0$ and $U(\emptyset)=\nu_{0}$, where $\nu_{0}=(1)$ is the only partition of 1 .

Let us record a combinatorial property of the operators D, U relating them to the integers f^{λ}. We use the following notation: for $k \geq 1$, let D^{k} (resp. U^{k}) be the composition of k copies of D (resp. of U). We also define D^{0} and U^{0} to be the identity map id of $\mathbf{Z}[\mathcal{Y}]$.

Lemma 5.7. For any partition $\lambda \dashv n \geq 0$,

$$
D^{n}(\lambda)=f^{\lambda} \emptyset \quad \text { and } \quad U^{n}(\emptyset)=\sum_{\lambda \dashv n} f^{\lambda} \lambda .
$$

Proof. It follows from the definitions that for each $k \geq 1$,

$$
\begin{aligned}
D^{k}(\lambda) & =\sum_{\lambda^{(n-1)} \hookrightarrow \lambda} \sum_{\lambda^{(n-2) \hookrightarrow \lambda^{(n-1)}}} \ldots \sum_{\lambda^{(n-k)} \hookrightarrow \lambda^{(n-k+1)}} \lambda^{(n-k)} \\
& =\sum_{\lambda^{(n-k) \hookrightarrow \lambda^{(n-k+1)} \hookrightarrow \ldots \hookrightarrow \lambda^{(n-1)} \hookrightarrow \lambda}} \lambda^{(n-k)}=\sum_{\mu \dashv(n-k)} f_{\mu}^{\lambda} \mu,
\end{aligned}
$$

where f_{μ}^{λ} is the number of oriented paths in \mathcal{Y} from μ to λ. For $k=n$, there is only one partition μ of $n-k=0$, namely $\mu=\emptyset$, and then by Lemma 5.6, $f_{\mu}^{\lambda}=f^{\lambda}$. This yields the required formula for $D^{n}(\lambda)$.

A similar argument shows that for any partition $\mu \dashv m \geq 0$,

$$
U^{n}(\mu)=\sum_{\lambda \dashv(m+n)} f_{\mu}^{\lambda} \lambda
$$

Applying this equality to $m=0$ and $\mu=\emptyset$, we obtain the desired formula for $U^{n}(\emptyset)$.

The operators D and U enjoy the following remarkable property.
Lemma 5.8 (The Heisenberg relation). We have $D U-U D=\mathrm{id}$.
Proof. Let $\lambda \dashv n \geq 1$. By Lemma 5.4,

$$
\begin{align*}
(D U)(\lambda) & =\sum_{\lambda \hookrightarrow \nu} D(\nu)=\sum_{\lambda \hookrightarrow \nu}\left(\sum_{\lambda^{\prime} \hookrightarrow \nu} \lambda^{\prime}\right) \\
& =a_{\lambda}^{+} \lambda+\sum_{\lambda^{\prime} \in A^{+}(\lambda)} \lambda^{\prime}, \tag{5.4}
\end{align*}
$$

where a_{λ}^{+}is the number of partitions $\nu \dashv(n+1)$ such that $\lambda \hookrightarrow \nu$ and $A^{+}(\lambda)$ is the set of all $\lambda^{\prime} \dashv n$ distinct from λ for which there is a (necessarily unique) partition $\nu \dashv(n+1)$ such that $\lambda \hookrightarrow \nu$ and $\lambda^{\prime} \hookrightarrow \nu$.

Using the same lemma, we obtain

$$
\begin{align*}
(U D)(\lambda) & =\sum_{\mu \hookrightarrow \lambda} U(\mu)=\sum_{\mu \hookrightarrow \lambda}\left(\sum_{\mu \hookrightarrow \lambda^{\prime}} \lambda^{\prime}\right) \tag{5.5}\\
& =a_{\lambda}^{-} \lambda+\sum_{\lambda^{\prime} \in A^{-}(\lambda)} \lambda^{\prime},
\end{align*}
$$

where a_{λ}^{-}is the number of partitions $\mu \dashv(n-1)$ such that $\mu \hookrightarrow \lambda$ and $A^{-}(\lambda)$ is the set of all $\lambda^{\prime} \dashv n$ distinct from λ for which there is a (necessarily unique) partition $\mu \dashv(n-1)$ such that $\mu \hookrightarrow \lambda$ and $\mu \hookrightarrow \lambda^{\prime}$.

The sets $A^{+}(\lambda)$ and $A^{-}(\lambda)$ coincide by Lemma 5.4, and $a_{\lambda}^{+}=a_{\lambda}^{-}+1$ by Lemma 5.5. Combining (5.4) and (5.5), we obtain

$$
(D U-U D)(\lambda)=\lambda .
$$

The same holds for $\lambda=\emptyset$, since $(D U-U D)(\emptyset)=D\left(\nu_{0}\right)=\emptyset$.
Let us deduce the following more general formula: for each $n \geq 1$,

$$
\begin{equation*}
D U^{n}-U^{n} D=n U^{n-1} \tag{5.6}
\end{equation*}
$$

This is proved by induction on n. If $n=1$, then (5.6) coincides with the identity of Lemma 5.8. For $n \geq 2$, by the induction hypothesis and Lemma 5.8,

$$
\begin{aligned}
D U^{n} & =\left(D U^{n-1}\right) U \\
& =\left(U^{n-1} D+(n-1) U^{n-2}\right) U \\
& =U^{n-1} D U+(n-1) U^{n-1} \\
& =U^{n-1}(U D+\mathrm{id})+(n-1) U^{n-1} \\
& =U^{n} D+n U^{n-1}
\end{aligned}
$$

5.2.4 Proof of Theorem 5.1

As an immediate consequence of Lemma 5.7, we obtain

$$
\left(D^{n} U^{n}\right)(\emptyset)=\left(\sum_{\lambda \dashv n}\left(f^{\lambda}\right)^{2}\right) \emptyset
$$

In order to prove Theorem 5.1, it therefore suffices to check that we also have

$$
\left(D^{n} U^{n}\right)(\emptyset)=n!\emptyset .
$$

We prove this equality by induction on n. The case $n=0$ is trivial. For $n \geq 1$,

$$
\begin{aligned}
\left(D^{n} U^{n}\right)(\emptyset) & =\left(D^{n-1}\left(D U^{n}\right)\right)(\emptyset) \\
& =\left(D^{n-1}\left(U^{n} D+n U^{n-1}\right)\right)(\emptyset) \\
& =\left(D^{n-1} U^{n}\right)(D(\emptyset))+n\left(D^{n-1} U^{n-1}\right)(\emptyset) \\
& =n(n-1)!\emptyset=n!\emptyset .
\end{aligned}
$$

The second equality follows from (5.6), whereas the fourth equality follows from the induction hypothesis and from $D(\emptyset)=0$.

Remark 5.9. The identity of Lemma 5.8 shows that $\mathbf{Z}[\mathcal{Y}]$ is a module over the Weyl algebra $\mathbf{Z}\langle D, U\rangle /(D U-U D-1)$. Another classical example of a module over this algebra is given by the polynomials in one variable t, on which D acts by the derivation $d / d t$ and U acts by the multiplication by t.

Exercise 5.2.1. Compute f^{λ} for all partitions $\lambda \dashv n$ with $n \leq 5$. (Hint: Use the Bratteli diagram \mathcal{Y}_{5} in Figure 5.6.)

Exercise 5.2.2. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ be a partition such that $p \geq 1$ and $\lambda_{2}=\cdots=\lambda_{p}=1$. Show that

$$
f^{\lambda}=\binom{\lambda_{1}+p-2}{\lambda_{1}-1} .
$$

(Hint: Use induction on $\lambda_{1}+p$.)
Exercise 5.2.3. (a) Let $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ be a partition with two parts. Show that

$$
f^{\lambda}=\binom{\lambda_{1}+\lambda_{2}}{\lambda_{2}}-\binom{\lambda_{1}+\lambda_{2}}{\lambda_{2}-1}=\frac{\lambda_{1}-\lambda_{2}+1}{\lambda_{1}+1}\binom{\lambda_{1}+\lambda_{2}}{\lambda_{2}} .
$$

(b) Prove that

$$
\sum_{\substack{\lambda_{1} \geq \lambda_{2} \geq 1 \\ \lambda_{1}+\lambda_{2}=n}}\left(f^{\left(\lambda_{1}, \lambda_{2}\right)}\right)^{2}=\frac{1}{n+1}\binom{2 n}{n} .
$$

(Hint: Use the identity

$$
\sum_{i=0}^{k}\binom{r}{i}\binom{s}{k-i}=\binom{r+s}{k}
$$

where r, s, k are positive integers with $k \leq r+s$.)
Exercise 5.2.4. (a) Show that there is a unique family $g\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of integers, where $\lambda_{1}, \ldots, \lambda_{p}$ are arbitrary nonnegative integers with $p \geq 1$, such that
(i) $g\left(\lambda_{1}, \ldots, \lambda_{p}\right)=0$ unless $\lambda_{1} \geq \cdots \geq \lambda_{p}$,
(ii) $g(0)=1$ and if $\lambda_{p}=0$, then $g\left(\lambda_{1}, \ldots, \lambda_{p-1}, \lambda_{p}\right)=g\left(\lambda_{1}, \ldots, \lambda_{p-1}\right)$,
(iii) if $\lambda_{1} \geq \cdots \geq \lambda_{p} \geq 1$, then

$$
g\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\sum_{i=1}^{p} g\left(\lambda_{1}, \ldots, \lambda_{i}-1, \ldots, \lambda_{p}\right)
$$

(b) Prove that for any partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ of n, we have $f^{\lambda}=g\left(\lambda_{1}, \ldots, \lambda_{p}\right)$. (Hint: Giving a standard tableau with n boxes is the same as giving one with $n-1$ boxes and saying where to put the nth box.)

Exercise 5.2.5. Let x_{1}, \ldots, x_{p} be indeterminates and let $\Delta\left(x_{1}, \ldots, x_{p}\right)$ be the polynomial defined by

$$
\Delta\left(x_{1}, \ldots, x_{p}\right)=\prod_{1 \leq i<j \leq p}\left(x_{i}-x_{j}\right)
$$

if $p \geq 2$, and by $\Delta\left(x_{1}\right)=1$ if $p=1$.
(a) Show that
$\sum_{i=1}^{p} x_{i} \Delta\left(x_{1}, \ldots, x_{i}+y, \ldots, x_{p}\right)=\left(x_{1}+\cdots+x_{p}+\frac{p(p-1)}{2} y\right) \Delta\left(x_{1}, \ldots, x_{p}\right)$.
(Hint: The left-hand side is a homogeneous polynomial, antisymmetric in x_{1}, \ldots, x_{p}.)
(b) Show that the integers $g\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of Exercise 5.2.4 satisfy

$$
\frac{g\left(\lambda_{1}, \ldots, \lambda_{p}\right)}{\left(\lambda_{1}+\cdots+\lambda_{p}\right)!}=\frac{\Delta\left(\lambda_{1}+p-1, \lambda_{2}+p-2, \ldots, \lambda_{p}\right)}{\left(\lambda_{1}+p-1\right)!\left(\lambda_{2}+p-2\right)!\cdots \lambda_{p}!}
$$

provided $\lambda_{1}+p-1 \geq \lambda_{2}+p-2 \geq \cdots \geq \lambda_{p}$.
Exercise 5.2.6 (Hook length formula). Let $D=D(\lambda)$ be the diagram of a partition λ. For $(i, j) \in D$, the hook $H_{i, j}$ consists of the box (i, j) together with the boxes of D lying below (i, j) in the same column or lying to the right
of (i, j) in the same row. The number $h_{i, j}$ of boxes in $H_{i, j}$ is called the hook length, and it is computed by

$$
h_{i, j}=\lambda_{i}+\lambda_{j}^{T}-i-j+1,
$$

where λ^{T} is the conjugate partition of λ.
(a) Prove that

$$
\prod_{(i, j) \in D} h_{i, j}=\frac{\left(\lambda_{1}+p-1\right)!\left(\lambda_{2}+p-2\right)!\cdots \lambda_{p}!}{\Delta\left(\lambda_{1}+p-1, \lambda_{2}+p-2, \ldots, \lambda_{p}\right)}
$$

(b) Using Exercises 5.2.4 and 5.2.5, prove the hook length formula

$$
f^{\lambda}=\frac{n!}{\prod_{(i, j) \in D} h_{i, j}} .
$$

5.3 Seminormal representations

We return to the Iwahori-Hecke algebras $H_{n}^{R}(q)$ of Section 4.2.2 and construct an $H_{n}^{R}(q)$-module V_{λ}^{R} for each partition λ of n. We begin with some notation.

5.3.1 q-integers and q-factorials

Fix a commutative ring R and an invertible element $q \in R$. For each integer $n \geq 1$, set

$$
\begin{equation*}
[n]_{q}=1+q+\cdots+q^{n-1} \in R \tag{5.7}
\end{equation*}
$$

and $[n]!_{q}=[1]_{q}[2]_{q} \cdots[n]_{q} \in R$. We also set $[0]_{q}=0$ and

$$
\begin{equation*}
[n]_{q}=-q^{n}[-n]_{q} \tag{5.8}
\end{equation*}
$$

for $n<0$. Observe that $[1]_{q}=1,[-1]_{q}=-q^{-1}$, and

$$
\begin{equation*}
[m+n]_{q}=[m]_{q}+q^{m}[n]_{q}=q^{n}[m]_{q}+[n]_{q} \tag{5.9}
\end{equation*}
$$

for all integers m and n.
Given a positive integer n, we say that q is n-regular if $[n]!{ }_{q}$ is invertible in R or, equivalently, if the elements $[1]_{q},[2]_{q}, \ldots,[n]_{q}$ are invertible in R. If q is n-regular, then it is k-regular for $k=1, \ldots, n$.

Recall the integers $d_{T}(1), \ldots, d_{T}(n-1)$ defined by (5.1), and set

$$
\begin{equation*}
a_{T}(i)=\frac{q^{d_{T}(i)}}{\left[d_{T}(i)\right]_{q}} \in R \quad \text { and } \quad b_{T}(i)=a_{T}(i)-q \in R . \tag{5.10}
\end{equation*}
$$

Since $1 \leq\left|d_{T}(i)\right| \leq n-1$ by Lemma 5.3, the elements $a_{T}(i)$ and $b_{T}(i)$ of R are well defined, provided q is $(n-1)$-regular.

We shall later use the obvious implication

$$
d_{T}(i)=d_{T^{\prime}}(j) \Longrightarrow\left(a_{T}(i)=a_{T^{\prime}}(j) \quad \text { and } \quad b_{T}(i)=b_{T^{\prime}}(j)\right)
$$

Lemma 5.10. If q is $(n-1)$-regular, then

$$
\begin{equation*}
a_{T}(i)=q \Leftrightarrow d_{T}(i)=1 \quad \text { and } \quad a_{T}(i)=-1 \Leftrightarrow d_{T}(i)=-1 . \tag{5.11}
\end{equation*}
$$

Proof. Set $d=d_{T}(i)$. Then

$$
a_{T}(i)=q \Longleftrightarrow[d]_{q}=q^{d-1} \Longleftrightarrow[d-1]_{q}=0
$$

Since q is $(n-1)$-regular and $d<n$, the number $[d-1]_{q}$ vanishes if and only if $d=1$. The second equivalence is proved in a similar way.

5.3.2 The module V_{λ}

We now assume that the element $q \in R$ is $(n-1)$-regular and construct an $H_{n}^{R}(q)$-module V_{λ}^{R} for each partition $\lambda \dashv n$.

Consider the free R-module $V_{\lambda}=V_{\lambda}^{R}$ with basis $\left\{v_{T}\right\}_{T \in \mathcal{T}_{\lambda}}$, where \mathcal{T}_{λ} is the set of standard tableaux of shape λ. Using the previously defined elements $a_{T}(i), b_{T}(i)$ of R, we let the generators T_{1}, \ldots, T_{n-1} of $H_{n}^{R}(q)$ act on the basis of V_{λ} by

$$
\begin{equation*}
T_{i} v_{T}=a_{T}(i) v_{T}+b_{T}(i) v_{s_{i} T} . \tag{5.12}
\end{equation*}
$$

Here $s_{i} T$ is the tableau obtained from T by switching the labels i and $i+1$. If $s_{i} T$ is not standard, then we set $v_{s_{i} T}=0$. Observe that $a_{T}(i)$ is invertible in R.

Theorem 5.11. Formula (5.12) defines the structure of a left $H_{n}^{R}(q)$-module on V_{λ}.

A proof of Theorem 5.11 will be given in Section 5.4. The module V_{λ} is called a seminormal representation of $H_{n}^{R}(q)$. By definition, its rank over R is equal to the number f^{λ} of standard tableaux of shape λ or, equivalently, to the number of oriented paths from \emptyset to λ in the Bratteli diagram \mathcal{Y}_{n}.

Examples 5.12. (a) Consider the partition $\lambda=(n)$ corresponding to a single row of n boxes. There is a unique standard tableau T of shape (n). Therefore the module $V_{(n)}$ has a unique basis vector v_{T}. By Lemma 5.3 and formulas (5.10), (5.12), the generators of $H_{n}^{R}(q)$ act on v_{T} by

$$
\begin{equation*}
T_{i} v_{T}=q v_{T} \tag{5.13}
\end{equation*}
$$

for all $i=1, \ldots, n-1$.
(b) For the conjugate partition $(1, \ldots, 1)$, there is also a unique standard tableau T^{\prime}. The module $V_{(1, \ldots, 1)}$ has a unique basis vector $v_{T^{\prime}}$. By Lemma 5.3 and formulas (5.10), (5.12), the generators of $H_{n}^{R}(q)$ act on $v_{T^{\prime}}$ by

$$
\begin{equation*}
T_{i} v_{T^{\prime}}=-v_{T^{\prime}} \tag{5.14}
\end{equation*}
$$

for all $i=1, \ldots, n-1$ (here $v_{s_{i} T^{\prime}}=0$ for all i).
Since q and -1 are the only roots of the polynomial $X^{2}-(q-1) X-q$, the modules $V_{(n)}$ and $V_{(1, \ldots, 1)}$ are the only $H_{n}^{R}(q)$-modules of rank one over R.

5.3.3 Restriction to $H_{n-1}^{R}(q)$

We now state an important property of the seminormal representations. We use the following notation: when an $H_{n}^{R}(q)$-module V is considered as an $H_{n-1}^{R}(q)$-module via the natural injection $\iota: H_{n-1}^{R}(q) \hookrightarrow H_{n}^{R}(q)$ (see Proposition 4.21), we denote it by $\left.V\right|_{H_{n-1}^{R}(q)}$.

Proposition 5.13. For any partition λ of n, there is a canonical isomorphism of $H_{n-1}^{R}(q)$-modules

$$
\left.V_{\lambda}\right|_{H_{n-1}^{R}(q)}=\bigoplus_{\mu \hookrightarrow \lambda} V_{\mu}
$$

Proof. We observed in Section 5.1.5 that the label n in a standard tableau of shape λ sits necessarily in a corner of λ. Therefore we can partition the set of standard tableaux of shape λ according to the corner in which n sits. We thus obtain the partition

$$
\begin{equation*}
\mathcal{T}_{\lambda}=\coprod_{\mu \hookrightarrow \lambda} \mathcal{T}_{\mu} \tag{5.15}
\end{equation*}
$$

Since the basis $\left\{v_{T}\right\}$ of V_{λ} is indexed by the elements of \mathcal{T}_{λ}, we obtain an R-module decomposition

$$
V_{\lambda}=\bigoplus_{\mu \hookrightarrow \lambda} V_{\mu} .
$$

It follows from (5.12) that the generators T_{1}, \ldots, T_{n-2} preserve this decomposition (but the generator T_{n-1} does not).

Remark 5.14. The seminormal representations behave well under a change of scalars. Let $f: R \rightarrow S$ be a homomorphism of commutative rings and q an $(n-1)$-regular invertible element of R. Then $\widetilde{q}=f(q)$ is $(n-1)$-regular in S. In this situation we have the $H_{n}^{R}(q)$-module V_{λ}^{R} and the $H_{n}^{S}(\widetilde{q})$-module V_{λ}^{S}. By Proposition 4.56,

$$
S \otimes_{R} H_{n}^{R}(q) \cong H_{n}^{S}(\widetilde{q})
$$

Similarly, there is an isomorphism of $H_{n}^{S}(\widetilde{q})$-modules

$$
\begin{equation*}
S \otimes_{R} V_{\lambda}^{R} \cong V_{\lambda}^{S} \tag{5.16}
\end{equation*}
$$

Let $R_{0}=\mathbf{Q}\left[q_{0}, q_{0}^{-1},\left([n-1]!_{q_{0}}\right)^{-1}\right]$ be the smallest subring of the field of rational functions $\mathbf{Q}\left(q_{0}\right)$ containing the ring of Laurent polynomials $\mathbf{Q}\left[q_{0}, q_{0}^{-1}\right]$ and the fraction $1 /[n-1]!_{q_{0}}$. Clearly, q_{0} is an $(n-1)$-regular invertible element of R_{0}. For any partition $\lambda \dashv n$, the construction above yields an $H_{n}^{R_{0}}\left(q_{0}\right)$ module $V_{\lambda}^{R_{0}}$. This module is universal in the following sense. For any commutative ring R and any $(n-1)$-regular invertible element $q \in R$, there is a unique ring homomorphism $f: R_{0} \rightarrow R$ sending q_{0} to q. By (5.16), we have an isomorphism of $H_{n}^{R}(q)$-modules

$$
\begin{equation*}
V_{\lambda}^{R} \cong R \otimes_{R_{0}} V_{\lambda}^{R_{0}} \tag{5.17}
\end{equation*}
$$

Remark 5.15. Applying the constructions above to $R=\mathbf{Q}$ and $q=1$, we obtain for every partition $\lambda \dashv n$ a module $V_{\lambda}^{\mathbf{Q}}$ over $H_{n}^{\mathbf{Q}}(1) \cong \mathbf{Q}\left[\mathfrak{S}_{n}\right]$. In this way, the $H_{n}^{R}(q)$-module V_{λ}^{R} specializes to a representation of \mathfrak{S}_{n}.

Remark 5.16. Let $H_{n}^{R}(q)^{\times}$be the group of invertible elements in $H_{n}^{R}(q)$. Recall the group homomorphism $\omega: B_{n} \rightarrow H_{n}^{R}(q)^{\times}$sending the generator σ_{i} of the braid group B_{n} to T_{i} for $i=1, \ldots, n-1$. For a partition λ of n, let

$$
\pi_{\lambda}: H_{n}^{R}(q) \rightarrow \operatorname{End}_{R}\left(V_{\lambda}\right)
$$

be the algebra homomorphism induced by the action of $H_{n}^{R}(q)$ on V_{λ}. Composing π_{λ} with $\omega: B_{n} \rightarrow H_{n}^{R}(q)^{\times}$, we obtain a group homomorphism $\rho_{\lambda}: B_{n} \rightarrow \operatorname{Aut}_{R}\left(V_{\lambda}\right)$. Since V_{λ} is a free R-module of rank f^{λ}, we can identify $\operatorname{Aut}_{R}\left(V_{\lambda}\right)$ with the group of invertible $f^{\lambda} \times f^{\lambda}$ matrices over R. We thus obtain a representation ρ_{λ} of B_{n} by matrices of size f^{λ}. By definition of $H_{n}^{R}(q)$, the matrix $\rho_{\lambda}\left(\sigma_{i}\right)$ with $i=1, \ldots, n-1$ satisfies the quadratic relation

$$
\rho_{\lambda}\left(\sigma_{i}\right)^{2}-(q-1) \rho_{\lambda}\left(\sigma_{i}\right)-q I_{f^{\lambda}}=0
$$

(here $I_{f^{\lambda}}$ stands for the unit $f^{\lambda} \times f^{\lambda}$ matrix).

5.4 Proof of Theorem 5.11

Set $P=\{ \pm 1, \pm 2, \ldots, \pm(n-1)\} \subset \mathbf{Z}$. For any $d \in P$, set

$$
f(d)=\frac{q^{d}}{[d]_{q}} \in R
$$

where $[d]_{q}$ was defined in Section 5.3.1. The element $f(d)$ of R is well defined and invertible, since q is invertible and $(n-1)$-regular in R.

Lemma 5.17. Let $d, e \in P$ be such that $d+e \in P$. Then
(a) $f(d)+f(-d)=q-1$,
(b) $f(d) f(e)=f(d+e)(f(d)-f(-e))$.

Proof. (a) By (5.8),

$$
\begin{aligned}
f(d)+f(-d) & =\frac{q^{d}}{[d]_{q}}+\frac{q^{-d}}{[-d]_{q}} \\
& =\frac{q^{d}}{[d]_{q}}-\frac{q^{-d}}{q^{-d}[d]_{q}} \\
& =\frac{q^{d}-1}{[d]_{q}} \\
& =q-1 .
\end{aligned}
$$

(b) Using (5.8), (5.9), we obtain

$$
\begin{aligned}
\frac{f(d) f(e)}{f(d+e)} & =\frac{[d+e]_{q}}{[d]_{q}[e]_{q}}=\frac{[d]_{q}+q^{d}[e]_{q}}{[d]_{q}[e]_{q}} \\
& =\frac{1}{[e]_{q}}+\frac{q^{d}}{[d]_{q}} \\
& =f(d)-\frac{q^{-e}}{[-e]_{q}} \\
& =f(d)-f(-e) .
\end{aligned}
$$

To prove Theorem 5.11, it suffices to show that the operators T_{1}, \ldots, T_{n-1} defined by (5.12) satisfy (4.16), (4.17), and (4.20).

5.4.1 Proof of (4.16)

If $|i-j| \geq 2$, then by (5.12),

$$
\begin{aligned}
T_{j} T_{i} v_{T}= & a_{T}(i) a_{T}(j) v_{T}+a_{T}(i) b_{T}(j) v_{s_{j} T} \\
& +b_{T}(i) a_{s_{i} T}(j) v_{s_{i} T}+b_{T}(i) b_{s_{i} T}(j) v_{s_{j} s_{i} T} \\
= & a_{T}(i) a_{T}(j) v_{T}+a_{T}(i) b_{T}(j) v_{s_{j} T} \\
& +b_{T}(i) a_{T}(j) v_{s_{i} T}+b_{T}(i) b_{T}(j) v_{s_{j} s_{i} T} .
\end{aligned}
$$

The last equality holds since by Lemma 5.2 (a),

$$
d_{s_{i} T}(j)=d_{T}(j) .
$$

The scalars $a_{T}(j)$ and $b_{T}(j)$ being functions of $d_{T}(j)$, we obtain

$$
a_{s_{i} T}(j)=a_{T}(j) \quad \text { and } \quad b_{s_{i} T}(j)=b_{T}(j) .
$$

Moreover, $s_{j} s_{i}=s_{i} s_{j}$. Therefore, the expression $T_{j} T_{i} v_{T}$ is symmetric in i and j. Hence, $T_{j} T_{i} v_{T}=T_{i} T_{j} v_{T}$ for all T.

5.4.2 Proof of (4.17)

Let $i \in\{1, \ldots, n-2\}$. We have

$$
\begin{aligned}
T_{i} T_{i+1} T_{i} v_{T}= & \left(a_{T}(i) a_{T}(i+1) a_{T}(i)+b_{T}(i) a_{s_{i} T}(i+1) b_{s_{i} T}(i)\right) v_{T} \\
& +\left(a_{T}(i) a_{T}(i+1) b_{T}(i)+b_{T}(i) a_{s_{i} T}(i+1) a_{s_{i} T}(i)\right) v_{s_{i} T} \\
& +a_{T}(i) b_{T}(i+1) a_{s_{i+1} T}(i) v_{s_{i+1} T} \\
& +a_{T}(i) b_{T}(i+1) b_{s_{i+1} T}(i) v_{s_{i} s_{i+1} T} \\
& +b_{T}(i) b_{s_{i} T}(i+1) a_{s_{i+1} s_{i} T}(i) v_{s_{i+1} s_{i} T} \\
& +b_{T}(i) b_{s_{i} T}(i+1) b_{s_{i+1} s_{i} T}(i) v_{s_{i} s_{i+1} s_{i} T} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& T_{i+1} T_{i} T_{i+1} v_{T} \\
& =\left(a_{T}(i+1) a_{T}(i) a_{T}(i+1)+b_{T}(i+1) a_{s_{i+1} T}(i) b_{s_{i+1} T}(i+1)\right) v_{T} \\
& \quad+\left(a_{T}(i+1) a_{T}(i) b_{T}(i+1)+b_{T}(i+1) a_{s_{i+1} T}(i) a_{s_{i+1} T}(i+1)\right) v_{s_{i+1} T} \\
& \quad+a_{T}(i+1) b_{T}(i) a_{s_{i} T}(i+1) v_{s_{i} T} \\
& \quad+a_{T}(i+1) b_{T}(i) b_{s_{i} T}(i+1) v_{s_{i+1} s_{i} T} \\
& \quad+b_{T}(i+1) b_{s_{i+1} T}(i) a_{s_{i} s_{i+1} T}(i+1) v_{s_{i} s_{i+1} T} \\
& \quad+b_{T}(i+1) b_{s_{i+1} T}(i) b_{s_{i} s_{i+1} T}(i+1) v_{s_{i+1} s_{i} s_{i+1} T} .
\end{aligned}
$$

In order to prove the vanishing of the vector

$$
w=T_{i} T_{i+1} T_{i} v_{T}-T_{i+1} T_{i} T_{i+1} v_{T},
$$

it suffices to check that the coefficient of each of the six vectors $v_{T}, v_{s_{i} T}$, $v_{s_{i+1} T}, v_{s_{i} s_{i+1} T}, v_{s_{i+1} s_{i} T}, v_{s_{i} s_{i+1} s_{i} T}$ in w vanishes.
(a) The coefficient A of v_{T} in w is given by

$$
\begin{aligned}
A=a_{T}(i) & a_{T}(i+1) a_{T}(i)+b_{T}(i) a_{s_{i} T}(i+1) b_{s_{i} T}(i) \\
& \quad-a_{T}(i+1) a_{T}(i) a_{T}(i+1)-b_{T}(i+1) a_{s_{i+1} T}(i) b_{s_{i+1} T}(i+1) .
\end{aligned}
$$

By Lemma $5.2(\mathrm{~b}), a_{s_{i} T}(i+1)=a_{s_{i+1} T}(i)$ and

$$
\begin{aligned}
A=a_{T}(i) a_{T}(i+1) & \left(a_{T}(i)-a_{T}(i+1)\right) \\
& +a_{s_{i} T}(i+1)\left(b_{T}(i) b_{s_{i} T}(i)-b_{T}(i+1) b_{s_{i+1} T}(i+1)\right) .
\end{aligned}
$$

Set $d=d_{T}(i)$ and $e=d_{T}(i+1)$. By (5.10),

$$
\begin{gathered}
a_{T}(i)=f\left(d_{T}(i)\right)=f(d), \quad b_{T}(i)=f(d)-q \\
a_{T}(i+1)=f\left(d_{T}(i+1)\right)=f(e), \quad \text { and } \quad b_{T}(i+1)=f(e)-q .
\end{gathered}
$$

By Lemma 5.2 (b),

$$
d_{s_{i} T}(i)=-d, \quad d_{s_{i} T}(i+1)=d_{s_{i+1} T}(i)=d+e, \quad d_{s_{i+1} T}(i+1)=-e,
$$

so that $a_{s_{i} T}(i+1)=a_{s_{i+1} T}(i)=f(d+e)$ and

$$
b_{s_{i} T}(i)=f(-d)-q, \quad b_{s_{i+1} T}(i+1)=f(-e)-q .
$$

Therefore,

$$
\begin{aligned}
A=f(d) f(e) & (f(d)-f(e)) \\
& +f(d+e)((f(d)-q)(f(-d)-q)-(f(e)-q)(f(-e)-q))
\end{aligned}
$$

Using Lemma $5.17(\mathrm{~b})$, we obtain $A=f(d+e) A_{0}$, where

$$
\begin{aligned}
A_{0}= & (f(d)-f(-e))(f(d)-f(e)) \\
& +(f(d)-q)(f(-d)-q)-(f(e)-q)(f(-e)-q) \\
= & (f(d)-q)((f(d)+f(-d))-(f(e)+f(-e))) .
\end{aligned}
$$

Using Lemma 5.17 (a), we obtain $A_{0}=0$. Hence, $A=f(d+e) A_{0}=0$.
(b) The coefficient B of $v_{s_{i} T}$ in w is

$$
\begin{gathered}
a_{T}(i) a_{T}(i+1) b_{T}(i)+b_{T}(i) a_{s_{i} T}(i+1) a_{s_{i} T}(i)-a_{T}(i+1) b_{T}(i) a_{s_{i} T}(i+1) \\
=b_{T}(i)\left(a_{T}(i) a_{T}(i+1)-\left(a_{T}(i+1)-a_{s_{i} T}(i)\right) a_{s_{i} T}(i+1)\right)
\end{gathered}
$$

We set $d=d_{T}(i)$ and $e=d_{T}(i+1)$ as above. Then by Lemma $5.2(\mathrm{~b})$,

$$
B=b_{T}(i)(f(d) f(e)-(f(e)-f(-d)) f(d+e))
$$

The latter vanishes by Lemma 5.17 (b) (with d and e exchanged).
(c) The coefficient C of $v_{s_{i+1} T}$ in w is

$$
\begin{aligned}
& a_{T}(i) b_{T}(i+1) a_{s_{i+1} T}(i)-a_{T}(i+1) a_{T}(i) b_{T}(i+1)-b_{T}(i+1) a_{s_{i+1} T}(i) a_{s_{i+1} T}(i+1) \\
& \quad=b_{T}(i+1)\left(a_{T}(i) a_{s_{i+1} T}(i)-a_{T}(i) a_{T}(i+1)-a_{s_{i+1} T}(i) a_{s_{i+1} T}(i+1)\right) .
\end{aligned}
$$

Using the same notation as in (a) and (b) and using Lemma 5.2 (b), we obtain

$$
C=b_{T}(i+1)(f(d) f(d+e)-f(d) f(e)-f(d+e) f(-e)),
$$

which vanishes by Lemma 5.17 (b).
(d) The coefficient of $v_{s_{i} s_{i+1} T}$ in w is

$$
a_{T}(i) b_{T}(i+1) b_{s_{i+1} T}(i)-b_{T}(i+1) b_{s_{i+1} T}(i) a_{s_{i} s_{i+1} T}(i+1),
$$

which is equal to

$$
\left(a_{T}(i)-a_{s_{i} s_{i+1} T}(i+1)\right) b_{T}(i+1) b_{s_{i+1} T}(i)=0
$$

because $d_{T}(i)=d_{s_{i} s_{i+1} T}(i+1)$ (Lemma $\left.5.2(\mathrm{~b})\right)$.
(e) The coefficient of $v_{s_{i+1} s_{i} T}$ in w is

$$
b_{T}(i) b_{s_{i} T}(i+1) a_{s_{i+1} s_{i} T}(i)-a_{T}(i+1) b_{T}(i) b_{s_{i} T}(i+1)
$$

which is equal to

$$
\left(a_{s_{i+1} s_{i} T}(i)-a_{T}(i+1)\right) b_{T}(i) b_{s_{i} T}(i+1)=0
$$

because $d_{s_{i+1} s_{i} T}(i)=d_{T}(i+1)($ Lemma $5.2(\mathrm{~b}))$.
(f) The coefficient of $v_{s_{i} s_{i+1} s_{i} T}$ in w is

$$
b_{T}(i) b_{s_{i} T}(i+1) b_{s_{i+1} s_{i} T}(i)-b_{T}(i+1) b_{s_{i+1} T}(i) b_{s_{i} s_{i+1} T}(i+1) .
$$

It vanishes because of the following equalities of Lemma $5.2(\mathrm{~b})$:
$d_{T}(i)=d_{s_{i} s_{i+1} T}(i+1), \quad d_{s_{i} T}(i+1)=d_{s_{i+1} T}(i), \quad d_{s_{i+1} s_{i} T}(i)=d_{T}(i+1)$.

5.4.3 Proof of (4.20)

If i and $i+1$ are in the same row of T, then it follows from Lemma 5.3 (b) and (5.11) that $a_{T}(i)=q$ and $b_{T}(i)=0$. Therefore, T_{i} acts on v_{T} by

$$
T_{i} v_{T}=q v_{T} .
$$

Then

$$
\left(T_{i}^{2}-(q-1) T_{i}-q\right) v_{T}=\left(q^{2}-(q-1) q-q\right) v_{T}=0
$$

If i and $i+1$ are in the same column of T, then by Lemma 5.3 (c) and (5.11), $a_{T}(i)=-1$. Since $s_{i} T$ is not standard, $v_{s_{i} T}=0$ and

$$
T_{i} v_{T}=-v_{T},
$$

from which it also follows that $\left(T_{i}^{2}-(q-1) T_{i}-q\right) v_{T}=0$.
If i and $i+1$ are neither in the same row nor in the same column of T, then $\left\{v_{T}, v_{s_{i} T}\right\}$ spans a rank-two free R-submodule of V_{λ}. The generator T_{i} acts on this based submodule via the matrix

$$
M=\left(\begin{array}{ll}
a_{T}(i) & b_{s_{i} T}(i) \\
b_{T}(i) & a_{s_{i} T}(i)
\end{array}\right) .
$$

In order to check (4.20) on this submodule, it suffices to prove that the trace of M equals $q-1$ and its determinant equals $-q$.

Set $d=d_{T}(i)$. It follows from Lemmas 5.2 (a) and 5.17 (a) that

$$
\operatorname{Tr} M=a_{T}(i)+a_{s_{i} T}(i)=f(d)+f(-d)=q-1
$$

and

$$
\begin{aligned}
\operatorname{det} M & =a_{T}(i) a_{s_{i} T}(i)-b_{T}(i) b_{s_{i} T}(i) \\
& =f(d) f(-d)-(f(d)-q)(f(-d)-q) \\
& =(f(d)+f(-d)) q-q^{2} \\
& =(q-1) q-q^{2}=-q .
\end{aligned}
$$

This completes the proof of relations (4.16), (4.17), (4.20) and of Theorem 5.11.

Exercise 5.4.1. Let f, g be functions from the set $P=\{ \pm 1, \pm 2, \ldots, \pm(n-1)\}$ to the set of invertible elements of a commutative ring R. For any standard tableau T with n boxes and any $i=1, \ldots, n-1$, set $a_{T}(i)=f\left(d_{T}(i)\right) \in R$ and $b_{T}(i)=g\left(d_{T}(i)\right) \in R$.
(a) Show that formula (5.12) defines the structure of a left $H_{n}^{R}(q)$-module on V_{λ}, provided f and g satisfy the following three conditions:
(i) $f(1)=q$ or $f(1)=-1$,
(ii) for all $d \in P$,

$$
f(d)+f(-d)=q-1 \quad \text { and } \quad g(d) g(-d)=f(d) f(-d)+q
$$

(iii) for all $d, e \in P$ such that $d+e \in P$,

$$
f(d+e)(f(d)-f(-e))=f(d) f(e)
$$

(b) Show that if the conditions in (a) are satisfied, then for all $d \in P$,

$$
f(d)= \begin{cases}q^{d} /[d]_{q} & \text { if } f(1)=q \\ -1 /[d]_{q} & \text { if } f(1)=-1\end{cases}
$$

and

$$
g(d) g(-d)=q \frac{[d-1]_{q}[d+1]_{q}}{\left([d]_{q}\right)^{2}}
$$

Exercise 5.4.2. Let K be an algebraically closed field of characteristic zero and λ a partition of n. Show that the formulas

$$
s_{i} v_{T}=\frac{1}{d_{T}(i)} v_{T}+\frac{1-d_{T}(i)}{d_{T}(i)} v_{s_{i} T}
$$

and

$$
s_{i} v_{T}=\frac{1}{d_{T}(i)} v_{T}+\frac{\sqrt{d_{T}(i)^{2}-1}}{d_{T}(i)} v_{s_{i} T},
$$

where $i=1, \ldots, n-1$, define two $K\left[\mathfrak{S}_{n}\right]$-module structures on the K-vector space with a basis $\left\{v_{T}\right\}_{T}$ indexed by the standard tableaux T of shape λ.

5.5 Simplicity of the seminormal representations

In this section K is an algebraically closed field whose characteristic does not divide n !, where n is a fixed positive integer. Let $q \in K-\{0\}$ be such that q is $(n-1)$-regular and the Iwahori-Hecke algebras $H_{2}^{K}(q), \ldots, H_{n}^{K}(q)$ are semisimple. By the definition of $(n-1)$-regularity and by Theorem 4.57, this holds for all values of q except a finite number of algebraic elements of $K-\{0,1\}$. We freely use the definitions of Section 4.5. To simplify notation, set $V_{\lambda}=V_{\lambda}^{K}$ for any partition λ.

Theorem 5.18. The $H_{n}^{K}(q)$-module V_{λ} is simple for any partition λ of n. For any simple finite-dimensional $H_{n}^{K}(q)$-module V, there is a unique partition $\lambda \dashv n$ such that $V \cong V_{\lambda}$.

Since $H_{n}^{K}(1) \cong K\left[\mathfrak{S}_{n}\right]$, the theorem in particular provides a classification of the irreducible representations of the symmetric groups over K.

Proof. We proceed by induction on n. When $n=1$, we have $\lambda=(1)$. As observed in Example 5.12 (a), the module $V_{(1)}$ is one-dimensional, hence simple. Since $H_{1}^{K}(q)=K$, it is clear that any simple $H_{1}^{K}(q)$-module is isomorphic to $V_{(1)}=K$.

Suppose that V_{μ} is a simple $H_{n-1}^{K}(q)$-module for any partition μ of $n-1$ and that any simple $H_{n-1}^{K}(q)$-module is isomorphic to a unique module of the form V_{μ}. The uniqueness in the latter assumption means that $V_{\mu} \cong V_{\mu^{\prime}}$ implies $\mu=\mu^{\prime}$.

Let us first show that if $V_{\lambda} \cong V_{\lambda^{\prime}}$ is an isomorphism of $H_{n}^{K}(q)$-modules, where λ and λ^{\prime} are partitions of n, then $\lambda=\lambda^{\prime}$. Indeed, by Proposition 5.13, we have an isomorphism of $H_{n-1}^{K}(q)$-modules

$$
\bigoplus_{\mu \hookrightarrow \lambda} V_{\mu} \cong \bigoplus_{\mu^{\prime} \hookrightarrow \lambda^{\prime}} V_{\mu^{\prime}}
$$

By assumption, $H_{n-1}^{K}(q)$ is semisimple, and by induction, the modules V_{μ} and $V_{\mu^{\prime}}$ are simple. Therefore, by Proposition 4.32,

$$
\{\mu \dashv(n-1) \mid \mu \hookrightarrow \lambda\}=\left\{\mu^{\prime} \dashv(n-1) \mid \mu^{\prime} \hookrightarrow \lambda^{\prime}\right\}
$$

Since the set of corners of λ is the complement of $\bigcap_{\mu \hookrightarrow \lambda} D(\mu)$ in $D(\lambda)$, the partitions λ and λ^{\prime} have the same corners. Therefore, $\lambda=\lambda^{\prime}$, since every partition is determined by its corners.

We next show that the $H_{n}^{K}(q)$-module V_{λ} is simple for any partition λ of n. Let V be a nonzero $H_{n}^{K}(q)$-submodule of V_{λ}. Consider V and V_{λ} as $H_{n-1}^{K}(q)$-modules. By Proposition 5.13,

$$
V_{\lambda}=\bigoplus_{\mu \hookrightarrow \lambda} V_{\mu} .
$$

By the induction hypothesis, this is a direct sum decomposition into simple $H_{n-1}^{K}(q)$-modules, and the modules V_{μ} in this decomposition are pairwise nonisomorphic. Pick a nonzero simple $H_{n-1}^{K}(q)$-submodule V^{\prime} of V. We claim that there is $\mu \hookrightarrow \lambda$ such that $V^{\prime}=V_{\mu}$. Indeed, since

$$
\bigoplus_{\mu \hookrightarrow \lambda} \operatorname{Hom}_{H_{n-1}^{K}(q)}\left(V^{\prime}, V_{\mu}\right)=\operatorname{Hom}_{H_{n-1}^{K}(q)}\left(V^{\prime}, V_{\lambda}\right) \supset \operatorname{Hom}_{H_{n-1}^{K}(q)}\left(V^{\prime}, V\right)
$$

is nonzero, by Proposition 4.30 (a), there is $\mu \hookrightarrow \lambda$ such that $V^{\prime} \cong V_{\mu}$. If $\mu^{\prime} \hookrightarrow \lambda$ is different from μ, then, since the modules V_{μ} are pairwise nonisomorphic, $\operatorname{Hom}_{H_{n-1}^{K}(q)}\left(V^{\prime}, V_{\mu^{\prime}}\right)=0$. Since the projection of V^{\prime} on each summand $V_{\mu^{\prime}}$ is zero except for $\mu^{\prime}=\mu$, we conclude that $V^{\prime}=V_{\mu}$.

If $\mu \dashv(n-1)$ is the only partition such that $\mu \hookrightarrow \lambda$, then $V^{\prime}=V_{\mu}=V_{\lambda}$. Hence, $V=V_{\lambda}$, which shows that V_{λ} is simple.

Suppose that there is $\mu^{\prime} \hookrightarrow \lambda$ distinct from μ. Assume that $D(\mu)$ is obtained from $D(\lambda)$ by removing the corner (r, s), and $D\left(\mu^{\prime}\right)$ is obtained from $D(\lambda)$ by removing the corner $\left(r^{\prime}, s^{\prime}\right)$. Clearly, $(r, s) \neq\left(r^{\prime}, s^{\prime}\right)$. Consider a standard tableau T of shape λ whose corner (r, s) is labeled n and whose corner $\left(r^{\prime}, s^{\prime}\right)$ is labeled $n-1$ (such T obviously exists). Observe that the tableau $s_{n-1} T$ obtained from T by switching the labels $n-1$ and n is standard and consider the vector

$$
\begin{equation*}
T_{n-1} v_{T}=a_{T}(n-1) v_{T}+b_{T}(n-1) v_{s_{n-1} T} \in V_{\lambda} . \tag{5.18}
\end{equation*}
$$

Decompose this vector according to Proposition 5.13. By the definition of the inclusion $V_{\mu} \hookrightarrow V_{\lambda}$ given in the proof of Proposition 5.13,

$$
v_{T} \in V^{\prime}=V_{\mu},
$$

since removing the corner (r, s) with label n from λ yields μ. Similarly, $v_{s_{n-1} T} \in V_{\mu^{\prime}}$. Since $n-1$ and n sit in corners of T and therefore sit neither in the same column nor in the same row, $d_{T}(n-1) \neq 1$ by Lemma 5.3 (c). This together with the equivalence (5.11) implies that $a_{T}(n-1) \neq q$, hence $b_{T}(n-1) \neq 0$. It then follows from (5.18) that $v_{s_{n-1} T} \in V_{\mu^{\prime}}$ is a linear combination of v_{T} and $T_{n-1} v_{T}$, both belonging to V. Therefore, V contains a nonzero element of $V_{\mu^{\prime}}$. Since $V_{\mu^{\prime}}$ is a simple $H_{n-1}^{K}(q)$-module and $V \cap V_{\mu^{\prime}}$ is a nonzero $H_{n-1}^{K}(q)$-submodule of $V_{\mu^{\prime}}$, we have $V \cap V_{\mu^{\prime}}=V_{\mu^{\prime}}$, that is, $V \supset V_{\mu^{\prime}}$. Since this holds for all $\mu^{\prime} \hookrightarrow \lambda$ distinct from μ and $V \supset V^{\prime}=V_{\mu}$,

$$
V \supset V_{\mu} \oplus \bigoplus_{\substack{\mu^{\prime} \hookrightarrow \lambda \\ \mu^{\prime} \neq \mu}} V_{\mu^{\prime}}=V_{\lambda} \supset V .
$$

Thus, $V=V_{\lambda}$ and V_{λ} is simple.
We finally show that any simple finite-dimensional $H_{n}^{K}(q)$-module is isomorphic to V_{λ} for some $\lambda \dashv n$. This follows from a simple counting argument. Since $H_{n}^{K}(q)$ is semisimple, it has a finite number of simple finite-dimensional modules (considered up to isomorphism). Such modules include the modules V_{λ}, which are pairwise nonisomorphic. If $H_{n}^{K}(q)$ had at least one nonzero simple finite-dimensional module not isomorphic to a module of the form V_{λ}, then by Corollary 4.55 and Theorem 5.1 we would have

$$
\operatorname{dim}_{K} H_{n}^{K}(q)>\sum_{\lambda \dashv n}\left(\operatorname{dim}_{K} V_{\lambda}\right)^{2}=\sum_{\lambda \dashv n}\left(f^{\lambda}\right)^{2}=n!.
$$

This contradicts Theorem 4.17, which yields $\operatorname{dim}_{K} H_{n}^{K}(q)=n$!.
For any partition λ of n, let $\pi_{\lambda}: H_{n}^{K}(q) \rightarrow \operatorname{End}_{K}\left(V_{\lambda}\right)$ be the algebra homomorphism induced by the action of $H_{n}^{K}(q)$ on V_{λ}. The next result follows immediately from Theorem 5.18 and Corollary 4.55 .

Corollary 5.19. The algebra homomorphisms π_{λ} induce an algebra isomorphism

$$
H_{n}^{K}(q) \stackrel{\cong}{\Longrightarrow} \prod_{\lambda \dashv n} \operatorname{End}_{K}\left(V_{\lambda}\right) .
$$

Exercise 5.5.1. Determine the dimensions of all simple modules of $H_{n}^{K}(q)$ for $n \leq 5$. (Hint: Use Exercise 5.2.1.)

Exercise 5.5.2. Let K be an algebraically closed field containing $\mathbf{Z}\left[q, q^{-1}\right]$. Show that there is an algebra isomorphism $H_{n}^{K}(q) \cong K\left[\mathfrak{S}_{n}\right]$. (Hint: Use Corollary 5.19 and Remark 5.15.)

Exercise 5.5.3. Show that the two $K\left[\mathfrak{S}_{n}\right]$-modules of Exercise 5.4 .2 are simple and isomorphic. (Hint: Restrict to $K\left[\mathfrak{S}_{n-1}\right]$ and use induction on n.)

Exercise 5.5.4 (Path algebras). Let K be a field and n a positive integer.
(a) Let \mathcal{P}_{n} be the K-vector space with basis $\left\{E_{S, T}\right\}_{S, T}$ indexed by all couples (S, T) of standard tableaux of the same shape λ, where $\lambda \dashv n$. We endow \mathcal{P}_{n} with the structure of an algebra by

$$
E_{S, T} E_{S^{\prime}, T^{\prime}}= \begin{cases}E_{S, T^{\prime}} & \text { if } T=S^{\prime} \\ 0 & \text { if } T \neq S^{\prime}\end{cases}
$$

The vector $\sum_{T} E_{T, T}$ is the unit of this algebra. (The algebra \mathcal{P}_{n} is called a path algebra.) Show that \mathcal{P}_{n} is isomorphic to a product of matrix algebras

$$
\mathcal{P}_{n} \cong \prod_{\lambda \dashv n} M_{f^{\lambda}}(K)
$$

where f^{λ} is the number of standard tableaux of shape λ. (Hint: Consider first the elements $E_{S, T}$, where S, T are standard tableaux of a given shape λ and show that they span a subalgebra of \mathcal{P}_{n}, which is isomorphic to $M_{f^{\lambda}}(K)$.)
(b) To any basis element $E_{S, T}$ of \mathcal{P}_{n-1} associate the element

$$
i\left(E_{S, T}\right)=\sum_{S^{\prime}, T^{\prime}} E_{S^{\prime}, T^{\prime}} \in \mathcal{P}_{n}
$$

where S^{\prime} and T^{\prime} run over all standard tableaux with n labels obtained from S and T respectively by adding a box with label n. Show that this defines an injective algebra homomorphism $i: \mathcal{P}_{n-1} \rightarrow \mathcal{P}_{n}$.
(c) For $\lambda \dashv n$, define a \mathcal{P}_{n}-module U_{λ} as the K-vector space with basis $\left\{u_{T}\right\}_{T}$ indexed by all standard tableaux T of shape λ, and with \mathcal{P}_{n}-action

$$
E_{S, T} u_{T^{\prime}}= \begin{cases}u_{S} & \text { if } T=T^{\prime} \\ 0 & \text { if } T \neq T^{\prime}\end{cases}
$$

Show that, considered as a \mathcal{P}_{n-1}-module via the embedding $i: \mathcal{P}_{n-1} \hookrightarrow \mathcal{P}_{n}$,

$$
U_{\lambda} \cong \bigoplus_{\mu \hookrightarrow \lambda} U_{\mu}
$$

(d) Prove that U_{λ} is a simple \mathcal{P}_{n}-module for each $\lambda \dashv n$, and that any simple \mathcal{P}_{n}-module is isomorphic to a module of this form.

5.6 Simplicity of the reduced Burau representation

In this section we show that the reduced Burau representation of the braid group introduced in Section 3.3.1 is irreducible.

We start with a property of the matrices $V_{1}, \ldots, V_{n-1} \in \mathrm{GL}_{n-1}(\Lambda)$ exhibited in Theorem 3.9, where $\Lambda=\mathbf{Z}\left[t, t^{-1}\right]$. Let K be an algebraically closed field containing Λ (we may take $K=\mathbf{C}$). Consider the ($n-1$)-dimensional vector space \mathcal{L}_{n-1} consisting of all columns over K of height $n-1$. The matrices V_{1}, \ldots, V_{n-1} act on \mathcal{L}_{n-1} by left matrix multiplication.

Lemma 5.20. Let $n \geq 3$ and $\alpha \in K$. The only vector $v \in \mathcal{L}_{n-1}$ satisfying $V_{i} v=\alpha v$ for all $i=1, \ldots, n-1$ is zero.

Proof. It is obvious from the form of V_{1} that its only eigenvalues are 1 and $-t$. Therefore, it suffices to establish the lemma for $\alpha=1$ and $\alpha=-t$.

It is easy to check that the eigenspace of the action of V_{i} on \mathcal{L}_{n-1} for the eigenvalue -1 is the hyperplane of \mathcal{L}_{n-1} consisting of the columns whose i th entries vanish. The intersection of these hyperplanes is clearly zero.

Consequently, the eigenspace of V_{i} for the second eigenvalue, that is, for $-t$, is one-dimensional. It suffices to prove that the one-dimensional subspaces corresponding to $i=1$ and $i=2$ do not coincide. A quick check shows that for V_{1} (resp. for V_{2}), this eigenspace is spanned by $(1+t) v_{1}-v_{2}$ (resp. by $\left.t v_{1}-(1+t) v_{2}\right)$, where $\left(v_{1}, \ldots, v_{n-1}\right)$ is the canonical basis of \mathcal{L}_{n-1}. We conclude by noting that these two vectors are not collinear (here we use the fact that $t^{2}+t+1 \neq 0$ in $\left.K\right)$.

We next relate the matrices V_{1}, \ldots, V_{n-1} to the Iwahori-Hecke algebra $H_{n}^{K}(t)$. (To be consistent with the notation of Chapter 3, we use the parameter t rather than the parameter q used in the previous sections of the present chapter.) By Theorem 4.57, since K has characteristic zero and $t \in K$ is nonalgebraic, each $H_{n}^{K}(t)$ is a semisimple algebra. Recall the generators T_{1}, \ldots, T_{n-1} of the Iwahori-Hecke algebra.

Proposition 5.21. There is a unique structure of an $H_{n}^{K}(t)$-module on \mathcal{L}_{n-1} such that each generator $T_{i}(i=1, \ldots, n-1)$ acts on \mathcal{L}_{n-1} by multiplication by the matrix $-V_{i}$.

Proof. We know from Section 3.3.1 that the matrices V_{1}, \ldots, V_{n-1} satisfy relations (4.16) and (4.17). So do the matrices $-V_{1}, \ldots,-V_{n-1}$. It is easy to check that each V_{i} satisfies the equation

$$
\left(V_{i}-I_{n-1}\right)\left(V_{i}+t I_{n-1}\right)=V_{i}^{2}+(t-1) V_{i}-t I_{n-1}=0 .
$$

Hence,

$$
\left(-V_{i}\right)^{2}=(t-1)\left(-V_{i}\right)+t I_{n-1}
$$

for all $i=1, \ldots, n-1$. In other words, the matrices $-V_{1}, \ldots,-V_{n-1}$ satisfy relation (4.20) with q replaced by t.

By Theorem 5.18, the $H_{n}^{K}(t)$-module \mathcal{L}_{n-1} is a direct sum of simple modules of the form V_{λ}, where λ is a partition of n (see Section 5.3 for a definition of V_{λ}). As a matter of fact, as we shall see now, the module \mathcal{L}_{n-1} is simple.

Theorem 5.22. There is an isomorphism of $H_{n}^{K}(t)$-modules

$$
\mathcal{L}_{n-1} \cong V_{\lambda[n]}
$$

where $\lambda[n]$ is the partition $(2,1,1, \ldots, 1)$ of n.
Proof. We prove the theorem by induction on n.
(a) If $n=2$, then by Section 3.3.1, T_{1} acts via the 1×1 matrix $[t]$. Setting $t=q$ in (5.13), we see that \mathcal{L}_{1} is the simple module $V_{\lambda[2]}$, where $\lambda[2]=(2)$ is the partition whose diagram consists of a single row of two boxes.
(b) Assume that the theorem holds for all positive $k<n$, where n is a given integer ≥ 3. Consider the natural projection $\mathcal{L}_{n-1} \rightarrow \mathcal{L}_{n-2}$ obtained by deleting the bottom entry of a column in \mathcal{L}_{n-1}. Observe that the matrices $-V_{1}, \ldots,-V_{n-2}$ are all of the form

$$
-V_{i}=\left(\begin{array}{cc}
-V_{i}^{0} & 0 \\
b_{i} & -1
\end{array}\right)
$$

where

$$
V_{i}^{0} \in \mathrm{GL}_{n-2}(\Lambda)
$$

is the matrix defining the reduced Burau representation of B_{n-1}, and where b_{i} is the row of length $n-2$ equal to 0 if $i<n-2$ and to $(0, \ldots, 0,-1)$ if $i=n-2$. Thus, the projection $\mathcal{L}_{n-1} \rightarrow \mathcal{L}_{n-2}$ induces an exact sequence of $H_{n-1}^{K}(t)$-modules

$$
\left.0 \rightarrow \mathcal{V} \rightarrow \mathcal{L}_{n-1}\right|_{H_{n-1}^{K}(t)} \rightarrow \mathcal{L}_{n-2} \rightarrow 0
$$

where $\left.\mathcal{L}_{n-1}\right|_{H_{n-1}^{K}(t)}$ is \mathcal{L}_{n-1} considered as an $H_{n-1}^{K}(t)$-module via the natural inclusion $H_{n-1}^{K}(t) \hookrightarrow H_{n}^{K}(t)$, and \mathcal{V} is the one-dimensional $H_{n-1}^{K}(t)$-module consisting of the columns whose first $n-2$ entries vanish. Since T_{1}, \ldots, T_{n-2} act on \mathcal{V} by -1 , the $H_{n-1}^{K}(t)$-module \mathcal{V} is isomorphic to $V_{\mu[n-1]}$, where $\mu[n-1]$ is the partition $(1, \ldots, 1)$ of $n-1$. Since $H_{n-1}^{K}(t)$ is semisimple, the module $\left.\mathcal{L}_{n-1}\right|_{H_{n-1}^{K}(t)}$ is semisimple, hence completely reducible by Proposition 4.28. Thus there is an isomorphism of $H_{n-1}^{K}(t)$-modules

$$
\left.\mathcal{L}_{n-1}\right|_{H_{n-1}^{K}(t)} \cong \mathcal{L}_{n-2} \oplus \mathcal{V}
$$

Using the induction hypothesis, we obtain the following isomorphisms of $H_{n-1}^{K}(t)$-modules:

$$
\begin{equation*}
\left.\mathcal{L}_{n-1}\right|_{H_{n-1}^{K}(t)} \cong \mathcal{L}_{n-2} \oplus \mathcal{V} \cong V_{\lambda[n-1]} \oplus V_{\mu[n-1]} \tag{5.19}
\end{equation*}
$$

By (5.19) and Proposition 5.13, if V_{λ} occurs in \mathcal{L}_{n-1}, then the diagram of λ is such that by removing any of its corners, we obtain the diagram of $\mu[n-1]$ or the diagram of $\lambda[n-1]$ (and only those). Now, by Lemma 5.20, \mathcal{L}_{n-1} cannot contain a one-dimensional representation. This fact, together with Examples 5.12 , shows that the diagram of λ has at least two rows and two columns. We are thus left with a very little choice for λ : such a partition λ is necessarily equal to $\lambda[n]$ or to the partition $(2,2)$ of $n=4$.

Therefore, if $n \neq 4$, then $\mathcal{L}_{n-1} \cong\left(V_{\lambda[n]}\right)^{a}$ for some nonnegative integer a. Restricting to $H_{n-1}^{K}(t)$, we obtain an isomorphism

$$
\left.\mathcal{L}_{n-1}\right|_{H_{n-1}^{K}(t)} \cong\left(V_{\lambda[n-1]}\right)^{a} \oplus\left(V_{\mu[n-1]}\right)^{a}
$$

Comparing with (5.19) and using Proposition 4.32, we obtain $a=1$, which proves the theorem for $n \neq 4$.

For $n=4$,

$$
\mathcal{L}_{3} \cong\left(V_{\lambda[4]}\right)^{a} \oplus\left(V_{(2,2)}\right)^{b}
$$

for some nonnegative integers a, b. Restricting to $H_{2}^{K}(t)$, we obtain

$$
\left.\mathcal{L}_{3}\right|_{H_{2}^{K}(t)} \cong\left(V_{\lambda[3]}\right)^{(a+b)} \oplus\left(V_{\mu[3]}\right)^{a}
$$

Comparing with (5.19), we obtain $a+b=1$ and $a=1$, hence $b=0$, which concludes the proof in the case $n=4$.

Corollary 5.23. The reduced Burau representation $\psi_{n}^{\mathrm{r}}: B_{n} \rightarrow \mathrm{GL}_{n-1}(K)$ is irreducible.

Proof. The irreducibility of ψ_{n}^{r} means that the only subspaces of K^{n-1} preserved by ψ_{n}^{r} are 0 and K^{n-1}. If W is such a subspace, then

$$
\left(-V_{i}\right) W=V_{i} W \subset W
$$

for all $i=1, \ldots, n-1$. By definition of the action of $H_{n}^{K}(t)$ on \mathcal{L}_{n-1}, the vector space W is an $H_{n}^{K}(t)$-submodule of \mathcal{L}_{n-1}. Since \mathcal{L}_{n-1} is simple by Theorem 5.22 , we must have $W=0$ or $W=K^{n-1}$.

Exercise 5.6.1. Check that

$$
I_{n-1}-V_{1}-V_{2}+V_{1} V_{2}+V_{2} V_{1}-V_{1} V_{2} V_{1}=0
$$

Deduce that \mathcal{L}_{n-1} is a module over the quotient of the algebra $H_{n}^{K}(t)$ by the two-sided ideal generated by

$$
1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1} T_{2} T_{1}
$$

(This quotient will be further discussed in Section 5.7.2.)

5.7 The Temperley-Lieb algebras

We end this chapter by presenting a family of algebras closely related to the Iwahori-Hecke algebras.

5.7.1 Definition and reduced words

For simplicity we work over the field \mathbf{C} of complex numbers. We fix an integer $n \geq 2$ and a nonzero complex number a.

Definition 5.24. The Temperley-Lieb algebra $A_{n}(a)$ is the \mathbf{C}-algebra generated by $n-1$ elements e_{1}, \ldots, e_{n-1} subject to the relations

$$
\begin{equation*}
e_{i} e_{j}=e_{j} e_{i} \tag{5.20}
\end{equation*}
$$

for $i, j=1,2, \ldots, n-1$ such that $|i-j| \geq 2$,

$$
\begin{equation*}
e_{i} e_{j} e_{i}=e_{i} \tag{5.21}
\end{equation*}
$$

for $i, j=1,2, \ldots, n-1$ such that $|i-j|=1$, and

$$
\begin{equation*}
e_{i}^{2}=a e_{i} \tag{5.22}
\end{equation*}
$$

for $i=1, \ldots, n-1$.
Any word $e_{i_{1}} \cdots e_{i_{r}}$ in the alphabet $\left\{e_{1}, \ldots, e_{n-1}\right\}$ represents an element of $A_{n}(a)$. The empty word represents the unit 1 of $A_{n}(a)$.

We define the index of a nonempty word $w=e_{i_{1}} \cdots e_{i_{r}}$ to be the maximum of all indices i_{1}, \ldots, i_{r} appearing in w. If the index of w is equal to p, then we say that e_{p} is the maximal generator of w. We agree that the index of the empty word is 0 .

Lemma 5.25. Any nonempty word $w=e_{i_{1}} \cdots e_{i_{r}}$ is equal in $A_{n}(a)$ to a scalar multiple of a word in which the maximal generator appears exactly once.

Proof. We proceed by induction on the index p of w. If $p=1$, then w is a positive power of e_{1}. From (5.22) we derive $e_{1}^{i}=a^{i-1} e_{1}$ for all $i>1$. Therefore, Lemma 5.25 holds for $p=1$.

Suppose that Lemma 5.25 holds for all words of index $<p$. Consider a nonempty word $w=e_{i_{1}} \cdots e_{i_{r}}$ of index p. Suppose that e_{p} appears in w at least twice. Then w is of the form $w=w_{1} e_{p} w^{\prime} e_{p} w_{2}$, where w_{1} and w_{2} are arbitrary words, and w^{\prime} is a word of index $\ell<p$.

If $\ell<p-1$, then by (5.20), w^{\prime} commutes with e_{p}. Therefore, by (5.22),

$$
w=w_{1} e_{p} w^{\prime} e_{p} w_{2}=w_{1} w^{\prime} e_{p}^{2} w_{2}=a w_{1} e_{p} w_{2}
$$

In this way we have diminished the number of occurrences of e_{p} in w by one.

If $\ell=p-1$, then by the induction hypothesis we may assume that $e_{\ell}=e_{p-1}$ appears only once in w^{\prime}, so that $w^{\prime}=w_{3} e_{p-1} w_{4}$, where w_{3} and w_{4} are words of index $\leq p-2$. Therefore, w_{3} and w_{4} commute with e_{p}. Using (5.21), we obtain

$$
\begin{aligned}
w & =w_{1} e_{p} w^{\prime} e_{p} w_{2}=w_{1} e_{p} w_{3} e_{p-1} w_{4} e_{p} w_{2} \\
& =w_{1} w_{3} e_{p} e_{p-1} e_{p} w_{4} w_{2}=w_{1} w_{3} e_{p} w_{4} w_{2}
\end{aligned}
$$

We have again diminished the number of occurrences of e_{p} in w by one.
Proceeding recursively, we can transform w into a scalar multiple of a word in which the maximal generator appears exactly once.

For $1 \leq k \leq n-1$, let $E_{n, k}$ be the set of $2 k$-tuples $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}\right)$ of integers such that

$$
0<i_{1}<i_{2}<\cdots<i_{k}<n, \quad 0<j_{1}<j_{2}<\cdots<j_{k}<n
$$

and

$$
j_{1} \leq i_{1}, \quad j_{2} \leq i_{2}, \quad \ldots, \quad j_{k} \leq i_{k}
$$

For such a tuple $\underline{s}=\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}\right)$, set

$$
e_{\underline{s}}=\left(e_{i_{1}} e_{i_{1}-1} \cdots e_{j_{1}}\right)\left(e_{i_{2}} e_{i_{2}-1} \cdots e_{j_{2}}\right) \cdots\left(e_{i_{k}} e_{i_{k}-1} \cdots e_{j_{k}}\right) .
$$

In the expression for $e_{\underline{s}}$ the indices are decreasing from left to right between each pair of parentheses. Observe that the index of $e_{\underline{s}}$ is i_{k}. We say that a word of the form $e_{\underline{s}}$, where

$$
\underline{s} \in E_{n}=E_{n, 1} \amalg E_{n, 2} \amalg \cdots \amalg E_{n, n-1}
$$

is a reduced word in $A_{n}(a)$.
Lemma 5.26. The set $\left\{e_{\underline{s}}\right\}_{\underline{s} \in E_{n}}$ of reduced words spans $A_{n}(a)$.
Proof. It is enough to prove that any word $w=e_{i_{1}} \cdots e_{i_{r}}$ is a scalar multiple of a reduced word. We proceed by induction on the index p of w.

If $p=1$, then w is a scalar multiple of e_{1}, which is a reduced word.
Let $p>1$ and assume that any word of index $<p$ is a scalar multiple of a reduced word of index $<p$. Let w be a word of index p. By Lemma 5.25, w is a scalar multiple of some word $w_{0}=w_{1} e_{p} w_{2}$, where w_{1} and w_{2} are words of index $<p$. By the induction hypothesis, we may assume that w_{2} is reduced. Suppose that

$$
w_{2}=e_{\underline{s}}=\left(e_{i_{1}} e_{i_{1}-1} \cdots e_{j_{1}}\right)\left(e_{i_{2}} e_{i_{2}-1} \cdots e_{j_{2}}\right) \cdots\left(e_{i_{k}} e_{i_{k}-1} \cdots e_{j_{k}}\right)
$$

for some

$$
\underline{s}=\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}\right) \in E_{n, k}
$$

with $i_{k}<p$.

If $i_{k} \leq p-2$, then w_{2} commutes with e_{p} and

$$
e_{p} w_{2}=\left(e_{i_{1}} e_{i_{1}-1} \cdots e_{j_{1}}\right)\left(e_{i_{2}} e_{i_{2}-1} \cdots e_{j_{2}}\right) \cdots\left(e_{i_{k}} e_{i_{k}-1} \cdots e_{j_{k}}\right)\left(e_{p}\right)
$$

If $i_{k}=p-1$, then

$$
e_{p} w_{2}=\left(e_{i_{1}} e_{i_{1}-1} \cdots e_{j_{1}}\right)\left(e_{i_{2}} e_{i_{2}-1} \cdots e_{j_{2}}\right) \cdots\left(e_{p} e_{i_{k}} e_{i_{k}-1} \cdots e_{j_{k}}\right)
$$

In both cases, w_{0} is equal in $A_{n}(a)$ to a word of the form $w^{\prime}\left(e_{p} e_{p-1} \cdots e_{q}\right)$, where w^{\prime} is a word of index $p^{\prime}<p$, and $q \leq p$. By the induction hypothesis, we may restrict ourselves to the case $w^{\prime}=e_{\underline{s^{\prime}}}$ for some $\underline{s}^{\prime}=$ $\left(i_{1}^{\prime}, \ldots, i_{\ell}^{\prime}, j_{1}^{\prime}, \ldots, j_{\ell}^{\prime}\right) \in E_{n, \ell}$. We have $i_{\ell}^{\prime}=p^{\prime}<p$; set $q^{\prime}=\overline{j_{\ell}^{\prime}}$.
(i) If $q^{\prime}<q$, then

$$
w_{0}=w^{\prime}\left(e_{p} e_{p-1} \cdots e_{q}\right)=e_{\underline{s^{\prime}}}\left(e_{p} e_{p-1} \cdots e_{q}\right)
$$

is reduced.
(ii) If $q^{\prime} \geq q$, then $w^{\prime}=w^{\prime \prime}\left(e_{p^{\prime}} e_{p^{\prime}-1} \cdots e_{q^{\prime}}\right)$, where $q \leq q^{\prime} \leq p^{\prime}<p$ and $w^{\prime \prime}$ has index $<p^{\prime}$. If $q^{\prime} \leq p-2$, then by (5.20) and (5.21),

$$
\begin{aligned}
e_{q^{\prime}}\left(e_{p} e_{p-1} \cdots e_{q}\right) & =e_{p} e_{p-1} \cdots e_{q^{\prime}+2}\left(e_{q^{\prime}} e_{q^{\prime}+1} e_{q^{\prime}}\right) e_{q^{\prime}-1} \cdots e_{q} \\
& =e_{p} e_{p-1} \cdots e_{q^{\prime}+2} e_{q^{\prime}} e_{q^{\prime}-1} \cdots e_{q} \\
& =\left(e_{q^{\prime}} e_{q^{\prime}-1} \cdots e_{q}\right)\left(e_{p} e_{p-1} \cdots e_{q^{\prime}+2}\right) .
\end{aligned}
$$

Therefore, $w_{0}=w^{\prime \prime}\left(e_{q^{\prime}} e_{q^{\prime}-1} \cdots e_{q}\right)\left(e_{p} e_{p-1} \cdots e_{q^{\prime}+2}\right)$. Since $w^{\prime \prime}\left(e_{q^{\prime}} e_{q^{\prime}-1} \cdots e_{q}\right)$ has index $<p$, the word w_{0} is of the form considered in (i) and the result follows from (i).

If $q^{\prime}=p-1$, then $p^{\prime}=q^{\prime}=p-1$, and by (5.21),

$$
e_{q^{\prime}}\left(e_{p} e_{p-1} \cdots e_{q}\right)=\left(e_{p-1} e_{p} e_{p-1}\right) \cdots e_{q}=e_{p-1} \cdots e_{q}
$$

Therefore, $w_{0}=w^{\prime \prime}\left(e_{p-1} \cdots e_{q}\right)$, where $w^{\prime \prime}$ has index $<p^{\prime}=p-1$. Thus, w_{0} has index $p-1$, and the result follows from the induction assumption.

Lemma 5.27. We have

$$
\operatorname{card} E_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

The integer $\binom{2 n}{n} /(n+1)$ is called the nth Catalan number.
Proof. To any element $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{k}\right) \in E_{n, k}$ we associate the path

$$
\begin{aligned}
(0,0) \rightarrow\left(i_{1}, 0\right) \rightarrow\left(i_{1}, j_{1}\right) \rightarrow & \left(i_{2}, j_{1}\right) \rightarrow\left(i_{2}, j_{2}\right) \rightarrow \cdots \\
& \cdots \rightarrow\left(i_{k}, j_{k-1}\right) \rightarrow\left(i_{k}, j_{k}\right) \rightarrow\left(n, j_{k}\right) \rightarrow(n, n)
\end{aligned}
$$

in the set $(\mathbf{R} \times \mathbf{Z}) \cup(\mathbf{Z} \times \mathbf{R}) \subset \mathbf{R}^{2}$. This path is an oriented polygonal line, alternating horizontal and vertical edges, all horizontal edges being directed
to the right and all vertical edges directed upward. Let us call such a path an admissible path from $(0,0)$ to (n, n). An admissible path arising from an element of E_{n} lies under the diagonal $\left\{(x, y) \in \mathbf{R}^{2} \mid x=y\right\}$, that is, it lies in the octant $\left\{(x, y) \in \mathbf{R}^{2} \mid 0 \leq y \leq x\right\}$. It is clear that any admissible path from $(0,0)$ to (n, n) lying under the diagonal can be obtained from a unique element of E_{n} in this way.

We now count the admissible paths from $(0,0)$ to (n, n) lying under the diagonal. Translating an admissible path from $(0,0)$ to (n, n) along the vector $(1,0)$, we obtain an admissible path from $(1,0)$ to $(n+1, n)$ not intersecting the diagonal. Conversely, any admissible path from $(1,0)$ to $(n+1, n)$ not intersecting the diagonal is the translation of a unique admissible path from $(0,0)$ to (n, n) lying under the diagonal.

To count the admissible paths from $(1,0)$ to $(n+1, n)$ not intersecting the diagonal, we subtract from the number of all admissible paths from $(1,0)$ to $(n+1, n)$ the number of all admissible paths intersecting the diagonal.

An admissible path from $(1,0)$ to $(n+1, n)$ has n unit horizontal edges and n unit vertical edges. Therefore the number of admissible paths from (1,0) to $(n+1, n)$ is the binomial coefficient $\binom{2 n}{n}$.

To any admissible path γ from $(1,0)$ to $(n+1, n)$ intersecting the diagonal, we associate an admissible path γ^{\prime} from $(0,1)$ to $(n+1, n)$ as follows: let (i, i) be the diagonal point on γ with smallest i; replace the subpath of γ from $(1,0)$ to (i, i) by its reflection in the diagonal; the path γ^{\prime} is the union of the reflected subpath and the subpath of γ from (i, i) to $(n+1, n)$. It is clear that γ^{\prime} is admissible. Any admissible path from $(0,1)$ to $(n+1, n)$ necessarily intersects the diagonal and therefore is obtained in this way from a unique admissible path from $(1,0)$ to $(n+1, n)$. Now, any admissible path from $(0,1)$ to $(n+1, n)$ has $n+1$ unit horizontal edges and $n-1$ unit vertical edges. Therefore the number of admissible paths from $(0,1)$ to $(n+1, n)$ is equal to the binomial coefficient $\binom{2 n}{n+1}$. This is also the number of all admissible paths from $(1,0)$ to $(n+1, n)$ intersecting the diagonal.

Summing up, we see that

$$
\begin{aligned}
\operatorname{card} E_{n} & =\binom{2 n}{n}-\binom{2 n}{n+1}=\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n+1)!(n-1)!} \\
& =\left(1-\frac{n}{n+1}\right) \frac{(2 n)!}{n!n!}=\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

The following inequality follows from Lemmas 5.26 and 5.27.
Proposition 5.28. We have

$$
\operatorname{dim}_{\mathbf{C}} A_{n}(a) \leq \frac{1}{n+1}\binom{2 n}{n}
$$

We will see later (Corollary 5.32 or Remark 5.35) that this inequality is in fact an equality.

5.7.2 Relation to the Iwahori-Hecke algebras

We now establish a connection between $A_{n}(a)$ and the one-parameter IwahoriHecke algebra $H_{n}(q)=H_{n}^{\mathbf{C}}(q)$. Recall the generators T_{1}, \ldots, T_{n-1} of $H_{n}(q)$.

Theorem 5.29. Let $q, a \in \mathbf{C}-\{0\}$ satisfy $a^{2}=(q+1)^{2} / q$.
(a) There is a surjective algebra homomorphism $\Psi: H_{n}(q) \rightarrow A_{n}(a)$ such that

$$
\begin{equation*}
\Psi\left(T_{i}\right)=\frac{q+1}{a} e_{i}-1 \tag{5.23}
\end{equation*}
$$

for $i=1, \ldots, n-1$.
(b) If $n=2$, then $\Psi: H_{n}(q) \rightarrow A_{n}(a)$ is an isomorphism.
(c) If $n \geq 3$, then the kernel of Ψ is the two-sided ideal of $H_{n}(q)$ generated by $1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1} T_{2} T_{1}$.

Note that the conditions on a and q in the theorem imply that $q \neq-1$.
Proof. (a) For $i=1, \ldots, n-1$, set

$$
\begin{equation*}
t_{i}=\Psi\left(T_{i}\right)=\frac{q+1}{a} e_{i}-1 \in A_{n}(a) . \tag{5.24}
\end{equation*}
$$

Formula (5.23) defines an algebra homomorphism $\Psi: H_{n}(q) \rightarrow A_{n}(a)$, provided t_{1}, \ldots, t_{n-1} satisfy relations (4.16), (4.17), and (4.20), where T_{i} is replaced by t_{i}. Let us check these relations.

Relation (4.16): This is an obvious consequence of (5.20).
Relation (4.17): If $|i-j|=1$, then by (5.21) and (5.22),

$$
\begin{aligned}
t_{i} t_{j} t_{i}= & \left(\frac{q+1}{a} e_{i}-1\right)\left(\frac{q+1}{a} e_{j}-1\right)\left(\frac{q+1}{a} e_{i}-1\right) \\
= & \left(\frac{q+1}{a}\right)^{3} e_{i} e_{j} e_{i}-\left(\frac{q+1}{a}\right)^{2}\left(e_{i} e_{j}+e_{j} e_{i}+e_{i}^{2}\right) \\
& +\left(\frac{q+1}{a}\right)\left(2 e_{i}+e_{j}\right)-1 \\
= & \left(\frac{q+1}{a}\right)^{3} e_{i}-\left(\frac{q+1}{a}\right)^{2}\left(e_{i} e_{j}+e_{j} e_{i}+a e_{i}\right) \\
& +\left(\frac{q+1}{a}\right)\left(2 e_{i}+e_{j}\right)-1 .
\end{aligned}
$$

It follows from this and the equality $(q+1)^{2} / a^{2}=q$ that

$$
\begin{aligned}
t_{i} t_{j} t_{i}-t_{j} t_{i} t_{j}= & \left(\frac{q+1}{a}\right)^{3}\left(e_{i}-e_{j}\right)-\left(\frac{q+1}{a}\right)^{2} a\left(e_{i}-e_{j}\right) \\
& +\left(\frac{q+1}{a}\right)\left(e_{i}-e_{j}\right) \\
= & \frac{q+1}{a}\left(\left(\frac{q+1}{a}\right)^{2}-(q+1)+1\right)\left(e_{i}-e_{j}\right) \\
= & \frac{q+1}{a}(q-(q+1)+1)\left(e_{i}-e_{j}\right)=0
\end{aligned}
$$

Relation (4.20): By (5.22),

$$
\begin{aligned}
t_{i}^{2}-(q-1) t_{i}-q= & \left(\frac{q+1}{a} e_{i}-1\right)^{2}-(q-1)\left(\frac{q+1}{a} e_{i}-1\right)-q \\
= & \left(\frac{q+1}{a}\right)^{2} e_{i}^{2}-2 \frac{q+1}{a} e_{i}+1 \\
& -\frac{(q-1)(q+1)}{a} e_{i}+(q-1)-q \\
= & \left(\frac{q+1}{a}\right)^{2} a e_{i}-2 \frac{q+1}{a} e_{i}-\frac{(q-1)(q+1)}{a} e_{i} \\
= & \frac{q+1}{a}((q+1)-2-(q-1)) e_{i}=0
\end{aligned}
$$

Formula (5.23) implies

$$
e_{i}=\Psi\left(\frac{a}{q+1}\left(T_{i}+1\right)\right)
$$

for all $i=1, \ldots, n-1$. Therefore, the generators e_{i} of $A_{n}(a)$ belong to the image of $\Psi: H_{n}(q) \rightarrow A_{n}(a)$, which proves that Ψ is surjective.
(b) The algebra $A_{2}(a)$ is generated by a single element e subject to the relation $e^{2}=a e$. It is easy to check that the formula $e \mapsto a\left(T_{1}+1\right) /(q+1)$ defines an algebra homomorphism $A_{2}(a) \rightarrow H_{2}(q)$ inverse to Ψ.
(c) From (5.24) we derive

$$
\begin{equation*}
e_{i}=\frac{a}{q+1}\left(t_{i}+1\right) . \tag{5.25}
\end{equation*}
$$

Substituting these expansions of e_{1}, \ldots, e_{n-1} in (5.20)-(5.22), we obtain relations for t_{1}, \ldots, t_{n-1}. It is easy to see that the relation obtained in this way from relation (5.20) (resp. from relation (5.22)) is equivalent to relation (4.16) (resp. to relation (4.20)), where T_{i} is replaced by t_{i}.

Relations (5.21) with $|i-j|=1$ and (4.20) yield

$$
\begin{aligned}
e_{i} e_{j} e_{i}-e_{i}= & \left(\frac{a}{q+1}\right)^{3}\left(t_{i}+1\right)\left(t_{j}+1\right)\left(t_{i}+1\right)-\frac{a}{q+1}\left(t_{i}+1\right) \\
& =\frac{a}{(q+1) q}\left(\left(t_{i}+1\right)\left(t_{j}+1\right)\left(t_{i}+1\right)-q\left(t_{i}+1\right)\right) \\
= & \frac{a}{(q+1) q}\left(t_{i} t_{j} t_{i}+t_{i} t_{j}+t_{j} t_{i}+t_{i}^{2}+2 t_{i}+t_{j}+1-q t_{i}-q\right) \\
= & \frac{a}{(q+1) q}\left(t_{i} t_{j} t_{i}+t_{i} t_{j}+t_{j} t_{i}\right. \\
& \left.\quad+(q-1) t_{i}+q+2 t_{i}+t_{j}+1-q t_{i}-q\right) \\
= & \frac{a}{(q+1) q}\left(t_{i} t_{j} t_{i}+t_{i} t_{j}+t_{j} t_{i}+t_{i}+t_{j}+1\right)
\end{aligned}
$$

This shows that

$$
1+t_{i}+t_{j}+t_{i} t_{j}+t_{j} t_{i}+t_{i} t_{j} t_{i}=0
$$

for all i, j such that $|i-j|=1$. Therefore the kernel I_{n} of $\Psi: H_{n}(q) \rightarrow A_{n}(a)$ is the two-sided ideal of $H_{n}(q)$ generated by the elements

$$
1+T_{i}+T_{j}+T_{i} T_{j}+T_{j} T_{i}+T_{i} T_{j} T_{i}
$$

for all i, j such that $|i-j|=1$. Since $T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j}$, it is enough to consider the generators corresponding to the pairs (i, j) with $j=i+1$. Therefore, I_{n} is the two-sided ideal of $H_{n}(q)$ generated by the elements

$$
1+T_{i}+T_{i+1}+T_{i} T_{i+1}+T_{i+1} T_{i}+T_{i} T_{i+1} T_{i}
$$

with $i=1, \ldots, n-1$.
Now, as observed in Exercise 1.1.4, for $i=2, \ldots, n-1$, we have

$$
\sigma_{i}=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{i-1} \sigma_{1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{-(i-1)}
$$

in the braid group B_{n}. Let ω be the image of $\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$ in $H_{n}(q)$ under the multiplicative homomorphism $B_{n} \rightarrow H_{n}(q)$ sending $\sigma_{i}^{ \pm 1}$ to $T_{i}^{ \pm 1}$ for all i. Clearly, ω is invertible in $H_{n}(q)$ and $T_{i}=\omega^{i-1} T_{1} \omega^{-(i-1)}$. It follows that

$$
\begin{aligned}
& 1+T_{i}+T_{i+1}+T_{i} T_{i+1}+T_{i+1} T_{i}+T_{i} T_{i+1} T_{i} \\
& =\omega^{i-1}\left(1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1} T_{2} T_{1}\right) \omega^{-(i-1)}
\end{aligned}
$$

for all $i=1, \ldots, n-1$. Therefore, as a two-sided ideal, I_{n} is generated by the single element $1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1} T_{2} T_{1}$.

5.7.3 The semisimple case

Throughout this section, we assume that q, a are nonzero complex numbers related by the condition $a^{2}=(q+1)^{2} / q$ of Theorem 5.29 and that the assumptions of Section 5.5 hold for q and an integer $n \geq 3$. In particular, the algebra $H_{n}(q)$ is semisimple, and then, by Corollary 4.51, so is $A_{n}(a)$.

By Theorem 5.18, any simple $H_{n}(q)$-module is of the form $V_{\lambda}=V_{\lambda}^{\mathbf{C}}$ for some partition λ of n. We may ask which V_{λ} is induced from an $A_{n}(a)$-module via the surjection $\Psi: H_{n}(q) \rightarrow A_{n}(a)$. In other words, for which partitions λ of n do we have $I_{n} V_{\lambda}=0$, where $I_{n}=\operatorname{Ker}\left(\Psi: H_{n}(q) \rightarrow A_{n}(a)\right)$?

Lemma 5.30. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ is a partition of an integer $n \geq 3$ such that $\lambda_{i} \in\{1,2\}$ for all $i=1, \ldots, p$, then $I_{n} V_{\lambda}=0$.

Observe that the partitions in Lemma 5.30 are exactly those whose diagrams have one or two columns.

Proof. By Theorem 5.29 (c), it suffices to show that

$$
X=1+T_{1}+T_{2}+T_{1} T_{2}+T_{2} T_{1}+T_{1} T_{2} T_{1} \in H_{3}(q) \subset H_{n}(q)
$$

acts trivially on V_{λ}. We proceed by induction on $n \geq 3$.
Suppose that $n=3$. Then there are two partitions of n whose diagrams have one or two columns, namely $\lambda=(1,1,1)$ and $\mu=(2,1)$. As we know, the module V_{λ} is one-dimensional and all T_{i} act by -1 on V_{λ}. It follows that X acts trivially on V_{λ}. The module V_{μ} is two-dimensional with basis $\left\{v_{T}, v_{T^{\prime}}\right\}$, where T and T^{\prime} are the standard tableaux of shape μ shown in Figure 5.7. Observe that $T^{\prime}=s_{2} T$ and that neither $s_{1} T$ nor $s_{1} T^{\prime}$ is a standard tableau. We have $d_{T}(1)=1=-d_{T^{\prime}}(1)$ and $d_{T}(2)=-2=-d_{T^{\prime}}(2)$. By (5.10)-(5.12), the generators T_{1} and T_{2} of $H_{n}(q)$ act on the basis $\left\{v_{T}, v_{T^{\prime}}\right\}$ of V_{μ} by the matrices

$$
T_{1}=\left(\begin{array}{cc}
q & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad T_{2}=-\frac{1}{q+1}\left(\begin{array}{cc}
1 & q \\
1+q+q^{2} & -q^{2}
\end{array}\right) .
$$

We obtain

$$
\begin{aligned}
& T_{1} T_{2}=-\frac{1}{q+1}\left(\begin{array}{cc}
q & q^{2} \\
-\left(1+q+q^{2}\right) & q^{2}
\end{array}\right) \\
& T_{2} T_{1}=-\frac{1}{q+1}\left(\begin{array}{cc}
q & -q \\
q\left(1+q+q^{2}\right) & q^{2}
\end{array}\right)
\end{aligned}
$$

and

$$
T_{1} T_{2} T_{1}=-\frac{1}{q+1}\left(\begin{array}{cc}
q^{2} & -q^{2} \\
-q\left(1+q+q^{2}\right) & -q^{2}
\end{array}\right) .
$$

From these computations it follows that $X=0$ on V_{μ}.

Let $n \geq 4$ and let λ be a partition of n whose diagram has one or two columns. Now, $X \in H_{3}(q) \subset H_{n-1}(q)$. By Theorem 5.13,

$$
\left.V_{\lambda}\right|_{H_{n-1}(q)}=\bigoplus_{\mu \hookrightarrow \lambda} V_{\mu},
$$

where μ runs over all partitions of $n-1$ obtained from λ by removing a corner. The diagram of such a partition μ has one or two columns. Therefore, by the induction hypothesis, X acts as zero on V_{μ}. Hence, X acts as zero on V_{λ}.

Fig. 5.7. The two standard tableaux of shape μ

Proposition 5.31. For any $n \geq 3$,

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{C}} I_{n}=n!-\frac{1}{n+1}\binom{2 n}{n}>0 \tag{5.26}
\end{equation*}
$$

For a partition λ of n, we have $I_{n} V_{\lambda}=0$ if and only if the diagram of λ has one or two columns.

Proof. Let $\pi_{\lambda}: H_{n}(q) \rightarrow \operatorname{End}_{\mathbf{C}}\left(V_{\lambda}\right)$ be the algebra homomorphism induced by the action of $H_{n}(q)$ on V_{λ}. Since $\pi_{\lambda}\left(I_{n}\right)=0$ for all partitions λ whose diagrams have one or two columns, the isomorphism of Corollary 5.19 sends I_{n} injectively into the product algebra

$$
\prod_{\lambda \in \Lambda_{\geq 3}(n)} \operatorname{End}_{\mathbf{C}}\left(V_{\lambda}\right)
$$

where $\Lambda_{\geq 3}(n)$ is the set of partitions of n whose diagrams have at least three columns. Therefore, by Theorem 5.1,

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{C}} I_{n} \leq \sum_{\lambda \in \Lambda_{\geq 3}(n)}\left(f^{\lambda}\right)^{2}=n!-\sum_{\lambda \in \Lambda_{\leq 2}(n)}\left(f^{\lambda}\right)^{2} \tag{5.27}
\end{equation*}
$$

where $\Lambda_{\leq 2}(n)$ is the set of partitions of n whose diagrams have one or two columns. Recall that $f^{\lambda}=f^{\lambda^{T}}$, where λ^{T} is the conjugate partition (see Section 5.1.5). If $\lambda \in \Lambda_{\leq 2}(n)$, then λ^{T} has at most two parts, and we deduce from Exercise 5.2.3 (b) that

$$
\begin{equation*}
\sum_{\lambda \in \Lambda_{\leq 2}(n)}\left(f^{\lambda}\right)^{2}=\sum_{\lambda^{T}}\left(f^{\lambda^{T}}\right)^{2}=\frac{1}{n+1}\binom{2 n}{n} . \tag{5.28}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{C}} I_{n} \leq n!-\frac{1}{n+1}\binom{2 n}{n} \tag{5.29}
\end{equation*}
$$

On the other hand, by definition of I_{n} and by Proposition 5.28,

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{C}} I_{n}=\operatorname{dim}_{\mathbf{C}} H_{n}(q)-\operatorname{dim}_{\mathbf{C}} A_{n}(a) \geq n!-\frac{1}{n+1}\binom{2 n}{n} \tag{5.30}
\end{equation*}
$$

Combining (5.29) and (5.30), we obtain the equality in (5.26).
It follows from (5.26), (5.27), and (5.28) that

$$
\begin{equation*}
\operatorname{dim}_{\mathbf{C}} I_{n}=\sum_{\lambda \in \Lambda_{\geq 3}(n)}\left(f^{\lambda}\right)^{2} \tag{5.31}
\end{equation*}
$$

Since $f^{\lambda}>0$ for any $\lambda \neq \emptyset$ and the set $\Lambda_{\geq 3}(n)$ is nonempty, $\operatorname{dim}_{\mathbf{C}} I_{n}>0$. Moreover, it follows from the computation of $\operatorname{dim}_{\mathbf{C}} I_{n}$ that the injection

$$
\begin{equation*}
I_{n} \rightarrow \prod_{\lambda \in \Lambda_{\geq 3}(n)} \operatorname{End}_{\mathbf{C}}\left(V_{\lambda}\right) \tag{5.32}
\end{equation*}
$$

is an algebra isomorphism. Thus, $I_{n} V_{\lambda}=\pi_{\lambda}\left(I_{n}\right) V_{\lambda}=0$ if and only if $\lambda \notin \Lambda_{\geq 3}(n)$ or, equivalently, $\lambda \in \Lambda_{\leq 2}(n)$.

Corollary 5.32. Let $n \geq 2$.
(a) The dimension of $A_{n}(a)$ as a complex vector space is given by

$$
\operatorname{dim}_{\mathbf{C}} A_{n}(a)=\frac{1}{n+1}\binom{2 n}{n}
$$

(b) The set $\left\{e_{\underline{s}}\right\}_{\underline{s} \in E_{n}}$ of reduced words is a basis of $A_{n}(a)$.
(c) The algebra homomorphism $A_{n}(a) \rightarrow A_{n+1}(a)$ defined by $e_{i} \mapsto e_{i}$ for $i=1, \ldots, n-1$ is injective.
(d) The algebra $A_{n}(a)$ is semisimple. Any simple $A_{n}(a)$-module is isomorphic to a unique module of the form V_{λ}, where λ is a partition of n whose diagram has one or two columns.

Proof. (a) For $n \geq 3$, this follows from Proposition 5.31, since

$$
\operatorname{dim}_{\mathbf{C}} A_{n}(a)=\operatorname{dim}_{\mathbf{C}} H_{n}(q)-\operatorname{dim}_{\mathbf{C}} I_{n}
$$

For $n=2$, the claim (a) is straightforward.
(b) By Lemmas 5.26 and 5.27 , the set of reduced words spans $A_{n}(a)$ and consists of

$$
\frac{1}{n+1}\binom{2 n}{n}=\operatorname{dim}_{\mathbf{C}} A_{n}(a)
$$

vectors. Therefore, it is a basis.
(c) This homomorphism sends a basis of $A_{n}(a)$ to a subset of a basis of $A_{n+1}(a)$; therefore it is injective.
(d) We have already observed that $A_{n}(a)$ is semisimple. Let λ be a partition of n whose diagram has one or two columns. By Lemma 5.30, the algebra $A_{n}(a) \cong H_{n}(q) / I_{n}$ acts on V_{λ}. If V_{λ} were not simple as as $A_{n}(a)$-module, then it would not be simple as a $H_{n}(q)$-module, which would contradict Theorem 5.18.

By Corollary 5.19 and (5.32) we have the algebra isomorphisms

$$
A_{n}(a) \cong H_{n}(q) / I_{n} \cong \prod_{\lambda \in \Lambda_{\leq 2}(n)} \operatorname{End}_{\mathbf{C}}\left(V_{\lambda}\right)
$$

Hence, any simple $A_{n}(a)$-module is isomorphic to V_{λ} for some $\lambda \in \Lambda_{\leq 2}(n)$.

5.7.4 A graphical interpretation of the Temperley-Lieb algebras

We complete our survey of the Temperley-Lieb algebras by giving a graphical interpretation of their elements.

For $n \geq 1$, a simple n-diagram D is a disjoint union of n smoothly embedded arcs in $\mathbf{R} \times[0,1]$ such that the boundary ∂D of D consists of the points $(1,0), \ldots,(n, 0)$ and $(1,1), \ldots,(n, 1)$, and $D-\partial D \subset \mathbf{R} \times(0,1)$, and the tangent vector of D at each endpoint is parallel to $\{0\} \times \mathbf{R}$. Two simple n-diagrams are isotopic if they can be deformed into each other in the class of simple n-diagrams. Figures 5.8 and 5.9 show all simple n-diagrams up to isotopy for $n=1,2,3$.

Fig. 5.8. The simple 1- and 2-diagrams

Fig. 5.9. The five simple 3-diagrams

Lemma 5.33. The number of isotopy classes of simple n-diagrams is equal to the nth Catalan number

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

Proof. By a semicircle we shall mean a Euclidean semicircle in the upper half-plane $\mathbf{R} \times[0,+\infty)$ with endpoints (and center) on $\mathbf{R} \times\{0\}$. It is clear that pulling the upper endpoints of any simple n-diagram down as in Figure 5.10, we obtain a union of n disjoint embedded arcs in $\mathbf{R} \times[0,+\infty)$ with $2 n$ endpoints on $\mathbf{R} \times\{0\}$. We can isotop such a union into a system of n disjoint semicircles. These transformations establish a bijective correspondence between the isotopy classes of simple n-diagrams and the isotopy classes of systems of n disjoint semicircles. Therefore it suffices to compute the number of (isotopy classes of) such systems.

Fig. 5.10. Turning a simple n-diagram into a system of semicircles

We label an endpoint of a semicircle by L (resp. by R) if this point is the left (resp. right) endpoint of the semicircle. Reading the labels of the endpoints of a system of n disjoint semicircles from left to right along $\mathbf{R} \times\{0\}$, we obtain a word w of length $2 n$ in the alphabet $\{L, R\}$. The word w is a Dyck word, i.e., w has as many occurrences of L as occurrences of R and no prefix of w has more occurrences of R than occurrences of L. It is easy to see that any Dyck word of length $2 n$ comes from a system of n disjoint semicircles, which is unique up to isotopy.

Now to a Dyck word w of length $2 n$ we associate a polygonal path Γ_{w} in \mathbf{R}^{2} with consecutive vertices $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n}, y_{2 n}\right)$. Here $x_{0}=$ $y_{0}=0$ and for $k \in\{1, \ldots, 2 n\}$, the point $\left(x_{k}, y_{k}\right)$ is defined inductively by $x_{k}=x_{k-1}+1$ and $y_{k}=y_{k-1}$ if the k th letter in w is L, and $x_{k}=x_{k-1}$ and $y_{k}=y_{k-1}+1$ if the k th letter in w is R. Since there are n occurrences of L and n occurrences of R in w, the path Γ_{w} leads from $(0,0)$ to (n, n). It is clear that Γ_{w} is admissible in the sense defined in the proof of Lemma 5.27. Moreover, Γ_{w} lies under the diagonal because of the condition on the prefixes of w. Conversely, any admissible path from $(0,0)$ to (n, n) lying under the diagonal is of the form Γ_{w} for a unique Dyck word w of length $2 n$.

In conclusion, the number of isotopy classes of simple n-diagrams is equal to the number of admissible paths from $(0,0)$ to (n, n) lying under the diagonal. By Lemma 5.27, this number is equal to the nth Catalan number.

Fix a nonzero complex number a. Let $A_{n}^{\prime}(a)$ be the complex vector space spanned by the isotopy classes of simple n-diagrams. By Lemma 5.33, the dimension of $A_{n}^{\prime}(a)$ is equal to the nth Catalan number. Every simple n diagram D represents a vector in $A_{n}^{\prime}(a)$, denoted by $[D]$.

Let us equip $A_{n}^{\prime}(a)$ with the structure of an associative algebra. Given two simple n-diagrams D and D^{\prime}, define $D \sharp D^{\prime}$ to be the one-manifold in $\mathbf{R} \times[0,1]$ obtained by attaching D on top of D^{\prime} and compressing the result into $\mathbf{R} \times[0,1]$. Then $D \sharp D^{\prime}$ is a disjoint union of n embedded arcs and a certain number $k\left(D, D^{\prime}\right) \geq 0$ of embedded circles. Removing the circles, we obtain a simple n-diagram, denoted by $D \circ D^{\prime}$. Set

$$
[D]\left[D^{\prime}\right]=a^{k\left(D, D^{\prime}\right)}\left[D \circ D^{\prime}\right]
$$

It is easy to check that this formula defines an associative product on $A_{n}^{\prime}(a)$. The simple n-diagram

$$
1_{n}=\{1, \ldots, n\} \times[0,1]
$$

represents the unit of $A_{n}^{\prime}(a)$.

Fig. 5.11. The simple n-diagram e_{i}^{\prime}

The following theorem gives a graphical interpretation for the TemperleyLieb algebra $A_{n}(a)$.

Theorem 5.34. For $i=1, \ldots, n-1$, let e_{i}^{\prime} be the simple n-diagram in Figure 5.11. The assignment

$$
e_{i} \mapsto\left[e_{i}^{\prime}\right] \quad(i=1, \ldots, n-1)
$$

defines an algebra isomorphism $A_{n}(a) \rightarrow A_{n}^{\prime}(a)$.
Proof. It is a pleasant exercise to verify that the elements $\left[e_{1}^{\prime}\right], \ldots,\left[e_{n-1}^{\prime}\right]$ of $A_{n}^{\prime}(a)$ satisfy the defining relations (5.20)-(5.22) of $A_{n}(a)$. Therefore there is an algebra homomorphism $f: A_{n}(a) \rightarrow A_{n}^{\prime}(a)$ such that $f\left(e_{i}\right)=\left[e_{i}^{\prime}\right]$ for all $i=1, \ldots, n-1$. We now verify that f is an isomorphism. It is enough to check that f is surjective, since

$$
\operatorname{dim}_{\mathbf{C}} A_{n}(a) \leq \frac{1}{n+1}\binom{2 n}{n}=\operatorname{dim}_{\mathbf{C}} A_{n}^{\prime}(a)
$$

by Proposition 5.28. It thus suffices to establish the following claim: if D is a simple n-diagram not isotopic to 1_{n}, then D is equal in $A_{n}^{\prime}(a)$ to a product of elements of the form $\left[e_{1}^{\prime}\right],\left[e_{2}^{\prime}\right], \ldots,\left[e_{n-1}^{\prime}\right]$.

We shall prove the claim by induction on n. If $n=2$, then D is isotopic to e_{1}^{\prime} and the claim is true. Assume that the claim is true for simple diagrams with $n-1$ arcs and let us prove it for simple diagrams with n arcs. Let P_{1}, \ldots, P_{n} be the bottom endpoints of D enumerated from left to right. Since $[D] \neq\left[1_{n}\right]$, there is an arc of D connecting two bottom endpoints of D. Since the arcs of D are disjoint, there is an arc of D connecting two consecutive bottom endpoints. Denote by $i=i(D)$ the minimal $i=1,2, \ldots, n-1$ such that there is an arc of D connecting P_{i} and P_{i+1}. Now we use induction on $i(D)$.

If $i(D)>1$, then $[D]=\left[D^{\prime}\right]\left[e_{i}^{\prime}\right]$, where D^{\prime} is a simple n-diagram with $i\left(D^{\prime}\right)=i(D)-1$. The diagram D^{\prime} is obtained from D by the following transformation in a neighborhood of P_{i-1}, P_{i}, P_{i+1} : we slightly deform the arc of D issuing from P_{i-1} to produce a local maximum and a local minimum of the height function. We may assume that the local minimum lies strictly above the arc of D connecting P_{i} and P_{i+1}. Now we may strip e_{i} off and present $[D]$ as $[D]=\left[D^{\prime}\right]\left[e_{i}^{\prime}\right]$ with $i\left(D^{\prime}\right)=i(D)-1$.

It remains to consider the case $i(D)=1$. We have $[D]=\left[D^{\prime \prime}\right]\left[e_{1}^{\prime}\right]$, where $D^{\prime \prime}$ is a simple n-diagram constructed as follows. Consider the arc of D descending from the leftmost top endpoint in $\mathbf{R} \times\{1\}$. We take a small subarc of this arc lying close to this top endpoint and push it down close to the arc of D connecting P_{1} and P_{2}. This allows us to strip e_{1} off and to present $[D]$ in the form $[D]=\left[D^{\prime \prime}\right]\left[e_{1}^{\prime}\right]$. It is clear that $D^{\prime \prime}$ contains a strand joining the leftmost bottom endpoint to the leftmost top endpoint. In other words, $D^{\prime \prime}$ is obtained by adding a vertical interval from the left to a simple $(n-1)$-diagram. The inductive assumption implies that $\left[D^{\prime \prime}\right]$ is a product of elements of the form $\left[e_{2}^{\prime}\right], \ldots,\left[e_{n-1}^{\prime}\right]$. This implies our claim and thus completes the proof of the theorem.

Remark 5.35. As a consequence of Theorem 5.34, the dimension of the Temperley-Lieb algebra $A_{n}(a)$ is equal to the nth Catalan number. This provides another proof of Corollary 5.32 (a). This proof is more general, since it holds for an arbitrary value of the complex parameter a.

Exercise 5.7.1. Let $K=\mathbf{C}$ and \mathcal{L}_{n-1} be the $H_{n}^{K}(q)$-module introduced in Section 5.6. Use Theorem 5.22 and Lemma 5.30 to show that \mathcal{L}_{n-1} is a module over the Temperley-Lieb algebra $A_{n}(a)$, where $a^{2}=(q+1)^{2} / q$.

Exercise 5.7.2 (The Jones-Wenzl idempotents). Let u be a nonzero complex number such that $u^{2 k} \neq 1$ for all $k=1, \ldots, n$. Set $a=-\left(u+u^{-1}\right)$. Define elements $f_{1}, \ldots, f_{n} \in A_{n}(a)$ inductively by $f_{1}=1$ and

$$
f_{k}=f_{k-1}+\frac{u^{k-1}-u^{-(k-1)}}{u^{k}-u^{-k}} f_{k-1} e_{k-1} f_{k-1}
$$

for all $k=2, \ldots, n$. Show that $f_{k}^{2}=f_{k}$ for all $k=1, \ldots, n$ and that $\left(f_{1}, \ldots, f_{n}\right)$ is the unique sequence of elements of $A_{n}(a)$ such that $f_{k}-1$ is a linear combination of nonempty words in $\left\{e_{1}, \ldots, e_{k-1}\right\}$ for $k=1, \ldots, n$ and for all $\ell<k$,

$$
e_{\ell} f_{k}=f_{k} e_{\ell}=0
$$

Exercise 5.7.3. Let $C_{n}=\binom{2 n}{n} /(n+1)$ be the nth Catalan number.
(a) Show that

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

for all $n \geq 0$. (Hint: Every Dyck word w of length ≥ 2 can be written uniquely in the form $w=L w_{1} R w_{2}$ with (possibly empty) Dyck words w_{1}, w_{2}.)
(b) Deduce the following generating function for the Catalan numbers:

$$
\sum_{n=0}^{\infty} C_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Notes

Before 1983, essentially the only interesting known linear representation of the braid group B_{n} was the Burau representation. The situation changed radically when Vaughan Jones introduced the Temperley-Lieb algebras and used them to construct new representations of the braid groups; see [Jon83], [Jon84], [Jon86], [Jon87], [Jon89]. Soon thereafter, inspired by Jones's work, Reshetikhin and Turaev showed how to obtain finite-dimensional representations of the braid groups from representations of quantum groups; see [Tur88], [RT90]. For comprehensive introductions to quantum groups and their connections to braids and links, see [Tur94], [Kas95], [KRT97]. In this chapter we followed a "dual" approach to the representations of B_{n}, based on the theory of Iwahori-Hecke algebras.

The content of Section 5.1 is standard; see, e.g., [Jam78], [FH91], [Ful97], [Sag01]. Our proof of Theorem 5.1 follows Stanley [Sta88]; see also [Sag01, Sect. 5.1]. This theorem can also be proved with the help of the RobinsonSchensted correspondence, which provides a bijection

$$
\mathfrak{S}_{n} \simeq \coprod_{\lambda \dashv n} \mathcal{I}_{\lambda} \times \mathcal{T}_{\lambda}
$$

see [Knu73, Sect. 5.1.4], [Ful97, Chap. 4], [Sag01, Chap. 3].
The hook length formula in Exercise 5.2.6 is due to Frame, Robinson, and Thrall [FRT54]; for a proof, see, e.g., [Knu73, Sect. 5.1.4], [Gol93, Sect. 12], [Sag01, Chap. 3]. In the formulation of this exercise, we followed [Mat99, Chap. 3, Exer. 25]. Exercise 5.5.4 is taken from [GHJ89, Chap. 2] (see also [Ram97]).

The modules V_{λ} of Section 5.3 were constructed by Hoefsmit [Hoe74] as a generalization of Young's seminormal representations of the symmetric groups. A general theory of seminormal representations is given in [Ram97]. In Sections 5.3-5.5 we followed [Hoe74], [Wen88], [Ram97]. Lusztig [Lus81] gave an explicit construction of the isomorphism of Exercise 5.5.2.

For a study of the Iwahori-Hecke algebras and their representations without assuming semisimplicity, see, e.g., [DJ86], [DJ87], [Gec98], [Mat99].

The fact that the reduced Burau representation of B_{n} appears as the simple module associated to the partition $(2,1, \ldots, 1)$ was pointed out by Jones [Jon84], [Jon86], [Jon87].

Linear representations of the Temperley-Lieb algebras first came up in physics in the work by Temperley and Lieb [TL71]. The Temperley-Lieb algebras themselves were introduced by Jones [Jon83] in his study of subfactors. Jones [Jon84], [Jon86] also related these algebras to the Iwahori-Hecke algebras and to the braid groups. The Jones-Wenzl idempotents of Exercise 5.7.2 were introduced by Jones in [Jon83]. The inductive formula defining them is due to Wenzl [Wen87]. These idempotents play an important role in the theory of invariants of three-dimensional manifolds (see [Tur94, Sect. XII.4]). The reader interested in Catalan numbers is encouraged to take a close look at [Sta99, Exercise 6.19], which lists 66 sets each of whose cardinal is equal to the nth Catalan number.

In Section 5.7 we essentially followed [GHJ89, Sects. 2.8-2.11]. For more on the graphical interpretation of the Temperley-Lieb algebras, see [Kau87], [Kau90], [Kau91], [Tur94, Sect. XII.3].

It should also be noted that Formanek et al. classified all complex irreducible representations of B_{n} of dimension $\leq n$; see [For96], [FLSV03]. For more on representations of B_{3}, see [TW01], [Tub01]. Quotients of the braid group algebras by cubic relations were investigated by Funar et al.; see [Fun95], [BF04].

Garside Monoids and Braid Monoids

Braid groups may be viewed as groups of fractions of certain monoids called braid monoids. The latter belong to a wider class of so-called Garside monoids. In this chapter we investigate properties of monoids and specifically of Garside monoids. As an application, we give a solution of the conjugacy problem in the braid groups. We also discuss generalized braid groups associated with Coxeter matrices.

6.1 Monoids

6.1.1 Definitions and examples

A monoid is a set M equipped with a binary operation (multiplication) $M \times M \rightarrow M$ that is associative and has a neutral element. For $a, b \in M$, the image of $(a, b) \in M \times M$ under the multiplication is denoted by $a b$ and called the product of a and b. The associativity means that $(a b) c=a(b c)$ for all $a, b, c \in M$. The neutral element $1 \in M$ satisfies $a 1=1 a=a$ for all $a \in M$. Such an element is always unique.

A monoid M is left (resp. right) cancellative if for all $a, b, c \in M$,

$$
a b=a c \Longrightarrow b=c \quad(\text { resp. } \quad b a=c a \Longrightarrow b=c) .
$$

An element a of a monoid M is invertible if there is $b \in M$ such that $a b=b a=1$. A group is a monoid in which all elements are invertible.

A map f from a monoid M to a monoid M^{\prime} is a monoid homomorphism if $f(a b)=f(a) f(b)$ for all $a, b \in M$ and f sends the neutral element of M to the neutral element of M^{\prime}.

Examples 6.1. (a) The set of nonnegative integers with addition as a binary operation is a monoid denoted by \mathbf{N}.
(b) The set of positive integers with multiplication as a binary operation is a monoid denoted by \mathbf{N}^{\times}.
(c) A free monoid on a set X is a monoid X^{*} containing X as a subset and such that any set-theoretic map from X to a monoid M extends uniquely to a monoid homomorphism $X^{*} \rightarrow M$. This property defines X^{*} up to monoid isomorphism. It is easy to show that every element w of X^{*} can be expanded in a unique way as a word on the alphabet X, i.e., as a product of several elements of $X \subset X^{*}$. The number of elements of X in this expansion (counted with multiplicities) is called the length of w and is denoted by $l(w)$. Clearly, $l(1)=0, l(x)=1$ for $x \in X$, and $l\left(w w^{\prime}\right)=l(w)+l\left(w^{\prime}\right)$ for any $w, w^{\prime} \in X^{*}$. For $X=\emptyset$, the monoid X^{*} consists only of the neutral element; this is the trivial monoid.

The monoids in examples (a), (b), (c) are left and right cancellative, and their neutral elements are the only invertible elements.

6.1.2 Divisibility in monoids

If $a=b c$, where a, b, c are elements of a monoid M, then we say that b is a left divisor of a and c is a right divisor of a. We also say that a is a right multiple of b and a left multiple of c. We write $b \preceq a$ and $a \succeq c$. For example, $1 \preceq a$ and $a \succeq 1$ for all $a \in M$, since $a=1 a=a 1$.

Lemma 6.2. The relations \preceq and \succeq in a monoid are reflexive and transitive.
Proof. The reflexivity of \preceq follows from the identity $a=a 1$; and the transitivity, from the associativity of multiplication. The proofs for \succeq are similar.

6.1.3 Atomic monoids

For any element $a \neq 1$ of a monoid M, set

$$
\|a\|=\sup \left\{r \geq 1 \mid a=a_{1} \cdots a_{r} \text { with } a_{1}, \ldots, a_{r} \in M-\{1\}\right\} \in\{1,2, \ldots, \infty\}
$$

Also set $\|1\|=0$. It is easy to check that for all $a, b \in M$,

$$
\|a b\| \geq\|a\|+\|b\| .
$$

Note that $\|a\|=0$ if and only if $a=1$.
An element $a \in M$ is called an atom if $\|a\|=1$. In other words, $a \in M$ is an atom if $a \neq 1$ and $a=a_{1} \cdots a_{r}$ implies that $a_{i}=1$ for all i but one. Any $a \in M$ with finite $\|a\|$ expands as $a=a_{1} \cdots a_{r}$, where $r=\|a\|$ and a_{1}, \ldots, a_{r} are atoms. This justifies the following definition: a monoid M is atomic if $\|a\|$ is finite for all $a \in M$.

As an exercise, the reader may verify that the monoids $\mathbf{N}, \mathbf{N}^{\times}$introduced above and all free monoids are atomic. The monoid $\{1, x\}$ with multiplication

$$
x^{2}=x 1=1 x=x, \quad 11=1
$$

is not atomic. Groups have no atoms and are not atomic (except the trivial group).

Lemma 6.3. If elements a, b of an atomic monoid M satisfy $a \preceq b$ and $b \preceq a$, then $a=b$. Similarly, if $a \succeq b$ and $b \succeq a$, then $a=b$.

Proof. Since $a \preceq b \preceq a$, there are $u, v \in M$ such that $b=a u$ and $a=b v$. Then $a=a u v$ and

$$
\|a\|=\|a u v\| \geq\|a\|+\|u\|+\|v\| .
$$

This implies that $\|u\|=\|v\|=0$. Hence $u=v=1$ and $a=b$. The relation \succeq is treated similarly.

Lemmas 6.2 and 6.3 imply that the relations \preceq and \succeq on an atomic monoid are partial orders.

Given a subset E of an atomic monoid M, we say that an element $a \in E$ is maximal (resp. minimal) with respect to \preceq if $b \preceq a$ (resp. $a \preceq b$) for all $b \in E$. A maximal (resp. minimal) element of E may not exist, but if it exists, it is unique by Lemma 6.3. Similar definitions apply to the relation \succeq.

The equation $a b=1$ in an atomic module M has only one solution: $a=1$, $b=1$. Indeed, if $a b=1$ for $a, b \in M$, then $1 \preceq a \preceq 1$, so that $a=1$ and $b=1$. In particular, the neutral element is the unique invertible element of M.

6.1.4 Presentations of a monoid

Consider a set X and a subset R of $X^{*} \times X^{*}$. Let \sim be the smallest equivalence relation on X^{*} containing all pairs $\left(w_{1} r w_{2}, w_{1} r^{\prime} w_{2}\right)$, where $\left(r, r^{\prime}\right) \in R$ and $w_{1}, w_{2} \in X^{*}$. In other words, \sim is the smallest equivalence relation on X^{*} such that $w_{1} r w_{2} \sim w_{1} r^{\prime} w_{2}$ for all $\left(r, r^{\prime}\right) \in R$ and $w_{1}, w_{2} \in X^{*}$. We define M to be the set of equivalence classes for \sim. It is clear that M has a unique structure of a monoid such that the projection $P: X^{*} \rightarrow M$ is a monoid homomorphism. We say that $\langle X \mid R\rangle$ is a monoid presentation of M and call the elements of X generators and the elements of R relations.

It is clear that the set $P(X) \subset M$ generates M in the sense that every element of M is a product of elements of this set. For any relation $\left(r, r^{\prime}\right) \in R$, the element $P(r)=P\left(r^{\prime}\right)$ of M is called a relator associated with the presentation $\langle X \mid R\rangle$. In the sequel we shall often use the notation $r=r^{\prime}$ for a relation $\left(r, r^{\prime}\right) \in R$ and make no distinction between a generator $x \in X$ and its projection $P(x)$ to M.

Note that a set-theoretic map from the set X to a monoid M^{\prime} induces a monoid homomorphism $M \rightarrow M^{\prime}$ if and only if the monoid extension $f^{*}: X^{*} \rightarrow M^{\prime}$ of f satisfies $f^{*}(r)=f^{*}\left(r^{\prime}\right)$ for all $\left(r, r^{\prime}\right) \in R$.

We introduce several useful classes of monoid presentations. A monoid presentation $\langle X \mid R\rangle$ is finite if both sets X and R are finite. A presentation $\langle X \mid R\rangle$ of a monoid M is weighted if there is a monoid homomorphism $\ell: M \rightarrow \mathbf{N}$ such that $\ell(x) \geq 1$ for all $x \in X$. The homomorphism ℓ is called the weight.

A presentation $\langle X \mid R\rangle$ of a monoid M is length-balanced if $l(r)=l\left(r^{\prime}\right)$ for all $\left(r, r^{\prime}\right) \in R$, where l is the length function on X^{*} introduced in Section 6.1.1. The formula $\ell(x)=1$ for all $x \in X$ defines then a canonical weight $\ell: M \rightarrow \mathbf{N}$. Thus, all length-balanced presentations are weighted. The converse is not true; for instance, the presentation $\left\langle x, y \mid x^{3}=y^{2}\right\rangle$ is weighted but not lengthbalanced.

Lemma 6.4. If a monoid M has a weighted presentation $\langle X \mid R\rangle$, then M is atomic and all its atoms are contained in the set X of generators. If M has a length-balanced presentation $\langle X \mid R\rangle$, then the set of atoms of M coincides with X and $\|a\|=\ell(a)$ for all $a \in M$, where ℓ is the canonical weight on M.

Proof. Let $\ell: M \rightarrow \mathbf{N}$ be a monoid homomorphism such that $\ell(x) \geq 1$ for all generators $x \in X$. Then $\ell(a) \geq 1$ for all $a \in M-\{1\}$. If $a \in M$ expands as a product $a_{1} \cdots a_{r}$ with $a_{1}, \ldots, a_{r} \in M-\{1\}$, then $\ell(a)=\ell\left(a_{1}\right)+\cdots+\ell\left(a_{r}\right) \geq r$. Hence $\ell(a) \geq\|a\|$, so that M is atomic. That all atoms of M belong to X follows from the fact that any generating subset of a monoid must contain all the atoms. The second claim of the lemma is a direct consequence of the definitions.

6.1.5 The word problem and the divisibility problem

The word problem for a presentation $\langle X \mid R\rangle$ of a monoid M is the following: given two words $w, w^{\prime} \in X^{*}$ representing certain $a, a^{\prime} \in M$, determine whether $a=a^{\prime}$. The closely related left (resp. right) divisibility problem is the following: given two words $w, w^{\prime} \in X^{*}$ representing $a, a^{\prime} \in M$, determine whether $a \preceq a^{\prime}$ (resp. $a^{\prime} \succeq a$).

Both the word problem and the divisibility problem can easily be solved for a finite weighted presentation $\langle X \mid R\rangle$ of M. Let $\ell: M \rightarrow \mathbf{N}$ be a weight, so that $\ell(x) \geq 1$ for all $x \in X$. Observe that the value of ℓ on any $a \in M$ represented by a nonempty word $w \in X^{*}$ is greater than or equal to the length of w. Let $W(a) \subset X^{*}$ be the set of words representing a. All these words have length $\leq \ell(a)$. Since X is finite, the number of words of length $\leq \ell(a)$ is finite and the set $W(a)$ is finite. To list all elements of $W(a)$, one starts with the given word w representing a and consecutively applies all possible substitutions of the form

$$
w_{1} r w_{2} \leftrightarrow w_{1} r^{\prime} w_{2}
$$

(for $\left(r, r^{\prime}\right) \in R$) to any element of $W(a)$ already found. Since R is finite, this procedure is also finite. It gives a solution to the word problem: two elements $a, a^{\prime} \in M$ are equal if and only if $W(a)=W\left(a^{\prime}\right)$.

We also obtain a solution of the left and right divisibility problems. Namely, $a \preceq a^{\prime}$ if and only if some prefix (initial segment) of a word in $W\left(a^{\prime}\right)$ belongs to $W(a)$. Similarly, $a^{\prime} \succeq a$ if and only if some suffix (final segment) of a word in $W\left(a^{\prime}\right)$ belongs to $W(a)$.

6.2 Normal forms and the conjugacy problem

We introduce and study a certain monoid M_{Σ} derived from a subset Σ of a given monoid M. Under favorable assumptions, we obtain a normal form for the elements of M_{Σ} and solve the conjugacy problem in M_{Σ}.

6.2.1 The monoid M_{Σ}

Let M be a monoid and let $\Sigma \subset M$ be a subset of M containing the neutral element 1. Let M_{Σ} be the monoid generated by the symbols [a], where a runs over Σ, modulo the defining relations $[1]=1$ and $[a][b]=[a b]$ whenever $a, b, a b \in \Sigma$. There is a monoid homomorphism $p: M_{\Sigma} \rightarrow M$ defined by $p([a])=a$ for all $a \in \Sigma$.

The definition of M_{Σ} can be rephrased by identifying a product $\left[a_{1}\right] \cdots\left[a_{r}\right]$ in M_{Σ} (where $\left.a_{1}, \ldots, a_{r} \in \Sigma\right)$ with the sequence $\left(a_{1}, \ldots, a_{r}\right)$. Then M_{Σ} is the set of equivalence classes of finite sequences $\left(a_{1}, \ldots, a_{r}\right)$ of elements of Σ under the equivalence generated by the relations

$$
\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime} a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{r}\right) \sim\left(a_{1}, \ldots, a_{i-1}, a_{i}^{\prime}, a_{i}^{\prime \prime}, a_{i+1}, \ldots, a_{r}\right)
$$

whenever $a_{i}^{\prime} a_{i}^{\prime \prime} \in \Sigma$ and by the relation saying that the empty sequence is equivalent to the one-element sequence (1), where $1 \in \Sigma$. The product in M_{Σ} is induced by concatenation of sequences.

We formulate the main theorem on the structure of M_{Σ}.
Theorem 6.5. Let M be an atomic monoid and Σ a subset of M such that $1 \in \Sigma$ and the following three conditions hold:
$\left(*_{1}\right)$ All left divisors and all right divisors of elements of Σ belong to Σ.
$\left(*_{2}\right)$ For any $a, b, c \in \Sigma$, if $a b=a c$ or $b a=c a$, then $b=c$.
(*3) For any $a, b \in \Sigma$, the set $\{x \in \Sigma \mid x \preceq b$ and ax $\in \Sigma\}$ has a maximal element (with respect to \preceq).
Then for any $\xi \in M_{\Sigma}$, there is a unique $\alpha(\xi) \in \Sigma$ such that $[\alpha(\xi)]$ is a left divisor of ξ that is maximal among all left divisors of ξ lying in the set $\{[a]\}_{a \in \Sigma} \subset M_{\Sigma}$. Moreover, there is a unique $\omega(\xi) \in M_{\Sigma}$ such that $\xi=[\alpha(\xi)] \omega(\xi)$.

Proof. The proof goes in five steps.
Step 1. By $\left(*_{3}\right)$, for any $a, b \in \Sigma$, the set $\{x \in \Sigma \mid x \preceq b$ and $a x \in \Sigma\}$ has a maximal element $c \in \Sigma$. Then $b=c d$ for some $d \in M$. By $\left(*_{1}\right), d \in \Sigma$, and by $\left(*_{2}\right), d$ is unique. Set $\alpha_{2}(a, b)=a c \in \Sigma$ and $\omega_{2}(a, b)=d \in \Sigma$. Clearly,

$$
\begin{equation*}
\alpha_{2}(a, b) \omega_{2}(a, b)=a b \tag{6.1}
\end{equation*}
$$

For instance, for all $a \in \Sigma$,

$$
\alpha_{2}(a, 1)=\alpha_{2}(1, a)=a \quad \text { and } \quad \omega_{2}(a, 1)=\omega_{2}(1, a)=1 .
$$

We claim that for any $a, b, c \in \Sigma$ such that $a b \in \Sigma$,

$$
\begin{equation*}
\alpha_{2}(a b, c)=\alpha_{2}\left(a, \alpha_{2}(b, c)\right) \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{2}(a b, c)=\omega_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}(b, c) \tag{6.3}
\end{equation*}
$$

The rest of Step 1 is devoted to the proof of this claim. We shall use the following observation: If $a, b, c \in M$ satisfy $a c \in \Sigma$ and $a b \preceq a c$, then $b \preceq c$. Indeed, if $a c=a b d$ with $d \in M$, then the assumption $a c \in \Sigma$ and ($*_{1}$) imply that $a, c, b d \in \Sigma$. By $\left(*_{2}\right)$, we have $c=b d$, so that $b \preceq c$.

By definition, $\alpha_{2}(b, c)=b d$, where d is maximal such that $d \preceq c$ and $b d \in \Sigma$. Similarly,

$$
\alpha_{2}\left(a, \alpha_{2}(b, c)\right)=\alpha_{2}(a, b d)=a d^{\prime}
$$

where d^{\prime} is maximal such that $d^{\prime} \preceq b d$ and $a d^{\prime} \in \Sigma$. Since $b \preceq b d$ and $a b \in \Sigma$ (the latter by hypothesis), $b \preceq d^{\prime}$. Writing $d^{\prime}=b e$ with $e \in \Sigma$, we obtain $\alpha_{2}(a, b d)=a b e$, with $b e \preceq b d \in \Sigma$ and abe $\in \Sigma$. By the observation above, $e \preceq d \preceq c$, so that $e \preceq c$. Now $\alpha_{2}(a b, c)=a b f$, where f is maximal such that $f \preceq c$ and $a b f \in \Sigma$. Therefore, $e \preceq f$. On the other hand, $f \preceq c$ and $b f \in \Sigma$ imply $f \preceq d$ and $b f \preceq b d$. This and the inclusion $a b f \in \Sigma$ imply that $b f \preceq d^{\prime}=b e$. Therefore, $f \preceq e$. By Lemma 6.3, $e=f$ and

$$
\alpha_{2}(a b, c)=a b f=a b e=a d^{\prime}=\alpha_{2}\left(a, \alpha_{2}(b, c)\right) .
$$

This proves (6.2). To prove (6.3), note that by (6.1) and (6.2),

$$
\begin{aligned}
\alpha_{2}(a b, c) \omega_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}(b, c) & =\alpha_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}(b, c) \\
& =a \alpha_{2}(b, c) \omega_{2}(b, c) \\
& =a b c \\
& =\alpha_{2}(a b, c) \omega_{2}(a b, c)
\end{aligned}
$$

By Condition $\left(*_{2}\right)$, to deduce (6.3) it is enough to prove that the product $\omega_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}(b, c)$ belongs to Σ. By definition, there is $d \in \Sigma$ such that $\alpha_{2}(b, c)=b d \in \Sigma$ and $c=d \omega_{2}(b, c)$. Let f be the maximal element of Σ such that $f \preceq b d$ and $a f \in \Sigma$. Since $b \preceq b d$ and $a b \in \Sigma$, there is $e \in \Sigma$ such that $f=b e$. Then

$$
b d=f \omega_{2}(a, b d)=b e \omega_{2}(a, b d)
$$

$\operatorname{By}\left(*_{2}\right), d=e \omega_{2}(a, b d)$ and

$$
e \omega_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}(b, c)=e \omega_{2}(a, b d) \omega_{2}(b, c)=d \omega_{2}(b, c)=c
$$

This shows that $\omega_{2}\left(a, \alpha_{2}(b, c)\right) \omega_{2}(b, c)$ is a right divisor of $c \in \Sigma$, hence an element of Σ.

Step 2. At this step we prove the following claim: there is a unique map $\alpha: M_{\Sigma} \rightarrow \Sigma$ such that
(i) $\alpha(1)=1$ and
(ii) $\alpha([a] \eta)=\alpha_{2}(a, \alpha(\eta))$ for all $a \in \Sigma$ and $\eta \in M_{\Sigma}$.

Recall the monoid homomorphism $p: M_{\Sigma} \rightarrow M$. For any $\xi \in M_{\Sigma}$, we set $H(\xi)=\|p(\xi)\| \geq 0$. We call $H(\xi)$ the height of ξ. It is clear that

$$
H\left(\xi \xi^{\prime}\right) \geq H(\xi)+H\left(\xi^{\prime}\right)
$$

for any $\xi, \xi^{\prime} \in M_{\Sigma}$. Note that $H(\xi)=0$ if and only if $\xi=1$, and $H(\xi)=1$ if and only if $\xi=[a]$, where a is an atom of M belonging to Σ. To see this, pick an expansion $\xi=\left[a_{1}\right] \cdots\left[a_{r}\right]$ with $a_{1}, \ldots, a_{r} \in \Sigma$. Then

$$
H(\xi)=\|p(\xi)\| \geq\left\|a_{1}\right\|+\cdots+\left\|a_{r}\right\|
$$

If $H(\xi)=0$, then $a_{1}=\cdots=a_{r}=1$ and $\xi=1$. If $H(\xi)=1$, then all the elements $a_{1}, \ldots, a_{r} \in \Sigma$ are equal to 1 except one element, which is an atom.

For $\xi \in M_{\Sigma}$, we define $\alpha(\xi)$ by induction on the height of ξ. For $\xi=1$, set $\alpha(\xi)=1 \in \Sigma$. If $H(\xi)=1$, then $\xi=[a]=[a] 1$ for some atom $a \in \Sigma$, and to satisfy (ii) we have to set $\alpha(\xi)=\alpha_{2}(a, 1)=a$.

Pick an integer $k \geq 1$ and suppose that $\alpha(\xi)$ is defined for all ξ of height $\leq k$ so that conditions (i), (ii) are satisfied whenever $H([a] \eta) \leq k$. Let ξ be an element of M_{Σ} of height $k+1$. We can expand $\xi=[a] \eta$, where $a \in \Sigma, a \neq 1$, and $\eta \in M_{\Sigma}$. Then $H([a]) \geq 1$ and $H(\eta)<H([a] \eta)$, so that $\alpha(\eta)$ is already defined. To satisfy (ii), we have to set $\alpha(\xi)=\alpha_{2}(a, \alpha(\eta))$. We must check that $\alpha_{2}(a, \alpha(\eta))$ does not depend on the choice of the expansion $\xi=[a] \eta$. By definition of M_{Σ} and the induction hypothesis, it is enough to check that

$$
\alpha_{2}(a, \alpha(\eta))=\alpha_{2}\left(a^{\prime}, \alpha\left(\left[a^{\prime \prime}\right] \eta\right)\right)
$$

when $a=a^{\prime} a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in \Sigma-\{1\}$. Since

$$
H\left(\left[a^{\prime \prime}\right] \eta\right) \leq H([a] \eta)-H\left(\left[a^{\prime}\right]\right)<H([a] \eta)
$$

the induction hypothesis yields that $\alpha\left(\left[a^{\prime \prime}\right] \eta\right)=\alpha_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)$. By (6.2),

$$
\begin{aligned}
\alpha_{2}\left(a^{\prime}, \alpha\left(\left[a^{\prime \prime}\right] \eta\right)\right) & =\alpha_{2}\left(a^{\prime}, \alpha_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)\right) \\
& =\alpha_{2}\left(a^{\prime} a^{\prime \prime}, \alpha(\eta)\right) \\
& =\alpha_{2}(a, \alpha(\eta))
\end{aligned}
$$

Therefore α is well defined on elements of M_{Σ} of height $\leq k+1$ and satisfies conditions (i) and (ii). This completes the induction and proves our claim.

Step 3. We now check that for any $\xi \in M_{\Sigma}$, the element $[\alpha(\xi)]$ of M_{Σ} is a left divisor of ξ that is maximal among all left divisors of ξ lying in the set

$$
\{[a]\}_{a \in \Sigma} \subset M_{\Sigma}
$$

Using the projection $p: M_{\Sigma} \rightarrow M$, it is easy to show that all divisors of 1 in M_{Σ} are equal to 1 . Therefore if $H(\xi)=0$, then $[\alpha(\xi)]=\xi=1$ is the only left divisor of $1 \in M_{\Sigma}$. If $H(\xi) \geq 1$, write $\xi=[a] \eta$ for some $a \in \Sigma-\{1\}$ and $\eta \in M_{\Sigma}$. Then $H(\eta)<H(\xi)$ and $\alpha(\xi)=\alpha_{2}(a, \alpha(\eta))$. Therefore, $\alpha(\xi)=a b$ for some $b \in \Sigma$ such that $b \preceq \alpha(\eta)$. By the induction assumption, $[\alpha(\eta)]$ is a left divisor of η. Hence,

$$
[\alpha(\xi)]=[a b]=[a][b] \preceq[a][\alpha(\eta)] \preceq[a] \eta=\xi .
$$

This shows that $[\alpha(\xi)]$ is a left divisor of ξ belonging to the set $\{[a]\}_{a \in \Sigma}$. We now show that $[\alpha(\xi)]$ is maximal with these properties. Suppose that $\xi=\left[a^{\prime}\right] \eta^{\prime}$ for some $a^{\prime} \in \Sigma, \eta^{\prime} \in M_{\Sigma}$. Then $\alpha(\xi)=\alpha_{2}\left(a^{\prime}, \alpha\left(\eta^{\prime}\right)\right)=a^{\prime} b^{\prime}$ for some $b^{\prime} \in \Sigma$. Hence, $a^{\prime} \preceq \alpha(\xi)$ and $\left[a^{\prime}\right] \preceq[\alpha(\xi)]$.

Step 4. We claim that there is a unique map $\omega: M_{\Sigma} \rightarrow M_{\Sigma}$ such that
(i) $\omega(1)=1$ and
(ii) $\omega([a] \eta)=\left[\omega_{2}(a, \alpha(\eta))\right] \omega(\eta)$ for all $a \in \Sigma$ and $\eta \in M_{\Sigma}$.

The value of ω on any $\xi \in M_{\Sigma}$ is defined by induction on the height of ξ. Set $\omega(1)=1$. Pick an integer $k \geq 1$ and suppose that $\omega(\xi)$ is defined for all ξ of height $\leq k$, so that conditions (i) and (ii) are satisfied whenever $H([a] \eta) \leq k$. Let $\xi=[a] \eta$ be an element of M_{Σ} of height $k+1$ with $a \in \Sigma-\{1\}$ and $\eta \in M_{\Sigma}$. Then $H(\eta)<H(\xi)$ and $\omega(\eta)$ is defined. To satisfy (ii), we have to set

$$
\omega(\xi)=\left[\omega_{2}(a, \alpha(\eta))\right] \omega(\eta)
$$

We must check that $\omega(\xi)$ is independent of the choice of the expansion $\xi=[a] \eta$. By definition of M_{Σ} and the induction hypothesis, it is enough to check that

$$
\omega_{2}(a, \alpha(\eta)) \omega(\eta)=\omega_{2}\left(a^{\prime}, \alpha\left(\left[a^{\prime \prime}\right] \eta\right)\right) \omega\left(\left[a^{\prime \prime}\right] \eta\right)
$$

when $a=a^{\prime} a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in \Sigma-\{1\}$. As we know, $\alpha\left(\left[a^{\prime \prime}\right] \eta\right)=\alpha_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)$. Since $H\left(\left[a^{\prime \prime}\right] \eta\right)<H([a] \eta)$, the induction hypothesis yields the equality $\omega\left(\left[a^{\prime \prime}\right] \eta\right)=\left[\omega_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)\right] \omega(\eta)$. By (6.3),

$$
\begin{aligned}
\omega_{2}\left(a^{\prime}, \alpha\left(\left[a^{\prime \prime}\right] \eta\right)\right) \omega\left(\left[a^{\prime \prime}\right] \eta\right) & =\omega_{2}\left(a^{\prime}, \alpha_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)\right) \omega\left(\left[a^{\prime \prime}\right] \eta\right) \\
& =\omega_{2}\left(a^{\prime}, \alpha_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)\right)\left[\omega_{2}\left(a^{\prime \prime}, \alpha(\eta)\right)\right] \omega(\eta) \\
& =\omega_{2}\left(a^{\prime} a^{\prime \prime}, \alpha(\eta)\right) \omega(\eta) \\
& =\omega_{2}(a, \alpha(\eta)) \omega(\eta)
\end{aligned}
$$

Therefore ω is well defined on elements of M_{Σ} of height $\leq k+1$ and satisfies conditions (i) and (ii). This completes the induction and proves our claim.

Step 5. To complete the proof, it remains to show that for any $\xi \in M_{\Sigma}$, the element $\eta=\omega(\xi)$ is the unique element of M_{Σ} such that $\xi=[\alpha(\xi)] \eta$. We proceed by induction on $H(\xi)$. If $H(\xi)=0$, then $\xi=1, \alpha(\xi)=1, \omega(\xi)=1$, and the claim is obvious. Suppose that our claim holds for all ξ of height $\leq k$ for some integer $k \geq 1$. Let ξ be an element of M_{Σ} of height $k+1$. By Step 3, $\xi=[\alpha(\xi)] \eta$ with $\eta \in M_{\Sigma}$. Clearly, $\alpha(\xi) \neq 1$ and therefore $H(\eta)<H(\xi)$.

Set $\theta=[\alpha(\xi)][\alpha(\eta)]$. By definition of the map α,

$$
\alpha(\theta)=\alpha_{2}(\alpha(\xi), \alpha(\eta))=\alpha(\xi) b
$$

for some $b \in \Sigma$ such that $[b] \preceq[\alpha(\eta)] \preceq \eta$. Hence $\alpha(\xi) \preceq \alpha(\theta)$ and

$$
[\alpha(\theta)]=[\alpha(\xi)][b] \preceq[\alpha(\xi)] \eta=\xi
$$

Since $[\alpha(\xi)]$ is the maximal left divisor of ξ in the set $\{[a]\}_{a \in \Sigma}$, we have $[\alpha(\xi)]=[\alpha(\theta)]$. Projecting to M, we conclude that

$$
\alpha(\xi)=\alpha(\theta)=\alpha_{2}(\alpha(\xi), \alpha(\eta))
$$

Therefore, $\alpha(\xi) \alpha(\eta)=\alpha_{2}(\alpha(\xi), \alpha(\eta)) \alpha(\eta)$. On the other hand, by (6.1),

$$
\alpha(\xi) \alpha(\eta)=\alpha_{2}(\alpha(\xi), \alpha(\eta)) \omega_{2}(\alpha(\xi), \alpha(\eta)) .
$$

Combining these equalities, we obtain

$$
\alpha_{2}(\alpha(\xi), \alpha(\eta)) \alpha(\eta)=\alpha_{2}(\alpha(\xi), \alpha(\eta)) \omega_{2}(\alpha(\xi), \alpha(\eta))
$$

By $\left(*_{2}\right)$, we may cancel $\alpha_{2}(\alpha(\xi), \alpha(\eta))$. Thus $\alpha(\eta)=\omega_{2}(\alpha(\xi), \alpha(\eta))$ and

$$
\omega(\xi)=\omega([\alpha(\xi)] \eta)=\left[\omega_{2}(\alpha(\xi), \alpha(\eta))\right] \omega(\eta)=[\alpha(\eta)] \omega(\eta)=\eta
$$

where the last equality follows from the induction hypothesis. This shows that $\xi=[\alpha(\xi)] \omega(\xi)$ and that any $\eta \in M_{\Sigma}$ satisfying $\xi=[\alpha(\xi)] \eta$ is equal to $\omega(\xi)$.

6.2.2 The normal form in M_{Σ}

Under the assumptions of Theorem 6.5, any $\xi \in M_{\Sigma}$ may be inductively expanded as follows:

$$
\begin{aligned}
\xi & =[\alpha(\xi)] \omega(\xi)=[\alpha(\xi)][\alpha(\omega(\xi))] \omega^{2}(\xi) \\
& =[\alpha(\xi)][\alpha(\omega(\xi))]\left[\alpha\left(\omega^{2}(\xi)\right)\right] \omega^{3}(\xi)=\cdots
\end{aligned}
$$

This expansion process may be stopped at the r th step, where r is the minimal integer such that $\omega^{r+1}(\xi)=1$. Such r exists and does not exceed $\|p(\xi)\|$, since in an expansion of ξ as a product of generators $[a]$ with $a \in \Sigma$ at most $\|p(\xi)\|$ of the generators may be distinct from 1. (Here it is useful to note that $\alpha(\eta) \neq 1$ for any $\eta \in M_{\Sigma}-\{1\}$.)

These observations lead us to a normal form for each element of M_{Σ}. A normal form for $\xi \in M_{\Sigma}$ is a sequence $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ of elements of Σ, all different from 1 , such that $\xi=\left[a_{1}\right]\left[a_{2}\right] \cdots\left[a_{r}\right]$ and

$$
a_{i}=\alpha\left(\left[a_{i}\right]\left[a_{i+1}\right] \cdots\left[a_{r}\right]\right)
$$

for all $i=1,2, \ldots, r$. The remarks above show that each $\xi \in M_{\Sigma}$ has a normal form. (The normal form of $1 \in M_{\Sigma}$ is the empty sequence.) The uniqueness in the last claim of Theorem 6.5 implies the uniqueness of the normal form.

6.2.3 The cancellativity of M_{Σ}

We use Theorem 6.5 and the map $\alpha_{2}: \Sigma \times \Sigma \rightarrow \Sigma$ introduced in its proof to establish the left cancellativity of M_{Σ}.

Lemma 6.6. Under the assumptions of Theorem 6.5, the monoid M_{Σ} is left cancellative.

Proof. We need to show that $\xi \eta=\xi \theta \Rightarrow \eta=\theta$ for $\xi, \eta, \theta \in M_{\Sigma}$. Suppose first that $\xi=[a]$ for some $a \in \Sigma$. Then $\alpha(\xi \eta)=\alpha_{2}(a, \alpha(\eta))=a b \in \Sigma$ for some $b \in \Sigma$ such that $b \preceq \alpha(\eta)$. The equalities

$$
a b=\alpha(\xi \eta)=\alpha(\xi \theta)=\alpha([a] \theta)=\alpha_{2}(a, \alpha(\theta))=a c
$$

for some $c \preceq \alpha(\theta)$ imply that $b=c \preceq \alpha(\theta)$. Then there are $\eta^{\prime}, \theta^{\prime} \in M_{\Sigma}$ such that $[b] \eta^{\prime}=\eta$ and $[b] \theta^{\prime}=\theta$. As we know, $\omega(\xi \eta)$ is the unique element $x \in M_{\Sigma}$ such that $\xi \eta=[\alpha(\xi \eta)] x=[a b] x$. Since

$$
\xi \eta=[a][b] \eta^{\prime}=[a b] \eta^{\prime}
$$

we have $\omega(\xi \eta)=\eta^{\prime}$. Similarly, $\omega(\xi \theta)=\theta^{\prime}$. Hence,

$$
\eta^{\prime}=\omega(\xi \eta)=\omega(\xi \theta)=\theta^{\prime} \quad \text { and } \quad \eta=[b] \eta^{\prime}=[b] \theta^{\prime}=\theta
$$

In general, $\xi=\left[a_{1}\right]\left[a_{2}\right] \cdots\left[a_{r}\right]$ with $a_{1}, a_{2}, \ldots, a_{r} \in \Sigma$. As we know, $\left[a_{1}\right]\left[a_{2}\right] \cdots\left[a_{r}\right] \eta=\left[a_{1}\right]\left[a_{2}\right] \cdots\left[a_{r}\right] \theta$ implies that $\left[a_{2}\right] \cdots\left[a_{r}\right] \eta=\left[a_{2}\right] \cdots\left[a_{r}\right] \theta$. Continuing inductively, we obtain $\eta=\theta$.

6.2.4 The word problem in M_{Σ}

We say that the set $\Sigma \subset M$ is weighted if there is a map $\ell: \Sigma \rightarrow \mathbf{N}$ such that $\ell(1)=0, \ell(a) \geq 1$ for $a \neq 1$, and $\ell(a)+\ell(b)=\ell(a b)$ whenever $a, b, a b \in \Sigma$. The map ℓ extends then to a monoid homomorphism $M_{\Sigma} \rightarrow \mathbf{N}$ that turns the presentation of M_{Σ} above into a weighted presentation. If, in addition, Σ is finite, then Section 6.1.5 yields a solution of the word problem and of the divisibility problem in M_{Σ}.

6.2.5 The conjugacy problem in M_{Σ}

The conjugacy problem in a group G consists in finding a procedure that allows, given $\alpha, \beta \in G$, to decide whether there is $\gamma \in G$ such that $\alpha=\gamma \beta \gamma^{-1}$ or, equivalently, $\alpha \gamma=\gamma \beta$. By extension, the conjugacy problem in a monoid M consists in finding a procedure that allows, given $a, b \in M$, to decide whether there is $c \in M$ such that $a c=c b$. The following lemma yields the key to the conjugacy problem in M_{Σ}.

Lemma 6.7. Let $M, \Sigma \subset M$ satisfy the assumptions of Theorem 6.5. Given $a, b \in M_{\Sigma}$, there is $c \in M_{\Sigma}$ such that $a c=c b$ if and only if there exist a sequence $a_{0}=a, a_{1}, \ldots, a_{r}=b$ of elements of M_{Σ} and a sequence c_{1}, \ldots, c_{r} of elements of Σ such that

$$
a_{i-1}\left[c_{i}\right]=\left[c_{i}\right] a_{i}
$$

for all $i=1, \ldots, r$.
Proof. If we have such sequences, then $a c=c b$ for $c=\left[c_{1}\right]\left[c_{2}\right] \cdots\left[c_{r}\right]$. Conversely, let $c \in M_{\Sigma}$ be such that $a c=c b$. We prove the assertion by induction on the length r of the normal form $\left(c_{1}, \ldots, c_{r}\right)$ of c. If $r=1$, then $c=\left[c_{1}\right]$ and we are done. Suppose that $r \geq 2$. Since

$$
\left[c_{1}\right]=[\alpha(c)] \preceq c \preceq c b=a c,
$$

we have

$$
c_{1} \preceq \alpha(a c)=\alpha_{2}(a, \alpha(c))=\alpha_{2}\left(a, c_{1}\right) .
$$

Therefore,

$$
\left[c_{1}\right] \preceq\left[\alpha_{2}\left(a, c_{1}\right)\right] \preceq a c_{1} .
$$

Hence, there is $a_{1} \in M_{\Sigma}$ such that

$$
\left[c_{1}\right] a_{1}=a\left[c_{1}\right]
$$

We have

$$
\left[c_{1}\right] a_{1}\left[c_{2}\right] \cdots\left[c_{r}\right]=a\left[c_{1}\right]\left[c_{2}\right] \cdots\left[c_{r}\right]=a c=c b=\left[c_{1}\right]\left[c_{2}\right] \cdots\left[c_{r}\right] b
$$

By Lemma 6.6 , we may divide on the left by $\left[c_{1}\right]$. This gives $a_{1} c^{\prime}=c^{\prime} b$, where $c^{\prime}=\left[c_{2}\right] \cdots\left[c_{r}\right]$ has a normal form of length $r-1$. We conclude using the induction hypothesis.

Lemma 6.7 provides a solution of the conjugacy problem in M_{Σ}. Suppose that M, Σ satisfy the conditions of Theorem 6.5 and Σ is finite. Suppose also that M_{Σ} admits a finite weighted presentation so that the word problem in M_{Σ} is solvable (for instance, it is enough to suppose that Σ is weighted in the sense of Section 6.2.4). To determine whether two elements $a, b \in M_{\Sigma}$ are conjugate (in the sense that there is $c \in M_{\Sigma}$ such that $a c=c b$), first observe that conjugate elements of M_{Σ} have the same weight. Since there are only finitely many elements of M_{Σ} of a given weight, a has only finitely many conjugates. Lemma 6.7 shows that in order to find them all, it is enough to apply all possible conjugacies by elements of Σ to all known conjugates of a until no new elements are found. We thus obtain a finite list a_{1}, \ldots, a_{s} of conjugates of a in M_{Σ}. If $b=a_{i}$ for some i, then b is conjugate to a; otherwise, b is not conjugate to a.

6.2.6 Comprehensive sets

A set $\Sigma \subset M$ is comprehensive if $1 \in \Sigma$ and M has a presentation by generators and relations such that all generators and relators belong to Σ.

Lemma 6.8. If Σ is a comprehensive subset of a monoid M such that all left divisors of elements of Σ belong to Σ, then the monoid homomorphism $p: M_{\Sigma} \rightarrow M$ is an isomorphism.

Proof. Since Σ contains a set of generators of M, the homomorphism p is surjective. We need only to prove its injectivity. Observe first that if $a_{1}, a_{2}, \ldots, a_{n}$ are elements of Σ with $n \geq 2$ such that $a=a_{1} a_{2} \cdots a_{n} \in \Sigma$, then $[a]=\left[a_{1}\right]\left[a_{2}\right] \cdots\left[a_{n}\right]$. Indeed, $a_{1} a_{2}$ is a left divisor of a and therefore $a_{1} a_{2} \in \Sigma$. By definition of M_{Σ}, we have $\left[a_{1}\right]\left[a_{2}\right]=\left[a_{1} a_{2}\right]$. Continuing by induction, we obtain $\left[a_{1}\right]\left[a_{2}\right] \cdots\left[a_{n}\right]=[a]$.

Consider now a presentation $\langle X \mid R\rangle$ of M by generators and relations and let $P: X^{*} \rightarrow M$ be the natural projection. We assume that $P(x) \in \Sigma$ for all $x \in X$ and $P(r)=P\left(r^{\prime}\right) \in \Sigma$ for all $\left(r, r^{\prime}\right) \in R$. Define a monoid homomorphism $Q: X^{*} \rightarrow M_{\Sigma}$ by $Q(x)=[P(x)]$ for $x \in X$. The observation above implies that for any $r \in X^{*}$ with $P(r) \in \Sigma$, we have $Q(r)=[P(r)]$. Therefore for any relation $\left(r, r^{\prime}\right) \in R$, we have

$$
Q(r)=[P(r)]=\left[P\left(r^{\prime}\right)\right]=Q\left(r^{\prime}\right)
$$

This implies that there is a monoid homomorphism $q: M \rightarrow M_{\Sigma}$ such that $Q=q P$. Then

$$
q p([P(x)])=q(P(x))=Q(x)=[P(x)]
$$

for all $x \in X$. Since the set $P(X)$ generates M, we have $q p=\mathrm{id}$. Therefore p is injective.

Lemma 6.8 shows that under appropriate assumptions on Σ we have $M_{\Sigma} \cong M$, so that all the properties of M_{Σ} obtained above hold for M.

Exercise 6.2.1. Show that $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ is a normal form of an element of M_{Σ} if and only if $\left(a_{i}, a_{i+1}\right)$ is a normal form of the product $\left[a_{i}\right]\left[a_{i+1}\right]$ for $i=1, \ldots, r-1$.

Exercise 6.2.2. Observe that for any $\Sigma \subset M$ with $1 \in \Sigma$, the subset $\{[a]\}_{a \in \Sigma}$ of M_{Σ} is comprehensive. Deduce the following partial converse to Lemma 6.8: if the monoid homomorphism $p: M_{\Sigma} \rightarrow M$ is an isomorphism, then Σ is comprehensive.

Exercise 6.2.3. Verify that for any set X, the subset $\Sigma=X \cup\{1\}$ of the free monoid $M=X^{*}$ is weighted, comprehensive, and satisfies all the conditions of Theorem 6.5. For these M, Σ, verify directly all the claims established in this section.

6.3 Groups of fractions and pre-Garside monoids

6.3.1 Groups of fractions

A monoid homomorphism $i: M \rightarrow G$ is said to be universal if G is a group and for any monoid homomorphism f from M to an arbitrary group G^{\prime}, there is a unique group homomorphism $g: G \rightarrow G^{\prime}$ such that $f=g i$. Every monoid M admits a universal homomorphism to a group. To see this, take an arbitrary presentation $\langle X \mid R\rangle$ of M by generators and relations and consider the group G defined by $\langle X \mid R\rangle$ viewed as a group presentation. The identity map $\operatorname{id}_{X}: X \rightarrow X$ extends to a monoid homomorphism $M \rightarrow G$, which is easily seen to be universal. The definition of a universal homomorphism $M \rightarrow G$ implies that it is unique up to composition with a group isomorphism. In particular, the group G is well defined up to isomorphism. This group is called the group of fractions of M and denoted by G_{M}. A presentation of G_{M} by generators and relations can be obtained by taking an arbitrary monoid presentation of M by generators and relations and viewing it as a group presentation.

A monoid M is embeddable if there is an injective monoid homomorphism from M into a group. It is clear that M is embeddable if and only if the universal homomorphism $M \rightarrow G_{M}$ is injective. For example, the inclusion $\mathbf{N} \hookrightarrow \mathbf{Z}$ shows that \mathbf{N} is embeddable. It is easy to see that this inclusion is a universal homomorphism, so that $G_{\mathbf{N}}=\mathbf{Z}$.

It is clear that embeddable monoids are left cancellative and right cancellative. For example, the monoid $\{1, x\}$ with $x x=x$ is not left cancellative (since $x \neq 1$); therefore it is not embeddable. The group of fractions of this monoid is trivial.

6.3.2 Pre-Garside monoids

Definition 6.9. A pre-Garside monoid is a pair consisting of a monoid M and an element Δ of M such that the set $\Sigma=\Sigma_{\Delta}$ of left divisors of Δ satisfies the following conditions:
(a) Σ is finite, generates M, and coincides with the set of right divisors of Δ.
(b) If $a, b \in \Sigma$ are such that $\Delta a=\Delta b$ or $a \Delta=b \Delta$, then $a=b$.

The element $\Delta \in M$ is called the Garside element of M. Note that the set Σ of the divisors of Δ is closed under left and right divisibility, i.e., all left divisors and all right divisors of elements of Σ belong to Σ. Clearly, $1 \in \Sigma$ and $\Delta \in \Sigma$.

Examples 6.10. Any positive integer is a Garside element of the monoid \mathbf{N}. The monoid \mathbf{N}^{\times}has no Garside elements. All elements of a finite group are Garside. More interesting examples will be given in subsequent sections.

Lemma 6.11. Let (M, Δ) be a pre-Garside monoid and let $\Sigma \subset M$ be the set of divisors of Δ.
(i) For all $a, b, c \in \Sigma$, if $a c=b c$ or $c a=c b$, then $a=b$.
(ii) There is a bijection $\delta: \Sigma \rightarrow \Sigma$ such that $\Delta a=\delta(a) \Delta$ for all $a \in \Sigma$.
(iii) If N is the order of δ (i.e., the minimal positive integer such that $\delta^{N}=\mathrm{id}$), then $\Delta^{N} a=a \Delta^{N}$ for all $a \in M$.
(iv) For any $a \in M$, there is an integer $r \geq 1$ such that $a \preceq \Delta^{r}$ and $\Delta^{r} \succeq a$.

Proof. (i) Since $c \in \Sigma$, there is $d \in M$ such that $c d=\Delta$. Then $a c=b c$ implies $a \Delta=a c d=b c d=b \Delta$. Hence $a=b$ by condition (b) of Definition 6.9. The implication $c a=c b \Rightarrow a=b$ has a similar proof, using an element $e \in M$ such that $e c=\Delta$.
(ii) Since any left divisor of Δ is also a right divisor and vice versa, for any $a \in \Sigma$, there are $a^{\prime}, \delta(a) \in \Sigma$ such that $\Delta=a^{\prime} a$ and $\Delta=\delta(a) a^{\prime}$. By claim (i), a^{\prime} and $\delta(a)$ are uniquely defined. We have

$$
\begin{equation*}
\Delta a=\delta(a) a^{\prime} a=\delta(a) \Delta \tag{6.4}
\end{equation*}
$$

Since Σ is finite, in order to prove that the map $\delta: \Sigma \rightarrow \Sigma$ is bijective, it suffices to check that it is injective. The equality $\delta(a)=\delta(b)$ implies

$$
\Delta a=\delta(a) \Delta=\delta(b) \Delta=\Delta b
$$

This implies $a=b$ by condition (b) of Definition 6.9.
(iii) By induction on n we derive from (6.4) that $\Delta^{n} a=\delta^{n}(a) \Delta^{n}$ for all $a \in \Sigma$. (Here δ^{n} is the composition of n copies of δ.) Since $\delta^{N}=\mathrm{id}$, we have $\Delta^{N} a=\delta^{N}(a) \Delta^{n}=a \Delta^{N}$ for all $a \in \Sigma$. In other words, Δ^{N} commutes with every element of the set Σ. Since this set generates the monoid M, we can conclude that Δ^{N} commutes with all elements of M.
(iv) Write a as a product $a=a_{1} \cdots a_{r}$ of $r \geq 1$ elements of Σ. For each a_{i} let $b_{i} \in \Sigma$ be defined by $b_{i} a_{i}=\Delta$. Set $b=\delta^{r-1}\left(b_{r}\right) \cdots \delta\left(b_{2}\right) b_{1}$. We claim that $b a=\Delta^{r}$, which proves that $\Delta^{r} \succeq a$. Indeed,

$$
\begin{aligned}
b a & =\delta^{r-1}\left(b_{r}\right) \cdots \delta\left(b_{2}\right) b_{1} a_{1} \cdots a_{r} \\
& =\delta^{r-1}\left(b_{r}\right) \cdots \delta\left(b_{2}\right) \Delta a_{2} \cdots a_{r} \\
& =\delta^{r-1}\left(b_{r}\right) \cdots \Delta b_{2} a_{2} \cdots a_{r} \\
& =\delta^{r-1}\left(b_{r}\right) \cdots \delta^{2}\left(b_{3}\right) \Delta^{2} a_{3} \cdots a_{r} \\
& =\delta^{r-1}\left(b_{r}\right) \cdots \Delta^{2} b_{3} a_{3} \cdots a_{r} \\
& =\cdots=\Delta^{r-1} b_{r} a_{r}=\Delta^{r} .
\end{aligned}
$$

A similar proof shows that if $a_{i} c_{i}=\Delta$ for $i=1, \ldots, r$ and

$$
c=c_{r} \delta^{-1}\left(c_{r-1}\right) \cdots \delta^{-(r-1)}\left(c_{1}\right)
$$

then $a c=\Delta^{r}$. Thus $a \preceq \Delta^{r}$.

6.3.3 Embeddability of pre-Garside monoids

Let (M, Δ) be a pre-Garside monoid. Under the assumption that M is left cancellative, we give an explicit construction of the group of fractions of M. The construction will imply that M is embeddable.

Let $N \geq 1$ be the order of $\delta: \Sigma \rightarrow \Sigma$. By Lemma $6.11, \Delta^{N}$ is central in M. Consider the product $H=M \times \mathbf{N}$ of the monoids M and \mathbf{N} with the coordinatewise multiplication

$$
(a, p)(b, q)=(a b, p+q)
$$

for all $a, b \in M$ and $p, q \in \mathbf{N}$. The neutral element of H is $(1,0)$.
We define a relation \sim on H by $(a, p) \sim(b, q)$ if $\Delta^{q N} a=\Delta^{p N} b$. For instance, $\left(\Delta^{N}, 1\right) \sim(1,0)$. Let us show that \sim is an equivalence relation. Reflexivity and symmetry are obvious. We check the transitivity. Suppose that $(a, p) \sim(b, q) \sim(c, r)$. Then $\Delta^{q N} a=\Delta^{p N} b$ and $\Delta^{r N} b=\Delta^{q N} c$. Therefore,

$$
\begin{aligned}
\Delta^{q N} \Delta^{r N} a & =\Delta^{r N} \Delta^{q N} a=\Delta^{r N} \Delta^{p N} b \\
& =\Delta^{p N} \Delta^{r N} b=\Delta^{p N} \Delta^{q N} c \\
& =\Delta^{q N} \Delta^{p N} c .
\end{aligned}
$$

Since M is left cancellative, we may divide both sides by $\Delta^{q N}$, thus obtaining $\Delta^{r N} a=\Delta^{p N} c$. This gives $(a, p) \sim(c, r)$.

Let $G=H / \sim$ be the set of equivalence classes and let $\pi: H \rightarrow G$ be the projection. Since Δ^{N} is central in M, the set G has a unique monoid structure such that π is a monoid homomorphism. Define a monoid homomorphism $i: M \rightarrow G$ by $i(a)=\pi(a, 0)$ for $a \in M$.

Theorem 6.12. Let (M, Δ) be a pre-Garside monoid such that M is left cancellative.
(i) The monoid G, constructed above, is a group, and the homomorphism $i: M \rightarrow G$ is an injection.
(ii) Any element of G can be written in the form $i(\Delta)^{s} i(a)$, where $s \in \mathbf{Z}$ and $a \in M$.
(iii) The monoid homomorphism $i: M \rightarrow G$ is universal, so that G is the group of fractions G_{M} of M.

Proof. (i) If $i(a)=i(b)$ for $a, b \in M$, then $(a, 0) \sim(b, 0)$ in H. It follows that $a=\Delta^{0} a=\Delta^{0} b=b$. This proves the injectivity of i.

Any element $g \in G$ has the form $\pi(a, p)$ for certain $a \in M$ and $p \in \mathbf{N}$. Let us check that $g=\pi(a, p)$ is invertible. By Lemma 6.11 (iv) there are $b \in M$ and an integer $r \geq 1$ such that $a b=\Delta^{r}$. Multiplying b on the right by a power of Δ, we may assume that $r=q N$ for an integer $q \geq p$. Then

$$
\begin{equation*}
(a, p)(b, q-p)=(a b, q) \tag{6.5}
\end{equation*}
$$

Since $\Delta^{0} a b=\Delta^{r}=\Delta^{q N} 1$, we have $(a b, q) \sim(1,0)$ and $\pi(a b, q)=\pi(1,0)=1$. This shows that $g=\pi(a, p)$ has a right inverse, say g^{\prime}. In turn, g^{\prime} has a right inverse $g^{\prime \prime}$ and

$$
g=g\left(g^{\prime} g^{\prime \prime}\right)=\left(g g^{\prime}\right) g^{\prime \prime}=g^{\prime \prime}
$$

In other words, g^{\prime} is also a left inverse to g. This shows that G is a group.
(ii) Let ξ be the central element $(1,+1) \in H=M \times \mathbf{N}$. Setting $a=1$, $b=\Delta^{N}$, and $p=q=+1$ in (6.5), we obtain $\pi(\xi) i(\Delta)^{N}=1$. Therefore, $\pi(\xi)=i(\Delta)^{-N}$. Any element of H is of the form $(a, p)=\xi^{p}(a, 0)$ for some $a \in M$ and $p \in \mathbf{N}$. Therefore, any element of G can be written in the form $\pi(\xi)^{p} i(a)=i(\Delta)^{-p N} i(a)$, where $a \in M$ and $p \in \mathbf{N}$.
(iii) Given a monoid homomorphism f from M to a group G^{\prime}, consider the map $H=M \times \mathbf{N} \rightarrow G^{\prime}$ sending any pair $(a, p) \in M \times \mathbf{N}$ to $f(\Delta)^{-p N} f(a)$. This map is constant on the \sim-equivalence classes in H and induces a group homomorphism $H / \sim=G \rightarrow G^{\prime}$. The composition of the latter with $i: M \rightarrow G$ is equal to f. The uniqueness of a group homomorphism $G \rightarrow G^{\prime}$ whose composition with i is equal to f follows from the fact that the set $i(M)$ generates G as a group.

Corollary 6.13. Left cancellative pre-Garside monoids are embeddable.
This corollary shows in particular that for pre-Garside monoids, the left cancellativity implies the right cancellativity.

In the sequel we identify elements of a left cancellative pre-Garside monoid M with their images in G_{M}, so that M becomes a subset of G_{M}.

6.3.4 The conjugacy problem in the group of fractions

Let (M, Δ) be a left cancellative pre-Garside monoid. The conjugacy problem in its group of fractions $G=G_{M}$ can be reduced to the conjugacy problem in M as follows. As we know, for any $\alpha, \beta \in G$, there are $a, b \in M \subset G$ and $s, t \in \mathbf{Z}$ such that $\alpha=\Delta^{s} a$ and $\beta=\Delta^{t} b$. Pick an integer u such that $u \leq \min (s, t)$ and u is divisible by the number N from Lemma 6.11 (iii). Set $a^{\prime}=\Delta^{s-u} a \in M$ and $b^{\prime}=\Delta^{t-u} b \in M$. Clearly, $\alpha=\Delta^{u} a^{\prime}$ and $\beta=\Delta^{u} b^{\prime}$. We claim that α is conjugate to β in G if and only if a^{\prime} is conjugate to b^{\prime} in M. Indeed, suppose that $a^{\prime} c=c b^{\prime}$ for some $c \in M$. Since Δ^{u} is a power of Δ^{N} and is therefore central in M,

$$
\alpha c=\Delta^{u} a^{\prime} c=\Delta^{u} c b^{\prime}=c \Delta^{u} b^{\prime}=c \beta .
$$

Conversely, if $\alpha \gamma=\gamma \beta$ with $\gamma \in G$, then $\gamma=\Delta^{v} c$ for some $c \in M$ and some integer v divisible by N. Replacing α, β, γ in the formula $\alpha \gamma=\gamma \beta$ by their expansions in $a^{\prime}, b^{\prime}, c$, and using the centrality of Δ^{u}, Δ^{v}, we obtain

$$
\Delta^{u+v} a^{\prime} c=\Delta^{u+v} c b^{\prime}
$$

We divide by Δ^{u+v} and conclude that $a^{\prime} c=c b^{\prime}$.

6.3.5 The case of atomic M

For atomic M, the claim (ii) of Theorem 6.12 admits the following refinement.
Theorem 6.14. Let (M, Δ) be a pre-Garside monoid such that M is nontrivial, left cancellative, and atomic. Then any element of $G=G_{M} \supset M$ can be written uniquely in the form $\Delta^{s} b$, where $s \in \mathbf{Z}$ and b is an element of M that is not a right multiple of Δ.

Proof. Note first that $\|\Delta\|>0$. Indeed, if $\|\Delta\|=0$, then $\Delta=1$. Since M is atomic, the remarks at the end of Section 6.1.3 imply that $\Sigma_{\Delta}=\{1\}$. Since Σ_{Δ} generates M, we have $M=\{1\}$. This contradicts the nontriviality of M.

By Theorem 6.12, any element of G has the form $\Delta^{s} a$ with $s \in \mathbf{Z}$ and $a \in M$. Let t be the greatest nonnegative integer such that $\Delta^{t} \preceq a$ in M; such t exists because the relation $\Delta^{t} \preceq a$ implies that

$$
t\|\Delta\| \leq\left\|\Delta^{t}\right\| \leq\|a\|<\infty
$$

Then $a=\Delta^{t} b$ for some $b \in M$ such that $\Delta \npreceq b$ and $\Delta^{s} a=\Delta^{s+t} b$. This proves the existence of the stated form.

Suppose that $\Delta^{s} b=\Delta^{s^{\prime}} b^{\prime}$ for some $s, s^{\prime} \in \mathbf{Z}$ and some $b, b^{\prime} \in M$ such that $\Delta \npreceq b$ and $\Delta \npreceq b^{\prime}$. We may assume that $s \geq s^{\prime}$. Dividing by $\Delta^{s^{\prime}}$, we obtain $\Delta^{s-s^{\prime}} b=b^{\prime}$. Since b^{\prime} is not a right multiple of Δ in M, we have $s-s^{\prime}=0$. Hence, $s=s^{\prime}$ and $b=b^{\prime}$, which proves the uniqueness.

Exercise 6.3.1. Let (M, Δ) be a pre-Garside monoid such that M is nontrivial, left cancellative, and atomic. Prove that any element of the group of fractions G_{M} can be written uniquely in the form $a \Delta^{s}$, where $s \in \mathbf{Z}$ and $a \in M$ is not a left multiple of Δ.

Exercise 6.3.2. Generalize the construction of the group G in Section 6.3.3 to an arbitrary pre-Garside monoid (M, Δ). (Hint: Define the relation \sim on H by $(a, p) \sim(b, q)$ if $\Delta^{s+q N} a=\Delta^{s+p N} b$ for some $s \geq 0$. Note that the resulting homomorphism $M \rightarrow G$ is injective if and only if M is left cancellative.)

6.4 Garside monoids

6.4.1 Definition and lemmas

Let (M, Δ) be a pre-Garside monoid and let Σ be the set of left (and right) divisors of Δ. Note that since Σ generates M, all atoms of M belong to Σ. In other words, all atoms of M are necessarily left divisors of Δ.

Definition 6.15. The pair (M, Δ) is a Garside monoid if M is atomic and for any two atoms s, t of M, the set

$$
\{a \in \Sigma \mid s \preceq a \text { and } t \preceq a\}
$$

has a minimal element $\Delta_{s, t}$ (with respect to \preceq).

By Lemma 6.3, the minimal element $\Delta_{s, t}$ is unique. Note for the record that $\Delta_{s, t}=\Delta_{t, s} \in \Sigma, s \preceq \Delta_{s, t}, t \preceq \Delta_{s, t}$, and

$$
\{a \in \Sigma \mid s \preceq a \text { and } t \preceq a\}=\left\{a \in \Sigma \mid \Delta_{s, t} \preceq a\right\} .
$$

Any atom $s \in M$ is a minimal element of the set $\{a \in \Sigma \mid s \preceq a\}$, so that $\Delta_{s, s}=s$.

Lemma 6.16. If (M, Δ) is a Garside monoid, then the set Σ satisfies all conditions of Theorem 6.5.

This key lemma allows us to apply the results of Section 6.2 to Garside monoids. The rest of this subsection is devoted to the proof of Lemma 6.16. We need to verify that Σ satisfies conditions $\left(*_{1}\right)-\left(*_{3}\right)$ of Theorem 6.5 . Condition $\left(*_{1}\right)$ directly follows from the definition of a pre-Garside monoid. Condition $\left(*_{2}\right)$ was verified in Lemma 6.11. The hard part is the verification of $\left(*_{3}\right)$. We begin with two lemmas. In both lemmas, we assume that (M, Δ) is a Garside monoid, Σ is the set of left (and right) divisors of Δ, and $S \subset \Sigma$ is the set of atoms of M.

Lemma 6.17. Let E be a nonempty finite subset of M satisfying the following two conditions:
(i) if $a \in M$ and $b \in E$ with $a \preceq b$, then $a \in E$;
(ii) if $a \in E, s, t \in S$ are such that as, at $\in E$, then $a \Delta_{s, t} \in E$.

Then E has a maximal element (with respect to \preceq).
Proof. Let c be an element of E such that $\|c\|$ is maximal (we say that c is of maximal height in E). We wish to show that $E=\{a \in M \mid a \preceq c\}$. By condition (i), $\{a \in M \mid a \preceq c\} \subset E$. Let us prove the opposite inclusion. Suppose it does not hold; then there is $b \in E$ such that $b \npreceq c$. Expand b as a product of atoms $b=s_{1} \cdots s_{n}$ for some n and $s_{1}, \ldots, s_{n} \in S$. Set $a=s_{1} \cdots s_{k}$, where $k<n$ is the maximal integer such that $a \preceq c$ (possibly $k=0$, in which case $a=1$). It is clear that $a \in E$ and there is an atom $s \in S$ (in fact $s=s_{k+1}$) such that as $\in E$ and as $\npreceq c$. We consider such $a \in E$ of maximal height. Since c is of maximal height in E, we have $\|a\|<\|a s\| \leq\|c\|$. This and the relation $a \preceq c$ imply that there is $t \in S$ such that $a t \preceq c$. Then, necessarily, $t \neq s$. We now have a, $a s$, and at in E. By condition (ii), $a \Delta_{s, t} \in E$. The relations $a s \preceq a \Delta_{s, t}$ and $a s \npreceq c$ imply $a \Delta_{s, t} \npreceq c$. We can expand

$$
\Delta_{s, t}=t s_{1} s_{2} \cdots s_{m}
$$

where $s_{1}, \ldots, s_{m} \in S$. There is $i=1, \ldots, m$ such that $a t s_{1} s_{2} \cdots s_{i-1} \preceq c$ and ats $s_{1} s_{2} \cdots s_{i} \npreceq c$. Set $a^{\prime}=$ ats $s_{1} \cdots s_{i-1}$. The inclusion $a \Delta_{s, t} \in E$ implies that $a^{\prime}, a^{\prime} s_{i} \in E$. By the choice of i, we have $a^{\prime} s_{i} \npreceq c$. Thus, a^{\prime} satisfies the same conditions as a, but $\left\|a^{\prime}\right\| \geq\|a t\|>\|a\|$. This yields a contradiction with the choice of a.

Lemma 6.18. For any $a, b \in \Sigma$, the set

$$
E=\{x \in M \mid x \preceq a \text { and } x \preceq b\} \subset \Sigma
$$

has a maximal element (with respect to \preceq).
Proof. Since Σ is finite, so is E. Clearly, $1 \in E$. The set E is nonempty since $1 \in E$, and obviously satisfies condition (i) of Lemma 6.17. Let us check condition (ii). We have to show that if $x s$ and $x t$ are left divisors of both a and b for some $s, t \in S$, then so is $x \Delta_{s, t}$. Let $y \in \Sigma$ be such that $x y=a$. By hypothesis, $x s \preceq a=x y$ and $x t \preceq a=x y$. By Lemma 6.11 (i), this implies $s \preceq y$ and $t \preceq y$. By Definition 6.15, $\Delta_{s, t} \preceq y$, hence $x \Delta_{s, t} \preceq x y=a$. Similarly, $x \Delta_{s, t} \preceq b$. Now Lemma 6.17 implies that E has a maximal element.

We can now verify condition $\left(*_{3}\right)$ of Theorem 6.5 . Pick any $a, b \in \Sigma$. Since $a \preceq \Delta$, we have $\Delta=a a^{\prime}$ for some $a^{\prime} \in \Sigma$. By Lemma 6.18, the set

$$
\left\{x \in M \mid x \preceq a^{\prime} \text { and } x \preceq b\right\} \subset \Sigma
$$

has an element c maximal with respect to \preceq. We claim that c is maximal in

$$
\{x \in \Sigma \mid x \preceq b \text { and } a x \in \Sigma\} .
$$

Indeed, by definition, $c \preceq a^{\prime}$, whence $a c \preceq a a^{\prime}=\Delta$, so that $a c \in \Sigma$. Let $d \in \Sigma$ such that $d \preceq b$ and $a d \in \Sigma$. Then $a d \preceq \Delta=a a^{\prime}$, which by Lemma 6.11 (i) (left cancellation in Σ) implies $d \preceq a^{\prime}$. Therefore, $d \preceq c$.

6.4.2 Comprehensive Garside monoids

A Garside monoid (M, Δ) is comprehensive if the set $\Sigma \subset M$ of the divisors of Δ is comprehensive in the sense of Section 6.2.6. The results above yield the following properties of a comprehensive Garside monoid (M, Δ).
(1) We have $M_{\Sigma} \cong M$ (Lemma 6.8). In other words, M has a presentation with generators $[a]$, where a runs over Σ, and relations $[1]=1$ and $[a][b]=[a b]$ whenever $a, b \in \Sigma$ satisfy $a b \in \Sigma$.
(2) For any $a \in M$, there is a unique left divisor $\alpha(a) \in \Sigma$ of a that is maximal among all left divisors of a lying in Σ (Theorem 6.5).
(3) Any $a \in M$ expands uniquely as a product $a=a_{1} a_{2} \cdots a_{r}$ of certain $a_{1}, a_{2}, \ldots, a_{r} \in \Sigma-\{1\}$ with $r \geq 0$ such that $a_{i}=\alpha\left(a_{i} a_{i+1} \cdots a_{r}\right)$ for all $i=1,2, \ldots, r$ (Section 6.2.2).
(4) The natural monoid homomorphism from M into its group of fractions G_{M} is injective (Lemma 6.6 and Corollary 6.13). In particular, M is left cancellative and right cancellative.
(5) If $M \neq\{1\}$, then any element of $G_{M} \supset M$ can be written uniquely in the form $\Delta^{s} b$, where $s \in \mathbf{Z}$ and $b \in M$ is not a right multiple of Δ (Theorem 6.14).
(6) The conjugacy problem in G_{M} is equivalent to the conjugacy problem in M (Section 6.3.4). The latter is solvable provided M admits a finite weighted presentation (Section 6.2.5).

6.4.3 Common divisors and multiples in Garside monoids

Given $k \geq 2$ elements a_{1}, \ldots, a_{k} of a monoid M, we say that $d \in M$ is a left greatest common divisor (gcd) of a_{1}, \ldots, a_{k} if $d \preceq a_{i}$ for all $i=1, \ldots, k$, and $d^{\prime} \preceq d$ for any $d^{\prime} \in M$ such that $d^{\prime} \preceq a_{i}$ for all $i=1, \ldots, k$. Replacing \preceq by \succeq, we obtain an analogous notion of a right gcd.

We say that $m \in M$ is a right least common multiple (lcm) of a_{1}, \ldots, a_{k} if $a_{i} \preceq m$ for all $i=1, \ldots, k$, and $m \preceq m^{\prime}$ for any $m^{\prime} \in M$ such that $a_{i} \preceq m^{\prime}$ for all $i=1, \ldots, k$. There is an analogous notion of a left lcm. If M is atomic, then the gcds and lcms are unique whenever they exist.

The condition in Definition 6.15 may be reformulated by saying that any two atoms have a right lcm. Property (2) in Section 6.4.2 may be reformulated by saying that Δ and any $a \in M$ have a left gcd. These properties of Garside monoids can be generalized as follows.

Theorem 6.19. Let (M, Δ) be a comprehensive Garside monoid. Then any finite family of elements of M has a unique left gcd and a unique right lcm.

Proof. Let $b, c \in M$. Consider the set

$$
E=\{a \in M \mid a \preceq b \text { and } a \preceq c\} .
$$

In order to prove that b and c have a left gcd in M, it suffices to check that E satisfies the conditions of Lemma 6.17 . The set E obviously satisfies condition (i). The set E is finite because $\|a\| \leq\|b\|$ for any $a \in E$, so that a is the product of at most $\|b\|$ atoms of M, and the set of atoms of M, being a subset of Σ, is finite.

Let us check condition (ii). Suppose we have $a \in E$ and atoms $s, t \in M$ such that $a s, a t \in E$. Write $b=a b_{1}$ with $b_{1} \in M$. Since M is left cancellative, as $\preceq b=a b_{1}$ implies $s \preceq b_{1}$ and at $\preceq b=a b_{1}$ implies $t \preceq b_{1}$. Consider the maximal left divisor $\alpha\left(b_{1}\right)$ of b_{1} in Σ. We have $s \preceq \alpha\left(b_{1}\right)$ and $t \preceq \alpha\left(b_{1}\right)$. Therefore $\Delta_{s, t} \preceq \alpha\left(b_{1}\right) \preceq b_{1}$. Hence, $\Delta_{s, t} \preceq b_{1}$ and $a \Delta_{s, t} \preceq a b_{1}=b$. Similarly, $a \Delta_{s, t} \preceq c$. This proves that $a \Delta_{s, t} \in E$.

That any finite family of elements of M has a left gcd now easily follows by induction on the cardinal of the family.

Let us prove the existence of right lcms. Let $a_{1}, \ldots, a_{k} \in M$. In view of Lemma 6.11 (iv), there is $r \geq 1$ such that $a_{i} \preceq \Delta^{r}$ for all $i=1, \ldots, k$. Consider the set

$$
X=\left\{x \in M \mid a_{i} \preceq x \preceq \Delta^{r} \text { for all } i=1, \ldots, k\right\} .
$$

Since the set of atoms of M is finite and all left divisors of Δ^{r} expand as products of $\leq r\|\Delta\|$ atoms, the set of left divisors of Δ^{r} is finite. Since it contains X, the latter is finite as well. Let m be a left gcd of the elements of X. We claim that m is a right lcm of a_{1}, \ldots, a_{k}. Indeed, a_{1}, \ldots, a_{k} are left divisors of all elements of X; therefore, they are left divisors of m. This shows that m is a common right multiple of a_{1}, \ldots, a_{k}.

Let m^{\prime} be another common right multiple of a_{1}, \ldots, a_{k}. Denote by $m^{\prime \prime}$ a left gcd of m^{\prime} and Δ^{r}. Let us check that $m^{\prime \prime} \in X$. First, $m^{\prime \prime} \preceq \Delta^{r}$. Since a_{i} is a left divisor of m^{\prime} and of Δ^{r}, it is a left divisor of $m^{\prime \prime}$. This proves that $m^{\prime \prime} \in X$. By definition of m, we have $m \preceq m^{\prime \prime}$. Since $m^{\prime \prime} \preceq m^{\prime}$, we obtain $m \preceq m^{\prime}$. This proves our claim.

Exercise 6.4.1. For $a \in \Sigma$, let $a^{\prime} \in \Sigma$ be uniquely defined by $a a^{\prime}=\Delta$ and let c be the left gcd of a^{\prime} and $b \in \Sigma$. Prove that c is the maximal element of the set $\{x \in \Sigma \mid x \preceq b$ and $a x \in \Sigma\}$. (Hint: The proof is contained in the proof of Lemma 6.16.) Deduce that $\alpha_{2}(a, b)=a c$.

Exercise 6.4.2. Let (M, Δ) be a Garside monoid and let Σ be the set of divisors of Δ. Prove that $\left(M_{\Sigma},[\Delta]\right)$ is a comprehensive Garside monoid.

Exercise 6.4.3. Let M be the monoid with generators x, y and the defining relation $x y x=y^{2}$. Prove that the pair $\left(M, \Delta=y^{3}\right)$ is a comprehensive Garside monoid with atoms x, y. (Hint: To distinguish elements of M, use monoid homomorphisms to \mathbf{N} and to the group $\left\langle a, b \mid a^{2}=b^{3}=1\right\rangle$.)

6.5 The braid monoid

6.5.1 A presentation by generators and relations

For $n \geq 1$, denote by B_{n}^{+}the monoid generated by $n-1$ generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and the relations

$$
\begin{aligned}
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & & \text { if }|i-j| \geq 2 \\
\sigma_{i} \sigma_{j} \sigma_{i} & =\sigma_{j} \sigma_{i} \sigma_{j} & & \text { if }|i-j|=1
\end{aligned}
$$

where $i, j=1,2, \ldots, n-1$. The monoid B_{n}^{+}is called the braid monoid on n strings. The elements of B_{n}^{+}are called positive braids on n strings. By definition, B_{1}^{+}is the trivial monoid. The monoid B_{2}^{+}is generated by a single generator σ_{1} and an empty set of relations; it is isomorphic to the monoid \mathbf{N} of nonnegative integers.

The presentation of B_{n}^{+}given above is finite and length-balanced in the sense of Section 6.1.4. Section 6.1.5 yields a solution of the word problem for B_{n}^{+}. Moreover, Lemma 6.4 implies that the monoid B_{n}^{+}is atomic with atoms $\sigma_{1}, \ldots, \sigma_{n-1}$ and $\|a\|=\ell(a)$ for all $a \in B_{n}^{+}$, where $\ell: B_{n}^{+} \rightarrow \mathbf{N}$ is the monoid homomorphism defined by $\ell\left(\sigma_{i}\right)=1$ for $i=1, \ldots, n-1$.

Set

$$
\Delta_{n}=\left(\sigma_{1} \cdots \sigma_{n-2} \sigma_{n-1}\right)\left(\sigma_{1} \cdots \sigma_{n-2}\right) \cdots\left(\sigma_{1} \sigma_{2}\right) \sigma_{1} \in B_{n}^{+} .
$$

The following theorem puts B_{n}^{+}in the framework of the theory of Garside monoids and provides a fundamental example of Garside monoids.

Theorem 6.20. For all $n \geq 1$, the pair $\left(B_{n}^{+}, \Delta_{n}\right)$ is a comprehensive Garside monoid.

The proof of this theorem will be given in Section 6.5.3 using preliminary results from Section 6.5.2. In the proof we will use the terminology and results from Section 4.1. Applications of Theorem 6.20 will be discussed in Section 6.5.4.

6.5.2 Reduced braids

As in Section 4.1, consider the symmetric group \mathfrak{S}_{n} consisting of all permutations of the set $\{1, \ldots, n\}$. We define a set-theoretic mapping $\rho: \mathfrak{S}_{n} \rightarrow B_{n}^{+}$ as follows. Consider the simple transpositions $s_{1}, \ldots, s_{n-1} \in \mathfrak{S}_{n}$, where s_{i} permutes i and $i+1$ and leaves the other elements of $\{1, \ldots, n\}$ fixed. The simple transpositions generate \mathfrak{S}_{n}, so that every element $w \in \mathfrak{S}_{n}$ can be expressed as a word $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ with $i_{1}, i_{2}, \ldots, i_{r} \in\{1,2, \ldots, n-1\}$. If r is minimal, then this is a reduced expression and we set $\rho(w)=\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{r}}$. By Theorem 4.12, $\rho(w)$ is a well-defined element of B_{n}^{+}. Let

$$
\pi: B_{n}^{+} \rightarrow \mathfrak{S}_{n}
$$

be the monoid homomorphism defined by $\pi\left(\sigma_{i}\right)=s_{i}$ for all $i=1, \ldots, n-1$. It is clear that $\pi \circ \rho=\mathrm{id}$, which implies that ρ is injective.

Set $B_{n}^{\text {red }}=\rho\left(\mathfrak{S}_{n}\right) \subset B_{n}^{+}$. This is a finite set of cardinal n ! and the homomorphism $\pi: B_{n}^{+} \rightarrow \mathfrak{S}_{n}$ is a bijection when restricted to $B_{n}^{\text {red }}$. We say that an element of B_{n}^{+}is reduced if it lies in $B_{n}^{\text {red }}$. The atoms $\sigma_{1}, \ldots, \sigma_{n-1}$ of B_{n}^{+} are reduced, since $\sigma_{i}=\rho\left(s_{i}\right)$ for $i=1, \ldots, n-1$.

From Section 4.1.3 recall the length $\lambda(w)$ of $w \in \mathfrak{S}_{n}$: it is the length r of any reduced expression $s_{i_{1}} s_{i_{2}} \cdots s_{i_{r}}$ for w. It is clear from the definitions that

$$
\lambda(\pi(a)) \leq \ell(a)
$$

for all $a \in B_{n}^{+}$. The following is a useful algebraic characterization of B_{n}^{red}.
Lemma 6.21. An element a of B_{n}^{+}is reduced if and only if $\lambda(\pi(a))=\ell(a)$.
Proof. If $a=\rho(w)$ for some $w \in \mathfrak{S}_{n}$, then $\ell(a)=\lambda(w)=\lambda(\pi(a))$. Conversely, let $a=\sigma_{i_{1}} \cdots \sigma_{i_{r}} \in B_{n}^{+}$with $r=\ell(a)=\lambda(\pi(a))$. Then $\pi(a)=s_{i_{1}} \cdots s_{i_{r}}$ is a reduced expression in \mathfrak{S}_{n} and $a=\rho(\pi(a)) \in B_{n}^{\text {red }}$.

Lemma 6.22. A left or right divisor of a reduced element of B_{n}^{+}is reduced.
Proof. If $a, b \in B_{n}$ and $a b \in B_{n}^{\text {red }}$, then

$$
\ell(a)+\ell(b)=\ell(a b)=\lambda(\pi(a b))=\lambda(\pi(a) \pi(b)) \leq \lambda(\pi(a))+\lambda(\pi(b))
$$

Since $\ell(a) \geq \lambda(\pi(a))$ and $\ell(b) \geq \lambda(\pi(b))$, these inequalities are actually equalities. By Lemma 6.21, it follows that $a, b \in B_{n}^{\text {red }}$.

Lemma 6.23. For $u, v \in \mathfrak{S}_{n}$, we have $\rho(u) \rho(v)=\rho(u v)$ if and only if $\lambda(u)+\lambda(v)=\lambda(u v)$.

Proof. Set $a=\rho(u) \rho(v) \in B_{n}^{+}$. We have $\pi(a)=u v$ and

$$
\lambda(u v)=\lambda(\pi(a)) \leq \ell(a)=\ell(\rho(u))+\ell(\rho(v))=\lambda(u)+\lambda(v)
$$

Therefore $a \in B_{n}^{\text {red }}$ if and only if $\lambda(u v)=\lambda(u)+\lambda(v)$. On the other hand, $a \in B_{n}^{\text {red }}$ if and only if $a=\rho(\pi(a))=\rho(u v)$.

Recall the permutation $w_{0}=(n, n-1, \ldots, 2,1)$ from Section 4.1.6; it is the unique element $w_{0} \in \mathfrak{S}_{n}$ of maximal length. It is easy to check that

$$
w_{0}=\left(s_{1} \cdots s_{n-2} s_{n-1}\right)\left(s_{1} \cdots s_{n-2}\right) \cdots\left(s_{1} s_{2}\right) s_{1}
$$

Since the word on the right-hand side has length $\lambda\left(w_{0}\right)=n(n-1) / 2$, it is reduced. Therefore,

$$
\rho\left(w_{0}\right)=\left(\sigma_{1} \cdots \sigma_{n-2} \sigma_{n-1}\right)\left(\sigma_{1} \cdots \sigma_{n-2}\right) \cdots\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}=\Delta_{n}
$$

This shows that Δ_{n} is reduced.
Lemma 6.24. An element of B_{n}^{+}is reduced if and only if it is a left (or a right) divisor of Δ_{n}.

Proof. Since Δ_{n} is reduced, all its left divisors and right divisors are reduced by Lemma 6.22.

Conversely, let $a=\rho(\pi(a)) \in B_{n}^{\text {red }}$. Set $b=\rho\left(\pi(a)^{-1} w_{0}\right) \in B_{n}^{\text {red }}, u=\pi(a)$, and $v=\pi(b)=\pi(a)^{-1} w_{0}$. We have $u v=w_{0}$. Hence, by Lemma 4.14,

$$
\lambda(u)+\lambda(v)=\lambda\left(w_{0}\right)
$$

This equality and Lemma 6.23 imply that $a b=\Delta_{n}$. Hence, a is a left divisor of Δ_{n}. A similar argument proves that a is a right divisor of Δ_{n}.

6.5.3 Proof of Theorem $\mathbf{6 . 2 0}$

We observed in Section 6.5.1 that B_{n}^{+}is atomic with atoms $\sigma_{1}, \ldots, \sigma_{n-1}$. Let us prove that $\left(B_{n}^{+}, \Delta_{n}\right)$ is a pre-Garside monoid by checking conditions (a), (b) of Definition 6.9.

By Lemma 6.24, the set of left divisors of Δ_{n} coincides with the set of right divisors of Δ_{n} and coincides with the set $B_{n}^{\text {red }}$. The latter is finite and contains the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ of B_{n}^{+}. This verifies condition (a).

Condition (b): Let us prove that $\Delta_{n} a=\Delta_{n} b \Rightarrow a=b$ for $a, b \in B_{n}^{\text {red }}$. Applying the monoid homomorphism $\pi: B_{n}^{+} \rightarrow \mathfrak{S}_{n}$, we obtain

$$
\pi\left(\Delta_{n}\right) \pi(a)=\pi\left(\Delta_{n} a\right)=\pi\left(\Delta_{n} b\right)=\pi\left(\Delta_{n}\right) \pi(b) \in \mathfrak{S}_{n}
$$

Since \mathfrak{S}_{n} is a group, $\pi(a)=\pi(b)$. This implies that

$$
a=\rho(\pi(a))=\rho(\pi(b))=b
$$

The implication $a \Delta_{n}=b \Delta_{n} \Rightarrow a=b$ is proven similarly.
For any $i, j \in\{1, \ldots, n-1\}$, set

$$
\sigma_{i, j}= \begin{cases}\sigma_{i} & \text { if } i=j \\ \sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j} & \text { if }|i-j|=1 \\ \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & \text { if }|i-j| \geq 2\end{cases}
$$

Set $s_{i, j}=\pi\left(\sigma_{i, j}\right) \in \mathfrak{S}_{n}$. It is easy to check that $s_{i, j}=s_{i} s_{j}$ is a reduced expression when $|i-j| \geq 2$, and $s_{i, j}=s_{i} s_{j} s_{i} \in \mathfrak{S}_{n}$ is a reduced expression when $|i-j|=1$. Then $\sigma_{i, j}=\rho\left(s_{i, j}\right) \in B_{n}^{\text {red }}$ for all i, j. Therefore the set $B_{n}^{\text {red }}$ is comprehensive.

To complete the proof of Theorem 6.20, it remains to check the condition in Definition 6.15. Observe that $\sigma_{i} \preceq \sigma_{i, j}$ and $\sigma_{j} \preceq \sigma_{i, j}$ for all i, j. We claim that $\sigma_{i, j}$ is the minimal element in the set

$$
\left\{a \in B_{n}^{\text {red }} \mid \sigma_{i} \preceq a \text { and } \sigma_{j} \preceq a\right\} .
$$

We must show that for any $a \in B_{n}^{\text {red }}$ such that $\sigma_{i} \preceq a$ and $\sigma_{j} \preceq a$, we have $\sigma_{i, j} \preceq a$. The case $i=j$ being trivial, we consider the case $i \neq j$. Since the elements of $B_{n}^{\text {red }}$ are in bijection with the elements of \mathfrak{S}_{n} under the map $\pi: B_{n}^{+} \rightarrow \mathfrak{S}_{n}$, it is enough to establish that if

$$
w=\pi(a)=s_{i} u=s_{j} v
$$

for some $u, v \in \mathfrak{S}_{n}$ with $\lambda(u)=\lambda(v)=\lambda(w)-1$, then there is $w^{\prime} \in \mathfrak{S}_{n}$ such that $w=s_{i, j} w^{\prime}$ and $\lambda\left(w^{\prime}\right)=\lambda(w)-\lambda\left(s_{i, j}\right)$.

We prove the latter assertion. First observe that $u \neq v$, since $s_{i} \neq s_{j}$. Let $s_{i_{1}} \cdots s_{i_{r}}$ be a reduced expression for v, where $r=\lambda(w)-1$. We have

$$
u=s_{i} w=s_{i} s_{j} v=s_{i} s_{j} s_{i_{1}} \cdots s_{i_{r}}
$$

Since $\lambda(u)<\lambda(w)$, it follows from Theorem 4.8 that u is obtained from $s_{j} s_{i_{1}} \cdots s_{i_{r}}$ by deleting one of the generators. If the deleted generator is the leftmost s_{j}, then $u=s_{i_{1}} \cdots s_{i_{r}}=v$, which is impossible. Therefore, $u=s_{j} w^{\prime}$ with

$$
w^{\prime}=s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots s_{i_{r}}
$$

where some $s_{i_{p}}$ is deleted. Therefore, $\lambda\left(w^{\prime}\right) \leq r-1=\lambda(w)-2$. Since

$$
w=s_{i} u=s_{i} s_{j} w^{\prime}
$$

we must have $\lambda\left(w^{\prime}\right)=\lambda(w)-2$. This proves the desired assertion when $|i-j| \geq 2$, i.e., when $s_{i, j}=s_{i} s_{j}$.

Consider the case $|i-j|=1$. By the previous computations,

$$
v=s_{j} w=s_{j} s_{i} u=s_{j} s_{i} s_{j} w^{\prime}=s_{j} s_{i} s_{j} s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots s_{i_{r}}
$$

Since $\lambda(v)<\lambda(w)=r+1$, it follows again from Theorem 4.8 that v is obtained from $s_{i} s_{j} s_{i_{1}} \cdots \widehat{s_{p}} \cdots s_{i_{r}}$ by deleting one of the generators. If the deleted generator is the leftmost s_{i}, then

$$
v=s_{j} s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots s_{i_{r}}=s_{j} w^{\prime}=u
$$

which is impossible. If the deleted generator is the generator s_{j} in the second position, then

$$
v=s_{i} s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots s_{i_{r}}=s_{i} w^{\prime} .
$$

We obtain $s_{i} s_{j} w^{\prime}=w=s_{j} v=s_{j} s_{i} w^{\prime}$, which implies $s_{i} s_{j}=s_{j} s_{i}$. This is impossible, since $|i-j|=1$. Therefore $v=s_{i} s_{j} w^{\prime \prime}$, where $w^{\prime \prime}$ is obtained by deleting a generator from $w^{\prime}=s_{i_{1}} \cdots \widehat{s_{i_{p}}} \cdots s_{i_{r}}$. Thus, $\lambda\left(w^{\prime \prime}\right) \leq r-2=\lambda(w)-3$ and

$$
w=s_{j} v=s_{j} s_{i} s_{j} w^{\prime \prime}=s_{i, j} w^{\prime \prime}
$$

Then of course $\lambda\left(w^{\prime \prime}\right)=\lambda(w)-3$.

6.5.4 Applications of Theorem 6.20

By Theorem 6.20, the pair $\left(B_{n}^{+}, \Delta_{n}\right)$ shares all properties of comprehensive Garside monoids; see Sections 6.4.2 and 6.4.3. We give here a summary of these properties.
(1) The monoid B_{n}^{+}has a presentation with generators $[a]$, where a runs over $B_{n}^{\text {red }}$, and relations $[1]=1$ and $[a][b]=[a b]$ whenever $a, b \in B_{n}^{\text {red }}$ satisfy $a b \in B_{n}^{\text {red }}$. Using the bijection $\rho: \mathfrak{S}_{n} \rightarrow B_{n}^{\text {red }}$ and Lemma 6.23, we conclude that B_{n}^{+}has a presentation with generators $[u]$, where u runs over \mathfrak{S}_{n}, and relations $[1]=1$ and $[u][v]=[u v]$ whenever $u, v \in \mathfrak{S}_{n}$ satisfy $\lambda(u)+\lambda(v)=\lambda(u v)$.
(2) Any finite family of elements of B_{n}^{+}has a unique left gcd and a unique right lcm .
(3) Any $a \in B_{n}^{+}$has a normal form $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $r \geq 0$, where $a_{1}, a_{2}, \ldots, a_{r}$ are unique elements of $B_{n}^{\text {red }}-\{1\}$ such that $a=a_{1} a_{2} \cdots a_{r}$ and a_{i} is the left gcd of $a_{i} a_{i+1} \cdots a_{r}$ and Δ_{n} for all $i=1,2, \ldots, r$.
(4) The monoid B_{n}^{+}embeds into its group of fractions. By definition, the group of fractions of B_{n}^{+}has the same presentation as B_{n}^{+}and is nothing but the braid group B_{n}. Thus, the monoid homomorphism $B_{n}^{+} \rightarrow B_{n}$ sending $\sigma_{i} \in B_{n}^{+}$to $\sigma_{i} \in B_{n}$ for $i=1, \ldots, n-1$ is injective. In the sequel we will identify the monoid B_{n}^{+}with its image in B_{n}.
(5) For $n \geq 2$, any $\beta \in B_{n}$ can be written uniquely in the form $\beta=\Delta_{n}^{s} b$, where $s \in \mathbf{Z}$ and $b \in B_{n}^{+} \subset B_{n}$ is not a right multiple of Δ_{n}.
(6) The conjugacy problem in B_{n} is equivalent to the conjugacy problem in B_{n}^{+}and can be solved as in Section 6.2.5.
We complement this list with the following theorem.

Theorem 6.25. Any finite family of elements of B_{n}^{+}has a unique right gcd and a unique left lcm.

Proof. Consider the map rev : $B_{n}^{+} \rightarrow B_{n}^{+}$obtained by reading the words in the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ from right to left:

$$
\operatorname{rev}\left(\sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{r-1}} \sigma_{i_{r}}\right)=\sigma_{i_{r}} \sigma_{i_{r-1}} \cdots \sigma_{i_{2}} \sigma_{i_{1}}
$$

This map is well defined, since the defining relations of B_{n}^{+}, being read from right to left, give the same relations. The map rev is an involutive antiautomorphism of B_{n}^{+}in the sense that $\operatorname{rev}^{2}=\mathrm{id}, \operatorname{rev}(1)=1$, and $\operatorname{rev}(a b)=\operatorname{rev}(b) \operatorname{rev}(a)$ for all $a, b \in B_{n}^{+}$. It is clear that $a \preceq b$ if and only if $\operatorname{rev}(a) \succeq \operatorname{rev}(b)$ for $a, b \in B_{n}^{+}$. Using these facts, it is easy to deduce the existence of right gcds and left lcms from the existence of left gcds and right lcms. The uniqueness follows from Lemma 6.3.

Note that the Garside element $\Delta_{n} \in B_{n}^{+} \subset B_{n}$ was introduced as a braid in Section 1.3.3 (see Figure 1.11 for $n=5$).

6.5.5 Computations

The expansion $\beta=\Delta^{s} b$ of a braid $\beta \in B_{n}$ provided by the item (5) of the previous subsection can be explicitly computed. Represent β by a word in the generators $\sigma_{1}, \ldots, \sigma_{n-1}$ and their inverses. Define $\nu_{i} \in B_{n}^{+}$by $\nu_{i} \sigma_{i}=\Delta_{n}$. Then $\sigma_{i}^{-1}=\Delta_{n}^{-1} \nu_{i}$. In the word representing β replace all occurrences of σ_{i}^{-1} by $\Delta_{n}^{-1} \nu_{i}$ and expand all ν_{i} in terms of $\sigma_{1}, \ldots, \sigma_{n-1}$. In the resulting word we have only the generators σ_{i} (not their inverses) and negative powers of Δ_{n}. Using the identities

$$
\begin{equation*}
\sigma_{i} \Delta_{n}=\Delta_{n} \sigma_{n-i} \tag{6.6}
\end{equation*}
$$

where $i=1, \ldots, n-1$ (cf. formula (1.8) in Section 1.3), we can move all powers of Δ_{n} to the left. In this way we obtain an expansion $\beta=\Delta_{n}^{s} b$ with $s \in \mathbf{Z}$ and $b \in B_{n}^{+}$. If b is not a right multiple of Δ_{n}, then we have the desired expansion of β. If $\Delta_{n} \preceq b$, then $b=\Delta_{n} b^{\prime}$ with $b^{\prime} \in B_{n}^{+}$and $\beta=\Delta_{n}^{s+1} b^{\prime}$. Note that to check whether $\Delta_{n} \preceq b$, it is enough to compute $\alpha(b) \in B_{n}^{\text {red }}$ and to see whether $\alpha(b)=\Delta_{n}$. We then check whether b^{\prime} is a right multiple of Δ_{n}, and so on. The process stops after at most $2 \ell(b) /(n(n-1))$ steps.

To give an example, we apply this procedure to

$$
\beta=\sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{2}^{-2} \in B_{4}
$$

As in Section 6.1.5, denote by $W(a)$ the set of words in $\sigma_{1}, \ldots, \sigma_{n-1}$ representing an element $a \in B_{n}^{+}$. From

$$
\Delta_{4}=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2}
$$

we derive $\sigma_{1}^{-1}=\Delta_{4}^{-1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2}$ and $\sigma_{2}^{-1}=\Delta_{4}^{-1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}$. Consequently,

$$
\begin{aligned}
\beta & =\left(\Delta_{4}^{-1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2}\right)\left(\sigma_{2} \sigma_{1}\right)\left(\Delta_{4}^{-1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}\right)\left(\Delta_{4}^{-1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}\right) \\
& =\left(\Delta_{4}^{-1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2}\right)\left(\sigma_{2} \sigma_{1}\right)\left(\Delta_{4}^{-2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3}\right)\left(\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}\right) \\
& =\Delta_{4}^{-3} a b c^{2}
\end{aligned}
$$

where

$$
a=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2}, \quad b=\sigma_{2} \sigma_{1}, \quad \text { and } \quad c=\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3}=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}
$$

Let us compute $\alpha\left(a b c^{2}\right)$ in order to find out whether $a b c^{2}$ is a right multiple of Δ_{4}. Observe that a, b, and c are reduced braids. By Exercise 6.4.1, since $c \sigma_{2}=\Delta_{4}$, we have $\alpha\left(c^{2}\right)=\alpha_{2}(c, c)=c c^{\prime}$, where c^{\prime} is the left gcd of σ_{2} and c. Now $W(c)$ consists of the six words

$$
\begin{array}{lll}
\sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{3}, & \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}, & \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{3} \sigma_{1} \\
\sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3}, & \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1}, & \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3}
\end{array}
$$

Therefore, $c^{\prime}=1$ and $\alpha\left(c^{2}\right)=c$. From $b\left(\sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}\right)=\Delta_{4}$, we obtain

$$
\alpha\left(b c^{2}\right)=\alpha_{2}\left(b, \alpha\left(c^{2}\right)\right)=\alpha_{2}(b, c)=b b^{\prime},
$$

where b^{\prime} is the left gcd of $\sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}$ and c. Now

$$
W\left(\sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}\right)=\left\{\sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1}, \sigma_{3} \sigma_{2} \sigma_{3} \sigma_{1}, \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3}\right\}
$$

Comparing with $W(c)$, we obtain $b^{\prime}=\sigma_{3} \sigma_{2} \sigma_{1}$. Hence, $\alpha\left(b c^{2}\right)=d$, where $d=\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1}$. Finally, $a \sigma_{1}=\Delta_{4}$ implies

$$
\alpha\left(a b c^{2}\right)=\alpha_{2}\left(a, \alpha\left(b c^{2}\right)\right)=\alpha_{2}(a, d)=a a^{\prime}
$$

where a^{\prime} is the left gcd of σ_{1} and d. The list

$$
W(d)=\left\{\sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2} \sigma_{1}, \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}, \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{2}, \sigma_{3} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2}, \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}\right\}
$$

shows that $a^{\prime}=1$. Hence, $\alpha\left(a b c^{2}\right)=a \neq \Delta_{4}$. Therefore, $a b c^{2}$ is not a right multiple of Δ_{4} and

$$
\beta=\Delta_{4}^{-3} a b c^{2}
$$

is the required expansion of β.
The reader is invited to check that the normal form of $a b c^{2}$ is (a, d, e, b), where a, b, d are as above and $e=\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}$.

Exercise 6.5.1. (a) Give an algebraic proof of the identities (6.6) in B_{n}^{+}.
(b) Prove that Δ_{n} is the left (and the right) lcm of $\sigma_{1}, \ldots, \sigma_{n-1}$ in B_{n}^{+}.
(c) Deduce that the center of B_{n}^{+}is generated by Δ_{n}^{2}.
(d) Show that $\operatorname{rev}\left(\Delta_{n}\right)=\Delta_{n}$.
(e) Show that $\operatorname{rev}\left(B_{n}^{\text {red }}\right)=B_{n}^{\text {red }}$. (Hint: $\rho\left(w^{-1}\right)=\operatorname{rev}(\rho(w))$ for $w \in \mathfrak{S}_{n}$.)

6.6 Generalized braid groups

We introduce generalized braid groups and generalized braid monoids. Their definition is directly inspired by the theory of Coxeter groups. We begin with a short introduction to Coxeter groups.

6.6.1 Coxeter groups

A Coxeter matrix is a symmetric matrix $A=\left(a_{s, t}\right)_{s, t \in S}$, where S is a finite set, $a_{s, s}=1$ for all $s \in S$, and $a_{s, t} \in\{2,3, \ldots, \infty\}$ for all distinct $s, t \in S$. To such a matrix A we associate a graph Γ_{A} as follows: its vertices are the elements of S, and there is a (unique) edge between $s \in S$ and $t \in S$ whenever $a_{s, t} \geq 3$. We label the edge between s and t by $a_{s, t}$ whenever $a_{s, t} \geq 4$. The resulting labeled graph is the labeled graph of A. Every Coxeter matrix can be uniquely reconstructed from its labeled graph.

To a Coxeter matrix $A=\left(a_{s, t}\right)_{s, t \in S}$ we associate the group W_{A} defined by the following presentation: the generators are the elements of S and the relations are

$$
\begin{equation*}
(s t)^{a_{s, t}}=1 \tag{6.7}
\end{equation*}
$$

where s, t run over pairs of elements of S such that $a_{s, t} \neq \infty$.
Since $a_{s, s}=1$, relation (6.7) for $s=t$ becomes $s^{2}=1$, which is equivalent to $s^{-1}=s$ for all $s \in S$. For $s \neq t$, relation (6.7) can be rewritten as

$$
\begin{equation*}
\underbrace{s t s \cdots}_{a_{s, t} \text { factors }}=\underbrace{t s t \cdots}_{a_{s, t} \text { factors }} \tag{6.8}
\end{equation*}
$$

where s, t run over S and both sides of (6.8) are defined when $2 \leq a_{s t}<\infty$ and have $a_{s, t}$ factors. In other words, W_{A} is generated by the elements of S subject to the relations $s^{2}=1(s \in S)$ and relations (6.8). The group W_{A} is called the Coxeter group associated with A (or with the labeled graph Γ_{A}).

If $S=\{1,2, \ldots, n-1\}$ with $n \geq 1$ and $A=\left(a_{i, j}\right)_{i, j \in S}$ is given by

$$
a_{i, j}= \begin{cases}1 & \text { if } i=j \tag{6.9}\\ 3 & \text { if }|i-j|=1 \\ 2 & \text { if }|i-j| \geq 2\end{cases}
$$

then W_{A} has a presentation that coincides with the presentation (4.1) of the symmetric group \mathfrak{S}_{n}. Thus, Coxeter groups generalize the symmetric groups.

Consider again an arbitrary Coxeter matrix $A=\left(a_{s, t}\right)_{s, t \in S}$. Because of the relations $s^{2}=1$ for $s \in S$, any element $w \in W_{A}$ can be expanded as a product $w=s_{1} \cdots s_{r}$ of elements s_{1}, \ldots, s_{r} of S. The minimal number r in such an expansion of w is called the length of w and denoted by $\lambda(w)$. An expansion $w=s_{1} \cdots s_{r}$ with $r=\lambda(w)$ and $s_{1}, \ldots, s_{r} \in S$ is called a reduced expression for w (in general it is nonunique).

The neutral element of W_{A} is the only element of length 0 . The elements of length 1 in W_{A} are precisely the generators $s \in S$.

Many properties of the symmetric groups extend to Coxeter groups. Note the following generalization of Theorem 4.12 (for a proof, see [Mat64], [Bou68, Chap. IV, Sect. 1, Prop. 5], [GP00, Sect. 1.2]).

Theorem 6.26. For any monoid M and any set of elements $x_{s} \in M$ indexed by $s \in S$ and satisfying the relations

$$
\underbrace{x_{s} x_{t} x_{s} \cdots}_{a_{s, t} \text { factors }}=\underbrace{x_{t} x_{s} x_{t} \cdots}_{a_{s, t} \text { factors }}
$$

for all $s, t \in S$ such that $2 \leq a_{s, t}<\infty$, there is a unique set-theoretic map $\rho: W_{A} \rightarrow M$ such that $\rho(w)=x_{s_{1}} \cdots x_{s_{r}}$ for an arbitrary reduced expression $w=s_{1} \cdots s_{r}$ of any $w \in W_{A}$.

In Table 6.1 we give a list of labeled graphs consisting of four infinite families of graphs $A_{n}(n \geq 1), B C_{n}(n \geq 2), D_{n}(n \geq 4), I_{2}(m)(m=5$ and $m \geq 7$) and seven exceptional graphs. The subscripts in Table 6.1 indicate the number of vertices. It can be proved that the Coxeter groups associated to all these labeled graphs are finite. Moreover, any finite Coxeter group is a direct product of a finite family of Coxeter groups associated to graphs in Table 6.1, see [Bou68, Chap. VI, Sect. 4.1] or [Hum90, Sect. 2.7]. We record also the following lemma; see [GP00, Prop. 1.5.1].

Lemma 6.27. A Coxeter group W_{A} is finite if and only if there is an element $w_{0} \in W_{A}$ such that $\lambda\left(w_{0} s\right)<\lambda\left(w_{0}\right)$ for all $s \in S$. Such w_{0} (if it exists) is unique and satisfies $\lambda(w)<\lambda\left(w_{0}\right)$ for all $w \in W_{A}, w \neq w_{0}$.

The element $w_{0} \in W_{A}$ is called the longest element of W_{A}.

6.6.2 Generalized braid monoids and groups

Given a Coxeter matrix $A=\left(a_{s, t}\right)_{s, t \in S}$, we define B_{A}^{+}as the monoid (resp. B_{A} as the group) generated by the elements of S and relations (6.8). (The difference with W_{A} is that we now drop the relations $s^{2}=1, s \in S$.) The monoid B_{A}^{+} is called the generalized braid monoid, and the group B_{A} is called the generalized braid group associated to A. It follows from Section 6.3.1 that B_{A} is the group of fractions of the monoid B_{A}^{+}.

By definition, the Coxeter group W_{A} is the quotient of B_{A} by the normal subgroup generated by s^{2} for all $s \in S$. The composite map

$$
\pi: B_{A}^{+} \rightarrow B_{A} \rightarrow W_{A}
$$

is clearly surjective. When A is the matrix (6.9),

$$
B_{A}^{+} \cong B_{n}^{+} \quad \text { and } \quad B_{A} \cong B_{n}
$$

Table 6.1. Graphs of finite Coxeter groups
 $B C_{n} \bigcirc 40-0-\cdots \cdots$

$F_{4} \bigcirc \longrightarrow-4$
$G_{2} \circ{ }^{6}$
$H_{3} \bigcirc{ }^{5}-$
$H_{4} \mathrm{O}^{5}-\mathrm{O}-\mathrm{O}$

$$
I_{2}(m) \bigcirc \stackrel{m}{\square}
$$

The presentation of B_{A}^{+}is finite and length-balanced in the sense of Section 6.1.4. Section 6.1.5 yields a solution of the word problem and of the divisibility problem for B_{A}^{+}. Lemma 6.4 implies that the monoid B_{A}^{+}is atomic with $s \in S$ as atoms, and $\|a\|=\ell(a)$ for all $a \in B_{A}^{+}$, where $\ell: B_{A}^{+} \rightarrow \mathbf{N}$ is the monoid homomorphism defined by $\ell(s)=1$ for all $s \in S$. It is clear that the monoid B_{A}^{+}is trivial if and only if $S=\emptyset$.

By Theorem 6.26, there is a unique set-theoretic map $\rho: W_{A} \rightarrow B_{A}^{+}$such that $\rho(w)=s_{1} \cdots s_{r} \in B_{A}^{+}$for any reduced expression $w=s_{1} \cdots s_{r}$. Clearly, $\pi \circ \rho=\operatorname{id}_{W_{A}}$, where $\pi: B_{A}^{+} \rightarrow W_{A}$ is the projection. Hence ρ is injective.

Set $B_{A}^{\mathrm{red}}=\rho\left(W_{A}\right) \subset B_{A}^{+}$. We say that an element of B_{A}^{+}is reduced if it lies in $B_{A}^{\text {red }}$. For instance, the neutral element and the generators $s \in S$ of B_{A}^{+} are reduced. Note also that $\lambda(\pi(a)) \leq \ell(a)$ for all $a \in B_{A}^{+}$.

The following lemma generalizes Lemmas 6.21-6.23 and is proven similarly.
Lemma 6.28. (a) An element $a \in B_{A}^{+}$is reduced if and only if $\lambda(\pi(a))=\ell(a)$.
(b) All left divisors and all right divisors of a reduced element of B_{A}^{+}are reduced.
(c) For $u, v \in W_{A}$, we have $\rho(u) \rho(v)=\rho(u v) \Longleftrightarrow \lambda(u)+\lambda(v)=\lambda(u v)$.

Now assume that the group W_{A} is finite. By Lemma 6.27, there is a unique element $w_{0} \in W_{A}$ of maximal length. Set $\Delta=\rho\left(w_{0}\right) \in B_{A}^{+}$. The following lemma generalizes Lemma 6.24 and is proven similarly.

Lemma 6.29. An element of B_{A}^{+}is reduced if and only if it is a left (or a right) divisor of Δ.

We can now state the main theorem of this section.
Theorem 6.30. For any Coxeter matrix A such that the group W_{A} is finite, the pair $\left(B_{A}^{+}, \Delta\right)$ is a comprehensive Garside monoid.

Proof. We have already observed that the monoid B_{A}^{+}is atomic. Since both sides of (6.8) represent reduced expressions in W_{A}, the set $B_{A}^{\text {red }}$ is comprehensive. The proof of conditions (a), (b) of Definition 6.9 reproduces the corresponding part of the proof of Theorem 6.20 with obvious changes. It remains to check the condition in Definition 6.15. For $s, t \in S$, set

$$
\Delta_{s, t}= \begin{cases}s & \text { if } s=t \\ \underbrace{s t s \ldots}_{a_{s t} \text { factors }}=\underbrace{t s t \ldots}_{a_{s t} \text { factors }} & \text { if } s \neq t .\end{cases}
$$

The element $\Delta_{s, t}$ belongs to $B_{A}^{\text {red }}$ and is a right common multiple of s and t. We claim that $\Delta_{s, t} \preceq a$ for any $a \in B_{A}^{\text {red }}$ such that $s \preceq a$ and $t \preceq a$. Since the elements of $B_{A}^{\text {red }}$ are in bijection with the elements of W_{A} under the map $\pi: B_{A}^{+} \rightarrow W_{A}$, it is enough to establish that if $w=\pi(a)=s u=t v$ for some $u, v \in W_{A}$ with $\lambda(u)=\lambda(v)=\lambda(w)-1$, then there is $w^{\prime} \in W_{A}$ such that $w=\pi\left(\Delta_{s, t}\right) w^{\prime}$ and $\lambda\left(w^{\prime}\right)=\lambda(w)-\lambda\left(\pi\left(\Delta_{s, t}\right)\right)$. This reduces our claim to an assertion on Coxeter groups. For a proof of this assertion, see [GP00, Sect. 1.1.7 and Lemma 1.2.1].

Theorem 6.30 implies that the pair $\left(B_{A}^{+}, \Delta\right)$ with finite W_{A} shares all properties of comprehensive Garside monoids stated in Sections 6.4.2 and 6.4.3. We give here a summary of these properties.
(1) The monoid B_{A}^{+}has a presentation with generators $[a]$, where a runs over $B_{A}^{\text {red }}$, and relations $[1]=1$ and $[a][b]=[a b]$ whenever $a, b \in B_{A}^{\text {red }}$ satisfy $a b \in B_{A}^{\text {red }}$. Using the bijection $\rho: W_{A} \rightarrow B_{A}^{\text {red }}$ and Lemma 6.28 (c), we conclude that B_{A}^{+}has a presentation with generators [u], where u runs over W_{A}, and relations $[1]=1$ and $[u][v]=[u v]$ whenever $u, v \in W_{A}$ satisfy $\lambda(u)+\lambda(v)=\lambda(u v)$.
(2) Any finite family of elements of B_{A}^{+}has a unique left gcd, right gcd, left lcm , right lcm . (The existence of the right gcd and left lcm is proven similarly to Theorem 6.25 using the involutive antiautomorphism of B_{A}^{+} fixing S pointwise.)
(3) Any $a \in B_{A}^{+}$has a normal form $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $r \geq 0$, where $a_{1}, a_{2}, \ldots, a_{r}$ are unique elements of $B_{A}^{\text {red }}-\{1\}$ such that $a=a_{1} a_{2} \cdots a_{r}$ and a_{i} is the left gcd of $a_{i} a_{i+1} \cdots a_{r}$ and Δ for all $i=1,2, \ldots, r$.
(4) The natural monoid homomorphism $B_{A}^{+} \rightarrow B_{A}$ is injective.
(5) If $S \neq \emptyset$, then any $\beta \in B_{A}$ can be written uniquely in the form $\beta=\Delta^{s} b$, where $s \in \mathbf{Z}$ and $b \in B_{A}^{+} \subset B_{A}$ is not a right multiple of Δ.
(6) The conjugacy problem in B_{A} is equivalent to the conjugacy problem in B_{A}^{+}and can be solved as in Section 6.2.5.

6.6.3 Brieskorn's theorem

In Section 1.4.3 we interpreted Artin's braid group B_{n} as the fundamental group of a configuration space. We give here a similar interpretation of the generalized braid group B_{A} associated to a Coxeter matrix $A=\left(a_{s, t}\right)_{s, t \in S}$.

To begin with, we identify the Coxeter group W_{A} associated to A with a group of matrices. Let V be a real vector space with a basis $\left\{e_{s}\right\}_{s \in S}$ indexed by the set S. We define a symmetric bilinear form \langle,$\rangle on V$ by

$$
\left\langle e_{s}, e_{t}\right\rangle=-\cos \left(\pi / a_{s, t}\right)=\cos \left(\pi-\pi / a_{s, t}\right),
$$

where we use the convention that $\pi / a_{s, t}=0$ if $a_{s, t}=+\infty$. In particular, we have $\left\langle e_{s}, e_{s}\right\rangle=\cos (0)=1$ for all $s \in S$.

For each $s \in S$, define an endomorphism μ_{s} of V by

$$
\mu_{s}(v)=v-2\left\langle e_{s}, v\right\rangle e_{s}
$$

where $v \in V$. Since $\left\langle e_{s}, e_{s}\right\rangle \neq 0$, the subspace $H_{s}=\left\{v \in V \mid\left\langle e_{s}, v\right\rangle=0\right\}$ orthogonal to e_{s} is a hyperplane, which does not contain e_{s}. We have an orthogonal decomposition

$$
V=H_{s} \oplus \mathbf{R} e_{s}
$$

Since $\mu_{s}\left(e_{s}\right)=-e_{s}$ and $\mu_{s}(v)=v$ for all $v \in H$, the endomorphism μ_{s} is involutive and equal to the orthogonal reflection in the hyperplane H_{s}.

Lemma 6.31. For all $s, t \in S$, the order of $\mu_{s} \mu_{t}$ is equal to $a_{s, t}$.
Proof. (a) If $a_{s, t}=\infty$, then

$$
\left(\mu_{s} \mu_{t}\right)\left(e_{s}\right)=\mu_{s}\left(e_{s}+2 e_{t}\right)=-e_{s}+2\left(e_{t}+2 e_{s}\right)=3 e_{s}+2 e_{t}
$$

and

$$
\left(\mu_{s} \mu_{t}\right)\left(e_{t}\right)=-\mu_{s}\left(e_{t}\right)=-2 e_{s}-e_{t} .
$$

It follows that $\mu_{s} \mu_{t}$ fixes $e_{s}+e_{t}$. Using this fact and the equality

$$
\left(\mu_{s} \mu_{t}\right)\left(e_{s}\right)=e_{s}+2\left(e_{s}+e_{t}\right),
$$

it is easy to check by induction that $\left(\mu_{s} \mu_{t}\right)^{r}\left(e_{s}\right)=e_{s}+2 r\left(e_{s}+e_{t}\right)$ for all $r \geq 0$. This shows that $\mu_{s} \mu_{t}$ is of infinite order.
(b) We noted above that μ_{s} is an involution. Therefore, for $s=t$, the order of $\mu_{s} \mu_{t}=\mu_{s}^{2}$ is $1=a_{s, s}$.
(c) It remains to treat the case in which $s \neq t$ and $a_{s, t}<\infty$. Observe that $\mu_{s} \mu_{t}$ fixes $H_{s} \cap H_{t}$ pointwise and leaves the two-dimensional subspace $\Pi_{s, t}$ of V spanned by e_{s} and e_{t} invariant. We have $V=\left(H_{s} \cap H_{t}\right) \oplus \Pi_{s, t}$. Restricting the symmetric bilinear form \langle,$\rangle to \Pi_{s, t}$, we obtain a symmetric bilinear form

$$
\left(\begin{array}{ll}
\left\langle e_{s}, e_{s}\right\rangle & \left\langle e_{s}, e_{t}\right\rangle \\
\left\langle e_{s}, e_{t}\right\rangle & \left\langle e_{t}, e_{t}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & -\cos \left(\pi / a_{s, t}\right) \\
-\cos \left(\pi / a_{s, t}\right) & 1
\end{array}\right)
$$

The inequalities $2 \leq a_{s, t}<\infty$ imply that $0 \leq \cos \left(\pi / a_{s, t}\right)<1$, so that the latter bilinear form is positive definite. Therefore we can treat $\Pi_{s, t}$ as a Euclidean plane, where the vectors e_{s} and e_{t} are of norm one and the angle between them is $\pi-\pi / a_{s, t}$. It is well known that the composition of two planar reflections is a rotation by an angle equal to twice the angle between the vectors defining the reflections. Therefore, the restriction of $\mu_{s} \mu_{t}$ to $\Pi_{s, t}$ is a rotation by an angle of $2 \pi-2 \pi / a_{s, t}=-2 \pi / a_{s, t}(\bmod 2 \pi)$. Since $\mu_{s} \mu_{t}$ fixes $H_{s} \cap H_{t}$ pointwise, the order of $\mu_{s} \mu_{t}$ is equal to $a_{s, t}$.

By this lemma, the reflections μ_{s} satisfy (6.7). Therefore, there is a group homomorphism $\mu: W_{A} \rightarrow \operatorname{Aut}(V)$ defined by $\mu(s)=\mu_{s}$ for all $s \in S$. It can be shown that μ is an injective homomorphism onto a discrete subgroup of $\operatorname{Aut}(V)$. This realizes W_{A} as a group of matrices generated by reflections.

We assume until the end of the section that the Coxeter group $W=W_{A}$ is finite. Let $\left\{H_{i}\right\}_{i \in I}$ be the set of all hyperplanes of V obtained as the images of the hyperplanes $H_{s}(s \in S)$ under the automorphisms of V lying in $\mu(W) \subset \operatorname{Aut}(V)$. Since W is finite, the set $\left\{H_{i}\right\}_{i \in I}$ is finite.

Let $V^{\mathbf{C}}=V \otimes_{\mathbf{R}} \mathbf{C}$ be the complexification of the real vector space V. The action μ of W on V extends to an action of W on $V^{\mathbf{C}}$ by C-linear automorphisms. Consider the complex hyperplanes

$$
H_{i}^{\mathbf{C}}=H_{i} \otimes_{\mathbf{R}} \mathbf{C} \subset V^{\mathbf{C}}
$$

for $i \in I$. Since the action of W on V permutes the hyperplanes $\left\{H_{i}\right\}_{i \in I}$, the extended action on $V^{\mathbf{C}}$ permutes the complex hyperplanes $\left\{H_{i}^{\mathbf{C}}\right\}_{i \in I}$. Therefore, we obtain an action of W on the set

$$
E=V^{\mathbf{C}}-\bigcup_{i \in I} H_{i}^{\mathbf{C}}
$$

The set E is an open subset of the complex vector space $V^{\mathbf{C}}$. Therefore, E is a complex manifold of complex dimension $\operatorname{card}(S)$.

The group W acts on E by fixed-point free homeomorphisms preserving the complex structure. The quotient space $W \backslash E$ naturally inherits the structure of a complex manifold of dimension card (S). The projection $E \rightarrow W \backslash E$ is an unramified covering. Since the complex hyperplanes H_{i}^{C} are of real codimension two in $V^{\mathbf{C}}$, the manifolds E and $W \backslash E$ are connected.

Fix a point

$$
p \in V \cap E=V-\bigcup_{i \in I} H_{i}
$$

For each $s \in S$, consider a broken line in $V^{\mathbf{C}}$ with consecutive vertices p, $p+\sqrt{-1} p, \mu_{s}(p)+\sqrt{-1} p$, and $\mu_{s}(p)$. This broken line lies in E and projects to a loop in $W \backslash E$ beginning and ending at the projection $\dot{p} \in W \backslash E$ of p. This loop represents an element of the fundamental group $\pi_{1}(W \backslash E, \dot{p})$ denoted by \dot{s}.

Theorem 6.32 (E. Brieskorn). The map $S \rightarrow \pi_{1}(W \backslash E, \dot{p}), s \mapsto \dot{s}$ induces a group isomorphism $B_{A} \cong \pi_{1}(W \backslash E, \dot{p})$.

For a proof, see Brieskorn [Bri71] or Deligne [Del72]. These authors also proved that the manifold $W \backslash E$ is aspherical, i.e., its higher homotopy groups vanish, see [Del72], [Bri73]. Since $E \rightarrow W \backslash E$ is a covering, the manifold E is also aspherical. Its fundamental group is isomorphic to the kernel of the projection $B_{A} \rightarrow W=W_{A}$. This kernel generalizes Artin's pure braid groups.

Notes

The word problem in the braid groups was first solved by Artin [Art25]. Garside [Gar69] introduced the braid monoids and studied their properties. This led him to a new solution of the word problem and a solution of the conjugacy problem in the braid groups. Garside [Gar69] also extended these results to some generalized braid monoids. Dehornoy and Paris [DP99] abstracted the ideas contained in [Gar69] and introduced the concept of a Garside monoid. We used the following sources while writing this chapter: [DP99], [Mic99], [GP00], [Deh02], [BDM02]. The definition of a (pre-)Garside monoid given in this chapter is slightly different from the definitions in these papers.

A systematic study of generalized braid monoids and groups associated with finite Coxeter groups was undertaken by Brieskorn [Bri71], [Bri73], Brieskorn and Saito [BS72], and Deligne [Del72]. Generalized braid groups are also called Artin groups or Artin-Tits groups. In the literature one also finds the expression "braid groups of spherical type," which designates generalized braid groups associated with finite Coxeter groups. Theorem 6.26 is due to Matsumoto [Mat64]. Theorem 6.32 was conjectured by J. Tits and first proven by Brieskorn [Bri71]. A description of generalized braid groups in terms of braid pictures can be found in [All02].

7

An Order on the Braid Groups

The principal aim of this chapter is to show that the braid groups have a natural total order.

7.1 Orderable groups

In this section we present generalities on orderable groups. All groups will be written multiplicatively and their neutral elements will be denoted by 1.

7.1.1 Orders

An order on a set X is a relation \leq among elements of X satisfying the following properties for all $x, y, z \in X$:
(i) (Reflexivity) $x \leq x$,
(ii) (Antisymmetry) $(x \leq y$ and $y \leq x) \Longrightarrow x=y$,
(iii) (Transitivity) $(x \leq y$ and $y \leq z) \Longrightarrow x \leq z$.

We shall also write $y \geq x$ instead of $x \leq y$. We write $x<y$ or, equivalently, $y>x$ if $x \leq y$ and $x \neq y$. It is clear that there are no elements $x, y \in X$ such that simultaneously $x<y$ and $y<x$.

An order is said to be total (or linear) if for any $x, y \in X$, either $x=y$ or $x<y$ or $x>y$. An order-preserving map from an ordered set (X, \leq) to an ordered set $\left(X^{\prime}, \leq^{\prime}\right)$ is a map $f: X \rightarrow X^{\prime}$ such that $f(x) \leq^{\prime} f(y)$ for all $x, y \in X$ such that $x \leq y$.

7.1.2 Basics on orderable groups

An order \leq on a group G is left-invariant (resp. right-invariant) if

$$
x \leq y \Longrightarrow z x \leq z y \quad \text { (resp. } \quad x \leq y \Longrightarrow x z \leq y z)
$$

for all $x, y, z \in G$. An order on a group that is both left- and right-invariant is said to be bi-invariant.

A group is orderable if it has a left-invariant total order. Note that if G is a group with left-invariant total order \leq, then G also admits a right-invariant total order \leq^{\prime} defined by $x \leq^{\prime} y$ if $x^{-1} \leq y^{-1}$ for $x, y \in G$.

For example, the set of real numbers \mathbf{R} is orderable, since the standard total order on \mathbf{R} is left-invariant. Clearly, all subgroups of an orderable group are orderable.

From orderable groups we can construct new orderable groups as follows.
Lemma 7.1. (a) If G_{1}, \ldots, G_{r} are orderable groups, then their direct product $G_{1} \times \cdots \times G_{r}$ is orderable.
(b) Let G be a group and H a normal subgroup. If H and G / H have leftinvariant total orders, then G has a unique left-invariant total order such that the inclusion $H \hookrightarrow G$ and the projection $p: G \rightarrow G / H$ are order-preserving. If furthermore the left-invariant total orders on H and G / H are bi-invariant and $z x z^{-1}>1$ for all $z \in G$ and $x \in H$ with $x>1$, then the associated left-invariant order on G is bi-invariant.

Proof. (a) Let \leq_{i} be a left-invariant total order on G_{i}. We define a relation \leq on $G=G_{1} \times \cdots \times G_{r}$ by $\left(x_{1}, \ldots, x_{r}\right) \leq\left(y_{1}, \ldots, y_{r}\right)$ if either $x_{i}=y_{i}$ for all $i \in\{1, \ldots, r\}$ or there is $i \in\{1, \ldots, r\}$ such that $x_{j}=y_{j}$ for all $j<i$ and $x_{i}<_{i} y_{i}$. It is easy to check that this relation is an order on G. It is called the lexicographic order. Since the orders on G_{1}, \ldots, G_{r} are total, so is the lexicographic order on G. Let us prove the left invariance. Let

$$
x=\left(x_{1}, \ldots, x_{r}\right), \quad y=\left(y_{1}, \ldots, y_{r}\right), \quad z=\left(z_{1}, \ldots, z_{r}\right)
$$

be three elements of G. If $x<y$, then there is $i \in\{1, \ldots, r\}$ such that $x_{j}=y_{j}$ for all $j<i$ and $x_{i}<_{i} y_{i}$. Consequently, $z_{j} x_{j}=z_{j} y_{j}$ for all $j<i$ and $z_{i} x_{i}<_{i} z_{i} y_{i}$ by the left invariance of \leq_{i}. Therefore, $z x<z y$.
(b) We define a relation \leq on G by $x \leq y$ if either $p(x)<p(y)$ for the given order on G / H, or $p(x)=p(y)$ and $x^{-1} y \geq 1$ for the given order on H (observe that $\left.x^{-1} y \in H\right)$. It is an easy exercise to check that this is a left-invariant total order on G. Moreover, any left-invariant order on G such that $H \hookrightarrow G$ and $p: G \rightarrow G / H$ are order-preserving is necessarily of this form.

Assume that the given total orders on H and G / H are bi-invariant and $z x z^{-1}>1$ for all $z \in G$ and $x \in H$ with $x>1$. Let us check that the order \leq on G is right-invariant. Let $x \leq y$ in G. Since the order on G / H is right-invariant, $p(x)<p(y)$ implies that

$$
p(x z)=p(x) p(z)<p(y) p(z)=p(y z)
$$

for all $z \in G$. Hence $x z \leq y z$. If $p(x)=p(y)$ and $x^{-1} y \geq 1$, then

$$
p(x z)=p(x) p(z)=p(y) p(z)=p(y z)
$$

and

$$
(x z)^{-1}(y z)=z^{-1}\left(x^{-1} y\right) z \geq 1
$$

since conjugation preserves positive elements of H by hypothesis. Thus in this case again, $x z \leq y z$.

Lemma 7.1 (a) and the orderability of \mathbf{R} imply that all finite-dimensional real vector spaces and their additive subgroups are orderable.

Not all groups are orderable. For instance, a finite group is orderable if and only if it is trivial (see Proposition 7.5 below).

7.1.3 The positive cone

For a subset \mathcal{P} of a group G, set $\mathcal{P}^{-1}=\left\{x \in G \mid x^{-1} \in \mathcal{P}\right\}$ and

$$
\mathcal{P}^{2}=\{z \in G \mid \text { there are } x, y \in \mathcal{P} \text { such that } z=x y\} .
$$

Lemma 7.2. For any subset \mathcal{P} of a group G,

$$
\mathcal{P} \cap\{1\}=\emptyset \Longleftrightarrow \mathcal{P}^{-1} \cap\{1\}=\emptyset \Longleftarrow \mathcal{P} \cap \mathcal{P}^{-1}=\emptyset .
$$

If $\mathcal{P}^{2} \subset \mathcal{P}$, then $\mathcal{P} \cap\{1\}=\emptyset \Longrightarrow \mathcal{P} \cap \mathcal{P}^{-1}=\emptyset$.
Proof. If $1 \in \mathcal{P}$, then $1=1^{-1} \in \mathcal{P}^{-1}$. This shows that $\mathcal{P}^{-1} \cap\{1\}=\emptyset \Rightarrow$ $\mathcal{P} \cap\{1\}=\emptyset$. Replacing here \mathcal{P} by \mathcal{P}^{-1}, we obtain the converse implication.

To prove the implication $\mathcal{P} \cap \mathcal{P}^{-1}=\emptyset \Rightarrow \mathcal{P} \cap\{1\}=\emptyset$, we check that $\mathcal{P} \cap\{1\} \neq \emptyset \Rightarrow \mathcal{P} \cap \mathcal{P}^{-1} \neq \emptyset$. If $\mathcal{P} \cap\{1\} \neq \emptyset$, then $1 \in \mathcal{P}$ and $1=1^{-1} \in \mathcal{P}^{-1}$. Hence, $1 \in \mathcal{P} \cap \mathcal{P}^{-1}$.

To prove the last claim of the lemma, we check that $\mathcal{P} \cap \mathcal{P}^{-1} \neq \emptyset \Rightarrow$ $\mathcal{P} \cap\{1\} \neq \emptyset$. If $x \in \mathcal{P} \cap \mathcal{P}^{-1}$, then $x^{-1} \in \mathcal{P} \cap \mathcal{P}^{-1}$. Consequently,

$$
1=x x^{-1} \in \mathcal{P}^{2} \subset \mathcal{P}
$$

Hence, $\mathcal{P} \cap\{1\} \neq \emptyset$.
Lemma 7.3. Let \leq be a left-invariant order on a group G. Set

$$
\mathcal{P}=\{x \in G \mid x>1\} .
$$

Then $\mathcal{P}^{-1}=\{x \in G \mid x<1\}, \mathcal{P}^{2} \subset \mathcal{P}$, and

$$
\mathcal{P} \cap\{1\}=\mathcal{P}^{-1} \cap\{1\}=\mathcal{P} \cap \mathcal{P}^{-1}=\emptyset .
$$

If the order \leq is total, then $\mathcal{P} \cup\{1\} \cup \mathcal{P}^{-1}=G$.
Proof. If $x \in \mathcal{P}^{-1}$, then $x^{-1} \in \mathcal{P}$, so that $1<x^{-1}$. Multiplying by x on the left, we obtain $x<1$. Similarly, $x<1$ implies $1=x^{-1} x<x^{-1} 1=x^{-1}$, so that $x^{-1} \in \mathcal{P}$ and $x \in \mathcal{P}^{-1}$. This proves that $\mathcal{P}^{-1}=\{x \in G \mid x<1\}$.

The antisymmetry axiom implies that \mathcal{P} and $\mathcal{P}^{-1}=\{x \in G \mid x<1\}$ are disjoint. That they are disjoint from $\{1\}$ follows from the definition of the relation $<$.

If $x, y \in \mathcal{P}$, then $x y>x 1=x>1$, so that $x y \in \mathcal{P}$. Thus, $\mathcal{P}^{2} \subset \mathcal{P}$.
If the order \leq is total, then for any $x \in G$, necessarily $x>1$ or $x=1$ or $x<1$. Therefore, $\mathcal{P} \cup\{1\} \cup \mathcal{P}^{-1}=G$.

The set $\mathcal{P}=\{x \in G \mid x>1\}$ as in the previous lemma is called the positive cone associated to the order \leq. The elements of \mathcal{P} are said to be positive with respect to \leq. The following theorem shows that a left-invariant total order on a group can be reconstructed from its positive cone.

Theorem 7.4. Let \mathcal{P} be a subset of a group G such that

$$
\mathcal{P}^{2} \subset \mathcal{P} \quad \text { and } \quad 1 \notin \mathcal{P}
$$

Then G has a unique left-invariant order \leq such that $\mathcal{P}=\{x \in G \mid x>1\}$. If $z \mathcal{P} z^{-1} \subset \mathcal{P}$ for all $z \in G$, then the order \leq is bi-invariant. If

$$
\mathcal{P} \cup\{1\} \cup \mathcal{P}^{-1}=G,
$$

then the order \leq is total.
Proof. Let us first prove the uniqueness of the order. By the left invariance, the inequality $x<y$ is equivalent to the inequality $1=x^{-1} x<x^{-1} y$. The latter is equivalent to the inclusion $x^{-1} y \in \mathcal{P}$. This shows that a left-invariant order on G with positive cone \mathcal{P} is necessarily defined by

$$
\begin{equation*}
x \leq y \Longleftrightarrow\left(x=y \text { or } x^{-1} y \in \mathcal{P}\right) \tag{7.1}
\end{equation*}
$$

We next prove the existence. By Lemma 7.2, the assumptions $\mathcal{P}^{2} \subset \mathcal{P}$ and $1 \notin \mathcal{P}$ imply that

$$
\mathcal{P} \cap\{1\}=\mathcal{P}^{-1} \cap\{1\}=\mathcal{P} \cap \mathcal{P}^{-1}=\emptyset .
$$

We define a binary relation \leq on G by (7.1). Let us check that it satisfies the axioms of an order. The reflexivity follows from the definition.

Antisymmetry: If $x \leq y$ and $y \leq x$, then either $x=y$ or $x^{-1} y \in \mathcal{P}$, $y^{-1} x \in \mathcal{P}$. Since $y^{-1} x=\left(x^{-1} y\right)^{-1}$, we obtain $x^{-1} y \in \mathcal{P} \cap \mathcal{P}^{-1}=\emptyset$ in the second case, a contradiction. Therefore, $x=y$.

Transitivity: If $x^{-1} y, y^{-1} z \in \mathcal{P}$, then $x^{-1} z=\left(x^{-1} y\right)\left(y^{-1} z\right) \in \mathcal{P}^{2} \subset \mathcal{P}$.
Let us show that the order \leq is left-invariant. Pick $x, y \in G$ such that $x \leq y$. Then $x=y$ or $x^{-1} y \in \mathcal{P}$. If $x=y$, then $z x=z y$ for all $z \in G$. If $x^{-1} y \in \mathcal{P}$, then $(z x)^{-1}(z y)=x^{-1} y \in \mathcal{P}$. In both cases, $z x \leq z y$.

Assume that $z \mathcal{P} z^{-1} \subset \mathcal{P}$ for all $z \in G$. Let $x, y \in G$ be such that $x \leq y$. Then $x=y$ or $x^{-1} y \in \mathcal{P}$. If $x=y$, then $x z=y z$ for all $z \in G$. If $x^{-1} y \in \mathcal{P}$ and $z \in G$, then $(x z)^{-1}(y z)=z^{-1}\left(x^{-1} y\right) z$ belongs to $z^{-1} \mathcal{P} z$, hence to \mathcal{P}. This proves that \leq is right-invariant.

If $\mathcal{P} \cup\{1\} \cup \mathcal{P}^{-1}=G$, then for all $x, y \in G$, we have $x^{-1} y \in \mathcal{P}$ or $x^{-1} y \in \mathcal{P}^{-1}$ or $x^{-1} y=1$. In the first case, $x<y$; in the second case, $y^{-1} x=\left(x^{-1} y\right)^{-1} \in \mathcal{P}$, so that $y<x$; in the last case, $x=y$. This proves that the order \leq is total.

7.1.4 Properties of orderable groups

We state two properties of orderable groups.
Proposition 7.5. Any orderable group G is torsion free.
Proof. We have to show that $x^{n} \neq 1$ for any integer $n \geq 1$ and any $x \in G$ such that $x \neq 1$. Suppose that $x>1$. Then by the left invariance,

$$
x^{n}=\left(x^{n-1}\right) x>x^{n-1} 1=x^{n-1}
$$

for any $n \geq 1$. By induction, $x^{n}>x>1$; hence $x^{n} \neq 1$. If $x<1$, then $x^{-1}>1$ and $x^{-n}=\left(x^{-1}\right)^{n} \neq 1$. Hence, $x^{n} \neq 1$.

Proposition 7.6. If G is an orderable group and R is a ring without zerodivisors, then the group algebra $R[G]$ has no zero-divisors.
Proof. Let $\omega=\sum_{i=1}^{p} r_{i} g_{i}$ and $\omega^{\prime}=\sum_{j=1}^{q} s_{j} h_{j}$ be nonzero elements of $R[G]$, where g_{1}, \ldots, g_{p} and h_{1}, \ldots, h_{q} are elements of G, and r_{1}, \ldots, r_{p} and s_{1}, \ldots, s_{q} are elements of R. We may assume that r_{1}, \ldots, r_{p} and s_{1}, \ldots, s_{q} are all nonzero and the group elements h_{i} are numerated in such a way that $h_{1}<h_{2}<\cdots<h_{q}$. By the left invariance of the order, $g_{i} h_{1}<g_{i} h_{j}$ for all $i=1, \ldots, p$ and $j=2, \ldots, q$. The order being total, there is a unique i_{0} such that $g_{i_{0}} h_{1}<g_{i} h_{1}$ for all $i \neq i_{0}$. We claim that $\left(i_{0}, 1\right)$ is the unique pair (i, j) such that $g_{i_{0}} h_{1}=g_{i} h_{j}$ in G. Indeed, as observed above, $g_{i_{0}} h_{1}<g_{i_{0}} h_{j}$ for all $j \neq 1$, and, if $i \neq i_{0}$, then $g_{i_{0}} h_{1}<g_{i} h_{1}<g_{i} h_{j}$. Therefore, the coefficient of $g_{i_{0}} h_{1}$ in $\omega \omega^{\prime} \in R[G]$ is $r_{i_{0}} s_{1}$, which is nonzero, since R has no zero-divisors. Hence, $\omega \omega^{\prime} \neq 0$.

The zero-divisor conjecture (sometimes called Kaplansky's conjecture) states that if G is a torsion-free group and R is a ring without zero-divisors, then the group algebra $R[G]$ has no zero-divisors. Proposition 7.6 shows that this conjecture holds for orderable groups.

7.1.5 Biorderable groups

A group is biorderable if it has a bi-invariant total order. For example, any orderable abelian group is biorderable, since a left-invariant order on an abelian group is necessarily bi-invariant. All subgroups of a biorderable group are biorderable. We state one further property of biorderable groups.

Lemma 7.7. Let G be a biorderable group. Then $x^{n}=y^{n} \Rightarrow x=y$ for any $x, y \in G$ and any positive integer n.
Proof. We start with the following observation: in a biorderable group, $x<y$ together with $x^{\prime}<y^{\prime}$ implies $x x^{\prime}<y y^{\prime}$. Indeed, by the left and right invariance of the order, $x x^{\prime}<x y^{\prime}<x^{\prime} y^{\prime}$. From this an easy induction shows that $x<y \Rightarrow x^{n}<y^{n}$ for all positive integers n. Now let $x, y \in G$ be such that $x^{n}=y^{n}$. Since the order is total, we must have $x=y$ or $x<y$ or $y<x$. By the previous remark, the latter two cases cannot occur. Therefore, $x=y$.

The group rings of biorderable groups have further interesting properties. For instance, Malcev [Mal48] and Neumann [Neu49] proved that the integral group ring of a biorderable group can be embedded into a division algebra.

The first two braid groups $B_{1}=\{1\}$ and $B_{2}=\mathbf{Z}$ are biorderable. The braid group B_{n} with $n \geq 3$ is not biorderable. Indeed, by Remark 1.30, $\sigma_{1} \sigma_{2} \neq \sigma_{2} \sigma_{1}$, but $\left(\sigma_{1} \sigma_{2}\right)^{3}=\left(\sigma_{2} \sigma_{1}\right)^{3}$. Lemma 7.7 implies that B_{n} is not biorderable.

7.2 Pure braid groups are biorderable

The main result of this section is the following theorem.
Theorem 7.8. The pure braid group P_{n} is biorderable for all $n \geq 1$.
To prove this theorem we first study Magnus expansions of free groups and then show that free groups are biorderable. Theorem 7.8 is proven in Section 7.2.3. Neither this theorem nor its proof will be used in the sequel.

7.2.1 The Magnus expansion

Fix a nonempty set X. We define a ring of (noncommutative) formal power series over X. Let X^{*} be the free monoid on X; see Example 6.1 (c). By a formal power series over X we mean an arbitrary formal sum $\sum_{W \in X^{*}} n_{W} W$, where W runs over X^{*} and $n_{W} \in \mathbf{Z}$. Such formal sums can be added in the obvious way and thus form an additive abelian group denoted by $\mathbf{Z}[[X]]$. The multiplication in X^{*} induces a multiplication in $\mathbf{Z}[[X]]$; this turns $\mathbf{Z}[[X]]$ into a ring whose unit is the neutral element $1 \in X^{*}$.

Recall the length function $\ell: X^{*} \rightarrow \mathbf{N}$, which is the unique morphism of monoids sending all elements of X to 1 . We say that a formal power series $a=\sum_{W \in X^{*}} n_{W} W \in \mathbf{Z}[[X]]$ has degree $\geq r$, where r is a positive integer, if $n_{W}=0$ for all $W \in X^{*}$ with $\ell(W)<r$. Clearly, the product of a formal power series of degree $\geq r$ with a formal power series of degree $\geq s$ is a formal power series of degree $\geq r+s$.

For a formal power series $a=\sum_{W \in X^{*}} n_{W} W$, let $\varepsilon(a)=n_{1} \in \mathbf{Z}$ be the coefficient of the neutral element $1 \in X^{*}$. It is easy to show that a is invertible in $\mathbf{Z}[[X]]$ if and only if $\varepsilon(a)= \pm 1$. For instance, for any $x \in X$, the polynomial $1+x \in \mathbf{Z}[[X]]$ is invertible and its inverse is the formal power series $\sum_{k>0}(-1)^{k} x^{k}$.

The following lemma is left to the reader.
Lemma 7.9. For any $x \in X$ and $k \in \mathbf{Z}$ there is a formal power series $h_{k}(x)$ in the variable x such that

$$
(1+x)^{k}=1+k x+x^{2} h_{k}(x) .
$$

Let $G(X) \subset \mathbf{Z}[[X]]$ be the set of all formal power series $a \in \mathbf{Z}[[X]]$ such that $\varepsilon(a)=1$. This set is a group under multiplication.

Proposition 7.10. Let F be a free group freely generated by a set X. The homomorphism of groups $\mu: F \rightarrow G(X)$ defined by $\mu(x)=1+x$ for all $x \in X$ is injective.

The formal power series $\mu(w)$ is called the Magnus expansion of $w \in F$.
Proof. The existence and the uniqueness of μ follow from the definition of F. To check the injectivity of μ, pick a nontrivial element $w \in F$ and write it in the form

$$
w=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{r}^{k_{r}}
$$

where $x_{1}, x_{2}, \ldots, x_{r} \in X$ satisfy $x_{1} \neq x_{2}, x_{2} \neq x_{3}, \ldots, x_{r-1} \neq x_{r}$, and all the integers $k_{1}, k_{2}, \ldots, k_{r}$ are nonzero. By Lemma 7.9,

$$
\begin{aligned}
\mu(w)= & \left(1+x_{1}\right)^{k_{1}}\left(1+x_{2}\right)^{k_{2}} \cdots\left(1+x_{r}\right)^{k_{r}} \\
= & \left(1+k_{1} x_{1}+x_{1}^{2} h_{k_{1}}\left(x_{1}\right)\right)\left(1+k_{2} x_{2}+x_{2}^{2} h_{k_{2}}\left(x_{2}\right)\right) \\
& \cdots\left(1+k_{r} x_{r}+x_{r}^{2} h_{k_{r}}\left(x_{r}\right)\right) .
\end{aligned}
$$

Expanding the formal power series on the right-hand side, we see that it contains a unique monomial of the form $x_{1} x_{2} \cdots x_{r}$. The coefficient of this monomial is $k_{1} k_{2} \cdots k_{r} \neq 0$. Hence, $\mu(w) \neq 1$.

7.2.2 Free groups are biorderable

Proposition 7.11. Let F be a free group freely generated by a set X. Any total order on X extends to a bi-invariant total order on F.

Proof. A total order on X induces an order \leq on X^{*} as follows:
(i) On $X \subset X^{*}$ the order \leq is the given total order.
(ii) If $W_{1}, W_{2} \in X^{*}$ satisfy $\ell\left(W_{1}\right)<\ell\left(W_{2}\right)$, then set $W_{1}<W_{2}$.
(iii) If $W_{1}, W_{2} \in X^{*}$ have the same length, then we order them lexicographically: if $W_{1}=x_{1} \cdots x_{r}$ and $W_{2}=y_{1} \cdots y_{r}$ with $x_{i}, y_{i} \in X$ for all i, then $W_{1}<W_{2}$ provided there is $k \leq r$ such that $x_{k}<y_{k}$ and $x_{i}=y_{i}$ for all $i<k$.

The order \leq on X^{*} is total and bi-invariant; the latter means that $W_{1}<W_{2}$ implies $W W_{1}<W W_{2}$ and $W_{1} W<W_{2} W$ for all $W \in X^{*}$.

By Proposition 7.10, if $w \in F$ is distinct from the neutral element 1, then $\mu(w) \neq 1 \in \mathbf{Z}[[X]]$. Write

$$
\mu(w)-1=\sum_{W} n_{W} W
$$

where W runs over all nonempty words in X^{*} such that the integer n_{W} is nonzero.

One of the words W appearing in this expansion of $\mu(w)-1$ has to be the smallest with respect to the above-defined total order on X^{*}. Denote this smallest word by $V(w)$ and set $n(w)=n_{V(w)} \neq 0$. Finally, set

$$
\mathcal{P}=\{w \in F-\{1\} \mid n(w)>0\} .
$$

Clearly, an element w of $F-\{1\}$ lies in \mathcal{P} if and only if $\mu(w)$ is of the form

$$
1+n(w) V+\sum_{W>V} n_{W} W
$$

where $V \neq 1$ and $n(w)>0$.
We claim that \mathcal{P} satisfies all conditions of Theorem 7.4 and therefore defines a bi-invariant total order on F. It follows from the definitions that $1 \notin \mathcal{P}$. To establish that $\mathcal{P}^{2} \subset \mathcal{P}$, consider two elements $w, w^{\prime} \in \mathcal{P}$ and their Magnus expansions

$$
\mu(w)=1+n(w) V+\sum_{W>V} n_{W} W
$$

and

$$
\mu\left(w^{\prime}\right)=1+n\left(w^{\prime}\right) V^{\prime}+\sum_{W>V^{\prime}} n_{W}^{\prime} W
$$

where $n(w)>0$ and $n\left(w^{\prime}\right)>0$. Expand $\mu\left(w w^{\prime}\right)=\mu(w) \mu\left(w^{\prime}\right)$ as a formal power series. Using the bi-invariance of the order on X^{*}, we easily obtain

$$
n\left(w w^{\prime}\right)= \begin{cases}n(w) & \text { if } V<V^{\prime} \\ n\left(w^{\prime}\right) & \text { if } V>V^{\prime} \\ n(w)+n\left(w^{\prime}\right) & \text { if } V=V^{\prime}\end{cases}
$$

In all cases, $n\left(w w^{\prime}\right)>0$, which implies that $w w^{\prime} \in \mathcal{P}$.
It is easy to deduce from the identity $\mu\left(w^{-1}\right)=(\mu(w))^{-1}$ that \mathcal{P}^{-1} is the set of all $w \in F-\{1\}$ such that $n(w)<0$. This together with the injectivity of μ implies that $\mathcal{P} \cup\{1\} \cup \mathcal{P}^{-1}=F$.

It remains to check that $w \mathcal{P} w^{-1} \subset \mathcal{P}$ for all $w \in F$. If $f \in \mathbf{Z}[[X]]$ is a formal power series without constant term and $W \in X^{*}$, then

$$
(1+f) W(1+f)^{-1}=W+\sum_{W^{\prime}>W} m_{W^{\prime}} W^{\prime}
$$

for some integers $m_{W^{\prime}}$. This implies that

$$
n\left(w w^{\prime} w^{-1}\right)=n\left(w^{\prime}\right)
$$

for all w, w^{\prime} in $F-\{1\}$. Therefore, $w \mathcal{P} w^{-1} \subset \mathcal{P}$ for all $w \in F$.
Corollary 7.12. All free groups are biorderable.

7.2.3 Proof of Theorem 7.8

We recall the notation and the results of Section 1.3. First of all, the pure braid group P_{n} is generated by the $n(n-1) / 2$ braids $A_{i, j}(1 \leq i<j \leq n)$ shown in Figure 1.10. Next, for each $n \geq 2$, we have an exact sequence

$$
1 \rightarrow U_{n} \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow 1
$$

where the map $P_{n} \rightarrow P_{n-1}$ is the homomorphism f_{n} that removes the rightmost string of a pure braid, and U_{n} is a free group on the $n-1$ generators $X_{1}=A_{1, n}, \ldots, X_{n-1}=A_{n-1, n}$. We give U_{n} the bi-invariant total order derived as above from the order $X_{1}<X_{2}<\cdots<X_{n-1}$ on the set of generators.

Since $P_{1}=\{1\}$, we have $P_{2} \cong U_{2} \cong \mathbf{Z}$, which is biorderable. It follows from Lemma 7.1 (b) by induction on n that P_{n} has a unique left-invariant total order such that the homomorphisms $U_{n} \rightarrow P_{n}$ and $f_{n}: P_{n} \rightarrow P_{n-1}$ are order-preserving.

By Lemma 7.1 (b), this order on P_{n} is bi-invariant provided $\beta u \beta^{-1}>1$ for any $\beta \in P_{n}$ and any $u \in U_{n}$ such that $u>1$. To check this property, we observe from relations (1.7) that conjugating a generator $X_{i}=A_{i, n}$ of U_{n} by a generator $A_{r, s}$ of P_{n} with $s<n$ amounts to conjugating X_{i} by a product of generators of U_{n}. The same is true for $s=n$, since $A_{r, n} \in U_{n}$. Thus, in all cases, $A_{r, s}^{-1} X_{i} A_{r, s}=X_{i}$ modulo the commutator subgroup [U_{n}, U_{n}] of U_{n}. It follows that $\beta X_{i} \beta^{-1}=X_{i}$ modulo $\left[U_{n}, U_{n}\right]$ for all $\beta \in P_{n}$ and $i \in\{1, \ldots, n-1\}$. In other words, $\beta X_{i} \beta^{-1}=X_{i} u_{i}$ for some $u_{i} \in\left[U_{n}, U_{n}\right]$. The Magnus expansion of $\beta X_{i} \beta^{-1}$ is computed by

$$
\mu\left(\beta X_{i} \beta^{-1}\right)=\mu\left(X_{i} u_{i}\right)=\left(1+X_{i}\right) \mu\left(u_{i}\right)
$$

It follows from Exercise 7.2 .1 below that $\mu\left(u_{i}\right)=1+$ (a formal power series of degree ≥ 2). Therefore, $\mu\left(\beta X_{i} \beta^{-1}\right)=1+X_{i}+($ a formal power series of degree ≥ 2). The Magnus expansion of $\beta u \beta^{-1}$, where $u \in U_{n}$, is then obtained from $\mu(u)$ by replacing each X_{i} by the sum of X_{i} with a formal power series of degree ≥ 2. The Magnus expansions of u and $\beta u \beta^{-1}$ have therefore the same first nonconstant term. It follows that $\beta u \beta^{-1}>1$ if and only if $u>1$.

Exercise 7.2.1. Show that for $x, y \in X$,

$$
\mu\left(x^{-1} y^{-1} x y\right)=1+(x y-y x)+(\text { a formal power series of degree } \geq 3)
$$

Exercise 7.2.2. Find all biorderable groups G fitting in the exact sequence

$$
0 \rightarrow \mathbf{Z}^{r} \rightarrow G \rightarrow \mathbf{Z} \rightarrow 0
$$

Exercise 7.2.3. Show that for any orderable group G and any ring R, the only invertible elements of the group algebra $R[G]$ are of the form $r g$, where r is an invertible element of R and $g \in G$.

Exercise 7.2.4. An element e of a ring is an idempotent if $e^{2}=e$. Show that a ring having no zero-divisors has only two idempotents, 0 and 1.

7.3 The Dehornoy order

Fix an integer $n \geq 1$. The aim of this section is to construct the left-invariant total order on the braid group B_{n} due to P. Dehornoy.

7.3.1 Braid words

A word of length $m \geq 1$ on a set A is a mapping $w:\{1,2, \ldots, m\} \rightarrow A$. Such a word is encoded by the expression $w(1) w(2) \cdots w(m)$. For example, for $a, b \in A$ the expression $a b a$ encodes the word $\{1,2,3\} \rightarrow A$ sending $1,2,3$ to a, b, a, respectively. By definition, there is a unique empty word \emptyset of length 0 .

For any $a \in A$ and $m \geq 1$, the word $a a \cdots a$ formed by m entries of a is denoted by a^{m}. Writing down consecutively the letters of two words v and w on A, we obtain their concatenation $v w$. For instance, for any $a \in A$ and $m, n \geq 1$, the concatenation of a^{m} and a^{n} is a^{m+n}.

We say that a word v is a subword of a word w if $w=w_{1} v w_{2}$ for some (possibly empty) words w_{1}, w_{2}.

A braid word is a word on the set $\left\{\sigma_{1}, \ldots, \sigma_{n-1}, \sigma_{1}^{-1}, \ldots, \sigma_{n-1}^{-1}\right\}$. Every braid word w represents an element of the braid group B_{n}. Since w represents the same element of B_{n} as $w \sigma_{1}^{k}\left(\sigma_{1}^{-1}\right)^{k}$ for all $k \geq 1$, any element of B_{n} can be represented by infinitely many braid words. The empty braid word represents the neutral element 1 of B_{n}.

The inverse of a nonempty braid word $w=\sigma_{i_{1}}^{\varepsilon_{1}} \cdots \sigma_{i_{r}}^{\varepsilon_{r}}$, where $\varepsilon_{i}= \pm 1$, is the braid word

$$
w^{-1}=\sigma_{i_{r}}^{-\varepsilon_{r}} \cdots \sigma_{i_{1}}^{-\varepsilon_{1}}
$$

If w represents $\beta \in B_{n}$, then w^{-1} represents β^{-1}.
We define the index of a nonempty braid word w as the smallest integer $i \in\{1, \ldots, n-1\}$ such that σ_{i} or σ_{i}^{-1} appear in w. A nonempty braid word has the same index as its inverse. The empty braid word has no index.

7.3.2 σ-positive and σ-negative braids

We say that a braid word w is σ_{i}-positive if it is of index i and σ_{i}^{-1} does not appear in w. Neither the letter σ_{i}^{-1} nor the letters $\sigma_{k}^{ \pm 1}$ with $k<i$ appear in a σ_{i}-positive braid word.

We say that a braid word w is σ_{i}-negative if its inverse is σ_{i}-positive. In other words, w is σ_{i}-negative if it is of index i and σ_{i} does not appear in w.

A braid word is said to be σ-positive (resp. σ-negative) if it is σ_{i}-positive (resp. σ_{i}-negative) for some $i \in\{1, \ldots, n-1\}$.

Definition 7.13. An element of B_{n} is σ_{i}-positive (resp. σ_{i}-negative) if it is represented by a σ_{i}-positive (resp. σ_{i}-negative) braid word.

An element of B_{n} is σ-positive (resp. σ-negative) if it is σ_{i}-positive (resp. σ_{i}-negative) for some $i \in\{1, \ldots, n-1\}$.

The generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ of B_{n} are clearly σ-positive. More generally, any element of the submonoid B_{n}^{+}of B_{n} introduced in Section 6.5 is σ-positive. There are σ-positive elements of B_{n} that do not belong to B_{n}^{+}(for instance $\sigma_{1} \sigma_{2}^{-1}$).

Warning: not all braid words representing σ-positive elements of B_{n} are σ-positive. For instance, take the braid word $w=\sigma_{1} \sigma_{2}\left(\sigma_{1}^{-1}\right)^{N}$, where $N \geq 1$. The index of w is 1 , but w is neither σ-positive nor σ-negative. Nevertheless, it represents a σ-positive braid $\beta \in B_{n}$. Indeed, a repeated application of the relation $\sigma_{2} \sigma_{1} \sigma_{2}=\sigma_{1} \sigma_{2} \sigma_{1}$ yields

$$
\sigma_{2}^{N} \sigma_{1} \sigma_{2}=\sigma_{1} \sigma_{2} \sigma_{1}^{N}
$$

for all $N \geq 1$. Multiplying both sides by σ_{2}^{-N} on the left and by σ_{1}^{-N} on the right, we obtain

$$
\beta=\sigma_{1} \sigma_{2} \sigma_{1}^{-N}=\sigma_{2}^{-N} \sigma_{1} \sigma_{2}
$$

The word $\left(\sigma_{2}^{-1}\right)^{N} \sigma_{1} \sigma_{2}$ representing β is σ-positive. Therefore, β is σ-positive.
Let \mathcal{P} be the subset of B_{n} consisting of all σ-positive elements.
Lemma 7.14. The subset of B_{n} consisting of all σ-negative elements is \mathcal{P}^{-1}, and $\mathcal{P}^{2} \subset \mathcal{P}$.

Proof. (a) Let β be a σ-negative element of B_{n}. Then it can be represented by a σ-negative braid word w. By definition, the inverse word w^{-1} is σ-positive. It represents $\beta^{-1} \in B_{n}$. Then $\beta^{-1} \in \mathcal{P}$ and hence $\beta \in \mathcal{P}^{-1}$. The converse inclusion is proved in a similar fashion.
(b) Let $\beta, \beta^{\prime} \in \mathcal{P}$. Then β can be represented by a σ_{i}-positive braid word w and β^{\prime} by a σ_{j}-positive braid word w^{\prime} for some integers i, j. If $i \leq j$, then the word $w w^{\prime}$ is σ_{i}-positive. If $i>j$, then $w w^{\prime}$ is σ_{j}-positive. In all cases, $\beta \beta^{\prime}$ is represented by a σ-positive braid word.

7.3.3 Definition of the Dehornoy order

We state the main result of this chapter.
Theorem 7.15. For any $n \geq 1$, the braid group B_{n} has a left-invariant total order \leq such that $1<\beta$ if and only if β is σ-positive.

The order \leq on B_{n} is called the Dehornoy order. Note for the record that $\beta \leq \gamma$ if $\beta=\gamma$ or $\beta^{-1} \gamma \in \mathcal{P}$ for any $\beta, \gamma \in B_{n}$. Theorem 7.15 implies that B_{n} is orderable. Therefore, by Propositions 7.5 and $7.6, B_{n}$ is torsion free (this has been already proved in Chapter 1; see Corollary 1.29) and the group ring $\mathbf{Z}\left[B_{n}\right]$ has no zero-divisors.

When $n=2$, any σ-positive braid word is necessarily of the form σ_{1}^{k} for some $k \geq 1$. Now, B_{2} is isomorphic to \mathbf{Z} via $\sigma_{1}^{k} \mapsto k$. The Dehornoy order on B_{2} coincides with the standard total order on \mathbf{Z} under this isomorphism.

Theorem 7.15 is an immediate consequence of Theorem 7.4, Lemma 7.14, and the following two lemmas.

Lemma 7.16. We have $1 \notin \mathcal{P}$.
Lemma 7.17. Any element $\beta \in B_{n}$, distinct from 1 , is σ-positive or σ-negative. In other words, $\mathcal{P} \cup\{1\} \cup \mathcal{P}^{-1}=B_{n}$.

Lemma 7.16 will be proved in Section 7.4.2, and Lemma 7.17 at the end of Section 7.5.2.

7.3.4 Properties

We list a few properties of the Dehornoy order. First observe that σ_{i}^{r} and $\sigma_{i+1}^{s} \sigma_{i}^{r}$, with $r \geq 1$ and $s \in \mathbf{Z}$, are σ-positive elements of B_{n}. Therefore, for the Dehornoy order,

$$
\cdots>\sigma_{1}^{3}>\sigma_{1}^{2}>\sigma_{1}>\cdots>\sigma_{2}^{3}>\sigma_{2}^{2}>\sigma_{2}>\cdots>\sigma_{n-1}^{3}>\sigma_{n-1}^{2}>\sigma_{n-1}
$$

Proposition 7.18. (a) σ_{n-1} is the smallest σ-positive element of B_{n}.
(b) B_{n} has no maximal elements and no minimal elements.

Proof. (a) Suppose that there is $\beta \in \mathcal{P}$ such that $\beta<\sigma_{n-1}$; this is equivalent to $\beta^{-1} \sigma_{n-1} \in \mathcal{P}$. Let w be a σ_{i}-positive word representing β. The braid $\beta^{-1} \sigma_{n-1}$ is represented by the word $w^{-1} \sigma_{n-1}$. If $i<n-1$, then $w^{-1} \sigma_{n-1}$ is σ_{i}-negative, which in view of Lemmas $7.2,7.14,7.16$ contradicts the σ-positivity of $\beta^{-1} \sigma_{n-1}$. Therefore, $i=n-1$ and $w=\left(\sigma_{n-1}\right)^{r}$ for some integer $r \geq 1$. Then $\beta^{-1} \sigma_{n-1}$ is 1 if $r=1$ and belongs to \mathcal{P}^{-1} if $r>1$. This together with Lemmas $7.2,7.14,7.16$ contradicts the σ-positivity of $\beta^{-1} \sigma_{n-1}$. So there is no $\beta \in \mathcal{P}$ such that $\beta<\sigma_{n-1}$.
(b) Since $\sigma_{1}>1>\sigma_{1}^{-1}$, the left invariance of the order implies that $\beta \sigma_{1}>\beta>\beta \sigma_{1}^{-1}$ for each $\beta \in B_{n}$. Thus, B_{n} has no maximal element and no minimal element.

The standard order on \mathbf{Z} is Archimedian; translated to B_{2}, it means that given $1<\alpha<\beta$ with $\alpha, \beta \in B_{2}$, there is an integer $r \geq 2$ such that $\beta<\alpha^{r}$. In other words, for any $\alpha \in B_{2} \cap \mathcal{P}$ the disjoint intervals

$$
\left\{\beta \in B_{2} \mid \alpha^{k} \leq \beta<\alpha^{k+1}\right\}_{k \in \mathbf{Z}}
$$

cover B_{2}. This property does not extend to B_{n} for $n \geq 3$, since $1<\sigma_{2}<\sigma_{1}$ and $\sigma_{2}^{r}<\sigma_{1}$ for all $r \geq 2$. Nevertheless, using the central element Δ_{n}^{2} of B_{n} (see Theorem 1.24), we obtain the following result.

Proposition 7.19. The intervals $\left\{\beta \in B_{n} \mid \Delta_{n}^{2 k} \leq \beta<\Delta_{n}^{2(k+1)}\right\}_{k \in \mathbf{Z}}$ form a partition of B_{n}.

Proof. Since Δ_{n}^{2} belongs to B_{n}^{+}, we have $\Delta_{n}^{2}>1$. Hence,

$$
\cdots<\Delta_{n}^{-6}<\Delta_{n}^{-4}<\Delta_{n}^{-2}<1<\Delta_{n}^{2}<\Delta_{n}^{4}<\Delta_{n}^{6}<\cdots
$$

To prove the proposition it therefore suffices to prove that for any $\beta \in B_{n}$ there are positive integers r, s such that $\Delta_{n}^{-2 r} \leq \beta$ and $\beta<\Delta_{n}^{2(s+1)}$. Indeed, suppose that these two inequalities hold. Then there is a largest integer k such that $\Delta_{n}^{2 k} \leq \beta$. By definition of k, we do not have $\Delta_{n}^{2(k+1)} \leq \beta$. Since the order is total, $\Delta_{n}^{2(k+1)}>\beta$.

We now prove the existence of a positive integer s such that $\beta<\Delta_{n}^{2(s+1)}$. Consider a braid word w representing $\beta \in B_{n}$. Suppose that σ_{1} occurs exactly s times in w (we may have $s=0$). We can write $w=w_{0} \sigma_{1} w_{1} \cdots \sigma_{1} w_{s}$, where w_{0}, \ldots, w_{s} are braid words in which σ_{1} does not appear (but σ_{1}^{-1} may appear). In the braid monoid B_{n}^{+}the generator σ_{1} is a divisor of Δ_{n}, hence of Δ_{n}^{2}. Therefore, $\Delta_{n}^{2}=\sigma_{1} v$ for some $v \in B_{n}^{+} \subset \mathcal{P}$. The braid $\beta^{-1} \Delta_{n}^{2(s+1)}$ is then represented by the word

$$
w_{s}^{-1} \sigma_{1}^{-1} w_{s-1}^{-1} \cdots \sigma_{1}^{-1} w_{0}^{-1} \Delta_{n}^{2(s+1)}
$$

and, since Δ_{n}^{2} is central, by the words

$$
w_{s}^{-1} \sigma_{1}^{-1} \Delta_{n}^{2} w_{s-1}^{-1} \cdots \sigma_{1}^{-1} \Delta_{n}^{2} w_{0}^{-1} \Delta_{n}^{2}=w_{s}^{-1} v w_{s-1}^{-1} \cdots v w_{0}^{-1} \sigma_{1} v
$$

In the latter word, σ_{1} appears at least once, and σ_{1}^{-1} nowhere. Therefore, it is σ-positive, which implies that $1<\beta^{-1} \Delta_{n}^{2(s+1)}$. Therefore, $\beta<\Delta_{n}^{2(s+1)}$.

We leave it to the reader to check in a similar fashion that if σ^{-1} occurs exactly r times in w, then $\Delta_{n}^{-2 r} \leq \beta$.

Remark 7.20. Laver [Lav96] proved that $\sigma_{i} \beta>\beta$ for all $\beta \in B_{n}$ and $i \in\{1, \ldots, n-1\}$, from which it follows that the Dehornoy order has the so-called subword property (for other proofs, see [Bur97], [Wie99]). By a theorem of Higman's (see [Hig52]), this in turn implies that the restriction of the Dehornoy order to the braid monoid B_{n}^{+}is a well-ordering, that is, any subset of B_{n}^{+}has a minimal element. As a further consequence, the Dehornoy order \leq extends the divisibility order of B_{n}^{+}denoted by \preceq in Chapter 6 , that is, $a \preceq b \Rightarrow a \leq b$ for all $a, b \in B_{n}^{+}$.

7.3.5 The infinite braid group

Let \leq_{n} be the Dehornoy order on B_{n}. Recall the inclusion $\iota: B_{n} \hookrightarrow B_{n+1}$ of Section 1.1.3. The following lemma is an immediate consequence of the definitions.

Lemma 7.21. The inclusion $\iota: B_{n} \hookrightarrow B_{n+1}$ is order-preserving with respect to the Dehornoy order, that is,

$$
\beta \leq_{n} \beta^{\prime} \Longrightarrow \iota(\beta) \leq_{n+1} \iota\left(\beta^{\prime}\right)
$$

for all $\beta, \beta^{\prime} \in B_{n}$.

Let $B_{\infty}=\bigcup_{n \geq 1} B_{n}$ be the inductive limit of the groups B_{n} with respect to the inclusions ι. By definition, any element of B_{∞} lies in some B_{n}. The group structures on the groups B_{n} naturally extend to a group structure on B_{∞}. The group B_{∞} is called the infinite braid group.

Proposition 7.22. There is a unique left-invariant total order on B_{∞} such that the inclusions $B_{n} \hookrightarrow B_{\infty}$ are order-preserving. As an ordered set, B_{∞} is isomorphic to the ordered set \mathbf{Q} of rational numbers.

Proof. (a) Let $\beta, \beta^{\prime} \in B_{\infty}$. By definition, there is n such that $\beta, \beta^{\prime} \in B_{n}$. We set $\beta \leq_{\infty} \beta^{\prime}$ if $\beta \leq_{n} \beta^{\prime}$. It follows from Lemma 7.21 that this is independent of the choice of n. We thus have a well-defined binary relation on B_{∞}. It is an easy exercise to check that \leq_{∞} is a left-invariant total order on B_{∞}, and that the inclusions $B_{n} \hookrightarrow B_{\infty}$ are order-preserving. It is also easy to check that \leq_{∞} is the unique order on B_{∞} such that the inclusions $B_{n} \hookrightarrow B_{\infty}$ are order-preserving.
(b) It has been known since Cantor that a totally ordered set X is isomorphic to \mathbf{Q} equipped with its standard order if and only if X is countable, has no maximal elements, has no minimal elements, and there is an element between any two elements. Let us check that B_{∞} satisfies these conditions.

The group B_{∞} is generated by the elements $\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots$. Since any group with a countable number of generators is countable (see Exercice 7.3.3), B_{∞} is a countable set.

If B_{∞} had a maximal (resp. minimal) element β, then β would be a maximal (resp. minimal) element in B_{n}, where n is the index of the braid group to which β belongs. This would contradict Proposition 7.18 (b). Hence, B_{∞} has no maximal elements and no minimal elements.

To prove that there is an element between any two elements, it suffices by the left invariance to prove that for any $\beta \in B_{\infty}$ such that $1<\beta$, there is α such that $1<\alpha<\beta$. Let $\beta \in B_{n}$. We set $\alpha=\iota(\beta) \sigma_{n}^{-1} \in B_{n+1}$. Since the index of a σ-positive word representing β is $<n$, the braid α is σ-positive. Thus, $1<\alpha$ in B_{n+1}, hence in B_{∞}. On the other hand, $\alpha^{-1} \beta=\sigma_{n}$ in B_{∞}, which shows that $\alpha^{-1} \beta$ is σ-positive. Therefore, $\alpha<\beta$.

Exercise 7.3.1. Show that B_{∞} is isomorphic to the group generated by the countable set of generators $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right\}$ subject to the braid relations of Definition 1.1.

Exercise 7.3.2. Let X be a countable totally ordered set without maximal or minimal elements such that there is an element between any two elements. Construct an order-preserving bijection $X \rightarrow \mathbf{Q}$, where \mathbf{Q} is equipped with its natural order.

Exercise 7.3.3. Show that the free group on a countable number of generators is countable. Deduce that any group with a countable number of generators is countable.

7.4 Nontriviality of σ-positive braids

The aim of this section is to prove Lemma 7.16. To this end we introduce an action of B_{n} on a free group F_{∞} with a countable basis.

7.4.1 An action of B_{n} on \boldsymbol{F}_{∞}

In Section 1.5.1 we defined group automorphisms $\widetilde{\sigma}_{1}, \ldots, \widetilde{\sigma}_{n-1}$ of the free group F_{n} with free generators x_{1}, \ldots, x_{n}. We recall the formulas:

$$
\tilde{\sigma}_{i}\left(x_{k}\right)= \begin{cases}x_{k+1} & \text { if } k=i \\ x_{k}^{-1} x_{k-1} x_{k} & \text { if } k=i+1 \\ x_{k} & \text { otherwise }\end{cases}
$$

Their inverses $\widetilde{\sigma}_{i}^{-1}$ are given by

$$
\widetilde{\sigma}_{i}^{-1}\left(x_{k}\right)= \begin{cases}x_{k} x_{k+1} x_{k}^{-1} & \text { if } k=i \\ x_{k-1} & \text { if } k=i+1 \\ x_{k} & \text { otherwise }\end{cases}
$$

These formulas clearly extend to the free group F_{∞} on the countable set of generators $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. This defines a group homomorphism $B_{n} \rightarrow \operatorname{Aut}\left(F_{\infty}\right)$. We denote the image of $\beta \in B_{n}$ in $\operatorname{Aut}\left(F_{\infty}\right)$ by $\widetilde{\beta}$.

Let τ be the group endomorphism of F_{∞} defined by $\tau\left(x_{k}\right)=x_{k+1}$ for all $k \geq 1$. The endomorphism τ is injective. Indeed, let τ_{-}be the group endomorphism of F_{∞} defined by $\tau_{-}\left(x_{k}\right)=x_{k-1}$ for $k \geq 2$ and $\tau_{-}\left(x_{1}\right)=1$; the injectivity of τ follows from the relation $\tau_{-} \circ \tau=\mathrm{id}$.

Finally, for any group endomorphism φ of F_{∞}, we define another one, denoted by $T(\varphi)$, by

$$
T(\varphi)\left(x_{k}\right)= \begin{cases}x_{1} & \text { if } k=1 \\ \tau\left(\varphi\left(x_{k-1}\right)\right) & \text { if } k>1\end{cases}
$$

Lemma 7.23. (a) $T\left(\widetilde{\sigma}_{i}\right)=\widetilde{\sigma}_{i+1}$ for all $i \in\{1, \ldots, n-2\}$.
(b) If $\varphi \neq \mathrm{id}$, then $T(\varphi) \neq \mathrm{id}$.
(c) If φ is injective, then so is $T(\varphi)$.

Proof. (a) This follows from the definitions.
(b) If $T(\varphi)=\mathrm{id}$, then

$$
\tau\left(\varphi\left(x_{k}\right)\right)=T(\varphi)\left(x_{k+1}\right)=x_{k+1}=\tau\left(x_{k}\right)
$$

for all $k \geq 1$. Since the endomorphism τ of F_{∞} is injective, $\varphi\left(x_{k}\right)=x_{k}$ for all $k \geq 1$. Hence, $\varphi=\mathrm{id}$.
(c) We will show that $T(\varphi)(w) \neq 1$ for any $w \in F_{\infty}$ such that $w \neq 1$. Let us represent w by a word on the set $\left\{x_{1}, x_{2}, \ldots\right\} \cup\left\{x_{1}^{-1}, x_{2}^{-1}, \ldots\right\}$. We may assume that this word is nonempty and reduced, i.e., it contains no subword of the form $x_{i} x_{i}^{-1}$ or $x_{i}^{-1} x_{i}$ for some $i \geq 1$. (In the sequel we shall use the fact that a nonempty reduced word represents a nontrivial element in F_{∞}; for a proof, see [LS77, Sect. I.1], [Ser77, Sect. I.1].)

If the reduced word representing w does not contain any occurrences of x_{1} or x_{1}^{-1}, then there is $w^{\prime} \in F_{\infty}$ with $w^{\prime} \neq 1$ such that $w=\tau\left(w^{\prime}\right)$. By definition of T, we have $T(\varphi)(w)=\tau\left(\varphi\left(w^{\prime}\right)\right)$. The injectivity of φ and τ then implies that $T(\varphi)(w) \neq 1$.

Suppose that the reduced word representing w contains occurrences of x_{1}^{ε} with $\varepsilon= \pm 1$. Then we can write it as

$$
\tau\left(w_{0}\right) x_{1}^{k_{1}} \tau\left(w_{1}\right) x_{1}^{k_{2}} \cdots \tau\left(w_{r-1}\right) x_{1}^{k_{r}} \tau\left(w_{r}\right)
$$

where $k_{1}, k_{2}, \ldots, k_{r}$ are nonzero integers and $w_{0}, w_{1}, \ldots, w_{r-1}, w_{r}$ are words in $x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, x_{3}^{ \pm 1}, \ldots$ such that $\tau\left(w_{1}\right), \ldots, \tau\left(w_{r-1}\right)$ are nonempty and reduced. By definition of T,

$$
T(\varphi)(w)=\tau\left(\varphi\left(w_{0}\right)\right) x_{1}^{k_{1}} \tau\left(\varphi\left(w_{1}\right)\right) x_{1}^{k_{2}} \cdots \tau\left(\varphi\left(w_{r-1}\right)\right) x_{1}^{k_{r}} \tau\left(\varphi\left(w_{r}\right)\right)
$$

Since the words $\tau\left(w_{1}\right), \ldots, \tau\left(w_{r-1}\right)$ are nonempty and reduced, they represent nontrivial elements of F_{∞}. By the injectivity of τ and φ, the elements

$$
\tau\left(\varphi\left(w_{1}\right)\right), \ldots, \tau\left(\varphi\left(w_{r-1}\right)\right)
$$

of F_{∞} are nontrivial; hence they are represented by nonempty reduced words in $x_{2}^{ \pm 1}, x_{3}^{ \pm 1}, \ldots$. It follows that $T(\varphi)(w) \neq 1$.

Now let E be the set of elements of F_{∞} that can be represented by a reduced word ending with x_{1}^{-1}.

Lemma 7.24. We have
(a) $\tilde{\sigma}_{1}^{-1}(E) \subset E$;
(b) $T(\varphi)(E) \subset E$ for any injective endomorphism φ of F_{∞}.

Proof. (a) Let $w x_{1}^{-1}$ be a reduced word representing an element of E. Then w is a reduced word not ending with x_{1}. Assume that

$$
\tilde{\sigma}_{1}^{-1}\left(w x_{1}^{-1}\right)=\tilde{\sigma}_{1}^{-1}(w) x_{1} x_{2}^{-1} x_{1}^{-1}
$$

does not belong to E. Then $\widetilde{\sigma}_{1}^{-1}(w)$ must contain an occurrence of x_{1} that cancels the final x_{1}^{-1}. It follows from the definition of $\widetilde{\sigma}_{1}^{-1}$ that w contains x_{2} or x_{1} or x_{1}^{-1}.

In the first case, write $w=w_{1} x_{2} w_{2}$ with x_{2} such that $\widetilde{\sigma}_{1}^{-1}\left(x_{2}\right)=x_{1}$ cancels the final x_{1}^{-1} in $\tilde{\sigma}_{1}^{-1}\left(w x_{1}^{-1}\right)$. Since w is reduced, w_{2} (which is also reduced) cannot begin with x_{2}^{-1}. Now,

$$
\tilde{\sigma}_{1}^{-1}\left(w x_{1}^{-1}\right)=\tilde{\sigma}_{1}^{-1}(w) x_{1} x_{2}^{-1} x_{1}^{-1}=\tilde{\sigma}_{1}^{-1}\left(w_{1}\right) x_{1} \tilde{\sigma}_{1}^{-1}\left(w_{2}\right) x_{1} x_{2}^{-1} x_{1}^{-1} .
$$

Since the leftmost x_{1} on the right-hand side cancels the final x_{1}^{-1}, the word between these two letters must represent $1 \in F_{\infty}$, i.e., we must have

$$
\widetilde{\sigma}_{1}^{-1}\left(w_{2}\right) x_{1} x_{2}^{-1}=1
$$

in F_{∞}. Hence,

$$
\tilde{\sigma}_{1}^{-1}\left(w_{2}\right)=x_{2} x_{1}^{-1}=x_{1}^{-1} x_{1} x_{2} x_{1}^{-1}=\tilde{\sigma}_{1}^{-1}\left(x_{2}^{-1} x_{1}\right) .
$$

Since $\tilde{\sigma}_{1}^{-1}$ is bijective, $w_{2}=x_{2}^{-1} x_{1}$, which is a reduced word beginning with x_{2}^{-1}, thus contradicting the hypothesis on w.

If w contains x_{1}^{e} with $e= \pm 1$, we similarly write $w=w_{1} x_{1}^{e} w_{2}$. Then

$$
\tilde{\sigma}_{1}^{-1}\left(w x_{1}^{-1}\right)=\tilde{\sigma}_{1}^{-1}(w) x_{1} x_{2}^{-1} x_{1}^{-1}=\tilde{\sigma}_{1}^{-1}\left(w_{1}\right) x_{1} x_{2}^{e} x_{1}^{-1} \tilde{\sigma}_{1}^{-1}\left(w_{2}\right) x_{1} x_{2}^{-1} x_{1}^{-1}
$$

Since the leftmost x_{1} on the right-hand side cancels the final x_{1}^{-1}, arguing as above, we obtain

$$
x_{2}^{e} x_{1}^{-1} \widetilde{\sigma}_{1}^{-1}\left(w_{2}\right) x_{1} x_{2}^{-1}=1
$$

in F_{∞}. Hence,

$$
\tilde{\sigma}_{1}^{-1}\left(w_{2}\right)=x_{1} x_{2}^{1-e} x_{1}^{-1}=\tilde{\sigma}_{1}^{-1}\left(x_{1}^{1-e}\right) .
$$

By the injectivity of $\widetilde{\sigma}_{1}^{-1}$, we obtain $w_{2}=x_{1}^{1-e}$, hence $w=w_{1} x_{1}$, yielding a contradiction with the assumption on w. Thus, in all cases,

$$
\tilde{\sigma}_{1}^{-1}\left(w x_{1}^{-1}\right) \in E .
$$

(b) As before, we represent an element of E by $w x_{1}^{-1}$, where w is a reduced word not ending with x_{1}. Suppose that $T(\varphi)\left(w x_{1}^{-1}\right)$ does not belong to E. Since

$$
T(\varphi)\left(w x_{1}^{-1}\right)=T(\varphi)(w) x_{1}^{-1}
$$

the final x_{1}^{-1} in $T(\varphi)(w) x_{1}^{-1}$ must be canceled by an x_{1} appearing in $T(\varphi)(w)$.
We claim that w contains x_{1}. If not, then w contains only x_{1}^{-1} and $x_{i}^{ \pm 1}$ with $i \geq 2$. By definition of $T(\varphi)$, this implies that $T(\varphi)(w)$ contains x_{1}^{-1} and $x_{i}^{ \pm 1}$ with $i \geq 2$, but no x_{1}, a contradiction. We can thus write $w=w_{1} x_{1} w_{2}$ with x_{1} such that its image $T(\varphi)\left(x_{1}\right)=x_{1}$ cancels the final x_{1}^{-1} in $T(\varphi)\left(w x_{1}^{-1}\right)$. Therefore

$$
T(\varphi)\left(w x_{1}^{-1}\right)=T(\varphi)(w) x_{1}^{-1}=T(\varphi)\left(w_{1}\right) x_{1} T(\varphi)\left(w_{2}\right) x_{1}^{-1}
$$

By assumption, the leftmost x_{1} on the right-hand side cancels the final x_{1}^{-1}. Therefore, $T(\varphi)\left(w_{2}\right)=1$. Since $T(\varphi)$ is injective by Lemma $7.23(\mathrm{c}), w_{2}=1$. Therefore, $w=w_{1} x_{1}$ ends with x_{1}, which contradicts the hypothesis on w.

7.4.2 Proof of Lemma 7.16

We first prove that a σ_{1}-negative element $\beta \in B_{n}$ is nontrivial. It is enough to show that

$$
\widetilde{\beta}\left(x_{1}\right) \neq x_{1}
$$

where $\widetilde{\beta}$ is the image of $\beta \in B_{n}$ in $\operatorname{Aut}\left(F_{\infty}\right)$.
The σ_{1}-negative element β has an expansion of the form

$$
\beta=\beta_{0} \sigma_{1}^{-1} \beta_{1} \sigma_{1}^{-1} \cdots \beta_{r-1} \sigma_{1}^{-1} \beta_{r},
$$

where $r \geq 1$ and $\beta_{0}, \beta_{1}, \ldots, \beta_{r-1}, \beta_{r}$ are words in the generators $\sigma_{2}, \ldots, \sigma_{n-1}$ and their inverses. By Lemma 7.23 (a), for each $k=0,1, \ldots, r$, there is an automorphism φ_{k} of F_{∞} such that $\widetilde{\beta}_{k}=T\left(\varphi_{k}\right)$. Therefore,

$$
\begin{aligned}
\widetilde{\beta} & =\widetilde{\beta}_{0} \tilde{\sigma}_{1}^{-1} \widetilde{\beta}_{1} \tilde{\sigma}_{1}^{-1} \cdots \widetilde{\beta}_{r-1} \tilde{\sigma}_{1}^{-1} \widetilde{\beta}_{r} \\
& =T\left(\varphi_{0}\right) \widetilde{\sigma}_{1}^{-1} T\left(\varphi_{1}\right) \widetilde{\sigma}_{1}^{-1} \cdots T\left(\varphi_{r-1}\right) \widetilde{\sigma}_{1}^{-1} T\left(\varphi_{r}\right) .
\end{aligned}
$$

Let us apply both sides of this equality to the generator x_{1} of F_{∞}. Since

$$
T\left(\varphi_{r}\right)\left(x_{1}\right)=x_{1} \quad \text { and } \quad \widetilde{\sigma}_{1}^{-1}\left(x_{1}\right)=x_{1} x_{2} x_{1}^{-1}
$$

we have

$$
\widetilde{\beta}\left(x_{1}\right)=\left(T\left(\varphi_{0}\right) \widetilde{\sigma}_{1}^{-1} T\left(\varphi_{1}\right) \widetilde{\sigma}_{1}^{-1} \cdots T\left(\varphi_{r-1}\right)\right)\left(x_{1} x_{2} x_{1}^{-1}\right)
$$

Since $x_{1} x_{2} x_{1}^{-1}$ belongs to the set E of reduced words in F_{∞} ending with x_{1}^{-1}, Lemma 7.24 implies that $\widetilde{\beta}\left(x_{1}\right) \in E$ as well. Therefore, $\widetilde{\beta}\left(x_{1}\right) \neq x_{1}$.

To finish the proof, we use the group homomorphism sh : $B_{n-1} \rightarrow B_{n}$ defined by $\operatorname{sh}\left(\sigma_{i}\right)=\sigma_{i+1}$ for all $i=1, \ldots, n-2$. In geometric language, the map sh shifts a geometric braid b to the right by adding on its left a vertical string completely unlinked with b. For this reason, we call sh the shift homomorphism. This homomorphism is injective: one can prove this using an argument similar to the one used in the proof of Corollary 1.14; one can also observe that sh is conjugate to the natural inclusion $\iota: B_{n-1} \rightarrow B_{n}$ (the conjugating element is $\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$; see Exercise 7.4.1).

We now prove that all elements of \mathcal{P} are nontrivial. Let β be a σ_{i}-positive element of B_{n} with $i \geq 1$. By definition of a σ_{i}-positive element and of the shift sh, there is a σ_{1}-positive element $\alpha \in B_{n}$ such that $\beta=\operatorname{sh}^{i-1}(\alpha)$. Then α^{-1} is σ_{1}-negative, and by the argument above, $\alpha \neq 1$. Since sh is injective, $\beta \neq 1$. In conclusion, we have proved that $1 \notin \mathcal{P}$.

Exercise 7.4.1. Prove that for all $\beta \in B_{n-1}$,

$$
\operatorname{sh}(\beta)=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right) \iota(\beta)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{-1}
$$

7.5 Handle reduction

The aim of this section is to prove Lemma 7.17, which states that any braid is σ-positive, σ-negative, or trivial. The proof requires some preliminary notions and auxiliary results.

Fix an integer $n \geq 1$. As in Section 7.3.1, by braid words we mean words in the letters

$$
\sigma_{1}, \ldots, \sigma_{n-1}, \sigma_{1}^{-1}, \ldots, \sigma_{n-1}^{-1}
$$

We say that a braid word w contains a braid word v if v is a subword of w. A braid word w^{\prime} is a prefix of w if there is a braid word $w^{\prime \prime}$ such that $w=w^{\prime} w^{\prime \prime}$. Similarly, a braid word $w^{\prime \prime}$ is a suffix of w if there is a braid word w^{\prime} such that $w=w^{\prime} w^{\prime \prime}$.

7.5.1 Handles

Definition 7.25. A σ_{i}-handle is a braid word of the form $\sigma_{i} u \sigma_{i}^{-1}$ or of the form $\sigma_{i}^{-1} u \sigma_{i}$, where $i \in\{1, \ldots, n-1\}$ and u is an empty word or a braid word of index $>i$. The sign of a σ_{i}-handle v is +1 if $v=\sigma_{i} u \sigma_{i}^{-1}$ and -1 if $v=\sigma_{i}^{-1} u \sigma_{i}$.

By a handle we shall mean a σ_{i}-handle with $i \in\{1, \ldots, n-1\}$. Figure 7.1 represents two σ_{i}-handles, the left one of sign +1 and the right one of sign -1 (the empty boxes represent arbitrary braids on $n-i$ strings).

It is useful to note that a σ_{n-1}-handle is necessarily of the form $\sigma_{n-1} \sigma_{n-1}^{-1}$ or $\sigma_{n-1}^{-1} \sigma_{n-1}$.

Fig. 7.1. σ_{i}-handles

The following lemma is an immediate consequence of the definitions.
Lemma 7.26. A braid word of index $i \in\{1, \ldots, n-1\}$ that does not contain σ_{i}-handles is σ_{i}-positive or σ_{i}-negative.

A concrete way to visualize the σ_{i}-handles contained in a braid word w is to delete from w all occurrences of $\sigma_{j}^{ \pm 1}$ with $j>i$, thus obtaining a possibly shorter word $w[i]$. The braid word w contains a σ_{i}-handle each time $w[i]$ contains a subword of the form $\sigma_{i} \sigma_{i}^{-1}$ or $\sigma_{i}^{-1} \sigma_{i}$.

Consider, for instance, the braid word

$$
w=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}
$$

Then

$$
\begin{gathered}
w[1]=\sigma_{1} \sigma_{1}^{-1} \sigma_{1} \sigma_{1}^{-1}, \quad w[2]=\sigma_{1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{2} \sigma_{1} \sigma_{2}^{-1} \sigma_{1}^{-1}, \\
w[3]=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}, \quad w[4]=w .
\end{gathered}
$$

We see that w has three σ_{1}-handles, namely

$$
\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{3}^{-1} \sigma_{1}^{-1}, \quad \sigma_{1}^{-1} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1}, \quad \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}
$$

one σ_{2}-handle $\sigma_{2}^{-1} \sigma_{3} \sigma_{2}$, one σ_{3}-handle $\sigma_{3} \sigma_{4} \sigma_{3}^{-1}$, and no σ_{4}-handles.
Definition 7.27. A handle v contained in a braid word w is said to be prime if $w=w_{1} v w_{2}$, where $w_{1} v$ is the shortest prefix of w containing a handle.

Lemma 7.28. (a) A prime handle contains no other handles.
(b) Any braid word containing at least one handle contains a unique prime handle.

Proof. (a) Let $w=w_{1} v w_{2}$ be a braid word in which v is a prime handle. Suppose that $v=w^{\prime} u w^{\prime \prime}$, where u is a handle. Then $w_{1} w^{\prime} u$ is a prefix of w containing a handle. Since $w_{1} v=w_{1} w^{\prime} u w^{\prime \prime}$ is the shortest prefix of w containing a handle, we must have $w_{1} w^{\prime} u=w_{1} w^{\prime} u w^{\prime \prime}$. This shows that $w^{\prime \prime}$ is empty. Since $v=w^{\prime} u$ and u are handles, the first letter of v is the inverse of the last letter of u, which is the same as the first letter of u. Since v is a handle, $u=v$.
(b) Let w be a braid word containing a handle. The set of prefixes of w containing a handle is nonempty, since it contains w itself. Pick the shortest prefix $w_{1} v w_{2}$ containing a handle v. Since the prefix $w_{1} v$ contains a handle, $w_{2}=\emptyset$ and the handle v is prime.

Suppose that there is another prime handle v^{\prime} such that $w_{1} v=w_{1}^{\prime} v^{\prime}$. Necessarily, one of the words v, v^{\prime} contains the other one. By (a), this implies that $v^{\prime}=v$.

In view of Lemma 7.28, we can speak of the prime handle of a braid word. We can paraphrase Definition 7.27 by saying that the prime handle of a braid word w is the first handle of w that appears entirely when one reads w from left to right. For instance, the prime handle of

$$
w=\sigma_{2} \sigma_{1} \sigma_{3}^{-1} \sigma_{4} \sigma_{3} \sigma_{1}^{-1} \sigma_{2} \sigma_{1}
$$

is $\sigma_{3}^{-1} \sigma_{4} \sigma_{3}\left(\operatorname{not} \sigma_{1} \sigma_{3}^{-1} \sigma_{4} \sigma_{3} \sigma_{1}^{-1}\right)$.

7.5.2 Prime handle reduction

Our aim is to obtain σ-positive or σ-negative braid words by starting from arbitrary braid words and gradually getting rid of prime handles. We shall achieve this goal by an iterative process, which is repeated until no handles are left.

Definition 7.29. Let v be a σ_{i}-handle of the form $v=\sigma_{i}^{e} u \sigma_{i}^{-e}$, where $i \in\{1, \ldots, n-1\}, e= \pm 1$, and u is the empty word or a word of index $>i$. The reduction of v is the braid word obtained from u by replacing each occurrence of $\sigma_{i+1}^{ \pm 1}$ by $\sigma_{i+1}^{-e} \sigma_{i}^{ \pm 1} \sigma_{i+1}^{e}$.

Remarks 7.30. (i) If $v=\sigma_{i}^{e} u \sigma_{i}^{-e}$ is a σ_{i}-handle and u is a braid word of index $>i+1$, then the reduction of v is u. In particular, the reduction of $\sigma_{i}^{e} \sigma_{i}^{-e}$ is the empty word.
(ii) The index of the reduction of a handle v is greater than or equal to the index of v.

Figure 7.2 shows the reduction of a σ_{1}-handle of sign +1 with no occurrences of $\sigma_{2}^{ \pm 1}$, whereas Figure 7.3 shows the reduction of a σ_{1}-handle of sign +1 with two occurrences of σ_{2} and no occurrences of σ_{2}^{-1}. The boxes u_{0}, u_{1}, u_{2} in these figures represent braid words that are empty or have index ≥ 3.

Fig. 7.2. Reduction of a σ_{1}-handle without occurrences of $\sigma_{2}^{ \pm 1}$

The braids in Figure 7.2 are isotopic. The same holds for the braids in Figure 7.3. This is a special case of the following simple but fundamental property of reduction.

Lemma 7.31. Any handle represents the same element of B_{n} as its reduction.
Proof. This is a consequence of the relations

$$
\sigma_{i}^{e} \sigma_{j}^{ \pm 1} \sigma_{i}^{-e}= \begin{cases}\sigma_{j}^{ \pm 1} & \text { if } j \geq i+2 \\ \sigma_{i+1}^{-e} \sigma_{i}^{ \pm 1} \sigma_{i+1}^{e} & \text { if } j=i+1\end{cases}
$$

which follow from the braid relations of Definition 1.1 (here $e= \pm 1$).

Fig. 7.3. Reduction of a σ_{1}-handle with occurrences of σ_{2}

Let w be a braid word containing at least one handle. We denote by $\operatorname{red}(w)$ the braid obtained from w by replacing the prime handle of w by its reduction. We define $\operatorname{red}^{k}(w)$ with $k \geq 0$ inductively as follows: $\operatorname{red}^{0}(w)=w$ and for $k \geq 1$, if $\operatorname{red}^{k-1}(w)$ contains a handle, then $\operatorname{red}^{k}(w)=\operatorname{red}\left(\operatorname{red}^{k-1}(w)\right)$. If $\operatorname{red}^{k-1}(w)$ does not contain handles, then $\operatorname{red}^{k}(w)$ is not defined. We say that a braid word of the form $\operatorname{red}^{k}(w)$ with $k \geq 0$ is obtained from w by prime handle reduction. By Remark 7.30 (ii), prime handle reduction does not decrease the index of a braid word.

As an illustration, we apply prime handle reduction to the braid word

$$
\begin{equation*}
w=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{3}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1} \tag{7.2}
\end{equation*}
$$

Indicating each prime handle with braces, we obtain

$$
\begin{aligned}
& w=\sigma_{1} \sigma_{2} \underbrace{\sigma_{3} \sigma_{4} \sigma_{3}^{-1}} \sigma_{2} \sigma_{1}^{-1} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}, \\
& \operatorname{red}(w)=\sigma_{1} \sigma_{2} \sigma_{4}^{-1} \sigma_{3} \sigma_{4} \sigma_{2} \sigma_{1}^{-1} \\
& 3
\end{aligned} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1},\left\{\begin{aligned}
\operatorname{red}^{2}(w) & =\sigma_{2}^{-1} \sigma_{1} \underbrace{\sigma_{1} \sigma_{2} \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1},}_{\underbrace{}_{2} \sigma_{4}^{-1} \sigma_{3} \sigma_{4} \sigma_{2}^{-1}} \\
\operatorname{red}^{3}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \underbrace{\sigma_{2} \sigma_{3}^{-1} \sigma_{2}^{-1}} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}, \\
\operatorname{red}^{4}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{3}^{-1} \underbrace{\sigma_{2}^{-1} \sigma_{3} \sigma_{3} \sigma_{2}} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}, \\
\operatorname{red}^{5}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \underbrace{\sigma_{3}^{-1} \sigma_{3}} \sigma_{2} \sigma_{3}^{-1} \sigma_{3} \sigma_{2} \sigma_{3}^{-1} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}, \\
\operatorname{red}^{6}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \underbrace{\sigma_{3}^{-1} \sigma_{3}} \sigma_{2} \sigma_{3}^{-1} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1},
\end{aligned}\right.
$$

$$
\begin{aligned}
\operatorname{red}^{7}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{2} \sigma_{3}^{-1} \underbrace{\sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}} \\
\operatorname{red}^{8}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{2} \underbrace{\sigma_{3}^{-1} \sigma_{3}} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2} \\
\operatorname{red}^{9}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \underbrace{\sigma_{2} \sigma_{2}^{-1}} \sigma_{1}^{-1} \sigma_{2} \\
\operatorname{red}^{10}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \underbrace{\sigma_{1} \sigma_{2} \sigma_{1}^{-1}} \sigma_{2} \\
\operatorname{red}^{11}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \underbrace{\sigma_{2} \sigma_{3} \sigma_{4} \sigma_{2}^{-1}} \sigma_{1} \sigma_{2} \sigma_{2} \\
\operatorname{red}^{12}(w) & =\sigma_{2}^{-1} \sigma_{1} \sigma_{4}^{-1} \sigma_{3}^{-1} \sigma_{3}^{-1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{2} .
\end{aligned}
$$

The word $\operatorname{red}^{12}(w)$ has no handles; it is σ_{1}-positive.
Prime handle reduction has to stop, as stated in the following lemma.
Lemma 7.32. For each braid word w, there is an integer $k \geq 0$ such that $\operatorname{red}^{k}(w)$ contains no handles.

We are now able to prove Lemma 7.17, which is the last unproved ingredient in the proof of Theorem 7.15. Let w be a braid word representing $\beta \in B_{n}$. By Lemma 7.32, $\operatorname{red}^{k}(w)$ contains no handles for some k. Therefore, by Lemma 7.26 , the braid word $\operatorname{red}^{k}(w)$ is empty, σ-positive, or σ-negative. But by Lemma 7.31, the word $\operatorname{red}^{k}(w)$ represents β. Hence, β is trivial, σ-positive, or σ-negative. This proves Lemma 7.17.

We are thus left with proving Lemma 7.32. The proof relies on four auxiliary results, namely Lemmas $7.35,7.36,7.37$, and 7.39 below, and will be given in Section 7.5.8.

Remark 7.33. Lemma 7.32 provides an algorithm that turns any braid word w into a braid word that is empty, σ-positive, or σ-negative, and represents the same element of B_{n} as w. This algorithm gives an alternative solution to the word problem in B_{n}.

7.5.3 The Cayley graph

The four auxiliary results mentioned above make use of certain finite subgraphs of the Cayley graph of B_{n}.

Definition 7.34. The Cayley graph of B_{n} is the graph Γ whose vertices are the elements of B_{n} and whose edges are defined as follows: for each $\beta \in B_{n}$ and $i=1, \ldots, n-1$, there is a unique edge between the vertices β and $\beta \sigma_{i}$.

An oriented edge in Γ is an edge for which one of its endpoints is distinguished and called initial, whereas the other one is called terminal. If we have an oriented edge a, then we denote the same edge with the reverse orientation by \bar{a}, i.e., the initial (resp. terminal) vertex of \bar{a} is the terminal (resp. initial) vertex of a.

We label all oriented edges in Γ as follows. If the initial vertex of an oriented edge a is β and its terminal vertex is $\beta \sigma_{i}$ for some $i \in\{1, \ldots, n-1\}$, then its label is defined by $L(a)=\sigma_{i}$. If the terminal vertex of a is β and its initial vertex is $\beta \sigma_{i}$, then its label is defined by $L(a)=\sigma_{i}^{-1}$. In both cases, $L(a)$ is a one-letter braid word representing $\beta_{0}^{-1} \beta_{1} \in B_{n}$, where β_{0} is the initial vertex of a and β_{1} its terminal vertex.

A path in the Cayley graph Γ is a finite sequence $a_{1}, a_{2}, \ldots, a_{k}$ of oriented edges of Γ such that for all $i=1, \ldots, k-1$, the terminal vertex of a_{i} is the initial vertex of a_{i+1}. The initial vertex of the path is the initial vertex of a_{1}, and the terminal vertex of the path is the terminal vertex of a_{k}. The reverse of the path $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is the path $\bar{a}=\left(\bar{a}_{k}, \ldots, \bar{a}_{2}, \bar{a}_{1}\right)$. By definition, an empty path in Γ is a vertex of Γ that is viewed as both the initial and the terminal vertex of the path. An empty path has no edges.

To a path $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ in Γ we associate its label, which is the braid word of length k

$$
L(a)=L\left(a_{1}\right) L\left(a_{2}\right) \cdots L\left(a_{k}\right)
$$

obtained as the concatenation of the labels of the oriented edges $a_{1}, a_{2}, \ldots, a_{k}$. If a is an empty path, then $L(a)$ is the empty word. It is clear that $L(a)$ represents the braid $\beta_{0}^{-1} \beta_{1} \in B_{n}$, where β_{0} is the initial vertex of a and β_{1} its terminal vertex. Conversely, given a vertex β_{0} in Γ and a braid word w, there is a unique path a in Γ with initial vertex β_{0} such that $w=L(a)$. We thus have a bijection between the set of paths in Γ with initial vertex β_{0} and terminal vertex β_{1}, and the set of braid words representing $\beta_{0}^{-1} \beta_{1}$. Observe that $L(\bar{a})=(L(a))^{-1}$ for any path a.

7.5.4 The graph Γ_{r}

Consider the element Δ_{n} of the braid monoid B_{n}^{+}introduced in Section 6.5.1. Recall from Lemma 6.11 (iv) that any element of B_{n}^{+}is a left divisor of $\Delta_{n}^{r}=\left(\Delta_{n}\right)^{r}$ for some $r \geq 0$. For any integer $r \geq 0$, we define Γ_{r} to be the full subgraph of Γ whose vertices are the left divisors of Δ_{n}^{r} in the monoid B_{n}^{+}. Since the length of a left divisor of Δ_{n}^{r} cannot exceed the length of Δ_{n}^{r} and the set of elements of B_{n}^{+}of a given length is finite, the set of vertices of Γ_{r} is finite. The number of edges ending in a given vertex being $\leq n-1$, the graph Γ_{r} is finite.

A path in Γ_{r} is a path in Γ whose vertices and edges belong to Γ_{r}.
Lemma 7.35. Let N_{r} be the number of edges of Γ_{r}. For $i \in\{1, \ldots, n-1\}$, any σ_{i}-positive (resp. σ_{i}-negative) braid word that is the label of a path in Γ_{r} contains the letter σ_{i} (resp. σ_{i}^{-1}) at most N_{r} times.

Proof. We give the proof for the σ_{i}-positive case. The σ_{i}-negative case can be treated in a similar way.

Let $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a path in Γ_{r} whose label is a σ_{i}-positive word w. The word w has no occurrences of σ_{i}^{-1}, and each occurrence of σ_{i} in w is the label of some oriented edge in the path a. To prove the lemma, it is enough to check that the edges with label σ_{i} in this path are all different. Suppose that it is not the case and that $a_{s}=a_{t}$ for some s and t such that $1 \leq s<t \leq k$ and $L\left(a_{s}\right)=L\left(a_{t}\right)=\sigma_{i}$. Consider the nonempty subpath

$$
a^{\prime}=\left(a_{s}, \ldots, a_{t-1}\right)
$$

This subpath lies in Γ_{r} and its label is a subword u of w. Since u is a subword of a σ_{i}-positive word and contains at least one occurrence of σ_{i}, namely $L\left(a_{s}\right)$, it is σ_{i}-positive. On the other hand, the terminal vertex of a^{\prime} is the initial vertex of the oriented edge $a_{t}=a_{s}$. In other words, a^{\prime} is a loop. Therefore, the word u represents the trivial braid. But by Lemma 7.16, a σ-positive word cannot represent the trivial braid. Therefore, the edges with label σ_{i} in the path a are all different.

Lemma 7.36. For any braid word w, there is an integer $r \geq 0$ and a path in Γ_{r} whose label is w.

Proof. Let $a=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a path in Γ with label w. We denote the initial vertex of a_{1} by β_{0} and the terminal vertex of a_{i} by $\beta_{i}(1 \leq i \leq k)$. By definition of a path, the initial vertex of a_{i} is β_{i-1} for $i=1, \ldots, k$. By Section 6.5.4, there is $s \geq 0$ such that $\Delta_{n}^{s} \beta_{i} \in B_{n}^{+}$for all $i=0,1, \ldots, k$. Consider the "translated" path

$$
\Delta_{n}^{s}(a)=\left(\Delta_{n}^{s} a_{1}, \ldots, \Delta_{n}^{s} a_{k}\right),
$$

where $\Delta_{n}^{s} a_{i}$ is the oriented edge of Γ with initial vertex $\Delta_{n}^{s} \beta_{i-1}$ and terminal vertex $\Delta_{n}^{s} \beta_{i}$ for $i=1, \ldots, k$. The path $\Delta_{n}^{s}(a)$ also has w as its label. The vertices of this path belong to B_{n}^{+}. By Lemma 6.11 (iv), there is an integer $r \geq 0$ such that

$$
\Delta_{n}^{s} \beta_{0}, \Delta_{n}^{s} \beta_{1}, \ldots, \Delta_{n}^{s} \beta_{k}
$$

are left divisors of Δ_{n}^{r}. It follows that the translated path $\Delta_{n}^{s}(a)$ is in Γ_{r}.

7.5.5 Performing prime handle reduction in Γ_{r}

Let a be a path in Γ with initial vertex β_{0} and label w. By Section 7.5.3 there is a unique path in Γ with initial vertex β_{0} and label $\operatorname{red}(w)$. We denote this path by $\operatorname{red}(a)$. By Lemma 7.31, $\operatorname{red}(w)$ represents the same element of B_{n} as w. Therefore, the terminal vertices of a and $\operatorname{red}(a)$ coincide.

Lemma 7.37. If a is a path in Γ_{r} with $r \geq 0$, then so is $\operatorname{red}(a)$.
The proof of this lemma given in Section 7.5.6 is based on the following decomposition of prime handle reductions into elementary steps.

Let w, w^{\prime} be braid words. We say that w^{\prime} is obtained from w by an elementary reduction if w^{\prime} is obtained from w by replacing some subword u of w by the word u^{\prime}, where $u \mapsto u^{\prime}$ is one of the following substitutions:

$$
\begin{align*}
\sigma_{i}^{e} \sigma_{i}^{-e} & \mapsto \emptyset \quad \text { with } e= \pm 1, \tag{7.3}\\
\sigma_{i}^{e} \sigma_{j}^{k} & \mapsto \sigma_{j}^{k} \sigma_{i}^{e} \quad \text { with } e= \pm 1, k= \pm 1, \text { and }|i-j| \geq 2, \tag{7.4}\\
\sigma_{i} \sigma_{i+1}^{-1} & \mapsto \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i}, \tag{7.5}\\
\sigma_{i}^{-1} \sigma_{i+1} & \mapsto \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1} \sigma_{i}^{-1}, \tag{7.6}\\
\sigma_{i+1}^{-1} \sigma_{i} & \mapsto \sigma_{i} \sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}, \tag{7.7}\\
\sigma_{i+1} \sigma_{i}^{-1} & \mapsto \sigma_{i}^{-1} \sigma_{i+1}^{-1} \sigma_{i} \sigma_{i+1} . \tag{7.8}
\end{align*}
$$

Lemma 7.38. For any braid word w, one can pass from w to $\operatorname{red}(w)$ by a finite sequence of elementary reductions.

Proof. It is enough to check that one can pass from a prime handle v to its reduction v^{\prime} by a finite sequence of elementary reductions. Now, a prime σ_{i}-handle v is necessarily of one of the following two forms:
(i) If v does not contain any occurrences of $\sigma_{i+1}^{ \pm 1}$, then

$$
\begin{equation*}
v=\sigma_{i}^{e} u_{0} \sigma_{i}^{-e} \tag{7.9}
\end{equation*}
$$

where $e= \pm 1$ and u_{0} is empty or of index $>i+1$. In this case, $v^{\prime}=u_{0}$. We use (7.4) to transform v into $\sigma_{i}^{e} \sigma_{i}^{-e} u_{0}$. We then use (7.3) to transform the latter into u_{0}.
(ii) If v contains an occurrence of σ_{i+1}^{k} with $k= \pm 1$, then it contain no occurrences of σ_{i+1}^{-k}; otherwise, it would contain σ_{i+1}-handles, which contradicts Lemma 7.28 (a). It follows that v is of the form

$$
\begin{equation*}
v=\sigma_{i}^{e} u_{0} \sigma_{i+1}^{k} u_{1} \sigma_{i+1}^{k} u_{2} \cdots u_{r-1} \sigma_{i+1}^{k} u_{r} \sigma_{i}^{-e}, \tag{7.10}
\end{equation*}
$$

where $e= \pm 1, k= \pm 1, r \geq 1$, and u_{0}, \ldots, u_{r} are empty or of index $>i+1$. In this case, the reduction of v is

$$
\begin{equation*}
v^{\prime}=u_{0} \sigma_{i+1}^{-e} \sigma_{i}^{k} \sigma_{i+1}^{e} u_{1} \sigma_{i+1}^{-e} \sigma_{i}^{k} \sigma_{i+1}^{e} u_{2} \cdots u_{r-1} \sigma_{i+1}^{-e} \sigma_{i}^{k} \sigma_{i+1}^{e} u_{r} . \tag{7.11}
\end{equation*}
$$

We now distinguish four cases depending on the values of e and k.
(a) If $e=1$ and $k=-1$, then

$$
v=\underbrace{\sigma_{i} u_{0}} \sigma_{i+1}^{-1} u_{1} \sigma_{i+1}^{-1} u_{2} \cdots u_{r-1} \sigma_{i+1}^{-1} u_{r} \sigma_{i}^{-1} .
$$

Since u_{0} is of index $>i+1$, we can apply substitutions (7.4) to the underbraced subword of v; we thus transform v into

$$
u_{0} \underbrace{\sigma_{i} \sigma_{i+1}^{-1}} u_{1} \sigma_{i+1}^{-1} u_{2} \cdots u_{r-1} \sigma_{i+1}^{-1} u_{r} \sigma_{i}^{-1} .
$$

Applying substitution (7.5) to the underbraced subword, we obtain

$$
u_{0}\left(\sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}\right)\left[\sigma_{i} u_{1} \sigma_{i+1}^{-1} u_{2} \cdots u_{r-1} \sigma_{i+1}^{-1} u_{r} \sigma_{i}^{-1}\right]
$$

The subword in square brackets is of the same form as v, but shorter. Iterating substitutions (7.4), (7.5), we obtain the word

$$
u_{0}\left(\sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}\right) u_{1}\left(\sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}\right) u_{2} \cdots u_{r-1}\left(\sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1}\right)\left[\sigma_{i} u_{r} \sigma_{i}^{-1}\right]
$$

We finally apply substitutions (7.3), (7.4) to the subword $\sigma_{i} u_{r} \sigma_{i}^{-1}$, and obtain the word v^{\prime} as in (7.11).
(b) If $e=-1$ and $k=1$, then we proceed as in the previous case using (7.6) instead of (7.5).
(c) If $e=-1$ and $k=-1$, then

$$
v=\sigma_{i}^{-1} u_{0} \sigma_{i+1}^{-1} u_{1} \sigma_{i+1}^{-1} u_{2} \cdots u_{r-1} \sigma_{i+1}^{-1} u_{r} \sigma_{i}
$$

Here we start from the right: we use (7.4) to transform v into

$$
\sigma_{i}^{-1} u_{0} \sigma_{i+1}^{-1} u_{1} \sigma_{i+1}^{-1} u_{2} \cdots u_{r-1} \underbrace{\sigma_{i+1}^{-1} \sigma_{i}} u_{r}
$$

Next we use (7.7) to transform the latter into

$$
\left[\sigma_{i}^{-1} u_{0} \sigma_{i+1}^{-1} u_{1} \sigma_{i+1}^{-1} u_{2} \cdots u_{r-1} \sigma_{i}\right]\left(\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}\right) u_{r} .
$$

Now the word in square brackets is of the same form as v, but shorter. We then iterate substitutions (7.4), (7.7), and obtain the word

$$
\left[\sigma_{i}^{-1} u_{0} \sigma_{i}\right]\left(\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}\right) u_{1}\left(\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}\right) u_{2} \cdots u_{r-1}\left(\sigma_{i+1} \sigma_{i}^{-1} \sigma_{i+1}^{-1}\right) u_{r} .
$$

We finally apply substitutions (7.3), (7.4) to the subword $\sigma_{i}^{-1} u_{0} \sigma_{i}$, and obtain v^{\prime} as in (7.11).
(d) If $e=1$ and $k=1$, then we proceed as in the previous case using (7.8) instead of (7.7).

7.5.6 Proof of Lemma 7.37

Let w^{\prime} be obtained from the label w of a by an elementary reduction and let a^{\prime} be the path in Γ with label w^{\prime} and the same initial vertex as a. By Lemma 7.38, it suffices to prove that a^{\prime} lies in Γ_{r}. We consider successively each of the substitutions (7.3)-(7.8).
(a) Substitution (7.3): If w^{\prime} is obtained from w by (7.3), then a^{\prime} is obtained from a by removing a loop. Since a lies in Γ_{r}, so does a^{\prime}.
(b) Substitution (7.4): We may assume that the word $\sigma_{i}^{e} \sigma_{j}^{k}(e= \pm 1$, $k= \pm 1)$ is the label of a path in Γ_{r} with initial vertex β_{0} and terminal vertex β_{1}. By assumption, $\beta_{0}, \beta_{0} \sigma_{i}^{e}$, and $\beta_{1}=\beta_{0} \sigma_{i}^{e} \sigma_{j}^{k}$ are vertices of Γ_{r}.

Since (7.4) substitutes $\sigma_{j}^{k} \sigma_{i}^{e}$ for $\sigma_{i}^{e} \sigma_{j}^{k}$, we have to check that $\beta_{0} \sigma_{j}^{k}$ is a vertex of Γ_{r}, i.e., that it is a left divisor of Δ_{n}^{r} in B_{n}^{+}.

If $e=k=1$, then we have to check that $\beta_{0} \sigma_{j}$ is a left divisor of Δ_{n}^{r}. But $\beta_{0} \sigma_{j}$ is a left divisor of $\beta_{0} \sigma_{j} \sigma_{i}=\beta_{0} \sigma_{i} \sigma_{j}=\beta_{1}$, which by assumption is a left divisor of Δ_{n}^{r}.

Let $e=1$ and $k=-1$. By definition of β_{0} and β_{1}, we have $\beta_{1} \sigma_{j}=\beta_{0} \sigma_{i}$. In particular, σ_{i} and σ_{j} are right divisors of $\beta_{0} \sigma_{i}$. We proved in Section 6.5 that $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ is the left lcm of σ_{i} and σ_{j}. Hence there is $\beta \in B_{n}^{+}$such that $\beta_{0} \sigma_{i}=\beta \sigma_{j} \sigma_{i}$. Consequently, $\beta_{0}=\beta \sigma_{j}$. The vertex $\beta_{0} \sigma_{j}^{-1}=\beta$ lies in B_{n}^{+}and is a left divisor of Δ_{n}^{r}, as desired.

The case $e=-1$ reduces to the previous ones by reversing the paths.
(c) Substitution (7.5): Assume that the braid word $\sigma_{i} \sigma_{i+1}^{-1}$ is the label of a path in Γ_{r} with initial vertex β_{0} and terminal vertex β_{1}. This means that the braids $\beta_{0}, \beta_{0} \sigma_{i}$, and $\beta_{1}=\beta_{0} \sigma_{i} \sigma_{i+1}^{-1}$ belong to B_{n}^{+}and are left divisors of Δ_{n}^{r}. We have to show that the braids

$$
\begin{equation*}
\beta_{0} \sigma_{i+1}^{-1}, \quad \beta_{0} \sigma_{i+1}^{-1} \sigma_{i}^{-1}, \quad \beta_{0} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1} \tag{7.12}
\end{equation*}
$$

also belong to B_{n}^{+}and are left divisors of Δ_{n}^{r}.
The element $\beta_{0} \sigma_{i}=\beta_{1} \sigma_{i+1}$ of B_{n}^{+}is a left multiple of σ_{i} and σ_{i+1}. It follows that $\beta_{0} \sigma_{i}$ is a left multiple of the left lcm of σ_{i} and σ_{i+1}, which by Section 6.5 is $\sigma_{i} \sigma_{i+1} \sigma_{i}$. Therefore, there is $\beta \in B_{n}^{+}$such that $\beta_{0} \sigma_{i}=\beta \sigma_{i} \sigma_{i+1} \sigma_{i}$. We thus have $\beta_{0}=\beta \sigma_{i} \sigma_{i+1}$. The braids (7.12) can be expressed in terms of β as follows:

$$
\begin{aligned}
\beta_{0} \sigma_{i+1}^{-1} & =\beta \sigma_{i} \sigma_{i+1} \sigma_{i+1}^{-1}=\beta \sigma_{i} \\
\beta_{0} \sigma_{i+1}^{-1} \sigma_{i}^{-1} & =\beta \sigma_{i} \sigma_{i}^{-1}=\beta \\
\beta_{0} \sigma_{i+1}^{-1} \sigma_{i}^{-1} \sigma_{i+1} & =\beta \sigma_{i+1}
\end{aligned}
$$

Clearly these braids belong to B_{n}^{+}. Since they are left divisors of

$$
\beta \sigma_{i} \sigma_{i+1} \sigma_{i}=\beta \sigma_{i+1} \sigma_{i} \sigma_{i+1}=\beta_{0} \sigma_{i}
$$

they are left divisors of Δ_{n}^{r}.
(d) Substitution (7.6): Assume that $\sigma_{i}^{-1} \sigma_{i+1}$ is the label of a path in Γ_{r} with initial vertex β_{0} and terminal vertex β_{1}. Then the braids

$$
\beta_{0}, \quad \beta=\beta_{0} \sigma_{i}^{-1}, \quad \beta_{1}=\beta_{0} \sigma_{i}^{-1} \sigma_{i+1}=\beta \sigma_{i+1}
$$

belong to B_{n}^{+}and are left divisors of Δ_{n}^{r}. We have to show that the braids $\beta_{0} \sigma_{i+1}, \beta_{0} \sigma_{i+1} \sigma_{i}$, and $\beta_{0} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1}$ belong to B_{n}^{+}and are left divisors of Δ_{n}^{r}.

It is clear that $\beta_{0} \sigma_{i+1}, \beta_{0} \sigma_{i+1} \sigma_{i}$, and

$$
\beta_{0} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1}=\beta_{0} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i}=\beta_{1} \sigma_{i}
$$

belong to B_{n}^{+}. We know that $\beta_{0}=\beta \sigma_{i}$ and $\beta_{1}=\beta \sigma_{i+1}$ are left divisors of Δ_{n}^{r}. This implies that the right lcm of $\beta \sigma_{i}$ and $\beta \sigma_{i+1}$ in B_{n}^{+}is a left divisor of Δ_{n}^{r}.

We claim that the right lcm of $\beta \sigma_{i}$ and $\beta \sigma_{i+1}$ is $\beta \mu$, where $\mu=\sigma_{i} \sigma_{i+1} \sigma_{i}$ is the right lcm of σ_{i} and σ_{i+1}. Indeed, $\beta \mu$ is clearly a right multiple of $\beta \sigma_{i}$ and $\beta \sigma_{i+1}$. Let $\nu=\beta \sigma_{i} \beta^{\prime}=\beta \sigma_{i+1} \beta^{\prime \prime}$ be a right multiple of $\beta \sigma_{i}$ and $\beta \sigma_{i+1}$, where $\beta^{\prime}, \beta^{\prime \prime} \in B_{n}^{+}$. Since B_{n}^{+}is left cancellative, $\sigma_{i} \beta^{\prime}=\sigma_{i+1} \beta^{\prime \prime}$, which is a right multiple of σ_{i} and σ_{i+1} and hence a right multiple of μ. Therefore, ν is a right multiple of $\beta \mu$, which proves the claim. It follows from the previous arguments that $\beta \sigma_{i} \sigma_{i+1} \sigma_{i}=\beta \sigma_{i+1} \sigma_{i} \sigma_{i+1}$ is a left divisor of Δ_{n}^{r}. So are then

$$
\beta_{0} \sigma_{i+1}=\beta \sigma_{i} \sigma_{i+1}, \quad \beta_{0} \sigma_{i+1} \sigma_{i}=\beta \sigma_{i} \sigma_{i+1} \sigma_{i}
$$

and

$$
\beta_{0} \sigma_{i+1} \sigma_{i} \sigma_{i+1}^{-1}=\beta_{0} \sigma_{i}^{-1} \sigma_{i+1} \sigma_{i}=\beta \sigma_{i+1} \sigma_{i}
$$

(e) Substitutions (7.7) and (7.8): The two words in (7.7) and in (7.8) are inverses of the words in (7.6) and in (7.5), respectively. So we may argue as above after reversing the paths.

7.5.7 Critical prefixes and critical handles

Consider a braid word w of index $i \in\{1, \ldots, n-1\}$. Let $e(w)= \pm 1$ be the integer such that the leftmost occurrence of $\sigma_{i}^{ \pm 1}$ in w is $\sigma_{i}^{e(w)}$. We define the critical prefix $P(w)$ of w as the longest prefix of w such that its last letter is $\sigma_{i}^{e(w)}$ and it contains no occurrences of $\sigma_{i}^{-e(w)}$. For example, if $i=1$ and

$$
w=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1} \sigma_{3}^{-1} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1} \sigma_{3}^{-1} \sigma_{1} \sigma_{2}
$$

then $e(w)=1$ and $P(w)=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1} \sigma_{3}^{-1} \sigma_{1}$.
We denote by $h(w)$ the number of σ_{i}-handles contained in w. If $h(w) \geq 1$, then there is a unique σ_{i}-handle whose first letter, $\sigma_{i}^{e(w)}$, is the last letter of the critical prefix $P(w)$. We call this handle the critical handle of w. It is easy to see that the critical handle of w is the unique σ_{i}-handle v such that $w=w_{1} v w_{2}$, where $w_{1} v$ is the shortest prefix of w containing a σ_{i}-handle. The essential difference between the critical handle and the prime handle (as introduced in Definition 7.27) of a braid word of index i is that the critical handle is always a σ_{i}-handle, whereas the prime handle may be a σ_{j}-handle with $j>i$. It follows from the definitions that the prime handle of w is contained in the critical handle, and if the prime handle is a σ_{i}-handle, then it coincides with the critical handle. Let us illustrate the difference between critical and prime handles on the following three words of index 1 :
(i) If $w=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1} \sigma_{3}^{-1} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1}$, then its critical handle is $\sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}$; its prime handle is $\sigma_{2} \sigma_{3} \sigma_{2}^{-1}$.
(ii) If $w=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2}^{-1} \sigma_{1} \sigma_{3}^{-1} \sigma_{1} \sigma_{3} \sigma_{2}^{-1}$, then it has no σ_{1}-handles, hence no critical handles; its prime handle is $\sigma_{2} \sigma_{3} \sigma_{2}^{-1}$.
(iii) If $w=\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{3}^{-1} \sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1} \sigma_{2}^{-1}$, then its prime handle is the σ_{1}-handle $\sigma_{1} \sigma_{3} \sigma_{2}^{-1} \sigma_{1}^{-1}$. This handle is also the critical handle of w.

Observe that if a word is the label of a path a in Γ, then all its subwords, in particular the critical prefix, the prime handle, the critical handle, are labels of subpaths of a.

Lemma 7.39. Let w be a braid word of index i containing at least one handle. Assume that w is the label of a path a in Γ_{r} with initial vertex β_{0}. Then $h(\operatorname{red}(w)) \leq h(w)$. If $h(\operatorname{red}(w))=h(w) \geq 1$, then $e(\operatorname{red}(w))=e(w)$, and there is a path $a(w)$ in Γ_{r} such that
(i) the initial vertex of $a(w)$ is the terminal vertex of the path $p(w)$ with initial vertex β_{0} and label $P(w)$, and the terminal vertex of $a(w)$ is the terminal vertex of the path $p(\operatorname{red}(w))$ with initial vertex β_{0} and label $P(\operatorname{red}(w))$,
(ii) if the index of the prime handle of w is $>i$, then the path $a(w)$ is empty; if the index of the prime handle of w is i, then the label of $a(w)$ contains exactly one occurrence of $\sigma_{i}^{-e(w)}$ and no occurrences of $\sigma_{i}^{e(w)}$.

Figure 7.4 shows the paths $a, \operatorname{red}(a)$, the subpath $p(w)$ of a, the subpath $p(\operatorname{red}(w))$ of $\operatorname{red}(a)$, and the path $a(w)$.

Fig. 7.4. The path $a(w)$

Proof. If $h(w)=0$, then w contains no σ_{i}-handles, and one passes from w to $\operatorname{red}(w)$ by reducing some σ_{j}-handle with $j>i$. It is clear that $\operatorname{red}(w)$ contains no σ_{i}-handles. Hence, $h(\operatorname{red}(w))=0=h(w)$.

Now assume that $h(w) \geq 1$. We can write

$$
\begin{equation*}
w=v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \sigma_{i}^{e} v_{p} \underbrace{\sigma_{i}^{e} v_{p+1} \sigma_{i}^{-e}} v_{p+2} \sigma_{i}^{f} \cdots, \tag{7.13}
\end{equation*}
$$

where $p \geq 0, v_{0}, v_{1}, \ldots, v_{p-1}, v_{p}, v_{p+1}, v_{p+2}$ are braid words of index $>i$, $e= \pm 1$, and the subword indicated by braces is the critical handle of w, which exists since $h(w) \geq 1$. By σ_{i}^{f} in (7.13), we mean the first letter $\sigma_{i}^{ \pm 1}$ appearing to the right of the critical handle of w if such a letter exists, and the empty word if no such letter exists, i.e., if the letters to the right of the critical handle are $\sigma_{j}^{ \pm 1}$ with $j>i$. Clearly,

$$
P(w)=v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \sigma_{i}^{e} v_{p} \sigma_{i}^{e}
$$

Assume first that the index of the prime handle of w is $>i$. Then the prime handle of w must be a subword of v_{r} for some $r \in\{0,1, \ldots, p+1\}$ (by definition of the prime handle, it cannot lie to the right of the critical handle). The $\operatorname{word} \operatorname{red}(w)$ is then obtained from w by replacing v_{r} with $\operatorname{red}\left(v_{r}\right)$. This operation does not affect the σ_{i}-handles. Hence, $h(\operatorname{red}(w))=h(w)$ and $e(\operatorname{red}(w))=e(w)$. The critical prefix behaves under the reduction as follows: if $r=p+1$, then $P(\operatorname{red}(w))=P(w)$; if $r \leq p$, then $P(\operatorname{red}(w))$ is obtained from $P(w)$ by replacing v_{r} with $\operatorname{red}\left(v_{r}\right)$. In both cases, $P(\operatorname{red}(w))$ represents the same element of B_{n} as $P(w)$. Therefore, the paths $p(w)$ and $p(\operatorname{red}(w))$ have the same terminal vertex and we take $a(w)$ to be the empty path.

Now assume that the index of the prime handle of w is i. Then this handle has to be the critical handle $\sigma_{i}^{e} v_{p+1} \sigma_{i}^{-e}$. The word $\operatorname{red}(w)$ is obtained by reducing this handle. By Lemma 7.28, the prime handle does not contain any other handles. Therefore, the word v_{p+1} either contains no occurrences of $\sigma_{i+1}^{ \pm 1}$, or contains occurrences of $\sigma_{i+1}^{ \pm 1}$, but no occurrences of $\sigma_{i+1}^{\mp 1}$. Let us consider these cases separately.
(A) Suppose that v_{p+1} contains no occurrences of $\sigma_{i+1}^{ \pm 1}$. The word $\operatorname{red}(w)$ is then obtained from w by replacing the prime handle

$$
\sigma_{i}^{e} v_{p+1} \sigma_{i}^{-e}
$$

by v_{p+1}. If $p=0$, then

$$
h(\operatorname{red}(w))<h(w)
$$

and we are done. Assume that $p \geq 1$. Then

$$
\begin{equation*}
\operatorname{red}(w)=v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \underbrace{\sigma_{i}^{e} v_{p} v_{p+1} v_{p+2} \sigma_{i}^{f}} \cdots \tag{7.14}
\end{equation*}
$$

Comparing (7.13) and (7.14), we see that $h(\operatorname{red}(w))<h(w)$ unless $\sigma_{i}^{f}=\sigma_{i}^{-e}$. In the latter case, the subword indicated by braces in (7.14) is the critical handle of $\operatorname{red}(w)$, and

$$
h(\operatorname{red}(w))=h(w) \geq 1 \quad \text { and } \quad e(\operatorname{red}(w))=e(w)
$$

Since

$$
P(\operatorname{red}(w))=v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \sigma_{i}^{e},
$$

we have

$$
P(w)=P(\operatorname{red}(w)) v_{p} \sigma_{i}^{e} .
$$

Moreover, the path $p(\operatorname{red}(w))$ is a subpath of the path $p(w)$, hence a subpath of a. Let $a(w)$ be the path whose label is $\sigma_{i}^{-e} v_{p}^{-1}$ and whose initial vertex is the terminal vertex of $p(w)$. It is clear that $a(w)$ is a subpath of \bar{a}; hence $a(w)$ lies in Γ_{r}. The terminal vertex of $a(w)$ is the terminal vertex of $p(\operatorname{red}(w))$. Figure 7.5 shows parts of the paths a and $\operatorname{red}(a)$ in Γ_{r}. The path $a(w)$ appears in the gray zone of the figure (with reverse orientation). The label $\sigma_{i}^{-e} v_{p}^{-1}$ of $a(w)$ contains exactly one occurrence of σ_{i}^{-e} and no occurrences of σ_{i}^{e}.

Fig. 7.5. Proof of Lemma 7.39: Case (A)
(B) Suppose that v_{p+1} contains occurrences of σ_{i+1}^{-e} and no occurrences of σ_{i+1}^{e}, i.e.,

$$
v_{p+1}=u_{0} \sigma_{i+1}^{-e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{-e} u_{q},
$$

where $q \geq 1$ and $u_{0}, u_{1}, \ldots, u_{q-1}, u_{q}$ are braid words of index $\geq i+2$. If $p=0$, then

$$
\operatorname{red}(w)=v_{0} u_{0} \sigma_{i+1}^{-e} \sigma_{i}^{-e} \sigma_{i+1}^{e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{-e} \sigma_{i}^{-e} \sigma_{i+1}^{e} u_{q} v_{2} \sigma_{i}^{f} \cdots
$$

Clearly, $h(\operatorname{red}(w))<h(w)$ and we are done. If $p \geq 1$, then $\operatorname{red}(w)$ is equal to

$$
v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \underbrace{\sigma_{i}^{e} v_{p} u_{0} \sigma_{i+1}^{-e} \sigma_{i}^{-e}} \sigma_{i+1}^{e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{-e} \sigma_{i}^{-e} \sigma_{i+1}^{e} u_{q} v_{p+2} \sigma_{i}^{f} \cdots .
$$

The subword indicated by braces is the critical handle of $\operatorname{red}(w)$, and we have $h(\operatorname{red}(w))=h(w) \geq 1$ and $e(\operatorname{red}(w))=e(w)$. Moreover,

$$
P(w)=P(\operatorname{red}(w)) v_{p} \sigma_{i}^{e}
$$

as in (A) and we can conclude in the same way. Figure 7.6 shows parts of the paths a and $\operatorname{red}(a)$ in Γ_{r}. The path $a(w)$ appears in the gray zone of the figure (with reverse orientation).

Fig. 7.6. Proof of Lemma 7.39: Case (B)
(C) We finally suppose that v_{p+1} contains occurrences of σ_{i+1}^{e} and no occurrences of σ_{i+1}^{-e}, i.e.,

$$
v_{p+1}=u_{0} \sigma_{i+1}^{e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{e} u_{q}
$$

where $q \geq 1$ and $u_{0}, u_{1}, \ldots, u_{q-1}, u_{q}$ are braid words of index $\geq i+2$. Then $\operatorname{red}(w)$ is equal to

$$
v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \sigma_{i}^{e} v_{p} u_{0} \sigma_{i+1}^{-e} \sigma_{i}^{e} \sigma_{i+1}^{e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{-e} \underbrace{\sigma_{i}^{e} \sigma_{i+1}^{e} u_{q} v_{p+2} \sigma_{i}^{f}} \cdots
$$

If σ_{i}^{f} is the empty word or $f=e$, then $h(\operatorname{red}(w))<h(w)$ and we are done. If $f=-e$, then $h(\operatorname{red}(w))=h(w) \geq 1$ and the critical handle of $\operatorname{red}(w)$ is the one indicated by braces. We then have $e(\operatorname{red}(w))=e(w)$. Setting $v=v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} \cdots v_{p-1} \sigma_{i}^{e} v_{p}$, we obtain

$$
P(w)=v \sigma_{i}^{e} \quad \text { and } \quad P(\operatorname{red}(w))=v u_{0} \sigma_{i+1}^{-e} \sigma_{i}^{e} \sigma_{i+1}^{e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{-e} \sigma_{i}^{e}
$$

Let $a(w)$ be the path whose label is

$$
L=u_{0} \sigma_{i+1}^{e} u_{1} \cdots u_{q-1} \sigma_{i+1}^{e} u_{q} \sigma_{i}^{-e} u_{q}^{-1} \sigma_{i+1}^{-e}
$$

and whose initial vertex is the terminal vertex of the subpath $p(w)$ of a. In Figure 7.7 the path $a(w)$ appears in the gray zone. We see that the terminal vertex of $a(w)$ is the terminal vertex of the subpath $p(\operatorname{red}(w))$ of $\operatorname{red}(a)$, and the edges of $a(w)$ are edges either of a or of $\operatorname{red}(a)$. The path red (a) lies in Γ_{r} by Lemma 7.37; hence, so does $a(w)$. The word L contains exactly one occurrence of σ_{i}^{-e} and no occurrences of σ_{i}^{e}.

Fig. 7.7. Proof of Lemma 7.39: Case (C)

7.5.8 Proof of Lemma 7.32

We now use the previous lemmas to prove that prime handle reduction eventually stops. Let us proceed by descending induction on the index i of w.

If $i=n-1$, then w is a word in the letters $\sigma_{n-1}^{ \pm 1}$, and any handle is of the form $\sigma_{n-1}^{ \pm 1} \sigma_{n-1}^{\mp 1}$. Reducing it means deleting it, hence shortening the length of the word by 2 . It is obvious that $\operatorname{red}^{k}(w)$ contains no handles for sufficiently large k.

Suppose that the lemma holds for all braid words of index $>i$ and let w be a braid word of index i. Assume that Lemma 7.32 does not hold for w. This means that $\operatorname{red}^{k}(w)$ exists for all $k \geq 0$, that is, every braid word $w_{k}=\operatorname{red}^{k}(w)$ has at least one handle. By Lemma 7.39, the nonnegative integers $h\left(w_{k}\right)$ form a nonincreasing sequence, which eventually must be constant. After discarding a finite number of w_{k}, we may assume that there is an integer h such that $h\left(w_{k}\right)=h$ for all $k \geq 0$. By definition, w_{k+1} is obtained from w_{k} by reducing the prime handle, which is either a σ_{i}-handle or a σ_{j}-handle for some $j>i$. Let K be the set of all integers k such that the prime handle of w_{k} is a σ_{i}-handle. In the sequel we shall prove first that K is infinite, then that K is finite. This will give a contradiction, so that Lemma 7.32 must hold for w.

We first prove that K is infinite and $h \geq 1$. For any $k \geq 0$, the braid word w_{k} is of the form

$$
w_{k}=v_{0} \sigma_{i}^{e} v_{1} \sigma_{i}^{e} v_{2} \cdots \sigma_{i}^{e} v_{p} w^{\prime}
$$

where $e= \pm 1$, the words $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ are of index $>i$, and the word w^{\prime} either begins with the letter σ_{i}^{-e} (in which case $h=h\left(w_{k}\right)>0$) or is empty (in which case $h=0$). By the induction assumption, for each $r \in\{0,1, \ldots, p\}$, there is $k_{r} \geq 0$ such that $\operatorname{red}^{k_{r}}\left(v_{r}\right)$ contains no handles. We claim that

$$
\begin{equation*}
\operatorname{red}^{k_{0}}\left(w_{k}\right)=\operatorname{red}^{k_{0}}\left(v_{0}\right) \sigma_{i}^{e} v_{1} \sigma_{i}^{e} v_{2} \cdots \sigma_{i}^{e} v_{p} w^{\prime} \tag{7.15}
\end{equation*}
$$

This clearly holds for $k_{0}=0$, i.e., in the case that v_{0} contains no handles. If v_{0} contains a handle, then it contains the prime handle of w_{k}, so that $\operatorname{red}\left(w_{k}\right)$ is obtained from w_{k} by reducing the prime handle of v_{0}. The reduction goes on until all handles in v_{0} have been disposed of. This proves (7.15). A similar argument shows that for $k^{\prime}=k+k_{0}+k_{1}+\cdots+k_{p}$,

$$
\begin{aligned}
w_{k^{\prime}} & =\operatorname{red}^{k_{0}+k_{1}+\cdots+k_{p}}\left(w_{k}\right) \\
& =\operatorname{red}^{k_{0}}\left(v_{0}\right) \sigma_{i}^{e} \operatorname{red}^{k_{1}}\left(v_{1}\right) \sigma_{i}^{e} \operatorname{red}^{k_{2}}\left(v_{2}\right) \cdots \sigma_{i}^{e} \operatorname{red}^{k_{p}}\left(v_{p}\right) w^{\prime}
\end{aligned}
$$

If $w^{\prime}=\emptyset$, then $w_{k^{\prime}}$ contains no handles, contradicting our hypothesis that the sequence $\left(w_{k}\right)_{k}$ is infinite. Hence, w^{\prime} must begin with σ_{i}^{-e}. One sees immediately that the σ_{i}-handle $\sigma_{i}^{e} \operatorname{red}^{k_{p}}\left(v_{p}\right) \sigma_{i}^{-e}$ is the prime handle of $w_{k^{\prime}}$. Hence, $k^{\prime} \in K$. Thus for any $k \geq 0$ there is $k^{\prime} \in K$ such that $k^{\prime} \geq k$. This proves that K is infinite. The argument also shows that $h=h\left(w_{k}\right) \geq 1$.

We now claim that K is finite. By Lemma 7.36, the braid word w is the label of a path in Γ_{r} for some $r \geq 0$. It follows from Lemma 7.37 that for each $k \geq 0$ the word w_{k} is the label of a path in Γ_{r}. Let us apply Lemma 7.39 to w_{k}. We observed above that $h \geq 1$. Let e be the common value of $e\left(w_{k}\right)$ for all k. Consider the path $a\left(w_{k}\right)$ produced by Lemma 7.39 and its label $L_{k}=L\left(a\left(w_{k}\right)\right)$. If $k \notin K$, then $L_{k}=\emptyset$; if $k \in K$, then L_{k} contains exactly one occurrence of σ_{i}^{-e} and no occurrences of σ_{i}^{e}. For any integer $\ell \geq 0$, the paths $a\left(w_{0}\right), a\left(w_{1}\right), \ldots, a\left(w_{\ell}\right)$ can be concatenated, since by Lemma 7.39 the initial vertex of each $a\left(w_{s}\right)$ is the terminal vertex of $a\left(w_{s-1}\right)$. Each path $a\left(w_{0}\right), a\left(w_{1}\right), \ldots, a\left(w_{\ell}\right)$ being in Γ_{r}, so is the concatenated path $a\left(w_{0}\right) a\left(w_{1}\right) \cdots a\left(w_{\ell}\right)$. The label of the latter is the braid word $L_{0} L_{1} \cdots L_{\ell}$, which by Lemma 7.39 contains no occurrences of σ_{i}^{e} and as many occurrences of σ_{i}^{-e} as there are elements of K in $\{0,1, \ldots, \ell\}$. By Lemma 7.35 , the number of such occurrences of σ_{i}^{-e} is bounded from above by an integer N_{r}. It follows that

$$
\operatorname{card}(K \cap\{0,1, \ldots, \ell\}) \leq N_{r}
$$

for each $\ell \geq 0$. Therefore K is a finite set. We have thus reached the desired contradiction.

Remark 7.40. Prime handle reduction allows us to get rid of all handles in a braid word. Actually, in order to prove Lemma 7.17, we need only to kill the σ_{i}-handles of braid words of index i. Killing σ_{i}-handles can be achieved by reducing only the critical handles. The latter can be reduced after the σ_{i+1}-handles that they contain have previously been disposed of. The reader is encouraged to make the reduction of critical handles work in a proper way. The appropriately defined critical handle reduction is faster than prime handle reduction since there are fewer handles to kill, as can be seen for instance when one applies both prime handle reduction and critical handle reduction to the braid word (7.2).

7.6 The Nielsen-Thurston approach

To end this chapter we outline a geometric method to order the braid groups. The method, based on Proposition 7.41 below, requires some familiarity with hyperbolic geometry and with Nielsen's classical work on homeomorphisms of surfaces [Nie27].

Proposition 7.41. Let G be a group acting on a totally ordered set X by order-preserving bijections such that there is an element of X whose stabilizer is trivial. Then G is orderable.

Recall that the stabilizer of $a \in X$ is the subgroup of G consisting of all elements fixing a.

Proof. For $f \in G$ and $b \in X$, let $f(b) \in X$ be the result of the action of f on b. By assumption, $b<b^{\prime} \Rightarrow f(b)<f\left(b^{\prime}\right)$ in X for all $b, b^{\prime} \in X$ and $f \in G$, and there is $a \in X$ such that $f(a)=a \Rightarrow f=1$. For $f, g \in G$, set $f \leq_{a} g$ if $f(a) \leq g(a)$ for the given total order on X. It is clear that the relation \leq_{a} on G is reflexive and transitive. Let us show that it is antisymmetric. Indeed, $f \leq_{a} g$ and $g \leq_{a} f$ imply $f(a) \leq g(a) \leq f(a)$. Hence, $f(a)=g(a)$, which is equivalent to $\left(g^{-1} f\right)(a)=a$. Therefore, $g^{-1} f=1$; hence $f=g$. We have thus checked that \leq_{a} is an order on G. Since the order on X is total, so is the order \leq_{a} on G.

It remains to prove that \leq_{a} is left-invariant. Let $f \leq_{a} g$ in G and $h \in G$. Since $f(a) \leq g(a)$ and h acts on X by an order-preserving bijection,

$$
(h f)(a)=h(f(a)) \leq h(g(a))=(h g)(a)
$$

Thus, $h f \leq_{a} h g$.
Let S be a closed connected oriented surface of genus one with $n \geq 1$ marked points P_{1}, \ldots, P_{n}. Let C be a simple closed curve on S separating S into a genus-one surface S_{1} and a disk S_{2} containing all marked points (see Figure 7.8 for $n=3$). By Theorem 1.33, the braid group B_{n} is isomorphic to the mapping class group \mathcal{M} of the orientation-preserving self-homeomorphisms of S that are the identity on S_{1} and permute the marked points.

Fig. 7.8. The surface S

Equip $S-\left\{P_{1}, \ldots, P_{n}\right\}$ with a complete hyperbolic metric for which the curve C is a geodesic and the marked points are cusps. Fix a basepoint x_{0} on C. The hyperbolic metric allows us to identify the universal covering of $S-\left\{P_{1}, \ldots, P_{n}\right\}$ with the interior $D^{\circ}=D-\partial D$ of the unit disk D in C. Moreover, we can assume that the center 0 of D projects to x_{0}. Any orientationpreserving self-homeomorphism φ of S fixing x_{0} and permuting the marked points can be lifted uniquely to a self-homeomorphism $\widetilde{\varphi}$ of D° fixing 0 . Nielsen [Nie27, Sect. 10] showed that $\widetilde{\varphi}$ extends to an orientation-preserving self-homeomorphism Φ of D. He also proved that $\partial \varphi=\left.\Phi\right|_{\partial D}$ depends only on the isotopy class of φ. Consequently, the mapping class group $\mathcal{M} \cong B_{n}$ acts by orientation-preserving homeomorphisms on the circle ∂D. This action fixes a point $z \in \partial D$. In the role of z we can take one of the endpoints of the component of the preimage of C in D passing through 0 . We thus have an action of B_{n} on $\mathbf{R}=\partial D-\{z\}$ by orientation-preserving homeomorphisms, hence by order-preserving homeomorphisms.

We now apply Proposition 7.41 to $G=B_{n}$ acting on $X=\mathbf{R}$ via the above-defined action. In order to be able to conclude that B_{n} is orderable, we have to check that the subset Y of \mathbf{R} consisting of the points with trivial stabilizer is nonempty. The complement Z of Y in X is the union of the sets of fixed points of $\partial \varphi$, where φ runs over all elements of $\mathcal{M} \cong B_{n}$ distinct from the identity. Since B_{n} is countable, Z is a countable union of such fixed-point sets. By [Nie27, Sect. 14], if $\varphi \neq 1$, then the set of fixed points of $\partial \varphi$ is a closed subset with empty interior. It follows from Baire's theorem (see [Kel55, Chap. 6] or [Rud66, Th. 5.6]) that Z has an empty interior. Therefore, its complement Y is dense in \mathbf{R} and hence is nonempty.

Notes

For general references on orderable groups, see [MR77] or [Pas77]. A number of groups arising in topology are orderable; see [RW00], [SW00], [RW01], [Gon02], [BRW05]. For the biorderability of the pure braid groups, we followed [KR03], [DDRW02, Sect. 9.2].

The left-invariant total order presented in Section 7.3 was discovered by Dehornoy in 1991-1992; see [Deh94]. Until then it was not known whether braids groups were orderable. We followed [Deh00], [DDRW02, Chap. 1] for most of Section 7.3. Theorem 7.15 is due to Dehornoy. Proposition 7.19 is established in [MN03]. For the proof of Lemma 7.16 we followed [Lar94].

Handle reduction was introduced in [Deh97]; see also [Deh00, Chap. III], [DDRW02, Chap. 3]. In practice, the algorithm provided by Lemma 7.32 turns out to be very efficient, faster than other available algorithms.

The geometric approach in Section 7.6 is based on an observation of W. Thurston recorded by H. Short and B. Wiest. This approach leads to a family of left-invariant total orders of B_{n} including the Dehornoy order. A classification of these orders is given in [SW00]; see also [DDRW02, Chap. 7]. Proposition 7.41 has a nice converse when $X=\mathbf{R}$: any countable orderable group acts on \mathbf{R} by order-preserving homeomorphisms such that there is a point on \mathbf{R} whose stabilizer is trivial (see [Ghy01] or [DDRW02, Prop. 7.1.1]).

There are other proofs of the orderability of the braid groups, notably by Fenn, Greene, Rolfsen, Rourke, Wiest [FGRRW99], by Short and Wiest [SW00], by Funk [Fun01], and by I. Dynnikov (unpublished). See also the monographs [Deh00], [DDRW02], [DDRW08], and the survey [Kas02].

A

Presentations of $\mathrm{SL}_{2}(\mathrm{Z})$ and $\mathrm{PSL}_{2}(\mathrm{Z})$

Let $\mathrm{SL}_{2}(\mathbf{Z})$ be the group of 2×2 matrices with entries in \mathbf{Z} and with determinant 1. The center of $\mathrm{SL}_{2}(\mathbf{Z})$ is the group of order 2 generated by the scalar matrix $-I_{2}$, where I_{2} is the unit matrix. The quotient group

$$
\mathrm{PSL}_{2}(\mathbf{Z})=\mathrm{SL}_{2}(\mathbf{Z}) /\left\langle-I_{2}\right\rangle
$$

is called the modular group; it can be identified with the group of rational functions on \mathbf{C} of the form $(a z+b) /(c z+d)$, where a, b, c, d are integers such that $a d-b c=1$.

Consider the following three group presentations:

$$
\begin{gather*}
\left\langle a, b \mid a b a=b a b,(a b a)^{4}=1\right\rangle, \tag{A.1}\\
\left\langle s, t \mid s^{3}=t^{2}, t^{4}=1\right\rangle, \tag{A.2}\\
\left\langle s, t \mid s^{3}=t^{2}=1\right\rangle . \tag{A.3}
\end{gather*}
$$

Lemma A.1. (a) The presentations (A.1) and (A.2) define the same group G up to isomorphism. The group G is isomorphic to the quotient of the braid group B_{3} by the central subgroup generated by $\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4}$.
(b) The group H defined by (A.3) is isomorphic to the quotient of B_{3} by its center.

Proof. (a) It is easy to check that the mutually inverse substitutions

$$
s=a b, t=a b a \quad \text { and } \quad a=s^{-1} t, b=t^{-1} s^{2}
$$

transform (A.1) into (A.2). This proves that the presentations (A.1) and (A.2) define isomorphic groups.

Replacing a by σ_{1} and b by σ_{2} in (A.1), we see that G is isomorphic to the quotient of B_{3} by the normal subgroup generated by $\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{4}$. The latter is the square of $\left(\sigma_{1} \sigma_{2} \sigma_{1}\right)^{2}$, which by Theorem 1.24 generates the center $Z\left(B_{3}\right)$ of B_{3}.
(b) It is clear from the presentations (A.2) and (A.3) that H is the quotient of G by the normal subgroup generated by $s^{3}=t^{2} \in G$. Under the identifications

$$
s=a b=\sigma_{1} \sigma_{2}, \quad t=a b a=\sigma_{1} \sigma_{2} \sigma_{1}
$$

we have $H=B_{3} / Z\left(B_{3}\right)$.
Consider the matrices $A, B \in \mathrm{SL}_{2}(\mathbf{Z})$ defined by

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

It is easy to check the following relations in $\mathrm{SL}_{2}(\mathbf{Z})$:

$$
A B A=B A B \quad \text { and } \quad(A B A)^{4}=1
$$

Hence there is a group homomorphism $f: G \rightarrow \mathrm{SL}_{2}(\mathbf{Z})$ such that $f(a)=A$ and $f(b)=B$. For $s=a b$ and $t=a b a$, a quick computation gives

$$
\begin{gather*}
f(s)=A B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right), \quad f(t)=A B A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \tag{A.4}\\
f\left(t^{2}\right)=(f(t))^{2}=(A B A)^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I_{2} \tag{A.5}
\end{gather*}
$$

By (A.5), f induces a group homomorphism $\bar{f}: H=G /\langle z\rangle \rightarrow \operatorname{PSL}_{2}(\mathbf{Z})$.
Theorem A.2. The group homomorphisms

$$
f: G \rightarrow \mathrm{SL}_{2}(\mathbf{Z}) \quad \text { and } \quad \bar{f}: H=B_{3} / Z\left(B_{3}\right) \rightarrow \mathrm{PSL}_{2}(\mathbf{Z})
$$

are isomorphisms.
Proof. We claim that $f: G \rightarrow \mathrm{SL}_{2}(\mathbf{Z})$ is injective (resp. surjective) if and only if $\bar{f}: H \rightarrow \operatorname{PSL}_{2}(\mathbf{Z})$ is injective (resp. surjective). Indeed, f sends the subgroup $\left\langle t^{2}\right\rangle \subset G$ onto the group of order 2 generated by $-I_{2}$. Since $t^{4}=1$, the subgroup $\left\langle t^{2}\right\rangle$ is of order at most 2. Therefore, f induces an isomorphism from $\left\langle t^{2}\right\rangle$ onto $\left\{ \pm I_{2}\right\}$. The claim follows immediately.

To prove the theorem, it therefore suffices to show that $f: G \rightarrow \mathrm{SL}_{2}(\mathbf{Z})$ is surjective and $\bar{f}: H \rightarrow \operatorname{PSL}_{2}(\mathbf{Z})$ is injective.

We first check that the matrices $A=f(a)$ and $B=f(b)$ generate $\mathrm{SL}_{2}(\mathbf{Z})$, which implies that $f: G \rightarrow \mathrm{SL}_{2}(\mathbf{Z})$ is surjective. To this end we show that any $M \in \mathrm{SL}_{2}(\mathbf{Z})$ can be expressed as a word in $A^{ \pm 1}$ and $B^{ \pm 1}$. In the argument below it will be convenient to denote the entries b and d of

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z})
$$

respectively by $b(M)$ and $d(M)$. Set $T=f(t)=A B A \in \mathrm{SL}_{2}(\mathbf{Z})$.

If $b=0$, then $a=d= \pm 1$ and either $M=B^{-c}$ or $M=-I_{2} B^{c}=T^{2} B^{c}$. Thus, M can be expressed as a word in $A^{ \pm 1}$ and $B^{ \pm 1}$.

If $d=0$, then $b c=-1$. Either $b=-c=1$ and then $M=A^{-a} T$, or $b=-c=-1$ and then $M=A^{a} T^{3}$. In both cases M can be expressed as a word in $A^{ \pm 1}$ and $B^{ \pm 1}$.

Assume now that neither $b=b(M)$ nor $d=d(M)$ is zero. Observe that

$$
\begin{equation*}
b(A M)=b(M)+d(M) \quad \text { and } \quad d(A M)=d(M) \tag{A.6}
\end{equation*}
$$

and

$$
\begin{equation*}
b(T M)=d(M) \quad \text { and } \quad d(T M)=-b(M) \tag{A.7}
\end{equation*}
$$

From (A.6) we deduce that by multiplying M on the left by a suitable positive or negative power of A, we obtain a matrix $A^{n} M$ such that

$$
0 \leq\left|b\left(A^{n} M\right)\right|<\left|d\left(A^{n} M\right)\right|
$$

Using (A.7), we may exchange the roles of $\pm b$ and $\pm d$ via left multiplication by T. In this way we can decrease the absolute values of b and d until one of them vanishes. Consequently, multiplying M on the left by powers of A or T, we can reduce the proof to the case $b=0$ or $d=0$ considered above.

We now prove that $\bar{f}: H \rightarrow \mathrm{PSL}_{2}(\mathbf{Z})$ is injective. The group H presented by (A.3) is the free product of the cyclic group of order 3 generated by s and the cyclic group of order 2 generated by t. Any element of H distinct from the neutral element has a unique expression of one of the following forms:

$$
w=s^{\varepsilon_{1}} t s^{\varepsilon_{2}} t \cdots t s^{\varepsilon_{r}}, \quad w t, \quad t w, t w t, t
$$

where $\varepsilon_{i}= \pm 1(i=1, \ldots, r)$ (for a definition of free products and a description of normal forms for their elements, see for instance [LS77, Sect. I.11], [Ser77, Sect. I.1]). It is therefore enough to show that none of these elements is in the kernel of \bar{f}.

The element t is not in the kernel of \bar{f} by (A.4). Since $t w t=t w t^{-1}$ is a conjugate of w and $t w$ a conjugate of $w t$, it is enough to check that $\bar{f}(w) \neq 1$ and $\bar{f}(w t) \neq 1$.

Let us begin with $w t=\left(s^{\varepsilon_{1}} t\right)\left(s^{\varepsilon_{2}} t\right) \cdots\left(s^{\varepsilon_{r}} t\right)$. Since $s^{-1} t=a$ and

$$
s t=\left(t^{-1} s^{2}\right)^{-1}=b^{-1} \in H,
$$

we have $\bar{f}\left(s^{-1} t\right)=\bar{A}$ and $\bar{f}(s t)=\bar{B}^{-1}$, where \bar{A} and \bar{B} are the images of A and B in $\mathrm{PSL}_{2}(\mathbf{Z})$, respectively. It follows that $\bar{f}(w t)$ is a nonempty product of the matrices \bar{A} and \bar{B}^{-1}. It suffices then to check that no nonempty product of the matrices

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad B^{-1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

is equal to $\pm I_{2}$. Such a product has only nonnegative entries, and after each multiplication by A or B^{-1} the sum of the nondiagonal entries strictly increases. Therefore no such product may be equal to $\pm I_{2}$.

If $\bar{f}(w)=1$, then

$$
\bar{f}(w t)=\bar{f}(t)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

This is impossible because by the previous argument, $\bar{f}(w t)$ is a product of the matrices A and B^{-1}, and has only nonnegative entries, whereas the matrix on the right has entries with opposite signs. This contradiction proves that $\bar{f}(w) \neq 1$.

Notes

The above proofs were inspired by [Rei32, 2.8-2.9]. There are alternative proofs using the action of the group $\mathrm{PSL}_{2}(\mathbf{Z})$ on the Poincare upper halfplane (see [Ser70, Sect. VII.1]) or algebraic K-theory methods (see [Mil71, Chap. 10]).

B

Fibrations and Homotopy Sequences

We recall several basic notions from the theory of fibrations needed in the main text. For details, the reader is referred, for instance, to [FR84, Chap. 5].

A (continuous) map $p: E \rightarrow B$ is called a locally trivial fibration with fiber F if for every point of B there is a neighborhood $U \subset B$ of this point together with a homeomorphism $U \times F \rightarrow p^{-1}(U)$ whose composition with p is the projection to the first factor $U \times F \rightarrow U$. It is clear then that F is homeomorphic to $p^{-1}(b)$ for any $b \in B$. The spaces E and B are called respectively the total space and the base of p. A map \widehat{f} from a topological space X to E is said to be a lifting, or lift, of a map $f: X \rightarrow B$ if

$$
p \circ \widehat{f}=f
$$

Set $I=[0,1]$. A map $p: E \rightarrow B$ has the homotopy lifting property with respect to a topological space X if for any maps $\widehat{f}: X \rightarrow E$ and $g: X \times I \rightarrow B$ such that $g(x, 0)=p(\widehat{f}(x))$ for all $x \in X$, there is a lift

$$
\widehat{g}: X \times I \rightarrow E
$$

of g such that $\widehat{g}(x, 0)=\widehat{f}(x)$ for all $x \in X$.
More generally, a map $p: E \rightarrow B$ has the homotopy lifting property with respect to a topological pair $(X, A \subset X)$ if for arbitrary maps $\widehat{f}: X \rightarrow E$, $g: X \times I \rightarrow B$ and any lift $h: A \times I \rightarrow E$ of $\left.g\right|_{A \times I}$ such that $g(x, 0)=p(\widehat{f}(x))$ for all $x \in X$ and $h(x, 0)=\widehat{f}(x)$ for all $x \in A$, there is a lift

$$
\widehat{g}: X \times I \rightarrow E
$$

of g such that $\widehat{g}(x, 0)=\widehat{f}(x)$ for all $x \in X$ and $\left.\widehat{g}\right|_{A \times I}=h$.
A map $p: E \rightarrow B$ is a Serre fibration if it has the homotopy lifting property with respect to all cubes I^{n} with $n=0,1, \ldots$. For example, all locally trivial fibrations are Serre fibrations. It is known that each Serre fibration has the homotopy lifting property with respect to any pair (a polyhedron, a subpolyhedron).
C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9_9,
(c) Springer Science+Business Media, LLC 2008

The key property of a Serre fibration $p: E \rightarrow B$ is the existence of an exact sequence involving the homotopy groups of the total space, the base, and the fiber of p. More precisely, pick a point $e \in E$, set $b=p(e) \in B$, and let $F=p^{-1}(b) \subset E$ be the fiber of p over b. Then we have an infinite (to the left) sequence

$$
\begin{aligned}
\cdots \xrightarrow{\partial} & \pi_{2}(F, e) \xrightarrow{i_{\#}} \pi_{2}(E, e) \xrightarrow{p_{\#}} \pi_{2}(B, b) \xrightarrow{\partial} \pi_{1}(F, e) \\
& \xrightarrow{i_{\#}} \pi_{1}(E, e) \xrightarrow{p_{\#}} \pi_{1}(B, b) \xrightarrow{\partial} \pi_{0}(F, e) \xrightarrow{i_{\#}} \pi_{0}(E, e) \xrightarrow{p_{\#}} \pi_{0}(B, b),
\end{aligned}
$$

where the morphisms $i_{\#}$ and $p_{\#}$ are induced by the inclusion $i: F \hookrightarrow E$ and the projection $p: E \rightarrow B$, respectively. The terms of this sequence are groups except the last three terms, which are sets with a distinguished element represented by the base point. The morphisms in this sequence are group homomorphisms except the three rightmost arrows, which are set-theoretic mappings preserving the distinguished elements. The sequence above is called the homotopy sequence of p. It is exact in the sense that the image of each morphism is equal to the kernel of the next morphism (for the three rightmost arrows, by the kernel we mean the preimage of the distinguished element).

The boundary homomorphism $\partial: \pi_{n}(B, b) \rightarrow \pi_{n-1}(F, e)$ with $n \geq 1$ is defined as follows. Represent any $a \in \pi_{n}(B, b)$ by a map $\alpha: I^{n} \rightarrow B$ with $\alpha\left(\partial I^{n}\right)=b$. The homotopy lifting property of p with respect to the pair $\left(I^{n-1}, \partial I^{n-1}\right)$ implies that α has a lift $\widehat{\alpha}: I^{n}=I^{n-1} \times I \rightarrow E$ such that

$$
\widehat{\alpha}\left(I^{n-1} \times\{1\}\right)=\widehat{\alpha}\left(\partial I^{n-1} \times I\right)=e
$$

The restriction of $\widehat{\alpha}$ to $I^{n-1} \times\{0\}=I^{n-1}$ yields a map $I^{n-1} \rightarrow E$ sending I^{n-1} to $p^{-1}(b)=F$ and sending ∂I^{n-1} to e. This map represents $\partial(a) \in \pi_{n-1}(F, e)$.

C

The Birman-Murakami-Wenzl Algebras

We briefly discuss a family of finite-dimensional quotients of the braid group algebras due to J. Murakami, J. Birman, and H. Wenzl. We also outline an interpretation of the Lawrence-Krammer-Bigelow representation of Section 3.5 in terms of representations of these algebras.
J. Murakami [Mur87] and independently J. Birman and H. Wenzl [BW89] introduced a two-parameter family of finite-dimensional C-algebras

$$
C_{n}(\alpha, \ell),
$$

where α and ℓ are nonzero complex numbers such that $\alpha^{4} \neq 1$ and $\ell^{4} \neq 1$. For $i=1, \ldots, n-1$, set

$$
e_{i}=\frac{\sigma_{i}+\sigma_{i}^{-1}}{\alpha+\alpha^{-1}}-1 \in \mathbf{C}\left[B_{n}\right] .
$$

The algebra $C_{n}(\alpha, \ell)$ is the quotient of the group algebra $\mathbf{C}\left[B_{n}\right]$ by the relations

$$
e_{i} \sigma_{i}=\ell^{-1} e_{i}, \quad e_{i} \sigma_{i-1} e_{i}=\ell e_{i}, \quad e_{i} \sigma_{i-1}^{-1} e_{i}=\ell^{-1} e_{i}
$$

where $i=1, \ldots, n-1$ in the first relation and $i=2, \ldots, n-1$ in the last two relations. Note that the original definition in [BW89] involves more relations; for the shorter list given above, see [Wen90]. The algebra $C_{n}(\alpha, \ell)$ is called the Birman-Murakami-Wenzl algebra (BMW algebra for short). It admits a geometric interpretation in terms of so-called Kauffman skein classes of tangles in Euclidean 3-space. This family of algebras is a deformation of an algebra introduced by R. Brauer [Bra37].

The algebraic structure and representations of $C_{n}(\alpha, \ell)$ were studied by Wenzl [Wen90], who established the following three facts.
(i) For generic α and ℓ, the algebra $C_{n}(\alpha, \ell)$ is semisimple. Here "generic" means that α is not a root of unity and $\sqrt{-1} \ell$ is not an integral power of $-\sqrt{-1} \alpha$. (The latter two numbers correspond to r and q in Wenzl's notation.) In the sequel we assume that α and ℓ are generic in this sense.
(ii) Simple finite-dimensional $C_{n}(\alpha, \ell)$-modules are indexed by partitions λ of nonnegative integers m such that $m \leq n$ and $m \equiv n(\bmod 2)$. The simple $C_{n}(\alpha, \ell)$-module corresponding to λ will be denoted by $V_{n, \lambda}$. Composing the natural homomorphism $\mathbf{C}\left[B_{n}\right] \rightarrow C_{n}(\alpha, \ell)$ with the action of $C_{n}(\alpha, \ell)$ on the module $V_{n, \lambda}$, we obtain an irreducible representation $B_{n} \rightarrow \operatorname{Aut}\left(V_{n, \lambda}\right)$.
(iii) The natural inclusion $B_{n-1} \hookrightarrow B_{n}$ induces an inclusion

$$
C_{n-1}(\alpha, \ell) \hookrightarrow C_{n}(\alpha, \ell)
$$

for all $n \geq 2$. Moreover, the $C_{n}(\alpha, \ell)$-module $V_{n, \lambda}$, where $\lambda \dashv m$, decomposes as a $C_{n-1}(\alpha, \ell)$-module into a direct sum

$$
\bigoplus_{\mu} V_{n-1, \mu}
$$

where μ ranges over all partitions whose diagrams have been obtained from the diagram of λ by removing or (if $m<n$) adding one box. Each such μ appears in this decomposition with multiplicity 1.

The assertions (ii) and (iii) allow us to draw the Bratteli diagram for the sequence

$$
C_{1}(\alpha, \ell) \subset C_{2}(\alpha, \ell) \subset \cdots .
$$

On the level $n=1,2, \ldots$ of this diagram we place all partitions $\lambda \dashv m$ such that $m \leq n$ and $m \equiv n(\bmod 2)$. Then we connect each λ on the nth level by an edge to every partition on the $(n-1)$ st level whose diagram has been obtained from the diagram of λ by removing or (if $m<n$) adding one box. For instance, the $n=1$ level consists of the partition (1) corresponding to the tautological one-dimensional representation of $C_{1}(\alpha, \ell)=\mathbf{C}$. The $n=2$ level contains the partitions $(2),(1,1)$, and the empty partition \emptyset of zero. All three are connected to the unique partition on the level 1. Each partition $\lambda \dashv m$ with $m \geq 0$ appears on the levels $m, m+2, m+4, \ldots$.

As in the case of the Iwahori-Hecke algebras, the Bratteli diagram of the BMW algebras yields a useful method for computing the dimension of $V_{n, \lambda}$, where λ is a partition on the nth level. It is clear from (iii) that $\operatorname{dim} V_{n, \lambda}$ is the number of paths on the Bratteli diagram leading from the unique partition on the level 1 to λ. Here by a path we mean a path with vertices lying on consecutively increasing levels. We illustrate this computation with a few examples.
(a) Let $\mu[n]=(1, \ldots, 1)$ be the partition of n whose diagram is a single column of n boxes. Let $\mu^{\prime}[n]=(n)$ be the conjugate partition of n whose diagram is a single row of n boxes. There is only one path from the unique partition on the level 1 to $\mu[n]$ placed on the level n. Hence,

$$
\operatorname{dim} V_{n, \mu[n]}=1
$$

for all $n \geq 1$. Similarly, $\operatorname{dim} V_{n, \mu^{\prime}[n]}=1$.

For $n \geq 3$, the algebra $C_{n}(\alpha, \ell)$ has two one-dimensional representations. In both of them all e_{i} act as 0 and all σ_{i} act as multiplication by one and the same number equal either to α or to α^{-1}. We choose the correspondence between the irreducible $C_{n}(\alpha, \ell)$-modules and the partitions so that all σ_{i} act as multiplication by α on $V_{n, \mu[n]}$ and as multiplication by α^{-1} on $V_{n, \mu^{\prime}[n]}$.
(b) For $n \geq 2$, let $\lambda[n]=(2,1, \ldots, 1)$ be the partition of n whose diagram has two columns with $n-1$ boxes in the first column and one box in the second column. For $n \geq 3$, the partition $\lambda[n]$, placed on the level n, is connected to only two partitions on the level $n-1$, namely to $\lambda[n-1]$ and $\mu[n-1]$. Hence,

$$
\begin{aligned}
\operatorname{dim} V_{n, \lambda[n]} & =\operatorname{dim} V_{n-1, \lambda[n-1]}+\operatorname{dim} V_{n-1, \mu[n-1]} \\
& =\operatorname{dim} V_{n-1, \lambda[n-1]}+1 .
\end{aligned}
$$

We have $\lambda[2]=\mu^{\prime}[2]$, so that $\operatorname{dim} V_{2, \lambda[2]}=1$. Hence $\operatorname{dim} V_{n, \lambda[n]}=n-1$ for all $n \geq 2$.
(c) For $n \geq 3$, consider the partition $\mu[n-2]$ placed on the level n. It is connected to three partitions on the level $n-1$, namely to $\mu[n-1], \mu[n-3]$, and $\lambda[n-1]$. Hence,

$$
\begin{aligned}
\operatorname{dim} V_{n, \mu[n-2]} & =\operatorname{dim} V_{n-1, \mu[n-1]}+\operatorname{dim} V_{n-1, \mu[n-3]}+\operatorname{dim} V_{n-1, \lambda[n-1]} \\
& =1+\operatorname{dim} V_{n-1, \mu[n-3]}+n-2 \\
& =\operatorname{dim} V_{n-1, \mu[n-3]}+n-1 .
\end{aligned}
$$

We set $\mu[0]=\emptyset$ and deduce from (iii) above that $\operatorname{dim} V_{2, \mu[0]}=\operatorname{dim} V_{1, \mu[1]}=1$. Therefore for all $n \geq 2$,

$$
\operatorname{dim} V_{n, \mu[n-2]}=\frac{n(n-1)}{2} .
$$

We conclude that the dimension of $V_{n, \mu[n-2]}$ coincides with the rank of the Lawrence-Krammer-Bigelow representation of B_{n} over $\mathbf{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$. This suggests that these two representations may be related. To describe their relationship, we rescale the representation $B_{n} \rightarrow \operatorname{Aut}\left(V_{n, \mu[n-2]}\right)$ by dividing the action of each σ_{i} by α.

Theorem C. 1 (M. Zinno [Zin01]). The Lawrence-Krammer-Bigelow representation computed at $q=-\alpha^{-2}$ and $t=\alpha^{3} \ell^{-1}$ is isomorphic to the rescaled representation $B_{n} \rightarrow \operatorname{Aut}\left(V_{n, \mu[n-2]}\right)$.

This theorem implies that the Lawrence-Krammer-Bigelow representation is irreducible and that after the substitution $q=-\alpha^{-2}, t=\alpha^{3} \ell^{-1} \in \mathbf{C}$, this representation factors through the projection $B_{n} \rightarrow C_{n}(\alpha, \ell)$.

D

Left Self-Distributive Sets

We give here a brief introduction to so-called left self-distributive sets, which are closely related to braid groups.

D. 1 LD sets, racks, and quandles

A left self-distributive set (LD set) is a pair $(X, *)$, where X is a set and * : $X \times X \rightarrow X$ is a binary operation satisfying

$$
\begin{equation*}
a *(b * c)=(a * b) *(a * c) \tag{D.1}
\end{equation*}
$$

for all $a, b, c \in X$. A morphism $f:(X, *) \rightarrow\left(X^{\prime}, *\right)$ of LD sets is a set-theoretic map $f: X \rightarrow X^{\prime}$ such that $f(a * b)=f(a) * f(b)$ for all $a, b \in X$.

The idea of an LD set is very natural: for any element a of a set X equipped with a binary operation $*: X \times X \rightarrow X$, consider the left multiplication $L_{a}: X \rightarrow X$ defined by $L_{a}(b)=a * b$ for all $b \in X$. The equation (D.1) can be reformulated as

$$
L_{a}(b * c)=L_{a}(b) * L_{a}(c)
$$

Thus, an LD set is a set equipped with a binary operation that is preserved by all left multiplications. The terminology "left self-distributive" arises from the fact that a binary operation satisfying (D.1) is left distributive with respect to itself.

An LD set $(X, *)$ is a rack if the left multiplication $b \mapsto a * b$ is bijective for all $a \in X$. A quandle is a rack satisfying $a * a=a$ for all $a \in X$.

Examples D.1. (a) The formula $a * b=b$ defines a left self-distributive operation on any set. This is a quandle.
(b) Given a monoid M together with an element $e \in M$, set $a * b=b e$ $(a, b \in M)$. Then $(M, *)$ is an LD set. It is a rack if and only if e has a left inverse in the monoid. It is a quandle if and only if $b e=b$ for all $b \in M$.
(c) Given a group G, set $a * b=a b a^{-1}$ for $a, b \in G$. The pair $(G, *)$ is a quandle.
(d) Let R be a ring and $t \in R$. For $a, b \in R$, set

$$
\begin{equation*}
a * b=(1-t) a+t b \tag{D.2}
\end{equation*}
$$

This is an LD operation. The pair $(R, *)$ is a rack (actually a quandle) if and only if t is invertible in R.

D. 2 An action of the braid monoid

We relate LD sets to the braid monoids B_{n}^{+}introduced in Section 6.5. Given an LD set $(X, *)$ and an integer $n \geq 2$, consider the product $X^{n}=X \times X \times \cdots \times X$ of n copies of X. For $i=1, \ldots, n-1$, set

$$
\begin{equation*}
\sigma_{i}\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}, \ldots, a_{i-1}, a_{i} * a_{i+1}, a_{i}, a_{i+2}, \ldots, a_{n}\right) \tag{D.3}
\end{equation*}
$$

where $\sigma_{1}, \ldots, \sigma_{n-1}$ are the standard generators of B_{n}^{+}and $a_{1}, \ldots, a_{n} \in X$.
Lemma D.2. Formula (D.3) equips the set X^{n} with a left action of B_{n}^{+}. This action extends to a left action of the braid group B_{n} if and only if $(X, *)$ is a rack.

By a left action of B_{n}^{+}on X^{n} we mean a map

$$
B_{n}^{+} \times X^{n} \rightarrow X^{n}, \quad(\beta, A) \mapsto \beta A
$$

such that $1 A=A$ and $\beta\left(\beta^{\prime} A\right)=\left(\beta \beta^{\prime}\right) A$ for all $A \in X^{n}$ and $\beta, \beta^{\prime} \in B_{n}^{+}$.
We can give a geometric description of this action. Represent $\beta \in B_{n}^{+}$by a braid diagram \mathcal{D} with n strands and only positive crossings. Color the n lower endpoints of \mathcal{D} from left to right by $a_{1}, \ldots, a_{n} \in X$. Let the colors flow up along the strands of \mathcal{D} subject to the following rule: the colors remain unchanged as long as they do not meet a crossing of \mathcal{D}. At a crossing the color a of the overgoing strand remains unchanged whereas the color b of the undergoing strand becomes $a * b$. The n-tuple $\left(b_{1}, \ldots, b_{n}\right) \in X^{n}$ of colors of the upper endpoints of \mathcal{D} satisfies

$$
\left(b_{1}, \ldots, b_{n}\right)=\beta\left(a_{1}, \ldots, a_{n}\right)
$$

See Figure D. 1 for $n=3$ and $\beta=\sigma_{1}$.
Proof. (a) To prove that (D.3) equips X^{n} with a left action of B_{n}^{+}, it suffices to check that for all $A=\left(a_{1}, \ldots, a_{n}\right) \in X^{n}$,

$$
\sigma_{i}\left(\sigma_{j} A\right)=\sigma_{j}\left(\sigma_{i} A\right)
$$

for $i, j \in\{1, \ldots, n-1\}$ with $|i-j| \geq 2$, and

$$
\sigma_{i}\left(\sigma_{i+1}\left(\sigma_{i} A\right)\right)=\sigma_{i+1}\left(\sigma_{i}\left(\sigma_{i+1} A\right)\right)
$$

Fig. D.1. The rule for braid coloring
for $i \in\{1, \ldots, n-2\}$. The first identity is a triviality. For the second one, we obtain

$$
\begin{aligned}
& \sigma_{i}\left(\sigma_{i+1}\left(\sigma_{i} A\right)\right) \\
& \quad=\left(a_{1}, \ldots, a_{i-1},\left(a_{i} * a_{i+1}\right) *\left(a_{i} * a_{i+2}\right), a_{i} * a_{i+1}, a_{i}, a_{i+3}, \ldots, a_{n}\right)
\end{aligned}
$$

whereas

$$
\begin{aligned}
& \sigma_{i+1}\left(\sigma_{i}\left(\sigma_{i+1} A\right)\right) \\
& \quad=\left(a_{1}, \ldots, a_{i-1}, a_{i} *\left(a_{i+1} * a_{i+2}\right), a_{i} * a_{i+1}, a_{i}, a_{i+3}, \ldots, a_{n}\right)
\end{aligned}
$$

These expressions are equal by (D.1).
(b) The action of B_{n}^{+}on X^{n} extends to a left action of B_{n} if and only if the maps $A \mapsto \sigma_{i} A$ are bijective for all $i=1, \ldots, n-1$. It is clear from the definitions that this is equivalent to the bijectivity of all left multiplications $b \mapsto a * b$.

D. 3 Orderable LD sets

Given an LD set $(X, *)$ and elements $a, c \in X$, we write $a \prec c$ if $a * b=c$ for some $b \in X$. For example, if X is a rack, then $a \prec c$ for all $a, c \in X$.

We define a binary relation \preceq on an LD set X by $a \preceq b$ if $a=b$ or there are $a_{0}, a_{1}, \ldots, a_{r} \in X$ such that $a=a_{0} \prec a_{1} \prec \cdots \prec a_{r}=b$. We say that a LD set X is orderable if the relation \preceq is an order on X. In this case, the relation \preceq is called the canonical order of X. For example, a rack $(X, *)$ is orderable if and only if the set X consists of only one element. This suggests that orderable LD sets are very different from racks.

We give three examples of orderable LD sets. In Section 7.4.1 we considered the free group F_{∞} on the countable set $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ of generators. Resuming the notation of that section, we define a binary operation $*$ on the automorphism group $\operatorname{Aut}\left(F_{\infty}\right)$ by

$$
\begin{equation*}
\varphi * \psi=\varphi \circ T(\psi) \circ \widetilde{\sigma}_{1} \circ T\left(\varphi^{-1}\right) \tag{D.4}
\end{equation*}
$$

for any $\varphi, \psi \in \operatorname{Aut}\left(F_{\infty}\right)$. The reader may check that (D.4) is a left selfdistributive operation and that the LD set $\left(\operatorname{Aut}\left(F_{\infty}\right), *\right)$ is orderable (see Exercise D.3.4).

A second example of an orderable LD set is given by the infinite braid group B_{∞} (see Section 7.3.5), equipped with the binary operation

$$
\begin{equation*}
\beta * \beta^{\prime}=\beta \operatorname{sh}\left(\beta^{\prime}\right) \sigma_{1} \operatorname{sh}\left(\beta^{-1}\right) \tag{D.5}
\end{equation*}
$$

where $\beta, \beta^{\prime} \in B_{\infty}$ and sh is the shift introduced in Section 7.4.2. The group homomorphism $B_{\infty} \rightarrow \operatorname{Aut}\left(F_{\infty}\right)$ that is the direct limit of the injective homomorphisms $B_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$ defined in Section 1.5.1 is a morphism of LD sets. This observation can be used to check that (D.5) is a left self-distributive operation and that the LD set $\left(B_{\infty}, *\right)$ is orderable (see Exercise D.3.5).

The third example of an orderable LD set is provided by the free $L D$ set on one generator. This LD set is characterized by the following universal property.

Proposition D.3. There is an $L D$ set $(D, *)$ with distinguished element $x \in D$ such that for any $L D$ set $(X, *)$ and any $a \in X$, there is a unique morphism of $L D$ sets $f: D \rightarrow X$ such that $f(x)=a$. The $L D$ set $(D, *)$ is unique up to isomorphism.

Proof. Following Bourbaki, define a magma to be a set equipped with a binary operation *. Consider the magma Mag that is free on one generator x (for details, see [Bou70, Chap. 1, Sect. 7]). An element of Mag can be viewed as a positive power of x equipped with a full set of parentheses, e.g., $x, x * x$, $(x * x) * x, x *(x * x),((x * x) * x) * x,(x *(x * x)) * x, x *((x * x) * x)$, $x *(x *(x * x)),(x * x) *(x * x), \ldots$ The binary operation $*$ on Mag is the concatenation of parenthesized words.

Let \sim be the smallest equivalence relation on Mag such that

$$
t_{1} *\left(t_{2} * t_{3}\right) \sim\left(t_{1} * t_{2}\right) *\left(t_{1} * t_{3}\right)
$$

and $t_{1} * t_{2} \sim t_{1}^{\prime} * t_{2}^{\prime}$ whenever $t_{1} \sim t_{1}^{\prime}$ and $t_{2} \sim t_{2}^{\prime}$. We define D as the set of equivalence classes in Mag with respect to \sim. By definition of \sim, the binary operation $*$ of Mag induces a left self-distributive operation, still denoted by $*$, on D.

For any LD set $(X, *)$ and $a \in X$, we define a map $f^{\prime}: \operatorname{Mag} \rightarrow X$ inductively by $f^{\prime}(x)=a$ and by

$$
f^{\prime}\left(t_{1} * t_{2}\right)=f^{\prime}\left(t_{1}\right) * f^{\prime}\left(t_{2}\right)
$$

for all $t_{1}, t_{2} \in$ Mag. Since X is an LD set, the map f^{\prime} induces a morphism $f: D \rightarrow X$ of LD sets such that $f(x)=a$. It is easy to show that such a morphism f is unique.

The uniqueness of D up to isomorphism follows from the universal property of D.

Theorem D.4. The $L D$ set $(D, *)$ is orderable and its canonical order is total.
For a proof, see [Deh94] or [Deh00, Chap. V].
Exercise D.3.1. Let E^{\times}be the set of nonzero vectors of a Euclidean vector space. For $a, b \in E^{\times}$define $a * b$ to be the image of b under the orthogonal symmetry with respect to the hyperplane orthogonal to a. Show that $\left(E^{\times}, *\right)$ is a rack.

Exercise D.3.2. (a) Let F_{S} be the free group on a set of generators S. Equip $X_{S}=F_{S} \times S$ with the binary operation

$$
\left(w_{1}, s_{1}\right) *\left(w_{2}, s_{2}\right)=\left(w_{1} s_{1} w_{1}^{-1}, s_{2}\right)
$$

where $w_{1}, w_{2} \in F_{S}$ and $s_{1}, s_{2} \in S$. Show that $\left(X_{S}, *\right)$ is a rack.
(b) Show that any rack X is the quotient of the rack X_{S}, where S is a generating set of X.

Exercise D.3.3. Let $\Lambda=\mathbf{Z}\left[t, t^{-1}\right]$ be the ring of Laurent polynomials with integer coefficients. It is a rack under the binary operation (D.2). Show that the corresponding action of B_{n} on Λ^{n} is linear and is isomorphic to the Burau representation of Section 3.1.

Exercise D.3.4. Show that $\left(\operatorname{Aut}\left(F_{\infty}\right), *\right)$, where $*$ is defined by (D.4), is an orderable LD set. (Hint: Use the set E of Section 7.4.1.)

Exercise D.3.5. Show that $\left(\operatorname{Aut}\left(B_{\infty}\right), *\right)$, where $*$ is defined by (D.5), is an orderable LD set.

Exercise D.3.6. Show that there is a bijection between the free magma Mag, defined in the proof of Proposition D.3, and the set of planar rooted binary trees. Show that the number of elements of Mag containing n occurrences of x is equal to the Catalan number $\binom{2 n}{n} /(n+1)$.

Notes

The idea of using racks to construct representations of the braid groups can be found, e.g., in Joyce [Joy82], Matveev [Mat82], Brieskorn [Bri88] (Brieskorn calls them "automorphic sets"; see [FR92] for a historical presentation of racks). Joyce and Matveev have associated to each knot a quandle that determines the knot up to isotopy and mirror reflection. Racks and quandles have therefore been familiar to topologists for quite a while.

On the other hand, orderable LD sets, especially the ones whose canonical orders are total, have been studied only recently, mainly by set theorists. The reason is that the first observed orderable LD set appeared in the theory of large cardinals, and its first construction relied on a large-cardinal axiom.

To avoid the use of this axiom, Dehornoy investigated the free LD set D of Section D.3. For details about the flow of ideas from set theory to braid groups, see [Lav92], [Deh00, Chap. XII]. Note that Laver [Lav92] proved that any orderable LD set generated by a single element is isomorphic to the free LD set D.

Theorem D. 4 is due to Dehornoy [Deh94]. Exercise D.3.1 is from [Bri88], Exercises D.3.2-D.3.5 are from [Deh00].

References

[Ale23a] J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. 9 (1923), 93-95.
[Ale23b] J. W. Alexander, Deformations of an n-cell, Proc. Nat. Acad. Sci. 9 (1923), 406-407.
[Ale28] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306.
[All02] D. Allcock, Braid pictures for Artin groups, Trans. Amer. Math. Soc. 354 (2002), 3455-3474.
[AAG99] I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for publickey cryptography, Math. Res. Lett. 6 (1999), 287-291.
[Arn70] V. I. Arnold, On some topological invariants of algebraic functions (Russian), Trudy Moskov. Mat. Obshch. 21 (1970), 27-46. English translation: Trans. Moscow Math. Soc. 21 (1970), 30-52.
[Art25] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
[Art47a] E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101-126.
[Art47b] E. Artin, Braids and permutations, Ann. of Math. (2) 48 (1947), 643-649.
[Bau63] G. Baumslag, Automorphism groups of residually finite groups, J. London Math. Soc. 38 (1963), 117-118.
[Bax72] R. J. Baxter, Partition function for the eight-vertex lattice model, Ann. Physics 70 (1972), 193-228.
[Bax82] R. J. Baxter, Exactly solved models in statistical mechanics, Academic press, London, 1982.
[BF04] P. Bellingeri, L. Funar, Polynomial invariants of links satisfying cubic skein relations, Asian J. Math. 8 (2004), 475-509.
[Ben83] D. Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), 87-161, Astérisque, vol. 107-108, Soc. Math. France, Paris, 1983.
[Ben98] D. J. Benson, Representations and cohomology. I: Basic representation theory of finite groups and associative algebras, second edition, Cambridge Studies in Advanced Mathematics, 30, Cambridge University Press, Cambridge, 1998.
[BDM02] D. Bessis, F. Digne, J. Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2002), 287-309.
[Big99] S. Bigelow, The Burau representation is not faithful for $n=5$, Geom. Topol. 3 (1999), 397-404 (electronic).
[Big01] S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), 471-486.
[Big02] S. Bigelow, Representations of braid groups, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 37-45, Higher Ed. Press, Beijing, 2002.
[Big03] S. Bigelow, The Lawrence-Krammer representation, Topology and geometry of manifolds (Athens, GA, 2001), 51-68, Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003.
[Bir69a] J. S. Birman, Mapping class groups and their relationship to braid groups, Comm. Pure Appl. Math. 22 (1969), 213-238.
[Bir69b] J. S. Birman, Automorphisms of the fundamental group of a closed, orientable 2-manifold, Proc. Amer. Math. Soc. 21 (1969), 351-354.
[Bir74] J. Birman, Braids, links and mapping class groups, Ann. of Math. Studies, vol. 82, Princeton University Press, Princeton, NJ, 1974.
[BB05] J. S. Birman, T. E. Brendle, Braids: a survey, in Handbook of knot theory, 19-103, Elsevier B. V., Amsterdam, 2005.
[BKL98] J. S. Birman, K. H. Ko, S. J. Lee, A new approach to the word and the conjugacy problem in the braid groups, Adv. Math. 139 (1998), 322-353.
[BW89] J. S. Birman, H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), 249-273.
[Bou58] N. Bourbaki, Algèbre, chapitre 8, Hermann, Paris, 1958.
[Bou68] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris, 1968.
[Bou70] N. Bourbaki, Algèbre, chapitres 1-3, Hermann, Paris, 1970.
[BRW05] S. Boyer, D. Rolfsen, B. Wiest, Orderable 3-manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005), 243-288.
[Bra37] R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. (2) 38 (1937), 857-872.
[Bri71] E. Brieskorn, Die Fundamentalgruppe des Raumes des regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57-61.
[Bri73] E. Brieskorn, Sur les groupes de tresses [d'après Arnold], Séminaire Bourbaki (1971/1972), Exp. No. 401, 21-44, Lecture Notes in Math., vol. 317, Springer-Verlag, Berlin, 1973.
[Bri88] E. Brieskorn, Automorphic sets and braids and singularities, Braids (Joan S. Birman, Anatoly Libgober, eds.), Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988, 45-115.
[BS72] E. Brieskorn, K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271.
[Bud05] R. D. Budney, On the image of the Lawrence-Krammer representation, J. Knot Theory Ramifications 14 (2005), 773-789.
[Bur32] W. Burau, Über Zöpfinvarianten, Abh. Math. Sem. Univ. Hamburg 9 (1932), 117-124.
[Bur36] W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Univ. Hamburg 11 (1936), 179-186.
[Bur97] S. Burckel, The wellordering on positive braids, J. Pure Appl. Algebra 120 (1997), 1-17.
[BZ85] G. Burde, H. Zieschang, Knots, de Gruyter Studies in Mathematics, 5, Walter de Gruyter, Berlin, 1985.
[CP94] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
[Cho48] W.-L. Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948), 654-658.
[CS96] C. de Concini, M. Salvetti, Cohomology of Artin groups, Math. Res. Lett. 3 (1996), 296-297.
[Con70] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, Oxford, 1970, 329-358.
[CR62] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Interscience Publishers, John Wiley \& Sons, New York, London, 1962.
[Deh94] P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), 115-150.
[Deh97] P. Dehornoy, A fast method for comparing braids, Adv. Math. 125 (1997), 200-235.
[Deh00] P. Dehornoy, Braids and self-distributivity, Progress in Math., vol. 192, Birkhäuser, Basel, Boston, 2000.
[Deh02] P. Dehornoy, Groupes de Garside, Ann. Scient. Éc. Norm. Sup. 4e série, 35 (2002), 267-306.
[DDRW02] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, Why are braid groups orderable? Panoramas et Synthèses, 14, Soc. Math. France, Paris 2002.
[DDRW08] P. Dehornoy, with I. Dynnikov, D. Rolfsen, B. Wiest, Ordering braids, Math. Surveys and Monographs, Amer. Math. Soc., 2008.
[DP99] P. Dehornoy, L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc. (3) 79 (1999), 569-604.
[Del72] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302.
[DJ86] R. Dipper, G. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986), 20-52.
[DJ87] R. Dipper, G. James, Blocks and idempotents of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 54 (1987), 57-82.
[Dra97] A. Drápal, Finite left distributive algebras with one generator, J. Pure Appl. Algebra 121 (1997), 233-251.
[DK94] Yu. A. Drozd, V. V. Kirichenko, Finite-dimensional algebras, translated from the 1980 Russian original and with an appendix by Vlastimil Dlab, Springer-Verlag, Berlin, 1994.
[Eps66] D. B. A. Epstein, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966), 83-107.
[ECHLPT92] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992.
[ES98] P. Etingof, O. Schiffmann, Lectures on quantum groups, Lectures in Mathematical Physics, International Press, Boston, MA, 1998.
[FV62] E. Fadell, J. Van Buskirk, The braid groups of E^{2} and S^{2}, Duke Math. J. 29 (1962), 243-257.
[FaN62] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.
[FGRRW99] R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, B. Wiest, Ordering the braid groups, Pacific J. Math. 191 (1999), 49-74.
[FR92] R. Fenn, C. Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992), 343-406.
[For96] E. Formanek, Braid group representations of low degree, Proc. London Math. Soc. (3) 73 (1996), 279-322.
[FLSV03] E. Formanek, W. Lee, I. Sysoeva, M. Vazirani, The irreducible complex representations of the braid group on n strings of degree $\leq n$, J. Algebra Appl. 2 (2003), 317-333.
[FoN62] R. Fox, L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119-126.
[FRT54] J. S. Frame, G. de B. Robinson, R. M. Thrall, The hook graphs of the symmetric groups, Canadian J. Math. 6 (1954), 316-324.
[FYHLMO85] P. J. Freyd, D. N. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985), 239-246.
[Frö36] W. Fröhlich, Über ein spezielles Transformationsproblem bei einer besonderen Klasse von Zöpfen, Monatsh. Math. Phys. 44 (1936), 225-237.
[FR84] D. B. Fuks, V. A. Rokhlin, Beginner's course in topology. Geometric chapters, translated from the Russian by A. Iacob, Universitext, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1984.
[Ful97] W. Fulton, Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997.
[FH91] W. Fulton, J. Harris, Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991.
[Fun95] L. Funar, On the quotients of cubic Hecke algebras, Comm. Math. Phys. 173 (1995), 513-558.
[Fun01] J. Funk, The Hurwitz action and braid group orderings, Theory Appl. Categ. 9 (2001/02), 121-150 (electronic).
[Gar69] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254.
[Gas62] B. J. Gassner, On braid groups, Abh. Math. Sem. Univ. Hamburg 25 (1962), 10-22.
[Gec98] M. Geck, Representations of Hecke algebras at roots of unity, Séminaire Bourbaki, Exposé n ${ }^{\circ} 836$ (1997/98), Astérisque, vol. 252, Soc. Math. France, Paris 1998, 33-55.
[GP00] M. Geck, G. Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Math. Soc. Monographs, New Series 21, Clarendon Press, Oxford, 2000.
[Ghy01] E. Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), 329-407.
[Gol93] D. M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebras, Univ. Lect. Series, vol. 4, Amer. Math. Soc., Providence, RI, 1993.

[Gon02]	J. González-Meneses, Ordering pure braid groups on compact, connected surfaces, Pacific J. Math. 203 (2002), 369-378.
[Gon03]	J. González-Meneses, The nth root of a braid is unique up to conjugacy, Algebr. Geom. Topol. 3 (2003), 1103-1118 (electronic).
[GHJ89]	F. M. Goodman, P. de la Harpe, V. F. R. Jones, Coxeter graphs and towers of algebras, MSRI Publ., vol. 14, Springer-Verlag, New York, 1989.
[GL69]	E. A. Gorin, V. Ja. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids (Russian), Mat. Sb. 78 (1969) 579-610. English translation: Math. USSR Sbornik 7 (1969), 569-596.
[Han89]	V. L. Hansen, Braids and coverings: selected topics. With appendices by Lars Gæde and Hugh R. Morton. London Math. Soc. Student Texts, 18. Cambridge Univ. Press, Cambridge, 1989.
[HKW86]	P. de la Harpe, M. Kervaire, C. Weber, On the Jones polynomial, Enseign. Math. 32 (1986), 271-335.
[Hig52]	G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326-336.
[Hoe74]	P. N. Hoefsmit, Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. thesis, University of British Columbia, 1974.
[Hum90]	J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., vol. 29, Cambridge University Press, 1990.
[Hur91]	A. Hurwitz, Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), 1-61.
[Iva88]	N. V. Ivanov, Automorphisms of Teichmüller modular groups, Topology and geometry-Rohlin Seminar, 199-270, Lecture Notes in Math., 1346, Springer, Berlin, 1988.
[Iva92]	N. V. Ivanov, Subgroups of Teichmüller modular groups, translated from the Russian by E. J. F. Primrose and revised by the author, Translations of Mathematical Monographs, 115, Amer. Math. Soc., Providence, RI, 1992.
[Iva02]	N. V. Ivanov, Mapping class groups. Handbook of geometric topology, 523-633, North-Holland, Amsterdam, 2002.
[Iwa64]	N. Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215-236.
[Jam78]	G. D. James, The representation theory of the symmetric groups, Lecture Notes in Mathematics, vol. 682, Springer-Verlag, Berlin, 1978.
$\begin{aligned} & \text { [Jon83] } \\ & {[J o n 84]} \end{aligned}$	V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25. V. F. R. Jones, Groupes de tresses, algèbres de Hecke et facteurs de type $I I_{1}$, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), 505-508.
[Jon85]	V. F. R. Jones, A polynomial invariant for links via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985), 103-111.
[Jon86]	V. F. R. Jones, Braid groups, Hecke algebras and type I_{1} factors, Geometric methods in operator algebras (Kyoto, 1983), 242 273, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986.
[Jon87]	V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), 335-388.

[Jon89] V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), 311-334.
[Joy82] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982), 37-65.
[Kas95] C. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995.
[Kas02] C. Kassel, L'ordre de Dehornoy sur les tresses, Séminaire Bourbaki, Exposé n ${ }^{\circ} 865$ (1999/2000), Astérisque, vol. 276, Soc. Math. France, Paris 2002, 7-28.
[KR07] C. Kassel, C. Reutenauer, Sturmian morphisms, the braid group B_{4}, Christoffel words and bases of F_{2}, Ann. Mat. Pura Appl. 186 (2007), 317-339.
[KRT97] C. Kassel, M. Rosso, V. Turaev, Quantum groups and knot invariants, Panoramas et Synthèses, 5, Soc. Math. France, Paris, 1997.
[Kau87] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 395-407.
[Kau90] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471.
[Kau91] L. H. Kauffman, Knots and physics, Series on Knots and Everything, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1991.
[Kaw96] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996.
[Kel55] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955.
[KR03] D. J. Kim, D. Rolfsen, An ordering for groups of pure braids and fibre-type hyperplane arrangements, Canad. J. Math. 55 (2003), 822838.
[Knu73] D. E. Knuth, The art of computer programming, Vol. 3, Sorting and searching, Addison-Wesley Publishing Co., Reading, Mass.-LondonDon Mills, Ont., 1973.
[KLCHKP00] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-S. Kang, C. Park, New public-key cryptosystem using braid groups, Advances in cryptology-CRYPTO 2000 (Santa Barbara, CA), 166-183, Lecture Notes in Comput. Sci., 1880, Springer, Berlin, 2000.
[Kra00] D. Krammer, The braid group B_{4} is linear, Invent. Math. 142 (2000), 451-486.
[Kra02] D. Krammer, Braid groups are linear, Ann. of Math. (2) 155 (2002), 131-156.
[Lan02] S. Lang, Algebra, Revised third edition, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002.
[Lar94] D. M. Larue, On braid words and irreflexivity, Algebra Universalis 31 (1994), 104-112.
[Lav92] R. Laver, The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math. 91 (1992), 209-231.
[Lav95] R. Laver, On the algebra of elementary embeddings of a rank into itself, Adv. Math. 110 (1995), 334-346.
[Lav96] R. Laver, Braid group actions on left distributive structures, and well orderings in the braid groups, J. Pure Appl. Algebra 108 (1996), 8198.
[Law90] R. J. Lawrence, Homological representations of the Hecke algebra,
[Lic97] W. B. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York, 1997.
[Lin79] V. Ja. Lin, Artin braids and related groups and spaces (Russian), Itogi Nauki i Techniki, Algebra. Topology. Geometry, Vol. 17 (1979), 159-227. English translation: J. of Soviet Mathematics 18 (1982), 736-788.
[Lin96] V. Lin, Braids, Permutation, Polynomials -I, Preprint Max-Planck Institut 118 (1996), Bonn.
[LP93] D. D. Long, M. Paton, The Burau representation is not faithful for $n \geq 6$, Topology 32 (1993), 439-447.
[Lus81] G. Lusztig, On a theorem of Benson and Curtis, J. Algebra 71 (1981), 490-498.
[Lus93] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993.
[LS77] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, SpringerVerlag, Berlin, Heidelberg, New York, 1977.
[Mag72] W. Magnus, Braids and Riemann surfaces, Comm. Pure Appl. Math. 25 (1972), 151-161.
[MKS66] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentation of groups by generators and relations, Interscience Publishers, John Wiley and Sons, Inc., New York, London, Sydney, 1966.
[MP69] W. Magnus, A. Peluso, On a theorem of V. I. Arnold, Commun. Pure Appl. Math. 22 (1969), 683-692.
[Maj95] S. Majid, Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
[Mal40] A. Malcev, On isomorphic matrix representations of infinite groups (Russian), Rec. Math. [Mat. Sbornik] N.S. 8 (50) (1940), 405-422.
[Mal48] A. I. Malcev, On the embedding of group algebras in division algebras (Russian), Doklady Akad. Nauk SSSR (N.S.) 60 (1948), 1499-1501.
[MN03] A. V. Malyutin, N. Yu. Netsvetaev, Dehornoy order in the braid group and transformations of closed braids (Russian), Algebra i Analiz 15 (2003), no. 3, 170-187. English translation: St. Petersburg Math. J. 15 (2004), no. 3, 437-448.
[Mar36] A. Markov, Über die freie Äquivalenz der geschlossenen Zöpfe, Recueil Mathématique Moscou, Mat. Sb. 1 (43) (1936), 73-78.
[Mar45] A. Markov, Foundations of the algebraic theory of braids (Russian), Trudy Math. Inst. Steklov 16 (1945), 1-54.
[Mas98] H. Maschke, Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math. Ann. 50 (1898), 482-498.
[Mat99] A. Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, Univ. Lect. Series, vol. 15, Amer. Math. Soc., Providence, RI, 1999.
[Mat64] H. Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258 (1964), 3419-3422.
[Mat82] S. V. Matveev, Distributive groupoids in knot theory, Mat. Sb. (N.S.) 119 (161) (1982), 78-88. English translation: Math. USSR Sbornik 47 (1984), 73-83.
[Mic99] J. Michel, A note on words in braid monoids, J. of Algebra 215 (1999), 366-377.
[Mil71] J. Milnor, Introduction to algebraic K-theory Annals of Math. Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971.
[Moo91] J. A. Moody, The Burau representation of the braid group B_{n} is unfaithful for large n, Bull. Amer. Math. Soc. (N.S.) 25 (1991), 379384.
[Moo97] E. H. Moore, Concerning the abstract group of order $k!$ and $\frac{1}{2} k!\ldots$, Proc. London Math. Soc. (1) 28 (1897), 357-366.
[Mor78] H. R. Morton, Infinitely many fibred knots having the same Alexander polynomial, Topology 17 (1978), 101-104.
[Mor86] H. R. Morton, Threading knot diagrams, Math. Proc. Camb. Phil. Soc. 99 (1986), 247-260.
[Mos95] L. Mosher, Mapping class groups are automatic, Ann. of Math. (2) 142 (1995), 303-384.
[MR77] R. Botto Mura, A. Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics, vol. 27, Marcel Dekker, Inc., New York-Basel, 1977.
[Mur87] J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), 745-758.
[Mur96] K. Murasugi, Knot theory and its applications, translated from the 1993 Japanese original by Bohdan Kurpita, Birkhäuser Boston, Inc., Boston, MA, 1996.
[MK99] K. Murasugi, B. I. Kurpita, A study of braids, Mathematics and its Applications, 484, Kluwer Academic Publishers, Dordrecht, 1999.
[Neu49] B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252.
[Neu67] H. Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967.
[Nie27] J. Nielsen, Untersuchungen zur Topologie der geschlossener zweiseitigen Flächen, Acta Math. 50 (1927), 189-358. (English translation by John Stillwell in Jakob Nielsen, Collected mathematical papers, Birkhäuser, Boston, Basel, Stuttgart, 1986).
[PP02] L. Paoluzzi, L. Paris, A note on the Lawrence-Krammer-Bigelow representation, Algebr. Geom. Topol. 2 (2002), 499-518.
[PR00] L. Paris, D. Rolfsen, Geometric subgroups of mapping class groups, J. reine angew. Math. 521 (2000), 47-83.
[Pas77] D. S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, 1977.
[Per06] B. Perron, A homotopic intersection theory on surfaces: applications to mapping class group and braids, Enseign. Math. (2) 52 (2006), 159-186.
[Pie88] R. S. Pierce, Associative algebras, Graduate Texts in Mathematics, 88, Springer-Verlag, New York-Berlin, 1982.
[PT87] J. H. Przytycki, P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1987), 115-139.
[Ram97] A. Ram, Seminormal representations of Weyl groups and IwahoriHecke algebras, Proc. London Math. Soc. (3) 75 (1997), 99-133.
[Rei32] K. Reidemeister, Einführung in die kombinatorische Topologie, Friedr. Vieweg \& Sohn, Braunschweig, 1932.
[Rei83] K. Reidemeister, Knot theory, translated from the German by L. Boron, C. Christenson and B. Smith, BCS Associates, Moscow, Idaho, 1983.
[RT90] N. Yu. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1-26.
[Rol76] D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7. Publish or Perish, Inc., Berkeley, Calif., 1976.
[RW00] C. Rourke, B. Wiest, Order automatic mapping class groups, Pacific J. Math. 194 (2000), 209-227.
[RW01] D. Rolfsen, B. Wiest, Free group automorphisms, invariant orderings and topological applications, Algebr. Geom. Topol. 1 (2001), 311-320 (electronic).
[Rud66] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.
[Sag01] B. E. Sagan, The symmetric group. Representations, combinatorial algorithms, \mathcal{E} symmetric functions, Graduate Texts in Mathematics, 203, Springer-Verlag, New York, 2001 (first published by Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1991).
[Sa194] M. Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1 (1994), 565-577.
[Ser70] J.-P. Serre, Cours d'arithmétique, Presses Univ. de France, Paris, 1970. English translation: A course in arithmetic, Graduate Texts in Mathematics, 7, Springer-Verlag, New York-Heidelberg, 1973.
[Ser77] J.-P. Serre, Arbres, amalgames, SL 2 , Astérisque, No. 46, Soc. Math. France, Paris, 1977. English translation: Trees, Springer-Verlag, Berlin-New York, 1980.
[Ser93] V. Sergiescu, Graphes planaires et présentations des groupes de tresses, Math. Z. 214 (1993), 477-490.
[Shi59] G. Shimura, Sur les intégrales attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291-311.
[SW00] H. Short, B. Wiest, Orderings of mapping class groups after Thurston, Enseign. Math. (2) 46 (2000), 279-312.
[Shp01] V. Shpilrain, Representing braids by automorphisms, Internat. J. Algebra Comput. 11 (2001), 773-777.
[SCY93] V. M. Sidelnikov, M. A. Cherepnev, V. Y. Yashchenko, Public key distribution systems based on noncommutative semigroups, Dokl. Akad. Nauk 332 (1993), no. 5, 566-567. English translation: Russian Acad. Sci. Dokl. Math. 48 (1994), no. 2, 384-386.
[Smi63] D. M. Smirnov, On the theory of residually finite groups (Russian), Ukrain. Math. Zh. 15 (1963), 453-457.
[Squ84] C. C. Squier, The Burau representation is unitary, Proc. Amer. Math. Soc. 90 (1984), 199-202.
[Sta88] R. P. Stanley, Differential posets, J. Amer. Math. Soc. 1 (1988), 919-961.
[Sta99] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999.
[TL71] H. N. V. Temperley, E. H. Lieb, Relations between the "percolation" and "colouring" problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the "percolation" problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280.
[Tie14] H. Tietze, Über stetige Abbildungen einer Quadratfläche auf sich selbst, Rend. Circ. Math. Palermo 38 (1914), 1-58.
[Tra79] Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque, 66-67, Société Mathématique de France, Paris, 1979.
[Tra98] P. Traczyk, A new proof of Markov's braid theorem, Knot theory (Warsaw, 1995), 409-419, Banach Center Publ., 42, Polish Acad. Sci., Warsaw, 1998.
[Tub01] I. Tuba, Low-dimensional unitary representations of B_{3}, Proc. Amer. Math. Soc. 129 (2001), 2597-2606.
[TW01] I. Tuba, H. Wenzl, Representations of the braid group B_{3} and of SL(2, Z), Pacific J. Math. 197 (2001), 491-510.
[Tur88] V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527-553.
[Tur94] V. Turaev, Quantum invariants of knots and 3-manifolds, W. de Gruyter, Berlin 1994.
[Tur02] V. Turaev, Faithful linear representations of the braid groups, Séminaire Bourbaki, Exposé n ${ }^{\circ} 865$ (1999/2000), Astérisque, vol. 276, Soc. Math. France, Paris 2002, 389-409.
[Vai78] F. V. Vainstein, Cohomologies of braid groups, Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, 72-73. English translation: Functional Anal. Appl. 12 (1978), 135-137.
[Ver99] V. V. Vershinin, Braid groups and loop spaces, Uspekhi Mat. Nauk 54 (1999), no. 2 (326), 3-84. English translation in Russian Math. Surveys 54 (1999), no. 2, 273-350.
[Vog90] P. Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990), 104-113.
[Wad92] M. Wada, Group invariants of links, Topology 31 (1992), 399-406.
[Wen87] H. Wenzl, On a sequence of projections, C. R. Math. Rep. Can. J. Math. 9 (1987), 5-9.
[Wen88] H. Wenzl, Hecke algebras of type A_{n} and subfactors, Invent. Math. 92 (1988), 349-383.
[Wen90] H. Wenzl, Quantum groups and subfactors of type B, C, and D, Comm. Math. Phys. 133 (1990), 383-432.
[Wie99] B. Wiest, Dehornoy's ordering of the braid groups extends the subword ordering, Pacific J. Math. 191 (1999), 183-188.
[Yam87] S. Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), 347-356.
[Yan67] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312-1315.
[Zin01] M. G. Zinno, On Krammer's representation of the braid group, Math. Ann. 321 (2001), 197-211.

Index

Alexander's theorem, 59
Alexander-Conway polynomial, 114, 174
Alexander-Conway skein relation, 114
Alexander-Tietze theorem, 35
algebra, 175
finite-dimensional, 175
radical of, 182
trace form of, 181
product, 182
semisimple, 192, 231, 317
simple, 178
subalgebra of, 184
algebraic intersection, 101, 127
Artin-Tits group, 272
axial distance, 198
bending, 62
bi-invariant order, 273
biorderable group, 277
Birman-Murakami-Wenzl algebra, 317
braid automorphism, 31
braid diagram, 6, 322
closed, 57, 61
crossing of, 7
isotopy of, 8
strand of, 6, 57
overgoing, 6
undergoing, 6
braid group, 1, 29, 263, 322
$B_{3}, 3,110,311$
center of, 22, 311
commutator subgroup of, 3
generalized, 267, 272
infinite, 286
natural inclusion of, 2
pure, 18, 25, 278
braid group of a manifold, 29
braid group of spherical type, 272
braid monoid, 259, 322
generalized, 267, 272
braid relations, 1,16
braid word, 282
σ-negative, 282
σ-positive, 282
braids, 6,17
closed, 52, 58, 59
closure of, 53, 59
coloring of, 322
combed form of, 20
generic, 13
geometric, 5
ghost, 83
isotopy of, 5
polygonal, 10
positive, 259
pure, 18
reduced, 260, 269
roots of, 30
σ-negative, 282
σ-positive, 282
strings of, 5
tensor product of, 69
trivial, 6
underlying permutations of, 5
Bratteli diagram, 202, 318

Brieskorn's theorem, 272
Bruhat decomposition, 169
Burau representation, 93, 325
reduced, 107, 219

Catalan number, 224, 233, 237, 325
Cayley graph, 295
compact-open topology, 40
comprehensive set, 250
configuration space, $25,29,118$
conjugacy problem, 248, 254, 263, 270, 272
Conway triple, 114,173
corner of a partition, 200
Coxeter group, 266
Coxeter matrix, 266
critical prefix, 301
cylinder neighborhood, 9
defect face, 62
Dehn twist, 103
Dehornoy order, 283
Δ-moves, 11
$\Delta_{n}, 22,71,259,284,296$
diagram, 196
braid, 6
Bratteli, 202, 318
Ferrers, 196
link, 48
Young, 196
digon, 126
dimension vector, 188
divisibility problem, 242, 248
division ring, 177
divisor, 240
Dyck word, 233
exchange theorem, 158
faithful homomorphism, 97
fibration, 315
forgetting homomorphism, 19
free group, $2,20,28,31,279,323$
free monoid, 240, 278

Garside element, 251
Garside monoid, 255
comprehensive, 257
gcd, 258
generalized braid group, 267, 272
generalized braid monoid, 267, 272
graph
Cayley, 295
labeled, 266
greatest common divisor, 258
group
biorderable, 277
center of, 22
free, 2, 20, 28, 279, 323
Hopfian, 22
orderable, 274
residually finite, 21
torsion free, 20, 29
group of fractions, 251
half-twist, 36, 101
handle, 291
critical, 301
prime, 292
reduction of, 293
Hecke ring, 193
HOMFLY-PT polynomial, 174
homotopy lifting property, 315
homotopy sequence, 316
hook length formula, 198, 207, 236
idempotent, 190
index of a braid word, 282
infinite braid group, 286, 324
intersection form, 99
isotopy, 35
normal, 42
parametrizing, 42
Iwahori-Hecke algebra, 163, 170, 193, 226

Jones polynomial, 174
Jones-Conway polynomial, 174
Jones-Wenzl idempotents, 235

Kaplansky's conjecture, 277
knot, 48
figure-eight, 47, 61
geometric, 47
trefoil, 3, 47, 61
trivial, 173
Krull-Schmidt theorem, 177

Lawrence-Krammer-Bigelow representation, 118, 121, 319
lcm, 258
LD sets, 321
canonical order of, 323
free, 324
morphism of, 321
orderable, 323
least common multiple, 258
left divisor, 240
left multiple, 240
left self-distributive set, 321
left-invariant order, 273
length, 154, 164, 240, 266
lexicographic order, 274, 279
linear group, 121
link, 48
geometric, 47
Hopf, 47, 59
isotopic, 48
ordered, 50
oriented, 50
polygonal, 59
torus, 59
trivial, 47
link diagrams, 48
ascending, 115
components of, 48
crossings of, 48
edges of, 62
faces of, 62
height of, 61
isotopic, 49
smoothing of, 61
linking number, 51
locally trivial fibration, 26
longest element, 162, 261, 267
M-equivalence, 67
magma, 324
Magnus expansion, 279
manifolds
closed, 47
locally flat, 47
mapping class group, 35, 308
Markov function, 68, 173
Markov moves, 67
Markov's theorem, 68
Maschke's theorem, 184

Matsumoto's theorem, 267
modular group, 311
modules, 175
completely reducible, 175
homomorphism of, 175
semisimple, 175
simple, 175
monoid, 239
atom of, 240
atomic, 240
cancellative, 239
embeddable, 251
free, 240, 278
Garside, 255
generators of, 241
homomorphism of, 239
pre-Garside, 251
presentation of, 241
relations of, 241
relator of, 241
trivial, 240
multiple, 240
Nielsen-Thurston approach, 307
nilpotent element, 189
nilpotent ideal, 183
noncommutative formal power series, 278
noodle, 125
normal form, 247, 263, 265, 270
Ocneanu trace, 170, 193
order, 273, 323
bi-invariant, 273
Dehornoy, 283
left-invariant, 273
lexicographic, 130, 274, 279
linear, 273
partial, 241
right-invariant, 273
total, 273
order-preserving map, 273
orderable group, 274
partition, 195
conjugate, 196
corner of, 200
diagram of, 196
path algebra, 218
path in Cayley graph, 296
initial vertex of, 296
label of, 296
terminal vertex of, 296
permutation, 151
inversion of, 155
sign of, 152
positive braid, 259
positive cone, 276
pre-Garside monoid, 251
prefix, 291
presentation of a monoid, 241
length-balanced, 242
weighted, 241
prime handle reduction, 294
PSL(2, Z), 311
pure braid group, 18, 272, 278
center of, 22
forgetting homomorphism of, 19
pure braid group of a manifold, 25
q-factorial, 207
q-integer, 207
quandle, 321
rack, 321
radical of an algebra, 182
reduced braid, 260, 269
reduced expression, 154,266
reduced word, $154,223,288$
reduction arc, 62
Reidemeister moves, 8, 49
braidlike, 50
oriented, 50
representation
equivalence of, 105
homological, 98
twisted, 99
seminormal, 208
right divisor, 240
right multiple, 240
right-invariant order, 273
Schur's lemma, 177
Seifert circles, 61
compatible, 61
incompatible, 61
self-homeomorphism, 35
isotopy of, 35
semicircle, 233
seminormal representation, 208
semisimple algebra, 183
Serre fibration, 315
shift, 290, 324
σ-negative braid, 282
σ-positive braid, 282
simple algebra, 178
simple closed curves, 103
isotopic, 103
skein relation, 174
$\mathrm{SL}(2, \mathbf{Z}), 3,110,311$
solid torus, 52
spanning arcs, 36
isotopy of, 129
transversal, 101
standard tableau, 197
submodule, 175
subword, 282
subword property, 285
suffix, 291
symmetric difference, 155
symmetric group, $2,29,151,164,193$, 260, 266
tableau, 197
labeling of, 197
shape of, 197
standard, 197
Temperley-Lieb algebra, 222
tightening, 62
total order, 273
trace form, 181, 191
transposition, 151
simple, 2, 152, 164, 260
two-variable Jones polynomial, 174
Wedderburn's theorem, 178
weight, 241
canonical, 242
well-ordering, 285
Weyl algebra, 205
winding number, 100
total, 100
word, 240, 282
concatenation of, 282
reduced, $154,223,288$
word problem, 32, 242, 248, 272, 295
Young lattice, 202
zero-divisor conjecture, 277

Graduate Texts in Mathematics

(continued from page ii)

75 Hochschild. Basic Theory of Algebraic Groups and Lie Algebras.
76 Iitaka. Algebraic Geometry.
77 Hecke. Lectures on the Theory of Algebraic Numbers.
78 Burris/Sankappanavar. A Course in Universal Algebra.
79 Walters. An Introduction to Ergodic Theory.
80 Robinson. A Course in the Theory of Groups. 2nd ed.
81 Forster. Lectures on Riemann Surfaces.
82 Bott/Tu. Differential Forms in Algebraic Topology.
83 WASHINGTON. Introduction to Cyclotomic Fields. 2nd ed.
84 Ireland/Rosen. A Classical Introduction to Modern Number Theory. 2nd ed.
85 Edwards. Fourier Series. Vol. II. 2nd ed.
86 van Lint. Introduction to Coding Theory. 2nd ed.
87 Brown. Cohomology of Groups.
88 Pierce. Associative Algebras.
89 LANG. Introduction to Algebraic and Abelian Functions. 2nd ed.
90 Brøndsted. An Introduction to Convex Polytopes.
91 Beardon. On the Geometry of Discrete Groups.
92 Diestel. Sequences and Series in Banach Spaces.
93 Dubrovin/Fomenko/Novikov. Modern Geometry-Methods and Applications. Part I. 2nd ed

94 WARNER. Foundations of Differentiable Manifolds and Lie Groups.
95 Shiryaev. Probability. 2nd ed.
96 Conway. A Course in Functional Analysis. 2nd ed.
97 Koblitz. Introduction to Elliptic Curves and Modular Forms. 2nd ed.
98 BRÖCKER/TOM DIECK. Representations of Compact Lie Groups.
99 Grove/Benson. Finite Reflection Groups. 2nd ed.
100 BERG/CHRISTENSEN/RESSEL. Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions.
101 Edwards. Galois Theory.
102 Varadarajan. Lie Groups, Lie Algebras and Their Representations.
103 Lang. Complex Analysis. 3rd ed.
104 Dubrovin/Fomenko/Novikov. Modern Geometry-Methods and Applications. Part II.
105 Lang. $S L_{2}(\mathrm{R})$.

106 Silverman. The Arithmetic of Elliptic Curves.
107 OlVER. Applications of Lie Groups to Differential Equations. 2nd ed.
108 Range. Holomorphic Functions and Integral Representations in Several Complex Variables.
109 Lehto. Univalent Functions and Teichmüller Spaces.
110 Lang. Algebraic Number Theory.
111 Husemöller. Elliptic Curves. 2nd ed.
112 Lang. Elliptic Functions.
113 Karatzas/Shreve. Brownian Motion and Stochastic Calculus. 2nd ed.
114 Koblitz. A Course in Number Theory and Cryptography. 2nd ed.
115 Berger/Gostiaux. Differential Geometry: Manifolds, Curves, and Surfaces.
116 Kelley/Srinivasan. Measure and Integral. Vol. I.
117 J.-P. Serre. Algebraic Groups and Class Fields.
118 Pedersen. Analysis Now.
119 Rotman. An Introduction to Algebraic Topology.
120 Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation.
121 Lang. Cyclotomic Fields I and II. Combined 2nd ed.
122 Remmert. Theory of Complex Functions. Readings in Mathematics
123 Ebbinghaus/Hermes et al. Numbers. Readings in Mathematics
124 Dubrovin/Fomenko/Novikov. Modern Geometry-Methods and Applications Part III.

125 Berenstein/Gay. Complex Variables: An Introduction.
126 Borel. Linear Algebraic Groups. 2nd ed.
127 Massey. A Basic Course in Algebraic Topology.
128 RAUCH. Partial Differential Equations.
129 Fulton/Harris. Representation Theory: A First Course. Readings in Mathematics
130 Dodson/Poston. Tensor Geometry.
131 Lam. A First Course in Noncommutative Rings. 2nd ed.
132 Beardon. Iteration of Rational Functions.
133 Harris. Algebraic Geometry: A First Course.
134 Roman. Coding and Information Theory.
135 Roman. Advanced Linear Algebra. 3rd ed.
136 Adkins/Weintraub. Algebra: An Approach via Module Theory.

137 AxLER/Bourdon/Ramey. Harmonic Function Theory. 2nd ed.
138 Cohen. A Course in Computational Algebraic Number Theory.
139 Bredon. Topology and Geometry.
140 Aubin. Optima and Equilibria. An Introduction to Nonlinear Analysis.
141 Becker/Weispfenning/Kredel. Gröbner Bases. A Computational Approach to Commutative Algebra.
142 Lang. Real and Functional Analysis. 3rd ed.
143 Doob. Measure Theory.
144 Dennis/Farb. Noncommutative Algebra.
145 VICK. Homology Theory. An Introduction to Algebraic Topology. 2nd ed.
146 Bridges. Computability: A Mathematical Sketchbook.
147 Rosenberg. Algebraic K-Theory and Its Applications.
148 Rotman. An Introduction to the Theory of Groups. 4th ed.
149 Ratcliffe. Foundations of Hyperbolic Manifolds. 2nd ed.
150 Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.
151 Silverman. Advanced Topics in the Arithmetic of Elliptic Curves.
152 ZIEGLER. Lectures on Polytopes.
153 Fulton. Algebraic Topology: A First Course.
154 Brown/PEARCY. An Introduction to Analysis.
155 Kassel. Quantum Groups.
156 Kechris. Classical Descriptive Set Theory.
157 Malliavin. Integration and Probability.
158 Roman. Field Theory.
159 Conway. Functions of One Complex Variable II.
160 LANG. Differential and Riemannian Manifolds.
161 Borwein/Erdélyi. Polynomials and Polynomial Inequalities.
162 Alperin/Bell. Groups and Representations.
163 DIXON/MORTIMER. Permutation Groups.
164 Nathanson. Additive Number Theory: The Classical Bases.
165 Nathanson. Additive Number Theory: Inverse Problems and the Geometry of Sumsets.
166 Sharpe. Differential Geometry: Cartan's Generalization of Klein's Erlangen Program.
167 Morandi. Field and Galois Theory.
168 Ewald. Combinatorial Convexity and Algebraic Geometry.
169 Bhatia. Matrix Analysis.
170 Bredon. Sheaf Theory. 2nd ed.
171 Petersen. Riemannian Geometry. 2nd ed.

172 Remmert. Classical Topics in Complex Function Theory.
173 Diestel. Graph Theory. 2nd ed.
174 Bridges. Foundations of Real and Abstract Analysis.
175 LICKORISH. An Introduction to Knot Theory.
176 Lee. Riemannian Manifolds.
177 Newman. Analytic Number Theory.
178 Clarke/LEDYaEv/Stern/Wolenski. Nonsmooth Analysis and Control Theory.
179 Douglas. Banach Algebra Techniques in Operator Theory. 2nd ed.
180 Srivastava. A Course on Borel Sets.
181 Kress. Numerical Analysis.
182 Walter. Ordinary Differential Equations.
183 Megginson. An Introduction to Banach Space Theory.
184 Bollobas. Modern Graph Theory.
185 Cox/Little/O'Shea. Using Algebraic Geometry. 2nd ed.
186 Ramakrishnan/Valenza. Fourier Analysis on Number Fields.
187 Harris/Morrison. Moduli of Curves.
188 Goldblatt. Lectures on the Hyperreals: An Introduction to Nonstandard Analysis.
189 Lam. Lectures on Modules and Rings.
190 Esmonde/Murty. Problems in Algebraic Number Theory. 2nd ed.
191 Lang. Fundamentals of Differential Geometry.
192 Hirsch/Lacombe. Elements of Functional Analysis.
193 Cohen. Advanced Topics in Computational Number Theory.
194 Engel/Nagel. One-Parameter Semigroups for Linear Evolution Equations.
195 Nathanson. Elementary Methods in Number Theory.
196 Osborne. Basic Homological Algebra.
197 Eisenbud/HARRIS. The Geometry of Schemes.
198 Robert. A Course in p-adic Analysis.
199 Hedenmalm/Korenblum/Zhu. Theory of Bergman Spaces.
200 BAO/CHERN/SHEN. An Introduction to Riemann-Finsler Geometry.
201 Hindry/Silverman. Diophantine Geometry: An Introduction.
202 Lee. Introduction to Topological Manifolds.
203 Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions.
204 Escofier. Galois Theory.
205 Felix/Halperin/Thomas. Rational Homotopy Theory. 2nd ed.
206 MURTY. Problems in Analytic Number Theory. Readings in Mathematics
207 Godsil/Royle. Algebraic Graph Theory.
208 Cheney. Analysis for Applied Mathematics.

209 Arveson. A Short Course on Spectral Theory.
210 Rosen. Number Theory in Function Fields.
211 Lang. Algebra. Revised 3rd ed.
212 Matousek. Lectures on Discrete Geometry.
213 Fritzsche/Grauert. From Holomorphic Functions to Complex Manifolds.
214 Jost. Partial Differential Equations. 2nd ed.
215 Goldschmidt. Algebraic Functions and Projective Curves.
216 D. SERRE. Matrices: Theory and Applications.
217 Marker. Model Theory: An Introduction.
218 LEE. Introduction to Smooth Manifolds.
219 Maclachlan/Reid. The Arithmetic of Hyperbolic 3-Manifolds.
220 Nestruev. Smooth Manifolds and Observables.
221 Grünbaum. Convex Polytopes. 2nd ed.
222 Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.
223 Vretblad. Fourier Analysis and Its Applications.
224 WALSCHAP. Metric Structures in Differential Geometry.
225 Bump. Lie Groups.
226 ZHU. Spaces of Holomorphic Functions in the Unit Ball.
227 Miller/Sturmfels. Combinatorial Commutative Algebra.
228 Diamond/Shurman. A First Course in Modular Forms.

229 Eisenbud. The Geometry of Syzygies.
230 Stroock. An Introduction to Markov Processes.
231 BJÖRNER/BRENTI. Combinatories of Coxeter Groups.
232 Everest/Ward. An Introduction to Number Theory.
233 Albiac/Kalton. Topics in Banach Space Theory.
234 Jorgenson. Analysis and Probability.
235 Sepanski. Compact Lie Groups.
236 Garnett. Bounded Analytic Functions.
237 Martínez- Avendaño/Rosenthal. An Introduction to Operators on the Hardy-Hilbert Space.
238 Aigner. A Course in Enumeration.
239 Cohen. Number Theory, Vol. I.
240 Cohen. Number Theory, Vol. II.
241 Silverman. The Arithmetic of Dynamical Systems.
242 Grillet. Abstract Algebra. 2nd ed.
243 Geoghegan. Topological Methods in Group Theory.
244 Bondy/Murty. Graph Theory.
245 Gilman/Kra/Rodriguez. Complex Analysis.
246 Kaniuth. A Course in Commutative Banach Algebras.
247 Kassel/Turaev. Braid Groups.
248 Abramenko/Brown. Buildings: Theory and Applications.
249 Grafakos. Classical Fourier Analysis.
250 Grafakos. Modern Fourier Analysis.

