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Preface

The theory of braid groups is one of the most fascinating chapters of low-
dimensional topology. Its beauty stems from the attractive geometric nature
of braids and from their close relations to other remarkable geometric objects
such as knots, links, homeomorphisms of surfaces, and configuration spaces.
On a deeper level, the interest of mathematicians in this subject is due to the
important role played by braids in diverse areas of mathematics and theo-
retical physics. In particular, the study of braids naturally leads to various
interesting algebras and their linear representations.

Braid groups first appeared, albeit in a disguised form, in an article by
Adolf Hurwitz published in 1891 and devoted to ramified coverings of surfaces.
The notion of a braid was explicitly introduced by Emil Artin in the 1920s
to formalize topological objects that model the intertwining of several strings
in Euclidean 3-space. Artin pointed out that braids with a fixed number n of
strings form a group, called the nth braid group and denoted by Bn. Since
then, the braids and the braid groups have been extensively studied by topol-
ogists and algebraists. This has led to a rich theory with numerous ramifica-
tions.

In 1983, Vaughan Jones, while working on operator algebras, discovered
new representations of the braid groups, from which he derived his celebrated
polynomial of knots and links. Jones’s discovery resulted in a strong increase
of interest in the braid groups. Among more recent important results in this
field are the orderability of the braid group Bn, proved by Patrick Dehornoy
in 1991, and the linearity of Bn, established by Daan Krammer and Stephen
Bigelow in 2001–2002.

The principal objective of this book is to give a comprehensive introduc-
tion to the theory of braid groups and to exhibit the diversity of their facets.
The book is intended for graduate and postdoctoral students, as well as for
all mathematicians and physicists interested in braids. Assuming only a basic
knowledge of topology and algebra, we provide a detailed exposition of the
more advanced topics. This includes background material in topology and al-
gebra that often goes beyond traditional presentations of the theory of braids.



vi Preface

In particular, we present the basic properties of the symmetric groups, the the-
ory of semisimple algebras, and the language of partitions and Young tableaux.

We now detail the contents of the book. Chapter 1 is concerned with the
foundations of the theory of braids and braid groups. In particular, we describe
the connections with configuration spaces, with automorphisms of free groups,
and with mapping class groups of punctured disks.

In Chapter 2 we study the relation between braids and links in Euclidean
3-space. The central result of this chapter is the Alexander–Markov descrip-
tion of oriented links in terms of Markov equivalence classes of braids.

Chapter 3 is devoted to two remarkable representations of the braid
group Bn: the Burau representation, introduced by Werner Burau in 1936,
and the Lawrence–Krammer–Bigelow representation, introduced by Ruth
Lawrence in 1990. We use the technique of Dehn twists to show that the
Burau representation is nonfaithful for large n, as was first established by
John Moody in 1991. We employ the theory of noodles on punctured disks
introduced by Stephen Bigelow to prove the Bigelow–Krammer theorem on
the faithfulness of the Lawrence–Krammer–Bigelow representation. In this
chapter we also construct the one-variable Alexander–Conway polynomial of
links.

Chapter 4 is concerned with the symmetric groups and the Iwahori–Hecke
algebras, both closely related to the braid groups. As an application, we
construct the two-variable Jones–Conway polynomial of links, also known as
the HOMFLY or HOMFLY-PT polynomial, which extends two fundamental
one-variable link polynomials, namely the aforementioned Alexander–Conway
polynomial and the Jones polynomial.

Chapter 5 is devoted to a classification of the finite-dimensional represen-
tations of the generic Iwahori–Hecke algebras in terms of Young diagrams.
As an application, we show that the (reduced) Burau representation of Bn

is irreducible. We also discuss the Temperley–Lieb algebras and classify their
finite-dimensional representations.

Chapter 6 presents the Garside solution of the conjugacy problem in the
braid groups. Following Patrick Dehornoy and Luis Paris, we introduce the
concept of a Garside monoid, which is a monoid with appropriate divisibility
properties. We show that the braid group Bn is the group of fractions of a
Garside monoid of positive braids on n strings. We also describe similar results
for the generalized braid groups associated with Coxeter matrices.

Chapter 7 is devoted to the orderability of the braid groups. Following
Dehornoy, we prove that the braid group Bn is orderable for every n.

The book ends with four short appendices: Appendix A on the modu-
lar group PSL2(Z), Appendix B on fibrations, Appendix C on the Birman–
Murakami–Wenzl algebras, and Appendix D on self-distributive sets.

The chapters of the book are to a great degree independent. The reader
may start with the first section of Chapter 1 and then freely explore the rest
of the book.
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The theory of braids is certainly too vast to be covered in a single vol-
ume. One important area entirely skipped in this book concerns the con-
nections with mathematical physics, quantum groups, Hopf algebras, and
braided monoidal categories. On these subjects we refer the reader to the
monographs [Lus93], [CP94], [Tur94], [Kas95], [Maj95], [KRT97], [ES98].

Other areas not presented here include the homology and cohomology
of the braid groups [Arn70], [Vai78], [Sal94], [CS96], automatic structures
on the braid groups [ECHLPT92], [Mos95], and applications to cryptogra-
phy [SCY93], [AAG99], [KLCHKP00].

For further aspects of the theory of braids, we refer the reader to the
following monographs and survey articles: [Bir74], [BZ85], [Han89], [Kaw96],
[Mur96], [MK99], [Ver99], [Iva02], [BB05].

This book grew out of the lectures [Kas02], [Tur02] given by the authors at
the Bourbaki Seminar in 1999 and 2000 and from graduate courses given by
the first-named author at Université Louis Pasteur, Strasbourg, in 2002–2003
and by the second-named author at Indiana University, Bloomington, in 2006.

Acknowledgments. It is a pleasure to thank Patrick Dehornoy, Nikolai
Ivanov, and Hans Wenzl for valuable discussions and useful comments. We
owe special thanks to Olivier Dodane, who drew the figures and guided us
through the labyrinth of LATEX formats and commands.

Strasbourg Christian Kassel
March 3, 2008 Vladimir Turaev



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Braids and Braid Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Artin braid groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Braids and braid diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Pure braid groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 Configuration spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5 Braid automorphisms of free groups . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6 Braids and homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.7 Groups of homeomorphisms vs. configuration spaces . . . . . . . . . 40
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Braids, Knots, and Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1 Knots and links in three-dimensional manifolds . . . . . . . . . . . . . . 47
2.2 Closed braids in the solid torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3 Alexander’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4 Links as closures of braids: an algorithm . . . . . . . . . . . . . . . . . . . . 61
2.5 Markov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.6 Deduction of Markov’s theorem from Lemma 2.11 . . . . . . . . . . . 71
2.7 Proof of Lemma 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 Homological Representations of the Braid Groups . . . . . . . . . 93
3.1 The Burau representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 Nonfaithfulness of the Burau representation . . . . . . . . . . . . . . . . . 98
3.3 The reduced Burau representation . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 The Alexander–Conway polynomial of links . . . . . . . . . . . . . . . . . 111
3.5 The Lawrence–Krammer–Bigelow representation . . . . . . . . . . . . 118
3.6 Noodles vs. spanning arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.7 Proof of Theorem 3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



x Contents

4 Symmetric Groups and Iwahori–Hecke Algebras . . . . . . . . . . . 151
4.1 The symmetric groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2 The Iwahori–Hecke algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3 The Ocneanu traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.4 The Jones–Conway polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.5 Semisimple algebras and modules . . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.6 Semisimplicity of the Iwahori–Hecke algebras . . . . . . . . . . . . . . . 191
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Representations of the Iwahori–Hecke Algebras . . . . . . . . . . . . 195
5.1 The combinatorics of partitions and tableaux . . . . . . . . . . . . . . . 195
5.2 The Young lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
5.3 Seminormal representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.4 Proof of Theorem 5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.5 Simplicity of the seminormal representations . . . . . . . . . . . . . . . . 215
5.6 Simplicity of the reduced Burau representation . . . . . . . . . . . . . . 219
5.7 The Temperley–Lieb algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6 Garside Monoids and Braid Monoids . . . . . . . . . . . . . . . . . . . . . . 239
6.1 Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
6.2 Normal forms and the conjugacy problem. . . . . . . . . . . . . . . . . . . 243
6.3 Groups of fractions and pre-Garside monoids . . . . . . . . . . . . . . . . 251
6.4 Garside monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.5 The braid monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
6.6 Generalized braid groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7 An Order on the Braid Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.1 Orderable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.2 Pure braid groups are biorderable . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.3 The Dehornoy order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.4 Nontriviality of σ-positive braids . . . . . . . . . . . . . . . . . . . . . . . . . . 287
7.5 Handle reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.6 The Nielsen–Thurston approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

A Presentations of SL2(Z) and PSL2(Z) . . . . . . . . . . . . . . . . . . . . . . 311
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

B Fibrations and Homotopy Sequences . . . . . . . . . . . . . . . . . . . . . . . 315

C The Birman–Murakami–Wenzl Algebras . . . . . . . . . . . . . . . . . . . 317



Contents xi

D Left Self-Distributive Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
D.1 LD sets, racks, and quandles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
D.2 An action of the braid monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
D.3 Orderable LD sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337



1

Braids and Braid Groups

In this chapter we discuss the basics of the theory of braids and braid groups.

1.1 The Artin braid groups

We introduce the braid groups and discuss some of their simple properties.

1.1.1 Basic definition

We give an algebraic definition of the braid group Bn for any positive integer n.
The definition is formulated in terms of a group presentation by generators
and relations.

Definition 1.1. The Artin braid group Bn is the group generated by n − 1
generators σ1, σ2, . . . , σn−1 and the “braid relations”

σiσj = σjσi

for all i, j = 1, 2, . . . , n− 1 with |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for i = 1, 2, . . . , n− 2.

By definition, B1 = {1} is a trivial group. The group B2 is generated by
a single generator σ1 and an empty set of relations. This is an infinite cyclic
group. As we shall see shortly, the groups Bn with n ≥ 3 are nonabelian.

Given a group homomorphism f from Bn to a group G, the elements
{si = f(σi)}i=1,...,n−1 of G satisfy the braid relations

sisj = sjsi

for all i, j = 1, 2, . . . , n− 1 with |i− j| ≥ 2, and

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 1,
c© Springer Science+Business Media, LLC 2008



2 1 Braids and Braid Groups

sisi+1si = si+1sisi+1

for i = 1, 2, . . . , n − 2. There is a converse, which we record in the following
lemma.

Lemma 1.2. If s1, . . . , sn−1 are elements of a group G satisfying the braid
relations, then there is a unique group homomorphism f : Bn → G such that
si = f(σi) for all i = 1, 2, . . . , n− 1.

Proof. Let Fn be the free group generated by the set {σ1, . . . , σn−1}. There
is a unique group homomorphism f̄ : Fn → G such that f̄(σi) = si for
all i = 1, 2, . . . , n − 1. This homomorphism induces a group homomorphism
f : Bn → G provided f̄(r−1r′) = 1 or, equivalently, provided f̄(r) = f̄(r′) for
all braid relations r = r′. For the first braid relation, we have

f̄(σiσj) = f̄(σi)f̄(σj) = sisj = sjsi = f̄(σj)f̄(σi) = f̄(σjσi) .

For the second braid relation, we similarly have

f̄(σiσi+1σi) = sisi+1si = si+1sisi+1 = f̄(σi+1σiσi+1) . ��

1.1.2 Projection to the symmetric group

We apply the previous lemma to the symmetric group G = Sn. An element
of Sn is a permutation of the set {1, 2, . . . , n}. Consider the simple trans-
positions s1, . . . , sn−1 ∈ Sn, where si permutes i and i + 1 and leaves all
the other elements of {1, 2, . . . , n} fixed. It is an easy exercise to verify that
the simple transpositions satisfy the braid relations. By Lemma 1.2, there
is a unique group homomorphism π : Bn → Sn such that si = π(σi) for all
i = 1, 2, . . . , n−1. This homomorphism is surjective because, as is well known,
the simple transpositions generate Sn. (For more on the structure of Sn, see
Section 4.1.)

Lemma 1.3. The group Bn with n ≥ 3 is nonabelian.

Proof. The group Sn with n ≥ 3 is nonabelian because s1s2 �= s2s1. Since
the projection Bn → Sn is surjective, Bn is nonabelian for n ≥ 3. ��

1.1.3 Natural inclusions

From the defining relations of Definition 1.1 it is clear that the formula
ι(σi) = σi with i = 1, 2, . . . , n− 1 defines a group homomorphism

ι : Bn → Bn+1 .

As will be proven in Corollary 1.14, the homomorphism ι is injective. It is
called the natural inclusion.



1.1 The Artin braid groups 3

It is sometimes convenient to view Bn as a subgroup of Bn+1 via ι. In this
way we obtain an increasing chain of groups B1 ⊂ B2 ⊂ B3 ⊂ · · · .

Composing ι with the projection π : Bn+1 → Sn+1, we obtain the com-
position of π : Bn → Sn with the canonical inclusion Sn ↪→ Sn+1. (The
latter inclusion extends each permutation of {1, 2, . . . , n} to a permutation of
{1, 2, . . . , n + 1} fixing n + 1.) This gives a commutative diagram

Bn −−−−→ Sn

ι

⏐
⏐
�

⏐
⏐
�

Bn+1 −−−−→ Sn+1

(1.1)

1.1.4 The group B3

Already the simplest noncommutative braid group B3 presents considerable
interest. This group is generated by two generators σ1, σ2, and the unique
relation σ1σ2σ1 = σ2σ1σ2. Setting x = σ1σ2σ1 and y = σ1σ2, we obtain
generators x, y of B3 subject to the unique relation x2 = y3 (verify). This
relation implies in particular that x2 = (σ1σ2σ1)2 lies in the center of B3.
(We shall compute the center of Bn for all n in Section 1.3.3.)

The group B3 admits a homomorphism to SL(2,Z) sending σ1, σ2 to the
matrices (

1 1
0 1

)

and
(

1 0
−1 1

)

,

respectively. This homomorphism is surjective and its kernel is the infinite
cyclic group generated by (σ1σ2σ1)4. For a proof, see [Mil71, Th. 10.5] or
Appendix A.

The group B3 appears in knot theory as the fundamental group of the
complement of the trefoil knot K ⊂ S3. The trefoil K can be defined as the
subset of S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} consisting of (z1, z2) such
that z2

1 + z3
2 = 0; see Figure 2.1 for a picture of K. The isomorphism

π1(S3 −K) ∼= 〈x, y |x3 = y2〉 = B3

is well known in knot theory. From the algebraic viewpoint, the key phe-
nomenon underlying this isomorphism is the homeomorphism

S3 −K ≈ SL(2,R)/ SL(2,Z) ;

see [Mil71, Sect. 10].

Exercise 1.1.1. Show that there is a group homomorphism f : Bn → Z such
that f(σi) = 1 for all i = 1, . . . , n − 1. Prove that f induces an isomorphism
Bn/[Bn, Bn] ∼= Z, where [Bn, Bn] is the commutator subgroup of Bn.
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Exercise 1.1.2. Verify that the formula σi → σ−1
i for i = 1, 2, . . . , n − 1

defines an involutive automorphism of Bn. Prove that this automorphism is
not a conjugation by an element of Bn.

Exercise 1.1.3. Verify the following relations in B3:

σ1σ2σ
−1
1 = σ−1

2 σ1σ2 , σ−1
1 σ−1

2 σ1 = σ2σ
−1
1 σ−1

2 , σ−1
1 σ−1

2 σ−1
1 = σ−1

2 σ−1
1 σ−1

2 ,

σ1σ
−1
2 σ−1

1 = σ−1
2 σ−1

1 σ2 , σ−1
1 σ2σ1 = σ2σ1σ

−1
2 .

Exercise 1.1.4. Prove that for any n ≥ 1, the group Bn is generated by two
elements σ1 and α = σ1σ2 · · ·σn−1. (Hint: σi = αi−1σ1α

1−i for all i.)

Exercise 1.1.5. Let f be a homomorphism from Bn to a certain group.
If f(σi) commutes with f(σi+1) for some i, then f(Bn) is a cyclic group.
If f(σi) = f(σj) for some i < j such that either j �= i + 2 or n �= 4, then
f(Bn) is a cyclic group.

Exercise 1.1.6. Prove that each element σiσ
−1
j with 1 ≤ i < j ≤ n − 1 be-

longs to [Bn, Bn] and generates [Bn, Bn] as a normal subgroup of Bn provided
either j �= i + 2 or n �= 4. (Hint: Consider first the case j = i + 1.)

Exercise 1.1.7. Verify the identity

σi+2σ
−1
i = (σiσi+1)−1 [σi+2σ

−1
i , σiσ

−1
i+1]σiσi+1 ,

where 1 ≤ i ≤ n− 3 and [a, b] = a−1b−1ab.

Exercise 1.1.8. Prove that for n �= 3, 4 the commutator subgroup of [Bn, Bn]
coincides with [Bn, Bn].

Exercise 1.1.9. Prove that [B3, B3] is a free group of rank two. (A topological
proof: use that the trefoil is a fibered knot of genus one.)

Exercise 1.1.10. (a) Define automorphisms σ′
1, σ′

2, σ′
3 of the free group F2

on two generators a and b by

σ′
1(a) = a , σ′

1(b) = ab , σ′
2(a) = b−1a , σ′

2(b) = b , σ′
3(a) = a , σ′

3(b) = ba .

Prove that there is a group homomorphism ψ : B4 → Aut(F2) such that
ψ(σi) = σ′

i for i = 1, 2, 3. Check that ψ(σ1σ
−1
3 ) is the conjugation by a and

ψ(σ2σ1σ
−1
3 σ−1

2 ) is the conjugation by b−1a in F2.
(b) Consider the group homomorphism B4 → B3 sending σ1, σ3 to σ1

and σ2 to σ2. Prove that its kernel is generated by σ1σ
−1
3 and σ2σ1σ

−1
3 σ−1

2 .
Deduce that this kernel is a free group of rank 2.

1.2 Braids and braid diagrams

In this section we interpret the braid groups in geometric terms. From now on,
we denote by I the closed interval [0, 1] in the set of real numbers R. By a
topological interval, we mean a topological space homeomorphic to I = [0, 1].
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1.2.1 Geometric braids

Definition 1.4. A geometric braid on n ≥ 1 strings is a set b ⊂ R2 × I
formed by n disjoint topological intervals called the strings of b such that the
projection R2 × I → I maps each string homeomorphically onto I and

b ∩ (R2 × {0}) = {(1, 0, 0), (2, 0, 0), . . . , (n, 0, 0)} ,

b ∩ (R2 × {1}) = {(1, 0, 1), (2, 0, 1), . . . , (n, 0, 1)} .

It is clear that every string of b meets each plane R2 × {t} with t ∈ I in
exactly one point and connects a point (i, 0, 0) to a point (s(i), 0, 1), where
i, s(i) ∈ {1, 2, . . . , n}. The sequence (s(1), s(2), . . . , s(n)) is a permutation of
the set {1, 2, . . . , n} called the underlying permutation of b.

An example of a geometric braid is given in Figure 1.1. Here x, y are the
coordinates in R2, the x-axis is directed to the right, the y-axis is directed
away from the reader, and the t-axis is directed downward. The underlying
permutation of this braid is (1, 3, 2, 4).

t

x

y

t = 1

t = 0

Fig. 1.1. A geometric braid on four strings

Two geometric braids b and b′ on n strings are isotopic if b can be con-
tinuously deformed into b′ in the class of braids. More formally, b and b′ are
isotopic if there is a continuous map F : b × I → R2 × I such that for each
s ∈ I, the map Fs : b → R2×I sending x ∈ b to F (x, s) is an embedding whose
image is a geometric braid on n strings, F0 = idb : b → b, and F1(b) = b′.
Each Fs automatically maps every endpoint of b to itself. Both the map F and
the family of geometric braids {Fs(b)}s∈I are called an isotopy of b = F0(b)
into b′ = F1(b).
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It is obvious that the relation of isotopy is an equivalence relation on the
class of geometric braids on n strings. The corresponding equivalence classes
are called braids on n strings .

Given two n-string geometric braids b1, b2 ⊂ R2×I, we define their product
b1b2 to be the set of points (x, y, t) ∈ R2 × I such that (x, y, 2t) ∈ b1 if
0 ≤ t ≤ 1/2 and (x, y, 2t− 1) ∈ b2 if 1/2 ≤ t ≤ 1. It is obvious that b1b2 is a
geometric braid on n strings. It is clear that if b1, b2 are isotopic to geometric
braids b′1, b

′
2, respectively, then b1b2 is isotopic to b′1b

′
2. Therefore the formula

(b1, b2) → b1b2 defines a multiplication on the set of braids on n strings. This
multiplication is associative and has a neutral element, which is the trivial
braid 1n represented by the geometric braid

{1, 2, . . . , n} × {0} × I ⊂ R2 × I .

We shall see below that the set of braids on n strings with this multiplication
is a group canonically isomorphic to the braid group Bn.

Any geometric braid is isotopic to a geometric braid b ⊂ R2×I such that b
is a smooth one-dimensional submanifold of R2 × I orthogonal to R2 × 0
and R2 × 1 near the endpoints. In working with braids, it is often convenient
to restrict oneself to such smooth representatives.

Remark 1.5. The definition of isotopy for geometric braids can be weakened
by replacing the condition that Fs(b) is a geometric braid with the condition
that Fs keeps ∂b pointwise. The definition of isotopy also can be strengthened
by requiring that the maps {Fs}s extend to an isotopic deformation of R2× I
constant on the boundary. Artin [Art47a] proved that both resulting equi-
valence relations on the class of geometric braids coincide with the isotopy
relation defined above; cf. Theorem 1.40 below.

1.2.2 Braid diagrams

To specify a geometric braid, one can draw its projection to R×{0}×I along
the second coordinate and indicate which string goes “under” the other one at
each crossing point. To avoid local complications, we shall apply this procedure
exclusively to those geometric braids whose projections to R× {0} × I have
only double transversal crossings. These considerations lead to a notion of a
braid diagram.

A braid diagram on n strands is a set D ⊂ R×I split as a union of n topolo-
gical intervals called the strands of D such that the following three conditions
are met:

(i) The projection R× I → I maps each strand homeomorphically onto I.
(ii) Every point of {1, 2, . . . , n} × {0, 1} is the endpoint of a unique strand.
(iii) Every point of R× I belongs to at most two strands. At each intersec-

tion point of two strands, these strands meet transversely, and one of
them is distinguished and said to be undergoing , the other strand being
overgoing.
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Note that three strands of a braid diagram D never meet in one point.
An intersection point of two strands of D is called a double point or a cross-
ing of D. The transversality condition in (iii) means that in a neighborhood
of a crossing, D looks, up to homeomorphism, like the set {(x, y) |xy = 0}
in R2. Condition (iii) and the compactness of the strands easily imply that
the number of crossings of D is finite.

In the figures, the strand going under a crossing is graphically represented
by a line broken near the crossing; the strand going over a crossing is repre-
sented by a continued line. An example of a braid diagram is given in Fig-
ure 1.2. Here the top horizontal line represents R × {0}, and the bottom
horizontal line represents R×{1}. In the sequel we shall sometimes draw and
sometimes omit these lines in the figures.

Fig. 1.2. A braid diagram on four strands

We now describe the relationship between braids and braid diagrams. Each
braid diagramD presents an isotopy class of geometric braids as follows. Using
the obvious identification R× I = R×{0}× I, we can assume that D lies on
R×{0}×I ⊂ R2×I. In a small neighborhood of every crossing of D we slightly
push the undergoing strand into R × (0,+∞) × I by increasing the second
coordinate while keeping the first and third coordinates. This transforms D
into a geometric braid on n strings. Its isotopy class is a well-defined braid
presented by D. This braid is denoted by β(D). For instance, the braid diagram
in Figure 1.2 presents the braid drawn in Figure 1.1.

It is easy to see that any braid β can be presented by a braid diagram. To
obtain a diagram of β, pick a geometric braid b that represents β and is generic
with respect to the projection along the second coordinate. This means that
the projection of b to R×{0}× I may have only double transversal crossings.
At each crossing point of this projection choose the undergoing strand to be
the one that comes from a subarc of b with larger second coordinate. The
projection of b to R× {0} × I = R× I thus yields a braid diagram, D, and
it is clear that β(D) = β.
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Two braid diagrams D and D′ on n strands are said to be isotopic if there
is a continuous map F : D × I → R × I such that for each s ∈ I the set
Ds = F (D × s) ⊂ R × I is a braid diagram on n strands, D0 = D, and
D1 = D′. It is understood that F maps the crossings of D to the crossings
of Ds for all s ∈ I preserving the under/overgoing data. The family of braid
diagrams {Ds}s∈I is called an isotopy of D0 = D into D1 = D′. An example
of an isotopy is given in Figure 1.3. It is obvious that if D is isotopic to D′,
then β(D) = β(D′).

−→ −→

Fig. 1.3. An isotopy of braid diagrams

Given two braid diagrams D1,D2 on n strands, their product D1D2 is
obtained by placing D1 on the top of D2 and squeezing the resulting diagram
into R × I; see Figure 1.4. It is clear that if D1 presents a braid β1 and D2

presents a braid β2, then D1D2 presents the product β1β2.

D1

· · ·

D2

· · ·

· · ·

D1D2 =

Fig. 1.4. Product of braid diagrams

1.2.3 Reidemeister moves on braid diagrams

The transformations of braid diagrams Ω2,Ω3 shown in Figures 1.5a and 1.5b,
as well as the inverse transformations Ω−1

2 ,Ω−1
3 (obtained by reversing the ar-

rows in Figures 1.5a and 1.5b), are called Reidemeister moves. These moves
come from the theory of knots and knot diagrams, where they were introduced
by Kurt Reidemeister; see [Rei83] and Section 2.1. The moves affect only the
position of a diagram in a disk inside R×I and leave the remaining part of the
diagram unchanged. The move Ω2 involves two strands and creates two addi-
tional crossings (there are two types of Ω2-moves, as shown in Figure 1.5a).
The move Ω3 involves three strands and preserves the number of crossings.
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All these transformations of braid diagrams preserve the corresponding braids
up to isotopy.

Ω2−→ Ω2−→

Fig. 1.5a. The Reidemeister move Ω2

Ω3−→

Fig. 1.5b. The Reidemeister move Ω3

We say that two braid diagrams D,D′ are R-equivalent if D can be trans-
formed into D′ by a finite sequence of isotopies and Reidemeister moves
Ω±1

2 ,Ω±1
3 . It is obvious that if D,D′ are R-equivalent, then β(D) = β(D′).

The following theorem asserts the converse.

Theorem 1.6. Two braid diagrams present isotopic geometric braids if and
only if these diagrams are R-equivalent.

Proof. This theorem is an analogue for braids of the classical result of Rei-
demeister on knot diagrams; see [BZ85], [Mur96], and Chapter 2. The key
point of Theorem 1.6 is that the diagrams of isotopic geometric braids are
R-equivalent. The proof of the theorem goes in four steps.

Step 1. We introduce some notation used in the next steps. Consider a
geometric braid b ⊂ R2 × I on n strings. For i = 1, . . . , n, denote the ith
string of b, that is, the string adjacent to the point (i, 0, 0), by bi. Each plane
R2 × {t} with t ∈ I meets bi in one point, denoted by bi(t). In particular, we
have bi(0) = (i, 0, 0).

Let ρ be the Euclidean metric on R3. Given a real number ε > 0, the
cylinder ε-neighborhood of bi consists of all points (x, t) ∈ R2 × I such that
ρ((x, t), bi(t)) < ε. This neighborhood meets each plane R2 × {t} ⊂ R2 × I
along the open disk of radius ε centered at bi(t).
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For distinct i, j ∈ {1, . . . , n}, the function t → ρ(bi(t), bj(t)) is a continuous
function on I with positive values. Since I is compact, this function has a
minimum value. Set

|b| = 1
2

min
1≤i<j≤n

min
t∈I

ρ(bi(t), bj(t)) > 0 .

It is clear that the cylinder |b|-neighborhoods of the strings of b are pairwise
disjoint. (In fact, |b| is the maximal real number with this property.)

For any pair of geometric braids b, b′ on n strings and any i = 1, . . . , n,
the function t → ρ(bi(t), b′i(t)) is a continuous function on I with nonnegative
values. Since I is compact, this function has a maximum value. Set

ρ̃(b, b′) = max
1≤i≤n

max
t∈I

ρ(bi(t), b′i(t)) ≥ 0 .

The function ρ̃ satisfies the axioms of a metric: ρ̃(b, b′) = ρ̃(b′, b); ρ̃(b, b′) = 0
if and only if b = b′; for any geometric braids b, b′, b′′ on n strings, we have
ρ̃(b, b′′) ≤ ρ̃(b, b′) + ρ̃(b′, b′′). The latter follows from the fact that for some
i = 1, . . . , n and t ∈ I,

ρ̃(b, b′′) = ρ(bi(t), b′′i (t))
≤ ρ(bi(t), b′i(t)) + ρ(b′i(t), b

′′
i (t))

≤ ρ̃(b, b′) + ρ̃(b′, b′′) .

Note also that
|b| ≤ |b′|+ ρ̃(b, b′) . (1.2)

Indeed, for some t ∈ I and certain distinct i, j = 1, . . . , n,

|b| = 1
2

ρ(bi(t), bj(t))

≤ 1
2

(

ρ(bi(t), b′i(t)) + ρ(b′i(t), b
′
j(t)) + ρ(b′j(t), bj(t))

)

≤ 1
2

(

ρ̃(b, b′) + 2|b′|+ ρ̃(b′, b)
)

= |b′|+ ρ̃(b, b′) .

Step 2. A geometric braid is polygonal if all its strings are formed by con-
secutive (linear) segments; see Figure 1.6. Any geometric braid b on n strings
can be approximated by polygonal braids as follows. Pick an integer N ≥ 2
and an index i = 1, . . . , n. For k = 1, . . . , N , consider the segment in R2 × I
with endpoints bi(k−1

N ) and bi( k
N ). The union of these N segments is a broken

line, bN
i , with endpoints bN

i (0) = bi(0) = (i, 0, 0) and bN
i (1) = bi(1). For suf-

ficiently large N , this broken line lies in the cylinder |b|-neighborhood of bi.
Therefore for sufficiently large N , the broken lines bN

1 , . . . , bN
n are disjoint and

form a polygonal braid, bN , approximating b. Moreover, for any real num-
ber ε > 0 and all sufficiently large N , we have ρ̃(b, bN) < ε. For instance,
Figure 1.6 shows a polygonal approximation of the braid in Figure 1.1.
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t

x

y

t = 1

t = 0

Fig. 1.6. A polygonal braid on four strands

We now reformulate the notion of isotopy of braids in the polygonal setting.
To this end, we introduce so-called Δ-moves on polygonal braids. Let A,B,C
be three points in R2 × I such that the third coordinate of A is strictly
smaller than the third coordinate of B and the latter is strictly smaller than
the third coordinate of C. The move Δ(ABC) applies to a polygonal braid
b ⊂ R2 × I whenever this braid meets the triangle ABC precisely along
the segment AC. (By the triangle ABC, we mean the linear 2-simplex with
vertices A,B,C.) Under this assumption, the move Δ(ABC) on b replaces
AC ⊂ b by AB ∪ BC, keeping the rest of b intact; see Figure 1.7, where the
triangle ABC is shaded. The inverse move (Δ(ABC))−1 applies to a polygonal
braid meeting the triangle ABC precisely along AB∪BC. This move replaces
AB∪BC by AC. The moves Δ(ABC) and (Δ(ABC))−1 are called Δ-moves.

t C

AA
B−→

C

Fig. 1.7. A Δ-move

It is obvious that polygonal braids related by a Δ-move are isotopic. We
establish a converse assertion.
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Claim 1.7. If polygonal braids b, b′ are isotopic, then b can be transformed
into b′ by a finite sequence of Δ-moves.

Proof. We first verify this claim under the assumption ρ̃(b, b′) < |b|/10. As-
sume that the ith string bi is formed by K ≥ 1 consecutive segments with
vertices A0 = (i, 0, 0), A1, . . . , AK ∈ R2× I. We write bi = A0A1 · · ·AK . Sim-
ilarly, assume that b′i = B0B1 · · ·BL with L ≥ 1 and B0, B1, . . . , BL ∈ R2×I.
Note that A0 = B0 and AK = BL ∈ R2×{1}. Subdividing bi, b′i into smaller
segments, we can ensure that K = L, the points Aj , Bj have the same third
coordinate for all j = 0, 1, . . . ,K, and the Euclidean length of the segments
AjAj+1, BjBj+1 is smaller than |b|/10 for j = 0, 1, . . . ,K − 1. The assump-
tion ρ̃(b, b′) < |b|/10 implies that each horizontal segment AjBj has length
< |b|/10. The move (Δ(A0A1A2))−1 transforms bi = A0A1 · · ·AK into the
string A0A2 · · ·AK = B0A2 · · ·AK . The move Δ(B0B1A2) transforms the
latter in the string B0B1A2 · · ·AK . Continuing by induction and applying
the moves (Δ(BjAj+1Aj+2))−1, Δ(BjBj+1Aj+2) for j = 0, . . . ,K − 2, we
transform bi into b′i. The conditions on the lengths imply that all the interme-
diate strings as well as the triangles BjAj+1Aj+2, BjBj+1Aj+2 determining
these moves lie in the cylinder |b|-neighborhood of bi; they are therefore dis-
joint from the cylinder |b|-neighborhoods of the other strings of b. We apply
these transformations for i = 1, . . . , n and obtain thus a sequence of Δ-moves
transforming b into b′.

Consider now an arbitrary pair of isotopic polygonal braids b, b′. Let
F : b × I → R2 × I be an isotopy transforming b = F0(b) into b′ = F1(b)
(the braids Fs(b) with 0 < s < 1 may be nonpolygonal). The continuity of F
implies that the function I × I → R, (s, s′) → ρ̃(Fs(b), Fs′(b)) is continuous.
This function is equal to 0 on the diagonal s = s′ of I × I. These facts and
the inequality (1.2) imply that the function I → R, s → |Fs(b)| is continuous.
Since |Fs(b)| > 0 for all s, there is a real number ε > 0 such that |Fs(b)| > ε
for all s ∈ I. The continuity of the function (s, s′) → ρ̃(Fs(b), Fs′ (b)) now
implies that for a sufficiently large integer N and all k = 1, 2, . . . , N ,

ρ̃(F(k−1)/N (b), Fk/N (b)) < ε/10 .

Let us approximate each braid Fk/N (b) by a polygonal braid pk such that
ρ̃(Fk/N (b), pk) < ε/10. For p0, pN , we take b, b′, respectively. By (1.2),

|pk| ≥ |Fk/N (b)| − ρ̃(Fk/N (b), pk) > 9 ε/10 .

At the same time,

ρ̃(pk−1, pk) ≤ ρ̃(pk−1, F(k−1)/N (b))
+ ρ̃(F(k−1)/N (b), Fk/N (b)) + ρ̃(Fk/N (b), pk) < 3 ε/10 .

Therefore ρ̃(pk−1, pk) < |pk|/2 for k = 1, . . . , N . By the previous paragraph,
pk−1 can be transformed into pk by a sequence of Δ-moves. Composing these
transformations b = p0 → p1 → · · · → pN = b′, we obtain a required transfor-
mation b → b′. This completes the proof of Claim 1.7. ��



1.2 Braids and braid diagrams 13

Step 3. A polygonal braid is generic if its projection to R×I = R×{0}×I
along the second coordinate has only double transversal crossings. Slightly
deforming the vertices of a polygonal braid b (keeping ∂b), we can approximate
this braid by a generic polygonal braid. Moreover, if b, b′ are generic polygonal
braids related by a sequence of Δ-moves, then slightly deforming the vertices of
the intermediate polygonal braids, we can ensure that these polygonal braids
are also generic. Note the following corollary of this argument and Claim 1.7.

Claim 1.8. If generic polygonal braids b, b′ are isotopic, then b can be trans-
formed into b′ by a finite sequence of Δ-moves such that all the intermediate
polygonal braids are generic.

To present generic polygonal braids, we can apply the technique of braid
diagrams. The diagrams of generic polygonal braids are the braid diagrams,
whose strands are formed by consecutive straight segments. Without loss of
generality, we can always assume that the vertices of these segments do not
coincide with the crossing points of the diagrams.

Claim 1.9. The diagrams of two generic polygonal braids related by a Δ-move
are R-equivalent.

Proof. Consider a Δ-move Δ(ABC) on a generic polygonal braid b produc-
ing a generic polygonal braid b′. Pick points A′, C′ inside the segments AB,
BC, respectively. Pick a point D inside the segment AC such that the third
coordinate of D lies strictly between the third coordinates of A′ and C′. Apply-
ing to b the moves Δ(AA′D), Δ(DC′C), we transform the segment AC into
the broken line AA′DC′C. Further applying the moves (Δ(A′DC′))−1 and
Δ(A′BC′), we obtain b′. This shows that the move Δ(ABC) can be replaced
by a sequence of four Δ-moves along smaller triangles (one should choose the
points A′, C′, D so that the intermediate polygonal braids are generic). This
expansion of the move Δ(ABC) can be iterated. In this way, subdividing the
triangle ABC into smaller triangles and expanding Δ-moves as compositions
of Δ-moves along the smaller triangles, we can reduce ourselves to the case
in which the projection of ABC to R× I meets the rest of the diagram of b
either along a segment or along two segments with one crossing point.

Consider the first case. If both endpoints of the segment in question lie on
AB ∪BC, then the diagram of b is transformed under Δ(ABC) by Ω2. If one
endpoint of the segment lies on AC and the other one lies on AB ∪BC, then
the diagram is transformed by an isotopy.

If the projection of ABC to R × I meets the rest of the diagram along
two segments having one crossing, then we can similarly distinguish several
subcases. Subdividing if necessary the triangle ABC into smaller triangles
and expanding our Δ-move as a composition of Δ-moves along the smaller
triangles, we can reduce ourselves to the case in which the move preserves
the part of the diagram lying outside a small disk in R× I and changes the
diagram inside this disk via one of the following six formulas:
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d+
1 d+

2 d+
1 ↔ d+

2 d+
1 d+

2 , d+
1 d+

2 d−1 ↔ d−2 d+
1 d+

2 , d−1 d−2 d+
1 ↔ d+

2 d−1 d−2 ,

d−1 d−2 d−1 ↔ d−2 d−1 d−2 , d+
1 d−2 d−1 ↔ d−2 d−1 d+

2 , d−1 d+
2 d+

1 ↔ d+
2 d+

1 d−2 .

Here d±1 and d±2 are the braid diagrams on three strands shown in Figure 1.8;
for the definition of the product of braid diagrams, see Figure 1.4. The reader
is encouraged to draw the pictures of these transformations. It remains to
prove that for each of them, the diagrams on the left-hand and right-hand
sides are R-equivalent. The transformation d+

1 d+
2 d+

1 → d+
2 d+

1 d+
2 is just Ω3.

For the other five transformations, the R-equivalence is established by the
following sequences of moves:

ω = (d+
1 d+

2 d−1
Ω2−→ d−2 d+

2 d+
1 d+

2 d−1
Ω−1

3−→ d−2 d+
1 d+

2 d+
1 d−1

Ω−1
2−→ d−2 d+

1 d+
2 ) ,

γ = (d−1 d−2 d+
1

Ω2−→ d−1 d−2 d+
1 d+

2 d−2
ω−1

−→ d−1 d+
1 d+

2 d−1 d−2
Ω−1

2−→ d+
2 d−1 d−2 ) ,

μ = (d−1 d−2 d−1
Ω2−→ d−2 d+

2 d−1 d−2 d−1
γ−1

−→ d−2 d−1 d−2 d+
1 d−1

Ω−1
2−→ d−2 d−1 d−2 ) ,

d+
1 d−2 d−1

Ω2−→ d+
1 d−2 d−1 d−2 d+

2

μ−1

−→ d+
1 d−1 d−2 d−1 d+

2

Ω−1
2−→ d−2 d−1 d+

2 ,

d−1 d+
2 d+

1
Ω2−→ d−1 d+

2 d+
1 d+

2 d−2
Ω−1

3−→ d−1 d+
1 d+

2 d+
1 d−2

Ω−1
2−→ d+

2 d+
1 d−2 .

This completes the proof of Claim 1.9. ��

d+
1 d−1 d+

2 d−2

Fig. 1.8. The diagrams d+
1 , d−

1 , d+
2 , d−

2

Step 4. We can now complete the proof of Theorem 1.6. It is obvious that
R-equivalent braid diagrams present isotopic braids. To prove the converse,
consider two braid diagrams D1,D2 presenting isotopic braids. For i = 1, 2,
straightening Di near its crossing points and approximating the rest of Di by
broken lines as at Step 2, we obtain a diagram, D′

i, of a generic polygonal
braid, bi. If the approximation is close enough, then D′

i is isotopic to Di

(cf. Exercise 1.2.1 below). Then the braids b1, b2 are isotopic. Claim 1.8 implies
that b1 can be transformed into b2 by a finite sequence of Δ-moves in the class
of generic polygonal braids. Claim 1.9 implies that the diagrams D′

1,D′
2 are

R-equivalent. Therefore the diagrams D1,D2 are R-equivalent. ��

In the next exercise we use the notation introduced at Step 1 of the proof.
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Exercise 1.2.1. Any geometric braids b, b′ with the same number of strings
and such that ρ̃(b, b′) < |b| are isotopic to each other.

Solution. The required isotopy F : b × I → R2 × I can be obtained by
pushing each point bi(t) into b′i(t) along the line connecting these points. Thus,

F (bi(t), s) = s bi(t) + (1 − s) b′i(t) ,

for t, s ∈ I and i = 1, . . . , n, where n is the number of strings of b. To see
that F is an isotopy of b into b′, it is enough to check that for all s ∈ I, the
map Fs : b → R2 × I sending bi(t) to s bi(t) + (1 − s) b′i(t) is an embedding.
Since the points bi(t), b′i(t) have the third coordinate t, so does the point
s bi(t) + (1− s) b′i(t). Therefore the restriction of Fs to any string bi of b is an
embedding. Moreover,

ρ(bi(t), Fs(bi(t))) ≤ ρ(bi(t), b′i(t)) ≤ ρ̃(b, b′) < |b| .

Therefore the image of bi under Fs lies in the cylinder |b|-neighborhood of bi.
This implies that the images of distinct strings of b under Fs are disjoint.

1.2.4 The group of braids

Denote by Bn the set of braids on n strings with multiplication defined above.
The next lemma implies that Bn is a group.

Lemma 1.10. Each β ∈ Bn has a two-sided inverse β−1 in Bn.

Proof. For i = 1, 2, . . . , n − 1, we define two elementary braids σ+
i and σ−

i

represented by diagrams with only one crossing shown in Figure 1.9. We claim
that the braids σ+

1 , . . . , σ+
n−1, σ

−
1 , . . . , σ−

n−1 ∈ Bn generate Bn as a monoid. To
see this, consider a braid β on n strings represented by a braid diagram D. By
a slight deformation of D ⊂ R × I in a neighborhood of its crossing points,
we may arrange that distinct crossings of D have distinct second coordinates.
Then there are real numbers

0 = t0 < t1 < · · · < tk−1 < tk = 1

such that the intersection of D with each strip R× [tj , tj+1] has exactly one
crossing lying inside this strip. This intersection is then a diagram of σ+

i or σ−
i

for some i = 1, 2, . . . , n−1. The resulting splitting of D as a product of k braid
diagrams shows that

β = β(D) = σε1
i1

σε2
i2
· · ·σεk

ik
, (1.3)

where each εj is either + or − and i1, . . . , ik ∈ {1, 2, . . . , n− 1}.
Clearly, σ+

i σ−
i = σ−

i σ+
i = 1 for all i. (The corresponding braid diagrams

are related by Ω2.) Therefore β−1 = σ−εk

ik
· · ·σ−ε2

i2
σ−ε1

i1
is a two-sided inverse

of β in Bn (here we use the convention −+ = − and −− = +). ��
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· · · · · ·

· · · · · ·

σ+
i

σ−
i

1 ii−1 i+1 i+2 n

1 ii−1 i+1 i+2 n

Fig. 1.9. The elementary braids σ+
i and σ−

i

Lemma 1.11. The elements σ+
1 , . . . , σ+

n−1 ∈ Bn satisfy the braid relations,
that is, σ+

i σ+
j = σ+

j σ+
i for all i, j = 1, 2, . . . , n − 1 with |i − j| ≥ 2, and

σ+
i σ+

i+1σ
+
i = σ+

i+1σ
+
i σ+

i+1 for i = 1, 2, . . . , n− 2.

Proof. The first relation follows from the fact that its sides are represented by
isotopic diagrams. The diagrams representing the sides of the second relation
differ by the Reidemeister move Ω3. ��

Theorem 1.12. For ε = ±, there is a unique homomorphism ϕε : Bn → Bn

such that ϕε(σi) = σε
i for all i = 1, 2, . . . , n− 1. The homomorphism ϕε is an

isomorphism.

Proof. For concreteness, we take ε = + (the case ε = − can be treated
similarly or reduced to the case ε = + using Exercise 1.1.2). The existence
and uniqueness of ϕ+ follow directly from Lemmas 1.2 and 1.11. The proof of
Lemma 1.10 shows that σ+

1 , . . . , σ+
n−1 generate Bn as a group. These generators

belong to the image of ϕ+. Therefore, ϕ+ is surjective.
We now construct a set-theoretic map ψ : Bn → Bn such that ψ ◦ϕ+ = id.

This will imply that ϕ+ is injective. As in the proof of Lemma 1.10, we
represent any β ∈ Bn by a braid diagram D whose crossings have distinct
second coordinates. This leads to an expansion of the form (1.3). Set

ψ(D) = (σi1 )
ε1(σi2 )

ε2 · · · (σik
)εk ∈ Bn ,

where
(σi)+ = σi and (σi)− = σ−1

i .
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We claim that ψ(D) depends only on β. By Theorem 1.6 we need only verify
that ψ(D) does not change under isotopies of D and the Reidemeister moves
on D. Isotopies of D keeping the order of the double points ofD with respect to
the second coordinate keep the expansion (1.3) and therefore preserve ψ(D).
An isotopy exchanging the order of two double points of D (as in Figure 1.3)
replaces the term σεi

i σ
εj

j in (1.3) by σ
εj

j σεi

i for some i, j ∈ {1, 2, . . . , n − 1}
with |i−j| ≥ 2. Under ψ, these expressions are sent to the same element of Bn

because of the first braid relation of Definition 1.1.
The move Ω2 (resp. Ω−1

2 ) on D inserts (resp. removes) in the expan-
sion (1.3) a term σ+

i σ−
i or σ−

i σ+
i . Clearly, this preserves ψ(D).

The move Ω3 on D replaces a sequence σ+
i σ+

i+1σ
+
i in (1.3) by σ+

i+1σ
+
i σ+

i+1.
Under ψ, these expressions are sent to the same element of Bn because of the
second braid relation of Definition 1.1. The move Ω−1

3 is considered similarly.
This shows that ψ is a well-defined map from Bn to Bn. By construction,

ψ ◦ ϕ+ = id. Hence ϕ+ is both surjective and injective. ��

Conventions 1.13. From now on, we shall identify the groups Bn and Bn

via ϕ+. The elements of Bn henceforth will be called braids on n strings . We
shall write σi for the braid σ+

i . In this notation, σ−
i = (σ+

i )−1 = σ−1
i .

The projection to the symmetric group π : Bn → Sn can be easily de-
scribed in geometric terms. For a geometric braid b on n strings, the permuta-
tion π(b) ∈ Sn sends each i ∈ {1, 2, . . . , n} to the only j ∈ {1, 2, . . . , n} such
that the string of b attached to (i, 0, 0) has the second endpoint at (j, 0, 1).

Corollary 1.14. The natural inclusion ι : Bn → Bn+1 is injective for all n.

Proof. In geometric language, ι : Bn → Bn+1 adds to a geometric braid b
on n strings a vertical string on its right completely unlinked from b. Denote
the resulting braid on n + 1 strings by ι(b). If b1, b2 are two geometric braids
on n strings such that ι(b1) is isotopic to ι(b2), then restricting the isotopy
to the leftmost n strings, we obtain an isotopy of b1 into b2. Therefore ι is
injective. ��

Remarks 1.15. (a) Some authors, including Artin [Art25], use ϕ− to iden-
tify Bn and Bn. We follow [Art47a], where these groups are identified via ϕ+.

(b) In the definition of geometric braids on n strings we chose the set of
endpoints to be {1, 2, . . . , n} × {0} × {0, 1}. Instead of {1, 2, . . . , n} we can
use an arbitrary set of n distinct real numbers. This gives the same group of
braids, since such a set can be continuously deformed into {1, 2, . . . , n} in R.

Exercise 1.2.2. Prove that for an arbitrary geometric braid b ⊂ R2×I, there
is a Euclidean disk U ⊂ R2 such that b ⊂ U × I. (Hint: The projection of b
to the plane R2 is a compact set.)

Exercise 1.2.3. Prove that for an arbitrary isotopy of braids {bs}s∈I , there
is a Euclidean disk U ⊂ R2 such that bs ⊂ U × I for all s ∈ I.
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Exercise 1.2.4. Let U be an open Euclidean disk in R2 containing the points
(1, 0),. . . , (n, 0). Prove that any geometric braid on n strings b ⊂ R2 × I is
isotopic to a geometric braid lying in U × I.

Solution. By Exercise 1.2.2, there is a disk U1 ⊂ R2 such that b ⊂ U1 × I.
Enlarging U1, we may assume that U1 ⊃ U . There is a small ε > 0 such that

b ∩ (R2 × [0, ε]) ⊂ U × [0, ε] and b ∩ (R2 × [1− ε, 1]) ⊂ U × [1− ε, 1] .

Keeping fixed the part of b lying in

(R2 × [0, ε/2]) ∪ (R2 × [1− ε/2, 1])

and squeezing U1 × [ε, 1 − ε] into U × [ε, 1 − ε], we obtain a geometric braid
in U × [0, 1] isotopic to b.

Exercise 1.2.5. For U as in Exercise 1.2.4, prove that any two geometric
braids lying in U × I and isotopic in R2 × I are isotopic already in U × I.

Exercise 1.2.6. For a geometric braid b ⊂ R2 × I on n strings, denote by b
the image of b under the involution of R2× I mapping (x, y, t) to (x, y, 1− t),
where x, y ∈ R, t ∈ I. Verify that b is a geometric braid. Show that if b
represents β ∈ Bn, then b represents β−1. Deduce that if β is represented
by a braid diagram D, then β−1 is represented by the image of D under the
reflection in the line R× {1/2}.

1.3 Pure braid groups

In this section we introduce so-called pure braids and use them to establish
important algebraic properties of the braid groups.

1.3.1 Pure braids

The kernel of the natural projection π : Bn → Sn is called the pure braid
group and is denoted by Pn:

Pn = Ker (π : Bn → Sn) .

The elements of Pn are called pure braids on n strings . A geometric braid on
n strings represents an element of Pn if and only if for all i = 1, . . . , n, the
string of this braid attached to (i, 0, 0) has the second endpoint at (i, 0, 1).
Such geometric braids are said to be pure.

An important role in the sequel will be played by the pure n-string
braid Ai,j shown in Figure 1.10, where 1 ≤ i < j ≤ n. This braid can be
expressed via the generators σ1, . . . , σn−1 by

Ai,j = σj−1σj−2 · · ·σi+1σ
2
i σ

−1
i+1 · · ·σ−1

j−2σ
−1
j−1 .
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The braids {Ai,j}i,j are conjugate to each other in Bn. Indeed, set

αi,j = σj−1σj−2 · · ·σi

for any 1 ≤ i < j ≤ n. It is a simple pictorial exercise to check that for any
1 ≤ i < j < k ≤ n,

αj,k Ai,j α−1
j,k = Ai,k and αi,k Ai,j α−1

i,k = Aj,k . (1.4)

We shall see shortly that the braids {Ai,j}i,j are not mutually conjugate in Pn.

1 i− 1 i i + 1 j − 1 j j + 1 n

· · · · · · · · ·

Fig. 1.10. The n-string braid Ai,j with 1 ≤ i < j ≤ n

The commutativity of the diagram (1.1) implies that the inclusion homo-
morphism ι : Bn → Bn+1 maps Pn to Pn+1. The homomorphism Pn → Pn+1

induced by ι will be denoted by the same symbol ι. In geometric language,
ι : Pn → Pn+1 adds to a pure geometric braid b on n strings a vertical string
on its right completely unlinked from b. By Corollary 1.14, ι : Pn → Pn+1 is
injective. It is sometimes convenient to view Pn as a subgroup of Pn+1 via ι.
In this way we obtain an increasing chain of groups P1 ⊂ P2 ⊂ P3 ⊂ · · · . It is
clear that P1 = {1} and P2 is an infinite cyclic group generated by A1,2 = σ2

1 .

1.3.2 Forgetting homomorphisms

We define a forgetting homomorphism fn : Pn → Pn−1 as follows. Represent
an element of Pn by a geometric braid b. The ith string of b connects (i, 0, 0)
to (i, 0, 1) for i = 1, 2, . . . , n. Removing the nth string from b, we obtain a
braid fn(b) on n− 1 strings. It is obvious that if b is isotopic to b′, then fn(b)
is isotopic to fn(b′). Passing to isotopy classes, we obtain a well-defined map
fn : Pn → Pn−1. From the definition of multiplication for geometric braids, it
is clear that fn is a group homomorphism. From the geometric description of
the natural inclusion ι : Pn−1 → Pn, it is clear that fn◦ι = idPn−1 . This yields
another proof of the injectivity of ι and of Corollary 1.14, and also implies
that the homomorphism fn is surjective.
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For n ≥ 2, set
Un = Ker (fn : Pn → Pn−1) .

Note that since fn has a section, Pn is isomorphic to the semidirect product
of Pn−1 by Un. Any pure braid β ∈ Pn can be expanded uniquely in the form

β = ι(β′)βn (1.5)

with β′ ∈ Pn−1 and βn ∈ Un. Here β′ = fn(β) and βn = ι(β′)−1β. Applying
this expansion inductively, we conclude that β can be written uniquely as

β = β2 β3 · · · βn , (1.6)

where βj ∈ Uj ⊂ Pj ⊂ Pn for j = 2, 3, . . . , n. The expansion (1.6) is called
the combed (or normal) form of β. The authors cannot resist the temptation
to quote the last paragraph of Artin’s paper [Art47a]: “Although it has been
proved that every braid can be deformed into a similar normal form the writer
is convinced that any attempt to carry this out on a living person would only
lead to violent protests and discrimination against mathematics. He would
therefore discourage such an experiment.”

It is clear from Figure 1.10 that Ai,n ∈ Un for i = 1, 2, . . . , n− 1. We state
now a fundamental theorem computing Un.

Theorem 1.16. For all n ≥ 2, the group Un is free on the n − 1 genera-
tors {Ai,n}i=1,2,...,n−1.

A proof of Theorem 1.16 will be given in Section 1.4. The rest of this
section will be devoted to corollaries of Theorem 1.16.

Corollary 1.17. The group Pn admits a normal filtration

1 = U (0)
n ⊂ U (1)

n ⊂ · · · ⊂ U (n−1)
n = Pn

such that U
(i)
n /U

(i−1)
n is a free group of rank n− i for all i.

Proof. Set U
(0)
n = {1} and for i = 1, 2, . . . , n− 1 set

U (i)
n = Ker (fn−i+1 · · · fn−1fn : Pn → Pn−i) .

Then
U (i)

n /U (i−1)
n

∼= Ker (fn−i+1 : Pn−i+1 → Pn−i) = Un−i+1 . ��

Corollary 1.18. The group Pn is torsion free, i.e., it has no nontrivial ele-
ments of finite order.

This follows directly from Corollary 1.17, since free groups are torsion free.
The braid group Bn is also torsion free; this will be proven in Section 1.4.3
using a different method.
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Corollary 1.19. Pn is generated by the n(n− 1)/2 elements {Ai,j}1≤i<j≤n.

This directly follows from formula (1.6) and Theorem 1.16.
Here is a list of defining relations for the generators {Ai,j}1≤i<j≤n of Pn:

A−1
r,sAi,jAr,s = (1.7)
⎧

⎪
⎪
⎪
⎨

⎪
⎪⎪
⎩

Ai,j if s < i or i < r < s < j,
Ar,jAi,jA

−1
r,j if s = i,

Ar,jAs,jAi,jA
−1
s,jA

−1
r,j if i = r < s < j,

Ar,jAs,jA
−1
r,jA

−1
s,jAi,jAs,jAr,jA

−1
s,jA

−1
r,j if r < i < s < j.

That these relations hold in Pn can be verified directly by drawing the corre-
sponding pictures. That all relations between {Ai,j}1≤i<j≤n follow from the
relations in this list can be verified using the Reidemeister–Schreier rewriting
process; see Appendix 1 to [Han89], written by Lars Gæde. In this book we
use relations (1.7) only once, in Section 7.2.3.

Corollary 1.20. We have Pn/[Pn, Pn] ∼= Zn(n−1)/2.

Proof. By Corollary 1.19, the abelian group Pn/[Pn, Pn] is generated by the el-
ements represented by Ai,j , where 1 ≤ i < j ≤ n. To prove that these elements
are linearly independent, it suffices to construct for each pair 1 ≤ i < j ≤ n
a group homomorphism li,j : Pn → Z such that li,j(Ai,j) = 1 and li,j(Ar,s) = 0
for all pairs (r, s) distinct from (i, j).

Pick β ∈ Pn and represent it by a braid diagram D. Orient all strands of
D from the top (the level t = 0) to the bottom (the level t = 1). Let l+i,j(D) be
the number of crossings of D, where the ith strand goes over the jth strand
from left to right. Let l−i,j(D) be the number of crossings of D, where the ith
strand goes over the jth strand from right to left. Set

li,j(β) = l+i,j(D)− l−i,j(D) .

It is straightforward to check that li,j(β) is invariant under isotopies and
Reidemeister moves on D. By Theorem 1.6, li,j(β) is a well-defined invariant
of β. (This invariant can be also defined as the linking number of the ith and
jth components of the link in R3 obtained by closing β; cf. Chapter 2.) The
map li,j : Pn → Z is a group homomorphism taking the value +1 on Ai,j and
the value 0 on all Ar,s with (r, s) �= (i, j). ��

Corollary 1.21. The group Bn and all its subgroups are residually finite.

Proof. Recall that a group G is residually finite if for each β ∈ G−{1}, there
is a homomorphism f from G to a finite group such that f(β) �= 1. It is known
that free groups are residually finite (see [LS77, Chap. IV, Sect. 4], [MKS66,
Sect. 6.5]) and a semidirect product of two finitely generated residually finite
groups is residually finite (the latter fact is due to Maltsev [Mal40]). Therefore
Theorem 1.16 implies by induction on n that Pn is residually finite.
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Note that any extension (not necessarily semidirect) of a residually finite
group P by a finite group is residually finite. This can be easily deduced from
the fact that the intersection of a finite family of subgroups of P of finite
index is a subgroup of P of finite index. Since Bn is an extension of Pn by Sn

and Pn is residually finite, so is Bn. It remains to observe that all subgroups
of a residually finite group are residually finite. ��

A group is Hopfian if all its surjective endomorphisms are injective.

Corollary 1.22. The group Bn and all its finitely generated subgroups are
Hopfian.

Proof. A finitely generated residually finite group is Hopfian (see [LS77,
Chap. IV, Th. 4.10], [Neu67]). ��

Corollary 1.23. For i = 1, 2, . . . , n, forgetting the ith string defines a group
homomorphism f i

n : Pn → Pn−1. The kernel of f i
n is a free group of rank n−1

with free generators A1,i, . . . , Ai−1,i, Ai,i+1, . . . , Ai,n.

Proof. Set αi,n = σn−1σn−2 · · ·σi and observe that for any β ∈ Pn, forgetting
the nth string of αi,nβα−1

i,n yields the braid

1n−1 f i
n(β) 1n−1 = f i

n(β) .

Hence, f i
n(β) = fn(αi,nβα−1

i,n), where fn = fn
n . Therefore,

Ker f i
n = α−1

i,n

(

Ker fn

)

αi,n = α−1
i,n Un αi,n .

It remains to use Theorem 1.16 and to observe that conjugation by α−1
i,n trans-

forms the set {Aj,n}j=1,2,...,n−1 into the set

{A1,i, . . . , Ai−1,i, Ai,i+1, . . . , Ai,n} ,

as is clear from (1.4). ��

1.3.3 The center of Bn

The center of a group G is the subgroup of G consisting of all g ∈ G such
that gx = xg for every x ∈ G. The center of a group G is denoted by Z(G).

Theorem 1.24. If n ≥ 3, then Z(Bn) = Z(Pn) is an infinite cyclic group
generated by θn = Δ2

n, where

Δn = (σ1σ2 · · ·σn−1)(σ1σ2 · · ·σn−2) · · · (σ1σ2)σ1 ∈ Bn .
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Fig. 1.11. The braid Δ5

Proof. The braid Δn can be obtained from the trivial braid 1n by a half-twist
achieved by keeping the top of the braid fixed and turning over the row of the
lower ends by an angle of π. See Figure 1.11 for a diagram of Δ5. The braid
θn = Δ2

n can be obtained from the trivial braid 1n by a full twist achieved by
keeping the top of the braid fixed and turning over the row of the lower ends
by an angle of 2π. We have

π(Δn) = (n, n− 1, . . . , 1) ∈ Sn .

Hence θn ∈ Pn. It is a simple exercise to compute θn inductively from ι(θn−1),
where ι : Pn−1 → Pn is the natural inclusion. Namely, θn = ι(θn−1)γ, where

γ = γn = A1,nA2,n · · ·An−1,n ∈ Pn ;

see Figure 1.12 for a diagram of γ5.

Fig. 1.12. The braid γ5

Sliding a crossing along the strands of the diagram of Δn from top to
bottom, one easily obtains for all i = 1, 2, . . . , n− 1,

σi Δn = Δn σn−i . (1.8)
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This implies that θn commutes with all the generators of Bn:

σi θn = σi ΔnΔn = Δnσn−i Δn = ΔnΔn σi = θn σi .

Hence, θn ∈ Z(Bn).
We now prove by induction on n ≥ 2 that all elements of Z(Pn) are powers

of θn. For n = 2, this is obvious since P2 is generated by A1,2 = θ2 = σ2
1 .

Here is the inductive step. Pick β ∈ Z(Pn), where n ≥ 3. By formula (1.5),
β = ι(β′)βn, where β′ = fn(β) ∈ Pn−1 and βn ∈ Un. An easy geometric
argument shows that the braid γ = γn introduced above commutes with any
element of ι(Pn−1) ⊂ Pn and in particular with ι(β′). Since β lies in the center
of Pn, it commutes with γ. Hence, γ commutes with βn = ι(β′)−1β. The group
G ⊂ Un generated by βn and γ is therefore abelian. By Theorem 1.16, the
group Un is free and therefore all its subgroups are free. This implies that G is
an infinite cyclic group. Recall now the homomorphism li,j : Pn → Z defined
in the proof of Corollary 1.20 for all 1 ≤ i < j ≤ n. Clearly l1,n(γ) = 1, so
that γ has to be a generator of G. Thus, βn = γk for some integer k. Since the
forgetting homomorphism fn : Pn → Pn−1 is onto, β′ = fn(β) ∈ Z(Pn−1). By
the induction assumption, β′ = (θn−1)m for some integer m. We prove below
that m = k. Since γ commutes with ι(θn−1), this will give

β = ι(β′)βn = ι((θn−1)m) γk = ι((θn−1)k) γk = (ι(θn−1) γ)k = (θn)k .

It follows from the definitions and the expansion β = ι((θn−1)m) γk that
li,n(β) = k for all i = 1, 2, . . . , n−1. In particular, li,n(β) does not depend on i.
Since β lies in Z(Pn), so does σn−1βσ−1

n−1. By the result above, the integer
li,n(σn−1βσ−1

n−1) does not depend on i = 1, 2, . . . , n− 1. Computing from the
definitions and using the expansion β = ι((θn−1)m) γk, we obtain

l1,n(σn−1βσ−1
n−1) = l1,n−1(β) = m

and
ln−1,n(σn−1βσ−1

n−1) = ln−1,n(β) = k .

Thus, m = k.
The center of Bn with n ≥ 3 projects to the trivial subgroup of Sn

since Z(Sn) = {1}. Hence, Z(Bn) ⊂ Z(Pn) ⊂ (θn) ⊂ Z(Bn), where (θn)
is the cyclic subgroup of Bn generated by θn. Therefore,

Z(Bn) = Z(Pn) = (θn) .

By Corollary 1.18, (θn) is an infinite cyclic group. ��

Corollary 1.25. For m �= n, the groups Bm and Bn are not isomorphic.

Proof. Theorem 1.24 implies that the image of Z(Bn) in Bn/[Bn, Bn] ∼= Z is
a subgroup of Z of index n(n− 1). If Bm is isomorphic to Bn, then we must
have m(m− 1) = n(n− 1), and hence m = n. ��
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Exercise 1.3.1. Deduce Corollary 1.20 from the presentation of Pn given by
the generators {Ai,j}1≤i<j≤n and the relations (1.7).

Exercise 1.3.2. Verify that Δ2
n = (σ1σ2 · · ·σn−1)n.

Exercise 1.3.3. Verify that Pn is the minimal normal subgroup of Bn con-
taining σ2

1 = A1,2.

Exercise 1.3.4. Verify (1.4) using only the expression of Ai,j via σ1, . . . , σn−1

and the braid relations between these generators.

Exercise 1.3.5. Show that any nontrivial subgroup of Pn has a nontrivial
homomorphism onto Z. (Hint: Any free group has a normal filtration with
free abelian consecutive quotients.)

1.4 Configuration spaces

We discuss here an approach to braids based on configuration spaces. As an
application, we prove Theorem 1.16.

1.4.1 Configuration spaces of ordered sets of points

Let M be a topological space and let

Mn = M ×M × · · · ×M

be the product of n ≥ 1 copies of M with the product topology. Set

Fn(M) = {(u1, u2, . . . , un) ∈ Mn |ui �= uj for all i �= j} .

This subspace of Mn is called the configuration space of ordered n-tuples of
(distinct) points in M .

If M is a topological manifold (possibly with boundary ∂M), then the
configuration space Fn(M) is a topological manifold of dimension n dim(M).
Clearly, any ordered n-tuple of points in M can be deformed into an ordered
n-tuple of points in the interior M◦ = M − ∂M of M . If dim(M) ≥ 2 and M
is connected, then any ordered n-tuple of points in M◦ can be deformed into
any other such tuple. Therefore for such M , the manifold Fn(M) is connected.
Its fundamental group is called the pure braid group of M on n strings.

For M = R2, we recover the same pure braid group Pn as above. To see
this, assign to a pure geometric braid b ⊂ R2×I the path I → Fn(R2) sending
t ∈ I into the tuple (u1(t), u2(t), . . . , un(t)) defined by the condition that the
ith string of b meets R2×{t} at the point (ui(t), t) for all i = 1, 2, . . . , n. This
path begins and ends at the n-tuple

qn = ((1, 0), (2, 0), . . . , (n, 0)) ∈ Fn(R2) .
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Conversely, any path (α1, α2, . . . , αn) : I → Fn(R2) beginning and ending
at qn gives rise to the pure geometric braid

n
⋃

i=1

⋃

t∈I

(αi(t), t) .

These constructions are mutually inverse and yield a bijective correspondence
between pure geometric braids and loops in (Fn(R2), qn). Under this corre-
spondence the isotopy of braids corresponds to the homotopy of loops. Thus,
Pn = π1(Fn(R2), qn). The braid group Bn admits a similar interpretation,
which will be discussed in Section 1.4.3.

Coming back to an arbitrary connected topological manifold M of dimen-
sion ≥ 2, it is useful to generalize the definition of Fn(M) by prohibiting
several points in M◦ = M − ∂M . More precisely, fix a finite set Qm ⊂ M◦ of
m ≥ 0 points and set

Fm,n(M) = Fn(M −Qm) .

The topological type of this space depends on M , m, and n, but not on the
choice of Qm. Clearly, F0,n(M) = Fn(M) and Fm,1(M) = M −Qm.

To describe the relationship between various configuration spaces, we need
the notion of a locally trivial fibration. For the convenience of the reader, we
recall this notion in Appendix B.

Lemma 1.26. Let M be a connected topological manifold of dimension ≥ 2
with ∂M = ∅. For n > r ≥ 1, the forgetting map p : Fn(M) → Fr(M)
defined by p(u1, . . . , un) = (u1, . . . , ur) is a locally trivial fibration with
fiber Fr,n−r(M).

Proof. Pick a point u0 = (u0
1, . . . , u

0
r) ∈ Fr(M). The fiber p−1(u0) consists of

the tuples (u0
1, . . . , u

0
r, v1, . . . , vn−r) ∈ M r, where all u0

1, . . . , u
0
r, v1, . . . , vn−r

are distinct. Setting Qr = {u0
1, . . . , u

0
r}, we obtain

Fr,n−r(M) = {(v1, . . . , vn−r) ∈ (M −Qr)n−r | vi �= vj for i �= j} .

It is obvious that the formula (u0
1, . . . , u

0
r, v1, . . . , vn−r) → (v1, . . . , vn−r) de-

fines a homeomorphism p−1(u0) ≈ Fr,n−r(M).
We shall prove the local triviality of p in a neighborhood of u0. For each

i = 1, 2, . . . , r, pick an open neighborhood Ui ⊂ M of u0
i such that its clo-

sure U i is a closed ball with interior Ui. Since the points u0
1, . . . , u

0
r are distinct,

we may assume that U1, . . . , Ur are mutually disjoint. Then

U = U1 × U2 × · · · × Ur

is a neighborhood of u0 in Fr(M). We shall see that the restriction of p to U is
a trivial bundle, i.e., that there is a homeomorphism p−1(U) → U×Fr,n−r(M)
commuting with the projections to U .
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We construct below for each i = 1, 2, . . . , r a continuous map

θi : Ui × U i → U i

such that for every u ∈ Ui, the map θu
i : U i → U i sending v ∈ U i to θi(u, v)

is a homeomorphism sending u0
i to u and fixing the boundary sphere ∂U i

pointwise. For u = (u1, . . . , ur) ∈ U , define a map θu : M → M by

θu(v) =

{

θi(ui, v) if v ∈ Ui for some i = 1, 2, . . . , r,
v if v ∈ M −

⋃

i Ui .

It is clear that θu : M → M is a homeomorphism continuously depending on u
and sending the points u0

1, . . . , u
0
r to u1, . . . , ur, respectively. The formula

(u, v1, . . . , vn−r) → (u, θu(v1), . . . , θu(vn−r))

defines a homeomorphism U × Fr,n−r(M) → p−1(U) commuting with the
projections to U . The inverse homeomorphism is defined by

(u, v1, . . . , vn−r) → (u, (θu)−1(v1), . . . , (θu)−1(vn−r)) .

Thus, p|U : p−1(U) → U is a trivial fibration.
To construct θi, we may assume that Ui = U is the open unit ball in Eu-

clidean space Rdim M with center at the origin ui = 0. Fix a smooth function
of two variables λ : [0, 1[× [0, 1] → R such that λ(x, y) = 1 if x ≥ y and
λ(x, y) = 0 if (x + 1)/2 ≤ y, where x ∈ [0, 1[ and y ∈ [0, 1]. For u ∈ U , define
a vector field fu on the closed unit ball U = {v ∈ Rdim M | ‖v‖ ≤ 1} by

fu(v) = λ(‖u‖, ‖v‖)u .

The choice of λ ensures that fu = u on the ball of radius ‖u‖ with center
at the origin and fu = 0 outside the ball of radius (‖u‖ + 1)/2 with center
at the origin. Let {θu,t : U → U}t∈R be the flow determined by fu, that
is, the (unique) family of self-diffeomorphisms of U such that θu,0 = id and
dθu,t(v)/dt = fu(v) for all v ∈ U , t ∈ R. The diffeomorphism θu,t smoothly
depends on u, t, fixes the sphere ∂U pointwise, and sends the origin to tu.
Therefore the map θi : U × U → U defined by θi(u, v) = θu,1(v) for u ∈ U ,
v ∈ U satisfies all the required conditions. ��

Lemma 1.27. Let M be a connected topological manifold of dimension ≥ 2
with ∂M = ∅. For any m ≥ 0, n > r ≥ 1, the forgetting map

p : Fm,n(M) → Fm,r(M)

defined by p(u1, . . . , un) = (u1, . . . , ur) is a locally trivial fibration with
fiber Fm+r,n−r(M).

Proof. This lemma is obtained by applying Lemma 1.26 to M −Qm. ��
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Recall that a connected manifold M is aspherical if its universal covering is
contractible or, equivalently, if its homotopy groups πi(M) vanish for all i ≥ 2.

Lemma 1.28. For any m ≥ 0, n ≥ 1, the manifold Fm,n(R2) is aspherical.

Proof. Consider the fibration Fm,n(R2) → Fm,1(R2) = R2 − Qm with fiber
Fm+1,n−1(R2) defined above. The homotopy sequence of this fibration gives
an exact sequence

· · · −→ πi+1(R2 −Qm) −→ πi(Fm+1,n−1(R2))

−→ πi(Fm,n(R2)) −→ πi(R2 −Qm) −→ · · · .

Observe that R2−Qm contains a wedge of m circles as a deformation retract.
A wedge of circles is aspherical since its universal covering is a tree and hence
is contractible. Therefore R2−Qm is aspherical, so that πi(R2−Qm) = 0 for
i ≥ 2. We conclude that for all i ≥ 2,

πi(Fm,n(R2)) ∼= πi(Fm+1,n−1(R2)) .

An inductive argument shows for all i ≥ 2,

πi(Fm,n(R2)) ∼= πi(Fm+n−1,1(R2)) ∼= πi(R2 −Qm+n−1) = 0 . ��

1.4.2 Proof of Theorem 1.16

Applying Lemma 1.26 to M = R2, we obtain a locally trivial fibration
p : Fn(R2) → Fn−1(R2) with fiber Fn−1,1(R2). This gives a short exact
sequence

1 −→ π1(Fn−1,1(R2)) −→ π1(Fn(R2))
p#−→ π1(Fn−1(R2)) −→ 1 , (1.9)

where we use the triviality of π2(Fn−1(R2)) (by Lemma 1.28) and the triviality
of π0(Fn−1,1(R2)) (since Fn−1,1(R2) is connected).

Under the isomorphisms π1(Fn(R2)) ∼= Pn and π1(Fn−1(R2)) ∼= Pn−1, the
homomorphism p# in (1.9) is identified with the forgetting homomorphism
fn : Pn → Pn−1 of Section 1.3.2. We can rewrite (1.9) as

1 −→ π1(Fn−1,1(R2)) −→ Pn
fn−→ Pn−1 −→ 1 . (1.10)

To compute π1(Fn−1,1(R2)) = π1(R2 − Qn−1), we take as Qn−1 ⊂ R2 the
set {(1, 0), (2, 0), . . . , (n − 1, 0)} and take a0 = (n, 0) as the base point of
R2− Qn−1. Clearly, the group π1(R2−Qn−1, a0) is a free group of rank n−1
with the free generators x1, . . . , xn−1, shown in Figure 1.13.

The homomorphism π1(Fn−1,1(R2)) → Pn = π1(Fn(R2)) in (1.10) is in-
duced by the inclusion R2 − Qn−1 = Fn−1,1(R2) ↪→ Fn(R2) assigning to a
point a ∈ R2−Qn−1 the tuple of n points ((1, 0), (2, 0), . . . , (n−1, 0), a). Com-
paring Figures 1.10 and 1.13, we observe that this homomorphism sends xi

to Ai,n for all i. Now the exact sequence (1.10) directly implies the claim of
Theorem 1.16. ��
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y

x
· · · · · ·

(1, 0) (i, 0) (n−1, 0)
a0 = (n, 0)

x1

xi

xn−1

Fig. 1.13. The generators x1, . . . , xn−1 of π1(R
2 − Qn−1, a0)

1.4.3 Configuration spaces of nonordered sets of points

Consider again the configuration space Fm,n(M) associated with integers
m ≥ 0, n ≥ 1 and a connected topological manifold M of dimension ≥ 2.
The symmetric group Sn acts on Fm,n(M) = Fn(M − Qm) by permutation
of the coordinates. Consider the quotient space

Cm,n(M) = Fm,n(M)/Sn .

Since the action of Sn on Fm,n(M) is fixed-point free, the natural projec-
tion Fm,n(M) → Cm,n(M) is a covering. Hence πi(Fm,n(M)) ∼= πi(Cm,n(M))
for all i ≥ 2, and Cm,n(M) is a connected topological manifold of dimen-
sion n dim(M). The points of Cm,n are nonordered sets of n distinct points
in M − Qm. The group π1(Cm,n(M)) is called the braid group of M − Qm

on n strings. We shall write Cn(M) for C0,n(M).
For M = R2, we recover in this way the Artin braid group Bn. In-

deed, Bn is canonically isomorphic to π1(Cn(R2), q), where q is the point
of Cn(R2) = C0,n(R2) represented by the unordered set

{(1, 0), (2, 0), . . . , (n, 0)} ⊂ R2 .

The isomorphism is obtained by assigning to a geometric braid b ⊂ R2 × I
the loop I → Cn(R2) sending t ∈ I into the unique n-point set bt ⊂ R2 such
that b ∩ (R2 × {t}) = bt × {t}.

Corollary 1.29. For any n ≥ 1, the braid group Bn is torsion free.

Proof. Lemma 1.28 with m = 0 implies that Fn(R2) is aspherical. There-
fore πi(Cn(R2)) = πi(Fn(R2)) = 0 for all i ≥ 2. The following classical
argument uses the integral homology of spaces and groups to deduce that
Bn

∼= π1(Cn(R2), q) is torsion free. If Bn contains a nontrivial finite cyclic
subgroup A, then there is a covering C̃ → Cn(R2) with π1(C̃) = A. We have
πi(C̃) = πi(Cn(R2)) = 0 for all i ≥ 2, so that C̃ is an Eilenberg–MacLane
space K(A, 1). The integral homology groups of C̃ satisfy Hi(C̃) = Hi(A) = A

for all odd i ≥ 1. This contradicts the fact that C̃ is a manifold of dimen-
sion 2n. ��



30 1 Braids and Braid Groups

Remark 1.30. Corollary 1.29 can be reformulated by saying that if α ∈ Bn

is an mth root of the trivial braid (i.e., αm = 1) with m ≥ 1, then α = 1. In
general, the roots of nontrivial braids are not unique. For example, we have
(σ1σ2)3 = (σ2σ1)3 although σ1σ2 �= σ2σ1. It is known that the mth root of a
braid is unique up to conjugacy; see [Gon03].

1.4.4 The space Cn(R2) as a space of polynomials

There is a beautiful description of the configuration space Cn(R2) in terms of
polynomials. Identifying R2 = C, we obtain

Fn(R2) = Fn(C) = {(u1, u2, . . . , un) ∈ Cn |ui �= uj for i �= j} .

Recall the elementary symmetric polynomial of n complex variables

pk(u) = (−1)k
∑

1≤i1<i2<···<ik≤n

ui1ui2 · · ·uik
,

where k = 1, 2, . . . , n. We consider p1, p2, . . . , pn as functions on Fn(C). These
functions are invariant under the action of Sn on Fn(C) by permutation of
coordinates and thus induce a map Cn(R2) = Cn(C) → Cn. This map is
a homeomorphism onto the set of all (z1, z2, . . . , zn) ∈ Cn such that the
polynomial tn + z1t

n−1 + z2t
n−2 + · · ·+ zn has no multiple roots. The inverse

map assigns to each such tuple (z1, z2, . . . , zn) the nonordered set of roots of
the polynomial tn + z1t

n−1 + z2t
n−2 + · · ·+ zn.

Exercise 1.4.1. Prove the following generalization of Lemma 1.28. Let M be
a connected surface with ∂M = ∅ and m ≥ 0 an integer (if M is homeo-
morphic to S2 or to the real projective plane RP 2, then we assume that
m > 0). Then Fm,n(M) and Cm,n(M) are aspherical for all n ≥ 1. (Hint:
The universal covering of any connected surface �= S2, RP 2 is homeomorphic
to R2 and therefore is contractible.) Deduce that the groups π1(Fm,n(M))
and π1(Cm,n(M)) are torsion free.

Exercise 1.4.2. Verify that π1(F2(S2)) = {1}. (Hint: Use the forgetting fi-
bration F2(S2) → F1(S2) = S2.) Deduce that π1(C2(S2)) ∼= Z/2Z.

Exercise 1.4.3. Verify that the map SO(3) → F3(S2) sending an element g
of the special orthogonal group SO(3) to the triple of vectors

(

g(1, 0, 0), g(0, 1, 0), g(0, 0, 1)
)

∈ S2

is a homotopy equivalence. Deduce that

π1(F3(S2)) ∼= Z/2Z and cardπ1(C3(S2)) = 12

(for a computation of π1(Cn(S2)) for all n, see [FV62]).
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Exercise 1.4.4. Let U ⊂ R2 be an open disk. Prove that the inclusion homo-
morphism π1(Cn(U), q) → π1(Cn(R2), q) is an isomorphism for any q ∈ Cn(U).

Exercise 1.4.5. Let b be a pure geometric braid in R2 × I and let b′ be a
“subbraid” formed by several strings of b. Prove that any isotopy of b′ in the
class of geometric braids extends to an isotopy of b in the class of geometric
braids. (Hint: Use Lemma 1.27.)

1.5 Braid automorphisms of free groups

In this section we realize the braid group Bn as a group of automorphisms of
the free group Fn on n generators x1, x2, . . . , xn.

1.5.1 Braid automorphisms of Fn

We say that an automorphism ϕ of Fn is a braid automorphism if it satisfies
the following two conditions:

(i) there is a permutation μ of the set {1, 2, . . . , n} such that ϕ(xk) is con-
jugate in Fn to xμ(k) for all k ∈ {1, 2, . . . , n};

(ii) ϕ(x1x2 · · ·xn) = x1x2 · · ·xn.

To give examples of braid automorphisms of Fn, observe that an endomor-
phism of Fn is entirely determined by its action on the generators x1, . . . , xn.
It is straightforward to check that the following formulas define two mutually
inverse braid automorphisms σ̃i and σ̃−1

i of Fn for i = 1, 2, . . . , n− 1:

σ̃i(xk) =

⎧

⎪
⎨

⎪
⎩

xk+1 if k = i,
x−1

k xk−1xk if k = i + 1,
xk otherwise,

σ̃−1
i (xk) =

⎧

⎪
⎨

⎪
⎩

xkxk+1x
−1
k if k = i,

xk−1 if k = i + 1,
xk otherwise.

Denote the set of braid automorphisms of Fn by B̃n. It follows from the
definitions that the inverse of a braid automorphism and the composition of
two braid automorphisms are again braid automorphisms. Therefore B̃n is a
group with respect to composition ϕψ = ϕ ◦ ψ for any ϕ, ψ ∈ B̃n.

We now state the main theorem relating braids to braid automorphisms.

Theorem 1.31. The formula σi → σ̃i with i = 1, 2, . . . , n− 1 defines a group
isomorphism Bn → B̃n.
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The image of β ∈ Bn under the isomorphism Bn → B̃n will be denoted
by β̃. In the proof of Theorem 1.31 we shall give a direct definition of β̃. Yet
another interpretation of β̃ will be given in Section 1.6.

Theorem 1.31 gives a solution to the word problem in Bn. For a group
defined by generators and relations, the word problem consists in finding an
algorithm that allows one to decide whether a given word in the generators
represents the neutral element of the group. By Theorem 1.31, a braid β ∈ Bn

is equal to 1 if and only if β̃ = id. The latter condition can be easily verified;
it suffices to check that β̃(xk) = xk for all k = 1, 2, . . . , n.

Abelianizing the action of Bn
∼= B̃n on Fn, we obtain an action of Bn on

the lattice Fn/[Fn, Fn] = Zn with basis ẋ1, . . . , ẋn determined by x1, . . . , xn.
The latter action is determined by the canonical projection π : Bn → Sn.
Indeed, the automorphism of Zn induced by σ̃i is the transposition of the
vectors ẋi, ẋi+1. Therefore for any β ∈ Bn, the automorphism of Zn induced
by β̃ acts as the permutation π(β) on the vectors ẋ1, . . . , ẋn.

1.5.2 Proof of Theorem 1.31

The braid relations for σ̃1, . . . , σ̃n−1 ∈ B̃n can be verified by a direct compu-
tation (they follow also from further arguments in this paragraph). Therefore
the formula σi → σ̃i defines a group homomorphism Bn → B̃n. We give
now another definition of this homomorphism. Recall the natural inclusion
ι : Bn → Bn+1, the group of pure braids Pn+1 ⊂ Bn+1, and the forgetting
homomorphism fn+1 : Pn+1 → Pn. If β ∈ Bn and u ∈ Un+1 = Ker fn+1, then
ι(β)u ι(β)−1 ∈ Pn+1 since Pn+1 is a normal subgroup of Bn+1. Moreover, it
follows from the definition of fn+1 that

ι(β)u ι(β)−1 ∈ Un+1 .

Therefore the formula u → ι(β)u ι(β)−1 defines an automorphism of Un+1.
We obtain thus a group homomorphism, ξ, from Bn to the group Aut Un+1

of automorphisms of Un+1. By Theorem 1.16, we can identify Un+1 with Fn

by setting xk = Ak,n+1 ∈ Un+1 for k = 1, 2, . . . , n. Under this identification,
ξ(β) = β̃ for all β ∈ Bn. Indeed, it suffices to verify this equality for the
generators σ1, . . . , σn−1 of Bn. This amounts to checking the equalities

ι(σi)Ak,n+1 ι(σi)−1 =

⎧

⎪
⎨

⎪
⎩

Ak+1,n+1 if k = i,
A−1

k,n+1 Ak−1,n+1 Ak,n+1 if k = i + 1,
Ak,n+1 otherwise.

These equalities are verified by drawing the corresponding braid diagrams and
checking that the diagrams on both sides present isotopic braids.

Let us prove the injectivity of the homomorphism β → β̃ : Bn → B̃n.
Consider a braid β ∈ Bn such that β̃ = 1. Abelianizing β̃, we obtain
the identity automorphism of Un+1/[Un+1, Un+1]. Hence, π(β) = 1, so that
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β ∈ Pn ⊂ Bn. By formula (1.6), β = β2β3 · · ·βn, where βj ∈ Uj ⊂ Pj ⊂ Pn

for j = 2, 3, . . . , n. If β �= 1, then take the largest i ≤ n such that βi �= 1. Then
β = β2β3 · · ·βi. Since β̃ = 1, we must have ξ(β) = 1, so that ι(β) ∈ Pn+1

commutes with all elements of Un+1 and in particular with Ai,n+1. Note that
β2, β3, . . . , βi−1 are braids on the leftmost i− 1 strings. Therefore they com-
mute with Ai,n+1. Hence βi commutes with Ai,n+1. By Corollary 1.23, the
braids A1,i, . . . , Ai−1,i, Ai,i+1, . . . , Ai,n+1 are free generators of a free sub-
group of Pn+1. We know that βi commutes with Ai,n+1 and lies in the group
Ui ⊂ Pi ⊂ Pn+1 generated by A1,i, . . . Ai−1,i. This is possible only if βi = 1,
which contradicts the choice of i. Hence, β = 1.

Let us prove the surjectivity of the homomorphism β → β̃ : Bn → B̃n.
Let ϕ be a nontrivial braid automorphism of Fn. Suppose that

ϕ(xk) = Ak xμ(k) A
−1
k ,

where k = 1, 2, . . . , n and Ak is a word in the alphabet x±1
1 , . . . , x±1

n . We can
always choose Ak so that the product Ak xμ(k) A−1

k is reduced, that is, does
not contain consecutive entries xrx

−1
r or x−1

r xr. By the definition of a braid
automorphism,

A1 xμ(1) A
−1
1 A2 xμ(2) A

−1
2 · · ·An xμ(n) A

−1
n = x1x2 · · ·xn . (1.11)

We claim that there exist j ∈ {1, 2, . . . , n−1} and a word A (possibly empty)
in x±1

1 , . . . , x±1
n satisfying one of the following two conditions:

(a) we have an equality of words Aj = Aj+1 xμ(j+1) A,
(b) we have an equality of words Aj+1 = Aj x−1

μ(j) A.

This claim will imply that ϕ lies in the image of the homomorphism β → β̃.
To see this, define the length of ϕ to be the sum of the letter lengths of the
words Ak xμ(k) A

−1
k over k = 1, 2, . . . , n. If (a) holds, then the homomorphism

ϕσ̃j = ϕ ◦ σ̃j : Fn → Fn

can be computed as follows. Both ϕ and ϕσ̃j have the same effect on xk for
k �= j, j + 1 and

ϕσ̃j(xj) = ϕ(xj+1) = Aj+1 xμ(j+1) A
−1
j+1 ,

ϕσ̃j(xj+1) = ϕ(x−1
j+1xjxj+1)

= Aj+1 x−1
μ(j+1) A

−1
j+1Aj xμ(j)A

−1
j Aj+1 xμ(j+1) A

−1
j+1

= Aj+1 x−1
μ(j+1) A

−1
j+1

×Aj+1 xμ(j+1) Axμ(j) A
−1 x−1

μ(j+1) A
−1
j+1Aj+1 xμ(j+1) A

−1
j+1

= Aj+1Axμ(j) A−1A−1
j+1 .

The word Aj+1A is shorter than Aj = Aj+1xμ(j+1)A. Therefore ϕσ̃j has
shorter length than ϕ. Similarly, if (b) holds, then ϕσ̃−1

j has shorter length
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than ϕ. This implies that ϕ can be reduced to the identity by repeated com-
position with appropriate σ̃j or σ̃−1

j . Thus, ϕ is a power product of the σ̃j .
Hence ϕ lies in the image of the homomorphism β → β̃.

It remains to prove the claim stated above. Let us call the term xμ(k)

appearing in the middle of Ak xμ(k) A
−1
k special. Each letter x1, . . . , xn appears

as a special term on the left-hand side of (1.11) exactly once. Equality (1.11)
implies that the left-hand side of (1.11) reduces to the right-hand side after all
possible free reductions (i.e., cancellations xrx

−1
r = x−1

r xr = 1). Suppose that
a special term xμ(k) is canceled with a letter x−1

μ(k) during these reductions.
This x−1

μ(k) cannot come from the word Ak xμ(k) A
−1
k , which was assumed to

be reduced. If this x−1
μ(k) comes from A−1

k−1, then we must have an equality of
words A−1

k−1 = B x−1
μ(k) A

−1
k for some word B. Then (a) holds for j = k−1 and

A = B−1. If the letter x−1
μ(k) canceling the special term xμ(k) comes from the

right of the special term xμ(k+1), then we must have (a) for j = k. Similarly,
if x−1

μ(k) comes from Ak+1 or from the left of the special term xμ(k−1), then (b)
holds. If the special terms on the left-hand side of (1.11) do not cancel with
other letters, then we must have μ(k) = k for all k, A1 and An are empty
words, and each pair A−1

k Ak+1 cancels out, so that Ak = Ak+1 for all k. Then
ϕ = id, which contradicts our choice of ϕ. ��

Remark 1.32. Theorem 1.31 yields another proof of the residual finiteness
of Bn (Corollary 1.21). Indeed, by the Baumslag–Smirnov theorem [Bau63],
[Smi63], the group of automorphisms of an arbitrary residually finite group is
residually finite. Since Fn is residually finite, its group of automorphisms and
all subgroups of this group are residually finite.

Exercise 1.5.1. For any integer r, let σ̃
(r)
i be the automorphism of Fn defined

by the same formulas as σ̃i with the only difference that

σ̃
(r)
i (xi+1) = x−r

i+1xix
r
i+1 .

Verify that σ̃
(r)
1 , σ̃

(r)
2 , . . . , σ̃

(r)
n−1 satisfy the braid relations. (The resulting rep-

resentation Bn → Aut(Fn) is faithful for all r �= 0; see [Shp01].)

Exercise 1.5.2. Let F2n be the free group on 2n generators a1, . . . , an,
b1, . . . , bn. For j = 1, . . . , 2n+1, define an automorphism σ′

j of F2n as follows.
For even j = 2i, set σ′

j(ai) = b−1
i ai, σ′

j(ak) = ak for k �= i, and σ′
j(bk) = bk

for all k. If j is odd, then σ′
j(ak) = ak for all k. Also, σ′

1(b1) = a1b1 and
σ′

1(bk) = bk for k > 1; σ′
2n+1(bn) = bnan and σ′

2n+1(bk) = bk for k < n.
For other odd j = 2i + 1, set σ′

j(bi) = biaia
−1
i+1, σ′

j(bi+1) = ai+1a
−1
i bi+1, and

σ′
j(bk) = bk for k �= i, i + 1. Verify that σ′

1, . . . , σ
′
2n+1 satisfy the braid rela-

tions. Check that the corresponding group homomorphism B2n+2 → Aut(F2n)
sends the center of B2n+2 to the identity. (For n = 1, we recover the formulas
of Exercise 1.1.10.)
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1.6 Braids and homeomorphisms

We discuss an approach to braids based on their interpretation as isotopy
classes of homeomorphisms of a 2-dimensional disk.

1.6.1 Mapping class groups

Let M be an oriented topological manifold (possibly with boundary ∂M).
Let Q be a finite (possibly empty) subset of the interior M◦ = M −∂M of M .
By a self-homeomorphism of the pair (M,Q) we mean a homeomorphism
f : M → M that fixes ∂M pointwise, fixes Q setwise, and preserves the
orientation of M . The first two conditions mean that f(x) = x for all x ∈ ∂M
and f(Q) = Q. Any self-homeomorphism of (M,Q) induces a permutation
on Q, which may be trivial or not. Note that if M is connected and has a
nonempty boundary, then any homeomorphism M → M fixing ∂M pointwise
automatically preserves the orientation of M .

Two self-homeomorphisms of (M,Q) are isotopic if they can be included in
a continuous one-parameter family of self-homeomorphisms of (M,Q). More
precisely, two self-homeomorphisms f0, f1 of (M,Q) are isotopic if they can
be included in a family {ft}t∈I of self-homeomorphisms of (M,Q) such that
the map M ×I → M sending (x, t) with x ∈ M, t ∈ I into ft(x) is continuous.
Such a family is called an isotopy of f0 into f1. It is clear that the isotopy of
self-homeomorphisms of (M,Q) is an equivalence relation and that isotopic
self-homeomorphisms induce the same permutation on Q.

The mapping class group M(M,Q) of (M,Q) is the group of isotopy classes
of self-homeomorphisms of (M,Q) with multiplication determined by compo-
sition: fg = f ◦ g for f, g ∈ M(M,Q). Set M(M) = M(M, ∅).

An important example, in which the group M(M) can be easily com-
puted, is that of a ball. For a closed ball D = Dn of dimension n ≥ 0, we
have M(D) = {1}. This follows from the classical Alexander–Tietze theorem:
any self-homeomorphism of D is isotopic to the identity in the class of self-
homeomorphisms of D. Here is a proof of this theorem. We can assume D to
be the unit ball in Rn centered at the origin 0. Denote the Euclidean norm
of a vector z ∈ Rn by |z|. For any self-homeomorphism h of D, the formula

ht(z) =

{

z if t ≤ |z| ≤ 1,
t h(z/t) if |z| < t

defines an isotopy {ht : D → D}t∈I of h0 = id to h1 = h. Note that if h(0) = 0,
then ht(0) = 0 for all t ∈ I. Therefore we also have M(D, {0}) = {1}.

The study of the mapping class groups leads to a vast and ramified theory;
see [Iva02] for a recent survey of the mapping class groups of surfaces. We shall
focus on one series of mapping class groups arising when M is a 2-disk and Q
is an n-point subset of M◦, where n = 1, 2, . . .. It turns out that the resulting
group M(M,Q) is nothing but the braid group Bn. The rest of this section is
devoted to an exact formulation of this claim.
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1.6.2 Half-twists

Let M be an oriented surface (possibly with boundary) and let Q be a finite
subset of M◦. By a spanning arc on (M,Q), we mean a subset of M homeo-
morphic to I = [0, 1] and disjoint from Q ∪ ∂M except at its two endpoints,
which should lie in Q. Let us stress that all arcs considered here are simple,
i.e., have no self-intersections.

Let α ⊂ M be a spanning arc on (M,Q). The half-twist

τα : (M,Q) → (M,Q)

is obtained as the result of the isotopy of the identity map id : M → M
rotating α in M about its midpoint by the angle π in the direction provided
by the orientation of M . The half-twist τα is the identity outside a small
neighborhood of α in M . Clearly, τα(α) = α, τα(Q) = Q, and τα induces a
transposition on Q permuting the endpoints of α. Note that rotating α as
above but in the opposite direction, we obtain τ−1

α .
For completeness, we give a more formal definition of τα. Let us identify a

small neighborhood U of α with the open unit disk {z ∈ C | |z| < 1} so that
α = [−1/2, 1/2] and the orientation in M corresponds to the counterclockwise
orientation in C. The homeomorphism τα : M → M is the identity outside U ,
sends any z ∈ C with |z| ≤ 1/2 to −z, and sends any z ∈ C with 1/2 ≤ |z| < 1
to exp(−2πi|z|)z. Clearly, τα ∈ M(M,Q) does not depend on the choice of U .
The action of τα on a curve on M transversely meeting α in one point is shown
in Figure 1.14.

α
−→

Fig. 1.14. The action of τα on a transversal curve

We state a few properties of half-twists.

(i) If f : (M,Q) → (M ′, Q′) is an orientation-preserving homeomorphism
of two pairs as above and α is a spanning arc on (M,Q), then f(α) is a
spanning arc on (M ′, Q′) and τf(α) = fταf−1 ∈ M(M ′, Q′).
This property is obvious. Informally speaking, it says that applying the
construction of a half-twist on two copies of the same surface, we obtain
two copies of the same homeomorphism.

(ii) If two spanning arcs α, α′ on (M,Q) are isotopic in the class of spanning
arcs on (M,Q) (in particular they must have the same endpoints), then
τα = τα′ in M(M,Q).
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Indeed, if α, α′ are isotopic, then there is a self-homeomorphism f
of (M,Q) that is the identity on Q, is isotopic to the identity, and sends α
onto α′. By (i),

τα′ = τf(α) = fταf−1 .

Since f is isotopic to the identity, fταf−1 = τα.
(iii) A self-homeomorphism of (M,Q) induces a self-homeomorphism of M by

forgetting Q. The resulting group homomorphism M(M,Q) → M(M)
sends τα to 1. This is clear from the definitions.

(iv) If α, β are disjoint spanning arcs on (M,Q), then

τατβ = τβτα ∈ M(M,Q) . (1.12)

This is obtained by using disjoint neighborhoods of α, β in the construc-
tion of τα, τβ .

(v) For any two spanning arcs α, β on (M,Q) that share one common end-
point and are disjoint otherwise,

τατβτα = τβτατβ ∈ M(M,Q) . (1.13)

To prove this fundamental formula, we begin with the equality

τα(β) = τ−1
β (α) ,

which can be verified by drawing the arcs τα(β) and τ−1
β (α). The equality

here is understood as isotopy in the class of spanning arcs on (M,Q).
By (ii),

ττα(β) = ττ−1
β (α) .

By (i), this implies τατβτ
−1
α = τ−1

β τατβ . This is equivalent to (1.13).

1.6.3 The isomorphism Bn
∼= M (D, Qn)

For n ≥ 1, let Qn ⊂ R2 be the n-point set {(1, 0), (2, 0), . . . , (n, 0)}. Let D
be a closed Euclidean disk in R2 containing the set Qn in its interior. We
orient D counterclockwise. For every i = 1, 2, . . . , n− 1, consider the arc

αi = [i, i + 1]× {0} ⊂ D .

This arc meets Qn only at its endpoints and hence gives rise to a half-twist

ταi ∈ M(D,Qn) .

Formulas (1.12) and (1.13) imply that τα1 , . . . , ταn−1 satisfy the braid relations
of Section 1.1. By Lemma 1.2, there is a group homomorphism

η : Bn → M(D,Qn)

such that η(σi) = ταi for all i = 1, . . . , n− 1.
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Recall the group of braid automorphisms B̃n defined in Section 1.5.1.
We now define a certain group homomorphism ρ : M(D,Qn) → B̃n. Pick
a base point d ∈ ∂D as in Figure 1.15. It is clear that the fundamental group
π1(D − Qn, d) is a free group Fn of rank n with generators x1, x2, . . . , xn

represented by the loops X1, X2, . . . , Xn shown in Figure 1.15. Every self-
homeomorphism f of (D,Qn) can be restricted to D −Qn and yields in this
way a self-homeomorphism of D −Qn. The latter sends d ∈ ∂D to itself and
induces a group automorphism ρ(f) of Fn = π1(D − Qn, d). This automor-
phism depends only on the isotopy class of f : if two self-homeomorphisms
of (D,Qn) are isotopic, then their restrictions to D−Qn are isotopic relative
to ∂D, and therefore they induce the same automorphism of Fn.

d

X1 Xi Xn

· · · · · ·

Fig. 1.15. The loops X1, . . . , Xn on D − Qn

Let us verify that ρ(f) is a braid automorphism of Fn. The loop Xk in
Figure 1.15 can be deformed in D−Qn into a small loop encircling clockwise
the point (k, 0). The homeomorphism f maps the latter loop onto a small loop
encircling clockwise the point (μ(k), 0) for some μ(k) ∈ {1, 2, . . . , n}. This
small loop can be deformed into the loop Xμ(k) in D − Qn. Hence, the loop
f(Xk) can be deformed into Xμ(k) in D−Qn. (Under the deformation, the base
point f(d) = d may move in D−Qn.) This implies that the homotopy classes
of these two loops ρ(f)(xk) and xμ(k) are conjugate in π1(D − Qn, d). This
verifies Condition (i) in the definition of a braid automorphism. Condition (ii)
follows from the fact that the product x1x2 · · ·xn is represented by the loop ∂D
based at d. This loop is preserved by f pointwise, and therefore its homotopy
class in π1(D −Qn, d) is invariant under ρ(f).

We conclude that the formula f → ρ(f) defines a map ρ from M(D,Qn)
to B̃n. This map is a group homomorphism, since

ρ(fg) = ρ(f ◦ g) = ρ(f) ◦ ρ(g) = ρ(f) ρ(g) ,

for any f, g ∈ M(D,Qn).
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We can now state the main theorem relating braids to homeomorphisms.

Theorem 1.33. For any n ≥ 1, the homomorphisms η and ρ are isomor-
phisms. The following diagram is commutative:

Bn

η

��

β �→β̃

������������

M(D,Qn)
ρ

�� B̃n

(1.14)

where β → β̃ : Bn → B̃n is the isomorphism defined in Section 1.5.

This fundamental theorem allows us to identify Bn with the mapping class
group M(D,Qn). We have by now three different geometric interpretations
of Bn: via geometric braids on n strings, via the configuration space of n points
in the plane, and via the group of homeomorphisms of a 2-disk with n dis-
tinguished points. It is this variety of geometric facets of Bn that makes this
group so appealing.

The commutativity of the diagram (1.14) means that β̃ = ρ(η(β)) for any
β ∈ Bn. This can be verified at once. Since ρ, η, and β → β̃ are group homo-
morphisms, it suffices to verify this equality for the generators σ1, . . . , σn−1.
We need to check that ρ(ταi) = σ̃i for i = 1, 2, . . . , n − 1. The formulas
ρ(ταi)(xk) = xk for k �= i, i + 1 and ρ(ταi)(xi) = xi+1 follow directly from
the definition of ταi . The equality ρ(ταi)(xi+1) = x−1

i+1xixi+1 can be verified
directly or deduced from the formula ρ(ταi)(x1 · · ·xn) = x1 · · ·xn. Hence, we
have ρ(ταi) = σ̃i. In view of the commutativity of the diagram (1.14) and The-
orem 1.31, to prove Theorem 1.33 we need only show that η is an isomorphism.
This will be done in Section 1.7.

It is clear that for all i = 1, . . . , n − 1, the half-twist ταi : D → D is a
diffeomorphism with respect to the standard smooth structure on D induced
by that on R2. Integral powers of diffeomorphisms and their products are
also diffeomorphisms. Therefore the surjectivity of η implies the following
assertion.

Corollary 1.34. An arbitrary self-homeomorphism of the pair (D,Qn) is iso-
topic in the class of self-homeomorphisms of this pair to a diffeomorphism
(D,Qn) → (D,Qn).

Exercise 1.6.1. Let M,Q be as in Section 1.6.2.
(a) Consider an embedded r-gon P ⊂ M (with r ≥ 3) meeting Q precisely

in its vertices. Moving along ∂P in the direction provided by the orientation
of M , we meet consecutively r edges, say α1, α2, . . . , αr, of P . Each αi is a
spanning arc on (M,Q). Prove that

τα1τα2 · · · ταr−1 = τα2τα3 · · · ταr .

(Hint: For r = 3 rewrite as τ−1
α2

τα1τα2 = τα3 ; for r ≥ 4 use induction.)
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(b) Consider r ≥ 2 spanning arcs on (M,Q) with one common endpoint
a ∈ Q and disjoint otherwise. Moving around a in the direction given by the
orientation of M , denote these arcs by α1, α2, . . . , αr. Prove that

τ−1
α1

τα2τα1 = τα2τα1τ
−1
α2

commutes with ταi for 3 ≤ i ≤ r. Deduce that

τα1β τα2τα1 = τα2τα1β τα2

for any element β of the group generated by τα3 , τα4 , . . . , ταr .

Exercise 1.6.2. Prove that M(S1) = {1}. (Hint: Composing an arbitrary
self-homeomorphism f of S1 with a rotation of S1 into itself, we can assume
that f has a fixed point. Cutting out S1 at a fixed point of f , we obtain
a self-homeomorphism of a closed interval, which, as we know, is isotopic to
the identity.)

1.7 Groups of homeomorphisms vs. configuration spaces

We discuss groups of homeomorphisms of manifolds, their relations to config-
uration spaces, and applications to braids.

1.7.1 Groups of homeomorphisms

Let M be a compact connected oriented topological manifold (possibly
with boundary) and let Q be a finite subset of M◦ = M − ∂M . Denote
by Top(M,Q) the group of all self-homeomorphisms of (M,Q), i.e., the group
of all orientation-preserving self-homeomorphisms of M that fix ∂M pointwise
and fix Q setwise. The multiplication in Top(M,Q) is given by composition:
fg = f ◦ g for f, g ∈ Top(M,Q). We provide Top(M,Q) with the compact-
open topology. For completeness, we recall the definition and basic properties
of this topology, referring for proofs to [FR84, Sect. 2.7 of Chap. 1 and Sect. 2
of Chap. 4] or [Kel55]. For a compact set K ⊂ M and an open set U ⊂ M ,
put

N(K,U) = {f ∈ Top(M,Q) | f(K) ⊂ U} .

Such sets N(K,U) as well as the intersections of a finite number of such
sets and arbitrary unions of such intersections are declared open subsets
of Top(M,Q). This defines the compact-open topology on Top(M,Q) and
makes Top(M,Q) into a topological group. Here, the inversion f → f−1

in Top(M,Q) is continuous because of the obvious equality

{f−1 | f ∈ N(K,U)} = N(M − U,M −K) .

It is here that we need the compactness of M .
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It is known that a map f from a topological space X to Top(M,Q) is
continuous if and only if the map X ×M → M sending (x, y) ∈ X ×M to
f(x)(y) is continuous. Applying this to X = I, we conclude that two self-
homeomorphisms of (M,Q) are isotopic if and only if they can be connected
by a path in Top(M,Q), i.e., if and only if they lie in the same connected
component of Top(M,Q). Therefore,

M(M,Q) = π0(Top(M,Q)) . (1.15)

Set Top(M) = Top(M, ∅). The obvious embedding Top(M,Q) ↪→ Top(M)
makes Top(M,Q) into a closed subgroup of the topological group Top(M).

The group Top(M) is intimately related to the configuration spaces of
nonordered points of M◦ introduced in Section 1.4.3. For n ≥ 1, set

Cn = Cn(M◦) = Fn(M◦)/Sn .

To describe the relation between Top(M) and Cn, pick a set Q ⊂ M◦ con-
sisting of n points. We define an evaluation map e = eQ : Top(M) → Cn by
e(f) = f(Q), where f ∈ Top(M). It is easy to deduce from the definitions
that e is a surjective continuous map.

Lemma 1.35. The map e : Top(M) → Cn is a locally trivial fibration with
fiber Top(M,Q).

Proof. Let Fn = Fn(M◦) be the configuration space of n ordered points
in M◦. We can factor e as the composition of a map c : Top(M) → Fn

with the covering Fn → Cn. To construct c, fix an order in the set Q and
define c by c(f) = f(Q), where f ∈ Top(M) and the order in f(Q) is in-
duced by the one in Q. To prove the lemma, it suffices to prove that c is a
locally trivial fibration. The proof of the latter is very similar to the proof
of Lemma 1.26. Let us prove the local triviality of c in a neighborhood of a
point u0 = (u0

1, . . . , u
0
n) ∈ Fn. For each i = 1, 2, . . . , n, pick an open neigh-

borhood Ui ⊂ M◦ of u0
i such that its closure U i is a closed ball with interior

Ui. Since the points u0
1, . . . , u

0
n are distinct, we can assume that U1, . . . , Un

are mutually disjoint. Then U = U1 × U2 × · · · × Un is a neighborhood of u0

in Fn. We shall prove that the restriction of c to U is a trivial bundle. For
every i = 1, 2, . . . , n, there is a continuous map θi : Ui × U i → U i such that
setting θu

i (v) = θi(u, v), we obtain a homeomorphism θu
i : U i → U i that sends

u0
i to u and fixes the sphere ∂U i pointwise (see the proof of Lemma 1.26).

For u = (u1, . . . , un) ∈ U , we define a homeomorphism θu : M → M by
θu(v) = θui

i (v) if v ∈ Ui with i = 1, 2, . . . , n and θu(v) = v if v ∈ M−
⋃

i Ui. It
is clear that θu : M → M sends u0

1, . . . , u
0
n to u1, . . . , un, respectively. Observe

that c−1(u0) is the closed subgroup of Top(M) consisting of all f ∈ Top(M)
such that f(u0

i ) = u0
i for i = 1, 2, . . . , n. The formula (u, f) → θuf de-

fines a homeomorphism U × c−1(u0) → c−1(U) commuting with the pro-
jections to U . The inverse homeomorphism sends any g ∈ c−1(U) to the pair
(c(g), (θc(g))−1g) ∈ U × c−1(u0). ��
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Remark 1.36. Two elements of Top(M) have the same image under the eval-
uation map e if and only if they lie in the same left coset of Top(M,Q) in
Top(M). Although we shall not need it, note that e induces a homeomorphism
from the quotient homogeneous space Top(M)/Top(M,Q) onto Cn.

1.7.2 Parametrizing isotopies

We show here that geometric braids naturally give rise to one-parameter fam-
ilies of homeomorphisms of the 2-disk. This construction will be instrumental
in the sequel.

Let n ≥ 1 and D ⊂ R2 be a closed Euclidean disk containing the set

Q = Qn = {(1, 0), (2, 0), . . . , (n, 0)} (1.16)

in its interior. An isotopy {ft : D → D}t∈I in the class of self-homeomorphisms
of D is normal if f0(Q) = Q and f1 = idD. In other words, a normal isotopy
is a path in Top(D) leading from a point of Top(D,Q) to the identity homeo-
morphism idD ∈ Top(D). For any normal isotopy {ft : D → D}t∈I , the set

⋃

t∈I

(ft(Q), t) ⊂ R2 × I

is a geometric braid on n strings. We say that the isotopy {ft}t∈I parametrizes
this geometric braid.

Lemma 1.37. For any geometric braid b ⊂ D◦ × I on n strings, there is a
normal isotopy parametrizing b.

Proof. Consider the evaluation map e = eQ : Top(D) → Cn = Cn(D◦) sending
f ∈ Top(D) to f(Q). As already observed in Section 1.4.3, the braid b gives
rise to a loop f b : I → Cn sending any t ∈ I into the unique n-point subset bt

of R2 such that b ∩ (R2 × {t}) = bt × {t}. This loop begins and ends at the
point q = e(idD) ∈ Cn represented by Q. By Lemma 1.35 and the homotopy
lifting property of locally trivial fibrations (see Appendix B), the loop f b lifts
to a path f̂ b : I → Top(D) beginning at a point of e−1(q) = Top(D,Q) and
ending at idD. The path f̂ b is a normal isotopy and the equality ef̂ b = f b

means that this isotopy parametrizes b. ��

1.7.3 Proof of Theorem 1.33

Let D, Q = Qn, Cn = Cn(D◦), e = eQ : Top(D) → Cn, and q = e(idD) ∈ Cn

be the same objects as in Section 1.7.2. By Lemma 1.35, e is a locally trivial
fibration with e−1(q) = Top(D,Q). This fibration induces a mapping

∂ : π1(Cn, q) → π0(Top(D,Q)) = M(D,Q) .
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Recall the definition of ∂ following Appendix B. Let β ∈ π1(Cn, q) be repre-
sented by a loop f : I → Cn beginning and ending at q. By the homotopy lifting
property of e, this loop lifts to a path f̂ : I → Top(D) beginning at a point of
e−1(q) = Top(D,Q) and ending at idD. Then ∂(β) = [f̂(0)] ∈ π0(Top(D,Q))
is the homotopy class of f̂(0). That ∂(β) depends only on β can be seen di-
rectly: if f ′ is another loop representing β, then a homotopy between f, f ′ lifts
to a homotopy between arbitrary lifts f̂ , f̂ ′ in Top(D). This homotopy yields
a path in Top(D,Q) connecting f̂(0) to f̂ ′(0). Hence [f̂(0)] = [f̂ ′(0)].

The mapping ∂ : π1(Cn, q) → M(D,Q) is a group homomorphism. Indeed,
consider two loops f, g in Cn beginning and ending at q and representing
β, γ ∈ π1(Cn, q), respectively. Let f̂ , ĝ : I → Top(D) be lifts of f, g ending
at idD. Observe that for any t ∈ I,

e (f̂(t) ĝ(0)) = f̂(t) ĝ(0)(Q) = f̂(t)(Q) = f(t) .

Therefore the path t → f̂(t) ĝ(0) : I → Top(D) is a lift of f ending at
f̂(1) ĝ(0) = ĝ(0). The product of this path with ĝ is a lift of fg : I → Cn

ending at idD and beginning at f̂(0) ĝ(0). Thus,

∂(βγ) = [f̂(0) ĝ(0)] = [f̂(0)] [ĝ(0)] = ∂(β) ∂(γ) .

Recall that Bn = π1(Cn, q); see Exercise 1.4.4. The homomorphism
∂ : Bn = π1(Cn, q) → M(D,Q) can be described in terms of parametriz-
ing isotopies as follows. If b is a geometric braid representing β ∈ Bn, then
for any normal isotopy {ft : D → D}t∈I parametrizing b as in Section 1.7.2,
∂(β) ∈ M(D,Q) is the isotopy class of f0 : (D,Q) → (D,Q).

We claim that ∂ = η, where η : Bn → M(D,Q) is the homomorphism
introduced in Section 1.6.3. It suffices to verify that ∂ and η coincide on the
generators σi, where i = 1, 2, . . . , n− 1. Since η(σi) = ταi , we need only check
that ∂(σi) = ταi . Let {gt : D → D}t∈I be the isotopy of the identity map
g0 = id : D → D into g1 = ταi obtained by rotating αi in D about its
midpoint counterclockwise. Then

{ft = g1−t : D → D}t∈I

is an isotopy of f0 = τα into f1 = id. It is easy to see that the geometric braid
⋃

t∈I

(ft(Q), t) ⊂ R2 × I

represents σi ∈ Bn. Thus, ∂(σi) = [f0] = ταi .
By the Alexander–Tietze theorem (Section 1.6.1), any point of the set

Top(D,Q) ⊂ Top(D) can be connected to idD ∈ Top(D) by a path in Top(D).
This implies that the homomorphism

η = ∂ : π1(Cn, q) → π0(Top(D,Q)) = M(D,Q)

is surjective. The commutativity of the diagram (1.14) and Theorem 1.31
imply that η is injective. Therefore η is an isomorphism. ��
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Remark 1.38. The proof of the Alexander–Tietze theorem in Section 1.6.1
actually shows that the point {idD} is a deformation retract of Top(D).
Therefore, πi(Top(D)) = 0 for all i ≥ 0 and the homotopy sequence of
the fibration e : Top(D) → Cn(D◦) directly implies that the homomorphism
∂ : π1(Cn, q) → π0(Top(D,Q)) is an isomorphism.

1.7.4 Applications

We state two further applications of the techniques introduced above.

Theorem 1.39. For any geometric braid b on n strings, the topological type
of the pair (R2 × I, b) depends only on n.

Proof. Pick a disk D ⊂ R2 such that b ⊂ D◦ × I. Then the set Q = Qn

defined by (1.16) lies in D◦. By Lemma 1.37, there is a normal isotopy
{ft : D → D}t∈I parametrizing b. The formula (x, t) → (ft(x), t) defines
a homeomorphism F : D × I → D × I mapping Q × I onto b and keeping
∂D × I pointwise. Extending F by the identity on (R2 −D) × I, we obtain
a homeomorphism R2 × I → R2 × I mapping Q × I onto b. Note that this
homeomorphism is level-preserving in the sense that it commutes with the
projection to I. ��

Theorem 1.40. Every isotopy of a geometric braid in R2 × I extends to an
isotopy of R2 × I in itself constant on the boundary.

Proof. Set T = R2 × I. Let b ⊂ T be a geometric braid on n strings and let
F : b × I → T be an isotopy of b. Thus, for each s ∈ I, the map Fs : b → T
sending x ∈ b to F (x, s) is an embedding whose image is a geometric braid
and F0 = idb. We shall construct a (continuous) map G : T × I → T such
that for each s ∈ I, the map Gs : T → T sending x ∈ T to G(x, s) is a
homeomorphism fixing ∂T pointwise and extending Fs, and G0 = idT .

Let Q ⊂ R2 be the set {(1, 0), (2, 0), . . . , (n, 0)} and let D be a closed
Euclidean disk in R2 such that Q ⊂ D◦ and F (b × I) ⊂ D◦ × I. For any
s, t ∈ I, denote by f(s, t) the unique n-point subset of D◦ such that

Fs(b) ∩ (D × {t}) = f(s, t)× {t} .

The formula (s, t) → f(s, t) defines a continuous map f : I2 → Cn(D◦).
Clearly, f(s, 0) = f(s, 1) = Q for all s ∈ I and b =

⋃

t∈I f(0, t)× {t}.
Consider the evaluation fibration e = eQ : Top(D) → Cn(D◦). By the

homotopy lifting property of e, the loop t → f(0, t) lifts to a path t → f̂(0, t)
in Top(D) ending at idD and beginning at a point of Top(D,Q). By the
homotopy lifting property of e with respect to the pair (I, ∂I), the latter
path extends to a lift f̂ : I2 → Top(D) of f such that f̂(s, 1) = idD and
f̂(s, 0) = f̂(0, 0) for all s ∈ I.
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We define a homeomorphism g(s, t) : R2 → R2 to be the identity on
R2−D and to be f̂(s, t)◦(f̂(0, t))−1 on D. It is clear that g(s, t) is a continuous
function of s, t ∈ I and

g(0, t) = g(s, 0) = g(s, 1) = id

for all s, t ∈ I. We have

g(s, t)(f(0, t)) = g(s, t)(f̂(0, t)(Q)) = f̂(s, t)(Q) = f(s, t) .

It is now straightforward to check that the map G : T ×I → T sending (a, t, s)
to (g(s, t)(a), t) for a ∈ R2, s, t ∈ I has all the required properties. ��

Exercise 1.7.1. Let f be a self-homeomorphism of the 2-sphere S2 fixing a
point a ∈ S2 and isotopic to the identity id : S2 → S2. Prove that f is isotopic
to the identity in the class of self-homeomorphisms of S2 fixing a.

Solution. Applying Lemma 1.35 to M = S2, Q = {a}, n = 1, we ob-
tain a locally trivial fibration Top(S2) → S2 with fiber Top(S2, {a}). Since
π0(Top(S2, {a})) = M(S2, {a}) and π0(Top(S2)) = M(S2), this fibration
yields an exact sequence

π1(S2) → M(S2, {a}) → M(S2) .

Since π1(S2) = 0, the kernel of the homomorphism M(S2, {a}) → M(S2) is
trivial. This implies the required property of self-homeomorphisms of S2.

Notes

The definition of braids and braid groups as well as a considerable part of the
results of this chapter are due to Emil Artin [Art25], [Art47a], [Art47b]. This
includes, among other things, the standard presentation of braid groups by
generators and relations and the theory of braid automorphisms of Section 1.5.
It should be noted that the braid automorphisms of free groups were studied
by Hurwitz [Hur91] in 1891; see also [Mag72], [Bri88].

The generators Ai,j of Pn and the defining relations for them were intro-
duced by Burau [Bur32]; see also [Mar45], [Art47a], [Cho48]. Theorem 1.16 is
due to Fröhlich [Frö36], Markov [Mar45], Artin [Art47a]. The combed form of
braids was discovered by Markov [Mar45] and Artin [Art47a]. Theorem 1.24
was obtained by Artin [Art47a] and Chow [Cho48]. Corollary 1.25 is due to
Artin [Art47a].

The theory of braids from the viewpoint of configuration spaces was first
studied by Fox and Neuwirth [FoN62] and Fadell and Neuwirth [FaN62]. Defi-
nitions and results of Section 1.4 are taken from [FaN62]. The interpretation
of Cn(R2) in terms of polynomials was pointed out by Arnold [Arn70].
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Theorem 1.40 is due to Artin [Art47a].

Exercises 1.1.4 and 1.1.5 are due to Artin [Art25], [Art47b]. Exercises 1.1.6
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due to Gorin. Exercise 1.1.10 is due to Kassel and Reutenauer [KR07] (see
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Exercise 1.4.3 is due to Fadell and Van Buskirk [FV62]. Exercise 1.5.1 is due
to Wada [Wad92]. Exercise 1.6.1 is due to Sergiescu [Ser93].
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Braids, Knots, and Links

In this chapter we study the relationship between braids, knots, and links.
Throughout the chapter, we denote by I the closed interval [0, 1] in R.

2.1 Knots and links in three-dimensional manifolds

We briefly discuss the notions from knot theory needed for the sequel. For
detailed expositions of knot theory, the reader is referred to the mono-
graphs [BZ85], [Kaw96], [Mur96], [Rol76].

2.1.1 Basic definitions

Let M be a 3-dimensional topological manifold, possibly with boundary ∂M .
A geometric link in M is a locally flat closed 1-dimensional submanifold of M .
Recall that a manifold is closed if it is compact and has an empty boundary.
A closed 1-dimensional submanifold L ⊂ M is locally flat if every point of L
has a neighborhood U ⊂ M such that the pair (U,U ∩L) is homeomorphic to
the pair (R3, R×{0}×{0}). This condition implies that L ⊂ M◦ = M −∂M
and excludes all kinds of locally wild behavior of L inside M◦.

Being a closed 1-dimensional manifold, a geometric link in M must consist
of a finite number of components homeomorphic to the standard unit circle

S1 = {z ∈ C | |z| = 1} .

A space homeomorphic to S1 is called a (topological) circle. A geometric link
consisting of n ≥ 1 circles is called an n-component link. For example, the
boundary of n disjoint embedded 2-disks in M◦ is a trivial n-component link
in M .

One-component geometric links are called geometric knots . Examples of
nontrivial knots and links in R3 are shown in Figure 2.1, which presents the
trefoil knot, the figure-eight knot, and the Hopf link.

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 2,
c© Springer Science+Business Media, LLC 2008
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Fig. 2.1. Knots and links in R3

Two geometric links L and L′ in M are isotopic if L can be deformed
into L′ by an isotopy of M into itself. Here by an isotopy of M (into itself),
we mean a continuous family of homeomorphisms {Fs : M → M}s∈I such
that F0 = idM : M → M . The continuity of this family means that the
mapping I → Top(M), s → Fs is continuous or, equivalently, the mapping

M × I → M , (x, s) → Fs(x) ,

where x ∈ M, s ∈ I, is continuous; see Section 1.7.1. An isotopy {Fs}s∈I of M
is said to be an isotopy of L into L′ if F1(L) = L′. The links L and L′ are
isotopic if there is an isotopy of L into L′. Isotopic geometric links have the
same number of components. In other words, the number of components is an
isotopy invariant of geometric links.

The relation of isotopy is obviously an equivalence relation in the class of
geometric links in M . The corresponding equivalence classes are called links
in M . The links having only one component are called knots . The ultimate
goal of knot theory is a classification of knots and links.

If M has a smooth structure, then any geometric link in M is isotopic
to a geometric link whose underlying 1-dimensional manifold is a smooth
submanifold of M . Therefore working with links in smooth 3-dimensional
manifolds, we can always restrict ourselves to smooth representatives.

2.1.2 Link diagrams

The technique of braid diagrams discussed in Chapter 1 can be extended to
links. We shall restrict ourselves to the case in which the ambient 3-manifold is
the product of a surface Σ (possibly with boundary ∂Σ) with I. For n ≥ 1, a
link diagram on Σ with n components is a set D ⊂ Σ−∂Σ obtained as a union
of n circles with a finite number of intersections and self-intersections such that
each (self-)intersection is a meeting point of exactly two branches of D, one of
these branches being distinguished and called undergoing, the other one being
overgoing. In a neighborhood of a point, D looks like a straight line in R2 or
like the set {(x, y) |xy = 0} ⊂ R2, where one of the branches x = 0, y = 0
is distinguished. The circles forming D are called the components of D. The
(self-)intersections of these circles are called crossings or double points of D.
Note that three components of D never meet in a point.
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The branch of a link diagram going under a crossing is graphically repre-
sented by a broken line. The pictures in Figure 2.1 can be considered as link
diagrams in the plane.

Each link diagram D on a surface Σ presents a link

L(D) ⊂ Σ × I.

It is obtained from D ⊂ Σ = Σ × {1/2} by pushing the undergoing branches
into Σ × [1/2, 1). The link L(D) is well defined up to isotopy.

Observe that any link in Σ × I can be presented by a link diagram on Σ.
To see this, represent the given link by a geometric link L ⊂ Σ × I whose
projection to Σ has only double transversal crossings. At each of the crossings
choose the undergoing branch to be the one that comes from the subarc of L
with bigger I-coordinate. This gives a link diagram on Σ representing the
isotopy class of L.

Two link diagrams D and D′ on Σ are isotopic if there is an isotopy of Σ
into itself transforming D into D′. More precisely, D and D′ are isotopic if
there is a continuous family of homeomorphisms {Fs : Σ → Σ}s∈I such that
F0 = idΣ and F1(D) = D′. It is understood that F1 maps the crossings of D to
the crossings of D′, preserving the under/overgoing data. Clearly, if D and D′

are isotopic, then L(D) and L(D′) are isotopic in Σ × I.
The transformations of link diagrams Ω1,Ω2,Ω3 shown in Figures 1.5a,

1.5b, and 2.2 below (as well as the inverse transformations) are called Reide-
meister moves . These moves affect only a part of the diagram lying in a disk
in Σ and preserve the rest of the diagram. Note that to apply these moves, we
identify the disk in Σ with a disk in the plane of the pictures. If Σ is oriented,
then we use only identifications transforming the orientation of Σ into the
counterclockwise orientation in the plane of the pictures. For nonoriented Σ,
we use arbitrary identifications.

In comparison to the theory of braid diagrams, we need here two additional
moves Ω1 shown in Figure 2.2. These moves add a “curl” or “kink” to the
diagram. The inverse moves Ω−1

1 remove such kinks from link diagrams. On
the other hand, in the setting of link diagrams, one Ω2-move is sufficient: the
two Ω2-moves in Figure 1.5a can be obtained from each other by an isotopy
in Σ rotating a small 2-disk in Σ affected by the move to an angle of 180◦.

The classical Reidemeister theorem for link diagrams on R2 generalizes to
diagrams on Σ: two link diagrams on Σ represent isotopic links in Σ × I if
and only if these diagrams are related by a finite sequence of isotopies and
Reidemeister moves Ω±1

1 ,Ω±1
2 ,Ω±1

3 . Indeed, any isotopy of a geometric link
in Σ × I may be split as a composition of a finite number of “local” isotopies
changing the link only inside a cylinder of type U × I, where U is a small
open disk in Σ. Since the pair (U × I, U × {1/2}) is homeomorphic to the
pair (R2× I, R2×{1/2}), we can apply the standard Reidemeister theory to
the part of the link diagram lying in U . This implies that under such a local
isotopy the diagram is changed via a sequence of moves Ω±1

1 ,Ω±1
2 ,Ω±1

3 .
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Ω1−→ Ω1−→

Fig. 2.2. The moves Ω1

2.1.3 Ordered and oriented links

Links admit a number of natural additional structures. Here we describe two
such structures: order and orientation. An n-component geometric link is or-
dered if its components are numbered by 1, 2, . . . , n. By isotopies of ordered
links, we mean order-preserving isotopies. The order is easily exhibited on link
diagrams: it suffices to attach the numbers 1, 2, . . . , n to the components of
the diagram and to keep these numbers unchanged under isotopy.

An orientation of a geometric link L in a 3-dimensional manifold M is
an orientation of the underlying 1-dimensional manifold L. In the figures, the
orientation is indicated by arrows on the link components. By isotopies of
oriented links, one means orientation-preserving isotopies. Each oriented link
L ⊂ M is a 1-cycle and represents a homology class

[L] ∈ H1(M) = H1(M ;Z) .

This class is an isotopy invariant of L. Indeed, the components of two isotopic
oriented links are pairwise homotopic and consequently pairwise homologous.

To exhibit the orientation of the link presented by a link diagram on a
surface it suffices to orient all components of the diagram. Each Reidemeister
move gives rise to several oriented Reidemeister moves on oriented link dia-
grams keeping the orientations of the strands. Specifically, orienting all the
strands in Figure 2.2 in the same direction (up or down), we obtain four ori-
ented Ω1-moves. Similarly, the two moves Ω2 in Figure 1.5a give rise to eight
oriented Ω2-moves. In two of them, both strands are directed down (before
and after the move). These two oriented Ω2-moves are said to be braidlike
and are denoted by Ωbr

2 . The two oriented Ω2-moves in which the strands are
directed up can be expressed as compositions of Ωbr

2 and isotopies rotating
a 2-disk by the angle 180◦. The remaining oriented Ω2-moves, in which the
strands are directed in opposite directions, are said to be nonbraidlike. In a
similar way, the move Ω3 in Figure 1.5b gives rise to eight oriented Ω3-moves.
Any seven of them can be expressed as compositions of the eighth move and
oriented Ω2-moves (see [Tur88] or [Tra98]). Therefore it is enough to consider
only the oriented Ω3-move in which all three strands are directed down. This
move is said to be braidlike and is denoted by Ωbr

3 .
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The Reidemeister theorem mentioned at the end of Section 2.1.2 implies
that two oriented link diagrams on a surface Σ present isotopic oriented links
in Σ × I if and only if these diagrams are related by a finite sequence of
orientation-preserving isotopies and oriented Reidemeister moves.

2.1.4 The linking number

As an application of link diagrams, we define the integral linking number of
knots in Σ × I, where Σ is an arbitrary oriented surface (for nonoriented Σ,
the linking number is defined only mod 2). Let L1, L2 be disjoint oriented
knots in Σ× I. Let us present the ordered oriented 2-component link L1 ∪L2

by a diagram on Σ. Let l+ (resp. l−) be the number of crossings of this
diagram where a strand representing L1 goes over a strand representing L2

from left to right (resp. from right to left). Here the left and right sides of
an oriented strand s are defined by the condition that the pair (a positively
oriented vector tangent to s, a vector directed from the right of s to the left
of s) determines the orientation of Σ. It is straightforward to check that the
linking number

lk(L1, L2) = l+ − l− ∈ Z

is invariant under isotopies and oriented Reidemeister moves in the diagram.
Hence lk(L1, L2) is a well-defined isotopy invariant of the link L1 ∪ L2.

Exercise 2.1.1. Prove that an arbitrary geometric knot L in an orientable
3-dimensional manifold has an open neighborhood U ⊃ L such that the pair
(U,L) is homeomorphic to (R2 × S1, {x} × S1), where x ∈ R2.

Exercise 2.1.2. Prove that two oriented link diagrams on R2 isotopic in the
2-sphere S2 = R2 ∪ {∞} represent isotopic oriented links in R3. (Hint: It
suffices to verify this for an isotopy pushing a branch of the diagram across
the point ∞ ∈ S2.)

Exercise 2.1.3. For any oriented surface Σ and any two disjoint oriented
knots L1, L2 ⊂ Σ × I,

lk(L1, L2)− lk(L2, L1) = [L1] · [L2] ,

where [L1] · [L2] ∈ Z is the intersection number of [L1], [L2] ∈ H1(Σ). (Hint:
This equality is obvious if

L1 ⊂ Σ × [0, 1/2] , L2 ⊂ Σ × [1/2, 1]

and is preserved when a branch of L1 is pushed across a branch of L2.) Deduce
that if Σ embeds in S2, then lk(L1, L2) = lk(L2, L1).

2.2 Closed braids in the solid torus

We introduce certain links in the solid torus, called closed braids, and classify
them in terms of braids.
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2.2.1 Solid tori

By a solid torus, we mean the product V = D × S1, where D is a closed
2-disk and S1 = {z ∈ C | |z| = 1}. The solid torus V is a compact connected
orientable 3-dimensional manifold with boundary

∂V = ∂D × S1 ≈ S1 × S1 .

Clearly,
V ◦ = V − ∂V = D◦ × S1 ,

where D◦ = D−∂D. The solid torus naturally arises in knot theory as a closed
regular neighborhood of any knot in an orientable 3-dimensional manifold.
Using a homeomorphism D ≈ I × I, we obtain

V ≈ I × I × S1 ≈ S1 × I × I .

The technique of link diagrams of Section 2.1 allows us to present links in V
by diagrams on the annulus S1 × I.

2.2.2 Closed braids

A geometric link L in the solid torus V = D×S1 is called a closed n-braid with
n ≥ 1 if L meets each 2-disk D× {z} with z ∈ S1 transversely in n points. It
is clear that the projection on the second factor V → S1 restricted to L yields
an (unramified) n-fold covering L → S1. We shall always provide L with the
canonical orientation obtained as the lift of the counterclockwise orientation
on S1. Thus, a point moving along a component of L in the positive direction
projects to a point moving along S1 counterclockwise without ever stopping
or going backward. The homology class [L] ∈ H1(V ) = Z of the oriented link
L ⊂ V is computed by [L] = n [{x} × S1] for any x ∈ D.

For example, if Q is a finite subset of D◦, then the link Q× S1 ⊂ V is a
closed n-braid, where n = card(Q). A closed 3-braid is drawn in Figure 2.3.
Our interest in closed braids is due to their connection with braids. This
connection will be discussed in the next subsections.

Two closed braids in V are isotopic if they are isotopic as oriented links.
Note that the intermediate links appearing during an isotopy are not required
to be closed braids. By abuse of language, isotopy classes of closed braids in V
will be also called closed braids in V .

In general, a link in V is not isotopic to a closed braid in V . For instance,
a link lying inside a small 3-ball in V is never isotopic to a closed braid. More
generally, an oriented link in V homological to m [{x}×S1] with m ≤ 0, x ∈ D
is not isotopic to a closed braid in V . Another obstruction will be discussed
in Exercise 2.2.4.
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V

O

Fig. 2.3. A closed 3-braid in V

2.2.3 Closure of braids

Every braid β on n strings gives rise to a closed n-braid in the solid
torus as follows. Fix a closed Euclidean disk D ⊂ R2 containing the set
Q = {(1, 0), (2, 0), . . . , (n, 0)} in its interior. Observe that the solid torus
V = D × S1 can be obtained from the cylinder D × I by the identifica-
tion (x, 0) = (x, 1) for all x ∈ D. (Here we identify I/∂I with S1 via the stan-
dard homeomorphism t → exp(2πit) : I/∂I → S1.) Pick a geometric braid
b ⊂ D◦ × I representing β (for the existence of such b, see Exercise 1.2.4).
Let b̂ ⊂ V be the image of b under the projection D × I → V . It is obvious
that b̂ is a closed n-braid in V . The canonical orientation of b̂ is determined
by the direction on b leading from Q × {0} to Q × {1}. If b′ ⊂ D × I is
another geometric braid representing β, then b is isotopic to b′ in D × I (cf.
Exercise 1.2.5). By (the proof of) Theorem 1.40, there is an isotopy of D × I
constant on the boundary and transforming b into b′. This isotopy induces an
isotopy between b̂ and b̂′ in V . Therefore the isotopy class of b̂ depends only
on β. This class is called the closure of β and denoted by β̂.

Note that any closed n-braid L ⊂ V is isotopic to β̂ for a certain β ∈ Bn.
Indeed, we can deform L in the class of closed braids so that

L ∩ (D × {1}) = Q× {1} .

Cutting V open along D × {1}, we obtain a braid in D × I with closure L.
The description of β̂ given above is somewhat awkward from the point of

view of drawing pictures. The following equivalent description is often more
convenient. Observe that gluing two copies of D×I along D×∂I = D×{0, 1},
we again obtain V . Gluing a geometric braid representing β in the first D× I
with the trivial braid Q× I in the second D× I, we obtain β̂; see Figure 2.4.
A link diagram in S1 × I presenting β̂ is obtained by closing a diagram of β
as in Figure 2.5.
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β

· · ·

· · ·
O

Fig. 2.4. Closing a braid β

β
· · ·

· · ·

Fig. 2.5. A diagram of β̂

Theorem 2.1. For any n ≥ 1 and any β, β′ ∈ Bn, the closed braids β̂, β̂′

are isotopic in the solid torus if and only if β and β′ are conjugate in Bn.

Theorem 2.1 gives an isotopy classification of closed n-braids in the solid
torus: the isotopy classes of closed n-braids correspond bijectively to the con-
jugacy classes in Bn. In particular, any conjugacy invariant of elements of Bn

determines an isotopy invariant of closed n-braids. For instance, the charac-
teristic polynomial of a finite-dimensional linear representation of Bn yields
an invariant of closed n-braids. Theorem 2.1 raises the problem of finding an
algorithm to decide whether two given elements of Bn are conjugate. We shall
address this problem in Chapter 6.

2.2.4 Proof of Theorem 2.1

Observe first that conjugate elements of Bn give rise to isotopic closed braids.
In other words, ̂αβα−1 = β̂ for any α, β ∈ Bn. This is obtained by forming a
diagram of αβα−1 from three diagrams representing the three factors, pushing
the upper diagram representing α along the n parallel strings on the right
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so that eventually it comes to the diagram of α−1 from below. This gives
̂αβα−1 = ̂βαα−1 = β̂.

We prove the converse: any braids with isotopic closures in V = D × S1

are conjugate. To this end, we need to study closed braids in V in more detail.
Set V = D ×R. Multiplying D by the universal covering

t → exp(2πit) : R → S1 ,

we obtain a universal covering V → V . Denote by T the covering transforma-
tion V → V sending (x, t) to (x, t + 1) for all x ∈ D, t ∈ R.

If L is a closed n-braid in V , then its preimage L ⊂ V is a 1-dimensional
manifold meeting each disk D × {t} with t ∈ R transversely in n points.
This implies that L consists of n components homeomorphic to R. More
information about L can be obtained by presenting L as the closure of a
geometric braid b ⊂ D × I, where we identify I/∂I = S1. Then

L =
⋃

m∈Z

Tm(b) .

By Section 1.7.2, b =
⋃

t∈I (ft(Q), t) for a continuous family of homeomor-
phisms {ft : D → D}t∈I such that f0(Q) = Q, f1 = idD, and all ft fix ∂D
pointwise. We define a level-preserving self-homeomorphism of V = D×R by

(x, t) → (ft−[t]f
−[t]
0 (x), t) ,

where x ∈ D, t ∈ R, and [t] is the greatest integer less than or equal to t. This
homeomorphism fixes ∂V = ∂D ×R pointwise and sends Q×R onto L; see
Figure 2.6. The induced homeomorphism (D − Q) ×R ≈ V − L shows that
D −Q = (D −Q)× {0} ⊂ V − L is a deformation retract of V − L.

· · ·

≈
· · ·

· · ·

· · ·

· · ·

b

b

· · ·
· · ·b

Fig. 2.6. A homeomorphism (D × R, Q × R) ≈ (D × R, L)
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Pick a point d ∈ ∂D as in Figure 1.15 and set d = (d, 0) ∈ V . It is clear
that the inclusion homomorphism i : π1(D−Q, d) → π1(V −L, d) is an isomor-
phism. By definition, T (d) = (d, 1). The covering transformation T restricted
to V − L induces an isomorphism π1(V − L, d) → π1(V − L, T (d)). Consider
the isomorphism π1(V −L, T (d)) → π1(V −L, d) obtained by conjugating the
loops by the path d× [0, 1] ⊂ ∂D×R ⊂ V −L. The composition T# of these
two isomorphisms is an automorphism of π1(V − L, d). It follows from the
description of L given above that the following diagram is commutative:

π1(D −Q, d) i−−−−→ π1(V − L, d)

ρ(f0)

⏐
⏐
�

⏐
⏐
�T#

π1(D −Q, d) i−−−−→ π1(V − L, d)

where ρ(f0) is the automorphism of π1(D − Q, d) induced by the restriction
of f0 to D−Q; cf. Section 1.6.3. Therefore i−1T#i = ρ(f0). Indeed, the proof
of Theorem 1.33 shows that the group homomorphism η : Bn → M(D,Q)
introduced in Section 1.6.3 sends the braid β ∈ Bn represented by b to the
isotopy class of f0 : (D,Q) → (D,Q). Identifying π1(D − Q, d) with the
free group Fn on n generators x1, x2, . . . , xn as in Section 1.6.3 and applying
Theorem 1.33, we conclude that ρ(f0) = ρη(β) = β̃ is the braid automorphism
of Fn corresponding to β. Thus, i−1T#i = β̃.

Suppose now that β, β′ ∈ Bn are two braids with isotopic closures in V .
Present them by geometric braids b, b′ ⊂ D × I and let L, L′ ⊂ V be their
respective closures. By assumption, there is a homeomorphism g : V → V
such that g maps L onto L′ preserving their canonical orientations and g is
isotopic to the identity idV : V → V . The latter condition implies that the
restriction of g to ∂V is isotopic to the identity id : ∂V → ∂V . Therefore g|∂V

extends to a homeomorphism g′ : V → V equal to the identity outside a nar-
row tubular neighborhood of ∂V in V . We can assume that this neighborhood
is disjoint from L′, so that g′ is the identity on L′. Now, the homeomorphism
h = (g′)−1g : V → V fixes ∂V pointwise and maps L onto L′ preserving their
canonical orientations. The former condition and the surjectivity of the inclu-
sion homomorphism π1(∂V ) → π1(V ) ∼= Z imply that h induces an identity
automorphism of π1(V ). Therefore h lifts to a homeomorphism h : V → V

such that h fixes ∂V pointwise, hT = Th, and h(L) = L
′
. Hence h induces an

isomorphism h# : π1(V − L, d) → π1(V − L
′
, d) commuting with T#.

Consider the automorphism ϕ = (i′)−1h#i of Fn = π1(D − Q, d), where
i : π1(D−Q, d) → π1(V −L, d) and i′ : π1(D−Q, d) → π1(V −L

′
, d) are the

inclusion isomorphisms as above. We have β̃′ = (i′)−1T#i′ and

ϕβ̃ϕ−1 = (i′)−1h#ii−1T#ii−1(h#)−1i′ = (i′)−1T#i′ = β̃′ .

We claim that ϕ is a braid automorphism of Fn. This will imply that β̃ and β̃′

are conjugate in the group of braid automorphisms of Fn. By Theorem 1.31,
this will imply that β and β′ are conjugate in Bn.
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By definition, the conjugacy classes of the generators

x1, x2, . . . , xn ∈ Fn = π1(D −Q, d)

are represented by small loops encircling the points of Q in D. The inclusion
D − Q = (D − Q)× {0} ⊂ V − L maps these loops to small loops in V − L
encircling the components of L. The homeomorphism h : V → V transforms
these loops into small loops in V − L

′
encircling the components of L

′
. The

latter represent the conjugacy classes of the images of x1, x2, . . . , xn under the
inclusion D−Q = (D−Q)×{0} ⊂ V −L

′
. Hence ϕ transforms the conjugacy

classes of x1, . . . , xn into themselves, up to permutation. This verifies the first
condition in the definition of a braid automorphism. The second condition
says that ϕ(x) = x, where

x = x1x2 · · ·xn ∈ Fn = π1(D −Q, d) .

Observe that x is represented by the loop ∂D based at d. The inclusion of
D − Q = (D − Q) × {0} into V − L maps this loop to ∂D × {0}. Since h
fixes ∂V pointwise, h#i(x) = i′(x) and therefore ϕ(x) = x. ��

2.2.5 Closed braid diagrams

A closed braid diagram in the annulus S1 × I is an oriented link diagram D
in S1× I such that whenever a point moves along D in the positive direction,
its projection to S1 moves along S1 counterclockwise without ever stopping
or going backward. In other words, the projection S1×I → S1 restricted to D
is an orientation-preserving covering of S1 (ramified at the crossings of D).
The number of points of D projecting to a given point on S1 does not depend
on the choice of that point, provided the crossings of D are counted with
multiplicity 2. This number is called the number of strands of D. Examples
of closed braid diagrams on n strands in S1 × I can be obtained by closing
usual braid diagrams on n strands as in Figure 2.5.

Every closed braid diagram in S1 × I presents a closed braid in the solid
torus S1 × I × I in the obvious way; cf. Section 2.1.2. Clearly, every closed
braid in S1 × I × I can be presented by a closed braid diagram in S1 × I.

We can apply to a closed braid diagram the moves Ωbr
2 ,Ωbr

3 and their
inverses. These moves act as in Figures 1.5a and 1.5b, where the projections
on the horizontal and vertical axes in the plane of the picture correspond to
the projections to I and S1, respectively. These moves keep the diagram in
the class of closed braid diagrams and preserve the isotopy class of the closed
braid represented by the diagram.

Lemma 2.2. Two closed braid diagrams D, D′ in S1 × I represent isotopic
closed braids in the solid torus S1× I × I if and only if D can be transformed
into D′ by a finite sequence of isotopies (in the class of closed braid diagrams)
and moves (Ωbr

2 )±1, (Ωbr
3 )±1.
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Proof. We need only prove that if D,D′ represent isotopic closed braids in
the solid torus, then D can be transformed into D′ by a finite sequence of
isotopies and moves (Ωbr

2 )±1, (Ωbr
3 )±1. Pick a point z ∈ S1 such that the in-

terval {z} × I does not meet the crossings of D or D′. Cutting open D,D′

along this interval, we obtain two braid diagrams b, b′, respectively. By The-
orem 2.1, they represent conjugate braids. Applying a Ωbr

2 -move to D in a
neighborhood of {z} × I, we can transform b into σibσ

−1
i and σ−1

i bσi for any
i = 1, 2, . . . , n− 1. Applying such moves recursively, we can transform b into
an arbitrary conjugate diagram. Thus we can assume that b and b′ represent
isotopic braids. Then, by Theorem 1.6, these diagrams can be related by a
finite sequence of isotopies and braidlike moves. This induces a sequence of
isotopies and braidlike moves transforming D into D′. ��

Exercise 2.2.1. Verify that for any β ∈ Bn, the number of components of
the closed braid β̂ is equal to the number of cycles in the decomposition of
the permutation π(β) ∈ Sn as a product of commuting cycles.

Exercise 2.2.2. The closure of a pure braid β ∈ Pn is an ordered n-
component link: its ith component is the closure of the ith string of β for
i = 1, 2, . . . , n. Prove that for any β, β′ ∈ Pn, the links β̂, β̂′ are isotopic in
the solid torus in the class of ordered oriented links if and only if β and β′ are
conjugate in Pn.

Exercise 2.2.3. Prove that if two closed braids L, L′ ⊂ V = D × S1 are
isotopic, then they are isotopic in the class of closed braids in V , that is, there
is an isotopy {Fs : V → V }s∈I of L into L′ such that Fs(L) is a closed braid
for all s ∈ I. (Hint: Use Theorem 2.1.)

Exercise 2.2.4. Let L ⊂ V be a closed braid. Prove that the kernel of the
inclusion homomorphism π1(V − L) → π1(V ) = Z is a free group. (Hint: In
the notation of Section 2.2.4, this kernel is isomorphic to π1(V − L, d).)

2.3 Alexander’s theorem

We establish here a fundamental theorem, due to J. W. Alexander, asserting
that all links in R3 are isotopic to closed braids.

2.3.1 Closed braids in R3

Pick a Euclidean circle in the plane R2 × {0} ⊂ R3 with center at the origin
O = (0, 0, 0). We identify a closed cylindrical neighborhood of this circle
in R3 with the solid torus V = D × S1. By a closed n-braid in R3, we
shall mean an oriented geometric link in R3 lying in V ⊂ R3 as a closed
n-braid with its canonical counterclockwise orientation (cf. Figure 2.3, where
the plane R2 × {0} is the plane of the picture).
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In particular, for any β ∈ Bn, the closed braid β̂ ⊂ V yields a closed braid
in R3 via the inclusion V ⊂ R3; cf. Figure 2.4. The latter closed braid is also
denoted by β̂ and is called the closure of β. A diagram of β̂ is obtained from a
diagram of β by connecting the bottom endpoints with the top endpoints by n
standard arcs; cf. Figure 2.5, where the dotted circles should be disregarded.
We stress that closed braids in R3 are oriented geometric links.

For example, the closure of the trivial braid on n strings is a trivial n-
component link. The closure of σ±1

1 ∈ B2 is a trivial knot. The closure of
σ±2

1 ∈ B2 is an oriented Hopf link. More generally, the closure of σm
1 ∈ B2

with m ∈ Z is a so-called torus (2,m)-link . It has two components for even m
and one component for odd m.

We can give an equivalent but more direct definition of closed braids in R3.
Consider the coordinate axis � = {(0, 0)}×R ⊂ R3 meeting the plane R2×{0}
at the origin O = (0, 0, 0). The counterclockwise rotation about O in the
plane R2×{0} determines a positive direction of rotation about �. An oriented
geometric link L ⊂ R3 − � is a closed n-braid if the vector from O to any
point X ∈ L rotates in the positive direction about � when X moves along L
in the direction determined by the orientation of L. The equivalence of this
definition with the previous one can be seen as follows. Pick a Euclidean
disk D lying in an open half-plane bounded by � in R3 and having its center
in R2 × {0}. Rotating D around �, we sweep a solid torus V = D × S1 as
above. Taking D big enough, we can assume that a given link L ⊂ R3− � lies
in V . It is clear that L is a closed braid in the sense of the first definition if
and only if L is a closed braid in the sense of the second definition.

Theorem 2.3 (J. W. Alexander). Any oriented link in R3 is isotopic to
a closed braid.

Proof. By a polygonal link , we shall mean a geometric link in R3 whose com-
ponents are closed broken lines. By vertices and edges of a polygonal link,
we mean the vertices and the edges of its components. It is well known that
any geometric link in R3 is isotopic to a polygonal link (cf. the proof of The-
orem 1.6). We need only to prove that any oriented polygonal link L ⊂ R3

is isotopic to a closed braid. Moving slightly the vertices of L in R3, we ob-
tain a polygonal link isotopic to L. We use such small deformations to ensure
that L ⊂ R3 − � and that the edges of L do not lie in planes containing the
axis � = {(0, 0)} ×R. Let

AC ⊂ L ⊂ R3 − �

be an edge of L, where L is oriented from A to C. The edge AC is said to be
positive (resp. negative) if the vector from the origin O ∈ � to a point X ∈ AC
rotates in the positive (resp. negative) direction about � when X moves from A
to C. The assumption that AC does not lie in a plane containing � implies
that AC is necessarily positive or negative. The edge AC of L is said to be
accessible if there is a point B ∈ � such that the triangle ABC meets L only
along AC.
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If all edges of L are positive, then L is a closed braid and there is nothing
to prove. Consider a negative edge AC of L. We replace AC with a sequence
of positive edges as follows. If AC is accessible, then we pick B ∈ � such
that the triangle ABC meets L only along AC. In the plane ABC we take
a slightly bigger triangle AB′C containing B in its interior, meeting � only
at B, and meeting L only along AC; see Figure 2.7. We apply to L the
Δ-move Δ(AB′C) replacing AC with two positive edges AB′ and B′C (see
Section 1.2.3 for similar moves on geometric braids; in contrast to the setting of
braids, we impose here no conditions on the third coordinates of the vertices).
The resulting polygonal link is isotopic to L and has one negative edge fewer
than L.

B

C

A

�

B′

Fig. 2.7. The triangle AB′C

Suppose that the edge AC is not accessible. Note that every point P of AC
is contained in an accessible subsegment of AC. (To see this, pick B ∈ � such
that the segment PB meets L only at P and then slightly “thicken” this seg-
ment inside the triangle ABC to obtain a triangle P−BP+ meeting L along
its side P−P+ ⊂ AC containing P . Then P−P+ is an accessible subsegment
of AC.) Since AC is compact, we can split it into a finite number of con-
secutive accessible subsegments. We apply to each of them the Δ-move as
above choosing the corresponding points B ∈ � distinct and choosing B′ close
enough to B to stay away from other edges of L. Since AC does not lie in a
plane containing �, the triangles determining these Δ-moves meet only at the
common vertices of the consecutive subsegments of AC (to see this, consider
the projections of these segments and triangles to the plane {0}×R2 orthog-
onal to �). Therefore these Δ-moves do not hinder each other and may be
performed in an arbitrary order. They replace AC ⊂ L with a finite sequence
of positive edges, beginning at A and ending at C. The resulting polygonal
link is isotopic to L in R3. Applying this procedure inductively to all negative
edges of L, we obtain a closed braid isotopic to L. ��
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Exercise 2.3.1. Verify that the oriented 2-component links obtained by clos-
ing σ2

1 ∈ B2 and σ−2
1 ∈ B2 are not isotopic, while the underlying unoriented

links are isotopic. (Hint: Consider the linking number of the components.)

Exercise 2.3.2. Observe that the closure of σ3
1 is the trefoil knot shown on the

left of Figure 2.1 and endowed with an orientation. Observe that the closure
of σ−1

1 σ2σ
−1
1 σ2 is the figure-eight knot shown in Figure 2.1 and endowed with

an orientation.

Exercise 2.3.3. Verify that the oriented link in R3 obtained by inverting the
orientation of all components of the closure of a braid σr1

i1
σr2

i2
· · ·σrm

im
, where

r1, r2, . . . , rm ∈ Z, is isotopic to the closure of σrm

im
· · ·σr2

i2
σr1

i1
.

2.4 Links as closures of braids: an algorithm

By Alexander’s theorem, every oriented link L ⊂ R3 is isotopic to a closed
braid. It is useful to be able to find such a braid starting from a diagram of L.
The proof of Alexander’s theorem given above is not of much help: in the
course of the proof, the diagram is modified by global transformations over
which we have little control. In this section we give a simple algorithm deriving
from any diagram of L a braid whose closure is isotopic to L. Incidentally,
this will give another proof of Alexander’s theorem.

2.4.1 Preliminaries

We observe first that any two disjoint oriented (topological) circles on the
sphere S2 bound an annulus in S2. These circles are said to be incompatible if
their orientation is induced by an orientation of this annulus. Otherwise, these
circles are compatible. For instance, two oriented concentric cirles in R2 ⊂ S2

are compatible if they both are oriented clockwise or both counterclockwise.
Consider an oriented link diagram D in R2. Near each crossing point x

of D the diagram looks either like the 2-braid σ1 or like the 2-braid σ−1
1 . A

smoothing of D at x replaces this 2-braid with a trivial 2-braid and keeps the
rest of D untouched; see Figure 2.8. Smoothing D at all crossings, we obtain a
closed oriented 1-dimensional submanifold of R2. It consists of a finite number
of disjoint oriented (topological) circles called the Seifert circles of D. The
number of Seifert circles of D is denoted by n(D). Two Seifert circles of D are
compatible (resp. incompatible) if they are compatible (resp. incompatible) in
S2 = R2 ∪ {∞}. The number of pairs of incompatible Seifert circles of D is
denoted by h(D) and is called the height of D. Clearly, 0 ≤ h(D) ≤ n(n−1)/2,
where n = n(D). Both numbers n(D) and h(D) are isotopy invariants of D.

An oriented link diagram D in R2 is a closed braid diagram on n strands
if it lies in an annulus S1 × I ∈ R2 and is a closed braid diagram in this
annulus in the sense of Section 2.2.5. It is understood that all strands of D
are oriented counterclockwise.
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−→ −→

Fig. 2.8. Smoothing of a crossing

Examples of such D are obtained from braid diagrams on n strands by
connecting the bottom and top endpoints by n disjoint arcs in R2 as in Fig-
ure 2.5, with orientation of the strands induced by the orientation on the
braid from the top to the bottom. Smoothing a closed braid diagram D on
n strands at all crossings, we obtain a closed braid diagram on n strands with-
out crossings. Such a diagram consists of n disjoint concentric circles in R2

with counterclockwise orientation. Thus, n(D) = n and h(D) = 0.

2.4.2 Bending and tightening of link diagrams

Consider an oriented link diagram D in R2. Let

|D| ⊂ R2

be the union of the components of D with the over/undercrossing data for-
gotten. This is a 4-valent graph in R2 whose vertices are the crossings of D.
By an edge of D, we mean a connected component of the complement of the
set of crossings in |D|. Edges of D are embedded arcs or circles in R2 (the
circles arise from the components of D having no crossings). By a face of D,
we mean a connected component of R2 − |D|. We say that a face f of D is
adjacent to an edge a of D if a is contained in the closure of f . We say that f
is adjacent to a Seifert circle S of D if f is adjacent to at least one edge of D
contained in S. A face f of D is a defect face if f is adjacent to distinct edges
a1, a2 of D such that the Seifert circles S1, S2 of D going along a1, a2 are
distinct and incompatible. An oriented embedded arc c ⊂ R2 leading from a
point of a1 to a point of a2 and lying (except the endpoints) in f is called a
reduction arc of D in f . The incompatibility of S1, S2 may be reformulated by
saying that one of the edges a1, a2 crosses c from right to left and the other
one crosses c from left to right. Given such a1, a2, c, we can apply to D the
second Reidemeister move pushing a subarc of a1 along c and then sliding it
over a2; see Figure 2.9. We call this move a bending of D along c involving
the (incompatible) Seifert circles S1, S2. This move produces a diagram of an
isotopic link. The inverse move is called a tightening.

For example, consider the diagram D of a trivial knot in R3 shown on
the left of Figure 2.10. The underlying graph |D| has two vertices and four
edges. Smoothing D at both crossings, we obtain three Seifert circles. All
three are oriented counterclockwise and one of them encloses the other two.
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−→c
a1 a2

Fig. 2.9. Bending along an arc c

The two smaller circles are incompatible with each other and compatible with
the bigger circle. Thus, n(D) = 3 and h(D) = 1. The diagram D has one defect
face. A reduction arc in this face is represented by the dotted arrow on the
left-hand side of Figure 2.10. Bending D along this arc, we obtain the diagram
on the right-hand side of Figure 2.10. This diagram is a closed braid diagram
in the annulus bounded by the dotted circles. (This diagram is isotopic to
the closure of σ1σ2σ1σ

−1
2 .) As we shall see below, this example is typical in

the sense that any oriented link diagram can be transformed by a sequence of
bendings and isotopies into a closed braid diagram.

−→

Fig. 2.10. Example of a bending

The following three lemmas give a key to the transformation of link dia-
grams into closed braid diagrams.

Lemma 2.4. If D′ is obtained from an oriented link diagram D in R2 by a
bending, then n(D′) = n(D) and h(D′) = h(D)− 1.

Proof. Let S1, S2 be the incompatible (distinct) Seifert circles of D involved in
the bending; see Figure 2.11. The small biangle created by the bending gives
rise to a Seifert circle of D′, denoted by S0. The remaining parts of S1, S2

give rise to a Seifert circle of D′, denoted by S∞. All other Seifert circles of D
survive in D′ without changes. Therefore n(D′) = n(D). Note that the Seifert
circles of D and D′ do not pass through the shaded areas in Figure 2.11.

We now compare the heights h(D) and h(D′). Observe first that the Seifert
circles S1, S2 bound respective disjoint disks D1, D2 in S2 = R2 ∪ {∞}.
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S1 S2

S∞

S0−→D1 D2

Fig. 2.11. Seifert circles before and after bending

For i = 1, 2, let di denote the number of Seifert circles of D lying in the
open disk D◦

i = Di− ∂Di. Let d be the number of Seifert circles of D lying in
the annulus S2 − (D1 ∪ D2) and incompatible with S1. Finally, let h be the
number of pairs of incompatible Seifert circles of D both distinct from S1, S2.
We claim that

h(D) = h + d1 + d2 + 2d + 1 .

It suffices to verify that the number of pairs of incompatible Seifert circles
of D including S1 or S2 or both is equal to d1 + d2 + 2d + 1. For i = 1, 2, an
oriented circle in D◦

i is incompatible with S1 or S2, but not with both. This
gives the contribution d1 + d2. An oriented circle in S2− (D1 ∪D2) is incom-
patible with S1 if and only if it is incompatible with S2. This contributes 2d.
Finally, S1 and S2 are incompatible, which contributes 1.

We claim that

h(D′) = h + d1 + d2 + 2d = h(D) − 1 .

It suffices to verify that the number of pairs of incompatible Seifert circles
of D′ including S0 or S∞ or both is equal to d1 + d2 + 2d. For i = 1, 2, an
oriented circle in D◦

i is always incompatible with S0 or S∞, but not with both.
This contributes d1 + d2. An oriented circle in S2− (D1 ∪D2) is incompatible
with S0 if and only if it is incompatible with S∞ and if and only if it is
incompatible with S1. This contributes 2d. Finally, S0 and S∞ are compatible.
Hence h(D′) = h(D)− 1. ��

Lemma 2.5. An oriented link diagram D in R2 has a defect face if and only
if h(D) �= 0.

Proof. Cutting S2 open along the Seifert circles of D, we obtain a compact
surface Σ with boundary. For a crossing x of D, denote by γx a line segment
near x joining the Seifert circles as in Figure 2.12. These segments are all
disjoint and each of them lies in a component of Σ.

If D has a defect face, then clearly h(D) > 0. We prove the converse: if
h(D) > 0, then D has a defect face. We first prove that there are a compo-
nent F of Σ and two Seifert circles in ∂F whose orientation is induced by an
orientation on F . Pick two incompatible Seifert circles S1, S2 of D and con-
sider an oriented embedded arc c ⊂ R2 leading from a point of S1 to a point
of S2. We can assume that c meets each Seifert circle of D transversely in at
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−→ −→
γx

x x

Fig. 2.12. The segment γx

most one point. The crossings of c with these circles form a finite subset of c
including the endpoints. At each of the crossings, the corresponding Seifert
circle is directed to the left or to the right of c. The incompatibility of S1, S2

means that their directions at the endpoints of c are opposite: one of these
circles is directed to the left of c and the other one is directed to the right of c.
Therefore, among the crossings of c with the Seifert circles of D, there are two
that lie consecutively on c and at which the directions of the corresponding
Seifert circles are opposite. The component F of Σ containing the subarc of c
between two such crossings satisfies the requirements above. Warning: this
subarc may meet certain segments γx; then it does not lie in a face of D.

Consider in more detail a component F of Σ such that there are at least
two Seifert circles in ∂F whose orientation is induced by an orientation on F .
Fix such an orientation on F . Let us call a Seifert circle in ∂F positive if its
orientation is induced by the one on F and negative otherwise. By assump-
tion, there are at least two positive Seifert circles in ∂F . If F contains no
segments γx, then F ◦ = F −∂F is a face of D adjacent to ≥ 2 positive Seifert
circles in ∂F . Hence this face is a defect face. Suppose that F contains certain
segments γx. Removing them all from F , we obtain a subsurface F ′ ⊂ F . It is
clear that any component f of F ′ is adjacent to at least one segment γx and
the interior of f is a face of D. Each γx ⊂ F connects a positive Seifert circle
in ∂F with a negative one. Therefore f is adjacent to at least one positive and
at least one negative Seifert circle. If f is adjacent to at least two positive or to
at least two negative Seifert circles, then f is a defect face. Suppose that each
component f of F ′ is adjacent to exactly one positive and exactly one nega-
tive Seifert circle. Note that moving from f to a neighboring component of F ′

across some γx ⊂ F , we meet the same Seifert circles. Since F is connected,
we can move in this way from any component of F ′ to any other component.
Therefore ∂F contains exactly one positive and one negative Seifert circle.
This contradicts our assumptions. Hence D has a defect face. ��

Lemma 2.6. An oriented link diagram D in R2 with h(D) = 0 is isotopic in
the sphere S2 = R2 ∪ {∞} to a closed braid diagram in R2.

Proof. Let Σ and {γx}x be the same objects as in the proof of the previous
lemma. Suppose that h(D) = 0. We must prove that D is isotopic in S2 to
a closed braid diagram in the plane R2 = S2 − {∞}. If a certain component
of the surface Σ has three or more boundary components, then two of them
must be incompatible in S2, which contradicts our assumption h(D) = 0.
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A compact connected subsurface of the 2-sphere whose boundary has one
or two components is a disk or an annulus. Thus, Σ consists only of disks and
annuli. An induction on the number of annuli components of Σ shows that
the Seifert circles of D can be transformed by an isotopy of S2 into a union
of disjoint concentric circles in R2. Applying this isotopy of S2 to D, we can
assume from the very beginning that the Seifert circles of D are concentric
circles in R2. The equality h(D) = 0 implies that all these circles are oriented
in the same direction, either clockwise or counterclockwise. In the first case we
apply to D an additional isotopy pushing all its Seifert circles across ∞ ∈ S2

so that in the final position the Seifert circles of D become concentric circles
in R2 with counterclockwise orientation. With a further isotopy of D, we can
additionally ensure that these circles are concentric Euclidean circles and the
segments γx are radial, i.e., are contained in some radii. The resulting link
diagram is transversal to all radii and therefore is a closed braid diagram. ��

2.4.3 The algorithm

Now we can describe an algorithm transforming any diagram D of an ori-
ented link L in R3 into a closed braid diagram of L. It suffices to perform
a bending on the diagram each time there is a defect face. By Lemmas 2.4
and 2.5, this process stops after h(D) steps and yields a diagram D′ of L
with n(D′) = n(D) and h(D′) = 0. By Lemma 2.6, D′ is isotopic in S2 to
a closed braid diagram, D0, in R2. The latter diagram also represents L;
cf. Exercise 2.1.2. Since the number of Seifert circles is an isotopy invariant,
n(D0) = n(D′) = n(D). Thus D0 is a closed braid diagram on n = n(D)
strands. If D has k crossings, then D0 has k + 2h(D) crossings. The corre-
sponding braid is represented by a word of length k + 2h(D) ≤ k + n(n− 1)
in the generators σ±1

1 , . . . , σ±1
n−1 ∈ Bn.

Note the following corollary of this algorithm.

Corollary 2.7. If an oriented link in R3 is presented by a diagram with n
Seifert circles, then it is isotopic to a closed n-braid.

The converse to this corollary is also true, since as we know, a closed braid
diagram on n strands has n Seifert circles.

Exercise 2.4.1. Show that smoothing of a crossing (or of any number of
crossings) on an oriented link diagram does not increase the number of defect
faces.

Solution. Let D be an oriented link diagram and let Dx be the oriented
link diagram obtained from D by smoothing at a crossing x. Observe that D
and Dx have the same Seifert circles. Denote by γx the line segment near x
joining Seifert circles as in Figure 2.12. Let f be the face of Dx containing γx.
If f − γx is connected, then D and Dx have the same faces. Then they have
an equal number of defect faces. Suppose that γx splits f into two connected
pieces f1, f2, which are then faces of D. It suffices to prove that if f1, f2 are
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not defect faces of D, then f is not a defect face of Dx. Since f1 (resp. f2) is
not a defect face, it is adjacent to at most two Seifert circles. Since γx ⊂ f
joins Seifert circles of different signs (with respect to any orientation of f),
these circles are distinct and compatible. Therefore f1 and f2 are adjacent to
the same pair of distinct compatible Seifert circles. The face f is adjacent to
the same circles. Therefore f is not a defect face.

2.5 Markov’s theorem

We state a fundamental theorem that allows us to describe all braids with
isotopic closures in R3. This theorem, due to A. Markov, is based on so-called
Markov moves on braids.

2.5.1 Markov moves

The presentation of an oriented link in R3 as a closed braid is far from being
unique. As we know, if two braids β, β′ ∈ Bn are conjugate (we record it
as β ∼c β′), then their closures β̂, β̂′ are isotopic in the solid torus and
a fortiori in R3. In general, the converse is not true. For instance, the closures
of the 2-string braids σ1, σ

−1
1 are trivial knots although these braids are not

conjugate in B2
∼= Z. There is another simple construction of braids with

isotopic closures. For β ∈ Bn, consider the braids σn ι(β) and σ−1
n ι(β), where ι

is the natural embedding Bn ↪→ Bn+1. Drawing pictures, one easily observes
that the closures of σn ι(β) and σ−1

n ι(β) are isotopic to β̂ in R3.
For β, γ ∈ Bn, the transformation β → γβγ−1 is called the first Markov

move and is denoted by M1. The transformation β → σε
n ι(β) with ε = ±1 is

called the second Markov move and is denoted by M2. Note that the inverse to
an M1-move is again an M1-move. We shall say that two braids β, β′ (possibly
with different numbers of strings) are M-equivalent if they can be related
by a finite sequence of moves M1,M2,M−1

2 , where M−1
2 is the inverse of an

M2-move. We record it as β ∼ β′. It is clear that the M-equivalence ∼ is
an equivalence relation on the disjoint union �n≥1Bn of all braid groups.
For example, the braids σ1, σ

−1
1 ∈ B2 are M-equivalent. Indeed, using the

equalities σ−1
2 σ−1

1 σ−1
2 = σ−1

1 σ−1
2 σ−1

1 and σ−1
1 σ−1

2 σ1 = σ2σ
−1
1 σ−1

2 , we obtain

σ1 ∼ σ−1
2 σ1 ∼c (σ1σ2)−1(σ−1

2 σ1)(σ1σ2)

= σ−1
2 σ−1

1 σ−1
2 σ2

1σ2 = σ−1
1 σ−1

2 σ−1
1 σ2

1σ2

= σ−1
1 σ−1

2 σ1σ2 = σ2σ
−1
1 σ−1

2 σ2

= σ2σ
−1
1 ∼ σ−1

1 .

As we saw, the closures of M-equivalent braids are isotopic as oriented links
in R3. The following deep theorem asserts that conversely, any two braids with
isotopic closures are M-equivalent.
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Theorem 2.8 (A. Markov). Two braids (possibly with different numbers
of strings) have isotopic closures in Euclidean space R3 if and only if these
braids are M-equivalent.

The following fundamental corollary yields a description of the set of iso-
topy classes of oriented links in R3 in terms of braids.

Corollary 2.9. Let L be the set of all isotopy classes of nonempty oriented
links in R3. The mapping �n≥1Bn → L assigning to a braid the isotopy class
of its closure induces a bijection from the quotient set (�n≥1Bn)/∼ onto L.

Here the surjectivity follows from Alexander’s theorem, while the injectiv-
ity follows from Markov’s theorem.

The proof of Theorem 2.8 starts in Section 2.5.3 and occupies the rest of
the chapter.

2.5.2 Markov functions

Corollary 2.9 allows one to identify isotopy invariants of oriented links in R3

with functions on �n≥1Bn constant on the M-equivalence classes. This leads
us to the following definition.

Definition 2.10. A Markov function with values in a set E is a sequence of
set-theoretic maps {fn : Bn → E}n≥1, satisfying the following conditions:

(i) for all n ≥ 1 and all α, β ∈ Bn,

fn(αβ) = fn(βα) ; (2.1)

(ii) for all n ≥ 1 and all β ∈ Bn,

fn(β) = fn+1(σnβ) and fn(β) = fn+1(σ−1
n β) . (2.2)

For example, for any e ∈ E, the constant maps Bn → E sending Bn

to e for all n form a Markov function. More interesting examples of Markov
functions will be given in Chapters 3 and 4.

Any Markov function {fn : Bn → E}n≥1 determines an E-valued isotopy
invariant f̂ of oriented links in R3 as follows. Let L be an oriented link in R3.
Pick a braid β ∈ Bn whose closure is isotopic to L and set f̂(L) = fn(β) ∈ E.
Note that f̂(L) does not depend on the choice of β. Indeed, if β′ ∈ Bn′ is
another braid whose closure is isotopic to L, then β and β′ are M-equivalent
(Theorem 2.8). It follows directly from the definition of M-equivalence and
the definition of a Markov function that fn(β) = fn′(β′). The function f̂ is
an isotopy invariant of oriented links: if L, L′ are isotopic oriented links in R3

and β ∈ Bn is a braid whose closure is isotopic to L, then the closure of β is
also isotopic to L′ and f̂(L) = fn(β) = f̂(L′).
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2.5.3 A pivotal lemma

We formulate an important lemma needed in the proof of Theorem 2.8. We
begin with some notation. Given two braids α ∈ Bm and β ∈ Bn, we form
their tensor product α ⊗ β ∈ Bm+n by placing β to the right of α without
any mutual intersection or linking; see Figure 2.13. Here the vertical lines
represent bunches of parallel strands with the number of strands indicated
near the line.

A diagram of α ⊗ β is obtained by placing a diagram of β to the right
of a diagram of α without mutual crossings. For example, 1m ⊗ 1n = 1m+n,
where 1m is the trivial braid on m strands. Clearly,

α⊗ β = (α⊗ 1n)(1m ⊗ β) = (1m ⊗ β)(α⊗ 1n) .

Note also that
(α⊗ β)⊗ γ = α⊗ (β ⊗ γ)

for any braids α, β, γ. This allows us to suppress the parentheses and to write
simply α⊗ β ⊗ γ.

α⊗ β α β

nm + n

=

m

m + n nm

Fig. 2.13. The tensor product of braids

For a sign ε = ± and any integers m,n ≥ 0 with m + n ≥ 1, we de-
fine a braid σε

m,n ∈ Bm+n as follows. Consider the standard diagram of
σ1 ∈ B2 consisting of two strands with one crossing. Replacing the over-
crossing strand with m parallel strands running very closely to each other
and similarly replacing the undercrossing strand with n parallel strands, we
obtain a braid diagram with m + n strands and mn crossings. This diagram
represents σ+

m,n ∈ Bm+n. Transforming all overcrossings in the latter diagram
into undercrossings, we obtain a diagram of σ−

m,n ∈ Bm+n. The braids σ+
m,n

and σ−
m,n are schematically shown in Figure 2.14. In particular,

σ+
m,0 = σ−

m,0 = σ+
0,m = σ−

0,m = 1m

for all m ≥ 1. It is clear that (σε
m,n)−1 = σ−ε

n,m for all m,n, and ε.
It is convenient to introduce the symbols σ+

0,0, σ
−
0,0, and 10; they all rep-

resent an “empty braid on zero strings” ∅, which satisfies the identities
∅ ⊗ α = α⊗ ∅ = α for any genuine braid α.
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σ−
m,nσ+

m,n

m n m

n nm

n

m

Fig. 2.14. The braids σ+
m,n, σ−

m,n ∈ Bm+n

Lemma 2.11. For any integers m,n ≥ 0, r, t ≥ 1, signs ε, ν = ±, and braids
α ∈ Bn+r, β ∈ Bn+t, γ ∈ Bm+t, δ ∈ Bm+r, consider the braid

〈α, β, γ, δ | ε, ν〉 = (1m ⊗ α⊗ 1t)(1m+n ⊗ σν
t,r)(1m ⊗ β ⊗ 1r)(σ−ε

n,m ⊗ 1t+r)

× (1n ⊗ γ ⊗ 1r)(1n+m ⊗ σ−ν
r,t )(1n ⊗ δ ⊗ 1t)(σε

m,n ⊗ 1r+t) ∈ Bm+n+r+t.

Then the M-equivalence class of 〈α, β, γ, δ | ε, ν〉 does not depend on ε, ν, and

〈α, β, γ, δ | ε, ν〉 ∼ 〈δ, γ, β, α | ε, ν〉. (2.3)

The reader is encouraged to draw the braid 〈α, β, γ, δ | ε, ν〉 for ε = ν = +.
We shall draw the closure of this braid using the following conventions. Let us
think of braid diagrams as lying in a square I×I ⊂ R×I with inputs on the top
side I×{0} and outputs on the bottom side I×{1}. The standard orientation
on the strands of a braid diagram runs from the inputs to the outputs. We
can rotate the square I× I around its center by the angle π/2. Rotating I× I
by the angle π/2 counterclockwise (resp. clockwise), we transform any picture
a in I × I into a picture in I × I denoted by a+ (resp. a−). If a is a braid
diagram, then the inputs and outputs of a+, a− lie on the vertical sides of the
square. Note also that a++ = a−−, where a++ = (a+)+ and a−− = (a−)−.

Pick certain diagrams of the braids α, β, γ, δ, which we denote by the
same letters α, β, γ, δ, respectively. A little contemplation should persuade the
reader that Figure 2.15 represents the closure of the braid 〈α, β, γ, δ |+,+〉.

β− α−

γ+

m

n

rt t r

m

n

δ+

Fig. 2.15. The closure of 〈α, β, γ, δ |+, +〉
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The rest of the proof of Theorem 2.8 goes as follows. In Section 2.6 we
deduce this theorem from Lemma 2.11. In Section 2.7 we prove Lemma 2.11.
These two sections use different techniques and can be read in any order.

Exercise 2.5.1. Verify that the braids 〈α, β, γ, δ | ε, ν〉 and 〈α, β, γ, δ | −ε,−ν〉
have isotopic closures. Verify that

〈α, β, γ, δ | ε, ν〉 ∼c 〈γ, δ, α, β | − ε,−ν〉 . (2.4)

(Hint: Rotate the closed braid in Figure 2.15 through 180◦.)

Exercise 2.5.2. Verify (2.3) for m = n = 0.

2.6 Deduction of Markov’s theorem from Lemma 2.11

We begin by introducing an additional Markov move.

2.6.1 The move M3

By definition, the second Markov move M2 transforms a braid β ∈ Bn into
σε

n(β ⊗ 11) with ε = ±1. We define another move M3 on braids transforming
β ∈ Bn into σε

1(11⊗β) ∈ Bn+1. One can check directly that M3 preserves the
isotopy class of the closure.

Lemma 2.12. The move M3 expands as a composition of the moves M1, M2.

Proof. Recall the braid Δn ∈ Bn defined in Section 1.3.3. By formula (1.8),

ΔnσiΔ
−1
n = σn−i ∈ Bn (2.5)

for all n ≥ 1 and all i = 1, . . . , n−1. In particular, Δn+1σ1Δ
−1
n+1 = σn ∈ Bn+1.

Taking the inverses in Bn+1, we obtain

Δn+1σ
ε
1Δ

−1
n+1 = σε

n (2.6)

for ε = ±1. We check now that for any β ∈ Bn,

Δn+1(11 ⊗ β)Δ−1
n+1 = ΔnβΔ−1

n ⊗ 11 . (2.7)

Both sides of (2.7) are multiplicative with respect to β, so that it suffices to
verify (2.7) for β = σi ∈ Bn, where i = 1, . . . , n− 1. We have

11 ⊗ σi = σi+1 ∈ Bn+1

and

Δn+1(11 ⊗ σi)Δ−1
n+1 = Δn+1σi+1Δ

−1
n+1 = σ(n+1)−(i+1) = σn−i ∈ Bn+1 .
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At the same time, ΔnσiΔ
−1
n = σn−i ∈ Bn and

ΔnσiΔ
−1
n ⊗ 11 = σn−i ∈ Bn+1 .

This proves (2.7). Multiplying (2.6) and (2.7), we obtain

Δn+1σ
ε
1(11 ⊗ β)Δ−1

n+1 = σε
n(ΔnβΔ−1

n ⊗ 11)

or, equivalently,

σε
1(11 ⊗ β) = Δ−1

n+1σ
ε
n(ΔnβΔ−1

n ⊗ 11)Δn+1 .

Hence M3 is a composition of the conjugation by Δn with M2 and with the
conjugation by Δ−1

n+1. ��

This lemma implies that the moves M1,M2,M3 generate the same equi-
valence relation ∼ on the set �n≥1Bn as M1,M2.

2.6.2 Reduction of Theorem 2.8 to Claim 2.15

We now reformulate Theorem 2.8 in terms of closed braids in the solid torus
V ⊂ R3. Let M̂2 be the transformation of closed braids in V replacing the
closure of a braid β on n strings with the closure of σε

n(β⊗11), where ε = ±1.
Let M̂3 be the transformation of closed braids in V replacing the closure of a
braid β on n strings with the closure of σε

1(11⊗ β), where ε = ±1. The moves
inverse to M̂2, M̂3 are denoted by M̂−1

2 , M̂−1
3 , respectively. By Theorem 2.1,

to prove Theorem 2.8 it suffices to prove the following assertion.

Claim 2.13. Two closed braids in V representing isotopic oriented links in R3

can be related by a sequence of moves M̂±1
2 , M̂±1

3 and isotopies in V .

Here and below all sequences of moves are finite. In Claim 2.13, by isotopy
in V we mean a move replacing a closed braid in V with a closed braid in V
isotopic to the first one in the class of oriented links in V .

We can reformulate Claim 2.13 in terms of closed braid diagrams in the an-
nulus, as defined in Section 2.2.5. Let M̃2 (resp. M̃3) be the transformation of
closed braid diagrams replacing the closure of a braid diagram β on n strands
with the closure of σε

n(β⊗11) (resp. of σε
1(11⊗β)), where ε = ±1. The moves

M̃2, M̃3 are just the moves M̂2, M̂3 restated in terms of diagrams. The moves
on closed braid diagrams inverse to M̃2, M̃3 are denoted by M̃−1

2 , M̃−1
3 , respec-

tively. Recall the braidlike Reidemeister moves Ωbr
2 , Ωbr

3 ; see Sections 2.1.3
and 2.2.5. To prove Claim 2.13 it suffices to prove the following.

Claim 2.14. Two closed braid diagrams in an annulus A ⊂ R2 representing
isotopic oriented links in R3 can be related by a sequence of moves (Ωbr

2 )±1,
(Ωbr

3 )±1, M̃±1
2 , M̃±1

3 and isotopies in the class of oriented link diagrams in A.
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The isotopies here should begin and end with closed braid diagrams in A
(with their canonical orientation), but the intermediate oriented link diagrams
in A are not required to be closed braid diagrams.

We shall now reduce Claim 2.14 to another claim formulated in terms of
so-called 0-diagrams. We use the notation and the terminology introduced
in Section 2.4. A 0-diagram is an oriented link diagram D in R2 such that
h(D) = 0 and all the Seifert circles of D are oriented counterclockwise. These
conditions imply that the Seifert circles ofD form a system of concentric circles
in R2. These circles can be numbered by 1, 2, . . . , n(D) counting from the
smallest (innermost) circle toward the biggest (outermost) one. Note that the
braidlike moves Ωbr

2 ,Ωbr
3 transform 0-diagrams into 0-diagrams. The move Ω1

adding a kink on the left or on the right of a 0-diagram, generally speaking,
does not yield a 0-diagram. (Here the left side and the right side of a diagram
are determined by its orientation and the counterclockwise orientation in R2.)
However, for any 0-diagram D, the Ω1-move adding a left kink at a point
of D lying on the innermost Seifert circle yields a 0-diagram D′. The kink
becomes the innermost Seifert circle of D′. Such a transformation D → D′ is
denoted by Ωint

1 . Similarly, adding a right kink at a point of D lying on its
outermost Seifert circle and then pushing the kink across the point ∞ ∈ S2 so
that it encircles this point, we obtain again a 0-diagram D′′ in R2. The kink
becomes the outermost Seifert circle of this diagram. Such a transformation
D → D′′ is denoted by Ωext

1 . In the sequel, by Ω-moves on 0-diagrams we
mean the transformations Ωbr

2 , Ωbr
3 , Ωint

1 , Ωext
1 , the inverse transformations,

and isotopies in R2.

Claim 2.15. Two 0-diagrams in R2 representing isotopic oriented links in R3

can be related by a sequence of Ω-moves.

This claim implies Claim 2.14. To see this, note first that closed braid
diagrams in an annulus A ⊂ R2 are 0-diagrams and for them, Ωint

1 = M̃2 and
Ωext

1 = M̃3. Consider now two closed braid diagrams C,D in A representing
isotopic oriented links in R3. By Claim 2.15, there is a sequence of 0-diagrams
C = C1, C2, . . . , Cm = D in R2 such that each Ci+1 is obtained from Ci by
an Ω-move. The construction in the proof of Lemma 2.6 shows that each Ci is
isotopic to a closed braid diagram Bi in A. It is clear that if Ci+1 is obtained
from Ci by (Ωbr

2 )±1, (Ωbr
3 )±1, (Ωint

1 )±1, (Ωext
1 )±1, then Bi+1 is obtained from Bi

by (Ωbr
2 )±1, (Ωbr

3 )±1, M̃±1
3 , M̃±1

2 , respectively. A little thinking shows that
if Ci+1 is obtained from Ci by an isotopy in R2, then Bi+1 is obtained from Bi

by an isotopy in A. This yields Claim 2.14.

2.6.3 Reduction to Lemma 2.17

Recall the isotopies, bendings, and tightenings of link diagrams as defined in
Sections 2.1.2 and 2.4.2. The proof of Claim 2.15 begins with the following
lemma.
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Lemma 2.16. Let E, E ′ be 0-diagrams in R2 representing isotopic oriented
links in R3. Then there is a sequence of 0-diagrams E = E1, E2, . . . , Em = E ′

such that for all i = 1, 2, . . . ,m − 1, the diagram Ei+1 is obtained from Ei

by an Ω-move or by a sequence of bendings, tightenings, and isotopies in the
sphere S2 = R2 ∪ {∞}.

Proof. Since E , E ′ represent isotopic links, they can be related by a sequence
of the following oriented Reidemeister moves: (a) Ω±1

1 , (b) (Ωbr
2 )±1, (Ωbr

3 )±1,
isotopies in R2, (c) nonbraidlike moves Ω±1

2 . Note that the intermediate dia-
grams created by these moves may have positive height. We will transform this
sequence of moves into another one consisting only of bendings, tightenings,
isotopies in S2, and Ω-moves on 0-diagrams.

Recall from Section 2.4.2 that a nonbraidlike move Ω2 involving two dis-
tinct Seifert circles is a bending. A nonbraidlike move Ω2 involving only one
Seifert circle can be obtained as a composition of two Ω1, a bending, and a
tightening; see Figure 2.16. Therefore we can assume that in our sequence of
moves, all moves of type (c) are bendings and tightenings.

−→ −→

−→

−→

Fig. 2.16. An expansion of Ω2

Let g be a transformation of type (b) in our sequence applied to a link
diagram D with h(D) > 0. Note that g preserves the set of Seifert circles of
the diagram and therefore preserves its height. Since h(D) > 0, the diagram D
has a defect face. We can choose a reduction arc in this face disjoint from the
disk where g changes D. Let r be the corresponding bending of D. Clearly,
the transformations r and g on D commute. We replace the transformation
D → g(D) in our sequence with the sequence

D r−→ r(D)
g−→ gr(D) r−1

−→ r−1gr(D) = g(D) .

The operation g is now performed at a lower height. Gradually we can go
all the way down to height zero. Thus we can replace g with a sequence of
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bendings, tightenings, and a single move of type (b), say g′, on a diagram, D′,
of height 0. If the Seifert circles of D′ are oriented counterclockwise, then D′

is a 0-diagram and g′ is an Ω-move. If the Seifert circles of D′ are oriented
clockwise, then we expand g′ as a composition of an isotopy of S2 transform-
ing D′ into a 0-diagram (cf. the proof of Lemma 2.6), an Ω-move on the latter
diagram, and the inverse isotopy.

Let g = Ω1 be an operation of type (a) in our sequence applied to a link
diagram D in R2. Inserting bendings and tightenings as above, we can assume
that h(D) = 0. Conjugating if necessary g by an isotopy of S2, we can assume
that the Seifert circles of D are oriented counterclockwise, i.e., that D is a
0-diagram in R2. Suppose that the kink added by g to a branch a of D lies
to its left. If a lies on the first (innermost) Seifert circle of D, then g = Ωint

1 .
If a lies on the mth Seifert circle of D with m ≥ 2, then we apply m − 1
moves Ωbr

2 to push a under m− 1 smaller Seifert circles of D inside the disk
bounded by the innermost Seifert circle. Then we apply Ωint

1 on a and push
the resulting kink back under the first m− 1 Seifert circles to the place where
the original move g = Ω1 must have been applied. This pushing should be
performed carefully: one first pushes all the m − 1 Seifert circles in question
over the crossing created by Ωint

1 . This amounts to m− 1 moves

d+
1 d±2 d−1 → d−2 d±1 d+

2

analyzed in the proof of Theorem 1.6. (This analysis shows that these moves
are compositions of (Ωbr

2 )±1, (Ωbr
3 )±1.) After that, one pushes these m − 1

Seifert circles over the remaining part of the kink, which amounts to m − 1
tightenings. The resulting chain of moves, schematically shown in Figure 2.17,
transforms D into the same diagram g(D) as g itself. Thus, we can replace
the move D → g(D) with a finite sequence of moves (Ωbr

2 )±1, (Ωbr
3 )±1,Ωint

1

on 0-diagrams followed by m−1 tightenings. If the kink added by g lies to the
right of a, then we proceed as above but push a toward the external (infinite)
face of D in R2 and then apply Ωext

1 . ��

Lemma 2.17. Two 0-diagrams in R2 related by a sequence of bendings, tight-
enings, and isotopies in S2 can be related by a sequence of Ω-moves.

This lemma together with the previous one implies Claim 2.15 and Theo-
rem 2.8. The rest of the section is devoted to the proof of Lemma 2.17.

2.6.4 Proof of Lemma 2.17, part I

We consider here the simplest case of Lemma 2.17, namely the one in which
the sequence relating two 0-diagrams consists solely of isotopies.

Lemma 2.18. If two 0-diagrams are isotopic in S2 = R2 ∪ {∞}, then they
are isotopic in R2.
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−→

−→

−→

1m−1 m−1

m−1m−1 1 1

1

Ωint
1−→

m−1 1

Fig. 2.17. An expansion of Ω1

Proof. Let D,D′ be 0-diagrams in R2 isotopic in S2. They have then the same
number of Seifert circles N ≥ 1. If N = 1, then D,D′ are embedded circles
in R2 oriented counterclockwise. By the Jordan curve theorem, any embedded
circle in R2 bounds a disk. This implies that such a circle is isotopic to a
small metric circle in R2. Since any two metric circles in R2, endowed with
counterclockwise orientation, are isotopic in R2, the same holds for D,D′.

Suppose that N ≥ 2. Since D, D′ are isotopic in S2, there is a continuous
family of homeomorphisms {Ft : S2 → S2}t∈I such that F0 = id and F1 trans-
forms D into D′. By continuity, all the homeomorphisms Ft are orientation
preserving. The Seifert circles of D split S2 into N − 1 annuli and two disks
Di = Di(D) and Do = Do(D) bounded by the innermost and the outermost
Seifert circles of D, respectively. Recall that S2 = R2 ∪{∞} is oriented coun-
terclockwise and so are all Seifert circles of D. It is clear that the orientation
of the innermost Seifert circle ∂Di is compatible with the orientation of Di

induced from the one on S2. On the other hand, the orientation of the out-
ermost Seifert circle ∂Do is incompatible with the orientation of Do induced
from the one on S2. This implies that F1 : S2 → S2 necessarily transforms
Di(D) into Di(D′) and Do(D) into Do(D′) (and not the other way round).

We have ∞ ∈ Do(D) and therefore F1(∞) ∈ Do(D′). Hence, there is
a closed 2-disk B in the complement of D′ in S2 containing the points ∞
and F1(∞). Pushing F1(∞) toward ∞ inside B, we obtain a continuous fam-
ily of homeomorphisms {gt : S2 → S2}t∈I such that g0 = id, g1(F1(∞)) = ∞,
and all gt are equal to the identity outside B (cf. the proof of Lemma 1.26).
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Then g1F1(D) = g1(D′) = D′ and the one-parameter family of homeomor-
phisms {gtFt : S2 → S2}t∈I relates g0F0 = id with g1F1. Thus, g1F1 is
isotopic to the identity in the class of self-homeomorphisms of S2. By Exer-
cise 1.7.1, g1F1 is isotopic to the identity in the class of self-homeomorphisms
of S2 keeping fixed the point ∞. Restricting all homeomorphisms in such an
isotopy to R2 = S2 − {∞}, we obtain an isotopy of D into D′ in R2. ��

2.6.5 Proof of Lemma 2.17, part II

Consider a sequence of moves as in Lemma 2.17. By a general position argu-
ment, we can assume that the intermediate diagrams created by these moves
lie in R2 = S2 − {∞}. We will denote bendings and tightenings by arrows

pointing in the direction of a lower height. Thus, the notation C s← D s′
→ C′

means that the link digram C is transformed into D by a tightening, inverse
to a bending s of D, and D is transformed into C′ by a bending s′. Note that
h(C) = h(C′) = h(D)− 1, so that the height function h has a local maximum

at D. We call such a sequence C s← D s′
→ C′ a local maximum. Our strategy

will be to replace local maxima by (longer) sequences at a lower height.

For a local maximum C s← D s′
→ C′, consider the reduction arcs of s and s′.

By a general position argument, we can assume that for all local maxima
in our sequence of moves, these two arcs have distinct endpoints and meet
transversely in a finite number of points. This number is denoted by s · s′.

Lemma 2.19. For any local maximum C s← D s′
→ C′ with s · s′ �= 0, there is a

sequence of bendings and tightenings

C = C1
s1←− D1

s′
1−→ C2

s2←− · · ·
s′

m−1−→ Cm
sm←− Dm

s′
m−→ Cm+1 = C′

such that si · s′i = 0 for all i.

Proof. Since the reduction arcs of link diagrams are oriented, we can speak
of their left and right sides (with respect to the counterclockwise orientation
in R2). Each reduction arc c of D can be pushed slightly to the left or to the
right, keeping the endpoints on D. This gives disjoint reduction arcs giving
rise to the same bending (at least up to isotopy). These arcs are denoted
by cl, cr, respectively.

Let c, c′ be the reduction arcs of s, s′, respectively. Let us suppose first
that s · s′ ≥ 2. We prove below that there is a reduction arc c′′ of D disjoint
from c′ and meeting c at fewer than s · s′ points. Consider the sequence

C s←− D s′′
−→ C′′ s′′

←− D s′
−→ C′ ,

where s′′ is the bending along c′′. We have

s · s′′ = |c ∩ c′′| < s · s′ and s′ · s′′ = |c′ ∩ c′′| = 0 .
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Continuing in this way we can reduce the lemma to the case s · s′ = 1. We
now construct c′′. Let A,B be distinct points of c ∩ c′ such that the subarc
AB ⊂ c does not meet c′. Inverting if necessary the orientations of c, c′, we
can assume that both c and c′ are directed from A to B. Assume first that c′

crosses c at A from left to right. If c′ crosses c at B from right to left, then c′′

is obtained by going along c′l to its intersection point with cl close to A, then
along cl to its intersection point with c′l close to B, and then along c′l. If c′

crosses c at B from left to right, then c′′ is obtained by going along c′l to its
intersection point with cr close to A, then along cr to its intersection point
with c′r close to B, and then along c′r. It is easy to check that in both cases
the arc c′′ has the required properties; see Figure 2.18. The case in which c′

crosses c at A from right to left is similar.

A B c

c′

c′′

A

c′

B c

c′′

Fig. 2.18. The arc c′′

It remains to consider the case s ·s′ = 1. We claim that there is a reduction
arc c′′ of D disjoint from c∪c′. Inserting D s′′

→ C′′ s′′
← D as above, we will obtain

the claim of the lemma. Let O be the unique point of c ∩ c′ and let f be the
face of D containing c and c′ (except their endpoints). Denote the endpoints
of c on D by A1, A2. Denote the endpoints of c′ on D by A3, A4. Denote by Si

the Seifert circle of D passing through Ai. By the definition of a reduction arc,
S1 �= S2 and S3 �= S4. Note that the arc A1O ∪OA3 can be slightly deformed
into an arc c1,3 in f − (c ∪ c′) leading from a point on S1 to a point on S3.
The same arc with opposite orientation is denoted by c3,1. We similarly define
arcs c1,4 and c4,1; see Figure 2.19.

If two of the circles S1, S2, S3, S4 coincide, say S1 = S4, then the circles
S1 = S4 and S3 �= S4 are distinct. Since c′ is a reduction arc, they are
incompatible. Hence c′′ = c1,3 is a reduction arc satisfying our requirements.

Thus, we can assume that the circles S1, S2, S3, S4 are all distinct. Their
topological position in S2 = R2∪{∞} is uniquely determined: they are bound-
aries of four disjoint disks in S2 meeting the crosslike graph c ∪ c′ at its
four endpoints. If S1 and S3 are incompatible, then c1,3 is a reduction arc in
f−(c∪c′) and we are done. Assume that S1 is compatible with S3. Since S4 is
incompatible with S3, the circle S1 is compatible with S4 as well. Note that
the arcs c1,3 and c1,4 are not reduction arcs.
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c1,3

c1,4

S1 S2

A1 A2

A3

A4

S3

S4

O

c′

c

Fig. 2.19. The arcs c, c′ and the circles S1, S2, S3, S4

Recall the disjoint segments γx connecting the Seifert circles of D, where x
runs over the crossings of D (see Figure 2.12). The orientation arguments show
that the endpoints of each such γx necessarily lie on different but compatible
Seifert circles. We now distinguish three cases.

Case (i): there are no segments γx attached to S1. A reduction arc of D
connecting S3 to S4 is obtained by first following c3,1 to a point close to S1,
then encircling S1 and finally moving along c1,4. Since there are no γx attached
to S1, this arc lies in f − (c ∪ c′).

Case (ii): the segments γx attached to S1 connect it to one and the same
Seifert circle S. Suppose first that S �= S3. A reduction arc c′′ connecting S3

to S in f − (c ∪ c′) is obtained by first following c3,1 to a point close to S1,
then encircling S1 until hitting for the first time a segment γx attached to S1,
and then going close to this γx until meeting S. If S = S3, then S �= S4 and
we can apply the same construction with S3 replaced by S4.

Case (iii): the segments γx attached to S1 connect it to at least two different
Seifert circles. We can find two of these segments γ1, γ2 with endpoints e1, e2

on S1 such that their second endpoints lie on different Seifert circles and the
arc d ⊂ S1−{A1} connecting e1 to e2 is disjoint from all the other γx attached
to S1. Then a small deformation of the arc γ1∪d∪γ2 gives a reduction arc c′′

of D disjoint from c ∪ c′. ��

Lemma 2.20. For a local maximum C s← D s′
→ C′ with s · s′ = 0, there are

sequences of isotopies in S2 and bendings C → · · · → C∗, C′ → · · · → C′∗ such
that C∗ = C′∗ or C∗, C′∗ are 0-diagrams in R2 related by Ω-moves.

Proof. Let c, c′ be the reduction arcs of the bendings s, s′ on D. The assump-
tion s · s′ = 0 implies that c and c′ are disjoint. Hence the bendings s and s′

are performed in disjoint areas of the plane and commute with each other.
Suppose that they involve different pairs of Seifert circles of D (these pairs
may have one common circle). Then c′ is a reduction arc for C = s(D) and c is
a reduction arc for C′ = s′(D). Let D′ be the link diagram obtained by bend-
ing C along c′ or, equivalently, by bending C′ along c. The sequences C → D′

and C′ → D′ satisfy the conditions of the lemma.
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Suppose from now on that s and s′ involve the same (distinct and in-
compatible) Seifert circles S1, S2 of D. Assume that D has a reduction arc c1

disjoint from c ∪ c′ and involving another pair of Seifert circles. Then the
bendings s, s′, s1 along c, c′, c1, respectively, commute with each other. The

sequences C s1→ C1
s′
→ D′, C′ s1→ C′1

s→ D′ satisfy the conditions of the lemma.
Suppose from now on that all reduction arcs of D disjoint from c ∪ c′

involve the Seifert circles S1, S2. We choose notation so that c is directed
from S1 to S2. Assume first that c′ is directed from S1 to S2. The circles
S1, S2 bound in S2 disjoint 2-disks D1, D2, respectively. The arcs c, c′ lie in
the annulus S2− (D◦

1 ∪D◦
2) bounded by S1∪S2. These arcs split this annulus

into two topological 2-disks D3, D4 where D3 ∩D4 = c ∪ c′.
Observe that the Seifert circles of D distinct from S1, S2 are disjoint from

S1 ∪S2 ∪ c∪ c′. Therefore the Seifert circles of D can be partitioned into four
disjoint families: the circles lying in D1, those in D2, those in the interior of D3,
and those in the interior of D4. The first two families include S1 = ∂D1 and
S2 = ∂D2, while the other two families may be empty. To analyze the position
of Seifert circles in D1, note that a reduction arc of D lying in D1 is disjoint
from c∪ c′ or can be made disjoint from c∪ c′ by a small deformation near its
endpoints. Since such an arc cannot meet S2, our assumptions imply that D
has no reduction arcs in D1. The same argument as in the proof of Lemma 2.6
shows that the Seifert circles ofD lying in D1 form a system of t ≥ 1 concentric
compatible circles with the external circle being S1. This system of t concentric
circles with the same orientation is schematically represented in Figure 2.20 by
the left oval. Similar arguments show that the Seifert circles of D lying in D2

(resp. in D3, D4) form a system of r ≥ 1 (resp. n ≥ 0, m ≥ 0) concentric circles
with the same orientation, represented in Figure 2.20 by the right (resp. upper,
lower) oval. The diagram D is recovered from these four systems of concentric
circles by inserting certain braids α ∈ Bn+r, β ∈ Bn+t, γ ∈ Bm+t, δ ∈ Bm+r

as in Figure 2.20, where we use the notation α−, β−, γ+, δ+ introduced after
the statement of Lemma 2.11.

Since S1, S2 are incompatible they must have the same orientation (clock-
wise or counterclockwise). For concreteness, we assume that they are oriented
counterclockwise. (The case of the clockwise orientation can be reduced to
this one by reversing the orientations on C,D, C′.) The circles of the other two
families are then oriented clockwise: otherwise we can easily find a reduction
arc connecting S1 to one of these circles and disjoint from c ∪ c′.

Recall that the diagram C is obtained from D by a bending s that pushes (a
subarc of) S1 toward S2 along c and then above S2. Consider a “superbending”
along c pushing the whole band of t circles on the left along c and then over
the r right circles. This superbending is a composition of rt bendings, the first
of them being s. Moreover, to the resulting link diagram we can apply one
more superbending along the arc in S2 going from the bottom point of the
diagram D down to ∞ and then from ∞ down to the top point of D. (It is of
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n

t r

m

β− α−

γ+ δ+

c

c′

S1 S2

c′′

Fig. 2.20. The diagram D

course important that we consider diagrams in S2 so that reduction arcs and
isotopies in S2 are allowed.)

Performing these two superbendings on D, we obtain the link diagram C∗
drawn in Figure 2.15. (Actually, it is easier to observe the converse, i.e., that C∗
produces D via two supertightenings inverse to the superbendings described
above.) A remarkable although obvious fact is that C∗ is a closed braid diagram
and in particular a 0-diagram. In the notation of Lemma 2.11, C∗ represents
the closure of the braid 〈α, β, γ, δ |+,+〉. As we saw, there is a sequence of
rt + mn bendings D s→ C → · · · → C∗ in S2.

Similarly, we can apply a superbending to D along the arc c′, oriented from
S1 to S2, and then another superbending along the short vertical segment c′′

leading from the bottom point of the upper oval toward the top point of
the lower oval in Figure 2.20. This gives a link diagram isotopic to the link
diagram C′∗∗ drawn on the left of Figure 2.21. (Again, it is easier to check
that the inverse moves transform C′∗∗ into D.) As above, there is a sequence

of rt + mn bendings D s′
→ C′ → · · · → C′∗∗ in S2.

The diagram C′∗∗ looks like a closed braid diagram, but not quite because
its Seifert circles are oriented clockwise. Pushing the lower part of C′∗∗ across
∞ ∈ S2, we obtain that C′∗∗ is isotopic in S2 to a closed braid diagram C′∗
drawn on the right of Figure 2.21. This diagram represents the closure of
〈δ, γ, β, α |+,+〉. By (2.3), the braids 〈α, β, γ, δ |+,+〉 and 〈δ, γ, β, α |+,+〉
are M-equivalent. Therefore the diagrams C∗ and C′∗, representing the closures
of these braids, are related by Ω-moves. This gives the sequences of bend-
ings and isotopies C → · · · → C∗ and C′ → · · · → C′∗∗ → C′∗ satisfying the
requirements of the lemma.
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≈

β+

γ− δ−

α+

α+β+

γ− δ−

C′∗C′∗∗
Fig. 2.21. The diagrams C′

∗∗ and C′
∗

If c′ is directed from S2 to S1, then the argument is similar, though
〈δ, γ, β, α |+,+〉 should be replaced with 〈δ, γ, β, α |+,−〉. By the first claim
of Lemma 2.11, this does not change the M-equivalence class of the braid.
This completes the proof of Lemma 2.20. ��

2.6.6 Proof of Lemma 2.17, part III

By the height of a sequence of bendings, tightenings, and isotopies on link
diagrams in S2, we mean the maximal height of the diagrams appearing in
this sequence. We prove the lemma by induction on the height m of the
sequence relating two 0-diagrams in R2.

If m = 0, then the sequence consists solely of isotopies in S2. In this case
Lemma 2.17 follows directly from Lemma 2.18.

Assume that m > 0. It is clear that a transformation of a link diagram in S2

obtained as an isotopy followed by a bending (resp. a tightening) can be also
obtained as a bending (resp. a tightening) followed by an isotopy. Therefore all
isotopies in our sequence of bendings, tightenings, and isotopies in S2 can be
accumulated at the end of the sequence. In particular, all diagrams of height m
in this sequence appear as local maxima, i.e., are obtained by tightening from
the previous diagram and yield the next diagram by bending. Lemma 2.19
shows that we can replace our sequence with another one that connects the
same initial and terminal 0-diagrams, has the same height m, and additionally

satisfies the condition that s · s′ = 0 in all its local maxima C s← D s′
→ C′. By

Lemma 2.20, for each such local maximum, there is a sequence of isotopies,
bendings, and tightenings

C → · · · → C∗ ∼ C′∗ ← · · · ← C′ ,

where ∼ stands for the coincidence C∗ = C′∗ or for Ω-moves transforming C∗
into C′∗ (which are then 0-diagrams). The height of all link diagrams in this
sequence is less than or equal to h(C) = h(C′) < h(D) ≤ m. Replacing every

local maximum C s← D s′
→ C′ by such a sequence, we obtain a concatenation

of sequences of height ≤ m− 1 with sequences of Ω-moves on 0-diagrams. By
the induction assumption, this implies the claim of the lemma. ��
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2.7 Proof of Lemma 2.11

We begin by introducing a useful involution β → β on the set of braids.

2.7.1 The involution β �→ β

For a braid β ∈ Bn, set β = ΔnβΔ−1
n ∈ Bn, where Δn ∈ Bn is the braid

defined in Section 1.3.3. Since Δ2
n lies in the center of Bn, the automor-

phism β → β of Bn is an involution. Formula (2.5) implies that if

β = σr1
i1

σr2
i2
· · ·σrm

im

with 1 ≤ i1, i2, . . . , im ≤ n− 1 and r1, r2, . . . , rm ∈ Z, then

β = σr1
n−i1

σr2
n−i2

· · ·σrm

n−im
.

This formula implies that a diagram of β can be obtained from a diagram of β
in R× I = R× I×{0} by rotating about the line {(n+1)/2}×R×{0} in R3

by the angle π. This geometric description of the involution β → β shows
that α⊗ β = β ⊗ α for any braids α ∈ Bm and β ∈ Bn. Note for the record
that αβ = αβ for any α, β ∈ Bn and 1n = 1n. It is easy to deduce from the
definitions that σε

m,n = σε
n,m for any m,n ≥ 0 and ε = ±.

Lemma 2.21. If two braids β, β′ are M-equivalent, then the braids β, β′ are
M-equivalent.

Proof. We have β ∼c β ∼ β′ ∼c β′. ��

2.7.2 Ghost braids

We introduce a class of ghost braids. Let μ ∈ Bn+k with n ≥ 1, k ≥ 0.
We say that μ is n-right-ghost and write μ ≡ 1n if for any m ≥ 0 and any
β ∈ Bm+n, we have (β⊗ 1k)(1m⊗μ) ∼ β; see Figure 2.22. Examples of right-
ghost braids will be given below. Taking m = 0, β = 1n, we conclude that
μ ≡ 1n ⇒ μ ∼ 1n. (The converse is in general not true.)

Given an n-right-ghost braid μ ∈ Bn+k, we define a move (a transforma-
tion) on braids, denoted by M(μ). For any m ≥ 0, α, β ∈ Bm+n, ρ ∈ Bm, the
move M(μ) transforms β(ρ⊗1n)α into (β⊗1k)(ρ⊗μ)(α⊗1k); see Figure 2.23.
The inverse transformation replaces the factor ρ⊗μ with ρ⊗1n and deletes 1k

on the right of the other factors. The move M(μ) and its inverse preserve the
M-equivalence class of the braid. Indeed,

β(ρ⊗ 1n)α ∼c αβ(ρ⊗ 1n)
∼ (αβ(ρ ⊗ 1n)⊗ 1k)(1m ⊗ μ)
= (α⊗ 1k)(β ⊗ 1k)(ρ⊗ 1n+k)(1m ⊗ μ)
= (α⊗ 1k)(β ⊗ 1k)(ρ⊗ μ)
∼c (β ⊗ 1k)(ρ⊗ μ)(α ⊗ 1k) .
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Fig. 2.22. The formula (β ⊗ 1k)(1m ⊗ μ) ∼ β
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Fig. 2.23. The transformation M(μ)

Given a braid μ ∈ Bn+k with n ≥ 1, k ≥ 0, we say that μ is n-left-ghost
and write μ ≡′ 1n if (1k ⊗ β)(μ ⊗ 1m) ∼ β for any m ≥ 0, β ∈ Bn+m. For
any such μ and any α, β ∈ Bn+m, ρ ∈ Bm, we denote by M ′(μ) the move
transforming β(1n⊗ ρ)α into (1k ⊗β)(μ⊗ ρ)(1k⊗α). An argument similar to
the one above shows that this move and its inverse preserve the M-equivalence
class of the braid.

Lemma 2.22. Let μ ∈ Bn+k with n ≥ 1, k ≥ 0. If μ ≡ 1n, then μ ≡′ 1n.

Proof. Pick β ∈ Bn+m with m ≥ 0 and set γ = (1k ⊗ β)(μ ⊗ 1m). We must
verify that γ ∼ β. Obviously, γ ∼c γ = (β ⊗ 1k)(1m ⊗ μ). Since μ ≡ 1n, we
have (β ⊗ 1k)(1m ⊗ μ) ∼ β ∼c β. Therefore γ ∼ β. ��

For n ≥ 1, set θ+
n = Δ2

n ∈ Bn and θ−n = Δ−2
n ∈ Bn. Clearly, for any ε = ±,

θε
n = Δnθε

nΔ
−1
n = θε

n .

As an exercise, the reader may check that

θε
n = (θε

n−1 ⊗ 11)σε
1,n−1σ

ε
n−1,1 = σε

1,n−1(11 ⊗ θε
n−1)σ

ε
n−1,1 . (2.8)

The following lemma provides key examples of ghost braids. The proof
of this lemma is given in an algebraic form. Here and below, the reader is
strongly encouraged to draw the pictures corresponding to our formulas.
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Lemma 2.23. For any n ≥ 1 and ε = ±, set

μn,ε = (1n ⊗ θ−ε
n )σε

n,n = σε
n,n(θ−ε

n ⊗ 1n) ∈ B2n .

Then
μn,ε = (θ−ε

n ⊗ 1n)σε
n,n = σε

n,n(1n ⊗ θ−ε
n ) ∈ B2n

and μn,ε ≡ 1n, μn,ε ≡ 1n, μn,ε ≡′ 1n, μn,ε ≡′ 1n.

Proof. We shall represent θε
n graphically by a box with ε inside. Two pictorial

representations of μn,− are given in Figure 2.24. Pictures of μn,+ are obtained
by exchanging the over/undercrossings and replacing + by − in the box.

=
+

+

μn,− =

n n n

nn

n

nn

Fig. 2.24. The braid μn,−

The expansions for μn,ε in the statement of the lemma are obtained from
the expansions for μn,ε and the geometric interpretation of the involution
μ → μ. By Lemma 2.22, the formulas μn,ε ≡ 1n, μn,ε ≡ 1n will imply that
μn,ε ≡′ 1n, μn,ε ≡′ 1n. To prove that μn,ε is n-right-ghost, we must verify
that

(β ⊗ 1n)(1m ⊗ μn,ε) ∼ β

for any β ∈ Bm+n with m ≥ 0. Clearly,

(β ⊗ 1n)(1m ⊗ μn,ε) = (β ⊗ 1n)(1m ⊗ 1n ⊗ θ−ε
n )(1m ⊗ σε

n,n)

= (β ⊗ θ−ε
n )(1m ⊗ σε

n,n)

∼c (1m ⊗ σε
n,n)(β ⊗ θ−ε

n ) .

It remains to prove that

(1m ⊗ σε
n,n)(β ⊗ θ−ε

n ) ∼ β . (2.9)

The formula μn,ε ≡ 1n also follows from (2.9), since

(β ⊗ 1n)(1m ⊗ μn,ε) ∼c (1m ⊗ μn,ε)(β ⊗ 1n)

= (1m ⊗ σε
n,n)(1m+n ⊗ θ−ε

n )(β ⊗ 1n)

= (1m ⊗ σε
n,n)(β ⊗ θ−ε

n ) .

The proof of the equality (2.9) goes by induction on n. For n = 1, we have
θ−ε

n = 11 and 1m ⊗ σε
n,n = σε

m+1, where σ+
m+1 = σm+1 and σ−

m+1 = σ−1
m+1.
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The transformation σε
m+1(β⊗ 11) → β is an inverse Markov move. Therefore,

formula (2.9) holds for n = 1. In the inductive step we shall use the identity

σε
n,n = (σε

n−1,n ⊗ 11)(1n−1 ⊗ σε
1,n) .

For n > 1,

(1m ⊗ σε
n,n)(β ⊗ θ−ε

n )

= (1m ⊗ σε
n,n)(1m ⊗ 1n ⊗ θ−ε

n )(β ⊗ 1n)

= (1m ⊗ θ−ε
n ⊗ 1n)(1m ⊗ σε

n,n)(β ⊗ 1n)

= (1m ⊗ θ−ε
n ⊗ 1n)(1m ⊗ σε

n−1,n ⊗ 11)(1m+n−1 ⊗ σε
1,n)(β ⊗ 1n)

∼c (1m+n−1 ⊗ σε
1,n)(β ⊗ 1n)(1m ⊗ θ−ε

n ⊗ 1n)(1m ⊗ σε
n−1,n ⊗ 11)

= (1m+2n−2 ⊗ σε
1,1)(1m+n−1 ⊗ σε

1,n−1 ⊗ 11)

× (β ⊗ 1n)(1m ⊗ θ−ε
n ⊗ 1n)(1m ⊗ σε

n−1,n ⊗ 11)

∼ (1m+n−1 ⊗ σε
1,n−1)(β ⊗ 1n−1)(1m ⊗ θ−ε

n ⊗ 1n−1)(1m ⊗ σε
n−1,n) ,

where the last transformation is M−1
2 . The resulting braid is a conjugate of

(1m ⊗ θ−ε
n ⊗ 1n−1)(1m ⊗ σε

n−1,n)(1m+n−1 ⊗ σε
1,n−1)(β ⊗ 1n−1)

= (1m ⊗ θ−ε
n ⊗ 1n−1)(1m ⊗ σε

1,n−1 ⊗ 1n−1)(1m ⊗ σε
n−1,n)(β ⊗ 1n−1)

= (1m ⊗ θ−ε
n σε

1,n−1 ⊗ 1n−1)(1m ⊗ σε
n−1,n)(β ⊗ 1n−1) .

Substituting in the latter braid the expansion

θ−ε
n σε

1,n−1 = θ−ε
n (σ−ε

n−1,1)
−1 = σ−ε

1,n−1(11 ⊗ θ−ε
n−1) ,

which follows from (2.8), we obtain

(1m ⊗ σ−ε
1,n−1 ⊗ 1n−1)(1m+1 ⊗ θ−ε

n−1 ⊗ 1n−1)(1m ⊗ σε
n−1,n)(β ⊗ 1n−1)

= (1m ⊗ σ−ε
1,n−1 ⊗ 1n−1)(1m ⊗ σε

n−1,n)(β ⊗ θ−ε
n−1)

∼c (1m ⊗ σε
n−1,n)(β ⊗ θ−ε

n−1)(1m ⊗ σ−ε
1,n−1 ⊗ 1n−1)

= (1m+1 ⊗ σε
n−1,n−1)(1m ⊗ σε

n−1,1 ⊗ 1n−1)

× (β ⊗ θ−ε
n−1)(1m ⊗ σ−ε

1,n−1 ⊗ 1n−1)

= (1m+1 ⊗ σε
n−1,n−1) (β′ ⊗ θ−ε

n−1) ,

where
β′ = (1m ⊗ σε

n−1,1)β (1m ⊗ σ−ε
1,n−1) .

By the induction assumption,

(1m+1 ⊗ σε
n−1,n−1) (β′ ⊗ θ−ε

n−1) ∼ β′

= (1m ⊗ σε
n−1,1)β(1m ⊗ σε

n−1,1)
−1 ∼c β .

This completes the proof of (2.9) and of the lemma. ��
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Lemma 2.24. For any integers m,n ≥ 0, r ≥ 1 and braids β ∈ Bm+r,
γ ∈ Bm+n, the M-equivalence class of the braid

αε = (β ⊗ 1n) (1m ⊗ σε
n,r) (γ ⊗ 1r) (1m ⊗ σ−ε

r,n)

does not depend on ε = ±. (Here, if m = n = 0, then γ = 10.)

Proof. If n = 0, then σ+
n,r = σ−

n,r and hence α+ = α−. If m = 0, then
α+ = β ⊗ γ = α−. Suppose that m ≥ 1 and n ≥ 1. We shall prove that
α+ ∼ α−; see Figure 2.25.

nm

∼

nm

β

γ

m

r

r

r

nm

nm

β

γ

m

r

r

r

Fig. 2.25. α+ ∼ α−

We first rewrite the factor 1m ⊗ σ+
n,r of α+ using the obvious expansion

1m ⊗ σ+
n,r = (1m ⊗ σ+

n,rσ
+
r,n) (1m+r ⊗ 1n) (1m ⊗ σ−

n,r) . (2.10)

By Lemma 2.23, the M-equivalence class of α+ is preserved under the trans-
formation replacing the term 1n in the factor 1m+r ⊗ 1n by the braid

μn,− = (θ+
n ⊗ 1n)σ−

n,n = σ−
n,n(1n ⊗ θ+

n )

and tensoring on the right all the other factors in the expression for α+ by 1n.
This transforms the right-hand side of (2.10) into the braid

ψ = (1m ⊗ σ+
n,rσ

+
r,n ⊗ 1n) (1m+r ⊗ θ+

n ⊗ 1n) (1m+r ⊗ σ−
n,n) (1m ⊗ σ−

n,r ⊗ 1n) .

Figure 2.26 shows that ψ = ψ1ψ2ψ3, where

ψ1 = 1m+r ⊗ μn,− , ψ2 = 1m ⊗ σ−
n,r ⊗ 1n , ψ3 = 1m+n ⊗ σ+

n,rσ
+
r,n .

Therefore,

α+ ∼ (β ⊗ 12n)ψ1ψ2ψ3 (γ ⊗ 1r+n) (1m ⊗ σ−
r,n ⊗ 1n)

= ψ1 (β ⊗ 12n)ψ2 (γ ⊗ 1r+n)ψ3 (1m ⊗ σ−
r,n ⊗ 1n)

∼c (β ⊗ 12n)ψ2 (γ ⊗ 1r+n)ψ3 (1m ⊗ σ−
r,n ⊗ 1n)ψ1 .
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+

+

m r n nm r n n

≈

Fig. 2.26. ψ = ψ1ψ2ψ3

Drawing pictures, one observes that

ψ3 (1m ⊗ σ−
r,n ⊗ 1n)ψ1

= (1m ⊗ σ−
r,n ⊗ 1n)(1m+r ⊗ μn,−)(1m ⊗ σ+

n,rσ
+
r,n ⊗ 1n) .

Thus,

α+ ∼ (β ⊗ 12n)(1m ⊗ σ−
n,r ⊗ 1n)(γ ⊗ 1r+n)

× (1m ⊗ σ−
r,n ⊗ 1n)(1m+r ⊗ μn,−)(1m ⊗ σ+

n,rσ
+
r,n ⊗ 1n) .

By Lemma 2.23, we can replace μn,− with 1n and simultaneously remove 1n

on the right of the other factors. This and the identity σ−
r,nσ+

n,r = 1r+n give

α+ ∼ (β ⊗ 1n)(1m ⊗ σ−
n,r)(γ ⊗ 1r)(1m ⊗ σ+

r,n) = α− . ��

Lemma 2.25. Under the assumptions of Lemma 2.24, the M-equivalence
class of the braid

(1n ⊗ β)(σε
r,n ⊗ 1m)(1r ⊗ γ)(σ−ε

n,r ⊗ 1m)

does not depend on ε = ±.

Proof. This follows from Lemma 2.24 by applying the involution μ → μ and
using Lemma 2.21. ��

2.7.3 Proof of Lemma 2.11

The independence of the sign ε follows from Lemma 2.25, where the symbols
r, n,m, ε, β, and γ should be replaced respectively with

n, m, t + r, −ε, (α⊗ 1t)(1n ⊗ σν
t,r)(β ⊗ 1r), (γ ⊗ 1r)(1m ⊗ σ−ν

r,t )(δ ⊗ 1t) .
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The independence of the sign ν follows from the fact that conjugate braids
are M-equivalent and Lemma 2.24, where the symbols n,m, ε, β, γ should be
replaced respectively with

t, m + n, ν, (1n ⊗ δ)(σε
m,n ⊗ 1r)(1m ⊗ α), (1m ⊗ β)(σ−ε

n,m ⊗ 1t)(1n ⊗ γ) .

We now prove (2.3). By the first claim of the lemma, it suffices to consider
the case ε = ν. Consider the braid

〈〈α, β, γ, δ | ε〉〉 = (α⊗ γ)(1n ⊗ σε
m,r ⊗ 1t)(1n ⊗ θε

m ⊗ σε
t,r)(1n ⊗ σε

t,m ⊗ 1r)

× (β ⊗ δ)(1n ⊗ σ−ε
m,t ⊗ 1r)(1n ⊗ θ−ε

m ⊗ σ−ε
r,t )(1n ⊗ σ−ε

r,m ⊗ 1t) ∈ Bm+n+r+t .

Note the obvious conjugacy

〈〈α, β, γ, δ | ε〉〉 ∼c 〈〈β, α, δ, γ | − ε〉〉 . (2.11)

We claim that
〈α, β, γ, δ | ε, ε〉 ∼ 〈〈α, β, γ, δ | ε〉〉 . (2.12)

This will imply (2.3) for ν = ε: applying (2.12), (2.11), and (2.4), we obtain

〈α, β, γ, δ | ε, ε〉 ∼ 〈β, α, δ, γ | − ε,−ε〉 ∼ 〈δ, γ, β, α | ε, ε〉 .

The case ν = −ε of (2.3) follows then from the first claim of the lemma.
A sequence of moves establishing (2.12) for ε = + is given pictorially in

Figure 2.27. (These moves can be described algebraically, which however is
less instructive.) Here, instead of drawing braids we draw their closures. This
is more economical in terms of space and does not hinder the argument since
conjugate braids are M-equivalent.

The first and the last diagrams in Figure 2.27 represent the closures of
the braids 〈α, β, γ, δ |+,+〉 and 〈〈α, β, γ, δ |+〉〉, respectively. The first trans-
formation in Figure 2.27 is a single move M(μm,−). (It would be more logical
to write ++ in the box but we write simply +.) The next two moves are
isotopies in the class of closed braid diagrams (this amounts to conjugation
of braids). Note that the box with + followed by a box with − is just the
trivial braid; this splitting of the trivial braid is needed for the next move.
The fourth move is the inverse to M ′(μm,−). The last move is an isotopy of
closed braid diagrams. Since all these moves preserve the M-equivalence class
of a braid, we obtain (2.12) for ε = +. The case ε = − is treated similarly
using the mirror image of Figure 2.27. ��

Exercise 2.7.1. Verify that the moves M2, M3 correspond to each other un-
der the involution β → β on the set of braids.

Exercise 2.7.2. Let μ ∈ Bn+k with n ≥ 1, k ≥ 0 be an n-right-ghost braid.
Verify that 1r⊗μ ≡ 1r+n for any r ≥ 0 and (δ⊗1k)μ (δ−1⊗1k) ≡ 1n for any
δ ∈ Bn.
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Solution. For any β ∈ Bm+r+n with m ≥ 0,

(β ⊗ 1k)(1m ⊗ 1r ⊗ μ) = (β ⊗ 1k)(1m+r ⊗ μ) ∼ β .

For any β ∈ Bm+n with m ≥ 0,

(β ⊗ 1k)
(

1m ⊗ (δ ⊗ 1k)μ(δ−1 ⊗ 1k)
)

= (β ⊗ 1k)(1m ⊗ δ ⊗ 1k)(1m ⊗ μ)(1m ⊗ δ−1 ⊗ 1k)

∼c (1m ⊗ δ−1 ⊗ 1k)(β ⊗ 1k)(1m ⊗ δ ⊗ 1k)(1m ⊗ μ)

=
(

(1m ⊗ δ−1)β(1m ⊗ δ)⊗ 1k

)

(1m ⊗ μ)

∼ (1m ⊗ δ−1)β(1m ⊗ δ) ∼c β .

−→

−→

−→

−→

−→

β− α−

γ+

β−

β− β−

β−

β− α−

α−

α−α−

α−

γ+

γ+

γ+

γ+δ+

δ− γ−

+

−

m

n

rt t r

m

n

r
r

t
t

m m

n

δ+

δ+

δ+

−

−

+

+

+

+

+

δ+

Fig. 2.27. Proof of formula (2.12)
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Notes

The content of Section 2.1 is standard. Theorem 2.1 was first pointed out by
Artin [Art25] without proof; see also [Mor78, Th. 1], and [BZ85, Prop. 10.16].

Theorem 2.3 is due to Alexander [Ale23a]. The algorithm of Section 2.4.3
transforming a link diagram into a closed braid diagram is due to Vogel
[Vog90], who improved a previous construction by Yamada [Yam87]. Bend-
ings were introduced by Vogel (under a different name). The height of a link
diagram was introduced by Traczyk [Tra98], who also stated Lemmas 2.4–2.6.
Our proof of Lemmas 2.5 and 2.6 is based on arguments from [Vog90,
Sect. 5]. Corollary 2.7 is due to Yamada [Yam87]. Exercise 2.4.1 is due to
Traczyk [Tra98].

Theorem 2.8 was announced by Markov [Mar36] in 1936. The first pub-
lished proof appeared in the monograph [Bir74]. According to [Bir74, p. 49],
this proof “is based on notes taken at a seminar at Princeton University
in 1954. The speaker is unknown to us. . . .” Different proofs were given by Ben-
nequin [Ben83], Morton [Mor86], and Traczyk [Tra98]. The proof of Markov’s
theorem given above follows Traczyk [Tra98].



3

Homological Representations
of the Braid Groups

Braid groups, viewed as the groups of isotopy classes of self-homeomorphisms
of punctured disks, naturally act on the homology of topological spaces ob-
tained from the punctured disks by functorial constructions. We discuss here
two such constructions and study the resulting linear representations of the
braid groups: the Burau representation (Sections 3.1–3.3) and the Lawrence–
Krammer–Bigelow representation (Sections 3.5–3.7). As an application of the
Burau representation, we construct in Section 3.4 the one-variable Alexander–
Conway polynomial of links in R3. As an application of the Lawrence–
Krammer–Bigelow representation, we establish the linearity of Bn for all n
(Section 3.5.4).

3.1 The Burau representation

For all n ≥ 1, W. Burau introduced a linear representation of the braid
group Bn by n× n matrices over the ring of Laurent polynomials

Λ = Z[t, t−1] .

This representation has been extensively studied from various viewpoints. In
this section we define the Burau representation and discuss its main properties.

3.1.1 Definition

Fix n ≥ 2. For i = 1, . . . , n− 1, consider the following n× n matrix over the
ring Λ = Z[t, t−1]:

Ui =

⎛

⎜
⎜
⎝

Ii−1 0 0 0
0 1− t t 0
0 1 0 0
0 0 0 In−i−1

⎞

⎟
⎟
⎠

,

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 3,
c© Springer Science+Business Media, LLC 2008
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where Ik denotes the unit k × k matrix. When i = 1, there is no unit matrix
in the upper left corner of Ui. When i = n− 1, there is no unit matrix in the
lower right corner of Ui. Substituting t = 1 in the definition of U1, . . . , Un−1,
we obtain permutation n× n matrices. One can therefore view U1, . . . , Un−1

as one-parameter deformations of permutation matrices.
Each matrix Ui has a block-diagonal form with blocks being the unit ma-

trices and the 2× 2 matrix

U =
(

1− t t
1 0

)

. (3.1)

By the Cayley–Hamilton theorem, any 2×2 matrix M over the ring Λ satisfies
M2− tr(M)M + det(M)I2 = 0, where tr(M) is the trace of M and det(M) is
the determinant of M . For M = U , this gives U2 − (1− t)U − tI2 = 0. Since
the unit matrices also satisfy this equation,

U2
i − (1− t)Ui − tIn = 0

for all i. This can be rewritten as Ui(Ui − (1 − t)In) = tIn. Hence, Ui is
invertible over Λ and its inverse is computed by

U−1
i = t−1(Ui − (1 − t)In) =

⎛

⎜
⎜
⎝

Ii−1 0 0 0
0 0 1 0
0 t−1 1− t−1 0
0 0 0 In−i−1

⎞

⎟
⎟
⎠

.

The block form of the matrices U1, . . . , Un−1 implies that UiUj = UjUi for
all i, j with |i− j| ≥ 2. We also have

UiUi+1Ui = Ui+1UiUi+1

for i = 1, . . . , n− 2. To check this, it is enough to verify the equality

⎛

⎝

1− t t 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 1− t t
0 1 0

⎞

⎠

⎛

⎝

1− t t 0
1 0 0
0 0 1

⎞

⎠

=

⎛

⎝

1 0 0
0 1− t t
0 1 0

⎞

⎠

⎛

⎝

1− t t 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 1− t t
0 1 0

⎞

⎠ .

This equality is an exercise in matrix multiplication.
By Lemma 1.2, the formula ψn(σi) = Ui with i = 1, . . . , n − 1 defines

a group homomorphism ψn from the braid group Bn with n ≥ 2 to the
group GLn(Λ) of invertible n × n matrices over Λ. This is the Burau repre-
sentation of Bn. In particular, for n = 2, this representation is the homomor-
phism B2 → GL2(Λ), sending the generator σ1 of B2

∼= Z to the matrix (3.1).
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By convention, the Burau representation ψ1 of the (trivial) group B1 is the
trivial homomorphism B1 → GL1(Λ).

Observe that det Ui = −t for all i. This implies that for any β ∈ Bn,

det ψn(β) = (−t)〈β〉 ,

where 〈β〉 ∈ Z is the image of β under the homomorphism Bn → Z sending
the generators σ1, . . . , σn−1 to 1.

The Burau representations {ψn}n≥1 are compatible with the natural in-
clusions ι : Bn ↪→ Bn+1: for any n ≥ 1 and β ∈ Bn,

ψn+1(ι(β)) =
(

ψn(β) 0
0 1

)

. (3.2)

3.1.2 Unitarity

The study of the Burau representation ψn : Bn → GLn(Λ) has to a great
extent been focused on its kernel and image. We establish here a simple pro-
perty of the image showing that it is contained in a rather narrow subgroup
of GLn(Λ). This property will not be used in the sequel.

Consider the involutive automorphism of the ring Λ, λ → λ for λ ∈ Λ,
sending t to t−1. For a matrix A = (λi,j) over Λ, set A = (λi,j) and let
AT = (λj,i) be the transpose of A. Let Ωn be the lower triangular n × n
matrix over Λ with all diagonal terms equal to 1 and all subdiagonal terms
equal to 1− t:

Ωn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 · · · 0
1− t 1 0 · · · 0
1− t 1− t 1 · · · 0

...
...

...
. . .

...
1− t 1− t 1− t · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Theorem 3.1. For any n ≥ 1 and A ∈ ψn(Bn) ⊂ GLn(Λ),

AΩnA
T = Ωn . (3.3)

Proof. If (3.3) holds for a matrix A, then it holds for its inverse: multiply-
ing (3.3) on the left by A

−1
and on the right by (AT )−1, we obtain the same

formula with A replaced by A−1. If (3.3) holds for two matrices A1, A2, then
it holds for their product:

A1A2 Ωn(A1A2)
T = A1 A2 ΩnA

T
2 AT

1 = A1 ΩnA
T
1 = Ωn .

Now, since the matrices U1, . . . , Un−1 generate the group ψn(Bn), it is enough
to prove (3.3) for A = Ui with i = 1, . . . , n− 1. Present A = Ui and Ωn in the
block form
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A =

⎛

⎝

Ii−1 0 0
0 U 0
0 0 In−i−1

⎞

⎠ , Ωn =

⎛

⎝

Ωi−1 0 0
K2,i−1 Ω2 0

Kn−i−1,i−1 Kn−i−1,2 Ωn−i−1

⎞

⎠ ,

where

U =
(

1− t t
1 0

)

, Ω2 =
(

1 0
1− t 1

)

,

and Kp,q is the p×q matrix with all entries equal to 1−t. A direct computation
gives

AΩnA
T =

⎛

⎝

Ωi−1 0 0
U K2,i−1 U Ω2 UT 0

Kn−i−1,i−1 Kn−i−1,2 UT Ωn−i−1

⎞

⎠ .

Note that UK2,i−1 = K2,i−1, since

U

(

1− t
1− t

)

=
(

1− t−1 t−1

1 0

)(

1− t
1− t

)

=
(

1− t
1− t

)

.

Similarly, Kn−i−1,2 UT = Kn−i−1,2, since

(1 − t, 1− t)UT = (1 − t, 1− t)
(

1− t 1
t 0

)

= (1 − t, 1− t) .

A direct computation gives U Ω2U
T = Ω2. Substituting these formulas in the

expression for AΩnA
T , we conclude that AΩnA

T = Ωn. ��

Applying the involution A → A and the transposition to (3.3), we obtain
AΩ

T

nAT = Ω
T

n . Therefore for any A ∈ ψn(Bn) and λ, μ ∈ Λ,

A (λΩn + μΩ
T

n )AT = λΩn + μΩ
T

n .

In particular, setting λ = μ = 1, we obtain

AΘnAT = Θn , (3.4)

where Θn = Ωn + Ω
T

n is the following n× n matrix:

Θn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 1− t−1 1− t−1 · · · 1− t−1

1− t 2 1− t−1 · · · 1− t−1

1− t 1− t 2 · · · 1− t−1

...
...

...
. . .

...
1− t 1− t 1− t · · · 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The matrix Θn is “Hermitian” in the sense that Θ
T

n = Θn.
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Remark 3.2. Sending t ∈ Λ to a complex number ζ of absolute value 1, we
obtain a ring homomorphism pζ : Λ → C. The involution λ → λ on the ring Λ
corresponds under pζ to complex conjugation. Applying pζ to the entries of
n×n matrices over Λ, we obtain a group homomorphism GLn(Λ) → GLn(C),
also denoted by pζ . This gives a representation

Pζ = pζψn : Bn → GLn(C) .

Formula (3.4) implies that

Pζ(β) pζ(Θn)Pζ(β)T = pζ(Θn)

for all β ∈ Bn. For ζ = 1, we have pζ(Θn) = 2In. Therefore the Hermitian
matrix pζ(Θn) is positive definite for all ζ sufficiently close to 1. For such ζ, the
matrices in Pζ(Bn) ⊂ GLn(C) are obtained by transposition and conjugation
from unitary matrices.

3.1.3 The kernel of ψn

A homomorphism from a group to a group of matrices is said to be faithful
if its kernel is trivial. The homomorphism ψ1 is faithful, since B1 = {1}. The
homomorphism ψ2 is also faithful. Indeed, the matrix U = U1 ∈ GL2(Λ),
which is the image of the generator σ1 of B2

∼= Z, satisfies

(1,−1)U = (−t, t) = −t (1,−1) .

Hence, (1,−1)Uk = (−t)k (1,−1) for all k ∈ Z and we can conclude that U is
of infinite order in GL2(Λ). In Section 3.3.2 we shall show that Kerψ3 = {1}.
For n ≥ 4, the question whether ψn is faithful, i.e., whether Kerψn = {1},
remained open for a long time. Note that Kerψn ⊂ Kerψn+1 under the inclu-
sion Bn ⊂ Bn+1. Therefore, if Kerψn �= {1}, then we have also Kerψm �= {1}
for all m ≥ n.

Theorem 3.3. Kerψn �= {1} for n ≥ 5.

At the moment of writing (2007), it is unknown whether Kerψ4 = {1}.
We point out explicit braids on five and six strings annihilated by the

Burau representation. Set

γ = σ4σ
−1
3 σ−1

2 σ2
1σ

−1
2 σ−2

1 σ−2
2 σ−1

1 σ−5
4 σ2σ3σ

3
4σ2σ

2
1σ2σ

−1
3 ∈ B5 .

Then the commutator

ρ = [γσ4γ
−1, σ4σ3σ2σ

2
1σ2σ3σ4]

is a nontrivial element of Kerψ5 ⊂ B5. Here for elements a, b of a group,

[a, b] = a−1b−1ab .
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The braid ρ is represented by a word of length 120 in the generators
σ±1

1 , σ±1
2 , σ±1

3 , σ±1
4 (observe that γ has length 26, while σ−1

4 γ and γ−1σ4 have
length 25). For n = 6 we can produce a shorter word representing an element
of the kernel. Set

γ = σ4σ
−2
5 σ−1

2 σ3
1σ

−1
2 σ−1

5 σ4 ∈ B6 .

The commutator
ρ′ = [γσ3γ

−1, σ3]

is a nontrivial element of Kerψ6 ⊂ B6. The braid ρ′ is represented by a word
of length 44 in the generators. That ρ, ρ′ lie in the kernel of the Burau repre-
sentation can in principle be verified by a direct computation. That they are
nontrivial braids can be obtained using the solution of the word problem in Bn

given in Section 1.5.1, or the normal form of braids discussed in Section 6.5.4,
or the prime handle reduction of Section 7.5. These computations, however,
shed no light on the geometric reasons forcing ρ, ρ′ to lie in the kernel. These
reasons will be discussed in Section 3.2.

Exercise 3.1.1. Show that Kerψn ⊂ Bn is invariant under the involutive
anti-automorphism h : Bn → Bn sending σi to itself for i = 1, . . . , n − 1.
(Hint: Verify that UT

i = DUiD
−1, where i = 1, . . . , n− 1 and D = Dn is the

diagonal n× n matrix with diagonal terms 1, t, t2, . . . , tn−1. Deduce that

ψn(h(β)) = D−1ψn(β)T D

for all β ∈ Bn.)

3.2 Nonfaithfulness of the Burau representation

The aim of this section is to prove Theorem 3.3 for n ≥ 6. The case n = 5 is
somewhat subtler; for this case, we refer the reader to [Big99].

We begin with a study of homological representations of mapping class
groups of surfaces.

3.2.1 Homological representations

Let Σ be a connected oriented surface (possibly with boundary ∂Σ). Recall
that by self-homeomorphisms of Σ we mean orientation-preserving homeo-
morphisms Σ → Σ fixing the boundary pointwise. The isotopy classes of self-
homeomorphisms of Σ form the mapping class group M(Σ); see Section 1.6.1,
where we take M = Σ, Q = ∅. A self-homeomorphism of Σ induces an au-
tomorphism of the homology group H = H1(Σ;Z). It is clear that isotopic
self-homeomorphisms of Σ are homotopic and therefore induce the same au-
tomorphism of H . This defines a group homomorphism M(Σ) → Aut(H),
called the homological representation of M(Σ).
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Recall the intersection form H×H → Z. This is a skew-symmetric bilinear
form whose value [α] · [β] ∈ Z on the homology classes [α], [β] ∈ H represented
by oriented loops α, β on Σ is the algebraic intersection number of these loops
computed as follows. Deforming slightly α and β, we can assume that they
meet transversely in a finite set of points that are not self-crossings of α or
of β. Then

[α] · [β] =
∑

p∈α∩β

εp ,

where εp = +1 if the tangent vectors of α, β at p form a positively oriented
basis and εp = −1 otherwise. This sum does not depend on the choice of the
loops α, β in their homology classes and defines a bilinear form H ×H → Z.
The identity [α] · [β] = −[β] · [α] shows that this intersection form is skew-
symmetric. The action of M(Σ) on H preserves the intersection form.

The homological representation has a more general “twisted” version,
which comes up in the following setting. Suppose for concreteness that
∂Σ �= ∅ and fix a base point d ∈ ∂Σ. Consider a surjective homomorphism ϕ
from π1(Σ, d) onto a group G. Let Σ̃ → Σ be the covering corresponding
to the kernel of ϕ. The group of covering transformations of Σ̃ is identified
with G. Pick an arbitrary point d̃ ∈ ∂Σ̃ lying over d and consider the relative
homology group H̃ = H1(Σ̃, Gd̃;Z), where Gd̃ is the G-orbit of d̃, i.e., the set
of all points of Σ̃ lying over d. The action of G on Σ̃ induces a left action of G
on H̃ and turns H̃ into a left module over the group ring Z[G]. This module is
free of rank n = rkH1(Σ;Z). This follows from the fact that Σ deformation
retracts onto a union of n simple closed loops on Σ meeting only at their com-
mon origin d (here we crucially use the assumption ∂Σ �= ∅; cf. Figure 1.15,
where Σ is the complement of n points in a disk). Let Aut(H̃) be the group
of Z[G]-linear automorphisms of H̃ . Clearly, Aut(H̃) ∼= GLn(Z[G]).

Any self-homeomorphism f of Σ fixes the boundary ∂Σ pointwise and,
in particular, fixes d. It induces therefore an automorphism f# of the fun-
damental group π1(Σ, d). Let Mϕ(Σ, d) be the group of isotopy classes of
self-homeomorphisms f of Σ such that ϕ ◦ f# = ϕ. We construct a homo-
morphism Mϕ(Σ, d) → Aut(H̃) called the twisted homological representa-
tion of Mϕ(Σ, d). Every self-homeomorphism f of Σ representing an element
of Mϕ(Σ, d) lifts uniquely to a homeomorphism f̃ : Σ̃ → Σ̃ fixing d̃. The
equality ϕ ◦ f# = ϕ ensures that f̃ commutes with the action of G on Σ̃.
Therefore f̃ fixes the set Gd̃ pointwise: f̃(gd̃) = gf̃(d̃) = gd̃ for all g ∈ G.
Let f̃∗ be the automorphism of H̃ = H1(Σ̃, Gd̃;Z) induced by f̃ . Since f̃ com-
mutes with the action of G, this automorphism is Z[G]-linear. The map f → f̃∗
defines a group homomorphism Mϕ(Σ, d) → Aut(H̃), which is the homolog-
ical representation in question. The group H̃ carries a natural intersection
form preserved by Mϕ(Σ, d) but we shall not need it.
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3.2.2 The homomorphism Ψn

We apply the general scheme of twisted homological representations to punc-
tured disks. Fix n ≥ 1. Let Q be the set {(1, 0), (2, 0), . . . , (n, 0)} ⊂ R2 and
let D be a closed Euclidean disk in R2 containing Q in its interior. We pro-
vide D with the counterclockwise orientation as in Figure 1.15. Observe that
for any point p in the interior of D, the group

H1(D − {p};Z) ∼= Z

is generated by the homology class of a small loop encircling p counterclock-
wise. Each loop γ in D−{p} represents k times this generator, where k is the
winding number of γ around p. Set

Σ = D −Q

and fix a base point d ∈ ∂Σ = ∂D. Consider the group homomorphism ϕ
from π1(Σ, d) to the infinite cyclic group {tk}k∈Z sending the homotopy class
of a loop γ to t−w(γ), where w(γ) is the total winding number of γ defined
as the sum of its winding numbers around the points (1, 0), (2, 0), . . . , (n, 0).
The kernel of ϕ determines an infinite cyclic covering Σ̃ → Σ. We identify its
group of covering transformations with the infinite cyclic group {tk}k∈Z. Pick
a point d̃ ∈ ∂Σ̃ over d and set

H̃ = H1

(

Σ̃,
⋃

k∈Z

tkd̃;Z
)

.

Observe that any self-homeomorphism of D permuting the points of Q pre-
serves the total winding number of loops in Σ. This is obvious for the small
loops encircling the points of Q and holds for arbitrary loops, since their
total winding numbers depend only on their homology classes in the group
H1(Σ;Z) ∼= Zn, which is generated by the homology classes of the small loops.
Therefore the restriction to Σ defines a group homomorphism

M(D,Q) → Mϕ(Σ, d) .

(It is actually an isomorphism but we do not need this.) Composing this homo-
morphism with the twisted homological representation Mϕ(Σ, d) → Aut(H̃)
defined in Section 3.2.1, we obtain a group homomorphism

Ψn : M(D,Q) → Aut(H̃) .

The image of f ∈ M(D,Q) under Ψn is the automorphism f̃∗ of H̃ induced
by the lift f̃ : Σ̃ → Σ̃ of f |Σ : Σ → Σ fixing d̃.

In the next two subsections we show that KerΨn �= {1} for n ≥ 6. After
that we show that Ψn is equivalent to the Burau representation ψn for all n.
This will imply the nonfaithfulness of the latter for n ≥ 6.
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3.2.3 The kernel of Ψn

We give a construction of elements in KerΨn using half-twists about spanning
arcs as introduced in Section 1.6.2.

We say that two spanning arcs α, β on (D,Q) are transversal if they have
no common endpoints and meet transversely at a finite number of points.
For any transversal spanning arcs α, β on (D,Q), we define their algebraic
intersection 〈α, β〉 ∈ Λ = Z[t, t−1]. Consider the open arcs α ∩ Σ = α − ∂α
and β ∩ Σ = β − ∂β on Σ = D − Q. Orient these arcs in an arbitrary way
and pick arbitrary lifts α̃, β̃ ⊂ Σ̃ of α, β with induced orientations. Now we
can set

〈α, β〉 =
∑

k∈Z

(tkα̃ · β̃) tk ∈ Λ , (3.5)

where tkα̃ · β̃ ∈ Z is the algebraic intersection number of the oriented arcs tkα̃
and β̃ on Σ̃. Note that although the arcs tkα̃ and β̃ are not compact, they
have only a finite number of intersections, and moreover, the sum on the right-
hand side of (3.5) is finite. This is so because the covering projection Σ̃ → Σ

maps β̃ bijectively onto β and maps the set (
⋃

k∈Z tkα̃) ∩ β̃ bijectively onto
the finite set α ∩ β. This shows also that every point p ∈ α ∩ β ⊂ Σ lifts to
an intersection point of tkα̃ with β̃ for exactly one k = kp ∈ Z. Therefore,

〈α, β〉 =
∑

p∈α∩β

εp tkp , (3.6)

where εp = ±1 is the intersection sign of α and β at p. As an exercise, the
reader may verify that for any p, q ∈ α ∩ β, the difference kp − kq is the total
winding number of the loop in Σ going from p to q along α and then from q
to p along β. The expression 〈α, β〉 is defined only up to multiplication by ±1
and a power of t depending on the choice of orientations on α, β and the choice
of their lifts α̃, β̃. This will not be important for us, since we are interested
only in whether 〈α, β〉 = 0. Note that

〈β, α〉 =
∑

k∈Z

(tkβ̃ · α̃) tk =
∑

k∈Z

(β̃ · t−kα̃) tk

= −
∑

k∈Z

(t−kα̃ · β̃) tk = −
∑

k∈Z

(tkα̃ · β̃) t−k

= −〈α, β〉 ,

where the overbar denotes the ring involution on Λ sending t to t−1. Hence,
〈α, β〉 = 0 ⇒ 〈β, α〉 = 0.

As we know, every spanning arc α on (D,Q) gives rise to a half-twist
τα : (D,Q) → (D,Q) acting as the identity outside a disk neighborhood of α
and mapping α onto itself via an orientation-reversing involution. Restricting
τα to Σ = D−Q, we obtain a self-homeomorphism of Σ, denoted again by τα.
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Lemma 3.4. Let α, β be transversal spanning arcs on (D,Q). If 〈α, β〉 = 0,
then Ψn(τατβ) = Ψn(τβτα).

Proof. To prove the lemma we compute the homological action of the half-
twists. As a warmup, we compute the action of τα on H = H1(Σ;Z). Consider
the loop α′ on D drawn in Figure 3.1. This loop has a “figure-eight” shape
and its only self-crossing lies on α. We orient α and α′ so that [α] · [α′] = −2,
where [α] ∈ H1(D,Q;Z) is the relative homology class of α and [α′] ∈ H
is the homology class of α′. The dot · denotes the bilinear intersection form
H1(D,Q;Z)×H → Z determined by the counterclockwise orientation of D.

The effect of the half-twist τα on an oriented curve transversal to α is to
insert (α′)±1 at each crossing of α with this curve; see Figure 1.14. It is easy
to check that for any h ∈ H ,

(τα)∗(h) = h + ([α] · h) [α′] .

α

α′

Fig. 3.1. The loop α′ associated with a spanning arc α

The automorphism Ψn(τα) of H̃ = H1(Σ̃,
⋃

k∈Z tkd̃;Z) is defined by
Ψn(τα) = (τ̃α)∗, where τ̃α : Σ̃ → Σ̃ is the lift of τα : Σ → Σ fixing d̃.
Observe that the loop α′ on Σ associated to α has zero total winding number
and therefore lifts to a loop α̃′ on Σ̃. Consider an arbitrary oriented path γ
in Σ̃ with endpoints in

⋃

k∈Z tkd̃. The effect of τ̃α on γ is to insert a lift
of (α′)±1 at each crossing of γ with the preimage of α in Σ̃. Thus (τ̃α)∗ acts
on the relative homology class [γ] ∈ H̃ by

(τ̃α)∗([γ]) = [γ] + λγ [α̃′] ,

where λγ ∈ Λ is a Laurent polynomial whose coefficients are the algebraic
intersection numbers of γ with lifts of α to Σ̃. Since 〈α, β〉 = 0, any lift of α

has algebraic intersection number zero with any lift of β to Σ̃ and hence with
any lift β̃′ of β′ to Σ̃. Therefore, λβ̃′ = 0 and (τ̃α)∗([β̃′]) = [β̃′]. Similarly,

(τ̃β)∗([γ]) = [γ] + μγ [β̃′] for all γ as above and some μγ ∈ Λ. The equality
〈β, α〉 = 0 implies that (τ̃β)∗([α̃′]) = [α̃′]. We conclude that for all γ,

(τ̃ατ̃β)∗([γ]) = [γ] + λγ [α̃′] + μγ [β̃′] = (τ̃β τ̃α)∗([γ]) .

Therefore (τ̃ατ̃β)∗ = (τ̃β τ̃α)∗. ��



3.2 Nonfaithfulness of the Burau representation 103

To prove that KerΨn �= {1}, it remains to construct two spanning arcs α, β
satisfying the conditions of Lemma 3.4 and such that τατβ �= τβτα in M(D,Q).
For n = 6, such spanning arcs α, β are drawn in Figure 3.2. To check the
equality 〈α, β〉 = 0, one applies (3.6) and the computations after it (this is
left as an exercise for the reader). To prove that τα and τβ do not commute
in M(D,Q), one can use a brute-force computation using, for instance, the
action of the mapping class group on π1(Σ, d). We give a geometric argument
in the next subsection.

α

β

Fig. 3.2. Spanning arcs α, β for n = 6

3.2.4 Dehn twists

To show that two half-twists do not commute, we shall appeal to the theory
of Dehn twists. We begin with the relevant definitions. Let Σ be an arbitrary
oriented surface. By a simple closed curve on Σ, we mean the image of an
embedding S1 ↪→ Σ◦ = Σ − ∂Σ. (Note that simple closed curves are not
assumed to be oriented.) A simple closed curve c on Σ gives rise to a self-
homeomorphism tc of Σ, called the Dehn twist about c. It is defined as follows.
Set I = [0, 1] and identify a cylinder neighborhood of c in Σ with S1 × I so
that c = S1 × {1/2} and the product of the counterclockwise orientation on
S1 = {z ∈ C | |z| = 1} and the right-handed orientation on I corresponds to
the given orientation on Σ. The Dehn twist tc : Σ → Σ is the identity outside
S1 × I and sends any (x, s) ∈ S1 × I to

(e2πisx, s) ∈ S1 × I .

It is clear that tc is an orientation-preserving homeomorphism. Its isotopy class
depends neither on the choice of the cylinder neighborhood of c nor on the
choice of its identification with S1×I. Note that if f is a self-homeomorphism
of Σ, then f(c) is a simple closed curve of Σ and tf(c) = f tc f−1, where
equality means isotopy in the class of self-homeomorphisms of Σ.

Two simple closed curves c, d on Σ are said to be isotopic if there is a
self-homeomorphism of Σ that is isotopic to the identity and sends c onto d.
It is clear that if c, d are isotopic, then tc = td.

The question whether two Dehn twists commute (up to isotopy) has a
simple geometric solution contained in the following lemma.
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Lemma 3.5. Let c, d be simple closed curves on an oriented surface Σ. The
Dehn twists tc, td commute if and only if c, d are isotopic to disjoint simple
closed curves.

Proof. If c, d are disjoint, then they have disjoint cylinder neighborhoods,
so that the Dehn twists tc, td obviously commute. If c, d are isotopic to
disjoint simple closed curves c′, d′, then tc = tc′ commutes with td = td′ .
The proof of the converse is based on the techniques and results of [Tra79],
which we now recall. For simple closed curves c, d on Σ, denote by i(c, d) the
minimum number of intersections of simple closed curves on Σ isotopic to c, d,
respectively, and meeting each other transversely. Thus,

i(c, d) = min
c′,d′

card(c′ ∩ d′) ≥ 0 ,

where c′, d′ run over all pairs of simple closed curves on Σ isotopic to c, d,
respectively, and such that c′ meets d′ transversely. In particular, i(c, c) = 0,
since c is isotopic to a simple closed curve disjoint from c.

Proposition 1 on p. 68 of [Tra79] includes as a special case the following
claim: if c, d, e are three simple closed curves on Σ, then

| i(tc(d), e)− i(c, d) i(c, e) | ≤ i(d, e) .

Setting e = d, we obtain

i(tc(d), d) = i(c, d)2 . (3.7)

This implies that if c, c′ are simple closed curves on Σ such that tc = tc′ , then
i(c, d) = i(c′, d) for any d.

Suppose now that two Dehn twists tc, td commute. Then

td = tc td t−1
c = ttc(d) .

By the previous paragraph, i(tc(d), d) = i(d, d) = 0. By (3.7), i(c, d) = 0.
Hence, c, d are isotopic to disjoint simple closed curves. ��

The next lemma yields a necessary geometric condition for two simple
closed curves on an oriented surface to be isotopic to curves with fewer inter-
sections.

Lemma 3.6. Let c, d be simple closed curves on Σ intersecting transversely
at finitely many points. If c, d are isotopic to simple closed curves c′, d′ on Σ
that are transversal and satisfy card(c′ ∩ d′) < card(c ∩ d), then the curves
c, d have a “digon,” i.e., an embedded disk in Σ whose boundary consists of
a subarc of c and a subarc of d and whose interior does not meet c ∪ d; see
Figure 3.3.

For a proof, see [Tra79, pp. 46–48] or [PR00, Prop. 3.2].
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The half-twists about arcs are related to the Dehn twists as follows. Sup-
pose that Σ = M −Q, where M is an oriented surface and Q a finite subset
of M◦ = M − ∂M . Let α be a spanning arc on (M,Q). Consider a closed
disk in M containing α in its interior and meeting Q only along the endpoints
of α. Let c = c(α) ⊂ Σ be the boundary of this disk. This simple closed curve
is determined by α up to isotopy in Σ. The Dehn twist tc : Σ → Σ can be
computed from the half-twist τα : Σ → Σ by

tc = τ2
α .

Indeed, both sides act as the identity outside a disk neighborhood of α as well
as inside a smaller concentric disk neighborhood of α. In the annulus between
these disks, both tc and τ2

α act as the Dehn twist about the core circle of the
annulus.

c

d

Fig. 3.3. A digon

We can now prove that the half-twists τα, τβ ∈ M(D,Q) associated with
the arcs α, β in Figure 3.2 do not commute. If they do, then their restrictions
to the six-punctured disk Σ = D −Q also commute. Then the Dehn twists

tc(α) = τ2
α : Σ → Σ and tc(β) = τ2

β : Σ → Σ

commute. By Lemmas 3.5 and 3.6, the curves c(α) and c(β) must have a digon
in Σ. Drawing these curves, one observes that they have 16 crossings and no
digons in Σ. Hence τα, τβ do not commute.

3.2.5 Equivalence of representations

The following theorem shows that the representation Ψn of Bn constructed
in Section 3.2.2 is equivalent to the Burau representation ψn for all n ≥ 1.
Recall the isomorphism η : Bn → M(D,Q) defined in Section 1.6.3.

Theorem 3.7. There is a group isomorphism μ : GLn(Λ) → Aut(H̃), where
H̃ = H1(Σ̃,

⋃

k∈Z tkd̃;Z), such that the following diagram is commutative:

Bn
η−−−−→ M (D,Q)

ψn

⏐
⏐
�

⏐
⏐
�Ψn

GLn(Λ)
μ−−−−→ Aut(H̃)

(3.8)
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Proof. We first compute the Λ-module H̃ = H1(Σ̃,
⋃

k∈Z tkd̃;Z). Observe
that Σ deformation retracts on the graph Γ ⊂ Σ formed by one vertex d
and n oriented loops X1, . . . , Xn on Σ shown in Figure 1.15. The total wind-
ing numbers of these loops are equal to −1. The homomorphism ϕ sends
the generators of π1(Σ, d) represented by these loops to t. The infinite cyclic
covering Σ̃ of Σ deformation retracts on an infinite graph Γ̃ ⊂ Σ̃ with ver-
tices {tkd̃}k∈Z and oriented edges {tkX̃i}k∈Z,i=1,...,n, where each edge tkX̃i

connects tkd̃ to t(tkd̃) = tk+1d̃ and is oriented from the former to the latter.
The generator t acts on Γ̃ by sending tkX̃i onto tk+1X̃i. The cellular chain
complex of the pair (Γ̃ ,

⋃

k∈Z tkd̃) is 0 except in dimension 1, where it is equal
to

⊕n
i=1 ΛX̃i. Therefore

H̃ = H1

(

Σ̃,
⋃

k∈Z

tkd̃;Z
)

= H1

(

Γ̃ ,
⋃

k∈Z

tkd̃;Z
)

=
n
⊕

i=1

Λ[X̃i]

is a free Λ-module with basis [X̃1], . . . , [X̃n]. We use this basis to iden-
tify Aut(H̃) with GLn(Λ) in the standard way. The action of a matrix
(λi,j) ∈ GLn(Λ) on H̃ sends each [X̃j ] to

∑

i λi,j [X̃i].
We define a group isomorphism

μ : GLn(Λ) → GLn(Λ) = Aut(H̃)

as the composition of the matrix transposition and inversion: μ(U) = (UT )−1

for U ∈ GLn(Λ). To check that the diagram (3.8) is commutative, we need to
verify that for all β ∈ Bn,

Ψnη(β) = μψn(β) .

Since both sides are multiplicative with respect to β, it suffices to check
this equality for a set of generators of Bn. We do it for the generators
σ−1

1 , . . . , σ−1
n−1. Pick i = 1, . . . , n − 1. The homeomorphism η(σ−1

i ) : D → D
exchanges the points (i, 0), (i + 1, 0) ∈ Q via a clockwise rotation of the arc
[i, i + 1] × {0} by an angle of π. This homeomorphism keeps Xk fixed for
k �= i, i+1, transforms Xi into a loop homotopic to the product XiXi+1X

−1
i ,

and transforms Xi+1 into Xi. The lift of this homeomorphism to Σ̃ keeps X̃k

fixed for k �= i, i+ 1, transforms X̃i+1 into X̃i, and stretches X̃i into the path

X̃i (tX̃i+1) (tX̃i)−1 .

The induced automorphism Ψnη(σ−1
i ) of H̃ acts by

[X̃i] → (1− t)[X̃i] + t[X̃i+1] , [X̃i+1] → [X̃i] ,

and [X̃k] → [X̃k] for k �= i, i + 1. The matrix of this automorphism in the
basis [X̃1], . . . , [X̃n] is precisely UT

i = μψn(σ−1
i ). ��
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Remarks 3.8. (a) Similar methods, extended to arcs from the points of Q to
the base point d ∈ ∂D, show that Kerψ5 �= {1}; see [Big99].

(b) Applying the construction of Section 3.2.1 to the natural projection
π1(Σ, d) → H1(Σ), we obtain a matrix representation of the Torelli subgroup
of M(Σ) consisting of the self-homeomorphisms of Σ acting as the identity
on H1(Σ). When Σ is the complement of n points in a 2-disk, this group is
the pure braid group Pn and this representation is a version of the Gassner
representation of Pn by n× n matrices over

Z[H1(Σ)] = Z[t±1
1 , . . . , t±1

n ] .

For more on the Gassner representation, see [Bir74], [Per06].

Exercise 3.2.1. Show that the arcs α, β in Figure 3.2 (where n = 6) can be
computed by α = η(γ1)(α3) and β = η(γ2)(α3), where α3 is the spanning arc
[3, 4]× {0} on (D,Q),

γ1 = σ1σ
−1
2 σ−1

5 σ4 and γ2 = σ−2
1 σ2σ

2
5σ

−1
4 .

Deduce that the commutator [γ1σ3γ
−1
1 , γ2σ3γ

−1
2 ] is a nontrivial element of

Kerψ6. This implies that the braid ρ′ = [γ−1
2 γ1σ3γ

−1
1 γ2, σ3] introduced in

Section 3.1.3 is a nontrivial element of Kerψ6.

Exercise 3.2.2. Show that the isomorphism Bn
∼= M(D,Q) defined in Sec-

tion 1.6.3 sends the center of Bn onto the infinite cyclic subgroup of M(D,Q)
generated by the Dehn twist about a simple closed curve in D −Q obtained
by pushing the circle ∂D inside D −Q.

Exercise 3.2.3. Show that if a simple closed curve c on a surface Σ bounds
a disk in Σ, then the Dehn twist tc is isotopic to the identity.

3.3 The reduced Burau representation

We show here that the Burau representation is reducible. As an application,
we prove the faithfulness of ψ3. Throughout this section, Λ = Z[t, t−1].

3.3.1 Reduction of ψn

Recall the matrices
U1, . . . , Un−1 ∈ GLn(Λ)

from Section 3.1.1. As above, the symbol Ik denotes the unit k × k matrix.
The following theorem shows that the Burau representation is reducible.
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Theorem 3.9. Let n ≥ 3 and V1, V2, . . . , Vn−1 be the (n−1)×(n−1) matrices
over Λ given by

V1 =

⎛

⎝

−t 0 0
1 1 0
0 0 In−3

⎞

⎠ , Vn−1 =

⎛

⎝

In−3 0 0
0 1 t
0 0 −t

⎞

⎠ ,

and for 1 < i < n− 1,

Vi =

⎛

⎜
⎜
⎜
⎜
⎝

Ii−2 0 0 0 0
0 1 t 0 0
0 0 −t 0 0
0 0 1 1 0
0 0 0 0 In−i−2

⎞

⎟
⎟
⎟
⎟
⎠

.

Then for all i = 1, . . . , n− 1,

C−1UiC =
(

Vi 0
∗i 1

)

, (3.9)

where C is the n× n matrix

C = Cn =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and ∗i is the row of length n − 1 equal to 0 if i < n − 1 and to (0, . . . , 0, 1)
if i = n− 1.

Proof. For i = 1, . . . , n− 1, set

V ′
i =

(

Vi 0
∗i 1

)

.

It suffices to prove that UiC = CV ′
i for all i. Fix i and observe that for

any k = 1, . . . , n, the kth column of UiC is the sum of the first k columns
of Ui. A direct computation shows that UiC is obtained from C by replacing
the (i, i)th entry by 1−t and replacing the (i+1, i)th entry by 1. Similarly, for
any � = 1, . . . , n, the �th row of CV ′

i is the sum of the last � rows of V ′
i . A direct

computation shows that CV ′
i is obtained from C by the same modification as

above. Hence UiC = CV ′
i . ��

Since the matrices U1, . . . , Un−1 ∈ GLn(Λ) satisfy the braid relations, so
do the conjugate matrices C−1U1C, . . . , C−1Un−1C. Formula (3.9) implies
that the matrices V1, . . . , Vn−1 also satisfy the braid relations. It is obvious
that these matrices are invertible over Λ and therefore belong to GLn−1(Λ).
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By Lemma 1.2, the formula ψr
n(σi) = Vi defines a group homomorphism

ψr
n : Bn → GLn−1(Λ) for all n ≥ 3. It is called the reduced Burau repre-

sentation. For n = 2, we define the reduced Burau representation to be the
homomorphism ψr

2 : B2 → GL1(Λ) sending σ1 to the 1× 1 matrix (−t). This
value is chosen so that formula (3.9) holds also for n = 2. This formula implies
that for any n ≥ 2 and any braid β ∈ Bn,

C−1ψn(β)C =
(

ψr
n(β) 0
∗β 1

)

, (3.10)

where ∗β is a row of length n−1 over Λ depending on β. The following lemma
shows how to compute this row from the matrix ψr

n(β).

Lemma 3.10. For i = 1, . . . , n − 1, let ai be the ith row of the matrix
ψr

n(β)− In−1. Then

−(1 + t + · · ·+ tn−1) ∗β =
n−1
∑

i=1

(1 + t + · · ·+ ti) ai .

Proof. Consider the Λ-module Λn whose elements are identified with rows of
length n over Λ. The group GLn(Λ) acts on Λn on the right via the multi-
plication of rows by matrices. A direct verification shows that the vector

E = (1, t, t2, . . . , tn−1) ∈ Λn

satisfies EUi = E for all i. Hence, Eψn(β) = E. Then the vector

F = EC = (1, 1 + t, 1 + t + t2, . . . , 1 + t + · · ·+ tn−1) ∈ Λn

satisfies

F

(

ψr
n(β) 0
∗β 1

)

= ECC−1ψn(β)C = EC = F .

Subtracting FIn = F , we obtain

F

(

ψr
n(β)− In−1

∗β

)

= 0 .

This equality means that the linear combination of the rows ai of the matrix
ψr

n(β)− In−1 with coefficients 1, 1 + t, 1 + t+ t2, . . . , 1 + t+ · · ·+ tn−2 is equal
to −(1 + t + · · ·+ tn−1) ∗β. ��

This lemma shows that no information is lost under the passage from the
Burau representation to its reduced form. In particular, if ψr

n(β) = In−1,
then ∗β = 0 and ψn(β) = In. Therefore Ker ψr

n ⊂ Ker ψn. The opposite
inclusion directly follows from (3.10). We conclude that Ker ψr

n = Ker ψn.
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Remark 3.11. A homological interpretation of ψr
n is obtained by replac-

ing in Section 3.2 the Λ-module H̃ = H1(Σ̃,
⋃

k∈Z tkd̃;Z) by the Λ-module
H̃r = H1(Σ̃;Z). In the homological sequence of the pair (Σ̃,

⋃

k∈Z tkd̃),

H1

(⋃

k∈Z

tkd̃;Z
)

→ H̃r → H̃ → H0

(⋃

k∈Z

tkd̃;Z
)

→ H0(Σ̃;Z) ,

the leftmost term is zero because
⋃

k∈Z tkd̃ is a discrete space. Therefore
the homomorphism H̃r → H̃ is an embedding, so that we can view H̃r as a
submodule of H̃. Clearly,

H0

(⋃

k∈Z

tkd̃;Z
)

= Λ , H0(Σ̃;Z) = Z ,

and the homomorphism H0(
⋃

k∈Z tkd̃;Z) → H0(Σ̃;Z) is the homomorphism
Λ → Z sending t to 1. The kernel (t − 1)Λ of this homomorphism is a free
Λ-module of rank 1. Therefore the quotient H̃/H̃r is a free Λ-module of rank
one, so that H̃ ∼= H̃r⊕Λ. The action of M(D,Q) on H̃ preserves H̃r and gives
a homological interpretation of ψr

n. However, this action does not preserve the
complementary module Λ. This is the geometric reason for the fact that the
Burau representation can be reduced but is not a direct sum of its reduced
form with a one-dimensional representation. As an exercise, the reader may
verify that H̃r ∼= Λn−1.

3.3.2 The faithfulness of ψ3

We prove that the Burau representation ψ3 is faithful. Consider the group
homomorphism ϕ : GL2(Λ) → SL2(Z) obtained by the substitution t → −1.
It transforms the reduced Burau matrices

V1 =
(

−t 0
1 1

)

, V2 =
(

1 t
0 −t

)

into the integral matrices

a1 = ϕ(V1) =
(

1 0
1 1

)

, a2 = ϕ(V2) =
(

1 −1
0 1

)

.

By Appendix A, the group SL2(Z) is generated by the transpose matrices
A = aT

1 , B = aT
2 with defining relations ABA = BAB and (ABA)4 = 1.

Hence, SL2(Z) is generated by a1, a2 with defining relations a1a2a1 = a2a1a2

and (a1a2a1)4 = 1.
The homomorphism ϕ◦ψr

3 : B3 → SL2(Z) sends the standard braid genera-
tors σ1, σ2 to a1, a2, respectively. It is clear that this homomorphism is surjec-
tive and its kernel is the normal subgroup generated by the braid (σ1σ2σ1)4.
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Since this braid is central in B3, the kernel in question is the cyclic group
((σ1σ2σ1)4) ⊂ B3. Consequently,

Kerψ3 ⊂ Ker(ϕ ◦ ψr
3) = ((σ1σ2σ1)4) .

Observe that

V1V2V1 =
(

0 −t2

−t 0

)

and (V1V2V1)2 =
(

t3 0
0 t3

)

.

Therefore, for any nonzero k ∈ Z,

ψr
3

(

(σ1σ2σ1)4k
)

= (V1V2V1)4k =
(

t6k 0
0 t6k

)

�= I2 .

Hence Kerψ3 = Kerψr
3 = {1}.

Exercise 3.3.1. Show that ψr
n((σ1 · · ·σn−1)n) = tnIn−1 for all n ≥ 2. (Hint:

Use the homological interpretation of ψr
n; observe that the element of M(D,Q)

corresponding to (σ1 · · ·σn−1)n is the Dehn twist about a circle in D concen-
tric to ∂D.) Note that a similar equality does not hold for ψn, for instance,
ψ2(σ2

1) �= t2I2.

3.4 The Alexander–Conway polynomial of links

We use here the reduced Burau representations ψr
1, ψ

r
2, . . . and the theory of

Markov functions from Section 2.5.2 to construct the one-variable Alexander–
Conway polynomial of links.

3.4.1 An example of a Markov function

We construct a Markov function with values in the Laurent polynomial ring
Z[s, s−1]. The associated link invariant will be studied in the next subsection.
Let

g : Λ = Z[t, t−1] → Z[s, s−1]

be the ring homomorphism sending t to s2. For a braid β on n ≥ 2 strings,
consider the following rational function in s with integral coefficients:

fn(β) = (−1)n+1 s−〈β〉(s− s−1)
sn − s−n

g
(

det(ψr
n(β) − In−1)

)

,

where 〈β〉 ∈ Z is the image of β under the homomorphism Bn → Z sending
the generators σ1, . . . , σn−1 to 1. For example, for n = 2 and k ∈ Z,

f2(σk
1 ) = −s−k(s + s−1)−1

(

(−s2)k − 1
)

.

In particular, f2(σ1) = f2(σ−1
1 ) = 1. By definition, f1(B1) = 1.
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Lemma 3.12. The mappings {fn : Bn → Z[s, s−1]}n≥1 form a Markov func-
tion.

Proof. Pick a braid β ∈ Bn with n ≥ 1. A conjugation of β in Bn preserves
both 〈β〉 and det(ψr

n(β) − In−1) and therefore preserves fn(β). This implies
the first condition in the definition of a Markov function.

Set β+ = ι(β)σn ∈ Bn+1, where ι is the natural inclusion Bn ↪→ Bn+1.
We verify now that fn+1(β+) = fn(β). For n = 1, we have β = 1, β+ = σ1,
and f2(β+) = f2(σ1) = 1 = f1(β). Suppose that n ≥ 2. We first observe the
equalities

s−〈β〉(s− s−1)
sn − s−n

=
sn−1−〈β〉

1 + s2 + s4 + · · ·+ s2(n−1)

and
n− 1− 〈β〉 = (n + 1)− 1− 〈β+〉 .

Therefore the desired formula fn+1(β+) = fn(β) is equivalent to the following
formula:

(1 + t + · · ·+ tn−1) det
(

ψr
n+1(β+)− In

)

= −(1 + t + · · ·+ tn) det
(

ψr
n(β)− In−1

)

. (3.11)

By (3.2) and (3.10),

ψn+1(ι(β)) =
(

ψn(β) 0
0 1

)

=
(

Cn 0
0 1

)
⎛

⎝

ψr
n(β) 0 0
∗β 1 0
0 0 1

⎞

⎠

(

C−1
n 0
0 1

)

.

Therefore,

(

ψr
n+1(β+) 0
∗β+ 1

)

= C−1
n+1 ψn+1(β+)Cn+1

= C−1
n+1 ψn+1(ι(β))ψn+1(σn)Cn+1

= C−1
n+1

(

Cn 0
0 1

)
⎛

⎝

ψr
n(β) 0 0
∗β 1 0
0 0 1

⎞

⎠

(

C−1
n 0
0 1

)
⎛

⎝

In−1 0 0
0 1− t t
0 1 0

⎞

⎠Cn+1 . (3.12)

Observe that

C−1
n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A direct computation shows that the product of the first three (resp. the last
three) matrices on the right-hand side of (3.12) is equal to
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⎛

⎝

ψr
n(β) 0 0
∗β 1 −1
0 0 1

⎞

⎠ , resp.

⎛

⎜
⎜
⎝

In−2 0 0 0
0 1 t 0
0 0 1− t 1
0 0 1 1

⎞

⎟
⎟
⎠

.

To multiply these two matrices we expand

⎛

⎝

ψr
n(β) 0 0
∗β 1 −1
0 0 1

⎞

⎠ =

⎛

⎜
⎜
⎝

X Y 0 0
Z T 0 0
P Q 1 −1
0 0 0 1

⎞

⎟
⎟
⎠

,

where X is a square matrix over Λ of size n − 2, Y is a column over Λ of
height n − 2, Z and P are rows over Λ of length n − 2, and T,Q ∈ Λ. The
formulas above give

(

ψr
n+1(β+) 0
∗β+ 1

)

=

⎛

⎜
⎜
⎝

X Y tY 0
Z T tT 0
P Q tQ− t 0
0 0 1 1

⎞

⎟
⎟
⎠

.

Hence,

ψr
n+1(β+)− In =

⎛

⎝

X − In−2 Y tY
Z T − 1 tT
P Q tQ− t− 1

⎞

⎠ .

To compute the determinant of this n × n matrix, we multiply the (n − 1)st
column by −t and add the result to the nth column. This gives

det(ψr
n+1(β+)− In) = detJ ,

where

J =

⎛

⎝

X − In−2 Y 0
Z T − 1 t
P Q −t− 1

⎞

⎠ .

Observe that

ψr
n(β) − In−1 =

(

X − In−2 Y
Z T − 1

)

and ∗β =
(

P Q
)

.

These formulas and Lemma 3.10 imply that adding the rows of J with coef-
ficients

1, 1 + t, 1 + t + t2, . . . , 1 + t + · · ·+ tn−1 ,

we obtain a new bottom row whose first n−1 entries are equal to 0. The last,
nth entry is equal to

(1 + t + · · ·+ tn−2) t + (1 + t + · · ·+ tn−1)(−t− 1) = −(1 + t + · · ·+ tn) .
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Therefore,

(1 + t + · · ·+ tn−1) det(ψr
n+1(β+)− In)

= det

⎛

⎝

X − In−2 Y 0
Z T − 1 t
0 0 −(1 + t + · · ·+ tn)

⎞

⎠ .

This implies (3.11). Hence

fn+1(σn ι(β)) = fn+1(ι(β)σn) = fn+1(β+) = fn(β) .

A similar argument shows that fn+1(σ−1
n ι(β)) = fn(β). This verifies the sec-

ond condition in the definition of a Markov function. ��

For an oriented link L ⊂ R3, set f̂(L) = fn(β), where β is an arbitrary
braid on n strings whose closure is isotopic to L. By Section 2.5.2 and the
previous lemma, f̂(L) is an isotopy invariant of L independent of the choice
of β. We study this invariant in the next subsection.

3.4.2 The Alexander–Conway polynomial

The (one-variable) Alexander–Conway polynomial is a fundamental and his-
torically the first polynomial invariant of oriented links in R3. This polyno-
mial extends to a two-variable polynomial invariant of oriented links in R3,
known as the Jones–Conway or HOMFLY-PT polynomial. The latter will be
constructed in the context of Iwahori–Hecke algebras in Section 4.4.

We begin with an axiomatic definition of the Alexander–Conway polyno-
mial. We shall say that three oriented links L+, L−, L0 ⊂ R3 form a Conway
triple if they coincide outside a 3-ball in R3 and look as in Figure 3.4 inside
this ball. The Alexander–Conway polynomial of links is a mapping ∇ assign-
ing to every oriented link L ⊂ R3 a Laurent polynomial ∇(L) ∈ Z[s, s−1]
satisfying the following three axioms:

(i) ∇(L) is invariant under isotopy of L;
(ii) if L is a trivial knot, then ∇(L) = 1;
(iii) for any Conway triple L+, L−, L0 ⊂ R3,

∇(L+)−∇(L−) = (s−1 − s)∇(L0) .

The latter equality is known as the Alexander–Conway skein relation.
As an example of a computation using the skein relation, consider the

Conway triple L+, L−, L0 in Figure 3.5. Here L+ (resp. L−) is obtained from
an oriented link L ⊂ R3 by adding a small positive (resp. negative) curl. Both
links L+ and L− are isotopic to L, while L0 is the disjoint union of L with a
trivial knot. Axioms (i) and (iii) imply that ∇(L0) = 0. We conclude that ∇
annihilates all links obtained as a disjoint union of a nonempty link with a
trivial knot. In particular, ∇ annihilates all trivial links with two or more
components.
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L+ L− L0

Fig. 3.4. A Conway triple

L+ L0L−

Fig. 3.5. Example of a Conway triple

Theorem 3.13. The Alexander–Conway polynomial of links exists and is
unique. The invariant f̂ of links in R3 constructed in Section 3.4.1 coincides
with the Alexander–Conway polynomial.

Proof. We first prove the uniqueness: there is at most one mapping from the
set of oriented links in R3 to Z[s, s−1] satisfying axioms (i)–(iii). The proof
requires the notion of an ascending link diagram, which we now introduce.
An oriented link diagram D on R2 is ascending if it satisfies the following two
conditions:

(a) the components of D can be indexed by 1, . . . ,m (where m is the number
of the components) so that at every crossing of distinct components, the
component with smaller index lies below the component with larger index;

(b) each component of D can be provided with a base point (not a crossing)
such that starting from this point and moving along the component in the
positive direction, we always reach the self-crossings of this component for
the first time along the undergoing branch and for the second time along
the overgoing branch.

An example of an ascending link diagram is given in Figure 3.6. It is
a simple geometric exercise to see that the link presented by an ascending
diagram is necessarily trivial.

Suppose now that there are two mappings from the set of oriented links
in R3 to Z[s, s−1] satisfying axioms (i)–(iii) of the Alexander–Conway poly-
nomial. Let ∇ be their difference. We have to prove that ∇ = 0.
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1 2

Fig. 3.6. An ascending link diagram

It is clear from the axioms and the computation before the statement
of the theorem that ∇ is an isotopy invariant of links annihilating trivial
knots and links and satisfying the Alexander–Conway skein relation. We prove
by induction on N that ∇ annihilates all oriented links presented by link
diagrams with N crossings. For N = 0, this is obvious, since a link presented
by a diagram without crossings is trivial. Suppose that our claim holds for
a certain N . Let L be an oriented link presented by a link diagram with
N + 1 crossings. Exchanging over/undergoing branches at a single crossing,
we obtain a diagram of another link, L′. The links L, L′ together with the
link L0 obtained by smoothing the crossing in question form a Conway triple as
in Figure 3.4. The link L0 is presented by a link diagram with N crossings. By
the induction assumption, ∇(L0) = 0. The skein relation gives ∇(L) = ∇(L′).
Thus, the value of ∇ on L is not changed when overcrossings are traded for
undercrossings. However, these operations can transform our diagram into an
ascending one. Since ∇ annihilates the links presented by ascending diagrams,
∇(L) = 0. This completes the induction step. Hence ∇ = 0.

To prove the remaining claims of the theorem, it is enough to show that the
link invariant f̂ constructed in the previous subsection satisfies the axioms of
the Alexander–Conway polynomial. By Corollary 2.9 and the results above, f̂
is a well-defined isotopy invariant of links. If L is a trivial knot, then L is the
closure of a trivial braid on one string and therefore f̂(L) = 1. We verify now
that f̂ satisfies the Alexander–Conway skein relation.

Given n ≥ 2, i ∈ {1, . . . , n− 1}, and two braids α, β ∈ Bn, we see directly
from the definitions that the closures of the braids ασiβ, ασ−1

i β, and αβ form a
Conway triple of links in R3. The proof of Alexander’s theorem (Theorem 2.3)
shows that conversely, an arbitrary Conway triple of links in R3 arises in this
way from certain n, i, α, β. Thus, we need to prove the identity

fn(ασiβ)− fn(ασ−1
i β) = (s−1 − s) fn(αβ) .

Since fn is invariant under conjugation in Bn and σi is a conjugate of σ1

in Bn (see Exercise 1.1.4), we can assume without loss of generality that i = 1.
Further conjugating by α, we can assume that α = 1. Thus we need to prove
that for any β ∈ Bn,

fn(σ1β)− fn(σ−1
1 β) = (s−1 − s) fn(β) .
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This reduces to the equality

s−1g(D+)− s g(D−) = (s−1 − s) g(D0), (3.13)

where

D± = det(ψr
n(σ±1

1 β)− In−1) and D0 = det(ψr
n(β) − In−1) .

Multiplying both sides of (3.13) by s, we reduce (3.13) to the equality

D+ − tD− = (1− t)D0 .

To verify the latter, we expand

ψr
n(β) =

⎛

⎝

a b x
c d y
p q M

⎞

⎠ ,

where a, b, c, d ∈ Λ, x, y are rows over Λ of length n−3, p, q are columns over Λ
of height n − 3, and M is an (n− 3) × (n− 3) matrix over Λ. By definition,
D0 = detA0, where

A0 =

⎛

⎝

a− 1 b x
c d− 1 y
p q M − In−3

⎞

⎠ .

Also

ψr
n(σ1β) =

⎛

⎝

−t 0 0
1 1 0
0 0 In−3

⎞

⎠

⎛

⎝

a b x
c d y
p q M

⎞

⎠ =

⎛

⎝

−ta −tb −tx
a + c b + d x + y

p q M

⎞

⎠ .

Subtracting In−1, then multiplying the first row by −t−1, and finally sub-
tracting the first row from the second one, we obtain D+ = −t detA+, where

A+ =

⎛

⎝

a + t−1 b x
c− t−1 d− 1 y

p q M − In−3

⎞

⎠ .

Similarly,

ψr
n(σ−1

1 β) =

⎛

⎝

−t−1 0 0
t−1 1 0
0 0 In−3

⎞

⎠

⎛

⎝

a b x
c d y
p q M

⎞

⎠

=

⎛

⎝

−t−1a −t−1b −t−1x
t−1a + c t−1b + d t−1x + y

p q M − In−3

⎞

⎠ .
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Subtracting In−1, then adding the first row to the second one, and finally
multiplying the first row by −t, we obtain D− = −t−1 detA−, where

A− =

⎛

⎝

a + t b x
c− 1 d− 1 y

p q M − In−3

⎞

⎠ .

The matrices A0, A+, A− differ only in the first columns, which we denote by
A1

0, A1
+, A1

−, respectively. Clearly,

−tA1
+ + A1

− = (1 − t)A1
0 .

We conclude that D+ − tD− = (1− t)D0.
The function L → f̂(L) satisfies all conditions of the Alexander–Conway

polynomial except that a priori it takes values in the field of rational functions
in s rather than in its subring of Laurent polynomials Z[s, s−1]. However,
applying the skein relation and an induction on the number of crossings of a
link diagram as at the beginning of the proof, one observes that all the values
of f̂ are integral polynomials in s− s−1. In particular, all the values of f̂ are
Laurent polynomials in s. ��

3.5 The Lawrence–Krammer–Bigelow representation

We discuss a linear representation of Bn introduced by R. Lawrence and
studied by D. Krammer and S. Bigelow. The definition of this representation
is based on a study of a certain infinite covering of the configuration space of
pairs of points on the punctured disk.

In this section we fix n ≥ 1 and use the symbols D, Q = {(1, 0), . . . , (n, 0)},
Σ = D −Q introduced in Section 3.2.2.

3.5.1 The configuration spaces F and C

Let F be the space of ordered pairs of distinct points in Σ. In other words,
the space F is the complement of the diagonal {(x, x)}x∈Σ in Σ × Σ. It is
clear that F is a noncompact connected 4-dimensional manifold with bound-
ary. It has a natural orientation obtained by squaring the counterclockwise
orientation of Σ. In the notation of Section 1.4.1, we have

F = F2(Σ) = Fn,2(D) .

The formula (x, y) → (y, x) for distinct x, y ∈ Σ defines an involution
on F . The quotient space C of this involution is the space of nonordered pairs
of distinct points in Σ. Since the involution (x, y) → (y, x) on F is orientation-
preserving and fixed-point free, the space C is an oriented noncompact con-
nected 4-dimensional manifold with boundary. Note for the record that the
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projection F → C is a 2-fold covering. In the notation of Section 1.4.3, we
have C = C2(Σ) = Cn,2(D).

In the sequel, a nonordered pair of distinct points x, y ∈ Σ is denoted
by {x, y}. Note that {x, y} = {y, x} ∈ C. A (continuous) path ξ : I → C, where
I = [0, 1], can be written in the form ξ = {ξ1, ξ2} for two (continuous) paths
ξ1, ξ2 : I → Σ. The equality ξ = {ξ1, ξ2} means that ξ(s) = {ξ1(s), ξ2(s)} for
all s ∈ I. The path ξ is a loop if {ξ1(0), ξ2(0)} = {ξ1(1), ξ2(1)}, so that either

ξ1(0) = ξ1(1) �= ξ2(0) = ξ2(1)

or
ξ1(0) = ξ2(1) �= ξ1(1) = ξ2(0) .

In the first case, the paths ξ1, ξ2 are loops on Σ. In the second case, the paths
ξ1, ξ2 are not loops but their product ξ1ξ2 is well defined and is a loop on Σ.

We introduce two numerical invariants w and u of loops in C. Consider a
loop ξ = {ξ1, ξ2} in C as above. If ξ1, ξ2 are loops, then w(ξ) = w(ξ1)+w(ξ2),
where w(ξi) is the total winding number of ξi around {(1, 0), . . . , (n, 0)}; see
Section 3.2.2. If ξ1(1) = ξ2(0), then the product path ξ1ξ2 is a loop on Σ and
we set w(ξ) = w(ξ1ξ2).

To define the second invariant u(ξ), consider the map

s → ξ1(s)− ξ2(s)
|ξ1(s)− ξ2(s)|

: I → S1 ⊂ C . (3.14)

This map sends s = 0, 1 either to the same numbers or to opposite numbers.
Therefore, the map

s →
(

ξ1(s)− ξ2(s)
|ξ1(s)− ξ2(s)|

)2

: I → S1 (3.15)

is a loop on S1. The counterclockwise orientation of S1 determines a gener-
ator of H1(S1;Z) ∼= Z. The loop (3.15) on S1 is homologous to k times the
generator with k ∈ Z, and we set u(ξ) = k. Note that u(ξ) is even if ξ1, ξ2 are
loops and odd otherwise. The invariants w(ξ) and u(ξ) are preserved under
homotopy of ξ and are additive with respect to the multiplication of loops.

For example, consider the loop ξ = {ξ1, ξ2}, where ξ1 is the constant loop
in a point z ∈ Σ and ξ2 is an arbitrary loop in Σ − {z}. Then w(ξ) = w(ξ2)
and u(ξ) = 2v, where v is the winding number of ξ2 around z. In particular,
if ξ2 is a small loop encircling counterclockwise a point of Q and z ∈ ∂Σ = ∂D,
then w(ξ) = 1 and u(ξ) = 0. To give another example, pick a small closed
disk B ⊂ Σ and two distinct points a, b ∈ ∂B. Let ξ1 (resp. ξ2) parametrize
the arc on ∂B leading from a to b (resp. from b to a) counterclockwise. For
the loop ξ = {ξ1, ξ2}, we have w(ξ) = w(ξ1ξ2) = 0 and u(ξ) = 1.
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3.5.2 The covering space C̃ and the module H

We fix once for all two distinct points d1, d2 ∈ ∂Σ = ∂D and take c = {d1, d2}
as the base point of C. The formula

ξ → qw(ξ)tu(ξ)

defines a group homomorphism ϕ from the fundamental group π1(C, c) to the
multiplicative free abelian group with generators q, t. The examples in the
previous subsection show that this homomorphism is surjective.

Let C̃ → C be the covering corresponding to the subgroup Kerϕ of π1(C, c).
The generators q and t act on C̃ as commuting covering transformations, and
C = C̃/(q, t). A loop ξ in C lifts to a loop in C̃ if and only if w(ξ) = u(ξ) = 0.

The 2-fold covering F → C is a quotient of the covering C̃ → C, as we now
explain. Observe that a loop ξ = {ξ1, ξ2} on C lifts to a loop on F if and only
if ξ1, ξ2 are loops on Σ. The latter holds if and only if u(ξ) is even. Hence,
the covering F → C is determined by the subgroup of π1(C, c) formed by the
homotopy classes of loops ξ with u(ξ) ∈ 2Z. Therefore F = C̃/(q, t2) is the
quotient of C̃ by the group of homeomorphisms generated by q and t2.

The action of q, t on C̃ induces an action of q, t on the abelian group

H = H2(C̃;Z) .

This turns H into a module over the commutative ring

R = Z[q±1, t±1] .

The module H can be explicitly computed using a deformation retraction of C
onto a 2-dimensional CW-space; see [Big03], [PP02]. The computation shows
that H is a free R-module of rank n(n− 1)/2, that is,

H ∼= Rn(n−1)/2 . (3.16)

For more on the structure of H, see Section 3.5.6.

3.5.3 An action of Bn on H

As we know from Section 1.6, the braid group Bn is canonically isomorphic
to the mapping class group M(D,Q). In the remaining part of this chapter,
we make no distinction between these two groups. We now construct an ac-
tion of Bn on H. Any self-homeomorphism f of the pair (D,Q) induces a
homeomorphism f̂ : C → C by

f̂({x, y}) = {f(x), f(y)} ,

where x, y are distinct points of Σ = D−Q. Clearly, f̂(c) = c, so that we can
consider the automorphism f̂# of π1(C, c) induced by f̂ .
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Lemma 3.14. We have ϕ ◦ f̂# = ϕ.

Proof. We need to prove that w ◦ f̂# = w and u ◦ f̂# = u. The first equality is
proven by the same argument as in Section 3.2.2. To prove the second equality,
consider the inclusion of configuration spaces C = C2(Σ) ↪→ C2(D) induced by
the inclusion Σ ↪→ D. The definition of the numerical invariant u for loops in C
extends to loops in C2(D) word for word and gives a homotopy invariant of
loops in C2(D). The Alexander–Tietze theorem stated in Section 1.6.1 implies
that the self-homeomorphism of C2(D) induced by f is homotopic to the
identity. Hence, u ◦ f̂# = u and therefore ϕ ◦ f̂# = ϕ. ��

The equality ϕ ◦ f̂# = ϕ implies that f̂ lifts uniquely to a map f̃ : C̃ → C̃
keeping fixed all points of C̃ lying over c. The same equality ensures that f̃ com-
mutes with the covering transformations of C̃. The map f̃ is a homeomorphism
with inverse ˜f−1. Therefore the induced endomorphism f̃∗ of H = H2(C̃;Z)
is an R-linear automorphism. Consider the mapping

Bn = M(D,Q) → AutR (H)

sending the isotopy class of f to f̃∗ : H → H. This mapping is a group homo-
morphism. It is called the Lawrence–Krammer–Bigelow representation of Bn.
A fundamental property of this representation is contained in the following
theorem.

Theorem 3.15. The Lawrence–Krammer–Bigelow representation of the braid
group Bn is faithful for all n ≥ 1.

This theorem is proven in Sections 3.6 and 3.7. One can give explicit
matrices describing the action of the generators σ1, . . . , σn−1 ∈ Bn on H;
see [Kra02], [Big01], [Bud05]. The proof of Theorem 3.15 given below uses
neither these matrices nor the isomorphism (3.16).

3.5.4 The linearity of Bn

We say that a group G is linear if there is an injective group homomorphism
G → GLN (R) for some integer N ≥ 1. We state an important corollary of
Theorem 3.15.

Theorem 3.16. For all n ≥ 1, the braid group Bn is linear.

This theorem follows from Theorem 3.15 and the isomorphism (3.16). In-
deed, choosing a basis of the R-module H, we can identify AutR(H) with the
matrix group GLn(n−1)/2(R). The ring R = Z[q±1, t±1] can be embedded in
the field of real numbers by assigning to q, t algebraically independent real
values. This induces an embedding

GLn(n−1)/2(R) ↪→ GLn(n−1)/2(R) .
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Composing it with the Lawrence–Krammer–Bigelow representation, we obtain
a faithful homomorphism Bn → GLn(n−1)/2(R).

We give another proof of Theorem 3.16 entirely avoiding the use of the
isomorphism (3.16). This proof gives an embedding of Bn into GLN (R)
for N = n(n + 1). We begin with a simple algebraic lemma.

Lemma 3.17. Let L = Z[x±1
1 , x±1

2 ] be the ring of Laurent polynomials in
the variables x1, x2. Let C be a free L-module of finite rank N ≥ 1. For an
arbitrary L-submodule H of C, the group AutL(H) of L-automorphisms of H
embeds into GLN (R).

Proof. Let Q = Q(x1, x2) be the field of rational functions in the variables
x1, x2 with rational coefficients. Clearly, Q is the field of fractions of L. Con-
sider the Q-vector space H = Q ⊗L H . Since H is a submodule of a free
L-module, it has no L-torsion, and hence the natural homomorphism H → H
sending h ∈ H to 1 ⊗ h is injective. Any L-automorphism of H extends
uniquely to a Q-automorphism of H . In this way, the group AutL(H) embeds
into GLm(Q), where m = dimQ H . The field Q can be embedded in R by as-
signing to x1, x2 algebraically independent real values. This gives embeddings
AutL(H) ⊂ GLm(Q) ⊂ GLm(R). Note that the inclusion i : H ↪→ C induces
a homomorphism of Q-vector spaces H → C, where C = Q ⊗L C. This ho-
momorphism is injective: any element of its kernel can be multiplied by an
element of L to give an element of Ker(i) = 0. Therefore m ≤ dimQ C = N ,
so that AutL(H) ⊂ GLm(R) ⊂ GLN (R). ��

Note that for any topological manifold M with boundary ∂M , the in-
clusion M◦ = M − ∂M ↪→ M is a homotopy equivalence. The homotopy
inverse M → M◦ can be obtained by pushing M into M◦ using a cylinder
neighborhood of ∂M in M .

We can now prove Theorem 3.16. It is clear that F◦ = F − ∂F is the
complement of the diagonal {(x, x)}x∈Σ◦ in Σ◦ × Σ◦. By Lemma 1.26, as-
signing to any ordered pair of points the first point, we obtain a locally trivial
fiber bundle F◦ → Σ◦ whose fiber is the complement of a point in Σ◦. The
base Σ◦ of this bundle deformation retracts onto a wedge of n circles, while
the fiber deformation retracts onto a wedge of n + 1 circles. This implies
that F◦ deformation retracts onto a 2-dimensional CW-complex, X ⊂ F◦,
with one zero-cell, 2n+1 one-cells, and n(n+1) two-cells. Since the inclusion
F◦ ↪→ F is a homotopy equivalence, the inclusion X ↪→ F also is a homotopy
equivalence.

Recall from Section 3.5.2 that C̃ can be viewed as the covering of F with the
group of covering transformations Z×Z generated by q and t2. The covering
C̃ → F restricts to a covering X̃ → X with the same group of covering
transformations. Here X̃ is the preimage of X ⊂ F in C̃, and the inclusion
X̃ ⊂ C̃ is a homotopy equivalence. The cellular chain complex of X̃ has the
form C2 → C1 → C0, where each Ci is a free module over the ring

R0 = Z[q±1, t±2] ⊂ R .
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The rank of the R0-module Ci is equal to the number of i-cells in X . Therefore

H = H2(C̃;Z) = H2(X̃ ;Z) = Ker(∂ : C2 → C1)

is an R0-submodule of C2. We now apply Lemma 3.17, where we substitute

x1 = q, x2 = t2, C = C2, H = H, and N = n(n + 1) .

By this lemma, AutR0(H) embeds into GLN (R). Composing with the embed-
dings

Bn ↪→ AutR(H) ⊂ AutR0(H) ,

we obtain the claim of the theorem. ��

3.5.5 A sesquilinear form on H

The module H carries a natural R-valued sesquilinear form defined as follows.
The orientation of C lifts to C̃ and turns the latter into an oriented (four-
dimensional) manifold. Consider the associated intersection form H×H → Z.
Its value g1 · g2 on homology classes g1, g2 ∈ H is obtained by representing
these classes by transversal 2-cycles G1, G2 in C̃ and counting the intersections
of G1, G2 with signs ± determined by the orientation of C̃. The intersection
form H×H → Z is symmetric and invariant under the action of orientation-
preserving homeomorphisms C̃ → C̃. In particular, this form is invariant under
the action of the covering transformations q, t.

Define a pairing
〈 , 〉 : H×H → R

by
〈g1, g2〉 =

∑

k,�∈Z

(qkt�g1 · g2) qkt� . (3.17)

The sum on the right-hand side is finite, since the 2-cycles G1, G2 as above lie
in compact subsets of C̃ and therefore the cycles qkt�G1 and G2 are disjoint
except for a finite set of pairs (k, �).

The pairing (3.17) is invariant under the action of orientation-preserving
homeomorphisms C̃ → C̃ commuting with the covering transformations q, t.
In particular, it is preserved under the action of the braid group Bn on H.

Lemma 3.18. For any g1, g2 ∈ H and r ∈ R,

〈g2, g1〉 = 〈g1, g2〉 , 〈g1, rg2〉 = r 〈g1, g2〉 , 〈rg1, g2〉 = r 〈g1, g2〉 , (3.18)

where r → r is the involutive automorphism of the ring R sending q to q−1

and t to t−1.
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Proof. We have

〈g2, g1〉 =
∑

k,�∈Z

(qkt�g2 · g1) qkt�

=
∑

k,�∈Z

(g1 · qkt�g2) qkt�

=
∑

k,�∈Z

(q−kt−�g1 · g2) qkt�

=
∑

k,�∈Z

(qkt�g1 · g2) q−kt−�

= 〈g1, g2〉 .

To verify the equalities 〈g1, rg2〉 = r 〈g1, g2〉 and 〈rg1, g2〉 = r 〈g1, g2〉, it
suffices to consider the case r = qitj with i, j ∈ Z. We have

〈g1, q
itjg2〉 =

∑

k,�∈Z

(qkt�g1 · qitjg2) qkt�

= qitj
∑

k,�∈Z

(qk−it�−jg1 · g2) qk−it�−j

= qitj〈g1, g2〉

and

〈qitjg1, g2〉 =
∑

k,�∈Z

(qk+it�+jg1 · g2) qkt�

= q−it−j
∑

k,�∈Z

(qk+it�+jg1 · g2) qk+it�+j

= q−it−j〈g1, g2〉 . ��

According to Budney [Bud05], the form 〈 , 〉 : H×H → R is nonsingular
in the sense that the determinant of its matrix with respect to a basis of H
is nonzero. Moreover, replacing q, t with appropriate complex numbers, one
obtains a negative definite Hermitian form; see [Bud05]. This gives an injective
group homomorphism from Bn into the unitary group Un(n−1)/2.

3.5.6 Remarks

We make a few remarks aimed at familiarizing the reader with the module H.
These remarks will not be used in the sequel.

It is quite easy to see that the module H is nontrivial and in fact rather
big. Let X , X̃ be the same spaces as in the proof of Theorem 3.16. Note
that the ring R0 = Z[q±1, t±2] embeds into the field Q = Q(q, t2) of rational
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functions in the variables q, t2. For an R0-module H , denote the dimension of
the Q-vector space Q⊗R0 H by rkH . We verify that rkH ≥ n(n−1). Indeed,

rkH0(X̃ ;Z)− rkH1(X̃ ;Z) + rkH = χ(X) = n(n− 1) ,

where χ(X) is the Euler characteristic of X . For every 0-cell x of X̃ there is a
path in X̃ leading from x to qx, so that (1− q)x is the boundary of a 1-chain.
Hence Q⊗R H0(X̃ ;Z) = 0 and rkH0(X̃;Z) = 0. Therefore, rkH ≥ n(n− 1).
The isomorphism (3.16) implies that H ∼= R

n(n−1)
0 .

Specific elements of H may be derived from arbitrary disjoint spanning
arcs α, β on (D,Q). Consider the associated loops α′, β′ : S1 → Σ as in
Figure 3.1. Choosing these loops closely enough to α, β, we may assume that
they do not meet. The formula

(s1, s2) → {α′(s1) , β′(s2)} ∈ C

for s1, s2 ∈ S1 defines an embedding of the torus S1×S1 into C. The induced
homomorphism of the fundamental groups sends π1(S1 × S1) to the kernel
of ϕ. Therefore this embedding lifts to an embedding of the torus into C̃. It
can be shown that the fundamental class of the torus represents a nontrivial
homology class inH. Such classes, corresponding to various α, β, are permuted
by the action of Bn onH. A similar but subtler construction applies to pairs of
spanning arcs on (D,Q) meeting at one common endpoint; it gives a mapping
of an orientable closed surface of genus 2 to C̃; see [Big03]. Moreover, each
spanning arc on (D,Q) gives rise to a mapping of an orientable closed surface
of genus 3 to C̃; see [Big03] and Section 3.7.1. Applying these constructions
to the arcs

[1, 2]× {0} , [2, 3]× {0} , . . . , [n− 1, n]× {0}
on (D,Q) and to pairs of such arcs, one obtains n(n− 1)/2 homology classes
in H forming an R-basis of H.

3.6 Noodles vs. spanning arcs

In this section we introduce and study so-called noodles on the n-punctured
disk Σ = D −Q, where n ≥ 1 and Q = {(1, 0), . . . , (n, 0)} ⊂ D. Noodles will
be used in a crucial way in the proof of Theorem 3.15 in Section 3.7.

3.6.1 Noodles

A noodle in Σ is an oriented embedded arc N ⊂ Σ such that

∂N = N ∩ ∂Σ .

The boundary ∂N of a noodle N consists of the two endpoints of N lying
on ∂Σ = ∂D. An example of a noodle is shown in Figure 3.7.
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d

· · ·
(1, 0) (i, 0)(i−1, 0) (i+1, 0) (n, 0)

· · ·

Ni

d−

Fig. 3.7. The noodle Ni

We focus now on the intersections of a noodle N with spanning arcs
on (D,Q). Let α be a spanning arc on (D,Q) intersecting N transversely
at finitely many points. The intersection of N and α can be simplified
using digons as in Section 3.2.4. A digon for N,α is an embedded disk
in Σ◦ = Σ − ∂Σ whose boundary is formed by a subarc of N and a sub-
arc of α and whose interior does not meet N ∪ α; cf. Figure 3.3, where c, d
should be replaced by N,α. Each digon determines an obvious isotopy of α
(rel ∂α) decreasing the number of points in N ∩ α by two. The following
lemma shows that conversely, if there is such an isotopy, then the pair N,α
has digons.

Lemma 3.19. If there is an isotopy of α (rel ∂α) decreasing the number of
points in N ∩ α, then the pair N,α has at least one digon.

Proof. We deduce this lemma from Lemma 3.6 by extending the arcs N and α
to simple closed curves on a bigger surface. Pick closed disk neighborhoods
U1, U2 ⊂ D of the endpoints of α such that U1 ∩U2 = Ui ∩N = ∅ for i = 1, 2
and each circle ∂Ui meets α at exactly one point. Consider the punctured
disk D− = D − (U◦

1 ∪ U◦
2 ). Clearly, ∂D− = ∂U1 ∪ ∂U2 ∪ ∂D. We now form a

new surface S by gluing the following three pieces: the punctured disk D−, an
annulus A = S1× [0, 1], and a punctured torus T obtained as the complement
of a small open disk on S1 × S1. (Instead of the torus, we can use any ori-
entable surface of positive genus.) The surfaces D−, A, and T are glued along
homeomorphisms ∂A ≈ ∂U1 ∪ ∂U2 and ∂T ≈ ∂D chosen so that the resulting
surface, S, is orientable. Connecting the points α ∩ ∂U1, α ∩ ∂U2 in A, we
can extend the arc α ∩D− to a simple closed curve α̂ on S; see Figure 3.8.
Similarly, the arc N ⊂ D− extends to a simple closed curve N̂ on S going
once along a longitude of T .
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T

N

A

α

Fig. 3.8. The surface S

If there is an isotopy of α (rel ∂α) decreasing the number of points in N∩α,
then there is an isotopy of α̂ in S decreasing the number of points in N̂ ∩ α̂.
By Lemma 3.6, the pair N̂ , α̂ has a digon on S. Such a digon cannot approach
a branch of N̂ or α̂ from different sides and therefore meets neither T nor A.
Therefore such a digon lies on D− and is a digon for N,α. ��

3.6.2 Algebraic intersection of noodles and arcs

The intersection of a noodle N and a spanning arc α can be measured in
terms of a so-called algebraic intersection 〈N,α〉. This is an element of the
ring Z[q±1, t±1] defined up to multiplication by monomials qwtu with w ∈ Z
and u ∈ 2Z ⊂ Z. The algebraic intersection 〈N,α〉 depends on a choice of
orientation on α, which we fix from now on. As above, we endow Σ with
counterclockwise orientation. The orientations of α and Σ allow us to speak
of the “right” and “left” sides of α in Σ. Pushing α slightly to the left (keeping
the endpoints), we obtain a “parallel” oriented spanning arc α− on (D,Q) with
the same starting and terminal endpoints as α and disjoint from α otherwise.
Slightly deforming N , we can assume that N intersects α transversely in m ≥ 0
points z1, . . . , zm (the numeration is arbitrary). We choose the parallel arc α−

very closely to α so that α− meets N transversely in m points z−1 , . . . , z−m,
where each pair z−i , zi is joined by a short subarc of N lying in the narrow
strip on Σ bounded by α− ∪ α; cf. Figure 3.9 below (the strip in question is
shaded). For i ∈ {1, . . . ,m}, let εi = ±1 be the intersection sign of N and α
at zi (recall that both N and α are oriented). Thus, εi = +1 if N crosses α
at zi from left to right and εi = −1 otherwise. Denote the starting endpoint
and the terminal endpoint of N by d− and d, respectively. Fix arbitrary points

z− ∈ α− − ∂α− , z ∈ α− ∂α

and fix paths θ−, θ in Σ leading respectively from d− to z− and from d to z
and having disjoint images (these paths are allowed to meet N , α−, and α
elsewhere).
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Recall the space C of nonordered pairs of distinct points of Σ. For every
pair i, j ∈ {1, . . . ,m}, we define a loop ξi,j in C as follows. Let β−

i be an
oriented embedded arc on α− leading from z− to z−i (the orientation of β−

i

may be opposite to that of α−). Let βj be an oriented embedded arc on α
leading from z to zj . Let γ−

i,j and γi,j be disjoint oriented arcs in N leading
from the points z−i , zj ∈ N to the endpoints of N . These oriented arcs are
determined only by the position of the points z−i , zj on N and do not depend
on the orientation of N . Recall the notation for paths in C introduced in
Section 3.5.1. Consider the paths {θ−, θ}, {β−

i , βj}, and {γ−
i,j , γi,j} in C. They

lead from {d−, d} ∈ C to {z−, z} ∈ C, from {z−, z} to {z−i , zj} ∈ C, and from
{z−i , zj} to {d−, d}, respectively. The product of these three paths

ξi,j = {θ−, θ} {β−
i , βj} {γ−

i,j, γi,j} (3.19)

is a loop in C beginning and ending in {d−, d}. Set

〈N,α〉 =
m
∑

i=1

m
∑

j=1

εi εj qw(ξi,j) tu(ξi,j) ∈ Z[q±1, t±1] ,

where w and u are the integral invariants of loops in C introduced in Sec-
tion 3.5.1. The expression on the right-hand side does not depend on the
numeration of points in N ∩ α. Under a different choice of z−, z, θ−, θ, all
loops ξi,j are multiplied on the left by one and the same loop in C of the form
{ξ1, ξ2}, where ξ1, ξ2 are loops in Σ. Then 〈N,α〉 is multiplied by a monomial
in q±1, t±2.

For example, if N is disjoint from α, then 〈N,α〉 = 0. If N crosses α in
only one point, then m = 1 and 〈N,α〉 = qkt� for some k, � ∈ Z.

We state two fundamental properties of the algebraic intersections of noo-
dles and arcs.

Lemma 3.20. The algebraic intersection 〈N,α〉 is invariant under isotopies
of N and α in Σ constant on the endpoints.

Proof. It suffices to fix N and to prove that 〈N,α〉 is invariant under isotopies
of the spanning arc α. A generic isotopy of α in Σ can be split into a finite
sequence of local moves of three types:

(i) an isotopy of α in Σ keeping α transversal to N ,
(ii) a move pushing a small subarc of α across a subarc of N ,
(iii) an inverse to (ii).

It is clear from the definitions that the moves of type (i) do not change 〈N,α〉.
Any move of type (ii) adds two new intersection points zm+1, zm+2 to the set
N ∩α = {z1, . . . , zm}. Assume for concreteness that the subarc of N connect-
ing zm+1 with zm+2 lies on the right of the arc α; see Figure 3.9. Clearly,
the sign εi = ±1 is preserved under this move for i = 1, . . . ,m. For all
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i, j = 1, . . . ,m, the loops ξi,j computed before and after the move are homo-
topic to each other. Therefore such pairs (i, j) contribute the same expression
to 〈N,α〉 before and after the move. For i = 1, . . . ,m + 2, the loops ξi,m+1

and ξi,m+2 are homotopic and the obvious equality εm+1 = −εm+2 implies
that the contributions of the pairs (i,m + 1), (i,m + 2) cancel each other.
Similarly, for any i = 1, . . . ,m, the loops ξm+1,i and ξm+2,i are homotopic
and the contributions of the pairs (m + 1, i), (m + 2, i) cancel each other.
Therefore 〈N,α〉 is preserved under the move. ��

α α

N

α− α−

z zm+2+1m

zz−+1m z−m+2

Fig. 3.9. Additional crossings

We say that a spanning arc α on (D,Q) can be isotopped off a noodle N
if there is a continuous family of spanning arcs {αs}s∈[0,1] on (D,Q) such
that α0 = α and α1 is disjoint from N . Such a family {αs}s is called an isotopy
of α. Note that the spanning arcs αs necessarily have the same endpoints.

Lemma 3.21. A spanning arc α can be isotopped off a noodle N if and only
if 〈N,α〉 = 0.

Proof. If there is an isotopy {αs}s of α = α0 in Σ such that α1 is disjoint
from N , then 〈N,α〉 = 〈N,α1〉 = 0. The hard part of the lemma is the
opposite implication. Applying a preliminary isotopy to α, we can assume
that α intersects N transversely at a minimal number of points z1, . . . , zm

with m ≥ 0. We assume that m ≥ 1 and show that 〈N,α〉 �= 0.
We keep the notation introduced above in the definition of 〈N,α〉. For

any i, j ∈ {1, . . . ,m}, set wi,j = w(ξi,j) ∈ Z and ui,j = u(ξi,j) ∈ Z. Then

〈N,α〉 =
m
∑

i=1

m
∑

j=1

εi εj qwi,j tui,j . (3.20)

Observe that
εi = (−1)ui,i

for all i. Indeed, if εi = +1, then N crosses the arc α at zi from left to right
and therefore the paths γ−

i,i, γi,i end respectively in d−, d. Then ξi,i has the
form {ξ1, ξ2}, where ξ1, ξ2 are loops in Σ. In this case

ui,i = u(ξi,i) = 0 (mod 2) .

Similarly, if εi = −1, then ui,i = 1 (mod 2). In both cases εi = (−1)ui,i .
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We shall use the lexicographic order on monomials qwtu with w, u ∈ Z.
More precisely, we write qwtu ≥ qw′

tu
′

with w, u,w′, u′ ∈ Z if either w > w′

or w = w′ and u ≥ u′. We say that an ordered pair (i, j) with i, j ∈ {1, . . . ,m}
is maximal (for given N,α) if qwi,j tui,j ≥ qwk,ltuk,l for all k, l ∈ {1, . . . ,m}.
A maximal pair necessarily exists because the lexicographic order on the
monomials is total. A maximal pair may be nonunique. We claim that

if (i, j) is maximal, then ui,i = uj,j . (3.21)

This claim implies that every maximal pair (i, j) contributes the monomial

εi εj qwi,j tui,j = (−1)ui,i(−1)uj,jqwi,j tui,j = qwi,j tui,j

to 〈N,α〉. All maximal pairs necessarily contribute the same monomial, which
then occurs in 〈N,α〉 with a positive coefficient. Therefore 〈N,α〉 �= 0.

To prove (3.21), we first compute wi,j for any i, j ∈ {1, . . . ,m} (not nec-
essarily maximal). Let η−i be the loop in Σ obtained as the product of the
path θ−β−

i with the path going from z−i to d− along N . Let ηj be the loop
in Σ obtained as the product of θβj with the path going from zj to d along N .
We claim that

wi,j = w(η−i ) + w(ηj) . (3.22)

Indeed, if the path γ−
i,j appearing in (3.19) ends at d−, then the path γi,j ends

at d, the paths θ−β−
i γ−

i,j and θβjγi,j are loops, and wi,j is the sum of their
total winding numbers. Formula (3.22) follows in this case from the equalities
η−i = θ−β−

i γ−
i,j and ηj = θβjγi,j . Assume that γ−

i,j ends at d. Then γi,j ends
at d−,

η−i = θ−β−
i γ−

i,jN
−1, ηj = θβjγi,jN ,

where N is viewed as a path from d− to d. By definition, wi,j is the total
winding number of the loop θ−β−

i γ−
i,jθβjγi,j . This loop is homotopic in Σ to

the loop
θ−β−

i γ−
i,jN

−1Nθβjγi,jNN−1 = η−i NηjN
−1 .

The loop η−i NηjN
−1 is homologous to η−i ηj in Σ. Hence (3.22).

Inspecting the loops η−i and ηi, we observe that the difference between
their homology classes [η−i ], [ηi] ∈ H1(Σ;Z) is represented by the loop going
from d to d− along N−1, then from d− to z− along θ−, then from z− to z
along a path lying in the strip between α− and α, and finally from z to d
along θ−1. Therefore the difference [η−i ] − [ηi] ∈ H1(Σ;Z) does not depend
on i. This implies that the number

W = w(η−i )− w(ηi) ∈ Z

does not depend on i. Formula (3.22) implies that for all i, j = 1, . . . ,m,

wi,j = w(ηi) + w(ηj) + W . (3.23)
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Suppose that the pair (i, j) is maximal. Then wi,j is maximal among all
the integers wk,l. By (3.23), both numbers w(ηi) and w(ηj) must be maximal
among all the integers w(ηk). Then

w(ηi) = w(ηj) and wi,i = wi,j .

The maximality of (i, j) implies that ui,i ≤ ui,j . We claim that ui,i = ui,j .
For i = j, this is obvious and we assume that i �= j.

Suppose, seeking a contradiction, that ui,i < ui,j . Let μ be the (embedded)
subarc of α connecting zi and zj. Let ν be the (embedded) subarc of N
connecting zi and zj . We orient μ from zi to zj and ν from zj to zi. The
product μν is a loop on Σ based at zi. We distinguish two cases.

Case 1 : The arc ν approaches α at zi from the right (in other words, ν does
not pass through z−i ). Then the loop μν does not pass through z−i and we
can consider its winding number, v ∈ Z, around z−i . We claim that v > 0. To
see this, we compute v as follows. As was already observed, 2v = u({z−i , μν}),
where u is the invariant of loops in C defined in Section 3.5.1 and z−i stands for
the constant path in the point z−i . Observe that βj ∼ βiμ, where ∼ denotes
the homotopy of paths in Σ−{z−i } relative to the endpoints. The assumption
that ν does not pass through z−i implies that

γ−
i,i = γ−

i,j and γi,i = ν−1γi,j ;

see Figure 3.10. Then

ξi,j = {θ−, θ}{β−
i , βj}{γ−

i,j, γi,j} ∼ {θ−, θ}{β−
i , βi}{z−i , μν}{γ−

i,i, γi,i} .

The latter loop is homologous in C to the loop

{θ−, θ}{β−
i , βi}{γ−

i,i, γi,i}{z−i , μν} = ξi,i {z−i , μν} .

Therefore,

2v = u({z−i , μν}) = u(ξi,j)− u(ξi,i) = ui,j − ui,i .

The assumption ui,i < ui,j implies that v > 0.

α

μ

νzi zj

N

γi,jγ−
i,j

z−i

Fig. 3.10. Case 1: the paths γ−
i,j and γi,j
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We can now bring one more loop into the picture. Consider the short
subarc of N connecting zi to z−i in the strip between α and α−. Pick a loop ρ
in a small neighborhood of this subarc such that

(i) ρ begins and ends in zi;
(ii) ρ does not meet z−i and winds clockwise v times around z−i ;
(iii) ρ has v − 1 transversal self-crossings;
(iv) ρ meets μν only at zi (see Figure 3.11).

zi μ

ν

ρ zj

zi
−

Fig. 3.11. The loop ρ for v = 3

Note that the winding number of the loop μνρ around z−i is equal to 0.
Hence, this loop lifts to an appropriate covering of the complement of {z−i }.
We now describe this lift in more detail.

Let D• = D − {z−i } and p : D̂• → D• be the universal (infinite cyclic)
covering. Let μ̂ : [0, 1] → D̂• be an arbitrary lift of μ (so that pμ̂ = μ). There
is a unique lift ν̂ : [0, 1] → D̂• of ν such that ν̂(0) = μ̂(1). Consider also the
unique lift ρ̂ : [0, 1] → D̂• of ρ such that ρ̂(0) = ν̂(1). By abuse of notation,
we shall denote the paths μ, ν, ρ, μ̂, ν̂, ρ̂ and their images by the same letters.
Since the winding number of μνρ around z−i is zero, the path μ̂ν̂ρ̂ is a loop.
Our choice of ρ ensures that ρ̂ is an embedded arc in D̂• meeting μ̂ν̂ only at
the endpoints. However, the embedded arcs μ̂ and ν̂ in D̂• may meet in several
points besides their common endpoint μ̂(1) = ν̂(0). Let a be the first point
of μ̂ that lies also on ν̂ (possibly a = μ̂(1)). Let μ̂a be the initial segment of μ̂
going from μ̂(0) to a. Let ν̂a be the final segment of ν̂ going from a to ν̂(1).
Set

δ = μ̂aν̂aρ̂ .

The construction of the loop δ ensures that it has no self-crossings. This loop
parametrizes an embedded circle in D̂• denoted by the same symbol δ. We
identify D̂• with the half-open strip R × [0, 1) ⊂ R2 so that the orientation
in D̂• induced by the counterclockwise orientation in D• is identified with the
counterclockwise orientation in R2. The Jordan curve theorem implies that δ
bounds an embedded disk B ⊂ D̂•.
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We verify now that the loop δ encircles B counterclockwise. Let C be the
component of D•−ρ surrounding z−i . We check first that C∩p(B) = ∅. Indeed,
suppose that there is a point b ∈ B such that p(b) ∈ C. We can connect the
point p(b) to any other point b′ of C by an arc in C. This arc lifts to an arc
in D̂• beginning in b. The latter arc never meets δ, since its projection to D•
never meets μ, ν, or ρ. Hence this lifted arc lies in the interior B◦ = B − ∂B
of B, and its terminal endpoint projects to b′. Thus, C ⊂ p(B). Since B is
compact, so is p(B). On the other hand, it is clear that C is not contained
in a compact subset of D•. This contradiction shows that C ∩ p(B) = ∅.
Observe now that C lies on the right of ρ. If B lies on the right of ρ̂ ⊂ δ, then
necessarily C ∩ p(B) �= ∅, a contradiction. Thus, B lies on the left of ρ̂ and
of δ. Hence, δ goes counterclockwise around B.

We claim that B ∩ p−1(Q) = ∅. Indeed, being a compact subset of D̂•,
the disk B may contain only a finite number of points of the (discrete) set
p−1(Q) ⊂ D̂•. Observe that the paths μ, ν, ρ lie in Σ = D − Q and do not
meet Q. Therefore ∂B ∩ p−1(Q) = ∅, so that B ∩ p−1(Q) ⊂ B◦. The loop
δ = ∂B is homologous in B− p−1(Q) to the sum of small loops encircling the
points of B ∩ p−1(Q) counterclockwise. The latter loops are projected by p
homeomorphically onto small loops encircling certain points of Q counter-
clockwise. Therefore,

card(B ∩ p−1(Q)) = w(p ◦ δ) ,

where w(p ◦ δ) is the total winding number of the loop p ◦ δ in Σ around the
points of Q. We have

p ◦ δ = μaνaρ ,

where μa = p(μ̂a) is the initial segment of μ going from zi to p(a) along α,
and νa = p(ν̂a) is the final segment of ν going from p(a) to zi along N .
Then p(a) ∈ N ∩ α, so that p(a) = zk for some k = 1, . . . , n. Since ρ is
contractible in Σ, the loop μaνaρ is homotopic to μaνa in Σ and

w(μaνaρ) = w(μaνa) .

Recall the loops ηk, ηi in Σ based at the terminal endpoint d of N . The
difference between their homology classes [ηk], [ηi] ∈ H1(Σ;Z) depends neither
on the choice of the path θ nor on the choice of its terminal endpoint z ∈ α.
Taking z = zi, one immediately deduces from the definition of ηk, ηi that
[ηk]− [ηi] = [μaνa]. Therefore,

w(μaνa) = w(ηk)− w(ηi) .

To sum up, we have

card(B ∩ p−1(Q)) = w(p ◦ δ) = w(μaνaρ) = w(μaνa) = w(ηk)− w(ηi) .

Since w(ηi) is maximal, card(B ∩ p−1(Q)) ≤ 0. Hence B ∩ p−1(Q) = ∅.
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We shall need a few simple facts concerning the covering p : D̂• → D•.
The group of covering transformations of p is an infinite cyclic group gener-
ated by the covering transformation g : D̂• → D̂• corresponding to the loop
encircling zi counterclockwise. The set p−1(N) consists of an infinite num-
ber of disjoint closed intervals in D̂• with boundary on ∂D̂•. These intervals
can be numerated by integers so that the action of g shifts the index by 1.
This implies that any nontrivial covering transformation D̂• → D̂• maps each
component of p−1(N) to a different component of p−1(N). The same facts
hold for the set p−1(α) ⊂ D̂• with the only difference that its components are
closed intervals lying in the interior of D̂•.

We claim that under our assumptions the pair N,α has a digon. This would
imply that the intersection N ∩ α is not minimal. The latter contradicts our
choice of α in its isotopy class. Therefore, the assumption ui,i < ui,j must
have been false, so that ui,i = ui,j .

We now construct a digon for N,α. Suppose first that

B◦ ∩ p−1(N) �= ∅ or B◦ ∩ p−1(α) �= ∅

(or both). Observe that the circle δ = ∂B is formed by three embedded arcs:
the arc μ̂a lying on p−1(α), the arc ν̂a lying on p−1(N), and the arc ρ̂ meeting
the set p−1(N)∪ p−1(α) only in its two endpoints. Note that the boundary of
the one-manifold p−1(N) is contained in ∂D̂• and lies therefore outside of B.
If B◦∩p−1(N) �= ∅, then B◦∩p−1(N) is a finite set of disjoint embedded arcs
with endpoints on μ̂a. At least one of these arcs bounds together with a subarc
of μ̂a a disk D1 ⊂ B whose interior does not meet p−1(N). If B◦∩p−1(N) = ∅,
then we set D1 = B. Similarly, the boundary of p−1(α) ⊂ D̂• is contained
in p−1(Q) and lies outside of B. If the interior D◦

1 of D1 meets p−1(α), then
they meet along a finite number of disjoint embedded arcs with endpoints
on p−1(N) ∩ ∂D1. At least one of these arcs bounds together with a subarc
of p−1(N) ∩ ∂D1 an embedded disk D2 ⊂ D1 whose interior does not meet
p−1(α). If D◦

1 ∩ p−1(α) = ∅, then we set D2 = D1. In any case, the boundary
of D2 is formed by an arc on p−1(N) and an arc on p−1(α), while the interior
D◦

2 of D2 does not meet p−1(N ∪ α). Then

D◦
2 ∩ g(∂D2) = ∅ ,

for any nontrivial covering transformation g : D̂• → D̂• of the covering p :
D̂• → D•. The properties of the sets p−1(N) and p−1(α) mentioned above
imply that ∂D2∩g(∂D2) = ∅. This implies that either D2∩g(D2) = ∅ or D2 is
contained in the interior of the disk g(D2). In the latter case, g−1(D2) ⊂ D◦

2 ,
which contradicts the fact that D◦

2 does not meet p−1(N ∪ α). We conclude
that D2 ∩ g(D2) = ∅. Thus, the disk D2 does not meet its images under
nontrivial covering transformations of the covering p : D̂• → D•. Hence, the
restriction of p to D2 is injective. This implies that p(D2) is a digon for N,α
in Σ.
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It remains to construct a digon for the pair N,α when B◦∩p−1(N∪α) = ∅.
The set p−1(ρ) consists of v copies of the line R embedded in D̂•; these lines
meet each other at an infinite number of points (see Figure 3.12, where v = 3).
The arcs μa, νa lie in the component of D•−ρ adjacent to ∂D• ≈ S1 except for
the points μa(0) = νa(1) = zi. Therefore the arcs μ̂a, ν̂a lie in the component
of D̂• − p−1(ρ) adjacent to ∂D̂• ≈ R except for the points μ̂a(0) = μ̂(0) and
ν̂a(1) = ν̂(1) lying on p−1(zi) ⊂ p−1(ρ). Clearly, ν̂a(1) = gv(μ̂a(0)), where
g : D̂• → D̂• is the generator of the group of covering transformations chosen
above and v > 0 is the winding number of the loop μν around z−i . The disk B
bounded by δ = μ̂aν̂aρ̂ has to include the area between the arc μ̂aν̂a and p−1(ρ)
(this area is shaded in Figure 3.12). Observing Figure 3.12, one immediately
concludes that for v ≥ 2, this area must meet g(μ̂aν̂a). This contradicts the
assumption B◦ ∩ p−1(N ∪ α) = ∅. It follows that v = 1, so that p−1(ρ) is
just a line and B is the area between this line and the arc μ̂aν̂a. Then B
projects injectively to D•, the loop ρ bounds a small disk containing z−i , and
the union of this disk with p(B) is a digon for N,α. This completes the proof
of the equality ui,i = ui,j in Case 1.

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g

a

p−1(ρ)

μ̂ν̂

∂D̂•

D̂•

Fig. 3.12. The case v = 3

Case 2 : The arc ν approaches α at zi from the left (in other words, ν
passes through z−i ). Let us slightly push the arc ν near z−i to Σ − {z−i } so
that z−i lies on the left side of the resulting arc. Denote by ν′ this new arc,
also leading from zj to zi. The loop μν′ does not pass through z−i and we can
consider its winding number, v, around z−i . We claim that v > 0. Observe first
that the point z−i splits ν into two subarcs ν1 and ν2, where ν1 leads from zj

to z−i and ν2 leads from z−i to zi. We have γ−
i,j = ν2γi,i and γ−

i,i = ν−1
1 γi,j ;

see Figure 3.13. As in Case 1, we have βj ∼ βiμ. Therefore,

ξi,j = {θ−, θ}{β−
i , βj}{γ−

i,j, γi,j} ∼ {θ−, θ}{β−
i , βi}{ν2, μν1}{γ−

i,i, γi,i} .

The latter loop is homologous in C to the loop

{θ−, θ}{β−
i , βi}{γ−

i,i, γi,i}{ν2, μν1} = ξi,i {ν2, μν1} .
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It is easy to deduce from the definitions and the construction of ν′ that
u({ν2, μν1}) = u({z−i , μν′})− 1 = 2v − 1. Therefore,

2v − 1 = u({ν2, μν1}) = u(ξi,j)− u(ξi,i) = ui,j − ui,i .

The assumption ui,i < ui,j implies that v > 0. The rest of the proof of the
equality ui,i = ui,j goes as in Case 1 with the difference that instead of ν one
should everywhere use ν′.

α μ

zi

zj

N
γi,j

z−i

γi,i

ν1

ν2

Fig. 3.13. Case 2: the paths γi,i and γi,j

Analogous arguments prove that uj,j = ui,j for any maximal pair (i, j).
This can also be deduced from the results above using the following symmetry
for the loops ξi,j defined by (3.19), where i, j is an arbitrary (not necessarily
maximal) pair of elements of the set {1, . . . ,m}. Let us write

ξi,j = ξi,j(N,α, z, z+, θ−, θ) ,

stressing the dependence on the data in the parentheses. We will use simi-
lar notation for wi,j = w(ξi,j) and ui,j = u(ξi,j). Consider the noodle −N
obtained from N by reversing the orientation. Similarly, consider the span-
ning arcs −α,−α− on (D,Q) obtained from α, α−, respectively, by reversing
the orientation. It is clear that −α lies on the left of −α−, so that we can
set (−α−)− = −α. The noodle −N crosses −α− and (−α−)− = −α in the
same points as before and we numerate them in the same way, except that zi

becomes z−i and vice versa (for all i). It follows from the definitions that

ξi,j(N,α, z−, z, θ−, θ) = ξj,i(−N,−α−, z, z−, θ, θ−)

for all i, j. This implies similar formulas for wi,j and ui,j. Now, if the pair
(i, j) is maximal for (N,α), then the pair (j, i) is maximal for (−N,−α−) and
by the results above,

ui,j(N,α, z−, z, θ−, θ) = uj,i(−N,−α+, z, z−, θ, θ−)

= uj,j(−N,−α+, z, z−, θ, θ−)

= uj,j(N,α, z−, z, θ−, θ) .

We conclude that ui,i = ui,j = uj,j for any maximal pair (i, j). This
proves (3.21) and the lemma. ��
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3.7 Proof of Theorem 3.15

The proof begins with two constructions. From each spanning arc α we derive
a vector in H and from each noodle N we derive an oriented surface in C̃.
Then we compute the algebraic intersection 〈N,α〉 in terms of these vectors
and surfaces. This computation is used in the final subsection to finish the
proof.

3.7.1 Homology classes associated with spanning arcs

Fix an oriented spanning arc α on (D,Q), where Q = {(1, 0), (2, 0), . . . , (n, 0)}.
Pick disjoint closed disk neighborhoods

U1, U2, . . . , Un ⊂ D◦ = D − ∂D

of the points (1, 0), (2, 0), . . . , (n, 0), respectively. We shall always assume
that α meets the disk neighborhoods Ui of its endpoints along certain radii and
does not meet the other Ui. Let U be the set of all nonordered pairs {x, y} ∈ C
such that at least one of the points x, y ∈ Σ = D−Q lies in

⋃n
i=1 Un. Let Ũ ⊂ C̃

be the preimage of U under the covering map C̃ → C. It is clear that Ũ is in-
variant under the action of the covering transformations q, t on C̃. This action
turns the integral homology of Ũ and the relative integral homology of the
pair (C̃, Ũ) into modules over the ring Z[q±1, t±1]. We now associate with α a
subset of H2(C̃, Ũ ;Z) consisting of so-called α-classes.

Consider a parallel oriented spanning arc α− as in Section 3.6.2. Recall that
α∪α− bounds a narrow strip in Σ and α∩α− = ∂α = ∂α−. Consider the set
Sα ⊂ C consisting of all pairs {x, y}, where x ∈ α−−∂α− and y ∈ α−∂α. Thus,
Sα = (α− − ∂α−) × (α − ∂α). Since Sα is simply connected, the embedding
Sα ↪→ C lifts to an embedding Sα ↪→ C̃. Fix such a lift and denote its image
by S̃α. We regard Sα and S̃α as open squares via

S̃α ≈ Sα = (α− − ∂α−)× (α− ∂α) .

The surfaces Sα and S̃α have a natural orientation obtained by multiplying
the orientations in α− and α. Pick subarcs s ⊂ α − ∂α and s− ⊂ α− − ∂α−

whose endpoints and complements in α, α− lie in
⋃n

i=1 Un. Then S = s−×s is
a concentric closed subsquare of S̃α whose boundary and complement in S̃α lie
in Ũ . The oriented surface S represents an element of H2(C̃, Ũ ;Z) independent
of the choice of s, s−. This element is denoted by [S]. Under a different choice
of S̃α, it is multiplied by a monomial in q, t.

The image of [S] under the boundary homomorphism

H2(C̃, Ũ ;Z) → H1(Ũ ;Z)

is represented by the oriented circle ∂S ⊂ Ũ . The following lemma shows that
the homology class [∂S] ∈ H1(Ũ ;Z) is annihilated by (q − 1)2(qt + 1).
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Lemma 3.22. We have (q − 1)2(qt + 1) [∂S] = 0 in H1(Ũ ;Z).

Proof. Let (p1, 0), (p2, 0) be the endpoints of α, where p1, p2 ∈ {1, 2, . . . , n}.
For brevity, we shall denote the point (pi, 0) simply by pi, where i = 1, 2. For
i = 1, 2, pick a point ui ∈ Upi lying in the strip between α− and α. Consider
the points A,A′, B,B′ ∈ Σ and the eight paths

α1, α2, α3, β1, β2, β3, γ1, γ2

in Σ drawn in Figure 3.14. The paths α1, α2, α3, β1, β2, β3 are embedded arcs,
while γi is a loop in Upi encircling pi and based at ui for i = 1, 2. It is
understood that α goes along a radius of Up1 from p1 to A, then along α2

from A to A′, and then along a radius of Up2 from A′ to p2 (the radii in
question are not drawn in Figure 3.14). The arc α− goes along a radius of Up1

from p1 to B′, then along the path β−1
2 inverse to β2, and then along a radius

of Up2 from B to p2. One should think of α2 (resp. of β2) as being long and
almost entirely exhausting α (resp. α−), while the radii of Up1 , Up2 and the
arcs α1, β3 ⊂ Up1 , α3, β1 ⊂ Up2 are short.

α1

α2

α3

γ2u2

β1

β2

β3

u1γ1

A

B

A′

B′

θ1 θ2p1 p2

Up1 Up2

Fig. 3.14. The arcs α1, α2, α3, β1, β2, β3, γ1, γ2

Consider the following loops in U based at e = {u1, u2} = {u2, u1} ∈ U :

a1 = {γ1, u2} , a2 = {u1, γ2} ,

b1 = {α1, β1β2β3}{α2α3, u1} , b2 = {α1α2α3, β1}{u2, β2β3} ,

where u1, u2 stand for the constant paths in the points u1, u2. Note that both
loops b1, b2 are homotopic in C to the loop

{α1α2α3, β1β2β3} .

(This certainly does not imply that b1, b2 are homotopic in U .) The homo-
topy classes of the loops a1, a2, b1, b2 in the fundamental group π = π1(U, e)
will be denoted by the same symbols a1, a2, b1, b2. The symbol ∼ will denote
homotopy in U for loops in U based at e. For any x, y ∈ π, set

xy = y−1xy ∈ π and [x, y] = x−1xy = x−1y−1xy ∈ π .
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Observe the following relations in π:

[a1, a2] = 1 , [a1, b1a1b1] = 1 , [a2, b2a2b2] = 1 . (3.24)

The first relation is obvious, since

a1a2 ∼ {γ1, γ2} ∼ a2a1 .

The relations [a1, b1a1b1] = 1 and [a2, b2a2b2] = 1 are proven similarly, and
we shall prove only the first one. Consider the oriented arcs θ1, θ2 on ∂Up1

as shown in Figure 3.14. These arcs lead from B′ to A and from A to B′

respectively, and their product θ1θ2 is a loop parametrizing ∂Up1 . We claim
that

b1a1b1 ∼ {u1, β1β2θ1α2α3} . (3.25)

This will imply that

a1b1a1b1 ∼ {γ1, u2}{u1, β1β2θ1α2α3}
∼ {γ1, β1β2θ1α2α3}
∼ {u1, β1β2θ1α2α3}{γ1, u2}
∼ b1a1b1a1 .

Hence [a1, b1a1b1] = 1. We now prove (3.25). Observe first that

b1a1 ∼ {α1, β1β2β3}{α2α3, γ1}

and
b1 ∼ {u1, β1β2}{α1α2α3, β3} = {β1β2, u1}{β3, α1α2α3} .

Therefore,

b1a1b1 ∼ {α1, β1β2β3}{α2α3β1β2, γ1}{β3, α1α2α3} .

The path α2α3β1β2 is homotopic in Σ−γ1 to θ2. (By a homotopy of paths we
always mean a homotopy keeping the endpoints of the paths fixed.) Hence,

b1a1b1 ∼ {α1, β1β2β3}{θ2, γ1}{β3, α1α2α3}
∼ {α1, β1β2}{A, β3}{θ2, γ1}{B′, α1}{β3, α2α3}
∼ {α1, β1β2}{θ2, β3γ1α1}{β3, α2α3} .

Observe that the path β3γ1α1 is homotopic in Up1 to θ1. Therefore

b1a1b1 ∼ {α1, β1β2}{θ2, θ1}{β3, α2α3} .

Since the product α1θ2β3 is homotopic to the constant path u1, we obtain

b1a1b1 ∼ {u1, β1β2θ1α2α3} ,

which proves (3.25).
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We define the following four elements of π:

a = a−1
2 a1 , b = b−1

2 b1 , c1 = [a1, b1] , c2 = [a2, b2] .

Then
aa1 = a , cb1a1

1 c1 = 1 = cb2a2
2 c2 , c2ba

b1 = aba1c1 . (3.26)

To see this, rewrite all four relations via a1, a2, b1, b2. The first three relations
are consequences of (3.24); in the last one, both sides are equal to a−1

2 b−1
2 a1b1.

Pick a lift ẽ ∈ C̃ of e = {u1, u2}. The group π̃ = π1(Ũ , ẽ) is the subgroup
of π = π1(U, e) formed by the homotopy classes of loops ξ in U such that
w(ξ) = u(ξ) = 0. We claim that a, b, c1, c2 ∈ π̃. Indeed, for i = 1, 2, we have
w(ai) = w(γi) = 1 and

w(bi) = w(α1α2α3β1β2β3) = 0 .

It follows from the definitions that u(a1) = u(a2) = 0 and u(b1) = u(b2) = 1.
Hence w(a) = u(a) = 0 and w(b) = u(b) = 0, so that a, b ∈ π̃. The commutator
of any two elements of π belongs to π̃, so that c1, c2 ∈ π̃.

The image of any x ∈ π̃ under the natural projection π̃ → H1(Ũ ;Z) will
be denoted by [x]. It is clear that if x ∈ π̃ and y ∈ π, then xy ∈ π̃. We claim
that for all x ∈ π̃ and y ∈ π,

[xy] = q−w(y)t−u(y) [x] , (3.27)

where we use the R-module structure on H1(Ũ ;Z). To see this, present x, y
by loops ξ, η in U , based at e. Then xy ∈ π is represented by the loop η−1ξη
in U . This loop lifts to a path μ1μ2μ3 in Ũ , where the path μ1 is the lift of η−1

beginning at ẽ and ending at the point

e′ = qw(y−1)tu(y−1) ẽ = q−w(y)t−u(y) ẽ ,

the path μ2 is the lift of ξ beginning at e′, and μ3 is the lift of η beginning
at the terminal endpoint of μ2. Since ξ represents x ∈ π̃, the path μ2 is a
loop beginning and ending at e′. The path μ3, being the lift of η beginning
at e′, must be the inverse of μ1. Therefore the path μ1μ2μ3 is a loop and its
homology class in H1(Ũ ;Z) is equal to the homology class of μ2. The latter
is equal to q−w(y)t−u(y)[x].

Applying (3.27), we obtain [aa1 ] = q−1[a] and

[cb1a1
1 c1] = q−1t−1[c1] + [c1] , [cb2a2

2 c2] = q−1t−1[c2] + [c2] ,

[c2ba
b1 ] = [c2] + [b] + t−1[a] , [aba1c1] = [a] + q−1[b] + [c1] .

Together with (3.26), this gives the following relations in H1(Ũ ;Z):

(q − 1)[a] = 0 , (qt + 1)[c1] = 0 = (qt + 1)[c2] ,

(q−1 − 1)[b] = (t−1 − 1)[a] + [c2]− [c1] .
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Combining these relations, we obtain

(q − 1)2(qt + 1)[b] = 0 . (3.28)

To compute the homology class [S] ∈ H2(C̃, Ũ ;Z), we need to choose
the arcs s ⊂ α and s− ⊂ α− used in the definition of S. We take s = α2

and s− = β2. The endpoints of these arcs and their complements in α−, α lie
in Up1 ∪ Up2 ⊂

⋃n
i=1 Ui, as required. The circle ∂S ⊂ Ũ is parametrized by

a loop in Ũ that is a lift of the following loop b′ ⊂ U based at {A,B}:

b′ = {A, β2}{α2, B
′}{A′, β2}−1{α2, B}−1 .

We claim that b′ is homotopic to the following loop b′′ in U also based
at {A,B}:

b′′ = {A, β2β3}{α2α3, u1}{u2, β2β3}−1{α2α3, B}−1. (3.29)

To see this, observe the obvious equalities of paths (up to homotopy in U)

{A, β3}{α2α3, u1} = {α2α3, β3} = {α2, B
′}{α3, β3} .

Therefore
{α2α3, u1} = {A, β3}−1{α2, B

′}{α3, β3} .

A similar argument shows that

{u2, β2β3}−1 = {α3, β3}−1{A′, β2}−1{α3, B} .

Substituting these expressions in (3.29) and observing that

{A, β2β3} = {A, β2}{A, β3} and {α2α3, B}−1 = {α3, B}−1{α2, B}−1 ,

we conclude that b′ is homotopic to b′′. Observe now that

b1 = {α1, β1β2β3}{α2α3, u1} ∼ {α1, β1}{A, β2β3}{α2α3, u1} ,

b2 = {α1α2α3, β1}{u2, β2β3} ∼ {α1, β1}{α2α3, B}{u2, β2β3} .

Therefore the loop b′′ is homotopic to the loop

{α1, β1}−1b1b
−1
2 {α1, β1}

in U . The latter loop is freely homotopic in U to b1b
−1
2 . Since b1b

−1
2 is conjugate

to b = b−1
2 b1 in π, the loops b′′ and b are freely homotopic in U . We conclude

that b′ is freely homotopic to b in U . Since b′ lifts to a loop ∂S in Ũ , any
homotopy of b′ lifts to a homotopy of ∂S in Ũ . Hence, ∂S is freely homotopic
to a lift of b to Ũ . Now the claim of the lemma directly follows from (3.28). ��
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Lemma 3.22 and the exact homology sequence of the pair (C̃, Ũ),

· · · → H2(Ũ ;Z) → H→ H2(C̃, Ũ ;Z) → H1(Ũ ;Z) → · · · ,

imply that the homology class (q − 1)2(qt + 1)[S] ∈ H2(C̃, Ũ ;Z) is the image
of a certain v ∈ H under the inclusion homomorphism H → H2(C̃, Ũ ;Z). Any
such v ∈ H is called an α-class with respect to the disks U1, . . . , Un or, shorter,
an α-class. An α-class can be represented by a 2-cycle in C̃ obtained by gluing
the 2-chain (q−1)2(qt+1)S with a 2-chain in Ũ bounded by (q−1)2(qt+1) ∂S.

It is clear that the α-class is determined by α only up to addition of
elements of the image of the homomorphism H2(Ũ ;Z) → H induced by the
inclusion Ũ ↪→ C̃ and up to multiplication by monomials in q, t (the latter is
due to the indeterminacy in the choice of S̃α). This describes completely the
indeterminacy in the construction of an α-class. Indeed, it is easy to check that
the set of α-classes does not depend on the choice of the arcs s ⊂ α− ∂α and
s− ⊂ α− − ∂α− used in the definition of the surface S. (To see this, observe
that the surfaces S determined by s, s− and by a pair of bigger arcs differ by
an annulus in Ũ .) We show now that the set of α-classes is independent of the
choice of the disks U1, . . . , Un.

Lemma 3.23. The set of α-classes in H does not depend on the choice of the
disks U1, . . . , Un.

Proof. Let {Ui}n
i=1 and {U ′

i}n
i=1 be two systems of closed disk neighborhoods

of the points of Q = {(1, 0), (2, 0), . . . , (n, 0)} in D◦ as at the beginning of this
subsection. Let Ũ and Ũ ′ be the subsets of C̃ associated with these systems of
disks as above. Suppose first that U ′

i ⊂ Ui for all i. We can view Ui and U ′
i as

concentric disks with center (i, 0). By the assumptions, the arc α either does
not meet the disk Ui or meets it along a radius whose intersection with U ′

i

is the radius of the latter. Contracting each Ui into U ′
i along the radii, we

obtain an isotopy {Fs : D → D}s∈I of D into itself such that F0 = id, Fs fixes
∂D ∪Q pointwise and fixes α setwise for all s ∈ I, and F1(Ui) = U ′

i for all i.
The induced homeomorphisms {F̃s : C̃ → C̃}s∈I form an isotopy of C̃ into
itself such that F̃1(Ũ) = Ũ ′.

Observe now that any self-homeomorphism f of (D,Q) transforms α into
a spanning arc f(α) on (D,Q), and the orientation of α induces an orientation
of f(α) via f . It is clear from the definitions that the induced homomorphism
f̃∗ : H → H sends the set of α-classes with respect to the disks {Ui}i onto the
set of f(α)-classes with respect to the disks {f(Ui)}i. Applying this to f = F1

and observing that f(α) = α, f(Ui) = U ′
i for all i, and f̃∗ = id (because

f̃ = F̃1 is isotopic—and hence homotopic—to F̃0 = id), we conclude that the
set of α-classes with respect to the disks {Ui}n

i=1 coincides with the set of
α-classes with respect to the disks {U ′

i}n
i=1. The general case is obtained by

transitivity using a third system of disks {U ′′
i }n

i=1 such that U ′′
i ⊂ Ui ∩U ′

i for
all i = 1, . . . , n. ��
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3.7.2 Surfaces associated with noodles

For a noodle N on D, the set

F = FN = {{x, y} ∈ C |x, y ∈ N◦ = N − ∂N}

is a surface in C◦ = C − ∂C homeomorphic to the open triangle

{(x1, x2) ∈ (0, 1)2 |x1 < x2} .

The surface F is therefore homeomorphic to the plane R2. Since F is con-
tractible, it lifts to a surface

F̃ = F̃N ⊂ C̃◦ = C̃ − ∂C̃

also homeomorphic to R2. It is clear that C̃◦ is an open oriented smooth
four-dimensional manifold and F̃ is a smooth two-dimensional submanifold.

Lemma 3.24. The surface F̃ is a closed subset of C̃◦.

Proof. Pick an arbitrary point a ∈ C̃◦ − F̃ . Let {x, y} ∈ C be the projection
of a to C, where x, y are distinct points of Σ. The inclusion a ∈ C̃◦ implies that
x, y ∈ Σ◦. If x /∈ N or y /∈ N , then x and y have disjoint open neighborhoods
Ux, Uy ⊂ Σ◦, respectively, such that at least one of them does not meet N .
(Here we use the obvious fact that N is a closed subset of Σ.) Then Ux × Uy

is a neighborhood of the point {x, y} in C◦ − F and the preimage of Ux × Uy

in C̃◦ is an open neighborhood of a contained in C̃◦ − F̃ . If x, y ∈ N , then x
and y have disjoint open disk neighborhoods Ux, Uy ⊂ Σ◦, respectively, such
that both Ux and Uy meet N along an open interval. Then Ux×Uy is an open
neighborhood of the point {x, y} ∈ F homeomorphic to an open 4-ball and
meeting F along an open 2-disk. The preimage of this neighborhood in C̃◦
consists of disjoint open 4-balls. One of them meets F̃ along an open 2-disk
and the others do not meet F̃ . The point a ∈ C̃◦− F̃ lying over {x, y} ∈ F has
to lie in one of those open 4-balls that do not meet F̃ . We conclude that in
all cases, the point a has an open neighborhood in C̃◦ disjoint from F̃ . Thus,
the set C̃◦ − F̃ is open in C̃◦ and the set F̃ is closed in C̃◦. ��

Note one important consequence of this lemma: the intersection of F̃ with
any compact subset of C̃◦ is compact. We use this property to define an integral
intersection number of F̃ with an arbitrary element of H as follows. We first
orient F : at a point {x, y} = {y, x} ∈ F such that x ∈ N◦ is closer to the
starting endpoint on N than y ∈ N◦, the orientation of F is the product of
the orientations of N at x and y in this order. This orientation of F lifts to F̃
in the obvious way so that F̃ becomes oriented. Since, as was observed in
Section 3.5.4, the inclusion C̃◦ ↪→ C̃ is a homotopy equivalence,

H = H2(C̃;Z) = H2(C̃◦;Z) .
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The rest of the definition is quite standard. To define the intersection number
F̃ · v ∈ Z for v ∈ H, we pick a 2-cycle V in C̃◦ representing v. By the remarks
above, V meets F̃ ≈ R2 along a compact subset, which necessarily lies inside
a closed 2-disk in F̃ . We can slightly deform V in C̃◦ to make it transversal to
this disk, keeping V disjoint from the rest of F̃ . The set F̃ ∩V is then discrete
and compact. It is therefore finite, so that one can count its points with
signs ± determined by the orientation of C̃, F̃ , and V . A standard argument
from the theory of homological intersections shows that the resulting integer
F̃ · v = F̃ · V depends only on v. Specifically, any two 2-cycles V1, V2 in C̃◦
representing v differ by the boundary of a 3-chain in C̃◦; such a chain can be
made transversal to F̃ and then its intersection with F̃ is a compact oriented
1-manifold. The fact that this 1-manifold has the same numbers of inputs and
outputs implies that F̃ · V1 = F̃ · V2.

In analogy with formula (3.17), we set for any v ∈ H,

〈F̃ , v〉 =
∑

k,�∈Z

(qkt�F̃ · v) qkt�. (3.30)

Here qkt�F̃ is the image of F̃ under the covering transformations qkt� of the
covering C̃ → C. Note that when k, � run over Z, the surface qkt�F̃ runs over
all possible lifts of F to C̃. A priori, the sum on the right-hand side of (3.30)
may be infinite; Lemma 3.25 below shows that it is finite.

The same computations as in the proof of Lemma 3.18 show that under
a different choice of the lift F̃ of F , the expression 〈F̃ , v〉 is multiplied by a
monomial in q±1, t±1.

Lemma 3.25. Let r → r∗ be the involution of the ring R = Z[q±1, t±1] send-
ing q to q and t to −t. Let N be a noodle on D and let α be an oriented
spanning arc on (D,Q). Then for any α-class v ∈ H,

〈F̃N , v〉 = −(q − 1)2(qt + 1) 〈N,α〉∗ , (3.31)

where 〈N,α〉 ∈ R is the algebraic intersection defined in Section 3.6.2.

Proof. Note that the left-hand side of (3.31) is defined up to multiplication by
monomials in q±1, t±1, while the right-hand side is defined up to multiplication
by monomials in q±1, t±2. The equality is understood in the sense that the
sides have a common representative. Then all representatives of the right-hand
side represent also the left-hand side.

Pushing the endpoints of N along ∂D, we can deform N into a noodle N ′

with starting point d1 and terminal point d2, where d1, d2 ∈ ∂D are the points
used in the construction of C̃. The surfaces FN and FN ′ differ only in a subset
of a cylinder neighborhood of ∂C in C. We can choose the lifts F̃N and F̃N ′ so
that they differ only in a subset of a cylinder neighborhood of ∂C̃ in C̃. Since v
can be represented by a 2-cycle in the complement of such a neighborhood,
〈F̃N , v〉 = 〈F̃N ′ , v〉. It follows from the definitions that 〈N,α〉 = 〈N ′, α〉. Thus,
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without loss of generality we can assume that the starting point of N is d1

and the terminal point of N is d2.
It is enough to prove (3.31) for a specific choice of F̃ = F̃N ⊂ C̃. Fix a lift

c̃ ∈ C̃ of c = {d1, d2} ∈ C. For F̃ , we take the lift of F = FN containing c̃.
We need to specify a lift S̃α ⊂ C̃ of the surface Sα defined in Section 3.7.1.

To this end, fix points z− ∈ α−, z ∈ α and fix paths θ−, θ in Σ = D−Q having
disjoint images and leading from d1 to z− and from d2 to z, respectively.
Consider the path {θ−, θ} in C leading from c = {d1, d2} to {z−, z}. Let Θ be
the lift of this path to C̃ starting at c̃. The path Θ terminates at a point Θ(1)
lying over {z−, z} ∈ Sα. We choose for S̃α ⊂ C̃ the lift of Sα containing Θ(1).
The surfaces Sα and S̃α are oriented as in Section 3.7.1.

Assume that N intersects α (resp. α−) transversely in m points z1, . . . , zm

(resp. z−1 , . . . , z−m) as in Section 3.6.2. Then F intersects Sα transversely in the
points {z−i , zj}, where i, j = 1, . . . ,m. Therefore for any k, � ∈ Z, the image
of F̃ under the covering transformation qkt� meets S̃α transversely in at most
m2 points. Adding the corresponding intersection signs, we obtain an integer,
denoted by qkt�(F̃ ) · S̃α ∈ Z. Set

σ =
∑

k,�∈Z

(qkt�F̃ · S̃α) qkt� ∈ R .

The sum on the right-hand side is finite (it has at most m2 terms).
We compute σ as follows. Observe that for every pair i, j ∈ {1, . . . ,m},

there are unique integers ki,j , �i,j ∈ Z such that qki,j t�i,j F̃ intersects S̃α at a
point lying over {z−i , zj} ∈ C. Let εi,j = ±1 be the corresponding intersection
sign. Then

σ =
m∑

i=1

m∑

j=1

εi,j qki,j t�i,j .

We now express the right-hand side in terms of the loops ξi,j and other data
introduced in Section 3.6.2 (where d− = d1 and d = d2). We claim that

qki,j t�i,j = ϕ(ξi,j) ,

or in other words, that ki,j = w(ξi,j) and �i,j = u(ξi,j) for all i, j. Indeed,
we can lift ξi,j to a path Θβγ in C̃ beginning at c̃, where Θ, β, γ are lifts
of {θ−, θ}, {β−

i , βj}, {γ−
i,j, γi,j}, respectively. By the choice of S̃α, the point

Θ(1) = β(0) lies on S̃α. Then the path β lies entirely on S̃α. The path Θβγ,
being a lift of the loop ξi,j , ends at

γ(1) = ϕ(ξi,j)(c̃) ∈ ϕ(ξi,j)F̃N .

Hence, the lift γ of {γ−
i,j, γi,j} lies on ϕ(ξi,j)F̃ and the point γ(0) = β(1) lies

over {z−i , zj} and belongs to ϕ(ξi,j)F̃ ∩ S̃α. This proves our claim.
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We now claim that for all i, j,

εi,j = −(−1)u(ξi,j)εiεj ,

where εi (resp. εj) is the intersection sign of N and α at zi (resp. at zj).
Observe first that εi,j is the intersection sign of the surfaces FN and Sα at the
point {z−i , zj} ∈ C. Let x− (resp. x) be a positive tangent vector of N at z−i
(resp. at zj). Let y− (resp. y) be a positive tangent vector of α− at z−i (resp.
of α at zj). Assume for concreteness that the point z−i lies closer to d1 along N
than zj . Then the orientation of FN at the point {z−i , zj} is determined by
the pair of vectors (x−, x). The orientation of Sα at {z−i , zj} is determined
by the pair of vectors (y−, y). The distinguished orientation of C at {z−i , zj}
is equal to εiεj times the orientation of C determined by the following tuple
of four tangent vectors:

(x−, y−, x, y) .

Then
εi,j = −εiεj = −(−1)u(ξi,j)εiεj ,

since in the case at hand the paths γ−
i,j and γi,j end at d1 and d2, respectively,

and the integer u(ξi,j) is even. The case in which zj lies closer to d1 along N
than z−i is treated similarly.

To sum up,

σ =
m
∑

i=1

m
∑

j=1

−(−1)u(ξi,j)εiεj qw(ξi,j)tu(ξi,j) = −〈N,α〉∗ .

We can now prove (3.31). Let U1, . . . , Un and Ũ be as in Section 3.7.1.
Choosing the disks U1, . . . , Un small enough, we can assume that they do not
meet N . Then

qkt�F̃ ∩ Ũ = ∅ (3.32)

for all k, � ∈ Z. Recall that the α-class v is represented by a sum of a 2-chain
in Ũ and a 2-chain (q − 1)2(qt + 1)S. By (3.32), the 2-chain in Ũ does not
contribute to 〈F̃ , v〉, so that we can safely replace v by (q − 1)2(qt + 1)S. By
definition, S ⊂ S̃α is a subsurface of S̃α such that S̃α − S ⊂ Ũ . Therefore, a
similar argument shows that in the computation of 〈F̃ , v〉, we can replace S

by S̃α. Using the same computations as in the proof of Lemma 3.18, we obtain
the equalities

〈F̃ , v〉 = (q − 1)2(qt + 1)
∑

k,l∈Z

(qktlF̃ · S̃α) qktl

= (q − 1)2(qt + 1)σ

= −(q − 1)2(qt + 1) 〈N,α〉∗ . ��
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Lemma 3.26. If a self-homeomorphism f of (D,Q) represents an element of
the kernel Ker (Bn → AutR(H)), then 〈N, f(α)〉 = 〈N,α〉 for any noodle N
and any oriented spanning arc α on (D,Q).

Proof. As was already observed above, the homomorphism f̃∗ : H → H trans-
forms any α-class v ∈ H into an f(α)-class. Formula (3.31) and the assumption
f̃∗ = id imply that

−(q − 1)2(qt + 1) 〈N, f(α)〉∗ = 〈F̃ , f̃∗(v)〉
= 〈F̃ , v〉
= −(q − 1)2(qt + 1) 〈N,α〉∗ .

Therefore, 〈N, f(α)〉 = 〈N,α〉. ��

3.7.3 End of the proof

Pick an arbitrary element of the kernel Ker(Bn → AutR(H)). By Corol-
lary 1.34, it can be represented by a smooth self-homeomorphism f of the
disk D permuting the points of the set Q = {(1, 0), . . . , (n, 0)}. We shall prove
that f is isotopic to the identity map (rel Q ∪ ∂D). This will imply that

Ker (Bn → AutR(H)) = {1} .

We begin with the following assertion.

Claim 3.27. A spanning arc α on (D,Q) can be isotopped off a noodle N if
and only if f(α) can be isotopped off N .

To see this, orient α in an arbitrary way and endow f(α) with the orien-
tation induced via f . Lemma 3.26 implies that 〈N, f(α)〉 = 0 if and only if
〈N,α〉 = 0. Now, Lemma 3.21 implies that α can be isotopped off N if and
only if f(α) can be isotopped off N .

We shall apply Claim 3.27 to the following arcs and noodles. Denote by αi

the arc [i, i + 1] × 0 ⊂ D and denote by Ni the noodle shown in Figure 3.7,
where i = 1, . . . , n − 1. We shall assume that the noodles N1, . . . , Nn−1 are
pairwise disjoint (then their endpoints lie consecutively on ∂D). It is clear
that the arc αi is disjoint from the noodle Nj for all j �= i, i + 1. Claim 3.27
implies that the spanning arc f(αi) can be isotopped off Nj for j �= i, i + 1.
Therefore, the arc f(αi) may end only at the points (i, 0) and (i + 1, 0). In
other words, f(αi) has the same endpoints as αi for all i. For n ≥ 3, this
implies that f induces the identity permutation on Q. We assume that n ≥ 3,
postponing the cases n = 1 and n = 2 to the end of the proof.

As was just explained, we can isotop the spanning arc f(α1) off N3. This
isotopy extends to an isotopy of the homeomorphism f (rel Q ∪ ∂D), so that
we can assume from the very beginning that the arc f(α1) does not meet N3.
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Similarly, f(α1) can be isotopped off N4. By Section 3.6.1, this can be done by
a sequence of isotopies eliminating digons for the pair (N4, f(α1)). Since N4

and f(α1) do not meet N3, neither do the digons in question. Hence the
isotopies along these digons do not create intersections of f(α1) with N3.
Repeating this argument, we can ensure that f(α1) is disjoint from all the
noodles Ni with i = 3, 4, . . . , n − 1. Drawing these (disjoint) noodles, one
easily observes that all spanning arcs in their complement are isotopic to α1.
Then, applying one more isotopy, we can arrange that f(α1) = α1. Note that
all self-homeomorphisms of a closed interval keeping the endpoints fixed are
isotopic to the identity. Therefore we can further isotop f so that it becomes
the identity on α1. Applying a similar procedure to α2, we can ensure that
f |α2 = id while keeping f |α1 = id. Continuing in this way, we can isotop f so
that it preserves the interval [1, n]×{0} pointwise. Applying a further isotopy,
we can ensure that f = id in an open neighborhood of this interval in D. In
other words, f = id outside an annular neighborhood A of ∂D in Σ = D−Q.

We identify A with ∂D×[0, 1], so that ∂D ⊂ ∂A is identified with ∂D×{0}.
The (smooth) homeomorphism f |A : A → A must be isotopic (rel ∂A) to the
kth power of the Dehn twist about the circle ∂D×{1/2} ⊂ A for some k ∈ Z;
see, for instance, [Iva02, Lemma 4.1.A]. Thus, f is isotopic to gk, where g
is the self-homeomorphism of D acting as the Dehn twist on A and as the
identity on D −A.

We claim that the homeomorphism g acts on H via multiplication by the
monomial q2ntb for some b ∈ Z. (In fact, b = 2 but we shall not need it.)
Then f̃∗ : H → H is multiplication by q2nktbk. For k �= 0, this cannot be the
identity map: if it is, then

(q2nktbk − 1)H = 0

and the linearity of the function

H → Z[q±1, t±1], v → 〈F̃N , v〉

implies that this function is identically zero for any noodle N . By Lemma 3.25
we must have 〈N,α〉 = 0 for all N,α. The latter is not true, as was observed
before the statement of Lemma 3.20. This contradiction shows that k = 0, so
that f is isotopic to the identity.

To compute the action of g on H, consider the homeomorphism ĝ : C → C
defined by ĝ({x, y}) = {g(x), g(y)} for distinct x, y ∈ Σ; cf. Section 3.5.3.
Consider the lift g̃ : C̃ → C̃ of ĝ keeping fixed all points lying over the base
point c = {d1, d2} ∈ C. Since g = id outside A, we have ĝ = id outside the
set {(x, y) ∈ C |x ∈ A or y ∈ A}. Let Ã ⊂ C̃ be the preimage of this set under
the covering projection C̃ → C. The homeomorphism g̃ has to act on C̃ − Ã
as a covering transformation qatb for some a, b ∈ Z. The set Ã is a tubular
neighborhood of ∂C̃ in C̃ and therefore any 2-cycle in C̃ can be deformed into
C̃ − Ã. Hence, g̃ acts on H as multiplication by qatb.
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We now verify that a = 2n. For i = 1, 2, define a path δi : I → A by
δi(s) = di × s, where s ∈ I = [0, 1] and d1, d2 ∈ ∂D are the points used in the
construction of C̃. Set δ = {δ1, δ2} : I → C and let δ̃ : I → C̃ be an arbitrary
lift of δ. The point δ̃(0) lies over c and therefore g̃(δ̃(0)) = δ̃(0). The point δ̃(1)
lies in the closure of C̃ − Ã and therefore g̃(δ̃(1)) = qatbδ̃(1). Therefore the
path g̃ ◦ δ̃ : I → C̃ leads from δ̃(0) to qatbδ̃(1). Multiplying by δ̃−1, we obtain
the path δ̃−1 (g̃ ◦ δ̃) leading from δ̃(1) to qatbδ̃(1) in C̃. By the definition of
the covering C̃ → C, the integer a must be the value of the invariant w on the
loop obtained by projecting the latter path to C. This loop is nothing but

δ−1 (ĝ ◦ δ) = {δ−1
1 (g ◦ δ1), δ−1

2 (g ◦ δ2)} .

Hence,
a = w(δ−1 (ĝ ◦ δ)) = w(δ−1

1 (g ◦ δ1)) + w(δ−1
2 (g ◦ δ2)) .

It remains to observe that w(δ−1
i (g ◦ δi)) = n for i = 1, 2. This completes the

proof in the case n ≥ 3.
The remaining cases n = 1, 2 are easy. For n = 1, there is nothing to

prove, since B1 = {1}. The group B2 is infinite cyclic, and the square of a
generator is the Dehn twist as in the previous paragraphs, which, as we have
just explained, represents an element of infinite order in AutR(H).

Notes

The Burau representation ψn was introduced by Burau [Bur36]. A version of
Theorem 3.1 was first obtained by Squier [Squ84], who used a different, more
complicated, matrix in the role of Θn. The matrix Θn in Theorem 3.1 was
pointed out by Perron [Per06].

The representations ψ2, ψ3 were long known to be faithful; see [Bir74].
Moody [Moo91] first proved that ψn is nonfaithful for n ≥ 9. Long and Pa-
ton [LP93] extended Moody’s argument to n ≥ 6. Bigelow [Big99] proved
that ψ5 is nonfaithful. Our exposition in Section 3.2 follows the ideas and tech-
niques of these papers. The examples in Section 3.1.3 are taken from [Big99].
The proof of Lemma 3.5 was suggested to the authors by Nikolai Ivanov; see
also [PR00, Prop. 3.7]. Theorem 3.7 is folklore. The reducibility of ψn is well
known; see [Bir74].

The Alexander–Conway polynomial is a refinement, due to J. H. Conway,
of the Alexander polynomial of links; see [Lic97] for an exposition. Burau
computed the Alexander polynomial of the closure of a braid from its Burau
matrix; see [Bir74]. The refinement of this result to the Alexander–Conway
polynomial (Section 3.3 and the second claim of Theorem 3.13) is due to
V. Turaev (unpublished).

The Lawrence–Krammer–Bigelow representation is one of a family of rep-
resentations introduced by Lawrence [Law90]. Her work was inspired by a
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study of the Jones polynomial of links and was concerned with representa-
tions of Hecke algebras arising from the actions of braids on the homology of
configuration spaces. Theorem 3.15 was proven independently and from dif-
ferent viewpoints by Krammer [Kra02] and Bigelow [Big01] after Krammer
proved it for n = 4 in [Kra00]. The theory of noodles (Section 3.6) and the
proof of Theorem 3.15 given in Section 3.7 are due to Bigelow [Big01]. (In
loc. cit. Bigelow also uses the concept of a “fork” introduced by Krammer
in [Kra00]. Here we have avoided the use of forks.) For more on this and
related topics, see the surveys [Big02], [Tur02], [BB05].



4

Symmetric Groups and Iwahori–Hecke
Algebras

The study of the braid group Bn naturally leads to the so-called Iwahori–
Hecke algebra Hn. This algebra is a finite-dimensional quotient of the group
algebra of Bn depending on two parameters q and z. Our interest in the
Iwahori–Hecke algebras is due to their connections to braids and links and to
their beautiful representation theory discussed in the next chapter.

As an application of the theory of Iwahori–Hecke algebras, we introduce
the two-variable Jones–Conway polynomial of oriented links in Euclidean
3-space. This polynomial, known also as HOMFLY or HOMFLY-PT, extends
both the Alexander–Conway link polynomial introduced in the previous chap-
ter and the famous Jones link polynomial.

For q = 1 and z = 0, the Iwahori–Hecke algebra Hn is the group algebra of
the symmetric group Sn. For arbitrary values of the parameters, Hn shares
a number of properties of the group algebra of Sn. We begin therefore by
recalling basic properties of Sn.

4.1 The symmetric groups

The symmetric group Sn with n ≥ 1 is the group of all permutations of the
set {1, 2, . . . , n}. The group law of Sn is the composition of permutations,
and the neutral element is the identity permutation that fixes all elements
of {1, 2, . . . , n}.

4.1.1 A presentation of Sn by generators and relations

Fix an integer n ≥ 1. For integers i, j such that 1 ≤ i < j ≤ n, we denote
by τi,j the permutation exchanging i and j and leaving the other elements
of {1, 2, . . . , n} fixed. Such a permutation is called a transposition. There are
n(n− 1)/2 transpositions in Sn.

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 4,
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When j = i + 1, we write si for τi,j . The transpositions s1, . . . , sn−1 are
called simple transpositions . It is an easy exercise to check that the simple
transpositions satisfy the following relations for all i, j = 1, . . . , n− 1:

sisj = sjsi if |i− j| ≥ 2 ,

sisjsi = sjsisj if |i− j| = 1 ,

s2
i = 1 .

(4.1)

Let Gn denote the group with generators ṡ1, . . . , ṡn−1 and relations ob-
tained from (4.1) by replacing each si with ṡi. The group G1 is trivial. The
group G2 has a single generator ṡ1 subject to the unique relation ṡ2

1 = 1; it
follows that G2 is a cyclic group of order 2. For each n, there is a canon-
ical group homomorphism Gn → Gn+1 sending ṡi ∈ Gn to ṡi ∈ Gn+1 for
i = 1, . . . , n− 1.

Theorem 4.1. For all n ≥ 1, there is a group homomorphism

ϕ : Gn → Sn

such that ϕ(ṡi) = si for all i = 1, . . . , n − 1. The homomorphism ϕ is an
isomorphism.

The definition of Gn and relations (4.1) directly imply the existence (and
the uniqueness) of ϕ. The bijectivity of ϕ will be proved in Section 4.1.2 using
Lemmas 4.2 and 4.3 below.

Theorem 4.1 provides the standard presentation of the group Sn by gener-
ators and relations. As an application, we can define the sign of a permutation.
By definition of Gn, there is a unique group homomorphism χ : Gn → {±1}
such that χ(ṡi) = −1 for all i = 1, . . . , n − 1. The sign ε(w) ∈ {±1} of a
permutation w ∈ Sn is defined by

ε(w) = χ(ϕ−1(w)) .

Clearly, ε(si) = χ(ṡi) = −1 for all i = 1, . . . , n− 1.

Lemma 4.2. For any n ≥ 1, every element of Gn can be written as a word
in the letters ṡ1, . . . , ṡn−1 with ṡn−1 appearing at most once.

Proof. We proceed by induction on n. The statement holds for n = 1 and
n = 2 in view of the computation of G1 and G2 above. We suppose that the
lemma holds for n − 1 ≥ 2 and prove it for n. Since ṡ2

i = 1 or, equivalently,
ṡ−1

i = ṡi for all i = 1, . . . , n− 1, any element of Gn can be written as a word
in the letters ṡ1, . . . , ṡn−1.

Let w = w1ṡn−1w2ṡn−1w3 be an element of Gn in which ṡn−1 appears at
least twice. We may assume that ṡn−1 does not appear in w2. Hence w2 belongs
to the image of Gn−1 in Gn under the canonical homomorphism Gn−1 → Gn.
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By the induction hypothesis, we can write w2 as a word in ṡ1, . . . , ṡn−2 in
which ṡn−2 appears at most once.

If ṡn−2 does not appear in w2, then w2 is a word in ṡ1, . . . , ṡn−3. Now,
ṡn−1ṡi = ṡiṡn−1 for all i ≤ n− 3. Therefore, w2 commutes with ṡn−1 and

w = w1ṡn−1w2ṡn−1w3 = w1w2ṡ
2
n−1w3 = w1w2w3 .

We thus have reduced the number of occurrences of ṡn−1 in w by two.
If ṡn−2 appears exactly once in w2, then w2 = w′ṡn−2w

′′, where both w′

and w′′ are words in ṡ1, . . . , ṡn−3. Clearly, w′ and w′′ commute with ṡn−1 and

w = w1ṡn−1w2ṡn−1w3

= w1ṡn−1w
′ṡn−2w

′′ṡn−1w3

= w1w
′ṡn−1ṡn−2ṡn−1w

′′w3 .

Using the relation ṡn−1ṡn−2ṡn−1 = ṡn−2ṡn−1ṡn−2, we obtain

w = w1w
′ṡn−2ṡn−1ṡn−2w

′′w3 .

We have thus reduced the number of occurrences of ṡn−1 in w by one. Iterating
this procedure, we arrive at the desired conclusion. ��

We define the following subsets of Gn:

Σ̇1 = {1, ṡ1} ,

Σ̇2 = {1, ṡ2, ṡ2ṡ1} ,

Σ̇3 = {1, ṡ3, ṡ3ṡ2, ṡ3ṡ2ṡ1} ,

...
Σ̇n−1 = {1, ṡn−1 , ṡn−1ṡn−2, . . . , ṡn−1ṡn−2 · · · ṡ2ṡ1} .

Observe that card Σ̇i = i + 1 for all i = 1, . . . , n− 1.

Lemma 4.3. Any element of Gn can be written as a product w1w2 · · ·wn−1,
where wi ∈ Σ̇i for i = 1, . . . , n− 1.

Proof. We prove the lemma by induction on n. For n = 1 and n = 2, the
assertion is obvious. We suppose that it holds for n− 1 ≥ 2 and prove it
for n. By Lemma 4.2 it suffices to treat an element w ∈ Gn represented by
a word in ṡ1, . . . , ṡn−1 in which ṡn−1 appears exactly once: w = w1ṡn−1w2,
where w1 and w2 are words in ṡ1, . . . , ṡn−2. By the induction hypothesis,
w2 = u1u2 · · ·un−2, where ui ∈ Σ̇i for i = 1, . . . , n− 2. Since ṡn−1ṡi = ṡiṡn−1

for i ≤ n− 3, the elements of Σ̇i with i ≤ n− 3 commute with ṡn−1. Hence,

w = w1ṡn−1w2 = w1ṡn−1u1u2 · · ·un−2 = w1u1u2 · · ·un−3ṡn−1un−2 .

The element w1u1u2 · · ·un−3 comes from Gn−1 and can be expanded as
v1v2 · · · vn−2 with vi ∈ Σ̇i for i = 1, . . . , n− 2, whereas ṡn−1un−2 ∈ Σ̇n−1. ��
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4.1.2 Proof of Theorem 4.1

It is well known (and easy to prove) that the simple transpositions s1, . . . , sn−1

generate Sn. Therefore, the homomorphism ϕ : Gn → Sn is surjective. Hence,
cardGn ≥ cardSn = n!. On the other hand, consider the map ϕ′ sending
(w1, w2, . . . , wn−1) ∈ Σ̇1×Σ̇2×· · ·×Σ̇n−1 to w1w2 · · ·wn−1 ∈ Gn. Lemma 4.3
implies that ϕ′ is surjective. Hence,

cardGn ≤
n−1
∏

i=1

card Σ̇i = n! .

Therefore, cardGn = cardSn. Hence ϕ : Gn → Sn is a bijection. ��
As observed in this proof, the mapping ϕ′ : Σ̇1× Σ̇2× · · ·× Σ̇n−1 → Gn is

surjective. Since card(Gn) = n! = card(Σ̇1 × Σ̇2 × · · · × Σ̇n−1), this mapping
is a bijection. We thus obtain the following corollary of Theorem 4.1.

Corollary 4.4. Consider the following subsets of Sn:

Σ1 = {1, s1} ,

Σ2 = {1, s2, s2s1} ,

Σ3 = {1, s3, s3s2, s3s2s1} ,

...
Σn−1 = {1, sn−1 , sn−1sn−2, . . . , sn−1sn−2 · · · s2s1} .

For any w ∈ Sn, there is a unique element

(w1, w2, . . . , wn−1) ∈ Σ1 ×Σ2 × · · · ×Σn−1

such that w = w1w2 · · ·wn−1.

4.1.3 Reduced expressions and length of a permutation

Since s−1
i = si for i = 1, . . . , n − 1 and s1, . . . , sn−1 generate Sn, any per-

mutation w ∈ Sn can be expanded as a product w = si1si2 · · · sir , where
i1, i2, . . . , ir ∈ {1, 2, . . . , n − 1}. If r is minimal among all such expansions
of w, then we say that si1si2 · · · sir is a reduced expression for w and that
si1si2 · · · sir is a reduced word . A permutation may have many different re-
duced expressions.

We define the length λ(w) of a permutation w as the length r of a reduced
expression si1si2 · · · sir for w. Observe the following:

(a) If si1si2 · · · sir is a reduced expression for w, then

s−1
ir
· · · s−1

i2
s−1

i1
= sir · · · si2si1

is a reduced expression for w−1. It follows that λ(w−1) = λ(w) for any w.
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(b) If si1si2 . . . sir is a reduced word, then for all indices 1 ≤ p < q ≤ r the
truncated word sipsip+1 · · · siq is reduced.

(c) The neutral element 1 ∈ Sn is the only element of length zero, whereas
the simple transpositions are the only elements of length one.

(d) The sign of a permutation w can be computed from its length by

ε(w) = (−1)λ(w) . (4.2)

Lemma 4.5. For any w ∈ Sn and any si ∈ S,

λ(siw) = λ(w) ± 1 and λ(wsi) = λ(w) ± 1 .

Proof. By definition of the length, λ(siw) ≤ λ(w) + 1. Replacing in this for-
mula w by siw, we obtain

λ(w) = λ(s2
i w) ≤ λ(siw) + 1 .

Therefore, λ(w) − 1 ≤ λ(siw) ≤ λ(w) + 1. By (4.2), since

ε(siw) = ε(si) ε(w) = −ε(w) ,

we cannot have λ(siw) = λ(w). Therefore, λ(siw) = λ(w) ± 1.
We derive λ(wsi) = λ(w) ± 1 from the previous equality by replacing w

and wsi with their inverses. ��

4.1.4 Inversions and the exchange theorem

Given a permutation w ∈ Sn, we define an inversion of w to be a pair of
integers (i, j) such that 1 ≤ i < j ≤ n and w(i) > w(j). We write I(w) for
the set of transpositions τi,j of Sn such that (i, j) is an inversion of w. By
definition, the cardinality of I(w) is equal to the number of inversions of w.

It is clear that I(1) = ∅ and I(si) = {si} for i = 1, . . . , n − 1. Note also
that τi,j ∈ I(τi,j) for any transposition τi,j ∈ Sn.

In order to formulate the next lemma, recall the symmetric difference
AΔB of two subsets A and B of a given set G; it is defined by

AΔB = (A ∪B)− (A ∩B) .

The symmetric difference is an associative, commutative composition law on
the set of subsets of G, with the empty set as the neutral element. When G
is a group,

g−1(AΔB) g = (g−1Ag)Δ (g−1Bg) , (4.3)

for all g ∈ G, where for A ⊂ G and g ∈ G, we set

g−1Ag = {g−1ag | a ∈ A} .

In the proof of the next lemma, we use the following elementary fact:

AΔ {a} =

{

A ∪ {a} if a /∈ A ,

A− {a} if a ∈ A .
(4.4)
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Lemma 4.6. We have I(vw) = w−1I(v)w Δ I(w) for all v, w ∈ Sn.

Proof. We prove the lemma by induction on λ(w).
(a) If λ(w) = 0, then w = 1 and

w−1I(v)w Δ I(w) = I(v)Δ ∅ = I(v) = I(vw) .

(b) If λ(w) = 1, then w = sk for some k = 1, . . . , n− 1. We have to prove
that for all v ∈ Sn,

I(vsk) = s−1
k I(v)sk Δ {sk} . (4.5)

Let us first check that

I(vsk)− {sk} = s−1
k I(v)sk − {sk} . (4.6)

Indeed, a transposition τi,j belongs to I(vsk) − {sk} if and only if τi,j �= sk

and (vsk)(i) > (vsk)(j). Since sk(i) < sk(j), these conditions hold if and only
if τi,j �= sk and (sk(i), sk(j)) is an inversion of v. In turn, this is equivalent
to τi,j �= sk and skτi,js

−1
k = τsk(i),sk(j) ∈ I(v). The latter conditions are

equivalent to τi,j ∈ s−1
k I(v)sk − {sk}. This proves (4.6).

Next, observe that the inclusion sk ∈ I(v) holds if and only if sk �∈ I(vsk).
Indeed, v(k) > v(k + 1) is equivalent to

(vsk)(k) = v(k + 1) < v(k) = (vsk)(k + 1) .

We can now prove (4.5). If sk ∈ I(v), then by the observation above,
sk �∈ I(vsk). Therefore, by (4.6) and (4.4),

I(vsk) = I(vsk)− {sk}
= s−1

k I(v)sk − {sk}
= s−1

k I(v)sk Δ {sk} .

If sk �∈ I(v), then sk ∈ I(vsk) and, by (4.6) and (4.4),

I(vsk) =
(

I(vsk)− {sk}
)

∪ {sk}
=
(

s−1
k I(v)sk − {sk}

)

∪ {sk}
= s−1

k I(v)sk ∪ {sk}
= s−1

k I(v)sk Δ {sk} .

(c) If λ(w) > 1, then w = usk, where u ∈ Sn and λ(u) = λ(w) − 1. We
have

I(vw) = I(vusk)
= s−1

k I(vu)sk Δ {sk}
= s−1

k

(

u−1I(v)uΔ I(u)
)

sk Δ {sk}
=
(

s−1
k u−1I(v)usk Δ s−1

k I(u)sk

)

Δ {sk}
= s−1

k u−1I(v)usk Δ
(

s−1
k I(u)sk Δ {sk}

)

= w−1I(v)w Δ I(w) .
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The second and sixth equalities follow from the case λ(w) = 1, the third one
from the induction hypothesis, the fourth one from (4.3), and the fifth one
from the associativity of Δ. ��

Lemma 4.7. Let T =
{

τi,j | 1 ≤ i < j ≤ n
}

⊂ Sn. For any w ∈ Sn,
(a) λ(w) = card I(w);
(b) λ(w) ≤ n(n− 1)/2 and λ(w) = n(n− 1)/2 if and only if I(w) = T ;
(c) I(w) =

{

τ ∈ T | λ(wτ) < λ(w)
}

;
(d) λ(wsi) = λ(w) + 1 if and only if w(i) < w(i + 1).

Proof. (a) Let r = λ(w) and w = si1si2 · · · sir be a reduced expression for w.
A repeated application of Lemma 4.6 shows that

I(w) = I(si1si2 · · · sir ) = {t1}Δ · · · Δ {tr} ,

where t1, . . . , tr ∈ Sn are the transpositions defined by

tk = (sik+1 · · · sir )−1sik
(sik+1 · · · sir ) (4.7)

for 1 ≤ k ≤ r − 1. In particular, tr = sir . Observe that

wtk = si1si2 · · · sik−1sik
sik+1 · · · sir (sik+1 · · · sir )−1sik

(sik+1 · · · sir )
= si1 · · · sik−1 ŝik

sik+1 · · · sir ,
(4.8)

where the hat over sik
indicates that it has been removed. We claim that the

transpositions t1, . . . , tr are all distinct. Indeed, suppose that tp = tq for some
p < q. A computation similar to the one above shows that

w = wt2p = wtptq = si1 · · · ŝip · · · ŝiq · · · sir .

Then λ(w) < r, a contradiction. Consequently, I(w) is the disjoint union of
the singletons {t1}, . . . , {tr}, and I(w) has r = λ(w) elements.

(b) We have λ(w) = card I(w) ≤ cardT = n(n− 1)/2.
(c) We saw in the proof of (a) that I(w) = {t1, . . . , tr} and

wtk = si1 · · · ŝik
· · · sir

for all k = 1, . . . , r. Therefore, λ(wtk) < λ(w). This shows that λ(wτ) < λ(w)
for any τ ∈ I(w).

If τ ∈ T does not belong to I(w), then τ = τ−1ττ /∈ τ−1I(w)τ , whereas
τ ∈ I(τ). Therefore,

τ ∈ τ−1I(w)τ Δ I(τ) = I(wτ) .

By the previous argument,

λ(w) = λ(wτ2) < λ(wτ) .

(d) By Lemma 4.5 and (c), the equality λ(wsi) = λ(w) + 1 holds if and
only if si /∈ I(w), which is equivalent to w(i) < w(i + 1). ��
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We now state the so-called exchange theorem.

Theorem 4.8. Let si1 · · · sir be a reduced expression for w ∈ Sn, where
r = λ(w). If λ(wsj) < λ(w) for some j ∈ {1, . . . , n − 1}, then there is
k ∈ {1, . . . , r} such that wsj = si1 · · · ŝik

· · · sir . If λ(sjw) < λ(w) for some
j ∈ {1, . . . , n−1}, then there is k ∈ {1, . . . , r} such that sjw = si1 · · · ŝik

· · · sir .

Proof. We saw in the proof of Lemma 4.7 (a) that if t1, . . . , tr are the trans-
positions defined by (4.7), then I(w) = {t1, . . . , tr}. If λ(wsj) < λ(w), then
sj ∈ I(w) by Lemma 4.7 (c). Therefore, sj = tk for some k ∈ {1, . . . , r}.
By (4.8),

wsj = wtk = si1 · · · ŝik
· · · sir .

The second claim is deduced from the first one by replacing w with w−1. ��

Corollary 4.9. Let w ∈ Sn. If λ(wsj) < λ(w) for some j ∈ {1, . . . , n − 1},
then there is a reduced expression for w ending with sj. If λ(sjw) < λ(w) for
some j ∈ {1, . . . , n − 1}, then there is a reduced expression for w beginning
with sj.

This is a direct corollary of the previous theorem: if λ(wsj) < λ(w), then
wsj = si1 · · · ŝik

· · · sir and w = si1 · · · ŝik
· · · sirsj is a reduced expression

for w, since its length is equal to r = λ(w). The second claim is proven
similarly.

We conclude with a lemma needed in the proof of Lemma 4.18 below.

Lemma 4.10. If λ(siwsj) = λ(w) and λ(siw) = λ(wsj) for w ∈ Sn and
some i, j ∈ {1, . . . , n− 1}, then siw = wsj and siwsj = w.

Proof. (a) Suppose first that λ(siw) = λ(wsj) > λ(siwsj) = λ(w). By
Lemma 4.6,

I(siw) = w−1I(si)w Δ I(w) = {w−1siw}Δ I(w) .

Since λ(siwsj) < λ(siw) and λ(wsj) > λ(w), Lemma 4.7(c) implies that sj

belongs to I(siw), but not to I(w). Therefore sj = w−1siw; hence siw = wsj

and siwsj = ws2
j = w.

(b) If λ(siw) = λ(wsj) < λ(siwsj) = λ(w), then we apply a similar
argument, using that I(w) = I(si(siw)) = {w−1siw}Δ I(siw). ��

4.1.5 Equivalence of reduced expressions

For n ≥ 1, let Mn be the set of all finite sequences of integers from the set
{1, . . . , n−1}, including the empty sequence. We equip Mn with the associative
product given by concatenation. In this way, Mn becomes a monoid with the
empty sequence as the neutral element.

On Mn we consider the equivalence relation ∼ generated by the following
two families of relations:
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S1 (i, j)S2 ∼ S1 (j, i)S2 (4.9)

for all S1, S2 ∈ Mn and all i, j ∈ {1, . . . , n− 1} such that |i− j| ≥ 2, and

S1 (i, j, i)S2 ∼ S1 (j, i, j)S2 (4.10)

for all S1, S2 ∈ Mn and all i, j ∈ {1, . . . , n− 1} such that |i− j| = 1. Observe
that equivalent sequences have the same length. The equivalence relation ∼
has been devised so that

(i1, . . . , ik) ∼ (j1, . . . , jk) ∈ Mn =⇒ si1 · · · sik
= sj1 · · · sjk

∈ Sn .

Lemma 4.11. If si1 · · · sik
and sj1 · · · sjk

are reduced expressions for the same
permutation w ∈ Sn, then (i1, . . . , ik) ∼ (j1, . . . , jk) in Mn.

This lemma shows that for any w ∈ Sn, we can pass from one reduced
expression for w to any other reduced expression for w using only the relations

sisj = sjsi if |i− j| ≥ 2 ,

sisjsi = sjsisj if |i− j| = 1 .

Proof. We prove the lemma by induction on k. If k = 0, then w = 1 has only
one reduced expression. If k = 1, then w = si for some i and w has only one
reduced expression.

Assume that k ≥ 2. From the equality si1 · · · sik
= sj1 · · · sjk

we deduce
that si2 · · · sik

= si1sj1 · · · sjk
. Since si2 · · · sik

is reduced,

λ(si1sj1 · · · sjk
) = λ(si2 · · · sik

) = k − 1 < k = λ(sj1 · · · sjk
) .

Therefore, by Theorem 4.8, there is an integer p with 1 ≤ p ≤ k such that

si2 · · · sik
= si1sj1 · · · sjk

= sj1 · · · ŝjp · · · sjk
. (4.11)

Since si2 · · · sik
and sj1 · · · ŝjp · · · sjk

represent the same permutation and have
the same length k−1 and since si2 · · · sik

is reduced, sj1 · · · ŝjp · · · sjk
is also re-

duced. By the induction hypothesis, (i2, . . . , ik) ∼ (j1, . . . , ĵp, . . . , jk). Hence,

(i1, i2, . . . , ik) ∼ (i1, j1, . . . , ĵp, . . . , jk) . (4.12)

The word sj1 · · · sjp , being a part of the reduced word sj1 · · · sjk
, is reduced.

The second equality in (4.11) implies that si1sj1 · · · sjp−1 and sj1 · · · sjp are
equal in Sn. Since these words have the same length p and one of them is
reduced, so is the other one. If p < k, then we apply the induction hypothesis
to these words, obtaining (i1, j1, . . . , jp−1) ∼ (j1, . . . , jp). From this and (4.12),
we obtain

(i1, i2, . . . , ik) ∼ (i1, j1, . . . , ĵp, . . . , jk)
= (i1, j1, . . . , jp−1)(jp+1, . . . , jk)
∼ (j1, . . . , jp)(jp+1, . . . , jk)
= (j1, . . . , jp, jp+1, . . . , jk) ,

which was to be proven.
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If p = k, then (4.12) becomes (i1, i2, . . . , ik) ∼ (i1, j1, . . . , jk−1). This equi-
valence implies that

si1sj1 · · · sjk−1 = si1si2 · · · sik
= sj1sj2 · · · sjk

.

Summarizing our argument, we see that to prove the implication

si1 · · · sik
= sj1 · · · sjk

=⇒ (i1, . . . , ik) ∼ (j1, . . . , jk) ,

it is enough to prove the implication

si1sj1 · · · sjk−1 = sj1 · · · sjk
=⇒ (i1, j1, . . . , jk−1) ∼ (j1, . . . , jk) . (4.13)

We now start the argument all over again with the reduced expressions
sj1 · · · sjk

= si1sj1 · · · sjk−1 . Proceeding as above, we show that in order to
prove (4.13), it is enough to prove the implication

sj1si1sj1 · · · sjk−2 = si1sj1sj2 · · · sjk−1

=⇒ (j1, i1, j1, . . . , jk−2) ∼ (i1, j1, j2, . . . , jk−1) . (4.14)

We first prove (4.14) when |i1 − j1| ≥ 2. Then si1sj1 = sj1si1 and

si1sj1sj1 · · · sjk−2 = sj1si1sj1 · · · sjk−2 = si1sj1sj2 · · · sjk−1 .

Multiplying on the left by sj1si1 in Sn, we obtain

sj1 · · · sjk−2 = sj2 · · · sjk−1 .

Both sides are reduced expressions of length k− 2. By the induction assump-
tion, (j1, . . . , jk−2) ∼ (j2, . . . , jk−1). From this and (4.9), we obtain

(j1, i1, j1, . . . , jk−2) = (j1, i1)(j1, . . . , jk−2)
∼ (i1, j1)(j2, . . . , jk−1)
= (i1, j1, j2, . . . , jk−1) ,

which was to be proven.
If |i1 − j1| = 1, then we proceed again as above and reduce the proof

of (4.14) to showing that the equality

si1sj1si1sj1 · · · sjk−3 = sj1si1sj1sj2 · · · sjk−2

implies that (i1, j1, i1, j1, . . . , jk−3) ∼ (j1, i1, j1, j2, . . . , jk−2). This and the
equality sj1si1sj1 = si1sj1si1 imply that

sj1si1sj1sj1 · · · sjk−3 = si1sj1si1sj1 · · · sjk−3 = sj1si1sj1sj2 · · · sjk−2 ,

which, after left multiplication by sj1si1sj1 , gives
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sj1 · · · sjk−3 = sj2 · · · sjk−2 .

Since both sides of this equality are reduced expressions of length k − 3, we
can apply the induction hypothesis and obtain (j1, . . . , jk−3) ∼ (j2, . . . , jk−2).
From this and (4.10),

(i1, j1, i1, j1, . . . , jk−3) = (i1, j1, i1)(j1, . . . , jk−3)
∼ (j1, i1, j1)(j2, . . . , jk−2)
= (j1, i1, j1, j2, . . . , jk−2) ,

which was to be proven. ��

The following theorem is useful for defining maps from the symmetric
groups to monoids.

Theorem 4.12. For any monoid M and any x1, . . . , xn−1 ∈ M satisfying the
relations

xixj = xjxi if |i− j| ≥ 2 ,

xixjxi = xjxixj if |i− j| = 1 ,

there is a set-theoretic map ρ : Sn → M defined by

ρ(w) = xi1 · · ·xik
,

for any w ∈ Sn and any reduced expression w = si1 · · · sik
.

Proof. Define a monoid homomorphism ρ′ : Mn → M by

ρ′(i1, . . . , ik) = xi1 · · ·xik

for all (i1, . . . , ik) ∈ Mn. We claim that ρ′(S) = ρ′(S′) for all S, S′ ∈ Mn such
that S ∼ S′. Indeed, by definition of the equivalence ∼, it suffices to prove
the claim when S = S1 (i, j)S2 (resp. S = S1 (i, j, i)S2) and S′ = S1 (j, i)S2

(resp. S′ = S1 (j, i, j)S2) for S1, S2 ∈ Mn and i, j ∈ {1, . . . , n− 1} such that
|i− j| ≥ 2 (resp. |i− j| = 1). By the assumptions of the theorem,

ρ′(S1 (i, j)S2) = ρ′(S1)xixj ρ′(S2)
= ρ′(S1)xjxi ρ

′(S2)
= ρ′(S1 (j, i)S2)

if |i− j| ≥ 2, and

ρ′(S1 (i, j, i)S2) = ρ′(S1)xixjxi ρ
′(S2)

= ρ′(S1)xjxixj ρ′(S2)
= ρ′(S1 (j, i, j)S2)

if |i− j| = 1.
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To prove the theorem, we need only check that ρ is well defined, i.e., if
si1 · · · sik

and sj1 · · · sjk
are reduced expressions for w ∈ Sn, then

xi1 · · ·xik
= xj1 · · ·xjk

.

By Lemma 4.11, (i1, . . . , ik) ∼ (j1, . . . , jk) in Mn. By the claim above,

xi1 · · ·xik
= ρ′(i1, . . . , ik) = ρ′(j1, . . . , jk) = xj1 · · ·xjk

. ��

4.1.6 The longest element of Sn

Let w0 ∈ Sn be the permutation i → n + 1− i for all i ∈ {1, . . . , n− 1}:

w0 =
(

1 2 . . . n− 1 n
n n− 1 . . . 2 1

)

. (4.15)

It is clear that w0 is the only permutation w ∈ Sn such that w(i) > w(j) for
all i, j ∈ {1, . . . , n− 1} with i < j. In other words, w = w0 if and only if the
set I(w) consists of all transpositions. By Lemma 4.7 (a), λ(w0) = n(n− 1)/2
and λ(w) < n(n − 1)/2 for w �= w0. Because of this, w0 is called the longest
element of Sn. We record two other properties of w0 (the second one will be
used in Section 6.5.2).

Lemma 4.13. If w ∈ Sn satisfies λ(wsi) < λ(w) for all i ∈ {1, . . . , n − 1},
then w = w0.

Proof. By Lemma 4.7 (c), si ∈ I(w) for all i. Then w(i) > w(i + 1) for all i.
The only permutation satisfying these inequalities is w0. ��
Lemma 4.14. For any u, v ∈ Sn such that uv = w0,

λ(u) + λ(v) = λ(w0) .

Proof. The lemma trivially holds for u = w0 and v = 1.
We claim that for any u ∈ Sn, u �= w0, there is a sequence si1 , . . . , sir of

simple transpositions such that usi1 · · · sir = w0 and λ(usi1 · · · sir ) = λ(u)+r.
Before we prove the claim, let us show that it implies the lemma for u and
v = u−1w0 = si1 · · · sir . Clearly, λ(v) ≤ r and

λ(w0) = λ(uv) ≤ λ(u) + λ(v) ≤ λ(u) + r = λ(usi1 · · · sir ) = λ(w0) .

Therefore, λ(u) + λ(v) = λ(w0).
Let us now establish the claim. Since u �= w0, by Lemma 4.13, there

is si1 such that λ(usi1) ≥ λ(u). By Lemma 4.5, we have λ(usi1 ) = λ(u)+1. If
λ(usi1) = λ(w0), then usi1 = w0, since w0 is the unique element of Sn of max-
imal length, and we are done. If λ(usi1 ) < λ(w0), then again by Lemma 4.13,
we can find si2 such that λ(usi1si2) ≥ λ(usi1). Then

λ(usi1si2) = λ(usi1) + 1 = λ(u) + 2 .

If λ(usi1si2) = λ(w0), then usi1si2 = w0 and we are done. If not, we continue
as above until we find the required sequence si1 , . . . , sir . ��
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Exercise 4.1.1. Using Theorem 4.8, prove that if λ(si1 · · · sir ) < r, then there
are p, q ∈ {1, . . . , r} such that p < q and

si1 · · · sir = si1 · · · ŝip · · · ŝiq · · · sir ,

where ŝip and ŝiq are removed on the right-hand side.

Exercise 4.1.2. Deduce Theorem 4.1 from Theorem 4.12, using the latter to
construct a left inverse Sn → Gn of ϕ : Gn → Sn.

Exercise 4.1.3. (a) Show that wk,� = sksk−1 · · · s� is a reduced word for each
pair (k, �) such that 1 ≤ � ≤ k ≤ n− 1.

(b) Prove that the word wk1,�1wk2,�2 · · ·wkr ,�r obtained by concatenating
words as in (a) is reduced for k1 < k2 < · · · < kr.

Exercise 4.1.4. For any integer k ≥ 1, set [k]q = 1 + q + · · · + qk−1 ∈ Z[q].
Show that ∑

w∈Sn

qλ(w) = [1]q [2]q [3]q · · · [n]q .

(Hint: Use Exercise 4.1.3 and Corollary 4.4.)

Exercise 4.1.5. Prove that for any w ∈ Sn and any i = 1, . . . , n − 1, the
equality λ(siw) = λ(w) + 1 holds if and only if w−1(i) < w−1(i + 1).

4.2 The Iwahori–Hecke algebras

4.2.1 Presentation by generators and relations

We fix an integer n ≥ 1 and a commutative ring R together with two elements
q, z ∈ R. We assume that q is invertible in R.

Definition 4.15. The Iwahori–Hecke algebra Hn = HR
n (q, z) is the unital

associative R-algebra generated by T1, . . . , Tn−1 subject to the relations

TiTj = TjTi (4.16)

for i, j = 1, 2, . . . , n− 1 such that |i− j| ≥ 2,

TiTi+1Ti = Ti+1TiTi+1 (4.17)

for i = 1, 2, . . . , n− 2, and
T 2

i = zTi + q1 (4.18)

for i = 1, . . . , n− 1. By definition, H1 = HR
1 (q, z) = R.

Any element of Hn is a linear combination of monomials Ti1Ti2 · · ·Tir ,
including the empty monomial, which we identify with the unit 1 of Hn.
By (4.18), each generator Ti is invertible in Hn with inverse

T−1
i = q−1(Ti − z1) . (4.19)

Therefore, each monomial Ti1Ti2 · · ·Tir is invertible in Hn.
By Theorem 4.1, for q = 1, z = 0, we have HR

n (q, z) ∼= R[Sn].
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4.2.2 The one-parameter Iwahori–Hecke algebras

Many authors consider the one-parameter Iwahori–Hecke algebra HR
n (q),

which by definition is HR
n (q, z) with z = q − 1. The algebra HR

n (q) is
the unital associative R-algebra generated by T1, . . . , Tn−1 subject to rela-
tions (4.16), (4.17), and

T 2
i = (q − 1)Ti + q1 . (4.20)

There is essentially no loss of generality in considering the one-parameter
Iwahori–Hecke algebras rather than the two-parameter ones. Indeed, the two-
parameter algebra HR

n (q, z) is isomorphic to an algebra of the form HR
n (q′)

possibly after extending the ring of scalars. To see this, consider the pre-
sentation of HR

n (q, z) by generators and relations exhibited in Section 4.2.1.
For i = 1, . . . , n − 1, set T ′

i = u−1Ti for some invertible element u. Clearly,
T ′

1, . . . , T
′
n−1 satisfy (4.16) and (4.17). From (4.18) we obtain

(T ′
i )

2 = u−1zT ′
i + u−2q

for i = 1, . . . , n−1. Let R′ be the smallest ring containing R and a root u of the
quadratic polynomial X2+zX−q: if R contains a root of this polynomial, then
R′ = R; otherwise, R′ is a quadratic extension of R. Then the map Ti → uT ′

i

(i = 1, . . . , n− 1) induces an algebra isomorphism HR′

n (q, z) ∼= HR′

n (u−2q).

4.2.3 Basis of Hn

We return to the two-parameter Iwahori–Hecke algebra Hn = HR
n (q, z). We

now show that Hn is a free R-module on a basis indexed by the elements of
the symmetric group Sn. Recall the notation from Section 4.1: the symbol si

denotes the simple transposition exchanging i and i + 1 for i = 1, . . . , n − 1,
and λ(w) denotes the length of w ∈ Sn.

Lemma 4.16. (a) For each w ∈ Sn, there is a unique Tw ∈ Hn such that
Tw = Ti1 · · ·Tir whenever w = si1 · · · sir is a reduced expression for w.

(b) For w ∈ Sn and any simple transposition si,

Ti Tw =

{

Tsiw if λ(siw) > λ(w) ,
q Tsiw + z Tw if λ(siw) < λ(w) .

Observe that if w = 1 ∈ Sn, then Tw = 1 ∈ Hn.

Proof. (a) This follows from (4.16), (4.17), and Theorem 4.12.
(b) Let si1 · · · sir be a reduced expression for w. If λ(siw) > λ(w), then

sisi1 · · · sir is a reduced expression for siw. Therefore, Tsiw = TiTw.
If λ(siw) < λ(w), then we may assume by Corollary 4.9 that si1 = si.

Then siw has si2 · · · sir as a reduced expression. Hence, by (4.18),
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TiTw = TiTi1 · · ·Tir = T 2
i Ti2 · · ·Tir

= z TiTi2 · · ·Tir + q Ti2 · · ·Tir

= z Tw + q Tsiw . ��

Theorem 4.17. The R-module Hn is free of rank n! with basis {Tw |w ∈ Sn}.

Proof. Let H be the R-submodule of Hn spanned by the vectors Tw (w ∈ Sn).
By Lemma 4.16 (b), H is a left ideal of Hn. Since 1 = T1 ∈ H , we have
H = Hn. To prove the theorem, it remains to show that the vectors Tw

(w ∈ Sn) are linearly independent over R. To this end, we construct an
action of Hn on a free R-module of rank n!.

Let V be the free R-module with a basis {ew}w∈Sn indexed by the elements
w ∈ Sn. We define 2n − 2 homomorphisms {Li,Ri : V → V }n−1

i=1 as follows.
For i = 1, . . . , n− 1, set

Li(ew) =

{

esiw if λ(siw) > λ(w) ,
qesiw + zew if λ(siw) < λ(w) ,

(4.21)

and

Ri(ew) =

{

ewsi if λ(wsi) > λ(w) ,
qewsi + zew if λ(wsi) < λ(w) .

(4.22)

To complete the proof of Theorem 4.17, we need the following two lemmas.

Lemma 4.18. We have LiRj = RjLi for all i, j = 1, . . . , n− 1.

Proof. It suffices to check that LiRj(ew) = RjLi(ew) for all w ∈ Sn. We
distinguish six cases depending on the lengths of w, siw, wsj , and siwsj . In
the following proof we use (4.21) and (4.22) repeatedly.

(i) If λ(w) < λ(siw) = λ(wsj) < λ(siwsj), then

LiRj(ew) = Li(ewsj ) = esiwsj = Rj(esiw) = RjLi(ew) .

(ii) If λ(w) > λ(siw) = λ(wsj) > λ(siwsj), then

LiRj(ew) = q Li(ewsj ) + z Li(ew)
= q(qesiwsj + zewsj) + z(qesiw + zew)
= q(qesiwsj + zesiw) + z(qewsj + zew)
= q Rj(esiw) + z Rj(ew)
= RjLi(ew) .

(iii) If λ(w) < λ(siw) = λ(wsj) > λ(siwsj), then we necessarily have
λ(siwsj) = λ(w). Applying Lemma 4.10, we obtain siw = wsj . Then

LiRj(ew) = Li(ewsj ) = qesiwsj + zewsj

= qesiwsj + zesiw

= Rj(esiw) = RjLi(ew) .
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(iv) The case λ(w) > λ(siw) = λ(wsj) < λ(siwsj) is treated like (iii).
(v) If λ(wsj) < λ(w) < λ(siw) > λ(siwsj) = λ(w), then

LiRj(ew) = q Li(ewsj ) + z Li(ew)
= qesiwsj + zesiw

= Rj(esiw) = RjLi(ew) .

(vi) The case λ(siw) < λ(w) < λ(wsj) > λ(siwsj) = λ(w) is treated
like (v). ��

Lemma 4.19. For any reduced expression si1si2 . . . sir representing w ∈ Sn,
set R = Rir . . .Ri2Ri1 ∈ EndR(V ) and L = Li1Li2 . . .Lir ∈ EndR(V ). Then

ew = R(e1) = L(e1) .

Proof. The equality ew = R(e1) is proved by induction on r = λ(w). For
r = 1, this equality follows from the definition of R = Ri1 . For r ≥ 2, set
w′ = si1si2 . . . sir−1 and R′ = Rir−1 . . .Ri2Ri1 and suppose that R′(e1) = ew′ .
Since λ(w) = λ(w′sir ) > λ(w′), by (4.22),

R(e1) = Rir (R′(e1)) = Rir (ew′) = ew′sir
= ew .

The identity ew = L(e1) is proved similarly. ��

Lemma 4.20. The endomorphisms L1, . . . ,Ln−1 of the R-module V satisfy
relations (4.16), (4.17), and (4.18) in which Ti is replaced by Li.

Proof. (a) If λ(siw) > λ(w), then

L2
i (ew) = Li(esiw) = qew + zesiw = z Li(ew) + qew .

If λ(siw) < λ(w), then

L2
i (ew) = Li(qesiw + zew) = z Li(ew) + qew .

(b) Let si1si2 . . . sir be a reduced word for w ∈ Sn and R = Rir . . .Ri2Ri1 .
For i and j such that |i− j| = 1,

LiLjLi(ew) = LiLjLiR(e1) = RLiLjLi(e1)
= R(esisjsi) = R(esjsisj )
= RLjLiLj(e1) = LjLiLjR(e1)
= LjLiLj(ew) .

We have used Lemma 4.18 for the second and sixth equalities and Lemma 4.19
for the first, third, fifth, and seventh equalities, whereas the fourth equality
follows from the relation sisjsi = sjsisj in Sn.

(c) The equalities LiLj = LjLi for |i − j| ≥ 2 are proved similarly using
the relations sisj = sjsi. ��
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By Lemma 4.20, there is an algebra homomorphism Hn → EndR(V ) send-
ing Ti to Li for i = 1, . . . , n− 1. In other words, Hn acts on V by

Ti v = Li(v)

for all v ∈ V and i = 1, . . . , n− 1. Lemma 4.19 implies that Tw e1 = ew for all
w ∈ Sn.

We can now prove the linear independence of the elements Tw (w ∈ Sn)
of Hn. Suppose that there is an additive relation

∑

w∈Sn

awTw = 0 ,

where aw ∈ R for all w ∈ Sn. Applying both sides to e1 ∈ V , we obtain

0 =
∑

w∈Sn

awTw e1 =
∑

w∈Sn

aw ew ∈ V .

Since the set {ew}w∈Sn is a basis of V , we have aw = 0 for all w. This
establishes the linear independence of the elements Tw ∈ Hn, and completes
the proof of Theorem 4.17. ��

4.2.4 Consequences of Theorem 4.17

We record two useful consequences of Theorem 4.17. Observe first that there
is an algebra homomorphism ι : Hn → Hn+1 sending each generator Ti of Hn

(i = 1, . . . , n − 1) to the generator Ti of Hn+1. The homomorphism ι turns
Hn+1 into a left and right Hn-module by ha = ι(h)a and ah = aι(h) for
h ∈ Hn, a ∈ Hn+1.

Proposition 4.21. The homomorphism ι : Hn → Hn+1 is injective. As a left
Hn-module, Hn+1 is free of rank n + 1 with basis

{1, Tn, TnTn−1, . . . , TnTn−1 · · ·T2T1} .

Proof. By definition of Tw, we have ι(Tw) = Tw for all w ∈ Sn, where on
the right-hand side w is considered as an element of Sn+1. By Theorem 4.17,
ι sends a basis of Hn to a subset of a basis of Hn+1. Therefore ι is injective.

As a consequence of Corollary 4.4, any w ∈ Sn+1 − Sn can be written
uniquely as w = w′snsn−1 · · · sk for some w′ ∈ Sn and an integer k such that
1 ≤ k ≤ n. We claim that

Tw = Tw′TnTn−1 · · ·Tk . (4.23)

Indeed, since w′, considered as an element of Sn+1, fixes n + 1, we have

w′(n) < w′(n + 1) = n + 1 .
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Therefore, by Lemma 4.7(d), λ(w′) < λ(w′sn). More generally, for each � such
that 1 ≤ � ≤ n,

(w′snsn−1 · · · s�+1)(�) = (w′snsn−1 · · · s�+2)(�) = · · ·
= (w′snsn−1)(�) = (w′sn)(�) = w′(�)
< n + 1 = w′(n + 1)
= (w′sn)(n) = (w′snsn−1)(n− 1)
= · · · = (w′snsn−1 · · · s�+1)(� + 1) .

Therefore, by Lemma 4.7 (d),

λ(w′snsn−1 · · · s�+1) < λ(w′snsn−1 · · · s�+1s�) .

It follows then by induction that if si1 · · · sir is an arbitrary reduced expres-
sion for w′ ∈ Sn, then si1 · · · sirsnsn−1 · · · sk is a reduced expression for w.
Therefore, by definition of Tw and Tw′ ,

Tw = Ti1 · · ·TirTnTn−1 · · ·Tk = Tw′TnTn−1 · · ·Tk ,

which proves (4.23).
Since the elements Tw with w ∈ Sn+1 span Hn+1 as an R-module,

(4.23) implies that the elements {1, Tn, Tn−1Tn−1, . . . , TnTn−1 · · ·T2T1} gen-
erate Hn+1 as a left Hn-module. Their linear independence over Hn follows
from the linear independence of the elements Tw (w ∈ Sn+1) over R. ��

Proposition 4.22. For any n ≥ 2, there is an isomorphism of R-modules

ϕ : Hn ⊕ (Hn ⊗Hn−1 Hn) → Hn+1

given for any a ∈ Hn and any finite family {bi, ci}i ⊂ Hn by

ϕ
(

a +
∑

i

bi ⊗ ci

)

= ι(a) +
∑

i

biTnci .

Proof. Since Hn−1 is generated by T1, . . . , Tn−2 and TiTn = TnTi for i ≤ n−2,

ϕ(bh⊗ c) = bhTnc = bTnhc = ϕ(b ⊗ hc)

for all h ∈ Hn−1, b, c ∈ Hn. This shows that ϕ is well defined. Clearly, ϕ is a
morphism of left Hn-modules.

By Proposition 4.21, Hn is a free left Hn−1-module with basis

{1, Tn−1, Tn−1Tn−2, . . . , Tn−1Tn−2 · · ·T2T1} .

Therefore, Hn ⊕ (Hn ⊗Hn−1 Hn) is a free left Hn-module with basis

{1} � {1⊗ 1, 1⊗ Tn−1, 1⊗ Tn−1Tn−2, . . . , 1⊗ Tn−1Tn−2 · · ·T2T1} .
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The map ϕ sends this basis to the set

{1} � {Tn, TnTn−1, TnTn−1Tn−2, . . . , TnTn−1Tn−2 · · ·T2T1} ,

which by Proposition 4.21 is a basis of the left Hn-module Hn+1. This implies
that ϕ is an isomorphism. ��

Exercise 4.2.1. Show that the assignment Ti → −qT−1
i (i = 1, . . . , n − 1)

defines an algebra automorphism of Hn.

Exercise 4.2.2. Prove that any algebra homomorphism Hn → R sends all Ti

(i = 1, . . . , n− 1) to one and the same root of the polynomial X2 − zX − q.

Exercise 4.2.3 (The Hecke algebra associated to GLn(Fq)). Let Fq be
a finite field of cardinality q and G = GLn(Fq). We denote by C(G) the
complex vector space of functions from G to C. For any g ∈ G, define

δg ∈ C(G)

to be the function vanishing everywhere except on g, where its value is 1.
Given f, f ′ ∈ C(G), let f ∗ f ′ be the element of C(G) given by

(f ∗ f ′)(g) =
∑

h∈G

f(h) f ′(h−1g)

for all g ∈ G. For f ∈ C(G), set

ε(f) =
∑

g∈G

f(g) ∈ C .

(a) Show that {δg}g∈G is a basis of C(G), the operation ∗ is associative,
and ε(f ∗ f ′) = ε(f) ε(f ′) for all f , f ′ ∈ C(G).

(b) Let B ⊂ G be the subgroup of upper triangular matrices. Define
C(B\G/B) to be the subspace of C(G) consisting of the functions f such
that f(bg) = f(gb) = f(g) for all g ∈ G, b ∈ B. Show that C(B\G/B) is
closed under ∗ and the following function is a unit (with respect to ∗):

δ0 =
1

card(B)

∑

g∈B

δg ∈ C(B\G/B) .

(c) For any permutation w ∈ Sn, consider the set BwB of all elements
of G of the form bwb′, where b, b′ ∈ B and w is identified with the cor-
responding permutation matrix. Define δw to be the function on G whose
value is 1/ card(B) on BwB and 0 elsewhere. Show that {δw}w∈Sn is a basis
of C(B\G/B). Hint: Use the Bruhat decomposition

G =
∐

w∈Sn

BwB .
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(d) Prove that for all w,w′ ∈ Sn and g ∈ G,

(

δw ∗ δw′

)

(g) =
1

card(B)2
card

(

BwB ∩ gB(w′)−1B
)

.

(e) Compute card(BsiB) for each simple transposition si ∈ Sn. Show that
the function δsi ∗ δsi is zero outside B ∪BsiB, and for any g ∈ B,

(

δsi ∗ δsi

)

(g) = q δ0 .

Using ε : C(B\G/B) → C, deduce that

δsi ∗ δsi = (q − 1) δsi + q δ0 .

(f) Prove that for all si and w ∈ Sn such that λ(siw) > λ(w),

δsi ∗ δw = δsiw .

(g) Conclude that the algebra C(B\G/B) is isomorphic to the Iwahori–
Hecke algebra HC

n (q).

4.3 The Ocneanu traces

As in the previous section, we fix a commutative ring R together with two
elements q, z ∈ R. We now assume that both q and z are invertible in R.
The aim of this section is to construct for all n ≥ 1 a trace τn : Hn → R
on Hn = HR

n (q, z). This trace will be instrumental in the construction of a
two-variable polynomial invariant of links in the next section.

We proceed by induction on n. For n = 1, we define τ1 : H1 = R → R to
be the identity map. For n = 2, we define τ2 : H2 → R on the basis {1, T1} by

τ2(1) =
1− q

z
and τ2(T1) = 1 . (4.24)

Suppose that τn : Hn → R is defined for some n ≥ 2. We define the trace
τn+1 : Hn+1 → R using the isomorphism ϕ : Hn ⊕ (Hn ⊗Hn−1 Hn) → Hn+1

of Proposition 4.22 as follows. Set

τn+1(ϕ(a)) =
1− q

z
τn(a)

and
τn+1(ϕ(b ⊗ c)) = τn(bc)

for all a, b, c ∈ Hn. Induction on n shows that τn : Hn → R is R-linear, that
is, τn(ra) = rτn(a) for all r ∈ R, a ∈ Hn. The linear form τn is called the
Ocneanu trace on Hn.
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Proposition 4.23. For all n ≥ 1 and all a, b ∈ Hn,

(i) τn(ab) = τn(ba),
(ii) τn+1(Tna) = τn+1(T−1

n a) = τn(a).

Proof. (i) We prove the relation τn(ab) = τn(ba) by induction on n. It holds
for n = 1 and n = 2 because H1 and H2 are commutative. We now suppose
that this relation holds for τn and prove it for τn+1. Since Hn+1 is generated
by T1, . . . , Tn and ϕ is onto, it is enough to show that

τn+1(ωTi) = τn+1(Ti ω)

for all ω in the image of ϕ and all i = 1, . . . , n.
(a) If ω = ϕ(a) for some a ∈ Hn, then by definition of τn+1,

τn+1(ωTi) =

{
1−q

z τn(aTi) if i < n ,

τn(a) if i = n ,

and

τn+1(Ti ω) =

{
1−q

z τn(Tia) if i < n ,

τn(a) if i = n .

The relation τn+1(ωTi) = τn+1(Ti ω) follows from the induction hypothesis.
(b) Suppose that ω = ϕ(a⊗ b) = aTnb for some a, b ∈ Hn. If i < n, then

τn+1(ωTi) = τn+1(aTnbTi) = τn(abTi)
= τn(Tiab) = τn+1(TiaTnb)
= τn+1(Ti ω) ,

where the third equality follows from the induction hypothesis.
When i = n, we have to check the equality

τn+1(aTnbTn) = τn+1(TnaTnb) .

There are four cases to consider.
(b1) If a and b belong to Hn−1, then they commute with Tn and the

relation is obvious.
(b2) Let a ∈ Hn−1 and b = b′Tn−1b

′′, where b′, b′′ ∈ Hn−1. Observe
that a, b′, and b′′ commute with Tn. We have

τn+1(aTnbTn) = τn+1(aTnb
′Tn−1b

′′Tn)
= τn+1(ab′TnTn−1Tnb

′′)
= τn+1(ab′Tn−1TnTn−1b

′′)
= τn(ab′T 2

n−1b
′′)

= zτn(ab′Tn−1b
′′) + qτn(ab′b′′)

= zτn(ab) + q
1− q

z
τn−1(ab′b′′) .
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On the other hand,

τn+1(TnaTnb) = τn+1(T 2
nab)

= zτn+1(Tnab) + qτn+1(ab)

= zτn(ab) + q
1− q

z
τn(ab′Tn−1b

′′)

= zτn(ab) + q
1− q

z
τn−1(ab′b′′) ,

which is the same expression.
(b3) The case b ∈ Hn−1 and a = a′Tn−1a

′′ with a′, a′′ ∈ Hn−1 is
treated similarly.

(b4) Suppose that a = a′Tn−1a
′′ and b = b′Tn−1b

′′ with a′, a′′, b′,
b′′ ∈ Hn−1. Then

τn+1(aTnbTn) = τn+1(aTnb
′Tn−1b

′′Tn)
= τn+1(ab′TnTn−1Tnb

′′)
= τn+1(ab′Tn−1TnTn−1b

′′)
= τn(ab′T 2

n−1b
′′)

= zτn(ab′Tn−1b
′′) + qτn(ab′b′′)

= zτn(ab) + qτn(a′Tn−1a
′′b′b′′)

= zτn(ab) + qτn−1(a′a′′b′b′′) .

On the other hand,

τn+1(TnaTnb) = τn+1(Tna
′Tn−1a

′′Tnb)
= τn+1(a′TnTn−1Tna

′′b)
= τn+1(a′Tn−1TnTn−1a

′′b)
= τn(a′T 2

n−1a
′′b)

= zτn(a′Tn−1a
′′b) + qτn(a′a′′b)

= zτn(ab) + qτn(a′a′′b′Tn−1b
′′)

= zτn(ab) + qτn−1(a′a′′b′b′′) ,

which proves the desired relation.
(ii) By definition of τn+1,

τn+1(Tna) = τn+1(ϕ(1⊗ a)) = τn(a)

for all a ∈ Hn. Since T−1
n = q−1Tn − q−1z1, we obtain

τn+1(T−1
n a) = q−1τn+1(Tna)− q−1zτn+1(a)

= q−1τn(a)− 1− q

z
q−1zτn(a)

= τn(a) . ��



4.4 The Jones–Conway polynomial 173

Exercise 4.3.1. Show that on the basis

{1, T1, T2, T1T2, T2T1, T1T2T1}

of H3 the trace τ3 : H3 → R is computed by

τ3(1) =
(1 − q)2

z2
, τ3(T1) = τ3(T2) =

1− q

z
,

τ3(T1T2) = τ3(T2T1) = 1 , τ3(T1T2T1) = z +
q(1− q)

z
.

4.4 The Jones–Conway polynomial

We now use the theory of Iwahori–Hecke algebras presented above to construct
a two-parameter polynomial invariant of oriented links in R3. Recall from
Section 2.5.2 the notion of a Markov function on the braid groups. We build
an explicit Markov function as follows. Let R be a commutative ring with
distinguished invertible elements q, z. Let Hn = HR

n (q, z) be the corresponding
Iwahori–Hecke algebra with n ≥ 1 and let H×

n be the group of invertible
elements of Hn. Consider the group homomorphism ωn : Bn → H×

n sending σi

to Ti for i = 1, . . . , n−1. Composing ωn with the Ocneanu trace τn : Hn → R
constructed in Section 4.3, we obtain a mapping τn ◦ ωn : Bn → R. The
following is an immediate consequence of Proposition 4.23.

Proposition 4.24. The family {τn ◦ωn : Bn → R}n≥1 is a Markov function.

We now state the main theorem of this section. In the statement we use
the notion of a Conway triple of links; see Section 3.3.

Theorem 4.25. For any oriented link L ⊂ R3 and any braid β ∈ Bn whose
closure is isotopic to L, the element

IL(q, z) = τn(ωn(β)) ∈ R

depends only on the isotopy class of L. For the trivial knot O,

IO(q, z) = 1 .

For any Conway triple (L+, L−, L0) of oriented links in R3,

IL+(q, z)− qIL−(q, z) = zIL0(q, z) .

Proof. The first assertion follows from the theory of Markov functions in Sec-
tion 2.5.2 and Proposition 4.24. The trivial knot can be realized as the closure
of the trivial braid 1 ∈ B1 = {1}. Therefore,

IO(q, z) = τ1(ω1(1)) = τ1(1) = 1 .
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Let us check that A = IL+(q, z) − qIL−(q, z) − zIL0(q, z) is zero for any
Conway triple of oriented links (L+, L−, L0). As observed in Section 3.4.2,
such a triple can be isotopped to a Conway triple (L′

+, L′
−, L′

0), where

L′
+ = ̂ασiβ , L′

− = ̂ασ−1
i β , L′

0 = α̂β

for some α, β ∈ Bn and 1 ≤ i ≤ n− 1. Using (4.18), we obtain

A = τn

(

ωn(ασiβ)
)

− qτn

(

ωn(ασ−1
i β)

)

− zτn

(

ωn(αβ)
)

= τn

(

ωn(α)Ti ωn(β)
)

− qτn

(

ωn(α)T−1
i ωn(β)

)

− zτn

(

ωn(α)ωn(β)
)

= τn

(

ωn(α)
(

Ti − qT−1
i − z1

)

ωn(β)
)

= 0 . ��

Corollary 4.26. There is an isotopy invariant L → PL(x, y) of oriented links
in R3 with values in Z[x, x−1, y, y−1] such that its value on the trivial knot O
is 1 and for any Conway triple of oriented links (L+, L−, L0),

xPL+(x, y)− x−1PL−(x, y) = yPL0(x, y)

(the skein relation). Such a link invariant L → PL(x, y) is unique.

Proof. Let R = Z[x, x−1, y, y−1] be the ring of Laurent polynomials in two
variables x, y with integer coefficients. Set PL(x, y) = IL(q, z) ∈ R, where
IL(q, z) is the link invariant provided by Theorem 4.25 for q = x−2 and
z = x−1y. Clearly, PO(x, y) = IO(q, z) = 1. If (L+, L−, L0) is a Conway
triple, then by Theorem 4.25,

xPL+(x, y)− x−1PL−(x, y)− yPL0(x, y)

= x
(

PL+(x, y)− x−2PL−(x, y)− x−1yPL0(x, y)
)

= x
(

IL+(q, z)− qIL−(q, z)− zIL0(q, z)
)

= 0 .

The uniqueness of PL(x, y) is proved in the same way as the uniqueness
of the Alexander–Conway polynomial in Theorem 3.13. ��

We call PL(x, y) the Jones–Conway polynomial of L. In the literature it
is also called the HOMFLY polynomial, the HOMFLY-PT polynomial , or the
two-variable Jones polynomial .

Observe that PL(x, y) extends the Alexander–Conway polynomial ∇(L)
introduced in Section 3.4.2. Namely, ∇(L) = PL(1, s−1 − s). This follows
directly from the uniqueness in Theorem 3.13.

Setting x = t−1 and y = t1/2 − t−1/2 in PL(x, y), one obtains the one-
variable Jones polynomial

VL(t) = PL(t−1, t1/2 − t−1/2) ∈ Z[t1/2, t−1/2]

satisfying the skein relation

t−1VL+(t)− tVL−(t) = (t1/2 − t−1/2)VL0(t) .
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Exercise 4.4.1. Define the mirror image L̃ of an oriented link L in R3 as the
image of L under the reflection in a plane in R3. Prove that

PL̃(x, y) = PL(x−1,−y) .

Exercise 4.4.2. Compute the polynomial PL for the knots and links shown
in Figure 2.1 and endowed with all possible orientations.

4.5 Semisimple algebras and modules

This section is a brief exposition of the theory of finite-dimensional semisimple
algebras over a field. Fix a field K. By an algebra we mean an associative
K-algebra with unit 1 �= 0. An algebra is finite-dimensional if it is finite-
dimensional as a vector space over K.

4.5.1 Semisimple modules

Let A be an algebra. By an A-module, we mean a left A-module, that is, a
K-vector space M together with a K-bilinear map A×M → M, (a,m) → am
such that a(bm) = (ab)m and 1m = m for all a, b ∈ A, and m ∈ M . The
map a → (m → am) (a ∈ A, m ∈ M) defines an algebra homomorphism
A → EndK(M) with values in the algebra of K-linear endomorphisms of M .
Conversely, any algebra homomorphism χ : A → EndK(M) gives rise to an
A-module structure on M by am = χ(a)(m) for a ∈ A and m ∈ M .

By a finite-dimensional A-module we mean an A-module that is finite-
dimensional as a vector space over K.

A homomorphism of A-modules f : M → M ′ is a K-linear map such
that f(am) = af(m) for all a ∈ A and m ∈ M . We write HomA(M,M ′) for
the vector space of all homomorphisms of A-modules M → M ′. We also set
EndA(M) = HomA(M,M).

If M ′ is a linear subspace of an A-module M such that am′ ∈ M ′ for all
a ∈ A and m′ ∈ M ′, then we say that M ′ is a A-submodule or, for short, a
submodule of M . In this case, the embedding M ′ ↪→ M is a homomorphism
of A-modules.

Definition 4.27. (a) An A-module M is simple if M has no A-submodules
except 0 and M .

(b) An A-module is semisimple if it is isomorphic to a direct sum of a
finite number of simple A-modules.

(c) An A-module M is completely reducible if for any A-submodule M ′

of M there is an A-submodule M ′′ such that M = M ′ ⊕M ′′.

Note that a simple A-module is semisimple, and if an A-module M is
completely reducible, then any short exact sequence of A-modules

0 → M ′ → M → M ′′ → 0

splits, i.e., M ∼= M ⊕M ′′.
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Proposition 4.28. Let M be a finite-dimensional A-module. The following
assertions are equivalent.

(i) M is semisimple.
(ii) M is completely reducible.
(iii) M =

∑

i∈I Mi is a sum of simple submodules Mi.

Proof. We first prove the implication (ii) ⇒ (iii). Assume that M is nonzero
and completely reducible. Since M is finite-dimensional over K, it must have
nonzero submodules of minimal dimension as vector spaces over K; such sub-
modules are necessarily simple. Consider the sum M ′ ⊂ M of all simple sub-
modules of M . This is a nonzero submodule of M . We are done if M ′ = M . If
not, since M is completely reducible, there is a nonzero submodule M ′′ ⊂ M
such that M = M ′⊕M ′′. A nonzero submodule of M ′′ of minimal dimension
is a simple submodule of M that is not in M ′. This contradicts the definition
of M ′. Therefore, M ′ = M .

We next prove the implication (iii) ⇒ (i). Suppose that M =
∑

i∈I Mi is
a sum of simple submodules Mi. Let I ′ ⊂ I be a maximal subset such that
Mi �= 0 for i ∈ I ′ and the sum

∑

i∈I′ Mi is direct. Such a subset I ′ exists
and is finite because M is finite-dimensional. Let M ′ =

∑

i∈I′ Mi. We claim
that M ′ = M , which implies that M is a direct sum of a finite number of
simple submodules. To prove the claim, it suffices to check that Mk ⊂ M ′

for any k ∈ I − I ′. Clearly, Mk ∩ M ′ is a submodule of Mk. Since Mk is
simple, either Mk ∩ M ′ = 0 or Mk ∩ M ′ = Mk. If Mk ∩ M ′ = 0, then the
sum

∑

i∈I′∪{k} Mi is direct. This contradicts the maximality of I ′. Therefore,
Mk ∩M ′ = Mk, which implies that Mk ⊂ M ′.

We finally prove the implication (i) ⇒ (ii). Suppose that M =
⊕

i∈I Mi

is a direct sum of simple submodules, where I is a finite indexing set. Let
M ′ be a submodule of M . Consider a maximal subset I ′ ⊂ I such that the
sum M ′ +

∑

i∈I′ Mi is direct. Reasoning analogous to that in the previous
paragraph shows that M ′ +

∑

i∈I′ Mi = M . Set M ′′ =
∑

i∈I′ Mi. Then
M ′ ⊕M ′′ = M , which proves that M is completely reducible. ��

Proposition 4.29. Let M be a finite-dimensional semisimple A-module. Any
A-submodule and any quotient A-module of M is semisimple.

Proof. Let M0 be a submodule of M . Let M ′
0 be the sum of all simple

submodules of M0. Since by Proposition 4.28, M is completely reducible,
M = M ′

0 ⊕ M ′′ for some submodule M ′′ of M . Together with M ′
0 ⊂ M0,

this implies that M0 = M ′
0 ⊕ (M0 ∩M ′′). If M0 ∩M ′′ �= 0, then this module

contains a nonzero simple submodule, which is then contained in M ′
0. This

is impossible. Therefore, M0 ∩ M ′′ = 0 and M0 = M ′
0 is a sum of simple

submodules. Using Proposition 4.28, we conclude that M0 is semisimple.
Consider the quotient of M by a submodule M ′. By Proposition 4.29,

there is a submodule M ′′ ⊂ M such that M = M ′ ⊕ M ′′. By the previous
paragraph, M ′′ is semisimple; hence so is M/M ′ ∼= M ′′. ��
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Recall that a division ring is a ring in which each nonzero element is
invertible. A left module over a division ring D is called a left D-vector space.
Any left D-vector space V has a basis, and two bases of V have the same
cardinality, so that the concept of the dimension dimD V of V makes sense
(these results can be proved in the same way as the corresponding ones for
vector spaces over a field).

The following proposition is called Schur’s lemma.

Proposition 4.30. (a) Let M and M ′ be simple A-modules. If M and M ′

are not isomorphic as A-modules, then HomA(M,M ′) = 0.
(b) The ring EndA(M) of A-module endomorphisms of a nonzero simple

A-module M is a division ring.
(c) If the ground field K is algebraically closed and M is a nonzero finite-

dimensional simple A-module, then dimK EndA(M) = 1.

Proof. (a) Let f ∈ HomA(M,M ′). The kernel Ker(f) of f is a submodule
of M . Since M is simple, Ker(f) = M or Ker(f) = 0. In the first case, f = 0.
In the second case, f is injective. Its image f(M) is a submodule of M ′. By
the simplicity of the latter, f(M) = M ′ or f(M) = 0. If f(M) = M ′, then
f is an isomorphism M → M ′. Thus, f = 0 or f is an isomorphism. The
latter contradicts the assumptions. Hence, f = 0.

(b) By the proof of (a), any nonzero f ∈ EndA(M) is bijective. It is easy
to check that the inverse f−1 of f is a homomorphism of A-modules. Hence,
f is invertible in EndA(M).

(c) For any scalar λ ∈ K, the endomorphism m → λm lies in EndA(M).
Conversely, let f ∈ EndA(M). Since K is algebraically closed and M is a
finite-dimensional K-vector space, f has a nonzero eigenspace for some eigen-
value λ ∈ K. The eigenspace Ker(f − λ idM ), being a nonzero submodule of
the simple module M , must be equal to M . Hence, f = λ idM . In conclusion,
EndA(M) ∼= K. ��

Corollary 4.31. If K is algebraically closed and M , M ′ are isomorphic
nonzero finite-dimensional simple A-modules, then dimK HomA(M,M ′) = 1.

Let Λ be the set of isomorphism classes of nonzero finite-dimensional sim-
ple A-modules. For each λ ∈ Λ, fix a simple A-module Vλ in the isomorphism
class λ. For any integer d ≥ 1, we denote by V d

λ the direct sum of d copies
of Vλ. We agree that V d

λ = 0 if d = 0. The following proposition, known as
the Krull–Schmidt theorem, asserts that the decomposition of a semisimple
module into a direct sum of simple modules is unique.

Proposition 4.32. If for some families {d(λ)}λ∈Λ, {e(λ)}λ∈Λ of nonnegative
integers, there is an A-module isomorphism

⊕

λ∈Λ

V
d(λ)
λ

∼=
⊕

λ∈Λ

V
e(λ)
λ ,

then d(λ) = e(λ) for all λ ∈ Λ.
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Proof. Pick λ0 ∈ Λ and set D = EndA(Vλ0 ). By Proposition 4.30 (a),

Hom
(⊕

λ∈Λ

V
d(λ)
λ , Vλ0

)

∼=
∏

λ∈Λ

HomA(V d(λ)
λ , Vλ0 )

∼=
∏

λ∈Λ

HomA(Vλ, Vλ0 )
d(λ)

∼= HomA(Vλ0 , Vλ0)
d(λ0)

∼= Dd(λ0) .

Similarly,
Hom

(⊕

λ∈Λ

V
e(λ)
λ , Vλ0

)

∼= De(λ0) .

The assumptions imply that Dd(λ0) ∼= De(λ0). By Proposition 4.30 (b), D is a
division ring. Therefore, taking the dimensions over D, we obtain

d(λ0) = dimD Dd(λ0) = dimD De(λ0) = e(λ0) . ��

4.5.2 Simple algebras

Definition 4.33. An algebra A is simple if A is finite-dimensional and the
only two-sided ideals of A are 0 and A.

We give a typical example of a simple algebra.

Proposition 4.34. Let V be a finite-dimensional left vector space over a di-
vision ring D. Then the algebra EndD(V ) is simple.

Proof. Pick a basis {v1, . . . , vd} of V . We have V = Dv1 ⊕ · · · ⊕ Dvd. For
i, j ∈ {1, . . . , d}, define fi,j ∈ A = EndD(V ) by fi,j(vk) = δj,k vi for all
k = 1, . . . , d (here δj,k is the Kronecker symbol whose value is 1 if j = k, and
0 otherwise). One checks easily that {fi,j}i,j∈{1,...,d} is a basis of A considered
as a vector space over D, and that fi,j ◦ fk,� = δj,k fi,� for all i, j, k, �.

Let I be a nonzero two-sided ideal of A and let f ∈ I be a nonzero element.
Write f =

∑

i,j ai,j fi,j , where ai,j ∈ D for all i, j ∈ {1, . . . , d}. Suppose that
ak,� �= 0 for some k, � ∈ {1, . . . , d}. Then

fk,k ◦ f ◦ f�,� =
d
∑

i, j=1

ai,j fk,k ◦ fi,j ◦ f�,� = ak,� fk,�

belongs to I. It follows that fk,� ∈ I. The relation fi,j = fi,k ◦fk,�◦f�,j implies
that fi,j ∈ I for all i, j = 1, . . . , d. Consequently, I = A. ��

The following is a converse to the previous proposition. It is a version of
Wedderburn’s theorem.
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Proposition 4.35. For any simple algebra A, there is a division ring D and
a finite-dimensional D-vector space V such that A ∼= EndD(V ).

Proof. Pick a left ideal V ⊂ A of A of minimal positive dimension over K
(possibly, V = A). The ideal V is an A-module, and by the minimality con-
dition, it is a simple module. By Proposition 4.30 (b), D = EndA(V ) is a
division ring. We conclude using the next lemma with I = V . ��

Lemma 4.36. Let A be an algebra having no two-sided ideals besides 0
and A. For any nonzero left ideal I ⊂ A, there is an algebra isomorphism
A ∼= EndD(I), where D = EndA(I) and I is viewed as a (left) D-module via
the action of D on I defined by (f, x) → f(x) for all f ∈ D and x ∈ I.

In this lemma we impose no conditions on the dimension of A, which may
be finite or infinite.

Proof. For a ∈ A, define La (resp. Ra) to be the left (resp. the right) multi-
plication by a in A. By definition,

La(b) = ab and Ra(b) = ba (4.25)

for all b ∈ A. We have

La ◦ Lb = Lab and Ra ◦ Rb = Rba (4.26)

for all a, b ∈ A. Since I is a left ideal of A, we have La(I) ⊂ I for all a ∈ A,
which implies that La ∈ EndK(I). Since

La(f(x)) = af(x) = f(ax) = f(La(x))

for all f ∈ D and x ∈ I, the endomorphism La belongs to EndD(I).
Let L : A → EndD(I) be the map sending a ∈ A to La ∈ EndD(I).

Since La ◦ Lb = Lab for all a, b ∈ A and L1 = idI , the map L is an algebra
homomorphism. Let us show that L is an isomorphism. The kernel of L is a
two-sided ideal of A. Since L �= 0, the assumptions of the lemma imply that
the kernel of L must be zero. This proves the injectivity of L.

The proof of the surjectivity of L is a little bit more complicated; it goes as
follows. If x ∈ I, then Rx(I) ⊂ I. We claim that Rx ∈ D = EndA(I). Indeed,
for all a ∈ A, x, y ∈ I,

aRx(y) = a(yx) = (ay)x = Rx(ay) .

If u ∈ EndD(I), then for all x, y ∈ I,

u(yx) = u(Rx(y)) = Rxu(y) = u(y)x .

In particular, for any a ∈ A, x, y ∈ I,

u(yax) = u(y(ax)) = u(y)ax .
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In other words, for all a ∈ A and y ∈ I,

u ◦ Lya = Lu(y)a . (4.27)

Now, IA is a nonzero two-sided ideal of A. By the assumptions of the lemma,
IA = A. Equation (4.27) then implies that u ◦ Lb ∈ L(A) ⊂ EndD(I) for
all u ∈ EndD(I) and b ∈ A. This shows that the image of L is a left ideal
of EndD(I). Since idI = L1 is in the image, the latter is equal to the whole
algebra EndD(I), and the map L is surjective. ��

4.5.3 Modules over a simple algebra

We now prove that any simple algebra has a unique (up to isomorphism)
nonzero simple module.

Proposition 4.37. Let A be a simple algebra. Any nonzero left ideal I of A of
minimal dimension is a simple A-module, and any nonzero simple A-module
is isomorphic to I.

Proof. Let I be a nonzero left ideal of A of minimal dimension. Any A-sub-
module I ′ of I is a left ideal of A. By the minimality hypothesis on I, we
must have I ′ = 0 or I ′ = I. Therefore, I is a simple A-module; it is finite-
dimensional, since A is finite-dimensional.

Let M be a nonzero simple A-module. Set

I0 = {a ∈ A | am = 0 for all m ∈ M} .

It is easy to check that I0 is a two-sided ideal of A and I0 �= A, since 1 ∈ A does
not annihilate M . Since A is simple, I0 = 0. We have IM �= 0; otherwise, we
would have I ⊂ I0 = 0. Therefore, there is m ∈ M such that Im �= 0. Consider
the homomorphism of A-modules I → M,x → xm. This homomorphism is
nonzero and connects two simple A-modules. By Proposition 4.30 (a), the
homomorphism I → M is an isomorphism. ��

Corollary 4.38. Every simple algebra has a nonzero simple module. It is
finite-dimensional and unique up to isomorphism.

Proof. Every finite-dimensional algebra has a nonzero left ideal of minimal
dimension. Therefore both claims follow directly from Proposition 4.37. ��

Proposition 4.39. Any finite-dimensional module over a simple algebra is
semisimple.

Proof. Let A be a simple algebra. Consider A as a (left) module over itself.
Let us first prove that this A-module is semisimple.

By Proposition 4.35, we may assume that A = EndD(V ) for some division
ring D and some finite-dimensional D-vector space V . Pick a basis {v1, . . . , vd}
of V over D. The map A = EndD(V ) → V d defined by
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f ∈ A → (f(v1), . . . , f(vd)) ∈ V d

is a homomorphism of A-modules. This homomorphism is clearly injective.
Since dimD A = d2 = dimD V d, it is an isomorphism. To establish that the
A-module A ∼= V d is a finite direct sum of simple A-modules, it suffices to
check that V is a simple A-module. Let V ′ ⊂ V be a nonzero A-submodule.
Take a nonzero vector v′ ∈ V ′. For each i = 1, . . . , d, we can construct fi ∈ A
such that fi(v′) = vi. It follows that Av′ = V , hence V ′ = V .

If M is an arbitrary finite-dimensional A-module, then M necessarily has
a finite number of generators over A; therefore, M is a quotient of the free
A-module Ar of finite rank r (this is the direct sum of r copies of A). We have
proved above that the A-module A is semisimple. Therefore, so is Ar. The
semisimplicity of M follows from Proposition 4.29. ��

We now state an important consequence of these propositions. Let M be
a simple module over a simple algebra A. By Corollary 4.38, M is finite-
dimensional. We know from Proposition 4.30 (b) that D = EndA(M) is a
division ring. Since M is finite-dimensional, so is D. The dimensions of A, M ,
and D over the ground field K are related as follows.

Corollary 4.40. With the notation above, A ∼= EndD(M) and

dimK A =
(dimK M)2

dimK D
.

Proof. The division ring D = EndA(M) acts on M , turning M into a left
D-vector space of finite dimension over K ⊂ D. Such a vector space has a
finite basis over D of cardinality, say d. Lemma 4.36 and Proposition 4.37
imply that A ∼= EndD(M) is isomorphic to the matrix algebra Md(D). Hence,

dimK A = dimK Md(D) = dimD Md(D) dimK D = d2 dimK D .

We conclude by observing that dimK M = dimD M dimK D = d dimK D. ��

4.5.4 The radical of a finite-dimensional algebra

Let A be a finite-dimensional algebra over K. Choosing a basis of A, we can
identify EndK(A) with the matrix algebra Mn(K), where n = dimK A. The
trace of matrices induces a linear form Tr : EndK(A) → K. It is easy to check
that Tr is independent of the chosen basis.

Using the endomorphisms Ra ∈ EndK(A) (a ∈ A) of (4.25), we define a
bilinear form 〈 , 〉 : A×A → K by

〈a, b〉 = Tr(Rb ◦ Ra) = Tr(Rab) (4.28)

for all a, b ∈ A. The bilinear form 〈 , 〉 is called the trace form of A.
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Lemma 4.41. For all a, b, c ∈ A,

〈a, b〉 = 〈b, a〉 and 〈ab, c〉 = 〈ab, c〉 = 〈b, ca〉 .

Proof. The equality 〈ab, c〉 = 〈a, bc〉 follows from the formula R(ab)c = Ra(bc).
The proof of the equality 〈a, b〉 = 〈b, a〉 relies on a well-known property of the
trace, namely Tr(f ◦ g) = Tr(g ◦ f) for all f, g ∈ EndK(A). We have

〈a, b〉 = Tr(Rb ◦ Ra) = Tr(Ra ◦ Rb) = 〈b, a〉 .

Finally, using the previous equalities,

〈a, bc〉 = 〈bc, a〉 = 〈b, ca〉 . ��

The kernel J(A) of the trace form, i.e., the vector space

J(A) =
{

a ∈ A | 〈a, b〉 = 0 for all b ∈ A
}

,

is called the radical of A.

Lemma 4.42. The radical J(A) is a two-sided ideal of A.

Proof. Let a ∈ A and b ∈ J(A). We have to check that ab, ba ∈ J(A). Using
Lemma 4.41, for all c ∈ A,

〈ab, c〉 = 〈b, ca〉 = 0 and 〈ba, c〉 = 〈b, ac〉 = 0 . ��

Let {Aλ}λ∈Λ be a family of algebras over K with units 1λ ∈ Aλ. The pro-
duct algebra A =

∏

λ∈Λ Aλ is the vector space
∏

λ∈Λ Aλ with coordinatewise
addition and multiplication

(aλ)λ + (bλ)λ = (aλ + bλ)λ and (aλ)λ · (bλ)λ = (aλbλ)λ

for all aλ, bλ ∈ Aλ with λ ∈ Λ. The vector (1λ)λ is the unit of A. For each
λ ∈ Λ, there is a natural inclusion Aλ ↪→ A sending a ∈ Aλ to the family
(aμ)μ∈Λ ∈ A, where aμ = a for μ = λ and aμ = 0 for μ �= λ. We shall
identify Aλ with its image in A. Under this identification, Aλ is a two-sided
ideal of A and AλAμ = 0 for λ �= μ.

If the algebras {Aλ}λ∈Λ are finite-dimensional and the indexing set Λ is
finite, then the algebra

∏

λ∈Λ Aλ is finite-dimensional and we can compute its
radical as follows.

Proposition 4.43. If A is the product of a finite family {Aλ}λ∈Λ of finite-
dimensional algebras, then

J(A) =
∏

λ∈Λ

J(Aλ) .
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Proof. Under the assumptions, A can be identified with the direct sum
⊕

λ∈Λ Aλ. It follows from the definition of the product in A that each right
multiplication Ra ∈ EndK(A), where a = (aλ)λ ∈ A, is the direct sum over
λ ∈ Λ of the right multiplications Raλ

. Therefore, the trace form 〈 , 〉 of A is
the sum of the trace forms 〈 , 〉λ of the algebras {Aλ}λ∈Λ, that is,

〈

(aλ)λ, (bλ)λ

〉

=
∑

λ∈Λ

〈aλ, bλ〉λ

for all (aλ)λ, (bλ)λ ∈ A. It follows that
∏

λ∈Λ J(Aλ) ⊂ J(A). We now prove
the converse inclusion. Let (aλ)λ ∈ J(A) and bμ ∈ Aμ for some μ ∈ Λ.
Considering bμ as an element of A via the natural inclusion Aμ ↪→ A, we
obtain

〈aμ, bμ〉μ =
〈

(aλ)λ, bμ

〉

= 0 .

Since this holds for all bμ ∈ Aμ, we have aμ ∈ J(Aμ). Therefore, (aλ)λ belongs
to

∏

λ∈Λ J(Aλ). ��

Recall that an ideal I of A is nilpotent if there is N ≥ 1 such that IN = 0,
i.e., if a1 · · · aN = 0 for all a1, . . . , aN ∈ I.

Proposition 4.44. Any nilpotent left ideal of a finite-dimensional algebra A
is contained in J(A).

Proof. Let I be a nilpotent left ideal of A. To prove that I ⊂ J(A), we have
to check that 〈a, b〉 = 0 for all a ∈ I and b ∈ A. Set c = ba ∈ I. The ideal I
being nilpotent, cN = 0 for some N ≥ 1. Hence, (Rc)N = RcN = 0. In other
words, Rc is a nilpotent endomorphism of A. Consequently, its trace vanishes.
Therefore, by Lemma 4.41 and formula (4.28),

〈a, b〉 = 〈b, a〉 = Tr(Rc) = 0 . ��

4.5.5 Semisimple algebras

Definition 4.45. An algebra A is semisimple if it is finite-dimensional and
J(A) = 0.

Equivalently, an algebra is semisimple if it is finite-dimensional and its
trace form is nondegenerate.

Proposition 4.46. A finite-dimensional algebra A is semisimple if and only if
for some basis {a1, . . . , an} of A,

det(〈ai, aj〉i,j=1,...,n) �= 0 .

Proof. The nondegeneracy of a symmetric bilinear form 〈 , 〉 on a finite-
dimensional vector space with basis {a1, . . . , an} is equivalent to the non-
vanishing of the determinant det(〈ai, aj〉i,j=1,...,n). ��
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Examples 4.47. (i) If G is a finite group and if the characteristic of K does
not divide cardG, then the group algebra K[G] is semisimple (this assertion
is known as Maschke’s theorem). Indeed, the set G is a basis of K[G], and one
checks easily that for all g, h ∈ G,

〈g, h〉 =

{

cardG if gh = 1 ,

0 if gh �= 1 .

From this one deduces that the trace form of K[G] is nondegenerate.
(ii) Let A =

∏

λ∈Λ Aλ be the product of a finite family of algebras. It is
clear that A is finite-dimensional if and only if all Aλ are finite-dimensional.
It follows from this fact and Proposition 4.43 that A is semisimple if and only
if all Aλ are semisimple.

(iii) All simple algebras over a field of characteristic zero are semisimple.
This follows from Proposition 4.35 and Exercise 4.5.5 below.

Warning. A simple algebra over a field K of characteristic p > 0 is
not necessarily semisimple. For instance, the algebra Mp(K) of p × p ma-
trices over K is simple by Proposition 4.34, but its trace form is zero; hence
J(Mp(K)) = Mp(K) (see Exercise 4.5.5).

4.5.6 A structure theorem for semisimple algebras

By a subalgebra of an algebra A over K, we mean a nonzero K-vector space
A′ ⊂ A such that ab ∈ A′ for all a, b ∈ A′ and there is an element 1′ ∈ A′

such that 1′a = a1′ = a for all a ∈ A′. Then 1′ �= 0 and the multiplication
in A restricted to A′ turns the latter into an algebra with unit 1′. Clearly,
1′ coincides with the unit 1 of A if and only if 1 ∈ A′.

Lemma 4.48. Let A be an algebra and {Aλ}λ∈Λ a finite family of subalgebras
of A such that A =

⊕

λ∈Λ Aλ and AλAμ = 0 for any distinct λ, μ ∈ Λ. Then
the following hold:

(a) Aλ is a two-sided ideal of A for any λ ∈ Λ.
(b) For each λ ∈ Λ, let 1λ ∈ Aλ be defined from the expansion

1 =
∑

λ∈Λ

1λ .

Then 1λ belongs to the center of A and is the unit of Aλ.
(c) The map f :

∏

λ∈Λ Aλ → A defined by

f
(

(aλ)λ

)

=
∑

λ∈Λ

aλ ∈ A

is an algebra isomorphism.
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Proof. (a) We have

AAμ =
⊕

λ∈Λ

AλAμ = AμAμ ⊂ Aμ .

The inclusion AμA ⊂ Aμ is proved in a similar way.
(b) If a ∈ A, then

∑

λ∈Λ

a1λ = a1 = a = 1a =
∑

λ∈Λ

1λa .

Since Aλ is a two-sided ideal of A, we have a1λ, 1λa ∈ Aλ. By the uniqueness
of expansions in a direct sum, a1λ = 1λa. Thus, 1λ is a central element of A.

Since AλAμ = 0 for λ �= μ, for each aμ ∈ Aμ,

aμ = 1aμ =
∑

λ∈Λ

1λaμ = 1μaμ .

Similarly, aμ = aμ1μ. Thus, 1μ is the unit of Aμ.
(c) It is clear that f is bijective. If a = (aλ)λ, b = (bλ)λ ∈

∏

λ∈Λ Aλ, then

f(a)f(b) =
(∑

λ∈Λ

aλ

)(∑

λ∈Λ

bλ

)

=
∑

λ∈Λ

aλbλ = f(ab) .

The second equality follows from the hypothesis AλAμ = 0 for λ �= μ. This
shows that f is an algebra isomorphism. ��

We now state the main structure theorem for semisimple algebras.

Theorem 4.49. For any semisimple algebra A, there is a finite family of
simple subalgebras {Aλ}λ∈Λ of A such that A =

⊕

λ∈Λ Aλ and AλAμ = 0 for
any distinct λ, μ ∈ Λ. Such a family of subalgebras is unique.

Proof. We proceed by induction on the dimension of A over K. If dimK A = 1,
then A is necessarily simple.

Assume that dimK A > 1 and that the theorem holds for all semisimple
algebras of dimension < dimK A. Let I ⊂ A be an arbitrary nonzero two-sided
ideal of minimal dimension. Clearly, I contains no other nonzero two-sided
ideals of A. Therefore, if I = A, then A is simple and the theorem is proved.
If I �= A, then set

I⊥ =
{

a ∈ A | 〈a, b〉 = 0 for all b ∈ I
}

,

where we use the trace form (4.28). It follows from Lemma 4.41 that I⊥ is a
two-sided ideal of A. Since the trace form is nondegenerate and 0 �= I �= A,
we have 0 �= I⊥ �= A and

dimK I + dimK I⊥ = dimK A .
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The intersection I ∩ I⊥ is a two-sided ideal of A contained in I. By the
minimality of I, we have either I ∩ I⊥ = I or I ∩ I⊥ = 0. The equality
I ∩ I⊥ = I is equivalent to the inclusion I ⊂ I⊥ and is equivalent to the
vanishing of the trace form on I. We claim that the latter is impossible.
Indeed, I being minimal, the two-sided ideal I2 ⊂ I is either 0 or I. The
equality I2 = 0 would imply that A contains a nonzero nilpotent left ideal,
which is impossible by Proposition 4.44. Therefore, I2 = I, so that any z ∈ I
expands as z =

∑

i xiyi, where xi, yi ∈ I. If the trace form vanishes on I,
then

〈1, z〉 =
∑

i

〈1, xiyi〉 =
∑

i

〈xi, yi〉 = 0 .

Therefore, 1 ∈ I⊥ and the two-sided ideal I⊥ is equal to A, a contradiction.
We have thus proved that I ∩ I⊥ = 0. Since dimK I +dimK I⊥ = dimK A,

we obtain A = I ⊕ I⊥. The product ideals II⊥ and I⊥I, being contained in
I ∩ I⊥ = 0, must be equal to 0. As in Lemma 4.48 (b), the projections of the
unit of A to I and I⊥ are the units of I and I⊥, respectively. Thus, I and I⊥

are subalgebras of A and A = I × I⊥.
Any two-sided ideal J ⊂ I of the algebra I is automatically a two-sided

ideal of A. Since I is minimal, J = 0 or J = I. Hence, the algebra I is simple.
The equality A = I×I⊥ and Proposition 4.43 imply that J(I⊥) ⊂ J(A). Since
J(A) vanishes, so does J(I⊥), which proves that the algebra I⊥ is semisimple.

Since dimK I⊥ < dimK A, we may apply the induction hypothesis to I⊥.
We obtain a finite family {Aλ}λ∈Λ′ of simple subalgebras of I⊥ such that

I⊥ =
⊕

λ∈Λ′

Aλ

and AλAμ = 0 for any distinct λ, μ ∈ Λ′. We obtain the desired family
{Aλ}λ∈Λ of simple subalgebras of A by setting Λ = Λ′ � {λ0} with Aλ0 = I.

In order to prove the uniqueness of the family {Aλ}λ∈Λ, consider an arbi-
trary nonzero two-sided ideal J of A. We have

J = JA =
⊕

λ∈Λ

JAλ .

Each product ideal JAλ is a two-sided ideal of Aλ. Since Aλ is a simple algebra,
JAλ is equal to 0 or to Aλ. Consequently, there is a nonempty set Λ0 ⊂ Λ
such that J =

⊕

λ∈Λ0
Aλ. This shows that J is a subalgebra of A. Moreover,

J is simple as an algebra if and only if Λ0 consists of a single element λ0, and
then J = Aλ0 . We conclude that the family {Aλ}λ∈Λ consists of all nonzero
two-sided ideals of A that are simple as algebras. This proves the uniqueness
claim of the theorem. ��

Lemma 4.48 and Theorem 4.49 have the following consequences.

Corollary 4.50. Any semisimple algebra is a product of simple algebras.
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Corollary 4.51. Let J be a two-sided ideal of a semisimple algebra A. Then J
and the quotient algebra A/J are semisimple algebras.

Proof. Consider the splitting A =
⊕

λ∈Λ Aλ of A as in Theorem 4.49. By
Example 4.47 (ii), each Aλ is semisimple. We have seen in the proof of Theo-
rem 4.49 that there is a set Λ0 ⊂ Λ such that J =

⊕

λ∈Λ0
Aλ. By Lemma 4.48,

J =
∏

λ∈Λ0

Aλ and A/J ∼=
∏

λ∈Λ−Λ0

Aλ .

We conclude by using Example 4.47 (ii), which tells us that finite products of
semisimple algebras are semisimple. ��

4.5.7 Modules over a semisimple algebra

Let us first determine the simple modules over a semisimple algebra.

Proposition 4.52. Let A be a semisimple algebra and {Aλ}λ∈Λ the family of
simple subalgebras of A provided by Theorem 4.49. For any nonzero simple
A-module M , there is a unique λ ∈ Λ such that M = AλM . Moreover, M is
a simple Aλ-module and AμM = 0 for all μ �= λ.

Proof. Let M be a nonzero simple A-module. Each AλM is an A-submodule
of M . We can write M as a sum of these submodules:

M = AM =
∑

λ∈Λ

AλM . (4.29)

Since M �= 0, there is λ ∈ Λ such that AλM �= 0. By the simplicity of M ,
we have AλM = M . We claim that AμM = 0 for μ �= λ. Indeed, m ∈ M
can be expanded as m =

∑

i aimi with ai ∈ Aλ and mi ∈ M . If a ∈ Aμ

with μ �= λ, then am =
∑

i aaimi = 0, since AμAλ = 0. We next claim that
the Aλ-module M is simple. Indeed, let N be a nonzero Aλ-submodule of M .
Letting Aμ with μ �= λ act on N as 0, we turn N into an A-submodule of M .
Since M is simple as an A-module, N = M . ��

Theorem 4.53. Any finite-dimensional module over a semisimple algebra is
semisimple.

Proof. Consider a finite-dimensional module M over a semisimple algebra A.
Expand A as a product of simple subalgebras {Aλ}λ∈Λ as in Theorem 4.49.
Each vector space AλM ⊂ M is a finite-dimensional module over Aλ. It follows
from Proposition 4.39 that AλM is a semisimple Aλ-module. Since a simple
Aλ-module is simple as an A-module (where all Aμ with μ �= λ act as 0), each
AλM is a semisimple A-module. Formula (4.29) implies that M is a sum of
simple submodules. By Proposition 4.28, the A-module M is semisimple. ��
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We now summarize the representation theory of a (finite-dimensional)
semisimple algebra A. Let {Aλ}λ∈Λ be the set of all nonzero two-sided ideals
of A that are simple as algebras. This set is finite. For each λ ∈ Λ, there is a
unique up to isomorphism simple Aλ-module Vλ. We view Vλ as an A-module
by AμVλ = 0 for μ �= λ. Then the A-modules {Vλ}λ∈Λ are simple, and eve-
ry simple A-module is isomorphic to exactly one of them. Moreover, for any
finite-dimensional A-module M , there are a unique function dM : Λ → N and
an isomorphism of A-modules

M ∼=
⊕

λ∈Λ

V
dM (λ)
λ . (4.30)

The function dM is called the dimension vector of M .
Let Dλ be the division ring EndA(Vλ). The following theorem is a conse-

quence of Corollary 4.40, Lemma 4.48, and Theorem 4.49.

Theorem 4.54. With the notation above,

A ∼=
∏

λ∈Λ

EndDλ
(Vλ)

and

dimK A =
∑

λ∈Λ

(dimK Vλ)2

dimK Dλ
.

Corollary 4.55. If the ground field K is algebraically closed, then the algebra
homomorphism

A→
∏

λ∈Λ

EndK(Vλ)

obtained as the product over Λ of the algebra homomorphisms A → EndK(Vλ)
induced by the action of A on Vλ is an isomorphism. Moreover,

dimK A =
∑

λ∈Λ

(dimK Vλ)2 .

Proof. Applying Proposition 4.30 (c) to the simple A-module Vλ, we ob-
tain dimK Dλ = 1. Thus, Dλ = K. The corollary is then a reformulation
of Theorem 4.54. ��

Exercise 4.5.1. Let A be a finite-dimensional algebra with radical J = J(A).

(a) Show that the quotient algebra A/J is semisimple.
(b) Prove that 1 + x is invertible in A for any x ∈ J .

Exercise 4.5.2. Let V be a finite-dimensional vector space over a field K.
Show that every K-linear automorphism of the algebra A = EndK(V ) is the
conjugation by an element of A. (Hint: An automorphism of A defines a new
A-module structure on V ; now use the fact that A has only one isomorphism
class of simple modules.)
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Exercise 4.5.3. Let A be a semisimple algebra and M a finite-dimensional
A-module. Show that there is an algebra isomorphism

EndA(M) ∼=
∏

λ∈Λ(A)

MdM (λ)

(

EndA(Vλ)
)

.

Exercise 4.5.4. Let K be an algebraically closed field and A a semisimple
K-algebra. Prove that there is an isomorphism of A-modules

A ∼=
⊕

λ∈Λ(A)

V dλ

λ ,

where dλ = dimK Vλ.

Exercise 4.5.5. Let D be a division ring. For 1 ≤ i, j ≤ n, let Ei,j ∈ Mn(D)
be the matrix whose entries are all zero except the (i, j) entry, which is 1.

(a) Verify that the trace of the right multiplication by Ei,j in the matrix
algebra Mn(D) is n if i = j and is 0 otherwise.

(b) Prove that the trace form of Mn(D) is given for all a, b ∈ Mn(D) by

〈a, b〉 = n Tr(ab) .

(c) Deduce that Mn(D) is semisimple if and only if n is invertible in D.

Exercise 4.5.6. Let K be a field of characteristic p > 0 and G the cyclic
group of order p. Show that (g − 1)p = 0 ∈ K[G] for all g ∈ G. Deduce
that the group algebra K[G] contains a nonzero nilpotent ideal and is not
semisimple.

Exercise 4.5.7. Let A be a finite-dimensional algebra over a field K of char-
acteristic zero. Prove that all elements of the radical of A are nilpotent. (An
element a of A is nilpotent if aN = 0 for some integer N ≥ 1.)

Solution. Set d = dimK A. For each a ∈ J(A) and n ≥ 1,

Tr((Ra)n) = Tr(Ran) = 〈a, an−1〉 = 0 .

If λ1, . . . , λd are the eigenvalues of Ra in an algebraic closure of K, the previous
equalities imply that

λn
1 + · · ·+ λn

d = 0

for all n ≥ 1. By Newton’s formulas (which require the ground field to be
of characteristic zero), all elementary symmetric polynomials in λ1, . . . , λd

vanish. This implies that the characteristic polynomial of Ra is a monomial
of degree d and hence (Ra)d = 0. Therefore, ad = (Ra)d(1) = 0.

Exercise 4.5.8. Let K be a field of characteristic zero. Prove that a finite-
dimensional K-algebra A that does not contain nonzero nilpotent left ideals
is semisimple.
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Solution. It suffices to prove that J = J(A) = 0. Assume that J �= 0 and
pick a nonzero left ideal I ⊂ J of minimal dimension over K. By assumption,
the ideal I is not nilpotent, and in particular, I2 �= 0. Hence, there is x ∈ I
such that Ix �= 0. By the minimality of I and the inclusion Ix ⊂ I, we have
Ix = I. Hence, there is e ∈ I such that ex = x. It follows that

x = ex = e(ex) = e2x .

We thus obtain (e− e2)x = 0. The left ideal

I ′ = {y ∈ I | yx = 0}

is a proper subideal of I, since Ix �= 0. By the minimality of I, we must
have I ′ = 0. Since e− e2 ∈ I ′, we have e = e2. Hence,

e = e2 = e3 = · · · .

Now, by Exercise 4.5.7, the element e ∈ I ⊂ J is nilpotent (this is where we
use the characteristic-zero assumption). From these two facts we deduce that
e = 0. Hence, x = ex = 0 and Ix = 0, which contradicts the choice of x.
Therefore, J = 0.

Exercise 4.5.9. An element e of an algebra A is an idempotent if e = e2.

(a) Show that if e ∈ A is an idempotent, then so is f = 1− e.
(b) Suppose that an idempotent e ∈ A is central, that is, e commutes with all

elements of A. Set f = 1− e. Prove that Ae and Af are two-sided ideals
of A, that viewed as algebras Ae and Af have e and f as respective units,
and that the map Ae×Af → A, (a, b) → a+ b is an algebra isomorphism.

(c) Show that the unique nonzero central idempotent of a simple algebra is
its unit.

Exercise 4.5.10. A nonzero central idempotent e of an algebra A is primitive
if it not expressible as a sum of two nonzero central idempotents whose product
is zero.

(a) Prove that if e is a primitive central idempotent of A, then there are no
algebras A1, A2 such that Ae ∼= A1 ×A2.

(b) Let A be a product of r < ∞ simple algebras. Show that there is a unique
set {e1, . . . , er} of primitive central idempotents of A such that eke� = 0
for all distinct k, � ∈ {1, . . . , r} and e1 + · · ·+ er = 1.

Exercise 4.5.11. Let A be a finite-dimensional algebra. Prove the following:

(a) The sum of two nilpotent left ideals of A is a nilpotent left ideal.
(b) Any nonnilpotent left ideal of A contains a nonzero idempotent.
(c) The sum J of all nilpotent left ideals of A is a two-sided ideal.
(d) If the ground field has characteristic zero, then J is the radical of A.
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4.6 Semisimplicity of the Iwahori–Hecke algebras

We return to the Iwahori–Hecke algebras HR
n (q) of Section 4.2.2, where n is a

positive integer, R is a commutative ring, and q is an invertible element of R.
Let us first analyze the behavior of HR

n (q) under a change of scalars. Let
f : R → S be a homomorphism of commutative rings. Given an integer
n ≥ 1 and an invertible element q ∈ R, we have the R-algebra HR

n (q) and the
S-algebra HS

n (q̃), where q̃ = f(q) ∈ S.
By Theorem 4.17, HR

n (q) is a free R-module of rank n!. We may therefore
identify EndR(HR

n (q)) with the matrix algebra Mn!(R). This allows us to
define the R-bilinear trace form of HR

n (q),

〈 , 〉R : HR
n (q)×HR

n (q) → R ,

by formula (4.28), where Rc ∈ EndR(HR
n (q)) is the right multiplication by c

for any c ∈ HR
n (q). Similarly, we define the S-bilinear trace form of HS

n (q̃),

〈 , 〉S : HS
n (q̃)×HS

n (q̃) → S .

Proposition 4.56. There is an isomorphism of S-algebras

ϕ : S ⊗R HR
n (q)

∼=−→ HS
n (q̃)

such that
〈

ϕ(s⊗ x), ϕ(s′ ⊗ x′)
〉

S
= ss′f

(

〈x, x′〉R
)

(4.31)

for all s, s′ ∈ S, x, x′ ∈ HR
n (q).

Proof. Set ϕ(s⊗ Ti) = s Ti ∈ HS
n (q̃) for s ∈ S and i = 1, . . . , n− 1. It is easy

to check that this defines a homomorphism of S-algebras

ϕ : S ⊗R HR
n (q) → HS

n (q̃) .

By Theorem 4.17, HR
n (q) is a free R-module with basis {Tw |w ∈ Sn}. Simi-

larly, HS
n (q̃) is a free S-module with the same basis. It is clear that ϕ sends the

basis {1⊗ Tw |w ∈ Sn} of S ⊗R HR
n (q) to the basis {Tw |w ∈ Sn} of HS

n (q̃).
Therefore, ϕ is an isomorphism.

By S-bilinearity, to prove (4.31), it is enough to check it for s = s′ = 1,
x = Tw, and x′ = Tw′ , where w,w′ ∈ Sn. We have

〈

ϕ(1⊗ Tw), ϕ(1⊗ Tw′)
〉

S
= 〈Tw, Tw′〉S
= Tr(RTwTw′ : HS

n (q̃) → HS
n (q̃))

= f
(

Tr(RTwTw′ : HR
n (q) → HR

n (q))
)

= f
(

〈Tw, Tw′〉R
)

.

Here we used the fact that the structure constants for the multiplication of
the basis elements Tw ∈ HS

n (q̃) are the images under f of the corresponding
structure constants of the basis elements Tw ∈ HR

n (q). ��
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Recall that an element of a ring is algebraic if it is the root of a nonzero
polynomial with coefficients in Z. We now state the main result of this section.

Theorem 4.57. Let K be a field whose characteristic does not divide n!. The
algebra HK

n (q) is semisimple for all q ∈ K − {0} except a finite number of
algebraic elements of K − {0, 1}.

Note without proof a more precise result by Wenzl [Wen88]: HK
n (q) is

semisimple provided q is not a root of unity of order d with 2 ≤ d ≤ n.

Proof. If q = 1, then HK
n (q) ∼= K[Sn] is semisimple by Example 4.47 (i).

Now suppose that q �= 1. By definition, HK
n (q) is semisimple if and only if

its trace form 〈 , 〉K is nondegenerate. Consider the basis {Tw}w∈Sn of HK
n (q).

By Proposition 4.46, HK
n (q) is semisimple if and only if

det(〈Tw, Tw′〉K)w,w′∈Sn �= 0 .

Let R = Z[q0, q
−1
0 ] be the ring of Laurent polynomials in one variable q0,

and let i : R → K be the ring homomorphism such that i(q0) = q. The
R-algebra HR

n (q0) carries a trace form 〈 , 〉R, which by Proposition 4.56 is
related to the trace form of HK

n (q) by

〈Tw, Tw′〉K = i
(

〈Tw, Tw′〉R
)

for all w, w′ ∈ Sn. Therefore,

det(〈Tw, Tw′〉K)w,w′∈Sn = i(D(q0)) ,

where
D(q0) = det(〈Tw, Tw′〉R)w,w′∈Sn ∈ R .

In other words, det(〈Tw, Tw′〉K)w,w′∈Sn ∈ K is the value of the Laurent poly-
nomial D(q0) at q0 = q.

We claim that D(q0) �= 0. To prove this claim, consider the ring homo-
morphism π : R → Q sending q0 to 1. By Proposition 4.56, there is an
isomorphism of Q-algebras Q⊗R HR

n (q0) ∼= HQ
n (1). This isomorphism sends

the basis {1 ⊗ Tw}w∈Sn of Q ⊗R HR
n (q0) to the basis {Tw}w∈Sn of HQ

n (1).
The trace form 〈 , 〉R of HR

n (q0) is related to the trace form 〈 , 〉Q of HQ
n (1)

by
〈Tw, Tw′〉Q = π

(

〈Tw, Tw′〉R
)

for all w, w′ ∈ Sn. Hence,

det(〈Tw, Tw′〉Q)w,w′∈Sn = π(D(q0)) .

Since HQ
n (1) ∼= Q[Sn] is semisimple, it follows from Proposition 4.46 that

det(〈Tw, Tw′〉Q)w,w′∈Sn �= 0. This shows that D(q0) �= 0.
In conclusion, the K-algebra HK

n (q) is semisimple if and only if the value of
the Laurent polynomial D(q0) at q0 = q is nonzero, i.e., if and only if q is not
a root of D(q0) in K. We finally observe that a nonzero Laurent polynomial
has finitely many roots and that its roots are algebraic. ��
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Exercise 4.6.1. Let R = Z[q0, q
−1
0 ]. Compute the trace form on HR

n (q0) for
n = 2 and show that the corresponding Laurent polynomial D(q0) (defined in
the previous proof) is equal to (q0 + 1)2.

Notes

The presentation (4.1) of the symmetric group is due to E. H. Moore [Moo97].
In Section 4.1 we followed [Mat99, Sect. 1.1]. The results of this section will
be extended to Coxeter groups in Section 6.6.

Following an idea of André Weil, Shimura [Shi59] defined an “algebra of
transformations” in connection with the Hecke operators of number theory.
This algebra is defined as the convolution algebra of B-bi-invariant functions
on a group G, where B is a subgroup of G such that [B : B∩xBx−1] < ∞ for
all x ∈ G. In [Iwa64] Iwahori called Shimura’s algebra of transformations a
“Hecke ring” and gave it a presentation by generators and relations in the case
that G is a Chevalley group over a finite field Fq and B is a Borel subgroup
of G.

The Iwahori–Hecke algebra of Definition 4.15 is Shimura’s algebra asso-
ciated to the Chevalley group G = GLn(Fq) (for details, see Exercise 4.2.3
above, [Bou68, Chap. 4, Sect. 2, Exercises 22–24], [GHJ89, Sect. 2.10], [GP00,
Sect. 8.4]).

In Sections 4.2–4.4 we have essentially followed [HKW86, Sects. 4–6].
The trace constructed in Section 4.3 is due to Ocneanu (see [FYHLMO85]
and [Jon87, Sect. 5]). The existence of the two-variable Jones–Conway polyno-
mial constructed in Section 4.4 was proved by Freyd, Yetter, Hoste, Lickorish,
Millett, Ocneanu, Przytycki, and Traczyk soon after Vaughan Jones discovered
the Jones polynomial in summer 1984; see [Jon85], [Jon87], [FYHLMO85],
[PT87]. The discovery of the Jones polynomial and its generalizations laid the
foundations for quantum topology; see [Tur94], [Kas95], [KRT97].

The content of Section 4.5 is standard and can be found in textbooks
such as Bourbaki [Bou58], Curtis and Reiner [CR62], Pierce [Pie88], Drozd
and Kirichenko [DK94], Benson [Ben98], Lang [Lan02]. Note that in positive
characteristic our definition of a semisimple algebra is more restrictive than
the definition given in these references. Lemma 4.36 is due to M. Rieffel.
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Representations of the Iwahori–Hecke Algebras

In this chapter we study the linear representations of the one-parameter
Iwahori–Hecke algebras of Section 4.2.2. Our aim is to classify their finite-
dimensional representations over an algebraically closed field of characteristic
zero in terms of partitions and Young diagrams. As an application, we prove
that the reduced Burau representation introduced in Section 3.3 is irreducible.
We end the chapter by a discussion of the Temperley–Lieb algebras.

5.1 The combinatorics of partitions and tableaux

We introduce the language of partitions, which is commonly used to describe
the irreducible representations of the symmetric groups. We shall use this
language in Section 5.3 to construct simple modules over the Iwahori–Hecke
algebras.

5.1.1 Partitions

A partition of a nonnegative integer n is a finite sequence λ = (λ1, λ2, . . . , λp)
of positive integers satisfying

λ1 ≥ λ2 ≥ · · · ≥ λp and |λ| = λ1 + λ2 + · · ·+ λp = n .

We write λ � n to indicate that λ is a partition of n. The integers λ1, λ2, . . . , λp

are called the parts of λ, and p is called the number of parts. By definition,
n = 0 has a unique partition, namely the empty sequence ∅.

Let λ = (λ1, λ2, . . . , λp) be a partition with p parts. Setting λk = 0 for all
k > p, we can identify λ with an infinite sequence (λk)k≥1 of integers indexed
by k = 1, 2, . . .. This sequence is eventually zero, in the sense that λk = 0 for
all sufficiently large k, and nonincreasing: λk ≥ λk+1 for all k. Any eventually
zero nonincreasing sequence (λk)k≥1 of integers arises in this way from the
partition λ = (λ1, λ2, . . . , λp) of n =

∑

k≥1 λk. Here p = max{k |λk �= 0}. In
particular, the empty partition ∅ corresponds to the constant zero sequence.

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 5,
c© Springer Science+Business Media, LLC 2008
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5.1.2 Diagrams

It is convenient to represent a partition λ = (λ1, λ2, . . . , λp) of n ≥ 0 by
its diagram D(λ) (also called Ferrers diagram or Young diagram), which is
defined as the set

D(λ) = {(r, s) | 1 ≤ r ≤ p and 1 ≤ s ≤ λr} .

In particular, the diagram of the empty partition is the empty set. It follows
from the definitions that D(λ) = D(λ′) if and only if λ = λ′.

We can represent D(λ) graphically as a left-justified collection of boxes in
the plane R2, each of them centered at the corresponding point (r, s) ∈ R2,
with λ1 boxes in the first row, λ2 boxes in the second row, and so on until
the last, pth, row, which contains λp boxes. The total number of boxes is
equal to |λ| = n. In the figures we use the convention that the r-axis points
downward and the s-axis points to the right. For instance, Figure 5.1 repre-
sents D(λ) for λ = (3, 2, 2, 1).

r

s

Fig. 5.1. The diagram of the partition (3, 2, 2, 1)

5.1.3 Operations on partitions

We define several operations on partitions needed for the sequel. Given two
partitions λ = (λk)k≥1 and λ′ = (λ′

k)k≥1 (possibly of different integers), we
define sequences of integers λ ∧ λ′ and λ ∨ λ′ by

(λ ∧ λ′)k = min(λk, λ
′
k) and (λ ∨ λ′)k = max(λk, λ

′
k)

for all k ≥ 1. These two sequences are nonincreasing and eventually zero, and
thus define partitions. It is clear that

D(λ ∧ λ′) = D(λ) ∩D(λ′) and D(λ ∨ λ′) = D(λ) ∪D(λ′) .

The conjugate of a partition λ � n is the partition λT � n whose diagram
is the set {(r, s) | (s, r) ∈ D(λ)}. In other words, the diagram of λT is obtained
from the diagram of λ by exchanging its rows and columns. For instance, if
λ = (3, 2, 2, 1), then λT = (4, 3, 1) (see Figure 5.2).
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Fig. 5.2. The diagram of the conjugate partition of (3, 2, 2, 1)

5.1.4 Tableaux

A tableau T consists of a partition λ � n together with a bijection

D(λ) → {1, 2, . . . , n} ,

called the labeling and usually denoted by the same letter T . The values of
the labeling are called the labels of the corresponding boxes. The partition λ
is called the shape of T . Figure 5.3 shows two tableaux of shape (3, 2, 2, 1).

1
2
3
8

5
6
4

7 1
2
3

5
6

7

8
4

Fig. 5.3. Two tableaux of shape (3, 2, 2, 1)

Composing the labeling of a tableau T having n labels with a permuta-
tion σ of {1, 2, . . . , n}, we obtain the labeling of another tableau σT of the
same shape. In particular, siT is the tableau T in which the labels i and i+1
are switched. It is clear that σ = σ′ ⇐⇒ σT = σ′T , and that two tableaux
of the same shape can be obtained from each other by a unique permutation
of the labels. Consequently, the number of tableaux of shape λ � n is equal
to n!.

5.1.5 Standard tableaux

A tableau T of shape λ � n is said to be standard if its labeling increases from
left to right in each row and from top to bottom in each column, i.e., if the
labeling T : D(λ) → {1, 2, . . . , n} satisfies

T (r, s) ≤ T (r′, s′)

for all (r, s), (r′, s) ∈ D(λ) such that r ≤ r′ and s ≤ s′. For instance, the right
tableau in Figure 5.3 is standard, whereas the left tableau is not (since the
label 4 sits below the label 6).

Let Tλ be the set of standard tableaux of shape λ and fλ = cardTλ.
Exchanging rows and columns yields a bijection between Tλ and TλT , where
λT is the conjugate partition of λ. Therefore, fλT

= fλ.
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Exercises 5.2.2 and 5.2.3 below provide explicit formulas for fλ for certain
partitions λ. A general formula for fλ, called the hook length formula, is given
in Exercise 5.2.6.

The following property of the numbers {fλ}λ will play a key role in the
classification of the simple modules over the Iwahori–Hecke algebras.

Theorem 5.1. For all n ≥ 1,
∑

λ�n

(fλ)2 = n! .

A proof of this theorem will be given in Section 5.2.4.

5.1.6 The axial distance

Let T be a tableau with n boxes. Suppose that the label i ∈ {1, . . . , n − 1}
sits in the box (r, s) of T and the label i + 1 sits in the box (r′, s′) of T . Set

dT (i) = (s′ − r′)− (s− r) ∈ Z . (5.1)

The integer s−r is called the axial distance of i in T (it is the algebraic distance
of the box (r, s) to the diagonal {(x, x) |x ∈ R} in R2). The integer dT (i) is
then the difference between the axial distances of i+1 and i. We record some
important properties of dT (i) in the following lemma.

Lemma 5.2. Let T be a tableau with n boxes and i, j ∈ {1, . . . , n− 1}.
(a) Then

dsjT (i) =

{

−dT (i) if j = i ,

dT (i) if |i− j| ≥ 2 .

(b) Assume that i �= n− 1 and set d = dT (i), e = dT (i + 1). Then

dsiT (i) = −dsisi+1T (i + 1) = dsisi+1siT (i + 1) = −d ,

dsi+1T (i + 1) = −dsi+1siT (i) = dsisi+1siT (i) = −e ,

dsiT (i + 1) = dsi+1T (i) = −dsisi+1T (i) = −dsi+1siT (i + 1) = d + e .

Proof. (a) Let (r, s) be the box of T with label i and (r′, s′) the box of T with
label i+1. Then (r, s) is the box of siT with label i+1 and (r′, s′) is the box
of siT with label i. It follows that

dsiT (i) = (s− r) − (s′ − r′) = −dT (i) .

If j = i, then dsjT (i) = dsiT (i) = −dT (i). If |i− j| ≥ 2, then T and sjT have
the same boxes with labels i and i + 1. Therefore,

dsjT (i) = dT (i) .
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(b) Suppose that the labels i, i + 1, i + 2 sit in the boxes (r, s), (r′, s′),
(r′′, s′′) of T , respectively. Then d = (s′−r′)−(s−r) and e = (s′′−r′′)−(s′−r′).
The equalities dsiT (i) = −d and dsi+1T (i + 1) = −e are consequences of (a).
Since the labels i + 1 and i + 2 sit in the boxes (r, s) and (r′′, s′′) of siT ,

dsiT (i + 1) = (s′′ − r′′)− (s− r)
=
(

(s′′ − r′′)− (s′ − r′)
)

+
(

(s′ − r′)− (s− r)
)

= d + e .

The labels i, i+1 sit in the boxes (r, s), (r′′, s′′) of si+1T , respectively. There-
fore,

dsi+1T (i) = (s′′ − r′′)− (s− r) = d + e .

The computations of dsisi+1T (j), dsi+1siT (j), and dsisi+1siT (j) with j = i, i+1
are similar. ��

When T is standard, we have the following additional information.

Lemma 5.3. Let T be a standard tableau with n boxes.
(a) If the labels i and i + 1 of T sit in the same row, then dT (i) = 1.
(b) If i and i + 1 sit in the same column, then dT (i) = −1.
(c) If i and i+1 sit neither in the same column nor in the same row, then

|dT (i)| ≥ 2.
(d) In all cases, |dT (i)| ≤ n− 1.

Proof. Let (r, s) and (r′, s′) be the boxes of T with labels i and i + 1, respec-
tively.

(a) If i and i+1 sit in the same row, then they necessarily occupy adjacent
boxes, so that r′ = r and s′ = s + 1; therefore, dT (i) = 1.

(b) If i and i + 1 sit in the same column, then r′ = r + 1 and s′ = s;
therefore, dT (i) = −1.

(c) Suppose that i and i+1 sit neither in the same column nor in the same
row. If r′ > r, then necessarily s′ < s. Otherwise, consider the label k sitting
in the box (r′, s) of T . Since T is standard, i < k < i+1, which is impossible.
Therefore,

dT (i) = (s′ − s)− (r′ − r) ≤ −1− 1 = −2 .

If r′ < r, then for the same reason as above, we must have s′ > s. In this case,

dT (i) = (s′ − s)− (r′ − r) ≥ 1 + 1 = 2 .

In both cases, |dT (i)| ≥ 2.
(d) The biggest value that |dT (i)| can reach occurs when one of the labels

i or i+1 sits in the lowest box of the first column and the other one sits in the
rightmost box of the first row. If the shape of T is the partition (λ1, λ2, . . . , λp)
of n, then

|dT (i)| ≤ (λ1 − 1) + (p− 1) ≤ λ1 − 1 + λ2 + · · ·+ λp = n− 1 . ��
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Exercise 5.1.1. (a) Define a binary relation ≤ on the set of all partitions by
λ ≤ λ′ if D(λ) ⊂ D(λ′). Show that ≤ is a partial order.

(b) Prove that for any partitions λ, λ′, we have
(i) λ ∧ λ′ ≤ λ ≤ λ ∨ λ′ and λ ∧ λ′ ≤ λ′ ≤ λ ∨ λ′,
(ii) if a partition μ satisfies μ ≤ λ and μ ≤ λ′, then μ ≤ λ ∧ λ′,
(iii) if a partition ν satisfies λ ≤ ν and λ′ ≤ ν, then λ ∨ λ′ ≤ ν.

5.2 The Young lattice

We provide the necessary background and then prove Theorem 5.1.

5.2.1 Corners

A corner of the diagram D(λ) of a partition λ (or simply, a corner of λ) is a
box centered on (r, s) ∈ D(λ) such that neither (r, s+1) nor (r+1, s) belongs
to D(λ). In Figure 5.4 the three corners of (3, 2, 2, 1) are marked.

It is clear that every nonempty partition has at least one corner, and
distinct corners sit in distinct rows and in distinct columns. Moreover, every
partition λ is determined by the set of its corners: the diagram of λ consists
of the corners and the boxes lying to the left of a corner or above a corner.

Fig. 5.4. The corners of the partition (3, 2, 2, 1)

If (r, s) is a corner of D(λ), then λr > λr+1. If we set

μk =

{

λk if k �= r ,

λk − 1 if k = r ,

then the sequence (μk)k is nonincreasing and thus defines a partition μ of n−1,
where n = |λ|. Clearly, D(μ) = D(λ) − {(r, s)}. We say that μ is obtained
from λ by removing a corner, which we symbolize by μ ↪→ λ. Figure 5.5 shows
the three diagrams obtained by removing a corner from D(3, 2, 2, 1).

Observe also that if λ � n and μ � (n − 1) satisfy D(μ) ⊂ D(λ), then
μ ↪→ λ, that is, μ is obtained from λ by removing a corner.

Lemma 5.4. Let λ, λ′ be distinct partitions of the same positive integer. Then
there is at most one partition μ such that μ ↪→ λ and μ ↪→ λ′, and there is at
most one partition ν such that λ ↪→ ν and λ′ ↪→ ν. Moreover, there is μ such
that μ ↪→ λ and μ ↪→ λ′ if and only if there is ν such that λ ↪→ ν and λ′ ↪→ ν.
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Fig. 5.5. The diagrams obtained by removing a corner of D(3, 2, 2, 1)

Proof. Let μ be such that μ ↪→ λ and μ ↪→ λ′. Then D(μ) ⊂ D(λ) ∩D(λ′)
and cardD(μ) = n − 1, where n = |λ| = |λ′| ≥ 1. Since λ �= λ′, we have
cardD(λ) ∩D(λ′) < n. It follows that

D(μ) = D(λ) ∩D(λ′) = D(λ ∧ λ′) ,

where λ ∧ λ′ is the partition defined in Section 5.1.3. Hence, μ = λ ∧ λ′ and
μ is necessarily unique. Note also that

cardD(λ ∨ λ′) = card
(

D(λ) ∪D(λ′)
)

= cardD(λ) + cardD(λ′)− card
(

D(λ) ∩D(λ′)
)

= 2n− (n− 1) = n + 1 .

Hence, ν = λ ∨ λ′ is a partition of n + 1 such that λ ↪→ ν and λ′ ↪→ ν.
A similar argument shows that if ν is such that λ ↪→ ν and λ′ ↪→ ν, then

necessarily ν = λ∨λ′ and the partition μ = λ∧λ′ satisfies μ ↪→ λ and μ ↪→ λ′.
The conclusion of the lemma follows immediately. ��

Lemma 5.5. Let λ = (λ1, λ2, . . . , λp) be an arbitrary partition. Suppose that
there are � partitions μ such that μ ↪→ λ. Then there are � + 1 partitions ν
such that λ ↪→ ν.

Proof. It is clear that (r, s) is a corner of λ if and only if λr > λr+1 (here we
identify λ with an infinite nonincreasing eventually zero sequence of integers).
Thus, the number � of partitions μ such that μ ↪→ λ, which is the number of
corners of λ, is equal to the number of all r ≥ 1 such that λr > λr+1.

If a partition ν satisfies λ ↪→ ν, then

νk =

{

λk if k �= r ,

λk + 1 if k = r
(5.2)

for some integer r ≥ 1. If r ≥ 2, then the assumption that ν is a partition
implies that

νr−1 = λr−1 ≥ νr = λr + 1 ,

from which it follows that λr−1 > λr. Conversely, if λr−1 > λr for some r ≥ 2,
then (5.2) defines a partition ν such that λ ↪→ ν. The number of such partitions
is equal to the number of all r ≥ 2 such that λr−1 > λr, hence to the number �
of all r ≥ 1 such that λr > λr+1. But there is an additional ν such that λ ↪→ ν,
namely the one given by ν1 = λ1 + 1 and νk = λk for k ≥ 2. In conclusion,
the number of partitions ν such that λ ↪→ ν is equal to � + 1. ��
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5.2.2 The Young lattice and the Bratteli diagrams

Consider the oriented graph Y whose vertices are all partitions of nonnegative
integers (including the empty partition ∅). There is a unique oriented edge
μ → λ in Y for each μ obtained from λ by removing a corner. This edge is
also recorded by μ ↪→ λ. The graph Y is called the Young lattice.

For each n ≥ 0, let Yn be the finite oriented subgraph of Y whose ver-
tices are the partitions λ with |λ| ≤ n; any edge of Y between two vertices
of Yn is by definition an edge of Yn. The graphs Y0,Y1,Y2, . . . are called Brat-
teli diagrams. The Young lattice Y is the union of these graphs. Figure 5.6
represents Y5; this graph has 18 vertices and 25 edges.

Fig. 5.6. The Bratteli diagram Y5

Lemma 5.6. For any partition λ, the number fλ = cardTλ is equal to the
number of oriented paths from ∅ to λ in Y.

Proof. The box with the largest label n in a standard tableau T of shape λ � n
is necessarily a corner. Removing this box, we obtain a partition λ(n−1) of n−1
and a standard tableau of shape λ(n−1). Removing the corner labeled n − 1
from the latter, we obtain a partition λ(n−2) of n− 2 and a standard tableau
of shape λ(n−2). Iterating this process until no boxes are left, we obtain an
oriented path in Y:

∅ = λ(0) ↪→ λ(1) ↪→ · · · ↪→ λ(n−1) ↪→ λ(n) = λ . (5.3)

This path is uniquely determined by T .
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Conversely, starting from an arbitrary oriented path (5.3) in Y from ∅
to λ � n, we obtain a standard tableau of shape λ whose label i, where
i ∈ {1, . . . , n}, sits in the box added to λ(i−1) to obtain λ(i).

In this way, we obtain mutually inverse bijections between the set Tλ of
standard tableaux of shape λ and the set of oriented paths from ∅ to λ in Y. In
particular, fλ = cardTλ is the number of oriented paths from ∅ to λ in Y. ��

The argument given in the proof of Lemma 5.6 shows that each graph Yn

and the Young lattice Y =
⋃

n Yn are connected.

5.2.3 The operators D and U

Let Z[Y] be the free abelian group with basis {λ} indexed by all vertices
of Y. Define linear maps D,U : Z[Y] → Z[Y] by the following formulas: for
λ � n ≥ 1, set

D(λ) =
∑

μ↪→λ

μ and U(λ) =
∑

λ↪→ν

ν .

Recall that for any partition λ of n, if μ ↪→ λ, then μ is a partition of n− 1,
and similarly if λ ↪→ ν, then ν is a partition of n + 1. By definition, D(∅) = 0
and U(∅) = ν0, where ν0 = (1) is the only partition of 1.

Let us record a combinatorial property of the operators D, U relating them
to the integers fλ. We use the following notation: for k ≥ 1, let Dk (resp. Uk)
be the composition of k copies of D (resp. of U). We also define D0 and U0

to be the identity map id of Z[Y].

Lemma 5.7. For any partition λ � n ≥ 0,

Dn(λ) = fλ ∅ and Un(∅) =
∑

λ�n

fλ λ .

Proof. It follows from the definitions that for each k ≥ 1,

Dk(λ) =
∑

λ(n−1)↪→λ

∑

λ(n−2)↪→λ(n−1)

· · ·
∑

λ(n−k)↪→λ(n−k+1)

λ(n−k)

=
∑

λ(n−k)↪→λ(n−k+1)↪→···↪→λ(n−1)↪→λ

λ(n−k) =
∑

μ�(n−k)

fλ
μ μ ,

where fλ
μ is the number of oriented paths in Y from μ to λ. For k = n, there

is only one partition μ of n− k = 0, namely μ = ∅, and then by Lemma 5.6,
fλ

μ = fλ. This yields the required formula for Dn(λ).
A similar argument shows that for any partition μ � m ≥ 0,

Un(μ) =
∑

λ�(m+n)

fλ
μ λ .

Applying this equality to m = 0 and μ = ∅, we obtain the desired formula
for Un(∅). ��



204 5 Representations of the Iwahori–Hecke Algebras

The operators D and U enjoy the following remarkable property.

Lemma 5.8 (The Heisenberg relation). We have DU − UD = id.

Proof. Let λ � n ≥ 1. By Lemma 5.4,

(DU)(λ) =
∑

λ↪→ν

D(ν) =
∑

λ↪→ν

( ∑

λ′↪→ν

λ′
)

= a+
λ λ +

∑

λ′∈A+(λ)

λ′ ,
(5.4)

where a+
λ is the number of partitions ν � (n + 1) such that λ ↪→ ν and A+(λ)

is the set of all λ′ � n distinct from λ for which there is a (necessarily unique)
partition ν � (n + 1) such that λ ↪→ ν and λ′ ↪→ ν.

Using the same lemma, we obtain

(UD)(λ) =
∑

μ↪→λ

U(μ) =
∑

μ↪→λ

( ∑

μ↪→λ′

λ′
)

= a−λ λ +
∑

λ′∈A−(λ)

λ′ ,
(5.5)

where a−λ is the number of partitions μ � (n− 1) such that μ ↪→ λ and A−(λ)
is the set of all λ′ � n distinct from λ for which there is a (necessarily unique)
partition μ � (n− 1) such that μ ↪→ λ and μ ↪→ λ′.

The sets A+(λ) and A−(λ) coincide by Lemma 5.4, and a+
λ = a−λ + 1 by

Lemma 5.5. Combining (5.4) and (5.5), we obtain

(DU − UD)(λ) = λ .

The same holds for λ = ∅, since (DU − UD)(∅) = D(ν0) = ∅. ��

Let us deduce the following more general formula: for each n ≥ 1,

DUn − UnD = nUn−1 . (5.6)

This is proved by induction on n. If n = 1, then (5.6) coincides with the
identity of Lemma 5.8. For n ≥ 2, by the induction hypothesis and Lemma 5.8,

DUn = (DUn−1)U
=
(

Un−1D + (n− 1)Un−2
)

U

= Un−1DU + (n− 1)Un−1

= Un−1(UD + id) + (n− 1)Un−1

= UnD + nUn−1 .
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5.2.4 Proof of Theorem 5.1

As an immediate consequence of Lemma 5.7, we obtain

(DnUn)(∅) =
(∑

λ�n

(fλ)2
)

∅ .

In order to prove Theorem 5.1, it therefore suffices to check that we also have

(DnUn)(∅) = n! ∅ .

We prove this equality by induction on n. The case n = 0 is trivial. For n ≥ 1,

(DnUn)(∅) =
(

Dn−1(DUn)
)

(∅)
=
(

Dn−1(UnD + nUn−1)
)

(∅)
= (Dn−1Un)(D(∅)) + n (Dn−1Un−1)(∅)
= n(n− 1)! ∅ = n! ∅ .

The second equality follows from (5.6), whereas the fourth equality follows
from the induction hypothesis and from D(∅) = 0. ��

Remark 5.9. The identity of Lemma 5.8 shows that Z[Y] is a module over
the Weyl algebra Z〈D,U〉/(DU − UD − 1). Another classical example of a
module over this algebra is given by the polynomials in one variable t, on
which D acts by the derivation d/dt and U acts by the multiplication by t.

Exercise 5.2.1. Compute fλ for all partitions λ � n with n ≤ 5. (Hint: Use
the Bratteli diagram Y5 in Figure 5.6.)

Exercise 5.2.2. Let λ = (λ1, λ2, . . . , λp) be a partition such that p ≥ 1 and
λ2 = · · · = λp = 1. Show that

fλ =
(
λ1 + p− 2

λ1 − 1

)

.

(Hint: Use induction on λ1 + p.)

Exercise 5.2.3. (a) Let λ = (λ1, λ2) be a partition with two parts. Show that

fλ =
(
λ1 + λ2

λ2

)

−
(
λ1 + λ2

λ2 − 1

)

=
λ1 − λ2 + 1

λ1 + 1

(
λ1 + λ2

λ2

)

.

(b) Prove that

∑

λ1≥λ2≥1
λ1+λ2=n

(

f (λ1,λ2)
) 2

=
1

n + 1

(
2n
n

)

.
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(Hint: Use the identity

k
∑

i=0

(
r

i

)(
s

k − i

)

=
(
r + s

k

)

,

where r, s, k are positive integers with k ≤ r + s.)

Exercise 5.2.4. (a) Show that there is a unique family g(λ1, . . . , λp) of in-
tegers, where λ1, . . . , λp are arbitrary nonnegative integers with p ≥ 1, such
that

(i) g(λ1, . . . , λp) = 0 unless λ1 ≥ · · · ≥ λp,
(ii) g(0) = 1 and if λp = 0, then g(λ1, . . . , λp−1, λp) = g(λ1, . . . , λp−1),
(iii) if λ1 ≥ · · · ≥ λp ≥ 1, then

g(λ1, . . . , λp) =
p
∑

i=1

g(λ1, . . . , λi − 1, . . . , λp) .

(b) Prove that for any partition λ = (λ1, λ2, . . . , λp) of n, we have
fλ = g(λ1, . . . , λp). (Hint: Giving a standard tableau with n boxes is the
same as giving one with n− 1 boxes and saying where to put the nth box.)

Exercise 5.2.5. Let x1, . . . , xp be indeterminates and let Δ(x1, . . . , xp) be
the polynomial defined by

Δ(x1, . . . , xp) =
∏

1≤i<j≤p

(xi − xj)

if p ≥ 2, and by Δ(x1) = 1 if p = 1.
(a) Show that

p
∑

i=1

xi Δ(x1, . . . , xi + y, . . . , xp)=
(

x1 + · · ·+ xp +
p(p− 1)

2
y
)

Δ(x1, . . . , xp) .

(Hint: The left-hand side is a homogeneous polynomial, antisymmetric in
x1, . . . , xp.)

(b) Show that the integers g(λ1, . . . , λp) of Exercise 5.2.4 satisfy

g(λ1, . . . , λp)
(λ1 + · · ·+ λp)!

=
Δ(λ1 + p− 1, λ2 + p− 2, . . . , λp)
(λ1 + p− 1)! (λ2 + p− 2)! · · ·λp!

,

provided λ1 + p− 1 ≥ λ2 + p− 2 ≥ · · · ≥ λp.

Exercise 5.2.6 (Hook length formula). Let D = D(λ) be the diagram of
a partition λ. For (i, j) ∈ D, the hook Hi,j consists of the box (i, j) together
with the boxes of D lying below (i, j) in the same column or lying to the right



5.3 Seminormal representations 207

of (i, j) in the same row. The number hi,j of boxes in Hi,j is called the hook
length, and it is computed by

hi,j = λi + λT
j − i− j + 1 ,

where λT is the conjugate partition of λ.
(a) Prove that

∏

(i,j)∈D

hi,j =
(λ1 + p− 1)! (λ2 + p− 2)! · · ·λp!
Δ(λ1 + p− 1, λ2 + p− 2, . . . , λp)

.

(b) Using Exercises 5.2.4 and 5.2.5, prove the hook length formula

fλ =
n!

∏

(i,j)∈D hi,j
.

5.3 Seminormal representations

We return to the Iwahori–Hecke algebras HR
n (q) of Section 4.2.2 and construct

an HR
n (q)-module V R

λ for each partition λ of n. We begin with some notation.

5.3.1 q-integers and q-factorials

Fix a commutative ring R and an invertible element q ∈ R. For each integer
n ≥ 1, set

[n]q = 1 + q + · · ·+ qn−1 ∈ R (5.7)

and [n]!q = [1]q [2]q · · · [n]q ∈ R. We also set [0]q = 0 and

[n]q = −qn[−n]q (5.8)

for n < 0. Observe that [1]q = 1, [−1]q = −q−1, and

[m + n]q = [m]q + qm[n]q = qn[m]q + [n]q (5.9)

for all integers m and n.
Given a positive integer n, we say that q is n-regular if [n]!q is invertible

in R or, equivalently, if the elements [1]q, [2]q, . . ., [n]q are invertible in R. If q
is n-regular, then it is k-regular for k = 1, . . . , n.

Recall the integers dT (1), . . . , dT (n− 1) defined by (5.1), and set

aT (i) =
qdT (i)

[dT (i)]q
∈ R and bT (i) = aT (i)− q ∈ R . (5.10)

Since 1 ≤ |dT (i)| ≤ n − 1 by Lemma 5.3, the elements aT (i) and bT (i) of R
are well defined, provided q is (n− 1)-regular.

We shall later use the obvious implication

dT (i) = dT ′(j) =⇒
(

aT (i) = aT ′(j) and bT (i) = bT ′(j)
)

.
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Lemma 5.10. If q is (n− 1)-regular, then

aT (i) = q ⇔ dT (i) = 1 and aT (i) = −1 ⇔ dT (i) = −1 . (5.11)

Proof. Set d = dT (i). Then

aT (i) = q ⇐⇒ [d]q = qd−1 ⇐⇒ [d− 1]q = 0 .

Since q is (n− 1)-regular and d < n, the number [d− 1]q vanishes if and only
if d = 1. The second equivalence is proved in a similar way. ��

5.3.2 The module Vλ

We now assume that the element q ∈ R is (n − 1)-regular and construct an
HR

n (q)-module V R
λ for each partition λ � n.

Consider the free R-module Vλ = V R
λ with basis {vT }T∈Tλ

, where Tλ is
the set of standard tableaux of shape λ. Using the previously defined elements
aT (i), bT (i) of R, we let the generators T1, . . . , Tn−1 of HR

n (q) act on the basis
of Vλ by

Ti vT = aT (i) vT + bT (i) vsiT . (5.12)

Here siT is the tableau obtained from T by switching the labels i and i + 1.
If siT is not standard, then we set vsiT = 0. Observe that aT (i) is invertible
in R.

Theorem 5.11. Formula (5.12) defines the structure of a left HR
n (q)-module

on Vλ.

A proof of Theorem 5.11 will be given in Section 5.4. The module Vλ is
called a seminormal representation of HR

n (q). By definition, its rank over R
is equal to the number fλ of standard tableaux of shape λ or, equivalently, to
the number of oriented paths from ∅ to λ in the Bratteli diagram Yn.

Examples 5.12. (a) Consider the partition λ = (n) corresponding to a single
row of n boxes. There is a unique standard tableau T of shape (n). Therefore
the module V(n) has a unique basis vector vT . By Lemma 5.3 and formu-
las (5.10), (5.12), the generators of HR

n (q) act on vT by

Ti vT = q vT (5.13)

for all i = 1, . . . , n− 1.
(b) For the conjugate partition (1, . . . , 1), there is also a unique standard

tableau T ′. The module V(1,...,1) has a unique basis vector vT ′ . By Lemma 5.3
and formulas (5.10), (5.12), the generators of HR

n (q) act on vT ′ by

Ti vT ′ = −vT ′ (5.14)

for all i = 1, . . . , n− 1 (here vsiT ′ = 0 for all i).

Since q and −1 are the only roots of the polynomial X2− (q−1)X−q, the
modules V(n) and V(1,...,1) are the only HR

n (q)-modules of rank one over R.
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5.3.3 Restriction to HR
n−1(q)

We now state an important property of the seminormal representations. We
use the following notation: when an HR

n (q)-module V is considered as an
HR

n−1(q)-module via the natural injection ι : HR
n−1(q) ↪→ HR

n (q) (see Propo-
sition 4.21), we denote it by V |HR

n−1(q).

Proposition 5.13. For any partition λ of n, there is a canonical isomorphism
of HR

n−1(q)-modules
Vλ|HR

n−1(q)
=

⊕

μ ↪→λ

Vμ .

Proof. We observed in Section 5.1.5 that the label n in a standard tableau of
shape λ sits necessarily in a corner of λ. Therefore we can partition the set
of standard tableaux of shape λ according to the corner in which n sits. We
thus obtain the partition

Tλ =
∐

μ ↪→λ

Tμ . (5.15)

Since the basis {vT } of Vλ is indexed by the elements of Tλ, we obtain an
R-module decomposition

Vλ =
⊕

μ ↪→λ

Vμ .

It follows from (5.12) that the generators T1, . . . , Tn−2 preserve this decom-
position (but the generator Tn−1 does not). ��

Remark 5.14. The seminormal representations behave well under a change
of scalars. Let f : R → S be a homomorphism of commutative rings and q an
(n− 1)-regular invertible element of R. Then q̃ = f(q) is (n− 1)-regular in S.
In this situation we have the HR

n (q)-module V R
λ and the HS

n (q̃)-module V S
λ .

By Proposition 4.56,
S ⊗R HR

n (q) ∼= HS
n (q̃) .

Similarly, there is an isomorphism of HS
n (q̃)-modules

S ⊗R V R
λ
∼= V S

λ . (5.16)

Let R0 = Q[q0, q
−1
0 , ([n − 1]!q0)−1] be the smallest subring of the field of

rational functions Q(q0) containing the ring of Laurent polynomials Q[q0, q
−1
0 ]

and the fraction 1/[n−1]!q0 . Clearly, q0 is an (n−1)-regular invertible element
of R0. For any partition λ � n, the construction above yields an HR0

n (q0)-
module V R0

λ . This module is universal in the following sense. For any commu-
tative ring R and any (n − 1)-regular invertible element q ∈ R, there is a
unique ring homomorphism f : R0 → R sending q0 to q. By (5.16), we have
an isomorphism of HR

n (q)-modules

V R
λ
∼= R⊗R0 V R0

λ . (5.17)
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Remark 5.15. Applying the constructions above to R = Q and q = 1, we
obtain for every partition λ � n a module V Q

λ over HQ
n (1) ∼= Q[Sn]. In this

way, the HR
n (q)-module V R

λ specializes to a representation of Sn.

Remark 5.16. Let HR
n (q)× be the group of invertible elements in HR

n (q).
Recall the group homomorphism ω : Bn → HR

n (q)× sending the generator σi

of the braid group Bn to Ti for i = 1, . . . , n− 1. For a partition λ of n, let

πλ : HR
n (q) → EndR(Vλ)

be the algebra homomorphism induced by the action of HR
n (q) on Vλ. Com-

posing πλ with ω : Bn → HR
n (q)×, we obtain a group homomorphism

ρλ : Bn → AutR(Vλ). Since Vλ is a free R-module of rank fλ, we can identify
AutR(Vλ) with the group of invertible fλ × fλ matrices over R. We thus ob-
tain a representation ρλ of Bn by matrices of size fλ. By definition of HR

n (q),
the matrix ρλ(σi) with i = 1, . . . , n− 1 satisfies the quadratic relation

ρλ(σi)2 − (q − 1) ρλ(σi)− q Ifλ = 0

(here Ifλ stands for the unit fλ × fλ matrix).

5.4 Proof of Theorem 5.11

Set P = {±1,±2, . . . ,±(n− 1)} ⊂ Z. For any d ∈ P , set

f(d) =
qd

[d]q
∈ R ,

where [d]q was defined in Section 5.3.1. The element f(d) of R is well defined
and invertible, since q is invertible and (n− 1)-regular in R.

Lemma 5.17. Let d, e ∈ P be such that d + e ∈ P . Then
(a) f(d) + f(−d) = q − 1,
(b) f(d)f(e) = f(d + e)

(

f(d)− f(−e)
)

.

Proof. (a) By (5.8),

f(d) + f(−d) =
qd

[d]q
+

q−d

[−d]q

=
qd

[d]q
− q−d

q−d[d]q

=
qd − 1
[d]q

= q − 1 .
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(b) Using (5.8), (5.9), we obtain

f(d)f(e)
f(d + e)

=
[d + e]q
[d]q [e]q

=
[d]q + qd[e]q

[d]q[e]q

=
1

[e]q
+

qd

[d]q

= f(d)− q−e

[−e]q
= f(d)− f(−e) . ��

To prove Theorem 5.11, it suffices to show that the operators T1, . . . , Tn−1

defined by (5.12) satisfy (4.16), (4.17), and (4.20).

5.4.1 Proof of (4.16)

If |i− j| ≥ 2, then by (5.12),

TjTi vT = aT (i) aT (j) vT + aT (i) bT (j) vsjT

+ bT (i) asiT (j) vsiT + bT (i) bsiT (j) vsjsiT

= aT (i) aT (j) vT + aT (i) bT (j) vsjT

+ bT (i) aT (j) vsiT + bT (i) bT (j) vsjsiT .

The last equality holds since by Lemma 5.2 (a),

dsiT (j) = dT (j) .

The scalars aT (j) and bT (j) being functions of dT (j), we obtain

asiT (j) = aT (j) and bsiT (j) = bT (j) .

Moreover, sjsi = sisj . Therefore, the expression TjTi vT is symmetric in i
and j. Hence, TjTi vT = TiTj vT for all T .

5.4.2 Proof of (4.17)

Let i ∈ {1, . . . , n− 2}. We have

TiTi+1Ti vT =
(

aT (i) aT (i + 1) aT (i) + bT (i) asiT (i + 1) bsiT (i)
)

vT

+
(

aT (i) aT (i + 1) bT (i) + bT (i) asiT (i + 1) asiT (i)
)

vsiT

+ aT (i) bT (i + 1) asi+1T (i) vsi+1T

+ aT (i) bT (i + 1) bsi+1T (i) vsisi+1T

+ bT (i) bsiT (i + 1) asi+1siT (i) vsi+1siT

+ bT (i) bsiT (i + 1) bsi+1siT (i) vsisi+1siT .
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Similarly,

Ti+1TiTi+1 vT

=
(

aT (i + 1) aT (i) aT (i + 1) + bT (i + 1) asi+1T (i) bsi+1T (i + 1)
)

vT

+
(

aT (i + 1) aT (i) bT (i + 1) + bT (i + 1) asi+1T (i) asi+1T (i + 1)
)

vsi+1T

+ aT (i + 1) bT (i) asiT (i + 1) vsiT

+ aT (i + 1) bT (i) bsiT (i + 1) vsi+1siT

+ bT (i + 1) bsi+1T (i) asisi+1T (i + 1) vsisi+1T

+ bT (i + 1) bsi+1T (i) bsisi+1T (i + 1) vsi+1sisi+1T .

In order to prove the vanishing of the vector

w = TiTi+1Ti vT − Ti+1TiTi+1 vT ,

it suffices to check that the coefficient of each of the six vectors vT , vsiT ,
vsi+1T , vsisi+1T , vsi+1siT , vsisi+1siT in w vanishes.

(a) The coefficient A of vT in w is given by

A = aT (i) aT (i + 1) aT (i) + bT (i) asiT (i + 1) bsiT (i)
− aT (i + 1) aT (i) aT (i + 1)− bT (i + 1) asi+1T (i) bsi+1T (i + 1) .

By Lemma 5.2 (b), asiT (i + 1) = asi+1T (i) and

A = aT (i)aT (i + 1)
(

aT (i)− aT (i + 1)
)

+ asiT (i + 1)
(

bT (i)bsiT (i)− bT (i + 1)bsi+1T (i + 1)
)

.

Set d = dT (i) and e = dT (i + 1). By (5.10),

aT (i) = f(dT (i)) = f(d) , bT (i) = f(d)− q ,

aT (i + 1) = f(dT (i + 1)) = f(e) , and bT (i + 1) = f(e)− q .

By Lemma 5.2 (b),

dsiT (i) = −d , dsiT (i + 1) = dsi+1T (i) = d + e , dsi+1T (i + 1) = −e ,

so that asiT (i + 1) = asi+1T (i) = f(d + e) and

bsiT (i) = f(−d)− q , bsi+1T (i + 1) = f(−e)− q .

Therefore,

A = f(d)f(e)
(

f(d)− f(e)
)

+ f(d + e)
(

(f(d)− q)(f(−d)− q)− (f(e)− q)(f(−e)− q)
)

.
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Using Lemma 5.17 (b), we obtain A = f(d + e)A0, where

A0 =
(

f(d)− f(−e)
)(

f(d)− f(e)
)

+
(

f(d)− q
)(

f(−d)− q
)

−
(

f(e)− q
)(

f(−e)− q
)

=
(

f(d)− q
)((

f(d) + f(−d)
)

−
(

f(e) + f(−e)
))

.

Using Lemma 5.17 (a), we obtain A0 = 0. Hence, A = f(d + e)A0 = 0.
(b) The coefficient B of vsiT in w is

aT (i) aT (i + 1) bT (i) + bT (i) asiT (i + 1) asiT (i)− aT (i + 1) bT (i) asiT (i + 1)

= bT (i)
(

aT (i) aT (i + 1)−
(

aT (i + 1)− asiT (i)
)

asiT (i + 1)
)

.

We set d = dT (i) and e = dT (i + 1) as above. Then by Lemma 5.2 (b),

B = bT (i)
(

f(d)f(e)−
(

f(e)− f(−d)
)

f(d + e)
)

.

The latter vanishes by Lemma 5.17 (b) (with d and e exchanged).
(c) The coefficient C of vsi+1T in w is

aT (i)bT (i+1)asi+1T (i)−aT (i+1)aT (i)bT (i+1)−bT (i+1)asi+1T (i)asi+1T (i+1)

= bT (i + 1)
(

aT (i) asi+1T (i)− aT (i) aT (i + 1)− asi+1T (i) asi+1T (i + 1)
)

.

Using the same notation as in (a) and (b) and using Lemma 5.2 (b), we obtain

C = bT (i + 1)
(

f(d)f(d + e)− f(d)f(e)− f(d + e)f(−e)
)

,

which vanishes by Lemma 5.17 (b).
(d) The coefficient of vsisi+1T in w is

aT (i) bT (i + 1) bsi+1T (i)− bT (i + 1) bsi+1T (i) asisi+1T (i + 1) ,

which is equal to
(

aT (i)− asisi+1T (i + 1)
)

bT (i + 1) bsi+1T (i) = 0

because dT (i) = dsisi+1T (i + 1) (Lemma 5.2 (b)).
(e) The coefficient of vsi+1siT in w is

bT (i) bsiT (i + 1) asi+1siT (i)− aT (i + 1) bT (i) bsiT (i + 1) ,

which is equal to
(

asi+1siT (i)− aT (i + 1)
)

bT (i) bsiT (i + 1) = 0

because dsi+1siT (i) = dT (i + 1) (Lemma 5.2 (b)).
(f) The coefficient of vsisi+1siT in w is

bT (i) bsiT (i + 1) bsi+1siT (i)− bT (i + 1) bsi+1T (i) bsisi+1T (i + 1) .

It vanishes because of the following equalities of Lemma 5.2 (b):

dT (i) = dsisi+1T (i + 1) , dsiT (i + 1) = dsi+1T (i) , dsi+1siT (i) = dT (i + 1) .
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5.4.3 Proof of (4.20)

If i and i + 1 are in the same row of T , then it follows from Lemma 5.3 (b)
and (5.11) that aT (i) = q and bT (i) = 0. Therefore, Ti acts on vT by

Ti vT = q vT .

Then
(

T 2
i − (q − 1)Ti − q

)

vT =
(

q2 − (q − 1)q − q
)

vT = 0 .

If i and i+1 are in the same column of T , then by Lemma 5.3 (c) and (5.11),
aT (i) = −1. Since siT is not standard, vsiT = 0 and

Ti vT = −vT ,

from which it also follows that
(

T 2
i − (q − 1)Ti − q

)

vT = 0.
If i and i + 1 are neither in the same row nor in the same column of T ,

then {vT , vsiT } spans a rank-two free R-submodule of Vλ. The generator Ti

acts on this based submodule via the matrix

M =
(

aT (i) bsiT (i)
bT (i) asiT (i)

)

.

In order to check (4.20) on this submodule, it suffices to prove that the trace
of M equals q − 1 and its determinant equals −q.

Set d = dT (i). It follows from Lemmas 5.2 (a) and 5.17 (a) that

TrM = aT (i) + asiT (i) = f(d) + f(−d) = q − 1

and

detM = aT (i) asiT (i)− bT (i) bsiT (i)
= f(d)f(−d)− (f(d)− q)(f(−d)− q)
=
(

f(d) + f(−d)
)

q − q2

= (q − 1)q − q2 = −q .

This completes the proof of relations (4.16), (4.17), (4.20) and of Theo-
rem 5.11. ��

Exercise 5.4.1. Let f , g be functions from the set P = {±1,±2, . . . ,±(n−1)}
to the set of invertible elements of a commutative ring R. For any standard
tableau T with n boxes and any i = 1, . . . , n − 1, set aT (i) = f(dT (i)) ∈ R
and bT (i) = g(dT (i)) ∈ R.

(a) Show that formula (5.12) defines the structure of a left HR
n (q)-module

on Vλ, provided f and g satisfy the following three conditions:

(i) f(1) = q or f(1) = −1,
(ii) for all d ∈ P ,

f(d) + f(−d) = q − 1 and g(d) g(−d) = f(d)f(−d) + q ,
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(iii) for all d, e ∈ P such that d + e ∈ P ,

f(d + e)
(

f(d)− f(−e)
)

= f(d)f(e) .

(b) Show that if the conditions in (a) are satisfied, then for all d ∈ P ,

f(d) =

{

qd/[d]q if f(1) = q ,

−1/[d]q if f(1) = −1 ,

and

g(d) g(−d) = q
[d− 1]q [d + 1]q

([d]q)2
.

Exercise 5.4.2. Let K be an algebraically closed field of characteristic zero
and λ a partition of n. Show that the formulas

si vT =
1

dT (i)
vT +

1− dT (i)
dT (i)

vsiT

and

si vT =
1

dT (i)
vT +

√

dT (i)2 − 1
dT (i)

vsiT ,

where i = 1, . . . , n− 1, define two K[Sn]-module structures on the K-vector
space with a basis {vT }T indexed by the standard tableaux T of shape λ.

5.5 Simplicity of the seminormal representations

In this section K is an algebraically closed field whose characteristic does
not divide n!, where n is a fixed positive integer. Let q ∈ K − {0} be such
that q is (n − 1)-regular and the Iwahori–Hecke algebras HK

2 (q), . . . , HK
n (q)

are semisimple. By the definition of (n− 1)-regularity and by Theorem 4.57,
this holds for all values of q except a finite number of algebraic elements
of K−{0, 1}. We freely use the definitions of Section 4.5. To simplify notation,
set Vλ = V K

λ for any partition λ.

Theorem 5.18. The HK
n (q)-module Vλ is simple for any partition λ of n. For

any simple finite-dimensional HK
n (q)-module V , there is a unique partition

λ � n such that V ∼= Vλ.

Since HK
n (1) ∼= K[Sn], the theorem in particular provides a classification

of the irreducible representations of the symmetric groups over K.

Proof. We proceed by induction on n. When n = 1, we have λ = (1). As ob-
served in Example 5.12 (a), the module V(1) is one-dimensional, hence simple.
Since HK

1 (q) = K, it is clear that any simple HK
1 (q)-module is isomorphic

to V(1) = K.
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Suppose that Vμ is a simple HK
n−1(q)-module for any partition μ of n− 1

and that any simple HK
n−1(q)-module is isomorphic to a unique module of

the form Vμ. The uniqueness in the latter assumption means that Vμ
∼= Vμ′

implies μ = μ′.
Let us first show that if Vλ

∼= Vλ′ is an isomorphism of HK
n (q)-modules,

where λ and λ′ are partitions of n, then λ = λ′. Indeed, by Proposition 5.13,
we have an isomorphism of HK

n−1(q)-modules
⊕

μ↪→λ

Vμ
∼=

⊕

μ′↪→λ′

Vμ′ .

By assumption, HK
n−1(q) is semisimple, and by induction, the modules Vμ and

Vμ′ are simple. Therefore, by Proposition 4.32,

{μ � (n− 1) |μ ↪→ λ} = {μ′ � (n− 1) |μ′ ↪→ λ′} .

Since the set of corners of λ is the complement of
⋂

μ↪→λ D(μ) in D(λ), the
partitions λ and λ′ have the same corners. Therefore, λ = λ′, since every
partition is determined by its corners.

We next show that the HK
n (q)-module Vλ is simple for any partition λ

of n. Let V be a nonzero HK
n (q)-submodule of Vλ. Consider V and Vλ as

HK
n−1(q)-modules. By Proposition 5.13,

Vλ =
⊕

μ ↪→λ

Vμ .

By the induction hypothesis, this is a direct sum decomposition into simple
HK

n−1(q)-modules, and the modules Vμ in this decomposition are pairwise non-
isomorphic. Pick a nonzero simple HK

n−1(q)-submodule V ′ of V . We claim that
there is μ ↪→ λ such that V ′ = Vμ. Indeed, since

⊕

μ ↪→λ

HomHK
n−1(q)

(V ′, Vμ) = HomHK
n−1(q)

(V ′, Vλ) ⊃ HomHK
n−1(q)

(V ′, V )

is nonzero, by Proposition 4.30 (a), there is μ ↪→ λ such that V ′ ∼= Vμ.
If μ′ ↪→ λ is different from μ, then, since the modules Vμ are pairwise noniso-
morphic, HomHK

n−1(q)
(V ′, Vμ′ ) = 0. Since the projection of V ′ on each sum-

mand Vμ′ is zero except for μ′ = μ, we conclude that V ′ = Vμ.
If μ � (n − 1) is the only partition such that μ ↪→ λ, then V ′ = Vμ = Vλ.

Hence, V = Vλ, which shows that Vλ is simple.
Suppose that there is μ′ ↪→ λ distinct from μ. Assume that D(μ) is

obtained from D(λ) by removing the corner (r, s), and D(μ′) is obtained
from D(λ) by removing the corner (r′, s′). Clearly, (r, s) �= (r′, s′). Consider a
standard tableau T of shape λ whose corner (r, s) is labeled n and whose cor-
ner (r′, s′) is labeled n−1 (such T obviously exists). Observe that the tableau
sn−1T obtained from T by switching the labels n − 1 and n is standard and
consider the vector
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Tn−1 vT = aT (n− 1) vT + bT (n− 1) vsn−1T ∈ Vλ . (5.18)

Decompose this vector according to Proposition 5.13. By the definition of the
inclusion Vμ ↪→ Vλ given in the proof of Proposition 5.13,

vT ∈ V ′ = Vμ ,

since removing the corner (r, s) with label n from λ yields μ. Similarly,
vsn−1T ∈ Vμ′ . Since n − 1 and n sit in corners of T and therefore sit neither
in the same column nor in the same row, dT (n − 1) �= 1 by Lemma 5.3 (c).
This together with the equivalence (5.11) implies that aT (n − 1) �= q, hence
bT (n − 1) �= 0. It then follows from (5.18) that vsn−1T ∈ Vμ′ is a linear com-
bination of vT and Tn−1 vT , both belonging to V . Therefore, V contains a
nonzero element of Vμ′ . Since Vμ′ is a simple HK

n−1(q)-module and V ∩Vμ′ is a
nonzero HK

n−1(q)-submodule of Vμ′ , we have V ∩ Vμ′ = Vμ′ , that is, V ⊃ Vμ′ .
Since this holds for all μ′ ↪→ λ distinct from μ and V ⊃ V ′ = Vμ,

V ⊃ Vμ ⊕
⊕

μ′ ↪→λ
μ′ �=μ

Vμ′ = Vλ ⊃ V .

Thus, V = Vλ and Vλ is simple.
We finally show that any simple finite-dimensional HK

n (q)-module is iso-
morphic to Vλ for some λ � n. This follows from a simple counting argument.
Since HK

n (q) is semisimple, it has a finite number of simple finite-dimensional
modules (considered up to isomorphism). Such modules include the mod-
ules Vλ, which are pairwise nonisomorphic. If HK

n (q) had at least one nonzero
simple finite-dimensional module not isomorphic to a module of the form Vλ,
then by Corollary 4.55 and Theorem 5.1 we would have

dimK HK
n (q) >

∑

λ�n

(dimK Vλ)2 =
∑

λ�n

(fλ)2 = n! .

This contradicts Theorem 4.17, which yields dimK HK
n (q) = n!. ��

For any partition λ of n, let πλ : HK
n (q) → EndK(Vλ) be the algebra

homomorphism induced by the action of HK
n (q) on Vλ. The next result follows

immediately from Theorem 5.18 and Corollary 4.55.

Corollary 5.19. The algebra homomorphisms πλ induce an algebra isomor-
phism

HK
n (q)

∼=−→
∏

λ�n

EndK(Vλ) .

Exercise 5.5.1. Determine the dimensions of all simple modules of HK
n (q)

for n ≤ 5. (Hint: Use Exercise 5.2.1.)
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Exercise 5.5.2. Let K be an algebraically closed field containing Z[q, q−1].
Show that there is an algebra isomorphism HK

n (q) ∼= K[Sn]. (Hint: Use Corol-
lary 5.19 and Remark 5.15.)

Exercise 5.5.3. Show that the two K[Sn]-modules of Exercise 5.4.2 are sim-
ple and isomorphic. (Hint: Restrict to K[Sn−1] and use induction on n.)

Exercise 5.5.4 (Path algebras). Let K be a field and n a positive integer.
(a) Let Pn be the K-vector space with basis {ES,T}S,T indexed by all

couples (S, T ) of standard tableaux of the same shape λ, where λ � n. We
endow Pn with the structure of an algebra by

ES,T ES′,T ′ =

{

ES,T ′ if T = S′ ,

0 if T �= S′ .

The vector
∑

T ET,T is the unit of this algebra. (The algebra Pn is called a
path algebra.) Show that Pn is isomorphic to a product of matrix algebras

Pn
∼=

∏

λ�n

Mfλ(K) ,

where fλ is the number of standard tableaux of shape λ. (Hint: Consider first
the elements ES,T , where S, T are standard tableaux of a given shape λ and
show that they span a subalgebra of Pn, which is isomorphic to Mfλ(K).)

(b) To any basis element ES,T of Pn−1 associate the element

i(ES,T ) =
∑

S′, T ′

ES′,T ′ ∈ Pn ,

where S′ and T ′ run over all standard tableaux with n labels obtained from
S and T respectively by adding a box with label n. Show that this defines an
injective algebra homomorphism i : Pn−1 → Pn.

(c) For λ � n, define a Pn-module Uλ as the K-vector space with ba-
sis {uT }T indexed by all standard tableaux T of shape λ, and with Pn-action

ES,T uT ′ =

{

uS if T = T ′ ,

0 if T �= T ′ .

Show that, considered as a Pn−1-module via the embedding i : Pn−1 ↪→ Pn,

Uλ
∼=

⊕

μ ↪→λ

Uμ .

(d) Prove that Uλ is a simple Pn-module for each λ � n, and that any
simple Pn-module is isomorphic to a module of this form.
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5.6 Simplicity of the reduced Burau representation

In this section we show that the reduced Burau representation of the braid
group introduced in Section 3.3.1 is irreducible.

We start with a property of the matrices V1, . . . , Vn−1 ∈ GLn−1(Λ) exhib-
ited in Theorem 3.9, where Λ = Z[t, t−1]. Let K be an algebraically closed field
containing Λ (we may take K = C). Consider the (n− 1)-dimensional vector
space Ln−1 consisting of all columns over K of height n − 1. The matrices
V1, . . . , Vn−1 act on Ln−1 by left matrix multiplication.

Lemma 5.20. Let n ≥ 3 and α ∈ K. The only vector v ∈ Ln−1 satisfying
Vi v = αv for all i = 1, . . . , n− 1 is zero.

Proof. It is obvious from the form of V1 that its only eigenvalues are 1 and −t.
Therefore, it suffices to establish the lemma for α = 1 and α = −t.

It is easy to check that the eigenspace of the action of Vi on Ln−1 for the
eigenvalue −1 is the hyperplane of Ln−1 consisting of the columns whose ith
entries vanish. The intersection of these hyperplanes is clearly zero.

Consequently, the eigenspace of Vi for the second eigenvalue, that is, for−t,
is one-dimensional. It suffices to prove that the one-dimensional subspaces
corresponding to i = 1 and i = 2 do not coincide. A quick check shows
that for V1 (resp. for V2), this eigenspace is spanned by (1 + t)v1 − v2 (resp.
by tv1 − (1 + t)v2), where (v1, . . . , vn−1) is the canonical basis of Ln−1. We
conclude by noting that these two vectors are not collinear (here we use the
fact that t2 + t + 1 �= 0 in K). ��

We next relate the matrices V1, . . . , Vn−1 to the Iwahori–Hecke alge-
bra HK

n (t). (To be consistent with the notation of Chapter 3, we use the
parameter t rather than the parameter q used in the previous sections of the
present chapter.) By Theorem 4.57, since K has characteristic zero and t ∈ K
is nonalgebraic, each HK

n (t) is a semisimple algebra. Recall the generators
T1, . . . , Tn−1 of the Iwahori–Hecke algebra.

Proposition 5.21. There is a unique structure of an HK
n (t)-module on Ln−1

such that each generator Ti (i = 1, . . . , n− 1) acts on Ln−1 by multiplication
by the matrix −Vi.

Proof. We know from Section 3.3.1 that the matrices V1, . . . , Vn−1 satisfy
relations (4.16) and (4.17). So do the matrices −V1, . . . ,−Vn−1. It is easy to
check that each Vi satisfies the equation

(Vi − In−1)(Vi + tIn−1) = V 2
i + (t− 1)Vi − tIn−1 = 0 .

Hence,
(−Vi)2 = (t− 1)(−Vi) + tIn−1

for all i = 1, . . . , n − 1. In other words, the matrices −V1, . . . ,−Vn−1 satisfy
relation (4.20) with q replaced by t. ��
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By Theorem 5.18, the HK
n (t)-module Ln−1 is a direct sum of simple mod-

ules of the form Vλ, where λ is a partition of n (see Section 5.3 for a definition
of Vλ). As a matter of fact, as we shall see now, the module Ln−1 is simple.

Theorem 5.22. There is an isomorphism of HK
n (t)-modules

Ln−1
∼= Vλ[n] ,

where λ[n] is the partition (2, 1, 1, . . . , 1) of n.

Proof. We prove the theorem by induction on n.
(a) If n = 2, then by Section 3.3.1, T1 acts via the 1× 1 matrix [t]. Setting

t = q in (5.13), we see that L1 is the simple module Vλ[2], where λ[2] = (2) is
the partition whose diagram consists of a single row of two boxes.

(b) Assume that the theorem holds for all positive k < n, where n is a
given integer ≥ 3. Consider the natural projection Ln−1 → Ln−2 obtained by
deleting the bottom entry of a column in Ln−1. Observe that the matrices
−V1, . . . ,−Vn−2 are all of the form

−Vi =
(

−V 0
i 0

bi −1

)

,

where
V 0

i ∈ GLn−2(Λ)

is the matrix defining the reduced Burau representation of Bn−1, and where
bi is the row of length n − 2 equal to 0 if i < n − 2 and to (0, . . . , 0,−1) if
i = n − 2. Thus, the projection Ln−1 → Ln−2 induces an exact sequence of
HK

n−1(t)-modules

0 → V → Ln−1|HK
n−1(t) → Ln−2 → 0 ,

where Ln−1|HK
n−1(t)

is Ln−1 considered as an HK
n−1(t)-module via the natural

inclusion HK
n−1(t) ↪→ HK

n (t), and V is the one-dimensional HK
n−1(t)-module

consisting of the columns whose first n− 2 entries vanish. Since T1, . . . , Tn−2

act on V by −1, the HK
n−1(t)-module V is isomorphic to Vμ[n−1], where μ[n−1]

is the partition (1, . . . , 1) of n − 1. Since HK
n−1(t) is semisimple, the module

Ln−1|HK
n−1(t)

is semisimple, hence completely reducible by Proposition 4.28.
Thus there is an isomorphism of HK

n−1(t)-modules

Ln−1|HK
n−1(t)

∼= Ln−2 ⊕ V .

Using the induction hypothesis, we obtain the following isomorphisms of
HK

n−1(t)-modules:

Ln−1|HK
n−1(t)

∼= Ln−2 ⊕ V ∼= Vλ[n−1] ⊕ Vμ[n−1] . (5.19)



5.6 Simplicity of the reduced Burau representation 221

By (5.19) and Proposition 5.13, if Vλ occurs in Ln−1, then the diagram
of λ is such that by removing any of its corners, we obtain the diagram
of μ[n− 1] or the diagram of λ[n− 1] (and only those). Now, by Lemma 5.20,
Ln−1 cannot contain a one-dimensional representation. This fact, together
with Examples 5.12, shows that the diagram of λ has at least two rows and
two columns. We are thus left with a very little choice for λ: such a partition
λ is necessarily equal to λ[n] or to the partition (2, 2) of n = 4.

Therefore, if n �= 4, then Ln−1
∼=
(

Vλ[n]

)a for some nonnegative integer a.
Restricting to HK

n−1(t), we obtain an isomorphism

Ln−1|HK
n−1(t)

∼=
(

Vλ[n−1]

)a

⊕
(

Vμ[n−1]

)a

.

Comparing with (5.19) and using Proposition 4.32, we obtain a = 1, which
proves the theorem for n �= 4.

For n = 4,

L3
∼=
(

Vλ[4]

)a

⊕
(

V(2,2)

)b

for some nonnegative integers a, b. Restricting to HK
2 (t), we obtain

L3|HK
2 (t)

∼=
(

Vλ[3]

)(a+b)

⊕
(

Vμ[3]

)a

.

Comparing with (5.19), we obtain a + b = 1 and a = 1, hence b = 0, which
concludes the proof in the case n = 4. ��

Corollary 5.23. The reduced Burau representation ψr
n : Bn → GLn−1(K) is

irreducible.

Proof. The irreducibility of ψr
n means that the only subspaces of Kn−1 pre-

served by ψr
n are 0 and Kn−1. If W is such a subspace, then

(−Vi)W = ViW ⊂ W

for all i = 1, . . . , n − 1. By definition of the action of HK
n (t) on Ln−1, the

vector space W is an HK
n (t)-submodule of Ln−1. Since Ln−1 is simple by

Theorem 5.22, we must have W = 0 or W = Kn−1. ��

Exercise 5.6.1. Check that

In−1 − V1 − V2 + V1V2 + V2V1 − V1V2V1 = 0 .

Deduce that Ln−1 is a module over the quotient of the algebra HK
n (t) by the

two-sided ideal generated by

1 + T1 + T2 + T1T2 + T2T1 + T1T2T1 .

(This quotient will be further discussed in Section 5.7.2.)
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5.7 The Temperley–Lieb algebras

We end this chapter by presenting a family of algebras closely related to the
Iwahori–Hecke algebras.

5.7.1 Definition and reduced words

For simplicity we work over the field C of complex numbers. We fix an integer
n ≥ 2 and a nonzero complex number a.

Definition 5.24. The Temperley–Lieb algebra An(a) is the C-algebra gener-
ated by n− 1 elements e1, . . . , en−1 subject to the relations

eiej = ejei (5.20)

for i, j = 1, 2, . . . , n− 1 such that |i− j| ≥ 2,

eiejei = ei (5.21)

for i, j = 1, 2, . . . , n− 1 such that |i− j| = 1, and

e2
i = aei (5.22)

for i = 1, . . . , n− 1.

Any word ei1 · · · eir in the alphabet {e1, . . . , en−1} represents an element
of An(a). The empty word represents the unit 1 of An(a).

We define the index of a nonempty word w = ei1 · · · eir to be the maximum
of all indices i1, . . . , ir appearing in w. If the index of w is equal to p, then
we say that ep is the maximal generator of w. We agree that the index of the
empty word is 0.

Lemma 5.25. Any nonempty word w = ei1 · · · eir is equal in An(a) to a scalar
multiple of a word in which the maximal generator appears exactly once.

Proof. We proceed by induction on the index p of w. If p = 1, then w is a
positive power of e1. From (5.22) we derive ei

1 = ai−1e1 for all i > 1. Therefore,
Lemma 5.25 holds for p = 1.

Suppose that Lemma 5.25 holds for all words of index < p. Consider a
nonempty word w = ei1 · · · eir of index p. Suppose that ep appears in w at
least twice. Then w is of the form w = w1epw

′epw2, where w1 and w2 are
arbitrary words, and w′ is a word of index � < p.

If � < p− 1, then by (5.20), w′ commutes with ep. Therefore, by (5.22),

w = w1epw
′epw2 = w1w

′e2
pw2 = aw1epw2 .

In this way we have diminished the number of occurrences of ep in w by one.



5.7 The Temperley–Lieb algebras 223

If � = p−1, then by the induction hypothesis we may assume that e� = ep−1

appears only once in w′, so that w′ = w3ep−1w4, where w3 and w4 are words
of index ≤ p − 2. Therefore, w3 and w4 commute with ep. Using (5.21), we
obtain

w = w1epw
′epw2 = w1epw3ep−1w4epw2

= w1w3epep−1epw4w2 = w1w3epw4w2 .

We have again diminished the number of occurrences of ep in w by one.
Proceeding recursively, we can transform w into a scalar multiple of a word

in which the maximal generator appears exactly once. ��

For 1 ≤ k ≤ n− 1, let En,k be the set of 2k-tuples (i1, . . . , ik, j1, . . . , jk) of
integers such that

0 < i1 < i2 < · · · < ik < n , 0 < j1 < j2 < · · · < jk < n ,

and
j1 ≤ i1 , j2 ≤ i2 , . . . , jk ≤ ik .

For such a tuple s = (i1, . . . , ik, j1, . . . , jk), set

es = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eik
eik−1 · · · ejk

) .

In the expression for es the indices are decreasing from left to right between
each pair of parentheses. Observe that the index of es is ik. We say that a
word of the form es, where

s ∈ En = En,1 � En,2 � · · · � En,n−1

is a reduced word in An(a).

Lemma 5.26. The set {es}s∈En of reduced words spans An(a).

Proof. It is enough to prove that any word w = ei1 · · · eir is a scalar multiple
of a reduced word. We proceed by induction on the index p of w.

If p = 1, then w is a scalar multiple of e1, which is a reduced word.
Let p > 1 and assume that any word of index < p is a scalar multiple of a

reduced word of index < p. Let w be a word of index p. By Lemma 5.25, w is
a scalar multiple of some word w0 = w1epw2, where w1 and w2 are words of
index < p. By the induction hypothesis, we may assume that w2 is reduced.
Suppose that

w2 = es = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eik
eik−1 · · · ejk

)

for some
s = (i1, . . . , ik, j1, . . . , jk) ∈ En,k

with ik < p.
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If ik ≤ p− 2, then w2 commutes with ep and

epw2 = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eik
eik−1 · · · ejk

)(ep) .

If ik = p− 1, then

epw2 = (ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (epeik
eik−1 · · · ejk

) .

In both cases, w0 is equal in An(a) to a word of the form w′(epep−1 · · · eq),
where w′ is a word of index p′ < p, and q ≤ p. By the induction hy-
pothesis, we may restrict ourselves to the case w′ = es′ for some s′ =
(i′1, . . . , i′�, j

′
1, . . . , j

′
�) ∈ En,�. We have i′� = p′ < p; set q′ = j′�.

(i) If q′ < q, then

w0 = w′(epep−1 · · · eq) = es′(epep−1 · · · eq)

is reduced.
(ii) If q′ ≥ q, then w′ = w′′(ep′ep′−1 · · · eq′), where q ≤ q′ ≤ p′ < p and

w′′ has index < p′. If q′ ≤ p− 2, then by (5.20) and (5.21),

eq′(epep−1 · · · eq) = epep−1 · · · eq′+2(eq′eq′+1eq′)eq′−1 · · · eq

= epep−1 · · · eq′+2eq′eq′−1 · · · eq

= (eq′eq′−1 · · · eq)(epep−1 · · · eq′+2) .

Therefore, w0 = w′′(eq′eq′−1 · · · eq)(epep−1 · · · eq′+2). Since w′′(eq′eq′−1 · · · eq)
has index < p, the word w0 is of the form considered in (i) and the result
follows from (i).

If q′ = p− 1, then p′ = q′ = p− 1, and by (5.21),

eq′(epep−1 · · · eq) = (ep−1epep−1) · · · eq = ep−1 · · · eq .

Therefore, w0 = w′′(ep−1 · · · eq), where w′′ has index < p′ = p − 1. Thus,
w0 has index p− 1, and the result follows from the induction assumption. ��

Lemma 5.27. We have

cardEn =
1

n + 1

(
2n
n

)

.

The integer
(
2n
n

)

/(n + 1) is called the nth Catalan number .

Proof. To any element (i1, . . . , ik, j1, . . . , jk) ∈ En,k we associate the path

(0, 0) → (i1, 0) → (i1, j1) → (i2, j1) → (i2, j2) → · · ·
· · · → (ik, jk−1) → (ik, jk) → (n, jk) → (n, n)

in the set (R × Z) ∪ (Z ×R) ⊂ R2. This path is an oriented polygonal line,
alternating horizontal and vertical edges, all horizontal edges being directed



5.7 The Temperley–Lieb algebras 225

to the right and all vertical edges directed upward. Let us call such a path
an admissible path from (0, 0) to (n, n). An admissible path arising from an
element of En lies under the diagonal {(x, y) ∈ R2 |x = y}, that is, it lies
in the octant {(x, y) ∈ R2 | 0 ≤ y ≤ x}. It is clear that any admissible path
from (0, 0) to (n, n) lying under the diagonal can be obtained from a unique
element of En in this way.

We now count the admissible paths from (0, 0) to (n, n) lying under the
diagonal. Translating an admissible path from (0, 0) to (n, n) along the vec-
tor (1, 0), we obtain an admissible path from (1, 0) to (n+1, n) not intersecting
the diagonal. Conversely, any admissible path from (1, 0) to (n + 1, n) not
intersecting the diagonal is the translation of a unique admissible path from
(0, 0) to (n, n) lying under the diagonal.

To count the admissible paths from (1, 0) to (n + 1, n) not intersecting
the diagonal, we subtract from the number of all admissible paths from (1, 0)
to (n + 1, n) the number of all admissible paths intersecting the diagonal.

An admissible path from (1, 0) to (n+1, n) has n unit horizontal edges and
n unit vertical edges. Therefore the number of admissible paths from (1, 0)
to (n + 1, n) is the binomial coefficient

(
2n
n

)

.
To any admissible path γ from (1, 0) to (n+1, n) intersecting the diagonal,

we associate an admissible path γ′ from (0, 1) to (n+1, n) as follows: let (i, i)
be the diagonal point on γ with smallest i; replace the subpath of γ from
(1, 0) to (i, i) by its reflection in the diagonal; the path γ′ is the union of the
reflected subpath and the subpath of γ from (i, i) to (n + 1, n). It is clear
that γ′ is admissible. Any admissible path from (0, 1) to (n+1, n) necessarily
intersects the diagonal and therefore is obtained in this way from a unique
admissible path from (1, 0) to (n+1, n). Now, any admissible path from (0, 1)
to (n + 1, n) has n + 1 unit horizontal edges and n − 1 unit vertical edges.
Therefore the number of admissible paths from (0, 1) to (n + 1, n) is equal to
the binomial coefficient

(
2n

n+1

)

. This is also the number of all admissible paths
from (1, 0) to (n + 1, n) intersecting the diagonal.

Summing up, we see that

cardEn =
(

2n
n

)

−
(

2n
n + 1

)

=
(2n)!
n!n!

− (2n)!
(n + 1)! (n− 1)!

=

(

1− n

n + 1

)

(2n)!
n!n!

=
1

n + 1

(
2n
n

)

. ��

The following inequality follows from Lemmas 5.26 and 5.27.

Proposition 5.28. We have

dimC An(a) ≤ 1
n + 1

(
2n
n

)

.

We will see later (Corollary 5.32 or Remark 5.35) that this inequality is in
fact an equality.
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5.7.2 Relation to the Iwahori–Hecke algebras

We now establish a connection between An(a) and the one-parameter Iwahori–
Hecke algebra Hn(q) = HC

n (q). Recall the generators T1, . . . , Tn−1 of Hn(q).

Theorem 5.29. Let q, a ∈ C− {0} satisfy a2 = (q + 1)2/q.
(a) There is a surjective algebra homomorphism Ψ : Hn(q) → An(a) such

that
Ψ(Ti) =

q + 1
a

ei − 1 (5.23)

for i = 1, . . . , n− 1.
(b) If n = 2, then Ψ : Hn(q) → An(a) is an isomorphism.
(c) If n ≥ 3, then the kernel of Ψ is the two-sided ideal of Hn(q) generated

by 1 + T1 + T2 + T1T2 + T2T1 + T1T2T1.

Note that the conditions on a and q in the theorem imply that q �= −1.

Proof. (a) For i = 1, . . . , n− 1, set

ti = Ψ(Ti) =
q + 1

a
ei − 1 ∈ An(a) . (5.24)

Formula (5.23) defines an algebra homomorphism Ψ : Hn(q) → An(a), pro-
vided t1, . . . , tn−1 satisfy relations (4.16), (4.17), and (4.20), where Ti is re-
placed by ti. Let us check these relations.

Relation (4.16): This is an obvious consequence of (5.20).
Relation (4.17): If |i− j| = 1, then by (5.21) and (5.22),

titjti =

(

q + 1
a

ei − 1

)(

q + 1
a

ej − 1

)(

q + 1
a

ei − 1

)

=

(

q + 1
a

)3

eiejei −
(

q + 1
a

)2
(

eiej + ejei + e2
i

)

+

(

q + 1
a

)
(

2ei + ej

)

− 1

=

(

q + 1
a

)3

ei −
(

q + 1
a

)2
(

eiej + ejei + aei

)

+

(

q + 1
a

)
(

2ei + ej

)

− 1 .

It follows from this and the equality (q + 1)2/a2 = q that
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titjti − tjtitj =

(

q + 1
a

)3

(ei − ej)−
(

q + 1
a

)2

a(ei − ej)

+

(

q + 1
a

)

(ei − ej)

=
q + 1

a

((

q + 1
a

)2

− (q + 1) + 1

)

(ei − ej)

=
q + 1

a

(

q − (q + 1) + 1
)

(ei − ej) = 0 .

Relation (4.20): By (5.22),

t2i − (q − 1)ti − q =

(

q + 1
a

ei − 1

)2

− (q − 1)

(

q + 1
a

ei − 1

)

− q

=

(

q + 1
a

)2

e2
i − 2

q + 1
a

ei + 1

− (q − 1)(q + 1)
a

ei + (q − 1)− q

=

(

q + 1
a

)2

aei − 2
q + 1

a
ei −

(q − 1)(q + 1)
a

ei

=
q + 1

a

(

(q + 1)− 2− (q − 1)
)

ei = 0 .

Formula (5.23) implies

ei = Ψ

(

a

q + 1
(Ti + 1)

)

for all i = 1, . . . , n − 1. Therefore, the generators ei of An(a) belong to the
image of Ψ : Hn(q) → An(a), which proves that Ψ is surjective.

(b) The algebra A2(a) is generated by a single element e subject to the
relation e2 = ae. It is easy to check that the formula e → a(T1 + 1)/(q + 1)
defines an algebra homomorphism A2(a) → H2(q) inverse to Ψ .

(c) From (5.24) we derive

ei =
a

q + 1
(ti + 1) . (5.25)

Substituting these expansions of e1, . . . , en−1 in (5.20)–(5.22), we obtain rela-
tions for t1, . . . , tn−1. It is easy to see that the relation obtained in this way
from relation (5.20) (resp. from relation (5.22)) is equivalent to relation (4.16)
(resp. to relation (4.20)), where Ti is replaced by ti.
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Relations (5.21) with |i− j| = 1 and (4.20) yield

eiejei − ei =

(

a

q + 1

)3

(ti + 1)(tj + 1)(ti + 1)− a

q + 1
(ti + 1)

=
a

(q + 1)q
(

(ti + 1)(tj + 1)(ti + 1)− q(ti + 1)
)

=
a

(q + 1)q
(

titjti + titj + tjti + t2i + 2ti + tj + 1− qti − q
)

=
a

(q + 1)q

(

titjti + titj + tjti

+ (q − 1)ti + q + 2ti + tj + 1− qti − q
)

=
a

(q + 1)q
(

titjti + titj + tjti + ti + tj + 1
)

.

This shows that
1 + ti + tj + titj + tjti + titjti = 0

for all i, j such that |i− j| = 1. Therefore the kernel In of Ψ : Hn(q) → An(a)
is the two-sided ideal of Hn(q) generated by the elements

1 + Ti + Tj + TiTj + TjTi + TiTjTi ,

for all i, j such that |i−j| = 1. Since TiTjTi = TjTiTj, it is enough to consider
the generators corresponding to the pairs (i, j) with j = i+1. Therefore, In is
the two-sided ideal of Hn(q) generated by the elements

1 + Ti + Ti+1 + TiTi+1 + Ti+1Ti + TiTi+1Ti

with i = 1, . . . , n− 1.
Now, as observed in Exercise 1.1.4, for i = 2, . . . , n− 1, we have

σi = (σ1σ2 · · ·σn−1)i−1 σ1 (σ1σ2 · · ·σn−1)−(i−1)

in the braid group Bn. Let ω be the image of σ1σ2 · · ·σn−1 in Hn(q) under
the multiplicative homomorphism Bn → Hn(q) sending σ±1

i to T±1
i for all i.

Clearly, ω is invertible in Hn(q) and Ti = ωi−1 T1 ω−(i−1). It follows that

1 + Ti + Ti+1 + TiTi+1 + Ti+1Ti + TiTi+1Ti

= ωi−1
(

1 + T1 + T2 + T1T2 + T2T1 + T1T2T1

)

ω−(i−1)

for all i = 1, . . . , n− 1. Therefore, as a two-sided ideal, In is generated by the
single element 1 + T1 + T2 + T1T2 + T2T1 + T1T2T1. ��
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5.7.3 The semisimple case

Throughout this section, we assume that q, a are nonzero complex numbers
related by the condition a2 = (q + 1)2/q of Theorem 5.29 and that the as-
sumptions of Section 5.5 hold for q and an integer n ≥ 3. In particular, the
algebra Hn(q) is semisimple, and then, by Corollary 4.51, so is An(a).

By Theorem 5.18, any simple Hn(q)-module is of the form Vλ = V C
λ for

some partition λ of n. We may ask which Vλ is induced from an An(a)-module
via the surjection Ψ : Hn(q) → An(a). In other words, for which partitions λ
of n do we have InVλ = 0, where In = Ker (Ψ : Hn(q) → An(a))?

Lemma 5.30. If λ = (λ1, λ2, . . . , λp) is a partition of an integer n ≥ 3 such
that λi ∈ {1, 2} for all i = 1, . . . , p, then InVλ = 0.

Observe that the partitions in Lemma 5.30 are exactly those whose dia-
grams have one or two columns.

Proof. By Theorem 5.29 (c), it suffices to show that

X = 1 + T1 + T2 + T1T2 + T2T1 + T1T2T1 ∈ H3(q) ⊂ Hn(q)

acts trivially on Vλ. We proceed by induction on n ≥ 3.
Suppose that n = 3. Then there are two partitions of n whose diagrams

have one or two columns, namely λ = (1, 1, 1) and μ = (2, 1). As we know, the
module Vλ is one-dimensional and all Ti act by −1 on Vλ. It follows that X
acts trivially on Vλ. The module Vμ is two-dimensional with basis {vT , vT ′},
where T and T ′ are the standard tableaux of shape μ shown in Figure 5.7.
Observe that T ′ = s2T and that neither s1T nor s1T

′ is a standard tableau.
We have dT (1) = 1 = −dT ′(1) and dT (2) = −2 = −dT ′(2). By (5.10)–(5.12),
the generators T1 and T2 of Hn(q) act on the basis {vT , vT ′} of Vμ by the
matrices

T1 =
(

q 0
0 −1

)

and T2 = − 1
q + 1

(

1 q
1 + q + q2 −q2

)

.

We obtain

T1T2 = − 1
q + 1

(

q q2

−(1 + q + q2) q2

)

,

T2T1 = − 1
q + 1

(

q −q
q(1 + q + q2) q2

)

,

and

T1T2T1 = − 1
q + 1

(

q2 −q2

−q(1 + q + q2) −q2

)

.

From these computations it follows that X = 0 on Vμ.
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Let n ≥ 4 and let λ be a partition of n whose diagram has one or two
columns. Now, X ∈ H3(q) ⊂ Hn−1(q). By Theorem 5.13,

Vλ|Hn−1(q) =
⊕

μ ↪→λ

Vμ ,

where μ runs over all partitions of n−1 obtained from λ by removing a corner.
The diagram of such a partition μ has one or two columns. Therefore, by the
induction hypothesis, X acts as zero on Vμ. Hence, X acts as zero on Vλ. ��

1 2
3

1
2

3

T T ′

Fig. 5.7. The two standard tableaux of shape μ

Proposition 5.31. For any n ≥ 3,

dimC In = n!− 1
n + 1

(
2n
n

)

> 0 . (5.26)

For a partition λ of n, we have InVλ = 0 if and only if the diagram of λ has
one or two columns.

Proof. Let πλ : Hn(q) → EndC(Vλ) be the algebra homomorphism induced
by the action of Hn(q) on Vλ. Since πλ(In) = 0 for all partitions λ whose
diagrams have one or two columns, the isomorphism of Corollary 5.19 sends In

injectively into the product algebra
∏

λ∈Λ≥3(n)

EndC(Vλ) ,

where Λ≥3(n) is the set of partitions of n whose diagrams have at least three
columns. Therefore, by Theorem 5.1,

dimC In ≤
∑

λ∈Λ≥3(n)

(fλ)2 = n! −
∑

λ∈Λ≤2(n)

(fλ)2 , (5.27)

where Λ≤2(n) is the set of partitions of n whose diagrams have one or two
columns. Recall that fλ = fλT

, where λT is the conjugate partition (see
Section 5.1.5). If λ ∈ Λ≤2(n), then λT has at most two parts, and we deduce
from Exercise 5.2.3 (b) that

∑

λ∈Λ≤2(n)

(fλ)2 =
∑

λT

(fλT

)2 =
1

n + 1

(
2n
n

)

. (5.28)
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Therefore,

dimC In ≤ n!− 1
n + 1

(
2n
n

)

. (5.29)

On the other hand, by definition of In and by Proposition 5.28,

dimC In = dimC Hn(q)− dimC An(a) ≥ n!− 1
n + 1

(
2n
n

)

. (5.30)

Combining (5.29) and (5.30), we obtain the equality in (5.26).
It follows from (5.26), (5.27), and (5.28) that

dimC In =
∑

λ∈Λ≥3(n)

(fλ)2 . (5.31)

Since fλ > 0 for any λ �= ∅ and the set Λ≥3(n) is nonempty, dimC In > 0.
Moreover, it follows from the computation of dimC In that the injection

In →
∏

λ∈Λ≥3(n)

EndC(Vλ) (5.32)

is an algebra isomorphism. Thus, InVλ = πλ(In)Vλ = 0 if and only if
λ /∈ Λ≥3(n) or, equivalently, λ ∈ Λ≤2(n). ��

Corollary 5.32. Let n ≥ 2.
(a) The dimension of An(a) as a complex vector space is given by

dimC An(a) =
1

n + 1

(
2n
n

)

.

(b) The set {es}s∈En of reduced words is a basis of An(a).
(c) The algebra homomorphism An(a) → An+1(a) defined by ei → ei for

i = 1, . . . , n− 1 is injective.
(d) The algebra An(a) is semisimple. Any simple An(a)-module is isomor-

phic to a unique module of the form Vλ, where λ is a partition of n whose
diagram has one or two columns.

Proof. (a) For n ≥ 3, this follows from Proposition 5.31, since

dimC An(a) = dimC Hn(q)− dimC In .

For n = 2, the claim (a) is straightforward.
(b) By Lemmas 5.26 and 5.27, the set of reduced words spans An(a) and

consists of
1

n + 1

(
2n
n

)

= dimC An(a)

vectors. Therefore, it is a basis.
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(c) This homomorphism sends a basis of An(a) to a subset of a basis
of An+1(a); therefore it is injective.

(d) We have already observed that An(a) is semisimple. Let λ be a parti-
tion of n whose diagram has one or two columns. By Lemma 5.30, the algebra
An(a) ∼= Hn(q)/In acts on Vλ. If Vλ were not simple as as An(a)-module,
then it would not be simple as a Hn(q)-module, which would contradict The-
orem 5.18.

By Corollary 5.19 and (5.32) we have the algebra isomorphisms

An(a) ∼= Hn(q)/In
∼=

∏

λ∈Λ≤2(n)

EndC(Vλ) .

Hence, any simple An(a)-module is isomorphic to Vλ for some λ ∈ Λ≤2(n). ��

5.7.4 A graphical interpretation of the Temperley–Lieb algebras

We complete our survey of the Temperley–Lieb algebras by giving a graphical
interpretation of their elements.

For n ≥ 1, a simple n-diagram D is a disjoint union of n smoothly em-
bedded arcs in R × [0, 1] such that the boundary ∂D of D consists of the
points (1, 0), . . . , (n, 0) and (1, 1), . . . , (n, 1), and D − ∂D ⊂ R × (0, 1), and
the tangent vector of D at each endpoint is parallel to {0} ×R. Two simple
n-diagrams are isotopic if they can be deformed into each other in the class
of simple n-diagrams. Figures 5.8 and 5.9 show all simple n-diagrams up to
isotopy for n = 1, 2, 3.

Fig. 5.8. The simple 1- and 2-diagrams

Fig. 5.9. The five simple 3-diagrams
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Lemma 5.33. The number of isotopy classes of simple n-diagrams is equal
to the nth Catalan number

1
n + 1

(
2n
n

)

.

Proof. By a semicircle we shall mean a Euclidean semicircle in the upper
half-plane R × [0,+∞) with endpoints (and center) on R × {0}. It is clear
that pulling the upper endpoints of any simple n-diagram down as in Fig-
ure 5.10, we obtain a union of n disjoint embedded arcs in R× [0,+∞) with
2n endpoints on R× {0}. We can isotop such a union into a system of n dis-
joint semicircles. These transformations establish a bijective correspondence
between the isotopy classes of simple n-diagrams and the isotopy classes of
systems of n disjoint semicircles. Therefore it suffices to compute the number
of (isotopy classes of) such systems.

· · ·
· · ·D

· · ·
· · ·

· · ·

� D

Fig. 5.10. Turning a simple n-diagram into a system of semicircles

We label an endpoint of a semicircle by L (resp. by R) if this point is the
left (resp. right) endpoint of the semicircle. Reading the labels of the endpoints
of a system of n disjoint semicircles from left to right along R×{0}, we obtain
a word w of length 2n in the alphabet {L,R}. The word w is a Dyck word ,
i.e., w has as many occurrences of L as occurrences of R and no prefix of w
has more occurrences of R than occurrences of L. It is easy to see that any
Dyck word of length 2n comes from a system of n disjoint semicircles, which
is unique up to isotopy.

Now to a Dyck word w of length 2n we associate a polygonal path Γw

in R2 with consecutive vertices (x0, y0), (x1, y1), . . . , (x2n, y2n). Here x0 =
y0 = 0 and for k ∈ {1, . . . , 2n}, the point (xk, yk) is defined inductively by
xk = xk−1 + 1 and yk = yk−1 if the kth letter in w is L, and xk = xk−1 and
yk = yk−1 + 1 if the kth letter in w is R. Since there are n occurrences of L
and n occurrences of R in w, the path Γw leads from (0, 0) to (n, n). It is
clear that Γw is admissible in the sense defined in the proof of Lemma 5.27.
Moreover, Γw lies under the diagonal because of the condition on the prefixes
of w. Conversely, any admissible path from (0, 0) to (n, n) lying under the
diagonal is of the form Γw for a unique Dyck word w of length 2n.

In conclusion, the number of isotopy classes of simple n-diagrams is equal
to the number of admissible paths from (0, 0) to (n, n) lying under the diag-
onal. By Lemma 5.27, this number is equal to the nth Catalan number. ��
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Fix a nonzero complex number a. Let A′
n(a) be the complex vector space

spanned by the isotopy classes of simple n-diagrams. By Lemma 5.33, the
dimension of A′

n(a) is equal to the nth Catalan number. Every simple n-
diagram D represents a vector in A′

n(a), denoted by [D].
Let us equip A′

n(a) with the structure of an associative algebra. Given two
simple n-diagrams D and D′, define D D′ to be the one-manifold in R× [0, 1]
obtained by attaching D on top of D′ and compressing the result into R×[0, 1].
Then D D′ is a disjoint union of n embedded arcs and a certain number
k(D,D′) ≥ 0 of embedded circles. Removing the circles, we obtain a simple
n-diagram, denoted by D ◦D′. Set

[D] [D′] = ak(D,D′) [D ◦D′] .

It is easy to check that this formula defines an associative product on A′
n(a).

The simple n-diagram
1n = {1, . . . , n} × [0, 1]

represents the unit of A′
n(a).

· · · · · ·

1 ii−1 i+1 i+2 n

e′i

Fig. 5.11. The simple n-diagram e′i

The following theorem gives a graphical interpretation for the Temperley–
Lieb algebra An(a).

Theorem 5.34. For i = 1, . . . , n − 1, let e′i be the simple n-diagram in Fig-
ure 5.11. The assignment

ei → [e′i] (i = 1, . . . , n− 1)

defines an algebra isomorphism An(a) → A′
n(a).

Proof. It is a pleasant exercise to verify that the elements [e′1], . . . , [e
′
n−1]

of A′
n(a) satisfy the defining relations (5.20)–(5.22) of An(a). Therefore there

is an algebra homomorphism f : An(a) → A′
n(a) such that f(ei) = [e′i] for

all i = 1, . . . , n− 1. We now verify that f is an isomorphism. It is enough to
check that f is surjective, since

dimC An(a) ≤ 1
n + 1

(
2n
n

)

= dimC A′
n(a)



5.7 The Temperley–Lieb algebras 235

by Proposition 5.28. It thus suffices to establish the following claim: if D is a
simple n-diagram not isotopic to 1n, then D is equal in A′

n(a) to a product
of elements of the form [e′1], [e

′
2], . . . , [e

′
n−1].

We shall prove the claim by induction on n. If n = 2, then D is isotopic
to e′1 and the claim is true. Assume that the claim is true for simple diagrams
with n − 1 arcs and let us prove it for simple diagrams with n arcs. Let
P1, . . . , Pn be the bottom endpoints of D enumerated from left to right. Since
[D] �= [1n], there is an arc of D connecting two bottom endpoints of D. Since
the arcs of D are disjoint, there is an arc of D connecting two consecutive
bottom endpoints. Denote by i = i(D) the minimal i = 1, 2, . . . , n − 1 such
that there is an arc of D connecting Pi and Pi+1. Now we use induction
on i(D).

If i(D) > 1, then [D] = [D′][e′i], where D′ is a simple n-diagram with
i(D′) = i(D)− 1. The diagram D′ is obtained from D by the following trans-
formation in a neighborhood of Pi−1, Pi, Pi+1: we slightly deform the arc of D
issuing from Pi−1 to produce a local maximum and a local minimum of the
height function. We may assume that the local minimum lies strictly above
the arc of D connecting Pi and Pi+1. Now we may strip ei off and present [D]
as [D] = [D′][e′i] with i(D′) = i(D)− 1.

It remains to consider the case i(D) = 1. We have [D] = [D′′][e′1], where D′′

is a simple n-diagram constructed as follows. Consider the arc of D descending
from the leftmost top endpoint in R × {1}. We take a small subarc of this
arc lying close to this top endpoint and push it down close to the arc of D
connecting P1 and P2. This allows us to strip e1 off and to present [D] in the
form [D] = [D′′][e′1]. It is clear that D′′ contains a strand joining the leftmost
bottom endpoint to the leftmost top endpoint. In other words, D′′ is obtained
by adding a vertical interval from the left to a simple (n − 1)-diagram. The
inductive assumption implies that [D′′] is a product of elements of the form
[e′2], . . . , [e

′
n−1]. This implies our claim and thus completes the proof of the

theorem. ��

Remark 5.35. As a consequence of Theorem 5.34, the dimension of the
Temperley–Lieb algebra An(a) is equal to the nth Catalan number. This pro-
vides another proof of Corollary 5.32 (a). This proof is more general, since it
holds for an arbitrary value of the complex parameter a.

Exercise 5.7.1. Let K = C and Ln−1 be the HK
n (q)-module introduced in

Section 5.6. Use Theorem 5.22 and Lemma 5.30 to show that Ln−1 is a module
over the Temperley–Lieb algebra An(a), where a2 = (q + 1)2/q.

Exercise 5.7.2 (The Jones–Wenzl idempotents). Let u be a nonzero
complex number such that u2k �= 1 for all k = 1, . . . , n. Set a = −(u + u−1).
Define elements f1, . . . , fn ∈ An(a) inductively by f1 = 1 and

fk = fk−1 +
uk−1 − u−(k−1)

uk − u−k
fk−1ek−1fk−1
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for all k = 2, . . . , n. Show that f2
k = fk for all k = 1, . . . , n and that (f1, . . . , fn)

is the unique sequence of elements of An(a) such that fk − 1 is a linear com-
bination of nonempty words in {e1, . . . , ek−1} for k = 1, . . . , n and for all
� < k,

e�fk = fke� = 0 .

Exercise 5.7.3. Let Cn =
(
2n
n

)

/(n + 1) be the nth Catalan number.
(a) Show that

Cn+1 =
n
∑

i=0

Ci Cn−i

for all n ≥ 0. (Hint: Every Dyck word w of length ≥ 2 can be written uniquely
in the form w = Lw1Rw2 with (possibly empty) Dyck words w1, w2.)

(b) Deduce the following generating function for the Catalan numbers:

∞
∑

n=0

Cn xn =
1−

√
1− 4x

2x
.

Notes

Before 1983, essentially the only interesting known linear representation of
the braid group Bn was the Burau representation. The situation changed
radically when Vaughan Jones introduced the Temperley–Lieb algebras and
used them to construct new representations of the braid groups; see [Jon83],
[Jon84], [Jon86], [Jon87], [Jon89]. Soon thereafter, inspired by Jones’s work,
Reshetikhin and Turaev showed how to obtain finite-dimensional represen-
tations of the braid groups from representations of quantum groups; see
[Tur88], [RT90]. For comprehensive introductions to quantum groups and their
connections to braids and links, see [Tur94], [Kas95], [KRT97]. In this chapter
we followed a “dual” approach to the representations of Bn, based on the
theory of Iwahori–Hecke algebras.

The content of Section 5.1 is standard; see, e.g., [Jam78], [FH91], [Ful97],
[Sag01]. Our proof of Theorem 5.1 follows Stanley [Sta88]; see also [Sag01,
Sect. 5.1]. This theorem can also be proved with the help of the Robinson–
Schensted correspondence, which provides a bijection

Sn %
∐

λ�n

Tλ × Tλ ;

see [Knu73, Sect. 5.1.4], [Ful97, Chap. 4], [Sag01, Chap. 3].
The hook length formula in Exercise 5.2.6 is due to Frame, Robinson, and

Thrall [FRT54]; for a proof, see, e.g., [Knu73, Sect. 5.1.4], [Gol93, Sect. 12],
[Sag01, Chap. 3]. In the formulation of this exercise, we followed [Mat99,
Chap. 3, Exer. 25]. Exercise 5.5.4 is taken from [GHJ89, Chap. 2] (see
also [Ram97]).
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The modules Vλ of Section 5.3 were constructed by Hoefsmit [Hoe74]
as a generalization of Young’s seminormal representations of the symmetric
groups. A general theory of seminormal representations is given in [Ram97].
In Sections 5.3–5.5 we followed [Hoe74], [Wen88], [Ram97]. Lusztig [Lus81]
gave an explicit construction of the isomorphism of Exercise 5.5.2.

For a study of the Iwahori–Hecke algebras and their representations with-
out assuming semisimplicity, see, e.g., [DJ86], [DJ87], [Gec98], [Mat99].

The fact that the reduced Burau representation of Bn appears as the
simple module associated to the partition (2, 1, . . . , 1) was pointed out by
Jones [Jon84], [Jon86], [Jon87].

Linear representations of the Temperley–Lieb algebras first came up in
physics in the work by Temperley and Lieb [TL71]. The Temperley–Lieb al-
gebras themselves were introduced by Jones [Jon83] in his study of subfactors.
Jones [Jon84], [Jon86] also related these algebras to the Iwahori–Hecke alge-
bras and to the braid groups. The Jones–Wenzl idempotents of Exercise 5.7.2
were introduced by Jones in [Jon83]. The inductive formula defining them
is due to Wenzl [Wen87]. These idempotents play an important role in the
theory of invariants of three-dimensional manifolds (see [Tur94, Sect. XII.4]).
The reader interested in Catalan numbers is encouraged to take a close look
at [Sta99, Exercise 6.19], which lists 66 sets each of whose cardinal is equal to
the nth Catalan number.

In Section 5.7 we essentially followed [GHJ89, Sects. 2.8–2.11]. For more
on the graphical interpretation of the Temperley–Lieb algebras, see [Kau87],
[Kau90], [Kau91], [Tur94, Sect. XII.3].

It should also be noted that Formanek et al. classified all complex ir-
reducible representations of Bn of dimension ≤ n; see [For96], [FLSV03].
For more on representations of B3, see [TW01], [Tub01]. Quotients of the
braid group algebras by cubic relations were investigated by Funar et al.;
see [Fun95], [BF04].



6

Garside Monoids and Braid Monoids

Braid groups may be viewed as groups of fractions of certain monoids called
braid monoids. The latter belong to a wider class of so-called Garside monoids.
In this chapter we investigate properties of monoids and specifically of Garside
monoids. As an application, we give a solution of the conjugacy problem in
the braid groups. We also discuss generalized braid groups associated with
Coxeter matrices.

6.1 Monoids

6.1.1 Definitions and examples

A monoid is a set M equipped with a binary operation (multiplication)
M × M → M that is associative and has a neutral element. For a, b ∈ M ,
the image of (a, b) ∈ M ×M under the multiplication is denoted by ab and
called the product of a and b. The associativity means that (ab)c = a(bc) for
all a, b, c ∈ M . The neutral element 1 ∈ M satisfies a1 = 1a = a for all a ∈ M .
Such an element is always unique.

A monoid M is left (resp. right) cancellative if for all a, b, c ∈ M ,

ab = ac =⇒ b = c (resp. ba = ca =⇒ b = c) .

An element a of a monoid M is invertible if there is b ∈ M such that
ab = ba = 1. A group is a monoid in which all elements are invertible.

A map f from a monoid M to a monoid M ′ is a monoid homomorphism
if f(ab) = f(a)f(b) for all a, b ∈ M and f sends the neutral element of M to
the neutral element of M ′.

Examples 6.1. (a) The set of nonnegative integers with addition as a binary
operation is a monoid denoted by N.

(b) The set of positive integers with multiplication as a binary operation
is a monoid denoted by N×.

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 6,
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(c) A free monoid on a set X is a monoid X∗ containing X as a subset and
such that any set-theoretic map from X to a monoid M extends uniquely to
a monoid homomorphism X∗ → M . This property defines X∗ up to monoid
isomorphism. It is easy to show that every element w of X∗ can be expanded
in a unique way as a word on the alphabet X , i.e., as a product of several
elements of X ⊂ X∗. The number of elements of X in this expansion (counted
with multiplicities) is called the length of w and is denoted by l(w). Clearly,
l(1) = 0, l(x) = 1 for x ∈ X , and l(ww′) = l(w) + l(w′) for any w,w′ ∈ X∗.
For X = ∅, the monoid X∗ consists only of the neutral element; this is the
trivial monoid .

The monoids in examples (a), (b), (c) are left and right cancellative, and
their neutral elements are the only invertible elements.

6.1.2 Divisibility in monoids

If a = bc, where a, b, c are elements of a monoid M , then we say that b is
a left divisor of a and c is a right divisor of a. We also say that a is a right
multiple of b and a left multiple of c. We write b & a and a ' c. For example,
1 & a and a ' 1 for all a ∈ M , since a = 1a = a1.

Lemma 6.2. The relations & and ' in a monoid are reflexive and transitive.

Proof. The reflexivity of & follows from the identity a = a1; and the transitiv-
ity, from the associativity of multiplication. The proofs for ' are similar. ��

6.1.3 Atomic monoids

For any element a �= 1 of a monoid M , set

‖a‖ = sup
{

r ≥ 1 | a = a1 · · · ar with a1, . . . , ar ∈ M − {1}
}

∈ {1, 2, . . . ,∞}.

Also set ‖1‖ = 0. It is easy to check that for all a, b ∈ M ,

‖ab‖ ≥ ‖a‖+ ‖b‖ .

Note that ‖a‖ = 0 if and only if a = 1.
An element a ∈ M is called an atom if ‖a‖ = 1. In other words, a ∈ M is

an atom if a �= 1 and a = a1 · · ·ar implies that ai = 1 for all i but one. Any
a ∈ M with finite ‖a‖ expands as a = a1 · · ·ar, where r = ‖a‖ and a1, . . . , ar

are atoms. This justifies the following definition: a monoid M is atomic if ‖a‖
is finite for all a ∈ M .

As an exercise, the reader may verify that the monoids N, N× introduced
above and all free monoids are atomic. The monoid {1, x} with multiplication

x2 = x1 = 1x = x , 11 = 1 ,

is not atomic. Groups have no atoms and are not atomic (except the trivial
group).
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Lemma 6.3. If elements a, b of an atomic monoid M satisfy a & b and b & a,
then a = b. Similarly, if a ' b and b ' a, then a = b.

Proof. Since a & b & a, there are u, v ∈ M such that b = au and a = bv.
Then a = auv and

‖a‖ = ‖auv‖ ≥ ‖a‖+ ‖u‖+ ‖v‖ .

This implies that ‖u‖ = ‖v‖ = 0. Hence u = v = 1 and a = b. The relation '
is treated similarly. ��

Lemmas 6.2 and 6.3 imply that the relations& and ' on an atomic monoid
are partial orders.

Given a subset E of an atomic monoid M , we say that an element a ∈ E
is maximal (resp. minimal) with respect to & if b & a (resp. a & b) for all
b ∈ E. A maximal (resp. minimal) element of E may not exist, but if it exists,
it is unique by Lemma 6.3. Similar definitions apply to the relation '.

The equation ab = 1 in an atomic module M has only one solution: a = 1,
b = 1. Indeed, if ab = 1 for a, b ∈ M , then 1 & a & 1, so that a = 1 and b = 1.
In particular, the neutral element is the unique invertible element of M .

6.1.4 Presentations of a monoid

Consider a set X and a subset R of X∗×X∗. Let ∼ be the smallest equivalence
relation on X∗ containing all pairs (w1rw2, w1r

′w2), where (r, r′) ∈ R and
w1, w2 ∈ X∗. In other words, ∼ is the smallest equivalence relation on X∗

such that w1rw2 ∼ w1r
′w2 for all (r, r′) ∈ R and w1, w2 ∈ X∗. We define M

to be the set of equivalence classes for ∼. It is clear that M has a unique
structure of a monoid such that the projection P : X∗ → M is a monoid
homomorphism. We say that 〈X |R〉 is a monoid presentation of M and call
the elements of X generators and the elements of R relations .

It is clear that the set P (X) ⊂ M generates M in the sense that every
element of M is a product of elements of this set. For any relation (r, r′) ∈ R,
the element P (r) = P (r′) of M is called a relator associated with the pre-
sentation 〈X |R〉. In the sequel we shall often use the notation r = r′ for a
relation (r, r′) ∈ R and make no distinction between a generator x ∈ X and
its projection P (x) to M .

Note that a set-theoretic map f from the set X to a monoid M ′ in-
duces a monoid homomorphism M → M ′ if and only if the monoid extension
f∗ : X∗ → M ′ of f satisfies f∗(r) = f∗(r′) for all (r, r′) ∈ R.

We introduce several useful classes of monoid presentations. A monoid
presentation 〈X |R〉 is finite if both sets X and R are finite. A presen-
tation 〈X |R〉 of a monoid M is weighted if there is a monoid homomor-
phism � : M → N such that �(x) ≥ 1 for all x ∈ X . The homomorphism � is
called the weight .
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A presentation 〈X |R〉 of a monoid M is length-balanced if l(r) = l(r′) for
all (r, r′) ∈ R, where l is the length function on X∗ introduced in Section 6.1.1.
The formula �(x) = 1 for all x ∈ X defines then a canonical weight � : M → N.
Thus, all length-balanced presentations are weighted. The converse is not
true; for instance, the presentation 〈x, y |x3 = y2〉 is weighted but not length-
balanced.

Lemma 6.4. If a monoid M has a weighted presentation 〈X |R〉, then M is
atomic and all its atoms are contained in the set X of generators. If M has
a length-balanced presentation 〈X |R〉, then the set of atoms of M coincides
with X and ‖a‖ = �(a) for all a ∈ M , where � is the canonical weight on M .

Proof. Let � : M → N be a monoid homomorphism such that �(x) ≥ 1 for all
generators x ∈ X . Then �(a) ≥ 1 for all a ∈ M − {1}. If a ∈ M expands as a
product a1 · · · ar with a1, . . . , ar ∈ M−{1}, then �(a) = �(a1)+· · ·+�(ar) ≥ r.
Hence �(a) ≥ ‖a‖, so that M is atomic. That all atoms of M belong to X
follows from the fact that any generating subset of a monoid must contain
all the atoms. The second claim of the lemma is a direct consequence of the
definitions. ��

6.1.5 The word problem and the divisibility problem

The word problem for a presentation 〈X |R〉 of a monoid M is the following:
given two words w,w′ ∈ X∗ representing certain a, a′ ∈ M , determine whether
a = a′. The closely related left (resp. right) divisibility problem is the following:
given two words w,w′ ∈ X∗ representing a, a′ ∈ M , determine whether a & a′

(resp. a′ ' a).
Both the word problem and the divisibility problem can easily be solved

for a finite weighted presentation 〈X |R〉 of M . Let � : M → N be a weight,
so that �(x) ≥ 1 for all x ∈ X . Observe that the value of � on any a ∈ M
represented by a nonempty word w ∈ X∗ is greater than or equal to the length
of w. Let W (a) ⊂ X∗ be the set of words representing a. All these words
have length ≤ �(a). Since X is finite, the number of words of length ≤ �(a)
is finite and the set W (a) is finite. To list all elements of W (a), one starts
with the given word w representing a and consecutively applies all possible
substitutions of the form

w1rw2 ↔ w1r
′w2

(for (r, r′) ∈ R) to any element of W (a) already found. Since R is finite, this
procedure is also finite. It gives a solution to the word problem: two elements
a, a′ ∈ M are equal if and only if W (a) = W (a′).

We also obtain a solution of the left and right divisibility problems.
Namely, a & a′ if and only if some prefix (initial segment) of a word in W (a′)
belongs to W (a). Similarly, a′ ' a if and only if some suffix (final segment)
of a word in W (a′) belongs to W (a).
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6.2 Normal forms and the conjugacy problem

We introduce and study a certain monoid MΣ derived from a subset Σ of a
given monoid M . Under favorable assumptions, we obtain a normal form for
the elements of MΣ and solve the conjugacy problem in MΣ.

6.2.1 The monoid MΣ

Let M be a monoid and let Σ ⊂ M be a subset of M containing the neutral
element 1. Let MΣ be the monoid generated by the symbols [a], where a
runs over Σ, modulo the defining relations [1] = 1 and [a][b] = [ab] whenever
a, b, ab ∈ Σ. There is a monoid homomorphism p : MΣ → M defined by
p([a]) = a for all a ∈ Σ.

The definition of MΣ can be rephrased by identifying a product [a1] · · · [ar]
in MΣ (where a1, . . . , ar ∈ Σ) with the sequence (a1, . . . , ar). Then MΣ is the
set of equivalence classes of finite sequences (a1, . . . , ar) of elements of Σ under
the equivalence generated by the relations

(a1, . . . , ai−1, a
′
ia

′′
i , ai+1, . . . , ar) ∼ (a1, . . . , ai−1, a

′
i, a

′′
i , ai+1, . . . , ar)

whenever a′ia
′′
i ∈ Σ and by the relation saying that the empty sequence is

equivalent to the one-element sequence (1), where 1 ∈ Σ. The product in MΣ

is induced by concatenation of sequences.
We formulate the main theorem on the structure of MΣ .

Theorem 6.5. Let M be an atomic monoid and Σ a subset of M such that
1 ∈ Σ and the following three conditions hold:

(∗1) All left divisors and all right divisors of elements of Σ belong to Σ.
(∗2) For any a, b, c ∈ Σ, if ab = ac or ba = ca, then b = c.
(∗3) For any a, b ∈ Σ, the set {x ∈ Σ |x & b and ax ∈ Σ} has a maximal

element (with respect to &).

Then for any ξ ∈ MΣ, there is a unique α(ξ) ∈ Σ such that [α(ξ)] is a
left divisor of ξ that is maximal among all left divisors of ξ lying in the
set {[a]}a∈Σ ⊂ MΣ. Moreover, there is a unique ω(ξ) ∈ MΣ such that
ξ = [α(ξ)]ω(ξ).

Proof. The proof goes in five steps.
Step 1. By (∗3), for any a, b ∈ Σ, the set {x ∈ Σ |x & b and ax ∈ Σ}

has a maximal element c ∈ Σ. Then b = cd for some d ∈ M . By (∗1), d ∈ Σ,
and by (∗2), d is unique. Set α2(a, b) = ac ∈ Σ and ω2(a, b) = d ∈ Σ. Clearly,

α2(a, b) ω2(a, b) = ab . (6.1)

For instance, for all a ∈ Σ,

α2(a, 1) = α2(1, a) = a and ω2(a, 1) = ω2(1, a) = 1 .
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We claim that for any a, b, c ∈ Σ such that ab ∈ Σ,

α2(ab, c) = α2(a, α2(b, c)) (6.2)

and
ω2(ab, c) = ω2(a, α2(b, c))ω2(b, c) . (6.3)

The rest of Step 1 is devoted to the proof of this claim. We shall use the
following observation: If a, b, c ∈ M satisfy ac ∈ Σ and ab & ac, then b & c.
Indeed, if ac = abd with d ∈ M , then the assumption ac ∈ Σ and (∗1) imply
that a, c, bd ∈ Σ. By (∗2), we have c = bd, so that b & c.

By definition, α2(b, c) = bd, where d is maximal such that d & c and
bd ∈ Σ. Similarly,

α2(a, α2(b, c)) = α2(a, bd) = ad′ ,

where d′ is maximal such that d′ & bd and ad′ ∈ Σ. Since b & bd and ab ∈ Σ
(the latter by hypothesis), b & d′. Writing d′ = be with e ∈ Σ, we obtain
α2(a, bd) = abe, with be & bd ∈ Σ and abe ∈ Σ. By the observation above,
e & d & c, so that e & c. Now α2(ab, c) = abf , where f is maximal such
that f & c and abf ∈ Σ. Therefore, e & f . On the other hand, f & c and
bf ∈ Σ imply f & d and bf & bd. This and the inclusion abf ∈ Σ imply that
bf & d′ = be. Therefore, f & e. By Lemma 6.3, e = f and

α2(ab, c) = abf = abe = ad′ = α2(a, α2(b, c)) .

This proves (6.2). To prove (6.3), note that by (6.1) and (6.2),

α2(ab, c)ω2(a, α2(b, c))ω2(b, c) = α2(a, α2(b, c))ω2(a, α2(b, c))ω2(b, c)
= aα2(b, c)ω2(b, c)
= abc

= α2(ab, c)ω2(ab, c) .

By Condition (∗2), to deduce (6.3) it is enough to prove that the product
ω2(a, α2(b, c))ω2(b, c) belongs to Σ. By definition, there is d ∈ Σ such that
α2(b, c) = bd ∈ Σ and c = dω2(b, c). Let f be the maximal element of Σ such
that f & bd and af ∈ Σ. Since b & bd and ab ∈ Σ, there is e ∈ Σ such that
f = be. Then

bd = fω2(a, bd) = b e ω2(a, bd) .

By (∗2), d = e ω2(a, bd) and

e ω2(a, α2(b, c))ω2(b, c) = e ω2(a, bd)ω2(b, c) = dω2(b, c) = c .

This shows that ω2(a, α2(b, c))ω2(b, c) is a right divisor of c ∈ Σ, hence an
element of Σ.
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Step 2. At this step we prove the following claim: there is a unique map
α : MΣ → Σ such that

(i) α(1) = 1 and
(ii) α([a]η) = α2(a, α(η)) for all a ∈ Σ and η ∈ MΣ.

Recall the monoid homomorphism p : MΣ → M . For any ξ ∈ MΣ, we set
H(ξ) = ‖p(ξ)‖ ≥ 0. We call H(ξ) the height of ξ. It is clear that

H(ξξ′) ≥ H(ξ) + H(ξ′)

for any ξ, ξ′ ∈ MΣ. Note that H(ξ) = 0 if and only if ξ = 1, and H(ξ) = 1 if
and only if ξ = [a], where a is an atom of M belonging to Σ. To see this, pick
an expansion ξ = [a1] · · · [ar] with a1, . . . , ar ∈ Σ. Then

H(ξ) = ‖p(ξ)‖ ≥ ‖a1‖+ · · ·+ ‖ar‖ .

If H(ξ) = 0, then a1 = · · · = ar = 1 and ξ = 1. If H(ξ) = 1, then all the
elements a1, . . . , ar ∈ Σ are equal to 1 except one element, which is an atom.

For ξ ∈ MΣ, we define α(ξ) by induction on the height of ξ. For ξ = 1, set
α(ξ) = 1 ∈ Σ. If H(ξ) = 1, then ξ = [a] = [a] 1 for some atom a ∈ Σ, and to
satisfy (ii) we have to set α(ξ) = α2(a, 1) = a.

Pick an integer k ≥ 1 and suppose that α(ξ) is defined for all ξ of height≤ k
so that conditions (i), (ii) are satisfied whenever H([a]η) ≤ k. Let ξ be an
element of MΣ of height k + 1. We can expand ξ = [a]η, where a ∈ Σ, a �= 1,
and η ∈ MΣ. Then H([a]) ≥ 1 and H(η) < H([a]η), so that α(η) is already
defined. To satisfy (ii), we have to set α(ξ) = α2(a, α(η)). We must check
that α2(a, α(η)) does not depend on the choice of the expansion ξ = [a]η. By
definition of MΣ and the induction hypothesis, it is enough to check that

α2(a, α(η)) = α2(a′, α([a′′]η))

when a = a′a′′ with a′, a′′ ∈ Σ − {1}. Since

H([a′′] η) ≤ H([a] η)−H([a′]) < H([a] η) ,

the induction hypothesis yields that α([a′′] η) = α2(a′′, α(η)). By (6.2),

α2(a′, α([a′′] η)) = α2(a′, α2(a′′, α(η)))
= α2(a′a′′, α(η))
= α2(a, α(η)) .

Therefore α is well defined on elements of MΣ of height ≤ k + 1 and satisfies
conditions (i) and (ii). This completes the induction and proves our claim.

Step 3. We now check that for any ξ ∈ MΣ , the element [α(ξ)] of MΣ is a
left divisor of ξ that is maximal among all left divisors of ξ lying in the set

{[a]}a∈Σ ⊂ MΣ .
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Using the projection p : MΣ → M , it is easy to show that all divisors of 1
in MΣ are equal to 1. Therefore if H(ξ) = 0, then [α(ξ)] = ξ = 1 is the only
left divisor of 1 ∈ MΣ. If H(ξ) ≥ 1, write ξ = [a]η for some a ∈ Σ − {1} and
η ∈ MΣ. Then H(η) < H(ξ) and α(ξ) = α2(a, α(η)). Therefore, α(ξ) = ab for
some b ∈ Σ such that b & α(η). By the induction assumption, [α(η)] is a left
divisor of η. Hence,

[α(ξ)] = [ab] = [a][b] & [a][α(η)] & [a]η = ξ .

This shows that [α(ξ)] is a left divisor of ξ belonging to the set {[a]}a∈Σ. We
now show that [α(ξ)] is maximal with these properties. Suppose that ξ = [a′]η′

for some a′ ∈ Σ, η′ ∈ MΣ. Then α(ξ) = α2(a′, α(η′)) = a′b′ for some b′ ∈ Σ.
Hence, a′ & α(ξ) and [a′] & [α(ξ)].

Step 4. We claim that there is a unique map ω : MΣ → MΣ such that

(i) ω(1) = 1 and
(ii) ω([a]η) = [ω2(a, α(η))]ω(η) for all a ∈ Σ and η ∈ MΣ.

The value of ω on any ξ ∈ MΣ is defined by induction on the height of ξ.
Set ω(1) = 1. Pick an integer k ≥ 1 and suppose that ω(ξ) is defined for all ξ of
height ≤ k, so that conditions (i) and (ii) are satisfied whenever H([a]η) ≤ k.
Let ξ = [a]η be an element of MΣ of height k+1 with a ∈ Σ−{1} and η ∈ MΣ .
Then H(η) < H(ξ) and ω(η) is defined. To satisfy (ii), we have to set

ω(ξ) = [ω2(a, α(η))]ω(η) .

We must check that ω(ξ) is independent of the choice of the expansion ξ = [a]η.
By definition of MΣ and the induction hypothesis, it is enough to check that

ω2(a, α(η))ω(η) = ω2(a′, α([a′′] η))ω([a′′] η)

when a = a′a′′ with a′, a′′ ∈ Σ − {1}. As we know, α([a′′] η) = α2(a′′, α(η)).
Since H([a′′] η) < H([a] η), the induction hypothesis yields the equality
ω([a′′] η) = [ω2(a′′, α(η))]ω(η). By (6.3),

ω2(a′, α([a′′] η))ω([a′′] η) = ω2(a′, α2(a′′, α(η)))ω([a′′] η)
= ω2(a′, α2(a′′, α(η))) [ω2(a′′, α(η))]ω(η)
= ω2(a′a′′, α(η))ω(η)
= ω2(a, α(η))ω(η) .

Therefore ω is well defined on elements of MΣ of height ≤ k + 1 and satisfies
conditions (i) and (ii). This completes the induction and proves our claim.

Step 5. To complete the proof, it remains to show that for any ξ ∈ MΣ ,
the element η = ω(ξ) is the unique element of MΣ such that ξ = [α(ξ)] η. We
proceed by induction on H(ξ). If H(ξ) = 0, then ξ = 1, α(ξ) = 1, ω(ξ) = 1,
and the claim is obvious. Suppose that our claim holds for all ξ of height ≤ k
for some integer k ≥ 1. Let ξ be an element of MΣ of height k +1. By Step 3,
ξ = [α(ξ)]η with η ∈ MΣ. Clearly, α(ξ) �= 1 and therefore H(η) < H(ξ).
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Set θ = [α(ξ)] [α(η)]. By definition of the map α,

α(θ) = α2(α(ξ), α(η)) = α(ξ) b

for some b ∈ Σ such that [b] & [α(η)] & η. Hence α(ξ) & α(θ) and

[α(θ)] = [α(ξ)] [b] & [α(ξ)] η = ξ .

Since [α(ξ)] is the maximal left divisor of ξ in the set {[a]}a∈Σ, we have
[α(ξ)] = [α(θ)]. Projecting to M , we conclude that

α(ξ) = α(θ) = α2(α(ξ), α(η)) .

Therefore, α(ξ)α(η) = α2(α(ξ), α(η))α(η). On the other hand, by (6.1),

α(ξ)α(η) = α2(α(ξ), α(η))ω2(α(ξ), α(η)) .

Combining these equalities, we obtain

α2(α(ξ), α(η))α(η) = α2(α(ξ), α(η))ω2(α(ξ), α(η)) .

By (∗2), we may cancel α2(α(ξ), α(η)). Thus α(η) = ω2(α(ξ), α(η)) and

ω(ξ) = ω([α(ξ)] η) = [ω2(α(ξ), α(η))]ω(η) = [α(η)]ω(η) = η ,

where the last equality follows from the induction hypothesis. This shows that
ξ = [α(ξ)]ω(ξ) and that any η ∈ MΣ satisfying ξ = [α(ξ)] η is equal to ω(ξ).

��

6.2.2 The normal form in MΣ

Under the assumptions of Theorem 6.5, any ξ ∈ MΣ may be inductively
expanded as follows:

ξ = [α(ξ)]ω(ξ) = [α(ξ)] [α(ω(ξ))]ω2(ξ)
= [α(ξ)] [α(ω(ξ))] [α(ω2(ξ))]ω3(ξ) = · · · .

This expansion process may be stopped at the rth step, where r is the minimal
integer such that ωr+1(ξ) = 1. Such r exists and does not exceed ‖p(ξ)‖, since
in an expansion of ξ as a product of generators [a] with a ∈ Σ at most ‖p(ξ)‖ of
the generators may be distinct from 1. (Here it is useful to note that α(η) �= 1
for any η ∈ MΣ − {1}.)

These observations lead us to a normal form for each element of MΣ .
A normal form for ξ ∈ MΣ is a sequence (a1, a2, . . . , ar) of elements of Σ, all
different from 1, such that ξ = [a1] [a2] · · · [ar] and

ai = α([ai][ai+1] · · · [ar])

for all i = 1, 2, . . . , r. The remarks above show that each ξ ∈ MΣ has a normal
form. (The normal form of 1 ∈ MΣ is the empty sequence.) The uniqueness
in the last claim of Theorem 6.5 implies the uniqueness of the normal form.
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6.2.3 The cancellativity of MΣ

We use Theorem 6.5 and the map α2 : Σ ×Σ → Σ introduced in its proof to
establish the left cancellativity of MΣ.

Lemma 6.6. Under the assumptions of Theorem 6.5, the monoid MΣ is left
cancellative.

Proof. We need to show that ξη = ξθ ⇒ η = θ for ξ, η, θ ∈ MΣ . Suppose first
that ξ = [a] for some a ∈ Σ. Then α(ξη) = α2(a, α(η)) = ab ∈ Σ for some
b ∈ Σ such that b & α(η). The equalities

ab = α(ξη) = α(ξθ) = α([a]θ) = α2(a, α(θ)) = ac

for some c & α(θ) imply that b = c & α(θ). Then there are η′, θ′ ∈ MΣ such
that [b] η′ = η and [b] θ′ = θ. As we know, ω(ξη) is the unique element x ∈ MΣ

such that ξη = [α(ξη)]x = [ab]x. Since

ξη = [a][b] η′ = [ab] η′ ,

we have ω(ξη) = η′. Similarly, ω(ξθ) = θ′. Hence,

η′ = ω(ξη) = ω(ξθ) = θ′ and η = [b] η′ = [b] θ′ = θ .

In general, ξ = [a1][a2] · · · [ar] with a1, a2, . . . , ar ∈ Σ. As we know,
[a1][a2] · · · [ar]η = [a1][a2] · · · [ar]θ implies that [a2] · · · [ar]η = [a2] · · · [ar]θ.
Continuing inductively, we obtain η = θ. ��

6.2.4 The word problem in MΣ

We say that the set Σ ⊂ M is weighted if there is a map � : Σ → N such that
�(1) = 0, �(a) ≥ 1 for a �= 1, and �(a) + �(b) = �(ab) whenever a, b, ab ∈ Σ.
The map � extends then to a monoid homomorphism MΣ → N that turns
the presentation of MΣ above into a weighted presentation. If, in addition,
Σ is finite, then Section 6.1.5 yields a solution of the word problem and of the
divisibility problem in MΣ.

6.2.5 The conjugacy problem in MΣ

The conjugacy problem in a group G consists in finding a procedure that
allows, given α, β ∈ G, to decide whether there is γ ∈ G such that α = γβγ−1

or, equivalently, αγ = γβ. By extension, the conjugacy problem in a monoid M
consists in finding a procedure that allows, given a, b ∈ M , to decide whether
there is c ∈ M such that ac = cb. The following lemma yields the key to the
conjugacy problem in MΣ.
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Lemma 6.7. Let M , Σ ⊂ M satisfy the assumptions of Theorem 6.5. Given
a, b ∈ MΣ, there is c ∈ MΣ such that ac = cb if and only if there exist a
sequence a0 = a, a1, . . . , ar = b of elements of MΣ and a sequence c1, . . . , cr

of elements of Σ such that

ai−1 [ci] = [ci] ai

for all i = 1, . . . , r.

Proof. If we have such sequences, then ac = cb for c = [c1][c2] · · · [cr]. Con-
versely, let c ∈ MΣ be such that ac = cb. We prove the assertion by induction
on the length r of the normal form (c1, . . . , cr) of c. If r = 1, then c = [c1] and
we are done. Suppose that r ≥ 2. Since

[c1] = [α(c)] & c & cb = ac ,

we have
c1 & α(ac) = α2(a, α(c)) = α2(a, c1) .

Therefore,
[c1] & [α2(a, c1)] & ac1 .

Hence, there is a1 ∈ MΣ such that

[c1] a1 = a [c1] .

We have

[c1]a1[c2] · · · [cr] = a[c1][c2] · · · [cr] = ac = cb = [c1][c2] · · · [cr]b .

By Lemma 6.6, we may divide on the left by [c1]. This gives a1c
′ = c′b, where

c′ = [c2] · · · [cr] has a normal form of length r − 1. We conclude using the
induction hypothesis. ��

Lemma 6.7 provides a solution of the conjugacy problem in MΣ. Suppose
that M , Σ satisfy the conditions of Theorem 6.5 and Σ is finite. Suppose
also that MΣ admits a finite weighted presentation so that the word problem
in MΣ is solvable (for instance, it is enough to suppose that Σ is weighted
in the sense of Section 6.2.4). To determine whether two elements a, b ∈ MΣ

are conjugate (in the sense that there is c ∈ MΣ such that ac = cb), first
observe that conjugate elements of MΣ have the same weight. Since there are
only finitely many elements of MΣ of a given weight, a has only finitely many
conjugates. Lemma 6.7 shows that in order to find them all, it is enough
to apply all possible conjugacies by elements of Σ to all known conjugates
of a until no new elements are found. We thus obtain a finite list a1, . . . , as of
conjugates of a in MΣ. If b = ai for some i, then b is conjugate to a; otherwise,
b is not conjugate to a.
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6.2.6 Comprehensive sets

A set Σ ⊂ M is comprehensive if 1 ∈ Σ and M has a presentation by gener-
ators and relations such that all generators and relators belong to Σ.

Lemma 6.8. If Σ is a comprehensive subset of a monoid M such that all
left divisors of elements of Σ belong to Σ, then the monoid homomorphism
p : MΣ → M is an isomorphism.

Proof. Since Σ contains a set of generators of M , the homomorphism p
is surjective. We need only to prove its injectivity. Observe first that if
a1, a2, . . . , an are elements of Σ with n ≥ 2 such that a = a1a2 · · · an ∈ Σ,
then [a] = [a1][a2] · · · [an]. Indeed, a1a2 is a left divisor of a and therefore
a1a2 ∈ Σ. By definition of MΣ , we have [a1][a2] = [a1a2]. Continuing by
induction, we obtain [a1][a2] · · · [an] = [a].

Consider now a presentation 〈X |R〉 of M by generators and relations
and let P : X∗ → M be the natural projection. We assume that P (x) ∈ Σ
for all x ∈ X and P (r) = P (r′) ∈ Σ for all (r, r′) ∈ R. Define a monoid
homomorphism Q : X∗ → MΣ by Q(x) = [P (x)] for x ∈ X . The observation
above implies that for any r ∈ X∗ with P (r) ∈ Σ, we have Q(r) = [P (r)].
Therefore for any relation (r, r′) ∈ R, we have

Q(r) = [P (r)] = [P (r′)] = Q(r′) .

This implies that there is a monoid homomorphism q : M → MΣ such that
Q = qP . Then

qp([P (x)]) = q(P (x)) = Q(x) = [P (x)]

for all x ∈ X . Since the set P (X) generates M , we have qp = id. Therefore p
is injective. ��

Lemma 6.8 shows that under appropriate assumptions on Σ we have
MΣ

∼= M , so that all the properties of MΣ obtained above hold for M .

Exercise 6.2.1. Show that (a1, a2, . . . , ar) is a normal form of an element
of MΣ if and only if (ai, ai+1) is a normal form of the product [ai] [ai+1] for
i = 1, . . . , r − 1.

Exercise 6.2.2. Observe that for any Σ ⊂ M with 1 ∈ Σ, the subset {[a]}a∈Σ

of MΣ is comprehensive. Deduce the following partial converse to Lemma 6.8:
if the monoid homomorphism p : MΣ → M is an isomorphism, then Σ is
comprehensive.

Exercise 6.2.3. Verify that for any set X , the subset Σ = X∪{1} of the free
monoid M = X∗ is weighted, comprehensive, and satisfies all the conditions
of Theorem 6.5. For these M , Σ, verify directly all the claims established in
this section.
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6.3 Groups of fractions and pre-Garside monoids

6.3.1 Groups of fractions

A monoid homomorphism i : M → G is said to be universal if G is a group
and for any monoid homomorphism f from M to an arbitrary group G′,
there is a unique group homomorphism g : G → G′ such that f = gi. Every
monoid M admits a universal homomorphism to a group. To see this, take an
arbitrary presentation 〈X |R〉 of M by generators and relations and consider
the group G defined by 〈X |R〉 viewed as a group presentation. The identity
map idX : X → X extends to a monoid homomorphism M → G, which
is easily seen to be universal. The definition of a universal homomorphism
M → G implies that it is unique up to composition with a group isomorphism.
In particular, the group G is well defined up to isomorphism. This group is
called the group of fractions of M and denoted by GM . A presentation of GM

by generators and relations can be obtained by taking an arbitrary monoid
presentation of M by generators and relations and viewing it as a group
presentation.

A monoid M is embeddable if there is an injective monoid homomorphism
from M into a group. It is clear that M is embeddable if and only if the
universal homomorphism M → GM is injective. For example, the inclusion
N ↪→ Z shows that N is embeddable. It is easy to see that this inclusion is a
universal homomorphism, so that GN = Z.

It is clear that embeddable monoids are left cancellative and right cancel-
lative. For example, the monoid {1, x} with xx = x is not left cancellative
(since x �= 1); therefore it is not embeddable. The group of fractions of this
monoid is trivial.

6.3.2 Pre-Garside monoids

Definition 6.9. A pre-Garside monoid is a pair consisting of a monoid M
and an element Δ of M such that the set Σ = ΣΔ of left divisors of Δ satisfies
the following conditions:

(a) Σ is finite, generates M , and coincides with the set of right divisors of Δ.
(b) If a, b ∈ Σ are such that Δa = Δb or aΔ = bΔ, then a = b.

The element Δ ∈ M is called the Garside element of M . Note that the
set Σ of the divisors of Δ is closed under left and right divisibility, i.e., all left
divisors and all right divisors of elements of Σ belong to Σ. Clearly, 1 ∈ Σ
and Δ ∈ Σ.

Examples 6.10. Any positive integer is a Garside element of the monoid N.
The monoid N× has no Garside elements. All elements of a finite group are
Garside. More interesting examples will be given in subsequent sections.
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Lemma 6.11. Let (M,Δ) be a pre-Garside monoid and let Σ ⊂ M be the set
of divisors of Δ.

(i) For all a, b, c ∈ Σ, if ac = bc or ca = cb, then a = b.
(ii) There is a bijection δ : Σ → Σ such that Δa = δ(a)Δ for all a ∈ Σ.
(iii) If N is the order of δ (i.e., the minimal positive integer such that

δN = id), then ΔNa = aΔN for all a ∈ M .
(iv) For any a ∈ M , there is an integer r ≥ 1 such that a & Δr and Δr ' a.

Proof. (i) Since c ∈ Σ, there is d ∈ M such that cd = Δ. Then ac = bc implies
aΔ = acd = bcd = bΔ. Hence a = b by condition (b) of Definition 6.9. The
implication ca = cb ⇒ a = b has a similar proof, using an element e ∈ M such
that ec = Δ.

(ii) Since any left divisor of Δ is also a right divisor and vice versa, for any
a ∈ Σ, there are a′, δ(a) ∈ Σ such that Δ = a′a and Δ = δ(a)a′. By claim (i),
a′ and δ(a) are uniquely defined. We have

Δa = δ(a)a′a = δ(a)Δ. (6.4)

Since Σ is finite, in order to prove that the map δ : Σ → Σ is bijective, it
suffices to check that it is injective. The equality δ(a) = δ(b) implies

Δa = δ(a)Δ = δ(b)Δ = Δb .

This implies a = b by condition (b) of Definition 6.9.
(iii) By induction on n we derive from (6.4) that Δna = δn(a)Δn for all

a ∈ Σ. (Here δn is the composition of n copies of δ.) Since δN = id, we have
ΔNa = δN (a)Δn = aΔN for all a ∈ Σ. In other words, ΔN commutes with
every element of the set Σ. Since this set generates the monoid M , we can
conclude that ΔN commutes with all elements of M .

(iv) Write a as a product a = a1 · · · ar of r ≥ 1 elements of Σ. For each ai

let bi ∈ Σ be defined by biai = Δ. Set b = δr−1(br) · · · δ(b2)b1. We claim that
ba = Δr, which proves that Δr ' a. Indeed,

ba = δr−1(br) · · · δ(b2)b1a1 · · · ar

= δr−1(br) · · · δ(b2)Δa2 · · ·ar

= δr−1(br) · · ·Δb2a2 · · · ar

= δr−1(br) · · · δ2(b3)Δ2a3 · · · ar

= δr−1(br) · · ·Δ2b3a3 · · · ar

= · · · = Δr−1brar = Δr .

A similar proof shows that if aici = Δ for i = 1, . . . , r and

c = crδ
−1(cr−1) · · · δ−(r−1)(c1) ,

then ac = Δr. Thus a & Δr. ��
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6.3.3 Embeddability of pre-Garside monoids

Let (M,Δ) be a pre-Garside monoid. Under the assumption that M is left
cancellative, we give an explicit construction of the group of fractions of M .
The construction will imply that M is embeddable.

Let N ≥ 1 be the order of δ : Σ → Σ. By Lemma 6.11, ΔN is central
in M . Consider the product H = M ×N of the monoids M and N with the
coordinatewise multiplication

(a, p)(b, q) = (ab, p + q)

for all a, b ∈ M and p, q ∈ N. The neutral element of H is (1, 0).
We define a relation ∼ on H by (a, p) ∼ (b, q) if ΔqNa = ΔpNb. For

instance, (ΔN , 1) ∼ (1, 0). Let us show that ∼ is an equivalence relation.
Reflexivity and symmetry are obvious. We check the transitivity. Suppose that
(a, p) ∼ (b, q) ∼ (c, r). Then ΔqNa = ΔpNb and ΔrNb = ΔqN c. Therefore,

ΔqNΔrNa = ΔrNΔqNa = ΔrNΔpN b

= ΔpNΔrNb = ΔpNΔqN c

= ΔqNΔpN c .

Since M is left cancellative, we may divide both sides by ΔqN , thus obtaining
ΔrNa = ΔpNc. This gives (a, p) ∼ (c, r).

Let G = H/∼ be the set of equivalence classes and let π : H → G be the
projection. Since ΔN is central in M , the set G has a unique monoid structure
such that π is a monoid homomorphism. Define a monoid homomorphism
i : M → G by i(a) = π(a, 0) for a ∈ M .

Theorem 6.12. Let (M,Δ) be a pre-Garside monoid such that M is left
cancellative.

(i) The monoid G, constructed above, is a group, and the homomorphism
i : M → G is an injection.

(ii) Any element of G can be written in the form i(Δ)s i(a), where s ∈ Z and
a ∈ M .

(iii) The monoid homomorphism i : M → G is universal, so that G is the
group of fractions GM of M .

Proof. (i) If i(a) = i(b) for a, b ∈ M , then (a, 0) ∼ (b, 0) in H . It follows that
a = Δ0a = Δ0b = b. This proves the injectivity of i.

Any element g ∈ G has the form π(a, p) for certain a ∈ M and p ∈ N. Let
us check that g = π(a, p) is invertible. By Lemma 6.11 (iv) there are b ∈ M
and an integer r ≥ 1 such that ab = Δr. Multiplying b on the right by a power
of Δ, we may assume that r = qN for an integer q ≥ p. Then

(a, p)(b, q − p) = (ab, q) . (6.5)
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Since Δ0ab = Δr = ΔqN1, we have (ab, q) ∼ (1, 0) and π(ab, q) = π(1, 0) = 1.
This shows that g = π(a, p) has a right inverse, say g′. In turn, g′ has a right
inverse g′′ and

g = g(g′g′′) = (gg′)g′′ = g′′ .

In other words, g′ is also a left inverse to g. This shows that G is a group.
(ii) Let ξ be the central element (1,+1) ∈ H = M ×N. Setting a = 1,

b = ΔN , and p = q = +1 in (6.5), we obtain π(ξ) i(Δ)N = 1. Therefore,
π(ξ) = i(Δ)−N . Any element of H is of the form (a, p) = ξp(a, 0) for some
a ∈ M and p ∈ N. Therefore, any element of G can be written in the form
π(ξ)p i(a) = i(Δ)−pN i(a), where a ∈ M and p ∈ N.

(iii) Given a monoid homomorphism f from M to a group G′, consider the
map H = M×N → G′ sending any pair (a, p) ∈ M×N to f(Δ)−pNf(a). This
map is constant on the ∼-equivalence classes in H and induces a group homo-
morphism H/∼ = G → G′. The composition of the latter with i : M → G is
equal to f . The uniqueness of a group homomorphism G → G′ whose compo-
sition with i is equal to f follows from the fact that the set i(M) generates G
as a group. ��

Corollary 6.13. Left cancellative pre-Garside monoids are embeddable.

This corollary shows in particular that for pre-Garside monoids, the left
cancellativity implies the right cancellativity.

In the sequel we identify elements of a left cancellative pre-Garside
monoid M with their images in GM , so that M becomes a subset of GM .

6.3.4 The conjugacy problem in the group of fractions

Let (M,Δ) be a left cancellative pre-Garside monoid. The conjugacy problem
in its group of fractions G = GM can be reduced to the conjugacy problem
in M as follows. As we know, for any α, β ∈ G, there are a, b ∈ M ⊂ G
and s, t ∈ Z such that α = Δs a and β = Δt b. Pick an integer u such that
u ≤ min(s, t) and u is divisible by the number N from Lemma 6.11 (iii). Set
a′ = Δs−u a ∈ M and b′ = Δt−u b ∈ M . Clearly, α = Δu a′ and β = Δu b′.
We claim that α is conjugate to β in G if and only if a′ is conjugate to b′

in M . Indeed, suppose that a′c = cb′ for some c ∈ M . Since Δu is a power
of ΔN and is therefore central in M ,

αc = Δu a′c = Δu cb′ = cΔu b′ = cβ .

Conversely, if αγ = γβ with γ ∈ G, then γ = Δv c for some c ∈ M and some
integer v divisible by N . Replacing α, β, γ in the formula αγ = γβ by their
expansions in a′, b′, c, and using the centrality of Δu, Δv, we obtain

Δu+v a′c = Δu+v cb′ .

We divide by Δu+v and conclude that a′c = cb′.
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6.3.5 The case of atomic M

For atomic M , the claim (ii) of Theorem 6.12 admits the following refinement.

Theorem 6.14. Let (M,Δ) be a pre-Garside monoid such that M is nontriv-
ial, left cancellative, and atomic. Then any element of G = GM ⊃ M can be
written uniquely in the form Δs b, where s ∈ Z and b is an element of M that
is not a right multiple of Δ.

Proof. Note first that ‖Δ‖ > 0. Indeed, if ‖Δ‖ = 0, then Δ = 1. Since M is
atomic, the remarks at the end of Section 6.1.3 imply that ΣΔ = {1}. Since
ΣΔ generates M , we have M = {1}. This contradicts the nontriviality of M .

By Theorem 6.12, any element of G has the form Δs a with s ∈ Z and
a ∈ M . Let t be the greatest nonnegative integer such that Δt & a in M ;
such t exists because the relation Δt & a implies that

t ‖Δ‖ ≤ ‖Δt‖ ≤ ‖a‖ < ∞ .

Then a = Δtb for some b ∈ M such that Δ �& b and Δs a = Δs+t b. This
proves the existence of the stated form.

Suppose that Δs b = Δs′
b′ for some s, s′ ∈ Z and some b, b′ ∈ M such that

Δ �& b and Δ �& b′. We may assume that s ≥ s′. Dividing by Δs′
, we obtain

Δs−s′
b = b′. Since b′ is not a right multiple of Δ in M , we have s − s′ = 0.

Hence, s = s′ and b = b′, which proves the uniqueness. ��

Exercise 6.3.1. Let (M,Δ) be a pre-Garside monoid such that M is non-
trivial, left cancellative, and atomic. Prove that any element of the group of
fractions GM can be written uniquely in the form aΔs, where s ∈ Z and
a ∈ M is not a left multiple of Δ.

Exercise 6.3.2. Generalize the construction of the group G in Section 6.3.3
to an arbitrary pre-Garside monoid (M,Δ). (Hint: Define the relation ∼ on H
by (a, p) ∼ (b, q) if Δs+qNa = Δs+pN b for some s ≥ 0. Note that the resulting
homomorphism M → G is injective if and only if M is left cancellative.)

6.4 Garside monoids

6.4.1 Definition and lemmas

Let (M,Δ) be a pre-Garside monoid and let Σ be the set of left (and right)
divisors of Δ. Note that since Σ generates M , all atoms of M belong to Σ.
In other words, all atoms of M are necessarily left divisors of Δ.

Definition 6.15. The pair (M,Δ) is a Garside monoid if M is atomic and
for any two atoms s, t of M , the set

{a ∈ Σ | s & a and t & a}

has a minimal element Δs,t (with respect to &).
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By Lemma 6.3, the minimal element Δs,t is unique. Note for the record
that Δs,t = Δt,s ∈ Σ, s & Δs,t, t & Δs,t, and

{a ∈ Σ | s & a and t & a} = {a ∈ Σ |Δs,t & a} .

Any atom s ∈ M is a minimal element of the set {a ∈ Σ | s & a}, so that
Δs,s = s.

Lemma 6.16. If (M,Δ) is a Garside monoid, then the set Σ satisfies all
conditions of Theorem 6.5.

This key lemma allows us to apply the results of Section 6.2 to Garside
monoids. The rest of this subsection is devoted to the proof of Lemma 6.16.
We need to verify that Σ satisfies conditions (∗1)–(∗3) of Theorem 6.5. Condi-
tion (∗1) directly follows from the definition of a pre-Garside monoid. Condi-
tion (∗2) was verified in Lemma 6.11. The hard part is the verification of (∗3).
We begin with two lemmas. In both lemmas, we assume that (M,Δ) is a
Garside monoid, Σ is the set of left (and right) divisors of Δ, and S ⊂ Σ is
the set of atoms of M .

Lemma 6.17. Let E be a nonempty finite subset of M satisfying the following
two conditions:

(i) if a ∈ M and b ∈ E with a & b, then a ∈ E;
(ii) if a ∈ E, s, t ∈ S are such that as, at ∈ E, then aΔs,t ∈ E.

Then E has a maximal element (with respect to &).

Proof. Let c be an element of E such that ‖c‖ is maximal (we say that c
is of maximal height in E). We wish to show that E = {a ∈ M | a & c}.
By condition (i), {a ∈ M | a & c} ⊂ E. Let us prove the opposite inclusion.
Suppose it does not hold; then there is b ∈ E such that b �& c. Expand b as a
product of atoms b = s1 · · · sn for some n and s1, . . . , sn ∈ S. Set a = s1 · · · sk,
where k < n is the maximal integer such that a & c (possibly k = 0, in which
case a = 1). It is clear that a ∈ E and there is an atom s ∈ S (in fact s = sk+1)
such that as ∈ E and as �& c. We consider such a ∈ E of maximal height.
Since c is of maximal height in E, we have ‖a‖ < ‖as‖ ≤ ‖c‖. This and the
relation a & c imply that there is t ∈ S such that at & c. Then, necessarily,
t �= s. We now have a, as, and at in E. By condition (ii), aΔs,t ∈ E. The
relations as & aΔs,t and as �& c imply aΔs,t �& c. We can expand

Δs,t = ts1s2 · · · sm ,

where s1, . . . , sm ∈ S. There is i = 1, . . . ,m such that ats1s2 · · · si−1 & c and
ats1s2 · · · si �& c. Set a′ = ats1s2 · · · si−1. The inclusion aΔs,t ∈ E implies that
a′, a′si ∈ E. By the choice of i, we have a′si �& c. Thus, a′ satisfies the same
conditions as a, but ‖a′‖ ≥ ‖at‖ > ‖a‖. This yields a contradiction with the
choice of a. ��
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Lemma 6.18. For any a, b ∈ Σ, the set

E = {x ∈ M |x & a and x & b} ⊂ Σ

has a maximal element (with respect to &).

Proof. Since Σ is finite, so is E. Clearly, 1 ∈ E. The set E is nonempty
since 1 ∈ E, and obviously satisfies condition (i) of Lemma 6.17. Let us check
condition (ii). We have to show that if xs and xt are left divisors of both a
and b for some s, t ∈ S, then so is xΔs,t. Let y ∈ Σ be such that xy = a. By
hypothesis, xs & a = xy and xt & a = xy. By Lemma 6.11 (i), this implies
s & y and t & y. By Definition 6.15, Δs,t & y, hence xΔs,t & xy = a. Similarly,
xΔs,t & b. Now Lemma 6.17 implies that E has a maximal element. ��

We can now verify condition (∗3) of Theorem 6.5. Pick any a, b ∈ Σ. Since
a & Δ, we have Δ = aa′ for some a′ ∈ Σ. By Lemma 6.18, the set

{x ∈ M |x & a′ and x & b} ⊂ Σ

has an element c maximal with respect to &. We claim that c is maximal in

{x ∈ Σ |x & b and ax ∈ Σ} .

Indeed, by definition, c & a′, whence ac & aa′ = Δ, so that ac ∈ Σ. Let d ∈ Σ
such that d & b and ad ∈ Σ. Then ad & Δ = aa′, which by Lemma 6.11 (i)
(left cancellation in Σ) implies d & a′. Therefore, d & c. ��

6.4.2 Comprehensive Garside monoids

A Garside monoid (M,Δ) is comprehensive if the set Σ ⊂ M of the divisors
of Δ is comprehensive in the sense of Section 6.2.6. The results above yield
the following properties of a comprehensive Garside monoid (M,Δ).

(1) We have MΣ
∼= M (Lemma 6.8). In other words, M has a presenta-

tion with generators [a], where a runs over Σ, and relations [1] = 1 and
[a][b] = [ab] whenever a, b ∈ Σ satisfy ab ∈ Σ.

(2) For any a ∈ M , there is a unique left divisor α(a) ∈ Σ of a that is maximal
among all left divisors of a lying in Σ (Theorem 6.5).

(3) Any a ∈ M expands uniquely as a product a = a1a2 · · ·ar of certain
a1, a2, . . . , ar ∈ Σ − {1} with r ≥ 0 such that ai = α(aiai+1 · · ·ar) for all
i = 1, 2, . . . , r (Section 6.2.2).

(4) The natural monoid homomorphism from M into its group of frac-
tions GM is injective (Lemma 6.6 and Corollary 6.13). In particular, M
is left cancellative and right cancellative.

(5) If M �= {1}, then any element of GM ⊃ M can be written uniquely in
the form Δs b, where s ∈ Z and b ∈ M is not a right multiple of Δ
(Theorem 6.14).

(6) The conjugacy problem in GM is equivalent to the conjugacy problem
in M (Section 6.3.4). The latter is solvable provided M admits a finite
weighted presentation (Section 6.2.5).
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6.4.3 Common divisors and multiples in Garside monoids

Given k ≥ 2 elements a1, . . . , ak of a monoid M , we say that d ∈ M is a left
greatest common divisor (gcd) of a1, . . . , ak if d & ai for all i = 1, . . . , k, and
d′ & d for any d′ ∈ M such that d′ & ai for all i = 1, . . . , k. Replacing & by ',
we obtain an analogous notion of a right gcd.

We say that m ∈ M is a right least common multiple (lcm) of a1, . . . , ak

if ai & m for all i = 1, . . . , k, and m & m′ for any m′ ∈ M such that ai & m′

for all i = 1, . . . , k. There is an analogous notion of a left lcm. If M is atomic,
then the gcds and lcms are unique whenever they exist.

The condition in Definition 6.15 may be reformulated by saying that any
two atoms have a right lcm. Property (2) in Section 6.4.2 may be reformulated
by saying that Δ and any a ∈ M have a left gcd. These properties of Garside
monoids can be generalized as follows.

Theorem 6.19. Let (M,Δ) be a comprehensive Garside monoid. Then any
finite family of elements of M has a unique left gcd and a unique right lcm.

Proof. Let b, c ∈ M . Consider the set

E = {a ∈ M | a & b and a & c} .

In order to prove that b and c have a left gcd in M , it suffices to check
that E satisfies the conditions of Lemma 6.17. The set E obviously satisfies
condition (i). The set E is finite because ‖a‖ ≤ ‖b‖ for any a ∈ E, so that a
is the product of at most ‖b‖ atoms of M , and the set of atoms of M , being
a subset of Σ, is finite.

Let us check condition (ii). Suppose we have a ∈ E and atoms s, t ∈ M
such that as, at ∈ E. Write b = ab1 with b1 ∈ M . Since M is left cancellative,
as & b = ab1 implies s & b1 and at & b = ab1 implies t & b1. Consider
the maximal left divisor α(b1) of b1 in Σ. We have s & α(b1) and t & α(b1).
Therefore Δs,t & α(b1) & b1. Hence, Δs,t & b1 and aΔs,t & ab1 = b. Similarly,
aΔs,t & c. This proves that aΔs,t ∈ E.

That any finite family of elements of M has a left gcd now easily follows
by induction on the cardinal of the family.

Let us prove the existence of right lcms. Let a1, . . . , ak ∈ M . In view of
Lemma 6.11 (iv), there is r ≥ 1 such that ai & Δr for all i = 1, . . . , k. Consider
the set

X = {x ∈ M | ai & x & Δr for all i = 1, . . . , k} .

Since the set of atoms of M is finite and all left divisors of Δr expand as
products of ≤ r‖Δ‖ atoms, the set of left divisors of Δr is finite. Since it
contains X , the latter is finite as well. Let m be a left gcd of the elements
of X . We claim that m is a right lcm of a1, . . . , ak. Indeed, a1, . . . , ak are left
divisors of all elements of X ; therefore, they are left divisors of m. This shows
that m is a common right multiple of a1, . . . , ak.
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Let m′ be another common right multiple of a1, . . . , ak. Denote by m′′ a
left gcd of m′ and Δr. Let us check that m′′ ∈ X . First, m′′ & Δr. Since ai

is a left divisor of m′ and of Δr, it is a left divisor of m′′. This proves that
m′′ ∈ X . By definition of m, we have m & m′′. Since m′′ & m′, we obtain
m & m′. This proves our claim. ��

Exercise 6.4.1. For a ∈ Σ, let a′ ∈ Σ be uniquely defined by aa′ = Δ and
let c be the left gcd of a′ and b ∈ Σ. Prove that c is the maximal element
of the set {x ∈ Σ |x & b and ax ∈ Σ}. (Hint: The proof is contained in the
proof of Lemma 6.16.) Deduce that α2(a, b) = ac.

Exercise 6.4.2. Let (M,Δ) be a Garside monoid and let Σ be the set of
divisors of Δ. Prove that (MΣ , [Δ]) is a comprehensive Garside monoid.

Exercise 6.4.3. Let M be the monoid with generators x, y and the defining
relation xyx = y2. Prove that the pair (M,Δ = y3) is a comprehensive Garside
monoid with atoms x, y. (Hint: To distinguish elements of M , use monoid
homomorphisms to N and to the group 〈a, b | a2 = b3 = 1〉.)

6.5 The braid monoid

6.5.1 A presentation by generators and relations

For n ≥ 1, denote by B+
n the monoid generated by n − 1 generators

σ1, σ2, . . . , σn−1 and the relations

σiσj = σjσi if |i− j| ≥ 2 ,

σiσjσi = σjσiσj if |i− j| = 1 ,

where i, j = 1, 2, . . . , n − 1. The monoid B+
n is called the braid monoid

on n strings. The elements of B+
n are called positive braids on n strings. By

definition, B+
1 is the trivial monoid. The monoid B+

2 is generated by a single
generator σ1 and an empty set of relations; it is isomorphic to the monoid N
of nonnegative integers.

The presentation of B+
n given above is finite and length-balanced in the

sense of Section 6.1.4. Section 6.1.5 yields a solution of the word problem
for B+

n . Moreover, Lemma 6.4 implies that the monoid B+
n is atomic with

atoms σ1, . . . , σn−1 and ‖a‖ = �(a) for all a ∈ B+
n , where � : B+

n → N is the
monoid homomorphism defined by �(σi) = 1 for i = 1, . . . , n− 1.

Set

Δn = (σ1 · · ·σn−2σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1 ∈ B+
n .

The following theorem puts B+
n in the framework of the theory of Garside

monoids and provides a fundamental example of Garside monoids.
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Theorem 6.20. For all n ≥ 1, the pair (B+
n , Δn) is a comprehensive Garside

monoid.

The proof of this theorem will be given in Section 6.5.3 using prelimi-
nary results from Section 6.5.2. In the proof we will use the terminology and
results from Section 4.1. Applications of Theorem 6.20 will be discussed in
Section 6.5.4.

6.5.2 Reduced braids

As in Section 4.1, consider the symmetric group Sn consisting of all permu-
tations of the set {1, . . . , n}. We define a set-theoretic mapping ρ : Sn → B+

n

as follows. Consider the simple transpositions s1, . . . , sn−1 ∈ Sn, where si

permutes i and i + 1 and leaves the other elements of {1, . . . , n} fixed. The
simple transpositions generate Sn, so that every element w ∈ Sn can be ex-
pressed as a word w = si1si2 · · · sir with i1, i2, . . . , ir ∈ {1, 2, . . . , n− 1}. If r
is minimal, then this is a reduced expression and we set ρ(w) = σi1σi2 · · ·σir .
By Theorem 4.12, ρ(w) is a well-defined element of B+

n . Let

π : B+
n → Sn

be the monoid homomorphism defined by π(σi) = si for all i = 1, . . . , n − 1.
It is clear that π ◦ ρ = id, which implies that ρ is injective.

Set Bred
n = ρ(Sn) ⊂ B+

n . This is a finite set of cardinal n! and the homo-
morphism π : B+

n → Sn is a bijection when restricted to Bred
n . We say that

an element of B+
n is reduced if it lies in Bred

n . The atoms σ1, . . . , σn−1 of B+
n

are reduced, since σi = ρ(si) for i = 1, . . . , n− 1.
From Section 4.1.3 recall the length λ(w) of w ∈ Sn: it is the length r of

any reduced expression si1si2 · · · sir for w. It is clear from the definitions that

λ(π(a)) ≤ �(a)

for all a ∈ B+
n . The following is a useful algebraic characterization of Bred

n .

Lemma 6.21. An element a of B+
n is reduced if and only if λ(π(a)) = �(a).

Proof. If a = ρ(w) for some w ∈ Sn, then �(a) = λ(w) = λ(π(a)). Conversely,
let a = σi1 · · ·σir ∈ B+

n with r = �(a) = λ(π(a)). Then π(a) = si1 · · · sir is a
reduced expression in Sn and a = ρ(π(a)) ∈ Bred

n . ��

Lemma 6.22. A left or right divisor of a reduced element of B+
n is reduced.

Proof. If a, b ∈ Bn and ab ∈ Bred
n , then

�(a) + �(b) = �(ab) = λ(π(ab)) = λ(π(a)π(b)) ≤ λ(π(a)) + λ(π(b)) .

Since �(a) ≥ λ(π(a)) and �(b) ≥ λ(π(b)), these inequalities are actually equal-
ities. By Lemma 6.21, it follows that a, b ∈ Bred

n . ��
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Lemma 6.23. For u, v ∈ Sn, we have ρ(u) ρ(v) = ρ(uv) if and only if
λ(u) + λ(v) = λ(uv).

Proof. Set a = ρ(u) ρ(v) ∈ B+
n . We have π(a) = uv and

λ(uv) = λ(π(a)) ≤ �(a) = �(ρ(u)) + �(ρ(v)) = λ(u) + λ(v) .

Therefore a ∈ Bred
n if and only if λ(uv) = λ(u) + λ(v). On the other hand,

a ∈ Bred
n if and only if a = ρ(π(a)) = ρ(uv). ��

Recall the permutation w0 = (n, n − 1, . . . , 2, 1) from Section 4.1.6; it is
the unique element w0 ∈ Sn of maximal length. It is easy to check that

w0 = (s1 · · · sn−2sn−1)(s1 · · · sn−2) · · · (s1s2)s1 .

Since the word on the right-hand side has length λ(w0) = n(n − 1)/2, it is
reduced. Therefore,

ρ(w0) = (σ1 · · ·σn−2σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1 = Δn .

This shows that Δn is reduced.

Lemma 6.24. An element of B+
n is reduced if and only if it is a left (or a

right) divisor of Δn.

Proof. Since Δn is reduced, all its left divisors and right divisors are reduced
by Lemma 6.22.

Conversely, let a = ρ(π(a)) ∈ Bred
n . Set b = ρ(π(a)−1w0) ∈ Bred

n , u = π(a),
and v = π(b) = π(a)−1w0. We have uv = w0. Hence, by Lemma 4.14,

λ(u) + λ(v) = λ(w0) .

This equality and Lemma 6.23 imply that ab = Δn. Hence, a is a left divisor
of Δn. A similar argument proves that a is a right divisor of Δn. ��

6.5.3 Proof of Theorem 6.20

We observed in Section 6.5.1 that B+
n is atomic with atoms σ1, . . . , σn−1. Let

us prove that (B+
n , Δn) is a pre-Garside monoid by checking conditions (a), (b)

of Definition 6.9.
By Lemma 6.24, the set of left divisors of Δn coincides with the set of

right divisors of Δn and coincides with the set Bred
n . The latter is finite and

contains the generators σ1, . . . , σn−1 of B+
n . This verifies condition (a).

Condition (b): Let us prove that Δna = Δnb ⇒ a = b for a, b ∈ Bred
n .

Applying the monoid homomorphism π : B+
n → Sn, we obtain

π(Δn)π(a) = π(Δna) = π(Δnb) = π(Δn)π(b) ∈ Sn .
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Since Sn is a group, π(a) = π(b). This implies that

a = ρ(π(a)) = ρ(π(b)) = b .

The implication aΔn = bΔn ⇒ a = b is proven similarly.
For any i, j ∈ {1, . . . , n− 1}, set

σi,j =

⎧

⎪
⎨

⎪
⎩

σi if i = j ,

σiσjσi = σjσiσj if |i− j| = 1 ,

σiσj = σjσi if |i− j| ≥ 2 .

Set si,j = π(σi,j) ∈ Sn. It is easy to check that si,j = sisj is a reduced
expression when |i − j| ≥ 2, and si,j = sisjsi ∈ Sn is a reduced expression
when |i− j| = 1. Then σi,j = ρ(si,j) ∈ Bred

n for all i, j. Therefore the set Bred
n

is comprehensive.
To complete the proof of Theorem 6.20, it remains to check the condition

in Definition 6.15. Observe that σi & σi,j and σj & σi,j for all i, j. We claim
that σi,j is the minimal element in the set

{a ∈ Bred
n |σi & a and σj & a} .

We must show that for any a ∈ Bred
n such that σi & a and σj & a, we have

σi,j & a. The case i = j being trivial, we consider the case i �= j. Since
the elements of Bred

n are in bijection with the elements of Sn under the map
π : B+

n → Sn, it is enough to establish that if

w = π(a) = siu = sjv

for some u, v ∈ Sn with λ(u) = λ(v) = λ(w) − 1, then there is w′ ∈ Sn such
that w = si,j w′ and λ(w′) = λ(w) − λ(si,j).

We prove the latter assertion. First observe that u �= v, since si �= sj . Let
si1 · · · sir be a reduced expression for v, where r = λ(w) − 1. We have

u = siw = sisjv = sisjsi1 · · · sir .

Since λ(u) < λ(w), it follows from Theorem 4.8 that u is obtained from
sjsi1 · · · sir by deleting one of the generators. If the deleted generator is the
leftmost sj , then u = si1 · · · sir = v, which is impossible. Therefore, u = sjw

′

with
w′ = si1 · · · ŝip · · · sir ,

where some sip is deleted. Therefore, λ(w′) ≤ r − 1 = λ(w) − 2. Since

w = siu = sisjw
′ ,

we must have λ(w′) = λ(w) − 2. This proves the desired assertion when
|i− j| ≥ 2, i.e., when si,j = sisj .
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Consider the case |i− j| = 1. By the previous computations,

v = sjw = sjsiu = sjsisjw
′ = sjsisjsi1 · · · ŝip · · · sir .

Since λ(v) < λ(w) = r + 1, it follows again from Theorem 4.8 that v is
obtained from sisjsi1 · · · ŝip · · · sir by deleting one of the generators. If the
deleted generator is the leftmost si, then

v = sjsi1 · · · ŝip · · · sir = sjw
′ = u ,

which is impossible. If the deleted generator is the generator sj in the second
position, then

v = sisi1 · · · ŝip · · · sir = siw
′ .

We obtain sisjw
′ = w = sjv = sjsiw

′, which implies sisj = sjsi. This is
impossible, since |i− j| = 1. Therefore v = sisjw

′′, where w′′ is obtained by
deleting a generator from w′ = si1 · · · ŝip · · · sir . Thus, λ(w′′) ≤ r−2 = λ(w)−3
and

w = sjv = sjsisjw
′′ = si,jw

′′ .

Then of course λ(w′′) = λ(w) − 3. ��

6.5.4 Applications of Theorem 6.20

By Theorem 6.20, the pair (B+
n , Δn) shares all properties of comprehensive

Garside monoids; see Sections 6.4.2 and 6.4.3. We give here a summary of
these properties.

(1) The monoid B+
n has a presentation with generators [a], where a runs

over Bred
n , and relations [1] = 1 and [a][b] = [ab] whenever a, b ∈ Bred

n

satisfy ab ∈ Bred
n . Using the bijection ρ : Sn → Bred

n and Lemma 6.23, we
conclude that B+

n has a presentation with generators [u], where u runs
over Sn, and relations [1] = 1 and [u][v] = [uv] whenever u, v ∈ Sn satisfy
λ(u) + λ(v) = λ(uv).

(2) Any finite family of elements of B+
n has a unique left gcd and a unique

right lcm.
(3) Any a ∈ B+

n has a normal form (a1, a2, . . . , ar) with r ≥ 0, where
a1, a2, . . . , ar are unique elements of Bred

n − {1} such that a = a1a2 · · · ar

and ai is the left gcd of aiai+1 · · · ar and Δn for all i = 1, 2, . . . , r.
(4) The monoid B+

n embeds into its group of fractions. By definition, the
group of fractions of B+

n has the same presentation as B+
n and is nothing

but the braid group Bn. Thus, the monoid homomorphism B+
n → Bn

sending σi ∈ B+
n to σi ∈ Bn for i = 1, . . . , n− 1 is injective. In the sequel

we will identify the monoid B+
n with its image in Bn.

(5) For n ≥ 2, any β ∈ Bn can be written uniquely in the form β = Δs
n b,

where s ∈ Z and b ∈ B+
n ⊂ Bn is not a right multiple of Δn.

(6) The conjugacy problem in Bn is equivalent to the conjugacy problem
in B+

n and can be solved as in Section 6.2.5.

We complement this list with the following theorem.
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Theorem 6.25. Any finite family of elements of B+
n has a unique right gcd

and a unique left lcm.

Proof. Consider the map rev : B+
n → B+

n obtained by reading the words in
the generators σ1, . . . , σn−1 from right to left:

rev(σi1σi2 · · ·σir−1σir ) = σirσir−1 · · ·σi2σi1 .

This map is well defined, since the defining relations of B+
n , being read

from right to left, give the same relations. The map rev is an involutive
antiautomorphism of B+

n in the sense that rev2 = id, rev(1) = 1, and
rev(ab) = rev(b) rev(a) for all a, b ∈ B+

n . It is clear that a & b if and only
if rev(a) ' rev(b) for a, b ∈ B+

n . Using these facts, it is easy to deduce the
existence of right gcds and left lcms from the existence of left gcds and right
lcms. The uniqueness follows from Lemma 6.3. ��

Note that the Garside element Δn ∈ B+
n ⊂ Bn was introduced as a braid

in Section 1.3.3 (see Figure 1.11 for n = 5).

6.5.5 Computations

The expansion β = Δs b of a braid β ∈ Bn provided by the item (5) of the
previous subsection can be explicitly computed. Represent β by a word in
the generators σ1, . . . , σn−1 and their inverses. Define νi ∈ B+

n by νiσi = Δn.
Then σ−1

i = Δ−1
n νi. In the word representing β replace all occurrences of σ−1

i

by Δ−1
n νi and expand all νi in terms of σ1, . . . , σn−1. In the resulting word we

have only the generators σi (not their inverses) and negative powers of Δn.
Using the identities

σiΔn = Δnσn−i , (6.6)

where i = 1, . . . , n−1 (cf. formula (1.8) in Section 1.3), we can move all powers
of Δn to the left. In this way we obtain an expansion β = Δs

nb with s ∈ Z
and b ∈ B+

n . If b is not a right multiple of Δn, then we have the desired
expansion of β. If Δn & b, then b = Δn b′ with b′ ∈ B+

n and β = Δs+1
n b′. Note

that to check whether Δn & b, it is enough to compute α(b) ∈ Bred
n and to

see whether α(b) = Δn. We then check whether b′ is a right multiple of Δn,
and so on. The process stops after at most 2�(b)/(n(n− 1)) steps.

To give an example, we apply this procedure to

β = σ−1
1 σ2σ1σ

−2
2 ∈ B4 .

As in Section 6.1.5, denote by W (a) the set of words in σ1, . . . , σn−1 repre-
senting an element a ∈ B+

n . From

Δ4 = σ1σ2σ3σ1σ2σ1 = σ1σ2σ3σ2σ1σ2

we derive σ−1
1 = Δ−1

4 σ1σ2σ3σ1σ2 and σ−1
2 = Δ−1

4 σ1σ2σ3σ2σ1. Consequently,
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β = (Δ−1
4 σ1σ2σ3σ1σ2)(σ2σ1)(Δ−1

4 σ1σ2σ3σ2σ1)(Δ−1
4 σ1σ2σ3σ2σ1)

= (Δ−1
4 σ1σ2σ3σ1σ2)(σ2σ1)(Δ−2

4 σ3σ2σ1σ2σ3)(σ1σ2σ3σ2σ1)
= Δ−3

4 abc2 ,

where

a = σ1σ2σ3σ1σ2 , b = σ2σ1 , and c = σ3σ2σ1σ2σ3 = σ1σ2σ3σ2σ1 .

Let us compute α(abc2) in order to find out whether abc2 is a right multiple
of Δ4. Observe that a, b, and c are reduced braids. By Exercise 6.4.1, since
cσ2 = Δ4, we have α(c2) = α2(c, c) = cc′, where c′ is the left gcd of σ2 and c.
Now W (c) consists of the six words

σ3σ2σ1σ2σ3 , σ1σ2σ3σ2σ1 , σ1σ3σ2σ3σ1 ,

σ1σ3σ2σ1σ3 , σ3σ1σ2σ3σ1 , σ3σ1σ2σ1σ3 .

Therefore, c′ = 1 and α(c2) = c. From b(σ2σ3σ2σ1) = Δ4, we obtain

α(bc2) = α2(b, α(c2)) = α2(b, c) = bb′ ,

where b′ is the left gcd of σ2σ3σ2σ1 and c. Now

W (σ2σ3σ2σ1) = {σ2σ3σ2σ1, σ3σ2σ3σ1, σ3σ2σ1σ3} .

Comparing with W (c), we obtain b′ = σ3σ2σ1. Hence, α(bc2) = d, where
d = σ2σ1σ3σ2σ1. Finally, aσ1 = Δ4 implies

α(abc2) = α2(a, α(bc2)) = α2(a, d) = aa′ ,

where a′ is the left gcd of σ1 and d. The list

W (d) = {σ2σ1σ3σ2σ1, σ2σ3σ1σ2σ1, σ2σ3σ2σ1σ2, σ3σ2σ3σ1σ2, σ3σ2σ1σ3σ2}

shows that a′ = 1. Hence, α(abc2) = a �= Δ4. Therefore, abc2 is not a right
multiple of Δ4 and

β = Δ−3
4 abc2

is the required expansion of β.
The reader is invited to check that the normal form of abc2 is (a, d, e, b),

where a, b, d are as above and e = σ1σ2σ1σ3σ2.

Exercise 6.5.1. (a) Give an algebraic proof of the identities (6.6) in B+
n .

(b) Prove that Δn is the left (and the right) lcm of σ1, . . . , σn−1 in B+
n .

(c) Deduce that the center of B+
n is generated by Δ2

n.
(d) Show that rev(Δn) = Δn.
(e) Show that rev(Bred

n ) = Bred
n . (Hint: ρ(w−1) = rev(ρ(w)) for w ∈ Sn.)
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6.6 Generalized braid groups

We introduce generalized braid groups and generalized braid monoids. Their
definition is directly inspired by the theory of Coxeter groups. We begin with
a short introduction to Coxeter groups.

6.6.1 Coxeter groups

A Coxeter matrix is a symmetric matrix A = (as,t)s,t∈S , where S is a finite
set, as,s = 1 for all s ∈ S, and as,t ∈ {2, 3, . . . ,∞} for all distinct s, t ∈ S.
To such a matrix A we associate a graph ΓA as follows: its vertices are the
elements of S, and there is a (unique) edge between s ∈ S and t ∈ S whenever
as,t ≥ 3. We label the edge between s and t by as,t whenever as,t ≥ 4. The
resulting labeled graph is the labeled graph of A. Every Coxeter matrix can
be uniquely reconstructed from its labeled graph.

To a Coxeter matrix A = (as,t)s,t∈S we associate the group WA defined
by the following presentation: the generators are the elements of S and the
relations are

(st)as,t = 1 , (6.7)

where s, t run over pairs of elements of S such that as,t �= ∞.
Since as,s = 1, relation (6.7) for s = t becomes s2 = 1, which is equivalent

to s−1 = s for all s ∈ S. For s �= t, relation (6.7) can be rewritten as

sts · · ·
︸ ︷︷ ︸

as,t factors

= tst · · ·
︸ ︷︷ ︸

as,t factors

, (6.8)

where s, t run over S and both sides of (6.8) are defined when 2 ≤ ast < ∞
and have as,t factors. In other words, WA is generated by the elements of S
subject to the relations s2 = 1 (s ∈ S) and relations (6.8). The group WA is
called the Coxeter group associated with A (or with the labeled graph ΓA).

If S = {1, 2, . . . , n− 1} with n ≥ 1 and A = (ai,j)i,j∈S is given by

ai,j =

⎧

⎪
⎨

⎪
⎩

1 if i = j ,

3 if |i− j| = 1 ,

2 if |i− j| ≥ 2 ,

(6.9)

then WA has a presentation that coincides with the presentation (4.1) of the
symmetric group Sn. Thus, Coxeter groups generalize the symmetric groups.

Consider again an arbitrary Coxeter matrix A = (as,t)s,t∈S . Because of
the relations s2 = 1 for s ∈ S, any element w ∈ WA can be expanded as a
product w = s1 · · · sr of elements s1, . . . , sr of S. The minimal number r in
such an expansion of w is called the length of w and denoted by λ(w). An
expansion w = s1 · · · sr with r = λ(w) and s1, . . . , sr ∈ S is called a reduced
expression for w (in general it is nonunique).
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The neutral element of WA is the only element of length 0. The elements
of length 1 in WA are precisely the generators s ∈ S.

Many properties of the symmetric groups extend to Coxeter groups. Note
the following generalization of Theorem 4.12 (for a proof, see [Mat64], [Bou68,
Chap. IV, Sect. 1, Prop. 5], [GP00, Sect. 1.2]).

Theorem 6.26. For any monoid M and any set of elements xs ∈ M indexed
by s ∈ S and satisfying the relations

xsxtxs · · ·
︸ ︷︷ ︸

as,t factors

= xtxsxt · · ·
︸ ︷︷ ︸

as,t factors

for all s, t ∈ S such that 2 ≤ as,t < ∞, there is a unique set-theoretic map
ρ : WA → M such that ρ(w) = xs1 · · ·xsr for an arbitrary reduced expression
w = s1 · · · sr of any w ∈ WA.

In Table 6.1 we give a list of labeled graphs consisting of four infinite
families of graphs An (n ≥ 1), BCn (n ≥ 2), Dn (n ≥ 4), I2(m) (m = 5 and
m ≥ 7) and seven exceptional graphs. The subscripts in Table 6.1 indicate
the number of vertices. It can be proved that the Coxeter groups associated
to all these labeled graphs are finite. Moreover, any finite Coxeter group is
a direct product of a finite family of Coxeter groups associated to graphs in
Table 6.1, see [Bou68, Chap. VI, Sect. 4.1] or [Hum90, Sect. 2.7]. We record
also the following lemma; see [GP00, Prop. 1.5.1].

Lemma 6.27. A Coxeter group WA is finite if and only if there is an element
w0 ∈ WA such that λ(w0s) < λ(w0) for all s ∈ S. Such w0 (if it exists) is
unique and satisfies λ(w) < λ(w0) for all w ∈ WA, w �= w0.

The element w0 ∈ WA is called the longest element of WA.

6.6.2 Generalized braid monoids and groups

Given a Coxeter matrix A = (as,t)s,t∈S , we define B+
A as the monoid (resp. BA

as the group) generated by the elements of S and relations (6.8). (The differ-
ence with WA is that we now drop the relations s2 = 1, s ∈ S.) The monoid B+

A

is called the generalized braid monoid , and the group BA is called the gen-
eralized braid group associated to A. It follows from Section 6.3.1 that BA is
the group of fractions of the monoid B+

A .
By definition, the Coxeter group WA is the quotient of BA by the normal

subgroup generated by s2 for all s ∈ S. The composite map

π : B+
A → BA → WA

is clearly surjective. When A is the matrix (6.9),

B+
A
∼= B+

n and BA
∼= Bn .
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Table 6.1. Graphs of finite Coxeter groups

4

m

6

4

An

BCn

Dn

E6

E7

E8

F4

G2

I2(m)

H3

H4
5

5

The presentation of B+
A is finite and length-balanced in the sense of Sec-

tion 6.1.4. Section 6.1.5 yields a solution of the word problem and of the
divisibility problem for B+

A . Lemma 6.4 implies that the monoid B+
A is atomic

with s ∈ S as atoms, and ‖a‖ = �(a) for all a ∈ B+
A , where � : B+

A → N is the
monoid homomorphism defined by �(s) = 1 for all s ∈ S. It is clear that the
monoid B+

A is trivial if and only if S = ∅.
By Theorem 6.26, there is a unique set-theoretic map ρ : WA → B+

A such
that ρ(w) = s1 · · · sr ∈ B+

A for any reduced expression w = s1 · · · sr. Clearly,
π ◦ ρ = idWA , where π : B+

A → WA is the projection. Hence ρ is injective.
Set Bred

A = ρ(WA) ⊂ B+
A . We say that an element of B+

A is reduced if it
lies in Bred

A . For instance, the neutral element and the generators s ∈ S of B+
A

are reduced. Note also that λ(π(a)) ≤ �(a) for all a ∈ B+
A .
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The following lemma generalizes Lemmas 6.21–6.23 and is proven similarly.

Lemma 6.28. (a) An element a ∈ B+
A is reduced if and only if λ(π(a)) = �(a).

(b) All left divisors and all right divisors of a reduced element of B+
A are

reduced.
(c) For u, v ∈ WA, we have ρ(u) ρ(v) = ρ(uv) ⇐⇒ λ(u) + λ(v) = λ(uv).

Now assume that the group WA is finite. By Lemma 6.27, there is a unique
element w0 ∈ WA of maximal length. Set Δ = ρ(w0) ∈ B+

A . The following
lemma generalizes Lemma 6.24 and is proven similarly.

Lemma 6.29. An element of B+
A is reduced if and only if it is a left (or a

right) divisor of Δ.

We can now state the main theorem of this section.

Theorem 6.30. For any Coxeter matrix A such that the group WA is finite,
the pair (B+

A , Δ) is a comprehensive Garside monoid.

Proof. We have already observed that the monoid B+
A is atomic. Since both

sides of (6.8) represent reduced expressions in WA, the set Bred
A is comprehen-

sive. The proof of conditions (a), (b) of Definition 6.9 reproduces the corre-
sponding part of the proof of Theorem 6.20 with obvious changes. It remains
to check the condition in Definition 6.15. For s, t ∈ S, set

Δs,t =

⎧

⎪
⎨

⎪
⎩

s if s = t ,

sts · · ·
︸ ︷︷ ︸

ast factors

= tst · · ·
︸ ︷︷ ︸

ast factors

if s �= t .

The element Δs,t belongs to Bred
A and is a right common multiple of s and t.

We claim that Δs,t & a for any a ∈ Bred
A such that s & a and t & a. Since

the elements of Bred
A are in bijection with the elements of WA under the map

π : B+
A → WA, it is enough to establish that if w = π(a) = su = tv for

some u, v ∈ WA with λ(u) = λ(v) = λ(w) − 1, then there is w′ ∈ WA such
that w = π(Δs,t)w′ and λ(w′) = λ(w) − λ(π(Δs,t)). This reduces our claim
to an assertion on Coxeter groups. For a proof of this assertion, see [GP00,
Sect. 1.1.7 and Lemma 1.2.1]. ��

Theorem 6.30 implies that the pair (B+
A , Δ) with finite WA shares all pro-

perties of comprehensive Garside monoids stated in Sections 6.4.2 and 6.4.3.
We give here a summary of these properties.

(1) The monoid B+
A has a presentation with generators [a], where a runs

over Bred
A , and relations [1] = 1 and [a][b] = [ab] whenever a, b ∈ Bred

A

satisfy ab ∈ Bred
A . Using the bijection ρ : WA → Bred

A and Lemma 6.28 (c),
we conclude that B+

A has a presentation with generators [u], where u runs
over WA, and relations [1] = 1 and [u][v] = [uv] whenever u, v ∈ WA

satisfy λ(u) + λ(v) = λ(uv).
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(2) Any finite family of elements of B+
A has a unique left gcd, right gcd, left

lcm, right lcm. (The existence of the right gcd and left lcm is proven
similarly to Theorem 6.25 using the involutive antiautomorphism of B+

A

fixing S pointwise.)
(3) Any a ∈ B+

A has a normal form (a1, a2, . . . , ar) with r ≥ 0, where
a1, a2, . . . , ar are unique elements of Bred

A − {1} such that a = a1a2 · · · ar

and ai is the left gcd of aiai+1 · · · ar and Δ for all i = 1, 2, . . . , r.
(4) The natural monoid homomorphism B+

A → BA is injective.
(5) If S �= ∅, then any β ∈ BA can be written uniquely in the form β = Δs b,

where s ∈ Z and b ∈ B+
A ⊂ BA is not a right multiple of Δ.

(6) The conjugacy problem in BA is equivalent to the conjugacy problem
in B+

A and can be solved as in Section 6.2.5.

6.6.3 Brieskorn’s theorem

In Section 1.4.3 we interpreted Artin’s braid group Bn as the fundamental
group of a configuration space. We give here a similar interpretation of the
generalized braid group BA associated to a Coxeter matrix A = (as,t)s,t∈S .

To begin with, we identify the Coxeter group WA associated to A with a
group of matrices. Let V be a real vector space with a basis {es}s∈S indexed
by the set S. We define a symmetric bilinear form 〈 , 〉 on V by

〈es, et〉 = − cos(π/as,t) = cos(π − π/as,t) ,

where we use the convention that π/as,t = 0 if as,t = +∞. In particular, we
have 〈es, es〉 = cos(0) = 1 for all s ∈ S.

For each s ∈ S, define an endomorphism μs of V by

μs(v) = v − 2〈es, v〉 es ,

where v ∈ V . Since 〈es, es〉 �= 0, the subspace Hs = {v ∈ V | 〈es, v〉 = 0}
orthogonal to es is a hyperplane, which does not contain es. We have an
orthogonal decomposition

V = Hs ⊕Res .

Since μs(es) = −es and μs(v) = v for all v ∈ H , the endomorphism μs is
involutive and equal to the orthogonal reflection in the hyperplane Hs.

Lemma 6.31. For all s, t ∈ S, the order of μs μt is equal to as,t.

Proof. (a) If as,t = ∞, then

(μsμt)(es) = μs(es + 2et) = −es + 2(et + 2es) = 3es + 2et

and
(μsμt)(et) = −μs(et) = −2es − et .

It follows that μsμt fixes es + et. Using this fact and the equality
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(μsμt)(es) = es + 2(es + et) ,

it is easy to check by induction that (μsμt)r(es) = es + 2r(es + et) for all
r ≥ 0. This shows that μsμt is of infinite order.

(b) We noted above that μs is an involution. Therefore, for s = t, the order
of μsμt = μ2

s is 1 = as,s.
(c) It remains to treat the case in which s �= t and as,t < ∞. Observe

that μsμt fixes Hs ∩ Ht pointwise and leaves the two-dimensional subspace
Πs,t of V spanned by es and et invariant. We have V = (Hs ∩ Ht) ⊕ Πs,t.
Restricting the symmetric bilinear form 〈 , 〉 to Πs,t, we obtain a symmetric
bilinear form

(

〈es, es〉 〈es, et〉
〈es, et〉 〈et, et〉

)

=
(

1 − cos(π/as,t)
− cos(π/as,t) 1

)

.

The inequalities 2 ≤ as,t < ∞ imply that 0 ≤ cos(π/as,t) < 1, so that
the latter bilinear form is positive definite. Therefore we can treat Πs,t as a
Euclidean plane, where the vectors es and et are of norm one and the angle
between them is π − π/as,t. It is well known that the composition of two
planar reflections is a rotation by an angle equal to twice the angle between
the vectors defining the reflections. Therefore, the restriction of μsμt to Πs,t

is a rotation by an angle of 2π − 2π/as,t = −2π/as,t (mod 2π). Since μsμt

fixes Hs ∩Ht pointwise, the order of μsμt is equal to as,t. ��

By this lemma, the reflections μs satisfy (6.7). Therefore, there is a group
homomorphism μ : WA → Aut(V ) defined by μ(s) = μs for all s ∈ S. It
can be shown that μ is an injective homomorphism onto a discrete subgroup
of Aut(V ). This realizes WA as a group of matrices generated by reflections.

We assume until the end of the section that the Coxeter group W = WA

is finite. Let {Hi}i∈I be the set of all hyperplanes of V obtained as the im-
ages of the hyperplanes Hs (s ∈ S) under the automorphisms of V lying in
μ(W ) ⊂ Aut(V ). Since W is finite, the set {Hi}i∈I is finite.

Let V C = V ⊗R C be the complexification of the real vector space V .
The action μ of W on V extends to an action of W on V C by C-linear auto-
morphisms. Consider the complex hyperplanes

HC
i = Hi ⊗R C ⊂ V C

for i ∈ I. Since the action of W on V permutes the hyperplanes {Hi}i∈I , the
extended action on V C permutes the complex hyperplanes {HC

i }i∈I . There-
fore, we obtain an action of W on the set

E = V C −
⋃

i∈I

HC
i .

The set E is an open subset of the complex vector space V C. Therefore, E is
a complex manifold of complex dimension card(S).
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The group W acts on E by fixed-point free homeomorphisms preserving
the complex structure. The quotient space W\E naturally inherits the struc-
ture of a complex manifold of dimension card(S). The projection E → W\E
is an unramified covering. Since the complex hyperplanes HC

i are of real codi-
mension two in V C, the manifolds E and W\E are connected.

Fix a point
p ∈ V ∩ E = V −

⋃

i∈I

Hi .

For each s ∈ S, consider a broken line in V C with consecutive vertices p,
p +

√
−1p, μs(p) +

√
−1p, and μs(p). This broken line lies in E and projects

to a loop in W\E beginning and ending at the projection ṗ ∈ W\E of p. This
loop represents an element of the fundamental group π1(W\E, ṗ) denoted
by ṡ.

Theorem 6.32 (E. Brieskorn). The map S → π1(W\E, ṗ), s → ṡ induces
a group isomorphism BA

∼= π1(W\E, ṗ).

For a proof, see Brieskorn [Bri71] or Deligne [Del72]. These authors also
proved that the manifold W\E is aspherical, i.e., its higher homotopy groups
vanish, see [Del72], [Bri73]. Since E → W\E is a covering, the manifold E
is also aspherical. Its fundamental group is isomorphic to the kernel of the
projection BA → W = WA. This kernel generalizes Artin’s pure braid groups.

Notes

The word problem in the braid groups was first solved by Artin [Art25]. Gar-
side [Gar69] introduced the braid monoids and studied their properties. This
led him to a new solution of the word problem and a solution of the conjugacy
problem in the braid groups. Garside [Gar69] also extended these results to
some generalized braid monoids. Dehornoy and Paris [DP99] abstracted the
ideas contained in [Gar69] and introduced the concept of a Garside monoid.
We used the following sources while writing this chapter: [DP99], [Mic99],
[GP00], [Deh02], [BDM02]. The definition of a (pre-)Garside monoid given in
this chapter is slightly different from the definitions in these papers.

A systematic study of generalized braid monoids and groups associated
with finite Coxeter groups was undertaken by Brieskorn [Bri71], [Bri73],
Brieskorn and Saito [BS72], and Deligne [Del72]. Generalized braid groups
are also called Artin groups or Artin–Tits groups . In the literature one also
finds the expression “braid groups of spherical type,” which designates gen-
eralized braid groups associated with finite Coxeter groups. Theorem 6.26 is
due to Matsumoto [Mat64]. Theorem 6.32 was conjectured by J. Tits and
first proven by Brieskorn [Bri71]. A description of generalized braid groups in
terms of braid pictures can be found in [All02].
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An Order on the Braid Groups

The principal aim of this chapter is to show that the braid groups have a
natural total order.

7.1 Orderable groups

In this section we present generalities on orderable groups. All groups will be
written multiplicatively and their neutral elements will be denoted by 1.

7.1.1 Orders

An order on a set X is a relation ≤ among elements of X satisfying the
following properties for all x, y, z ∈ X :

(i) (Reflexivity) x ≤ x,
(ii) (Antisymmetry) (x ≤ y and y ≤ x) =⇒ x = y,
(iii) (Transitivity) (x ≤ y and y ≤ z) =⇒ x ≤ z.

We shall also write y ≥ x instead of x ≤ y. We write x < y or, equivalently,
y > x if x ≤ y and x �= y. It is clear that there are no elements x, y ∈ X such
that simultaneously x < y and y < x.

An order is said to be total (or linear) if for any x, y ∈ X , either x = y
or x < y or x > y. An order-preserving map from an ordered set (X,≤) to
an ordered set (X ′,≤′) is a map f : X → X ′ such that f(x) ≤′ f(y) for all
x, y ∈ X such that x ≤ y.

7.1.2 Basics on orderable groups

An order ≤ on a group G is left-invariant (resp. right-invariant) if

x ≤ y =⇒ zx ≤ zy (resp. x ≤ y =⇒ xz ≤ yz)

for all x, y, z ∈ G. An order on a group that is both left- and right-invariant
is said to be bi-invariant .

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 7,
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A group is orderable if it has a left-invariant total order. Note that if G is
a group with left-invariant total order ≤, then G also admits a right-invariant
total order ≤′ defined by x ≤′ y if x−1 ≤ y−1 for x, y ∈ G.

For example, the set of real numbers R is orderable, since the standard
total order on R is left-invariant. Clearly, all subgroups of an orderable group
are orderable.

From orderable groups we can construct new orderable groups as follows.

Lemma 7.1. (a) If G1, . . . , Gr are orderable groups, then their direct product
G1 × · · · ×Gr is orderable.

(b) Let G be a group and H a normal subgroup. If H and G/H have left-
invariant total orders, then G has a unique left-invariant total order such that
the inclusion H ↪→ G and the projection p : G → G/H are order-preserving.
If furthermore the left-invariant total orders on H and G/H are bi-invariant
and zxz−1 > 1 for all z ∈ G and x ∈ H with x > 1, then the associated
left-invariant order on G is bi-invariant.

Proof. (a) Let ≤i be a left-invariant total order on Gi. We define a relation
≤ on G = G1 × · · · × Gr by (x1, . . . , xr) ≤ (y1, . . . , yr) if either xi = yi for
all i ∈ {1, . . . , r} or there is i ∈ {1, . . . , r} such that xj = yj for all j < i
and xi <i yi. It is easy to check that this relation is an order on G. It is
called the lexicographic order. Since the orders on G1, . . . , Gr are total, so is
the lexicographic order on G. Let us prove the left invariance. Let

x = (x1, . . . , xr) , y = (y1, . . . , yr) , z = (z1, . . . , zr)

be three elements of G. If x < y, then there is i ∈ {1, . . . , r} such that xj = yj

for all j < i and xi <i yi. Consequently, zjxj = zjyj for all j < i and
zixi <i ziyi by the left invariance of ≤i. Therefore, zx < zy.

(b) We define a relation ≤ on G by x ≤ y if either p(x) < p(y) for the given
order on G/H , or p(x) = p(y) and x−1y ≥ 1 for the given order on H (observe
that x−1y ∈ H). It is an easy exercise to check that this is a left-invariant
total order on G. Moreover, any left-invariant order on G such that H ↪→ G
and p : G → G/H are order-preserving is necessarily of this form.

Assume that the given total orders on H and G/H are bi-invariant and
zxz−1 > 1 for all z ∈ G and x ∈ H with x > 1. Let us check that the
order ≤ on G is right-invariant. Let x ≤ y in G. Since the order on G/H is
right-invariant, p(x) < p(y) implies that

p(xz) = p(x)p(z) < p(y)p(z) = p(yz)

for all z ∈ G. Hence xz ≤ yz. If p(x) = p(y) and x−1y ≥ 1, then

p(xz) = p(x)p(z) = p(y)p(z) = p(yz)

and
(xz)−1(yz) = z−1(x−1y)z ≥ 1 ,

since conjugation preserves positive elements of H by hypothesis. Thus in this
case again, xz ≤ yz. ��
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Lemma 7.1 (a) and the orderability of R imply that all finite-dimensional
real vector spaces and their additive subgroups are orderable.

Not all groups are orderable. For instance, a finite group is orderable if
and only if it is trivial (see Proposition 7.5 below).

7.1.3 The positive cone

For a subset P of a group G, set P−1 = {x ∈ G |x−1 ∈ P} and

P2 = {z ∈ G | there are x, y ∈ P such that z = xy} .

Lemma 7.2. For any subset P of a group G,

P ∩ {1} = ∅ ⇐⇒ P−1 ∩ {1} = ∅ ⇐= P ∩ P−1 = ∅ .

If P2 ⊂ P, then P ∩ {1} = ∅ =⇒ P ∩ P−1 = ∅.

Proof. If 1 ∈ P , then 1 = 1−1 ∈ P−1. This shows that P−1 ∩ {1} = ∅ ⇒
P ∩ {1} = ∅. Replacing here P by P−1, we obtain the converse implication.

To prove the implication P ∩ P−1 = ∅ ⇒ P ∩ {1} = ∅, we check that
P ∩ {1} �= ∅ ⇒ P ∩P−1 �= ∅. If P ∩ {1} �= ∅, then 1 ∈ P and 1 = 1−1 ∈ P−1.
Hence, 1 ∈ P ∩ P−1.

To prove the last claim of the lemma, we check that P ∩ P−1 �= ∅ ⇒
P ∩ {1} �= ∅. If x ∈ P ∩ P−1, then x−1 ∈ P ∩ P−1. Consequently,

1 = xx−1 ∈ P2 ⊂ P .

Hence, P ∩ {1} �= ∅. ��

Lemma 7.3. Let ≤ be a left-invariant order on a group G. Set

P = {x ∈ G |x > 1} .

Then P−1 = {x ∈ G |x < 1}, P2 ⊂ P, and

P ∩ {1} = P−1 ∩ {1} = P ∩ P−1 = ∅ .

If the order ≤ is total, then P ∪ {1} ∪ P−1 = G.

Proof. If x ∈ P−1, then x−1 ∈ P , so that 1 < x−1. Multiplying by x on the
left, we obtain x < 1. Similarly, x < 1 implies 1 = x−1x < x−11 = x−1, so
that x−1 ∈ P and x ∈ P−1. This proves that P−1 = {x ∈ G |x < 1}.

The antisymmetry axiom implies that P and P−1 = {x ∈ G |x < 1} are
disjoint. That they are disjoint from {1} follows from the definition of the
relation <.

If x, y ∈ P , then xy > x1 = x > 1, so that xy ∈ P . Thus, P2 ⊂ P .
If the order ≤ is total, then for any x ∈ G, necessarily x > 1 or x = 1 or

x < 1. Therefore, P ∪ {1} ∪ P−1 = G. ��
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The set P = {x ∈ G |x > 1} as in the previous lemma is called the positive
cone associated to the order ≤. The elements of P are said to be positive with
respect to ≤. The following theorem shows that a left-invariant total order on
a group can be reconstructed from its positive cone.

Theorem 7.4. Let P be a subset of a group G such that

P2 ⊂ P and 1 /∈ P .

Then G has a unique left-invariant order ≤ such that P = {x ∈ G |x > 1}.
If zPz−1 ⊂ P for all z ∈ G, then the order ≤ is bi-invariant. If

P ∪ {1} ∪ P−1 = G ,

then the order ≤ is total.

Proof. Let us first prove the uniqueness of the order. By the left invariance,
the inequality x < y is equivalent to the inequality 1 = x−1x < x−1y. The
latter is equivalent to the inclusion x−1y ∈ P . This shows that a left-invariant
order on G with positive cone P is necessarily defined by

x ≤ y ⇐⇒ (x = y or x−1y ∈ P) . (7.1)

We next prove the existence. By Lemma 7.2, the assumptions P2 ⊂ P and
1 �∈ P imply that

P ∩ {1} = P−1 ∩ {1} = P ∩ P−1 = ∅ .

We define a binary relation ≤ on G by (7.1). Let us check that it satisfies the
axioms of an order. The reflexivity follows from the definition.

Antisymmetry: If x ≤ y and y ≤ x, then either x = y or x−1y ∈ P ,
y−1x ∈ P . Since y−1x = (x−1y)−1, we obtain x−1y ∈ P ∩ P−1 = ∅ in the
second case, a contradiction. Therefore, x = y.

Transitivity: If x−1y, y−1z ∈ P , then x−1z = (x−1y)(y−1z) ∈ P2 ⊂ P .
Let us show that the order ≤ is left-invariant. Pick x, y ∈ G such that

x ≤ y. Then x = y or x−1y ∈ P . If x = y, then zx = zy for all z ∈ G. If
x−1y ∈ P , then (zx)−1(zy) = x−1y ∈ P . In both cases, zx ≤ zy.

Assume that zPz−1 ⊂ P for all z ∈ G. Let x, y ∈ G be such that x ≤ y.
Then x = y or x−1y ∈ P . If x = y, then xz = yz for all z ∈ G. If x−1y ∈ P
and z ∈ G, then (xz)−1(yz) = z−1(x−1y)z belongs to z−1Pz, hence to P .
This proves that ≤ is right-invariant.

If P ∪ {1} ∪ P−1 = G, then for all x, y ∈ G, we have x−1y ∈ P or
x−1y ∈ P−1 or x−1y = 1. In the first case, x < y; in the second case,
y−1x = (x−1y)−1 ∈ P , so that y < x; in the last case, x = y. This proves that
the order ≤ is total. ��
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7.1.4 Properties of orderable groups

We state two properties of orderable groups.

Proposition 7.5. Any orderable group G is torsion free.

Proof. We have to show that xn �= 1 for any integer n ≥ 1 and any x ∈ G
such that x �= 1. Suppose that x > 1. Then by the left invariance,

xn = (xn−1)x > xn−11 = xn−1

for any n ≥ 1. By induction, xn > x > 1; hence xn �= 1. If x < 1, then x−1 > 1
and x−n = (x−1)n �= 1. Hence, xn �= 1. ��

Proposition 7.6. If G is an orderable group and R is a ring without zero-
divisors, then the group algebra R[G] has no zero-divisors.

Proof. Let ω =
∑p

i=1 rigi and ω′ =
∑q

j=1 sjhj be nonzero elements of R[G],
where g1, . . . , gp and h1, . . . , hq are elements of G, and r1, . . . , rp and s1, . . . , sq

are elements of R. We may assume that r1, . . . , rp and s1, . . . , sq are all
nonzero and the group elements hi are numerated in such a way that
h1 < h2 < · · · < hq. By the left invariance of the order, gih1 < gihj for
all i = 1, . . . , p and j = 2, . . . , q. The order being total, there is a unique i0
such that gi0h1 < gih1 for all i �= i0. We claim that (i0, 1) is the unique pair
(i, j) such that gi0h1 = gihj in G. Indeed, as observed above, gi0h1 < gi0hj for
all j �= 1, and, if i �= i0, then gi0h1 < gih1 < gihj . Therefore, the coefficient
of gi0h1 in ωω′ ∈ R[G] is ri0s1, which is nonzero, since R has no zero-divisors.
Hence, ωω′ �= 0. ��

The zero-divisor conjecture (sometimes called Kaplansky’s conjecture)
states that if G is a torsion-free group and R is a ring without zero-divisors,
then the group algebra R[G] has no zero-divisors. Proposition 7.6 shows that
this conjecture holds for orderable groups.

7.1.5 Biorderable groups

A group is biorderable if it has a bi-invariant total order. For example, any or-
derable abelian group is biorderable, since a left-invariant order on an abelian
group is necessarily bi-invariant. All subgroups of a biorderable group are
biorderable. We state one further property of biorderable groups.

Lemma 7.7. Let G be a biorderable group. Then xn = yn ⇒ x = y for any
x, y ∈ G and any positive integer n.

Proof. We start with the following observation: in a biorderable group, x < y
together with x′ < y′ implies xx′ < yy′. Indeed, by the left and right invari-
ance of the order, xx′ < xy′ < x′y′. From this an easy induction shows that
x < y ⇒ xn < yn for all positive integers n. Now let x, y ∈ G be such that
xn = yn. Since the order is total, we must have x = y or x < y or y < x. By
the previous remark, the latter two cases cannot occur. Therefore, x = y. ��
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The group rings of biorderable groups have further interesting properties.
For instance, Malcev [Mal48] and Neumann [Neu49] proved that the integral
group ring of a biorderable group can be embedded into a division algebra.

The first two braid groups B1 = {1} and B2 = Z are biorderable. The braid
group Bn with n ≥ 3 is not biorderable. Indeed, by Remark 1.30, σ1σ2 �= σ2σ1,
but (σ1σ2)3 = (σ2σ1)3. Lemma 7.7 implies that Bn is not biorderable.

7.2 Pure braid groups are biorderable

The main result of this section is the following theorem.

Theorem 7.8. The pure braid group Pn is biorderable for all n ≥ 1.

To prove this theorem we first study Magnus expansions of free groups
and then show that free groups are biorderable. Theorem 7.8 is proven in
Section 7.2.3. Neither this theorem nor its proof will be used in the sequel.

7.2.1 The Magnus expansion

Fix a nonempty set X . We define a ring of (noncommutative) formal power
series over X . Let X∗ be the free monoid on X ; see Example 6.1 (c). By a
formal power series over X we mean an arbitrary formal sum

∑

W∈X∗ nW W ,
where W runs over X∗ and nW ∈ Z. Such formal sums can be added in the
obvious way and thus form an additive abelian group denoted by Z[[X ]]. The
multiplication in X∗ induces a multiplication in Z[[X ]]; this turns Z[[X ]] into
a ring whose unit is the neutral element 1 ∈ X∗.

Recall the length function � : X∗ → N, which is the unique morphism of
monoids sending all elements of X to 1. We say that a formal power series
a =

∑

W∈X∗ nWW ∈ Z[[X ]] has degree ≥ r, where r is a positive integer,
if nW = 0 for all W ∈ X∗ with �(W ) < r. Clearly, the product of a formal
power series of degree ≥ r with a formal power series of degree ≥ s is a formal
power series of degree ≥ r + s.

For a formal power series a =
∑

W∈X∗ nW W , let ε(a) = n1 ∈ Z be
the coefficient of the neutral element 1 ∈ X∗. It is easy to show that a is
invertible in Z[[X ]] if and only if ε(a) = ±1. For instance, for any x ∈ X ,
the polynomial 1+x ∈ Z[[X ]] is invertible and its inverse is the formal power
series

∑

k≥0 (−1)kxk.
The following lemma is left to the reader.

Lemma 7.9. For any x ∈ X and k ∈ Z there is a formal power series hk(x)
in the variable x such that

(1 + x)k = 1 + kx + x2hk(x) .

Let G(X) ⊂ Z[[X ]] be the set of all formal power series a ∈ Z[[X ]] such
that ε(a) = 1. This set is a group under multiplication.
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Proposition 7.10. Let F be a free group freely generated by a set X. The
homomorphism of groups μ : F → G(X) defined by μ(x) = 1 + x for all
x ∈ X is injective.

The formal power series μ(w) is called the Magnus expansion of w ∈ F .

Proof. The existence and the uniqueness of μ follow from the definition of F .
To check the injectivity of μ, pick a nontrivial element w ∈ F and write it in
the form

w = xk1
1 xk2

2 · · ·xkr
r ,

where x1, x2, . . . , xr ∈ X satisfy x1 �= x2, x2 �= x3, . . . , xr−1 �= xr, and all the
integers k1, k2, . . . , kr are nonzero. By Lemma 7.9,

μ(w) = (1 + x1)k1(1 + x2)k2 · · · (1 + xr)kr

=
(

1 + k1x1 + x2
1hk1(x1)

)(

1 + k2x2 + x2
2hk2(x2)

)

· · ·
(

1 + krxr + x2
rhkr (xr)

)

.

Expanding the formal power series on the right-hand side, we see that it
contains a unique monomial of the form x1x2 · · ·xr . The coefficient of this
monomial is k1k2 · · · kr �= 0. Hence, μ(w) �= 1. ��

7.2.2 Free groups are biorderable

Proposition 7.11. Let F be a free group freely generated by a set X. Any
total order on X extends to a bi-invariant total order on F .

Proof. A total order on X induces an order ≤ on X∗ as follows:

(i) On X ⊂ X∗ the order ≤ is the given total order.
(ii) If W1,W2 ∈ X∗ satisfy �(W1) < �(W2), then set W1 < W2.
(iii) If W1,W2 ∈ X∗ have the same length, then we order them lexicographi-

cally: if W1 = x1 · · ·xr and W2 = y1 · · · yr with xi, yi ∈ X for all i, then
W1 < W2 provided there is k ≤ r such that xk < yk and xi = yi for all
i < k.

The order ≤ on X∗ is total and bi-invariant; the latter means that W1 < W2

implies WW1 < WW2 and W1W < W2W for all W ∈ X∗.
By Proposition 7.10, if w ∈ F is distinct from the neutral element 1, then

μ(w) �= 1 ∈ Z[[X ]]. Write

μ(w) − 1 =
∑

W

nWW ,

where W runs over all nonempty words in X∗ such that the integer nW is
nonzero.
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One of the words W appearing in this expansion of μ(w) − 1 has to be
the smallest with respect to the above-defined total order on X∗. Denote this
smallest word by V (w) and set n(w) = nV (w) �= 0. Finally, set

P =
{

w ∈ F − {1} |n(w) > 0
}

.

Clearly, an element w of F − {1} lies in P if and only if μ(w) is of the form

1 + n(w)V +
∑

W>V

nW W ,

where V �= 1 and n(w) > 0.
We claim that P satisfies all conditions of Theorem 7.4 and therefore de-

fines a bi-invariant total order on F . It follows from the definitions that 1 /∈ P .
To establish that P2 ⊂ P , consider two elements w, w′ ∈ P and their Magnus
expansions

μ(w) = 1 + n(w)V +
∑

W>V

nWW

and
μ(w′) = 1 + n(w′)V ′ +

∑

W>V ′

n′
WW ,

where n(w) > 0 and n(w′) > 0. Expand μ(ww′) = μ(w)μ(w′) as a formal
power series. Using the bi-invariance of the order on X∗, we easily obtain

n(ww′) =

⎧

⎪
⎨

⎪
⎩

n(w) if V < V ′ ,

n(w′) if V > V ′ ,

n(w) + n(w′) if V = V ′ .

In all cases, n(ww′) > 0, which implies that ww′ ∈ P .
It is easy to deduce from the identity μ(w−1) = (μ(w))−1 that P−1 is the

set of all w ∈ F − {1} such that n(w) < 0. This together with the injectivity
of μ implies that P ∪ {1} ∪ P−1 = F .

It remains to check that wPw−1 ⊂ P for all w ∈ F . If f ∈ Z[[X ]] is a
formal power series without constant term and W ∈ X∗, then

(1 + f)W (1 + f)−1 = W +
∑

W ′>W

mW ′ W ′

for some integers mW ′ . This implies that

n(ww′w−1) = n(w′)

for all w,w′ in F − {1}. Therefore, wPw−1 ⊂ P for all w ∈ F . ��

Corollary 7.12. All free groups are biorderable.
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7.2.3 Proof of Theorem 7.8

We recall the notation and the results of Section 1.3. First of all, the pure
braid group Pn is generated by the n(n − 1)/2 braids Ai,j (1 ≤ i < j ≤ n)
shown in Figure 1.10. Next, for each n ≥ 2, we have an exact sequence

1 → Un → Pn → Pn−1 → 1 ,

where the map Pn → Pn−1 is the homomorphism fn that removes the right-
most string of a pure braid, and Un is a free group on the n − 1 generators
X1 = A1,n, . . . , Xn−1 = An−1,n. We give Un the bi-invariant total order de-
rived as above from the order X1 < X2 < · · · < Xn−1 on the set of generators.

Since P1 = {1}, we have P2
∼= U2

∼= Z, which is biorderable. It follows
from Lemma 7.1 (b) by induction on n that Pn has a unique left-invariant
total order such that the homomorphisms Un → Pn and fn : Pn → Pn−1 are
order-preserving.

By Lemma 7.1 (b), this order on Pn is bi-invariant provided βuβ−1 > 1
for any β ∈ Pn and any u ∈ Un such that u > 1. To check this property, we
observe from relations (1.7) that conjugating a generator Xi = Ai,n of Un by
a generator Ar,s of Pn with s < n amounts to conjugating Xi by a product
of generators of Un. The same is true for s = n, since Ar,n ∈ Un. Thus,
in all cases, A−1

r,sXiAr,s = Xi modulo the commutator subgroup [Un, Un]
of Un. It follows that βXiβ

−1 = Xi modulo [Un, Un] for all β ∈ Pn and
i ∈ {1, . . . , n − 1}. In other words, βXiβ

−1 = Xiui for some ui ∈ [Un, Un].
The Magnus expansion of βXiβ

−1 is computed by

μ(βXiβ
−1) = μ(Xiui) = (1 + Xi)μ(ui) .

It follows from Exercise 7.2.1 below that μ(ui) = 1 + (a formal power series
of degree ≥ 2). Therefore, μ(βXiβ

−1) = 1 + Xi + (a formal power series of
degree ≥ 2). The Magnus expansion of βuβ−1, where u ∈ Un, is then obtained
from μ(u) by replacing each Xi by the sum of Xi with a formal power series of
degree ≥ 2. The Magnus expansions of u and βuβ−1 have therefore the same
first nonconstant term. It follows that βuβ−1 > 1 if and only if u > 1. ��

Exercise 7.2.1. Show that for x, y ∈ X ,

μ(x−1y−1xy) = 1 + (xy − yx) + (a formal power series of degree ≥ 3) .

Exercise 7.2.2. Find all biorderable groups G fitting in the exact sequence

0 → Zr → G → Z → 0 .

Exercise 7.2.3. Show that for any orderable group G and any ring R, the
only invertible elements of the group algebra R[G] are of the form rg, where
r is an invertible element of R and g ∈ G.

Exercise 7.2.4. An element e of a ring is an idempotent if e2 = e. Show that
a ring having no zero-divisors has only two idempotents, 0 and 1.
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7.3 The Dehornoy order

Fix an integer n ≥ 1. The aim of this section is to construct the left-invariant
total order on the braid group Bn due to P. Dehornoy.

7.3.1 Braid words

A word of length m ≥ 1 on a set A is a mapping w : {1, 2, . . . ,m} → A.
Such a word is encoded by the expression w(1)w(2) · · ·w(m). For example,
for a, b ∈ A the expression aba encodes the word {1, 2, 3} → A sending 1, 2, 3
to a, b, a, respectively. By definition, there is a unique empty word ∅ of length 0.

For any a ∈ A and m ≥ 1, the word aa · · ·a formed by m entries of a is
denoted by am. Writing down consecutively the letters of two words v and w
on A, we obtain their concatenation vw. For instance, for any a ∈ A and
m,n ≥ 1, the concatenation of am and an is am+n.

We say that a word v is a subword of a word w if w = w1vw2 for some
(possibly empty) words w1, w2.

A braid word is a word on the set {σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1}. Every
braid word w represents an element of the braid group Bn. Since w represents
the same element of Bn as wσk

1 (σ−1
1 )k for all k ≥ 1, any element of Bn can be

represented by infinitely many braid words. The empty braid word represents
the neutral element 1 of Bn.

The inverse of a nonempty braid word w = σε1
i1
· · ·σεr

ir
, where εi = ±1, is

the braid word
w−1 = σ−εr

ir
· · ·σ−ε1

i1
.

If w represents β ∈ Bn, then w−1 represents β−1.
We define the index of a nonempty braid word w as the smallest integer

i ∈ {1, . . . , n − 1} such that σi or σ−1
i appear in w. A nonempty braid word

has the same index as its inverse. The empty braid word has no index.

7.3.2 σ-positive and σ-negative braids

We say that a braid word w is σi-positive if it is of index i and σ−1
i does not

appear in w. Neither the letter σ−1
i nor the letters σ±1

k with k < i appear in
a σi-positive braid word.

We say that a braid word w is σi-negative if its inverse is σi-positive. In
other words, w is σi-negative if it is of index i and σi does not appear in w.

A braid word is said to be σ-positive (resp. σ-negative ) if it is σi-positive
(resp. σi-negative) for some i ∈ {1, . . . , n− 1}.

Definition 7.13. An element of Bn is σi-positive (resp. σi-negative) if it is
represented by a σi-positive (resp. σi-negative) braid word.

An element of Bn is σ-positive (resp. σ-negative) if it is σi-positive (resp.
σi-negative) for some i ∈ {1, . . . , n− 1}.
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The generators σ1, σ2, . . . , σn−1 of Bn are clearly σ-positive. More gener-
ally, any element of the submonoid B+

n of Bn introduced in Section 6.5 is
σ-positive. There are σ-positive elements of Bn that do not belong to B+

n (for
instance σ1σ

−1
2 ).

Warning: not all braid words representing σ-positive elements of Bn are
σ-positive. For instance, take the braid word w = σ1σ2(σ−1

1 )N , where N ≥ 1.
The index of w is 1, but w is neither σ-positive nor σ-negative. Nevertheless,
it represents a σ-positive braid β ∈ Bn. Indeed, a repeated application of the
relation σ2σ1σ2 = σ1σ2σ1 yields

σN
2 σ1σ2 = σ1σ2σ

N
1

for all N ≥ 1. Multiplying both sides by σ−N
2 on the left and by σ−N

1 on the
right, we obtain

β = σ1σ2σ
−N
1 = σ−N

2 σ1σ2 .

The word (σ−1
2 )Nσ1σ2 representing β is σ-positive. Therefore, β is σ-positive.

Let P be the subset of Bn consisting of all σ-positive elements.

Lemma 7.14. The subset of Bn consisting of all σ-negative elements is P−1,
and P2 ⊂ P.

Proof. (a) Let β be a σ-negative element of Bn. Then it can be represented by
a σ-negative braid word w. By definition, the inverse word w−1 is σ-positive.
It represents β−1 ∈ Bn. Then β−1 ∈ P and hence β ∈ P−1. The converse
inclusion is proved in a similar fashion.

(b) Let β, β′ ∈ P . Then β can be represented by a σi-positive braid word w
and β′ by a σj-positive braid word w′ for some integers i, j. If i ≤ j, then the
word ww′ is σi-positive. If i > j, then ww′ is σj-positive. In all cases, ββ′ is
represented by a σ-positive braid word. ��

7.3.3 Definition of the Dehornoy order

We state the main result of this chapter.

Theorem 7.15. For any n ≥ 1, the braid group Bn has a left-invariant total
order ≤ such that 1 < β if and only if β is σ-positive.

The order ≤ on Bn is called the Dehornoy order . Note for the record that
β ≤ γ if β = γ or β−1γ ∈ P for any β, γ ∈ Bn. Theorem 7.15 implies that
Bn is orderable. Therefore, by Propositions 7.5 and 7.6, Bn is torsion free
(this has been already proved in Chapter 1; see Corollary 1.29) and the group
ring Z[Bn] has no zero-divisors.

When n = 2, any σ-positive braid word is necessarily of the form σk
1 for

some k ≥ 1. Now, B2 is isomorphic to Z via σk
1 → k. The Dehornoy order

on B2 coincides with the standard total order on Z under this isomorphism.
Theorem 7.15 is an immediate consequence of Theorem 7.4, Lemma 7.14,

and the following two lemmas.
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Lemma 7.16. We have 1 �∈ P.

Lemma 7.17. Any element β ∈ Bn, distinct from 1, is σ-positive or σ-nega-
tive. In other words, P ∪ {1} ∪ P−1 = Bn.

Lemma 7.16 will be proved in Section 7.4.2, and Lemma 7.17 at the end
of Section 7.5.2.

7.3.4 Properties

We list a few properties of the Dehornoy order. First observe that σr
i and

σs
i+1σ

r
i , with r ≥ 1 and s ∈ Z, are σ-positive elements of Bn. Therefore, for

the Dehornoy order,

· · · > σ3
1 > σ2

1 > σ1 > · · · > σ3
2 > σ2

2 > σ2 > · · · > σ3
n−1 > σ2

n−1 > σn−1 .

Proposition 7.18. (a) σn−1 is the smallest σ-positive element of Bn.
(b) Bn has no maximal elements and no minimal elements.

Proof. (a) Suppose that there is β ∈ P such that β < σn−1; this is equivalent
to β−1σn−1 ∈ P . Let w be a σi-positive word representing β. The braid
β−1σn−1 is represented by the word w−1σn−1. If i < n− 1, then w−1σn−1 is
σi-negative, which in view of Lemmas 7.2, 7.14, 7.16 contradicts the σ-positiv-
ity of β−1σn−1. Therefore, i = n− 1 and w = (σn−1)r for some integer r ≥ 1.
Then β−1σn−1 is 1 if r = 1 and belongs to P−1 if r > 1. This together with
Lemmas 7.2, 7.14, 7.16 contradicts the σ-positivity of β−1σn−1. So there is
no β ∈ P such that β < σn−1.

(b) Since σ1 > 1 > σ−1
1 , the left invariance of the order implies that

βσ1 > β > βσ−1
1 for each β ∈ Bn. Thus, Bn has no maximal element and no

minimal element. ��

The standard order on Z is Archimedian; translated to B2, it means that
given 1 < α < β with α, β ∈ B2, there is an integer r ≥ 2 such that β < αr.
In other words, for any α ∈ B2 ∩ P the disjoint intervals

{β ∈ B2 |αk ≤ β < αk+1}k∈Z

cover B2. This property does not extend to Bn for n ≥ 3, since 1 < σ2 < σ1

and σr
2 < σ1 for all r ≥ 2. Nevertheless, using the central element Δ2

n of Bn

(see Theorem 1.24), we obtain the following result.

Proposition 7.19. The intervals {β ∈ Bn |Δ2k
n ≤ β < Δ

2(k+1)
n }k∈Z form a

partition of Bn.

Proof. Since Δ2
n belongs to B+

n , we have Δ2
n > 1. Hence,

· · · < Δ−6
n < Δ−4

n < Δ−2
n < 1 < Δ2

n < Δ4
n < Δ6

n < · · · .
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To prove the proposition it therefore suffices to prove that for any β ∈ Bn

there are positive integers r, s such that Δ−2r
n ≤ β and β < Δ

2(s+1)
n . Indeed,

suppose that these two inequalities hold. Then there is a largest integer k such
that Δ2k

n ≤ β. By definition of k, we do not have Δ
2(k+1)
n ≤ β. Since the order

is total, Δ
2(k+1)
n > β.

We now prove the existence of a positive integer s such that β < Δ
2(s+1)
n .

Consider a braid word w representing β ∈ Bn. Suppose that σ1 occurs exactly
s times in w (we may have s = 0). We can write w = w0σ1w1 · · ·σ1ws, where
w0, . . . , ws are braid words in which σ1 does not appear (but σ−1

1 may appear).
In the braid monoid B+

n the generator σ1 is a divisor of Δn, hence of Δ2
n.

Therefore, Δ2
n = σ1v for some v ∈ B+

n ⊂ P . The braid β−1Δ
2(s+1)
n is then

represented by the word

w−1
s σ−1

1 w−1
s−1 · · ·σ−1

1 w−1
0 Δ2(s+1)

n

and, since Δ2
n is central, by the words

w−1
s σ−1

1 Δ2
nw−1

s−1 · · ·σ−1
1 Δ2

nw
−1
0 Δ2

n = w−1
s vw−1

s−1 · · · vw−1
0 σ1v .

In the latter word, σ1 appears at least once, and σ−1
1 nowhere. Therefore, it

is σ-positive, which implies that 1 < β−1Δ
2(s+1)
n . Therefore, β < Δ

2(s+1)
n .

We leave it to the reader to check in a similar fashion that if σ−1 occurs
exactly r times in w, then Δ−2r

n ≤ β. ��

Remark 7.20. Laver [Lav96] proved that σiβ > β for all β ∈ Bn and
i ∈ {1, . . . , n − 1}, from which it follows that the Dehornoy order has the
so-called subword property (for other proofs, see [Bur97], [Wie99]). By a the-
orem of Higman’s (see [Hig52]), this in turn implies that the restriction of
the Dehornoy order to the braid monoid B+

n is a well-ordering, that is, any
subset of B+

n has a minimal element. As a further consequence, the Dehornoy
order ≤ extends the divisibility order of B+

n denoted by & in Chapter 6, that
is, a & b ⇒ a ≤ b for all a, b ∈ B+

n .

7.3.5 The infinite braid group

Let ≤n be the Dehornoy order on Bn. Recall the inclusion ι : Bn ↪→ Bn+1

of Section 1.1.3. The following lemma is an immediate consequence of the
definitions.

Lemma 7.21. The inclusion ι : Bn ↪→ Bn+1 is order-preserving with respect
to the Dehornoy order, that is,

β ≤n β′ =⇒ ι(β) ≤n+1 ι(β′)

for all β, β′ ∈ Bn.
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Let B∞ =
⋃

n≥1 Bn be the inductive limit of the groups Bn with respect to
the inclusions ι. By definition, any element of B∞ lies in some Bn. The group
structures on the groups Bn naturally extend to a group structure on B∞.
The group B∞ is called the infinite braid group.

Proposition 7.22. There is a unique left-invariant total order on B∞ such
that the inclusions Bn ↪→ B∞ are order-preserving. As an ordered set, B∞ is
isomorphic to the ordered set Q of rational numbers.

Proof. (a) Let β, β′ ∈ B∞. By definition, there is n such that β, β′ ∈ Bn. We
set β ≤∞ β′ if β ≤n β′. It follows from Lemma 7.21 that this is independent
of the choice of n. We thus have a well-defined binary relation on B∞. It is
an easy exercise to check that ≤∞ is a left-invariant total order on B∞, and
that the inclusions Bn ↪→ B∞ are order-preserving. It is also easy to check
that ≤∞ is the unique order on B∞ such that the inclusions Bn ↪→ B∞ are
order-preserving.

(b) It has been known since Cantor that a totally ordered set X is iso-
morphic to Q equipped with its standard order if and only if X is countable,
has no maximal elements, has no minimal elements, and there is an element
between any two elements. Let us check that B∞ satisfies these conditions.

The group B∞ is generated by the elements σ1, σ2, σ3, . . .. Since any group
with a countable number of generators is countable (see Exercice 7.3.3), B∞ is
a countable set.

If B∞ had a maximal (resp. minimal) element β, then β would be a maxi-
mal (resp. minimal) element in Bn, where n is the index of the braid group to
which β belongs. This would contradict Proposition 7.18 (b). Hence, B∞ has
no maximal elements and no minimal elements.

To prove that there is an element between any two elements, it suffices by
the left invariance to prove that for any β ∈ B∞ such that 1 < β, there is α
such that 1 < α < β. Let β ∈ Bn. We set α = ι(β)σ−1

n ∈ Bn+1. Since the
index of a σ-positive word representing β is < n, the braid α is σ-positive.
Thus, 1 < α in Bn+1, hence in B∞. On the other hand, α−1β = σn in B∞,
which shows that α−1β is σ-positive. Therefore, α < β. ��

Exercise 7.3.1. Show that B∞ is isomorphic to the group generated by the
countable set of generators {σ1, σ2, σ3, . . .} subject to the braid relations of
Definition 1.1.

Exercise 7.3.2. Let X be a countable totally ordered set without maximal
or minimal elements such that there is an element between any two elements.
Construct an order-preserving bijection X → Q, where Q is equipped with
its natural order.

Exercise 7.3.3. Show that the free group on a countable number of genera-
tors is countable. Deduce that any group with a countable number of gener-
ators is countable.
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7.4 Nontriviality of σ-positive braids

The aim of this section is to prove Lemma 7.16. To this end we introduce an
action of Bn on a free group F∞ with a countable basis.

7.4.1 An action of Bn on F∞

In Section 1.5.1 we defined group automorphisms σ̃1, . . . , σ̃n−1 of the free
group Fn with free generators x1, . . . , xn. We recall the formulas:

σ̃i(xk) =

⎧

⎪
⎨

⎪
⎩

xk+1 if k = i,
x−1

k xk−1xk if k = i + 1,
xk otherwise.

Their inverses σ̃−1
i are given by

σ̃−1
i (xk) =

⎧

⎪
⎨

⎪
⎩

xkxk+1x
−1
k if k = i,

xk−1 if k = i + 1,
xk otherwise.

These formulas clearly extend to the free group F∞ on the countable set of gen-
erators {x1, x2, x3, . . .}. This defines a group homomorphism Bn → Aut(F∞).
We denote the image of β ∈ Bn in Aut(F∞) by β̃.

Let τ be the group endomorphism of F∞ defined by τ(xk) = xk+1 for
all k ≥ 1. The endomorphism τ is injective. Indeed, let τ− be the group
endomorphism of F∞ defined by τ−(xk) = xk−1 for k ≥ 2 and τ−(x1) = 1;
the injectivity of τ follows from the relation τ− ◦ τ = id.

Finally, for any group endomorphism ϕ of F∞, we define another one,
denoted by T (ϕ), by

T (ϕ)(xk) =

{

x1 if k = 1,
τ(ϕ(xk−1)) if k > 1.

Lemma 7.23. (a) T (σ̃i) = σ̃i+1 for all i ∈ {1, . . . , n− 2}.
(b) If ϕ �= id, then T (ϕ) �= id.
(c) If ϕ is injective, then so is T (ϕ).

Proof. (a) This follows from the definitions.
(b) If T (ϕ) = id, then

τ(ϕ(xk)) = T (ϕ)(xk+1) = xk+1 = τ(xk)

for all k ≥ 1. Since the endomorphism τ of F∞ is injective, ϕ(xk) = xk for all
k ≥ 1. Hence, ϕ = id.
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(c) We will show that T (ϕ)(w) �= 1 for any w ∈ F∞ such that w �= 1. Let
us represent w by a word on the set {x1, x2, . . .} ∪ {x−1

1 , x−1
2 , . . .}. We may

assume that this word is nonempty and reduced , i.e., it contains no subword
of the form xix

−1
i or x−1

i xi for some i ≥ 1. (In the sequel we shall use the fact
that a nonempty reduced word represents a nontrivial element in F∞; for a
proof, see [LS77, Sect. I.1], [Ser77, Sect. I.1].)

If the reduced word representing w does not contain any occurrences of x1

or x−1
1 , then there is w′ ∈ F∞ with w′ �= 1 such that w = τ(w′). By definition

of T , we have T (ϕ)(w) = τ(ϕ(w′)). The injectivity of ϕ and τ then implies
that T (ϕ)(w) �= 1.

Suppose that the reduced word representing w contains occurrences of xε
1

with ε = ±1. Then we can write it as

τ(w0)xk1
1 τ(w1)xk2

1 · · · τ(wr−1)xkr
1 τ(wr) ,

where k1, k2, . . . , kr are nonzero integers and w0, w1, . . . , wr−1, wr are words
in x±1

1 , x±1
2 , x±1

3 , . . . such that τ(w1), . . . , τ(wr−1) are nonempty and reduced.
By definition of T ,

T (ϕ)(w) = τ(ϕ(w0))xk1
1 τ(ϕ(w1))xk2

1 · · · τ(ϕ(wr−1))xkr
1 τ(ϕ(wr)) .

Since the words τ(w1), . . . , τ(wr−1) are nonempty and reduced, they represent
nontrivial elements of F∞. By the injectivity of τ and ϕ, the elements

τ(ϕ(w1)), . . . , τ(ϕ(wr−1))

of F∞ are nontrivial; hence they are represented by nonempty reduced words
in x±1

2 , x±1
3 , . . .. It follows that T (ϕ)(w) �= 1. ��

Now let E be the set of elements of F∞ that can be represented by a
reduced word ending with x−1

1 .

Lemma 7.24. We have
(a) σ̃−1

1 (E) ⊂ E;
(b) T (ϕ)(E) ⊂ E for any injective endomorphism ϕ of F∞.

Proof. (a) Let wx−1
1 be a reduced word representing an element of E. Then

w is a reduced word not ending with x1. Assume that

σ̃−1
1 (wx−1

1 ) = σ̃−1
1 (w)x1x

−1
2 x−1

1

does not belong to E. Then σ̃−1
1 (w) must contain an occurrence of x1 that

cancels the final x−1
1 . It follows from the definition of σ̃−1

1 that w contains x2

or x1 or x−1
1 .

In the first case, write w = w1x2w2 with x2 such that σ̃−1
1 (x2) = x1 cancels

the final x−1
1 in σ̃−1

1 (wx−1
1 ). Since w is reduced, w2 (which is also reduced)

cannot begin with x−1
2 . Now,
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σ̃−1
1 (wx−1

1 ) = σ̃−1
1 (w)x1x

−1
2 x−1

1 = σ̃−1
1 (w1)x1 σ̃−1

1 (w2)x1x
−1
2 x−1

1 .

Since the leftmost x1 on the right-hand side cancels the final x−1
1 , the word

between these two letters must represent 1 ∈ F∞, i.e., we must have

σ̃−1
1 (w2)x1x

−1
2 = 1

in F∞. Hence,

σ̃−1
1 (w2) = x2x

−1
1 = x−1

1 x1x2x
−1
1 = σ̃−1

1 (x−1
2 x1) .

Since σ̃−1
1 is bijective, w2 = x−1

2 x1, which is a reduced word beginning
with x−1

2 , thus contradicting the hypothesis on w.
If w contains xe

1 with e = ±1, we similarly write w = w1x
e
1w2. Then

σ̃−1
1 (wx−1

1 ) = σ̃−1
1 (w)x1x

−1
2 x−1

1 = σ̃−1
1 (w1)x1x

e
2x

−1
1 σ̃−1

1 (w2)x1x
−1
2 x−1

1 .

Since the leftmost x1 on the right-hand side cancels the final x−1
1 , arguing as

above, we obtain
xe

2x
−1
1 σ̃−1

1 (w2)x1x
−1
2 = 1

in F∞. Hence,
σ̃−1

1 (w2) = x1x
1−e
2 x−1

1 = σ̃−1
1 (x1−e

1 ) .

By the injectivity of σ̃−1
1 , we obtain w2 = x1−e

1 , hence w = w1x1, yielding a
contradiction with the assumption on w. Thus, in all cases,

σ̃−1
1 (wx−1

1 ) ∈ E .

(b) As before, we represent an element of E by wx−1
1 , where w is a reduced

word not ending with x1. Suppose that T (ϕ)(wx−1
1 ) does not belong to E.

Since
T (ϕ)(wx−1

1 ) = T (ϕ)(w)x−1
1 ,

the final x−1
1 in T (ϕ)(w)x−1

1 must be canceled by an x1 appearing in T (ϕ)(w).
We claim that w contains x1. If not, then w contains only x−1

1 and x±1
i with

i ≥ 2. By definition of T (ϕ), this implies that T (ϕ)(w) contains x−1
1 and x±1

i

with i ≥ 2, but no x1, a contradiction. We can thus write w = w1x1w2 with x1

such that its image T (ϕ)(x1) = x1 cancels the final x−1
1 in T (ϕ)(wx−1

1 ).
Therefore

T (ϕ)(wx−1
1 ) = T (ϕ)(w)x−1

1 = T (ϕ)(w1)x1 T (ϕ)(w2)x−1
1 .

By assumption, the leftmost x1 on the right-hand side cancels the final x−1
1 .

Therefore, T (ϕ)(w2) = 1. Since T (ϕ) is injective by Lemma 7.23 (c), w2 = 1.
Therefore, w = w1x1 ends with x1, which contradicts the hypothesis on w. ��
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7.4.2 Proof of Lemma 7.16

We first prove that a σ1-negative element β ∈ Bn is nontrivial. It is enough
to show that

β̃(x1) �= x1 ,

where β̃ is the image of β ∈ Bn in Aut(F∞).
The σ1-negative element β has an expansion of the form

β = β0σ
−1
1 β1σ

−1
1 · · ·βr−1σ

−1
1 βr ,

where r ≥ 1 and β0, β1, . . . , βr−1, βr are words in the generators σ2, . . . , σn−1

and their inverses. By Lemma 7.23 (a), for each k = 0, 1, . . . , r, there is an
automorphism ϕk of F∞ such that β̃k = T (ϕk). Therefore,

β̃ = β̃0σ̃
−1
1 β̃1σ̃

−1
1 · · · β̃r−1σ̃

−1
1 β̃r

= T (ϕ0) σ̃−1
1 T (ϕ1) σ̃−1

1 · · ·T (ϕr−1) σ̃−1
1 T (ϕr) .

Let us apply both sides of this equality to the generator x1 of F∞. Since

T (ϕr)(x1) = x1 and σ̃−1
1 (x1) = x1x2x

−1
1 ,

we have

β̃(x1) =
(

T (ϕ0) σ̃−1
1 T (ϕ1) σ̃−1

1 · · ·T (ϕr−1)
)

(x1x2x
−1
1 ) .

Since x1x2x
−1
1 belongs to the set E of reduced words in F∞ ending with x−1

1 ,
Lemma 7.24 implies that β̃(x1) ∈ E as well. Therefore, β̃(x1) �= x1.

To finish the proof, we use the group homomorphism sh : Bn−1 → Bn

defined by sh(σi) = σi+1 for all i = 1, . . . , n − 2. In geometric language,
the map sh shifts a geometric braid b to the right by adding on its left a
vertical string completely unlinked with b. For this reason, we call sh the shift
homomorphism. This homomorphism is injective: one can prove this using an
argument similar to the one used in the proof of Corollary 1.14; one can also
observe that sh is conjugate to the natural inclusion ι : Bn−1 → Bn (the
conjugating element is σ1σ2 · · ·σn−1; see Exercise 7.4.1).

We now prove that all elements of P are nontrivial. Let β be a σi-positive
element of Bn with i ≥ 1. By definition of a σi-positive element and of the
shift sh, there is a σ1-positive element α ∈ Bn such that β = shi−1(α). Then
α−1 is σ1-negative, and by the argument above, α �= 1. Since sh is injective,
β �= 1. In conclusion, we have proved that 1 �∈ P . ��

Exercise 7.4.1. Prove that for all β ∈ Bn−1,

sh(β) = (σ1σ2 · · ·σn−1) ι(β) (σ1σ2 · · ·σn−1)−1 .
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7.5 Handle reduction

The aim of this section is to prove Lemma 7.17, which states that any braid is
σ-positive, σ-negative, or trivial. The proof requires some preliminary notions
and auxiliary results.

Fix an integer n ≥ 1. As in Section 7.3.1, by braid words we mean words
in the letters

σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1 .

We say that a braid word w contains a braid word v if v is a subword of w.
A braid word w′ is a prefix of w if there is a braid word w′′ such that w = w′w′′.
Similarly, a braid word w′′ is a suffix of w if there is a braid word w′ such
that w = w′w′′.

7.5.1 Handles

Definition 7.25. A σi-handle is a braid word of the form σiuσ
−1
i or of the

form σ−1
i uσi, where i ∈ {1, . . . , n − 1} and u is an empty word or a braid

word of index > i. The sign of a σi-handle v is +1 if v = σiuσ
−1
i and −1

if v = σ−1
i uσi.

By a handle we shall mean a σi-handle with i ∈ {1, . . . , n− 1}. Figure 7.1
represents two σi-handles, the left one of sign +1 and the right one of sign −1
(the empty boxes represent arbitrary braids on n− i strings).

It is useful to note that a σn−1-handle is necessarily of the form σn−1σ
−1
n−1

or σ−1
n−1σn−1.

1 ii−1 i+1 i+2 n

· · ·

· · ·

· · ·

1 ii−1 i+1 i+2 n

· · ·

· · ·

· · ·

Fig. 7.1. σi-handles

The following lemma is an immediate consequence of the definitions.

Lemma 7.26. A braid word of index i ∈ {1, . . . , n− 1} that does not contain
σi-handles is σi-positive or σi-negative.

A concrete way to visualize the σi-handles contained in a braid word w is
to delete from w all occurrences of σ±1

j with j > i, thus obtaining a possibly
shorter word w[i]. The braid word w contains a σi-handle each time w[i]
contains a subword of the form σiσ

−1
i or σ−1

i σi.
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Consider, for instance, the braid word

w = σ1σ2σ3σ4σ
−1
3 σ−1

1 σ−1
3 σ−1

2 σ3σ2σ1σ3σ
−1
2 σ−1

1 .

Then

w[1] = σ1σ
−1
1 σ1σ

−1
1 , w[2] = σ1σ2σ

−1
1 σ−1

2 σ2σ1σ
−1
2 σ−1

1 ,

w[3] = σ1σ2σ3σ
−1
3 σ−1

1 σ−1
3 σ−1

2 σ3σ2σ1σ3σ
−1
2 σ−1

1 , w[4] = w .

We see that w has three σ1-handles, namely

σ1σ2σ3σ4σ
−1
3 σ−1

1 , σ−1
1 σ−1

3 σ−1
2 σ3σ2σ1 , σ1σ3σ

−1
2 σ−1

1 ,

one σ2-handle σ−1
2 σ3σ2, one σ3-handle σ3σ4σ

−1
3 , and no σ4-handles.

Definition 7.27. A handle v contained in a braid word w is said to be prime
if w = w1vw2, where w1v is the shortest prefix of w containing a handle.

Lemma 7.28. (a) A prime handle contains no other handles.
(b) Any braid word containing at least one handle contains a unique prime

handle.

Proof. (a) Let w = w1vw2 be a braid word in which v is a prime handle.
Suppose that v = w′uw′′, where u is a handle. Then w1w

′u is a prefix of w
containing a handle. Since w1v = w1w

′uw′′ is the shortest prefix of w contain-
ing a handle, we must have w1w

′u = w1w
′uw′′. This shows that w′′ is empty.

Since v = w′u and u are handles, the first letter of v is the inverse of the last
letter of u, which is the same as the first letter of u. Since v is a handle, u = v.

(b) Let w be a braid word containing a handle. The set of prefixes of w
containing a handle is nonempty, since it contains w itself. Pick the shortest
prefix w1vw2 containing a handle v. Since the prefix w1v contains a handle,
w2 = ∅ and the handle v is prime.

Suppose that there is another prime handle v′ such that w1v = w′
1v

′.
Necessarily, one of the words v, v′ contains the other one. By (a), this implies
that v′ = v. ��

In view of Lemma 7.28, we can speak of the prime handle of a braid word.
We can paraphrase Definition 7.27 by saying that the prime handle of a braid
word w is the first handle of w that appears entirely when one reads w from
left to right. For instance, the prime handle of

w = σ2σ1σ
−1
3 σ4σ3σ

−1
1 σ2σ1

is σ−1
3 σ4σ3 (not σ1σ

−1
3 σ4σ3σ

−1
1 ).
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7.5.2 Prime handle reduction

Our aim is to obtain σ-positive or σ-negative braid words by starting from
arbitrary braid words and gradually getting rid of prime handles. We shall
achieve this goal by an iterative process, which is repeated until no handles
are left.

Definition 7.29. Let v be a σi-handle of the form v = σe
i uσ

−e
i , where

i ∈ {1, . . . , n−1}, e = ±1, and u is the empty word or a word of index > i. The
reduction of v is the braid word obtained from u by replacing each occurrence
of σ±1

i+1 by σ−e
i+1σ

±1
i σe

i+1.

Remarks 7.30. (i) If v = σe
i uσ

−e
i is a σi-handle and u is a braid word of

index > i + 1, then the reduction of v is u. In particular, the reduction of
σe

i σ
−e
i is the empty word.
(ii) The index of the reduction of a handle v is greater than or equal to

the index of v.

Figure 7.2 shows the reduction of a σ1-handle of sign +1 with no occur-
rences of σ±1

2 , whereas Figure 7.3 shows the reduction of a σ1-handle of sign +1
with two occurrences of σ2 and no occurrences of σ−1

2 . The boxes u0, u1, u2

in these figures represent braid words that are empty or have index ≥ 3.

· · ·

· · ·

u0 u0

· · ·

· · ·

−→

Fig. 7.2. Reduction of a σ1-handle without occurrences of σ±1
2

The braids in Figure 7.2 are isotopic. The same holds for the braids in
Figure 7.3. This is a special case of the following simple but fundamental
property of reduction.

Lemma 7.31. Any handle represents the same element of Bn as its reduction.

Proof. This is a consequence of the relations

σe
i σ

±1
j σ−e

i =

{

σ±1
j if j ≥ i + 2 ,

σ−e
i+1σ

±1
i σe

i+1 if j = i + 1 ,

which follow from the braid relations of Definition 1.1 (here e = ±1). ��
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u0 u0

u1

u2 u2

u1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

−→

Fig. 7.3. Reduction of a σ1-handle with occurrences of σ2

Let w be a braid word containing at least one handle. We denote by red(w)
the braid obtained from w by replacing the prime handle of w by its reduction.
We define redk(w) with k ≥ 0 inductively as follows: red0(w) = w and for
k ≥ 1, if redk−1(w) contains a handle, then redk(w) = red(redk−1(w)). If
redk−1(w) does not contain handles, then redk(w) is not defined. We say
that a braid word of the form redk(w) with k ≥ 0 is obtained from w by
prime handle reduction. By Remark 7.30 (ii), prime handle reduction does
not decrease the index of a braid word.

As an illustration, we apply prime handle reduction to the braid word

w = σ1σ2σ3σ4σ
−1
3 σ2σ

−1
1 σ−1

3 σ−1
2 σ3σ2σ1σ3σ

−1
2 σ−1

1 . (7.2)

Indicating each prime handle with braces, we obtain

w = σ1σ2 σ3σ4σ
−1
3

︸ ︷︷ ︸
σ2σ

−1
1 σ−1

3 σ−1
2 σ3σ2σ1σ3σ

−1
2 σ−1

1 ,

red(w) = σ1σ2σ
−1
4 σ3σ4σ2σ

−1
1

︸ ︷︷ ︸
σ−1

3 σ−1
2 σ3σ2σ1σ3σ

−1
2 σ−1

1 ,

red2(w) = σ−1
2 σ1 σ2σ

−1
4 σ3σ4σ

−1
2

︸ ︷︷ ︸
σ1σ2σ

−1
3 σ−1

2 σ3σ2σ1σ3σ
−1
2 σ−1

1 ,

red3(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1 σ2σ
−1
3 σ−1

2
︸ ︷︷ ︸

σ3σ2σ1σ3σ
−1
2 σ−1

1 ,

red4(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1σ
−1
3 σ−1

2 σ3σ3σ2
︸ ︷︷ ︸

σ1σ3σ
−1
2 σ−1

1 ,

red5(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1 σ−1
3 σ3
︸ ︷︷ ︸

σ2σ
−1
3 σ3σ2σ

−1
3 σ1σ3σ

−1
2 σ−1

1 ,

red6(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1σ2 σ−1
3 σ3
︸ ︷︷ ︸

σ2σ
−1
3 σ1σ3σ

−1
2 σ−1

1 ,
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red7(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1σ2σ2σ
−1
3 σ1σ3σ

−1
2 σ−1

1
︸ ︷︷ ︸

,

red8(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1σ2σ2 σ−1
3 σ3
︸ ︷︷ ︸

σ−1
2 σ−1

1 σ2 ,

red9(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ1σ2 σ2σ
−1
2

︸ ︷︷ ︸
σ−1

1 σ2 ,

red10(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4 σ1σ2σ
−1
1

︸ ︷︷ ︸
σ2 ,

red11(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ2σ3σ4σ
−1
2

︸ ︷︷ ︸
σ1σ2σ2 ,

red12(w) = σ−1
2 σ1σ

−1
4 σ−1

3 σ−1
3 σ2σ3σ4σ1σ2σ2 .

The word red12(w) has no handles; it is σ1-positive.
Prime handle reduction has to stop, as stated in the following lemma.

Lemma 7.32. For each braid word w, there is an integer k ≥ 0 such that
redk(w) contains no handles.

We are now able to prove Lemma 7.17, which is the last unproved in-
gredient in the proof of Theorem 7.15. Let w be a braid word representing
β ∈ Bn. By Lemma 7.32, redk(w) contains no handles for some k. Therefore,
by Lemma 7.26, the braid word redk(w) is empty, σ-positive, or σ-negative.
But by Lemma 7.31, the word redk(w) represents β. Hence, β is trivial, σ-pos-
itive, or σ-negative. This proves Lemma 7.17.

We are thus left with proving Lemma 7.32. The proof relies on four aux-
iliary results, namely Lemmas 7.35, 7.36, 7.37, and 7.39 below, and will be
given in Section 7.5.8.

Remark 7.33. Lemma 7.32 provides an algorithm that turns any braid
word w into a braid word that is empty, σ-positive, or σ-negative, and rep-
resents the same element of Bn as w. This algorithm gives an alternative
solution to the word problem in Bn.

7.5.3 The Cayley graph

The four auxiliary results mentioned above make use of certain finite sub-
graphs of the Cayley graph of Bn.

Definition 7.34. The Cayley graph of Bn is the graph Γ whose vertices are
the elements of Bn and whose edges are defined as follows: for each β ∈ Bn

and i = 1, . . . , n− 1, there is a unique edge between the vertices β and βσi.

An oriented edge in Γ is an edge for which one of its endpoints is distin-
guished and called initial, whereas the other one is called terminal. If we have
an oriented edge a, then we denote the same edge with the reverse orientation
by ā, i.e., the initial (resp. terminal) vertex of ā is the terminal (resp. initial)
vertex of a.
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We label all oriented edges in Γ as follows. If the initial vertex of an
oriented edge a is β and its terminal vertex is βσi for some i ∈ {1, . . . , n− 1},
then its label is defined by L(a) = σi. If the terminal vertex of a is β and its
initial vertex is βσi, then its label is defined by L(a) = σ−1

i . In both cases,
L(a) is a one-letter braid word representing β−1

0 β1 ∈ Bn, where β0 is the
initial vertex of a and β1 its terminal vertex.

A path in the Cayley graph Γ is a finite sequence a1, a2, . . . , ak of oriented
edges of Γ such that for all i = 1, . . . , k − 1, the terminal vertex of ai is the
initial vertex of ai+1. The initial vertex of the path is the initial vertex of a1,
and the terminal vertex of the path is the terminal vertex of ak. The reverse
of the path a = (a1, a2, . . . , ak) is the path ā = (āk, . . . , ā2, ā1). By definition,
an empty path in Γ is a vertex of Γ that is viewed as both the initial and the
terminal vertex of the path. An empty path has no edges.

To a path a = (a1, a2, . . . , ak) in Γ we associate its label , which is the
braid word of length k

L(a) = L(a1)L(a2) · · ·L(ak)

obtained as the concatenation of the labels of the oriented edges a1, a2, . . . , ak.
If a is an empty path, then L(a) is the empty word. It is clear that L(a) rep-
resents the braid β−1

0 β1 ∈ Bn, where β0 is the initial vertex of a and β1 its
terminal vertex. Conversely, given a vertex β0 in Γ and a braid word w, there
is a unique path a in Γ with initial vertex β0 such that w = L(a). We thus
have a bijection between the set of paths in Γ with initial vertex β0 and ter-
minal vertex β1, and the set of braid words representing β−1

0 β1. Observe that
L(ā) = (L(a))−1 for any path a.

7.5.4 The graph Γr

Consider the element Δn of the braid monoid B+
n introduced in Section 6.5.1.

Recall from Lemma 6.11 (iv) that any element of B+
n is a left divisor of

Δr
n = (Δn)r for some r ≥ 0. For any integer r ≥ 0, we define Γr to be the full

subgraph of Γ whose vertices are the left divisors of Δr
n in the monoid B+

n .
Since the length of a left divisor of Δr

n cannot exceed the length of Δr
n and

the set of elements of B+
n of a given length is finite, the set of vertices of Γr is

finite. The number of edges ending in a given vertex being ≤ n− 1, the graph
Γr is finite.

A path in Γr is a path in Γ whose vertices and edges belong to Γr.

Lemma 7.35. Let Nr be the number of edges of Γr. For i ∈ {1, . . . , n − 1},
any σi-positive (resp. σi-negative) braid word that is the label of a path in Γr

contains the letter σi (resp. σ−1
i ) at most Nr times.

Proof. We give the proof for the σi-positive case. The σi-negative case can be
treated in a similar way.
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Let a = (a1, a2, . . . , ak) be a path in Γr whose label is a σi-positive word w.
The word w has no occurrences of σ−1

i , and each occurrence of σi in w is the
label of some oriented edge in the path a. To prove the lemma, it is enough to
check that the edges with label σi in this path are all different. Suppose that
it is not the case and that as = at for some s and t such that 1 ≤ s < t ≤ k
and L(as) = L(at) = σi. Consider the nonempty subpath

a′ = (as, . . . , at−1) .

This subpath lies in Γr and its label is a subword u of w. Since u is a subword of
a σi-positive word and contains at least one occurrence of σi, namely L(as),
it is σi-positive. On the other hand, the terminal vertex of a′ is the initial
vertex of the oriented edge at = as. In other words, a′ is a loop. Therefore,
the word u represents the trivial braid. But by Lemma 7.16, a σ-positive word
cannot represent the trivial braid. Therefore, the edges with label σi in the
path a are all different. ��

Lemma 7.36. For any braid word w, there is an integer r ≥ 0 and a path
in Γr whose label is w.

Proof. Let a = (a1, a2, . . . , ak) be a path in Γ with label w. We denote the
initial vertex of a1 by β0 and the terminal vertex of ai by βi (1 ≤ i ≤ k).
By definition of a path, the initial vertex of ai is βi−1 for i = 1, . . . , k. By
Section 6.5.4, there is s ≥ 0 such that Δs

n βi ∈ B+
n for all i = 0, 1, . . . , k.

Consider the “translated” path

Δs
n(a) = (Δs

n a1, . . . , Δ
s
n ak) ,

where Δs
n ai is the oriented edge of Γ with initial vertex Δs

n βi−1 and terminal
vertex Δs

n βi for i = 1, . . . , k. The path Δs
n(a) also has w as its label. The

vertices of this path belong to B+
n . By Lemma 6.11 (iv), there is an integer

r ≥ 0 such that
Δs

n β0, Δ
s
n β1, . . . , Δ

s
n βk

are left divisors of Δr
n. It follows that the translated path Δs

n(a) is in Γr. ��

7.5.5 Performing prime handle reduction in Γr

Let a be a path in Γ with initial vertex β0 and label w. By Section 7.5.3 there
is a unique path in Γ with initial vertex β0 and label red(w). We denote this
path by red(a). By Lemma 7.31, red(w) represents the same element of Bn

as w. Therefore, the terminal vertices of a and red(a) coincide.

Lemma 7.37. If a is a path in Γr with r ≥ 0, then so is red(a).

The proof of this lemma given in Section 7.5.6 is based on the following
decomposition of prime handle reductions into elementary steps.
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Let w, w′ be braid words. We say that w′ is obtained from w by an
elementary reduction if w′ is obtained from w by replacing some subword
u of w by the word u′, where u → u′ is one of the following substitutions:

σe
i σ

−e
i → ∅ with e = ±1 , (7.3)

σe
i σ

k
j → σk

j σ
e
i with e = ±1, k = ±1, and |i− j| ≥ 2 , (7.4)

σiσ
−1
i+1 → σ−1

i+1σ
−1
i σi+1σi , (7.5)

σ−1
i σi+1 → σi+1σiσ

−1
i+1σ

−1
i , (7.6)

σ−1
i+1σi → σiσi+1σ

−1
i σ−1

i+1 , (7.7)

σi+1σ
−1
i → σ−1

i σ−1
i+1σiσi+1 . (7.8)

Lemma 7.38. For any braid word w, one can pass from w to red(w) by a
finite sequence of elementary reductions.

Proof. It is enough to check that one can pass from a prime handle v to
its reduction v′ by a finite sequence of elementary reductions. Now, a prime
σi-handle v is necessarily of one of the following two forms:

(i) If v does not contain any occurrences of σ±1
i+1, then

v = σe
i u0σ

−e
i , (7.9)

where e = ±1 and u0 is empty or of index > i + 1. In this case, v′ = u0. We
use (7.4) to transform v into σe

i σ
−e
i u0. We then use (7.3) to transform the

latter into u0.
(ii) If v contains an occurrence of σk

i+1 with k = ±1, then it contain no oc-
currences of σ−k

i+1; otherwise, it would contain σi+1-handles, which contradicts
Lemma 7.28 (a). It follows that v is of the form

v = σe
i u0σ

k
i+1u1σ

k
i+1u2 · · ·ur−1σ

k
i+1urσ

−e
i , (7.10)

where e = ±1, k = ±1, r ≥ 1, and u0, . . . , ur are empty or of index > i + 1.
In this case, the reduction of v is

v′ = u0σ
−e
i+1σ

k
i σ

e
i+1u1σ

−e
i+1σ

k
i σ

e
i+1u2 · · ·ur−1σ

−e
i+1σ

k
i σ

e
i+1ur . (7.11)

We now distinguish four cases depending on the values of e and k.
(a) If e = 1 and k = −1, then

v = σiu0
︸︷︷︸

σ−1
i+1u1σ

−1
i+1u2 · · ·ur−1σ

−1
i+1urσ

−1
i .

Since u0 is of index > i+1, we can apply substitutions (7.4) to the underbraced
subword of v; we thus transform v into

u0 σiσ
−1
i+1

︸ ︷︷ ︸

u1σ
−1
i+1u2 · · ·ur−1σ

−1
i+1urσ

−1
i .
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Applying substitution (7.5) to the underbraced subword, we obtain

u0 (σ−1
i+1σ

−1
i σi+1)[σiu1σ

−1
i+1u2 · · ·ur−1σ

−1
i+1urσ

−1
i ] .

The subword in square brackets is of the same form as v, but shorter. Iterating
substitutions (7.4), (7.5), we obtain the word

u0 (σ−1
i+1σ

−1
i σi+1)u1 (σ−1

i+1σ
−1
i σi+1)u2 · · ·ur−1 (σ−1

i+1σ
−1
i σi+1)[σiurσ

−1
i ] .

We finally apply substitutions (7.3), (7.4) to the subword σiurσ
−1
i , and obtain

the word v′ as in (7.11).
(b) If e = −1 and k = 1, then we proceed as in the previous case using (7.6)

instead of (7.5).
(c) If e = −1 and k = −1, then

v = σ−1
i u0σ

−1
i+1u1σ

−1
i+1u2 · · ·ur−1σ

−1
i+1urσi .

Here we start from the right: we use (7.4) to transform v into

σ−1
i u0σ

−1
i+1u1σ

−1
i+1u2 · · ·ur−1 σ−1

i+1σi
︸ ︷︷ ︸

ur .

Next we use (7.7) to transform the latter into

[σ−1
i u0σ

−1
i+1u1σ

−1
i+1u2 · · ·ur−1σi](σi+1σ

−1
i σ−1

i+1)ur .

Now the word in square brackets is of the same form as v, but shorter. We
then iterate substitutions (7.4), (7.7), and obtain the word

[σ−1
i u0σi](σi+1σ

−1
i σ−1

i+1)u1 (σi+1σ
−1
i σ−1

i+1)u2 · · ·ur−1 (σi+1σ
−1
i σ−1

i+1)ur .

We finally apply substitutions (7.3), (7.4) to the subword σ−1
i u0σi, and ob-

tain v′ as in (7.11).
(d) If e = 1 and k = 1, then we proceed as in the previous case using (7.8)

instead of (7.7). ��

7.5.6 Proof of Lemma 7.37

Let w′ be obtained from the label w of a by an elementary reduction and
let a′ be the path in Γ with label w′ and the same initial vertex as a. By
Lemma 7.38, it suffices to prove that a′ lies in Γr. We consider successively
each of the substitutions (7.3)–(7.8).

(a) Substitution (7.3): If w′ is obtained from w by (7.3), then a′ is obtained
from a by removing a loop. Since a lies in Γr, so does a′.

(b) Substitution (7.4): We may assume that the word σe
i σ

k
j (e = ±1,

k = ±1) is the label of a path in Γr with initial vertex β0 and terminal
vertex β1. By assumption, β0, β0σ

e
i , and β1 = β0σ

e
i σ

k
j are vertices of Γr.
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Since (7.4) substitutes σk
j σ

e
i for σe

i σ
k
j , we have to check that β0σ

k
j is a vertex

of Γr, i.e., that it is a left divisor of Δr
n in B+

n .
If e = k = 1, then we have to check that β0σj is a left divisor of Δr

n. But
β0σj is a left divisor of β0σjσi = β0σiσj = β1, which by assumption is a left
divisor of Δr

n.
Let e = 1 and k = −1. By definition of β0 and β1, we have β1σj = β0σi.

In particular, σi and σj are right divisors of β0σi. We proved in Section 6.5
that σiσj = σjσi is the left lcm of σi and σj . Hence there is β ∈ B+

n such that
β0σi = βσjσi. Consequently, β0 = βσj . The vertex β0σ

−1
j = β lies in B+

n and
is a left divisor of Δr

n, as desired.
The case e = −1 reduces to the previous ones by reversing the paths.
(c) Substitution (7.5): Assume that the braid word σiσ

−1
i+1 is the label of a

path in Γr with initial vertex β0 and terminal vertex β1. This means that the
braids β0, β0σi, and β1 = β0σiσ

−1
i+1 belong to B+

n and are left divisors of Δr
n.

We have to show that the braids

β0σ
−1
i+1 , β0σ

−1
i+1σ

−1
i , β0σ

−1
i+1σ

−1
i σi+1 (7.12)

also belong to B+
n and are left divisors of Δr

n.
The element β0σi = β1σi+1 of B+

n is a left multiple of σi and σi+1. It follows
that β0σi is a left multiple of the left lcm of σi and σi+1, which by Section 6.5
is σiσi+1σi. Therefore, there is β ∈ B+

n such that β0σi = βσiσi+1σi. We
thus have β0 = βσiσi+1. The braids (7.12) can be expressed in terms of β as
follows:

β0σ
−1
i+1 = βσiσi+1σ

−1
i+1 = βσi ,

β0σ
−1
i+1σ

−1
i = βσiσ

−1
i = β ,

β0σ
−1
i+1σ

−1
i σi+1 = βσi+1 .

Clearly these braids belong to B+
n . Since they are left divisors of

βσiσi+1σi = βσi+1σiσi+1 = β0σi ,

they are left divisors of Δr
n.

(d) Substitution (7.6): Assume that σ−1
i σi+1 is the label of a path in Γr

with initial vertex β0 and terminal vertex β1. Then the braids

β0 , β = β0σ
−1
i , β1 = β0σ

−1
i σi+1 = βσi+1

belong to B+
n and are left divisors of Δr

n. We have to show that the braids
β0σi+1, β0σi+1σi, and β0σi+1σiσ

−1
i+1 belong to B+

n and are left divisors of Δr
n.

It is clear that β0σi+1, β0σi+1σi, and

β0σi+1σiσ
−1
i+1 = β0σ

−1
i σi+1σi = β1σi

belong to B+
n . We know that β0 = βσi and β1 = βσi+1 are left divisors of Δr

n.
This implies that the right lcm of βσi and βσi+1 in B+

n is a left divisor of Δr
n.
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We claim that the right lcm of βσi and βσi+1 is βμ, where μ = σiσi+1σi is
the right lcm of σi and σi+1. Indeed, βμ is clearly a right multiple of βσi

and βσi+1. Let ν = βσiβ
′ = βσi+1β

′′ be a right multiple of βσi and βσi+1,
where β′, β′′ ∈ B+

n . Since B+
n is left cancellative, σiβ

′ = σi+1β
′′, which is a

right multiple of σi and σi+1 and hence a right multiple of μ. Therefore, ν is
a right multiple of βμ, which proves the claim. It follows from the previous
arguments that βσiσi+1σi = βσi+1σiσi+1 is a left divisor of Δr

n. So are then

β0σi+1 = βσiσi+1 , β0σi+1σi = βσiσi+1σi ,

and
β0σi+1σiσ

−1
i+1 = β0σ

−1
i σi+1σi = βσi+1σi .

(e) Substitutions (7.7) and (7.8): The two words in (7.7) and in (7.8) are
inverses of the words in (7.6) and in (7.5), respectively. So we may argue as
above after reversing the paths. ��

7.5.7 Critical prefixes and critical handles

Consider a braid word w of index i ∈ {1, . . . , n − 1}. Let e(w) = ±1 be the
integer such that the leftmost occurrence of σ±1

i in w is σ
e(w)
i . We define the

critical prefix P (w) of w as the longest prefix of w such that its last letter
is σ

e(w)
i and it contains no occurrences of σ

−e(w)
i . For example, if i = 1 and

w = σ1σ2σ3σ
−1
2 σ1σ

−1
3 σ1σ3σ

−1
2 σ−1

1 σ−1
2 σ−1

3 σ1σ2 ,

then e(w) = 1 and P (w) = σ1σ2σ3σ
−1
2 σ1σ

−1
3 σ1.

We denote by h(w) the number of σi-handles contained in w. If h(w) ≥ 1,
then there is a unique σi-handle whose first letter, σ

e(w)
i , is the last letter of

the critical prefix P (w). We call this handle the critical handle of w. It is
easy to see that the critical handle of w is the unique σi-handle v such that
w = w1vw2, where w1v is the shortest prefix of w containing a σi-handle.
The essential difference between the critical handle and the prime handle (as
introduced in Definition 7.27) of a braid word of index i is that the critical
handle is always a σi-handle, whereas the prime handle may be a σj-handle
with j > i. It follows from the definitions that the prime handle of w is
contained in the critical handle, and if the prime handle is a σi-handle, then
it coincides with the critical handle. Let us illustrate the difference between
critical and prime handles on the following three words of index 1:

(i) If w = σ1σ2σ3σ
−1
2 σ1σ

−1
3 σ1σ3σ

−1
2 σ−1

1 σ−1
2 , then its critical handle is

σ1σ3σ
−1
2 σ−1

1 ; its prime handle is σ2σ3σ
−1
2 .

(ii) If w = σ1σ2σ3σ
−1
2 σ1σ

−1
3 σ1σ3σ

−1
2 , then it has no σ1-handles, hence no

critical handles; its prime handle is σ2σ3σ
−1
2 .

(iii) If w = σ1σ2σ3σ2σ1σ
−1
3 σ1σ3σ

−1
2 σ−1

1 σ−1
2 , then its prime handle is the

σ1-handle σ1σ3σ
−1
2 σ−1

1 . This handle is also the critical handle of w.
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Observe that if a word is the label of a path a in Γ , then all its subwords, in
particular the critical prefix, the prime handle, the critical handle, are labels
of subpaths of a.

Lemma 7.39. Let w be a braid word of index i containing at least one handle.
Assume that w is the label of a path a in Γr with initial vertex β0. Then
h(red(w)) ≤ h(w). If h(red(w)) = h(w) ≥ 1, then e(red(w)) = e(w), and
there is a path a(w) in Γr such that

(i) the initial vertex of a(w) is the terminal vertex of the path p(w) with
initial vertex β0 and label P (w), and the terminal vertex of a(w) is
the terminal vertex of the path p(red(w)) with initial vertex β0 and
label P (red(w)),

(ii) if the index of the prime handle of w is > i, then the path a(w) is empty;
if the index of the prime handle of w is i, then the label of a(w) contains
exactly one occurrence of σ

−e(w)
i and no occurrences of σ

e(w)
i .

Figure 7.4 shows the paths a, red(a), the subpath p(w) of a, the subpath
p(red(w)) of red(a), and the path a(w).

σ
e(w)
i

p(w)

p(red(w))

β0

a

red(a)

a(w)

σ
e(w)
i

Fig. 7.4. The path a(w)

Proof. If h(w) = 0, then w contains no σi-handles, and one passes from w
to red(w) by reducing some σj-handle with j > i. It is clear that red(w)
contains no σi-handles. Hence, h(red(w)) = 0 = h(w).

Now assume that h(w) ≥ 1. We can write

w = v0σ
e
i v1σ

e
i · · · vp−1σ

e
i vp σe

i vp+1σ
−e
i

︸ ︷︷ ︸
vp+2σ

f
i · · · , (7.13)

where p ≥ 0, v0, v1, . . . , vp−1, vp, vp+1, vp+2 are braid words of index > i,
e = ±1, and the subword indicated by braces is the critical handle of w,
which exists since h(w) ≥ 1. By σf

i in (7.13), we mean the first letter σ±1
i

appearing to the right of the critical handle of w if such a letter exists, and
the empty word if no such letter exists, i.e., if the letters to the right of the
critical handle are σ±1

j with j > i. Clearly,

P (w) = v0σ
e
i v1σ

e
i · · · vp−1σ

e
i vpσ

e
i .
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Assume first that the index of the prime handle of w is > i. Then the
prime handle of w must be a subword of vr for some r ∈ {0, 1, . . . , p + 1} (by
definition of the prime handle, it cannot lie to the right of the critical han-
dle). The word red(w) is then obtained from w by replacing vr with red(vr).
This operation does not affect the σi-handles. Hence, h(red(w)) = h(w) and
e(red(w)) = e(w). The critical prefix behaves under the reduction as follows:
if r = p + 1, then P (red(w)) = P (w); if r ≤ p, then P (red(w)) is obtained
from P (w) by replacing vr with red(vr). In both cases, P (red(w)) represents
the same element of Bn as P (w). Therefore, the paths p(w) and p(red(w))
have the same terminal vertex and we take a(w) to be the empty path.

Now assume that the index of the prime handle of w is i. Then this handle
has to be the critical handle σe

i vp+1σ
−e
i . The word red(w) is obtained by

reducing this handle. By Lemma 7.28, the prime handle does not contain
any other handles. Therefore, the word vp+1 either contains no occurrences
of σ±1

i+1, or contains occurrences of σ±1
i+1, but no occurrences of σ∓1

i+1. Let us
consider these cases separately.

(A) Suppose that vp+1 contains no occurrences of σ±1
i+1. The word red(w)

is then obtained from w by replacing the prime handle

σe
i vp+1σ

−e
i

by vp+1. If p = 0, then
h(red(w)) < h(w)

and we are done. Assume that p ≥ 1. Then

red(w) = v0σ
e
i v1σ

e
i · · · vp−1 σe

i vpvp+1vp+2σ
f
i

︸ ︷︷ ︸
· · · . (7.14)

Comparing (7.13) and (7.14), we see that h(red(w)) < h(w) unless σf
i = σ−e

i .
In the latter case, the subword indicated by braces in (7.14) is the critical
handle of red(w), and

h(red(w)) = h(w) ≥ 1 and e(red(w)) = e(w) .

Since
P (red(w)) = v0σ

e
i v1σ

e
i · · · vp−1σ

e
i ,

we have
P (w) = P (red(w)) vpσ

e
i .

Moreover, the path p(red(w)) is a subpath of the path p(w), hence a subpath
of a. Let a(w) be the path whose label is σ−e

i v−1
p and whose initial vertex is

the terminal vertex of p(w). It is clear that a(w) is a subpath of ā; hence a(w)
lies in Γr. The terminal vertex of a(w) is the terminal vertex of p(red(w)).
Figure 7.5 shows parts of the paths a and red(a) in Γr. The path a(w) appears
in the gray zone of the figure (with reverse orientation). The label σ−e

i v−1
p

of a(w) contains exactly one occurrence of σ−e
i and no occurrences of σe

i .
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P (w)

vp

P (red(w))

σe
i

vp+1

vp+1σe
i

vp+2 σf
i

critical handle of w

critical handle of red(w)

σ−e
i

Fig. 7.5. Proof of Lemma 7.39: Case (A)

(B) Suppose that vp+1 contains occurrences of σ−e
i+1 and no occurrences

of σe
i+1, i.e.,

vp+1 = u0σ
−e
i+1u1 · · ·uq−1σ

−e
i+1uq ,

where q ≥ 1 and u0, u1, . . . , uq−1, uq are braid words of index ≥ i+2. If p = 0,
then

red(w) = v0u0σ
−e
i+1σ

−e
i σe

i+1u1 · · ·uq−1σ
−e
i+1σ

−e
i σe

i+1uqv2σ
f
i · · · .

Clearly, h(red(w)) < h(w) and we are done. If p ≥ 1, then red(w) is equal to

v0σ
e
i v1σ

e
i · · · vp−1 σe

i vpu0σ
−e
i+1σ

−e
i

︸ ︷︷ ︸

σe
i+1u1 · · ·uq−1σ

−e
i+1σ

−e
i σe

i+1uqvp+2σ
f
i · · · .

The subword indicated by braces is the critical handle of red(w), and we have
h(red(w)) = h(w) ≥ 1 and e(red(w)) = e(w). Moreover,

P (w) = P (red(w)) vpσ
e
i

as in (A) and we can conclude in the same way. Figure 7.6 shows parts of
the paths a and red(a) in Γr. The path a(w) appears in the gray zone of the
figure (with reverse orientation).

P (w)

vp

u0

u0
P (red(w))

σe
i

σ−e
i+1

σ−e
i+1 σ−e

i

σ−e
i

uq

uq

σe
i

σe
i+1

vp+2 σf
i

critical handle of w

critical handle of red(w)

Fig. 7.6. Proof of Lemma 7.39: Case (B)
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(C) We finally suppose that vp+1 contains occurrences of σe
i+1 and no

occurrences of σ−e
i+1, i.e.,

vp+1 = u0σ
e
i+1u1 · · ·uq−1σ

e
i+1uq ,

where q ≥ 1 and u0, u1, . . . , uq−1, uq are braid words of index ≥ i + 2. Then
red(w) is equal to

v0σ
e
i v1σ

e
i · · · vp−1σ

e
i vpu0σ

−e
i+1σ

e
i σ

e
i+1u1 · · ·uq−1σ

−e
i+1 σe

i σ
e
i+1uqvp+2σ

f
i

︸ ︷︷ ︸
· · · .

If σf
i is the empty word or f = e, then h(red(w)) < h(w) and we are done.

If f = −e, then h(red(w)) = h(w) ≥ 1 and the critical handle of red(w)
is the one indicated by braces. We then have e(red(w)) = e(w). Setting
v = v0σ

e
i v1σ

e
i · · · vp−1σ

e
i vp, we obtain

P (w) = vσe
i and P (red(w)) = vu0σ

−e
i+1σ

e
i σ

e
i+1u1 · · ·uq−1σ

−e
i+1σ

e
i .

Let a(w) be the path whose label is

L = u0σ
e
i+1u1 · · ·uq−1σ

e
i+1uqσ

−e
i u−1

q σ−e
i+1

and whose initial vertex is the terminal vertex of the subpath p(w) of a. In
Figure 7.7 the path a(w) appears in the gray zone. We see that the terminal
vertex of a(w) is the terminal vertex of the subpath p(red(w)) of red(a), and
the edges of a(w) are edges either of a or of red(a). The path red(a) lies
in Γr by Lemma 7.37; hence, so does a(w). The word L contains exactly one
occurrence of σ−e

i and no occurrences of σe
i . ��

P (w)

vp

u0

u0

P (red(w))

σe
i

σe
iσ−e

i+1

σe
i+1

σe
i+1

σ−e
i

uq

uq

vp+2 σf
i

critical handle of w

critical handle of red(w)

Fig. 7.7. Proof of Lemma 7.39: Case (C)
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7.5.8 Proof of Lemma 7.32

We now use the previous lemmas to prove that prime handle reduction even-
tually stops. Let us proceed by descending induction on the index i of w.

If i = n− 1, then w is a word in the letters σ±1
n−1, and any handle is of the

form σ±1
n−1σ

∓1
n−1. Reducing it means deleting it, hence shortening the length of

the word by 2. It is obvious that redk(w) contains no handles for sufficiently
large k.

Suppose that the lemma holds for all braid words of index > i and let w be
a braid word of index i. Assume that Lemma 7.32 does not hold for w. This
means that redk(w) exists for all k ≥ 0, that is, every braid word wk = redk(w)
has at least one handle. By Lemma 7.39, the nonnegative integers h(wk) form
a nonincreasing sequence, which eventually must be constant. After discarding
a finite number of wk, we may assume that there is an integer h such that
h(wk) = h for all k ≥ 0. By definition, wk+1 is obtained from wk by reducing
the prime handle, which is either a σi-handle or a σj -handle for some j > i.
Let K be the set of all integers k such that the prime handle of wk is a
σi-handle. In the sequel we shall prove first that K is infinite, then that K is
finite. This will give a contradiction, so that Lemma 7.32 must hold for w.

We first prove that K is infinite and h ≥ 1. For any k ≥ 0, the braid
word wk is of the form

wk = v0σ
e
i v1σ

e
i v2 · · ·σe

i vpw
′ ,

where e = ±1, the words v0, v1, v2, . . . , vp are of index > i, and the word w′

either begins with the letter σ−e
i (in which case h = h(wk) > 0) or is empty

(in which case h = 0). By the induction assumption, for each r ∈ {0, 1, . . . , p},
there is kr ≥ 0 such that redkr (vr) contains no handles. We claim that

redk0(wk) = redk0(v0)σe
i v1σ

e
i v2 · · ·σe

i vpw
′ . (7.15)

This clearly holds for k0 = 0, i.e., in the case that v0 contains no handles. If
v0 contains a handle, then it contains the prime handle of wk, so that red(wk)
is obtained from wk by reducing the prime handle of v0. The reduction goes
on until all handles in v0 have been disposed of. This proves (7.15). A similar
argument shows that for k′ = k + k0 + k1 + · · ·+ kp,

wk′ = redk0+k1+···+kp(wk)
= redk0(v0)σe

i redk1(v1)σe
i redk2(v2) · · ·σe

i redkp(vp)w′ .

If w′ = ∅, then wk′ contains no handles, contradicting our hypothesis that
the sequence (wk)k is infinite. Hence, w′ must begin with σ−e

i . One sees im-
mediately that the σi-handle σe

i redkp(vp)σ−e
i is the prime handle of wk′ .

Hence, k′ ∈ K. Thus for any k ≥ 0 there is k′ ∈ K such that k′ ≥ k. This
proves that K is infinite. The argument also shows that h = h(wk) ≥ 1.
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We now claim that K is finite. By Lemma 7.36, the braid word w is
the label of a path in Γr for some r ≥ 0. It follows from Lemma 7.37 that
for each k ≥ 0 the word wk is the label of a path in Γr. Let us apply
Lemma 7.39 to wk. We observed above that h ≥ 1. Let e be the common
value of e(wk) for all k. Consider the path a(wk) produced by Lemma 7.39
and its label Lk = L(a(wk)). If k �∈ K, then Lk = ∅; if k ∈ K, then Lk

contains exactly one occurrence of σ−e
i and no occurrences of σe

i . For any
integer � ≥ 0, the paths a(w0), a(w1), . . . , a(w�) can be concatenated, since by
Lemma 7.39 the initial vertex of each a(ws) is the terminal vertex of a(ws−1).
Each path a(w0), a(w1), . . . , a(w�) being in Γr, so is the concatenated path
a(w0) a(w1) · · · a(w�). The label of the latter is the braid word L0 L1 · · ·L�,
which by Lemma 7.39 contains no occurrences of σe

i and as many occurrences
of σ−e

i as there are elements of K in {0, 1, . . . , �}. By Lemma 7.35, the number
of such occurrences of σ−e

i is bounded from above by an integer Nr. It follows
that

card(K ∩ {0, 1, . . . , �}) ≤ Nr

for each � ≥ 0. Therefore K is a finite set. We have thus reached the desired
contradiction. ��

Remark 7.40. Prime handle reduction allows us to get rid of all handles in
a braid word. Actually, in order to prove Lemma 7.17, we need only to kill
the σi-handles of braid words of index i. Killing σi-handles can be achieved
by reducing only the critical handles. The latter can be reduced after the
σi+1-handles that they contain have previously been disposed of. The reader
is encouraged to make the reduction of critical handles work in a proper way.
The appropriately defined critical handle reduction is faster than prime handle
reduction since there are fewer handles to kill, as can be seen for instance when
one applies both prime handle reduction and critical handle reduction to the
braid word (7.2).

7.6 The Nielsen–Thurston approach

To end this chapter we outline a geometric method to order the braid groups.
The method, based on Proposition 7.41 below, requires some familiarity with
hyperbolic geometry and with Nielsen’s classical work on homeomorphisms of
surfaces [Nie27].

Proposition 7.41. Let G be a group acting on a totally ordered set X by
order-preserving bijections such that there is an element of X whose stabilizer
is trivial. Then G is orderable.

Recall that the stabilizer of a ∈ X is the subgroup of G consisting of all
elements fixing a.
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Proof. For f ∈ G and b ∈ X , let f(b) ∈ X be the result of the action of f
on b. By assumption, b < b′ ⇒ f(b) < f(b′) in X for all b, b′ ∈ X and f ∈ G,
and there is a ∈ X such that f(a) = a ⇒ f = 1. For f , g ∈ G, set f ≤a g
if f(a) ≤ g(a) for the given total order on X . It is clear that the relation ≤a

on G is reflexive and transitive. Let us show that it is antisymmetric. Indeed,
f ≤a g and g ≤a f imply f(a) ≤ g(a) ≤ f(a). Hence, f(a) = g(a), which
is equivalent to (g−1f)(a) = a. Therefore, g−1f = 1; hence f = g. We have
thus checked that ≤a is an order on G. Since the order on X is total, so is the
order ≤a on G.

It remains to prove that ≤a is left-invariant. Let f ≤a g in G and h ∈ G.
Since f(a) ≤ g(a) and h acts on X by an order-preserving bijection,

(hf)(a) = h(f(a)) ≤ h(g(a)) = (hg)(a) .

Thus, hf ≤a hg. ��

Let S be a closed connected oriented surface of genus one with n ≥ 1
marked points P1, . . . , Pn. Let C be a simple closed curve on S separating S
into a genus-one surface S1 and a disk S2 containing all marked points (see Fig-
ure 7.8 for n = 3). By Theorem 1.33, the braid group Bn is isomorphic to the
mapping class group M of the orientation-preserving self-homeomorphisms
of S that are the identity on S1 and permute the marked points.

P1 P2 P3

C

S1 S2

Fig. 7.8. The surface S

Equip S − {P1, . . . , Pn} with a complete hyperbolic metric for which the
curve C is a geodesic and the marked points are cusps. Fix a basepoint x0

on C. The hyperbolic metric allows us to identify the universal covering of
S−{P1, . . . , Pn} with the interior D◦ = D−∂D of the unit disk D in C. More-
over, we can assume that the center 0 of D projects to x0. Any orientation-
preserving self-homeomorphism ϕ of S fixing x0 and permuting the marked
points can be lifted uniquely to a self-homeomorphism ϕ̃ of D◦ fixing 0.
Nielsen [Nie27, Sect. 10] showed that ϕ̃ extends to an orientation-preserving
self-homeomorphism Φ of D. He also proved that ∂ϕ = Φ|∂D depends only
on the isotopy class of ϕ. Consequently, the mapping class group M ∼= Bn

acts by orientation-preserving homeomorphisms on the circle ∂D. This action
fixes a point z ∈ ∂D. In the role of z we can take one of the endpoints of the
component of the preimage of C in D passing through 0. We thus have an
action of Bn on R = ∂D − {z} by orientation-preserving homeomorphisms,
hence by order-preserving homeomorphisms.
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We now apply Proposition 7.41 to G = Bn acting on X = R via the
above-defined action. In order to be able to conclude that Bn is orderable,
we have to check that the subset Y of R consisting of the points with trivial
stabilizer is nonempty. The complement Z of Y in X is the union of the sets
of fixed points of ∂ϕ, where ϕ runs over all elements of M∼= Bn distinct from
the identity. Since Bn is countable, Z is a countable union of such fixed-point
sets. By [Nie27, Sect. 14], if ϕ �= 1, then the set of fixed points of ∂ϕ is a
closed subset with empty interior. It follows from Baire’s theorem (see [Kel55,
Chap. 6] or [Rud66, Th. 5.6]) that Z has an empty interior. Therefore, its
complement Y is dense in R and hence is nonempty.

Notes

For general references on orderable groups, see [MR77] or [Pas77]. A num-
ber of groups arising in topology are orderable; see [RW00], [SW00], [RW01],
[Gon02], [BRW05]. For the biorderability of the pure braid groups, we fol-
lowed [KR03], [DDRW02, Sect. 9.2].

The left-invariant total order presented in Section 7.3 was discovered by
Dehornoy in 1991–1992; see [Deh94]. Until then it was not known whether
braids groups were orderable. We followed [Deh00], [DDRW02, Chap. 1] for
most of Section 7.3. Theorem 7.15 is due to Dehornoy. Proposition 7.19 is
established in [MN03]. For the proof of Lemma 7.16 we followed [Lar94].

Handle reduction was introduced in [Deh97]; see also [Deh00, Chap. III],
[DDRW02, Chap. 3]. In practice, the algorithm provided by Lemma 7.32 turns
out to be very efficient, faster than other available algorithms.

The geometric approach in Section 7.6 is based on an observation of
W. Thurston recorded by H. Short and B. Wiest. This approach leads to
a family of left-invariant total orders of Bn including the Dehornoy order.
A classification of these orders is given in [SW00]; see also [DDRW02, Chap. 7].
Proposition 7.41 has a nice converse when X = R: any countable orderable
group acts on R by order-preserving homeomorphisms such that there is a
point on R whose stabilizer is trivial (see [Ghy01] or [DDRW02, Prop. 7.1.1]).

There are other proofs of the orderability of the braid groups, notably
by Fenn, Greene, Rolfsen, Rourke, Wiest [FGRRW99], by Short and Wiest
[SW00], by Funk [Fun01], and by I. Dynnikov (unpublished). See also the
monographs [Deh00], [DDRW02], [DDRW08], and the survey [Kas02].



A

Presentations of SL2(Z) and PSL2(Z)

Let SL2(Z) be the group of 2×2 matrices with entries in Z and with determi-
nant 1. The center of SL2(Z) is the group of order 2 generated by the scalar
matrix −I2, where I2 is the unit matrix. The quotient group

PSL2(Z) = SL2(Z)/〈−I2〉

is called the modular group; it can be identified with the group of rational
functions on C of the form (az + b)/(cz +d), where a, b, c, d are integers such
that ad− bc = 1.

Consider the following three group presentations:

〈a, b | aba = bab, (aba)4 = 1〉 , (A.1)

〈s, t | s3 = t2, t4 = 1〉 , (A.2)

〈s, t | s3 = t2 = 1〉 . (A.3)

Lemma A.1. (a) The presentations (A.1) and (A.2) define the same group G
up to isomorphism. The group G is isomorphic to the quotient of the braid
group B3 by the central subgroup generated by (σ1σ2σ1)4.

(b) The group H defined by (A.3) is isomorphic to the quotient of B3 by
its center.

Proof. (a) It is easy to check that the mutually inverse substitutions

s = ab , t = aba and a = s−1t , b = t−1s2

transform (A.1) into (A.2). This proves that the presentations (A.1) and (A.2)
define isomorphic groups.

Replacing a by σ1 and b by σ2 in (A.1), we see that G is isomorphic to the
quotient of B3 by the normal subgroup generated by (σ1σ2σ1)4. The latter is
the square of (σ1σ2σ1)2, which by Theorem 1.24 generates the center Z(B3)
of B3.

C. Kassel, V. Turaev, Braid Groups, DOI: 10.1007/978-0-387-68548-9 8,
c© Springer Science+Business Media, LLC 2008
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(b) It is clear from the presentations (A.2) and (A.3) that H is the quo-
tient of G by the normal subgroup generated by s3 = t2 ∈ G. Under the
identifications

s = ab = σ1σ2 , t = aba = σ1σ2σ1 ,

we have H = B3/Z(B3). ��

Consider the matrices A, B ∈ SL2(Z) defined by

A =
(

1 1
0 1

)

and B =
(

1 0
−1 1

)

.

It is easy to check the following relations in SL2(Z):

ABA = BAB and (ABA)4 = 1 .

Hence there is a group homomorphism f : G → SL2(Z) such that f(a) = A
and f(b) = B. For s = ab and t = aba, a quick computation gives

f(s) = AB =
(

0 1
−1 1

)

, f(t) = ABA =
(

0 1
−1 0

)

, (A.4)

f(t2) = (f(t))2 = (ABA)2 =
(

−1 0
0 −1

)

= −I2 . (A.5)

By (A.5), f induces a group homomorphism f : H = G/〈z〉 → PSL2(Z).

Theorem A.2. The group homomorphisms

f : G → SL2(Z) and f : H = B3/Z(B3) → PSL2(Z)

are isomorphisms.

Proof. We claim that f : G → SL2(Z) is injective (resp. surjective) if and
only if f : H → PSL2(Z) is injective (resp. surjective). Indeed, f sends the
subgroup 〈t2〉 ⊂ G onto the group of order 2 generated by −I2. Since t4 = 1,
the subgroup 〈t2〉 is of order at most 2. Therefore, f induces an isomorphism
from 〈t2〉 onto {±I2}. The claim follows immediately.

To prove the theorem, it therefore suffices to show that f : G → SL2(Z)
is surjective and f : H → PSL2(Z) is injective.

We first check that the matrices A = f(a) and B = f(b) generate SL2(Z),
which implies that f : G → SL2(Z) is surjective. To this end we show that any
M ∈ SL2(Z) can be expressed as a word in A±1 and B±1. In the argument
below it will be convenient to denote the entries b and d of

M =
(

a b
c d

)

∈ SL2(Z)

respectively by b(M) and d(M). Set T = f(t) = ABA ∈ SL2(Z).
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If b = 0, then a = d = ±1 and either M = B−c or M = −I2B
c = T 2Bc.

Thus, M can be expressed as a word in A±1 and B±1.
If d = 0, then bc = −1. Either b = −c = 1 and then M = A−aT , or

b = −c = −1 and then M = AaT 3. In both cases M can be expressed as a
word in A±1 and B±1.

Assume now that neither b = b(M) nor d = d(M) is zero. Observe that

b(AM) = b(M) + d(M) and d(AM) = d(M) , (A.6)

and
b(TM) = d(M) and d(TM) = −b(M) . (A.7)

From (A.6) we deduce that by multiplying M on the left by a suitable positive
or negative power of A, we obtain a matrix AnM such that

0 ≤ |b(AnM)| < |d(AnM)| .

Using (A.7), we may exchange the roles of ±b and ±d via left multiplication
by T . In this way we can decrease the absolute values of b and d until one of
them vanishes. Consequently, multiplying M on the left by powers of A or T ,
we can reduce the proof to the case b = 0 or d = 0 considered above.

We now prove that f : H → PSL2(Z) is injective. The group H presented
by (A.3) is the free product of the cyclic group of order 3 generated by s and
the cyclic group of order 2 generated by t. Any element of H distinct from
the neutral element has a unique expression of one of the following forms:

w = sε1tsε2t · · · tsεr , wt , tw , twt , t ,

where εi = ±1 (i = 1, . . . , r) (for a definition of free products and a description
of normal forms for their elements, see for instance [LS77, Sect. I.11], [Ser77,
Sect. I.1]). It is therefore enough to show that none of these elements is in the
kernel of f .

The element t is not in the kernel of f by (A.4). Since twt = twt−1 is a
conjugate of w and tw a conjugate of wt, it is enough to check that f(w) �= 1
and f(wt) �= 1.

Let us begin with wt = (sε1t)(sε2 t) · · · (sεr t). Since s−1t = a and

st = (t−1s2)−1 = b−1 ∈ H ,

we have f(s−1t) = A and f(st) = B
−1

, where A and B are the images of A
and B in PSL2(Z), respectively. It follows that f(wt) is a nonempty product
of the matrices A and B

−1
. It suffices then to check that no nonempty product

of the matrices

A =
(

1 1
0 1

)

and B−1 =
(

1 0
1 1

)

is equal to ±I2. Such a product has only nonnegative entries, and after each
multiplication by A or B−1 the sum of the nondiagonal entries strictly in-
creases. Therefore no such product may be equal to ±I2.
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If f(w) = 1, then

f(wt) = f(t) =
(

0 1
−1 0

)

.

This is impossible because by the previous argument, f(wt) is a product of the
matrices A and B−1, and has only nonnegative entries, whereas the matrix
on the right has entries with opposite signs. This contradiction proves that
f(w) �= 1. ��

Notes

The above proofs were inspired by [Rei32, 2.8–2.9]. There are alternative
proofs using the action of the group PSL2(Z) on the Poincaré upper half-
plane (see [Ser70, Sect. VII.1]) or algebraic K-theory methods (see [Mil71,
Chap. 10]).



B

Fibrations and Homotopy Sequences

We recall several basic notions from the theory of fibrations needed in the
main text. For details, the reader is referred, for instance, to [FR84, Chap. 5].

A (continuous) map p : E → B is called a locally trivial fibration with
fiber F if for every point of B there is a neighborhood U ⊂ B of this point
together with a homeomorphism U × F → p−1(U) whose composition with p
is the projection to the first factor U × F → U . It is clear then that F
is homeomorphic to p−1(b) for any b ∈ B. The spaces E and B are called
respectively the total space and the base of p. A map f̂ from a topological
space X to E is said to be a lifting, or lift, of a map f : X → B if

p ◦ f̂ = f .

Set I = [0, 1]. A map p : E → B has the homotopy lifting property with
respect to a topological space X if for any maps f̂ : X → E and g : X× I → B
such that g(x, 0) = p(f̂(x)) for all x ∈ X , there is a lift

ĝ : X × I → E

of g such that ĝ(x, 0) = f̂(x) for all x ∈ X .
More generally, a map p : E → B has the homotopy lifting property with

respect to a topological pair (X,A ⊂ X) if for arbitrary maps f̂ : X → E,
g : X×I → B and any lift h : A×I → E of g|A×I such that g(x, 0) = p(f̂(x))
for all x ∈ X and h(x, 0) = f̂(x) for all x ∈ A, there is a lift

ĝ : X × I → E

of g such that ĝ(x, 0) = f̂(x) for all x ∈ X and ĝ|A×I = h.
A map p : E → B is a Serre fibration if it has the homotopy lifting

property with respect to all cubes In with n = 0, 1, . . .. For example, all locally
trivial fibrations are Serre fibrations. It is known that each Serre fibration
has the homotopy lifting property with respect to any pair (a polyhedron, a
subpolyhedron).
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The key property of a Serre fibration p : E → B is the existence of an
exact sequence involving the homotopy groups of the total space, the base,
and the fiber of p. More precisely, pick a point e ∈ E, set b = p(e) ∈ B, and
let F = p−1(b) ⊂ E be the fiber of p over b. Then we have an infinite (to the
left) sequence

· · · ∂−→ π2(F, e)
i#−→ π2(E, e)

p#−→ π2(B, b) ∂−→ π1(F, e)
i#−→ π1(E, e)

p#−→ π1(B, b) ∂−→ π0(F, e)
i#−→ π0(E, e)

p#−→ π0(B, b),

where the morphisms i# and p# are induced by the inclusion i : F ↪→ E
and the projection p : E → B, respectively. The terms of this sequence are
groups except the last three terms, which are sets with a distinguished element
represented by the base point. The morphisms in this sequence are group
homomorphisms except the three rightmost arrows, which are set-theoretic
mappings preserving the distinguished elements. The sequence above is called
the homotopy sequence of p. It is exact in the sense that the image of each
morphism is equal to the kernel of the next morphism (for the three rightmost
arrows, by the kernel we mean the preimage of the distinguished element).

The boundary homomorphism ∂ : πn(B, b) → πn−1(F, e) with n ≥ 1 is
defined as follows. Represent any a ∈ πn(B, b) by a map α : In → B with
α(∂In) = b. The homotopy lifting property of p with respect to the pair
(In−1, ∂In−1) implies that α has a lift α̂ : In = In−1 × I → E such that

α̂(In−1 × {1}) = α̂(∂In−1 × I) = e.

The restriction of α̂ to In−1×{0} = In−1 yields a map In−1 → E sending In−1

to p−1(b) = F and sending ∂In−1 to e. This map represents ∂(a) ∈ πn−1(F, e).



C

The Birman–Murakami–Wenzl Algebras

We briefly discuss a family of finite-dimensional quotients of the braid group
algebras due to J. Murakami, J. Birman, and H. Wenzl. We also outline an in-
terpretation of the Lawrence–Krammer–Bigelow representation of Section 3.5
in terms of representations of these algebras.

J. Murakami [Mur87] and independently J. Birman and H. Wenzl [BW89]
introduced a two-parameter family of finite-dimensional C-algebras

Cn(α, �) ,

where α and � are nonzero complex numbers such that α4 �= 1 and �4 �= 1.
For i = 1, . . . , n− 1, set

ei =
σi + σ−1

i

α + α−1
− 1 ∈ C[Bn] .

The algebra Cn(α, �) is the quotient of the group algebra C[Bn] by the rela-
tions

eiσi = �−1 ei, eiσi−1ei = � ei, eiσ
−1
i−1ei = �−1 ei ,

where i = 1, . . . , n− 1 in the first relation and i = 2, . . . , n− 1 in the last two
relations. Note that the original definition in [BW89] involves more relations;
for the shorter list given above, see [Wen90]. The algebra Cn(α, �) is called
the Birman–Murakami–Wenzl algebra (BMW algebra for short). It admits a
geometric interpretation in terms of so-called Kauffman skein classes of tangles
in Euclidean 3-space. This family of algebras is a deformation of an algebra
introduced by R. Brauer [Bra37].

The algebraic structure and representations of Cn(α, �) were studied by
Wenzl [Wen90], who established the following three facts.

(i) For generic α and �, the algebra Cn(α, �) is semisimple. Here “generic”
means that α is not a root of unity and

√
−1 � is not an integral power

of −
√
−1α. (The latter two numbers correspond to r and q in Wenzl’s

notation.) In the sequel we assume that α and � are generic in this sense.
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(ii) Simple finite-dimensional Cn(α, �)-modules are indexed by partitions λ
of nonnegative integers m such that m ≤ n and m ≡ n (mod 2). The
simple Cn(α, �)-module corresponding to λ will be denoted by Vn,λ. Com-
posing the natural homomorphism C[Bn] → Cn(α, �) with the action
of Cn(α, �) on the module Vn,λ, we obtain an irreducible representa-
tion Bn → Aut(Vn,λ).

(iii) The natural inclusion Bn−1 ↪→ Bn induces an inclusion

Cn−1(α, �) ↪→ Cn(α, �)

for all n ≥ 2. Moreover, the Cn(α, �)-module Vn,λ, where λ � m, decom-
poses as a Cn−1(α, �)-module into a direct sum

⊕

μ

Vn−1, μ ,

where μ ranges over all partitions whose diagrams have been obtained
from the diagram of λ by removing or (if m < n) adding one box. Each
such μ appears in this decomposition with multiplicity 1.

The assertions (ii) and (iii) allow us to draw the Bratteli diagram for the
sequence

C1(α, �) ⊂ C2(α, �) ⊂ · · · .
On the level n = 1, 2, . . . of this diagram we place all partitions λ � m such
that m ≤ n and m ≡ n (mod 2). Then we connect each λ on the nth level
by an edge to every partition on the (n− 1)st level whose diagram has been
obtained from the diagram of λ by removing or (if m < n) adding one box.
For instance, the n = 1 level consists of the partition (1) corresponding to the
tautological one-dimensional representation of C1(α, �) = C. The n = 2 level
contains the partitions (2), (1, 1), and the empty partition ∅ of zero. All three
are connected to the unique partition on the level 1. Each partition λ � m
with m ≥ 0 appears on the levels m, m + 2, m + 4, . . ..

As in the case of the Iwahori–Hecke algebras, the Bratteli diagram of the
BMW algebras yields a useful method for computing the dimension of Vn,λ,
where λ is a partition on the nth level. It is clear from (iii) that dimVn,λ is
the number of paths on the Bratteli diagram leading from the unique parti-
tion on the level 1 to λ. Here by a path we mean a path with vertices lying
on consecutively increasing levels. We illustrate this computation with a few
examples.

(a) Let μ[n] = (1, . . . , 1) be the partition of n whose diagram is a single
column of n boxes. Let μ′[n] = (n) be the conjugate partition of n whose
diagram is a single row of n boxes. There is only one path from the unique
partition on the level 1 to μ[n] placed on the level n. Hence,

dimVn, μ[n] = 1

for all n ≥ 1. Similarly, dimVn, μ′[n] = 1.
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For n ≥ 3, the algebra Cn(α, �) has two one-dimensional representations.
In both of them all ei act as 0 and all σi act as multiplication by one and
the same number equal either to α or to α−1. We choose the correspondence
between the irreducible Cn(α, �)-modules and the partitions so that all σi act
as multiplication by α on Vn, μ[n] and as multiplication by α−1 on Vn, μ′[n].

(b) For n ≥ 2, let λ[n] = (2, 1, . . . , 1) be the partition of n whose diagram
has two columns with n−1 boxes in the first column and one box in the second
column. For n ≥ 3, the partition λ[n], placed on the level n, is connected to
only two partitions on the level n− 1, namely to λ[n− 1] and μ[n− 1]. Hence,

dim Vn, λ[n] = dimVn−1, λ[n−1] + dimVn−1, μ[n−1]

= dimVn−1, λ[n−1] + 1.

We have λ[2] = μ′[2], so that dimV2, λ[2] = 1. Hence dimVn, λ[n] = n − 1 for
all n ≥ 2.

(c) For n ≥ 3, consider the partition μ[n − 2] placed on the level n. It is
connected to three partitions on the level n− 1, namely to μ[n− 1], μ[n− 3],
and λ[n− 1]. Hence,

dimVn, μ[n−2] = dimVn−1, μ[n−1] + dimVn−1, μ[n−3] + dimVn−1, λ[n−1]

= 1 + dimVn−1, μ[n−3] + n− 2
= dimVn−1, μ[n−3] + n− 1.

We set μ[0] = ∅ and deduce from (iii) above that dimV2, μ[0] = dimV1, μ[1] = 1.
Therefore for all n ≥ 2,

dimVn, μ[n−2] =
n(n− 1)

2
.

We conclude that the dimension of Vn, μ[n−2] coincides with the rank of the
Lawrence–Krammer–Bigelow representation of Bn over Z[q±1, t±1]. This sug-
gests that these two representations may be related. To describe their rela-
tionship, we rescale the representation Bn → Aut(Vn, μ[n−2]) by dividing the
action of each σi by α.

Theorem C.1 (M. Zinno [Zin01]). The Lawrence–Krammer–Bigelow rep-
resentation computed at q = −α−2 and t = α3�−1 is isomorphic to the rescaled
representation Bn → Aut(Vn, μ[n−2]).

This theorem implies that the Lawrence–Krammer–Bigelow representation
is irreducible and that after the substitution q = −α−2, t = α3�−1 ∈ C, this
representation factors through the projection Bn → Cn(α, �).



D

Left Self-Distributive Sets

We give here a brief introduction to so-called left self-distributive sets, which
are closely related to braid groups.

D.1 LD sets, racks, and quandles

A left self-distributive set (LD set) is a pair (X, ∗), where X is a set and
∗ : X ×X → X is a binary operation satisfying

a ∗ (b ∗ c) = (a ∗ b) ∗ (a ∗ c) (D.1)

for all a, b, c ∈ X . A morphism f : (X, ∗) → (X ′, ∗) of LD sets is a set-theoretic
map f : X → X ′ such that f(a ∗ b) = f(a) ∗ f(b) for all a, b ∈ X .

The idea of an LD set is very natural: for any element a of a set X equipped
with a binary operation ∗ : X × X → X , consider the left multiplication
La : X → X defined by La(b) = a ∗ b for all b ∈ X . The equation (D.1) can
be reformulated as

La(b ∗ c) = La(b) ∗ La(c) .

Thus, an LD set is a set equipped with a binary operation that is preserved by
all left multiplications. The terminology “left self-distributive” arises from the
fact that a binary operation satisfying (D.1) is left distributive with respect
to itself.

An LD set (X, ∗) is a rack if the left multiplication b → a ∗ b is bijective
for all a ∈ X . A quandle is a rack satisfying a ∗ a = a for all a ∈ X .

Examples D.1. (a) The formula a ∗ b = b defines a left self-distributive op-
eration on any set. This is a quandle.

(b) Given a monoid M together with an element e ∈ M , set a ∗ b = be
(a, b ∈ M). Then (M, ∗) is an LD set. It is a rack if and only if e has a left
inverse in the monoid. It is a quandle if and only if be = b for all b ∈ M .
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(c) Given a group G, set a ∗ b = aba−1 for a, b ∈ G. The pair (G, ∗) is a
quandle.

(d) Let R be a ring and t ∈ R. For a, b ∈ R, set

a ∗ b = (1− t)a + tb . (D.2)

This is an LD operation. The pair (R, ∗) is a rack (actually a quandle) if and
only if t is invertible in R.

D.2 An action of the braid monoid

We relate LD sets to the braid monoids B+
n introduced in Section 6.5. Given an

LD set (X, ∗) and an integer n ≥ 2, consider the product Xn = X×X×· · ·×X
of n copies of X . For i = 1, . . . , n− 1, set

σi(a1, . . . , an) = (a1, . . . , ai−1, ai ∗ ai+1, ai, ai+2, . . . , an) , (D.3)

where σ1, . . . , σn−1 are the standard generators of B+
n and a1, . . . , an ∈ X .

Lemma D.2. Formula (D.3) equips the set Xn with a left action of B+
n . This

action extends to a left action of the braid group Bn if and only if (X, ∗) is a
rack.

By a left action of B+
n on Xn we mean a map

B+
n ×Xn → Xn, (β,A) → βA

such that 1A = A and β(β′A) = (ββ′)A for all A ∈ Xn and β, β′ ∈ B+
n .

We can give a geometric description of this action. Represent β ∈ B+
n by

a braid diagram D with n strands and only positive crossings. Color the n
lower endpoints of D from left to right by a1, . . . , an ∈ X . Let the colors flow
up along the strands of D subject to the following rule: the colors remain
unchanged as long as they do not meet a crossing of D. At a crossing the
color a of the overgoing strand remains unchanged whereas the color b of the
undergoing strand becomes a ∗ b. The n-tuple (b1, . . . , bn) ∈ Xn of colors of
the upper endpoints of D satisfies

(b1, . . . , bn) = β (a1, . . . , an) .

See Figure D.1 for n = 3 and β = σ1.

Proof. (a) To prove that (D.3) equips Xn with a left action of B+
n , it suffices

to check that for all A = (a1, . . . , an) ∈ Xn,

σi(σjA) = σj(σiA)

for i, j ∈ {1, . . . , n− 1} with |i− j| ≥ 2, and

σi(σi+1(σiA)) = σi+1(σi(σi+1A))
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a1 ∗ a2 a1

a1 a2

a3

a3

Fig. D.1. The rule for braid coloring

for i ∈ {1, . . . , n− 2}. The first identity is a triviality. For the second one, we
obtain

σi(σi+1(σiA))
= (a1, . . . , ai−1, (ai ∗ ai+1) ∗ (ai ∗ ai+2), ai ∗ ai+1, ai, ai+3, . . . , an) ,

whereas

σi+1(σi(σi+1A))
= (a1, . . . , ai−1, ai ∗ (ai+1 ∗ ai+2), ai ∗ ai+1, ai, ai+3, . . . , an) .

These expressions are equal by (D.1).
(b) The action of B+

n on Xn extends to a left action of Bn if and only if
the maps A → σiA are bijective for all i = 1, . . . , n − 1. It is clear from the
definitions that this is equivalent to the bijectivity of all left multiplications
b → a ∗ b. ��

D.3 Orderable LD sets

Given an LD set (X, ∗) and elements a, c ∈ X , we write a ≺ c if a ∗ b = c for
some b ∈ X . For example, if X is a rack, then a ≺ c for all a, c ∈ X .

We define a binary relation & on an LD set X by a & b if a = b or there
are a0, a1, . . . , ar ∈ X such that a = a0 ≺ a1 ≺ · · · ≺ ar = b. We say that
a LD set X is orderable if the relation & is an order on X . In this case, the
relation & is called the canonical order of X . For example, a rack (X, ∗) is
orderable if and only if the set X consists of only one element. This suggests
that orderable LD sets are very different from racks.

We give three examples of orderable LD sets. In Section 7.4.1 we consid-
ered the free group F∞ on the countable set {x1, x2, x3, . . .} of generators.
Resuming the notation of that section, we define a binary operation ∗ on the
automorphism group Aut(F∞) by

ϕ ∗ ψ = ϕ ◦ T (ψ) ◦ σ̃1 ◦ T (ϕ−1) , (D.4)
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for any ϕ, ψ ∈ Aut(F∞). The reader may check that (D.4) is a left self-
distributive operation and that the LD set (Aut(F∞), ∗) is orderable (see
Exercise D.3.4).

A second example of an orderable LD set is given by the infinite braid
group B∞ (see Section 7.3.5), equipped with the binary operation

β ∗ β′ = β sh(β′)σ1 sh(β−1) , (D.5)

where β, β′ ∈ B∞ and sh is the shift introduced in Section 7.4.2. The group
homomorphism B∞ → Aut(F∞) that is the direct limit of the injective ho-
momorphisms Bn → Aut(Fn) defined in Section 1.5.1 is a morphism of LD
sets. This observation can be used to check that (D.5) is a left self-distributive
operation and that the LD set (B∞, ∗) is orderable (see Exercise D.3.5).

The third example of an orderable LD set is provided by the free LD
set on one generator. This LD set is characterized by the following universal
property.

Proposition D.3. There is an LD set (D, ∗) with distinguished element x ∈ D
such that for any LD set (X, ∗) and any a ∈ X, there is a unique morphism
of LD sets f : D → X such that f(x) = a. The LD set (D, ∗) is unique up to
isomorphism.

Proof. Following Bourbaki, define a magma to be a set equipped with a binary
operation ∗. Consider the magma Mag that is free on one generator x (for
details, see [Bou70, Chap. 1, Sect. 7]). An element of Mag can be viewed as
a positive power of x equipped with a full set of parentheses, e.g., x, x ∗ x,
(x ∗ x) ∗ x, x ∗ (x ∗ x), ((x ∗ x) ∗ x) ∗ x, (x ∗ (x ∗ x)) ∗ x, x ∗ ((x ∗ x) ∗ x),
x ∗ (x ∗ (x ∗ x)), (x ∗ x) ∗ (x ∗ x), . . .. The binary operation ∗ on Mag is the
concatenation of parenthesized words.

Let ∼ be the smallest equivalence relation on Mag such that

t1 ∗ (t2 ∗ t3) ∼ (t1 ∗ t2) ∗ (t1 ∗ t3)

and t1 ∗ t2 ∼ t′1 ∗ t′2 whenever t1 ∼ t′1 and t2 ∼ t′2. We define D as the set of
equivalence classes in Mag with respect to ∼. By definition of ∼, the binary
operation ∗ of Mag induces a left self-distributive operation, still denoted by ∗,
on D.

For any LD set (X, ∗) and a ∈ X , we define a map f ′ : Mag → X induc-
tively by f ′(x) = a and by

f ′(t1 ∗ t2) = f ′(t1) ∗ f ′(t2)

for all t1, t2 ∈ Mag. Since X is an LD set, the map f ′ induces a morphism
f : D → X of LD sets such that f(x) = a. It is easy to show that such a
morphism f is unique.

The uniqueness of D up to isomorphism follows from the universal property
of D. ��
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Theorem D.4. The LD set (D, ∗) is orderable and its canonical order is total.

For a proof, see [Deh94] or [Deh00, Chap. V].

Exercise D.3.1. Let E× be the set of nonzero vectors of a Euclidean vector
space. For a, b ∈ E× define a ∗ b to be the image of b under the orthogonal
symmetry with respect to the hyperplane orthogonal to a. Show that (E×, ∗)
is a rack.

Exercise D.3.2. (a) Let FS be the free group on a set of generators S. Equip
XS = FS × S with the binary operation

(w1, s1) ∗ (w2, s2) = (w1s1w
−1
1 , s2) ,

where w1, w2 ∈ FS and s1, s2 ∈ S. Show that (XS , ∗) is a rack.
(b) Show that any rack X is the quotient of the rack XS , where S is a

generating set of X .

Exercise D.3.3. Let Λ = Z[t, t−1] be the ring of Laurent polynomials with
integer coefficients. It is a rack under the binary operation (D.2). Show that
the corresponding action of Bn on Λn is linear and is isomorphic to the Burau
representation of Section 3.1.

Exercise D.3.4. Show that (Aut(F∞), ∗), where ∗ is defined by (D.4), is an
orderable LD set. (Hint: Use the set E of Section 7.4.1.)

Exercise D.3.5. Show that (Aut(B∞), ∗), where ∗ is defined by (D.5), is an
orderable LD set.

Exercise D.3.6. Show that there is a bijection between the free magma Mag,
defined in the proof of Proposition D.3, and the set of planar rooted binary
trees. Show that the number of elements of Mag containing n occurrences of x
is equal to the Catalan number

(
2n
n

)

/(n + 1).

Notes

The idea of using racks to construct representations of the braid groups can be
found, e.g., in Joyce [Joy82], Matveev [Mat82], Brieskorn [Bri88] (Brieskorn
calls them “automorphic sets”; see [FR92] for a historical presentation of
racks). Joyce and Matveev have associated to each knot a quandle that deter-
mines the knot up to isotopy and mirror reflection. Racks and quandles have
therefore been familiar to topologists for quite a while.

On the other hand, orderable LD sets, especially the ones whose canonical
orders are total, have been studied only recently, mainly by set theorists. The
reason is that the first observed orderable LD set appeared in the theory of
large cardinals, and its first construction relied on a large-cardinal axiom.
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To avoid the use of this axiom, Dehornoy investigated the free LD set D
of Section D.3. For details about the flow of ideas from set theory to braid
groups, see [Lav92], [Deh00, Chap. XII]. Note that Laver [Lav92] proved that
any orderable LD set generated by a single element is isomorphic to the free
LD set D.

Theorem D.4 is due to Dehornoy [Deh94]. Exercise D.3.1 is from [Bri88],
Exercises D.3.2–D.3.5 are from [Deh00].
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Exposé no 865 (1999/2000), Astérisque, vol. 276, Soc. Math. France,
Paris 2002, 7–28.

[KR07] C. Kassel, C. Reutenauer, Sturmian morphisms, the braid group B4,
Christoffel words and bases of F2, Ann. Mat. Pura Appl. 186 (2007),
317–339.

[KRT97] C. Kassel, M. Rosso, V. Turaev, Quantum groups and knot invari-
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[Rei32] K. Reidemeister, Einführung in die kombinatorische Topologie,
Friedr. Vieweg & Sohn, Braunschweig, 1932.

[Rei83] K. Reidemeister, Knot theory, translated from the German by
L. Boron, C. Christenson and B. Smith, BCS Associates, Moscow,
Idaho, 1983.

[RT90] N. Yu. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants
derived from quantum groups, Comm. Math. Phys. 127 (1990), 1–26.

[Rol76] D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7.
Publish or Perish, Inc., Berkeley, Calif., 1976.

[RW00] C. Rourke, B. Wiest, Order automatic mapping class groups, Pacific
J. Math. 194 (2000), 209–227.

[RW01] D. Rolfsen, B. Wiest, Free group automorphisms, invariant orderings
and topological applications, Algebr. Geom. Topol. 1 (2001), 311–320
(electronic).

[Rud66] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New
York-Toronto, Ont.-London, 1966.

[Sag01] B. E. Sagan, The symmetric group. Representations, combinato-
rial algorithms, & symmetric functions, Graduate Texts in Math-
ematics, 203, Springer-Verlag, New York, 2001 (first published by
Wadsworth & Brooks/Cole Advanced Books & Software, Pacific
Grove, CA, 1991).

[Sal94] M. Salvetti, The homotopy type of Artin groups, Math. Res. Lett. 1
(1994), 565–577.

[Ser70] J.-P. Serre, Cours d’arithmétique, Presses Univ. de France, Paris,
1970. English translation: A course in arithmetic, Graduate Texts
in Mathematics, 7, Springer-Verlag, New York-Heidelberg, 1973.

[Ser77] J.-P. Serre, Arbres, amalgames, SL2, Astérisque, No. 46, Soc. Math.
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98 BRÖCKER/TOM DIECK. Representations of

Compact Lie Groups.
99 GROVE/BENSON. Finite Reflection Groups.

2nd ed.
100 BERG/CHRISTENSEN/RESSEL. Harmonic

Analysis on Semigroups: Theory of Positive
Definite and Related Functions.

101 EDWARDS. Galois Theory.
102 VARADARAJAN. Lie Groups, Lie Algebras

and Their Representations.
103 LANG. Complex Analysis. 3rd ed.
104 DUBROVIN/FOMENKO/NOVIKOV. Modern

Geometry—Methods and Applications.
Part II.

105 LANG. SL2 (R).

106 SILVERMAN. The Arithmetic of Elliptic
Curves.

107 OLVER. Applications of Lie Groups to
Differential Equations. 2nd ed.

108 RANGE. Holomorphic Functions and Integral
Representations in Several Complex
Variables.

109 LEHTO. Univalent Functions and
Teichmüller Spaces.

110 LANG. Algebraic Number Theory.
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